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ARTICLE INFO ABSTRACT

Antigen receptor gene rearrangements are frequently applied as molecular targets for detection of minimal
residual disease (MRD) in B-cell precursor acute lymphoblastic leukemia patients. Since such targets may be lost
at relapse, appropriate selection of antigen receptor genes as MRD-PCR target is critical. Recently, next-gen-
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re?rfan?emeﬁts i eration sequencing (NGS) — much more sensitive and quantitative than classical PCR-heteroduplex approaches —
r;?al ;;: residual disease has been introduced for identification of MRD-PCR targets. We evaluated 42 paired diagnosis-relapse samples by

NGS (IGH, IGK, TRG, TRD, and TRB) to evaluate clonal evolution patterns and to design an algorithm for
selection of antigen receptor gene rearrangements most likely to remain stable at relapse. Overall, only 393 out
of 1446 (27%) clonal rearrangements were stable between diagnosis and relapse. If only index clones with a
frequency > 5% at diagnosis were taken into account, this number increased to 65%; including only index clones
with an absolute read count > 10,000, indicating truly major clones, further increased the stability to 84%. Over
90% of index clones at relapse were also present as index clone at diagnosis. Our data provide detailed in-
formation about the stability of antigen receptor gene rearrangements, based on which we propose an algorithm

Next generation sequencing

for selecting stable MRD-PCR targets, successful in > 97% of patients.

1. Introduction

Antigen receptor (immunoglobulin (IG) and T-cell receptor (TR))
gene rearrangements can be considered as DNA fingerprints of B-cell
precursor acute lymphoblastic leukemia (BCP-ALL) cells. Consequently,
they are frequently used to monitor minimal residual disease (MRD) in
BCP-ALL patients [1]. However, IG/TR gene rearrangements can be lost
during the course of the disease due to outgrowth of subclones, ongoing
rearrangements or secondary rearrangements, thereby resulting in
false-negative MRD results [2-8]. We previously have shown that
monoclonal IG/TR targets are more likely to be stable between diag-
nosis and relapse than oligoclonal IG/TR rearrangements, and provided
a strategy to select appropriate MRD-PCR targets [4].

In previous studies, IG/TR gene rearrangements were analyzed by
using PCR-based methods (sometimes in combination with Southern
blot), which allowed identification of clonal IG/TR gene

rearrangements down to the level of 1-5% [9,10]. More recently, highly
sensitive next generation sequencing (NGS) has been introduced for
identification of IG/TR gene rearrangements in BCP-ALL patients at
diagnosis. These studies show many more clonal IG/TR gene re-
arrangements than using the classical approaches and indicate a much
higher level of oligoclonality than suggested before [7,11,12]. There-
fore, it needs to be determined which of the multiple IG/TR gene re-
arrangements identified by NGS are suitable as MRD-PCR target and
should be selected for monitoring. Several studies already applied NGS
for analysis of MRD as well, with very promising data often at least
equivalent to current MRD technologies [8,13-19]. However, within
the EuroMRD network standardized protocols for accurate quantifica-
tion of MRD are still under development and consequently NGS is not
yet routinely used for MRD analysis [20,21]. Until then, NGS can be
used instead of the classical approaches for identification of MRD-PCR
targets, which subsequently can be used to monitor MRD with the well-
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Table 1
Number of clonal IG/TR rearrangements identified using NGS at diagnosis.
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All rearrangements

Rearrangements > 5%

Y%positive patients by classical PCR”

Number of rearrangements %positive patients”

Number of rearrangements

%positive patients®

median range median Range
IGH Vh-Jh 4,5 0-79 93% 1 0-5 90% 80-85%
IGH Dh-Jh 0 0-99 38% 0 0-4 33% 20%
IGK Vk-Jk 0 0-10 43% 0 0-3 26% 30%
IGK Intron-Kde 0 0-3 12% 0 0-1 7% 15-25%
IGK Vk-Kde 1 0-8 57% 0 0-2 43% 45%
IGK total 1.5 0-19 69% 1 0-4 60% 60-75%
TRB VB-JB 1 0-19 64% 0 0-2 45% 25-30%
TRD D8-D§ 0 0-8 26% 0 0-1 12% 40%
TRD V8-D8 2 0-69 69% 1 0-4 60%
TRD total 2 0-71 69% 1 0-4 64% 40%
TRG Vy-Jy 2 0-102 76% 1 0-5 67% 50-60%
Total 20 4-311 100% 6 2-14 100% 100%

@ Percentage of patients with = one rearrangement for the indicated locus.
" Based on reference [22].

established patient-specific RQ-PCR method. In both cases, however,
appropriate selection of MRD-PCR targets is crucial.

To design a strategy for MRD-PCR target selection based on NGS-
based data, we evaluated 42 paired diagnosis-relapse samples to eval-
uate the stability of IG/TR clones. Our data show that NGS allows the
identification of possible MRD-PCR targets in all patients, and that se-
lection of MRD-PCR targets with a high frequency (> 5%) and a high
absolute read count (> 10,000), via the proposed algorithm, results in
at least one MRD-PCR target remaining stable at relapse in > 97% of
patients.

2. Materials and methods
2.1. Patient and control samples

Bone marrow (BM) or peripheral blood (PB) samples were obtained
at both diagnosis and relapse from 42 children with BCP-ALL
(Supplementary Table SI). Genomic DNA was isolated from BM or PB
mononuclear cells (MNCs) by the QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany). All samples were obtained according to the guide-
lines of the local Medical Ethics Committees (MEC 2004-203 and MEC
2012-287) and in line with the Declaration of Helsinki Protocol.

2.2. Classical PCR-heteroduplex-Sanger sequencing method

Primers and protocols for the detection of immunoglobulin heavy
chain (IGH; Vh-Jh and Dh-Jh), immunoglobulin kappa (IGK; Vk-Jk, Vk-
Kde, Intron-Kde) light chain, T cell receptor gamma (TRG; Vy-Jy), T cell
receptor delta (TRD; D8-D§, V8-D§, V8-Ja) gene rearrangements, and T
cell receptor beta (TRB; V[3-JB, DB-JB) rearrangements have been de-
scribed previously [22]. Clonality of PCR products was confirmed by
heteroduplex analysis and Sanger sequencing was performed with
BigDye™ Primer Sequencing Kit (Thermo Fisher, MA, USA).

2.3. Next-generation sequencing method

NGS-based immunosequencing (performed by Sequenta, USA) was
performed as published [13]. Briefly, a DNA quantity of 120-180ng,
corresponding to 20,000-30,000 MNCs, was used for the amplification
of complete IGH gene rearrangements (Vh-Jh; three separate multiplex
PCRs), incomplete IGH gene rearrangements (Dh-Jh), IGK gene re-
arrangements (Vk-Jk, Vk-Kde, Intron-Kde), TRG gene rearrangements
(Vy-Jy), TRD gene rearrangements (V8-D§, D8-D3) and TRB gene re-
arrangements (V(-JB). These rearrangements were amplified in a first
PCR reaction of 25 cycles, using locus-specific primer sets [13]. Next,

1:100 of these PCR products was further amplified in a second PCR
reaction of 14 cycles, using universal primers complementary to the
adaptors that were linked to the locus-specific primers with sample-
identifiers. The final PCR products were sequenced using the Illumina
HiSEQ platform. Low-quality reads were filtered out and sequences
with a single read were excluded [13]. Also sequences below pre-
viously-established thresholds, which might reflect non-leukemic re-
arrangements, were excluded from the analysis [12]. For each se-
quence, the frequency and the absolute read count (ARC), i.e. the read
count corrected for PCR amplification by the spike-in method, were
calculated [12,13]. In line with previous reports [13,14,23,24], an
index clone was arbitrarily defined as a clonal IG/TR gene rearrange-
ment with a frequency > 5%. The PRecISe Clonal Analysis (PRISCA)
tool in Galaxy was used to compare sequences from paired diagnosis-
relapse samples [12,25]. Details are provided in the Supplement.

3. Results
3.1. Identification of IG/TR gene rearrangements at diagnosis

Using NGS, we identified a median of 20 (range: 4-311) clonal IG/
TR gene rearrangements per patient. VH-JH gene rearrangements were
detected most, followed by TRG and V8-D§ (Table 1). Frequencies of
identified clonal rearrangements however varied significantly. A
common pattern was the presence of many small clones and a more
limited number of larger clones, particularly for IGH, TRD and TRG
(Table 1). If only clonal IG/TR gene rearrangements with a frequency of
at least 5% (i.e. index clones) were taken into account, the median
number of rearrangements detected per patient was 6 (range: 2-14)
with VH-JH, TRG and V8-D§ again being most frequent (Table 1). Thus,
using NGS at least two major IG/TR clonal rearrangements could be
identified per patient, allowing selection of at least two possible MRD-
PCR targets in all evaluated patients.

Evaluation of the percentage of patients positive for a particular IG/
TR gene rearrangement (irrespective of its frequency) showed VH-JH
rearrangements to be most frequent (93% of patients), followed by TRG
(76%) (Supplementary Table S2). If only index clones were taken into
account, still 90% of patients were positive for VH-JH rearrangements,
whereas the frequency of TRG was decreased to 67%. Index clones for
IGK, TRB, and TRD rearrangements could be identified in 60%, 45%,
and 64% of patients, respectively (Table 1).
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3.2. Concordance between NGS and classical PCR identified MRD-PCR
targets

Comparison of IG/TR targets identified by classical PCR methods
and NGS methods generally showed concordant results. Overall, 156
out of 172 (91%) IG/TR gene rearrangements identified by classical
PCR were also detected by NGS (Supplementary Table S2). Of note, the
applied NGS system did not contain DB-JB and V82-Ja primers and
therefore these rearrangements could not be detected and were ex-
cluded from this comparison. In comparison with classical PCR, NGS
detected an additional 114 clonal rearrangements with a frequency >
5%, 66 (57%) of these however having an ARC < 1000 suggesting
minor subclones (which likely are below the detection limit of the ap-
plied PCR-heteroduplex technology; Supplementary Table S2). Of the 48
clones with an ARC above 1000, 19 concerned IGH (Vh-Jh) re-
arrangements. The vast majority of these cases (17/19; 89%) could be
explained by the VH1/7 and VH4/6 primers used in the PCR-hetero-
duplex analysis, which are not able to detect all V gene segments (e.g.
VH1.14, VH4.34, VH6.1*02; see Supplementary Table S3) [22,26].

3.3. Stability of IG/TR gene rearrangements between diagnosis and relapse

We next evaluated whether IG/TR gene rearrangements detected at
diagnosis were preserved at relapse. Overall, out of 1446 clonal re-
arrangements identified at diagnosis (irrespective of their frequency at
diagnosis), only 393 (27%) were stable at relapse (Table 2 and Fig. 1).
TRB rearrangements were most stable (63/82; 77%), whereas all other
clonal gene rearrangements had a stability < 50% (Table 2). If only
index clones present at diagnosis were considered, 165 out of 253
(65%) rearrangements remained stable (Table 2). Except for clonal IGH
Dh-Jh rearrangements, all major IG/TR rearrangements had a stability
of at least 50%. Thus, index clones were more stable than minor clones.
Furthermore, 165 out of 181 (91%) stable index clones present at re-
lapse were already present at diagnosis as an index clone. It should be
noted that clones detected both at diagnosis and relapse showed dif-
ferent kinetics, some being relatively stable, whereas other were much
more frequent in one of the two disease stages (Fig. 1).

Since KMT2A-rearranged patients are known to be highly oligo-
clonal and instable [27,28], we also evaluated the KMT2A-negative and
KMT2A-rearranged patients separately. Indeed, in KMT2A-rearranged
patients many more clonal rearrangements could be detected, the vast
majority however showed frequencies < 5% and were lost at relapse
(Supplementary Table S4A and 4B).

Since a high frequency of a clonal rearrangement does not ne-
cessarily imply that the clonal rearrangement is present in a large part
of the leukemic cells, we further evaluated the stability of clonal re-
arrangemement not only based on their frequency but also based on

Table 2
Stability of clonal IG/TR rearrangements identified using NGS between diag-
nosis and relapse in 42 BCP-ALL patients.

> 5% & ARC"
> 10,000

Locus All > 5%

Stable/All % stable Stable/All % stable Stable/All % stable

IGH Dh-Jh 19/169 11% 9/22 41% 6/9 67%
IGH Vh-Jh 94/468 20% 48/66 73% 47/54 92%
IGK Vx-Jk 17/38 45% 12/16 75% 7/10 70%
IGK Intron-Kde 3/7 43% 2/3 67% 172 50%
IGK Vk-Kde 18/50 36% 15/24 63% 12/16 75%
TCRB Vj-JB 63/82 77% 17/25 68% 4/5 80%
TCRD D§-D§ 5/31 16% 3/5 60% 3/4 75%
TCRD V8-D§ 65/250 26% 26/41 63% 24/30 80%
TCRG Vy-Jy 109/353 31% 33/52 63% 22/25 88%
Total 393/1446 27% 165/253  65% 126/152  83%

2 Absolute read count.
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their ARC. As shown in Fig. 2, highest stability was found for clonal
rearrangements with an ARC > 10,000 (overall 134/160, 84%; all
having a frequency > 5%), whereas clonal rearrangements with a fre-
quency > 5% but an ARC < 10,000 had much lower stability (55/117;
47%). Thus, major clones (ARC > 10,000) were most stable, whereas
both large subclones (1000 < ARC < 10,000) and minor subclones
(ARC < 1000) were generally much less stable. High frequency
(> 5%)/low ARC (< 10,000) clonal rearrangements more frequently
concerned TR genes (59/103; 57%), of which particularly TCRB re-
arrangements showed good stability (65% versus 41% for TRG and 17%
for TRD; Fig. 2E-H). High frequency/low ARC clonal IG rearrangements
were slightly less common; of these fair stability was observed for IGK
(63%) but not for IGH (14%) (Fig. 2A-D).

3.4. Emerging subclones at relapse

Next, we evaluated how many new clones emerged at relapse. In
total, 321 clonal sequences were only detected at relapse, of which 59
(18%) were index clones (Fig. 1). Although new clones were detected in
all different loci, new clonal TR rearrangements were most frequent
(64% of rearrangements with a frequency > 5%) (Supplementary Table
S5). Furthermore, the vast majority (70%) of these new high-frequency
TR clonal rearrangements had an ARC below < 10,000 (suggesting
subclones), whereas the majority (52%) of new high-frequency IG re-
arrangements had an ARC > 10,000 (suggesting major index clones).
Thus, emerging index clones generally concerned small TR clones and
major IG clones.

3.5. Strategy for selecting stable IG/TR gene rearrangements

We then evaluated how to select MRD-PCR targets from clonal IG/
TR rearrangements detected by NGS at diagnosis, in such a way that the
chance of selecting at least one stable IG/TR rearrangement is highest.
Using the algorithm shown in Fig. 3, at least one stable IG/TR re-
arrangement was selected in 41 out of 42 (98%) of patients (Fig. 4). In
one patient (6974; 14 year, KMT2A-rearranged pro-B-ALL) no index
clones with an ARC > 10,000 were identified. In eight patients only
one clonal IG/TR rearrangement could be selected; in all cases this
target was however stable at relapse. Detailed analysis of the six se-
lected VH-JH rearrangements that were lost at relapse showed persis-
tence of a DH-JH stem at relapse in one patient (Fig. 4).

Using the classical PCR approach, also no IG/TR target could be
identified in patient 6974. In addition, also in three other patients
(5257, 6190, and 11,938) all selected MRD-PCR targets were lost. Of
note, two of these patients (6974 and 11,938) could be monitored using
the stable KMT2A rearrangement as RQ-PCR target [28].

In the 30 patients in whom (RQ-PCR-based) MRD diagnostics were

actually performed, 40/57 (70%) of the applied MRD-PCR targets
would also have been selected if the NGS approach had been used
(Fig. 4B). The remaining rearrangements were either detected (ARC
> 10,000) but not selected (n = 4, 3 stable), not identified by NGS
(n = 6, including a VA-JA, Vk-Vk, DB-JB and two DH7.27-JH re-
arrangements not identifiable by the applied NGS method; 4 stable) or
had an ARC < 10,000 (n = 7; 6 stable).

4. Discussion

MRD analysis using IG/TR gene rearrangements is being used for
risk group stratification since many years, as this technology is highly
sensitive, applicable to the vast majority of ALL patients, and well
standardized across multiple European and non-European countries
[1,29,30]. In addition, quality assurance is organized via regular
quality control rounds by EuroMRD. The development of NGS-based
analysis of IG/TR gene rearrangements has opened new possibilities for
MRD analysis. Although it is anticipated that NGS eventually will also
be used for the actual MRD analysis, the development of standardized
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Fig. 1. Number and frequency of clonal IGH (Vh-Jh) gene rearrangements identified in relapsed BCP-ALL patients at diagnosis only, both at diagnosis and
relapse, or at relapse only. A. All clonal Vh-Jh gene rearrangements are shown, independent of their frequency at diagnosis or relapse. 94 out of 468 (20%) Vh-Jh
rearrangements detected at diagnosis could also be detected at relapse. B. Only clonal Vh-Jh gene rearrangements with a frequency of at least 5%, i.e. index clones,
are shown. 48 out of 66 (73%) Vh-Jh rearrangements detected at diagnosis could also be detected at relapse.

and validated protocols for NGS-based MRD analysis has not yet been
completed within EuroMRD. However, NGS may already be an attrac-
tive alternative for the classical PCR-heteroduplex-Sanger sequencing
approaches used to identify MRD-PCR targets at diagnosis. Given the
deep sequencing capacity of NGS, such method will provide much more
information about IG/TR clonal rearrangements present at diagnosis,
also in a more quantitative manner. Indeed, using NGS we identified a
median of 20 clonal rearrangements per patient, although many of
these having either a low frequency and/or a low ARC. Therefore, in
line with previous reports [7,11,12,16] most BCP-ALL patients seem to
be oligoclonal based on NGS data. In contrast, previous studies using
PCR and Southern blotting reported only 40% of the BCP-ALL patients
being oligoclonal, with maximally 9 leukemic rearrangements per pa-
tient [9,22,31]. Since oligoclonal rearrangements are more likely to be
lost during relapse [4], appropriate selection of MRD-PCR targets is
crucial. In this study we therefore used NGS to analyze clonal IG/TR
rearrangements in paired diagnosis-relapse samples of 42 BCP-ALL
patients, to evaluate their stability and to define an algorithm for op-
timal selection of MRD-PCR targets.

Most clonal rearrangements detected by classical PCR-heteroduplex
analysis and Sanger sequencing were also identified by NGS, whereas
NGS detected many additional clonal sequences. The vast majority of
these additional rearrangements (even if frequencies > 5%) had rela-
tively low ARC, suggesting minor subclones. Next to inherent differ-
ences in sensitivity between both approaches, differences were related
to applied primer systems (which may not detect all specific gene
segments) and to singleplex versus multiplex PCR reactions, the latter
more prone to disproportional amplification in case multiple re-
arrangements are present. Overall, if particularly clonal rearrangements
with a frequency > 5% (i.e. index clones) were taken into account,
potential MRD-PCR targets could be identified by NGS in all patients,
and the percentage of patients positive for a particular rearrangement
generally was higher than published data on PCR-heteroduplex analysis
[22,28].

Comparison of paired diagnosis-relapse samples showed an overall
stability of only 393 out of 1446 (27%) clonal rearrangements. If only
index clones were taken into account, this percentage increased to 65%;

including only index clones with an ARC > 10,000 even further in-
creased the stability to 84%. This percentage is significantly higher than
the overall stability observed using classical PCR-heteroduplex analysis
(71%) and comes close to the stability of monoclonal rearrangements
(89%) [4]. These data indicate that in most patients, the large clone
present at diagnosis will remain at relapse, an observation also made by
Bashford-Rogers et al for IGH in a small series of ten relapsed ALL pa-
tients [7]. In line with this, 91% of index clones present at relapse were
also present as index clones at diagnosis. Nevertheless, clonal evolution
is common, with some clones lost at relapse and new clones emerging at
relapse. Since many emerging clones concerned TR rearrangements
with relatively low ARC, it may well be that (at least part of) these
rearrangements are not present in the BCP-ALL cells but reflect reactive
T-cell clones. This is supported by the finding that high frequency
(> 5%) low ARC (< 10,000) TR clones were often stable, whereas such
minor IG clones were generally lost at relapse. Therefore, one should be
cautious when selecting NGS-identified TR gene rearrangements as
MRD-PCR target, as particularly the clones with low ARC might re-
present (oligo)clonal T-cell proliferations and therefore possibly are no
appropriate MRD-PCR targets.

Based on the observed stability, we designed an algorithm that al-
lows selection of MRD-PCR targets from which at least one remains
stable at relapse. This algorithm would have been successful in > 95%
of patients, only in one patient (a highly oligoclonal pro-B-ALL) no
appropriate MRD-PCR target would have been identified. Of note, also
using the classical approach monitoring of this patient was not suc-
cessful. In an additional three patient the selected MRD-PCR targets by
the classical approach were lost at relapse, favoring the use of NGS in
target identification and selection. In eight patients only one MRD-PCR
target could be selected by our algorithm. One logically always can
decide to select additional clonal rearrangements (i.e. clonal re-
arrangements with an ARC < 10,000, but preferably with high fre-
quency) to increase the chance of obtaining an appropriate RQ-PCR for
sensitively monitoring MRD, since the final MRD-PCR target selection is
not only based on expected stability, but also on expected sensitivity of
the RQ-PCR [22].

In our study we only focused on comparison of diagnosis and relapse
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Fig. 2. Stability of clonal IG/TR rearrangements between diagnosis and relapse, depending on frequency and absolute read count at diagnosis. A. Dh-Jh, B.
Vh-Jh, C. Vk-Kde and Intron-Kde, D. Vk-Jk, E. VB-JB, F. V8-D§, G. D3-D§, H. Vy-Jy L. all different types of IG/TR rearrangements together. The numbers refer to the
percentage of stable rearrangements (number on top of each cell) and the number of stable rearrangements / total number of rearrangements with specified absolute
read count (ARC; x-axis) and frequency at diagnosis (y-axis). The white to blue colors reflect the level of stability (the bluer the more stable) (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).

pairs, and did not evaluate actual MRD measurements in follow-up
samples based on the newly-generated NGS data. Nevertheless, the
available MRD data showed that, in most patients (27/30), the targets
remaining stable at relapse could also be detected in bone marrow
samples obtained after the first and/or second course of chemotherapy.
However, three patients were classified as standard risk by MRD diag-
nostics (i.e. were MRD negative at both time points), but nevertheless
relapsed with confirmed stability of the applied IG/TR gene re-
arrangements. The MRD-PCR targets actually used were similar to the
ones that would have been selected using the NGS approach, and
therefore these patients would also have been classified as standard risk

using the NGS approach. Clearly such (rare) relapsing standard risk
patients need to be studied in more detail to understand why they suffer
from a relapse and how such relapse may be predicted.

In this study, we applied the NGS method as designed by Sequenta
[13]. Although the use of other NGS approaches (such as the one cur-
rently being developed within EuroClonaility/EuroMRD) may not re-
sults in fully identical data (e.g. due to the use of other primer sets), the
overall conclusions will likely remain the same, that is that the major
clonal rearrangements are the ones most likely to remain stable at re-
lapse. The ARC threshold of 10,000 used in our algorithm needs to be
verified in other NGS systems, but it is expected that this will mainly be
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1. If VH-JH>2: Select all VH-JH
-> Stop

2. If VH-JH<2: Select one VH-JH
- Go tostep 3

3. Select additional MRD-PCR target:
a. Select one intron-Kde I
or Vk-Kde

b. Select one TRD, TRB,
DH-JH or Vk-Jk

35 patients with two targets
8 patients with one target

1 patient without targets

c. Select second VH-JH
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d. Select one TRG <
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-

Fig. 3. Proposed algorithm for selection of NGS-defined clonal re-
arrangements at diagnosis as MRD-PCR targets. In patients in which more
than two complete IGH gene rearrangements with an ARC > 10,000 are de-
tected, all these rearrangements are selected (in our series, this maximally
concerned three IGH VH-JH). In patients with 1 or 2 IGH VH-JH, one VH-JH is
selected, and additionally a second IG/TR rearrangements is selected (intron-
Kde / VK-Kde > TRD / TRB / DH-JH / Vk-Jk > second VH-JH > TRG). Once
two MRD-PCR targets have been selected, the algorithm can be stopped,
otherwise one continues with the next step. In patients without VH-JH, one
immediately goes to step 3.
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impacted by the amount of DNA used for the NGS analysis and the
percentage of ALL cells present in the sample (~150 ng and > 60% in
this study). Based on a DNA input of ~150 ng (derived from ~ 25,000
cells) in our assay, the ARC of 10,000 would correspond with ~40% of
cells harboring the clonal IG/TR gene rearrangement. This number
could be used if other amounts of DNA are being used to calculate the
corresponding ARC. If the percentage of ALL cells in the diagnostic
sample is low (e.g. < 50%), also lower ARC thresholds may be needed
to identify possible MRD-PCR targets. In that respect the ARC threshold
of 10,000 should not be considered as a strict threshold but rather as an
extra parameter (next to frequency) to identify clonal rearrangements
truly present in the vast majority of the BCP-ALL cells and thus most
likely to remain stable.

5. Conclusions

To our best knowledge, this is the largest diagnosis-relapse study
using NGS analysis of multiple IG/TR loci. Our data show that NGS
provides more detailed and quantitative information on IG/TR re-
arrangements, allowing a better identification of truly major leukemic
clones which are most likely to be stable at relapse, and provide a ra-
tionale for selecting appropriate MRD-PCR targets, favoring the use of
NGS analysis in target identification at diagnosis. Within the
EuroClonality/EuroMRD network, the NGS method is currently being
standardized and quality assurance programs have been initiated [21],
which will allow application of NGS for the actual MRD assessment in
the near future as well.
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Fig. 4. Overview of NGS-identified IG/TR gene rearrangements present at diagnosis and their stability at relapse. A. 12 patients for which MRD diagnostics
were not performed. B. 30 patients for whom MRD diagnostics were performed. In the plots, rearrangements shown in the upper part were stable, the ones in the
bottom part were lost at relapse, and those in-between were still present at relapse but at frequency < 5%. The bordered rearrangements are those that were selected
according to the algorithm in Fig. 3. The darker-colored rearrangements were used for actual MRD analysis. *: common stem remained at relapse as major clone. VH:
Vh-Jh; DH: Dh-Jh; Kde: Vk-Kde and Intron-Kde; VK: Vk-Jk; VB: V3-JB; VD: V8-D§; DD: D8-D§; VG: Vy-Jy.
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