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CHAPTER 1 

INTRODUCTION 

Plates are essential components of many engineering structures; therefore, the 

vibration analyses of plates are mandatory for safe design. The rectangular plates have 

been commonly used in various engineering fields, such as marine, nuclear, and 

aerospace. Many researchers have attempted to obtain accurate solutions for the vibration 

analyses of rectangular plates with completely free boundary conditions. However, the 

most analytical solutions have been considered as approximate. Especially, Leissa has 

gone through many solution approaches concerning this problem in his literature of plate 

vibration. The primary difficulty of this problem is to obtain accurate functions which 

fully satisfy the free boundary conditions and governing equation of motion at the same 

time. The vibrations solutions of plates have been taken in the form of a series of 

products of free-free eigenfunctions by most of the researchers. Nevertheless, we are 

familiar with these eigenfunctions which do not completely satisfy the free edge 

boundary conditions of rectangular plates. Therefore, the energy method, which is 

considered to be the best approximate, is used to describe Eigenvalues.     

Great classical researchers, such as Cauchy, Poisson, Navier, Lagrange and, 

Kirchhoff as will be detailed later, have played an incredibly significant role to derive the 

accurate solutions for the vibrations of plates with completely free. They have proposed 

and developed various methods which are still used today. In conjunction with modern 

technological development, the finite element method, which is one of the most powerful 
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methods for the vibration analysis of plates, has become really useful for the dynamical 

analysis of structures, and will be widely employed in this work. 

   In this research, the dynamic characteristics of ABS (Acrylonitrile-Butadiene-

Styrene) rectangular plates, such as frequencies and mode shapes, are obtained by the 

experimental and finite element modal analysis techniques. ABS materials have started 

being used in many industrial products exponentially because of its special properties, 

including high impact strength, ductility, good impact resistance, good chemical 

resistance, and abrasion resistance. Particularly, ABS exhibits really high impact 

strength; therefore, it is used in industry products which require high impact strength 

materials, such as construction safety helmets, and military helmets. The determination of 

the dynamic characteristics of ABS samples is going to provide us very good indications 

for their stiffness and easy to measure by other means detailed performance expectations 

in various service situations.  

Industry has been looking for new innovative materials to develop a new military 

helmet which is lighter, more resistant to blast, ballistic and blunt impact. Among 

innovative materials, plastics are really attractive to researchers because of their unique 

properties. ABS, which is a thermoplastic material, seems to be very convenient to design 

new military helmets and increase the levels of ballistic protection because of its special 

properties as mentioned earlier. Particularly, its impact strength is much better than most 

other thermoplastics. Nevertheless, one concern is that it is difficult to manufacture this 

kind of material due to its rigidity and stiffness. In this research, the modal densities of 

ABS samples are obtained experimentally to have a valid idea concerning how complex 
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our samples are. The sample, which has the highest modal density, requires more effort 

and costs more money in design.        

  In this study, three different ABS rectangular plates, which have dimensions 

114.3mm x 76.2 mm x 6 mm, 106.68 mm x 71.12 mm x 6 mm, and 76.2 mm x 50.8 mm 

x 6 mm, respectively. 

 The first three fundamental frequencies of each sample are calculated analytically 

to compare them with the fundamental frequencies which are acquired by the experiment 

and finite element methods.  

 

 

 

 

 

 

 

 

 

 

 



4 

 
 

CHAPTER 2 

 LITERATURE REVIEW AND OBJECTIVES 

 The aim of this section is to review the theoretical and finite element 

backgrounds of this research in respect of the vibration of rectangular plates. Section 2.1 

evaluates articles regarding theoretical vibration approaches of rectangular plates. Section 

2.2 deals with the finite element modal frequency analysis of rectangular plates. What 

conclusions we obtained from the Section 2.1 and Section 2.2 are illustrated in Section 

2.3. Finally, the Section 2.4 provides the objectives of this research. 

2.1 Theoretical Vibration Method 

Rectangular plates have been widely used in various engineering fields, including 

aerospace, mechanical, nuclear, marine, and structural engineering. There are many 

references available for the numerical and theoretical vibration analysis of rectangular 

plates. The study of plate began with the German physicist, Chladni (1787). Nodal 

patterns for a flat square plate were observed by Chladni. In his experiments on the 

vibrating plate, he noticed that vertical displacements were equal to zero along nodal 

lines. 

A differential equation for transverse deformation of plates was obtained by a 

French mathematician- Sophie Germain- in the early 1800s. Nevertheless, she made a 

crucial mistake with disregarding the strain energy from the warping of the plate 

midplane. The right form of the governing equation, without its derivation, was 

discovered in Lagrange’s notes in 1813, after he passed away. Hence, Lagrange has been 

accepted to be the first person who has used the right differential equation for the 
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vibration analysis of thin plates. The accurate differential equation for rectangular plates 

with flexural resistance was obtained by Navier (1785-1836). The precise bending 

solutions for simply supported rectangular plates were easily calculated by Navier. 

Navier’s work was developed for vibration analysis of circular plates by Poisson in 1829. 

The developed plate theory was considered as the combination of bending and stretching 

actions which has been credited to Kirchhoff (1850). 

A present theory for the determination of the natural frequencies of vibrating 

structures was derived by Lord Rayleigh in 1877. Based on Kirchhoff and Rayleigh’s 

theory, Voigt (1893) and Carrington (1925) indicated remarkable achievements with 

obtaining the exact vibration frequency solutions for a simply- supported rectangular 

plate and a fully-clamped circular plate. The problem of the freely vibrating plate was 

solved by Ritz in 1909. He illustrated how to reduce the upper bound frequencies by 

taking more than a single admissible function into consideration and performing a 

minimization with respect to the unknown coefficients of these admissible functions. The 

method is known as the Ritz method.  

Based on the Kirchhoff plate theory for thick plates, where the effect of shear 

deformation is important and cannot be negligible, a first order shear deformation plate 

theory was proposed by Hencky (1947) and Reissner (1945). A variational approach for 

deriving the governing plate equation for free vibration of first-order shear deformable 

plates and incorporated the effect of rotary inertia was explained by Mindlin in 1951. 

However, in Mindlin’s theory, using a shear correction factor is necessary to compensate 

for the error due to the assumption of a constant shear strain (and thus constant shear 

stress) through the plate thickness that breaks the zero shear condition at the free 
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surfaces. The correction factors not only rely on the boundary conditions and loading but 

also on material and geometric parameters. However, Wittrick (1973) pointed out that 

obtaining the shear correction factors for general orthotropic plates may be impossible.   

Reddy (1984, 1997) proposed a more improved and refined theory without shear 

correction factors. His third-order shear deformation theory confirms that the zero shear 

stress at the free surfaces of the plate is satisfied at the outset.  

In 1970, Srinivas developed a three dimensional linear, small deformation theory 

of elasticity solution by the direct method for the free vibration of simply-supported thick 

rectangular plates. 

By using a lower order finite layer technique, Cheung and Chakrabarti (1972) 

examined the free vibration of isotropic plates with different types of boundary 

conditions, for three different aspect ratios. The resultant frequencies for the smallest 

thickness/span ratio are close to those existing for thin plates, while frequencies for 

higher thickness/span ratios tend to be of lower values.  

In the paper by Gorman (1978), the superposition method was used in free 

vibration analysis of completely free rectangular plates. In this new approach to the 

problem, he obtained a new solution which satisfies the boundary conditions and the 

differential equation identically with any desired degree of accuracy. In plate vibration 

problem, there are three characteristic families of modes, such as doubly antisymmetric, 

doubly symmetric and symmetric-antisymmetric. The exact description was made 

between the three families of modes by Gorman.   Using this method is considered to be 

easy, convergence is extraordinarily fast, and it is easy to obtain eigenvalues and modal 
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shapes of any degree of exactitude, because the method is described in dimensionless 

form at length by Gorman.    

 In 1996, Ding calculated natural frequencies of rectangular plates by using a set 

of static beam functions in Rayleigh-Ritz method. The static beam functions, which are 

developed by Ding, are used to be the basis functions in the Rayleigh-Ritz method to 

work on the vibrational attributes of isotropic, thin rectangular plates. In applications, 

using a small number of basis functions is needed, and a small amount of computation is 

mandatory. He gave some numerical results for rectangular plates with different aspect 

ratios and boundary conditions. Therefore, he obtained good accuracy and fast 

convergence. This approach is found to be easy and straightforward. 

   In the paper by Gorman (2004), analytical-type solutions for free in-plane 

vibration of rectangular plates are derived by using the method of superposition. The 

boundary conditions and differential governing equations are indicated in dimensionless 

form. He considered the problem of free in-plane vibration of the completely free 

rectangular plate, as well, and obtained rapid convergence.  

In 2003, Sheikh analyzed the free vibration of both the thin and thick plates. The 

solution depends upon the Reissner-Mindlin Theory by adopting a new type of triangular 

element with three nodes at corners, three others at mid of the three sides and one internal 

node at the center of the element. 

In 2007, Wu, Liu, and .Chen calculated the exact solutions for free-vibration 

analysis of rectangular plates by using Bessel functions. They proposed the novel Bessel 

function to derive the exact solutions of the free vibration analysis of rectangular thin 
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plates with three edge conditions: fully simply supported, fully clamped, and two 

opposite edges simply supported and the other two edges clamped. Because Bessel 

functions satisfy the biharmonic differential equation of solid thin plate, the basic idea of 

the method is to superpose different Bessel functions to satisfy the edge conditions such 

that the governing differential equation and the boundary conditions of the thin plate are 

exactly satisfied. It is indicated that the method provides direct, simple, and highly 

accurate solutions for this family of problems. 

 In 2009, Xing, and Liu proposed new exact solutions for free vibrations of 

rectangular thin plates by symplectic dual method. In the paper, the separation of 

variables is applied to resolve the Hamiltonian dual form of the eigenvalues problem for 

transverse free vibrations of thin plates, and formulation of the natural mode in closed 

form is performed. The closed form natural mode satisfies the governing equation of the 

eigenvalue problem of thin plate precisely and is applicable for any types of boundary 

conditions. With all combinations of simply supported and clamped boundary conditions 

applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalues 

equations are derived with respect to spatial coordinates, with the aid of which normal 

modes and frequencies are solved exactly. 

2.2 Finite Element Modal Frequency Analysis  

  The finite element method started being used around the mid of 1950s to 

determine natural frequencies and mode shapes for structures. The method, which 

permits to handle the numerical solution of complex plate and shell problems in an 
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efficient way, was introduced by Turner, et al. in 1951. Argyris (1960) and Zienkiewicz 

(1977) made many contributions to this field.  

In recent years, particularly, the Ritz method has been accepted to be an effective 

alternative to other numerical approaches for the free vibration analysis of plates of 

arbitrary shape and boundary conditions. One of the most significant advantages of the 

Ritz method is to automatically satisfy the geometric boundary conditions. The 

development of the Ritz method allows handling the vibration analysis of complicated 

plate structures.  

2.3 Conclusions of Literature Review 

For rectangular plates, there are 21 various boundary conditions which include all 

possible combinations of classical boundary conditions, such as fixed, clamped, simply 

supported and free. Exact vibration solutions are available for plates with at least two 

opposite edges simply supported. Therefore, the remaining 15 cases have caught the 

attention of researchers. [18] 

From Section 2.1, it is readily seen that obtaining accurate solutions to determine 

natural frequencies and mode shapes of plates with completely free boundary conditions 

is much more difficult than plates with other boundary conditions. The difficulty is to 

determine the governing differential equations which satisfy all boundary conditions 

because of the free edges and free corners and also additional symmetry. One of the most 

significant methods is the Ritz method to determine natural frequencies and mode shapes 

for plates with completely free boundary conditions. In the Ritz approach, the boundary 
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conditions of displacements are precisely satisfied; however, the natural boundary 

conditions and the governing differential equations are approximately satisfied.    

 The theoretical difficulty of describing natural frequencies and mode shapes for 

rectangular plates inspires us to use the finite element method which is explained in the 

Section 2.2. The finite element approach allows us to calculate natural frequencies and 

determine mode shapes in an effective way for any structure with arbitrary boundary 

conditions. The finite element method is based on the Ritz method. As mentioned earlier, 

the Ritz method is an approximate method; therefore, conducting an experimental modal 

analysis is required in order to figure out the natural frequencies and mode shapes to 

compare them with the finite element results.    

2.4 Objectives 

From the literature review, the vibration method used to determine the 

fundamental frequencies of the ABS rectangular samples. The finite element method and 

the experimental modal analysis are done to describe the natural frequencies and mode 

shapes. The objectives of this study may be written as follow:  

The primary objective of this research is to conduct the experimental modal 

analysis on the ABS rectangular plates to obtain their modal parameters, such as 

frequencies and mode shapes.  

The second objective is to acquire modal parameters from the finite element 

modal analysis.  
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The third objective is to analytically calculate the first three natural frequencies 

for each sample 

The fourth objective of this research is to obtain a constant ratio between the first, 

second, and third fundamental frequencies regardless of the dimensions of the samples.  

The fifth objective is to compare the experimental, analytical and finite element 

results. 

The sixth and final objective is to figure out the modal densities and damping 

ratios of samples. 

As stated earlier, it is really difficult to analytically determine natural frequencies 

for rectangular plates with completely free boundary conditions because of free edges. 

Therefore, conducting the vibration experiment is vital to obtain certain resonance 

frequencies of rectangular plates. The finite element analysis is also significant to obtain 

natural frequencies and mode shapes.  When the experimental and finite element results, 

such as mode shapes, and frequencies, are compared, it will make us sure regarding the 

results. The significance of determining the modal densities and damping ratios of the 

samples is to make a decision on how complex the samples and how soft or hard the 

samples are, respectively. If the modal density is higher, the structure is more complex. 

More complex materials require more effort in design manufacturing processes. In other 

words, they cost more money.   
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CHAPTER 3 

THE ANALTCICAL MODEL OF VIBRATING PLATES 

3.1 The Free Vibration of Rectangular Plates with Completely Free 

The geometric configuration of an isotropic rectangular plate is shown in Fig 3.1. 

The plate has a length a, width b and a uniform thickness h.  

 

Fig 3.1 Geometry, dimensions and coordinates of a rectangular plate with uniform  

             thickness    

The x-y plane is taken to be the middle plane of the plate and deflections in the z 

direction are assumed to be small, when they are compared with the thickness h. In 

addition, we assume that the normal to the middle plane of the plate remains normal to 

the deflected middle surface during vibrations. Then, the strains can be written as: 
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The deflection of the plate in the z direction in these expressions is represented by

w . The normal strains and the shear strain in the thin layer are denoted by x , y , and xy , 

respectively. 

The stress and strain relationships for the plate may be written as; 

2 2

2 2 2 2

2 2

2 2 2 2

2

( ) ( )
1 1

( ) ( )
1 1

(1 )

x x y

y y x

xy xy

E Ez w w
v v

v v x y

E Ez w w
v v

v v y x

Ez w
G

v x y

  

  

 

 
    

   

 
    

   


  

  

                                       (3.2) 

In these equations, v  represents the Poisson’s ratio. 

During deformation, the potential energy of the element is written as: 

( )
2 2 2

y y xy xyx xdU dxdydz
    

                                            (3.3) 

When the equations (3.1) and (3.2) are substituted into the equation (3.3), the new 

potential energy equation is obtained as written below. 

 
2 2 2 2 2 2

2 2 2

2 2 2 2 2
( ) ( ) 2 2(1 )( )

2(1 )

Ez w w w w w
dU v v dxdydz

v x y x y x y
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     

       
       (3.4) 

The integration of the equation (3.4) gives us the bending potential energy as: 

2 2 2 2 2
2 2 2

2 2 2 2
( ) ( ) 2 2(1 )( )

2

D w w w w w
U dU v v dxdy

x y x y x y
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      

      
    

       

(3.5) 
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Where, D is known as the flexural rigidity of the plate. 

3

212(1 )

Eh
D

v

  

                                                                                                 (3.6) 

E is Young’s modulus, v is Poisson’s ratio, and h is the plate thickness. 

2

2

h
T w dxdy


                                                                                                 (3.7) 

The equation (3.7) represents the kinetic energy for the transversely vibrating 

plate. 

It is necessary to mention that overcoming the free vibration problems of plates 

with completely free boundary conditions is much more difficult than plates with other 

boundary conditions, such as fixed and simply supported.  The Ritz’s first approach, 

which is really practical for the calculation of natural frequencies of plates with 

completely free boundary conditions, is applied to the plate by making some 

assumptions. 

cos( )w Z t                                                                                                  (3.8) 

The mode of vibration is approximated by Z, which is a function of x and y. The 

maximum kinetic and potential energies for the plate can readily be derived by 

substituting the equation (3.8) into the equations (3.5) and (3.7) as followed:  

2 2 2 2 2
2 2 2

max 2 2 2 2
( ) ( ) 2 2(1 )( )

2

D Z Z Z Z Z
U v v dxdy

x y x y x y

     
     

      
             (3.9) 
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2 2

max
2

h
T Z dxdy


                                                                                     (3.10) 

The solution for 2  is obtained by equating the equations (3.9) and (3.10) as 

indicated below. 

2 max

2

2 U

h Z dxdy





 
                                                                                         (3.11) 

When the function Z is taken in the form of a series, we can write as: 

     1 1 2 2 3 3, , , ...Z a x y a x y a x y     
                                                                       (3.12)         

The determination of coefficients a1, a2, a3 is required. Each term of the equation 

(3.12) fulfils the boundary conditions of the plate. The system equation, which is shown 

below, is derived by minimizing the outcomes of equation (3.11). 
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The frequency equation is obtained by equating to zero the determinant of the 

coefficients in the above equations. This method was applied by Ritz to a square plate 

with free edges. The equation (3.12) was taken into consideration by describing it in the 

form 

( ) ( )mn m n

m n

Z a X x Y y                                                                                  (3.14)  
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The different modes of vibration for the frequencies can be expressed as: 

2

2

D

a h





                                                                                                     (3.15) 

In this formula, 2  represents a constant value depending on the mode. Values of 

constant 2  for completely free rectangular plates with various aspect ratios (a/b) are 

tabulated in Table 1. 

 

Table1.  Frequency Parameter 
2 for F-F-F-F plates (v=0.3) 

a/b 

Mode Sequence 0.4 2/3 1 1.5 2.5 

1 3.4629 8.9459 13.489 20.128 21.643 

2 5.2881 9.6015 19.789 21.603 33.050 

3 9.6220 20.735 24.432 46.654 60.137 

4 11.437 22.353 35.024 50.293 71.484 

5 18.793 25.867 35.024 58.201 117.45 

6 19.100 29.973 61.256 67.494 119.38 
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CHAPTER 4 

EXPERIMENTAL MODAL ANALYSIS 

4.1 Introduction 

 The primary aim of the experimental modal analysis is to determine the 

modal parameters (frequencies, modal scaling, modal factors and damping factors) of a 

linear, time invariant system by way of an experimental approach. Although the modal 

parameters can be determined by finite element analysis, the experimental modal analysis 

is mandatory for the correction/verification of the results of the finite element analysis. 

Mainly, experimental modal analysis is used to describe a dynamics problem, vibration, 

which is not clear from analytical models. It is significant to be aware that most vibration 

problems are a function of both the forcing functions and the system characteristics 

explained by the modal parameters. Experimental modal analysis methods are based on 

the theoretical relationship between measured quantities and the classic vibration theory 

that is generally illustrated as matrix differential equations. All modern methods rely on 

the matrix differential equations; however, a final mathematical form is obtained in terms 

of measured data. The measured data can be some form of processed data, including 

impulse response function and frequency response function. The measured data can also 

be output and raw input file. Hence, basically, modal analysis is a method to describe a 

structure in terms of its dynamic properties, such as frequency, damping and mode 

shapes.   
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4.2 The Test Procedure of Vibration 

All uncontrolled undesirable phenomenon gives rise to noise, causes mechanical 

stress and is a possible cause of structural failure. As part of a general environmental test 

program or as a part of engineering design, vibration testing performs the vital role of 

finding out how well a component can endure the vibration environments which it is 

likely to encounter in a real life situation. 

The Pulse 15.1-MTC software vibration analysis which is produced by the Bruel 

& Kjaer Company is used to determine the fundamental frequencies and the mode shapes 

in the frequency range of 0 Hz to 6000 Hz. The software is calibrated by the company. 

The used force transducer and impact hammer type 8203 that is also manufactured by the 

Bruel & Kjaer Company, is a unique structural testing kit designed for use with 

lightweight and delicate structures. The force transducer measures the force applied to the 

structure. This type of the impact hammer has many advantages, such as good linearity, 

excellent long term stability, individually calibrated and easily mounted, easily attached 

to the stringer and hammer kits, and aluminum shaft to reduce the occurrence of double 

impact. The piezoelectric accelerometer is preferred to acquire data for the determination 

of natural frequencies because it offers tremendous versatility for vibration measurements 

and it is widely accepted as the best available transducer for the absolute measurement of 

vibration. This sensor can withstand adverse environmental conditions. The piezoelectric 

accelerometer exhibits better all-round characteristics than any other type of vibration 

transducer. It has very wide frequency and dynamic ranges with good linearity 

throughout the ranges. It is relatively robust and reliable so that its characteristics remain 

stable over a long period of time. Additionally, the piezoelectric accelerometer is self-
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generating, so that it doesn't need a power supply. There are no moving parts to wear out, 

and finally, its acceleration proportional output can be integrated to give velocity and 

displacement proportional signals. The Figure 4.1 shows the schematic of hardware used 

in performing a vibration test. It is significant to emphasize that using sufficient 

measurement points is important to describe all of the modes of interest. If adequate 

response points are not selected carefully and measured, particular mode may not be 

represented sufficiently.  How measurement points for each experimental sample were 

selected diligently illustrated in the Figure4.2, Figure4.4 and Figure4.6. Geometries used 

in the Pulse software and the hammer hit points of each sample were indicated in the 

Figure 4.3, Figure 4.5 and Figure 4.7.  49 measurement points were used in the Sample1, 

which has dimensions 114.3 mm x 76.2mm x 6 mm.  28 measurement points were used 

in the Sample2, which has dimensions 106.68 mm x 71.12mm x 6 mm. Finally, 35 

measurement points were used in the Sample2, which has dimensions 76.2 mm x 50.8 

mm x 6 mm. The finite element modal analysis, which is going to be introduced in the 

Chapter 5, is going to figure out, if sufficient measurement points were used or not.  

The vibration test procedure for measurement as follows. 

1) Make a decision on which channel is going to be used in the experiment and 

introduced to the hardware. 

2) Check the sensitivity of the accelerometer, according to the given information 

in the calibration sheet.    

3) Prepare ABS rectangular samples which have dimension 114.3mm x 76.2mm 

x 6 mm, 106.68mm x 71.12 mm x 6, 76.2 mm x 50.8 mm x 6 mm as shown in 
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the Figure 4.2, Figure 4.6 and Figure 4.6, respectively. Divide them into 36 , 

18 and  24 parts, respectively. 

4) Create the geometry in the software by selecting rectangular shape and by 

inserting the length and width of the sample. 

5) Assign the transducer to the points in the grid of the geometry as shown in 

Figure 4.3, Figure 4.5 and Figure 4.7, respectively. 

6) Determine the frequency range from 0 Hz to 6000 Hz, hit 5 times on each 

point and average them to obtain accurate results. 

7) To assign an average value of force to be used for the hammer trigger.   

8) Set up the hammer weighting to filter the signal which is generated by the 

hammer from any noise. 

9) Set up the response weighting to make sure that the signal decays 

exponentially in the specific time interval. 

10)   Measurements start exciting the structure by the hammer 5 times on each 

point, the accelerometer detects the response of the sample and sends the 

electrical voltage signal to the front-end processor which evaluates the data 

and sends it to the pulse software to calculate the natural frequencies by using 

FFT.  

11)  Do the post-analysis to acquire the natural frequencies, and the mode shapes. 
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Figure 4.1 Schematic of hardware used in performing a vibration test 

 

 

 

 



22 

 
 

 

Figure 4.2 Experimental Model of Sample 1 

 

 

Figure 4.3 Geometry used in Pulse modal software and the Hammer hit points 

of Sample1 
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Figure 4.4 Experimental Model of Sample 2 

 

 

 

 

Figure 4.5 Geometry used in Pulse modal software and the Hammer hit points 

of Sample2 
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Figure 4.6 Experimental Model of Sample 3 

 

 

 

Figure 4.7 Geometry used in Pulse modal software and the Hammer hit points 

of Sample3 
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CHAPTER 5 

FINITE ELEMENT ANALYSIS 

5.1 Introduction 

 The finite element method is an extremely effective technique which uses 

interpolation and variational methods to determine natural frequencies and mode shapes 

for complex mechanical structures with unusual geometric shapes, such as frames, trusses 

and machine parts. In this method, the actual structure is divided into elements or parts 

which are called finite elements. Each element has nodes, which connect to the next 

element. A solution or approximation of an equation of motion for any structure is easy, 

because each element is really simple, such as a plate or beam. The combination of nodes 

and elements is called a finite element mesh. The governing equation of vibration is 

described and resolved for each individual element. Then the solutions of the individual 

element equations are approximated by a linear combination of low-order polynomials. 

These solutions are combined to obtain global and stiffness matrices, which illustrate the 

vibration of the entire structure.  Natural frequencies and mode shapes are approximately 

derived by global and stiffness matrices. It is significant to state that the finite element 

method is based on the Ritz method which is an approximation method to calculate 

natural frequencies and mode shapes. Therefore, the finite element method provides 

approximate solutions for natural frequencies and mode shapes.  

5.2 Finite Element Modal Analysis 

 All the samples are meshed by using the Hypermesh v10 as a preprocessor and 

Abaqus/Standard 3D is used as a solver to calculate the first three natural frequencies and 
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the mode shapes of the samples. The Lancsoz Eigensolver Method is selected in 

Abaqus/Standard 3D to describe the first three fundamental frequencies and mode shapes 

because this method is a powerful tool for extraction of the extreme eigenvalues and the 

corresponding eigenvectors of a sparse symmetric generalized eigenproblem. The 

samples are considered as solid rather than shell. It should be mentioned that using an 

appropriate element type is really significant in ABAQUS software to obtain accurate 

results. The C3D20R quadric element type, which is the second order of the C3D8R 

quadric element type, is the preferred one used in all the simulations. This element type 

allows us to increase the integration points on each element and to obtain more accurate 

results. There is no boundary condition which we need to determine because of the 

completely free boundary conditions specification. Displacements are normalized. 

Hypermesh post-processor is used to see the natural frequencies, displacements of results 

and mode shapes.  The finite element calculation was carried out for ABS rectangular 

plates with the material properties and dimensions as indicated in Table2 and Table3, 

respectively. 

The grid geometry of the Sample 1 was designed as ten layers of C3D20R brick 

elements with aspect ratio of 3.342. 21660 elements and 96199 nodes were used in the 

calculation of the Sample1, which is shown in the Figure 5.1. 

The grid geometry of the Sample 2 was designed as ten layers of C3D20R brick 

elements with aspect ratio of 3.355. 19080 elements and 84913 nodes are used in the 

calculation of the Sample 2, which is shown in Figure 5.2. 
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The grid geometry of the Sample 3 was designed as ten layers of C3D20R brick 

elements with aspect ratio of 2.352. 19440 elements and 86493 nodes are used in the 

calculation of the Sample 3. 

The input file for all samples is written below. 

**HM_comp_by_property "ABS"     3 

*SOLID SECTION, ELSET=ABS, MATERIAL=ABS 

*MATERIAL, NAME=ABS 

*DENSITY 

1.0240E-09,0.0        

*ELASTIC, TYPE = ISOTROPIC 

2275.0    ,0.38      ,0.0        

**HMNAME LOADSTEP          1 normal modes 

*STEP, INC =         1000, PERTURBATION 

*FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = 

DISPLACEMENT 

        12,,,,, 

*NODE FILE 

U,  

*EL FILE, POSITION = AVERAGED AT NODES 

S,  

*END STEP 
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Figure 5.1 FEM Model of Sample1 
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Figure 5.2 FEM Model of Sample2 
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Figure 5.3 FEM Model of Sample3 
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Table2.  The Properties of Vibration Finite Element Analysis Samples 

  

Young’s Modulus 

(Mpa) 

 

Poisson’s Ratio 

 

Density(ton/mm^3) 

Rectangular ABS 

Model 

 

2275 

 

0.38 

 

1024E-12 

 

 

 

Table3. The Dimensions of Vibration Finite Element Analysis Samples 

Rectangular ABS 

Samples 

Length(mm) Width(mm) Thickness(mm) 

 

Sample1 

 

114.3 

 

76.2 

 

6 

 

Sample2 

 

106.68 

 

71.12 

 

6 

 

Sample3 

 

76.2 

 

50.8 

 

6 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

6.1 Theoretical Results 

   Natural frequencies for each sample were calculated analytically by using 

the equation (3.15). In all our cases, the aspect ratio (a/b) is always equal to 1.5; 

therefore, 2

1 , 2

2  and 2

3  were taken from the Table1 to be 20.168, 21.603 and 

46.654, respectively. The obtained results were tabulated in the Table4. From the 

Table4, it can be concluded that while dimensions decrease with keeping the aspect 

ratio constant, natural frequencies increase. The f1/f2 and f1/f3 for each sample were 

obtained to figure out if there is any correlation between natural frequencies or not. 

The ratios were indicated in the Table5. According to the Table5, f1/f2 is always 

equal to 0.932 and f1/f3 is always equal to 0.431. Perhaps, we can say that there is no 

need to calculate the second and the third fundamental frequency for any rectangular 

plates with the aspect ratio 1.5 

6.2 Experimental Results 

  By the Pulse software, the first three fundamental frequencies and mode 

shapes were obtained for each ABS sample. It is supposed to be mentioned that the 

mode shapes in the Pulse software are not the exact mode shapes. They are called 

deformation mode shapes, which are different than the exact mode shapes. In all 

experimental mode shape images, the number of points, which we hit, can be seen 

readily. The first mode shape of each ABS rectangular plate was shown in Figure 6.1, 

Figure 6.5 and Figure 6.9. This mode shape is known as the first twisting mode shape. 

In this mode shape, each sample has two nodal lines on which deflections are zero. 
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The frequency response function, which explains how the response of the plate due to 

the applied force, is shown in the Figure 6.4 for the Sample1. The Figure 6.2, Figure 

6.6 and Figure 6.10 indicate the second mode shape for each sample. This mode 

shape is a bending mode shape. Two nodal lines can be seen on each sample. The 

frequency response function for the Sample2 is indicated in Figure 6.8.  The third 

mode shape for each sample was illustrated in Figure 6.3, Figure 6.7 and Figure 6.11. 

In this mode shape, three nodal lines were seen on each sample. This mode shape is 

called the second twisting mode shape in our case. The frequency response function 

for the Sample3 was shown in Figure 6.12. The all obtained natural frequencies for 

each sample were tabulated in Table 6. From the Table 6, the all natural frequencies 

increase, while the dimensions of ABS rectangular plates decrease. The experimental 

frequency ratios of f1/f2 and f1/f3 were indicated in Table7 for each sample. From the 

Table 7, it may be deduced that all ratios for each sample are close to one another.  

The damping ratios of the ABS samples for the first three modes were experimentally 

calculated by the Pulse and these results were compared in Figure 6.32. The Table 12 

shows the modal densities of the samples which were acquired from the Pulse. A 

large frequency range was used to obtain the modal densities. 

6.3 Finite Element Results 

 As mentioned earlier in the Chapter 5, the Abaqus/Standard3D was used to obtain 

the first three fundamental frequencies and see the first three mode shapes for each 

sample. The first three mode shapes and fundamental frequencies for the Sample 1, 

Sample 2 and Sample 3 were shown in the Figure 6.13, Figure 6.19 and Figure 6.25, 

respectively. It can be readily seen from the Figure 6.14, Figure 6.20 and Figure 6.26 
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that the first mode shape has two nodal lines along where the deflection is equal to 

zero. Each ABS rectangular sample was equally divided into four parts by the nodal 

lines. While the two parts go down, the other two parts go up. This mode shape is 

called the first twisting mode of rectangular plates with completely free. The second 

mode shape of each sample was indicated in the Figure 6.15, Figure 6.21 and Figure 

6.27. In this mode shape, two nodal lines, which are in transverse direction, were seen 

clearly from the Figure 6.16, Figure 6.22 and Figure 6.28. In the second mode shapes 

of the ABS rectangular plates, we have two nodal lines in the transverse direction 

which are located in near the edges of the samples. The outer parts of the samples 

move in the same direction, while the inner part moves in the opposite direction to the 

outer parts. This second mode is called the first bending mode in our case. The Figure 

6.17, Figure 6.23 and Figure 6.29 indicate the third mode shapes for the Sample 1, 

Sample 2 and Sample 3, respectively. It is obvious to see from the Figure 6.18, Figure 

6.23 and Figure 6.30 that there are 3 nodal lines. One of them crosses the longitudinal 

axis of the samples and divides them into two equal parts. The other two nodal lines 

are in the transverse direction near the edges of the samples. Therefore, we have 6 

different regions that deflect in a twisting shape. This third mode shape is the second 

fundamental twisting mode in our case. The behaviors of samples in this mode are 

that three parts move in the same direction, while the other three parts move in the 

opposite direction at the same time and vice versa. The results, which we obtained, 

coincide with the mode shapes of the rectangular plates with completely free which is 

shown in [15, 20]. The finite element natural frequency results for each sample was 
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tabulated in the Table 8. Also, the finite element frequency ratios were tabulated in 

Table 9. 

6.4 Comparisons  

 The obtained experimental, theoretical and finite element natural frequencies for 

all samples were tabulated in the Table 10. The Figure 6.31 indicates the 

compatibility between the obtained natural frequencies of the ABS rectangular plates. 

When we look at the Table 11 and Figure 6.31, it is going to be really obvious to 

deduce that all natural frequencies increase, while the dimensions of the samples 

decrease. The Figure 6.32 shows the FRF comparison of the samples. The 

experimental, theoretical and finite element frequency ratios were tabulated for each 

sample in the Table 10. It can be seen from the Table 10 that there is a constant ratio 

between the first fundamental frequency, second fundamental frequency and third 

fundamental frequency. This is true for free vibrations of rectangular plates with 

completely free boundary conditions and the aspect ratio (a/b) is equal to 1.5. The 

experimental results coincide with the finite element results much more than the 

theoretical results. As stated earlier, there are twenty-one various boundary conditions 

exist in rectangular plates, and the vibrations analysis of rectangular plates with 

completely free is the worst behaved of all 21 boundary conditions of rectangular 

plates. In other words, obtaining accurate theoretical solutions for completely free 

rectangular plates is the most difficult case. Therefore, conducting an experimental 

modal analysis and doing a finite element modal analysis become mandatory to 

obtain accurate natural frequencies for any rectangular plates with completely free 
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boundary conditions. The Sample 3, which has the smallest dimensions, has the 

lowest modal density. The Sample 2 has the highest damping ratio.    
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

  From the experimental, finite element and theoretical results for this research, the 

following conclusions may be written as: 

1. From the Table 10, there is no doubt that while the dimensions of the ABS 

rectangular plates decrease the natural frequencies of the plates increase. The 

formula, which is written below, clearly indicates why the natural frequencies 

increase with the decreasing dimensions of the samples. In our case, all the 

parameters in this formula for the samples are constant, except 2a . While 2a  

decreases,    increases automatically.  

2

2

D

a h







 

2. The Figure 6.31 indicates that the experimental, finite element and theoretical 

results compare very favorably one another. The error ratios between the 

experimental natural frequencies and finite element natural frequencies are very 

small. It shows that sufficient measurement points were used in all samples to 

calculate the natural frequencies experimentally and our finite element analysis 

approach was very effective.  In other words, the experiment has been conducted 

properly and it has been verified by the finite element results.  



38 

 
 

3. The experimental results generally coincide with the finite element results much 

more than theoretical results. The reason is that there are twenty-one different 

boundary conditions existing in rectangular plates and the free vibrations analysis 

of rectangular plates with completely free boundary conditions are the worst 

behaved among the twenty-one cases. As a result, especially, the experimental 

and finite element modal analyses are mandatory to obtain accurate solutions for 

rectangular plates with completely free boundaries. 

4.  The maximum error ratio between the experimental and finite element results 

was found to be 13.6 % in the third fundamental frequency of the Sample3 which 

has the smallest dimensions within the samples. It is more difficult to handle the 

Sample 3 experimentally than other two samples because when we hit the one 

specific measurement point, the entire structure vibrates due to the dimensions of 

the Sample 3. Therefore, it is difficult for the Pulse software to obtain an accurate 

solution for the specific measurement point.  

5. The obtained experimental deflection mode shapes and finite element mode 

shapes definitely coincide with each other. The first mode shape is known as the 

first twisting mode shape and it has two nodal lines where the deflections are 

equal to zero. In this mode shape, the maximum deflections occur at the edges of 

the samples. The second mode shape is called the bending mode shape. There are 

two nodal lines located in transverse direction. The maximum deflections occur at 

the middle of the width of samples. The third mode shape is known as the second 

twisting mode shape. Three nodal lines have been seen in this mode shape and the 

maximum deflections occur at the edges of the samples in all cases. 
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6. When the dimensions of the samples change with keeping the aspect ratio same 

(a/b=1.5), there are slightly different constant ratios found between fundamental 

frequencies regardless of their dimensions. These constant ratios, which were 

tabulated in Table 11, make our calculations easier. In other words, if the first 

fundamental frequency is calculated, these ratios give us a really good indication 

for the second and third fundamental frequencies.    

7. When we look at the table 12, it will be readily deduced that when the dimensions 

of the samples increase, the modal densities increase. In other words, while the 

dimensions increase, the samples become more complex, and require a more 

effort and money in design process. 

8. In mode 1, the sample 2 has the highest damping ratio which leads to absorb more 

energy than other samples.       

7.2 Recommendations for Future Work 

 From the conclusions, the following recommendations may be proposed for future 

work 

1. The Poisson’s ratio effect may be evaluated to figure out how the natural 

frequencies and mode shapes of the samples change. 

 

2. By changing the thickness of samples, the natural frequencies and mode shapes 

may be examined to see the thickness effect on them. 
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3. The laser accelerometer can be used to obtain the response of the small samples. 

This type of accelerometer is going to provide us more accurate results because it 

is not physically attached to the samples. 

4. This type of material may be fully studied for impact analysis because of its high 

compressive strength. One of the most vital applications can be the use of this 

material in the fabrication of soldiers’ helmets. Therefore, an extensive study of 

impact analysis will be a valuable research area.        
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Figure 6.1.The First Mode Shape of the Sample1 from PULSE 
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Figure 6.2.The Second Mode Shape of the Sample1 from PULSE 
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Figure 6.3.The Third Mode Shape of the Sample1 from PULSE 
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Figure 6.4 FRF of the Sample1 
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Figure 6.5.The First Mode Shape of the Sample2 from PULSE 
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 Figure 6.6.The Second Mode Shape of the Sample2 from PULSE 
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Figure 6.7.The Third Mode Shape of the Sample2 from PULSE 
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Figure 6.8 FRF of the Sample2  
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Figure 6.9.The First Mode Shape of the Sample3 from PULSE 
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Figure 6.10.The Second Mode Shape of the Sample3 from PULSE 
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Figure 6.11.The Third Mode Shape of the Sample3 from PULSE 
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Figure 6.12 FRF of the Sample3 
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Figure 6.13.The First Mode Shape of the Sample1 from FEM 

 

 

Figure 6.14.The Isosurface of the First Mode Shape for the Sample1 from FEM 
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Figure 6.15.The Second Mode Shape of the Sample1 from FEM 

 

 

Figure 6.16.The Isosurface of the Second Mode Shape for the Sample1 from FEM 
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Figure 6.17.The Third Mode Shape of the Sample1 from FEM 

 

 

Figure 6.18.The Isosurface of the Third Mode Shape for the Sample1 from FEM 
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Figure 6.19.The First Mode Shape of the Sample2 from FEM 

 

 

 

Figure 6.20.The Isosurface of the First Mode Shape for the Sample2 from FEM 
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Figure 6.21.The Second Mode Shape of the Sample2 from FEM 

 

 

Figure 6.22.The Isosurface of the Second Mode Shape for the Sample2 from FEM 
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Figure 6.23.The Third Mode Shape of the Sample2 from FEM 

 

 

Figure 6.24.The Isosurface of the Third Mode Shape for the Sample2 from FEM 
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Figure 6.25.The First Mode Shape of the Sample3 from FEM 

 

 

Figure 6.26.The Isosurface of the First Mode Shape for the Sample3 from FEM 
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Figure 6.27.The Second Mode Shape of the Sample3 from FEM 

 

 

 

Figure 6.28.The Isosurface of the Second Mode Shape for the Sample3 from FEM 
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Figure 6.29.The Third Mode Shape of the Sample3 from FEM 

 

 

 

Figure 6.30.The Isosurface of the Third Mode Shape for the Sample3 from FEM 
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Figure 6.31.Compatibility between obtained natural frequencies of the rectangular ABS 

Samples 
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Figure 6.32. Comparisons of Damping Ratios 
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Figure 6.33 FRF Comparisons of the Rectangular ABS Samples 
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Table4.Theoretical Natural Frequencies for ABS Rectangular Samples 

Natural Frequencies(Hz) 

Sample No f1 f2 f3 

1 684.46 734 1586 

2 785.74 843 1821 

3 1540 1652 3569 

 

 

Table5.Theoretical Frequency Ratios for ABS Rectangular Samples 

Sample No 

Frequency Ratio 1 2 3 

f1/f2 0.932 0.932 0.932 

f1/f3 0.431 0.431 0.431 
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Table 6.Experimental Natural Frequencies for ABS Rectangular Samples 

Natural Frequencies (Hz) 

Sample No f1 f2 f3 

1 619 738 1430 

2 698 865 1600 

3 1289 1578 2689 

 

 

Table7. Experimental Frequency Ratios for ABS Rectangular Samples 

Sample No 

Frequency Ratio 1 2 3 

f1/f2 0.838 0.806 0.816 

f1/f3 0.432 0.436 0.479 
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Table 8.Finite Element Natural Frequencies for ABS Rectangular Samples  

Natural Frequencies (Hz) 

Sample No f1 f2 f3 

1 622.96 699.25 1435.1 

2 712.93 801.46 1639.8 

3 1369.9 1553.2 3166.8 

 

 

Table9.Finite Element Frequency Ratios for ABS Rectangular Samples 

 

Sample No 

Frequency Ratio 1 2 3 

f1/f2 0.89 0.889 0.881 

f1/f3 0.434 0.434 0.432 
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Table10. Comparisons of Calculated Experimental, Finite Element and Theoretical 

Natural Frequencies (Hz) 

Samples Sample1 Sample2 Sample3 

 

ωn1 

 

 

ωn2 

 

 

ωn3 

 

 

ωn1 

 

 

ωn2 

 

 

ωn3 

 

 

ωn1 

 

 

ωn2 

 

 

ωn3 

 

 

Experiment 

 

619 

 

738 

 

1430 

 

698 

 

865 

 

1600 

 

1289 

 

1578 

 

2689 

 

Finite 

Element 

 

623 

 

699 

 

1435 

 

713 

 

801 

 

1640 

 

1370 

 

1553 

 

3116 

 

Calculation 

 

684 

 

734 

 

1586 

 

785 

 

843 

 

1821 

 

1540 

 

1652 

 

3569 
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Table 11.Comparisons of Calculated Experimental, Finite Element and Theoretical 

Frequency Ratios 

Experimental Finite Element Theoretical 

 

Sample No 

 

f1/f2 

 

f1/f3 

 

f1/f2 

 

f1/f3 

 

f1/f2 

 

f1/f3 

 

1 

 

0.838 

 

0.432 

 

0.89 

 

0.434 

 

0.932 

 

0.431 

 

2 

 

0.806 

 

0.436 

 

0.889 

 

0.434 

 

0.932 

 

0.431 

 

3 

 

0.816 

 

0.479 

 

0.881 

 

0.432 

 

0.932 

 

0.431 

 

 

Table 12.  Modal Densities 

 Sample 1 Sample 2 Sample 3 

Modal Densities 12 11 9 
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APPENDIX A 

EIGENVALUE OUTPUTS OF SAMPLE 1 in ABAQUS 

   

Abaqus 6.9-2    

                               Date 13-Feb-2012   Time 18:37:21 

 

   For use at Wayne State University under license from Dassault Systemes or 

its subsidiary. 

                         The Abaqus Software is a product of: 

 

                           Dassault Systemes Simulia Corp. 

                                 Rising Sun Mills 

                                 166 Valley Street 

                           Providence, RI 02909-2499, USA 

  

                   Available for internal use at Wayne State University.  

                   The Abaqus Online Support System is accessible 

                   through the "My Support" section of the SIMULIA 

                   Home Page at http://www.simulia.com. 

 

                   Support policies for academic licenses are described 

                   on the SIMULIA web site at 

                   http://www.simulia.com/academics/academic_support.html. 

  

                          On machine lan2.grid.wayne.edu  

                          you are authorized to run 

                          Abaqus/Standard until 04-Oct-2012 

 

                          Your site id is: 08WAYNEUA  

 

 

  

                    For assistance or any other information you may 

                    obtain contact information for your local office 

                    from the world wide web at: 

 

                      http://www.simulia.com/about/locations.html 

 

http://www.simulia.com/about/locations.html
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                * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

                *                                                         *  

                *                   *****************                     *  

                *                   *  N O T I C E  *                     *  

                *                   *****************                     *  

                *                                                         *  

                *                                                         *  

                *                    Abaqus 6.9-2                         *  

                *                                                         *  

                *          BUILD ID: 2009_07_10-10.30.58 92676            *  

                *                                                         *  

                *                                                         *  

                *  Please make sure you are using release 6.9 manuals     *  

                *  plus the notes accompanying this release.              *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *   This program may not be used for commercial purposes  *  

                *           without payment of a commercial fee.          *  

                *                                                         *  

                * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

 

     PROCESSING PART, INSTANCE, AND ASSEMBLY INFORMATION 

   ******************************************************* 

 

     END PROCESSING PART, INSTANCE, AND ASSEMBLY INFORMATION 

   *********************************************************** 

 

     OPTIONS BEING PROCESSED 

   *************************** 

 

  *NODE 

  *ELEMENT,TYPE=C3D20R,ELSET=ABS 

  *MATERIAL, NAME=ABS 

  *DENSITY 

  *ELASTIC, TYPE = ISOTROPIC 

  *SOLID SECTION, ELSET=ABS, MATERIAL=ABS 

  *SOLID SECTION, ELSET=ABS, MATERIAL=ABS 
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  *STEP, INC =         1000, PERTURBATION 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *STEP, INC =         1000, PERTURBATION 

  *STEP, INC =         1000, PERTURBATION 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *EL FILE, POSITION = AVERAGED AT NODES 

  *END STEP 

  *STEP, INC =         1000, PERTURBATION 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *NODE FILE 

  *END STEP 

 

                            P R O B L E M   S I Z E 

 

          NUMBER OF ELEMENTS IS                                 21660 

          NUMBER OF NODES IS                                    96199 

          NUMBER OF NODES DEFINED BY THE USER                   96199 

          TOTAL NUMBER OF VARIABLES IN THE MODEL               288597 

          (DEGREES OF FREEDOM PLUS ANY LAGRANGE MULTIPLIER VARIABLES) 

 

                              END OF USER INPUT PROCESSING 

 

     JOB TIME SUMMARY 

       USER TIME (SEC)      =   5.9800     

       SYSTEM TIME (SEC)    =  0.79000     

       TOTAL CPU TIME (SEC) =   6.7700     

       WALLCLOCK TIME (SEC) =          81 

 

   Abaqus 6.9-2                                  Date 13-Feb-2012   Time 

18:37:31 

   For use at Wayne State University under license from Dassault Systemes or 

its subsidiary. 

 

                                                                                               

STEP    1  INCREMENT    1 

                                                                                          

TIME COMPLETED IN THIS STEP   0.00     
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S T E P       1     C A L C U L A T I O N   O F   E I G E N V A L U E S 

 

  F O R   N A T U R A L   F R E Q U E N C I E S 

 

     THE LANCZOS EIGENSOLVER IS USED FOR THIS ANALYSIS 

     Abaqus WILL COMPUTE UNCOUPLED 

      STRUCTURAL AND ACOUSTIC MODES 

     NUMBER OF EIGENVALUES                     12 

     HIGHEST FREQUENCY OF INTEREST                  1.00000E+18 

     MAXIMUM NUMBER OF STEPS WITHIN RUN               35 

     BLOCK SIZE FOR LANCZOS PROCEDURE                  7 

     THE EIGENVECTORS ARE SCALED SO THAT  

      THE LARGEST DISPLACEMENT ENTRY IN EACH VECTOR 

      IS UNITY 

 

     THIS IS A LINEAR PERTURBATION STEP. 

     ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

 

                    TOTAL MASS OF MODEL 

 

                      5.3512151E-05 

 

                    LOCATION OF THE CENTER OF MASS OF THE MODEL 

 

                       57.15000           38.10000           3.000000     

 

                    MOMENTS OF INERTIA ABOUT THE ORIGIN 

                           I(XX)               I(YY)               I(ZZ) 

 

                      0.1042138          0.2336785          0.3366080     

 

 

                    PRODUCTS OF INERTIA ABOUT THE ORIGIN 

                           I(XY)               I(XZ)               I(YZ) 

 

                     -0.1165182         -9.1746583E-03     -6.1164389E-03 

 

 

                    MOMENTS OF INERTIA ABOUT THE CENTER OF MASS 

                           I(XX)               I(YY)               I(ZZ) 
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                      2.6053461E-02      5.8419617E-02      8.4152005E-02 

 

 

                    PRODUCTS OF INERTIA ABOUT THE CENTER OF MASS 

                           I(XY)               I(XZ)               I(YZ) 

 

                      3.3389957E-14      1.6375790E-15      3.4338851E-15 

   

                   M E M O R Y   E S T I M A T E 

   

 PROCESS      FLOATING PT       MINIMUM MEMORY        MEMORY TO 

              OPERATIONS           REQUIRED          MINIMIZE I/O 

             PER ITERATION         (MBYTES)           (MBYTES) 

   

     1          1.26E+12              534               5796 

   

 NOTE: 

      (1) SINCE ABAQUS DOES NOT PRE-ALLOCATE MEMORY AND ONLY ALLOCATES MEMORY 

AS NEEDED DURING THE ANALYSIS, 

          THE MEMORY REQUIREMENT PRINTED HERE CAN ONLY BE VIEWED AS A GENERAL 

GUIDELINE BASED ON THE BEST 

          KNOWLEDGE AVAILABLE AT THE BEGINNING OF A STEP BEFORE THE SOLUTION 

PROCESS HAS BEGUN. 

      (2) THE ESTIMATE IS NORMALLY UPDATED AT THE BEGINNING OF EVERY STEP. IT 

IS THE MAXIMUM VALUE OF THE 

          ESTIMATE FROM THE CURRENT STEP TO THE LAST STEP OF THE ANALYSIS, WITH 

UNSYMMETRIC SOLUTION TAKEN 

          INTO ACCOUNT IF APPLICABLE.  

      (3) SINCE THE ESTIMATE IS BASED ON THE ACTIVE DEGREES OF FREEDOM IN THE 

FIRST ITERATION OF THE  

          CURRENT STEP, THE MEMORY ESTIMATE MIGHT BE SIGNIFICANTLY DIFFERENT 

THAN ACTUAL USAGE FOR  

          PROBLEMS WITH SUBSTANTIAL CHANGES IN ACTIVE DEGREES OF FREEDOM 

BETWEEN STEPS (OR EVEN WITHIN 

          THE SAME STEP). EXAMPLES ARE: PROBLEMS WITH SIGNIFICANT CONTACT 

CHANGES, PROBLEMS WITH MODEL 

          CHANGE, PROBLEMS WITH BOTH STATIC STEP AND STEADY STATE DYNAMIC 

PROCEDURES WHERE ACOUSTIC  

          ELEMENTS WILL ONLY BE ACTIVATED IN THE STEADY STATE DYNAMIC STEPS. 

      (4) FOR MULTI-PROCESS EXECUTION, THE ESTIMATED VALUE OF FLOATING POINT 

OPERATIONS FOR EACH PROCESS 
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          IS BASED ON AN INITIAL SCHEDULING OF OPERATIONS AND MIGHT NOT REFLECT 

THE ACTUAL FLOATING  

          POINT OPERATIONS COMPLETED ON EACH PROCESS. OPERATIONS ARE DYNAMICALY 

BALANCED DURING EXECUTION,  

          SO THE ACTUAL BALANCE OF OPERATIONS BETWEEN PROCESSES IS EXPECTED TO 

BE BETTER THAN THE ESTIMATE 

          PRINTED HERE. 

      (5) THE UPPER LIMIT OF MEMORY THAT CAN BE ALLOCATED BY ABAQUS WILL IN 

GENERAL DEPEND ON THE VALUE OF 

          THE "MEMORY" PARAMETER AND THE AMOUNT OF PHYSICAL MEMORY AVAILABLE ON 

THE MACHINE. PLEASE SEE 

          THE "ABAQUS ANALYSIS USER'S MANUAL" FOR MORE DETAILS. THE ACTUAL 

USAGE OF MEMORY AND OF DISK 

          SPACE FOR SCRATCH DATA WILL DEPEND ON THIS UPPER LIMIT AS WELL AS THE 

MEMORY REQUIRED TO MINIMIZE 

          I/O. IF THE MEMORY UPPER LIMIT IS GREATER THAN THE MEMORY REQUIRED TO 

MINIMIZE I/O, THEN THE ACTUAL 

          MEMORY USAGE WILL BE CLOSE TO THE ESTIMATED "MEMORY TO MINIMIZE I/O" 

VALUE, AND THE SCRATCH DISK 

          USAGE WILL BE CLOSE-TO-ZERO; OTHERWISE, THE ACTUAL MEMORY USED WILL 

BE CLOSE TO THE PREVIOUSLY 

          MENTIONED MEMORY LIMIT, AND THE SCRATCH DISK USAGE WILL BE ROUGHLY 

PROPORTIONAL TO THE DIFFERENCE 

          BETWEEN THE ESTIMATED "MEMORY TO MINIMIZE I/O" AND THE MEMORY UPPER 

LIMIT. HOWEVER ACCURATE 

          ESTIMATE OF THE SCRATCH DISK SPACE IS NOT POSSIBLE. 

      (6) USING "*RESTART, WRITE" CAN GENERATE A LARGE AMOUNT OF DATA WRITTEN 

IN THE WORK DIRECTORY. 

 

E I G E N V A L U E    O U T P U T 

 

 MODE NO      EIGENVALUE              FREQUENCY         GENERALIZED MASS   

COMPOSITE MODAL DAMPING             

                             (RAD/TIME)   (CYCLES/TIME) 

 

 

       1     -2.92391E-03     0.0000         0.0000        1.04170E-05     

0.0000     

       2     -2.46711E-03     0.0000         0.0000        8.46785E-06     

0.0000     

       3     -2.37438E-03     0.0000         0.0000        8.01121E-06     

0.0000     
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       4      3.46925E-04    1.86259E-02    2.96441E-03    1.79050E-05     

0.0000     

       5      4.70849E-04    2.16991E-02    3.45351E-03    5.17385E-05     

0.0000     

       6      7.12980E-04    2.67017E-02    4.24970E-03    1.79972E-05     

0.0000     

       7      1.53206E+07     3914.2         622.96        7.38637E-06     

0.0000     

       8      1.93028E+07     4393.5         699.25        1.19712E-05     

0.0000     

       9      8.13038E+07     9016.9         1435.1        6.11121E-06     

0.0000     

      10      1.06869E+08     10338.         1645.3        1.02242E-05     

0.0000     

      11      1.29583E+08     11383.         1811.7        7.04885E-06     

0.0000     

      12      1.87787E+08     13704.         2181.0        4.10722E-06     

0.0000     

 

 

P A R T I C I P A T I O N   F A C T O R S 

 

 

 MODE NO    X-COMPONENT    Y-COMPONENT    Z-COMPONENT    X-ROTATION     Y-

ROTATION     Z-ROTATION  

 

       1      8.25229E-04    1.92505E-02     1.6596         50.334        -

142.08         1.5149     

       2      5.49741E-03    1.30362E-02     1.6108         93.131        -

49.629        0.52629     

       3     -1.50554E-02   -8.63332E-03    0.59585        -21.643         

15.790        -1.1165     

       4      1.81183E-02     1.2129       -9.55789E-03    -3.8851        

0.38187         19.784     

       5       1.0168        3.04774E-03   -3.73321E-04   -0.15440         

3.1627        -37.856     

       6     -2.51291E-02     1.2286       -1.18396E-02    -4.4327         

1.1881         119.13     

       7     -6.11039E-13    3.61370E-12   -1.89961E-11    1.10304E-09    

1.01544E-09    1.44772E-10 

       8     -1.91731E-12   -9.31543E-13    2.79016E-12   -1.01969E-10    

7.55887E-10   -5.79674E-11 
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       9      3.95123E-13   -7.39269E-13    2.27749E-12    5.88778E-11    

8.75154E-11   -3.63949E-11 

      10      1.86225E-13    3.72278E-13    5.00771E-12    2.07242E-10   -

2.89179E-11    2.46989E-11 

      11     -6.09468E-14   -3.88932E-13    2.62438E-12    8.23943E-11   -

1.81429E-10   -4.24445E-11 

      12     -1.87324E-13    7.58501E-14   -5.78566E-12   -1.30134E-10    

1.18382E-10    2.25026E-11 

 

 

E F F E C T I V E   M A S S 

 

 MODE NO    X-COMPONENT    Y-COMPONENT    Z-COMPONENT    X-ROTATION     Y-

ROTATION     Z-ROTATION  

 

       1      7.09402E-12    3.86035E-09    2.86916E-05    2.63916E-02    

0.21028        2.39065E-05 

       2      2.55911E-10    1.43906E-09    2.19721E-05    7.34447E-02    

2.08565E-02    2.34540E-06 

       3      1.81587E-09    5.97109E-10    2.84427E-06    3.75247E-03    

1.99746E-03    9.98728E-06 

       4      5.87774E-09    2.63408E-05    1.63568E-09    2.70254E-04    

2.61093E-06    7.00824E-03 

       5      5.34928E-05    4.80585E-10    7.21074E-12    1.23342E-06    

5.17533E-04    7.41441E-02 

       6      1.13647E-08    2.71650E-05    2.52277E-09    3.53621E-04    

2.54047E-05    0.25542     

       7      2.75784E-30    9.64573E-29    2.66537E-27    8.98702E-24    

7.61617E-24    1.54810E-25 

       8      4.40070E-29    1.03882E-29    9.31955E-29    1.24471E-25    

6.83989E-24    4.02256E-26 

       9      9.54097E-31    3.33989E-30    3.16987E-29    2.11851E-26    

4.68055E-26    8.09486E-27 

      10      3.54572E-31    1.41698E-30    2.56394E-28    4.39121E-25    

8.54992E-27    6.23715E-27 

      11      2.61830E-32    1.06627E-30    4.85481E-29    4.78534E-26    

2.32022E-25    1.26988E-26 

      12      1.44123E-31    2.36298E-32    1.37485E-28    6.95551E-26    

5.75594E-26    2.07975E-27 

 

 TOTAL        5.35122E-05    5.35122E-05    5.35122E-05    0.10421        

0.23368        0.33661     
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          THE ANALYSIS HAS BEEN COMPLETED 

                              ANALYSIS COMPLETE 

     JOB TIME SUMMARY 

       USER TIME (SEC)      =   1359.6     

       SYSTEM TIME (SEC)    =   37.960     

       TOTAL CPU TIME (SEC) =   1397.5     

       WALLCLOCK TIME (SEC) =       140 
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APPENDIX B 

EIGENVALUE OUTPUTS OF SAMPLE 2 in ABAQUS 

   

Abaqus 6.9-2   

                                Date 13-Feb-2012   Time 19:03:46 

 

   For use at Wayne State University under license from Dassault Systemes or 

its subsidiary. 

 

                         The Abaqus Software is a product of: 

 

                           Dassault Systemes Simulia Corp. 

                                 Rising Sun Mills 

                                 166 Valley Street 

                           Providence, RI 02909-2499, USA 

  

                   Available for internal use at Wayne State University.  

                   The Abaqus Online Support System is accessible 

                   through the "My Support" section of the SIMULIA 

                   Home Page at http://www.simulia.com. 

 

                   Support policies for academic licenses are described 

                   on the SIMULIA web site at 

                   http://www.simulia.com/academics/academic_support.html. 

  

                          On machine lan2.grid.wayne.edu  

                          you are authorized to run 

                          Abaqus/Standard until 04-Oct-2012 

 

                          Your site id is: 08WAYNEUA  

 

                    For assistance or any other information you may 

                    obtain contact information for your local office 

                    from the world wide web at: 

 

                      http://www.simulia.com/about/locations.html 

 

 

http://www.simulia.com/about/locations.html
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                * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

                *                                                         *  

                *                   *****************                     *  

                *                   *  N O T I C E  *                     *  

                *                   *****************                     *  

                *                                                         *  

                *                                                         *  

                *                    Abaqus 6.9-2                         *  

                *                                                         *  

                *          BUILD ID: 2009_07_10-10.30.58 92676            *  

                *                                                         *  

                *                                                         *  

                *  Please make sure you are using release 6.9 manuals     *  

                *  plus the notes accompanying this release.              *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *   This program may not be used for commercial purposes  *  

                *           without payment of a commercial fee.          *  

                *                                                         *  

                * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

 

     PROCESSING PART, INSTANCE, AND ASSEMBLY INFORMATION 

   ******************************************************* 

 

     END PROCESSING PART, INSTANCE, AND ASSEMBLY INFORMATION 

   *********************************************************** 

 

     OPTIONS BEING PROCESSED 

   *************************** 

 

  *NODE 

  *ELEMENT,TYPE=C3D20R,ELSET=ABS 

  *MATERIAL, NAME=ABS 

  *DENSITY 

  *ELASTIC, TYPE = ISOTROPIC 

  *SOLID SECTION, ELSET=ABS, MATERIAL=ABS 

  *SOLID SECTION, ELSET=ABS, MATERIAL=ABS 
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  *STEP, INC =         1000, PERTURBATION 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *STEP, INC =         1000, PERTURBATION 

  *STEP, INC =         1000, PERTURBATION 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *EL FILE, POSITION = AVERAGED AT NODES 

  *END STEP 

  *STEP, INC =         1000, PERTURBATION 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *NODE FILE 

  *END STEP 

 

P R O B L E M   S I Z E 

 

 

          NUMBER OF ELEMENTS IS                                 19080 

          NUMBER OF NODES IS                                    84913 

          NUMBER OF NODES DEFINED BY THE USER                   84913 

          TOTAL NUMBER OF VARIABLES IN THE MODEL               254739 

          (DEGREES OF FREEDOM PLUS ANY LAGRANGE MULTIPLIER VARIABLES) 

 

                              END OF USER INPUT PROCESSING 

 

 

 

     JOB TIME SUMMARY 

       USER TIME (SEC)      =   5.2800     

       SYSTEM TIME (SEC)    =  0.74000     

       TOTAL CPU TIME (SEC) =   6.0200     

       WALLCLOCK TIME (SEC) =          71 

 

   Abaqus 6.9-2                                  Date 13-Feb-2012   Time 

19:03:56 

 

   For use at Wayne State University under license from Dassault Systemes or 

its subsidiary. 

 

                                                                                               

STEP    1  INCREMENT    1 
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TIME COMPLETED IN THIS STEP   0.00    

  

 

 

S T E P       1     C A L C U L A T I O N   O F   E I G E N V A L U E S 

 

F O R   N A T U R A L   F R E Q U E N C I E S 

 

                                                                             

     THE LANCZOS EIGENSOLVER IS USED FOR THIS ANALYSIS 

     Abaqus WILL COMPUTE UNCOUPLED 

      STRUCTURAL AND ACOUSTIC MODES 

     NUMBER OF EIGENVALUES                     12 

     HIGHEST FREQUENCY OF INTEREST                  1.00000E+18 

     MAXIMUM NUMBER OF STEPS WITHIN RUN               35 

     BLOCK SIZE FOR LANCZOS PROCEDURE                  7 

     THE EIGENVECTORS ARE SCALED SO THAT  

      THE LARGEST DISPLACEMENT ENTRY IN EACH VECTOR 

      IS UNITY 

 

     THIS IS A LINEAR PERTURBATION STEP. 

     ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

 

 

 

                    TOTAL MASS OF MODEL 

 

                      4.6615029E-05 

 

 

                    LOCATION OF THE CENTER OF MASS OF THE MODEL 

 

                       53.34000           35.56000           3.000000     

 

 

                    MOMENTS OF INERTIA ABOUT THE ORIGIN 

                           I(XX)               I(YY)               I(ZZ) 

 

                      7.9153165E-02      0.1773954          0.2554298     
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                    PRODUCTS OF INERTIA ABOUT THE ORIGIN 

                           I(XY)               I(XZ)               I(YZ) 

 

                     -8.8418008E-02     -7.4593370E-03     -4.9728913E-03 

 

 

                    MOMENTS OF INERTIA ABOUT THE CENTER OF MASS 

                           I(XX)               I(YY)               I(ZZ) 

 

                      1.9788291E-02      4.4348849E-02      6.3857450E-02 

 

 

                    PRODUCTS OF INERTIA ABOUT THE CENTER OF MASS 

                           I(XY)               I(XZ)               I(YZ) 

 

                     -6.8459127E-14     -1.2698176E-14     -8.7117813E-15 

   

                   M E M O R Y   E S T I M A T E 

   

 PROCESS      FLOATING PT       MINIMUM MEMORY        MEMORY TO 

              OPERATIONS           REQUIRED          MINIMIZE I/O 

             PER ITERATION         (MBYTES)           (MBYTES) 

   

     1          1.02E+12              472               5023 

   

 

 NOTE: 

      (1) SINCE ABAQUS DOES NOT PRE-ALLOCATE MEMORY AND ONLY ALLOCATES MEMORY 

AS NEEDED DURING THE ANALYSIS, 

          THE MEMORY REQUIREMENT PRINTED HERE CAN ONLY BE VIEWED AS A GENERAL 

GUIDELINE BASED ON THE BEST 

          KNOWLEDGE AVAILABLE AT THE BEGINNING OF A STEP BEFORE THE SOLUTION 

PROCESS HAS BEGUN. 

      (2) THE ESTIMATE IS NORMALLY UPDATED AT THE BEGINNING OF EVERY STEP. IT 

IS THE MAXIMUM VALUE OF THE 

          ESTIMATE FROM THE CURRENT STEP TO THE LAST STEP OF THE ANALYSIS, WITH 

UNSYMMETRIC SOLUTION TAKEN 

          INTO ACCOUNT IF APPLICABLE.  

      (3) SINCE THE ESTIMATE IS BASED ON THE ACTIVE DEGREES OF FREEDOM IN THE 

FIRST ITERATION OF THE  

          CURRENT STEP, THE MEMORY ESTIMATE MIGHT BE SIGNIFICANTLY DIFFERENT 

THAN ACTUAL USAGE FOR  
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          PROBLEMS WITH SUBSTANTIAL CHANGES IN ACTIVE DEGREES OF FREEDOM 

BETWEEN STEPS (OR EVEN WITHIN 

          THE SAME STEP). EXAMPLES ARE: PROBLEMS WITH SIGNIFICANT CONTACT 

CHANGES, PROBLEMS WITH MODEL 

          CHANGE, PROBLEMS WITH BOTH STATIC STEP AND STEADY STATE DYNAMIC 

PROCEDURES WHERE ACOUSTIC  

          ELEMENTS WILL ONLY BE ACTIVATED IN THE STEADY STATE DYNAMIC STEPS. 

      (4) FOR MULTI-PROCESS EXECUTION, THE ESTIMATED VALUE OF FLOATING POINT 

OPERATIONS FOR EACH PROCESS 

          IS BASED ON AN INITIAL SCHEDULING OF OPERATIONS AND MIGHT NOT REFLECT 

THE ACTUAL FLOATING  

          POINT OPERATIONS COMPLETED ON EACH PROCESS. OPERATIONS ARE DYNAMICALY 

BALANCED DURING EXECUTION,  

          SO THE ACTUAL BALANCE OF OPERATIONS BETWEEN PROCESSES IS EXPECTED TO 

BE BETTER THAN THE ESTIMATE 

          PRINTED HERE. 

      (5) THE UPPER LIMIT OF MEMORY THAT CAN BE ALLOCATED BY ABAQUS WILL IN 

GENERAL DEPEND ON THE VALUE OF 

          THE "MEMORY" PARAMETER AND THE AMOUNT OF PHYSICAL MEMORY AVAILABLE ON 

THE MACHINE. PLEASE SEE 

          THE "ABAQUS ANALYSIS USER'S MANUAL" FOR MORE DETAILS. THE ACTUAL 

USAGE OF MEMORY AND OF DISK 

          SPACE FOR SCRATCH DATA WILL DEPEND ON THIS UPPER LIMIT AS WELL AS THE 

MEMORY REQUIRED TO MINIMIZE 

          I/O. IF THE MEMORY UPPER LIMIT IS GREATER THAN THE MEMORY REQUIRED TO 

MINIMIZE I/O, THEN THE ACTUAL 

          MEMORY USAGE WILL BE CLOSE TO THE ESTIMATED "MEMORY TO MINIMIZE I/O" 

VALUE, AND THE SCRATCH DISK 

          USAGE WILL BE CLOSE-TO-ZERO; OTHERWISE, THE ACTUAL MEMORY USED WILL 

BE CLOSE TO THE PREVIOUSLY 

          MENTIONED MEMORY LIMIT, AND THE SCRATCH DISK USAGE WILL BE ROUGHLY 

PROPORTIONAL TO THE DIFFERENCE 

          BETWEEN THE ESTIMATED "MEMORY TO MINIMIZE I/O" AND THE MEMORY UPPER 

LIMIT. HOWEVER ACCURATE 

          ESTIMATE OF THE SCRATCH DISK SPACE IS NOT POSSIBLE. 

      (6) USING "*RESTART, WRITE" CAN GENERATE A LARGE AMOUNT OF DATA WRITTEN 

IN THE WORK DIRECTORY. 
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E I G E N V A L U E    O U T P U T 

 

 

 MODE NO      EIGENVALUE              FREQUENCY         GENERALIZED MASS   

COMPOSITE MODAL DAMPING             

                             (RAD/TIME)   (CYCLES/TIME) 

 

 

 

       1     -3.61542E-04     0.0000         0.0000        3.27951E-05     

0.0000     

       2     -2.49531E-04     0.0000         0.0000        1.83741E-05     

0.0000     

       3     -6.08313E-05     0.0000         0.0000        2.81028E-05     

0.0000     

       4      5.69160E-03    7.54427E-02    1.20071E-02    6.99135E-06     

0.0000     

       5      5.84183E-03    7.64318E-02    1.21645E-02    7.73675E-06     

0.0000     

       6      6.43295E-03    8.02057E-02    1.27651E-02    1.00066E-05     

0.0000     

       7      2.00657E+07     4479.5         712.93        6.43959E-06     

0.0000     

       8      2.53583E+07     5035.7         801.46        1.04538E-05     

0.0000     

       9      1.06152E+08     10303.         1639.8        5.33448E-06     

0.0000     

      10      1.39877E+08     11827.         1882.3        8.92942E-06     

0.0000     

      11      1.69198E+08     13008.         2070.2        6.16326E-06     

0.0000     

      12      2.45013E+08     15653.         2491.2        3.59336E-06     

0.0000     

 

  

P A R T I C I P A T I O N   F A C T O R S 

 

 MODE NO    X-COMPONENT    Y-COMPONENT    Z-COMPONENT    X-ROTATION     Y-

ROTATION     Z-ROTATION  
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       1       1.1611        2.80118E-03    2.77164E-03    8.48551E-02     

3.2195        -31.127     

       2      0.35145        0.35626       -3.51209E-03   -0.96797         

1.0785        -49.460     

       3     -6.82481E-02     1.2553       -3.80752E-03    -3.9121       -

0.10220         79.743     

       4     -7.24261E-03    6.17761E-04     1.3824         21.720        -

127.03       -1.86852E-02 

       5      4.99586E-03    1.15889E-02     1.4277         33.084        -

20.515       -1.45443E-03 

       6     -5.69688E-03    1.74413E-03     1.3218         81.789        -

78.048        0.63259     

       7      3.78762E-13   -4.81652E-12   -9.07194E-12    7.34193E-10    

2.51013E-10   -3.58668E-10 

       8      4.26953E-13   -7.70635E-13   -2.31121E-11   -1.63057E-09    

7.68037E-10   -1.64698E-10 

       9     -1.72319E-13    9.94216E-14    1.21692E-11    5.25167E-10   -

2.28301E-10   -3.41678E-11 

      10     -1.87165E-13    6.89291E-14    2.69856E-12    1.50217E-10    

6.92072E-11    1.32546E-11 

      11      2.18224E-13   -1.22344E-13    6.38952E-12    3.12955E-10   -

1.98334E-10   -1.36686E-11 

      12      3.64454E-13    3.23242E-13    2.86583E-12   -7.20118E-11   -

6.29783E-11    6.53629E-12 

 

 

E F F E C T I V E   M A S S 

 

 MODE NO    X-COMPONENT    Y-COMPONENT    Z-COMPONENT    X-ROTATION     Y-

ROTATION     Z-ROTATION  

 

       1      4.42137E-05    2.57331E-10    2.51931E-10    2.36137E-07    

3.39933E-04    3.17739E-02 

       2      2.26951E-06    2.33206E-06    2.26639E-10    1.72159E-05    

2.13726E-05    4.49483E-02 

       3      1.30897E-07    4.42816E-05    4.07411E-10    4.30091E-04    

2.93555E-07    0.17870     

       4      3.66734E-10    2.66810E-12    1.33611E-05    3.29828E-03    

0.11282        2.44094E-09 

       5      1.93099E-10    1.03906E-09    1.57711E-05    8.46807E-03    

3.25625E-03    1.63662E-11 
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       6      3.24759E-10    3.04401E-11    1.74819E-05    6.69393E-02    

6.09559E-02    4.00437E-06 

       7      9.23829E-31    1.49391E-28    5.29978E-28    3.47119E-24    

4.05743E-25    8.28404E-25 

       8      1.90561E-30    6.20829E-30    5.58411E-27    2.77943E-23    

6.16650E-24    2.83564E-25 

       9      1.58401E-31    5.27295E-32    7.89976E-28    1.47125E-24    

2.78040E-25    6.22766E-27 

      10      3.12805E-31    4.24257E-32    6.50261E-29    2.01493E-25    

4.27687E-26    1.56875E-27 

      11      2.93506E-31    9.22514E-32    2.51621E-28    6.03636E-25    

2.42440E-25    1.15148E-27 

      12      4.77296E-31    3.75455E-31    2.95121E-29    1.86341E-26    

1.42522E-26    1.53520E-28 

 

 TOTAL        4.66150E-05    4.66150E-05    4.66150E-05    7.91532E-02    

0.17740        0.25543     

 

          THE ANALYSIS HAS BEEN COMPLETED 

                              ANALYSIS COMPLETE 

 

     JOB TIME SUMMARY 

       USER TIME (SEC)      =   1111.9     

       SYSTEM TIME (SEC)    =   33.760     

       TOTAL CPU TIME (SEC) =   1145.7     

       WALLCLOCK TIME (SEC) =       1151 
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APPENDIX C 

EIGENVALUE OUTPUTS OF SAMPLE 3 in ABAQUS 

Abaqus 6.9-2    

                               Date 13-Feb-2012   Time 19:16:34 

 

   For use at Wayne State University under license from Dassault Systemes or 

its subsidiary. 

 

 

                         The Abaqus Software is a product of: 

 

                           Dassault Systemes Simulia Corp. 

                                 Rising Sun Mills 

                                 166 Valley Street 

                           Providence, RI 02909-2499, USA 

  

 

                   Available for internal use at Wayne State University.  

                   The Abaqus Online Support System is accessible 

                   through the "My Support" section of the SIMULIA 

                   Home Page at http://www.simulia.com. 

 

                   Support policies for academic licenses are described 

                   on the SIMULIA web site at 

                   http://www.simulia.com/academics/academic_support.html. 

  

                          On machine lan1.grid.wayne.edu  

                          you are authorized to run 

                          Abaqus/Standard until 04-Oct-2012 

 

                          Your site id is: 08WAYNEUA  

  

                    For assistance or any other information you may 

                    obtain contact information for your local office 

                    from the world wide web at: 

 

                      http://www.simulia.com/about/locations.html 

  

                * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

http://www.simulia.com/about/locations.html
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                *                                                         *  

                *                   *****************                     *  

                *                   *  N O T I C E  *                     *  

                *                   *****************                     *  

                *                                                         *  

                *                                                         *  

                *                    Abaqus 6.9-2                         *  

                *                                                         *  

                *          BUILD ID: 2009_07_10-10.30.58 92676            *  

                *                                                         *  

                *                                                         *  

                *  Please make sure you are using release 6.9 manuals     *  

                *  plus the notes accompanying this release.              *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *                                                         *  

                *   This program may not be used for commercial purposes  *  

                *           without payment of a commercial fee.          *  

                *                                                         *  

                * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

 

 

 

 

     PROCESSING PART, INSTANCE, AND ASSEMBLY INFORMATION 

   ******************************************************* 

 

     END PROCESSING PART, INSTANCE, AND ASSEMBLY INFORMATION 

   *********************************************************** 

 

     OPTIONS BEING PROCESSED 

   *************************** 

  *NODE 

  *ELEMENT,TYPE=C3D20R,ELSET=ABS 

  *MATERIAL, NAME=ABS 

  *DENSITY 

  *ELASTIC, TYPE = ISOTROPIC 

  *SOLID SECTION, ELSET=ABS, MATERIAL=ABS 

  *SOLID SECTION, ELSET=ABS, MATERIAL=ABS 

  *STEP, INC =         1000, PERTURBATION 
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  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *STEP, INC =         1000, PERTURBATION 

  *STEP, INC =         1000, PERTURBATION 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *EL FILE, POSITION = AVERAGED AT NODES 

  *END STEP 

  *STEP, INC =         1000, PERTURBATION 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *FREQUENCY, EIGENSOLVER = LANCZOS, NORMALIZATION = DISPLACEMENT 

  *NODE FILE 

  *END STEP 

 

                            P R O B L E M   S I Z E 

 

          NUMBER OF ELEMENTS IS                                 19440 

          NUMBER OF NODES IS                                    86493 

          NUMBER OF NODES DEFINED BY THE USER                   86493 

          TOTAL NUMBER OF VARIABLES IN THE MODEL               259479 

          (DEGREES OF FREEDOM PLUS ANY LAGRANGE MULTIPLIER VARIABLES) 

 

 

                              END OF USER INPUT PROCESSING 

 

     JOB TIME SUMMARY 

       USER TIME (SEC)      =   5.6800     

       SYSTEM TIME (SEC)    =  0.89000     

       TOTAL CPU TIME (SEC) =   6.5700     

       WALLCLOCK TIME (SEC) =         101 

 

 

 

   Abaqus 6.9-2                                  Date 13-Feb-2012   Time 

19:16:47 

   For use at Wayne State University under license from Dassault Systemes or 

its subsidiary. 

 

                                                                                               

STEP    1  INCREMENT    1                                                                                         

TIME COMPLETED IN THIS STEP   0.00   

  

 



91 

 
 

S T E P   1       C A L C U L A T I O N   O F   E I G E N V A L U E S 

 

  F O R   N A T U R A L   F R E Q U E N C I E S 

 

                                                                                 

     THE LANCZOS EIGENSOLVER IS USED FOR THIS ANALYSIS 

     Abaqus WILL COMPUTE UNCOUPLED 

      STRUCTURAL AND ACOUSTIC MODES 

     NUMBER OF EIGENVALUES                     12 

     HIGHEST FREQUENCY OF INTEREST                  1.00000E+18 

     MAXIMUM NUMBER OF STEPS WITHIN RUN               35 

     BLOCK SIZE FOR LANCZOS PROCEDURE                  7 

     THE EIGENVECTORS ARE SCALED SO THAT  

      THE LARGEST DISPLACEMENT ENTRY IN EACH VECTOR 

      IS UNITY 

 

     THIS IS A LINEAR PERTURBATION STEP. 

     ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 

 

 

 

                    TOTAL MASS OF MODEL 

 

                      2.3783178E-05 

 

 

                    LOCATION OF THE CENTER OF MASS OF THE MODEL 

 

                       38.10000           25.40000           3.000000     

 

 

                    MOMENTS OF INERTIA ABOUT THE ORIGIN 

                           I(XX)               I(YY)               I(ZZ) 

 

                      2.0744005E-02      4.6317264E-02      6.6490473E-02 

 

 

                    PRODUCTS OF INERTIA ABOUT THE ORIGIN 

                           I(XY)               I(XZ)               I(YZ) 

 

                     -2.3015933E-02     -2.7184173E-03     -1.8122782E-03 
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                    MOMENTS OF INERTIA ABOUT THE CENTER OF MASS 

                           I(XX)               I(YY)               I(ZZ) 

 

                      5.1860013E-03      1.1579316E-02      1.6622618E-02 

 

 

                    PRODUCTS OF INERTIA ABOUT THE CENTER OF MASS 

                           I(XY)               I(XZ)               I(YZ) 

 

                      5.0306981E-15     -2.3171569E-15     -1.1236671E-15 

   

                   M E M O R Y   E S T I M A T E 

   

 PROCESS      FLOATING PT       MINIMUM MEMORY        MEMORY TO 

              OPERATIONS           REQUIRED          MINIMIZE I/O 

             PER ITERATION         (MBYTES)           (MBYTES) 

   

     1          1.04E+12              475               5118 

   

 NOTE: 

      (1) SINCE ABAQUS DOES NOT PRE-ALLOCATE MEMORY AND ONLY ALLOCATES MEMORY 

AS NEEDED DURING THE ANALYSIS, 

          THE MEMORY REQUIREMENT PRINTED HERE CAN ONLY BE VIEWED AS A GENERAL 

GUIDELINE BASED ON THE BEST 

          KNOWLEDGE AVAILABLE AT THE BEGINNING OF A STEP BEFORE THE SOLUTION 

PROCESS HAS BEGUN. 

      (2) THE ESTIMATE IS NORMALLY UPDATED AT THE BEGINNING OF EVERY STEP. IT 

IS THE MAXIMUM VALUE OF THE 

          ESTIMATE FROM THE CURRENT STEP TO THE LAST STEP OF THE ANALYSIS, WITH 

UNSYMMETRIC SOLUTION TAKEN 

          INTO ACCOUNT IF APPLICABLE.  

      (3) SINCE THE ESTIMATE IS BASED ON THE ACTIVE DEGREES OF FREEDOM IN THE 

FIRST ITERATION OF THE  

          CURRENT STEP, THE MEMORY ESTIMATE MIGHT BE SIGNIFICANTLY DIFFERENT 

THAN ACTUAL USAGE FOR  

          PROBLEMS WITH SUBSTANTIAL CHANGES IN ACTIVE DEGREES OF FREEDOM 

BETWEEN STEPS (OR EVEN WITHIN 

          THE SAME STEP). EXAMPLES ARE: PROBLEMS WITH SIGNIFICANT CONTACT 

CHANGES, PROBLEMS WITH MODEL 

          CHANGE, PROBLEMS WITH BOTH STATIC STEP AND STEADY STATE DYNAMIC 

PROCEDURES WHERE ACOUSTIC  
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          ELEMENTS WILL ONLY BE ACTIVATED IN THE STEADY STATE DYNAMIC STEPS. 

      (4) FOR MULTI-PROCESS EXECUTION, THE ESTIMATED VALUE OF FLOATING POINT 

OPERATIONS FOR EACH PROCESS 

          IS BASED ON AN INITIAL SCHEDULING OF OPERATIONS AND MIGHT NOT REFLECT 

THE ACTUAL FLOATING  

          POINT OPERATIONS COMPLETED ON EACH PROCESS. OPERATIONS ARE DYNAMICALY 

BALANCED DURING EXECUTION,  

          SO THE ACTUAL BALANCE OF OPERATIONS BETWEEN PROCESSES IS EXPECTED TO 

BE BETTER THAN THE ESTIMATE 

          PRINTED HERE. 

      (5) THE UPPER LIMIT OF MEMORY THAT CAN BE ALLOCATED BY ABAQUS WILL IN 

GENERAL DEPEND ON THE VALUE OF 

          THE "MEMORY" PARAMETER AND THE AMOUNT OF PHYSICAL MEMORY AVAILABLE ON 

THE MACHINE. PLEASE SEE 

          THE "ABAQUS ANALYSIS USER'S MANUAL" FOR MORE DETAILS. THE ACTUAL 

USAGE OF MEMORY AND OF DISK 

          SPACE FOR SCRATCH DATA WILL DEPEND ON THIS UPPER LIMIT AS WELL AS THE 

MEMORY REQUIRED TO MINIMIZE 

          I/O. IF THE MEMORY UPPER LIMIT IS GREATER THAN THE MEMORY REQUIRED TO 

MINIMIZE I/O, THEN THE ACTUAL 

          MEMORY USAGE WILL BE CLOSE TO THE ESTIMATED "MEMORY TO MINIMIZE I/O" 

VALUE, AND THE SCRATCH DISK 

          USAGE WILL BE CLOSE-TO-ZERO; OTHERWISE, THE ACTUAL MEMORY USED WILL 

BE CLOSE TO THE PREVIOUSLY 

          MENTIONED MEMORY LIMIT, AND THE SCRATCH DISK USAGE WILL BE ROUGHLY 

PROPORTIONAL TO THE DIFFERENCE 

          BETWEEN THE ESTIMATED "MEMORY TO MINIMIZE I/O" AND THE MEMORY UPPER 

LIMIT. HOWEVER ACCURATE 

          ESTIMATE OF THE SCRATCH DISK SPACE IS NOT POSSIBLE. 

      (6) USING "*RESTART, WRITE" CAN GENERATE A LARGE AMOUNT OF DATA WRITTEN 

IN THE WORK DIRECTORY. 
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E I G E N V A L U E    O U T P U T 

 

 MODE NO      EIGENVALUE              FREQUENCY         GENERALIZED MASS   

COMPOSITE MODAL DAMPING             

                             (RAD/TIME)   (CYCLES/TIME) 

 

 

       1      1.38202E-03    3.71755E-02    5.91666E-03    1.34714E-05     

0.0000     

       2      1.45764E-03    3.81791E-02    6.07639E-03    1.99187E-05     

0.0000     

       3      1.50466E-03    3.87900E-02    6.17362E-03    1.03773E-05     

0.0000     

       4      2.90581E-03    5.39056E-02    8.57934E-03    4.21582E-06     

0.0000     

       5      3.71025E-03    6.09118E-02    9.69442E-03    4.67978E-06     

0.0000     

       6      4.58821E-03    6.77363E-02    1.07806E-02    5.23703E-06     

0.0000     

       7      7.40874E+07     8607.4         1369.9        3.31095E-06     

0.0000     

       8      9.52390E+07     9759.0         1553.2        5.42667E-06     

0.0000     

       9      3.83506E+08     19583.         3116.8        2.76997E-06     

0.0000     

      10      5.11879E+08     22625.         3600.8        4.65017E-06     

0.0000     

      11      6.09957E+08     24697.         3930.7        3.23294E-06     

0.0000     

      12      8.78634E+08     29642.         4717.6        1.89337E-06     

0.0000     

 

 

P A R T I C I P A T I O N   F A C T O R S 

 

 

 MODE NO    X-COMPONENT    Y-COMPONENT    Z-COMPONENT    X-ROTATION     Y-

ROTATION     Z-ROTATION  

 

       1      0.95371       -0.37978       -6.44996E-03     1.0943         

3.3273        -60.993     
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       2      0.53035        0.93882       -1.28857E-03    -2.8432         

1.7338         26.978     

       3     -0.75555        0.64246        1.82017E-02    -1.3735        -

2.9255         13.435     

       4      2.02348E-02   -8.36290E-03     1.7213         63.662        -

85.968       -0.42614     

       5      1.96469E-02   -5.52846E-03     1.2354         4.1529        -

55.615       -0.89382     

       6     -4.55517E-03   -8.06971E-03    0.88982         25.407         

8.6058        0.23925     

       7      6.21022E-13   -5.27354E-13    8.51435E-12    2.87655E-10   -

2.33245E-10   -3.28042E-11 

       8      4.89916E-14   -6.18284E-13    2.00332E-11    6.82347E-10   -

1.80723E-10   -4.84656E-12 

       9     -3.37615E-14    7.26246E-14    3.57663E-12    1.62604E-10   -

7.25975E-11    6.31117E-13 

      10     -8.39684E-14    3.33876E-14    7.18570E-13    7.84051E-13   -

6.11942E-11    2.27057E-12 

      11      3.16418E-14   -1.40095E-13    3.82781E-12    1.02853E-10   -

5.24337E-11   -3.85976E-12 

      12      5.01154E-14   -8.43225E-14    9.80503E-13    4.26016E-11    

1.30021E-11   -5.94614E-12 

                    

E F F E C T I V E   M A S S 

 

 

 MODE NO    X-COMPONENT    Y-COMPONENT    Z-COMPONENT    X-ROTATION     Y-

ROTATION     Z-ROTATION  

 

       1      1.22530E-05    1.94297E-06    5.60437E-10    1.61332E-05    

1.49143E-04    5.01154E-02 

       2      5.60250E-06    1.75561E-05    3.30735E-11    1.61018E-04    

5.98736E-05    1.44972E-02 

       3      5.92399E-06    4.28328E-06    3.43800E-09    1.95755E-05    

8.88169E-05    1.87304E-03 

       4      1.72616E-09    2.94847E-10    1.24906E-05    1.70860E-02    

3.11571E-02    7.65587E-07 

       5      1.80640E-09    1.43032E-10    7.14193E-06    8.07109E-05    

1.44744E-02    3.73878E-06 

       6      1.08666E-10    3.41037E-10    4.14662E-06    3.38060E-03    

3.87856E-04    2.99766E-07 
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       7      1.27693E-30    9.20781E-31    2.40024E-28    2.73966E-25    

1.80126E-25    3.56297E-27 

       8      1.30249E-32    2.07448E-30    2.17787E-27    2.52664E-24    

1.77240E-25    1.27468E-28 

       9      3.15731E-33    1.46097E-32    3.54343E-29    7.32380E-26    

1.45988E-26    1.10330E-30 

      10      3.27869E-32    5.18370E-33    2.40108E-30    2.85863E-30    

1.74137E-26    2.39740E-29 

      11      3.23684E-33    6.34513E-32    4.73696E-29    3.42007E-26    

8.88829E-27    4.81635E-29 

      12      4.75529E-33    1.34624E-32    1.82026E-30    3.43627E-27    

3.20082E-28    6.69431E-29 

 

 TOTAL        2.37832E-05    2.37832E-05    2.37832E-05    2.07440E-02    

4.63173E-02    6.64905E-02 

 

 

          THE ANALYSIS HAS BEEN COMPLETED 

                              ANALYSIS COMPLETE 

 

 

 

     JOB TIME SUMMARY 

       USER TIME (SEC)      =   1217.1     

       SYSTEM TIME (SEC)    =   37.430     

       TOTAL CPU TIME (SEC) =   1254.5     

       WALLCLOCK TIME (SEC) =       1263 
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ABSTRACT 

FREE VIBRATION ANALYSES OF ABS (ACRYLONITRILE-BUTADIENE-

STYRENE) RECTANGULAR PLATES WITH COMPLETELY FREE 

BOUNDARY CONDITIONS 

by 

MEHMET AKIF DUNDAR 

May 2012 

Advisor: Dr. E.O. Ayorinde 

Major: Mechanical Engineering 

Degree: Masters of Science 

  Acrylonitrile-Butadiene-Styrene (ABS) represents a family of engineering 

thermoplastics with a wide field of performance characteristics. ABS materials have been 

receiving a great deal of attention because of their unique properties, such as outstanding 

formability, high tensile strength and stiffness, very high impact strength, excellent 

ductility, excellent high and low temperature performance, and resistant to many 

chemicals and plasticizers. Particularly, ABS exhibits really high impact strength; 

therefore, it is used in industry products which require high impact strength materials, 

such as military helmets and construction safety helmets. The vibration analyses of ABS 

rectangular plates are incredibly significant for design in military applications. The modal 

parameters of three various ABS rectangular samples, such as deflection mode shapes, 

resonance frequencies and damping ratios, were obtained  in the frequency range of 0 Hz 

to 6400 Hz by the  PULSE 15.1 software which is produced by the Bruel&Kjaer 

company. The Lancsoz Eigensolver method in ABAQUS/STANDARD 3D software, 

which is a powerful tool for extraction of the extreme Eigenvalues, was used to determine 

the natural frequencies and mode shapes of the ABS rectangular samples.  The modal 
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densities of the samples were experimentally determined in the frequency range of 0 Hz 

to 12800Hz to find out which sample requires a more effort and money in design process. 

The experimental and finite element results were compared very favorably with one 

another.     
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