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CHAPTER 1 

INTRODUCTION 

 

1.1 Dengue virus: a global health issue 

1.1.1 The disease 

Dengue fever is a potentially deadly disease caused by the dengue fever virus. It 

is one of the major emerging/reemerging mosquito-borne diseases along with malaria 

(Snowden, 2008). The World Health Organization has estimated that two-fifths of the 

world population live in dengue endemic areas, which are tropical and subtropical 

regions (WHO, 1997). The usual transmission of the virus from one person to another is 

by mosquito bite (Gubler, 1988), though vertical transmission in both human and 

mosquito have also been reported (Rosen et al., 1983; Chye et al., 1997; Joshi et al., 

2002; Guo et al., 2007; Angel and Joshi, 2008; Chuang et al., 2008; Tambyah et al., 

2008). The prevalence of the disease is closely associated with the presence of the 

mosquito Aedes aegypti (A. aegypti), the major mosquito vector, and to a lesser extent, 

Aedes albopictus (A. albopictus) (Gubler, 1988; Gubler, 1998). There have been 

concerns about the spread of dengue fever due to an introduction or re-introduction of 

virus into mosquito-infested regions. One such case, for example, has been reported in 

Key West, USA between 2009 and 2010 (CDC, 2010; Radke et al., 2012). Another risk 

that might help spread the disease is climate change, which can expand the habitable 

environment for the mosquito vector. One study predicted that 44% and 52% of the 

world population might be at risk of dengue infection by 2055 and 2085, respectively 

(Hales et al., 2002).  
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The rate of dengue infection may be as high as 100 million cases annually and 

about 500,000 cases per year require hospitalization (Gubler, 1998; Halstead, 2007). 

The majority of hospitalized cases are children and teenagers, and these patients 

frequently develop serious symptoms and complications from the disease (WHO, 1997). 

Symptomatic infections usually result in dengue fever (DF) symptoms, which include 

high fever, body aches and rashes. DF patients usually fully recover within a week 

(Gubler, 1998). In some cases, a patient may develop hemorrhagic manifestations, 

which indicate a severe form of the disease called dengue hemorrhagic fever (DHF) 

(Gubler, 1998). The most severe complication of dengue infection is dengue shock 

syndrome (DSS), a hypovolemic shock caused by excessive plasma leakage from 

blood vessels as an over-response to the infection (Gubler, 1998). The prognosis of 

DSS is usually poor, and the outcome may be fatal (WHO, 1997). The mortality of the 

dengue diseases is around 25,000 cases per year (Gubler, 1998). 

 

1.1.2 Prevention and treatment 

Currently, no vaccine or antiviral drug is commercially available, even though 

vaccine development efforts have been ongoing for several decades (Barban et al., 

2012). The first generation of vaccines was developed with live attenuated virus (LAV) 

(Innis and Eckels, 2003) or inactivated virus (Robert Putnak et al., 2005).  However, the 

LAV vaccines have not been effective due to insufficient immunogenicity, excess 

reactogenicity, and an imbalanced response to each dengue serotype (Edelman, 2007). 

The vaccine derived from inactivated virus has not been tested in a human trial 

(Webster et al., 2009). A second-generation vaccine is being developed based on a 
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recombinant chimeric virus in which the viral structural proteins of one serotype were 

replaced by those from other serotypes. There are four antigenically distinct serotypes 

of the dengue virus (Westaway, 1997). The amino acid homologies among serotypes 

vary between 65-70% (see Figure 1-1). The hope is that the chimeric virus will safely 

and effectively induce a balanced immune response against all four of the dengue 

serotypes (Durbin et al., 2006). A third-generation vaccine is under development based 

on a replication-defective virus, which is capable of infecting a cell but not disseminating 

to other cells; this may be a promising alternative to vaccine candidates from previous 

generations (Suzuki et al., 2009). One major concern of vaccine development is the 

antibody-dependent enhancement (ADE) of infection (Dejnirattisai et al., 2010). ADE 

was proposed by Halstead et al., in 1977 to explain the finding that a secondary 

infection by a serotype different from that of the primary infection resulted in worse 

outcomes, such as a higher rates of developing DHF (Halstead and O'Rourke, 1977). In 

ADE, antibodies against one serotype of dengue virus may bind to another serotype 

without neutralizing the virus. This results in active antibody-virus complexes, which are 

then engulfed by phagocytes via opsonization (Diamond et al., 2008). Since the virus is 

still active, the opsonization does not eliminate the virus, but instead helps the virus 

infect the phagocytes (Dejnirattisai et al., 2010). Dejnirattisai et al., confirmed that 

antibodies against the viral membrane and envelope proteins, which are more likely to 

cross-react between serotypes, caused the ADE (Dejnirattisai et al., 2010). To avoid 

ADE, an effective vaccine must be capable of inducing production of antibodies that 

specifically recognize each of the four serotypes, but do not cross-react with other 

serotypes (Webster et al., 2009). 
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Figure 1-1. The similarity among flaviviruses. (A) A dendrogram shows amino acid 

sequence similarities among flaviviruses: yellow fever virus, West Nile virus, Japanese 

encephalitis virus, dengue virus serotype 1, 2, 3 and 4. The scale bar indicates amino 

acid substitution per site. (B) An alignment of amino acid sequences of seven 

flaviviruses. The identity track indicates consensus agreements. Green means an amino 

acid at the position is the same in all viruses. Olive means an amino acid at the position 

is the same in four or more viruses. Red means an amino acid at the position is the 

same in less than four viruses. 
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Antiviral drugs may also be vital tools to combat dengue infection. Ribavirin 

works against hepatitis C virus (HCV) (Torriani et al., 2004), which belongs to the same 

family, flaviviridae, as dengue virus (Lindenbach et al., 2006). The drug was shown to 

be effective against dengue virus in vitro (Takhampunya et al., 2006); however, it was 

not as effective in an animal model (Schul et al., 2007). Several adjustments to ribavirin 

administration are under development to improve its effectiveness and safety. For 

example, ribavirin treatment in combination with an α-glucosidase inhibitor has been 

shown to reduce dengue viremia in mice (Chang et al., 2011). 

Another potential strategy to combat dengue fever is control of the mosquito 

vector (Gubler, 1998). Bed nets, which are useful for combating malaria transmission by 

Anopheles mosquitoes (Phillips-Howard et al., 2003), are not as effective against Aedes 

mosquitoes since they are daytime biters (Gibbons and Vaughn, 2002). Mosquito 

repellents applied to skin or clothing are recommended as a method to prevent 

mosquito bite (Fradin and Day, 2002; Wilder-Smith and Schwartz, 2005). Larvicides and 

pesticides have been used to reduce the mosquito population (Gubler, 1998). DDT was 

very effective for mosquito eradication in the early to mid twentieth century (Najera et 

al., 2011), but the program was not very well sustained. As the mosquito population was 

seemingly controlled, the resources were then reallocated to other competing health 

programs resulting in the rebound of mosquitoes and diseases (Gubler, 1998). 

Larvicide, such as Temephos, is used to kill larvae in water reservoirs and containers, 

which is the most widely used technique against Aedes mosquitoes (WHO, 1997). But a 

population with resistance has already emerged (Lima et al., 2003). Additionally, the 

larvae can grow in small water containers in urban areas (Gubler, 1998), which may be 
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hidden or neglected from larvicide treatments. Other strategies under development 

include release of irradiated sterile or genetically modified (GM) mosquitoes into the wild 

to reduce mosquito population (Dame et al., 2009; Hoffmann et al., 2011). The sterile 

insect technique (SIT) was successful for controlling agricultural pests such as Medflies 

(Hendrichs et al., 2002) so the technique was adopted and tested for mosquito control 

(Dame et al., 2009).  The rationale for the technique is that sterile males released into 

the wild will compete against wild-type males (Knipling, 1955). SIT may not be suitable 

for mosquito vector control because of its several shortcomings including, 1) a very 

large number of sterile males must be generated and released periodically in order to 

significantly and sustainably reduce the population of the insect (Alphey, 2002),and  2) 

sterilization techniques, such as irradiation, reduce the fitness of the insects, which 

could reduce their ability to effectively compete with the wild population (Lance et al., 

2000). One method under development is to genetically engineer a late-acting lethal 

gene into mosquitoes so that they can mate with the wild population resulting in normal 

embryos and larvae, but the offspring containing the lethal gene will die once they begin 

pupation (Phuc et al., 2007). The transgenic larvae may compete with the wild type 

larvae for resources resulting in the decrease of adult mosquitoes (Phuc et al., 2007). A 

similar method was developed by Wise de Valdez et al., to generate a repressible 

female-specific flightless phenotype that causes all female offspring to be unable to 

survive and mate (Wise de Valdez et al., 2011). Another promising method involves 

infecting mosquitoes with the insect parasitic microbe, Wolbachia. Mosquitoes infected 

with Wolbachia will have cytoplasmic incompatibility, which kills the embryos produced 

by uninfected females after mating with infected males, but not vice versa (McMeniman 
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et al., 2009). In addition, Wolbachia infection shortens the lifespan of mosquitoes, which 

could reduce the number of dengue transmissions per infective mosquito within its life-

time (McMeniman et al., 2009). There is also evidence showing that Wolbachia infection 

confers some protection against infection of the mosquito by other pathogens, by 

possibly priming immune response pathways, such as the toll pathway (Pan et al., 

2012). Recently, studies have been initiated in Australia in which Wolbachia-infected 

mosquitoes were released into the wild, and the infected mosquitoes successfully 

invaded two natural populations in the two experimental sites (Hoffmann et al., 2011).  

 

1.2 Dengue virus – genome and life cycle 

 1.2.1 Dengue is a flavivirus 

 Dengue virus, the causative agent of dengue fever, belongs to the genus 

Flavivirus in the Flaviviridae family (Lindenbach et al., 2006). Other well-known viruses 

in this genus are West Nile virus (WNV), yellow fever virus (YFV) and Japanese 

encephalitis virus (JEV) (Westaway, 1997) (See Figure 1-1). Flaviviruses are arthropod-

borne or Arboviruses, which means they require an insect as a host to complete their 

life cycle (Mackenzie et al., 2004) (See Figure 1-2 for dengue life cycle). Flaviviruses 

cause neurotropic and/or viscerotropic diseases (Lindenbach et al., 2006). Dengue virus 

rarely causes neurotropic disease differentiating it from other flaviviruses such as JEV 

and WNV (Gubler et al., 2006). Dengue virus and YFV are different from other 

flaviviruses because human is a natural host required to complete the YFV and dengue 

virus life cycles (Gubler et al., 2006). In contrast, human is an accidental host of other 
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Figure 1-2. The life cycles of Aedes mosquitoes and dengue virus.  The 

mosquitoes have four developmental stages: eggs/embryos, larvae, pupae and adults. 

All stages, except the adults, are aquatic. Female adult mosquitoes require blood meals 

to produce eggs. Consequently, they may transmit dengue virus when the blood meal is 

taken from an infected human, and the next blood meal is from an uninfected one.   
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flaviviruses, such as WNV and JEV; infection of humans with these viruses may cause 

a disease, but does not result in a sufficient level of viremia for transmission to an insect 

(Gubler et al., 2006).  

The genome of flavivirus consists of one molecule of positive single-stranded 

RNA. The genome is encapsulated in a viral capsid protein shell, which is enveloped by 

a membrane derived from a host cell (Lindenbach et al., 2006). Like other flaviviruses, 

the dengue genome encodes ten proteins. Three are structural proteins, which are 

capsid, the precursor of membrane protein (PrM) and envelope protein (E), while the 

rest are non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) 

(Lindenbach et al., 2006). The virus uses E protein to bind receptors on the host cell 

surface inducing endocytosis of the virion (Modis et al., 2004). A decrease of pH in the 

endosomal compartment induces a structural change of the virion resulting in release of 

viral RNA (van der Schaar et al., 2008). Next, the RNA is translated into a polyprotein 

inserted in the host endoplasmic reticulum (ER) membrane.  The polyprotein is cleaved 

by the host proteases, furin and siganalase, and by a viral protease, NS2B/NS3 

complex, to form the ten individual viral proteins (Sampath and Padmanabhan, 2009) 

(see Figure 1-3 for polyprotein). Viral RNA in the cytoplasm is transferred to replication 

complexes containing NS5, a viral RNA-dependent RNA polymerase, which generates 

more genomic RNA (Mackenzie, 2005). This takes place in vesicle packets, unique ER 

membrane-derived structures induced by the virus infection (Mackenzie, 2005). Viral 

RNA is coated with capsid forming a nucleocapsid, which buds into the ER lumen and 

acquires a virus envelope from the ER membrane (Sampath and Padmanabhan, 2009).



10 

 

 

Figure 1-3. The polyprotein of dengue virus. A virus genome is translated as the 

polyprotein inserted into the endoplasmic reticulum membrane. The polyprotein 

contains ten viral proteins: capsid (C), precursor of membrane protein (PrM), envelope 

protein (E), non-structural protein 1 (NS1), NS2A, NS2B, NS3, NS4A, NS4B and NS5. 

Red arrows indicate the sites cleaved by NS2B/NS3. Black arrows indicate the sites 

cleaved by host signalase. A blue arrow indicates the site cleaved by host furin. 
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The virus envelope also contains PrM and E proteins embedded during dengue 

polyprotein translation at the ER membrane (Sampath and Padmanabhan, 2009). 

During maturation, the PrM protein of virions in the lumen of the ER and Golgi 

apparatus are further cleaved by host protease, and then the mature virions are 

transported out of the host cell via the secretory pathway (Yu et al., 2008b). 

 The primary target of infection in a mosquito is midgut epithelium, which is the 

very first barrier to come in contact with a dengue-infected blood meal (Black et al., 

2002; Mercado-Curiel et al., 2006). The virus must then escape the midgut into the 

hemocele, and disseminate to other organs such as brain, ovaries, and most 

importantly, salivary glands to make the mosquito infective and start a new round of 

transmission (Black et al., 2002; Mercado-Curiel et al., 2006). The virus life cycle in the 

mosquito usually takes eight to ten days before the host becomes infective (Gubler and 

Rosen, 1976). When the virus is transmitted to human by a mosquito bite, the primary 

sites of infection are cells the mononuclear phagocyte lineage (Kyle et al., 2007). The 

virus can also infect secondary sites such as liver cells and may cause injuries in those 

tissues (Kuo et al., 1992; Souza et al., 2004). 

 

 1.2.2 Dengue virus proteins 

 Below I discuss dengue proteins and their known functions. I also address the 

dengue proteins whose functions are still unclear. 

  1.2.2.1 Capsid (C) 

 Capsid is a building block for a shell of nucleocapsid (Kuhn et al., 2002). 

The 11 kDa, 100 amino acid protein contains several basic amino acids giving it 
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a total positive charge (isoelectric point = 12.5) (Ma et al., 2004; Lazo et al., 

2007). Newly translated capsid has a transmembrane domain at its C-terminus, 

which anchors it to the ER membrane as a part of the dengue polyprotein, while 

the N-terminus is exposed to the cytoplasm (Lindenbach et al., 2006). During 

virus maturation, the transmembrane domain is cleaved by the dengue serine 

protease, NS2B/NS3 (Ma et al., 2004). Capsid naturally forms homodimers that 

become part of the icosahedral nucleocapsid shell (Kuhn et al., 2002; Ma et al., 

2004). Dimerized capsids have two surfaces. One surface has positive charges 

that interact with the viral RNA, while the other surface remains in contact with 

the ER membrane (Ma et al., 2004). Interestingly, capsid contains several 

potential nuclear localization signals (NLS) and has been reported to be nuclear 

and nucleolar localized in a few cell lines (such as HepG2 cells) through an 

interaction with host importin (Wang et al., 2002; Sangiambut et al., 2008; 

Bhuvanakantham et al., 2009; Netsawang et al., 2010). Nuclear localized capsid 

interacts with death-domain associated protein (DAXX), a multi-functional protein 

having a role in mediation of apoptosis (Netsawang et al., 2010). Nuclear capsid 

can sensitize cells to undergo apoptosis probably through CD137 signaling 

(Nagila et al., 2011). Other roles of nuclear and nucleolar localized capsid remain 

unclear.  

 

 1.2.2.2 Membrane protein (PrM and M) 

 The precursor of the membrane protein (PrM) is a 26 kDa glycoprotein 

located in the ER lumen and anchored to the ER membrane during synthesis 
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(Lindenbach et al., 2006). PrM binds to the envelope protein to prevent 

premature fusion to the Golgi membrane (Zhang et al., 2003). PrM contains a N-

terminal domain, which is cleaved by the host protease, furin, in the Golgi 

apparatus during maturation (Yu et al., 2008b).  PrM was proposed to contribute 

to ADE because antibodies against PrM were shown to be highly cross-reactive 

but non-neutralizing, at least in vitro (Dejnirattisai et al., 2010). A mixture of 

mature and immature disseminating virions is found in human cell cultures and 

infected mosquitoes (van der Schaar et al., 2007; Junjhon et al., 2008; Zybert et 

al., 2008). It has been hypothesized that the mixture may help dengue virus 

evade immunity since the uncleaved PrM of an immature virion elicits non-

neutralizing antibodies. These antibodies bind the virion and induce opsonization, 

whereas antibodies against a mature virion usually neutralize the virus 

(Rodenhuis-Zybert et al., 2010). The ectodomain of M interacts with Tctex-1, a 

dynein light chain that functions in cargo binding (Brault et al., 2011). Silencing of 

Tctex-1 significantly reduces dengue replication in cell culture (Brault et al., 

2011). The mechanism behind the Tctex-1 requirement remains unclear, but it 

does not involve microtubule-dependent retrograde transport of the dynein motor 

complex. 

 

 1.2.2.3 Envelope protein (E) 

Envelope protein is a 53 kDa glycoprotein located in the ER lumen and 

anchored to the ER membrane during synthesis (Lindenbach et al., 2006). E 

functions as a virus receptor to target host cells. E protein binds proteins on the 
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surface of host cells, initiating receptor-mediated endocytosis (Modis et al., 

2004). E protein has three domains, Domain I, Domain II and Domain III 

(Mukhopadhyay et al., 2005). Domain I and II form a hinge involved in a pH-

induced structural change of the E protein, which takes place in the endosome 

and leads to envelope-membrane fusion and RNA release to cytoplasm 

(Mukhopadhyay et al., 2005). Domain III is involved in receptor binding (Crill and 

Roehrig, 2001) so it is a potential target for neutralizing antibodies (Li et al., 

2012). Studies in A. albopictus cells and A. aegypti tissues has shown that the 

dengue virion or E protein can interact with laminin-binding protein 

(Sakoonwatanyoo et al., 2006), prohibitin (Kuadkitkan et al., 2010), tubulin-like 

protein (Chee and AbuBakar, 2004) and several unidentified proteins with 

molecular weight from 35 to 80 kDa (Salas-Benito and del Angel, 1997; Munoz et 

al., 1998; Yazi Mendoza et al., 2002; Reyes-del Valle and del Angel, 2004; 

Mercado-Curiel et al., 2006; Salas-Benito et al., 2007; Mercado-Curiel et al., 

2008; Cao-Lormeau, 2009). One or more of these may be parts of a host cell 

receptor complex. Several additional human proteins and glycolipids were 

proposed to be members of a host receptor complex including heat-shock 

proteins 90 and 70 (Reyes-Del Valle et al., 2005), neolactotetraosylceramide 

(Aoki et al., 2006), CD14 (Chen et al., 1999), GRP78/BiP (Jindadamrongwech et 

al., 2004), 37-kDa/67-kDa laminin receptor (Thepparit and Smith, 2004), DC-

SIGN (Tassaneetrithep et al., 2003; Lozach et al., 2005), the mannose receptor 

(Miller et al., 2008) and CLEC5A (Chen et al., 2008). Nevertheless, the full 

details and mechanisms of binding and endocytosis are still under investigation. 
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E protein also interacts with UBE2I, a SUMO conjugation enzyme (Chiu et al., 

2007).  Over-expression of UBE2I significantly reduces dengue virus production, 

but the role of sumoylation in dengue virus is not yet clear. Antibodies against E 

protein were shown to be cross-reactive and non-neutralizing, and thus may 

have a role in ADE (da Silva Voorham et al., 2012). 

 

 1.2.2.4 Non structural protein 1 (NS1) 

 NS1 is a 46 kDa glycoprotein (Lindenbach et al., 2006). The function of 

NS1 remains mostly elusive. Immature NS1 as a part of the dengue polyprotein 

resides on the lumenal side of the ER membrane (Lindenbach et al., 2006). It 

does not have a transmembrane domain. NS1 is cleaved by host signalase 

during virion maturation (Lindenbach et al., 2006). It can form homodimers that 

retain an association to the membrane by an unknown mechanism (Winkler et 

al., 1989). Hexameric NS1 is a secreted form of the protein (Flamand et al., 

1999). This form is used as a marker to detect dengue infection in a suspected 

patient (Hang et al., 2009; Fry et al., 2011). Intracellular NS1 co-localizes with the 

viral dsRNA (Mackenzie et al., 1996; Welsch et al., 2009). Mutagenesis studies 

have shown that NS1 is required for efficient RNA replication in several 

flaviviruses, but the mechanism is unknown (Muylaert et al., 1996; Lindenbach 

and Rice, 1997; Muylaert et al., 1997; Lindenbach and Rice, 1999; Blaney et al., 

2003). Secreted NS1 and cell surface-associated NS1 seem to interact with host 

immune factors contributing to immune evasion or pathogenesis. NS1 binds to 

components of the complement reaction, such as C1, C4 and C4BP, suppressing 



16 

 

their activity (Avirutnan et al., 2010; Avirutnan et al., 2011). Recently, secreted 

NS1 was found to form a lipoprotein mimicking HDLs, which may contribute to 

the acute vascular dysfunction and the associated life-threatening hypovolemic 

shock of DSS (Gutsche et al., 2011). 

 

 1.2.2.5 Non structural protein 2A (NS2A) 

NS2A is a 22 kDa transmembrane protein whose function is not very well studied 

(Lindenbach et al., 2006). In Kunjin virus, NS2A is essential for virion assembly 

since a mutation of NS2A disrupts virion assembly (Liu et al., 2003; Leung et al., 

2008). Another potential function of NS2A is to inhibit interferon signaling since it 

was shown that expression of dengue NS2A in human cells could suppress 

interferon-beta-stimulated gene expression (Munoz-Jordan et al., 2003). 

 

 1.2.2.6 Non structural protein 2B (NS2B) 

NS2B is a 14 kDa transmembrane protein (Lindenbach et al., 2006). It functions 

as a cofactor of NS3, a viral serine protease (Falgout et al., 1991). Other 

functions of NS2B have not been described. 

 

 1.2.2.7 Non structural protein 3 (NS3) 

NS3 is a 70 kDa cytoplasmic protein without a transmembrane (Lindenbach et 

al., 2006). NS3 has two functional domains, an N-terminal serine protease 

domain and a C-terminal RNA helicase domain (Lindenbach et al., 2006). The 

protease activity of NS3 is essential since it is required to cleave dengue 
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polyprotein into individual proteins on the cytoplasmic side of the ER membrane 

(Gorbalenya et al., 1989; Cahour et al., 1992; Lindenbach et al., 2006). 

Consequently, protease inhibitors of NS3 are attractive candidates for an 

effective anti-dengue therapy, and several of them are under development 

(Sampath and Padmanabhan, 2009). The helicase domain of NS3 is required for 

viral RNA replication (Li et al., 1999; Matusan et al., 2001; Lindenbach et al., 

2006). NS3 also has an RNA triphosphatase activity, which plays a role in RNA 

5’-capping (Bartelma and Padmanabhan, 2002). NS3 may also play a role in the 

apoptosis that can result from dengue infection (Gagnon et al., 1999; Morchang 

et al., 2011; Silveira et al., 2011) and NS3 has been shown to induce apoptosis 

in Vero cells (Shafee and AbuBakar, 2003). This has led to the hypothesis that 

NS3 might cleave or interact with host proteins that initiate apoptosis (Doolittle 

and Gomez, 2011).  Consistent with this idea, West Nile virus NS3 was shown to 

directly interact with and cleave caspase-8 and initiate apoptosis (Ramanathan et 

al., 2006). It remains unclear whether NS3-induced apoptosis contributes to the 

tissue injuries observed in dengue patients. NS3 also physically interacts with 

fatty acid synthase (FASN) recruiting it to the replication site (Heaton et al., 

2010). Consequently, FASN activity is increased resulting in an enhancement of 

lipid biosynthesis in infected cells (Heaton et al., 2010). An interaction of NS3 

with autoantigen La (SSB) was also reported (Garcia-Montalvo et al., 2004), 

though no functional studies have confirmed the interaction or shown its 

significance. NS3 is truncated by cleavage during the infection of some 
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flaviviruses, but the importance of the truncation is unknown (Arias et al., 1993; 

Teo and Wright, 1997). 

 1.2.2.8 Non structural protein 4A (NS4A) 

NS4A is a 16 kDa transmembrane protein whose function is not very well studied 

(Lindenbach et al., 2006). NS4A co-localizes with the replication complex and, 

therefore, may have a role in virus replication (Anwar et al., 2009). NS4A was 

reported to have a role in ER membrane rearrangement since the expression of 

NS4A in Huh-7/T7 cells alone induces membrane rearrangements similar to 

those observed in dengue-infected cells (Miller et al., 2007). The expression of 

NS4A in human cells can also suppress interferon-beta-stimulated gene 

expression (Munoz-Jordan et al., 2003). A recent study showed that expression 

of NS4A in epithelial cells up-regulates PI3K-dependent autophagy and prevents 

the cell death observed in infected cells (McLean et al., 2011). The mechanisms 

of these effects of NS4A are not known. NS4A interacts and is co-localized with 

polypyrimidine tract binding protein 1 (PTB) (Jiang et al., 2009). Silencing of PTB 

in dengue-infected cells showed that PTB is required for effective viral negative 

strand RNA replication. However, the mechanism for how NS4A-PTB interaction 

effects virus RNA replication is not clear. 

 

 1.2.2.9 Non structural protein 4B (NS4B) 

NS4B is a 27 kDa transmembrane protein whose function is not very well 

studied (Lindenbach et al., 2006). It was shown along with NS2A and NS4A to 

inhibit the interferon pathway, with NS4B being the strongest inhibitor (Munoz-
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Jordan et al., 2003). It was recently shown that expression of NS4B or 2K_NS4B, 

but not an immature form, NS4A_2K_NS4B, in human microvascular endothelial 

cells and THP-1 monocytes could elevate the secretion of DHF-associated 

immunomediator like interferon-gamma, IL-6 and IL-8(Kelley et al., 2011; Kelley 

et al., 2012). 

 

1.2.2.10 Non structural protein 5 (NS5) 

NS5 is a 103 kDa multi-functional protein (Lindenbach et al., 2006). It has 

an N-terminal methyltransferase domain (MTase) and a C-terminal RNA-

dependent RNA polymerase (RdRp) (Lindenbach et al., 2006). The N-terminal 

domain is required for RNA capping (Egloff et al., 2002) while the C-terminal 

domain is required for RNA replication (Ackermann and Padmanabhan, 2001). 

Ribavirin 5’-triphosphate, a derivative of a widely used antiviral drug, interferes 

with the MTase activity of NS5 in vitro (Benarroch et al., 2004); therefore, the 

drug has potential as an anti-dengue therapy, and studies of Ribavirin and its 

derivatives are ongoing (Chang et al., 2011). NS5 physically interacts with NS3 

to form a complex (Kapoor et al., 1995; Johansson et al., 2001; Brooks et al., 

2002; Yon et al., 2005), which may be essential for virus replication. The RdRp 

activity from NS5 and the helicase activity from NS3 are both required for RNA 

replication (Li et al., 1999; Ackermann and Padmanabhan, 2001; Matusan et al., 

2001; Lindenbach et al., 2006). Interestingly, although viral replication occurs in 

the cytoplasm, NS5 contains a nuclear localization signal, physically interacts 

with importin, and has been observed in the nucleus (Johansson et al., 2001; 
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Brooks et al., 2002). The nuclear localization of NS5 was shown to reduce 

interleukin-8 (IL-8) production and secretion (Medin et al., 2005; Pryor et al., 

2007; Rawlinson et al., 2009). NS5 also contains a nuclear export signal, which 

interacts with exportin 1 (CRM-1), implying that the nuclear import and export of 

NS5 is dynamically regulated by CRM-1 and importin (Rawlinson et al., 2009). 

NS5 was also shown to interfere with the interferon pathway by binding to STAT2 

and promoting its degradation (Jones et al., 2005; Ashour et al., 2009; Mazzon et 

al., 2009). NS5 can be phosphorylated by protein kinase G (PKG), which 

increases virus production by an unknown mechanism (Bhattacharya et al., 

2009). NS5 also interacts with SSB and zona occludens 1 (ZO-1) (Garcia-

Montalvo et al., 2004; Ellencrona et al., 2009). However, the significance of these 

interactions has not been demonstrated. 

 

1.3 Functional screens  

 Because the dengue genome encodes only ten viral proteins, the virus needs to 

hijack host proteins to help its replication. To determine what cellular processes may be 

required for the dengue virus, functional screens have been conducted. Additionally, 

functional screens have been used to investigate how host cells try to combat infection, 

or to determine which immune pathways the virus needs to perturb to evade the host’s 

immune defense. 
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1.3.1 Host factors required for viral replication 

 Sessions et al., performed a genome-wide RNA interference screen in dengue-

infected Drosophila cells to identify Dengue Virus Host Factors (DVHFs), defined as 

genes required for effective replication of dengue virus (Sessions et al., 2009). They 

found 116 Drosophila DVHFs. Out of 116 DVHFs, 82 genes had human homologs of 

which 42 were confirmed as DVHFs by siRNA assays with dengue-infected human 

cells. A limited set of RNA interference assays was also conducted in mosquitoes with 

three homologs of Drosophila DVHFs. Only one DVHF, a mosquito homolog of lola, was 

confirmed as a mosquito DVHFs.  A limitation of this study was that the dengue virus 

used was deliberately mutated by multiple passages in Drosophila cells to overcome the 

fact that Drosophila is not naturally susceptible to dengue infection. 

 

1.3.2 Host genes induced by dengue infection 

Xi et al., used microarrays to identify transcriptional responses to dengue 

infection in A. aegypti mosquitoes (Xi et al., 2008). They implicated the Toll immune 

pathway and the Jak-STAT immune pathway as a major and a minor immune response 

to dengue infection, respectively. In another study, Fink et al., conducted microarray 

assays with dengue-infected patients and cell lines to identify transcriptional responses 

to infection in human (Fink et al., 2007). They were able to implicate three major 

pathways; NF-κB initiated immune responses, type I interferon, and the ubiquitin 

proteasome pathway. 
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1.4 Protein-protein interactions (PPI) of dengue virus 

Data from functional screens may identify cellular pathways that a virus hijacks or 

perturbs, but they do not reveal the mechanisms for how the virus directly interacts with 

these pathways. Physical interactions, such as PPI, are crucial data that can 

complement the data from functional screens. Physical PPI data, for example, may 

implicate an interface between the virus and host that could be exploited for 

development of antiviral drugs targeting the interaction. In other words, PPI can be used 

to generate hypotheses of how the virus interacts with its hosts and how to develop 

tools to combat it. When I began this study in 2007, very few PPI data were available for 

host-virus interactions. Since then, useful PPI data have begun to emerge from several 

studies with a variety of viruses. Large-scale virus-host PPI studies, for example, have 

been conducted with Epstein-Barr virus (EBV) (Calderwood et al., 2007) and Hepatitis C 

virus (HCV) (de Chassey et al., 2008). Recently, several other collections of virus-host 

protein-protein PPI have become available. The HIV-1, Human Protein Interaction 

Database available at NCBI (http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/) is an 

archive for published PPI of HIV (Ptak et al., 2008; Fu et al., 2009; Pinney et al., 2009). 

VirusMINT (http://mint.bio.uniroma2.it/virusmint/) is another archive for published virus-

host PPI including data from more than a hundred virus strains (Chatr-aryamontri et al., 

2009). Below I document PPI studies that have been applied to the dengue virus. 

 

1.4.1 Literature-curated dengue-host PPI 

Several studies attempting to identify specific dengue-host PPI began since a 

few decades ago. These studies relied on low-throughput screens focusing on an 
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individual gene or a pathway related to dengue biology. For example, NS5 and C of 

dengue were known to locate in the cytoplasm (Lindenbach et al., 2006), but their 

interactions with importin hinted at the possibility of nuclear localization (Johansson et 

al., 2001; Sangiambut et al., 2008; Bhuvanakantham et al., 2009), which was further 

investigated in follow-up studies (Pryor et al., 2007; Rawlinson et al., 2009; Netsawang 

et al., 2010; Nagila et al., 2011). I searched the literature for additional PPI identified 

with low-throughput methods and found those summarized in Table 1-1. 

 

1.4.2 PPI from large-scale yeast two-hybrid (Y2H) screens 

Y2H is an economic and versatile tool for detecting PPI (Fields and Song, 1989). The 

technique is also compatible with high-throughput screens. It was used, for example, in 

large-scale PPI screens to detect tens of thousands of PPI for Saccharomyces 

cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and human (Uetz et al., 

2000; Giot et al., 2003; Li et al., 2004; Stanyon et al., 2004; Rual et al., 2005). Y2H has 

been used to construct PPI maps for virus-host interactions including HCV (de Chassey 

et al., 2008), EBV (Calderwood et al., 2007), influenza virus (Shapira et al., 2009) and 

vaccinia virus (Zhang et al., 2009). Y2H has also been used in small-scale studies to 

detect dengue-host interactions (see Table 1-1). Recently, two groups carried out large-

scale Y2H screens for PPI between dengue and human. In one study, Khadka et al., 

screened all ten dengue proteins against a human liver Y2H library (Khadka et al., 

2011). They identified 139 interactions involving 105 human proteins. Most of the 

interactions had not been detected before. The screen implicated human proteins 

involved in the complement and coagulation cascade, the centrosome, and the 
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Table 1-1 Dengue-host PPI previously identified in low-throughput studies. 

Dengue 
protein Interactor Technique/Method Publication 
NS3 NRBP Y2H; Co-AP (Chua et al., 2004) 

NS5 KPNB1 Y2H; Co-AP 
(Johansson et al., 

2001) 

NS5 NS3 Y2H; Co-AP 
(Johansson et al., 

2001) 

E HSPA5 Y2H; Co-AP 
(Limjindaporn et al., 

2009) 

E CANX Y2H; Co-AP 
(Limjindaporn et al., 

2009) 

E CALR Y2H; Co-AP 
(Limjindaporn et al., 

2009) 

NS1 C4B Co-AP (Avirutnan et al., 2011) 

NS5 PRKG1 Phosphorylation assay 
(Bhattacharya et al., 

2009) 

NS5 XPO1 Co-Complex; Co-localization (Rawlinson et al., 2009) 

NS5 SSB Co-Complex 
(Garcia-Montalvo et al., 

2004) 

NS3 SSB Co-Complex 
(Garcia-Montalvo et al., 

2004) 
C H2 Co-AP (Colpitts et al., 2011a) 
C H4 Co-AP (Colpitts et al., 2011a) 
NS1 HNRNPC TAP-MS; Co-AP (Noisakran et al., 2008) 

E HSP90AA1 Affinity Chromatography 
(Reyes-Del Valle et al., 

2005) 

E HSPA4 Affinity Chromatography 
(Reyes-Del Valle et al., 

2005) 

C DAXX Y2H; Co-AP 
(Limjindaporn et al., 

2007) 
C HNRNPK Co-AP (Chang et al., 2001) 

NS5 TJP1 Co-AP 
(Ellencrona et al., 

2009) 
NS4A PTBP1 Y2H; Co-AP (Jiang et al., 2009) 

E NCR2 ELISA 
(Hershkovitz et al., 

2009) 

M DYNLT1 Y2H; Co-AP (Brault et al., 2011) 
NS5 STAT2 Co-Complex (Mazzon et al., 2009) 
NS5 STAT2 Co-AP (Ashour et al., 2009) 
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NS5 KPNB1 Co-AP; Domain Mapping (Brooks et al., 2002) 
NS1 CLU Co-Complex (Kurosu et al., 2007) 
NS1 STAT3 Y2H; Co-AP (Chua et al., 2005) 

E UBE2I Y2H; Co-AP (Chiu et al., 2007) 

E CD209 Co-AP (Lozach et al., 2005) 
NS3 FASN Y2H (Heaton et al., 2010) 
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cytoskeleton. They further investigated the functions of 12 dengue interactors by siRNA 

assays in cells containing a synthetic dengue replicon, and showed that six of them 

(CALR, DDX3X, ERC1, GOLGA2, TRIP11 and UBE2I) are essential for replication. In 

the other study, Le Breton et al., screened NS3 and NS5 from several flaviviruses 

including dengue against human cDNA libraries from liver, brain, spleen and bronchial 

epithelia (Le Breton et al., 2011). They detected 108 human proteins interacting with 

NS3, NS5, or both. Out of these proteins 29 proteins interacted with NS3 from dengue 

virus serotype 2, while 11 proteins interacted with NS5 from dengue virus serotype 1. 

Functional enrichment of all proteins detected in the screen implicated RNA binding, 

transcription regulation, vesicular transport, and innate immune response regulation. 

Interestingly, only one interaction (NS5 and MATR3) was detected in both Y2H studies 

suggesting that dengue-human PPI screenings are still far from saturation. 

 

1.4.3 Co-affinity purification and co-complex purification 

While Y2H could detect a large number of binary physical PPI, it has limitations if 

a library of proteins from the appropriate organism or tissue does not exist or if the 

genome of a species used for a study is not well annotated. Y2H assays also require 

proteins to be expressed in yeast cells, which may not imitate their natural locations 

(Fields and Song, 1989). Protein affinity purification is an alternative method to avoid 

such limitations (Rigaut et al., 1999). In this method, one protein is expressed as a bait 

in a target cell, and then purified with antibodies or an affinity reagent that recognizes a 

tag on the bait. Any proteins co-purified with the bait are potential interactors and may 

be identified by subsequent analyses such as mass-spectrometry (Rigaut et al., 1999). 
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This method reveals the proteins belonging to stable complexes, but the binary 

interactions among these proteins are not shown. The data derived from this method 

may, therefore, compliment the binary interaction data derived from Y2H assays, and 

vice versa. Colpitts et al used tandem affinity purification along with mass-spectrometry 

to identify dengue-mosquito PPI (Colpitts et al., 2011b). They expressed N-TAP tagged 

C, E, NS2A and NS2B from dengue virus and West Nile virus as baits in A. albopictus 

C6/36 cells and purified complexes. They identified 18 dengue-mosquito protein 

interactions involving 14 mosquito proteins. Despite the limited number of interactors 

detected, most virus proteins seemed to interact with one or more host proteins involved 

in cytoskeleton and cellular trafficking. 

 

1.4.4 Computational predictions and data integration 

Significant resources, time, and labor are required for conducting high throughput 

screening for PPI. An alternative approach is to use computational methods to predict 

PPI. These methods use presently available data to narrow down a number of potential 

PPI, which may be further experimentally investigated. Doolittle et al., computationally 

predicted dengue-human and dengue-mosquito PPI using structural similarity between 

human proteins and dengue proteins, and available human PPI databases (Doolittle 

and Gomez, 2011). They predicted that a human protein that interacts with another 

human protein containing a domain structurally similar to a dengue protein would also 

potentially interact with that dengue protein. Since there is no mosquito PPI database, 

they relied on Drosophila PPI data to predict dengue-mosquito interactions (Yu et al., 

2008c). Similar to the dengue-human PPI predictions, a Drosophila protein that interacts 
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with another Drosophila protein containing a domain structurally similar to a dengue 

protein would also potentially interact with that dengue protein. Next, they assumed that 

mosquito orthologs of the Drosophila protein would also interact with the same dengue 

protein. The predictions gave more than 4000 potential dengue-human PPI and 176 

potential dengue-mosquito PPI. They further used Gene Ontology (Ashburner et al., 

2000) of a cellular component to select a dengue protein and the similar host protein 

sharing at least one GO term. The filter reduced the number of potential interactions to 

around 2000 for dengue-human PPI and 18 dengue-mosquito PPI. Interferon signaling, 

transcriptional regulation, stress, and the unfolded protein response are pathways to 

which a significant number of the predicted interactors belong. Another effort to predict 

dengue-host PPI was done by Guo et al., (Guo et al., 2010). Since there is no 

comprehensive PPI database for Aedes mosquito, Guo et al., used PPI data from yeast 

(Uetz et al., 2000), D. melanogaster (Giot et al., 2003) and C. elegans (Li et al., 2004) to 

construct a predicted mosquito PPI network. Next, they used data from functional 

studies, physical interaction assays, genome-wide RNA interference (RNAi) screens 

(Krishnan et al., 2008) and microarray assays (Xi et al., 2008) to predict mosquito 

proteins that may interact physically or functionally with dengue virus. From the 

predicted interactors, several cellular pathways, such as the toll pathway and the 

JAK/STAT pathway, were implicated as involved in dengue replication. 
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1.5 Unanswered questions 

 1.5.1 Cellular pathways connected to dengue virus 

 The unfolded protein response (UPR) in the ER is up-regulated under stress 

conditions, including virus infection. All three branches of the UPR, including ATF-6, 

PERK and IRE-1, are activated during dengue infection (Yu et al., 2006; Umareddy et 

al., 2007; Pena and Harris, 2011). However, disruption of the ATF-6 pathway does not 

seem to have any effect on dengue replication (Pena and Harris, 2011). Interestingly, it 

seems that dengue virus can either up- or down-regulate UPR over time to suit its 

replication (Pena and Harris, 2011). Doolittle et al., computationally predicted dengue-

host PPI that may play roles in regulation of the UPR: NS4B and PPP1R15A, NS2A and 

NFYA, NS4B and NFYA, C and NFYA, E and BCL2, NS4B and BCL2L11, E and 

BCL2L1, NS3 and BCL2L1, and NS3 and BCL2L10 (Doolittle and Gomez, 2011). 

However, these PPI have not been tested or validated with any conventional 

experiment. Interestingly, envelope protein E2 of HCV, a distant relative to dengue 

virus, physically binds to PERK and inhibits PERK-mediated eIF2α phosphorylation 

(Pavio et al., 2003). It remains to be seen whether any dengue protein functions the 

same way as HCV E2 does. The mechanism for how dengue regulates the UPR and 

the reason why dengue targets the pathway is still a mystery.  

 Several viruses hijack the ubiquitination-proteasome pathway (Viswanathan et 

al., 2010). Dengue up-regulates the expression of ubiquitination-proteasome 

components (Fink et al., 2007). Moreover, disruption of the pathway has a negative 

effect on dengue replication (Kanlaya et al., 2010). One apparent example of the 

association of dengue virus and the pathway is an NS5-STAT2 interaction leading to 
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ubiquitination and degradation of STAT2. This interrupts interferon signaling (Jones et 

al., 2005; Ashour et al., 2009; Mazzon et al., 2009). Recently, Khadka et al., detected 

protein interactions between ubiquitin-conjugating enzyme E2I (UBE2I) and NS2B, 

NS4B, and NS5 (Khadka et al., 2011). They also showed that the silencing of UBE2I 

disrupted viral replication. Nevertheless, the overall significance and function of the 

ubiquitin-proteasome pathway during dengue replication is not clear. 

 Lipid and cholesterol biosynthesis seem to have some roles during dengue 

replication. Disruption of cholesterol biosynthesis inhibits dengue replication in cell 

culture, probably, by reducing virion assembly (Rothwell et al., 2009; Martinez-Gutierrez 

et al., 2011; Poh et al., 2012). However, the mechanism for how dengue hijacks or 

regulates cholesterol biosynthesis is unclear. In mosquito cells, dengue virus was found 

to alter lipid homeostasis, which may be contributed to the membrane rearrangement 

observed in dengue-infected cells (Perera et al., 2012). The NS3-FASN interaction 

seems to be the way that the virus hijacks lipid biosynthesis (Heaton et al., 2010). 

Again, how the virus precisely modulates lipid biosynthesis and homeostasis is 

unsolved.  

Autophagy is required for effective dengue replication, and the virus seems to 

induce autophagosome formation (Lee et al., 2008; Khakpoor et al., 2009; Panyasrivanit 

et al., 2009; Heaton et al., 2010). Autophagy in dengue-infected cells seems to 

stimulate lipid and energy biosynthesis enhancing virus replication (Heaton and Randall, 

2010). NS4A can up-regulate autophagy (McLean et al., 2011) so it might be an 

interface between dengue virus and the autophagic machinery. Nevertheless, the 

mechanism that dengue uses to hijack autophagy is not known. 
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 Dengue virus needs to evade the innate immune response to effectively 

replicate. Dengue virus induces interferon response in human (Nasirudeen et al., 2011). 

Dengue employs several strategies to evade the response, including the NS5-STAT2 

interaction, which induces the degradation of STAT2 and interrupts interferon signaling 

(Jones et al., 2005; Ashour et al., 2009; Mazzon et al., 2009). NS4B interferes with 

phosphorylation of STAT1 also interrupting the interferon response (Munoz-Jordan et 

al., 2005).  Among the three branches of innate immune response in the mosquito, the 

Toll pathway and the JAK-STAT pathway seem to play a major role and a minor role in 

responding against dengue infection, respectively, based on microarray and gene-

silencing assays, while the Imd pathway is irrelevant (Xi et al., 2008). After an infection 

has taken hold, all three branches of the mosquito innate immune response are 

suppressed by an unknown mechanism (Sim and Dimopoulos, 2010).  

 

1.5.2 Serotype-specific characteristics 

There are four antigenically distinct serotypes of dengue virus (DENV-1, DENV-

2, DENV-3 and DENV-4) (Westaway, 1997). It has been reported that a given serotype 

of dengue virus is associated with certain symptoms in humans. For example, DENV-1 

is associated with increased vascular permeability, while DENV-2 is associated more 

with shock and internal hemorrhage (Balmaseda et al., 2006). A study in dengue-

infected cells has shown that DENV-1 and DENV-2 modulate the UPR at different 

points (Umareddy et al., 2007). DENV-1 is more potent than DENV-2 at inducing the 

production of PPP1R15A, which plays a role in the negative feedback loop to 

dephosphorylate eIF2α and restart transcription activities turned off by the UPR-
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mediated phosphorylation of eIF2α (Lee et al., 2009). On the other hand, DENV-2 

induces more production XBP1, a transcription factor that regulates genes functioning in 

the stress response (Lee et al., 2003). The mechanisms underlying these serotype 

specific properties of dengue viruses are not well understood. Serotype-specific 

dengue-host PPI may play a role in the observed serotype-specific chrematistics. 

 

1.5.3 Dengue-host interaction data are incomplete 

 Despite several large-scale dengue-host PPI screens (Colpitts et al., 2011b; 

Khadka et al., 2011; Le Breton et al., 2011) and literature-curated interaction data (see 

Table 1-1), the dengue-host interactome is still far from complete. For example, there is 

only one interaction, NS5 and human MATR3, found in both dengue-human Y2H 

screens (Khadka et al., 2011; Le Breton et al., 2011) showing that these screens were 

not saturated. Many PPI were detected in only one study and may be false positives. 

One method to resolve this is to use orthogonal experiments to validate PPI (Uetz et al., 

2000; Ito et al., 2001; Deane et al., 2002; von Mering et al., 2002; Giot et al., 2003; 

Stanyon et al., 2004; Schwartz et al., 2009). Thus far, however, dengue-host PPI 

confirmed by two or more independent experiments are rare. Thus, additional PPI 

screens are required to identify missing PPI and to validate existing PPI.  

  

 1.5.4 Summary of questions that identification of new PPI could address 

 In Section 1.5.1, I discussed possible cellular pathways that connect to dengue 

virus. The virus has to hijack or disrupt the pathways to replicate in host cells. However, 

direct connections between these pathways and dengue virus have not been identified. 
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For example, dengue virus can control the UPR, but the proteins in the UPR pathways 

that interact with the virus are unknown. A PPI study may help reveal such proteins and 

identify targets for antiviral intervention. 

 In Section 1.2.2, I reviewed the functions of dengue proteins. Interestingly, C and 

NS5 can localize in the nucleus and nucleolus, which are not virus replication sites. 

Some roles of nuclear localized dengue proteins have started to be revealed. To better 

understand the roles of these dengue proteins in the nucleus, a PPI study may identify 

other nuclear and nucleolar host proteins and, therefore, hint at new functions of the 

dengue proteins. 

 In Section 1.5.2, I discussed serotype-specific characteristics of dengue virus. 

However, little is known of how each serotype differentially interacts with host cellular 

mechanisms. A PPI study may identify serotype-specific PPI that are responsible for 

serotype-specific characteristics. 

 

1.6 Project outline 

 I hypothesize that viral-host interactions will provide clues about the functions of 

viral proteins, and potential targets for drug intervention. In this project, I used Y2H 

assays to generate dengue-host PPI data as described in Chapter 2. At the beginning of 

the project there were no large-scale physical PPI data for dengue and its hosts. I set 

out to construct PPI maps for dengue-mosquito and dengue-human interactions using 

yeast two-hybrid assays. I also constructed the first mosquito Y2H cDNA library. I 

recognized the potential inaccuracy of Y2H results, which may include PPI that do not 

occur during virus infection. I used co-affinity purifications and cross-serotype Y2H 
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screens to obtain additional evidence for each interaction. I also used computational 

analyses to identify conserved interactions, gene ontology annotation enrichment, 

domain enrichment and interactions found for other viruses. 

 In Chapter 3, I set up a functional study by focusing on the capsid-nucleosome 

assembly protein 1 (NAP1) interaction, which was identified in both the human and 

mosquito screens. I generated a human cell line, HepG2, expressing capsid with a myc-

tag fusion at the N-terminus.  Next, I silenced and over-expressed nucleosome 

assembly protein 1-like 1 (NAP1L1) in the cell line and found a change in capsid 

localization. I also mapped the NAP1-interacting domain of capsid using Y2H and co-

affinity purification assays. I found that the C-terminus of capsid is necessary for 

efficient interaction with human NAP1L1 and mosquito AAEL005567. 

 In Chapter 4, I describe a tool for studying the significance of dengue-host PPI. I 

designed and constructed a non-infectious dengue replicon to enable monitoring of 

replication levels by observing a reporter gene in live cells. I also tested mosquito cells 

for RNA interference (RNAi), which was successful. Combined with the replicon, RNAi 

could be used to test the importance of individual PPI to virus replication in the mosquito 

cells. However, the replicon failed to work in either human or mosquito cells.  

The data presented in this dissertation may be used to generate hypotheses for 

future studies. My preliminary study with the capsid-NAP1L1 serves as one example. I 

summarize all findings and discuss some interesting points arising from my project in 

Chapter 5. I also propose further studies to expand and utilize the results from my 

project. 
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CHAPTER 2 

 

DENGUE-HOST PROTEIN INTERACTOMES 

 

Part of the work described in this chapter has been submitted for publication (Mairiang 

et al., 2012).  

2.1 Introduction 

 Currently, there are more than 3,000 complete genome sequences available for 

several organisms and strains (Pagani et al., 2012). The genomic data are a useful tool 

to identify novel genes from gene and protein sequence structure and to predict gene 

function from sequence homology. However, sequence-based methods have failed to 

predict the functions of as many as 50% of the open-reading frames of any given 

genome (Skolnick and Brylinski, 2009). One method that may help identify or predict the 

function of a protein-coding gene is to identify interactions between its product and other 

proteins. Finding an interaction partner that has a known function or that participates in 

a known pathway can transitively link a poorly studied protein with that function or 

pathway (Pandey and Mann, 2000). One example of using protein-protein interaction 

data as a hypothesis generator was a study by Welzel et al., showing that ataxin-1, 

which plays a role in causing spinocerebellar ataxia type 1, interacts with and regulates 

the activity of FOX-2, which in turn regulates the splicing of ataxin-2 (Welzel et al., 

2012). The authors used a published protein interaction network based on proteins 

involved in human inherited ataxias and disorders of Purkinje cell degeneration  to help 

generate their hypothesis (Lim et al., 2006). Another example comes from two studies  
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showing that Drosophila Cyclin Y and a putative cyclin-dependent kinase, Eip63E, are a 

Cyclin/CDK pair that regulates the Wnt signaling pathway (Davidson et al., 2009; Liu 

and Finley, 2010). These studies were based on the interaction between Cyclin Y and 

Eip63E that was previously identified by large-scale PPI screens (Stanyon et al., 2004). 

Thus, PPI data are valuable tools that complement genomic data (Ito et al., 2001). 

Construction of large PPI networks, however, requires extensive resources and labor. 

To date, there are only a few large PPI networks available and they are still far from 

complete (Schwartz et al., 2009; Venkatesan et al., 2009). 

 Viruses have limited genomes and are obligated to infect host cells and hijack 

cellular mechanisms in order to replicate. To achieve this, viruses also need to evade or 

suppress host antiviral responses. An understanding of how viruses interact with host 

cellular machineries to survive and replicate is important for the development of 

methods to better combat pathogenic viruses. One way that viruses interact with their 

hosts is by PPI. Therefore, indentifying PPI between virus and host proteins may hint at 

the function of virus proteins. The importance of PPI has been recognized in recent 

studies aimed at identifying the host-virus PPI for several viruses, such as human 

immunodeficiency virus-1 (HIV-1) (Ptak et al., 2008; Fu et al., 2009; Pinney et al., 

2009), hepatitis C virus (HCV) (de Chassey et al., 2008), Epstein-Barr virus (EBV) 

(Calderwood et al., 2007), influenza virus (Shapira et al., 2009) and vaccinia virus 

(Zhang et al., 2009). These studies are beginning to be useful since they hint at certain 

interactions worth further investigation. For example, Hagemeier et al., chose to study 

the interaction between EBV Na protein and tumor necrosis factor receptor-associated 

factor 2 (TRAF2) based on a EBV-human PPI network (Hagemeier et al., 2011). They 
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found that the Na-TRAF2 interaction was required to induce Jun N-terminal protein 

kinase (JNK) activation of lytic gene expression. In another example, Engeland et al., 

further investigated the interaction between HIV-1 Gag and the human protein Lyric, 

identified in a large-scale HIV-1 PPI screen (Engeland et al., 2011). Their result hinted 

at a role for the interaction in regulating infectivity since disrupting the interaction by 

mutating the GAG-binding domain of Lyric resulted in a reduction of infectivity. 

 The genome of dengue virus encodes only ten proteins: capsid, membrane 

protein, envelope protein, and non-structural proteins, NS1, NS2A, NS2B, NS3, NS4A, 

NS4B and NS5 (Lindenbach et al., 2006). The functions of some dengue proteins are 

not fully understood as described in Chapter 1. I reasoned that a dengue-host 

interactome may provide clues about dengue protein functions. At the beginning of this 

dissertation project, no large-scale PPI screens had been done for dengue virus. I 

proposed to construct dengue-host PPI using Y2H screens. While this study was in 

progress, Khadka et al. and Le Breton et al. published results from dengue-human PPI 

screens (Khadka et al., 2011; Le Breton et al., 2011).  However, the PPI identified by 

these groups seem to be incomplete as there is very little overlap between the two 

datasets. It is known that large-scale PPI screens can generate false positives and false 

negatives (Schwartz et al., 2009). My dengue-human PPI data may help expand and 

verify the current PPI data.  

 Dengue virus requires both human and Aedes mosquitoes to complete its life 

cycle (Gubler, 1998). Therefore, it is also important to understand how the virus 

interacts with cellular machineries in mosquito cells. A better understanding of dengue-

mosquito interactions, for example, may help improve vector control strategies to 
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combat the virus. The only attempt to construct a dengue-mosquito interactome with 

physical protein interactions was done by Colpitts et al., using tandem affinity 

purification with mass spectrometry (Colpitts et al., 2011b). They used a limited set of 

dengue baits and identified small number of PPIs. To date, no large-scale screen for 

binary dengue-mosquito PPI have been reported. 

 In this chapter, I started by subcloning proteins from dengue virus serotype 2 into 

Y2H plasmid vectors, and then set up a matrix Y2H screen to test intraviral PPI. Next, I 

reared mosquitoes, collected RNA, and synthesized the first mosquito cDNA library for 

yeast two-hybrid screening. I screened the mosquito cDNA library and a human 

peripheral blood leukocyte (PBL) cDNA library with dengue baits. The potential 

interactors were validated by reproducibility and specificity tests. Since Y2H may confer 

false positive results having no biological relevance during an actual dengue infection, I 

rescreened the dengue interactors against dengue proteins from serotype 1, 3 and 4. 

My rationale for these cross-serotype screens is based on the assumption that each 

dengue protein has the same major function in all four serotypes and, therefore, should 

interact with a similar set of host proteins. I also performed a co-affinity purification as 

an orthogonal assay because an interaction detected by two or more independent 

methods is more likely to be biologically relevance (Uetz et al., 2000; Ito et al., 2001; 

Deane et al., 2002; von Mering et al., 2002; Giot et al., 2003; Stanyon et al., 2004; 

Schwartz et al., 2009). In conclusion, I generated a list of potential dengue interactors, 

which may be used to select candidate genes for further functional studies. 
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2.2 Materials and methods 

 2.2.1 Dengue cDNA and subcloning of dengue Genes 

 cDNA of dengue virus serotype 1 (Hawaii), 2 (16681), 3(H87) and 4 (H241) were 

obtained from Dr. Prapat Suriyaphol (Siriraj hospital, Mahidol University, Bangkok, 

Thailand). Each dengue gene was PCR amplified using primers described in Appendix 

C, and attB sequences were added to the 5’ and 3’ ends of the dengue gene with a 

second PCR amplification using primers DM1 (5'- GGG GAC AAG TTT GTA CAA AAA 

AGC AGG CT -3') and DM2 (5'- GGG GAC CAC TTT GTA CAA GAA AGC TGG GT -3'). 

Each PCR reaction was performed using Herculase polymerase (Agilent Technologies: 

600310) as per vendor instructions. PCR products were analyzed by 1% agarose gel 

electrophoreses in 1X TBE (90 mM Tris , 90 mM Boric acid , 2 mM EDTA) at 100V for 

30 minutes. A DNA extraction was performed for any PCR product containing non-

specific DNA bands using QIAquick Gel Extraction Kit (Qiagen: 28704). For any PCR 

reaction failing to generate a sufficient product, a new pair of long primers containing 

attB sequences and gene-specific sequences was used to repeat the reaction (see 

Appendix C). PCR products were subcloned into a plasmid vector, pDONR221 (Life 

Technologies: 12536017), by site-specific recombination reactions using BP clonase II 

(Life Technologies: 11789020), according to the manufacturer’s protocol. The plasmids 

containing dengue genes were used to transform E. coli strain OmniMax2 (Life 

Technologies: C854003) and transformants were selected on LB-kanamycin (100 

µg/ml) media. The plasmids were then sequenced (see Appendix D). The dengue gene 

in pDONR221 was transferred to Gateway destination vectors by LR clonase reaction 

(Life Technologies: 11791019). 
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 2.2.2 E.coli strains, yeast strains and plasmid vectors 

 OmniMax2 (Life Technologies: C854003) was the main E. coli strain used for 

general transformation and plasmid storing. The genotype of OmniMax 2 is F′ proAB+ 

lacIq lacZΔM15 Tn10(TetR) Δ(ccdAB) mcrA Δ(mrr-hsdRMS-mcrBC) φ80(lacZ)ΔM15 

Δ(lacZYA-argF) U169 endA1 recA1 supE44 thi-1 gyrA96 relA1 tonA panD. DH10B (Life 

Technologies: 18290015) was the E. coli strain used for electroporation. The genotype 

of DH10B is F- endA1 recA1 galE15 galK16 nupG rpsL ΔlacX74 Φ80lacZΔM15 

araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-mcrBC) λ-. KC8 (Struhl et al., 1987-1997) 

was the E. coli strain used for homologous recombination cloning, gap repair, and 

plasmid rescue from a yeast lysate by auxotrophic selection. The genotype of KC8 is 

pyrF::Tn5 hsdR leuB600 trpC9830 lac∆74 strA galK hisB436.  

 RFY231 (Kolonin et al., 2000) is a yeast strain used for the AD Y2H plasmid. The 

genotype is MATα trp1::hisG his3 ura3–1 leu2::3Lexop-LEU2. RFY309 was a yeast 

strain used for the BD Y2H plasmid. RFY309 is derived from RFY206 (MATa 

trp1∆::hisG his3∆200 leu2-3 lys2∆201 ura3-52 mal-) that contains the lacZ reporter 

plasmid, pSH18-34(URA3+) (Finley and Brent, 1994).  

 pDORN221 contains a kanamycin resistance gene and a Gateway cassette as 

described in the manufacturer’s manual (Life Technologies: 12536017). pDONR221 

was used for BP clonase reactions, which generated an “entry clone” for storing a DNA 

inserts that may be transferred to other plasmid vectors by the LR clonase reaction. 

pDONR223, which is similar to pDORN221 but contains a spectinomycin resistance 

gene, was used for the human ORF library (Lamesch et al., 2007) was also used in this 

study.  pNLex_attR (Stanyon et al., 2003) is a BD Y2H plasmid, which expresses N-
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terminal LexA binding domain fusions. pJZ4_attR (Stanyon et al., 2003) is an AD Y2H 

plasmid, which expresses N-terminal activation domain fusions. pNLex_attR and 

pJZ4_attR contain a Gateway cassette compatible with the LR clonase reaction. pRF4-

5o (Finley and Brent, 1994) is the AD Y2H plasmid used for mosquito cDNA library 

construction. pJG4-5 (Gyuris et al., 1993) is the AD Y2H plasmid used for the human 

PBL cDNA library synthesized by Origene Technologies. pJM-1 is an AD Y2H vector 

previously used for an aptamer library construction (Colas et al., 1996). pHZ12 and 

pHZ13 are plasmid vectors for expressing an N-terminal myc tag and a TAP tag, 

respectively.  The protein expression of these vectors is driven by the Gal4-responsive 

upstream activating sequence (UAS). pHZ12attR and pHZ13attR are the Gateway 

versions of pHZ12 and pHZ13, respectively. pHZ12_attR and pHZ13_attR were 

constructed by inserting a Gateway destination vector cassette (Invitrogen) into the 

cloning sites of pHZ12 and pHZ13. Briefly, the Gateway cassette was PCR amplified 

from pJZ4_attR with primers, DM138 and DM139 (Appendix C) and then digested with 

XbaI and inserted into pHZ12 and pHZ13 digested with PmeI and XbaI. The ligations 

were used to transform E. coli, OmniMAXII (Invitrogen). Transformants with plasmids 

containing a Gateway cassette were selected on LB-Chloramphenicol/Ampicillin media. 

pMT-Gal4 (Klueg et al., 2002) is a plasmid containing a Gal4 gene driven by a Cu+2-

inducible metallothionine promoter, which then drives the protein expression of pHZ12 

and pHZ13. All DNA plasmid extractions were performed with Qiagen Miniprep, 

Midiprep and Maxiprep (Qiagen: 27106, 12143 and 12163) depending on the desired 

amount. A PCR purification kit (Qiagen: 28104) was used to clean PCR products or 

restriction digestion reactions. 
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2.2.3 Mosquito rearing and RNA collections 

A. aegypti embryos were a gift from Dr. Mark Brown (University of Georgia). 

Embryos were synchronously hatched into 200 ml de-ionized water by applying a 

vacuum (13 to 15 inHg) for 20-40 minutes. For the first 24 hours, larvae were fed with 1-

2 ml of ground rat food. After that, about 200-250 larvae were transferred to a tray 

containing 700-800 ml de-ionized water and three pellets of dry cat food (Friskies 

Senior). About 120-144 hours after hatching, larvae started to turn into pupae so they 

were transferred into a mosquito cage. Adults started to emerge about a week after 

hatching. They were fed with 10% sucrose or blood from a mouse (a gift from Dr. 

Eduardo Palomino, Department of Biological Sciences, Wayne State University). All 

stages of mosquito development were maintained at 27oC, 70-90% relative humidity in 

a 8-hour dark/16-hour light cycle. The mosquito handling protocol is described in more 

detail elsewhere (Munstermann, 1997). 

The mosquito tissues were collected from ten stages: 1) less than three-month-

old embryos, 2) one-day-old larvae, 3) two-day-old larvae, 4) three-day-old larvae, 5) 

four-day-old larvae, 6) five-day-old larvae, 7) six-day-old larvae, 8) pupae, 9) adults and 

10) adults collected three hours after a blood meal. In order to collect enough RNA, 

eggs from several layings were independently collected and pooled; the oldest eggs in 

the pool were aged less than three months. Larvae were collected every 24 hours for 

six days.  Pupae were collected at 120 hours after egg hatching. Adults were collected 3 

days after emerging from pupae. Tissues were quick frozen by ethanol dry ice before 

homogenizing in RNA isolation buffer (Qiagen, RNeasy Midi Kit: 75142) by a dounce 

homogenizer for 20 strokes. Embryos were treated with 1% bleach for 10-15 minutes to 
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soften their shells and immediately homogenized without quick freezing. The adults fed 

with a blood meal were collected three hours later so that the genes responding to 

blood ingestion were sufficiently expressed (Sodja et al., 2007). Total RNA from each 

tissue sample was isolated with the RNeasy Midi Kit (Qiagen: 75142). The RNA was 

treated with RNase-free DNase (Qiagen) at room temperature for 15 minutes. Next, 

poly-adenylated RNA (poly(A) RNA) was enriched from the total RNA with the 

Poly(A)Purist Kit (Ambion: AM1916). Each RNA sample was analyzed by gel 

electrophoresis with a 1.2% agarose formaldehyde gel in formaldehyde buffer (20 mM 

3-[N-morpholino]propanesulfonic acid (MOPS), 5 mM sodium acetate, 1 mM EDTA, 250 

mM formaldehyde, pH 7.0) at 100V for 60 minutes (Figure 2-1 and Table 2-1). 

 

 2.2.4 Mosquito cDNA library construction 

 Aliquots of 0.5 µg poly(A) RNA from each tissue sample were pooled and diluted 

in RNase-free water to a total volume of 20 µl, heated at 65°C for five minutes and 

treated at room temperature with 10 mM methylmercury hydroxide for one minute and 

then 100 mM β-mercaptoethanol for five minutes. The pooled RNA then was used for 

first-strand cDNA synthesis with AccuScript Reverse Transcriptase and an oligo(dT) 

linker-primer according to the manufacturer’s protocol (Stratagene: 200401). A product 

from the first-strand synthesis was transferred to the second-strand synthesis reaction 

containing DNA polymerase I, RNase H and [α-32P]dATP according to the 

manufacturer’s protocol (Stratagene: 200401). The product was blunted with Pfu DNA 

polymerase, purified by phenol-chloroform extraction and precipitated in ethanol. EcoRI 

adapters (Figure 2-2) were added to the product by ligation. Next, the product was 
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Figure 2-1. Gel electrophoreses showing the qualities of total RNA and poly-A 

RNA from mosquito tissues. 1 µg of RNA sample was loaded each lane of 1.2% 

agarose formaldehyde gels. The electrophoreses were conducted at 100V for 60 

minutes. Samples are: (1) 24 hr larvae total RNA set I, (2) 24 hr larvae poly(A) RNA set 

I, (3) 48 hr larvae total RNA, (4) 48 hr larvae poly(A) RNA, (5) embryos total RNA, (6) 

embryos poly(A) RNA, (7) adults total RNA, (8) adults poly(A) RNA, (9) 24 hr larvae 

total RNA set II, (10) 24 hr larvae poly(A) RNA set II, (11) 96 hr larvae total RNA, (12) 

96 hr larvae poly(A) RNA, (13) 72 hr larvae total RNA, (14) 72 hr larvae poly(A) RNA, 

(15) pupae total RNA, (16) pupae poly(A) RNA, (17) 120 hr larvae total RNA, (18) 120 

hr larvae poly(A) RNA,  (19) 144 hr larvae total RNA,  (20) 144 hr larvae poly(A) RNA , 

(21) adults total RNA, (22) adults poly(A) RNA, (23) adults 3 hr post-blood meal total 

RNA, (24) adults adults 3 hr post-blood meal poly(A) RNA. 
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Table 2-1 Amount of poly(A) enriched RNA from ten stages of A. aegypti mosquitoes. 

Sample Total amount (µg) Concentration (ng/µl) 

Embryos 7.2 48 

24 hr Larvae 23.8 79.3 

48 hr Larvae 10.2 68 

72 hr Larvae 16.8 112 

96 hr Larvae 13.23 44.1 

120 hr Larvae  11.7 78 

144 hr Larvae 15.3 102 

Pupae 7.8 52 

Adults 31.8 106 
Adults 3 hr post-
blood meal 11.7 78 
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Figure 2-2. The EcoRI adaptor used for adding EcoRI site to the 5’ blunted end of 

double stranded cDNA. The hanging sequence lacked a phosphate group to prevent 

self-ligation. After the adaptors were ligated to cDNAs, the cDNAs were phosphorylated 

to convert the hanging sequence to a sticky end required for a ligation into a plasmid. 
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treated with polynucleotide kinase to phosporylate EcoRI ends. Finally, the product was 

digested with XhoI to create sticky ends derived from oligo(dT)linker primers. 

 The product was passed through Sepharose CL-2B gel filtration medium to size 

fractionate cDNA. Sample fractions were collected for every 100 µl eluted. Fractions 

were then analyzed by alkaline agarose gel elctrophoresis (Figure 2-3). Fractions 1 to 6 

containing medium to large cDNA were combined into one sample, purified by phenol-

chloroform extraction, precipitated by ethanol and resuspended in 50µl of RNase-free 

water. The cDNA protocol synthesis is described in more detail in the manufacturer’s 

protocol (Stratagene: 200401). cDNA synthesis from adult RNA failed to generate 

sufficient cDNA (Figure 2-3A).  

 cDNA was ligated into the AD Y2H plasmid, pRF4-5o. The plasmid was first 

digested with EcoRI and XhoI, fractionated by a Centricon 100 (Millipore) and purified 

by phenol-chloroform extraction. The ligation was performed with 0.5 µl of cDNA, 6 ng 

of linearized pRF4-5o and 0.4 U of T4 ligase per 20 µl reaction according to the 

manufacturer’s protocol (Roche: 10481220001). The ligation product was purified by 

phenol-chloroform extraction and precipitated by ethanol. The product was washed with 

70% ethanol twice or more to thoroughly eliminate salt, which may interfere with 

electroporation. The DNA was then resuspended in 10 µl of sterile distilled water. 

 

 2.2.5 E. coli transformation, electroporation and yeast transformation. 

 For general E. coli transformations, a chemo-competent method was used as 

previously described (Walhout et al., 2000). Briefly, 500 ml E. coli culture in mid-log 

phase was washed and resuspended in 25 ml LB media (pH 6.1) containing 10 mM
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Figure 2-3. Autoradiographs showing cDNA from cDNA synthesis reactions. (A) 

The alkaline gel electrophoresis was conducted at 100 mA for 2 hours in 1% agarose 

gel. Next, the gel containing radioactive cDNA was used to expose an X-ray film for 90 

minutes. (1)  The first strand synthesis from adult mosquito RNA lacked large products 

as seen with (3) the first strand synthesis of pooled RNA. (2) The second strand 

synthesis from adult mosquito RNA produced a small quantity of products compared to 

(4) the second strand synthesis of pooled RNA. (B) The pooled RNA was fractionated 

through a Sepharose CL-2B column. 12 fractions of the pooled RNA were analyzed by 

1% agarose gel electrophoresis at 100V for 60 minutes. Next, the gel containing 

radioactive cDNA was used to expose an X-ray film for 3 hours. Fractions 1 to 6 were 

combined to be used to construct a Y2H AD vector. 
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MgCl2, 10 mM MgSO4, 10% (w/v) PEG, 5% (v/v) DMSO and 10% (w/v) glycerol. The E. 

coli was aliquoted and frozen at -80°C for storage. To prepare DNA for transformation, 

<10 ng of a plasmid vector, 2 µl of ligation reaction, 2 µl of BP/LR clonase reaction or 

100 ng of a linearized plasmid plus DNA insert with 1:3 molar ratio of plasmid to insert 

for gap-repair was resuspended in 100 µl of transformation buffer containing 100 nM 

KCl, 30 mM CaCl2 and 50 mM MgCl2. Next, 100 µl of chemo-competent E. coli was 

added to the DNA solution and incubated on ice for 20 minutes. The reaction was then 

incubated at room temperature for 10 minutes. Next, 1 ml of the SOC media (20 g/L 

Bacto Tryptone, 5 g/L Bacto Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 

mM MgSO4 and 20 mM glucose) was added to the transformation reaction and 

incubated in a shaker-incubator at 37°C, 250 rpm for 1-1.5 hours. Finally, an 

appropriate amount of E. coli that would give isolated colonies was plated on selective 

medium and incubated at 37°C overnight. 

 For cDNA library construction or large DNA plasmid (>10 kb), eletro-competent 

E. coli was used for transformation by electroporation. Commercially prepared elctro-

competent E. coli, MegaX DH10B™ T1R Electrocomp™ Cells (Life Technologies: 

C640003), were used for electroporation. The method is described in the 

manufacturer’s protocol (Life Technologies: C640003). Briefly, 10 µl of cells were mixed 

with 2 µl of ligation reaction and loaded into an ice-cold 0.1-cm cuvette (Bio-Rad: 165-

2083). The cuvette was then loaded into the Gene Pulser (Bio-Rad) and electroporated 

at 2.0 kV, 25 µF and 200 Ω. The cells were then resuspended in 1 ml SOC media and 

incubated in a shaker-incubator at 37°C, 250 rpm for 1-1.5 hours. Finally, an 

appropriate amount of E. coli was plated on selective medium and incubated at 37°C 
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overnight. For the mosquito cDNA library construction, E. coli transformants were 

counted from a 1:500 dilution for each electroporation (pooled from ~5 cuvettes before 

plating). The ligation and electroporation were repeated until >1 x 107 transformants 

were reached. All colonies were scraped into 2 L LB media. The plasmid containing 

cDNA library was isolated with Qiagen Gigaprep (Qiagen: 12191). 

 A yeast transformation protocol based on a previously described method was 

used (Gietz et al., 1992). Briefly, 50 ml culture of yeast in mid-log phase was washed 

and resuspended in 250 µl 100 mM lithium acetate in pH 7.5 Tris-EDTA (10 mM Tris, 1 

mM EDTA) solution (LiOAc/TE). 30 µg of salmon sperm DNA and 10% (v/v) DMSO 

were added to a 50 µl aliquot of resuspended yeast. At this step, the yeast cells may be  

stored at -80°C for future use. Next, 1 µg or less of plasmid DNA and 300 µl of 40% 

PEG in LiOAc/TE solution was added to the transformation reaction, which was then 

mixed by gently inverting two to three times. The reaction was incubated at 30°C for 30 

minutes and then 42°C for 15 minutes. Finally, the whole reaction was plated onto 

selective medium and grown at 30°C for more than three days until isolated colonies 

appeared. This transformation method was also applied for cloning by yeast 

homologous recombination (Orr-Weaver and Szostak, 1983), or yeast ‘gap-repair,’ by 

adding a 1:3 molar ratio of a linearlized vector to a DNA insert containing homologous 

sequences for recombination, with the maximal amount of total DNA being less than 1 

µg. The size of the transformation reaction may be adjusted to comply with an 

experimental setup, such as 10 µl of competent yeast cells for a 96-well format batch 

transformation. For the mosquito cDNA and PBL cDNA libraries, 1.1 X 108 and 2.2 X 

108 colonies of transformant yeasts were scraped into a freezing solution containing 50 
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mM MgSO4, 5 mM Tris (pH 7.5) and 30% glycerol and stored in 1 ml aliquots at -80°C 

until use. The plating efficiency of frozen stocks of mosquito cDNA and PBL cDNA 

libraries was 0.35 x 108 CFU/100 µl and 2.41 x 108 CFU/100 µl, respectively. 

 

 2.2.6 Yeast two-hybrid screens 

 The Y2H assay was based on a previously described method (Kolonin et al., 

2000; Golemis et al., 2001). To set up a mating, RFY309 containing a BD bait vector 

was cultured in 30 ml minimal media containing 2% glucose without uracil and histidine 

(Glu/CM-Ura, -His) until OD600 reached 1.0-2.0, which corresponds to 2-4 x 107 cells/ml. 

The yeast cells were washed and resuspended in 1 ml sterile water to a concentration 

of about 1 x 109 cells/ml. A frozen aliquot of RFY231 transformed with the AD library 

was thawed, and >1 x 108 CFU of RFY231 was mixed with at least two-fold more CFU 

of RFY309 cells (e.g. 2 x 108 RFY309 cells per 1 x 108 RFY231 CFU). The mixture was 

then plated onto YPD medium and incubated at 30°C overnight. The resulting diploids 

were harvested by scraping and resuspended in 25 ml of Gal/Mal/Raff/CM-Ura, -His, -

Trp media. The diploids were incubated in a shaker-incubator at 30°C, 200 rpm shaking 

for 4 hours. After incubation, the diploids were washed and resuspended in 5 ml of 

freezing solution (described in Section 2.2.5). A small aliquot of diploids were serially 

diluted and plated on Gal/Mal/Raff/CM-Ura, -His, -Trp media or Gal/Mal/Raff/CM-Ura, -

His, -Trp, -Leu media to calculate total diploids/ml or leucine prototrophic diploids/ml, 

respectively. All AD plasmids containing dengue genes in RFY309 were also tested for 

auto-activation by mock Y2H library screen against an empty vector, pJZ4, in RFY231. 

The details of each Y2H screen are described in Table 2-2. 
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Table 2-2. The setup for Y2H screens with a number of yeast diploids that 

passed through each stage of the screen.  

baited cDNA Library Total 
diploid 
(DFU) 

Leucine+ 
Diploid 

Colonies 
picked 

Galactose 
dependent 
leucine+ 
colonies 

Passed 
reproducibil
ity and 
specificity 
tests 

AluI unique 

CA mosquito 118200000 100 96 47 39 21 

CV mosquito 56300000 560 192 85 53 27 

PrM mosquito 49200000 120 96 6 3 3 

M mosquito 153000000 10 96 0 0 0 

E mosquito 58100000 150 96 0 0 0 

Eiii mosquito 75000000 400 96 0 0 0 

NS1 mosquito 187000000 100 96 0 0 0 

NS2A mosquito 57900000 20 96 4 0 0 

NS2B mosquito 65000000 20 96 3 0 0 

NS3 mosquito 63000000 2340 384 269 105 84 

NS3D1-160 mosquito 41000000 3000 288 11 6 5 

NS4A mosquito 65200000 80 96 3 2 1 

NS4B mosquito 51200000 70 96 5 3 1 

NS5 mosquito 196000000 24000 1248 611 480 436 

CA human PBL 119800000 350 96 38 27 18 

CV human PBL 230000000 800 192 46 19 18 

PrM human PBL 31400000 350 96 0 0 0 

M human PBL 99500000 70 96 0 0 0 

E human PBL 63500000 40 96 0 0 0 

Eiii human PBL 101000000 500 96 0 0 0 

NS1 human PBL 78000000 0 0 0 0 0 

NS2A human PBL 79100000 60 96 0 0 0 

NS2B human PBL 49000000 20 96 1 0 0 

NS3 human PBL 179000000 1700 288 85 53 43 

NS3D1-160 human PBL 56000000 7700 480 35 11 6 

NS4A human PBL 36800000 170 96 2 0 0 

NS4B human PBL 34700000 90 96 0 0 0 

NS5 human PBL 190000000 7500 480 243 146 112 

NS2B Aptamer 147000000 50 96 0 n/a n/a 

NS3 Aptamer 169000000 33000 480 339 n/a n/a 

NS3D1-160 Aptamer 96000000 15000 288 51 n/a n/a 
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 The diploids from each screen were plated onto Gal/Mal/Raff/CM-Ura, -His, -Trp, 

-Leu media and incubated at 30°C for more than three days. The number of colonies 

needed to cover the entire library was calculated (Table 2-2) and that number was 

picked and rearrayed onto 96-well “PIM plates” containing 150 µl Glu/CM-Ura, -His, -Trp 

media per well. The plates were incubated in the shaker-incubator at 30°C, 200 rpm 

shaking for more than two days. Yeast culture (3-5 µl) from each well of the PIM plate 

was spotted onto four indicator plates: Glu/CM-Ura, -His, -Trp, -Leu; Gal/Mal/Raff/CM-

Ura, -His, -Trp, -Leu; Glu/CM-Ura, -His, -Trp X-Gal and Gal/Mal/Raff/CM-Ura, -His X-

Gal. After incubating indicator plates for three days at 30°C, the phenotype of each 

diploid was scored based on the scoring standard (Figure 2-4). A reporter score 

(C_SUM) was calculated by this formula: [(score of growth on Gal/Mal/Raff/CM-Ura, -

His, -Trp, -Leu) – (score of growth on Glu/CM-Ura, -His, -Trp, -Leu)] + [(score of LacZ 

activity on Gal/Mal/Raff/CM-Ura, -His X-Gal) – (score of LacZ activity on Glu/CM-Ura, -

His X-Gal)]. Only galactose-dependent leucine prototrophic diploids were selected and 

rearrayed onto PIM plates containing 150 µl Glu/CM-Ura, -His, -Trp media. The plates 

were again incubated in the shaker-incubator at 30°C, 200 rpm shaking for more than 

two days until yeast started to precipitate at the bottom of each well.. 

To perform reproducibility and specificity tests, 3-5 µl of yeast culture from each 

well of the PIM plate was spotted on a Gal/Mal/Raff/CM-Ura, -His, -Trp, -Leu plate and 

incubated at 30°C for more than three days. The PIM plates were saved as stock at -

80°C. Colony PCR was performed using yeast diploids on the plates as templates. The 

total volume of PCR reaction for each diploid was 30 µl, which contained 0.3 µl of 10 µM 

of BCO1 primer (5’ CCA GCC TCT TGC TGA GTG GAG ATG 3’), 0.3 µl of 10 µM
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Figure 2-4. The standard for reporter activity scoring. The score for LacZ activity is 

between 0 for the weakest to 5 for the strongest. The score for leucine-protrophic 

growth is between 0 for no growth to 3 for the strongest growth.  
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of BCO2 primer (5’ GAC AAG CCG ACA ACC TTG ATT GGA 3’), 3 µl 10X PCR buffer, 

3 µl of 2.5 mM dNTP Mix, 1.5 µl of 50 mM MgCl2 and 0.3 µl of Taq polymerase 

(Invitrogen). Alternatively, 15 µl of 2X GoTAQ polymerase mix (Promega), 0.3 µl of 10µ 

M of BCO1 primer and 0.3 µl of 10 µM of BCO2 primer were also used for colony PCR 

yielding similar results. 10 µl of each colony PCR product was analyzed by 1% agarose 

gel electrophoresis in 1XTBE at 100V for 30 minutes (see Figure 2-5 for an example). 5 

µl of each PCR product was added to 10 µl of competent yeast cells containing 

linearized pRF4-5o prepared as described in Section 2.2.4 and 2.2.5. The 

transformation was performed based on the description in Section 2.2.5. The yeast 

homologous recombination machinery automatically inserted cDNA into the linearized 

pRF4-5o, thereby generating a fresh AD yeast strain that was used for the 

reproducibility and specificity tests. Yeast transformants were plated onto Glu/CM-Trp 

media and incubated at 30°C for three days for selection. Transformant yeast colonies 

were picked and rearrayed onto PIM plates containing 150 µl Glu/CM-Trp, which were 

incubated at 30°C, 200 rpm shaking for three days. BD yeast strains containing dengue 

genes or specificity controls, D. melanogaster Cyclin J or Eip63E, were incubated in 10 

ml of Glu/CM-Ura, -His at 30°C, 200 rpm shaking for three days. After incubations, 3-5 

µl of each AD yeast culture was spotted onto YPD plates and allowed to dry. Next, 3-5 

µl of BD yeast culture was spotted onto the same spot of AD yeast culture to set up a 

matrix mating. The YPD plates were incubated at 30°C overnight. Yeast diploids were 

then transferred onto four indicator plates by velvet cloth. A phenotype of each matrix-

mated diploid was scored as described above (Figure 2-4). Any AD strain that 

generated a galactose-dependent leucine-prototroph diploid when mated with the same
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Figure 2-5. An example of a 96-well plate yeast colony PCR. 96 yeast colonies 

containing mosquito cDNA that encode putative dengue NS5 interactors were picked for 

colony PCR. 10 µl of the total 30 µl PCR products were loaded onto 1% agarose gel in 

1XTBE. The gel electrophoresis was conducted at 100V for 30 minutes. The DNA 

markers were 300 ng of 1 kB Plus DNA ladder (Invitrogen).  
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dengue BD strain originally used to isolate it, was classified as a reproducible interactor. 

Any AD strain, which did not simultaneously generate galactose-dependent, leucine-

prototroph diploids when mated with the Cyclin J and Eip63E BD strains, was classified 

as a specific interactor. Any AD strain that was a reproducible and specific interactor 

was rearrayed onto PIM plates containing 150 µl Glu/CM-Trp per well. 10 µl of colony 

PCR product of each reproducible and specific interactor was digested with AluI in 20 µl 

reactions (2 µl 10X buffer 4 and 0.2 µl of 10,000 U/ml AluI) at 37°C for 3 hours and 

analyzed by 2% agarose gel electrophoresis in 1X TBE at 100V for 40 minutes (see 

Figure 2-6 for an example). Clones with identical digestion patterns were grouped, and 

5 µl of PCR product of a representative from each group was sequenced with BCO1 

primer. The number of times that each cDNA was isolated with the same BD strain was 

calculated based on the number of clones with identical AluI patterns plus identical DNA 

sequences (Table 2-2). Serotype specificity tests were performed using a matrix mating 

protocol as described above. All of yeast strains generated from the Y2H screens were 

aliquoted and kept as frozen yeast stocks. To make the frozen stock of the diploids 15% 

(v/v) glycerol was added to liquid media. 

 

2.2.7 Computational analyses 

DNA sequencing results were first filtered to eliminate failed reads. Standalone 

BLAST (Camacho et al., 2009) was used to analyze the sequencing results against the 

human Refseq database, A. aegypti transcript database, and plasmid sequences. The 

BLAST analysis and data parsing were performed using a python/biopython script, 
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Figure 2-6. An example of a 96-well plate AluI digestion mapping. 96 PCR products 

of mosquito’s dengue NS5 interactors were cut with AluI at 37°C for 3 hours. The whole 

reaction (20µl) was loaded onto a 2% agarose gel in 1XTBE. The gel electrophoresis 

was conducted at 100V for 40 minutes. The DNA markers were 300 ng of 1 kB Plus 

DNA ladder (Invitrogen). Clones with unambiguously identical AluI patterns (e.g. * and 

+) were considered identical cDNAs. 
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blast_all.py (See Appendix E). The cutoff for BLAST results was <0.05 e-score. 

 For enrichment analysis of Aedes mosquito dengue interactors, a gene ontology 

annotation (GOA) file was downloaded from UniProt-GOA 

(ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/proteomes/31436.A_aegypti.goa) (Barrell et 

al., 2009), and an OBO file version 1.2 was downloaded from The Gene Ontology 

project (http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology_ext.obo) 

(Ashburner et al., 2000). A tree for InterPro domains was downloaded from EMBL-EBI 

(ftp://ftp.ebi.ac.uk/pub/databases/interpro/interpro.xml.gz) (Hunter et al., 2012). 

Cytoscape (Smoot et al., 2011) with the BINGO plug-in (Maere et al., 2005) was used to 

analyze GO annotation and IntePro domain enrichments of dengue interactors. Since 

the GOA file for Aedes mosquito and the tree for InterPro domains were not compatible 

with the BINGO plug-in, the customized files (AedesGO_for_bingo.txt and 

IPRtree_isa.txt) were generated with the python scripts, AedesGO_for_bingo.py  and 

IPRtree.py, respectively (see Appendices F and G) 

 For homology analyses between mosquito proteins and human proteins, the 

following files were downloaded from Inparanoid database (http://inparanoid.sbc.su.se/) 

(Ostlund et al., 2009): InParanoid.D.melanogaster-H.sapiens.orthoXML, 

InParanoid.A.aegypti-D.melanogaster.orthoXML and InParanoid.A.aegypti-

H.sapiens.orthoXML. These files were parsed into tables, Dro_to_hum_ID.txt , 

Aedes_to_Dro_ID.txt  and Ae_to_hum_ID.txt, using the python scripts, 

inparanoid_dro_hum.py, inparanoid_Dro_Ae.py and inparanoid_ae_hum.py, 

respectively (see Appendices H, I and J). I found some genes that were not correctly 

clustered in the same homology group. 1008 human genes were predicted to be 
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orthologs of D. melanogaster genes, and 612 A. aegypti genes were predicted to be 

orthologs of the identical set of D. melanogaster genes. However, Inparanoid database 

failed to cluster these human genes and A. aegypti genes in the same homology group. 

Consequently, I used the python scripts, cross_fbgn.py, clusterInpara_dro.py, 

clusterInpara_droaedes.py and clusterInpara_droaedeshum.py, to re-cluster human, D. 

melanogaster and A. aegypti genes into an improved database (see Appendices K, L, M 

and N and the supplementary file ‘New_Inparanoid_cluster_For_HumanAedes.xls’). 

The total number of human-A. aegypti homology groups were 8,007 clusters. They also 

included 499 clusters that were newly generated by my python scripts. 

  

 2.2.8 Drosophila cells and co-affinity purification 

  S2R+ cells are derived from Drosophila melanogaster embryos (Yanagawa et 

al., 1998). The cells were cultured in Schneider’s media supplemented with 10% FBS 

and 100 µg/ml gentamicin at 25°C. The cells were passaged weekly by a 1:10 to 1:4 

dilution. To dislodge the surface-attached cells, they were treated with 0.25% Trypsin-

EDTA for about 5 minutes at room temperature. 

 The co-affinity purification protocol was based on a previously described method 

(Liu and Finley, 2010). Briefly, 1 x 106 S2R+ cells in 1 ml media were seeded into each 

well of a 12-well plate one day prior to DNA transfection. The DNA transfection was 

performed using Qiagen Effectene (Qiagen: 301425). 250 ng of pHZ12 with an insert, 

250 ng of pHZ13 with an insert and 250 ng of pMT-Gal4 were diluted with Effectene EC 

buffer (Qiagen) to a total volume of 75 µl. Next, 6µl of Effectene enhancer (Qiagen) was 

added to the DNA mixture. The mixture was vortexed for 2 seconds and incubated at 
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room temperature for 5 minutes. Next, 15µl of Effectene was added to the mixture, 

which was vortexed for 10 seconds and incubated at room temperature for 10 minutes. 

The mixture was diluted in 400 µl of FBS-supplemented Schnieder’s media, and then 

added drop-wise to the seeded cells. The next day, the media was replaced with 

complete Schneider’s media supplemented with 1 mM CuSO4. Three days after CuSO4 

induction, the cells were harvested by vigorous pipetting. The cells were washed twice 

with ice-cold 1X PBS and resuspended in 120 µl of NET lysis buffer (50 mM Tris-HCl pH 

7.4, 180 mM NaCl, 5 mM EDTA, 1% NP-40 (v/v) and 10% Glycerol) supplemented with 

1X protease inhibitor cocktail, 50 mM NaF, 1 mM Na3VO4 and 1 mM PMSF. The cells 

were passed through a 21½ G needle with 20 syringe strokes. The cell lysis reaction 

was incubated on ice for 45 minutes with 10 seconds of vortexing every 5 minutes. The 

lysate was centrifuged at 13,000 rpm for 30 minutes at 4°C. The supernatant was 

collected, and the protein content was quantified by the Bradford assay. Expression of 

fusion proteins was determined by Western blot analysis of cell lysates using anti-NTAP 

(Rockland Immunochemicals) and anti-Myc (Santa Cruz Biotechnology) antibodies for 

proteins expressed from pHZ13 and pHZ12, respectively. 

 If the expression of both proteins was successful, the cell lysate was used for co-

affinity purification by incubating with 20 µl of pre-washed IgG agarose beads diluted in 

NET lysis buffer to a total volume of 500 µl. The incubation was done with a nutator at 

4°C for 2 hours. The beads were spun down at 2,500 rpm for 5 minutes at 4°C. The 

supernatant was discarded, and the beads were washed with 400 µl of NET lysis buffer 

on the nutator for 5 minutes at room temperature. Next, the beads were spun down and 

washed repeatedly with NET lysis buffer at least five times. Finally, the beads were 
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resuspended in 60µl 1X LDS buffer (Invitrogen) containing 1X NuPAGE reducing agent 

(Invitrogen). The sample was heated to 70°C for 10 minutes before Western analysis. 

The co-purified proteins were detected by anti-Myc.  

 

2.3 Results and discussion 

2.3.1 A yeast two-hybrid cDNA library for A. aegypti 

To date, most dengue-host PPI studies have focused on dengue-human PPI 

since various resources, such as Y2H cDNA libraries for many human tissues, are more 

available in comparison to the resources required for studying dengue-mosquito PPI. 

The dengue-mosquito PPI data are important due to the fact that the virus requires a 

mosquito host to complete its life cycle (Mackenzie et al., 2004). The only attempt to 

identify dengue-mosquito PPI on a large scale was done by tandem affinity purification-

mass spectrometry (TAP-MS) assay, and provided limited results; 18 interactions 

involving four dengue proteins and 14 mosquito proteins (Colpitts et al., 2011b). In 

addition, the complexes detected by TAP-MS do not reveal binary PPI. A new tool like a 

mosquito Y2H cDNA library is required to identify binary dengue-mosquito PPI.  

In this study, I have constructed the first Y2H cDNA library for A. aegypti. I collected and 

pooled RNA from ten stages: 1) less than three-month-old embryos, 2) one-day-old 

larvae, 3) two-day-old larvae, 4) three-day-old larvae, 5) four-day-old larvae, 6) five-day-

old larvae, 7) six-day-old larvae, 8) pupae, 9) adults and 10) adults collected three hours 

after a blood meal. The pooled RNA was used to synthesize the Y2H cDNA, which was 

subcloned into the Y2H AD vector, pRF4-5o. To assess the quality of the library, I 

transformed E. coli with the library and randomly picked 188 colonies for colony PCR 
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(Figure 2-7). About 64% of the colonies had inserts. The sizes of the cDNA inserts were 

between 300 to 4,000 bp, with an average of about 1,400 bp. More than 1 x 107 E. coli 

colonies containing the cDNA library were harvested and plasmid DNA was extracted; 

25 mg of library DNA was obtained.  About 200 µg of the library DNA was then used to 

transform yeast resulting in 1.1 x 108 yeast colonies, which were scraped and 

resuspened in freezing solution (described in Section 2.2.5). The yeast was then 

aliquoted into 1 ml stocks and frozen. The plating efficiency of frozen stocks was 0.35 x 

108 CFU/100 µl. This library in yeast is sufficient for more than 550 screens. The library 

DNA that I prepared would be sufficient for more than 65,000 screens. This library 

should be a valuable resource for studies on mosquito PPI and virus-mosquito PPI.  

 

2.3.2 Intraviral protein-protein interaction 

To identify interactions with dengue proteins, I subcloned open reading frames 

(ORFs) from dengue virus serotype 2 (strain 16681) into the Y2H bait vector for 

expression of the proteins with an N-terminal LexA DNA binding domain (DBD). I 

constructed a total of 14 baits (Figure 2-8B). These included baits for all ten full-length 

dengue proteins: nascent capsid protein (C), precursor of membrane protein (PrM), E, 

NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5. These ten proteins are individually 

cleaved from the viral polypeptide during maturation (Rice et al., 1985; Smith and 

Wright, 1985; Lindenbach et al., 2006). I also constructed baits for mature capsid 

protein (CV) (Lobigs, 1993), mature membrane protein (M) (Dejnirattisai et al., 2010), 

domain III of envelope protein (Eiii), and a fragment of NS3 lacking the N-terminal 160 
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Figure 2-7. Colony PCR of 188 randomly picked colonies from transformants 

derived from mosquito cDNA cloning by ligation. 20µl of the total 30µl PCR 

products were loaded onto 1% agarose gel in 1XTBE. . The gel electrophoresis was 

conducted at 100V for 30 minutes. The DNA markers were 300 ng of 1 kB Plus DNA 

ladder (Invitrogen). The negative control was pRF4-5o without an insert (-ve). The 

positive control was pRF4-5o with D. melanogaster cdi2 as an insert (+ve).
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Figure 2-8. Dengue virus proteins. (A) The dengue polyprotein prior to processing is 

depicted in the ER membrane. (B) Fourteen dengue virus proteins and partial peptides 

as shown were cloned into Y2H plasmids.  
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amino acids (NS3∆1-160) (Figure 2-8B). I analyzed the sequences of all dengue ORFs 

by BLAST analysis against the GenBank database and found that all ORFs had at least 

98% amino acid identity to their archived sequences (see Appendix D). Since the 

dengue genome is known to contain some variations due to a high rate of mutation 

(Dunham and Holmes, 2007), the variations in the dengue ORFs were in an acceptable 

range. I subcloned the same 14 dengue ORFs into the Y2H activation domain (AD) 

vector.  This enabled us to test for interactions among the 14 dengue proteins.  I used a 

Y2H matrix mating assay to test all 14 DBD fusion proteins against all 14 AD fusion 

proteins (Materials and Methods).  I detected interactions between NS5 and both NS3 

and NS3Δ1-160 (Figure 2-9).  The interaction between NS5 and the C-terminal region of 

NS3, which contains the helicase domain, was previously demonstrated by Y2H and co-

immunoprecipitation assays (Johansson et al., 2001; Brooks et al., 2002) and NS3 was 

shown to be associated with cytoplasmic NS5 in dengue-infected cells (Kapoor et al., 

1995). The complex of NS3 and NS5 may be essential for viral replication since NS3 

contributes the helicase to unwind a viral dsRNA intermediate allowing NS5 to 

synthesize a new RNA molecule   I also detected an interaction between the NS5 DBD 

and NS5 AD clones.  The NS5 homodimer was also observed in another Y2H study 

(Vasudevan et al., 2001). No other novel interactions were detected. I failed to detect 

previously reported interactions between NS2B and NS3 (Arias et al., 1993) or between 

PrM and E, which were originally detected by co-purification assays and not by Y2H 

(Arias et al., 1993; Wang et al., 1999; Johansson et al., 2001). It was not possible to 

detect a reported interaction between NS2B/NS3 and NS4B/NS5 (Clum et al., 1997) 

because I did not co-express NS2B and NS3, or NS4B and NS5 in this screen. 
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Figure 2-9. Intraviral protein-protein interactions. Intraviral protein-protein 

interactions. Interactions were identified by the galactose-dependent growth of diploid 

yeasts expressing two dengue proteins. Each panel is a group of four indicator plates: 

Glucose CM –leucine –uracil –histidine -tryptophan (top-left), Galactose CM –leucine –

uracil –histidine –tryptophan (top-right), Glucose CM  –uracil –histidine –tryptophan +X-

gal (bottom-left) and Galactose CM  –uracil –histidine –tryptophan +X-gal (bottom-left). 

An interaction is indicated by galactose-dependent growth on the plates lacking leucine 

(top two plates in each panel) or galactose-dependent blue colony color on the X-Gal 

plates (bottom two plates in each panel). D. melanogaster Cyclin Y and  Eip63E were 

used as a positive control while D. melanogaster Cyclin Y and Cyclin J were used as a 

negative control.  
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2.3.3 Dengue-mosquito protein-protein interactions 

To identify mosquito proteins that interact with the dengue proteins, I constructed 

a Y2H AD library for A. aegypti using mRNA pooled from ten stages of development 

ranging from egg to adult (see Section 2.3.1 and Materials and Methods). I used a 

library mating assay to screen the mosquito library with each of 14 individual dengue 

bait proteins (Materials and Methods). To verify Y2H interactions, I subcloned the 

mosquito cDNAs from initial positives into new AD vectors and retested them for 

interaction with the original dengue bait proteins. At the same time, I tested for 

interactions with baits unrelated to the dengue baits to identify proteins that may 

nonspecifically interact with random proteins.  In all, I identified 102 interactions that 

were reproducible and specific by this definition (Table 2-3).  These interactions 

involved eight viral bait proteins representing C, NS3, NS5, or variants of these proteins, 

and PrM (Table 2-4). I did not find mosquito proteins interacting with the membrane 

proteins M, E, NS2A and NS2B, or with the luminal proteins Eiii and NS1. None of the 

mosquito–dengue interactions that I identified had previously been identified. 

The 102 interactions involved 93 unique mosquito proteins, 58 of which have 

clear human orthologs. Two of the mosquito-dengue interactions that I detected had 

been previously detected for the human orthologs (Table 2-5).  These included NS5 

interactions with the mosquito E3 ubiquitin ligase Seven In Absentia (AAEL009614) and 

the human Seven In Absentia Homolog, SIAH2 (ENSG00000181788), which was 

previously detected by Le Breton et al. (Le Breton et al., 2011); and the interactions 

between NS5 and mosquito Paramyosin (AAEL010975) and human cingulin like-1 
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Table 2-3. Dengue – mosquito protein interactions. “-” in Expression Result for Co-

AP means the host protein failed to express in the cell lysate, while “+” means both the 

host and the dengue protein were detected in the cell lysate. “-” in Co-AP result means 

the interaction was not detected by Co-AP while “+” means the interaction was 

detected. “NS” means a Myc-tagged protein was co-precipitated with an NTAP tag 

alone, which means an interaction was not assayable. “N/A” means no Co-AP was 

performed. See a supplementary file ‘Table_2-3.txt’ for a higher resolution.  
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Table 2-4.  Number of host interactors for each dengue protein identified by Y2H 

screens. 

  
Dengue Protein Mosquito Human 
C 16 20 
PrM/M 1 0 
NS3 34 15 
NS4A 1 0 
NS4B 1 0 
NS5 49 11 
E, NS1, NS2A, NS2B 0 0 
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Table 2-5. Mosquito proteins with human orthlogs that interact with proteins from 

other viruses. 
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(ENSG00000128849), previously detected by Khadka et al., (Khadka et al., 2011). 

None of the other mosquito-dengue interactions that I detected have potential human-

dengue counterparts found in other studies.  While some of these may be genuine 

species-specific dengue interactions, it is also likely that the lack of overlap with 

previous studies is largely due to differences in the techniques and libraries used.  I 

used library screening and directed assays (described further below), to detect 9 

additional human-dengue interactions that correspond to 8 of the mosquito-dengue 

interactions, indicating that at least some of the mosquito-dengue interactions may be 

conserved interologs (Table 2-3). 

It has been reported that some human proteins interact with proteins from a 

range of different viruses, perhaps because these human proteins are common viral 

targets or part of common cellular responses to viral infections (Dyer et al., 2008; 

Khadka et al., 2011).  I found that 15 of the mosquito proteins that I identified have 

human orthologs that interact with other viral proteins (Table 2-5). These include several 

interactions with Hepatitis C virus (HCV) proteins that could be considered conserved 

interactions or interologs.  For example, I detected an interaction between dengue NS3 

and mosquito titin (AAEL002565), an ortholog of human obscurin (OBSCN), which was 

shown to interact with HCV NS3 in a large-scale Y2H screen (de Chassey et al., 2008).  

Similarly, I detected an interaction between NS3 and mosquito nucleosome assembly 

protein (AAEL005567), an ortholog of human nucleosome assembly protein 1-like 1 

(NAP1L1), which was shown to interact with HCV NS3 (de Chassey et al., 2008).  The 

NS3 protein from both dengue and HCV contain serine protease and RNA helicase 
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domains and function similarly during the maturation of the viruses (Lindenbach et al., 

2006). 

In all, I identified 34 NS3-interacting mosquito proteins. To explore the NS3 

domains that may interact with the host proteins, I tested all of them against both full-

length NS3 and NS3∆1-160 (Table 2-6).  As expected, all of the host proteins interacted 

with full-length NS3, including the three proteins that were originally isolated with 

NS3∆1-160.  Interestingly, most host proteins also interacted with NS3∆1-160, 

indicating that they interact with the C-terminal half of NS3, which contains the helicase 

domain.  Five host proteins were incapable of interacting with NS3∆1-160, suggesting 

that they require the N-terminal protease domain of NS3 for interaction (Table 2-6). The 

NS3-interacting proteins were enriched for proteins with the gene ontology annotation 

“response to stress” and for proteins with the domain “heat shock protein” (Table 2-7), 

primarily because they include several heat shock proteins.  Human Hsp90 and Hsp70 

were previously reported to be parts of the dengue virus receptor complex (Reyes-Del 

Valle et al., 2005), but no  intracellular role for heat shock proteins during virus 

replication has been reported. 

We identified 49 NS5-interacting mosquito proteins.  The top enriched domains 

among these interactors were associated with myosin, found in myosin heavy chain, 

nonmuscle or smooth muscle (AAEL005656 and AAEL005733), myosin v 

(AAEL009357), long form paramyosin (AAEL010975) and a hypothetical protein 

(AAEL014104) (Table 2-7). Although there is no evidence linking myosin and NS5, 

myosin Vc was reported to be involved in the release of dengue virus from HepG2 cells 

(Xu et al., 2009).  Colpitts et al., detected several myosin proteins by co-affinity 
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Table 2-6. NS3 domain analysis 

Host Host Gene Dengue 
Gene 

NS3 bait originally 
used 

Interacts with 
NS3 or NS3∆1-

160 

likely 
interface of 
interaction 

Mosquito AAEL000136 NS3 Full length NS3 N-terminus 
Mosquito AAEL000950 NS3 NS3∆1-160 both C-terminus 
Mosquito AAEL001553 NS3 Full length NS3 N-terminus 
Mosquito AAEL001892 NS3 Full length both C-terminus 
Mosquito AAEL002145 NS3 Full length NS3 N-terminus 
Mosquito AAEL002508 NS3 Full length both C-terminus 
Mosquito AAEL002565 NS3 Full length both C-terminus 
Mosquito AAEL002572 NS3 Full length both C-terminus 
Mosquito AAEL003345 NS3 Full length both C-terminus 
Mosquito AAEL003815 NS3 Full length both C-terminus 
Mosquito AAEL004100 NS3 Full length both C-terminus 
Mosquito AAEL004484 NS3 Full length both C-terminus 
Mosquito AAEL005165 NS3 Full length both C-terminus 
Mosquito AAEL005567 NS3 Full length both C-terminus 
Mosquito AAEL007201 NS3 Full length both C-terminus 
Mosquito AAEL007850 NS3 NS3∆1-160 both C-terminus 
Mosquito AAEL008052 NS3 Full length both C-terminus 
Mosquito AAEL008746 NS3 Full length both C-terminus 
Mosquito AAEL009101 NS3 Full length both C-terminus 
Mosquito AAEL009766 NS3 Full length NS3 N-terminus 
Mosquito AAEL009948 NS3 Full length both C-terminus 
Mosquito AAEL010585 NS3 Full length both C-terminus 
Mosquito AAEL010821 NS3 NS3∆1-160 both C-terminus 
Mosquito AAEL011129 NS3 Full length both C-terminus 
Mosquito AAEL011137 NS3 Full length both C-terminus 
Mosquito AAEL011708 NS3 Full length both C-terminus 
Mosquito AAEL011742 NS3 Full length both C-terminus 
Mosquito AAEL012556 NS3 Full length NS3 N-terminus 
Mosquito AAEL012827 NS3 Full length both C-terminus 
Mosquito AAEL013933 NS3 Full length both C-terminus 
Mosquito AAEL014396 NS3 Full length both C-terminus 
Mosquito AAEL014843 NS3 Full length both C-terminus 
Mosquito AAEL014845 NS3 Full length both C-terminus 
Human ANP32B NS3 Full length both C-terminus 
Human CALCOCO2 NS3 Full length both C-terminus 
Human CORO1A NS3 Full length both C-terminus 
Human DNTTIP2 NS3 Full length both C-terminus 
Human GOLGB1 NS3 Full length both C-terminus 
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Human HBB NS3 Full length both C-terminus 
Human LRRFIP1 NS3 NS3∆1-160 both C-terminus 
Human MTF1 NS3 Full length both C-terminus 
Human NFKBIA NS3 NS3∆1-160 both C-terminus 
Human NRBP1 NS3 Full length NS3 N-terminus 
Human OS9 NS3 Full length both C-terminus 
Human RILPL2 NS3 Full length NS3 N-terminus 
Human RPL24 NS3 Full length NS3 N-terminus 
Human ZNF410 NS3 Full length both C-terminus 
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Table 2-7  Enrichment of GO annotations and protein domains in mosquito 

proteins that interact with dengue proteins. 

Dengue 
protein GO-ID p-value 

corr p-
value Description Genes in test set 

Capsid GO:003676 
1.86E-

04 4.64E-03 nucleic acid binding 

AAEL011985; AAEL003676; AAEL002057; 
AAEL001984; AAEL009285; AAEL004869; 
AAEL000292; AAEL003750; AAEL000005 

  GO:005622 
8.95E-

04 1.12E-02 intracellular 

AAEL005567; AAEL013583; AAEL011985; 
AAEL003676; AAEL002057; AAEL001984; 
AAEL009285; AAEL004869; AAEL000292; 
AAEL000005 

NS3 GO:006950 
1.12E-

05 4.83E-04 response to stress 
AAEL012827; AAEL005165; AAEL014843; 
AAEL002145; AAEL011708; AAEL014845 

  GO:005737 
2.93E-

05 6.30E-04 cytoplasm 

AAEL009101; AAEL002508; AAEL012827; 
AAEL010821; AAEL005165; AAEL011742; 
AAEL011137; AAEL014843; AAEL003345; 
AAEL011708 

  GO:008152 
1.97E-

04 2.40E-03 metabolic process 

AAEL009101; AAEL012827; AAEL014396; 
AAEL002565; AAEL014843; AAEL011708; 
AAEL014845; AAEL009766; AAEL002508; 
AAEL011129; AAEL010821; AAEL005165; 
AAEL011742; AAEL011137; AAEL003345; 
AAEL002145; AAEL007201; AAEL001553; 
AAEL009948 

  GO:019538 
2.24E-

04 2.40E-03 
protein metabolic 
process 

AAEL009101; AAEL002508; AAEL012827; 
AAEL010821; AAEL014396; AAEL005165; 
AAEL002565; AAEL011742; AAEL014843; 
AAEL011708; AAEL007201; AAEL014845 

  GO:005622 
6.32E-

04 5.44E-03 intracellular 

AAEL009101; AAEL005567; AAEL012827; 
AAEL000136; AAEL003815; AAEL014843; 
AAEL011708; AAEL004484; AAEL002508; 
AAEL010821; AAEL005165; AAEL011742; 
AAEL011137; AAEL003345; AAEL002145; 
AAEL007850 

  GO:044238 
1.16E-

03 8.35E-03 
primary metabolic 
process 

AAEL009101; AAEL012827; AAEL014396; 
AAEL002565; AAEL014843; AAEL011708; 
AAEL014845; AAEL002508; AAEL010821; 
AAEL005165; AAEL011742; AAEL003345; 
AAEL002145; AAEL007201; AAEL001553 

NS5 GO:005622 
3.06E-

06 1.62E-04 intracellular 

AAEL010975; AAEL013086; AAEL012827; 
AAEL007980; AAEL010784; AAEL003415; 
AAEL010012; AAEL009182; AAEL005037; 
AAEL000951; AAEL005656; AAEL008700; 
AAEL009614; AAEL012237; AAEL010821; 
AAEL009357; AAEL005165; AAEL003739; 
AAEL014281; AAEL012348; AAEL006577; 
AAEL005733; AAEL012095; AAEL010360 

  GO:043226 
1.92E-

05 5.09E-04 organelle 

AAEL010975; AAEL013086; AAEL007980; 
AAEL010784; AAEL003415; AAEL010012; 
AAEL009182; AAEL005656; AAEL008700; 
AAEL009614; AAEL012237; AAEL010821; 
AAEL009357; AAEL014281; AAEL003739; 
AAEL012348; AAEL005733 

  GO:000166 
4.55E-

05 7.23E-04 nucleotide binding 

AAEL012827; AAEL004500; AAEL010012; 
AAEL005037; AAEL005656; AAEL009357; 
AAEL005165; AAEL009460; AAEL006577; 
AAEL005790; AAEL011988; AAEL005733; 
AAEL012095; AAEL010360 

  GO:003774 
5.46E-

05 7.23E-04 motor activity 
AAEL010975; AAEL009357; AAEL005733; 
AAEL005656 

  GO:005737 
1.20E-

04 1.25E-03 cytoplasm 

AAEL008700; AAEL012827; AAEL010821; 
AAEL005165; AAEL010784; AAEL006577; 
AAEL010012; AAEL000951; AAEL005037; 
AAEL012095; AAEL010360 



 

 

79 

  GO:005856 
1.41E-

04 1.25E-03 cytoskeleton 
AAEL010975; AAEL009357; AAEL003415; 
AAEL005733; AAEL005656 

  GO:043234 
5.09E-

04 3.85E-03 protein complex 

AAEL010975; AAEL009357; AAEL003415; 
AAEL000951; AAEL005733; AAEL005656; 
AAEL012095 

  GO:005623 
3.73E-

03 2.47E-02 cell 

AAEL010975; AAEL013086; AAEL012827; 
AAEL007980; AAEL010784; AAEL003415; 
AAEL010012; AAEL009182; AAEL005037; 
AAEL000951; AAEL005656; AAEL008700; 
AAEL009614; AAEL012237; AAEL010821; 
AAEL009357; AAEL005165; AAEL003739; 
AAEL014281; AAEL012348; AAEL006577; 
AAEL005733; AAEL012095; AAEL010360 

  GO:005575 
4.53E-

03 2.67E-02 cellular_component 

AAEL010975; AAEL012827; AAEL007980; 
AAEL010066; AAEL009182; AAEL000951; 
AAEL005037; AAEL005656; AAEL008700; 
AAEL012237; AAEL009614; AAEL009357; 
AAEL010821; AAEL005165; AAEL014281; 
AAEL003739; AAEL006577; AAEL005733; 
AAEL012095; AAEL010360; AAEL013086; 
AAEL010784; AAEL003415; AAEL010012; 
AAEL012348 

  GO:005634 
9.01E-

03 4.78E-02 nucleus 

AAEL008700; AAEL013086; AAEL012237; 
AAEL009614; AAEL007980; AAEL003739; 
AAEL014281; AAEL012348; AAEL009182 

      

      
Dengue 
protein Interpro ID p-value 

corr p-
value Description Genes in test set 

Capsid IPR000467 
1.67E-

04 3.47E-03 D111/G-patch AAEL011985; AAEL003676 

  IPR007087 
4.90E-

04 3.47E-03 Zinc finger, C2H2 
AAEL002057; AAEL001984; AAEL004869; 
AAEL000292; AAEL000005 

  IPR015880 
6.03E-

04 3.47E-03 Zinc finger, C2H2-like 
AAEL002057; AAEL001984; AAEL004869; 
AAEL000292; AAEL000005 

  IPR004301 
1.16E-

03 3.47E-03 Nucleoplasmin AAEL003750 

  IPR007949 
1.16E-

03 3.47E-03 SDA1 AAEL008852 

  IPR012541 
1.16E-

03 3.47E-03 DBP10CT AAEL009285 

  IPR012977 
1.16E-

03 3.47E-03 
Uncharacterised domain 
NUC130/133, N-terminal AAEL008852 

  IPR012978 
1.16E-

03 3.47E-03 
Uncharacterised domain 
NUC173 AAEL011960 

  IPR016024 
1.81E-

03 4.83E-03 Armadillo-type fold AAEL011960; AAEL005567; AAEL008852 

  IPR012934 
2.77E-

03 6.65E-03 Zinc finger, AD-type AAEL002057; AAEL001984; AAEL000292 

  IPR000218 
4.62E-

03 1.01E-02 
Ribosomal protein 
L14b/L23e AAEL013583 

  IPR002164 
5.77E-

03 1.15E-02 
Nucleosome assembly 
protein (NAP) AAEL005567 

  IPR003146 
1.38E-

02 2.55E-02 

Proteinase inhibitor, 
carboxypeptidase 
propeptide AAEL010782 

  IPR009020 
2.63E-

02 4.51E-02 
Proteinase inhibitor, 
propeptide AAEL010782 

  IPR000834 
3.30E-

02 4.96E-02 
Peptidase M14, 
carboxypeptidase A AAEL010782 
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  IPR014014 
3.30E-

02 4.96E-02 
RNA helicase, DEAD-box 
type, Q motif AAEL009285 

NS3 IPR020575 
4.58E-

10 3.67E-08 
Heat shock protein 
Hsp90, N-terminal 

AAEL012827; AAEL014843; AAEL011708; 
AAEL014845 

  IPR001404 
1.07E-

09 4.27E-08 
Heat shock protein 
Hsp90 

AAEL012827; AAEL014843; AAEL011708; 
AAEL014845 

  IPR003594 
1.50E-

08 3.99E-07 
ATPase-like, ATP-
binding domain 

AAEL012827; AAEL014843; AAEL011708; 
AAEL014845 

  IPR020568 
1.05E-

06 2.10E-05 
Ribosomal protein S5 
domain 2-type fold 

AAEL012827; AAEL014843; AAEL011708; 
AAEL014845 

  IPR005938 
2.48E-

03 1.98E-02 
ATPase, AAA-type, 
CDC48 AAEL010585 

  IPR007307 
2.48E-

03 1.98E-02 
Low temperature viability 
protein AAEL000950 

  IPR009049 
2.48E-

03 1.98E-02 Argininosuccinate lyase AAEL003345 

  IPR012791 
2.48E-

03 1.98E-02 
3-oxoacid CoA-
transferase, subunit B AAEL011137 

  IPR012792 
2.48E-

03 1.98E-02 
3-oxoacid CoA-
transferase, subunit A AAEL011137 

  IPR014388 
2.48E-

03 1.98E-02 
3-oxoacid CoA-
transferase AAEL011137 

  IPR003959 
4.81E-

03 2.33E-02 ATPase, AAA-type, core AAEL002508; AAEL010585 

  IPR001790 
4.95E-

03 2.33E-02 
Ribosomal protein 
L10/acidic P0 AAEL010821 

  IPR004165 
4.95E-

03 2.33E-02 Coenzyme A transferase AAEL011137 

  IPR004167 
4.95E-

03 2.33E-02 E3 binding AAEL009766 

  IPR005140 
4.95E-

03 2.33E-02 
eRF1 domain 1/Pelota-
like AAEL011742 

  IPR005141 
4.95E-

03 2.33E-02 eRF1 domain 2 AAEL011742 

  IPR005142 
4.95E-

03 2.33E-02 eRF1 domain 3 AAEL011742 

  IPR001078 
7.42E-

03 2.93E-02 

2-oxoacid 
dehydrogenase 
acyltransferase, catalytic 
domain AAEL009766 

  IPR001305 
7.42E-

03 2.93E-02 
Heat shock protein DnaJ, 
cysteine-rich domain AAEL005165 

  IPR003338 
7.42E-

03 2.93E-02 
CDC48, N-terminal 
subdomain AAEL010585 

  IPR000362 
9.88E-

03 2.93E-02 Fumarate lyase AAEL003345 

  IPR002088 
9.88E-

03 2.93E-02 

Protein 
prenyltransferase, alpha 
subunit AAEL014396 

  IPR003031 
9.88E-

03 2.93E-02 Delta crystallin AAEL003345 

  IPR008251 
9.88E-

03 2.93E-02 Chromo shadow AAEL004484 

  IPR009010 
9.88E-

03 2.93E-02 
Aspartate decarboxylase-
like fold AAEL010585 

  IPR018125 
9.88E-

03 2.93E-02 
Chromo shadow, 
subgroup AAEL004484 

  IPR022761 
9.88E-

03 2.93E-02 Lyase 1, N-terminal AAEL003345 
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  IPR002164 
1.23E-

02 3.40E-02 
Nucleosome assembly 
protein (NAP) AAEL005567 

  IPR008948 
1.23E-

02 3.40E-02 L-Aspartase-like AAEL003345 

  IPR000641 
1.48E-

02 3.70E-02 CbxX/CfqX AAEL010585 

  IPR017984 
1.48E-

02 3.70E-02 
Chromo domain 
subgroup AAEL004484 

  IPR023780 
1.48E-

02 3.70E-02 Chromo domain AAEL004484 

  IPR005937 
1.72E-

02 4.18E-02 
26S proteasome subunit 
P45 AAEL002508 

  IPR000089 
1.97E-

02 4.63E-02 Biotin/lipoyl attachment AAEL009766 

NS5 IPR002928 
1.44E-

07 1.60E-05 Myosin tail AAEL010975; AAEL005733; AAEL005656 

  IPR001609 
2.37E-

05 1.32E-03 
Myosin head, motor 
domain AAEL009357; AAEL005733; AAEL005656 

  IPR004009 
6.69E-

05 2.47E-03 
Myosin, N-terminal, SH3-
like AAEL005733; AAEL005656 

  IPR000048 
1.83E-

04 4.78E-03 
IQ motif, EF-hand 
binding site AAEL009357; AAEL005733; AAEL005656 

  IPR000533 
2.15E-

04 4.78E-03 Tropomyosin 
AAEL010975; AAEL014104; AAEL005733; 
AAEL005656 

  IPR006195 
1.14E-

03 2.11E-02 
Aminoacyl-tRNA 
synthetase, class II AAEL006577; AAEL005037 

  IPR002317 
3.39E-

03 2.68E-02 
Seryl-tRNA synthetase, 
class IIa AAEL005037 

  IPR002993 
3.39E-

03 2.68E-02 
Ornithine decarboxylase 
antizyme AAEL004783 

  IPR009066 
3.39E-

03 2.68E-02 

Alpha-2-macroglobulin 
receptor-associated 
protein, domain 1 AAEL010784 

  IPR009730 
3.39E-

03 2.68E-02 
Micro-fibrillar-associated 
1, C-terminal AAEL010066 

  IPR010483 
3.39E-

03 2.68E-02 
Alpha-2-macroglobulin 
RAP, C-terminal AAEL010784 

  IPR010531 
3.39E-

03 2.68E-02 NOA36 AAEL014281 

  IPR015866 
3.39E-

03 2.68E-02 
Seryl-tRNA synthetase, 
class IIa, N-terminal AAEL005037 

  IPR004827 
5.21E-

03 2.68E-02 
Basic-leucine zipper 
domain AAEL005733; AAEL005656 

  IPR020568 
5.21E-

03 2.68E-02 
Ribosomal protein S5 
domain 2-type fold AAEL012827; AAEL004500 

  IPR000043 
6.76E-

03 2.68E-02 Adenosylhomocysteinase AAEL005524 

  IPR001322 
6.76E-

03 2.68E-02 
Intermediate filament, C-
terminal AAEL003415 

  IPR001790 
6.76E-

03 2.68E-02 
Ribosomal protein 
L10/acidic P0 AAEL010821 

  IPR002539 
6.76E-

03 2.68E-02 MaoC-like dehydratase AAEL003929 

  IPR002710 
6.76E-

03 2.68E-02 Dilute AAEL009357 



 

 

82 

  IPR002957 
6.76E-

03 2.68E-02 Keratin, type I AAEL005656 

  IPR004522 
6.76E-

03 2.68E-02 
Asparaginyl-tRNA 
synthetase, class IIb AAEL006577 

  IPR010304 
6.76E-

03 2.68E-02 Survival motor neuron AAEL008700 

  IPR014038 
6.76E-

03 2.68E-02 

Translation elongation 
factor EF1B, beta/delta 
subunit, guanine 
nucleotide exchange AAEL000951 

  IPR014717 
6.76E-

03 2.68E-02 

Translation elongation 
factor EF1B/ribosomal 
protein S6 AAEL000951 

  IPR015878 
6.76E-

03 2.68E-02 

S-adenosyl-L-
homocysteine hydrolase, 
NAD binding domain AAEL005524 

  IPR016044 
6.76E-

03 2.68E-02 Filament AAEL003415 

  IPR018444 
6.76E-

03 2.68E-02 Dil domain AAEL009357 

  IPR001305 
1.01E-

02 3.12E-02 
Heat shock protein DnaJ, 
cysteine-rich domain AAEL005165 

  IPR001664 
1.01E-

02 3.12E-02 
Intermediate filament 
protein AAEL005656 

  IPR001891 
1.01E-

02 3.12E-02 Malic oxidoreductase AAEL005790 

  IPR005607 
1.01E-

02 3.12E-02 BSD AAEL000752 

  IPR008374 
1.01E-

02 3.12E-02 SF-assemblin AAEL010975 

  IPR012301 
1.01E-

02 3.12E-02 Malic enzyme, N-terminal AAEL005790 

  IPR012302 
1.01E-

02 3.12E-02 
Malic enzyme, NAD-
binding AAEL005790 

  IPR020591 
1.01E-

02 3.12E-02 

Chromosomal replication 
control, initiator DnaA-
like AAEL012095 

  IPR002088 
1.35E-

02 3.84E-02 

Protein 
prenyltransferase, alpha 
subunit AAEL014396 

  IPR002418 
1.35E-

02 3.84E-02 
Transcription regulator 
Myc AAEL012237 

  IPR005517 
1.35E-

02 3.84E-02 

Translation elongation 
factor EFG/EF2, domain 
IV AAEL004500 

  IPR009053 
1.59E-

02 4.41E-02 Prefoldin AAEL005733; AAEL005656 

  IPR013010 
1.68E-

02 4.56E-02 Zinc finger, SIAH-type AAEL009614 

  IPR011598 
1.75E-

02 4.63E-02 
Helix-loop-helix DNA-
binding AAEL012237; AAEL003739 

  IPR002312 
2.02E-

02 4.66E-02 

Aspartyl/Asparaginyl-
tRNA synthetase, class 
IIb AAEL006577 

  IPR004145 
2.02E-

02 4.66E-02 
Domain of unknown 
function DUF243 AAEL009484 
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  IPR004364 
2.02E-

02 4.66E-02 

Aminoacyl-tRNA 
synthetase, class II 
(D/K/N) AAEL006577 

  IPR018121 
2.02E-

02 4.66E-02 

Seven-in-absentia 
protein, TRAF-like 
domain AAEL009614 

  IPR018150 
2.02E-

02 4.66E-02 

Aminoacyl-tRNA 
synthetase, class II 
(D/K/N)-like AAEL006577 

  IPR020575 
2.02E-

02 4.66E-02 
Heat shock protein 
Hsp90, N-terminal AAEL012827 

  IPR000640 
2.35E-

02 4.92E-02 

Translation elongation 
factor EFG/EF2, C-
terminal AAEL004500 

  IPR000690 
2.35E-

02 4.92E-02 
Zinc finger, C2H2-type 
matrin AAEL012348 

  IPR001404 
2.35E-

02 4.92E-02 
Heat shock protein 
Hsp90 AAEL012827 

  IPR005937 
2.35E-

02 4.92E-02 
26S proteasome subunit 
P45 AAEL012095 

  IPR014775 
2.35E-

02 4.92E-02 L27, C-terminal AAEL014012 
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purification from mosquito cells, but NS5 was not used in their study (Colpitts et al., 

2011b). 

I identified 16 capsid-interacting mosquito proteins.  Three of these were 

identified using the anchored capsid bait that contained the C-terminal membrane-

spanning domain, while the others were identified using the mature capsid bait.  I tested 

all of the capsid-interacting proteins to see if they were capable of interacting with each 

capsid bait protein and found that all but two proteins were capable of interacting with 

both baits (Table 2-8). The Y2H reporter activity was generally less with the anchored 

capsid compared to the mature capsid, which could explain my failure to isolate these 

proteins with the anchored capsid bait even though they were capable of interacting 

with it.  This could be due to a lower expression level of the anchored capsid or to an 

impaired ability of the membrane domain to enter the yeast nucleus and fold properly.  

The capsid-interacting mosquito proteins are enriched for “nucleic acid binding” proteins 

and proteins with “Zn finger” domains (Table 2-7). Among the nucleic acid binding 

capsid-interacting proteins, hypothetical protein (AAEL011985), putative myosin I 

(AAEL003676) and DEAD box ATP-dependent RNA helicase (AAEL009285) are 

potentially RNA binding proteins, according to the functions of their human orthologs. 

Moreover, the top protein domain enriched among the capsid interactors was the “G-

patch” domain, which functions as an RNA-binding domain found in mRNA processing 

proteins and some retroviruses (Aravind and Koonin, 1999; Gifford et al., 2005). Since 

dengue capsid also directly binds to viral genomic RNA (Ma et al., 2004), it may be 

interesting to investigate whether interaction between capsid and G-patch proteins has 

any role in packaging the genome into the viral particle. 
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Table 2-8. Capsid domain analysis 

Host Host Gene Dengue Gene Capsid bait 
originally used 

Interacts with 
Virion or 

Anchored 
Capsid 

likely interface of interaction 

Mosquito AAEL000005 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL000292 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL001984 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL002057 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL003676 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL003750 C Anchored both cytoplasmic domain of Capsid 

Mosquito AAEL004316 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL004869 C Virion Virion cytoplasmic domain of Capsid 

Mosquito AAEL005567 C Anchored both cytoplasmic domain of Capsid 

Mosquito AAEL008852 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL009285 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL010782 C Virion Virion cytoplasmic domain of Capsid 

Mosquito AAEL011960 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL011985 C Virion both cytoplasmic domain of Capsid 

Mosquito AAEL013075 C Anchored both cytoplasmic domain of Capsid 

Mosquito AAEL013583 C Virion both cytoplasmic domain of Capsid 

Human ANKRD12 C Virion both cytoplasmic domain of Capsid 

Human AP3B1 C Anchored both cytoplasmic domain of Capsid 

Human BIRC2 C Anchored both cytoplasmic domain of Capsid 

Human BOD1L C Anchored both cytoplasmic domain of Capsid 

Human CD3E C Virion Virion cytoplasmic domain of Capsid 

Human CD3G C Anchored both cytoplasmic domain of Capsid 

Human DENND1C C Virion Virion cytoplasmic domain of Capsid 

Human GTPBP4 C Virion both cytoplasmic domain of Capsid 

Human HBA1 C Virion both cytoplasmic domain of Capsid 

Human HBB C Anchored both cytoplasmic domain of Capsid 

Human HBB C Virion both cytoplasmic domain of Capsid 

Human NAP1L1 C Anchored both cytoplasmic domain of Capsid 

Human OS9 C Anchored both cytoplasmic domain of Capsid 

Human RPL5 C Virion both cytoplasmic domain of Capsid 

Human RPL6 C Virion both cytoplasmic domain of Capsid 

Human RPS27 C Anchored Virion cytoplasmic domain of Capsid 

Human RPS7 C Virion both cytoplasmic domain of Capsid 

Human RRP12 C Virion both cytoplasmic domain of Capsid 

Human S100A9 C Anchored Anchored transmembrane domain of Capsid 

Human TMF1 C Virion both cytoplasmic domain of Capsid 

Human ZNF394 C Virion Virion cytoplasmic domain of Capsid 
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2.3.4 Dengue-human protein-protein interactions 

While dengue-human protein interactions have been explored more extensively 

than dengue-mosquito protein interactions, the lack of overlap among validated 

interactions from different screens suggests that the dengue-human interactome is still 

incomplete.  For example, if any one screen were complete, one would expect it to 

identify all validated PPI from all other screens. To complement the dengue-mosquito 

interactome and other dengue-human studies, I conducted Y2H screens using the 14 

dengue protein baits (Figure 2-8B) and a cDNA library from human peripheral blood 

leukocytes (PBL). PBL contains a population of cells of the mononuclear phagocyte 

lineage, which are the primary target of dengue virus infection in human (Kyle et al., 

2007). The library screens and the reproducibility and specificity tests were conducted 

as in the mosquito library screens (Materials and Methods). Similar to the mosquito 

library screen, I did not find human proteins interacting with M, E, NS1, NS2A, NS4A 

and NS4B; nor did I find interactors for PrM.  In total I identified 46 reproducible specific 

interactions between 35 human proteins and five bait proteins representing dengue C, 

NS3, NS5 (Table 2-4 and 2-10). Only six of the interactions had previously been 

detected or predicted (Table 2-9).  These included two interactions (capsid-beta 

hemoglobin (HBB) and capsid-  ribosomal protein L5 (RPL5)) that had been predicted 

based on structural similarity between dengue virus and host proteins (Doolittle and 

Gomez, 2011) and four interactions (NS3- nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, alpha (NFKBIA), NS3- nuclear receptor binding protein 1 

(NRBP1), NS3-golgin B1 (GOLGB1), and NS5-Rab interacting lysosomal protein-like 2 
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(RILPL2)) that were identified in separate Y2H screens (Chua et al., 2004; Khadka et 

al., 2011; Le Breton et al., 2011).  

My library screens identified four putative conserved interactions, where both 

human and mosquito orthologs were identified as interacting with the same dengue 

proteins (Table 2-3).  54 out of the remaining 93 mosquito genes that I identified have 

human orthlogs that I failed to detect in screens of the human PBL library.  My failure to 

isolate human orthologs of these 54 mosquito genes could be because they are missing 

from the PBL cDNA library, or because the human orthologs actually do not interact with 

dengue proteins.  To distinguish between these possibilities and to identify additional 

human-dengue interactions, I set out to test whether the human orthologs of the 

mosquito proteins interact with the same dengue protein. Sequence analysis identified 

96 potential human orthologs for the 54 mosquito genes (Table 2-3). I was able to 

retrieve and subclone 55 of these from a human ORF library (Lamesch et al., 2007). 

These 55 human genes are potential orthologs of 31 mosquito genes.  I made Y2H AD 

clones for these 55 and screened them against the corresponding dengue virus 

proteins. This resulted in identification of an additional five human-dengue interactions 

corresponding to four of the mosquito-dengue protein interactions (Table 2-3). 

Combined, my human cDNA library screens and directed tests of mosquito 

orthologs identified 52 interactions involving 47 human proteins and three dengue 

proteins, capsid, NS3 and NS5 (Table 2-3 and Table 2-9).  These include 46 novel 

interactions that were not previously detected or predicted; nine of these were detected 

with both human and mosquito orthologs. A global analysis of the human dengue-

interacting proteins reveals no enriched GO annotations or protein domains. Similar to 
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Table 2-9 Dengue-human protein interactions. “-” in Expression Result for Co-AP 

means the host protein failed to express in the cell lysate, while “+” means both the host 

and the dengue protein were detected in the cell lysate. “-” in Co-AP result means the 

interaction was not detected by Co-AP while “+” means the interaction was detected. 

“NS” means a Myc-tagged protein was co-precipitated with an NTAP tag alone, which 

means an interaction was not assayable. “N/A” means no Co-AP was performed. See a 

supplementary file ‘Table_2-9.xls’ for a higher resolution. 
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my finding with the mosquito proteins, a significant proportion of the dengue-interacting 

human proteins (19 out of 47) have been shown to interact with proteins from other 

viruses (Table 2-10) (Calderwood et al., 2007; Ptak et al., 2008; Chatr-aryamontri et al., 

2009; Fu et al., 2009; Pinney et al., 2009; Shapira et al., 2009; Kwofie et al., 2011).  

These include at least two interactions that could be thought of as orthologous, or 

interologs: Dengue NS3 interacted with zinc finger protein 410 (ZNF410) and calcium 

binding and coiled-coil domain 2 (CALCOCO2) both of which have been shown to 

interact with HCV NS3 by a Y2H screen (de Chassey et al., 2008).  

 It has been shown that proteins from other viruses frequently interact with hub 

proteins, which are host proteins that have a large number of interactions in the host 

interactome (Dyer et al., 2008). To evaluate the numbers of interactions for the host 

proteins that I identified, my co-author for the submitted paper (Mairiang et al., 

submitted) assembled a human protein interactome from several public databases. The 

human interactome contains 44 (94%) of the 47 dengue-interacting proteins that I 

identified.  It also contains 143 (72%) of the 198 dengue-interacting human proteins 

identified exclusively in other screens (Chang et al., 2001; Johansson et al., 2001; 

Brooks et al., 2002; Garcia-Montalvo et al., 2004; Chua et al., 2005; Lozach et al., 2005; 

Reyes-Del Valle et al., 2005; Chiu et al., 2007; Kurosu et al., 2007; Limjindaporn et al., 

2007; Noisakran et al., 2008; Ashour et al., 2009; Bhattacharya et al., 2009; Ellencrona 

et al., 2009; Hershkovitz et al., 2009; Jiang et al., 2009; Limjindaporn et al., 2009; 

Mazzon et al., 2009; Rawlinson et al., 2009; Heaton et al., 2010; Avirutnan et al., 2011; 

Brault et al., 2011; Colpitts et al., 2011a; Folly et al., 2011; Khadka et al., 2011; Le 

Breton et al., 2011), and 52 (83%) of the 63 human orthologs of mosquito proteins that I 
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Table 2-10. Human proteins that also interact with other viruses. 
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identified. For each of these gene sets, my co-author found that the average number of 

interactions (or degree) per protein was significantly higher than for random samples of 

similar numbers of proteins. For example, the average degree of dengue-interacting 

proteins in my dataset was 44.0, whereas the average degree of similarly sized random 

samples of proteins was 22.4 (p-value = 9.3 x 10-4) (Bulich and Aaskov, 1992). The 

dengue interactors from mosquito were also enriched for proteins with many 

interactions (p-value = 2.7 x 10-3), as were the dengue-interacting proteins identified by 

other studies (p-value= 6.4 x 10-7). It has been suggested that the tendency of viral 

proteins to interact with hub proteins may represent a feature of viral pathogenesis 

since the disruption of a hub is more likely to impair the cell’s protein network than the 

disruption a non-hub (Yook et al., 2004; Dyer et al., 2008).  While these results are 

consistent with this hypothesis, they could also be explained by the possibility that some 

proteins are particularly interactive in the protein interaction assays that have been used 

to detect the human interactome, including the Y2H assay.  Thus a more thorough test 

of the hypothesis that dengue viral proteins tend to target hubs will require a larger set 

of functionally validated dengue-host interactions.  

We identified a number of potentially relevant NS3 interactors. CALCOCO2 (also 

known as NDP2) is a component of Nuclear Domain 10 (ND10) bodies, which play a 

role in the intrinsic cellular defense mechanisms against some viruses (Everett and 

Chelbi-Alix, 2007). Interestingly, another major component of ND10 is DAXX, which has 

been shown to interact with dengue capsid (Limjindaporn et al., 2007). These 

interactions may be involved in the interplay between host defense mechanisms and 

viral strategies to circumvent them. NS3 also interacted with two additional proteins that 
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play roles in the innate immune response, NFKBIA and leucine rich repeat (in FLII) 

interacting protein 1 (LRRFIP1). NFKBIA negatively regulates the innate immune 

response by inhibiting the NF-kappaB transcription factor (Jacobs and Harrison, 1998). 

LRRFIP1 is a regulator of the toll-like receptor signaling pathway and was shown to 

associate with dsRNA-containing endosomes/lysosomes (Arakawa et al., 2010), which 

are generated in response to virus dsRNA intermediates during replication (Johnsen et 

al., 2006).  Another NS3 interactor, amplified in osteosarcoma 9 (OS9), plays an 

important role in the unfolded protein response (UPR) (Alcock and Swanton, 2009), 

which is often observed in dengue-infected cells (Umareddy et al., 2007).  As I did for 

the mosquito proteins, I tested the human NS3 interacting proteins against both variants 

of NS3 baits (Figure 2-1B) and found that the N-terminal 160 amino acids of NS3 was 

required for only three interactions, including the previously identified interaction, NS3-

NRBP1 (Table 2-6).  The remaining human proteins interacted with both the full-length 

and the C-terminal half of NS3. 

The capsid interactors were isolated using the anchored capsid bait or the 

cytoplasmic capsid bait (Figure 2-1B).  I tested all of the capsid interactors against both 

baits and found that most were able to interact with both the anchored and the 

cytoplasmic capsid proteins (Table 2-8), indicating that the C-terminal membrane 

spanning domain is not required for and does not dramatically interfere with most 

interactions. GO and protein domain enrichment analysis of the 20 capsid interactors 

failed to implicate any specific biological function or process (Table 2-11).  However, the 
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Table 2-11.  Enrichment of GO annotations and protein domains in 

human proteins that interact with dengue proteins 

Dengue 
protein GO-ID p-value 

corr p-
value Description Genes in test set 

Capsid GO:005198 
1.99E-

05 
1.26E-

03 structural molecule activity 
RPS27; CD3G; RPL6; CD3E; 
RPL5; RPS7 

  GO:005840 
3.87E-

05 
1.26E-

03 ribosome RPS27; RPL6; RPL5; RPS7 

  GO:006412 
1.79E-

04 
3.88E-

03 translation RPS27; RPL6; RPL5; RPS7 

  GO:005730 
9.96E-

04 
1.62E-

02 nucleolus GTPBP4; RRP12; RPL5; RPS7 

  GO:005829 
1.38E-

03 
1.80E-

02 cytosol 
RPS27; RPL6; RPL5; HBB; 
BIRC2; RPS7 

NS3 none         

NS5 GO:030968 
1.58E-

04 
2.25E-

02 
endoplasmic reticulum unfolded protein 
response DERL2; HSPA5 

  GO:034620 
1.58E-

04 
2.25E-

02 cellular response to unfolded protein DERL2; HSPA5 

  GO:010498 
2.43E-

04 
2.25E-

02 proteasomal protein catabolic process DERL2; PSMC1; HSPA5 

  GO:043161 
2.43E-

04 
2.25E-

02 
proteasomal ubiquitin-dependent protein 
catabolic process DERL2; PSMC1; HSPA5 

  GO:030433 
2.63E-

04 
2.25E-

02 ER-associated protein catabolic process DERL2; HSPA5 

  GO:071445 
2.63E-

04 
2.25E-

02 cellular response to protein stimulus DERL2; HSPA5 

  GO:034976 
4.18E-

04 
2.68E-

02 
response to endoplasmic reticulum 
stress DERL2; HSPA5 

  GO:044424 
4.25E-

04 
2.68E-

02 intracellular part 

DERL2; CYTIP; EEF1B2; FMR1; 
FAM192A; XPA; TRIM2; RILPL2; 
EAF1; WWP1; PSMC1; RPL12; 
EAF2; HSPA5; HBB; IMPDH2 

  GO:006984 
4.69E-

04 
2.68E-

02 ER-nucleus signaling pathway DERL2; HSPA5 

  GO:044265 
5.35E-

04 
2.75E-

02 
cellular macromolecule catabolic 
process XPA; DERL2; PSMC1; HSPA5 

  GO:005515 
6.73E-

04 
2.90E-

02 protein binding 

DERL2; CYTIP; EEF1B2; FMR1; 
XPA; TRIM2; RILPL2; EAF1; 
WWP1; PSMC1; EAF2; HSPA5; 
HBB; IMPDH2 

  GO:005622 
7.07E-

04 
2.90E-

02 intracellular 

DERL2; CYTIP; EEF1B2; FMR1; 
FAM192A; XPA; TRIM2; RILPL2; 
EAF1; WWP1; PSMC1; RPL12; 
EAF2; HSPA5; HBB; IMPDH2 

  GO:071216 
8.70E-

04 
2.90E-

02 cellular response to biotic stimulus DERL2; HSPA5 

  GO:009057 
8.77E-

04 
2.90E-

02 macromolecule catabolic process XPA; DERL2; PSMC1; HSPA5 

  GO:060904 
8.99E-

04 
2.90E-

02 
regulation of protein folding in 
endoplasmic reticulum HSPA5 

  GO:030176 
9.06E-

04 
2.90E-

02 
integral to endoplasmic reticulum 
membrane DERL2; HSPA5 

  GO:006986 
1.57E-

03 
3.47E-

02 response to unfolded protein DERL2; HSPA5 

  GO:031227 
1.57E-

03 
3.47E-

02 
intrinsic to endoplasmic reticulum 
membrane DERL2; HSPA5 

  GO:044267 
1.59E-

03 
3.47E-

02 cellular protein metabolic process 
DERL2; EEF1B2; WWP1; 
PSMC1; RPL12; HSPA5; EAF2 

  GO:003938 
1.80E-

03 
3.47E-

02 IMP dehydrogenase activity IMPDH2 
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  GO:006177 
1.80E-

03 
3.47E-

02 GMP biosynthetic process IMPDH2 

  GO:006987 
1.80E-

03 
3.47E-

02 
activation of signaling protein activity 
involved in unfolded protein response HSPA5 

  GO:021577 
1.80E-

03 
3.47E-

02 hindbrain structural organization HSPA5 

  GO:021589 
1.80E-

03 
3.47E-

02 cerebellum structural organization HSPA5 

  GO:046037 
1.80E-

03 
3.47E-

02 GMP metabolic process IMPDH2 

  GO:006511 
1.80E-

03 
3.47E-

02 
ubiquitin-dependent protein catabolic 
process DERL2; PSMC1; HSPA5 

  GO:019941 
1.89E-

03 
3.47E-

02 
modification-dependent protein catabolic 
process DERL2; PSMC1; HSPA5 

  GO:043632 
1.89E-

03 
3.47E-

02 
modification-dependent macromolecule 
catabolic process DERL2; PSMC1; HSPA5 

  GO:051603 
2.50E-

03 
4.32E-

02 
proteolysis involved in cellular protein 
catabolic process DERL2; PSMC1; HSPA5 

  GO:044257 
2.57E-

03 
4.32E-

02 cellular protein catabolic process DERL2; PSMC1; HSPA5 

  GO:030185 
2.70E-

03 
4.32E-

02 nitric oxide transport HBB 

  GO:032075 
2.70E-

03 
4.32E-

02 positive regulation of nuclease activity HSPA5 

  GO:030163 
3.19E-

03 
4.61E-

02 protein catabolic process DERL2; PSMC1; HSPA5 

  GO:031398 
3.23E-

03 
4.61E-

02 
positive regulation of protein 
ubiquitination PSMC1; HSPA5 

  GO:032991 
3.26E-

03 
4.61E-

02 macromolecular complex 
EEF1B2; EAF1; WWP1; PSMC1; 
FMR1; RPL12; EAF2; HBB 

  GO:006414 
3.36E-

03 
4.61E-

02 translational elongation EEF1B2; RPL12 

  GO:005853 
3.59E-

03 
4.61E-

02 
eukaryotic translation elongation factor 1 
complex EEF1B2 

  GO:030492 
3.59E-

03 
4.61E-

02 hemoglobin binding HBB 

  GO:032069 
3.59E-

03 
4.61E-

02 regulation of nuclease activity HSPA5 

  GO:042149 
3.59E-

03 
4.61E-

02 cellular response to glucose starvation HSPA5 

  GO:044248 
4.30E-

03 
4.95E-

02 cellular catabolic process XPA; DERL2; PSMC1; HSPA5 

  GO:030970 
4.49E-

03 
4.95E-

02 
retrograde protein transport, ER to 
cytosol DERL2 

  GO:043008 
4.49E-

03 
4.95E-

02 ATP-dependent protein binding HSPA5 

  GO:051787 
4.49E-

03 
4.95E-

02 misfolded protein binding HSPA5 

  GO:031324 
4.50E-

03 
4.95E-

02 
negative regulation of cellular metabolic 
process WWP1; PSMC1; FMR1; EAF2 

  GO:016607 
4.61E-

03 
4.95E-

02 nuclear speck EAF1; EAF2 

  GO:005829 
4.82E-

03 
4.95E-

02 cytosol 
RILPL2; EEF1B2; RPL12; HBB; 
IMPDH2 

  GO:043234 
4.82E-

03 
4.95E-

02 protein complex 
EEF1B2; EAF1; WWP1; PSMC1; 
FMR1; EAF2; HBB 

  GO:010605 
4.83E-

03 
4.95E-

02 
negative regulation of macromolecule 
metabolic process WWP1; PSMC1; FMR1; EAF2 

  GO:051789 
4.85E-

03 
4.95E-

02 response to protein stimulus DERL2; HSPA5 

  GO:019538 
4.92E-

03 
4.95E-

02 protein metabolic process 
DERL2; EEF1B2; WWP1; 
PSMC1; RPL12; HSPA5; EAF2 

      
Dengue 
protein Interpro_ID p-value 

corr p-
value Description Genes in test set 



 

 

96 

Capsid IPR006414 
2.00E-

06 
1.98E-

04 
ATPase, P-type, potassium/sodium 
efflux, fungal RPS27; RPL6; RPL5; RPS7 

  IPR001757 
1.32E-

05 
5.65E-

04 
ATPase, P-type, 
K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-transporter RPS27; RPL6; RPL5; RPS7 

  IPR003735 
1.71E-

05 
5.65E-

04 Protein of unknown function DUF156 RPS27; RPL6; RPL5; RPS7 

  IPR005840 
3.25E-

05 
6.46E-

04 
Ribosomal protein S12 
methylthiotransferase RimO RPS27; RPL6; RPL5; RPS7 

  IPR005839 
4.94E-

05 
6.46E-

04 Methylthiotransferase RPS27; RPL6; RPL5; RPS7 

  IPR023970 
4.94E-

05 
6.46E-

04 
Methylthiotransferase/B12-
binding/radical SAM-type RPS27; RPL6; RPL5; RPS7 

  IPR000771 
5.22E-

05 
6.46E-

04 Ketose-bisphosphate aldolase, class-II RPS27; RPL6; RPL5; RPS7 

  IPR006412 
5.22E-

05 
6.46E-

04 
Fructose-bisphosphate aldolase, class 
II, Calvin cycle subtype RPS27; RPL6; RPL5; RPS7 

  IPR005515 
5.02E-

04 
5.00E-

03 
Vitelline membrane outer layer protein I 
(VOMI) 

GTPBP4; RRP12; CD3G; CD3E; 
S100A9; NAP1L1; BIRC2; OS9; 
TMF1; RPS7; RPS27; RPL5; 
HBB; AP3B1 

  IPR007166 
5.69E-

04 
5.00E-

03 Class III signal peptide motif CD3G; CD3E; BIRC2 

  IPR022625 
6.06E-

04 
5.00E-

03 
Type I restriction and modification 
enzyme, subunit R, C-terminal RPL6; RPL5 

  IPR022627 
6.06E-

04 
5.00E-

03 Domain of unknown function DUF3502 RPS27; RPS7 

  IPR005730 
9.83E-

04 
6.73E-

03 Carboxynorspermidine decarboxylase GTPBP4; RRP12; RPL5; RPS7 

  IPR000836 
1.02E-

03 
6.73E-

03 Phosphoribosyltransferase OS9 

  IPR008097 
1.02E-

03 
6.73E-

03 CX3X chemokine fractalkine RPL5 

  IPR000878 
2.49E-

03 
1.54E-

02 Tetrapyrrole methylase RPL5; RPS7; TMF1 

  IPR002669 
3.06E-

03 
1.78E-

02 Urease accessory protein UreD CD3E 

  IPR006364 
3.89E-

03 
2.14E-

02 

Cobalamin (vitamin B12) biosynthesis 
CobI/CbiL, precorrin-2 C20-
methyltransferase, core RPL5; RPS7 

  IPR006461 
4.76E-

03 
2.48E-

02 Uncharacterised protein family Cys-rich CD3G; CD3E 

  IPR005678 
6.10E-

03 
2.82E-

02 
Mitochondrial inner membrane 
translocase complex, subunit Tim17 NAP1L1 

  IPR022408 
6.10E-

03 
2.82E-

02 
Acyl-CoA-binding protein, ACBP, 
conserved site GTPBP4 

  IPR004888 
6.42E-

03 
2.82E-

02 Glycoside hydrolase, family 63 CD3G; CD3E 

  IPR006621 
7.12E-

03 
2.82E-

02 
Nose resistant-to-fluoxetine protein, N-
terminal OS9 

  IPR006622 
7.12E-

03 
2.82E-

02 
Iron sulphur-containing domain, 
CDGSH-type, subfamily AP3B1 

  IPR018967 
7.12E-

03 
2.82E-

02 
Iron sulphur-containing domain, 
CDGSH-type AP3B1 

  IPR005829 
7.55E-

03 
2.87E-

02 Sugar transporter, conserved site 
RPS27; RPL6; RPL5; BIRC2; 
RPS7 

  IPR007172 
8.13E-

03 
2.98E-

02 Domain of unknown function DUF374 CD3E 

  IPR001772 
1.12E-

02 
3.95E-

02 Kinase-associated KA1 CD3E 

  IPR005344 
1.32E-

02 
4.50E-

02 
Uncharacterised protein family 
UPF0121 HBB 

  IPR005634 
1.41E-

02 
4.66E-

02 Male specific sperm protein 

RPS27; GTPBP4; RRP12; 
ANKRD12; S100A9; NAP1L1; 
RPL5; ZNF394; BIRC2; TMF1 

NS3 IPR000836 
8.50E-

04 
4.46E-

02 Phosphoribosyltransferase OS9 

  IPR021554 
8.50E-

04 
4.46E-

02 Protein of unknown function DUF3202 RPL24 

  IPR011991 
1.57E-

03 
4.46E-

02 
Winged helix-turn-helix transcription 
repressor DNA-binding CALCOCO2; LRRFIP1 
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  IPR005938 
1.95E-

03 
4.46E-

02 ATPase, AAA-type, CDC48 CORO1A; NRBP1 

  IPR001845 
2.55E-

03 
4.46E-

02 HTH ArsR-type DNA-binding domain CORO1A 

  IPR001891 
2.55E-

03 
4.46E-

02 Malic oxidoreductase CORO1A 

  IPR010458 
3.39E-

03 
4.46E-

02 Trichodiene synthase, ascomycetes RPL24 

  IPR024652 
3.39E-

03 
4.46E-

02 Trichodiene synthase RPL24 

  IPR005515 
4.63E-

03 
4.79E-

02 
Vitelline membrane outer layer protein I 
(VOMI) 

HSP90AB1; CORO1A; NRBP1; 
MTF1; CALCOCO2; NFKBIA; 
RPL24; LRRFIP1; HBB; GOLGB1; 
OS9 

  IPR007253 
5.09E-

03 
4.79E-

02 Putative cell wall binding repeat 2 NFKBIA 

  IPR010888 
5.09E-

03 
4.79E-

02 CblD-like pilus biogenesis initiator NFKBIA 

  IPR006621 
5.93E-

03 
4.79E-

02 
Nose resistant-to-fluoxetine protein, N-
terminal OS9 

  IPR010038 
5.93E-

03 
4.79E-

02 MoaD, archaeal MTF1 

NS5 IPR005515 
3.81E-

04 
3.77E-

02 
Vitelline membrane outer layer protein I 
(VOMI) 

DERL2; CYTIP; EEF1B2; FMR1; 
XPA; TRIM2; EAF1; WWP1; 
PSMC1; EAF2; HSPA5; HBB; 
IMPDH2 
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capsid interactors include a preponderance of ribosomal proteins, including RPL5, 

ribosomal protein L6 (RPL6), ribosomal protein L7 (RPL7), and ribosomal protein L27 

(RPL27), all of which are subunits of the 60S ribosome.  Capsid also interacted with 

mosquito RPL23, and with a ribosomal RNA processing protein (RRP12) from both 

mosquito and human. Based in part on these ribosomal proteins and on a GTP-binding 

protein, GTPBP4, the capsid-interacting proteins are enriched for proteins annotated as 

being associated with the nucleolus (Table 2-11). Interestingly, dengue capsid has 

previously been found to accumulate in nucleoli in several cell lines (Tadano et al., 

1989; Wang et al., 2002; Sangiambut et al., 2008), though the functional significance of 

this localization has not been determined. Many other viruses interact with nucleoli, and 

in some cases nucleoli have been shown to be essential for virus replication (Hiscox, 

2007; Hiscox et al., 2010). The capsid proteins from two other flaviviruses, West Nile 

virus and Japanese encephalitis virus, each interact with specific nucleolar proteins, and 

in each case, these nucleolar proteins have been shown to be important for efficient 

viral replication (Tsuda et al., 2006; Yang et al., 2008; Xu et al., 2011). Further studies 

with the capsid-interacting proteins that I identified may provide insights into the role 

and mechanisms for accumulation of dengue capsid at the nucleolus.  

Among the NS5 interactors, “unfolded protein response (UPR)” is the top 

enriched GO annotation (Table 2-11). This enrichment is based on interactions with 

DERL2, an ER membrane protein involved in targeting misfolded glycoproteins for 

degradation (Lilley et al., 2006; Oda et al., 2006), and HSPA5/Grp78/BiP, an ER protein 

involved in protein folding (Malhotra and Kaufman, 2007; Wang et al., 2010). The UPR 

is known to be activated during dengue infection; however, its importance for virus 
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replication is still undetermined (Yu et al., 2006; Umareddy et al., 2007; Fischl and 

Bartenschlager, 2011; Pena and Harris, 2011). 

 

2.3.5 Confirmation of protein interactions using additional assays 

Y2H studies frequently detect false positive interactions that have no biological 

relevance. One way to gain confidence in a Y2H interaction is to detect it using 

additional assays.  I used two approaches to test the confidence of interactions that I 

detected in the library screens.  First, I reasoned that biologically relevant virus-host 

protein interactions are likely to be conserved across the four dengue serotypes. There 

is 63-68% amino acid sequence homology among the four serotypes (Lindenbach et al., 

2006). An interaction between a host protein and the same dengue protein from multiple 

serotypes may imply that the interaction is more likely to have functional relevance 

because significant variation in the dengue protein does not interrupt the interaction. To 

test for conservation of interactions I repeated Y2H assays for all dengue-host 

interactions using dengue proteins from serotypes 1, 3 and 4. I found that 57 out of 102 

(56.9%) dengue-mosquito protein interactions and 34 out of 46 (73.9%) dengue-human 

protein interactions were serotype independent; i.e., the host proteins interacted with 

corresponding dengue proteins from all four serotypes (Figure 2-10, Tables 2-4 and 2-

10). This provides additional evidence that these host proteins genuinely interact with 

the dengue proteins, and further points to conserved sequences or structural elements 

in the dengue proteins as potential interaction interfaces.  A minority of the host proteins 

interacted with only one or a subset of the dengue serotypes (Figure 2-10, Tables 2-4 

and 2-10). While these interactions may be false positives, some may be biologically
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Figure 2-10. Serotype specificity of dengue – host protein interactions. Interactions 

identified by Y2H assays against dengue serotype 2 proteins were screened against the 

same protein from dengue serotypes 1, 3 and 4. (A) Serotype specificity of dengue-

mosquito PPIs. (B) Serotype specificity of dengue-human PPIs. 
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some may be biologically relevant serotype-specific dengue-host interactions. If so, 

such interactions may mediate some of the serotype-specific dengue characteristics 

that are clinically observed (Balmaseda et al., 2006). Further investigation will be 

required to validate serotype specific interactions.  

I also set up Y2H matrix matings for each dengue interactor against all 56 

dengue BD proteins representing the 14 bait proteins from each of the four serotypes. I 

intended to use these screens to detect host proteins that interact with multiple dengue 

proteins. The screens resulted in about 8,000 mating pairs with 1,713 potential 

interactions including those already identified from the Y2H library screens with dengue 

serotype 2 (Appendix A). Because of limited time and resources, I did not further 

analyze PPIs found only in the matrix screens. They will require reproducibility tests or 

orthologonal assays for validation. 

Next I employed an orthogonal assay, co-affinity purification (co-AP), to test most 

of the dengue-host interactions that I identified by Y2H assays. Myc-tagged versions of 

the mosquito and human proteins were expressed in cultured Drosophila cells along 

with NTAP-tagged dengue proteins (Materials and Methods).  The tagged dengue 

proteins were purified and tested for co-purification of the host proteins by 

immunoblotting with myc antibodies (Figure 2-11 and Appendix O). If one of the two 

proteins failed to express in the cell lysate, I tried the experiment in the opposite 

orientation, giving the dengue protein a myc tag and the host protein an NTAP tag.  I 

was able to express and test by co-AP 135 pairs of proteins, and I detected 38 

interactions (27.9%) (Table 2-3 and 2-10).  This confirmation rate is similar to that 

reported for other large-scale tests of protein interactions by orthogonal assays 
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Figure 2-11. Examples of co-affinity purification results. Host proteins were fused to 

a myc-tag while dengue proteins were fused to a NTAP-tag. The fusion proteins were 

expressed in S2R+ cells. NTAP-dengue proteins were purified from cell lysates, and 

then host proteins were detected with α-myc.  (A) An α-myc immunoblot of cell lysates 

shows expression of mosquito and human proteins. (B) An α-myc immunoblot of NTAP-

tag affinity purified samples. 
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(Yu et al., 2008a; Yu et al., 2011), but lower than the rate reported in some specific Y2H 

studies (Rual et al., 2005; Lim et al., 2006). One possible explanation for the 

discrepancy is that I define a Y2H positive based on reproducible activity of a highly 

sensitive LEU2 reporter, and thus I may detect weaker protein-protein interactions than 

studies that require activation of multiple less sensitive Y2H reporters.  However, the 

combined Y2H reporter activity (LEU2 and lacZ) was not significantly higher for 

interactions that were positive by co-AP assays (average 3.4) than for interactions that 

were negative in co-AP assays (average 2.9). 

Figure 2-12 shows a summary of the dengue-host interactions that I identified. 

The dengue-human interaction map includes 13 proteins, which had orthologs in the 

dengue-mosquito map and were involved in PPI that were detected in both species. 

Three human proteins and seven mosquito proteins interacted with more than one 

dengue protein.  The maps also show whether or not each interaction was detected with 

all four dengue serotypes and whether or not it was also detected by co-AP 
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Figure 2-12. Dengue – host protein networks derived from Y2H screens and co-AP 

assays in this study. (A) Human-dengue interaction map. (B) Mosquito-dengue 

interaction map.  Black edges represent protein-protein interactions. Red edges 

represent protein-protein interactions universally detected for all four serotypes. Blue 

edges represent protein-protein interactions confirmed by co-AP assays. Green edges 

represent the universal interactions that were confirmed by co-AP assays. Green nodes 

represent dengue proteins. Yellow nodes represent host proteins. Blue nodes represent 

host proteins of which potential orthologs were detected in both human and mosquito. 
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2.3.6 A snapshot of the dengue-host interactome 

It is often noted that a virus such as dengue with only 10 proteins of its own should need 

to interact with a number of host proteins to carry out its replication cycle.  My study 

combined with other large-scale and small-scale studies has identified 403 interactions 

between proteins from dengue and its hosts, not counting the more than 4,000 

interactions that have been computationally predicted (Chang et al., 2001; Johansson et 

al., 2001; Brooks et al., 2002; Chua et al., 2004; Garcia-Montalvo et al., 2004; Chua et 

al., 2005; Lozach et al., 2005; Reyes-Del Valle et al., 2005; Chiu et al., 2007; Kurosu et 

al., 2007; Limjindaporn et al., 2007; Noisakran et al., 2008; Ashour et al., 2009; 

Bhattacharya et al., 2009; Ellencrona et al., 2009; Hershkovitz et al., 2009; Jiang et al., 

2009; Limjindaporn et al., 2009; Mazzon et al., 2009; Rawlinson et al., 2009; Heaton et 

al., 2010; Avirutnan et al., 2011; Brault et al., 2011; Colpitts et al., 2011a; Colpitts et al., 

2011b; Doolittle and Gomez, 2011; Folly et al., 2011; Khadka et al., 2011; Le Breton et 

al., 2011). Since I know that most protein interaction screens and assays produce false 

positives, it seems likely that a number of the dengue-host PPI detected thus far are not 

relevant to the virus or the host’s defenses against it. Among the 403 experimentally 

detected PPI, only seventeen PPI have been studied further and shown to potentially 

have functional significance (Lozach et al., 2005; Chiu et al., 2007; Bhattacharya et al., 

2009; Limjindaporn et al., 2009; Rawlinson et al., 2009; Avirutnan et al., 2010; Heaton 

et al., 2010; Brault et al., 2011; Khadka et al., 2011). How then can researchers decide 

which of the remainder of interactions merit further investigation?  The number of 

validated PPI is too small to use as a gold standard for developing a statistical scoring 

system to rank all PPI, as has been done for other interactomes (Braun et al., 2009; Yu 
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and Finley, 2009; Yu et al., 2012). Thus, I propose the use of two criteria for prioritizing 

the dengue-host PPI for further study. The first criterion is based on the observation that 

PPI detected by multiple independent assays or studies are more likely to be 

biologically relevant (Uetz et al., 2000; Ito et al., 2001; Deane et al., 2002; von Mering et 

al., 2002; Giot et al., 2003; Stanyon et al., 2004; Schwartz et al., 2009).  Assuming that 

this is also true for the dengue-host interactions, I counted the number of assays and 

the number of studies that detected each of the physical interactions. Any orthogonal 

assay was counted as an individual piece of evidence. Two similar assays that detected 

the same PPI, but that was conducted by two independent groups, were also counted 

as two pieces of evidence. By this criterion, 67 of the 403 dengue PPI were detected 

thus far by more than one assay or study. The second criterion proposed here is based 

on the fact that many biologically relevant PPI are conserved (Yu et al., 2004), and thus 

detection of the same interaction in two different species is tantamount to detecting the 

interaction more than once. Applying this criterion to the dengue-host interactions, I 

counted a PPI as a potentially conserved interolog if it was found in both mosquito and 

human.  28 PPI (14 PPI of each species) were detected in both species. I also counted 

an interaction as having multiple forms of supporting evidence if it was experimentally 

detected and also computationally predicted (Doolittle and Gomez, 2011). Taking these 

criteria together, I derive a list of 35 dengue-mosquito PPI and 65 dengue-human PPI 

with multiple forms of supporting evidence (Figure 2-13; Appendix B). These interaction 

maps provide a snapshot of the dengue-host PPI that are currently supported by 

multiple forms of evidence and therefore high priority candidates for further
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Figure 2-13. Dengue-host interactions supported by multiple forms of evidence. 

Pink nodes represent host proteins. Green nodes represent dengue proteins. Red 

edges represent PPI with conserved interologs. (A) Dengue-human interactome. (B) 

Dengue-mosquito interactome. Red edges represent PPI conserved in both networks. 
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investigation.  Finally, these data should be useful for developing antiviral drugs and 

vector control strategies. 

 

2.4 Summary 

 I identified 102 dengue-mosquito interactions involving 93 unique mosquito 

proteins and 46 dengue-human interactions involving 35 unique human proteins by Y2H 

assays using dengue proteins from dengue virus serotype 2. I then re-tested each 

dengue-host PPI using corresponding dengue proteins from serotypes 1, 3 and 4 to 

identify 57 out of 102 (56.9%) dengue-mosquito protein interactions and 34 out of 46 

(73.9%) dengue-human protein interactions that were serotype independent. I also 

employed co-affinity purification as an orthogonal assay, which detected 38 out of the 

136 interactions (27.9%) previously identified by Y2H screens. Finally, I proposed a list 

of dengue-host protein interaction candidates for further studies using multiple pieces of 

supporting evidence as criteria. I hope that the dengue-host interaction data from this 

project will be useful to generate hypotheses that may be used to develop antiviral 

drugs, vector control strategies or dengue vaccines to help combat this re-emerging 

dengue virus.   
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CHAPTER 3 

 

ANALYSIS OF THE INTERACTION BETWEEN DENGUE CAPSID AND THE HOST 

NUCLEOSOME ASSEMBLY PROTEIN, NAP1L1 

 

3.1 Introduction 

 In Chapter 2, I identified several dengue-host PPI for human and mosquito. Out 

of these, seven PPI were found to be conserved in both human and mosquito based on 

Y2H assays. Since many biologically relevant PPI are conserved (Yu et al., 2004), these 

conserved PPI are worthy of further investigation. Among these conserved PPI, I 

identified human nucleosome assembly protein 1-like 1 (NAP1L1) and mosquito 

nucleosome assembly protein (AAEL005567) as interactors of dengue capsid using 

Y2H assays. I also found that capsid from all dengue serotypes interacted with NAP1L1 

by Y2H assays, while capsid from serotypes 1, 2 and 3 interacted with AAEL005567. 

The capsid-NAP1L1 was also detected by co-AP. The capsid-NAP1L1 interaction is, 

therefore, supported by several forms of evidence, so I set out to study this interaction 

further. 

 Although dengue virus replicates in the cytoplasm, capsid has been found in the 

nucleus, and specifically in the nucleolus (Tadano et al., 1989; Wang et al., 2002; 

Sangiambut et al., 2008). The function of capsid in the nucleus is not yet clear, but it 

seems to involve the apoptosis pathway. Capsid can interact with death domain-

associated protein (DAXX) in the nucleus resulting in the induction of apoptosis by an 

unknown mechanism (Limjindaporn et al., 2007; Netsawang et al., 2010). Capsid can 
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also bind histones resulting in the disruption of nucleosome formation in cells, and 

potentially altering host gene expression to suit viral replication (Colpitts et al., 2011a). 

Similarly, capsid proteins from other flaviviruses have been shown to interact with 

nuclear and, specifically, nucleolar proteins. In West Nile virus (WNV), capsid binds and 

sequesters the HDM2 ubiquitin ligase into the nucleolus, and thereby prevents the 

formation of the HDM2 and p53 complex (Yang et al., 2008).  Consequently, p53 is 

stabilized resulting in p53-mediated apoptosis. Capsid of WNV also interacts with a 

nucleolar helicase, DDX56, in the nucleolus and translocates DDX56 to the cytoplasm 

(Xu et al., 2011). DDX56 is not required for viral replication, but it does enhance 

replication 100-fold compared to replication in DDX56-depleted cells (Xu et al., 2011). In 

Japanese encephalitis virus (JEV), capsid interacts with a nucleolar protein, B23, which 

seems to be important for virus replication since a dominant negative B23 reduces 

replication (Tsuda et al., 2006). These studies suggested that nuclear localization of 

flaviviral capsid is potentially significant for viral replication and pathogenesis. 

 Nucleosome assembly protein 1 (NAP-1) is a highly conserved protein involved 

in chromatin assembly (Ishimi et al., 1983; Ishimi and Kikuchi, 1991; Ito et al., 1996; 

Steer et al., 2003).  It functions as a histone chaperone, which loads histones onto 

naked DNA to form a nucleosome and unloads histones from the nucleosome to 

disassemble it (Bowman et al., 2011). Yeast (Saccharomyces cerevisiae) has one NAP-

1, while there are six NAP1 paralogs in human, including nucleosome assembly protein 

1-like 1 (NAP1L1), NAP1L2, NAP1L3, NAP1L4, NAP1L5, and NAP1L6. NAP1L1 and 

NAP1L4 are ubiquitously expressed, while NAP1L2, NAP1L3 and NAP1L5 are neuron-

specific (Attia et al., 2011). NAP1L6 is potentially a pseudogene (The UniProt 
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Consortium(2012)). In mosquito, there are five paralogs of yeast NAP-1, including 

AAEL005567, AAEL000432, AAEL012289, AAEL013951 and AAEL010809 (Lawson et 

al., 2009). It is not clear which of these various human and mosquito NAP1 family 

members are functional orthologs. However, AAEL005567 is more evolutionarily related 

to Drosophila nap1 and to the six human NAP1Ls than to any of the other mosquito 

NAP1 orthologs (Figure 3-1). The genes of the NAP1 family seem to have other poorly 

studied functions in addition to chromosome assembly. Yeast NAP-1, for example, has 

been shown to play a role in the regulation of mitotic events as it interacts with Cyclin B, 

kinase Gin4 and NAP1 binding protein 1 (NBP1) (Kellogg and Murray, 1995; Altman 

and Kellogg, 1997; Shimizu et al., 2000).  The interactions of yeast NAP1 with Cyclin B 

and Gin4 are required for switching from polar to isotropic bud growth (Kellogg and 

Murray, 1995; Altman and Kellogg, 1997). The interaction between yeast NAP1 and 

NBP1 is required for the G2/M transition (Shimizu et al., 2000). Human NAP1L1 and the 

SET nuclear oncogene (SET) share structural similarity, and both proteins can function 

as host factors required for Adenovirus genome transcription and replication in vitro 

(Kawase et al., 1996). Human NAP1L1 also interacts with a transcriptional coactivator, 

p300, augmenting p300-dependent transcription, including the transcriptional activities 

of p53 and E2F (Shikama et al., 2000).  

Although the name of the protein suggests that human NAP1L1 locates to the 

nucleus, the protein is predominantly found in the cytoplasm in various cells 

(Marheineke and Krude, 1998), a finding that I confirmed in HepG2 cells (Figure 3-2). 

During M, G1 and S phases, a small amount of human NAP1L1 is observed in the 
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Figure 3-1. The similarity among genes in the Nucleosome Assembly Protein 1 

family.  A dendrogram shows amino acid sequence similarities among NAP1 genes: 

Saccharomyces cerevisiae NAP1 (yNAP1), Drosophila melanogaster NAP1 

(Dmel_nap1, CG5017 and CG3708), A. aegypti proteins (AAEL005567, AAEL013951, 

AAEL012289, AAEL000432 and AAEL010809) and human NAP1(NAP1L1, NAP1L2, 

NAP1L3, NAP1L4, NAP1L5 and NAP1L6). The scale bar indicates amino acid 

substitution per site. yNAP1 was used as an outgroup. Proteins identified to interact with 

dengue capsid are circled. 
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Figure 3-2. The localization of NAP1L1 in A549 cells. A549 cells were stained with 

anti-NAP1L1 antibody (red in merge) and DAPI. NAP1L1 was mostly localized in the 

cytoplasm. 
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nucleus (Marheineke and Krude, 1998). Yeast NAP1 contains a nuclear export 

sequence (NES), which plays a role in its nucleocytoplasmic shuttling during mitosis 

(Miyaji-Yamaguchi et al., 2003). Yeast NAP1 also mediates the nucleocytoplasmic 

transport of other proteins. Yeast NAP1 interacts with yeast Importin (Kap114p) to 

increase the affinity of Kap114p for the NLS of histone 2A and histone 2B, thereby 

enchancing nuclear transport of the histones (Mosammaparast et al., 2002). Human 

NAP1L1 has been shown to interact with the NLS of diacylglycerol kinase zeta (DGKζ) 

blocking the transport of DGKζ to the nucleus (Okada et al., 2011). It is unknown 

whether human NAP1L1 and mosquito AAEL005567 also control nucleocytoplasmic 

transport of other NLS-containing proteins. 

A previous study has shown that expression of capsid in human HepG2 cells 

results in Importin-dependent nuclear localization of capsid (Bhuvanakantham et al., 

2009). Because NAP1 proteins are known to play roles in localizing other proteins, I 

hypothesized that the capsid-NAP1L1 interaction that I discovered may have a role in 

the nuclear localization of capsid. To test this hypothesis, I first mapped the domains of 

capsid that are required for interaction with NAP1L1 and AAEL005567 using Y2H 

assays and co-affinity purification. I also mapped the capsid domains required for 

interaction with other capsid interactors using Y2H assays. Next, I created stable human 

cell lines expressing capsid and determined the effect of either silencing or over-

expressing NAP1L1 on capsid nuclear localization. The results from this study have 

suggested an involvement of NAP1L1 in suppressing capsid nuclear localization. 
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3.2 Materials and methods 

 3.2.1 Cell lines 

HepG2 cells, a human liver carcinoma cell line (Aden et al., 1979), were a gift 

from Dr. Kezhong Zhang (Wayne State University, Detroit, Michigan). The cells were 

maintained in DMEM/high glucose + sodium pyruvate (Thermo scientific: SH30243.01) 

supplemented with 10% FBS and 1X Antibiotic/Antimycotic Solution (Thermo scientific: 

SV30079.01) at 37°C and 5% CO2. The cells were passaged weekly at 1:4 to 1:8 

dilution. The media was changed every 3-4 days. To dislodge the surface-attached 

cells, they were treated with 0.05% Trypsin-EDTA for about 5-7 minutes at 37°C. The 

materials and methods involving Drosophila cells were described in Section 2.2.8. 

 

 3.2.2 Plasmids 

 pcDNA4_Myc_Dest was modified from pcDNA4/TO (Invitrogen) to include an N-

terminal Myc tag and a Gateway cassette. First, pcDNA4/TO was cut with EcoRV and 

XbaI. Next, a Myc-Gateway cassette was PCR amplified from pHZ12attR with primers 

MYC3FWD (5’- GCG CAA TTG CAA AAT GCA CCA TCA CCA CCA TCA CGG ATT 

CGA GCT ATG CGG C-3’) and DM140 (See Appendix C for primer sequences). The 

PCR product was digested with XbaI and ligated into the previously digested 

pcDNA4/TO. The plasmid then was transformed into E. coli and selected on LB-

Ampicilin/Chloramphenicol. pcDNA4_GFP_Dest was modified from pcDNA4/TO 

(Invitrogen) to include an N-terminal GFP tag and a Gateway cassette. First, 

pcDNA4/TO was cut with EcoRV and XhoI. Next, a GFP-Gateway cassette was PCR 

amplified from pAGW (The Drosophila Gateway™ Vector Collection, Carnegie 
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Institution of Washington, Baltimore, Maryland) with primers DM195 and DM196 (See 

Appendix C for primer sequences). The PCR product was digested with EcoRV and 

XhoI and ligated into previously digested pcDNA4/TO. The plasmid then was 

transformed into E. coli and selected on LB-Ampicilin/Chloramphenicol. 

 

3.2.3 Immunostaining  

 Cover slips were immersed in nitric acid for at least 2 minutes to clean the 

surfaces. Next, the cover slips were washed with a large volume of de-ionized water. 

Then, the cover slips were immersed in water, and the pH of the water was measured. If 

the pH was not near 7.0, the cover slips were rinsed again. After that the cover slips 

immersed in water were autoclaved for 30 minutes with a liquid cycle. After sterilized 

cover slips were cool, they were transferred into each well of a 6-well plate within a 

biosafety cabinet. Then 100-200 µl of Concanavalin A (ConA) was evenly spread on the 

surface of each cover slip. The cover slips were then incubated at 37°C for 2 hours. 

After incubation, 1 ml of sterile 1X PBS (8 g/l of NaCl, 0.2 g/l of KCl, 1.44 g/l of 

Na2HPO4, 0.24 g/l of KH2PO4, pH to 7.4) was repeatedly added and discarded to each 

well to wash the cover slips for three times. At this point, the ConA-coated sterilized 

cover slips were ready to be used or immersed in sterile 2 ml of 1X PBS and kept at 4°C 

until use. To seed cells onto the prepared cover slip, 1 x 105 cells resuspended in 100-

200 µl culture media were spread on each cover slip and allowed to settle for 15-30 

minutes. Insect cells were ready for cell fixing or further applications at this point. For 

human cells, 1 ml of complete media was added to each cover slip, and the cells were 
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incubated overnight at 37°C in 5% CO2. The cells could then be fixed or used for further 

applications like transfection or RNAi assays. 

 To fix the cells, cover slips with seeded cells were washed twice with 1X PBS 

pre-warmed at 37°C (at this point cells did not need to be under sterile conditions). 1 ml 

of 4% (w/v) para-formaldehyde in 1X PBS pre-warmed at 37°C was added to each 

cover slip. The cover slips were incubated at room temperature for 10 minutes. Next, 

the cover slips were washed with 1 ml of 1X PBS three times with a 10-minute agitation 

at room temperature between washing. 1 ml of blocking solution containing 0.2% Triton-

x, 5% BSA and 1X PBS was added to each cover slip and incubated for 1 hour at room 

temperature or 4°C overnight to three days. To stain the cells, the primary antibodies 

were diluted to the appropriate concentrations in 200 µl of staining buffer containing 5% 

BSA in 1X PBS supplement with 0.05% (v/v) Tween-20 (1X PBS-T) (1:100 for anti-myc 

from Santa Cruz Biotechnology and 1:500 for anti-NAP1L1 from Abcam). The 200 µl of 

diluted antibody solution was dropped onto a piece of parafilm, and the coverslip was 

then put on top of it with the cells facing down. The cover slip was incubated for 1-3 

hours at room temperature. Next, the cover slip was placed back into a 6-well plate with 

the cells facing up and washed three times with 1X PBS for 10 minutes of agitation. The 

secondary antibodies were diluted to the appropriate concentrations in 200 µl of staining 

buffer (1:1,000 for Dylight goat anti-mouse from Invitrogen and 1:200 TexasRed or FITC 

conjugated goat anti-rabbit from Invitrogen). The 200 µl of diluted antibody solution was 

dropped onto a piece of parafilm, and the coverslip was then put on the top of it with the 

cells facing down. The cover slip was incubated for 1 hour at room temperature. Next, 

the cover slip was placed back into a 6-well plate with the cells facing up and washed 
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with 1X PBS with 10 minutes of agitation for three times. Finally, the cover slip was 

mounted in 20 µl of anti-fade solution (0.466 g of DABCO, 15 ml of glycerol, 5 ml of 1X 

PBS) containing DAPI on top of a slide. The edges of the cover slip were sealed with 

nail polish. The slide could be kept at 4°C in the dark for up to one year. 

  

3.2.4 Human cell transfections 

 For DNA transfection, 2x105 cells were seeded onto a 6-well plate one day before 

transfection. Cells seeded onto the cover slip may also be used for transfection. For 

stable transfection, a plasmid must be linearlized with a restriction enzyme. For 

example, pcDNA4/TO must be cut with PciI. On the day of transfection, 1 µg of plasmid 

DNA was diluted in 100 µl of EC buffer (Qiagen Effectene Transfection Kit), and then 8 

µl of enhancer (Qiagen Effectene Transfection Kit) was added to the dilution followed by 

vortexing for 2 seconds. The transfection reaction was incubated at room temperature 

for 5 minutes. Next, 10 µl of Effectene (Qiagen Effectene Transfection Kit) was added to 

the reaction followed by vortexing for 10 seconds. The reaction was incubated for 10 

minutes at room temperature. At the same time, the media of the seeded cells was 

discarded and replaced with 1.5 ml of fresh media. After incubation, 600 µl of media 

was used to dilute the transfection reaction. The reaction was then added to the cells 

dropwise. The plate was gently swirled to evenly distribute transfection complexes and 

then put back into the cell culture incubator. The next day, the media was changed to 

remove transfection reagents, which may be cytotoxic under prolonged exposure. After 

further incubation for 48 hours, the cells may be used for immunostaining or Western 

analysis, or 200 µg/ml of Zeocin (Invitrogen) may be added to cells to select for a stable 
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cell line. Selection for the stable cell line may take 3-5 weeks. During selection, the 

media supplemented with Zeocin was changed twice a week. Once cell foci were 

visible, they were individually picked by using a 6x8 mm cloning cylinder (Fisher 

Scientific). Briefly, the cylinder and vacuum gel were sterilized by autoclaving before 

use. The cylinder was gently touched onto the vacuum gel so that a thin film of gel 

covered one side of the cylinder. Next, the cylinder was placed to encircle the focus of 

cells. 30 µl of Trypsin was added into the cylinder followed by incubating at 37°C for 5-7 

minutes. The cells were dislodged by repeatedly pipetting, and then transferred into a 

24-well plate with the fresh media supplemented with Zeocin for propagation. 

 siRNA transfection was performed with HiPerFect Transfection Reagent 

(Qiagen). The siRNAs were purchased from Qiagen (Hs_NAP1L1_5, Hs_NAP1L1_6, 

Hs_NAP1L1_10, Hs_NAP1L1_4, AllStars Negative Control siRNA and AllStars Hs Cell 

Death Positive Control siRNA). One day before transfection, the cells were seeded onto 

the cover slip as described above. 300 ng of siRNA was diluted in 100 µl of serum-free 

medium, and then 12 µl of HiPerFect Transfection Reagent was added to the dilution 

followed by vortexing for 2 seconds. The mixture was incubates for 10 minutes at room 

temperature. Next, the mixture was gently added dropwise onto the cells. The plate was 

then gently swirled to evenly distribute transfection complexes. The cells were 

incubated overnight, and then the medium was changed. The cells were incubated until 

the cells that were transfected with the positive control siRNA started dying. Then, the 

cells were fixed and immunostained.  
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3.2.5 Cell lysis and Western analysis for human cells 

Human cell lysis was performed as described in Section 2.2.8, but the 

transfection step was perform as in Section 3.2.4, and NET lysis buffer was replaced 

with RIPA lysis buffer (50 mM Tris pH 7.2, 150 mM NaCl, 0.1% (w/v) NaCl, 0.5% (w/v) 

sodium deoxycholate, 1% (v/v) NP-40, 1X protease inhibitors cocktails, 1 mM PMSF) or 

nuclear lysis buffer (0.5 M NaCl, 50 mM Tris pH 7.5, 1% (v/v) NP-40, 1% (w/v) sodium 

deoxycholate, 0.1% (w/v) SDS, 2 mM EDTA and 1X protease inhibitor cocktails, 1 mM 

PMSF). In addition, the lysis reaction was adjusted to a 6-well plate format. Western 

analysis was performed as described in Section 2.2.8. In addition to anti-Myc, Rabbit 

anti-NAP1L1 (Abcam) and Mouse anti-capsid (a gift from Dr. Chunya Puttikhunt, Siriraj 

Hospital, Mahidol University, Bangkok, Thailand) were used as a primary antibody with 

a 1:1000 dilution and 1:3 in 5% (w/v) milk in 1X PBS, respectively. 

 

3.2.6 Capsid domain mapping  

 Three deletion mutants of dengue capsid were generated by PCR amplification 

of different fragments from pDONR221_D2CA using Herculase polymerase (Agilent 

Technologies) according to the manufacturer’s instructions. CΔ1-9 was PCR amplified 

with primers, DM193 and DM5. CΔNLS (or CΔ85-100) was PCR amplified with primers, 

DM3 and DM178. CΔ73-100 was PCR amplified with primers, DM3 and DM194. Cmut 

containing mutations, R85A and K86A, was a gift from Dr. Thawornchai Limjindaporn 

(Siriraj hospital, Mahidol University, Bangkok, Thailand) (Netsawang et al., 2010). Cmut 

was PCR amplified by primers, DM3 and DM5. All PCR products of capsid mutants 

were PCR amplified by primers, DM1 and DM2, to add attB tags. Finally, PCR products 
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were transferred into pDONR221 by BP clonase (Invitrogen). Entry clones were verified 

by DNA sequencing. Capsid mutants were then transferred to the destination vectors, 

pNLex_attR (Stanyon et al., 2003) and pHZ13attR, by LR clonase (Invitrogen). Capsid 

mutants in pNLex_attR were transformed into Yeast strain RFY309 and used in Y2H 

assays against all capsid interactors. Capsid mutants in pHZ13attR were used in Co-AP 

experiments using methods described in Section 2.2.8. 

 Human NAP1L1 in pDONR223 was retrieved from a human ORF library 

(Lamesch et al., 2007). Full-length mosquito AAEL005567 was PCR amplified from 

mosquito Y2H cDNA library by primers, DM190 and DM191. The PCR product was 

cloned into pDONR221 by BP clonase (Invitrogen). Human NAP1L1 and mosquito 

AAEL005567 in pDONR were transferred to pJZ4_attR (Stanyon et al., 2003) and 

pHZ12attR by LR clonase (Invitrogen). NAP1L1 and AAEL005567 in pJZ4_attR were 

transformed into Yeast strain RFY231 and used for Y2H assays against capsid and its 

mutants. NAP1L1 and AAEL005567 in pHZ12attR were used in Co-AP experiments 

using methods described in Section 2.2.8. 

 

3.3 Results and discussion 

 3.3.1 The C-terminus of capsid potentially mediates the interaction between 

capsid and NAP1L1, and between capsid and AAEL005567 

  In Chapter 2, I found that dengue capsid interacts with human NAP1L1 and 

mosquito AAEL005567 suggesting a conserved protein interaction (interolog). 

Interestingly, previous studies have shown that capsid shuttles between the nucleus 

and the cytoplasm (Tadano et al., 1989; Wang et al., 2002; Sangiambut et al., 2008). 
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Capsid contains three potential nuclear localization signals (NLS) at amino acid 

residues 6-9, 73-76 and 85-100 (Figure 3-3) (Bulich and Aaskov, 1992). The NLS at 

residues 85-100 of capsid has been found to mediate the interaction with Importin alpha 

in capsid from both dengue virus and WNV (Bhuvanakantham et al., 2009). This NLS is 

classified as a bipartite signal (Wang et al., 2002), which is the same type as the NLS 

found in another NAP1L1-binding protein, DGKζ (Okada et al., 2011). Thus, I 

hypothesized that capsid interacts with NAP1L1 and AAEL005567 using its bipartite 

NLS. 

 To test this hypothesis, I constructed four mutants of capsid in which each NLS 

was either deleted or mutated (Figure 3-3). Next, I screened all mutants against 

NAP1L1 and AAEL005567 using Y2H assays (Figure 3-4). Interestingly, deletion of the 

bipartite sequence (residues 85-100) either alone or along with the middle NLS 

(residues 73-100) dramatically reduced LacZ reporter activity indicating impaired 

interaction with both NAP1L1 and AAEL005567. Activation of the more sensitive Leu2 

reporter, however, was affected only for the interaction between CΔ73-100 and 

NAP1L1. Deletion of the N-terminal NLS (residues 1-9) did not affect the interactions. 

These results indicate that residues 85-100 of capsid are important but not essential for 

the interaction between capsid and NAP1L1 or AAEL005567. I also tested a capsid 

mutant (Cmut) with a defective bipartite NLS. Cmut, which has two single amino acid 

changes (R85A, K86A), has been shown to be defective for nuclear localization and for 

interaction with DAXX (Netsawang et al., 2010). The defective bipartite sequence did 

not interfere with the interaction between capsid and NAP1L1 or AAEL005567. These 

data suggest that while the bipartite NLS contributes to the interaction with NAP1L1 or
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Figure 3-3. The constructs of dengue capsid used in this project. CA is the 

immature capsid still containing the transmembrane domain (TM). CV is the mature 

capsid used as the wild-type. CΔNLS is the capsid with the bipartite NLS (residues 85-

100) deleted. CΔ1-9 is the capsid with the N-terminal NLS (residues 1-9) deleted. 

CΔ73to100 is the capsid with the middle NLS (residues 73-76) and the bipartite NLS 

deleted. Cmut is the capsid with two amino acid substitutions (green) in the bipartite 

NLS (R85A and K86A). 
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Figure 3-4. Y2H results from capsid domain mapping. Capsid and its mutants were 

expressed in Y2H BD strains (rows), while human NAP1L1 (NAP1L1) and mosquito 

NAP1 (AAEL005567 ) were expressed in Y2H AD strains (columns). The diploids from 

the screen were plated on media containing X-gal (A) or lacking leucine (B). Growth on 

the plates lacking leucine indicates an interaction. Blue on X-gal plates indicates a 

strong interaction. 
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AAEL005567, it does not need to be functional for nuclear localization.  I also tested the 

interactions between the capsid mutants and AAEL005567 by Co-AP in S2R+ cells 

(Figure 3-5). The results were similar to those for Y2H. Deletion of the bipartite 

sequence (residues 85-100) dramatically reduced but did not eliminate the amount of 

AAEL005567 protein that co-purified with capsid. Deletion of the N-terminal NLS 

(residues 1 -9) did not reduce the amount of co-purified AAEL005567. Again, these 

results suggest that the C-terminal bipartite NLS of capsid is important for the 

interaction with AAEL005567 protein, but it is not essential.  

Surprisingly, mutations of capsid did not reduce the amount of co-purified human 

NAP1L1 (Figure 3-6). This result contradicted the Y2H data and the Co-AP data with 

AAEL005567 protein. The Co-AP control sample showed a high background of co-

purified NAP1L1 with the NTAP tag alone, so the contradicting Co-AP results might be 

due to non-specific binding of NAP1L1 to the agarose beads. This could be tested in a 

repeat experiment using less protein and more washing steps to try to reduce the 

background. Alternatively, the different result with mosquito AAEL005567 and human 

NAP1L1 may be due to expression of the human NAP1L1 in insect cells, which is not its 

natural cellular environment. Thus, it will be important to test the capsid-NAP1L1 

interaction in human cells. 

 I also screened the capsid mutants against the other host capsid interactors in 

order to identify the regions of capsid that are required for their interactions (Figure 3-7 

and Table 3-1). Out of 33 host proteins tested, three required residues 10-72, eight 

required residues 73-84, and six required residues 73-100. Twelve interactors required 
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Figure 3-5. Co-affinity purification of mosquito AAEL005567 with capsid and its 

mutants. The capsid and its mutants were affinity purified with IgG agarose beads. 

Purified samples were probed with anti-Myc and anti-Protein A. 
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Figure 3-6. Co-affinity purification of human NAP1L1 with capsid and its mutants. 

Capsid and its mutants were affinity purified with IgG agarose beads. Purified samples 

were probed with anti-Myc and anti-Protein A. The antibody against human NAP1L1 

recognized two bands (noted by numbers 1 and 2). 
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Figure 3-7. Y2H domain mapping. A is the region between amino acid residues 1 to 9. 

B is the region between residues  10 to 72. C is the region between residues 73 to 84. D 

is the region between residues 85 to 100. E is the transmembrane domain. The 

description here is used for Table 3-1 



 

 

129 

Table 3-1. Domain mapping of capsid for the region that is responsible for the 

interactions with host proteins.  Capsid mutants are shown in Figure 3-7. Interface 

categories are denoted by letters (B, C, D and U), which are explained in Figure 3-7. 
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the bipartite sequence (residues 85-100), and four interactors could not be classified. In 

addition, 15 host proteins seemed to require the functional bipartite NLS of capsid for 

efficient binding. It is worth noting that three out of the four unclassified interactors were 

detected with immature capsid containing a transmembrane domain, but not with the 

virion capsid. These mapping results require further validation with Co-AP assays. 

These results also demonstrated that all capsid mutants were stable enough to interact 

with some proteins in Y2H assays. Thus, the domain mapping of dengue capsid with 

NAP1L1 and AAEL005567 are unlikely to be false results caused by the instability of the 

mutant proteins. 

 

 3.3.2 NAP1L1 may regulate the nuclear localization of capsid in human 

cells 

 From Section 3.3.1, Y2H and Co-AP assays have suggested that NAP1L1 and 

AAEL005567 may modulate the nuclear localization of capsid since NAP1L1 and 

AAEL005567 require the bipartite NLS of capsid for efficient binding. To examine this, I 

set out  to test whether a change in NAP1L1 or AAEL005567 expression can affect the 

nuclear localization of capsid. First, I established stable human cell lines expressing 

capsid. I generated two HepG2 cell lines expressing either N-terminal Myc-tagged 

capsid or N-terminal GFP-tagged capsid. I found that both myc-capsid and GFP-capsid 

localized to the nucleus and to concentrated regions within the nucleus that may 

correspond to the nucleolus (Figure 3-8). These results are similar to the previously 

reported localization of capsid (Wang et al., 2002). I also detected Myc-tagged capsid in 

the stably transfected cells by immunoblotting (Figure 3-9). 
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Figure 3-8. Stable HepG2 cells expressing capsid. (A) HepG2 cells expressing Myc-

capsid. The cells were stained with anti-myc (green), anti-NAP1L1 (red) and DAPI 

(blue). (B) HepG2 cells expressing GFP-capsid (green). The cells were stained with 

DAPI. 
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Figure 3-9. Expression of capsid in the stable cell line. The lysate of GFP-

transfected HepG2 cells (GFP only) and the lysate of HepG2 cells stably expressing 

Myc-capsid (Myc_capsid) were analyzed by Western blot. (A) The membrane was 

probed with anti-Myc. (B) The membrane was probed with anti-capsid. 
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Next, I set out to test the role of NAP1L1 in the nuclear localization of dengue 

capsid. First, I tested whether depletion of NAP1L1 would affect the localization of 

capsid. I treated HepG2 cells stably expressing Myc-capsid with four NAP1L1 siRNAs. 

Among these, Hs_NAP1L1_5 depleted most of NAP1L1 while Hs_NAP1L1_4 and 

Hs_NAP1L1_6 resulted in no and modest depletion of NAP1L1, respectively (Figure 3-

10). I failed to obtain lysate from cells treated with Hs_NAP1L1_10. Immunostaining of 

Hs_NAP1L1_5-treated cells also showed that NAP1L1 expression was reduced 

compared to negative siRNA-treated cells (Figure 3-11). I did not observe any change in 

the nuclear localization of Myc-capsid as a result of NAP1L1 knock down (Figure 3-11). 

Next, I tested whether over-expression of NAP1L1 would affect the localization of 

capsid. I transfected either GFP or GFP-NAP1L1 into HepG2 cells stably expressing 

Myc-capsid. I found that capsid was localized more in the cytoplasm in some GFP-

NAP1L1-transfected cells compared to GFP-transfected cells (Figure 3-12). This 

suggests that over-expressed NAP1L1 may inhibit the nuclear localization of dengue 

capsid. 

The results from over-expressing NAP1L1 are still preliminary. Since not all GFP-

NAP1L1-transfected cells showed the same change in capsid nuclear localization, they 

have to be statistically analyzed to determine the proportion of cells affected by NAP1L1 

over-expression. Furthermore, a Co-AP assay is required to determine whether 

endogenous NAP1L1 would co-purify with capsid. Finally and importantly, the role of 

NAP1L1 and AAEL005567 during live virus replication should be investigated. 
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Figure 3-10. Expression of NAP1L1 when the cells were treated with siRNA. The 

HepG2 cells stably expressing Myc-capsid were treated with siRNA. The lysates were 

analyzed by Western analysis. Anti-beta tubulin was used to quantify total proteins. 



 

 

135 

 

Figure 3-11. Nuclear localization of capsid is not altered by silencing of NAP1L1. 

(A) HepG2 cells stably expressing Myc-Capsid treated with AllStars Negative Control 

siRNA were stained with anti-Myc (green), anti-NAP1L1 (red) and DAPI. (B) Only the 

green channel (anti-myc) is shown. (C) HepG2 cells stably expressing Myc-Capsid 

treated with Hs_NAP1L1_5  siRNA were stained with anti-Myc (green), anti-NAP1L1 

(red) and DAPI. (D) Only the green channel (anti-myc) is shown. The red channel was 

equally exposed for 5 seconds for each sample. 
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Figure 3-12. Over-expression of NAP1L1 affects localization of capsid. (A) HepG2 

cells stably expressing Myc-capsid transfected with GFP (green) were stained with anti-

myc(red) and DAPI (blue). (B) Only the red channel (anti-myc) is shown. (C) HepG2 

cells stably expressing Myc-capsid transfected with GFP-NAP1L1 were stained with 

anti-Myc (red) and DAPI (blue). (D) Only the red channel (anti-myc) is shown. The red 

channel was equally exposed for 5 seconds for each sample. Cells expressing NAP1L1 

have increased Myc-capsid in the cytoplasm (arrows) 
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3.4 Summary 

 I hypothesized that the NLS of dengue capsid might be required for the 

interaction with human NAP1L1 and mosquito AAEL005567. I constructed mutant 

capsid proteins with one or more NLS deleted. I also included the mutant of capsid 

containing amino-acid substitution at the bipartite NLS that has been shown to disrupt 

an interaction with Importin (Netsawang et al., 2010). Using Y2H assays and Co-AP 

assays with these mutants, I found that the bipartite NLS (amino acid residues 85-100) 

of dengue capsid is required for efficient interaction with NAP1L1 and AAEL005567. 

However, the amino acid substitution did not disrupt the interaction suggesting that the 

interface of interaction of capsid with NAP1L1 and AAEL005567 may be different from 

that of Importin. I also mapped the regions of capsid that might be required for its 

interactions with human and mosquito proteins. Finally, I have shown that over-

expression of NAP1L1 may inhibit the nuclear localization of capsid. These results have 

to be further investigated in models of virus infection and replication. In Chapter 5, I 

further discuss the implications of these results and I suggest future experiments to 

explore the functional significance of the capsid-NAP1L1 interaction. 
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CHAPTER 4 

 

TOWARDS A FUNCTIONAL ASSAY FOR DENGUE-HOST INTERACTIONS 

 

4.1 Introduction 

 Identification of a protein-protein interaction (PPI) may hint at the functions of a 

protein by associating it with the known functions of its interacting partner. However, the 

functional consequences of a PPI, such as inhibition or activation of one protein by 

another, are seldom revealed by the identification of that PPI alone. Further assays are 

required to understand the function of a PPI. In some cases, functional screens have 

been implemented regardless of the knowledge of PPI. Sessions et al., for example, 

used RNA interference assays in Drosophila cells to identify host factors that are either 

essential for or repressive against dengue replication (Sessions et al., 2009). They 

identified 116 Drosophila genes that when silenced led to the suppression of dengue 

replication. They called these genes dengue virus host factors (DVHF). The human 

orthologs of 42 of the Drosophila DVHFs were shown to be required for dengue 

replication in human cells. These DVHFs may be targets for the development of an 

antiviral drug. One of DVHFs, TRIP11, was subsequently found to physically interact 

with NS5 by Y2H (Khadka et al., 2011). However, we have no clue how the virus 

interacts with the other DVHFs. The DVHFs could be tested for PPI with dengue 

proteins to determine how they interact with the virus. However, these DVHFs may 

indirectly interact with dengue virus by interacting with other host proteins that physically 

interact with dengue proteins.  
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An alternative way to identify functional PPI is to first identify PPI and then assay 

for their functions. Khadka et al., for example, screened dengue proteins against a 

human liver library using a yeast two-hybrid assay (Khadka et al., 2011). They identified 

139 dengue-human PPI involving 109 human genes. They then selected twelve dengue 

interactors for RNA interference assays and found that six of them were essential for 

efficient viral replication. These results provided a connection between the PPI data and 

the functions of the PPI. Such information could be used, for example, to design 

antiviral therapies by targeting the PPI found to be essential for the virus. 

 PPI identified by my study have expanded our knowledge of how dengue virus 

may interact with its hosts, but I still do not know the significance and function of most of 

these PPI. It would be ideal to study the effects of disrupting dengue interactors on live 

virus replication. However, a live virus can be dangerous to handle and difficult to assay 

for replication. An alternative method is to use a non-infectious replicon of a dengue 

virus. Such a replicon can replicate but it cannot form infectious virions, usually because 

it lacks proteins required for packaging or dissemination. If the replicon has a reporter 

gene, it can be used to study and calculate replication levels. Ng et al., constructed 

such a dengue replicon, which stably replicated in human cells under puromycin 

selection (Ng et al., 2007). The replicon lacked the capsid, membrane protein and 

envelope protein genes, but contained Renilla luciferase, which can be quantified and 

correlated to the level of RNA replication. This replicon has been used to study several 

aspects of dengue-host interactions, such as the roles of cholesterol biosynthesis 

(Rothwell et al., 2009) and of pyrimidine biosynthesis (Wang et al., 2011) in dengue 
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replication. However, the replicon was designed specifically for human cells, but not for 

mosquito cells that are also an essential host of dengue virus.  

 The overall goal of the work described in this chapter was to develop a system 

for testing the importance of specific mosquito genes for dengue replication. My 

approach was to design a non-infectious replicon that would work in mosquito cells. If 

successful, I could then knock down specific mosquito genes by RNAi and test whether 

the replicon is affected. First, I demonstrated that the mosquito cell line AAG2 is 

susceptible to a dsRNA-bathing assay similar to the one used to identify DVHFs in 

dengue-infected Drosophila cells (Sessions et al., 2009). My results have indicated that 

large-scale RNA interference screens similar to the one used by Sessions et al., would 

be feasible to identify mosquito factors required by dengue virus. Next, I designed and 

constructed a dengue RNA replicon and tested its replication and its reporter genes. 

Unfortunately, the replicon did not work and would require further development. I 

discuss my troubleshooting efforts and suggest specific strategies to improve the 

replicon.  

  

4.2 Materials and methods 

 4.2.1 Cell lines 

 AAG2 cells, A. aegypti cells derived from embryonic tissue (Lan and Fallon, 

1990), were a gift from Dr. Ann Fallon (University of Minnesota, St. Paul, Minnesota). 

The cells were maintained in Schneider’s media supplemented with 10% FBS and 100 

µg/ml gentamicin at 28°C. The cells were passaged once per week at 1:10 to 1:20 
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dilutions. To dislodge the surface-attached cells, they were treated with 0.25% Trypsin-

EDTA for about 5 minutes at room temperature. 

 A549 cells, adenocarcinomic human alveolar basal epithelial cells (Giard et al., 

1973), were a gift from Dr. Lawrence Grossman (Wayne State University, Detroit, 

Michigan). HepG2 cells, a human liver carcinoma cell line (Aden et al., 1979), were a 

gift from Dr. Kezhong Zhang (Wayne State University, Detroit, Michigan). Both human 

cell lines were maintained in DMEM/high glucose + sodium pyruvate (Thermo scientific: 

SH30243.01) supplemented with 10% FBS and 1X Antibiotic/Antimycotic Solution 

(Thermo scientific: SV30079.01) at 37°C in 5% CO2. The cells were passaged once per 

week at 1:4 to 1:8 dilutions. The media was changed every 3-4 days. To dislodge the 

surface-attached cells, they were treated with 0.05% Trypsin-EDTA for about 5-7 

minutes at 37°C. 

  

 4.2.2 RNA interference (RNAi) assays for insect cells and fluorescence-

activated cell sorting (FACS) analysis 

 dsRNAs targeting A. aegypti IAP1 (AAEL009074 ) were designed using 

SnapDragon (http://www.flyrnai.org/cgi-bin/RNAi_find_primers.pl) . The primers used 

were DMRNA1 (5’-GGGCGGGT ATC AGT GCC GAT TTC GTA CC -3’) and DMRNA2 

(‘5-GGGCGGGT CGG TGC TGA TAG TTG CTG AA-3’) for an N-terminal part of A. 

aegypti IAP1(ae_IAP(1/2)), and DMRNA3 (‘5-GGGCGGGT TTC AGC AAC TAT CAG 

CAC CG-3’) and DMRNA4 (‘5- GGGCGGGT TCA TCA CTA CTG CAG CCG AC-3’) for 

a C-terminal part of A. aegypti IAP1(ae_IAP(3/4)). These primers were used to PCR 

amplify the template for dsRNA syntheses from the mosquito cDNA Y2H library using 
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methods previously described (Guest et al., 2011). dsRNA synthesis was as described 

in the same study (Guest et al., 2011) and evaluated by gel electrophoresis (Figure 4-

1). dsRNA targeting the green fluorescent protein (GFP) was used as a negative 

control. dsRNAs targeting D. melanogaster genes involved in the wingless signaling 

pathway were synthesized as described (Guest et al., 2011) and used in this study.  

The RNAi and FACS protocol used in this study was based on the published 

study (Guest et al., 2011). The experiment with S2R+ cells exactly followed the 

described protocol. Some modifications were required for experiments with AAG2 cells. 

Briefly, AAG2 cells were treated with trypsin to dislodge them from the culture flask. The 

number of viable cells was counted using trypan blue dye and a hemacytometer. The 

cells were spun down and resuspended with serum-free Schneider’s media to 4 × 105 

cells/ml. 75 µl of cells were added to each well of the 96-well plate already containing 

5µl of 200 ng/µl appropriate dsRNA. Each dsRNA was loaded into two wells to assay as 

a duplicate. The content in each well was thoroughly mixed by pipetting. The plate was 

incubated at room temperature for 90 minutes. Next, 150µl of Schneider’s media 

supplemented with 10% FBS was added to each well. The plate was incubated under 

culture conditions for 5 days. After the incubation, the cells were treated for 4-5 minutes 

at room temperature with 0.25% Trypsin-EDTA supplemented with extra 5 mM EDTA to 

better prevent AAG2 cells from clumping together. The cells in each well were then 

resuspended in 200µl of Schneider’s media supplemented with 10% FBS and 3µl of 

Vybrant DyeCycle Orange/ 1 ml of media. The cells were transferred to a U-bottom 96-

well plate. The plate was loaded to the FACS machine as previously described (Guest 

et al., 2011). The percentage of cells with DNA content similar to G1, sub-G1, G2/M
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Figure 4-1. dsRNA targeting mosquito Inhibitor of Apoptosis Protein 1 (IAP1). (A) 

DNA templates for dsRNA synthesis. (B) dsRNAs. ae_IAP1(1/2) targets the 5’ end of 

the IAP1 transcript, while ae_IAP1(3/4) targets the 3’ end. 3µl of the total 30µl PCR 

products and 1µl of 20µl in vitro transcription products were loaded onto 1% agarose gel 

in 1XTBE. Gel electrophoresis was conducted at 100V for 30 minutes. The DNA 

markers were 300 ng of 1 kB Plus DNA ladder (Invitrogen).   
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and more than that of G2/M populations were retrieved. The data were normalized by 

dividing the percentage of cells observed in each population set with the percentage 

observed in GFP dsRNA control. For example, 10% of cells treated with dsRNA for 

gene A are in the G1 population, while 25% of cells treated with dsRNA for GFP are in 

the G1 population. Thus, the normalized G1 data for dsRNA for gene A is 10/25 = 0.4 

comparing to GFP dsRNA treatment. Since each experimental set was duplicated, the 

average and standard deviation were calculated and used to plot the graphs (Figure 4-

2).  

  

 4.2.3 Dengue replicon construction 

The cloning strategy for constructing a dengue subgenomic replicon is shown in Figure 

4-3. The cDNA of dengue virus serotype 2 (strain 16681) was used as the template for 

PCR amplification using Phusion High-Fidelity DNA Polymerase (NEB) according to the 

manufacturer’s instruction (see Appendix C for sequences of the primers). Fragment 1 

was constructed by sewing three fragments together. Fragment 1.1 was constructed by 

PCR amplification of the 5’ UTR and the first 22 amino acids of capsid from dengue 

virus cDNA with primers, DM118 and DM119. Fragment 1.2 was constructed by PCR 

amplifying the puromycin resistant gene from pPur (Clonetech) using primers, DM120 

and DM121. Fragment 1.3 was constructed by PCR amplifying overlapping primers, 

DM122 and DM123, without a template. Fragment 1.1, 1.2 and 1.3 were sewn by 

overlap extension PCR using primers, DM134 and DM123. The PCR product of 

Fragment 1 was column purified (Qiagen) and digested with PstI (NEB). 
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Figure 4-2. The results of FACS analysis. Values on the Y-axis represent the 

proportion of cells in each cell cycle stage according to their DNA content/cell compared 

to the GFP dsRNA control. The error bars are standard deviation. (A) G1 population. (B) 

Sub-G1 population. Blue columns represent the data from mosquito AAG2 cells. Red 

columns represent the data from Drosophila S2R+ cells. All dsRNAs target the indicated 

Drosophila genes, except GFP, ae_IAP1(1/2) and ae_IAP1(3/4). Knock down of eIF3-

S8, RpL32 and Cul-4 are known to cause G1 arrest in Drosophila cells. 
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Figure 4-3. The cloning strategy for constructing a dengue subgenomic replicon. 

The replicon (TOP) was subcloned into the yeast shuttle vector YRp7. The replicon was 

constructed by assembling seven fragments (1 to 7). The details of the construction are 

described in Section 4.2.3. T7 is the T7 promoter. C22 is the sequence encoding the first 

22 amino acids of the capsid. pac is the puromycin-resistance gene. FMDV2A is the 2A 

sequence from the foot-and-mouth disease virus. RLuc is the Renilla luciferase gene. 

TaV2A is the 2A sequence from Thosea asigna virus. E24 is the sequence encoding the 

last 24 amino acids of the envelope protein gene. UTR is the untranslated region. 
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Fragment 1 then was ligated into pUC19, which was digested with PstI and SmaI 

(NEB), using T4 ligase (Invitrogen). Fragment 3 was constructed by sewing two 

fragments together. Fragment 3.1 was PCR amplified from overlapping primers, DM124 

and DM125, without a template. Fragment 3.2 was PCR amplified from dengue cDNA 

using primers, DM16 and DM126. Fragment 3.1 and 3.2 were sewn by overlap 

extension PCR using primers, DM16 and DM135. Fragment 3 was column purified and 

then digested with PstI and SalI (NEB). Fragment 3 then was ligated into pUC19, which 

was digested with PstI and SalI. Fragment 3 was digested from pUC19_Fragment 3 

with PstI and SalI. Fragment 3 then was ligated into pUC18_Fragment 4, which was 

digested with PstI and SalI. Fragment 1 was PCR amplified from pUC19_Fragment 1 

with primer, DM123 and DM134.  Fragment 1 then was digested with PstI and ligated 

into pUC19_Fragment 3+4, which was digested with HpaI and PstI. Fragment 4 was 

PCR amplified from dengue cDNA using primers, DM15 and DM21. Fragment 4 was 

digested with SalI and EcoRI, and then was ligated into pUC18, which was digested 

with SalI and EcoRI. Fragment 5 was PCR amplified from dengue cDNA using primers, 

DM20 and DM25. An XbaI site was added to the 3’ end of Fragment 5 by PCR 

amplification with primer, DM20 and DM136. Fragment 5 was digested with XhoI and 

XbaI and ligated into pUC19, which was digested with SalI and XbaI. (SalI and XhoI 

have compatible sticky ends.) Fragment 6 was PCR amplified from dengue cDNA with 

primers, DM24 and DM29.  An XbaI site was added to the 3’ end of Fragment 6 by PCR 

amplification with primer, DM24 and DM136. Fragment 6 was digested with ApaI and 

XbaI and ligated into pUC19_Fragment 5, which was digested by ApaI and XbaI 

Fragment 7 was PCR amplified from dengue cDNA using primers, DM31 and DM127. 
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Fragment 7 was digested with BsrGI and XbaI and ligated into pUC19_Fragment5+6, 

which was digested by BsrGI and XbaI. Fragment 1+3+4 was PCR amplified from 

pUC18_Fragment 1+3+4 using primers DM153 and DM154. Fragment 5+6+7 was PCR 

amplified from pUC19_Fragment 5+6+7 using primers M13F(-21) and M13R, and then 

digested with XhoI. Fragment 1+3+4 and Fragment 5+6+7 were sewn together by 

overlap extension PCR using primers, DM154 and DM157. Fragment 1+3+4+5+6+7 

was cloned into YRp7, which was digested with ClaI and BamHI, using yeast 

recombination. Fragment 2 was PCR amplified from pGL4.75[hRLuc/CMV] (Promega) 

using primers DM158 and DM159. Fragment 2 was cloned into YRp7_Fragment 

1+3+4+5+6+7, which was digested with NotI, using yeast recombination. 

 For in vitro RNA transcription, the YRp7_dengue_Replicon was digested with 

XbaI. The digestion products were then separated by gel electrophoresis and the ~11 

kb replicon was purified by phenol and phenol-chloroform extraction, and precipitated by 

ethanol (Figure 4-4). The replicon DNA was treated with 200 µg/ml of proteinase K and 

0.5% SDS for 30 min at 50°C to eliminate RNase. The DNA was then purified by 

phenol-chloroform extraction and precipitated by ethanol. The DNA was used as a 

template for RNA transcription with MEGAscript Kit (Ambion) with 1:4 GTP to cap 

analog according to the manufacturer’s protocol. After 2 hours of transcription at 37°C, 

the reaction was treated with 1 µl of RNase-free DNase at 37°C for 15 minutes and 

analyzed by formaldehyde gel electrophoresis (Figure 4-5). The RNA was purified by 

phenol-chloroform extraction, precipitated by ethanol and resuspended in RNase-free 

water to 1 µg/µl. The RNA replicon was kept at -80°C until use. 
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Figure 4-4. The YRp7_dengue_Replicon digested with XbaI. The top band is the 

DNA of replicon (~11 kb). The bottom band is the YRp7 plasmid backbone (~6 kb). 3 µl 

of the total 30 µl digestion products were loaded onto 1% agarose gel in 1X TBE. The 

gel electrophoresis was conducted at 100V for 30 minutes. The DNA markers were 300 

ng of 1 kB Plus DNA ladder (Invitrogen).  
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Figure 4-5. Replicon RNA. 2 µl of 20 µl in vitro transcription reaction was loaded to 

1.2% agarose formaldehyde gels. Electrophoresis was conducted at 100V for 60 

minutes. The RNA marker was 3 µg of 0.24-9.5 Kb RNA ladder (Invitrogen). 
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4.2.4 Cell viability and Renilla luciferase assay 

 Before measuring Renilla luciferase activity, cell viability was measured with 

CellTiter-Glo Assay (Promega) according the manufacturer’s instructions. Briefly, each 

sample of the cells was treated with an appropriate amount of trypsin and resuspended 

in an appropriate amount of media so that every sample contained a similar number of 

cells (~4 x 105 cells/ml). Next, 100 µl of each sample was added into each well of an 

opaque 96-well plate. One well contained media without cells so that background 

luminescence could be measured. 100 µl of pre-mixed CellTiter-Glo reagent was added 

to each sample. The plate was shaken on an orbital shaker for 2 minutes and incubated 

at room temperature for 10 minutes. The plate was then read by GLOMAX 96 

microplate luminometer (Promega) according to the manufacturer’s instructions. 

EnduRen Live Cell Substrate (Promega) was used to measure Renilla luciferase activity 

according to the manufacturer’s instructions. Briefly, each sample of cells was treated 

with an appropriate amount of trypsin and resuspended in an appropriate amount of 

media so that every sample contained a similar number of cells (~4 x 105 cells/ml). 

Next, 100 µl of each sample was added into each well of an opaque 96-well plate. 

EnduRen substrate was added to each cell sample so that the final concentration of the 

substrate was 60 µM. The plate was incubated under cell culture conditions for at least 

90 minutes to 24 hours. Finally, the plate was read by GLOMAX 96 microplate 

luminometer (Promega). 
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4.2.5 DNA and RNA transfection  

 mRNA transfection was done with the TransIT-mRNA Transfection Kit (Mirus). 

Briefly, 1x105 cells were seeded into a well of a 12-well plate one day before 

transfection. On the day of transfection, the transfection reagents were warmed to room 

temperature. 1 µg of mRNA was diluted in 100 µl of serum-free media. 1 µl of mRNA 

boost reagent was then added to the RNA mixture followed by gently pipetting to mix 

the reaction well. Next, 1 µl of TransIT-mRNA reagent was added to the RNA mixture 

followed by gently pipetting to mix the reaction well. The reaction was then incubated at 

room temperature for 2-5 minutes. The reaction was gently added dropwise to the cells, 

and the plate was gently swirled to evenly distribute complexes. Two days after 

transfection, the cells were used for further analyses or for selection for a stable cell line 

with 5 µg/ml of puromycin. DNA or RNA transfection was also done with electroporation 

with the Neon Transfection System (Invitrogen). The electroporation was performed 

according to the manufacturer’s protocol with some modifications. Briefly, 500 ng of 

DNA or RNA and 5x106 cells/ml of A549 cells were loaded into a 10 µl tip. The tip was 

electroporated by two pulses of 1,200 volts with 30 ms of pulse width. After two days, 

the cells were used for further analysis or for selection for a stable cell line with 5 µg/ml 

of puromycin. The DNA transfection methods for Drosophila cells and human cells are 

described in Section 2.2.8 and Section 3.2.4, respectively. 
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4.3 Results and discussion 

 4.3.1 AAG2 cells are susceptible to a dsRNA bathing technique 

 The dsRNA bathing technique, in which cells are directly incubated with dsRNA, 

is widely used as a means to silence genes in Drosophila cells since the cells are 

capable of directly taking up dsRNA (Clemens et al., 2000). Because it is simple and 

economic, the technique has been used in several hundred large-scale RNA 

interference studies with Drosophila cell lines (Mohr et al., 2010), including studies of 

the pathways responsible for innate immunity (Foley and O'Farrell, 2004; Kleino et al., 

2005). It was also used for a genome-wide study to identify DVHFs in dengue-infected 

Drosophila cells as mentioned earlier (Sessions et al., 2009). However, Drosophila is 

not a natural host for dengue virus and the Drosophila cells could only be infected with 

an extensively mutated virus (Sessions et al., 2009). The natural dengue host, 

mosquito, has been shown to be susceptible to dsRNA injection into its thorax for gene 

silencing, hinting at the potential for direct up-take of dsRNA (Zhu et al., 2003). It is also 

worth noting that C6/36 cells from A. albopictus, which have been widely used to 

propagate dengue virus, have been shown to have defective RNA interference 

machinery (Brackney et al., 2010) so they may not be used with this technique. 

However, no studies had tested whether the dsRNA bathing technique would work in 

cultured A. aegypti cells. Thus, I set out to test this possibility. 

 To test RNAi in mosquito AAG2 cells, I selected a mosquito inhibitor of apoptosis 

1, AAEL009074 (ae_IAP1), because the phenotype observed after silencing its 

Drosophila ortholog, DIAP-1, is extensive cell death. I designed two dsRNAs targeting 
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two non-overlapping regions of ae_IAP1. ae_IAP1(1/2) targeted base positions 96-552 

of the cDNA, while ae_IAP1(3/4) targeted base positions 533-953 of the cDNA (1,137 

bp) (Figure 4-1). I applied the protocol for dsRNA bathing with minor modifications to 

AAG2 cells (see Section 4.2.2.) By observing the cells under a microscope, I found that 

both ae_IAP1(1/2) and ae_IAP1(3/4) induced dramatic cell death 5 days after dsRNA 

bathing. The fact that two dsRNAs from the same gene gave the same expected 

phenotype suggests that they are not due to off-target effects (Kulkarni et al., 2006; Ma 

et al., 2006). I confirmed these results by FACS analysis, which detected an elevated 

level of cells in the sub-G1 population, characteristic of dying cells, after the treatment of 

each one of dsRNAs (Figure 4-2).  A control dsRNA targeting a GFP gene did not 

induce cell death. Taken together, I found that AAG2 cells are compatible with the 

dsRNA bathing technique. During the course of this project, a similar study showing 

identical results to my findings was published (Wang and Clem, 2011).  

 Although A. aegypti and D. melanogaster shared the most recent common 

ancestor 225-280 million years ago (Simmons and Weller, 2001), I decided to see 

whether dsRNA targeting a Drosophila gene is also capable of silencing a mosquito 

gene to some degree, and vice versa. Thus, I selected dsRNAs targeting a number of 

Drosophila genes, including eIF3-S8, RpL32 and Cul-4, which have been reported to 

significantly induce G1 arrest when knocked down (Guest et al., 2011). The results 

showed that dsRNA could not silence the ortholog of its original target since no G1 

arrest was observed (Figure 4-2). Thus, unfortunately, the extensive RNAi reagents 

available for Drosophila cannot be used for the mosquito cell lines.  
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4.3.2 The dengue replicon failed to replicate in insect and human cells 

 The dengue RNA replicon constructed by Ng et al., has been shown to work well 

in human cell lines (Ng et al., 2007). The replicon contains most of the genome of 

dengue virus serotype 2 (strain NGC), but lacks a part of the capsid gene, a part of the 

envelope protein gene and the entire membrane protein gene to eliminate its ability to 

assemble a mature virion. These genes were replaced with a puromycin-resistance 

gene and a Renilla luciferase gene. The replicon has one “2A” sequence derived from 

the foot-and-mouth disease virus inserted between the puromycin-resistance gene and 

the Renilla luciferase gene, while a stop codon and an internal ribosome entry site 

(IRES) are at the 3’ end of the luciferase gene. The 2A sequence, a short peptide 

sequence found in the peptides encoded by picornaviruses, can disrupt a ribosome 

from generating the peptide bond between the last two amino acids of the sequence 

without terminating the translation process resulting in two separate peptides from a 

single mRNA (Doronina et al., 2008). Thus, the puromycin-resistance gene is translated 

and separated from luciferase and the rest of the dengue proteins. The translation 

continues and then is terminated at the stop codon at the 3’ end of the luciferase gene. 

The IRES initiates a new round of translation of the rest of the dengue genome. 

However, this IRES from encephalomyocarditis virus can be recognized by the human 

protein translation machinery, but not as efficiently by that of an arthropod (Finkelstein 

et al., 1999; Woolaway et al., 2001).  

I set out to create a modified version of this replicon that could replicate in AAG2 

and S2R+ cells. The most important modification of the original replicon was to replace 

the IRES with a second 2A sequence modified from the 2A sequence from Thosea 
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asigna virus (TaV). I chose this 2A sequences so that the two 2A sequences were not 

so similar that they would result in homologous recombination. The use of multiple 2A 

sequences has been reported to successfully generate separate peptides from a single 

mRNA encoding four CD3 proteins (Szymczak et al., 2004). I failed to retrieve the 

original replicon from the authors so I constructed my own dengue replicon from dengue 

cDNA as described in Section 4.2.3 and Figure 4-3. The DNA template of the replicon 

was successfully generated and sequenced. The RNA replicon was also successfully 

transcribed (Figure 4-5). 

 I attempted to transfect the replicon RNA into AAG2 cells, S2R+ cells, and A549 

cells. However, none of these cell lines became puromycin-resistant. I tried to use 

several methods for transfection including various transfection reagents and 

electroporation, but none of the methods resulted in puromycin-resistant cells. Thus, I 

set out to test several potential problems that may cause the replicon to fail. First, I 

tested the puromycin-resistance gene by subcloning it into pHZ12_attR (Figure 4-6). 

The resulting vector, pHZ12_pac, was then transfected into S2R+ cells. Interestingly, 

the transfected S2R+ cells were puromycin-resistant for at least one week in 

comparison to the non-transfected cells, which were >90% killed after the second day of 

puromycin treatment. Thus, the puromycin-resistance gene was functional. 

 Second, I hypothesized that the two 2A sequences may not be functional, and 

thus may fail to generate three complete separate peptides. To test the 2A sequences, I 

subcloned two parts of the replicon into pHZ12_attR (Figure 4-6). The first part 

contained the puromycin-resistance gene, the 2A sequence from FMDV and the 

luciferase gene with a stop codon (pHZ12_  pac_FDMV_RLuc). The second part 
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Figure 4-6. Parts of the dengue replicon cloned into pHZ12_attR to test 

expression in Drosophila S2R+ cells. pHZ12_NS1 contained NS1 from dengue virus 

serotype 2. pHZ12_pac contained a puromycin-resistance gene. pHZ12_RLuc 

contained a  Renilla luciferase gene. pHZ12_pac_FDMV_RLuc contained a puromycin-

resistance gene and a  Renilla luciferase gene, which were separated by a 2A 

sequence from foot-and-mouth disease virus. pHZ12_CtoNS1 contained a part of the 

replicon from capsid to NS1. All constructs were N-terminally tagged with Myc. 
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contained the puromycin-resistance gene, the 2A sequence from FMDV, the luciferase 

gene, the 2A sequence from TaV, and a part of envelope protein and NS1 with a stop 

codon (pHZ12_CtoNS1). Interestingly, these two plasmids successfully conferred 

puromycin-resistance to S2R+ cells for at least one week. Thus, the puromycin-

resistance gene and the FDMV 2A sequence were functional. Next, I set out to test the 

luciferase gene. I subcloned the luciferase gene into pHZ12 (Figure 4-6) to be used as a 

positive control for luciferase activity (pHZ12_RLuc). S2R+ cells transfected with 

pHZ12_RLuc, pHZ12_ pac_FDMV_RLuc or pHZ12_CtoNS1 were tested for luciferase 

activity. Interestingly, the cells produced luciferase from all three constructs (Figure 4-7). 

Finally, I set out to test the TaV 2A sequence and NS1. I subcloned NS1 into pHZ12 

(Figure 4-6) to be used as a positive control for NS1 detection (pHZ12_NS1). Both 

pHZ12_NS1 and pHZ12_CtoNS1 properly expressed NS1 in S2R+ cells. However, 

pHZ12_NS1 showed multimeric NS1 as previously reported (Gutsche et al., 2011), 

while pHZ12_CtoNS1 showed faint bands that might be multimeric NS1 or long 

peptides produced by the 2A sequences partially failing to separate the peptide bonds 

(Figure 4-8). Nevertheless, the above results showed that the puromycin-resistance 

gene and the luciferase gene functioned properly, while the 2A sequences mostly 

resulted in three separate peptides with a small amount of fused products. 

 Since the modified part of the replicon functioned properly, I considered two other 

potential causes for its failure. First, the methods that I used for RNA transfection might 

not work. I tested this by using RNA encoding β-galatosidase (LacZ) + EYFP as a 

control since its size was similar to that of the replicon. I first transferred the LacZ gene 

from pIB/V5-His/GW-LacZ (Invitrogen) into pDONR221 by BP clonase and then to 
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pcDNA 6.2/C-YFP-DEST (Invitrogen) by LR clonase. This plasmid was used as a 

template to transcribe RNA. The RNA and the plasmid were separately electroporated 

into A549 cells. I found a small number of EFYP positive cells from the DNA 

electroporation, but none for the RNA (Figure 4-9). This result hinted that RNA 

transfection might be inefficient, which would prevent the replicon from entering the 

cells. Repeat experiments with other RNA are required to further test this possibility. A 

second potential problem is that the part of replicon containing the dengue genome may 

contain mutations that prevent replication. However, sequencing results did not show 

deletions or insertions in the dengue genome. However, there were a few point 

mutations (see Appendix P). To determine whether the viral genome part of the replicon 

functions properly, I may need to generate live dengue virus from the original cDNA to 

determine its infection and replication efficiency. However, our current facility does not 

permit such experiments. Thus, the second potential problem is still unanswered.  
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Figure 4-7. S2R+ cell viability and Renilla luciferase assays. The red bars represent 

cell viabilities measured with CellTiterGlo (Promega). The cell viabilities were divided by 

the background luminescence from the Schneider’s media without cells for 

normalization. The cell viability assay showed that every sample contained a similar 

number of cells. The purple bars represent luciferase activities measured with EnduRen 

substrate (Promega). The activities were divided by the background luminescence from 

mock-transfected S2R+ cells for normalization. 
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Figure 4-8. Western analysis for NS1 expression. S2R+ cells were transfected with 

either pHZ12_NS1 or pHZ12_CtoNS1. The cell lysate was run on a SDS-PAGE gel, 

and proteins were transferred to a membrane for immunoblotting. NS1 was probed with 

anti-NS1 (a gift from Dr. Chunya Puttikhunt, Mahidol University, Thailand). * indicates 

possible multimeric NS1 as previously reported (Gutsche et al., 2011) . + indicates 

larger bands that may be due to either multimeric NS1 or transcriptional read through of 

the 2A sequences. 
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Figure 4-9. The efficiency of electroporation of A549 cells. (A) pcDNA 6.2/LacZ_C-

YFP was electroporated into the cells. The cells were stained with DAPI. Transfection 

efficiency is less than 1%. (B) RNA transcribed from pcDNA 6.2/LacZ_C-YFP was 

electroporated into the cells. The cells were stained with DAPI. No YFP was detected 

among 1 x 105 cells observed three days after electroporation. 
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4.4 Summary 

 I have shown that AAG2 cells are compatible with the dsRNA bathing technique. 

Thus, large-scale RNA interference studies in mosquito cells can now be contemplated, 

similar to the study that identified dengue Drosophila host factors (Sessions et al., 

2009). However, the dsRNAs used with Drosophila have been shown to be 

incompatible with AAG2 cells so new dsRNAs for silencing mosquito genes must be 

generated. Finally, I tried but failed to generate a dengue replicon. However, I have 

shown that the idea of using two 2A sequences to generate three separate peptides is 

feasible. Thus, this idea may be applied to the construction of a new replicon in the 

future. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Summary 

 In this study, I set out to identify dengue-human and dengue-mosquito PPI by 

employing Y2H screens. I then used co-affinity purifications and Y2H tests with different 

dengue serotypes to confirm PPI and to identify those that are most likely to have 

biological relevance. I also assembled all dengue-host PPI identified to date and 

proposed a prioritized subset to be further investigated based on multiple pieces of 

evidence and potential conservation. I then focused on the interaction between capsid 

and nucleosome assembly protein and showed initial results suggesting a role for 

human nucleosome assembly protein 1-like 1 (NAP1L1) in the nucleocytoplasmic 

shuttling of capsid. I also tested a mosquito cell line, AAG2, for its susceptibility to the 

dsRNA bathing technique. The results demonstrated that large-scale RNA interference 

studies could be performed with AAG2. Finally, I tried but failed to construct a dengue 

sub genomic replicon, but I showed that replicon designs in which two 2A sequences 

generate three separate functional peptides are feasible.  Below I summarize and 

discuss further some of the important findings from my project. 

 

5.2 An Aedes aegypti cDNA library for yeast two-hybrid screening 

I constructed the first A. aegypti cDNA library for the Y2H system using pooled 

RNA collected from ten developmental stages.  I showed that the library contains 
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various sizes of cDNAs from 300 to 4,000 bp, and that more than 60% of the 

independent E.coli clones contain a cDNA insert. The number of independent E.coli 

clones was greater than 1x107 clones. Our group has subcloned full-length cDNAs from 

the library for this and other studies. We successfully retrieved mosquito nucleosome 

assembly protein (AAEL005567), cyclin J (AAEL008256), cyclin B (AAEL010094), gus 

(AAEL011069), spindle A (AAEL006080), Cks30A (AAEL004492), Cks85A 

(AAEL005232), cdk1 (AAEL008621) and cdk2 (AAEL012339). This library may be used 

for mapping PPI to better understand the biology of the mosquito since it is a vector for 

many diseases, including dengue fever, yellow fever, and Chikungunya. In addition, 

identification of mosquito PPI may help identify potentially conserved PPI. The 

conserved PPI may have significant biological functions. This library may also be used 

for studying host-parasite PPI. Other mosquito-borne pathogens, such as yellow fever 

and Chikungunya, may be studied using this library to identify pathogen-mosquito PPI, 

which may help the development of methods to better combat these pathogens. 

Recently, an intracellular insect parasite Wolbachia has been tested as a means to 

control the mosquito population (Hoffmann et al., 2011). The parasite confers resistance 

against dengue virus to the mosquito by priming its innate immunity (Pan et al., 2012). 

However, the priming mechanism is not fully understood. Thus, this library may be used 

to study Wolbachia-mosquito PPI to better understand the parasite-host interaction. 
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5.3 Dengue-host interactomes 

5.3.1 Novel dengue-host PPI 

I set up three Y2H screens to identify intraviral PPI, dengue-mosquito PPI, and 

dengue-human PPI. The intraviral screen yielded only three PPI, all of which were 

already known. The dengue-mosquito screen yielded 102 PPI involving 98 mosquito 

proteins. None of these PPI were previously identified. The dengue-human screen 

produced 46 PPI involving 35 human proteins. Six PPI were previously identified or 

predicted. 

Protein interaction screens frequently generate false positives, which are PPI that 

do not occur in a natural biological context. In addition, there is no “gold standard” or 

large set of known interactions that can be used to develop a scoring or ranking system 

for real dengue-host PPI. To address this problem, I employed Co-AP as an orthogonal 

assay, since many studies have shown that PPI identified by two or more independent 

assays are more likely to be biologically relevant (Uetz et al., 2000; Ito et al., 2001; 

Deane et al., 2002; von Mering et al., 2002; Giot et al., 2003; Stanyon et al., 2004; 

Schwartz et al., 2009). The Co-AP confirmed 36 out of the 138 testable PPI. I also 

repeated Y2H assays to test each host protein with the dengue proteins from different 

serotypes. I proposed that biologically relevant virus-host PPI are likely to be conserved 

across the four dengue serotypes. The screen showed that 57 out of 102 (56.9%) 

dengue-mosquito PPI and 34 out of 46 (73.9%) dengue-human PPI interacted with the 

corresponding dengue proteins from all four serotypes.  
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Large-scale PPI screens also generate false negatives, which are true PPI not 

detected by the screens. False negatives may result from limitations of the assay used 

to identify PPI. For example, Y2H assays are poor at detecting PPI with membrane 

proteins because the aqueous environment in the yeast nucleus may induce misfolding 

of the hydrophobic membrane proteins (Stagljar and Fields, 2002). Another reason for 

false negatives is that the screens may be sub-saturating, which means a PPI may be 

theoretically detectable using Y2H, but the PPI is not tested or it is missed during the 

screens. For example, some cDNAs may be underrepresented or missing altogether 

from the Y2H cDNA library. In addition, different cDNA libraries represent different sets 

of proteins so some proteins may not be in a certain library and, therefore, would not be 

detected in the screens. I compared my results with other studies (Colpitts et al., 2011b; 

Folly et al., 2011; Khadka et al., 2011; Le Breton et al., 2011) and found very small 

levels of overlap. I identified only two of the PPI detected by Khadka et al., and only one 

of the PPI detected by Le Breton et al. I found no PPI in common with the studies by 

Copitts et al., and Folly et al. The overlap among PPI found in other studies is also very 

small. For example, only one PPI was detected by both Le Breton et al., and Khadka et 

al. None of the PPI detected by Colpitts et al., or Folly et al., were detected in other 

large-scale studies. It is formally possible that one of these studies is comprehensive 

while the others detected mostly false positives, resulting in such small overlap. If this 

assumption is true, that screen should have identified at least all of the functionally 

verified PPI from the other screens. However, when I looked at PPI detected by small-

scale studies and extensively verified for their functional significance, none of the 

screens could detect such PPI better than any other. Thus, PPI data from any one of 
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these large-scale studies, including mine, appear to be incomplete. Therefore, further 

studies are still required to complete the dengue-host interactome. 

 To help address the problem of false negatives and false positives, I collected all 

403 experimentally detected dengue-host PPI from my study and other studies. I then 

proposed a prioritization of these PPI for further investigation based on multiple pieces 

of evidence and potentially conserved interologs. The prioritized list contains 38 

dengue-mosquito PPI and 65 dengue-human PPI. Seven PPI in this list are potentially 

conserved interlogs identified in my study. This list should help in the selection of 

candidates for further functional studies. 

 

5.3.2 Expanding the dengue-host interactomes 

Dengue-host PPI data appear to be incomplete. Additional Y2H screens may 

detect more dengue-host PPI. It may be useful, for example, to screen the dengue Y2H 

baits designed and used by other studies against the mosquito cDNA Y2H library. For 

example, Khadka et al., used the cytoplasmic and ER luminal parts of dengue 

membrane proteins for the Y2H screenings to avoid improper folding of these proteins 

(Khadka et al., 2011). New techniques such 454 sequencing and interaction sequence 

tag (IST) concatenating may improve Y2H screens resulting in detection and 

confirmation of more PPI (Hastie and Pruitt, 2007; Yu et al., 2011). Furthermore, if an 

ORF library for A. aegypti becomes available and affordable, the Y2H two-phase mating 

technique used for Drosophila interaction screens could be applied for the dengue-

mosquito PPI screen (Zhong et al., 2003). 
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 In Y2H assays, proteins tested must be expressed in the yeast nucleus, where 

extracellular or membrane proteins might not be properly folded resulting in false 

negatives. To overcome this limitation of Y2H assays, other methods may be employed. 

For example, a split-ubiquitin assay is a modified Y2H assay designed to test 

membrane proteins (Johnsson and Varshavsky, 1994; Stagljar et al., 1998). It works by 

fusing one protein with one half of ubiquitin and the other protein with the other half of 

ubiquitin and a transcription factor. If the proteins interact, the two halves of ubiquitin will 

be brought into close proximity and cleaved by a ubiquitin-specific protease releasing 

the transcription factor, which in turn activates a reporter gene. The split-ubiquitin assay 

has been used for a large-scale PPI screen for yeast membrane proteins (Miller et al., 

2005). This assay may be useful to identify dengue-host PPI of membrane proteins 

such as NS2A, NS2B, NS4A and NS4B. Extracellular dengue proteins including 

membrane protein, envelope protein, and NS1 may not fold properly within cells so they 

may require an alternative method. For example, an avidity-based extracellular 

interaction screen (AVEXIS) has been designed to test extracellular PPI (Bushell et al., 

2008). In AVEXIS, a bait protein is used to coat a microtiter plate, while a prey protein is 

fused with a reporter protein like β-lactamase. The prey is added into the plate and 

washed. A substrate for a reporter protein like nitrocefin is added to assess the reporter 

activity.  

Another limitation of Y2H assays is that proteins of other species may not be 

folded properly in yeast cells due to different cellular environments. For example, a 

protein may lack a post-translational modification necessary for a PPI (Guo et al., 2004). 

To avoid this problem, protein-fragment complementation assays (PCA) could be used.  
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In PCA, a reporter protein, such as a fluorescent protein, is split into halves, and each 

half is fused with one of the tested proteins (Hu et al., 2002). The PCA may be 

conducted within native cells to test a PPI in its natural cellular environment. Similarly, 

co-localization supplemented with Förster resonance energy transfer (FRET) (Sekar 

and Periasamy, 2003) or bioluminescence resonance energy transfer (BRET) (Xu et al., 

2007) may also be used to visualize PPI in native cells. Information about protein 

complexes is also important so further Co-AP studies, like the one conducted by 

Colpitts et al., (Colpitts et al., 2011b) would be useful to expand the dengue-host protein 

complex data. Because they could be performed in dengue-infected cells, each of these 

assays (PCA, Co-AP/MS and co-localization) could be conducted at several time points 

during the course of dengue virus infection to assess the dynamics of dengue-host PPI. 

 

5.4 Functional studies of dengue-host PPI 

In this study, I identified several dengue-host PPI that may have significant roles 

in the virus life cycle. I also employed orthogonal assays to identify the PPI that are 

most likely to be biologically relevant. However, all of the data were generated from 

artificial systems (e.g., yeast or cultured Drosophila cells). It will be important, therefore, 

to study some of these PPI in the context of live virus infection and replication. This may 

be done by over-expressing or silencing the dengue interactors in the host cells before 

infecting them with dengue virus. The replication level may be measured with the 

expression level of viral proteins in the cells by immunostaining and image analyses, as 

demonstrated by Sessions et al (Sessions et al., 2009).  In addition, plaque assays as 

described by Fink et al., may assess the infectivity of the virus disseminating from the 
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experimental cells (Fink et al., 2007). However, for many reasons study of live dengue 

virus is difficult or inconvenient. Thus, I prepared two new tools. First, I tested and 

modified the dsRNA bathing technique for mosquito cells. Second, I attempted to 

construct a dengue replicon to allow an analysis of the importance of host-virus 

interactions to viral replication without using a live virus.  

 

5.4.1 RNAi screens in mosquito cells  

I showed that the dsDNA bathing technique induced AAG2 cells to undergo 

apoptosis using dsRNA against an inhibitor of apoptosis protein 1. Thus, it should be 

feasible to conduct large-scale RNA interference studies as has been done in 

Drosophila cells (Sessions et al., 2009). C6/36, the other widely used mosquito cell line, 

has been shown to have defective RNA interference machinery (Brackney et al., 2010) 

so it is not compatible with this technique. This technique will be valuable for identifying 

the functional significance of dengue-mosquito PPI detected by this study and others. 

 

5.4.2 Dengue replicons for functional studies 

An alternative to using live virus is to use a non-infectious replicon to follow virus 

replication. I attempted to construct a replicon as described in Chapter 4, but the 

replicon failed to replicate in either human cells or mosquito cells. Since the cDNA I 

used for constructing the replicon was fragmented, I had to employ several cloning and 

ligating steps, which may have introduced mutations that rendered the RNA replicon 

defective. In addition, the cDNA used for replicon construction was derived from a virus 

strain that was never propagated through AAG2 cells. Thus, replication of the original 
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virus was never assessed in these cells. A study by Vasilakis et al., has shown that 

propagating the virus in human cells increases the fitness of the virus in these cells, but 

decreases the fitness in mosquito cells (Vasilakis et al., 2009). To generate a replicon 

that can replicate in AAG2 cells, therefore, it may be necessary to propagate the live 

virus in mosquito cells for several replication cycles and then use cDNA from the AAG2-

competent virus to construct the replicon. Note that selection of AAG2-competent virus 

could take as long as 4 months, which is how long it took to create a virus that could 

propagate efficiently in Drosophila cells (Sessions et al., 2009).  

Other designs for a dengue replicon have also been published. Hsu et al., 

replaced capsid and PrM with firefly luciferase and inserted a neomycin-resistance gene 

between NS5 and the 3’ UTR (Hsu et al., 2012). However, this replicon contains an 

IRES for the neomycin-resistance gene, which may be incompatible with AAG2 cells. 

Leardkamolkarn et al., created several subgenomic replicons by replacing one of the 

structural proteins, C, PrM, or E, with GFP (Leardkamolkarn et al., 2012).  However, 

these replicons do not contain a selectable marker so they may not be stably 

maintained in the cells. The same group also constructed a replicon containing GFP 

and an IRES-neomycin resistance gene replacing structural proteins (Leardkamolkarn 

and Sirigulpanit, 2012). Again, this replicon required a human IRES, which may not be 

compatible with AAG2 cells. Other published replicons also require human or human 

virus IRES, or lack a selectable marker (Alcaraz-Estrada et al., 2010; Lee et al., 2010). 

These designs might be modified, however, to construct an AAG2-compatible replicon. 

Interestingly, Massé et al., replaced dengue structural proteins with an EGFP-puromycin 

resistance gene fusion in their replicon suggesting that a reporter gene and a selectable 
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marker may be functional as a fusion protein, so that a 2A sequence is not required for 

their separation (Masse et al., 2010).  This is another design that might be useful for 

constructing an AAG2-compatible replicon. 

 

5.5 Nucleosome assembly protein and its role in the nuclear localization of 

dengue capsid 

From the prioritized list in Chapter 2, I selected for further study the interaction 

between capsid and nucleosome assembly protein 1 (human NAP1L1 and mosquito 

AAEL005567) for two reasons. First, the PPI appears to be conserved in mosquito and 

human. Second, a recent publication has hinted at a role for nucleosome assembly 

protein 1 in the nucleocytoplasmic shuttling of diacylglycerol kinase zeta (DGKζ) (Okada 

et al., 2011). Human NAP1L1 binds the bipartite nuclear localization signal (NLS) of 

DGKζ, which blocks importin from binding to the same site. Thus, in the presence of 

NAP1L1, DGKζ accumulates in the cytoplasm. I hypothesized that similar binding and 

blocking of capsid’s bipartite NLS by NAP1L1 may also occur as illustrated in Figure 5-

1A. 

First, I set out to map the NAP1L1 and AAEL00567 binding domain of capsid. I 

used Y2H assays to screen capsid and its mutants against NAP1L1. The results 

indicated that amino acid residues 85-100, which includes the bipartite NLS, were 

required for efficient interaction. I also used Co-AP to confirm that mosquito 

AAEL005567 requires residues 85-100 of capsid for efficient binding. However, the 

function of the bipartite NLS itself seemed to have no role in the interaction, since a 

point mutant that disrupts NLS, still interacted with capsid. 
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Figure 5-1. Hypothetical models for the role of the capsid-NAP1L1 interaction. (A, 

left) The bipartite NLS of capsid has been shown to interact with importin resulting in 

capsid nuclear localization. (A, right) Under unknown cellular conditions, NAP1 might 

bind to the bipartite NLS of capsid blocking importin binding so the nuclear localization 

of capsid is reduced. (B, left) Under normal conditions, diacylglycerol kinase zeta 

(DGKζ) and histone are bound by NAP1L1. The binding sequesters DGKζ in the 

cytoplasm by blocking the bipartite NLS of DGKζ from Importin (Okada et al., 2011). On 

the other hand NAP1L1 has been shown to transport histone into the nucleus (Okuwaki 

et al., 2010). (B) During dengue virus infection, capsid may sequester NAP1L1 so it 

cannot bind DGKζ or histone. Thus, nuclear localization of DGKζ would be increased, 

while histone transport into the nucleus would be diminished.  
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I attempted to test the biological significance of the capsid-NAP1L1 interaction. I 

generated two HepG2 cell lines that stably express dengue capsid. One expresses 

Myc-tagged capsid while the other expresses GFP-tagged capsid. Both cell lines 

showed the accumulation of capsid in the nucleus as previously observed (Tadano et 

al., 1989; Wang et al., 2002; Sangiambut et al., 2008). I then over-expressed or 

silenced human NAP1L1. I found that NAP1L1 over-expression resulted in more capsid 

localizing in the cytoplasm. The results preliminarily support my hypothesis that NAP1L1 

inhibits the nuclear localization of capsid.   

The functional significance of this interaction is still unknown. Since the capsid 

protein can bind histones and disrupt nucleosome formation (Colpitts et al., 2011a), 

hosts might use nucleosome assembly protein 1 as a tool to sequester capsid in the 

cytoplasm. An interesting observation supporting this hypothesis is that capsid and 

histones share structural similarities (Colpitts et al., 2011a) so nucleosome assembly 

protein 1, which is a histone chaperone, might bind capsid protein similar to its binding 

to histones. On the other hand, capsid-nucleosome assembly protein interaction might 

be used by the virus to alter or hijack cellular processes to suit its replication. Since 

nucleosome assembly protein 1 also plays a role in nucleocytoplasmic shuttling of some 

proteins, such as DGKζ (Park and Luger, 2006; Okada et al., 2011), the capsid protein 

might bind to nucleosome assembly protein 1 and block the shuttling of those proteins. I 

have tried to capture these possibilities in the model illustrated in Figure 5-1B. 

 For further study, capsid-nucleosome assembly protein 1 interaction could be 

tested in vitro by determining whether the interaction between capsid and importin can 

be disrupted in a dose-dependent manner by increasing levels of nucleosome assembly 
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protein 1. Co-affinity purification of capsid and Importin along with inducible expression 

of nucleosome assembly protein 1 could also be used.  Finally and importantly, the 

significance of capsid- nucleosome assembly protein 1 interaction must be shown 

during the live virus infection. For example, a cell line stably over-expressing 

nucleosome assembly protein 1 could be infected with dengue virus. Next, the 

localization of capsid could be determined by immunostaining and microscopy during 

the course of virus replication. At the same time, the titer of virus generated from the cell 

line could be measured and compared to those generated by a mock-transfected cell 

line.  On the other hand, the localization of host proteins regulated by nucleosome 

assembly protein 1, such as histones and DGKζ, may be followed to detect any 

changes in their localizations during the course of virus replication, compared to that in 

uninfected cells. 

Humans have six paralogs of nucleosome assembly protein 1 (NAP1L1, 

NAP1L2, NAP1L3, NAP1L4, NAP1L5 and NAP1L6), but only NAP1L1 was detected in 

this study. It would be interesting to see whether some or all of the other paralogs 

interact with capsid. Y2H assays or co-affinity purification may be used to test each of 

the NAP1Ls. I expect that capsid will not interact with NAP1L2, NAP1L3 and NAP1L5 

since they are only expressed in neurons (Attia et al., 2011), which are not targets for 

dengue infection so they never encounter dengue capsid and may lose the interaction 

interface for capsid found in the ancestral gene during evolution. NAP1L6 is potentially 

a pseudogene (UniProt Consortium (2012)) so its interaction with capsid would not be 

biologically relevant. On the other hand, NAP1L4 is closely related to NAP1L1 (Figure 
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3-1), so it might interact with capsid. Interestingly, both NAP1L1 and NAP1L4 were 

found to regulate nucleocytoplasmic shuttling of DGKζ (Okada et al., 2011). 

 

5.6 Roles of conserved interologs during the virus life cycle   

 Many biologically important PPI are conserved among species (Yu et al., 2004). I 

identified seven potentially conserved interologs by Y2H screens as described in 

Chapter 2. I also retrieved PPI data from other publications and found six additional 

conserved interologs. I focused on the capsid-nucleosome assembly protein 1 

interaction in Chapter 3. However, the other potentially conserved interologs may also 

be worth further investigation. A good place to start would be to map the interaction 

domain of dengue and host proteins to see whether the same domain is required for the 

interaction in human and mosquito, which would further support the idea that these 

interactions are functionally conserved.  

 The thirteen potentially conserved interlogs represent a small fraction of the PPI 

identified by this study and other publications. Since the dengue-host screens appear to 

miss many interactions, there may be additional interologs that were not detected. It 

would be interesting to directly test human or mosquito othologs of the available 

dengue-host PPI to see whether they are potentially conserved interologs. For example, 

a mosquito ortholog of a human dengue interactor may be individually cloned from the 

mosquito cDNA libraries and tested for an interaction by Y2H assays, and vice versa. 

This might expand the dengue-host interactome or hint at disparity between the 

dengue-human interactome and the dengue-mosquito interactome. If disparity between 

the two interactomes is detected, it might be used to explain some observed 



 

 

178 

phenomena, such as the reduction of fitness in mosquito cells of dengue virus 

propagated in human cells, and vice versa (Vasilakis et al., 2009).   

 

5.7 Roles of nucleolar proteins during the virus life cycle 

 In Chapter 2, I showed that nucleolar proteins were enriched among dengue 

interactors. This is interesting because many viruses have been reported to interact with 

the nucleolus or disrupt its formation (Hiscox, 2007; Hiscox et al., 2010). The viruses 

need to interact with the nucleolus to either hijack the host nucleolar proteins or to alter 

the activity of the nucleolus to suit their replication (Hiscox, 2007; Hiscox et al., 2010). 

Dengue capsid has been shown to accumulate in the nucleolus during infection (Wang 

et al., 2002), but the role of nucleolar capsid during dengue replication is not yet clear.  

The role of nucleolar proteins has been studied in other flaviviruses. WNV and JEV 

interact with nucleolar proteins, DDX56 and B23, respectively (Tsuda et al., 2006; Xu et 

al., 2011). However, these nucleolar proteins have no role in dengue replication. 

 The role of nucleolar proteins identified in this study may be determined by over-

expressing or silencing the proteins in the cells before dengue infection as described in 

Section 5.2.1. In addition, targeted disruption of the nucleolus structure or function may 

hint at the role of the nucleolus in dengue replication. For example, microinjection of an 

antibody against upstream binding factor (UBF), which is required for the transcription of 

ribosomal DNA genes, disrupts nucleolus formation without damaging host DNA (Rubbi 

and Milner, 2003). This method could be used to determine whether nucleolar integrity 

is important for viral replication. Nucleolin or transcription initiation factor TIF-IA 

silencing has also been reported to disrupt nucleolus formation, but it also induces cell 
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cycle arrest and apoptosis so the method must be assessed to see whether it is 

appropriate for a dengue infection assay (Yuan et al., 2005; Ugrinova et al., 2007). 

  

5.8 Final remarks 

 The recent dengue-host interactome studies, including mine, have rapidly 

expanded our knowledge of potential dengue-host PPI compared to the low-throughput 

methods previously used. The studies have generated a large amount of data that may 

be useful for developing antiviral drugs and mosquito control strategies. However, these 

PPI data are mostly from experiments performed under artificial conditions. More effort 

is required to expand and validate these data so that we may eliminate the virus and its 

threat and rid the world of a major health problem. 
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APPENDIX A . THE RESULTS FOR Y2H MATRIX SCREEN FOR SEROTYPE 

SPECIFIC/INDEPENDENT INTERACTIONS. 

Bait Gene_ID Description Dengue
1 

Dengue
2 

Dengue
3 

Dengue
4 

Number_of_Positive_serotyp
e 

CA AAEL000005 hypothetical protein 1 1 1 1 4 
CA AAEL000136 conserved hypothetical 

protein 
0 0 0 1 1 

CA AAEL000292 conserved hypothetical 
protein 

1 1 1 0 3 

CA AAEL001892 conserved hypothetical 
protein 

1 0 0 0 1 

CA AAEL001984 hypothetical protein 1 1 1 1 4 
CA AAEL002057 conserved hypothetical 

protein 
1 1 1 1 4 

CA AAEL002508 26S protease regulatory 
subunit 6a 

0 0 1 0 1 

CA ENSG0000018710
9 

Homo sapiens nucleosome 
assembly protein 1-like 1 
(NAP1L1), transcript 
variant 1, mRNA 

1 1 1 1 4 

CA AAEL003415 lamin 1 0 0 0 1 
CA AAEL003676 myosin I homologue, 

putative 
1 1 1 0 3 

CA AAEL003739 M-type 9 protein, putative 1 0 0 0 1 
CA AAEL003750 conserved hypothetical 

protein 
1 1 1 1 4 

CA AAEL004100 hypothetical protein 0 0 1 0 1 
CA AAEL004316 hypothetical protein 1 1 1 0 3 
CA AAEL004484 predicted protein 1 0 0 0 1 
CA AAEL004855 adp,atp carrier protein 1 1 1 1 4 
CA AAEL004869 hypothetical protein 0 0 1 0 1 
CA AAEL005165 chaperone protein dnaj 1 1 0 0 2 
CA AAEL005567 nucleosome assembly 

protein 
1 0 1 0 2 

CA AAEL005656 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 0 0 0 1 

CA AAEL006572 troponin C 0 1 0 0 1 
CA AAEL007980 hypothetical protein 1 1 1 1 4 
CA AAEL008052 hypothetical protein 1 0 0 0 1 
CA AAEL008852 conserved hypothetical 

protein 
1 1 1 1 4 

CA AAEL009101 eukaryotic translation 
initiation factor 3f, eif3f 

1 0 0 0 1 

CA AAEL009182 zinc finger protein, putative 1 1 1 1 4 
CA AAEL009285 dead box atp-dependent rna 

helicase 
1 1 1 1 4 

CA ENSG0000003821
9 

Homo sapiens biorientation 
of chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

1 1 1 1 4 

CA AAEL009948 aldehyde dehydrogenase 1 0 0 0 1 
CA AAEL010266 hypothetical protein 1 0 0 0 1 
CA AAEL011129 alcohol dehydrogenase 1 0 0 0 1 
CA AAEL011960 conserved hypothetical 

protein 
1 1 1 1 4 

CA AAEL011985 conserved hypothetical 
protein 

1 1 1 1 4 
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CA AAEL012527 conserved hypothetical 
protein 

1 0 0 1 2 

CA AAEL012686 ribosomal protein S12, 
putative 

1 1 0 0 2 

CA AAEL013075 conserved hypothetical 
protein 

1 1 1 1 4 

CA AAEL013086 hypothetical protein 1 0 0 0 1 
CA AAEL013583 60S ribosomal protein L23 1 1 1 1 4 
CA AAEL014012 membrane-associated 

guanylate kinase (maguk) 
1 0 0 0 1 

CA AAEL014104 conserved hypothetical 
protein 

1 0 0 0 1 

CA AAEL000752 conserved hypothetical 
protein 

1 0 0 0 1 

CA AAEL000951 elongation factor 1-beta2 1 0 0 0 1 
CA AAEL002828 hypothetical protein 1 0 0 0 1 
CV AAEL000005 hypothetical protein 1 1 1 1 4 
CV AAEL000292 conserved hypothetical 

protein 
1 1 1 1 4 

CV AAEL000950 conserved hypothetical 
protein 

0 1 0 0 1 

CV AAEL001892 conserved hypothetical 
protein 

0 1 0 0 1 

CV AAEL001984 hypothetical protein 1 1 1 1 4 
CV AAEL002057 conserved hypothetical 

protein 
1 1 1 1 4 

CV AAEL002508 26S protease regulatory 
subunit 6a 

0 1 0 0 1 

CV AAEL002565 titin 1 1 0 0 2 
CV AAEL002572 myosin regulatory light 

chain 2 (mlc-2) 
0 1 0 0 1 

CV ENSG0000018710
9 

Homo sapiens nucleosome 
assembly protein 1-like 1 
(NAP1L1), transcript 
variant 1, mRNA 

1 1 1 1 4 

CV AAEL003415 lamin 1 0 0 0 1 
CV AAEL003676 myosin I homologue, 

putative 
1 1 1 1 4 

CV AAEL003739 M-type 9 protein, putative 1 1 0 1 3 
CV AAEL003750 conserved hypothetical 

protein 
1 1 1 1 4 

CV AAEL003815 zinc finger protein 1 1 0 1 3 
CV AAEL003929 conserved hypothetical 

protein 
0 1 0 0 1 

CV AAEL004100 hypothetical protein 1 1 1 1 4 
CV AAEL004316 hypothetical protein 1 1 1 1 4 
CV AAEL004484 predicted protein 1 1 0 0 2 
CV AAEL004855 adp,atp carrier protein 1 1 1 1 4 
CV AAEL004869 hypothetical protein 1 1 1 1 4 
CV AAEL005567 nucleosome assembly 

protein 
1 1 0 1 3 

CV AAEL005656 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 0 1 3 

CV AAEL005790 malic enzyme 1 1 0 1 3 
CV AAEL006572 troponin C 1 1 0 1 3 
CV AAEL007201 glutamyl aminopeptidase 0 1 0 1 2 
CV AAEL007850 hypothetical protein 1 1 0 0 2 
CV AAEL007980 hypothetical protein 1 1 1 1 4 
CV AAEL008052 hypothetical protein 1 0 0 0 1 
CV AAEL008700 conserved hypothetical 1 1 0 0 2 
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protein 
CV AAEL008852 conserved hypothetical 

protein 
1 1 1 1 4 

CV AAEL009101 eukaryotic translation 
initiation factor 3f, eif3f 

0 1 0 0 1 

CV AAEL009182 zinc finger protein, putative 1 1 1 1 4 
CV AAEL009285 dead box atp-dependent rna 

helicase 
1 1 1 1 4 

CV AAEL009357 myosin v 0 1 0 0 1 
CV ENSG0000003821

9 
Homo sapiens biorientation 
of chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

1 1 1 1 4 

CV AAEL009948 aldehyde dehydrogenase 1 1 0 0 2 
CV AAEL010005 conserved hypothetical 

protein 
0 1 0 0 1 

CV AAEL010066 microfibril-associated 
protein 

1 1 0 0 2 

CV AAEL010266 hypothetical protein 1 1 0 0 2 
CV AAEL010360 nucleotide binding protein 

2 (nbp 2) 
0 1 0 0 1 

CV AAEL010585 spermatogenesis associated 
factor 

1 1 0 1 3 

CV AAEL010782 carboxypeptidase 1 1 1 1 4 
CV AAEL010784 conserved hypothetical 

protein 
1 1 0 1 3 

CV AAEL010821 60S acidic ribosomal 
protein P0 

1 1 0 1 3 

CV AAEL011137 succinyl-coa:3-ketoacid-
coenzyme a transferase 

0 1 0 0 1 

CV AAEL011708 heat shock protein 0 1 0 0 1 
CV AAEL011742 eukaryotic peptide chain 

release factor subunit 
0 1 0 0 1 

CV AAEL011960 conserved hypothetical 
protein 

1 1 1 1 4 

CV AAEL011985 conserved hypothetical 
protein 

1 1 1 1 4 

CV AAEL011988 tRNA selenocysteine 
associated protein (secp43) 

0 1 0 0 1 

CV AAEL012095 26S protease regulatory 
subunit 

1 1 0 0 2 

CV AAEL012527 conserved hypothetical 
protein 

1 1 0 0 2 

CV AAEL012556 Ofd1 protein, putative 0 1 0 0 1 
CV AAEL012680 Juvenile hormone-

inducible protein, putative 
1 1 0 1 3 

CV AAEL012686 ribosomal protein S12, 
putative 

1 1 0 1 3 

CV AAEL012827 endoplasmin 0 1 0 0 1 
CV AAEL013075 conserved hypothetical 

protein 
1 1 1 1 4 

CV AAEL013086 hypothetical protein 1 1 0 1 3 
CV AAEL013583 60S ribosomal protein L23 1 1 1 1 4 
CV AAEL013933 serine protease inhibitor, 

serpin 
0 1 0 0 1 

CV AAEL014012 membrane-associated 
guanylate kinase (maguk) 

1 1 0 0 2 

CV AAEL014104 conserved hypothetical 
protein 

1 1 0 1 3 

CV AAEL014281 conserved hypothetical 
protein 

1 1 0 0 2 

CV AAEL014396 protein farnesyltransferase 
alpha subunit 

0 1 0 0 1 

CV AAEL014843 heat shock protein 1 1 0 0 2 
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CV AAEL014845 heat shock protein 1 1 0 1 3 
CV AAEL000752 conserved hypothetical 

protein 
1 1 0 0 2 

CV AAEL000951 elongation factor 1-beta2 1 1 1 1 4 
CV AAEL002828 hypothetical protein 1 1 1 0 3 
CV AAEL003104 tripartite motif protein 

trim2,3 
0 1 0 0 1 

CV AAEL003973 conserved hypothetical 
protein 

1 1 0 0 2 

CV AAEL003973 conserved hypothetical 
protein 

1 1 0 0 2 

CV AAEL004500 eukaryotic translation 
elongation factor 

1 1 0 0 2 

CV AAEL005037 seryl-tRn/a synthetase 1 1 0 0 2 
CV ENSG0000004457

4 
HSPA5; Homo sapiens 
heat shock 70kDa protein 5 
(glucose-regulated protein, 
78kDa) (HSPA5), mRn/a 

1 1 0 0 2 

CV AAEL005733 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 0 0 2 

CV AAEL006577 aspartyl-tRn/a synthetase 0 1 0 0 1 
E AAEL012686 ribosomal protein S12, 

putative 
1 1 0 0 2 

Eiii AAEL000005 hypothetical protein 1 1 0 1 3 
Eiii AAEL000950 conserved hypothetical 

protein 
1 0 0 0 1 

Eiii AAEL001553 conserved hypothetical 
protein 

0 0 0 1 1 

Eiii AAEL001892 conserved hypothetical 
protein 

1 0 0 1 2 

Eiii AAEL001984 hypothetical protein 1 1 0 1 3 
Eiii AAEL002057 conserved hypothetical 

protein 
1 1 0 1 3 

Eiii AAEL002508 26S protease regulatory 
subunit 6a 

1 1 0 1 3 

Eiii AAEL002565 titin 1 0 0 1 2 
Eiii ENSG0000018710

9 
Homo sapiens nucleosome 
assembly protein 1-like 1 
(NAP1L1), transcript 
variant 1, mRNA 

1 0 0 0 1 

Eiii AAEL003345 argininosuccinate lyase 1 0 0 1 2 
Eiii AAEL003415 lamin 1 0 0 0 1 
Eiii AAEL003676 myosin I homologue, 

putative 
0 1 0 0 1 

Eiii AAEL003815 zinc finger protein 1 1 0 1 3 
Eiii AAEL003929 conserved hypothetical 

protein 
1 0 0 0 1 

Eiii AAEL004100 hypothetical protein 1 1 0 1 3 
Eiii AAEL004316 hypothetical protein 1 1 0 0 2 
Eiii AAEL004484 predicted protein 1 1 0 1 3 
Eiii AAEL004855 adp,atp carrier protein 0 1 0 0 1 
Eiii AAEL004869 hypothetical protein 1 1 0 1 3 
Eiii AAEL005165 chaperone protein dnaj 1 0 0 1 2 
Eiii AAEL005524 adenosylhomocysteinase 1 0 0 0 1 
Eiii AAEL005567 nucleosome assembly 

protein 
1 1 0 1 3 

Eiii AAEL005656 myosin heavy chain, 
nonmuscle or smooth 
muscle 

0 1 0 0 1 

Eiii AAEL005790 malic enzyme 0 1 0 0 1 
Eiii AAEL006572 troponin C 1 1 0 0 2 
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Eiii AAEL007201 glutamyl aminopeptidase 1 0 0 1 2 
Eiii AAEL007850 hypothetical protein 1 0 0 0 1 
Eiii AAEL007980 hypothetical protein 1 0 0 0 1 
Eiii AAEL008052 hypothetical protein 1 0 0 1 2 
Eiii AAEL008700 conserved hypothetical 

protein 
1 0 0 0 1 

Eiii AAEL008746 hypothetical protein 1 0 0 1 2 
Eiii AAEL009101 eukaryotic translation 

initiation factor 3f, eif3f 
1 0 0 1 2 

Eiii AAEL009182 zinc finger protein, putative 1 1 0 1 3 
Eiii AAEL009285 dead box atp-dependent rna 

helicase 
1 1 0 1 3 

Eiii AAEL009357 myosin v 1 1 0 0 2 
Eiii ENSG0000003821

9 
Homo sapiens biorientation 
of chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

0 1 0 0 1 

Eiii AAEL009484 conserved hypothetical 
protein 

1 0 0 1 2 

Eiii AAEL009766 lipoamide acyltransferase 
component of branched-
chain alpha-keto acid 
dehydrogenase 

1 0 0 1 2 

Eiii AAEL009948 aldehyde dehydrogenase 1 1 0 1 3 
Eiii AAEL010066 microfibril-associated 

protein 
1 0 0 1 2 

Eiii AAEL010266 hypothetical protein 1 1 0 0 2 
Eiii AAEL010360 nucleotide binding protein 

2 (nbp 2) 
0 1 0 0 1 

Eiii AAEL010585 spermatogenesis associated 
factor 

1 1 0 1 3 

Eiii AAEL010782 carboxypeptidase 1 1 0 1 3 
Eiii AAEL010784 conserved hypothetical 

protein 
1 1 0 1 3 

Eiii AAEL010821 60S acidic ribosomal 
protein P0 

1 1 0 1 3 

Eiii AAEL011129 alcohol dehydrogenase 1 0 0 1 2 
Eiii AAEL011137 succinyl-coa:3-ketoacid-

coenzyme a transferase 
1 1 0 1 3 

Eiii AAEL011708 heat shock protein 1 1 0 1 3 
Eiii AAEL011742 eukaryotic peptide chain 

release factor subunit 
1 0 0 1 2 

Eiii AAEL011960 conserved hypothetical 
protein 

0 1 0 0 1 

Eiii AAEL011985 conserved hypothetical 
protein 

1 0 0 0 1 

Eiii AAEL012095 26S protease regulatory 
subunit 

1 1 0 1 3 

Eiii AAEL012527 conserved hypothetical 
protein 

1 1 0 0 2 

Eiii AAEL012556 Ofd1 protein, putative 1 0 0 1 2 
Eiii AAEL012680 Juvenile hormone-

inducible protein, putative 
1 1 0 1 3 

Eiii AAEL012686 ribosomal protein S12, 
putative 

1 1 0 1 3 

Eiii AAEL012827 endoplasmin 1 1 0 0 2 
Eiii AAEL013075 conserved hypothetical 

protein 
1 1 0 1 3 

Eiii AAEL013583 60S ribosomal protein L23 1 1 0 0 2 
Eiii AAEL013933 serine protease inhibitor, 

serpin 
1 0 0 1 2 

Eiii AAEL014012 membrane-associated 
guanylate kinase (maguk) 

1 0 0 0 1 
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Eiii AAEL014104 conserved hypothetical 
protein 

1 1 0 0 2 

Eiii AAEL014281 conserved hypothetical 
protein 

1 1 0 0 2 

Eiii AAEL014396 protein farnesyltransferase 
alpha subunit 

1 1 0 1 3 

Eiii AAEL014843 heat shock protein 1 1 0 1 3 
Eiii AAEL014845 heat shock protein 1 1 0 1 3 
Eiii AAEL000752 conserved hypothetical 

protein 
0 1 0 0 1 

Eiii AAEL000951 elongation factor 1-beta2 1 1 0 0 2 
Eiii AAEL002828 hypothetical protein 1 1 0 1 3 
Eiii AAEL003104 tripartite motif protein 

trim2,3 
0 1 0 0 1 

Eiii AAEL003973 conserved hypothetical 
protein 

1 1 0 0 2 

Eiii AAEL003973 conserved hypothetical 
protein 

1 1 0 1 3 

Eiii AAEL004500 eukaryotic translation 
elongation factor 

1 0 0 1 2 

Eiii AAEL005037 seryl-tRn/a synthetase 1 1 0 0 2 
Eiii ENSG0000004457

4 
HSPA5; Homo sapiens 
heat shock 70kDa protein 5 
(glucose-regulated protein, 
78kDa) (HSPA5), mRn/a 

1 1 0 1 3 

Eiii AAEL005733 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 0 0 2 

Eiii AAEL006577 aspartyl-tRn/a synthetase 1 1 0 1 3 
M AAEL007406 Conserved hypothetical 

protein 
1 0 0 0 1 

M AAEL010266 hypothetical protein 1 1 0 0 2 
M AAEL010782 carboxypeptidase 0 1 0 0 1 
M AAEL012686 ribosomal protein S12, 

putative 
0 1 0 0 1 

M AAEL005733 myosin heavy chain, 
nonmuscle or smooth 
muscle 

0 1 0 0 1 

NS1 ENSG0000018710
9 

Homo sapiens nucleosome 
assembly protein 1-like 1 
(NAP1L1), transcript 
variant 1, mRNA 

1 0 0 0 1 

NS1 AAEL003750 conserved hypothetical 
protein 

1 0 0 0 1 

NS1 ENSG0000003821
9 

Homo sapiens biorientation 
of chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

1 0 0 0 1 

NS1 AAEL012686 ribosomal protein S12, 
putative 

1 1 0 0 2 

NS1 AAEL013075 conserved hypothetical 
protein 

1 0 0 0 1 

NS2
B 

AAEL010266 hypothetical protein 1 0 0 0 1 

NS2
B 

AAEL012686 ribosomal protein S12, 
putative 

1 1 0 0 2 

NS3 AAEL000005 hypothetical protein 1 1 1 1 4 
NS3 AAEL000136 conserved hypothetical 

protein 
1 1 1 1 4 

NS3 AAEL000292 conserved hypothetical 
protein 

0 1 0 1 2 

NS3 AAEL000950 conserved hypothetical 
protein 

1 1 0 0 2 

NS3 AAEL001553 conserved hypothetical 
protein 

1 1 1 1 4 
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NS3 AAEL001892 conserved hypothetical 
protein 

1 1 1 1 4 

NS3 AAEL001984 hypothetical protein 1 1 1 1 4 
NS3 AAEL002057 conserved hypothetical 

protein 
1 1 0 1 3 

NS3 AAEL002508 26S protease regulatory 
subunit 6a 

1 1 1 1 4 

NS3 AAEL002565 titin 1 1 1 1 4 
NS3 AAEL002572 myosin regulatory light 

chain 2 (mlc-2) 
1 1 0 0 2 

NS3 ENSG0000018710
9 

Homo sapiens nucleosome 
assembly protein 1-like 1 
(NAP1L1), transcript 
variant 1, mRNA 

0 1 0 0 1 

NS3 AAEL003345 argininosuccinate lyase 1 1 1 1 4 
NS3 AAEL003415 lamin 0 1 0 0 1 
NS3 AAEL003739 M-type 9 protein, putative 1 1 0 0 2 
NS3 AAEL003750 conserved hypothetical 

protein 
0 1 0 0 1 

NS3 AAEL003815 zinc finger protein 1 1 1 1 4 
NS3 AAEL003929 conserved hypothetical 

protein 
0 1 0 0 1 

NS3 AAEL004100 hypothetical protein 1 1 1 1 4 
NS3 AAEL004316 hypothetical protein 1 1 0 1 3 
NS3 AAEL004484 predicted protein 1 1 0 1 3 
NS3 AAEL004869 hypothetical protein 1 1 1 1 4 
NS3 AAEL005165 chaperone protein dnaj 1 1 1 0 3 
NS3 AAEL005524 adenosylhomocysteinase 0 1 0 0 1 
NS3 AAEL005567 nucleosome assembly 

protein 
1 1 1 1 4 

NS3 AAEL005656 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 0 0 2 

NS3 AAEL005790 malic enzyme 1 1 0 1 3 
NS3 AAEL006572 troponin C 1 1 0 0 2 
NS3 AAEL007201 glutamyl aminopeptidase 1 1 1 1 4 
NS3 AAEL007850 hypothetical protein 1 1 0 1 3 
NS3 AAEL007980 hypothetical protein 1 1 0 1 3 
NS3 AAEL008052 hypothetical protein 1 1 1 1 4 
NS3 AAEL008700 conserved hypothetical 

protein 
1 1 0 0 2 

NS3 AAEL008746 hypothetical protein 1 1 1 1 4 
NS3 AAEL008852 conserved hypothetical 

protein 
0 1 0 0 1 

NS3 AAEL009101 eukaryotic translation 
initiation factor 3f, eif3f 

1 1 1 1 4 

NS3 AAEL009182 zinc finger protein, putative 1 1 0 1 3 
NS3 AAEL009285 dead box atp-dependent rna 

helicase 
1 1 0 0 2 

NS3 AAEL009357 myosin v 1 1 0 1 3 
NS3 ENSG0000003821

9 
Homo sapiens biorientation 
of chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

0 1 0 0 1 

NS3 AAEL009484 conserved hypothetical 
protein 

1 1 1 1 4 

NS3 AAEL009766 lipoamide acyltransferase 
component of branched-
chain alpha-keto acid 
dehydrogenase 

1 1 1 1 4 

NS3 AAEL009948 aldehyde dehydrogenase 1 1 1 1 4 
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NS3 AAEL010005 conserved hypothetical 
protein 

0 1 0 0 1 

NS3 AAEL010012 gtp-binding protein sar1 1 1 0 0 2 
NS3 AAEL010066 microfibril-associated 

protein 
1 1 0 0 2 

NS3 AAEL007406 Conserved hypothetical 
protein 

0 1 0 0 1 

NS3 AAEL010266 hypothetical protein 0 1 0 0 1 
NS3 AAEL010360 nucleotide binding protein 

2 (nbp 2) 
1 1 0 0 2 

NS3 AAEL010585 spermatogenesis associated 
factor 

1 1 1 1 4 

NS3 AAEL010782 carboxypeptidase 1 1 0 0 2 
NS3 AAEL010784 conserved hypothetical 

protein 
1 1 0 0 2 

NS3 AAEL010821 60S acidic ribosomal 
protein P0 

1 1 1 0 3 

NS3 AAEL010975 paramyosin, long form 1 1 1 0 3 
NS3 AAEL011129 alcohol dehydrogenase 1 1 1 1 4 
NS3 AAEL011137 succinyl-coa:3-ketoacid-

coenzyme a transferase 
1 1 1 1 4 

NS3 AAEL011708 heat shock protein 1 1 1 1 4 
NS3 AAEL011742 eukaryotic peptide chain 

release factor subunit 
1 1 1 1 4 

NS3 AAEL011960 conserved hypothetical 
protein 

1 1 0 0 2 

NS3 AAEL011985 conserved hypothetical 
protein 

0 1 0 0 1 

NS3 AAEL011988 tRNA selenocysteine 
associated protein (secp43) 

0 1 0 0 1 

NS3 AAEL012095 26S protease regulatory 
subunit 

1 1 1 1 4 

NS3 AAEL012527 conserved hypothetical 
protein 

1 1 0 0 2 

NS3 AAEL012556 Ofd1 protein, putative 1 1 1 1 4 
NS3 AAEL012680 Juvenile hormone-

inducible protein, putative 
1 1 1 1 4 

NS3 AAEL012686 ribosomal protein S12, 
putative 

1 1 1 0 3 

NS3 AAEL012827 endoplasmin 1 1 1 1 4 
NS3 AAEL013075 conserved hypothetical 

protein 
0 1 0 0 1 

NS3 AAEL013933 serine protease inhibitor, 
serpin 

1 1 1 0 3 

NS3 AAEL014012 membrane-associated 
guanylate kinase (maguk) 

1 1 0 0 2 

NS3 AAEL014104 conserved hypothetical 
protein 

1 1 0 0 2 

NS3 AAEL014281 conserved hypothetical 
protein 

1 1 0 0 2 

NS3 AAEL014396 protein farnesyltransferase 
alpha subunit 

1 1 1 1 4 

NS3 AAEL014843 heat shock protein 1 1 1 1 4 
NS3 AAEL014845 heat shock protein 1 1 1 1 4 
NS3 AAEL000752 conserved hypothetical 

protein 
1 1 0 0 2 

NS3 AAEL000951 elongation factor 1-beta2 1 1 0 0 2 
NS3 AAEL002828 hypothetical protein 1 1 0 0 2 
NS3 AAEL003104 tripartite motif protein 

trim2,3 
0 1 0 0 1 

NS3 AAEL003973 conserved hypothetical 
protein 

0 1 0 0 1 

NS3 AAEL003973 conserved hypothetical 
protein 

1 1 1 1 4 
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NS3 AAEL004500 eukaryotic translation 
elongation factor 

1 1 1 1 4 

NS3 AAEL005037 seryl-tRn/a synthetase 1 1 0 0 2 
NS3 ENSG0000004457

4 
HSPA5; Homo sapiens 
heat shock 70kDa protein 5 
(glucose-regulated protein, 
78kDa) (HSPA5), mRn/a 

1 1 0 0 2 

NS3 AAEL005733 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 0 0 2 

NS3 AAEL006577 aspartyl-tRn/a synthetase 1 1 1 1 4 
NS3d AAEL000005 hypothetical protein 1 1 0 0 2 
NS3d AAEL000292 conserved hypothetical 

protein 
1 1 0 0 2 

NS3d AAEL000950 conserved hypothetical 
protein 

1 1 0 0 2 

NS3d AAEL001892 conserved hypothetical 
protein 

0 1 0 0 1 

NS3d AAEL001984 hypothetical protein 1 1 0 0 2 
NS3d AAEL002057 conserved hypothetical 

protein 
1 1 0 0 2 

NS3d AAEL002508 26S protease regulatory 
subunit 6a 

1 1 0 0 2 

NS3d AAEL002565 titin 1 1 0 0 2 
NS3d AAEL002572 myosin regulatory light 

chain 2 (mlc-2) 
1 1 0 0 2 

NS3d ENSG0000018710
9 

Homo sapiens nucleosome 
assembly protein 1-like 1 
(NAP1L1), transcript 
variant 1, mRNA 

0 1 0 0 1 

NS3d AAEL003345 argininosuccinate lyase 0 1 0 0 1 
NS3d AAEL003415 lamin 0 1 0 0 1 
NS3d AAEL003676 myosin I homologue, 

putative 
0 1 0 0 1 

NS3d AAEL003739 M-type 9 protein, putative 1 1 0 0 2 
NS3d AAEL003815 zinc finger protein 1 1 0 1 3 
NS3d AAEL003929 conserved hypothetical 

protein 
0 1 0 0 1 

NS3d AAEL004100 hypothetical protein 1 1 0 1 3 
NS3d AAEL004316 hypothetical protein 1 1 0 0 2 
NS3d AAEL004484 predicted protein 1 1 0 0 2 
NS3d AAEL004869 hypothetical protein 1 1 0 0 2 
NS3d AAEL005165 chaperone protein dnaj 0 1 0 0 1 
NS3d AAEL005567 nucleosome assembly 

protein 
1 1 0 0 2 

NS3d AAEL005656 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 0 0 2 

NS3d AAEL005790 malic enzyme 1 1 0 0 2 
NS3d AAEL006572 troponin C 1 1 0 0 2 
NS3d AAEL007201 glutamyl aminopeptidase 1 1 0 0 2 
NS3d AAEL007850 hypothetical protein 0 1 0 0 1 
NS3d AAEL007980 hypothetical protein 0 1 0 0 1 
NS3d AAEL008052 hypothetical protein 0 1 0 0 1 
NS3d AAEL008746 hypothetical protein 0 1 0 0 1 
NS3d AAEL009101 eukaryotic translation 

initiation factor 3f, eif3f 
0 1 0 0 1 

NS3d AAEL009182 zinc finger protein, putative 1 1 0 0 2 
NS3d AAEL009285 dead box atp-dependent rna 

helicase 
0 1 0 0 1 

NS3d AAEL009357 myosin v 0 1 0 0 1 
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NS3d ENSG0000003821
9 

Homo sapiens biorientation 
of chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

0 1 0 0 1 

NS3d AAEL009948 aldehyde dehydrogenase 1 1 0 0 2 
NS3d AAEL010005 conserved hypothetical 

protein 
1 0 0 0 1 

NS3d AAEL010066 microfibril-associated 
protein 

1 1 0 0 2 

NS3d AAEL010266 hypothetical protein 0 1 0 0 1 
NS3d AAEL010360 nucleotide binding protein 

2 (nbp 2) 
1 1 0 0 2 

NS3d AAEL010585 spermatogenesis associated 
factor 

1 1 0 0 2 

NS3d AAEL010782 carboxypeptidase 1 1 0 0 2 
NS3d AAEL010784 conserved hypothetical 

protein 
1 1 0 1 3 

NS3d AAEL010821 60S acidic ribosomal 
protein P0 

1 1 0 0 2 

NS3d AAEL011129 alcohol dehydrogenase 0 1 0 0 1 
NS3d AAEL011137 succinyl-coa:3-ketoacid-

coenzyme a transferase 
1 1 0 0 2 

NS3d AAEL011708 heat shock protein 1 1 0 0 2 
NS3d AAEL011742 eukaryotic peptide chain 

release factor subunit 
1 1 0 0 2 

NS3d AAEL011960 conserved hypothetical 
protein 

0 1 0 0 1 

NS3d AAEL011985 conserved hypothetical 
protein 

1 1 0 0 2 

NS3d AAEL012095 26S protease regulatory 
subunit 

1 1 0 0 2 

NS3d AAEL012527 conserved hypothetical 
protein 

0 1 0 0 1 

NS3d AAEL012556 Ofd1 protein, putative 1 0 0 1 2 
NS3d AAEL012680 Juvenile hormone-

inducible protein, putative 
1 1 0 0 2 

NS3d AAEL012686 ribosomal protein S12, 
putative 

1 1 0 0 2 

NS3d AAEL012827 endoplasmin 1 1 0 0 2 
NS3d AAEL013075 conserved hypothetical 

protein 
0 1 0 0 1 

NS3d AAEL013933 serine protease inhibitor, 
serpin 

1 1 0 0 2 

NS3d AAEL014012 membrane-associated 
guanylate kinase (maguk) 

0 1 0 0 1 

NS3d AAEL014104 conserved hypothetical 
protein 

1 1 0 0 2 

NS3d AAEL014281 conserved hypothetical 
protein 

0 1 0 0 1 

NS3d AAEL014396 protein farnesyltransferase 
alpha subunit 

1 1 0 0 2 

NS3d AAEL014843 heat shock protein 1 1 0 0 2 
NS3d AAEL014845 heat shock protein 0 1 0 0 1 
NS3d AAEL000752 conserved hypothetical 

protein 
1 1 0 0 2 

NS3d AAEL000951 elongation factor 1-beta2 0 1 0 0 1 
NS3d AAEL002828 hypothetical protein 1 1 0 0 2 
NS3d AAEL003104 tripartite motif protein 

trim2,3 
1 1 0 0 2 

NS3d AAEL003973 conserved hypothetical 
protein 

1 1 0 0 2 

NS3d AAEL003973 conserved hypothetical 
protein 

1 1 0 0 2 

NS3d AAEL004500 eukaryotic translation 0 1 0 0 1 
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elongation factor 
NS3d AAEL005037 seryl-tRn/a synthetase 1 1 0 0 2 
NS3d ENSG0000004457

4 
HSPA5; Homo sapiens 
heat shock 70kDa protein 5 
(glucose-regulated protein, 
78kDa) (HSPA5), mRn/a 

1 1 0 0 2 

NS3d AAEL005733 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 0 0 2 

NS3d AAEL006577 aspartyl-tRn/a synthetase 1 1 0 0 2 
NS4
A 

AAEL003064 conserved hypothetical 
protein 

0 1 0 0 1 

NS4
A 

AAEL010266 hypothetical protein 1 1 0 0 2 

NS4
A 

AAEL012686 ribosomal protein S12, 
putative 

1 1 0 0 2 

NS4
B 

AAEL003064 conserved hypothetical 
protein 

0 1 0 0 1 

NS4
B 

AAEL012686 ribosomal protein S12, 
putative 

1 1 0 0 2 

NS5 AAEL000005 hypothetical protein 1 1 1 1 4 
NS5 AAEL000136 conserved hypothetical 

protein 
0 0 1 0 1 

NS5 AAEL000292 conserved hypothetical 
protein 

1 1 1 0 3 

NS5 AAEL000436 conserved hypothetical 
protein 

1 1 0 0 2 

NS5 AAEL000950 conserved hypothetical 
protein 

1 0 0 0 1 

NS5 AAEL001553 conserved hypothetical 
protein 

1 1 0 0 2 

NS5 AAEL001892 conserved hypothetical 
protein 

1 1 0 0 2 

NS5 AAEL001984 hypothetical protein 1 1 1 1 4 
NS5 AAEL002057 conserved hypothetical 

protein 
1 1 1 1 4 

NS5 AAEL002508 26S protease regulatory 
subunit 6a 

1 1 1 0 3 

NS5 AAEL002565 titin 1 1 1 0 3 
NS5 AAEL002572 myosin regulatory light 

chain 2 (mlc-2) 
1 1 0 0 2 

NS5 ENSG0000018710
9 

Homo sapiens nucleosome 
assembly protein 1-like 1 
(NAP1L1), transcript 
variant 1, mRNA 

1 1 0 0 2 

NS5 AAEL003064 conserved hypothetical 
protein 

0 1 0 0 1 

NS5 AAEL003345 argininosuccinate lyase 1 1 0 0 2 
NS5 AAEL003415 lamin 1 1 1 0 3 
NS5 AAEL003676 myosin I homologue, 

putative 
1 1 0 0 2 

NS5 AAEL003739 M-type 9 protein, putative 1 1 1 1 4 
NS5 AAEL003750 conserved hypothetical 

protein 
1 0 0 0 1 

NS5 AAEL003815 zinc finger protein 1 1 1 0 3 
NS5 AAEL003929 conserved hypothetical 

protein 
1 1 1 0 3 

NS5 AAEL004100 hypothetical protein 1 1 1 1 4 
NS5 AAEL004316 hypothetical protein 1 1 1 1 4 
NS5 AAEL004484 predicted protein 1 1 1 0 3 
NS5 AAEL004855 adp,atp carrier protein 0 1 1 0 2 
NS5 AAEL004869 hypothetical protein 1 1 1 0 3 
NS5 AAEL005165 chaperone protein dnaj 1 1 1 0 3 
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NS5 AAEL005524 adenosylhomocysteinase 1 1 0 0 2 
NS5 AAEL005567 nucleosome assembly 

protein 
1 1 1 0 3 

NS5 AAEL005656 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 1 0 3 

NS5 AAEL005790 malic enzyme 1 1 1 1 4 
NS5 AAEL006572 troponin C 1 1 1 1 4 
NS5 AAEL007201 glutamyl aminopeptidase 1 1 1 0 3 
NS5 AAEL007850 hypothetical protein 1 1 0 0 2 
NS5 AAEL007980 hypothetical protein 1 1 1 0 3 
NS5 AAEL008052 hypothetical protein 1 0 0 0 1 
NS5 AAEL008700 conserved hypothetical 

protein 
1 1 0 0 2 

NS5 AAEL008746 hypothetical protein 1 1 0 0 2 
NS5 AAEL008852 conserved hypothetical 

protein 
0 1 0 0 1 

NS5 AAEL009101 eukaryotic translation 
initiation factor 3f, eif3f 

1 1 0 0 2 

NS5 AAEL009182 zinc finger protein, putative 1 1 1 0 3 
NS5 AAEL009285 dead box atp-dependent rna 

helicase 
1 1 0 0 2 

NS5 AAEL009357 myosin v 1 1 1 0 3 
NS5 ENSG0000003821

9 
Homo sapiens biorientation 
of chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

1 1 0 0 2 

NS5 AAEL009484 conserved hypothetical 
protein 

1 1 1 1 4 

NS5 AAEL009948 aldehyde dehydrogenase 1 1 1 0 3 
NS5 AAEL010005 conserved hypothetical 

protein 
1 1 0 0 2 

NS5 AAEL010012 gtp-binding protein sar1 1 1 0 0 2 
NS5 AAEL010066 microfibril-associated 

protein 
1 1 1 1 4 

NS5 AAEL010266 hypothetical protein 1 1 1 0 3 
NS5 AAEL010360 nucleotide binding protein 

2 (nbp 2) 
1 1 1 0 3 

NS5 AAEL010585 spermatogenesis associated 
factor 

1 1 1 0 3 

NS5 AAEL010782 carboxypeptidase 1 1 1 0 3 
NS5 AAEL010784 conserved hypothetical 

protein 
1 1 1 0 3 

NS5 AAEL010821 60S acidic ribosomal 
protein P0 

1 1 1 0 3 

NS5 AAEL010975 paramyosin, long form 1 1 1 1 4 
NS5 AAEL011129 alcohol dehydrogenase 1 0 0 0 1 
NS5 AAEL011137 succinyl-coa:3-ketoacid-

coenzyme a transferase 
1 1 1 0 3 

NS5 AAEL011708 heat shock protein 1 1 0 0 2 
NS5 AAEL011742 eukaryotic peptide chain 

release factor subunit 
1 1 0 1 3 

NS5 AAEL011960 conserved hypothetical 
protein 

1 1 1 1 4 

NS5 AAEL011985 conserved hypothetical 
protein 

1 1 0 0 2 

NS5 AAEL011988 tRNA selenocysteine 
associated protein (secp43) 

1 1 0 0 2 

NS5 AAEL012095 26S protease regulatory 
subunit 

1 1 1 1 4 

NS5 AAEL012527 conserved hypothetical 
protein 

1 1 1 0 3 
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NS5 AAEL012556 Ofd1 protein, putative 1 1 1 0 3 
NS5 AAEL012680 Juvenile hormone-

inducible protein, putative 
1 1 1 1 4 

NS5 AAEL012686 ribosomal protein S12, 
putative 

1 1 1 0 3 

NS5 AAEL012827 endoplasmin 1 1 1 0 3 
NS5 AAEL013075 conserved hypothetical 

protein 
1 1 0 0 2 

NS5 AAEL013086 hypothetical protein 1 1 1 0 3 
NS5 AAEL013583 60S ribosomal protein L23 1 0 0 0 1 
NS5 AAEL013933 serine protease inhibitor, 

serpin 
1 1 0 0 2 

NS5 AAEL014012 membrane-associated 
guanylate kinase (maguk) 

1 1 0 1 3 

NS5 AAEL014104 conserved hypothetical 
protein 

1 1 0 1 3 

NS5 AAEL014281 conserved hypothetical 
protein 

1 0 0 1 2 

NS5 AAEL014396 protein farnesyltransferase 
alpha subunit 

1 1 1 1 4 

NS5 AAEL014843 heat shock protein 1 1 1 0 3 
NS5 AAEL014845 heat shock protein 1 1 0 0 2 
NS5 AAEL000752 conserved hypothetical 

protein 
1 1 0 1 3 

NS5 AAEL000951 elongation factor 1-beta2 1 1 0 0 2 
NS5 AAEL002828 hypothetical protein 1 1 1 0 3 
NS5 AAEL003104 tripartite motif protein 

trim2,3 
1 1 1 0 3 

NS5 AAEL003973 conserved hypothetical 
protein 

1 1 1 1 4 

NS5 AAEL003973 conserved hypothetical 
protein 

1 1 1 1 4 

NS5 AAEL004500 eukaryotic translation 
elongation factor 

1 1 1 0 3 

NS5 AAEL005037 seryl-tRn/a synthetase 1 1 0 0 2 
NS5 ENSG0000004457

4 
HSPA5; Homo sapiens 
heat shock 70kDa protein 5 
(glucose-regulated protein, 
78kDa) (HSPA5), mRn/a 

1 1 1 0 3 

NS5 AAEL005733 myosin heavy chain, 
nonmuscle or smooth 
muscle 

1 1 1 0 3 

NS5 AAEL006577 aspartyl-tRn/a synthetase 1 1 1 0 3 
PrM AAEL000005 hypothetical protein 0 1 0 0 1 
PrM AAEL001984 hypothetical protein 0 1 0 0 1 
PrM AAEL002057 conserved hypothetical 

protein 
0 1 0 0 1 

PrM AAEL004100 hypothetical protein 0 1 0 0 1 
PrM AAEL004869 hypothetical protein 0 1 0 0 1 
PrM AAEL005165 chaperone protein dnaj 0 1 0 0 1 
PrM AAEL005567 nucleosome assembly 

protein 
0 1 0 0 1 

PrM AAEL006572 troponin C 0 1 0 0 1 
PrM AAEL009182 zinc finger protein, putative 0 1 0 0 1 
PrM ENSG0000003821

9 
Homo sapiens biorientation 
of chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

0 1 0 0 1 

PrM AAEL007406 Conserved hypothetical 
protein 

1 1 0 0 2 

PrM AAEL010266 hypothetical protein 1 1 1 1 4 
PrM AAEL010360 nucleotide binding protein 0 1 0 0 1 
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2 (nbp 2) 
PrM AAEL010585 spermatogenesis associated 

factor 
0 1 0 0 1 

PrM AAEL010782 carboxypeptidase 1 1 0 0 2 
PrM AAEL010784 conserved hypothetical 

protein 
0 1 0 0 1 

PrM AAEL011137 succinyl-coa:3-ketoacid-
coenzyme a transferase 

0 1 0 0 1 

PrM AAEL011708 heat shock protein 0 1 0 0 1 
PrM AAEL012556 Ofd1 protein, putative 0 1 0 0 1 
PrM AAEL012686 ribosomal protein S12, 

putative 
1 1 0 0 2 

PrM AAEL014104 conserved hypothetical 
protein 

0 1 0 0 1 

PrM AAEL014396 protein farnesyltransferase 
alpha subunit 

0 1 0 0 1 

PrM AAEL014843 heat shock protein 0 1 0 0 1 
PrM AAEL000752 conserved hypothetical 

protein 
0 1 0 0 1 

PrM AAEL002828 hypothetical protein 0 1 0 0 1 
PrM AAEL004500 eukaryotic translation 

elongation factor 
0 1 0 0 1 

PrM AAEL005037 seryl-tRn/a synthetase 0 1 0 0 1 
PrM ENSG0000004457

4 
HSPA5; Homo sapiens 
heat shock 70kDa protein 5 
(glucose-regulated protein, 
78kDa) (HSPA5), mRn/a 

0 1 0 0 1 

PrM AAEL005733 myosin heavy chain, 
nonmuscle or smooth 
muscle 

0 1 0 0 1 

CA AAEL010507 hypothetical protein 0 0 1 0 1 
CA AAEL012237 bhlhzip transcription factor 

max/bigmax 
1 1 0 1 3 

CA AAEL012348 splicing factor 3a 0 0 1 0 1 
CA AAEL004783 ornithine decarboxylase 

antizyme, 
0 1 0 0 1 

CA ENSG0000019795
8 

RPL12; Homo sapiens 
ribosomal protein L12 
(RPL12), mRNA 

1 1 1 1 4 

CA ENSG0000013284
2 

AP3B1; Homo sapiens 
adaptor-related protein 
complex 3, beta 1 subunit 
(AP3B1), mRNA 

1 1 1 1 4 

CA ENSG0000012312
4 

WWP1; Homo sapiens 
WW domain containing E3 
ubiquitin protein ligase 1 
(WWP1), mRNA 

1 1 1 1 4 

CA ENSG0000011033
0 

birc2; Homo sapiens 
baculoviral IAP repeat-
containing 2 (BIRC2), 
mRNA 

1 1 1 1 4 

CA ENSG0000006733
4 

DNTTIP2; Homo sapiens 
deoxynucleotidyltransferas
e, terminal, interacting 
protein 2 (DNTTIP2), 
mRNA  

0 0 1 0 1 

CA ENSG0000010793
7 

GTPBP4; Homo sapiens 
GTP binding protein 4 
(GTPBP4), mRNA 

1 1 1 1 4 

CA ENSG0000008900
9 

Homo sapiens ribosomal 
protein L6 (RPL6), 
transcript variant 2, mRNA 

1 1 1 1 4 

CA ENSG0000010287
9 

Coro1a; Homo sapiens 
coronin, actin binding 
protein, 1A (CORO1A), 

1 1 1 1 4 
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mRNA 
CA ENSG0000012240

6 
Homo sapiens ribosomal 
protein L5, mRNA (cDNA 
clone IMAGE:3544216),  
complete cds 

1 1 1 1 4 

CA ENSG0000003821
9 

BOD1L; Homo sapiens 
biorientation of 
chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

1 1 1 1 4 

CA ENSG0000014474
7 

TMF1; Homo sapiens 
TATA element modulatory 
factor 1 (TMF1), mRNA 

1 1 1 0 3 

CA ENSG0000018878
6 

MTF1; Homo sapiens 
metal-regulatory 
transcription factor 1 
(MTF1), mRNA 

1 0 0 0 1 

CA ENSG0000020574
4 

DENND1C; Homo sapiens 
DENN/MADD domain 
containing 1C 
(DENND1C), mRNA 

0 0 1 0 1 

CA ENSG0000016322
0 

S100A9; Homo sapiens 
S100 calcium binding 
protein A9 (S100A9), 
mRNA 

1 1 1 1 4 

CA ENSG0000013693
8 

Homo sapiens cDNA, 
FLJ94333, Homo sapiens 
acidic (leucine-rich)  
nuclear phosphoprotein 
32family, member B 
(ANP32B), mRNA 

1 1 1 1 4 

CA ENSG0000010174
5 

ANKRD12; Homo sapiens 
ankyrin repeat domain 12 
(ANKRD12), transcript 
variant 2, mRNA 

1 1 1 1 4 

CA ENSG0000016065
4 

Cd3g; Homo sapiens CD3g 
molecule, gamma (CD3-
TCR complex) (CD3G), 
mRNA 

1 1 1 1 4 

CA ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

1 1 1 1 4 

CA ENSG0000018710
9 

NAP1L1; Homo sapiens 
nucleosome assembly 
protein 1-like 1 (NAP1L1), 
transcript variant 1, mRNA 

1 1 1 1 4 

CA 
  

Homo sapiens haplogroup 
K1c1 mitochondrion, 
complete genome 

0 1 0 0 1 

CA ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 0 0 0 1 

CA ENSG0000015097
7 

Rilpl2; Homo sapiens Rab 
interacting lysosomal 
protein-like 2 (RILPL2), 
mRNA  

1 0 0 1 2 

CA ENSG0000017186
3 

rps7; Homo sapiens 
ribosomal protein S7 
(RPS7), mRNA 

1 1 1 1 4 

CA ENSG0000017795
4 

RPS27 Homo sapiens 
ribosomal protein S27 
(RPS27), mRNA 

1 1 1 1 4 

CA ENSG0000005274
9 

Rrp12; Homo sapiens 
ribosomal RNA processing 
12 homolog (S. cerevisiae) 
(RRP12), transcript variant 

1 1 1 1 4 
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2, mRNA 
CA ENSG0000013550

6 
OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 1 1 1 4 

CV AAEL009460 conserved hypothetical 
protein 

1 1 0 0 2 

CV AAEL009614 seven in absentia, putative 0 1 0 0 1 
CV AAEL010507 hypothetical protein 1 1 1 1 4 
CV AAEL012237 bhlhzip transcription factor 

max/bigmax 
1 1 0 1 3 

CV AAEL012348 splicing factor 3a 1 1 0 0 2 
CV AAEL004783 ornithine decarboxylase 

antizyme, 
0 1 0 0 1 

CV ENSG0000019795
8 

RPL12; Homo sapiens 
ribosomal protein L12 
(RPL12), mRNA 

1 1 1 1 4 

CV ENSG0000016090
8 

ZNF394; Homo sapiens 
zinc finger protein 394 
(ZNF394), mRNA  

1 1 0 1 3 

CV ENSG0000013284
2 

AP3B1; Homo sapiens 
adaptor-related protein 
complex 3, beta 1 subunit 
(AP3B1), mRNA 

1 1 0 1 3 

CV ENSG0000012312
4 

WWP1; Homo sapiens 
WW domain containing E3 
ubiquitin protein ligase 1 
(WWP1), mRNA 

1 1 1 1 4 

CV ENSG0000011033
0 

birc2; Homo sapiens 
baculoviral IAP repeat-
containing 2 (BIRC2), 
mRNA 

1 1 1 1 4 

CV ENSG0000006733
4 

DNTTIP2; Homo sapiens 
deoxynucleotidyltransferas
e, terminal, interacting 
protein 2 (DNTTIP2), 
mRNA  

1 1 1 1 4 

CV ENSG0000010793
7 

GTPBP4; Homo sapiens 
GTP binding protein 4 
(GTPBP4), mRNA 

1 1 0 1 3 

CV ENSG0000017803
5 

Impdh2; Homo sapiens 
IMP (inosine 
monophosphate) 
dehydrogenase 2 
(IMPDH2), mRNA 

0 1 0 0 1 

CV ENSG0000008900
9 

Homo sapiens ribosomal 
protein L6 (RPL6), 
transcript variant 2, mRNA 

1 1 1 1 4 

CV ENSG0000012240
6 

Homo sapiens ribosomal 
protein L5, mRNA (cDNA 
clone IMAGE:3544216),  
complete cds 

1 1 1 1 4 

CV ENSG0000003821
9 

BOD1L; Homo sapiens 
biorientation of 
chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

1 1 1 1 4 

CV ENSG0000014474
7 

TMF1; Homo sapiens 
TATA element modulatory 
factor 1 (TMF1), mRNA 

1 1 1 1 4 

CV ENSG0000018878
6 

MTF1; Homo sapiens 
metal-regulatory 
transcription factor 1 
(MTF1), mRNA 

1 1 0 0 2 

CV ENSG0000020574
4 

DENND1C; Homo sapiens 
DENN/MADD domain 

1 1 0 1 3 
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containing 1C 
(DENND1C), mRNA 

CV ENSG0000016322
0 

S100A9; Homo sapiens 
S100 calcium binding 
protein A9 (S100A9), 
mRNA 

1 0 0 0 1 

CV ENSG0000013693
8 

Homo sapiens cDNA, 
FLJ94333, Homo sapiens 
acidic (leucine-rich)  
nuclear phosphoprotein 
32family, member B 
(ANP32B), mRNA 

1 1 1 1 4 

CV ENSG0000010174
5 

ANKRD12; Homo sapiens 
ankyrin repeat domain 12 
(ANKRD12), transcript 
variant 2, mRNA 

1 1 1 1 4 

CV ENSG0000007284
9 

Derl2; Homo sapiens Der1-
like domain family, 
member 2 (DERL2), 
mRNA 

0 1 0 0 1 

CV ENSG0000017323
0 

GOLGB1; Homo sapiens 
golgin B1, golgi integral 
membrane protein 
(GOLGB1), mRNA 

1 0 0 0 1 

CV ENSG0000016065
4 

Cd3g; Homo sapiens CD3g 
molecule, gamma (CD3-
TCR complex) (CD3G), 
mRNA 

1 1 1 1 4 

CV ENSG0000010208
1 

FMR1; Homo sapiens 
fragile X mental retardation 
1 (FMR1), mRNA 

0 1 0 0 1 

CV ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

1 1 1 1 4 

CV ENSG0000012483
1 

Lrrfip1; Homo sapiens 
leucine rich repeat (in FLII) 
interacting protein 1 
(LRRFIP1), transcript 
variant 5, mRNA 

1 1 0 1 3 

CV ENSG0000018710
9 

NAP1L1; Homo sapiens 
nucleosome assembly 
protein 1-like 1 (NAP1L1), 
transcript variant 1, mRNA 

1 1 0 1 3 

CV ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 1 0 1 3 

CV ENSG0000011972
5 

znf410; Homo sapiens zinc 
finger protein 410 
(ZNF410), mRNA  

1 1 0 0 2 

CV ENSG0000015097
7 

Rilpl2; Homo sapiens Rab 
interacting lysosomal 
protein-like 2 (RILPL2), 
mRNA  

0 1 0 0 1 

CV ENSG0000010076
4 

Homo sapiens cDNA, 
FLJ93843, Homo sapiens 
proteasome (prosome, 
macropain) 26S subunit, 
ATPase, 1(PSMC1), 
mRNA 

0 1 0 0 1 

CV ENSG0000024473
4 

HBB; Homo sapiens 
hemoglobin, beta (HBB), 
mRNA 

0 1 0 0 1 

CV ENSG0000017186
3 

rps7; Homo sapiens 
ribosomal protein S7 
(RPS7), mRNA 

1 1 1 1 4 

CV ENSG0000017277
5 

fam192a; Homo sapiens 
family with sequence 

1 1 1 1 4 



 

 

197 

similarity 192, member A 
(FAM192A), mRNA 

CV ENSG0000017795
4 

RPS27 Homo sapiens 
ribosomal protein S27 
(RPS27), mRNA 

1 1 0 1 3 

CV ENSG0000005274
9 

Rrp12; Homo sapiens 
ribosomal RNA processing 
12 homolog (S. cerevisiae) 
(RRP12), transcript variant 
2, mRNA 

1 1 1 1 4 

CV ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

0 1 0 0 1 

Eiii AAEL009460 conserved hypothetical 
protein 

1 0 0 0 1 

Eiii AAEL009614 seven in absentia, putative 1 0 0 0 1 
Eiii AAEL010507 hypothetical protein 1 0 0 1 2 
Eiii AAEL012237 bhlhzip transcription factor 

max/bigmax 
1 1 0 0 2 

Eiii AAEL012348 splicing factor 3a 1 1 0 0 2 
Eiii AAEL004783 ornithine decarboxylase 

antizyme, 
1 0 0 1 2 

Eiii ENSG0000019795
8 

RPL12; Homo sapiens 
ribosomal protein L12 
(RPL12), mRNA 

1 1 0 1 3 

Eiii ENSG0000016090
8 

ZNF394; Homo sapiens 
zinc finger protein 394 
(ZNF394), mRNA  

1 0 0 0 1 

Eiii ENSG0000013284
2 

AP3B1; Homo sapiens 
adaptor-related protein 
complex 3, beta 1 subunit 
(AP3B1), mRNA 

1 0 0 0 1 

Eiii ENSG0000012312
4 

WWP1; Homo sapiens 
WW domain containing E3 
ubiquitin protein ligase 1 
(WWP1), mRNA 

1 1 0 1 3 

Eiii ENSG0000006733
4 

DNTTIP2; Homo sapiens 
deoxynucleotidyltransferas
e, terminal, interacting 
protein 2 (DNTTIP2), 
mRNA  

1 0 0 1 2 

Eiii ENSG0000010793
7 

GTPBP4; Homo sapiens 
GTP binding protein 4 
(GTPBP4), mRNA 

0 1 0 0 1 

Eiii ENSG0000017803
5 

Impdh2; Homo sapiens 
IMP (inosine 
monophosphate) 
dehydrogenase 2 
(IMPDH2), mRNA 

1 0 0 0 1 

Eiii ENSG0000008900
9 

Homo sapiens ribosomal 
protein L6 (RPL6), 
transcript variant 2, mRNA 

1 0 0 0 1 

Eiii ENSG0000010287
9 

Coro1a; Homo sapiens 
coronin, actin binding 
protein, 1A (CORO1A), 
mRNA 

1 0 0 0 1 

Eiii ENSG0000012240
6 

Homo sapiens ribosomal 
protein L5, mRNA (cDNA 
clone IMAGE:3544216),  
complete cds 

1 1 0 1 3 

Eiii ENSG0000011439
1 

Homo sapiens ribosomal 
protein L24, mRNA 
(cDNA clone MGC:2240 
IMAGE:3349215), 
complete cds 

1 0 0 0 1 
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Eiii ENSG0000018878
6 

MTF1; Homo sapiens 
metal-regulatory 
transcription factor 1 
(MTF1), mRNA 

1 0 0 1 2 

Eiii ENSG0000013693
8 

Homo sapiens cDNA, 
FLJ94333, Homo sapiens 
acidic (leucine-rich)  
nuclear phosphoprotein 
32family, member B 
(ANP32B), mRNA 

1 0 0 1 2 

Eiii ENSG0000007284
9 

Derl2; Homo sapiens Der1-
like domain family, 
member 2 (DERL2), 
mRNA 

1 0 0 0 1 

Eiii ENSG0000017323
0 

GOLGB1; Homo sapiens 
golgin B1, golgi integral 
membrane protein 
(GOLGB1), mRNA 

1 0 0 1 2 

Eiii ENSG0000019885
1 

CD3E; Homo sapiens 
CD3e molecule, epsilon 
(CD3-TCR complex) 
(CD3E), mRNA 

1 0 0 0 1 

Eiii ENSG0000010208
1 

FMR1; Homo sapiens 
fragile X mental retardation 
1 (FMR1), mRNA 

1 0 0 1 2 

Eiii ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

1 0 0 1 2 

Eiii ENSG0000012483
1 

Lrrfip1; Homo sapiens 
leucine rich repeat (in FLII) 
interacting protein 1 
(LRRFIP1), transcript 
variant 5, mRNA 

1 1 0 0 2 

Eiii ENSG0000018710
9 

NAP1L1; Homo sapiens 
nucleosome assembly 
protein 1-like 1 (NAP1L1), 
transcript variant 1, mRNA 

1 0 0 0 1 

Eiii 
  

Homo sapiens haplogroup 
K1c1 mitochondrion, 
complete genome 

1 0 0 0 1 

Eiii ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 0 0 1 2 

Eiii ENSG0000011972
5 

znf410; Homo sapiens zinc 
finger protein 410 
(ZNF410), mRNA  

1 0 0 1 2 

Eiii ENSG0000010076
4 

Homo sapiens cDNA, 
FLJ93843, Homo sapiens 
proteasome (prosome, 
macropain) 26S subunit, 
ATPase, 1(PSMC1), 
mRNA 

1 0 0 1 2 

Eiii ENSG0000024473
4 

HBB; Homo sapiens 
hemoglobin, beta (HBB), 
mRNA 

1 1 0 0 2 

Eiii ENSG0000013643
6 

CALCOCO2; Homo 
sapiens calcium binding 
and coiled-coil domain 2 
(CALCOCO2), mRNA 

1 0 0 1 2 

Eiii ENSG0000011521
6 

nrbp1; Homo sapiens 
nuclear receptor binding 
protein 1 (NRBP1), mRNA 

1 0 0 1 2 

Eiii ENSG0000017186
3 

rps7; Homo sapiens 
ribosomal protein S7 
(RPS7), mRNA 

1 1 0 0 2 

Eiii ENSG0000017277
5 

fam192a; Homo sapiens 
family with sequence 

1 1 0 1 3 
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similarity 192, member A 
(FAM192A), mRNA 

Eiii ENSG0000017795
4 

RPS27 Homo sapiens 
ribosomal protein S27 
(RPS27), mRNA 

1 0 0 0 1 

Eiii ENSG0000005274
9 

Rrp12; Homo sapiens 
ribosomal RNA processing 
12 homolog (S. cerevisiae) 
(RRP12), transcript variant 
2, mRNA 

1 1 0 1 3 

Eiii ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 0 0 1 2 

NS1 ENSG0000013284
2 

AP3B1; Homo sapiens 
adaptor-related protein 
complex 3, beta 1 subunit 
(AP3B1), mRNA 

1 0 0 0 1 

NS1 ENSG0000011033
0 

birc2; Homo sapiens 
baculoviral IAP repeat-
containing 2 (BIRC2), 
mRNA 

1 0 0 0 1 

NS1 ENSG0000016322
0 

S100A9; Homo sapiens 
S100 calcium binding 
protein A9 (S100A9), 
mRNA 

1 0 0 0 1 

NS1 ENSG0000013693
8 

Homo sapiens cDNA, 
FLJ94333, Homo sapiens 
acidic (leucine-rich)  
nuclear phosphoprotein 
32family, member B 
(ANP32B), mRNA 

1 0 0 0 1 

NS1 ENSG0000018710
9 

NAP1L1; Homo sapiens 
nucleosome assembly 
protein 1-like 1 (NAP1L1), 
transcript variant 1, mRNA 

1 0 0 0 1 

NS1 ENSG0000017795
4 

RPS27 Homo sapiens 
ribosomal protein S27 
(RPS27), mRNA 

1 0 0 0 1 

NS1 ENSG0000005274
9 

Rrp12; Homo sapiens 
ribosomal RNA processing 
12 homolog (S. cerevisiae) 
(RRP12), transcript variant 
2, mRNA 

1 0 0 0 1 

NS1 ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 0 0 0 1 

NS2
B 

ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

0 1 0 0 1 

NS3 AAEL009460 conserved hypothetical 
protein 

1 1 1 1 4 

NS3 AAEL009614 seven in absentia, putative 1 0 1 0 2 
NS3 AAEL010507 hypothetical protein 1 1 0 1 3 
NS3 AAEL012237 bhlhzip transcription factor 

max/bigmax 
1 1 0 1 3 

NS3 AAEL012348 splicing factor 3a 1 1 0 1 3 
NS3 AAEL004783 ornithine decarboxylase 

antizyme, 
1 1 1 1 4 

NS3 ENSG0000019795
8 

RPL12; Homo sapiens 
ribosomal protein L12 
(RPL12), mRNA 

1 1 1 1 4 

NS3 ENSG0000016090
8 

ZNF394; Homo sapiens 
zinc finger protein 394 
(ZNF394), mRNA  

1 1 0 1 3 
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NS3 ENSG0000013284
2 

AP3B1; Homo sapiens 
adaptor-related protein 
complex 3, beta 1 subunit 
(AP3B1), mRNA 

1 1 0 0 2 

NS3 ENSG0000012312
4 

WWP1; Homo sapiens 
WW domain containing E3 
ubiquitin protein ligase 1 
(WWP1), mRNA 

1 1 1 1 4 

NS3 ENSG0000011033
0 

birc2; Homo sapiens 
baculoviral IAP repeat-
containing 2 (BIRC2), 
mRNA 

1 1 0 0 2 

NS3 ENSG0000006733
4 

DNTTIP2; Homo sapiens 
deoxynucleotidyltransferas
e, terminal, interacting 
protein 2 (DNTTIP2), 
mRNA  

1 1 1 1 4 

NS3 ENSG0000010793
7 

GTPBP4; Homo sapiens 
GTP binding protein 4 
(GTPBP4), mRNA 

1 1 0 0 2 

NS3 ENSG0000017803
5 

Impdh2; Homo sapiens 
IMP (inosine 
monophosphate) 
dehydrogenase 2 
(IMPDH2), mRNA 

1 1 1 1 4 

NS3 ENSG0000008900
9 

Homo sapiens ribosomal 
protein L6 (RPL6), 
transcript variant 2, mRNA 

0 1 0 0 1 

NS3 ENSG0000010287
9 

Coro1a; Homo sapiens 
coronin, actin binding 
protein, 1A (CORO1A), 
mRNA 

1 1 1 1 4 

NS3 ENSG0000012240
6 

Homo sapiens ribosomal 
protein L5, mRNA (cDNA 
clone IMAGE:3544216),  
complete cds 

1 1 1 1 4 

NS3 ENSG0000014474
7 

TMF1; Homo sapiens 
TATA element modulatory 
factor 1 (TMF1), mRNA 

0 1 0 0 1 

NS3 ENSG0000018878
6 

MTF1; Homo sapiens 
metal-regulatory 
transcription factor 1 
(MTF1), mRNA 

1 1 1 1 4 

NS3 ENSG0000020574
4 

DENND1C; Homo sapiens 
DENN/MADD domain 
containing 1C 
(DENND1C), mRNA 

1 1 0 0 2 

NS3 ENSG0000016322
0 

S100A9; Homo sapiens 
S100 calcium binding 
protein A9 (S100A9), 
mRNA 

1 1 0 1 3 

NS3 ENSG0000013693
8 

Homo sapiens cDNA, 
FLJ94333, Homo sapiens 
acidic (leucine-rich)  
nuclear phosphoprotein 
32family, member B 
(ANP32B), mRNA 

1 1 1 1 4 

NS3 ENSG0000007284
9 

Derl2; Homo sapiens Der1-
like domain family, 
member 2 (DERL2), 
mRNA 

1 1 1 1 4 

NS3 ENSG0000017323
0 

GOLGB1; Homo sapiens 
golgin B1, golgi integral 
membrane protein 
(GOLGB1), mRNA 

1 1 1 1 4 

NS3 ENSG0000010208
1 

FMR1; Homo sapiens 
fragile X mental retardation 
1 (FMR1), mRNA 

1 1 1 1 4 
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NS3 ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

0 1 0 0 1 

NS3 ENSG0000012483
1 

Lrrfip1; Homo sapiens 
leucine rich repeat (in FLII) 
interacting protein 1 
(LRRFIP1), transcript 
variant 5, mRNA 

1 1 0 1 3 

NS3 ENSG0000018710
9 

NAP1L1; Homo sapiens 
nucleosome assembly 
protein 1-like 1 (NAP1L1), 
transcript variant 1, mRNA 

1 1 0 0 2 

NS3 
  

Homo sapiens haplogroup 
K1c1 mitochondrion, 
complete genome 

1 1 1 1 4 

NS3 ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 1 1 1 4 

NS3 ENSG0000011972
5 

znf410; Homo sapiens zinc 
finger protein 410 
(ZNF410), mRNA  

1 1 1 1 4 

NS3 ENSG0000015097
7 

Rilpl2; Homo sapiens Rab 
interacting lysosomal 
protein-like 2 (RILPL2), 
mRNA  

1 1 0 1 3 

NS3 ENSG0000010076
4 

Homo sapiens cDNA, 
FLJ93843, Homo sapiens 
proteasome (prosome, 
macropain) 26S subunit, 
ATPase, 1(PSMC1), 
mRNA 

1 1 1 1 4 

NS3 ENSG0000024473
4 

HBB; Homo sapiens 
hemoglobin, beta (HBB), 
mRNA 

0 1 0 1 2 

NS3 ENSG0000013643
6 

CALCOCO2; Homo 
sapiens calcium binding 
and coiled-coil domain 2 
(CALCOCO2), mRNA 

1 1 1 1 4 

NS3 ENSG0000011521
6 

nrbp1; Homo sapiens 
nuclear receptor binding 
protein 1 (NRBP1), mRNA 

1 1 1 1 4 

NS3 ENSG0000017186
3 

rps7; Homo sapiens 
ribosomal protein S7 
(RPS7), mRNA 

1 1 0 1 3 

NS3 ENSG0000017277
5 

fam192a; Homo sapiens 
family with sequence 
similarity 192, member A 
(FAM192A), mRNA 

1 1 0 1 3 

NS3 ENSG0000010090
6 

NFKBIA; Homo sapiens 
nuclear factor of kappa 
light polypeptide gene 
enhancer in B-cells 
inhibitor, alpha (NFKBIA), 
mRNA 

1 1 0 1 3 

NS3 ENSG0000017795
4 

RPS27 Homo sapiens 
ribosomal protein S27 
(RPS27), mRNA 

0 1 0 1 2 

NS3 ENSG0000005274
9 

Rrp12; Homo sapiens 
ribosomal RNA processing 
12 homolog (S. cerevisiae) 
(RRP12), transcript variant 
2, mRNA 

0 1 0 1 2 

NS3 ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 1 1 1 4 



 

 

202 

NS3d AAEL009460 conserved hypothetical 
protein 

1 0 0 0 1 

NS3d AAEL010507 hypothetical protein 1 1 0 1 3 
NS3d AAEL012237 bhlhzip transcription factor 

max/bigmax 
0 1 0 0 1 

NS3d AAEL012348 splicing factor 3a 1 1 0 0 2 
NS3d AAEL004783 ornithine decarboxylase 

antizyme, 
0 1 0 0 1 

NS3d ENSG0000019795
8 

RPL12; Homo sapiens 
ribosomal protein L12 
(RPL12), mRNA 

1 1 0 0 2 

NS3d ENSG0000016090
8 

ZNF394; Homo sapiens 
zinc finger protein 394 
(ZNF394), mRNA  

0 1 0 0 1 

NS3d ENSG0000013284
2 

AP3B1; Homo sapiens 
adaptor-related protein 
complex 3, beta 1 subunit 
(AP3B1), mRNA 

0 1 0 0 1 

NS3d ENSG0000012312
4 

WWP1; Homo sapiens 
WW domain containing E3 
ubiquitin protein ligase 1 
(WWP1), mRNA 

1 1 0 0 2 

NS3d ENSG0000006733
4 

DNTTIP2; Homo sapiens 
deoxynucleotidyltransferas
e, terminal, interacting 
protein 2 (DNTTIP2), 
mRNA  

1 1 0 1 3 

NS3d ENSG0000017803
5 

Impdh2; Homo sapiens 
IMP (inosine 
monophosphate) 
dehydrogenase 2 
(IMPDH2), mRNA 

1 1 0 0 2 

NS3d ENSG0000008900
9 

Homo sapiens ribosomal 
protein L6 (RPL6), 
transcript variant 2, mRNA 

0 1 0 0 1 

NS3d ENSG0000010287
9 

Coro1a; Homo sapiens 
coronin, actin binding 
protein, 1A (CORO1A), 
mRNA 

0 1 0 0 1 

NS3d ENSG0000012240
6 

Homo sapiens ribosomal 
protein L5, mRNA (cDNA 
clone IMAGE:3544216),  
complete cds 

1 1 0 0 2 

NS3d ENSG0000018878
6 

MTF1; Homo sapiens 
metal-regulatory 
transcription factor 1 
(MTF1), mRNA 

1 1 0 0 2 

NS3d ENSG0000013693
8 

Homo sapiens cDNA, 
FLJ94333, Homo sapiens 
acidic (leucine-rich)  
nuclear phosphoprotein 
32family, member B 
(ANP32B), mRNA 

0 1 0 0 1 

NS3d ENSG0000007284
9 

Derl2; Homo sapiens Der1-
like domain family, 
member 2 (DERL2), 
mRNA 

1 0 0 0 1 

NS3d ENSG0000017323
0 

GOLGB1; Homo sapiens 
golgin B1, golgi integral 
membrane protein 
(GOLGB1), mRNA 

0 1 0 0 1 

NS3d ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

0 1 0 0 1 

NS3d ENSG0000012483
1 

Lrrfip1; Homo sapiens 
leucine rich repeat (in FLII) 
interacting protein 1 
(LRRFIP1), transcript 

1 1 0 0 2 
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variant 5, mRNA 
NS3d ENSG0000013550

6 
OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 1 0 0 2 

NS3d ENSG0000011972
5 

znf410; Homo sapiens zinc 
finger protein 410 
(ZNF410), mRNA  

1 1 0 0 2 

NS3d ENSG0000010076
4 

Homo sapiens cDNA, 
FLJ93843, Homo sapiens 
proteasome (prosome, 
macropain) 26S subunit, 
ATPase, 1(PSMC1), 
mRNA 

1 1 0 0 2 

NS3d ENSG0000024473
4 

HBB; Homo sapiens 
hemoglobin, beta (HBB), 
mRNA 

1 1 0 0 2 

NS3d ENSG0000013643
6 

CALCOCO2; Homo 
sapiens calcium binding 
and coiled-coil domain 2 
(CALCOCO2), mRNA 

0 1 0 0 1 

NS3d ENSG0000017186
3 

rps7; Homo sapiens 
ribosomal protein S7 
(RPS7), mRNA 

0 1 0 0 1 

NS3d ENSG0000017277
5 

fam192a; Homo sapiens 
family with sequence 
similarity 192, member A 
(FAM192A), mRNA 

1 1 0 0 2 

NS3d ENSG0000010090
6 

NFKBIA; Homo sapiens 
nuclear factor of kappa 
light polypeptide gene 
enhancer in B-cells 
inhibitor, alpha (NFKBIA), 
mRNA 

0 1 0 0 1 

NS3d ENSG0000005274
9 

Rrp12; Homo sapiens 
ribosomal RNA processing 
12 homolog (S. cerevisiae) 
(RRP12), transcript variant 
2, mRNA 

1 0 0 0 1 

NS3d ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 1 0 0 2 

NS4
A 

ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

0 1 0 0 1 

NS4
B 

ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

0 1 0 0 1 

NS5 AAEL009460 conserved hypothetical 
protein 

1 1 1 1 4 

NS5 AAEL009614 seven in absentia, putative 1 0 1 0 2 
NS5 AAEL010507 hypothetical protein 1 1 1 0 3 
NS5 AAEL012237 bhlhzip transcription factor 

max/bigmax 
1 1 1 1 4 

NS5 AAEL012348 splicing factor 3a 1 1 1 1 4 
NS5 AAEL004783 ornithine decarboxylase 

antizyme, 
1 1 1 0 3 

NS5 ENSG0000019795
8 

RPL12; Homo sapiens 
ribosomal protein L12 
(RPL12), mRNA 

1 1 1 1 4 

NS5 ENSG0000016090
8 

ZNF394; Homo sapiens 
zinc finger protein 394 
(ZNF394), mRNA  

1 1 0 0 2 

NS5 ENSG0000013284 AP3B1; Homo sapiens 1 1 0 0 2 
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2 adaptor-related protein 
complex 3, beta 1 subunit 
(AP3B1), mRNA 

NS5 ENSG0000012312
4 

WWP1; Homo sapiens 
WW domain containing E3 
ubiquitin protein ligase 1 
(WWP1), mRNA 

1 1 1 1 4 

NS5 ENSG0000011033
0 

birc2; Homo sapiens 
baculoviral IAP repeat-
containing 2 (BIRC2), 
mRNA 

1 1 0 0 2 

NS5 ENSG0000006733
4 

DNTTIP2; Homo sapiens 
deoxynucleotidyltransferas
e, terminal, interacting 
protein 2 (DNTTIP2), 
mRNA  

1 1 1 0 3 

NS5 ENSG0000010793
7 

GTPBP4; Homo sapiens 
GTP binding protein 4 
(GTPBP4), mRNA 

1 1 0 0 2 

NS5 ENSG0000017803
5 

Impdh2; Homo sapiens 
IMP (inosine 
monophosphate) 
dehydrogenase 2 
(IMPDH2), mRNA 

1 1 0 0 2 

NS5 ENSG0000008900
9 

Homo sapiens ribosomal 
protein L6 (RPL6), 
transcript variant 2, mRNA 

1 1 0 0 2 

NS5 ENSG0000010287
9 

Coro1a; Homo sapiens 
coronin, actin binding 
protein, 1A (CORO1A), 
mRNA 

1 0 0 0 1 

NS5 ENSG0000012240
6 

Homo sapiens ribosomal 
protein L5, mRNA (cDNA 
clone IMAGE:3544216),  
complete cds 

1 1 1 1 4 

NS5 ENSG0000003821
9 

BOD1L; Homo sapiens 
biorientation of 
chromosomes in cell 
division 1-like (BOD1L), 
mRNA 

1 1 0 0 2 

NS5 ENSG0000018878
6 

MTF1; Homo sapiens 
metal-regulatory 
transcription factor 1 
(MTF1), mRNA 

1 1 1 0 3 

NS5 ENSG0000020574
4 

DENND1C; Homo sapiens 
DENN/MADD domain 
containing 1C 
(DENND1C), mRNA 

1 1 0 0 2 

NS5 ENSG0000016322
0 

S100A9; Homo sapiens 
S100 calcium binding 
protein A9 (S100A9), 
mRNA 

1 1 0 0 2 

NS5 ENSG0000013693
8 

Homo sapiens cDNA, 
FLJ94333, Homo sapiens 
acidic (leucine-rich)  
nuclear phosphoprotein 
32family, member B 
(ANP32B), mRNA 

1 0 0 0 1 

NS5 ENSG0000010174
5 

ANKRD12; Homo sapiens 
ankyrin repeat domain 12 
(ANKRD12), transcript 
variant 2, mRNA 

1 1 0 0 2 

NS5 ENSG0000007284
9 

Derl2; Homo sapiens Der1-
like domain family, 
member 2 (DERL2), 
mRNA 

1 1 1 1 4 

NS5 ENSG0000017323
0 

GOLGB1; Homo sapiens 
golgin B1, golgi integral 
membrane protein 

1 1 0 0 2 
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(GOLGB1), mRNA 
NS5 ENSG0000019885

1 
CD3E; Homo sapiens 
CD3e molecule, epsilon 
(CD3-TCR complex) 
(CD3E), mRNA 

1 0 0 0 1 

NS5 ENSG0000016065
4 

Cd3g; Homo sapiens CD3g 
molecule, gamma (CD3-
TCR complex) (CD3G), 
mRNA 

1 1 0 0 2 

NS5 ENSG0000010208
1 

FMR1; Homo sapiens 
fragile X mental retardation 
1 (FMR1), mRNA 

1 1 1 1 4 

NS5 ENSG0000020617
2 

HBA1; Homo sapiens 
hemoglobin, alpha 2 
(HBA2), mRNA 

1 1 1 0 3 

NS5 ENSG0000011516
5 

CYTIP; Homo sapiens 
cytohesin 1 interacting 
protein (CYTIP), mRNA 

1 1 1 1 4 

NS5 ENSG0000012483
1 

Lrrfip1; Homo sapiens 
leucine rich repeat (in FLII) 
interacting protein 1 
(LRRFIP1), transcript 
variant 5, mRNA 

1 1 1 1 4 

NS5 ENSG0000018710
9 

NAP1L1; Homo sapiens 
nucleosome assembly 
protein 1-like 1 (NAP1L1), 
transcript variant 1, mRNA 

1 1 0 0 2 

NS5 
  

Homo sapiens haplogroup 
K1c1 mitochondrion, 
complete genome 

1 0 0 0 1 

NS5 ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 1 1 0 3 

NS5 ENSG0000011972
5 

znf410; Homo sapiens zinc 
finger protein 410 
(ZNF410), mRNA  

1 1 1 0 3 

NS5 ENSG0000015097
7 

Rilpl2; Homo sapiens Rab 
interacting lysosomal 
protein-like 2 (RILPL2), 
mRNA  

1 1 1 1 4 

NS5 ENSG0000010076
4 

Homo sapiens cDNA, 
FLJ93843, Homo sapiens 
proteasome (prosome, 
macropain) 26S subunit, 
ATPase, 1(PSMC1), 
mRNA 

1 1 1 1 4 

NS5 ENSG0000024473
4 

HBB; Homo sapiens 
hemoglobin, beta (HBB), 
mRNA 

1 1 1 1 4 

NS5 ENSG0000013643
6 

CALCOCO2; Homo 
sapiens calcium binding 
and coiled-coil domain 2 
(CALCOCO2), mRNA 

0 0 1 0 1 

NS5 ENSG0000011521
6 

nrbp1; Homo sapiens 
nuclear receptor binding 
protein 1 (NRBP1), mRNA 

1 1 1 0 3 

NS5 ENSG0000017186
3 

rps7; Homo sapiens 
ribosomal protein S7 
(RPS7), mRNA 

1 0 0 0 1 

NS5 ENSG0000017277
5 

fam192a; Homo sapiens 
family with sequence 
similarity 192, member A 
(FAM192A), mRNA 

1 1 1 1 4 

NS5 ENSG0000010090
6 

NFKBIA; Homo sapiens 
nuclear factor of kappa 
light polypeptide gene 

1 0 0 0 1 
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enhancer in B-cells 
inhibitor, alpha (NFKBIA), 
mRNA 

NS5 ENSG0000017795
4 

RPS27 Homo sapiens 
ribosomal protein S27 
(RPS27), mRNA 

1 1 0 0 2 

NS5 ENSG0000005274
9 

Rrp12; Homo sapiens 
ribosomal RNA processing 
12 homolog (S. cerevisiae) 
(RRP12), transcript variant 
2, mRNA 

1 1 1 1 4 

NS5 ENSG0000013550
6 

OS9; Homo sapiens 
osteosarcoma amplified 9, 
endoplasmic reticulum 
lectin (OS9), transcript 
variant 2, mRNA 

1 0 1 0 2 

PrM AAEL010507 hypothetical protein 0 1 0 0 1 
PrM ENSG0000012483

1 
Lrrfip1; Homo sapiens 
leucine rich repeat (in FLII) 
interacting protein 1 
(LRRFIP1), transcript 
variant 5, mRNA 

0 1 0 0 1 

PrM ENSG0000011972
5 

znf410; Homo sapiens zinc 
finger protein 410 
(ZNF410), mRNA  

0 1 0 0 1 

PrM ENSG0000017277
5 

fam192a; Homo sapiens 
family with sequence 
similarity 192, member A 
(FAM192A), mRNA 

0 1 0 0 1 

PrM ENSG0000005274
9 

Rrp12; Homo sapiens 
ribosomal RNA processing 
12 homolog (S. cerevisiae) 
(RRP12), transcript variant 
2, mRNA 

0 1 0 0 1 
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APPENDIX B DENGUE-HOST PPIS HAVING MORE THAN TWO PIECES OF 

SUPPORTING EVIDENCE. 

Dengu
e_gene 

Host_
Gene 

Gene_descriptio
n 

Method Publication Interol
og 

Interolog_info 

C AAEL0
15681 

Histone 2B  MI:0004(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

PMID:21700306;PMID:219
09430 

C-
Histon
e2B  

MI:0004(affinit
y 
chromatograph
y 
technology)+P
MID:21909430 

C AAEL0
15390 

Histone 2A  MI:0004(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

PMID:21700306;PMID:219
09430 

C-
Histon
e2A 

MI:0004(affinit
y 
chromatograph
y 
technology)+P
MID:21909430 

C AAEL0
03863 

Histone 4  MI:0004(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

PMID:21700306;PMID:219
09430 

C-
Histon
e4  

MI:0004(affinit
y 
chromatograph
y 
technology)+P
MID:21909430 

NS2A AAEL0
03670 

myelinprotein 
expression 
factor 
[Source:VB 
External 
Description;Acc
:AAEL003670] 

MI:0004(affinity 
chromatography 
technology);MI:0
037(domain 
profile pairs) 

PMID:21700306;PMID:213
58811 

    
NS5 AAEL0

10975 
paramyosin, 
long form 

MI:0018(two 
hybrid));MI:0064
(interologs 
mapping) 

Mairiang et al. (this 
study);PMID:21911577 

NS5-
CGNL  

MI:0018(two 
hybrid)+PMID:
21911577 

C AAEL0
05567 

nucleosome 
assembly 
protein 

MI:0018(two 
hybrid));MI:0064
(interologs 
mapping) 

Mairiang et al. (this study) C-
NAP1L
1  

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study);MI:0004
(affinity 
chromatograph
y 
technology)+M
airiang et al. 
(this study) 

NS5 AAEL0
14104 

conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0064
(interologs 
mapping) 

Mairiang et al. (this study) NS5-
FAM19
2A  

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study);MI:0004
(affinity 
chromatograph
y 
technology)+M
airiang et al. 
(this study) 

C AAEL0
11960 

conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0064
(interologs 
mapping) 

Mairiang et al. (this study) C-
RRP12  

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study) 

NS5 AAEL0
03973 

conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0064
(interologs 
mapping) 

Mairiang et al. (this study) NS5-
EAF1 
and 
NS5-

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study) 
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EAF2  

NS5 AAEL0
00951 

elongation 
factor 1-beta2 

MI:0018(two 
hybrid));MI:0064
(interologs 
mapping) 

Mairiang et al. (this study) NS5-
EEF1B
2  

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study) 

NS5 AAEL0
09614 

seven in 
absentia, 
putative 

MI:0018(two 
hybrid));MI:0064
(interologs 
mapping) 

Mairiang et al. (this 
study);PMID:22014111 

NS5-
SIAH2  

MI:0018(two 
hybrid)+PMID:
22014111 

NS5 AAEL0
00436 

conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

05790 
malic enzyme MI:0018(two 

hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

08700 
conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

05567 
nucleosome 
assembly 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

08052 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

04484 
predicted 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

14845 
heat shock 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

10585 
spermatogenesi
s associated 
factor 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

01553 
conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

11137 
succinyl-coa:3-
ketoacid-
coenzyme a 
transferase 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 
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NS3 AAEL0
03345 

argininosuccina
te lyase 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

01892 
conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

09101 
eukaryotic 
translation 
initiation factor 
3f, eif3f 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

04783 
ornithine 
decarboxylase 
antizyme, 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

10066 
microfibril-
associated 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

10821 
60S acidic 
ribosomal 
protein P0 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
C AAEL0

13075 
conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

10507 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

14281 
conserved 
hypothetical 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

04500 
eukaryotic 
translation 
elongation 
factor 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 AAEL0

14396 
protein 
farnesyltransfer
ase alpha 
subunit 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 AAEL0

14843 
heat shock 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

Mairiang et al. (this study) NS3-
HSP90
AB1  

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study);MI:0004
(affinity 
chromatograph
y 
technology)+M
airiang et al. 
(this study) 
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NS3 AAEL0
11708 

heat shock 
protein 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

Mairiang et al. (this study) NS3-
HSP90
AB1  

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study);MI:0004
(affinity 
chromatograph
y 
technology)+M
airiang et al. 
(this study) 

NS5 AAEL0
12095 

26S protease 
regulatory 
subunit 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

Mairiang et al. (this study) NS5-
PSMC
1  

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study) 

NS5 AAEL0
03104 

tripartite motif 
protein trim2,3 

MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

Mairiang et al. (this study) NS5-
TRIM2  

MI:0018(two 
hybrid))+Mairia
ng et al. (this 
study) 

NS3 AAEL0
12827 

endoplasmin MI:0018(two 
hybrid));MI:0004
(affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 SIAH2 E3 ubiquitin-

protein ligase 
SIAH2 

MI:0018(two 
hybrid);MI:0064(i
nterologs 
mapping) 

PMID:22014111;Mairiang 
et al. (this study) 

 NS5-
AAEL0
09614 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 

NS3 TRAF4 TNF receptor-
associated 
factor 4  

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:22014111 

    
NS3 AZI2 5-azacytidine 

induced 2  
MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:22014111 

    
NS3 NFKBI

A 
NFKBIA; Homo 
sapiens nuclear 
factor of kappa 
light 
polypeptide 
gene enhancer 
in B-cells 
inhibitor, alpha 
(NFKBIA), 
mRNA 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:22014111;Mairiang 
et al. (this study) 

    
NS5 MATR

3 
matrin 3 MI:0018(two 

hybrid) 
PMID:21911577;PMID:220
14111 

    
NS2A GC group-specific 

component 
(vitamin D 
binding protein) 

MI:0018(two 
hybrid);MI:0037(
domain profile 
pairs) 

PMID:21911577;PMID:213
58811 

    
NS2A KIF1B kinesin family 

member 1B 
MI:0018(two 
hybrid);MI:0037(
domain profile 
pairs) 

PMID:21911577;PMID:213
58811 
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NS3 EIF4G
2 

eukaryotic 
translation 
initiation factor 
4 gamma, 2 

MI:0018(two 
hybrid);MI:0037(
domain profile 
pairs) 

PMID:21911577;PMID:213
58811 

    
NS3 SERPI

ND1 
serpin 
peptidase 
inhibitor, clade 
D (heparin 
cofactor), 
member 1 

MI:0018(two 
hybrid);MI:0037(
domain profile 
pairs) 

PMID:21911577;PMID:213
58811 

    
NS4B KRT8 keratin 8 MI:0018(two 

hybrid);MI:0037(
domain profile 
pairs) 

PMID:21911577;PMID:213
58811 

    
NS4B UBE2I ubiquitin-

conjugating 
enzyme E2I 
(UBC9 
homolog, 
yeast) 

MI:0018(two 
hybrid);MI:0037(
domain profile 
pairs) 

PMID:21911577;PMID:213
58811 

    
NS5 DDX5 DEAD (Asp-Glu-

Ala-Asp) box 
polypeptide 5 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay);MI:0037(d
omain profile 
pairs) 

PMID:21911577;PMID:213
58811 

    
NS5 STAT2 signal 

transducer and 
activator of 
transcription 2, 
113kDa 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:21911577;PMID:197
54307;PMID:19279106 

    
NS3 MYCB

P2 
MYC binding 
protein 2 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS5 CGNL1 cingulin-like 1 MI:0018(two 

hybrid);MI:0064(i
nterologs 
mapping) 

PMID:21911577;Mairiang 
et al. (this study) 

 NS5-
AAEL0
10975 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 

NS5 ERC1 ELKS/RAB6-
interacting/CAS
T family 
member 1 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS3 ZBTB8

OS 
zinc finger and 
BTB domain 
containing 8 
opposite strand 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS5 AKAP9 A kinase 

(PRKA) anchor 
protein (yotiao) 
9 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS5 ANKR

D50 
ankyrin repeat 
domain 50 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS5 APOB apolipoprotein 

B (including 
Ag(x) antigen) 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 

PMID:21911577 
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assay) 

NS5 COPS2 COP9 
constitutive 
photomorphoge
nic homolog 
subunit 2 
(Arabidopsis) 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS5 DCUN

1D4 
DCN1, defective 
in cullin 
neddylation 1, 
domain 
containing 4 (S. 
cerevisiae) 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS5 EID1 EP300 

interacting 
inhibitor of 
differentiation 1 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS5 CALR calreticulin MI:0018(two 

hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577 

    
NS5 RILPL

2 
Rilpl2; Homo 
sapiens Rab 
interacting 
lysosomal 
protein-like 2 
(RILPL2), 
mRNA  

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:21911577;Mairiang 
et al. (this study) 

    
NS3 GOLG

B1 
GOLGB1; Homo 
sapiens golgin 
B1, golgi 
integral 
membrane 
protein 
(GOLGB1), 
mRNA 

MI:0018(two 
hybrid) 

PMID:21911577;Mairiang 
et al. (this study) 

    
PrM/M DYNLT

1 
DYNLT1 dynein, 
light chain, 
Tctex-type 1 [ 
Homo sapiens ]  

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:21767858 

    
C H4 Histone 4 [ 

Homo sapiens ]  
MI:0004(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

PMID:21700306  C-
AAEL0
03863 

MI:0004(affinit
y 
chromatograph
y 
technology)+P
MID:21700306 

C H2A Histone 2A [ 
Homo sapiens ]  

MI:0004(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

PMID:21700306  C-
AAEL0
15390 

MI:0004(affinit
y 
chromatograph
y 
technology)+P
MID:21700306 

C H2B Histone 2B [ 
Homo sapiens ]  

MI:0004(affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

PMID:21700306  C-
AAEL0
15390 

MI:0004(affinit
y 
chromatograph
y 
technology)+P
MID:21700306 
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NS1 C4BP complement 
component 4 
binding protein, 
alpha 

MI:0004(affinity 
chromatography 
technology);MI:1
088(phenotype-
based detection 
assay) 

PMID:21642539 

    
NS3 ENO1 enolase 1, 

(alpha) 
[Source:HGNC 
Symbol;Acc:33
50] 

MI:0018(two 
hybrid);MI:0037(
domain profile 
pairs) 

PMID:21358811;PMID:220
14111 

    
NS1 CLU clusterin 

[Source:HGNC 
Symbol;Acc:20
95] 

MI:0037(domain 
profile 
pairs);MI:0004(af
finity 
chromatography 
technology) 

PMID:21358811;PMID:178
25259 

    
E UBE2I ubiquitin-

conjugating 
enzyme E2I 
(UBC9 
homolog, 
yeast) 
[Source:HGNC 
Symbol;Acc:12
485] 

MI:0037(domain 
profile 
pairs);MI:0018(t
wo 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:21358811;PMID:172
65167 

    
NS1 STAT3 signal 

transducer and 
activator of 
transcription 3 
(acute-phase 
response 
factor) 
[Source:HGNC 
Symbol;Acc:11
364] 

MI:0037(domain 
profile 
pairs);MI:0018(t
wo 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:21358811;PMID:158
78791 

    
E CD209 CD209 

molecule 
[Source:HGNC 
Symbol;Acc:16
41] 

MI:0037(domain 
profile 
pairs);MI:0686 
(unspecified 
method) 

PMID:21358811;PMID:158
55154 

    
E HSP90

AA1 
heat shock 
protein 90kDa 
alpha 
(cytosolic), 
class A member 
1 
[Source:HGNC 
Symbol;Acc:52
53] 

MI:0004(affinity 
chromatography 
technology);MI:0
037(domain 
profile pairs) 

PMID:21358811;PMID:157
95242 

    
C HBB HBB; Homo 

sapiens 
hemoglobin, 
beta (HBB), 
mRNA 

MI:0018(two 
hybrid);MI:0037(
domain profile 
pairs) 

PMID:21358811;Mairiang 
et al. (this study) 

    
C RPL5 Homo sapiens 

ribosomal 
protein L5, 
mRNA (cDNA 
clone 
IMAGE:354421
6),  
complete cds 

MI:0018(two 
hybrid);MI:0037(
domain profile 
pairs) 

PMID:21358811 
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NS3 FASN fatty acid 
synthase 

MI:0018(two 
hybrid);MI:0009(
protein 
complementation 
assay) 

PMID:20855599;PMID:219
11577 

    
NS4A PTBP1 polypyrimidine 

tract binding 
protein 1 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:19450550 

    
NS5 XPO1 XPO1 exportin 

1 (CRM1 
homolog, 
yeast) [ Homo 
sapiens ]  

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology);MI:0
586(inhibitor) 

PMID:19297323 

    
E CANX calnexin 

[Source:HGNC 
Symbol;Acc:14
73] 

MI:0004(affinity 
chromatography 
technology);MI:0
037(domain 
profile pairs) 

PMID:19105951;PMID:213
58811 

    
E CALR calreticulin 

[Source:HGNC 
Symbol;Acc:14
55] 

MI:0004(affinity 
chromatography 
technology);MI:0
037(domain 
profile pairs) 

PMID:19105951;PMID:213
58811 

    
E HSPA5 HSPA5; Homo 

sapiens heat 
shock 70kDa 
protein 5 
(glucose-
regulated 
protein, 78kDa) 
(HSPA5), 
mRn/a 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology);MI:0
037(domain 
profile pairs) 

PMID:19105951;PMID:213
58811 

    
NS1 HNRN

PC 
HNRNPC 
heterogeneous 
nuclear 
ribonucleoprotei
n C (C1/C2) [ 
Homo sapiens ]  

MI:0004(affinity 
chromatography 
technology) 

PMID:18471994 

    
C DAXX DAXX death-

domain 
associated 
protein [ Homo 
sapiens ]  

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:17707345 

    
NS3 NRBP1 nrbp1; Homo 

sapiens nuclear 
receptor 
binding protein 
1 (NRBP1), 
mRNA 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:15084397;Mairiang 
et al. (this study) 

    
NS5 KPNB1 karyopherin 

(importin) beta 
1 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

PMID:11257177;PMID:113
47963;PMID:121052241 

    
C NAP1L

1 
NAP1L1; Homo 
sapiens 
nucleosome 
assembly 
protein 1-like 1 
(NAP1L1), 
transcript 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

Mairiang et al. (this study)  C-
AAEL0
05567 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 
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variant 1, 
mRNA 

C BOD1L BOD1L; Homo 
sapiens 
biorientation of 
chromosomes 
in cell division 
1-like (BOD1L), 
mRNA 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 FMR1 FMR1; Homo 

sapiens fragile 
X mental 
retardation 1 
(FMR1), mRNA 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
C BIRC2 birc2; Homo 

sapiens 
baculoviral IAP 
repeat-
containing 2 
(BIRC2), mRNA 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS5 CYTIP CYTIP; Homo 

sapiens 
cytohesin 1 
interacting 
protein (CYTIP), 
mRNA 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 CALCO

CO2 
CALCOCO2; 
Homo sapiens 
calcium binding 
and coiled-coil 
domain 2 
(CALCOCO2), 
mRNA 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
C ZNF39

4 
ZNF394; Homo 
sapiens zinc 
finger protein 
394 (ZNF394), 
mRNA  

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 RPL24 Homo sapiens 

ribosomal 
protein L24, 
mRNA (cDNA 
clone 
MGC:2240 
IMAGE:334921
5), complete 
cds 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

Mairiang et al. (this study) 

    
NS3 HSP90

AB1 
HSP90AB;1 
heat shock 
protein 90kDa 
alpha 
(cytosolic), 
class B member 
1 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

Mairiang et al. (this study)  NS3-
AAEL0
14843 
and 
NS3-
AAEL0
11708 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study);MI:0004
(affinity 
chromatograph
y 
technology)+M
airiang et al. 
(this study) 
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NS5 FAM19
2A 

fam192a; 
Homo sapiens 
family with 
sequence 
similarity 192, 
member A 
(FAM192A), 
mRNA 

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology);MI:0
064(interologs 
mapping) 

Mairiang et al. (this study)  NS5-
AAEL0
14104 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 

NS5 TRIM2 TRIM2; 
tripartite motif 
containing 2  

MI:0018(two 
hybrid);MI:0064(i
nterologs 
mapping) 

Mairiang et al. (this study) NS5-
AAEL0
03104 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 

NS5 PSMC
1 

Homo sapiens 
cDNA, 
FLJ93843, 
Homo sapiens 
proteasome 
(prosome, 
macropain) 26S 
subunit, 
ATPase, 
1(PSMC1), 
mRNA 

MI:0018(two 
hybrid);MI:0064(i
nterologs 
mapping) 

Mairiang et al. (this study)  NS5-
AAEL0
12095 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study);MI:0004
(affinity 
chromatograph
y 
technology)+M
airiang et al. 
(this study) 

C RRP12 Rrp12; Homo 
sapiens 
ribosomal RNA 
processing 12 
homolog (S. 
cerevisiae) 
(RRP12), 
transcript 
variant 2, 
mRNA 

MI:0018(two 
hybrid);MI:0064(i
nterologs 
mapping) 

Mairiang et al. (this study)  C-
AAEL0
11960 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 

NS5 EEF1B
2 

EEF1B2; 
eukaryotic 
translation 
elongation 
factor 1 beta 2 

MI:0018(two 
hybrid);MI:0064(i
nterologs 
mapping) 

Mairiang et al. (this study)  NS5-
AAEL0
00951 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 

NS5 EAF2 EAF2; ELL 
associated 
factor 2  

MI:0018(two 
hybrid);MI:0064(i
nterologs 
mapping) 

Mairiang et al. (this study)  NS5-
AAEL0
03973 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 

NS5 EAF1 EAF1; ELL 
associated 
factor 1  

MI:0018(two 
hybrid);MI:0064(i
nterologs 
mapping) 

Mairiang et al. (this study)  NS5-
AAEL0
03973 

MI:0018(two 
hybrid)+Mairia
ng et al. (this 
study) 

NS3 RILPL
2 

Rilpl2; Homo 
sapiens Rab 
interacting 
lysosomal 
protein-like 2 
(RILPL2), 
mRNA  

MI:0018(two 
hybrid);MI:0004(
affinity 
chromatography 
technology) 

Mairiang et al. (this study) 
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APPENDIX C. OLIGONUCLEOTIDES USED IN THIS STUDY 

Name Sequence Description 
DM 1 GGGGACAAGTTTGTACAAAAAAGCAGGCT universal attB1 adapter 

primer 
DM 2 GGGGACCACTTTGTACAAGAAAGCTGGGT universal attB2 adapter 

primer 
DM 3 AAAAAGCAGGCTTGATGAATGACCAACGGAAA (U) DEN2 Capsid Start: 97 
DM 4 AGAAAGCTGGGTGCTACGCCATCACTGTTGGAA (L) DEN2 Capsid-Anc End: 

438 
DM 5 AGAAAGCTGGGTCCTATCTGCGTCTCCTATTCAAGA (L) DEN2 Capsid-Vir End: 

396 
DM 6 AAAAAGCAGGCTCCTTCCATTTAACCACACG (U) DEN2 PrM/M Start: 439 
DM 7 AAAAAGCAGGCTCCTCAGTGGCACTCGTTC (U) DEN2 M Start: 712 
DM 8 AGAAAGCTGGGTGCTATGTCATTGAAGGAGTGAC (L) DEN2 M End: 936 
DM 9 AAAAAGCAGGCTCAATGCGTTGCATAGGAATG (U) DEN2 E Start: 937 
DM 10 AGAAAGCTGGGTCCTAGGCCTGCACCATGACTCC (L) DEN2 E End: 2421 
DM 11 AAAAAGCAGGCTAACTCAAAGGAATGTCATAC (U) DEN2 Eiii Start: 1816 
DM 12 AGAAAGCTGGGTGCTATTTCTTAAACCAGTTG (L) DEN2 Eiii End: 2118 
DM 13 AAAAAGCAGGCTGGGATAGTGGTTGCGTTGTG (U) DEN2 NS1 Start: 2422 
DM 14 AGAAAGCTGGGTGTTAAGCTGTGACCAAGGAG (L) DEN2 NS1 End: 3477 
DM 15 AAAAAGCAGGCTGGGGACATGGGCAGGTCG (U) DEN2 NS2A Start: 3478 
DM 16 AGAAAGCTGGGTTCTACCTTTTCTTGCTGGTTC (L) DEN2 NS2A End: 4131 
DM 17 AAAAAGCAGGCTCCAGCTGGCCATTAAATGAG (U) DEN2 NS2B Start: 4132 
DM 18 AGAAAGCTGGGTCCTACCGTTGTTTCTTCACTTC (L) DEN2 NS2B End: 4521 
DM 19 AAAAAGCAGGCTTTGCCGGAGTGTTGTGGGATG (U) DEN2 NS3 Start: 4522 
DM 20 AAAAAGCAGGCTCCGTGAGTGCTATAGCCCAGAC (U) DEN2 NS3d1-160 Start: 

5005 
DM 21 AGAAAGCTGGGTCCTACTTTCTTCCGGCTGCAAATTC (L) DEN2 NS3 End: 6375 
DM 22 AAAAAGCAGGCTCCTCTCTGACCCTGAACCTA (U) DEN2 NS4A Start: 6376 
DM 23 AGAAAGCTGGGTATTATGCCATGGTTGCGGCCAC (L) DEN2 NS4A End: 

6756/6825 
DM 24 AAAAAGCAGGCTATAACGAGATGGGTTTCCTA (U) DEN2 NS4B Start: 6826 
DM 25 AGAAAGCTGGGTGCTACCTTCTTGCGTTGGTTG (L) DEN2 NS4B End: 7569 
DM 26 AAAAAGCAGGCTCCGGAACTGGCAACATA (U) DEN2 NS5 Start: 7570 
DM 27 AGAAAGCTGGGTCCTACCACAGAACTCCTGCTTC (L) DEN2 NS5 End: 10269 
DM 28 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGGAACTGGCA

ACATA 
(U) DEN2 NS5 Start: 
7570(7539) 

DM 29 GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACCACAGAA
CTCCTGCTTC 

(L) DEN2 NS5 End: 
10269(10252) 

DM 30 AAGAAGCGTGCTCCAAGCCAC (L) DEN2 NS5 End: 9000 
DM 31 GCCATATTCACTGATGAGAAC (U) DEN2 NS5 Start:8800 
DM 32 CCTTCAAGATGGAGATTCCTTTCC (L) DEN2 NS5 end: 8900 
DM 33 TTGACTGTATCGCCG 5' RT 
DM 34 CCGGAATTAGCTTGGCTGCAG 3' RT 
DM 35 AAAAAGCAGGCTTGATGAACAACCAACGG DEN3: Capsid(U)@95 
DM 36 AGAAAGCTGGGTGCTAAGCAAGTGTTGCTGGTAA DEN3: Capsid-A(L)@436 
DM 37 AGAAAGCTGGGTACTACTTTTTCCGTTTGTTGATAATG DEN3: Capsid-V(L)@394 
DM 38 AAAAAGCAGGCTCTTTCCACTTAACTTCA DEN3: PrM(U)@437 
DM 39 AAAAAGCAGGCTCCTCAGTGGCGTTAGCTCCC DEN3: M(U)@710 
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DM 40 AGAAAGCTGGGTTCTATGTCATGGATGGGGTAA DEN3: M(L)@934 
DM 41 AAAAAGCAGGCTTTATGAGATGTGTGGGA DEN3: E(U)@935 
DM 42 AGAAAGCTGGGTTCTAAGCTTGCACCACGACCCCCAGA DEN3: E(L)@2413 
DM 43 AAAAAGCAGGCTGTAGACTCAAGATGGAC DEN3: Eiii(U)@aa284(1784) 
DM 44 AGAAAGCTGGGTTCTAAACACCACCCACTGATCCAAAGTC DEN3: Eiii(L)@aa426(2212) 
DM 45 AAAAAGCAGGCTCTGACATGGGGTGTGTC DEN3: NS1(U)@2414 
DM 46 AGAAAGCTGGGTACTATGCTGAGGCTAGAGA DEN3: NS1(L)@3469 
DM 47 AAAAAGCAGGCTCAGGGAGTGGAAAGGTG DEN3: NS2A(U)@3470 
DM 48 AGAAAGCTGGGTCCTATCTCCTTTTGAGTGT DEN3: NS2A(L)@4123 
DM 49 AAAAAGCAGGCTGAAGCTGGCCACTGAAT DEN3: NS2B(U)@4124 
DM 50 AGAAAGCTGGGTTCTATCTTTGGGTTTGCTTTTG DEN3: NS2B(L)@4513 
DM 51 AAAAAGCAGGCTGGTCCGGCGTCCTATGGG DEN3: NS3(U)@4514 
DM 52 AAAAAGCAGGCTATGTTAGTGGAATAGCG DEN3: NS3d1-161(U)@4997 
DM 53 AGAAAGCTGGGTTCTACTTTCTGCCAGCTGCAAAATCCTT DEN3: NS3(L)@6370 
DM 54 AAAAAGCAGGCTTGTCAATCGCCCTTGAT DEN3: NS4A(U)@6371 
DM 55 AGAAAGCTGGGTTCTATCTCTGCTTTTCTGG DEN3: NS4A(L)@6751 
DM 56 AAAAAGCAGGCTCCAATGAAATGGGACTG DEN3: NS4B(U)@6821 
DM 57 AGAAAGCTGGGTTCTATCTCTTTCCTGTTCC DEN3: NS4B(L)@7564 
DM 58 AAAAAGCAGGCTCAGGAACAGGGTCACAA DEN3: NS5(U)@7565 
DM 59 AGAAAGCTGGGTCCTACCAAATGGCTCCCTC DEN3: NS5(L)@10264 
DM 60 AAAAAGCAGGCTTAATGAACCAACGAAAA DEN4: Capsid(U)@(102)94 
DM 61 AGAAAGCTGGGTCCTACGCCATTGCGGTGGG DEN4: Capsid-

A(L)@(440)432 
DM 62 AGAAAGCTGGGTTCTACCTTTTTCTTCCATTCAAGATGT DEN4: Capsid-

V(L)@(398)390 
DM 63 AAAAAGCAGGCTCGTTTCACTTGTCAACA DEN4: PrM(U)@(441)433 
DM 64 AAAAAGCAGGCTGCTCAGTAGCCCTAACACAAC DEN4: M(U)@(714)706 
DM 65 AGAAAGCTGGGTGCTATCCGTAGGATGGGGCGACC DEN4: M(L)@(938)930 
DM 66 AAAAAGCAGGCTTAATGCGATGCGTGGGA DEN4: E(U)@(939)931 
DM 67 AGAAAGCTGGGTCCTATGCGTGAACTGTGAA DEN4: E(L)@(2423)2415 
DM 68 AAAAAGCAGGCTCAAAGGGAATGTCATAC DEN4: Eiii(U)@)1813 
DM 69 AGAAAGCTGGGTACTATTTCCTGAACCAATG DEN4: Eiii(L)@)2112 
DM 70 AAAAAGCAGGCTCAGACACGGGTTGTGCG DEN4: NS1(U)@(2424)2416 
DM 71 AGAAAGCTGGGTCCTAGGCCGATACCTGTGA DEN4: NS1(L)@(3479)3471 
DM 72 AAAAAGCAGGCTCCGGACAGGGTACATCA DEN4: NS2A(U)@(3480)3472 
DM 73 AGAAAGCTGGGTTCTATCTCTTTGAAGCTCC DEN4: NS2A(L)@(4133)4125 
DM 74 AAAAAGCAGGCTCATCTTGGCCCCTTAAC DEN4: NS2B(U)@(4134)4126 
DM 75 AGAAAGCTGGGTACTATCTTTGTGTTTTCAC DEN4: NS2B(L)@(4523)4515 
DM 76 AAAAAGCAGGCTTATCAGGAGCCCTGTGGGACGTCCCCTCA

CCT 
DEN4: NS3(U)@(4524)4516 

DM 77 AAAAAGCAGGCTGTGATTACGTCAGTGCTA DEN4: NS3d1-161(U)@)4993 
DM 78 AGAAAGCTGGGTCCTACTTTCTTCCACTGGCAAACTC DEN4: NS3(L)@(6377)6369 
DM 79 AAAAAGCAGGCTTGAGCATAACCCTCGAC DEN4: NS4A(U)@(6378)6370 
DM 80 AGAAAGCTGGGTACTAGGCTGCTATGAGACC DEN4: NS4A(L)@(6827)6819 
DM 81 AAAAAGCAGGCTCCAACGAGATGGGGCTG DEN4: NS4B(U)@(6828)6820 
DM 82 AGAAAGCTGGGTCCTACCTCCTGGGGGTTTG DEN4: NS4B(L)@(7562)7554 
DM 83 AAAAAGCAGGCTGGGGAACTGGGACCACA DEN4: NS5(U)@(7563)7555 
DM 84 AGAAAGCTGGGTCCTACAGAACTCCTTCACT DEN4: 

NS5(L)@(10262)10254 
DM 85 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGTCCGGCGTCC

TATGGG 
DEN3: NS3(U)@4514 

DM 86 GGGGACCACTTTGTACAAGAAAGCTGGGTTCTACTTTCTGCC DEN3: NS3(L)@6370 
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AGCTGCAAAATCCTT 
DM 87 GGGGACAAGTTTGTACAAAAAAGCAGGCTCAGGAACAGGGT

CACAA 
DEN3: NS5(U)@7565 

DM 88 GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACCAAATGG
CTCCCTC 

DEN3:NS5(L)@10264 

DM 89 GGGGACAAGTTTGTACAAAAAAGCAGGCTGGGGAACTGGGA
CCACA 

DEN4: NS5(U)@(7563)7555 

DM 90 GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACAGAACTCC
TTCACT 

DEN4: 
NS5(L)@(10262)10254 

DM 91 AAAAAGCAGGCTTGATGAACAACCAACGG DEN1:Capsid(U)95 
DM 92 AGAAAGCTGGGTTCTAACGCCAGGGCTGTGGGCA DEN1:C-reverse(ANC) 436 
DM 93 AGAAAGCTGGGTCCTATCTTTTTCTTCTATT DEN1:C-reverse 394 
DM 94 AAAAAGCAGGCTCGTTCCATCTGACCACA DEN1:PrM 437 
DM 95 AAAAAGCAGGCTGTTCCGTCGCACTGGCCCCACAT DEN1:M 710 
DM 96 AGAAAGCTGGGTGCTAGGCCATGGATGGTGT DEN1:M-reverse 934 
DM 97 AAAAAGCAGGCTCCATGCGATGCGTGGGA DEN1:E 935  
DM 98 AGAAAGCTGGGTACTACGCCTGAACCATGAC DEN1:E-reverse 2419 
DM 99 AAAAAGCAGGCTCCTTAAAAGGGATGTCA DEN1:Eiii (1814)  
DM 
100 

AGAAAGCTGGGTTCTATTTCTTGAACCAGCTTAGTTTCAAA DEN1:Eiii-reverse(2116) 

DM 
101 

AAAAAGCAGGCTGCGACTCGGGATGTGTA DEN1:NS1 2420 

DM 
102 

AGAAAGCTGGGTACTATGCAGAGACCAATGA DEN1:NS1-reverse 3475 

DM 
103 

AAAAAGCAGGCTCAGGGTCAGGAGAAGTG DEN1:NS2A 3476 

DM 
104 

AGAAAGCTGGGTACTATTTCCTTCCCCAGATTTG DEN1:NS2A-reverse 4129 

DM 
105 

AAAAAGCAGGCTTAAGTTGGCCCCTCAAT DEN1:NS2B 4130 

DM 
106 

AGAAAGCTGGGTCCTATCTCTGTTTCTTTTTCTG DEN1:NS2B-reverse 4519 

DM 
107 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCATCAGGAGTGCT
ATGG 

DEN1:NS3 4520 

DM 
108 

AAAAAGCAGGCTACGTCAGTGCCATAGCTC DEN1:NS3d1:160 5003 

DM 
109 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTATCTTCTTCC
TGCTGCAAA 

DEN1:NS3-reverse 6376 

DM 
110 

AAAAAGCAGGCTCAAGCGTCTCAGGTGAT DEN1:NS4A 6377 

DM 
111 

AGAAAGCTGGGTGCTAGCGTTGTCTGTCTGG DEN1:NS4A-reverse 6757 

DM 
112 

AAAAAGCAGGCTCCAATGAGATGGGATTA DEN1:NS4B 6827 

DM 
113 

AGAAAGCTGGGTTCTATCTCCTACCTCCTCC DEN1:NS4B-reverse 7573 

DM 
114 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAGGTACGGGAG
CCCAAG 

DEN1:NS5 7574 

DM 
115 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACCAGAGTG
CCCCTTC 

DEN1:NS5-reverse 10270  

DM 
116 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTATCAGGAGCCCT
GTGGGACGTCCCCTCACCT 

DEN4: NS3(U)@(4524)4516 

DM 
117 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACTTTCTTCC
ACTGGCAAACTC 

DEN4: NS3(L)@(6377)6369 
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DM119  CGTGGGCTTGTACTCGGTCATGCGGTTTCTCTCGCGTTT Replicon C22 + pac (R) 
DM120  CGCGAGAGAAACCGCATGACCGAGTACAAGCCCACGGTG Replicon C22 + pac (F) 
DM121  CAAAGTCTGTTTCACGGCACCGGGCTTGCGGGTCAT Replicon pac + FDMV2A (R) 
DM122  GTGAAACAGACTTTGAATTTTGACCTTCTCAAGTTGGCGGGA

GAC 
Replicon FDMV2A(F) 

DM125  TGGGCCAGGATTCTCCTCGACGTCACCGCATGTTAGCAGACT Replicon Tav2A(R) 
DM126  GAGGAGAATCCTGGCCCAAGCACCTCACTGTCTGTGACA Replicon Tav2A + E24 (F) 
DM127  GCCTCTAGAGAACCTGTTGATTCAACAGCACCATTCCATTTTC Replicon Den2 3’UTR + XbaI 

(R) 
DM128  GAAGGGGGGCCCCATATGACAAGTTTGTACAAAAAAGCTGA pAS1_Myc+GatewayCassette 

(F) 
DM129  GAGGTACCCTCGATTCGCCACCACTTTGTACAAGA GWcassette + pAS1 (R) 
DM130  GATGACGATAAGCTTATCACAAGTTTGTACAAAAAAGCT pDL4_NTAP + GWCassette 

(F) 
DM131  TTCACAAAGATCCTCTAGCACCACTTTGTACAAGA GWcassette + pDL4 
DM132  TTGACTGTATCGCCGGAATTCTACCCTTATGATGTGCCAGATT

A 
5’RT+HA tag (F) for cDNA 
cloning 

DM133  CCGGAATTAGCTTGGCTGCAGCTAGCTAGCTAGAAGAAGTCC
AAAGCTTCTCG 

3’RT + STOPs+  XhoI sites 
(R) for cDNA cloning 

DM134 ATATATCTGCAGTAATACGACTCACTATAGAGT Fix DM118 by 2nd PCR 
DM138 ATAATACTGCAGCGGCCGCGAGGGCAGAGGAAG DM135 but add 6 more bases 

to make sure PstI cut 
optimally 

DM139 TGACAAGTTTGTACAAAAAAGCTGA DM137 fixed (F) add 2 bases 
for blunt end ligation with 
PmeI 

DM140 GGGTCTAGAACCACTTTGTACAAGA DM136 fixed (R) add XbaI 
sites 

DM143 ATTACTATGCGGCCGCCATGGCTTCCAAGGTGTACG hRluc + NotI (F) 
DM144 ATTACTCTGCGGCCGCACTGCTCGTTCTTCAGCACG hRluc + NotI (R) 
DM145 ATATATGGATCCTCTAGACCTTCTTGCGTTGGTTG DM25 + Xbai site + BamHI 

site  
DM146 CTGCGACATCGTATAACGTTACTG pETseqPrimer_close to sphI 

site(4657) 
DM147 TACCTTGTCGTCGTCATCTGCACC pETseqPrimer_close to xbai 

site(4916) 
DM148 GACAGTCTGGAACAGGGTGTG DEN2:NS5 10000 
DM149 GCAGCAGCCTAGGTTAATTAGTG pETseqPrimer_close to salI 

site(5029) 
DM150 CGATGTGAGGCACGACGT seqPrimer for RLuc <---150 
DM151 GACGATCTGCCTAAGATGTTCAT seqPrimer for RLuc 791---> 
DM152 GCCAGTGAATTGTAATACGACTCACTATAGG pRS315seq+T7promoter(F) 
DM153 CTTTCTTCCGGCTGCAAATTC DEN2: NS3(L) with no tags 
DM154 GTTTGACAGCTTATCATCGATTAATACGACTCACTATAGG YRp7seq+T7promoter(F) 
DM155 GTTTGACAGCTTATCATCGAT 

GTGAGTGCTATAGCC 
YRP7seq+NS3d(F) 

DM156 GGCCACGATGCGTCCGGCGTAGAGTTTAAACCTTTCTTCCGG
CTGCAAATTC 

YRp7seq+PmeI+NS3(L) 

DM157 GGCCACGATGCGTCCGGCGTAGAGTTTAAACTCTAGAGAAC
CTGTTGATTCAACAGCA 

YRp7seq+PmeI+DM127(L) 

DM158 GGAGACGTGGAGTCCAACCCAGGGCCCATGGCTTCCAAGGT
GTACGA 

FMDV+hRLuc(F) 

DM159 GCATGTTAGCAGACTTCCTCTGCCCTCCTGCTCGTTCTTCAG
CACGC 

hRLuc+TaV(R) 
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DM160 TTGACTGTATCGCCGATGACCGAGTACAAG 5’RT+PAC(F) 
DM161 CCGGAATTAGCTTGGCTGCAGTCAGGCACCGGGCTT PAC+3’RT(R) 
DM162 TTGACTGTATCGCCGATGGCTTCCAAGGTGT 5’RT+hRLuc(F) 
DM163 CCGGAATTAGCTTGGCTGCAGTTACTGCTCGTTCTTC hRLuc+3’RT(R) 
DM164 TAATACGACTCACTATAGGGAGAATCACTACCGTTTGAGTTCT

TGTG 
T7 promoter + part of Actin5c 
promoter (F) 

DM165 CTCCCACACCTCCCCCTG After SV40polyA of pAc5.1-
HisB 

DM166 GGAAACAGCTATGACCATGTCTAGATCATTTTTGACACCAGA
CCAAC 

M13R + XbaI+Stop+LacZ(R) 

DM167 GGCCACGATGCGTCCGGCGTATCTAGATCATTTTTGACACCA
GACCAAC 

YRp7seq + XbaI + Stop 
+LacZ(R) 

DM168 GTTTGACAGCTTATCATCGATCGCGTAAAACACAATCAAGTAT
G 

YRp7seq + IE1(promoter)(F) 

DM169  TCGGTCCACGTAGACTAACAACTGTCACTTGGTTGTTCACGA
TCTT 

IE1(promoter)+5’UTR of 
Dengue 

DM170 GTGCTGTTGAATCAACAGGTTCTAACAAAAAAAGTACGCTCA
CGTAC 

3’UTR of DenV + 3’UTR of 
pIE1(F) 

DM171 CGTCCGGCGTAGAGTTTAAACAAGCTTAAAAGTAGGAGGAAC
GG 

3’UTR of pIE1 + YRp7seq(R) 

DM172 AAAAAGCAGGCTTGATGAAGCTACTGTCTTCTATCGAACA (U) Gal4  
DM173 AGAAAGCTGGGTGCTCTTTTTTTGGGTTTGGTGG (L) Gal4 
DM174 GTTTGACAGCTTATCATCGATCATGATGATAAACAATGTATGG

TGC 
YRp7seq + 
OpIE2(promoter)(F) 

DM175 GGTCCACGTAGACTAACAACTAACAGATGCTGTTCAACTGTG
TTT 

OpIE2(promoter)+5’UTR of 
Dengue(R) 

DM176 AAAAAGCAGGCTCCATGAAGCTACTGTCTTCTATCGAACA attB1 + NTAP tag (F) 
DM177 AGAAAGCTGGGTCCCGGAATTAGCTTGGCTGCAG attB2 + 3’RT (R) 
DM178 AGAAAGCTGGGTTTTAGAACCCTCTCAAAACATTAATAGCTT Den2:Capsid-NLS(85-100)(R) 
DM179 AAAAAGCAGGCTCAATGACTGGTACAGAGAAGAACGC AeAe NAP1L1 homolog (F) 
DM180 AGAAAGCTGGGTACTATTGTTGTTGGCATTCGG AeAe NAP1L1 homolog(R) 
DM181 CGCAACGATCTGGTAAACAC OpIE2_FWD(F) 
DM182 GACAATACAAACTAAGATTTAGTCAG OpIE2_REV(R) 
DM183 CAACATGGTACCGGTCGCCACCATG Kozak + MCS of 

RFP/ECFP/EYP plasmids (F) 
DM184 TCAGCTTTTTTGTACAAACTTGTCAAAAGGAACAGATGGTGG

CG 
RFP + attR1 (R) 

DM185 TCAGCTTTTTTGTACAAACTTGTCAACTTGTACAGCTCGTCCA
TG 

EYFP or ECFP + attR1 (R) 

DM189 AGTCGACGTCACGACACCATGG Universal 5' primer for 
pTaglox 

DM190 GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGACTGGTAC
AGAGAAGAACGC 

AeNAP+attP1(F) 

DM191 GGGGACCACTTTGTACAAGAAAGCTGGGTACTATTGTTGTTG
GCATTCGG 

AeNAP+attP1(R) 

DM192 CAACATGGACTACAAAGACGATGACGACAAGCATATGACAAG
TTTGTACAAAAAAGCTGA 

FLAG + attR1(F) 

DM193 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAACACGC
CTTTCAATATGCTG 

D2CΔaa1 to 9 (F) 

DM194 GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAAATTGTTCC
CCATCTCTTC 

CΔaa73 to 100 (R) 

DM195 ATCGAGGCCTGTCTAGAGAAGC 5’ of Drosophila GW 
collection cassette (F) 

DM196 GGGCTCGAGACCACTTTGTACAAGA DM140 replace XbaI with 
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XhoI (R) 
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APPENDIX D. SEQUENCES OF DENGUE ORFS 

Gene
_ID 

Serot
ype 

Position_in_
genome 

Sequence Amino Acid 
Identity 

posit
ive 

D1C
A 

Deng
ue1 

95 to 436 ATGAACAA CCAACGGAAA AAGACGGGTC 
GACCGTCTTT CAATATGCTG AAACGCGCGA 
GAAACCGCGT GTCAACTGTT TCACAGTTGG 
CGAAGAGATT CTCAAAAGGA TTGCTTTCAG 
GCCAAGGACC CATGAAATTG 
GTGATGGCTT TTATAGCATT CCTAAGATTT 
CTAGCCATAC CCCCAACAGC AGGAATTTTG 
GCTAGATGGG GCTCACTCAA 
GAAGAATGGA GCGATTAAAG 
TGCTACGGAG TTTCAAGAAA GAAATCTCAA 
ACATGCTGAG CATAATGAAT AGAAGAAAAA 
GATCCGTGAC CATGCTCCTT ATGCTGCTGC 
CCACAGCCCT GGCG 

0.98 0.99 

D1C
V 

Deng
ue1 

95 to 394 ATGAACAACCAACGGAAAAAGACGGGTCGA
CCGTCTTTCAATATGCTGAAACGCGCGAGA
AACCGCGTGTCAACTGTTTCACAGTTGGCG
AAGAGATTCTCAAAAGGATTGCTTTCAGGCC
AAGGACCCATGAAATTGGTGATGGCTTTTAT
AGCATTCCTAAGATTTCTAGCCATACCCCCA
ACAGCAGGAATTTTGGCTAGATGGGGCTCA
CTCAAGAAGAATGGAGCGATTAAAGTGCTA
CGGGGTTTCAAGAAAGAAATCTCAAACATGC
TGAGCATAATGAATAGAAGAAAAAGA 

0.99 1 

D1Pr
M 

Deng
ue1 

437 to 934 TTCCATCTGACCACACGAGGGGGAGAGCCG
CACATGATAGTTAGCAAGCAGGAAAGAGGA
AAGTCACTTTTGTTTAAGACCTCTGCAGGTG
TCAACATGTGCACCCTTATTGCGATGGATTT
GGGAGAGTTATGTGAGGACACAATGACCTA
CAAATGCCCTCGGATCACTAAGGCGGAACC
AGATGACGTTGACTGTTGGTGCAATGCCAC
GGACACATGGGTGACCTATGGAACGTGTTC
TCAAACTGGCGAACACCGACGAGACAAGCG
TTCCGTCGCACTGGCCCCACATGTGGGGCT
TGGTCTAGAAACAAGAGCCGAAACGTGGAT
GTCCTCTGAAGGCGCTTGGAAACAAATACA
AAAAGTGGAGACTTGGGCTCTGAGACACCC
AGGATTCACGGTAATAGCCCTCTTTCTAGCA
CATGCCATAGGAACATCCATCACCCAGAAA
GGGATTATTTTCATTTTGTTGATGCTGGTAA
CACCATCCATGGCC 

1 1 

D1M Deng
ue1 

710 to 934 TCCGTCGCAC TGGCCCCACA 
TGTGGGGCTT GGTCTAGAAA 
CAAGAGCCGA AACGTGGATG 
TCCTCTGAAG GCGCTTGGAA ACAAATACAA 
AAAGTGGAGA CTTGGGCTCT 
GAGACACCCA GGATTCACGG 
TAATAGCCCT CTTTCTAGCA CATGCCATAG 
GAACATCCAT CACCCAGAAA GGGATTATTT 
TCATTTTGTT GATGCTGGTA ACACCATCCA 
TGGCC 

1 1 



 

 

224 

D1E Deng
ue1 

935 to 2419 ATGCGATGCGTGGGAATAGGCAACAGAGAC
TTCGTGGAAGGACTGTCAGGAGGAACGTGG
GTGGATGTGGTACTGGAGCGTGGAAGTTGC
GTCACCACCATGGCAAAAGATAAACCAACAT
TGGACATTGAACTCTTGAAGACGGAGGTCA
CAAACCCTGCCGTCCTGCGTAAACTGTGCA
TTGAAGCTAAAATATCAAACACCACCACCGA
TTCAAGATGTCCAACACAAGGGGAAGCCAC
ACTGGTGGAAGAACAAGACGCGAACTTCGT
GTGTCGACGAACGTTTGTGGACAGAGGCTG
GGGCAATGGCTGTGGGCTTTTCGGAAAAGG
TAGCCTAATAACGTGTGCTAAGTTCAAGTGT
GTGACAAAACTGGAAGGAAAGATTGTTCAAT
ATGAGAACTTGAAATATTCAGTGATAGTCAC
CGTCCACACTGGTGACCAGCACCAGGTGGG
AAATGAGACCACAGAACATGGAACAATTGCA
ACCATAACACCTCAAGCTCCTACGTCGGAAA
TACAGCTGACCGACTACGGAGCTCTTACATT
GGATTGCTCACCCAGAACAGGGCTAGACTT
TGATGAGATGGTGTTGTTGACAATGAAAGAA
AAATCATGGCTTGTCCACAAACAATGGTTTC
TAGACTTACCACTGCCCTGGACCTCGGGAG
CTTCAACACCCCAAGAGACTTGGAACAGAG
AAGATTTGCTGGTTACATTTAAGACAGCTCA
TGCAAAGAAGCAGGAAGTAGTCGTACTAGG
ATCACAAGAAGGAGCAATGCACACTGCGTT
GACCGGAGCGACAGAAATCCAAACGTCTGG
AACGACAAAAATTTTTGCAGGACACTTGAAA
TGTAGACTAAAAATGGACAAACTGACCTTAA
AAGGGATGTCATATGTGATGTGCACAGGCT
CATTCAAGTTAGAGAAAGAAGTGGCTGAGA
CCCAGCATGGAACTGTTCTAGTGCAGGTTA
AATACGAAGGAACAGATGCACCATGCAAGA
TCCCCTTTTCGACCCAAGATGAGAAAGGAG
TAACCCAGAATGGGAGATTGATAACAGCCA
ACCCCATAGTCACTGACAAAGAAAAACCAGT
CAACATTGAGGCAGAACCACCTTTTGGTGA
GAGTTACATCGTGGTAGGAGCAGGTGAAAA
AGCTTTGAAACTAAGCTGGTTCAAGAAAGGA
AGCAGCATAGGGAAAATGCTTGAAGCAACT
GCCCGAGGAGCACGAAGGATGGCCATCCTA
GGAGACACCGCATGGGACTTCGGTTCTATA
GGAGGAGTGTTCACGTCTGTGGGAAAACTG
GTACACCAGATCTTTGGAACTGCATATGGAG
TTTTGTTCAGCGGTGTTTCCTGGACTATGAA
AATAGGAATAGGGATTCTGCTGACATGGCTA
GGATTAAATTCAAGGAGCACGTCCCTTTCGA
TGACGTGCATTGCAGTTGGCATGGTTACACT
GTACCTAGGAGTCATGGTTCAGGCG 

0.99 0.99 
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D1Eii
i 

Deng
ue1 

1814 to 2116 TTAAAAGGGA TGTCATATGT GATGTGCACA 
GGCTCATTCA AGTTAGAGAA AGAAGTGGCT 
GAGACCCAGC ATGGAACTGT 
TCTAGTGCAG GTTAAATACG AAGGAACAGA 
TGCACCATGC AAGATCCCCT TTTCGACCCA 
AGATGAGAAA GGAGTAACCC 
AGAATGGGAG ATTGATAACA 
GCCAACCCCA TAGTCACTGA CAAAGAAAAA 
CCAGTCAACA TTGAGGCAGA ACCACCTTTT 
GGTGAGAGTT ACATCGTGGT 
AGGAGCAGGT GAAAAAGCTT TGAAACTAAG 
CTGGTTCAAG AAA 

1 1 

D1N
S1 

Deng
ue1 

2420 to 3475 GACTCGGGATGTGTAATTAACTGGAAAGGC
AGAGAACTCAAATGTGGAAGTGGCATTTTTG
TCACCAATGAAGTTCACACTTGGACAGAACA
ATACAAATTCCAGGCCGACTCCCCAAAGAG
ACTATCAGCAGCCATTGGGAAGGCATGGGA
AGAGGGTGTGTGTGGAATTCGATCAGCCAC
TCGTCTCGAGAACATCATGTGGAAGCAGAT
ATCAAATGAACTAAACCACATCTTACTTGAA
AATGACATGAAATTCACAGTGGTCGTAGGA
GATGTTAGTGGGATCTTGACCCAAGGAAGA
AAAATGATTGGGCCACAACCCATGGAACAC
AAATACTCGTGGAAAAGCTGGGGAAAAGCC
AAAATCATAGGAGCAGATGTACAGAACACCA
CCTTCATTATCGACGGCCCAAACACCCCAG
AATGCCCTGATGACCAAAGAGCATGGAACA
TTTGGGAAGTTGAGGACTATGGATTTGGAAT
TTTCACGACAAATATATGGTTGAAATTGCGT
GACTCCTACACCCAAGTGTGTGACCCCCGG
CTAATGTCAGCTGCCATCAAGGACAGCAAG
GCAGTTCATGCCGATATGGGATACTGGATA
GAAAGTGAAAAGAACGAGACCTGGAAGCTG
GCGAGAGCCTCCTTCATAGAAGTTAAGACAT
GCGTCTGGCCAAAATCCCACACTCTATGGA
GCAACGGAGTTTTGGAAAGTGAAATGATAAT
CCCAAAGATATATGGAGGACCAATATCTCAG
CACAACTACAGACCAGGATATTCCACACAAA
CAGCAGGACCGTGGCACCTAGGCAAGTTGG
AACTAGATTTTGATTTGTGTGAGGGTACCAC
AGTTGTTGTGGATGAACATTGTGGAAATCGA
GGACCATCTCTTAGAACCACAACAGTAACAG
GAAAGATAATCCATGAATGGTGCTGTAGATC
TTGTACGCTACCCCCCTTACGTTTCAAAGGA
GAAGACGGGTGTTGGTACGGCATGGAAATC
AGACCAGTCAAGGACAAGGAAGAGAACCTA
GTAAAGTCATTGGTCTCTGCA 

1 1 
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D1N
S2A 

Deng
ue1 

3476 to 4129 AGGGTCAGGA GAAGTGGATA GCTTTTCACT 
AGGACTGTTA TGCGTATCAA TAATGATCGA 
AGAGGTGATG AGATCCAGAT 
GGAGTAGAAA AATGCTGATG 
ACTGGAACAC TGGCTGTGTT CCTCCTTCTC 
ATAATGGGAC AATTGACATG GAATGATCTG 
ATCAGGTTAT GCATCATGGT TGGAGCCAAT 
GCTTCAGACA GGATGGGGAT 
GGGAACAACG TACCTAGCTC 
TGATGGCCAC TTTTAAAATG AGACCAATGT 
TCGCTGTCGG GTTATTATTT CGCAGACTAA 
CATCTAGAGA AGTTCTTCTT CTTACGATTG 
GATTGAGTCT GGTGGCATCT 
GTGGAGCTAC CAAATTCCTT 
GGAGGAGCTG GGGGATGGAC 
TTGCAATGGG CATCATGATT TTAAAATTAC 
TGACTGACTT TCAGTCACAT CAGCTGTGGG 
CTGCCCTGCT GTCCTTGACA TTTATCAAAA 
CAACTTTTTC ATTGCACTAT GCATGGAAGA 
CAATGGCTAT GGTACTGTCA ATTGTATCTC 
TCTTCCCTTT ATGCCTGTCC ACGACCTCTC 
AAAAAACAAC ATGGCTTCCG GTGCTGTTGG 
GATCTCTTGG ATGCAAACCA CTAACCATGT 
TTCTTATAGC AGAAAACAAA ATCTGGGGAA 
GGAAA 

0.99 1 

D1N
S2B 

Deng
ue1 

4130 to 4519 AGTTGGCCCCTCAATGAAGGAATCATGGCT
GTTGGAATAGTTAGCATCCTACTAAGTTCAC
TCCTCAAGAATGACGTGCCGCTAGCCGGCC
CACTAATAGCTGGAGGTATGCTAATAGCATG
TTATGTTATATCCGGAAGCTCAGCCGATTTA
TCACTGGAGAAAGCGGCTGAGGTCTCCTGG
GAAGAAGAAGCAGAACACTCTGGTGCCTCA
CACAACATACTAGTGGAAGTCCAAGATGATG
GAACCATGAAGATAAAAGATGAAGAGAGAG
ATGACACACTCACCATTCTCCTTAAAGCAAC
TCTGTTGGCAGTCTCAGGGGTGTACCCAAT
ATCAATACCAGCGACCCTTTTTGTGTGGTAT
TTTTGGCAGAAAAAGAAACAGAGA 

1 1 
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D1N
S3 

Deng
ue1 

4520 to 6376 GTCAGTGCCATAGCTCAAGCTAAAGCATCA
CAAGAAGGGCCTCTACCAGAGATTGAGGAC
GAGGTGTTTAGGAAAAGAAACTTAACAATAA
TGGACCTACATCCAGGATCGGGGAAAACAA
GAAGATATCTTCCAGCCATAGTCCGTGAGG
CTATAAAAAGGAAGCTGCGTACGCTAATCTT
GGCTCCCACAAGAGTTGTCGCTTCTGAAAT
GGCAGAGGCGCTCAAGGGAATGCCAATAAG
GTATCAGACAACAGCAGTGAAGAGTGAACA
CACAGGAAGGGAGATAGTTGACCTTATGTG
CCATGCCACTTTCACCATGCGTCTCCTGTCT
CCCGTGAGAGTTCCCAATTACAACATGATCA
TCATGGATGAAGCACATTTCACCGATCCAGC
CAGTATAGCGGCCAGAGGGTACATCTCAAC
CCGGGTGGGCATGGGTGAAGCAGCTGCGA
TCTTCATGACAGCCACTCCCCCAGGATCGG
TGGAGGCCTTTCCACAGAGCAATGCAGTTA
TCCAAGATGAGGAAAGAGACATTCCTGAGA
GATCATGGAACTCAGGCTATGACTGGATCA
CTGATTTCCCAGGTAAAACAGTCTGGTTTGT
TCCAAGCATTAAATCAGGAAATGACATTGCC
AACTGTTTAAGAAAGAATGGGAAACGGGTG
ATCCAATTGAGCAGAAAAACCTTTGATACTG
AGTACCAGAAAACAAAAAATAATGACTGGGA
CTATGTCGTCACAACAGACATTTCCGAAATG
GGAGCAAACTTCCGAGCCGACAGGGTAATA
GACCCAAGACGGTGTTTGAAACCGGTAATA
CTAAAAGATGGTCCAGAGCGTGTCATTCTAG
CCGGACCGATGCCAGTGACTGTGGCCAGTG
CCGCCCAGAGGAGAGGAAGAATTGGAAGG
AACCAAAATAAGGAAGGTGATCAGTACATTT
ACATGGGACAGCCTTTAAACAACGATGAGG
ATCACGCTCATTGGACAGAAGCAAAAATGCT
CCTTGACAACATAAACACACCAGAAGGGATT
ATCCCAGCCCTCTTTGAGCCGGAGAGAGGA
AAAAGTGCAGCAATAGACGGGGAATACAGA
CTGCGGGGTGAAGCAAGGAAAACGTTCGTG
GAGCTCATGAGAAGAGGAGATCTACCTGTC
TGGCTATCCTACAAAGTTGCCTCAGAAGGCT
TCCAGTACTCTGACAGAAAGTGGTGCTTTGA
TGGGGAAAGGAACAACCAGGTGTTGGAGGA
GAACATGGACGTGGAGATCTGGACAAAAGA
AGGAGAAAGAAAGAAACTACGACCCCGCTG
GCTGGACGCCAGAACATACTCTGACCCACA
GGCTCTGCGCGAGTTTAAAGAGTTTGCAGC
AGGAAGAAGA 

1 1 
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5003 to 6376 GGCGCTCAAG GGAATGCCAA 
TAAGGTATCA GACAACAGCA 
GTGAAGAGTG AACACACAGG 
AAGGGAGATA GTTGACCTTA TGTGCCATGC 
CACTTTCACC ATGCGTCTCC TGTCTCCCGT 
GAGAGTTCCC AATTACAACA TGATCATCAT 
GGATGAAGCA CATTTCACCG 
ATCCAGCCAG CATAGCGGCC 
AGAGGGTACA TCTCAACCCG 
GGTGGGCATG GGTGAAGCAG 
CTGCGATCTT CATGACAGCC 
ACTCCCCCAG GATCGGTGGA 
GGCCTTTCCA CAGAGCAATG CAGTTATCCA 
AGATGAGGAA AGAGACATTC 
CTGAGAGATC ATGGAACTCA GGCTATGACT 
GGATCACTGA TTTCCCAGGT AAAACAGTCT 
GGTTTGTTCC AAGCATTAAA TCAGGAAATG 
ACATTGCCAA CTGTTTAAGA AAGAATGGGA 
AACGGGTGAT CCAATTGAGC AGAAAAACCT 
T 

1 1 
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S4A 
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ue1 

6377 to 6757 AGCGTCTCAGGTGATCTAATATTAGAAATAG
GGAAACTTCCACAACATTTGACGCAAAGGG
CCCAGAATGCTCTGGACAACCTGGTCATGT
TGCACAACTCCGAACAAGGAGGAAAAGCCT
ATAGACATGCTATGGAAGAACTACCAGACAC
CATAGAAACGTTGATGCTCCTAGCTTTGATA
GCTGTGTTAACTGGTGGAGTGACGCTGTTC
TTCCTATCAGGAAGAGGCCTAGGGAAAACA
TCTATCGGCCTACTCTGCGTGATGGCTTCAA
GCGTACTGTTATGGGTGGCCAGTGTGGAGC
CCCATTGGATAGCGGCCTCCATCATACTGG
AGTTCTTTCTGATGGTGCTGCTTATTCCAGA
GCCAGACAGACAACGC 

1 1 

D1N
S4B 
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ue1 

6827 to 7573 AATGAGATGG GATTATTGGA AACCACAAAG 
AAAGACCTAG GGATTGGCCA 
TGTGGCTGTT GAAAACCACC ACCATGCCAC 
AATGCTGGAC GTAGACTTAC GTCCAGCTTC 
AGCCTGGACC CTCTATGCAG 
TGGCCACAAC AATCATCACT CCCATGATGA 
GACACACAAT TGAAAACACA ACGGCAAATA 
TTTCCCTGAC AGCTATTGCA AACCAGGCAG 
CTATATTGAT GGGACTTGAC AAGGGATGGC 
CAATATCGAA GATGGACATA GGAGTTCCAC 
TCCTCGCCTT GGGGTGCTAT 
TCCCAGGTGA ACCCGCTGAC 
GCTGATAGCG GCGGTATTGA 
TGCTAGTGGC TCATTACGCC ATAATTGGAC 
CTGGACTGCA AGCAAAAGCC 
ACTAGAGAAG CTCAAAAAAG 
AACAGCGGCC GGAATAATGA AAAATCCAAC 
TGTCGACGGA ATTGTTGCAA TAGATCTGGA 
CCCTGTGGTT TATGATGCAA AATTTGAAAA 
ACAGCTAGGC CAAATAATGT TGTTGATACT 
TTGCACATCA CAGATTCTTT TAATGCGGAC 
TACATGGGCC TTGTGTGAAT CCATCACACT 
GGCTACTGGA CCTCTGACCA 

1 1 
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CGCTTTGGGA GGGATCTCCA GGAAAATTCT 
GGAACACCAC GATCGCGGTG 
TCCATGGCAA ACATTTTCAG GGGAAGTTAT 
CTAGCAGGAG CAGGTCTGGC CTTCTCATTA 
ATGAAATCTC TAGGAGGAGG TAGGAGA 

D1N
S5 

Deng
ue1 

7574 to 
10270 

GGTACGGGA GCCCAAGGGG 
AAACACTGGG AGAAAAATGG 
AAAAGACAGC TAAACCAACT GAGCAAGTCA 
GAATTCAACA CTTACAAAGG GAGTGGGATT 
ATGGAGGTGG ATAGATCTGA 
AGCTAAAGAG GGATTGAAAA 
GAGGAGAAAC AACCAAACAT 
GCAGTGTCGA GAGGAACAGC 
CAAACTGAGG TGGTTTGTGG 
AGAGGAACCT TGTGAAGCCG 
GAAGGGAAAG TCATAGACCT 
CGGTTGTGGA AGAGGTGGCT 
GGTCATATTA TTGTGCTGGG CTGAAGAAAG 
TCACAGAAGT GAAAGGATAT ACAAAAGGAG 
GACCTGGACA TGAGGAACCA 
ATCCCAATGG CGACCTATGG ATGGAACCTA 
GTAAAGCTAC ACTCCGGGAA AGATGTATTC 
TTTACACCAC CTGAGAAATG CGACACCCTT 
TTGTGTGATA TTGGTGAGTC CTCTCCGAAC 
CCAACTATAG AAGAAGGAAG AACGTTACGT 
GTTCTAAAGA TGGTGGAACC ATGGCTCAGA 
GGAAACCAAT TTTGCATAAA AATTCTAAAT 
CCCTATATGC CGAGTGTGGT 
GGAAACTCTG GAGCAAATGC AAAGAAAACA 
TGGAGGAATG CTAGTGCGAA ATCCACTCTC 
AAGAAATTCC ACCCATGAAA TGTACTGGGT 
TTCATGTGGA ACAGGAAACA TTGTGTCAGC 
AGTAAACATG ACATCTAGAA TGTTGCTAAA 
TCGGTTCACA ATGGCTCACA 
GGAAGCCAAC ATATGAAAGA 
GACGTGGACTTAG GTGCTGGAAC 
AAGACATGTG GCAGTGGAAC 
CAGAGGTAGC CAACCTAGAT ATCATTGGCC 
AGAGGATAGA GAATATAAAA AATGAGCATA 
AGTCAACATG GCATTATGAT GAGGACAATC 
CATACAAAAC ATGGGCCTAT CATGGATCAT 

0.99 0.99 
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ATGAGGTTAA GCCATCAGGA TCAGCCTCAT 
CCATGGTCAA TGGCGTGGTG 
AGATTGCTCA CCAAACCATG GGATGTTATC 
CCTATGGTCA CACAAATAGC CATGACTGAC 
ACTACACCCT TTGGACAACA GAGGGTGTTT 
AAAGAGAAAG TTGACACGCG 
CACACCAAAA GCAAAACGAG 
GCACAGCACA AATCATGGAG 
GTGACAGCCA GGTGGTTATG GGGTTTTCTT 
TCTAGAAACA AAAAACCAAG AATCTGCACA 
AGAGAGGAGT TCACAAGAAA 
AGTCAGGTCA AACGCAGCCA 
TTGGAGCAGT GTTCGTTGAT GAAAATCAAT 
GGAACTCAGC AAAAGAAGCG 
GTGGAAGATG AACGGTTCTG 
GGACCTTGTG CACAGAGAGA 
GGGAGCTCCA TAAACAGGGA 
AAATGTGCCA CGTGTGTTTA CAATATGATG 
GGGAAGAGAG AGAAAAAATT 
AGGAGAGTTC GGAAAGGCAA 
AAGGAAGTCG TGCAATATGG TACATGTGGT 
TGGGAGCACG CTTTCTAGAG 
TTCGAAGCCC TTGGTTTCAT GAACGAAGAT 
CACTGGTTCA GTAGAGAGAA TTCACTCAGT 
GGAGTGGAAG GAGAAGGACT 
CCACAAACTT GGATATATAC TCAGAGACAT 
ATCAAAGATT CCAGGGGGAA ATATGTATGC 
AGATGACACA GCCGGATGGG 
ACACAAGAAT AACAGAGGAT GATCTTCAGA 
ATGAGGCCAA AATCACTGAC ATCATGGAGC 
CCGAACATGC CCTATTGGCT ACGTCAATCT 
TTAAGCTGAC CTACCAAAAC AAGGTGGTAA 
GGGTGCAGAG ACCAGCAAAA 
AATGGAACCG TGATGGATGT CATATCCAGA 
CGTGACCAGA GAGGAAGTGG 
ACAGGTCGGA ACTTATGGCT TAAACACTTT 
CACTAACATG GAGGTCCAAC TAATAAGACA 
AATGGAGTCT GAGGGAATCT TTTCACCCAG 
CGAATTGGAG ACCCCAAATT TAGCCGAAAG 
AGTTCTCGAC TGGTTGGAAA AACATGGCGT 
CGAAAGGCTG AAAAGAATGG 
CAATCAGCGG AGATGACTGT 
GTGGTGAAAC CAACTGATGA 
CAGGTTCGCA ACAGCCTTAA CAGCTTT 
GAATGACATGGGAAAAGTAAGAAAAGACATA
CCGCAATGGGAACCTTCAAAAGGATGGAAT
GATTGGCAACAAGTGCCTTTTTGTTCACACC
ATTTCCACCAGCTGATCATGAAGGATGGGA
GGGAGATAGTGGCGCCATGCCGCAACCAA
GATGAACTTGTGGGTAGGGCTAGAGTATCA
CAAGGCGCCGGATGGAGCCTGAGAGAAACT
GCATGCCTAGGCAAGTCATATGCACAGATG
TGGCAGCTGATGTACTTCCACAGGAGAGAC
CTGAGACTAGCGGCCAATGCCATCTGTTCA
GCCGTTCCAATTGATTGGGTCCCAACCAGC
CGCACCACCTGGTCGATCCATGCCCATCAT
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CAATGGATGACAACAGAAGACATGTTGTCA
GTGTGGAATAGGGTTTGGATAGAGGAAAAC
CCATGGATGGAGGATAAAACCCATGTATCC
AGTTGGGAAGATGTTCCATACTTAGGAAAAA
GGGAAGATCAGTGGTGTGGATCCCTGATAG
GCTTAACAGCAAGGGCCACCTGGGCCACTA
ATATACAAGTGGCCATAAACCAAGTGAGAAG
GCTTATTGGGAATGAGAATTATCTAGATTAC
ATGACATCAATGAAGAGATTCAAGAATGAGA
GTGATCTCGAAGGGGCACTCTGGTAA 

D2C
A 

Deng
ue2 

97 to 438 ATGAATGACC AACGGAAAAA 
GGCGAAAAAC ACGCCTTTCA ATATGCTGAA 
ACGCGAGAGA AACCGCGTGT 
CGACTGTGCA ACAGCTGACA AAGAGATTCT 
CACTTGGAAT GCTGCAGGGA 
CGAGGACCAT TAAAACTGTT CATGGCCCTG 
GTGGCGTTCC TTCGTTTCCT AACAATCCCA 
CCAACAGCAG GGATATTGAA 
GAGATGGGGA ACAATTAAAA AATCAAAAGC 
TATTAATGTT TTGAGAGGGT TCAGGAAAGA 
GATTGGAAGG ATGCTGAACA TCTTGAATAG 
GAGACGCAGA TCTGCCGGCA TGATCATTAT 
GCTGATTCCA ACAGTGATGG CG 

0.99 1 

D2C
V 
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ue2 

97 to 396 ATGAATGACCAACGGAAAAAGGCGAAAAAC
ACGCCTTTCAATATGCTGAAACGCGAGAGA
AACCGCGTGTCGACTGTGCAACAGCTGACA
AAGAGATTCTCACTTGGAATGCTGCAGGGA
CGAGGACCATTAAAACTGTTCATGGCCCTG
GTGGCGTTCCTTCGTTTCCTAACAATCCCAC
CAACAGCAGGGATATTGAAGAGATGGGGAA

0.99 1 
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CAATTAAAAAATCAAAAGCTATTAATGTTTTG
AGAGGGTTCAGGAAAGAGATTGGAAGGATG
CTGAACATCTTGAATAGGAGACGCAGA 

D2Pr
M 

Deng
ue2 

439 to 936 TTCCATTTAA CCACACGTAA CGGAGAACCA 
CACATGATCG TCAGCAGACA 
AGAGAAAGGA AAAAGTCTTC TGTTTAAAAC 
AGAGGATGGC GTGAACATGT 
GTACCCTCAT GGCCATGGAC CTTGGTGAAT 
TGTGTGAAGA CACAATCACG TACAAGTGTC 
CCCTTCTCAG GCAGAATGAG 
CCAGAAGACA TAGACTGTTG GTGCAACTCT 
ACGTCCACGT GGGTAACTTA 
TGGGACGTGT ACCACCATGG 
GAGAACATAG AAGAGAAAAA 
AGATCAGTGG CACTCGTTCC 
ACATGTGGGA ATGGGACTGG 
AGACACGAAC TGAAACATGG ATGTCATCAG 
AAGGGGCCTG GAAACATGTC 
CAGAGAATTG AAACTTGGAT CTTGAGACAT 
CCAGGCTTCA CCATGATGGC 
AGCAATCCTG GCATACACCA 
TAGGAACGAC ACATTTCCAA AGAGCCCTGA 
TTTTCATCTT ACTGACAGCT GTCACTCCTT 
CAATGACA 

1 1 

D2M Deng
ue2 

712 to 936 TCAGTGGCACTCGTTCCACATGTGGGAATG
GGACTGGAGACACGAACTGAAACATGGATG
TCATCAGAAGGGGCCTGGAAACATGTCCAG
AGAATTGAAACTTGGATCTTGAGACATCCAG
GCTTCACCATGATGGCAGCAATCCTGGCAT
ACACCATAGGAACGACACATTTCCAAAGAG
CCCTGATTTTCATCTTACTGACAGCTGTCAC
TCCTTCAATGACA 

1 1 
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D2E Deng
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937 to 2421 ATGCGTTG CATAGGAATG TCAAATAGAG 
ACTTTGTGGA AGGGGTTTCA 
GGAGGAAGCT GGGTTGACAT 
AGTCTTAGAA CATGGAAGCT GTGTGACGAC 
GATGGCAAAA AACAAACCAA CATTGGATTT 
TGAACTGATA AAAACAGAAG CCAAACAGCC 
TGCCACCCTA AGGAAGTACT 
GTATAGAGGC AAAGCTAACC AACACAACAA 
CAGAATCTCG CTGCCCAACA 
CAAGGGGAAC CCAGCCTAAA 
TGAAGAGCAG GACAAAAGGT 
TCGTCTGCAA ACACTCCATG GTAGACAGAG 
GATGGGGAAA TGGATGTGGA 
CTATTTGGAA AGGGAGGCAT TGTGACCTGT 
GCTATGTTCA GATGCAAAAA GAACATGGAA 
GGAAAAGTTG TGCAACCAGA AAACTTGGAA 
TACACCATTG TGATAACACC TCACTCAGGG 
GAAGAGCATG CAGTCGGAAA 
TGACACAGGA AAACATGGCA AGGAAATCAA 
AATAACACCA CAGAGTTCCA TCACAGAAGC 
AGAATTGACA GGTTATGGCA CTGTCACAAT 
GGAGTGCTCT CCAAGAACGG 
GCCTCGACTT CAATGAGATG GTGTTGCTGC 
AGATGGAAAA TAAAGCTTGG CTGGTGCACA 
GGCAATGGTT CCTAGACCTG CCGTTACCAT 
GGTTGCCCGG AGCGGACACAC 
AAGGGTCAAA TTGGATACAG AAAGAGACAT 
TGGTCACTTT CAAAAATCCC CATGCGAAGA 
AACAGGATGT TGTTGTTTTA GGATCCCAAG 
AAGGGGCCAT GCACACAGCA 
CTTACAGGGG CCACAGAAAT CCAAATGTCA 
TCAGGAAACT 
TACTCTTCACAGGACATCTCAAGTGCAGGCT
GAGAATGGACAAGCTACAGCTCAAAGGAAT
GTCATACTCTATGTGCACAGGAAAGTTTAAA
GTTGTGAAGGAAATAGCAGAAACACAACAT
GGAACAATAGTTATCAGAGTGCAATATGAAG
GGGACGGCTCTCCATGCAAGATCCCTTTTG
AGATAATGGATTTGGAAAAAAGACATGTCTT
AGGTCGCCTGATTACAGTCAACCCAATTGTG
ACAGAAAAAGATAGCCCAGTCAACATAGAA
GCAGAACCTCCATTCGGAGACAGCTACATC
ATCATAGGAGTAGAGCCGGGACAACTGAAG
CTCAACTGGTTTAAGAAAGGAAGTTCTATCG
GCCAAATGTTTGAGACAACAATGAGGGGGG
CGAAGAGAATGGCCATTTTAGGTGACACAG
CCTGGGATTTTGGATCCTTGGGAGGAGTGT
TTACATCTATAGGAAAGGCTCTCCACCAAGT
CTTTGGAGCAATCTATGGAGCTGCCTTCAGT
GGGGTTTCATGGACTATGAAAATCCTCATAG
GAGTCATTATCACATGGATAGGAATGAATTC
ACGCAGCACCTCACTGTCTGTGACACTAGT
ATTGGTGGGAATTGTGACACTGTATTTGGGA
GTCATGGTGCAGGCC 

1 1 
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1816 to 2118 CTCAAAGGAA TGTCATACTC TATGTGCACA 
GGAAAGTTTA AAGTTGTGAA GGAAATAGCA 
GAAACACAAC ATGGAACAAT AGTTATCAGA 
GTGCAATATG AAGGGGACGG 
CTCTCCATGC AAGATCCCTT TTGAGATAAT 
GGATTTGGAA AAAAGACATG TCTTAGGTCG 
CCTGATTACA GTCAACCCAA TTGTGACAGA 
AAAAGATAGC CCAGTCAACA TAGAAGCAGA 
ACCTCCATTC GGAGACAGCT ACATCATCAT 
AGGAGTAGAG CCGGGACAAC 
TGAAGCTCAA CTGGTTTAAG AAA 

1 1 

D2N
S1 
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2422 to 3477 GATAGT GGTTGCGTTG TGAGCTGGAA 
AAACAAAGAA CTGAAATGTG GCAGTGGGAT 
TTTCATCACA GACAACGTGC ACACATGGAC 
AGAACAATAC AAGTTCCAAC CAGAATCCCC 
TTCAAAACTA GCTTCAGCTA TCCAGAAAGC 
CCATGAAGAG GGCATTTGTG 
GAATCCGCTC AGTAACAAGA CTGGAGAATC 
TGATGTGGAA ACAAATAACA CCAGAATTGA 
ATCACATTCT ATCAGAAAAT GAGGTGAAGT 
TAACTATTAT GACAGGAGAC ATCAAAGGAA 
TCATGCAGGC AGGAAAACGA 
TCTCTGCGGC CTCAGCCCAC 
TGAGCTGAAG TATTCATGGA AAACATGGGG 
CAAAGCAAAA ATGCTCTCTA CAGAGTCTCA 
TAACCAGACC TTTCTCATTG ATGGCCCCGA 
AACAGCAGAA TGCCCCAACA 
CAAATAGAGC TTGGAATTCG TTGGAAGTTG 
AAGACTATGG CTTTGGAGTA TTCACCACCA 
ATATATGGCT AAAATTGAAA GAAAACCAGG 
ATGTATTCTG CGACTCAAAA CTCATGTCAG 
CGGCCATAAA AGACAACAGA 
GCCGTCCATG CCGATATGGG TTATTGGATA 
GAAAGTGCAC TCAATGACAC ATGGAAGATA 
GAGAAAGCCT CTTTCATTGA AGTTAAAAAC 
TGCCACTGGC CAAAATCACA 
CACCCTCTGG AGCAATGGAG 
TGCTAGAAAG TGAGATGATA ATTCCAAAGA 
ATCTCGCTGG ACCAGTGTCT CAACACAACT 
ATAGACCAGG CTACCATACA CAAATAACAG 
GACCATGGCA TCTAGGTAAG 
CTTGAGATGG ACTTTGATTT CTGTGATGGA 
ACAACAGTGG TAGTGACTGA 
GGACTGCGGA AATAGAGGAC 
CCTCTTTGAG AACAACCACT GCCTCTGGAA 
AACTCATAAC AGAATGGTGC TGCCGATCTT 
GCACATTACC ACCGCTAAGA 
TACAGAGGTG AGGATGGGTG 
CTGGTACGGG ATGGAAATCA 
GACCATTGAA GGAGAAAGAA 
GAGAATTTGG TCAACTCCTT GGTCACAGCT 

0.99 0.99 



 

 

235 

D2N
S2A 

Deng
ue2 

3478 to 4131 GGAC ATGGGCAGGT CGACAACTTT 
TCACTAGGAG TCTTGGGAAT GGCATTGTTC 
CTGGAGGAAA TGCTTAGGAC 
CCGAGTAGGA ACGAAACATG CAATACTACT 
AGTTGCAGTT TCTTTTGTGA CATTGATCAC 
AGGGAACATG TCCTTTAGAG 
ACCTGGGAAG AGTGATGGTT 
ATGGTAGGCG CCATTATGAC GGATGACATA 
GGTATGGGCG TGACTTATCT TGCCCTACTA 
GCAGCCTTCA AAGTCAGACC AACTTTTGCA 
GCTGGACTAC TCTTGAGAAA GCTGACCTCC 
AAGGAATTGA TGATGACTAC TATAGGAATT 
GTACTCCTCT CCCAGAGCAC 
CATACCAGAG ACCATTCTTG AGTTGACTGA 
TGCGTTAGCC TTAGGCATGA TGGTCCTCAA 
AATGGTGAGA AATATGGAAA AGTATCAATT 
GGCAGTGACT ATCATGGCTA TCTTGTGCGT 
CCCAAACGCA GTGATATTAC AAAACGCATG 
GAAAGTGAGT TGCACAATAT TGGCAGTGGT 
GTCCGTTTCC CCACTGTTCT TAACATCCTC 
ACAGCAAAAA ACAGATTGGA TACCATTAGC 
ATTGACGATC AAAGGTCTCA ATCCAACAGC 
TATTTTTCTA ACAACCCTCT CAAGAACCAG 
CAAGAAAGGT 

0.99 0.99 
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4132 to 4521 AGCTGGCCAT TAAATGAGGC TATCATGGCA 
GTCGGGATGG TGAGCATTTT AGCCAGTTCT 
CTCCTAAAAA ATGATATTCC CATGACAGGA 
CCATTAGTGG CTGGAGGGCT 
CCTCACTGTG TGCTACGTGC 
TCACTGGACG ATCGGCCGAT 
TTGGAACTGG AGAGAGCAGC 
CGATGTTAAA TGGGAAGACC 
AGGCAGAGAT ATCAGGAAGC 
AGTCCAATCC TGTCAATAAC AATATCAGAA 
GACGGTAGCA TGTCGATAAA AAATGAAGAG 
GAAGAACAAA CACTGACCAT ACTCATTAGA 
ACAGGATTGC TGGTGATCTC AGGACTTTTT 
CCTGTATCAA TACCAATCAC GGCAGCAGCA 
TGGTACCTGT GGGAAGTGAA 
GAAACAACGG 

1 1 
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4522 to 6375 GCCGGAGTGTTGTGGGATGTTCCTTCACCC
CCACCCATGGGAAAGGCTGAACTGGAAGAT
GGAGCCTATAGAATTAAGCAAAAAGGGATTC
TTGGATATTCCCAGATCGGAGCCGGAGTTT
ACAAAGAAGGAACATTCCATACAATGTGGCA
TGTCACACGTGGCGCTGTTCTAATGCATAAA
GGAAAGAGGATTGAACCATCATGGGCGGAC
GTCAAGAAAGACCTAATATCATATGGAGGAG
GCTGGAAGTTAGAAGGAGAATGGAAGGAAG
GAGAAGAAGTCCAGGTATTGGTACTGGAGC
CTGGAAAAAATCCAAGAGCCGTCCAAACGA
AACCTGGTCTTTTCAAAACCAACGCCGGAAC
AATAGGTGCTGTATCTCTGGACTTTTCTCCT
GGAACGTCAGGATCTCCAATTATCGACAAAA
AAGGAAAAGTTGTGGGTCTTTATGGTAATGG
TGTTGTTACAAGGAGTGGAGCATATGTGAGT
GCTATAGCCCAGACTGAAAAAAGCATTGAA
GACAACCCAGAGATCGAAGATGACATTTTCC
GAAAGAGAAGACTGACCATCATGGACCTCC
ACCCAGGAGCGGGAAAGACGAAGAGATACC
TTCCGGCCATAGTCAGAGAAGCTATAAAAC
GGGGTTTGAGAACATTAATCTTGGCCCCCA
CTAGAGTTGTGGCAGCTGAAATGGAGGAAG
CCCTTAGAGGACTTCCAATAAGATACCAGAC
CCCAGCCATCAGAGCTGAGCACACCGGGC
GGGAGATTGTGGACCTAATGTGTCATGCCA
CATTTACCATGAGGCTGCTATCACCAGTTAG
AGTGCCAAACTACAACCTGATTATCATGGAC
GAAGCCCATTTCACAGACCCAGCAAGTATA
GCAGCTAGAGGATACATCTCAACTCGAGTG
GAGATGGGTGAGGCAGCTGGGATTTTTATG
ACAGCCACTCCCCCGGGAAGCAGAGGCCC
ATTTCCTCAGAGCAATGCACCAATCATAGAT
GAAGAAAGAGAAATCCCTGAACGTTCGTGG
AATTCCGGACATGAATGGGTCACGGATTTTA
AAGGGAAGACTGTTTGGTTCGTTCCAAGTAT
AAAAGCAGGAAATGATATAGCAGCTTGCCT
GAGGAAAAATGGAAAGAAAGTGATACAACT
CAGTAGGAAGACCTTTGATTCTGAGTATGTC
AAGACTAGAACCAATGATTGGGACTTCGTG
GTTACAACTGACATTTCAGAAATGGGTGCCA
ATTTCAAGGCTGAGAGGGTTATAGACCCCA
GACGCTGCATGAAACCAGTCATACTAACAG
ATGGTGAAGAGCGGGTGATTCTGGCAGGAC
CTATGCCAGTGACCCACTCTAGTGCAGCAC
AAAGAAGAGGGAGAATAGGAAGAAATCCAA
AAAATGAGAATGACCAGTACATATACATGGG
GGAACCTCTGGAAAATGATGAAGACTGTGC
ACACTGGAAAGAAGCTAAAATGCTCCTAGAT
AACATCAACACGCCAGAAGGAATCATTCCTA
GCATGTTCGAACCAGAGCGTGAAAAGGTGG
ATGCCATTGATGGCGAATACCGCTTGAGAG
GAGAAGCAAGGAAAACCTTTGTAGACTTAAT
GAGAAGAGGAGACCTACCAGTCTGGTTGGC
CTACAGAGTGGCAGCTGAAGGCATCAACTA
CGCAGACAGAAGGTGGTGTTTTGATGGAGT

0.99 0.99 
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CAAGAACAACCAAATCCTAGAAGAAAACGTG
GAAGTTGAAATCTGGACAAAAGAAGGGGAA
AGGAAGAAATTGAAACCCAGATGGTTGGAT
GCTAGGATCTATTCTGACCCACTGGCGCTA
AAAGAATTTAAGGAATTTGCAGCCGGAAGAA
AG 
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5005 to 6375 GTGAGTGCTA TAGCCCAGAC 
TGAAAAAAGC ATTGAAGACA ACCCAGAGAT 
CGAAGATGAC ATTTTCCGAA AGAGAAGACT 
GACCATCATG GACCTCCACC 
CAGGAGCGGG AAAGACGAAG 
AGATACCTTC CGGCCATAGT CAGAGAAGCT 
ATAAAACGGG GTTTGAGAAC ATTAATCTTG 
GCCCCCACTA GAGTTGTGGC 
AGCTGAAATG GAGGAAGCCC 
TTAGAGGACT TCCAATAAGA TACCAGACCC 
CAGCCATCAG AGCTGAGCAC 
ACCGGGCGGG AGATTGTGGA 
CCTAATGTGT CATGCCACAT TTACCATGAG 
GCTGCTATCA CCAGTTAGAG TGCCAAACTA 
CAACCTGATT ATCATGGACG AAGCCCATTT 
CACAGACCCA GCAAGTATAG 
CAGCTAGAGG ATACATCTCA 
ACTCGAGTGG AGATGGGTGA 
GGCAGCTGGG ATTTTTATGA CAGCCACTCC 
CCCGGGAAGC AGAGGCCCAT 
TTCCTCAGAG CAATGCACCA ATCATAGATG 
AAGAAAGAGA AATCCCTGAA CGTTCGTGGA 
ATTCCGGACA TGAATGGGTC ACGGATTTTA 
AAGGGAAGAC TGTTTGGTTC GTTCCAAGTA 
TAAAAGCAGG AAATGATATA GCAGCTTGCC 
TGAGGAAAAATGG AAAGAAAGTG 
ATACAACTCA GTAGGAAGAC CTTTGATTCT 
GAGTATGTCA AGACTAGAAC CAATGATTGG 
GAC 
TTCGTGGTTACAACTGACATTTCAGAAATGG
GTGCCAATTTCAAGGCTGAGAGGGTTATAG
ACCCCAGACGCTGCATGAAACCAGTCATAC
TAACAGATGGTGAAGAGCGGGTGATTCTGG
CAGGACCTATGCCAGTGACCCACTCTAGTG
CAGCACAAAGAAGAGGGAGAATAGGAAGAA
ATCCAAAAAATGAGAATGACCAGTACATATA
CATGGGGGAACCTCTGGAAAATGATGAAGA
CTGTGCACACTGGAAAGAAGCTAAAATGCT
CCTAGATAACATCAACACGCCAGAAGGAAT
CATTCCTAGCATGTTCGAACCAGAGCGTGA
AAAGGTGGATGCCATTGATGGCGAATACCG
CTTGAGAGGAGAAGCAAGGAAAACCTTTGT
AGACTTAATGAGAAGAGGAGACCTACCAGT
CTGGTTGGCCTACAGAGTGGCAGCTGAAGG
CATCAACTACGCAGACAGAAGGTGGTGTTTT
GATGGAGTCAAGAACAACCAAATCCTAGAA
GAAAACGTGGAAGTTGAAATCTGGACAAAA
GAAGGGGAAAGGAAGAAATTGAAACCCAGA
TGGTTGGATGCTAGGATCTATTCTGACCCAC
TGGCGCTAAAAGAATTTAAGGAATTTGCAGC
CGGAAGAAAG 

0.99 0.99 
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6376 to 6825 TCTCTGACCC TGAACCTAAT CACAGAAATG 
GGTAGGCTCC CAACCTTCAT 
GACTCAGAAG GCAAGAGACG 
CACTGGACAA CTTAGCAGTG 
CTGCACACGG CTGAGGCAGG 
TGGAAGGGCG TACAACCATG 
CTCTCAGTGA ACTGCCGGAG 
ACCCTGGAGA CATTGCTTTT ACTGACACTT 
CTGGCTACAG TCACGGGAGG GATCTTTTTA 
TTCTTGATGA GCGGAAGGGG 
CATAGGGAAG ATGACCCTGG 
GAATGTGCTG CATAATCACG GCTAGCATCC 
TCCTATGGTA CGCACAAATA CAGCCACACT 
GGATAGCAGC TTCAATAATA CTGGAGTTTT 
TTCTCATAGT TTTGCTTATT CCAGAACCTG 
AAAAACAGAG AACACCCCAA GACAACCAAC 
TGACCTACGT TGTCATAGCC ATCCTCACAG 
TGGTGGCCGC AACCATGGCA 

1 1 

D2N
S4B 

Deng
ue2 

6826 to 7569 AACG AGATGGGTTT CCTAGAAAAA 
ACGAAGAAAG ATCTCGGATT GGGAAGCATT 
GCAACCCAGC AACCCGAGAG 
CAACATCCTG GACATAGATC TACGTCCTGC 
ATCAGCATGG ACGCTGTATG 
CCGTGGCCAC AACATTTGTT ACACCAATGT 
TGAGACATAG CATTGAAAAT TCCTCAGTGA 
ATGTGTCCCT AACAGCTATA GCCAACCAAG 
CCACAGTGTT AATGGGTCTC 
GGGAAAGGAT GGCCATTGTC 
AAAGATGGAC ATCGGAGTTC CCCTTCTCGC 
CATTGGATGC TACTCACAAG TCAACCCCAT 
AACTCTCACA GCAGCTCTTT TCTTATTGGT 
AGCACATTAT GCCATCATAG GGCCAGGACT 
CCAAGCAAAA GCAACCAGAG 
AAGCTCAGAA AAGAGCAGCG 
GCGGGCATCA TGAAAAACCC 
AACTGTCGAT GGAATAACAG TGATTGACCT 
AGATCCAATA CCTTATGATC CAAAGTTTGA 
AAAGCAGTTG GGACAAGTAA TGCTCCTAGT 
CCTCTGCGTG ACTCAAGTAT TGATGATGAG 
GACTACATGG GCTCTGTGTG AGGCTTTAAC 
CTTAGCTACC GGGCCCATCT CCACATTGTG 
GGAAGGAAAT CCAGGGAGGT 
TTTGGAACAC TACCATTGCG GTGTCAATGG 
CTAACATTTT TAGAGGGAGT TACTTGGCCG 
GAGCTGGACT TCTCTTTTCT ATTATGAAGA 
ACACAACCAA CGCAAGAAGG 

0.99 0.99 



 

 

240 

D2N
S5 
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ue2 

7570 to 
10269 

GGAACTGGCA ACATAGGAGA 
GACGCTTGGA GAGAAATGGA 
AAAGCCGATT GAACGCATTG 
GGAAAAAGTG AATTCCAGAT CTACAAGAAA 
AGTGGAATCC AGGAAGTGGA TAGAACCTTA 
GCAAAAGAAG GCATTAAAAG 
AGGAGAAACG GACCATCACG 
CTGTGTCGCG AGGCTCAGCA 
AAACTGAGAT GGTTCGTTGA GAGAAACATG 
GTCACACCAG AAGGGAAAGT 
AGTGGACCTC GGTTGTGGCA 
GAGGAGGCTG GTCATACTAT 
TGTGGAGGAC TAAAGAATGT AAGAGAAGTC 
AAAGGCCTAA CAAAAGGAGG 
ACCAGGACAC GAAGAACCCA 
TCCCCATGTC AACATATGGG TGGAATCTAG 
TGCGTCTTCA AAGTGGAGTT GACGTTTTCT 
TCATCCCGCC AGAAAAGTGT GACACATTAT 
TGTGTGACAT AGGGGAGTCA TCACCAAATC 
CCACAGTGGA AGCAGGACGA 
ACACTCAGAG TCCTTAACTT AGTAGAAAAT 
TGGTTGAACA ACAACACTCA ATTTTGCATA 
AAGGTTCTCA ACCCATATAT GCCCTCAGTC 
ATAGAAAAAA TGGAAACACT ACAAAGGAAA 
TATGGAGGAG CCTTAGTGAG 
GAATCCACTC TCACGAAACT CCACACATGA 
GATGTACTGG GTATCCAATGCTTCCG 
GGAACATAGT GTCATCAGTG AACATGATTT 
CAAGGATGTT GATCAACAGA TTTACAATGA 
GATACAAGAA AGCCACTTAC 
GAGCCGGATG TTGACCTCGG 
AAGCGGAACC CGTAACATCG 
GGATTGAAAG TGAGATACCA AACCTAGATA 
TAATTGGGAA AAGAATAGAA AAAATAAAGC 
AAGAGCATGA AACATCATGG CACTATGACC 
AAGACCACCC ATACAAAACG 
TGGGCATACC ATGGTAGCTA TGAAACAAAA 
CAGACTGGAT CAGCATCATC CATGGTCAAC 
GGAGTGGTCA GGCTGCTGAC 
AAAACCTTGG GACGTCGTCC 
CCATGGTGAC ACAGATGGCA 
ATGACAGACA CGACTCCATT TGGACAACAG 
CGCGTTTTTA AAGAGAAAGT GGACACGAGA 
ACCCAAGAAC CGAAAGAAGG 
CACGAAGAAA CTAATGAAAA TAACAGCAGA 
GTGGCTTTGG AAAGAATTAG GGAAGAAAAA 
GACACCCAGG ATGTGCACCA 
GAGAAGAATT CACAAGAAAG 
GTGAGAAGCA ATGCAGCCTT 
GGGGGCCATA TTCACTGATG 
AGAACAAGTG GAAGTCGGCA 
CGTGAGGCTG TTGAAGATAG TAGGTTTTGG 
GAGCTGGTTG ACAAGGAAAG 
GAATCTCCAT CTTGAAGGAA AGTGTGAAAC 
ATGTGTGTAC AACATGATGG GAAAAAGAGA 
GAAGAAGCTA GGGGAATTCG 

0.99 0.99 
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GCAAGGCAAA AGGCAGCAGA 
GCCATATGGT ACATGTGGCT 
TGGAGCACGC TTCTTAGAGT TTGAAGCCCT 
AGGATTCTTA AATGAAGATC ACTGGTTCTC 
CAGAGAGAAC TCCCTGAGTG 
GAGTGGAAGG AGAAGGGCTG 
CACAAGCTAG GTTACATTCT AAGAGACGTG 
AGCAAGAAAG AGGGAGGAGC 
AATGTATGCC GATGACACCG 
CAGGATGGGA TACAAGAATC 
ACACTAGAAG ACCTAAAAAA TGAAGAAATG 
GTAACAAACC ACATGGAAGG 
AGAACACAAG AAACTAGCCG AGGCCATTTT 
CAAACTAACG TACCAAAACA 
AGGTGGTGCG TGTGCAAAGA 
CCAACACCAA GAGGCACAGT 
AATGGACATC ATATCGAGAA GAGACCAAAG 
AGGTAGTGGA CAAGTTGGCA 
CCTATGGACT CAATACTTTC ACCAATATGG 
AAGCCCAACT AATCAGACAG 
ATGGAGGGAG AAGGAGTCTT TAAAAGCATT 
CAGCACCTAA CAATCACAGA AGAAATCGCT 
GTGCAAAACT GGTTAGCAAG 
AGTGGGGCGC GAAAGGTTAT 
CAAGAATGGC CATCAGTGGA 
GATGATTGTG TTGTGAAACC TTTAGATGAC 
AGGTTCGCAA GCGCTTTAAC 
AGCTCTAAATGACATGGGAAAGATTAGGAAA
GACATACAACAATGGGAACCTTCAAGAGGA
TGGAATGATTGGACACAAGTGCCCTTCTGTT
CACACCATTTCCATGAGTTAATCATGAAAGA
CGGTCGCGTACTCGTTGTTCCATGTAGAAA
CCAAGATGAACTGATTGGCAGAGCCCGAAT
CTCCCAAGGAGCAGGGTGGTCTTTGCGGGA
GACGGCCTGTTTGGGGAAGTCTTACGCCCA
AATGTGGAGCTTGATGTACTTCCACAGACG
CGACCTCAGGCTGGCGGCAAATGCTATTTG
CTCGGCAGTACCATCACATTGGGTTCCAAC
AAGTCGAACAACCTGGTCCATACATGCTAAA
CATGAATGGATGACAACGGAAGACATGCTG
ACAGTCTGGAACAGGGTGTGGATTCAAGAA
AACCCATGGATGGAAGACAAAACTCCAGTG
GAATCATGGGAGGAAATCCCATACTTGGGG
AAAAGAGAAGACCAATGGTGCGGCTCATTG
ATTGGGTTAACAAGCAGGGCCACCTGGGCA
AAGAACATCCAAGCAGCAATAAATCAAGTTA
GATCCCTTATAGGCAATGAAGAATACACAGA
TTACATGCCATCCATGAAAAGATTCAGAAGA
GAAGAGGAAGAAGCAGGAGTTCTGTGGTAG 
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D3C
A 
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ue3 

95 to 436 ATGAACAACCAACGGAAAAAGACGGGAAAA
CCGTCTATCAATATGCTGAAACGCGTGAGAA
ACCGTGTGTCAACTGGATCACAGTTGGCGA
AGAGATTCTCAAGAGGATTGCTGAACGGCC
AAGGACCAATGAAATTGGTTATGGCGTTTAT
AGCTTTCCTCAGATTTCTAGCCATTCCACCG
ACAGCAGGAGTCTTGGCTAGATGGGGTACC
TTTAAGAAGTCGGGGGCTATTAAGGTCTTAA
AAGGCTTCAAGAAGGAGATCTCAAACATGCT
GAGCATTATCAACAAACGGAAAAAGACATCG
CTCTGTCTCATGATGATGTTACCAGCAACAC
TTGCT 

1 1 

D3C
V 

Deng
ue3 

95 to 394 ATGAACAACC AACGGAAAAA 
GACGGGAAAA CCGTCTATCA ATATGCTGAA 
ACGCGTGAGA AACCGTGTGT 
CAACTGGATC ACAGTTGGCG AAGAGATTCT 
CAAGAGGATT GCTGAACGGC 
CAAGGACCAA TGAAATTGGT TATGGCGTTT 
ATAGCTTTCC TCAGATTTCT AGCCATTCCA 
CCGACAGCAG GAGTCTTGGC 
TAGATGGGGT ACCTTTAAGA 
AGTCGGGGGC TATTAAGGTC TTAAAAGGCT 
TCAAGAAGGA GATCTCAAAC ATGCTGAGCA 
TTATCAACAA ACGGAAAAAG 

1 1 

D3Pr
M 

Deng
ue3 

437 to 934 TTCCACTTAA CTTCACGAGA TGGAGAGCCG 
CGCATGATTG TGGGGAAGAA 
TGAAAGAGGA AAATCCCTAC TTTTTAAGAC 
AGCCTCTGGA ATCAACATGT GCACACTCAT 
AGCCATGGAT TTGGGAGAGA 
TGTGTGATGA CACGGTCACT TACAAATGCC 
CCCACATTAC CGAAGTGGAG 
CCTGAAGACA TTGACTGCTG GTGCAACCTT 
ACATCGACAT GGGTGACTTA TGGAACATGC 
AATCAAGCTG GAGAGCATAG 
ACGCGATAAG AGATCAGTGG 
CGTTAGCTCC CCATGTCGGC 
ATGGGACTGG ACACACGCAC 
TCAAACCTGG ATGTCGGCTG 
AAGGAGCTTG GAGACAAGTC 
GAGAAGGTAG AGACATGGGC 
CCTTAGGCAC CCAGGGTTTA CCATACTAGC 
CCTATTTCTT GCCCATTACA TAGGCACTTC 
CTTGACCCAG AAAGTGGTTA TTTTTATACT 
ATTAATGCTG GTTACCCCAT CCATGACA 

1 1 

D3M Deng
ue3 

710 to 934 TCAGTGGCGTTAGCTCCCCATGTCGGCATG
GGACTGGACACACGCACTCAAACCTGGATG
TCGGCTGAAGGAGCTTGGAGACAAGTCGAG
AAGGTAGAGACATGGGCCCTTAGGCACCCA
GGGTTTACCATACTAGCCCTATTTCTTGCCC
ATTACATAGGCACTTCCTTGACCCAGAAAGT
GGTTATTTTTATACTATTAATGCTGGTTACCC
CATCCATGACA 

1 1 
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D3E Deng
ue3 

935 to 2413 ATGAGATGTG TGGGAGTAGG 
AAACAGAGAT TTTGTGGAAG 
GCCTATCGGG AGCCACGTGG 
GTTGACGTGG TGCTCGAGCA 
CGGTGGGTGT GTGACTACCA 
TGGCTAAGAA CAAGCCCACG 
CTGGACATAG AGCTTCAGAA 
GACCGAGGCC ACCCAACTGG 
CGACCCTAAG GAAGCTATGC 
ATTGAGGGAA AAATTACCAA CATAACAACC 
GACTCAAGAT GTCCCACCCA 
AGGGGAAGCG ATTTTACCTG 
AGGAGCAGGA CCAGAACTAC 
GTGTGTAAGC ATACATACGT 
GGACAGAGGC TGGGGAAACG 
GTTGTGGTTT GTTTGGCAAG 
GGAAGCTTGG TGACATGCGC GAAATTTCAA 
TGTTTAGAAT CAATAGAGGG AAAAGTGGTG 
CAACATGAGA ACCTCAAATA CACCGTCATC 
ATCACAGTGC ACACAGGAGA 
CCAACACCAG GTGGGAAATG 
AAACGCAGGG AGTTACGGCT 
GAGATAACAT CCCAGGCATC 
AACCGCTGAA GCCATTTTAC CTGGATATGG 
AACCCTCGGG CTAGAATGCT 
CACCACGGAC AGGTTTGGAT TTCAATGAAA 
TGATTTTATT GACAATGAAG AACAAAGCAT 
GGATGGTACA TAGACAATGG TTCTTTGACT 
TACCCCTACC ATGGACATCA GGAGCTACAA 
CAGAAACACC AACTTGGAAC 
AGGAGAGAGC TTCTTGTGAC ATTTAAAAAT 
GCACATGCAA AAAAGCAAGA AGTAGTTGTC 
CTTGGATCACAGGAGGGAGC AATGCATACA 
GCACTGACAG GAGCTACAGA 
GATCCAAACC 
TCAGGAGGCACAAGTATTTTTGCGGGGCAC
TTAAAATGTAGACTCAAGATGGACAAATTGG
AACTCAAGGGGATGAGCTATGCAATGTGCT
TGAATACCTTTGTGTTGAAGAAAGAAGTCTC
CGAAACGCAGCATGGGACAATACTCATTAA
GGTTGAGTACAAAGGGGAAGATGCACCCTG
CAAGATTCCTTTCTCCACGGAGGATGGACA
AGGGAAAGCTCACAATGGCAGACTGATCAC
AGCCAATCCAGTGGTGACCAAGAAGGAGGA
GCCTGTCAACATTGAGGCTGAACCTCCTTTT
GGGGAAAGTAATATAGTAATTGGAATTGGAG
ACAAAGCCCTGAAAATCAACTGGTACAGGA
AAGGAAGCTCGATTGGGAAGATGTTCGAGG
CCACTGCCAGAGGTGCAAGGCGCATGGCC
ATCTTGGGAGACACAGCCTGGGACTTTGGA
TCAGTGGGTGGTGTTTTGAATTCATTAGGGA
AAATGGTCCACCAAATATTTGGGAGTGCTTA
CACAGCCCTATTTAGTGGAGTCTCCTGGATA
ATGAAAATTGGAATAGGTGTCCTCTTAACCT
GGATAGGGTTGAATTCAAAAAACACTTCTAT
GTCATTTTCATGCATTGCGATAGGAATCATC

0.99 1 
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ACACTCTATCTGGGGGTCGTGGTGCAAGCT 

D3Eii
i 

Deng
ue3 

1784 to 2212 AGACTCAAGATGGACAAATTGGAACTCAAG
GGGATGAGCTATGCAATGTGCTTGAATACCT
TTGTGTTGAAGAAAGAAGTCTCCGAAACGCA
GCATGGGACAATACTCATTAAGGTTGAGTAC
AAAGGGGAAGATGCACCCTGCAAGATTCCT
TTCTCCACGGAGGATGGACAAGGGAAAGCT
CACAATGGCAGACTGATCACAGCCAATCCA
GTGGTGACCAAGAAGGAGGAGCCTGTCAAC
ATTGAGGCTGAACCTCCTTTTGGGGAAAGTA
ATATAGTAATTGGAATTGGAGACAAAGCCCT
GAAAATCAACTGGTACAGGAAGGGAAGCTC
GATTGGGAAGATGTTCGAGGCCACTGCCAG
AGGTGCAAGGCGCATGGCCATCTTGGGAGA
CACAGCCTGGGACTTTGGATCAGTGGGTGG
TGTT 

1 1 
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D3N
S1 

Deng
ue3 

2414 to 3469 GACATGGGGTGTGTCATAAACTGGAAAGGC
AAAGAACTCAAATGTGGAAGTGGAATTTTCG
TCACTAATGAGGTCCACACCTGGACAGAGC
AATACAAATTTCAAGCAGACTCCCCCAAAAG
ACTGGCAACAGCCATTGCAGGCGCTTGGGA
GAATGGAGTGTGCGGAATTAGGTCAACAAC
CAGAATGGAGAACCTCTTGTGGAAGCAAAT
AGCCAATGAACTGAACTACATATTATGGGAA
AACAACATCAAATTAACGGTAGTTGTAGGCG
ACATAACTGGGGTCTTAGAGCAAGGGAAAA
GAACACTAACACCACAACCCATGGAGCTAA
AATATTCTTGGAAAACATGGGGAAAGGCAAA
AATAGTGACAGCTGAAACACAAAATTCCTCT
TTCATAATAGATGGGCCAAGCACACCGGAG
TGTCCAAGTGCCTCAAGAGCATGGAATGTG
TGGGAGGTGGAAGATCACGGGTTCGGAGTT
TTCACAACCAACATATGGCTGAAACTCCGAG
AGGTGTACACCCAACTATGTGACCATAGGC
TAATGTCGGCAGCCGTCAAGGATGAGAGGG
CCGTACACGCCGACATGGGCTATTGGATAG
AAAGCCAAAAGAATGGAAGTTGGAAGCTAG
AAAAAGCATCCCTCATAGAGGTGAAAACCTG
CACATGGCCAAAATCACACACTCTTTGGAGC
AATGGTGTGCTAGAGAGTGACATGATTATCC
CAAAGAGTCTAGCTGGTCCCATTTCGCAACA
CAACCACAGGCCCGGGTACCACACCCAAAC
GGCAGGACCCTGGCACTTAGGAAAATTGGA
GCTGGACTTCAACTATTGTGAAGGAACAACA
GTTGTCATCTCAGAAAACTGTGGGACAAGA
GGCCCATCATTGAGAACAACAACAGTGTCA
GGGAAGTTGATACACGAATGGTGTTGCCGC
TCGTGCACACTTCCTCCCCTGCGATACATG
GGAGAAGACGGCTGCTGGTATGGCATGGAA
ATCAGACCCATTAATGAGAAAGAAGAGAACA
TGGTAAAGTCTCTAGCCTCAGCA 

0.99 1 

D3N
S2A 

Deng
ue3 

3470 to 4123 GGGAGTGGAA AGGTGGACAA 
CTTCACAATG GGTGTCTTGT GTTTGGCAAT 
CCTCTTTGAA GAGGTGATGA GAGGAAAATT 
TGGGAAAAAA CACATGATTG CAGGGGTTCT 
CTTCACGTTT GTGCTCCTCC TCTCAGGGCA 
AATAACATGG AGAGACATGG 
CGCACACACT CATAATGATT 
GGGTCCAGCG CCTCTGACAG 
AATGGGGATG GGCGTCACTT 
ACCTAGCTCT AATTGCAACA TTTAAAATTC 
AGCCATTCTT GGCTTTGGGA TTCTTCCTGA 
GGAAACTGAC ATCTAGAGAA AATTTATTGC 
TGGGAGTTGG GTTGGCCATG 
GCAGCAACGT TACGACTGCC 
AGAGGACATT GAACAAATGG CGAATGGAAT 
TGCTTTGGGG CTCATGGCTC TTAAACTGAT 
AACACAATTT GAAACATACC AACTATGGAC 
GTCATTAGTT TCCCTAACGT GTTCAAATAC 
AATTTTCACG TTGACTGTTG CCTGGAGAAC 
AGCCACTCTG ATTTTAGCCG GAATTTCGCT 
TTTGCCAGTG TGCCAGTCTT CGAGCATGAG 

0.99 1 
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GAAAACAGAT TGGCTCCCAA 
TGACTGTGGC AGCTATGGGA 
GTTCCACCCC TACCACTTTT TATTTTCAGT 
CTGAAAGATA CACTCAAAAG GAGA 

D3N
S2B 

Deng
ue3 

4124 to 4513 AGCTGGCCAC TGAATGAGGG 
GGTGATGGCA GTTGGACTTG TGAGCATTCT 
GGCTAGTTCT CTCCTTAGGA ATGATGTGCC 
CATGGCTGGA CCATTAGTGG 
CTGGGGGCTT GCTGATAGCG 
TGCTACGTCA TAACTGGCAC 
GTCAGCAGAC CTCACTGTAG 
AAAAAGCAGC AGATGTAACA 
TGGGAGGAAG AGGCCGAGCA 
AACAGGAGTG TCCCACAATT TAATGATCAC 
AGTTGATGAT GATGGAACAA TGAGAATAAA 
AGATGACGAG ACTGAGAACA TCTTAACAGT 
GCTTTTAAAA ACAGCACTAC TAATAGTATC 
AGGCATCTTT CCATACTCCA TACCCGCAAC 
ACTGTTGGTC TGGCATACTT GGCAAAAGCA 
AACCCAAAGA 

1 1 
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D3N
S3 
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4514 to 6370 TCCGGCGTCCTATGGGACGTACCCAGCCCC
CCAGAGACACAGAAAGCGGAACTGGAAGAA
GGGGTCTATAGGATCAAACAGCAAGGAATT
TTTGGGAAAACCCAAGTGGGGGTTGGAGTA
CAGAAAGAAGGAGTTTTCCACACCATGTGG
CACGTCACAAGAGGGGCAGTGTTGACACAC
AATGGGAAAAGACTGGAACCAAACTGGGCT
AGCGTGAAAAAAGATCTGATCTCATACGGA
GGAGGATGGAGATTGAGTGCACAATGGCAA
AAGGGGGAGGAGGTGCAGGTTATTGCCGTA
GAGCCTGGGAAGAACCCAAAGAACTTTCAA
ACCATGCCAGGCATTTTTCAGACAACAACAG
GGGAAATAGGAGCAATTGCACTGGATTTCA
AGCCTGGAACTTCAGGATCTCCCATCATAAA
CAGAGAGGGAAAGGTAGTGGGACTGTATGG
CAATGGAGTGGTTACAAAGAATGGAGGCTA
TGTYAGTGGAATAGCGCAAACAAATGCAGA
ACCAGATGGACCGACACCAGAGTTGGAAGA
AGAGATGTTCAAAAAGCGAAATCTAACCATA
ATGGATCTTCATCCTGGGTCAGGAAAGACG
CGGAAATATCTTCCAGCTATTGTTAGAGAGG
CAATCAAGAGACGCTTAAGGACTCTAATTTT
GGCACCAACAAGGGTAGTTGCAGCTGAGAT
GGAAGAAGCATTGAAAGGGCTCCCAATAAG
GTATCAAACAACTGCAACAAAATCTGAACAC
ACAGGAAGAGAGATTGTTGATCTAATGTGTC
ACGCAACGTTCACAATGCGCTTGCTGTCAC
CAGTCAGGGTTCCAAACTACAACTTGATAAT
AATGGATGAGGCTCATTTCACAGACCCAGC
CAGTATAGCGGCTAGAGGGTACATATCAAC
TCGTGTAGGAATGGGAGAGGCAGCCGCAAT
TTTCATGACAGCAACACCCCCTGGAACAGC
TGATGCCTTTCCTCAGAGCAACGCTCCAATT
CAAGATGAAGAGAGAGACATACCGGAACGC
TCATGGAATTCAGGCAATGAATGGATTACTG
ACTTTGTTGGGAAGACAGTGTGGTTTGTCCC
TAGCATCAAAGCCGGAAATGACATAGCAAA
CTGCTTGCGGAAAAATGGAAAAAAGGTCATT
CAACTCAGCAGGAAGACCTTTGACACAGAA
TATCAAAAGACCAAACTGAATGATTGGGACT
TTGTGGTGACAACAGACATTTCAGAAATGGG
AGCCAATTTCAAAGCAGATAGAGTGATCGAC
CCAAGAAGATGTCTCAAGCCGGTGATTTTGA
CAAATGGACCCGAGCGGGTGATCCTGGCTG
GACCAATGCCAGTCACCGTAGCGAGCGCTG
CGCAAAGGAGAGGGAGAGTTGGCAGGAAC
CCACAAAAAGAAAATGACCAGTACATATTCA
TGGGCCAGCCTCTCAACAATGATGAAGACC
ATGCTCACTGGACAGAAGCAAAAATGCTGC
TGGACAACATCAACACACCAGAAGGGATTAT
ACCAGCTCTCTTTGAACCAGAAAGGGAGAA
GTCAGCCGCCATAGACGGCGAATACCGCCT
GAAGGGTGAGTCCAGGAAGACTTTCGTGGA
ACTCATGAGGAGGGGTGACCTCCCAGTTTG
GCTAGCCCATAAAGTAGCATCAGAAGGGAT
CAAATATACAGATAGAAAATGGTGCTTTGAT

0.99 1 
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GGAGAACGTAATAATCAAATTTTAGAGGAGA
ATATGGATGTGGAAATCTGGACAAAGGAAG
GAGAAAAGAAAAAACTGAGACCTAGGTGGC
TTGATGCCCGCACTTATTCAGATCCTTTAGC
ACTCAAGGAATTCAAGGATTTTGCAGCTGGC
AGAAAG 
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D3N
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4997 to 6370 GT TAGTGGAATA GCGCAAACAA 
ATGCAGAACC AGATGGACCG 
ACACCAGAGT TGGAAGAAGA GATGTTCAAA 
AAGCGAAATC TAACCATAAT GGATCTTCAT 
CCTGGGTCAG GAAAGACGCG 
GAAATATCTT CCAGCTATTG TTAGAGAGGC 
AATCAAGAGA CGCTTAAGGA CTCTAATTTT 
GGCACCAACA AGGGTAGTTG 
CAGCTGAGAT GGAAGAAGCA 
TTGAAAGGGC TCCCAATAAG GTATCAAACA 
ACTGCAACAA AATCTGAACA CACAGGAAGA 
GAGATTGTTG ATCTAATGTG TCACGCAACG 
TTCACAATGC GCTTGCTGTC ACCAGTCAGG 
GTTCCAAACT ACAACTTGAT AATAATGGAT 
GAGGCTCATT TCACAGACCC AGCCAGTATA 
GCGGCTAGAG GGTACATATC 
AACTCGTGTA GGAATGGGAG 
AGGCAGCCGC AATTTTCATG ACAGCAACAC 
CCCCTGGAAC AGCTGATGCC TTTCCTCAGA 
GCAACGCTCC AATTCAAGAT 
GAAGAGAGAG ACATACCGGA 
ACGCTCATGG AATTCAGGCA ATGAATGGAT 
TACTGACTTT GTTGGGAAGA CAGTGTGGTT 
TGTCCCTAGC ATCAAAGCCG GAAATGACAT 
AGCAAACTGC TTGCGGAAAA ATGGAAAAAA 
GGTCATTCAACT CAGCAGGAAG 
ACCTTTGACA CAGAATATCA AAAGACCAAA 
CTGAATGATT GGGACTTTGT GGTGACAACA 
GACATTTCAGAAATGGGAGCCAATTTCAAAG
CAGATAGAGTGATCGACCCAAGAAGATGTC
TCAAGCCGGTGATTTTGACAAATGGACCCG
AGCGGGTGATCCTGGCTGGACCAATGCCAG
TCACCGTAGCGAGCGCTGCGCAAAGGAGA
GGGAGAGTTGGCAGGAACCCACAAAAAGAA
AATGACCAGTACATATTCATGGGCCAGCCTC
TCAACAATGATGAAGACCATGCTCACTGGAC
AGAAGCAAAAATGCTGCTGGACAACATCAA
CACACCAGAAGGGATTATACCAGCTCTCTTT
GAACCAGAAAGGGAGAAGTCAGCCGCCATA
GACGGCGAATACCGCCTGAAGGGTGAGTCC
AGGAAGACTTTCGTGGAACTCATGAGGAGG
GGTGACCTCCCAGTTTGGCTAGCCCATAAA
GTAGCATCAGAAGGGATCAAATATACAGATA
GAAAATGGTGCTTTGATGGAGAACGTAATAA
TCAAATTTTAGAGGAGAATATGGATGTGGAA
ATCTGGACAAAGGAAGGAGAAAAGAAAAAA
CTGAGACCTAGGTGGCTTGATGCCCGCACT
TATTCAGATCCTTTAGCACTCAAGGAATTCA
AGGATTTTGCAGCTGGCAGAAAG 

0.99 1 
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6371 to 6751 TCAATCGCCCTTGATCTTGTGACAGAAATAG
GAAGAGTGCCTTCACACTTAGCCCACAGAA
CGAGAAACGCCCTGGACAATTTGGTGATGC
TGCACACGTCAGAACATGGCGGTAGGGCCT
ACAGGCATGCAGTGGAGGAACTACCAGAAA
CGATGGAAACACTCTTACTCCTGGGACTGAT
GATCTTGTTAACAGGTGGAGCAATGCTCTTC
TTGATATCAGGTAAAGGGATTGGAAAGACTT
CAATAGGACTCATTTGTGTAATTGCTTCCAG
CGGCATGTTATGGATGGCTGATGTCCCACT
CCAATGGATCGCGTCGGCTATAGTCCTGGA
GTTTTTTATGATGGTGTTGCTCATACCAGAA
CCAGAAAAGCAGAGA 

1 1 

D3N
S4B 

Deng
ue3 

6821 to 7564 CAATGAAATGGGACTGTTGGAAACTACAAAG
AGAGATTTAGGAATGTCTAAAGAACCAGGTG
TTGTTTCTTCAACCAGCTATTTGGACGTGGA
CTTGCACCCAGCATCAGCCTGGACATTGTA
CGCCGTGGCCACAACAGTAATAACACCAAT
GTTGAGACACACCATAGAGAATTCCACAGC
AAATGTGTCCCTGGCAGCCATAGCTAACCA
GGCAGTGGTCCTGATGGGTTTAGACAAAGG
ATGGCCGATATCGAAAATGGACTTGGGCGT
ACCACTATTGGCACTGGGTTGCTATTCACAA
GTGAACCCACTAACTCTTGCAGCGGCAGTA
CTTTTGCTAGTCACACATTATGCAATTATAG
GTCCAGGATTGCAGGCAAAAGCCACTCGTG
AAGCTCAGAAAAGGACAGCTGCTGGAATAA
TGAAGAATCCAACGGTGGATGGAATAATGA
CAATAGACCTAGATCCTGTAATATATGATTC
AAAATTTGAAAAGCAACTAGGACAGGTTATG
CTCCTGGTTCTGTGTGCAGTTCAACTTTTGT
TAATGAGAACATCATGGGCCTTGTGTGAAGT
TCTAACCCTAGCCACAGGACCAATAACAACA
CTCTGGGAAGGATCACCTGGGAAGTTCTGG
AACACCACGATAGCTGTTTCCATGGCGAAC
ATCTTTAGAGGGAGCTATTTAGCAGGAGCT
GGGCTTGCTTTTTCTATCATGAAATCAGTTG
GAACAGGAAAGAGA 

0.99 0.99 
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7565 to 
10264 

GGAACAGGG TCACAAGGTG AAACCTTAGG 
AGAAAAGTGG AAAAAGAAAT TAAATCAGTT 
ATCCCGGAAA GAGTTTGACC TTTACAAGAA 
ATCCGGAATC ACCGAAGTGG 
ATAGAACAGA AGCCAAAGAA GGGTTAAAAA 
GAGGAGAAAT AACACACCAT GCCGTATCCA 
GAGGCAGCGC AAAACTTCAA 
TGGTTCGTGG AGAGAAACAT GGTCATTCCT 
GAAGGAAGAG TCATAGACTT 
AGGCTGTGGA AGAGGAGGCT 
GGTCATATTA CTGTGCAGGA CTGAAAAAAG 
TTACAGAAGT GCGAGGATAC 
ACAAAAGGCG GCCCAGGACA 
CGAAGAACCA GTACCTATGT CTACATACGG 
ATGGAACATA GTCAAGTTAA TGAGTGGAAA 
GGATGTTTTT TATCTGCCAC CTGAAAAGTG 
TGATACCCTA TTGTGTGACA TTGGAGAATC 
TTCACCAAGC CCAACAGTGG 
AAGAAAGCAG AACCATAAGA GTCTTGAAGA 
TGGTTGAACC ATGGCTAAAA AACAACCAGT 
TTTGCATTAA AGTATTGAAC CCATACATGC 
CAACTGTGAT TGAGCACTTA GAAAGACTAC 
AAAGGAAACA TGGAGGAATG 
CTTGTGAGAA ATCCACTCTC ACGAAACTCC 
ACGCACGAAA TGTATTGGAT 
ATCCAATGGTACAG GCAACATCGT 
CTCTTCAGTC AACATGGTAT CCAGATTGCT 
ACTGAACAGA TTCACAATGA CACACAGGAG 
ACCCACCATA GAGAAAGATG TGGATTTAGG 
AGCAGGAACC CGACATGTCA 
ATGCGGAACC AGAAACACCC 
AACATGGATG TCATTGGGGA AAGAATAAAA 
AGGATCAAAG AGGAGCATAG 
TTCAACATGG CACTATGATG ATGAAAATCC 
TTACAAAACG TGGGCTTACC ATGGATCCTA 
TGAAGTAAAA GCCACAGGCT 
CAGCCTCCTC CATGATAAAT GGAGTCGTGA 
AACTCCTCAC AAAACCATGG GATGTGGTGC 
CCATGGTGAC ACAGATGGCA 
ATGACAGATA CAACTCCATT TGGCCAGCAA 
AGAGTTTTTA AAGAGAAAGT GGACACCAGG 
ACACCTAGGC CCATGCCAGG 
AACAAGAAAG GTTATGGAGA 
TCACAGCGGA GTGGCTTTGG 
AGGACCCTGG GAAGGAACAA 
AAGACCCAGA TTATGCACAA 
GGGAGGAGTT CACAAAGAAG 
GTCAGAACCA ACGCAGCTAT 
GGGCGCTGTC TTCACAGAAG 
AGAACCAATG GGACAGTGCG 
AGAGCTGCTG TTGAGGACGA 
AGAATTTTGG AAACTTGTGG ACAGAGAACG 
TGAACTCCAC AAACTGGGCA 
AGTGTGGAAG CTGCGTTTAC AACATGATGG 
GCAAGAGAGA GAAAAAACTT 
GGAGAGTTTG GTAAAGCAAA 

0.99 0.99 
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AGGCAGTAGG GCTATATGGT ACATGTGGTT 
GGGAGCCAGG TACCTTGAGT 
TCGAGGCGCT CGGATTCCTC 
AATGAAGACC ACTGGTTCTC GCGTGAAAAC 
TCTTACAGTG GAGTAGAAGG 
AGAAGGACTG CACAAGCTGG GATACATCTT 
GAGAGATATT TCCAAGATAC 
CCGGAGGAGC CATGTATGCT 
GATGACACAG CCGGTTGGGA 
CACAAGAATA ACAGAAGATG ACCTGCACAA 
TGAGGAAAAA ATCACACAGC 
AGATGGACCC TGAACACAGG 
CAGCTAGCGA ACGCTATATT CAAGCTCACA 
TACCAAAACA AAGTAGTCAA AGTCCAACGA 
CCAACTCCAA AGGGCACGGT 
AATGGACATC ATATCTAGGA AAGACCAAAG 
AGGCAGTGGA CAGGTGGGAA 
CTTATGGTCT GAACACATTC ACCAACATGG 
AAGCCCAGCT AATCAGACAA 
ATGGAAGGAG AAGGCGTGTT 
GTCAAAGGCA GACCTCGAGA 
ACCCCCATCC GCTAGAGAAG AAAATTACAC 
AATGGTTGGA AACTAAAGGA 
GTGGAGAGGT TAAAAAGAAT 
GGCCATCAGC GGGGATGATT 
GCGTAGTGAA ACCAATCGAC 
GACAGATTCG CCAATGCCCT GCTTGCCC 
TGAACGATATGGGAAAGGTTAGGAAGGACA
TACCTCAATGGCAGCCATCAAAGGGATGGC
ATGATTGGCAACAGGTCCCTTTCTGCTCCCA
CCACTTTCATGAATTGATCATGAAAGATGGA
AGAAAGTTGGTAGTTCCCTGCAGACCCCAG
GACGAACTAATAGGAAGAGCGAGAATCTCT
CAAGGAGCAGGATGGAGCCTTAGAGAAACT
GCATGTCTAGGGAAAGCCTACGCTCAAATG
TGGACTCTCATGTATTTTCACAGAAGAGATC
TTAGACTAGCATCCAACGCCATATGTTCAGC
AGTACCAGTCCATTGGGTCCCCACGAGCAG
AACGACATGGTCTATTCATGCTCACCATCAG
TGGATGACTACAGAAGACATGCTTACTGTCT
GGAACAGGGTGTGGATAGAGGACAATCCAT
GGATGGAAGACAAAACTCCAGTCACAACAT
GGGAAGATGTTCCATATCTAGGGAAGAGAG
AAGACCAATGGTGCGGATCATTCATAGGTCT
CACTTCCAGAGCAACCTGGGCCCAGAACAT
ACTCACAGCAATCCAACAGGTGAGAAGCCT
CATAGGCAATGAAGAGTTTCTGGACTACATG
CCTTCGATGAAGAGATTCAGGAAGGAGGAG
GAGTCAGAGGGAGCCATTTGG 
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D4C
A 

Deng
ue4 

94 to 432 ATGAACCAAC GAAAAAAGGT GGTTAGACCA 
CCTTTCAATA TGCTGAAACG CGAGAGAAAC 
CGCGTATCAA CCCCTCAAGG 
GTTGGTGAAG AGATTCTCAA CCGGACTTTT 
TTCCGGGAAA GGACCCTTAC 
GGATGGTGCT AGCATTCATC ACGTTTTTGC 
GAGTCCTTTC CATCCCACCA 
ACAGCAGGGA TTCTGAAAAG 
ATGGGGACAG TTGAAGAAAA 
ACAAGGCCAT CAAAATACTG ACTGGATTCA 
GGAAGGAGAT AGGCCGCATG 
CTGAACATCT TGAATGGAAG AAAAAGGTCA 
ACAATGACAT TGCTGTGCTT GATTCCCACC 
GCAATGGCG 

1 1 

D4C
V 

Deng
ue4 

94 to 390 ATGAACCAAC GAAAAAAGGT GGTTAGACCA 
CCTTTCAATA TGCTGAAACG CGAGAGAAAC 
CGCGTATCAA CCCCTCAAGG 
GTTGGTGAAG AGATTCTCAA CCGGACTTTT 
TTCCGGGAAA GGACCCTTAC 
GGATGGTGCT AGCATTCATC ACGTTTTTGC 
GAGTCCTTTC CATCCCACCA 
ACAGCAGGGA TTCTGAAAAG 
ATGGGGACAG TTGAAGAAAA 
ACAAGGCCAT CAAAATACTG ACTGGATTCA 
GGAAGGAGAT AGGCCGCATG 
CTGAACATCT TGAATGGAAG AAAAAGG 

1 1 

D4Pr
M 

Deng
ue4 

433 to 930 TTTCACTTGT CAACAAGAGA TGGCGAACCC 
CTTATGATAG TGGCAAAACA 
CGAAAGGGGG AGACCTCTCT 
TGTTTAAGAC AACAGAGGGA ATCAACAAAT 
GCACTCTTAC TGCCATGGAC 
CTGGGTGAAA TGTGTGAGGA 
CACCGTCACG TATGAATGCC CTCTACTGGT 
CAATACCGAA CCTGAGGACA TTGATTGCTG 
GTGCAATCTC ACGTCTGCCT GGGTCATGTA 
TGGGACATGC ACTCAGAGTG 
GGGAACGGAG ACGGGAGAAG 
CGCTCAGTAG CCCTAACACC ACATTCAGGA 
ATGGGATTGG AGACAAGGGC 
TGAGACATGG ATGTCATCGG 
AAGGGGCTTG GAAACATGCT 
CAGAGGGTAG AGAGTTGGAT 
ACTCAGAAAC CCAGGATTCG CTCTCTTGGC 
AGGATTTATG GCCTATATGA TTGGGCAAAC 
AGGAATCCAG CGAACAGTCT TCTTTGTTCT 
AATGATGCTG GTCGCCCCAT CCTACGGA 

1 1 

D4M Deng
ue4 

706 to 930 TCAGTAGCCCTAACACCACATTCAGGAATG
GGATTGGAGACAAGGGCTGAGACATGGATG
TCATCGGAAGGGGCTTGGAAACATGCTCAG
AGGGTAGAGAGTTGGATACTCAGAAACCCA
GGATTCGCTCTCTTGGCAGGATTTATGGCCT
ATATGATTGGGCAAACAGGAATCCAGCGAA
CAGTCTTCTTTGTTCTAATGATGCTGGTCGC
CCCATCCTACGGA 

1 1 
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D4E Deng
ue4 

931 to 2415 ATGCGATGC GTGGGAGTGG GGAACAGAGA 
CTTTGTGGAA GGAGTCTCAG 
GTGGAGCATG GGTCGATTTG 
GTGCTAGAAC ATGGAGGATG 
TGTCACAACC ATGGCCCAGG 
GAAAACCAAC CTTGGATTTT GAACTGATCA 
AGACAACAGC CAAGGAAGTG 
GCTCTGTTAA GAACCTATTG CATTGAAGCC 
TCGATATCAA ACATAACCAC GGCAACAAGA 
TGTCCAACGC AAGGAGAACC TTATCTCAAA 
GAGGAACAAG ATCAACAGTA 
CATTTGCCGG AGAGATGTGG 
TAGACAGAGG GTGGGGCAAT 
GGCTGTGGCT TGTTTGGGAA 
AGGAGGAGTT GTGACATGTG CGAAGTTTTC 
ATGCTCGGGG AAGATAACAG 
GCAATTTGGT CCAAATTGAG AACCTTGAAT 
ACACAGTAGT TGTAACAGTC CACAATGGAG 
ACACCCATGC AGTAGGAAAT GACATACCCA 
ACCATGGAGT GACAGCCACG 
ATAACCCCCA GGTCACCATC GGTAGAAGTT 
AAATTACCGG ATTATGGAGA ATTAACACTC 
GATTGTGAAC CCAGGTCCGG AATTGATTTT 
AATGAGATGA TTCTGATGAA AATGAAAAAG 
AAAACGTGGC TTGTGCACAA GCAATGGTTT 
TTGGATCTAC CTCTACCATG 
GGCAGCAGGAGCAGACA CATCAGAAGT 
TCATTGGAAT TACAAAGAGA GAATGGTGAC 
ATTCAAGGTT CCTCATGCCA AGAGACAGGA 
TGTGACAGTG CTAGGATCTC 
AGGAAGGAGC CATGCATTCT 
GCCCTCACCG 
GAGCTACAGAAGTGGATTCCGGTGATGGAA
ACCACATGTTTGCAGGACATCTGAAATGCAA
AGTTCGCATGGAGAAATTGAGAATTAAGGG
AATGTCATACACGATGTGCTCAGGAAAGTTC
TCAATTGACAAAGAGATGGCAGAAACACAG
CATGGGACAACAGTGGTAAAAGTCAAGTAT
GAGGGTGCTGGAGCTCCATGTAAAGTTCCC
ATAGAGATAAGAGATGTGAACAAGGAAAAA
GTGGTAGGGCGCATCATCTCATCTACCCCT
TTTGCTGAGTATACCAACAGTGTAACCAACA
TAGAATTAGAACCCCCCTTTGGGGACAGCT
ACATAGTAATAGGTGTTGGAGACAGTGCATT
AACACTCCATTGGTTCAGGAAAGGGAGTTC
CATTGGCAAGATGCTTGAGTCCACATACAGA
GGCGCAAAGCGAATGGCCATTCTAGGTGAA
ACAGCCTGGGATTTTGGTTCTGTTGGTGGA
CTGTTCACATCATTGGGAAAGGCTGTACACC
AGGTTTTTGGTAGTGTGTATACAACTATGTT
TGGAGGAGTCTCATGGATGGTTAGAATCCT
AATTGGGTTCTTAGTGTTGTGGATTGGCACG
AATTCGAGAAACACCTCAATGGCAATGACGT
GCATAGCTGTTGGAGGAATCACTCTGTTTCT
GGGTTTCACAGTTCACGCA 

0.99 0.99 
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1813 to 2112 AAGGGAATGTCATACACGATGTGCTCAGGA
AAGTTCTCAATTGACAAAGAGATGGCAGAAA
CACAGCATGGGACAACAGTGGTAAAAGTCA
AGTATGAGGGTGCTGGAGCTCCATGTAAAG
TTCCCATAGAGATAAGAGATGTGAACAAGGA
AAAAGTGGTAGGGCGCATCATCTCATCTAC
CCCTTTTGCTGAGTATACCAACAGTGTAACC
AACATAGAATTAGAACCCCCCTTTGGGGACA
GCTACATAGTAATAGGTGTTGGAGACAGTG
CATTAACACTCCATTGGTTCAGGAAA 

1 1 

D4N
S1 

Deng
ue4 

2416 to 3471 GACACGGGTTGTGCGGTGTCATGGAGTGG
GAAAGAATTGAAATGTGGAAGCGGAATCTTT
GTAATTGACAACGTGCACACTTGGACAGAA
CAGTACAAATTTCAACCAGAGTCTCCAGCGA
GACTAGCGTCCGCAATATTGAATGCCCACA
AAGATGGGGTCTGTGGAATTAGATCAACCA
CGAGGCTGGAAAACATCATGTGGAAGCAAA
TAACCAACGAGTTGAACTATGTTCTCTGGGA
AGGAGGACATGACCTCACTGTAGTGGCTGG
GGATGTGAAAGGGGTGCTGTCCAAAGGCAA
GAGAGCACTCGCACCCCCAGTGAATGATCT
GAAATATTCATGGAAGACATGGGGAAAAGC
AAAGATCTTTACTCCAGAAGCAAAAAATAGC
ACATTTCTAATAGACGGACCAGACACCTCCG
AATGCCCCAATGAACGAAGAGCATGGAATTT
TCTTGAGGTAGAAGACTATGGATTTGGCATG
TTTACGACCAACATATGGATGAAATTTCGAG
AAGGAAGTTCAGAAGTGTGTGACCACAGGT
TGATGTCGGCGGCAATCAAAGACCAGAAAG
CTGTGCATGCTGACATGGGCTATTGGATAG
AGAGCTCAAAAAACCAGACCTGGCAGATAG
AGAAAGCATCTCTCATTGAAGTGAAAACATG
TCTGTGGCCCAAGACCCACACATTGTGGAG
CAATGGAGTGCTAGAGAGCCAGATGCTCAT
CCCAAAAGCATATGCAGGCCCTTTTTCACAG
CACAATTACCGCCAGGGCTATGCCACGCAG
ACCGTGGGCCCATGGCACTTGGGCAAATTG
GAGATAGACTTTGGAGAATGCCCCGGAACA
ACAGTCACTATTCAAGAGGATTGTGACCATA
GAGGCCCATCTTTGAGGACCACTACTGCAT
CTGGAAAATTGGTCACGCAGTGGTGCTGCC
GCTCCTGCACGATGCCTCCCTTAAGGTTTTT
GGGAGAGGATGGATGCTGGTATGGGATGG
AAATTAGGCCCTTGAGTGAAAAAGAAGAGAA
CATGGTCAAATCACAGGTATCGGCC 

1 1 
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D4N
S2A 
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ue4 

3472 to 4125 GGACAGGGTACATCAGAAACTTTTTCTATGG
GGCTGTTATGCCTGACTTTGTTTGTGGAAGA
ATGCTTGAGGAGAAGAGTCACCAGGAAACA
CATGATATTGGTTGTGGTGACCACCCTTTGT
GCCATCATCCTAGGAGGTCTCACATGGATG
GACTTACTACGAGCTCTTATCATGTTAGGGG
ACACCATGTCTGGTAGAATGGGAGGACAGA
TTCACTTAGCCATCATGGCAGTGTTCAAGAT
GTCACCAGGATACGTGCTGGGTATATTTTTA
AGGAAACTCACTTCAAGAGAGACAGCACTA
ATGGTGATAGGAATGGCCATGACAACGGTG
CTTTCAATTCCACATGACCTTATGGAATTCAT
TGATGGAATATCACTGGGGTTAATCTTATTA
AAAATGGTAACACATTTTGACAACACTCAAG
TGGGAACCTTAGCTCTTTCCTTGACTTTCAT
AAGATCAACAATGCCATTGGTCATGGCTTGG
AGGACCATAATGGCTGTGTTGTTTGTGGTCA
CACTCATTCCTTTATGCAGGACAAGCTGTCT
TCAAAAGCAGTCACATTGGGTAGAAATAACA
GCACTCATCCTGGGAGCCCAGGCTCTGCCA
GTGTACCTAATGACTCTCATGAAAGGAGCTT
CAAAGAGA 

1 1 

D4N
S2B 

Deng
ue4 

4126 to 4515 TCTTGGCCCC TTAACGAGGG TATAATGGCT 
GTGGGTTTGG TCAGTCTCTT 
GGGAAGCGCC CTCCTAAAGA 
ATGATGTCCC TTTAGCTGGC CCAATGGTGG 
CAGGAGGCTT ACTTCTGGCA 
GCCTATGTGA TGAGTGGTAG 
CTCAGCAGAC CTGTCACTAG 
AGAAGGCCGC CAATGTGCAG 
TGGGATGAGA TGGCAGACAT 
AACAGGCTCA AGCCCAATCA TAGAAGTGAA 
GCAGGATGAA GATGGCTCTT TCTCCATACG 
GGACATCGAG GAAACCAATA TGATAACCCT 
CTTAGTGAAA CTGGCACTGA TAACAGTGTC 
AGGTCTCTAC CCCTTGGCAA TTCCAGTCAC 
AATGACCCTA TGGTACATGT GGCAAGTGAA 
AACACAAAGA 

1 1 
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4516 to 6369 CCGGCGTCCTATGGGACGTACCCAGCCCCC
CAGAGACACAGAAAGCGGAACTGGAAGAAG
GGGTCTATAGGATCAAACAGCAAGGAATTTT
TGGGAAAACCCAAGTGGGGGTTGGAGTACA
GAAAGAAGGAGTTTTCCACACCATGTGGCA
CGTCACAAGAGGGGCAGTGTTGACACACAA
TGGGAAAAGACTGGAACCAAACTGGGCTAG
CGTGAAAAAAGATCTGATCTCATACGGAGG
AGGATGGAGATTGAGTGCACAATGGCAAAA
GGGGGAGGAGGTGCAGGTTATTGCCGTAG
AGCCTGGGAAGAACCCAAAGAACTTTCAAA
CCATGCCAGGCATTTTTCAGACAACAACAG
GGGAAATAGGAGCAATTGCACTGGATTTCA
AGCCTGGAACTTCAGGATCTCCCATCATAAA
CAGAGAGGGAAAGGTAGTGGGACTGTATGG
CAATGGAGTGGTTACAAAGAATGGAGGCTA
TGTYAGTGGAATAGCGCAAACAAATGCAGA
ACCAGATGGACCGACACCAGAGTTGGAAGA
AGAGATGTTCAAAAAGCGAAATCTAACCATA
ATGGATCTTCATCCTGGGTCAGGAAAGACG
CGGAAATATCTTCCAGCTATTGTTAGAGAGG
CAATCAAGAGACGCTTAAGGACTCTAATTTT
GGCACCAACAAGGGTAGTTGCAGCTGAGAT
GGAAGAAGCATTGAAAGGGCTCCCAATAAG
GTATCAAACAACTGCAACAAAATCTGAACAC
ACAGGAAGAGAGATTGTTGATCTAATGTGTC
ACGCAACGTTCACAATGCGCTTGCTGTCAC
CAGTCAGGGTTCCAAACTACAACTTGATAAT
AATGGATGAGGCTCATTTCACAGACCCAGC
CAGTATAGCGGCTAGAGGGTACATATCAAC
TCGTGTAGGAATGGGAGAGGCAGCCGCAAT
TTTCATGACAGCAACACCCCCTGGAACAGC
TGATGCCTTTCCTCAGAGCAACGCTCCAATT
CAAGATGAAGAGAGAGACATACCGGAACGC
TCATGGAATTCAGGCAATGAATGGATTACTG
ACTTTGTTGGGAAGACAGTGTGGTTTGTCCC
TAGCATCAAAGCCGGAAATGACATAGCAAA
CTGCTTGCGGAAAAATGGAAAAAAGGTCATT
CAACTCAGCAGGAAGACCTTTGACACAGAA
TATCAAAAGACCAAACTGAATGATTGGGACT
TTGTGGTGACAACAGACATTTCAGAAATGGG
AGCCAATTTCAAAGCAGATAGAGTGATCGAC
CCAAGAAGATGTCTCAAGCCGGTGATTTTGA
CAAATGGACCCGAGCGGGTGATCCTGGCTG
GACCAATGCCAGTCACCGTAGCGAGCGCTG
CGCAAAGGAGAGGGAGAGTTGGCAGGAAC
CCACAAAAAGAAAATGACCAGTACATATTCA
TGGGCCAGCCTCTCAACAATGATGAAGACC
ATGCTCACTGGACAGAAGCAAAAATGCTGC
TGGACAACATCAACACACCAGAAGGGATTAT
ACCAGCTCTCTTTGAACCAGAAAGGGAGAA
GTCAGCCGCCATAGACGGCGAATACCGCCT
GAAGGGTGAGTCCAGGAAGACTTTCGTGGA
ACTCATGAGGAGGGGTGACCTCCCAGTTTG
GCTAGCCCATAAAGTAGCATCAGAAGGGAT
CAAATATACAGATAGAAAATGGTGCTTTGAT

0.99 1 
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GGAGAACGTAATAATCAAATTTTAGAGGAGA
ATATGGATGTGGAAATCTGGACAAAGGAAG
GAGAAAAGAAAAAACTGAGACCTAGGTGGC
TTGATGCCCGCACTTATTCAGATCCTTTAGC
ACTCAAGGAATTCAAGGATTTTGCAGCTGGC
AGAAAG 
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D4N
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4993 to 6369 GATTACGTCA GTGCTATAAC GCAAGCCGAA 
AGAACTGGTG AGCCAGATTA TGAAGTGGAT 
GATGACATTT TTCGAAAGAA AAGATTAACT 
ATAATGGACT TGCACCCCGG 
AGCCGGAAAG ACAAAAAGAA TTCTCCCATC 
AATAGTCAGA GAAGCCTTAA AAAGGAGGCT 
GCGAACCTTG ATTTTGGCTC CCACGAGAGT 
GGTGGCGGCC GAGATGGAAG 
AGGCCCTACG TGGACTGCCA 
ATCCGTTATC AGACCCCAGC TGTGAAATCA 
GAACACACAG GAAGAGAGAT 
CGTAGACCTC ATGTGTCATG CAACCTTCAC 
AACAAGACTT TTATCATCAA CCAGGGTTCC 
AAATTACAAC CTCATAGTGA TGGATGAAGC 
ACATTTCACA GACCCTTCTA GTGTCGCGGC 
TAGAGGATAC ATCTCAACCA GGGTGGAAAT 
GGGAGAGGCA GCAGCCATCT 
TTATGACTGC AACCCCTCCT 
GGAGCGACAG ATCCCTTCCC 
CCAGAGCAAC AGCCCAATAG 
AAGACATCGA GAGAGAAATT CCAGAAAGGT 
CATGGAACAC AGGGTTCGAC 
TGGATAACCG ACTACCAAGG 
GAAAACTGTG TGGTTTGTTC CCAGCATAAA 
AGCTGGAAAT GACATTGCAA ATTGCTTGAG 
AAAGTCGGGA AAGAAGGTGA 
TCCAATTGAG TAGAAAAACC TTTGACACAG 
AGTATCCAAA AACGAAACTT ACGGACTGGG 
ATTTTGTGGT TACCACAGAC ATATCAGAAA 
TGGGGGCCAA TTTTAGAGCT 
GGGAGAGTGA TAGACCCCAG 
GAGATGCCTC AAGCCAGTTA TCTCAACTGA 
CGGGCCAGAG AGAGTTATTT 
TGGCAGGTCC CATTCCAGTG 
ACTCCAGCAA GCGCTGCTCA 
GAGAAGAGGG CGAATAGGTA 
GGAACCCAGC ACAAGAAGAT 
GACCAATATG TCTTCTCCGG AGACCCACTA 
AAAAATGATG AAGATCATGC CCACTGGACA 
GAAGCAAAGA TGCTGCTTGA TAATATCTAC 
ACCCCGGAAG GGATCATTCC AACATTGTTT 
GGTCCGGAAA GAGAAAAAAA TCAAGCCATT 
GATGGAGAGT TCCGCCTCAG 
AGGGGAACAA AGGAAGACTT TTGTAGAATT 
AATGAGGAGA GGAGACCTTC 
CGGTGTGGCT GAGCTACAAG 
GTAGCTTCTG CTGGTATCTC TTACAAAGAC 
CGGGAATGGT GCTTCACAGG 
GGAAAGGAAT AACCAAATTC TAGAAGAAAA 
CATGGAGGTT GAAATTTGGA 
CTAGAGAGGG AGAGAAGAAA 
AAACTCAGGC CAAAATGGTT AGATGCACGT 
GTTTACGCTG ACCCCATGGC TTTGAAGGAT 
TTCAAGGAGT TTGCCAGTGG AAGAAAG 

0.99 1 
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6370 to 6819 AGCATAACCCTCGACATCCTAACAGAGATTG
CCAGTTTGCCAACTTACCTTTCCTCTAGGGC
TAAGCTCGCCCTTGACAACATAGTCATGCTC
CACACAACAGAAAGAGGAGGGAAGGCCTAC
CAACATGCCCTGAACGAACTCCCGGAGTCA
CTAGAAACACTCATGCTTGTAGCTTTACTGG
GTGCTATGACAGCAGGCATCTTCTTGTTTTT
CATGCAAGGAAAAGGAATAGGGAAACTGTC
AATGGGTTTGATAGCCATTGCGGTAGCTAGT
GGCTTGCTCTGGGTAGCAGAAATCCAGCCC
CAGTGGATAGCGGCCTCAATCATACTAGAG
TTCTTTCTCATGGTGTTGTTGATACCAGAAC
CAGAAAAACAAAGGACCCCACAAGACAATC
AATTGATCTACGTCATATTGACCATTCTCAC
CATTATTGGTCTCATAGCAGCC 

1 1 

D4N
S4B 

Deng
ue4 

6820 to 7554 AACGAGATGG GGCTGATTGA AAAAACAAAA 
ACGGATTTTG GGTTTTACCA GGTAAAAACA 
GTAACCACCA TCCTCGATGT GGATTTGAGA 
CCAGCCTCAG CATGGACGCT 
CTATGCAGTA GCCACCACTA TTCTGACTCC 
CATGCTGAGA CACACCATAG AAAACACGTC 
TGCAAACCTA TCTCTAGCGG CCATTGCTAA 
CCAAGCAGCT GTCCTAATGG 
GGCTTGGAAA AGGATGGCCG 
CTCCACAGAA TGGACCTCGG 
TGTGCCGCTG TTGGCAATGG GATGCTATTC 
TCAAGTGAAC CCAACGACCT TGACAGCATC 
CTTAGTCATG CTTTTAGTCC ATTACGCAAT 
AATAGGTCCA GGACTGCAGG 
CAAAAGCCAC AAGAGAGGCT 
CAGAAAAGGA CAGCAGCTGG 
GATCATGAAG AACCCCACTG 
TGGACGGGAT AACAGTAATA GATCTAGAAC 
CAATATCCTA TGACCCAAAA TTTGAAAAGC 
AATTAGGGCA AGTCATGCTA CTAGTCTTGT 
GTGCTGGACA GCTACTCTTG ATGAGAACAA 
CATGGGCTTT CTGTGAAGTC TTGACTTTGG 
CCACAGGACC AGTCTTGACC 
CTGTGGGAGG GCAACCCGGG 
AAGGTTTTGG AACACGACTA TAGCCGTGTC 
CACTGCCAAT ATTTTCAGGG GAAGCTACTT 
GGCGGGAGCT GGACTGGCCT 
TTTCGCTCAT AAAGAATGCA CAAACCCCCA 
GGAGG 

0.99 0.99 
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7555 to 
10254 

GGAACTGG GACCACAGGA GAGACACTGG 
GAGAGAAGTG GAAGAGACAG 
CTAAACTCAC TAGATAGGAA GGAGTTTGAA 
GAGTACAAAA GAAGTGGAAT ACTAGAAGTG 
GACAGGACTG AAGCCAAGTC 
TGCCTTGAAA GATGGATCTA AAATCAAGCA 
TGCAGTGTCC AGAGGGTCCA 
GCAAGATTAG ATGGATTGTT GAAAGAGGGA 
TGGTAAAACC AAAAGGGAAA GTTGTGGATC 
TTGGTTGCGG GAGAGGAGGA 
TGGTCGTACT ACATGGCGAC ACTCAAGAAC 
GTGACCGAGG TGAAAGGGTA 
CACAAAAGGA GGTCCAGGAC 
ATGAAGAACC GATTCCCATG GCTACCTATG 
GCTGGAACTT GGTCAAACTC 
CATTCAGGGG TTGACGTGTT CTACAAACCC 
ACTGAGCAAG TGGATACCCT GCTCTGTGAT 
ATTGGGGAGT CATCTTCTAA TCCGACGATA 
GAGGAAGGAA GAACATTAAG AGTTTTGAAG 
ATGGTGGAAC CATGGCTCTC TTCAAAACCT 
GAATTCTGCA TCAAAGTCCT TAATCCCTAC 
ATGCCAACAG TCATAGAAGA 
GCTGGAGAAA CTGCAGAGAA 
AACATGGTGG AAGTCTTGTC 
AGATGCCCGC TATCTAGGAA TTCCACTCAC 
GAGATGTATT GGGTGTCAGG 
TGTGTCGGGA AACATCGTGA GCTCTGTAAA 
CACAACATCA AAGATGTTGT TGAACAGATT 
TACCAC AAGGCATAGA AAACCCACTT 
ATGAGAAGGA CGTAGACCTT 
GGAGCAGGAA CGAGAAGTGT 
CTCCACTGAA ACAGAAAAAC CGGACATGAC 
AATCATTGGG AGAAGGCTTC 
AGCGACTGCA AGAAGAGCAC 
AAAGAAACTT GGCACTATGA TCAGGAAAAC 
CCATACAGAA CCTGGGCGTA 
TCATGGAAGC TATGAAGCTC CTTCGACAGG 
CTCAGCATCC TCCATGGTGA 
ACGGGGTAGT AAAATTGCTG ACAAAACCCT 
GGGACGTGAT TCCAATGGTG 
ACCCAGTTGG CTATGACAGA CACAACCCCT 
TTTGGGCAAC AGAGAGTGTT TAAAGAGAAG 
GTGGACACCA GAACACCACA 
ACCAAAACCC GGCACACGAA 
TGGTTATGAC CACGACAGCC 
AACTGGCTGT GGGCTCTCCT 
CGGGAAGAAG AAAAATCCCA 
GACTGTGCAC AAGGGAAGAG TTCATCTCAA 
AAGTTAGGTC AAACGCAGCC 
ATAGGCGCAG TCTTTCAGGA 
AGAACAGGGA TGGACATCAG 
CCAGTGAAGC TGTGAATGAC AGCCGATTTT 
GGGAACTGGT TGACAAAGAA 
AGGGCTCTGC ACCAGGAAGG 
GAAATGTGAA TCGTGTGTCT ACAACATGAT 
GGGAAAACGT GAGAAAAAGT 

1 1 
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TAGGAGAGTT TGGTAGAGCC 
AAGGGAAGCC GAGCAATCTG 
GTACATGTGG CTGGGAGCGC 
GGTTTCTGGA ATTTGAAGCC CTGGGTTTTT 
TGAATGAAGA TCACTGGTTT GGCAGAGAAA 
ACTCATGGAG TGGAGTGGAA 
GGGGAAGGTC TGCATAGATT 
GGGATATATC CTGGAGGACA 
TAGACAAGAA GGATGGAGAC CTGATATATG 
CTGATGACAC AGCTGGTTGG 
GACACAAGAA TCACTGAAGA TGACCTTCTA 
AATGAAGAAC TGATCACGGA 
ACAGATGGCC CCTCACCATA AGATCCTAGC 
CAAAGCCATT TTCAAACTAA CTTATCAAAA 
CAAAGTGGTG AAAGTCCTCA 
GACCCACACC GAAAGGAGCG 
GTGATGGATA TCATATCCAG GAAAGACCAA 
AGAGGTAGTG GACAGGTTGG 
AACATATGGT TTGAACACAT TCACCAACAT 
GGAAGTACAA CTCATCCGCC 
AAATGGAAGC TGAAGGAGTC 
ATCACACAAG ATGACATGCA TAACCCAAAA 
GGGTTGAAAG AAAGAGTTGA 
GAAATGGCTG AAAGAGTGTG 
GTGTCGACAG GTTAAAGAGG 
ATGGCAATCA GTGGAGACGA 
TTGTGTGGTG AAGCCTCTGG 
ATGAGAGGTT CAGCACTTCC 
CTCCTCTTCTTGAACGACATGGGAAAGGTG
AGGAAAGACATTCCGCAGTGGGAACCATCT
AAGGGATGGAAAAACTGGCAAGAGGTTCCT
TTTTGCTCCCACCACTTTCACAAGATCTTCA
TGAAGGATGGCCGCTCACTAGTTGTTCCAT
GTAGAAACCAGGATGAACTGATAGGGAGAG
CCAGAATCTCGCAAGGGGCTGGATGGAGTT
TAAGAGAAACAGCCTGCCTGGGCAAAGCTT
ACGCCCAGATGTGGTCGCTCATGTACTTTCA
TAGAAGGGACCTGCGTTTAGCCTCCATGGC
GATATGCTCAGCAGTTCCAACAGAATGGTTT
CCAACAAGCAGAACAACATGGTCAATCCAC
GCCCATCATCAGTGGATGACCACTGAAGAT
ATGCTCAAAGTGTGGAACAGAGTGTGGATA
GAAGACAACCCTAATATGACTGACAAGACTC
CAGTTCATTCGTGGGAAGACATACCTTACCT
AGGAAAAAGAGAAGATTTGTGGTGTGGATC
CTTGATTGGACTTTCTTCCAGGGCCACCTG
GGCGAAGAACATTCACACAGCCATAACCCA
GGTCAGGAACCTGATCGGGAAAGAGGAGTA
TGTGGATTACATGCCAGTCATGAAAAGATAC
AGCGCTCCTTTCGAGAGTGAAGGAGTTCTG 
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APPENDIX E. PYTHON SCRIPT OF ‘blast_all.py’ 

#!/usr/bin/env python 

 

# Biopython is required for running this program 

# Import modules 

 

import os 

import re 

from datetime import date 

from Bio.Blast import NCBIStandalone 

from Bio.Blast import NCBIXML 

 

#-------------------------------------------------------------------------

----- 

# Define the locations of databases, files and the blast program. 

 

# 'blastall' is a generic BLAST algorithm in NCBI standalone BLAST. 

blastall = "/Applications/blast/blast-2.2.17/bin/blastall"  

 

# The default folder for adding *.seq files. 

ori_folder = "/Users/hzhang/raw_sequences/" 

 

# ref_seq were downloaded from NCBI on 9/1/09. 

refseq_rna= "/Applications/blast/blastdbs/refseq_rna" 

refseq_pro= "/Applications/blast/blastdbs/refseq_protein" 

 

# A. aegypti transcripts and peptides databases were downlod from 

VectorBase.orgon 9/1/09. 
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ae_rna = "/Applications/blast/blastdbs/AeAe_transcript" 

ae_pro = "/Applications/blast/blastdbs/AeAe_peptide" 

 

# Vector sequences were taken from Jinkai's program. 

vector_seq = "/Applications/blast/blastdbs/Yeast_Vector.seq" 

BD_vector_seq="/Applications/blast/blastdbs/BD_vector.seq" 

 

# *.seq files that do not passed the pattern test will not be BLASTed and 

will be listed in this file. 

fail_file = "/Users/hzhang/" + str(date.today()) + "_fail_sequences.txt" 

out_fail_file = open(fail_file, 'w') 

#-------------------------------------------------------------------------

------ 

 

# Ask for the location of *.seq files.  

def menu_input(): 

 global ori_folder 

 print 'Batch BLAST program is about to start' 

 print 'Where are your *.seq files? If they are in the 

\"raw_sequence\" folder,' 

 choice = raw_input('press ENTER. Otherwise, enter a path to your 

folder.\n:') 

 if len(choice) == 0: 

  return ori_folder 

 else: 

  return choice 

#-------------------------------------------------------------------------

------ 
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# Ask for the file in which the result will be listed. 

def menu_output(): 

 print 'Where will your result file be?' 

 print 'If you want to have a file at the default destination, press 

ENTER.' 

 choice = raw_input('Otherwise enter a path and a file name for your 

result.\n:') 

 if len(choice) == 0: 

  return "/Users/hzhang/" + str(date.today()) + 

"_blast_result.txt" 

 else: 

  return choice 

#-------------------------------------------------------------------------

------ 

 

# Created a list of files that will be BLASTed. 

def list_check(folder): 

 global fail_file 

 global out_fail_file 

 file_list = os.listdir(folder) 

 seq_list = [] 

 for seq_file in file_list: 

  #The file must end with .seq 

  m = re.search('\.seq', seq_file) 

  if m : 

   seq = folder + seq_file  

   in_file = open(seq, 'r') 
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   my_seq = in_file.read() 

   #The file must contain a sequences that have at least 3 

As/Ts/Cs/Gs or any combination of 3 bases listed consecutively. 

   n = re.search('[ATCG]{3}', my_seq) 

   if n: 

    seq_list.append(seq_file) 

   else: 

   # The file failing the pattern test won't be BLASTed, but 

will be listed here.   

    out_fail_file.write(seq_file + "\n") 

   in_file.close() 

 return seq_list 

#_________________________________________________________________________

_____ 

 

# Get the best hit from BLASTing a sequence against human database. 

def best_hit_homo(blast_record, seq_file): 

        global global_e_score 

 global out_fail_file 

 e_score = global_e_score 

        try: 

                sequence = "gi|na| Not matched with Homo sapiens\tna" 

                for alignment in blast_record.alignments: 

                        for hsp in alignment.hsps: 

                                m = re.search("Homo", alignment.title) 

                                if hsp.expect < e_score and m: 

                                        e_score = hsp.expect 
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     #This condition is to eliminate bugs in 

Bio.Blast modules that concats name of entries into one line. 

     a = re.search('.+?(?=>gi)', alignment.title) 

     if a: 

      alignment.title = a.group() 

                                        sequence = alignment.title +"\t"+ 

str(e_score) 

                return sequence 

 # To avoid an error from seq that passed the pattern test but failed 

BLAST 

 except: 

  out_fail_file.write(seq_file + "\n") 

  return "gi|na| BLAST failed\tna" 

#-------------------------------------------------------------------------

----- 

 

# Get the best hit from BLASTing a sequence against mosquito database. 

def best_hit_Ae(blast_record, seq_file): 

        global global_e_score 

 e_score = global_e_score 

       global out_fail_file 

 try: 

                sequence = "AAEL0-na Not matched with Aedes aegypti\tn/a" 

                for alignment in blast_record.alignments: 

                        for hsp in alignment.hsps: 

                                if hsp.expect < e_score: 

                                        e_score = hsp.expect 
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                                        sequence = alignment.title +"\t"+ 

str(e_score) 

         return sequence 

 # To avoid an error from seq that passed the pattern test but failed 

BLAST 

 except: 

  out_fail_file.write(seq_file + "\n") 

  return "AAEL0-na BLAST failed\tn/a" 

#-------------------------------------------------------------------------

----- 

#BLAST nucleotide against nucleotide database. 

 

def blast_n(seq_file, database): 

 global blastall 

        global global_e_score 

 global out_fail_file 

 result_handle, error_handle = NCBIStandalone.blastall(blastall, 

"blastn", database, seq_file, expectation = global_e_score)               

 try: 

  blast_record = NCBIXML.read(result_handle) 

 # To avoid an error from seq that passed the pattern test but failed 

BLAST 

 except: 

  out_fail_file.write(seq_file + "\n") 

  blast_record = '' 

 return blast_record 

#-------------------------------------------------------------------------

---- 
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#BLAST nucleotide against protein database. 

def blast_p(seq_file, database): 

 global blastall 

        global global_e_score 

 global out_fail_file 

 result_handle, error_handle = NCBIStandalone.blastall(blastall, 

"blastx", database, seq_file, expectation = global_e_score)               

 try: 

  blast_record = NCBIXML.read(result_handle)         

 # To avoid an error from seq that passed the pattern test but failed 

BLAST 

 except: 

  out_fail_file.write(seq_file + "\n") 

  blast_record = '' 

 return blast_record  

#-------------------------------------------------------------------------

----- 

#Format the result from BLAST (human database) 

def entry_homo(string): 

 m = re.search('(?<=gi\|)\w+', string) 

 gi_number = m.group() 

 n = re.search('(?<=\|\s).+(?=\t)', string) 

 gene_name = n.group() 

 p = re.search('(?<=\t).+', string) 

 e_score = p.group() 

 entry = "gi" + gi_number + "\t" + gene_name + "\t" + e_score 

 return entry 
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#-------------------------------------------------------------------------

----- 

 

#Format the result from BLAST (Ae database) 

def entry_Ae(string): 

 m = re.search('AAEL\d+-\w\w', string) 

 Ae_number = m.group() 

 n = re.search('(?<=-\w\w\s).+(?=\t)', string) 

 gene_name = n.group() 

 p = re.search('(?<=\t).+', string) 

        e_score = p.group() 

        entry = Ae_number + "\t" + gene_name + "\t" + e_score         

 return entry 

#-------------------------------------------------------------------------

----- 

 

#Translated from Jinkai's vectorcheck subroutine in 

SeqValidationbyfolder2.pl 

 

def vector_chk(seq_file, vector_seq, AD_or_BD): 

 temp_out = "/tmp/alignment.tmp" 

 os.system('/Applications/blast/blast-2.2.17/bin/bl2seq -p blastn -i 

%s -j %s -o %s -F F -e 0.001' % (seq_file, vector_seq, temp_out)) 

 my_file = open(temp_out, 'r') 

 my_text = my_file.read() 

 m = re.search("No hits found", my_text) 

 if m: 

  check = "No " + AD_or_BD + " vector sequence detected" 
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 else: 

  p = re.search('(?<=Identities).+\/\d+', my_text) 

  f = re.search('\d+(?=\/)', p.group()) 

  b = re.search('(?<=\/)\d+', p.group()) 

  if int(f.group()) > 30 and int(b.group()) > 30: 

   q = re.search('(?<=Query\:\s)\d+', my_text) 

   pos_in_seq = q.group() 

   check = AD_or_BD + " vector found! Begin at " + 

pos_in_seq 

  else: 

   check = "No " + AD_or_BD +" vector sequence detected" 

 my_file.close() 

 return check 

#-------------------------------------------------------------------------

------ 

 

#Main program 

 

#Locate input files 

in_folder = menu_input() 

 

#Locate output files 

out_file = open(menu_output(), 'w') 

 

#Enter the header of the result file 

header = 

"seq_file\tgi_homo_blastn\tname_homo_blastn\te_homo_blastn\tgi_homo_blastp
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\tname_homo_blastp\te_homo_blastp\tae_ae_blastn\tname_ae_blastn\te_ae_blas

tn\tae_ae_blastp\tname_ae_blastp\te_ae_blastp\tBD_chk\tAD_chk\n" 

out_file.write(header) 

 

#Ask for a cut off. 

e_choice = raw_input('Please enter e-score cut off. 1 = No stringency 

(defualt if no number is entered). 0 = Highest stringency.\n:') 

 

if len(e_choice) == 0: 

 global_e_score = 1 

else: 

 global_e_score = float(e_choice)  

 

#Get the list of files for BLAST 

seq_list = list_check(in_folder) 

 

#Prepare a countdown. 

number_all = len(seq_list) 

number_down = number_all 

 

print str(number_down) + " of " + str(number_all) + " left." 

 

# Process one sequence at a time. 

for file in seq_list: 

 my_seq = ori_folder + file 

 

#Run BLAST 

 homo_blastn = blast_n(my_seq,refseq_rna)  
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 homo_blastp = blast_p(my_seq,refseq_pro) 

  

 ae_blastn = blast_n(my_seq,ae_rna) 

  

 ae_blastp = blast_p(my_seq,ae_pro) 

 

 BD_chk = vector_chk(my_seq, BD_vector_seq,"BD") 

 

 AD_chk = vector_chk(my_seq, vector_seq, "AD") 

  

#Get the best hit 

 homo_best_rna = best_hit_homo(homo_blastn, file) 

 homo_best_pro = best_hit_homo(homo_blastp, file) 

 ae_best_rna = best_hit_Ae(ae_blastn, file) 

 ae_best_pro = best_hit_Ae(ae_blastp, file) 

 

#Print entries.  

 entry = file + "\t" + entry_homo(homo_best_rna) + "\t" + 

entry_homo(homo_best_pro) + "\t" + entry_Ae(ae_best_rna)  + "\t" + 

entry_Ae(ae_best_pro) + "\t" + BD_chk + "\t" + AD_chk +"\n" 

 out_file.write(entry) 

 number_down = number_down - 1 

 print str(number_down) + " of " + str(number_all) + " left." 

 

out_fail_file.close() 

out_file.close() 
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APPENDIX F. PYTHON SCRIPT OF ‘AedesGO_for_bingo.py’ 

#!/usrs/bin/env python 

 

import re 

import string 

 

# Open and read AedesGO.txt file. 

# AedesGO.txt was generated by using excel's 'Data' -> 'Text to 

Columns...' command to open 31436.A_aegypti.goa file. Then gene_ID column 

and GO_ID column were selected and saved as AedesGo.txt  

in_file = r"/Users/dmairiang/Desktop/Python_script/InterPro/AedesGO.txt" 

input = open(in_file, 'r') 

 

intxt = input.readlines() 

input.close() 

 

# Write data in AedesGO_for_bingo.txt 

out_file = 

r"/Users/dmairiang/Desktop/Python_script/InterPro/AedesGO_for_bingo.txt" 

output = open(out_file, 'w') 

 

# Add header required by BINGO to identify readable GOA file. 

 

header = "(species=Aedes aegypti)(type=Biological Process)(curator=GO)\n" 

output.write(header) 

 

# Parsing a line readable by BINGO 

# Each line is in a form of: 
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# Gene_ID = GO_ID 

 

for member in intxt: 

 m = re.search('(AAEL\d+)\tGO:(\d+)', member) 

 if m: 

  entry = m.group(1) + ' = ' + m.group(2) + '\n' 

  output.write(entry) 

 

 

 

output.close()  
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APPENDIX G. PYTHON SCRIPT OF ‘IPRtree.py’ 

#!/usrs/bin/env python 

 

import string  

import re 

 

# Open interpro.xml file. 

in_file = r"/Users/dmairiang/Desktop/Python_script/InterPro/interpro.xml"  

input = open(in_file, 'r') 

 

intxt = input.read() 

input.close() 

 

# Write a tree with "is a" relationship into IPRtree_isa.txt file. 

# Example: 'Mitosis cell cycle' is a 'Cell cycle.' 

out_file1 = 

r"/Users/dmairiang/Desktop/Python_script/InterPro/IPRtree_isa.txt"  

 

# Write a tree with "is a" and " part of" relationship into 

IPRtree_isa.txt file. 

# Example: 'G2 phase' part of 'Cell cycle.' 

#This file was not used because self-connection causing an infinite loop. 

# A 'isa' B while B 'partof' A = an infinite loop. 

 

out_file2 = 

r"/Users/dmairiang/Desktop/Python_script/InterPro/IPRtree_isa_partof.txt" 

 

# Write any error in IPRtree_fail.txt file.  
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out_fail_file = 

r"/Users/dmairiang/Desktop/Python_script/InterPro/IPRtree_fail.txt" 

 

 

output1 = open(out_file1, 'w') 

output2 = open(out_file2, 'w')  

outfail = open(out_fail_file, 'w') 

 

# Separate each entry of interpro_ID. 

list = intxt.split('</interpro>') 

 

# Set ID 999999 as the highest hierachy, 'A mother of all nodes.' 

default_isa = '[isa: 999999 ]' 

 

# Write a header required by BINGO to specify a readable file. 

header = '(curator=IPR) (type=domain)\n999999 = InterPro_domain\n' 

 

output1.write(header) 

output2.write(header) 

 

# Look at each entry of interpro_ID. 

# Find the description of that ID. 

# Find the ID. 

# Parse in a form of: 

# interpro_ID = Description 

def make_index(string): 

 n = re.search('<name>(.*?)</name>', string) 

 m = re.search('<interpro id=\"IPR(\d+)', string) 
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 index =  m.group(1) + ' = ' + n.group(1) 

 return index 

 

# Add an 'isa' relationship by looking at parents of the interpro_ID 

  

def find_isa(string): 

 try: 

  tmp1 = string.split('parent_list') 

  tmp_list1 = tmp1[1].split('\n') 

  isa_list = [] 

  for member in tmp_list1: 

   m1 = re.search('IPR(\d+)', member) 

   if m1: 

    isa_list.append(m1.group(1)) 

 

  isa = '[isa: ' + ' '.join(isa_list) + ' ]' 

  return isa 

 except: 

  isa = '' 

  return isa 

 

 

# Add a 'partof' relationship by looking at 'found_in' identifier of the 

interpro_ID. 

def find_partof(string): 

 try: 

  tmp2 = string.split('found_in') 

  partof_list = [] 
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  tmp_list2 = tmp2[1].split('\n') 

  for member in tmp_list2: 

   m1 = re.search('IPR(\d+)', member) 

   if m1: 

    partof_list.append(m1.group(1)) 

 

  partof = '[partof: ' + ' '.join(partof_list) + ' ]' 

  return partof 

 except: 

  partof = '' 

  return partof 

 

 

# Main script 

for member in list: 

 m = re.search('<interpro id=\"IPR(\d+)', member) 

 if m: 

  print m.group(1) 

  if find_isa(member) != '': 

   entry = make_index(member) + ' ' + find_isa(member) + 

'\n' 

   output1.write(entry) 

  elif find_isa(member) == '': 

   entry = make_index(member) + ' ' + default_isa + '\n'  

   output1.write(entry) 

for member in list:  

 m = re.search('<interpro id=\"IPR(\d+)', member) 

 if m: 
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  if find_isa(member) != '' or find_partof(member) != '': 

   entry = make_index(member) + ' ' + find_isa(member) + ' ' 

+ find_partof(member) + '\n' 

   output2.write(entry) 

   

  elif find_isa(member) == '' and find_partof(member) == '': 

   entry = make_index(member) + ' ' + default_isa +'\n' 

   output2.write(entry) 

  else:  

   outfail.write(member) 

 else: 

  outfail.write(member)  

 

 

 

output1.close() 

output2.close() 

outfail.close() 
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APPENDIX H. PYTHON SCRIPT OF ‘inparanoid_dro_hum.py’ 

 

#!/usrs/bin/evn/ python 

 

# See a similar description in a file, inparanoid_ae_hum.py 

 

import string 

import re 

 

in_file = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/InParanoid.D.m

elanogaster-H.sapiens.orthoXML"  

 

input = open(in_file, 'r') 

txt_list = input.readlines() 

input.close() 

 

out_file = "Dro_to_hum_ID.txt" 

output = open(out_file, 'w') 

  

txt = ''.join(txt_list) 

 

tmp1= txt.split('</scores>') 

 

gene_id = tmp1[0] 

 

orth_cluster = tmp1[1].split('</orthologGroup>') 

for cluster in orth_cluster: 
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 m = re.search('<orthologGroup id="(\d+)">', cluster) 

 if m: 

  cluster_id = m.group(1) 

  print cluster 

 

  group = cluster.split('</geneRef>') 

 

  print cluster_id 

  member_list = [] 

  for member in group: 

   m = re.search('<geneRef id="(\d+)">',member) 

   if not m: 

    print "somthing wrong!\n" 

   if m: 

    id = m.group(1) 

    o = re.search('<score id="inparalog" 

value="(.*?)"/>', member) 

    score = o.group(1) 

    n = re.search('<gene id="'+m.group(1)+'" 

geneId="(.*?)" protId="(.*?)"/>', gene_id) 

    if n != '': 

     gene = n.group(1) 

    else:  

     gene = n.group(2) 

    entry = id+';'+gene+';'+score 

    print entry 

    member_list.append(entry) 
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  if len(member_list) > 2: 

   human = [] 

   fly = [] 

   for member in member_list: 

    m = re.search('ENSG', member) 

    if m: 

     human.append(member) 

    else: 

     fly.append(member) 

   for member1 in fly: 

    for member2 in human: 

     final_entry = cluster_id + '\t' + member1 + 

'\t' + member2 

     print final_entry 

     output.write(final_entry+'\n') 

  elif len(member_list) == 2: 

   final_entry = cluster_id + '\t' + '\t'.join(member_list) 

   print final_entry 

   output.write(final_entry + '\n') 

 

output.close() 
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APPENDIX I. PYTHON SCRIPT OF ‘inparanoid_Dro_Ae.py’ 

 

#!/usrs/bin/evn/ python 

 

# See a similar description in a file, inparanoid_ae_hum.py 

import string 

import re 

 

 

in_file = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/InParanoid.A.a

egypti-D.melanogaster.orthoXML"  

 

input = open(in_file, 'r') 

txt_list = input.readlines() 

input.close() 

 

out_file = "Aedes_to_Dro_ID.txt" 

output = open(out_file, 'w') 

  

txt = ''.join(txt_list) 

 

tmp1= txt.split('</scores>') 

 

gene_id = tmp1[0] 

 

orth_cluster = tmp1[1].split('</orthologGroup>') 

for cluster in orth_cluster: 
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 m = re.search('<orthologGroup id="(\d+)">', cluster) 

 if m: 

  cluster_id = m.group(1) 

  print cluster 

 

  group = cluster.split('</geneRef>') 

 

  print cluster_id 

  member_list = [] 

  for member in group: 

   m = re.search('<geneRef id="(\d+)">',member) 

   if not m: 

    print "somthing wrong!\n" 

   if m: 

    id = m.group(1) 

    o = re.search('<score id="inparalog" 

value="(.*?)"/>', member) 

    score = o.group(1) 

    n = re.search('<gene id="'+m.group(1)+'" 

geneId="(.*?)" protId="(.*?)"/>', gene_id) 

    if n != '': 

     gene = n.group(1) 

    else:  

     gene = n.group(2) 

    entry = id+';'+gene+';'+score 

    print entry 

    member_list.append(entry) 
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  if len(member_list) > 2: 

   aedes = [] 

   fly = [] 

   for member in member_list: 

    m = re.search('AAEL', member) 

    if m: 

     aedes.append(member) 

    else: 

     fly.append(member) 

   for member1 in aedes: 

    for member2 in fly: 

     final_entry = cluster_id + '\t' + member1 + 

'\t' + member2 

     print final_entry 

     output.write(final_entry+'\n') 

  elif len(member_list) == 2: 

   final_entry = cluster_id + '\t' + '\t'.join(member_list) 

   print final_entry 

   output.write(final_entry + '\n') 

 

output.close() 

 



 

 

287 

APPENDIX J. PYTHON SCRIPT OF ‘inparanoid_ae_hum.py’ 

 

#!/usrs/bin/evn/ python 

 

import string 

import re 

 

# Open a downloaded XML file. 

in_file = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/InParanoid.A.a

egypti-H.sapiens.orthoXML" 

 

input = open(in_file, 'r') 

txt_list = input.readlines() 

input.close() 

 

# Write data in 'Ae_to_hum_ID.txt' file. 

out_file = "Ae_to_hum_ID.txt" 

output = open(out_file, 'w') 

  

 

# Concatanating the whole file into one string. 

txt = ''.join(txt_list) 

 

# Separate a gene_ID list part of the file from a cluster list part of the 

file. 

tmp1= txt.split('</scores>') 

gene_id = tmp1[0] 
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# Look at the cluster list part of the file. 

# Split the list into cluster groups. 

 

orth_cluster = tmp1[1].split('</orthologGroup>') 

 

# Look at each cluster group. 

for cluster in orth_cluster: 

 

# Collect cluster_ID. 

 m = re.search('<orthologGroup id="(\d+)">', cluster) 

 if m: 

  cluster_id = m.group(1) 

  print cluster 

# Split genes in the cluster group. 

  group = cluster.split('</geneRef>') 

 

  print cluster_id 

  member_list = [] 

 

# Collect a gene_ID from each gene. 

  for member in group: 

   m = re.search('<geneRef id="(\d+)">',member) 

   if not m: 

    print "somthing wrong!\n" 

 

# Collect a homologous score of each gene. 

   if m: 
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    id = m.group(1) 

    o = re.search('<score id="inparalog" 

value="(.*?)"/>', member) 

    score = o.group(1) 

 

# Search for a correct gene ID from the gene list part of the original XML 

file. 

    n = re.search('<gene id="'+m.group(1)+'" 

geneId="(.*?)" protId="(.*?)"/>', gene_id) 

 

# Collect a gene ID (ENSG....) if found. 

    if n != '': 

     gene = n.group(1) 

# Collect a protein ID if gene ID is not found. 

 

    else:  

     gene = n.group(2) 

 

# Put all cluster_ID, gene_ID/protein_ID and homologous score in a list. 

    entry = id+';'+gene+';'+score 

    print entry 

    member_list.append(entry) 

# Parse the list into table 

# If there are more than one human or mosquito gene in the list, genes 

were sorted by species. 

# Next, each mosquito gene is paired with each human gene. 

# For example 
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# cluster 1 with mosquito genes (a, b and c) and human genes (A and B) are 

listed as: 

# 1 a A 

# 1 b A 

# 1 c A 

# 1 a B 

# 1 b B 

# 1 c B 

 

  if len(member_list) > 2: 

   aedes =[] 

   human = [] 

   for member in member_list: 

    m = re.search('AAEL', member) 

    if m: 

     aedes.append(member) 

    else: 

     human.append(member) 

   for member1 in aedes: 

    for member2 in human: 

     final_entry = cluster_id + '\t' + member1 + 

'\t' + member2 

     print final_entry 

     output.write(final_entry+'\n') 

 

# If there are one human gene and one mosquito gene, one pairing is done.  

 

  elif len(member_list) == 2: 
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   final_entry = cluster_id + '\t' + '\t'.join(member_list) 

   print final_entry 

   output.write(final_entry + '\n') 

 

output.close() 
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APPENDIX K. PYTHON SCRIPT OF ‘cross_fbgn.py’ 

 

#!/usrs/bin/env/ python 

 

import string 

 

import re 

 

# Open a Dmel to Aedes ortholog list 

in_file1 = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/Aedes_to_Dro_I

D.txt" 

 

# Open a human to Dmal ortholog list 

in_file2 = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/Dro_to_hum_ID.

txt" 

 

input1 = open(in_file1, 'r') 

a_to_d = input1.readlines() 

input1.close() 

 

input2 = open(in_file2, 'r') 

d_to_h = input2.readlines() 

input2.close() 

 

# Write data in crossFBgn_Ae_to_hum.txt 

out_file = r"crossFBgn_Ae_to_hum.txt" 
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output = open(out_file, 'w') 

 

# Write a header 

header = "Aedes_gene\tDro_gene\tHuman_gene\n" 

output.write(header) 

 

 

# Look for Aedes gene and Dmel gene in the Dmel to Aedes list 

for member1 in a_to_d: 

 human_list = [] 

 m = re.search('(AAEL\d+)', member1) 

 n = re.search('(FBgn\d+)', member1) 

 if m and n: 

  AAEL = m.group(1) 

  FBgn = n.group(1) 

 

# Look for Dmel gene from the Dmel to Aedes list in the human to Dmel list 

  for member2 in d_to_h: 

   o = re.search(FBgn, member2) 

   if o: 

    p = re.search('(ENSG\d+)', member2) 

    if p: 

     human_list.append(p.group(1)) 

# If found, cluster Aedes gene, Dmel gene and human gene together. 

 if len(human_list) > 0: 

  for member3 in human_list: 

   entry = AAEL + '\t' + FBgn +'\t' + member3 +'\n' 

   output.write(entry) 
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output.close()   
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APPENDIX L. PYTHON SCRIPT OF ‘clusterInpara_dro.py’ 

 

#!/usrs/bin/env/ python 

 

 

import string 

import re 

 

# Open the combined aedes, dmel and human ortholog cluster. 

in_file1 = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/crossFBgn_Ae_t

o_hum_complete.txt" 

input1 = open(in_file1, 'r') 

temp1 = input1.readlines() 

input1.close() 

 

temp1 = ''.join(temp1) 

cross_orth = temp1.split('\r') 

 

# Open the list of all unique FBgn IDs. 

in_file2 = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/uniFBgn.csv" 

input2 = open(in_file2, 'r') 

temp2 = input2.readlines() 

input2.close() 

 

temp2 = ''.join(temp2) 

uniFBgn = temp2.split('\r') 
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# Assign an output file 

out_file = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/clusteredOrth_

step1.txt" 

output = open(out_file, 'w') 

 

# Write a header 

header = "cluster_ID\tAedes_ID\tDro_ID\tHuman_ID\n" 

output.write(header) 

 

# Initiate new cluster_ID 

count = 1 

 

# Assign the same cluster ID to all groups that have the same Dmel gene by 

looking for identical FBgn IDs. 

 

for member1 in uniFBgn: 

 for member2 in cross_orth: 

  m = re.search(member1, member2) 

  if m: 

   entry = str(count) +'\t' + member2 + '\n' 

   output.write(entry) 

   print entry 

 count = count + 1 

 

# Assing the new clusterID for any group lacking a Dmel gene as a member. 

for member in cross_orth: 
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 m = re.search('FBgn', member) 

 if not m: 

  entry = str(count) +'\t'+member + '\n' 

  output.write(entry) 

  print entry 

  count = count + 1 

output.close()  
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APPENDIX M. PYTHON SCRIPT OF ‘clusterInpara_droaedes.py’ 

 

#!/usrs/bin/env/ python 

 

import string 

import re 

 

# Open a list of unique mosquito gene ID (AAEL######) 

in_file1 = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/uniAAEL.csv" 

input1 = open(in_file1, 'r') 

temp1 = input1.readlines() 

temp1 = ''.join(temp1) 

uniAAEL = temp1.split('\r') 

input1.close() 

 

# Open the cluster the file previously processed by looking for identical 

Dmel genes.  

in_file2 = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/clusteredOrth_

step1.txt" 

input2 = open(in_file2, 'r') 

orth_list = input2.readlines() 

input2.close() 

 

# Assign an output file. 
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out_file = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/clusteredOrth_

step2_aedes_dro.txt" 

output = open(out_file, 'w') 

header = "cluster_ID\tAedes\n" 

output.write(header) 

 

# Assign new cluster_ID for any group that has the same mosquito gene. 

for member1 in uniAAEL: 

 clust_ID = 100000000 

 for member2 in orth_list: 

  m = re.search(member1, member2) 

  if m: 

   n = re.search('(\d+)\tAAEL', member2) 

   if int(n.group(1)) < clust_ID: 

    clust_ID = int(n.group(1)) 

 entry = str(clust_ID) + '\t' + member1 + '\n' 

 print entry 

 output.write(entry) 

 

output.close()  
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APPENDIX N. PYTHON SCRIPT OF ‘clusterInpara_droaedeshum.py’ 

 

#!/usrs/bin/env/ python 

 

import string 

import re 

 

# Open a list of unique human gene_ID (ENSG) 

in_file1 = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/uniENSG.csv"  

input1 = open(in_file1, 'r') 

temp1 = input1.readlines() 

temp1 = ''.join(temp1) 

uniENSG = temp1.split('\r') 

input1.close() 

 

# Open the cluster file previously processed for identical Dmal and Aedes 

genes. 

in_file2 = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/clusteredOrth_

step2_aedes_dro.tab"  

input2 = open(in_file2, 'r') 

orth_list = input2.readlines() 

input2.close() 

orth_list = ''.join(orth_list) 

orth_list = orth_list.split('\r') 

 

 



 

 

301 

# Assign an output file 

out_file = 

r"/Users/dmairiang/Desktop/Python_script/Inparanoid10012011/clusteredOrth_

step3_aedes_dro_hum.txt" 

output = open(out_file, 'w') 

header = "cluster_ID\thuman\n" 

output.write(header) 

 

# Assign the same cluster_ID for any group having an identical human gene. 

for member1 in uniENSG: 

 clust_ID = 100000000 

 for member2 in orth_list: 

  m = re.search(member1, member2) 

  if m: 

   n = re.search('^(\d+)\t', member2) 

   if n and int(n.group(1)) < clust_ID: 

    clust_ID = int(n.group(1)) 

 entry = str(clust_ID) + '\t' + member1 + '\n' 

 print entry 

 output.write(entry) 

 

output.close()  
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APPENDIX O. CO-AFFINITY PURIFICATION ASSAYS FOR DENGUE-HOST 

PROTEIN INTERACTIONS. 

Additional co-AP results not shown in Figure 2-11. The fusion proteins were expressed 

in S2R+ cells. NTAP-tagged proteins were purified from cell lysates, and then Myc-

tagged proteins were detected with α-myc. (A) Lysate. (B) Co-AP. 
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APPENDIX P. DNA SEQUENCE ALIGNMENT BETWEEN THE DENGUE REPLICON 

AND DENGUE VIRUS SEROTYPE 2 (STRAIN 16681) 

 

BLASTN 2.2.26+ 

Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and 

Webb Miller (2000), "A greedy algorithm for aligning DNA 

sequences", J Comput Biol 2000; 7(1-2):203-14. 

 

 

RID: 06MBHZFX111 

 

 

Query= YRp7_Replicon 

 

Length=15681 

 

 

                                                                   Score        E 

Sequences producing significant alignments:                       (Bits)     Value 

 

ref|NC_001474.2|  Dengue virus 2, complete genome                  1.533e+04  0.0   

 

ALIGNMENTS 

>ref|NC_001474.2| Dengue virus 2, complete genome 

Length=10723 

 

 Score = 1.533e+04 bits (8302),  Expect = 0.0 

 Identities = 8350/8374 (99%), Gaps = 1/8374 (0%) 

 Strand=Plus/Plus 

 

Query  7154   AGCACCTCACTGTCTGTGACACTAGTATTGGTGGGAATTGTGACACTGTATTTGGGAGTC  7213 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
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Sbjct  2350   AGCACCTCACTGTCTGTGACACTAGTATTGGTGGGAATTGTGACACTGTATTTGGGAGTC  2409 

 

Query  7214   ATGGTGCAGGCCGATAGTGGCTGCGTTGTGAGCTGGGAAAACAAAGAACTGAAATGTGGC  7273 

              |||||||||||||||||||| ||||||||||||||| ||||||||||||||||||||||| 

Sbjct  2410   ATGGTGCAGGCCGATAGTGGTTGCGTTGTGAGCTGGAAAAACAAAGAACTGAAATGTGGC  2469 

 

Query  7274   AGTGGGATTTTCATCACAGACAACGTGCACACATGGACAGAACAATACAAGTTCCAACCA  7333 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2470   AGTGGGATTTTCATCACAGACAACGTGCACACATGGACAGAACAATACAAGTTCCAACCA  2529 

 

Query  7334   GAATCCCCTTCAAAACTAGCTTCAGCTATCCAGAAAGCCCATGAAGAGGGCATTTGTGGA  7393 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2530   GAATCCCCTTCAAAACTAGCTTCAGCTATCCAGAAAGCCCATGAAGAGGGCATTTGTGGA  2589 

 

Query  7394   ATCCGCTCAGTAACAAGACTGGAGAATCTGATGTGGAAACAAATAACACCAGAATTGAAT  7453 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2590   ATCCGCTCAGTAACAAGACTGGAGAATCTGATGTGGAAACAAATAACACCAGAATTGAAT  2649 

 

Query  7454   CACATTCTATCAGAAAATGAGGTGAAGTTAACTATCATGACAGGAGACATCAAAGGAATC  7513 

              ||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||| 

Sbjct  2650   CACATTCTATCAGAAAATGAGGTGAAGTTAACTATTATGACAGGAGACATCAAAGGAATC  2709 

 

Query  7514   ATGCAGGCAGGAAAACGATCTCTGCGGCCTCAGCCCACTGAGCTGAAGTATTCATGGAAA  7573 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2710   ATGCAGGCAGGAAAACGATCTCTGCGGCCTCAGCCCACTGAGCTGAAGTATTCATGGAAA  2769 

 

Query  7574   ACATGGGGCAAAGCAAAAATGCTCTCTACAGAGTCTCATAACCAGACCTTTCTCATTGAT  7633 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2770   ACATGGGGCAAAGCAAAAATGCTCTCTACAGAGTCTCATAACCAGACCTTTCTCATTGAT  2829 

 

Query  7634   GGCCCCGAAACAGCAGAATGCCCCAACACAAATAGAGCTTGGAATTCGTTGGAAGTTGAA  7693 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2830   GGCCCCGAAACAGCAGAATGCCCCAACACAAATAGAGCTTGGAATTCGTTGGAAGTTGAA  2889 
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Query  7694   GACTATGGCTTTGGAGTATTCACCACCAATATATGGCTAAAATTGAAAGAAAAACAGGAT  7753 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2890   GACTATGGCTTTGGAGTATTCACCACCAATATATGGCTAAAATTGAAAGAAAAACAGGAT  2949 

 

Query  7754   GTATTCTGCGACTCAAAACTCATGTCAGCGGCCATAAAAGACAACAGAGCCGTCCATGCC  7813 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  2950   GTATTCTGCGACTCAAAACTCATGTCAGCGGCCATAAAAGACAACAGAGCCGTCCATGCC  3009 

 

Query  7814   GATATGGGTTATTGGATAGAAAGTGCACTCAATGACACATGGAAGATAGAGAAAGCCTCT  7873 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3010   GATATGGGTTATTGGATAGAAAGTGCACTCAATGACACATGGAAGATAGAGAAAGCCTCT  3069 

 

Query  7874   TTCATTGAAGTTAAAAACTGCCACTGGCCAAAATCACACACCCTCTGGAGCAATGGAGTG  7933 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3070   TTCATTGAAGTTAAAAACTGCCACTGGCCAAAATCACACACCCTCTGGAGCAATGGAGTG  3129 

 

Query  7934   CTAGAAAGTGAGATGATAATTCCAAAGAATCTCGCTGGACCAGTGTCTCAACACAACTAT  7993 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3130   CTAGAAAGTGAGATGATAATTCCAAAGAATCTCGCTGGACCAGTGTCTCAACACAACTAT  3189 

 

Query  7994   AGACCAGGCTACCATACACAAATAACAGGACCATGGCATCTAGGTAAGCTTGAGATGGAC  8053 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3190   AGACCAGGCTACCATACACAAATAACAGGACCATGGCATCTAGGTAAGCTTGAGATGGAC  3249 

 

Query  8054   TTTGATTTCTGTGATGGAACAACAGTGGTAGTGACTGAGGACTGCGGAAATAGAGGACCC  8113 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3250   TTTGATTTCTGTGATGGAACAACAGTGGTAGTGACTGAGGACTGCGGAAATAGAGGACCC  3309 

 

Query  8114   TCTTTGAGAACAACCACTGCCTCTGGAAAACTCATAACAGAATGGTGCTGCCGATCTTGC  8173 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3310   TCTTTGAGAACAACCACTGCCTCTGGAAAACTCATAACAGAATGGTGCTGCCGATCTTGC  3369 
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Query  8174   ACATTACCACCGCTAAGATACAGAGGTGAGGATGGGTGCTGGTACGGGATGGAAATCAGA  8233 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3370   ACATTACCACCGCTAAGATACAGAGGTGAGGATGGGTGCTGGTACGGGATGGAAATCAGA  3429 

 

Query  8234   CCATTGAAGGAGAAAGAAGAGAATTTGGTCAACTCCTTGGTCACAGCTGGACATGGGCAG  8293 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3430   CCATTGAAGGAGAAAGAAGAGAATTTGGTCAACTCCTTGGTCACAGCTGGACATGGGCAG  3489 

 

Query  8294   GTCGACAACTTTTCACTAGGAGTCTTGGGAATGGCATTGTTCCTGGAGGAAATGCTTAGG  8353 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3490   GTCGACAACTTTTCACTAGGAGTCTTGGGAATGGCATTGTTCCTGGAGGAAATGCTTAGG  3549 

 

Query  8354   ACCCGAGTAGGAACGAAACATGCAATACTACTAGTTGCAGTTTCTTTTGTGACATTGATC  8413 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3550   ACCCGAGTAGGAACGAAACATGCAATACTACTAGTTGCAGTTTCTTTTGTGACATTGATC  3609 

 

Query  8414   ACAGGGAACATGTCCTTTAGAGACCTGGGAAGAGTGATGGTTATGGTAGGCGCCATTATG  8473 

              ||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||| 

Sbjct  3610   ACAGGGAACATGTCCTTTAGAGACCTGGGAAGAGTGATGGTTATGGTAGGCGCCACTATG  3669 

 

Query  8474   ACGGATGACATAGGTATGGGCGTGACTTATCTTGCCCTACTAGCAGCCTTCAAAGTCAGA  8533 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3670   ACGGATGACATAGGTATGGGCGTGACTTATCTTGCCCTACTAGCAGCCTTCAAAGTCAGA  3729 

 

Query  8534   CCAACTTTTGCAGCTGGACTACTCTTGAGAAAGCTGACCTCCAAGGAATTGATGATGACT  8593 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3730   CCAACTTTTGCAGCTGGACTACTCTTGAGAAAGCTGACCTCCAAGGAATTGATGATGACT  3789 

 

Query  8594   ACTATAGGAATTGTACTCCTCTCCCAGAGCACCATACCAGAGACCATTCTTGAGTTGACT  8653 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3790   ACTATAGGAATTGTACTCCTCTCCCAGAGCACCATACCAGAGACCATTCTTGAGTTGACT  3849 

 

Query  8654   GATGCGTTAGCCTTAGGCATGATGGTCCTCAAAATGGTGAGAAATATGGAAAAGTATCAA  8713 
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              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3850   GATGCGTTAGCCTTAGGCATGATGGTCCTCAAAATGGTGAGAAATATGGAAAAGTATCAA  3909 

 

Query  8714   TTGGCAGTGACTATCATGGCTATCTTGTGCGTCCCAAACGCAGTGATATTACAAAACGCA  8773 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  3910   TTGGCAGTGACTATCATGGCTATCTTGTGCGTCCCAAACGCAGTGATATTACAAAACGCA  3969 

 

Query  8774   TGGAAAGTGAGTTGCACAATATTGGCAGTGGTGTCCGTTTCCCCACTGTTCTTAACATCC  8833 

              |||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||| 

Sbjct  3970   TGGAAAGTGAGTTGCACAATATTGGCAGTGGTGTCCGTTTCCCCACTGCTCTTAACATCC  4029 

 

Query  8834   TCACAGCAAAAAACAGATTGGATACCATTAGCATTGACGATCAAAGGTCTCAATCCAACA  8893 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4030   TCACAGCAAAAAACAGATTGGATACCATTAGCATTGACGATCAAAGGTCTCAATCCAACA  4089 

 

Query  8894   GCTATTTTTCTAACAACCCTCTCAAGAACCAGCAAGAAAAGGAGCTGGCCATTAAATGAG  8953 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4090   GCTATTTTTCTAACAACCCTCTCAAGAACCAGCAAGAAAAGGAGCTGGCCATTAAATGAG  4149 

 

Query  8954   GCTATCATGGCAGTCGGGATGGTGAGCATTTTAGCCAGTTCTCTCCTAAAAAATGATATT  9013 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4150   GCTATCATGGCAGTCGGGATGGTGAGCATTTTAGCCAGTTCTCTCCTAAAAAATGATATT  4209 

 

Query  9014   CCCATGGCAGGACCATTAGTGGCTGGAGGGCTCCTCACTGTGTGCTACGTGCTCACTGGA  9073 

              |||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4210   CCCATGACAGGACCATTAGTGGCTGGAGGGCTCCTCACTGTGTGCTACGTGCTCACTGGA  4269 

 

Query  9074   CGATCGGCCGATTTGGAACTGGAGAGAGCAGCCGATGTCAAATGGGAAGACCAGGCAGAG  9133 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4270   CGATCGGCCGATTTGGAACTGGAGAGAGCAGCCGATGTCAAATGGGAAGACCAGGCAGAG  4329 

 

Query  9134   ATATCAGGAAGCAGCCCAATCCTGTCAATAACAATATCAGAAGATGGTAGCATGTCGATA  9193 

              |||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||| 
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Sbjct  4330   ATATCAGGAAGCAGTCCAATCCTGTCAATAACAATATCAGAAGATGGTAGCATGTCGATA  4389 

 

Query  9194   AAAAATGAAGAGGAAGAACAAACACTGACCATACTCATTAGAACAGGATTGCTGGTGATC  9253 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4390   AAAAATGAAGAGGAAGAACAAACACTGACCATACTCATTAGAACAGGATTGCTGGTGATC  4449 

 

Query  9254   TCAGGACTTTTTCCTGTATCAATACCAATCACGGCAGCAGCATGKTACCTGTGGGAAGTG  9313 

              |||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||| 

Sbjct  4450   TCAGGACTTTTTCCTGTATCAATACCAATCACGGCAGCAGCATGGTACCTGTGGGAAGTG  4509 

 

Query  9314   AAGAAACAACGGGCCGGAGTATTGTGGGATGTTCCTTCACCCCCACCCATGGGAAAGGCT  9373 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4510   AAGAAACAACGGGCCGGAGTATTGTGGGATGTTCCTTCACCCCCACCCATGGGAAAGGCT  4569 

 

Query  9374   GAACTGGAAGATGGAGCCTATAGAATTAAGCAAAAAGGGATTCTTGGATATTCCCAGATC  9433 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4570   GAACTGGAAGATGGAGCCTATAGAATTAAGCAAAAAGGGATTCTTGGATATTCCCAGATC  4629 

 

Query  9434   GGAGCCGGAGTTTACAAAGAAGGAACATTCCATACAATGTGGCATGTCACACGTGGCGCT  9493 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4630   GGAGCCGGAGTTTACAAAGAAGGAACATTCCATACAATGTGGCATGTCACACGTGGCGCT  4689 

 

Query  9494   GTTCTAATGCATAAAGGAAAGAGGATTGAACCATCATGGGCGGACGTCAAGAAAGACCTA  9553 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4690   GTTCTAATGCATAAAGGAAAGAGGATTGAACCATCATGGGCGGACGTCAAGAAAGACCTA  4749 

 

Query  9554   ATATCATATGGAGGAGGCTGGAAGTTAGAAGGAGAATGGAAGGAAGGAGAAGAAGTCCAG  9613 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4750   ATATCATATGGAGGAGGCTGGAAGTTAGAAGGAGAATGGAAGGAAGGAGAAGAAGTCCAG  4809 

 

Query  9614   GTATTGGCACTGGAGCCTGGAAAAAATCCAAGAGCCGTCCAAACGAAACCTGGTCTTTTC  9673 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4810   GTATTGGCACTGGAGCCTGGAAAAAATCCAAGAGCCGTCCAAACGAAACCTGGTCTTTTC  4869 
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Query  9674   AAAACCAACGCCGGAACAATAGGTGCTGTATCTCTGGACTTTTCTCCTGGAACGTCAGGA  9733 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4870   AAAACCAACGCCGGAACAATAGGTGCTGTATCTCTGGACTTTTCTCCTGGAACGTCAGGA  4929 

 

Query  9734   TCTCCAATTATCGACAAAAAAGGAAAAGTTGTGGGTCTTTATGGTAATGGTGTTGTTACA  9793 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  4930   TCTCCAATTATCGACAAAAAAGGAAAAGTTGTGGGTCTTTATGGTAATGGTGTTGTTACA  4989 

 

Query  9794   AGGAGTGGAGCATATGTGAGTGCTATAGCCCAGACTaaaaaaaGCATTGAAGACAACCCA  9853 

              |||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||| 

Sbjct  4990   AGGAGTGGAGCATATGTGAGTGCTATAGCCCAGACTGAAAAAAGCATTGAAGACAACCCA  5049 

 

Query  9854   GAGATCGAAGATGACATTTTCCGAAAGAGAAGACTGACCATCATGGACCTCCACCCAGGA  9913 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5050   GAGATCGAAGATGACATTTTCCGAAAGAGAAGACTGACCATCATGGACCTCCACCCAGGA  5109 

 

Query  9914   GCGGGAAAGACGAAGAGATACCTTCCGGCCATAGTCAGAGAAGCTATAAAACGGGGTTTG  9973 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5110   GCGGGAAAGACGAAGAGATACCTTCCGGCCATAGTCAGAGAAGCTATAAAACGGGGTTTG  5169 

 

Query  9974   AGAACATTAATCTTGGCCCCCACTAGAGTTGTGGCAGCTGAAATGGAGGAAGCCCTTAGA  10033 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5170   AGAACATTAATCTTGGCCCCCACTAGAGTTGTGGCAGCTGAAATGGAGGAAGCCCTTAGA  5229 

 

Query  10034  GGACTTCCAATAAGATACCAGACCCCAGCCATCAGAGCTGAGCACACCGGGCGGGAGATT  10093 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5230   GGACTTCCAATAAGATACCAGACCCCAGCCATCAGAGCTGAGCACACCGGGCGGGAGATT  5289 

 

Query  10094  GTGGACCTAATGTGTCATGCCACATTTACCATGAGGCTGCTATCACCAGTTAGAGTGCCA  10153 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5290   GTGGACCTAATGTGTCATGCCACATTTACCATGAGGCTGCTATCACCAGTTAGAGTGCCA  5349 
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Query  10154  AACTACAACCTGATTATCATGGACGAAGCCCATTTCACAGACCCAGCAAGTATAGCAGCT  10213 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5350   AACTACAACCTGATTATCATGGACGAAGCCCATTTCACAGACCCAGCAAGTATAGCAGCT  5409 

 

Query  10214  AGAGGATACATCTCAACTCGAGTGGAGATGGGTGAGGCAGCTGGGATTTTTATGACAGCC  10273 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5410   AGAGGATACATCTCAACTCGAGTGGAGATGGGTGAGGCAGCTGGGATTTTTATGACAGCC  5469 

 

Query  10274  ACTCCCCCGGGAAGCAGAGACCCATTTCCTCAGAGCAATGCACCAATCATAGATGAAGAA  10333 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5470   ACTCCCCCGGGAAGCAGAGACCCATTTCCTCAGAGCAATGCACCAATCATAGATGAAGAA  5529 

 

Query  10334  AGAGAAATCCCTGAACGTTCGTGGAATTCCGGACATGAATGGGTCACGGATTTTAAAGGG  10393 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5530   AGAGAAATCCCTGAACGTTCGTGGAATTCCGGACATGAATGGGTCACGGATTTTAAAGGG  5589 

 

Query  10394  AAGACTGTTTGGTTCGTTCCAAGTATAAAAGCAGGAAATGATATAGCAGCTTGCCTGAGG  10453 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5590   AAGACTGTTTGGTTCGTTCCAAGTATAAAAGCAGGAAATGATATAGCAGCTTGCCTGAGG  5649 

 

Query  10454  AAAAATGGAAAGAAAGTGATACAACTCAGTAGGAAGACCTTTGATTCTGAGTATGTCAAG  10513 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5650   AAAAATGGAAAGAAAGTGATACAACTCAGTAGGAAGACCTTTGATTCTGAGTATGTCAAG  5709 

 

Query  10514  ACTAGAACCAATGATTGGGACTTCGTGGTTACAACTGACATTTCAGAAATGGGTGCCAAT  10573 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5710   ACTAGAACCAATGATTGGGACTTCGTGGTTACAACTGACATTTCAGAAATGGGTGCCAAT  5769 

 

Query  10574  TTCAAGGCTGAGAGGGTTATAGACCCCAGACGCTGCATGAAACCAGTTATACTAACAGAT  10633 

              ||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||| 

Sbjct  5770   TTCAAGGCTGAGAGGGTTATAGACCCCAGACGCTGCATGAAACCAGTCATACTAACAGAT  5829 

 

Query  10634  GGTGAAGAGCGGGCGATTCTGGCAGGACCTATGCCAGTGACCTACTCTAGTGCAGCACAA  10693 
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              ||||||||||||| |||||||||||||||||||||||||||| ||||||||||||||||| 

Sbjct  5830   GGTGAAGAGCGGGTGATTCTGGCAGGACCTATGCCAGTGACCCACTCTAGTGCAGCACAA  5889 

 

Query  10694  AGAAGAGGGAGAATAGGAAGAAATCCAAAAAATGAGAATGACCAGTACATATACATGGGG  10753 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  5890   AGAAGAGGGAGAATAGGAAGAAATCCAAAAAATGAGAATGACCAGTACATATACATGGGG  5949 

 

Query  10754  GAACCTCTGGAAAATGATGAAGACTGTGCACACTGGAAAGAAGCTAAAATGCTCCCAGAT  10813 

              ||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||| 

Sbjct  5950   GAACCTCTGGAAAATGATGAAGACTGTGCACACTGGAAAGAAGCTAAAATGCTCCTAGAT  6009 

 

Query  10814  AACATCAACACGCCAGAAGGAATCATTCCTAGCATGTTCGAACCAGAGCGTGAAAAGGTG  10873 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6010   AACATCAACACGCCAGAAGGAATCATTCCTAGCATGTTCGAACCAGAGCGTGAAAAGGTG  6069 

 

Query  10874  GATGCCATTGATGGCGAATACCGCTTGAGAGGAGAAGCAAGGAAAACCTTTGTAGACTTA  10933 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6070   GATGCCATTGATGGCGAATACCGCTTGAGAGGAGAAGCAAGGAAAACCTTTGTAGACTTA  6129 

 

Query  10934  ATGAGAAGAGGAGACCTACCAGTCTGGTTGGCCTACAGAGTGGCAGCTGAAGGCATCAAC  10993 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6130   ATGAGAAGAGGAGACCTACCAGTCTGGTTGGCCTACAGAGTGGCAGCTGAAGGCATCAAC  6189 

 

Query  10994  TACGCAGACAGAAGGTGGTGTTTTGATGGAGTCAAGAACAACCAAATCCTAGAAGAAAAC  11053 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6190   TACGCAGACAGAAGGTGGTGTTTTGATGGAGTCAAGAACAACCAAATCCTAGAAGAAAAC  6249 

 

Query  11054  GTGGAAGTTGAAATCTGGACAAAAGAAGGGGAAAGGAAGAAATTGAAACCCAGATGGTTG  11113 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6250   GTGGAAGTTGAAATCTGGACAAAAGAAGGGGAAAGGAAGAAATTGAAACCCAGATGGTTG  6309 

 

Query  11114  GATGCTAGGATCTATTCTGACCCACTGGCGCTAAAAGAATTTAAGGAATTTGCAGCCGGA  11173 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
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Sbjct  6310   GATGCTAGGATCTATTCTGACCCACTGGCGCTAAAAGAATTTAAGGAATTTGCAGCCGGA  6369 

 

Query  11174  AGAAAGTCTCTGACCCTGAACCTAATCACAGAAATGGGTAGGCTCCCAACCTTCATGACT  11233 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6370   AGAAAGTCTCTGACCCTGAACCTAATCACAGAAATGGGTAGGCTCCCAACCTTCATGACT  6429 

 

Query  11234  CAGAAGGTAAGAGACGCACTGGACAACTTAGCAGTGCTGCACACGGCTGAGGCAGGTGGA  11293 

              ||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6430   CAGAAGGCAAGAGACGCACTGGACAACTTAGCAGTGCTGCACACGGCTGAGGCAGGTGGA  6489 

 

Query  11294  AGGGCGTACAACCATGCTCTCAGTGAACTGCCGGAGACCCTGGAGACATTGCTTTTACTG  11353 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6490   AGGGCGTACAACCATGCTCTCAGTGAACTGCCGGAGACCCTGGAGACATTGCTTTTACTG  6549 

 

Query  11354  ACACTTCTGGCTACAGTCACGGGAGGGATCTTTTTATTCTTGATGAGCGGAAGGGGCATA  11413 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6550   ACACTTCTGGCTACAGTCACGGGAGGGATCTTTTTATTCTTGATGAGCGGAAGGGGCATA  6609 

 

Query  11414  GGGAAGATGACCCTGGGAATGTGCTGCATAATCACGGCTAGCATCCTCCTATGGTACGCA  11473 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6610   GGGAAGATGACCCTGGGAATGTGCTGCATAATCACGGCTAGCATCCTCCTATGGTACGCA  6669 

 

Query  11474  CAAATACAGCCACACTGGATAGCAGCTTCAATAATACTGGAGTTTTTTCTCATAGTTTTG  11533 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6670   CAAATACAGCCACACTGGATAGCAGCTTCAATAATACTGGAGTTTTTTCTCATAGTTTTG  6729 

 

Query  11534  CTTATTCCAGAACCTGAAAAACAGAGAACACCCCAAGACAACCAACTGACCTACGTTGTC  11593 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6730   CTTATTCCAGAACCTGAAAAACAGAGAACACCCCAAGACAACCAACTGACCTACGTTGTC  6789 

 

Query  11594  ATAGCCATCCTCACAGTGGTGGCCGCAACCATGGCAAACGAGATGGGTTTCCTAGAAAAA  11653 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6790   ATAGCCATCCTCACAGTGGTGGCCGCAACCATGGCAAACGAGATGGGTTTCCTAGAAAAA  6849 
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Query  11654  ACGAAGAAAGATCTCGGATTGGGAAGCATTGCAACCCAGCAACCCGAGAGCAACATCCTG  11713 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6850   ACGAAGAAAGATCTCGGATTGGGAAGCATTGCAACCCAGCAACCCGAGAGCAACATCCTG  6909 

 

Query  11714  GACATAGATCTACGTCCTGCATCAGCATGGACGCTGTATGCCGTGGCCACAACATTTGTT  11773 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6910   GACATAGATCTACGTCCTGCATCAGCATGGACGCTGTATGCCGTGGCCACAACATTTGTT  6969 

 

Query  11774  ACACCAATGTTGAGACATAGCATTGAAAATTCCTCAGTGAATGTGTCCCTAACAGCTATA  11833 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  6970   ACACCAATGTTGAGACATAGCATTGAAAATTCCTCAGTGAATGTGTCCCTAACAGCTATA  7029 

 

Query  11834  GCCAACCAAGCCACAGTGTTAATGGGTCTCGGGAAAGGATGGCCATTGTCAAAGATGGAC  11893 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7030   GCCAACCAAGCCACAGTGTTAATGGGTCTCGGGAAAGGATGGCCATTGTCAAAGATGGAC  7089 

 

Query  11894  ATCGGAGTTCCCCTTCTCGCCATTGGATGCTACTCACAAGTCAACCCCATAACTCTTACA  11953 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||| 

Sbjct  7090   ATCGGAGTTCCCCTTCTCGCCATTGGATGCTACTCACAAGTCAACCCCATAACTCTCACA  7149 

 

Query  11954  GCAGCTCTTTTCTTATTGGTAGCACATTATGCCATCATAGGGCCAGGACTCCAAGCAAAA  12013 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7150   GCAGCTCTTTTCTTATTGGTAGCACATTATGCCATCATAGGGCCAGGACTCCAAGCAAAA  7209 

 

Query  12014  GCAACCAGAGAAGCTCAGAAAAGAGCAGCGGCGGGCATCATGAAAAACCCAACTGTCGAT  12073 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7210   GCAACCAGAGAAGCTCAGAAAAGAGCAGCGGCGGGCATCATGAAAAACCCAACTGTCGAT  7269 

 

Query  12074  GGAATAACAGTGATTGACCTAGATCCAATACCTTATGATCCAAAGTTTGAAAAGCAGTTG  12133 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7270   GGAATAACAGTGATTGACCTAGATCCAATACCTTATGATCCAAAGTTTGAAAAGCAGTTG  7329 
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Query  12134  GGACAAGTAATGCTCCTAGTCCTCTGCGTGACTCAAGTATTGATGATGAGGACTACATGG  12193 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7330   GGACAAGTAATGCTCCTAGTCCTCTGCGTGACTCAAGTATTGATGATGAGGACTACATGG  7389 

 

Query  12194  GCTCTGTGTGAGGTTTTAACCTTAGCTACCGGGCCCATCTCCACATTGTGGGAAGGAAAT  12253 

              ||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7390   GCTCTGTGTGAGGCTTTAACCTTAGCTACCGGGCCCATCTCCACATTGTGGGAAGGAAAT  7449 

 

Query  12254  CCAGGGAGGTTTTGGAACACTACCATTGCGGTGTCAATGGCTAACATTTTTAGAGGGAGT  12313 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7450   CCAGGGAGGTTTTGGAACACTACCATTGCGGTGTCAATGGCTAACATTTTTAGAGGGAGT  7509 

 

Query  12314  TACTTGGCCGGAGCTGGACTTCTCTTTTCTATTATGAAGAACACAACCAACGCAAGAAGG  12373 

              ||||||||||||||||||||||||||||||||||||||||||||||||||| |||||||| 

Sbjct  7510   TACTTGGCCGGAGCTGGACTTCTCTTTTCTATTATGAAGAACACAACCAACACAAGAAGG  7569 

 

Query  12374  GGAACTGGCAACATAGGAGAGACGCTTGGAGAGAAATGGAAAAGCCGATTGAACGCATTG  12433 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7570   GGAACTGGCAACATAGGAGAGACGCTTGGAGAGAAATGGAAAAGCCGATTGAACGCATTG  7629 

 

Query  12434  GGAAAAAGTGAATTCCAGATCTACAAGAAAAGTGGAATCCAGGAAGTGGATAGAACCTTA  12493 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7630   GGAAAAAGTGAATTCCAGATCTACAAGAAAAGTGGAATCCAGGAAGTGGATAGAACCTTA  7689 

 

Query  12494  GCAAAAGAAGGCATTAAAAGAGGAGAAACGGACCATCACGCTGTGTCGCGAGGCTCAGCA  12553 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7690   GCAAAAGAAGGCATTAAAAGAGGAGAAACGGACCATCACGCTGTGTCGCGAGGCTCAGCA  7749 

 

Query  12554  AAACTGAGATGGTTCGTTGAGAGAAACATGGTCACACCAGAAGGGAAAGTAGTGGACCTC  12613 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7750   AAACTGAGATGGTTCGTTGAGAGAAACATGGTCACACCAGAAGGGAAAGTAGTGGACCTC  7809 

 

Query  12614  GGTTGTGGCAGAGGAGGCTGGTCATACTATTGTGGAGGACTAAAGAATGTAAGAGAAGTC  12673 
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              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7810   GGTTGTGGCAGAGGAGGCTGGTCATACTATTGTGGAGGACTAAAGAATGTAAGAGAAGTC  7869 

 

Query  12674  AAAGGCCTAACAAAAGGAGGACCAGGACACGAAGAACCCATCCCCATGTCAACATATGGG  12733 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7870   AAAGGCCTAACAAAAGGAGGACCAGGACACGAAGAACCCATCCCCATGTCAACATATGGG  7929 

 

Query  12734  TGGAATCTAGTGCGTCTTCAAAGTGGAGTTGACGTTTTCTTCATCCCGCCAGAAAAGTGT  12793 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7930   TGGAATCTAGTGCGTCTTCAAAGTGGAGTTGACGTTTTCTTCATCCCGCCAGAAAAGTGT  7989 

 

Query  12794  GACACATTATTGTGTGACATAGGGGAGTCATCACCAAATCCCACAGTGGAAGCAGGACGA  12853 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  7990   GACACATTATTGTGTGACATAGGGGAGTCATCACCAAATCCCACAGTGGAAGCAGGACGA  8049 

 

Query  12854  ACACTCAGAGTCCTTAACTTAGTAGAAAATTGGTTGAACAACAACACTCAATTTTGCATA  12913 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8050   ACACTCAGAGTCCTTAACTTAGTAGAAAATTGGTTGAACAACAACACTCAATTTTGCATA  8109 

 

Query  12914  AAGGTTCTCAACCCATATATGCCCTCAGTCATAGAAAAAATGGAAGCACTACAAAGGAAA  12973 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8110   AAGGTTCTCAACCCATATATGCCCTCAGTCATAGAAAAAATGGAAGCACTACAAAGGAAA  8169 

 

Query  12974  TATGGAGGAGCCTTAGTGAGGAATCCACTCTCACGAAACTCCACACATGAGATGTACTGG  13033 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8170   TATGGAGGAGCCTTAGTGAGGAATCCACTCTCACGAAACTCCACACATGAGATGTACTGG  8229 

 

Query  13034  GTATCCAATGCTTCCGGGAACATAGTGTCATCAGTGAACATGATTTCAAGGATGTTGATC  13093 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8230   GTATCCAATGCTTCCGGGAACATAGTGTCATCAGTGAACATGATTTCAAGGATGTTGATC  8289 

 

Query  13094  AACAGATTTACAATGAGATACAAGAAAGCCACTTACGAGCCGGATGTTGACCTCGGAAGC  13153 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
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Sbjct  8290   AACAGATTTACAATGAGATACAAGAAAGCCACTTACGAGCCGGATGTTGACCTCGGAAGC  8349 

 

Query  13154  GGAACCCGTAACATCGGGATTGAAAGTGAGATACCAAACCTAGATATAATTGGGAAAAGA  13213 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8350   GGAACCCGTAACATCGGGATTGAAAGTGAGATACCAAACCTAGATATAATTGGGAAAAGA  8409 

 

Query  13214  ATAGAAAAAATAAAGCAAGAGCATGAAACATCATGGCACTATGACCAAGACCACCCATAC  13273 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8410   ATAGAAAAAATAAAGCAAGAGCATGAAACATCATGGCACTATGACCAAGACCACCCATAC  8469 

 

Query  13274  AAAACGTGGGCATACCATGGTAGCTATGAAACAAAACAGACTGGATCAGCATCATCCATG  13333 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8470   AAAACGTGGGCATACCATGGTAGCTATGAAACAAAACAGACTGGATCAGCATCATCCATG  8529 

 

Query  13334  GTCAACGGAGTGGTCAGGCTGCTGACAAAACCTTGGGACGTCGTCCCCATGGTGACACAG  13393 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8530   GTCAACGGAGTGGTCAGGCTGCTGACAAAACCTTGGGACGTCGTCCCCATGGTGACACAG  8589 

 

Query  13394  ATGGCAATGACAGACACGACTCCATTTGGACAACAGCGCGTTTTTAAAGAGAAAGTGGAC  13453 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8590   ATGGCAATGACAGACACGACTCCATTTGGACAACAGCGCGTTTTTAAAGAGAAAGTGGAC  8649 

 

Query  13454  ACGAGAACCCAAGAACCGAAAGAAGGCACGAAGAAACTAATGAAAATAACAGCAGAGTGG  13513 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8650   ACGAGAACCCAAGAACCGAAAGAAGGCACGAAGAAACTAATGAAAATAACAGCAGAGTGG  8709 

 

Query  13514  CTTTGGAAAGAATTAGGGAAGAAAAAGACACCCAGGATGTGCACCAGAGAAGAATTCACA  13573 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8710   CTTTGGAAAGAATTAGGGAAGAAAAAGACACCCAGGATGTGCACCAGAGAAGAATTCACA  8769 

 

Query  13574  AGAAAGGTGAGAAGCAATGCAGCCTTGGGGGCCATATTCACTGATGAGAACAAGTGGAAG  13633 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8770   AGAAAGGTGAGAAGCAATGCAGCCTTGGGGGCCATATTCACTGATGAGAACAAGTGGAAG  8829 
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Query  13634  TCGGCACGTGAGGCTGTTGAAGATAGTAGGTTTTGGGAGCTGGTTGACAAGGAAAGGAAT  13693 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8830   TCGGCACGTGAGGCTGTTGAAGATAGTAGGTTTTGGGAGCTGGTTGACAAGGAAAGGAAT  8889 

 

Query  13694  CTCCATCTTGAAGGAAAGTGTGAAACATGTGTGTACAACATGATGGGAAAAAGAGAGAAG  13753 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8890   CTCCATCTTGAAGGAAAGTGTGAAACATGTGTGTACAACATGATGGGAAAAAGAGAGAAG  8949 

 

Query  13754  AAGCTAGGGGAATTCGGCAAGGCAAAAGGCAGCAGAGCCATATGGTACATGTGGCTTGGA  13813 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  8950   AAGCTAGGGGAATTCGGCAAGGCAAAAGGCAGCAGAGCCATATGGTACATGTGGCTTGGA  9009 

 

Query  13814  GCACGCTTCTTAGAGTTTGAAGCCCTAGGATTCTTAAATGAAGATCACTGGTTCTCCAGA  13873 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9010   GCACGCTTCTTAGAGTTTGAAGCCCTAGGATTCTTAAATGAAGATCACTGGTTCTCCAGA  9069 

 

Query  13874  GAGAACTCCCTGAGTGGAGTGGAAGGAGAAGGGCTGCACAAGCTAGGTTACATTCTAAGA  13933 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9070   GAGAACTCCCTGAGTGGAGTGGAAGGAGAAGGGCTGCACAAGCTAGGTTACATTCTAAGA  9129 

 

Query  13934  GACGTGAGCAAGAAAGAGGGAGGAGCAATGTATGCCGATGACACCGCAGGATGGGATACA  13993 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9130   GACGTGAGCAAGAAAGAGGGAGGAGCAATGTATGCCGATGACACCGCAGGATGGGATACA  9189 

 

Query  13994  AGAATCACACTAGAAGACCTAAAAAATGAAGGAATGGTAACAAACCACATGGAAGGAGAA  14053 

              ||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||| 

Sbjct  9190   AGAATCACACTAGAAGACCTAAAAAATGAAGAAATGGTAACAAACCACATGGAAGGAGAA  9249 

 

Query  14054  CACAAGAAACTAGCCGAGGCCATTTTCAAACTAACGTACCAAAACAAGGTGGTGCGTGTG  14113 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9250   CACAAGAAACTAGCCGAGGCCATTTTCAAACTAACGTACCAAAACAAGGTGGTGCGTGTG  9309 
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Query  14114  CAAAGACCAACACCAAGAGGCACAGTAATGGACATCATATCGAGAAGAGACCAAAGAGGT  14173 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9310   CAAAGACCAACACCAAGAGGCACAGTAATGGACATCATATCGAGAAGAGACCAAAGAGGT  9369 

 

Query  14174  AGTGGACAAGTTGGCACCTATGGACTCAATACTTTCACCAATATGGAAGCCCAACTAATC  14233 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9370   AGTGGACAAGTTGGCACCTATGGACTCAATACTTTCACCAATATGGAAGCCCAACTAATC  9429 

 

Query  14234  AGACAGATGGAGGGAGAAGGAGTCTTTAAAAGCATTCAGCACCTAACAATCACAGAAGAA  14293 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9430   AGACAGATGGAGGGAGAAGGAGTCTTTAAAAGCATTCAGCACCTAACAATCACAGAAGAA  9489 

 

Query  14294  ATCGCTGTGCAAAACTGGTTAGCAAGAGTGGGGCGCGAAAGGTTATCAAGAATGGCCATC  14353 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9490   ATCGCTGTGCAAAACTGGTTAGCAAGAGTGGGGCGCGAAAGGTTATCAAGAATGGCCATC  9549 

 

Query  14354  AGTGGAGATGATTGTGTTGTGAAACCTTTAGATGACAGGTTCGCAAGCGCTTTAACAGCT  14413 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9550   AGTGGAGATGATTGTGTTGTGAAACCTTTAGATGACAGGTTCGCAAGCGCTTTAACAGCT  9609 

 

Query  14414  CTAAATGACATGGGAAAGATTAGGAAAGACATACAACAATGGGAACCTTCAAGAGGATGG  14473 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9610   CTAAATGACATGGGAAAGATTAGGAAAGACATACAACAATGGGAACCTTCAAGAGGATGG  9669 

 

Query  14474  AATGATTGGACACAAGTGCCCTTCTGTTCACACCATTTCCATGAGTTAATCATGAAAGAC  14533 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9670   AATGATTGGACACAAGTGCCCTTCTGTTCACACCATTTCCATGAGTTAATCATGAAAGAC  9729 

 

Query  14534  GGTCGCGTACTCGTTGTTCCATGTAGAAACCAAGATGAACTGATTGGCAGAGCCCGAATC  14593 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9730   GGTCGCGTACTCGTTGTTCCATGTAGAAACCAAGATGAACTGATTGGCAGAGCCCGAATC  9789 

 

Query  14594  TCCCAAGGAGCAGGGTGGTCTTTGCGGGAGACGGCCTGTTTGGGGAAATCTTACGCCCAA  14653 
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              ||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||| 

Sbjct  9790   TCCCAAGGAGCAGGGTGGTCTTTGCGGGAGACGGCCTGTTTGGGGAAGTCTTACGCCCAA  9849 

 

Query  14654  ATGTGGAGCTTGATGTACTTCCACAGACGCGACCTCAGGCTGGCGGCAAATGCTATTTGC  14713 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9850   ATGTGGAGCTTGATGTACTTCCACAGACGCGACCTCAGGCTGGCGGCAAATGCTATTTGC  9909 

 

Query  14714  TCGGCAGTACCATCACATTGGGTTCCAACAAGTCGAACAACCTGGTCCATACATGCTAAA  14773 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9910   TCGGCAGTACCATCACATTGGGTTCCAACAAGTCGAACAACCTGGTCCATACATGCTAAA  9969 

 

Query  14774  CATGAATGGATGACAACGGAAGACATGCTGACAGTCTGGAACAGGGTGTGGATTCAAGAA  14833 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  9970   CATGAATGGATGACAACGGAAGACATGCTGACAGTCTGGAACAGGGTGTGGATTCAAGAA  10029 

 

Query  14834  AACCCATGGATGGAAGACAAAACTCCAGTGGAATCATGGGAGGAAATCCCATACTTGGGG  14893 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  10030  AACCCATGGATGGAAGACAAAACTCCAGTGGAATCATGGGAGGAAATCCCATACTTGGGG  10089 

 

Query  14894  AAAAGAGAAGACCAATGGTGCGGCTCATTGATTGGGTTAACAAGCAGGGCCACCTGGGCA  14953 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  10090  AAAAGAGAAGACCAATGGTGCGGCTCATTGATTGGGTTAACAAGCAGGGCCACCTGGGCA  10149 

 

Query  14954  AAGAACATCCAAGCAGCAATAAATCAAGTTAGATCCCTTATAGGCAATGAAGGATACACA  15013 

              |||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||| 

Sbjct  10150  AAGAACATCCAAGCAGCAATAAATCAAGTTAGATCCCTTATAGGCAATGAAGAATACACA  10209 

 

Query  15014  GATTACATGCCATCCATGAAAAGATTCAGAAGAGAAGAGGAAGAAGCAGGAGTTCTGTGG  15073 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  10210  GATTACATGCCATCCATGAAAAGATTCAGAAGAGAAGAGGAAGAAGCAGGAGTTCTGTGG  10269 

 

Query  15074  TAGAAAGCAAAACTAACATGAAACAAGGCTAGAAGTCAGGTCGGATTAAGCCATAGTACG  15133 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
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Sbjct  10270  TAGAAAGCAAAACTAACATGAAACAAGGCTAGAAGTCAGGTCGGATTAAGCCATAGTACG  10329 

 

Query  15134  GAAAAAACTATGCTACCTGTGAGCCCCGTCCAAGGACGTTAAAAGAAGTCAGGCCATCAT  15193 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  10330  GAAAAAACTATGCTACCTGTGAGCCCCGTCCAAGGACGTTAAAAGAAGTCAGGCCATCAT  10389 

 

Query  15194  AAATGCCATAGCTGGAGTAAACTATGCAGCCTGTAGCTCCACCTGAGAAGGTGTAAAAAA  15253 

              ||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  10390  AAATGCCATAGCTTGAGTAAACTATGCAGCCTGTAGCTCCACCTGAGAAGGTGTAAAAAA  10449 

 

Query  15254  TCCGGGAGGCCACAAACCATGGAAGCTGTACGCATGGCGTAGTGGACTAGCGGTTAGAGG  15313 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  10450  TCCGGGAGGCCACAAACCATGGAAGCTGTACGCATGGCGTAGTGGACTAGCGGTTAGAGG  10509 

 

Query  15314  AGACCCCTCCCTTACAAATCGCAGCAACAATGGGGGCCCAAGGCGAGACGAAGCTGTAGT  15373 

              |||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||| 

Sbjct  10510  AGACCCCTCCCTTACAAATCGCAGCAACAATGGGGGCCCAAGGCGAGATGAAGCTGTAGT  10569 

 

Query  15374  CTCGCTGGAAGGACTAGAGGTTAGAGGAGAcccccccGAAACAAAAAACAGCATATTGAC  15433 

              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  10570  CTCGCTGGAAGGACTAGAGGTTAGAGGAGACCCCCCCGAAACAAAAAACAGCATATTGAC  10629 

 

Query  15434  GCTGGGAAAGACCGGAGATCCTGCTGTCTCCTCAGCATCATTCCAGGCACAGAACGCCAG  15493 

              ||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  10630  GCTGGGAAAGACCAGAGATCCTGCTGTCTCCTCAGCATCATTCCAGGCACAGAACGCCAG  10689 

 

Query  15494  AAAATGGAATGGTGCTGTTGAATCA-CAGGTTCT  15526 

              ||||||||||||||||||||||||| |||||||| 

Sbjct  10690  AAAATGGAATGGTGCTGTTGAATCAACAGGTTCT  10723 

 

 

 Score =  300 bits (162),  Expect = 7e-83 

 Identities = 162/162 (100%), Gaps = 0/162 (0%) 
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 Strand=Plus/Plus 

 

Query  5342  AGTTGTTAGTCTACGTGGACCGACAAAGACAGATTCTTTGAGGGAGCTAAGCTCAACGTA  5401 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  1     AGTTGTTAGTCTACGTGGACCGACAAAGACAGATTCTTTGAGGGAGCTAAGCTCAACGTA  60 

 

Query  5402  GTTCTAACAGTTTTTTAATTAGAGAGCAGATCTCTGATGAATAACCAACGGAAAAAGGCG  5461 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Sbjct  61    GTTCTAACAGTTTTTTAATTAGAGAGCAGATCTCTGATGAATAACCAACGGAAAAAGGCG  120 

 

Query  5462  AAAAACACGCCTTTCAATATGCTGAAACGCGAGAGAAACCGC  5503 

             |||||||||||||||||||||||||||||||||||||||||| 

Sbjct  121   AAAAACACGCCTTTCAATATGCTGAAACGCGAGAGAAACCGC  162 
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APPENDIX Q - ABBREVIATIONS 

Abbreviation  Full name 
AD Activation domain 
ADE Antibody-dependent enhancement 
ATF-6 activating transcription factor 6 
AVEXIS avidity-based extracellular interaction screen 
B23 nucleolar phosphoprotein B23, numatrin 
BCL2 B-cell CLL/lymphoma 2 
BCL2L1 BCL2-like 1 
BCL2L10 BCL2-like 10 (apoptosis facilitator) 
BCL2L11 BCL2-like 11 (apoptosis facilitator) 
BD or DBD DNA binding domain 
bp base pair(s) 
BRET bioluminescence resonance energy transfer  
BSA  Bovine serum albumin 
C Capsid protein 
C1 complement component 1 
C4 complement component 4  
C4BP complement component 4 binding protein 
CA Nascent capsid 
CALCOCO2 calcium binding and coiled-coil domain 2 
CALR calreticulin 
CDK or Cdk Cyclin-dependent kinase 
CFU Colony-forming unit 
Cks30A  Cyclin-dependent kinase subunit 30A 
Cks85A  Cyclin-dependent kinase subunit 85A 
CLEC5A C-type lectin domain family 5, member A 
ConA Concanavalin A 
CRM-1 chromosome region maintenance 1 protein homolog (exportin) 
Cul-4 Cullin-4 
CV Mature capsid 
DABCO 1,4-diazabicyclo[2.2.2]octane 
DAPI  4',6-diamidino-2-phenylindole 
DAXX Dead-domain associated protein 
DC-SIGN dendritic cell-specific intracellular adhesion molecules (ICAM)-3 

grabbing non-integrin 
DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked  
DDX56 DEAD (Asp-Glu-Ala-Asp) box helicase 56 
DENV dengue virus 
DERL2 derlin 2 
DF Dengue fever 
DGKζ  diacylglycerol kinase zeta (DGKζ)  
DHF Dengue hemorrhagic fever 
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DIAP-1 Drosophila Inhibitor of apoptosis protein 1 
DMSO  Dimethyl sulfoxide 
dsRNA double-stranded RNA 
DSS Dengue shock syndrome 
DVHF Dengue Virus Host Factor 
E protein Envelope protein 
EBV Epstein-Barr virus  
EDTA ethylenediaminetetraacetic acid 
EGFP Enhanced Green fluorescent protein 
eIF2α eukaryotic translation Initiation Factor 2alpha 
eIF3-S8 Eukaryotic translation initiation factor 3 subunit 8 
Eiii domain III of envelope protein  
Eip63E Ecdysone-induced protein 63E 
ER Endoplasmic reticulum 
ERC1 ELKS/RAB6-interacting/CAST family member 1 
EYFP Enhanced yellow fluorescent protein 
FACS fluorescence-activated cell sorting  
FASN fatty acid synthase  
FBS  Fetal bovine serum 
FITC  Fluorescein isothiocyanate 
FMDV  foot-and-mouth disease virus 
FOX-2 RNA binding protein, fox-1 homolog (C. elegans) 2 
FRET Förster resonance energy transfer  
GFP Green fluorescent protein 
GO  Gene ontology 
GOLGA2 golgin A2 
GOLGB1 golgin B1 
GTPBP4 GTP-binding protein 4 
gus gustavus 
HBB hemoglobin, beta 
HCV Hepatitis C virus 
HDLs High-density lipoprotein 
HDM2 p53 E3 ubiquitin protein ligase homolog (mouse) 
HIV Human immunodeficiency virus 
Hsp70 heat shock protein 70 
Hsp90 heat shock protein 90 
HSPA5/Grp78/BiP heat shock 70kDa protein 5 
IAP Inhibitor of apoptosis protein 
IL-6 Interleukin 6 
IL-8  Interleukin 8 
IRE-1 endoplasmic reticulum to nucleus signaling 1  
IRES Internal ribosome entry site 
Jak Janus kinase 
JEV Japanese encephlitis virus 
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kDa kilodalton 
LAV Live attenuated virus 
LRRFIP1 leucine rich repeat (in FLII) interacting protein 1 
M protein Membrane protein 
MATR3 matrin 3 
Mtase methyltransferase  
N-TAP N-terminal tandem affinity purification tag 
NAP1 Nucleosome assembly protein 1 
NAP1L1 Nucleosome assembly protein 1-like 1 
NAP1L2 Nucleosome assembly protein 1-like 2 
NAP1L3 Nucleosome assembly protein 1-like 3 
NAP1L4 Nucleosome assembly protein 1-like 4 
NAP1L5 Nucleosome assembly protein 1-like 5 
NAP1L6 Nucleosome assembly protein 1-like 6 
NBP1 NAP1 binding protein 1  
ND10 Nuclear Domain 10  
NES nuclear export sequence 
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells 
NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor, alpha  
NFYA nuclear transcription factor Y, alpha 
NLS Nuclear localization signal 
NRBP1 nuclear receptor binding protein 1  
NS1 Non structural protein 1 
NS2A Non structural protein 2A 
NS2B Non structural protein 2B 
NS3 Non structural protein 3 
NS4A Non structural protein 4A 
NS4B Non structural protein 4B 
NS5 Non structural protein 5 
OBSCN obscurin  
ORF open reading frames  
OS9 osteosarcoma 9  
pac Puromycin resistance gene 
PBL peripheral blood leukocyte  
PCA protein-fragment complementation assays  
PEG Polyethylene glycol 
PERK  protein kinase RNA-like endoplasmic reticulum kinase 
PKG Protein kinase G 
PMSF phenylmethanesulfonylfluoride  
PPI Protein-protein interaction 
PPP1R15A protein phosphatase 1, regulatory subunit 15A  
PrM Precursor of membrane protein 
PTB polypyrimidine tract binding protein 1 
RdRp RNA-dependent RNA polymerase 
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RILPL2 Rab interacting lysosomal protein-like 2  
Rluc Renilla luciferase 
RNAi  RNA interferene 
RPL23 ribosomal protein L23 
RPL27 ribosomal protein L27  
RpL32 Ribosomal protein L32 
RPL5 ribosomal protein L5  
RPL6 ribosomal protein L6  
RPL7 ribosomal protein L7  
RRP12 ribosomal RNA processing protein  
SET SET nuclear oncogene  
SIAH2  Seven In Absentia Homolog 2 
siRNA  Small interfering RNA 
SIT sterile insect technique 
SSB Sjogren syndrome antigen B (autoantigen La) 
STAT1  signal transducer and activator of transcription 1 
STAT2 signal transducer and activator of transcription 2 
SUMO Small ubiquitin-like modifier 
TAP-MS by tandem affinity purification-mass spectrometry 
TaV Thosea asigna virus 
TIF-IA  transcription initiation factor IA 
TRAF2 tumor necrosis factor receptor-associated factor 2  
TRIP11 thyroid hormone receptor interactor 11 
UBE2I ubiquitin-conjugating enzyme E2I 
UBF upstream binding factor  
UPR Unfolded protein response 
UTR Untranslated region 
WNV West Nile virus 
XBP1 X-box binding protein 1  
Y2H Yeast two-hybrid 
YFV Yellow fever virus 
ZNF410 zinc finger protein 410  
ZO-1 zona occludens 1  
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Dengue virus is the causative agent of dengue fever, dengue hemorrhagic fever 

and dengue shock syndrome. About two-fifths of world population live in areas where 

dengue is prevalent, leading to high levels of morbidity and mortality in many areas. 

Currently there are no vaccines or effective treatments. The virus is transmitted from 

one person to another by the yellow fever mosquito, Aedes aegypti. The genome of 

dengue virus encodes only ten proteins implying that the virus needs to interact with 

and utilize several host proteins for replication. In this project, I used high-throughput 

yeast two-hybrid screening to identify mosquito and human proteins that physically 

interact with dengue proteins. I detected 46 dengue-human and 102 dengue-mosquito 

protein interactions, including some that had been discovered previously and many 

novel interactions. I further confirmed 38 out of 136 testable interactions using co-affinity 

purification assays from cultured cells. I tested each host protein against the proteins 

from all four serotypes of dengue virus and found that 57 out of 102 (56.9%) dengue-

mosquito PPI and 34 out of 46 (73.9%) dengue-human PPI interacted with 

corresponding dengue proteins from all four serotypes. 
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To further analyze biological significance of these protein interactions, I selected 

to study capsid-NAP1 interaction. I employed the domain mapping of capsid using yeast 

two-hybrid and co-affinity purification. I also over-expressed or silenced NAP1L1 in 

HepG2 cells stably expressing capsid. I found that NAP1L1 might bind the bipartite 

sequence of capsid blocking importin binding and sequestering capsid in the cytoplasm. 

I also showed that the mosquito cells, AAG2, were capable of uptaking double 

stranded RNA without a transfection vehicle. Thus, a large-scale RNA interference 

study in AAG2 as previously published is feasible. 

Finally, I showed that using two 2A sequences to generate three separate 

peptides form a single mRNA was possible in the insect cells. This construct may be 

applied to design a non-infectious dengue replicon, which may be a safer substitute of 

the live dengue virus. 

The dengue-host interaction maps and the new tools that I generated should be 

useful for understanding how dengue interacts with its hosts and may provide 

candidates for drug targets and vector control strategies. 

 

 

 

 



	
  

	
  

380	
  

AUTOBIOGRAPHICAL STATEMENT 

DUMRONG MAIRIANG 

 

EDUCATION:  
 
2006-2012 M.S. and Ph.D. in molecular biology and genetics, Wayne State 

University, Detroit, MI, USA 

2001-2005 B.S. in Cellular and Molecular Biology-Microbiology, University of 

Michigan, Ann Arbor, MI, USA 

 
 
HONORS AND AWARDS: 
 
The Royal Thai Government Scholarship 2001-2005 and 2006-2012 
 
 
PUBLICATIONS: 
 
Dumrong Mairiang, Huamei Zhang, Ann Sodja, Thilakam Murali, Prapat Suriyaphol, 
Prida Malasit, Thawornchai Limjindaporn, and Russell L. Finley Jr. Identification of new 
protein interactions between dengue fever virus and its hosts, human and mosquito 
(submitted to publication) 
 

	
  


	Wayne State University
	DigitalCommons@WayneState
	1-1-2012

	Characterization of intracellular interactions between dengue virus and host proteins
	Dumrong Mairiang
	Recommended Citation


	Mairiang_complete_Thesis_Final_v3_cover_to _table_content
	Mairiang_Complete_Thesis_Final_v08152012_table_contents deleted.pdf
	Thesis_without_reformatting_parts_08142012
	Mairiang_complete_Thesis_v_Final_1.2
	Mairiang_complete_Thesis_v_Final_1.3
	Mairiang_complete_Thesis_v_Final_1.4
	Mairiang_complete_Thesis_v_Final_1.5
	Mairiang_complete_Thesis_v_Final_1.6
	Mairiang_complete_Thesis_v_Final_1.7
	Mairiang_complete_Thesis_v_Final_1.8
	Mairiang_complete_Thesis_v_Final_1.9
	Mairiang_complete_Thesis_v_Final_1.10
	Mairiang_complete_Thesis_v_Final_1.11
	Mairiang_complete_Thesis_v_Final_1.12
	Mairiang_complete_Thesis_v_Final_1.13
	Mairiang_complete_Thesis_v_Final_1.14
	Mairiang_complete_Thesis_v_Final_1.15
	Mairiang_complete_Thesis_v_Final_1.16
	Mairiang_complete_Thesis_v_Final_1.17
	Mairiang_complete_Thesis_v_Final_1.18
	Mairiang_complete_Thesis_v_Final_1.19
	Mairiang_complete_Thesis_v_Final_1.20
	Mairiang_complete_Thesis_v_Final_1.21
	Mairiang_complete_Thesis_v_Final_1.22
	Mairiang_complete_Thesis_v_Final_1.23
	Mairiang_complete_Thesis_v_Final_1.24
	Mairiang_complete_Thesis_v_Final_1.25
	Mairiang_complete_Thesis_v_Final_1.26
	Mairiang_complete_Thesis_v_Final_1.27
	Mairiang_complete_Thesis_v_Final_1.28
	Mairiang_complete_Thesis_v_Final_1.29
	Mairiang_complete_Thesis_v_Final_1.30
	Mairiang_complete_Thesis_v_Final_1.31
	Mairiang_complete_Thesis_v_Final_1.32
	Mairiang_complete_Thesis_v_Final_1.33
	Mairiang_complete_Thesis_v_Final_1.34
	Mairiang_complete_Thesis_v_Final_1.35
	Mairiang_complete_Thesis_v_Final_1.36
	Mairiang_complete_Thesis_v_Final_1.37
	Mairiang_complete_Thesis_v_Final_1.38
	Mairiang_complete_Thesis_v_Final_1.39
	Mairiang_complete_Thesis_v_Final_1.40
	Mairiang_complete_Thesis_v_Final_1.41
	Mairiang_complete_Thesis_v_Final_1.42

	p378
	p379
	p380




