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A B S T R A C T

We propose an analytical modeling methodology for quantifying the impact of slow steaming on
the carrier’s voyage cost and on the shipper’s total landed logistics costs. The developed meth-
odology can be employed by a carrier and a shipper in their contract negotiations, in order for the
two parties to determine how they could divide between them the savings resulted from slow
steaming. We demonstrate that the impact of slow steaming and speed adjustment policies on the
shippers’ total landed logistics costs tend to increase as the vessel travels towards the end of its
voyage.

1. Introduction

The world fleet grew by 3.5% throughout 2015. This is the lowest growth rate since 2003, yet still higher than the 2.1% growth in
demand, leading to a continued state of global overcapacity (UNCTAD, 2016). Tracking this trend in time, in 2008 orders for bulk
carriers reached more than six times the average of the orders placed in the period between 1980 and 2006, indicating that the
shipping sector was at the peak of its economic cycle and its subsequent downfall was imminent (Haralambides and Thanopoulou,
2014). However, despite this alarming indicator, ship owners continued placing orders for the production of new vessels. To that
effect, for the 2007–2008 period and even though ship prices were at their peak, $400 billion worth of additional ship orders were
placed (Stopford, 2010; UNCTAD, 2013).

As the U.S. banking crisis of 2008 led to a global recession and a downturn of global trade, a significant surplus of ship capacity
had already been built, further exacerbated as preceding ship orders were being manufactured and new ships entered the market
(Haralambides and Thanopoulou, 2014).

In this troublesome environment, carriers face two critical bottlenecks. The first one involves the reduction of their ship-operating
costs in order to sustain their profitability and market share in a market with low recovery rates of global demand (UNCTAD, 2013).
The second one involves the utilization of their excess idle vessel capacity, due to the global transport demand downturn. This has
been a stagnant problem for the shipping industry affecting negatively the level of the ocean freight rates charged to shippers (Wu,
2009).

Under this context, carriers adopt the practice of slow steaming, which involves the reduction of their vessels’ speed for reducing
fuel consumption (Sanguri, 2012). As fuel costs represent as much as 50–60% of total vessel voyage costs (World Shipping Council,
2008), it is interesting to state that the increase of a vessel’s speed by a couple of knots, that is from 17 to 19 knots, 20–22 knots and
23–25 knots, leads to the consumption of almost 50% more fuel per unit of distance travelled (Lee et al. 2015). Thus, slow steaming
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provides significant potential for voyage cost reductions. Moreover, as the employment of slow steaming prolongs the ship’s voyage
duration, and since container demand is accumulated during the extended voyage duration, carriers have the flexibility to in-
corporate their idle ship capacity in their serving routes in order to improve delivery efficiency (Maloni et al., 2013).

Furthermore, under layday clauses, carriers must reach a port of loading till a predefined time schedule (Raunek, 2015), while
during the vessel’s voyage, delays may occur due to adverse weather conditions as the vessel sails, or at ports and canals due to
congestion and port inefficiencies. On this basis, slow steaming provides carriers with the flexibility to increase their sailing speeds
after a delay occurs in order to cover all or as much of the delay possible in order to meet the layday.

To that effect, the employment of slow steaming under speed adjustment can have the following cost implications for the carrier:
(i) reductions of voyage fuel costs; and (ii) increases of operating costs as the duration of the voyage increases.

With respect to the shipper, the employment of slow steaming under a vessel’s speed adjustment policy may lead to: (i) lower
safety stock holding costs, as the carrier’s speed adjustment reduces the variability of the shipper’s lead-times, and (ii) increases of the
shipper’s pipeline inventory holding, cycle stock, and backorder costs as the lead-time of order replenishments increases. As the lead-
times also increase, when the voyage distances increase, it is intuitively sound that these cost impacts also depend on the voyage
distance that the carrier must cover in order to replenish the shipper’s orders. Thus, long voyage distances lead to higher shipper’s
pipeline and cycle stock costs, but they also provide more flexibility to the carrier to compensate voyage delays by adjusting the
vessel’s speed, and thus reduce the variability of the shipper’s lead-time. It is therefore pivotal to be able to quantify the cost impact of
slow steaming on the logistics costs of shippers at all intermediate ports of a shipping network, as the distances travelled by the
carrier for replenishing their orders differ.

Under this context, the purpose of this paper is to develop an analytical methodology which provides estimates of the expected
cost impacts of slow steaming under speed adjustments for both the carrier and the shipper. This methodology can be employed by
the carrier and the shipper in order to quantify the impact of slow steaming on their costs and thus, further be employed for contract
negotiations.

To tackle the above, we adopt the following methodological steps as summarized below:

• We estimate the stochastic vessel’s voyage duration under various slow steaming speeds, at each intermediate port of a shipping
line network, while tackling voyage delays at each intermediate port through higher speed adjustments of the vessel after the
delay occurrence.

• We employ the stochastic voyage durations for appropriately selecting the vessel’s slow steaming speeds (that lead to similar line
efficiency) and further incorporate them in an activity based voyage cost model for estimating the carrier’s voyage costs per
container till each intermediate port.

• We incorporate the stochastic voyage duration till all intermediate ports and for each slow steaming speed into a continuous
review (Q, R) inventory planning policy; this policy is selected since it provides a better synchronization with the OEM, and allows
the estimation of the total landed logistics costs per container of each intermediate port’s shipper, while encompassing on-hand
and pipeline inventory holding costs, backorder, and facility operating costs.

The contributions of our proposed methodology are listed below:

1. In contrast to the majority of academic research efforts that employ simulation-based methodologies, we develop continuous-time
analytical models for capturing the impact of slow steaming on the carrier’s and the shipper’s costs. We do that by considering a
real-world policy used extensively by carriers today, namely the vessel’s speed adjustment for recovering voyage delays at in-
termediate ports of a shipping network.

2. Delays at the intermediate ports of a shipping network are stochastic random variables and are entered in our modelling
methodology based on real-world data. The existing research efforts instead, consider predefined distributions of the delay for
their modelling purposes. Moreover, the delays considered in our modelling methodology consist of the delays during the voyage
and at the ports, in contrast to the majority of the academic research efforts that only consider delays at ports.

3. Our modelling methodology includes specific inventory planning policies, while providing an analytical solution for minimizing
the shipper's total landed logistics costs under slow steaming. On the other side, the existing research efforts mainly employ
simulation-based methodologies for minimizing the shipper’s safety stock and pipeline inventory holding costs.

4. We obtain important managerial insights from the implementation of the developed methodology on a rather extensive realistic
case of a shipping line from China to Europe and back to China, while the majority of existing research works employ simple
numerical examples.

The rest of the manuscript is organized as follows. In Section 2, we present a critical taxonomy of the existing research efforts
encountered in the literature focusing on the application of modelling methodologies for quantifying the impact of slow steaming.
Section 3 describes the problem under study, while Section 4 presents the proposed modelling methodology for quantifying the
impact of slow steaming on the carriers’ and the shippers’ logistics costs. More specifically, Sections 4.1 and 4.2 present the modelling
methodologies employed for quantifying the impact of slow steaming on the vessel’s voyage duration, and for selecting the carrier’s
appropriate slow steaming speeds respectively. Section 4.3 determines the shipper’s cost. Section 4.4 presents the model employed for
quantifying the impact of slow steaming on the carrier’s costs. Section 5 illustrates the applicability of the proposed modelling
methodology through the case study of a global logistics network; it further provides an extensive numerical investigation, while
discussing interesting managerial insights. Finally, in Section 6 we sum-up the findings of this research.
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2. Literature review: a critical taxonomy

As ocean shipping represents the dominant transportation mode of globalized supply chains (SCs), the cost-effective practice of
slow steaming has attracted the interest of numerous researchers, as it leads to the straightforward reduction of the vessel’s fuel
consumption and thus of its fuel costs (Lee et al., 2015). On this basis, Tezdogan et al. (2014) aim to evaluate the impact of a
predefined slow steaming speed on the required effective power and thus the fuel consumption of a deep sea vessel, while considering
resistance and motion responses of the vessel. Rahman et al. (2015) employ a Fuzzy Rule-based Bayesian Reasoning method for
justifying the necessity of the employment of a super slow steaming speed for voyage cost minimization.

In contrast to the above research efforts, which evaluate the impact of predefined slow steaming speeds on the carrier’s voyage
costs, numerous research efforts consider the slow steaming speed as a decision variable, and thus, they propose speed optimization
algorithms for determining the optimal slow steaming speed that minimizes the vessel’s voyage costs. On this basis, Corbett et al.
(2009) propose a ship speed optimization model that maximizes the carrier’s voyage profitability, and minimizes the carrier's voyage
CO2 emissions under fuel taxation policies. Lindstad et al. (2011) developed a similar model which additionally considers the re-
sistance developed by the waves in the speed optimization process. Fagerholt et al. (2010) propose a ship speed optimization model
that minimizes the fuel consumption in a route, under voyage time window constraints, while Cariou and Cheaitou (2012) determine
the optimal ship speed that maximizes the carrier's voyage profitability and minimizes the carrier's voyage CO2 emissions under the
fuel tax and the speed limit policies.

Wang and Meng (2012) developed a mixed-integer non-linear programming model in order to determine: (i) the optimal sailing
speed of container ships; (ii) the optimal number of ships to deploy in each route of a liner-shipping network; and (iii) the optimal
number of containers dispatched on each container route, under voyage cost minimization objectives. Chang and Chang (2013)
propose an activity-based model in order to determine the optimal vessel's speed and fleet size which minimizes the carrier's voyage
costs and derived voyage CO2 emissions. To that effect, they develop the CATCH (cost of averting a ton of CO2 emissions- Equation
heating) model for evaluating potential cost and CO2 emissions tradeoffs as speed is reduced. Norlund and Gribkovskaia (2013)
propose a ship speed optimization methodology and supply vessel-planning algorithm, in order to minimize the voyage costs and CO2

emissions for serving a number of offshore installations. Similarly, Tai and Lin (2013) developed an activity-based ship speed op-
timization methodology in order to minimize ship voyage, maneuvering, and port residence CO2 emissions stemming from the
adoption of daily frequency and slow steaming.

Chang and Wang (2014) develop a speed optimization model that maximizes the carrier’s profitability and minimizes its voyage
CO2 emissions under four scenarios: (i) high fuel prices and high charter rates; (ii) high fuel prices and low charter rates; (iii) low fuel
prices and high charter rates; (iv) low fuel prices and low charter rates. Wong et al. (2015), propose a multi-objective ship speed
optimization methodology, which jointly optimizes a vessel’s voyage cost, CO2 emissions, and delays. Fagerholt et al. (2015), propose
a Mixed Integer Linear Programming Model (MILP), in order to determine the vessel’s optimal slow steaming speed, that minimizes
the vessel’s fuel costs under the strict limits of emissions control areas (ECAs).

Magirou et al. (2015) propose a dynamic programming formulation for determining the optimal vessel speed which minimizes
voyage costs, while operating in the spot market and in a tramp mode. Andersson et al. (2015) propose an integrated MILP model for
determining the optimal fleet size and speed of Ro Ro vessels. Wang and Xu (2015) also propose a MILP model, for determining a
vessel’s optimal ship sailing speed that minimizes ship voyage costs and emissions and for deciding on whether a ship owner should
accepts a specific chartering agreement or not. Norlund et al. (2016) develop a simulation-based optimization algorithm for de-
termining optimal vessel speeds under voyage costs and emission minimization objectives. Adland et al. (2017), propose a metho-
dology based on a regression analysis in order to determine the slow steaming speed that a vessel must adopt when entering En-
vironmental Control Areas, while identifying how can this speed be further affected by stricter ECA regulations. Further, Wen et al.
(2017) propose a ship routing and speed optimization heuristic branch-and-price algorithm that optimizes the vessel’s fuel con-
sumption as a function of payload, the fuel price and in-transit cargo inventory costs.

Finally, Guericke and Tierney, (2015), propose a MILP model for addressing the cargo allocation problem with service levels and
speed optimization. Their model can be effectively employed to facilitate negotiations of carriers with terminals, while assisting them
to plan berthing times based on the recommended sailing speeds on each leg.

Additionally, under slow steaming the carrier has the flexibility to increase its speed after the realization of a delay during a
voyage in order to meet its planned arrival times, and since ports congestion constitutes a significant source of vessel voyage delays,
the joint consideration of slow steaming on voyage costs under uncertain port service times, has attracted the interest of few re-
searchers. On this basis, Brouer et al. (2013), propose a mixed integer, vessel schedule recovery model, for compensating port delays,
through the employment of a speed adjustment policy. The optimization criteria involve the vessel’s voyage costs at given speeds, and
the penalties to the carrier incurred from delaying or misconnecting cargo. Lee et al. (2015), propose a Markov Chain methodology
for minimizing the ship’s voyage costs under slow steaming speed optimization, while jointly evaluating the impact of lower vessel
speeds on the delivery reliability provided to shippers, and thus on their safety stock levels. The authors address this, by quantifying
the stochastic voyage delays incurred at various predefined intermediate ports of a shipping network, and thus, on the stochastic lead
times that the shipper faces. To this end, they evaluate the impact of these delays on the shipper’s safety stock level, through a
simulation-based optimization methodology.

Furthermore, Song et al. (2015) propose a simulation-based non-dominated sorting genetic algorithm, in order to determine a
vessel’s maximum sailing speed and liner delivery schedule, under voyage cost, service reliability and voyage emissions optimization
objectives while considering port time uncertainty. Aydin et al. (2017) propose a dynamic ship speed optimization model, for
determining a liner vessel’s optimal sailing speed under fuel cost minimization objectives while considering stochastic port service
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times and port delay penalties. Li et al. (2016) propose a dynamic programming model for regular sea voyage and port delay recovery
and occasional disruption event recovery that mainly occur at ports, through the adjustment of the vessel’s sailing speed. The
optimization criteria involve, the vessel’s fuel and operating costs per voyage, and the vessel’s delay costs which incorporate the
cargo’s misconnecting, inventory and rerouting costs, along with the shippers goodwill loss cost. Fischer et al. (2016), develop a
mixed integer linear programming and a rolling horizon heuristic model for minimizing the voyage costs of a fleet of vessels under
alternative ship voyage and port delay recovery strategies. Finally, Lee et al. (2017), proposed a multi-objective, voyage cost and
delay minimization model, while considering the impact of the weather on the vessel’s voyage fuel consumption and travel times. The
optimization criteria involve the vessel’s voyage costs and times.

As slow steaming increases the replenishment times of a shipper’s order, leading to higher pipeline inventory and safety stock
holding costs for the shipper, several researchers focus on the quantification of the cost impact of slow steaming jointly on the carrier
and the shipper. On this basis, Psaraftis and Kontovas (2010), and Psaraftis and Kontovas (2013, 2014) provide various ship speed
optimization models that minimize the carrier's voyage cost and the shipper's pipeline inventory holding costs under alternative
routing scenarios and hinterland modal split options. Maloni et al. (2013) developed a simulation-based ship speed optimization
modelling methodology that minimizes the carrier’s voyage costs and CO2 emissions and the shipper’s pipeline inventory holding
costs, while evaluating the impact of slow steaming throughout the whole SC, as future fuel prices and container volumes change.
Finally, Harrison and Fichtinger (2013) developed a discrete event simulation model for evaluating the impact of the voyage delays
on the shipper’s inventory levels under different predefined fill rate constraints.

Table 1 provides a taxonomy of the relevant papers based on the relevant research areas that they tackle, namely slow steaming
(S-S), sailing speed optimization (S-S-O), uncertain port service times (U-P-S-T), vessel’s deployment costs (V-D-C) and shipper’s
inventory costs (S-I-C).

The conducted taxonomy clearly indicates that:

i. the majority of the existing research works propose models that solely optimize the vessel’s speed;
ii. there is a small number of research papers that determine the optimal vessel’s slow steaming speeds, under voyage costs and

shipper’s inventory cost optimization objectives, and only one research effort that also evaluates the impact of uncertain port
times in the slow steaming speed decision-making process. These papers mainly employ simulation methodologies that evaluate
the impact of slow steaming speed on the shipper’s pipeline, and safety stock holding costs and not on the shipper’s total landed
logistics costs.

3. Problem under study

In this Section, we motivate and describe the problem under study, while we further provide all relevant assumptions. More
specifically, we examine a multinational company operating in the European Union, which has developed a typical centralized

Table 1
A taxonomy of slow steaming-related research.

Authors S-S S-S-O U-P-S-T V-D-C S-I-C

Tezdogan et al. (2014) x x
Brouer et al. (2013) x x x
Li et al. (2016) x x x x
Fischer et al. (2016) x x x
Lee et al. (2017) x x x
Rahman et al. (2015) x x
Corbett et al. (2009) x x x
Lindstad et al. (2011) x x x
Fagerholt et al. (2010) x x x
Cariou and Cheaitou (2012) x x x
Wang and Meng (2012) x x x
Chang and Wang (2014) x x x
Fagerholt et al. (2015) x x x
Magirou et al. (2015) x x x
Andersson et al. (2015) x x x
Wang and Xu (2015) x x x
Norlund et al. (2016) x x x
Adland et al. (2017) x x x
Wen et al. (2017) x x x
Guericke and Tierney (2015) x x x
Lee et al. (2015) x x x x x
Song et al. (2015) x x x x
Psaraftis and Kontovas (2010) x x x x
Psaraftis and Kontovas (2013, 2014) x x x x
Maloni et al. (2013) x x x x
Harrison and Fichtinger (2013) x x x x
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distribution network for supplying its demand points within the EU. In order to do so, the company (also known as the “shipper” or
the “cargo owner”), usually leases storage capacities in large centralized distribution centers (CDCs), one at each intermediate port of
the liner shipping connections. The shipper further assigns to the CDCs’ decision-makers, its inventory management and control tasks.
These decision-makers place orders to the company’s offshored central manufacturing facilities, usually located in Asia and are being
replenished through a combination of deep-sea shipping and inland transportation connections. The shipper’s demand points are then
replenished by the central DC of each intermediate port through truck or rail or barge.

The carrier owns a number of vessels. Each vessel has a lay day clause with shippers’ in the entry ports of his shipping network and
employs slow steaming. As under slow steaming the length of the voyage duration increases, and the demand during the increased
voyage times is accumulated, the carrier may have to employ additional vessels in order to support its strategically designed delivery
frequency.

As by far, the lengthiest part of the shipper’s supply chain involves the ship voyage distance from the distant manufacturer to the
port of entry, the impact of slow steaming on the shipper’s logistics costs is mainly being absorbed by the CDC which has to maintain
high inventory levels in order to provide competitive service levels to its serving demand points. We will therefore examine a two-
echelon (manufacturer-DC) distribution structure for various fast-moving stock keeping units (SKUs) ordered by the CDC of each
intermediate port. These orders are transported in containers through deep-sea shipping from a faraway Loading Port (LP) to a
European Entry Port (EP), and then, through inland transportation connections to the CDC.

As the deep-sea shipping lead-time from the LP to the EP is lengthy, the lead-time demand variability that the CDC encounters is
high, leading to high safety stock requirements. In order to compensate for the increased variability, each CDC continuously evaluates
its inventory positions and sets batch orders to the offshored manufacturing site. Thus, in our analysis, a continuous review (Q, R)
inventory planning policy is employed for the replenishment of each CDC’s stock from the offshore manufacturer.

The cost impact of the carrier’s slow steaming speed on the total logistics costs of the shipper at each intermediate port involves
the optimization of: (i) the safety stock level reserved at the CDC; and (ii) the order batch size placed to the distant manufacturing site
by each CDC.

The shipper’s cost optimization criteria at each intermediate port involve: (i) the CDC’s holding costs per SKU per time unit; (ii)
the CDC’s backorder cost per SKU stockout; (iii) each CDC’s operating costs per time unit associated to the storage capacity of the CDC
leased by the shipper; and finally, (iv) the pipeline inventory holding costs per SKU from the distant loading point to each CDC.

On the other hand, the impact of slow steaming on the carrier’s voyage costs is quantified through the numerical solution of a
voyage cost function for each slow steaming speed, which consists of: (i) the vessel’s operating costs per day; (ii) the bunker fuel costs
per ton of fuel consumed; (iii) the fixed port-related costs per voyage and the variable port-related costs per full container load (FCL)
and (iv) the fixed voyage canal costs.

4. The overall carrier’s and shipper’s model under speed adjustment

In this Section, we present the development of the model employed for evaluating the impact of slow steaming on the carrier’s
voyage costs per full container load (FCL) under a speed adjustment policy. This impact is thoroughly discussed in Section 4.1. and it
hinges upon: (i) the increased voyage duration under slow steaming, and (ii) the reduction of voyage time variability, as after a
potential voyage delay occurrence, the vessel can increase speed to absorb part of, or all of the delay, if it sails at a higher speed.

Thus, Section 4.1 proposes a new model for evaluating for each slow steaming speed the expected ship voyage duration for the
various ports across the route under a speed adjustment policy. These durations are then incorporated as an input into: (i) the
methodology presented in Section 4.2 for determining the vessel’s slow steaming speeds; (ii) the voyage cost activity-based model
presented in Section 4.3 for quantifying the impact of slow steaming on the carrier’s voyage costs; and (iii) the continuous review
inventory planning model, presented in Section 4.4, for quantifying the impact of slow steaming on the shipper’s logistics costs.

4.1. Expected ship voyage duration

The shipping line under study consists of a port of origin 1 and a number of intermediate ports of the round trip before returning
back to port 1. The carrier strategically determines the sequence of the ports that the vessel will follow (Meng et al., 2014). The vessel
is not allowed to skip intermediate ports (a practice known as “blank shipping”), due to high container volume demands at the
intermediate ports that must be served on time as designated by the carrier’s layday clauses with the shippers at the intermediate
ports. The shipping network realization under study is illustrated in Fig. 1, while the nomenclature is listed in Table 2.

In the shipping network under study, the shipping line determines a nominal voyage speed S for the vessel for all voyage segments
from Port 1 and back. However, at the beginning of segment i, the vessel encounters an accumulated delay that consist of the delay
during the voyage due to adverse weather conditions plus the delay at the port, and speeds up in order to compensate this delay and
thus honor the layday clauses with its shippers at the next port. The value of this adjusted speed Si (which is assumed constant along
each segment) depends on the magnitude of the delay. More specifically, if the vessel can fully compensate the total delay with a
speed adjustment, it will select the necessary adjusted speed that leads its scheduled on-time arrival. Otherwise, the vessel will travel
at its maximum speed Sm in order to cover as much of the delay possible. In this case, the delay that the vessel will realize in the
beginning of the next voyage segment (effective delay ′ri ), will be the remaining delay from the previous segment plus any delay ri that
will occur in the port between these segments. We assume that there is no remaining delay at port 1 (i.e. ′ =r r1 1).

The effective delay ′ri is given by:
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For Segment 2, the expected voyage duration has the 22 terms of Table 4.

 Segment 1 

 Segment 2 

 Segment i 

 Segment i+1 

Fig. 1. Shipping network realization.

Table 2
Nomenclature.

Parameters Description

S Nominal slow steaming speed of the vessel
Si Vessel’s adjusted speed at segment i
Di Distance of segment i
ti Time required for covering segment i
ri Realization of a random delay ri at port i, with probability density function f r( )Ri i and cumulative distribution function F r( )Ri i

′ri Effective delay that is realized at the beginning of segment i
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Thus, based on the above cases, the expected value E T( )S
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Considering Eqs. (2), (4) and (3) and (5), the expected value of the voyage duration until the second until Port 2 is given by
+E T E T( ) ( )S S

1 2 , while the variance of the voyage duration by +Var T Var T( ) ( )S S
1 2 .

Similarly, for Segments 3 and 4, we consider 23=8 and 24=16 cases respectively, as these are summarized in Tables 20 and 21 of
Appendix C. The model could be extended for more than four ports, thus further increasing the complexity of the solution process.
However, this seems to be unnecessary since the existing globalized shipping networks usually consist of ports that are partitioned in
subsets, where the ports within each subset are closely located to each other. See for example Maersk’s AE10 Westbound Network of
Fig. 2. Based on this Figure we observe that the network’s port subsets are two; namely the westbound subset, which incorporates the

Table 3
Expected voyage duration cases for Segment 1.

Cases Expected voyage duration (Days)
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Table 4
Expected voyage duration cases for Segment 2.

Cases Expected voyage duration (Days)

E T( )c S
2

⩽r Δ1 1, ′ ⩽r Δ2 2, ∫ ∫ +( )r f r dr f r dr· ( ) ( )D
S R R0

Δ1
0
Δ2 2

2
2 2 2 2 1 1 1

>r Δ1 1, ′ ⩽r Δ2 2 ∫ ∫ ++ + − ( )r f r dr f r dr· ( ) ( )r D
S R RΔ1

Δ1 Δ2
0
Δ1 Δ2 1 2

2
2 2 2 2 1 1 1

⩽r Δ1 1, ′ >r Δ2 2 ∫ ∫ +∞ ( )r f r dr f r dr· ( ) ( )D
Sm R R0

Δ1
Δ2

2
2 2 2 2 1 1 1

>r Δ1 1, ′ >r Δ2 2 ∫ ∫ +∞
+ −

∞ ( )r f r dr f r dr· ( ) ( )r
D
Sm R RΔ1 Δ1 Δ2 1

2
2 2 2 2 1 1 1

Fig. 2. Maersk’s AE10 Westbound Network.
Source: Maersk, 2017.
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ports of Dalian, Busan, Kwangyang, Ningbo, Shanghai, Xiamen and Yantian, and the eastbound subset, which incorporates the ports
of Rotterdam, Bremenhaven and Gdansk. As these ports are closely located, the impact of speed adjustments on the compensation of
their realized delays will be rather insignificant. We can therefore bundle the ports of each subset into one major subset port,
assuming that the vessel travels at the same speed within the bundled port cluster, and thus, avoid the unnecessary mathematical
complexity stemming from the modelling of the delays of all the intermediate ports. The major subset port will be the subset’s last
port of call, which further accumulates the port cluster’s distances and realized delays. This is a reasonable approximation, which
allows for the analytical evaluation of the impact of speed adjustments on the recovery of voyage delays in shipping networks with
multiple closely located intermediate ports, while leading to insignificant increases in voyage times and shipper’s total landed lo-
gistics costs.

4.2. Selection of slow steaming speeds

Before proceeding to the vessel’s voyage cost estimation under various slow steaming speeds, we need to make the following
assumptions: (i) the carrier has a number of identically sized vessels, (ii) the carrier’s transportation demand exhibits small variations,
and (iii) the capacity utilization of the vessels (namely the average number of containers transported divided by the nominal capacity
of the vessel) is the same for all alternative slow steaming speeds. While the first two assumption are necessary to calculate the
expected voyage costs per container for a stationary demand, we need the third assumption to ensure that the results for the various
slow steaming speeds are comparable.

The proposed rule for selecting the effective slow steaming speeds is explained through the following simple example. If the total
voyage duration of a specific line is 49 days at 22 knots, in order to maintain a weekly service, the carrier would need at least 7 vessels
since (49 days)/(7 vessels) = (7 days per vessel). If the carrier aims to decrease the speed, the carrier should employ an extra vessel (8
in total) and thus, the voyage duration could be extended to 56 days= (8 vessels) × (7 days per vessel). The slow steaming speed that
corresponds to this voyage duration is easily calculated through (22 knots) ∗ (49 days)/(56 days)= 19.2 knots. Any other speed
higher than 19.2 knots would lead to higher vessel fuel consumption and thus costs, without improving the service provided by the
line. Thus, we only examine vessel speeds calculated by the above rule.

4.3. Shipper’s costs

For each shipper at the port of Segment i, we examine a two-echelon logistics network for supplying CDCi with a single product
type from a distant manufacturing site. As the purpose of this paper is to provide a general solution methodology that can capture the
impact of slow steaming on the shipper's logistics costs for the cases of products with different value to volume ratios, i.e. books or
laptops vs. white goods, we express the product’s demand parameters in full container loads (FCL). We further assume that the
demand of the product per time period at CDCi in FCLs, denoted by Xi, is an i.i.d. normal random variable with mean μi and standard
deviation σi. CDCi employs a continuous review (Q, R) inventory planning policy aiming to optimize the total landed logistics costs of
the shipper. These costs encompass: (i) the on-hand inventory holding costs per FCL per time unit at the CDCi, h; (ii) the backorder
costs per FCL stockout at CDCi, b; (iii) the facility operating costs per time unit, CKCDCi; and (iv) its pipeline inventory holding cost per
FCL per time unit from the distant loading point, hp.

The lead time of CDCi LS
i , is stochastic as it consists of the stochastic voyage duration till the destination port of segment i, the

delay until and the dwell time at the port of segment i, plus the transportation time from the destination port of segment i to CDCi.
Thus, the examined product’s mean and standard deviation of demand during LS

i time units are provided by the following well-known
equations (Chopra and Meindl, 2004, pp. 311):

=μ μ E L· ( ),L i S
i

S
i (6)

= +σ E L σ μ S( )· · .L S
i

i i L
2 2 2

S
i

S
i (7)

For each slow steaming speed, the product’s expected on-hand inventory level and its expected number of backorders per re-
plenishment cycle for standard normal demand are then provided by Eqs. (8) and (9), respectively (Silver et al., 1998):

≃ +E IL σ z
Q

( ) ·
2

,S
i

L S
i S

i

S
i

(8)

= − −E BO σ φ z z Φ z( ) ·[ ( ) (1 ( ))],S
i

L S
i

S
i

S
i

S
i (9)

where:

• QS
i is a decision variable which represents the order batch size set by the inventory planner of the CDC at the distant manufacturer;

• zS
i is a decision variable representing the safety stock factor of the examined product at the CDC;

• Φ z( )S
i represents the cumulative distribution function of the product’s standardized normal demand per time unit at the CDC;

• =φ z dΦ z dz( ) ( )/S
i

S
i

S
i is the probability density function of the product’s standardized normal demand in FCLs per time unit;

• σ LS
i represents the standard deviation of demand in FCLs during LS

i time units;

• SL
2
S
i represents the variance of the lead time LS

i .
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In order to estimate the CDC's operating cost per time unit associated to the CDC capacity K( )S
i leased by the shipper for the storage

of the product type examined, we employ the methodology proposed by Mallidis et al. (2014). We thus employ: = +K σ z Q·S
i

L S
i

S
i

S
i ,

consisting of: (i) a safety stock σ z·L S
i

S
i ; and (ii) a capacity Qs

i which is assumed large enough to handle its average peak demand during

its stochastic lead time LS
i . This capacity is then expressed as a ratio to the CDC’s total capacity ( )KCDCi which is considered preset. The

ratio of the product’s leased storage capacity to the preset capacity of the CDC, is then multiplied by the CDC’s total operating costs
which are also fixed as they are estimated as a non-linear function of its preset capacity (K )CDCi .

4.3.1. Cost optimization model
We employ a cost objective function that minimizes the shipper’s inventory-related costs at the CDC. Tables 5 and 6 provide the

nomenclature of the model’s decision variables and cost parameters, respectively.
The holding cost per FCL per time unit, h, is charged on the expected on-hand inventory level at the CDCi, while the pipeline

inventory holding cost per FCL per time unit, hp, is charged on the product’s mean lead time demand ( )μLS
i from the Loading Point to

CDCi. The backorder cost per FCL stockout, b, is charged on the expected number of stockouts per time unit, μ Q E BO( / )· ( )i S
i

S
i where

E BO( )S
i , represents the expected number of backorders per replenishment cycle. The transportation cost per FCL trip CD is charged on

the mean demand in FCLs per time unit μi. Finally, the CDCi’s operational costs assigned to the shipper’s leased storage capacity are
equal to the ratio of the product’s leased capacity KS

i , to the CDCi’s preset capacity KCDCi, multiplied by the CDCi’s nonlinear total
operating costs per time unit, CKCDCi, K C( /K )·S

i
CDC Ki CDCi.

Consequently, the shipper's expected total cost per time unit E TC( )S
i is minimized with respect to the safety stock factor zS

i

(expressions E IL( )S
i , E BO( ))S

i , and KS
i ), and the order batch quantity QS

i (expressions E IL( )S
i , KS

i , μi/QS
i ) through:

= + + + +E TC Q z E IL b μ Q E BO C μ h μ K Cmin ( ( , ) h· ( ) ·( / )· ( ) · · ( /K )·S
i

S
i

S
i

i S
i

S
i

D i
p

L S
i

CDC Ki S
i i CDCi (10)

The shipper's expected total cost per FCL can be then easily derived by multiplying Eq. (10), with 1/μi. The optimization of Eq.
(10) with respect to the safety stock factor zS

i and order batch size QS
i leads to the following Proposition I.

Proposition I. The cost objective function is convex, and the optimal value of the examined product’s safety stock factor zs
i and the

order batch quantity Qs
i at the CDC are jointly obtained from:

= − −Φ z b μ Q h Q b μ( ) [ · ·K C · · ·K ]/ · ·K ,S
i

i CDC CDC S
i

S
i

CDC i CDCi i i i (11)

= − − ⎡
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i

i L S
i

S
i

S
i CDC

CDCS
i

i

i (12)

only for values of ⩾z 0.5531S
i (for the Proof see Appendix A).

Α close observation of Eq. (11) indicates that the impact of slow steaming, through the higher lead times L( )S
i , on the optimal

safety stock factor zS
i is indirect as it depends on QS

i , while Eq. (12) indicates that the marginal impact of lower ship speeds on the
CDC's order batch quantity QS

i , continuously decreases as the lead time LS increases according to the root of the standard deviation of
demand during the stochastic lead time L σ( )S

i
LS

i .

4.4. An activity-based voyage cost estimation model

The employment of slow steaming may lead to lower fuel consumption, which in turn leads to lower fuel costs, and lengthier
voyage times, which lead to higher operational costs. To capture these impacts, we estimate the carrier’s voyage costs of each
segment, assuming that the shipping line has a fleet of same sized carriers, and employ a shipping cost model similar to that of Brouer

Table 5
Decision variables.

zS
i Safety stock factor of the examined product at the CDCi, for each slow steaming speed.

QS
i Order batch quantity for the examined product in FCLs, for each slow steaming speed (FCLs).

Table 6
Parameters.

h Holding cost per time unit per FCL (€/time unit/FCL)
hp Pipeline inventory holding cost per time unit per FCL (€/time unit/FCL)
b Backorder cost per FCL stockout at the CDCi (€/FCL)
CDi Transportation cost per FCL from the entry port to the CDCi (€/FCL)

KS
i Product’s leased storage capacity at the CDC= +z Qσ ·LS

i S S1 1 (FCLs)

KCDCi Preset capacity of the examined CDCi (FCLs)
CKCDCi Nonlinear total operational cost of the CDCi per time unit (€/time unit)
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et al. (2014). The nomenclature of the employed model is summarized in Table 7.

The voyage cost of each segment i then consists of the vessel’s sailing costs, = +T C VFCC ( )·[ ]i
S
Sail

i
S

i0 , where = ⎡
⎣

⎤
⎦( )VFC FC F· ·i

S
S d

3
i
d

represents the vessel’s fuel costs per day, and S S/i d represents the ratio of the vessel’s adjusted voyage speed to the vessel’s design
speed S( )d , the vessel’s canal costs per voyage iCcanal assigned to each Segment i of the voyage equally, the vessel’s fixed port related
cost of segment i = +P FC F t PC[ · · ]F

i
well

i
Fd i and the vessel’s variable origin-port related costs per container at each segment i, PCVar

i
i.

Given the above parameters, and considering the different cases and associated adjusted speeds Si for estimating the expected voyage
duration of Segment i, the voyage costs of Segment i per FCL in the inbound (forward) and outbound (return) part of the round trip,
are provided by Eq. (13).

⎜ ⎟= ⎛
⎝

+ + ⎞
⎠

+E VC
E C P Ccanal

N
PC( )

( )
S
i S

Sail
F
i i

i
Var
i

i
(13)

5. The case study of a global logistics network

We illustrate the applicability of the proposed methodology on a realistic shipping network of an Asian white goods manufacturer,
who supplies the EU market through the entry Ports of Algeciras and Rotterdam, and a European machinery manufacturer who
supplies the Asian Market through the Ports of Muscat in Oman and Shanghai. More specifically, the Asian manufacturer supplies the
markets of Spain, and Portugal through the Port of Algeciras and the market of Germany through the Port of Rotterdam. The
European exporter supplies the markets of Oman, Bahrain and Dubai through the Port of Muscat, while the market of China, through
the Port of Shanghai. With respect to the Asian white goods manufacturer, we examine the supply of one of its goods, namely
refrigerators, while for the European machinery exporter, and as we do not have any demand data for Oman, Bahrain, Dubai and
Shanghai, we consider a typical machinery that exhibits the similar size and demand variability as that of refrigerators, and de-
termine the demand of each country as a ratio of its GDP to the GDP of Germany.

Both the refrigerators and the machinery are exported in 40 ft Equivalent Units (FEUs), thus in the case study FCL=FEU. The
FEUs are transported with a 15,000 TEU (or 7500 FEUs) mother vessel to the examined ports, and then through truck transportation
to the premises of 100,000m3 CDCs established in the ports’ nearest cities Considering an average refrigerator sales value of 453€
(Miche et al., 2015) and by deducting a 21% VAT value and a 50% total profit rate of the manufacturer and the final retailer (total
71%), the refrigerator’s net average value is estimated as 453€/1.71=265€/refrigerator, leading to an average value per FEU equal
to 10,547€ (265€/refrigerator x 39.8 refrigerators/FEU), as one FEU typically carries 39.8 refrigerators. We assume the same values
for the machinery FEU.

5.1. Estimation of voyage delays

In order to determine the voyage delays in the route from Shanghai to Rotterdam and back to Shanghai, and as the stochastic
delay data of the container terminals of Algeciras, Rotterdam, Muscat and Shanghai are not available, we employed a heuristic
methodology, based on which, we estimate the total voyage delay from Shanghai to Rotterdam and Rotterdam Shanghai based on
real delay data in these routes, and then, allocate these delays at the ports along the routes. The steps considered for the allocation
process are summarized below.

Step 1: Determination of the Total Voyage Delay

In this step, we determine the total voyage delay from Shanghai to Rotterdam, employing the containership delay data, retrieved
by the Drewry Shipping Consultants’ Report of 2014 (see Table 22 of Appendix D). These data include delay data from a sample of
2919 vessels in all routes. In order to determine the distribution of ship voyage delays, we tested several distributions with a Chi-
square test. The CDF, the obtained x0

2 values, and the distribution parameter values for each one of the examined distribution

Table 7
Parameters of the activity-based voyage cost evaluation model.

Parameters Description

CO Operational costs of the examined vessel (€/day)
FC Bunker fuel cost (€/ton of fuel)
Fd Vessel’s voyage fuel consumption at its design speed (tons/day)
F Vessel’s fuel consumption when idle (tons of fuel/day).
Sd Vessel’s design (d) speed (knots/hour)
PCFi Fixed port-related costs of segment i (€/segment voyage).
PCvari Variable port-related cost of segment i (€/FCL/segment voyage)
iCcanal Voyage canal costs (€/segment voyage)
t well

i
d Ship dwell time at the port of segment i (days/segment voyage)

Ni Vessel’s Average Carrying Capacity in each Segment of the Voyage (FCLs)
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functions are summarized in Table 23 of Appendix D. Given the threshold value of x10,0.99
2 = 23.2, the Gamma distribution is not

rejected as in this case, <x x0
2

10,0.99
2 . Thus, and considering the Gamma Distribution with parameters κγ = 0.42 and θγ = 3.4, the

obtained mean and variance of the stochastic voyage delay is therefore κγ⋅ θγ = 1.42 and κγ⋅ (θγ)2 = 4.81 days2.

Step 2: Allocation of the total Voyage Delays to the Container Terminals of Algeciras and Rotterdam in the westbound network
and of Oman, Shanghai in the eastbound network.

The criterion for allocating the total voyage delays of Step 1 is the average ship dwell time at these ports. These times are
summarized in Table 24 of Appendix D. Assuming that the delays at each one of the container terminals also follow the Gamma
Distribution, and considering the percentages of Table 24, the mean and variance of the delay at each container terminal are listed in
Table 25.

Step 3: Determination of the κγ, θγ parameters of the Gamma distribution at the examined container terminals.

The final step of our analysis, is to determine the κγ, θγ parameters of the Gamma Distributed delays at the examined container
terminals, given the mean and variance of the Delays of Table 25. Then, and considering the CDF functions of Table 23, we obtain the
κγ and θγ parameters of the Gamma distribution for each port as these are summarized in Table 27.

5.2. Estimation of efficient slow steaming speeds

The last generation container ships have typically a maximal speed of 22 knots. While these ships can sail at speeds as low as 14 or
even 12 knots in some cases (Rodrigue, 2017), below this speed it becomes difficult to control the vessel. Accordingly, we will
consider the slow steaming speed range of 14–22 knots. Given the rule proposed in Section 4.2, and considering an estimated
roundtrip voyage duration at 22 knots equal to 48 days, the carrier requires 7 vessels for honoring its weekly delivery, leading to a
voyage time of 7 weeks per vessel. Thus, the slow steaming speeds that the carrier must adopt in order to effectively utilize the
additional idle vessels employed, are summarized in Table 8.

5.3. Voyage duration

Considering the effective slow steaming speeds of Table 8, the expected values and variances of the respective to the speeds,
voyage durations are displayed in Table 9.

5.4. Estimation of shipper’s demand in FEUs

The shipper’s average daily demand in Algeciras is 275 refrigerators while in Rotterdam, 1,131 refrigerators. These figures where
determined based on historical demand data of in the EU, provided by the Euromonitor International (2016), with an additional
assumption that the company captures a market share of 10% for imported refrigerators.

For the shipper in Oman, the demand of the transported machinery is estimated as (0.186 trillion €/3.3 trillion €) ⋅ 1,131=64
machinery items per day, where (0.186 trillion €/3.3 trillion €), represents the ratio of the sum of the GDPs of Oman Bahrain and
United Arabic Emirates to that of Germany. Similarly, for Shanghai demand is 3616 units. Considering an average number of 39.8
refrigerators per FEU, and assuming the same number of machinery items per FEU, the mean daily demand considered of the Shipper
in Algeciras is 6.9 FEUs/day, of Rotterdam is 28.4 FEUs/day, of Oman is 2 FEUs/day, and of Shanghai 90.8 FEUs/day. As daily
variations of demand were not available, we considered a steady normally distributed daily demand with a coefficient of variation
CV=0.8, leading to a standard deviation of daily demand equal to 5.5 FEUs for the shipper of Algeciras, 22.7 FEUs for the shipper in
Rotterdam, 1.6 FEUs for the shipper of Oman and 73 FEUs for the shipper in Shanghai.

Tables 10–13 display the mean lead time demand ( )μLS
i , as estimated by Eq. (6), the standard deviation of lead time demand ( )σ LS

i

estimated by Eq. (7), and the coefficient of variation of lead time demand ( )σ μ/L LS
i

S
i for all 4 segments.

An interesting finding obtained from Tables 10–13 is that even though the mean and the standard deviation of the lead time
demand increases, its CV is reduced due to the reduced voyage time variability that is achieved realized under slow steaming.

Table 8
Effective slow steaming speeds for a weekly delivery schedule.

Number of vessels Effective speeds (knots)

7 22
8 22 ⋅ (7/8) =19.3
9 22 ⋅ (7/9) =17.1
10 22 ⋅ (7/10) =15.4
11 22 ⋅ (7/11) =14.0
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5.5. Estimation of transportation costs

The following two paragraphs discuss the estimation of the deep-sea shipping transportation costs as well as the logistics cost till
the CDCs, respectively.

5.5.1. Deep-sea shipping transportation costs per FEU
The deep-sea shipping transportation costs per FEU are estimated based on Eq. (13), and given the transportation cost parameters

Table 9
Vessel’s expected value and variance of the voyage duration per Segment.

Speed Segment 1(days)-(days)2 Segment 2(days)-(days)2 Segment 3(days)-(days)2 Segment 4(days)-(days)2

knots E T( )S
1 Var T( )S

1 E T( )S
2 Var T( )S

2 E T( )S
3 Var T( )S

3 E T( )S
4 Var T( )S

4

22.0 17.88 2.07 3.12 1.89 12.07 3.05 10.86 2.80
19.3 19.85 0.85 3.27 1.86 12.89 2.72 11.52 2.23
17.1 22.27 0.33 3.57 1.66 14.35 1.66 12.94 1.85
15.4 24.69 0.14 3.89 1.48 15.97 1.27 14.45 1.07
14.0 27.14 0.06 4.22 1.31 17.44 1.05 15.79 0.70

Table 10
Mean, standard deviation and CV of lead time demand of Segment 1 (Shanghai-Algeciras).

Speed (knots) μLS
i (FEUs) σ LS

i (FEUs) CV

22.0 132.2 26.1 19.8%
19.3 145.8 26.2 17.9%
17.1 162.5 27.1 16.7%
15.4 179.2 28.3 15.8%
14.0 196.1 29.5 15.0%

Table 11
Mean, standard deviation and CV of lead time demand of Segment 2 (Algeciras-Rotterdam).

Speed (knots) μLS
i (FEUs) σ LS

i (FEUs) CV

22.0 657.3 123.0 18.7%
19.3 717.5 123.4 17.2%
17.1 794.7 126.7 15.9%
15.4 872.6 131.0 15.0%
14.0 951.5 135.6 14.3%

Table 12
Mean, standard deviation and CV of lead time demand of Segment 3 (Rotterdam-Oman).

Speed (knots) μLS
i (FEUs) σ LS

i (FEUs) CV

22.0 26.7 6.8 25.5%
19.3 28.3 6.9 24.4%
17.1 31.3 7.0 22.4%
15.4 34.5 7.1 20.6%
14.0 37.4 7.2 19.3%

Table 13
Mean, standard deviation and CV of lead time demand of Segment 4.

Speed (knots) μLS
i (FEUs) σ LS

i (FEUs) CV

22.0 2215.9 420.7 19.0%
19.3 2350.3 421.2 17.9%
17.1 2611.8 425.1 16.3%
15.4 2896.0 433.1 15.0%
14.0 3151.1 444.5 14.1%
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in each Segment 1–4, as illustrated in Table 14.

5.5.2. Shipper’s holding, backorder and operational costs per day at the CDC
Given the refrigerator’s net average value of 265€/refrigerator and an annual target return on capital of 12% (Eefsen and

Simonsen, 2010; Yin et al. 2014), the inventory holding cost per FEU per day is estimated as h=(265·39.8·0.12)/365= 3.47€/FEU/
day. However, and as the pipeline inventory cost per FEU per day does not incorporate the facility-related operating costs, we further
assume that it represents 80% of the inventory holding costs per FEU per day and is therefore equal to hp=2.78€/FEU/day. Re-
garding the CDC’s back order cost value, b, we assume that this cost represents the shipper’s loss of goodwill which due to the
extensive competition in the white goods retail market, is estimated as 5% of the FEU’s average net value, and is therefore equal to
0.05·10,547=527.35€/FEU stockout.

Finally, in order to determine the CDC’s operating costs, we employed the logarithmic equation: 564.7·ln(KCDCi)-4112.9 based on
DC operating cost data provided by Mallidis et al. (2014), where KCDCi = 100,000m3.

5.6. Numerical analysis

We proceeded by estimating the cost impact of lower vessel speeds on the vessel’s voyage costs and on the shipper’s logistics costs
in each segment. For each segment of the network, we solved five instances of Eq. (13) one for each effective speed of Table 8. Tables
15 and 16 capture the impact of slow steaming on the carrier’s voyage and on the shipper’s logistics costs per FEU considering a
weekly service.

The results of Table 15 indicate that the impact of slow steaming on voyage cost reductions does not necessary increase as voyage
transportation distances increase. These impacts depend on a breakpoint distance travelled that effectively balances the marginal
operational cost increases under slow steaming, as voyage days increase, to the marginal fuel cost reductions as voyage speeds and
thus voyage fuel consumption decreases. Thus, in the examined shipping network and under slow steaming, we observe that the
highest voyage cost reduction of 792.9€− 757.8€=35.1€ per FEU is achieved at the voyage distance of Segment 3 (5,909 km), even
though it involves a significantly lower voyage distance compared to that of Segment 1 (9,116 km).

With respect to the Shipper, the impact of slow steaming on his total landed logistics costs are summarized in the following Table 16.

Table 14
Deep-sea shipping transportation cost parameters for the voyage segments.
Source: Brouer et al. (2014), Searates.com and own input: A 1.14 Euro/USD exchange rate is considered.

Parameters Values

Shanghai-Algeciras (nautical miles) 9,116
Algeciras-Rotterdam (nautical miles) 1,360
Rotterdam-Muscat (Oman) 5,909
Muscat (Oman)-Shanghai 5,308
Vessel’s design (d) speed (knots/hour)- Sd 17
Vessel's max speed (knots/hour)- Sm 22
Vessel’s voyage fuel consumption at its design speed- F tons/day( )d 126.9
Vessel’s fuel consumption when idle (tons of fuel/day)-F 10
Ship Operating Costs per Day (€/day)- Co 49,107
Variable port-related costs per FEU, at Algeciras and Rotterdam (€/FEU/Voyage)- =PC PCVar Var1 2 469
Variable port-related costs per FEU, at Muscat (€/FEU/ segment voyage)- PCVar3 285
Variable port-related costs per FEU, at Shanghai (€/FEU/segment voyage)- PCVar4 647
Fixed port-related cost at the port of Shanghai, Algeciras, Rotterdam and Oman (€/segment voyage)- = = =PC PC PC PCF F F F1, 2, 3, 4, 25,402

Suez Canal Cost (€/ segment voyage) 462,222
IFO 180 bunker cost in Rotterdam (€)/ton of fuel (19-6-2017/ http://shipandbunker.com/prices#MGO)-FC 221
N1, N2 (FEUs) 6400
N3, N4 (FEUs) 5600

Table 15
Deep-sea shipping voyage costs per FEU for the four segments.

Speed (knots) Segment 1
(€/FEU)

Segment 2
(€/FEU)

Segment 3
(€/FEU)

Segment 4
(€/FEU)

22.0 852.2 598.8 792.9 769.2
19.3 824.8 (−3.22%) 591.2 (−1.27%) 763.6 (−3.70%) 741.5 (−3.60%)
17.1 815.4 (−1.14%) 588.5 (−0.46%) 755.1 (−1.11%) 735.5 (−0.81%)
15.4 815.1 (−0.04%) 587.7 (−0.14%) 755.6 (+0.07%) 736.6 (+0.15%)
14.0 820.9 (+0.71%) 587.9 (+0.03%) 757.8(+0.29%) 738.7 (+0.29%)

−CCarrier 852.2–820.9= 31.3€ 10.9€ 35.1€ 30.5€

−CCarrier: Carrier’s voyage cost reduction per FEU from 22 to 14 knots
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An interesting finding derived from Table 16, shows that the impact of slow steaming on the shippers’ cycle stock and pipeline
inventory holding cost increases are becoming progressively higher as the vessel travels to the last segments of the voyage, due to the
higher accumulated lead times that the shippers faces. Consequently, the shipper that utilizes the last segment of the voyage suffers
the highest increases of his logistics costs.

The shippers’ optimal values of the decision variables are depicted in Table 17.
The results of Table 17 clearly illustrate the opposed behavior of the safety stock factor and order batch size value for lower slow

steaming speeds. This is due to the tendency of the inventory system to compensate for the changes in the CDC’s service level Type I,
derived from the lower safety stock factor, by adjusting the CDC’s inventory level through changes in the order batch sizes. This
further indicates that the evaluation of the impact of slow steaming on the shipper's inventory costs necessitates the joint optimization
of both zS

i and QS
i decision variables.

5.6.1. Impact of reduced voyage duration variability
The final step of our analysis involves the quantification of the cost impact of speed adjustments on the shipper’s total landed

logistics costs for the four Segments. In order to quantify this impact, we recalculated the shipper’s logistics costs while considering
the vessel’s initial speed S( ) throughout the whole voyage, and thus the same voyage duration variability, for each slow steaming
speed. Table 18 captures the differences in costs and the cost savings per FEU that the shipper enjoys through the reduced voyage
variability that the carrier provides by adjusting speeds under slow steaming.

The results of Table 18 show that the impact of speed adjustments on the reduction of the shippers’ lead time variability and thus
safety stock holding costs, tends to increase as the vessel travels to the last segments of the roundtrip and thus, these positive impacts
are accumulated. Consequently, the shipper that utilizes the last segment enjoys the higher benefits on his logistics costs.

6. Summary and conclusions

We present an analytical modelling methodology for assessing the impact of slow steaming on the carrier’s voyage costs and on
the shipper's total landed logistics costs across a container shipping line. We initially evaluate the distribution of the delays that could
occur at the intermediate ports of call, based on historical delay data. These delays are then included in a new methodology for
analytically estimating voyage times for each voyage segment and for various slow steaming speeds. This methodology includes an
activity-based model for quantifying a vessel’s voyage costs per container, and a continuous review inventory-planning model em-
ployed for quantifying a shipper’s total landed logistics costs at the intermediate port of a shipping network. We applied the proposed
methodology on a realistic global logistics network for an Asian white goods manufacturer that supplies the EU, and of a European
machinery exporter, that supplies the Middle East and the Far East markets. The main insights obtained from our numerical analysis
are summarized below:

As the vessel travels towards the last segment of a voyage the impact of slow steaming on the associated shippers’ total landed

Table 16
Shipper’s total landed logistics costs per FEU for the four segments.

Speed (knots) Forward voyage Return voyage

Segment 1 (€/FEU) Segment 2 (€/FEU) Segment 3 (€/FEU) Segment 4 (€/FEU)

22.0 201.9 219.0 181.5 225.7
19.3 207.4 225.0 184.1 229.9
17.1 215.6 233.8 187.9 238.3
15.4 224.2 243.0 193.5 248.0
14.0 233.0 252.5 198.7 257.1

+CShipper (233–201.9)=31.1€ 33.5€ 17.2€ 31.4€

+CShipper: Shipper’s total landed logistics costs increases per FEU from 22 to 14 knots.

Table 17
Shipper’s optimal decision variable values.

Segments Segment 1 Segment 2 Segment 3 Segment 4

Speed (knots) Qs
1 zs

1 Qs
2 zs

2 Qs
3 zs

3 Qs
4 zs

4

22.0 15.3 2.067 73.7 2.002 3.9 2.116 254.4 1.970
19.3 15.4 2.066 73.9 2.001 4.0 2.112 254.7 1.969
17.1 16.0 2.050 76.2 1.988 4.0 2.112 257.4 1.965
15.4 16.8 2.030 79.2 1.972 4.1 2.102 263.0 1.955
14.0 17.6 2.009 82.4 1.955 4.2 2.089 271.0 1.943

Note that ⩾z z z, ,s s s
1 2 3 – 0.5531, and thus the first order conditions (Eqs. (11) and (12)) are satisfied. Moreover, the changes of the values of QS

i represent changes in
units of FEUs and are thus significant.
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logistics costs increases are relatively higher, due to the higher accumulated lead times they face. Thus, the last shipper suffers the
highest increases in his logistics costs.

The impact of speed adjustments on the reduction of the shippers’ lead-time variability and thus safety stock holding costs tends to
increase as the vessel moves to the end of the voyage, as these positive impacts are accumulated and thus, the last shipper enjoys the
higher benefits in his logistics costs.

The safety stock factor and the order batch size values exhibit opposed behavior for lower slow steaming speeds. This is due to the
tendency of the inventory system to compensate for the changes in the CDC’s service level Type I, derived from the lower safety stock
factor, by adjusting the CDC’s inventory level through changes in the order batch sizes.

The impact of slow steaming on voyage cost reductions does not necessary increase as voyage transportation distances increase.
These impacts depend on a breakpoint distance travelled that effectively balances the marginal operational cost increases under slow
steaming, as voyage days increase, to the marginal fuel cost reductions as voyage speeds and thus voyage fuel increases.

As the reduction of the vessel’s speed leads to a straightforward reduction of the vessel’s fuel costs, and thus shipping CO2

emissions, slow steaming can significantly improve the shippers overall environmental footprint see for example (Zis et al. 2008).

Appendix A. Proof of Proposition I

In order to prove the convexity of Eq. (10), we need to jointly optimize the function’s decision variables Q z( , )S
i
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Table 18
Impact of Speed Adjustments (S.A) to the Shipper’s costs per FEU for the four segments.

Speed (knots) Segment 1
(€/FEU)

Segment 2
(€/FEU)

Segment 3
(€/FEU)

Segment 4
(€/FEU)

w S.A. w/o S.A. w S.A. w/o S.A. w S.A. w/o S.A. w S.A. w/o S.A.

22.0 201.9 201.9 219.0 219.0 181.5 181.5 225.7 225.7
19.3 207.4 209.2 225.0 226.5 184.1 184.6 229.9 230.9
17.1 215.6 218.0 233.8 236.1 187.9 190.2 238.3 241.0
15.4 224.2 226.7 243.0 245.7 193.5 196.3 248.0 251.8
14.0 233.0 235.5 252.5 255.6 198.7 201.7 257.1 261.4

€/FEU 233–235.5= 2.5€ 3.1€ 3.0€ 4.3€
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Fig. 3. Behavior of Constraint (A) for various values of zS
i .
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Appendix B. Number of refrigerators per FEU

In order to express the shipper's demand in FEUs, we need to be able determine the number of refrigerators that fit in one FEU.
Thus, an average volume per refrigerator is required. We therefore employed the dimensions' data of various type of refrigerators
provided by the website of Rempros (2016). Assuming that the sales of each refrigerator type exhibit the same proportion to the
company’s total refrigerator sales, we derived an average refrigerator volume of 0.90m3 per refrigerator. Table 19 summarizes the
dimension data of the examined refrigerators.

However, and as the shipping of the refrigerators requires additional packaging space, for each refrigerator type of Table 19, we
added on average, an additional 0.1143m space requirement in height, and 0.089m in width and depth. We then re-estimated the
average shipping volume per refrigerator which is equal to 1.19m3. To this end, in order to determine the number of refrigerators
that can fit in an FEU, we considered the volume of an FEU=67.7 m3, an average loading rate per FEU=70% (Eefsen and Simonsen,
2010; Yin et al., 2014), and the average shipping volume per refrigerator of 1.19m3, leading to an average number of 39.8 re-
frigerators per FEU.

Fig. 4. Behavior of Constraint (B) for various values of zS
i .
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Appendix C. Expected voyage duration cases of segments 3 and 4

See Tables 20 and 21.

Table 19
Average volume per refrigerator.

Freezer- refrigerator Type Width (m) Height (m) Depth (m) Volume (m3)

Top mounted 0.749 1.689 0.7145 0.904
Bottom 0.822 1.715 0.7650 1.079
French door bottom 0.823 1.728 0.8035 1.142
French door side by side 0.835 1.727 0.8030 1.158
Compact 0.483 0.641 0.5525 0.171
Average 0.90

Table 20
Expected voyage duration cases for Segment 3.

Cases Expected voyage duration E T( )c S
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Table 21
Expected voyage duration cases for Segment 4.

Cases Expected voyage duration E T( )c S
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Appendix D. Total voyage delay allocation to the shipping network’s entry ports

See Tables 22–27.

Table 22
Distribution of vessel arrival delays.

Time intervals (days) Observed frequency (No. of vessels)

0–1 1,838
1–2 465
2–3 237
3–4 120
4–5 85
5–6 41
6–7 53
7–8 41
8–9 18
9–10 15
10–11 9

Total 2,919

Table 23
CDF of the examined distributions and outputs of the Chi-square test.

Distrib. CDF Parameters x0
2 p-value

Normal ⎡
⎣

+ ⎤
⎦

−( )1 erf μ
σ

1
2

x
2

mean=0.57 days
variance= 6.8 days2

4944 100%

Gamma γ θ
Γ

(k,x / )
(k)

mean=1.42 days
variance= 4.81 days2

23 98.9%

Weibull
−

−⎛
⎝

⎞
⎠1 e : x0λ

κx
w

w mean=1.54 days
variance= 2 days2

29 99.9%

Lognorm. ⎡
⎣

+ ⎤
⎦

−( )1 erf μ
σ

1
2

ln(x)
2

mean=1 day
variance= 3.3 days2

1778 100%

Expon. − −1 e : x0λx mean=0.62 days 69 100%

Table 24
Average vessel waiting times.
Source: Slack and Comptois, (2013).

Port Ship Dwell Time (Days) Percentage of total dwell time

Route East-Asia
Algeciras 0.74 37%
Rotterdam 1.24 63%

Route Asia-Europe
Oman 1.12 57%
Shanghai 0.85 43%

Table 25
Mean and variance of the Gamma Distributed Delays.

Port Mean delay (Days) Variance of the delay (days2)

Algeciras 0.53 1.78
Rotterdam 0.89 3.03
Oman 0.81 2.74
Shanghai 0.61 2.07
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