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DNA damage sensitivity of SWI/SNF-deficient cells
depends on TFIIH subunit p62/GTF2H1
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Mutations in SWI/SNF genes are amongst the most common across all human cancers, but

efficient therapeutic approaches that exploit vulnerabilities caused by SWI/SNF mutations

are currently lacking. Here, we show that the SWI/SNF ATPases BRM/SMARCA2 and BRG1/

SMARCA4 promote the expression of p62/GTF2H1, a core subunit of the transcription factor

IIH (TFIIH) complex. Inactivation of either ATPase subunit downregulates GTF2H1 and

therefore compromises TFIIH stability and function in transcription and nucleotide excision

repair (NER). We also demonstrate that cells with permanent BRM or BRG1 depletion have

the ability to restore GTF2H1 expression. As a consequence, the sensitivity of SWI/SNF-

deficient cells to DNA damage induced by UV irradiation and cisplatin treatment depends on

GTF2H1 levels. Together, our results expose GTF2H1 as a potential novel predictive marker of

platinum drug sensitivity in SWI/SNF-deficient cancer cells.
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Compiled sequencing efforts have revealed the high pre-
valence of mutations in chromatin remodeling genes
across many different types of cancer1,2. Inactivating

mutations in subunits of the SWI/SNF ATP-dependent chro-
matin remodeling complexes are amongst the most frequently
mutated genes in human cancers3,4, which argues for a major role
in cancer pathogenesis. SWI/SNF complexes contain one of two
mutually exclusive catalytic ATPase subunits, BRM/SMARCA2
or BRG1/SMARCA4, and multiple core and accessory subunits
that together form a variety of functionally distinct complexes5.
BRM and BRG1 use the energy of ATP to remodel chromatin,
through which they regulate transcription, DNA damage repair
(DDR) and replication and impact a variety of cellular processes
including cell differentiation and growth1,5,6.

Mutations in SWI/SNF subunits result in aberrant chromatin
structures, increased genomic instability and perturbation of
transcriptional programs, which are all hallmarks of cancer that
can contribute to cell transformation and tumorigenesis1,5–7.
Because the products of these typically loss-of-function mutations
do not constitute obvious drug targets, efficient therapeutic
strategies to target tumor cells with mutant SWI/SNF genes are
still lacking. Detailed insight into the molecular mechanisms of
the many anti-tumorigenic cellular functions of SWI/SNF is
required in order to develop such strategies.

SWI/SNF proteins have been implicated in multiple DDR
mechanisms, including double strand break (DSB) repair and
nucleotide excision repair (NER), and are thought to coordinate
signaling and efficient recruitment of repair proteins to
chromatin6,8,9. NER removes a wide range of structurally unre-
lated helix-distorting DNA lesions, including cyclobutane pyr-
imidine dimers (CPDs) and 6–4 photoproducts (6–4PPs) induced
by UV-light, ROS-induced cyclopurines and intrastrand cross-
links generated by chemotherapeutic platinum drugs10,11. If not
repaired, these lesions interfere with transcription and replication,
which can result in cell death or lead to mutations and genome
instability that contribute to oncogenesis. Depending on the
location of DNA lesions, two distinct DNA damage detection
mechanisms can trigger NER. Transcription-coupled NER (TC-
NER) is initiated when RNA Polymerase II is stalled by lesions in
the transcribed strand and requires the CSB/ERCC6, CSA/
ERCC8, and UVSSA proteins11,12. Global-genome NER (GG-
NER) detects lesions anywhere in the genome by the concerted
action of the damage sensor protein complexes UV-DDB, com-
prised of DDB1 and DDB2, and XPC-RAD23B-CETN213. XPC
and CSB are essential for the subsequent recruitment of the core
NER factors to damaged DNA, starting with the transcription
factor IIH (TFIIH)12,14, a 10-subunit complex involved in both
transcription initiation and NER15. In NER, the XPB/ERCC3
ATPase and the structural component p62/GTF2H1 of the TFIIH
complex are thought to anchor the complex to chromatin, via an
interaction with XPC14,16,17, while the XPD/ERCC2 helicase is
believed to unwind DNA and verify the presence of proper NER
substrates18. Subsequent recruitment of XPA and RPA stimulates
damage verification and facilitates the recruitment and correct
positioning of the endonucleases XPF/ERCC4-ERCC1 and XPG/
ERCC5, which excise the damaged strand19. After excision, the
resulting single-stranded 22–30 nucleotide DNA gap is restored
by DNA synthesis and ligation11.

In vitro, NER is more efficient on naked DNA templates than
on chromatinized DNA20, on which it was found to be stimulated
by yeast SWI/SNF21, suggesting that chromatin remodeling is
necessary to facilitate access to damaged DNA and efficient repair
of lesions8,9,20. Using SWI/SNF mutant C. elegans, we found that
SWI/SNF proteins protect organisms against UV irradiation,
implying a role for SWI/SNF in promoting NER in vivo as well22.
Several additional studies in yeast and mammals further indicate

that SWI/SNF proteins are important for the UV-induced
DDR23–27. However, conflicting observations on whether SWI/
SNF regulates damage detection or facilitates later repair steps
have made it difficult to deduce the exact mechanism underlying
SWI/SNF activity in NER. Furthermore, the majority of studies
have focused on the role of the BRG1 ATPase or the
SNF5 subunit, but a putative role for BRM has never been
investigated in detail.

In this study, we show that both BRM and BRG1 are necessary
for efficient NER by promoting the expression of TFIIH subunit
GTF2H1. Furthermore, we find that cells with permanent BRM
or BRG1 loss have the ability to restore GTF2H1 levels. As a
consequence, DNA damage sensitivity of BRM- or BRG1-
deficient cells correlates with GTF2H1 protein levels, which
could, potentially, be used to select SWI/SNF-deficient cancers
that are more sensitive to platinum drug chemotherapy.

Results
SWI/SNF is required for efficient NER. To test for SWI/SNF
involvement in GG-NER, we measured UV-induced unscheduled
DNA synthesis (UDS) in C5RO primary fibroblasts depleted of
BRM or BRG1 by siRNA. BRM and BRG1 knockdown cells
showed a clear decrease in UDS, comparable to cells in which the
core NER factor XPA was depleted (Fig. 1a, b; Supplementary
Fig. 1a). In addition, we measured recovery of RNA synthesis
(RRS) after UV-C irradiation in U2OS cells depleted of SWI/SNF,
to test involvement in TC-NER. After irradiation, transcription
levels in cells with BRM or BRG1 knockdown failed to recover to
the same degree as in control cells (Fig. 1c, d; Supplementary
Fig. 1b). These results indicate that both BRM and BRG1 are
essential for a robust GG- and TC-NER activity after UV
irradiation.

To date, most efforts to study SWI/SNF function in NER have
focused on BRG1, which prompted us to direct our efforts to
BRM and to determine in which NER step this SWI/SNF ATPase
plays a role. We used immunofluorescence (IF) to monitor the
recruitment of endogenous key NER proteins to local UV-C
damage (LUD)—induced by irradiation through a microporous
membrane-, 30 min after damage induction in siBRM treated
U2OS cells. Recruitment of the early DNA damage sensors DDB2
and XPC to LUD, marked by CPD staining, was unaffected by
BRM depletion (Fig. 1e, f, Supplementary Fig. 1c). We validated
these results by real-time confocal imaging of XPC-GFP
recruitment to LUD induced by a 266 nm microbeam laser,
which confirmed that XPC assembly kinetics were unchanged
after BRM depletion (Supplementary Fig. 1d). Also, recruitment
of CSB, which is difficult to assess using IF, to microbeam LUD
was unaffected by BRM depletion (Supplementary Fig. 1e).
Strikingly, however, BRM depletion significantly reduced the
recruitment to LUD of the TFIIH proteins XPB, XPD, and
GTF2H1 and downstream proteins XPA and XPF, as measured
by IF (Fig. 1e, f). These results show that BRM does not facilitate
lesion detection in GG- and TC-NER, but is required for the
recruitment of the downstream NER damage verification and
excision machinery, thus explaining why NER is compromised in
its absence.

BRM is required for the recruitment of TFIIH to chromatin.
To dissect how BRM depletion impairs NER, we focused on the
TFIIH complex and measured real-time XPB-GFP accumulation
at 266 nm laser-induced LUD, which was significantly lower
(more than twofold) after BRM knockdown (Fig. 2a, b, Supple-
mentary Fig. 1f). We confirmed this result with an additional
independent siRNA (siBRM#2) to exclude siRNA off-target
effects (Supplementary Fig. 1g). Using fluorescence recovery
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Fig. 1 SWI/SNF is required for efficient NER. a Quantification of unscheduled DNA synthesis (UDS) in C5RO primary fibroblasts treated with non-targeting
control (CTRL), XPA, BRM, and BRG1 siRNAs (Supplementary Fig. 1a). UDS was determined by EdU incorporation for 1 h after UV-C (16 J/m2) irradiation
followed by fluorescent staining of the incorporated EdU. Fluorescence was quantified and normalized to control, set to 100%. Mean & S.E.M. of > 200
cells per sample from two independent experiments. **P < 0.01, ***P < 0.001, relative to siCTRL. b UDS representative pictures, 1 h after UV-C. Scale bar:
25 µm. c Quantification of recovery of RNA synthesis (RRS) in U2OS cells treated with non-targeting control (CTRL), XPA, BRM, and BRG1 siRNAs
(Supplementary Fig. 1b). Transcription levels in non-irradiated cells and in cells 2 and 20 h after UV-C irradiation (6 J/m2) were determined by a 2 h pulse-
labeling with the uridine analogue EU and subsequent fluorescent staining and measurement of incorporated EU. RRS levels were normalized to non-
irradiated cells, set to 100%. Mean and S.E.M. of > 200 cells per condition from at least two independent experiments. *P < 0.05, ***P < 0.001, relative to
each siCTRL in each time point. d RRS representative pictures, 20 h after UV-C irradiation. Scale bar: 25 µm. e Immunofluorescence (IF) showing
recruitment of the indicated NER proteins (green channel) to local UV-C damage (LUD) in U2OS cells treated with control or BRM siRNAs (Supplementary
Fig. 1c). Cells were fixed 30min after inducing LUD with UV-C irradiation (60 J/m2) through a microporous membrane (8 µm). UV lesions were marked
with staining against CPD or XPC, red channel. DNA was stained with DAPI. Scale bar: 5 µm. f Quantification of NER proteins recruitment to LUD. Relative
accumulation at LUD (over nuclear background) after siBRM was normalized to control, in which nuclear background was set at 0 and maximal signal at
LUD set to 1.0 for each protein. Mean and S.E.M. of > 100 cells per sample, of at least two independent experiments, except for GTF2H1 which was only
performed once. **P < 0.01, relative to siCTRL, n.s. non-significant
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after photobleaching (FRAP), we also measured UV-induced
XPB-GFP immobilization. As previously observed28, a fraction of
XPB immobilized in response to UV-C irradiation in control
conditions, as a result of TFIIH binding to UV-damaged DNA
(Supplementary Fig. 1h). However, this UV-induced XPB
immobilization was substantially reduced when BRM was
depleted by siRNA (Supplementary Fig. 1h and quantified in
Fig. 2c). These results further corroborate our IF experiments
(Fig. 1e, f) and suggest that BRM is needed for efficient damage
loading of TFIIH.

We also assessed damage-induced chromatin loading of TFIIH
in U2OS cells with cellular fractionation, which confirmed that
UV-induced loading of TFIIH subunits XPB and XPD, but not of
XPC, was strongly reduced after BRM depletion (Fig. 2d, e).
Strikingly, even in the absence of DNA damage, TFIIH
association with chromatin was reduced, whereas its non-
chromatin bound pool did not change significantly after BRM
knockdown (Supplementary Fig. 2a). This implies that TFIIH is
unable to efficiently interact with DNA irrespective of whether
there is DNA damage or not. In addition, we noticed that
association of BRM itself with chromatin did not change after
DNA damage (Fig. 2d). We also could not detect recruitment of
BRM to LUD inflicted by irradiation through a microporous
membrane on IF (Supplementary Fig. 2b) and did not observe
recruitment of GFP-tagged BRM to LUD inflicted by 266 nm

microbeam laser, as analyzed by real-time confocal imaging
(Supplementary Fig. 2c). These results suggest that BRM is not
actively recruited to sites of UV damage. Moreover, immuno-
precipitation of XPB-GFP did not reveal an interaction of TFIIH
with BRM, neither in the presence nor absence of UV-DNA
damage (Supplementary Fig. 2d), while GTF2H1 was successfully
co-purified with XPB-GFP, as expected. These observations
indicate that BRM is not associated with TFIIH nor directly
involved in its recruitment to chromatin, but suggest that BRM
affects TFIIH chromatin binding in another way, possibly by
regulating its general activity, stability or expression of its
subunits.

BRM stabilizes TFIIH by promoting GTF2H1 expression. The
TFIIH complex consists of ten subunits and becomes unstable if
one of these is impaired15,29–31. Given the fact that SWI/SNF acts
in transcription regulation, we considered the possibility that
BRM transcriptionally regulates one or more TFIIH genes.
Therefore, we analyzed the individual expression of all TFIIH
genes by real-time-qPCR (RT-qPCR) in U2OS cells after BRM
knockdown. While expression of most TFIIH genes was unaf-
fected by BRM knockdown, GTF2H1 expression was strongly
reduced (Fig. 3a). Immunoblot analysis revealed that this also
resulted in lowered GTF2H1 protein levels (Fig. 3b), which we
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Fig. 2 BRM is required for the recruitment of TFIIH to chromatin. a Real-time imaging of XPB-GFP accumulation at 266 nm UV-C laser-induced LUD in
XPCS2BA cells treated with control and BRM siRNA (siCTRL and siBRM, respectively; Supplementary Fig. 1f). Pre-damage fluorescence intensity (nuclear
background) was set to 100% (t= 0). Mean & S.E.M. of three independent experiments each with more than ten cells per condition. P < 0.001, compared
to siCTRL. b Representative images of real-time recruitment of XPB-GFP, which resides exclusively in the nucleus, to laser generated LUD. Arrows indicate
LUD regions. c Quantification of XPB-GFP immobile fraction in XPCS2BA fibroblasts. The mobility of XPB-GFP was determined by fluorescence recovery
after photobleaching (FRAP) in mock and UV-C irradiated (10 J/m2) cells treated with non-targeting control (CTRL) or BRM siRNAs, as depicted in
Supplementary Fig. 1h. The UV-induced immobile fraction (mean & S.E.M. from three independent experiments, with at least ten cells measured per
condition each time) was determined as described in Supplementary Fig. 1h. ***P < 0.001 relative to UV-irradiated siCTRL. d Immunostaining of soluble
(nucleoplasm) and chromatin-bound XPB, XPD, XPC, BRM, and H1.2 (as loading control) in U2OS cells treated with non-targeting control (CTRL) or BRM
siRNAs. Cells were collected for protein fractionation at different time points after UV-C irradiation (20 J/m2). e Relative quantification of chromatin-bound
XPB and XPD, normalized to non-irradiated siCTRL, set to 1.0. Mean & S.E.M. of two independent experiments. Full-size immunoblot scans are provided in
Supplementary Fig. 6a
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further corroborated by IF staining of GTF2H1 after BRM
depletion using an independent siRNA (siBRM#2), to exclude
siRNA off-target effects (Supplementary Fig. 3a, b). Besides
GTF2H1, we also found mildly reduced expression of XPB, both

at the mRNA and protein level. In contrast, protein levels of XPD
and CCNH—whose mRNA levels were mildly increased, and of
TFIIEβ, XPC, and DDB2 were unaltered after BRM depletion
(Fig. 3a, b). To verify that BRM can regulate GTF2H1
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Fig. 3 BRM stabilizes TFIIH by promoting GTF2H1 expression. a Relative quantification of individual TFIIH genes expression in U2OS cells treated with
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respective peaks (bottom) illustrate BRG1 (purple) and BRM (green) enrichment at the promoter of GTF2H1 in HepG2 cells (upon shNS transfection32).
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irradiated cells 48 h after siRNA treatment. EU relative fluorescence intensity was set to 100% in siCTRL treated cells. Mean & S.E.M. of > 200 cells from
two (siGT2H1) and three (siBRM and siBRG1) independent experiments. Full-size immunoblot scans are provided in Supplementary Fig. 6b, c
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transcriptionally, we re-analyzed published whole-genome BRM
ChIP-seq data for HepG232 and RWPE133 cells. In both cell types
we observed an enrichment of BRM ChIP-seq signal at the
GTF2H1 promoter region, suggesting the association of BRM
with active regulatory regions of the GTF2H1 gene (Fig. 3c,
Supplementary Fig. 3c). These results therefore suggest that BRM
promotes GTF2H1 expression and may explain why BRM
depletion leads to defects in TFIIH chromatin loading, as
GTF2H1 was shown to be essential for the structural integrity of
the TFIIH complex31.

To assess whether TFIIH indeed becomes unstable in the
absence of BRM, we determined the half-life of XPB in BRM-
depleted U2OS cells after blocking protein synthesis with
cycloheximide (CHX) treatment. Quantification of XPB protein
levels, normalized to DDB2, revealed a strongly accelerated
proteasome-dependent degradation of XPB in the absence of
BRM (Fig. 3d, e; Supplementary Fig. 3d). Importantly, XPB was
similarly less stable in cells depleted of GTF2H1 by siRNA
(Fig. 3d, e). To confirm that BRM depletion specifically affected
TFIIH and not other transcription factors as well (whose DNA-
binding might be regulated by BRM5,34), we tested the stability of
subunit beta of transcription initiation factor IIE (TFIIEβ).
TFIIEβ is involved in recruiting TFIIH to the transcription
initiation complex35, but its stability was not affected by BRM
knockdown (Fig. 3d, Supplementary Fig. 3e). These results,
therefore, suggest that the TFIIH complex is less stable in the
absence of BRM because of reduced amounts of GTF2H1 that
limit the stable assembly of functional TFIIH complexes. This
likely impairs the stability of TFIIH subunits and TFIIH function
in transcription and NER. Indeed, either BRM or GTF2H1
depletion also reduced transcription levels in U2OS cells, likely
due to limiting amounts of TFIIH (Fig. 3f).

GTF2H1 expression rescues TFIIH function in BRM/BRG1
depleted cells. To demonstrate that impaired TFIIH function in
BRM knockdown cells is mainly a consequence of GTF2H1
downregulation, we tested if ectopic expression of GFP-GTF2H1
or XPB-GFP (as control) reversed impaired TFIIH DNA damage
recruitment. Overexpression of both TFIIH subunits did not
affect XPD recruitment to LUD in control U2OS cells (Fig. 4a, b).
However, overexpression of GFP-GTF2H1, but not of XPB-GFP,
rescued XPD accumulation to LUD in BRM and GTF2H1
depleted cells, confirming that reduced GTF2H1 expression, as a
consequence of BRM depletion, impairs TFIIH function.

Since BRG1 depletion also resulted in GG- and TC-NER
defects (Fig. 1a–d), similar to BRM, we tested whether BRG1
knockdown also affected TFIIH function via GTF2H1. Depletion
of BRG1 led to lower overall transcription (Fig. 3f) and reduced
GTF2H1 protein levels, as assessed by both immunoblot
(Supplementary Fig. 3f) and IF using independent siRNAs to
exclude off-target effects (Supplementary Fig. 3g, h). BRG1 was
furthermore found to co-occupy the GTF2H1 promoter together
with BRM (Fig. 3c, Supplementary Fig. 3c). Also, BRG1 depletion
led to reduced XPD recruitment to LUD (Supplementary Fig. 3i),
which was rescued by ectopic expression of GTF2H1, but not of
XPB (Fig. 4b, c). BRG1 did not localize to LUD induced by
irradiation through a microporous membrane (Supplementary
Fig. 2b) or by 266 nm microbeam laser (Supplementary Fig. 2c),
implying that the protein itself does not directly participate in the
NER reaction. Moreover, both siBRM and siBRG1 did not alter
cell cycle distribution (Supplementary Fig. 3j) nor did they further
decrease reduced XPD recruitment following GTF2H1 depletion
(Supplementary Fig. 3k), indicating that BRM and BRG1 do not
impair TFIIH recruitment due to indirect effects on the cell cycle
or independently of GTF2H1. Overall, these results indicate that

the activity of both BRM and BRG1 is necessary to ensure normal
GTF2H1 levels and TFIIH function, and, therefore, NER
performance.

Chronic BRG1-deficient cancer cells restore GTF2H1. Because
BRM and BRG1 are frequently mutated in cancer3, we investi-
gated if cancer cell lines with SWI/SNF mutations showed low
GTF2H1 protein levels, as these cells would then likely be more
susceptible to DNA damaging chemotherapeutic drugs. Unex-
pectedly, BRG1-deficient non-small cell lung cancer (NSCLC)
lines A549 and H129936–38 showed normal GTF2H1 levels in
comparison to U2OS (Fig. 5a, b). Strikingly, however, BRM
knockdown in these NSCLC cell lines resulted in lower GTF2H1
expression, demonstrating that SWI/SNF-mediated expression of
GTF2H1 is not cell type-specific. BRG1 knockdown only resulted
in lower GTF2H1 levels in U2OS cells, which are wild-type for
BRG1, but not in the BRG1-deficient A549 and H1299 cell lines
(Fig. 5a, b), confirming again that GTF2H1 downregulation in
U2OS cells is not due to an siRNA-mediated off-target effect. We
next tested GTF2H1 protein levels by IF in additional BRG1 and/
or BRM-deficient cancer cell lines. However, also BRG1-deficient
Panc-1 and Hs 700T cells, BRM-deficient A2780 cells and BRM/
BRG1-deficient SW13 and C33A cells, all consistently showed
normal or even increased GTF2H1 levels, as compared to MRC5,
Hs 578 T and U2OS cells (Supplementary Fig. 4a,b). The puzzling
finding that chronic BRG1 and/or BRM deficiency in these cancer
cell lines does not lead to permanent downregulation of GTF2H1,
whereas transient depletion does, indicates that there might be an
adaptive, compensatory mechanism in these cells that restores
GTF2H1 expression to prevent chronic TFIIH dysfunction.

BRM and BRG1 have been shown to be able to compensate for
some of each other’s functions36,39 and in many BRG1-deficient
cancer cells including A549 and H1299, BRM has even become
essential for cellular growth36,38,40. To test if regulation of
GTF2H1 levels are in part responsible for BRM having become
essential in BRG1-deficient cells, we generated A549 and H1299
cell lines stably expressing GFP-GTF2H1 (Fig. 5c, Supplementary
Fig. 4c). siRNA-mediated BRM knockdown in these cells only
reduced the expression of endogenous GTF2H1 (Fig. 5c,
Supplementary Fig. 4c, d), guaranteeing that expression of the
GFP-GTF2H1 transgene, driven by the ectopic PGK promoter, is
preserved even in the absence of both SWI/SNF ATPases. We
then performed colony forming assays and found that siRNA-
mediated depletion of BRM led to profound growth inhibition of
BRG1-deficient A549 and H1299 cells. This, however, was not
rescued by stable GFP-GTF2H1 expression (Fig. 5c–e, Supple-
mentary Fig. 4e). As expected, control and BRG1 siRNA did not
affect the proliferation capacity of these BRG1-deficient cells.
These results indicate that synthetic lethality induced by BRM
depletion in BRG1-deficient cancer cells is not dependent on
GTF2H1 expression and likely involves other functions of these
ATPases.

DNA damage sensitivity of BRM cells correlates with GTF2H1
levels. To confirm that cells can restore GTF2H1 expression as
adaptation to chronic SWI/SNF dysfunction and to investigate
the functional consequences, we permanently knocked out BRM
and BRG1 in immortalized MRC5 fibroblasts, by transfection
with sgRNAs targeting either BRM (sgBRM) or BRG1 (sgBRG1).
After careful selection of transfected cells, we confirmed by
immunoblotting that this heterogeneous pool of transfected cells
showed an overall highly efficient depletion of BRM or BRG1 and
a concomitant downregulation of GTF2H1 levels (Fig. 6a, b).
However, after culturing cells for multiple passages, IF of the
heterogeneous pool of BRM and BRG1 knockout cells revealed

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06402-y

6 NATURE COMMUNICATIONS |  (2018) 9:4067 | DOI: 10.1038/s41467-018-06402-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


that individual cells had either retained the low GTF2H1
expression or restored it to wild-type level (Supplementary
Fig. 5a). Establishment of multiple clonal cell lines from the
MRC5 sgBRM pool of cells showed that many clones exhibited
normal GTF2H1 levels, despite having no detectable BRM
expression (Supplementary Fig. 5b). These striking findings show
that cells are often able to adapt to the loss of one of the ATPase
SWI/SNF subunits by restoring normal GTF2H1 expression
levels.

We next selected two clones with low (c1 and c6) and two
clones with normal (c3 and c7) GTF2H1 expression and
confirmed the reduced and rescued GTF2H1 levels and BRM
knockout by IF and immunoblot (Fig. 6c–f) and by sequencing
the sgBRM target region (Supplementary Fig. 5c). Transient
expression of BRM-GFP in c1 cells increased GTF2H1 expression
(Fig. 6g), clearly demonstrating not only that the lower GTF2H1
levels are caused by BRM depletion but also that these are
reversible. Transient BRG1-GFP expression, however, did not
increase GTF2H1 protein levels in these cells (Fig. 6g). Likewise,

stable ectopic expression of GFP-tagged BRG1 in U2OS cells did
not prevent the reduction in GTF2H1 levels after siBRM
treatment (Supplementary Fig. 5d). These results suggest that
restoration of GTF2H1 levels, as observed in cells with chronic
BRM/BRG1 deficiency, is likely not due to compensation by the
other ATPase.

Due to the central function of TFIIH in NER, we considered
whether GTF2H1 levels in BRM knockout cells correlate with
NER capacity and thus with sensitivity to DNA damaging agents.
XPD recruitment to LUD was severely impaired in c1 cells with
low GTF2H1 levels, but not in c3 cells with normal GTF2H1
levels (Fig. 6h, i). Clonal UV-survival assays corroborated these
observations, showing that only c1 cells were UV-hypersensitive
(Fig. 6j). These intriguing results could imply that cancer cells
that have lost the activity of SWI/SNF subunit(s) may be
differentially sensitive to DNA damaging chemotherapeutics
depending on their GTF2H1 levels. Platinum-based drugs such
as cisplatin are widely administered to treat various types of solid
tumors41 and kill cells by inducing DNA intra- and interstrand
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crosslinks that are mainly repaired by NER42 and interstrand
crosslink repair. Therefore, we tested cisplatin sensitivity of c1
and c3 cells to evaluate if this also correlates with their GTF2H1
expression levels. Markedly, c1 cells, but not c3 cells, showed
increased sensitivity to cisplatin (Fig. 6k). To verify these findings,
we also tested DNA damage sensitivity of BRM knockout clones
c6 and c7, exhibiting respectively low and restored GTF2H1 levels
(Fig. 6c–f). UV and cisplatin survival of these clones (Fig. 6l, m)
confirmed that indeed GTF2H1 levels in BRM knockout cells
determine NER capacity and sensitivity to DNA damage. These
results indicate that loss of BRM sensitizes cells to cisplatin only if
GTF2H1 protein levels are lowered, and imply that GTF2H1
levels could be used as a predictive marker for platinum drug
sensitivity of SWI/SNF-deficient cancers.

Discussion
Inactivating mutations in SWI/SNF subunit genes are amongst
the most recurrent mutations found in all human cancers3,4. For
instance, BRG1 is mutated in 90% of small cell ovarian, 27% of
skin and 5% of small cell lung cancers1,7,37. The homologous
SWI/SNF ATPase BRM is also recurrently lost in multiple pri-
mary tumors and cancer cell lines, such as in over 15% of lung,
ovarian and breast cancers43 and was found to protect mice
against UV-induced skin cancer44. It is thus advantageous to
identify general vulnerabilities caused by SWI/SNF deficiency in

pathways with anti-tumorigenic function, to create opportunities
for the development of effective therapeutic approaches.

In this study, we show that both BRM and BRG1 promote
normal TFIIH function in transcription and NER by regulating
the expression of the GTF2H1 gene (Fig. 7). Both RT-qPCR and
immunoblot analysis revealed significantly lower expression of
GTF2H1 and mildly lower expression of XPB after BRM
knockdown. Both these TFIIH subunits are required for recruit-
ment of the TFIIH complex to damaged DNA14,16, but only the
ectopic expression of GTF2H1—not of XPB—rescued the binding
of TFIIH to DNA damage in BRM and BRG1 depleted cells. This
shows that lowered levels of GTF2H1, caused by BRM or BRG1
knockdown, act as a limiting factor for the assembly of functional
TFIIH complexes, in agreement with recent literature describing
GTF2H1 as essential for TFIIH complex integrity and
stability31,45. Limiting amounts of functional TFIIH complexes
likely impair overall TFIIH functions, in accordance with the
observed decreased transcription levels and lower NER perfor-
mance (Fig. 7).

ATP-dependent chromatin remodelers like SWI/SNF are
thought to make chromatin more accessible to DNA repair
proteins8,9,20. In line with this idea, the yeast Snf5 and Snf6 SWI/
SNF subunits were shown to bind XPC and mediate UV-induced
nucleosome remodeling23, while in humans BRG1 was reported
to facilitate XPC recruitment to damaged DNA25. However, in
another study, a different role for human BRG1 in NER was
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proposed, in facilitating XPG and PCNA—but not DDB2 and
XPC—recruitment to sites of damaged DNA24. Our data, indeed,
shows that both BRG1 and BRM are essential for efficient
recruitment of late NER factors (TFIIH and downstream NER
proteins) rather than for binding of the early DNA damage
sensing factors (XPC, DDB2, and CSB) to DNA lesions. Impaired
recruitment of the late NER factors in the absence of SWI/SNF is,
however, not caused by reduced chromatin accessibility, but an
indirect result of limiting amounts of functional TFIIH.

Furthermore, we did not observe BRM and BRG1 recruitment to
UV-damaged DNA, further corroborating that SWI/SNF’s main
involvement in the UV-DDR is not in the control of chromatin
accessibility at sites of UV damage.

SWI/SNF complexes are thought to be recruited to chromatin
to remodel nucleosomes in enhancer and promoter regions to
regulate transcription7,46. In line with this, we observed in two
different cell types that BRM and BRG1 ChIP-seq signals are
enriched at the GTF2H1 promoter. SWI/SNF’s influence on gene
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expression is, however, contextual, in that it represses some
promoters while it stimulates others5, which may also be evident
from the differential effect of BRM knockdown on transcription
of TFIIH genes that we observed. One major way through which
SWI/SNF promotes transcription is by antagonizing the repres-
sive activity of Polycomb complexes, as loss of SWI/SNF was
shown to lead to repression of Polycomb target genes47,48.
Nevertheless, we were unable to alleviate downregulation of
GTF2H1 upon knockdown of BRM or BRG1 with specific inhi-
bitors targeting EZH2, a functional enzymatic component of the
Polycomb repressive Complex 2. This suggests that other
mechanisms, possibly involving repressive chromatin structures
or epigenetic marks, account for the diminished GTF2H1
expression.

Besides NER, SWI/SNF chromatin remodeling complexes are
also involved in other DDR pathways6,8,9, including regulation of
DSB repair by non-homologous end-joining and/or homologous
recombination49,50. It is, thus, likely that SWI/SNF mutations
found in cancer contribute to increased genomic instability by
disrupting multiple DDR pathways. As the majority of BRG1-
deficient tumors are negative for mutations in other genes that
can be targeted by existing therapies40, it would be advantageous
to exploit DDR deficiencies in SWI/SNF cancers therapeutically.
Based on our analysis, one such DDR deficiency could be
impaired NER due to downregulation of GTF2H1 expression,
rendering SWI/SNF cancers more sensitive to DNA damaging
chemotherapeutic drugs such as cisplatin (Fig. 7). However, we
observed that in multiple established BRG1 and/or BRM-deficient
cancer cell lines, GTF2H1 levels were not lowered, which is
probably due to an, yet unknown, adaptation mechanism to
compensate for the loss of BRM/BRG1 activity (Fig. 7). Previous
studies showed partial mutual compensation between both
ATPases36,38,40. Nevertheless, the fact that normal GTF2H1 levels
were observed in cells lacking both BRG1 and BRM and that
overexpression of BRG1 did not increase GTF2H1 levels in BRM-
deficient cells suggests that BRM and BRG1 do not compensate
for each other in regulating GTF2H1 expression. Our experi-
ments with MRC5 BRM knockout cell lines confirm that cells can
adapt to the loss of one of the SWI/SNF ATPases. Although
knockout of BRM led to an initial overall reduction in GTF2H1
levels, after prolonged culturing and clonal selection we observed
that many clones displayed normal GTF2H1 expression. Impor-
tantly, cells exhibited hypersensitivity to DNA damage induction
by UV irradiation and cisplatin treatment only when GTF2H1
levels were low.

Recently, it was suggested that BRG1 expression could be used
as a predictive biomarker for platinum-based chemotherapy
response in NSCLC lines51,52. However, as we here demonstrate,
sensitivity of SWI/SNF-deficient cells to DNA damaging agents

such as cisplatin mainly depends on GTF2H1 expression levels.
Therefore, reduced GTF2H1 expression may be a better pre-
dictive marker for platinum-drug sensitivity of SWI/SNF-defi-
cient cancers (Fig. 7). Moreover, given the importance of TFIIH
for transcription and repair, elucidating the mechanisms under-
lying SWI/SNF regulation of GTF2H1 expression and those that
allow cells to adapt and restore GTF2H1 levels will be key to
develop new strategies targeting SWI/SNF cancers. Such knowl-
edge could potentially reveal how to revert the adaptation
response to lower GTF2H1 levels, rendering SWI/SNF-deficient
cells more susceptible to platinum drug chemotherapy.

Methods
Cell lines, culture conditions, and treatments. U2OS (ATCC), SV40-
immortalized human fibroblasts MRC5 (ATCC) and XP4PA53 (XPC-deficient,
with stable expression of XPC-GFP), XPCS2BA (XPB-deficient, with stable
expression of XPB-GFP28) and CS1AN (CSB-deficient, with stable expression of
GFP-CSB54) were cultured under standard conditions in a 1:1 mixture of DMEM
(Lonza) and Ham’s F10 (Lonza) supplemented with 10% fetal calf serum (FCS).
C5RO primary fibroblasts (established in our laboratory) were cultured in Ham’s
F10 supplemented with 12% FCS; H1299 NSCLC (provided by Dr. Bert van der
Horst), A549 NSCLC (provided by Dr. Suzan Pas), Hs 578T55 breast cancer,
A278038 ovarian cancer (provided by Corine Beaufort and Dr. John Martens), Hs
700T36 and Panc-156 pancreatic cancer (provided by Dr. Bernadette van den
Hoogen), SW1336 adrenal cortex carcinoma and C33A36 cervical carcinoma
(provided by Dr. Jan van der Knaap) cells were cultured in a 1:1 mixture of DMEM
(Lonza) and RPMI (Sigma) medium supplemented with 10% FCS. Stable XPC-GFP
expressing XP4PA cells were generated using lentiviral transduction and selected
with 0.3 µg/mL puromycin and FACS. Stable GFP-GTF2H1 expressing cells (A549,
H1299) were generated using lentiviral transduction and selection with 5–10 µg/mL
blasticidin. Stable BRM-GFP and BRG1-GFP expressing U2OS cells were generated
using transfection and selection with 10 µg/mL Blasticidin. All cells were cultured
in medium containing 1% penicillin-streptomycin at 37 °C and 5% CO2. siRNA
transfections were performed using RNAiMax (Invitrogen) 2 days before each
experiment, according to the manufacturer’s instructions. Plasmids transfections
were performed using FuGENE 6 (Promega), according to the manufacturer’s
instructions. All cell lines were regularly tested for mycoplasma contamination.

Plasmids, sgRNA, and siRNA. Full-length human cDNAs of GTF2H1, BRG1 and
BRM (a kind gift from Dr. Kyle Miller57), were fused to GFP and inserted into
pLenti-PGK-Blast-DEST58 to generate plasmids GFP-GTF2H1, BRG1-GFP and
BRM-GFP. Full-length human XPC cDNA was fused to GFP and inserted into
pLenti-CMV-Puro-DEST58 to generate plasmid XPC-GFP. For the generation of
knockout cell lines, sgRNA sequences targeting BRM (GTCTCCAGCCC-
TATGTCTGG) and BRG1 (CAGCTGGTTCTGGTTAAATG) coding regions were
cloned into pLenti-CRISPR-V159. Cloning and plasmid details are available upon
request. siRNA oligomers were purchased from GE Healthcare: CTRL (D-001210-
05), BRM#1 (J-017253-06), BRM#2 (J-017253-07), BRG1 (L-010431-00), BRG1#2
(J-010431-06), BRG1#3 (J-010431-07), GTF2H1 (L-010924-00) and XPA
(MJAWM-000011).

UV-C irradiation. UV-C irradiation was inflicted using a germicidal lamp (254 nm;
TUV lamp, Phillips) with the indicated doses after washing cells with PBS. Local
damage was generated using 60 J/m2 of UV irradiation through an 8 µm poly-
carbonate filter (Millipore), as described in van Cuijk et al60.

Fig. 6 DNA damage sensitivity of BRM-deficient cells correlates with GTF2H1 expression. a Immunoblot of BRM, BRG1, and GTF2H1 in MRC5 wild-type
(WT) cells and cells transfected with sgRNA against BRM or BRG1. b Quantification of GTF2H1 levels in immunoblot shown in a, corrected by tubulin
loading control, and set to 1.0 in MRC5 WT. c IF of total GTF2H1 and BRM levels in MRC5 WT and sgBRM knockout clones c1, c3, c6, and c7. Scale bar: 10
μm. d Quantification of GTF2H1 IF signal (shown in c). Total GTF2H1 levels were normalized to MRC5 WT, set to 1.0. Mean & S.E.M. of > 200 cells from
two independent experiments. e Immunoblot of BRM, BRG1, and GTF2H1 levels in MRC5 WT and sgBRM clones c1, c3, c6, and c7. f Quantification of
GTF2H1 levels shown in e, as described in b, using Ku70 as loading control. Mean & S.E.M. from four independent experiments. g GTF2H1 levels in a mixed
population of MRC5 sgBRM knockout clone c1 cells non-transfected or transfected with BRM-GFP or BRG1-GFP. Scale bar: 5 μm. h XPD recruitment to LUD
in MRC5 WT and sgBRM knockout clones c1 and c3, 30min after damage. Scale bar: 5 μm. i Relative quantification of XPD recruitment to LUD (shown in
h) in MRC5 WT and BRM knockout clones c1 and c3, normalized to WT, as described in the methods. Mean & S.E.M. of > 65 cells per sample. j UV-C
colony survival of MRC5 WT cells and BRM knockout clones c1 and c3. k Cisplatin colony survival of MRC5 WT and BRM knockout clones c1 and c3. l UV-
C colony survival of MRC5 WT cells and BRM knockout clones c6 and c7. m Cisplatin colony survival of MRC5 WT cells and BRM knockout clones c6 and
c7. Colony number was normalized to untreated conditions. Mean & S.E.M. of four (UV-survival) and two (cisplatin-survival) independent experiments,
each performed in triplicate, are presented. *P < 0.05, **P < 0.01, ***P < 0.001, relative to WT, n.s., non-significant. Full-size immunoblot scans are provided
in Supplementary Fig. 7c, d
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Unscheduled DNA synthesis and RRS. Fluorescent UDS and RRS were per-
formed as described before61. In short, for UDS C5RO primary fibroblasts were
grown on coverslips and treated with siRNAs 48 h before UV-C irradiation (16 J/
m2). After irradiation, cells were incubated for 1 h in medium containing 5-ethy-
nyl-2’-deoxyuridine (EdU, Invitrogen). For RRS, U2OS cells were seeded on cov-
erslips and 48 h after siRNA transfection irradiated with 6 J/m2 UV-C and allowed
to recover for 2 or 20 h. Irradiated and non-irradiated cells were incubated for 2 h
in medium containing 5-ethynyl-uridine (EU, Jena Biosciences). Cells were fixed in
4% paraformaldehyde and permeabilized with 0.1% Triton X-100 in PBS. EdU or
EU incorporation was visualized by incubating cells for 1 h at room temperature
with Click-it reaction cocktail containing Atto 594 Azide (60 µM, Atto Tec.), Tris-
HCl (50 mM, pH 7.6), CuSO4*5H2O (4 mM, Sigma) and ascorbic acid (10 mM,
Sigma). After washes in 0.1% Triton-X100 in PBS, DNA was stained with DAPI
(Sigma), and slides were mounted using Aqua-Poly/Mount (Polysciences, Inc.).
Images were acquired using an LSM700 microscope equipped with a 40x Plan-
apochromat 1.3 NA oil immersion lens (Carl Zeiss Micro Imaging Inc.). UDS and
RRS levels were quantified by measuring the total nuclear fluorescence intensities
(in at least 100 cells per experiment) with FIJI image analysis software. Intensity
levels were averaged and normalized to the fluorescence levels in control condi-
tions, which were set at 100%.

Immunofluorescence. Cells were grown on coverslips, fixed in 4% paraf-
ormaldehyde and permeabilized in PBS containing 0.5% Triton X-100. DNA was
denatured for 5 min with 70 mM NaOH to allow CPD binding by the antibody.
Next, cells were incubated for 1 h with blocking solution 3% BSA in PBS-T (0.1%
Tween 20) and subsequently incubated with antibodies diluted in 1% BSA with

PBS-T (0.1% Tween 20) for 1–2 h at room temperature or overnight at 4 °C. To
visualize primary antibodies, cells were incubated for 1 h at room temperature with
secondary antibodies conjugated to Alexa fluorochromes 488, 555, or 633 (Invi-
trogen). DNA was stained with DAPI (Sigma), and slides were mounted using
Aqua-Poly/Mount (Polysciences, Inc.). Antibodies used are summarized in Sup-
plementary Tables 1 and 2. Images were acquired using an LSM700 microscope
equipped with a 40x Plan-apochromat 1.3 NA oil immersion lens (Carl Zeiss Micro
Imaging Inc.). Using FIJI image analysis software, we determined protein accu-
mulation at lesion sites by dividing the overall fluorescence signal intensity at LUDs
by the protein overall nuclear intensity. In Fig. 1f and Fig. 6g zero accumulation
(nuclear background) was set at 0 and maximum accumulation (above nuclear
background) in control conditions at 1.0.

Fluorescence recovery after photobleaching (FRAP). FRAP experiments were
performed as previously described60,62, using a Leica TCS SP5 microscope (with
LAS AF software, Leica) equipped with a 40 × /1.25 NA HCX PL APO CS oil
immersion lens (Leica Microsystems), at 37 °C and 5% CO2. Briefly, a strip
spanning the nucleus width (512 × 16 pixels) at 1400 Hz of a 488 nm laser, with a
zoom of 12x was used to measure the fluorescence signal every 100 ms until a
steady-state was reached (pre-bleach). Fluorescence signals were then photo-
bleached using 100% power of the 488 nm laser and recovery of fluorescence in the
strip was monitored every 22 ms until a steady-state was reached. Fluorescence
signals were normalized to the average pre-bleach fluorescence after background
signal subtraction. Three independent experiments were performed, with the
acquisition of ten cells for each condition in each experiment. The immobile
fraction (Fimm), shown in Fig. 2c, was determined using the fluorescence intensity

Stable and functional
TFIIH complexes

SWI/SNF complexes

BRM/BRG1 deficiencyNormal SWI/SNF activity

Limiting TFIIH

Compensation mechanism

Potential therapeutic target

Normal Deficient+ –

Normal expression Lower expression

Marker for hypersensitive
SWI/SNF cancers

Increased sensitivity to
DNA damaging agents

UV, platinum drugs

BRM/BRG1

GTF2H1 GTF2H1

DNA repair (NER)

Transcription

Fig. 7 Low GTF2H1 expression as a predictive marker for DNA damage hypersensitive SWI/SNF cancers. BRM- and BRG1-containing SWI/SNF complexes
promote the expression of the GTF2H1 gene, a subunit of the TFIIH complex. In BRM- and BRG1-wild-type cells, normal expression of GTF2H1 allows the
assembly of stable and functional TFIIH complexes, proficient in transcription and NER. When BRM or BRG1 are deficient, expression of GTF2H1 is lower,
limiting the assembly of functional TFIIH complexes. As a consequence, transcription levels and NER capacity are lower, and cells become more sensitive to
DNA damaging agents like UV and chemotherapeutic platinum drugs. Therefore, low GTF2H1 levels can likely be used as a marker to identify SWI/SNF
cancers with increased sensitivity to chemotherapeutic drugs. However, cells with permanent loss of either BRM or BRG1 subunit can also adapt and
restore the expression of GTF2H1, thus presenting normal transcription and NER activity. The mechanism underlying this adaption response is currently
unknown, but if elucidated could be therapeutically exploited to specifically target SWI/SNF cancers with restored GTF2H1 expression, leaving surrounding
non-tumor tissues intact
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recorded immediately after bleaching (I0) and the average fluorescence signal after
reaching steady-state from the unchallenged cells (Ifinal,unc) and UV-irradiated cells
(Ifinal,UV):60

Fimm ¼ 1� Ifinal;UV�I0;UV
Ifinal; unc�I0;UV

:

Real-time protein recruitment to UV-C laser-induced damage. To induce local
UV-C DNA damage in living cells, a 2 mW pulsed (7.8 kHz) diode pumped solid
state laser emitting at 266 nm (Rapp Opto Electronic, Hamburg GmbH) coupled to
a Leica TCS SP5 confocal microscope was used, as described previously61. Cells
seeded on quartz coverslips were imaged and irradiated via a Ultrafluar quartz
100 × /1.35 NA glycerol immersion lens (Carl Zeiss Micro Imaging Inc.) at 37 °C
and 5% CO2. Resulting accumulation curves were corrected for background values
and normalized to the relative fluorescence signal before local irradiation.

Chromatin fractionation. U2OS cells were grown to confluency on 10 cm dishes,
UV-C irradiated with the indicated dose and lysed in lysis buffer (30 mM HEPES
pH 7.6, 1 mM MgCl2, 130 mM NaCl, 0.5% Triton X-100, 0.5 mM DTT and EDTA-
free protease inhibitor cocktail (Roche)), at 4 °C for 30 min. Non-chromatin bound
proteins were recovered by centrifugation (10 min, 4 °C, 16,100 g). Chromatin-
containing pellet was resuspended in lysis buffer supplemented with 250 U/µL of
Benzonase (Merck Millipore) and incubated for 1 h at 4 °C. Equal amounts of
sample were used for SDS-PAGE gels and immunoblotting analysis.

Cycloheximide (CHX) protein stability assay. Protein synthesis was inhibited by
adding 100 µM CHX (Enzo) to cells in culture. Concomitantly, for the experiment
shown in Supplementary Fig. 3a, protein degradation was inhibited by adding 10
µM MG132 (Sigma) before the addition of CHX. Cells were lysed at the indicated
time points after CHX addition, for 30 min at 4 °C in RIPA buffer (25 mM Tris-
HCl pH 7.5, 150 mM NaCl, 6 mM EDTA, 0.1% SDS, 1% Triton X-100, 1% NP-40,
supplemented with EDTA-free protease inhibitor cocktail (Roche)). Whole cell
extracts were recovered by centrifugation (20 min at 4 °C and 1400 g) and quan-
tified using the BCA Protein Assay Kit (Pierce, ThermoFisher Scientific). Equal
amounts of protein from total cell lysates were used for immunoblot analysis.

Immunoblotting. Protein samples (whole cell extracts or cell fractionations) were 2
x diluted in sample buffer (125 mM Tris-HCl pH 6.8, 20% Glycerol, 10% 2-β-
Mercaptoethanol, 4% SDS, 0.01% Bromophenol Blue) and boiled for 5 min at 98 °
C. Equal amounts of protein from whole cell lysates were separated in SDS-PAGE
gels and transferred onto PVDF membranes (0.45 µm, Merck Millipore). After 1 h
of blocking in 5% BSA in PBS-T (0.05% Tween 20), membranes were incubated
with primary antibodies in PBS-T for 1–2 h at room temperature, or at 4 °C
overnight. Secondary antibodies were incubated for 1 h at room temperature.
Membranes were washed 3 × 10mins in PBS-T after antibody incubation. Probed
membranes were visualized with the Odyssey CLx Infrared Imaging System (LI-
COR Biosciences). Antibodies are listed in Supplementary Table 1 and 2. Immu-
noblots were quantified using ImageStudio Lite (ver. 5.2, LI-COR Biosciences).
Full-size immunoblot scans are provided in Supplementary Fig. 6,7.

Colony forming assays. For colony survival assays after DNA damage, cells were
seeded in triplicate in six-well plates (400 cells/well) and treated with increasing
doses or concentrations of UV-C or cisplatin, respectively, 1 day after seeding.
After 5–7 days, colonies were fixed and stained. For the colony forming assay
shown in Fig. 5d,e and Supplementary Fig. 4e, cells were seeded in triplicate in six-
well plates (750–1000 cells/well) 48 h after siRNA transfection. After 12 days, cells
were fixed and stained. Fixing and staining solution: 0.1% w/v Coomassie Blue
(Bio-Rad) was dispersed in a 50% Methanol, 10% Acetic Acid solution. Colonies
were counted with the integrated colony counter GelCount (Oxford Optronix).

Real-time reverse transcriptase PCR (RT-qPCR). Total RNA was isolated from
siRNA-transfected U2OS cells using the RNeasy mini kit (Qiagen). cDNA was
synthesized using iScript cDNA Synthesis Kit (Bio-Rad), accordingly to manu-
facturer’s instructions. TFIIH genes and GAPDH expression levels were analyzed
using RT-qPCR with the PowerUP SYBR Green Master Mix (ThermoFischer
Scientific) in a Bio-Rad CFX96 device. Primers used are listed in Supplementary
Table 3. The relative gene expression of TFIIH genes was calculated according to
the comparative quantification cycle (Cq) method and normalized to GAPDH
expression. The expression level of each TFIIH gene in BRM knockdown cells was
normalized to expression in control siRNA treated cells. Expression levels were
measured in triplicate in two independent experiments.

Re-analysis of public Chip-seq data. To dissect BRG1/BRM enrichment in
GTF2H1, we re-analyzed published BRG1/BRM ChIP-seq datasets from liver
cancer HepG2 cells upon transfection with non-targeting shRNA (Fig. 3c; GEO
accession GSE10255932) and BRG1/BRM ChIP-seq datasets from RWPE1-
SCHLAP1 cells (Supplementary Fig. 3c; GEO accession GSE11439233). ChIP-seq
raw data was obtained from the Sequence Read Archive repository (SRA, NCBI;
SRP115303 and SRP145601) and uploaded to the Galaxy platform63. Reads were

aligned to the human genome (hg19 build) with BWA (Galaxy Version 0.7.17.4),
poor quality alignments and duplicates were subsequently filtered with SAMtools
(Galaxy Version 1.1.2) –q 20. To visualize ChIP-seq signal density, replicate
datasets were merged with SAMtools and further processed using bamcoverage tool
(Galaxy Version 2.5.0.0), DeepTools suit64 with binsize 30, reads extended to 150
bp and normalized to reads per kilobase per million (RPKM); resulting bigwig files
were visualized using IGV genome browser65. Peaks were determined with MACS2
peak caller (Galaxy Version 2.1.1.20160309.066) using the predictd function to
estimate fragment size for all datasets and the following analysis parameters –qval
= 0.01 –nomodel –extsize= d –broad -broadcutoff 0.05 –keepdup-all. Resulting
peaks were filtered against the ENCODE blacklist regions and finally visualized in
IGV browser. Promoter region annotation for GTF2H1 gene was obtained from the
Ensembl database (GRCh37 assembly, Chr11: 18,340,602–18,346,999).

Immunoprecipitation. The procedure for in vivo crosslink and immunoprecipi-
tation was described previously12 and applied with minor alterations. Briefly, after
UV-C irradiation (20 J/m2), cells were cultured for 30 min before crosslinking in
1% paraformaldehyde in PBS for 5 min at room temperature. Crosslinking reaction
was stopped with 0.125 M of glycine and cells were collected in ice cold PBS
supplemented with 1 mM PMSF and 10% glycerol. All subsequent steps were
performed at 4 °C. Following centrifugation, cell pellet was resuspended in lysis
buffer (50 mM HEPES pH 7.8, 0.15 M NaCl, 0.5% NP-40, 0.25% Triton X-100, and
10% glycerol). After 30 min incubation, the suspension was spun down, and
supernatant (soluble fraction) was removed. The pellet was washed with Wash
buffer (0.01 M Tris-HCl pH 8.0, 0.2 M NaCl), spun down and resuspended in 1 ×
RIPA buffer (0.01 M Tris-HCl pH 7.5, 0.15 M NaCl, 1% Triton X-100, 1% NP-40,
0.1% SDS). Chromatin was sheared using a Bioruptor Sonicator (Diagenode) using
cycles of 30 s ON, 30 s OFF during 10 min, after which samples were centrifuged.
The supernatant containing crosslinked chromatin was used for immunoprecipi-
tation. All buffers were supplemented with 0.1 mM EDTA, 0.5 mM EGTA, 1 mM
PMSF and a mixture of proteinase and phosphatase inhibitors. For immunopre-
cipitation, extracts were incubated with GFP-trap beads (Chromotek), overnight at
4 °C. Subsequently, beads were washed five times in RIPA buffer and elution of the
precipitated proteins was performed by extended boiling in 2x Laemmli sample
buffer for immunoblotting analysis.

Cell cycle profiling. For cell cycle analysis, cells were fixed in 70% ethanol, fol-
lowed by DNA staining with 50 µg/mL propidium iodide (Invitrogen) in the
presence of RNase A (0.1 mg/mL). Cell sorting was performed on a BD LSRFor-
tessaTM flow cytometer (BD Bioscience) using FACSDiva software. Obtained data
was quantified with Flowing software 2.5.1 (by Perttu Terho in collaboration with
Turku Bioimaging).

Statistical analysis. Mean values and S.E.M. error bars are shown for each
experiment. Unpaired, two-tailed t tests were used to determine statistical sig-
nificance between groups. In all experiments, between-group variances were similar
and data were symmetrically distributed. For analysis of graphs in Fig. 2a and
Supplementary Fig. 1g, a ROC curve analysis was performed with significance
levels set to 0.05. All analysis were performed using Graph Pad Prism version 7.03
for Windows (GraphPad Software, La Jolla California USA). P values expressed as
*P < 0.05; **P < 0.01, ***P < 0.001 were considered to be significant. n.s, non-
significant.

Data availability
The raw ChIP-seq data sets analyzed during the current study were obtained via the
Sequence Read Archive repository (SRA, NCBI), [https://www.ncbi.nlm.nih.gov/sra],
with the data set identifiers SRP115303 and SRP145601. Other relevant data generated
during the current study are available from the corresponding author on reasonable
request. Individual data points are provided in Supplementary Data 1.
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