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a b s t r a c t 

Spare parts supply chains are highly dependent on the dynamics of their installed bases. A decreasing 

number of capital products in use increases the nonstationary supply-side risk especially towards the 

end-of-life of capital products. This supply-side risk appears to present itself through varying lead times 

coupled with supply disruptions. To model the nonstationary supply-side risk, we consider an exoge- 

nous Markov chain that modulates random lead times and disruption probabilities. Assuming that order 

crossovers do not occur, we prove the optimality of a state-dependent base stock policy. Later, we conduct 

an impact study to understand the value of considering stochastic lead times and supply disruption risk 

in spare parts inventory control. Our results indicate that the coupled effect of random lead times and 

disruptions can be larger than the summation of individual effects even for moderate lead time variances. 

Also, the effect of nonstationarity on total cost can be as large as the summation of all risk factors com- 

bined. In addition to this managerial insight we present a procedure for supply risk mitigation based on 

an empirical model and our mathematical model. Experiments on a real business case indicate that the 

procedure is capable of reducing costs while making the inventory system more prepared for disruptions. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Capital goods usually have a long lifespan. For instance, aircraft

an last up to 30 years. After the maturity phase of the life cycle,

he number of systems in operation starts to decline, since bet-

er systems are on the market. Asset owners yet intend to keep

heir existing capital goods in operation to maximize their return

n investment, and for this they primarily rely on Original Equip-

ent Manufacturers (OEMs) of their capital products. OEMs, how-

ver, are troubled with supply-side risk. This risk might be due to

hanges in technology ( Rojo & Roy, 2010 ), suppliers’ financial prob-

ems and bankruptcy ( Babich, Burnetas, & Ritchken, 2007 ), or sim-

ly parts becoming less profitable for suppliers, which in our ex-

erience is the most common cause. After losing a supplier, OEMs

f capital products try to restart their spare parts supply process.

epending on the complexity of the manufacturing process and

aw material availability this may take up to one year, especially
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f the part number needs to be changed and re-certified. The avia-

ion sector typically suffers from long recovery times after supply

isruptions. This is because the majority of aircraft spare parts can

nly be sourced from single suppliers, who possess technical draw-

ngs and proprietary rights, and because decreasing demand rates

ripple the profitability of manufacturing spare parts for suppliers. 

In this paper, we consider supply-side risk for spare parts. We

otivate our study in three distinctive steps: First, we cite em-

irical evidence by Li, Dekker, Heij, and Hekimo ̆glu (2016) , who

ound that increased lead time variations are followed by supply

isruptions in spare parts supply chains. Second, we explain the

ssociation of supply disruptions with varying lead times by refer-

ing an analytical result stating that suppliers optimally delay spare

arts deliveries when they have more important customers with

igher demand rates ( Duenyas & Neale, 1997 ). Third, we present

 business case, taken from an OEM in the aviation industry, in

hich lead time variability significantly increases towards the time

f supply disruption. The business case is discussed in Section 3 . 

Empirical evidence from the aviation industry ( Hekimo ̆glu,

015; Li et al., 2016 ) indicates that supply disruption risk is cou-

led with lead time variation. They consider the purchase his-

ory of two groups of spare parts. One group comprises parts with

isrupted supply, the other group consists of parts with ‘healthy’

https://doi.org/10.1016/j.ejor.2018.02.040
http://www.ScienceDirect.com
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supply. Using the proportional hazard model, they find that in-

creasing lead time variability is the most important indicator for

the risk of losing suppliers for spare parts. That study not only

consists of the motivation of our study on coupled random lead

times and supply disruptions, we also use survival probabilities es-

timated by the proportional hazard model in Section 4.7 and 5.5 . 

In addition to the empirical evidence, an analytical result from

queuing theory also explains the link between lead time variability

and loss of a supplier: Consider the entire manufacturing processes

of a spare part supplier as a single queue with a batch proces-

sor. The supplier receives orders from two customers whose orders

cannot be processed together in a single batch. If Customer 1 has

a higher priority than Customer 2, while having a higher expected

order rate, Duenyas and Neale (1997) show that Customer 2’s or-

ders are delayed and eventually completely declined as the priority

difference gets larger. In our context, Customer 1 may be an OEM

that needs components and spare parts for its in-production capi-

tal products, whereas Customer 2 may be another OEM providing

service for aircraft entering their post-maturity phases. Naturally,

the part manufacturer will assign a lower priority to Customer 2

due to the difference between expected future profits from the two

customers. From the perspective of Customer 2, on the other hand,

deliveries of his orders vary and the supply chain is subject to an

increasing supply disruption risk as presented in the business case

in Section 3 . This motivates us to consider nonstationary supply

disruptions together with lead time variability for inventory con-

trol of spare parts. 

In this study, we analyze the effects of coupling nonstation-

ary random lead times and supply disruptions on inventory per-

formance, which is unique in the literature. To this end, we for-

mulate a discounted cost model for the control of spare parts

inventory that combines Markov-modulated random lead times

with supply disruption risk. A state-dependent base-stock policy

is proven to be optimal for the discounted cost model by show-

ing the equivalence of our original multi-state functional equation

to a single-state one which is the technical contribution of this

paper. Furthermore, we suggest a new queueing system, which

generates Markov-modulated random lead times without order

crossovers, and propose an algorithm that calculates distribution

of state-dependent random lead times. Also we provide the max-

imum likelihood estimator for the service rate of the queueing

mechanism. 

We evaluate the coupled effect of random lead time and sup-

ply disruptions as well as their individual effects on total cost un-

der different scenarios. The main results are twofold: First, we find

that both random lead times and supply disruptions have substan-

tial effects on costs and service level. More importantly, their cou-

pled effect can be between 10 and 30% of the optimal total cost

depending on levels of individual supply risks. Second, the effect

of nonstationarity on the total cost can be as high as the summa-

tion of all risk factors combined. In other words, these risk factors

should not be studied in isolation, but should be explicitly mod-

eled together in inventory control of spare parts. 

When lead times are driven by a random process and supply

disruptions occur occasionally, the status of outstanding orders de-

serves a specific attention. When a disruptive event arrives to such

a system, the fate of outstanding orders takes place in a continuum

of possibilities between two extremes: Either the supplier fulfills

his commitment for delivery of previous orders but does not ac-

cept new ones, or she cancels all outstanding orders. In this paper,

we analyze both cases respectively. Our results indicate that the

state-dependent base stock policy is optimal for the former case

whereas this property does not hold for the latter. Numerical ex-

periments indicate that the state-dependent base stock policy can

still be advisable with minor cost deviation when outstanding or-

ders are canceled with disruptions. 
In addition, we suggest a procedure for treating nonstationary

upply risk for spare parts using our mathematical model and the

mpirical model by Li et al. (2016) together. Our procedure relies

n the idea of using supply risk estimates of the empirical model

s a Markovian state and calculate optimum state-dependent base

tock policy accordingly. To the best of our knowledge our proce-

ure is the first one combining an empirical supply risk estimator

ith an optimum inventory control model. The application of this

rocedure on a real business case, presented in Section 3 , indicates

hat our procedure is capable of cutting costs while making OEMs

ore prepared for disruptive shocks. 

The remainder of this paper is structured as follows: In the next

ection, we position our paper within the relevant extant literature.

n Section 3 , we introduce a motivational business case which puts

ur work into a business context. Next ( Section 4 ), we present our

athematical model and the characterization of the optimal policy

nd a new queueing system that is used to enumerate Markov-

odulated random lead times and disruption risk. Also we present

 procedure combining our mathematical model with an empirical

odel estimating supply disruption probabilities. Section 5 is de-

oted to our impact analysis of nonstationary supply risk factors on

nventory performance together with the application of our model

o a real business case. In the final section ( Section 6 ), we discuss

nd summarize our main findings. 

. Literature 

Relevant literature for our work consists of two main parts:

andom lead time and supply disruption studies. In the inventory

anagement literature there is a significant amount of research

n both topics. Stochastic lead times have been of interest since

he 1950s. Studies in this research stream can be categorized ac-

ording to their order crossover assumptions. Here we only con-

ider random lead time studies without order crossovers, whereas

ey studies allowing order crossovers include Bradley and Robin-

on (2005) ; Hayya, Bagchi, Kim, and Sun (2008) ; Robinson, Bradley,

nd Thomas (2001) . Supply disruption studies were rather scarce

n the early times of inventory research but the subject has been

tudied extensively during the last two decades. We review these

tudies starting from early contributions to the literature. 

Supply systems with random lead times under no-order-

rossover assumption resemble sequential processors such as

ueuing systems working under the FIFO principle ( Zipkin, 20 0 0 ).

t is known that inventory position constitutes sufficient infor-

ation for optimal control of such systems ( Ehrhardt, 1984; Ka-

lan, 1970; Song & Zipkin, 1996 ). Kaplan (1970) shows that the

o-crossover assumption allows a multi-state dynamic program-

ing formulation to be reduced to a single state one which con-

iders inventory position. Kaplan’s work is extended by Ehrhardt

1984) who utilizes the random position of the outstanding order

hat is delivered in period t ( Nahmias, 1979 ). Independence of po-

itions of outstanding orders in successive periods leads to the op-

imality of base stock policies ( Ehrhardt, 1984 ). Another significant

ontribution to this research stream is by Song and Zipkin (1996) ,

ho consider Markov-modulated random lead times without sup-

ly disruptions. This study is extended to a multi-echelon setting

y Muharremo ̆glu and Tsitsiklis (2008) . In addition to these stud-

es, Song ( 1994a, 1994b ) are important contributions which deepen

ur understanding of stochastic lead times and their effects on

ase stock levels and optimal costs. 

Supply disruption studies constitute the second research stream

elevant to our work. Disruptions are defined as temporary un-

vailability of supply due to various exogenous reasons. They are

haracterized by the interarrival times of “up” and “down” states

 Tomlin, 2006 ). In other words, two features of supply disruptions

re of interest from an inventory control perspective: length and
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requency. For this problem, Özekici and Parlar (1999) , an exten-

ion to Parlar, Wang, and Gerchak (1995) , consider an exogenous

arkov chain which drives supply availability as well as system

arameters such as ordering cost and holding cost. Their major

ssumption is immediate delivery of replenishment orders. Li, Xu,

nd Hayya (2004) analyze supply disruptions occurring with an al-

ernating renewal process. They find that a base stock policy is op-

imal if disruptions follow a non-decreasing failure rate distribu-

ion. Tomlin (2006) suggests dual sourcing, inventory holding, and

cceptance as potential strategies for dealing with supply risk and

roves the optimal strategy for deterministic demand. In our pa-

er, we focus on the coupled effect of supply disruptions and ran-

om lead times, which are driven by an exogenous Markov chain.

ence, another focus of our study is the nonstationarity in supply-

ide risk. 

Markov chains for modeling dynamic environmental changes

ere suggested before. Arifo ̆glu and Özekici (2010) , Beyer and

ethi (1997) , Cheng and Sethi (1999) , Gallego and Hu (2004) ,

uharremo ̆glu and Tsitsiklis (2008) , Scheller-Wolf and Tayur

1999) , Song and Zipkin (1993, 1996) consider Markov chains as

 driving mechanism of exogenous factors. Apart from the latter

wo, all papers assume perfectly observable Markov chains as we

hoose to do. 

To the best of our knowledge, Mohebbi (2003) , Song and Zip-

in (1996) , Tomlin and Snyder (2006) are the closest studies to

ur work. Mohebbi (2003) assumes an (s,Q) policy and analyzes

he system performance numerically in a lost sales setting. In our

tudy, the focus is on the nonstationary nature of random lead

imes as well as supply disruptions. We also develop a dynamic

rogramming formulation considering order movements explicitly. 

omlin and Snyder (2006) consider Markovian supply disruptions

ith “age-dependent” durations and zero lead times, whereas Song

nd Zipkin (1996) evaluate Markov-modulated random lead times

ithout disruption risk. Our study extends these two by consider-

ng both factors in the same model. 

. Motivational example 

As an exemplary business case for our problem setting, we con-

ider a spare part taken from an European Original Equipment

anufacturer (OEM) of out-of-production aircraft. To guarantee fi-

ancial stability, the OEM aims to extend the economic lifetime

f its aircraft as long as possible by providing high quality main-

enance service. The spare part, which we call Part A, is a strip

ade of polyurethane on the nose of a certain aircraft family and

ts main function is to distribute static electricity from the nose to-

ards the body. Despite its simplicity, the part is critical since ac-

umulated static electricity may jeopardize radio communication. 

Our communication with the OEM indicated that the supplier

nnounced end of support on October 10, 2011, since the raw ma-

erial polyurethane was no longer available. Analysis of the pur-

hase history data indicated that lead time fluctuations typically

ncreased towards the disruption (as in Fig. 1 ). Hence, the OEM had

o deal with fluctuating (nonstationary) lead times coupled with

upply disruption risk. 

The OEM’s engineering department discovered another raw ma-

erial with the same functionality as polyurethane. After the dis-

overy it took two months to develop new technical drawings for

sing this substitute raw material in production, and the first re-

lenishment order to the new supplier could be placed on Decem-

er 9, 2011. The two-month disruption resulted in unsatisfied de-

and and a lower service level for the company. 

In this exemplary case the OEM had to deal with fluctuating

ead times and disruption risk towards the end-of-life of the spare

art. Li et al. (2016) show that this is true for the majority of spare

arts empirically. Their results indicate that lead time fluctuations
nd increasing supply risk manifest at the same time towards the

nd-of-life of a spare part. Those empirical findings also confirmed

ith the procurement department by stating that suppliers tend to

elay manufacturing parts that are close to end-of-life, since they

ive priority to other orders. This reasoning is similar to the re-

ults of Duenyas and Neale (1997) as explained in Section 1 . Fur-

hermore, it usually takes significant amount of time to restart the

upply chain due to technical and administrative constraints once

he disruption takes place. Therefore, it is important to consider

andom lead times and the risk of supply disruption in spare parts

nventory management to mitigate the effects of these risk factors.

In this study, we focus on nonstationary disruption risk coupled

ith lead time fluctuations in spare parts supply chain. Mathemat-

cal formulation of our model and its assumptions are presented in

he next section. 

. Model formulation 

This study aims to model and analyze the optimal inventory

ontrol policy under nonstationary disruption risk and random

ead times. To this end, we consider a Markov chain driving the

upply disruption probabilities and lead time distributions over

he planning horizon. First, the assumptions and fundamentals of

he mathematical model are explained. Later on, the multi-period

ost function, the optimal policy and computational issues are dis-

ussed, respectively. 

.1. Assumptions 

We consider a single-item single-echelon inventory system in

iscrete time. Replenishment orders are delivered to the inventory

fter a random number of periods. Due to this complexity, a supply

ystem with random movements of outstanding orders is analyti-

ally tractable only under specific assumptions. Kaplan (1970) ad-

ress this issue by suggesting the no-order-crossover assumption

hich guarantees that no order can be delivered after the ones

laced later. Adapting this contribution, the first assumption of our

odel is as follows: 

ssumption 1. Outstanding orders cannot cross each other in the

upply system. 

As a consequence, the position of an outstanding order is a ran-

om variable that is independent of the position of all prior out-

tanding orders ( Nahmias, 1979 ). 

The no-order-crossover assumption may be too restrictive for

roblems with high-demand rate such as retail or food supply

hains. However, spare parts are mostly characterized by slow, in-

ermittent demand and usually the number of outstanding orders

s less-than two at any point in time. According to the OEM for

hich the research was done, supply disruption risks occur when

here is only one supplier and no order has been placed for some

ime. Hekimo ̆glu (2015) provided some empirical evidence in the

ense that supply disruption risk is associated with long intervals

etween orders from OEMs to suppliers. 

In our context, where we have supply disruptions together with

andom lead times, outstanding orders after disruption require

pecial attention. In practice, when a disruption occurs, the status

f outstanding orders depends on various factors such as the size

f the supplier, the commitment level between the two firms, the

xistence of contractual fines, etc. All possible scenarios for out-

tanding orders exist between two extreme cases: on one hand, all

utstanding orders are preserved after supply disruption, that is,

utstanding orders will still be delivered although no new order

lacements are possible (this is the case when the supplier con-

rms the order upon acceptance). This scenario is consistent with

ake-to-stock manufacturing systems and deliveries from overseas
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Fig. 1. Purchase history for Part A. 

Table 1 

Notation of the mathematical model. 

h : Holding cost per unit, per period 

p : Shortage cost per unit, per period 

c : Acquisition cost per unit, per period 

α : Discount rate per period 

D : Random demand of a single period 

D l : l -period convolution of random demand D . 

L ( i ) : Discrete random variable for lead time of an order when the supplier is in state i 

i + : Random variable indicating the next healthy state after state i . 

d i : Random variable indicating the disruption state of healthy state i . 

d i + : Random variable indicating an healthy state after the disruption state d i . 

B : Markov chain state space. 

B h : Subset of B including only healthy states of supply. 

q ( i ) : Probability that the supply system stays healthy in the next period, when it is in state i . 

ξ ( d i ) : Probability that the supply system stays in disruption ( d i ). 

P : The transition probability matrix. 

P h : Matrix including conditional probabilities of transitions between healthy states. 

Table 2 

Experiment factors in scenario analysis. 

Supply tendency Lead time Supply disruption Disruption type 

Unstable Random YES LID 

Stable Deterministic NO SFD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Random lead time parameters for each Markov state ( b ( i ) for Queue #2 ). 

Parameter set State 0 State 2 State 3 

Set 1 0.6 0.4 0.2 

Set 2 0.9 0.85 0.8 
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manufacturing plants. On the other hand, suppliers might cancel

all outstanding orders after disruption. This situation is more con-

sistent with make-to-order systems that manufacture slow-moving

and high-value capital products and/or their components. In such

a case, the company does not receive previous orders nor can it

place new ones. Hence, it has to continue with its existing inven-

tory until the supply system recovers. In this study, we consider

the first case which is also consistent with the no-order-crossover

assumption ( Zipkin, 1986 ). Another possible scenario between the

two extreme cases is that all outstanding orders are preserved but

no deliveries occur during a disruption. This case can be analyzed

with our model by setting delivery probabilities in disruption pe-

riods to zero. 

The order of events in each period is as follows: the inventory

manager observes the supply system and decides the replenish-

ment order for that period. We assume fixed ordering cost to be

zero, hence only the acquisition cost ( c ) is paid at the time of order

placement. Later delivery of previous orders and customer demand

are realized, and holding and shortage ( h and p ) costs are incurred.

Last, the supplier’s state changes. We refer to Table 1 for notation. 
.2. Supply risk driving mechanism 

In order to address the nonstationary supply risk, we consider

n exogenous, discrete-time Markov chain that drives the supply

ystem. We define B as the set including all states of the Markov

hain which we assume to be known to the decision maker. States

n B consist of two groups: healthy states and disruption states. In

ealthy states, the inventory manager can place replenishment or-

ers to the supplier considering the known lead time distribution

nd supply disruption probability of each state. The lead time dis-

ribution and disruption probabilities may be different across the

ealthy states of the Markov chain. In disruption states, no replen-

shment order is allowed until the system jumps back to a healthy

tate. We define B h as the subset including healthy states of B . 

When the Markov chain is in the healthy state i , two events are

ossible at the end of a period: either the supplier stays healthy

ith probability q ( i ) and may stay or jump to another healthy

tate, or a supply disruption occurs and the system goes to state

 

i with probability q̄ (i ) := 1 − q (i ) . In state d i , either the system

umps to a healthy state with probability ξ̄ (d i ) , or it stays in the

ame disruption state (with probability ξ (d i ) := 1 − ξ̄ (d i ) ). ξ̄ (d i )
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Fig. 2. State space of the Markov chain driving the supply process. 
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an be interpreted as the probability of finding a solution to the

upply problem within one time period. Note that considering a

ifferent disruption state for each healthy state ( i and d i ), which

s a modeling choice rather than a technical requirement, allows

s to assign different recovery probabilities for each disruption

tate. This can be motivated by the fact that solving supply prob-

ems may become more difficult as the capital products in use get

lder. The Markov chain, which is consistent with this description,

s given in Fig. 2 . 

Let the matrix P h with elements p ij ( Eq. 2 ) be the transition

robability from healthy state i to healthy state j given that the

ystem stays in B h in the next period. For convenience, we assume

hat there is an order between states in B h .The transition matrix P
n the whole state space B of the Markov chain has the following

orm: 

 = 

(
Q P h (I − Q ) 

(I − �) �

)
(1) 

here 

 (i, i ) = q (i ) , Q (i, j) = 0 ∀ i � = j ∈ B 

h , 

(d i , d i ) = ξ (d i ) , �(d i , d j ) = 0 , ∀ d i � = d j ∈ B − B 

h , 

nd 

 

h = 

{ 

p i j : 
∑ 

j 

p i j = 1 , ∀ i, j ∈ B 

h 

} 

. (2) 

 

We locate healthy states to the first N rows of P whereas dis-

uption states are placed to the last N rows. The disruption proba-

ilities as well as the first two moments of lead time distributions

re assumed to be increasing in the indices of the Markov chain

tates in B h . In Fig. 2 , for instance, more “problematic” healthy

tates are positioned to the right-hand side of the Markov chain.

ote that placing states of the Markov chain differently does not

hange the results of our study. 

.3. Multi-period cost model 

The random outstanding orders in each period require a multi-

tate recursive equation for the finite-horizon, total discounted cost

ver the planning horizon. Due to the curse of dimensionality,

owever, computations are problematic. Therefore, we develop an

quivalent single-state cost function (see Appendix A in the online

upplement of this paper). The main idea of the state reduction is

o combine all future holding and backlog costs with the current

eriod’s acquisition costs ( Kaplan 1970 ). In the remainder of the

aper, we continue with the reduced cost function. 
Given that the current inventory level is x , we define holding

nd backlog cost of l -periods from now as follows: 

 

l (x ) = αl E 

[
h max (x − D l+1 , 0) + p max (D l+1 − x, 0) 

]
. (3)

n stationary random lead time models, the cost function in

q. (3) would be weighted with lead time probabilities to obtain

he expected single period costs. In nonstationary systems, how-

ver, lead time probabilities should be considered together with

arkov transition probabilities until delivery takes place, as they

re dependent. Given that the supplier is in state i and the inven-

ory level is equal to x , the new single period cost function, due to

ong and Zipkin (1996) , is as follows: 

ˆ 
 (i, x ) = 

∑ 

l≥0 

P r { L (i ) ≤ l ≤ L (i + ) } C l (x ) , (4)

he single period cost function for a disruption state, ˆ C (d i , x ) , can

e obtained by replacing i with d i (see Theorem 1 in Appendix A).

If an order is placed to the supplier when it is in a healthy

tate i , the probability of this order being delivered within l pe-

iods is Pr { L ( i ) ≤ l }. The probability of the next period’s order being

elivered later than l -periods is P r{ L (i + ) > l} . Therefore P r{ L (i ) ≤
 ≤ L (i + ) } = P r{ L (i ) ≤ l} − P r{ L (i + ) < l} gives the probability of this

eriod’s order being delivered l -periods later. From this perspec-

ive, the function 

ˆ C (. ) is a mere extension of the single-period

ost function in Ehrhardt (1984) and Kaplan (1970) . The following

emma from Song and Zipkin (1996) is useful for developing fur-

her insight into the probability statement P r{ L (i ) ≤ l ≤ L (i + ) } and

ost function 

ˆ C (i, x ) . 

emma 1. ( Song & Zipkin, 1996 ) If the (supply) process is stationary,

.e. i = i + , then 

 r { L (i ) ≤ l ≤ L (i + ) } = P r { L (i ) = l } . 
A n -period (finite-horizon) discounted cost function, ˜ f n (i, x ) , for

 healthy state i and inventory position before ordering x , is given

n Eq. (5) . indicates that this is the transformed total cost function.

he original multi-state dynamic programming formulation, whose

quivalence to ˜ f n (i, x ) is shown in Appendix A, includes outstand-

ng orders in state space and is very difficult to enumerate due

o curse of dimensionality ( Kaplan, 1970 ). Similarly n -period dis-

ounted cost function when the system is in a disruption state d i 

s ˜ g n (d i , x ) , where x represents the inventory position when the

upply system is disrupted. The formulations of the two cost func-

ions are given below: 

˜ f n (i, x ) = min 

y ≥x 

{ 

c(y − x ) + q (i ) ̂  C (i, y ) + q̄ (i ) ̂  C (d i , y ) 

+ αq (i ) E ̃

 f n −1 (i + , y − D ) 
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+ αq̄ (i ) E ̃

 g n −1 (d i , y − D ) 
} 

, i, i + ∈ B 

h , (5)

and 

˜ g n (d i , x ) = 

ˆ C (d i , x ) + αξ (d i ) E ̃

 g n −1 (d i , x − D ) 

+ αξ̄ (d i ) E ̃

 f n −1 (d i + , x − D ) . (6)

˜ f n (i, x ) consists of two parts that are associated with two possi-

bilities when the system is in state i : staying in healthy condition

or jumping to the disruption state in the next period. The cost of

the first possibility is αq (i ) E ̃

 f n −1 (i + , y − D ) , whereas the cost of

the second possibility is αq̄ (i ) E ̃ g n −1 (d i , y − D ) where y stands for

the inventory position after the order placement. 

After disruption, incoming demand is subtracted from the in-

ventory position x and no new orders are placed until the system

jumps to an healthy state. Hence the only cost comes from the sin-

gle period holding and backlog costs ˆ C (d i , x ) and the two possibili-

ties of the supply system when it is disrupted: staying in the same

disruption state, associated cost is αξ (d i ) E ̃ g n −1 (d i , x − D ) , or jump-

ing to a healthy state whose associated cost is αξ̄ (d i ) E ̃

 f n −1 (d i + , x −
D ) . Note that if we set d i + = i, then we obtain the specific Markov

chain in Fig. 2 , however our model allows consideration of more

general cases. 

Eqs. 5 and 6 can be interpreted as follows: when the supply

system is in a healthy state, the decision maker should place an

order considering the supplier’s state, its disruption probability,

holding, shortage, and acquisition costs. The following section gives

a summary of analytic characterization of the optimal policy. An

unabridged version of this section is given in Appendix A in the

online supplement. 

4.4. Optimal policy 

To analyze the function 

˜ f n (i, x ) and derive the optimal con-

trol policy, we utilize the following transformation first introduced

by Veinott (1965) : W n (i, x ) = 

˜ f n (i, x ) + cx . This leads to W n (i, x ) =
min y ≥x G n (i, y ) , where c is the acquisition cost and, 

G n (i, y ) = cy (1 − αq (i )) + q (i ) ̂  C (i, y ) + q̄ (i ) ̂  C (d i , y ) 

+ αq (i ) E W n −1 (i + , y − D ) + αq̄ (i ) E ̃

 g n −1 (d i , y − D ) . (7)

In Eq. (7) , cy (1 − αq (i )) stands for the trade-off between purchas-

ing in this period or leaving it to the next one. This trade-off in-

cludes the effect of discounting combined with disruption risk. 

Theorem 1 states the convexity of Eqs. (4), (6), (7) and the op-

timal policy. 

Theorem 1. The following statements are true: 

a) ˆ C (i, x ) is convex in x. 

b) ˜ g n (d i , x ) , G n ( i , x ), W n ( i , x ) are convex in x , 

c) a state-dependent base stock policy is optimal. 

The statement a of the theorem is due to Song and Zipkin

(1996) whereas proof of the rest can be found in Appendix A.2. The

optimal policy can be characterized with S n ( i ), which is the optimal

inventory position after the replenishment order when there are n

periods ahead and the supply system is in state i . We analyzed

monotonicity conditions for S n ( i ) and derived sufficient conditions

for monotone base stock levels over Markov states. Unfortunately,

these conditions, which are derived for supply failures, which

are defined to be persistent supply disruptions, by Hekimo ̆glu

(2015) are very intricate and it is hard to develop intuition from

them. Hence, they are omitted in this paper. Note that in all of our

numerical results, that are calculated with the value iteration algo-

rithm, we observe monotonic base stock levels as in Fig. 5 . In the

next section, we provide a queueing system that generates Markov-

modulated random lead times and supply disruptions. 
.5. A queueing system to model random lead time and supply 

isruptions 

We need a stochastic process which (a ) is driven by an exoge-

ous Markov chain, (b) is capable of producing state-dependent

ead time distributions, and (c) precludes order crossovers. In this

art of the paper, we suggest a stochastic system consisting of

wo semi-dependent queues for modeling a supply system with

arkov-modulated random lead times. 

For the exogenous Markov chain (condition a ), we consider a

iscrete-time Bernoulli queue, which is dubbed Queue #1 and de-

icted in Fig. 3 . The number of items in this queue defines the

ealthy states of the Markov chain and increasing number of items

n the system indicates the supplier’s health gets worse. To in-

lude supply disruptions, we modify this queuing system with

tate-dependent disruption probabilities. Specifically, at the end

f each period when there are i items in the system, the sup-

ly process stays healthy with probability q ( i ) or a disruption oc-

urs with probability 1 − q (i ) . Given that it stays healthy, an item

rrives at Queue #1 with probability e , and an item leaves the

ueue with probability d . When a disruption arrives, we assume

hat neither arrivals nor departures occur until the system jumps

ack to the associated healthy state, i.e. disruption ends. Then the

ueueing system continues with the same amount of items. Us-

ng this stochastic systems and the abovementioned parameters we

alculate the elements of the transition probability matrix P h in

q. (2) . 

To generate Markov-modulated random lead times without

rder crossover, we consider another discrete-time queue with

artial-batch bulk service, with batch size K , and a finite queue

apacity, C . Additionally we assume K = C. This queueing system

s dubbed Queue #2 in Fig. 3 . In each period, an item arrives at

ueue #2 with probability a . This item is associated with that

eriod’s replenishment order if there is an available space in the

ueue. If the number of orders in the queue is equal to the queue

apacity, the arriving item is discarded and that period’s order

s added to the youngest order in the queue. In each period, ei-

her the server releases all items in the queue, since K = C, with

robability b ( i ), where i is the state of the Markov chain, or all

tems wait. One possible realization of the system is depicted in

ig. 3 when i = 6 and C = K = 10 . Note that this queueing system

lso satisfies Eq. (4) in Zipkin (1986) which states the conditions

f random lead times without order crossovers. 

A possible example of such a queueing system is a ferry port, in

hich the queueing area is equal to the capacity of a single ferry.

very time a ferry leaves the port, all vehicles waiting (in position

) are taken into the ferry and the port area is emptied. When the

erry arrives its destination, vehicles leave the ferry to position 3.

n our supply chain context, the FIFO rule in the queue precludes

rder crossovers, whereas the partial-batch server provides com-

letely random deliveries independent of previous orders. Another

xample for Queue #2 is a production manager who makes deci-

ions for consolidating customer demand before opening a produc-

ion order. 

The effect of the Markov chain on the delivery system in Queue

2 is obtained by the process rate of the partial-batch server,

hich is dependent on the number of items in Queue #1 . In our

erry port example, the Markovian state variable may stand for

andom weather conditions affecting the departure or arrival of

erries, whereas in our context it could be an exogenous factor af-

ecting the consolidation frequency. Using this stochastic system,

e were able to generate Markov-modulated random lead times

nd enumerate the probability statement P r{ L (i ) ≤ l ≤ L (i + ) } , the

ummation of which is dubbed inventory coverage by ( Song & Zip-

in, 1996 ). The algorithm used to calculate P r{ L (i ) ≤ l ≤ L (i + ) } is

rovided in the next section. 
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Fig. 3. Queueing systems for impact analysis. 
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Algorithm 1 Algorithm to calculate inventory coverage. 

1: A 

i + 
1 

= 

∑ 

j∈ B p i j A 

j 
1 
, 

2: for all l ≥ 1 do 

3: for all i ∈ B do 

4: A 

i + 
l 

= 

∑ 

j∈ B p i j A 

j 

l 

5: A 

i 
l+1 

:= A 

i 
1 
A 

i + 
l 

6: P r{ L (i ) ≤ l} = 

(
A 

i 
l+1 

)
(1 , 3) 

7: P r{ L (i + ) < l} = 

(
A 

i + 
l 

)
(1 , 3) 

8: end for 

9: end for 

10: P r{ L (i ) ≤ l ≤ L (i + ) } = P r{ L (i ) ≤ l} − P r{ L (i + ) < l} 
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.6. An algorithm to calculate inventory coverage 

The assumption of C = K implies that the position of an out-

tanding order in Queue #2 is unimportant as long as it has not yet

elivered since the server takes all items at the same time. In ad-

ition, we analytically proved that the optimal control of inventory

an be achieved using inventory position (summation of outstand-

ng orders plus inventory level) ( Theorem 1 ). Hence it is sufficient

o set C = 2 to calculate the probability P r{ L (i ) ≤ l ≤ L (i + ) } which

equires explicit modeling of movements of outstanding orders. 

In such a system outstanding orders move through three dis-

inct positions: Current period’s order enters the supply system

rom position 1. In the next period, the outstanding order either

roceeds to position 2 (or adds up the existing outstanding orders)

r it is delivered (position 3) with probabilities 1 − b(i ) and b ( i ),

espectively. All undelivered, existing outstanding orders are as-

umed to be in position two. Recall that C = K implies that orders

ither stay in their position with probability 1 − b(i ) , or all of them

re delivered at the same time with probability b ( i ). Movements

f an outstanding order can be modeled with a Markov chain X t 

f which the third state (position three, delivery) is an absorbing

tate. When the health of the supply system, denoted by I t , is in

tate i , one-step transition diagram, A 

i 
1 
, of X t is given as follows: 

 i ∈ B, A 

i 
1 = 

( 

0 1 − b(i ) b(i ) 
0 1 − b(i ) b(i ) 
0 0 1 

) 

. (8)

For the supply system described above ∀ i ∈ B, P r{ L (i ) ≤
 ≤ L (i + ) } = P r{ L (i ) = 0 } = P r{ X t+1 = 3 | X t = 1 , I t = i } = b(i ) . Also

e know that P r{ L (i ) ≤ l ≤ L (i + ) } = P r{ L (i ) ≤ l} − P r{ L (i + ) < l}
 Song & Zipkin, 1996 ). Hence, we need to calculate Pr { L ( i ) ≤ l },

 r{ L (i + ) < l} to reach the desired probability. 

Pr { L ( i ) ≤ l } represents the probability of an outstanding or-

er being delivered in less-than-or-equal-to l periods, i.e.

 r{ L (i ) ≤ l} = P r{ X t+ l+1 = 3 | X t = 1 , I t = i } . This multi-period

robability can be calculated by a first-step analysis as fol-

ows: P r{ X t+ l+1 = 3 | X t = 1 , I t = i } = 

∑ 

k ∈ B p ik 
∑ 

j � =3 P r{ X t+ l+1 =
 | X t+1 = j, I t+1 = k } P r{ X t+1 = j| X t = 1 , I t = i } , which is nothing but

hapman–Kolmogorov equations ( Ross, 1996 ). Also the probability

tatement P r{ X t+ l+1 = 3 | X t+1 = 1 , I t+1 = i + } = P r{ L (i + ) ≤ l − 1 } .
hese two observations are utilized in Algorithm 1 . 
The algorithm starts with the calculation of A 

i + 
1 

for a given state

f the supply health using { p i j : p i j ∈ P} and recall that P is the

ransition matrix for the supply health in Eq. (1) . Multiplication of

he two matrices in step 5 follows from the Chapman–Kolmogorov

quations. 
(
A 

i 
l+1 

)
(1 , 3) 

stands for the element in the first row and

he third column of l−period transition matrix A 

i 
l+1 

, which gives

he probability of an outstanding order being delivered within l

eriods. 

To the best of our knowledge, our queueing system and

lgorithm 1 is the first algorithm to calculate P r{ L (i ) ≤ l ≤ L (i + ) } ,
hich is critical for nonstationary random lead time systems. In

he rest of this paper, we provide the maximum likelihood estima-

or for the state-dependent service rate of Queue #2 . 

.7. Maximum likelihood estimator of b ( i ) 

Our supply mechanism works with a batch server which deliv-

rs K orders at the same time. And the batch size is assumed to be

qual to the queue capacity, C = K. This means our supply mecha-

ism accepts successive orders and delivers them at the same time

ather than sequential deliveries. 

To estimate the supply mechanism’s parameters from purchase

istory data, we should model periods with and without deliveries

xplicitly. Define Y t = 1 if delivery of outstanding orders take place

t time t and it is equal to 0 otherwise. Then for an order placed
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Fig. 4. Overlapping and non-overlapping lead time periods. 

Fig. 5. Base stock levels for the benchmark scenario. 
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at period t , 

P r{ L (i ) = l} 
= P r{ Y t = 0 , I t = i } P r{ Y t+1 = 0 , I t+1 = i + } 

. . . P r{ Y t+ l−1 = 0 , I t+ l−1 = j} P r{ Y t+ l = 1 , I t+ l = j + } , 
= P r{ Y t = 0 | I t = i } P r{ I t = i } P r{ Y t+1 = 0 | I t+1 = i + } p ii + 

. . . P r{ Y t+ l = 1 | I t+ l = j + } p j j + . (9)

Define L (Y, I) as the likelihood function for the joint distribution

of ( Y t , I t ). Then L (Y, I) = L (Y | I ) L (I ) due to Eq. (9) . In other words,

it is sufficient to maximize likelihood function for the parameters

of the supply system for a given Markov chain data set. 

Define m i as the number of periods without delivery and the

Markov chain is in state i , and n i is the counter for the periods

with delivery in state i . After counting time periods with and with-

out delivery within lead time data, we can write the likelihood

function of lead times using m i and n i , i = 1 , . . . , N as follows: 

L (Y | I) = (1 − b 1 ) 
m 1 (1 − b 2 ) 

m 2 . . . (1 − b N ) 
m N b n 1 

1 
b n 2 

2 
...b n N 

N 
. (10)

By showing the concavity of the log-likelihood function, we find

the maximum likelihood estimator of b i is equal to 
n i 

n i + m i 
. Note

that for orders whose lead time periods do not overlap ( Fig. 4 ),

the maximum likelihood estimator is exact. For successive orders

whose lead times overlap, the estimator is an heuristic approach as
ur supply mechanism precludes different delivery times for over-

apping lead times. 

Non-overlapping lead times are particularly observed in the

upply chain of slow-moving spare parts. Decreasing demand rates

owards spare parts’ economic life times lead to infrequent orders

o suppliers which yield non-overlapping lead time periods as in

he business case presented in Fig. 1 ( Section 3 ). Hence, the accu-

acy of our queueing system increases while parent capital prod-

cts get older. 

In the next section, we suggest a procedure utilizing our math-

matical model, the queueing system and empirical model by Li

t al. (2016) for mitigation of supply disruption risk. 

.8. A procedure for estimating the nonstationary supply risk 

Our model in Section 4.3 assumes that Markov states for sup-

lier health can be observed by the decision maker. Instead of

xtending the model with hidden or partially-observed Markov

tates, we use supply risk estimations by an empirical model sug-

ested by Li et al. (2016) who estimated survival probability of sup-

liers using the proportional hazard model. Their model is capable

f estimating survival probability for a given length of time period

or each spare part. The main idea of our procedure is using those

urvival probabilities as the risk indicators and making them com-

atible with our model by transforming them into Markov states. 

Survival probabilities of a spare part supplier are calculated for

ach historical time point in rolling horizon fashion. This means

he data available until each time point is used to estimate the

urvival probability of that time point. Then those probabilities

re transformed into states of a Markov chain (driving the supply

ealth) using threshold levels . Once the survival probability crosses

 threshold level, we accept this as the event of the Markov chain

umping to another state. 

By doing so, we calculate the Markov chain state of each time

oint and use lead time data to estimate parameters of the supply

echanism articulated in Section 4.7 . For recovery probabilities of

he model, we suggest usage of empirical data that belongs to the

art group including the spare part of interest to avoid a potential

egrees of freedom problem. 

The estimation of parameters of our model is followed by calcu-

ation of infinite-horizon base stock levels using the value iteration

lgorithm. Usage of the state-dependent base stock levels with our

rocedure allows increasing inventory levels in advance when the

isruption risk is increasing. The application of our procedure to

he business case in Section 3 is presented in Section 5.5 . In the

ext section, we use the queueing mechanism in Section 4.5 for

nalyzing the effect of random lead times coupled with disrup-

ions, and present the application of our supply risk mitigation to

he real business case in Section 3 . 

. Impact analysis for nonstationary supply risk factors 

To investigate the combined effect of random lead time and

upply disruption, we used the stochastic process in Section 4.5 to

enerate Markovian random lead times and disruption events. We

alculate the optimal base stock levels under different risk scenar-

os (that is, considering only one risk factor, or both, or none). Sub-

equently, we test the performance of these optimal policies with

imulation in the benchmark scenario, which includes both risk

actors ( Section 5.1 ). In this way, we analyze the impact of ignoring

ne or both of the risks in terms of costs and service level. 

There are two possible extreme scenarios for a nonstationary

upply system. The system stays healthy over the entire planning

orizon, or it proceeds to more risky states and eventually fails. In

rder to evaluate these two scenarios, we run the stochastic pro-

ess from Section 4.5 with different e and d probabilities. Due to
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f  
he way that we order Markov chain states ( Section 4 ), e < d im-

lies the stable supply scenario in which the supplier moves to

 healthier state with higher probability than moving to a riskier

tate. A possible example of this situation is spare parts which are

t the beginning of their life cycle. Even if exogenous changes oc-

ur, the supply system stays stable for such parts. In the other ex-

reme, we have the unstable scenario, that is e > d . This situation

ccurs especially when capital products are in the final phase of

heir life cycle. Suppliers of spare parts tend to stop manufacturing

ver time and this tendency is reflected in increasing lead times

nd higher supply disruption probabilities. 

The literature distinguishes two types of disruptions: Long and

nfrequent disruptions (LID) and short and frequent disruptions

SFD). To evaluate the effect of disruption types, we consider them

n our scenario analysis in addition to the stable and unstable sup-

ly processes. 

In the scenario analysis, we evaluated the effect of each indi-

idual risk factor as well as their combined effect on total cost and

ervice levels, expressed in terms of ready rate. Besides the scenar-

os with random lead times, we consider scenarios with determin-

stic lead times, while keeping expected lead times equal. Similarly,

esides the scenarios with supply disruption risk, we run scenarios

ithout disruption by setting associated probabilities to zero. We

onduct each computation for unstable and stable supply scenarios

ogether with LID and SFD scenarios respectively. By considering

he factorial design for all variables given in Table 2 , we obtained

6 different scenarios in this part of the study. 

In addition to these runs, we consider a scenario with a state-

ndependent deterministic lead time without supply disruption. The

eterministic lead time is assumed to be equal to the average of

xpected lead times of all states. Calculated optimal base stock lev-

ls of each scenario are used in a simulation model of the bench-

ark scenario to compare the effect of ignoring both supply risks

n the inventory performance. The development of the scenarios

nd their results are presented in the following sections. 

.1. Setup of the computational study 

In order to evaluate the deviation of each run from the optimal

olicy (benchmark), we fed finite-horizon order-up-to levels into a

imulation model. This procedure started with selection of param-

ter values for disruption and supply recovery probabilities as well

s random lead time for each state. 

For simplicity, we considered a Markov chain consisting of three

ealthy and three disruption states where each disruption state

as assumed to be associated with only one healthy state. Note

hat considering different numbers of healthy states did not change

he qualitative results of the study. 

For state-dependent random lead times, we considered two dif-

erent sets of parameter values for the service rate of Queue #2

 b ( i )), given in Table 3 . Parameter set 1 aimed to examine the ef-

ect of significant lead time variations over Markov states. Parame-

er set 2 aimed to investigate the supply risk factors when the first

wo moments of lead time distributions are very close to zero. Our

oal was to develop a better understanding of the interaction be-

ween supply disruption and random lead time. 

For the disruption behavior of the model, we calculated dis-

uption and recovery probabilities ( q ( i ) and ξ̄ (i ) for i = 1 , 2 , 3 )

hat yield the expected number of disruption periods equal to 5 ,

0 , and 15% of the planning horizon under four different supply

cenarios: stable-LID, unstable-LID, stable-SFD, and unstable-SFD.

etails of these calculations and calculated parameter values are

iven in Appendix B. 

Using the parameter values in Table 3 and Appendix B, we cal-

ulated the optimal base stock levels using the value iteration algo-

ithm for 100 periods. The finite-horizon base stock levels for the
enchmark scenario (unstable-LID with both lead time and supply

ailure risks) are given in Fig. 5 . As can be seen, all base stock lev-

ls converge to an infinite-horizon base stock level and the end-of-

orizon effect appears when there are 10 periods remaining in the

lanning horizon. Also, there are significant differences between

ase stock levels of different states. 

To evaluate the performance of the optimal policy, we devel-

ped a simulation model. This approach is motivated by the fact

hat calculation of the optimal total cost requires a complete enu-

eration of a multi-state dynamic programming model which is

nly feasible for problems with small state spaces. On the other

and, the optimum base stock levels can be calculated using the

educed cost function given in Eq. (5) . 

In the simulation model, Markov-modulated supply disruptions

nd random lead times take place randomly. At the beginning

f each period, an order is placed according to calculated finite-

orizon base stock levels. Each period’s acquisition, holding and

acklog costs are calculated over the planning horizon. By feed-

ng the optimum policy to the simulation model we obtain desired

erformance measures of the benchmark scenario. 

The performance measures we tracked in our simulation model

re total discounted cost, total discounted backlog cost, ready rate

fraction of time with positive stock on hand) and fill rate (fraction

f demand that can be satisfied immediately from stock on hand

 Axsäter, 2006 )). Total cost and total backlog costs are common

erformance measures in the inventory control literature. Ready

ate and fill rate are important in the aviation sector and are uti-

ized in most customer contracts. To determine the number of

eplications, we first conducted a pilot study consisting of 50 0 0

eplications. We used the results of this study to compute the to-

al number of replications, which was set at 50,0 0 0. To control

he variance, we use common random numbers and used paired-

-tests to compare results of scenarios. 

The discount rate per period is set at 0.995, which leads to a 6%

nnual discount rate over the entire planning horizon, since a pe-

iod stands for a month in our empirical analysis presented below.

ithout loss of generality, we set the acquisition cost equal to 2

er item, the holding cost equal to 0.2 and backlog cost is equal to

 per item per period (0.1 and 2 are taken as holding and backlog

ost rate multipliers). Random demand in each period is assumed

o follow a Poisson distribution with mean 2. 

.2. Coupled effect of random lead time and supply disruption 

To analyze individual and coupled effects of random lead time

nd supply disruptions on cost and service level, we present the

esults of the scenarios given in Table 2 with different expected

isruption periods (5 , 10 , and 15% of the planning horizon) and

he two parameter sets in Table 3 . In this section we present key

ndings of our impact analysis. An unabridged version of this sec-

ion is given in Appendix C. 

We define the percent deviation of the scenario where only ran-

om lead times are ignored (taken to be deterministic and equal

o expectations of each state) as �RLT and the deviation of the sce-

ario in which disruption risk is ignored from the benchmark is

enoted with �D . 

The coupled effect, denoted by �c , is calculated using the sce-

arios with Markov-modulated deterministic lead time without

isruptions. We define the percent deviation of this scenario from

he benchmark as �Nonst . Similarly, we analyze the effect of non-

tationarity, �N , using a scenario with stationary (non-Markovian ),

eterministic lead time without disruption. �St denotes the per-

ent deviation of this scenario from the benchmark. The difference

etween stationary and non-stationary policies is taken as the ef-

ect of nonstationarity. Formulations of the coupled effect and the
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Fig. 6. Percent deviation from the optimal total cost for different scenarios in lead time set 1. 

Fig. 7. Percent deviation from the optimal total cost for different scenarios in lead time set 2. 
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effect of nonstationarity are given below: 

�c = �Nonst − �RLT − �D , 

�N = �St − �Nonst . 

With these formulations we aim to see individual effects of all fac-

tors on total cost when they are ignored by the decision maker.

Values of these statistics under stable LID and SFD scenarios, which

are calculated by comparing appropriate runs and benchmarks, are

presented in Fig. 6 a and 6 b. 

The results in Fig. 6 a and 6 b indicate that increasing levels of

disruption risk lead to larger deviations due to disruption ( �D ) and

the coupled effect ( �c ), whereas it depletes the deviation due to

random lead time ( �RLT ). Evidently, increasing disruption risk leads

to higher inventory levels, which mitigate the effect of random

lead time on inventory performance. Furthermore, the effect of

nonstationarity ( �N ) is larger for unstable supply scenarios com-

pared to stable ones. Expectedly, when the supply health worsens

over time, such as in aging aircraft, ignoring supply-side risk cre-

ates a larger deviation in total discounted costs. 

Another important observation can be done between the two

types of disruptions. Our results show that LIDs have a larger ef-

fect on system performance compared to SFDs although the ex-

pected number of disruption periods are the same. This also holds

for the coupled effect. This result is similar to Tomlin (2006) who

compared the two types of disruptions in a different context. 

Results of the same experiments with lead time parameter set

2 ( Table 3 ) are given in Fig. 7 a and 7 b. In this run set, the ef-
ect of disruption is 50% and the coupled effect is up to 11% of

otal optimal cost. Also, we find that the effect of nonstationarity

n total cost deviation is almost zero (that’s why we did not de-

ict them in Fig. 7 a and 7 b). This indicates that state-dependent

ead time distributions are more important for nonstationarity than

tate-dependent disruption probabilities. Also note that the devia-

ion due to disruption and random lead time is larger in the stable

upply scenarios than in the unstable ones. This observation can

e seen as the implicit effect of nonstationarity on individual risk

actors. 

.3. Sensitivity analysis 

In order to analyze the effect of supply risk under different

ost parameters, we run a sensitivity analysis in which we con-

ider {0.2, 0.3, 0.4, 0.6} as holding cost rates and {0.9, 0.95, 0.99,

.995} as target service levels which are used to calculate backlog

ost rates using the critical fractile. Calculated holding and backlog

ost rates are multiplied with the acquisition cost, 2 per item, to

btain cost parameters of the analysis. 

We only present the results of the sensitivity analysis for LID

nstable and SFD stable scenarios since these two stand for upper

nd lower bounds for the effects of supply risk on total cost and

eady rates. Our sensitivity analysis indicates that the coupled ef-

ect of random lead time and disruptions can be greater than 200%

f the total optimal cost for high ready rates in the LID unstable

cenario. When all risks are ignored, the total cost deviation can

e up to 500% of the optimal cost when the target ready rate is

et to 99.5% ( Fig. 8 ). The nature of the deviation is very different
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Fig. 8. Percent deviation from total costs for different scenarios with 5% expected disruption. 

Table 4 

Total canceled outstanding orders as percent of expected total demand. 

Disruption type 

Long & infreq. Short & freq. 

Supply tendency Stable Unstable Stable Unstable 

Lead time parameter Set1 1.86% 1.76% 5.63% 5.33% 

Set2 0.16% 0.14% 0.5% 0.45% 
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or SFDs, where the effect of random lead time is as high as the

oupled effect of the two scenarios. These results indicate the im-

ortance of considering both risk factors in a single model to aim

or higher service levels with more reasonable inventory costs. In

he next section, we consider the case where outstanding orders

re canceled with disruption. 

.4. Cancellation of outstanding orders after disruption 

In our model, we assume that outstanding orders are preserved

nd deliveries of previous orders continue during disruption. This

ssumption leads us to an analytically tractable model and the op-

imal inventory control policy. Despite these mathematically at-

ractive features, preservation of previous orders during disruption

eriods does not always hold in practice. 

Spare parts suppliers may decide to cancel their support and

end a notification to OEMs for failure to delivery. Such cases

re modeled as disruption in our model which relies on the idea

f carrying additional inventory on account of disruption periods.

owever, when a supplier cancels previous orders after disruption,

his violates the assumption of order preservation (and delivery) of

utstanding orders. 

In order to analyze the cost deviation due to such violation, we

alculate optimum finite-horizon inventory levels with our model

nd use them in a simulation model in which outstanding orders

re canceled after disruption. Total number of orders canceled due

o supply disruptions are given as the percentage of total demand

n Table 4 and the deviations from the optimum cost due to this

alsified model assumption are presented in Table 5 . 

Results indicate that the total amount of canceled orders are

uch higher for short and frequent disruptions compared to long

nd infrequent ones. This can be observed for two lead time

arameter sets and both supply tendencies in Tables 4 and 5 .
e should also note that cost deviations are almost negligible -

ompared to other supply risk factors- for random lead time pa-

ameter set 2 (smaller lead time variance). Therefore, our method

s strongly advisable for such cases. Furthermore, the queueing

odel and the maximum likelihood estimator are particularly

ccurate when lead time periods of successive orders are non-

verlapping. When this is the case, there might be only a single

utstanding order in the system. Hence deviation due to cancella-

ion of outstanding orders are much smaller than articulated here. 

.5. An application of the supply risk mitigation procedure to Part A 

To gain further understanding of the practical value of our

odel and the procedure described in Section 4.8 , we evaluated

he performance of the optimum policy and infinite-horizon base

tock levels on the empirical data that belongs to Part A presented

n Section 3 . A more detailed version of this section is given in

ppendix E while we present the most interesting results in this

ection. 

The procedure starts with the calculation of the survival prob-

bilities of Part A’s supplier for each month. To transform survival

robabilities to transition probabilities ( p ij in Eq. 2 ) of a Markov

hain with two states (state 0 is healthy; state 1 is unhealthy) we

hose 0.75 as a threshold level to move to the unhealthy state.

hen the survival probability is higher than 0.75, the supplier is

ssumed to be in state 0, whereas crossing this level represents

he Markov chain jumping to state 1. Using this discretization, a

ime series is obtained from monthly survival probabilities of the

upplier. 

Then, we used purchase history data for similar parts from

he same supplier to calculate the maximum likelihood estimator

MLE) for the geometric distribution, which is the lead time dis-

ribution in our queuing system in Section 4.5 . Calculated mean
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Table 5 

Cost deviation due to cancellation of outstanding orders. 

Disruption type 

Long & infreq. Short & freq. 

Supply tendency Stable Unstable Stable Unstable 

Lead time parameter Set1 27.9% 22.3% 103.9% 79.1% 

Set2 2.5% 2.1% 8.3% 7.9% 

Table 6 

Descriptive statistics of state-dependent lead times (months). 

Healthy Unhealthy 

Mean 1.88 2.12 

Std.Dev. 0.606 0.779 
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and standard deviation of state-dependent lead times are given in

Table 6 whereas MLEs are presented in Table 7 . 

For the disruption probabilities of the model, q ( i ), we used

cross-validation results by Li et al. (2016) . In their tests, 156 out

of 186 parts had a survival probability of less than 0.75 for the

horizon of the model, and 21 out of 156 suppliers were disrupted

at the time of the analysis. We used this statistic as an estimator

for the disruption probability of state 1 (unhealthy state), whereas

the disruption probability of state 0 is assumed to be 0. For the

disruption recovery probability, ξ ( d i ), we used the average solu-

tion time for disruption cases, which is 4.15 months. We assumed

that the recovery probabilities are identical for both Markov states,

as there was no indication for different probabilities. All estimated

parameters of the model as well as calculated base stock levels are

presented in Tables 7 and 8 . 

Using probability values we calculated infinite-horizon base

stock levels. Other model parameters are taken as follows: The ac-

quisition cost of Part A is 158.39 € , each period lasts a month, the

backlog cost rates are calculated using the critical ratio, and as-

suming holding cost rate is 0.1 per period (month) with target ser-

vice level (ready rate) equal to 0.9 and 0.99. Calculated optimal

base stock levels for the two different service levels are given in

Table 7 . 

To evaluate our data-driven supply risk mitigation procedure,

we compared the optimal inventory levels with the historical in-

ventory levels ( Fig. 9 ). Results indicate that our method not only

provides smoother inventory levels, but also gives a better prepa-

ration for the disruption, which took place in December 2011. Dis-

counted total costs indicate that our policy, for service levels 0.90

and 0.99, create savings of 8.91 and 23.77% compared to the cost

of historical inventory levels called “Business-As-Usual” (BAU). Sur-

prisingly, we find that higher service levels lead to greater cost

savings due to lower backlog costs in 2006 (see Fig. 9 ). Other sav-

ings come from lower inventory holding costs during undisrupted

months of the supply system. Unfortunately, demand during dis-

ruption was not captured in our data. Hence, we can only specu-

late about the savings on the backlog cost during the disruption. 

A sensitivity analysis with different threshold levels and hold-

ing cost rates are conducted. Results, presented in Table 9 , indicate

that savings are decreasing in threshold levels since higher thresh-

old value stands for earlier jump to the risky state (wider red zone

in Fig. 9 ). Note that savings decrease sharply in threshold levels for

service level of 0.9 whereas the rate of decrease is much smaller

for 0.99. The difference stems from the fact that for higher tar-

get service levels total cost is dominated by inventory holding cost

which are close to each other for different threshold levels. Hence

savings are less sensitive to threshold levels. 
At this point, we should stress that authors’ personal com-

unication with engineers in the service sector reveals that 4.15

onths of average solution time for disruption cases is optimistic.

t is argued that solutions to disruption problems of spare parts in-

olves engineering departments, which are usually extremely busy

ith new product development and research processes. Hence,

isruptions get lower priority and may last up to three years. A

nique feature of the OEM, whom authors have contact with, is

hat it has a dedicated technical group for the rapid solution of dis-

uptions. Therefore, we postulate that the relevance of our study is

ven higher than may be reflected in this section. Note that results

resented in this section are only calculated for a single spare part

ainly for demonstration purpose. 

. Summary and discussion 

Supply-side risks for spare parts are very important for Orig-

nal Equipment Manufacturers of capital products. Empirical ev-

dence suggests that towards the end-of-life of capital products

pare parts suppliers stop their manufacturing and/or delay deliv-

ries. This behavior creates random lead times coupled with supply

isruption risks, which are nonstationary in nature. In order to ad-

ress the combined effect of these two risks, we consider a supply

ystem driven by an exogenous Markov chain in a finite horizon

etting. 

Given that order crossovers are not allowed, we prove that the

tate-dependent base stock policy is optimal. Analysis reveals that

ntricate sufficient conditions are necessary for establishing the

onotonicity of optimal base stock levels. Also we suggest a new

ueueing system that generates Markov-modulated random lead

imes (without order crossover) and provide an algorithm to calcu-

ate lead time distribution out of this system. Also the maximum

ikelihood estimator for the queueing system’s service rate is de-

ived. 

Our impact analyses indicate that random lead times and sup-

ly disruptions not only stimulate costs due to their individual ef-

ects, their coupled effect also leads total costs to increase and hurt

nventory systems’ service level. Combined effect of random lead

imes and disruptions are especially significant when the health of

he supplier worsens over the planning horizon. To solve this prob-

em, a supply chain manager should utilize advance signals based

n empirical data and inventory control policies that can respond

hanging supply-side risk levels. 

Furthermore, we conducted experiments on the cost deviation

ue to cancellation of outstanding orders when a supply disrup-

ion arrives. Our results indicate that supply systems with long and

nfrequent disruptions with low variability random lead times are

ess vulnerable to cancellation of previous replenishment orders. 

A heuristic procedure for the application of our model with an

mpirical supply risk estimator is developed. The application of the

rocedure to the real business case indicates that recognizing ran-

om lead time together with supply disruption risk not only cre-

tes savings in total discounted costs, but also makes the company

ore prepared for supply disruptions. 
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Table 7 

Parameters and the result of the model for Part A. 

Markov states Lead time MLE q ( i ) ξ ( d i ) Base stock lev.(0.9) Base stock lev.(0.99) 

Healthy 0.53 0 0.2406 9 16 

Unhealthy 0.47 0.1346 0.2406 15 30 

Fig. 9. Inventory levels for Part A. 

Table 8 

Transition probabilities ( p ij ) for the Markov chain of Part A. 

Healthy Unhealthy 

Healthy 0.929 0.071 

Unhealthy 0.032 0.968 

Table 9 

Savings compared to BAU with different threshold levels, service levels and holding 

costs. 

Threshold levels 

Holding cost rate Target ready rate 0.65 0.75 0.85 

0.1 0.9 19.73% 8.91% 4.61% 

0.1 0.99 22.92% 23.77% 6.94% 

0.3 0.9 21.66% 14.81% 14.53% 

0.3 0.99 13.01% 13.84% 4.03% 
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upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2018.02.040. 
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