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A B S T R A C T

There are two ways of managing market price risk in electricity day ahead markets, forecasting and hedging. In
emerging markets, since hedging possibilities are limited, forecasting becomes the foremost important tool to
manage spot price risk. Despite the existence of great diversity of spot price forecasting methods, due to the
unique characteristics of electricity as a commodity, there are still three key forecasting challenges that a market
participant has to take into account: risk of selection of an inadequate forecasting method and transparency level
of the market (availability level of public data) and country-specific multi-seasonality factors. We address these
challenges by using a detailed market-level data from the Turkish electricity day-ahead auctions, which is an
interesting research setting in that it presents a number of challenges for forecasting. We reveal the key dis-
tinguishing features of this market quantitatively which then allow us to propose individual and ensemble
forecasting models that are particularly well suited to it. This forecasting study is pioneering for Turkey as it is
the very first to focus specifically on electricity spot prices since the country's day-ahead market was established
in 2012. We also suggested applicable policy and managerial implications for both regulatory bodies, market
makers and participants.

1. Introduction

Electricity day-ahead auctions play a central role for the sustain-
ability of electricity markets since they reveal the reference price for all
market participants. In emerging markets, since the number and variety
of hedging tools are limited, for market participants accurate fore-
casting becomes the most essential tool for managing spot price risk. On
the other hand designing a market with a proper transparency level is
one of main responsibilities of the policy makers to let market partici-
pants generate reasonable forecasts using public information.

Especially after the well-known California crisis in the 2000s, the
number of studies on day-ahead price forecasting increased sub-
stantially, as the need for such studies became apparent (e.g.,

Borenstein, 2001). Since the storability of electricity is limited, elec-
tricity prices reveal characteristics that differ from other commodities
and present specific forecasting challenges. Studies focus first on the
basic characteristics of electricity, namely non-storability and in-
elasticity of supply/demand (Geman and Roncoroni, 2006; Lucia and
Schwartz, 2002), and then examine spikes, nonstationarity and mean
reversion (Haugom and Ullrich, 2012; Knittel and Roberts, 2005).
However there are still three challenges that needs to be dealt with in
electricity price forecasting (Weron, 2014).

The first one is a methodological issue, the risk of selection of an
inappropriate forecasting model. Although various individual forecasting
methods are suggested in the literature, none of them has been proven
to be superior (Chen and Bunn, 2010; Weron, 2014), and the
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performance of individual models depends on the periods being con-
sidered and the characteristics of market (Aggarwal et al., 2009). To
compensate for the weaknesses of each individual method, the com-
bined forecasting approach was developed (Crane and Crotty, 1967;
Bates and Granger, 1969). The main advantage of combining forecasts
is not that the ex-post performance of best ensembles are better than
that of best individuals, but that it is less risky to ensemble forecasts
than to select ex-ante one individual forecasting method (Hibon and
Evgeniou, 2005). Although ensemble approach has been well-studied in
other contexts (Stock and Watson, 2004; Timmermann, 2006), the
number of combined forecasting studies relating to electricity markets
is limited (Weron, 2014). The existing studies are mostly on electricity
load forecasting (e.g. Bunn, 1975, 1977; Taylor, 2010). In the context of
day-ahead price forecasting, leading point forecasting studies are,
Bordignon et al. (2013) and Nowotarski et al. (2014), both of which are
from mature electricity markets (the UK and NordPool). The recent few
studies (e.g. Maciejowska et al., 2016; Gaillard et al., 2016,
Maciejowska and Nowotarski, 2016) focus on probabilistic forecasting
and are from the results of the Global Energy Forecasting (GEF) Com-
petition-2014 in which US zonal prices are used. One of the main
findings of these papers is that analysis of different market conditions
can provide important insights in terms of comparing individual and
ensemble models.

Second challenge is a more market-specific one which is the ap-
propriate selection of exogenous variables (e.g., Keles et al., 2016), since
the quality and availability of public data (transparency level of the
market) and their influence on price may differ depending on the
market studied (Aggarwal et al., 2009; Von der Fehr, 2013). Including
exogenous variables (e.g., demand) generally increases the accuracy of
price forecasts. However, when the number of exogenous variables is
increased, the probability of data quality issues and access problems
can increase, and may lead to even worse price forecasts. Therefore, in
devising a sound process for selecting variables the features of the
market need to be taken into account.

The last challenge is catching market-specific multi-seasonality (e.g.,
Janczura et al., 2013) characteristics of the spot price. Multi-seasonality
is defined as having simultaneously daily, weekly and annual compo-
nents. The annual seasonality is more difficult to detect, as it is masked
by more irregular patterns, and it is often ignored in studies as it is
generally believed to add complexity to already parsimonious models
(Weron, 2014; Nowotarski and Weron, 2016). The problem of daily
seasonality is solved by either taking daily averages or modeling each
hour separately (Misiorek et al., 2006; Karakatsani and Bunn, 2008,
2010). Since predictability level (and thus market efficiency) of elec-
tricity prices can change over the course of the day, choosing fore-
casting models by considering fractal properties is very important
(Avci-Surucu et al., 2016). The dual-calendar effect is another factor that
influences prices in countries which follow both the Hijri and Gregorian
calendars for holidays (De Livera et al., 2011).

In this paper our aim is to examine the performance of carefully
selected individual and ensemble models in an emerging EDA market,
Turkey, which is an interesting research setting in that it presents
several challenges for forecasters. First, since it is an emerging market,
hedging possibilities are limited, forecasting becomes the foremost
important tool to manage spot price risk for power agents. As stated in
Hong (2015), even one percent decrease in short term price forecasting
error could result in a hundred thousands of profit per year for a
medium sized utility. Even worse, as in most of the emerging markets,
there is no information transparency platform from which market
participants can obtain relevant data easily and use them in order to
decrease their forecast errors. This makes the Turkey day ahead market
(DAM) a semi-transparent one in terms of information dissemination.1

Secondly, there is no nuclear power plant which eases the horizontal

shift of the base load in the hourly merit order curve (MOC). Third,
there is no gas forward market as gas prices are regulated by the gov-
ernment, therefore it is more difficult to catch the trend seasonality by
calculating the marginal costs of bidders. Fourth, the observance of
multiple religious holidays in Turkey means that dual-calendar seasonal
effects can be found and this situation complicates modeling seasonality
component. Lastly, bids by the state-owned hydro power plants (PP)
have a crucial impact on the shape of the MOC, therefore appropriate
selection of the exogenous variables relating to supply stack char-
acteristics becomes vital. Thus, our main research question is ‘How to
manage price modeling risk via ensemble forecasting in the Turkish elec-
tricity day ahead auctions'. In sum, we aim to develop well-performing
ensemble forecast models for an emerging market and compare their
performance with alternative individual models. This will enable us to
address some of the shortcomings of existing ensemble modeling stu-
dies, specifically the inadequate handling of trend seasonality compo-
nent, the inappropriate selection of exogenous variables when one
considers the relationships that exist between price and system con-
straints, and the methodological similarity of the individual models
they have considered. We contribute to the energy economics literature
on both theoretical and practical dimensions. Firstly, regarding the
variety and type of individual models, ours is one of the first studies to
include a long-term seasonality component for ensemble forecasts and
to provide evidence of their performance. Secondly, since all of the
previous ensemble forecasting studies of electricity price are from well-
developed markets (such as the UK and Nord Pool) and ours is the first
to look at a developing market with a semi-transparent structure, our
findings may be informative for market participants and policymakers
in other developing markets with similar transparency features. Lastly,
this forecasting study is also pioneering in terms of the Turkish elec-
tricity market since it is the very first to examine electricity day-ahead
auction prices after the establishment of the DAM in 2012.

The remainder of the paper is organized as follows. In Section 2, we
briefly explain the theoretical framework of the individual and en-
semble models that we adopt for this study. Section 3 illustrates the
conceptual background related to general processes and fundamental
drivers of the clearing price in day ahead auctions. Section 4 describes
the data and its temporal properties, Section 5 explains the theoretical
framework and presents the results, and Section 6 concludes the paper
with a summary of the findings and suggestions for future research.

2. Theoretical framework

We consider three classes of individual models; econometric time
series, artificial neural networks and seasonality models; which are
chosen by virtue of their suitability for catching the specific features of
the price dynamics of electricity day ahead auctions and also for
minimizing the methodological similarities between them guided by
the previous literature. We aim to understand how their forecasting
performance changes according to the particular electricity market. We
derive our ensemble models by using equally weighted means which has
been highly advocated (Makridakis et al., 1998; Stock and Watson,
2004). All the models (both individual and ensemble) are executed with
a set of explanatory variables which are carefully selected from the
literature due to their fundamental relation with auction mechanism of
the day ahead markets and their correlation with the clearing price
(Karakatsani and Bunn, 2008; Nan, 2009).

2.1. Exogenous variables affecting electricity day ahead auction prices

The selection of exogenous variables is a crucial step for developing
forecasting models. Market characteristics, nonstrategic uncertanities,
other stochastic uncertanities, behavioral indices, and temporal effects
are main classes of input variables effecting electricity prices
(Karakatsani and Bunn, 2008). Historical electricity prices (e.g., price lags
of 1–7, 14, 21, 28 or 364 days) are the most extensively used variable.1 Details about the transparency level is given in Section 3.

E. Avci et al. Energy Policy 123 (2018) 390–403

391



Due to its strong correlation with price, demand is the next most often
used input variable. There are different approaches to using demand in
the models, namely demand forecasts made by Independent System
Operator (ISO) (e.g. Nan, 2009; Bordignon et al., 2013), in-house de-
mand forecasts (e.g. Georgilakis, 2006, Mandal et al., 2006) and his-
torical demand data (e.g. Weron, 2006). Since storage of electricity is
limited, variables that indicate stochastic uncertanities (e.g., system
constraints) can be very useful for modeling the spikes or extreme
conditions. Reserve margin (the difference between available capacity
and demand) (Eydeland and Wolyniec, 2003; Harris, 2006) and reserve
margin ratio (the ratio of demand divided by available capacity, and is
also an indicator of safe functioning of power system) (Anderson and
Davison, 2008; Cartea et al., 2009; Davison et al., 2002; Maryniak,
2013; Maryniak and Weron, 2014) are two of the most commonly used
system capacity constraint variables. Another possible explanatory
variable is temperature as it is strongly correlated to demand (Mandal
et al., 2006; Guo ve Luh, 2003; 2004). However, if demand can be
forecasted accurately, the explanatory power of temperature can be
ignored considering the data quality and accessibility issues. The mar-
ginal costs of market participants affect their bidding strategies and
shape (i.e., steepness) of the MOC. Thus natural gas and oil prices have
also been used to explain prices (Guo and Luh, 2003, 2004; Gao et al.,
2000; Zhang and Luh, 2005; Bordignon et al., 2013). Importance level
of these exogeneous variables for electricity prices may change ac-
cording to the market design and characteristics, and their effect may
be limited (Weron, 2014). For the UK market, for example, whilst
Bordignon et al. (2013) find demand and gas price to have significant
effects on the UK spot electricity prices, Maciejowska (2014) finds these
fundamental variables to have only minor effects. Therefore optimal
selection of exogeneous variables depends on the characteristics of the
market, the type of model used, data access,2 heuristics, and experience
of the modeller.3

In this paper, to select the appropriate exogenous variables we
follow the approach of Weron (2006, 2014), Karakatsani and Bunn
(2008) and Bordignon et al. (2013), and use only publicly available
explanatory data even though we also have access to insider informa-
tion. We have three reasons for this; first, we are looking at how these
methods are used by energy experts in the market and policy makers;
second, it allows us to compare our forecast accuracy results with the
previous studies; and third, although we have access to insider in-
formation (the level of all dams with reservoirs, forecasted geospatial
temperatures) we prefer not use these data, due to the data being of
poor quality and not available until relatively late (usually not before
the gate's closure in the day-ahead market). From these variables we
chose the ones which have been most widely used in the literature and
which are most relevant for the Turkish electricity market. We run each
model with and without exogenous variables to see the effect of adding
explanatory variables on performance. The exogenous variables (X)
used in the models are summarized in Table 1.

2.2. Individual forecasting methods

In the following subsections, we briefly explain the parametric and
nonparametric methods that are adopted in this paper for generating
individual forecast models.

2.2.1. Econometric time series models
Econometric time series methods forecast the current price by using

a mathematical combination of historical prices and/or historical or
current values of exogenous variables. Although these methods are not
good for spiky periods, they perform well in terms of capturing the
general patterns in electricity price data (Weron, 2014).

Seasonal autoregressive moving average (ARMA) models (SARMA)
If the dependence on the past prices is likely to occur at certain

seasonal lag s, it is appropriate to introduce autoregressive and moving
average polynomials that identify with the seasonal lags. The resulting
seasonal autoregressive moving average model is ARMA (P;Q)s, which
can be written as B x B ωΦ ( ) Θ ( ) ,P

s
t Q

s
t= where

BΦ ( ) 1 Φ B Φ B Φ B ,P
s

p1
s

2
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2s Qs+…+ are the seasonal autoregressive operator and the sea-

sonal moving average operator of orders P and Q, respectively, with
seasonal period s. SARIMA models are most often used as a benchmark
in electricity price literature. The following AR formula gives a general
expression of the model structure adopted in this study:
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where pt i− denotes the ith lag of the clearing price which represents the
autoregressive effects of the previous days, dt i− is for the ith lag of the
demand forecast where i= 0 represents the demand forecast for the
next day. mt–i is for the ith lag of margin variable where i= 0 represents
the planned margin for the next day. Dsat , Dsun , Dmon are dummy
variables for days Saturday, Sunday and Monday to consider the weekly
seasonality. The dummy variable Dhol refers to the official and religious
holidays in the whole dataset. The orders of our models are identified
through Akaike Information Criterion (AIC) and investigation of the
residual diagnostics.

2.2.2. Artificial intelligence (AI) models
AI methods model price processes using non-parametric approaches.

Due to their flexibility and their ability to handle complexity and non-
linearity they have been preferred by many authors (e.g., Catalao et al.,
2007; Pino et al., 2008; Vahidinasab et al., 2008) for short-term price
forecasting. Despite their popularity for individual modeling, there is
still an open question for their performance in ensemble models (Keles
et al., 2016) with and without exogenous variables. We use the non-
linear autoregressive exogenous (NARX) AI method which have been
proposed by Lin et al. (1996). These recurrent networks also have very
good learning capabilities and generalization performance (Weron,
2014) and have shown that they can greatly improve performance on
long-term dependency problems. They relate the current value of a time
series both to past values of the same series and to current and past
values of the exogenous variables. NARX can be written implicitly as:

y F y y y u u u u ε( , , , , , , , , )t t t t t t t t t1 1 3 1 2 3= … ⋯ +− − − − − − (2)

where u are the exogenous variables and ε is the error term. The
function F is a neural network. A NARX (p,P,k)m model has inputs
y y y y y y( , , , , , , )t t t p t m t m t pm1 2 2…− − − − − − and k neurons in the hidden layer.
For this paper we use a feed-forward single layer algorithm NARX.

Table 1
Exogenous variables used in the models.

Variables Description Notation and lags

Forecasted
demand (d)

Day-ahead demand forecast
published by the system operator

dt j− (j = 0,1, 2, 3,
7,14,21, 28)

Margin (m) Available capacity (generation,
surplus) – demand forecast

mt i− (i= 0,1, 2)

Day-specific
dummy

Three dummy variables for
Saturday, Sunday and Monday,
separately

Dsat , Dsun , Dmon

Holiday dummy Dummy variable for official and
religious holidays

Dhol

2 For a detailed discussion, see Weron (2014) and, Aggarwal et al. (2009).
3 For a detailed discussion, see Amjady and Hemmati (2006).
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2.2.3. Seasonality models
Adequate treatment of seasonality in electricity prices is of utmost

importance for developing sound forecasting models (Janczura et al.,
2013; Lisi and Nan, 2014) There are different approaches to modeling
seasonality such as piecewise constant/sinusoidal functions and wave-
lets. A failure to acknowledge seasonality or to handle it appropriately
can significantly reduce the accuracy of the model (Ketter et al., 2009,
2012; De Livera et al., 2011). For short term electricity price fore-
casting; although daily and weekly components have been taken into
account, long-term seasonal component (LTSC) has been neglected due
to the general belief that it adds unnecessary complexity to already
parsimonious models (Weron, 2014). However, recently Nowotarski
and Weron (2016) have shown that taking the LTSC component into
account in short term electricity price forecasting can significantly
improve the model performance and create a natural opportunity to
include them in ensemble forecasts. This can be done in a number of
ways; polynomial and sinusoidal regression, polynomial kernel regres-
sion, linear regression and smoothing splines, filters, state space models
etc. (for details see Hyndman et al., 2002; De Livera et al., 2011, Lisi
and Nan, 2014). After a thorough review of this extensive literature we
adopt two of the recently developed, state space based models, namely
Exponential smoothing state space (ETS) and Trigonometric Box-Cox
Transformed ARMA errorred Seasonal (TBATS) models, by virtue of their
ability for handling complex seasonal patterns existing in electricity
prices.

Hyndman et al. (2002) have expanded earlier work by Ord et al.
(1997) on special types of innovation state-space models which un-
derlie exponential smoothing models and have developed a new and
more general set of methods which bring exponential smoothing into
the same class as ARMA models. These are known as ETS models. For
this paper we utilize the algorithm of Hyndman et al. (2002) to estimate
the parameters of our ETS models.

Commonly used seasonality models, single seasonal exponential
smoothing (Makridakis et al., 1982; Makridakis and Hibon, 2000;
Snyder, Koehler, and Ord, 2002) and second seasonal Holt–Winters
(Taylor, 2003) methods cannot catch complex seasonal patterns such as
non-integer seasonality and calendar effects, or time series with non-
nested seasonal patterns. The nonlinear versions of the state space models
can be unstable, as they have infinite forecast variances beyond a cer-
tain forecasting horizon, and analytical results for the prediction dis-
tributions are not available (Akram et al., 2009). Thus we use the
TBATS algorithm, introduced by De Livera et al. (2011), which is de-
veloped as an alternative estimation method to allow for non-integer
seasonality and calendar effects, or time series with non-nested seasonal
patterns; and handle a wider variety of seasonal patterns.

2.3. Ensemble models

The idea of ensemble forecasts was developed by Reid (1968, 1969)
and Bates and Granger (1969), and has been extensively studied (e.g.,
Bunn, 1975, 1977; De Menezes et al., 2000; Timmermann, 2006;
Altavilla and De Grauwe, 2010; Clark and McCracken, 2009). The idea
behind ensembling forecasting techniques is straightforward: individual
models have their own weaknesses and none of them is superior to the
others. Ensemble forecasting enables us to compensate for the weak-
nesses of individual models. In general, an ensemble forecast including
a set of K competing spot price predictors (P Pˆ , ., ˆ )t t

K(1) ( )
… can be written

as:

P f P P ωˆ ( ˆ , ., ˆ ; )t
C

t t
K( ) (1) ( )

= … (3)

where f is a generic function and ω is a parameter vector. Using linear
functions, this expression can be written as P ω Pˆ ˆt

C
k
K

k t
k

1
( )

= ∑ = . In gen-
eral, weights ωk can be constant or time-varying, ωt k− . Several studies
have shown that, due to the effect of finite-sample error in estimating
the combining weights, an equally weighted mean is often the best

choice (Clemen, 1989; Makridakis and Winkler, 1983; Smith and
Wallis, 2009; Stock and Watson, 2004). Although ensemble forecasts
have generally been shown in theoretical studies to outperform the
individual methods (e.g., Chen and Yang, 2007) they have not stood out
in the context of electricity markets. The first ensemble forecasting
studies in electricity markets were done by Bunn (1985) and Bunn and
Farmer (1985), looking at load forecasting provided a theoretical dis-
cussion of the merits of ensemble modeling. Smith (1989) provides
empirical evidence to show the superiority of forecast combinations of
ARMA models over the individual ARMA models. Taylor and Majithia
(2000) find that the performance of ensemble models differs with re-
spect to the time of the day.

The literature on ensemble modeling for electricity price forecasting
is very rare. As far as we know, there have been only three studies; Nan
(2009), Bordignon et al. (2013) and Nowotarski et al. (2014). Nan
(2009) is the pioneer study in this area. She examines the UK market
prices and uses 19 individual models which are derived from four basic
models; namely linear regression, ARMAX, time-varying regression and
Markov regime switching models. The author then selects subsets of
individual models through using model confidence set and encom-
passing approaches. Her ensemble models outpetform the individual
ones in most cases. In a follow up study, with the same data set,
Bordignon et al. (2013) examine the performance of ensemble models
against five individual models; linear regression, ARMAX, time-varying
regression and two Markov regime switching models and conclude that
most ensemble models perform better than individual ones. Nowotarski
et al. (2014) as an extension of these two studies, increased the number
of considered markets (to Nordpool, EEX and PJM), time periods and
individual models (to AR- and mean reversion based) and similarly find
supporting evidence for the outperformance of ensemble models.
However they show that the performance of combined forecasts may
differ with respect to the market considered and periods.

In this paper we aim to develop well-performing ensemble forecast
models for an emerging market and compare their performances with
competing individual models addressing some short comings of existing
ensemble modeling studies. First, we increase the variety of considered
individual models to minimize the methodological similarity between
them. We extend the set of individual models to seasonality methods;
which have not been considered by the prior literature; in virtue of their
potential to describe some specific characteristics of electricity prices.
We adopt ETS and TBATS seasonality models to take into account in-
adequate handling of trend-seasonality component and to deal with the
complex multi-seasonality in electricity prices. Second we conduct the
analysis following the literature which has found that price volatility,
fractality, market efficiency, predictability of prices, costs and opera-
tional constraints differ for each hour/hour block during the course of a
day (Shahidehpour et al., 2002; Huisman et al., 2007; Avci-Surucu
et al., 2016). Focus of the previous studies are on testing the perfor-
mance of ensemble models for each hour separately (e.g. Huisman
et al., 2007) or taking daily averages (e.g. Bunn, 2004; Bunn and
Karakatsani, 2003) . We rather stayed focus on the market efficiency
and predictability of prices in a day and provide important insights on
the performance of our models considering three different tariff time-
zones – namely T1 (day): 06:00–17:00, T2 (peak): 17:00–22:00, and T3
(night): 22:00–06:00, leading to three sets of parameters for each day.
Third, most of the previous studies are from well-developed markets;
namely UK, Nordpool and PJM. We extend these studies to an emerging
market which has different price characteristics in terms of seasonality,
spikes and fractality level. Thus we believe that our findings can be
informative for the market participants/policy makers in other devel-
oping markets with similar characteristics (e.g. share of renewables,
natural gas etc.). Lastly, while testing the additional gains from en-
semble modeling approach we also test the additional benefit from
including exogeneous variables considering the fundamental relations
between price and system constraints through using a complete and big
data set.
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3. Conceptual background

3.1. Information transparency level of the market

The general principles and processes of the DAM in Turkey is similar
to most European electricity markets. Between 2012 and 2015 DAM
was operated by Electricity Market Financial Reconciliation Center
(PMUM), and is currently operated by the Istanbul Energy Exchange
(EXIST). Prices and volumes are determined each hour on a daily basis.
Until September 2015 information on the market-specific variables was
made available by PMUM, then EXIST took over this responsibility and
now disseminates both forecasted (ex-ante), real-time and realized (ex-
post) data through its Market Transparency Platform in a timely
manner. DAM-related information revealed through the transparency
platform and its details are illustrated in Tables A.1 and A.2. As can be
observed from these tables, until the beginning of 2016 information
transparency level of the market is low which can be defined as semi-
transparent. DAM prices in our sample (Jan.2012-Dec.2015) were
comprised of aggregation of expectations of market participants making
decisions in such a transparency level. Thus to imitate the real decision
making setting of power agents, we utilize from only public data re-
leased during that time period.

3.2. Fundamental drivers of EDA clearing price in Turkey

Changes in the supply and demand characteristics, market archi-
tecture and/or ownership structure can affect the dynamics of the
clearing price in uniform-price auctions (Petrella and Sapio, 2009;
Glachant and Saguan, 2007) and lead to structural breaks in the series.
In this section we investigate these characteristics in the Turkish DAM
to understand whether there have been any structural breaks in the
price series between 2012 and 2015. The capacity mix in Turkey is not
particularly well balanced and is mostly based on fossil fuels, which
constituted 67.7% of the total generation in 2015. Natural gas is the
major fuel in electricity generation (38.6%), followed by coal (28.3%),
and some fuel oil (0.8%). The capacity mix in Turkey can change year
on year, owing to the seasonality of hydro supply and availability of old
lignite plants. Currently, generation activities are carried out by three
parties: Electricity Generation Company (EUAS), private generators and
autoproducers. In 2012, the share held by EUAS and its affiliates was
42% of the total installed capacity. In 2015 this state-owned share
decreased to 28% with a portfolio of hydro and lignite power plants.
Independent power producers (IPPs), build operate transfer (BOT),
build operate own (BOO) and transfer of operating rights (TOOR) uti-
lities are responsible for most of the power generation, and hold 70% of
the total capacity. The important issue here is that the privatized EUAS
power plants were those that had not generally been marginal gen-
erators in the MOC. Therefore we can confidently state that there has
not been any major change in industry structure that has led to a
structural break in the price series.

3.3. Electricity price forecasting studies in Turkey

There is an absence of substantial research on electricity price
forecasting in Turkey and those studies that do exist are in the form of
PhD theses or conference proceedings and represent the period before
the day ahead market was established. Hayfavi and Talasli (2014)
model logarithmic daily average spot prices for electricity as the sum of
a deterministic function and a multi-factor stochastic process. They do
not use any exogenous variables. Their data interval runs from De-
cember 2009 to July 2011, which was the Day Ahead Planning period
and does thus not reflect the market regulations and conditions of the
day ahead market currently operating in Turkey. Yıldırım et al. (2012)
use dynamic regression, conic multivariate adaptive regression splines
(CMARS) and robust CMARS (RCMARS) to forecast the next day's
electricity prices. They do not use any exogenous variables in their

models. For their training data they use only one month of data because
of the limitations in their RCMARS method, thus the validity of their
results is questionable in the context of electricity markets. Kölmek and
Navruz (2013) use ANN and AR methods to forecast the electricity
prices with a training data interval running from December 2009 to
November 2010. For the ANN model they use historical day ahead
prices, demand forecast, bilateral contact, and available capacity as
exogenous variables, however, they do not use any exogenous variables
for the AR model. The authors compared these two methods with re-
spect to mean absolute percentage error (MAPE) and conclude that
performance of the ANN method is higher than that of the AR. This
study is valuable in the sense that it is the first published paper which
uses ANN for electricity price forecasting in Turkey. However, it has
some deficiencies. First, their data is from the day ahead planning
period and does not represent the current electricity market conditions.
Second, they compare these two methods, one with exogenous variables
and one without. It is known that models with exogenous variables tend
to perform better than the ones without them, thus the validity of their
performance comparison is also questionable.

Unlu (2012) has studied the linear relationship between tempera-
ture and day ahead electricity prices using a data set of 35 days. He
investigates in particular the seasonality and predictability issue in
temperature. In the final stage, in which linear models (AR and ARX)
and 30 days training data are used, he attempts to predict the electricity
price for the next five days. The drawback of this study is that it takes
no account of the well-known nonlinear relationship between tem-
perature and electricity prices, and thus concludes that there is no re-
lationship between these two variables. From the studies undertaken up
to now, it is very difficult to understand the general characteristics of
electricity prices in Turkey and the driving factors behind them since all
the studies use datasets from the day head planning period, the training
sets are not large enough for the results to be generalizable, and all have
some methodological deficiencies.

Ozyildirim and Beyazit (2014) forecast the day ahead electricity
prices using linear regression and radial basis function with a dataset
from the period 2010–2013. They found that the out-of-sample per-
formance of RBF is slightly better than that of linear regression. They
use hourly market clearing price (MCP) without logarithmic transfor-
mation and integration. Their exogeneous variables are MCP lags,
temperature, square of temperature (to deal with the nonlinearity issue)
and hourly, daily, monthly, and holiday dummies. By using graphs and
descriptive statistics, they showed that hourly MCP have distinct clus-
ters with respect to time zones.

As far as we know the only study that reflects current market con-
ditions is Taysi et al. (2015). They forecast MCP using SARIMA and
ANN methods with exogeneous variables: historical prices and calendar
dummies. They showed that the performance of these two methods is
very similar. The crucial deficiency of this study is that it uses 1,2,3,4
lagged MCP as exogenous variables. This issue has been well-studied in
the energy economics literature and has been found to run counter to
the electricity market mechanism. Thus the models in this study cannot
be implemented in real life since bidders do not know the prices up to
24 h ahead. Our examination of the literature on the Turkish electricity
market shows that there are no electricity price forecasting studies that
reflect current market conditions and mechanisms.

4. The data

The data set used in this study consists of hourly day ahead auction
clearing price time series from the Turkey Electricity Market. The
sample starts on 1 January 2012 and ends on 27 December 2015 pro-
viding a total of 34.944 hourly observations. This period covers the
time after the DAM in Turkey was established and does not have any
significant structural changes in the market mechanism and auction
design, until the launch of the Market Transparency Platform at the
EXIST. The time series data set were obtained from the General
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Directorate of Energy Affairs at the Ministry of Energy and Natural
Resources without any missing values or doubled values. Although in
the literature some studies (e.g. Weron, 2006) advocate the substitution
of outliers with arithmetic averages of some neighbour values or the
general mean, we intentionally did not preprocess the data set in terms
of outliers (at 10.02.2012, 11.02.2012 and 13.02.2012) to see the real
performance of the artificial intelligence and seasonality models. We
used R 3.4.3 for the conduction of our analyses.

4.1. Summary of the descriptives

Based on the findings of Avci-Surucu et al. (2016), we conduct our
analyses considering three tariff time zones T1 (day): 06:00–17:00, T2
(peak): 17:00–22:00, and T3 (night): 22:00–06:00 where each time
series has 1456 observations. Fig. 1 illustrates plots of each series and
Table 2 gives summary statistics for each time zone. T3 series has the
highest standard deviation and skewness, but the lowest mean. T1 and
T2 series have similar statistical characteristics.

From an empirical point of view, electricity spot prices has different
forms of nonlinear dynamics, with the crucial one being the strong
dependence of the variability of the series on its own past. Although
electricity prices exhibit heteroskedasticity, the general experience with
GARCH-type components in EPF models is mixed. There are cases

where modeling heteroskedasticity is advantageous, but there are at
least as many examples where such models perform poorly (Weron,
2014). In literature it has been established that it is often advantageous
to discard the models with the worst performance to eliminate too
much variability which is introduced in the combinations because of
models that perform very poorly during particular seasons and/or for
particular hours. In the earlier versions of the paper, we used GARCH-
type models and their ensembles however since their performance are
very poor, we did not consider them as a benchmark.

4.2. Stationarity, long term correlation and predictability

We investigate stationarity and predictability level of price series
through their fractal dynamics since accurate measurement of fractality
is crucial for correct statistical inference and forecast uncertainty
(Lildholdt, 2000). There are three unit root tests commonly used to test
the stationarity of a process: 1) the AugmentedDickey-Fuller (ADF) test,
2) the Phillips– Peron (PP) test and 3) the Kwiatkowski–-
Phillips–Schmidt–Shin (KPSS) test. However if we wish to test statio-
narity as a null and have strong priors in its favour, employing the ADF
test may not be useful (Baillie et al., 1996). An empirical series with d
close to 0.5 will probably be misclassified as nonstationary. Therefore,
we use a combination of the PP and KPSS tests allowing us to determine
the four possible outcomes of the series (Baillie et al., 1996): 1) if the PP
is significant and the KPSS is not, then the data are probably stationary
with d ∈ (0;0.5)—strong evidence of a covariance stationary process; 2)
if the PP is insignificant and the KPSS is significant, then the data may
indicate having brown noise—a strong indicator of a unit root, i.e., an I
(0) process; 3) if neither the PP nor the KPSS is significant, then the data
are insufficiently informative regarding the long memory of the process;
and 4) if both the PP and the KPSS are significant, then the data are not
well described as either an I(1) or an I(0) process—d ∈ (0; 1).

Table 3 presents the unit root tests for logarithm of prices. As can be
observed from the PP and KPSS values, price series for each time zone
are not well described as either an I(1) or an I(0) process which means
the differencing parameter (d) is not an integer but between 0 and 1.
We estimate this differencing parameter through Geweke–Porter-Hudak
(GPH) and Local Whittle estimator (Whittle). We adopt these methods to
benefit from their different statistical properties; namely GPH's
common usage and comparability with the literature, Whittle's para-
metric efficiency and consistency. As can be seen from Table 3, each
price series has different fractal dynamics. T1 tariff zone has the lowest
differencing average value (0.372) which indicates that it has the
highest long-term correlation and prices in this tariff zone are the most
predictable. T3 price series has the highest fractal value demonstrating
that predictability level of prices in this tariff zone are the lowest. This
confirms the proposition that at peak load (here T1 and T2), marginal
generators give hyperbolically decaying weights to information by
considering the prices of a day/week before (Sapio, 2004). At off-peak
load, if marginal generators bid at their marginal costs, then there is no
fractal noise, as we observed in the night tariff time zone T3.

4.3. Multi-seasonality

Multi-seasonality and complexity of the long-term correlation
structure in electricity prices are two of the most important challenges
for forecasters. Multi-seasonality is mainly shaped by the variation in

Fig. 1. Time series plot of market clearing price with respect to three tariff time
zones.

Table 2
Descriptive statistics for three tariff time zones.

Variables Min. Max. Range Median Mean Variance Std.dev Skewn. Kurtosis

logPriceT1 3.53 7.06 3.53 5.1358 5.09 0.05 0.22 − 0.98 15
logPriceT2 3.74 6.21 2.47 5.0626 5.05 0.04 0.19 − 0.66 6.8
logPriceT3 1.79 5.38 3.58 4.8283 4.75 0.11 0.33 − 2.7 16
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demand. The daily cycle refers to variations between day and night and
during the different points in the day. This daily variation in prices
reflects the working habits of the population. To remove intra-day
seasonality, it is possible to model each hour (or half-hour) of the day
separately, as different commodities (Ramanathan et al., 1997; Guthrie
and Videbeck, 2002) or by taking daily averages. However it has been
shown that daily average prices do not capture the microstructure of
the day ahead auctions since the level of mean reversion, volatility
structure and predictability (fractality) level in clearing prices are not
constant throughout the day (Huisman et al., 2007; Avci-Surucu et al.,
2016). Following the approaches of the aforementioned studies, for our
modeling purposes we use the average price for each tariff time zone
since first, we do not want to lose information about the microstructure
of day-ahead prices, as would be the case were we to use daily aver-
aging. Second, previous studies that have considered each hour sepa-
rately conclude that there is a block-structured correlation between
specific hours resembling the time zones. Third, taking average with
respect to each time zone is more intuitive in the sense that electricity
market participants have different incentives and bidding strategies for
each time zone.

The intra-week variability is also non-negligible. The load profile for
Saturday and Sunday is generally lower than for the weekdays; this
feature is called the weekend effect. Similar to the findings of Weron
(2006), our results indicate that price characteristics for Monday are
different from those of other weekdays. There are two approaches in the
literature to eliminate the intra-week seasonality; omitting the week-
ends and developing models only for weekdays (e.g. Bordignon et al.,
2013) or introducing dummies for the weekends (and some of the days
which have different characteristics from those of the rest of weekdays)
(e.g. Weron and Misiorek, 2008). We follow the approach of the latter
studies and introduce daily dummy variables for Saturday, Sunday and
Monday.

Electricity prices also contain strong seasonal fluctuations (annual
cycle), reflecting the use of lighting and heating in winter and the
growing use of air conditioning in summer. To consider the effects of
different profiles on official and religious holidays (calendar effects), we
include holiday dummies for each of these days. This approach is
commonly used in the electricity price forecasting literature as an al-
ternative to removing these days.

4.4. Selection and description of exogeneous variables

Historical market clearing prices are the lagged values of MCP which
are determined by means of the autocorrelation function (ACF) and
partial ACF (PACF) graphs of electricity prices with respect to time
zones. Forecasted demand is the hourly demand forecasts published each
day by Turkish Electricity Transmission Corporation (TEIAS) for the
next physical day. The prices strongly reflect the level of demand with
very high peaks in winter and summer, especially during high-demand
load periods. In the literature, for the demand variable, there are dif-
ferent approaches. Some researchers (e.g., Bordignon et al., 2013) use

forecasted demand published by the transmission system operator
(TSO) and its lagged values, while others (Weron, 2006) use the fore-
casted demand by the TSO for the next day's demand and take the
realized load values for the lagged values. There are three types of in-
formation published on the webpage of the National Load Dispatch
Center: historical load data, forecasted load schedule and real-time load
consumption. Since market participants are making their price forecasts
based on forecasted demand and the merit order curves are aggrega-
tions of individual price expectations, we would expect there to be a
higher correlation between price and forecasted demand. When we
analyze the training data, as presented in Table 4, the correlation be-
tween price and forecasted demand is 0.604, which is slightly higher
than the correlation between price and realized demand. Thus we
choose to use forecasted demand data and its lagged values as one of
the exogeneous variables. Reserve Margin is the difference between the
demand forecast and the Daily Production Program (The generation va-
lues with respect to the settlement delivery point which a settlement
aggregation entity (SAE) expects to realize in the following day and
notifies the market operator at the beginning of day ahead balancing
stage, according to the obligations of the balance responsible party to
which the SAE is attached). It can be seen from Table 4 that there is a
significant relationship between margin and MCP, with a correlation
level of 0.151. Natural gas prices have been used as an exogenous
variable especially for markets in which there are natural gas exchanges
and the share of natural gas in electricity production is high. Some of
the previous studies utilize the daily forward gas as the forecasted gas
price. However, when we analyze the training data, the price of natural
gas has increased very slightly. Also there is no natural gas market in
Turkey, and the price of natural gas is regulated by the government
rather than randomly determined by a liberalized market. Thus we do
not use the price of natural gas as an exogenous variable.

5. Results

5.1. Data Partition

For model validation purposes, the whole dataset (Jan 1st,
2012–Dec. 31th, 2015) is divided into two parts. The first part, training
(in-sample) set, covering the period Jan 1st, 2012–December 31th,
2014, is used only for regressor selection and model building. The re-
maining period, test set, (January 1st, 2015– December 30th, 2015) is
used for out-of-sample forecast evaluation. Following the previous lit-
erature (e.g. Weron and Misiorek, 2008) all the series (clearing prices
and exogenous variables) are considered using a logarithmic scale to
obtain a more stable variance and have the opportunity to make our
results comparable with the previous studies.

5.2. Experimental framework for comparing forecast accuracies

5.2.1. Accuracy measure
We adopt the most commonly used accuracy measure (Weron,

2014) in the electricity pricing literature; the mean absolute percentage

Table 3
Unit Root results for logarithm of prices in three tariff time zones.

Variables PP KPSS GPH Whittle Avr. Fract. value

logPriceT1 − 1259.6** 0.302* 0.450 0.295 0.372
logPriceT2 − 440.81** 0.476* 0.428 0.492 0.460
logPriceT3 − 345.2** 0.857** 0.477 0.567 0.522

Notes: PP null hypothesis: non-stationary, KPSS null hypothesis: stationarity.
Avr. Fract.value is the average of the PP, KPSS, GPH and Whittle estimates for
the corresponding row.
*** indicates rejection of the null hypothesis at the 1% significance level. **
indicates rejection of the null hypothesis at the 5% significance level. * in-
dicates rejection of the null hypothesis at the 10% significance level.

Table 4
Correlation table for the exogenous variables.

MCP Forecasted
demand

Margin Demand

MCP 1 0.604** − .151** 0.602**

Forecasted
Demand

0.604** 1 − 0.515** 0.987**

Margin − 0.151** − .515** 1 − 0.476**

Demand 0.602** 0.987** − .476** 1

** Correlation is significant at the 0.01 level (two-tailed).
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to compare the results of our models since we do not have any negative
prices in our dataset. It is important to note that we also got the results
with Mean Square Error (MSE), Root Mean Square Error (RMSE) and
Mean Absolute Error(MAE), however since results are similar, we omit
them to save from space.

5.2.2. Criteria for comparing model performance
We compare performance of the models according to three criteria.

In the first criteria we adopt an ex-post approach in which we use out-of-
sample MAPE values to compare the models. In this criteria, we take
ARMA as the benchmark model and compare the performance of the
individual and ensemble models within themselves. In the second cri-
teria, we compare the ex-post performance of the best individual (BI)
model with that of the best ensemble (BE) based on their out-of-sample
MAPE values. Although this criteria has been commonly used in the
literature, it has also been criticized for not being a realistic forecasting
setting. In the third criteria, we adopt a more realistic approach and
decide the BI and BE based on in-sample MAPE values (ex-ante), then
compare their performances using their out-of-sample MAPEs.

5.2.3. Test for statistical significance
To evaluate competing forecasting models, we use the Diebold-

Mariano (DM) (Diebold and Mariano, 1995) test which verifies the
existence of statistical significant difference between forecasting accu-
racy of two models. The test statistic is based on the loss differential dt
which we take in this paper as week-ahead (zonely) forecast errors. The
two-sided DM test evaluates the accuracy of the competing forecasting
models by testing the null hypothesis, (H0:dt = 0), indicating there is no
statistical significant difference between the compared two forecasting
models. The alternative hypothesis is that the two forecasts have dif-
ferent levels of accuracy.

5.3. Forecast accuracy comparison according to Criteria 1

5.3.1. Accuracy comparison of individual models
Our findings are summarized in Tables 5 and 6. Table 5 presents the

summary of individual models with the lowest forecast errors according
to in-sample MAPE values. NARX outperforms other competing in-
dividual models in most of the cases (96%). T3 and T1 tariff time zones
have the highest and lowest MAPE values, respectively. This is an

expected result and can be explained by T3 having the lowest long term
correlation and T1 having the highest.

Table 6 illustrates summary of individual models with the lowest
forecast errors according to out-of-sample MAPE values and their related
DM test statistics according to Criteria-1. As can be observed from the
table, especially for T2 and T3 series, dominant outperformance of
NARX is replaced by ARMA-based and seasonality models. Similar to
the results of Table 4, in most of the cases T3 has the highest MAPE
values. Performance of ARMA is the one of the worst among the other
competing individual models. Its MAPE value is the lowest in only 5 out
of 48 cases (11%). NARX model has the lowest MAPE value in 14 out of
48 cases (30%) (mostly in T1 time zone), however accuracy difference
is statistically significant in only 2% of them. ARMAX is the second best
performer and outperformed the other individual models in 26% of the
cases with a 5% ratio of significant cases. ETS, NAR, ARMA and TBATS
are the following outperforming models with 15%, 12%, 11% and 6%
outperforming cases respectively. In sum, according to DM test, ARMA
can be outperformed significantly in 15% of the cases. Models with
exogenous variables generally perform better than models without
exogenous variables. This finding is inline with the previous literature
and arises because of the high cross-correlation between demand,
margin and price. Further this result also shows the appropriate selec-
tion of our input variables.

5.3.2. Accuracy comparison of ensemble models
Table 7 presents the summary of ensemble models with the lowest

forecast errors according to in-sample MAPE values. ARMAXNARX
outperforms other competing ensemble models in all of the cases
(100%). T3 and T1 tariff time zones have the highest and lowest MAPE
values, respectively. This is an expected result and can be explained by
T3 having the lowest long term correlation and T1 having the highest.

Table 8 illustrates summary of ensemble models with the lowest
forecast errors according to out-of-sample MAPE values and their related
DM test statistics according to Criteria-1. As can be observed from the
table, especially for T2 and T3 series, dominant outperformance of
ARMAXNARX is replaced by ensemble seasonality models such as
ARMAXETS and ARMAXTBATS. Similar to the results of Table 7, in
most of the cases T3 has the highest MAPE values. According to DM test
results, these accuracy differences are statistically significant in only in
9 out of 48 cases (19%). 45% of these cases are in the T3 zone in-
dicating that for T3 price series, usage of ensemble seasonality models
could be useful to increase forecast accuracy.

ARMAXNARX model has the lowest MAPE value in 12 out of 48
cases (25%) (mostly in T1 time zone), however accuracy difference is
statistically significant in only 16% of them. ARMAXETS is the second

Table 5
Summary of individual models with best performance according to in-sample MAPE.

WEEK NO T1 training MAPE (in) T2 training MAPE (in) T3 training MAPE (in) MAX MAPE (in) MIN MAPE (in)

Winter1 NARX 0. 145 NARX 0.250 NARX 0.449 T3 T1
Winter2 NARX 0.149 NARX 0.257 NARX 0.467 T3 T1
Winter3 NARX 0.138 NARX 0.248 NARX 0.451 T3 T1
Winter4 NARX 0.133 NARX 0.237 NARX 0.445 T3 T1
Spring1 NARX 0.139 NARX 0.219 NARX 0.481 T3 T1
Spring2 NARX 0.135 NARX 0.240 NARX 0.453 T3 T1
Spring3 NARX 0.135 NARX 0.220 NARX 0.477 T3 T1
Spring4 NARX 0.130 NARX 0.223 NARX 0.476 T3 T1
Summer1 NARX 0.172 NARX 0.265 NARX 0.496 T3 T1
Summer2 NARX 0.178 NARX 0.275 NARX 0.593 T3 T1
Summer3 NARX 0.180 NARX 0.285 NARX 0.309 T3 T1
Summer4 NARX 0.180 NARX 0.279 NARX 0.310 T3 T1
Autumn1 NAR 0.074 NARX 0.325 NARX 0.636 T3 T1
Autumn2 NARX 0.192 NARX 0.312 NARX 0.660 T3 T1
Autumn3 NAR 0.123 NARX 0.315 NAR 0.182 T2 T1
Autumn4 NARX 0.180 NARX 0.285 NARX 0.676 T3 T1
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best performer and outperformed the other individual models in 21% of
the cases with a 2% ratio of significant cases. ARMAXTBATS,
ARMANAR, TBATSNAR and ETSNAR are the following outperforming
models with 15%, 11%, 11% and 8% outperforming cases respectively.
In sum, according to DM test with 5% significance level, ARMA can be
outperformed significantly in 19% of the cases, mostly for the T3 time
zone. Models with exogenous variables generally perform better than
models without exogenous variables.

5.4. Forecast accuracy comparison according to Criteria 2

Our findings according to Criteria-2 are summarized in Table 9. In
order to interpret the table, for example in T1-Winter1, ‘4–12’ means
comparing the BI model 4 with BE model 12. As can be observed from
the table, the difference between the BI and BE is statistically significant
in 9 out of 48 cases (19%). 70% of these significant cases are in the T2
zone. However BE model outperforms the BI in only 3 out of 9

Table 6
Summary of individual models with best model performance (out-of-sample MAPE) and Diebold-Marino statistics and p values (second row) according to Criteria-1.

WEEK NO T1 Test MAPE (OUT) DMSTAT T2 Test MAPE (OUT) DMSTAT T3 Test MAPE (OUT) DMSTAT MAX MAPE (out) MIN MAPE (out)

Winter1 NARX 0.856 1.3283 NAR 0.728 0.900 ARMA 4.364 – T3 T2
0.232 0.402

Winter2 NARX 0.966 1.039 NARX 1.107 0.252 ARMA 3.321 – T3 T1
0.338 0.809

Winter3 ARMAX 0.632 3.263** ETS 0.994 0.612 ARMAX 1.307 1.927 T3 T1
0.017 0.562

Winter4 NAR 1.182 0.944 NARX 0.696 2.246* ARMA 1.277 − 0.102 T3 T2
0.424 0.065

Spring1 NAR 1.179 1.122 NARX 1.669 1.174 NARX 4.563 2.727** T3 T1
0.284 0.0340.304

Spring2 NAR 1.272 0.789 NARX 1.189 0.627 NAR 7.832 0.824 T3 T2
0.459 0.553 0.441

Spring3 NARX 1.447 1.329 ETS 1.792 3.079** TBATS 4.789 − 0.949 T3 T1
0.232 0.021 0.379

Spring4 NARX 1.348 1.027 TBATS 1.463 1.810 NARX 8.898 0.150 T3 T1
0.343 0.120 0.885

Summer1 NARX 1.685 0.802 ARMA 0.897 – ETS 4.971 1.672 T3 T2
0.453 0.145

Summer2 ARMAX 1.340 0.891 ARMAX 1.344 0.956 ARMA 4.851 – T3 T1
0.407 0.375

Summer3 ARIMAX 1.413 1.149 NARX 1.136 − 1.221 ARMAX 4.355 2.414* T3 T2
0.294 0.267 0.052

Summer4 ETS 1.559 1.122 ETS 0.985 0.539 ETS 1.028 1.943* T1 T2
0.609 0.0990.304

Autumn1 ARMAX 0.745 2.360* ARMAX 1.917 1.748 NAR 3.227 − 0.441 T3 T1
0.130 0.6740.056

Autumn2 ARMAX 0.833 1.546 ARMA 3.109 – ARMAX 3.819 0.901 T3 T1
0.173 0.402

Autumn3 ARMAX 1.181 1.232 ARMAX 2.203 0.156 NARX 3.313 0.095 T3 T1
0.263 0.880 0.927

Autumn4 NARX 3.203 1.131 TBATS 2.170 0.727 ETS 8.807 0.749 T3 T2
0.300 0.494 0.481

Note: *** indicates rejection of the null hypothesis at the 1% significance level. ** indicates rejection of the null hypothesis at the 5% significance level. * indicates
rejection of the null hypothesis at the 10% significance level.

Table 7
Summary of ensemble models with best model performance (according to in-sample MAPE).

WEEK NO T1-training MAPE (in) T2-training MAPE (in) T3-training MAPE (in) MAX MAPE (in) MIN MAPE (in)

Winter1 ARMAXNARX 0.605 ARMAXETS 0.049 ARMAXNARX 1.326 T3 T2
Winter2 ARMAXNARX 0.603 ARMAXNARX 0.715 ARMAXNARX 1.344 T3 T1
Winter3 ARMAXNARX 0.591 ARMAXNARX 0.710 ARMAXNARX 1.342 T3 T1
Winter4 ARMAXNARX 0.578 ARMAXNARX 0.704 ARMAXNARX 1.332 T3 T1
Spring1 ARMAXNARX 0.578 ARMAXNARX 0.698 ARMAXNARX 1.324 T3 T1
Spring2 ARMAXNARX 0.574 ARMAXNARX 0.698 ARMAXNARX 1.322 T3 T1
Spring3 ARMAXNARX 0.575 ARMAXNARX 0.700 ARMAXNARX 1.343 T3 T1
Spring4 ARMAXNARX 0.578 ARMAXNARX 0.704 ARMAXNARX 1.350 T3 T1
Summer1 ARMAXNARX 0.674 ARMAXNARX 0.780 ARMAXNARX 1.566 T3 T1
Summer2 ARMAXNARX 0.672 ARMAXNARX 0.783 ARMAXNARX 1.624 T3 T1
Summer3 ARMAXNARX 0.685 ARMAXNARX 0.791 ARMAXNARX 1.499 T3 T1
Summer4 ARMAXNARX 0.687 ARMAXNARX 0.791 ARMAXNARX 1.493 T3 T1
Autumn1 ARMAXNARX 0.696 ARMAXNARX 0.835 ARMAXNARX 1.745 T3 T1
Autumn2 ARMAXNARX 0.692 ARMAXNARX 0.839 ARMAXNARX 1.751 T3 T1
Autumn3 ARMAXNARX 0.700 ARMAXNARX 0.847 ARMAXNARX 1.762 T3 T1
Autumn4 ARMAXNARX 0.699 ARMAXNARX 0.834 ARMAXNARX 1.749 T3 T1
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significant cases (30%). These results indicate that, looking from an ex-
post performance evaluation, using ensemble models does not increase
price forecast accuracy significantly. On the contrary for the peak time
load time (T2), in most of the cases, BI models significantly outperforms
BEs.

5.5. Forecast accuracy comparison according to Criteria 3

Our findings according to Criteria-3 are summarized in Table 10. As
can be observed from the table, the difference between the BI and BE is
statistically significant in 18 out of 48 cases (38%). 45% of these sig-
nificant cases are in the T2 zone. BE model outperforms the BI in 14 out
of 18 significant cases (75%). These results indicate that, looking from
an ex-ante performance evaluation, using ensemble models increase
price forecast accuracy significantly in 30% of the cases. In the re-
maining 70% of the cases, there is no statistical significant difference
between forecast accuracies of BI and BEs. Thus for a power market
participant, looking from a more realistic ex-ante decision making ap-
proach, using ensemble forecasting is useful to manage electricity price
modeling risk.

6. Conclusion and suggestions for future work

In this paper we examine the relative forecasting performances of
six promising individual models and ensemble models derived from
them through equal weighting scheme in a semi-transparent electricity
day ahead market. Although ensemble models are well studied in other
contexts, the number of these studies are very limited for the electricity
markets. Previous studies are from mature electricity markets (UK,
NordPool and PJM) and variety of individual methods used for the
ensemble models in them are limited. Following the main findings of

these studies; namely performance of ensemble models are different for
different market conditions, time periods and model combinations; we
develop well-performing ensemble forecast models for an emerging
market, Turkey, and compare their performance with alternative in-
dividual models according to three benchmark criteria. This enables us
to address three forecasting challenges which have been encountered in
the previous ensemble modeling studies, specifically the inadequate
handling of trend seasonality component and varying market power
over the course of a day, the inappropriate selection of exogenous
variables when one considers the relationships that exist between price
and system constraints, and the methodological similarity of the in-
dividual models they have considered.

We addressed the following research question: How to manage price
modeling risk via ensemble forecasting in the Turkish electricity day ahead
auctions?

We compare performance of the models according to three criteria.
In the first criteria, we take ARMA as the benchmark model and com-
pare the performance of the individual and ensemble models within
themselves according to both in-sample and out-of-sample MAPE va-
lues. In the second criteria, we compare the ex-post performance of the
best individual (BI) model with that of the best ensemble (BE) based on
their out-of-sample MAPE values. In the third criteria, we adopt a more
realistic approach and decide the BI and BE based on in-sample MAPE
values (ex-ante), then compare their performances using their out-of-
sample MAPEs.

According to Criteria-1, regarding the individual models, we find
that although NARX outperforms other competing individual models in
most of the cases (96%) with respect to in-sample MAPE; for out-of-
sample MAPE, dominant outperformance of NARX is replaced by
ARMA-based and seasonality models. However, according to DM test
with 5% significance level, ARMA can be outperformed significantly in

Table 8
Summary of ensemble models with best model performance (out-of-sample MAPE) and Diebold Marino statistic and p values (second row) according to criteria1.

WEEK NO T1-Test MAPE (out) DMSTAT T2_Test MAPE (out) DMSTAT T3_Test MAPE (out) DMSTAT MAX MAPE MIN MAPE

Winter1 ARMAXTBATS 0.960 1.826 ARMANAR 0.876 -0.716 ARMAETS 4.900 -1.821 T3 T2
0.117 0.500 0.118

Winter2 ARMAXETS 0.418 1.876 ETSNAR 1.091 0.412 ARMANAR 3.573 -0.782 T3 T1
0.4630.6940.109

Winter3 ARMAXTBATS 0.753 2.803** TBATSNAR 0.974 0.3602 ARMAXTBATS 1.567 2.542** T3 T1
0.0430.7310.031

Winter4 ARMAXNARX 0.293 1.482 ARMAXNARX 0.650 2.799** ARMANAR 0.914 1.165 T3 T1
0.2870.188 0.031

Spring1 TBATSNAR 1.395 1.222 TBATSNAR 1.741 1.454 ETSNAR 6.038 3.203** T3 T1
0.267 0.196 0.018

Spring2 ARMAXNARX 1.269 1.013 ARMANAR 1.165 0.847 ARMAXNARX 7.909 0.976 T3 T2
0.3660.350 0.429

Spring3 ARMAXNARX 1.455 1.367 ARMAXETS 2.224 2.090* ARMAXTBATS 4.795 0.373 T3 T1
0.7210.0810.220

Spring4 ETSNNAR 1.294 1.282 ARMAXETS 1.247 1.643 ETSNAR 8.345 0.721 T3 T2
0.4970.1510.247

Summer1 ARMAXNARX 1.192 0.991 ARMATBATS 1.139 -0.283 ARMAXETS 4.504 1.258 T3 T2
0.786 0.2540.359

Summer2 TBATSNAR 1.121 1.155 ARMAXETS 1.818 0.392 ARMAXTBATS 8.806 -7.670*** T3 T1
0.708 0.00020.291

Summer3 ARMAXNARX 1.081 2.169* ARMAXNARX 1.377 -0.212 ARMAXETS 6.334 1.161 T3 T1
0.073 0.838 0.289

Summer4 ARMAXETS 1.213 1.146 ARMAXETS 0.824 1.438 ETSNAR 1.453 2.810** T3 T2
0.0300.2000.295

Autumn1 ARMAXTBATS 0.537 2.589** ARMAXNARX 1.981 -0.447 TBATSNAR 3.699 -1.062 T3 T1
0.670 0.3280.041

Autumn2 ARMAXTBATS 1.046 1.808 ARMATBATSETS 3.104 0.437 ARMAXETS 3.804 0.853 T3 T1
0.4260.6770.120

Autumn3 ARMAXNARX 1.202 1.236 ARMAXETS 2.181 0.501 ARMANAR 3.205 -0.406 T3 T1
0.6980.262 0.634

Autumn4 ARMAXNARX 2.823 1.127 ARMATBATS 2.161 0.796 ARMAXNARX 8.289 0.634 T3 T2
0.5490.302 0.455

Notes: *** indicates rejection of the null hypothesis at the 1% significance level. ** indicates rejection of the null hypothesis at the 5% significance level. * indicates
rejection of the null hypothesis at the 10% significance level.

E. Avci et al. Energy Policy 123 (2018) 390–403

399



only 15% of the cases. Regarding the ensemble models, considering in-
sample MAPE, ARMAXNARX outperforms other competing ensemble
models in all of the cases (100%). For out-of-sample MAPE, dominant
outperformance of ARMAXNARX is replaced by ensemble seasonality
models such as ARMAXETS and ARMAXTBATS. According to DM test
with 5% significance level, ARMA can be outperformed significantly in
only 19% of the cases, mostly for the T3 time zone. According to
Criteria-2, the difference between the BI and BE is found to be statis-
tically significant for 19% of cases. 75% of these significant cases are in
the T2 zone. These results demonstrate that, looking from an ex-post
performance evaluation, using ensemble models does not increase price
forecast accuracy significantly. According to Criteria-3, which is the
most realistic decision making setting among the other two criteria, we
find that the difference between the BI and BE is statistically significant
for 30% of the cases. BE model outperforms the BI for 65% of these
significant cases. These results indicate that, looking from an ex-ante
performance evaluation, using ensemble models increase price forecast
accuracy significantly in 30% of the cases. In the remaining 70% of the
cases (after subtracting BI significant cases), there is no statistical sig-
nificant difference between forecast accuracies of BI and BEs. Thus for a
power agent, looking from a more realistic ex-ante decision making
approach, using ensemble models can be very useful to manage price
modeling risk. Thus our findings support the additional benefits of
ensemble forecasts especially according to an ex-ante (more realistic)

decision making setting and in line with the previous findings in-
dicating ensemble modeling is less uncertain and more accurate than
the ex-ante best individual model.

6.1. Policy implications

For energy regulators and policy makers, using ensemble models
can be useful to manage electricity price modelling risk for ex-ante
policy impact assessment and lead to better policy decisions.

Electricity price forecasts are used by energy regulators as one of the
main input variables for ex-ante policy impact assessment
(Shahidehpour et al., 2002). In forecasting, uncertainity is reflected in
the forecast error and the source of risk arises from the unobservability
of full information set underlying the individual forecasts which could
be differently affected by statistical properties of the related price series
(Timmermann, 2006). Therefore using ensemble forecasting could mi-
tigate this risk related to decision making of a policy maker (Bunn,
1985).

Considering fractal dynamics of price could improve decision making of
policy makers.

We find that for both individual and ensemble models, in most of
the cases T3 (night tariff time zone) has the highest MAPE values. This
can be explained by the lower predictability level of this price series

Table 9
Summary of ensemble models with best model performance (out-of-sample
MAPE) and Diebold Marino statistic and p values (second row) according to
criteria2.

WEEK NO T1 DMTEST T2 DMTEST T3 DMTEST

Winter1 4–12 -0.536 3–7 -3.693*** 1–9 -1.821
0.000 0.1180.610

Winter2 4–10 1.881 4–13 -0.539 1–7 -0.782
0.590 0.4630.108

Winter3 2–12 -0.696 5–14 0.806 2–12 -0.665
0.421 0.5300.512

Winter4 3–8 2.521** 4–8 0.015 1–7 1.165
0.045 0.987 0.287

Spring1 3–14 -0.888 4–14 -3.452*** 4–13 -1.926
0.408 0.001 0.102

Spring2 3–8 0.839 4–7 1.6159 3–8 0.752
0.433 0.110 0.480

Spring3 4–8 -0.909 5–10 -5.712*** 6–12 0.692
0.001 0.5140.398

Spring4 4–13 -0.195 6–10 4.451*** 4–13 1.220
0.2680.851 0.001

Summer1 4–8 0.011 1–11 -0.602 5–10 0.712
0.552 0.5020.991

Summer2 2–14 0.624 2–10 -1.229 1–12 -7.670***
0.0000.2640.555

Summer3 2–8 1.007 4–8 2.767** 2–10 -2.718**
0.352 0.0325 0.034

Summer4 5–10 1.113 5–10 0.668 5–13 -0.225
0.308 0.528 0.829

Autumn1 2–12 0.734 2–8 -2.192** 3–13 -1.436
0.469 0.037 0.201

Autumn2 2–12 -0.616 1–15 0.437 2–10 -0.952
0.56 0.677 0.377

Autumn3 2–8 -0.522 2–10 0.227 4–7 0.021
0.619 0.827 0.984

Autumn4 4–8 0.417 6–11 1.314 5–8 0.205
0.690 0.236 0.843

Note: Model no (1)ARMA (2)ARMAX (3)NAR (4)NARX (5) ETS (6)TBATS
(7)ARMANAR (8)ARMAXNARX (9)ARMAETS (10)ARMAXETS (11)ARMATB-
ATS (12)ARMAXTBATS (13)ETSNAR (14)TBATSNAR (15)ARMATBATSETS
(16)ARMATBATSNAR (17)HYBRIDALL.
*** indicates rejection of the null hypothesis at the 1% significance level. **
indicates rejection of the null hypothesis at the 5% significance level. * in-
dicates rejection of the null hypothesis at the 10% significance level.

Table 10
Summary of ensemble models with best model performance (in-sample MAPE)
and Diebold Marino statistic and p values (second row) according to criteria3.

WEEK NO T1 DMTEST T2 DMTEST T3 DMTEST

Winter1 4–8 -1.2854 4–10 6.405*** 4–8 -1.247
0.001 0.2580.246

Winter2 4–8 1.2982 4–8 -7.252*** 4–8 -0.129
0.001 0.9010.241

Winter3 4–8 4.1369*** 4–8 6.819*** 4–8 0.766
0.001 0.4720.006

Winter4 4–8 2.1307* 4–8 0.015 4–8 1.992*
0.077 0.987 0.093

Spring1 4–8 -0.727 4–8 -3.585*** 4–8 -2.610**
0.494 0.001 0.040

Spring2 4–8 0.272 4–8 -5.305*** 4–8 -0.265
0.794 0.001 0.799

Spring3 4–8 -0.90 4–8 -1.402 4–8 1.843
0.398 0.165 0.115

Spring4 4–8 0.011 4–8 -0.116 4–8 -0.065
0.991 0.908 0.950

Summer1 4–8 0.011 4–8 2.373** 4–8 0.234
0.991 0.025 0.822

Summer2 4–8 1.873 4–8 2.767** 4–8 4.004***
0.110 0.032 0.007

Summer3 4–8 1.458 4–8 2.767** 4–8 2.878**
0.195 0.032 0.028

Summer4 4–8 1.796 4–8 1.272 4–8 4.779***
0.122 0.250 0.003

Autumn1 3–8 2.684** 4–8 1.220 4–8 3.089**
0.012 0.232 0.021

Autumn2 4–8 0.684 4–8 1.256 4–8 1.501
0.519 0.255 0.183

Autumn3 3–8 2.736** 4–8 0.762 3–8 0.387
0.034 0.474 0.711

Autumn4 4–8 0.417 4–8 1.001 4–8 0.261
0.690 0.355 0.802

Note:Model no (1)ARMA (2)ARMAX (3)NAR (4)NARX (5) ETS (6)TBATS
(7)ARMANAR (8)ARMAXNARX (9)ARMAETS (10)ARMAXETS (11)ARMATB-
ATS (12)ARMAXTBATS (13)ETSNAR (14)TBATSNAR (15)ARMATBATSETS
(16)ARMATBATSNAR (17)HYBRIDALL.
*** indicates rejection of the null hypothesis at the 1% significance level. **
indicates rejection of the null hypothesis at the 5% significance level. * in-
dicates rejection of the null hypothesis at the 10% significance level.
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compared to T1 and T2, and the stronger impact of seasonality factors
on demand during the night. Thus if fractal dynamics of price is pro-
minently different for some time zones during the course of a day,
ensemble modeling is less risky than individual models in terms of the
risk of selection of an inappropriate individual forecasting model.
Further, choosing ensemble models based upon the fractal dynamics of
each time zone could improve policy maker's forecast accuracy.

Energy regulators could enhance predictability level of prices, especially
for off-peak load periods by increasing transparency level of the market
through disseminating data on primary resource based available installed
capacity and planned generation schedules

We find that models with exogenous variables generally perform
better than models without exogenous variables. This finding is in line
with the previous literature and arises because of the high cross-cor-
relation between demand, margin and price. Further this result also
shows the appropriate selection of our input variables. On the other
hand we find that T3 price series has lowest level of predictability and
no long term correlation indicating that marginal bidders bid at their
marginal costs (Sapio, 2004). This means if an energy regulator wants
to enable power agents to forecast the prices accurately for off-peak
hours, it needs to publish prior information on primary resorce based
available installed capacity (the active power capacity that a generation

unit can provide to the system) and final daily production program (firm-
level) in order to give a signal of the possible future supply stack for
each hour and technology of the marginal generator.

6.2. Suggestions for future work

In emerging markets, from which most of them are semi-trans-
parent, since market data is very limited for price forecasting, market
participants tend to utilize from international data provider con-
sultancy firms to get information which is not public. The type of data
they seek for is usually on the planned generation schedules of large
firms, dam level of some state-owned hydro power plants (for Turkey
case), primary resorce based available installed capacity and final daily
production program (firm-level) and matching quantities(ex-post) on
the hourly merit order curve. We call this type of data private (not
insider) since it does not include any firm-level confidential data. Since
most of the market participants do not have this information, the ones
that have it can make a more fundamental analysis of the market, im-
prove their forecast accuracies and beat the market. Based on this point
of view, it would be interesting to examine the worth of this informa-
tion to market participants considering the improvement in forecast
accuracy of models (both individual and ensemble).

Appendıx

See Tables A.1 and A.2.

Table A.1
Data related to day ahead auctions in Turkey. Note: Settlement aggregation entity (UEVCB): Active electric energy generating or consuming entities which are
defined by market participants so that the settlement calculations can be made for each market participant.

Class Type Name Abbreviation Definition

Generation Planning Daily production program DPP The generation values with respect to settlement delivery point which a settlement
aggregation entity anticipates to realize in the following day and notifies the market
operator at the beginning of day ahead balancing stage, according to the obligations of the
balance responsible party to which it is attached.

Final daily production program FDPP The generation or consumption values which a settlement aggregation entity expects to
realize in the following day and notifies the system operator at the opening of the
balancing power market according to the obligations of the balance responsible party to
which it is attached and the result of day ahead balancing

Available installed capacity AIC The active power capacity that a generation unit can provide to the system
Real-time Real-time generation RGT Hourly resource-based power generation
Ex-post Injection quantity IQ Hourly injection of aggregate energy of the injection units (UEVCB)1 through a settlement

period (In terms of the settlement delivery point, the reading values of the meters in the
settlement aggregation entity configuration will be used as a basis in settlement
calculations)

(settlement volume)

Demand Forecast Demand forecast DemFor The hourly consumption forecasts published on a daily basis for the next physical day
Real-time Consumption Hourly real-time consumption
Ex-post Withdrawal quantity Hourly withdrawal of aggregate energy of withdrawal units through a settlement period

Eligible customer withdrawal quantity
(settlement withdrawl volume)

–

Withdrawal quantity under supply
liability

–

Price Planning Interim market clearing price IMCP Temporary hourly energy price which is determined within the objection period with
respect to bids that are cleared according to total supply and demand

Real-time Market clearing price MCP Hourly energy price that is determined with respect to bids that are cleared according to
total supply and demand

Ex-post Trade value Hourly aggregate of cleared bids and offers
Price independent offer Hourly aggregate of offer quantity at 0 TL/MwH
Price independent bid Hourly aggregate of bid quantity at 2000 TL/MwH
Supply/demand MOC Hourly merit order curve
Bid quantity Hourly and block bid(purchase) quantity at 0 TL/MwH
Offer quantity Hourly, block and flexible offer(sale) quantity at 2000 TL/MwH
Block bids Aggregate quantity of cleared block bid that covers a minimum of 4 to a maximum of 24 h
Block offers Aggregate quantity of cleared block bid that covers a minimum of 4 to a maximum of 24 h
Matching quantity Hourly aggregate quantity of cleared bids
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Table A.2
Dissemination details for day ahead auction data.

Name Responsible Institution Period of Time Publish Time Detail Public from

DPP TEIAS Hourly D-1 Firma-level Aggregate-level: 2011
Firm-level: 2016

FDPP TEIAS Hourly D-1 Firm-level Aggregate-level: 2011
Firm-level: 2016

AIC TEIAS Hourly D-1 Firm-level Aggregate-level: 2011
Firm-level: 2016

RGT TEIAS Hourly Real-time Primary-resource-based 2016
IQ TEIAS Hourly D+1 Primary-resource-based Aggregate-level: 2011

Primary-resource-based:2016
Demand Forecast TEIAS Hourly D-1 Aggregate 2011
Consumption TEIAS Hourly Real-time Aggregate 2016
Withdrawal quantity TEIAS Hourly D+S Aggregate 2016
Interim Market Clearing Price EXIST Hourly D-1 Aggregate 2016
Market Clearing Price EXIST Hourly D-1 Aggregate 2011
Trade value EXIST Hourly D-1 Aggregate 2011
Price independent offer EXIST Hourly D-1 Aggregate 2016
Price independent bid EXIST Hourly D-1 Aggregate 2016
Supply/Demand EXIST Hourly D-1 Aggregate 2014
Bid quantity EXIST Hourly D-1 Aggregate 2016
Offer quantity EXIST Hourly D-1 Aggregate 2016
Block bids EXIST Hourly D-1 Aggregate 2016
Block offers EXIST Hourly D-1 Aggregate 2016
Matching Quantity EXIST Hourly D-1 Aggregate 2014

a Firm represents the settlement aggregation entity in the day ahead auctions.
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