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A Weighted Moving Average Process for Forecasting 
 

Shou Hsing Shih  Chris P. Tsokos 
University of South Florida

 

 
 
A forecasting model for a nonstationary stochastic realization is proposed based on modifying a given 
time series into a new k-time moving average time series. The study is based on the autoregressive 
integrated moving average process along with its analytical constrains. The analytical procedure of the 
proposed model is given. A stock XYZ selected from the Fortune 500 list of companies and its daily 
closing price constitute the time series. Both the classical and proposed forecasting models were 
developed and a comparison of the accuracy of their responses is given. 
 
Key words: ARIMA, moving average, stock, time series analysis 
 
 

Introduction 
 
Time series analysis and modeling plays a very 
important role in forecasting, especially when 
our initial stochastic realization is nonstationary 
in nature. Some of the interesting and useful 
publications related to the subject area are 
Akaike (1974), Banerjee et al. (1993), Box et al. 
(1994), Brockwell and Davis (1996), Dickey and 
Fuller (1979), Dickey et al. (1984), Durbin and 
Koopman (2001), Gardner et al. (1980), Harvey 
(1993), Jones (1980), Kwiatkowski et al. (1992), 
Rogers (1986), Said and Dickey (1984), 
Sakamoto et al. (1986), Shumway and Stoffer 
(2006), Tsokos (1973), Wei (2006). 

The purpose of this study is to begin 
with a given time series that characterizes an 
economic or any other natural phenomenon and 
as usual, is nonstationary. Box and Jenkins 
(1994) developed a popular and useful classical 
procedure to develop forecasting models that   
have been shown to be effective. In this article,  
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a procedure for developing a forecasting model 
that is more effective than the classical approach 
is introduced. For a given stationary or 

nonstationary time series, }{ tx , generate a k-day 

moving average time series, }{ ty , and the 
developmental process begins. 

Certain basic concepts and analytical 
methods are reviewed that are essential in 
structuring the proposed forecasting model. The 
review is based on the autoregressive integrated 
moving average processes. The accuracy of the 
proposed forecasting model is illustrated by 
selecting from the list of Fortune 500 
companies, company XYZ, and considering its 
daily closing prices for 500 days. The classical 
time series model for the subject information 
along with the proposed process was developed. 
A statistical comparison based on the actual and 
forecasting residuals is given, both in tabular 
and graphical form. 
 
The Proposed Forecasting Model: k-th Moving 
Average 

It is not appropriate to build a time 
series model without conforming to certain 
mathematical constrains, such as stationarity of a 
given stochastic realization. Almost always, the 
time series that is given is nonstationary in 
nature and then, the next step is to reduce it into 

being stationary. Let }{ tx  be the original time 
series. The difference filter is given by 
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Figure 1. Daily Closing Price for Stock XYZ 
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Figure 2. Comparisons on Classical ARIMA Model VS. Original Time Series for the Last 100 

Observations 
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                               dB)1( −                         (1) 
 

where jtt
j xxB −= , and d is the degree of 

differencing of the series.  
The primary use for the k-th moving 

average process is for smoothing a realized time 
series. It is very useful in discovering a short-
term, long-term trends and seasonal components 
of a given time series. The k-th moving average 

process of a time series }{ tx  is defined as 
follows: 
 

                         ∑
−

=
++−=

1

0
1

1 k

j
jktt x

k
y               (2) 

 

where nkkt ,...,1, += . 
As k increases, the number of 

observations k of }{ ty  decreases, and }{ ty  gets 

closer to the mean of }{ tx  as k increases. When 
nk = , }{ ty  reduces to only a single 

observation, and equals μ , that is 
 

                         ∑
=

==
n

j
jt x

n
y

1

1 μ                (3) 

 

Then, develop the proposed model by 

transforming the original time series }{ tx  into 
}{ ty  by applying (2). After establishing the new 

time series, usually nonstationary, begin the 
process of reducing it into a stationary time 
series. Kwiatkowski, et al. (1992) introduced the 
KPSS Test  to check the level of stationarity of a 
time series. Apply the differencing order d to the 

new time series }{ ty  for ,...2,1,0=d , then 
verify the stationarity of the series with the 
KPSS test until the series become stationary. 
Therefore, one can reduce the nonstationary time 
series into a stationary one after a proper number 
of differencing. Then proceed the model 
building procedure of developing the proposed 
forecasting model.  

After choosing a proper degree of 
differencing d, proceed with the model building 
process by assuming different orders for the 
autoregressive integrated moving average 
model, ARIMA(p,d,q), also known as Box and 
Jenkins method, where (p,d,q) represent the 
order of the autoregressive process, the order of 
differencing and the order of the moving average 
process, respectively. The ARIMA(p,d,q) is 
defined as: 
 
                tqt

d
p ByBB εθφ )()1)(( =−           (4) 

 

where }{ ty  is the realized time series, pφ  and 
qθ  are the weights or coefficients of the AR and 

MA that drive the model, respectively, and tε  is 

the random error. Write pφ  and qθ  as  
 
                                   ( )p Bφ =                            (5) 

    2
1 2(1 ... )p

pB B Bφ φ φ− − − −  

and 
 
                                   ( )q Bθ =                              (6) 

     2
1 2(1 ... )q

qB B Bθ θ θ− − − −  
 

Sometimes it is difficult to make a 
decision in selecting the best order of the 
ARIMA(p,d,q) model when there are several 
models that all adequately represent a given set 
of time series. Hence, Akaile’s information 
criterion (AIC) (1974), plays a major role when 
it comes to model selection. AIC was introduced 
by Akaike in 1973, and it is defined as: 
 
                            AIC(M)=                         (7) 
            -2 ln [maximum likelihood] + 2M, 
 
where M is the number of parameters in the 
model and the unconditional log-likelihood 
function suggested by Box, Jenkins, and Reinsel 
(1994), is given by 
 
                         2ln ( , , , )L εφ μ θ σ =                      (8) 
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where ),,( θμφS  is the unconditional sum of 
squares function given by 
 
                                ( , , )S φ μ θ =                          (9) 

         2[ ( , , , )]
n

t
t

E yε φ μ θ
=−∞
∑  

 

where ),,,( yE t θμφε  is the conditional 

expectation of tε  given y,,, θμφ . 
 
 
 

 

 
 

 
 

The quantities 
∧
φ , 

∧
μ , and 

∧
θ  that 

maximize (8) are called unconditional maximum 

likelihood estimators. Because ),,,(ln 2
εσθμφL   

involves the data only through ),,( θμφS , these 
unconditional maximum likelihood estimators 
are equivalent to the unconditional least squares 

estimators obtained by minimizing ),,( θμφS . 
In practice, the summation in (9) is 
approximated by a finite form 
 

                              ( , , )S φ μ θ =                     (10) 

                      

2[ ( , , , )]
n

t
t M

E yε φ μ θ
=
∑

 
 
 

Table 1. Basic Evaluation Statistics 

r   
2
rS  rS  

n
Sr  

0.02209169 0.1445187 0.3801562 0.0170011 
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Figure 3. Time Series Plot of the Residuals for Classical Model 



SHIH & TSOKOS 
 

623

 
 

 

 
 
 
 
 
 

 
 

 

 
 
 
 
 
 

Time

P
ric

e

0 100 200 300 400 500

22
24

26
28

30

Time

P
ric

e

0 100 200 300 400 500

22
24

26
28

30

 Original Data
 New Series

 
Figure 4. Three Days Moving Average on Daily Closing Price of Stock XYZ Vs. the original time 

series 
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Figure 5. Comparisons on Our Proposed Model VS. Original Time Series for the Last 100 

Observations 
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where M is a sufficiently large integer such that 
the backcast increment 

),,,(),,,( 1 yEyE tt θμφεθμφε −−
 is less than 

any arbitrary predetermined small ε  value for 
)1( +−≤ Mt . This expression implies that 

μθμφε ≅),,,( yE t ; hence, ),,,( yE t θμφε  is 

negligible for )1( +−≤ Mt .   
After obtaining the parameter estimates 

∧
φ , 

∧
μ , and 

∧
θ , the estimate 

∧
2
εσ  of 

2
εσ  can then 

be calculated from 
 

 

 
 

                        
n

S ),,(2

∧∧∧
∧

= θμφσε                   (11) 

For an ARMA(p,q) model based on n 
observations, the log-likelihood function is 
 
                                ln L =                        (12) 

                    2
2

1ln 2 ( , , )
2 2
n Sε

ε

πσ φ μ θ
σ

− −  

Proceed to maximize (12) with respect to the 

parameters ,,, θμφ  and 
2
εσ , from (11),  

 

                                 ln L
∧

=                       (13) 
 

 
Table 2. Actual and Predicted Price 

N Actual Price Predicted Price Residuals 
476 26.78 26.8473 -0.0673 
477 26.75 26.7976 -0.0476 
478 26.67 26.7673 -0.0972 
479 26.8 26.6922 0.1078 
480 26.73 26.8064 -0.0764 
481 26.78 26.7490 0.0310 
482 26.27 26.7911 -0.5211 
483 26.12 26.3277 -0.2077 
484 26.32 26.1631 0.1569 
485 25.98 26.3364 -0.3564 
486 25.86 26.0349 -0.1749 
487 25.65 25.9068 -0.2568 
488 25.67 25.6670 0.0031 
489 26.02 25.7119 0.3081 
490 26.01 26.0335 -0.0235 
491 26.11 26.0427 0.0674 
492 26.18 26.1343 0.0457 
493 26.28 26.2032 0.0768 
494 26.39 26.2986 0.0914 
495 26.46 26.4043 0.0557 
496 26.18 26.4743 -0.2943 
497 26.32 26.2219 0.0981 
498 26.16 26.3354 -0.1754 
499 26.24 26.1953 0.0447 
500 26.07 26.2602 -0.1902  
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Because the second term in expression (13) is a 
constant, reduce the AIC to 

                      AIC(M) Mn 2ln 2 +=
∧

εσ .        (14) 
 
Thus, we an appropriate time series model is 
generated and the statistical process with the 
smallest AIC can be selected. The model 
identified will possess the smallest average 
mean square error. The development of the 
model is summarized as follows. 

Transform the original time series }{ tx  into a 

new series }{ ty . 
 

• Check for stationarity of the new time  

•  

 
 

 
 

 

• series }{ ty  by determining the order of 

differencing d, where ,...2,1,0=d  
according to KPSS test, until stationarity 
is achieved. 

 
• Decide the order m  of the process, for 

this case, let 5=m  where mqp =+ . 
 

• After (d, m ) is selected, list all possible 
set of (p, q) for mqp ≤+ . 

 
• For each set of (p, q), estimate the 

parameters of each model, that is, 
qp θθθφφφ ,...,,,,...,, 2121  

 
• Compute the AIC for each model, and 

choose the one with smallest AIC. 
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Figure 6. Time Series Plot for Residuals for Our Proposed Model 

Table 3. Basic Evaluation Statistics 

r   
2
rS  rS  

n
Sr  

0.01016814 0.1437259 0.3791119 0.01698841 
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According to the criterion mentioned 

above, the ARIMA(p,d,q) model can be obtained 
that best fit a given time series, where the 

coefficients are qp θθθφφφ ,...,,,,...,, 2121 . 

Using the model that we developed for }{ ty  and 
subject to the AIC criteria, we forecast values of 

}{ ty  and proceed to apply the back-shift 
operator to obtain estimates of the original 

phenomenon }{ tx , that is,  
 
                           

 

 
 
 
 

                                tx
∧

=                             (15) 

              1 2 1...t t t t kk y x x x
∧

− − − +− − − −  
 
The proposed model and the 

corresponding procedure discussed in this 
section shall be illustrated with real economic 
application and the results will be compared 
with the classical time series model. 

The proposed model and the 
corresponding procedure discussed in this 
section shall be illustrated with real economic 
application and the results will be compared 
with the classical time series model. 

Table 4. Actual and Predicted Price 
N Actual Price Predicted Price Residuals 

476 26.78 26.8931 -0.1131 
477 26.75 26.7715 -0.0215 
478 26.67 26.7121 -0.0421 
479 26.8 26.7239 0.0761 
480 26.73 26.7854 -0.0554 
481 26.78 26.6892 0.0908 
482 26.27 26.8292 -0.5592 
483 26.12 26.3027 -0.1827 
484 26.32 26.0808 0.2392 
485 25.98 26.3603 -0.3803 
486 25.86 25.9868 -0.1268 
487 25.65 25.8443 -0.1943 
488 25.67 25.7115 -0.0414 
489 26.02 25.6499 0.3701 
490 26.01 25.9650 0.0450 
491 26.11 26.0526 0.0574 
492 26.18 26.0912 0.0888 
493 26.28 26.1449 0.1351 
494 26.39 26.3090 0.0810 
495 26.46 26.3752 0.0848 
496 26.18 26.4223 -0.2423 
497 26.32 26.2461 0.0739 
498 26.16 26.2964 -0.1364 
499 26.24 26.1437 0.0963 
500 26.07 26.2678 -0.1978  
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First, a time series forecasting model is 

developed of the given nonstationary data using 
the ordinary Box and Jenkins methodology. 
Secondly, the data are modified, Figure 1, to 
develop the proposed time series forecasting 
model. A comparison of the two models will be 
given. 

The general theoretical form of the 
ARIMA(p,d,q) is given by 
 
                 tqt

d
p BxBB εθφ )()1)(( =−       (16) 

 
Following the Box and Jenkins’ methodology 
(1994), the classical forecasting model with the 
best AIC score is the ARIMA(1,1,2). That is, a 
combination of first order autoregressive (AR)  
and a second order moving average (MA) with a 
first difference filter. Write it as 
 
                 (1 .9631 )(1 ) tB B x− − =                (17) 

                  2(1 1.0531 .0581 ) tB B ε− +  
 
After expanding the autoregressive operator and 
the difference filter,  
 
             2(1 1.9631 .9631 ) tB B x− + =          (18) 

               2(1 1.0531 .0581 ) tB B ε− +  
 
and rewrite the model as 
 
                 1 21.9631 .9631t t tx x x− −= − +        (19) 
                 1 21.0531 .0581t t tε ε ε− −− +  
 

by letting 0=tε , there is the one day ahead  
 
 

 

 
forecasting time series of the closing price of 
stock XYZ as 
 

                    1 21.9631 .9631t t tx x x
∧

− −= −          (20) 
                     1 21.0531 .0581t tε ε− −− +  
 
Using the above equation, graph the forecasting 
values obtained by using the classical approach 
on top of the original time series, as shown by 
Figure 2. 

The basic statistics that reflect the 

accuracy of model (20) are the mean r , variance 
2
rS , standard deviation rS  and standard error 

n
Sr

 of the residuals. Figure 3 gives a plot of 
the residual and Table 1 gives the basic 
statistics. 

Furthermore, restructure the model (20) 
with 475=n  data points to forecast the last 25 
observations only using the previous 
information. The purpose is to see how accurate 
our forecast prices are with respect to the actual 
25 values that have not been used. Table 2 gives 
the actual price, predicted price, and residuals 
between the forecasts and the 25 hidden values. 

The average of these residuals is 05608.0−=r . 
Proceed to develop the proposed forecasting 
model. The original time series of stock XYZ 
daily closing prices is given by Figure 1. The  
new time series is being created by 3=k  days 

moving average and the analytical form of }{ ty  
is given by 
 

Table 5. Basic Comparison on Classical Approach Vs. Our Proposed model 
 

 r   
2
rS  rS  

n
Sr  

Classical 0.02209169 0.1445187 0.3801562 0.0170011 

Proposed 0.01016814 0.1437259 0.3791119 0.01698841 
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3

12 ttt
t

xxxy ++= −−                   (21) 

 

Figure 4 shows the new time series }{ ty  

along with the original time series }{ tx , that 
will be used to develop the proposed forecasting 
model. The best model that characterizes the 

behavior of }{ ty is ARIMA (2,1,3). That is, 
 
           2(1 .8961 .0605 )(1 ) tB B B y− − − =     (22) 

           2 3(1 .0056 .0056 ) tB B B ε+ − −  
 
Expanding the autoregressive operator and the 
first difference filter, we have 
 
 2 3(1 1.8961 .8356 .0605 ) tB B B y− + + =    (23) 

 2 3(1 .0056 .0056 ) tB B B ε+ − −  
 
Thus, write (23) as 
 
                                ty =                                       (24) 
          1 2 31.8961 .8356 .0605t t ty y y− − −− −     

         +  1 2 3.0056 .0056t t t tε ε ε ε− − −+ − −  

 
The final analytical form of the proposed 
forecasting model can be written as 
 

                                ty
∧

=                                      (25) 

1 2 31.8961 .8356 .0605t t ty y y− − −− −  

1 2 3.0056 .0056t t tε ε ε− − −+ − −  
 

Using the above equation, a plot of the 
developed model (25), showing a one day ahead 
forecasting along with the new time series, 

}{ ty , is displayed by Figure 5. 
Note the closeness of the two plots that reflect 
the quality of the proposed model. 

Similar to the classical model approach 
that we discussed earlier, use the first 475 

observations },...,,{ 47521 yyy  to forecast 
∧

476y . 

Then, use the observations },...,,{ 47621 yyy  to 

forecast 
∧

477y , and continue this process until 
forecasts are obtained for all the observations, 

that is, },...,,{ 500477476

∧∧∧
yyy . From equation (21), 

the relationship can be seen between the 

forecasting values of the original series }{ tx  
and the forecasting values of 3 days moving 

average series }{ ty , that is,  
 

                        213 −−

∧∧
−−= tttt xxyx              (26) 

Hence, after },...,,{ 500477476

∧∧∧
yyy  is estimated, 

use the above equation, (26), to solve the 

forecasting values for }{ tx .  Figure 6 is the 
residual plot generated by the proposed model,  
and followed by Table 3, that includes the basic 
evaluation statistics. 

Both of the above displayed evaluations 
reflect on accuracy of the proposed model. The 
actual daily closing prices of stock XYZ from 
the 476th day along with the forecasted prices 
and residuals are given in Table 4. The results 
given above attest to the good forecasting 
estimates for the hidden data. 
 
Comparison of the Forecasting Models 

In this section, the two developed 
models are compared. The classical process is 
given by 

                1 21.9631 .9631t t tx x x
∧

− −= − −       (27) 
                    1 21.0531 .0581t tε ε− −+  
 

In the proposed model, the following 
inversion is used to obtain the estimated daily 
closing prices of stock XYZ, that is, 
 

                                 ty
∧

=                           (28) 

1 2 31.8961 .8356 .0605t t ty y y− − −− −  

1 2 3.0056 .0056t t tε ε ε− − −+ − −  
 
in conjunction with 
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213 −−

∧∧
−−= tttt xxyx            (29) 

 
Table 5 is a comparison of the basic 

statistics used to evaluate the two models under 
investigation. The average mean residuals 
between the two models shown that the 
proposed model is overall approximately 54% 
more effective in estimating one day ahead the 
closing price of Fortune 500 stock XYZ. 
 

Conclusion 
 

Based on the average mean residuals the 
proposed model was significantly more effective 
in such term of predicting of the closing daily 
prices of stock XYZ.   
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