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in Structural Equation Models 
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The incorporation of the robust regression methods Least Median Square (LMS) and Least Trimmed 
Squares (LTS) is proposed in structural equation modeling. Results show that, in situations of high 
deviations of symmetry, the evaluated methods would be recommended for applications including smaller 
sample sizes. 
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Introduction 
Structural equation modeling seeks to reproduce 
a population covariance matrix through the 
sample covariance associated with parameter 
constraints determined by a researcher. The most 
commonly used estimation methods are based 
on maximum likelihood, ordinary least squares 
and partial least squares. These methods, 
however, show a sensitivity to various factors, 
for example: violation of the normality 
assumption (Lei & Lomax, 2005), presence of 
outliers (Yuan & Bentler, 2001) and samples 
that show the effects of asymmetry and excess 
kurtosis compared to the multivariate normal 
distribution (Gao, et al., 2008). 

It is reasonable to assume that the 
presence of these effects can be explained by 
observing outliers in the sample and it is also 
relevant to consider sample size because large 
data sets are subject to a large number of these 
observations. Moreover, the violation of the 
assumption of normality can also be caused by 
these observations; therefore, a practical (but not 
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always feasible) alternative is to apply a 
transformation to the data. Gao, et al. (2008) 
state that – depending on the transformation to 
be used – the relationships between variables 
may be nonlinear. However, applying this 
statement to structural equation models, where 
the nature of the relationships between the 
variables are linear, the application of a 
transformation may complicate the interpretation 
of results as well as affect the quality of model 
fit. 

Pilati and Laros (2007) state that, if the 
assumption of normality is not met, the 
researcher may choose to use other estimation 
methods such as the method of partial least 
squares (PLS) estimators. According to 
O'Loughlin & Coenders (2004) the disadvantage 
of this method is that they provide biased 
estimates. Cassel, et al. (1999) note that the 
properties of robustness must be further studied 
due to the fact that the estimates are sensitive to 
deviations from symmetry in observable 
variables, multicollinearity among observable 
variables and incorrect specification of 
measurement models. 

As noted, not all variable distributions 
are normal and – in the presence of outliers – not 
all are appropriate to use for robust regression 
estimators that would be incorporated in 
structural equation models (SEMs). However, 
robust regression estimators that have a high 
breaking point are constructed based on the size 
of the subsets of data, thus, Hawkins, et al. 
(1984) state that this size should be minimal, 
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that is, the total number of observations 
belonging to each set should be equal to the 
number of model parameters. This 
recommendation is justified due to the fact that 
the proportion of subsets that will contain at 
least one observational discrepancy will grow 
rapidly as a function of the size of the subset. 
For this reason, by keeping the subsets as small 
as possible the number of estimates that are not 
influenced by outliers is maximized.  

As a base for this theory, the method of 
Least Median of Squares (LMS) is cited 
(Gervini & Yohai, 2002). This method involves 
minimizing the sum of squares of the ordinary 
residuals obtained by the method in such a way 
that the subset formed from the residuals 
resulting in the lowest median value are 
considered for the minimization processes. 
Other robust regression estimators, adequate for 
incorporation in structural equation modeling 
(SEM) are defined by the Least Trimmed 
Squares (LTS) method (Agulló, 2001). This 
method proposes to minimize the sum of the 
first h residuals sorted and squared, and h the 
size of the subset defined by the number of 
model parameters and sample size (Maronna, et 
al., 2006). 

This article incorporates robust 
estimators LMS and LTS in structural SEM. For 
this purpose, the performance of the 
incorporation of these estimators was evaluated 
by Monte Carlo simulation considering different 
degrees of asymmetry in the distributions of the 
observable variables and errors of the structural 
and measurement models. 
 

Methodology 
Error Distribution of the Structural Equation 
Model using Monte Carlo Simulation 

Following the definition of a structural 
equation model (SEM), structural error and 
measurement models were generated following 
the asymmetric standard normal distribution 
with probability functions defined respectively 
as 
 

( ) ( )2 , , ;f a aζ φ ζ ζ ζ= Φ ∈ℜ ∈ℜ      (1) 

 

( ) ( )2 , , ;f a aδ φ δ δ δ= Φ ∈ℜ ∈ℜ        (2) 

 

and 

( ) ( )2 , , ,f a aε φ ε ε ε= Φ ∈ℜ ∈ℜ      (3) 

 
where φ(.) and Ф(.) represent the probability 
density function and standard normal cumulative 
distribution N(0,1) and a is the asymmetry 
parameter. Thus, the notation ζ ~ N (0, 1, a), δ ~ 
N (0,1,a) and ε ~ N (0,1,a) was used. Arbitrarily, 
the values were set at a = 20, 0 and −20 
implying the errors presented positive 
asymmetry, symmetry, and negative asymmetry, 
respectively; these situations are illustrated in 
Figures 1-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: ζ, δ, ε~ N(0, 1, 20) Error Histogram 
 

 

 
Figure 2: ζ, δ, ε~ N(0, 1) Error Histogram 

 

 

 
Figure 3: ζ, δ, ε~ N(0, 1, −20) Error Histogram 
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Structural Equation Models Used in the Monte 
Carlo Simulation 

Keeping the specifications of the error 
distributions consistent with the proposed 
objective in the Monte Carlo simulation process, 
the structural model  
 

1 1 2 2 3 3η= γ ξ + γ ξ + γ ξ ,+ζ              (4) 

 
where γi for i = 1, 2, 3 represents the regression 
coefficients and ζ is the structural error with 
distribution is N(0,1,a) was considered. The 
observable variables were defined by xk (k = 1, 
..., 9), such that each equation of the 
measurement model at x was composed by 
 

1 1 1 2 2 3 3 1= π x +π x + π x δ ,+ξ            (5) 

 

2 4 4 5 5 6 6 2= π x + π x + π x δ ,+ξ           (6) 

 

3 7 7 8 8 9 9 3= π x +π x +π x δ .ξ +           (7) 

 
and where δi (i = 1, 2, 3) was generated by a 
normal distribution. 

In the case of the measurement model 
for η, the definition of the equations was given 
as: 
 

1 1 1= η+y λ ε ,                         (8) 

 

2 2 2= η+y λ ε ,                        (9) 

 

3 3 3= η+y λ ε ,                      (10) 

and 

4 4 4= η+y λ ε .                      (11) 

 
Based on these equations, along with 
assumptions of the structural model in which the 
expected values of the error vectors and latent 

variables are equal to zero, ζ  and iξ , (i = 1, 2, 

3) are uncorrelated, jε  (j = 1, 2, 3, 4) are 

uncorrelated with η , iξ  and iδ , being iδ  

uncorrelated with ξ i , η and jε . With these 

specifications, the regression coefficient 
estimators were obtained by robust LMS and 

LTS methods and the sample generation was 
characterized by different degrees of asymmetry 
for x observable variables distributed as a Beta 
(α, β) distribution, whose parameters were fixed 
in accordance with Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The illustration of each case is shown in Figures 
4-6 and the parametric values used in the 
simulation of the structural model are shown in 
Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Beta (α, β) Distribution Used in the 
Simulation of the Observable Variables with 

Different Degrees of Asymmetry 
 

Case Distribution 
Degree of 

Asymmetry 

0 Beta (6, 6) 
Perfectly 

Symmetrical 

1 Beta (9, 4) 
Moderate 

Asymmetry to 
the Right 

2 Beta (9, 1) 
High Asymmetry 

to the Right 

 

Figure 4: Beta (6, 6) 
 

 

Case 0

0.2 0.4 0.6 0.8
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Robust Regression Estimators Incorporated into 
the Structural Equation Model 

The LMS estimators (Rousseeuw & 
Leroy, 2003) applied in SEM were incorporated 
considering structural model (4) and the 
measurement models related to the independent 
(models (5)-(7)) and the dependent (models (8)-
(11)) variables. For sample sizes fixed at n = 50, 
200 and 1,000, estimates were obtained by 
minimizing equations (12)-(14). Thus, with the 
exception of the structural model, each of the 
measurement model equations was specified by 
the index s = 1, ..., Q, where Q is the total 
number of equations and the parameter estimates 
of each equation were obtained by the LMS 
method. 
 

( ){ }2 2
1 nmin median ,..., ,ζ ζ  

(12) 

( ){ }2 2
s1 snmin median ,..., , s 1,..., (Q=4),ε ε =  

(13) 
and 
 

( ){ }2 2
s1 snmin median δ ,...,δ s=1,...,(Q=3).  

(14) 
 
In the case of the LTS method (Rousseeuw & 
Leroy, 2003) the parameter estimates were 
obtained from expressions: 
 

h
2 2
r h

r 1

min ,..., ;ζ ζ
=

 
 
 
                (15) 

 
h

2 2
sr sh

r 1

min ,..., ; s 1,..., (Q 4);ε ε
=

  = = 
 
  

(16) 
and 
 

( )
h

2 2
sr sh

r 1

min δ ,...,δ ; s 1,..., (Q 3).
=

  = = 
 
  

(17) 
 
In all situations, the values of h were 

recommended by Rousseeuw and Hubert (1994), 
according to the expression: 
 

n+p+1
h = ,

2
 
  

                     (18) 

 
where p is the total number of parameters 
relating to each equation. 

 
Statistical Measurements to Compare the Results 

Based on the procedure described, the 
robust estimators were incorporated into the 
structural equation model and a program was 
constructed in software R version 2.11.1 (R 
Development Core Team, 2010), in which 1,000 
Monte Carlo simulations were performed for 
each sample size for each degree of asymmetry 
in the errors distributions (see Figures 1-3) and  
 

Figure 5: Beta (9, 4) 

 
 
 

Figure 6: Beta (9, 1) 

 

Case 1

0.2 0.4 0.6 0.8 1.0

Case 2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
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in the observable variables distributions (see 
Figures 4-6). To evaluate the accuracy for each 
parameter of structural equation (4), the relative 
deviations were computed as: 
 

1000
ib ib

b 1 ib

ˆγ  - γ

γ
B , i 1, 2,3

1000
=

 
 
 = =


. 

(19) 
 
In terms of the precision of the study, the range 
given in (20) was used considering the 
difference between the highest and lowest 
standard deviation value Sγi obtained by means 
of the empirical distribution of estimates of each 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
parameter γi (i = 1, 2, 3) generated in the 
simulation process: 
 

( ) ( )
i isd γ γA max S min S ,

i 1, 2,3

= −

=
. 

(20) 
 

Results 
Considering the observable variables generated 
with perfect symmetry (Case 0; see Table 2), it 
was observed that, in the situation where errors 
were symmetrical (Figure 2), the results were 
similar; the three estimators being considered 
accurate for all methods evaluated in terms of 
sample sizes. 

Figure 7: Graphical Representation of the Structural Equation Model 
with the Parametric Values Used in the Monte Carlo Simulation Process 
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This result is consistent with findings by 
Cassel, et al. (1999) that the parameter estimates 
resulting from the application of the Partial 
Least Squares method showed similar results, 
that is, estimates were not affected by increasing 
sample size. However, in considering the errors 
distributed as the normal asymmetric with the 
parameters of asymmetry a = 20 (see Figure 1) 
and a = −20 (see Figure 3), it was observed that 
the values of the biases in situations where the 
LMS and LTS methods were used were smaller 
those when considering the method of Least 
Squares (LS) estimation. However, it should be 
emphasized that the robust regression methods 
in the case of negative asymmetry of the errors  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
retained results that characterize an inaccuracy 
and show evidence of a tendency to provide 
inflated or deflated estimates related to the 
parameters of the structural equation. This 
deficiency was corrected by increasing the 
sample size to n = 1,000 with emphasis on the 
LMS method which provided more accurate 
results compared to the parametric values 
imposed on the structural model. 

Because results were more accurate for 
robust methods, in situations where the errors 
were generated by asymmetric normal 
distributions precision was evaluated using the 
statistic given by (20). Thus, the results 
illustrated in Figure 8 show that the LMS and  

Table 2: Estimates of the Relative Bias (B) Considering Different Degrees of Asymmetry of the 
Distribution of Errors with the Observable Variables Generated by Beta (6, 6) 

 

LS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3 

50 0.0023 -0.0007 -0.0426 0.1561 0.2666 0.6163 -0.5592 -0.5830 0.1774

200 -0.0017 -0.0015 0.0076 0.1557 0.2684 0.6019 -0.5597 -0.5406 0.2067

1000 -0.0001 -0.0004 0.0081 0.1551 0.2755 0.5831 -0.5625 -0.5335 0.2511

LMS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3 

50 0.0081 -0.0481 -0.0202 0.0994 0.2009 0.4488 -0.4828 -0.5342 0.0770

200 0.0091 -0.0346 0.0044 0.0927 0.1684 0.3605 -0.4619 -0.3981 0.0890

1000 0.0006 0.0027 0.0087 0.0852 0.1642 0.3227 0.0782 0.1142 0.1043

LTS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3 

50 0.0245 -0.0596 -0.0452 0.0999 0.1863 0.4770 -0.4754 -0.5223 0.0238

200 -0.0007 -0.0156 -0.0039 0.0834 0.1557 0.3758 -0.4334 -0.3834 0.0548

1000 -0.0018 -0.0033 0.0164 0.0712 0.1479 0.3087 -0.3976 -0.3352 0.1547
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LTS methods presented similar precision when 
the errors have a negative asymmetry effect, and 
the LMS method showed better performance in 
the case of positive asymmetry. 

Considering the distribution of 
observable variables with a moderate degree of 
asymmetry (Case 1), the results in Table 3 show 
that, in the situation where structural errors and 
measurement were simulated assuming 
normality without deviations of asymmetry 
(Figure 2), the LMS and LTS methods continued 
to provide good accuracy. However, when 
considering the errors generated by the normal 
asymmetric distribution, it was observed that the 
robust estimation methods were less accurate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
than those outlined in Table 2, but showed better 
performance than the least squares estimator. 
Maintaining the focus on the study of the 
precision afforded by the robust LMS and LTS 
methods (see Figure 9) the performance of the 
two estimators is similar. 

Supplementing these findings, in a 
comparative study of maximum likelihood 
estimators (MLE) and robust estimation methods 
applied in the setting of a confirmatory factor 
analysis, Zhong & Yuan (2011) concluded that, 
in the case of non-normal distributions, the MLE 
estimates are biased and inefficient and the use 
of robust methods provide an improvement on 
these properties; however, they stressed that the  

Figure 8: Precision of the Robust Estimates Considering Positive and Negative Asymmetric Errors with 
Observable Variables Generated by Beta (6, 6) 
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estimates of standard errors must be studied. In 
this sense, the study of the precision of the 
estimators is justified, confirming the claims 
made by Kaplan (1969) referring to the fact that 
the refinement of precision does not necessarily 
lead to increased reliability. In addition, in some 
situations, there could occur a reduction in the 
reliability of the estimates by a reduction of the 
accuracy because in practical situations the 
researcher may encounter systematic errors, for 
example, errors in the definition of the 
measurement or recording of the observation 
and random errors associated with 
uncontrollable variations. 

When a high degree of asymmetry is 
imposed on the observable variables through 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
distribution Beta (9, 1) (Case 2; see Table 4), 
maintaining the structural error and 
measurement errors distributed according to a 
normal symmetry (Figure 2), the LMS and LTS 
methods are accurate and similar results are 
obtained using the LS method. However, 
considering the asymmetric error (see Figures 1 
and 3), based on the bias, the robust methods 
were more suitable for use in replacement of the 
LS method. 

In the same situations with different 
degrees of asymmetry (see Table 1) assuming 
the measurement errors of the equations ((5)-(7)) 
and ((8)-(11)) are uniformly distributed, Cassel, 
et al. (1999) evaluated the biases of the 
parameter estimates of the structural equation 
model  

Table 3: Estimates of Relative Bias (B) Considering Different Degrees of Asymmetry of the 
Distribution of Errors with the Observable Variables Generated by Beta (9, 4) 

 

LS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3  γ1 γ2 γ3  γ1 

50 0.0000 0.0024 -0.0078 50 0.0000 0.0024 -0.0078 50 0.0000 

200 -0.0018 0.0047 0.0043 200 -0.0018 0.0047 0.0043 200 -0.0018 

1000 -0.0007 0.0051 -0.0064 1000 -0.0007 0.0051 -0.0064 1000 -0.0007 

LMS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3  γ1 γ2 γ3  γ1 

50 0.0035 -0.0042 -0.0505 50 0.0035 -0.0042 -0.0505 50 0.0035 

200 -0.0054 0.0187 0.0039 200 -0.0054 0.0187 0.0039 200 -0.0054 

1000 -0.0008 -0.0023 0.0137 1000 -0.0008 -0.0023 0.0137 1000 -0.0008 

LTS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3  γ1 γ2 γ3  γ1 

50 -0.0134 0.0130 -0.0012 50 -0.0134 0.0130 -0.0012 50 -0.0134 

200 -0.0045 0.0082 0.0160 200 -0.0045 0.0082 0.0160 200 -0.0045 

1000 -0.0037 -0.0026 0.0385 1000 -0.0037 -0.0026 0.0385 1000 -0.0037 
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resulting from the application of Partial Least 
Squares method and concluded that the increase 
in the degree of asymmetry reflected an increase 
in bias and this is more emphasized in a situation 
of a high degree of asymmetry (Case 2; see 
Figure 6). Results obtained in this work are 
consistent with the Cassel, et al. (1999) findings 
and there is statistical evidence to argue that 
robust regression methods are consistent and 
worthy of being adapted to be used in structural 
equation modeling. 

Relevant to the discussion of the 
estimates accuracy provided by the LMS and 
LTS methods it is important to note that, in the 
violation of the normality assumption, there are 
numerous works relating other methods that can 
be used as alternatives.  Engel, et  al.  (2003) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stated that the maximum likelihood method can 
be applied when the normality deviation is 
relatively moderate. In this situation the authors 
recommend n > 400. Moreover, Muthén and 
Muthén (2002) stated that the maximum 
likelihood estimators can be consistent but not 
necessarily efficient. 

For variables with non-normal 
distributions, the recommendations are 
divergent. The minimum sample size for the 
weighted least squares method to be reliable, 
should be at least n = 1,000 (Hoogland & 
Boomsma, 1998), and depending on the model 
and data being analyzed; in some cases even 
exceeding 4,000 or 5,000 (Boomsma & 
Hoogland, 2001; Hu, et al., 1992). In general, 
when considering small sample sizes, Bollen, et  

Figure 9: Precision of the Robust Estimates Considering the Positive and Negative Asymmetric Errors with 
Observable Variables Generated by Beta (9, 4) 
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al. (2007) recommended that results should be 
interpreted with caution. Considering these 
arguments, it may be stated that the use of the 
robust estimation methods evaluated in this 
work are worthy of being considered in SEM, as 
the results show that the increase in the degree 
of asymmetry in the distribution of observed 
variables provided an improvement in the 
precision of the LMS and LTS estimates. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
In situations where the observed variables and 
errors in a structural equation model show 
asymmetry deviations, the robust estimation 
methods LMS and LTS are suitable for 
application, especially with smaller sample 
sizes. 
 
 
 
 
 
 
 

Table 4: Estimates of Relative Biases (B) Considering Different Degrees of Asymmetry of the 
Distribution of Errors with the Observable Variables Generated by Beta (9, 1) 

 

LS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3 

50 -0.0030 0.0059 -0.0037 -0.0030 0.0059 -0.0037 -0.0030 0.0059 -0.0037 

200 -0.0004 0.0035 -0.0044 -0.0004 0.0035 -0.0044 -0.0004 0.0035 -0.0044 

1000 0.0001 0.0007 -0.0009 0.0001 0.0007 -0.0009 0.0001 0.0007 -0.0009 

LMS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3 

50 -0.0022 -0.0019 0.0717 -0.0022 -0.0019 0.0717 -0.0022 -0.0019 0.0717 

200 -0.0039 0.0106 -0.0166 -0.0039 0.0106 -0.0166 -0.0039 0.0106 -0.0166 

1000 0.0028 -0.0083 -0.0160 0.0028 -0.0083 -0.0160 0.0028 -0.0083 -0.0160 

LTS Method 

n 
ζ; εj; δi ~ N(0, 1) ζ; εj; δi ~ N(0, 1, 20) ζ; εj; δi ~ N(0, 1, −20) 

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3 

50 -0.0160 0.0236 0.0612 -0.0160 0.0236 0.0612 -0.0160 0.0236 0.0612 

200 0.0006 0.0046 -0.0094 0.0006 0.0046 -0.0094 0.0006 0.0046 -0.0094 

1000 -0.0002 0.0015 -0.0110 -0.0002 0.0015 -0.0110 -0.0002 0.0015 -0.0110 
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