
Journal of Modern Applied Statistical
Methods

Volume 1 | Issue 2 Article 58

11-1-2002

JMASM4: Critical Values For Four Nonparametric
And/Or Distribution-Free Tests Of Location For
Two Independent Samples
Bruce R. Fay
Wayne County Regional Educational Service Agency, Michigan

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been
accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Fay, Bruce R. (2002) "JMASM4: Critical Values For Four Nonparametric And/Or Distribution-Free Tests Of Location For Two
Independent Samples," Journal of Modern Applied Statistical Methods: Vol. 1: Iss. 2, Article 58.
DOI: 10.22237/jmasm/1036110300
Available at: http://digitalcommons.wayne.edu/jmasm/vol1/iss2/58

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56683399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss2/58?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss2/58?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss2%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods  Copyright  2002 JSMASM, Inc. 
Fall 2002, Vol. 1, No 2, 489-517  1538 – 9472/02/$30.00 

489 

JMASM Algorithms and Code 
JMASM4: Critical Values For Four Nonparametric And/Or Distribution-Free 

Tests Of Location For Two Independent Samples  
 
 
 

Bruce R. Fay 
Assessment & Evaluation 

Wayne County Regional Educational Service Agency 
 

 
Researchers engaged in computer-intensive studies may need exact critical values, especially for sample sizes 
and alpha levels not normally found in published tables, as well as the ability to control ‘best-fit’ criteria. 
They may also benefit from the ability to directly generate these values rather than having to create lookup 
tables. Fortran 90 programs generate ‘best-conservative’ (bc) and ‘best-fit’ (bf) critical values with associated 
probabilities for the Kolmogorov-Smirnov test of general differences (bc), Rosenbaum’s test of location (bc), 
Tukey’s quick test (bc and bf)) and the Wilcoxon rank-sum test (bc). 
 
Key words: Kolmogorov-Smirnov test, Rosenbaum test, Tukey quick test; Wilcoxon rank-sum test. 
 

 
Introduction 

 
Researchers, especially those engaged in Monte 
Carlo studies, may have a need for exact critical 
values over a wider range of sample sizes and/or 
alpha levels than are generally available from 
published tables. They may also benefit from the 
ability to generate the values directly, as opposed 
to creating lookup tables, and to control best-fit 
criteria. Fortran 90 programs that generate critical 
values for four nonparametric/distribution-free 
tests of location for two independent samples are 
presented. Included are the Kolmogorov-Smirnov 
test of general differences, Rosenbaum’s test of 
location, Tukey’s quick test and the Wilcoxon 
rank-sum test. The programs for Tukey’s test also 
generate ‘best-fit’ critical values and associated 
probabilities. The best-fit method could be adapted 
to the other programs. 
 
 
Bruce R. Fay is an Assessment Consultant. He 
works with K-12 public schools in school 
accountability, accreditation, and assessment of 
student learning. Contact him at 30580 Springland 
St., Farmington Hills, MI 48334 or by e-mail at 
bfay@twmi.rr.com. 
 

 
Tukey Quick Test 

Tukey (1959) described a method for 
generating critical values for his Two-Sample Test 
to Duckworth’s Specifications, now commonly 
known as Tukey’s Quick Test. The test is both 
quick and compact, which makes it portable. The 
“rule of thumb” critical values, however, are not 
consistently ‘best-conservative’ or ‘best-fit’ to 
specific criteria. 

 
Test Description 

Tukey’s (1959) test is quick in the sense 
that the method is easily remembered and the 
statistic, based on the combined length of extreme 
runs, easily calculated. The two samples are 
combined and ordered. For a two-sided test, if the 
overall maximum and minimum come from 
different groups, the statistic is the number of 
observations from the group with the global 
maximum that are greater than the greatest 
observation from the group with the global 
minimum plus the number of observations from 
the group with the global minimum that are less 
than the least observation from the group with the 
global maximum. If the global maximum and 
minimum are from the same group the statistic is 
generally taken to be zero. Tukey (1959) 
suggested dealing with ties (consequential, 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 490

between-group) by counting each tied observation 
as ½ rather than 1. The one-sided (directional) test 
statistic is calculated just like the two-sided 
statistic with the additional requirement that the 
overall maximum observation is from the group 
that is expected to have the higher median under 
the alternative hypothesis (assuming a pure shift 
model). If not, the statistic is taken to be zero. 

The test is compact in the sense that the 
critical values do not vary much with sample size, 
especially if the sample sizes are not too different. 
As such, they can also be easily committed to 
memory. For two-sided tests at nominal alpha 
levels of .10, .05, .02 and .01 (or one-sided tests at 
.05, .025, .01 and .005) the best-conservative 
critical values are 6, 7, 9 and 10 respectively with 
equal sample sizes from 9 to 24 per group. Tukey 
(1959) suggested that these critical values be used 
for all sample sizes as long as they were not too 
different. He noted, however, that under these 
conditions the test was not strictly conservative in 
the classical sense. He also gave relatively simple 
corrections to apply when the sample sizes were 
different, although not by too much. These 
corrections, however, still do not guarantee that 
the test will be strictly conservative, and add a 
level of complexity to the test that reduces both its 
quickness and compactness. 

The best-fitting critical values for nominal 
alpha levels (1-sided) of .05, .025, .01, .005 (with 
a +10% tolerance) are 6, 7, 8 and 9 for equal 
samples sizes from 5 to 9 and 6, 7, 9, 10 for equal 
sample sizes from 11 to 30. Using 6, 7, 9, 10 as the 
critical values for all equal sample sizes is 
conservative for samples sizes less than 11 at .02 
and .01 alpha levels (2-sided) but may be liberal 
up to +10% for other sample sizes and nominal 
alphas. 

Quickness and compactness combine to 
make Tukey’s (1959) test portable in the sense that 
everything needed to apply the test can be carried 
around in one’s memory and the calculations can 
be performed mentally, or with pencil and paper. 
This simplicity is gained at the expense of some 
statistical power, but the practical power may be 
high. Tukey (1959) referenced a definition of 
practical power from Churchill Eisenhart (without 
formal citation) as “the product of the 
mathematical power by the probability that the 
procedure will be used” and noted that the 
practical power of a test might prove to be quite 

high, in spite of lower statistical power, if it 
became widely used. 

Because of its portability and potentially 
high practical power, Tukey (1959) referred to this 
test as a “pocket test” and proposed that it filled a 
particular niche, i.e., “as a footrule”, “on the 
floor”, or “in the field” to “indicate the weight of 
the evidence roughly.” He recommended that 
more sensitive tests be used “if a delicate and 
critical decision is to be made.” 

 
Methodology for Generating Critical Values and 
Associated Probabilities 

Tukey (1959) described in detail a method 
for generating strictly conservative, exact critical 
values. That method is implemented in the 
program modules presented here, along with a 
variation that produces best-fitting critical values 
to a specified tolerance level above nominal alpha. 

Tukey’s (1959) method involves building 
a table, A, that contains “a certain summation of 
binomial coefficients.” Differences of pairs of 
entries from A, based on the sample sizes j and k 
and a parameter h, are compared to nCj, the 
number of combinations of n things taken j at a 
time, where n = j + k, j ≥ 1, k ≥ 1, and j ≤ k. The 
differences A(k – h, j) – A(k, j – h) are formed 
starting with h = 1 and counting up until the 
difference is less than (nominal alpha)x(nCj). The 
first such value of h, if one exists, is the best-
conservative critical value for that pair of sample 
sizes and nominal alpha level. Additional details 
of the method are given in the comments that 
accompany the programs. Based on the use of 
integer*8 and real*8 variables, critical values and 
associated probabilities are generated for all 
combinations of sample sizes from (1, 1) to (30, 
30) in increments of 1 for each sample. Tukey 
(1959) also presented asymptotic methods that 
may be appropriate for larger sample sizes. 

The module that generates the critical 
values and associated probabilities contains two 
versions of the method and a subroutine for 
calculating combinations. The first version of the 
method generates strictly conservative critical 
values for one-sided tests at .05, .025, .01 and .005 
nominal alpha levels. The second version 
generates ‘best-fit’ critical values for one-sided 
tests at the same nominal alpha levels. The ‘best-
fit’ version allows critical values greater than 
nominal alpha so long as they do not exceed 



BRUCE R. FAY 491

nominal alpha by more than 10% and are closer to 
nominal alpha than the nearest value that is less 
than nominal alpha. The +10% tolerance is based 
on a definition of robustness due to Bradley 
(1978). 
 
Rosenbaum’s Test of Location 

Rosenbaum (1953, 1954) described tests 
for dispersion and location based on Wilks (1942) 
and gave tables of critical values. Rosenbaum 
(1965) revisited these tests, comparing them to 
other tests that had arisen in the intervening 
decade. Neave & Worthington (1988) described 
the location form of the test as particularly well 
suited to situations in which spread is expected to 
increase with an increase in the median and gave a 
method for generating critical values. Their 
method is the basis for the programs presented 
here. Rosenbaum’s (1954) test is quick and 
relatively compact, which makes it somewhat 
portable. 

 
Test Description 

The test is quick in the sense that the 
method is easily remembered and the statistic, 
based on the length of an extreme run, easily 
calculated. The two samples are combined and 
ordered. For a two-sided test, the statistic is taken 
as the number of observations from the group with 
the overall maximum that exceeds the maximum 
value of the other group. One way to deal with 
consequential (between-group) ties is to count 
each observation as ½ rather than 1. Another 
method is to average the values of the statistic 
arrived at by resolving the ties in all possible 
ways. The later technique, however, causes the test 
to lose some of its portability, at least for larger 
sample sizes. The one-sided (directional) test 
statistic is calculated just like the two-sided 
statistic with the additional requirement that the 
overall maximum observation is from the group 
that is expected to have the higher median under 
the alternative hypothesis (assuming a pure shift 
model). If not, the statistic is taken to be zero. 

The test is compact in the sense that the 
critical values do not vary much with sample size, 
especially if the sample sizes are not too different. 
As such, they can also be easily committed to 
memory. For two-sided tests at nominal alpha 
levels of .10, .05, .02 and .01 (or one-sided tests at 
.05, .025, .01 and .005) the best-conservative 

critical values are 5, 6, 7 and 8 respectively for 
equal sample sizes from 27 to 50 per group. 
Critical values of 5, 6, 7, and 8 can be used for 
equal sample sizes from 20 to 50, and critical 
values of 4, 5, 6 and 7 for equal sample sizes from 
5 to 19, if one is willing to accept results that are 
not strictly conservative in all cases, and 
somewhat overly conservative in others. Under 
these conditions the test can be considered 
compact. Quickness and compactness combine to 
make the test portable as previously described. 

 
Methodology for Generating Critical Values and 
Associated Probabilities 

Neave & Worthington (1988) described a 
method for generating strictly conservative, exact 
critical values. Their method is implemented in the 
program modules presented here to calculate the 
critical values for one-sided tests at .05, .025, .01 
and .005 nominal alpha levels. 

Neave & Worthington (1988) calculated 
the probability of a run of h values from a sample 
of size m out of a combined sample of size N = m 
+ n, where n is the size of the other group, using 
the formula: 

 

 
( )
( )

! ! 1 1

! ! 1 1

m N h m m m h

N m h N N N m

− − − +
= × × ×

− − − +
.         (1) 

 
The value of h associated with the largest such 
probability that is less than or equal to nominal 
alpha is the critical value for a given m and n. 
Thus all critical values are best-conservative with 
pr(CV) ≤ nominal alpha. Additional details of the 
method are given in the comments that accompany 
the programs. Based on the use of integer*8 and 
real*8 variables, critical values and associated 
probabilities are generated for all combinations of 
sample sizes from (1, 1) to (50, 50) in increments 
of 1 for each sample. 
 
Kolmogorov-Smirnov Test of General Differences 

Kim and Jennrich (1970, 1973) cited 
Smirnov (1939) as introducing the criterion Dmn 
for the two-sample problem. As the name implies, 
the test is sensitive to general differences between 
two populations and is often used as a 2-sided test. 
Neave and Worthington (1988) pointed out, 
however, that the test functions quite well as a 
directional (1-sided) test, especially against a pure 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 492

shift alternative. Kim and Jennrich (1970, 1973) 
provided a brief review of work on approximate 
and exact distributions of the statistic and resultant 
critical values under the null hypothesis leading up 
to their method and tables. 

 
Test Description 

The 2-sided test is conducted by 
constructing and then comparing the empirical 
cumulative distributions, Sm(x) and Sn(x), of two 
samples of size m and n (m ≤ n without loss of 
generality) and then computing the criterion as 
Dmn = sup | Sm(x) – Sn(x) | over all x. The null 
hypothesis is that the two samples are drawn from 
identical (continuous) populations Fm(x) and Fn(x) 
(of any shape). The alternative hypothesis is that 
the samples were drawn from two populations that 
differ in some way. For a 1-sided test under a pure 
shift model, the criterion is taken to be Dmn

+ or 
Dmn

– , where Dmn
+ = max [ Sm(x) – Sn(x) ] ≥ 0 and 

Dmn
– = min [ Sm(x) – Sn(x) ] ≤ 0. The choice 

depends on which sample is presumed to come 
from the population with the higher median under 
the alternative hypothesis. If the alternative 
hypothesis is that the samples came from 
populations with cumulative distributions such 
that Fn(x) ≥ Fm(x) then Sn(x) will lie to the right of 
Sm(x). Thus, Sm(x) will rise faster than Sn(x) and lie 
above it for any given value of x. This makes Dmn

+ 
the correct choice of criterion in this case. 

 
Methodology for Generating Critical Values and 
Associated Probabilities 

The Kim and Jennrich (1970, 1973) 
method of generating critical values for the 
Kolmogorov- Smirnov test is based on the work of 
Kim (1969) which, in turn, was an extension of the 
successive recursion relation of Massey (1951). 
Their method calculates: 

 

 ( ),mn

c
P D U m n

mn
≤ = 

 
 

                      (2) 

 
where 
 

( ) ( ) ( ) ( )[ ], , , 1 1,
i

U i j C i j U i j U i j
i n

= − + −
+

   (3) 

 
and 
 

      ( )
1 if 

,

0 otherwise      

i j c
C i j m n mn

− ≤
=





                      (4) 

 
subject to initial condition 
 

  
1

( , ) ( , ), 0
i n

U i j C i j when i j
i

−
+

= • =
 
 
 

.           (5) 

 
Kim and Jennrich (1970, 1973) provided a 

FORTRAN IV function subroutine 
ASKCDF(M,N,D,U) that returned the probability 
of D (= c/mn) for sample sizes m and n by 
calculating U(m,n) as above. The U referenced in 
their function subroutine argument list, however, 
was merely a working storage vector of at least 
length N+1. In the Fortran 90 implementation of 
ASKCDF that follows, the working storage vector 
argument has been eliminated and replaced in the 
code with an allocatable array. A subroutine 
calculates D = c/mn for c = (1,mn,1) for each 
combination of n = (1,50,1) and m = (1,n,1) and 
calls ASKCDF for each value of D to obtain the 
probability and tests it against various nominal 
alpha levels. 
 
Wilcoxon Rank-sum Test 

Wilcoxon (1945) introduced the non-
parametric/distribution-free test based on a sum of 
ranks that bears his name. Wilcoxon (1946, 1947) 
expanded on this work, followed by Mann and 
Whitney (1947), who described a test that turned 
out to be equivalent to the rank-sum test. The 
Wilcoxon-Mann-Whitney test is probably the best 
known of the nonparametric/distribution-free 
procedures. However, the early work of both 
Wilcoxon and Mann-Whitney provided only 
limited critical values. Additional work on both 
exact and approximate critical values and 
significance probabilities followed these seminal 
articles, e.g. Fix & Hodges (1955). 

Jacobson (1963) provided a nice synopsis 
of critical value tables and work-to-date with an 
extensive bibliography. Wilcoxon and Wilcox 
(1964, revised 1968) provided a workable method 
for generating critical values and probability 
levels. This work subsequently appeared in 
Wilcoxon, Katti and Wilcox (1970, revised 1973) 



BRUCE R. FAY 493

and forms the basis for the programs presented 
here. 

 
Test Description 

 The Wilcoxon rank-sum version of the 
test is conducted by combining the observations 
from two samples. The combined samples are then 
ranked while keeping track of the original group 
membership. The ranks from one of the groups are 
then summed to form the statistic. Which group to 
sum for a 1-sided test depends on the critical value 
tables that are available (lower-tail, upper tail, or 
both) and on which group is expected to have the 
least (or greatest) ranks under the alternative 
hypothesis. For example, if lower tail critical 
values are available, and the alternative hypothesis 
is that sample B comes from a population that is 
greater than the population from which sample A 
was obtained, then sample A will tend to have the 
lower ranks, and the sum of those ranks would be 
taken as the statistic. For a two- sided test, one 
would form the sum of the ranks of both samples 
and test the resulting values against the critical 
value, taking the test to be significant if either 
comparison so indicated. 

 
Methodology for Generating Critical Values and 
Associated Probabilities 

Although critical values are readily 
available for the Wilcoxon rank-sum test and 
Mann-Whitney U test, the probability levels are 
not as accessible. The method of Wilcoxon, Katti 
and Wilcox (1970, 1973) proceeds along the 
following lines given samples M and N from two 
continuous populations, Fm(x) and Gn(x) of size m 
and n respectively, m ≤ n without loss of 
generality. The minimum sum of ranks for sample 
M is m(m+1)/2. Thus the sum of ranks in general 
for sample M is: 

 

   
( )1

  where  ,  0
2

m m
U U I U

+
+ ∈ ≥ .     (6) 

 
The number of ways, f(U), of obtaining a specific 
rank sum U, is the coefficient of tU in the 
expansion of the generating function, in powers of 
t, given by: 
 

 ( ) ( )
( )1

1

1

m in

i
i

t
g t

t

+

=

−
=

−
∏ .                              (7) 

 
The total number of ways of obtaining any rank 
sum in this situation is: 
 

 
m n

T
n

+
=
 
 
 

.                                         (8) 

 
Given Fm(x) ≡ Gn(x), the probability of obtaining 
U is given by: 
 

 ( ) ( )f U
pr U

T
= .                                     (9) 

 
In turn, f(U) can be found from: 
 

( ) ( )

( ) ( )

−

− −
=

=

= =

∑
…

1

1
0

1
 

for 1,2,3,  and with 0 1

U

U i
i

f U f i z
U

U f

           (10) 

     
In order to evaluate equation (10) it is necessary to 
find the values of z. Subroutine CV_WRSJ4_init 
in module CVWRSJmod includes the code for 
generating the values of z. 
 
Source Code and Computing Platforms 

All source code provided here is Fortran 
90 free format. For each of the four tests there is a 
module that contains the critical value generation 
subroutines and functions and a main program that 
can be used with that module to generate printed 
tables of critical values and probabilities. The 
programs were developed on a 500 MHz AMD 
Athlon-based system using Compaq Visual 
Fortran 6.6 and tested on systems with Intel 
Pentium III and Pentium IV Xeon processors. The 
programs execute reasonably quickly on all of 
these systems. Even with integer*8 and real*8 
variables these programs can run into arithmetic 
overflow problems, thus limiting the range of 
sample sizes for which critical values and 
probabilities can be generated. 
 

 
 
 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 494

References 
 
 Bradley, J. V. (1978). Robustness? British 
Journal of Mathematical and Statistical 
Psychology, 31, 144-152. 
 Fix, E. and Hodges, J. L. Jr. (1955). 
Significance probabilities of the Wilcoxon test. 
Annals of Mathematical Statistics, 26, 301-312. 
 Jacobson, J. E. (1963). The Wilcoxon two-
sample statistic: Tables and bibliography. Journal 
of the American Statistical Association, 58, 1086-
1103. 
 Kim, P. J. (1969). On the exact and 
approximate sampling distribution of the two 
sample Kolmogorov–Smirnov criterion Dmn, m ≤ 
n. Journal of the American Statistical Association, 
64: 1625–1637. 
 Kim, P. J. & Jennrich, R. I. (1970, 1973). 
Tables of the exact sampling distribution of the 
two-sample Kolmogorov–Smirnov criterion, Dmn, 
m ≤ n. Selected Tables in Mathematical Statistics, 
Volume I (1970, 2nd printing with revisions, 1973), 
77-170. Harter, H. L. & Owen, D. B., coeditors, 
Providence, RI: American Mathematical Society 
(edited by the Institute of Mathematical Statistics). 
 Mann, H. B. & Whitney, D. R. (1947). On 
a test of whether one of two random variables is 
stochastically larger than the other. Annals of 
Mathematical Statistics, 18, 50-60. 
 Massey, F. J. Jr. (1951). The distribution 
of the maximum deviation between two sample 
cumulative step functions. Annals of Mathematical 
Statistics, 22, 125-128. 
 Neave, H. R. & Worthington, P. L. B. 
(1988). Distribution-free tests. Unwin Hyman Ltd. 
 Rosenbaum, S. (1953). Tables for a 
nonparametric test of dispersion. Annals of 
Mathematical Statistics, 24, 663-668. 
 Rosenbaum, S. (1954). Tables for a 
nonparametric test of location. Annals of 
Mathematical Statistics, 25, 146-150. 
 
 
 

 Rosenbaum, S. (1965). On some two-
sample non-parametric tests. Journal of American 
Statistical Association, 60, 1118-1126. 
 Smirnov, N. V. (1939). Estimating the 
deviation between the empirical distribution 
functions of two independent samples. Bulletin de 
l’Universite’ de Moscou, 2(2,3). 
 Smirnov, N. V. (1948). Table for 
estimating the goodness of fit of empirical 
distributions. Annals of Mathematical Statistics, 
19, 279–281. 
 Tukey, J. W. (1959). A quick, compact, 
two-sample test to Duckworth’s specifications. 
Technometrics, 1(1), 31-48. 
 Wilcoxon, F. (1945). Individual 
comparisons by ranking methods. Biometrics 
Bulletin, I(6), 80-83. 
 Wilcoxon, F. (1946). Individual 
comparisons of grouped data by ranking methods. 
Journal of Economic Entomology, 39(2), 269. 
 Wilcoxon, F. (1947). Probability levels for 
individual comparisons by ranking methods. 
Biometrics, 3, 119-122. 
 Wilcoxon, F. & Wilcox, R. A. (1964). 
Some rapid approximate statistical procedures. 
Pearl River, NY: Lederle Laboratories Division, 
American Cyanamid Company. (Originally 
prepared and distributed in cooperation with the 
Department of Statistics, The Florida State 
University, Tallahassee, FL. and revised, 1968). 
 Wilcoxon, F., Katti, S. K., & Wilcox, R. 
A. (1970, 1973). Critical values and probability 
levels for the Wilcoxon rank sum test and the 
Wilcoxon signed rank test. Selected Tables in 
Mathematical Statistics, Volume I (1970, 2nd 
printing with revisions, 1973), 171-259. Harter, H. 
L. & Owen, D. B., coeditors, Providence, RI: 
American Mathematical Society (edited by the 
Institute of Mathematical Statistics). 
 Wilks, S. S. (1942). Statistical prediction 
with special reference to the problem of tolerance 
limits. Annals of Mathematical Statistics, 13, 400-
409. 

 
 
 
 
 
 
 



BRUCE R. FAY 495

Programs 

Tukey’s (1959) Two-sample Test to Duckworth’s Specifications (Tukey’s Quick Test) 

Main program for printing tables 
! *************************************************************************** 
! program: CVTQTJ.exe 
! source: CVTQTJ.f90 
! author: Bruce R. Fay 
! date: 17 Oct 2002 17:32 EDT 
! purpose: Test harness for critical value modules for Tukey's Quick 
!  test of location to Duckworth's specifications 
! desc: Prints tables of critical values with associated probabilities. 
! *************************************************************************** 
program CVTQTJ 
use CVTQTJmod 
implicit none 
! DECLARE LOCAL VARIABLES 
integer :: i, j, LU1, LU2, ios, testnum 
integer, dimension(:) :: CVi(4) 
real*8, dimension(:) :: PVr(4) 
! GET USER INPUTS 
write(*,*) "Program CVTQTJ.exe by Bruce R. Fay" 
write(*,*) "Critical values for Tukey's Quick Test" 
write(*,*) 
write(*,*) "Creates output files CVTQTJbc_.txt and CVTQTJbf_.txt" 
write(*,*) "in current directory." 
write(*,*) 
write(*,*) "Select one of the following:" 
write(*,*) 
write(*,*) " 0 - to exit program" 
write(*,*) " 1 - to generate CV/PV tables" 
write(*,*) 
Do 
  read(*,*) testnum 
  If ( (testnum >= 0).and.(testnum <= 1) ) EXIT 
  write(*,*) "enter O to exit, 1 to run" 
End Do 
If (testnum == 0) GOTO 9999  ! check for user termination 
! OPEN FILES FOR OUTPUT 
LU1 = 8  
open(unit=LU1, file='CVTQTJbc_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVTQTJbc_.txt' " 
  GOTO 9999 
End if 
LU2 = 9 
open(unit=LU2, file='CVTQTJbf_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVTQTJbf_.txt' " 
  GOTO 9999 
End if 
! DEFINE OUTPUT FORMATS 
100 format(" 1-tailed CVs at stated alpha levels") 
200 format(" n1 n2 - .05 - -.025 - - .01 - -.005 - | & 

& - .05 - -.025 - - .01 - -.005 -") 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 496

300 format(2I3,4I8,3x,4F8.4) 
! CREATE BEST-CONSERVATIVE TABLES 
write(LU1,*) "Program CVTQTJ by Bruce R. Fay" 
write(LU1,*) 
write(LU1,*) "Tukey's quick test of location for two independent samples," 
write(LU1,*) "best-conservative critical values generated based on" 
write(LU1,*) "Tukey (1959) using CVTQTJbc() in CVTQTJmod." 
write(LU1,*) 
call CV_TQTJbc_init ! generate the BC CV/PV tables 
write(LU1,100)  ! print header information 
write(LU1,*) 
write(LU1,200)  ! print column headers for this format 
write(LU1,*) 
Do i = 1,30   ! output the tables to file 
  Do j = i,30 
    call CV_TQTJbc(i,j,CVi,PVr) 
    write(LU1,300) i,j,CVi(1:4),PVr(1:4) 
  End Do 
  write(LU1,*) 
End Do 
! CREATE BEST-FIT TABLES 
write(LU2,*) "Program CVTQTJ by Bruce R. Fay" 
write(LU2,*) 
write(LU2,*) "Tukey's quick test of location for two independent samples." 
write(LU2,*) "Best-fitting critical values generated based on Tukey (1959)" 
write(LU2,*) "using CVTQTJbf() in CVTQTJmod, where best-fit is defined as" 
write(LU2,*) "pr <= alpha + 10% when this probability is closer to alpha" 
write(LU2,*) "than the first available CV with pr < alpha." 
write(LU2,*) 
call CV_TQTJbf_init ! generate the BF CV/PV tables 
write(LU2,100)  ! print header information 
write(LU2,*) 
write(LU2,200)  ! print column headers for this format 
write(LU2,*) 
Do i = 1,30   ! output the tables to file 
  Do j = i,30 
    call CV_TQTJbf(i,j,CVi,PVr) 
    write(LU2,300) i,j,CVi(1:4),PVr(1:4) 
  End Do 
  write(LU2,*) 
End Do 
! CLOSE FILES 
close(unit=LU1, status='keep', iostat=ios) 
If (ios > 0) then 
  write(*,*) "Error closing file 'CVTQTJbc_.txt' " 
End If 
close(unit=LU2, status='keep', iostat=ios) 
If (ios > 0) then 
  write(*,*) "Error closing file 'CVTQTJbf_.txt' " 
End If 
9999 stop 
end program CVTQTJ 
 
 
 



BRUCE R. FAY 497

 
Module for generating critical values and probabilities 

 
! *************************************************************************** 
! module: CVTQTJmod 
! source: CVTQTJmod.f90 
! based on: Tukey (1959) A quick, compact, two-sample test to Duckworth's 
!  specifications, Technometrics Vol. 1 No. 1 (Feb) pgs.31-48, 
!  method for generating exact critical values. 
! author: Bruce R. Fay 
! date: 17 Oct 2002 19:03 EDT 
! purpose: Provide the exact critical values for Tukey's Quick Test for 
!  2-independent-samples, both best-conservative and best-fit.   
! desc: Generates the CVTs and PVTs on initialization and provides 
!  an entry point that returns up to four critical values based 
!  on the incoming values of n1 and n2.  Checks are made that 
!  n1, n2 are in the appropriate range and relationship for the 
!  tables with 1 <= n1 <= n2 <= 30. 
! Notes: Best-conservative values are those for which pr(h) <= nominal 
!  alpha.  Best-fit CVs are generated by the same method but with 
!  pr(h) <= alpha+10% if pr(h+1) < alpha and is further from alpha 
!  than pr(h). 
! *************************************************************************** 
module CVTQTJmod 
implicit none 
private 
public :: CV_TQTJbc_init, CV_TQTJbc, CV_TQTJbf_init, CV_TQTJbf, N_c_m 
contains 
! *************************************************************************** 
subroutine CV_TQTJbc_init 
! INTERFACE 
! There are no arguments for CV_TQTJbc_init.  The calling routine must call  
! this subroutine once to build the CV and PV tables prior to calling 
! CV_TQTJbc() to obtain critical values for specific n1, n2.  Calling routine 
! must also declare an integer vector of length 4 and a real*8 vector of 
! length 4 and pass them into receive the critical values and their 
! associated probability values.  For entry CV_TQTJbc(s1,s2,CV,PV): 
! s1 :: sample size for 1st group ( <= s2 ) 
! s2 :: sample size for 2nd group 
! CV :: critical values vector (length 4) 
! PV :: probability values vector (length 4) 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: s1, s2 
integer, intent(out), dimension(:) :: CV 
real*8, intent(out), dimension(:) :: PV 
! DESCRIPTION 
! At entry CV_TQTJbc(), for s1 <= s2, returns up to four critical values, 
! if available, in vector CV(:), as follows: 
! CV(1) = 1-tailed alpha .05  (2-tailed alpha .10) 
! CV(2) = 1-tailed alpha .025 (2-tailed alpha .05) 
! CV(3) = 1-tailed alpha .01  (2-tailed alpha .02) 
! CV(4) = 1-tailed alpha .005 (2-tailed alpha .01) 
! The actual 1-tailed probabilities corresponding to the above CVs are 
! returned in PV(1:4).  If a critical value is not available, a -1 is 
! returned instead, with associated probability zero.  Critical values may 
! not be available because s1 and s2 are a) too small, b) too large, or 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 498

! c) too different.  Unequal s1, s2 are supported for 1 <= s1 <= s2 <= 30. 
! DECLARE LOCAL VARIABLES 
integer :: h, n1, n2, v1, v2, w1, w2 
integer (kind=8) :: wv1, wv2 
integer (kind=8), dimension(30,30), save :: CVTbc05, CVTbc025 
integer (kind=8), dimension(30,30), save :: CVTbc01, CVTbc005 
integer (kind=8), dimension(0:30,1:30), save :: Atbl 
integer (kind=8) :: comb, A1, A2, Adiff 
integer (kind=8), parameter :: zero=0, one=1, two=2 
real (kind=8), dimension(30,30), save :: PVTbc05, PVTbc025, PVTbc01, PVTbc005 
real (kind=8), parameter :: m05=0.050, m025=0.025, m01=0.01, m005=0.005 
real (kind=8) :: c05, c025, c01, c005, rcomb, rdiff 
logical :: fnd05, fnd025, fnd01, fnd005 
! Build the A table 
! 
!    Column(w) 
!  -2 -1  0  1  2  3  4 ... 30    
!    ------------------------------------------------------ 
! -1|  0  0 |  0 |  0  0  0   0 ...  0 
!  0|  0  0 |  0 |  0  0  0   0 ...  0 
!       |------------+-----+----------------------------------- 
!      1|  0  1 |  1 |  1  1  1   1 ...  1 
!      |------------+-----+----------------------------------- 
! Row  2|  1  1 |  2 |   3  4  5   6 ... 32 
! (v)  3|  1  2 |  4 |  7 11 16  22 ...  . 
!  4|  2  4 |  8 | 15 26 42  64 ...  . 
!  5|  4  8 | 16 | 31 57 99 163 ...  . 
!  6|  8 16 | 32 |  .  .  .  . ...  .    
!  .| 16 32 |  . |  . 
!  .| 32  . |  . | 
!  .|  .  . |  . | 
! 30|  .   536870912 
! 
! Note: The A table is only built for columns 0 to 30 and rows 1 to 30.  All 
! entries for rows less than one are zero and all entries for columns 
! less than zero (with rows of 1 or more) can be determined by direct 
! formula (see code). 
Atbl(0:30,1) = one ! first row, all columns, entries = 1 
Do v1 = 2,30  ! first (zero) column, row entries are 2^(row-1) 
  Atbl(0,v1) = two**(v1-1) 
End Do 
Do v1 = 2,30  ! previous column same row + same column previous row 
  Do w1 = 1,30 
 Atbl(w1,v1) = Atbl(w1-1,v1) + Atbl(w1,v1-1) 
  End Do 
End Do 
CVTbc05 = -1   ! initialize the CV tables to -1 (indicates no valid entry) 
CVTbc025 = -1 
CVTbc01 = -1 
CVTbc005 = -1 
PVTbc05 = 0.0  ! initialize the PV tables to 0.0 (indicates no valid entry) 
PVTbc025 = 0.0 
PVTbc01 = 0.0 
PVTbc005 = 0.0 
! Determine the critical values and associated actual probabilities 
Do n1 = 1,30  ! n1 for CV/PV tables 
  Do n2 = n1,30  ! n2 for CV/PV tables 



BRUCE R. FAY 499

    fnd05 = .false. ! reset found flags for each alpha level 
    fnd025 = .false. 
    fnd01 = .false. 
    fnd005 = .false. 
    comb = N_c_m(n1,n2) ! get the number of combinations for n1 and n2 
    rcomb = real(comb) 
    c05 = rcomb * m05 ! calculate the comparison values for each alpha 
    c025 = rcomb * m025 
    c01 = rcomb * m01 
    c005 = rcomb * m005 
    Do h = 1,(n1+n2) ! h will be the CV if/when we find the right one 

w1 = n2-h   ! Find A1 as Atbl(n2-h,n1) 
 v1 = n1   ! since n1 >= 1, v is a valid row for Atbl 
 wv1 = w1 + v1  ! = n1 + n2 - h 
 If (w1 >= 0) then  ! it's OK to use the Atbl to get A1 
   A1 = Atbl(w1,v1) 
 Else    ! calculate A1 by formula 
   If (wv1 > 0) then  ! w < 0,  v > 0,  |v| > |w| 
     A1 = two**(wv1-1) 
   Else If (wv1 == 0) then ! w = -v 
     A1 = one 
   Else If (wv1 < 0 ) then ! w < 0,  v > 0,  |v| < |w| 
     A1 = zero 
   End If 
 End If 
 v2 = n1-h   ! Find A2 as Atbl(n2,n1-h) 
 w2 = n2   ! since n2 >= 1, w is a valid column for Atbl 
 If(v2 >= 1) then  ! valid row for Atbl 
   A2 = Atbl(w2,v2) 
 Else 
   A2 = zero 
 End If 
 Adiff = A1 - A2 
 rdiff = real(Adiff) 
 If ( (rdiff <= c05).and.(.not.fnd05) ) then 
   CVTbc05(n1,n2) = h 
   PVTbc05(n1,n2) = rdiff/rcomb 
   fnd05 = .true. 
 End If 
 If ( (rdiff <= c025).and.(.not.fnd025) ) then 
   CVTbc025(n1,n2) = h 
   PVTbc025(n1,n2) = rdiff/rcomb 
   fnd025 = .true. 
 End If 
 If ( (rdiff <= c01).and.(.not.fnd01) ) then 
   CVTbc01(n1,n2) = h 
   PVTbc01(n1,n2) = rdiff/rcomb 
   fnd01 = .true. 
 End If 
 If ( (rdiff <= c005).and.(.not.fnd005) ) then 
   CVTbc005(n1,n2) = h 
   PVTbc005(n1,n2) = rdiff/rcomb 
   fnd005 = .true. 
 End If 
 If (fnd05.and.fnd025.and.fnd01.and.fnd005) exit 
    End Do 
  End Do 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 500

End Do 
Return 
! --------------------------------------------------------------------------- 
entry CV_TQTJbc(s1,s2,CV,PV) 
CV(:) = -1  ! initialize all return CVs to 'not available' 
PV(:) = 0.0  ! initialize all return PVs to 'not available' 
If ((1<=s1).and.(s1<=30).and.(1<=s2).and.(s2<=30).and.(s1<=s2)) then 
  CV(1) = CVTbc05(s1,s2) 
  CV(2) = CVTbc025(s1,s2) 
  CV(3) = CVTbc01(s1,s2) 
  CV(4) = CVTbc005(s1,s2) 
  PV(1) = PVTbc05(s1,s2) 
  PV(2) = PVTbc025(s1,s2) 
  PV(3) = PVTbc01(s1,s2) 
  PV(4) = PVTbc005(s1,s2) 
End If 
Return 
! -------------------------------------------------------------------------- 
end subroutine CV_TQTJbc_init 
! *************************************************************************** 
subroutine CV_TQTJbf_init 
! see subroutine CV_TQTJbc_init above for documentation and comments 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: s1, s2 
integer, intent(out), dimension(:) :: CV 
real*8, intent(out), dimension(:) :: PV 
! DECLARE LOCAL VARIABLES 
integer :: h, n1, n2, v1, v2, w1, w2 
integer (kind=8) :: CV1tmp, CV2tmp, CV3tmp, CV4tmp, wv1, wv2 
integer (kind=8), dimension(30,30), save :: CVTbf05, CVTbf025 
integer (kind=8), dimension(30,30), save :: CVTbf01, CVTbf005 
integer (kind=8), dimension(0:30,1:30), save :: Atbl 
integer (kind=8) :: comb, A1, A2, Adiff 
integer (kind=8), parameter :: two=2 
real (kind=8), dimension(30,30), save :: PVTbf05, PVTbf025, PVTbf01, PVTbf005 
real (kind=8), parameter :: m05=0.05, m025=0.025, m01=0.01, m005=0.005 
real (kind=8), parameter :: m055=0.055, m0275=0.0275 
real (kind=8), parameter :: m011=0.011, m0055=0.0055 
real (kind=8) :: c05, c025, c01, c005, c055, c0275, c011, c0055, rcomb, rdiff 
real (kind=8) :: ptmp, PV1tmp, PV2tmp, PV3tmp, PV4tmp 
logical :: fnd05, fnd025, fnd01, fnd005 
! BUILD THE A TABLE 
Atbl(0:30,1) = 1  ! first row 
Do v1 = 1,30 ! first column 
  Atbl(0,v1) = two**(v1-1) 
End Do 
Do v1 = 2,30 ! previous column same row + same column previous row 
  Do w1 = 1,30 
    Atbl(w1,v1) = Atbl(w1-1,v1) + Atbl(w1,v1-1) 
  End Do 
End Do 
CVTbf05 = -1   ! initialize the CV tables to -1 (indicates no valid entry) 
CVTbf025 = -1 
CVTbf01 = -1 
CVTbf005 = -1 
PVTbf05 = 0.0  ! initialize the PV tables to 0.0 (indicates no valid entry) 
PVTbf025 = 0.0 



BRUCE R. FAY 501

PVTbf01 = 0.0 
PVTbf005 = 0.0 
! Determine the critical values and associated actual probabilities 
Do n1 = 1,30 
  Do n2 = n1,30 
    fnd05 = .false.  ! reset found flags for each alpha level 
    fnd025 = .false. 
    fnd01 = .false. 
    fnd005 = .false. 
    comb = N_c_m(n1,n2)  ! get the number of combinations for n1 and n2 
    rcomb = real(comb) 
    c05 = rcomb * m05  ! calculate the comparison values for each alpha 
    c025 = rcomb * m025 
    c01 = rcomb * m01 
    c005 = rcomb * m005 
    c055 = rcomb * m055  ! comparison values for alpha + 10% 
    c0275 = rcomb * m0275 
    c011 = rcomb * m011 
    c0055 = rcomb * m0055 
    PV1tmp = 1.0  ! initialize temporary probability values 
    PV2tmp = 1.0 
    PV3tmp = 1.0 
    PV4tmp = 1.0 
    Do h = 1,(n1+n2) 
 w1 = n2-h 
 v1 = n1 
 wv1 = w1 + v1 
 If (w1 >= 0) then 
   A1 = Atbl(w1,v1) 
 Else 
   If (wv1 > 0) then 
     A1 = 2**(wv1-1) 
   Else If (wv1 == 0) then 
     A1 = 1 
   Else If (wv1 < 0) then 
     A1 = 0 
   End If 
 End If 
 w2 = n2 
 v2 = n1-h 
 If (v2 >= 1) then 
   A2 = Atbl(w2,v2) 
 Else 
   A2 = 0 
 End If 
 Adiff = A1 - A2 
 rdiff = real(Adiff) 
 If((c05 < rdiff).and.(rdiff <= c055).and.(.not.fnd05)) then 
   CV1tmp = h 
   PV1tmp = rdiff/rcomb 
 Else If((rdiff <= c05).and.(.not.fnd05)) then 
   ptmp = rdiff/rcomb 
   If((.05 - ptmp) <= (PV1tmp - .05)) then 
     CVTbf05(n1,n2) = h 
     PVTbf05(n1,n2) = ptmp 
   Else 
     CVTbf05(n1,n2) = CV1tmp 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 502

     PVTbf05(n1,n2) = PV1tmp 
   End If 
   fnd05 = .true. 
 End If 
 If((c025 < rdiff).and.(rdiff <= c0275).and.(.not.fnd025)) then 
   CV2tmp = h 
   PV2tmp = rdiff/rcomb 
 Else If((rdiff <= c025).and.(.not.fnd025)) then 
   ptmp = rdiff/rcomb 
   If((.025 - ptmp) <= (PV2tmp - .025)) then 
     CVTbf025(n1,n2) = h 
     PVTbf025(n1,n2) = ptmp 
   Else 
     CVTbf025(n1,n2) = CV2tmp 
     PVTbf025(n1,n2) = PV2tmp 
   End If 
   fnd025 = .true. 
 End If 
 If((c01 < rdiff).and.(rdiff <= c011).and.(.not.fnd01)) then 
   CV3tmp = h 
   PV3tmp = rdiff/rcomb 
 Else If((rdiff <= c01).and.(.not.fnd01)) then 
   ptmp = rdiff/rcomb 
   If((.01 - ptmp) <= (PV3tmp - .01)) then 
     CVTbf01(n1,n2) = h 
     PVTbf01(n1,n2) = ptmp 
   Else 
     CVTbf01(n1,n2) = CV3tmp 
     PVTbf01(n1,n2) = PV3tmp 
   End If 
   fnd01 = .true. 
 End If 
 If((c005 < rdiff).and.(rdiff <= c0055).and.(.not.fnd005)) then 
   CV4tmp = h 
   PV4tmp = rdiff/rcomb 
 Else If((rdiff <= c005).and.(.not.fnd005)) then 
   ptmp = rdiff/rcomb 
   If((.005 - ptmp) <= (PV4tmp - .005)) then 
     CVTbf005(n1,n2) = h 
     PVTbf005(n1,n2) = ptmp 
   Else 
     CVTbf005(n1,n2) = CV4tmp 
     PVTbf005(n1,n2) = PV4tmp 
   End If 
   fnd005 = .true. 
 End If 
 If (fnd05.and.fnd025.and.fnd01.and.fnd005) exit 
    End Do 
  End Do 
End Do 
Return 
! --------------------------------------------------------------------------- 
entry CV_TQTJbf(s1,s2,CV,PV) 
CV(:) = -1  ! initialize all return CVs to 'not available' 
PV(:) = 0.0  ! initialize all return PVs to 'not available' 
If ((1<=s1).and.(s1<=30).and.(1<=s2).and.(s2<=30).and.(s1<=s2)) then 
  CV(1) = CVTbf05(s1,s2) 



BRUCE R. FAY 503

  CV(2) = CVTbf025(s1,s2) 
  CV(3) = CVTbf01(s1,s2) 
  CV(4) = CVTbf005(s1,s2) 
  PV(1) = PVTbf05(s1,s2) 
  PV(2) = PVTbf025(s1,s2) 
  PV(3) = PVTbf01(s1,s2) 
  PV(4) = PVTbf005(s1,s2) 
End If 
Return 
! --------------------------------------------------------------------------- 
end subroutine CV_TQTJbf_init 
!**************************************************************************** 
function N_c_m(a,b) result(F) 
! Calculates number of combinations, 'N chose m' or nCm where 
! N = a+b and m = a (equivalent to m = b).  The formula is 
! N!/(m!(N-m)!) = (a+b)!/(a!b!) = 
! [1*2*...*b*(b+1)*...*(a+b)]/[(1*2*...*a)*(1*2*...*b))] 
! This is equivalent to [(b+1)(b+2)...(b+a)]/[a!] or 
! [(b+1)(b+2)...(b+a)]/[1*2*...*a], which is implemented here. 
! This computation is particularly efficient if a <= b, as it is in 
! subroutines CV_TQTJbc_init and CV_TQTJbf_init above.  Both a and b must 
! be >= zero, otherwise the function returns with value -1 to indicate an 
! error. 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: a, b 
! DECLARE LOCAL VARIABLES 
integer :: i 
integer (kind=8) :: C, F, num 
! VARIABLE DEFINTIONS 
! a :: number of items in first group 
! b :: number of items in second group 
! C :: accumulator for number of combinations 
! F :: function result 
! i :: loop variable 
! num :: numerator factor for combinations computation 
If((a>=0).and.(b>=0)) then ! both inputs non-negative 
  If((a>=1).and.(b>=1)) then ! both inputs > 0, proceed 
    C = 1 
    Do i = 1,a 
      num = i + b 
      C = (C * num) / i 
    End Do 
  Else ! both inputs zero or one positive and one zero 
    C = 1 
  End If 
Else  ! at least one negative input 
  C = -1  ! error 
End If 
F = C 
return 
end function N_c_m 
! ************************************************************************* 
end module CVTQTJmod 
 
 
 
 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 504

Rosenbaum’s Test of Location 
 

Main program for printing tables 
! *************************************************************************** 
! program:  CVRBTJ 
! source:   CVRBTJ.f90 
! based on: CVRBT.f90 as of 29 Apr 2002 15:22 EDT 
! author:   Bruce R. Fay 
! date:     18 Oct 2002 18:13 EDT 
! purpose:  Generate and print critical value table for Rosenbaum's test 
!           of location for 2 independent samples. 
! *************************************************************************** 
program CVRBT 
use CVRBjmod 
implicit none 
! DECLARE VARIABLES 
integer :: i, j, LU, ios, testnum 
integer, dimension(:) :: CVi(4 
real*8, dimension(:) :: PVr(4) 
! DEFINE FORMATS FOR OUTPUT FILE 
100 format(" 1-tailed CVs at stated alpha levels") 
200 format("       | - - - - - -   CV  - - - - - -  |  & 
    &- - - - - -  PV  - - - - - -  |") 
300 format(" n1 n2 - .05 - - .025- - .01 - - .005-     & 
    &- .05 - - .025- - .01 - - .005-") 
400 format(2I3,4I8,4x,4F8.4) 
! GET USER INPUTS 
write(*,*) "Program CVRBTJ.exe by Bruce R. Fay" 
write(*,*) "Generate best conservative critical values and associated" 
write(*,*) "probabilities for Rosenbaum's Test for two-independent-samples" 
write(*,*) "and output results to file" 
write(*,*) 
write(*,*) "Select one of the following:" 
write(*,*) 
write(*,*) " 0 - to exit program" 
write(*,*) " 1 - to generate values" 
write(*,*) 
Do 
  read(*,*) testnum 
  If ( (testnum >= 0).and.(testnum <= 1) ) then 
    EXIT 
  Else 
    write(*,*) "enter 0 - 4 please" 
  End if 
End Do 
If (testnum == 0) GOTO 9999  ! check for user termination 
! OPEN OUTPUT FILE AND WRITE FILE HEADER 
LU = 8 
open(unit=LU, file='CVRBTJ_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVRBTJ_.txt' " 
  GOTO 9999 
End if 
write(LU,*) "Program CVRBTJ.exe by (Author's name here)" 
write(LU,*) "Output file CVRBTJ_.txt" 
write(LU,*) 



BRUCE R. FAY 505

write(LU,*) "Generate best conservative critical values and associated" 
write(LU,*) "probabilities for Rosenbaum's Test for two-independent-samples" 
write(LU,*) "based on formula in Neave & Worthington (1988)" 
write(LU,*) "Distribution-free Tests, p. 148" 
write(LU,*) 
write(LU,*) "n1 = m, n2 = n, n1 is the size of the sample from which" 
write(LU,*) "the test statistic is calculated (length of extreme run)" 
write(LU,*) 
! GENERATE VALUES AND OUTPUT TO FILE 
call CV_RBJ_init 
write(LU,100)  ! print header information 
write(LU,*) 
write(LU,200)  ! print column headers for this format 
write(LU,300) 
write(LU,*) 
Do i = 1,50 
  Do j = 1,50 
    call CV_RBJbc(i,j,CVi,PVr) 
    write(LU,400) i,j,CVi(1:4),PVr(1:4) 
  End Do 
  write(LU,*) 
End Do 
! CLOSE FILE 
close(unit=LU, status='keep', iostat=ios) 
If (ios > 0) then 
  write(*,*) "Error closing file 'CVRBTJ_.txt' " 
End If 
9999 stop 
end program CVRBT 

 
Module for generating critical values and probabilities 

 
! *************************************************************************** 
! module:   CVRBJmod 
! source:   CVRBJmod.f90 
! based on: CVRB4mod.f90 as of 20 Apr 2002 23:01 EDT and 
!           Neave & Worthington (1988) Distribution-free Tests, Table J, 
!           383-386 and Rosenbaum (1954) Tables for a nonparametric 
!           test of location, Annals of Mathematical Statistics, Vol. 25, 
!           146-150.  The later tables also appear in Owen (1962) 
!           Handbook of Statistical Tables, 499-503. 
! author:   Bruce R. Fay 
! date:     18 Oct 2002 18:12 EDT 
! purpose:  Provide the critical values for Rosenbaum's Test of Location 
!           for 2-independent-samples based on the method of Neave & 
! desc:     Worthington (1988) p. 148 to calculate probability of a run of h 
!           values from sample m out of a combined sample of N = m + n.  The 
!           formula is 
!           m!(N-h)!/[N!(m-h)!] = m/N x (m-1)/(N-1) x ... x (m-h+1)/(N-m+1) 
!           The value of h associated with the largest such probability that 
!           is <= nominal alpha is the critical value for that situation. 
!           Thus all CVs are BEST CONSERVATIVE with pr(CV) <= nominal alpha. 
!           Creates the CVTs and PVTs on initialization and provides an 
!           entry point that returns up to 4 critical values, and their 
!           associated probabilities, based on the incoming values of m 
!           and n.  Checks are made that m and n are in the appropriate 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 506

!           ranges, 1 <= m <= n and 1 <= n <= 50.  The sample from which 
!           the statistic is calculated must have sample size m. 
!**************************************************************************** 
module CVRBJmod 
implicit none 
private 
public :: CV_RBJ_init, CV_RBJbc 
contains 
! *************************************************************************** 
subroutine CV_RBJ_init 
! INTERFACE 
! There are no arguments for CV_RBJ_init.  The calling routine must call this 
! subroutine once to build the CV and PV tables prior to calling CV_RBJbc() 
! to obtain critical values and associated probabilities for specific n1, n2. 
! The calling routine must declare an integer vector of length 4 and a real*8 
! vector of length 4 and pass them in as arguments to receive the critical 
! values and their associated probabilities.  For entry CV_RBJbc(m,n,CV,PV): 
!    m   ::  sample size for group from which the statistic is calculated 
!    n   ::  sample size for the other group 
!    CV  ::  critical values vector (integer, length 4) 
!    PV  ::  probability values vector (real, length 4) 
! Unequal n1, n2 are supported for all n1, n2, both <= 50, where m is the 
! sample size of the sample from which the statistic is calculated, i.e., 
! the sample with the global maximum. 
! DESCRIPTION 
! At entry CV_RBJ(), returns up to four critical values, if available, in 
! vector CV(:), as follows: 
!    CV(1) = 1-tailed alpha .05  (2-tailed alpha .10) 
!    CV(2) = 1-tailed alpha .025 (2-tailed alpha .05) 
!    CV(3) = 1-tailed alpha .01  (2-tailed alpha .02) 
!    CV(4) = 1-tailed alpha .005 (2-tailed alpha .01) 
! If a critical value is not available, a -1 is returned instead with 
! associated probability 0.  Critical values may not be available because 
! n1 and n2 are a) too small, b) too large, or c) too different. 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: m, n 
integer, intent(in out), dimension(:) :: CV 
real*8, intent(in out), dimension(:) :: PV 
! DECLARE LOCAL VARIABLES 
integer, dimension(50,50), save :: CVTbc1, CVTbc2, CVTbc3, CVTbc4 
integer :: h, mm, nn, mn 
real*8, dimension(50,50), save :: PVTbc1, PVTbc2, PVTbc3, PVTbc4 
real*8 :: R, rm, T 
logical :: p05, p025, p01, p005 
CVTbc1 = -1  ! initialize the CV tables to -1 (indicates no valid entry) 
CVTbc2 = -1 
CVTbc3 = -1 
CVTbc4 = -1 
PVTbc1 = 0.0  ! initialize the PV tables to 0 (indicates no valid entry) 
PVTbc2 = 0.0 
PVTbc3 = 0.0 
PVTbc4 = 0.0 
Do nn = 1,50  ! generate the CV and PV tables 
  Do mm = 1,50 
    p05 = .false. 
    p025 = .false. 
    p01 = .false. 



BRUCE R. FAY 507

    p005 = .false. 
    mn = mm + nn 
    T = real(mn) 
    rm = real(mm) 
    R = 1.0 
    Do h = 1,mm 
      R = R * rm / T 
      rm = rm - 1.0 
      T = T - 1.0 
      If( (R <= .05).and.(.not.p05) ) then 
        CVTbc1(mm,nn) = h 
        PVTbc1(mm,nn) = R 
        p05 = .true. 
      End If 
      If( (R <= .025).and.(.not.p025) ) then 
        CVTbc2(mm,nn) = h 
        PVTbc2(mm,nn) = R 
        p025 = .true. 
      End If 
      If( (R <= .01).and.(.not.p01) ) then 
        CVTbc3(mm,nn) = h 
        PVTbc3(mm,nn) = R 
        p01 = .true. 
      End If 
      If( (R <= .005).and.(.not.p005) ) then 
        CVTbc4(mm,nn) = h 
        PVTbc4(mm,nn) = R 
        p005 = .true. 
      End If 
      If (p05.and.p025.and.p01.and.p005) exit 
    End Do 
  End Do 
End Do 
return 
! --------------------------------------------------------------------------- 
entry CV_RBJbc(m,n,CV,PV) 
! CV_RBJbc() must be called with m = sample size of group from which the 
!  statistic is calculated (group with global maximum value). 
CV(:) = -1  ! initialize all return CVs to 'not available' 
PV(:) = 0.0  ! initialize all return PVs to 'not available' 
If ((m >= 1).and.(m <= 50).and.(n >= 1).and.(n <= 50)) then 
  CV(1) = CVTbc1(m,n) 
  CV(2) = CVTbc2(m,n) 
  CV(3) = CVTbc3(m,n) 
  CV(4) = CVTbc4(m,n) 
  PV(1) = PVTbc1(m,n) 
  PV(2) = PVTbc2(m,n) 
  PV(3) = PVTbc3(m,n) 
  PV(4) = PVTbc4(m,n) 
End If 
return 
! --------------------------------------------------------------------------- 
end subroutine CV_RBJ_init 
! *************************************************************************** 
end module CVRBJmod 
 
 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 508

Kolmogorov-Smirnov Test of General Differences 
 

Main program for printing tables 
 
! *************************************************************************** 
! program:  CVKSTJ 
! source:   CVKSTJ.f90 
! based on: CVKST.f90 as of 29 Apr 2002 15:10 EDT 
! author:   Bruce R. Fay 
! date:     19 Oct 2002 10:59 EDT 
! purpose:  Test harness for critical value modules for Kolmogorov- 
!           Smirnov 2-independent-samples test for general differences. 
! desc: Provides user choice of printing critical values and 
!           associated probability values for 2-sided tests based on ABS(Dmn) 
!           or for 1-sided tests based on either on Dneg or Dpos.  Module 
!           CVKSJmod generates the 2-sided values. 
! *************************************************************************** 
program CVKSTJ 
use CVKSJmod 
implicit none 
! DECLARE VARIABLES 
integer :: i, j, k, LU, ios, testnum 
integer, dimension(:) :: CVi(4) 
real, dimension(:) :: PVr(4) 
! GET USER INPUTS 
write(*,*) "Program CVKSTJ.exe by Bruce R. Fay" 
write(*,*) "Kolmogorov-Smirnov test of general differences for" 
write(*,*) "two independent samples - critical value tables with" 
write(*,*) "probabilities" 
write(*,*) 
write(*,*) "Select one of the following:" 
write(*,*) 
write(*,*) " 0 - exit" 
write(*,*) " 1 - generate 1-tailed CVs and actual p values using CVKSJmod" 
write(*,*) " 2 - generate 2-tailed CVs and actual p values using CVKSJmod" 
write(*,*) 
Do 
  read(*,*) testnum 
  If ( (0 <= testnum).and.(testnum <= 2) ) EXIT 
  write(*,*) "enter 0 - 2 please" 
End Do 
If (testnum == 0) GOTO 9999  ! check for user termination 
! OPEN OUTPUT FILE AND WRITE FILE HEADER 
LU = 8 
open(unit=LU, file='CVKSTJ_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVKSTJ_.txt' " 
  GOTO 9999 
End if 
write(LU,*) "Program CVKSTJ by (Author's name goes here)" 
write(LU,*) "File CVKSTJ_.txt" 
write(LU,*) 
! DEFINE FORMATS FOR OUTPUT FILE 
100 format(" 2-tailed CVs and PVs at stated alpha levels") 
110 format(" 1-tailed CVs and PVs at stated alpha levels") 
120 format("        ---- nominal alpha 2-tailed ---   & 



BRUCE R. FAY 509

           &-------- actual 2-tailed prob ---------") 
130 format("  n1 n2 - .10 - - .05 - - .02 - - .01 -  & 
     & -- .10 -- -- .05 -- -- .02 -- -- .01 --") 
140 format("        ---- nominal alpha 1-tailed ---   & 
           &-------- actual 1-tailed prob ---------") 
150 format("  n1 n2 - .05 - - .025  - .01 - - .005   & 
     & -- .05 -- -- .025 - -- .01 -- -- .005 -") 
160 format(1x,2I3,4I8,2x,4F10.6) 
Select Case(testnum) 
Case(1) 
  write(*,*) "Outputing CVT to file for K-S 2-i-s t-g-d" 
  write(*,*) "generated CVs based on Kim & Jennrich, with" 
  write(*,*) "actual 1-tailed probabilities" 
  write(*,*)  
  write(LU,*) "Kolmogorov-Smirnov test of general differences for" 
  write(LU,*) "two independent samples, critical values based on" 
  write(LU,*) "Kim & Jennrich (1970,1973), with actual 1-tailed" 
  write(LU,*) "probabilities generated by CVKSJmod" 
  write(LU,*) 
  write(*,*) "Generating CV tables" 
  call CV_KSJ_init 
  write(*,*) "CV_KSJ_init completed - CV tables built" 
  write(LU,110)  ! print header information 
  write(LU,*) 
  write(LU,140)  ! print column headers for this format 
  write(LU,150) 
  write(LU,*) 
  Do j = 1,50 
    Do i = 1,j 
      call CV_KSJbc(i,j,CVi,PVr) 
      PVr = PVr/2.0 
      write(LU,160) i,j,CVi(1:4),PVr(1:4) 
    End Do 
    write(LU,*) 
  End Do 
Case(2)  ! 2-sided values w/ actual probabilities 
  write(*,*) "Outputing CVT to file for K-S 2-i-s t-g-d" 
  write(*,*) "generated CVs based on Kim & Jennrich, with" 
  write(*,*) "actual 2-tailed probabilities" 
  write(*,*)  
  write(LU,*) "Kolmogorov-Smirnov test of general differences for" 
  write(LU,*) "two independent samples, critical values based on" 
  write(LU,*) "Kim & Jennrich (1970,1973), with actual 2-tailed" 
  write(LU,*) "probabilities generated by CVKSJmod" 
  write(LU,*) 
  write(*,*) "Generating CV tables" 
  call CV_KSJ_init 
  write(*,*) "CV_KSJ_init completed - CV tables built" 
  write(LU,100)  ! print header information 
  write(LU,*) 
  write(LU,120)  ! print column headers for this format 
  write(LU,130) 
  write(LU,*) 
  Do j = 1,50 
    Do i = 1,j 
      call CV_KSJbc(i,j,CVi,PVr) 
      write(LU,160) i,j,CVi(1:4),PVr(1:4) 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 510

    End Do 
    write(LU,*) 
  End Do 
End Select 
! CLOSE FILE 
close(unit=LU, status='keep', iostat=ios) 
If (ios > 0) then 
  write(*,*) "Error closing file 'CVKSTJ_.txt' " 
End If 
9999 stop 
end program CVKSTJ 

 
Module for generating critical values and probabilities 

 
! *************************************************************************** 
! module:   CVKSJmod 
! source:   CVKSJmod.f90 
! based on: CVKS3mod as of 05 Jun 2002 19:00, which is based on the 
!           Kim & Jennrich Tables of the exact sampling distribution of 
!           the two-sample Kolmogorov=Smirnov criterion, Dmn, m<=n in 
!           Selected Tables in Mathematical Statistics, Vol. 1, 77-170 
!           (1970) Harter & Owens (eds) 2nd printing (1973) with revisions, 
!           published by American Mathematical Society for the 
!           Institute of Mathematical Statistics  
! author:   Bruce R. Fay 
! date:     19 Oct 2002 10:48 EDT 
! purpose:  Provide the best conservative critical values for the 
!           Kolmogorov-Smirnov 2-independent-samples test for general 
!           differences. 
! desc: Generates the CVTs on initialization and provides an entry 
!           point that returns up to 4 critical values based on the 
!           incoming values of m and n.  Checks are made that 
!           1 <= m <= n <= 50.  If n1, n2 are not in this range and 
!           relationship, the lookup is not performed.  When CVs are 
!           not available, a value of -1 is returned. 
! *************************************************************************** 
module CVKSJmod 
implicit none 
private 
public :: CV_KSJ_init, CV_KSJbc 
contains 
! *************************************************************************** 
subroutine CV_KSJ_init 
! INTERFACE 
! There are no arguments for CV_KSJ_init.  The calling routine must call this 
! subroutine once to build the CV table prior to calling CV_KSJbc() to obtain 
! critical values and probabilities for specific m and n.  The calling 
! routine must also declare an integer vector of length 4 and pass it in to 
! receive the critical values as well as a real vector of length 4 and pass 
! it in to receive the probabilities.  For entry CV_KSJbc(m,n,CV,PV): 
!   m   ::  sample size for 1st group (<= n) 
!   n   ::  sample size for 2nd group 
!   CV  ::  critical values vector (length 4) 
!   PV  ::  probability values vector (length 4) 
! DESCRIPTION 
! At entry CV_KSJbc(m,n,CV,PV), for m <= n, returns up to four critical 



BRUCE R. FAY 511

! values, if available, in vector CV(:), with actual probabilities in PV(:), 
! as follows: 
! CV(1) = 1-tailed alpha .05  (2-tailed alpha .10) 
! CV(2) = 1-tailed alpha .025 (2-tailed alpha .05) 
! CV(3) = 1-tailed alpha .01  (2-tailed alpha .02) 
! CV(4) = 1-tailed alpha .005 (2-tailed alpha .01) 
! PV(1) = 1-tailed .05  (2-tailed .10) actual probability 
! PV(2) = 1-tailed .025 (2-tailed .05) actual probability 
! PV(3) = 1-tailed .01  (2-tailed .02) actual probability 
! PV(4) = 1-tailed .005 (2-tailed .01) actual probability 
! If a critical value is not available, a -1 is returned instead with p = 0.0 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: m, n 
integer, intent(out), dimension(:) :: CV 
real, intent(out), dimension(:) :: PV 
! DECLARE LOCAL VARIABLES 
integer, dimension(50,50), save :: CVTbc10, CVTbc05, CVTbc02, CVTbc01 
integer :: c, i, ixj, j 
real*8, dimension(50,50), save :: PVTbc10, PVTbc05, PVTbc02, PVTbc01 
real*8 :: d, pc, prevc 
real*8, parameter :: p90=.90, p95=.95, p98=.98, p99=.99 
logical :: f10, f05, f02, f01 
CVTbc10 = -1   ! initialize CV tables to -1 (indicates no valid entry) 
CVTbc05 = -1 
CVTbc02 = -1 
CVTbc01 = -1 
PVTbc10 = 0.0  ! initialize PV tables to zero 
PVTbc05 = 0.0 
PVTbc02 = 0.0 
PVTbc01 = 0.0 
! BUILD THE CV AND PV TABLES 
Do j = 1,50  ! this is n 
  Do i = 1,j  ! this is m 
    f10 = .false. 
    f05 = .false. 
    f02 = .false. 
    f01 = .false. 
    prevc = 0.0 
    ixj = i*j 
    Do c = 1,ixj  ! possible critical values 
      d = real(c)/real(ixj)  ! Dmn 
      pc = akscdf(i,j,d)     ! get the probability of Dmn <= C/(m*n) 
      If ((.not.f10).and.(prevc >= p90).and.(pc > prevc)) then 
        CVTbc10(i,j) = c 
        PVTbc10(i,j) = 1.0 - prevc 
        f10 = .true. 
      End If 
      If ((.not.f05).and.(prevc >= p95).and.(pc > prevc)) then 
        CVTbc05(i,j) = c 
        PVTbc05(i,j) = 1.0 - prevc 
        f05 = .true. 
      End If 
      If ((.not.f02).and.(prevc >= p98).and.(pc > prevc)) then 
        CVTbc02(i,j) = c 
        PVTbc02(i,j) = 1.0 - prevc 
        f02 = .true. 
      End If 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 512

      If ((.not.f01).and.(prevc >= p99).and.(pc > prevc)) then 
        CVTbc01(i,j) = c 
        PVTbc01(i,j) = 1.0 - prevc 
        f01 = .true. 
      End If 
      prevc = pc 
      If ( f10.and.f05.and.f02.and.f01 ) exit 
    End Do 
  End Do 
End Do 
return 
! --------------------------------------------------------------------------- 
entry CV_KSJbc(m,n,CV,PV) 
CV = -1 ! initialize all return CVs to 'not available' 
PV = 0.0 ! initialize all probabilities to zero 
 
If ((1 <= n).and.(n <= 50).and.(1 <= m).and.(m <= n)) then 
  CV(1) = CVTbc10(m,n) 
  CV(2) = CVTbc05(m,n) 
  CV(3) = CVTbc02(m,n) 
  CV(4) = CVTbc01(m,n) 
  PV(1) = PVTbc10(m,n) 
  PV(2) = PVTbc05(m,n) 
  PV(3) = PVTbc02(m,n) 
  PV(4) = PVTbc01(m,n) 
End If 
return 
! --------------------------------------------------------------------------- 
end subroutine CV_KSJ_init 
! *************************************************************************** 
real*8 function akscdf(a,b,d) 
! From Kim & Jennrich tables of the exact sampling distribution of 
! the two-sample Kolmogorov=Smirnov criterion, Dmn, m<=n in 
! Selected Tables in Mathematical Statistics, Vol. 1, 77-170 
! (1970) Harter & Owens (eds) 2nd printing (1973) with revisions, 
! published by American Mathematical Society for the Institute of 
! Mathematical Statistics. 
! requires a <= b 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: a, b 
real*8, intent(in) :: d 
! DECLARE LOCAL VARIBLES 
integer :: i, j 
real*8 :: k, w 
real*8, allocatable, dimension(:) :: u 
allocate(u(b+1)) 
k = (real(a*b))*d + .5 
u(1) = 1. 
Do j = 1,b 
  u(j+1) = 1. 
  If (real(a*j) > k) then 
    u(j+1) = 0. 
  End If 
End Do 
Do i = 1,a 
  w = real(i)/real(i+b) 
  u(1) = w*u(1) 



BRUCE R. FAY 513

  If (real(b*i) > k) then 
    u(1) = 0. 
  End If 
  Do j = 1,b 
    u(j+1) = u(j) + (u(j+1)*w) 
    If (real(IABS(b*i-a*j)) > k) then 
      u(j+1) = 0. 
    End If 
  End Do 
End Do 
akscdf = u(b+1) 
deallocate(u) 
return 
end function akscdf 
! *************************************************************************** 
end module CVKSJmod 
 
 
Wilcoxon Rank-sum Test 
 

Main program for printing tables 
 
! *************************************************************************** 
! program:  CVWRSTJ.exe 
! source:   CVWRSTJ.f90 
! author:   Bruce R. Fay 
! date:     25 Oct 2002  14:22 EDT 
! based on: CVWRST.f90 as of 08 Jun 2002 13:02 EDT 
! purpose:  Test harness for critical value tables (CVTs) for the 
!           Wilcoxon rank sum test for 2-i-s. 
! desc:     Provides user choice of critical value module and then 
!           outputs results to a file. 
! *************************************************************************** 
program CVWRSTJ 
use CVWRSJ4mod 
implicit none 
! DECLARE VARIABLES 
integer :: i, j, LU, ios, testnum 
integer, dimension(:) :: CVi(4) 
real*8, dimension(:) :: PVr(4) 
! GET USER INPUTS 
write(*,*) "Program CVWRSTJ.exe by Bruce R. Fay" 
write(*,*) 
write(*,*) "Wilcoxon rank-sum test for two independent samples." 
write(*,*) "Best-conservative critical values generated by method of" 
write(*,*) "Wilcoxon, Katti & Wilcox (1963,68,70,73)." 
write(*,*) 
write(*,*) "Select one of the following:" 
write(*,*) 
write(*,*) "0 to exit program or 1 to generate critical values" 
write(*,*) 
Do 
  read(*,*) testnum 
  If ((0<=testnum).and.(testnum<=1)) EXIT 
  write(*,*) "enter 0 or 1 please" 
End Do 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 514

If (testnum==0) GOTO 9999  ! check for user termination 
! OPEN FILE FOR OUTPUT AND WRITE HEADER 
LU = 8 
open(unit=LU, file='CVWRSTJ_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVWRSTJ_.txt' " 
  GOTO 9999 
End if 
write(LU,*) "File CVWRSTJ_.txt for program CVWRSTJ.exe" 
write(LU,*) "by Bruce R. Fay" 
write(LU,*) 
write(LU,*) "Wilcoxon rank-sum test for two independent samples." 
write(LU,*) "Best-conservative critical values generated by method of" 
write(LU,*) "Wilcoxon, Katti & Wilcox (1963,68,70,73)." 
write(LU,*) 
write(LU,*) 
! DEFINE FORMATS FOR OUTPUT FILE 
100 format(" 1-tailed CVs and PVs at stated nominal alpha levels") 
110 format("        -------- nominal alpha -------- & 
           &  ----- actual probabilities ----") 
120 format(" 1-tail - .05 - - .025  - .01 - - .005  & 
           &  - p05 - - p025- - p01 - - p005-") 
130 format("  n1 n2") 
140 format(1x,2I3,4I8,2x,4F8.4) 
! RETRIEVE AND OUTPUT CVs AND PVs 
write(*,*) "Generating best-conservative 1-tailed CVs and PVs" 
write(*,*) "for WRST for 2-i-s by the method of"  
write(*,*) "Wilcoxon, Katti & Wilcox (1963,68,70,73)." 
write(*,*) 
call CV_WRSJ4_init 
write(*,*) "CV_WRSJ4_init completed - CV/PV tables built" 
write(LU,100)  ! print header information 
write(LU,*) 
write(LU,110)  ! print column headers for this format 
write(LU,120) 
write(LU,130) 
write(LU,*) 
Do j = 1,50 
  Do i = 1,j 
    call CV_WRSJ4bc(i,j,CVi,PVr)  ! returned CVs, PVs are 1-tailed 
    write(LU,140) i,j,CVi(1:4),PVr(1:4) 
  End Do 
  write(LU,*) 
End Do 
! CLOSE FILE 
close(unit=LU, status='keep', iostat=ios) 
If (ios > 0) then 
 write(*,*) "Error closing file 'CVWRSTout_.txt'" 
End If 
9999 stop 
end program CVWRSTJ 
 
 
 



BRUCE R. FAY 515

 
Module for generating critical values and probabilities 

 
! *************************************************************************** 
! module:   CVWRS4Jmod 
! source:   CVWRS4Jmod.f90 
! author:   Bruce R. Fay 
! date:     25 Oct 2002 14:04 
! based on: CVWRS4mod.f90 as of 08 Jun 2002 12:52 EDT 
!  Wilcoxon, Katti & Wilcox (1963) Critical values and 
!  probability levels for the Wilcoxon rank sum test (and the 
!  Wilcoxon signed rank test), revised Oct 1968, as it appears 
!  in Harter & Owen, editors (1970,73) Selected Tables in 
!  Mathematical Statistics, Volume I, 171-259. 
!  (Values for n1 = 1 and n1 = 2 from Bradley (1968) 
!  Distribution-free Statistical Tests, 318, Table III.) 
! purpose: Provide the BEST CONSERVATIVE 1-tailed critical values and 
!  associated actual probabilities for the Wilcoxon rank sum 
!  test. 
! desc:     Generates CV and PV tables on initialization and provides an 
!  entry point that returns up to 4 critical values based on the 
!  incoming values of n1 and n2.  Checks are made that n1, n2 
!  are in the appropriate range and relationship for the tables, 
!  with 1 <= n1 <= n2 <=50. 
! *************************************************************************** 
module CVWRSJ4mod 
implicit none 
private 
public :: CV_WRSJ4_init, CV_WRSJ4bc 
contains 
! *************************************************************************** 
subroutine CV_WRSJ4_init 
! INTERFACE 
! There are no arguments for CV_WRSJ4_init.  The calling routine must call 
! this subroutine once to build the CV table prior to calling CV_WRSJ4bc() to 
! obtain critical values for specific m and n.  The calling routine must 
! declare two vectors and pass them as arguments: an integer vector of length 
! 4 to receive the critical values and a real*8 vector of length 4 to receive 
! the associated probabilities.  For entry CV_WRSJ4bc(a,b,CV,PV): 
!    a   :: sample size for 1st group (<= b) 
!    b   :: sample size for 2nd group 
!    CV  :: critical values vector (length 4) 
!    PV  :: actual probability values vector (length 4) 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: a, b 
integer, intent(out), dimension(:) :: CV 
real*8, intent(out), dimension(:) :: PV 
! DECLARE LOCAL VARIABLES 
integer :: h, i, j, k, k1, k2, M, minRS, N, RS, u, ub 
integer, dimension(50,50), save :: CVTbc10, CVTbc05, CVTbc02, CVTbc01 
real*8, dimension(50,50), save :: PVTbc10, PVTbc05, PVTbc02, PVTbc01 
real*8, allocatable, dimension(:) :: cf, f, z 
real*8 :: Pr, Prev 
real*8, parameter :: p05=0.05, p025=0.025, p01=0.01, p005=0.005 
real*8, parameter :: oneppt = 0.001 
logical :: f10, f05, f02, f01, Pr_underflow, Prev_underflow 



CRITICAL VALUES FOR NONPARAMETRIC TESTS OF LOCATION 516

CVTbc10 = -1  ! initialize CV and PV tables 
CVTbc05 = -1 
CVTbc02 = -1 
CVTbc01 = -1 
PVTbc10 = 0. 
PVTbc05 = 0. 
PVTbc02 = 0. 
PVTbc01 = 0. 
Do N = 2,50 
  Do M = 1,N  ! build the z vector 
    minRS = M*(M+1)/2 
    k = (M+50)**2 
    allocate (z(0:k)) 
    z = 0. 
    Do i = 1,N 
      Do j = 1,k 
        k1 = (M+i)*j - 1 
        K2 = i*j - 1 
        If (k1 <= k) then 
          z(k1) = z(k1) - real(M+i) 
        End If 
        If (k2 <= k) then 
          z(k2) = z(k2) + real(i) 
        End If 
        If (k1 > k .and. k2 > k) exit 
      End Do 
    End Do 
!   build the freq and cumfreq vector and find the critical values 
    f10 = .false. 
    f05 = .false. 
    f02 = .false. 
    f01 = .false. 
    ub = (M+N)*(M+N+1)/2 ! set upper bound on u 
    allocate (f(0:ub))  ! allocate the frequency vector 
    allocate (cf(0:ub))  !  and the cumulative frequency vector 
    f = 0. 
    f(0) = 1. 
    cf = 0. 
    cf(0) = 1. 
    Do u = 1,ub 
      Do h = 0,(u-1) 
        f(u) = f(u) + ( f(h)*z(u-h-1) ) 
      End Do 
      f(u) = f(u)/u 
      cf(u) = cf(u-1) + f(u) 
      Pr = cf(u) 
      Prev = cf(u-1) 
      Pr_underflow = .false. 
      Prev_underflow = .false. 
!     The probabilities Pr and Prev get smaller with each pass 
!     through the following loop.  Thus, once they both drop below 
!     oneppt (see declaration) there is no point continuing the loop. 
      Do i = 1,M 
        If (Pr > oneppt) then 
          Pr = Pr*(M+1-i)/(N+i) 
        Else 
          Pr_underflow = .true. 



BRUCE R. FAY 517

        End If 
        If (Prev > oneppt) then 
          Prev = prev*(M+1-i)/(N+i) 
        Else 
          Prev_underflow = .true. 
        End If 
        If (Pr_underflow .AND. Prev_underflow) exit 
      End Do 
      RS = minRS + u-1  ! rank sum = M(M+1)/2 + u-1 
!     Find the best conservative CVs for specified alphas 
      If ((Prev <= p05).and.(Pr > p05).and.(.not.f10)) then 
        CVTbc10(M,N) = RS 
        PVTbc10(M,N) = Prev 
        f10 = .true. 
      End If 
      If ((Prev <= p025).and.(Pr > p025).and.(.not.f05)) then 
        CVTbc05(M,N) = RS 
        PVTbc05(M,N) = Prev 
        f05 = .true. 
      End If 
      If ((Prev <= p01).and.(Pr > p01).and.(.not.f02)) then 
        CVTbc02(M,N) = RS 
        PVTbc02(M,N) = Prev 
        f02 = .true. 
      End If 
      If ((Prev <= p005).and.(Pr > p005).and.(.not.f01)) then 
        CVTbc01(M,N) = RS 
        PVTbc01(M,N) = Prev 
        f01 = .true. 
      End If 
      If (f10.and.f05.and.f02.and.f01) exit  ! found all 4 CVs!  
    End Do 
    deallocate(z,f,cf) 
  End Do 
End Do 
return 
! --------------------------------------------------------------------------- 
entry CV_WRSJ4bc(a,b,CV,PV) 
CV = -1  ! initialize all return CVs to 'not available' 
PV = 0.  ! initialize all return p's to zero 
If ((b >= 1).and.(b <= 50).and.(a >= 1).and.(a <= b)) then 
  CV(1) = CVTbc10(a,b) 
  CV(2) = CVTbc05(a,b) 
  CV(3) = CVTbc02(a,b) 
  CV(4) = CVTbc01(a,b) 
  PV(1) = PVTbc10(a,b) 
  PV(2) = PVTbc05(a,b) 
  PV(3) = PVTbc02(a,b) 
  PV(4) = PVTbc01(a,b) 
End If 
return 
! --------------------------------------------------------------------------- 
end subroutine CV_WRSJ4_init 
! *************************************************************************** 
end module CVWRSJ4mod
 

 


	Journal of Modern Applied Statistical Methods
	11-1-2002

	JMASM4: Critical Values For Four Nonparametric And/Or Distribution-Free Tests Of Location For Two Independent Samples
	Bruce R. Fay
	Recommended Citation


	tmp.1377145100.pdf.OGADH

