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Priorities in Thurstone Scaling and Steady-State Probabilities 
in Markov Stochastic Modeling 

 
Stan Lipovetsky 

GfK Custom Research North America, 
Minneapolis, MN 

 
 
Thurstone scaling is widely used in marketing and advertising research where various methods of applied 
psychology are utilized. This article considers several analytical tools useful for positioning a set of items 
on a Thurstone scale via regression modeling and Markov stochastic processing in the form of Chapman-
Kolmogorov equations. These approaches produce interval and ratio scales of preferences and enrich the 
possibilities of paired comparison estimation applied for solving practical problems of prioritization and 
probability of choice modeling. 
 
Key words: Thurstone scale, regression estimation, Bradley-Terry model, Markov model, Chapman-

Kolmogorov equations, steady-states probability. 
 
 

Introduction 
Thurstone scaling is a method of priority 
evaluation among items by the frequency of 
their empirical pairwise preferences (Thurstone 
1927, 1959; Thurstone & Jones, 1957). This 
technique is widely used in fields of applied 
psychology, particularly, in marketing and 
advertising research (Edwards, 1957; Torgerson, 
1958; Bock & Jones, 1968; Green & Tull, 1978; 
Conklin & Lipovetsky, 1999, 2004a, 2004b; 
Lipovetsky, 2007a, 2007b). Thurstone scaling 
transforms ranked or paired comparison data 
into a scale that is used for displaying the results 
of a ranking procedure. Statistical properties of 
Thurstone multiple comparisons were 
considered by Mosteller (1951) and Daniels 
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(1950) and this technique is also known as 
Thurstone-Mosteller-Daniels (TMD) model 
(David, 1988; Stern, 1990; Ennis & Johnson, 
1993). Connections of TMD with other methods 
of multiple paired comparisons, particularly, 
with the Analytic Hierarchy Process (AHP), are 
considered in several studies (Zinnes & 
MacKay, 1989; MakKay, Bowen & Zinnes, 
1996; Lipovetsky & Conklin, 2001, 2002). 

Positioning the items on a Thurstone 
scale consists in taking the proportions of 
respondents who prefer one item over each of 
the others, finding the corresponded percentiles 
(z-scores) of the cumulative normal distribution 
and averaging them. In practice it is convenient 
to rescale the obtained scores so that the best and 
the worst performing items will have scores 1 
and 0, respectively. A Thurstone scale is 
typically constructed from ranked data when it is 
determined how often one item ranked ahead of 
another one, thus, the data could be reduced to 
or collected as paired comparisons and their 
frequencies. The paired approach to analysis 
also means that it is not required for every 
respondent to have ranked or compared every 
item; however, because the result is a relative 
scale, it is important that the pairwise 
comparisons be balanced. Thurstone scales can 
also be created from rating data, although this 
approach can produce a large number of ties that 
make the TMD unstable. 
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This article considers several possibilities of 
priority estimation by pairwise data. One is 
evaluation of the TMD scale and the statistical 
significance of the obtained levels. For this 
purpose TMD is as presented a regression model 
by a special design of dummy variables. In 
constructing such a regression the standard 
errors and t-statistics for the levels of the 
compared items are obtained simultaneously in 
order to estimate precision and statistical 
significance of the differences among the items. 
The Thurstone model defines a scale of 
differences; standardizing to zero-one range 
corresponds to the interval scale. Together with 
the TMD model, the Bradley-Terry-Luce (BTL) 
model is also considered for pair comparison 
(Bradley & Terry, 1952; Luce (1959); Luce & 
Suppes, 1965; Lipovetsky, 2008) that 
corresponds to applying the logistic as opposed 
to the normal probability function. 

Another possibility for pair comparisons 
evaluation may be found in stochastic Markov 
chain modeling via Chapman-Kolmogorov 
equations for discrete states and continuous time 
of transitions probabilities (Bellman, 1960; 
Hillier & Lieberman, 1974; Bar-Niv & 
Lipovetsky, 1995; Lipovetsky, 2005, 2006). This 
approach uses pair comparison data for intensity 
of transitions among the states (items) for 
constructing Chapman-Kolmogorov system of 
differential equations and solving for the dynamic 
as well as for the eventually reached steady-state 
probabilities. Although in the Thurstone model 
only differences are meaningful, the Markov 
states approach elaborates a ratio scale of 
probabilities to choose each of the items in 
comparison. Thus, the Thurstone and Markov 
models correspond to relative and absolute 
preference estimates.  
 
Thurstone Scale as a Regression Model 

The TMD general model is defined due 
by Thurstone’s law of comparative judgment. 
According to Thurstone, a psychological 
characteristic xi (where i = 1, 2, …, m denotes 
different characteristics) can be presented as a 
random normal variable xi =N(vi , σi ) with a 
mean value vi and standard deviation σi . The 
problem consists in estimating vi values as the 
positions of the stimulus on the total 
psychological scale. The random variable of the 

difference y = xi - xj between two psychological 
values (stimulus) has probability density 
function 
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where the standard deviation for the difference 
of two stimulus is 
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with rij denoting the correlation between ith and 
jth variables. The cumulative probability is then: 
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The Case-V of TMD, which is the most 
widely used of these models, corresponds to 
equal standard deviations σ  (2) for all paired 
differences of stimulus (it is fulfilled by the 
assumption of equal variances of the 
independent/uncorrelated variables).  

If the values pij at the left-hand side of 
(3) are given, then the corresponded quantiles, or 
z-values can be defined as 
 

jiijij vvpz −=Φ= − )(1 .                 (4) 

 
In (4) there are more equations for the pairs (i > 
j, j = 1, …, m−1) than m values vi themselves. 
For estimation of vi values Mosteller (1951) 
suggested to use the Least Squares (LS) 
objective: 
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The objective (5) is homogeneous by the 
parameters vi of estimation, therefore, it needs a 
normalizing condition: 
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The first order condition dLS / d vi = 0 for 
minimizing (5) yields the estimate 
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where the relation (6) is accounted. So the 
position on the psychological scale for each ith 
item equals the mean value of z-scores of 
comparison of this item with the others. 

In practical TMD modeling (for 
example, in comparison of a product’s flavors or 
brands) as opposed to probabilities pij (3), 
sample estimates of frequencies corresponding 
to the observed proportions of cases with item j 
preferred to item i are available. These 
frequencies are usually presented in a matrix  
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where each element fij corresponds to the 
preference of the item j over the item i. If in the 
pair comparison ni respondents preferred the ith 
item and nj respondents preferred the jth one, 
then ijth and jith elements of frequency matrix (8) 
are 

j i
ij ji

i j i j

n n
f , f

n n n n
= =

+ +
.          (9) 

 
In a general case the frequencies can be obtained 
by a different number of respondents in each 
pair comparison. The elements in (8) are 
positive and satisfy the relation of symmetry  
 

1=+ jiij ff  ,                       (10) 

 
thus, the diagonal elements are fii = 0.5. The 
quantiles zij of normal distribution (4) obtained 
for the elements of matrix (8) are 
 

)(1
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The values zij = −zji and zii = 0, thus they define 
the elements of a skew-symmetric matrix Z. Due 
to the definition of the matrix (8) with elements 
(9), where each element fij corresponds to the 
prevalence of the item j over the item i, the 
means in the columns of matrix Z correspond to 
the estimates (7) obtained by the empirical 
frequencies (8), that is, 
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The total of these means equals zero, so 
condition (6) is satisfied. Thus, the averaged z-
values (12) are used as positions of items on the 
Thurston scale of preferences. These values are 
usually reduced to the standard zero-one scale of 
preferences by the transformation 
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Using (13) a Thurstone scale is reduced to an 
interval scale. 

Consider the Bradley-Terry-Luce (BTL) 
model. The BTL model for pair comparisons 
defines probability that an item a is preferred to 
an item b as a share p(a,b)=v(a)/(v(a)+v(b)) 
where v denotes a utility function. Using a 
logarithmic scale A = ln(v(a)) and B = ln(v(b)) 
results in p(a,b) = exp(A)/(exp(A)+exp(B)) 
=1/(1+exp(-(A-B))) that is a logistic probability 
function. The standardized logistic cumulative 
probability    

)exp(1

1

z
p

γ−+
=                   (14) 

 
practically coincides with the standardized 
cumulative normal probability (3) when the 

parameter 81.13/ ≈= πγ ; this choice 
defines the logistic probability density function 
with a unit variance (see Long, 1997, chapter 3). 
Thus, for a simpler estimation the logistic as 
opposed to normal probability can be used when 
the z-value defined from (14) equals 
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Using in (12) z (15) defined by the empirical 
frequencies in (8)-(9) results in the values: 
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Therefore, the Thurstonian logistic scale for a jth 
item in comparison is proportional to the 
logarithm of the geometric mean of odds of the 
frequency in the jth column of matrix (8). This 
solution is convenient for analytical 
consideration. 

Returning to LS objective (5) that yields 
solution (12) for a matrix of paired comparison 
(8) notice that it corresponds to minimizing 
deviations for the linear regression: 
 

ij j i ij
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where each ijth value of the dependent variable zij 
is represented by its theoretical model vj-vi and 
random noise εij . The theoretical model consists 
of a set of m dummy variables uij,1, …, uij,m 

combined with the regression coefficients a1, …, 
am . If all zij  values are stacked into one vector of 
m2 observations by the dependent variable and 
all vectors of the variables uij,1,…, uij,m are 
arranged as a design matrix U of m2 by m order, 
then in the row of matrix U defined by any ijth 
pair of indices the only non-zero elements are in 
the jth and ith columns, and they equal 1 and –1, 
respectively. Therefore the dummy variables can 
be defined as: 
 

ij ,k

1, if k j
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+ =
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               (18)  

where k = 1, …, m corresponds to different 
dummies. 

For linear regression model (17) with the 
predictors (18) the least squares objective is 
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The coefficients ak are the estimates of the 
Thurstone scale levels vk. The totals in each row 
of the design matrix (18) equal zero, thus, this 
matrix has the rank m−1 and in regression 
modeling it is only necessary to use m−1 dummy 
variables. One of the coefficients, for example, 
am=0, can be fixed to construct the regression by 
other m−1 variables, and then renormalize all m 
coefficients by condition (6).  

Numerically the coefficients of 
regression (17) or (19) coincide with the explicit 
solution (12), the regression approach, however, 
yields much richer results. To name some of 
them, besides the coefficients themselves, their 
standard errors and t-statistics, the coefficient of 
multiple determination as a characteristic of the 
quality of the approximation, deviations in each 
point of observation, etc., are obtained. The 
statistical difference between the Thurston scale 
levels can be checked, or the minimum distance 
found, between the significantly different levels.  

In applied research with a large number 
of items, the pair comparison is usually arranged 
by experimental design when each respondent 
compares several items (not all) from a total set. 
In this case the frequencies (9) can correspond to 
different numbers of respondents in each paired 
comparison. Suppose, there are nij = ni + nj 
counts in the ijth pair of the items, so the 
variance of the proportion in this comparison 
equals 

1

)1(
2

−
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The standardized normal probability density 
function can then be written as 
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thus, due to the rule of error propagation the 
relation for the variances is 
 

( ) )(exp2)( 222 pzz σπσ = .           (22) 
 
Taking (20) for the variance of empirical 
frequency as the estimate for the variance 

)(2 pσ  in (22) results in the variance for z-
values in each ijth pair comparison. In place of 
(19) the Gauss-Markov weighted least squares 
objective can then be used 
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with the weights of the observations defined as 
follows: 
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The weighted regression (23)-(24) can be 
constructed without difficulty and used as a 
weighted estimation for the TMD model. 
 
Stochastic Modeling by Chapman-Kolmogorov 
Equations. 

Return to frequency matrix (8)-(9) and 
consider other possibilities to estimate 
preferences among compared items. In the 
approach developed in (Lipovetsky & Conklin, 
2002) the analytic hierarchy process (AHP) 
matrix of pairwise ratios was transformed to a 
share matrix with the elements of the kind (9), 
and a specific eigenproblem was designed for 
evaluating the priorities among the items. The 
results of that work applied to a Thurstone 
matrix (8) (that corresponds to the transposition 

of a transformed AHP matrix) can be presented 
in the eigenproblem: 
 

αλα =+ )]'('[ eFdiagF ,           ( 25) 
 
where prime denotes transposition of the matrix 
F (8), diag(F’e) is a diagonal matrix of the totals 
in the columns of matrix F, and e denotes a 
uniform vector of the mth order. Solving (25) for 
the maximum eigenvalue λ yields the estimate α 
for the priority vector.  

The matrix at the left-hand side (25) is 
proportional to a transposed stochastic matrix. It 
means that totals in the columns of this matrix 
equal the following vector: 
 

emeFFeeeFdiagF =+=+ ')]''('[ , 
(26) 

 
where the property (10) is used, so each element 
of the vector (26) equals m. Dividing (25) by 
this term the eigenproblem is represented as 
 

αμα =





 + )'(

1
'

1
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m
F

m
.  

(27) 
 
Totals in every column of matrix (27) equal one. 
A positive matrix with such property is a 
transposed stochastic matrix. Such matrices have 
a maximum eigenvalue equal to one. Due to the 
Perron-Frobenius theory for positive matrices 
the principal eigenvector always exists, is unique 
and has all positive elements; the desired 
properties of the priority vector are thus ensured.  

Consider the eigenproblem (27) from 
the point of view of Markov chain modeling – 
one of the most widely used tools in theoretical 
and applied statistics. A discrete state and 
continuous time model are presented via a 
system of Chapman-Kolmogorov differential 
equations used for a stochastic process of 
transitions among the states. These well-known 
(especially in queuing theory) equations express 
change in probability to be found in any of m 
states as a linear combination of these 
probabilities with the coefficients of the 
transition intensities.  
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Any pair of elements fij and fji (9) of 
Thurstone matrix (8) can be interpreted in terms 
of frequency to prefer one of the items over the 
other. Thus, each element fij can be used to 
describe the preference of the jth item over the ith 
item that corresponds to transition to the 
preferred state j from the state i with the 
intensity of transition fij. The frequency matrix F 
(8) can be presented as a connected oriented 
graph with m nodes of states (items) and two 
edges between each pair of nodes – the one 
going to state j from state i corresponds to 
transition intensity fij, and the other going from 
state j to state i corresponds to transition 
intensity fji. An example of such graph for three 
states is presented in Figure 1. 

The system of Chapman-Kolmogorov 
equations can thus be written as: 

 
m m

k
ik i kj j

i k j k

dp
f p f p , k 1,...,m ,

dt ≠ ≠

= − =   

(28) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where pi denotes probability of belonging to 
each of the states. Items with positive signs at 
the right-hand side (28) define influx to each 
state from all the others and those with negative 
signs define departure from a state to all the 
other states. If 0.5pk is added into each sum in 
each kth equation (28) this system can be 
represented in a matrix form: 
 

( ) pFediagFp )(−′= ,               (29) 
 
where p is a vector consisting of the 
probabilities pi for all the states, p  denotes the 
vector of their derivatives (as in the left-hand 
side (28)). Using property (26) that sum of totals 
in any kth column and row of the matrix F equals 
m, (29) can be rewritten as  
 

( ) pmIeFdiagFp −′+′= )( ,        (30) 
 
where I denotes the identity matrix of the mth 
order.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Transition Intensities for Markov Modeling 
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Consider the solution of the Chapman-
Kolmogorov equations for the steady-state 
probability when the process is stabilized. If the 
derivatives in the right-hand side (30) equal 
zero, then (30) is reduced to 
 

(F’ + diag (F’ e) ) p = m p ,            (31) 
 
which is the same as eigenproblem (25) with the 
maximum eigenvalue equal m and a unique 
positive main eigenvector, as discussed in 
relation to expression (27). Coincidence of these 
results suggests a useful interpretation: the 
priority vector (27) makes sense of the eventual 
probabilities to belong to the discrete states 
corresponded to the compared items. These 
probabilities define the preferences among the 
compared items. 

The general dynamic solution for system 
(30) can be useful for problems in priority 
modeling. For example, item preference 
depending on different initial conditions is of 
interest in maximum differences among the 
preferences and in their specific behavior 
(monotonic increase or decrease, oscillating) 
before the process is stabilized. Priorities 
behavior after adding new items to the original 
set may also be considered, taking initial 
probabilities of the new items equal zero and 
assuming the pair relations kept due to the given 
data. 

As Bellman (1960) showed, the solution 
of a homogeneous linear system of differential 
equations with constant coefficients can be 
presented as 
 

ctdiagPtp j ))(exp()( λ=  ,         (32) 

 
where c is a vector of constants, λj are the 
eigenvalues and P is a corresponded matrix of 
columns pj of eigenvectors obtained in solving 
the problem 
 

( ) ppmIeFdiagF λ=−′+′ )( .     (33) 
 
Expression (33) defines the eigenproblem with 
the matrix at the right-hand side of Chapman-
Kolmogorov system (30), and its solution 
coincides with the solution for problem (25) up 
to reducing the latter eigenvalues by m.  

For the moment t = 0, solution (32) 
reduces to p(0) = Pc, and solving this linear 
system with a known vector of initial conditions 
p(0) results in the vector of constants c=P-1p(0). 
Thus, the general solution of the differential 
system is 
 

)0())(exp()( 1 pPtdiagPtp j
−= λ ,     (34) 

 
The expression 1))(exp( −PtdiagP jλ  in (34) is 

known as matrix exponent. Each component of 
the vector p(t) is a linear combination of the 
exponents in (34), and functions )exp( tjλ  

behave in accordance with the specific values of 
λj obtained in eigenproblem (33). 

As noted, the main eigenvalue in (33) is 
less by m than the main eigenvalue in (25), so it 
equals zero, λ1 = 0, which corresponds to the 
constant part of (34) behavior. The other 
eigenvalues (33) are real numbers or conjugated 
pairs of complex numbers. As per the Perron-
Frobenius theory, all other eigenvalues have less 
real value than the main eigenvalue, meaning 
that all real eigenvalues, or real parts in complex 
eigenvalues, are negative. Thus, the general 
behavior of solution (34) is defined by a 
constant part (λ1 = 0), by diminishing exponents 
(real negative eigenvalues), and by oscillating 
diminishing exponents (complex eigenvalues 
giving sine and cosine parts of functions). There 
can also be polynomial items corresponding to 
equal eigenvalues, although in practical 
numerical evaluations such cases are rare. The 
eigenvectors p corresponding to the complex 
eigenvalues are also complex, however, the total 
expression (34) yields real values. 

The total of the eigenvalues equals the 
trace of the matrix, which for the matrix in (33) 
is 
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The inverted values of the reciprocal intensities 
in the exponents (34) make sense of the mean 
time of the transitions among the states, 

jj t=− λ/1 , similarly to the interpretation of 

the parameters in the exponential and Erlang 
distributions from queueing theory. Thus, (35) 
corresponds to an ergodic relation saying that 
the total of the intensities equals the number of 
connections m(m-1)/2 among m states. The mean 
intensity can be defined from (35) as 
 

2

11

1

−=−= 
=

m

m

m

j
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that corresponds to a mean number of links from 
initial to final states (Levene & Loizou, 2002). A 
value λj defines the decay of the exponent, 
therefore, several first eigenvalues from the 
main λ1 =0 to about the mean (36) are important 
in the solution (34). It is interesting to note that 
the relation (36) can be also interpreted as a 
harmonic mean for the mean times: 
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The mean time for the exponential decay is 
about 2/(m−1), and after this time the process is 
stabilizing. 
 
Numerical Example 

Consider a numerical example using 
data from a real research project. Twenty flavors 
(see Table 1) of a snack were ranked by 151 
respondents. The first 6 flavors (A to F) were in 
the current line and the others 14 flavors (G to 
T) were considered for possible addition to the 
production line. 

The results of the modeling are 
presented in Table 2. The table shows Thurstone 
Scaling – coefficients of regression (19), their t-
statistics, raw Thurstone scale (12), standard 
scale in 0-1 range (13), and ranks of the flavors. 
In the regression approach (12) the upper 
triangle (190 values) of the z-matrix with 
elements (11) is used, m−1 dummies (18) 
without the first flavor A, and no intercept. 
Centering the coefficients of regression by  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
subtracting their mean from each, the 
coefficients are rescaled until their total equals 
zero (6). The rescaled coefficients of regression 
coincide with the raw Thurstone scale (12). In 
regression, t-statistics are also obtained for the 
coefficients that correspond to checking the 
significance of the difference between the level 
of each flavor in comparison with the first flavor 
A (thus, except for flavor E, all the others are 
different from flavor A). Flavor A was best one 
on the Thurstone scale, this explains the 
negative signs of the regression coefficients and 
t-values. If any other flavor is excluded from the 
regression, its coefficient would be of positive 
and negative signs for the flavors preferred and 
non-preferred to this one, respectively, and the t-
values would estimate the significance of the 
difference of all the levels from the fixed one. 
Coefficient of multiple determination in the 

Table 1: Flavors Tested 

Code Flavor 

A Hot Fudge Swirl 

B Caramel Swirl 

C Cheesecake Swirl 

D Walnut 

E Chocolate Chunk 

F Double Chocolate 

G Peanut Butter Chunk 

H Peanut Butter Frosted 

I Peanut Butter Swirl 

J White Chocolate Chunk 

K German Chocolate 

L Raspberry Swirl 

M Snickers 

N Chocolate Frosted 

O Mocha Swirl 

P Chocolate Chip Blonde 

Q S’mores 

R Bailey’s Irish Crème Swirl 

S Icing 

T Frosted Mint 
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model equals R2 = 0.966, so approximation of 
the data by the Thurstone scale is very high. If 
the total z-matrix is used to construct a 
regression (19) with an intercept, again by m−1 
dummies (18), then the coefficients of regression 
will be the same as described above. Also in the 
rescaled set of coefficients the value of the 
intercept equaled the coefficient for the excluded 
flavor. The results of the weighted regression 
(23)-(24) practically coincide with the regular 
regression by this data. 

Table 2 also presents a Thurstonian 
estimation by the logistic BTL model (16) and 
its standard scaling by (13) to 0-1 range. Note 
that the raw logistic scale slightly differs from 
the Thurstone raw scale, however, the 
standardized scales in 0-1 range are practically 
undistinguishable and both the normal and 
logistic estimations also yield the same ranks.  

Finally, Table 2 shows the results of 
Markov modeling for the eventually reached 
steady-state probabilities. These probabilities 
correspond to the elements of the main 
eigenvector in problems (25), (31) or (33) and 
define shares of choosing each of the flavors 
under consideration. Ranks of flavors by the 
Markov probabilities coincide with the ranks by 
the Thurstone scale for this data.  

Reaching the steady-states in Markov 
processing can be considered by solution (34) of 
the Chapman-Kolmogorov differential equations 
(28). At first the behavior of the current six 
flavors in the line is constructed, using initial 
conditions with equal probability for all 6 states 
(see Figure 2). The reached steady-state 
probabilities in this set are 0.219, 0.123, 0.135, 
0.123, 0.205, and 0.195, for the flavors from A 
to F, respectively. Using these probabilities as 
initial values for the current flavors and zero 
initial values for other possibly introduced 
flavors, another Markov model by all 20 flavors 
is constructed (see Figure 3). Note that 14 
possibly introduced flavors would push down 
the current flavors’ shares. The flavors A, E and 
F remain best, however, two new flavors – M 
and N – could become more attractive than the 
other current flavors. Thus, the mutual behavior 
of all current flavors are considered with these 
two best candidates for the line extension (see 
Figure 4). Figure 4 shows that newly introduced 
flavors M and N can overcome three of the 

current flavors, thus, it makes sense to substitute 
the current B and D flavors for these new ones if 
the size of the line will continue to consist of 
only six flavors. It is interesting to note that the 
eigenvalues (34) in all these eigenproblems are 
real numbers so the flavor curves behavior 
consists in just exponential change, without 
oscillations corresponding to the complex 
numbers. This indicates a consistent relation 
among the pair comparison data and the robust 
results of both Thurstone and Markov 
evaluations. 
 

Conclusion 
This article considered preference evaluation by 
pair comparison data. Thurstonian scaling via 
multiple regression and Markov chain modeling 
by Chapman-Kolmogorov equations was 
explored. A Thurstone scale as a regression 
model a special design of dummy variables was 
used for estimation. Coefficients of regression 
represent the levels of the items by the 
Thurstone scale. Simultaneously the standard 
errors and t-statistics for the coefficients of 
regression were obtained along with the 
coefficient of multiple determination so that 
precision and statistical significance of the 
differences among the items could be estimated.  

The Thurstone model defines a scale of 
differences, and its standardized zero-one range 
corresponds to the interval Thurstone scale. 
With regression, non-linear scaling can be 
considered, a hierarchy Bayesian model using 
other variables (for example, demographics) or 
any other technique known in regression 
modeling. Also considered was the Bradley-
Terry-Luce logistic model of pair comparison 
that produces a scaling of the Thurstonian type 
with the results very close to the Thurstone-
Mosteller-Daniels model. 

Another possibility for multiple pair 
comparison evaluation was suggested based on 
stochastic Markov chain modeling for discrete 
states and continuous time of transitions 
probabilities. This approach uses pair 
comparisons data for intensity of transitions 
among the states (items) for constructing the 
Chapman-Kolmogorov system of differential 
equations and solving for the dynamic as well as 
for the eventually reached steady-state 
probabilities. While in the Thurstone model only 
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differences are meaningful, the Markov states 
approach elaborates a ratio scale of probabilities 
to choose each of the items in comparison. Thus, 
the Thurstone and Markov models correspond to 
the relative and absolute preference estimates. 
The considered methods of priority evaluation 
are convenient and simple and could enrich both 
theoretical modeling and practical applications 
for various multiple criteria decision making 
problems. 
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Figure 2: State Probability of Current Six Flavors in Markov Model 
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Figure 3: State Probability for 20 Flavors in Markov Model 
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