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Entropy Criterion In Logistic Regression And Shapley Value Of Predictors 
 

Stan Lipovetsky 
GfK Custom Research Inc. 

 
 
 
Entropy criterion is used for constructing a binary response regression model with a logistic link. This 
approach yields a logistic model with coefficients proportional to the coefficients of linear regression. 
Based on this property, the Shapley value estimation of predictors’ contribution is applied for obtaining 
robust coefficients of the linear aggregate adjusted to the logistic model. This procedure produces a 
logistic regression with interpretable coefficients robust to multicollinearity. Numerical results 
demonstrate theoretical and practical advantages of the entropy-logistic regression. 
 
Keywords: entropy, logistic regression, multicollinearity, net effects, Shapley value. 
 
 

Introduction 
 
Logistic regression is a widely used tool in 
regression modeling for a data with a binary 
output (Pregibon, 1981; Arminger et al., 1995; 
Long, 1997; Hastie & Tibshirani, 1997; 
McCullagh & Nelder, 1997; Lloyd, 1999; 
Lipovetsky & Conklin, 2000). The logistic model 
is usually obtained by the maximum likelihood 
criterion applied to the binary output with the 
logistic link. In this article, the criterion of 
entropy is applied for constructing a logistic 
model. Various techniques based on the entropy 
criterion are well known in information theory, 
fuzzy data analysis, and other statistical 
applications (Lindley, 1956; Zeimer & Tranter, 
1976; Dukhovny, 2002; Levene & Loizou, 2003; 
Maes & Netocny, 2003; Handscombe & 
Patterson, 2004; Bar-Yam, 1997, 2004). The 
entropy-logistic model yields the coefficients 
and   forecasts   very   similar   to multiple linear 
regression. It opens a possibility to apply some 
techniques developed in linear regression to 
binary modeling, particularly,  for  estimation of 
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the predictor’s contribution and construction of a 
model robust to the effects of multicollinearity.  
          Contribution of the predictors in a linear 
aggregate can be found by the net effects 
technique. In linear regression analysis the net 
effect of a predictor is a combination of the direct 
(as measured by its coefficient squared) and the 
indirect effects (measured by the combination of 
its correlations with other variables). The sum of 
the net effects equals the coefficient of multiple 
determination of the model. However, the net 
effect values themselves can be subjected to the 
multicollinearity in the data so that the estimated 
net effects can be negative, which is difficult to 
interpret. 
 Even in presence of multicollinearity, it 
is often desirable to keep all variables in the 
model if their comparative importance is 
evaluated. A regression model can be considered 
from the perspective of a coalition among players 
(predictors) to maximize the total value (quality 
of fitting). In the cooperative games a useful 
decision tool developed to evaluate the worth of 
participants is the Shapley Value imputation 
(Shapley, 1953; Roth, 1988; Straffin, 1993; 
Jones, 2000). The Shapley Value (SV) presents 
each player's input over all possible combinations 
of players. This technique proved to be very 
useful in various complicated estimation 
problems (Conklin et al., 2004; Conklin & 
Lipovetsky, 2005). In application to statistical 
modeling, this approach yields a model called 
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Shapley Value regression (Lipovetsky & Conklin, 
2001, 2004, 2005). In the current work, the SV 
approach to the logistic regression modeling is 
considered. 
           
Entropy in Binary Response Modeling 
           Consider a data matrix with the elements 
xij of i-th observations (i=1, ..., N) by j-th 
variables (j=0, 1, ..., n), and a dependent 
variable y of the observed event’s success or 
failure, presented by the binary output (yi equals 
1 if the event occurs, and 0 if it does not). The 
logistic probability function can be presented as: 
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where z is a linear combination of the 
independent variables: 
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where the unknown parameters naaaa ...,,,, 210  

correspond to the coefficients of the logistic 
regression model (1)-(2). Probability of the 
binary outcome is: 
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Maximizing (5) by the parameters in (1)-(2) 

yields the procedure for constructing a regular 
logistic regression, as it is known by the 
literature on categorical data modeling.  
          Instead of the ML (4) it is possible to 
consider an objective of a Gibbs distribution: 
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so its logarithm that defines the entropy of the 
data: 
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where the binary probability outcome is defined 
in (3). The maximum entropy criterion (7) 
differs from the logarithm of maximum 
likelihood (5) by weighting the probabilities iP  

by their logarithms. The first-order conditions 
for maximizing the objective (7) by the 
parameters of the aggregate (2) yields a gradient 
vector with the elements: 
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       (8)   
 
where the derivatives are sequentially taken 
from the functions (3), (1), and (2).  
          To solve a non-linear system of equations 
the Newton-Raphson algorithm can be applied. 
The vector with elements (8) is approximated as:  
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where a is a vector of the (n+1)-th order of all 
the coefficients ak (2), and t denotes a step of 
iteration. The process of estimating the vector of 
parameters is: 
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where H is a matrix of second derivatives, or 
Hessian, and 1−H  is this matrix inversed. 
          Using (8), this matrix is constructed: 
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In the brackets at the right-hand side (11), the 

difference of the items 2)( ii py −  and 

)1( ii pp − of two forms of the variance 

estimations is always small. The total of these 
items is negligible (Becker & Le Cun, 1988; 
Bender, 2000), so (11) can be presented as:   
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where the diagonal matrix of weights W is 
defined using (1) and (3), and X is the data 
matrix in the aggregate (2) (with a uniform first 
column corresponded to the intercept). So (12) is 
a weighted matrix of the second moments of the 
predictors in the model (2). 
          The gradient vector (8) can be rewritten in 
a matrix form as: 
 
          ( ) )()ln1( pyPPdiagXU −+′= ,    (13)                     
 
where P, p, and y are the vectors with the 
elements Pi (3), pi (1), and the binary output yi, 
respectively. Then the iterative process (10) is: 
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where )(tξ  is the so called working dependent 
variable that denotes the expression in figure 
parentheses (14). The right-hand side of the 
expression (14) presents the solution of the 
system (8) as a weighted linear regression with 
the adjusted response variable:    
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where )()( tt Xaz =  is a vector of the linear 

aggregate (2), pyt −=)(ε  is a vector of 
deviations between the empirical binary 
response and the theoretical probability (1). The 
solution (14) corresponds to the normal system 
of equations of the weighted least square 
problem ξWXaWXX ′=)'(  with the adjusted 
dependent variable (15), so the process (14)-(15) 
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is the Iteratively Reweighted Least Squares, or 
IRLS. Numerical simulations show that the 
weight matrix W in Hessian (12) quickly 
becomes approximately a scalar matrix, and the 
IRLS process converges already after several 
steps.  
          Consider numerical results from a real 
research project involving bank mortgages with 
the data elicited from 403 customers. The binary 
response defines the customers’ "Satisfied or 
not" feeling on the bank performance with a 
mortgage, and the independent variables from x1 
to x8 are shown in Table 1. The management of 
the bank is interested in estimating the predictors 
influence on increasing the client’s satisfaction 
with the bank. Table 1 presents the pair 
correlations of the dependent with independent 
variables,  and  the  coefficients (beginning from 
 
 
 

 
 
 
 
 
 

the intercept) with their t-statistics for the 
multiple linear, the regular logistic, and the 
entropy-logistic regressions. The entropy-logit 
model is constructed using the IRLS approach 
(14)-(15), and the t-statistics for the coefficients 
are estimated using bootstrapping.  
 Table 1 shows that the variables x2, x3, 
x5, and also x7 are the most significant 
predictors, while the other variables x1, x4, x6, 
and x8 are unimportant in the models. In spite of 
all positive pair correlations with the binary 
dependent variable, the coefficients of the least 
significant variables change their sign in the 
models (negative sign for x8 in the linear, for x1 
in the logit, and for both of them in the entropy-
logit model). It is the effect of multicollinearity 
that distorts the estimation by the models.  
          
 
 
 

 
 
 
 
  
 

 
Table 1. Binary models of customer satisfaction. 

 
Linear  

regression 

Regular 

Logistic 

Entropy 

Logistic 

Variable Correlation coeff t-stat coeff t-stat coeff t-stat 

Overall sat. w. mortgage loan y 1 -.919 -6.73 -10.841 -7.73 -1.600 -6.68 

Satisfaction with rate x1 .347 .0002 0.01 -.026 -0.34 -.0002 -0.01 

Right type of loan x2 .402 .038 3.11 .233 2.89 .043 2.35 

Feel like a valued customer x3 .498 .049 3.43 .340 3.76 .055 2.91 

Bank knows customers needs x4 .438 .007 0.57 .060 0.79 .007 0.36 

Communication x5 .423 .026 2.61 .120 1.98 .031 1.95 

Handling mortgage payment x6 .359 .023 1.13 .127 0.92 .027 0.89 

Posting payments accurately x7 .352 .039 1.76 .396 2.34 .044 1.29 

Posting payments timely x8 .338 -.009 -0.40 .022 0.13 -.011 -0.32 
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 Table 2 contains the ratios of the 
coefficients of the regular logit to the linear 
model, of the regular logit to the entropy-logit 
model, and of the entropy-logit to the linear 
model, respectively. The coefficients themselves 
vary differently in each model, and the ratios of 
the regular logit coefficients to the coefficients 
of the other models belong to a wide span of 
values. However, the ratio of the coefficients of 
the entropy-logit to the linear model is 
amazingly stable.  
 The last column in Table 2 shows that 
with exception of the intercept (that incorporates 
the influence of all the predictors), and slightly 
different ratios for the most insignificant 
variables x1, x4, and x8, all absolute values of all 
the ratios are practically the same.  
          Denoting the theoretical, predicted values 
of the output as liny~ , log

~y , and enty~  for the 

linear, logit, and entropy-logit models, 
respectively (where 0 and 1 values correspond to 
the rounded values of the probability below or 
above 0.5), and estimating the coefficient of pair 
correlation between the linear and entropy-logit 
predictions, it is possible to obtain a value of 
0.9995, while the correlations between the 
predictions by the other models are about 0.94-
0.95. Comparison of the models’ predictive 
ability is presented in Table 3 by several cross-
sections. 
 Section A of Table 3 presents the cross-
tabulation of the empirical binary output y with 
the prediction liny~  by the linear model, where 0 

and 1 values are correctly identified 169 and 143 
times, so the total of the correct forecasts is 312 
within 403 observations, or 77.4%. The next 
section B in Table 3 shows the cross-tabulation 
of the empirical y with the prediction log

~y  by the 

regular  logit  model,  where  0 and 1 outputs are  
 
 
 
 
 
 
 
 
 
 

correctly identified 173 and 138 times, with the 
total of correct forecasts equal 311, or 77.2%. 
Section C in this table presents the cross-
tabulation of the empirical y with the prediction 

enty~  by the entropy-logit model, that correctly 

identifies 0 and 1 outputs 167 and 143 times, so 
the total rate of correct forecasts is 310, or 
76.9%. It is interesting to note that both linear 
and entropy-logit models better identify the level 
y=1 of the satisfied customers. The other 
sections D, E, and F of Table 3 compare 
predictions by each two of the three constructed 
models, where again the linear and entropy-logit 
models yield very close counts of 204 and 195 
for 0 and 1 binary outputs, so the total rate of the 
coinciding results equals 99%. 
          The observed results are typical for 
various data sets. They show that all the 
considered models produce results of a similar 
quality. However, while a linear regression 
could yield an output beyond 0-1 interval in its 
prediction, both logistic regressions have the 
same link (1) with the linear aggregate of the 
predictors, so they always yield a probability in 
the 0-1 range. On the other hand, a close 
inspection of the results produced by the 
entropy-logit and linear models suggests a 
possibility to apply techniques developed for the 
linear models to a logistic model in its entropy-
logit formulation. In the work (Lipovetsky and 
Conklin, 2001) the Shapley value regression was 
introduced for estimating the net effects of the 
predictors shares in the linear model. The 
proportionality between the coefficients of linear 
and entropy-logit models (see Table 2) suggests a 
possibility to extend the Shapley value net effects 
technique to the estimation of the contribution of 
the regressors into the linear aggregate (1) of the 
logistic link, and to adjust the coefficients of the 
logistic model using the obtained net effects. 
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Shapley Value Regression 
          A model of linear multiple regression can 
be presented as: 
 
                        εε +=+= bXzy ,              (16)                                               
  
where z is a linear aggregate (2) by the 
parameters b of the linear model , and ε denotes a  
 
 
 
 

 
vector of errors. The Least Squares (LS) 
objective for minimizing is: 
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Minimization of (17) by its parameters yields a 
normal system of equations with the solution: 
 

 
Table 2. Ratios of the models’ coefficients. 

 
Variable Logit to Linear Logit to Entropy-Logit Entropy-Logit to Linear 

x0 11.80 6.78 1.74 

x1 -168.62 116.64 -1.45 

x2 6.19 5.38 1.15 

x3 6.95 6.18 1.12 

x4 8.03 8.25 0.97 

x5 4.62 3.94 1.17 

x6 5.51 4.71 1.17 

x7 10.14 9.07 1.12 

x8 -2.45 -2.04 1.20 

 
 
 

Table 3. Predictive ability of binary models. 
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Substituting (18) into (17) gives a value of LS 
objective in minimum, or residual sum of squares 

εε ′ . The known LS relation y’y = z’z + ε’ε  says 
that the original sum of squares of the dependent 
variable equals the theoretical sum of squares 
around the regression plus residual sum of 
squares. The coefficient of multiple 
determination for the regression is:  
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The minimum of the deviations (17) corresponds 
to the maximum regression quality estimated by 
R2 (19). In the standardized variables the 
coefficient of multiple determination can be 
represented in a convenient form:  
                           

rbbyXXXXyR pair β ′≡′== − ')'(' 12 ,     (20)                            

 
where b is the vector of multiple regression 
coefficients, and bpair is a vector compounded 
from the coefficients of pairwise regressions of y 
by each x. The presentation R2 =β’r in (20) is 
given using a vector β of beta-coefficients of 
multiple regression (the coefficients of the 
standardized regression with all variables 
centered and normalized by their standard 
deviations), and vector r of pair correlations of y 
with each x (those correlations are equal to the 
coefficients in pair regressions by each predictor 
separately). Items of the scalar product at the 
right-hand side of total R2 (20) define the so 
called Net Effects (NEF) of each j-th regressor: 
 
                            NEFj  =  βj rj .                      (21) 
 
The multiple determination and net effects are 
widely used in practice for estimation of the 
regressors’ contribution to the model. 
          Another measure of predictor comparative 
usefulness is utility Uj of each regressor that is 
estimated via the increment of multiple each 
determination of the models with and without 
particular xj in the set of predictors (Darlington, 
1968; Harris, 1975):           
         

                                Uj  =  R2  - R2
-j                 (22)                   

 
Here R2 denotes multiple determination in the 
model with all predictors including xj, and R2

-j 
denotes multiple determination in the model 
without xj .  
          Consider the Shapley Value (SV) 
estimation of predictors’ shares. SV assigns a 
value for each predictor calculated over all 
possible combinations of predictors in the linear 
model, so it includes the competitive influence of 
any subsets of predictors in the analysis. The SV 
is defined as each j-th participant’s input to a 
coalition: 
 

( ) { }( ) ( )[ ]MjMMj
allM

n
SV υυγ −=∑ ∪

                           
 

(23)
 

 
with weights of proportions to enter into a 
coalition M defined as  
 

                
( ) !/)!1(! nmnmM

n
−−=γ . (24) 

 
In (23)-(24) n is the total number of participants, 
m is the number of participants in the M-th 

coalition, and ( )υ  is the characteristic function 

used for estimation of utility for each coalition. 

By { }∪ jM a set of participants which includes 

the j-th participant is denoted, when M means a 
coalition without the j-th participant. In 
regression, the participants of the coalition game 
are predictors incorporated into the model. 
          As indicated above, the coefficient of 
multiple determination (20), net effects (21), and 
utility values (22) can be used as measures of 
quality in regression models. For ease of 
exposition, it is convenient  to use notations A, B, 
C, etc., for variables x1, x2, x3, etc., so R2

ABC , for 
example, defines the multiple determination in 
the model with the corresponding predictors. The 
characteristic function υ  (23) via these R2 values 
are estimated by the results of linear modeling. 
For instance, if  n = 5, the characteristic function 
for variable A is: 
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2
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2

(0) 0,

( ) ,

( ) , ...,

( )

A

AB

ABCDE

A R

AB R

ABCDE R

υ
υ
υ
υ

=
=

=

=

 .  

 
(25) 

 
Substitution of characteristic function (25) into 
the SV (23) shows that each expression in 
brackets (23) coincides with the utility (22). So 
SVA is a measure of the predictor A usefulness 
averaged by all the models that contain this 
predictor. The weights (24) are: 
 

( ) ( ) ( ) ( ) ( ) .033.02,05.031,20.040 ===== γγγγγ                 
 

(26) 
 
Then the SVA (23) for the variable A can be 
written explicitly as: 
 

( ) ( )
( )

( ) ( )

.2 .05

.033

.05 .2

A A AB AC AD AE

ABC ABD ABE ACD ACE ADE

ABCD ABCE ACDE ABDE ABCDE

SV U U U U U

U U U U U U

U U U U U

= + + + +

+ + + + + +

+ + + + +

                      

 
(27) 

with the values of utility (22): 
                    
UA = R2

A , 
UAB = R2

AB - R2
B , ... , 

UABC = R2
ABC - R2

BC , ... , 
UABCD = R2

ABCD - R2
BCD , ... , 

UABCDE = R2
ABCDE - R2

BCDE  . 
(28) 

 
The items in sum (27) correspond to the utility 
margins from the variable A to all coalitions, and 
the SVA is the mean margin over all coalitions. 
Similar formulas are used for each of the other 
variables B, C, D, and E, and their SV define 
margins from each of the predictors. The total of 
margins from all the variables equals the value of 
R2 in the model with all the predictors together: 

( ) .2
ABCDE

n

j
j

RallSV ==∑ υ
                                 

(29) 

The SV are shares of total R2 defining importance 
of each predictor in their aggregate. 
          Regrouping items in (27) with help of (28) 
represents the SV as following: 
 

( )
( )
( )
( )

2 2
1

2 2
* 2

2 2
** 3

2 2 2
*...* 1 ...

/( 1)

/( 2)

/( 3)

/( ( 1)) / .

AA

A

A

A n AB Z

R R n

R R n

R R n

R R n n R n

SV

−

= − −

+ − −

+ − − +

+ − − − +

…

             

(30) 
 
The first item in sum (30) presents a difference of 

2
AR  for the model with one predictor A and mean 

value 2
1R  (marked by bar over R2) for all the 

models with just one predictor (marked by sub-
index 1). In the second item of this sum a 

difference between mean 2
*AR  for all the models 

with two predictors one of which is A (marked by 
sub-index A* with asterisk denoting any other 

variable x) and mean 2
2R  for all the models with 

any two predictors (marked by sub-index 2) is 
shown, etc. 
 The last item presents a share that the 
predictor A has in the total R2 of the model with 
all predictors together. The important feature of 
the formula (30) is the presentation of sequential 
inputs of coalitions of the 1st, 2nd, etc. levels to the 
total SV. If the data is available only on the 
several initial stages of coalitions with one, two, 
and some other subsets of variables, it is possible 
to use (30) for approximation of the partial inputs 
to the total SV. Comparison of such cumulative 
values for each variable allows one to evaluate 
the stability of the SV imputation. This suggests 
an approach for reducing the computation time of 
the SV by limiting evaluation to the number of 
levels where stability is achieved. Each term in 
(30) is constructed via mean values of 
combinations with a predictor and without it, so 
these means can be estimated by sampling 
combinations. 
          The expression (29) presents the 
estimations of the net effects (20)-(21) obtained 
via the SV approach. So in place of the regular 
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net effects one can use decomposition of the 
multiple determination by the SV net effects: 
 
                               R2 = ∑j SVj   .                    (31) 
 
Each item in (31) is a very robust estimate of the 
net effect because SV is an average across all 
possible models with different subsets of 
predictors. These values are not as volatile as the 
regular net effects, and they are not prone to 
multicollinearity. In difference to regular net 
effects (21), the SV net effects (31) are always 
positive, so they are interpretable and suggest an 
easy way for graphical (pie-charts) presentation 
of predictors’ shares in their contribution to the 
linear aggregate of the model. 
          When the SV net effects are found, they 
can be used for adjusting the coefficients in the 
linear aggregate, that can be performed by the 
following procedure. The objective of multiple 
determination can be presented using (17) and 
(19) as:  
 

2 1

1 ( ) ( )

2

(2 )

R

y X y X

X y X X

r S

ε ε
β β

β β β
β β

′= −
′= − − −

′ ′ ′ ′= −
′= −

, 

(32) 
 
where the standardized beta-coefficients are used, 
and S denotes a matrix of predictors’ correlations. 
Equalizing items in sums (31) and (32) yields a 
system of quadratic equations that can be used for 
finding the coefficients of regression adjusted by 
the SV net effects:   
 
        njSVSr jjj ...,,1,)2( ==− ββ .     (33) 

 
Solution of the system (33) can be achieved by 
minimizing the objective: 

 

( )∑
=

−−=
n

j
jjj SVSrF

1

2)2( ββ . (34)                                       

Initial value for the parameters in minimization 
(34) can be taken as jjj rSV /=β  obtained from 

(21) where the SV net effects are used. Having 
the adjusted beta-coefficients of the standardized 

regression, one returns to the coefficients of the 
original regression (16) by the regular 
transformation jyjjb σσβ /= , where yσ  and 

jσ  are the standard deviations of the dependent 

and the independent variables. 
          Using the obtained coefficients b of the 
adjusted SV regression (34) and the property of 
approximate proportion between the coefficients 
of the entropy-logit and linear models (see Table 
2), it is possible to use a proportionality: 
 
                       njbka jj ...,,1, == ,         (35)                   

 
with a constant k between the coefficients ja  of 

the logistic model and the SV regression 
coefficients jb  for all the predictors. Then, the 

logistic aggregate (2) can be presented as a linear 
transformation  
 

                               SV
lini ykqz ~+=                (36)                     

 

of the vector SV
liny~  of theoretical estimation of the 

dependent variable by the adjusted SV model 
(34), with q and k as unknown parameters. The 
parameters of the transformation (36) can be 
found by a simple logistic model with only one 

variable SV
liny~ : 

 

                   ( ))~(exp1

1
SV
linykq

p
+−+

= ,     (37) 

 
using the original data on the binary output.  
         Table 4 in its left-hand side presents 
some additional estimates for the linear 
regression – there are columns of the net effects 
(21), their shares in the total coefficient of 
multiple determination (20), the SV net effects 
(31), and their shares in the same R2. The last 
predictor in the linear regression has negative 
sign in the model (see Table 1), and its net effect 
is negative in Table 4. Estimated by SV, the net 
effects are all positive, so all the predictors 
contribute to the model, as it should be expected 
because any additional variable increases the 
quality of data fitting. Shares of the SV net 
effects are rather substantial even for the 
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variables x1, x4, x6, and x8 (considered as 
unimportant by the previous model – see the 
discussion by Table 1).  
 The right-hand section of Table 4 
presents the results of the adjusted SV 
regressions. Procedure (34) yields the adjusted 
SV regression with all positive predictor 
coefficients, positive net effects, and R2 =0.313 
that is slightly less than R2 =0.324 of the regular 
regression – this is a price of the trade-off for the 
adjusted model with interpretable coefficients and 
positive net  effects. Although the  coefficients of 
 
 
 
 

 
 
 
 
 

the regular and adjusted linear regressions are 
rather different, the SV net effect shares by the 
regular linear and the adjusted linear models are 
very similar. They can be used as the estimates 
of the variables role in increasing the clients’ 
satisfaction with the bank’s mortgage products. 

The last column in Table 4 presents the 
logistic model constructed by the procedure 
(35)-(37). At first a vector 

821 019....024.015.~ xxxy SV
lin +++=  of the 

aggregate  with  the   coefficients of the adjusted  
 
 
 
 

 

 
Table 4. Net Effects, Shapley Value, Adjusted SV Linear and Logistic Models. 

 
 
 

Linear regression  Adjusted SV regressions 

Variable 

Net 

Effect 

Share 

% 

SV net 

effect 

Share 

SV %  

Linear 

model 

Net  

Share % 

Logistic 

model 

x0      -0.943  -9.683 

x1 0.000 0.1 0.025 7.7  0.015 7.5 0.099 

x2 0.070 21.6 0.049 15.1  0.024 15.3 0.160 

x3 0.117 36.2 0.077 23.8  0.030 24.2 0.197 

x4 0.017 5.3 0.045 14.0  0.020 14.1 0.129 

x5 0.060 18.6 0.050 15.5  0.020 15.7 0.134 

x6 0.028 8.7 0.026 8.1  0.022 7.9 0.145 

x7 0.041 12.8 0.030 9.3  0.027 9.1 0.181 

x8 -0.010 -3.2 0.021 6.6  0.019 6.2 0.126 

R2 0.324 100.0 0.324 100.0  0.313 100 0.313 
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SV linear model is constructed. Then the 
parameters of the logistic model (37) are 
estimated as q = -9.683 and k = 6.617, and by 
(35) the   coefficients of the adjusted SV logistic 
model are obtained (the last column in Table 4). 
In this model all the coefficients are positive, 
and the shares of the predictor contributions 
coincide with the net effect shares (Table 4, the 
column before the last one) because the 
proportionality of the coefficients (35) does not 
change the shares of the net effect (20)-(21). 
 The predictive ability of the SV logistic 
model in comparison with several others is 
presented in Table 5. There are cross-sections of 

the binary output SVy log
~  of the SV logistic model 

with the empirical outcome y, and with the 
predictions liny~ , log

~y , and enty~  by the linear, 

regular logit, and entropy-logit models, 
respectively. 
 Section A of Table 5 shows that the SV 
logistic correctly predicts (169+135)/403 or 
75.4% of the original binary data. By Table 3, the 
rate of the correct identifications by the models 
with the coefficients non-adjusted to 
multicollinearity was about 77%. The next cross-
sections in Table 5 show that the SV logit 
predictions coincides with the other models’ 
predictions at the total rate of 95%. Thus, the 
adjusted SV logit model has both high predictive 
rate and interpretable coefficients of the model.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
So the management of the bank can elaborate an 
appropriate   program  for  improving  the  clients 
service based on the results of the adjusted SV 
logistic model. 

 
Conclusion 

 
The entropy criterion applied to the binary 
response data with the logistic link yields a 
logistic model with the coefficients proportional 
to the linear regression, and with the predictive 
ability similar to both linear and regular logistic 
models. Using the properties of the entropy-
logistic regression, the Shapley value net effects 
are applied for estimating the contributions of 
the predictors in the logistic model, and for 
adjusting the coefficient of regression itself. The 
Shapley value logistic regression is robust, has 
interpretable coefficients, and demonstrates a 
high rate of predictive ability. The partnership of 
the entropy-logistic approach and the Shapley 
value binary response regressions can enrich 
theoretical possibilities and serve as a useful tool 
for categorical data modeling in practical 
applications.  
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