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Despite recent publications exploring model complexity with modern regression methods, their 
dimensionality is rarely quantified in practice and the distributions of related test statistics are not well 
characterized. Through a simulation study, we describe the null distribution of the likelihood ratio statistic for 
several different feed-forward neural network models. 
 
Key words: degrees of freedom, model complexity, chi-square distribution. 
 

Introduction 
 
Neural networks have become a popular 
regression method for classification and prediction 
of high-dimensional and/or highly non-linear data 
(Ripley, 1994). Their appeal in such circumstances 
is due to their implicitly non-linear model 
structure, which does not require the user to 
explicitly define the presence, or degree, of 
interactions and non-linear terms, and subsequent 
ability to universally approximate any function 
(Ripley, 1996). In cases where complex models 
are needed to fit the underlying associations, but 
the nature of those associations is not well 
understood, neural networks are hypothesized to 
offer a more effective approach to classification. 
Other consequences of this implicit non-linearity, 
however, are 1) the propensity of neural networks 
to over-fit the training data, and 2) the inability to 
equate the number of model parameters with the 
effective model dimension. 
 
 
Douglas Landsittel (landsittel@upci.pitt.edu) is 
Research Assistant Professor, Biostatistics Dept., 
University of Pittsburgh, and Statistician, 
Pittsburgh Cancer Institute. Harshinder Singh 
(his6@cdc.gov) is Research Professor, Statistics 
Department, West Virginia University, and Senior 
Researcher, Biostatistics Branch, NIOSH/HELD. 
Vincent C. Arena (arena@pitt.edu) and Stewart 
Anderson (andersons@nsapb.pitt.edu) are 
Associate Professor, Biostatistics Department, 
University of Pittsburgh. 

Other studies have rigorously investigated 
the issue of model complexity, both specifically 
for neural networks, and more generally for non-
parametric and non-linear regression models. 
Hastie and Tibshirani (1990), and Loader (1999) 
calculated degrees of freedom for scatterplot 
smoothers, local regression, and other 
nonparametric models using the trace of the hat 
matrix. For more complex models or model 
selection procedures, where the hat matrix cannot 
be explicitly specified, Ye (1998) proposes the 
generalized degrees of freedom, which estimates 
the hat matrix diagonal based on the sensitivity of 
fitted values to changes in observed response 
values. Hodges and Sargent (2001) extended 
degrees of freedom to random effects, hierarchical 
models, and other regression methods (and show a 
connection to Hastie & Tibshirani, 1990; and Ye, 
1998) using a re-parameterization of the trace of 
the hat matrix.  

More specific to neural networks, Moody 
(1992) and others (Ripley, 1995; Liu, 1995; Amari 
& Murata, 1993; Murata, Yoshizawa, & Amari, 
1991) calculated the effective number of model 
parameters based on approximating the test set 
error as a function of the training set error plus 
model complexity. Other methods (as summarized 
by Ripley, 1996; and Tetko, Villa, & Livingstone, 
1996) include cross-validation, and eliminating 
variables based on small (absolute) parameter 
values, or variables with a small effect on 
predicted values (i.e. sensitivity methods). 
Bayesian approaches have also been proposed 
(Ripley, 1995; Ripley, 1996; Paige & Butler, 
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2001) for model selection with neural networks. 
Implementation of such methods, however, has 
been limited by either computational issues, 
dependence on the specified test set, or lack of 
distributional theory.  

To our knowledge, no previous studies 
have directly investigated the distribution of the 
likelihood ratio statistic with neural networks. In 
this study, simulations are conducted to 
empirically describe the distribution of the 
likelihood ratio statistic under the null assumption 
of the intercept model (versus the alternative of at 
least one non-zero covariate parameter). All 
simulations are conducted with a single binary 
response; in contrast, the previously cited 
literature primarily focuses on continuous 
outcomes. In cases where the likelihood ratio can 
be adequately approximated by a chi-square 
distribution, the degrees of freedom can be used to 
quantify neural network model complexity under 
the null. Derivation of the test statistic null 
distribution is pursued through simulation 
approaches, rather than theoretical derivations, 
because of the complexity of the network response 
function and the lack of maximum likelihood or 
other globally optimal estimation. 

The two main objectives of this simulation 
study are to 1) verify that the chi-square 
distribution provides an adequate approximation to 
the empirical test statistic distribution in a limited 
number of simulated cases, both for the test of 
independence and tests of nested models, and 2) 
quantify how the distribution and number of 
covariates, and the number of hidden units affects 
model degrees of freedom. Adequacy of the chi-
square approximation will be judged by how close 
the α -level based on the simulation distribution 
(i.e. the percent of the test statistic distribution 
greater than the corresponding chi-square quantile) 
is to various percentiles of the chi-square 
distribution. The variance, which should be 
approximately twice the mean under a chi-square 
distribution, is also displayed for each simulation 
condition. 
 

Methodology 
 
A Feed-Forward Neural Network Model 
 This study is restricted to feed-forward 
models, which are the most common type of 
neural networks implemented in classification of 

single dichotomous outcomes. We assume that y 
follows a Bernoulli distribution; x-values can 
follow any distribution, but are scaled to the 
interval [0,1] before fitting the model. Without 
doing so, the initial weights of the network would 
have to account for differences in magnitude, as 
would the process of weight decay (described 
later).  

The predicted value, ŷ , for the kth 
observation, with covariate values (or inputs) 
xk 1 2( , ,..., )k k pkx x x= , is given by  
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referred to as the jth hidden unit. The predicted 
response of the neural network is calculated as a 
linear combination of these hidden unit values; the 
parameters 0 1, ,..., Hv v v  are referred to as the 
connections between the hidden and output layer. 
Each set of parameters 1 2, ,...,j j jpw w w  then 
represents the weights of the p covariate values 
specific to the jth hidden unit, or the connections 
between the input and hidden layer. One 
implication of this non-linear model structure is 
that none of the parameter values directly 
corresponds to any specific main effect or 
interaction. 
 Model fitting is typically accomplished 
through the procedure of back-propagation 
(Rumelhart, et al., 1995), where model parameters 
are iteratively updated using a gradient descent-
based algorithm. We used the nnet function by 
Ripley in S-Plus (Venables & Ripley, 1997) to fit 
all neural network models in this study. The error 
criteria for dichotomous outcomes, namely 
minimization of 
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with respect to the parameters of interest is 
equivalent to finding global maxima of the 
corresponding likelihood function. 
 This study also incorporated weight decay, 
which is almost universally used to improve 
optimization and generalization. Rather than 
minimizing E in Equation 2, the fitting algorithm 
is applied to minimize 
 

2 2

1 1

[ ],
pH

j ji
j i

E v wλ
= =

+ +∑∑           (3) 

 
and thus penalize the network for large parameter 
values. To determine the magnitude of λ  for 
dichotomous outcomes, Ripley (1996) 
recommended exploration in the range of 
[0.001,0.1], which is based on Bayesian arguments 
and the range of the logistic function. For this 
study, we utilized λ  = 0.01 for most simulations; 
additional simulations were also conducted with 
λ  = 0.10. 
 
Likelihood Ratio Test of Independence 
 The likelihood ratio statistic for testing 
model independence with neural networks 
corresponds to the usual expression from logistic 
regression,  
 

1
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where 1
1

n

k
k

n y
=

= ∑ , 0 1n n n= − , and ˆky  is 

calculated from Equation 1 (Cox & Snell, 1989). 
As opposed to the logistic model, however, the ˆky  
do not typically represent the maximum likelihood 
estimates, rather they represent only locally 
optimal parameter values. A primary aim of this 
study will therefore be to assess the adequacy of 
the chi-square distribution for approximating the 
null distribution of likelihood ratio test (of model 
independence) with neural networks. 

This study will also investigate the null 
test statistic distribution for differences between 
nested models. Denoting DR and DF as the 

likelihood ratio statistics for model independence 
of the reduced and full models, respectively, DF – 
DR gives the usual likelihood ratio test for 
significance of the covariates in the full but not the 
reduced model. 
 
A Simulation Study 
 To investigate the null distribution (i.e. 
under the intercept model) of the likelihood ratio 
statistic (Equation 3), we simulated random data 
with the following characteristics. Covariate 
values {xik} were simulated with n = 2,000 
observations and between two and five covariates. 
Covariates and a single binary outcome were first 
randomly generated from a Bernoulli distribution 
with Pr[xik=1] = 0.5 and Pr[yk=1] = 0.5. The first 
two covariates, x1 and x2, were simulated with 75 
percent concordance, i.e. Pr[x2k=1| x1k=1] = 0.75 
and Pr[x2k=0| x1k=0] = 0.75; all other Bernoulli 
covariates were independently generated. 
Covariates were then generated from a standard 
normal distribution with a correlation of 0.50 
between x11 and x12; all other normal covariates 
were independently generated. All simulations 
included the two correlated (either Bernoulli or 
standard normal) variables and 0 to 3 independent 
covariates. Neural network models with 2, 5, and 
10 hidden units were fit to the simulated data. 
Model fitting incorporated weight decay (λ = 0.01 
or 0.10) (as previously-described).  

Means and variances of the simulated 
likelihood ratio statistics, Ds, are displayed for 
each simulation condition. Each simulated 
distribution (for a given number of inputs and 
hidden units) was then associated with the chi-
square distribution having degrees of freedom 
equal to the mean (simulated) likelihood ratio 
( D ). Simulated α -levels ( ( )S

qα ) were then 
defined as the percentage of simulated values 
greater than qth percentile of the corresponding 
chi-square distribution. For instance, the nominal 
α -level for the simulated distribution is given by 

 
 ( ) 2

0.05 0.05[ ( )]S P D Dα χ= ≥ .    (5) 
 
Simulated α -levels will then be compared to the 
chi-square percentiles at significance levels of 
0.75, 0.50, 0.25, 0.10, and 0.05. Q-Q plots will 
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also be presented to quantify agreement with the 
appropriate chi-square distribution. 
 

Results 
 

Simulations were first conducted to investigate the 
null distribution of the likelihood ratio for testing 
model independence with strictly binary input 
variables (Table 1, following page). Results 
indicate reasonable agreement between the 
simulated α -levels and the corresponding 
percentiles of the chi-square distribution. The 
average simulated α -levels, across the 12 
conditions, were all within 0.02 of the expected 
values. Individually, none of the simulated α -
levels varied more than 0.04 from the 
corresponding chi-square percentile. Based on this 
correspondence between the simulated results and 
the chi-square distribution, the mean likelihood 
ratio can be interpreted as model degrees of 
freedom.  

The Q-Q plot of the likelihood ratio 
statistic (for testing model independence) with 5 
binary inputs and 10 hidden units is displayed in 
Figure 1, which is generally representative of the 
other Q-Q plots. The diagonal line through x = y 
represents perfect agreement between the two 
distributions. The somewhat greater than expected 
test statistic variance (66.8 as opposed to twice the 
mean, which is 57.6) is evidenced by larger values 
of the statistic at the upper end of the distribution; 
slightly lower test statistic values were observed at 
the lower end of the distribution. This deviation in 
the variance, however, led to only slightly liberal 
α -levels. 

The degrees of freedom varied between 
approximately 3 for 2 binary inputs, to almost 30 
for five binary inputs (with 10 hidden units). The 
number of hidden units seemed to have a greater 
effect on the resulting degrees of freedom with 5 
inputs than with 2-4 inputs. The model with 5 
inputs and 10 hidden units had nearly twice the 
degrees of freedom as the model with 5 inputs and 
2 hidden units. 

Table 2 (next page) displays simulation 
results for comparing the reduced model with 
between 2 and 4 binary covariates to the full 
model with all 5 binary covariates. The reduced 
models were specified by removing x5 to x3 in 
reverse order. For instance, a model reduced to 3 

covariates, {x1, x2, x3}, would be compared to the 
full model with all 5 covariates. 

Likelihood Ratio
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Figure 1. Q-Q Plot of the Likelihood Ratio with 5 
Binary Covariates and 10 Hidden Units 

 
The average simulated α -levels, across 

the 12 conditions, were all within 0.02 of the 
expected values. With one exception (2 hidden 
units and 4 inputs in the reduced model), none of 
the simulated α -levels individually varied more 
than 0.04 from the corresponding chi-square 
percentile, and most simulated results were within 
0.02 of the chi-square percentile.  

The degrees of freedom varied between 
approximately 5 when adding 1 binary input to the 
reduced model with 4 inputs (and 2 hidden units), 
to 26 when adding 3 binary inputs to the reduced 
model with 2 inputs (and 10 hidden units). The 
number of hidden units seemed to have a greater 
effect on the resulting degrees of freedom using 
the reduced model with 4 inputs. Testing the 
addition of a single binary input to the reduced 
model with 4 inputs equated to 15 degrees of 
freedom with 10 hidden units, as opposed to 5 
degrees of freedom with 2 hidden units. 

Table 3 (following page) presents simulation 
results for the case of standard normal covariates. 
Results again indicated reasonable agreement between 
the simulated α -levels and the corresponding 
percentiles of the chi-square distribution. The average 
simulated α -levels, across the 12 conditions, were all 
within 0.02 of the expected values. Individually, all of 
the simulated α -levels were within approximately 0.05 
of the corresponding chi-square percentile plot in 
Figure 1 was also generally representative of the Q-Q 
plots for testing nested models.
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Table 1. Likelihood Ratio Statistic for Model Independence with Binary Inputs 

 Hidden Likelihood Ratio Simulated "-levels 
Inputs Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 2 2.8 6.2 0.715 0.535 0.245 0.090 0.055 
 5 2.8 6.1 0.720 0.530 0.240 0.085 0.050 
 10 2.8 6.1 0.720 0.530 0.240 0.085 0.050 
3 2 5.9 13.5 0.700 0.480 0.285 0.120 0.060 
 5 6.2 14.3 0.710 0.485 0.270 0.095 0.060 
 10 6.3 14.3 0.710 0.480 0.270 0.100 0.060 
4 2 10.5 22.6 0.730 0.495 0.265 0.105 0.040 
 5 13.7 34.4 0.735 0.490 0.245 0.105 0.070 
 10 13.8 34.5 0.740 0.490 0.245 0.105 0.070 
5 2 15.6 33.3 0.750 0.520 0.235 0.125 0.080 
 5 27.4 61.7 0.755 0.475 0.240 0.115 0.065 
 10 28.8 66.8 0.740 0.490 0.265 0.125 0.065 

Mean Simulated α -levels 0.727 0.500 0.254 0.105 0.060 

Table 2. Likelihood Ratio Statistic for Nested Models with Binary Inputs 

Reduced Hidden Likelihood Ratio Simulated "-levels 

Model Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 inputs 2 12.8 26.1 0.760 0.515 0.240 0.105 0.065 
 5 24.6 51.7 0.755 0.490 0.240 0.105 0.070 
 10 26.0 56.4 0.750 0.455 0.265 0.110 0.085 
3 inputs 2 9.7 23.2 0.750 0.500 0.285 0.110 0.060 
 5 21.2 43.6 0.755 0.475 0.255 0.105 0.070 
 10 22.6 47.5 0.745 0.490 0.265 0.100 0.075 
4 inputs 2 5.1 18.1 0.695 0.535 0.305 0.145 0.090 
 5 13.7 26.3 0.750 0.490 0.240 0.095 0.055 
 10 15.1 28.2 0.750 0.495 0.250 0.090 0.050 

Mean Simulated α -levels 0.746 0.494 0.261 0.107 0.069 
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Table 3. Likelihood Ratio Statistic for Model Independence with Standard Normal Inputs 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 Hidden Likelihood Ratio Simulated "-levels 
Inputs Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 2 9.1 19.3 0.750 0.540 0.290 0.105 0.045 
 5 21.8 50.8 0.735 0.500 0.270 0.100 0.045 
 10 39.4 101.3 0.725 0.540 0.280 0.135 0.040 
3 2 13.8 24.2 0.765 0.555 0.250 0.085 0.030 
 5 34.9 65.6 0.760 0.505 0.270 0.095 0.040 
 10 69.4 133.7 0.755 0.540 0.250 0.075 0.025 
4 2 19.1 31.0 0.795 0.520 0.250 0.085 0.040 
 5 47.5 84.7 0.775 0.525 0.255 0.075 0.045 
 10 100.4 158.1 0.800 0.530 0.220 0.075 0.030 
5 2 23.5 49.6 0.765 0.495 0.240 0.110 0.045 
 5 61.3 110.9 0.775 0.495 0.225 0.095 0.025 
 10 128.5 206.4 0.780 0.520 0.205 0.085 0.025 

Mean Simulated α -levels 0.765 0.522 0.250 0.093 0.036 

Table 4. Likelihood Ratio Statistic for Nested Models with Standard Normal Inputs 

Reduced Hidden Likelihood Ratio Simulated "-levels 
Model Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 inputs 2 14.4 54.1 0.705 0.510 0.315 0.150 0.090 
 5 39.5 150.3 0.705 0.540 0.320 0.155 0.085 
 10 88.1 262.5 0.710 0.505 0.300 0.140 0.100 
3 inputs 2 9.7 52.5 0.660 0.510 0.340 0.215 0.135 
 5 26.4 135.8 0.685 0.515 0.340 0.210 0.145 
 10 58.1 266.0 0.665 0.505 0.355 0.230 0.130 
4 inputs 2 4.4 56.6 0.605 0.515 0.400 0.245 0.195 
 5 13.8 152.8 0.615 0.535 0.350 0.260 0.205 
 10 27.1 260.3 0.630 0.500 0.385 0.270 0.230 

Mean Simulated α -levels 0.664 0.515 0.345 0.208 0.146 
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The degrees of freedom varied between 

approximately 9 for 2 binary inputs (with 2 hidden 
units), to 128 for five binary inputs (with 10 
hidden units). The number of hidden units greatly 
affected the resulting degrees of freedom for all 
simulated cases. The model with 5 hidden units 
corresponded to approximately twice the degrees 
of freedom as the model with 2 hidden units, and 
half the degrees of freedom as the model with 10 
hidden units. 

The Q-Q plot of the likelihood ratio 
statistic (for testing model independence) with 5 
standard normal inputs and 10 hidden units is 
displayed in Figure 2. It is generally representative 
of the other Q-Q plots. The somewhat lesser than 
expected test statistic variance (206.4 as opposed 
to twice the mean, which is 257.0) is evidenced by 
smaller values of the statistic at the upper end of 
the distribution. The nominal α -level were 
subsequently somewhat conservative. 
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Figure 2. Q-Q Plot of the Likelihood Ratio with 5 
Standard Normal Covariates and 10 Hidden Units 
 

Table 4 (previous page) displays 
simulation results for comparing the reduced 
model with between 2 and 4 standard normal 
covariates to the full model with all 5 standard 
normal covariates. These results, as opposed to 
previous simulations, do not reflect 
correspondence to a chi-square distribution. The 
simulated distributions for testing nested models 
with continuous covariates are far more skewed; 
the variance was often 4 or more times greater 
than the mean (in contrast to the expected 1:2 
mean-variance ratio). On average, across the 12 
conditions, the difference between simulated α -
levels and chi-square percentiles was 
approximately 10 percent. 

Table 5. Likelihood Ratio Statistic for Nested Models with Standard Normal Inputs and Weight Decay of 0.10 

Reduced Hidden Likelihood Ratio Simulated "-levels 
Model Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 inputs 2 10.8 21.6 0.780 0.550 0.235 0.120 0.060 
 5 35.2 95.1 0.710 0.495 0.255 0.160 0.090 
 10 73.0 158.5 0.725 0.525 0.255 0.125 0.060 
3 inputs 2 7.5 20.1 0.745 0.520 0.280 0.105 0.075 
 5 24.1 94.5 0.695 0.500 0.315 0.185 0.120 
 10 51.9 181.0 0.695 0.520 0.305 0.165 0.090 
4 inputs 2 4.1 21.3 0.585 0.450 0.365 0.210 0.130 
 5 12.3 72.9 0.655 0.515 0.380 0.210 0.135 
 10 25.6 134.6 0.675 0.520 0.350 0.240 0.140 

Mean Simulated α -levels 0.696 0.511 0.304 0.169 0.100 
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To address the substantial discrepancies in 
Table 4, simulations were rerun using a weight 
decay of 0.10. Results in Table 5 show a slightly 
better correspondence to the chi-square 
distribution under some conditions, but still reflect 
far greater variability in the test statistic, and 
subsequently large differences from the chi-square 
percentiles. The nominal 0.05 α -level, for 
instance, was between 0.06 and 0.09 for testing the 
reduced model with 2 standard normal covariates, 
but was at least 13 percent for testing the reduced 
model with 4 covariates. 
 

Conclusion 
 
The chi-square distribution appears to provide an 
adequate approximation to the null distribution 
(assuming no association between covariates and 
response) for likelihood ratio tests of 
independence with feed-forward neural networks. 
Tests between nested models are approximately 
chi-square for strictly binary inputs, but not for 
standard normal covariates. Apart from 
significance testing, one contribution of these 
simulations is to quantify the model complexity 
(under the null) for various neural network 
models. Although the implicitly non-linear nature 
of neural networks is commonly known, 
specifically quantifying the effective number of 
model parameters remains a difficult task. 
 These simulations illustrate that even a 
neural network with only 5 strictly binary inputs 
(and ten hidden units) can implicitly fit nearly 29 
degrees of freedom. Testing the significance of a 
single binary input, against the reduced model 
with 4 binary inputs, equates to approximately 15 
degrees of freedom. Neural networks with 
continuous covariates resulted in even greater 
model complexity; the neural network with 5 
standard normal covariates and 10 hidden units 
equated to approximately 129 degrees of freedom. 

The degrees of freedom with strictly 
binary inputs can be conceptualized as the number 
of main effects and interaction terms fit by the 
neural network model; other non-linear functions 
of a binary term are still 0 or 1, and therefore not 
relevant. In a related technical report (Landsittel, 
et al., 2002a), we explored these same models (of 
strictly binary data) using globally optimal 
parameter estimates; numerous initial weights 
were implemented to conduct a grid search of the 

likelihood surface.  In that study, the degrees of 
freedom was equal to the number of covariate 
patterns minus one for the intercept (i.e. 2p-1, 
where p is the number of parameters) given a 
sufficient number of hidden units. For simulations 
where there was an insufficient number of model 
parameters to fit the saturated model (i.e. the 
number of parameters was less than 2p-1), the 
degrees of freedom was greater than the number of 
model parameters, but less than the number of 
covariate patterns. In the current study, based on 
the usual algorithm which picks only one 
randomly chosen set of initial parameters, the 
degrees of freedom was always less than the 
number of covariate patterns. For instance, 2 
binary inputs equates to 2 main effects and 1 
interaction term yielding 3 degrees of freedom. 
The simulated degrees of freedom subsequently 
equaled 3.0 in the previously-described technical 
report (based on globally optimal models), and 
was slightly less, at 2.8, in this current study.  

The neural network models with standard 
normal covariates implicitly fit not only main 
effects and interactions, but also an indeterminate 
number of non-linear terms (of an indeterminate 
nature). This is evidenced by the greater degrees 
of freedom associated with standard normal 
covariates (i.e. Table 3 versus Table 1). Consider, 
for instance, the Taylor series expansion (using the 
first q terms) of the neural network response 
function for the kth observation with a single 
continuous covariate. 
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No clear correspondence can be derived between 
the number of parameters and the number of 
implicitly fit non-linear terms. This approximation 
underscores both the implicitly nonlinear structure 
and the lack of interpretable coefficients. Each 
expansion term is a function of multiple network 
parameters and, with the exception of v0 (the 
hidden layer intercept term), each network 
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parameter is involved in calculating multiple 
expansion terms. 
 The results of this simulation reflect the 
unpredictable nature of model complexity with 
neural networks. The degrees of freedom varies 
both according to the number of input variables 
and the distribution of these covariates, as well as 
the number of hidden units. Furthermore, the 
degrees of freedom will also depend significantly 
on other issues not investigated here, such as the 
underlying association (all simulations here were 
under the null), use of additional training 
modifications (e.g. model averaging or early 
stopping of training based on a test set), and 
further variations in the covariate distributions. 
This would imply that, from these simulations, we 
can still only specify the appropriate degrees of 
freedom in very limited cases. 

To address this limitation, we are 
currently investigating an explicit approach to 
calculate degrees of freedom with neural networks 
and dichotomous outcomes. The approach is based 
on a simple modification to Ye’s (1998) procedure 
for generalized degrees of freedom in the 
continuous case. The resulting measure for a 
binary outcome corresponds to Fay’s range of 
influence (ROI) statistic for logistic regression. In 
a recent commentary (Landsittel, et al., 2002), we 
empirically show that Fay’s ROI statistic 
asymptotically corresponds to the hat matrix 
diagonal, and therefore (the sum of these ROI 
statistics) provides a potential measure of degrees 
of freedom. Additional simulations will focus on 
connecting this statistic to the mean likelihood 
ratio over simulated distributions with neural 
networks. 

In addition to the methods employed here, 
numerous other training modifications, such as 
committees of networks, or early stopping of 
training based a test set, are frequently used and do 
affect model complexity. Additional simulations 
(not shown here) indicated that neither network 
committees nor early stopping lead to 
correspondence with a chi-square distribution. 
Greater values of weight decay, or other 
modifications to model fitting, may lead to a better 
correspondence with chi-square percentiles in the 
case of testing nested models with standard normal 
covariates. In addition to slight improvement of 
the chi-square approximation, increasing the 
weight decay tends to reduce the mean likelihood 

ratio implicitly fit under the null. Further 
variations on neural network models, such as other 
covariate distributions, will likely effect the model 
complexity in an unpredictable manner. These 
issues can be better explored once an explicit 
measure is derived for calculating degrees of 
freedom with a binary outcome. 
 Although other methods exist for 
inference and quantifying model complexity with 
neural networks, these approaches are not widely 
implemented because of associated computational 
issues (see Introduction). Use of the likelihood 
ratio statistic provides a more widely utilized 
approach, which is easily calculated from the 
observed and predicted response values (using 
common statistical programs such as S-Plus). 
Results of this approach can also be easily 
interpreted by applied researchers.  
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