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Type I Error Rates of the Kenward-Roger Adjusted Degree of Freedom F-test for a 
Split-Plot Design with Missing Values 

 
Miguel A. Padilla           James Algina 

                         University of Alabama at Birmingham   University of Florida 
 
 
The Type I error rate of the Kenward-Roger (KR) test, implemented by PROC MIXED in SAS, was 
assessed through a simulation study for a one between- and one within-subjects factor split-plot design 
with ignorable missing values and covariance heterogeneity. The KR test controlled the Type I error well 
under all of the simulation factors, with all estimated Type I error rates between .040 and .075. The best 
control was for testing the between-subjects main effect (error rates between .041 and .057) and the worst 
control was for the between-by-within interaction (.040 to .075). The simulated factors had very small 
effects on the Type I error rates, with simple effects in two-way tables no larger than .01. 
 
Key words: Missing values, Kenward-Roger F-test, robustness, mixed models, split-plot design. 
 
 

Introduction 
 
According to Keselman et al. (1998), one of the 
most commonly used designs in educational and 
psychological research is the split-plot design, a 
design which includes both between-subjects 
and within-subjects factors. Responses on the 
within-subjects factor are obtained by repeatedly 
measuring each participant in the study. The 
repeated measures might be obtained at different 
points in time or under different treatments. 
Unfortunately, data collected in split-plot 
designs can be incomplete for a variety of 
reasons. Consider participants who drop out of a 
longitudinal study because of illness or death, 
refuse to answer questions on a survey because 
of its length or the sensitivity of the questions, or 
are unable to answer questions on a performance 
assessment test because of time constraints or 
lack of ability. Each results in missing values. 
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Little and Rubin (2002, p. 12) and Rubin 

(1976) defined three types of missing data 
mechanisms. The missing data mechanisms, 
ordered from most restrictive to least restrictive 
in terms of assumptions made about the process 
that leads to the missing data, are missing 
completely at random (MCAR), missing at 
random (MAR), and not missing at random 
(NMAR). Generally, the NMAR missing data 
condition constitutes any missing data condition 
that is not MCAR or MAR. Let ( )| , ,i i if r y X ψ  
denote the distribution of the missing data 
indicators for participant i, where ri is a K × 1 
vector whose elements are zero for missing and 
one for observed in the corresponding elements 
of the K × 1 vector of repeated variables yi, Xi is 
the design matrix for the factors, and ψ contains 
the parameters for the relationship of ri to yi and 
Xi. 

Data are MCAR if 
( ) ( )| , , | ,i i i i if f=r y X r Xψ ψ , that is, if the 

distribution of the missing data indicators does 
not depend on the repeated measures. The yi 

vector can be partitioned as [ ]i io im
′′ ′=y y y  

where yio contains the repeated measures 
variables on which participant i has observed 
scores and yim contains the repeated measures 
variables on which participant i has missing 
scores. If ( ) ( )| , , | , ,i i i i io if f=r y X r y Xψ ψ , 
that is, the missing data indicator does not 
depend on the variables of which participant i 
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has missing scores, then the data are MAR. 
The distribution of yi can be written as 

( )| ,i if y X θ , where θ contains the main effect 
and interaction parameters as well as the 
parameters for the covariance matrix for the 
repeated measures. A general method for 
consistent maximum likelihood (ML) estimation 
of θ is obtained by including both the observed 
scores on the repeated measures and the missing 
data indicators, as well as θ and ψ, in the 
likelihood.  However, Rubin (1976) showed that 
if the missing data mechanism is MCAR or 
MAR and if the parameters ψ and θ are disjoint, 
ML estimators of the θ parameters are consistent 
when the missing data indicators and ψ are 
excluded from the data analysis.  

Excluding the missing data indicators 
and ψ is referred to as ignoring the missing data 
mechanism. Thus, the MCAR or MAR missing 
data mechanisms are ignorable for purposes of 
ML estimation. If the data are MCAR, both 
listwise deletion and ML ignoring the missing 
data mechanism will produce consistent 
estimators, but the ML estimators will be more 
accurate because they use all of the available 
data. Rubin (1976) also showed that the MCAR 
missing data mechanism is ignorable for 
sampling distribution based inference 
procedures such as hypothesis tests and 
confidence intervals. So, if the data are MCAR, 
either listwise deletion or ML ignoring the 
missing data mechanism can be used for 
inference, but ML will result in more powerful 
tests and narrower confidence intervals because 
it does not delete the observed data for 
participants with some missing values. 

When ML estimation is used, whether 
the MAR missing data mechanism is ignorable 
for sampling distribution based inference 
depends on how the sampling covariance matrix 
is calculated. The MAR missing data mechanism 
is ignorable for sampling distribution based 
inferences on the means if the sampling 
covariance matrix is estimated from the 
observed information matrix for the means and 
the covariance parameter estimates, but not if 
the matrix is estimated from the portion of the 
observed information matrix that pertains only 
to the means (Kenward & Molenberghs, 1998).  

The MAR mechanism may not be 
ignorable for sampling distribution based 
inferences if the sampling covariance matrix is 
estimated from the expected information matrix. 
If the expected information matrix is used, it 
must take into account the actual sampling 
process implied by the MAR mechanism 
(Kenward & Molenberghs, 1998). Kenward and 
Molenberghs (1998) referred to using this type 
of expected information matrix as using the 
unconditional sampling framework; whereas 
using the information matrix that ignores this 
sampling process is referred to as using the 
naïve sampling framework. 

If the missing data mechanism is 
NMAR, the missing data mechanism is 
non-ignorable for purposes of ML estimation, 
and the pattern of missing values must be taken 
into account to obtain consistent ML estimates. 
This can be accomplished by using a selection 
model that incorporates a model for the missing 
values indicator or by using a pattern mixture 
model, which stratifies the data on the basis of 
the pattern of missing values (Albert & 
Follmann, 2000; Algina & Keselman, 2004a, 
2004b; Diggle & Kenward, 1994; Fitzmaurice, 
Laird, & Shneyer, 2001; Kenward, 1998; Little, 
1995; Troxel, 1998). Little (1995) provided 
details about these two approaches. 

Unfortunately, traditional methods for 
analyzing data from a split-plot design such as 
ANOVA, adjusted degrees of freedom ANOVA, 
and MANOVA use listwise deletion and 
therefore are not likely to yield valid inferences 
except when the missing data mechanism is 
MCAR, an often unrealistic assumption in 
applied settings. Furthermore, these tests also 
assume that the covariance matrices (Σj, j = 1, . . 
. J) are homogenous across the J levels of the 
between-subjects factor, another often-
unrealistic assumption. The tests will often fail 
to control the Type I error when the 
homogeneity assumption is violated (Keselman 
& Keselman, 1990; Keselman, Keselman, & 
Lix, 1995; Keselman, Lix, & Keselman, 1996). 
For further details about these tests, see 
Greenhouse-Geisser (1959), Huynh and Feldt 
(1976), Huynh and Feldt (1970), Keselman and 
Keselman (1993), Mendoza (1980), and Looney 
and Stanley (1989). 
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As a response to the unsatisfactory 
results created by violating the homogeneity of 
covariance assumption required by the standard 
F-tests, the multivariate Welch-James (WJ) test, 
which does not require the sphericity assumption 
or the homogeneity of covariance assumption, 
has been proposed for use in split-plot designs 
(Algina & Keselman, 1997, 1998; Keselman, 
Algina, Wilcox, & Kowalchuk, 2000; Keselman, 
Carriere, & Lix, 1993). The WJ test tends to 
control the Type I error rates for the within-
subjects main effect and the between- by 
within-subjects interaction whether or not the 
dispersion matrices are heterogeneous. 
However, the WJ test also utilizes listwise 
deletion when there are missing values and 
would be expected to yield valid inferences only 
when the missing data are MCAR. 

The Kenward-Roger (KR) adjusted 
degrees of freedom F-test is similar to the WJ 
test, but uses all available data in parameter 
estimation when there are missing values. 
Because parameter estimation is carried out by 
ML, the estimated parameters are consistent 
when data are MCAR or MAR. Additionally, the 
KR test is computed through a mixed-effects 
linear model so multisample sphericity is not 
required and heterogeneity of covariance can be 
modeled. Furthermore, the KR test uses a more 
accurate estimator of the sampling covariance 
matrix than the standard mixed model F-test. 

When the mixed-effects linear model is 
used to analyze data, likelihood ratio, score, or 
Wald hypothesis tests can be used. Wald tests 
seem to be the most common. For example, 
when PROC MIXED in SAS is used, the default 
procedure for tests on the fixed effects is the 
Wald test. Let L be a r × JK contrast matrix of 

full row rank and let [ ]1 2 J
′′ ′ ′μ = μ μ μ" . 

Each μj is a K × 1 vector of population means 
for the K levels of the within-subjects factor in 
the split-plot design. The main effect and 
interaction hypotheses about the between- and 
within-subjects factors can be expressed as 

 
                H0: Lμ = 0                           (1) 

 
where 0 is a r × 1 vector with all elements equal 
to zero. Let Σj denote the K × K population 
covariance matrix of the repeated measures for 

the jth level of the between-subjects factor, Sj the 
K × K restricted ML (REML) estimate of the 
covariance matrix and Σij and Sij the Ki × Ki 
sections (i = 1, 2,…, nj) of the population and 
sample covariance matrices, respectively that 
pertain to the dependent variables on which the 
ith participant in the jth group has observed 
scores. In addition let Ai denote a Ki × K 
indicator matrix obtained by eliminating the kth 
(k = 1, 2,…, K) row from the K × K identity 
matrix if the data for the ith participant is missing 
on the kth level of the within-subjects factor. The 
PROC MIXED default test statistic for testing 
the null hypothesis is  
 

                   
( )–1–1ˆ

F
r

′ ′ ′
=

y L LM L Ly
              (2) 

where [ ]1 2 J
′′ ′ ′y = y y y"  is the ML 

estimate of μ, r = rank(L), and M̂  is a block 
diagonal matrix in which the jth block is 

–1
i ij i

i

′∑A S A . The vector  

  1 1
j i ij i i ij i

i i

−
− −⎛ ⎞ ⎛ ⎞′ ′= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑y A S A A S y . 

 
The matrix 1ˆ −M  is the estimated 

sampling covariance matrix of the mean vector 
y  and is based on the expected information 
matrix calculated under the naïve sampling 
framework. Even when data are MCAR or there 
are no missing data, using 1ˆ −M  has two 
drawbacks:  

 
1. 1ˆ −M  tends to be too small 

because it fails to take into account the 
uncertainty in y  introduced by substituting Sij 

for Σij when y is obtained (Kackar & Harville, 
1984). 

2. 1ˆ −M  is a biased estimate of 
1−M  (Prasad & Rao, 1990; Booth & Hobert 

1998). Harville and Jeske (1992) developed a 
better estimator of 1−M , denoted by @m̂ . 
Kenward and Roger (1997) then developed an 
alternative estimator of 1−M , denoted by ˆ

AΦ . 
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Kenward and Roger (1997) also developed the 
test statistic 
 

     
( )–1

*
ˆ

A
F

r
λ

′ ′ ′y L L L Ly
∼

Φ
     (3) 

 (3) 
where λ is a scaling factor and ,r dF , is the 
critical value where d is the approximate degrees 
of freedom. Both λ and d are estimated from the 
data. The Kenward-Roger procedure is 
implemented in SAS’s PROC MIXED, but uses 

@m̂  in place of ˆ
AΦ . 

Keselman et al. (1993) and Algina and 
Keselman (1997) investigated the performance 
of the WJ test at controlling the Type I error rate 
in a split-plot design under several simulation 
conditions. In the former study the authors 
investigated (a) the number of levels of the 
within-subjects factor (K = 4, 8), (b) the ratio of 
total sample size N to K – 1 (i.e., N/(K – 1)), (c) 
the ratio of the smallest nj to K – 1 (i.e., nmin/(K – 
1)), (d) sample size inequality, (e) pairing of nj 
with covariance matrices, and (f) the shape of 
the distribution of the data. In all conditions the 
number of levels of the between-subjects factor 
was three (J = 3) and heterogeneity of 
covariance matrices was held constant at a ratio 
of 1:3:5.  

The latter study added J = 6, degree of 
departure   from   sphericity  measured   by 
epsilon (ε), and heterogeneity of covariance 
matrices with a ratio of 1:5:9. The authors were 
interested in the sample sizes required to control 
the Type I error rate when testing the 
within-subjects main effect and the between- by 
within-subjects interaction. In the first study, the 
sample sizes ranged from 30 to 171 and in the 
second study they ranged from 20 to 714. From 
these two studies the authors provided sample 
size guidelines for the WJ test to control the 
Type I error under normal and non-normal data. 
The final sample size recommendations are 
summarized in Table 1. 

Fai and Cornelius (1996) developed and 
compared four alternative test statistics 
( 1F to )4F that can be used to test linear 
hypotheses on means in multivariate studies. 
They showed how to use the data to estimate the 

denominator degrees of freedom for the four 
statistics and the scaling factors λ2 and λ4 for the 
F2 and F4 statistics. The F1 and F2 statistics use 

1ˆ −M  to estimate the covariance matrix of the 
mean vector whereas F3 and F4 use @m̂ . The F4 
statistic is similar to the statistic obtained by 
using the KR option in PROC MIXED, but with 
a different formula for the scaling factor and the 
degrees of freedom. The F1 test is available in 
SAS when the Satterthwaite option is used in 
PROC MIXED. For further details on F1 
through F2 see Fai and Cornelius. 

Fai and Cornelius (1996) applied their 
tests to split-plot designs with a three-level 
between-subjects  factor (J) and a four-level 
within-subjects factor (K). The covariance 
structure was compound symmetric. The design 
was unbalanced in that the number of subjects 
varied across levels of the between-subjects 
factor and data were not generated for some 
combinations of subjects and the within-subjects 
factor. Because the missing data were never 
generated, the missing data mechanism was 
effectively MCAR. Estimated Type I error rates 
and power were reported for the main effect of 
the between-subjects factor. All four tests 
provided reasonable control of the Type I error 
rate. The performance of F1 and F3, which do 
not include a scaling factor were very similar. 
Type I error rates and power for F4 was always 
larger than for F3. 

Schaalje, McBride, and Fellingham 
(2002), reporting on a study conducted by 
McBride (2002), reported Type I error rates for 
F1 and the test obtained using the KR option in 
PROC MIXED. McBride investigated the 
performance of these tests in a split-plot design. 
The following provides a social science example 
of the design investigated by McBride. Suppose 
three methods for structuring interactions among 
students in a mathematics classroom are to be 
compared; n schools are randomly assigned to 
each method, where n was three in half of the 
conditions studied by McBride and five in the 
other half. The methods will be implemented for 
three, six, or nine weeks. Each school 
contributes K classes. Each class is assigned a 
single interaction quality score. In half of the 
conditions studied by McBride, K = 3 and the 
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design was balanced. In the other half, K = 5 so 
that within each school two classes would be 
assigned to two of the implementation periods 
and one class would be assigned to the 
remaining implementation period. In these 
conditions the design was unbalanced, but no 
data were missing.  

McBride also investigated the effect of 
the covariance structure, which included the 
following five structures: compound symmetric 
(equal correlations and equal variance for the 
repeated measures), heterogeneous compound 
symmetric (equal correlations, but unequal 
variances for the repeated measures), Toeplitz, 
heterogeneous first-order autoregressive 
(correlations conform to a first-order 
autoregressive pattern, but the variances for the 
repeated measures are unequal), and first-order 
ante-dependence (see Wolfinger, 1996, for 
examples of these covariance structures). The 
results indicated that employing the KR option 
provided better control than did employing the  

 

 

 
 

Satterthwaite option in PROC MIXED. Type I 
error rates were closer to the nominal level for 
balanced designs than for unbalanced designs. 
For unbalanced designs, Type I error rates 
improved as n increased. 

Kenward and Roger (1997) investigated 
how well the original KR procedure controlled 
Type I error rates in four situations: (a) a four-
treatment, two-period cross-over design, (b) a 
row-column-α design, (c) a random coefficients 
regression model for repeated measures data, 
and (d) a split-plot design. In (c) and (d) there 
were missing data. In (c) the missing data 
mechanism was MCAR. The missing data 
mechanism in (d) was not specified. In all 
situations, the KR test controlled the Type I 
error rate well. 

Kowalchuk, Keselman, Algina, and 
Wolfinger (2004) compared the performance of 
the KR and the WJ procedures at controlling the 
Type I error rate under several simulation 
conditions for a (J = 3) × (K = 4) split-plot 
design. The simulation conditions they 

 
Table 1. Final nmin/(K – 1) Recommendations for Distribution by Between-Subjects 

Factor (J) by Test by Within-Subjects Factor (K) 
 

   
nmin/(K – 1) 

 
Distribution 

 
J 

 
Test 

 
 K = 4 

 
 K = 8 

 
Normal 
 
 
 
 
 
Non-normal 

 
3 
 
 

6 
 
 

3 
 
 

6 

 
K 

J × K 
 

K 
J × K 

 
K 

J × K 
 

K 
J × K 

 
 2.00 
 3.00 

 
 1.33 
 4.75 

 
 3.00 
 8.00 

 
 1.33 
14.00 

 
 3.00 
 4.00 

 
 1.43 
 5.00 

 
 4.00 
 6.00 

 
 1.71 
10.14 

Note. Based on Keselman et al. (1993) and Algina and Keselman (1997) 
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investigated were (a) type of population 
covariance structure, (b) degree of group size 
inequality, (c) positive and negative pairings of 
covariance matrices and group sample sizes, (d) 
shape of the data, and (e) type of covariance 
structure fit to the data. All simulation 
conditions had heterogeneous covariance 
matrices across the levels of the between-
subjects factor (J) with a ratio of 1:3:5. Data 
with missing values were not investigated. The 
KR test coupled with modeling the true 
covariance structure of the data performed better 
than did the WJ test under all conditions with 
small sample sizes. Also, the authors showed 
that always assuming an unstructured covariance 
structure performed comparably to modeling the 
true covariance structure when using the KR 
test. 

Based on the previous results, the KR 
test and similar tests like the F4 test (Fai & 
Cornelius, 1996) can control the Type I error 
rate for a variety of repeated measures designs 
when there are either missing data but no 
covariance heterogeneity or covariance 
heterogeneity but no missing data. The purpose 
of this study is to investigate control of the Type 
I error rate by the KR test as it is implemented in 
PROC MIXED when there are both missing data 
and covariance heterogeneity. Because of the 
similarities between the KR test and the WJ test 
and because Type I error rates for the WJ test 
have been extensively evaluated by Algina and 
Keselman and their colleagues, the KR test will 
be evaluated under conditions similar to those 
used by these authors to evaluate the WJ test, 
with the addition of missing value conditions. 

 
Methodology 

 
Study Variables 

Eight variables were manipulated in this 
simulation. The variables of interest are (a) the 
number of levels of the between-subjects factor 
(A), (b) the number of levels of the 
within-subjects factor (B), (c) nmin/(K – 1) where 
K is the number of levels of the within-subjects 
factor, (d) sample size inequality across the 
between-subjects factor (SSI), (e) degree of 
sphericity as quantified with Box’s (1954) 
epsilon (ε), (f) nature of pairing of group sizes 
with covariance matrices (NPSC), (g) type of 

missing data mechanism (TMDM), and (h) 
percent of missing data (PM).  For each 
combination of levels of the factors, five 
thousand replications were generated.  

Both the number of levels of the 
between-subjects and within-subjects factors 
were investigated in the study. Each of these 
factors had two levels with J = 3, 6 and K = 3, 6. 
In the initial planning, the study was going to 
investigate J = 3, 6 and K = 4, 8, but preliminary 
simulations indicated that using PROC MIXED 
took an inordinate amount of time when K = 8. 

The sample sizes investigated were 
nmin/(K – 1) = 4, 6 for J = 3 and nmin/(K – 1) = 5, 
7.7 for J = 6. Within each pair of nmin/(K – 1) 
ratios, the smaller ratio corresponds to sample 
size recommendations in Table 1 for the 
between- by within-subjects interaction with 
normal data, K = 8, and J = 3, 6. The larger 
nmin/(K – 1) values were based on the 
recommendations from Table 1 and the higher 
demands missing values will place on the data 
analysis. 

Keselman et al. (1998) found that 
unequal sample sizes in split-plot designs were 
common, occurring in a little over 50% of the 
split-plot designs. For this reason unequal 
sample sizes were investigated. In particular, 
moderate and severe group size inequalities 
were investigated as defined by Keselman et al. 
(1993) through the coefficient of variation: 

 

         ( ) ( )1 2

1

J

j
j

C n J n n
−

=

= −∑ ,    (4) 

 
where .16, .33C �  describe moderate and 
severe group size inequality, respectively. 

Departures from sphericity quantified by 
Box’s (1954) epsilon (ε), were also investigated 
with ε = .60, .75, .90, where ε = .60 and ε = .75 
represent relatively severe and moderate 
violations of sphericity, respectively. In past 
studies ε = .40, .57, .75 were investigated 
(Algina & Keselman, 1997; Keselman, 
Keselman, & Shaffer, 1991; Algina & Oshima, 
1994). However, ε has a lower bound 
of ( )1 1Kε = − , so for K = 3 the lower bound is 
ε = .50 and so ε = .40 cannot be investigated. 
Also, according to Huynh and Feldt (1976) ε = 
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.75 represents the lower limit of ε found in 
educational and psychological data. The epsilon 
values in this simulation study were chosen 
based on this contention. In particular, note that 
ε = .75 is the mid value and the other values are 
ε ± .15. The actual covariance matrices are 
shown in Table 2. 
 

 
The pairing direction, positive or 

negative, between the unequal group sizes and 
the heterogeneous covariance matrices were also 
investigated. A pairing is positive when the 
largest nj is paired with the covariance matrix 
with the largest elements and negative when the 
largest nj is paired with the covariance matrix 
with the smallest elements. In order to have 
comparability with previous research results, the 

ratio of sample size to heterogeneity of 
covariance matrices was set at 1:3:5 for J = 3 
and 1:3:5:1:3:5 for J = 6 (Algina & Keselman, 
1997; Keselman et al., 1993; Keselman, Algina, 
Kowalchuk, & Wolfinger, 1999).  Furthermore,  

 
 
 
 

 
previous studies have shown that this ratio and 
pairing can have a strong impact on the Type I 
error rate for approximate univariate F-tests, 
such as the Huynh-Feldt F-test (1976), and 
multivariate tests, particularly when the sample 
size is small (Keselman & Keselman, 1990). 
Specifically, positive pairings produce 
conservative Type I errors and negative pairing 
produce liberal Type I errors. 

 
Table 2. Pooled Covariance Matrices 

 
                       K = 3                                       K = 6 
 

ε = .90  
18.0 5.0 6.0

8.0 5.0
7.0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

18.0 5.0 7.0 7.0 6.0 5.0
12.0 8.0 7.0 6.0 5.0

10.0 6.0 6.0 5.0
10.0 5.0 5.0

9.0 5.0
8.0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

ε = .75  
23.2 4.5 7.4

10.3 5.3
4.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

29.6 12.7 7.5 7.0 5.9 5.9
15.1 7.9 6.0 6.4 4.9

13.2 6.9 6.0 5.4
9.4 6.0 4.8

8.0 5.0
5.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

ε = .60  
23.8 1.9 9.3

9.5 5.7
3.9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

28.8 4.8 10.1 9.8 8.3 7.3
17.4 8.1 7.4 6.9 4.1

9.9 7.7 6.5 5.7
8.3 5.6 4.3

5.6 4.4
4.3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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The MCAR and MAR missing data 
mechanisms were investigated in connection 
with 5%, and 15% probability of missing data at 
each level of the within-subjects factor except 
the first level; there were no missing data in the 
first level (see the Data Generation section for 
an explanation). Only the MCAR and MAR 
missing data mechanisms were investigated 
because Padilla and Algina (2004) demonstrated 
that the NMAR missing data mechanism 
negatively impacts the Type I error rate of the 
KR test statistic in a repeated measured design 
with no between-subjects factors. 
 
Data Generation 

The data were generated by using the 
model  
 
                              ijk ijky eμ= + .                     (5) 
 

The mean vector [ ]1 2j Kμ μ μ ′=μ …  was 

the same for all J groups and the elements kμ  
were equal because the focus of the study was 
on control of the Type I error rate by the KR 
test. The common elements were arbitrarily set 
to zero. The e vector was a K × 1 random vector 
such that e ~ NID(0, Σj). 

All data simulations and analyses were 
conducted using SAS version 9.0. For each 
combination of levels of the simulation factors, 
the following steps were used to simulate the 
data in the jth level of the between-subjects 
factor. 

1. Simulate Z, a nj × K matrix of 
pseudorandom standard normal variables where 
nj is the sample size for the jth level of the 
between-subjects split-plot design. 

2. Calculate T a K × K upper 
triangular Cholesky factor of the covariance 
matrix Σ. 
 

3. Calculate y = djZT, where dj is a 
constant selected to create the required degree of 
covariance heterogeneity. 
 

4. In all conditions there were no 
missing values on yi1:  

a. For MCAR, eliminate yik (k = 2, 
. . . , K) if Uik < π where π is the expected 

proportion of the missing data on yk and Uik is a 
uniform random variable. 

b. For MAR, eliminate yik if Uik < 
Φ(myi1 + c), where Φ is the cumulative standard 
normal distribution function and the parameters 
m and c will be described below. 

  
In selecting data points for elimination, 

the parameter m controls how dependent the 
missing data are on y1 in the MAR condition and 
was set to one. Let  

 
1 if is missing
0 otherwise

ik
ik

y
r

⎧
= ⎨
⎩

. 

 
With m = 1, the biserial correlation between ikr  
and y1 was .5 in the MAR condition. Hence, the 
missing data indicators depend fairly heavily on 
y1. With m = 1, the expected proportion of 
missing data on yk is dependent on c. In the 
procedure described in the preceding 
paragraphs, the probability that 1ikr =  is related 
to y1 is modeled by a normal ogive (probit) 
model. Using well-known facts about the normal 
ogive model (see, for example, Lord & Novick, 
1968, equations 16.9.3 and 16.94), it can be 
shown that  
 

      ( ){ }–1 21c mπ= Φ + .        (6) 

 
Thus, for m = 1, and for 5% and 15% 

missing data conditions, the expression becomes 
1.645 2c = − , and 1.036 2c = − , respectively. 

 
Data Analysis 

The SAS PROC MIXED program used 
in this simulation is 

 
proc mixed; 
  class Person A B; 
  model score = A B A*B/ ddfm=kenwardroger; 
  repeated B/ subject=Person group=A type=un; 
run; 

 
The following list describes various 

aspects of the code. 
 Person is a variable that 

identifies simulated subjects. 
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 Score is the variable containing 
scores on the dependent variable. 

 A is a variable that identifies the 
levels of the between-subjects factor. 

 B is a variable that identifies the 
levels of the within-subjects factor. 

 ddfm = kenwardroger 
instructs SAS to use the KR statistic to test the 
main effects and the interaction. 

 Repeated is a key word that 
tells SAS that B is a repeated measures 
(within-subjects) factor and is necessary when 
there are missing data. 

 Group = A tells SAS to model 
the covariance matrix for each level of A. That 
is, it specifies modeling heterogeneity of 
covariance matrices across the levels of A. 

 Subject = Person tells SAS that 
the score values are correlated within each 
person. 

 Type = un instructs SAS to 
estimate an unstructured covariance matrix with 
K estimated variances and K(K – 1)/2 estimated 
covariances. 

Although there are several covariance 
structures that can be used to model the 
covariance matrix (Wolfinger, 1996), only the 
unstructured between-subjects heterogeneous 
structure (UN-H) covariance matrix was used in 
this simulation. Although using a UN-H 
covariance structure comes at the cost of 
estimating K(K + 1)/2 parameters, Kowalchuk et 
al. (2004) showed that under similar simulation 
conditions assuming an unstructured covariance 
structure performed comparably to modeling the 
true covariance structure when using the KR 
test. 

The corresponding p-values of applying 
the KR test to 5,000 replications were available 
for each combination of the investigated 
conditions. The result of each test was 
summarized by a dichotomous variable, defined 
in the following manner: 

 

  
0 if the value .05
1 otherwise

p
Type I Error

− <⎧
= ⎨
⎩

. 

 
For each of the between-subjects, 

within-subjects, and between- by within-subjects 
KR tests the Type I error variable was analyzed 

by using logistic regression with the study 
variables as factors. A forward selection 
approach was used to select appropriate models. 
The models used were an intercept-only model, 
a model with main effects only, a model with 
main effects and two-way interactions, and so 
forth. A model was considered adequate for the 
data if the χ2 goodness of fit test was non-
significant or if Bentler’s (1990) Comparative 
Fit Index (CFI) ≥ .95. An index of fit was used 
because, due to the large number of replications, 
the χ2 goodness of fit statistic for the logistic 
model could be very sensitive to small effects of 
the factors. The CFI in this context was 
calculated as follows: 

 
         ( )1 iCFI λ λ= −            (7) 

 
where λ = max(χ2 – df, 0), χ2 and df are the 
chi-squared goodness of fit statistic for the fitted 
model and the corresponding degrees of 
freedom, λi = max( 2

iχ  – dfi, χ2 – df, 0), and 2
iχ  

and dfi is the chi-squared goodness of fit statistic 
for the intercept-only model and its 
corresponding degrees of freedom. 

Assessment of the Type I error rates 
were based on Bradley’s (1978) liberal criterion 
for identifying conditions in which hypothesis 
testing procedures work adequately. His liberal 
criterion is .5 1.5α τ α≤ ≤  where α is the 
nominal Type I error and τ is the actual Type I 
error. Using α = .05, the liberal criterion 
is .025 .075τ≤ ≤ . 

Results 
 

Analysis of Type I Error Rates for the Between-
Subjects Main Effect 

The distribution of Type I error rates for 
the between-subjects main effect is shown in 
Figure 1 and has M = .050 and SD = .003. The 
range of the Type I error rate is [.041, .057]. The 
goodness of fit test for the intercept-only model 
was not significant, χ2(383) = 398.64, p = .28, 
suggesting that the effects of the factors were 
quite small. Because the Type I errors rates for 
the between-subjects main effect were 
predominately within Bradley’s liberal criterion 
and because the intercept only model could not 
be rejected, it appears that the KR 
between-subjects omnibus test controls the Type 
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I error well at all levels of the investigated 
factors in this study. 

The distribution of Type I error rates for 
the within-subjects main effect is shown in 
Figure 2 and has M = .052 and SD = .005. The 
range of the Type I error rate is [.041, .070]. 
Hence, in all conditions the Type I error rate was 
well within Bradley’s (1978) liberal criterion 
interval. CFI for the model with main effects and 
two-way interactions was .98. In addition the 
goodness of fit test was non-significant, χ2(339) 
= 354.24, p = .27. Thus, the two-way interaction 
model was selected for further analysis. Wald 
tests indicated that all factors that had significant 
main effects also entered into significant two-
way interactions. As might be expected from 
Figure 2, all effects were small. Mean Type I 
Error rates were between .048 and .061 in all 
two-way tables and no simple effect was as large 
as .01. Type I error rates tended to be larger 
when J, K, and percent missing data were larger. 
Type I error rates also tended to be larger for 
MAR data1. 

 
Analysis of Type I Error Rates for the Within-
Subjects Main Effect 

Because a major focus of this study is 
the effect of sample size on Type I error rates, 
two-way tables of means for the only 
interactions with sample size are presented in 
Table 3. These results indicate that control of the 
Type I error rate was good regardless of the 
sample size and that the effect of sample size on 
the Type I error rate was quite small. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Analysis of Type I Error Rates for the Between- 
by Within-Subjects Interaction 

The distribution of Type I error rates for 
the interaction effect is presented in Figure 3 and 
has M = .054 and SD = .007. The range of the 
Type I error rate is [.040, .075]. Consequently, 
in all conditions the Type I error rate was once 
again within Bradley’s liberal criterion interval. 
CFI for the model with main effects and 
two-way interactions was 1.00. In addition, the 
goodness of fit test was non-significant, χ2(339) 
= 368.79, p = .23. Wald tests indicated that all 
factors that had significant main effects also 
entered into significant two-way interactions. As 
might be expected from Figure 3, all effects of 
factor were small. Mean Type I Error rates were 
between.049 and .058 in all two-way tables and 
no simple effect was as large as .01. Type I error 
rates tended to be larger when K, sample size 
inequality, and percent missing were larger. 
Type I error rates also tended to be larger when 
the sample size-covariance pairing was negative. 
The effect of J was miniscule. The effect of type 
of missing data tended to be small and to vary in 
direction over levels of the factors with which it 
interacted. 

Because a major focus of this study is 
the effect of sample size on Type I error rates, 
two-way tables of means for the interactions 
only with sample size are presented in Table 4. 
These results indicate that control of the Type I 
error rate was good regardless of the sample size 
and that the effect of sample size on the Type I 
error rate was quite small. 
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Figure 1.  Distribution of Type I Error Rates: Between-Subjects KR F-Test 
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Figure 2.  Distribution of Type I Error Rates: Within-Subjects KR F-Test 

 
 

Table 3. Effect of nmin/(K – 1) on Type I Error Rates for the Within-Subjects Main Effect 

Note. Each proportion is out of 480,000 hypothesis tests. 
 

   
              nmin/(K – 1) 

 
Factor 

 
Factor levels 

 
Small 

 
Large 

 
          K 

 
 

PM 

 
3 
6 
 

5% 
15% 

 
.0503 
.0541 

 
.0494 
.0550 

 
.0514 
.0539 

 
.0509 
.0545 
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Figure 3.  Distribution of Type I Error Rates: Interaction KR F-Test 

 
Table 4. Effect of nmin/(K – 1) on Type I Error Rates for the Between- by Within-Subjects 

Interaction 
 
 
 

Note. Each proportion is out of 480,000 hypothesis tests.  
 

   
                      nmin/(K – 1) 

 
Factor 

 
Factor levels 

 
Small 

 
Large 

 
             K 

 
 

SSI 
 

 
NPSC 

 
 

TMDM 
 

 
PM 

 
3 
6 
 

.16 

.33 
 

Positive 
Negative 

 
MCAR 
MAR 

 
5% 

15% 

 
.0509 
.0577 

 
.0527 
.0559 

 
.0509 
.0577 

 
.0552 
.0534 

 
.0508 
.0578 

 
.0507 
.0553 

 
.0524 
.0537 

 
.0517 
.0543 

 
.0519 
.0542 

 
.0504 
.0557 
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Conclusion 
 
The results of this study support the conclusion 
that sampling distribution based inferences on 
the means using ML estimates can control the 
Type I error rate under MCAR missing data 
mechanisms. Additionally, sampling distribution 
based inferences using ML estimates can control 
the Type I error rate when the missing data 
mechanism is MAR (Little & Rubin, 2002; 
Rubin, 1976) Most important this control can be 
obtained with relatively modest sample size 
requirements. 

With respect to the between-subjects 
main effect, the KR test statistic controlled the 
Type I error rate well across all levels of the 
simulation factors. Most Type I error rates were 
within both Bradley’s conservative criterion and 
all were well within the liberal criterion. None of 
the simulation factors affected the Type I error 
rate of the between-subjects main effect. In 
regard to the within-subjects main effect and the 
within- by between-subjects interaction, 
although a number of factors affected Type I 
error rates, all effects were very small and all 
Type I error rates were within Bradley’s liberal 
criterion. 
 The effects of the factors on Type I error 
rates were generally quite small. Nevertheless it 
is clear that the effects of the factors on the on 
Type I error rates must be due to their effects on 
the accuracy of the F-distribution as an 
approximation to the sampling distribution of 
the test statistic. The KR test statistic was 
selected because it uses a better estimator of the 
covariance matrix for small sample sizes and 
Satterthwaite (1946) type degrees of freedom 
based on the better estimate of the covariance 
matrix. However, when the data are incomplete 
in addition to being relatively small and paired 
with a MAR missing data mechanism, the 
accuracy of the approximation may be worse 
than when the data are complete. 
 Although the design investigated in this 
study was a popular split-plot design with one 
between- and one within-subjects factor, the 
positive findings open the door for further 
simulation work on using ML to directly 
estimate model parameters from split-plot 
designs with missing values. One condition that 
can be investigated is a non-normal distribution 

of the dependent variable. In the present study, 
the data were generated under a multivariate 
normal distribution and since data from 
educational or psychological research cannot be 
presumed to be normal, investigation of a non-
normal data condition can provide applied 
researchers with valuable information as to 
whether the KR test is robust to the normality 
assumption. In other words, can the KR test 
control the Type I error when the normality 
assumption is violated? 
 Even though all of the Type I error rates 
of the KR test were within Bradley’s (1978) 
liberal criterion, it is not clear at what percent of 
missing data the KR test will begin to 
breakdown. Additionally, it is not clear how 
small the sample sizes can be and still have the 
KR test provide reasonable control of the Type I 
error. Consequently, future work could focus on 
what are the percent of missing data and sample 
size requirements needed for the KR test to 
provide reasonable control of the Type I error. 
 An alternative to the estimator of the 
sampling covariance matrix used in the KR test 
is the sandwich estimator (White, 1980, Liang & 
Zeger, 1986). The sandwich estimator provides a 
consistent estimator of the covariance matrix 
given that the model for the means is correct. 
That is the model for the covariance structure 
need not be correct. Hence, it may be fruitful to 
compare the performance of the F-test using the 
sandwich estimator to the KR test at controlling 
the Type I error in a simulation study with 
ignorable missing data. 
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