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On a Test of Independence via Quantiles that is Sensitive to Curvature 
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Let ( , )i iY X , 1,...,i n= , be a random sample from some p+1 variate distribution where iX  is a vector 

having length p. Many methods for testing the hypothesis that Y  is independent of X  are relatively 
insensitive to a broad class of departures from independence. Power improvements focus on the median 
of Y  or some other quantile and test the hypothesis that the regression surface is a horizontal plane versus 
some unknown form. A wild bootstrap method (Stute et al. 1998) can be used based on quantiles, but with 
small or moderate sample sizes, control over the probability of a Type I error can be unsatisfactory when 
sampling from asymmetric distributions. He and Zhu (2003) is readily adapted to testing the hypothesis 
that the conditional γ  quantile of Y  does not depend on X  where critical values are determined via 
simulations. A modification is suggested that avoids the need for simulations to obtain critical values, and 
perform wells in terms of Type I errors even when sampling from asymmetric distributions. 
 
Keywords: Curvature, quantile regression, robust methods. 
 
 

Introduction 
 

Let ( , )i iY X , 1,...,i n= , be a random sample 

from some p+1 variate distribution where iX  is 

a vector of length p. Certainly one of the most 
common methods for attempting to detect an 
association between Y  and X  is to test the 
hypothesis that the corresponding (Pearson) 
correlations are zero using Student’s t test. One 
well-known limitation of this approach is that 
true associations can be missed due to curvature.  
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Modern Insights (2009, NY: Oxford University 
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Another concern is that classic methods can be 
highly unsatisfactory in terms of controlling the 
probability of a Type I error. 

For example, a general method for 
testing the hypothesis of independence among 
sets of variables, which assumes multivariate 
normality, is available (e.g., Muirhead, 1982, 
chapter 11). As a special case, the method can be 
used to test 
 
                           0 1: ...y ypH ρ ρ= = = 0 

 
where yjρ  is Pearson's correlation between Y  

and jX , j=1,…,p. But it is known that the level 

of this test cannot be controlled in an adequate 
fashion  (e.g., Reddon, Jackson, & Schopflocher, 
1985; Wilcox, 1997). One could use a method 
based on Fisher's r-to-z transformation, but this 
can be unsatisfactory when sampling from 
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nonnormal distributions because under general 
conditions, Fisher's transformation is not even 
asymptotically correct; it results in using the 
wrong standard error (Duncan and Layard, 
1973). Geiser and Randle (1997) derived a 
nonparametric method, but it assumes that Y  
has a symmetric distribution and that the 
distribution of X  is elliptically symmetric, a 
restriction that is avoided here. There are many 
robust correlation coefficients as well as robust 
regression methods that might be used (e.g., 
Wilcox, 2005), as well as improved methods 
when focusing on Pearson's correlation (e.g., 
Boik & Haaland, 2006), but it is evident that 
these methods can  miss true associations that 
are detected when focusing on quantiles via the 
method considered here. 

Let ( ) ( | )m E Y=X X  and let 

( )y E Yμ = . A general and relatively flexible 

approach to detecting dependence is to test 
 

              0 : ( ) yH m μ=X                    (1) 

 
versus the alternative hypothesis that ( )m X  

depends in some (unspecified) manner on X , 
possibly in a nonlinear fashion. A test of (1) can 
be performed using a method that stems from 
general theoretical results reported by Stute, 
Gonzalez Manteiga and Presedo Quindimil 
(1998) who were concerned with testing the 
hypothesis that a regression surface belongs to a 
specified family of functions. Unlike 
conventional methods, by design the method is 
not sensitive to heteroscedasticity. That is, if we 
model the data with ( ) ( )Y m λ ε= +X X , where 

the error term ε  independent of X , and ( )λ X  
is some unknown function. The assumption 

( ) 1λ ≡X  (homoscedasticity) is not made nor 
required when testing (1). In principle, the 
method can be extended by replacing the 
conditional mean of Y  with the median or some 
other robust estimator. When ε  has a symmetric 
distribution, control over the probability of a 
Type I error has been found to be satisfactory in 
simulations, but when ε  has an asymmetric 
distribution, this is no longer the case (Wilcox, 
2007). 

Let ( )Yγ X  be the conditional γ  

quantile of Y  given X . A general method 
derived by He and Zhu (2003) is readily adapted 
to the problem of testing 
 

          0 : ( )H Y Yγ γ=X                        (2) 

 
where Yγ  is the γ  quantile of the marginal 

distribution of Y . The .5 quantile is perhaps the 
most obvious choice, but in some situations 
associations are more pronounced when 
considering other quantiles, and in some cases 
other quantiles are intrinsically interesting. The 
He and Zhu method is based in part on using 
simulations to estimate the null distribution of 
their test statistic. Execution time is reasonably 
low with small sample sizes, but despite the 
speed of modern 
computers, execution time can be high. For 
example, with a sample size of n=100 and p=4, 
execution time was over 8 minutes on a SUN 
BLADE 150.  

The goal in this paper is to suggest a 
simple modification of the method derived by 
He and Zhu (2003) that, for a wide range of 
situations, can be used to test (2) without 
resorting to simulation estimates of critical 
values.  

Simulation results reported here find 
that the actual level of the test is reasonably 
close to the nominal level, even when sampling 
from asymmetric distributions and there is a fair 
degree of heteroscedasticity.  
 

Method 
 
Let x  be the n by (p+1) matrix with the first 
column containing all ones and the remaining p 
columns are the columns of X . Following He 
and Zhu, it is  
assumed that the design has been normalized so 

that 1 ' (1)jj
n o− − =x x I . 

Let ˆ
i ir Y Yγ= − , where Ŷγ  is some 

estimate of the γ th quantile of Y . Here, the 

focus is on the quartiles. For the .5 quantile, .5Ŷ  

is taken to be the usual sample median. For the 
lower and upper quartiles, the so-called ideal 
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fourths are used (e.g., Frigge, Hoaglin, and 
Iglewicz, 1989), which are computed as follows. 
Let j=(n/4)+(5/12), rounded down to the nearest 
integer. Let 

 
5

4 12

n
h j= + − . 

 
Then the estimate of the lower quartile is given 
by 

1 ( ) 1(1 ) j jq h Y hY += − + , 

 
where (1) ( )... nY Y≤ ≤ . Letting k=n-j+1, the 

estimate of the upper quartile, is 
 

2 ( ) 1(1 ) k kq h Y hY −= − +  

 
There are many other quantile estimators, 
comparisons of which are reported by  Parrish 
(1990) as well as Dielman, Lowry, and 
Pfaffenberger (1994). Perhaps they offer some 
practical advantage for the situation at hand, but 
this is not pursued here.  

Following He and Zhu, for any x , 
pR∈t , ≤x t  if and only if each component of  

x  is less than or equal to  each component of t . 
Let ( ) ( 0) ( 1) ( 0)r I r I rψ γ γ= > + − < , and let  

 

1/ 2

1

( ) ( )
n

n j j
j

n r Iψ−

=

= ≤R t x t  

 
The He and Zhu test statistic, for the situation at 
hand, is  
 

            1 2
1max ( ( ))n a jn

T n−
= ′=  a R x       (3) 

 

the largest eigenvalue of 1 '( ) ( )i n in
n− R x R x . 

A simple strategy for determining an appropriate 
critical value is to temporarily assume normality, 
use simulations to approximate the 1-α  quantile 
of the null distribution, say c , and then reject 
the null hypothesis if nT c≥  even when 

sampling from a non-normal distribution. It was 
found, however, that this strategy performed  
in an unsatisfactory manner, in simulations, 
when sampling from heavy-tailed distributions. 

(The actual Type I error probability can exceed 
.08 when testing at the .05 level.) However, a 
simple modification was found to give better 
results. The modification consists of using a 
different partial ordering on the design space; 
otherwise the test statistic is computed in the 
same manner as nT . Let 

1/ 2

1

( ) ( ) ( )
n

n i k k k i
k

n r Iψ−

=

= ≤R x x x x  

 
For fixed j, let ijU  be the ranks of the n values in 

the jth column of x , j=2,…,q. Let 
maxi ijF U= , the maximum being taken over  

j=2,…,q. If  

k i≤x x , then k iF F≤ . Let 

 

1/ 2

1

( ) ( )
n

i k k k i
k

n r I F Fψ−

=

= ≥W x  

 
The test statistic used here is nD , the largest 

eigenvalue of 
 

1 '
i in−= Z W W  

 
Numerical checks on this test statistic 

indicate that it is invariant when the design 
space, X , is shifted in location. This is in 
contrast to a related method for testing the fit of 
a quantile regression model, currently under 
investigation, which Xuming He (personal 
communication) pointed out does not enjoy this 
property. (Centering the design space eliminates 
this problem, but here this does not seem to be 
necessary.) 

Note that a major component of the test 
statistic nD  is invariant under monotone 

transformations of the covariates; only the ranks 
of the marginal distributions of X  are needed. 
However, the test statistic can be affected by 
monotone transformations because this can alter 
the ( )irψ  values. But it was found among the 

simulations reported later in this paper that 
typically the  ( )irψ  values are altered by a 

relatively small amount suggesting a simple 
approach toward determining an appropriate 
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critical value: Momentarily assume that both X  
and ε  have standard normal distributions, then 
use simulations to determine a critical value 
given n, p and γ , and use this critical value for 

the more general case where X  and ε  do not 
have normal distributions. (In essence, this is the 
same strategy used by Gosset to derive Student's 
T test.) 

Simulations are not needed once a 
critical value has been estimated. (For p>1, all 
indications are that it suffices to assume that the 
correlations among the covariates are zero when 
determining critical values.) 
 

Some Special Cases 
Simulations were used to approximate 

critical values in the manner just described for 
p=1,…,8 predictors; n=10, 20, 30, 50, 100, 200 
and 400; γ =.5, .25 and .75; and α =.1, .05, .025 
and .01.  The results are reported in Tables 1-4. 
Regarding sample sizes not tabled, it was found 
that there is an approximately linear association 
between the α  level critical value, cα , and 1/n 

suggesting that a single regression line might be 
used to determine cα  given 1/n. However, 

slightly better control over the probability of a 
Type I error is obtained by using the critical 
values in Tables 1-4 and interpolating on 1/n for 
critical values not tabled.   
 

Results 
 
Simulations were used to the check the small 
sample  properties of the method  just described. 
Included were situations where p=1 and 4, 
γ =.5, .25 and .75, and where for p=4 there is a 

common correlation ρ  or .5. Here the results 

for n=20, ρ =.5 and γ =.75 are reported because 
the largest deviations from the nominal Type I 
error probability occurred for this special case. 
In the simulations, observations were generated 
with the model 
 

1( )i iY Xλ ε= , 

where λ  is some function for modeling 
heteroscedasticity. The distribution of ε  was 
taken to be one of four g-and-h distributions 
(Hoaglin, 1985), which contains the standard 

normal distribution as a special case. If Z  has a 
standard normal distribution, then 
 

2exp( ) 1
exp( / 2)

gZ
W hZ

g

−=  

 
if g>0. has a g-and-h distribution where g and h 
are parameters that determine the first four 
moments. When g=0, then 
  

2exp( / 2)W Z hZ= . 
 
The four distributions used here were 

the standard normal (g=h=0), a symmetric 
heavy-tailed distribution (h=.2, g=0), an 
asymmetric distribution with relatively light tails 
(h=0, g=.2), and an asymmetric distribution with 
heavy tails (g=h=.2).  

Table 5 shows the skewness ( 1κ )and 

kurtosis ( 2κ ) for each distribution considered. 

When g>0 and h>1/k, ( )kE W  is not defined 
and the corresponding entry in Table 1 is left 
blank. Additional properties of the g-and-h 
distribution are summarized by Hoaglin (1985). 

The function λ  was chosen to reflect 
three types of variance patterns: λ (X)=1 

(homoscedasticity) λ (X)= 2
1X , and 

λ (X)=1+1/(| 1X |+1). For convenience, these 

three λ  functions will be called variance 
patterns VP1, VP2, and VP3. 

Each replication in the simulations 
consisted of generating n vectors for X, n values 
for ε , determining Y according to equation (3), 
then applying the test of (2). Here, 1,000 
replications were used to estimate the actual 
probability of a type I error. With 1,000 
replications, if the actual probability of a type I 
error is .05, the standard error associated with 
the proportion of rejections is .007.  

Table 6 shows the estimated Type I 
error probabilities for n=20, p=4, a common 
correlation ρ =.5, and α =.05. As can be seen, 
the estimates range between .039 and .071. 
There are only two situations where the estimate 
is greater than or equal to .07. 
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Table 1: Critical values for γ =.5, 1 4p≤ ≤  
 

p=1 
n α =.100 α =.050 α =.025 α =.001 
10 0.033939 0.04408 0.050923 0.064173 
20 0.015323 0.021007 0.027687 0.032785 
30 0.010648 0.014778 0.01825 0.023639 
50 0.006619 0.009078 0.011691 0.014543 
100 0.003156 0.004375 0.005519 0.007213 
200 0.001545 0.002232 0.002748 0.003726 
400 0.000772 0.001022 0.001371 0.001818 

 
p=2 

n α =.100 α =.050 α =.025 α =.001 
10 0.052848 0.061919 0.071347 0.079163 
20 0.021103 0.027198 0.031926 0.035084 
30 0.013721 0.018454 0.022177 0.026052 
50 0.00839 0.01059 0.012169 0.015346 
100 0.004262 0.005514 0.007132 0.008417 
200 0.001895 0.002416 0.003085 0.003925 
400 0.001045 0.001348 0.001579 0.001864 

 
p=3 

n α =.100 α =.050 α =.025 α =.001 
10 0.071556 0.082938 0.089555 0.097538 
20 0.031061 0.035799 0.043863 0.053712 
30 0.019504 0.023776 0.02718 0.030991 
50 0.01103 0.013419 0.015557 0.01798 

100 0.005634 0.006805 0.007878 0.008808 
200 0.002552 0.003604 0.004276 0.005022 
400 0.001251 0.001532 0.001801 0.002038 

 
p=4 

n α =.100 α =.050 α =.025 α =.001
10 0.093268 0.101584 0.108734 0.11834 
20 0.038678 0.04552 0.051403 0.060097 
30 0.024205 0.02936 0.034267 0.039381 
50 0.013739 0.015856 0.018066 0.019956 
100 0.006468 0.007781 0.009038 0.010127 
200 0.003197 0.003934 0.004657 0.005929 
400 0.001653 0.001926 0.002364 0.002657 
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Table 2: Critical values for γ =.5, 5 8p≤ ≤  
 

p=5 
n α =.100 α =.050 α =.025 α =.001

10 0.117217 0.124714 0.129459 0.136456
20 0.048839 0.055609 0.06058 0.067944
30 0.030595 0.035004 0.040434 0.047649
50 0.01694 0.019527 0.022047 0.025313
100 0.008053 0.009779 0.01149 0.013384
200 0.003761 0.004376 0.005098 0.005866
400 0.001895 0.002254 0.002612 0.002939

 
p=6 

n α =.100 α =.050 α =.025 α =.001

10 0.136962 0.14412 0.149004 0.152667
20 0.055909 0.062627 0.069978 0.08119 
30 0.034635 0.040741 0.044161 0.047722
50 0.020165 0.023075 0.025881 0.02848 
100 0.009436 0.011247 0.013221 0.015101
200 0.004645 0.005334 0.006041 0.007237
400 0.002278 0.002636 0.002997 0.003669

 
p=7 

n α =.100 α =.050 α =.025 α =.001

10 0.15618 0.16322 0.17175 0.17714 
20 0.07011 0.07705 0.08272 0.09041 
30 0.04177 0.04737 0.0531 0.05767 
50 0.02338 0.02601 0.0296 0.03261 
100 0.01085 0.01256 0.01374 0.01625 
200 0.00516 0.00613 0.00686 0.00835 
400 0.00253 0.00304 0.00362 0.00397 

 
 

p=8 
n α =.100 α =.050 α =.025 α =.001

10 0.17839 0.18 0.19379 0.19958 
20 0.07803 0.08562 0.09151 0.10249 
30 0.04599 0.05218 0.05736 0.06263 
50 0.02589 0.02973 0.03374 0.03787 
100 0.01219 0.01365 0.01548 0.01771 
200 0.00589 0.00687 0.00789 0.00852 
400 0.00283 0.00324 0.00373 0.00412 
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Table 3: Critical values for γ =.25 or .75, 1 4p≤ ≤  
 

p=1 
n α =.100   α =.050   α =.025   α =.001 
10 0.029933 0.039598 0.054088 0.062961
20 0.011122 0.014989 0.018154 0.022685
30 0.009207 0.011302 0.014872 0.019931
50 0.004824 0.00704 0.010357 0.013177

100 0.00237 0.003315 0.004428 0.005123
200 0.001106 0.001611 0.001984 0.00265 
400 0.000517 0.00068 0.000869 0.001202

 
p=2 

n α =.100   α =.050   α =.025   α =.001 
10 0.044842 0.06026 0.066001 0.087041
20 0.017341 0.022471 0.027371 0.033436
30 0.012121 0.015041 0.018939 0.022644
50 0.006489 0.008461 0.0107 0.013232

100 0.002973 0.004064 0.004911 0.005769
200 0.001515 0.002058 0.002583 0.003114
400 0.000798 0.000993 0.001183 0.001399

 
p=3 

n α =.100   α =.050   α =.025   α =.001 
10 0.063653 0.072975 0.083841 0.097222
20 0.021659 0.027437 0.031875 0.03683 
30 0.01529 0.018964 0.021729 0.02896 
50 0.008357 0.010072 0.012713 0.015255

100 0.003903 0.004764 0.005577 0.00666 
200 0.001914 0.002343 0.002834 0.003465
400 0.00096 0.001147 0.001356 0.001548

 
p=4 

n α =.100   α =.050   α =.025   α =.001 
10 0.085071 0.095948 0.104197 0.11845 
20 0.029503 0.034199 0.039543 0.045044
30 0.019203 0.022769 0.026887 0.033482
50 0.01144 0.013555 0.016139 0.018298

100 0.004863 0.005756 0.007385 0.009115
200 0.002635 0.003111 0.003769 0.004216
400 0.001189 0.001435 0.001728 0.001956
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Table 4: Critical values for γ =.25 and .75, 5 8p≤ ≤  
 

p=5 
n α =.100   α =.050   α =.025   α =.001 
10 0.102894 0.114259 0.122545 0.130222
20 0.036733 0.042505 0.048664 0.055457
30 0.024193 0.028806 0.032924 0.03821 
50 0.012663 0.014635 0.017276 0.019736
100 0.006106 0.007311 0.00896 0.009745
200 0.003067 0.003615 0.003998 0.004812
400 0.001441 0.001733 0.002079 0.002308

 
p=6 

n α =.100   α =.050   α =.025   α =.001 
10 0.117643 0.126566 0.133107 0.14228 
20 0.044309 0.049732 0.053913 0.060513
30 0.028607 0.033826 0.038616 0.043547
50 0.015445 0.017557 0.020041 0.022748
100 0.007335 0.008406 0.009392 0.01092 
200 0.003352 0.003815 0.004381 0.005252
400 0.001704 0.002002 0.002339 0.002773

 
p=7 

n α =.100   α =.050   α =.025   α =.001 
10 0.106573 0.113059 0.117388 0.121287
20 0.05217 0.058363 0.064734 0.069749
30 0.030697 0.035507 0.039266 0.044438
50 0.016737 0.019606 0.021254 0.022923
100 0.007767 0.009232 0.010341 0.011471
200 0.003998 0.00459 0.005507 0.006217
400 0.001903 0.002175 0.002519 0.002859

 
p=8 

n α =.100   α =.050   α =.025   α =.001 
10 0.119571 0.126977 0.130121 0.133258
20 0.0595 0.067185 0.071283 0.079431
30 0.034311 0.039827 0.044452 0.048512
50 0.0186 0.021094 0.023273 0.027471
100 0.009136 0.010902 0.012289 0.01373 
200 0.004382 0.005192 0.005598 0.006484
400 0.002197 0.002526 0.002819 0.003242
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Table 5: Some properties of the g-and-h distribution 
 

g h 1κ  2κ  
0.0 0.0 0.0 3.00 
0.0 0.2 0.0 21.46 
0.2 0.0 0.61 3.68 
0.2 0.2 2.81 155.98 

 
 

Table 6: Estimated Probability, α̂ , of a Type I error, n=20, p=4, γ =.75, ρ =.5 
 
                                                                                          

x ε  α̂  
g h g h VP1 VP2 VP3 

0.0 0.0 0.0 0.0 0.058 0.057 0.059 

0.0 0.0 0.0 0.2 0.052 0.061 0.053 

0.0 0.0 0.2 0.0 0.066 0.065 0.048 

0.0 0.0 0.2 0.2 0.059 0.063 0.049 

0.0 0.2 0.0 0.0 0.041 0.046 0.039 

0.0 0.2 0.0 0.2 0.043 0.050 0.045 

0.0 0.2 0.2 0.0 0.052 0.065 0.046 

0.0 0.2 0.2 0.2 0.046 0.066 0.055 

0.2 0.0 0.0 0.0 0.061 0.059 0.058 

0.2 0.0 0.0 0.2 0.049 0.051 0.070 

0.2 0.0 0.2 0.0 0.047 0.071 0.062 

0.2 0.0 0.2 0.2 0.054 0.064 0.054 

0.2 0.2 0.0 0.0 0.050 0.056 0.053 

0.2 0.2 0.0 0.2 0.042 0.045 0.047 

0.2 0.2 0.2 0.0 0.045 0.059 0.049 

0.2 0.2 0.2 0.2 0.045 0.060 0.049 
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Conclusion 
 
One of the main points is that when dealing with 
the quartiles, the method considered here 
continues to perform well in simulations, in 
terms of Type I errors, when sampling from 
skewed distributions, in contrast to the wild 
bootstrap method in Stute et al. (1998). Given 
the ease and flexibility of the method, all 
indications are that it has practical value. For 
situations where interpolation is not possible 
based on the results in Tables 1-4, simulations 
are still needed to determine critical values, but 
the results reported here indicate that this needs 
to be done only once. That is, given n, p and γ ,  
critical values can be determined via 
simulations, stored in a table, and then used in 
future studies where these values for n, p and γ  
occur. An R and S-plus function for applying the 
method (called medind) is available from the 
author upon request.  

Finally, the modification considered 
here can be extended to the situation where the  
goal is to test the fit of a linear quantile 
regression model. Preliminary results indicate 
that alternative critical values are now needed 
and that now critical values have an 
approximately linear association with 1.5n−  
rather than 1/ n , as was the case here.  
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