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On Polynomial Transformations For Simulating  
Multivariate Non-normal Distributions 

 
Todd C. Headrick 

Southern Illinois University - Carbondale 
 
 
Procedures are introduced and discussed for increasing the computational and statistical efficiency of 
polynomial transformations used in Monte Carlo or simulation studies. Comparisons are also made 
between polynomials of order three and five in terms of (a) computational and statistical efficiency, (b) 
the skew and kurtosis boundary, and (c) boundaries for Pearson correlations. It is also shown how ranked 
data can be simulated for specified Spearman correlations and sample sizes. Potential consequences of 
nonmonotonic transformations on rank correlations are also discussed. 
 
Key words: Correlated data, cumulants, Monte Carlo methods, polynomial transformations, nonnormality 
 
 

Introduction 
 
A common practice used to investigate the 
relative Type I error and power properties of 
competing statistical procedures under non-
normality is the method of Monte Carlo. For 
example, consider the following polynomial 
transformation in general form 
 

1 0 11

m i
ii

Y c c Z
=

= +∑                                             (1) 
 
where 1Z  ~ NID(0,1), and { }1,2,...,i m∈ = . 
Setting m = 3, Fleishman (1978) derived a 
system of four equations that would solve for the 
four coefficients 0 3,...,c c  in (1) for a specified 
non-normal distribution. Specifically, these 
coefficients are determined by simultaneously 
solving this system of equations for the first four 
standardized cumulants of a distribution. The 
coefficients are subsequently entered into (1) to  
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generate 1Y  with the specified cumulants. 
Equation (1) was extended to m= 5 by Headrick 
(2002) for controlling the first six standardized 
cumulants from a specified probability density 
function.  

The third-order polynomial (Fleishman, 
1978) and the fifth-order polynomial (Headrick, 
2002) transformations were also extended for 
the purpose of generating multivariate non-
normal distributions (Headrick, 2002, Equation, 
26; Headrick & Sawilowsky, 1999, Equation 9; 
Vale & Maurelli, 1983, Equation 11). These 
extensions have been demonstrated to be quite 
useful when there is a need for correlated non-
normal data sets in a Monte Carlo study. 

Some examples include analysis of 
covariance (Harwell & Serlin, 1988; Headrick & 
Sawilowsky, 1999; Headrick & Vineyard, 2001; 
Klockers & Moses, 2002), hierarchical linear 
models (Shieh, 2000), regression (Harwell & 
Serlin, 1989; Headrick & Rotou, 2001; 
Whittaker, Fauladi, & Williams, 2002) repeated 
measures (Beasley & Zumbo, 2003; Harwell & 
Serlin, 1997), and multivariate nonparametric 
tests (Beasley, 2002; Habib & Harwell, 1989). 
The multivariate extension of the fifth-order 
polynomial has also demonstrated to be useful 
for simulating continuous with ranked or ordinal 
data structures (Headrick & Beasley, 2003) and 
for generating systems of correlated non-normal 
linear statistical equations (Headrick & Beasley, 
2004). 
 



TRANSFORMATIONS FOR SIMULATING MULTIVARIATE DISTRIBUTIONS 
 

66

Although the primary advantages of the 
third and fifth-order polynomials are their ease 
of execution and computationally efficiency, 
there are limitations to these transformations. 
More specifically, the primary limitations are (a) 
the transformations are limited in terms of the 
possible combinations of skew and kurtosis, (b) 
the polynomials are not, in general, monotonic 
transformations and therefore have the potential 
to produce biased rank correlation coefficients, 
and (c) distributions with bivariate non-normal 
structures may have lower and upper boundary 
points ( a− , a ) for Pearson correlations (r)  
such that [ ]1 , 1r a a∈ − < − < +  and where it is 
possible, for example, that 0.70a < . It should 
be noted that the distribution of 1Y , in general, is 
not exact. Headrick (2004) has derived the 
probability density function and distribution 
function for 1Y  when the transformation between 

1Y  and 1Z  is monotic. 
In view of the above, the purposes of the 

study are to introduce and discuss methods that 
minimize the limitations of the polynomial 
transformations and to develop a procedure for 
simulating rank correlations. More specifically, 
the intent is to (a) derive and discuss methods 
for improving computational and statistical 
efficiency for a Monte Carlo study, (b) compare 
and contrast the third and fifth order 
polynomials in terms of the skew and kurtosis 
boundary and in terms of boundaries for Pearson 
correlations, (c) provide a method for simulating 
Spearman rank correlations with specified 
samples sizes, and (d) discuss the potential 
effects of nonmonotonic transformations on rank 
correlations. 
 
Improving Computational and Statistical 
Efficiency 

Consider (1) with m = 5 as 
 

2 3 4 5
1 0 1 1 2 1 3 1 4 1 5 1Y c c Z c Z c Z c Z c Z= + + + + +      (2) 

 
or 
 

( )( )( )( )1 0 1 1 1 2 1 3 1 4 5 1Y c Z c Z c Z c Z c c Z= + + + + + . 

                         (3) 
 

If the algorithm used to generate 1Y  is coded in 
the manner as in (3) instead of (2) then the run 
time of a Monte Carlo or simulation study can 
be substantially reduced. To illustrate (briefly), 
on a Pentium-based PC it took approximately 25 
seconds of computer time to draw 100,000 
random samples of size n = 550 from an 
approximate exponential distribution using (3). 
On the other hand, using (2), the sample size had 
to be reduced to n = 100 to obtain the same 
100,000 draws within the same 25 second time 
period. Thus, a considerable gain in 
computational efficiency can be realized by 
using (3) in lieu of (2). 

Suppose two standardized random 
variables 1Y  and 2Y  based on (3) are generated. 
A method that is useful to improve the 
efficiency of the estimate of ( )1 2 2Y Y+  is by 
inducing a negative correlation on 1Y  and 2Y . To 
demonstrate, if 1Y  and 2Y  were identically 
distributed, then 
 

1 2 1 2Corr[ , ]1Var
2 2 2

Y Y Y Y+⎡ ⎤ = +⎢ ⎥⎣ ⎦
.          (4) 

 
By inspection of (4) it would be advantageous if  

1Y  and 2Y  were negatively correlated. 
Assume that a monotone relationship 

between 1Z  and iY  for 1,2i =  exists. To induce 
a negative correlation on 1Y  and 2Y  it is only 
necessary to simultaneously reverse the signs of 
the coefficients with odd subscripts in 2Y  as 
 

1 1 0 1 2 3 4 5 1( , , , , , , )Y f c c c c c c Z=           (5) 
 

2 2 0 1 2 3 4 5 1( , , , , , , )Y f c c c c c c Z= − − − .         (6) 
 
Because the structure between iY  and 1Z  is 
standard bivariate normal, the correlation 
between 1Y  and 2Y  can be defined as 
 

1 2 1 2[ ].Y Y E YYρ =                   (7) 
 
Expanding (7) and taking expectations using the 
moments from the standard normal density 
yields 
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1 2

2 2
0 1 0 2 4 1 3 5

2 2 2 2
2 2 4 3 4 3 5 5

2 ( 3 ) 6 ( 5 )

3( 10 5( 7 14 63 )).
Y Y c c c c c c c c

c c c c c c c c

ρ = − + + − + +

+ − − + +
  

             (8) 
 
Thus, the correlation between 1Y  and 2Y  can be 
determined by evaluating (8) using specified 
values for 0 5,...,c c . For example, evaluating (8) 
using the coefficients that approximate the 
exponential density (see Headrick, 2002, Table 
1) gives 

1 2
0.647Y Yρ ≅ − . 

The method of inducing a negative 
correlation between 1Y  and 2Y   is analogous to 
the method used on distributions generated by 
the inverse transform method. More specifically, 
consider generating 1X  and 2X  from the single 
parameter exponential family with distribution 
function G  and with an inverse distribution 
function denoted as 1G− . Let  1

1 ( )X G V−=  and 
1

2 (1 )X G V−= −  where (0,1)V U∼ . Define the 
parameters for the first and second moments as 
θ  and 2θ . From the definition of the product 
moment of correlation exists  
 

12 2 2
1 2 0

[ ] ln ln(1 ) (2 6).E X X v v dvθ θ π= − = −∫  

 
As such, the correlation between 1X  and 2X  is 
 

1 2

21 6 0.645.X Xρ π= − ≅ −                  (9) 
 
Thus, the approximation given by (8) for the 
exponential distribution is very close to the exact 
result given in (9). 

Presented in Table 1 below are 
confidence intervals from a Monte Carlo 
simulation study that demonstrate the advantage 
of inducing a negative correlation on 1Y  and 2Y . 
By inspection of Table 1 when  1Y  and 2Y  are 
uncorrelated it takes over 2.5 times the sample 
size to obtain a confidence interval that has 
approximately the same width as the data with 
an induced negative correlation. Thus, whenever 
possible it is advantageous to induce a negative 
correlation to improve the computational and 
statistical efficiency of a Monte Carlo study.  
 

Table 1.  Confidence Intervals (CI’s) on the 
estimate of ( )1 2 2Y Y+   with and without a 
negative correlation induced. 1Y  and 2Y  are 
approximate exponential distributions with 
population means of 1 5γ = . The CI’s are 
based on 50,000 sample estimates. 
 

Corr[ 1Y , 2Y ] Sample Size 95% C.I. 
0.000 n = 10 [4.552, 5.448] 
0.647−   [4.715, 5.252] 

   
0.000 n = 26 [4.726, 5.273] 
0.647−   [4.841, 5.158] 

 
Statistical efficiency can also be 

improved when using the fifth-order polynomial 
in lieu of the third-order polynomial. For 
example, consider approximating the uniform 
distribution. The kurtosis for this distribution is 
theoretically 1.20− . However, the lower-
boundary of kurtosis for the third-order 
polynomial is 1.15132− (Headrick & 
Sawilowsky, 2000) whereas the fifth-order poly- 
nomial can generate this distribution with the 
required kurtosis (Headrick, 2002, Table 1). 
Presented in Table 2 is a comparison between 
the two polynomials’ approximations to the 
uniform distribution. By inspection of the values 
of RMSE in Table 2, it is evident that the fifth-
order polynomial is superior in its 
approximation to the standardized cumulants of 
this distribution. 
 
Lower Boundary Points of Kurtosis 

The lower boundary points of kurtosis is 
another topic of concern because neither the 
third nor the fifth-order polynomial 
transformations span the entire skew ( 3γ ) and 
kurtosis ( 4γ ) plane given by the general 
expression 
 

2
4 3 2γ γ≥ − .          (10) 
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Table 2. Estimates of the first six 
standardized cumulants of the uniform 
density and the Root Mean Square Errors for 
the third and fifth-order polynomials. 
Estimates ( îγ ) are based on a sample size of 

50n =  and averaged across 50,000 
repetitions. The same random numbers were 
used in both polynomials. 
 

Standardized Parameters  
Uniform Distribution ( iγ ) 

 
îγ  

 
RMSE 

Third-Order Polynomial   
1γ = 0.0 0.000 0.142 

2γ = 1.0 1.000 0.132 

3γ = 0.0 0.002 0.338 

4γ = − 6/5 11.152−  1.673 

5γ = 0.0 0.095 15.771 

6γ = 48/7 8.711 161.61 
   

Fifth-Order Polynomial   
1γ = 0.0 0.000 0.142 

2γ = 1.0 1.000 0.127 

3γ = 0.0 0.001 0.278 

4γ = − 6/5 − 1.200 0.354 

5γ = 0.0 0.006 0.897 

6γ = 48/7 6.841 3.301 
1 The lower boundary of kurtosis for the third-
order polynomial is − 1.15132. 
 
Proof (Eq. 10). For any random variable with 
finite values of iγ  define 
 

[ [ ]] [ ]
ii

i i
X X

E X E X X E XEγ
σ σ

⎛ ⎞− −
= = ⎜ ⎟

⎝ ⎠
.  (11) 

 
Without loss of generality, it can be assumed 
that the random variable X is standardized such 
that [ ] 0E X =  and 2[ ] 1X E Xσ = =  in (11). 
From the covariance (or Schwarz) inequality 
there is 2 2 2[ ] [ ] [ ].E XW E X E W≤  If the two 
random variables in the covariance inequality 
are X and 2 1X − , then 
 

( )( ) ( )
( )

( )

2 22 2 2

23 4

23 4

2
3 4

2
4 3

[ 1 ] [ ] [ 1 ]

[ ] [ 2 1]

[ ] [ ] 1

1,  thus

1, and where

E X X E X E X

E X X E X X

E X E X

γ γ

γ γ

− ≤ × −

− ≤ − +

≤ −

≤ −

≥ +

 

 
subtracting a constant of 3, such that kurtosis for 
the normal distribution is zero, gives (10) (It can 
also be shown that the equality condition in (10) 
is not possible. However, in the context of this 
paper, the matter is trivial). 

Presented in Table 3 are the lower 
boundary points of kurtosis for both 
polynomials. The values of minimum kurtosis 
( 4γ ′ , 4γ

∗ ) were obtained by minimizing Equation 
14 (Headrick & Sawilowsky, 2000) and 
Equation 36 (Headrick, 2002) using the 
command ‘NMinimize’ (Mathematica, 
Wolfram, 2003, version 5.0). By inspection of 
Table 3, it is evident that the fifth-order 
polynomial spans a much larger space in the 
plane defined by (10) than the third-order 
polynomial. 
 
Pearson Correlations 

As mentioned, the third and fifth-order 
polynomial transformations are computationally 
efficient algorithms for generating multivariate 
non-normal distributions. In general, and in 
terms of the fifth-order polynomial, the approach 
taken is to solve the equation given in Headrick 
(2002, Equation, 26) for pairwise intermediate 
correlations between k variables. 

The intermediate correlations are 
subsequently assembled into a correlation matrix 
and factored (e.g., a Cholesky factorization). 
The components from the factorization are used 
to generate multivariate standard normal random 
deviates correlated at an intermediate level. 
These deviates are then transformed by the 
polynomials to produce the specified non-
normal distributions with the desired 
intercorrelations. 
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There are limitations in simulating 

multivariate distributions using the polynomial 
transformations. Specifically, the third and fifth-
order polynomials may have lower and upper 
boundary points ( a− , a ) for correlations (r) 
such that [ ]1 , 1r a a∈ − < − < + . In the context of 
the bivariate case, this problem is most 
pronounced when one distribution is symmetric 
and the other skewed. 
For example, suppose the distributions are 
approximate chi-square (1df) and normal. The 
boundaries of correlation for the third-order 
polynomial are a = ± .67481 whereas the 
boundaries for the fifth-order polynomial are 
a = ± .82024. As another example, if the normal 
distribution is replaced by the coefficients for 
the uniform distribution, then the boundaries for 
bivariate correlation are a = ± .623033 and 
a = ± .738553 for the third and fifth-order 
polynomials, respectively. Thus, the fifth-order 
polynomial can be a remedy for cases where it is 
needed to simulate the often used correlation of 

.70r =  when the distributional conditions make 
it impossible for the third-order polynomial. 

 
 
 
 

 
 

 
Monotinicity and Spearman Correlations 

A monotonic relationship between 1Y  
and 1Z  in (3) is defined as 
 

1 1 1 1i j i jZ Z Y Y> ⇒ > , i j≠∀ .        (12) 
 
Testing for a monotonic relationship can be 
accomplished by solving 1 1 0dY dZ =  for 1Z . If 
only complex solutions of 1Z  exist then the 
transformation between 1Y  and 1Z  is considered 
globally monotonic. If real solutions of 1Z  exist, 
then the transformation is considered non-
monotonic. For example, all chi-square 
distributions (df >1) approximated by fifth-order 
polynomials are globally monotonic 
transformations.  The third-order polynomials, 
however, are not monotone transformations for 
any approximation of the chi-square family (see 
Headrick, 2004). The concern for monotonic 
relationships becomes important when there is a 
need to simulate ranked data with specified 
Spearman correlations. 

Consider generating 1Y  and 2Y  from 
equations of the form in (3) with a Pearson 
correlation 

1 2Y Yρ . Let 1( )R Y  and 2( )R Y  denote 
the ranks of 1Y  and 2Y  and 1( )R Z  and 2( )R Z  

Table 3. Lower boundaries of kurtosis for the third ( 4γ ′ ) and fifth ( 4γ
∗ ) order polynomials for a given value 

of skew ( 3γ ). The coefficients 0 5,...,c c  are associated with the fifth-order polynomial. 
 

3γ  4γ ′  4γ
∗  0c  1c  2c  3c  4c  5c  

0.00 -1.151320 -1.385081 0.000000 -1.643734 0.000000 0.320242 0.000000 -0.011361 

0.25 -1.045100 -1.296301 -0.160182 -1.597079 0.195003 0.302208 -0.011607 -0.010437 

0.50 -0.741671 -1.038260 -0.298119 1.492904 0.036292 -0.266933 -0.021600 0.008682 

0.75 -0.252697 -0.614627 -0.419443 1.357093 0.508113 -0.228251 -0.029554 0.006969 

1.00 0.424841 -0.020321 -0.529477 1.190353 0.637194 -0.187141 -0.035906 0.005314 

1.25 1.297258 0.753833 -0.632000 0.981640 0.754682 -0.141828 -0.040894 0.003602 

1.50 2.370670 1.724592 -0.732543 0.690295 0.866255 -0.087835 -0.044570 0.001719 

1.75 3.652341 2.757983 -0.503230 0.829259 0.623359 0.006876 -0.040043 -0.002257 

2.00 5.151620 3.983870 -0.524421 0.710491 0.645056 0.048321 -0.040213 -0.004000 
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denote the ranks of 1Z  and 2Z . If monotonic 
relationships hold for both transformations as 
defined in (12), then 

1 2 1 2( ) ( ) ( ) ( )R Y R Y R Z R Z sρ ρ ρ= =  
and where sρ  denotes the Spearman rank 
coefficient of correlation. 

Because the structure of 1Z  and 2Z  is 
standard bivariate normal, ranked data can be 
simulated for specified values of sρ  and n by 
making use of the following expression (Moran, 
1948) 
 

( )1 2

1 2

1 16 2 1sin sin .
1 2 1

Z Z
s Z Z

n
n n

ρ
ρ ρ

π
− −⎧ ⎫⎛ ⎞−⎪ ⎪= +⎨ ⎬⎜ ⎟+ +⎪ ⎪⎝ ⎠⎩ ⎭

 (13) 

 
More specifically, to generate 1( )R Y  and 2( )R Y  
with a specified rank correlation sρ  and sample 
size, one need only numerically solve (13) for 

1 2Z Zρ  given values of sρ  and n. For example, 
suppose it is desired to generate 1( )R Y  and 

2( )R Y  with a Spearman rank correlation of 

sρ .70= , 5n = , and where the distributions 1Y  
and 2Y   are approximate exponential. For this 
example, it is appropriate to use fifth-order 
polynomial transformations because (12) holds 
for this case. Thus, solving (13) for the specifed 
values of sρ  and n gives an intermediate 
correlation of 

1 2
.811202Z Zρ = . 

 
Conclusion 

 
In terms of the procedure for simulating ranked 
data with specified Spearman correlations, it 
should be pointed out that equation (12) is a 
sufficient condition for monotonicity. However, 
the procedure will provide adequate simulations 
of rank data with specified correlations if the 
polynomial transformations are locally 
monotonic. More specifically, the simulated 
rank correlations may be robust to violations of 
(12) even though real solutions of 1Z  (or 2Z ) 
exist for 1 1 0dY dZ =  (or 2 2 0dY dZ = ). For 
example, assume more generally, for two 
symmetric distributions of the same shape that 

3.00Z ±  are real solutions for 0dY dZ = .  

These distributions could be considered 
locally monotonic because the probability 
associated with drawing such values of 

: 3.00Z Z ≥  is only .0027. Because the 
probability of obtaining such values of Z  is 
very low, the amount of bias introduced into a 
Monte Carlo or simulation study would be 
negligible. 

To provide an empirical definition of 
local monotonicity, this author conducted 
simulations using fifth-order transformations 
with many different non-normal distributions 
with nonmonotonic relationships. The 
simulation results indicated that Spearman 
correlations were close to what (13) would 
compute ( .025sρ ± ) if the real solutions of Z  
for 0dY dZ =  were 1.75Z ≥ . 
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