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Non-Parametric Quantile Selection for Extreme Distributions

Wan Zawiah Wan Zin
Universiti Kebangsaan Malaysia

Abdul Aziz Jemain
Universiti Kebangsaan Malaysia

The objective is to select the best non-parametric quantile estimation method for extreme distributions.
This serves as a starting point for further research in quantile application such as in parameter estimation
using LQ-moments method. Thirteen methods of non-parametric quantile estimation were applied on six
types of extreme distributions and their efficiencies compared. Monte Carlo methods were used to
generate the results, which showed that the method of Weighted Kernel estimator of Type 1 was more

efficient than the other methods in many cases.

Keywords: Order statistics, sample quantiles, kernel quantile estimators, weighted kernel quantile
estimators, HD quantile, weighted HD quantile, LQ-moments, IMSE.

Introduction

In model fitting, one of the key steps is finding
the accurate estimates of parameters based on
the data in-hand. Several well-known methods
include the maximum-likelihood method (ML),
method of moments (MOM) and Probability
Weighted Moments (PWM). An extension of
PWM, termed L-moments, was introduced by
Sillitto (1951) for increased accuracy and ease of
use of PWM-based analysis.

Mudholkar & Hutson (1998) introduced
LQ-moments, an extension of L-moments that
was found to be more robust. LQ-moments are
constructed using a series of robust linear
location measures in place of expectations of
order statistics in the L-moments. The r-th LQ-

moment, &, of X is defined as:
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where 0< & <1/2,0< p <1/2,and
Tp,a (erk:r )
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is the linear combination of symmetric quantiles
of the order statistics X,_, with O, ()=F7()
as the quantile function of the random variable
X,and B, (0{) denotes the corresponding &

-th quantile of a beta random variable with
parameters » —k and k+1. From (2) it can be
concluded that proper selection of quantile
estimators is crucial to obtain the most accurate
parameter estimation based on LQ-moments. As
there are many non-parametric quantile
estimation methods available, selection is based
on statistical ground to propose the most
efficient method in many cases.
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Methodology

The quantile function estimators
Let X,,X,,....,X,be independent and

identically distributed random variables with
common continuous distribution function (cdf)

F(x),xeR. Let X, <X, <.<X,_
denote the corresponding order statistics. The
population quantile function, Q(u)of a
distribution is defined as:

Ow)=inf{x: F(x)>u}, O<u<l. (3)
A traditional estimator of Q(u) is the u-th sample
quantile given by

SQu = X([nu]Jrl):n (4)

where [nu] denotes the integral part of nu

(David, 2003). However, this estimator suffers a
drawback in efficiency, caused by the variability
of individual order statistics (Huang, 2001). In
their article on LQ-moments, Mudholkar &
Hutson  (1998) employed the linear
interpolation-based quantile (LIQ) estimator,
defined as,

QX (l/l) = (1 - g)X[n'u]:n + gX[n'u]-H:n’ (5)
where € =n'u— [n'u] and n'=n+1. This is
the simplest estimator, and is available in most
statistical software packages. It was used as the
base for efficiency study in this research.

To overcome the drawback in efficiency
of (4), many authors use L statistics to reduce
the variability. A popular class of kernel quantile
estimators has been applied for improving the
efficiency of sample quantiles, using an
appropriate weight function to average over the
order statistics (Sheather & Marron, 1990).
Parzen (1979) provided the formula

n i/n
KQu = Z{ IKh(t _u)dtJX[:n’ (6)
=L\ (i-D)/n

where K is a density function symmetric about 0,

h—0 as n—seoand K, ()= GJK(:J .

h

Using the classical empirical distribution
function S, given by

S, (x) =lZn:I(XI. <x)xeR, (7)
noio

where 1, is the indicator function of set A4, the
following are various approximation forms of
KQ, which are often used for practical reasons:

KQu.l = i(n_lKh (i - uiji:n >
n

i=1

(®)
1
n 11—
KQu.Z = z nilKh 2 —u Xi:n’
i=1 n
)
< I
K = K| ——ul||X.,
Qu.3 ;( h[n_i_l jj iin
(10)
1
n 1=
Kh 2 —u Xi:n
i=1 n
KQu.4 = ' 1
n 1=
z K, —Z—u
i=l1
(11)

Huang & Brill (1995, 1996) introduced
a level crossing empirical distribution function

Ez(x):Zn:I(Xi:n Sx)wi,n’ (12)
i=1

where the data point weights are

W22 | ioin
_ 2 Jn(n=1) | ’ (13)
1

Jn(n—1) ’

=

i=23,..,n-1
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From (12) and (13), they obtained the following
level crossing u-th sample quantile to estimate

O(u), namely,
SQu(lc) = X([b]+2)’ (14)
where
n—2

1
b= n(n—l)[u—a(l—m]J (15)

Huang & Brill (1999) then introduced
the level crossing u-th sample kernel quantile
given by,

n Gin
WKQ,iy = | [K,(t—wydt|X,,, (16)

i=1 di-1,n

i
where ¢, = ZWM and w;, is given in (13).
j=1

The approximation forms of
corresponding to (8)-(11) are as below:

WKQ.c)

WKQMJ(IL-) = Z[n_lKh[z Wi _MJJXN;’

i=1 j=1

(17)
n i1
WKQu.Z(lc) = Z(anh(zwj,n +%Wi,n —u in:n’
i=1 Jj=1
(13)
n i n
WK = n'K w, ———ullX, ,
Qu.3(/c) ;( h(jﬂ j.n I’l+1 J in
(19)

WKQu.4(lc) =

(20)

In the study, Huang & Brill investigated
the relative efficiency of the u-th sample level
crossing quantile, SO, in (14) relative to the u-
th sample quantile SQ, in (4) and the relative
efficiency of the level crossing quantile
estimator KQ, ., in (16) relative to the ordinary
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kernel quantile estimator KQ, in (6). From both
theoretical and computational points of view,
they showed that the proposed level crossing
estimations were more efficient in many cases,
especially for the tails of the distribution and for
small sample sizes. Their simulation used the
exponential and three types of generalized
lambda distribution with small sample sizes
(n=10 and n=20).

The selection of kernel or bandwidth of
the kernel estimators has always been a sensitive
problem. To overcome this, Harrell & Davis
(1982) proposed an L-quantile estimator of Q(u),
defined by,

HD, = Z j ! ' (1—u)du |X,,,
i=1 (i—1)ﬂ(a:b) .

n

21)

where a = (n+1)u , b=(n+1)v , v=I-u and f(a,b)
is the beta function with parameters a and b.

Huang (2001) proposed a level-crossing
HD quantile estimator based on (12) and (21) as
follows:

n [ i 1
WHD, =) |

—u(-u)dy |X,,,
i=1 Gioin ﬁ{aab} ‘

(22)

where ¢, = ij,n » 9o, =0 and w;, is given
J=1
in (13).

Similar to previous research, Huang
investigated the relative efficiency of the level
crossing quantile estimator HD,;) in (22)
relative to the ordinary quantile estimator HD, in
(21). From both theoretical and computational
points of view, the result proved that the
proposed level crossing estimations are more
efficient in many cases, especially for the tails of
the distribution and for small sample sizes. In
their simulation, the exponential and three types
of generalized lambda distribution with small
sample sizes (n=10 and 20) were used.

Thirteen quantile estimation methods
are used: (4), (5), (8) - (11), (14), (17) - (20),
(21) and (22). An efficiency study is conducted
based on integrated mean square error (IMSE) to
determine the most efficient quantile estimation
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methods  for  several extreme  values
distributions. LIQ is used as the base because it
is the simplest, is easily available in most
statistical packages and is most often used
quantile estimation method. The relative
efficiency results are compared; the method with
the lowest IMSE relative efficiency was
considered the best and was recommended.

Extreme values distributions
In this research, six common extreme-values

Generalized Extreme Value (GEV), Generalized
Pareto Distribution (GPD), Generalized Logistic
Distribution  (GLD), the three-parameter
Lognormal (LN3) and Pearson (PE3)
distributions and the five-parameter extreme
events such as extreme rainfall and flood.

Table 1 provides the list of the extreme
value distributions, their corresponding quantile
functions and the associated parameters to be
tested. The parameters are & the position
parameter, ¢, the scale parameter and x is the

distributions were investigated, namely, the Wakeby distribution (WAKS5). These six
Table 1: Extreme Value Distributions
o ] . Parameters
Distribution Quantile Function, Q(u) e o B
1. Generalized Extreme o K
Value (GEV) & +;[l - (— lnu) ] 0 1 -0.3,-0.2,-0.1,0.1, 0.2, 0.3
2. Generalized Pareto o ©
Distribution (GPD) e+ [1 —(1—u) ] 0| 1 -0.3,-0.2,-0.1,0.1,0.2, 0.3
o 1 -
3. Generalized Logistic o Jfi-u
Distribution (GLD) &+ - 1 {[_u j} 0 1 -0.1,-0.2,-0.3,-0.4, -0.5, -0.6
4. The three-parameter o
Lognormal distribution E+— [1 —e¥ ] 0 1 0.2(0.2)1.2
(LN3) K
3
2 2
—| 1+ ﬁ — K —
14 6 36 14
5. The three-parameter (by Wilson-Hilferty
Pearson distribution transformation and Z, is the | O 1 1,2,3,4,6,8
(PE3) u-th quantile of the
standard normal
distribution)
Ji] /4 d
16 4 0.2
7.5 5 0.12
6. The five-parameter e+ 0![1 —(-u)? ] ) 5 012
Wakeby distribution s 0 1 i
(WAKS5) ~A--uw)] 16 10 0.04
1 10 0.04
2.5 10 0.02
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distributions are commonly applied in regional
frequency analysis to model many situations of
shape parameter unless stated otherwise. The
distributions are studied at various shape
parameters, x while fixing the position, £ and
scale parameters, o at 0 and 1 respectively,
except for Wakeby distribution. The parameters
selected were based on previous studies (e.g. for
Wakeby) the parameters were proposed by
Landwher, et al. (1980). Ani & Aziz (2007)
studied and compared the efficiency of (5), (17)
and (22) quantile estimators based on this
distribution. They performed simulation on GEV
based on LQ-moments and the results showed

that WKQ, ,, (17) was the most efficient

quantile estimator.

Simulation Study

Several Monte Carlo simulation
experiments were conducted to determine the
best quantile estimators corresponding to
different extreme values distributions. The data
with small sample sizes, n=10(5)30 were
generated from respective distribution quantile
functions at various values of ¥ = 0.01, 0.25,
0.33, 0.50, 0.66, 0.75, 0.90 and replicated (m)
5,000 times each.

For the kernel and weighted kernel
quantile estimators, the Gaussian Kernel was

used K(u)= (27[)_% exp(— %uzj with  an

1

2
optimal bandwidth #,, = (ﬂj where v=1-u,
n

as proposed by Sheather & Marron (1990).
The expected values obtained from the

quantile estimators, Q,(u) were compared with

the distribution actual (population) u-th quantile
value, Q(u), that is bias

Bias = 31(0,00 - 0w).

From this value the mean square value
was calculated

MSE = i_Zm)(Ql(u)—Q(u)) (42)

along with the integrated mean square errors
(IMSE), which is defined as the sum of Mean
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Square Error across all defined u values. The
IMSE from all other methods was divided by the
IMSE from LIQ to gain the relative efficiency.
The estimator which gave the lowest relative
IMSE was selected as the best estimator.

The computational results comparing
various quantile estimation methods for various
distributions are shown in Tables 2-7 for the six
extreme distributions respectively. Note that
bold font indicates the smallest IMSE value; the
most efficient at each respective group.

Results

Table 2 shows the relative efficiency values for
six types of Generalized Extreme Value (GEV)
distribution. The selection of best quantile
estimation method changes when the shape
parameter changes from negative to positive.
Table 2 also shows that when the shape
parameter is negative, as in GEV types 1,2 and
3, the method suggested was the Weighted

Kernel Quantile estimator of Type 1, WKQ, ., »

as in (17). However, when the shape parameter
is positive, as in GEV types 4, 5 and 6, the most
efficient method was the Kernel Quantile
estimator Type 4 as in (11) for GEV types 5 and
6. The result is similar in the case of n=10 for
GEV type 4, but for this type, the more efficient
estimator was the Weighted Kernel Quantile

estimator Type 4,WKQ, ,,,, as in (20)

followed by the Kernel Quantile estimator Type
4. Hence, we suggest that — in the case of GEV
distribution — when analyzing data which is
lower-bounded (x<0), as in most hydrological
data, the best estimator would be Weighted

Kernel Quantile estimator Type 1,WKQ, .,

and for data that is upper-bounded (k>0), the
Kernel Quantile estimator Type 4, KQ, ,,

would be the best choice.

The IMSE relative efficiency for six
types of Generalized Pareto distribution (GPD)
is shown in Table 3. Similar to the GEV case,
the selection of best quantile estimation method
changes when the shape parameter changes from
negative to positive. From Table 3, in almost all
cases, the best estimator was the Weighted

Kernel Quantile estimator Type 1, WKQ, ., »
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Table 2: Generalized Extreme Value (GEV) Distribution

Parameters: Position, € = 0; Scale, oo = 1; Shape, k =-0.3 (GEV1)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.430 | 0.764 | 0.378 | 0.487 | 0.546 | 0.635 | 0.373 | 0.481 | 0.534 | 0.466 | 0.838 | 0.703
15| 1.183 | 1.176 | 0.338 | 0.453 | 0.529 | 0.588 | 0.333 | 0.446 | 0.528 | 0.431 | 0.894 | 0.695
20 | 1.102 | 0.158 | 0.171 | 0.245 | 0.294 | 0.316 | 0.168 | 0.236 | 0.305 | 0.229 | 0.530 | 0.389
251 0.200 | 0.200 | 0.186 | 0.273 | 0.354 | 0.346 | 0.182 | 0.257 | 0.367 | 0.252 | 0.602 | 0.418
30 | 0.422 | 0.361 | 0.279 | 0.395 | 0.526 | 0.485 | 0.270 | 0.366 | 0.547 | 0.363 | 0.770 | 0.529
Parameters: Position, € = 0; Scale, oo = 1; Shape, x =-0.2 (GEV2)

n | SQP1 | SQP2 | KQ1 | KQ2 | KQ3 | KQ4 | WKQI1 | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.286 | 0.810 | 0.475 | 0.559 | 0.667 | 0.658 | 0.457 | 0.538 | 0.635 | 0.524 | 0.811 | 0.705
15| 1.133 | 1.121 | 0.455 | 0.542 | 0.653 | 0.636 | 0.437 | 0.524 | 0.628 | 0.508 | 0.885 | 0.714
20 | 1.100 | 0.289 | 0.262 | 0.320 | 0.379 | 0.384 | 0.255 | 0.312 | 0.377 | 0.303 | 0.564 | 0.439
2510.377 |1 0377 | 0.308 | 0.375 | 0.455 | 0.444 | 0.299 | 0362 | 0.460 | 0.355 | 0.647 | 0.489
30 | 0.586 | 0.514 | 0.366 | 0.448 | 0.550 | 0.527 | 0.355 | 0.426 | 0.564 | 0.421 | 0.743 | 0.558
Parameters: Position, € = 0; Scale, o. = 1; Shape, k =-0.1 (GEV3)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.055 | 0.700 | 0.522 | 0.570 | 0.741 | 0.588 | 0.486 | 0.528 | 0.688 | 0.516 | 0.686 | 0.616
15| 1.143 | 1.128 | 0.595 | 0.650 | 0.799 | 0.692 | 0.562 | 0.621 | 0.737 | 0.599 | 0.874 | 0.746
20 | 1.101 | 0.465 | 0.394 | 0.432 | 0.515 | 0.469 | 0.377 | 0.418 | 0.486 | 0.404 | 0.608 | 0.504
251 0.536 | 0.536 | 0.434 | 0.478 | 0.562 | 0.525 | 0.418 | 0.463 | 0.545 | 0.451 | 0.678 | 0.553
30 | 0.720 | 0.643 | 0.493 | 0.541 | 0.633 | 0.595 | 0.478 | 0.524 | 0.625 | 0.514 | 0.753 | 0.613
Parameters: Position, € = 0; Scale, o = 1; Shape, Kk = 0.1 (GEV4)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.797 | 0.691 | 0.659 | 0.645 | 0.889 | 0.560 | 0.590 | 0.587 | 0.793 | 0.560 | 0.584 | 0.567
15| 1.067 | 1.051 | 0.879 | 0.865 | 1.112 | 0.767 | 0.804 | 0.820 | 0.958 | 0.758 | 0.820 | 0.778
20 | 1.074 | 0.806 | 0.692 | 0.686 | 0.833 | 0.631 | 0.645 | 0.664 | 0.723 | 0.615 | 0.688 | 0.640
251 0.836 | 0.836 | 0.724 | 0.716 | 0.825 | 0.681 | 0.690 | 0.707 | 0.736 | 0.663 | 0.740 | 0.688
30 | 0.915 | 0.876 | 0.724 | 0.718 | 0.805 | 0.705 | 0.699 | 0.715 | 0.742 | 0.679 | 0.770 | 0.711
Parameters: Position, € = 0; Scale, oo = 1; Shape, k¥ =0. 2 (GEVY)

n | SQP1 | SQP2 | KQ1 | KQ2 | KQ3 | KQ4 | WKQI1 | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.734 | 0.690 | 0.710 | 0.666 | 0.921 | 0.555 | 0.628 | 0.615 | 0.812 | 0.575 | 0.562 | 0.558
15| 1.033 | 1.022 | 0.957 | 0.915 | 1.182 | 0.779 | 0.867 | 0.886 | 1.005 | 0.798 | 0.800 | 0.781
20 | 1.041 | 0.931 | 0.815 | 0.785 | 0.954 | 0.694 | 0.757 | 0.780 | 0.814 | 0.703 | 0.721 | 0.696
2510.924 1 0924 | 0.916 | 0.794 | 0.862 | 0.734 | 0.790 | 0.810 | 0.812 | 0.741 | 0.764 | 0.736
30 | 0.975 | 0.949 | 0.821 | 0.795 | 0.888 | 0.749 | 0.790 | 0.804 | 0.796 | 0.750 | 0.782 | 0.751
Parameters: Position, € = 0; Scale, o. = 1; Shape, k= 0.3 (GEV6)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.702 | 0.704 | 0.757 | 0.682 | 0.938 | 0.564 | 0.664 | 0.649 | 0.821 | 0.595 | 0.565 | 0.566
15| 1.004 | 1.006 | 1.005 | 0.930 | 1.198 | 0.779 | 0.905 | 0.930 | 1.013 | 0.815 | 0.788 | 0.780
20 1 0.979 | 0.969 | 0.868 | 0.817 | 0.993 | 0.712 | 0.802 | 0.834 | 0.840 | 0.737 | 0.729 | 0.714
251 0.951 | 0.951 | 0.880 | 0.839 | 0.967 | 0.754 | 0.832 | 0.860 | 0.836 | 0.777 | 0.774 | 0.756
30 1 0.979 | 0.973 | 0.863 | 0.828 | 0.923 | 0.766 | 0.828 | 0.848 | 0.817 | 0.783 | 0.788 | 0.768
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Table 3: Generalized Pareto Distribution (GPD)

Parameters: Position, € = 0; Scale, o = 1; Shape, Kk =-0.3 (GPD1)

n | SQP1 | SQP2 | KQI1 | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.437 | 0.719 | 0.331 | 0.457 | 0.521 | 0.603 | 0.325 | 0.438 | 0.508 | 0.429 | 0.819 | 0.677
15| 1.215 | 1.209 | 0.305 | 0.434 | 0.506 | 0.576 | 0.301 | 0.421 | 0.505 | 0.409 | 0.903 | 0.695
20 | 1.103 | 0.145 | 0.165 | 0.250 | 0.316 | 0.325 | 0.162 | 0.236 | 0.323 | 0.232 | 0.556 | 0.397
251 0.169 | 0.169 | 0.166 | 0.257 | 0.339 | 0.328 | 0.163 | 0.239 | 0.351 | 0.236 | 0.594 | 0.406
30 | 0.390 | 0.331 | 0.257 | 0.378 | 0.513 | 0.470 | 0.249 | 0.347 | 0.534 | 0346 | 0.771 | 0.519
Parameters: Position, € = 0; Scale, oo = 1; Shape, x =-0.2 (GPD2)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.250 | 0.721 | 0.404 | 0.510 | 0.636 | 0.604 | 0.386 | 0.468 | 0.603 | 0.469 | 0.764 | 0.653
15| 1.241 | 1.230 | 0.399 | 0.510 | 0.612 | 0.622 | 0.385 | 0.480 | 0.587 | 0.475 |0.893 | 0.717
20 | 1.103 | 0.273 | 0.248 | 0.315 | 0.386 | 0.383 | 0.239 | 0.298 | 0.381 | 0.296 | 0.573 | 0.437
251 0.337 | 0.337 | 0.265 | 0.341 | 0.422 | 0.416 | 0.257 | 0.322 | 0.429 | 0.321 | 0.632 | 0.467
30 | 0.547 | 0.462 | 0.339 | 0.433 | 0.549 | 0.519 | 0.327 | 0.403 | 0.563 | 0.404 | 0.755| 0.551
Parameters: Position, € = 0; Scale, oo = 1; Shape, x =-0.1 (GPD3)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.049 | 0.675 | 0.458 | 0.551 | 0.749 | 0.570 | 0.425 | 0.470 | 0.689 | 0.484 | 0.677 | 0.598
15| 1.154 | 1.136 | 0.522 | 0.619 | 0.786 | 0.674 | 0.492 | 0.553 | 0.718 | 0.559 | 0.884 | 0.735
20| 1.102 | 0.391 | 0.333 | 0.390 | 0.476 | 0.435 | 0.317 | 0.358 | 0.448 | 0.360 | 0.593 | 0.477
251 0.465 | 0.465 | 0.370 | 0.427 | 0.517 | 0.482 | 0.356 | 0.397 | 0.500 | 0.400 | 0.658 | 0.517
30 | 0.660 | 0.566 | 0.420 | 0.490 | 0.593 | 0.557 | 0.405 | 0.455 | 0.588 | 0.459 | 0.742 | 0.580
Parameters: Position, € = 0; Scale, o = 1; Shape, Kk = 0.1 (GPD4)

n | SQP1 | SQP2 | KQI1 | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.760 | 0.603 | 0.498 | 0.593 | 0.897 | 0.499 | 0.445 | 0.442 | 0.788 | 0.475 | 0.538 | 0.507
15 ] 1.055 | 1.032 | 0.734 | 0.835 | 1.161 | 0.727 | 0.666 | 0.651 | 0.964 | 0.683 | 0.812 | 0.744
20 | 1.106 | 0.708 | 0.580 | 0.634 | 0.814 | 0.577 | 0.539 | 0.523 | 0.678 | 0.540 | 0.655 | 0.591
251 0.754 | 0.754 | 0.623 | 0.669 | 0.818 | 0.637 | 0.588 | 0.576 | 0.702 | 0.590 | 0.721 | 0.645
30 | 0.891 | 0.812 | 0.645 | 0.681 | 0.801 | 0.672 | 0.618 | 0.607 | 0.715 | 0.618 | 0.757 | 0.676
Parameters: Position, € = 0; Scale, oo = 1; Shape, x = 0.2 (GPD5)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.656 | 0.571 | 0.497 | 0.601 | 0.948 | 0.462 | 0.436 | 0.417 | 0.815 | 0.458 | 0.478 | 0.464
151 0.984 | 0.958 | 0.800 | 0.918 | 1.326 | 0.727 | 0.715 | 0.669 | 1.062 | 0.714 | 0.762 | 0.728
20 | 1.109 | 0.864 | 0.716 | 0.787 | 1.047 | 0.663 | 0.659 | 0.618 | 0.829 | 0.644 | 0.704 | 0.665
251 0.882 | 0.882 | 0.770 | 0.818 | 1.014 | 0.714 | 0.724 | 0.675 | 0.821 | 0.695 | 0.755 | 0.715
30 | 0.975 | 0.907 | 0.762 | 0.795 | 0.943 | 0.726 | 0.728 | 0.685 | 0.794 | 0.700 | 0.772 | 0.727
Parameters: Position, € = 0; Scale, oo = 1; Shape, x = 0.3 (GPD6)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.584 | 0.553 | 0.503 | 0.615 | 0.992 | 0.441 | 0.437 | 0.405 | 0.841 | 0.454 | 0.441 | 0.441
151 0.936 | 0.912 | 0.842 | 0.986 | 1.472 | 0.722 | 0.746 | 0.677 | 1.140 | 0.733 | 0.724 | 0.717
20| 1.114 | 1.036 | 0.865 | 0.962 | 1.315 | 0.738 | 0.788 | 0.710 | 0.998 | 0.749 | 0.743 | 0.734
2510.993 | 0.993 | 0.897 | 0.962 | 1.223 | 0.780 | 0.838 | 0.759 | 0.942 | 0.786 | 0.787 | 0.777
30 | 1.045 | 1.005 | 0.868 | 0.908 | 1.093 | 0.778 | 0.827 | 0.758 | 0.876 | 0.777 | 0.789 | 0.777
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as in (2.15) and in all cases for positive shape
parameter, the most efficient estimator was
Weighted Kernel Quantile estimator Type 2

WKOQ, 2> as in (18). Hence, it is suggested

that in the case of GPD, when analyzing data
which is lower-bounded (k<0), as in most
hydrological data, the best estimator would be
the Weighted Kernel Quantile estimator Type 1,

WKQ, ) and for data that is upper-bounded

(1>0), the Weighted Kernel Quantile estimator
Type 2WKQ,, ., » would be the best choice.

For Generalized Logistic Distribution
(GLD), the IMSE relative efficiency values
point to several selections, as show in Table 4.
Compared to the other two previous
distributions, no one obvious estimator can be
considered the most efficient for all types of
GLD included in this study. The frequently
quoted choices are Weighted Kernel Quantile

estimator Type 1, (WKQ, ., ), SQP1 and 2, and

Kernel Quantile estimator Type 4, (KQ,,).

However, using Weighted Kernel Quantile
estimator Type 1, (WKOQ, ., ), is recommended

since this estimator is frequently quoted as the
most efficient compared to the others, and for
ease of further analysis in its future application.
The IMSE relative efficiency values for
Lognormal Type 3 (LN3) distributions are
displayed in Table 5. This table shows that, for
LN3 Types 1 and 2, the suggested estimator is
the Weighted Kernel Quantile estimator Type 4,

WKQ., 4> for LN3 types 3, 4 and 5 it was the

Weighted Kernel Quantile estimator Type 1,
WKQ, . » and there was no obvious choice for

LN3 WKQ, 1) 1

recommended for this distribution because it is
the best estimator for 3 types of LN3 (LN3
Types 3, 4 and 5) in this study, however, further
analysis of the IMSE relative efficiency values
for LN3 Types 2 and 6 showed that this method
gave the second smallest IMSE.

Table 6 shows the IMSE relative
efficiency values for the Pearson Type 3 (PE3)
distribution. In general, for PE3 Types 1 and 2,

the recommended estimator was WKQ, ., for

Type 6. Hence,
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PE3 Types 3 and 4, was WKQ, ,,, for PE3
Type 5, and for Type 6 was WKQ, .-

Because only one type of estimator from the
thirteen choices available needs to be chosen,
although the simulation results showed three

different methods, WKQ, ., is recommended

to use in other distributions. Another possible
alternative would be to use WKQ,

2

4(ey@nd

WKQ, 1) as quantile estimators.

Finally, Table 7 shows the IMSE
relative efficiency values for the Wakeby Type 5
(WAKS) distribution. Although the most
efficient quantile estimator for WAKS Types 1

and 2 was WKQ, ., the WKQ, ,,,is often

recommended for WAKS Types 3, 4, 5, and 6.
Hence, for WAKS, WKQ, ,., is recommended

as the quantile estimation method, with

WKQ, ., as another alternative.

Conclusion

Table 8 summarizes the two most efficient
quantile estimation methods (in sequence) with
respect to the six extreme distributions.

Table 8: The Top Two Most Efficient
Quantile Estimation Methods

GEV WKO, 10y | WKQ, 400,
GPD WKQu.l(lc) WKQM.Z(IC)
GLD WKQu.l(lc) WKQu.4(lc')
LN3 WKQu.l(lc) KQu.1<lc)
PE3 WKQu.l(lc) WKQ""‘”C)
WAKS WKQu.Z([c) WKQu.l(lc)

The IMSE relative efficiency of level
crossing estimators was compared to the
ordinary quantile estimator and the number of
times the result showed that the level crossing
estimators are better than the ordinary quantile
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Table 4: Generalized Logistic Distribution (GLD)

Parameters: Position, € = 0; Scale, o. = 1; Shape, k =-0.1 (GLD1)

n | SQPI1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.852 |1 0.772 | 0.882 | 0.784 | 0.939 | 0.667 | 0.808 | 0.815 | 0.869 | 0.692 | 0.676 | 0.674
15| 1.064 | 1.073 | 1.113 | 1.011 | 1.128 | 0.856 | 1.047 1.078 1.039 | 0.899 | 0.877 | 0.870
20 | 1.155 | 1.084 | 0.977 | 0.897 | 0.945 | 0.762 | 0.943 | 0970 | 0.879 | 0.815 | 0.768 | 0.775
251 1.088 | 1.088 | 1.072 | 0.991 | 0.995 | 0.853 | 1.058 1.076 | 0940 | 0.921 | 0.846 | 0.870
30 | 1.117 | 1.210 | 1.138 | 1.051 | 1.016 | 0.912 | 1.143 1.150 | 0974 | 0.997 | 0.896 | 0.937
Parameters: Position, € = 0; Scale, o. = 1; Shape, k =-0.2 (GLD2)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.027 | 0.797 | 0.753 | 0.720 | 0.839 | 0.668 | 0.702 | 0.722 | 0.790 | 0.647 | 0.728 | 0.692
15| 1.109 | 1.114 | 0.893 | 0.856 | 0.953 | 0.778 | 0.849 | 0.869 | 0.892 | 0.773 | 0.876 | 0.819
20 | 1.125 | 0.800 | 0.718 | 0.684 | 0.731 | 0.616 | 0.697 | 0.703 | 0.689 | 0.628 | 0.691 | 0.646
251 0.843 | 0.843 | 0.823 | 0.778 | 0.805 | 0.701 | 0.812 | 0.805 | 0.766 | 0.728 | 0.772 | 0.732
30 | 0.944 | 1.020 | 0.937 | 0.876 | 0.873 | 0.795 | 0.941 0.918 | 0.844 | 0.838 | 0.853 | 0.828
Parameters: Position, € = 0; Scale, o. = 1; Shape, k =-0.3 (GLD3)

n | SQP1 | SQP2 | KQI1 | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.150 | 0.672 | 0.570 | 0.594 | 0.681 | 0.599 | 0.541 | 0.577 | 0.653 | 0.541 | 0.716 | 0.644
151 1.132 | 1.135 | 0.644 | 0.676 | 0.754 | 0.683 | 0.621 0.663 | 0.723 | 0.620 | 0.884 | 0.760
20 | 1.105 | 0.506 | 0.461 | 0.476 | 0.523 | 0.472 | 0.450 | 0.470 | 0.506 | 0.441 | 0.616 | 0.521
251 0.554 | 0.554 | 0.536 | 0.543 | 0.594 | 0.529 | 0.530 | 0.538 | 0.577 | 0.508 | 0.688 | 0.577
30 | 0.688 | 0.738 | 0.651 | 0.652 | 0.704 | 0.636 | 0.651 0.652 | 0.691 0.620 | 0.813 | 0.685
Parameters: Position, € = 0; Scale, aia = 1; Shape, ¥ =-0.4(GLD4)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI1 | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.468 | 0.893 | 0.479 | 0.579 | 0.609 | 0.694 | 0.464 | 0.559 | 0.595 | 0.533 | 0.894 | 0.769
151 1.130 | 1.131 | 0.378 | 0.485 | 0.559 | 0.565 | 0.369 | 0.459 | 0.550 | 0.439 | 0.887 | 0.687
20 | 1.104 | 0.200 | 0.213 | 0.271 | 0.320 | 0.309 | 0.210 | 0.256 | 0.318 | 0.246 | 0.517 | 0.388
251 0.196 | 0.196 | 0.224 | 0.294 | 0.372 | 0.329 | 0.221 0.273 | 0370 | 0.265 | 0.591 | 0.415
30 | 0.329 | 0.341 | 0.343 | 0.428 | 0.547 | 0.465 | 0.342 | 0.401 0.547 | 0.391 | 0.804 | 0.547
Parameters: Position, € = 0; Scale, o. = 1; Shape, k =-0.5 (GLDS)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.616 | 0.891 | 0.374 | 0.513 | 0.510 | 0.683 | 0.370 | 0.499 | 0.507 | 0.477 | 0.931 | 0.777
15| 1.297 | 1.297 | 0.248 | 0.390 | 0.436 | 0.514 | 0.246 | 0.364 | 0.436 | 0.348 | 0.872 | 0.666
20 | 1.105 | 0.060 | 0.121 | 0.217 | 0.293 | 0.274 | 0.120 | 0.194 | 0.295 | 0.188 | 0.538 | 0.362
251 0.163 | 0.163 | 0.196 | 0.288 | 0.387 | 0.337 | 0.194 | 0.262 | 0.391 0.257 | 0.612 | 0.411
30 | 0.299 | 0.306 | 0.338 | 0.532 | 0.831 | 0.590 | 0.335 | 0.468 | 0.834 | 0.465 | 0.907 | 0.551
Parameters: Position, € = 0; Scale, o. = 1; Shape, k =-0.6 (GLD6)

n | SQP1 | SQP2 | KQI1 | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.513 | 0.510 | 0.198 | 0.334 | 0.340 | 0.474 | 0.197 | 0.316 | 0.340 | 0.302 | 0.740 | 0.583
15| 1.257 | 1.257 | 0.208 | 0.362 | 0.415 | 0.491 | 0.207 | 0.333 | 0.417 | 0.319 | 0.864 | 0.647
20 | 1.106 | 0.065 | 0.116 | 0.205 | 0.272 | 0.262 | 0.115 | 0.184 | 0.275 | 0.179 | 0.514 | 0.351
251 0.074 | 0.074 | 0.119 | 0.218 | 0.312 | 0.271 | 0.118 | 0.192 | 0.316 | 0.188 | 0.570 | 0.366
30 | 0.126 | 0.124 | 0.187 | 0.344 | 0.536 | 0.408 | 0.185 | 0.297 | 0.540 | 0.294 | 0.831 | 0.488
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Table 5: Log-Normal Type 3 Distribution (LN3)

Parameters: Position, € = 0; Scale, o. = 1; Shape, K =-0.2 (LN3 1)

n | SQP1 | SQP2 | KQ1 | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.846 | 0.730 | 0.761 | 0.658 | 0.876 | 0.591 | 0.674 | 0.692 | 0.783 | 0.588 | 0.619 | 0.599
15 | 1.067 | 1.055 | 0.934 | 0.842 | 1.054 | 0.764 | 0.845 | 0.907 | 0.929 | 0.752 | 0.826 | 0.779
20 | 1.077 | 0.801 | 0.723 | 0.669 | 0.795 | 0.627 | 0.670 | 0.724 | 0.710 | 0.611 | 0.686 | 0.637
25 1 0.796 | 0.796 | 0.719 | 0.683 | 0.781 | 0.663 | 0.681 | 0.735 | 0.718 | 0.639 | 0.733 | 0.674
30 | 0.896 | 0.844 | 0.716 | 0.693 | 0.774 | 0.690 | 0.689 | 0.738 | 0.730 | 0.659 | 0.764 | 0.697
Parameters: Position, € = 0; Scale, oo = 1; Shape, Kk =-0.4 (LN3 2)
n | SQP1 | SQP2 | KQ1 | KQ2 | KQ3 | KQ4 | WKQI1 | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.980 | 0.729 | 0.641 | 0.614 | 0.794 | 0.598 | 0.585 | 0.618 | 0.729 | 0.555 | 0.664 | 0.617
15 | 1.106 | 1.092 | 0.762 | 0.745 | 0.916 | 0.732 | 0.705 | 0.758 | 0.832 | 0.676 | 0.851 | 0.763
20 | 1.100 | 0.602 | 0.527 | 0.525 | 0.620 | 0.531 | 0.498 | 0.538 | 0.573 | 0.485 | 0.638 | 0.556
25 | 0.641 | 0.641 | 0.544 | 0.553 | 0.638 | 0.577 | 0.521 | 0.568 | 0.608 | 0.521 | 0.697 | 0.598
30 | 0.786 | 0.713 | 0.570 | 0.590 | 0.676 | 0.625 | 0.552 | 0.598 | 0.658 | 0.560 | 0.752 | 0.640
Parameters: Position, € = 0; Scale, oo = 1; Shape, K =-0.6 (LN3 3)
n | SQP1 | SQP2 | KQ1 | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.163 | 0.764 | 0.545 | 0.577 | 0.709 | 0.631 | 0.515 | 0.573 | 0.670 | 0.537 | 0.748 | 0.665
15 | 1.141 | 1.128 | 0.568 | 0.613 | 0.732 | 0.682 | 0.542 | 0.615 | 0.695 | 0.576 | 0.883 | 0.741
20 | 1.103 | 0.446 | 0.384 | 0.418 | 0.493 | 0.465 | 0.368 | 0.416 | 0.477 | 0.394 | 0.611 | 0.500
25 1 0.509 | 0.509 | 0.414 | 0.457 | 0.540 | 0.509 | 0.400 | 0.449 | 0.531 | 0.432 | 0.671 | 0.540
30 | 0.693 | 0.609 | 0.461 | 0.513 | 0.604 | 0.577 | 0.448 | 0.502 | 0.608 | 0.487 | 0.748 | 0.598
Parameters: Position, € = 0; Scale, o. = 1; Shape, kK =-0.8 (LN3 4)
n | SQP1 | SQP2 | KQ1 | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.313 | 0.763 | 0.457 | 0.532 | 0.625 | 0.640 | 0.444 | 0.527 | 0.604 | 0.506 | 0.804 | 0.688
15 | 1.193 | 1.182 | 0.439 | 0.523 | 0.607 | 0.635 | 0.427 | 0.520 | 0.596 | 0.498 | 0.891 | 0.719
20 | 1.105 | 0.284 | 0.303 | 0.316 | 0.414 | 0.377 | 0.274 | 0301 | 0.394 | 0.294 | 0.559 | 0.431
25 1 0.372 |1 0.372 | 0.291 | 0.359 | 0.436 | 0.433 | 0.283 | 0.348 | 0.447 | 0.340 | 0.639 | 0.479
30 | 0.590 | 0.505 | 0.364 | 0.447 | 0.552 | 0.528 | 0.352 | 0.425 | 0.569 | 0.419 | 0.745 | 0.557
Parameters: Position, € = 0; Scale, oo = 1; Shape, Kk =-1.0 (LN3 5)
n | SQP1 | SQP2 | KQ1 | KQ2 | KQ3 | KQ4 | WKQI1 | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.502 | 0.859 | 0.404 | 0.521 | 0.561 | 0.692 | 0.402 | 0.522 | 0.555 | 0.502 | 0.906 | 0.761
15 | 1.208 | 1.200 | 0.338 | 0.451 | 0.514 | 0.592 | 0.335 | 0.449 | 0.519 | 0.432 | 0.897 | 0.699
20 | 1.102 | 0.206 | 0.203 | 0.274 | 0.326 | 0.350 | 0.200 | 0.268 | 0.337 | 0.260 | 0.552 | 0.413
25 | 0.287 | 0.287 | 0.231 | 0.313 | 0.395 | 0.389 | 0.225 | 0.297 | 0.409 | 0.292 | 0.623 | 0.446
30 | 0.444 | 0.376 | 0.275 | 0.387 | 0.510 | 0.474 | 0.266 | 0.357 | 0.531 | 0.354 | 0.755 | 0.521
Parameters: Position, € = 0; Scale, oo = 1; Shape, Kk =-1.2 (LN3 6)
n | SQP1 | SQP2 | KQ1 | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.600 | 0.878 | 0.363 | 0.504 | 0.524 | 0.706 | 0.367 | 0.508 | 0.526 | 0.488 | 0.948 | 0.783
15 | 1.237 | 1.232 | 0.265 | 0.401 | 0.451 | 0.552 | 0.266 | 0.393 | 0.462 | 0.378 | 0.893 | 0.682
20 | 1.104 | 0.123 | 0.145 | 0.225 | 0.278 | 0.300 | 0.143 | 0.215 | 0.289 | 0.209 | 0.522 | 0.376
25 10.196 | 0.196 | 0.175 | 0.271 | 0.356 | 0.350 | 0.171 | 0.254 | 0.373 | 0.249 | 0.610 | 0.419
30 | 0.347 | 0.294 | 0.233 | 0.364 | 0.503 | 0.454 | 0.226 | 0.331 | 0.525 | 0.328 | 0.772 | 0.510
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Table 6: Pearson Type 3 Distribution (PE3)

Parameters: Position, € = 0; Scale, o= 1; Shape, k=1 (PE3 1)

n | SQPI [ SQP2 [ KQI | KQ2 | KQ3 | KQ4 [ WKQ! | WKQ2 | WKQ3 | WKQ4 [ HDQ | WHDQ

10 | 0.916 | 0.741 | 0.747 | 0.647 | 0.844 | 0.599 | 0.668 | 0.697 | 0.763 | 0.579 | 0.642 | 0.611

15 ] 1.086 | 1.072 | 0.873 | 0.788 | 0.973 | 0.745 | 0.797 | 0.862 | 0.874 | 0.710 | 0.833 | 0.768

20 | 1.103 | 0.727 | 0.659 | 0.611 | 0.720 | 0.592 | 0.615 | 0.667 | 0.658 | 0.561 | 0.669 | 0.607

25 1 0.735 1 0.735 ] 0.662 | 0.632 | 0.723 | 0.630 | 0.629 | 0.682 | 0.678 | 0.591 | 0.718 | 0.644

30 | 0.863 | 0.808 | 0.683 | 0.665 | 0.748 | 0.672 | 0.658 | 0.705 | 0.716 | 0.628 | 0.763 | 0.681

Parameters: Position, € = 0; Scale, o = 1; Shape, k=2 (PE3 2)

n | SQP1 | SQP2 | KQI | KQ2 [ KQ3 | KQ4 [ WKQI | WKQ2 | WKQ3 | WKQ4 [ HDQ [ WHDQ

10 | 1.119 | 0.788 | 0.634 | 0.617 | 0.747 | 0.654 | 0.599 | 0.646 | 0.707 | 0.580 | 0.748 | 0.678

15 | 1.120 | 1.099 | 0.673 | 0.672 | 0.794 | 0.715 | 0.639 | 0.697 | 0.752 | 0.630 | 0.873 | 0.755

20 | 1.106 | 0.535 | 0.464 | 0.469 | 0.543 | 0.503 | 0.445 | 0.482 | 0.522 | 0.443 | 0.625 | 0.529

25 1 0.582 | 0.582 | 0.474 | 0.493 | 0.565 | 0.542 | 0.460 | 0.503 | 0.560 | 0.470 | 0.681 | 0.566

30 1 0.754 | 0.667 | 0.510 | 0.541 | 0.628 | 0.593 | 0.495 | 0.539 | 0.626 | 0.511 | 0.738 | 0.608

Parameters: Position, € = 0; Scale, oo = 1; Shape, k=3 (PE3 3)

n | SQP1 | SQP2 | KQI | KQ2 [ KQ3 | KQ4 [ WKQI [ WKQ2 | WKQ3 | WKQ4 [ HDQ | WHDQ

10 | 1.286 | 0.804 | 0.539 | 0.576 | 0.648 | 0.685 | 0.534 | 0.601 | 0.637 | 0.568 | 0.826 | 0.721

15 | 1.160 | 1.141 | 0.530 | 0.582 | 0.660 | 0.684 | 0.520 | 0.592 | 0.653 | 0.565 | 0.896 | 0.743

20 | 1.099 | 0.383 | 0.321 | 0.362 | 0.414 | 0.431 | 0.315 | 0.364 | 0.419 | 0.351 | 0.589 | 0.470

25 10473 1 0473 | 0.367 | 0.418 | 0.491 | 0.487 | 0.359 | 0.409 | 0.500 | 0.400 | 0.661 | 0.518

30 | 0.666 | 0.571 | 0.406 | 0.471 | 0.563 | 0.546 | 0.396 | 0.452 | 0.577 | 0.445 |0.733 | 0.570

Parameters: Position, € = 0; Scale, o = 1; Shape, Kk =4 (PE3 4)

n | SQPI [ SQP2 [ KQI | KQ2 | KQ3 | KQ4 [ WKQI | WKQ2 | WKQ3 | WKQ4 [ HDQ | WHDQ

10 | 1.398 | 0.819 | 0.463 | 0.541 | 0.575 | 0.698 | 0.469 | 0.556 | 0.577 | 0.545 | 0.883 | 0.750

15 | 1.181 | 1.167 | 0.420 | 0.502 | 0.555 | 0.644 | 0.421 | 0.508 | 0.567 | 0.499 |0.904 | 0.721

20 | 1.062 | 0.285 | 0.251 | 0.304 | 0.351 | 0.382 | 0.248 | 0.299 | 0.363 | 0.297 | 0.564 | 0.433

25 1 0.396 | 0.396 | 0.298 | 0.364 [ 0.436 | 0.445 | 0.293 | 0.348 | 0.452 | 0.348 | 0.645| 0.485

30 | 0.596 | 0.509 | 0.358 | 0.439 | 0.542 | 0.524 | 0.349 | 0.409 | 0.559 | 0.412 | 0.741 | 0.552

Parameters: Position, € = 0; Scale, o = 1; Shape, k=6 (PE3 5)

n | SQP1 | SQP2 [ KQI | KQ2 [ KQ3 | KQ4 [ WKQI | WKQ2 | WKQ3 | WKQ4 [ HDQ | WHDQ

10 | 1.129 | 0.751 | 0.415 | 0.463 | 0.477 | 0.650 | 0.417 | 0.400 | 0.479 | 0.529 | 0.888 | 0.728

15 | 1.193 | 1.191 | 0.387 | 0.428 | 0.476 | 0.585 | 0.383 | 0.366 | 0.478 | 0.452 | 0.898 | 0.693

20 | 0.631 | 0.192 | 0.247 | 0.264 | 0.316 | 0.346 | 0.237 | 0.218 | 0.314 | 0.266 | 0.556 | 0.409

25 1 0.275 1 0.275 1 0.293 | 0.304 | 0.387 | 0.388 | 0.273 | 0.247 | 0.378 | 0.296 | 0.626 | 0.444

30 1 0.433 | 0.391 | 0.383 | 0.383 | 0.512 | 0.474 | 0.349 | 0.302 | 0490 | 0.363 | 0.748 | 0.517

Parameters: Position, € = 0; Scale, oo = 1; Shape, k=8 (PE3 6)

n | SQP1 | SQP2 | KQI | KQ2 [ KQ3 | KQ4 [ WKQI | WKQ2 | WKQ3 | WKQ4 [ HDQ | WHDQ

10 | 0.870 | 0.802 | 0.568 | 0.515 | 0.566 | 0.674 | 0.532 | 0.442 | 0.540 | 0.614 | 0.875 | 0.735

15 | 1.184 | 1.184 | 0.530 | 0.481 | 0.548 | 0.617 | 0.501 | 0.413 | 0.523 | 0.533 | 0.894 | 0.708

20 | 0.357 | 0.257 | 0.335 ] 0.296 | 0.352 | 0.372 | 0312 | 0.253 | 0.331 | 0.315 | 0.562 | 0.425

25 10337 1 0.337 | 0.386 | 0.333 | 0.412 | 0.414 | 0355 | 0.273 | 0.382 | 0.347 | 0.632 | 0.462

30 | 0.461 | 0.455 | 0.509 | 0.426 | 0.545 | 0.513 | 0.458 | 0.351 | 0.495 | 0.436 | 0.751 | 0.543
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Table 7: Wakeby 5-parameter Distribution (WAKS)

Parameters: Position, € = 0; Scale, oo = 1 and

= 4; Shape, B =16 and 6 = 0.20 (WAKS5 1)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 1.097 | 0.631 | 0.375 | 0.490 | 0.692 | 0.532 | 0.342 0.407 0.622 0422 | 0.671 0.577
15 | 1.157 | 1.150 | 0.416 | 0.543 | 0.709 | 0.626 | 0.392 0.476 0.640 0.491 | 0.895| 0.716
20 | 1.107 | 0.312 | 0.266 | 0.337 | 0.424 | 0.395 | 0.254 | 0.303 | 0.395 | 0.315 | 0.576 | 0.447
25 | 0.369 | 0.369 | 0.291 | 0.366 | 0.455 | 0.433 | 0.281 | 0.333 | 0.441 | 0.349 | 0.639 | 0.482
30 | 0.555 | 0.500 | 0.354 | 0.444 | 0.549 | 0.526 | 0.345 | 0.406 | 0.549 | 0.426 | 0.755 | 0.562
Parameters: Position, € = 0; Scale, oo = 1 and y= 5; Shape, B =7.5 and § = 0.12 (WAKS 2)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.868 | 0.587 | 0.394 | 0.540 | 0.816 | 0.503 | 0.353 0.372 0.711 0.452 | 0.577 | 0.526
15 | 1.111 | 1.108 | 0.563 | 0.738 | 1.003 | 0.721 | 0.521 | 0.538 | 0.840 | 0.653 | 0.878 | 0.770
20 | 1.159 | 0.555 | 0.398 | 0.500 | 0.618 | 0.516 | 0.383 | 0.394 | 0.531 | 0.472 | 0.640 | 0.550
25 10.622 | 0.622 | 0.443 | 0.540 | 0.623 | 0.569 | 0.435 0.446 0.560 0.525 [ 0.700 | 0.601
30 | 0.768 | 0.734 | 0.509 | 0.610 | 0.677 | 0.655 | 0.509 0.525 0.639 0.607 | 0.791 0.679
Parameters: Position, € =0; Scale, oo =1 and g = 5; Shape, =1 and § = 0.12 (WAKS 3)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.782 | 0.636 | 0.532 | 0.667 | 0.940 | 0.540 | 0.463 | 0.457 | 0.832 | 0.528 | 0.573 | 0.552
15 | 1.082 | 1.082 | 0.757 | 0.892 | 1.135 | 0.751 | 0.685 | 0.658 | 0.965 | 0.731 | 0.846 | 0.789
20 | 1.128 | 0.803 | 0.670 | 0.748 | 0.888 | 0.624 | 0.622 0.578 0.749 0.627 | 0.694 | 0.653
25 10.840 | 0.840 | 0.771 | 0.828 | 0.927 | 0.709 | 0.736 0.679 0.798 0.720 | 0.777 | 0.736
30 | 0.926 | 0.980 | 0.862 | 0.898 | 0.963 | 0.785 | 0.839 | 0.771 | 0.850 | 0.804 | 0.852 | 0.814
Parameters: Position, € = 0; Scale, oo = 1 and y= 10; Shape, f = 16 and & = 0.04 WAKS5 4)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.583 | 0.450 | 0.384 | 0.504 | 0.939 | 0.385 | 0.311 0.313 0.750 0.360 | 0.427 | 0.396
15 | 1.011 | 1.004 | 0.654 | 0.842 | 1.370 | 0.705 | 0.557 0.534 1.005 0.664 | 0.810 | 0.731
20 | 1.146 | 0.668 | 0.485 | 0.602 | 0.855 | 0.564 | 0.440 | 0.418 | 0.629 | 0.534 | 0.655 | 0.584
25 | 0.766 | 0.766 | 0.531 | 0.642 | 0.820 | 0.638 | 0.503 | 0.475 | 0.632 | 0.613 | 0.726 | 0.652
30 | 0.910 | 0.868 | 0.580 | 0.697 | 0.821 | 0.715 | 0.566 | 0.533 | 0.672 | 0.695 | 0.790 | 0.723
Parameters: Position, € = 0; Scale, oo = 1 and y= 10; Shape, B = 1 and 6 = 0.04 (WAKS5 5)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.606 | 0.594 | 0.557 | 0.732 | 1.061 | 0.515 | 0.468 0.436 0916 0.543 | 0.501 0.515
15 1 0.905 | 0.909 | 0.967 | 1.172 | 1.531 | 0.828 | 0.848 | 0.755 | 1.244 | 0.888 | 0.787 | 0.824
20 | 1.161 | 1.339 | 1.139 | 1.302 | 1.560 | 0.954 | 1.040 | 0.918 | 1.252 | 1.032 | 0.900 | 0.955
25 | 1.258 | 1.258 | 1.230 | 1.342 | 1.496 | 1.017 | 1.157 1.021 1.216 1.108 | 0.957 1.027
30 | 1.192 | 1.313 | 1.244 | 1.311 | 1.378 | 1.034 | 1.203 1.068 1.151 1.130 | 0.976 1.055
Parameters: Position, € = 0; Scale, oo = 1 and y= 10; Shape, f = 2.5 and 6 = 0.02 (WAKS5 6)

n | SQP1 | SQP2 | KQI | KQ2 | KQ3 | KQ4 | WKQI | WKQ2 | WKQ3 | WKQ4 | HDQ | WHDQ
10 | 0.565 | 0.568 | 0.432 | 0.692 | 1.064 | 0.484 | 0.374 | 0.333 | 0.881 | 0.520 | 0.453 | 0.482
15 | 0.860 | 0.878 | 0.800 | 1.171 | 1.603 | 0.831 | 0.717 | 0.637 | 1.229 | 0.904 | 0.763 | 0.826
20 | 1.386 | 1.513 | 1.041 | 1.408 | 1.732 | 1.042 | 0.971 0.876 1.312 1.135 | 0.955 1.047
25 | 1.365 | 1.365 | 1.111 | 1.415 | 1.594 | 1.092 | 1.071 0.980 1.237 1.187 | 1.003 1.108
30 | 1.293 | 1.387 | 1.114 | 1.355 | 1.427 | 1.083 | 1.102 | 1.020 | 1.149 | 1.174 | 1.004 | 1.111
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estimators was calculated; these findings are
summarized in the Table 9.

Table 9: IMSE Relative Efficiency when Comparing
Between Level Crossing and Ordinary Quantile

Estimators
WKQu.](ZC) WKQu.Z(!c) WKQuJ(lc) WKQuA(lc) WHDu
KQM.I KQu.Z KQ14.3 KQuA HDu
95% 82% 83% 80% 92%

Hence, it can be concluded that the level
crossing estimators are better than the ordinary
quantile estimators as shown in our analysis
most of the time.

Analysis on the most efficient method
among the ordinary quantile estimators family

showed that the KQ, , quantile estimation
method is the most efficient.
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