

Journal of Modern Applied Statistical Methods

Volume 7 | Issue 2

Article 10

11-1-2008

Non-Parametric Quantile Selection for Extreme Distributions

Wan Zawiah Wan Zin Universiti Kebangsaan, w_zawiah@ukm.my

Abdul Aziz Jemain *Universiti Kebangsaan Malaysia*, azizj@ukm.my

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the <u>Applied Statistics Commons</u>, <u>Social and Behavioral Sciences Commons</u>, and the <u>Statistical Theory Commons</u>

Recommended Citation

Wan Zin, Wan Zawiah and Jemain, Abdul Aziz (2008) "Non-Parametric Quantile Selection for Extreme Distributions," *Journal of Modern Applied Statistical Methods*: Vol. 7: Iss. 2, Article 10. Available at: http://digitalcommons.wayne.edu/jmasm/vol7/iss2/10

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized administrator of DigitalCommons@WayneState.

Non-Parametric Quantile Selection for Extreme Distributions

Wan Zawiah Wan Zin Universiti Kebangsaan Malaysia Abdul Aziz Jemain Universiti Kebangsaan Malaysia

The objective is to select the best non-parametric quantile estimation method for extreme distributions. This serves as a starting point for further research in quantile application such as in parameter estimation using LQ-moments method. Thirteen methods of non-parametric quantile estimation were applied on six types of extreme distributions and their efficiencies compared. Monte Carlo methods were used to generate the results, which showed that the method of Weighted Kernel estimator of Type 1 was more efficient than the other methods in many cases.

Keywords: Order statistics, sample quantiles, kernel quantile estimators, weighted kernel quantile estimators, HD quantile, weighted HD quantile, LQ-moments, IMSE.

Introduction

In model fitting, one of the key steps is finding the accurate estimates of parameters based on the data in-hand. Several well-known methods include the maximum-likelihood method (ML), method of moments (MOM) and Probability Weighted Moments (PWM). An extension of PWM, termed L-moments, was introduced by Sillitto (1951) for increased accuracy and ease of use of PWM-based analysis.

Mudholkar & Hutson (1998) introduced LQ-moments, an extension of L-moments that was found to be more robust. LQ-moments are constructed using a series of robust linear location measures in place of expectations of order statistics in the L-moments. The *r*-th LQ-moment, ξ_r of X is defined as:

Wan Zawiah is a Lecturer at the School of Mathematical Sciences. Her research interest is in extreme value analysis and extreme distribution analysis with application in rainfall data. Email: w_zawiah@ukm.my. Abdul Aziz Jemain is a Statistics Professor at the School of Mathematical Sciences. His research interests cover the area of multivariate analysis, demography and multi-criteria decision making. Email: azizj@ukm.my.

$$\xi_{r} = r^{-1} \sum (-1)^{k} {\binom{r-1}{k}} \tau_{p,\alpha}(X_{r-k,r}), \quad r = 1, 2, \dots,$$
(1)

where $0 \le \alpha \le 1/2, 0 \le p \le 1/2$, and

$$\begin{aligned} \tau_{p,\alpha}(X_{r-k;r}) &= pQ_{X_{r-k;r}}(\alpha) + (1-2p)Q_{X_{r-k;r}}(1/2) \\ &+ pQ_{X_{r-k;r}}(1-\alpha) \end{aligned} (2) \\ &= pQ_{X}(B_{r-k;r}^{-1}(\alpha)) + (1-2p)Q_{X}\left(B_{r-k;r}^{-1}\left(\frac{1}{2}\right)\right) \\ &+ pQ_{X}\left(B_{r-k;r}^{-1}(1-\alpha)\right) \end{aligned}$$

is the linear combination of symmetric quantiles of the order statistics $X_{r-k:r}$ with $Q_X(\cdot) = F_X^{-1}(\cdot)$ as the quantile function of the random variable X, and $B_{r-k:r}^{-1}(\alpha)$ denotes the corresponding α -th quantile of a beta random variable with parameters r-k and k+1. From (2) it can be concluded that proper selection of quantile estimators is crucial to obtain the most accurate parameter estimation based on LQ-moments. As there are many non-parametric quantile estimation methods available, selection is based on statistical ground to propose the most efficient method in many cases.

Methodology

The quantile function estimators

Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables with common continuous distribution function (cdf) $F(x), x \in \Re$. Let $X_{1:n} \leq X_{2:n} \leq ... \leq X_{n:n}$ denote the corresponding order statistics. The population quantile function, Q(u) of a distribution is defined as:

$$Q(u) = \inf\{x : F(x) \ge u\}, \quad 0 < u < 1. (3)$$

A traditional estimator of Q(u) is the *u*-th sample quantile given by

$$SQ_u = X_{([nu]+1):n}$$
 (4)

where [nu] denotes the integral part of nu (David, 2003). However, this estimator suffers a drawback in efficiency, caused by the variability of individual order statistics (Huang, 2001). In their article on LQ-moments, Mudholkar & Hutson (1998) employed the linear interpolation-based quantile (LIQ) estimator, defined as,

$$\hat{Q}_X(u) = (1 - \varepsilon) X_{[n'u]n} + \varepsilon X_{[n'u]+1:n}, \quad (5)$$

where $\mathcal{E} = n'u - [n'u]$ and n' = n + 1. This is the simplest estimator, and is available in most statistical software packages. It was used as the base for efficiency study in this research.

To overcome the drawback in efficiency of (4), many authors use L statistics to reduce the variability. A popular class of kernel quantile estimators has been applied for improving the efficiency of sample quantiles, using an appropriate weight function to average over the order statistics (Sheather & Marron, 1990). Parzen (1979) provided the formula

$$KQ_{u} = \sum_{i=1}^{n} \left(\int_{(i-1)/n}^{i/n} K_{h}(t-u) dt \right) X_{i:n}, \quad (6)$$

where *K* is a density function symmetric about 0,

$$h \rightarrow 0 \text{ as } n \rightarrow \infty \text{ and } K_h(\bullet) = \left(\frac{1}{h}\right) K\left(\frac{\bullet}{h}\right).$$

Using the classical empirical distribution function S_n , given by

$$S_{n}(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_{i} \le x), x \in \mathfrak{R}, \quad (7)$$

where I_A is the indicator function of set A, the following are various approximation forms of KQ_u which are often used for practical reasons:

$$KQ_{u.1} = \sum_{i=1}^{n} \left(n^{-1} K_h \left(\frac{i}{n} - u \right) \right) X_{i:n},$$
(8)
$$KQ_{u.2} = \sum_{i=1}^{n} \left(n^{-1} K_h \left(\frac{i - \frac{1}{2}}{n} - u \right) \right) X_{i:n},$$
(9)
$$KQ_{u.3} = \sum_{i=1}^{n} \left(n^{-1} K_h \left(\frac{i}{n+1} - u \right) \right) X_{i:n},$$
(10)
$$KQ_{u.4} = \frac{\sum_{i=1}^{n} \left(K_h \left(\frac{i - \frac{1}{2}}{n} - u \right) \right) X_{i:n}}{\sum_{i=1}^{n} \left(K_h \left(\frac{i - \frac{1}{2}}{n} - u \right) \right)}$$
(11)

Huang & Brill (1995, 1996) introduced a level crossing empirical distribution function

$$F_n(x) = \sum_{i=1}^n I(X_{i:n} \le x) w_{i,n}, \qquad (12)$$

where the data point weights are

$$w_{i,n} = \begin{cases} \frac{1}{2} \left(1 - \frac{n-2}{\sqrt{n(n-1)}} \right), & i = 1, n \\ \frac{1}{\sqrt{n(n-1)}}, & i = 2, 3, \dots, n-1 \end{cases}$$
(13)

From (12) and (13), they obtained the following level crossing *u*-th sample quantile to estimate Q(u), namely,

$$SQ_{u(lc)} = X_{([b]+2)}, (14)$$

where

$$b = \sqrt{n(n-1)} \left(u - \frac{1}{2} \left(1 - \frac{n-2}{\sqrt{n(n-1)}} \right) \right)$$
(15)

Huang & Brill (1999) then introduced the level crossing u-th sample kernel quantile given by,

$$WKQ_{u(lc)} = \sum_{i=1}^{n} \left(\int_{q_{i-1,n}}^{q_{i,n}} K_h(t-u) dt \right) X_{i:n}, \quad (16)$$

where $q_{i,n} = \sum_{j=1}^{i} w_{j,n}$ and $w_{i,n}$ is given in (13).

The approximation forms of $WKQ_{u(lc)}$ corresponding to (8)-(11) are as below:

$$WKQ_{u.1(lc)} = \sum_{i=1}^{n} \left(n^{-1} K_h \left(\sum_{j=1}^{i} w_{j,n} - u \right) \right) X_{i:n},$$
(17)

$$WKQ_{u,2(lc)} = \sum_{i=1}^{n} \left(n^{-1} K_h \left(\sum_{j=1}^{i-1} w_{j,n} + \frac{1}{2} w_{i,n} - u \right) \right) X_{i:n},$$
(18)

$$WKQ_{u,3(lc)} = \sum_{i=1}^{n} \left(n^{-1} K_h \left(\sum_{j=1}^{i} w_{j,n} \frac{n}{n+1} - u \right) \right) X_{i:n},$$
(19)

$$WKQ_{u.4(lc)} = \frac{\sum_{i=1}^{n} \left(K_h \left(\sum_{j=1}^{i-1} w_{j,n} + \frac{1}{2} w_{i,n} - u \right) \right) X_{i:n}}{\sum_{i=1}^{n} \left(K_h \left(\sum_{j=1}^{i-1} w_{j,n} + \frac{1}{2} w_{i,n} - u \right) \right)}.$$
(20)

In the study, Huang & Brill investigated the relative efficiency of the *u*-th sample level crossing quantile, $SQ_{u(lc)}$ in (14) relative to the *u*th sample quantile SQ_u in (4) and the relative efficiency of the level crossing quantile estimator $KQ_{u(lc)}$ in (16) relative to the ordinary kernel quantile estimator KQ_u in (6). From both theoretical and computational points of view, they showed that the proposed level crossing estimations were more efficient in many cases, especially for the tails of the distribution and for small sample sizes. Their simulation used the exponential and three types of generalized lambda distribution with small sample sizes (n=10 and n=20).

The selection of kernel or bandwidth of the kernel estimators has always been a sensitive problem. To overcome this, Harrell & Davis (1982) proposed an *L*-quantile estimator of Q(u), defined by,

$$HD_{u} = \sum_{i=1}^{n} \left(\int_{\frac{(i-1)}{n}}^{\frac{i}{n}} \frac{1}{\beta(a,b)} u^{a-1} (1-u)^{b-1} du \right) X_{i:n},$$
(21)

where a = (n+1)u, b=(n+1)v, v=1-u and $\beta(a,b)$ is the beta function with parameters *a* and *b*.

Huang (2001) proposed a level-crossing HD quantile estimator based on (12) and (21) as follows:

$$WHD_{u} = \sum_{i=1}^{n} \left(\int_{q_{i-1,n}}^{q_{i,n}} \frac{1}{\beta \{a,b\}} u^{a-1} (1-u)^{b-1} dy \right) X_{i:n},$$
(22)

where $q_{i,n} = \sum_{j=1}^{i} w_{j,n}$, $q_{0:n} = 0$ and $w_{i,n}$ is given in (13).

Similar to previous research, Huang investigated the relative efficiency of the level crossing quantile estimator $HD_{u(lc)}$ in (22) relative to the ordinary quantile estimator HD_u in (21). From both theoretical and computational points of view, the result proved that the proposed level crossing estimations are more efficient in many cases, especially for the tails of the distribution and for small sample sizes. In their simulation, the exponential and three types of generalized lambda distribution with small sample sizes (n=10 and 20) were used.

Thirteen quantile estimation methods are used: (4), (5), (8) - (11), (14), (17) - (20), (21) and (22). An efficiency study is conducted based on integrated mean square error (IMSE) to determine the most efficient quantile estimation methods for several extreme values distributions. LIQ is used as the base because it is the simplest, is easily available in most statistical packages and is most often used quantile estimation method. The relative efficiency results are compared; the method with the lowest IMSE relative efficiency was considered the best and was recommended.

Extreme values distributions

In this research, six common extreme-values distributions were investigated, namely, the

Generalized Extreme Value (GEV), Generalized Pareto Distribution (GPD), Generalized Logistic Distribution (GLD), the three-parameter Lognormal (LN3) and Pearson (PE3) distributions and the five-parameter extreme events such as extreme rainfall and flood.

Table 1 provides the list of the extreme value distributions, their corresponding quantile functions and the associated parameters to be tested. The parameters are ε , the position parameter, α , the scale parameter and κ is the Wakeby distribution (WAK5). These six

		Parameters						
Distribution	Quantile Function, Q(u)	ε	α		К			
1. Generalized Extreme Value (GEV)	$\mathcal{E} + \frac{\alpha}{\kappa} \Big[1 - (-\ln u)^{\kappa} \Big]$	0	1	-0.3, -0	.2, -0.1, 0.1	, 0.2, 0.3		
2. Generalized Pareto Distribution (GPD)	$\varepsilon + \frac{\alpha}{\kappa} \Big[1 - (1 - u)^{\kappa} \Big]$	0	1	-0.3, -0	.2, -0.1, 0.1,	, 0.2, 0.3		
3. Generalized Logistic Distribution (GLD)	$\varepsilon + \frac{\alpha}{\kappa} \left[1 - \left\{ \left(\frac{1 - u}{u} \right) \right\}^{\kappa} \right]$	0	1	-0.1, -0.2, -0.3, -0.4, -0.5, -0.				
4. The three-parameter Lognormal distribution (LN3)	$\mathcal{E} + \frac{\alpha}{\kappa} \Big[1 - e^{-\kappa Z} \Big]$	0	1	0.2(0.2)1.2				
5. The three-parameter Pearson distribution (PE3)	$\frac{2}{\gamma} \left(1 + \frac{\gamma z_u}{6} - \frac{\gamma^2}{36} \right)^3 - \frac{2}{\gamma}$ (by Wilson-Hilferty transformation and Z_u is the <i>u</i> -th quantile of the standard normal distribution)	0	1	1, 2, 3, 4, 6, 8				
6. The five-parameter Wakeby distribution (WAK5)	$\varepsilon + \alpha \left[1 - (1 - u)^{\beta} \right] - \gamma \left[1 - (1 - u)^{-\delta} \right]$	0	1	β 16 7.5 1 16 1 2.5	δ 0.2 0.12 0.12 0.04 0.04 0.02			

Table 1: Extreme Value Distributions

distributions are commonly applied in regional frequency analysis to model many situations of shape parameter unless stated otherwise. The distributions are studied at various shape parameters, κ while fixing the position, ε and scale parameters, α at 0 and 1 respectively, except for Wakeby distribution. The parameters selected were based on previous studies (e.g. for Wakeby) the parameters were proposed by Landwher, et al. (1980). Ani & Aziz (2007) studied and compared the efficiency of (5), (17)and (22) quantile estimators based on this distribution. They performed simulation on GEV based on LQ-moments and the results showed that $WKQ_{u_1(l_c)}$ (17) was the most efficient quantile estimator.

Simulation Study

Several Monte Carlo simulation experiments were conducted to determine the best quantile estimators corresponding to different extreme values distributions. The data with small sample sizes, n=10(5)30 were generated from respective distribution quantile functions at various values of u = 0.01, 0.25,0.33, 0.50, 0.66, 0.75, 0.90 and replicated (*m*) 5,000 times each.

For the kernel and weighted kernel quantile estimators, the Gaussian Kernel was used $K(u) = (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}u^2\right)$ with an

optimal bandwidth $h_{opt} = \left(\frac{uv}{n}\right)^{\frac{1}{2}}$ where v=1-u,

as proposed by Sheather & Marron (1990).

The expected values obtained from the quantile estimators, $\hat{Q}_i(u)$ were compared with the distribution actual (population) *u*-th quantile value, Q(u), that is bias

Bias =
$$\frac{1}{m} \sum_{i=1}^{m} (\hat{Q}_i(u) - Q(u)).$$

From this value the mean square value was calculated

MSE =
$$\frac{1}{m} \sum_{i=1}^{m} (\hat{Q}_i(u) - Q(u))^2$$
 (4.2)

along with the integrated mean square errors (IMSE), which is defined as the sum of Mean

Square Error across all defined u values. The IMSE from all other methods was divided by the IMSE from LIQ to gain the relative efficiency. The estimator which gave the lowest relative IMSE was selected as the best estimator.

The computational results comparing various quantile estimation methods for various distributions are shown in Tables 2-7 for the six extreme distributions respectively. Note that bold font indicates the smallest IMSE value; the most efficient at each respective group.

Results

Table 2 shows the relative efficiency values for six types of Generalized Extreme Value (GEV) distribution. The selection of best quantile estimation method changes when the shape parameter changes from negative to positive.

Table 2 also shows that when the shape parameter is negative, as in GEV types 1,2 and 3, the method suggested was the Weighted Kernel Quantile estimator of Type 1, $WKQ_{\mu_1(l_c)}$, as in (17). However, when the shape parameter is positive, as in GEV types 4, 5 and 6, the most efficient method was the Kernel Quantile estimator Type 4 as in (11) for GEV types 5 and 6. The result is similar in the case of n=10 for GEV type 4, but for this type, the more efficient estimator was the Weighted Kernel Quantile estimator Type 4, $WKQ_{u,4(lc)}$, as in (20) followed by the Kernel Quantile estimator Type 4. Hence, we suggest that – in the case of GEV distribution - when analyzing data which is lower-bounded ($\kappa < 0$), as in most hydrological data, the best estimator would be Weighted Kernel Quantile estimator Type $1, WKQ_{u,1(lc)},$ and for data that is upper-bounded (κ >0), the Kernel Quantile estimator Type 4, $KQ_{u,4}$, would be the best choice.

The IMSE relative efficiency for six types of Generalized Pareto distribution (GPD) is shown in Table 3. Similar to the GEV case, the selection of best quantile estimation method changes when the shape parameter changes from negative to positive. From Table 3, in almost all cases, the best estimator was the Weighted Kernel Quantile estimator Type 1, $WKQ_{u1(l_{C})}$,

ZAWIAH & JEMAIN

	Table 2: Generalized Extreme Value (GEV) Distribution												
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sh	ape, κ =	-0.3 (GE)	V1)					
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	1.430	0.764	0.378	0.487	0.546	0.635	0.373	0.481	0.534	0.466	0.838	0.703	
15	1.183	1.176	0.338	0.453	0.529	0.588	0.333	0.446	0.528	0.431	0.894	0.695	
20	1.102	0.158	0.171	0.245	0.294	0.316	0.168	0.236	0.305	0.229	0.530	0.389	
25	0.200	0.200	0.186	0.273	0.354	0.346	0.182	0.257	0.367	0.252	0.602	0.418	
30	0.422	0.361	0.279	0.395	0.526	0.485	0.270	0.366	0.547	0.363	0.770	0.529	
Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.2$ (GEV2)													
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	1.286	0.810	0.475	0.559	0.667	0.658	0.457	0.538	0.635	0.524	0.811	0.705	
15	1.133	1.121	0.455	0.542	0.653	0.636	0.437	0.524	0.628	0.508	0.885	0.714	
20	1.100	0.289	0.262	0.320	0.379	0.384	0.255	0.312	0.377	0.303	0.564	0.439	
25	0.377	0.377	0.308	0.375	0.455	0.444	0.299	0.362	0.460	0.355	0.647	0.489	
30	0.586	0.514	0.366	0.448	0.550	0.527	0.355	0.426	0.564	0.421	0.743	0.558	
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sh	ape, $\kappa =$	-0.1 (GE	V3)					
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	1.055	0.700	0.522	0.570	0.741	0.588	0.486	0.528	0.688	0.516	0.686	0.616	
15	1.143	1.128	0.595	0.650	0.799	0.692	0.562	0.621	0.737	0.599	0.874	0.746	
20	1.101	0.465	0.394	0.432	0.515	0.469	0.377	0.418	0.486	0.404	0.608	0.504	
25	0.536	0.536	0.434	0.478	0.562	0.525	0.418	0.463	0.545	0.451	0.678	0.553	
30	0.720	0.643	0.493	0.541	0.633	0.595	0.478	0.524	0.625	0.514	0.753	0.613	
Dar	amatars:	Position	$\mathbf{c} = 0$	Scale of	$= 1 \cdot Sh$	and $r =$	0.1 (GEV	(4)		I	1		
n	SOP1	SOP2	$\frac{1}{K} = 0,$	KO2	- 1, 31 KO3	$K \cap A$	WKO1	$\frac{1}{WKO2}$	WKO3	WKOA	HDO	WHDO	
10	0 797	0.691	0.659	0.645	0.889	0 560	0 590	0.587	0 793	0 560	0 584	0.567	
15	1.067	1 051	0.037	0.045	1 1 1 2	0.767	0.804	0.820	0.755	0.300	0.304	0.778	
20	1.007	0.806	0.692	0.686	0.833	0.707	0.645	0.620	0.723	0.750	0.620	0.770	
20	0.836	0.836	0.0724	0.000	0.835	0.691	0.690	0.004	0.725	0.013	0.000	0.688	
30	0.030	0.876	0.724	0.718	0.825	0.001	0.699	0.707	0.730	0.679	0.740	0.000	
Dor	matara	Desition	a = 0	Seele or	-1 Ch	0.,00	0.2(CEV)	(5)	0.7.12	00015	0.,,,0	0.711	
r ala	SOP1	SOP2	$K \cap 1$	KO2	-1, 50	$K \cap A$		J) WKO2	WKO3	WKOA	HDO	WHDO	
10	0.734	0.690	0.710	0.666	0.921	0 555	0.628	0.615	0.812	0.575	0.562	0.558	
15	1 033	1 022	0.957	0.000	1 182	0.333	0.867	0.886	1.005	0.798	0.302	0.781	
$\frac{13}{20}$	1.033	0.931	0.937	0.785	0.954	0.777	0.757	0.880	0.814	0.703	0.300	0.696	
25	0.924	0.924	0.015	0.703	0.954	0.074	0.790	0.700	0.812	0.703	0.721	0.0736	
30	0.975	0.949	0.821	0.795	0.888	0.749	0.790	0.804	0.796	0.750	0.782	0.751	
Den		D:4:	0:	G1	- 1. 01								
Para	ameters:	rusition	$\mathbf{k}, \mathbf{\varepsilon} = 0;$	Scale, α	= 1; Sh	ape, $\kappa =$	U.S (GEV		WKO2	WKOA	UDO	WIIDO	
n 10	0.702	5QP2	NQ1	NQ2	<u>NQ3</u>	NQ4	0.664	0.640	0.821	0.505	0.565	0.544	
10	0.702	0.704	0./3/	0.082	0.938	0.304	0.004	0.049	0.821	0.393	0.303	0.300	
13	1.004	1.000	1.003	0.930	1.198	0.//9	0.903	0.930	1.013	0.813	0.730	0.714	
20	0.9/9	0.909	0.808	0.81/	0.993	0.754	0.802	0.834	0.840	0.737	0.729	0.756	
20	0.931	0.931	0.880	0.039	0.90/	0.754	0.832	0.000	0.030	0.702	0.700	0.750	
30	0.979	0.9/3	0.000	0.020	0.923	U./00	0.020	0.040	0.01/	0.783	U./ðð	0.708	

NON-PARAMETRIC QUANTILE SELECTION FOR EXTREME DISTRIBUTIONS

	Table 3: Generalized Pareto Distribution (GPD)												
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sha	ape, κ =	-0.3 (GPI	D 1)					
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	1.437	0.719	0.331	0.457	0.521	0.603	0.325	0.438	0.508	0.429	0.819	0.677	
15	1.215	1.209	0.305	0.434	0.506	0.576	0.301	0.421	0.505	0.409	0.903	0.695	
20	1.103	0.145	0.165	0.250	0.316	0.325	0.162	0.236	0.323	0.232	0.556	0.397	
25	0.169	0.169	0.166	0.257	0.339	0.328	0.163	0.239	0.351	0.236	0.594	0.406	
30	0.390	0.331	0.257	0.378	0.513	0.470	0.249	0.347	0.534	0.346	0.771	0.519	
Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.2$ (GPD2)													
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	1.250	0.721	0.404	0.510	0.636	0.604	0.386	0.468	0.603	0.469	0.764	0.653	
15	1.241	1.230	0.399	0.510	0.612	0.622	0.385	0.480	0.587	0.475	0.893	0.717	
20	1.103	0.273	0.248	0.315	0.386	0.383	0.239	0.298	0.381	0.296	0.573	0.437	
25	0.337	0.337	0.265	0.341	0.422	0.416	0.257	0.322	0.429	0.321	0.632	0.467	
30	0.547	0.462	0.339	0.433	0.549	0.519	0.327	0.403	0.563	0.404	0.755	0.551	
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sha	ape, $\kappa =$	-0.1 (GPI	03)					
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	1.049	0.675	0.458	0.551	0.749	0.570	0.425	0.470	0.689	0.484	0.677	0.598	
15	1.154	1.136	0.522	0.619	0.786	0.674	0.492	0.553	0.718	0.559	0.884	0.735	
20	1.102	0.391	0.333	0.390	0.476	0.435	0.317	0.358	0.448	0.360	0.593	0.477	
25	0.465	0.465	0.370	0.427	0.517	0.482	0.356	0.397	0.500	0.400	0.658	0.517	
30	0.660	0.566	0.420	0.490	0.593	0.557	0.405	0.455	0.588	0.459	0.742	0.580	
Dar	amatars:	Position	$\mathbf{c} = 0$	Scale or	$= 1 \cdot Sh$	one $r =$		1)					
n	SOP1	SOP2	$\frac{1}{1000}$	KO2	- 1, 5h	KO4	WKO1	WKO2	WKO3	WKO4	HDO	WHDO	
10	0 760	0.603	0.498	0.503	0.807	0.400	0.445	0 442	0.788	0.475	0.538	0.507	
15	1.055	1.032	0.734	0.375	1 161	0.727	0.666	0.651	0.760	0.473	0.338	0.307	
$\frac{13}{20}$	1.055	0.708	0.734	0.633	0.814	0.727	0.000	0.031	0.504	0.003	0.612	0.501	
20	0.754	0.708	0.580	0.034	0.014	0.577	0.539	0.525	0.078	0.540	0.033	0.591	
20	0.754	0.754	0.025	0.009	0.010	0.037	0.588	0.570	0.702	0.590	0.721	0.045	
30	0.091	0.012	0.045	0.081	0.001	0.072	0.018	0.007	0.713	0.018	0.737	0.070	
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sha	ape, $\kappa =$	0.2 (GPD	5)		·			
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	0.656	0.571	0.497	0.601	0.948	0.462	0.436	0.417	0.815	0.458	0.478	0.464	
15	0.984	0.958	0.800	0.918	1.326	0.727	0.715	0.669	1.062	0.714	0.762	0.728	
20	1.109	0.864	0.716	0.787	1.047	0.663	0.659	0.618	0.829	0.644	0.704	0.665	
25	0.882	0.882	0.770	0.818	1.014	0.714	0.724	0.675	0.821	0.695	0.755	0.715	
30	0.975	0.907	0.762	0.795	0.943	0.726	0.728	0.685	0.794	0.700	0.772	0.727	
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sha	ape, κ =	0.3 (GPD	6)					
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	0.584	0.553	0.503	0.615	0.992	0.441	0.437	0.405	0.841	0.454	0.441	0.441	
15	0.936	0.912	0.842	0.986	1.472	0.722	0.746	0.677	1.140	0.733	0.724	0.717	
20	1.114	1.036	0.865	0.962	1.315	0.738	0.788	0.710	0.998	0.749	0.743	0.734	
25	0.993	0.993	0.897	0.962	1.223	0.780	0.838	0.759	0.942	0.786	0.787	0.777	
30	1.045	1.005	0.868	0.908	1.093	0.778	0.827	0.758	0.876	0.777	0.789	0.777	

as in (2.15) and in all cases for positive shape parameter, the most efficient estimator was Weighted Kernel Quantile estimator Type 2 $WKQ_{u.2(lc)}$, as in (18). Hence, it is suggested that in the case of GPD, when analyzing data which is lower-bounded (κ <0), as in most hydrological data, the best estimator would be the Weighted Kernel Quantile estimator Type 1, $WKQ_{u.1(lc)}$, and for data that is upper-bounded (κ >0), the Weighted Kernel Quantile estimator Type 2 $WKQ_{u.2(lc)}$, would be the best choice.

For Generalized Logistic Distribution (GLD), the IMSE relative efficiency values point to several selections, as show in Table 4. previous Compared to the other two distributions, no one obvious estimator can be considered the most efficient for all types of GLD included in this study. The frequently quoted choices are Weighted Kernel Quantile estimator Type 1, ($WKQ_{u,1(lc)}$), SQP1 and 2, and Kernel Quantile estimator Type 4, $(KQ_{u,4})$. However, using Weighted Kernel Quantile estimator Type 1, ($WKQ_{u \mid (lc)}$), is recommended since this estimator is frequently quoted as the most efficient compared to the others, and for ease of further analysis in its future application.

The IMSE relative efficiency values for Lognormal Type 3 (LN3) distributions are displayed in Table 5. This table shows that, for LN3 Types 1 and 2, the suggested estimator is the Weighted Kernel Quantile estimator Type 4, $WKQ_{u,4(lc)}$, for LN3 types 3, 4 and 5 it was the Weighted Kernel Quantile estimator Type 1, $WKQ_{u,1(lc)}$, and there was no obvious choice for LN3 Type 6. Hence, $WKQ_{u,1(lc)}$ is recommended for this distribution because it is the best estimator for 3 types of LN3 (LN3 Types 3, 4 and 5) in this study, however, further analysis of the IMSE relative efficiency values for LN3 Types 2 and 6 showed that this method gave the second smallest IMSE.

Table 6 shows the IMSE relative efficiency values for the Pearson Type 3 (PE3) distribution. In general, for PE3 Types 1 and 2, the recommended estimator was $WKQ_{\mu 4(lc)}$ for

PE3 Types 3 and 4, was $WKQ_{u.1(lc)}$ for PE3 Type 5, and for Type 6 was $WKQ_{u.2(lc)}$. Because only one type of estimator from the thirteen choices available needs to be chosen, although the simulation results showed three different methods, $WKQ_{u.1(lc)}$ is recommended to use in other distributions. Another possible alternative would be to use $WKQ_{u.4(lc)}$ and $WKQ_{u.2(lc)}$ as quantile estimators.

Finally, Table 7 shows the IMSE relative efficiency values for the Wakeby Type 5 (WAK5) distribution. Although the most efficient quantile estimator for WAK5 Types 1 and 2 was $WKQ_{u.1(lc)}$, the $WKQ_{u.2(lc)}$ is often recommended for WAK5 Types 3, 4, 5, and 6. Hence, for WAK5, $WKQ_{u.2(lc)}$ is recommended as the quantile estimation method, with $WKQ_{u.1(lc)}$ as another alternative.

Conclusion

Table 8 summarizes the two most efficient quantile estimation methods (in sequence) with respect to the six extreme distributions.

Quun	the Estimation	methods
Distribution	Most Efficient	2 nd Most Efficient
GEV	$WKQ_{u.1(lc)}$	$WKQ_{u.4(lc)}$
GPD	$WKQ_{u.1(lc)}$	$WKQ_{u.2(lc)}$
GLD	$WKQ_{u.1(lc)}$	$WKQ_{u.4(lc)}$
LN3	$WKQ_{u.1(lc)}$	$KQ_{u.1(lc)}$
PE3	$WKQ_{u.1(lc)}$	$WKQ_{u.4(lc)}$
WAK5	$WKQ_{u.2(lc)}$	$WKQ_{u.1(lc)}$

Table 8: The Top Two Most Efficient Quantile Estimation Methods

The IMSE relative efficiency of level crossing estimators was compared to the ordinary quantile estimator and the number of times the result showed that the level crossing estimators are better than the ordinary quantile

NON-PARAMETRIC QUANTILE SELECTION FOR EXTREME DISTRIBUTIONS

				Table 4	: Gener	alized L	ogistic Di	stribution	(GLD)			
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sha	ape, κ =-	-0.1 (GLE	91)				
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ
10	0.852	0.772	0.882	0.784	0.939	0.667	0.808	0.815	0.869	0.692	0.676	0.674
15	1.064	1.073	1.113	1.011	1.128	0.856	1.047	1.078	1.039	0.899	0.877	0.870
20	1.155	1.084	0.977	0.897	0.945	0.762	0.943	0.970	0.879	0.815	0.768	0.775
25	1.088	1.088	1.072	0.991	0.995	0.853	1.058	1.076	0.940	0.921	0.846	0.870
30	1.117	1.210	1.138	1.051	1.016	0.912	1.143	1.150	0.974	0.997	0.896	0.937
Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.2$ (GLD2)												
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ
10	1.027	0.797	0.753	0.720	0.839	0.668	0.702	0.722	0.790	0.647	0.728	0.692
15	1.109	1.114	0.893	0.856	0.953	0.778	0.849	0.869	0.892	0.773	0.876	0.819
20	1.125	0.800	0.718	0.684	0.731	0.616	0.697	0.703	0.689	0.628	0.691	0.646
25	0.843	0.843	0.823	0.778	0.805	0.701	0.812	0.805	0.766	0.728	0.772	0.732
30	0.944	1.020	0.937	0.876	0.873	0.795	0.941	0.918	0.844	0.838	0.853	0.828
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sha	ape, κ =-	-0.3 (GLE	93)				
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ
10	1.150	0.672	0.570	0.594	0.681	0.599	0.541	0.577	0.653	0.541	0.716	0.644
15	1.132	1.135	0.644	0.676	0.754	0.683	0.621	0.663	0.723	0.620	0.884	0.760
20	1.105	0.506	0.461	0.476	0.523	0.472	0.450	0.470	0.506	0.441	0.616	0.521
25	0.554	0.554	0.536	0.543	0.594	0.529	0.530	0.538	0.577	0.508	0.688	0.577
30	0.688	0.738	0.651	0.652	0.704	0.636	0.651	0.652	0.691	0.620	0.813	0.685
Dor	matars	Docition	c = 0	Scale or	$n = 1 \cdot S1$	n = 1	- 0 4(GLI	24)	I	I.	1	
n	SOP1	SOP2	KO1	KO2	$\frac{1}{1, 5}$	KO4	0.4(OLI WKO1	WKO2	WKO3	WKOA	HDO	WHDO
10	1 / 68	0.803	0.479	0.579	0.609	0.69/	0.464	0.559	0.595	0.533	0.80/	0.769
15	1 1 3 0	1 1 3 1	0.479	0.375	0.559	0.074	0.404	0.359	0.550	0.333	0.897	0.707
$\frac{13}{20}$	1.150	0 200	0.378	0.403	0.330	0.309	0.210	0.455	0.318	0.455	0.517	0.087
25	0.196	0.200	0.215	0.271	0.320	0.309	0.210	0.230	0.370	0.240	0.517	0.300
30	0.329	0.170	0.224	0.274	0.572	0.52	0.221	0.273	0.547	0.203	0.371	0.413
50 D	0.025	D	0.5 15	0.120	1 01	0.105	0.512	0.101	0.017	0.571	0.001	0.017
Para	ameters:	Position	$\varepsilon = 0;$	Scale, α	= 1; Sha	ape, $\kappa = -$	0.5 (GLL) NW02	NIKO2	NUKOA	LIDO	
n	SQPI	SQP2	KQI	KQ2	KQ3	KQ4	WKQI	WKQ2	WKQ3	WKQ4	HDQ	WHDQ
10	1.616	0.891	0.3/4	0.513	0.510	0.683	0.370	0.499	0.50/	0.4//	0.931	0.///
15	1.297	1.297	0.248	0.390	0.436	0.514	0.246	0.364	0.436	0.348	0.872	0.666
20	1.105	0.060	0.121	0.217	0.293	0.274	0.120	0.194	0.295	0.188	0.538	0.362
25	0.163	0.163	0.196	0.288	0.387	0.337	0.194	0.262	0.391	0.257	0.612	0.411
30	0.299	0.306	0.338	0.532	0.831	0.590	0.335	0.468	0.834	0.465	0.907	0.551
Para	ameters:	Position	$\epsilon = 0;$	Scale, α	= 1; Sha	ape, κ =-	-0.6 (GLE	6)		-		
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ
10	1.513	0.510	0.198	0.334	0.340	0.474	0.197	0.316	0.340	0.302	0.740	0.583
15	1.257	1.257	0.208	0.362	0.415	0.491	0.207	0.333	0.417	0.319	0.864	0.647
20	1.106	0.065	0.116	0.205	0.272	0.262	0.115	0.184	0.275	0.179	0.514	0.351
25	0.074	0.074	0.119	0.218	0.312	0.271	0.118	0.192	0.316	0.188	0.570	0.366
30	0.126	0.124	0.187	0.344	0.536	0.408	0.185	0.297	0.540	0.294	0.831	0.488

ZAWIAH & JEMAIN

Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.2$ (LN3_1) n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ 10 0.846 0.730 0.761 0.658 0.876 0.591 0.674 0.692 0.783 0.588 0.619 0.599 15 1.067 1.055 0.934 0.842 1.054 0.764 0.845 0.907 0.929 0.752 0.826 0.779 20 1.077 0.801 0.723 0.669 0.795 0.627 0.670 0.724 0.710 0.611 0.686 0.637 25 0.796 0.796 0.719 0.683 0.781 0.663 0.681 0.735 0.718 0.639 0.733 0.674 30 0.896 0.844 0.716 0.693 0.774 0.690 0.689 0.738 0.730 0.659 0.764 0.697 Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.4$ (LN3 2) n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ 10 0.980 0.729 0.641 0.614 0.794 0.598 0.585 0.618 0.729 0.555 0.664 0.617 15 1.106 1.092 0.762 0.745 0.916 0.732 0.705 0.758 0.832 0.676 0.851 0.763 20 1.100 0.602 0.527 0.525 0.620 0.531 0.498 0.538 0.573 0.485 0.638 0.556 25 0.641 0.641 0.544 0.553 0.638 0.577 0.521 0.568 0.608 0.521 0.697 0.598 30 0.786 0.713 0.570 0.590 0.676 0.625 0.552 0.598 0.658 0.560 0.752 0.640 Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_4 WKQ1 WKQ2 WK		Table 5: Log-Normal Type 3 Distribution (LN3)												
nSQP1SQP2KQ1KQ2KQ3KQ4WKQ1WKQ2WKQ3WKQ4HDQWHDQ100.8460.7300.7610.6580.8760.5910.6740.6920.783 0.588 0.6190.599151.0671.0550.9340.8421.0540.7640.8450.9070.929 0.752 0.8260.779201.0770.8010.7230.6690.7950.6270.6700.7240.710 0.611 0.6860.637250.7960.7960.7190.6830.7810.6630.6810.7350.718 0.639 0.7330.674300.8960.8440.7160.6930.7740.6900.6890.7380.730 0.659 0.7640.697Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.4$ (LN32)nSQP1SQP2KQ1KQ2KQ3KQ4WKQ1WKQ2WKQ3WKQ4HDQWHDQ100.9800.7290.6410.6140.7940.5980.5850.6180.729 0.555 0.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.832 0.676 0.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.573 0.485 0.6380.556250.6410.6410.5440.5530.6	Parai	Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.2$ (LN3_1)												
100.8460.7300.7610.6580.8760.5910.6740.6920.7830.5880.6190.599151.0671.0550.9340.8421.0540.7640.8450.9070.9290.7520.8260.779201.0770.8010.7230.6690.7950.6270.6700.7240.7100.6110.6860.637250.7960.7960.7190.6830.7810.6630.6810.7350.7180.6390.7330.674300.8960.8440.7160.6930.7740.6900.6890.7380.7300.6590.7640.697Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.4$ (LN3 2)nSQP1SQP2KQ1KQ2KQ3KQ4WKQ2WKQ3WKQ4HDQWHDQ100.9800.7290.6410.6140.7940.5980.5850.6180.7290.5550.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.8320.6760.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.5730.4850.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.6080.5210.6970.598300.7860.7130.5700.5900.676	n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
151.0671.0550.9340.8421.0540.7640.8450.9070.9290.7520.8260.779201.0770.8010.7230.6690.7950.6270.6700.7240.7100.6110.6860.637250.7960.7960.7190.6830.7810.6630.6810.7350.7180.6390.7330.674300.8960.8440.7160.6930.7740.6900.6890.7380.7300.6590.7640.697Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.4$ (LN3_2)nSQP1SQP2KQ1KQ2KQ3KQ4WKQ2WKQ3WKQ4HDQWHDQ100.9800.7290.6410.6140.7940.5980.5850.6180.7290.5550.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.8320.6760.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.5730.4850.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.6080.5210.6970.598300.7860.7130.5700.5900.6760.6250.5520.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$	10	0.846	0.730	0.761	0.658	0.876	0.591	0.674	0.692	0.783	0.588	0.619	0.599	
201.0770.8010.7230.6690.7950.6270.6700.7240.7100.6110.6860.637250.7960.7960.7190.6830.7810.6630.6810.7350.7180.6390.7330.674300.8960.8440.7160.6930.7740.6900.6890.7380.7300.6590.7640.697Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.4$ (LN3_2)nSQP1SQP2KQ1KQ2KQ3KQ4WKQ1WKQ2WKQ3WKQ4HDQWHDQ100.9800.7290.6410.6140.7940.5980.5850.6180.7290.5550.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.8320.6760.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.5730.4850.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.6080.5210.6970.598300.7860.7130.5700.5900.6760.6250.5520.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)	15	1.067	1.055	0.934	0.842	1.054	0.764	0.845	0.907	0.929	0.752	0.826	0.779	
250.7960.7960.7190.6830.7810.6630.6810.7350.7180.6390.7330.674300.8960.8440.7160.6930.7740.6900.6890.7380.7300.6590.7640.697Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.4$ (LN3_2)nSQP1SQP2KQ1KQ2KQ3KQ4WKQ1WKQ2WKQ3WKQ4HDQWHDQ100.9800.7290.6410.6140.7940.5980.5850.6180.7290.5550.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.8320.6760.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.5730.4850.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.6080.5210.6970.598300.7860.7130.5700.5900.6760.6250.5520.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)	20	1.077	0.801	0.723	0.669	0.795	0.627	0.670	0.724	0.710	0.611	0.686	0.637	
300.8960.8440.7160.6930.7740.6900.6890.7380.7300.6590.7640.697Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.4$ (LN3 2)nSQP1SQP2KQ1KQ2KQ3KQ4WKQ1WKQ2WKQ3WKQ4HDQWHDQ100.9800.7290.6410.6140.7940.5980.5850.6180.7290.5550.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.8320.6760.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.5730.4850.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.6080.5210.6970.598300.7860.7130.5700.5900.6760.6250.5520.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)NULLOC	25	0.796	0.796	0.719	0.683	0.781	0.663	0.681	0.735	0.718	0.639	0.733	0.674	
Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.4$ (LN3_2)nSQP1SQP2KQ1KQ2KQ3KQ4WKQ1WKQ2WKQ3WKQ4HDQWHDQ100.9800.7290.6410.6140.7940.5980.5850.6180.729 0.555 0.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.832 0.676 0.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.573 0.485 0.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.608 0.521 0.6970.598300.7860.7130.5700.5900.6760.625 0.552 0.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)NULLOC	30	0.896	0.844	0.716	0.693	0.774	0.690	0.689	0.738	0.730	0.659	0.764	0.697	
nSQP1SQP2KQ1KQ2KQ3KQ4WKQ1WKQ2WKQ3WKQ4HDQWHDQ100.9800.7290.6410.6140.7940.5980.5850.6180.729 0.555 0.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.832 0.676 0.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.573 0.485 0.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.608 0.521 0.6970.598300.7860.7130.5700.5900.6760.625 0.552 0.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)NULLOC	Parai	neters: P	osition,	$\varepsilon = 0$; So	cale, $\alpha =$	1; Shap	e, κ=-0	.4 (LN3 2	2)					
100.9800.7290.6410.6140.7940.5980.5850.6180.7290.5550.6640.617151.1061.0920.7620.7450.9160.7320.7050.7580.8320.6760.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.5730.4850.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.6080.5210.6970.598300.7860.7130.5700.5900.6760.6250.5520.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)nSOP1SOP1SOP2KO1KO2WKO2WKO2WKO4UDO	n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
151.1061.0920.7620.7450.9160.7320.7050.7580.832 0.676 0.8510.763201.1000.6020.5270.5250.6200.5310.4980.5380.573 0.485 0.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.608 0.521 0.6970.598300.7860.7130.5700.5900.6760.625 0.552 0.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)NULLOC	10	0.980	0.729	0.641	0.614	0.794	0.598	0.585	0.618	0.729	0.555	0.664	0.617	
201.1000.6020.5270.5250.6200.5310.4980.5380.5730.4850.6380.556250.6410.6410.5440.5530.6380.5770.5210.5680.6080.5210.6970.598300.7860.7130.5700.5900.6760.6250.5520.5980.6580.5600.7520.640Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)n	15	1.106	1.092	0.762	0.745	0.916	0.732	0.705	0.758	0.832	0.676	0.851	0.763	
25 0.641 0.641 0.544 0.553 0.638 0.577 0.521 0.568 0.608 0.521 0.697 0.598 30 0.786 0.713 0.570 0.590 0.676 0.625 0.552 0.598 0.658 0.560 0.752 0.640 Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) NULLOC	20	1.100	0.602	0.527	0.525	0.620	0.531	0.498	0.538	0.573	0.485	0.638	0.556	
30 0.786 0.713 0.570 0.590 0.676 0.625 0.552 0.598 0.658 0.560 0.752 0.640 Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3) n SOP1 SOP2 KO1 WKO2 WKO2 WKO3	25	0.641	0.641	0.544	0.553	0.638	0.577	0.521	0.568	0.608	0.521	0.697	0.598	
Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$; Shape, $\kappa = -0.6$ (LN3_3)	30	0.786	0.713	0.570	0.590	0.676	0.625	0.552	0.598	0.658	0.560	0.752	0.640	
n SOBI SOBI KOI KOI KOI KOI WYOI WYOI WYOI WYOI WYOI WYOI WYOI WY	Parai	neters: P	osition,	$\varepsilon = 0$; So	ale, $\alpha =$	1; Shap	e, κ=-0	.6 (LN3 3	3)					
Τ Π Τ ΣΥΓΤΤ ΣΥΓΖ Τ ΚΥΤ Τ ΚΥΖ Τ ΚΥΖ Τ ΚΥΖ Τ ΚΥΖ Τ WKYL WKYZ T WKYS T WKY4 TDV T WHDV	n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10 1.163 0.764 0.545 0.577 0.709 0.631 0.515 0.573 0.670 0.537 0.748 0.665	10	1.163	0.764	0.545	0.577	0.709	0.631	0.515	0.573	0.670	0.537	0.748	0.665	
15 1.141 1.128 0.568 0.613 0.732 0.682 0.542 0.615 0.695 0.576 0.883 0.741	15	1.141	1.128	0.568	0.613	0.732	0.682	0.542	0.615	0.695	0.576	0.883	0.741	
20 1.103 0.446 0.384 0.418 0.493 0.465 0.368 0.416 0.477 0.394 0.611 0.500	20	1.103	0.446	0.384	0.418	0.493	0.465	0.368	0.416	0.477	0.394	0.611	0.500	
25 0.509 0.509 0.414 0.457 0.540 0.509 0.400 0.449 0.531 0.432 0.671 0.540	25	0.509	0.509	0.414	0.457	0.540	0.509	0.400	0.449	0.531	0.432	0.671	0.540	
30 0.693 0.609 0.461 0.513 0.604 0.577 0.448 0.502 0.608 0.487 0.748 0.598	30	0.693	0.609	0.461	0.513	0.604	0.577	0.448	0.502	0.608	0.487	0.748	0.598	
Parameters: Position, $\varepsilon = 0$: Scale, $\alpha = 1$: Shape, $\kappa = -0.8$ (LN3 4)	Parai	neters: P	osition.	$\varepsilon = 0$: So	cale. $\alpha =$	1: Shap	e. $\kappa = -0$.8 (LN3 4	4)					
n SOP1 SOP2 KO1 KO2 KO3 KO4 WKO1 WKO2 WKO3 WKO4 HDO WHDC	n	SOP1	SOP2	KO1	KO2	KO3	KO4	WK01	WKO2	WKO3	WKO4	HDO	WHDO	
10 1.313 0.763 0.457 0.532 0.625 0.640 0.444 0.527 0.604 0.506 0.804 0.688	10	1.313	0.763	0.457	0.532	0.625	0.640	0.444	0.527	0.604	0.506	0.804	0.688	
15 1.193 1.182 0.439 0.523 0.607 0.635 0.427 0.520 0.596 0.498 0.891 0.719	15	1.193	1.182	0.439	0.523	0.607	0.635	0.427	0.520	0.596	0.498	0.891	0.719	
20 1.105 0.284 0.303 0.316 0.414 0.377 0.274 0.301 0.394 0.294 0.559 0.431	20	1.105	0.284	0.303	0.316	0.414	0.377	0.274	0.301	0.394	0.294	0.559	0.431	
25 0.372 0.372 0.291 0.359 0.436 0.433 0.283 0.348 0.447 0.340 0.639 0.479	25	0.372	0.372	0.291	0.359	0.436	0.433	0.283	0.348	0.447	0.340	0.639	0.479	
30 0.590 0.505 0.364 0.447 0.552 0.528 0.352 0.425 0.569 0.419 0.745 0.557	30	0.590	0.505	0.364	0.447	0.552	0.528	0.352	0.425	0.569	0.419	0.745	0.557	
Parameters: Position, $\varepsilon = 0$: Scale, $\alpha = 1$: Shape, $\kappa = -1.0$ (LN3 5)	Para	neters: P	osition.	$\epsilon = 0$: So	cale. $\alpha =$	1: Shan	e. κ=-1	.0 (LN3 .	5)					
n SQP1 SQP2 KQ1 KQ2 KQ3 KQ4 WKQ1 WKQ2 WKQ3 WKQ4 HDQ WHDQ	n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10 1.502 0.859 0.404 0.521 0.561 0.692 0.402 0.522 0.555 0.502 0.906 0.761	10	1.502	0.859	0.404	0.521	0.561	0.692	0.402	0.522	0.555	0.502	0.906	0.761	
15 1.208 1.200 0.338 0.451 0.514 0.592 0.335 0.449 0.519 0.432 0.897 0.699	15	1.208	1.200	0.338	0.451	0.514	0.592	0.335	0.449	0.519	0.432	0.897	0.699	
20 1.102 0.206 0.203 0.274 0.326 0.350 0.200 0.268 0.337 0.260 0.552 0.413	20	1.102	0.206	0.203	0.274	0.326	0.350	0.200	0.268	0.337	0.260	0.552	0.413	
25 0.287 0.287 0.231 0.313 0.395 0.389 0.225 0.297 0.409 0.292 0.623 0.446	25	0.287	0.287	0.231	0.313	0.395	0.389	0.225	0.297	0.409	0.292	0.623	0.446	
30 0.444 0.376 0.275 0.387 0.510 0.474 0.266 0.357 0.531 0.354 0.755 0.521	30	0.444	0.376	0.275	0.387	0.510	0.474	0.266	0.357	0.531	0.354	0.755	0.521	
Parameters: Position $\kappa = 0$: Scale $\alpha = 1$: Shape $\kappa = 12$ (I N3. 6)	Para	neters [.] P	osition	r = 0. So	ale α=	1. Shan	e κ=-1	2 (LN3 (ົ້	•	•			
n = SOP1 = SOP2 = KO1 = KO2 = KO3 = KO4 = WKO1 = WKO2 = WKO3 = WKO4 = HDO = WHOC	n	SOP1	SOP2	KO1	KO2	KO3	KO4	WK01	WKO2	WKO3	WKO4	HDO	WHDO	
10 1600 0.878 0.363 0.504 0.524 0.706 0.367 0.508 0.526 0.488 0.948 0.783	10	1 600	0.878	0.363	0 504	0 524	0 706	0.367	0 508	0 526	0 488	0.948	0.783	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	1 237	1 232	0.265	0 401	0 4 5 1	0 552	0.266	0 393	0.520	0.378	0.893	0.682	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1 104	0.123	0 145	0.225	0.778	0.300	0.143	0.215	0.789	0.209	0.522	0.376	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	0 196	0 196	0 175	0.223	0.356	0.350	0.171	0.213	0.209	0.209	0.522	0.119	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	0 347	0 2 9 4	0 2 3 3	0 364	0.503	0 4 5 4	0.226	0.331	0.525	0.328	0 772	0.510	

NON-PARAMETRIC QUANTILE SELECTION FOR EXTREME DISTRIBUTIONS

	Table 6: Pearson Type 3 Distribution (PE3)											
Parameters: Position $c = 0$: Scale $\alpha = 1$: Shane $\kappa = 1$ (DE2, 1)												
Para	meters:	Position,	$\varepsilon = 0; S$	scale, α	= 1; Sha	pe, $\kappa = \frac{1}{100}$	$I (PE3_1)$	WKO2	WIKO2	WKO4	UDO	WIIDO
10	SQP1	SQP2	NQ1	NQ2	<u>NQ3</u>	<u>KQ4</u>	WKQ1	WKQ2	0.762	WKQ4		wпDQ
10	0.910	0.741	0.747	0.04/	0.844	0.599	0.008	0.097	0.703	0.579	0.042	0.011
20	1.080	0.727	0.673	0.788	0.975	0.743	0.797	0.802	0.674	0.710	0.633	0.708
20	1.105	0.727	0.039	0.611	0.720	0.392	0.610	0.007	0.038	0.501	0.009	0.607
23	0.755	0.755	0.002	0.052	0.725	0.030	0.629	0.082	0.078	0.591	0.718	0.644
30	0.803	0.808	0.085	0.005	0.748	0.072	0.038	0.705	0./10	0.028	0.703	0.081
Para	meters:	Position,	$\epsilon = 0; S$	scale, α	= 1; Sha	pe, $\kappa = 2$	2 (PE3_2)					
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ
10	1.119	0.788	0.634	0.617	0.747	0.654	0.599	0.646	0.707	0.580	0.748	0.678
15	1.120	1.099	0.673	0.672	0.794	0.715	0.639	0.697	0.752	0.630	0.873	0.755
20	1.106	0.535	0.464	0.469	0.543	0.503	0.445	0.482	0.522	0.443	0.625	0.529
25	0.582	0.582	0.474	0.493	0.565	0.542	0.460	0.503	0.560	0.470	0.681	0.566
30	0.754	0.667	0.510	0.541	0.628	0.593	0.495	0.539	0.626	0.511	0.738	0.608
Para	meters:	Position.	$\epsilon = 0; S$	Scale, α	= 1; Sha	pe, $\kappa = 3$	3 (PE3 3)					
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ
10	1.286	0.804	0.539	0.576	0.648	0.685	0.534	0.601	0.637	0.568	0.826	0.721
15	1.160	1.141	0.530	0.582	0.660	0.684	0.520	0.592	0.653	0.565	0.896	0.743
20	1.099	0.383	0.321	0.362	0.414	0.431	0.315	0.364	0.419	0.351	0.589	0.470
25	0.473	0.473	0.367	0.418	0.491	0.487	0.359	0.409	0.500	0.400	0.661	0.518
30	0.666	0.571	0.406	0.471	0.563	0.546	0.396	0.452	0.577	0.445	0.733	0.570
Doro	motora	Desition	a = 0		- 1. Cho	no 14 – 1	4 (DE2 4)					
r ai a	SOD1	SOD2	E = 0, S	VO2	-1, Sha	VO4	$+(\Gamma E_{3}_{4})$	WKO2	WKO2	WKOA	ЧDО	WHDO
10	1 209	0.810	NQ1	$\frac{KQ2}{0.541}$	NQ3	NQ4	0.460	0.556	0.577	0.545	0 002	0.750
10	1.396	0.019	0.403	0.541	0.575	0.098	0.409	0.550	0.577	0.343	0.003	0.730
20	1.101	1.10/	0.420	0.302	0.333	0.044	0.421	0.308	0.307	0.499	0.904	0.721
20	0.206	0.285	0.231	0.304	0.331	0.382	0.240	0.299	0.303	0.297	0.304	0.435
20	0.590	0.590	0.298	0.304	0.430	0.445	0.295	0.340	0.432	0.340	0.043	0.465
30	0.396	0.509	0.338	0.439	0.542	0.524	0.349	0.409	0.559	0.412	0.741	0.552
Para	meters:	Position,	$\epsilon = 0; S$	scale, α	= 1; Sha	pe, $\kappa = 0$	6 (PE3_5)				-	
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ
10	1.129	0.751	0.415	0.463	0.477	0.650	0.417	0.400	0.479	0.529	0.888	0.728
15	1.193	1.191	0.387	0.428	0.476	0.585	0.383	0.366	0.478	0.452	0.898	0.693
20	0.631	0.192	0.247	0.264	0.316	0.346	0.237	0.218	0.314	0.266	0.556	0.409
25	0.275	0.275	0.293	0.304	0.387	0.388	0.273	0.247	0.378	0.296	0.626	0.444
30	0.433	0.391	0.383	0.383	0.512	0.474	0.349	0.302	0.490	0.363	0.748	0.517
Para	meters.	Position	$\varepsilon = 0.8$	Scale α	= 1 · Sha	ne $\kappa = 2$	R (PE3 6)					
n	SOP1	SOP2	KO1	KO2	KO3	K04	WK01	WKO2	WKO3	WKO4	HDO	WHDO
10	0.870	0.802	0.568	0.515	0.566	0.674	0.532	0.442	0.540	0.614	0.875	0.735
15	1 1 8 4	1 184	0.530	0 481	0.548	0.617	0.501	0.413	0.523	0.533	0.894	0 708
20	0 357	0.257	0 335	0.296	0 352	0 372	0.312	0.253	0 331	0.315	0.562	0.425
25	0 337	0.337	0 386	0 333	0.412	0 414	0.355	0.273	0.382	0.347	0.632	0.462
30	0.461	0.455	0.509	0.426	0.545	0.513	0.458	0.351	0.495	0.436	0.751	0.543

ZAWIAH & JEMAIN

	Table 7: Wakeby 5-parameter Distribution (WAK5)												
Para	Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$ and $\gamma = 4$; Shape, $\beta = 16$ and $\delta = 0.20$ (WAK5_1)												
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	1.097	0.631	0.375	0.490	0.692	0.532	0.342	0.407	0.622	0.422	0.671	0.577	
15	1.157	1.150	0.416	0.543	0.709	0.626	0.392	0.476	0.640	0.491	0.895	0.716	
20	1.107	0.312	0.266	0.337	0.424	0.395	0.254	0.303	0.395	0.315	0.576	0.447	
25	0.369	0.369	0.291	0.366	0.455	0.433	0.281	0.333	0.441	0.349	0.639	0.482	
30	0.555	0.500	0.354	0.444	0.549	0.526	0.345	0.406	0.549	0.426	0.755	0.562	
Parameters: Position, $\varepsilon = 0$; Scale, $\alpha = 1$ and $\gamma = 5$; Shape, $\beta = 7.5$ and $\delta = 0.12$ (WAK5 2)													
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	0.868	0.587	0.394	0.540	0.816	0.503	0.353	0.372	0.711	0.452	0.577	0.526	
15	1.111	1.108	0.563	0.738	1.003	0.721	0.521	0.538	0.840	0.653	0.878	0.770	
20	1.159	0.555	0.398	0.500	0.618	0.516	0.383	0.394	0.531	0.472	0.640	0.550	
25	0.622	0.622	0.443	0.540	0.623	0.569	0.435	0.446	0.560	0.525	0.700	0.601	
30	0.768	0.734	0.509	0.610	0.677	0.655	0.509	0.525	0.639	0.607	0.791	0.679	
Para	meters: 1	Position,	$\varepsilon = 0; S$	cale, α =	= 1 and	g = 5; Sł	nape, $\beta =$	1 and $\delta =$	0.12 (WA	K5 3)			
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	0.782	0.636	0.532	0.667	0.940	0.540	0.463	0.457	0.832	0.528	0.573	0.552	
15	1.082	1.082	0.757	0.892	1.135	0.751	0.685	0.658	0.965	0.731	0.846	0.789	
20	1.128	0.803	0.670	0.748	0.888	0.624	0.622	0.578	0.749	0.627	0.694	0.653	
25	0.840	0.840	0.771	0.828	0.927	0.709	0.736	0.679	0.798	0.720	0.777	0.736	
30	0.926	0.980	0.862	0.898	0.963	0.785	0.839	0.771	0.850	0.804	0.852	0.814	
Para	meters [.] 1	Position	$\varepsilon = 0.8$	cale α	= 1 and '	$v = 10^{\circ} S$	shape β =	$16 \text{ and } \delta$	= 0.04 W	AK5 4)			
n	SOP1	SOP2	K01	KO2	KO3	K04	WKO1	WKO2	WKO3	WK04	HDO	WHDO	
10	0.583	0 450	0 384	0.504	0.939	0 385	0.311	0 313	0 750	0 360	0 427	0 396	
15	1 011	1 004	0.654	0.842	1 370	0.705	0.557	0.534	1 005	0.560	0.810	0.731	
20	1 1 1 4 6	0.668	0.651	0.602	0.855	0.564	0.440	0.418	0.629	0.534	0.655	0.584	
25	0.766	0.000	0.105	0.642	0.820	0.638	0.503	0.475	0.632	0.613	0.035	0.652	
30	0.910	0.868	0.580	0.697	0.821	0.715	0.566	0.533	0.672	0.695	0.790	0.723	
Doro	motors: 1	Dogition	c = 0		- 1 ond	y = 10.5	hana ß-	1 and 8 -	- 0. 0.4 (W	$\Lambda V 5 (5)$			
1 ala	SOP1	SOP2	k = 0, 3	KO2		Y = 10, C	WKO1		WKO3	WKOA	HDO	WHDO	
10	0.606	0.504	0.557	0.732	1.061	0.515	0.468	0 436	0.016	0.543	0.501	0.515	
10	0.000	0.394	0.337	1 1 7 2	1.001	0.313	0.408	0.450	1 244	0.343	0.301	0.313	
20	1 161	1 2 2 0	1 1 2 0	1.172	1.551	0.020	1.040	0.018	1.244	1.022	0.787	0.024	
20	1.101	1.559	1.139	1.302	1.300	1.017	1.040	1.021	1.232	1.032	0.900	1.027	
30	1.230	1.230	1.230 1.244	1.342	1.490	1.017	1.137	1.021	1.210	1.100	0.937	1.027	
50	1.192	1.515	1.244	1.311	1.370	1.054	1.205	1.008	1.131	1.150	0.970	1.055	
Para	meters: 1	Position,	$\varepsilon = 0; S$	cale, α	= 1 and '	$\gamma = 10; S$	shape, β =	2.5 and 8	b = 0.02 (V)	WAK5_6)	n		
n	SQP1	SQP2	KQ1	KQ2	KQ3	KQ4	WKQ1	WKQ2	WKQ3	WKQ4	HDQ	WHDQ	
10	0.565	0.568	0.432	0.692	1.064	0.484	0.374	0.333	0.881	0.520	0.453	0.482	
15	0.860	0.878	0.800	1.171	1.603	0.831	0.717	0.637	1.229	0.904	0.763	0.826	
20	1.386	1.513	1.041	1.408	1.732	1.042	0.971	0.876	1.312	1.135	0.955	1.047	
25	1.365	1.365	1.111	1.415	1.594	1.092	1.071	0.980	1.237	1.187	1.003	1.108	
30	1.293	1.387	1.114	1.355	1.427	1.083	1.102	1.020	1.149	1.174	1.004	1.111	

estimators was calculated; these findings are summarized in the Table 9.

 Table 9: IMSE Relative Efficiency when Comparing Between Level Crossing and Ordinary Quantile

$\frac{WKQ_{u.1(lc)}}{KQ_{u.1}}$	$\frac{WKQ_{u.2(lc)}}{KQ_{u.2}}$	$\frac{WKQ_{u.3(lc)}}{KQ_{u.3}}$	$\frac{WKQ_{u.4(lc)}}{KQ_{u.4}}$	$\frac{WHD_u}{HD_u}$
95%	82%	83%	80%	92%

Hence, it can be concluded that the level crossing estimators are better than the ordinary quantile estimators as shown in our analysis most of the time.

Analysis on the most efficient method among the ordinary quantile estimators family showed that the $KQ_{u,1}$ quantile estimation method is the most efficient.

References

Ani, S., & Jemain, A. A. (2007). LQmoment: Application to the generalized extreme value. *Journal of Applied Sciences*, *7(1)*, 115-120.

Ben-Zvi, A., & Azmon, B. (1997). Joint use of L-moment diagram and goodness-of-fit test: A case study of diverse series, *Journal of Hydrology*, *198*, (*1-4*, Nov.). p 245-259.

David, H. A., & Nagaraja, H. N. (2003). Order statistics. (3rd ed.) NY: Wiley.

Harrel, F. E., & Davis, C. E. (1982). A new distribution-free quantile estimator. *Biometrika*, 69(3), 635-640.

Hosking, J. R. M., & Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. *Technometrics*, *29*, 339–349.

Hosking, J. R. M., & J. R. Wallis. (1997). *Regional frequency analysis*. Cambridge: Cambridge University Press. Huang, M. L., & Brill, P. H. (1995). A new weighted density estimation method. *American Statistical Association Proceedings of the Statistical Computing Section*, p. 125-130.

Huang, M. L., & Brill, P. H. (1996). Empirical distribution based on level crossings. *Working paper Series, No. W96-01*, University of Windsor, Faculty of Business Administration.

Huang, M. L., & Brill, P. H. (1999). A level crossing quantile estimation method. *Statistics and Probability Letters*, *45*, 111-119.

Huang, M. L. (2001). On a distributionfree quantile estimator. *Computational Statistics and Data Analysis*, *37*, 477-486.

Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979b). Estimation of parameters and quantiles of Wakeby distributions. *Water Resources Research*, *15*, 1361–1379

Mudholkar, G. S., Hutson, A. D. (1998). LQ-Moments: Analogs of L-Moments. *Journal* of Statistical Planning and Inference, 71, 191-208.

Parzen, E. (1979). Nonparametric statistical data modeling, *Journal of the American Statistical Association*, 74, 105–121.

Rao, A. R., & K. H. Hamed. (2000). *Flood Frequency Analysis*. Boca Raton, London, New York, Washington, D.C: CRC Press.

Shabri, A., & Jemain, A. A. (2007). LQmoment: Application to the generalized extreme value. *Journal of Applied Sciences*, *7(1)*, 115-120.

Sheather, S. J., & Marron, J. S. (1990). Kernel quantile estimators. *Journal of American Statistical Association*, *85*, 410-416.

Shorack, G. R., &Wellner, J. S. (1986). Empirical processes with applications to statistics. NY: Wiley.

Sillitto G. P. (1951). Interrelations between certain linear systematic statistics of samples from any continuous population. *Biometrika*, *38*, 377-382.

Vogel, R. M., & Fennessey, N. M. (1993). L-moment diagrams should replace product-moment diagrams. *Water Resources Research*, 29(6), 1745-1752.