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Abstract

Microsimulation models are becoming increasingly common in the field of decision modeling for health. Because
microsimulation models are computationally more demanding than traditional Markov cohort models, the use of
computer programming languages in their development has become more common. R is a programming language
that has gained recognition within the field of decision modeling. It has the capacity to perform microsimulation
models more efficiently than software commonly used for decision modeling, incorporate statistical analyses within
decision models, and produce more transparent models and reproducible results. However, no clear guidance for the
implementation of microsimulation models in R exists. In this tutorial, we provide a step-by-step guide to build
microsimulation models in R and illustrate the use of this guide on a simple, but transferable, hypothetical decision
problem. We guide the reader through the necessary steps and provide generic R code that is flexible and can be
adapted for other models. We also show how this code can be extended to address more complex model structures
and provide an efficient microsimulation approach that relies on vectorization solutions.
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Healthcare policy makers are often faced with decisions
on how to allocate healthcare resources given constrained
budgets and the continuous development of new, expen-
sive technologies. Policy makers increasingly rely on
health decision modeling tools to guide their decisions, as
such models can synthesize evidence from different
sources to give indications on the long-term implications
and the uncertainty around a decision.1

One of the most common types of decision models
used is that of state-transition cohort models.2,3 Cohort
models investigate a hypothetical homogeneous cohort
of individuals as they transition across health states. In a
deterministic cohort model, the result is precisely deter-
mined given a set of initial conditions and parameters.
As the complexity of decisions increases, deterministic
cohort models become inadequate in reflecting the deci-
sion problem, and more complex models are needed. For
example, an assumption commonly made in cohort
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models is that the transition probabilities only depend on
the current health state at any given cycle and cannot
depend on the history before that cycle. This is often
referred to as the ‘‘Markov’’ assumption and is an inher-
ent limitation of cohort models.4 Although this assump-
tion can be relaxed by creating additional states that can
capture the cohort’s history, this can result in difficult to
manage models due to ‘‘state explosion’’.4

Individual-based state-transition (or microsimulation)
models address many of the limitations of deterministic
cohort models because they can more accurately reflect
individual clinical pathways, incorporate the impact
of history on future events, and more easily capture
the variation in patients’ characteristics at baseline.5,6

Microsimulation models differ from the more traditional
cohort-based models because they simulate the impact of
interventions or policies on individual trajectories rather
than the deterministic mean response of homogeneous
cohorts.3,7–11 In a microsimulation model, outcomes are
generated for each individual and are used to estimate
the distribution of an outcome for a sample of poten-
tially heterogeneous individuals. This individual-level
simulation allows the inclusion of stochastic variation in
disease progression as well as variation due to individual
characteristics. Microsimulation models do not require
the Markov assumption and so can introduce ‘‘memory’’
to the models’ structure. This ‘‘memory’’ characteristic
makes microsimulation models more popular in diseases
where the severity of the disease or the cost and health
outcomes vary with duration spent in a diseased state.12

There have been numerous microsimulation models
developed for health applications. For example, the
Population Health Model (POHEM) simulates the life-
cycle of the Canadian population and assesses the impact
of policy and program interventions on the health status
of Canadians;13–15 the Future Elderly Model (FEM) pre-
dicts the impact of changes in health care status on future
health and costs;16 and the Prostate Cancer and Policy
(PCOP) model evaluates the benefits and harms of pros-
tate cancer screening.17

A drawback of the additional functionality of microsi-
mulation models is numerical and computational com-
plexity. To accommodate the computational demands
of microsimulation models, health decision scientists
increasingly adopt (high-level) programming languages.
The increasing availability of patient-level data also
requires more advanced statistical analyses to be inte-
grated with microsimulation models. In addition, compu-
tational efficiency can be achieved in decision modeling
when relying on numerical and statistical computing soft-
ware, such as Matlab or R, versus either spreadsheet soft-
ware (e.g., Microsoft Excel) or common specialized
software, such as TreeAge.18 Recently, we illustrated the

increased use of the statistical software R in health deci-
sion sciences, and provided a collection of resources for
its application in medical decision making.19

R is an open-source and freely available software envi-
ronment, where statistical analyses can be combined with
decision models within the same framework, and the
results can be presented in publication-ready tabular and
graphical forms.20 The popularity of R in decision analysis
follows similar trends as in other fields of science, which
have established R as the second-most often used statistical
software21 and among the most often used programming
languages.22 Implementing a microsimulation model using
a programming language provides the ability to use ver-
sion control capabilities and repositories, such as GitHub.
This is particularly useful when collaborating in teams,
where multiple members can contribute to different com-
ponents of the model. Additionally, with R, it is possible
to use tools to generate web-based apps and graphical user
interfaces (e.g., Shiny).19

R is not a programming language that was developed
with a focus on computational performance. Nevertheless,
there are some characteristics of the R programming lan-
guage that can be leveraged to allow R-coded programs to
perform efficiently. A key attribute of R is its ability to
process problems more efficiently when presented in a vec-
tor rather than in a scalar format. Vectorization can reduce
the need to rely on iterative ‘‘for’’ loops, which, in general,
increase computation time significantly. Vectorization is
particularly important in decision analysis, because pro-
cesses are frequently repetitive and relatively straightfor-
ward to vectorize.

Despite the growing popularity of statistical program-
ming for building simulation models in health decision
sciences, few educational tutorials on how to perform
these simulations are available.12,23,24 This tutorial offers
both a theoretical and applied introduction on building
microsimulation models in R, and has been created for
beginner/intermediate users of R who are interested in
developing an R-based microsimulation model.

This tutorial is structured as follows: First, we intro-
duce a conceptual algorithm for model implementation,
which can be applied to any (high-level) programming
language, such as R. Subsequently, we illustrate how to
build a microsimulation model in R using a simple,
hypothetical decision problem. We guide the reader
through the necessary steps and provide the R code used
in the illustration. We additionally present a microsimu-
lation solution that uses a vectorization approach. We
then conclude with a discussion of the advantages and
disadvantages of using R for microsimulation model-
ing, and provide guidance on how to extend the pre-
sented methods to more complex applications. In
Supplementary Appendices and on GitHub (https://
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github.com/DARTH-git/Microsimulation-tutorial), we
provide the full R code used to run the microsimula-
tion model and the vectorized approach.

Methods

Microsimulation models are structured around a set of
mutually exclusive and collectively exhaustive health
states.9,10,25,26 Each hypothetical individual can only be
in one health state at any given cycle. Based on
individual-specific transition probabilities, individuals
are simulated through the model one at a time, while
keeping track of their individual trajectories. In an eco-
nomic evaluation framework, each health state, and
potentially each transition between health states, is asso-
ciated with a particular cost and health outcome value.
For example, in the context of a cost-utility analysis, the
cost and health outcome values would, respectively, rep-
resent the cost and the quality-adjusted life years
(QALYs) associated with remaining in each health state
for one cycle. Both state and transition outcome values
can depend on the individual’s characteristics as well as
on the past transitions and events of the individual.

State-transition Microsimulation Algorithm

The flexibility of a programming language like R implies
that a microsimulation model can be implemented in
multiple ways depending on the experience and program-
ming style of the modeler and the research question that
needs to be addressed. Below, we outline an algorithm
that could be used when implementing a microsimulation
model. This algorithm serves our goal to provide a gen-
eric approach with a reasonable balance between clarity
and efficiency. First, we outline the steps to simulate one
hypothetical individual over time.

1. The individual starts the simulation in an initial
health state and is assigned a cost and health out-
come value associated with staying in this initial
state for one cycle, taking into consideration any
individual-level characteristics.

2. During each cycle, the individual’s probability to
transition to a different health state (or remain in
the current health state) in the next cycle is assigned
based on the health states previously occupied and
the individual’s characteristics.

3. The health state to which the individual will transi-
tion to in the next cycle is sampled from a categorical
distribution based on the probability of transitioning
to each possible health state. The individual will then
either transition to a new health state or remain in
the same health state at the end of the cycle.

4. Each health state is associated with a particular
cost or health outcome value attributed to remain-
ing in the health state for one cycle. This could
represent the costs associated with a health state
and in a cost-utility context, the utility of remain-
ing in a certain health state for one cycle. State-
specific costs and health outcome values can
depend on the individual’s characteristics (age,
gender, etc.) as well as on past transitions of the
individual. Transition values, one-time costs and
one-time changes in health outcomes associated
with the transition, may apply.

5. By aggregating all the state and transition values
over the model’s cycles (and applying discounting if
needed) we can estimate the (discounted) total model
outcomes for that individual’s lifetime.

Repeating these steps for all individuals in the simula-
tion, allows us to describe the distribution of total cost
and health outcomes for the population of interest.

To formalize the previous steps, we define the follow-
ing notation

� nt as the number of discrete time cycles
� t as the current cycle, ranging from 0 to nt
� cl as the cycle length
� ni as the number of individuals
� i as a specific individual from the group of

individuals
� nx as the number of individual characteristics
� ns as the number of health states
� n as the ns character vector of health state names
� p as the ns vector containing the transition probabil-

ities for individual i at the end of cycle t
� M as the ni 3 (nt + 1) matrix capturing the health

states occupied by all individuals during all cycles
� X as the ni 3 (nt + 1) 3 nx 3-dimensional array of

individuals’ characteristics for all cycles (e.g. age,
gender, disease severity, comorbidities)

� ProbsðMi;XiÞ;CostsðMi;XiÞ;EffsðMi;Xi; clÞ as func-
tions assigning individual-specific probabilities, cost
and health outcome values conditional on Mi, Xi and
cl. Mi and Xi represent the vectors of health states
and individual characteristics, respectively, for all
time points for individual i

� C as the ni 3 (nt+ 1) matrix capturing the costs for
all individuals during all cycles

� E as the ni 3 (nt + 1) matrix capturing the health
outcomes for all individuals during all cycles

� dwc as the nt vector of discount weights for costs,
where dwc= 1

(1+ dc)t
, with dc being the discount rate

for the costs at any cycle t. The first cycle is not dis-
counted, as the first time point t is equal to zero.
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� dwe as the nt vector of discount weights for health
outcomes, where dwe= 1

(1+ de)t
, with de being the dis-

count rate for the health outcome values at any cycle
t. The first cycle is not discounted, as the first time
point t is equal to zero.

� tc as the ni vector of total (discounted) costs for all
individuals

� te as the ni vector of total (discounted) health out-
comes for all individuals

Below, we present an algorithm that can be used to perform a state-transition microsimulation. The enumerated
areas on the left correspond to the steps of the microsimulation algorithm outlined before.

for i = 1 to ni do

Mi0 is assigned the initial health state for individual i.

Ci0 = Costs(Mi0, Xi0) {Cost value for individual i during cycle 0 as function of the initial health state and

individual’s characteristics}

Ei0 = Effs(Mi0, Xi0, cl) {Health outcomes for individual i during cycle 0 as function of the initial health state,

individual’s characteristics and cycle length}

Then,

for t = 1 to nt do

p = Probs(Mi[0:t], Xi[0:t]) {State-transition probabilities for individual i at cycle t as function of the

complete history of states and individual characteristics up to the current cycle t}

Mit ;Cat(n, p) {Sample the state individual i will transition to during cycle t from a categorical

distribution (Cat) of ns states n with probabilities p}

Assign state values for costs and health outcomes using the M matrix and individual characteristics X.

Cit = Costs(Mi[0:t], Xi[0:t]) {Costs for individual i during cycle t as function of the complete history of

states and individual characteristics up to the current cycle t}

Eit = Effs(Mi[0:t], Xi[0:t], cl) {Health outcomes for individual i during cycle t as function of the complete

history of states and individual characteristics up to the current cycle t and the cycle length}

end

end

tc = C�dwc {Total (discounted) cost per individual for all individuals, ‘‘�’’ denotes inner product multiplication}

te = E�dwe {Total (discounted) health outcomes per individual for all individuals, ‘‘�’’ denotes inner product
multiplication}

The implementation of the microsimulation algorithm using R syntax is illustrated in Box 1. The notation in Box 1
follows the algorithm outlined before with inner product multiplication indicated in R by the ‘‘%*%’’ symbol. Because
t starts at 0, we increment t by 1 to correspond to the element index in the vectors and matrices in R. Variable names
for matrices are preceded by the prefix ‘‘m.’’, whereas, for vectors, the prefix ‘‘v.’’ is used. At each individual and each
cycle, the vector of probabilities ‘‘v.p’’ is replaced with a new set of transition probabilities. The Probs() function
returns a vector of state transition probabilities. Finally, both Costs() and Effs() functions yield a single value of
the cost and health outcomes per individual per cycle.
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Box 1 A generic implementation of the microsimulation algorithm outlined before using R syntax. The
R variable names are defined in Table 1.

The algorithm in Box 1 illustrates the microsimulation
process for one treatment strategy. In cases where 2 or
more strategies are compared, the algorithm should be
completed separately for each strategy with strategy-
specific values. The vectors of undiscounted total costs
and health outcomes per individual can be calculated by
setting dc and de equal to zero. The approach above can
be readily expanded or simplified. For example, in the
context of a cost-utility economic evaluation, the QALYs
accumulated within a cycle would be captured in the
health outcome matrix E and, consequently, te would
capture the total QALYs across all cycles. In extension, tc

and te, the mean of individual-specific costs and QALYs
for each strategy, respectively, could be calculated to gen-
erate standard incremental cost-effectiveness tables.

Stochastic Variation and Random Sampling in
Microsimulation Models

Microsimulation models rely on Monte Carlo (MC)
simulation methods to describe the stochastic transition
process of individuals through the model.27 Due to this
stochastic process, the estimates of a microsimulation

will be different between individuals. Therefore, execut-
ing the model for a sufficiently large number of individu-
als is important to achieve a representative distribution
of population outcomes. The variability around the
mean model estimate is called Monte Carlo Standard
Error (MCSE). In a decision problem that could be
described with either a microsimulation or a cohort
model, the 2 models types should yield the same esti-
mates as the number of simulated individuals in the
microsimulation model increases.28,29 In this tutorial, we
use graphical diagnostics to show how outcomes pro-
duced using a microsimulation model converge to those
produced using a cohort model. One such example is a
plot of the mean simulation estimates as a function of
the number of individuals run in the microsimulation
model (i.e., microsimulation sample size).

When designing a microsimulation model for com-
parative effectiveness or cost-effectiveness purposes, it is
important that simulated individuals are as similar as
possible across comparators, except for the intervention
to which they are exposed. One can think of the random
sampling process as 2 parallel processes, where the
same hypothetical individual is exposed to both the
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intervention and the control. This can be achieved by
using pre-sampled values from the distributions used in
the model, by explicitly setting a seed number per indi-
vidual.30 This ensures that individuals across interven-
tion scenarios share the same baseline characteristics,
and reduces any difference observed between the inter-
vention scenarios that can be attributed to MC variabil-
ity and not to intervention allocation. An additional
benefit of setting the seed is that it allows the results to
be reproducible despite the inherent stochastic process.

Example: The Sick-Sicker Model

In this section, we illustrate the implementation of the
algorithm presented above, using a previously published
decision model.31 This illustration provides an example
of how R can be used for the development of a microsi-
mulation model for a specific disease process. We intend
for the R code below to be generic to allow it to be cus-
tomizable. There are many opportunities to improve the
efficiency of the code for specific applications but the
goal here is to provide a generic code as a starting point.

The illustration relies on a state-transition cohort
model of a hypothetical disease (the Sick-Sicker model),
first described by Enns et al.31 We initially create a microsi-
mulation implementation of the Sick-Sicker cohort model
and subsequently extend it to illustrate the advantages of
microsimulation models in incorporating individual-level
characteristics and ‘‘memory’’ in the disease process. The
Sick-Sicker model consists of 4 health states: healthy (H),
sick (S1), sicker (S2) and dead (D) (Figure 1). All individu-
als are assumed to be healthy at baseline. Over time,
healthy individuals face a risk of developing the disease
and progressing to S1. Individuals in S1 can recover
(return to state H), stay in S1, progress further to S2 or
die. Individuals in S2 cannot recover (i.e., cannot transition
to either S1 or H). Individuals in H are assumed to have a
fixed mortality rate. Individuals in S1 and S2 have an
increased mortality rate compared with healthy individu-
als. All individuals are followed for 30 years using annual
cycles. This cycle length of 1 year is assumed to be constant
throughout the model’s time horizon.

We evaluate 2 alternative strategies: a no-treatment
and a treatment strategy. The treatment improves utility
for those individuals in the S1 state but has no impact on
utility for those in the S2 state. However, due to the
nature of this hypothetical disease, we are not able to dis-
tinguish those who are in S1 from those in S2. Therefore,
under the treatment strategy, individuals who occupy
states S1 or S2 receive treatment and continue doing so
until they recover to the healthy state or die.

In the extension of the model that incorporates ‘‘mem-
ory’’ and individual-level characteristics, 3 modifications are
made to the model. Firstly, we assume that the benefits of
treatment wane over time, with the utility of those in S1 on
treatment decreasing by 0.03 every year they spend in S1.
The second modification involves the dependency of mor-
tality rates on the duration of remaining in the disease states
(a 20% increase every cycle in S1 or S2). Finally, we also
assume that the improvement on quality of life by the treat-
ment varies across individuals through a characteristic that
acts as a treatment effect modifier. All model parameter val-
ues and R variable names are presented in Table 1.

The probabilities to die when sick (p.S1D) and sicker
(p.S2D) are calculated by converting (p.HD) the prob-
ability to die when healthy) to a rate, multiplying it by
the rate ratios rr.S1 and rr.S2, respectively, and then
converting them back to a probability. In the extended
model, not only the rate ratios but also the variable
rp.S1S2 and the duration of being sick are used to
adjust the rates. See the R code below for more details
on the calculations.

In the next section, we provide the R code and some
documentation for the most important steps of the algo-
rithm. We first illustrate the direct microsimulation
implementation of the Sick-Sicker model and then pro-
vide the modifications necessary to extend the model to
the scenario where ‘‘memory’’ is incorporated in the
model. A full working version of the R codes used for
each decision model can be found in the Appendices and
on GitHub.

Figure 1 Schematic representation of the Sick-Sicker
microsimulation model. In the extended microsimulation
model the underlined probabilities (p.S1D and p.S2D) are
adjusted to incorporate time-dependent transitions.
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Microsimulation Implementation of the Sick-
Sicker Model

The R code is broken down into 3 sections: the model
input section, the model’s main section, and the model
output section. In the model input section, input para-
meters are loaded into the R environment. We assume

that the health state of the individuals is known at the
start of the simulation, and stored in the variable v.M_1.
In our example, all individuals enter the model as healthy
(i.e., at health state (H)).

First, we specify the number of individuals, their ini-
tial state, the time horizon, the health states, the discount
rates, and the intervention strategies.

n.i <- 100000 # number of simulated individuals

n.t <- 30 # time horizon, 30 cycles

v.n <- c("H","S1","S2","D") # model states: Healthy(H), Sick(S1), Sicker(S2), Dead(D)

n.s <- length(v.n) # the number of health states

v.M_1 <- rep("H", n.i) # everyone begins in the healthy state

d.c <- d.e <- 0.03 # equal discounting of costs and QALYs by 3%

v.Trt <- c("No Treatment", "Treatment") # store the strategy names

Table 1 Input Parameters for the Illustrative Microsimulation Model

Parameter R name Value

Time horizon (nt) n.t 30 y
Cycle length (cl ) cl 1 y
Number of simulated individuals (ni) n.i 100,000
Names of health states (n) v.n H, S1, S2, D
Annual discount rate (costs/QALYs) (dc/de) d.c/d.e 3%
Annual transition probabilities
- Disease onset (H to S1) p.HS1 0.15
- Recovery (S1 to H) p.S1H 0.5
- Disease progression (S1 to S2) p.S1S2 0.105

Annual risks of death
- H to D p.HD 0.005
- Rate ratio of death in S1 v. healthy rr.S1 3
- Rate ratio of death in S2 v. healthy rr.S2 10

Annual costs
- Healthy individuals c.H $2,000
- Sick individuals in S1 c.S1 $4,000
- Sick individuals in S2 c.S2 $15,000
- Annual treatment cost per sick individual (S1 and S2) c.Trt $12,000

Utility weights
- Healthy individuals u.H 1.00
- Sick individuals in S1 u.S1 0.75
- Sick individuals in S2 u.S2 0.50

Intervention effect
- Utility for treated individuals in S1 (SD) u.Trt 0.95

Time varying extension of Sick-Sicker model (Figure 1)
- Treatment effect modifier at baseline v.x Uniform (0.95, 1.05)
- Utility decrement of treated sick individuals with every additional year of

being sick (S1 and S2)
ru.S1S2 0.03

- Proportional increase of the mortality rate with every additional year of
being sick/sicker (S1 and S2)

rp.S1S2 0.2
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The next lines of R code specify the transition probabilities, cost, and the utility input for individuals in the treatment
and the no-treatment group (Table 1).

# Transition probabilities (per cycle)

p.HD <- 0.005 # probability to die when healthy

p.HS1 <- 0.15 # probability to become sick when healthy

p.S1H <- 0.5 # probability to become healthy when sick

p.S1S2 <- 0.105 # probability to become sicker when sick

r.S1 <- 3 # rate ratio of death when sick vs healthy

r.S2 <- 10 # rate ratio of death when sicker vs healthy

r.HD <- -log(1 - p.HD) # rate of death when healthy

r.S1D <- rr.S1 * r.HD # rate of death when sick

r.S2D <- rr.S2 * r.HD # rate of death when sicker

p.S1D <- 1 - exp(– r.S1D) # probability to die when sick

p.S2D <- 1 - exp(– r.S2D) # probability to die when sicker

# Cost and utility inputs

c.H <- 2000 # cost of remaining one cycle healthy

c.S1 <- 4000 # cost of remaining one cycle sick

c.S2 <- 15000 # cost of remaining one cycle sicker

c.Trt <- 12000 # cost of treatment (per cycle)

u.H <- 1 # utility when healthy

u.S1 <- 0.75 # utility when sick

u.S2 <- 0.5 # utility when sicker

u.Trt <- 0.95 # utility when sicker and being treated

In the model’s main section, we define 4 R functions that
constitute the core of the microsimulation model. In the
following paragraphs, we describe each component of
these 4 functions.

The main function is the MicroSim() function, which
operationalizes the algorithm steps described above in
R, adjusted to represent the Sick-Sicker model. The
MicroSim() function includes arguments that control
the input parameters (e.g., names of health states) and
the components of the model itself (e.g., the seed num-
ber). It also provides the option to the modeler to record
the transitions between states at every cycle in a TS
matrix of size ni 3 (nt + 1) and the calculation of a
microsimulation trace TR, which captures the proportion
of individuals occupying each state at every cycle. Some

arguments have a default setting, which means that, in
case the user does not specify them, they will be assigned
a default value (e.g., the arguments TR.out and TS.out
that control whether a microsimulation trace and a tran-
sition array will be calculated are by default set to
TRUE and the default seed number is 1). The Trt argu-
ment is a scalar with a Boolean value (by default set to
FALSE), used to run the Sick-Sicker model for a group
of treated or non-treated individuals. In other situations,
modelers can adjust the code to make use of a vector
with Boolean values to model mixed groups of treated
and non-treated individuals. The following paragraphs
describe each component of the MicroSim() function.
The R code lines below describe the arguments and func-
tions used in the MicroSim() function.
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MicroSim <- function(v.M_1, n.i, n.t, v.n, d.c, d.e, TR.out = TRUE, TS.out = TRUE,

Trt = FALSE, seed = 1) {

# Arguments:

# v.M_1: vector of initial states for individuals

# n.i: number of individuals

# n.t: total number of cycles to run the model

# v.n: vector of health state names

# d.c: discount rate for costs

# d.e: discount rate for health outcomes (QALYS)

# TR.out: should the output include a Microsimulation trace? (default is TRUE)

# TS.out: should the output include a matrix of transitions between states? (default is TRUE)

# Trt: are the n.i individuals receiving treatment? (scalar with a Boolean value, default is FALSE)

# seed: starting seed number for random number generator (default is 1)

# Makes use of

# Probs: function for the estimation of transition probabilities

# Costs: function for the estimation of cost state values

# Effs: function for the estimation of state specific health outcomes (QALYs)

In addition to the MicroSim() function, we construct 3 functions that need to be specified and executed before execu-
tion of the MicroSim() function. These are the Probs(), Costs() and Effs() functions, which are used to update
the probabilities, costs, and health outcome values at each cycle, respectively. We will provide more details on these
functions later in this tutorial.

Within the MicroSim() function, 2 vectors with discount weights are generated based on the discount rates for
costs and health outcomes, respectively, d.c and d.e, specified in the argument section of the function. The first
cycle is not discounted.

v.dwc <- 1 / (1 + d.c) ^ (0:n.t) # calculate the cost discount weight based on the discount rate d.c

v.dwe <- 1 / (1 + d.e) ^ (0:n.t) # calculate the QALY discount weight based on the discount rate d.e

In R, variables used to store information across iterations need to be initialized and their dimensions need to be declared
outside of the iterative process. Hence, we first initialize the variables that will capture the matrices M, C, and E.

m.M <- m.C <- m.E <- matrix(nrow = n.i, ncol = n.t + 1 ,

dimnames = list(paste("ind", 1:n.i, sep = " "),

paste("cycle", 0:n.t, sep = " ")))

Next, we specify the health states the individuals occupy at the start of the simulation.

m.M[, 1] <- v.M_1 # indicate the initial health state

Given Mi0 , we can calculate Ci0 and Ei0 for every individual i and store this information in m.C and m.E.

for (i in 1:n.i) {

set.seed(seed + i) # set the seed for every individual for the random number generator

m.C[i, 1] <- Costs(m.M[i, 1], Trt) # estimate costs per individual for the initial

health state conditional on treatment

m.E[i, 1] <- Effs (m.M[i, 1], Trt) # estimate QALYs per individual for the initial

health state conditional on treatment

At the beginning of all the subsequent cycles t, the transition probabilities v.p, given the states occupied at the begin-
ning of the cycle, are specified. The states Mit occupied by any individual i are sampled from a categorical distribution
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with frequency based on v.p. The next step is to calculate Cit and Eit for each individual i during each cycle t. The
costs and QALYs only depend on the current state of the individual and on whether they are receiving treatment or
not. Note that m.C and m.E are initialized, whereas v.p is not, as we are not interested in storing it for every iteration
and it will therefore be overwritten at every cycle.

for (t in 1:n.t) {

v.p <- Probs(m.M[i, t]) # calculate the transition probabilities at cycle t

m.M[i, t + 1] <- sample(v.n, prob = v.p, size = 1) # sample the next health state and

store that state in matrix m.M

m.C[i, t + 1] <- Costs(m.M[i, t + 1], Trt) # estimate costs per individual during

cycle t + 1 conditional on treatment

m.E[i, t + 1] <- Effs (m.M[i, t + 1], Trt) # estimate QALYs per individual during

cycle t + 1 conditional on treatment

The following lines of code display the progress of the simulation.

} # close the loop for the time points

if(i/100 == round (i/100,0)) { # display the progress of the simulation

cat("\r", paste(i/n.i * 100, "% done", sep = " "))

}

} # close the loop for the individuals

Once the iterative process is completed, the model’s output is captured in the initialized variables. To calculate the
(discounted) total costs and QALYs per individual across all cycles, we take the inner products of C and E with the
discount weight vectors. The average total costs and QALYs within this patient population are estimated by aver-
aging across the individual total costs and QALYs.

tc <- m.C %*% v.dwc # total (discounted) cost per individual

te <- m.E %*% v.dwe # total (discounted) QALYs per individual

tc_hat <- mean(tc) # average (discounted) cost

te_hat <- mean(te) # average (discounted) QALYs

The function MicroSim() also offers the modeler the option to generate a microsimulation trace matrix TR and a
matrix of transitions TS (i.e., argument set to TRUE).

if (TS.out == TRUE) { # create a matrix of transitions across states

TS <- paste(m.M, cbind(m.M[, -1], "D"), sep = "-.") # transitions from one state to the other

TS <- matrix(TS, nrow = n.i)

rownames(TS) <- paste("Ind", 1:n.i, sep = "") # name the columns

colnames(TS) <- paste("Cycle", 0:n.t, sep = "") # name the rows

} else {

TS <- NULL

}

if (TR.out == TRUE) {

TR <- t(apply(m.M, 2, function(x) table(factor(x, levels = v.n, ordered = TRUE))))

TR <- TR / n.i # create a distribution trace

colnames(TR) <- v.n # name the columns

rownames(TR) <- paste("cycle", 0:n.t, sep = "") # name the rows

} else {

TR <- NULL

}
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Finally, all the function’s output is stored and returned as a list object.

results <- list(m.M = m.M, m.C = m.C, m.E = m.E, tc = tc, te = te, tc_hat = tc_hat, te_hat

= te_hat, TS = TS, TR = TR) # store the results from the simulation in a list

return(results) # return the results

} # end of the MicroSim function

Key components in any microsimulation structure are the functions used to update the transition probabilities and to
estimate the costs and health outcomes for every cycle. Below, we present the R code used to describe these functions
for the Sick-Sicker model.

The Probs() function is used to update transition probabilities based on the health state occupied at cycle t, as
represented in Figure 1. The M_it argument in the context of the Sick-Sicker model represents a single character, rep-
resenting the health state for individual i at cycle t, extracted from the m.M matrix.

Probs <- function(M_it) {

# M_it: health state occupied by individual i at cycle t (character variable)

v.p.it <- rep(NA, n.s) # create vector of state transition probabilities

names(v.p.it) <- v.n # name the vector

# update v.p.it with appropriate probabilities

v.p.it[M_it == "H"] <- c(1 - p.HS1 - p.HD, p.HS1, 0, p.HD) # transition probabilities

when healthy

v.p.it[M_it == "S1"] <- c(p.S1H, 1- p.S1H - p.S1S2 - p.S1D, p.S1S2, p.S1D) # transition probabilities

when sick

v.p.it[M_it == "S2"] <- c(0, 0, 1 - p.S2D, p.S2D) # transition probabilities when sicker

v.p.it[M_it == "D"] <- c(0, 0, 0, 1) # transition probabilities when dead

ifelse(sum(v.p.it) == 1, return(v.p.it), print(‘‘Probabilities do not sum to 1’’)) # return the

transition probabilities or produce an error

}

In this simple example where there is no time variation in the transition probabilities, one could specify a transition
probability matrix and rely on linear algebra to simplify the function Probs(). At the end of the function, there is a
check that all probabilities sum to one. If this condition is not met, an error message appears.

In this example, the function Costs() depends on the current health state and treatment status of the individual.
Individuals occupying states S1 and S2 have higher costs if treated compared to untreated individuals. If Trt is set to TRUE,
the function will estimate the costs for the treatment strategy; otherwise, the costs for the no treatment group are estimated.

Costs <- function (M_it, Trt = FALSE) {

# M_it: health state occupied by individual i at cycle t (character variable)

# Trt: is the individual being treated? (default is FALSE)

c.it <- 0 # by default the cost for everyone is zero

c.it[M_it == "H"] <- c.H # update the cost if healthy

c.it[M_it == "S1"] <- c.S1 + c.Trt * Trt # update the cost if sick conditional on treatment

c.it[M_it == "S2"] <- c.S2 + c.Trt * Trt # update the cost if sicker conditional on treatment

return(c.it) # return the costs

}
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The function Effs() is used for the estimation of the health outcomes, QALYs in our example, during each cycle
based on the current health state. If Trt is set to TRUE, the function will estimate the QALYs for the treatment
strategy; this means that all individuals in the sample are treated when sick or sicker, otherwise the QALYs for the
no treatment group are estimated. The variable cl indicates the cycle length.

Effs <- function (M_it, Trt = FALSE, cl = 1) {

# M_it: health state occupied by individual i at cycle t (character variable)

# Trt: is the individual treated? (default is FALSE)

# cl: cycle length (default is 1)

u.it <- 0 # by default the utility for everyone is zero

u.it[M_it == "H"] <- u.H # update the utility if healthy

u.it[M_it == "S1"] <- Trt * u.Trt + (1 - Trt) * u.S1 # update the utility if sick conditional on treatment

u.it[M_it == "S2"] <- u.S2 # update the utility if sicker

QALYs <- u.it * cl # calculate the QALYs during cycle t

return(QALYs) # return the QALYs

}

Results of the Simple Sick-Sicker Microsimulation

After all the functions and parameters are defined, the MicroSim() function is executed and the outcomes are stored
in the lists named sim_no_trt and sim_trt for the no-treatment and treatment strategies, respectively.

# Run the simulation for both no treatment and treatment

sim_no_trt <- MicroSim(v.M_1, n.i, n.t, v.n, d.c, d.e, Trt = FALSE) # run for no treatment

sim_trt <- MicroSim(v.M_1, n.i, n.t, v.n, d.c, d.e, Trt = TRUE) # run for treatment

The outcomes stored in these lists are useful to generate graphical representations of individuals’ trajectories between
health states over all cycles. Figure 2 shows the trajectories of 3 individuals of the Sick-Sicker model. The variation
between the individual trajectories is the result of the stochastic nature of the microsimulation model. For example,
an individual can stay healthy during the first 4 cycles, can become sick during cycle 5, and become sicker during cycle
6. From cycle 6 until 16, the individual remains in the sicker state and during cycle 17 the individuals dies (see top tra-
jectory Figure 2).

The cost and QALY outcomes for these 3 individuals across the time horizon are represented in graphical form in
Figure 3.

Because this model was developed to answer an economic evaluation question, we need to calculate the incremen-
tal costs (DC), QALYs (DE), and the incremental costs effectiveness ratio (ICER). The code below performs these
calculations and stores the values in a table.
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Figure 2 Trajectories between health states for 3 individuals in the Sick-Sicker microsimulation model demonstrating the health
state occupied by the individual during each cycle of the simulation. In addition, this figure demonstrates the heterogeneity
between individuals. Health state 1: Healthy (H), 2: Sick (S1), 3: Sicker (S2) and 4: Dead (D).

Figure 3 Graphical representation of the state costs (black squares, left y-axis) and QALYs (gray dots, right y-axis) associated
with individual trajectories of the first 3 individuals in the simple microsimulation model during all cycles.
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# store the mean costs (and the MCSE) of each strategy in a new variable v.C (vector costs)

v.C <- c(sim_no_trt$tc_hat, sim_trt$tc_hat)

se.C <- c(sd(sim_no_trt$tc), sd(sim_trt$tc))/sqrt(n.i)

# store the mean QALYs(and the MCSE) of each strategy in v.E (vector health outcomes)

v.E <- c(sim_no_trt$te_hat, sim_trt$te_hat)

se.E <- c(sd(sim_no_trt$te), sd(sim_trt$te))/sqrt(n.i)

delta.C <- v.C[2] - v.C[1] # calculate incremental costs

delta.E <- v.E[2] - v.E[1] # calculate incremental QALYs

se.delta.C <- sd(sim_trt$tc - sim_no_trt$tc)/sqrt(n.i) # Monte Carlo squared error (MCSE) of

incremental costs

se.delta.E <- sd(sim_trt$te - sim_no_trt$te)/sqrt(n.i) # Monte Carlo squared error (MCSE) of

incremental QALYs

ICER <- delta.C / delta.E # calculate the ICER

results <- c(delta.C, delta.E, ICER) # store the values in a new variable

# Create full incremental cost-effectiveness analysis table

table_micro <- data.frame(

c(round(v.C, 0), ""), # costs per arm

c(round(se.C, 0), ""), # MCSE for costs

c(round(v.E, 3), ""), # health outcomes per arm

c(round(se.E, 3), ""), # MCSE for health outcomes

c("", round(se.delta.C, 0)), # incremental costs

c("", round(sd.delta.C, 0)), # MCSE for incremental costs

c("", round(delta.E, 3)), # incremental QALYs

c("", round(se.delta.E 3)), # MCSE for health outcomes (QALYs) gained

c("", round(ICER, 0)), # ICER

)

rownames(table_micro) <- c(v.Trt, "* are MCSE values") # name the rows

colnames(table_micro) <- c("Costs", "*", "QALYs", "*", "Incremental Costs", "*",

"QALYs Gained", "*", "ICER") # name the columns

table_micro # print the table

The table_micro variable includes the costs and
QALYs per strategy, the incremental costs and
QALYs, and the ICER of the treatment strategy.
Table 2 presents the results of the cost-effectiveness
analysis using the microsimulation model for a
sample size of 10,000 and 100,000 individuals. For
comparison purposes, the results based on the determi-
nistic cohort model are also presented (R code in

Supplementary Appendix C). We can observe that the
microsimulation model and the cohort model produce
almost identical results after a large number of
simulations.

Because microsimulation models generate outcomes
for each individual, it is possible to observe the distribu-
tion of the outcomes (costs and QALYs) by creating his-
tograms (Figure 4).
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Comparing Microsimulation to Cohort Model
Outcomes

Outcomes from microsimulation models where no
‘‘memory’’ and no heterogeneity at baseline across indi-
viduals is assumed should asymptotically converge to
those from a deterministic cohort model as the number
of individuals simulated in the microsimulation model

increases.11,28,29 The number of hypothetical individuals
that need to be generated is related to the magnitude of
the MCSE. In Figure 5, we present the proportion
of individuals occupying each health state at every cycle
of both the microsimulation model and the cohort
model. As illustrated in Figure 5, the microsimulation
trace converges to the Markov cohort trace as the num-
ber of simulated individuals increases.

In addition, the Markov and microsimulation cost-
effectiveness outcomes traces are graphically presented to
illustrate the convergence of the microsimulation model
to the outcomes derived using a cohort representation of
the model (Figure 6).

Methods: Adding Memory to the Sick-Sicker

Model

In this section, we highlight 2 of the advantages of using
a microsimulation implementation of a cohort model,
which are to incorporate 1) ‘memory’ into the disease
dynamics, and 2) variation in the baseline characteristics
for every individual. To illustrate this, we extend the
Sick-Sicker microsimulation model to include memory
effects and patient heterogeneity at baseline. Specifically,
we assume that mortality rate increases the longer a
patient spends in one of the sick states (Figure 1 and
Table 1) and that effectiveness of treatment is dependent
on the duration of stay in the sick states and on baseline
characteristics. Below, we outline the modifications and
additions that are necessary to incorporate these changes
to the model. Supplementary Appendix B includes the
complete R code used to build the ‘‘extended’’ microsi-
mulation model.

Table 2 Cost-effectiveness Analysis Results of the Simple Microsimulation Model with Two Different Population Sizes (10,000
and 100,000) Compared with Results from a Deterministic Cohort Model of the Sick-Sicker Model

Total Incremental
ICER

Strategies Costs ($) QALYs Costs ($) QALYs ($/QALY)

Microsimulation model (n = 10,000 and seed = 1)
No-treatment 75,790 (577) 15.86 (0.049) - - -
Treatment 141,211 (1080) 16.42 (0.051) 65,420 (517) 0.561 (0.004) 116,609
Microsimulation model (n = 100,000 and seed = 1)
No-treatment 75,996 (183) 15.82 (0.016) - - -
Treatment 141,644 (343) 16.38 (0.016) 65,648 (164) 0.561 (0.001) 117,087
Deterministic cohort model
No-treatment 75,976 15.83 - - -
Treatment 141,623 16.40 65,647 0.562 116,901

All microsimulation results were generated by setting the random seed to 1 at the beginning of the simulation. Monte Carlo standard error in

brackets.

Figure 4 Histograms of the individual costs (top) and
individual QALY (bottom) outcomes for the no-treatment
strategy for the simple microsimulation model (n = 100,000).
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Figure 6 Cost-effectiveness analysis results from the simple microsimulation model with an increasing number of individuals (up
to n = 100,000). The x-axis represents the number of individuals in the microsimulation model, the y-axis is the values for the
incremental costs ($), incremental QALYs, and ICER ($/QALY). Horizontal line: cohort model results. Left top: Convergence
of incremental costs, right top: convergence of QALYs left bottom: convergence of the ICER. QALY, quality-adjusted life years.

Figure 5 Markov cohort trace (left) and the microsimulation trace of the simple microsimulation (right) for different numbers of
individuals (gray line: n = 100; black line: n = 100,000). The y-axis represents the proportion of individuals in each health state.
Because all individuals start healthy, the solid line (H) starts at 1. Over time, the individuals transit from H (solid line going
down) towards other health states (other lines increases).
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We initially assume that individuals in our cohort
have a baseline characteristic that acts as an effect modi-
fier to the treatment effect. This baseline characteristic x
is assumed to follow a uniform distribution within the
population of interest.

v.x <- runif(1, 0.95, 1.05) # vector

capturing individuals’ effect modifier

at baseline

To include this extra variable, the MicroSim() func-
tion in the extended model has an extra argument X. This
argument is assigned the name of the vector or matrix
capturing any individual characteristics.

Additionally, we introduce 2 new variables—the
annual increase in mortality rate (rp.S1S2) and the
annual decrease in utility for treated sick patients
(ru.S1S2)—with every additional cycle spent in the sick
states (S1 or S2).

rp.S1S2 <- 0.2 # increase of the mortality

rate with every additional year being sick/

sicker

ru.S1S2 <- 0.03 # decrease in utility of

treated sick individuals with every

additional year being sick/sicker

Subsequently, we introduce the help variable dur, which
stores the number of consecutive cycles the individual
remains in either S1 or S2. Because every individual starts
in the healthy state, the dur variable takes the value 0 at
cycle 0. With every additional cycle that an individual
spent in S1 or S2, a value of 1 is added to dur. When the
individual recovers (transitions back to state H), the dur
variable is set again to zero. This means that all previous
cycles spent in one of the sick health states does not influ-
ence the current transition probabilities. The process is
repeated every time an individual transitions to S1.

dur <- 0 # the individual start without history

m.C[i, 1] <- Costs(m.M[i, 1], Trt) # estimate the cost per individual of the initial health state

m.E[i, 1] <- Effs(m.M[i, 1], dur, Trt, X = X[i]) # estimate the health outcome per individual at the

initial health state conditional on treatment, duration of being sick/sicker and individual characteristics

for (t in 1:n.t) {

v.p <- Probs(m.M[i, t], dur) # calculate the transition probabilities at cycle

t conditional on the duration of being sick/sicker

m.M[i, t + 1] <- sample(v.n, prob = v.p, size = 1) # sample the new health state and

store that state in matrix m.M

m.C[i, t + 1] <- Costs(m.M[i, t + 1], Trt) # estimate the cost per individual during

cycle t + 1 conditional on treatment

m.E[i, t + 1] <- Effs(m.M[i, t + 1] , dur, Trt, X = X[i]) # estimate the health outcome per individual

during cycle t + 1 conditional on treatment, duration of being sick/sicker and individual characteristics

if (m.M[i, t + 1] == "S1" | m.M[i, t + 1] == ‘‘S2’’) { # expression to identify

sick/sicker individuals

dur <- dur + 1 # updated the duration of being sick/sicker

} else {

dur <- 0} # reset duration variable

We introduce minor modifications on the Probs() function to take the history of the individual into account when
updating the probability of transitioning to death from S1 and S2. The modified function is presented below.
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Probs <- function(M_it, dur) {

# M_it: health state occupied by individual i at cycle t (character variable)

# dur: the duration of being sick (sick/sicker)

v.p.it <- rep(NA, n.s) # create vector of state transition probabilities

names(v.p.it) <- v.n # name the vector

# update probabilities of death after first converting them to rates and applying the rate ratio.

r.S1D <- -log(1 – p.S1D)

r.S2D <- -log(1 – p.S2D)

p.S1D <- 1 – exp(-r.S1D * (1 + dur * rp.S1S2)) # calculate p.S1D conditional on duration of being sick/sicker

r.S2D <- 1 – exp(-r.S2D * (1 + dur * rp.S1S2)) # calculate p.S2D conditional on duration of being sick/sicker

# update the v.p.it with the appropriate probabilities

v.p.it[M_it == "H"] <- c(1 - p.HS1 - p.HD, p.HS1, 0, p.HD) # transition probabilities

when healthy

v.p.it[M_it == S1"] <- c(p.S1H, 1- p.S1H - p.S1S2 – p.S1D, p.S1S2, p.S1D) # transition probabilities

when sick

v.p.it[M_it == "S2"] <- c(0, 0, 1 – p.S2D, p.S2D) # transition probabilities when sicker

v.p.it[M_it == "D"] <- c(0, 0, 0, 1) # transition probabilities when dead

}

ifelse(sum(v.p.it) == 1 ), return(v.p.it), print("Probabilities do not sum to 1")) # return the

transition probabilities or produce an error

}

The next step is to estimate the cost and QALYs during each cycle. The new Effs() function includes the effect
modifier v.x, the variable dur and ru.S1S2 as input parameters.

Effs <- function (M_it, dur, Trt = FALSE, cl = 1, X = NULL) {

# M_it: health state occupied by individual i at cycle t (character variable)

# dur: the duration of being sick/sicker

# Trt: is the individual being treated? (defaults is FALSE)

# cl: the cycle length (default = 1)

# X: the vector or matrix of personal characteristics (optional)

u.it <- 0 # by default the utility for everyone is zero

u.it[M_it == H"] <- u.H # update the utility if healthy

u.it[M_it == "S1"] <- X * Trt * (u.Trt - dur * ru.S1S2) + (1 - Trt) * u.S1 # update the

utility if sick conditional on treatment and duration of being sick/sicker

[M_it == "S2"] <- u.S2 # update the utility if sicker

QALYs <- u.it * cl # calculate the QALYs at cycle t

return(QALYs) # return the QALYs

}

"
new

2
664new
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No modification of the costs is needed, hence the func-
tion Costs() remained the same as in the simple micro-
simulation model. The only thing left is to run the model
with all the adjustments.

# Run the simulation for both no treatment and

treatment

sim_no_trt <- MicroSim(v.M_1, n.i, n.t, v.n,

X = v.x, d.c, d.e, Trt = FALSE) # run for no treatment

sim_trt <- MicroSim(v.M_1, n.i, n.t, v.n,

X = v.x, d.c, d.e, Trt = TRUE) # run for treatment

Results of the Extended Sick-Sicker Model

The cost-effectiveness analysis based on the extended
microsimulation model is presented in Table 3. The
expected costs, QALYs, and ICER of this simulation are
lower in both the no-treatment and treatment strategy
compared with the simple microsimulation (and cohort
model) (Table 2 and Table 3).

The results are consistent with the modifications that
were applied to the model. With an increasing probabil-
ity of death for each additional year spent in the sick
health states, patient life-expectancy is reduced, resulting
in fewer QALYs as well as lower healthcare costs. The
gains in QALYs due to treatment are also reduced com-
pared with the simple model due to the decreasing effec-
tiveness of treatment over time in the extended model.
The microsimulation traces presented in Figure 7 con-
firm the increased mortality rate. Finally, the uncertainty
around the health outcomes, QALYs, has increased due
to the introduction of the treatment effect modifier.

Vectorized Implementation of the

Microsimulation Model

A microsimulation process was presented above as an
iterative process at an individual level over the model’s
time horizon. Because of the causal dependence of future

events on past event histories in the simulation, temporal
iterations in the model cannot be easily vectorized.
However, the repetitive process of a microsimulation across
the individuals can be intuitively represented in a vectorized
form. In this case, at each time iteration, all simulated indi-
viduals are transitioned simultaneously through the model.
Vectorization can improve computational performance but
often results in decision models with high-dimensionality
components. For example, what was a vector of transition
probabilities for an individual on a given point in time will
become a matrix of probabilities, with the number of indi-
viduals in rows and the number of states in columns. Such
higher dimensionality sometimes increases the complexity
of the model structure. A frequently used tool in vectoriza-
tion is linear algebra, as it can provide a convenient way of
performing operations in a vector or matrix scale. Although
linear algebra can facilitate quick calculations, it can also
generate more complex coding and larger matrices that will
require more computer memory. Hence, with vectorization,
modelers must achieve a balance between conceptual com-
plexity, memory, and computational efficiency.

Vectorization can be achieved in the context of our
microsimulation example by extending the dimension
of the health state sampling process. The function
sample() used in this tutorial can support a vectorized
solution only if the state transition probabilities are the
same across individuals. However, in a microsimulation
context, individuals’ risk often depends on a number of
individual-specific characteristics, which restrict us from
using the sample() function on a vectorized context.
To overcome this, and take advantage of vectorization
solutions, we developed the samplev() function by
modifying a random number generating function for
multinomial variables from the Hmisc package.32 The
modification allows for a health state-specific vectoriza-
tion solution based on vectors of random numbers gener-
ated from a U(0,1) distribution. The samplev() function
randomly draws the state name at t+ 1 based on the
probability of each individual occupying each state at
t+ 1:

Table 3 Cost-effectiveness Analysis Results for the Extended Microsimulation Model for the Sick-Sicker Model with a
Population Size of 100,000 Individuals

Total Incremental

Strategies Costs ($) QALYs Costs ($) QALYs ICER ($/QALY)

Extended microsimulation model (n = 100,000 and seed = 1)
No-treatment 62,667 (120) 15.28 (0.017) - - -
Treatment 117,455 (231) 15.79 (0.017) 54,787 (117) 0.507 (0.001) 107,986

The microsimulation results were generated by setting the random seed to 1 at the beginning of the simulation. Monte Carlo standard error in brackets.
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To make use of the samplev() function, the Probs()
function must also be modified to return a matrix of
transition probabilities for the whole cohort rather than
a vector of probabilities for a single individual at a time.
The output of the modified Probs() function is there-
fore a matrix of size ni3 ns. Because the samplev()
function samples the name of the future states of individ-
uals conditional on their probability of experiencing

these states, state names are required as column names.
In Appendix D, the code with all necessary modifications
is presented.

The new samplev() function achieves a 97% reduc-
tion in the time needed to run the analysis (Table 4). The
results in Table 4 are a time comparison, between the
iterative standard approach for the simple Sick-Sicker
model using the sample() function (Appendix A) and
the vectorized approach for the simple Sick-Sicker model
using the samplev() function (Appendix D). The time
shown is the time (average of 3 runs) it takes to run the
model for both the treatment and no treatment arm using
the sample() or samplev() function.

Discussion

This tutorial provides guidance on the implementation of
a microsimulation model using a programming language
such as R. We outline the conceptual steps involved and
provide an algorithm to operationalize these steps using
a programming language. In addition, the tutorial illus-
trates an implementation of microsimulation models in
R and presentation of the results in graphical form. This

Figure 7 Trace of the simple microsimulation (gray line) and the extended microsimulation (black line) during all cycles. The y-
axis represents the proportion of individuals in each health state. Because all individuals start healthy, the solid line starts at 1.
Over time, the individuals transit from healthy (H, solid line going down) to other health states; sick (S1, dashed line), sicker (S2,
dotted line) and dead (D, dot-dash line) (other lines increase). The gray and black line of the states H (solid) and S1 (dashed)
overlap.

Table 4 Time Comparison between the Iterative (Standard)
Approach Using sample() and the Vectorized Approach
Using samplev() to Run the Simple Sick-Sicker Model

Time to run (in seconds)

Sample size sample() samplev()

1,000 5.42 0.16
10,000 38.41 1.21
100,000 378.76 11.71
1,000,000 4538.80 128.79
Computer: MacBook Pro, macOS Sierra version 10.12.6
Processor 2.3 GHz Intel Core i5, 2 cores, 4GB RAM, 1333
MHz DDR3.
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tutorial focuses on the implementation rather than the
conceptualization of a microsimulation model. For inter-
ested readers, Roberts and others present recommenda-
tions and best practices regarding the process of decision
model conceptualization.33 In this paper, we focus on
state-transition models with discrete time intervals.
Another class of models consider time as continuous and
simulate discrete events. Researchers interested in the
implementation of discrete event simulation models
might benefit from making themselves familiar with the
simmer package. The core of the simmer package is writ-
ten in C++ with automatic monitoring capabilities,
which makes it a fast and robust framework to develop
DES models and continuous time Markov models.34

There are limited examples in the literature where
researchers relied on R to build a microsimulation model
for health decision making. However, most of these
examples have appeared recently, which is consistent
with the observed trend of a recent increase in the use of
R in health decision modeling.19 Manca and others pub-
lished an early example of a microsimulation model built
in R35 and Choi and others more recently published a
hypertension, stroke, and myocardial infarction microsi-
mulation model.36 For 2 other microsimulation models,
MILC and CANTRANCE, the authors created R
packages, which include all components of the
model.37,38 Thus, R can be used not only to develop the
model but also to provide an open-source platform for
distributing the model to other users.

Building a microsimulation model in a programming
language such as R has several advantages. Models are
written in script form, which facilitates readability and
reproducibility. The fact that R is open-source and freely
available increases transparency and reproducibility of
the analysis. In addition, due to R’s architecture, efficient
computational performance can be achieved. The output
obtained from the model in R is not limited to the output
generated by the proprietary software; it is possible to
extract every specific outcome estimate (e.g., incidence,
prevalence, and average time spent in a certain state).
However, decisions on the generated output should be
limited to only what is ultimately necessary for the analy-
sis to minimize computational and memory storage
demands. Finally, statistical analyses performed to pro-
vide input to the decision model could be embedded
directly within the decision model.

R may not always be the most appropriate platform,
depending on the nature of the microsimulation model and
the skills of the researchers. R is also not necessarily an ideal
language for computationally intensive processes. Other
programming languages, such as C/C++ or Fortran, may

achieve significantly better performance. Combining the
strengths of different languages is sometimes possible. For
example, the package Rcpp makes it possible to interface
C++ code in R functions and packages.39

The flexibility of R implies that there can be multiple
approaches to the operationalization of a microsimula-
tion model. This tutorial provides one such approach
but is not necessarily the most efficient. The implementa-
tion of the Sick-Sicker model was developed with a focus
on clarity rather than computational efficiency. For
example, one could employ matrix operations more exten-
sively rather than relying on iterative or logical procedures.
Avoiding iterative loops through vectorization in R can
increase efficiency by multifold,40 as confirmed by our
results (Table 4). When iterative loops are inevitable, the
use of parallel processing can drastically improve compu-
tational times for iterative procedures. Alternatively, a
microsimulation model in R can be developed using
object-oriented programming with S4 or References
Classes. Under this approach, simulated individuals,
together with their characteristics, are encoded as a class
and followed over time. In such a modeling approach,
interaction between individuals can be incorporated in a
more straightforward manner. Implementation of an
objected-oriented microsimulation in R can be facilitated
through the simecol package.41

We encourage modelers to develop and distribute
implementations that are more efficient than the one pre-
sented in this tutorial. We are also in the process of
developing an additional tutorial on advanced methods
around microsimulation using R. This upcoming tutorial
will have a strong focus on computational efficiency.
However, the modeler should also be aware of the trade-
off between the time savings associated with an efficient
algorithm and the time investment required to achieve
such efficiency. One way to reduce computational time
in microsimulation models is the use of parallel process-
ing techniques. Most modern computers are equipped
with multi-core processors, which increase significantly
their computational power. However, by default, R uses
only a single core, thereby limiting its computational
capacity. With the use of appropriate packages (e.g.,
parallel) R can achieve parallel processing capabilities,
and thereby drastically reduce computational times.42

One caveat of parallel processing is that the interaction
of R with each of the core processors is time consuming,
and modelers should be aware of this when employing
parallel processing techniques. Overall, it is important
that the additional complexity and flexibility introduced
using a programming language be justified by the com-
plexity needed to answer the research question.
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There is always a degree of uncertainty in the para-
meter values used in health decision models. Such para-
meter uncertainty can be incorporated in a decision
model via probabilistic sensitivity analysis (PSA; second-
order Monte Carlo simulation).7,43 The microsimulation
approach presented above is only limited to the random
variation of the individuals (first-order uncertainty) and
ignores any parameter uncertainty. Efficient program-
ming is particularly important in models that incorporate
both individual variation and parameter uncertainty.
Models where PSA is incorporated will require particu-
larly long computational times. Using efficient methods
when conducting PSA in R is a topic of relevance to any
form of decision analysis. Therefore, we have started to
prepare a separate tutorial on incorporating sensitivity
analysis in decision modeling using R.

In summary, R is increasingly used for building simu-
lation models in health decision sciences; however, infor-
mation on how to perform these simulations is lacking.
This tutorial provides a step-by-step guide to implement-
ing a microsimulation model in R with the aim of sup-
porting health decision scientists who are new to high-
level programming languages to develop models in a
more flexible, open-source and transparent manner, and
encouraging increased transparency and reproducibility
in health decision sciences. In subsequent tutorials, and
as part of the Decision Analysis in R for Technologies in
Health (DARTH) group efforts, we will expand on
model optimization, calibration, and value of informa-
tion analysis among other topics. Future code updates
will be placed on our GitHub https://github.com/
DARTH-git/Microsimulation-tutorial.
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