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JMASM27: An Algorithm for Implementing Gibbs Sampling  
for 2PNO IRT Models (Fortran) 

 
Yanyan Sheng  Todd C. Headrick 

Southern Illinois University-Carbondale 
 
 
A Fortran 77 subroutine is provided for implementing the Gibbs sampling procedure to a normal ogive 
IRT model for binary item response data with the choice of uniform and normal prior distributions for 
item parameters. The subroutine requires the user to have access to the IMSL library. The source code is 
available at http://www.siu.edu/~epse1/sheng/Fortran/, along with a stand alone executable file. 
 
Key words: IRT, two-parameter normal ogive model, MCMC, Gibbs sampling, Fortran. 
 

 
Introduction 

 
Item response theory (IRT) describes a 
probabilistic relationship between correct 
responses on a set of test items and a latent 
variable, where the influence of items and 
persons on the responses is modeled by distinct 
sets of parameters. Common IRT models include 
the two-parameter normal ogive (2PNO; 
Lawley, 1943, 1944; Lord, 1952, 1953a, 1953b) 
model such that the probability of person i 
obtaining a correct response for item j, where 

1,...,i n= and 1,...,j k= ,  is defined as  
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where jγ  and jα  denote item parameters and 

iθ  denotes the continuous person trait. In the 
model, items are assumed to vary in terms of 
location, jγ ,  as well as slope, jα . 
Simultaneous estimation of both item and person 
parameters results in statistical complexities in 
the estimation task of IRT models, which have 
made estimation procedures a primary focus of 
psychometric research over decades (e.g., 
Birnbaum, 1969; Bock & Aitkin, 1981; 
Molenaar, 1995). Recent attention has been 
focused on Markov chain Monte Carlo (MCMC; 
e.g., Chib & Greenberg, 1995) techniques, 
which have demonstrated to be useful for 
complex estimation problems in many areas of 
applied statistics. Albert (1992) was the first to 
apply an MCMC algorithm, known as Gibbs 
sampling (Casella & George, 1992; Gelfand & 
Smith, 1990; Geman & Geman, 1984), to the 
2PNO model, where he adopted non-informative 
priors for item parameters.  

As Albert’s (1992) focus was on 
investigating the applicability of Gibbs sampling 
to IRT, he did not specifically consider the 
situations where informative priors are adopted 
for item parameters. However, in some 
applications, they are more preferred than vague 
priors. For example, when comparing several 
candidate models, Bayes factors are commonly 
adopted in the Bayesian framework, but they are 
not defined with non-informative priors (Gelman 
et al., 2003). In this case, the program given by 
Albert (1992) does not provide a solution. 
Moreover, given that MCMC is computationally 
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demanding in drawing a sufficiently long chain 
to ensure convergence, a major problem in 
applied IRT is the accessibility of efficient 
MCMC programs. Researchers have either used 
WinBUGS (e.g., Bazán, Branco & Bolfarinez, 
2006; DeMars, 2005) to implement MCMC for 
IRT models, or coded the sampler in S-Plus 
(e.g., Patz & Junker, 1999) or MATLAB (e.g., 
Albert, 1992). They noted that each execution 
consumed many hours, and hence was 
computationally expensive. This fact makes it 
impractical for users to utilize these programs 
for various applications of IRT. They further 
limit researchers in conducting Monte Carlo 
studies, or developing more complicated IRT 
models. It is then anticipated that Fortran will 
provide a better solution, as it is the fastest 
programming language for numerical computing 
(Brainerd, 2003).  

In view of the above, the purpose of this 
article is to provide a Fortran subroutine that 
obtains the posterior estimates (and their 
associated standard errors) of item and person 
parameters in the 2PNO IRT model. The 
subroutine will have the option of specifying 
non-informative and informative priors for item 
parameters. 
 

Methodology 
 
The Gibbs Sampling Procedure 

To implement Gibbs sampling to the 
2PNO model defined in (1), a latent continuous 
random variable Z is introduced so that Zij~ 
N( jij γθα − , 1) (Albert, 1992; Tanner & Wong, 

1987). With prior distributions assumed for iθ  
and jξ , where ( , ) 'j j jα γ=ξ , the joint posterior 

distribution of (θ,ξ ) is hence 
 

    ( , | ) ( | ) ( | , ) ( ) ( ),p f p p p∝θ ξ y y Z Z θ ξ θ ξ   (2)       
 
where ( | )f y Z  is the likelihood function.  

With a normal prior for iθ  and non-
informative priors for jα   and jγ   so that 

2~ ( , )i Nθ μ σ , jα >0 and ( ) 1jp γ ∝ , the full 

conditional distributions of Zij, iθ , and jξ  can 
be derived in closed forms as follows: 
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where x =[θ ,-1]. Alternatively, informative 
conjugate priors can be assumed for jα   and jγ  

so that 2
(0, )~ ( , )j N α αα μ σ∞ , 2~ ( , )j N γ γγ μ σ . In 

this case, the full conditional distribution of jξ  
is derived as 
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Hence, with starting values θ (0) and ξ (0), 
observations (Z(l), ( )lθ , ( )lξ ) can be simulated 
from the Gibbs sampler by iteratively drawing 
from their respective full conditional 
distributions specified in (3), (4) and (5) (or 
equations 3, 4, and 6). To go from (Z(l-1), ( 1)lθ − , 

( 1)l−ξ ) to (Z(l), ( )lθ , ( )lξ ), it takes three transition 
steps: 
 

1. Draw Z(l) ~ p(Z| y, ( 1)lθ − , ( 1)l−ξ ); 
2. Draw ( )lθ ~ p(θ |Z(l), ( 1)l−ξ ); 
3. Draw ( )lξ ~ p(ξ |Z(l), ( )lθ ). 

 
This iterative procedure produces a sequence of 
( ( )lθ , ( )lξ ), l= 0, …, L. To  reduce  the  effect of 
the starting values, early iterations in the 
Markov chain are set as burn-ins to be discarded.  
Samples from the remaining iterations are then 
used to summarize the posterior density of item 
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parameters ξ  and ability parameters θ . As with 
standard Monte Carlo, with large enough 
samples, the posterior means of ξ  and θ  are 
considered as estimates of the true parameters. 
However, their standard deviations tend to 
underestimate the posterior standard deviations, 
as subsequent samples in Gibbs sampler are 
autocorrelated (e.g., Albert, 1992; Patz & 
Junker, 1999). One approach to calculating them 
is through batching (Ripley, 1987). That is, with 
a long chain of samples being separated into 
contiguous batches of equal length, the posterior 
mean and standard deviation for each parameter 
are then estimated to be the sample mean and 
standard deviation of these batch means 
respectively. Thus, the standard error of the 
estimate is a ratio of the standard deviation and 
the square root of the number of batches.  
 
The Fortran Subroutine 

The subroutine initially sets the starting 
values for the parameters, so that (0) 0iθ = , 

(0) 2iα =  and (0) 1( / ) 5i iji
y nγ −= −Φ ∑  

(Albert, 1992). It then iteratively draws random 
samples for Z and θ  from their respective full 
conditional distributions specified in (3) and (4) 
with 0μ =  and 2 1σ = . Samples for jξ  are 
simulated either from (5), where uniform priors 
are assumed for jξ , or from (6), where normal 
priors are adopted with 0α γμ μ= =  and 

2 2 1α γσ σ= = . The algorithm continues until all 
the L samples are simulated. It then discards the 
early burn-in samples, and computes the 
posterior estimates and standard errors for the 
model parameters, θ , α  and γ , using batching. 

For example, for a 2000-by-10 (i.e., n = 
2,000 and k = 10) dichotomous (0-1) data matrix 
simulated using the item parameters shown in 
the first two columns of Table 1, the Gibbs  

 
 
 
 
 
 
 

 

sampler was implemented so that 10,000 
samples   were   simulated  with  the  first  5,000 
taken to be burn-in. The remaining 5,000 
samples were separated into 5 batches, each with 
1,000 samples. Two sets of the posterior means 
for α  and γ , as well as their standard errors, 
were obtained assuming the uniform or normal 
prior distributions described previously, and are 
displayed in the rest of the table. It is noted that 
the item parameters were estimated with enough 
accuracy and the two sets of posterior estimates 
differ only slightly from each other, signifying 
that the results are not sensitive to the choice of 
priors for ξ . For this example, each 
implementation took less than 13 minutes. 
Although 10,000 iterations are long enough for 
the Markov chain to reach the stationary 
distribution, one may easily increase the length 
of the chain to be as long as 50,000, which takes 
about 60-90 minutes for each execution.  
 

Conclusion 
 
This Fortran subroutine leaves it to the user to 
choose between uniform and normal priors for 
the item parameters, α  and γ . In addition, the 
user can change the source code so that the prior 
distribution for iθ  assumes different location, μ  

and scale, 2σ . Similarly, αμ  , 2
ασ , and γμ , 2

γσ  
can be modified to reflect different prior beliefs 
on the distributions for the item parameters. It is 
noted that convergence can be assessed by 
comparing the marginal posterior mean and 
standard deviation of each parameter computed 
for every 1,000 samples after the burn-ins. 
Similar values provide a rough indication of 
similar marginal posterior densities, which 
further indicates possible convergence of the 
Gibbs sampler (Gelfand, Hills, Racine-Poon & 
Smith, 1990; Hoijtink & Molenaar, 1997).  
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Appendix 

 
SUBROUTINE GSU2(Y, N, K, L, BURNIN, BN, UNIF, ITEM, PERSON) 
C************************************************************************* 
C Y is the n-by-k binary item response data  
C N is the number of subjects  
C K is the test length (number of items) 
C L is the number of iterations using Gibbs sampling 
C BURNIN is the first number of iterations that are to be discarded 
C BN is the number of batches 
C UNIF is a 0-1 indicator with 0 specifying normal priors for item 
C parameters and 1 specifying uniform priors for them     
C ITEM is a k-by-4 matrix of posterior estimates and standard errors  
C for item parameters    
C PERSON is a n-by-2 matrix of posterior estimates and standard errors  
C  for person abilities        
C************************************************************************* 
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INTEGER    L, COUNT, IRANK, BURNIN, UNIF, INDX(2), BN,   
& BSIZE, Y(N, K) 

      REAL A(K), G(K), TH(N), LP, MU, VAR, AV(L,K), GV(L,K), THV(N,L), 
 & PHAT(K), U, Z(N,K), V, MN, MSUM, PVAR,PMEAN, TT, X(N,2),    
 & XX(2,2), IX(2,2),ZV(N,1),XZ(2,1), AMAT(2,2), BZ(2,1), AMU,   
 & GMU, AVAR, GVAR, AGMU(2,1), AGVAR(2,2), SIGMA(2,2), BETA(1,2), 
 & BI(1,2), ITEM(K,4), PERSON(N,2), SUM1, SUM2, SUM3, 
 & M1, M2, M3, TOT1, TOT2, TOT3, SS1, SS2, SS3 
 DOUBLE PRECISION    BB, TMP 
C************************************************************************* 
C Connect to external libraries for normal (RNNOR) and uniform (RNUN)   
C random number generator, inverse (ANORIN, DNORIN) and CDF (ANORDF,     
C DNORDF) for the standard normal distribution, and Cholesky             
C factorization (CHFAC) routines             
C************************************************************************* 

EXTERNAL  RNNOR, RNSET, RNUN, ANORDF, ANORIN,CHFAC, DNORDF, DNORIN 
C************************************************************************* 
C Set initial values for item parameters a, g, and person ability theta so 

C that a = 2, g = 
1( / ) 5iji

y n−−Φ ∑ for all k items, and theta = 0 for all n 

C persons.     
C************************************************************************* 
 PHAT = SUM(Y, 1) 
 DO 10 I = 1, K 
   A(I) = 2.0 
   G(I) = -ANORIN(PHAT(I)/N)*SQRT(5.0) 
   10 CONTINUE 
 DO 20 I = 1, N 
   TH(I) = 0.0 
   20 CONTINUE 
C************************************************************************* 
C MU and VAR are the mean and the variance for the prior distribution of  
C theta.          
C************************************************************************* 
 MU = 0.0 
 VAR = 1.0 
C************************************************************************* 
C Start iteration              
C************************************************************************* 
 COUNT = 0 
 DO 30 IT = 1, L 
   COUNT = COUNT + 1 
C************************************************************************* 
C Update samples for Z from its normal posterior distributions           
C************************************************************************* 
     DO 40 I = 1, N 
     DO 40 J = 1, K 
       LP  = TH(I) * A(J) - G(J) 
  BB = ANORDF((0.0 - LP)) 
  CALL RNUN (1, U) 
  TMP = BB*(1 - Y(I, J)) + (1 - BB)*Y(I, J)) * U + BB*Y(I, J) 
  Z(I, J) = DNORIN(TMP) + LP 
   40     CONTINUE 
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C************************************************************************* 
C Update samples for theta from their normal posterior distributions      
C************************************************************************* 
     V = 1/SUM(A*A) 
     PVAR = 1/(1/V + 1/VAR) 
     DO 50 I = 1, N 
      MSUM = 0.0 
      DO 60 J = 1, K 
        MSUM = MSUM+A(J)*(Z(I, J) + G(J)) 
   60      CONTINUE 
      MN = MSUM*V 
      PMEAN = (MN/V + MU/VAR)*PVAR 
      CALL RNNOR(1,TT) 
      TH(I) = TT*SQRT(PVAR) + PMEAN 
      THV(I, COUNT) = TH(I) 
   50     CONTINUE 
C************************************************************************* 
C Update samples for item parameters, a and g from their multivariate   
C normal posterior distributions            
C************************************************************************* 
     DO 70 J = 1, 1 
     DO 70 I = 1, N 
       X(I, J)  =  TH(I) 
   70     CONTINUE 
     DO 80 J = 2, 2 
     DO 80 I = 1, N 
       X(I, J) = -1 
   80     CONTINUE 
     IF (UNIF = = 0) THEN 
C************************************************************************* 
C Specify the prior means (AMU, GMU) and variances (AVAR, GVAR)  
C for a and g.          
C************************************************************************* 
  AMU = 0.0 
  GMU = 0.0 
  AVAR = 1.0 
  GVAR = 1.0 
C************************************************************************* 
C Put the means and variances in vector and matrix format     
C************************************************************************* 
  AGMU(1, 1) = AMU 
  AGMU(2, 1) = GMU 
  AGVAR(1, 1) = AVAR 
  AGVAR(2, 2) = GVAR 
C************************************************************************* 
C Call the matrix inversion routine. 
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C Invert matrix AGVAR with the inverse stored in SIGMA          
C************************************************************************* 
  CALL MIGS(AGVAR, 2, SIGMA, INDX) 
  XX = MATMUL(TRANSPOSE(X), X) + SIGMA 
     ELSE IF (UNIF = = 1) THEN 
  XX = MATMUL(TRANSPOSE(X), X) 
     END IF 
C************************************************************************* 
C Call the matrix inversion routine.            
C Invert matrix XX with the inverse stored in IX          
C************************************************************************* 
     CALL MIGS(XX, 2, IX, INDX) 
C************************************************************************* 
C Call the Cholesky factorization routine. Compute the Cholesky         
C factorization of the symmetric definite matrix IX and store the      
C result in AMAT              
C************************************************************************* 
     CALL CHFAC (2, IX, 2, 0.00001, IRANK, AMAT, 2) 
     DO 90 J = 1, K 
       DO 100 I = 1, N 
      ZV(I, 1)=Z(I, J) 
  100       CONTINUE 
  IF (UNIF = = 0) THEN 
    XZ = MATMUL(SIGMA, AGMU)+MATMUL(TRANSPOSE(X), ZV) 
  ELSE IF (UNIF = = 1) THEN 
    XZ = MATMUL(TRANSPOSE(X), ZV) 
  END IF 
    BZ = MATMUL(IX, XZ) 
    A(J) = 0 
       DO WHILE (A(J).LE.0) 
    CALL RNNOR (2, BI) 
    BETA = MATMUL(BI, AMAT)+TRANSPOSE(BZ); 
    A(J) = BETA(1, 1) 
    G(J) = BETA(1, 2) 
   END DO 
   AV(COUNT, J) = A(J) 
   GV(COUNT, J) = G(J) 
   90  CONTINUE 
   30 CONTINUE  
C************************************************************************* 
C Calculate the posterior means and SEs for a, g and theta and store them      
C in ITEM and PERSON              
C************************************************************************* 
 BSIZE=(L-BURNIN)/BN 
 DO 110 J = 1, K 
   COUNT = BURNIN 
   TOT1 = 0.0 
   TOT2 = 0.0 
   SS1 = 0.0 
   SS2 = 0.0 
   DO 120 M = 1, BN 
  SUM1 = 0.0 
   SUM2 = 0.0 
  DO 130 I = 1, BSIZE 
    COUNT = COUNT + 1 
    SUM1 = SUM1 + AV(COUNT, J) 
    SUM2 = SUM2 + GV(COUNT, J) 
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  130  CONTINUE 
    M1 = SUM1/BSIZE 
  M2 = SUM2/BSIZE 
  TOT1 = TOT1 + M1 
  TOT2 = TOT2 + M2 
  SS1 = SS1 + M1*M1 
  SS2 = SS2 + M2*M2 
  120   COUNTINE 
   ITEM(J, 1) = TOT1/BN 
   ITEM(J, 2) = SQRT((SS1 – (TOT1*TOT1/BN))/(BN -1))/SQRT(FLOAT(BN)) 
   ITEM(J, 3) = TOT2/BN 
   ITEM(J, 4) = SQRT((SS2 – (TOT2*TOT2/BN))/(BN -1))/SQRT(FLOAT(BN)) 
  110 CONTINUE 
 
 DO 140 J = 1,N 
   COUNT = BURNIN 
   TOT3 = 0.0 
   SS3 = 0.0 
   DO 150 M = 1, BN 
  SUM3 = 0.0 
    DO 160 I = 1, BSIZE 
    COUNT = COUNT + 1 
         SUM3 = SUM3 + THV(J, COUNT) 
  160  CONTINUE 
  M3 = SUM3/BSIZE 
  TOT3 = TOT3 + M3 
  SS3 = SS3 + M3*M3 
  150   CONTINUE 
   PERSON(J, 1) = TOT3/BN 
   PERSON(J, 2) = SQRT((SS3 – (TOT3*TOT3/BN))/(BN -1))/SQRT(FLOAT(BN)) 
  140 CONTINUE 
      
 RETURN 
 END 
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