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Abstract 
One of the most challenging complications in trauma surgery is infection after 

fracture fixation (IFF). IFF may result in permanent functional loss or even 

amputation of the affected limb in patients who may otherwise be expected to 

achieve complete, uneventful healing. Over the past decades, the problem of implant 

related bone infections has garnered increasing attention both in the clinical as well 

as preclinical arenas; however this has primarily been focused upon prosthetic joint 

infection (PJI), rather than on IFF. Although IFF shares many similarities with PJI, 

there are numerous critical differences in many facets including prevention, diagnosis 

and treatment. Admittedly, extrapolating data from PJI research to FFI has been of 

value to the trauma surgeon, but we should also be aware of the unique challenges 

posed by IFF that may not be accounted for in the PJI literature.   

This review summarizes the clinical approaches towards the diagnosis and treatment 

of IFF with an emphasis on the unique aspects of fracture care that distinguish IFF 

from PJI. Finally, recent developments in anti-infective technologies that may be 

particularly suitable or applicable for trauma patients in the future will be briefly 

discussed.  
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Introduction 
The operative fixation of skeletal fractures can be highly complex due to the 

unpredictable nature of the bone damage, the multitude of concomitant injuries that 

may need to be considered and the frequency of life-threatening situations in 

emergency care. One of the most feared and challenging complications in the 
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treatment of musculoskeletal trauma patients is infection after fracture fixation (IFF), 

which can delay healing, lead to permanent functional loss, or even amputation of the 

affected limb.  

Treating IFF may also result in significant socio-economic costs and can result in 

protracted recovery periods for affected patients [1]. Recent studies showed median 

costs per patient double to over 108'000 USD per patient when infected [2] with 

reported treatment success rates of only between 70 and 90% [3, 4]. The incidence 

of IFF has been tracked in numerous small-scale studies, with values from the 1980's 

and 90's indicating that the infection rate may range from as low as approximately 

1% after operative fixation of closed low-energy fractures, to more than 30% in 

complex open tibia fractures [5, 6]. Over the past decades, it appears that there has 

been a steady reduction in the overall incidence of infection [7]. However, the 

question must be asked as to whether or not we have reached a plateau on what can 

be achieved by current protocols [8]. The persistence of the problem, and the 

somewhat unsatisfactory treatment outcomes, suggests that neither prophylaxis nor 

treatment of IFF is completely effective despite best practice, and further 

improvements should be sought.  

Much of the surgical and medical treatment concepts currently applied to IFF have 

been adopted from prosthetic joint infection (PJI) treatment algorithms. Specific data, 

tailored towards the musculoskeletal trauma patient, is comparatively scarce. IFF and 

PJI do indeed have similar clinical properties, however there are important 

distinctions between the elective arthroplasty patient and the trauma patient, both in 

terms of risk of infection at the primary surgery, and in treatment options. Clearly, 

there is likely to be significant differences in the soft tissues overlying the surgical 

site: the fracture patient may have significant soft tissue damage or compromised 

vasculature secondary to the trauma, which is less common in elective arthroplasty 

patients. This vascular and soft tissue damage can impair access of the host 

defences and antibiotic therapy to the affected areas. Open fracture wounds are also 

certainly contaminated with an unknown variety and abundance of contaminating 

bacteria that are not present in elective patients. Furthermore, trauma patients may 

also require repeated visits to the OR for definitive fixation, second look, or plastic 

surgery for soft tissue flaps, which are not routine in primary arthroplasty. Amongst 

the most obvious technical differences in IFF is the presence of a fracture and the 
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need for biomechanical stability in order for it to heal. Clinical guidelines highlight the 

fact that construct stability is important not only for prevention, but also for treatment 

of IFF [9, 10]. Furthermore, in contrast to PJI, fracture fixation devices may be 

removed after osseous healing and therefore complete immediate eradication of 

infection is not always the primary goal and suppressive antibiotic therapy may be an 

option in advance of later implant removal when treatment outcome and success is 

likely to be improved. Finally, identification of infecting pathogens may be possible by 

joint puncture prior to surgical intervention in the case of PJI, however, biopsies are 

more often taken intraoperatively for IFF, which can delay or complicate diagnosis of 

IFF.  

Preclinical research studies looking into the risk and progression of bone infection 

specifically in trauma-relevant models are also scarce [11-13], and few specific 

innovations have been translated from the academic arena and made available to the 

musculoskeletal trauma surgeon [14-16]. In this review, we summarize the 

preventative, diagnostic and therapeutic guidelines for IFF with an emphasis on the 

unique aspects of fracture care that distinguish IFF from PJI. Furthermore, we 

summarize the latest preclinical and clinical research innovations regarding 

prevention and treatment of IFF.  

Definition and classification 

Definition 

Accurately estimating the impact of fracture related complications has been 

hampered by the lack of clear definitions for complications such as nonunion or 

infection. To date, there are no available standard criteria and a lack of consensus 

regarding the definition of IFF. This is in contrast to the situation for PJI, where a 

definition is available [17]. The trauma literature often cites the Centers for Disease 

Control (CDC)-guidelines for surgical site infection (SSI). The CDC definition divides 

SSIs into superficial, deep incisional and organ/space [18]. Furthermore, 

osteomyelitis is stated separately. As the fracture nor the implant taken into account, 

the complexity of an infected traumatic fracture is not completely covered by these 

guidelines. The problem becomes clear when reviewing the clinical literature. Some 

studies have cited the CDC-guidelines without a specific description of osteomyelitis 
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[19, 20]; others use these guidelines but include their own additional inclusion criteria 

such as purulent drainage or other clinical signs [21]. Perhaps due to the lack of 

suitable definitions for trauma patients, there are also authors who do not define 

infection [22] and others who provide a unique custom-made definition [23]. 

Interestingly, this issue was already mentioned by Arens et al. in 1996 [24], wherein 

the authors stated: ´It is astonishing that in all papers in which infection is mentioned, 

the term 'infection’ is not defined´. A better understanding and description of the 

definition of IFF is therefore a needed first step towards improving scientific reporting 

and evaluation of routine clinical data, as well as aid in the evaluation of novel 

prevention and treatment strategies [25].  

Classification 

Although there is a lack of clear definitions, there is a widely accepted classification 

scheme for IFF [26, 27]. Willeneger and Roth classified IFF in the 1980's according to 

the time of onset into three groups: those with an early (less than 2 weeks), delayed 

(2−10 weeks), and late onset (more than 10 weeks) infection [27]. This classification 

has been adopted widely and is important because it has an influence on treatment 

decisions made by physicians [26]. Although infections with delayed and late 

manifestations may be combined[26], a trisection of this classification seems more 

appropriate. The relative frequency of infections of each type is not available from the 

published literature, but would represent an interesting validation of the classification 

scheme should such data become available. In the following section, this 

classification will be discussed, with particular reference to onset of IFF, biofilm 

formation and, importantly for the trauma surgeon, fracture-healing status  (Figure 1). 

Early infection (< 2 weeks) 
Early IFFs are often a clinical diagnosis since the patient generally presents with 

classic signs of infection (rubor, calor, dolor, tumor and functio laesa), wound healing 

disturbances, large hematomas, and accompanying systemic signs of infection such 

as fever and lethargy. Highly virulent organisms, like Staphylococcus aureus, are 

frequent causative agents of early infection [26]. Within this timeframe, it is commonly 

considered that the causative bacteria may already have formed a biofilm, although 

this biofilm may still be in an ‘immature’ phase.  
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With regard to bone involvement and healing, preclinical models have shown that at 

one-week post-inoculation, the bone does not show signs of osteomyelitis or 

osteolysis (Figure 2), despite the presence of bacteria. Furthermore, bone healing is 

in the ‘inflammatory or soft callus stage’ [28], and so there will be no fracture stability 

at this early stage. As discussed later, these pathophysiological conditions (active 

infection without radiographic signs of fracture stability) have significant treatment 

consequences due to the importance of fracture healing for successful treatment 

outcomes. 

Delayed infection (2 – 10 weeks) 
Patients with delayed infections can present with symptoms consistent with either 

early or late infections. For example, hematomas, which may be expected in earlier 

stages, may still be present after 3 weeks, or alternatively, a fistula can also present 

itself after 9 weeks, which may be more often associated with late infections.  

There are several important distinctions from early infections. Delayed infections are 

typically due to less virulent bacteria, such as Staphylococcus epidermidis [26], and 

as the duration of infection extends, biofilms mature and become more resistant to 

antibiotic therapy and host defenses.  

In terms of fracture healing, preclinical studies show that normal bone healing takes 

up to 10 weeks [29], with a ‘hard callus stage’ that is situated between 3-16 weeks 

[28, 30]. In case of infection, this changes significantly. Experimental studies have 

shown that S. epidermidis inoculation into a fracture gap in the rat can lead to non-

union rates of 83-100% at 8 weeks [31]. Bilgili et al. could prove, in a similar 

approach, that IFF was associated with weaker callus formation [32]. These 

observations, in combination with the fact that bacterial bone invasion and 

inflammation (‘osteomyelitis’) often occur within 2 - 10 weeks (Figure 2), explain why 

treatment choices are often different compared to early onset infections where 

fracture healing may not have commenced, and bone involvement may still be 

minimal.  

Late infection (> 10 weeks)  
Many patients with late infections can present with subtle symptoms, compromised 

functionality and stress dependent pain, localized swelling and erythema or a 

draining sinus tract, mostly lacking systemic manifestation [33, 34]. In patients 

presenting with compromised functionality and stress dependent pain, infection with 
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low-virulence microorganisms should always be considered a possible cause (a 

clinically silent infection) [33]. Late, as delayed, IFF is primarily caused by micro-

organisms of low virulence like S. epidermidis [26].  

Compromised fracture healing is a frequent observation in late infections and 

although bone healing may have taken place in some cases, severe inflammation 

and osteolysis with osteomyelitis lead to instability of the osteosynthesis (Figure 2). 

Periosteal new bone formation around the periphery of the infected area produces an 

involucrum that further walls off the infection [35]. These changes often necessitate 

extensive and repeated debridements, resulting in bone defects. 

Diagnosis 
The diagnosis of IFF is challenging and based on a combination of various diagnostic 

criteria: past medical history, host physiology, clinical presentation, laboratory tests, 

imaging modalities and culturing of intraoperative tissue samples. Local signs of 

infection should be considered an IFF until proven otherwise. Signs such as a 

draining fistula from the implant or pus drainage are considered definitive signs of 

infection.  

Evaluation of host physiology    

The detailed examination of patients with a suspected IFF includes a clinical 

assessment, and complete medical history, as well as an evaluation of the host local 

and systemic risk factors. High-risk injuries including open fractures with severe soft-

tissue damage, a previous history of infection or a compromised host physiology [36]. 

Characteristics of compromised host physiology, such as chronic immune 

suppression (diabetes, malignancy, severe liver or renal disease, alcoholism), 

impairment of local vascularity and soft-tissue integument or deficiency in wound 

healing, should not only influence the risk assessment for infection, it should also 

influence treatment concepts [37]. Therefore, treating surgeons should be reluctant to 

perform complex reconstructive procedures in patients where these high-risk host 

factors are identified [33, 38].  

Laboratory examination 
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White blood cell count (WBC) with differential and neutrophil count display low 

sensitivity and specificity for diagnosing IFF [26, 39]. Persistent elevation or a 

secondary rise in C-reactive protein (CRP) can be an indicator for IFF [40, 41]. 

Microbiology 

IFF is mostly due to bacterial communities growing in protected biofilms on the 

foreign material and in necrotic bone tissue [42]. These localized grouped bacteria 

are often metabolically quiescent, which makes them difficult to identify and culture 

[43, 44]. Cultures taken from an open wound at the time of initial fracture fixation do 

not correlate with an eventual later infection and should be avoided [45, 46]. 

Similarly, swab cultures at the time of revision surgery do not reliably represent the  

pathogens in the bone [47, 48] and are therefore not recommended. In case of 

suspected infection, at least three bone biopsies should be taken close to the implant 

and in regions of macroscopically perceived infection such as necrotic bone tissue or 

non-unions [26]. If the same microorganism is cultured in at least two separate 

biopsies, it is believed to be relevant. In case of virulent species such as S. aureus or 

E. coli, a single positive biopsy may already sufficiently represent an infection [17]. If 

involvement of an adjacent joint is suspected, joint fluid for analysis (cell count, 

cultures) should be aspirated. Whenever possible, antibiotics should be avoided for 

at least 2 weeks before microbiological culturing, since this can transform specific 

bacterial species into viable but non-culturable forms [49] and cultures may therefore 

become falsely negative [50]. There is still an on-going debate about the duration of 

culture incubation: from 7 up to 14 days of incubation can be reasonable [51, 52], 

balancing the risk of missing a difficult to culture pathogen with the risk of culturing an 

irrelevant contaminant. 

If implanted hardware is removed during surgery, these should be sent to the 

microbiological laboratory for sonication and cultivation of sonication fluid, if possible.  

Sonication is believed to detach the biofilm-encased bacteria from the implant and 

disrupt the biofilms themselves, thereby rendering the bacteria amenable for 

cultivation. This method has proved to increase the yield of positive cultures, 

especially after pre-treatment with antibiotics [53-56]. 

Although culturing is still believed to be the gold standard for microbiologic 

assessment, molecular methods are increasingly being added to identify difficult to 
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culture or non-culturable bacteria. Especially after antibiotic pre-treatment, detecting 

pathogens with polymerase chain reaction (PCR) has proven to be a valuable 

complementation [57-59]. However, the high resolution and sensitivity of PCR comes 

along with the risk of false-positive results from contaminants [60, 61]. Furthermore, it 

commonly cannot distinguish between live or dead bacteria and does not provide 

broad information about susceptibility to antibiotics, except of the presence of specific 

resistance genes [62]. 

Histology 

Routine diagnostics of IFF may include histological analysis of several tissue 

samples, that were taken intra-operatively from the site of suspected infection and/or 

non-union [63]. The histological examination allows differentiation between acute and 

chronic infection, proof of necrotic bone and detection of malignancy and delivers in 

combination with microbiological analysis important clues on the presence of a bone 

infection [33].  

Imaging 

Serial radiographs are the first method of choice in complications after fracture 

fixation to gain a primary overview of the anatomy and to judge fracture healing 

status, implant positioning, possible implant failure, limb alignment and bone quality 

[64]. However, plain radiographs are not suitable to differentiate between septic and 

aseptic changes in active infections [26, 65]. In chronic infections, areas with a 

suspected bone infection may display sequestration, cortical irregularities, bone 

resorption and bone/callus formation [33, 65]. For more precise planning of the 

surgical procedure, computed tomography (CT) provides more detail about bone 

architecture to evaluate fracture pattern, new bone formation and necrotic bone as 

well as implant loosening and delivers additional evidence for infection: cortical bone 

reaction, presence of sequestration or intraosseous fistula and abscess formation in 

the adjacent soft-tissue [33, 66, 67].  

Magnetic resonance imaging (MRI) is the method of choice to evaluate soft-tissue 

involvement and gives additional information about intramedullary infection 

manifestation [39]. However in cases of IFF, metal artefacts impair correct evaluation 
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and scarring or edema in postoperative/posttraumatic bone defects may mimic an 

infection [68].  

Nuclear imaging modalities are often included in the diagnostic pathway of these type 

of infections [69, 70]. Nuclear imaging is using radioactive radiopharmaceuticals to 

visualize and trace (patho-) physiological changes, such as fracture healing, bone re-

modelling and inflammatory response to an infection. The combination of these 

functional imaging studies with morphological imaging, such as CT in one device is 

called hybrid imaging (SPECT/CT). It allows precise localization of the suspected 

infection and facilitates the discrimination between bone and soft-tissue infection [70]. 

Bone scintigraphy, usually performed with technetium-99m-diphosphonates (99mTc) 

is positive for osteomyelitis in the case of focal hyperaemia or hyperperfusion and 

focally increased bone activity [70]. Since these physiological changes are also 

involved in fracture healing, it cannot discriminate between infection and 

posttraumatic bone formation. Therefore, bone scintigraphy has limited value in the 

diagnosis of IFF [26, 39, 70]. WBC imaging, using in vitro labeled leucocytes is a 

promising technique to identify bacterial infections, but is not routinely available due 

to complex in vitro labeling [70]. 18F-fluoro-desoxy-glucose PET (FDG-PET), is very 

useful in musculoskeletal infections to visualize and precisely localize the infection 

with a high sensitivity and specificity [70]. Its role in IFF still remains inconclusive and 

has to be determined.  

Treatment 

General considerations 

The central aims of treating IFF are shown in Table 1. Remember that every case of 

IFF is to be considered as a unique case, since there is no standard procedure that 

can be routinely applied to every patient. 

In contrast to PJI, fracture fixation devices can be removed after healing has 

occurred, thereby removing the biofilm and resulting in a high chance of clearance of 

the infection. Therefore, complete eradication of infection is not always the primary 

goal. Suppressive therapy with antibiotics can be an established alternative in certain 

cases [3, 26, 71]. In order to tailor the appropriate treatment strategy, a number of 

important questions should be considered (Table 2) [1, 26, 39]. 
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Taking these considerations into account, the above-mentioned aims can be 

achieved by two main surgical principles: 

I. Irrigation, debridement and retention of the implant combined with 

antibiotic therapy. 

II. Debridement, implant removal or exchange (one or multiple stages) with 

accompanied antibiotic therapy. 

 

In very rare cases, especially in compromised hosts with serious infections, healing 

cannot be achieved and salvage procedures, such as amputation or establishment of 

a continuous fistula, may be the only treatment alternatives.  

Regardless of which of the two main principles was chosen, the treating surgeon has 

to apply the above-mentioned diagnostic tools (CRP, radiographic analysis, etc.) to 

develop a long-term treatment concept as part of a multidisciplinary team. This 

treatment concept encompasses debridement, fracture- and soft-tissue management 

and antibiotic therapy (systemic/local). Carefully considered debridement is the 

cornerstone of treatment and involves the excision of necrotic and infected (bone- 

and soft-) tissue, evaluation of the osteosynthetic construct (stability), removal of 

foreign bodies (e.g. sequesters, broken screws, sutures) and acquisition of multiple 

tissue samples for diagnostics [72]. Radical debridement should not be limited by 

concerns of creating bone or soft-tissue defects [33], one must compare debridement 

to ‘Oncologic resections’. Leaving a high concentration of pathogens (‘cancer cells’) 

in a specific surgical area, will lead to recurrence of the disease. When multiple 

operative stages are planned, these defects should be temporarily filled with a spacer 

(‘dead-space management’). Finally, an adequate soft-tissue coverage is essential. 

This often means involvement of plastic surgeons in the process, for e.g. free-flaps.  

 

 

 

 

Antibiotic treatment considerations 

Systemic antibiotic therapy 
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In general, antibiotic therapy can either be curative or suppressive. In the latter case, 

the antibiotics control the infection until the fracture is healed and the implant can be 

removed [26].  Antibiotics should always be tailored to the recovered bacteria and 

their antibiotic susceptibility pattern (see Table 3).  

After surgical debridement, an initial intravenous therapy is started to achieve a rapid 

reduction of the bacterial load at the site of infection. After approximately 2 weeks of 

intravenous therapy, a switch to oral therapy with good bioavailability is suggested 

(see Table III) [73-75]. In case of treatment with aim of cure, the total treatment 

duration is usually 6 weeks after removal of implants or 12 weeks if implants stay in 

place [26, 72]. In case of treatment with aim of suppression, duration of therapy is 

linked with the time for the fracture to stabilize/heal and should commonly be 

continued for 4-6 weeks after implant removal. This is particularly recommended in 

infections with virulent bacteria such as S. aureus or Escherichia coli in order to 

prevent or treat chronic osteomyelitis. When implants are retained, a curative 

treatment is generally only effective with a biofilm-active antibiotic, which has so far 

only been shown for rifampicin against staphylococci [76-78] and for quinolone 

against Gram-negative bacteria [79-81]. Importantly, rifampicin must always be 

combined with a second antibiotic due to otherwise rapid development of resistance. 

For the same reason rifampicin should not be started before an initial bacterial load 

reduction by surgery and antibiotic therapy has occurred, all drains are drawn and 

the wound is dry [82, 83]. For staphylococci, quinolones such as ciprofloxacin or 

levofloxacin are the best-studied and effective oral antibiotic partners to rifampicin 

[76]. Other combinations have been successfully used in orthopedic implant 

infections but are less widely studied (see options in Table 3) [84]. If bacteria are 

resistant to the mentioned biofilm-active antibiotics, they are classified as difficult to 

treat and generally cannot be eradicated by the available alternative antibiotics as 

long as the implants are retained [85]. In these cases, the surgeon should strongly 

consider implant removal. 

 

Local antibiotic therapy 
Local application of antimicrobials at the site of infection through different carriers has 

gained increasing attraction. Especially in the light of impaired blood flow to the site 

of infection and necrotic bone tissue, the advantage of achieving very high local 

concentration of antimicrobials with low systemic exposure is compelling [87]. 
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Furthermore, their carries can be an important treatment option for ‘dead-space 

management’. Nowadays, the mostly used antimicrobials are gentamicin, 

tobramycin, vancomycin and cephalosporins [88]. As a carrier, one can differentiate 

between resorbable versus non-resorbable materials. Commonly, an antibiotic 

loaded non-resorbable polymethylmethacrylate (PMMA) bone cement is applied, 

which can be introduced as beads on a string or simultaneously be used for 

mechanical stabilization as a rod or for temporary filling of large bone defects [89]. 

Nevertheless, cement may also serve as an additional surface for bacteria to attach 

to, particularly after antibiotics have been eluted. This can promote ongoing infection 

or even induce antibiotic resistance [90-93]. Another negative aspect of PMMA is that 

it needs to be removed during follow-up surgery, as it is non-resorbable. 

Furthermore, studies on the elution kinetics have shown that less than 10% of 

incorporated antibiotics will normally be released from PMMA [94]. Increasing the 

porosity of the material or mixing e.g. vancomycin with tobramycin can produce 

higher eluted doses [95, 96]. 

Resorbable materials such as calcium sulfate, which can carry a wider range of 

antibiotics than PMMA and do not necessarily need re-surgery for removal, have 

shown good first results [97-100]. As a side effect, a serous fluid pocket or prolonged 

wound secretion can develop [101]. Other degradable materials are bioactive glass, 

calcium phosphates and collagen implants. It needs to be stated that for all these 

materials data from large clinical trials is lacking.  

To date, there is no clear evidence of advantage of the addition of local antibiotic to 

systemic therapy in randomized clinical trials and no clear advantage of degradable 

versus non-degradable materials in the treatment of IFF [102-104]. Despite this, local 

antibiotics seem to lower infection rates in open fractures [105]. The antibiotics 

generally exert low local and systemic toxicity [106, 107]. Nevertheless, there are 

rare case reports of acute renal failure attributable to locally applied gentamicin [108] 

or tobramycin [109].  

Exploring the effect of coating osteosynthetic materials with an antimicrobial is a 

matter of ongoing research. Only few have made it so far onto the market. Among 

these are a gentamicin-coated intramedullary tibia nail [16, 110] and silver-coated 

megaprostheses [111]. 

Stage-dependent surgical treatment considerations 
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Treatment of early infection 
Colonization of hardware can occur intraoperatively, and biofilm formation may 

proceeds within days, with the implant thus serving as the nidus for infection and 

complicating healing/treatment [3, 112-114]. In this early stage, biofilm formation 

seems in an immature stage, and fulminant osteomyelitis is often not yet present [29, 

115]. Only in very rare clinical situations, such as severely contaminated open 

fractures, will osteomyelitis (i.e. histological signs of inflammation of the bone/bone 

marrow) occur in this timeframe. This is why retention of the fracture fixation device is 

common practice and treatment involves antibiotic therapy and tissue debridement. 

Experimental studies in the rat have shown that callus formation could be observed 

despite retention of the implant [32]. Retaining an implant in early stages is tempting 

because hardware removal would complicate the management of an unhealed 

fracture, especially in complex articular fractures. However, retention of the implant is 

only reasonable if sufficient irrigation and debridement of the implant/surgical site can 

be carried out, if the osteosynthesis construct is stable, and antibiotic therapy is 

appropriate [72, 116]. The importance of implant stability was already outlined by 

earlier research from Rittmann and Perren in experimental studies in sheep, which 

showed the positive effects of stability on fracture healing in infection [9]. 

Furthermore, stability has a much more profound influence than that of the chosen 

implant material (i.e. different metal alloys) [117, 118] 

In early infections, consolidation can be achieved despite the presence of an 

infection, as long as the osteosynthesis construct remains stable [9, 119]. If stability 

is not granted and the implant cannot be debrided properly, e.g. in intramedullary 

nails, hardware exchange should be considered [36]. Debridement also includes 

careful revision of hematomas, since they are a suitable growth medium for bacteria 

[26]. Subsequently, a 12-week course of antibiotic therapy with retained implants or 

up to 6 weeks after implant removal should follow the debridement [26, 78, 120]. 

Since debridement reduces the bacterial load and may clear an immature biofilm, 

additive systemic antibiotics will treat the remainder of the infection. Once the 

fracture has healed, it is strongly recommended to remove the implant to reduce the 

risk of a recurrent infection [119]. Berkes et al. investigated osseous union in patients 

who developed an infection within 6 weeks after the operative fracture fixation and 

that were treated with debridement, antibiotics and hardware retention. Fracture 

healing could only be achieved in 71% of the patients, whereas an open fracture and 
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the presence of an intramedullary nail were predictors for treatment failure [3]. 

Rightmire et al. performed a similar approach in infections within 16 weeks after 

osteosynthesis and reported successful union in 68%, although in 38% of the 

patients with successful bone healing, hardware had to be removed for persistent 

infection after union and therefore only 49% of the original study group achieved 

healing and was free of infection after six months [119]. These findings support the 

fact that the approach of debridement and retention is only promising in an early time 

frame after fracture fixation to achieve union and long term absence of infection.  

In the majority of early infections retention and antibiotic therapy is the best option 

[26], but there are indications where exchanging the implant should be taken into 

account [26, 39, 119]. The factors are listed in Table IV. These factors should be 

interpreted as suggestions, rather than as definite decision criteria.  

Treatment of delayed infection 
Delayed infections, ranging from 3 to 10 weeks are a grey area in which decision 

making regarding the right treatment option is more difficult than in early or late onset 

infections. It is important to understand that the classification we use (Figure 1) is a 

continuum, which means that in the early stages of this phase, implant retention 

could still be considered, whilst at the later stages, this would be more clearly 

contraindicated.  

In the presence of above-mentioned criteria (Table IV), and with increasing duration 

of symptoms or delay in diagnosis, the decision should tend towards implant 

exchange. As explained above, the biofilm develops (matures) over time and signs of 

osteomyelitis are increasingly observed (Figure 2), which means that treating these 

types of infection often demands for radical debridement and implant exchange. An 

important consideration in delayed infection is the evaluation of fracture consolidation 

by imaging studies and during surgery. If callus formation is visible and bone healing 

has progressed sufficiently to provide stability, debridement and implant removal can 

be the best choice.  

The main principles of debridement and implant removal/exchange in one or multiple 

stages are outlined in the subsection “Late infections”. 

Treatment of late infection 
In the following section we summarize three different scenarios: clinically suspected 

infection with full bone consolidation, clinically suspected infection without full bone 
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consolidation, and non-union lacking clinical signs of infection. The first two scenarios 

will be discussed together. 

Clinically suspected infection with and without full consolidation 
As mentioned previously this classification of IFF is a continuum (Figure 1). Although 

this means that there is no red line separating late and delayed infections, it has to 

be taken into account that after 10 weeks (Figure 1), inflammation, fibrous 

encapsulation and osteolysis often lead to instability of the osteosynthesic construct, 

potentially resulting in delayed or non-union [29]. Furthermore, fibrous encapsulation 

of the infected area acts as a barrier around sequesters and devitalized bone.  

Clinically suspected late infection necessitates an extensive debridement with 

possible creation of bone and soft-tissue defects. The surgical treatment concept 

therefore has to include a multidisciplinary approach (trauma and plastic surgeon). 

Staged procedures may often be required, depending upon the extent of infection, 

the degree of stability, and the condition of the patient (host physiology). 

The most important considerations in late infections with, and without, consolidation 

of the fracture are: removal of the remaining fracture fixation devices/foreign bodies; 

radical debridement of all involved bone (sequesters) and soft tissue; long-term 

antimicrobial therapy (normally 6 weeks of antibiotics and up to 12 weeks if a lot of 

necrosis is present) and reconstruction of the soft tissue envelope [121].  

In both clinical scenarios, preoperative imaging studies, such as CT, MRI and nuclear 

imaging modalities are helpful to plan the resection margins including safety zones. 

The operating surgeon should be aware that resection lines should be re-evaluated 

during surgery, since transition from necrotic to vital bone is not always obvious from 

preoperative imaging. Necrotic, non-bleeding bone is removed with a chisel or high-

speed burr and represents one of the most critical steps in surgery. Intramedullary 

infection manifestations require debridement of the intramedullary canal using a 

classic reamer or a Reamer – Irrigator – Aspirator (RIA, DepuySynthes; Johnson & 

Johnson Co. Inc., New Brunswick, NJ, USA) system [121, 122].  

If possible, stability of the bone should be preserved, although in certain cases where 

extensive debridement leads to instability, especially when fracture consolidation did 

not take place, external fixation and later reconstruction are necessary. External 

fixation can be a temporary or even definitive solution (i.e. bone transport). As 
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mentioned before, the use of spacers can be important in these cases, not only for 

dead-space management but also for local antibiotic therapy.  

Non-union lacking clinical signs of infection 
In this section it will not be our goal to discuss the treatment of non-union in general. 

It seems appropriate although to start with an issue similar to the one we described 

for IFF, namely that the definition of non-union is still arbitrary [123]. It has to be 

stated that recent literature starts to accept the US Food and Drug Administration 

(FDA) guidelines, which defines non-union as a fractured bone that has not 

completely healed within 9 months of injury and that has not shown progression 

toward healing over the past 3 consecutive months on serial radiographs [124].  

Infected non-union is an underestimated problem. Gille et al. examined culture 

negative samples of 23 patients with non-union and reported the presence of 

bacterial RNA following analysis with PCR in two patients (8.7%) [125]. Palmer et al. 

analyzed 34 samples obtained from patients with non-union [126]. Although eight 

samples had a positive conventional culture, only four of 34 cases were negative 

following analysis of bacterial DNA using a combination of Ibis molecular diagnostics 

and fluorescence in situ hybridization techniques. The benefit of utilizing molecular 

based techniques could be very important, as distinguishing between septic and 

aseptic non-union is essential for determining the course of treatment [127]. In case 

of a longstanding therapy-resistant non-union, an infection should be suspected. If 

cultures are negative in these patients, as mentioned earlier, PCR could be a future 

solution. 

The problem with this type of infection is that the diagnosis often follows the surgical 

intervention. It is clear that if there is a suspicion during surgery, an extensive 

surgical debridement should be performed, as for the previously mentioned late-

onset infections. Planning a second stage procedure with removal of all internal 

fixation material (for sonication) and awaiting the results from cultures, should be 

considered. Furthermore, the use of spacers with local antibiotics (i.e. PMMA) is 

often a good additive treatment if there is a suspicion of infection during surgery. 

Solely exchanging the implant doesn’t have good results in cases of infection as was 

recently described by Tsang et al. for infected non-union of the tibia [128]. 

In a second stage, when the infection has been treated, bone grafting (i.e. Masquelet 

or induced-membrane technique) could for example be considered. In case of a 
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Masquelet procedure, the surgeon should be sure that there is no remaining 

infection, as a recent experimental study by Seebach et al. showed this can be 

worsened by the introduction of mesenchymal stromal stem cells [129]. Of course, 

definitive treatment with external fixation (i.e. bone transport) can also be considered 

[128]. 

Table 5 summarizes the considerations a surgeon should make when treating an 

infected non-union. 

Future directives 
 

Infection complicates a significant minority of patients after osteosynthesis, and so 

improvements in both prevention and treatment will be required to achieve better 

patient care in the coming decades. Such improvements may range from better-

defined and controlled peri-operative antibiotic prophylaxis, to more rapid and 

specific diagnostics of even sub-acute infection, to increased availability of 

antimicrobial functionalized medical devices or bone void fillers and graft material.  

Preclinical studies occupy an important junction in the assessment of such novel 

interventions, as this is the stage where new or improved interventions are assessed 

in a controlled environment prior to patient trials and full clinical implementation [130, 

131]. Numerous in vivo models of infection have been described in the literature, 

however, those that model the clinical situation as closely as possible are considered 

to provide the most robust evaluation of efficacy [132]. In the case of infection after 

osteosynthesis, models that incorporate bone infection associated with a functioning 

implant (i.e. actually fixing a surgically induced fracture/osteotomy) achieve this goal 

[29].  

Research and development has focused more on preventative rather than treatment 

strategies, as preventative strategies are considered more likely to have greater 

overall impact on healthcare costs and patient outcomes. New approaches to 

improve prevention of infection after osteosynthesis have primarily focused on local 

delivery of antibacterial compounds from specialized biomaterials formulated as 

coatings on devices [14, 16] or as additives in bone void fillers such as bone cement 

[133] or bacteriostatic bone substitute materials [134].  
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Currently, there is to our knowledge, only one antibiotic coated trauma implant that 

was available on the market, which has been found to effectively prevent infection in 

even complicated cases with high risk of infection [14, 16]. In future, more 

antibacterial functionalized implants are likely to come to market, offering competing, 

though ultimately quite similar technologies (release of conventional antibiotics or 

silver). Development and clinical implementation of antimicrobial devices in trauma 

surgery is both a scientific and economic challenge due to the complexities of the 

cost benefit equation for clinical studies and subsequent clinical uptake. For this 

reason, in the future, good cost analyses are necessary to further emphasize the 

problem of IFF. 

Looking further ahead to a scenario where antibiotic resistance in commonly 

encountered pathogens may increase, antibiotic loaded devices may become 

contraindicated, at least in hospitals with high endemic rates of pathogens resistant 

to the antibiotics within the implants. In this regard, silver has maintained its position 

as an antimicrobial for medical devices due to low resistance rates in clinical isolates. 

Antimicrobial peptides (AMP’s) are also emerging as possible antimicrobials that do 

not induce resistance within pathogens after exposure [135]. At the present time, 

AMPs have been limited to topical applications, though research strategies for 

implant functionalization have continued to emerge [136], and may yet prove a critical 

support in the face of antibiotic resistance.  

Finally, hydrogels have recently emerged as promising vehicles for antibiotic delivery 

into trauma wounds [88]. Recently, early phase clinical studies have been described 

whereby antibiotic loaded hydrogels have been applied to patients during 

osteosynthesis [137]. These hydrogels offer the benefit of ease of application to 

potentially complex wounds and may cover both the implant surface and the 

surrounding tissues. Coatings or bone void fillers, in contrast, may leach antibiotics 

from the surface to the surrounding tissues, but the surgical field may extend 

significantly beyond the peri-implant space. Hydrogels, on the other hand, can be 

applied through the wound site due to their viscous yet flowing nature [138]. It 

remains to be seen if such hydrogels progress to routine clinical implementation, but 

at the current time, they offer an attractive option for antibacterial delivery to trauma 

wounds.  
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Summary  
 

One of the most challenging complications in trauma surgery is the development of 

IFF. The consequences for patients and healthcare systems regarding this 

complication are severe. Despite modern advances, implant-related infection remains 

a problem in fracture care. This article gives an overview of current standpoints 

regarding diagnosis and treatment of this serious complication. Further clinical and 

translational research is necessary to improve the outcome of this specific patient 

population. 
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