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JMASM22: A Convenient Way Of Generating Normal Random Variables 
Using Generalized Exponential Distribution 

 
       Debasis Kundu  Anubhav Manglick                       Rameshwar D. Gupta   
      Department of Mathematics and Statistics Department of Computer Science and Applied Statistics 
               Indian Institute of Technology        University of New Brunswick 
 
 
 
A convenient method to generate normal random variable using a generalized exponential distribution is 
proposed. The new method is compared with the other existing methods and it is observed that the 
proposed method is quite competitive with most of the existing methods in terms of the K S−  distances 
and the corresponding p-values. 
 
Key words:  Generalized exponential distribution; Kolmogorov-Smirnov distances; random number 
generator. 
 

 
Introduction 

 
Generating normal random numbers is an old 
and very important problem in the statistical 
literature.  Several algorithms are available in 
the literature to generate normal random 
numbers like Box-Muller methods, Marsaglia-
Bray method, Acceptance-Rejection method, 
Ahrens-Dieter method, etc.  The book of 
Johnson, Kotz and Balakrishnan (1995) 
provided an extensive list of references of the 
different algorithms available today.  Among the 
several  methods   the   most   popular   ones  are  
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the Box-Muller transformation method or the 
improvement suggested by Marsagilia and Bray. 
Most of the statistical packages like, SAS, 
IMSL, SPSS, S-Plus, or Numerical Recipes use 
this method. In this article, a simple and 
convenient method of generating normal random 
numbers using generalized exponential 
distribution is proposed. 
 Generalized exponential ( )GE  
distribution has been proposed and studied quite 
extensively recently by Gupta and Kundu (1999; 
2001a; 2001b; 2002; 2003a). The readers may 
be referred to some of the related literature on 
( )GE  distribution by Raqab (2002), Raqab and 
Ahsanullah (2001), and Zheng (2002). The two-
parameter GE  distribution has the following 
distribution function: 
 

( ; , ) (1 ) ; , 0x
GEF x e λ αα λ α λ−= − >              (1)                     

 
for 0x >  and 0  otherwise. The corresponding  
density function is; 
 

1( ; , ) (1 ) ; , 0x x
GEf x e eλ α λα λ αλ α λ− − −= − > ,  (2) 

                                                     
for  0x >  and  0  otherwise. Here α  and λ  are 
the shape and scale parameters respectively. 
When 1,α =  it coincides with the exponential 

distribution. If 1,α ≤  the density function of a 
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GE  distribution is a strictly decreasing function 
and for 1α > ,  it has a uni-modal density 
function.  The shape of the density function of 
the GE  distribution for different α  can be 
found in Gupta and Kundu (2001a). 
 In a recent study by Kundu, Gupta and 
Manglick (2005), it was observed that in certain 
cases log-normal distribution can be 
approximated quite well by GE  distribution and 
vice versa.  In fact, for certain ranges of the 
shape parameters of the GE  distributions the 
distance between the GE  and log-normal 
distributions can be very small. 
 The main idea in this article is to use 
this particular property of a GE  distribution to 
generate log-normal random variables and in 
turn generate normal random variables. It may 
be mentioned that the GE  distribution function 
is an analytically invertible function, therefore, 
the generation of  GE  random variables is 
immediate using uniform random variables.  
 

Methodology 
 
The density function of a log-normal random 
variable with scale parameter θ   and shape 
parameter σ  is denoted as 
 

2

(ln ln )

2
1

( ; , ) ; , 0
2

θ
σθ σ θ σ

π σ

−−
= >

x

LNf x e
x

  , (3)                                                    

 
for  0x >  and  0  otherwise. If  X  is a log-

normal random variable with scale parameter θ  
and shape parameter σ , then 
 

2

2( )E X e
σ

θ=    
 

and     
 

2 22( ) ( 1).V X e eσ σθ= −                                   (4)                                     
 
Note that ln X is a normal random variable with 

mean lnθ µ=  (say) and variance 2σ . 

 Similarly, if X  is a generalized 
exponential random variable with the scale 
parameter λ  and shape parameter α , then 

1
( ) ( ( 1) (1))E X ψ α ψ

λ
= + −  

 
and 
 

2

1
( ) ( (1) ( 1)).V X ψ ψ α

λ
′ ′= − +                       (5)                     

 
It was observed by Kundu, Gupta and Manglick  
(2005) that a generalized exponential 
distribution can be approximated very well by a 
log-normal distribution for certain ranges of the 
shape parameters.  The first two moments of the 
two distribution functions are equated to 
compute σ  and θ  from a given α  and λ . 
Without loss of generality, 1λ =  is taken. For a 
given 0α α= ,  equating (4)  and  (5)  one 

obtains 
 

2

2
0 0( 1) (1)e A

σ

θ ψ α ψ= + − =                           (6)                     

 
2 22

0 0( 1) (1) ( 1)e e Bσ σθ ψ ψ α′ ′− = − + =       (7)                     

 
Therefore, solving (6)  and  (7) , one obtains 
 

0
0 0 0 2

0

1
ln ln ln(1 ),

2

B
A

A
θ µ= = − +                   (8)                     

  

0
0 2

0

ln(1 )
B

A
σ = + .                                           (9)                    

  
Using (8)  and (9) ,  standard normal random 
variable can be easily generated as follows: 
 
Algorithm 
 Step 1:  Generate U   an uniform (0,1)  
random variable. 
 Step 2:  For a fixed 0α , generate  

0

1

ln(1 )X U σ= − − . Note that X  is a 
generalized exponential random variable with 
shape parameter 0α  and scale parameter1. 
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 Step 3: Compute 0

0

ln X
Z

µ
σ

−= .  Here 

Z is the desired standard normal random 
variable. 
 An alternative approximation is also 
possible.  Instead of equating the moments of the 
two distributions, one can equate the 
corresponding L -moments also. The L -
moments of any distribution are analogous to the 
conventional moments, but they are based on the 
quantiles and they can be estimated by the linear 
combination of order statistics, i.e.  by L -
statistics (see Hosking, 1990, for details).  It is 
observed by Gupta and Kundu (2003b) in a 
similar study of approximating gamma 
distribution by generalized exponential 
distribution that the L -moments perform better 
than the ordinary moments. 
 Let Z  be any random variable having 
finite first moment and suppose 1: :....n n nZ Z≤ ≤   

be the order statistics of a random sample of size 
n  drawn from the distribution of Z .  Then the 
L -moments are defined as follows:  
 

1

:
0

11
( 1) ( ); 1,2,...

r
k

r r k r
k

r
E Z r

kr
λ

−

−
=

−⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑  (10)                                          

 
The two L − moments of a log-normal 
distribution are  

  

2

2
1 e

σ

λ θ=   

 
and 
 

2

2
2 ( ),

2
e erf

σ σλ θ=                                          (11)                            

 

where erf ( )x 2 ( 2 ) 1xφ= −  and  ( )xφ is  the 
distribution function of the standard normal 
distribution.  Similarly, the two L -moments of a 
GE   random variable are  
 

1

1
( ( 1) (1))λ ψ α ψ

λ
= + −    

 
and  

2 2

1
( (2 1) ( 1)).λ ψ α ψ α

λ
= + − +                  (12) 

 
Therefore, as before equating the first two L -
moments for a given 0α α=  and for 1λ = , one 

obtains  
 

2

2
0 0( 1) (1)e A

σ

θ ψ α ψ= + − =                      (13)                     

 
2

2
0 0 1( ) (2 1) ( 1)

2
e erf B

σ σθ ψ α ψ α= + − + =     (14) 

 
Solving (13)  and (14) , one obtains the solutions 

of θ  and  σ  as 
   

2
1

1 1 0ln ln
2

A
σθ µ= = −                                 (15)                     

   

1 1
1

0

1
2 ( (1 )),

2

B

A
σ φ −= +                              (16)                     

 
where φ  is the cumulative distribution function 
of standard normal distribution. Therefore, in the 
proposed algorithm, instead of using 

0 0 1 1( , ), ( , )µ σ µ σ   also can be used. 

 
Numerical Comparisons and Discussions 
 In this section, an attempt is made to 
determine the value of 0α , so that the distance 

between the generalized exponential distribution 
and the corresponding log-normal distribution is  
minimum.  All the computations are performed 
using Pentium IV processor and the random 
number generation routines by Press et al.  
(1993). The distance function between the two 
distribution functions is considered as the 
Kolmogorv-Smirnov ( )K S−  distance only. To 

be more precise, the K S−  distance between 
the GE  is computed, with the shape and scale 
parameter as  0σ  and 1   respectively, and log-

normal distribution with the corresponding 
shape and scale parameter as 0 1( )σ σ  and 

0 1( )θ θ respectively. It is believed that the 
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distance function should not make much 
difference, any other distance function may be 
considered also. It is observed that as 0α  

increases from 0 , the K S−  distance first 
decreases, and then increases.  When the 
moments ( L -moments) equations have been 
used, the minimum K S−  distance occurred at 

0 12.9(12.8)α =  .   When 0 12.9 (12.8)α = , then 

from (8) and (9) ((15) and (16)), the 
corresponding 0µ  = 1.0820991 ( 1µ  = 

1.0792510) and  0σ  = 0.3807482 ( 1σ  = 

0.3820198) was obtained. 
 To compare the proposed method with 
the other existing methods, the K S−  statistics 
and the corresponding p-values were mainly 
used.  The method can be described as follows.  
The standard normal random variables for 
different sample sizes namely n  = 10, 20, 30, 
40, 50 and 100  by using Box-Muller (BM) 
method, Marsaglia-Bray (MB) method, 
Acceptance-Rejection (AR) method, Ahren-
Dieter (AD) method were generated, using 
moments equations (MM) and using L -
moments equations (LM). In each case, the 
K S−  distance and the corresponding p-value 
between the empirical distribution function and 
the standard normal distribution function was 
computed.  The process was replicated 10,000 
times and the average K S−  distances, the 
average p -values and the corresponding 
standard deviations were computed.  The results 
are reported in Table 1. In each case the standard 
deviations are reported within bracket below the 
average values. From the table values it is quite 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

clear that, based on the K S−  distances and p  
values the proposed methods work quite well. 
Also, an effort is made to compute ( )Z z≤  

using the proposed approximation, where Z  
denotes the standard normal random variable. 
Note that 
 

 
0 0 12.9( ) (1 )

zeP Z z e
σ µ+−≤ ≈ −    

 
or 
 

1 1 12.8( ) (1 )
zeP Z z e
σ µ+−≤ ≈ − .                          (17)                    

 
The results are reported in Table 2.  It is clear 
from Table 2 that using 0µ  and 0σ  the 

maximum error can be 0.0005, where as using 

1µ  and 1σ  the maximum error can be 0.0003.  

From Table 2, it is clear that L -moments 
approximations work better than the moments 
approximations. 
 

Conclusions 
 
A simple and convenient method of generating 
normal random variables is provided.  Even 
simple scientific calculator can be used to 
generate normal random number from the 
uniform generator very quickly.  It can be 
implemented very easily by using a one line 
program. It is also observed that the standard 
normal distribution function can be 
approximated at least up to three decimal places 
using the simple approximations. 
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Table 1. The average K-S distances and the corresponding p-values for different methods based on 
10,000 replications.  The standard deviations are reported within brackets in each case below the 

average values. 
 

N  BM MB AR AD MM LM 
10 
 
 
 
 
20 
 
 
 
 
30 
 
 
 
 
40 
 
 
 
 
50 
 
 
 
 
100 

K-S 
 
   p 
 
 
K-S 
 
   p 
 
 
K-S 
 
   p 
 
 
K-S 
 
   p 
 
 
K-S 
 
   p 
 
 
K-S 
 
   P 

0.2587 
(0.0796) 
0.5127 
(0.2938) 
 
0.1851 
(0.0571) 
0.5178 
(0.2934) 
 
0.1532 
(0.0467) 
0.5094 
(0.2937) 
 
0.1331 
(0.0409) 
0.5111 
(0.2923 
 
0.1191 
(0.0370) 
0.5140 
(0.2931) 
 
0.0852 
(0.0257) 
0.5059 
(0.2914) 
 

0.2587 
(0.0796) 
0.5128 
(0.2938) 
 
0.1851 
(0.0571) 
0.5178 
(0.2934) 
 
0.1532 
(0.0467) 
0.5094 
(0.2937) 
 
0.1331 
(0.0488) 
0.5111 
(0.2923) 
 
0.1191 
(0.0370) 
0.5140 
(0.2931) 
 
0.0852 
(0.0257) 
0.5059 
(0.2914) 

0.2597 
(0.0809) 
0.5109 
(0.2970) 
 
0.1871 
(0.0575) 
0.5068 
(0.2934) 
 
0.1533 
(0.0466) 
0.5086 
(0.2923) 
 
0.1331 
(0.0410) 
0.5121 
(0.2926) 
 
0.1197 
(0.0364) 
0.5071 
(0.2924) 
 
0.0851 
(0.0262) 
0.5096 
(0.2932) 

0.2591 
(0.0804) 
0.5114 
(0.2955) 
 
0.1860 
(0.0578) 
0.5135 
(0.2957) 
 
0.1537 
(0.0477) 
0.5088 
(0.2953) 
 
0.1335 
(0.0412) 
0.5094 
(0.2945) 
 
0.1193 
(0.0368) 
0.5120 
(0.2923) 
 
0.0854 
(0.0257) 
0.5043 
(0.2895) 

0.2586 
(0.0794) 
0.5135 
(0.2930) 
 
0.1866 
(0.0571) 
0.5089 
(0.2927) 
 
0.1524 
(0.0465) 
0.5150 
(0.2930) 
 
0.1334 
(0.0410 
0.5097 
(0.2927) 
 
0.1199 
(0.0366) 
0.5058 
(0.2927) 
 
0.0851 
(0.0259) 
0.5082 
(0.2912) 

0.2587 
(0.0795) 
0.5132 
(0.2931) 
 
0.1867 
(0.0572) 
0.5085 
(0.2928) 
 
0.1525 
(0.0465) 
0.5145 
(0.2930) 
 
0.1334 
(0.0410) 
0.5092 
(0.2928) 
 
0.1200 
(0.0366) 
0.5053 
(0.2927) 
 
0.0852 
(0.0259) 
0.5077 
(0.2912) 
 

 
 
 



KUNDU, GUPTA, & MANGLICK 271 

 

 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
 

 
 

Table 2. The exact value of ( )zφ  and the two approximate values are reported. 
 

Z L-Moment Exact Moment 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.5 
4.0 

 

0.49984 
0.53981 
0.57935 
0.61808 
0.65564 
0.69168 
0.72594 
0.75818 
0.78822 
0.81593 
0.84125 
0.86416 
0.88469 
0.90292 
0.91893 
0.93288 
0.94490 
0.95517 
0.96385 
0.97112 
0.97714 
0.98209 
0.98610 
0.98933 
0.99189 
0.99390 
0.99547 
0.99667 
0.99759 
0.99827 
0.99878 
0.99983 
0.99998 

 

0.50000 
0.53983 
0.57926 
0.61791 
0.65541 
0.69145 
0.72572 
0.75800 
0.78810 
0.81588 
0.84127 
0.86424 
0.88482 
0.90308 
0.91911 
0.93305 
0.94505 
0.95528 
0.96392 
0.97114 
0.97711 
0.98200 
0.98597 
0.98916 
0.99170 
0.99370 
0.99526 
0.99647 
0.99739 
0.99809 
0.99861 
0.99976 
0.99997 

 

0.50014 
0.54006 
0.57955 
0.61824 
0.65574 
0.69174 
0.72595 
0.75815 
0.78814 
0.81582 
0.84112 
0.86400 
0.88452 
0.90273 
0.91875 
0.93269 
0.94472 
0.95500 
0.96369 
0.97097 
0.97701 
0.98197 
0.98600 
0.98924 
0.99181 
0.99384 
0.99542 
0.99663 
0.99755 
0.99825 
0.99876 
0.99982 
0.99998 
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