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    The fastest, most comprehensive and robust   
   permutation test software on the market today. 
       
       Permutation tests increasingly are the statistical method of choice for addressing business questions and research 
hypotheses across a broad range of industries.  Their distribution-free nature maintains test validity where many parametric 
tests (and even other nonparametric tests), encumbered by restrictive and often inappropriate data assumptions, fail 
miserably.  The computational demands of permutation tests, however, have severely limited other vendors’ attempts at 
providing useable permutation test software for anything but highly stylized situations or small datasets and few tests.  
PermuteItTM addresses this unmet need by utilizing a combination of algorithms to perform non-parametric permutation tests 
very quickly – often more than an order of magnitude faster than widely available commercial alternatives when one sample is 
large and many tests and/or multiple comparisons are being performed (which is when runtimes matter most).  PermuteItTM 
can make the difference between making deadlines, or missing them, since data inputs often need to be revised, resent, or 
recleaned, and one hour of runtime quickly can become 10, 20, or 30 hours. 
 
In addition to its speed even when one sample is large, some of the unique and powerful features of PermuteItTM include: 
  
•      the availability to the user of a wide range of test statistics for performing permutation tests on continuous, count, & 
binary data, including: pooled-variance t-test; separate-variance Behrens-Fisher t-test, scale test, and joint tests for scale and 
location coefficients using nonparametric combination methodology; Brownie et al. “modified” t-test; skew-adjusted 
“modified” t-test; Cochran-Armitage test; exact inference; Poisson normal-approximate test; Fisher’s exact test; Freeman-
Tukey Double Arcsine test 
 
•      extremely fast exact inference (no confidence intervals – just exact p-values) for most count data and high-frequency 
continuous data, often several orders of magnitude faster than the most widely available commercial alternative 
 
•      the availability to the user of a wide range of multiple testing procedures, including: Bonferroni, Sidak, Stepdown 
Bonferroni, Stepdown Sidak, Stepdown Bonferroni and Stepdown Sidak for discrete distributions, Hochberg Stepup, FDR, 
Dunnett’s one-step (for MCC under ANOVA assumptions), Single-step Permutation, Stepdown Permutation, Single-step and 
Stepdown Permutation for discrete distributions, Permutation-style adjustment of permutation p-values 
 
•      fast, efficient, and automatic generation of all pairwise comparisons 
 
•      efficient variance-reduction under conventional Monte Carlo via self-adjusting permutation sampling when confidence 
intervals contain the user-specified critical value of the test  
 
•      maximum power, and the shortest confidence intervals, under conventional Monte Carlo via a new sampling optimization 
technique (see Opdyke, JMASM, Vol. 2, No. 1, May, 2003) 
 
•      fast permutation-style p-value adjustments for multiple comparisons (the code is designed to provide an additional speed 
premium for many of these resampling-based multiple testing procedures)  
 
•      simultaneous permutation testing and permutation-style p-value adjustment, although for relatively few tests at a time 
(this capability is not even provided as a preprogrammed option with any other software currently on the market)  
 
       For Telecommunications, Pharmaceuticals, fMRI data, Financial Services, Clinical Trials, Insurance, Bioinformatics, and 
just about any data rich industry where large numbers of distributional null hypotheses need to be tested on samples that are 
not extremely small and parametric assumptions are either uncertain or inappropriate, PermuteItTM is the optimal, and only, 
solution. 
 
       To learn more about how PermuteItTM can be used for your enterprise, and to obtain a demo version, please contact its 
author, J.D. Opdyke, President, DataMineItSM, at JDOpdyke@DataMineIt.com or www.DataMineIt.com. 
 
       DataMineItSM is a technical consultancy providing statistical data mining, econometric analysis, and data warehousing 
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INVITED ARTICLES 
Model Comparisons Using Information Measures 

 
 
Methodologists have criticized the use of significance tests in the behavioral sciences but have failed to 
provide alternative data analysis strategies that appeal to applied researchers. For purposes of comparing 
alternate models for data, information-theoretic measures such as Akaike AIC have advantages in 
comparison with significance tests. Model-selection procedures based on a min(AIC) strategy, for 
example, are holistic rather than dependent upon a series of sometimes contradictory binary 
(accept/reject) decisions. 
 
Key words: Akaike AIC, significance tests, information measures 
 
 

Introduction 
 
Quantitative researchers have been trained to 
evaluate effects of interest utilizing the methods 
of statistical inference. In a single research study 
it is not unusual to see several dozen, or even 
several hundred, significance tests applied to 
assess, for example, multiple correlations, 
differences among multiple correlations and 
regression coefficients. However, the 
appropriateness of the use of significance tests in 
social and  behavioral  research settings has been 
 
 
C. Mitchell Dayton is a Professor of 
Measurement & Statistics at the University of 
Maryland. His major research interests deal with 
the topics of latent class analysis and 
simultaneous inference. He recently published a 
Sage book dealing with latent class scaling 
models, a topic on which he has published 
widely. His long standing interest in 
simultaneous inference has led to a focus on 
model-comparison approaches utilizing 
information theory and posterior Bayes factors.  
 

debated for more than 40 years. In particular, 
Rozeboom (1960) summarized criticisms of 
significance testing that have resurfaced in 
various guises from time to time. Generally, 
these criticisms have focused on the issue of 
binary decision-making (e.g., accept/reject null 
hypotheses) as opposed to considerations related 
to weight of evidence (e.g., measures of strength 
of effect or effect sizes). 
 The fundamental error, as seen by 
Rozeboom, “…lies in mistaking the aim of a 
scientific investigation to be a decision, rather 
than a cognitive evaluation of propositions (op. 
cit., page 212).” Although distinctions can be 
drawn between significance testing in the 
Fisherian (1959) sense and hypothesis testing in 
the Neyman-Pearson (1933) sense, current 
teaching and practice in the behavioral sciences 
blur these distinctions and the terms can be 
considered as essentially interchangeable in 
practice. However, it is likely that Fisher himself 
would concur with many of the criticisms as 
suggested by the following quotes (Fisher, 
1959): 

…the calculation {of significance 
levels} is absurdly academic, for in 
fact no scientific worker has a fixed 

C. Mitchell Dayton  
University of Maryland 
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level of significance at which from 
year to year, and in all circumstance, 
he rejects hypotheses; he rather gives 
his mind to each particular case in the 
light of his evidence and his ideas. 
(page 42) 

On the whole the ideas (a) that 
a test of significance must be regarded 
as one of a series of similar tests 
applied to a succession of similar 
bodies of data, and (b) that the purpose 
of the test is to discriminate or ‘decide’ 
between two or more hypotheses, have 
greatly obscured their understanding, 
when taken not as contingency 
possibilities but as elements essential 
in their logic. (page 42) 

Advocates for change have urged 
minimizing (or, even eliminating) the role of 
significance tests in behavioral research and 
elevating the roles of procedures such as 
confidence intervals, measures of effect size 
(e.g., Carver, 1993) or replicability measures 
(e.g., Thompson, 1994). Although these 
advocacy positions have been well articulated 
and widely disseminated among applied 
statisticians, there is scant evidence for change 
in practice by applied researchers in the 
behavioral sciences. 

For example, the Fall 1995, Winter 1995 
and Spring 1996 issues of the American 
Educational Research Journal contained 11 data-
based articles in the Teaching, Learning and 
Human Development section of the journal. The 
number of significance tests per article (with 
some allowances for counting errors) are, in 
rank order: 3, 29, 33, 35, 40, 48, 94, 212, 290, 
335 and 448 for a total of 1567 tests or an 
average of 522 significance tests per issue of the 
journal. 

Although the lowest number, 3, might 
lead to useful interpretations within a single 
research study, it is highly doubtful that 29, 
much less 448, such tests in a single study can 
be interpreted in manner that provides much 
scientific value. Indeed, the lack of popularity 
for alternative procedures to significance testing 
has, itself, a long history as evidenced by 
Heermann and Braskamp (1970) who wrote in 
the Introduction to Part 4, Testing Statistical 
Hypotheses, of their book of readings: 

there is considerable agreement among 
statisticians and behavioral scientists 
that there has been an unfortunate 
emphasis on the part of the latter on 
hypothesis testing to the exclusion of 
other inferential techniques….In spite 
of this widely known fact, behavioral 
scientists continue to employ 
significance tests to the exclusion of 
other more informative techniques. 
(page 154) 

It can be argued that a major reason for 
the apparent resistance to change from 
significance tests to other techniques is that the 
alternatives that have been proposed are 
unattractive to applied researchers. Consider the 
relatively simple example of multiple 
comparisons among a set of, say, five sample 
means. A typical traditional approach would be 
the use of Tukey tests (or one of the plethora of 
variations such as Games-Howell tests). In 
effect, 10 significance tests would be conducted 
and referred to the appropriate theoretical 
distribution (e.g., studentized range). 

If a researcher were to follow Carver’s 
(1993) advice, the Tukey tests would be 
replaced by “…estimates of effect size and of 
sampling error such as standard errors and 
confidence intervals 89).” However, the q 
statistic per se can be viewed as an effect size 
(i.e., difference between two means divided by 
the estimated standard error of a mean) and how 
does the researcher arrive at a unified 
interpretation of the 10 confidence intervals? 
But Carver (1993) has additional advice: “Better 
yet, by conducting multiple studies, replication 
of results can replace statistical significance 
testing.” This is not a particularly attractive 
option given the obstacles that may exist to 
replication and the fact that the researcher really 
needs to interpret the present study in order to 
decide whether or not replication is a worth 
while expenditure of time and resources. 

A premise of this paper is that 
significance tests are appropriate for only 
certain, highly constrained purposes but have 
enjoyed much wider use because of the failure 
of methodologists to popularize other, more 
appropriate statistical methods. In particular, 
significance tests are useful for interpreting data 
that arise from controlled experimental or quasi-
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experimental designs in which the role of 
specific hypotheses is well-defined. For non-
experimental settings, researchers typically 
utilize significance tests for purposes of 
comparing alternate models for data or for 
interpreting effects within specific models. It is 
this application that is better served by 
procedures specifically designed for 
comparisons among models and is ill-served by 
significance tests. 

An increasingly popular technique for 
comparing models involves information-
theoretic measures such as Akaike (1973, 1978) 
AIC or measures based on posterior Bayes 
factors such as Schwarz (1978) BIC. In either 
case, these measures may be viewed as 
penalized log-likelihoods and are computed 
separately for each model under consideration. 
Then, a preferred model, among those being 
compared, can be selected. 

This permits a very wide range of 
applications and even avoids some technical 
issues in applying statistical tests for model 
comparisons (e.g., for comparing number of 
components for discrete mixture models such as 
latent class models). Model comparison 
procedures are holistic in the sense that a variety 
of competing models can be assessed 
simultaneously and a best model selected by 
applying a single rule. Attempting to compare 
models using significance tests is, by contrast, 
piece-meal with the final selection of a model 
based on results from sometimes conflicting 
outcomes. 

Consider, for example, the procedure 
that is often used when fitting polynomial 
regression models to bivariate data. Assume 
there are five distinct levels of a quantitative 
independent variable, X, so that models 
corresponding to linear, quadratic, cubic and 
quartic regression can meaningfully be fit to the 
data. Typically, the differences in fit of 
increasingly more complex models are evaluated 
by significance tests based on differences in 
multiple correlations (of, equivalently, 
differences in explained variability). 

Thus, four distinct hypotheses are tested 
with, say, four hierarchical F statistics each at 
some specified level of significance. Since four 
independent tests are being conducted, an initial 
decision is whether or not to control the Type I 

error rate for the set of tests or, simply, to use a 
conventional .05 level for each test. This 
decision, it should be noted, can dramatically 
affect the interpretation of results. On the other 
hand, a holistic, model-comparison approach 
entails computing, say, an Akaike AIC statistic 
for each regression model and then selecting a 
“best” model corresponding to the minimum 
value of AIC.  

Another consideration in selecting an 
approach to comparing models is the logic of the 
decision-making strategy itself. In applying 
significance tests, the null hypothesis 
corresponds to some restricted form of a model 
(e.g., a test for quadratic regression involves a 
null hypothesis stating that the regression 
coefficient for the quadratic term is zero and this 
corresponds to a simpler, linear regression 
model). The validity of the test depends upon 
assuming that the simpler model is true and that 
deviations from the model are due to chance. 
But this is a gross over-simplification of the 
scientific process. In a holistic, model-
comparison approach the underlying goal is to 
select the best approximating model from among 
the models under consideration. It is not 
necessary to assume that any given model is 
“true” and there is no need to posit that a true 
model exists among those being compared.  

In this article, the rationale for 
information-theoretic model comparison 
procedures is presented and two specific areas of 
application are discussed – pairwise 
comparisons and analysis of finite mixtures. 

 
Information Criteria 

Akaike (1973) suggested that the 
Kullback-Leibler (1951) information measure 
provides a natural criterion for ordering alternate 
models for data. He developed a sample-based 
estimate, AIC, for this information measure that 
he incorporated into a decision-making strategy. 
For any specific model, the form of AIC is 

2 2LL p− +  where LL is the log-likelihood for 
the model and p is the number of independent 
parameters that are estimated in fitting the model 
to data. 

For example, assuming normally 
distributed residuals for a homogeneous linear 
regression model for three independent 
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variables, p would equal five and comprise three 
partial regression coefficients, the mean of the 
dependent variable (or the Y-intercept) and the 
variance of the residuals.  
 A summary of the technical 
development for the AIC measure can be found 
in Dayton (2003a) whereas a detailed analysis of 
the measure is presented by de Leeuw (1992). In 
general terms, Kullback-Leibler information is a 
measure of the discrepancy between the true 
distribution for a random variable (possibly 
vector-valued) and the distribution specified by 
some particular model. Although the true model 
is never known, Akaike managed to derive an 
estimate of this discrepancy by considering the 
distribution of a future sample conditional on 
knowing the maximum-likelihood estimator for 
parameters in the model. 
 Fundamentally, AIC involves the notion 
of cross-validation, but only in a theoretical 
sense. Given AIC values for two or more 
alternate models, the model satisfying min(AIC) 
is, in this information-theoretic sense, most 
representative of the true model and, on this 
basis, may be interpreted as the best 
approximating model among those being 
considered. A useful interpretation of AIC is that 
it estimates the loss of precision (or, increase in 
information) that results from substituting 
maximum likelihood estimates for the true 
parametric values in the likelihood function. 
Thus, among the models under consideration, it 
can be argued that the preferred model (i.e., 
min(AIC) model) has the smallest expected loss 
of precision relative to the true, but unknown, 
model. 
 It should be noted that AIC does not 
depend directly on sample size. Bozdogan 
(1987) noted that, because of this, AIC lacks 
certain properties of asymptotic consistency and 
he proposed a related measure, CAIC, by 
applying his own heuristic to the development of 
the estimate for Kullback-Leibler information. 
In particular, for a sample of N cases, 

2 (ln( ) 1)CAIC LL N p= − + + . 
 This measure is very similar to the BIC 
measure proposed by Schwarz (1978) that takes 
the form 2 ln( )BIC LL N p= − + , although 
Schwarz developed his measure as an estimate 
for a particular posterior Bayes factor not 

directly related to Kullback-Leibler information. 
In any case, both CAIC and BIC reflect sample 
size and have properties of asymptotic 
consistency although the importance of this 
property for the interpretation of data for any 
specific sample setting can be disputed since, 
unlike significance tests, the interpretation of 
AIC does not depend on long-range sampling 
notions. AIC, CAIC and BIC may each be 
viewed as a penalized log-likelihood (Sclove, 
1987) with penalties per parameter of 2, ln(N)+1 
and ln(N), respectively. For all reasonable 
sample sizes, CAIC and BIC apply larger 
penalties than AIC and, thus, other factors being 
equal, they tend to select simpler models than 
does AIC.  

Among the reasons for preferring the 
use of a model selection procedure such as AIC 
in comparison to traditional significance tests 
are: 
 (a) A single, holistic decision can be 
made concerning the model that is best 
supported by the data in contrast to what is 
usually a series of possibly conflicting 
significance test. Moreover, models can be 
ranked from best to worst supported by the data, 
thus, extending the possibilities of interpretation. 
 (b) Models with various 
parameterizations can be compared even when 
the models do not obey hierarchic relations. 
 (c) Homogeneous and heterogeneous 
versions of models can be compared; in 
particular, the homogeneity of variance 
(homoscedasticity) assumptions required by 
many significance tests can be circumvented and 
the selection of the most appropriate model can 
be based on the information criteria. 
 (d) Considerations related to underlying 
distributions for random variables can be 
incorporated into the decision-making process 
rather than being treated as an assumption whose 
robustness must be considered (e.g., models 
based on normal densities and on log-normal 
densities can be compared). 
 Various arguments have been presented 
against the use of information criteria such as 
AIC although some of these are difficult to 
follow. For example, McDonald and Marsh 
(1990) seem to argue as follows: major premise 
– the saturated model is always the true model; 
minor premise – for sufficiently large sample 
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size, AIC will always select the saturated model; 
conclusion – AIC is defective and cannot be 
used in practice. In a context such as paired-
comparisons among K means, a saturated model 
based on normal densities would comprise K 
unique means and variances. Thus, no other 
model could possibly fit the data better in an 
absolute sense (i.e., yield a larger log-
likelihood). However, if two of the group means 
are truly equally and very large samples are 
involved, measures such as AIC will tend to 
select the correct model, not the saturated model.  

As noted above, others are concerned 
with the fact that AIC does not directly depend 
upon sample size and, therefore, lacks properties 
of asymptotic consistency (Bozdogan, 1987). 
However, variations on AIC such as Schwarz’s 
(1978) BIC and Bozdogan’s (1987) CAIC do 
reflect sample size considerations. In practice, it 
is not necessarily the case that the property of 
asymptotic consistency leads to a better 
procedure in a true-model identification sense. 

For example, in the context of 
comparing non-nested latent clas (mixture) 
models, Lin and Dayton (1997) found that AIC 
was superior to BIC when the “true model” was 
relatively complex (i.e., was based on a 
relatively large number of parameters). 
Similarly, Huang and Dayton (1995) report that, 
for multiple comparisons among bivariate mean 
vectors, AIC tended to outperform BIC and 
CAIC when “the null case was excluded and, in 
general, for heterogeneous cases.” However, for 
multiple regression analysis, the results for AIC 
and BIC reported by Gagné and Dayton (2002) 
are more complex but consistent with the 
observation that AIC is more successful with 
more complex models. 

Clearly, further research around the 
issue of competing information measures is 
needed but that does not alter the fact that this 
class of procedures often provides a highly 
desirable alternative to traditional significance 
testing techniques. Finally, it should be pointed 
out that information measures themselves 
depend upon certain asymptotic properties of 
chi-square statistics and, thus, issues of 
robustness must be considered. This is a 
researchable topic about which little is known at 
present. Of course, very similar distributional 
issues must be considered for significance tests 

and, despite years of research, the best advice 
has always been to use large samples. 
 A technical point about the calculation 
of AIC (or CAIC or BIC) is that the log-
likelihood, LL, often involves the estimation of 
theoretical variances. The maximum-likelihood 
estimate for a variance is biased since the 
denominator for the computation is the sample 
size, N, regardless of the number of parameters 
that are estimated in fitting the model to data. In 
regression analysis with p independent variables, 
for example, the unbiased estimate for the 
residual variance is computed by dividing the 
residual sum of squares by N – p – 1 but in the 
context of computing AIC the divisor for the 
maximum likelihood estimate is N. 

The computation of AIC for any specific 
model requires the specification of a 
distributional form (e.g., univariate normal, 
multivariate normal, multinomial, Poisson, etc.). 
Then, the log-likelihood, LL, for the sample is 
computed based on the model and the specified 
distributional form. In multiple regression 
analysis, for example, residuals may be assumed 
to follow a univariate normal density with 
variances that are homogeneous conditional on 
the independent variables. 

However, unlike conventional 
significance tests, the set of alternate models 
being considered may include different 
specifications and different distributional 
assumptions. For example, residuals may be 
characterized as heterogeneous or dependent on 
the independent variables in various ways. On 
the other hand, residuals may be assumed to 
follow a mixture of homogeneous univariate 
normal densities. In any case, the min(AIC) 
criterion can be used to order and select among 
these models. 

To illustrate these ideas in the context of 
real data, consider the plot (Figure 1) for 
mathematics achievement scores as a function of 
weekend television watching activity based on a 
5% random sample of cases from the public use 
for the National Education Longitudinal Study 
(NELS). The distinct non-linear trend based on 
1092 cases seems to invite a quadratic regression 
model (the television watching categories were 
coded at their upper values except that the final 
category was coded 6). Conventional F tests for 
increments to explained variability (∆R2) using a 
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direct notation are Flinear = 5.34, Fquad = 41.05 
and Fcubic = 1.30. The linear and quadratic terms 
are significant at the conventional 5% level 
whereas the cubic term is non-significant. Thus, 
the three significance tests can be interpreted as 
supporting the selection of a quadratic model for 
the data. As reported in Gagné and Dayton 
(2002), the log-likelihood for homogeneous 
multiple regression models can be computed 
directly from the residual sum of squares (SSe) 
and sample size: 
 

LL = .5 ln(2 ) ln 1eSSN
N

π⎡ ⎤⎛ ⎞− ⋅ + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (1) 

 
The AIC values for linear, quadratic and cubic 
models are, respectively, 8140.02, 8101.62 and 
8127.30 leading to the choice of the quadratic 
model as the best approximating model among 
these three models (using BIC leads to the same 
preferred model). But, other models might be 
explored for these data. For example, using the 
reciprocal of weekend television watching as a 
predictor (actually, reciprocal of X+1 due to the 
presence of 0’s), the AIC value is 8144.16 which 
is less preferred than any of the polynomial 
models. Note that from a conventional point of 
view, a test of significance can be run for the 
regression coefficient in the reciprocal 
regression model (t = -1.095, p = .274) but there 
is no direct way of testing the difference in fit 
between, say, the linear model and the reciprocal 
model since they are not nested.  
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Figure 1. Mathematics achievement scores as a 
function of weekend television watching. 

Paired Comparisons Information Criterion 
Dayton (1998, 2003a) proposed a method 

for comparisons among means using information 
criteria such as Akaike’s AIC. He advocated this 
approach rather than standard pairwise-
comparison procedures such as Tukey tests in 
order to avoid or minimize the following 
problems with conventional procedures. 

(a) Tukey tests (and variations) have been 
proposed based on some arbitrary method for 
controlling the family-wise type I error rate for 
the set of correlated pairwise contrasts. Release 
11.5 of SPSS, for example, provides options for 
18 different post hoc pairwise comparison 
procedures that are based on several different 
approaches to controlling type I error. 

(b) Unequal sample sizes and heterogeneity 
of variance pose difficulties for many 
procedures. The classic Tukey test, for example, 
assumes constant sample size and homogeneous 
variances, an often unrealistic set of 
assumptions. Modifications of Tukey tests such 
as Games-Howell tests allow for both unequal 
sample sizes and heterogeneous variances but 
only provide approximate control of the family-
wise type I error rates by means of an 
adjustment to degrees of freedom.  

(c) Intransitive decisions are routinely 
encountered with pairwise-comparison 
procedures in general and pose serious 
interpretive problems if some overall conclusion 
is desired for the set of means. For three means 
in rank order, an intransitive decision entails 
rejecting the difference between the highest and 
lowest mean but retaining the null hypotheses 
for comparisons of these means with the middle 
mean. It has been argued that this really doesn’t 
pose a problem if the main concern of a study is 
to draw conclusions about the separate pairwise 
differences. However, if the focus is on 
individual pairwise contrasts, what rationale is 
there for sacrificing power and adopting a 
family-wise error rate rather than simply running 
separate t tests for each pair of means?   

The method based on information criteria 
described below and known as paired-
comparisons information-criterion, or PCIC, has 
been the topic of simulations by Cribbie & 
Keselman (2003) who suggest that PCIC has all-
pairs power that is typically superior to standard 
pairwise comparison procedures (e.g., Tukey 
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HSD). The method has been extended to 
repeated observations as well as to data in the 
form of proportions.  
 
(A) Independent Samples of Means 

Consider a design comprising J independent, 
random groups of respondents with sample 
sizes, ,jn  sample means jY and unbiased 

variance estimates, 2 ,jS  with N nj
j

J

=
=
∑

1

. In 

PCIC, AIC (or similar measure) is computed for 
each possible, different ordered subset of means. 
Thus, only non-overlapping subsets of means are 
compared rather than all possible subsets. In 
general, for J groups there are 2 1J− distinct 
patterns of subsets based on ordered means. For 
example, with three groups with the means 
ranked and labeled 1, 2, 3, the 22 4= ordered 
subsets are {123}, {1,23}, {12,3}, and {1,2,3,} 
where a comma is used to separate subsets with 
unequal means. Focusing on ordered subsets of 
means and using a min(AIC) [or min(BIC)] 
strategy avoids the intransitivity problem that 
may arise when using traditional paired-
comparisons techniques without sacrificing 
interpretability of results.   

Assuming homogeneity of variance, the log-
likelihood for the mth model can be written as: 
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whereσW

2  is computed from the ANOVA 
within-groups sum of squares but with 
denominator N  rather than N J− . Means for 
the mth model are estimated assuming that the 
model is correct. The independent parameters 
estimated for a model comprise the variance and 
means, as necessary.  If variances are assumed 
to be equal in the same pattern as means, the 
case is termed the restricted heterogeneous 
variance case (for other cases, see Dayton, 
1998). Assuming the restricted heterogeneous 
variance case, an estimated variance for a subset 
of means can be obtained either by pooling 

variance estimates as appropriate from the 
separate groups or by computing the (biased) 
sample variance from the appropriate combined 
group. For the latter preferred case, the sample 
variance for a {23} subset of means, for 
example, would be  
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Assume that, for the mth model, the pattern of 
sample means has been partitioned into K non-
overlapping subsets. Then, 
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whereσ mk

2 is the (biased) variance estimate 
and nmk is the sample size for the kth subset.  

Table 1 (following page) summarizes 
NELS data for standardized reading scores for 
five racial/ethnic as identified in the data base. 
Tukey tests, as well as Games-Howell tests that 
lack the homogeneity of variance assumption, 
yield a typical intransitive pattern of differences 
with three overlapping, non-significant ranges 
comprising, in rank order of means from high to 
low, {123}, {34} and {45}. The three smallest 
AIC values assuming homogeneity of variance 
and not making this assumption are shown in 
Table 1. 

Note that min(AIC) occurs for the 
pattern {12,345} assuming the restricted 
heterogeneous variance case although several 
models show quite similar AIC values. An 
interesting feature of model comparisons with 
AIC and related information measures is that, 
although a single preferred model is identified, a 
ranking of alternative models is provided. 
Additional illustrative analyses for both the 
homogeneous and heterogeneous cases are 
presented in Dayton (1998, 2003a) as well as in 
connection with a Gauss program (Aptech 
Systems, 1997) for conducting these tests 
(Dayton, 2001a). 
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(B) Means Based on Repeated Observations 

Consider a cohort of individuals that is 
measured on the same variable at several points 
in time. Assuming multivariate normality, the 
parameters of the distribution are means and 
variances for the occasions of measurement as 
well as covariances among occasions. As with 
independent observations, attention is focused 
on the distinct ordered subsets of means and 
AIC, or a related information measure, can be 
used to select a preferred pattern. 

As for the case of independent groups, 
variances and covariances can be homogeneous, 
heterogeneous or restricted heterogeneous. 
However, the situation is more complex since 
these conditions can be applied separately to the 
variances, covariances or to both. In addition, 
various patterned covariance matrices may be 
considered to be appropriate (e.g., a simplex 
pattern with observations closer in time more 
highly correlated that those further apart in 
time). Dayton (2003a) presents more detailed 
information about this case along with 
illustrative data. 
 
(C) Independent Samples of Proportions 

Consider J groups of sizes nj  with 

sample proportions, p p pJ1 2, ,..., , for a 
dichotomous dependent variable. The theoretical 
model  for  the data  is that responses represent a  

 
 
 
 

 
 
series of 0/1 Bernoulli trials with a true 
population  probability, π j , of  a  favorable 
outcome (e.g., 1 or positive) for the jth group. 
The log-likelihood for any specific ordered 
outcome (e.g., 0110 for proportions based on 
four outcomes) in the jth group is 
n p p n p pj j j j j jln( ) ( ) ln( )+ − −1 1 and the log-
likelihood for the total sample is found by 
summing across the J groups: 

 

1

ln( ) (1 ) ln(1 )
J

j j j j j j
j

LL n p p n p p
=

⎡ ⎤= + − −⎣ ⎦∑ . 

(5) 
  
 Note that n pj j is the expected number 
of favorable outcomes and n pj j( )1− is the 
expected number of unfavorable outcomes. The 
sample proportion, pj , is the MLE for the 
corresponding population proportion. Unlike the 
situation for sample means, there is no need to 
consider homogeneous and heterogeneous cases 
since each Bernoulli process is based on a single 
parameter,π j . Otherwise, model selection 
follows the same reasoning as for independent 
sample means (Dayton, 2001a). That is, there is 
a total of 2 1J− distinct patterns of subsets of 
proportions to evaluate and proportions for a 
model are estimated assuming that the model is 
correct. Illustrative analyses for this case are 
presented in Dayton (2001a, 2003a). 
 

Table 1 
NELS Reading Standardized Scores 

    Homogeneity Restricted 
Heterogeneity 

"Race" n Mean Variance Pattern AIC Pattern AIC 
White Non-

Hispanic 
798 52.55 98.21 {1,2,345} 8926.90 {12,345} 8926.62 

API 75 50.40 97.66 {1,2,3,45} 8927.59 {1,2,345} 8927.37 
Hispanic 140 47.36 92.13 {12,34,5} 8928.30 {12,3,45} 8927.56 

Black Non-
Hispanic 

152 46.16 77.68      

American Indian 44 46.00 70.39      
 1209        
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PCIC for Distributions 
Standard pairwise comparison 

procedures, such as Tukey HSD and its many 
variations, have been the subject of a good deal 
of research directed toward assessing their 
robustness with respect to distributional 
assumptions. Typically, non-normal 
distributions with varying degrees of skew and 
kurtosis are selected for comparison (e.g., 
Keselman, Lix & Kowalchuk, 1998, report 
simulations with normal distributions, three-
degree-of-freedom chi-square distributions and a 
highly non-normal distribution with skewness 
and kurtosis indices equal to 6.2 and 114, 
respectively). The issue, then, is the degree of 
sensitivity of the multiple comparison 
procedures to departures from normality. Also, a 
number of simulations have dealt with the 
relative power of pairwise comparison 
procedures (e.g., Ramsey, 2002). 

An alternative approach is to directly 
model the underlying distributions for observed 
data and then compute appropriate likelihoods 
for candidate distributions of interest. Once 
these distributions have been selected, 
procedures comparable to PCIC can be 
implemented. In practice, identifying the set of 
candidate distributions is a non-trivial problem. 
Two classes of plausible models that have 
credibility in practice than can be compared are 
normal and log-normal densities. 

The motivation for log-normal models 
arises from the fact that, in contrast to an 
additive effect, a multiple effect for an 
independent variable can be modeled in log-
linear terms. For example, the usual additive 
model for a response in a one-way ANOVA 
design can be represented as ij j ijY µ τ ε= + +  

whereµ  is a grand mean effect, jτ  is the effect 

of the jth treatment and ijε  is a residual error 
term. Alternatively, assuming a multiplicative, 
rather than an additive treatment effect, yields 
the model: ij j ijY µ τ ε= × ×  or 

* * *ln( )ij j ijY µ τ ε= + +  where the * superscript 
denotes a parameter on a logarithmic scale. In 
practice, many positively skewed distributions 
of observations are reasonably well 
approximated by log-linear models. 

Some preliminary simulation results 
have been carried out for two-sample and a 
limited number of three-sample cases to assess 
how well the AIC and BIC information 
measures distinguish between samples based on 
normal and log-normal distributions (Dayton, 
2003b). In one series of simulations, theoretical 
log-normal densities with means, standard 
deviations of (0, .1), (0, .5) and (0, 1.0) in log 
units corresponding to (1.00, .10), (1.13, .60) 
and (1.65, 2.16) in raw units were considered. 
The first distribution is slightly skewed (index = 
.30) and modestly kurtotic (index = 3.16), the 
second distribution is moderately skewed (index 
= 1.75) and somewhat peaked (index = 8.89), 
while the third distribution is both highly 
skewed (index = 6.18) and highly kurtotic (index 
= 113.94). In a second series of simulations, 
information criteria were compared assuming 
only log-normal densities but the generated data 
were either normal or log-normal. 

Typical results for two groups are, in 
additional to the expected sample size 
differences: (a) BIC selected the correct model 
more often than AIC in virtually all simulated 
cases with an average difference ranging from 
about 6% to 13%; (b) both information criteria 
were much more successful in selecting models 
when the true distribution was log-normal as 
opposed to when it was normal. This latter result 
occurs because, as the median increases, log-
normal distributions assume a nearly symmetric 
shape that approximates normality. Limited 
results for three samples suggest that, as was 
true for two groups, BIC tends to select the 
correct pattern of means more often than does 
AIC and both criteria were more successful for 
log-normal than for normal distributions. The 
superiority of BIC over AIC should not be 
generalized at this time, however, since Dayton 
(1998) found for cases with several groups that 
neither criterion was uniformly superior to the 
other.  
 
Number of Components in Mixture models 

An emerging area of interest in applied 
research is the use of finite mixture models 
when distributions such as normal, Poisson and 
binomial fail to provide satisfactory fit to data. 
An impetus for considering mixtures is the 
phenomenon of over-dispersion which is 
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manifested by, for example, distributions with 
“heavy tails.” For situations of this sort it is 
often reasonable to assume that observations 
represent a mixture from two or more sub-
populations rather than arising from a single 
population. In general, a mixture of J 
distributions for some dependent variable, Y, 
can be represented by: 

g Y g Yj j j
j

J

( | ) ( | )β θ β= ×
=
∑

1

 where θ j  are 

mixing fractions such that θ j
j

J

=
=
∑ 1

1

, g( ) is 

some specified probability (e.g., binomial) or 
density (e.g., normal) function based on a vector 
of parameters, β j , and β  is a vector containing 
all relevant parameters. 

For a mixture of two heterogeneous 
normal densities, for example, 2

1 1 1( | , )g Y µ σ  

and 2
2 2 2( | , )g Y µ σ would represent normal 

densities with unique means and variances that 
are mixed in proportions 1θ  and 2 11θ θ= − . To 
fit such models to data, the parameters for the 
separate components as well as mixing fractions 
must be estimated. For a mixture of two normal 
densities this would entail estimating five unique 
parameters (two means, two variances and one 
mixing proportion). Some relatively simple 
mixtures (e.g., normal densities) can be 
estimated using available statistical software 
such as Mplus (Muthén and Muthén, 1998) but 
specialized programs such as LEM (Vermunt, 
1993) are required in more complex cases such 
as latent class models. 

A persistent dilemma for applications of 
mixture models is that models with varying 
numbers of components cannot be compared 
using conventional significance tests even 
though these models are hierarchical. For 
example, the comparison of a mixture of two 
normal densities to a single normal density 
could, seemingly, be based on a difference-chi-
square test since the single normal density is a 
restricted form of the mixture (e.g., by setting 

2 0θ = ). However, as noted by Everitt and Hand 
(1981) and Titterington, Smith and Makov 
(1985), among others, this difference-chi-square 
statistic fails to satisfy theoretical requirements 

related to boundaries of the parameter space and 
is not distributed as expected (nor is its 
distribution known). Some insight into the 
problem can be seen from observing that the 
single restriction, 2 0θ = is equivalent to the two 

restrictions 1 2µ µ=  and 2 2
1 2σ σ=  since, in 

either case, the resulting model is a single 
normal density. In fact, the mixture is based on 
five parameters whereas the single normal 
distribution is based on only two parameters, yet 
only one restriction is required to obtain the 
simpler from the more complex model. 

Given the failure of conventional 
significance tests to provide a basis for assessing 
the number of components in a mixture, 
information measures such as AIC present an 
attractive alternative. Information criteria 
provide a single summary statistic for each 
model being compared and avoid the asymptotic 
distributional issues faced by difference-chi-
squares tests for mixture models. Some 
preliminary work on assessing AIC, BIC and 
related measures was reported by Dayton 
(2001b) who focused on the issue of selecting 
the appropriate number of mixtures in binomial 
models (restricted latent class models) with four 
and six binary variables. 

Simulations were based on samples 
sizes ranged from 80 to 1280, binomial 
probabilities for mixtures of two and three 
processes were selected to represent varying 
degrees of discriminability of the components 
and mixing proportions were varied from equal 
splits to cases where one component represented 
only 20% of the cases. Cases with high 
discriminability involved, for two components, 
cases with binomial probabilities and .1, .5 and 
.1, .8 where low discriminability involved cases 
with binomial probabilities of .1, .2. All of the 
measures studied provided reasonable correct 
identification rates for the high disciminability 
cases (e.g., 80% and above across the 
conditions) but very poor correct identification 
rates for the low disciminability cases (e.g., 10% 
or less across the conditions). Dayton (2001b) 
concludes that this area of analysis requires 
“…reasonably large sample sizes and the 
realization that poorly defined latent structures 
will almost certainly go undetected.” 
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Conclusion 
 

Although the recommendation has been repeated 
often in the past, researchers should become 
aware of modern alternatives to the use of 
significance tests when comparing alternate 
models is the focus of analysis. Information 
theoretical procedures such as Akaike AIC 
provide a holistic approach to ordering and 
selecting among competing models that avoids 
the piece-meal and potentially inconsistent 
outcomes that arise from applying multiple 
significance tests. This paper has summarized 
applications of these measures to multiple 
comparisons including the possibility of varying 
distributional assumptions and to mixture 
models where traditional significance tests are 
known to be inappropriate. 
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Fortune Cookies, Measurement Error, And Experimental Design 
 

 
 
This article pertains to the theoretical and practical detriments of measurement error in traditional 
univariate and multivariate experimental design, and points toward modern methods that facilitate greater 
accuracy in effect size estimates and power in hypothesis testing. 
 
Keywords: measurement error, latent variables, multivariate analysis, experimental design 
 
 

Introduction 
 

Whichever leg of my post-secondary academic 
journey, and with whichever campus I have had 
the privilege of affiliating, the vast majority of 
my midday meals have ended with a fortune 
cookie. Since my college days, in fact, I estimate 
that I have had lunch at some inexpensive Asian 
restaurant near campus well over a thousand 
times. My graduate school office mates and the 
many students and faculty whom I served as 
teaching assistant might even remember all the 
little strips of paper taped to the top of my desk, 
filling the entire surface with fortunes by the 
time I finished my doctorate.   
 
 
Gregory R. Hancock is Professor in the 
Department of Measurement, Statistics and 
Evaluation at the University of Maryland. His 
research appears in such journals as 
Psychometrika, Structural Equation Modeling, 
and Journal of Educational and Behavioral 
Statistics. He serves on several journal editorial 
boards, and regularly conducts workshops 
around the U.S. Email: ghancock@umd.edu. 
  

Today, a little more reserved in my decorative 
zeal, though no less so in my meal predilection, I 
have but a single fortune tacked outside of my 
office door. Amidst aging cartoons and family 
pictures is an enlarged photocopy of the one 
little rectangle of wisdom I have saved over 
these last decades. It reads: 
 

Love truth 
but pardon error. 

Lucky Numbers 7, 8, 13, 31, 32, 44 
 

Although my quantitative training precludes me 
from seeking fortune based on the third line, not 
so with the first two. Their aphorism seems 
replete with insight and potential on many 
levels, personal and professional, with the latter 
level serving as the inspiration for this article.  

Less obtusely, in so many applied 
statistical analyses there seems to be a schism 
between the variables we have and the variables 
we wish we had. This is apparent in statements 
of theory preceding and justifying those analyses 
and in the interpretations and purported 
implications that follow. Educational policy 
researchers, for example, might analyze 
measures of teacher’s job satisfaction and 
absenteeism and then make proclamations 
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regarding the apparent degree of teacher 
burnout. Those studying child development 
might start by eliciting new mothers’ responses 
to rating scale items regarding interactions with 
their infants, and conclude by making inferences 
about those mothers’ emerging maternal 
warmth. Health care researchers might want an 
understanding AIDS patients’ sense of 
hopelessness while in group therapy, and choose 
measures of patients’ treatment compliance to 
help facilitate that understanding. Such is the 
nature of so much applied research, particularly 
within the social sciences — constructs of 
interest such as burnout, maternal warmth, or 
hopelessness are generally latent, so our 
analyses seem resigned to rely upon the fallible 
measured variables as surrogates.  

And therein lies the schism, in the 
operationalization of true constructs as error-
laden measured variables. At best the imperfect 
connection might lead us to a distorted image of 
the critical relations in a population; at worst we 
might not even have sufficient power to draw 
inference at all. Within the context of 
experimental design specifically, the primary 
focus of this treatise, the implication is that 
treatment effectiveness might be severely 
underestimated, or perhaps even undetected. Of 
course this is not unknown. In fact, nothing 
written here will be new knowledge. But it is 
important and often-overlooked knowledge, 
bearing clarification and amplification. It will 
thus be my purpose to drive home the often 
underestimated (if not entirely disregarded) 
importance of constructs and measurement error 
in our univariate and multivariate experimental 
analyses, and to point the applied researcher 
toward more modern strategies for dealing with 
measurement error in experimental design.  

 
Love Truth 

The purpose of applied statistics seems 
to be to gain insight into some truth bearing 
practical consequence. Drawing upon a few 
familiar test statistics, we attempt to use 
observed relations among measured variables in 
samples to make educated guesses about 
unobserved relations in the populations of which 
each sample serves as assumed microcosm. But 
what, precisely, is the population relation we 
hope to understand in order to have practical 

consequence? What is the truth into which we 
seek insight? 

As we learn and practice the many 
methods huddled under the general linear model 
umbrella, we typically hold as our goal a correct 
inference about, and often estimation of, some 
population relation among observed variables – 
a true correlation between X and Y (ρXY), a true 
predictive relation of X3 to Y holding X1 and X2 
constant (β3), a true standardized effect size for 
the mean difference between Populations 1 and 
2 on Y (dY), and so on. But what does any 
measured X or Y variable really represent, and 
what information do any relations among such 
variables convey? 

In the physical sciences, variables such as 
temperature, pressure, mass, and volume, when 
considered in sufficient quantities, are in their 
measurement as they are in name. That is, there 
tends to be a strong correspondence between the 
measurement and the entity it represents. In the 
social sciences, some such variables exist as 
well – biological sex, treatment group 
assignment, and political party affiliation, for 
example. Except for data recording or entry 
errors, we expect each variable to represent 
precisely that which its name implies. Other 
social science variables would also seem to have 
such identity, being determinable largely 
without interference – number of therapy 
sessions attended, number of children’s books in 
the home, and the like. However, a fundamental 
question in many disciplines, particularly those 
in the social sciences, is the following: What is 
the underlying construct that each variable has 
been selected to represent?  

 
The univariate scenario 

Consider a researcher who is truly 
interested in a construct contrived here as In-
Home Reading Resources. In that case, number 
of children’s books in the home is indeed a fairly 
proximal operationalization of the construct of 
interest. As such, estimates regarding population 
mean differences in number of children’s books 
in the home, or regarding the population 
relations this measured variable has with other 
such proximal operationalizations, provides 
direct insight into some truth for the construct of 
In-Home Reading Resources. On the other hand, 
if a researcher is interested in a construct 
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designated as Parental Commitment to Literacy, 
and has attempted to capture the spirit of this 
construct using the number of children’s books 
in the home, then we expect the measured 
variable to be a more distal operationalization of 
the desired construct. As such, inference about 
population differences in Parental Commitment 
to Literacy, or of its relation to other variables 
(proximally or distally operationalized), is 
compromised by typical general linear model 
analyses. Thus, the truths we seek – constructs 
and their population relations – are often not 
directly accessible. 

The issue at hand, of course, is one of 
measurement error in our variables. As an 
indicator of In-Home Reading Resources, 
number of children’s books in the home has 
virtually no measurement error; when reflecting 
Parental Commitment to Literacy, however, it 
has considerable error. Imagine a researcher 
employing a control and treatment group to draw 
inference about the impact of a treatment 
designed to enhance Parental Commitment to 
Literacy. Figure 1 displays hypothetical 
population distributions for the measured 
variable of number of children’s books in the 
home (Y), as well as for the latent construct of 
Parental Commitment to Literacy (η). Notice 
that while the means of the two populations are  

 

 
 
 

expected to be the same for Y and η, the relative 
magnitude of the treatment effect on the Parental 
Commitment to Literacy construct would be 
underestimated. The standardized effect size for 
Y, which is the familiar 
                     dY=(µ1Y- µ2Y)/σY                                        (1) 

 
(Cohen, 1988), is depicted as approximately .65; 
meanwhile, the standardized effect size for η, 
                    dη=(µ1η- µ2η)/ση,                         (2) 

 
is near .95.  For this disparity to occur, the 
construct’s standard deviation would have to be 
68.4% of the size of standard deviation of Y, 
meaning its variance is roughly 46.8% (.6842) 
that of Y.  That is, 46.8% of the variability in Y  
reflects η, while 53.2% is error with respect to 
the construct of interest.  Put directly,  
                      22

ηρ dd YYY = ,                             (3) 
 
where ρYY is the reliability of Y (.468 in the 
above example). Thus, while the number of 
children’s books in the home may accurately 
reflect In-Home Reading Resources, with regard 
to Parental Commitment to Literacy it could be a 
relative overestimate or underestimate for any 
given individual. 
 
 

 
 

Figure 1.   Univariate population difference on measured variable and underlying construct. 

 
Measured

Construct
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As mentioned previously, the implications 
of measurement error for inference are two-fold. 
First, as seen in Figure 1, we would 
underestimate the magnitude of the treatment 
effect on Parental Commitment to Literacy. That 
is, we would make an incorrect estimate of the 
truth we seek. Second, the presence of the error 
variance would decrease the power of a two-
sample test to detect the presence of that 
treatment effect. An understanding of this loss of 
power may be communicated in terms of 
additional subjects needed in each group to 
compensate for the presence of measurement 
error. Assuming a desired level of power (e.g., 
.80) and a specific standardized effect size at the 
construct level (e.g., dη=.30), the number of 
subjects per group for a two-sample z-test can 
easily be shown to be: 

 
  nY = (1/ρYY) nη.                       (4) 
 
For example, conducting the test using a valid 
measure with reliability of ρYY =.50 would 
require twice as many subjects as a test that 
could, hypothetically, be conducted directly at 
the construct level. This result holds for t-tests as 
well for all but the smallest sample sizes, where 
appreciable changes in the critical value make 
the relation only approximate. Further, except 
for very small samples, Equations 3 and 4 hold 
for k-group between-subjects analysis of 
variance (ANOVA) as well using the more 
general k-group effect size measures (see Cohen, 
1988). 

 
 
 

 
 

The scenario for the univariate outcome 
may also be depicted symbolically using a path 
diagram.  In Figure 2 we see the measured 
variable Y being defined by two components, the 
construct of interest η and measurement error ε.  
The connection between η and Y, labeled as λ in 
Figure 2, symbolically reflects the (square root 
of the) measured variable’s reliability. The 
stronger the relation λ, the more proximal Y’s 
operationalization of η and thus the less error 
variance it contains; conversely, the weaker λ, 
the more distal Y’s operationalization of η and 
thus the more error variance it contains.  On the 
left we see a grouping variable representing 
population membership and whose influence is 
being assessed; this could be a single variable 
for k=2 groups, or k-1 group code variables for 
the general k-group case. 

As depicted, population membership X has 
a potential bearing γ on the construct η 
underlying the measured variable Y, while the 
remaining variance in η is accounted for by 
other independent but latent residual influences 
ζ .  Thus, an observed population difference on 
the measured variable Y is actually the 
attenuated manifestation of a population 
difference on the true underlying construct of 
interest.  The weaker the connection between the 
η and Y (i.e., the weaker the reliability), the less 
well the population difference on the construct 
of interest is propagated to, and thus reflected in, 
the observed variable.   
 
 
 
 
 

 

Figure 2.  Path model for univariate case 
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This simple univariate example 
underscores two needs regarding truth in 
experimental design and analysis. First, we must 
seek measured operationalizations as proximal 
to their constructs as possible. Certainly in the 
social sciences perfect operationalization is 
generally unrealistic, particularly given the 
vagaries of human behavior, perception, affect, 
and attitude. Notwithstanding, researchers 
should expend considerable effort to select or 
construct the most valid and reliable measures 
feasible. Second, to the extent that measurement 
error remains, we must employ analytic methods 
that maximize the accuracy of inference and 
estimation, thereby portraying population truths 
with the greatest clarity. These analytic methods 
must, to every extent possible, penetrate the 
measurement noise to achieve the same fidelity 
to truth as the theoretical questions that preceded 
and the practical proclamations we hope to 
follow. One attempt to do so lies within a 
multivariate scenario. 
 
The multivariate scenario 

Researchers often attempt to enhance 
their ability to make inference about population 
differences by gathering several pieces of 
evidence to be employed within a multivariate 
experimental design. In multivariate analysis of  
variance (MANOVA) with outcome measures Y1 
through Ym, the hope is that the signal of 
population differences on some combination of 
variables will be detected above the noise of 
their measurement error. This portion of the 
article will address MANOVA in the presence of 
measurement error, and highlight its somewhat 
misguided attempt to get closer to truth. 

Consider the multivariate scenario with 
k=2 populations, often analyzed using 
Hotelling’s T2. An example is depicted in Figure 
3 using m=2 outcomes for simplicity, and with 
extremely large population differences for 
clarity. As before, assume that each Yi measure 
is an operationalization of its own specific 
construct ηi, with individual standardized effect 
sizes of 

iYd  and 
i

dη  for the univariate measured 
and latent population mean differences, 
respectively. The assessment of the multivariate 
population difference between centroids µY1 and 
µY2 is tantamount to evaluating the univariate 

mean difference on the maximally 
differentiating discriminant function W=w1Y1 + 
w2Y2 = w'Y, with weights w commonly (but not 
necessarily) chosen so the within-group variance 

2
Wσ  =w'ΣYw equals 1. Observed and latent 

variable distributions on each Yi axis, as well as 
on the W axis, are depicted in Figure 3. 

Given that W is a linear combination of 
the observed variables, the measurement error of 
each Yi is propagated to the linear composite W. 
The standardized effect size along the W axis, 
the effect of interest in MANOVA, is dW=(µ1W-
 µ2W)/σW; it appears as approximately 3. The 
square of this effect size, 2

Wd , may be computed 
as the squared Mahalanobis’ distance 

 
][]'[ 21

1
21

2
YYYYYW within

D µµΣµµ −−= − ,           (5) 
 
where 

withinYΣ  is the pooled (within-group) 
variance-covariance matrix reflecting the 
observed Yi measures' m-dimensional dispersion 
and within lurks the influence of measurement 
error. Specifically, 

withinwithinwithinY εη ΣΣΣ += , 

where 
withinηΣ is the pooled (within-groups) 

variance-covariance matrix of the specific 
constructs ηi and 

withinεΣ  is a diagonal matrix of 
within-group error variances, assumed 
independent and each equal to )1(2

iii YYY ρσ − . 
Thus, 

 
][][]'[ 21

1
21

2
YYYYW withinwithin

D µµΣΣµµ −+−= −
εη . (6) 

 
As seen in Figure 3, the population mean 

difference on the W axis mirrors the univariate 
case, where the standardized effect size on the 
measured composite W underestimates the 
standardized effect size on the corresponding 
underlying construct. In this case, the construct 
underlying W, denoted here as ηW, is a linear 
combination of the ηi constructs underlying the 
respective measured Yi variables: ηW =w1η1 + 
w2η2 = w'η, where η is the vector of ηi 
constructs. Whereas the measured standardized  
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   Figure 3. Multivariate population difference on measured variables and underlying constructs. 
 
 
effect size on W was depicted as near 3, the 
latent  standardized  effect size for ηW, 

WW
d ηηηη σµµ /)( 21 −= , is approximately 5. 

The square of this effect size, 2
W

dη , is also the 
squared Mahalanobis’ distance 
 
   ][]'[ 21

1
21

2
ηηηηηη µµΣµµ −−= −

withinW
D ,        (7) 

 
which corresponds to Equation 6 with the error 
variance 

withinεΣ removed. In fact, the reliability 
of the composite W could be determined as 

22 /
W

DDW η , which is just a multivariate 
restatement and rearrangement of Equation 3. 

To get a sense of the impact of 
measurement error on the multivariate effect 
size, consider a simple scenario in which the ηi 
constructs are uncorrelated (and hence so too are 
the Yi variables). In this case the matrix 

withinYΣ is 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

diagonal, and thus Equation 5 may be shown to 
simplify to 

 

 ∑
=

==
m

i
YYYW i

dD
1

22 'dd ,                    (8) 

 
where dY is the vector of standardized effect 
sizes for Yi (i=1…m) as per Equation 1. The 
same logic would also yield a parallel result for 
the latent effect size: 

 ∑
=

==
m

i
iW

dD
1

22 ' ηηηη dd ,                    (9) 

 
where dη is the vector of latent standardized 
effect sizes for ηi (i=1…m) as per Equation 2. 
Taking each Yi variable’s measurement error 
into account following Equation 3, Equation 8 
yields 
 

 ∑
=

=
m

i
YYW iii

dD
1

22 )(ρη .                         (10) 

 
 
 
 
 

Y1

Y2 

W W 

Pop. 1     Pop. 2 

Pop. 2 

Pop. 1 

Pop. 1 

Pop. 2 

          Pop. 1 

         Pop. 2 
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If all Yi variables were of the same reliability 
ρYY, it further follows that 
 
 22 )(

W
DD YYW ηρ=                               (11) 

 
(again, given uncorrelated ηi constructs and 
homogeneous reliabilities). Assuming a desired 
level of power (e.g., .80) and a specific effect 
size at the latent multivariate level (e.g., 

W
dη =.30), the number of subjects per group for 
a two-sample test can be shown to be inversely 
proportional to measured variable reliability for 
all but the smallest sample sizes (in this highly 
restrictive example). That is, 
 
 

W
nn YYW ηρ )/1(= .                           (12) 

 
More generally, given any correlational pattern 
among the ηi constructs (and resulting 
attenuated correlations among the Yi variables), 
the resulting reliability ρWW of the composite W 
would yield the corresponding relation 
 
 

W
nn WWW ηρ )/1(= .                         (13) 

 
Thus, the more reliable the composite W, the 
more MANOVA’s power tends toward that of a 
theoretical test directly on the underlying 
construct. 

In the univariate case, two implications of 
measurement error were highlighted: 
underestimating the magnitude of the treatment 
effect on the underlying construct of interest, 
and decreased power to detect the treatment 
effect. As illustrated, these hold as well for the 
multivariate case. However, while we may tend 
to gain power by accommodating multiple 
measured variables simultaneously, it is here 
that we must remind ourselves of our purpose, of 
precisely what truth we seek. That is – what, 
exactly, is the construct of interest in 
MANOVA?  

Figure 4, a conceptual path diagram for 
the multivariate case, will help this discussion. 
On the left is a group code variable (e.g., 
dummy) representing population membership 
and whose influence is being assessed. As 
depicted, population membership has a potential 

bearing on the ηi constructs underlying the 
measured Yi variables. Portions of the constructs 
not explained by population membership are 
represented in the latent residual influences ζi, 
which are likely to be correlated (shown in 
Figure 4 by shared two-headed arrows). 
Population differences on the measured variables 
are the observable manifestations of differences 
on the true underlying constructs of interest. The 
connection between each ηi and Yi reflects the 
(square root of the) reliability of each variable; 
the weaker such a relation the less well the 
population differences on a construct are 
propagated to, and thus reflected in, the 
observed variables. As a result of each variable’s 
imperfect operationalization of its construct, 
error εi contributes to the variable as well. 
Finally, in the case of multiple outcomes, a 
discriminant function W is represented as a 
composite of the measured variables. The 
weights determining this composite are optimal 
in the sense that they maximize the relation 
between W and X. Note that W, as a weighted 
sum of measured variables, is also a weighted 
sum of constructs and errors. That is, unless all 
variables are perfect operationalizations of their 
constructs, the composite W will contain 
measurement error which thus hampers its 
ability to reflect population differences 
propagated by X. 

 
 
Figure 4. Path model for multivariate case, with 
m constructs. 
 

So if W contains measurement error, with 
respect to what construct does that measurement 
error exist? The answer, as utilized previously, is 
the composite implicitly formed by MANOVA 
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of the constructs underlying the variables. But 
what truth does a composite of univariate 
constructs represent? To this critical question 
there seems to be three common answers, none 
of which is entirely satisfactory. Each will be 
presented in turn, along with the concerns it 
inspires. 

Position 1: The composite is not itself 
intended to be a construct; rather, it is merely a 
vehicle for the simultaneous examination of the 
m individual constructs of interest.  

Response 1: If the separate constructs are 
of interest, then a MANOVA is inconsistent 
with that interest. Rather, a collection of 
individual ANOVAs, however seemingly 
inelegant, would address each construct directly. 
An omnibus MANOVA is not generally 
appropriate as a Type I error control mechanism 
since a single false univariate null hypothesis 
renders the multivariate null hypothesis false, 
and thus control over other true univariate 
("partial") nulls becomes ungoverned. If one 
wishes to invoke an error control mechanism at 
the level of the constructs of interest, such as 
that of Bonferroni or his descendants, it may be 
applied across ANOVAs.  

Position 2: The univariate constructs are 
facets of a single meaningful whole, as 
represented by the discriminant function and 
upon which knowledge of population differences 
is sought.  

Response 2: Measured variables having a 
deterministic and defining bearing on a construct 
have been referred to as constituting an 
emergent variable system (e.g., Bollen & 
Lennox, 1991; Cohen, Cohen, Teresi, Marchi, & 
Velez, 1990). For example, one could imagine 
an unmeasured construct representing stress, 
contributed to and defined by such variables as 
relationship with parents, relationship with 
spouse, and demands of the workplace. In this 
case population differences in stress might 
indeed be of interest.  

However, the formation of the 
discriminant function is not done in a manner 
reflecting any relative theoretical contributions 
of the three measured variables. If population 
differences existed only in terms of demands of 
the workplace, for example, then the 
discriminant function would be composed of 
only that variable. But does that then mean that 

stress is only a function of demands in the 
workplace? Surely not. Thus, while the notion is 
reasonable that variables combine to define a 
composite with a meaningful underlying 
construct, those variables’ combination is not 
informed by the theoretical soundness of the 
construct, but rather only by measured variable 
mean differences. Forming a meaningful 
composite and then conducting an ANOVA on 
the resulting scores would seem more consistent 
with the beliefs underlying this variable system. 

Position 3: The univariate constructs are 
actually a single meaningful underlying 
construct; the discriminant function represents 
that construct and allows for the assessment of 
population differences thereon.  

Response 3: Contrary to the emergent 
variable system described in Response 2, the 
variable system here is latent. That is, all 
measured variables are believed to be 
undergirded by the same construct (but perhaps 
varying in the quality of their reflection), and it 
is on this common construct that inference is 
desired. Still, although a single construct exists, 
MANOVA remains clouded in its ability to 
address this construct directly.  

Consider Figure 5, where X codes 
population membership and has a potential 
bearing γ on the common construct η underlying 
the measured Yi variables. Thus, population 
mean differences on the measured variables are 
the observable manifestations of a population 
difference on the true underlying construct of 
interest. Again, the connections between the η 
construct and Yi variables (λi) embody the 
(square root of the) reliability of each variable; 
the weaker such a relations the less well the 
group differences will be reflected in the 
observed variables. Finally, the discriminant 
function W is again shown as an optimal 
composite of the measured variables, where 
every variable in the composite contributes some 
part η and some part εi. So the discriminant 
function has succeeded to some extent in being a 
reflection of a construct of interest; however, it 
has still failed to eradicate error.  

Further, the function has used group mean 
differences to guide its definition rather than 
proximity of construct operationalization. Thus, 
even if a single common construct underlies the 
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measured variables, measurement error within 
this multivariate approach will continue to 
compromise the accuracy of a treatment effect’s 
assessment as well as the power to detect that 
effect. That is, we must continue the search for 
methods that attempt to pardon error. 

 

 
 

Pardon Error 
Having cursed the varying degrees of 

darkness inherent in traditional univariate and 
multivariate experimental analyses, I now wish 
to light a candle – or more accurately, introduce 
the candle others have lit (e.g., Muthén, 1989; 
Sörbom, 1974). The foundation for this 
illumination may be seen in Figure 5, already 
presented. Our real goal is not to be able to 
detect an overall relation between the population 
membership X and the discriminant function W, 
but rather between X and the construct η. That 
is, we desire an estimate of the path denoted as 
γ, making the discriminant function W irrelevant. 
Fortunately, under the umbrella of structural 
equation modeling, a clearer attempt at a 
solution exists.  

In Figure 5 the relations between the 
construct and its measured operationalizations 
may be expressed in a system of m structural 
equations of the form Yi = λiη + εi (i=1…m). 
These measurement equations may in turn be 
represented collectively as  

 
 

                         Y = Λη + ε,                           (14) 
 

where Y is a subject’s mx1 vector of Yi scores, Λ 
is an mx1 vector of unstandardized factor 
loadings   generally   assumed   to   hold   for  all  

 

 

 

subjects in both populations (homogeneity of 
measurement), and ε is a subject’s mx1 vector of  
εi measured variable residuals. More 
interestingly, the theoretical relation of our 
current focus is contained in the structural 
equation relating population membership to the 
construct,  
 

η = γ X + ζ.                     (15) 
 

These structural equations, along with the 
simplifying (but not mandatory) assumption of 
independence of all exogenous elements (X, ε, 
and ζ), have implications for the partitioned 
variance-covariance matrix Σ containing the X 
and Yi variables for all populations combined. 
Specifically, for the Yi variables alone, Equation 
14 implies 
 
                  ΣY = Λφη Λ' + Θε ,                       (16) 
 
where φη is the total construct variance for both 
populations combined, and Θε is the mxm 

Figure 5. Path model for multivariate case, with one construct. 
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variance-covariance matrix for the εi residuals. 
Equation 15 has implications for φη, such that 
 
                   ψσγφη += 22

X ,                        (17) 
 
where 2

Xσ  is the variance of X and ψ is the 
variance of the construct residual ζ. That is, ψ is 
the part of the construct variance that is not 
explained by population membership; as such, it 
is the pooled within-groups variance for the 
construct. Finally, the portion of the covariance 
matrix relating the vector Y of Yi variables to X, 
as  following  from Equations 14  and  15, is  
 
                     '2 ΛΣ XXY γσ= .                         (18) 
 
As implied by the model in Figure 5, the full 
partitioned matrix for the X and Yi variables 
(respectively) is: 
 

  ⎥
⎦

⎤
⎢
⎣

⎡

++
=

εψσγγσ
γσσ

ΘΛΛΛ
Λ

Σ
'][

'
222

22

XX

XX .     (19) 

 
Using maximum likelihood estimation 

within structural equation modeling (see, e.g., 
Bollen, 1989), and after fixing one factor 
loading to a value of 1 so as to give the construct 
η a unit of measurement (i.e., that of the 
corresponding indicator variable), population 
values for all parameters in Equation 19 are 
chosen so as to maximize the likelihood of the 
observations giving rise to the sample 
covariance matrix S. After conducting an 
assessment of the data-model fit as represented 
by the degree of correspondence between the 
observed matrix S and the expected matrix Σ̂  
(after substituting the optimum parameter values 
into Equation 19), satisfactory fit allows one to 
proceed to the question at hand. That question 
involves the estimation of, and statistical test of, 
the population mean difference(s) on the 
construct η.  

For the two-group case, the path from the 
single dummy variable X to the construct η is an 
estimate of the population difference on the 
construct. This path, γ, will also have a 
maximum likelihood standard error as a by-
product of the estimation process, which will 

allow a statistical test of the difference between 
the two population means on the construct η. If 
X is coded 0/1, then a statistically significant and 
positive estimate of γ implies the population 
coded X=1 has a higher mean on the construct η, 
whereas a negative value would imply 
superiority of the population coded X=0. An 
interpretation of the value of γ itself is not 
generally useful because it reflects the metric 
that η has been assigned by fixing a variable 
loading to 1. However, given that the pooled 
within-groups construct variance ψ has been 
estimated as well, we may derive an estimate of 
the  latent  standardized effect size dη, where 
 
                      ψγη /=d .                         (20) 

 
Thus, if a single construct underlies our 
measured variables, we are able to conduct a 
statistical test on the construct mean difference 
as well as estimate the standardized effect size 
associated with that differences in latent means. 

The simple process described above, 
which may be conducted using any structural 
equation modeling software (e.g., AMOS, EQS, 
LISREL, Mplus), is part of a larger class of 
models known as multiple-indicator multiple-
cause (MIMIC) models suggested for assessing 
latent population differences (Muthén, 1989). 
The procedure is not without its own 
assumptions and restrictions, some of which 
may be softened in a somewhat more 
complicated strategy known as structured means 
modeling (Sörbom, 1974). Those details are left 
for the interested reader, and are summarized 
didactically elsewhere (e.g., Hancock, in press). 
More importantly is that these methods exist to 
put the construct back at center stage, in terms of 
hypothesis testing and effect size estimation, and 
as such the theoretical benefits over a 
MANOVA approach should be clear. 

We may also take a practical approach in 
comparing the MIMIC and MANOVA strategies 
by determining the sample sizes required to 
detect a specific latent standardized effect size in 
order to achieve a desired level of statistical 
power. In Table 1 we see the cases of m=2, 3, 
and 4 measured variables, crossed with 
homogeneous sets of standardized loadings of 
λ=.4, .6, and .8. The standardized latent effect 
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sizes included were dη=.2, .5, and .8. In all 
conditions the necessary sample size was 
assessed for both MANOVA and the MIMIC 
approach in order to achieve .80 power using the 
equivalent of a two-tailed test at the .05 level. 
For MANOVA, sample size determination in 
each case followed strategies for Hotelling’s T2 
outlined by Cohen (1988; Section 10.3.2.1), 
while for the MIMIC approach the methods 
derived  by  Hancock  (2001) were  used.  
 
 

 
 
 
 
 

 
 

 
 

 
 
 

 
 
 
 
 

 
 

 
 

Many points are noteworthy in Table 1. 
As expected, for both the MIMIC and 
MANOVA methods the necessary sample size 
decreases as effect size increases (holding all 
else constant). Specifically, sample size 
decreases were approximately proportional to 
corresponding increases in the square of dη (e.g., 
from dη=.2 to dη=.5, sample size necessary 
decreases by a multiplicative factor of 
.22/.52=.16). Sample size also decreases for both 
methods as loading magnitude increases 
(holding all else constant). In particular, sample 
size decreases were approximately proportional 
to corresponding increases in construct 
reliability as measured by coefficient H (also 
known as maximal reliability), where for the 

case of homogeneous loadings H mirrors the 
Spearman-Brown prophecy formula as 

 
             ])1(1/[ 22 λλ −+= mmH                (21) 
 
(see Hancock, 2001). For example, with m=3 
variables, H=.276 for λ=.4 and H=.529 for λ=.6; 
sample size thus decreases by a multiplicative 
factor of .276/.529=.521 for both the MIMIC 
and MANOVA strategies. For MANOVA this 

 

 

 
 
sample size decrease is due to the increased 
presence of the construct in the discriminant 
function; for the MIMIC approach, which 
already operates at the construct level, this 
sample size decrease is due to a decrease in the 
standard error associated with the γ path.  

With regard to increasing the number of 
variables, for the MIMIC strategy sample size 
decreases correspondingly (holding all else 
constant); this is because distributional 
noncentrality varies directly with construct 
reliability as measured by H (Hancock, 2001), 
which increases with the addition of any nonzero 
loading. For MANOVA, sample size decreases 
with additional variables for λ=.4 and .6, but an 
increase in required sample size is observed for 

Table 1 
Sample Size Required For Two-Group .05-Level Tests With Power=.80 

 
 MIMIC  MANOVA  

  λ=.4 λ=.6 λ=.8  λ=.4 λ=.6 λ=.8 
m=2 dη=.2 1424 742 504  1748 912 619 

 dη=.5 229 120 81  281 148 101 
 dη=.8 90 47 32  111 59 41 
         

m=3 dη=.2 1080 626 467  1502 871 650 
 dη=.5 174 101 76  242 141 106 
 dη=.8 68 40 30  96 57 43 
         

m=4 dη=.2 909 568 449  1383 865 684 
 dη=.5 146 92 73  224 141 112 
 dη=.8 58 36 29  89 57 45  
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λ=.8. This is because at some point additional 
variables do not contribute sufficient new 
information about the construct to justify the 
additional degree of freedom expenditure. This 
was seen in a supplemental analysis as well 
using λ=.9 (not shown in Table 1), where for 
m=2, 3 and 4 the necessary sample size per 
group for MANOVA increased from 540 to 590 
to 635, respectively.  

Overall, as expected the sample size 
required for MANOVA was always greater than 
for MIMIC. For the m=2 case MANOVA 
sample sizes were always about 23% larger than 
for the MIMIC approach. For m=3 that number 
increased to around 39%, while for m=4 
required sample sizes for MANOVA were 
approximately 52% larger than for the MIMIC 
strategy. Thus, not only has the MIMIC 
approach’s estimation and inference operated 
directly at the level of the construct of interest, it 
has done so with the same power for a 
considerable savings in sample size (or with 
greater power for the same sample size 
expenditure). And interestingly, at no point did 
we need to estimate variables’ reliability; this 
information was implicit within the MIMIC 
process in the estimation of the λi loadings. 

Extensions to this latent approach exist 
both internally and externally, where the former 
refers to methods for answering the same 
questions under less restrictive assumptions and 
the latter refers to methods for addressing more 
complex questions. With regard to internal 
extensions, the primary assumption implicit in 
MIMIC modeling is that, because the data from 
the groups are combined and only one model 
results, the same measurement model holds 
across populations. This includes loadings, 
construct variance, and error variances. In effect, 
all sources of covariation among observed 
variables are assumed to be equal in all 
populations, making the assumption of identical 
measurement models tantamount to an 
assumption of equal variance/covariance 
matrices (as is actually assumed in MANOVA 
as well). As alluded to previously, a more 
flexible approach to assessing latent means 
exists in structured means modeling (Sörbom, 
1974), where only the corresponding loadings 
are commonly constrained across populations in 
the complete covariance model. Further, 

additional flexibility may exist to allow for some 
loading differences across populations under 
particular configurations of partial measurement 
invariance (Byrne, Shavelson, & Muthén, 1989). 

Externally, the methods of assessing latent 
means may be extended greatly. Within the 
MIMIC framework, the creative use of group 
code predictors of the latent construct of interest 
(e.g., dummy variables) can fairly easily 
facilitate inferences that parallel those of more 
complex one-way and factorial ANOVA 
designs. Also, covariates may be introduced 
along with the group code variables. In fact, like 
all other variables covariates have underlying 
constructs; as such, given multiple indicator 
variables a latent covariate construct may be 
incorporated into the model along with the group 
code variables. The disattenuation of 
measurement error in the covariate provides 
greater accuracy in the assessment and testing of 
the covariate’s predictive role in the design, as 
well as of population mean differences on the 
outcome construct after exacting such latent 
control. 

 
Seeking Your Fortune 

Inspired jointly by ancient wisdom and 
modern analytical methods, this article has 
attempted to return our focus to the constructs 
that underlie our experimental research 
endeavors. Certainly those constructs must be 
grounded in observable measures, but the 
proximity of those measures’ operationalization 
of the construct(s) should be acknowledged and 
even accommodated. I have attempted to 
highlight the theoretical and practical costs of 
imperfect operationalization within traditional 
experimental analyses, and pointed toward 
reasonably accessible strategies that circumvent 
our measures’ necessary imperfections.  

But there is no free lunch, so to speak. 
Although the latent variable approaches to 
experimental design can pardon error and thus 
attempt to correct for unreliability, researchers 
are not thereby absolved of expending 
considerable effort in choosing or constructing 
quality measures. Poor reliability in measures 
yields less stability in the constructs and in 
estimates of their relations with other variables 
(e.g., group code variables), as well as larger 
standard errors for the statistical assessment of 
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estimated relations. Thus, the methods described 
briefly herein serve to complement sound 
principles of instrument selection and 
construction. 

These methods also signal the potential to 
reframe other aspects of the multivariate general 
linear model as well. Although this article has 
focused on experimental design, the canonical 
correlation model suffers from some of the same 
problems as MANOVA. Specifically, while X 
and Y variables are generally chosen by 
researchers with some constructs in mind, X and 
Y composites are formed whose primary 
allegiance is to the maximization of XY 
relations. If one used variables to define 
constructs in separate X and Y measurement 
models, the relations between constructs would 
be directly couched in theory, disattenuated of 
measurement error, and detectable with 
considerably more power than within the 
canonical framework. Expositions similar to 
those provided here for experimental design 
could be crafted, and would be equally 
compelling. 

In sum, although constructs and their 
relations are the beloved truths that motivate 
most applied statistics, so many of our analytical 
efforts are hindered in their inferential 
estimation and hypothesis testing by our 
measures’ inability to reflect those constructs 
satisfactorily. The current article has illustrated 
the detriments of failing to pardon error from 
our experimental inference, and has directed the 
applied researcher toward more modern methods 
that can assist researchers in getting closer to the 
truths they seek. It is my hope that they will 
pursue these and related methods as they seek 
their research fortunes. In the mean time, I 
believe I have a lunch appointment…. 
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Regular Articles 
P* Index of Segregation: Distribution Under Reassignment 
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                                  Texas Christian University                   University of North Florida 
 
 
Students of intergroup relations have measured segregation with a P* index. In this article, we describe 
the distribution of this index under a stochastic model. We derive exact, closed-form expressions for the 
mean, variance, and skewness of P* under random segregation. These yield equivalent expressions for a 
second segregation index: η2. Our analytic results reveal some of the distributional properties of these 
indices, inform new standardizations of the indices, and enable small-sample significance testing. Two 
illustrative examples are presented. 
 
Key words: Segregation index, randomization methods, quadratic assignment, Eta-squared 
 
 

Introduction 
 
Bell (1954) developed a way to measure the 
amount of contact between two groups. This 
widely-used measure has gone by several names. 
It has been called the exposure index (James, 
1986) and the interaction index (Massey & 
Denton, 1986). We, however, follow Lieberson 
(1980) in referring to a measure of sort devised 
by Bell as a P* index. It is intended to measure 
the probability that individuals from two 
different groups will have contact with one 
another. 

The P* index has been used in studies of 
residential segregation – when data are available 
on the number of members of a minority group 
(j) and a majority group (k) who live in a 
particular spatially-defined unit (on the same 
city block, for example, or in the same census 
tract). It requires data on the number of minority 
and majority residents in a number of such units. 
Then P* is the probability that a randomly 
selected member of group j lives in the same 
unit as a member of group k. The index is 
defined as 
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where N•j  is the total number of members of 
group j, u is the number of units; and Nij , Nik , 
and Ni•  are the number of members of group j in 
unit i,  the number of members of group k in unit 
i, and the total number of people in unit i, 
respectively. 

P* plays a role in the study of 
segregation. It has been used to document 
school, as well as residential segregation 
(Coleman, Kelly, & Moore, 1975; Krivo & 
Kaufman, 1999). It complements alternative 
indices by tapping a distinct dimension of 
segregation (Massey, White, & Phua, 1996; 
Stearns & Logan, 1986). Despite recurrent 
criticism (Taeuber & Taeuber, 1965), the P* 
index of segregation has found application in a 
variety of contexts for nearly 50 years. 

Researchers who measure segregation 
with the P* index have an obligation to interpret 
their results. P* is a probability. It varies 
between 0 to 1. However, the probability of a 
member of one group being exposed to a 
member of another group could be misleading, 
depending (as it does) on relative group size. To 
facilitate interpretation, researchers often 
compare an observed value of *

kj P with the 
value that would have been observed if there had 
been no segregation – that is, if the proportion of 
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members of group j and group k within each unit 
equaled the overall proportion of members of 
those groups across all units. Then *

kj P would 
equal N•k N••

-1
 , and the probability of a member 

of group j being in the same unit as a member of 
group k would be the proportion of members of 
group k across all units (Lieberson, 1980). 

No doubt, students of segregation 
enhance understanding by providing comparison 
values for their measures. We wonder, however, 
if it is best to compare P* to a value which 
assumes that there is no segregation. After all, 
even if the members of two groups made 
residential choices entirely at random, some 
degree of segregation could be expected by 
chance (cf., Winship, 1977).  In some contexts it 
would be informative to compare P* to the value 
it would attain under a random degree of 
segregation. Unfortunately, this comparison has 
not been possible to date because the value of P* 
that would be produced by random segregation 
has not been known. 

In the current article, we describe the 
distribution of P* under random segregation.  
We develop an analytic method for determining 
whether the amount of intergroup contact in a 
particular setting differs from the amount that 
would be expected by chance. Exact, closed-
form expressions for the expected value, 
variance, and skewness of P* under random 
segregation are presented. These imply 
equivalent expressions for a second segregation 
index: Bell’s eta-square. Our analytic results 
reveal some of the distributional properties of 
these segregation indices, inform new 
standardizations of the indices, and enable 
small-sample significance testing. For statistical 
characterizations of P*, see Zoloth (1974). For 
distributional  analyses of the widely-used  index 
of dissimilarity, see the papers by Winship 
(1977) and  Inman and Bradley (1991). 
 
Formulation of the Problem 

Our goal is to determine the distribution 
of the statistic in equation 1) under a stochastic 
model. We begin by assuming that the total 
number of individuals in each of u units is fixed 
– as is the total number of members of group j 
and group k. Our model is that each individual is 
randomly assigned to a unit. We seek to 

determine the distribution of the P* index   
under all possible assignments of individuals to 
units – assuming that each assignment that 
preserves the marginal totals is as likely as every 
other such assignment. 
 If all possible assignments of individuals 
to units could be made, then the distribution of 
P* could be constructed empirically. Ordinarily, 
the number of assignments will be prohibitive, 
however, and other methods will be required. 
Monte Carlo techniques could be used (cf. 
Taeuber & Taeuber, 1965); but these are 
computationally intensive and yield no exact 
distributional information. Here we derive the 
exact mean, variance, and skewness of P* under 
all possible assignments of individuals to units. 
 Our derivation treats the distribution of 
P 

* as a quadratic assignment problem (Hubert, 
1987). We begin by representing P 

* in a form 
that is amenable to quadratic assignment 
methods, so that we can draw on existing 
analytic results. 

Denoting the total number of individuals 
in the analysis as N♦♦ , P*  is represented in two 
N♦♦   ×  N♦♦  matrices. Each row of each matrix 
will denote a particular individual, as will the 
corresponding column of the matrix. Hence, 
each entry in each matrix will denote a pair of 
individuals, matrix element s,t denoting the dyad 
that consists of individual s and individual t. 
This representation is familiar to students of 
social networks (Wasserman & Faust, 1994). 
We define the two N♦♦   ×  N♦♦  matrices: Q 
(which we call the cross-group membership 
matrix) and R (the unit co-occupancy matrix). 
Both matrices are symmetric. 

The cross-group membership matrix Q 
identifies dyads in which the intergroup contact 
of interest could, in principle, occur. If the 
researcher wishes to measure the likelihood that 
a member of group j will have contact with a 
member of group k, the entry in the sth row and 
tth column of this matrix is set to ( )2 1N j•

−  

whenever one of the two individuals in the dyad 
(s or t) belongs to group j and the other 
individual belongs to group k. All other entries 
of the Q matrix are set to 0. 

The unit co-occupancy matrix R 
identifies individuals who are in the same unit. 
The entry in the sth row and tth column of the R 
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matrix is set to 1−
•iN   if the two individuals (s 

and t) are in unit i. All elements along the 
diagonal of R are set to 0, as are any off-
diagonal elements that denote two individuals 
who are in different units. 

Denoting element s,t of matrix Q by qst  
and the corresponding element of matrix R as rs 
- algebra reveals that 
 

                       ∑∑
•• ••

= =

=
N
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N
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ststkj rqP

1 1

*                    (2) 

 
Thus, the P* index can be expressed as 

the sum of the products of corresponding 
elements of two matrices. Such statistics can be 
analyzed with quadratic assignment methods 
(Hubert, 1987).  

Our goal is describe the distribution of 
P* under all possible assignments of individuals 
to units. In our formulation, individuals are 
implicitly assigned to units by the R matrix. We 
could change the assignment of individuals to 
units by reordering the rows and corresponding 
columns of R. 

Having expressed P* as the sum of the 
products of corresponding elements of two 
matrices, we can draw on formulas that have 
been derived for the mean, variance, and 
skewness of such statistics under all possible re-
orderings of the rows and columns of one of 
those matrices (Hubert, 1987) These provide the 
desired distributional information. 
 
Analytic Results 

Our quadratic assignment formulation 
yields the following results. The mean of  jPk

* 

under all possible assignments of individuals to 
units is 

 
])1)(([][)( 11* −
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all symbols having been defined above. 

The variance of  jPk
*  under all possible 

assignments of individuals to units has a more 
complicated mathematical expression. In fact, 
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We have derived the coefficient of 

skewness of jPk
* under all possible assignments 

of individuals to units. Appendix A presents an 
analytic expression for this statistic, which we 
symbolize γ1( jPk

*). 
Because these analytic expressions are 

intricate, it may be helpful to begin by noting 
some quantities they omit. Neither the mean, the 
variance, nor the skewness of  jPk

*  are affected 
by the number of members of group j or k in any 
particular unit. These expressions reflect only 
marginal totals – the size of the two groups, and 
the size of the u units. Values that would appear 
as entries in a unit x group contingency table do 
not enter into the equations because these are 
moments of a distribution of the possible values 
of jPk

* over all possible entries that would 
preserve the marginal totals. 

Equation (3) yields insight into the 
impact of random segregation on P*. In the 
absence of any segregation, the probability of a 
member of group j being in the same unit with a 
member of group k equals 1−

••• NN k , as earlier 
researchers noted. This probability is lower 
under random segregation. Relative to the 
probability of intergroup exposure under no 
segregation, the random expectation for  jPk

* is 
lower by a  factor of ,)1)(( 1−

•••• −− NuN  as 
equation 3) indicates. This difference might be 
negligible if the units under analysis were 
sufficiently large; it could be appreciable if the 
units were sufficiently small. 
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Other P* Indices 
The probability of a member of one 

group interacting with a member of a second 
group will not, in general, equal the probability 
of a member of the second group interacting 
with a member of the first (Lieberson, 1980). 
However, these probabilities have a simple 
relationship to one another. 
 

kPj
*   =  N•j N•k

-1  jPk
*                  (5) 

 
This implies that 
 

E(kPj
* ) =  N•jN•k

-1  E( jPk
*)                   (6) 

             Var(kPj
*)   =  N•j

2N•k
-2  Var(jPk

*) 
and       α1(jPk

*)  =  α1(kPj
*) 

 
These equations permit a comparison of 

the distributions of complementary exposure 
indices. In skewness, the distributions of  jPk

* 
and kPj

* are identical. In expectation and 
variance, these two distributions are identical if 
groups j and k are the same size. If group j is 
smaller than group k, then jPk

* will have a higher 
expectation and greater variability than kPj

*. If 
group j is larger than group k, then jPk

* will have 
a lower expectation and less variability than kPj

*. 
The greater the difference in the size of two 
groups, the greater will be the difference in 
expectation and variability of the two exposure 
indices involving those groups. 

Often students of segregation wish to 
measure the likelihood that a member of a group 
will be in the same unit as other members of that 
group. They have done so with a isolation index 
(Bell, 1954). 
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The methods above must be adapted to 

describe the distribution of jPj
*. One begins by 

applying the formulas above to an index for the 
exposure of individuals who are members of 
group j to individuals who are not members of 
group j. Having obtained results for the exposure 
index jPnot-j

*, results for the corresponding 
isolation index follow when one recognizes that 
 

jPj
* = 1 -  jPnot-j

*                       (8) 
 
Then it should be apparent that 

E(jPj
*) = 1 –  E(jPnot-j

*)              (9) 
Var(jPj

*) = Var(jPnot-j
*) 

And               γ1(jPj
*)  =  - γ1(jPnot-j

*) 
 
Eta-square 
 Bell (1954) also proposed a revised 
index of isolation 
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noting that the value of this statistic would 
invariably lie between 0 and 1. 

As Duncan and Duncan (1955) 
observed, Bell’s revised index of isolation is 
identical to η2 for predicting a dicotomous group 
membership variable (1= member of group j, 0= 
not a member of group j) from unit. η2, the 
correlation ratio, equals the percentage of 
variance in group membership accounted for by 
unit, a familiar metric for describing strength of 
association. 

Having derived the mean, variance, and 
skewness of the distribution of jPj

* under 
random segregation, we can use equation 10) to 
obtain equivalent expressions for Bell’s η2 
measure 
 

12 )1()1()( −
•• −−= NuE η                          (11) 

  22*2 )()()( −
•••••− −= jjnotj NNNPVarVar η  

  ( )*
1

2
1 )( jnotj P −−= γηγ  

 
where )( *

jnotj PVar −  can be obtained from 

equation 4) above and  ( )*
1 jnotj P −γ   can be 

obtained from Appendix A. 
 
Standardization and Significance Testing 
 Often, researchers want to compare the 
levels of intergroup contact in different locales. 
Locales may differ from one another in a 
number of ways – in-group composition, for 
example, and in the size of units. If some 
researchers want their comparisons of intergroup 
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contact to reflect differences in-group 
composition across locales (Massey, White, & 
Phua, 1996), others would prefer to make these 
comparisons in a standardized metric. 

Many scholars have treated Bell’s η2 
index as a standardized measure of intergroup 
contact. In this role, η2 has some limitations. 
Neither the expectation nor the variance of η2 
are fixed under the assumption of random 
segregation, as the equations in 11) reveal. 
Given completely random segregation in two 
locales, the expected value of η2 in the two 
locales would not in general be equal. 
Ordinarily, one of the locales would have larger 
units than the other, hence a lower expected η2. 

For standardized comparisons of 
intergroup contact, we propose the following 
measure 
 

Z =  [jPk
*  - E( jPk

*)] [Var(jPk
* )]-.5          (12) 

 
or the analogous Z-statistic for η2. Under 
random segregation, these statistics would have 
an expected value of 0 and a variance of 1 in any 
locale – regardless of group composition or unit 
size. 

Researchers may wish to determine 
whether an observed level of intergroup contact 
differs to a statistically significant degree from 
the level that would be produced by random 
segregation. Although in principle an exact test 
might be constructed with the multiple 
hypergeometric distribution (Agresti, 1990), we 
propose a less cumbersome alternative. We 
suggest that segregation researchers refer the Z-
statistic of equation 12) to some reference value. 
Liberal reference values could be taken from the 
standard normal distribution, conservative 
reference values from Chebyschev’s inequality. 
These would imply that intergroup contact 
departs from the level expected under random 
segregation at an alpha-level of .05 if the 
absolute value of Z exceeds 1.96 (by the normal 
criterion) or 4.47 (by the Chebyschev criterion). 
Intermediate reference values could be obtained 
by incorporating the skewness of the segregation 
measure into a Type III Fisher’s distribution. 
See Hubert (1987) for details. 

For samples of the size analyzed in 
many studies of residential segregation, 

significance testing may be moot. In such large 
samples, every departure from expectation may 
be highly significant (Taeuber & Taeuber, 
1965), and associations between group 
membership and unit occupancy may be 
amenable to traditional chi-square tests. Our 
standardization methods would nonetheless be 
of value. 

The inferential test we are proposing 
should be more useful for small data sets, where 
the statistical significance of intergroup contact 
is not a foregone conclusion, and chi-square 
approximations would be suspect. Such data sets 
may be uniquely suited to a P* analysis – the 
members of a unit being most likely to have 
contact with one another when the units are 
small. 
 
Examples 

For illustrative purposes, we will 
analyze intergroup contact at a mid-sized 
American University. We will consider two 
examples – an example of contact between 
minority and non-minority faculty members, and 
an example of contact between minority and 
non-minority students. 

Table 1 presents data on the number of 
minority and non-minority faculty members 
serving in eight different units of this University, 
as published by the University’s Office of 
Institutional Research. These units are housed in 
different buildings. Faculty tend to interact 
within these units of the University, not across 
units.  

To assess intergroup contact in this 
setting, we begin by computing the probability 
of a minority faculty member serving in the 
same unit of the University as a non-minority 
faculty member. Results show that mPnon-m

* = 
.8724, a sizeable probability. Of course, one 
needs to consider that the overall proportion of 
non-minority faculty members is .8868. It is 
noteworthy that the observed probability of a 
minority faculty member serving in the same 
unit as a non-minority is slightly lower than the 
proportion of non-minorities as a whole. Does 
this imply that minority faculty members tend to 
be isolated from non-minorities? Is this tendency 
greater than would be expected if these faculty 
members were distributed across the eight units 
at random? 
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To answer these questions, we used the 

present analytic methods. Application of 
equation 3) above shows that the observed level 
of minority exposure to non-minorities (mPnon-m

* 
= .8724) is slightly greater than what would be 
produced by random segregation: E(mPnon-m

*) = 
.8700. There is little dispersion in the values of 
mPnon-m

* across all possible assignments of these 
faculty members to the 8 units; the square root 
of equation 4) yields S.D. (mPnon-m

*) = .0089. 
Applying the equations in the Appendix, we find 
that the distribution of mPnon-m

* is negatively 
skewed: γ1(mPnon-m

*) = -1.25. Plugging into 
equation 12), a standardized measure of minority 
faculty exposure to non-minorities is Z = +.27. 
By any significance testing criterion, this level 
of the intergroup contact could have been 
produced by chance. 

Although the isolation of minority 
faculty members could be expressed in terms of 
a complementary P* index ( mPm

* = .1132 with Z 
= -.27), we will express it in terms of Bell’s η2.  

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The observed value of η2 = .0162 – a value that 
is close to what would be expected under 
random segregation: E(η2) = .0189. For an 
analogue to the Z-statistic in equation 12), we 
could divide the difference between observed 
and expected values of η2 by .01004 (the 
standard deviation of η2) and find that in this 
standardized metric Z = -.27 – the same value 
that was found for the P* isolation index. These 
values will always be the same. 

Even if minority faculty are integrated at 
this institution, students may be segregated. We 
checked for segregation among some 
undergraduates who were enrolled in a 
Psychology course. Weekly, students choose  to   
attend   any  one of   the six  laboratory  sessions 
that are taught in conjunction with the course. 
Table 2 depicts the number of minority and non-
minority students who attended different 
laboratory sessions one week during the Spring 
semester of 2000. Each student’s minority status 
was reported by a laboratory supervisor who was 
unaware of the purpose of the report. 

 
 
 

Table 1. Faculty Members at an American University, By Educational Unit and Minority Status 

                                                          Minority  Non-Minority 
Educational Unit: 
          
          Humanities     11        48 
          Social Science                     5        47 
          Natural Science       7        76 
          Fine Arts                    6        42 
          Nursing                                1        21 
          Business                                7        42 
          Education       3        21 
          Divinity                    2        12 
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Conclusion 
 

Do students avoid intergroup contact by 
choosing to attend laboratories with peers of 
their own ethnicity?  To address this question, 
we computed the probability of a minority 
student attending the same laboratory session as 
another minority student. Computations showed 
that the isolation index mPm

* = .494 – far greater 
than total proportion of minority students in this 
sample (.233), and somewhat greater than the 
isolation index that random laboratory choices 
would have produced: E(mPm

*) = .366. 
 In this sample, random laboratory 
choices produce sufficient variability in values 
of the isolation index [S.D.(mPm

*) = .073] that 
the observed degree of minority isolation would 
not (by a two-tailed test) differ significantly 
from its expected value (Z = +1.75).  Bell’s η2 
index (.340) also exceeds its expected value 
(.172) by an  amount  that  yields  the   same   
value of  Z (+1.75, with S.D. = .095). Of course, 
these small-scale examples are only illustrative. 
Larger data sets might yield different 
conclusions. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
We hope that these analytic techniques 

will be useful to students of segregation. They 
require no assumption about the sampling of 
observations, or the form of any population 
distribution. They reflect randomizations of the 
data at hand (Edington, 1995).  
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The coefficient of skewness of P* is defined as γ1(jPk
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A Critical Examination Of The Use Of 
Preliminary Tests In Two-Sample Tests Of Location 
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This paper explores the appropriateness of testing the equality of two means using either a t test, the 
Welch test, or the Wilcoxon-Mann-Whitney test for two independent samples based on the results of 
using two classes of preliminary tests (i.e., tests for population variance equality and symmetry in 
underlying distributions). 
 
Key words: t test, Welch, Wilcoxon-Mann-Whitney, Levene, preliminary test for variance, triples test, 
test of symmetry, test selection 
 
 

Introduction 
 
In practice, the two-sample t test is widely used 
to test the equality of two means. However, it is 
well known that the assumptions of 
independence (which will not be discussed in 
this paper), variance homogeneity and normality 
must be met for the two-sample t test to perform 
well. Results from Zimmerman and Williams 
(1989), Gans (1981), Murphy (1976), and 
Snedecor & Cochran (1967) have demonstrated 
that the Welch test or the Wilcoxon-Mann-
Whitney (WMW) test is more robust in certain 
cases of variance heterogeneity or non-
normality.  
             Based on the above results for testing 
the equality of means, we conclude the 
following: 
 
 1. The t test is robust when the 
distributions are symmetric and the variances are 
equivalent. 
 2. The Welch test is robust when the 
distributions are symmetric and the variances are 
unequal. 
 
 
Kimberly T. Perry is a Senior Research Advisor, 
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interest are innovated clinical study designs, 
multiple endpoint analysis, and interim analysis. 
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3. The Wilcoxon-Mann-Whitney test is 

robust when the distributions are asymmetric 
and the variances are equivalent. 

4. None of the above three methods are 
robust when the distributions are asymmetric 
and the variances are unequal. 

 
Therefore it would be useful to use the 

results from two classes of preliminary test to 
determine which of the three tests, the t test, the 
Welch test, or the Wilcoxon-Mann-Whitney test, 
should be used to test the hypothesis Ho:  µ1 = 
µ2. One class of preliminary tests determines 
whether the population variances differ, and the 
other class ascertains if the underlying 
distributions are symmetric or skewed. 
 
Tests of Variances Used as Preliminary Tests 

The goal of the preliminary test for 
variance heterogeneity is to indicate when to 
avoid using mean tests that are sensitive to 
variance heterogeneity. 

Many methods for testing variance 
homogeneity have been developed and 
compared. Brown and Forsythe (1974), 
Conover, M.E. Johnson, and M.M. Johnson 
(1981), Loh (1987), and O’Brien (1979) have 
conducted simulations to examine the robustness 
of many popular methods for testing variance 
homogeneity. The L50, the Levene test using the 
median, was found to be robust for the non-
normal cases and was one of the procedures 
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recommended by Conover et al. (1981) as well 
as the other authors cited above. Based on the 
above cited literature, the Levene test using the 
median might be a robust preliminary test 
procedure. 

Furthermore, Olejnik (1987) conducted 
a study where the Levene test using the median 
was compared to the O’Brien procedure (1979) 
as a preliminary test procedure preceding the 
means test. His results showed the Levene test 
and the O’Brien procedure used as preliminary 
tests of variance homogeneity were only slightly 
more robust than using the t test alone. It is 
noted that Olejnik (1987) used significance 
levels of 5% and 10% for testing variance 
homogeneity in the preliminary test procedure. 

It is of interest to examine the 
performance of the L50 test as a preliminary test 
procedure with a higher significance level. A 
higher significance level would aid in 
controlling the Type II error. For this simulation 
the Levene test at a significance level of 25% 
was arbitrary selected. 
 
Test of Symmetry Used as Preliminary Tests 

Randles, Fligner, Policello, and Wolfe 
(1980) compared three procedures for testing 
whether a univariate population is symmetric 
about some unspecified value compared to a 
large class of asymmetric distribution 
alternatives.  These are the Triples test, Gupta’s 
skewness test (Gupta, 1967) and Gupta’s 
nonparametric procedure (Gupta, 1967). Their 
results show that the Triples test is superior to 
either competitor for testing the hypothesis of 
symmetry while possessing good power for 
detecting asymmetric alternative distributions 
(Randles et al., 1980). 

In addition, Cabilio & Masaro (1996) 
and Perry and Stoline (2002) compared the 
Triples test to other tests of symmetry and the 
Triples test continued to perform well both on 
robustness and power. Based on the above 
studies, the Triples test is selected as a possible 
preliminary test of symmetry/skewness prior to 
the testing of means equality in a test selection 
procedure. A significance level of 5% for testing 
of symmetry was arbitrary chosen for this 
simulation. 
 
 

Test Selection Procedure 
The test selection procedure, hereafter 

denoted as the TS procedure, will select either a 
t test, the Welch test, or the Wilcoxon-Mann-
Whitney test based on the results of the two 
preliminary tests. One class of preliminary tests 
determines whether the population variances 
differ, and the other class ascertains if the 
underlying distributions are symmetric or 
skewed. The "recommended" L50 test (hereafter 
denoted Levene test) will be assessed as 
preliminary test for variance homogeneity, 
whereas, the Triples test will be assessed as a 
preliminary test of symmetry/skewness. Based 
on the results of the two preliminary tests, the 
TS procedure is constructed in the following 
way: 
 
 1. The t test is used to test the equality 
of means if symmetry is accepted and variance 
homogeneity is accepted. 
 2. The Welch test is used to test the 
equality of means if symmetry is accepted and 
variance homogeneity is rejected. 
 3. The Wilcoxon-Mann-Whitney test is 
used to test the equality of means if symmetry is 
rejected and variance homogeneity is accepted. 

4. The Welch test is used to test the 
equality of means if symmetry is rejected and 
variance homogeneity is rejected. 
 
It is noted that robust methods exist for testing 
Ho:  µ1 = µ2   for cases #1-3 above, but no robust 
method exists for case #4 . 
 

Methodology 
 

This section contains the details describing the 
two-sample methodology used to test the 
equality of means and variance homogeneity 
under selected distributions. 

Let x11, . . ., x1n1 be a random sample 
with sample size of n1 from a distribution 
denoted f 1(x; µ1, σ1); and x21, . . ., x2n2 be a 
random sample with sample size of n2 from a 
distribution denoted f 2(x; µ2, σ2). It is assumed 
that E(xij) = µi and Var(xij) = σi

2 for each i= 1, 2 
and j = 1,…, ni.. The two samples are assumed to 
be independent. Let the sample mean and 
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sample variance for xi1, . . . , xini be denoted as xi 
and si

2 for i = 1, 2, respectively. 
 
Testing the Equality of Means 
 The t test, the Welch test, and the 
Wilcoxon-Mann-Whitney test procedures of Ho:  
µ1 = µ2 vs. H1:  µ1 ≠ µ2, are now described. 
 The t test is the given as 
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 The Welch test statistic is 
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which uses Satterthwaite’s (1946) 
approximation for the degrees of freedom: 
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 The Wilcoxon-Mann-Whitney statistic 
is 
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where S is the sum of the ranks assigned to the 
sample observations from group 1, and z is an 
approximate normal deviate. 
 The α-level tests of Ho: µ1 = µ2 vs. H1: 
µ1 ≠ µ2 are |t| > tα/2 , n1 + n2 –2, |t w | > tα/2,df , and |z| 
> zα/2 for the t test, the Welch test, and the 
Wilcoxon-Mann-Whitney test, respectively, 
where zα is the upper α-point of the standard 
unit normal distribution and tα,r is the upper 
α-point of a t distribution with r degrees of 
freedom. 
 

Testing the Equality of Variances 
 The Levene test of Ho: 2

2
2
1 σσ =  vs. H1: 

2
2

2
1 σσ ≠  is now described, assuming the 

sampling conditions described above hold. 
 The Levene α-level test is 
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which is the one-way analysis of variance F-test 
computed on the zij values, where zij = |xij-
median of group i|. 
 
Testing of Symmetry 
 The Triples test, as described in a paper 
by Randles, Fligner, Policello, and Wolfe 
(1980), is a test to determine if a distribution is 
symmetric. The procedure used to obtain the test 
statistic is outlined in Perry and Stoline (2002) 
and is not repeated here. 
 
Selected Configurations of Distributions, 
Sample Sizes and Variance Ratios Used in 
the Simulation 
 Type I error rates for testing the 
homogeneity of means were simulated under a 
variety of conditions using four probability 
distributions. Each of these four distributions is 
classified into one of two groups: (1) symmetric 
and (2) asymmetric.  
 The Results section examines the use of 
the TS procedure using two classes of 
preliminary tests (i.e., testing for variance 
homogeneity and testing for symmetry) 
preceding the test of equality of means, Ho: µ1 = 
µ2 for the two symmetric distributions: (1) 
normal and (2) double exponential. In addition, 
the Results section examines the TS procedure 
for the two asymmetric distributions: (1) 
lognormal and (2) gamma. 
 To evaluate the performance of the 
preliminary test of variance homogeneity, the 
following standard deviation ratios R = σ1 / σ2 
are used: 0.25, 0.50, 1.0, 2.0, and 4.0. Clearly 
the standard deviations are equal when R = 1. 
Sample size configurations (n1:n2) used in the 
simulations are: (10:10), (10:20), (10:40), and 



KIMBERLY T. PERRY 317

(20:20). This allows for both direct and indirect 
pairings to be examined. 
 Direct pairing occurs when either R = 
0.25 and 0.50 holds with any of the imbalanced 
samples (10:20) and (10:40). Direct pairing 
occurs when the group with the smaller σ is 
associated with the group with the smaller 
sample size.  
 Indirect pairing occurs when either R = 
2.0 and 4.0 holds with any of the imbalanced 
sample sizes (10:20) and (10:40). Indirect 
pairing occurs when the group with the smaller 
σ is associated with the group with the larger 
sample size. 
 
Generation of Random Realizations 
 This section contains an outline of how 
the random realizations are generated for each 
specified distribution. As before, let x11, . . ., x1n1 
be a random sample of size n1 from the 
distribution f1(x; µ1, σ1); and x21, . . ., x2n2 be a 
random sample of size n2 from the distribution 

f2(x; µ2, σ2), where it is assumed that the two 
samples are independent. 
 The random realizations from the 
standardized distribution f2 (x; µ2, σ2) are 
generated for each of the selected distributions. 
For the first sample, f1 (x; µ1, σ1), the random 
realizations are generated in the same fashion, but 
shape parameters and scale parameters are 
adjusted to yield the desired standard deviation 
ratio R = σ1/σ2. Details on each of the four 
selected distributions are outlined in Perry and 
Stoline (2002). The IMSL random number 
generator RNSET, which initializes the seed, is 
used in all of the simulations. 
 
Testing the Equality of Means Using the TS 
Procedure 
 The TS procedure has been described in 
the Introduction section. Figure 1 is a diagram of 
how the TS procedure is constructed. 

 
 
 
 

Figure 1. Components of the TS procedure 
______________________________________________________________________________________ 
 
         Ho:  Symmetry    
 
        Accepted  Rejected 
            ↓       ↓ 
Ho:  Variance Homogeneity Accepted      t test   WMW test 
     (Ho:  σ1 = σ2) 
    Rejected     Welch test  Welch test____ 
Notes: WMW = Wilcoxon-Mann-Whitney. 
 
 
 
Asymmetry is concluded if at least one of the 
samples is declared skewed. Another alternative 
would be that skewness is declared significant 
only if both samples are skewed.  It was 
arbitrary chosen for this simulation to use the 
former approach with asymmetry being 
concluded if at least one of the samples is 
declared skewed. 
 
 

Results 
 

In this section, the performance of the TS 
procedure is evaluated.   The “TS procedure” 
denotes the results of the test selection procedure 
using the 5% Triples test for testing symmetry 
and the 25% Levene test for testing variance 
homogeneity. 
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Symmetric Distributions 
 For each of the two symmetric 
distributions (i.e., normal and double 
exponential) as defined in Perry and Stoline 
(2002), the simulations are conducted for the 
four selected sample size combinations (n1:n2)= 
(10:10), (10:20), (10:40), and (20:20). For each 
of the four sample size combinations, the 
simulated null rejection rate is generated for the 
specified ratio R = σ1/σ2. These are: (1) R = 
0.25, (2) R = 0.50, (3) R = 1 (equal variance), (4) 
R = 2.0, and (5) R = 4.0. 
 The results of the simulations for the 
two symmetric distributions are combined in 
Table 1. The proportions of rejections are 
expressed as a percent for the t test, the Welch 
test, the Wilcoxon-Mann-Whitney test, and the 
TS procedure. These proportions are tabulated 
for each R grouping combined over all (8) 
combinations of sample size pairs (4) and 
distributions (2) for the five categories listed 
below: 
 
     1.  x ≤ 2.5  (extremely conservative) 
     2.  2.5 < x ≤ 4.0  (conservative) 
     3.  4.0 < x ≤ 6.0  (robust) 
     4.  6.0 < x ≤ 10.0  (liberal) 

5. x > 10.0  (extremely liberal) 
 
 The value x represents the percentage of 
rejections for testing Ho: µ1 = µ2 based on 10,000 

simulations for each sample size. Each entry in 
the following tables denotes the frequency at 
which a < x ≤ b occurs. The outcome of the 
"test" is defined to be robust if the simulated null 
rejection rate is > 4.0 and ≤ 6.0. 
 
Equal Variance Cases (R=1) 
 Table 1 shows, as anticipated, that the t 
test is robust for the equal variance cases. 
However, the other procedures are also robust. 
None of the procedures examined show 
simulated rejection rates ≤ 4.0% or > 6%. 
 
Unequal Variance Cases 
 Table 1 shows the t test is extremely 
conservative in 50% of the simulations for the R 
= 0.25 and 0.50 cases. The WMW test is liberal 
for the R = 0.50 cases and can be extremely 
conservative for both the R = 0.25 and the R = 
0.50 cases. The Welch test and the TS procedure 
are robust for both the R = 0.25 and R = 0.50 
cases. 
 For the R = 2.0 cases the t test is 
extremely liberal. The WMW test tends to be 
liberal and can be extremely liberal. The TS 
procedure is reasonably robust. The Welsh test 
is robust. 
 For the R = 4.0 cases, the t test and the 
WMW test are extremely liberal in 50% of the 
simulations. The Welsh test and the TS 
procedure are reasonably robust. 
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Table 1. Summary Of Symmetric Distributions Using TS Procedure: Frequency (%) Of Simulated Null 
Rejection Rate (%) With Nominal 5% Level. 
____________________________________________________________________________________________ 
       R Test Extremely Conservative Robust Liberal Extremely 
  Conservative     Liberal 
       ≤2.5 2.5< x ≤4 4< x ≤6 6< x ≤10   x > 10 
____________________________________________________________________________________________ 

σ1 = σ2 

  1.00 t     0.0       0.0      100.0     0.0    0.0 
 W     0.0       0.0      100.0      0.0    0.0 
 WMW     0.0       0.0      100.0     0.0    0.0 
 TS     0.0       0.0      100.0     0.0    0.0 
____________________________________________________________________________________________ 

σ1 ≠ σ2 
 0.50 t   50.0       0.0        50.0    0.0    0.0 
 W     0.0       0.0      100.0    0.0    0.0 
 WMW   25.0     25.0          0.0  50.0    0.0 
 TS     0.0       0.0       100.0    0.0    0.0 
 
0.25 t   50.0       0.0        50.0    0.0    0.0 
 W     0.0       0.0      100.0    0.0    0.0 
 WMW   25.0     25.0        50.0    0.0    0.0 
 TS     0.0       0.0      100.0    0.0    0.0 
 
2.0 t     0.0       0.0        50.0  12.5  37.5 
 W     0.0       0.0      100.0    0.0    0.0 
 WMW     0.0       0.0        50.0  37.5  12.5 
 TS     0.0       0.0        75.0  25.0    0.0 
 
4.0 t     0.0       0.0        37.5  12.5  50.0 
 W     0.0     12.5        87.5    0.0    0.0 
 WMW     0.0       0.0          0.0  50.0  50.0 
 TS     0.0     12.5        87.5    0.0    0.0 
_____________________________________________________________________________________________ 
Notes: Table is based on the two symmetric distributions (normal and double exponential) and four 
sample sizes. W = Welch, WMW = Wilcoxon-Mann-Whitney. 
 
 Based on the above simulation results, 
the Welch test and the TS procedure are 
reasonably robust for testing the Ho: µ1 = µ2 for 
the symmetric cases examined. 
 
Results For Asymmetric Distributions 
 To evaluate the overall performance of 
the procedures for varying degrees of variance 
heterogeneity, the results of the simulation for 
the two asymmetric distributions as defined in 
Perry and Stoline (2002) are combined in Table 
2 using the same format as previously defined 
for the symmetric distributions. 
 For the gamma (2,1) distribution the 
coefficient of skewness ranged from 0.4 when R 
= 0.25 to approximately 5.7 when R = 4.0. For 

the lognormal (0, 0.40) distribution, the 
coefficient of skewness ranged from 0.3 when R 
= 0.25 to approximately 9.6 when R = 4.0. For 
each value of R within the gamma and 
lognorma1 case, a skewness ratio has been 
calculated. The skewness ratio is the skewness 
of distribution #1 divided by the skewness of 
distribution #2 within each gamma and 
lognormal case. The skewness ratios are 
displayed in Table 2. 
 
Equal Variance Cases (R=1) 
 A summary of the simulated null 
rejection rates for the two asymmetric 
distributions for the equal variance cases are 
presented in Table 2. The WMW test and t test  
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are robust for the R = 1 cases. The Welsh test is 
robust for approximately 88% of the R = 1 cases. 
The TS procedure tends to be liberal for 
approximately 38% of these cases. None of the 
procedures are extremely liberal, extremely 
conservative, or conservative. 
 
Unequal Variance Cases 
 Table 2 shows the Welch test is robust 
in approximately 75% of the R = 0.50 cases. The 
Welch test can be liberal for some R = 0.50 
cases. The t test is conservative or extremely 
conservative for approximately 50% of the R = 
0.50 cases. Furthermore, the t test is liberal in 
approximately 38% of the simulations for the R 
= 0.50 cases. The WMW test and the TS 
procedure are liberal or extremely liberal in at 
approximately 63% and 50%, respectively, for 
the R= 0.50 cases. 
 For the R = 0.25 cases, none of the test 
procedures are robust. The Welch test and the 
TS procedure tend to be liberal. The t test is 
liberal (50%) as well as extremely conservative 
(50%). The WMW test is liberal or extremely 
liberal in approximately 88% of the simulations 
for the R = 0.25 cases. 
 Table 2 shows all procedures tend to be 
liberal or extremely liberal for the R = 2.00 
cases. Furthermore, all procedures are extremely 
liberal for 100% of the R = 4 cases. 
 In summary for the R = 1 cases, the t test, 
the Welsh test, and the WMW test are robust in at 
least 87% of the simulations. The TS procedure is 
robust in approximately 63% of the simulations 
for the R = 1 cases. For the R = 0.50 cases, the 
Welch test is robust for approximately 75% of the 
simulated cases. For the R = 0.25, 2.0 and 4.0 
cases, all procedures tend to be liberal. The degree 
of liberal bias increases as the degree of variance 
heterogeneity increases. 

 
Frequency (%) Each Means Test Is Used 
 In addition to the simulated null rejection 
rates, the TS procedure can report the frequency 
(%) at which each of the test procedures is used 
for a given sample size and R value. Results for 
the imbalanced case n1 = 10 and n2 = 20, and the 
balanced case n1 = n2 = 20 are summarized for the 
two symmetric distribution cases combined and 
the two asymmetric distribution cases combined. 
 Tables 3 and 4 summarize the frequency 
(%) at which each of the test procedures is used 
for the two symmetric distributions cases 
combined, and the two asymmetric cases 
combined, respectively. The format for Tables 3 
and 4 is as follows. For each R value, the 
frequency at which the t test, the Welch-S test, the 
WMW test, and the Welch-AS test was selected 
by the TS procedure is reported. In these tables, 
the t test, Welch-S, WMW, and Welch-AS denote 
the following: 
 
 t test: The t test was used because the TS 
procedure concluded σ1 = σ2 and symmetry was 
accepted. 
 
 Welch-S: The Welch test was used 
because the TS procedure concluded σ1 ≠ σ2 and 
symmetry was accepted. 
 
 WMW: The WMW test was used 
because the TS procedure concluded σ1 = σ2 and 
symmetry was rejected. 
 
 Welch-AS: The Welch test was used 
because the TS procedure concluded σ1 ≠ σ2 and 
symmetry was rejected. 
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Table 2. Summary Of Asymmetric Distributions Using TS Procedure: Frequency (%) Of Simulated Null 
Rejection Rate With Nominal 5% Level. 
_____________________________________________________________________________________ 
 R Skewness Test Extremely Conservative Robust Liberal Extremely 
 Ratio Conservative      Liberal 
 Gamma, LN      ≤2.5 2.5< x ≤4 4< x ≤6 6< x ≤10   x > 10 
_____________________________________________________________________________________ 

σ1 = σ2 
1.00 1,1 t      0.0       0.0      100.0     0.0     0.0 
 W      0.0       0.0        87.5     12.5     0.0 
 WMW      0.0       0.0      100.0     0.0     0.0 
 TS      0.0       0.0        62.5    37.5     0.0 
_____________________________________________________________________________________ 

σ1 ≠ σ2 
0.25 0.29,0.23 t    50.0       0.0          0.0   50.0     0.0 
 W      0.0       0.0        37.5   62.5     0.0 
 WMW      0.0       0.0        12.5   37.5   50.0 
 TS      0.0       0.0        37.5   62.5     0.0 
 
0.50 0.50,0.46 t    25.0     25.0        12.5   37.5     0.0 
  W      0.0       0.0        75.0   25.0     0.0 
 WMW      0.0     12.5        25.0   50.0   12.5 
 TS      0.0       0.0         50.0   50.0     0.0 
 
2.0 2.0, 2.39 t      0.0       0.0          0.0   50.0   50.0 
 W      0.0       0.0          0.0   75.0   25.0 
 WMW      0.0       0.0          0.0     0.0 100.0 
 TS      0.0       0.0          0.0    12.5   87.5 
 
4.0 4.04, 7.4 t      0.0       0.0          0.0     0.0 100.0 
 W      0.0       0.0          0.0     0.0 100.0 
 WMW      0.0       0.0          0.0     0.0 100.0 
  TS      0.0       0.0          0.0     0.0 100.0 
_____________________________________________________________________________________ 
Notes:  Table is based on the two asymmetric distributions [lognormal (0, 0.40) & G(2,1)]and four sample 
sizes. The skewness ratio is the skewness for distribution #1/distribution #2 for each gamma and 
lognormal case, respectively, at each R value. W = Welch, WMW = Wilcoxon-Mann-Whitney. 
 
 
Symmetric Cases 
 Table 3 contains the frequency (%) at 
which each of the test procedures is used in the 
two symmetric distributions combined for the 
balanced and imbalanced cases, respectively. 
 
Equal Variances (Includes the Imbalanced and 
Balanced Cases) 
 For the R = 1.00 case with equal sample 
sizes, the t test is known to be robust for the 
symmetric distributions. Results in Table 3 show 
that the TS procedure correctly selected the t test 

for approximately 69% of the simulations. The 
Welch-S test was incorrectly selected for 
approximately 22% of the simulations when using 
the TS procedure. The WMW test was incorrectly 
selected for only 7% of the simulations when 
using the TS procedure. 
 For the R = 1.00 case with unequal 
sample sizes, Table 3 shows that the TS procedure 
selected the t test for 70% of the simulations. The 
TS procedure incorrectly selected the Welch-S 
test for nearly 23% of the simulations. However, 
the WMW test was incorrectly selected for less 
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than 6% of the simulations when using the TS 
procedure. 
 
Unequal Variances (Includes the Imbalanced and 
Balanced Cases) 
 For the R = 0.50 and 2.0 cases with equal 
sample sizes, Table 3 shows the TS procedure 
correctly selected the Welch-S test for 
approximately 81% of the simulations. The TS 
procedure incorrectly selected the t test in 

approximately 10% of the simulations and 
incorrectly concluded asymmetry in 
approximately 9% of the simulations. 
 For the R = 0.50 and 2.0 cases with 
unequal sample sizes, Table 3 shows the TS 
procedure correctly selected the Welch-S test for 
about 70%-73% of the simulations. The TS 
procedure incorrectly selected the t test for about 
20%-23% of the simulations. 

 
Table 3. Frequency (%) At Which Each Means Test Is Used In The TS Procedure For The Symmetric 
Distributions. 
 

n1,n2 σ1 , σ2 R t test Welch-S WMW Welch-AS 

20,20 σ1 = σ2 1.00 68.91 21.96 7.10 2.04 

 σ1 ≠ σ2 0.25 0.09 90.78 <0.01 9.13 

  0.50 10.44 80.43 1.30 7.84 

  2.00 10.33 80.54 1.28 7.86 

  4.00 0.07 90.80 0.02 9.12 

10,20 σ1 = σ2 1.00 70.30 22.69 5.64 1.38 

 σ1 ≠ σ2 0.25 0.58 92.41 0.05 7.00 

  0.50 20.02 72.97 2.06 4.96 

  2.00 22.76 70.23 1.92 5.10 

  4.00 0.97 92.02 0.15 6.87 
 
 
 
 For the R = 0.25, and 4.0 symmetric 
cases, the Welch test is known to be robust. Table 
3 shows the TS procedure correctly used the 
Welch-S test for about 90%-92% of the 
simulations regardless of the sample size 
configurations. The Welch-AS test was 
incorrectly used for about 7-9% of the simulations 
for each of these same cases. 
 In summary, for the combined symmetric 
cases, the TS procedure correctly selected the t 
test for approximately 70% of the R = 1 cases 
regardless of the sample size configuration. For 
the R = 0.50 and 2.0 cases, the TS procedure 
correctly selected the Welch-S test for 
approximately 81% of the simulations with equal 
sample sizes and about 70% - 73% of the simula- 

 
 
tions with unequal sample sizes. For the R = 0.25 
and 4.0 cases, regardless of sample size 
configuration, the TS procedure correctly used the 
Welch-S test for about 90%-92% of the 
simulations. It is noted for the R ≠ 1 cases, the TS 
procedure incorrectly concluded asymmetry for 
about 7%-9% of the simulations. 
 
Asymmetric Cases 
 Table 4 contains the frequency (%) at 
which each of the test procedures is used in the 
two asymmetric distributions combined for the 
balanced and imbalanced cases, respectively. 
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Equal Variances (Includes the Imbalanced and 
Balanced Cases) 
 For the R = 1 case with equal sample 
sizes, the WMW test is known to be robust for the 
asymmetric distributions. Results in Table 4 
shows the TS procedure correctly selected the 
WMW test for approximately 42% of the 
simulations. The TS procedure incorrectly 
selected the Welch-AS test in approximately 12% 
of the simulations with homogeneous variances. 
The t test was incorrectly selected by the TS 
procedure in approximately 33% of the 
simulations. 
 For the R = 1 cases with unequal sample 
sizes, Table 4 shows the TS procedure correctly 
selected the WMW test for approximately 31% of 
the simulations. As also seen for the balanced 
sample size cases, the TS procedure incorrectly 
selected the Welch-AS test in approximately 8% 
of these cases. In addition, the t test was 
incorrectly selected by the TS procedure in 
approximately 45% of the simulations. 
 
Unequal Variances (Imbalanced and Balanced 
Cases) 
 For the equal sample size cases, Table 4 
shows the TS procedure incorrectly selected the 
Welsh-S in approximately 50% of the R=0.50 
cases and approximately 10% of the R=2.0 cases. 
Furthermore, the TS procedure incorrectly 
selected the WMW test in approximately 6% of 
the R = 0.50 cases and approximately 36% in the 
R = 2.0 cases. The Welch-AS test was correctly 
selected for approximately 35% and 47% of the R 
= 0.50 and 2.0 cases, respectively, when using the 
TS procedure.  
 For the R = 0.50 and 2.0 cases with 
imbalanced sample sizes, results in Table 4 shows 
the same trends as was seen for the equal sample 
size cases. The TS procedure incorrectly used the 
WMW test for approximately 10% of the R = 0.50 
and approximately 28% in the R = 2.0 cases; and 
correctly selected the Welch-AS test for about 25-
26% of the R = 0.50 and 2.0 cases. 
 Results in Table 4 shows for the balanced 
case that the TS procedure correctly selected the 
Welch-AS test for approximately 37% of the R = 
0.25 cases. The WMW test was incorrectly used 
for about 2% of the R = 0.25 cases. 

 Results in Table 4 for the unequal sample 
size case show that the TS procedure correctly 
used the Welch-AS test for approximately 35% of 
the R = 0.25 cases, whereas the WMW test and 
the Welch-S test were each incorrectly selected 
for about 20% and 65%, respectively, of the R = 
0.25 cases. 
 The TS procedure incorrectly used the 
WMW test for approximately 43% of the R = 4.0 
cases and the Welch-AS test was correctly used 
for about 52% of the R = 4.0 equal sample size. 
For the R= 4.0 unequal sample size cases, the TS 
procedure incorrectly used the WMW test for 
approximately 32% of the simulations and the 
Welsh-AS test was correctly used for 
approximately 43% of the simulations. 
 In summary, for the R = 1 cases 
regardless of the sample size configuration, the TS 
procedure used the WMW test correctly for about 
31%-42% of the simulations. For the R = 0.50 
cases, the WMW test was incorrectly selected for 
about 6%-10% of the simulations when using the 
TS procedure. The TS procedure generally 
correctly used the Welch-AS test for about 35%-
37% of the 0.25 cases.  For the R= 2.0 cases, the 
TS procedure selected the Welsh-AS test correctly 
for about 25%-47% of the simulations and the 
WMW test incorrectly for about 28%-36% of the 
simulations. The TS procedure selected the 
Welch-AS test correctly for about 43%-52% of 
the simulations and the WMW test incorrectly 
each for about 32%-43% of the simulations for the 
R= 4.0 cases. 
 
Summary of the TS Procedure Using an Alpha 
Level of 5% of the Triple’s Test 
 For the cases where variance 
homogeneity and symmetry each are unknown to 
the practicing statistician, an overall test using the 
TS procedure yielded improved results with 
respect to robustness over using the t test or the 
Wilcoxon-Mann-Whitney test alone, except for 
the asymmetry unequal variance cases, where no 
method maintained the stated Type I error rate. 
The Welch test is recommended as a robust test 
for testing Ho: µ1 = µ2 for the symmetric cases 
examined. The TS procedure is also reasonably 
robust. 
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Table 4.  Frequency (%) At Which Each Means Test Is Used In The TS Procedure For The Asymmetric 
Distributions. 
 

n1,n2 σ1 , σ2 R t test Welch-S WMW Welch-AS 

20,20 σ1 = σ2 1.00 32.98 12.43 42.22 12.38 

 σ1 ≠ σ2 0.25 0.02 63.31 0.02 36.66 

  0.50 9.47 49.95 5.90 34.69 

  2.00 6.88 9.81 36.21 47.11 

  4.00 1.79 2.63 43.26 52.33 

10,20 σ1 = σ2 1.00 45.02 16.59 30.50 7.90 

 σ1 ≠ σ2 0.25 0.43 64.58 0.20 34.79 

  0.50 17.73 46.61 9.79 25.88 

  2.00 21.73 24.83 28.32 25.13 

  4.00 9.74 15.74 31.55 42.98 
 
 The performance of the TS procedure was 
also evaluated by the frequency at which the TS 
procedure selected the most appropriate test of 
means. For the symmetric equal variance cases, 
the TS procedure correctly selected the t test for 
approximately 70% of the simulated. For the 
symmetric cases with unequal variances (R = 
0.25, 0.50, 2.0, and 4.0), the frequency at which 
the Welch test was correctly selected was about 
70%-92% for the TS procedure. Asymmetry was 
incorrectly concluded for about 7%-9% of the 
simulated symmetric cases when using the TS 
procedure. 
 The TS procedure correctly concluded 
asymmetry for about 35%-96% of the simulated 
cases for the families of asymmetric distributions 
examined. For the asymmetric equal variance 
cases, the TS procedure correctly selected the 
Wilcoxon-Mann-Whitney test for about 31%-42% 
of the simulations. For the asymmetric cases with 
unequal variances, the TS procedure correctly 
concluded asymmetry and variance heterogeneity 
for about 25%-52% of the simulations.  
 Results showed that the TS procedure 
concluded symmetry too often (for 45%-62% of 
the asymmetric cases with equal variances). 
 Since the TS procedure examined in this 
simulation study concluded symmetry too often, it 
would be of interest to examine the performance 

of an TS procedure using the Triples test for 
testing of symmetry at a higher significance level 
such as α = 0.25.  
 
Further Investigation of the TS Procedure Using 
an Alpha Level of 25% for the Test of Symmetry 
 As the results above showed that the TS 
procedure was concluding symmetry too often, 
the simulations were repeated using the TS 
procedure with the alpha level set at 25% for the 
Triples test. To compare the TS procedure using 
the Triples test at alpha level 25% versus 5%, only 
the results of the frequency (%) at which each 
means test is used are displayed.  
 Tables 5 and 6 summarize the frequency 
(%) at which each of the test procedures is used 
for the two symmetric distributions cases 
combined, and the two asymmetric cases 
combined, respectively. The format for Tables 5 
and 6 is the same as described above in section 
“Frequency (%) at Which Each Mean Test is 
Used.” 
 
Frequency (%) Each Means Test is Used For 
Symmetric Cases 
 Table 5 contains the frequency (%) at 
which each of the test procedures is used in the 
two symmetric distributions combined for the 
balanced and imbalanced cases, respectively. 
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Equal Variances (Imbalanced and Balanced 
Cases) 
 For the R = 1.00 case with equal sample 
sizes, the t test is known to be robust for the 
symmetric distributions. Results in Table 5 show 
that the TS procedure correctly selected the t test 
for approximately 46% of the simulations. The 
Welch-S test was incorrectly selected for 
approximately 14% of the simulations when using 
the TS procedure. The WMW test was incorrectly 
selected for only 32% of the simulations when 
using the TS procedure. 
 For the R = 1.00 case with unequal 
sample sizes, Table 5 shows that the TS procedure 
selected the t test for approximately 48% of the 
simulations. The TS procedure incorrectly 
selected the Welch-S test for approximately 15% 
of the simulations. However, the WMW test was 
incorrectly selected for about 30% of the 
simulations when using the TS procedure. 
 
 
 

Unequal Variances (Imbalanced and Balanced 
Cases) 
 For the R = 0.50 and 2.0 cases with equal 
sample sizes, Table 5 shows the TS procedure 
correctly selected the Welch-S test for 
approximately 58% of the simulations. The TS 
procedure incorrectly selected the t test in 
approximately 2% of the simulations and 
incorrectly concluded asymmetry in 
approximately 40% of the simulations. 
 For the R = 0.50 and 2.0 cases with 
unequal sample sizes, Table 5 shows the TS 
procedure correctly selected the Welch-S test for 
about 54%-57% of the simulations. The TS 
procedure incorrectly selected the t test for about 
6%-9% of the simulations. 
 For the R = 0.25, and 4.0 symmetric 
cases, the Welch test is known to be robust. Table 
5 shows the TS procedure correctly used the 
Welch-S test for about 60%-63% of the 
simulations regardless of the sample size 
configurations. The Welch-AS test was 
incorrectly used for about 37%-40% of the 
simulations for each of these same cases. 

 
 
 
Table 5. Frequency (%) At Which Each Means Test Is Used In The TS Procedure For The Symmetric 
Distributions. 
 

n1,n2 σ1 , σ2 R t test Welch-S WMW Welch-AS 

20,20 σ1 = σ2 1.00 46.38 13.77 32.42 7.44 

 σ1 ≠ σ2 0.25 0.00 60.15 0.01 39.85 

  0.50 2.38 57.77 1.78 38.08 

  2.00 2.46 57.69 1.67 38.19 

  4.00 0.00 60.15 0.00 39.81 

10,20 σ1 = σ2 1.00 47.89 15.14 29.97 7.01 

 σ1 ≠ σ2 0.25 0.02 63.00 0.01 36.98 

  0.50 6.24 56.78 4.31 32.68 

  2.00 9.25 53.77 6.22 30.76 

  4.00 0.11 62.92 0.07 36.91 
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In summary, for the combined symmetric 
cases, the TS procedure correctly selected the t 
test for approximately 47% of the R = 1 cases 
regardless of the sample size configuration. For 
the R = 0.50 and 2.0 cases, the TS procedure 
correctly selected the Welch-S test for 
approximately 58% of the simulations with equal 
sample sizes and about 54%-57% of the 
simulations with unequal sample sizes. For the R 
= 0.25 and 4.0 cases, regardless of sample size 
configuration, the TS procedure correctly used the 
Welch-S test for about 60%-63% of the 
simulations. It is noted for the R ≠ 1 cases, the TS 
procedure incorrectly concluded asymmetry for 
about 37%-40% of the simulations. 

 
Frequency (%) Each Means Test is Used For 
Asymmetric Cases 

Table 6 contains the frequency (%) at 
which each of the test procedures is used in the 
two asymmetric distributions combined for the 
balanced and imbalanced cases, respectively. 
 
Equal Variances (Imbalanced and Balanced 
Cases) 
 For the R = 1 case with equal sample 
sizes, the WMW test is known to be robust for the 
asymmetric distributions. Results in Table 6  show 
 
 

the TS procedure correctly selected the WMW 
test for approximately 67% of the simulations. 
The TS procedure incorrectly selected the Welch-
AS test in approximately 22% of the simulations 
with homogeneous variances. The t test was 
incorrectly selected by the TS procedure in 
approximately 8% of the simulations. 

For the R = 1 cases with unequal sample 
sizes, Table 6 shows the TS procedure correctly 
selected the WMW test for approximately 60% of 
the simulations. As also seen for the balanced 
sample size cases, the TS procedure incorrectly 
selected the Welch-AS test in approximately 19% 
of these cases. In addition, the t test was 
incorrectly selected by the TS procedure in 
approximately 15% of the simulations. 
 
Unequal Variances (Imbalanced and Balanced 
Cases) 

For the equal sample size cases, Table 6 
shows the TS procedure incorrectly selected the 
Welsh-S in approximately 25% of the R=0.25 
cases. Furthermore, the TS procedure incorrectly 
selected the WMW test in approximately 12% of 
the R = 0.50 cases and approximately 43% in the 
R = 2.0 cases. The Welch-AS test was correctly 
selected for approximately 67% and 55% of the R 
= 0.50 and 2.0 cases, respectively, when using the 
TS procedure. 
 

 
Table 6. Frequency (%) For Means Test In The TS Procedure For The Asymmetric Distributions. 
 

n1,n2 σ1 , σ2 R t test Welch-S WMW Welch-AS 

20,20 σ1 = σ2 1.00 8.05 3.48 66.95 21.53 

 σ1 ≠ σ2 0.25 0.01 24.85 0.03 75.12 

  0.50 3.43 17.52 11.85 67.17 

  2.00 1.16 1.49 42.72 54.65 

  4.00 0.16 0.22 45.08 54.55 

10,20 σ1 = σ2 1.00 14.78 6.34 60.04 18.85 

 σ1 ≠ σ2 0.25 0.22 27.49 0.40 71.90 

  0.50 7.15 18.80 20.83 53.23 

  2.00 5.36 6.27 44.27 44.11 

  4.00 1.88 3.05 39.18 55.90 
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For the R = 0.50 and 2.0 cases with 

imbalanced sample sizes, results in Table 6 shows 
the same trends as was seen for the equal sample 
size cases. The TS procedure incorrectly used the 
WMW test for approximately 21% of the R = 0.50 
and approximately 44% in the R = 2.0 cases; and 
correctly selected the Welch-AS test for about 
44%-53% of the R = 0.50 and 2.0 cases.  
 Results in Table 6 shows for the balanced 
case that the TS procedure correctly selected the 
Welch-AS test for approximately 75% of the R = 
0.25 cases. The Welch-S test was incorrectly used 
for about 25% of the R = 0.25 cases. 
 Results in Table 6 for the unequal sample 
size case show that the TS procedure correctly 
used the Welch-AS test for approximately 72% of 
the R = 0.25 cases, whereas the Welch-S test was 
incorrectly selected for about 27% of the R = 0.25 
cases. 
 The TS procedure incorrectly used the 
WMW test for approximately 45% of the R = 4.0 
cases and the Welch-AS test was correctly used 
for about 55% of the R = 4.0 equal sample size. 
For the R= 4.0 unequal sample size cases, the TS 
procedure incorrectly used the WMW test for 
approximately 39% of the simulations and the 
Welsh-AS test was correctly used for 
approximately 56% of the simulations. 

In summary, for the R = 1 cases 
regardless of the sample size configuration, the TS 
procedure used the WMW test correctly for about 
60%-67% of the simulations. For the R = 0.50 
cases, the WMW test was incorrectly selected for 
about 12%-21% of the simulations when using the 
TS procedure. The TS procedure generally 
correctly used the Welch-AS test for about 72%-
75% of the 0.25 cases.  For the R= 2.0 cases, the 
TS procedure selected the Welsh-AS test correctly 
for about 44%-55% of the simulations and the 
WMW test incorrectly for about 43%-44% of the 
simulations. The TS procedure selected the 
Welch-AS test correctly for about 55%-56% of 
the simulations and the WMW test incorrectly 
each for about 39%-45% of the simulations for the 
R= 4.0 cases. 
 

Conclusion 
 

For the TS procedure using the Triples test with 
an alpha level of 5%, results showed that the TS 

procedure concluded symmetry too often (for 
45%-62% of the asymmetric cases with equal 
variances). 
 For the TS procedure using the Triples 
test at an alpha level of 25%, results showed that 
the TS procedure concluded asymmetry for the 
symmetric distributions in 37%-40% of the R≠ 1 
cases.   

Recommendations for alternative 
approaches in the future, would be to examine the 
performance of an TS procedure which concludes 
asymmetry at an alpha level between 5% and 25% 
(i.e., 15%) or concludes asymmetry only if both 
samples were judged to be nonsymmetric at α = 
0.25. In addition, there was a trend, especially in 
the asymmetric distributions, of concluding 
variance homogeneity too often for the R ≠ 1 
cases. Therefore, it would be recommended to 
increase alpha level for testing of variance 
homogeneity to a higher alpha level beyond α = 
0.25. 
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Equivalence testing, an alternative to testing for statistical significance, is little used in educational 
research. Equivalence testing is useful in situations where the researcher wishes to show that two means 
are not significantly different. A simulation study assessed the relationships between effect size, sample 
size, statistical significance, and statistical equivalence. 
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Introduction 
 
The use of statistical inference, particularly via 
null hypothesis significance testing, is an 
extremely common but contentious practice in 
educational research. Both the pros and the cons 
of hypothesis testing have been argued in the 
literature for several decades. A recent 
monograph edited by Harlow, Mulaik, and 
Steiger (1997) was devoted to these arguments. 
Some classic references criticizing standard 
hypothesis testing include Boring (1919), 
Berkson (1938, 1942), Rozeboom (1960), Meehl 
(1967, 1978), and Carver (1978). More recently, 
some support the continued usage of 
significance testing (Abelson, 1997; Hagan, 
1997, 1998; Harris, 1997; McLean & Ernest, 
1998), while others desire a greater reliance on 
alternatives such as confidence intervals or 
effect sizes (Cohen, 1992, 1994; Knapp, 1998, 
2002; Meehl, 1997; Serlin, 2002; Thompson, 
1998, 2001; Vacha-Haase, 2001), and still others 
advocate an outright ban on significance testing 
(Carver, 1993; Falk, 1998; Hunter, 1997; Nix & 
Barnette, 1998; Schmidt & Hunter, 1997). 
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The references included here are by no 
means close to an exhaustive list. This debate is 
not limited to educational research and the social 
sciences; for instance, it is also being argued in 
ecology (McBride, 1999; Anderson, Burnham, 
& Thompson, 2000). Many in the statistical 
community outside of the niche of educational 
and psychological research, though, are either 
unaware of this debate or feel that it is trivial 
(Krantz, 1999). 

The objective of this paper is not to 
continue this heated argument, but rather to 
borrow the method of equivalence testing from 
biostatistics, as suggested by Bartko (1991), and 
using it in conjunction with standard hypothesis 
testing in educational research. Lehmann (1959) 
anticipated the need for interval testing in his 
classic volume on the theory of hypothesis 
testing. Many of the currently employed 
methods of equivalence testing were developed 
in the 1970’s and 1980’s to address biostatistical 
and pharmaceutical problems (Westlake, 1976, 
1979; Schuirmann, 1981, 1987; Anderson & 
Hauck, 1983; Patel & Gupta, 1984). Rogers, 
Howard, and Vessey (1993) introduced the use 
of equivalence testing methods to the social 
sciences. Serlin (1993) essentially suggested 
equivalence testing when he suggested the use of 
range, rather than point, null hypotheses. 
 

Methodology 
 
Standard null hypothesis significance testing 
dates back to the pioneering theoretical work of 



COMPARISON OF EQUIVALENCE TESTING WITH HYPOTHESIS TESTING 330 

Fisher, Neyman, and Pearson. Hypothesis 
testing can be found in almost every textbook of 
statistical methods and thus will not be further 
elaborated on here. Equivalence testing, on the 
other hand, is a newer technique and one that is 
unfamiliar to most researchers in education and 
the social sciences. 

Equivalence testing was developed in 
biostatistics to address the situation where the 
goal is not to show that the mean of one group is 
greater than the mean of another group (i.e. the 
superiority of one treatment to another), but 
rather to establish that two methods are equal to 
one another. A common application of this idea 
in biostatistics is to show that a less expensive 
“generic” medication is as effective as the more 
expensive “brand-name” medication. In 
equivalence testing, the null hypothesis is that 
the two groups are not equivalent to one another, 
and hence rejection of the null indicates that the 
two groups are equivalent. This differs from 
standard significance testing where the null 
hypothesis states that the group means are equal 
and rejection of the null indicates that the two 
groups are statistically different. A common 
methodological mistake in research is to 
conclude that the null hypothesis is true (i.e. two 
groups have equal means) based on the failure to 
reject it. This action fails to recognize that the 
failure to reject the null is often merely a Type II 
error, especially when the sample sizes are small 
and the power of the test is low. 

An explanation of the theory of 
equivalence testing can be found in Berger and 
Hsu (1996); Blair and Cole (2002) give a less 
technical explanation. Here, we will merely 
review the most commonly implemented method 
used for establishing the equivalence of two 
population means for an additive model, where 
the difference of means is considered. The 
multiplicative model, which looks at the ratio of 
means, will not be considered further in this 
paper. The commonly used procedure in 
biostatistics for this problem is to use the “two 
one-sided tests” procedure, or TOST (Westlake, 
1976, 1979; Schuirmann, 1981, 1987). With the 
TOST, the researcher will consider two groups 
equivalent if he can show that they differ by less 
than some constant τ , the equivalence bound, in 
both directions. The constant τ  is often chosen 
to be a percentage (such as 10% or 20%) of the 

mean of the control group, although τ  can also 
be chosen to be a constant that is the smallest 
absolute difference between two means that is 
large enough to be practically important. 

The null hypothesis (i.e. the means are 

different) for the TOST is 0 1 2H µ µ τ:| − |≥ . 
The alternative hypothesis (i.e. the means are 

equivalent) is 1 1 2H µ µ τ:| − |< . 
The first one-sided test seeks to reject 

the null hypothesis that the difference between 
two means is less than or equal to τ− ; similarly, 
the second one-sided test seeks to reject the null 
hypothesis that the difference in the means is 
greater than or equal to τ . If the one-sided test 
with the larger p-value leads to rejection, then 
the two groups are considered to be equivalent. 

For the first one-sided test, we compute 
the test statistic 
 

1 2 2
1

1 21 1p

x x xt
s n n

τ− +
=

/ + /  

where ps  is the pooled standard deviation of the 
two samples and compute the p-value as  
 

1 1( )p P t tν= >  
where tν  is a random variable from the t-

distribution with 1 2 2n nν = + −  degrees of 
freedom.  

The second one-sided test is similar to 
the first. The test statistic is 
 

1 2 2
2

1 21 1p

x x xt
s n n

τ− −
=

/ + /  
 
and the p-value is 
 

2 2( )p P t tν= < . 
 

If we let 1 2max( )p p p= , , then the null 
hypothesis of nonequivalence is rejected if 
p α< . 

The choice of τ  is a difficult choice that 
is up to the researcher. This choice is analogous 
to the selection of an appropriate alpha level in 
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standard significance testing, an appropriate 
level of confidence in interval estimation, or a 
sufficiently large effect size, and should be made 
carefully. Knowledge of the situation at hand 
should be used to specify the maximum 
difference between population means that would 
be considered clinically trivial. Researchers in 
biostatistics typically have the choice made for 
them by government regulation. 

As in standard hypothesis testing, an 
equivalency confidence interval can also be 
constructed. If the entire confidence interval is 

within ( )τ τ− , , then equivalence between the 
groups is indicated. If the entire confidence 

interval is within either ( 0)τ− ,  or (0 )τ,  (i.e. 

zero is not in the interval), then we would reject 
the null hypotheses of both a significance and an 
equivalence test. In that case, we could make the 
somewhat discomforting conclusion that the 
difference of means was both statistically 
significant and equivalent. 

It is important to note that the 
equivalency confidence interval is expressed at 

the 100(1 2 )%α−  level of confidence. Rogers 
et al. (1993) noted that if one performs both a 
standard significance test and an equivalence 
test on the same data set, making either a 
“reject” or “fail to reject” decision, that there are 
four possibilities. These four conditions are 
given in Table 1. 

 
Table 1. Possible Combinations of Significance and Equivalence Testing 

 
Significance Test Equivalence Test Term 
Fail to reject Reject Equivalent 
Reject Reject Equivalent and Different 
Reject Fail to reject Different 
Fail to reject Fail to reject Equivocal 

 
The second condition “equivalent and 

different”, a simultaneous rejection of both 
inferential procedures, could happen in a 
situation where large samples provide “too much 
power”, resulting in a trivial difference in means 
being statistically significant. The equivalence 
test (and the effect size) should detect the small 
magnitude of these mean differences. The fourth 
condition indicates that there is insufficient 
evidence to conclude that the groups are either 
equivalent or different. This would most likely 
occur when the samples are very small and/or 
the group variances are very large. 

The effect size for the difference of 
means is the standardized difference between the 
groups (Fan, 2001). We will use the parameter 
 

1 2µ µδ
σ
−

=
 

 
to represent the effect size of the population, 

where 1µ  and 2µ  are the population means and 
2σ  is the common variance. 

 Of course, δ  is typically unknown and 

needs to be estimated. Cohen’s d (1988) is a 
statistic often used for this purpose. The effect 
size (ES) is found with 
 

1 2

pooled

x xd
s
−

=
 

 
where 
 

2 2
1 1 2 2

1 2

( 1) ( 1)
2pooled

n s n ss
n n

− + −
=

+ −  
 
is the pooled standard deviation of the two 
samples. We stress that Cohen’s d is a sample 
statistic and has a sampling distribution like 
other estimates. 

Cohen (1988) gave some suggestions for 
interpreting d. An effect size of d=0.2 is deemed 
“small”, d=0.5 is “medium”, and d=0.8 is 
“large”. It is becoming, rather regrettably in our 
opinion, common for researchers to rigidly apply 
Cohen’s suggestions. Absolute reliance on 
Cohen’s rule of thumb is as misguided as blind 
adherence to a particular level of significance 
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(e.g. 0 05α = . ). As Thompson (2001) said, “we 
would merely be being stupid in another 
metric.” 
 

Results 
 
Rogers et al. (1993) provided empirical 
examples of the application of equivalence 
testing on data from the psychological literature. 
We will do the same with an example from the 
educational research literature. This will 
demonstrate that there often exist situations 
where a statistically significant difference 
between groups coincides with the groups being 
statistically equivalent. This is the “equivalent 
and different” condition that is typically 
associated with a small to moderate effect size, 
as opposed to the strong effect sizes that 
typically occur with the “different” condition 
and the weak effect sizes that occur with the 
“equivalent” condition. 

Benson (1989), in a study concerning 
statistical test anxiety, presented means and 
variances for a sample of 94 males and 123 
females on seven variables. Using standard 
hypothesis testing methods (i.e. t-tests), 
significant group differences were found for: 
prior math courses, math self-concept, self-

efficacy, and statistical test anxiety. However, 
after calculating Cohen’s d as an effect size (ES) 
measure and the use of the TOST equivalence 
test, we see that only prior math courses and 
statistical test anxiety are “different” between 
males and females. Not surprisingly, the two 
largest effect sizes are found for these two 
variables. Table 2 shows results of both 
traditional significance and equivalence tests for 
the Benson data. 

Statistical significance was defined as a 

rejection of 0H  with 0 05α = .  and equivalence 

was defined as a rejection of 0H  with 
0 10α = . . The reason for the two different 

significance levels is because while a traditional 
significance test at level α  corresponds to a 
100(1 )%α−  confidence interval, an 
equivalence test at level α  corresponds to a 
100(1 2 )%α−  equivalence interval. We 
selected 0 2τ = .  (i.e. 20% of the mean of the 
female group). This choice was arbitrary and by 
no means should be taken as a choice 
recommended for all equivalence problems. The 
results could differ with different choices for τ . 

 
Table 2. Comparing Significance and Equivalence Testing for the Benson Data 

 
 Descriptive Statistics  
 Males      

(N=94) 
Females 
(N=123) 

  

Variable M SD M SD Effect 
Size 

Sig. p-
value 

Equiv. p-
value 

 Category 

GPA 3.05 0.44 3.16 0.47  -0.24 0.040 <0.001 Equiv. & 
Diff. 

Prior Math 
Courses 

3.45 2.14 2.20 2.01   0.60 <0.001 0.998  Different 

Math Self-
Concept 

25.77 5.96 23.20 7.05 0.39 0.002 0.012 Equiv. & 
Diff. 

Self-efficacy 12.68 1.77 11.62 2.30 0.51 <0.001 <0.001 Equiv. & 
Diff. 

General Test 
Anxiety 

36.38      0.49 40.62 12.25 -0.37 0.004 0.007   Equiv. & 
Diff. 

Achievement 32.56      5.68 32.26 7.55 0.04 0.374 <0.001  Equivalent 
Statistical 
Test Anxiety 

32.65    12.57 41.84 14.83 -0.66 <0.001 0.663  Different 
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For a test of statistical significance, 

power is the probability of rejecting the null 
hypothesis that the population means are equal 
when they are in fact not equal.  The power of 
an equivalence test is the probability of rejecting 
that the means are different by at least some 
equivalence bound τ  when the means are in fact 
equivalent (i.e. differ by less than τ ).  
 Of interest to us is the probability of 
rejecting both the null hypotheses (of non-
significance and non-equivalence) 
simultaneously. We designed a small simulation 
study to assess the power of simultaneously 
concluding that two means are both statistically 
different and equivalent. 

As is always the case with Monte Carlo 
studies, the choices of simulation parameters are 
difficult to make and are somewhat arbitrary. 
We endeavored to simulate situations that were 
likely to be encountered in actual quantitative 
data analysis. We also made some simplifying 
assumptions to keep the number of simulations 
and associated tables and figures to a reasonable 
level.  

We assumed that both of our 
populations were always normally distributed 
with a common variance 2 1σ = . Six different 
sample sizes per group 
(n=10,20,50,100,200,500) were chosen; only 
equally sized groups were used in this study. Six 
different values for the effect size parameter 
( 0,0.1,0.2,0.3,0.4,0.5δ = ) were used, 
reflecting situations from no effect (i.e. 
equivalent population means) to a “medium” 
effect size (i.e. population means that differ by 

one half of a standard deviation). Three different 
equivalence bounds ( 0.1,0.2,0.4τ = ) were 
used, defining the minimum difference between 
means that is practically important (i.e. non-
equivalent) to be 10%, 20% or 40% of 1µ . 

Hence, we have a fully crossed design 
with 6 X 6 X 3 = 108 cells. Within each cell (i.e. 
combination of sample size, effect size, and 
equivalence bound), 10000 simulations were 
run. The R statistical computing environment 
was used to conduct the simulations. Each 
simulation consisted of generating n random 
normal variates with mean 0 δ+  and variance 1 
and a second, independent set of n random 
normal variates with mean 0 and variance 1. The 
independent samples t-test and the TOST with 
equivalence bound τ was conducted for each 
simulation, and the number of rejections of each 
test, along with the number of simultaneous 
rejections of both procedures and the number of 
failures to reject either procedure, were noted. 

Tables 3 through 8 show the number of 
rejections of the null hypotheses of the 
equivalence test, both tests, the significance test, 
and neither test. Columns involving the 
equivalence test are in italics; columns involving 
the significance test are in boldface. Note that 
the power of the equivalence test for each 
situation can be found by dividing the sum of the 
italicized columns by 10000. Similarly, the 
power of the significance test is obtained by 
dividing the sum of the columns in boldface by 
10000. 
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Table 3. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0δ =  
 

  Number of Rejections (10000 Simulations) 
Equivalence Bound τ  Sample Size 

N Equivalent Both Different Neither
0.1 10 0 0 506 9494

 20 0 0 500 9500
 50 0 0 476 9524
 100 0 0 535 9465
 200 0 0 504 9496
 500 2337 0 511 7152

0.2 10 0 0 496 9504
 20 0 0 507 9493
 50 0 0 485 9515
 100 1063 0 546 8391
 200 5121 0 514 4365
 500 9386 3 490 121

0.4 10 10 0 486 9504
 20 370 0 469 9161
 50 5279 0 481 4240
 100 8757 0 457 786
 200 9493 444 63 0
 500 9483 517 0 0

 
Table 4. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.1δ =  

 
  Number of Rejections (10000 Simulations) 

Equivalence Bound τ  Sample Size 
N Equivalent Both Different Neither

0.1 10 0 0 535 9494
 20 0 0 606 9500
 50 0 0 817 9524
 100 0 0 1118 9465
 200 0 0 1652 9496
 500 709 0 3366 7152

0.2 10 0 0 521 9504
 20 0 0 605 9493
 50 1 0 786 9515
 100 793 0 1090 8391
 200 3452 0 1687 4365
 500 6192 15 3486 121

0.4 10 11 0 565 9424
 20 347 0 622 9031
 50 4759 0 772 4469
 100 7902 0 1044 1054
 200 8361 1196 443 0
 500 6521 3475 4 0

 
 
 



CHRISTOPHER J. MECKLIN 335

Table 5. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.2δ =  
 

  Number of Rejections (10000 Simulations) 
Equivalence Bound τ  Sample Size 

N Equivalent Both Different Neither
0.1 10 0 0 727 9273

 20 0 0 962 9038
 50 0 0 1727 8273
 100 0 0 2865 7135
 200 0 0 5193 4807
 500 16 0 8880 1104

0.2 10 0 0 699 9301
 20 0 0 950 9050
 50 0 0 1678 8322
 100 408 0 2908 6684
 200 951 0 5207 3842
 500 915 7 8924 154

0.4 10 8 0 734 9258
 20 296 0 967 8737
 50 3397 0 1677 4926
 100 5485 0 2890 1625
 200 4886 2800 2314 0
 500 1167 8534 299 0

 
Table 6. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.3δ =  

 
  Number of Rejections (10000 Simulations) 

Equivalence Bound τ  Sample Size 
N Equivalent Both Different Neither

0.1 10 0 0 947 9053
 20 0 0 1540 8460
 50 0 0 3144 6856
 100 0 0 5594 4406
 200 0 0 8482 1518
 500 0 0 9973 27

0.2 10 0 0 985 9015
 20 0 0 1501 8499
 50 0 0 3203 6797
 100 104 0 5681 4215
 200 95 0 8524 1381
 500 19 1 9973 7

0.4 10 11 0 991 8998
 20 225 0 1563 8212
 50 2061 0 3133 4806
 100 2796 0 5602 1602
 200 1516 2374 6110 2167
 500 23 6115 3862 0
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Table 7. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.4δ =  
 

  Number of Rejections (10000 Simulations) 
Equivalence Bound τ  Sample Size 

N Equivalent Both Different Neither
0.1 10 0 0 1335 8665

 20 0 0 2333 7667
 50 0 0 5015 4985
 100 0 0 8069 1931
 200 0 0 9769 231
 500 0 0 10000 0

0.2 10 0 0 1344 8656
 20 0 0 2341 7659
 50 0 0 5077 4923
 100 23 0 8110 1867
 200 1 0 9784 215
 500 0 0 10000 0

0.4 10 9 0 1402 8589
 20 164 0 2346 7490
 50 933 0 5099 3968
 100 932 0 8075 993
 200 232 806 8962 0
 500 0 1025 8975 0

 
Table 8. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.5δ =  

 
  Number of Rejections (10000 Simulations) 

Equivalence Bound τ  Sample Size 
N Equivalent Both Different Neither

0.1 10 0 0 1897 8103
 20 0 0 3383 6617
 50 0 0 6981 3019
 100 0 0 9428 572
 200 0 0 9985 15
 500 0 0 10000 0

0.2 10 0 0 1804 8196
 20 0 0 3437 6563
 50 0 0 6905 3095
 100 1 0 9429 570
 200 0 0 9987 13
 500 0 0 10000 0

0.4 10 7 0 1866 8127
 20 117 0 3425 6458
 50 370 0 6936 2692
 100 236 0 9378 386
 200 13 108 9879 0
 500 0 28 9972 0
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Conclusion 
 
The data originally collected and analyzed with 
traditional significance tests by Benson (1989) 
showed a statistically significant difference 
between the means of male and female statistics 
students on six variables (GPA, number of prior 
math courses, math self-concept, self-efficacy, 
general test anxiety, and statistical test anxiety) 
and failed to find a significance for only one 
variable (achievement). We computed Cohen’s d 
as an effect size. Not surprisingly, the smallest 
absolute effect size of 0.04 was found for the 
non-significant variable, while the absolute 
effect sizes of the six significant variables 
ranged from 0.24 to 0.66. 

We then re-analyzed Benson’s data 
using the TOST procedure for testing for 
statistical equivalence. This analysis showed that 
only two variables, number of prior math 
courses and statistical test anxiety, were 
“different” (i.e. significant and not equivalent). 
Not coincidentally, these were the two variables 
with the strongest absolute effect sizes of 0.60 
and 0.66. The non-significant variable 
(achievement) was found to be statistically 
equivalent, and the absolute effect size was 
virtually zero. Four of the variables (GPA, math 
self-concept, self-efficacy, and general test 
anxiety) yielded conflicting results of 
“equivalent and different” since they rejected the 
null hypotheses of both the statistical and 
equivalence tests. It is likely that the difference 
in the means of these four variables, while 
statistically significant, is trivial. The absolute 
effect sizes of these four variables ranged from 
0.24 to 0.51. This encompasses a range of effect 
sizes that is often classified as “small” to 
“medium” (Cohen, 1988), notwithstanding 
Lenth’s (2001) warnings against using “canned” 
effect sizes. 

We noticed that whenever the effect size 
δ  is less than the equivalence bound τ , then 
the power of the equivalence test was 
approaching unity as n increased. This 
convergence was slow when δ  was nearly equal 
to τ . Essentially, if the effect size parameter is 
less than the minimum difference that the 
researcher considers to be practically important 
(i.e. the minimum difference between means 

large enough to matter), we will reject the null 
of the TOST and conclude equivalence with 
power increasing to unity with larger sample 
sizes. 

If δ τ> , the power of the significance 
test approaches unity and the power of the 
equivalence test approaches zero as the sample 
size increases. This is the situation where the 
effect size parameter exceeds the specified 
maximum for practical importance; we will 
reject the t-test and conclude statistical 
significance with power increasing to unity as 
the sample size increases. 

When δ τ= , then the power of the 
equivalence test will approach twice the nominal 
alpha level. This occurs because the effect size 
parameter happens to coincide with the specified 
equivalence bound. Rejecting the TOST (i.e. 
concluding equivalence) is a type I error, made 
with probability 2α . The probability is twice 
the nominal α  since an equivalence test at level 
α  corresponds to a 100(1 2 )%α−  equivalence 
interval.  

When 0 δ τ< < , then the power of 
both the significance and equivalence tests 
approaches unity (often slowly) as n increases. 
This is the situation where the null hypothesis of 
a significance test is false (i.e. the difference of 
means is not equal to zero), but the true 
difference is too small to be considered 
practically significant, where τ  is the minimum 
difference between means that is considered 
important. 

It appears to be somewhat common with 
real data to have situations where the tests of 
statistical significance and equivalence are 
simultaneously rejected for reasonable choices 
of significance level α  and equivalence bound 
τ . Our re-analysis of the Benson (1989) data 
yielded 4 simultaneous rejections out of 7 
variables. 

The simulated power of simultaneous 
rejection showed that the probability of 
simultaneous rejection was low when the 
assumptions of the inferential tests (i.e. 
normality, equal variances, equal sample sizes 
between groups) were true except when both n 
and τ  were large. It is possible that 
“simultaneous rejection” will be more likely 
with real data than (at least our) simulated data 
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because real data will surely violate the 
normality and homoscedasticity assumptions. 
We speculate that simultaneous rejection will be 
more common, and thus potentially more 
problematic for the researcher using equivalence 
testing in conjunction with standard hypothesis 
testing, when the data is non-normal and 
heteroscedastic. 

Sawilowsky and Yoon (2002) 
demonstrated that large effect sizes could be 
found in situations where the results of a 
hypothesis test are ‘not significant’ (i.e. p>.05). 
Similarly, we found the magnitude of effect 
sizes obtained from the statistical re-analysis of 
typical educational research data to be troubling. 
Benson’s data was of a decent size (groups of 94 
and 123 subjects), but an effect size as large as 
0.51 yielded both statistical significance 
(rejecting that the male mean was equal to the 
female mean) and equivalence (rejecting that the 
absolute difference of the male and female 
means were within a constant τ ). We make the 
conjecture that the effect size conventions of 
Cohen (i.e. 0.2 is small, 0.5 is medium, 0.8 is 
large) might not be large enough. It is even 
possible that making any recommendation about 
the desired magnitude of an effect size 
independent of the sample sizes and variability 
of the populations might be futile (Lenth, 2001). 

It would be desirable to extend the 
simulation study to consider several scenarios 
ignored here. In particular, more attention needs 
to be given to situations where one or more of 
the following conditions are true:  

 
1. The populations are non-normal 
2. The variances are not equal 
3. The sample sizes of the groups are not 

equal. 
 

It would also be desirable to analytically 
determine the power function for simultaneous 
rejection of the significance and equivalence 
tests, if possible. We will continue to strive for a 
greater understanding of the link between the 
effect size and the results of the significance and 
equivalence tests. It appears that sole reliance on 
any standard methodology, be it hypothesis 
testing, confidence intervals, effect sizes, or 
equivalence testing is ill advised. 
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Confidence Intervals For P(X<Y) In The 
Exponential Case With Common Location Parameter 
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The problem considered is interval estimation of the stress - strength reliability R = P(X<Y) where X and 
Y have independent exponential distributions with parameters θ  and λ  respectively and a common 
location parameter µ . Several types of asymptotic, approximate and bootstrap intervals are investigated. 
Performances are investigated using simulation techniques and compared in terms of attainment of the 
nominal confidence level, symmetry of lower and upper error rates, and expected length. 
Recommendations concerning their usage are given. 
 
Key words: Bootstrap, exponential distribution, interval estimation, stress-strength model 
 
 

Introduction 
 
The problem of making inference about R = 
P(X<Y) has received a considerable attention in 
literature. This problem arises naturally in the 
context of mechanical reliability of a system 
with strength X and stress Y. The system fails 
any time its strength is exceeded by the stress 
applied to it. Another interpretation of R is that 
it measures the effect of the treatment when X is 
the response for a control group and Y refers to 
the treatment group. Beg (1980) obtained the 
(MVUE) of R when X and Y are independent 
exponential random variables with unequal scale 
and unequal location parameters. 

Gupta and Gupta (1988) obtained the 
maximum likelihood estimator (MLE), the 
MVUE, and a Bayes estimator of R in case of 
different location parameters and a common 
scale parameter. Various other versions of this 
problem have been discussed in literature, see 
Johnson et al. (1994). 
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The problem of developing confidence 
intervals for the stress - strength probability has 
received relatively little attention; Halperin 
(1987) and Hamdy (1995) developed 
distribution free confidence intervals, while Bai 
and Hong (1992) discussed point and interval 
estimation of in the case of two independent 
exponentials with common location parameter, 
they derived two types of approximate intervals 
but did not study their finite sample properties 
and did not give an idea about how do they 
compare with each other. 

In this article, for the same problem 
considered by Bai and Hong (1992), we shall 
investigate and compare the performance of the 
two intervals of Bai and Hong together with 
some other types of confidence intervals like 
intervals based on the transformed maximum 
likelihood estimator, the likelihood ratio statistic 
and intervals based on the bootstrap (Efron & 
Tibshirani, 1993). The model and maximum 
likelihood estimation of its parameters will be 
presented in section 2. The “non-bootstrap” 
confidence intervals will be presented in section 
3, while bootstrap intervals are discussed in 
section 4. A Monte Carlo study designed to 
investigate and compare the intervals is 
described in section 5. Results and conclusions 
are given in the final section. 
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The Model and Maximum Likelihood 
Estimation 

In this study, X and Y are independently 
exponentially distributed random variables with 
scale parameters θ and λ respectively and a 
common location parameterµ , that is 

 
( )µθθµθ −−= x

X exf ),,( , µ≥x ;
( )µλλµλ −−= y

Y eyf ),,( , µ≥y . 
 
Let 

1
,...,1 nXX  be a random sample for X and 

2
,...,1 nYY  be a random sample for Y. The 

parameter R we want to estimate is 
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θ
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maximum likelihood estimator of R is therefore 
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= . Now we will describe the 

various intervals under study. 
 
Confidence Intervals for R 

Exact confidence intervals that are 
convenient to use for R are not available and 
hence approximate methods that exist in a 
simple closed form are needed. In this section 
and the following section we shall develop 
various types of intervals for the stress – 
strength reliability (R). 

 
 
 

Intervals Based on the Asymptotic Normality of 
the MLE (AN Intervals) 

Bai and Hong (1992) showed that if  

∞→+= 21 nnn such that 10  ,1 <<→ γγ
n
n

. 

Then ( ) ( )2,0ˆ σNRRn →−  where 
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. This fact can be used to 

construct approximate confidence intervals for 
R. The intervals are of the form 
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where 21 α−z  is the 21 α− -quantile of the 
standard normal distribution. 
 
Intervals Based on the Asymptotic Normality of 
the Transformed MLE (TRAN Intervals) 

When the maximum likelihood 
estimator of the parameter of interest has its 
range in only a part of the real line, a monotone 
transformation of this parameter with continuous 
derivatives and range in the entire real line will 
generally be better approximated by an 
asymptotic normal distribution as suggested by 
many authors including Lawless (1982) and 
Nelson (1982). Let ( )RK  be a monotone 

function of R and let ( )RK '  be the first 
derivative, then by applying the delta method 
(Serfling, 1980) we get 
 

( ) ( )( ) ( ) ( )( )RVRKNRKRKn ˆ,0ˆ 2'→− . 
 
Using this, a α−1  confidence interval for R 
may be obtained as 
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An appropriate transform is the 1tan −  (Jeng & 
Meeker, 2003). Using this transform a α−1  
confidence interval for R is given by 
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Bai and Hong’s Intervals (BH intervals) 

Ghosh and Razmpour (1984) showed 
that ( )ZTT ,, 21  is a complete sufficient for 
( )µλθ ,,  and that the joint probability density 
function of ( )21 ,TT  which is independent of 
Z is 
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Using standard transformation 
techniques, it can be shown that the probability 
density function of the random variable 
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is the beta probability density function with 
parameters r and s. Bai and Hong (1992) showed 
that an approximate α−1  interval for R is of 
the form 
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where 21  and tt are the observed values of 

21  and TT  respectively, and αk is such that 
( ) απα =21 ,,ˆ, nnkG . Here π̂  is an estimator of 

π obtained by substituting the maximum 
likelihood estimators of λθ  and in the formula 
of π , and G is the distribution function of 
mixed beta random variable U. 
 
Intervals Based on the Likelihood Ratio Statistic 
(LR Intervals) 

The likelihood function of ( )µλθ ,, is 
given by  
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The likelihood ratio statistic for testing 

00 : RRH =  is defined as (Barndorff-Nielsen 
and Cox, 1994) ( ) ( )( )ϖllW −Ω= 2 , where 
( )Ωl is the log-likelihood function evaluated at 

the values of the unrestricted maximum 
likelihood estimator of ( )µλθ ,, . While ( )ϖl is 
the log-likelihood function evaluated at the 
values of the restricted maximum likelihood 
estimator under the null hypothesis. Recall that 
the unrestricted maximum likelihood estimators 
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of the likelihood ratio statistic and simplifying 
we get 
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The distribution of ( )0RW  is 2

1χ  (Barndorff-
Nielsen and Cox, 1994). The bounds of 
likelihood ratio confidence intervals with 
( )α−1 nominal coverage probability are the two 
roots of ( ) 2

1,0 αχ=RW , where 2
1,αχ  is the upper 

α  quantile of the chi square distribution with 
one degree of freedom. 
 
Parametric Bootstrap Intervals 

The following methods of deriving 
confidence intervals are based on the Bootstrap 
approach (Efron & Tibshirani, 1993). They are 
computer intensive methods based on 
resampling with replacement from the original 
data and then using these Bootstrap samples to 
study the behaviour of estimators and tests. 
When the parametric form of the distribution 
from which the data are generated is known 
except for some unknown parameters, we 
generate from this distribution after its 
parameters are replaced by their estimates. The 
advantage of bootstrap methods is their wide 
applicability and remarkable accuracy, 
especially in situations where the traditional 
methods do not work. There are several 
Bootstrap based intervals discussed in the 
literature (Efron and Tibshirani, 1993), the most 
common ones are the bootstrap –t interval, the 
percentile interval and the bias corrected and 
accelerated ( aBC ) interval. 
 
 
 

The Bootstrap – t Interval Based on the MLE 
(BTST Intervals) 

Let R̂ be the maximum likelihood 
estimator of R and let *R̂  be the maximum 
likelihood estimator calculated from the 
bootstrap sample. Let *

αz be the α  quantile of 
the bootstrap distribution of 
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where ( )*ˆˆ RV  is estimated variance of 

R̂ calculated from the bootstrap sample. The 
bootstrap-t interval is given by 

( ) ( )( )RVzRRVzR ˆˆˆ , ˆˆˆ *
21

*
2 αα −+−  where *

αz  is 
determined by simulation. 
 
The Bootstrap – t Interval Based on the 
Transformed MLE (TRBTST Intervals) 

Let R̂ be the maximum likelihood 
estimator of R and let *R̂  be the maximum 
likelihood estimator calculated from the 
bootstrap sample. Let *

αz be the α  quantile of 
the bootstrap distribution of 
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where ( )*ˆˆ RV  is estimated variance of 

R̂ calculated from the bootstrap sample. The 
bootstrap-t interval is given by 
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where *

2αq  and *
21 α−q  are the quantiles of the 

bootstrap distribution of  *Q  determined by 
simulation. 
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The Percentile Interval (PRC Interval) 
Here we simulate the bootstrap 

distribution of *R̂  by resampling repeatedly 
from the parametric model of the original data 
and calculating BiRi ,,1,ˆ * …= where B is the 

number of bootstrap samples. Let Ĥ be the 
cumulative distribution function of *R̂ , then the 

α−1  interval is given by 
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The Bias Corrected and Accelerated Interval 
( BCa  Interval) 

The bias corrected and accelerated 
interval is calculated also using the percentiles 
of the bootstrap distribution of *R̂ , but not 
necessarily identical with the percentile interval 
described in the previous subsection. The 
percentiles depend on two numbers â and 

0ẑ called the acceleration and the bias 
correction. The α−1  interval is given by 

( ) ( )( )2
1

1
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( ).Φ  is the standard normal cumulative 

distribution function, αz is the α quantile of the 
standard normal distribution. The values of 
â and 0ẑ  are calculated as follows; 
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where ( )iR̂  is the maximum likelihood 
estimator of R using the original data excluding 
the i-th observation and 
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The value of 0ẑ  is given by  
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Small Sample Performance of the Intervals 

For the confidence intervals with 
nominal confidence coefficient )1( α− , we use 
the criterion of attainment of lower and upper 

error probabilities which are both equal to 
2
α

.  

Attainment of lower and upper nominal error 
probabilities is important because otherwise we 
will use an interval with unknown error 
probabilities and our conclusions therefore are 
imprecise and can be misleading. Attainment of 
nominal error probabilities (assumed equal) 
means that if the interval fails to contain the true 
value of the parameter, it is equally likely to be 
above as to be below the true value. Users of 
two sided confidence intervals expect the lower 
and upper error probabilities to be symmetric 
because they are using symmetric percentiles of 
the approximating distributions to form their 
confidence intervals. However, symmetry of 
error probabilities may not occur due to the 
skewness of the actual sampling distribution 
Jennings (1987). 

Another criterion for comparing 
confidence intervals is their expected lengths, 
obviously the shortest confidence interval 
among intervals having the same confidence 
level is the best. We have simulated the expected 
lengths of the three considered intervals. 

A simulation study is conducted to 
investigate the performance of the intervals. The 
indices of our simulations are: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )20,40  ,40,20  ,10,40  ,40,10  ,40,40  ,30,30,20,20  ,10,10, 21 =nn

R  : The true value of R=p(X<Y) and is taken to 
be 0.5, 0.7, 0.9, 0.95. 
 

For each combination of 1n , 2n  and R , 
2000 samples were generated for X taking θ = 1, 

0=µ , and 2000 samples for Y with 

11
−=

R
λ , 0=µ . The intervals are calculated, 

we used B = 1000 for bootstrap calculations. 

The following quantities are simulated for each 
interval using the results of the 2000 samples; 
the expected width of the interval (W): The 
average of the widths of the 2000 intervals. 
Lower error rates (L): The fraction of intervals 
that fall entirely above the true parameter. Upper 
error rates (U): The fraction of intervals that fall 
entirely below the true parameter. Total error 
rates (T): The fraction of intervals that did not 
contain the true parameter value. 

 
 
Table 1: Simulated error rates and expected lengths of the intervals 
 

( 21,nn ) R  AN TRAN BH LR BTST TRBTST PRC BCa  
(10, 10) 0.50 L 0.0425 0.0500 0.0245 0.0275 0.0070 0.0110 0.0310 0.0160
  U 0.0455 0.0255 0.0305 0.0340 0.0110 0.0030 0.0285 0.0235
  T 0.0880 0.0755 0.0550 0.0615 0.0180 0.0140 0.0595 0.0395
  W 0.4160 0.4160 0.4230 0.3870 0.5240 0.4940 0.4210 0.4270
 0.70 L 0.0175 0.0395 0.0245 0.0210 0.0355 0.0095 0.0115 0.0235
  U 0.0475 0.0550 0.0425 0.0200 0.0650 0.0095 0.0100 0.0200
  T 0.0650 0.0945 0.0670 0.0410 0.1010 0.0190 0.0215 0.0435
  W 0.3610 0.3570 0.3230 0.4270 0.6000 0.4500 0.4470 0.3760
 0.90 L 0.0010 0.0095 0.0075 0.0180 0.0035 0.0080 0.0550 0.0255
  U 0.1080 0.0975 0.0565 0.0425 0.0195 0.0145 0.0095 0.0240
  T 0.1090 0.1070 0.0640 0.0605 0.0230 0.0225 0.0645 0.0495
  W 0.1550 0.1560 0.1630 0.1060 0.2030 0.2170 0.1640 0.1890
 0.95 L 0.0000 0.0030 0.0120 0.0175 0.0145 0.0095 0.0655 0.0230
  U 0.1370 0.1110 0.0655 0.0480 0.0270 0.0230 0.0150 0.0185
  T 0.1370 0.1140 0.0775 0.0655 0.0415 0.0325 0.0805 0.0415
  W 0.0813 0.0825 0.0863 0.0772 0.1080 0.1160 0.0872 0.1080
(20, 20) 0.50 L 0.0390 0.0500 0.0250 0.0290 0.0140 0.0145 0.0340 0.0290
  U 0.0450 0.0295 0.0305 0.0340 0.0175 0.0215 0.0325 0.0195
  T 0.0840 0.0795 0.0555 0.0630 0.0315 0.0360 0.0665 0.0485
  W 0.3018 0.3010 0.3028 0.3355 0.3354 0.3250 0.3028 0.3050
 0.70 L 0.0175 0.0275 0.0200 0.0225 0.0145 0.0125 0.0385 0.0170
  U 0.0605 0.0420 0.0430 0.0365 0.0205 0.0160 0.0195 0.0235
  T 0.0780 0.0695 0.0630 0.0590 0.0350 0.0285 0.0580 0.0405
  W 0.2546 0.2560 0.2594 0.2305 0.2835 0.2830 0.2570 0.2630
 0.90 L 0.0030 0.0115 0.0110 0.0155 0.0130 0.0170 0.0485 0.0195
  U 0.0800 0.0605 0.0455 0.0430 0.0325 0.0160 0.0135 0.0275
  T 0.0830 0.0720 0.0565 0.0585 0.0455 0.0330 0.0620 0.0470
  W 0.1103 0.1110 0.1135 0.0845 0.1249 0.1300 0.1134 0.1230
 0.95 L 0.0035 0.0060 0.0125 0.0190 0.0200 0.0235 0.0490 0.0270
  U 0.0850 0.0855 0.0470 0.0380 0.0225 0.0240 0.0125 0.0260
  T 0.0885 0.0915 0.0595 0.0570 0.0425 0.0475 0.0615 0.0530
  W 0.0585 0.0586 0.0610 0.0558 0.0665 0.0682 0.0604 0.0662
(30, 30) 0.50 L 0.0305 0.0455 0.0255 0.0265 0.0175 0.0205 0.0290 0.0220
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( 21,nn ) R  AN TRAN BH LR BTST TRBTST PRC BCa  
  U 0.0310 0.0265 0.0265 0.0270 0.0190 0.0210 0.0280 0.0255
  T 0.0615 0.0720 0.0520 0.0535 0.0365 0.0415 0.0570 0.0475
  W 0.2488 0.2480 0.2461 0.3249 0.2663 0.2600 0.2492 0.2500
 0.70 L 0.0205 0.0320 0.0225 0.0225 0.0180 0.0210 0.0400 0.0230
  U 0.0565 0.0435 0.0345 0.0355 0.0240 0.0230 0.0230 0.0255
  T 0.0770 0.0755 0.0570 0.0580 0.0420 0.0440 0.0630 0.0485
  W 0.2097 0.2100 0.2129 0.2060 0.2249 0.2240 0.2110 0.2140
 0.90 L 0.0035 0.0100 0.0090 0.0155 0.0155 0.0180 0.0365 0.0320
  U 0.0600 0.0610 0.0395 0.0305 0.0205 0.0220 0.0125 0.0255
  T 0.0635 0.0710 0.0485 0.0460 0.0360 0.0400 0.0490 0.0575
  W 0.0903 0.0907 0.0922 0.0762 0.0977 0.0999 0.0919 0.0968
 0.95 L 0.0030 0.0080 0.0145 0.0210 0.0225 0.0225 0.0425 0.0235
  U 0.0700 0.0645 0.0470 0.0320 0.0270 0.0250 0.0175 0.0275
  T 0.0730 0.0725 0.0615 0.0530 0.0495 0.0475 0.0600 0.0510
  W 0.0479 0.0480 0.0480 0.0449 0.0520 0.0529 0.0489 0.0526
(40, 40) 0.50 L 0.0300 0.0380 0.0295 0.0260 0.0180 0.0210 0.0255 0.0240
  U 0.0335 0.0185 0.0335 0.0290 0.0230 0.0155 0.0280 0.0205
  T 0.0635 0.0565 0.0630 0.0550 0.0410 0.0365 0.0535 0.0445
  W 0.2163 0.2160 0.2164 0.2989 0.2271 0.2240 0.2162 0.2170
 0.70 L 0.0170 0.0320 0.0165 0.0255 0.0210 0.0270 0.0350 0.0220
  U 0.0470 0.0280 0.0345 0.0295 0.0235 0.0170 0.0245 0.0260
  T 0.0640 0.0600 0.0510 0.0550 0.0445 0.0440 0.0595 0.0480
  W 0.1811 0.1830 0.1819 0.2003 0.1906 0.1920 0.1819 0.1850
 0.90 L 0.0090 0.0165 0.0170 0.0210 0.0220 0.0225 0.0395 0.0225
  U 0.0605 0.0470 0.0405 0.0350 0.0230 0.0235 0.0190 0.0270
  T 0.0695 0.0635 0.0575 0.0560 0.0450 0.0460 0.0585 0.0495
  W 0.0782 0.0791 0.0796 0.0687 0.0829 0.0848 0.0792 0.0824
 0.95 L 0.0050 0.0035 0.0145 0.0215 0.0265 0.0160 0.0325 0.0265
  U 0.0560 0.0575 0.0300 0.0390 0.0190 0.0245 0.0165 0.0255
  T 0.0610 0.0610 0.0445 0.0605 0.0455 0.0405 0.0490 0.0520
  W 0.0415 0.0414 0.0425 0.0400 0.0441 0.0443 0.0421 0.0442
(10, 40) 0.50 L 0.0270 0.0345 0.0415 0.0250 0.0175 0.0205 0.0530 0.0485
  U 0.0490 0.0335 0.0165 0.0295 0.0100 0.0105 0.0080 0.0055
  T 0.0760 0.0680 0.0580 0.0545 0.0275 0.0310 0.0610 0.0540
  W 0.3359 0.3350 0.3345 0.3369 0.3828 0.3700 0.3351 0.3370
 0.70 L 0.0105 0.0215 0.0375 0.0205 0.0115 0.0185 0.0790 0.0435
  U 0.0855 0.0585 0.0230 0.0395 0.0155 0.0080 0.0065 0.0085
  T 0.0960 0.0800 0.0605 0.0600 0.0270 0.0265 0.0855 0.0520
  W 0.2790 0.2820 0.3033 0.2630 0.3358 0.3400 0.2770 0.2810
 0.90 L 0.0020 0.0055 0.0220 0.0175 0.0145 0.0130 0.1055 0.0625
  U 0.1185 0.0945 0.0520 0.0550 0.0195 0.0160 0.0025 0.0045
  T 0.1205 0.1000 0.0740 0.0725 0.0340 0.0290 0.1080 0.0670
  W 0.1190 0.1190 0.1440 0.0913 0.1557 0.1640 0.1181 0.1250
 0.95 L 0.0010 0.0015 0.0125 0.0175 0.0190 0.0230 0.1120 0.0700
  U 0.1265 0.1330 0.0475 0.0535 0.0170 0.0225 0.0015 0.0065
  T 0.1275 0.1340 0.0600 0.0710 0.0360 0.0455 0.1135 0.0765
  W 0.0625 0.0615 0.0720 0.0631 0.0843 0.0864 0.0614 0.0686
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(20, 40) 0.50 L 0.0320 0.0260 0.0320 0.0280 0.0210 0.0110 0.0370 0.0370
  U 0.0395 0.0290 0.0215 0.0300 0.0170 0.0205 0.0175 0.0115
  T 0.0715 0.0550 0.0535 0.0580 0.0380 0.0315 0.0545 0.0485
  W 0.2632 0.2630 0.2666 0.3312 0.2838 0.2780 0.2631 0.2650
 0.70 L 0.0175 0.0285 0.0260 0.0240 0.0185 0.0255 0.0470 0.0310
  U 0.0620 0.0415 0.0235 0.0325 0.0180 0.0160 0.0155 0.0125
  T 0.0795 0.0700 0.0495 0.0565 0.0365 0.0415 0.0625 0.0435
  W 0.2214 0.2220 0.2304 0.2086 0.2434 0.2430 0.2216 0.2240
 0.90 L 0.0025 0.0055 0.0195 0.0170 0.0180 0.0110 0.0625 0.0340
  U 0.0830 0.0840 0.0390 0.0360 0.0230 0.0215 0.0075 0.0180
  T 0.0855 0.0895 0.0585 0.0530 0.0410 0.0325 0.0700 0.0520
  W 0.0950 0.0942 0.0987 0.0797 0.1077 0.1090 0.0953 0.1010
 0.95 L 0.0040 0.0025 0.0135 0.0185 0.0160 0.0190 0.0715 0.0410
  U 0.0940 0.0825 0.0420 0.0410 0.0240 0.0245 0.0090 0.0180
  T 0.0980 0.0850 0.0555 0.0595 0.0400 0.0435 0.0805 0.0590
  W 0.0498 0.0494 0.0524 0.0462 0.0571 0.0576 0.0499 0.0540
(40, 20) 0.50 L 0.0430 0.0500 0.0230 0.0325 0.0170 0.0160 0.0220 0.0210
  U 0.0315 0.0170 0.0315 0.0310 0.0230 0.0200 0.0470 0.0230
  T 0.0745 0.0670 0.0545 0.0635 0.0400 0.0360 0.0690 0.0440
  W 0.2631 0.2630 0.2666 0.3289 0.2839 0.2770 0.2631 0.2640
 0.70 L 0.0205 0.0360 0.0145 0.0245 0.0135 0.0170 0.0235 0.0195
  U 0.0465 0.0340 0.0475 0.0265 0.0225 0.0235 0.0305 0.0260
  T 0.0670 0.0700 0.0620 0.0510 0.0360 0.0405 0.0540 0.0455
  W 0.2227 0.2240 0.2171 0.2084 0.2373 0.2370 0.2258 0.2260
 0.90 L 0.0070 0.0135 0.0140 0.0230 0.0190 0.0175 0.0275 0.0180
  U 0.0550 0.0500 0.0470 0.0305 0.0240 0.0235 0.0290 0.0330
  T 0.0620 0.0635 0.0610 0.0535 0.0430 0.0410 0.0565 0.0510
  W 0.0973 0.0982 0.0944 0.0795 0.1031 0.1060 0.1015 0.1040
 0.95 L 0.0045 0.0080 0.0125 0.0265 0.0145 0.0180 0.0195 0.0235
  U 0.0550 0.0510 0.0400 0.0300 0.0205 0.0220 0.0230 0.0250
  T 0.0595 0.0590 0.0525 0.0565 0.0350 0.0400 0.0425 0.0485
  W 0.0518 0.0521 0.0506 0.0467 0.0548 0.0560 0.0545 0.0558
(40, 10) 0.50 L 0.0525 0.0605 0.0185 0.0325 0.0090 0.0145 0.0120 0.0160
  U 0.0260 0.0140 0.0400 0.0255 0.0210 0.0175 0.0625 0.0370
  T 0.0785 0.0745 0.0585 0.0580 0.0300 0.0320 0.0745 0.0530
  W 0.3354 0.3350 0.3345 0.3402 0.3839 0.3670 0.3349 0.3330
 0.70 L 0.0370 0.0425 0.0175 0.0335 0.0120 0.0120 0.0080 0.0160
  U 0.0380 0.0295 0.0425 0.0245 0.0240 0.0235 0.0610 0.0340
  T 0.0750 0.0720 0.0600 0.0580 0.0360 0.0355 0.0690 0.0500
  W 0.2900 0.2890 0.2774 0.2740 0.3194 0.3130 0.2993 0.2890
 0.90 L 0.0070 0.0275 0.0105 0.0240 0.0100 0.0185 0.0110 0.0205
  U 0.0565 0.0520 0.0505 0.0285 0.0260 0.0255 0.0460 0.0325
  T 0.0635 0.0795 0.0610 0.0525 0.0360 0.0440 0.0570 0.0530
  W 0.1293 0.1320 0.1277 0.0901 0.1377 0.1440 0.1430 0.1370
 0.95 L 0.0055 0.0140 0.0065 0.0240 0.0170 0.0185 0.0125 0.0190
  U 0.0600 0.0585 0.0495 0.0325 0.0275 0.0285 0.0435 0.0345
  T 0.0655 0.0725 0.0560 0.0565 0.0445 0.0470 0.0560 0.0535
  W 0.0703 0.0706 0.0698 0.0672 0.0745 0.0768 0.0798 0.0755
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Conclusion 

Our simulations indicate that the performance of 
intervals based on asymptotic normality (AN 
intervals) are not satisfactory even for relatively 
large samples, they are quite anti-conservative in 
the sense that their coverage probabilities are 
often higher than the nominal confidence level. 
Also they are quite asymmetric, especially for 
values of R far from 0.5. The performance of the 
intervals based on the transformed maximum 
likelihood estimator (TRAN intervals) is about 
similar to that of AN intervals, but their anti-
conservativeness and asymmetry being slightly 
less severe than AN intervals. Concerning Bai 
and Hong (BH) intervals, they often attain the 
nominal sizes but are asymmetric for values of R 
away from 0.5. On the other hand, the 
Likelihood ratio (LR) intervals attain the 
nominal size and are almost symmetric even for 
small sample sizes. 

For the Bootstrap intervals, it appears 
that the bootstrap – t intervals (BTST) and 
(TRBTST) are symmetric but tend to be 
conservative for small sample sizes, while the 
percentile interval (PRC) attains the nominal 
level but tends to be asymmetric for values of R 
far from 0.5. The bias corrected and accelerated 
interval appear to be the best interval based on 
the bootstrap principle, they attain the nominal 
level and are symmetric in almost all situations 
considered. 

With regard to interval widths, our 
simulation results suggest that all intervals have 
about equal performance. No intervals appear to 
be uniformly shorter or longer than the others. 

Overall, the (BCa) interval appears to 
have the best performance according to the 
criteria of attainment of coverage probability, 
symmetry and expected length followed by the 
(LR) intervals. Although the other intervals 
(especially AN intervals) are anti-conservative 
and sometimes extremely asymmetric, which 
limit their usefulness, especially when lower or 
upper confidence bounds are desired. 
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Approximate Bayesian Confidence Intervals  

For The Variance Of A Gaussian Distribution 
 

Vincent A. R. Camara 
University of South Florida 

                                     
 
The aim of the present study is to obtain and compare confidence intervals for the variance of a Gaussian 
distribution. Considering respectively the square error and the Higgins-Tsokos loss functions, 
approximate Bayesian confidence intervals for the variance of a normal population are derived.  Using 
normal data and SAS software, the obtained approximate Bayesian confidence intervals will then be 
compared to the ones obtained with the well known classical method. The Bayesian approach relies only 
on the observations. It is shown that the proposed approximate Bayesian approach relies only on the 
observations. The classical method, that uses the Chi-square statistic, does not always yield the best 
confidence intervals. 
 
Key words: Estimation, loss functions, statistical analysis 
 

Introduction 
 
There is a significant amount of research in 
Bayesian analysis and modeling, which has been 
published the last twenty-five years; see 
references. A Bayesian analysis implies the 
exploitation of a suitable prior information and 
the choice of a loss function in association with 
Bayes’ Theorem. It rests on the notion that a 
parameter within a model is not merely an 
unknown quantity but rather behaves as a 
random variable, which follows some 
distribution. In the area of life testing, it is indeed 
realistic to assume that a life parameter is 
stochastically dynamic. This assertion is 
supported by the fact that the complexity of 
electronic and structural systems is likely to 
cause undetected component interactions 
resulting in an unpredictable fluctuation of the 
life parameter. Recently, Drake (1966) gave an 
excellent account for the use of Bayesian 
statistics in reliability problems.  
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Mathematics/Statistics. His research interests are 
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As he pointed out, “He (Bayesian) realizes … 
that his selection of a prior (distribution) to 
express his present state of knowledge will 
necessarily be somewhat arbitrary. But he 
greatly appreciates this opportunity to make his 
entire assumptive structure clear to the world…” 
       In the present study, we shall consider a 
classical and useful underlying model. That is, 
we shall consider the normal underlying model 
characterized by 
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As we well know, once the underlying model 
is found to be normally or approximately 
normally distributed, the classical approach 
uses the Chi-square statistic and considers the 
following confidence interval for the 
population variance 2σ : 
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For the above model (1), approximate 
Bayesian confidence bounds for the parameter 
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2σ will be derived to challenge the classical 
approach (2). In the study, we shall denote the 
inverse of the population variance 2σ  by θ  

and its corresponding estimate by 
Λ

θ . 
Although there is no specific analytical 

procedure that allows us to identify the 
appropriate loss function to be used, the most 
commonly used is the square error loss 
function. One of the reasons for selecting this 
loss function is because of its analytical 
tractability in Bayesian analysis. As it will be 
shown, selecting the square error loss does not 
always lead to the best approximate Bayesian 
confidence intervals. However, the obtained 
approximate Bayesian confidence intervals 
corresponding to the square error and the 
Higgins-Tsokos loss functions will be 
respectively used to challenge the classical 
method (2). The loss functions that will be 
used are given below, along with a statement 
of their key characteristics. 
 
Square error loss function 

The popular square error loss function 
places a small weight on estimates near the 
true value and proportionately more weight on 
extreme deviation from the true value of the 
parameter. Its popularity is due to its analytical 
tractability in Bayesian modeling. The square 
error loss is defined as follows: 
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Higgins-Tsokos loss function 

The Higgins-Tsokos loss function 
places a heavy penalty on extreme over- or 
underestimation. That is, it places an 
exponential weight on extreme errors. The 
Higgins-Tsokos loss function is defined as 
follows: 
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We shall assume that θ  behaves as a random 
variable and is being characterized by the 
Pareto probability density function given by 
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where  θ =1/ 2σ . 
 

The Pareto prior has been selected 
because of its mathematical tractability. Using 
observations from normal distributions, we 
will approximate the Pareto prior (5) in such a 
way that good approximate Bayesian estimates 
of θ  are obtained. 
 
Preliminaries 

Let 1x , 2x , ……., nx  denote the 
observations of a given system that are being 
characterized by the normal distribution. 
Replacing 1/ 2σ  by θ , we obtain the 
following characterization of the normal 
underlying model defined in (1). 
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This leads to the following posterior 
distribution: 
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Methodology 
 
Approximate Bayesian confidence bounds of 

2σ   when the population meanµ  is known.  
 With respectively the following 
approximate priors for the square error and the 
Higgins-Tsokos loss functions, good 
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approximate Bayesian estimates of θ  are 
obtained. 
 
 
 
 
 
Approximate prior for the square error loss: 
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Approximate prior for the Higgins-Tsokos 
loss: 
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It’s easily shown that the approximate 
Bayesian estimate of the parameterθ , subject 
to the square error loss, is the same as the 
Bayesian estimate of θ  under the Higgins-
Tsokos loss. They are equal to 
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Using respectively the approximate 

posterior distributions that correspond to (8) 
and (9), along with the equalities 

2/1)|( αθ −=xLP  and 
2/)|( αθ =xUP , we respectively obtain 

the following lower and upper confidence 
bounds for θ : 

Approximate Bayesian confidence 
bounds of θ  corresponding to the square error 
loss function when µ  is known: 
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Approximate Bayesian confidence bounds of 
θ  corresponding to the Higgins-Tsokos loss 
function when µ  is known: 
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Thus when the population mean is known, (10) 
and (11) respectively yield the following 

)%1(100 α−  approximate Bayesian 
confidence bounds for the normal population 
variance 2σ : 
 
Confidence bounds corresponding to the 
square error loss: 
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Confidence bounds corresponding to the 
Higgins-Tsokos loss: 
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Approximate Bayesian confidence bounds of 

2σ  when the population meanµ  is unknown. 
In the case where the population mean 

µ  is unknown, it is estimated by the sample 

mean 
_
x  and we obtain the following: 

Approximate Bayesian confidence bounds of 
θ  corresponding to the square error loss 
function when µ  is unknown: 
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Approximate Bayesian confidence bounds of 
θ  corresponding to the Higgins-Tsokos loss 
function when µ  is unknown: 
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Thus when µ  is unknown (14) and 

(15) respectively yield the following 
)%1(100 α−  approximate Bayesian 

confidence bounds for the normal population 
variance 2σ : 

Confidence bounds corresponding to 
the square error loss: 
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Confidence bounds corresponding to the 
Higgins-Tsokos loss: 
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Results 
In order to compare the proposed approximate 
Bayesian approach to the classical method, 
samples that have been obtained from normally 
distributed populations (Examples 1, 2, 3, .4, 
7) as well as approximately normal populations 
(Examples 5, 6) will be considered. SAS 
software is used to obtain the normal 
population parameters µ  and σ  
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corresponding to each of the examples. The 
proposed approximate Bayesian estimates of 
the variance (16) (17) will be used. For the 
Higgins-Tsokos loss function, we will consider 

1,1 21 == ff . The lengths of the classical and 
approximate Bayesian confidence intervals are 
respectively denoted by Cl , SEl  and HTl . 
 
Example 1. (Data obtained from Prem S. 
Mann, Introductory Statistics, Third edition, 
page 504, 1998). 
 

24, 28, 22, 25, 24, 22, 29, 26, 25, 28, 19, 29. 
Normal population distribution 

obtained with SAS: 
)1176.3,083.25( == σµN  Population and 

sample variances: 71943.92 =σ , 
719696.92 =s . 

 
Table 1. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the first data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 6.18 – 

19.16 

7.32 – 10.47 8.08– 10.23 

90 5.43 – 

23.36 

6.68 – 10.58 7.32 –10.47 

95 4.87 – 

28.01 

6.15 – 10.63 6.68 –10.58 

99 3.99– 

41.07 

5.19 – 10.68 5.56 –10.67 

 
Confidence 

level 
 

( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.1193 6.0455 
90% 4.6021 5.6927 
95% 5.1589 5.9373 
99% 6.7538 7.2636 

 

Example 2. Data obtained from Prem S. Mann, 
Introductory Statistics, Third edition, page 504, 
1998. 
 

13, 11, 9, 12, 8, 10, 5, 10, 9, 12, 13. 
 

Normal population distribution 
obtained with SAS: 

)4008.2,182.10( == σµN . Population and 
sample variances: 76384.52 =σ , 

763636.52 =s . 
 
 
Table 2: Classical and approximate Bayesian 
confidence intervals of 2σ  corresponding to 
the second data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 3.60  –  

11.84 

4.23 –  6.25 4.71– 6.10 

90 3.14 – 

14.62 

3.84 – 6.33 4.23– 6.25 

95 2.81 – 

17.75 

3.51 – 6.36 3.84 – 6.33 

99 2.28 – 

26.73 

2.94 – 6.39 3.16 – 6.38 

 
Confidence 

level 
 

( Cl ) ÷  

( SEl ) 

( Cl ) ÷  

( HTl ) 

80% 4.0777 5.9530 
90% 4.6157 5.6804 
95% 5.2426 6.0051 
99% 7.0734 7.5801 

 
 
Example 3. Data obtained from Prem S. Mann, 
Introductory Statistics, Third edition, page 504, 
1998. 
 

16, 14, 11, 19, 14, 17, 13, 16, 17, 18, 19, 12. 
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Normal population distribution obtained with 
SAS: )6799.2,5.15( == σµN . Population 
and sample variances: 18186.72 =σ , 

181818.72 =s . 
 
Table 3. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the third data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 4.57 – 

14.16 

5.40 – 7.73 5.97 – 7.56 

90 4.01 – 

17.26 

4.94 – 7.81 5.40 – 7.73 

95 3.60 – 

20.70 

4.54 – 7.86 4.94 – 7.81 

99 2.95 – 

30.34 

3.83  – 7.89 4.11 – 7.88 

 
Confidence 

level 
 

( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.1194 6.0456 
90% 4.6022 5.6926 
95% 5.1592 5.9375 
99% 6.7539 7.2636 

 
 
Example 4.  Data obtained from Prem S. 
Mann, Introductory Statistics, Third edition, 
page 504, 1998. 
 
27, 31, 25, 33, 21, 35, 30, 26, 25,31.33.30, 28. 

 
Normal population distribution 

obtained with SAS: 
)9549.3,846.28( == σµN . Population and 

sample variances: 64123.152 =σ , 
641025.152 =s . 

 
 

Table 4. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the fourth data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 10.11 

– 

29.77 

12.02 – 

16.74 

13.20 – 

16.39 

90 8.92 – 

35.91 

11.04 – 

16.90 

12.02 – 

16.74 

95 8.04 – 

42.61 

10.21 – 

16.98 

11.04 – 

16.90 

99 6.63 – 

61.05 

8.69  – 

17.04 

9.28   – 

17.03 

 
Confidence level 

 ( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.1688 6.1471 
90% 4.6063 5.7243 
95% 5.1059 5.9013 
99% 6.5129 7.0273 

 
Example 5. Data obtained from James T. 
McClave/Terry Sincich A first course in 
Statistics, page 301, Sixth edition, 1997 
 

52, 33, 42, 44, 41, 50, 44, 51, 45, 38, 
37,40,44, 50, 43. 

 
Normal population distribution 

obtained with SAS: 
)4746.5,6.43( == σµN . Population and 

sample variances: 97124.292 =σ , 
971428.292 =s . 
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Table 5. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the fifth data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 19.92 –  

53.86 

23.83 – 31.76 25.87 – 

31.20 

90 17.71 

– 

63.85 

22.09 – 32.02 23.83 – 

31.76 

95 16.06 – 

74.54 

20.59 – 32.15 22.09 – 

32.02 

99 13.39– 

102.96 

17.78 – 32.25 18.89 – 

32.22 

 
Confidence 

level 
 

( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.2814 6.3629 
90% 4.6465 5.8198 
95% 5.0583 5.8889 
99% 6.1902 6.7170 

 
Example 6. Data obtained from James T. 
McClave/Terry Sincich A first course in 
Statistics, page 301, Sixth edition, 1997. 
 

52, 43, 47, 56, 62, 53, 61, 50, 56, 52, 
 53, 60, 50, 48, 60, 55. 

 
Normal population distribution 

obtained with SAS: 
)4145.5,625.53( == σµN . Population and 

sample variances: 31681.292 =σ , 
316666.292 =s . 

 
 
 
 
 
 
 

Table 6. Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the sixth data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes

. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 19.71 –

51.45  

23.63 – 

30.94 

25.53 – 30.44 

90 17.59– 

60.56 

21.99 – 

31.18 

23.63 – 30.94 

95 15.99–

70.22  

20.57 – 

31.29 

21.99 – 31.18 

99 13.40– 

95.57 

17.87 – 

31.38 

18.94 – 31.36 

 
Confidence 

level 
 

( Cl ) ÷  ( SEl ) ( Cl ) ÷  

( HTl ) 
80% 4.3422 6.4743 
90% 4.6781 5.8754 
95% 5.0551 5.9036 
99% 6.0822 6.6163 

 
Example 7. The following observations have 
been obtained from the collection of SAS data 
sets. 
 

50, 65, 100, 45, 111, 32, 45, 28, 60, 66, 114, 
134, 150, 120, 77, 108, 112, 113,80,77, 69, 

91, 116, 122, 37, 51, 53, 131, 49, 69, 66, 
46, 131, 103, 84, 78. 

 
Normal population distribution 

obtained with SAS: 
)226.33,861.82( == σµN . Population and 

sample variances: 96716.11032 =σ , 
951587.11032 =s . 
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Table 7: Classical and approximate Bayesian 
confidence intervals of 2σ corresponding to 
the seventh data set. 
 
C L. 

%. 

Classical 

Bounds 

Approx.Bayes. 

Bounds (SE) 

Approx.Bayes. 

Bounds  (HT) 

80 839.4–

1556.4 

1000.8– 

1129.4 

1038.1 – 

1121.6 

90 776.4 – 

1717.1 

966.1  – 

1133.0 

1000.8 –

1129.4 

95 726.8 – 

1874.5 

933.7  –

1134.7 

966.1  – 

1133.0 

99 641.6 – 

2240.2 

866.3  – 

1136.0 

894.1  – 

1135.7 

 
Confidence 

level 
 

( Cl ) ÷  

( SEl ) 

( Cl ) ÷  

( HTl ) 

80% 5.5772 8.5808 
90% 5.6388 7.3176 
95% 5.7119 6.8792 
99% 5.9277 6.6181 

 
All seven Tables show that the 

proposed approximate Bayesian confidence 
intervals contain the population variance 2σ . 
Also, the lengths of the obtained classical 
confidence intervals are more than four times 
greater than the ones corresponding to the 
proposed approach. 

 
Conclusion 

 
In the present study, approximate Bayesian 
confidence intervals for the variance of a 
normal population under two different loss 
functions have been derived. The loss 
functions that are employed are the square 
error and the Higgins-Tsokos loss functions.  
Based on the above numerical results we can 
conclude the following: 

The classical method used to construct 
confidence intervals for the variance of a 
normal population does not always yield the 

best coverage accuracy. In fact, each of the 
obtained approximate Bayesian confidence 
intervals contains the population variance and 
is strictly included in the corresponding 
confidence interval obtained with the classical 
method. 

Contrary to the classical method that 
uses the Chi-square statistic, the proposed 
approach relies only on the observations. 

With the proposed approach, 
approximate Bayesian confidence intervals for 
a normal population variance are easily 
computed for any level of significance.  

The approximate Bayesian approach 
under to the popular square error loss function 
does not always yield the best approximate 
Bayesian results. In fact, the Higgins-Tsokos 
loss function performs better in the above 
examples. 

Bayesian analysis contributes to 
reinforcing well-known statistical theories such 
as the estimation theory. 
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We generalize Lyles et al.’s (2000) random regression models for longitudinal data, accounting for both 
undetectable values and informative drop-outs in the distribution assumptions. Our models are 
constructed on the generalized multivariate theory which is based on the Elliptically Contoured 
Distribution (ECD). The estimation of the fixed parameters in the random regression models are invariant 
under the normal or the ECD assumptions. For the Human Immunodeficiency Virus Epidemiology 
Research Study data, ECD models fit the data better than classical normal models according to the Akaike 
(1974) Information Criterion. We also note that both univariate distributions of the random intercept and 
random slope and their joint distribution are non-normal short-tailed ECDs, and that the error term is 
distributed as a non-normal long-tailed ECD if we don’t use the low undetectable limit or half of it to 
replace the undetectable values. Instead, we use the ECD cumulative distribution function to calculate the 
contribution to the likelihood due to the undetectable values. 
 
Key words: Generalized multivariate analysis, power exponential distributions, Gamma distributions, 
maximum likelihood functions, censoring, informative drop-outs, empirical Bayes 
 
 

Introduction 
 
In clinical studies of human immunodeficiency 
virus (HIV) infection the number of copies of 
HIV ribonucleic acid (RNA) per milliliter of 
plasma is often used to measure the progression 
of the disease. When the number of copies per 
milliliter is below or equal to 500, the 
observation is considered as undetectable, 
missing, or left-censored, since the copy 
numbers below 500 are not quantifiable. 
 
 
Correspondence regarding this article should be 
emailed to Alfred A. Bartolucci: 
albartol@uab.edu. The authors acknowledge 
assistance from Robert H. Lyles with SAS and 
S-Plus programming; and the HERS Study 
Group for providing the Human 
Immunodeficiency Virus (HIV) Epidemiology 
Research Study data. 
 
 
 

On the other hand, illness or death 
caused by an early drop-out is known as an 
informative drop-out. If either a left-censored or  
an informative drop-out is present, as Lyles et al. 
(2000) pointed out, random effects linear models 
(Laird & Ware, 1982) and generalized 
estimating equations (GEE) (Liang & Zeger, 
1986) produce biased estimates of key 
parameters, such as the population average HIV 
RNA slope and intercept. Louis (1982) used 
asymptotic approximation methods to deal with 
the problem of left-censored and informative 
drop-out data. Both Hughes (1999) and 
Schluchter (1992) implemented Maximum 
Likelihood (ML) estimation via Expectation and 
Maximization (EM) algorithm to handle the 
problem of left-censored and informative drop-
out data. Lyles et al. (2000) combined the 
approaches of Hughes (1999) and Schluchter 
(1992) into a single likelihood integrating 
subject-specific random slopes and intercepts 
which took both informative drop-out and 
undetectable data into account. Then, they 
maximized the likelihood function with respect 
to fixed effects and other variables. Our 
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approach follows Lyles et al. (2000) and we 
extend their normal distribution assumptions to 
the ECD assumptions since when the number of 
undetectable observations exceeds a certain 
number, or when the random intercept and 
random slope have a bell shaped and long-tailed 
or short-tailed distribution the ECD distribution 
improves the fit of the data over the normal 
distribution. 

We used the data from the study of 
Lyles et al. in this paper. From April 1993 to 
June 1998 there were 528 HIV-infected women 
(16-55 years old) in the HIV Epidemiology 
Research Study (HERS) and 1,864 RNA 
measurements were collected. Overall, there 
were 25 (4.7%) drop-out events which resulted 
in 77 informative drop-out observations, 
according to Lyles et al.’s (2000) definition. 

We used δ as an indicator which was set 
to 1 if an observation was an informative drop-
out and to 0 otherwise. For these 25 individuals 
the time on study was set as the minimum of the 
time from the base-line to death or the time from 
the base-line to 3 months beyond the last visit. 
For other non-informative drop-out women the 
censored time was set equal to the time from the 
base-line to the last visit date. Overall, 745 
(40%) out of 1,864 HIV RNA observations were 
undetectable or left-censored (below 500 copies 
per milliliter). 
 
Power Exponential Distributions and Models 

The power exponential distributions can 
be used to model both light and heavy tailed, 
symmetric and unimodal continuous data sets. 
Gomez et al. (1998) generalized the Univariate 
Power Exponential (UPE) distribution, which 
was established by Subbotin (1923), to the 
Multivariate Power Exponential (MPE) 
distribution. Both Johnson (1979) and Gomez et 
al. (1998) discussed the relationship between the 
UPE distribution and a Gamma distribution. 
Gomez et al. (1998) studied the properties of 
MPE intensively, including the stochastic 
representation, the moments, the characteristic 
function and the marginal and conditional 
distributions and asymmetry and kurtosis 
coefficients. Obviously, the family of MPE 
distribution is a subset of the class of ECDs. 
Gomez et al. (1998) defined the MPE 
distribution as follows: 
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where -∞< µ< ∞, Σ > 0, 0 < β < ∞.  If y is 
distributed as an MPE distribution with 
parameters µ, Σ and β, we write y ~ MPE (µ, Σ, 
β) and we write y~ UPE (µ, σ, β) if n=1. The 
parameter β is called the shape parameter. 

We use the following linear random-
effects regression model (LRRM): 
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We take the response yij to be the base 10 
logarithm of HIV RNA measured at the jth time 
point tij ( j = 1,2,…, ni)  for the ith woman (i = 
1,…,528, 1 ≤  ni  ≤ 5 for our data set). We 
assume that the error terms ei j are distributed as 
UPE  (µ, σ2, ν1), the random intercept deviations 
ai are distributed as UPE (µ, σ1

2, ν2) and the 
random slope deviations bi are distributed as 
UPE (µ, σ2

2, ν2) with cov(ai,bi)=cσ12 where c is 
the correction coefficient and v2 is a shape 
parameter. The joint distribution of ai and bi is 
MPE2 (0, Σ2, ν2), where Σ2 = (σij). Based on the 
trivariate normal distribution model (Schluchter, 
1992) we assume the 3-dimensional random 
vector (ai,bi,Ti

0)  distributed as trivariate power 
exponential, i.e. 
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The joint pdf of (ai,bi,Ti

0)  is given as 
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where Ti

0 is the natural logarithm of the 
“survival” time for subject i. 
 
Maximum Likelihood Functions 

In this section we utilize general 
integrated likelihood expressions given by Lyles 
et al. (2000), in order to facilitate estimation and 
inference for the ECD case. 

(a) The Maximum Likelihood (ML) 
function without accounting for undetects and 
informative drop-outs: By the conditional 
probability formulae the ML function without 
accounting for undetects and informative drop-
outs is given by 
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where θ = (α, β, σ1

2, σ2
2 , σ12 , σ2)  , Y is a vector 

consisting of Yij, T is a vector consisting of tij 
and 
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(b) The ML function accounting for 

undetectable values only:  
We use d to denote the operable limit of 
detection. We assume that the first ni1 
measurements are detectable values and there 
are ni - ni1 undetectable values for subject i. We 

use the probability distribution function (pdf) to 
calculate the contribution to the likelihood due 
to the observed values for subject i. On the other 
hand we use the cumulative distribution function 
(cdf) to calculate the contribution to the 
likelihood due to the undetectable values. 
Therefore, the complete-data likelihood function 
is given by 
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where f(Yij|ai,bi) and f(ai|bi)f(bi) are given in (3) 
and 
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where b = yi - [α + ai + (β + bi)ti], yi is the 

censored value for subject i and ⎟⎟
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(c) The ML function accounting for 
informative drop-outs only: 
We use Ti

0 to denote the natural logarithm of the 
“survival” time for subject i and ci to denote the 
natural logarithm of the time from the base-line 
to the study end. Let Ti = min (Ti

0 , ci). 
i) If subject i did not drop out early we 

have δi = 0 and use 1 - FT(ci|ai,bi) to compute the 
contribution to the likelihood due to the right 
censored values, where F is the cdf of T given ai 
and bi. That is 
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where Σ2 , Σ3 and v2 were defined in LRRM. 

(ii) If subject i dropped out early we 
have δi =1 and Ti = Ti

0 and use the pdf  f(Ti
0 | ai 

,bi) to compute the contribution to the likelihood 
due to the informative drop-out values. 
Therefore, the likelihood function accounting for 
informative drop-outs and the right censored 
data is given by 
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where θ = (α, β, σ1

2, σ2
2 , σ12 , σ2, µt, σat, σbt, σt

2 ) . 
Thus, the complete ML function is given by 
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Computing Empirical Bayes Estimates of 
Random Intercepts & Random Slopes 

In this section we discuss the calculation 
of empirical Bayes estimates of random 
intercepts and random slopes in the presence of 
drop-outs and undetectable values based on the 
ECD assumptions. Specifically, we calculate the 
estimate of the random intercept ai and random 
slope bi by substituting the ML estimators of θ 
based on the ML function (7) developed in the 
last section into the analytic expressions for the 
posterior means given the observed data (Yi, Ti). 

Specifically, the empirical Bayes estimates of 
the random intercept ai and slope bi for subject i 
are given, respectively, by 
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The above empirical Bayes estimates were given 
by Lyles et al., (2000). Note that f*(Yi|ai,bi) is 
different from f(Yi|ai,bi), the one with asterisk 
indicates that the data vector Yi may include one 
or more undetectable values. 
 
Computation 

The software package we have used to 
obtain the ML estimates of variance components 
and fixed effects corresponding to models 
discussed in this chapter is SAS PROC IML. 
The ML function is constructed within PROC 
IML first. The initial parameter estimates are 
obtained from Lyles et al. (2000). The ML 
function is maximized through the NLPQN 
routine in IML with respect to the parameters 
stated in this paper. The double integration was 
computed by quadrature for each subject. The 
Hessian matrix (the dispersion matrix of the 
estimated parameters) was found through the 
NLPFDD routine in IML. There are no built-in 
generic non-normal ECD functions in SAS. We 
used the theorems of relationship between a 
UPE and a Gamma distribution developed in 
another paper to compute the probability of UPE 
distribution below or above a certain point. 
However, this method can not be used to deal 
with MPE distribution or the conditional and 
marginal MPE distributions since there is no 
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existing useful relationship between an MPE and 
a Gamma distribution and the conditional or the 
marginal distributions of an MPE are not 
necessarily MPEs, which can be much more 
complicated ECD distributions. We used 
approximation methods to integrate such 
integrands. The Simpson’s rule has been adopted 
which requires much less computing time and 
can reach highly accurate results. S-Plus and 
SAS PROC IML were used to obtain the 
empirical Bayes estimates of the random 
intercept and random slope for each subject and 
the critical values of UPE distribution and the 
Simpson’s rule has also been used for non-
normal situations. 
 

Results 
 
We used the Akaike (1974) Information 
Criterion (AIC) which was used by Lindsey 
(1999) and among others to compare the 
classical multivariate normal model and the 
multivariate power exponential model. In 
version 8 of SAS/STAT software AIC is defined 
as ’smaller-is-better’. Specifically, AIC=2l + 2d, 
where l denotes the maximum value of the log 
likelihood, d denotes the dimension of the 
model, i.e., the number of parameters estimated 
in the ML function. Six models were considered: 

Model 1 (M1): In this model we 
assumed the normal distributions. There were 
six parameters (α, β, σ1

2, σ2
2, σ12, σ2) estimated in 

the ML function accounting for undetectable 
values which were constructed as in equation (2) 
of Lyles et al. (2000, p.488).  

Model 2 (M2): As in model M1, the 
normal distributions were assumed. There were 
ten parameters (α, β, σ1

2, σ2
2, σ12, σ2, µt, σat, σbt, 

σt
2) estimated in the ML function accounting for 

both undetects and informative drop-outs which 
were constructed as in equation (5) of Lyles et 
al. (2000, p.489). 

Model 3 (M3): ECDs were assumed in 
this model. This model accounts for 
undetectable values only. Furthermore we 
assumed that two shape parameters were equal, 
i.e., v1 = v2. There were seven parameters (α, β, 
σ1

2, σ2
2, σ12, σ2, ν1) estimated using the ML 

function.  
Model 4 (M4): This model is the same 

as M3 except that we don’t assume v1= v2. 

Model 5 (M5): ECDs were assumed in this 
model. Undetectable, informative drop-out and 
right censored values were considered at the 
same time in this model. Also, we assume v1= 
v2. 

Model 6 (M6): This model is the same 
as M5 except that we don’t assume v1 = v2.  

Next, we summarize what we have 
found from the HERS data analysis. 

(1). ECDs fit the data much better than 
the classical normal distributions. 
Among models M1, M3 and M4 we account for 
undetectable values only. Model M1 is based on 
the normal distribution assumptions while model 
M3 and M4 are based on ECD assumptions. The 
value of AIC changes from 3932.216 to 
3928.101 when the model, M3, is used whereas 
the value reduces to 3908.833 using the model, 
M4. Overall, model M4 is the best according to 
the AIC standard if we consider undetectable 
values only in our analysis.  

Among models M2, M5 and M6 we 
treat undetects, informative drop-outs and right 
censored observations simultaneously. Model 
M2 is based on the normal distribution 
assumptions, but model M5 and M6 are based 
on the ECD assumptions. Model M5 reduces 
AIC from 4083.556 of M2 to 4079.746 (see 
Table 2). Overall, model M6 (4064.791) is the 
best by AIC standard if we consider all possible 
situations. 

(2). The dispersion matrix of an MPE 
random vector is proportional to ∑ as defined in 
section 2. Hence, multiplying the ML estimate 
Σ̂ by a coefficient we transformed Σ̂ to the 
estimated dispersion matrix whose elements are 
listed in Table 1. As expected, variance and 
covariance estimates are very close under the six 
different models. This proportional relationship 
provides us a short cut to gain the ML estimates. 
That is, we can get the ML estimate of the 
dispersion matrix under the normal distribution 
assumption first and then utilize this estimated 
dispersion matrix to estimate the shape 
parameters. This method is very useful and 
effective, especially when we have a large 
number of parameters to estimate or when we 
deal with a very large data set where computing 
CPU time and memory space are prohibiting. 
The estimates of the fixed intercept and the fixed 
slope for all subjects are almost exactly the same 
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under the six different models. This is because 
that α̂ and β̂ only involve the data set which is 
given and the dispersion matrices of random 
effects and error terms which are invariant under 
the normal distribution assumptions and the 
ECD assumptions as we discussed. 

(3). The estimates of the shape 
parameters in Table 2 strongly suggest that we 
should make the power exponential distribution 
assumptions instead of classical normal 
distribution assumptions since our simulations 
revealed that less than 0.94 or greater than 1.15 
shape parameters indicate the distribution 
departs significantly from the normal 
distribution at α = 0.05 level. The shape 
parameter estimates ν̂ =0.6574 (S.E.=0.116) 
under model M3 and ν̂ =0.6997 (S.E.=0.099) 
under model M5 indicate that 40% undetects 
contribute to a long tailed non-normal 
distribution. In model M4 and M6 we don’t 
assume v1= v2. The estimate of the second shape 
parameter is 2ν̂ =1.8089 (S.E.= 0.490) in model 
M4 and 2ν̂ =1.3706 (S.E.=0.215) in model M6. 
The shape parameter estimate 2ν̂  in both models 
M4 and model M6 are much larger than 1 which 
shows that both univariate distributions of the 
random intercept and the random slope and their 
joint distribution are non-normal. They are thin-
tailed ECDs, concentrated around 0 means. 
 
Possible Extensions 

First, power exponential distributions 
are just a member of larger ECD family. To 
extend the power exponential distribution 
assumptions for the models we have discussed is 
a challenging task and of great interest in both 
theory and practice. Second, we used 
approximation methods to compute probability 
distribution function values at a certain given 
point and the probability on some interval or 
within a certain given high dimension rectangle 
for the non-normal power exponential 
distributions. The CPU time and memory space 
required for this kind of task are prohibitive. 
This highly intensive computing problem will be 
eased if we could find an exact or asymptotic 
relationship between distributions (such as non-
normal MPEs and marginal or conditional 
distributions of a non-normal MPE). Third, we 

have used simulation methods to assess different 
distributions, like normal or non-normal 
characteristics as per the shape parameter. If we 
could construct a statistic related to the shape 
parameter and get an explicit, exact or 
asymptotic distribution of the statistic we could 
do a formal accurate hypothesis testing about the 
shape parameter of the distribution. This is 
another challenging task for future research. All 
source code provided in this paper is in SAS  
(Appendix). 
 

References 
 

Akaike, H. (1973). Information theory and 
an extension of the maximum likelihood 
principle. Second International Symposium on 
Inference Theory. 

Fang, K. T., & Zhang, Y. T. (1993). 
Generalized multivariate analysis. Science 
Press. 

Gomez, E., Gomez-Villegas, M. A., & 
Marin, J. M. (1998). A multivariate 
generalization of the power exponential family 
of distributions. Communications in Statistics, 
A27, 589-600. 

Harville, D. A. (1977). Maximum likelihood 
approached to variance component estimation 
and to related problems. Journal of the 
American Statistical Association, 722 (358), 320 
- 338. 

Harville, D. (1976). Extension of the Gauss-
Markov theorem to include the estimation of 
random effects. The Annals of Statistics, 4(2), 
384-395.  

Hughes, J. P. (1999). Mixed effects models 
with censored data with application to HIV RNA 
levels. Biometrics, 55, 625-629. 

Laird, N. and Ware, J. (1982). Random-
Effects models for longitudinal data. Biometrics 
38, 963-974. 

Lindsey, J. K. (1999). Multivariate 
elliptically contoured distributions for repeated 
measurements. Biometrics, 55, 1277 - 1280. 

Lyles, R. H., Lyles, C. M., & Taylor, D. J.  
(2000). Random regression models for human 
immunodeficiency virus ribonucleic acid data 
subject to left censoring and informative drop-
outs. Applied Statistics, 49 (4), 485 - 497. 

  



BARTOLUCCI, ZHENG, BAE, & SINGH 365

Lyles, R. H., Lyles, C. M. & Taylor, D. J. 
(2000). SAS programs simulation data sets. 
http://www.blackwellpublishing.com/rss/Volum
es/Cv49p4.htm. 

Schluchter, M. D. (1992). Methods for the 
analysis of informatively censored longitudinal 
data. Statistics in Medicine, Vol. 11, 1861-1870. 

 

Smith, D. K., Warren, D. L., Vlahov, D., 
Schuman, P, Stein, M. D., Greenberg, B.L., & 
Holmberg, S. D. (1997). Design and baseline 
participant characteristics of the human 
immunodeficiency virus epidemiology research 
(HER) study: A prospective cohort study of 
human immunodeficiency virus infection in US 
women. American Journal of Epidemiology, 
146, 459-469. 

 
 
Table 1. Results from HERS data: ML Estimates.  
 
 α β σ1

2 σ2
2 σ12 σ2 µt σat σbt σt

2 
M1 2.89  

(0.033) 
0.058 

(0.016) 
0.721 

(0.088) 
0.037 

(0.008)
0.061 

(0.022)
0.383 

(0.023)
- - - - 

M2 2.88 
(0.050) 

0.062 
(0.016) 

0.718 
(0.088) 

0.039 
(0.008)

0.060 
(0.022)

0.382 
(0.023)

2.32 
(0.158)

0.165 
(0.062) 

0.035 
(0.022)

0.298 
(0.096)

M3 2.91 
(0.057) 

0.058 
(0.017) 

0.747 
(0.149) 

0.040 
(0.009)

0.050 
(0.015)

0.387 
(0.076)

- - - - 

M4 2.89 
(0.002) 

0.050 
(0.001) 

0.695 
(0.417) 

0.044 
(0.028)

0.054 
(0.052)

0.410 
(0.023)

- - - - 

M5 2.90 
(0.053) 

0.062 
(0.017) 

0.833 
(0.137) 

0.047 
(0.008)

0.059 
(0.015)

0.383 
(0.068)

2.258 
(0.144)

0.173 
(0.036) 

0.042 
(0.010)

0.269 
(0.060)

M6 2.90 
(0.053) 

0.062 
(0.017) 

0.833 
(0.137) 

0.047 
(0.008)

0.059 
(0.015)

0.383 
(0.068)

2.258 
(0.144)

0.173 
(0.036) 

0.042 
(0.010)

0.269 
(0.060)

Note. Numbers in parentheses are Standard Errors of the corresponding estimates. 
 
 
Table 2. Results from HERS data: Shape parameter estimates and AIC. 
 
 ν1 ν2 d -2 log-likelihood AIC 
M1 - - 6 3920.216 3932.216
M2 - - 10 4063.556 4083.556
M3 0.6574 (0.116) - 7 3914.101 3928.101
M4 0.4694 (0.060) 1.8090 (0.490)  8 3892.833 3908.833
M5 0.6997 (0.099) - 11 4057.746 4079.746
M6 0.5173 (0.055) 1.3706 (0.215) 12 4040.791 4064.791
Note. Numbers in parentheses are Standard Errors of the corresponding estimates. 
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Appendix 
 

SAS Program for Taking Left-censored into Account 
********************************************************************** 
Acknowledgments:  The following program was created originally by Dr. 
Robert H. Lyles. We have changed his distribution assumptions normal 
to ECD and added five nonlinear constraints. We really appreciate Dr. 
Lyles's providing this program.  
Description: Calculation of the ML estimates of the fixed effects and 
the variance matrix.  
We assume the underlying distributions are ECDs. Also, we take the 
undetectable observations into account under the model described by 
the likelihood equation (4) in this paper.       
********************************************************************** 
data test;    
infile '/herscens1.dat';        
input obsn  id time nondet response fail survtyrs logsurvt;  
*Compute ML estimates via PROC MIXED on complete data (which would not 
  be available in practice).  That is, using the actual values for the  
response and all 1864 measurements; 
   

proc mixed data=test method=ml;    
     class id;    
     model response=time / s ddfm=bw;    
     random intercept time /type=un subject=id;    
     title2 "ml estimates for full data set (unavailable in 
practice)"; run;    
    
data test2;    
  set test;     
if nondet=1 then do;    
  observed=0;    
end;      
else if nondet=0 then do;    
   observed=1;    
end;    
   label response="Base 10 log HIVRNA value"    
         time    ="time of measurement"    
         id      ="subject id"    
         observed="indicator for whether value was observed"    
         fail="indicator for whether subject dropped out"    
         survtyrs="Years to dropout"    
         logsurvt="Natural log of dropout time";    
    
* Compute ML estimates ignoring left censoring and drop-outs    
  using PROC MIXED with random intercept and slope.  These naive    
  estimates will be used as starting values for the six parameters    
  of the mixed effects model;    
      
proc mixed data=test2 method=ml;    
     class id;    
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     model response=time / s ddfm=bw;    
     random intercept time /type=un subject=id;    
     title2 "ml estimates ignoring left censoring and dropouts";    
run;    
       
***Create dataset to be read into IML for maximizing likelihood in    
Eqn. 2, accounting for left censoring: *;    
    
data test; set test;    
  if nondet=1 then do;    
   observed=0;    
 end;    
    
 else if nondet=0 then do;    
   observed=1;    
 end;  run;    
    
proc iml worksize=999216000 symsize=999999900;    
    
*******************************************************************    
* define IML function which will be used to maximize the likelihood    
*******************************************************************;    
    
start likeli1(parms);    
    
* lower and upper boundaries and stepsize for numerical integration;    
   nsteps=31;    
a_l   =-5;        
a_u   = 5;        
step_a=(a_u-a_l)/(nsteps-1);    
b_l   = -1.5;      
b_u   =  1.5;      
step_b=(b_u-b_l)/(nsteps-1);    
pi=2*arsin(1);    
    
* variables corresponding to input parameters from vector 'parms';    
   sigsq1  =parms[1];  * random intercept effect variance;    
sig12   =parms[2];  * covariance between random intercept and slope;    
sigsq2  =parms[3];  * random slope effect variance;    
sigsq   =parms[4];  * within subject variance;    
alpha   =parms[5];  * fixed effect intercept;    
beta    =parms[6];  * fixed effect slope;    
v       =parms[7];    
    
* determine number of subjects in dataset;    
use test;    
   read all var {id} into subjects;    
   close test;    
    
* compute number of subjects and create vector for each subjects    
  contribution to the likelihood;    
subjects=ncol(unique(subjects));    
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terms=j(subjects,1,.);    
    
* get vector of indicators for observed vs. censored responses for 
subject i;    
do i=1 to subjects;    
   use test;    
   read all var {observed} into d_i where (id=i);    
   close test;    
    
* number of observations, number of observed values, and number of 
censored    
  values, respectively, for subject i;    
   n_i=nrow(d_i);    
   o_i=sum(d_i);    
   c_i=n_i-o_i;    
    
* create vectors of censored values and the associated time of 
measurement;    
   if c_i>0 then do;    
      use test;    
      read all var {response} into cens_i where (id=i & observed=0);    
      read all var {time} into c_time_i where (id=i & observed=0);    
      close test;    
      end;    
    
* create vectors of observed values and the associated time of 
measurement;    
   if o_i>0 then do;    
      use test;    
      read all var {response} into y_i where (id=i & observed=1);    
      read all var {time} into time_i where (id=i & observed=1);    
      close test;    
      end;    
    
 * set initial value for likelihood contribution by subject i to zero;    
   func_i=0;    
    
* define quadrature points for numerical integration;    
   do a_i=a_l to a_u by step_a;    
   do b_i=b_l to b_u by step_b;    
    
      * contribution to likelihood due to observed values for subject 
i;    
      if o_i=0 then func_i1=1;    
         else do;    
         t_i1=(y_i-alpha-beta*time_i);    
         t_i2=(a_i+b_i*time_i);    
         func_i1=(1/(sqrt(sigsq)*gamma(1+0.5/v)*(2##(1+0.5/v)))**o_i)*    
                 exp(-0.5*sum(((t_i1-t_i2)##2/sigsq)##v));    
         end;    
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      * contribution to likelihood due to censored values for subject 
i;    
      func_i2=1;     
      if c_i>0 then      
       do j=1 to c_i;              
            b=cens_i[j,1]-alpha-a_i-beta*c_time_i[j,1]-
b_i*c_time_i[j,1];     
             if b >= 0 then 
temp_i2=0.5*(1+probgam(0.5*(b/sqrt(sigsq))**(2*v),(1/(2*v))));    
      else temp_i2=0.5*(1-probgam(0.5*(-
b/sqrt(sigsq))**(2*v),(1/(2*v))));    
         func_i2=func_i2*temp_i2;     
       end;     
 
      * compute correlation coefficient between intercept and  slope;    
      r=sig12/sqrt(sigsq1*sigsq2);    
          
      * compute joint distribution of intercept and slope;    
      w=(sigsq1||sig12)//(sig12||sigsq2);    
   u=det(w);    
      y=inv(w);    
   x_i=(a_i||b_i);    
    
      func_i3=(2/(pi*sqrt(u)*gamma(1+1/v)*(2##(1+1/v))))*    
                 exp(-0.5*(x_i*y*x_i`)##v);      
                      
      * compute contribution of subject 'i' to objective function;    
    
      func_i=func_i+(func_i1*func_i2*func_i3*step_a*step_b);    
      end;    
      end;    
    
* add subject i's contribution to vector of likelihood terms;    
    
   terms[i,1]=func_i;    
   end;    
    
* compute -2 log likelihood;    
    
   loglik2=-2*sum(log(terms));    
   return(loglik2);    
    
finish likeli1;    
    
 
**********************************************************************    
The following is the main body of the program (which calls the    
minimization function, computes the Hessian, etc.)    
**********************************************************************
;    
* initial estimates from preliminary analysis;   
parms={.24 -.012 .015 .201 3.21 .039 1.0};   



RANDOM REGRESSION MODELS  370 

  
* options vector for minimization function;    
* matrix of lower (row 1) and upper (row 2) bound contraints on 
parameters    
   (sigsq1 > 0, sig12 <> 0, sigsq2 > 0, sigsq > 0, alpha <> 0, beta <> 
0);    
/*  con={1E-5 . 1E-5 1E-5 . .,    
     . . . . . .}; */  
  
* The following are five non-linear restrictions; 
  
start c_h(parms);    
  c=j(5,1,0.);    
  c[1]=parms[1];    
  c[2]=parms[3];    
  c[3]=parms[4];    
  c[4]=parms[1]-(parms[2]##2/parms[3]);    
  c[5]=parms[7];    
    return(c);    
finish c_h;    
    
* call function minimizer in IML;   
optn=j(1,11,.); optn[1]=0; optn[2]=3; optn[10]=5; optn[11]=0;    
call nlpqn(rc, xres, "likeli1", parms, optn) nlc="c_h";    
    
* create vector of mle's computed using function minimizer;  
parms=xres`;    
 
* compute numerical value of Hessian (and covariance matrix) using    
  mle's calculated above;    
call NLPFDD(crit, grad, hess, "likeli1", parms);    
cov_mat=2*inv(hess);    
se_vec =sqrt(vecdiag(cov_mat));    
print cov_mat se_vec;  
 
*****************************************************; 
The following program is used to transform MLE of ECD Sigma matrix 
int the variance matrix; 
   
proc iml; 
sig1={ 0.221828 -0.014873 0.011839};  
sig = 0.141499; a = 2.906699; b = 0.057614; 
beta=0.657391;  
c1=2**(1/beta)*gamma(2/beta)/(2*gamma(1/beta)); 
c2=2**(1/beta)*gamma(1.5/beta)/(gamma(0.5/beta)); 
sig11=c1*sig1;  sig0=c2*sig; 
sigma=sig11||sig0||a||b; 
print sigma;    /* with ECD    */ 
sigmaOld={0.720710 -0.060955 0.037333 0.382976 2.886360 0.058335}; 
print sigmaOld; /* without ECD */ 
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In the modeling of count variables there is sometimes a preponderance of zero counts. This article 
concerns the estimation of Poisson regression models (PRM) and negative binomial regression models 
(NBRM) to predict the average number of children ever born (CEB) to women in the U.S. The PRM and 
NBRM will often under-predict zeros because they do not consider zero counts of women who are not 
trying to have children. The fertility of U.S. white and Mexican-origin women show that zero-inflated 
Poisson (ZIP) and zero-inflated negative binomial (ZINB) models perform better in many respects than 
the Poisson and negative binomial models. Zero-inflated Poisson and negative binomial regression 
models are statistically appropriate for the modeling of fertility in low fertility populations, especially 
when there is a preponderance of women in the society with no children. 
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Introduction 
 
When analyzing variation in the number of 
children that women have born to them, 
demographers frequently use Poisson and 
negative binomial regression models rather than 
ordinary least squares models. Poisson and 
negative binomial regression models are 
statistically more appropriate for predicting a 
woman’s children ever born (CEB), particularly 
in societies where mean fertility is low (Poston, 
2002). Most women in such populations have 
children at the lower parities, including zero 
parity, and few have children at the higher 
parities.  The  CEB variable, which by definition  
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is a count variable, i.e., a nonnegative integer, is 
hence heavily skewed with a long right tail.  

The statistical modeling of these kinds 
of CEB data is best based on approaches other 
than the ordinary least squares (OLS) linear 
regression model because using it to predict a 
count outcome, such as CEB, will often “result 
in inefficient, inconsistent, and biased estimates” 
(Long, 1997, p. 217) of the regression 
parameters. Poisson regression models (PRM) 
and negative binomial regression models 
(NBRM) have been shown to be statistically 
more appropriate (Poston, 2002). 

However, sometimes there are so many 
zeros in the count dependent variable that both 
the PRM and the NBRM under-predict the 
number of observed zeros; the resulting 
regression models, therefore, often do not fit the 
data. Zero-inflated count regression models were 
introduced by Lambert (1992) and Greene 
(1994) for those situations when the PRM and 
the NBRM failed to account for the excess zeros 
and resulted in poor fit. This paper examines the 
use and application of zero-inflated count 
regression models to predict the number of 
children ever born to U.S. women. 
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Methodology 
 

The most basic approach for predicting a count 
variable, such as CEB, is the Poisson regression 
model (PRM). In the PRM, the dependent 
variable, namely, the number of events, i.e., in 
the case of this paper, the number of children 
ever born (CEB), is a nonnegative integer and 
has a Poisson distribution with a conditional 
mean that depends on the characteristics (the 
independent variables) of the women (Long, 
1997; Long & Freese, 2001). The PRM 
incorporates observed heterogeneity according 
to the following structural equation: 
 

)...(exp 2211 kkiiii bXbXbXa ++++=µ  

 
where µI is the expected number of children ever 
born for the ith woman; X1i, X2i ... Xki are her 
characteristics; and a, b1, b2 ... bk are the Poisson 
regression coefficients. 

The PRM is appropriate when the mean 
and the variance of the count distribution are 
similar, and is less applicable when the variance 
of the distribution exceeds the mean, that is, 
when there is over-dispersion in the count data. 
If there is significant over-dispersion in the 
distribution of the count, the estimates from the 
PRM will be consistent, but inefficient.  “The 
standard errors in the Poisson regression model 
will be biased downward. Resulting in 
spuriously large z-values and spuriously small p-
values” (Long & Freese, 2001; Cameron & 
Trivedi, 1986), which could lead the investigator 
to make incorrect statistical inferences about the 
significance of the independent variables. 

This is addressed by adding to the PRM 
“a parameter that allows the conditional variance 
of (the count outcome) to exceed the conditional 
mean” (Long, 1997, 230). This extension of the 
Poisson regression model is the negative 
binomial regression model (NBRM). The 
NBRM adds to the Poisson regression model the 
error term ε according to the following structural 
equation: 
 

)...(exp 2211 εµ ikkiiii bXbXbXa +++++=
 

However, sometimes there are many 
more zeros in the count dependent variable than 

are predicted by the PRM or NBRM, resulting in 
an overall poor fit of the model to the data. Zero-
inflated models respond to this problem of 
excess zeros “by changing the mean structure to 
allow zeros to be generated by two distinct 
processes” (Long & Freese, 2001, p. 250). 

Consider a few examples of excess 
zeros. Suppose one wishes to survey visitors to a 
national park to predict the number of fish they 
caught. Suppose that some of the visitors did not 
fish, but data were not available on who fished 
and who did not fish. The data gathered hence 
have a preponderance of zeros, some of which 
apply to persons who fished and caught no fish, 
and others to persons who did not fish (Stata, 
2001; Cameron & Trivedi, 1998). 

Or consider the problem of predicting 
the number of publications written by scientists. 
Some scientists will never publish either because 
they have chosen not to do so, or, perhaps, 
because they are not permitted to do so. But 
assume that there are no data telling which 
scientists have a zero probability of ever 
publishing. As with the example of the number 
of fish caught, there will be a preponderance of 
zeros among scientists with regards to the 
number of articles published. Some of the zeros 
will apply to scientists who tried to publish but 
were not successful and others to scientists who 
did not try to publish (Long & Freese, 2001; 
Long, 1990). 

Finally, consider the example to be 
addressed in this paper, namely, the number of 
children born to women. Some women will 
choose not to have children and are referred to 
as voluntarily childless women. Other women 
will try to have children but will not be 
successful in their attempts and are referred to as 
involuntarily childless women (Poston, 1976; 
Poston & Kramer, 1983). But, assume that it is 
not directly known to which group each woman 
belongs. Thus among women of the childbearing 
ages of 15-49, there will be many zeros on the 
CEB dependent variable; some of the zeros will 
apply to women who tried to produce children 
but were not successful, and others to women 
who voluntarily opted against having children. 

Long and Freese (2001) stated that in 
zero-inflated models it is assumed that “there are 
two latent (i.e., unobserved) groups. An 
individual in the Always-0 Group (Group A) has 
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an outcome of 0 with a probability of 1, while an 
individual in the Not Always-0 Group (Group 
~A) might have a zero count, but there is a 
nonzero probability that she has a positive 
count” (p. 251). 

In all cases, the investigator does not 
know into which of the two groups the 
respondents fall. If it was known into which 
group each subject was placed, one could 
subtract the persons belonging to the Always-0 
Group from the total sample, and estimate 
Poisson or negative binomial regression models. 
But typically one does not have this kind of 
information, thus requiring the introduction of 
zero-inflated regression. 

The estimation of zero-inflated 
regression models involves three steps: 1) 
predicting membership in the two latent groups, 
Group A and Group ~A; 2) estimating the 
number of counts for persons in Group ~A; and 
3) computing “the observed probabilities as a 
mixture of the probabilities for the two groups” 
(Long & Freese, 2001, p. 251). 

To analyze the fertility of U.S. women, 
one would follow these steps (for detail, see 
Long & Freese, 2001. p. 251-252; Cameron & 
Trivedi, 1998, p. 125-127, 211-215). 

In Step 1, use a logistic regression 
model to predict the woman’s membership in 
Group A (never have children) or Group ~A 
(may or may not have children). The 
independent variables used in the logistic 
equation may be “referred to as inflation 
variables since they serve to inflate the number 
of 0s” (Long & Freese, 2001, p. 251). 

In Step 2, for women in Group ~A (may 
or may not have children), depending on 
whether or not there is over-dispersion in the 
CEB dependent variable, use either a Poisson 
regression model or a negative binomial 
regression model to predict the probabilities of 
counts 0 to y (where y is the maximum number 
of children born to a woman). The independent 
variables used in Step 2 may or may not be the 
same as those used in Step 1. In the examples 
shown below, the same independent variables 
are used in both steps. Using the same variables 
in both steps is not required. Different variables 
could be used in each step. 

In Step 3, the results from the preceding 
steps are used to determine the overall 

probability of 0’s, which is “a combination of 
the probabilities of 0’s from each group, 
weighted by the probability of an individual 
(woman) being in the group” (Long, 1997, p. 
242-243). The probabilities of counts other than 
0 are adjusted in a similar way. 
 

Results 
 
Data are available for 1995 for U.S. (non-
Hispanic) white and Mexican-origin women, 
gathered in Cycle 5 of the National Survey of 
Family Growth (National Center for Health 
Statistics, 1995). The data are based on personal 
interviews conducted in the homes of a national 
sample of 10,847 females between the ages of 
14 and 44 in the civilian, non-institutionalized 
population in the United States. Table 1 reports 
the descriptive data on children born (CEB) for 
U.S. white and Mexican-origin women in 1995. 

White women have a mean CEB of 1.2 
with a variance of 1.6. Mean CEB for Mexican-
origin women is 1.9 with a variance of 2.8. For 
both white and Mexican-origin women, the 
variance of CEB is greater than the mean of 
CEB. There are several ways for determining if 
there is over-dispersion in the CEB data (see 
Poston, 2002). It turns out that there is not a 
significant amount of over-dispersion in the 
CEB data for whites, justifying the use of a 
Poisson regression model. There is a significant 
amount of over-dispersion in the CEB data for 
Mexican-origin women, so that a negative 
binomial regression model will be appropriate. 
Poisson Regression versus Zero-inflated Poisson 
Regression 

A Poisson regression model is thus 
estimated for the white women that predicts their 
CEB with socioeconomic and location 
characteristics that have been shown in the 
demographic literature to be associated with 
fertility. The independent variables pertain to 
education, rural residence, poverty status, age, 
regional location, and religion. Some are 
measured as dummy variables and others as 
interval. 
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They are the following: X1 is the 

woman’s education measured in years of school 
completed; X2 is a dummy variable indicating 
whether the woman lives in a rural area; X3 is a 
dummy variable indicating whether the woman 
is classified as being in poverty (poverty status 
is based on whether the woman’s family income 
is below the national poverty threshold, adjusted 
for family size). 

Continuing, X4 is the woman’s age 
measured in years; X5 to X7 are three dummy 
variables  representing  the woman’s  region  of 
residence, namely, X5 residence in the Midwest, 
X6 residence in the South, and X7 residence in 
the West; residence in the Northeast is the 
reference category; and X8 to X10 are three 
dummy variables reflecting the woman’s 
religion, as follows: X8 indicates if the woman’s 
religion is Protestant, X9 if she is Catholic, and 
X10 if she has no religion, or religion is not 
specified; Jewish religion is the reference 
category. The first panel of Table 2 reports the 
results of the Poisson regression equation 
predicting CEB for U.S. white women in 1995. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
According to the Poisson coefficients 

shown in the first panel of Table 2, four of the 
ten independent variables are significantly 
related with the CEB of white women. The 
higher the woman’s education, the fewer her 
CEB; the older her age, the higher her CEB. If 
she is a rural resident or in poverty, she will 
have more children than urban residents or 
women not living in poverty. The geographic 
location and religion variables are not 
statistically significant. 

Using the above Poisson regression 
results, the predicted probabilities of each white 
woman may be calculated for each count of 
CEB from 0 to 10. The mean of the predicted 
probabilities at each count may then be 
determined, using this formula (Long & Freese, 
2001): 

∑
=

∧

===
N

i ii xm
N

my y
1

)|(Pr1)(Pr  

 
where y = m = the count of children ever born, 
and xi are the above ten independent variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Data for Children Ever Born: U.S. White and Mexican-Origin Women, Ages 15-49. 
_______________________________________________________________________________ 
 
Group   Mean  Standard Dev. Variance No. of Cases 
_______________________________________________________________________________ 
 
White   1.2471  1.2839  1.6486  6,456 
Mexican  1.8864  1.6592  2.7531     924 
_______________________________________________________________________________ 
Source of Data: National Center for Health Statistics (1995). 
 



POSTON, Jr. & MCKIBBEN 375

 

 
 
Figure 1 is a plot of the mean Poisson 

predicted probabilities at each count of CEB (the 
green x symbols), and they may be compared 
with the observed empirical distribution of CEB 
(the blue circles). Just over 40 percent 
(proportion of .4046) of U.S. white women have 
no children ever born, but the Poisson regression 
results predict a mean probability at zero count 
of .361, which is an under-prediction of the 
observed CEB. The Poisson regression results 
over-predict the observed CEB data at count 
one, under-predict at count two, and are more 
consistent with the observed CEB data at the 
third and higher counts. 

But, a central issue for this paper is the 
under-prediction by the Poisson regression 
model of the observed zero counts of CEB for 
white  women.  In  such a  situation,  it would be 

 
 

 

 
 

appropriate  to  estimate  a zero-inflated  Poisson 
regression model. The 2nd and 3rd panels of 
Table 2 present the results of such a model. 
Recall from the previous section that the first 
two steps in estimating a zero-inflated model 
involve 1) using a logistic regression model to 
predict the woman’s group membership in 
Group A (never have children) or Group ~A 
(may or may not have children), and 2) for 
women in Group ~A (may or may not have 
children), using a Poisson regression model to 
predict her number of children ever born. Thus 
there are two panels of zero-inflated Poisson 
results reported in Table 2. Panel 2, titled 
“Logit” are the logit coefficients obtained in 
Step 1, and Panel 3, titled “Poisson” are the 
Poisson coefficients obtained in Step 2. 
 
 

Table 2. Poisson Regression Model, and Zero-inflated Poisson Regression Model, U.S. White (non-Hispanic) 
Women, 1995. 
 
_______________________________________________________________________________________ 
 
         Poisson Model                      Zero-inflated Poisson Model                 

                                                     Logit                                Poisson 

Independent Variable           b              z                                   b              z                                 b               z 
                                                   
                                                  Panel 1                                       Panel 2                                        Panel 3 
 
X1 Education                   -.070       -15.45                             .905       12.83                         -.058         11.84 
X2 Rural Residence             .111          3.87                            -.336        -1.55                           .097           3.35 
X3 Poverty Status                .377        10.48                            -.482        -2.06                           .336           8.96 
X4 Age                           .076        48.41                            -.781      -14.79                           .034          16.01 
X5 Midwest                   .045          1.37                  -.714        -2.63                          .007              .22 
X6 South                  -.023          -.07                  -.289        -1.06                         -.048           -1.39 
X7 West                             .019           .53                   -.187        -0.63                          .011              .31 
X8 Protestant                       .074           .80               -2.483        -3.02                         -.030             -.31 
X9 Catholic                       .052           .56               -1.871        -2.28                         -.035             -.37 
X10 No Religion                  -.110       -1.14              -2.020        -2.15                         -.223           -2.23 
Constant                           -1.504     -11.98               8.780          8.12                          .096              .14 
 
Likelihood Ratio χ2         2857.59, P = 0.000                   458.66, P = 0.000 
________________________________________________________________________________________ 
Vuong Test of Zip vs. Poisson: 20.16 P = 0.000 
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The coefficients in the “Logit” panel 
(Panel 2) of Table 2 are the logit coefficients 
predicting a woman’s membership in Group A 
(never having children). The higher her 
education the greater the likelihood of her not 
having children. If she is in poverty, she is likely 
to not have children. The older her age, the less 
likely she will not have children. If she lives in 
the Midwest, she will be less likely than women 
living in the Northeast to not have children. And 
if she is a Catholic, or a Protestant, or has no 
religion, she will be less likely than Jewish 
women to have no children. The rural, South, 
and West variables are not significant. 

For the purpose of this paper, the more 
relevant coefficients are shown in the “Poisson” 
panel (Panel 3) of Table 2; these are the zero-
inflated Poisson coefficients predicting the 
woman’s CEB. The higher her education, the 
less number of children shill will have. If she is 
a rural resident, or in poverty, she will have 
more children. The older her age, the more the 
children. If she has no religion, she will have 
fewer children than Jewish women. The other 
variables are not significant. 

A relevant comparison is between the 
zero-inflated  Poisson  coefficients (Panel 3) and  

 
 

the Poisson coefficients (Panel 1). Note first that 
the Poisson coefficients (Panel 1) for most of the 
independent variables are slightly larger than 
those for the zero-inflated Poisson coefficients 
(Panel 3). However, the z-scores for many of the 
Poisson coefficients are quite a bit larger than 
the z-scores for the corresponding zero-inflated 
Poisson coefficients. Thus although the two sets 
of Poisson coefficients are not too different in 
magnitude, the standard errors for the zero-
inflated coefficients will tend to be larger than 
they are for the Poisson coefficients. 

Regarding issues of interpretation and 
statistical inference, the results of the two 
Poisson models allow the investigator to 
conclude that the effects on a woman’s CEB of 
her education, rural residence, poverty status and 
age are all statistically significant. However, the 
zero-inflated Poisson results, but not the basic 
Poisson results, also allow the investigator to 
conclude that the “no religion” variable has a 
statistically significant negative effect on CEB. 
Women who report no religion have fewer 
children than women in the reference (Jewish 
religion) category. This inference would not 
have been made using the results of the Poisson 
model (Panel 1). 
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Figure 1. Distributions of CEB, PRM, & ZIP, U.S. White Women
Number of Children ever Born
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Is the zero-inflated Poisson regression 
model (ZIP) statistically preferred over the basic 
Poisson model regression model (PRM)? There 
is a formal test statistic, the Vuong test (Vuong, 
1989) that determines statistically whether the 
zero-inflated model is a significant improvement 
over the Poisson model (for details, see Long, 
1997, p. 248; Long & Freese, 2001, p. 261-262). 
The Vuong statistic is asymptotically normal; if 
its value is > 1.96, the ZIP model is preferred 
over the PRM. If Vuong < 1.96, the PRM is 
preferred. The Vuong test statistic is shown at 
the base of Table 2, Vuong = 20.16. This is clear 
evidence that the zero-inflated Poisson 
regression results are preferred over the Poisson 
regression results. 

Another way to judge whether ZIP is 
preferred over PRM is to ascertain if the results 
from a ZIP regression improve the prediction of 
the mean probability at count zero. Recall from 
the discussion of Figure 1 (above) that the 
Poisson regression results under-predicted the 
mean probability at count zero. Figure 1 also 
contains mean predicted probabilities at each 
count that are based on the results of the zero-
inflated Poisson model. 

The ZIP predictions are shown in Figure 
1 as maroon diamonds. The ZIP model predicts 
a probability at count zero of .3988, which is 
very close to the observed proportion of CEB at  
count zero of .4046. The expected probabilities 
from the ZIP model at counts 1, 2 and 3 are also 
closer to the corresponding observed CEB 
counts than are those predicted by the PRM. The 
ZIP results seem to do a much better job 
predicting the observed CEB at counts 0, 1, 2, 
and 3 than do the results from the PRM. 
 
Negative Binomial Regression versus Zero-
inflated Negative Binomial Regression 

In the above example predicting CEB 
for U.S. white women, it was first determined 
that there was not a significant amount of over-
dispersion in CEB, thus justifying modeling 
CEB with the PRM. But recall that for the U.S. 
Mexican-origin women, the variance of CEB 
was significantly greater than the mean of CEB. 
In such a case, the PRM is not appropriate. 
Instead a negative binomial regression model 
(NBRM) is preferred. 

The first panel of Table 3 reports the 
results of a negative binomial regression 
(NBRM). The same independent variables are 
used in this regression, as were used in the 
regressions shown in Table 2, except that age is 
excluded and “no religion” is used as the 
reference religion category. Excluding age 
resulted in a better fit of the negative binomial 
model with the data. The “no religion” variable 
is removed from the equation and used as the 
reference category because the Jewish variable 
was removed altogether from the equation; only 
2 of the 924 Mexican-origin women were 
Jewish, so there was insufficient variation in this 
variable. Thus, regression results are shown in 
Table 3 for eight independent variables.  

The negative binomial regression 
coefficients in the first panel of Table 3 indicate 
that only two of the eight independent variables 
are significantly related with the CEB of 
Mexican-origin women. The higher the 
woman’s education, the lower her fertility; and 
if she is living in poverty, she will have more 
children than women not in poverty. The other 
independent variables are not statistically 
significant. 

There is a large number of zeros for the 
CEB of Mexican-origin women. Almost 27 
percent of them have zero children. Although 
this is not quite as high as the level of zero parity 
among white women (40.4 percent of the white 
women have no children), a zero-inflated 
negative binomial regression model (ZINB) was 
estimated to see if model fit would be improved 
over that of the NBRM. Its results may be 
compared with those of the NBRM shown in the 
first panel of table 3. 

Recall that zero-inflated models produce 
two sets of coefficients (see the discussion 
above). Thus, the coefficients in the “Logit” 
panel (Panel 2) of Table 3 are the logit 
coefficients predicting a Mexican-origin 
woman’s membership in Group A (never having 
children). The higher her education the greater 
her likelihood of not having children. And if she 
is Catholic, she is less likely than women with 
no religion to have no children. The other 
independent variables are not significant. 
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A comparison may be made between the 

zero-inflated negative binomial coefficients 
(Panel 3) and the negative binomial coefficients 
(Panel 1). Note first that the NBRM coefficients 
(Panel 1) for four of the independent variables 
are slightly larger than those for the ZINB 
coefficients (Panel 3). And the z-scores for four 
of the NBRM coefficients are larger than those 
for the corresponding ZINB coefficients. The 
results of the two models in Panels 1 and 3 allow 
the investigator to conclude that the effects on a 
woman’s CEB of her education and poverty 
status are statistically significant. However, the 
zero-inflated negative binomial regression 
results, but not the negative binomial results, 
also allow the investigator to conclude that 
Mexican-origin women living in the West have 
more children than those living in the Northeast. 
The  NBRM  results did not allow this  inference  

 

 
 

to be made.  
One may compare the ZINB regression 

results with the NBRM results to determine if 
one is statistically preferred over the other. The 
Vuong test statistic provided at the base of Table 
3 has a value of 70.67. Clearly the zero-inflated 
negative binomial regression results are 
preferred over the basic negative binomial 
regression results. 
 

 
Conclusion 

 
This article considered a situation that frequently 
occurs when modeling count variables, namely, 
that there is a preponderance of zero counts. The 
application addressed in this paper involved the 
estimation of Poisson regression models (PRM) 
and negative binomial regression models 

Table 3. Negative Binomial Regression Model, and Zero-inflated Negative Binomial Regression Model, 
U.S. Mexican-origin Women, 1995 
 
_____________________________________________________________________________________ 
      
        Negative                                  Zero-inflated  
   Binomial Model                               Negative Binomial Model                 
                                                                                Logit                       Negative 

Binomial 

Independent Variable        b               z                                 b               z                               b               z 
 
                                              Panel 1                                   Panel 2                                Panel 3 
 
X1 Education              -.076     -9.13                             .120         3.04                        -.058           7.35 
X2 Rural Residence  .156      1.36                             .150           .33                         .177            1.57  
X3 Poverty Status  .231      3.84                            -.089         -.29                         .213            3.51  
X4 Midwest                   .351        .85                           9.288           .04                         .698           1.76  
X5 South   .442      1.09                           8.922           .04                         .697           1.82  
X6 West   .478      1.18                           8.951           .04                         .736           1.93  
X7 Protestant               .202      1.72                            -.491       -1.18                         .084             .69  
X8 Catholic   .180          1.71                 -.903       -2.41                        -.004           -.03  
Constant   .694          1.63                        -11.176         -.05                         .589           1.46  
 
Likelihood Ratio χ2      126.36, P = 0.000     98.05, P = 0.000 
 
Vuong Test of Zero-inflated Negative Binomial versus Negative Binomial 70.67, P = 0.000 
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(NBRM) to predict the average number of 
children ever born (CEB) to women in the U.S. 
This is a count variable, and in a low fertility 
society such as the U.S., it is skewed with a long 
right tail. 

It was noted in this article that many 
U.S. women have no children, resulting in a very 
large percentage of zero counts. But two groups 
of women have no children; one group will have 
zero CEB because they have chosen to never 
have children; another group will have no 
children even though they are trying to do so. 
PRM and NBRM are best suited to predict CEB 
counts among women who are having, or trying 
to have, children. Thus these models end up 
under-predicting zero counts because strictly 
speaking they are not able to consider the zero 
counts of women who are not trying to have 
children. Zero-inflated Poisson (ZIP) and zero-
inflated negative binomial (ZINB) models have 
been proposed to handle such situations. 

Analyses conducted in this paper of the 
fertility of U.S. white and Mexican-origin 
women in 1995 demonstrated that the zero-
inflated models performed better in many 
respects than the straightforward Poisson and 
negative binomial models. Not only were the 
coefficients in the ZIP and ZINB models 
different from those in the PRM and NBRM, it 
was also shown that errors of statistical 
inference, in terms of failing to include 
significant effects, would have been made had 
the investigator only relied on the results of the 
PRM and NBRM. 

It would appear that the use of zero-
inflated Poisson and negative binomial 
regression models are statistically appropriate 
for the modeling of fertility in low fertility 
populations. This is especially the case when 
there is a preponderance of women in the society 
with no children.  
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Variable Selection for Poisson Regression Model 
 

Felix Famoye    Daniel E. Rothe 
                           Department of Mathematics     Alpena Community College 
                           Central Michigan University 
 
 
Poisson regression is useful in modeling count data. In a study with many independent variables, it is 
desirable to reduce the number of variables while maintaining a model that is useful for prediction. This 
article presents a variable selection technique for Poisson regression models. The data used is log-linear, 
but the methods could be adapted to other relationships. The model parameters are estimated by the 
method of maximum likelihood. The use of measures of goodness-of-fit to select appropriate variables is 
discussed. A forward selection algorithm is presented and illustrated on a numerical data set. This 
algorithm performs as well if not better than the method of transformation proposed by Nordberg (1982). 
 
Key words: Transformation, goodness-of-fit, forward selection, R-square 
 
 

Introduction 
 
Regression models using count data have a wide 
range of applications in engineering, medicine, 
and social sciences. Other forms of regression 
such as logistic regression are well established in 
various social science and medical fields. For 
example, in epidemiology, researchers study the 
relationship between the chance of occurrence of 
a disease and various suspected risk factors. 
However, when the outcomes are counts, 
Signorini (1991) and others point out that 
Poisson regression gives adequate results. 

The social sciences often perform 
studies that involve count data. Sociology, 
psychology, demography, and economics all 
perform studies using the type of data that can 
make use of the Poisson regression model. 
Sociology applications involve situations where 
researchers   wish   to  predict   an   individual’s  
 
 
Felix Famoye, Department of Mathematics, 
Central Michigan University, Mt. Pleasant, MI, 
48859. E-mail: felix.famoye@cmich.edu. Daniel 
E. Rothe, Alpena Community College, 666 
Johnson Street, Alpena, MI, 49707. Email: 
rothed@alpenacc.edu. The first author 
acknowledges the support received from Central 
Michigan University FRCE Committee under 
Grant #48136. 
 

 
behavior based on a particular group of observed 
characteristics and experiences. D’Unger et al. 
(1998) examined categories of criminal careers 
using Poisson latent class regression models. 
They assert that Poisson regression models are 
appropriate for modeling delinquent behavior 
and criminal careers. 

Gourieroux et al. (1984) and Cameron 
and Trivedi (1986) described the use of Poisson 
regression in economics applications such as the 
daily number of oil tankers’ arrivals in a port, 
the number of accidents at work by factory, the 
number of purchases per period, the number of 
spells of unemployment, the number of strikes in 
a month, or the number of patents applied for 
and received by firms. Gourieroux et al. (1984) 
concluded that the use of Poisson regression 
model is justified in a situation where the 
dependent variable consists of counts of the 
occurrence of an event during a fixed time 
period. 

Christiansen and Morris (1997) listed 
applications of Poisson regression in a variety of 
fields. Poisson regression has been used in 
literary analysis of Shakespeare’s works and the 
Federalist Papers, Efron and Thisted (1976). 
Home run data has been analyzed using these 
types of methods, Albert (1992). Poisson 
regression and count data in general are very 
important in a wide range of fields and thus 
deserve special attention. Often these models 
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involve many independent variables. Hence 
there is a need to consider variable selection for 
the Poisson regression model. 

Variable selection techniques are well 
known for linear regression. See for example 
Efroymson (1960). Beale (1970) summarizes the 
various familiar methods: forward, backward, 
stepwise, and several other methods. Krall et al. 
(1975) discussed a forward selection technique 
for exponential survival data. They used the 
likelihood ratio as the criterion for adding 
significant variables. Greenberg et al. (1974) 
discussed a backward selection and use a log 
likelihood ratio step-down procedure for 
elimination of variables. For other nonlinear 
regressions and Poisson regression in particular, 
little is available in the literature. 

Nordberg (1982) considered a certain 
data transformation in order to change the 
variable selection problem for a general linear 
model including the Poisson regression model 
into a variable selection problem in an ordinary 
unweighted linear regression model. Thus, 
ordinary linear regression variable selection 
software can be used. 

In this article, we provide the Poisson 
regression model and describe some goodness-
of-fit statistics. These statistics will be used as 
selection criteria for the variable selection 
method. A variable selection algorithm is 
described. We present the results of a simulation 
study to compare the variable selection 
algorithm with the method suggested by 
Nordberg (1982). The algorithm is illustrated 
with a numerical example and it is compared 
with the method suggested by Nordberg. Finally, 
we give some concluding remarks. 

 
Poisson Regression Model and Goodness-of-fit 
Measures 

The Poisson regression model assumes 
the response variable yi, which is a count, has a 
Poisson distribution given by 
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xij (j = 0, 1, …, k and x i0 = 1) are independent 
variables, and jβ  (j = 0, 1, 2, …, k) are 
regression parameters. The mean and variance of 
yi are equal and this is given by 
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Throughout this article, a log linear relationship 

0
exp

k

i j ij
j

xµ β
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  will be considered. 

However, the results can be modified to 
accommodate other types of relationships. 
Frome et al. (1973) described the use of the 
maximum likelihood (ML) method to estimate 
the unknown parameters for the Poisson 
regression model. 

Several measures of goodness-of-fit for 
the Poisson regression model have been 
proposed in the literature. The Akaike 
information criterion (AIC) is a commonly used 
measure (Akaike, 1973). It is defined as 
 
                    log ( 1)AIC L k= − + +               (3) 
 
where k + 1 is the number of estimated 
parameters and L is the likelihood function. The 
smaller the value of the AIC statistic, the better 
the fit of the model. The log likelihood could be 
used as a measure of goodness-of-fit. However, 
the AIC criterion also includes k as an 
adjustment for the number of independent 
variables, so that a model with many variables 
included is not necessarily better using this 
statistic. 

Merkle and Zimmermann (1992) 
suggested some measures similar to the 2R  
statistic for linear regression. They define 
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The quantity 2

DR  measures the 
goodness-of-fit by relating the explained 
increase in the log-likelihood to the maximum 
increase possible. The interpretation is that 
higher 2

DR  indicates a better fit from the model. 
The numerator of 2

DR  is the deviance statistic. 
Cameron and Windmeijer (1996) analyzed R-
squared measures for count data. They establish 
five criteria for judging various 2R  measures. 
Among all 2R  measures considered, only the 

2
DR  defined by Merkle and Zimmermann (1992) 

satisfies all the five criteria. 
 
Selection Criteria Statistics 
 Variable selection procedures need 
criteria for adding significant variables. We 
propose two selection criteria statistics (SCS). 
The first SCS is the Akaike information criterion 
(AIC) defined earlier. The smaller the value of 
the AIC statistic, the better the fit of the model. 
 The second SCS is a modification of the 

2
DR  suggested by Cameron and Windmeijer 

(1996) by taking the number of parameters into 
account. We define 2

adjR  as 
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(5) 
 
where n is the sample size and k is the number of 
independent variables. Either of the selection 
criteria statistics in (3) and (5) can be used to 

determine which variable to add in the selection 
procedure. These variable selection criteria 
measures are adjusted to include the number of 
parameters. In this way, an additional variable 
being added to the model may not necessarily 
result in an improvement to the measure. 
 
Selection Algorithm 
 The transformation suggested by 
Nordberg (1982) for log-linear Poisson 
regression model takes the form 
 

ˆij ij iu x µ= , where j = 0, 1, 2, . . . k, and i = 1, 
2, . . . n                                                             (6) 
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ˆ ˆ
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k
i i

i j ij
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⎝ ⎠
∑                   (7) 

 
where ˆ iµ ’s are the estimates of the predicted 
values from the full Poisson regression model. 
The variable selection procedure is as follows. 
Compute the ML estimate of β in the full 
Poisson regression model. Transform the data 
using (6) and (7). Perform variable selection on 
the linear model with zi as the dependent 
variable and uij as the independent variables. 
Identify the subset of the uij variables that is 
selected and choose the corresponding xij 
variables. This gives the Poisson regression sub-
model. Compute the maximum likelihood 
estimate for the Poisson regression on the 
chosen xij variables. This gives the final result of 
variable selection through transformation. 
 Nordberg (1982) indicated that the 
success of this technique depends on the 
accuracy of the approximation of the log-
likelihood function given by 
 

( )ˆ ˆlog ( ) log ( ) ( ) ( ) / 2L L Q Qβ β β β≈ − − ,  (8) 

 
where Q(β) is given by  
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The error in (8) is given by 

( )
3

1 0

1 1 ˆE
6 ˆ

n k

ijj j
i ji

uβ β
µ= =

⎛ ⎞
= −⎜ ⎟
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∑ ∑ .         (9) 

 
Nordberg (1982) concludes that the 
approximation is adequate even when 30% of 
the ˆ iµ  are less than or equal to 4. However it is 
not clear what would happen to a case with say 
70% of the ˆ iµ  are less than or equal to 4. We 
note here that Nordberg did not run simulations 
on such cases. 
 
Forward Selection Algorithm 
 The forward selection program begins 
by finding all possible regression models with 
one variable. The one with the best selection 
criteria statistic is chosen as the best one 
variable model. Once the best one variable 
model has been chosen, all models with the first 
variable and one additional variable are 
calculated and the one with the best selection 
criteria statistic is chosen. In this way, a two 
variable model is chosen. The process continues 
to add variables until the asymptotically normal 
Wald type “t”-value for an added variable is not 
significant. The process then stops and returns 
the previous acceptable model. 
 The selection criteria statistics (SCS) 
and a test of significance of each variable are 
used to determine which variable to enter. The 
following is the algorithm: 
 
[Initialize: k = number of independent variables, 
α = significance level] 
1. ν ← 1 
2. Fit k Poisson regression models with the 

intercept and ν independent variable 
3. Select the model with the optimal SCS. 

Let xi be the independent variable chosen 
and βi be its parameter. 

4. If the asymptotically normal Wald type 
“t”-value associated with βi is significant at 
level α, 

• Retain Poisson regression model 
with independent variable xi and go to 5. 
else 
 

• Return “No variables are significant” 
and Stop. 

5. Do while (k ≥ 2 )  
• ν ← ν + 1 
• k ← k – 1 
• Fit k Poisson regression models each 

with the intercept and ν independent 
variables. [The model includes all 
previously selected xi’s and one new 
xj, j = 1, 2, 3, . . k] 

• Select the model with the optimal 
SCS. Let xnew be the independent 
variable added and βnew be its 
parameter. 

• If the asymptotically normal Wald 
type “t”-value for βnew is not 
significant at level α, 

o ν ← ν – 1 
o go to 6, else 
o add xnew to the Poisson 

regression model 
o Continue 

6. The forward selection selects ν independent 
variables. Deliver the parameter estimates, t-
values, and goodness-of-fit statistics for the 
selected model. 

 
Simulation Study 
 In order to compare the proposed 
method with the method proposed by Nordberg 
(1982), we conduct a simulation study. The 
Poisson regression model in (1) is generated and 
both methods were used for variable selection. 
 We generated a set of x–data consisting 
of n (n = 100, 250, 500, and 1000) observations 
on eight explanatory variables xij, i = 1, 2, …, n 
and j = 0, 1, 2, …, 7, where xi0 = 1 (a constant 
term). The variables xi1, xi2, …, xi7 were 
generated as uncorrelated standard normal 
variates. All simulations were done using 
computer programs written in Fortran codes and 
the Institute of Mathematical Statistics Library 
(IMSL) is used. 
 The parameter vector β = (β0, β1, β2, …, 

β7) used in the simulation study is chosen in 

such a way that β5 = β6 = β7 = 0, while β0, β1, β2, 

β3, and β4 are non-zero. For all simulations, we 
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chose β1 = β2 = β3 = β4 = 0.2 and six different 

values of β0. We consider the six values β0 = –
1.0, –0.5, 1.5, 1.7, 2.0, and 3.0. These values 
were chosen so that certain percentages of fitted 
values ˆ iµ  will be less than or equal to 4.0. When 

β0 = –1.0 or –0.5, all fitted values ˆ iµ  from the 
Poisson regression model are less than or equal 
to 4.0. For β0 = 1.5, about 40% of the fitted 

values ˆ iµ  are less than or equal to 4.0. When β0 
= 1.7, about 20% of the fitted values ˆ iµ  are less 

than or equal to 4.0, and for β0 = 3.0, almost all 
fitted values ˆ iµ  exceed 4.0. 

 Using the β-vector and xi0, xi1, xi2, …, xi7 
as explanatory variables, the observations yi, i = 
1, 2, .., n, were generated from the Poisson 
regression model in (1). Thus, the y–variates are 
Poisson distributed with mean 
 

7

0
expi j ij

j
xµ β

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ . 

 
 The Nordberg method is used to 
perform variable selection on each set of data 
generated. The forward selection algorithm 
developed in this article is also used for variable 
selection. The result from using AIC selection 
criterion is presented in this article. The result 
from using 2

adjR  selection criterion is the same 
as that of using AIC, and hence the result is not 
given. 
 Each simulation was repeated 1000 
times by generating new y–variates keeping the 
x–data and the β1, β2, …, β7 constant. Since the 

parameters β5 = β6 = β7 = 0, we expect x5, x6, and 

x7 not to enter into the selected model. 
Whenever any or all of these three variables 
enter a selected model, it is considered an error. 
The error rate from the 1000 simulations was 
recorded in Table 1 for both selection methods. 
In each simulation, the percentage of fitted 
values ˆ iµ  less than or equal to 4 is recorded. 
These percentage values are averaged over the 
1000 simulations and the results are presented in 
Table 1. 

From Table 1, we notice some 
differences between the error rates from the 
forward selection method and the transformation 
method proposed by Nordberg. In general, the 
error rates from the forward selection method 
are smaller than the error rates from the 
Nordberg method. The error rates are much 
larger when the sample size is small, say n = 100 
or n = 250. As the sample size increases to n = 
500 or n = 1000, the two methods are closer in 
performance. However, the forward selection 
method seems to have a slight advantage over 
the Nordberg method. When the percentage of 
the fitted values ˆ iµ  less than or equal to 4.0 is 
high, the error rates from the Nordberg method 
seem to be high, especially when the sample size 
n is small. 

From the simulation study, the 
difference between the two selection methods is 
not only due to whether the percentage of fitted 
values ˆ iµ  less than or equal to 4.0 is high, it also 
depends on the sample size n. For small sample 
size, the Nordberg method tends to select 
variables x5, x6, and/or x7 more often than the 
forward selection algorithm presented earlier. As 
the sample size increases to 1000, the Nordberg 
method tends to perform as well as the forward 
selection algorithm. 
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Table 1. Error Rates For Nordberg And Forward Selection Algorithms. 
 

 
N 

 
β0 

Nordberg 
Method 

Forward 
selection 

Percentage of 
ˆ iµ  ≤  4.0 

 
 

100 

–1.0 
–0.5 

1.5 
1.7 
2.0 
3.0 

0.188 
0.189 
0.164 
0.159 
0.145 
0.147 

0.166 
0.170 
0.140 
0.129 
0.129 
0.130 

100.0 
100.0 

42.3 
24.1 

6.9 
0.0 

 
 

250 

–1.0 
–0.5 

1.5 
1.7 
2.0 
3.0 

0.191 
0.171 
0.155 
0.155 
0.155 
0.152 

0.168 
0.155 
0.136 
0.142 
0.143 
0.142 

100.0 
100.0 

43.0 
24.0 

7.8 
0.4 

 
 

500 

–1.0 
–0.5 

1.5 
1.7 
2.0 
3.0 

0.159 
0.147 
0.133 
0.139 
0.149 
0.143 

0.151 
0.139 
0.136 
0.139 
0.147 
0.138 

100.0 
100.0 

41.6 
23.4 

6.9 
0.2 

 
 

1000 

–1.0 
–0.5 

1.5 
1.7 
2.0 
3.0 

0.144 
0.154 
0.162 
0.153 
0.159 
0.148 

0.144 
0.146 
0.160 
0.147 
0.156 
0.145 

100.0 
100.0 

38.9 
20.5 

5.7 
0.1 

 
Numerical Example 
 We applied the forward selection 
algorithm and the transformation method 
suggested by Nordberg (1982) to several data 
sets. The forward selection algorithm was 
implemented using AIC and R2

adj as selection 
criteria statistics. When the percentage of the ˆ iµ  
less than or equal to 4 satisfied the cases 
considered by Nordberg (1982), both methods 
yielded the same sub-model. However, when the 
data has a much larger percentage of ˆ iµ  less 
than or equal to 4, we tend to obtain different 
results. We now present the results of a data set. 
 Wang and Famoye (1997) modeled 
fertility data using Poisson and generalized 
Poisson regression models. The data was from 
the Michigan Panel Study of Income Dynamics 
(PSID), a large national longitudinal data set. 
The particular portion of the data used in this 
paper was from 1989 and consisted of data from 

2936 married women who were not head of 
households and with nonnegative total family 
income. The dependent variable was the number 
of children. Of the families, 1029 (35.05%) had 
no children under age 17. The response variable 
had a mean of 1.29 and a variance of 1.50. The 
predicted values under full Poisson regression 
model were small with 54.26% less than or 
equal to 1. Thus the data set was much more 
extreme than any of the cases considered by 
Nordberg (1982). 
 The Poisson regression model was fitted 
to the data using 12 covariates. The results are 
presented in Table 2. The forward selection 
algorithm was run on the data and the variables 
chosen are x9, x1, x4, x5, x2, and x10. The variables 
chosen are exactly the same variables that are 
significant in the full model. The transformation 
method proposed by Nordberg (1982) was 
applied to the data. The variables selected were 
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Table 2. Poisson Regression Model. 

 
 Full Model Forward Selection Sub-model 

Parameter Estimate ± s.e. t-value Estimate ± s.e. t-value Step added 

Intercept 2.0686±0.1511 13.69* 2.1226±.0744 28.53* -- 

x1 –0.2657±0.0356 –7.46* –0.2674±.0351 –7.61* 2 

x2 –0.0193±0.0041 –4.71* 0.0196±.0041 –4.82* 5 

x3 –0.1226±0.0651 –1.88 -- -- -- 

x4 –0.2811±0.0379 –7.42* –0.2629±.0368 –7.15* 3 

x5 0.3057±0.0575 5.32* 0.3002±.0567 5.29* 4 

x6 –0.0050±0.0087 –0.57 -- -- -- 

x7 0.0035±0.0071 0.49 -- -- -- 

x8 –0.0143±0.0187 –0.76 -- -- -- 

x9 –0.0211±0.0038 –5.55* –0.0217±.0038 –5.76* 1 

x10 –0.0147±0.0066 –2.23* –0.0132±.0059 –2.25* 6 

x11 0.0118±0.0078 1.51 -- -- -- 

X12 –0.0545±0.0340 –1.60 -- -- -- 
           *Significant at 5% level. 
 
 
x6, x7, x8, x11, x9, and x10. These are not the same 
variables chosen by the forward selection 
procedure. Only two of the variables are chosen 
by both methods. The results from the 
transformation method are shown in Table 3. 
The parameters corresponding to x6, x7, x8, and 
x11 are not significant in the full Poisson 
regression model (see Table 2), causing 
concerns about the accuracy of the 
transformation method. 
  
 
 
 
 
 
 
 

 
Goodness-of-fit statistics for the models 

are provided in Table 4. The goodness-of-fit 
statistics for the forward selection sub-model are 
close to those for the full model even though the 
number of independent variables is now six. 
This is not the case for the transformation sub-
model. All these results are in support of the 
simulation study reported earlier. 
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Table 3. Nordberg’s Transformation Method. 
 

 Transformation sub-model 

Parameter Estimate ± s.e. t-value Step 
added

Intercept 1.8062±.1484 12.17* -- 

x6 –0.0140±.0086 –1.63 1 

x7 0.0075±.0070 –1.07 2 

x8 –0.0063±.0186 –0.34 3 

x9 –0.0376±.0017 –22.12* 5 

x10 –0.0027±.0008 –3.04* 6 

x11 0.0124±.0077 1.61 4 

 * Significant at 5% level. 
 
Table 4. Goodness-of-fit For The Poisson 
Model. 
 
Statistic Full 

Model 
Forward 
Selection 

Nordberg 

Deviance 3277.84 3286.14 3430.81 

d.f. 2923.0 2929.0 2929.0 

Log-
likelihood 

–2410.09 –2414.24 –2486.58 

AIC 2423.09 2421.24 2493.58 

R2
adj 0.2014 0.1994 0.1639 

 
Conclusion 

 
The size of the predicted values affected the 
usefulness of the transformation method. In the 
data set, the predicted values are relatively small 
(54.3% less than or equal to 1). Since the 
approximation error E in (9) for the 
transformation method involves division by the 
square root of the predicted value, one should be 
concerned when many predicted values are 
small. Dividing by small values may cause this 
error term to become large and make the 
approximation inaccurate. Although many other 
data sets analyzed indicate that the 
transformation method can be useful when the 

predicted values are large, it may run into 
problems when predicted values are small. Real 
world data may not necessarily have large 
predicted values. It would be ideal to have an 
algorithm that is not dependent on the size of the 
predicted values. The forward selection method 
presented performed well regardless of the size 
of the predicted values. 
 The forward selection algorithm may 
take much more computer time than the 
transformation method proposed by Nordberg 
(1982). In these days of better computer 
technology, more computer time should not be a 
reason for using a method that may not always 
produce an adequate result. From our simulation 
study, the forward selection algorithm performs 
as well if not better than the transformation 
method. 
 In this article, a forward selection 
algorithm was developed. Similar methods could 
be developed using backward or stepwise 
selection for the class of generalized linear 
models. In addition, other selection criteria 
statistics could be used. Count data occur very 
frequently in real world applications. The size of 
the predicted values cannot be controlled within 
a particular study. Thus a selection method that 
can deal with any size of predicted values is 
desirable. 
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Test Of Homogeneity For Umbrella Alternatives 
In Dose-Response Relationship For Poisson Variables 
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This article concerns the testing and estimation of a dose-response effect in medical studies. We study the 
statistical test of homogeneity against umbrella alternatives in a sequence of Poisson distributions 
associated with an ordered dose variable. We propose a test similar to Cochran-Armitage’s trend test and 
study the asymptotic null distribution and the power of the test. We also propose an estimator to the 
vertex point when the umbrella pattern is confirmed and study the performance of the estimator. A real 
data set pertaining to the number of visible revertant colonies associated with different doses of test 
agents in an in vitro  mutagenicity assay is used to demonstrate the test and estimation process. 
 
Key words: )(αC  statistic, maximum likelihood estimate, monotone trend test, Poisson distribution, 
vertex point 
 
 

Introduction 
 
Medical studies often evaluate treatment effects 
at several doses of a test drug. One usually 
assumes a priori, based either on past experience 
with the test drug or on theoretical 
considerations, that if there is an effect on a 
parameter of interest, the response is likely 
monotonic with dose, i.e., the effect of the drug 
is expected to increase or decrease 
monotonically with increasing dose levels. 
Comparing several doses with a placebo in a 
clinical dose study is then typically performed 
by one-sided many-to-one comparisons or trend 
tests assuming an order restriction. Monotonicity 
of dose-response relationship, however, is far 
from universal. 

Instances may be found where a reversal 
or downturn at higher doses is likely to occur. 
For example, many therapies for humans 
become    counterproductive   at   high   doses. 
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Similarly, in many in vitro mutagenicity assays, 
experimental organisms may succumb to toxic 
effects at high doses of the test agents, thereby 
reducing the number of organisms at risk of 
mutation and causing a downturn in the dose-
response curve (Collings et. al., 1981; Margolin 
et al., 1981). These types of non-monotonic 
dose-response behavior may not be caused by a 
random effect, but may occur due to an 
underlying biological mechanism. Mechanistic 
arguments for non-monotonic dose-response 
shapes can be found in many medical areas, such 
as toxicology (Calabrese & Baldwin, 1998), 
carcinogenesis (Portier & Ye, 1998), and 
epidemiology (Thorogood et al., 1993). 

One of the simplest non-monotonic 
dose-response is the so-called umbrella pattern 
in which the response increases (decreases) until 
certain dose level (usually unknown) and then 
decreases (increases). Ames, McCann and 
Yamasaki (1975) reported experimental data 
exhibiting this pattern from three replicate Ames 
tests in which plates containing Salmonella 
bacteria of strain TA98 were exposed to various 
doses of Acid Red 114. The number of visible 
revertant colonies on each plate was observed. 
Figure 1 is a scatter plot of the number of visible 
revertant colonies against dose level, which 
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clearly indicates an umbrella pattern peaked 
between the third dose and the fourth dose. This 
same phenomenon is also observed and 
discussed by Simpson and Margolin (1986). 

When the dose-response curve contains 
an umbrella pattern, the usual statistical trend 
tests become inadequate because of their power 
loss and inherent, and possibly erroneous 
decisions (Collings et al., 1981; Bretz & 
Hothorn, 2001). The statistical test of 
homogeneity in response against an umbrella 
alternative has been studied by many authors. 
Most of these discussions deal with a continuous 
response variable and assume the normality for 
the associated distributions. The typical 
approaches under the assumption of normality 
are based on the framework of one-way analysis 
of variance and the simultaneous confidence 
intervals for umbrella contrasts of mean 
parameters (Bretz & Hothorn, 2001; Rom et al., 
1994; Shi, 1988; Marcus & Genizi, 1994; Hayter 
& Liu, 1999). Nonparametric approaches have 
also been considered by several authors (Lim & 
Wolfe, 1997; Mack & Wolfe, 1981 & 1982, 
Simpson & Margolin, 1994). 

When data are based on counts such as 
those reported by Ames, McCann and Yamasaki 
(1975), however, a more reasonable 
distributional assumption might be the Poisson 
distribution. The statistical test of homogeneity 
against umbrella alternatives in a sequence of 
Poisson distributions associated with an ordered 
dose variable has not been addressed in the 
biostatistics literature to the best of our 
knowledge. This article studies this problem 
using an approach based on so-called )(αC  
statistics as proposed and studied by Neyman 
(1959) and Bailey (1956). The )(αC  statistics 
are also discussed in more details by Moran 
(1970) and by Cox and Hinkley (1974) under the 
more general category of score statistics. 

We propose a test similar to the 
Cochran-Armitage trend test and study the 
asymptotic null distribution and the power of our 
test. We also propose an estimator of the vertex 
point when the umbrella pattern is confirmed 
and study the performance of the estimator. A 
real data set reported by Ames, McCann and 
Yamasaki (1975) pertaining to the number of 
visible revertant colonies associated with 

different doses of test agents in an in vitro  
mutagenicity assay is used to demonstrate the 
test and estimation process. We also present 
results of a simulation study about the proposed 
test and estimation. 
 

Methodology 
 
We consider an experiment in which 
independent random samples are taken from k  
distinct dose levels. Suppose that the k  dose 
levels are meaningfully ordered. Let 

kddd ,...,, 21  be the scores associated with these 
dose levels and kddd ≤≤≤ ...21 . We assume 
that at dose level i , the response follows a 
Poisson distribution with mean kii ,...,2,1, =µ . 
Let in  be the sample size associated with dose 

level i and ∑
=

=
k

i
inn

1
. Let ix  be the total 

response in the i -th dose level. For each i  and 
p , kpi ≤≤ ,1 , let 2)( pi

p
i ddd −=  and 

ndnd p
i

k

i
i

p /
1
∑
=

= . Suppose that the relationship 

between the mean response and the score takes 
the form of 
 

( )[ ]2
pii ddH −+= βαµ , 

 
where H  is a monotonic function that is twice 
differentiable, pd  is the dose level associated 
with the vertex dose of the umbrella pattern. 
Notice that when 1=p  or k , this formulation 
reduces to the monotone trend. We consider the 
problem of testing 0:0 =βH against the 
alternative hypothesis 0: ≠βaH . The 
likelihood function as a function of βα , , and 
p  is: 

  

( )
( )[ ]{ } ( )[ ]{ } .exp

,,
22

1

ix

pipii

k
i

ddHddHn

pL

−+−+−
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βαβα

βα
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p Is Known 
When p  is given, the test is the same as 

the trend test based on the redefined dose score 
kid p

i ,...,2,1, = . The test is based on the )(αC  
statistic (Moran, 1970) and is obtained by 
evaluating the derivative of the loglikelihood 
with respect to β  at the maximum likelihood 
estimate of α  under 0H : 
 

, ˆ
)ˆ(
)ˆ('|log)(

1 1
0,ˆ ⎟
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HLC
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where 

,ˆ 1

n

x
x

k

i
i∑

==  

 
and ( )xH ˆˆ 1−=α . The test statistic for testing 

0:0 =βH against the alternative hypothesis 
0: ≠βaH  is obtained after dividing )(αC  by 

its asymptotic standard deviation under 
0H computed from the information matrix of 

),( βα  (Tarone, 1982): 
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X           (1) 

 
Notice that this test statistic does not depend on 
the choice of the function H . Under the null 
hypothesis, 2

pX  has an asymptotic Chi-square 
distribution with one degree of freedom. Notice 
also that this test statistic is identical in formula 
to the test statistic for testing monotone trend 
with the redefined score in binomial proportions 
proposed by Armirage (1955). In addition, 
Tarone (1982) showed that, like the binomial 
trend test (Tarone & Gart, 1980), this Poisson 
trend test is asymptotically locally optimal 
against any choice of smooth monotone function 
H  that satisfies 

( )[ ]2
pii ddH −+= βαµ , .,...,2,1 ki =  

p Is Unknown 
 When p  is unknown and 0:0 =βH is 
tested against the alternative hypothesis 

0: ≠βaH , we propose to reject 0:0 =βH  

when 2
1

2 max pkp XX ≤≤=  is large. Let 

n
ni

ni ∞→= limλ  and assume that 10 << iλ  for 

ki ≤≤1 . For kp ≤≤1 , let p
i

k

i
i

p dd ∑
=

=
1

λ  

and i

k

i
iµλµ ∑

=

=
1

. Let ∆ be the k  by k  matrix 

whose ),( pi  entry is given by 
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dd
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Let )( ijaA =  be the k  by k  matrix such that 

0=ija  if ji ≠  and iiija λµ=  if ji = . The 
following theorem gives the limiting distribution 
of the proposed test when the null hypothesis is 
true. 
 
Theorem 1:  If 0H  is true, then for any 0>x , 
 
        ( ) =≥∞→

22lim xXPn  
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   (2) 

 
where ( )',...,, 21 kxxxX =  and |  | is the matrix 
determinant. 
 The proof of Theorem 1 can be found in 
Appendix. Notice that the asymptotic null 
distribution does not depend on the unknown 
common mean kµµµ === ...21  as the 
common mean µ  is cancelled out in the 
integrand. Therefore, µ =1 can always be 
assumed for the computation. The evaluation of 
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the integration can be done by the iterative 
algorithm proposed by Genz (1992). This 
algorithm begins with a Cholesky 
decomposition of the covariance matrix and then 
uses a simple Monte-Carlo algorithm. Another 
possible way of evaluating the distribution of the 
test statistic under the null hypothesis is through 
a large simulation of the test statistic. We point 
out that the asymptotic null distribution does 
depend on the unknown proportion 

.,...,2,1, kii =λ  
n
ni can be used for iλ  in the 

computation based on the consistency of 
n
ni  to 

iλ . In addition, according to Šidák and Zbynĕk 
(1967), under 0H , 
 

( ) ( )[ ] ,12Pr 22 kxxX −Φ≥≤  
 

where Φ  is the distribution function of the 
standard normal distribution. Therefore, under 

0H , 
 

( ) ( )[ ] ,121Prlim 22 k
n xxX −Φ−≤≥∞→  

 
which then provides a conservative test of 0H  
against aH . 
 
Estimation of the Vertex Point 
 If the alternative hypothesis is true, the 
problem of interest is then the estimation of the 
true vertex point. To avoid the problem of 
parameter identification, we assume that the 
umbrella pattern satisfies 
 

klll µµµµµµ ≥≥><≤≤≤ +− ...... 1121  
 

or  
 

, ...... 1121 klll µµµµµµ ≤≤<>≥≥≥ +−  
 
i.e., we only consider the case  where a  single 
vertex point l  exists. Notice that this 
formulation does not rule out the possibility that 
the vertex point is on the boundary of the dose 
interval if a monotone trend is the alternative 

hypothesis. We propose to estimate l  by l̂  such 
that , max 2

1
2
ˆ pkpl XX ≤≤=  where 2

pX  is given 
by (1).  Notice that as ∞→n , for any 

kp ≤≤1 , 
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where 2

,VU pR  is the correlation coefficient 

between random variables pU  and V  defined 
on the sample space { }k,...,2,1  with the 
multinomial probability distribution 
{ }kλλλ ,...,, 21 , and p

i
p diU =)( , iiV µ=)( . 

Since 
 

)(...)1(0
)()1(...)2()1(

kUpU
pUpUUU

pp
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−<−−≤≤−≤−  

 
and either 

klll µµµµµµ ≥≥><≤≤≤ +− ...... 1121  

or  

klll µµµµµµ ≤≤<>≥≥≥ +− ...... 1121  
 
holds, the proposed estimator to the true vertex 
point l  asymptotically maximizes the square of 
the correlation coefficient between pU  and V  
over .,...,2,1 kp =  
 
A Real Example 
 In in vitro mutagenicity assays, 
experimental organisms may succumb to toxic 
effects at high doses of test agents, thereby 
reducing the number of organisms at risk of 
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mutation and causing a downturn in the dose-
response curve (Collings et al., 1981; Margolin 
et al., 1981). 
 Ames, McCann and Yamasaki (1975) 
reported experimental data exhibiting this 
pattern from three replicate Ames tests in which 
plates containing Salmonella bacteria of strain 
TA98 were exposed to various doses of Acid 
Red 114. The number of visible revertant 
colonies on each plate was observed. We assume 
a Poisson distribution for the number of visible 
revertant colonies and test whether an umbrella 
pattern in the mean exists. 
 Figure 1 is a scatter plot of the number 
of visible revertant colonies against dose level, 
which clearly indicates an umbrella pattern 
peaked between the third dose and the fourth 
dose. The test statistic is 
 

( )2 max 75.71,75.76,75.90,76.20,69.78,55.96
76.20.

X =

=
  
 The conservative test gives a p -value 
less than 0.00001, indicating a strong evidence 
that an umbrella pattern exists. Since 

2
61max pp X≤≤  is obtained when p =4, i.e., when 

dose 100004 =d  (µg/ml) of Acid Red 114 is 
used, the estimated peak dose is 4d =10000 
(µg/ml). 

 
Simulation Studies 
 To understand the performance of the 
proposed test and the estimator for the vertex 
point when the alternative hypothesis is true, we 
have carried out a simulation study to evaluate 
the statistical power of the proposed test and the 
probability that the vertex point estimator 

correctly estimates the true vertex point for a set 
of selected parameters. 
 In our simulation, we assume that a total 
of five independent Poisson distributions 
associated with five different dose levels 

.4,3,2,1,0, == iidi  We also assume that the 
sample size of all 5 groups is the same, i.e., 

54321 nnnnn ==== . Theorem 1 is used to 

determine the 2x  which achieves the upper 5% 
percentile of the test statistic under the null 
hypothesis. 
 The empirical power of the proposed 
test is computed as the proportion of rejections 
of the null hypothesis over repeated independent 
tests with a selected set of umbrella patterns. 
The performance of the proposed estimator to 
the vertex point is assessed by computing the 
empirical probability that the proposed estimator 
correctly estimates the true vertex point.  

Table 1 presents the empirical power of 
the test and the empirical probability of correct 
estimation of the vertex point for three different 
choices of the true umbrella pattern and various 
sample sizes. Each entry in Table 1 is computed 
from 10000 independent hypotheses tests and 
estimations. All the tests assume a significance 
level of 5%. 

The first column in Table 1 is the true 
mean vector ),,,,( 54321 µµµµµ . Notice that 
these umbrella patterns are chosen so that each 
possible interior vertex point (i.e., l =2,3,4) 
within the boundary of the dose interval is 
considered. Because the monotone trend is  
included in the alternative hypothesis when the 
vertex point falls on the boundary of the dose 
interval, it is of interest to see how our proposed 
test performs in these alternatives. 

This is relevant given the fact that, when 
an umbrella pattern is likely in the dose-response 
relationship, the traditional statistical monotone 
trend tests become inadequate because of their 
power loss and inherent, and possibly erroneous 
decisions (Collings et al., 1981; Bretz and 
Hothorn, 2001). We simulated the statistical 
power of the proposed test for detecting the 
monotone trend and compared that to the 
traditional trend test as discussed by Cochran 
(1954) and Tarone (1982). 
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Table 1: Empirical Power and Probability with an Interior Vertex Point. 

 
Umbrella Pattern Sample Size Per 

Dose 
Power (%) Correct Vertex 

Estimation (%) 

(2,2.5,3,2.5,1.5) 10 
 

51.98 68.81 

 20 
 

84.66 77.90 

 30 
 

96.56 82.85 

 40 
 

99.22 87.18 

 50 
 

99.79 89.71 

 80 
 

100 93.59 

(1.5,2,2.5,3,2.5) 
 

10 53.31 47.84 

 20 
 

85.97 57.63 

 30 
 

96.54 62.92 

 40 99.34 66.64 

 50 99.86 69.15 

 80 100 74.32 

(2.5,3,2.5,2,1.5) 10 53.23 46.85 

 20 85.47 58.08 

 30 96.60 63.88 

 40 99.24 66.64 

 50 99.79 68.66 

 80 100 74.09 
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Table 2 provides the empirical power 
and the comparison along with the empirical 
probability of the correct estimation of the 
vertex point. The second column in Table 2 is 
the empirical power based on our proposed test. 
The third column in Table 2 is the empirical 
power based on the test by Cochran (1954) and 
Tarone (1982). Because the vertex point for a 
monotone trend could be either l =1 or l =5, the  

 
 

 
 

empirical probability of the correct estimation to 
the true vertex points reported in Table 2 refers 
to the proportion over repeated estimates that 
either l =1 or l =5 is correctly estimated. Each 
entry in Table 2 is also computed from 10000 
independent  hypotheses  tests  and  estimations. 

Another different type of alternative hypothesis 
is when a flat segment appears in the Poisson 
mean vector ),,,,( 54321 µµµµµ .  

Table 3 presents the empirical power 
and the empirical probability of the correct 
estimation of the vertex points for several 
different choices of such patterns. Since the 
vertex point in some of these situations is not 
unique, the  empirical  probability of  the correct  

 

 
 

estimation reported in Table 3 refers to the 
proportion that one of the possible vertex points 
is correctly identified over 10000 independent 
estimates. Data simulations are done using the 
random  number  generating  function  RANPOI  
 

 
Table 2: Empirical Power and Probability with a Boundary Vertex Point. 

 
Umbrella Pattern Sample Size 

Per Dose 
Power1  (%) Power 2  (%) Correct Vertex 

Estimation (%) 

(1.5,1.8,2.0,2.3,2.5) 10 
 

33.69 41.85 52.86 

 20 
 

62.45 70.45 68.05 

 30 
 

80.55 86.65 78.25 

 40 
 

90.20 94.18 84.46 

 50 
 

95.58 97.45 88.14 

 80 
 

99.71 99.89 94.91 

(3.5,3.4,3.0,2.8,2.6) 
 

10 22.81 28.27 44.66 

 20 
 

40.99 49.29 57.09 

 30 
 

56.80 65.14 66.32 

 40 70.90 78.63 73.20 

 50 80.05 86.83 78.59 

 80 94.85 97.14 88.04 

  
¹Proposed test, ²Cochran & Tarone’s test. 
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Table 3: Empirical Power and Probability with a Flat Segment in the Pattern 
 

Umbrella Pattern Sample Size Per 
Dose 

Power (%) Correct Vertex 
Estimation (%) 

(2.5,3.0,3.0,2.5,2.0) 10 
 

26.18 77.21 

 20 
 

50.48 87.36 

 30 
 

69.76 92.19 

 40 
 

82.76 95.12 

 50 
 

90.61 96.64 

 80 
 

98.95 98.91 

(2.5,3.0,3.0,3.0,2.5) 
 

10 11.95 83.36 

 20 
 

20.81 90.08 

 30 
 

30.39 93.72 

 40 40.36 95.98 

 50 49.78 97.37 

 80 71.38 99.36 

(2.5,2.5,3.0,3.0,2.5) 10 9.71 63.19 

 20 15.07 70.92 

 30 21.47 78.14 

 40 28.10 81.78 

 50 34.82 85.59 

 80 52.70 92.83 
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from Statistical Analysis System (SAS Institute, 
Inc. 1999). 
 

Conclusion 
 
When an umbrella pattern is likely in the dose-
response relationship, the usual statistical trend 
tests become inadequate because of their power 
loss and inherent, and possibly erroneous 
decisions  (Collings   et  al.,  1981;   Bretz   & 
Hothorn, 2001). We proposed in this paper a test 
of homogeneity against umbrella alternatives in 
a sequence of Poisson distributions associated 
with an ordered dose variable and studied the 
limiting null distribution and the statistical 
power. 
 We also proposed an estimator of the 
vertex point when the umbrella pattern is 
confirmed and studied the performance of the 
estimator. Although the simulation study verifies 
that the increase of the sample size always 
increases the statistical power of the test and the 
probability of the correct estimation to the vertex 
point, Table 1 seems to indicate that for the 
selected set of parameters, the proposed 
estimator to the true vertex point performs better 
when the vertex point ( l =3) is in the middle of 
the dose interval than when it is away from the 
middle of the dose interval ( l =2,4). The 
statistical power of the proposed test, however, 
seems to be very comparable wherever the 
interior vertex is. 

Our proposed test not only detects an 
umbrella pattern effectively based on the 
simulation results in Table 1, but also possesses 
reasonable statistical power to detect a 
monotone trend which is a subset of the 
alternative hypothesis considered in this paper. 
In fact, the simulation in Table 2 shows that, 
although our proposed test does not have as 
much the statistical power for detecting the 
monotone trend as the trend test of Cochran 
(1954), the difference in power between these 
two tests is relatively small. This is especially 
promising given the fact that the trend test of 
Cochran (1954) is asymptotically locally optimal 
against any choice of smooth monotone function 
H (Tarone, 1982).  

On the other hand, the simulation results 
reported in Table 3 seem to indicate that the 

statistical power of the proposed test deteriorates 
when a substantial flat segment exists in the 
mean vector of the Poisson distributions, 
although the proposed vertex estimator still 
shows a high probability of correctly identifying 
one of these multiple vertex points. 
 Like the similarity on the test statistic 
for testing a monotone trend between a sequence 
of binomial distributions and a sequence of 
Poisson distributions (Armitage 1955; Cochran 
1954), the proposed test and estimation 
techniques can be readily extended to the 
situation for detecting an umbrella pattern in a 
sequence of binomial distributions. 
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Appendix 
 
We give the proof of Theorem 1, which gives 
the null distribution of 2X . Let 
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where )( ijaA =  is the k  by k  matrix such that 

0=ija  if ji ≠  and iiija λµ=  if ji = , and 
the limit is in distribution. Therefore, 
 

( )∆∆→

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∆−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

AN

Y

Y
Y

n

kkk

',0
...

'
...

22

11

2

1

µλ

µλ
µλ

. 

 
Theorem 1 follows from the fact that 

( )',...,, 21 kYYYn  and ( )',...,, 21 kXXX  are 
stochastically equivalent under 0H . 
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Type I Error Rates Of Four Methods For Analyzing Data Collected In A 
Groups vs Individuals Design 

 
 

Stephanie Wehry      James Algina 
        University of North Florida                                              University of Florida 

 
 
Using previous work on the Behrens-Fisher problem, two approximate degrees of freedom tests, that can 
be used when one treatment is individually administered and one is administered to groups, were 
developed.  Type I error rates are presented for these tests, an additional approximate degrees of freedom 
test developed by Myers, Dicecco, and Lorch (1981), and a mixed model test. The results indicate that the 
test that best controls the Type I error rate depends on the number of groups in the group-administered 
treatment.  The mixed model test should be avoided. 
 
Key words: groups-versus-individuals design, approximate degrees of freedom tests, mixed models 
 
 

Introduction 
 
When a groups-versus-individuals design is used 
to compare two treatments, one treatment is 
administered to J groups of n participants (for a 
total of GN  such participants) and one treatment 
is individually administered to IN  participants 
or the individual participants may be in a no-
treatment control group. For example, 
psychotherapy researchers investigating the 
efficacy of group therapy often use a wait-list 
control group (Burlingame, Kircher, and Taylor, 
1994). The therapy is provided to participants in 
groups because the researchers believe    group    
processes  will  enhance  the effectiveness of the 
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therapy. Group processes do not affect the 
participants in the wait-list control group 
because they do not receive a treatment, much 
less meet in groups. According to Clarke (1998) 
the most common design in psychotherapy 
research involves the use of a randomly assigned 
control condition, which can feature a variety of 
no-treatment control schemes.   

The groups-versus-individuals design is 
also used when the purpose is to compare the 
effectiveness of an active treatment delivered to 
groups to an active treatment delivered 
individually.  For example Bates, Thompson, 
and Flanagan (1999) compared the effectiveness 
of a mood induction procedure administered to 
groups to the effectiveness of the same 
procedure administered to individuals. Boling 
and Robinson (1999) investigated the effects of 
study environment on a measure of knowledge 
following a distance-learning lecture.  The three 
levels of study environment included a printed 
study guide accessed by individuals, an 
interactive multi-media study guide accessed by 
individuals, and a printed study guide accessed 
by cooperative study groups. 

A possible model for the data collected 
in a groups-versus-individuals design consists of 
two submodels. For participants in the 
individually administered treatment the 
submodel is 
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                           : :I Ii T I i TY µ ε= +                       (1) 
 
where : Ii T  ( )1, , Ii N= …  denotes the ith 
participant within the individually-administered 
treatment. For participants in the group-
administered treatment   
 
             : : : : :G G Gi j T G j T i j TY µ α ε= + +                     (2) 
 
where : : Gi j T  ( )1, ,i n= … denotes the ith 
participant within the jth  group ( )1, ,j J= … in 
the group-administered treatment.  An important 
question is whether to treat the : Gj Tα as fixed or 
random. When the researcher views the groups 
in the group-administered treatment as 
representative of a larger number of groups, 

: Gj Tα  should be treated as random. In the 
remainder of the paper we assume that the 
groups in the group-administered treatment 
comprise a random factor with the groups in the 
study representing an infinitely large number of 
groups.  

Burlingame, Kircher, and Taylor (1994) 
reported that the independent samples t test, 
ANOVA, and ANCOVA were the most 
commonly used methods for analyzing data in 
group psychotherapy research. It is well known 
that these procedures require the scores for 
individuals to be independently distributed both 
between and within treatments, an assumption 
that is likely to be violated for the participants in 
the group-administered treatment when : Gj Tα is 
random. It is also well known that these 
procedures are not robust to violations of the 
independence assumption (see, for example, 
Scheffe, 1958). When the groups-versus-
individuals design is used, lack of independence 
is indicated by a non-zero intraclass correlation 
coefficient for the participants who receive the 
group-administered treatments. Myers, Dicecco, 
and Lorch (1981), using simulated data, showed 
that the Type I error rates for the independent 
samples t test is above the nominal alpha level 
when the intraclass correlation is positive. 
Burlingame, Kircher, and Honts (1994) reported 
similar results.  In passing we note that if the 
researcher believes it is appropriate to treat the 

: Gj Tα  as fixed, if both error terms are normally 
distributed, and if the error terms have equal 
variances, the treatments can be compared by 
using an independent samples  ANOVA and 
testing the hypothesis 

  
                                 0 : I GH µ µ=                    (3) 
 
but generalization of the results to  additional 
groups is not warranted. 

Myers et al. (1981) developed two 
statistical tests of the hypothesis given in 
equation (3). These tests take the lack of 
independence into account and allow 
generalization of the results to the population of 
groups represented by the groups in the group-
administered treatment. (In the following, 
groups will always refer to the groups in the 
group-administered treatment).  One of these 
procedures used a quasi-F statistic and degrees 
of freedom approximated by the Satterthwaite 
(1941) method. Formulated as an approximate 
degrees of freedom (APDF) t statistic, the Myers 
et al. test statistic is 

 

  
// GI

I G
APDF

G TS T

I G

Y Yt
MSMS

N N

−
=

+

       (3) 

 

where :
1

I

I

N

I i T I
i

Y Y N
=

= ∑ is the mean of the 

criterion scores and  
 

                   
( )2

:
1

/ 1

I

I

I

N

i T I
i

S T
I

Y Y
MS

N
=

−
=

−

∑
            (5) 

 
is the variance for participants who received the 
individually administered treatment; 

: :
1 1

G

J n

G i j T G
j i

Y Y N
= =

=∑∑  is the mean of the 

criterion scores for participants who received the 
group-administered treatment ( ): : Gi j T and 
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is the between-group mean square for these 
participants. It can be shown that the squared 
denominator of APDFt  estimates the sampling 
variance of the numerator assuming a correct 
model for the data is given by equations (1) and 
(2) and : Gj Tα  is random. Assuming that 

( )2
: ~ 0,

Ii T INε σ , ( )2
: ~ 0,

Gj T Nα τ , and 

( )2
: : ~ 0,

Gi j T GNε σ , the estimated approximate 

degrees of freedom are 
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             (7) 

 
It should be noted that in using the Satterthwaite 
method, the distribution of the square of the 
denominator of APDFt  is approximated as a 
multiple of a chi-square distribution with 
degrees of freedom estimated by 2̂f .   

Based on simulated data, Myers et al. 
(1981) reported estimated Type I error rates for 
their APDF test, including results for 4J =  and 

8J =  groups in the group-administered 
treatment. For both numbers of groups, 
estimated Type I error rates were very similar to 
the nominal level. While these results indicate 
that the APDF has adequate control of the Type 
I error rate when 4J ≥ , it leaves open the 
question of how well the test works with a 
smaller number of groups and the discussion in 
Satterthwaite (1941) and results in Scariano and 
Davenport (1986) suggest the test may not 
control the Type I error rate for 3J ≤ .  

The discussion in Satterthwaite (1941) 
implies that the approximation of the square of 
the denominator of APDFt  by a multiple of a chi-
square distribution improves as 1J −  or 1IN −  
increases and as 

 

                        
( )( )

( )

2 2

2

1
1

I G
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N n
J

τ σ
σ

− +
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                (8) 

 
becomes closer 1.0.  When there are two groups 
in the group-administered treatment, 1J −  is as 
small as it possibly can be.  In addition, 
calculating the ratio in equation (4) for 
conditions in which 2 2 2

I Gσ τ σ= +  shows that the 
ratio can be much larger than 1. Therefore, the 
discussion in Satterthwaite would lead one to 
expect that the APDF t test in Myers et al. 
(1981) would not work well when there are just 
two groups. 

Scariano and Davenport (1986) studied 
Type I error rates for the APDF t test that Welch 
(1938) proposed as a solution to the Behrens-
Fisher problem: 

 

                            
2 2

a b

a b

a b

Y Yt
S S
N N

−
=

+

.                  (9) 

 
In t, aY  and bY are means for two individually 
administered treatments, 2

aS  and 2
bS  are the 

sample variances, and the square of the 
denominator estimates the sampling variance of 
the numerator. The distribution of the Welch t 
can be approximated by a t distribution with 
degrees of freedom approximated the by the 
Satterthwaite (1941) method. Thus, the Myers et 
al. (1981) APDF test and the Welch APDF 
solution to the Behrens-Fisher problem are both 
based on the same theoretical approach to 
approximating the sampling distribution of the 
test statistic. 

Scariano and Davenport (1986) 
developed an analytic procedure for calculating 
the Type I error rate of the Welch APDF test and 
showed its Type I error rate can be seriously 
inflated when (a) there is a negative relationship 
between the sampling variances of the means 
and the degrees of freedom for the estimated 
sampling variances and (b) the smaller of the 
two degrees of freedom is small. In the Myers et 
al. (1981) APDF test, the sampling variances of 
the means are ( )2 2

G Gn Nτ σ+  and 2
I INσ  and 

the degrees of freedom for estimates of these 
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variance are 1J −  and 1IN − .  When I GN N=  
and 2 2 2

I Gσ τ σ= + , for example, the relationship 
will be negative and, when 3J ≤ , the degrees of 
freedom will be small. Consequently, the APDF 
test may not work well in these conditions. One 
purpose of the study is to study Type I error 
rates when J is small. 

Satterthwaite (1941) showed how to 
approximate the distribution of a sum of two 
chi-square distributed random variables by 
another chi-square distribution. He determined 
the degrees of freedom for the approximating 
distribution by equating the mean and variance 
of the sum with the mean and variance of the 
approximating chi-square distribution. Thus, the 
Satterthwaite approach is a two-moment 
approach to determining the degrees of freedom. 
Scariano and Davenport (1986) developed a 
four-moment approach and showed analytically 
that it provides a more conservative test than 
does the two-moment approach.  In the four-
moment approach the estimated approximate 
degrees of freedom are 
 

             

( ) ( )

32

4 2
3

2 3

1
1 1ˆ

1
1 1

I

I

u
J N

f
u

J N

⎧ ⎫
+⎨ ⎬− −⎩ ⎭=

⎛ ⎞
+⎜ ⎟⎜ ⎟− −⎝ ⎠

        (10) 

 
where, in the groups-versus individuals design,  
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A second purpose of the present study was to 
calculate the actual Type I error rate for the four-
moment approach. 

In Scariano and Davenport (1986), the 
two-moment approach was sometimes liberal 
when the four-moment approach was 
conservative. As a result, they suggested using 
an average of the estimated degrees of freedom 
produced by the two approaches. Thus, a third 
purpose was to analytically evaluate the actual 
Type I error rate for this averaged degrees of 
freedom approach. 

An alternative to the preceding 
approaches is based on a mixed model with a 
proper inference space (McLean, Sanders,  & 
Stroup, 1991) and Satterthwaite degrees of 
freedom. When the restricted maximum 
likelihood estimate (RMLE) of 2τ is larger than 
zero and there are an equal number of 
participants in the groups, the mixed model test  
is equivalent to the Myers et al. (1981) two-
moment test. However, if the RMLE is zero, 

/ GG TMS  and / / GS G TMS  are pooled and replace 

/ GG TMS  in equation (1). This statistic, which is 
equivalent to the Welch t test, is smaller than 

APDFt  and may be more conservative than the 
two-moment test. However, it tends to have 
larger degrees of freedom, which may make it 
more liberal than the two-moment test.  

When there are an equal number of 
participants in the groups, the RMLE of 2τ  is 
zero when the method of moments estimate of 

2τ is 0≤  (McCulloch & Searle, 2001). The 
probability that the method of moments estimate 
of 2τ is 0≤ is  

  
    { }
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/ / /
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ρ
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    (12)                             

 
where ( )2 2 2

ICC Gρ τ τ σ= + .  Figure 1 displays 

the probability as a function of J, ICCρ , and n.  
The probability can be quite substantial and, in 
some conditions, we would expect the mixed 
model test to perform differently than the two-
moment, four-moment, and averaged degrees of 
freedom tests. Thus, a fourth purpose of the 
study is to compare these tests to the mixed 
model test.  

The research was carried out in two 
studies. In the first study, actual Type I error 
rates were calculated for the two-moment 
approach, the four-moment approach, and the 
averaged degrees of freedom approach.  In the 
second study, simulated data were used to 
estimate the actual Type I error rate for the 
mixed model approach as well as for the two-
moment approach, the four-moment approach, 
and the averaged degrees of freedom approach.  
Taken together, the purposes of the studies were  
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to compare Type I error rates for the two-
moment, four-moment, averaged degrees of 
freedom, and mixed model approaches when the 
number of groups in the group administered 
treatment is small and to study the influence of 
the number of groups, number of participants in 
a group, and intraclass correlation on the Type I 
error rates for these methods. 

 
Methodology 

 
Study 1 

Actual Type I error rates were 
calculated for each condition in a 5 (Number of 
Groups) ×  4 (Intraclass Correlation) ×  15 
(Number of Participants in a Group) completely 
crossed factorial design. The levels of the factors 
were 2 to 6J =  for the number of groups; n = 3 
and 4, and 6 to 30 in steps of 2 for the number of 
participants in a group; and .00,ICCρ =  .20, .40, 
and .80 for the intraclass correlation.  In all 
conditions, ( )2 2 2 1G Iτ σ σ+ =  and, because the 

design was balanced across treatments, 
( )IN J n= .   For all calculations the nominal 

alpha level was .05. In the following, 
 

 
 
when we use the term Type I error rate without 
the actual or nominal modifier, we refer to the 
actual Type I error rate. 
 
Calculating Type I Error Rates 

Scariano and Davenport (1976) 
developed a method to calculate Type I error 
rates for the Welch t test. We applied their 
method, which we describe below, to the three 
APDF tests considered in this paper.  It should 
be noted that although the method we applied 
was developed in the context of the Behrens-
Fisher problem, that is, comparing means of 
independently distributed scores for two groups 
when the variance are not equal for the groups, 
we did not apply the method to the Behrens-
Fisher problem. Rather we applied the method to 
comparison of means for two groups, when 
scores are not independently distributed within 
the sub-groups in the group-administered 
treatment. Thus, our work is not subject to 
Sawilowsky’s (2002) criticisms of research on 
the Behrens-Fisher problem. 

The Type I error rate for the APDF t test 
is 

  

 
Figure 1. Probability of a Negative Estimate for 2τ  
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where f̂  is the two-moment, four-moment, or 
averaged degrees of freedom and α  is the 
nominal Type I error rate.  Cochran (1951) has 
shown that 2

quasit  is the ratio of Q to C where  
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and   
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To facilitate numerical integration the variable u 
can be transformed to 
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and the Type I error rate is found by numerically 
integrating 
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                                                                        (18) 
 
Numerical integration was performed using the 
trapezoid rule.  For 2J =  a singularity occurs at 

0s = . Therefore, the limits of integration were 

.0001 and 1.  The interval was divided into 1000 
segments of equal width.  For 3J =  a 
removable singularity occurs at 0s = . For 

3J ≥   the limits of integration were 0 and 1 and 
this interval was also divided into 1000 
segments. As a check on the calculations, Type I 
error rates were estimated by using simulated 
data with 100,000 replications. The results from 
the simulation were consistent with the results 
determined by numerical integration.  
 

 
Results 

Study 1 
Figures 2 to 6 contain plots of the Type I 

error rates against size of groups.  The five plots 
are for two, three, four, five, and six groups, 
respectively.  Plots within a figure are organized 
by the intraclass correlation coefficient.  
Inspection of Figure 2 indicates that when there 
are two groups, the four-moment degrees of 
freedom should be used, except perhaps when 

0ICCρ = . Then the averaged degrees of freedom 
might be used. When there are three groups (see 
Figure 3), the averaged degrees of freedom 
might be used at the risk of a slightly liberal test 
when ICCρ  is at .20 or greater. The two-moment 
degrees of freedom results in a test that is too 
liberal and the four-moment degrees of freedom 
results in a test that is too conservative. When 
there are four groups (see Figure 4), the two-
moment degrees of freedom provides a test that 
has a slight liberal tendency that increases as 

ICCρ  get larger and as the size of the groups get 
larger. Use of the averaged degrees of freedom 
provides a test that is slightly conservative when 

ICCρ  is small, but controls the Type I error rate 
well as it increases.  Plots for five or more 
groups (see Figures 5 and 6) are similar to those 
for four groups. However, the use of either the 
two-moment degrees of freedom or and average 
degrees of freedom provide reasonable control 
of the Type I error rate. Use of the former can 
result in a slightly liberal test, whereas use of the 
latter can result in a slightly conservative test. 

 
Methodology 

Study 2 
As noted in the introduction, simulated 

data were used to compare the three APDF tests 
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and the mixed model test. The design had four 
factors: the four tests, the number of groups, size 
of the groups, and level of the intraclass 
correlation. There were five levels of the number 
of groups, J =  2, 3, 4, 5, and 6; five levels of 
group size, n =  4, 8, 12, 16, and 20 subjects 
nested in the groups; and seven levels of 
intraclass correlation, .00ICCρ =  to .30 in steps 
of .05.  

The simulation was carried out using the 
random number generation functions of SAS, 
Release 8.2. Scores for simulated participants in 
the individually administered treatment level 
were generated using the equation (1), 
where Iµ was   arbitrarily  set   at 100   and   the  

 
 

 

 
           
 

: s
Ii Tε were pseudorandom standard normal 

deviates generated using RANNOR.  Scores for 
simulated participants in the group-administered 
treatment level were generated using equation 
(2), where Gµ  was arbitrarily set at 100, : Gj Tα  
was a pseudorandom normal deviate with mean 
zero and variance 2τ  and : ; Gi j Tε was a 
pseudorandom normal deviate with mean zero 
and variance 2

Gσ . Each of the conditions was 
replicated 5,000 times and the Type I errors of 
the four tests were counted over the replications 
of each condition.  The nominal type I error rate 
was .05 in all conditions. 

 
 

 
 

 
 
 

 
 
 
 

Figure 2. Plots of Type I Error Rates by Size of Group for Two Groups 



WEHRY & ALGINA 407

  

 
 

Figure 3. Plots of Type I Error Rates by Size of Group for Three Groups. 
 
 

 
 

Figure 4. Plots of Type I Error Rates by Size of Group for Four Groups.  
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Figure 5. Plots of Type I Error Rates by Size of Group for Five Groups. 

 

 
 

Figure 6. Plots of Type I Error Rates by Size of Group for Six Groups. 
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The mixed model specified in equations 
(1) and (2) was implemented by using the 
following is a SAS program. The individually 
administered treatment is coded 1 on the TRT 
code. 

 
PROC MIXED; 
CLASS TRT GROUP; 
MODEL SCORE=TRT/SOLUTION 
DDFM=SATTERTHWAITE; 
RANDOM GROUP/GROUP=TRT; 
REPEATED/GROUP=TRT; 
PARMS (0) (1) (1) (1)/EQCONS=1 

ESTIMATE 'COMP' TRT 1 -1; 
 
The APDF tests are easily carried out in proc iml 
as the only required statistics are the means for 
the two groups, the variance for the treatment 
administered to individuals, and the mean 
squares within and between subgroups for the 
group-administered treatments. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
 
Study 2 

The analytic results showed that, when 
there were two groups, the APDF test statistic 
with the four-moment degrees of freedom 
provided the best control of the Type I error rate. 
Figure 7 compares Type I error rate for the four-
moment test and the mixed model test for 

0.00ICCρ =  and 0.30.  Results for the APDF test 
statistic and the two-moment degrees of freedom 
are also included because the mixed model test 
is equivalent to the two-moment test when the 
estimate of 2τ is non-zero. The four-moment 
degree of freedom test still provides the best 
control of the Type I error rate. The mixed 
model test is more conservative than the two-
moment test and is substantially more 
conservative in conditions in which the 
probability of a zero estimate for 2τ  is large. 
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Figure 7. Type I Error Rates for Two Groups 
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When there were three groups, the 
analytic results showed that the APDF test 
statistic with the averaged degrees of freedom 
provided the best control of the Type I error rate.  
Type I error rates for the two-moment test 
tended to be too large.  Figure 8 compares Type 
I error rates for the mixed model test and the 
APDF tests with two-moment and averaged 
degrees of freedom when .00ICCρ =  and .30.  
The results indicate that the averaged degrees of 
freedom test still provides the best control of the 
Type I error rate. 

According to the analytic results, there 
were four or more groups, both the two-moment 
and averaged degrees of freedom tests provided 
good control over the Type I error rate, with the 
former  test  being  slightly  more  liberal. Type I 

 
 

 

 
 

error rates are depicted in Figure 9 for the two-
moment, four-moment test and the mixed model 
tests for .00ICCρ =  and .30.   

The results indicate that the mixed-
model test is conservative and less adequate than 
the other tests when ICCρ  is zero.  Inspection of 
the results for other values of ICCρ  indicate that 
when .10ICCρ =  the performance of the 
averaged degrees of freedom and the mixed 
model tests is very similar and as ICCρ  increases 
the Type I error rates for the mixed model test 
become slightly larger than those for the 
averaged degrees of freedom test. A similar 
pattern of results emerged for five or six groups. 
In particular, when ICCρ  was near zero the 
mixed model test was too conservative.  
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Figure 8. Type I Error Rates for Three Groups 

 



WEHRY & ALGINA 411

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 
Myers et al. (1981) presented a two-moment 
approximate degrees of freedom test for use 
when one treatment is delivered to individual 
participants and one is delivered to groups of 
participants.  The test was based on results in 
Satterthwaite (1941). Simulation results 
indicated that the test provided good control of 
the Type I error rate for both four groups and 
eight groups of participants.   

Satterthwaite (1941) and Scariano and 
Davenport (1986) studied a two-moment 
approximate degrees of freedom test for a design 
in which both treatments are delivered 
individually. Discussion in Satterthwaite and 
results in Scariano and Davenport suggest that 
the Myers et al. test may not perform well when 
the number of groups is smaller than four.  
Using an analytic procedure developed by 
Scariano and Davenport, we showed that the 
Myers et al. test could provide relatively poor  

 

 
 

 
control of the Type I error rate when there are 
two or three groups. Using results presented  in 
Scariano and Davenport, we developed two 
alternatives to the Myers et al. (1981) test, a 
four-moment approximate degrees of freedom 
test and an averaged degrees of freedom test. 

Using the analytic procedure developed 
by Scariano and Davenport, Type I error rates 
were calculated for all three test in a wide range 
of conditions in which the design was balanced 
across the individually administered treatment 
and the group-administered treatment and across 
the groups in the group-administered treatment.   
We also estimated Type I error rates for the 
mixed model test and the three APDF tests. The 
results indicated that the four-moment test 
should be used when the group-administered 
treatments are delivered to two groups and the 
averaged degrees of freedom test should be used 
when the group-administered treatments are 
delivered to three groups. When there are 
between four and six groups, we recommend 
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Figure 9. Type I Error Rates for Four Groups 
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using the averaged degrees of freedom test.  
However, because (a) this test is slightly 
conservative, with a Type I error rate between 
0.045 and 0.050, and (b) the two-moment test is 
slightly liberal but tends to keep the Type I error 
rate below 0.06, some may prefer the two-
moment test. Even when there are four or more 
groups, we do not recommend the mixed model 
test because of its conservative tendency when 
the intraclass correlation coefficient is small. 
These recommendations are summarized in the 
Table 1. 
 
Table 1.  
Recommended Tests by the Number of Groups 
in the Group-Administered Treatment 
 

Number of 
Groups 

Recommended Test 

2 Four-Moment Test 
3 Averaged Degrees of 

Freedom Test 
4-6 Averaged Degrees of  

Freedom Or Two Moment 
Test 

 
 When there are two groups in the group-
administered treatment, the four-moment test 
provides better control of the Type I error rate 
than do the other tests.  Nevertheless researchers 
should be cautious about using a groups-versus-
individuals design with two groups because such 
designs will provide relatively low power. The 
true degrees of freedom for the four-moment test 
is  
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              (19) 

 
where U is defined in equation (15).  
Calculations show that 4f  approaches 1.0 from 
above as U increases. Thus in many situations 
the degrees of freedom for the four-moment test 
will be very small and this will have a negative 
impact on power. In addition, substituting 

population parameters for sample statistics in the 
Myers et al. (1981) t statistic, we have 
 

                      
2 2 2

I G

I G

I GN N J

µ µ
σ σ τ

−

+ +

.                    (20) 

 
Therefore even as the two sample sizes increase 
power will not go to 1.0 if 2 0τ ≠ . Finally, the 
fact that the Type I error rate for the four-
moment test declines as n increases suggests 
power will decline as n increases because the 
test becomes more conservative. The predicted 
low power and decline in power as n increases 
were borne out by simulation studies. For 
example when 2 2 2 1I Gσ σ τ= + = , .2ICCρ = , 
and .8G Iµ µ− = , estimated power was .23, .21 
and .19 as n increased from 6 to 18 in steps of 6. 
Comparison of these results to the power of an 
independent samples t test with the same overall 
sample size indicates how much lower power is 
when a groups-versus-individuals design is used.  
Note that because 2 2 2 1I Gσ σ τ= + = , .8G Iµ µ− =  
corresponds to Cohen’s large effect size. Also as 
n increases from 6 to 18 the sample size in a 
treatment increases from 12 to 36 in steps of 12.  
For an independent sample t test with an effect 
size equal to .8, power is .47, .77, and .92 as n 
increase from 12 to 36 by 12.  

When there are three groups and the 
averaged degrees of freedom approach is used, 
power does not decline as n increases, but power 
can still be quit low and does not increase 
quickly as n increase. As n increased from 4 to 
12, so that the overall sample size remained the 
same as in the conditions on which power results 
were reported for 2J = , estimated power was 
.29, .36, and .40 when J was 3.  

As suggested by equation (20), power 
continues to increase as J increases. For example 
with 6J = , as n increased from 2 to 6 in steps 
of 2 estimated power was .41, .58, and .68 using 
the averaged degrees of freedom test. Thus when 
the groups-versus-individuals test is used, it is 
important to have as many groups as possible 
and may be more important to have more groups 
than to have more participants per group. 
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At least four lines of additional research 
are attractive.  First, the performance of the tests 
under non-normality should be investigated and 
if performance is poor developing the test 
statistic and degrees of freedom using robust 
estimates of the means and mean squares is of 
interest. Second, performance of the four tests 
when the design is unbalanced across the 
individually administered treatment and the 
group-administered treatment, but balanced 
across groups in the group-administered 
treatment might be investigated.  Third, 
calculating the averaged degrees of freedom by 
differentially weighting the two-moment and 
four-moment degrees of freedom might be 
investigated when there are four or more groups.  
Weighting the two-moment degrees of freedom 
more heavily will reduce the slight conservative 
tendency of the averaged degrees of freedom 
test. In general, more extensive studies of power 
than we have conducted would be worthwhile. 
Fourth, the three APDF tests should be 
generalized for use when the design is not 
balanced across groups in the group-
administered treatment and Type I error rates for 
these tests and the mixed model test should be 
investigated. 
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A Nonparametric Fitted Test For The Behrens-Fisher Problem 
 

                                         Terry Hyslop      Paul J. Lupinacci 
                                    Department of Medicine                  Department of Mathematical Sciences 
                                Thomas Jefferson University                            Villanova University 
 
 
A nonparametric test for the Behrens-Fisher problem that is an extension of a test proposed by Fligner 
and Policello was developed. Empirical level and power estimates of this test are compared to those of 
alternative nonparametric and parametric tests through simulations. The results of our test were better 
than or comparable to all tests considered. 
 

Key words: Behrens-Fisher problem, empirical level and power, Wilcoxon-Mann-Whitney, 
nonparametric, simulation study 
 
 

Introduction 
 
The comparison of the means of two 
independent populations has traditionally been 
approached using Student’s t-test. The use of 
this test assumes that the observations come 
from a normal distribution and that the variances 
of the two populations are equal. When the 
homogeneity of variances is not a reasonable 
assumption the problem has been called the 
Behrens-Fisher problem. 

Lee and Gurland (1975) developed a 
new method for handling the Behrens-Fisher 
problem and compared their test to many others 
that have been proposed for this problem. Their 
test performed very well regarding size and 
power. However, their method utilized a large 
table of critical values to determine the correct 
region of rejection. Lee and Fineberg (1991) 
sought to simplify the method proposed by Lee 
and Gurland. They fit a nonlinear function to the 
critical values derived by Lee and Gurland so 
that the critical values could be estimated. 
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Various authors have also considered 
the Behrens-Fisher problem when the normality 
assumption is not appropriate. The usual 
nonparametric approaches assume that the data 
are continuous and the distributions are of the 
same shape. For these tests, such as the 
Wilcoxon-Mann-Whitney test (Wilcoxon 1945; 
Mann & Whitney 1947), the level of the test will 
not be preserved when the populations have 
different shapes or variances (Fligner & 
Policello 1981; Brunner & Neumann 1982, 
1986; Brunner & Munzel 2000). Fligner and 
Policello (1981) and Brunner and Neumann 
(1982, 1986) considered the problem under the 
assumption that the independent samples are 
from continuous distributions without the 
assumption of equal variances or equal shapes of 
the distributions. Brunner and Munzel (2000) 
derived an asymptotically distribution free test 
without the assumption that the data are 
generated from a continuous distribution 
function. 

Fligner and Policello developed their 
alternative nonparametric method for comparing 
two population medians without the equal 
variance and equal shape assumptions. To 
implement their test, one must consult a large 
table of critical values to determine the correct 
region of rejection. Their table is parameterized 
by the test’s level of significance and the sample 
sizes of the two samples.  We expand on the 
approach of Fligner and Policello by proposing a 
fitted test which eliminates the need for large 
tables or complicated derivations of critical 
values. We fit a nonlinear function to the critical 
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values in their table so that the critical values 
can be estimated. Motivation for the nonlinear 
function came from the nonlinear function used 
by Lee and Fineberg. A complete description of 
the problem and details of the proposed test 
follow in the Methodology Section. In that 
section, our method is demonstrated using a 
numerical example. Simulation studies are used 
in the Results Section to compare the fitted test 
to some of the other parametric and 
nonparametric tests which have been proposed 
for the Behrens-Fisher problem. 

 
Methodology 

 
Let 1 , , mX X…  and 1, , nY Y…  be independent 
random samples from continuous distributions 
with population medians xθ  and yθ , 
respectively. We are interested in testing the 
following hypotheses: 
 

0 : x yH θ θ=  

versus :a x y x y x yH or orθ θ θ θ θ θ⎡ ⎤> < ≠⎣ ⎦ . 

 
Let iP  represent the number of sample 
observations, jY , less than iX , for 1, ,i m= … .  
Similarly, let jQ  represent the number of 
sample observations, iX , less than jY , for 

1, ,j n= … .  Compute the average placement for 
each of the samples, 
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and calculate the test statistic 
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Fligner and Policello presented a test of H0 
based on this statistic, where the procedure at an 

approximate α level of significance versus the 
one-sided alternative x yθ θ>  is 
 

Reject H0 if Û uα≥ ; otherwise do not reject. 
 
They provided a table of critical values for 
uα for various values of m, n, and α. Values 
outside the range of their table are to be derived 
or estimated by zα  for large sample sizes, where 
zα  is the 1-α percentile of the standard normal 
distribution. 

Implementation of this test would be 
greatly simplified if the large table of critical 
values was not required. In addition, sample size 
combinations that are not provided in their table 
would require either additional effort for 
derivation, or an assumption of u zα α= . We 
propose fitting the following function to the 
critical values in the Fligner and Policello table 
so that the critical values can be estimated: 

 

( )
3 51 2 4

2 20
1 2 1 2 1 2

b bb b bu b f f f f f fα = + + + + + , 

 
where 1 21, 1,f m f n= − = −  and 0, , 5b b…  are the 
parameters of the function. We also propose that 
the parameters 0 5, ,b b…  be estimated by 
ordinary least squares.  54 values obtained from 
Fligner and Policello’s table of critical values 
were used in the estimation process.  Table 1 
presents the parameter estimates obtained for the 
various α  values of 0.10, 0.05, 0.025, and 0.01. 
 
Table 1.  Parameter estimates for the F-P fitted 
test polynomial. 
 
α  

0b  1b  2b  3b  4b  5b  
0.10 1.34 -1.39 0.16 -0.03 5.20 1.17 
0.05 1.74 -0.69 -0.87 12.53 -4.09 2.44 
0.025 2.15 -0.60 -2.54 22.05 -3.50 7.36 
0.01 3.16 -11.43 -6.75 50.15 51.87 19.20 
 

Motivation for this functional form 
comes from a parametric fitted test for the 
Behrens-Fisher problem proposed by Lee and 
Fineberg (1991) as an alternative to Lee and 
Gurland’s (1975) test that also required 
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extensive tables of critical values. Their 
proposed function is similar to the one proposed 
here. Other functional forms were also 
considered, but none were found which provided 
a better fit to the critical values. Figure 1 
displays the critical and fitted values for a level 
0.05 test when m = 4, 5, …, 12 and n = 3, 4, and 
5.  The fit is good for even these small values of 
n and becomes more precise as n gets larger.  
The test based on the fitted critical values will be 

referred to as ˆ
fU , and the critical value will be 

referred to as ( )fuα .  For example, Fligner and 
Policello’s critical value for a one-sided, level 
0.05 test when both samples are of size 5 is 
2.063. Using our parameter estimates when 

0.05α = and the sample sizes, we obtain an 
estimated critical value of 2.035. 

 
Figure 1.  Plot of Fligner and Policello’s Critical Values and the Fitted Critical Values for m=4(1)12 and 
n=3,4,5. 
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Numerical Example 

 
The following example uses a data set 

that originated from the simulation studies that 
are presented in the Results Section of the 
manuscript. With this data set, we will test the 
null hypothesis that the two population medians 
are the same versus the alternative hypothesis 
that the median of the first population is greater 
than that of the second population, that is, 

:o x yH θ θ= versus :a x yH θ θ> . 
 

The data in both groups were simulated 
from uniform distributions with a mean of 100.  
However, the variance of the second distribution 
was ten times that of the first distribution. The 
first data set consists of twelve observations 
while the second data set consists of only five 
observations. Thus, we are simulating a scenario 
where the data set with fewer observations 
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comes from an underlying distribution function 
with a larger variance. We will utilize this data 
set to demonstrate the test procedure and to 
illustrate the need for a simulation study which 
compares the various methods that are used for 
analyzing this type of data in terms of their 
power and ability to hold the level of 

significance. We will use the notation as defined 
in the Methodology Section. The data, as well as 
the placement values, iP  and jQ , for each 
observation in the first and second samples, 
respectively, are given in Table 2. 

 
Table 2. Data for the Numerical Example 

 
Group 1  Group 2 

Observation Value iP  Observation Value jQ  
1 101.673 4  1 103.409 12 
2 101.550 4  2 98.546 1 
3 100.410 4  3 97.429 0 
4 100.203 4  4 96.536 0 
5 99.906 4  5 95.940 0 
6 99.875 4     
7 99.861 4     
8 99.695 4     
9 99.535 4     

10 98.985  4     
11 98.575  4     
12 98.461 3     
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For this example, the sum of the placements in 
the first data set is 47 and the sum of the 
placements in the second data set is 13.  this 
leads to the average placements of: 
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for each group.  The values of 1V  and 2V  are 
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and the test statistic is calculated as 
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For m = 12 and n = 5, the critical value 

for the fitted test is ( )
0.05

fu = 1.868, and the critical 
value for the Fligner and Policello test is 0.05u = 
1.923. Therefore, we fail to reject the null 
hypothesis using both tests. However, the 
calculation of the Fligner and Policello critical 
value would have been much more complicated 
if our sample sizes were not given in their table 
of critical values. Therefore, we suggest using 
the critical value based on the fitted test. 

Let us also consider how alternative 
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tests for this type of data would have fared with 
this data set.  Since the data are not coming from 
a normal distribution, most statisticians would 
use the nonparametric alternative to Student’s t 
test, the Wilcoxon-Mann-Whitney test, without 
hesitation. For this example, we compared our 
results to those of the Wilcoxon-Mann-Whitney 
test and the nonparametric test proposed by 
Brunner and Munzel (2000). The Brunner and 
Munzel test led to the same conclusion as our 
fitted test, that is, their test failed to reject the 
null hypothesis. The Brunner and Munzel test 
statistic was B = 1.437 and the corresponding p-
value was 0.112, which is not significant at the 
0.05 level of significance. However, there was a 
different result if one used the Wilcoxon-Mann-
Whitney test. Its test statistic was W = 28 and 
the corresponding p-value was 0.041, which is 
significant at the 0.05 level of significance. This 
conflicting result caught our attention and 
spurred interest in a simulation study which 
compares the various methods in terms of size 
and power. 
 

Results 
 
For our simulation study, we considered three 
nonparametric procedures and one parametric 
procedure. The three nonparametric procedures 
that were considered were the Wilcoxon-Mann-
Whitney test, denoted W , the Brunner and 
Munzel test, denoted B , and our fitted test, 
denoted ˆ

fU . The parametric test that we 
included in our simulation study was the usual t 
test using Satterthwaite’s approximation for the 
degrees of freedom. We used st  to denote this 
test. We decided not to include the Fligner and 
Policello test in the discussion because its 
empirical level and power estimates were almost 
identical to those of our fitted test. This was to 
be expected since we fitted a function to their 
critical values and the fit was very good. We 
simulated data using the normal, contaminated 
normal, double exponential, uniform, and 
gamma distributions for estimating both the 
empirical level and power for the four tests.  
Since we are interested in determining the effect 
of different variances on the level and power 
estimates, we considered distributions which 
differed in scale by assuming that if 

( )1, , ~mX X F x… , 
 

then we let 
 

( ) ( )1, , ~n
yY Y G y F σ=…  

 
for values of 

 
{ }2 0.01,0.25,1, 4,10σ = . 

 
All simulations were run in SAS version 

8. The SAS function NORMAL was used to 
generate random standard normal deviates which 
were then transformed to simulate the desired 
normal distribution. The contaminated normal 
deviates were generated by multiplying a 
random normal deviate by 9 with probability p = 
0.10. The double exponential deviates were 
generated using the method of Martinez and 
Iglewicz (1984) that transforms a random 
standard normal deviate into a double 
exponential deviate using the transformation 
 

20.109exp{ }
2 ,

Z

DE Z=  
 
where Z is a random standard normal deviate.  
Random uniform and gamma deviates were 
generated using the SAS functions UNIFORM 
and RANGAM, respectively. 

For a statistical test to be meaningful, it 
must display adequate power while still 
maintaining its nominal level. We ran 
simulations to obtain estimates of the level and 
power for each of the tests under consideration.  
To estimate the tests’ level, we ran 15,500 
simulation iterations. The number of simulations 
provides that a 95% confidence interval for the 
estimated level will be approximately 0.36%±  
for 0.05α = .  At each iteration m + n deviates 
of the desired type were generated from 
distributions where .x yθ θ= The four tests were 
performed at each interation testing :o x yH θ θ=  
vs. :a x yH θ θ> . The proportion of the iterations 
where the null hypothesis was rejected was 
recorded for each of the four tests. This 
proportion is the empirical level estimate. The 
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empirical levels were mulitplied by 1,000 and 
these values are reported in Table 3. Table 3 lists 
the empirical levels for each of the five 
distributions, for five sample size combinations, 
at each of the five variance ratios, τ , for each of 

the four tests. The standard error was calculated 
assuming a true nominal level of 0.05. We 
indicate an empirical level more than two 
standard deviations above 0.05 by entering the 
number into the table in boldface type. 

 
Table 3. Empirical Levels Times 1,000 for α = 0.05 for Each of the 4 Tests. 
 

  m = 5, n = 5 m = 12, n = 5 m = 11, n = 10 
Distribution τ W ˆ fU  B ts W ˆ fU  B ts W ˆ fU  B ts 

 
 
Normal 

0.1 
0.25 

1 
4 

10 

49 
49 
51 
52 
52 

49 
49 
51 
52 
52 

47 
49 
55 
53 
48 

51 
48 
50 
51 
51 

22 
24 
40 
67 
89 

35 
38 
52 
61 
59 

49 
49 
56 
56 
52 

48 
49 
49 
52 
53 

59 
55 
51 
55 
61 

54 
54 
53 
52 
55 

49 
52 
52 
49 
48 

50 
51 
50 
47 
45 

 
 
Contaminated  
Normal 

0.1 
0.25 

1 
4 

10 

49 
48 
49 
45 
49 

32 
29 
28 
27 
30 

44 
47 
53 
46 
44 

25 
21 
21 
22 
21 

28 
29 
43 
60 
76 

13 
13 
21 
27 
28 

59 
57 
58 
49 
44 

73 
75 
73 
72 
72 

59 
54 
49 
56 
61 

29 
25 
26 
29 
29 

49 
49 
51 
52 
51 

41 
38 
41 
40 
38 

 
 
Uniform 
 

0.1 
0.25 

1 
4 

10 

50 
52 
47 
48 
49 

50 
52 
47 
48 
49 

47 
53 
49 
51 
48 

57 
55 
44 
52 
57 

19 
23 
42 
80 

103 

32 
37 
54 
66 
58 

47 
50 
56 
59 
53 

46 
51 
55 
59 
59 

61 
55 
48 
62 
70 

52 
53 
50 
56 
58 

47 
50 
49 
49 
50 

50 
50 
49 
49 
50 

 
 
Double 
Exponential 

0.1 
0.25 

1 
4 

10 

51 
49 
48 
50 
46 

51 
49 
48 
50 
46 

46 
44 
51 
51 
42 

47 
47 
45 
47 
42 

22 
25 
42 
66 
87 

36 
39 
52 
61 
59 

50 
50 
53 
56 
52 

49 
46 
48 
47 
47 

58 
49 
50 
56 
66 

54 
50 
52 
53 
58 

50 
48 
51 
49 
52 

49 
48 
48 
47 
50 

 
 
Gamma 

0.1 
0.25 

1 
4 

10 

32 
35 
48 
87 

144 

32 
35 
48 
87 

144 

30 
37 
51 
88 

132 

32 
33 
46 
85 

147

10 
17 
42 

123
238 

19 
27 
53 

110 
165 

27 
34 
57 

100
147 

38 
44 
65 

109
163

33 
34 
51 

129 
253 

30 
33 
53 

122 
229 

28 
31 
51 

115
209 

37 
38 
50 
84 

124
 
Notes: Wilcoxon-Mann-Whitney (W), Fitted Test ( ˆ fU ), Brunner-Munzel (B), and Satterthwaite’s t-test 
(ts). Variance of X = 1, Variance of Y = τ. The right side of this table continues on the page below. 
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Table 3, continued. 

 
  m = 25, n = 20 m = 40, n = 40 
Distribution τ W ˆ fU  B ts W ˆ fU  B ts 

 
 
Normal 

0.1 
0.25 

1 
4 

10 

51 
45 
47 
59 
71 

47 
44 
46 
47 
50 

48 
46 
48 
47 
49 

48 
49 
50 
47 
48 

60 
54 
52 
58 
66 

44 
43 
46 
47 
49 

48 
48 
52 
51 
52 

49 
46 
53 
52 
52 

 
 
Contaminated  
Normal 

0.1 
0.25 

1 
4 

10 

53 
50 
48 
55 
65 

17 
16 
18 
19 
22 

48 
49 
49 
48 
49 

64 
67 
67 
66 
66 

62 
55 
50 
52 
63 

19 
17 
15 
16 
20 

51 
50 
50 
49 
54 

54 
54 
48 
52 
53 

 
 
Uniform 
 

0.1 
0.25 

1 
4 

10 

58 
50 
50 
63 
78 

48 
46 
49 
48 
52 

49 
48 
51 
47 
50 

49 
49 
51 
48 
52 

67 
61 
51 
61 
64 

44 
47 
46 
47 
43 

48 
50 
52 
50 
46 

47 
51 
50 
51 
46 

 
 
Double 
Exponential 

0.1 
0.25 

1 
4 

10 

52 
48 
52 
59 
70 

46 
46 
50 
48 
50 

48 
49 
53 
48 
48 

48 
49 
53 
47 
46 

64 
51 
47 
55 
61 

47 
43 
43 
46 
45 

52 
47 
48 
50 
49 

51 
48 
47 
54 
49 

 
 
Gamma 

0.1 
0.25 

1 
4 

10 

22 
25 
47 

186 
408 

19 
24 
46 

158
339 

20 
25 
48 
158
332

40 
44 
50 
76 
108

20 
19 
52 
245
590

13 
15 
48 

215
521 

15 
17 
53 
227 
535 

41 
40 
54 
72 
91 

 
 

 
There are a number of interesting 

conclusions that can be made from observing the 
values in Table 3. First, the t test using 
Satterthwaite’s approximation for the degrees of 
freedom maintained its level when the data were 
generated from a normal distribution regardless 
of the sample size combination or the ratio of the 
variances. This was expected since the primary 
purpose of this test is to handle these situations.  
However, when the condition of normality was 
removed, the test became less predictable. In 
some cases, such as when the data were  

 
 

 

 
generated from the contaminated normal 
distribution and the sample sizes were similar, 
the test was very conservative. In other cases, 
such as when the data were uniformly 
distributed and when the sample sizes differed, 
the test became anti-conservative. The 
Wilcoxon-Mann-Whitney text generally does 
not maintain its level, even under the optimal 
condition of normality. It was conservative in 
situations where the larger sample size was 
taken from the population with the larger 
variance, and it was anti-conservative if the 
reverse was true. The fitted test generally 
maintained its level. In most of the situations 

Notes. Continued from previous page. Wilcoxon-Mann-Whitney (W), Fitted Test ( ˆ fU ), Brunner-
Munzel (B), and Satterthwaite’s t-test (ts). Variance of X = 1, Variance of Y = τ. 
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when it did not, the test was conservative. The 
Brunner-Munzel test generally maintained its 
level under all scenarios tested.  All of the tests 
had trouble maintaining the 0.05 level when the 
data were simulated using the gamma 
distribution. 

To estimate the tests’ power, we ran 
1,540 simulation iterations. This number of 
simulations assures that a 95% confidence 
interval for power will be approximately 

0.025± when power is around 80%. For each 
iteration, m + n deviates of the desired type were 
generated under the condition ,x yθ θ δ− = where 

{1,2,3,4}.δ =  Again, the proportion of the 
iterations where the null hypothesis was rejected 
was recorded for each of the four tests. This 
proportion is the test’s estimated power. Since 
the Wilcoxon-Mann-Whitney test was anti- 

 
 
 
 
 

conservative in most scenarios, it was not 
surprising that the power of this test was greater 
than the power of the other tests. However, since 
this power is meaningless in the presence of an 
inflated nominal level, the Wilcoxon test will be 
removed from the rest of the discussion. 

Figure 2 shows the power of the 
remaining tests under normality when the 
variances are not equal and the sample sizes are 
the same. Under these conditions, most 
statisticians would use the t test with 
Satterthwaite’s approximation for the degrees of 
freedom. However, the fitted test and the 
Brunner-Munzel test demonstrate comparable 
power. 

Figure 3 illustrates the power of the tests 
under normality with the added complication 
that the smaller sample size corresponds to the 
group with the larger variance.  Once again, all 
three tests demonstrate similar power levels. 
 
 
 
 
 

Figure 2. Plot of the Power for the Various Tests under Normality, Equal Sample Sizes, Ratio of the 
Variances 0.1τ = , and 0.05α = . 
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Figure 3. Plot of the Power for the Various Tests under Normality, Different Sample Sizes, Ratio of the 
Variances 10τ = , and 0.05α = . 
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When symmetry is removed from the 

distribution, such as in the case of the 
contaminated normal distribution, the fitted test 
and the Brunner-Munzel test demonstrate 
superiority over Satterthwaite’s t test.  This is 
illustrated in Figures 4 and 5. Figure 4 illustrates 
the power of the three tests when samples of the 
same size are generated from contaminated 
normal distributions with the same variance.  
Figure 5 illustrates the power of the three tests 

when samples of different sizes are generated 
from contaminated normal distributions with 
different variances. In both of these figures, the 
fitted test and the Brunner-Munzel test 
demonstrate similar power. However, the t test 
using Satterthwaite’s approximation for the 
degrees of freedom has considerably less power 
than the other tests. This pattern is consistent 
over all of the results run using the contaminated 
normal distribution. 
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Figure 4. Plot of the Power for the Various Tests under the Contaminated Normal Distribution, Equal 
Sample Sizes, and Ratio of the Variances 1τ = , and 0.05α = . 
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Figure 5. Plot of the Power for the Various Tests under the Contaminated Normal Distribution, Different 
Sample Sizes, and Ratio of the Variances 0.1τ = , and 0.05α = . 
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All three tests exhibited comparable 

power under the double exponential and uniform 
distributions. All three tests had increased power 
when the sample with fewer observations was 
obtained from the distribution with the smaller  

 
 

 
variance. However, all three tests exhibited 
decreased  power  when   the sample with  fewer 
observations was obtained from the distribution 
with the larger variance. 
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Conclusion 
 

In this paper, we developed a method to test the 
difference between two population medians.  
Our fitted test was created by fitting a function 
to the large table of critical values presented by 
Fligner and Policello. Through a simulation 
study, we have determined that our test, and the 
Brunner-Munzel test, generally maintains the 
expected level of the test for a variety of 
underlying density functions. 
 The usual alternative to Student’s t test, 
the Wilcoxon-Mann-Whitney test, has been 
shown to be anti-conservative in the simulation 
study under unequal variances by exhibiting 
empirical level estimates that are generally 
greater than the nominal level. Therefore, this 
test also exhibited artificially high power in the 
simulation results. Whereas, the fitted test and 
the Brunner-Munzel test have shown 
comparable power to the t test using 
Satterthwaite’s approximation for the degrees of 
freedom under the ideal condition of normality. 
When symmetry is removed from the 
distribution function, such as in the 
contaminated normal distribution, the fitted test 
and the Brunner-Munzel test have shown 
improved power over the t test using 
Satterthwaite’s approximation for the degrees of 
freedom. 
 All three tests exhibited comparable 
power in the simulation studies when the data 
were simulated from the double exponential or 
the uniform distributions. Statisticians should 
consider using an alternative to the Wilcoxon-
Mann-Whitney test when unequal variances are 
possible. 
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Many national data sets used in educational research are not based on simple random sampling schemes, 
but instead are constructed using complex sampling designs characterized by multi-stage cluster sampling 
and over-sampling of some groups. Incorrect results are obtained from statistical analysis if adjustments 
are not made for the sampling design.  This study demonstrates how the use of weights and design effects 
impact the results of contingency tables and chi-square analysis of data from complex sampling designs. 
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Introduction 
 
Many large-scale data sets used in educational 
research are constructed using complex designs 
characterized by multi-stage cluster sampling 
and over-sampling of some groups. Common 
statistical software packages such as SAS and 
SPSS yield incorrect results from such designs 
unless weights and design effects are used in the 
analysis (Broene & Rust, 2000; Thomas & 
Heck, 2001). The objective of this study is to 
demonstrate how the use of weights and design 
effects impact the results of contingency tables 
and chi-square analysis of data from complex 
sampling designs. 
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Methodology 
 

In large-scale data collection, survey research 
applies varied sample design techniques. For 
example, in a single-stage simple random 
sample with replacement (SRS), each subject in 
the study has an equal probability of being 
selected. Thus, each subject chosen in the 
sample represents an equivalent total of subjects 
in the population. More befitting, however, is 
that data collection via survey analysis often 
involves the implementation of complex survey 
design (CSD) sampling, such as disproportional 
stratified sampling or cluster sampling, where 
subjects in the sample are selected based on 
different probabilities. Each subject chosen in 
the sample represents a different number of 
subjects in the population (McMillan & 
Schumacher, 1997). 

Complex designs often engender a 
particular subgroup, due to oversampling or 
selection with a higher probability, and 
consequently the sample does not reflect 
accurate proportional representation in the 
population of interest. Thus, this may afford 
more weight to a certain subgroup in the sample 
than would be existent in the population. As 
Thomas and Heck (2001) cautioned, “When 
using data from complex samples, the equal 
weighting of observations, which is appropriate 
with data collected through simple random 
samples, will bias the model’s parameter 
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estimates if there are certain subpopulations that 
have been oversampled” (p. 521). 

The National Center for Education 
Statistics (NCES) conducts various national 
surveys that apply complex designs to projects 
such as the Beginning Postsecondary Students 
study (BPS), the National Educational 
Longitudinal Study of 1988 (NELS: 88), or the 
National Study of Postsecondary Faculty 
(NSOPF). Some statistical software programs, 
for instance SPSS or SAS, presuppose that data 
were accumulated through SRS. These statistical 
programs tend not to use as a default setting 
sample weights with data amassed through 
complex designs, but instead use raw expansion 
weights as a measure of acceptable sample size 
(Cohen, 1997; Muthen & Satorra, 1995). 
However, the complex sampling designs utilized 
in the collection of NCES survey data allocates 
larger comparative importance to some sampled 
elements than to others. To illustrate, a complex 
design identified by the NCES may have a 
sample selection where 1 subject out of 40 is 
chosen, which indicates that the selection 
probability is 1/40. The sample weight of 40, 
which is inversely proportional to the selection 
probability, indicates that in this particular case 
1 sample subject equals 40 subjects in the 
population. 

Because of the use of complex designs, 
sample weighting for disparate subject 
representation is employed to bring the sample 
variance in congruity with the population 
variance, which supports proper statistical 
inferences. The NCES incorporates as part of its 
data sets raw expansion weights to be applied 
with the data of study to ensure that the issues of 
sample selection by unequal probability 
sampling and biased estimates have been 
addressed. Relative weights can be computed 
from these raw expansion weights. 

Because the NCES accrues an 
abundance of its data for analysis via CSD, the 
following formulae present how weights 
function. The raw expansion weight is the 
weight that many statistical software programs 
use as a default setting and should be avoided 
when working with the majority of NCES data. 
Instead, the relative weight should be used when 
conducting statistical analyses with NCES 
complex designs. 

 Raw Expansion Weight (Wj) = n        (1)  
                                                  ∑ wj = N 
                                                   j=1 
 
 Weighted Mean (⎯x)  = n                               (2) 
                                      ∑ wj xj / ∑ wj 
                                       j=1 
 
 Mean Weight (⎯w)  = n                                  (3) 
                                   ∑ wj / n 
                                    j=1 
 
 Relative Weight = wj /⎯w                              (4) 
 
Notes: n = sample size, j=1 = subject response, 
wj = raw weight, xj = variable value, N = 
population size 
 

Furthermore, the lack of sample 
weighting with complex designs causes 
inaccurate estimates of population parameters. 
The existence of variance estimates, which 
underestimate the true variance of the 
population, induce problems of imprecise 
confidence intervals, larger than expected 
degrees of freedom, and an enhancement of 
Type I errors (Carlson, Johnson, & Cohen, 1993; 
Lee, Forthofer, & Lorimor, 1989). 

Design effect (DEFF) indicates how 
sampling design influences the computation of 
the statistics under study and accommodates for 
the miscalculation of sampling error. As noted 
previously, since statistical software programs 
often produce results based on the assumption 
that SRS was implemented, DEFF is used to 
adjust for these inaccurate variances. DEFF, as 
defined by Kish (1965), is the ratio of the 
variance of a statistic from a CSD to the 
variance of a statistic from a SRS. 
 

DEFF = _SE2
CSD_                    (5) 

                                         SE2
SRS 

 
The size of DEFF is affined to 

conditions such as the variables of interest or the 
attributes of the clusters used in the design (i.e., 
the extent of in-cluster homogeneity). A DEFF 
greater than 1.0 connotes that the sampling 
design decreases precision of estimate compared 
to SRS, and a DEFF less than 1.0 confirms that 
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the sampling design increases precision of 
estimate compared to SRS (Kalton, 1983; 
Muthen & Satorra, 1995). As Thomas and Heck 
(2001) stated, “If standard errors are 
underestimated by not taking the complex 
sample design into account, there exists a greater 
likelihood of finding erroneously ‘significant’ 
parameters in the model that the a priori 
established alpha value indicates” (p. 529). 
 
Procedures 

Three variables were selected from the 
public-use database of the National Education 
Longitudinal Study of 1988 to demonstrate the 
impact of weights and design effects on 
contingency tables and chi-square analysis. A 
two-stage cluster sample design was used in 
NELS: 88, whereby approximately 1,000 eighth-
grade schools were sampled from a universe of 
approximately 40,000 public and private eighth-
grade schools (first stage) and 24 eighth-grade 
students were randomly selected from each of 
the participating schools (second stage). 

An additional 2 to 3 Asian and Hispanic 
students were selected from each school, which 
resulted in a total sample of approximately 
25,000 eighth-grade students in 1988. Follow-up 
studies were conducted on subsamples of this 
cohort in 1990, 1992, 1994, and 2000. 
Additional details on the sampling methodology 
for NELS: 88 are contained in a technical report 
from the U.S. Department of Education (1996). 

The three variables used in this example 
are F2RHMA_C (total Carnegie Units in 
mathematics taken in high school), RMATH 
(flag for whether one or more courses in 
remedial math were taken since leaving high 
school), and F3TRSCWT (1994 weight to be 
used with 1992 transcript data). Five categories 
for the number of Carnegie Units of math taken 
in high school were created (up through 1.99, 
2.00 through 2.99, 3.00 through 3.99, 4.00 
through 4.99, 5.00 or more). The other variable 
of interest was whether a student had taken a 
postsecondary remedial math course by the time 
of the 1994 follow-up study. Four chi-square 
contingency tables were developed for these two 
variables using SPSS.  Differences in the four 
tables are due to use of weights and DEFF. 

Only those observations where RMATH 
> 0 and F3TRSCWT > 0 were selected for this 

analysis, which resulted in 6,948 students. 
Although there were 14,915 students in the 1994 
follow-up of NELS: 88, only 12,509 had high 
school transcript data (F3TRSCWT > 0) from 
which F2RHMA_C was obtained. Of these, 
6,948 participated in post-secondary education 
by the time of the third follow-up in 1994. 

Missing values were not a problem with 
RMATH. Of the 14,915 students in the 1994 
follow-up of NELS: 88, 6,943 had a legitimate 
missing value because they had not participated 
in postsecondary education (i.e., not of interest 
for this paper), 16 had missing values, and 7,956 
had a value (yes or no) for postsecondary 
remedial math. 

There were some missing values for 
high school transcript data, but the transcript 
weight (F3TRSCWT) provided in NELS: 88 
takes into account missing transcript data. The 
Carnegie units of high school math 
(F2RHMA_C) came from high school transcript 
data. There were 14,915 students in the 1994 
follow-up of NELS: 88; however, only 12,509 
had high school transcript data. That is why 
NCES provides a separate weight (F3TRSCWT) 
that is to be used specifically with variables 
from high school transcript data. 

This weight has already been adjusted 
by NCES for missing high school transcript 
observations. Of the 7,956 students with a value 
for RMATH, 1,008 did not have high school 
transcript data. These 1,008 students were not 
included in the analysis presented here (7,956-
1,008 = 6948 students for analysis in this paper). 
After selecting the 7,956 students with a value 
for RMATH, only those observations with 
F3TRSCWT>0 were selected. No further 
adjustment was necessary for missing values 
since F3TRSCWT had already been adjusted by 
NCES for missing values. 

Effect sizes are reported for each chi-
square statistic addressed in the research. For the 
chi-square statistic, a regularly used effect size is 
based on the coefficient of contingency (C), 
which is not a true correlation but a “scaled” chi-
squared (Sprinthall, 2000). As a caveat with the 
use of C, it has been noted that its highest value 
cannot attain 1.00, as is common with other 
effect sizes, which makes concordance with akin 
effect sizes arduous. 
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In fact, C has a maximum approaching 
1.0 only for large tables. In tables smaller than 5 
x 5, C may underestimate the level of 
association (Cohen, 1988; Ferguson, 1966). As 
an alternative to C, Sakoda’s Adjusted C (C*) 
may be used, which varies from 0 to 1 regardless 
of table size. For chi-square related effect sizes, 
Cohen (1988) recommended that .10, .30, .50 
represent small, medium, and large effects. 
 

C = SQRT [χ2 / (χ2 + n)]               (6) 
 

C* = C / SQRT [(k-1)/k]               (7) 
 
k = number of rows or columns, whichever is 
smaller. 

Results 
 

A total of 6,948 observations met the selection 
criteria (i.e., availability of high school 
transcripts and participation in post-secondary 
education by the time of the third follow-up in 
1994). The first contingency table (Table 1), 
without any weights or design effects, has a total 
count of 6,948 and a chi-square value of 130.92. 
This table is useful for determining minimum 
cell sizes, but the percentages in each of the cells 
and the overall chi-square (130.92) are incorrect 
because the sample observations were not 
weighted to represent the population. 
 

 
 
Table 1. Contingency Table Without Weights: Carnegie Units of High School Math by Postsecondary 
Education (PSE) Remedial Math. χ2(4) = 130.92, C = .136, 95% CI (.112, .160), C* = .192,  95% CI 
(.168, .216). 
 

  PSE Remedial Math  
Units HS Math  Yes No Row Total 
     
0 – 1.99 Count 84 231 315 
 % of Grand Total 1.2% 3.3% 4.5% 
     
2 – 2.99 Count 215 661 876 
 % of Grand Total 3.1% 9.5% 12.6% 
     
3 – 3.99 Count 495 1,875 2,370 
 % of Grand Total 7.1% 27.0% 34.1% 
     
4 – 4.99 Count 382 2,504 2,886 
 % of Grand Total 5.5% 36.0% 41.5% 
     
>= 5 Count 43 458 501 
 % of Grand Total 0.6% 6.6% 7.2% 
     
Column Total Count 1,219 5,729 6,948 
 % of Grand Total 17.5% 82.5% 100.0% 
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Asian and Hispanic students were over-
sampled in NELS: 88, so the sample contained 
higher proportions of these ethnic groups than 
did the reference population. Sampling weights 
must be applied to the observations to adjust for 
the over-sampling. In contrast, a chi-square table 
without weights or design effects is appropriate 
for a simple random sample because each 
observation represents the same number of cases 
in the population. 

The variable F3TRSCWT, a raw 
expansion weight, is used as the weight in Table 
2. This is one of several raw expansion weights 
provided by NCES, and it is the weight that is to 
be used when analyzing variables from the 1994 
follow-up (e.g., RMATH) in conjunction with 

high school transcript variables such as 
F2RHMA_C. The raw expansion weight is the 
number of cases in the population that the 
observation represents. Unlike simple random 
sampling, the weights are not the same for each 
subject. The weights for these 6,948 
observations range from 7 to 12,940 with a mean 
of 228.50.  The total count of 1,587,646 in this 
table represents the number of students from the 
1988 eighth-grade cohort that met the selection 
criteria. This table contains correct population 
counts and percentages in the cells; however, the 
overall chi-square (27,500.88) is too high 
because the cell sizes are overstated. The cell 
sizes represent counts of the population rather 
than the sample. 

 
Table 2. Contingency Table With Raw Expansion Weight F3TRSCWT: Carnegie Units of High School 
Math by Postsecondary Education (PSE) Remedial Math. χ2(4)  = 27,500.88, C = .130,  95% CI (.128, 
.132), C* = .184, 95% CI (.182, .186). 
 

  PSE Remedial Math  
Units HS Math  Yes No Row Total 
     
0 – 1.99 Count 24,353 63,532 87,885 
 % of Grand Total 1.5% 4.0% 5.5% 
     
2 – 2.99 Count 53,767 167,485 221,252 
 % of Grand Total 3.4% 10.5% 13.9% 
     
3 – 3.99 Count 118,230 427,763 545,993 
 % of Grand Total 7.4% 26.9% 34.4% 
     
4 – 4.99 Count 81,325 537,884 619,209 
 % of Grand Total 5.1% 33.9% 39.0% 
     
>= 5 Count 14,951 98,356 113,307 
 % of Grand Total 0.9% 6.2% 7.1% 
     
Column Total Count 292,626 1,295,020 1,587,646 
 % of Grand Total 18.4% 81.6% 100.0% 

 
 
 
The relative weight of F3TRSCWT is 

used in Table 3 to bring the cell counts in Table 
2 back into congruence with the sample counts. 
For  each  of the 6,948 observations,  the relative 

 

 
 

weight of F3TRSCWT is computed by dividing 
F3TRSCWT by 228.50, which is the mean of 
F3TRSCWT for the 6,948 observations. The 
total   count  in  Table 3  is 6,947,  which  differs 
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 from Table 1 only because of rounding (note: 
although displayed in whole numbers by SPSS, 
Table 3 actually contains fractional numbers of 
observations in each cell). Table 3 contains 

correct cell percentages, but the cell sizes and 
chi-square (120.62) are overstated due to the 
two-stage clustered sample design of NELS: 88. 

 
 
Table 3. Contingency Table With Relative Weight = F3TRSCWT / 228.5. Carnegie Units of High School 
Math by Postsecondary Education (PSE) Remedial Math. χ2(4) = 120.62, C= .131, 95% CI (.107, .155), 
C* = .185, 95% CI (.161, .209). 
 

  PSE Remedial Math  
Units HS Math  Yes No Row Total 
     
0 – 1.99 Count 107 278 385 
 % of Grand Total 1.5% 4.0% 5.5% 
     
2 – 2.99 Count 235 733 968 
 % of Grand Total 3.4% 10.6% 13.9% 
     
3 – 3.99 Count 517 1,872 2,389 
 % of Grand Total 7.4% 26.9% 34.4% 
     
4 – 4.99 Count 356 2,354 2,710 
 % of Grand Total 5.1% 33.9% 39.0% 
     
>= 5 Count 65 430 495 
 % of Grand Total 0.9% 6.2% 7.1% 
     
Column Total Count 1,280 5,667 6,947 
 % of Grand Total 18.4% 81.6% 100.0% 

 
Table 4 was obtained by dividing the 

relative weight for F3TRSCWT by the NELS: 
88 average DEFF (2.94), extrapolated via Taylor 
series methods, which resulted in effective cell 
sizes with correctly weighted cell counts and 
proportions and the appropriate overall chi-
square (40.81) for this clustered design. The 
counts in Table 4 are the effective sample size 
after accounting for the clustered sample design 
(i.e., a sample of 6,948 from this clustered 
design is equivalent to a sample size of 2,363 
randomly selected students). Essentially, a mean 
DEFF of 2.94 tells us that if a SRS design had 
been conducted, only 33% as many subjects 
when compared against a CSD, would have been 
necessary to observe the statistic of study. 

DEFFs that range between 1.0 and 3.0 
tend to be indicative of a well-designed study. 
The current study’s DEFF of 2.94 indicated that 

the variance of the NELS: 88 estimates was 
increased by 194% due to variations in the 
weights. The square root of DEFF, the DEFT, 
yields the degree by which the standard error has 
been increased by the CSD. The DEFT (1.71) 
implied that the standard error was 1.71 times as 
large as it would have been had the present 
results been realized through a SRS design, or 
the standard error was increased by 71%. An 
intra-class correlation coefficient (ICC) of .20 or 
less is desirable for indicating the level of 
association between the responses of the 
members in the cluster. Since an ICC was not 
used in the computation of the Taylor series-
derived average DEFF for NELS: 88, an 
estimated, average ICC was calculated from the 
following formula for determining 

 

DEFF: 1 + δ (n – 1),                  (8) 
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where δ is the ICC and n is the typical size of a 
cluster (Flores-Cervantes, Brick, & DiGaetano, 
1999). The low ICC (.0844) indicated that the 
members in the same cluster were only about 
8%, on average, more probable of having 

corresponding characteristics than if compared 
to another member selected randomly from the 
population. 
 

 
Table 4. Contingency Table With Weight = (F3TRSCWT / 228.5) / 2.94: Carnegie Units of High School 
Math by Postsecondary Education (PSE) Remedial Math. χ2(4) = 40.81, C = .130, 95% CI (.090, .170), 
C* = .184, 95% CI (.144, .224). 
 

  PSE Remedial Math  
Units HS Math  Yes No Row Total 
     
0 – 1.99 Count 36 95 131 
 % of Grand Total 1.5% 4.0% 5.5% 
     
2 – 2.99 Count 80 249 329 
 % of Grand Total 3.4% 10.5% 13.9% 
     
3 – 3.99 Count 176 637 813 
 % of Grand Total 7.4% 27.0% 34.4% 
     
4 – 4.99 Count 121 801 922 
 % of Grand Total 5.1% 33.9% 39.0% 
     
>= 5 Count 22 146 168 
 % of Grand Total 0.9% 6.2% 7.1% 
     
Column Total Count 435 1,928 2,363 
 % of Grand Total 18.4% 81.6% 100.0% 

 
NELS: 88 used a clustered sample 

design, in which schools were randomly 
selected, and then students within those schools 
were randomly selected. Students selected from 
such a sampling design would be expected to be 
more homogeneous than students selected from 
a simple random design across all schools. The 
chi-square values from SPSS cross-tabulations 
and SAS Proc Freq tables presume simple 
random samples. One method for estimating the 
proper chi-square for the two variables under 
investigation from NELS: 88 is to divide the 
relative weight for F3TRSCWT by the average 
DEFF (2.94), and use the result as the weight in 
SPSS cross-tabulations or SAS Proc Freq. The 
results in Table 4 were obtained by such a 
computation, which yields effective cell sizes 
and correctly weighted proportions. 

Furthermore, the chi-square (40.81) is an 
appropriate approximation of the true chi-square 
for this clustered design. These are the values 
that should be used in a chi-square analysis of 
Carnegie Units of high school math by whether 
or not a student took a postsecondary education 
remedial math course. Notice that the cell counts 
and the total count in Table 4 are equal to those 
in Table 3 divided by 2.94. The counts in Table 
4 are the effective sample size after accounting 
for the clustered sample design. 

As was found with the chi-square 
statistics, weighting, or lack thereof, also 
influenced effect size values. For example, the 
coefficient of contingency and Sakoda’s 
Adjusted C in Table 1, where the default of no 
weighting occurred, had higher values than any 
of the reported C or C* estimations where a 
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form of weighting transpired. It should be noted 
that the C values ranged from .130 to .136, or in 
the case of adjusted C from .184 to .192, which 
means that regardless of weighting scheme, or 
none at all, the practical implication of the chi-
square statistics of study was that they had a 
small effect. Thus, although the chi-square 
statistics were all statistically significant, they 
had a small effect, which indicates that the 
results derived from the chi-square statistics 
would not be deemed very important practically 
and also in terms of accounting for much of the 
total variance of the outcome. 
 

Conclusion 
 
Some sampling designs over-sample certain 
groups (i.e., their proportion in the sample is 
greater than their proportion in the population) 
in order to obtain sufficiently large numbers of 
observations in these categories so that statistical 
analyses can be conducted separately on these 
groups. When analyzing the entire sample, 
relative weights should be used to bring the 
sample proportions back in congruence with the 
population proportions. When clustered sampled 
designs are used, then relative weights should be 
divided by the DEFF to adjust for the fact that a 
sample from a clustered design is more 
homogeneous than if a simple random sampling 
scheme had been employed. The chi-square 
values from SPSS cross-tabulations and SAS 
Proc Freq tables presume simple random 
samples. Design effects must be used with such 
software in order to obtain an appropriate 
approximation for the true chi-square, and its 
accurate effect size, of a clustered design. 
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Correcting Publication Bias In Meta-Analysis: 
A Truncation Approach 
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Meta-analyses are increasingly used to support national policy decision making. The practical 
implications of publications bias in meta-analysis are discussed. Standard approaches to correct for 
publication bias require knowledge of the selection mechanism that leads to publication. In this study, an 
alternative approach is proposed based on Cohen’s corrections for a truncated normal. The approach 
makes less assumptions, is easy to implement, and performs well in simulations with small samples. The 
approach is illustrated with two published meta-analyses. 
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Introduction 
 

Publication bias presents possibly the 
greatest methodological threat to the 
validity of a meta-analysis. It can be 
caused by the biased and selective 
reporting of the results of a given study, 
or, more seriously, by the selective 
decision to publish the results of the study 
in the first place. Undetected publication 
bias is especially serious owing to the fact 
that the meta-analysis may not only lead 
to a spurious conclusion, but the 
aggregation of data may give the 
impression, with standard statistical 
methodology, that the conclusions are 
very precise. (Cooper & Hedges, 1994, p. 
407). 
 

With these words, Cooper and Hedges 
(1994) concluded their discussion on the 
detection and correction of publication bias in 
meta-analysis. For all its theoretical and 
practical importance, it is not often that one sees 
a meta-analysis corrected for publication bias. 
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Undoubtedly, the reason is that the 
methodology available to the address the 
problem (Vevea & Hedges, 1995; Hedges & 
Vevea, 1996; Cleary & Casella, 1997) is 
complex, not easily accessible to the average 
meta-analyst practitioner and has been unable to 
make a strong practical case for supporting its 
use. The problem is difficult because publication 
bias, by its own nature, is a phenomena we know 
little about and because it does not suffice to 
show that, theoretically, a corrected estimate 
exists. One must show that the correction 
performs better than the original biased statistics 
in small samples. 

In spite of these practical problems, the 
struggle against the effects of publication bias 
should not be abandoned. The presence of 
publication bias can lead to an erroneous 
consensus regarding the efficacy of a class of 
interventions or the importance of a particular 
factor in a psychological process of interest. 
Moreover, because one cannot assume that the 
same level of publication bias exists across 
meta-analyses, even in related content areas, 
there is little solid ground on which to base 
comparisons across meta-analyses. 

Not only is the scientific community in 
danger of conceding to the evidence what the 
evidence does not warrant; but often social 
scientists are called to testify to critical 
allocations of funds and to the implementation 
of far-reaching social policies. Meta-analytic 
evidence plays an increasing role in those policy 
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discussions as legislators and other policy 
makers demand simple summaries of complex 
information. Therefore, publication bias can also 
lead to harm in the public policy arena. 

To be widely used, a method for 
correcting publication bias in meta-analysis must 
meet the following criteria: 1) It must recover 
the true population parameters in large samples, 
2) it must be an improvement over the biased 
sample statistics in small samples, and 3) it must 
be relatively easy to calculate and easy to use for 
the average meta-analytic practitioner. 
 
Modeling Publication Bias: Two Approaches 

Traditional approaches to correct meta-
analysis require some model for observed effect 
sizes that incorporates the selection process. 
Two aspects to such a model are given, the 
selection model and the effect size model. 
(Hedges & Vevea, 1996). Typically, the effect 
size model has been constructed using the 
random effects model and assuming a normal 
compound distribution. The selection process is 
modeled as a complex weight function of the 
probability of obtaining significant results based 
on sample size. This approach is based on the 
notion that publication bias is directly related to 
the presence of significant results. 

This approach, commonplace in the 
literature, has a number of problems. First, it is 
unclear whether significance is the only criteria 
that impacts publication bias, effect sizes may be 
equally important, particularly when the sign is 
unexpected. Second, the selection process is an 
unknown and complex social phenomenon. 
Modeling publication bias as a function of a 
process we know little about seems unwise. 

An alternative approach is to use a 
simple truncation model, based not on statistical 
significance but on effect size. After all if 
publication bias is having an impact on the 
overall results of a meta-analysis is because the 
bias is systematically truncating one of the tails, 
typically the left tail, of the distribution of 
program effects. 

Because the standard approach assumes 
normality, modeling publication bias with a 
truncated normal model may be a practical 
alternative to modeling selection processes 
without imposing additional unverified 

assumptions; at least until the selection 
processes are better understood. 

The truncation approach is more 
practical than the standard approach for three 
reasons. First, detecting publication bias 
becomes an exercise in elementary statistics. Is 
the observed distribution of effects normal or it 
is missing one of the tails? Both a standard 
histogram of the observed distribution and the 
computation of the distance between the median 
and the mean in standard deviation units can be 
used to answer this question. 

Second, although we provided a 
rationale for our approach, the truncation model 
does not require us to specify a selection 
mechanism or to know how publication bias 
occurs. All we need to know is that there were 
no published studies below a particular effect 
size, and that the observed distribution of effects 
is skewed to the right. Truncation relies 
exclusively on the assumption of normality of 
the effect size model. 

Third, it simplifies the correction for 
publication bias considerably because it uses a 
long-time developed method already in use in 
other disciplines as the standard way to deal 
with the statistics of truncated phenomena. Since 
1959 engineers, economists, cosmologists and 
physicists have used Cohen’s (1959) estimates 
for the population mean and standard deviation 
of a truncated normal to investigate truncated 
phenomena. 

Cosmologists observe only the brightest 
stars, engineers observe only products that meet 
tolerance checks, economists observe only 
portions of the income distribution and particle 
physicists observe only the energy signature of 
higher energy particles.  Similarly, highly 
effective programs are likely to be observed in 
the published literature while less effective 
interventions with non-significant or negatively 
significant results are likely to become 
unavailable results. Meta-analysis can benefit 
from the research and development of 
truncation-related statistics in other fields. These 
include truncation regression, correction for 
doubly truncated normals and many others 
(Greene, 1990). 
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Correcting for Publication Bias in Meta-
Analysis 

Assume that the distribution of effects is 
normal. One can model the distribution of 
effects in a variety of ways but the simplest 
method is to posit a compound normal where 
each study would be a realization of a normal 
distribution with mean ∆. Where ∆ represents 
the true effect sizes of each actual intervention. 
Yet, each true intervention effect size ∆ is itself 
a random variate of a normal distribution with 
mean µ. µ represents the true effect size of a 
class of interventions. 
 
The resulting distribution of effects is a 
compound normal distribution: 
 

),(),( σµσ ′∧∆
∆

NN . 

 
It can be shown (Johnson, Koptz, & 
Balakrishnan, 1994) that such distribution is also 

normal with ),( 22 σσµ ′+N . 
Consider now the presence of 

publication bias. Because of the reasons 
described above, effect sizes below some level T 
are unlikely to be published.  The resulting 
observable distribution of effect sizes will be a 
truncated normal. 

Truncation of the left tail of a normal 
distribution produces the following effects: 1) 
the sample mean will overestimate the true 
mean, and 2) the sample standard deviation will 
underestimate the true standard deviation. 

In other words, publication bias will 
result in the systematic overestimation of 
average effect sizes and the lowering of the 
associated standard deviation resulting in the 
illusion of precision that Cooper and Hedges 
(1994) described as one the greatest threats to 
the validity of meta-analysis. 
 
Correction for truncation 

Cohen (1959) first developed estimation 
procedures to recover the mean and standard 
deviation from a truncated observed normal 
distribution. Equations 1-5 describe the process. 
First, calculate the left-hand side of equation 5, 
using the minimum observed value in the 
truncated distribution as a proxy variable for T. 

Then solve for ξ and calculate θ(ξ). There are 
two ways of making the process less painful. 
One can look up the value of θ(ξ) in Cohen’s 
book (1991, Table 2.1.) Alternatively, one can 
use a numerical solver, now standard in many 
applications, to numerically solve for ξ . 

Once θ(ξ) is known, calculate µC and 
σ2

C using equations 1 and 2. Note that the 
estimated degree of truncation is simply Φ(ξ). 
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Cohen’s formulas to calculate the 95% 

confidence interval around the mean and 
standard deviation are: 
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where Q is evaluated at ξ. 
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A Large-Sample Example 
To illustrate the process, consider a class 

of interventions whose true effect size is 0.4 
with a 0.8 standard deviation. Because of the 
large standard deviation, if 2000 studies were 
performed on this class of interventions one 
would expect that 20% of the studies would 
have negative results, some of them with 
considerable effect sizes (e.g., -0.8 and below). 

Assume that there is no theoretical 
explanation for a negative effect size, so studies 
showing negative effect sizes are unlikely to be 
published. In the random sample we generated, 
that would leave 1393 publishable studies with 
some of them reporting non-significant results. 

A meta-analysis performed on the 1393 
studies would yield a biased sample mean of 
0.82 with a biased standard deviation of 0.55. By 
all accounts, this class of interventions would be 
deemed to have large effects. Cohen’s corrected 
estimates are 0.475 [95% CI (0.3723,0.5776)] 
for the mean and 0.77 [95% CI (0.709-0.829)] 
for the standard deviation. As can be seen, these 
estimates are quite close to the true values of 0.4 
and 0.8. 

As mentioned before, once the original 
mean and standard deviations have been 
recovered one can calculate the degree of 
truncation by simply calculating the value of the 
cumulative normal with the recovered mean and 
standard deviation at the truncation point, Φ(ξ). 
In this case, the degree of truncation was 
26.84%. 
 
Behavior of the Estimator in Small Samples 
 For Cohen’s estimates to be useful in the 
correction of meta-analysis publication bias they 
need perform adequately in small samples. The 
standard criteria of using 95% confidence 
intervals does not seem appropriate in this small 
sample context. Some severely truncated 
samples will have sample sizes of below 15 
observations and, therefore we expect that the 
95% confidence interval of the corrected mean 
will contain the biased sample estimate. Other 
approaches to correct publication bias have the 
same problem (Vevea & Hedges, 1995). 
Therefore, we studied the direct improvement of 
using Cohen’s formulas in terms of distance to 
the true parameters. 

The population parameters were picked 
to represent meta-analytic results of importance 
both for scientific and policy purposes. We 
chose a large effect (0.8) with a relatively small 
standard deviation (0.4) and a total sample size 
of 100 published and unpublished studies (of 
which only a few will be published under high 
truncation). 

Maxwell and Cole (1995) stated that 
“simulation studies are experiments and must be 
described and interpreted in this light”. 
Therefore, we will use the language of 
experiments to describe our simulations. Table 1 
shows the result of an experiment designed to 
answer seven questions and analyze how the 
answers vary as the truncation level increases: 
 

• Question 1: What is the average sample 
bias for µ? 

• Question 2: What is the average sample 
bias for σ? 

• Question 3: What would be the average 
number of studies published? 

• Question 4: What is the average error in 
correction for µ using Cohen’s 
estimates?  

• Question 5: What is the average error in 
correction for σ using Cohen’s 
estimates? 

• Question 6: On average, by how much 
do we benefit by performing the 
correction? 

• Question 7: In what percentage of 
samples would the meta-analyst 
practitioner benefit from using Cohen’s 
estimates? 

 
To answer these questions we simulated 

10,000 samples of a normal distribution of effect 
sizes mean = 0.8 and sd = 0.4. We then 
truncated it to create an observed distribution. 
We used the four different points of truncation 
ranging from almost no truncation (2 standard 
deviations below the mean) to severe truncation 
(one standard deviation above the mean). Then 
we used Cohen’s (1959) formulas to estimate the 
corrected mean and standard deviation. 

To answer questions 6 and 7 we defined 
an improvement measure as the ratio of two 
distances. The numerator is the distance between 
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the sample moment from the biased distribution 
and the corresponding true value. The 
denominator is the distance between the 
corrected estimate and the true value. We used 
the absolute value measure of distance (although 
in the next section we also ran simulation with 
the Euclidean distance without substantial 
differences). 
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for the standard deviation. 

An improvement factor below one 
indicates that the correction gets us farther way 
from the true value, an improvement factor of 
one indicates that the correction does as badly as 

the biased sample moments; finally, 
improvement factors higher than one indicate 
how much closer the correction for truncation 
gets us to the true mean (e.g. a value of 2 would 
indicate that Cohen’s correction gets us two 
times closer to the real mean than the biased 
estimates do). 

Since the improvement factors are 
always positive, their distribution is not likely to 
be symmetric; therefore, we report the median 
improvement, as the preferred measure of 
central tendency. This median will be the answer 
provided to question 6. 

Because it is possible to have large 
average improvements while the majority of the 
samples would not be improved by using 
Cohen’s corrections, question 7 asks the 
proportion of the 10,000 that benefit from the 
correction. Benefit is defined as having an 
improvement factor strictly higher than one.  It 
is a measure of the risk that an average meta-
analyst practitioner incurs by correcting the 
estimates of her study. 

 
Table 1. Results of Experiment 1. 

 
 Almost 

none 
Mild Serious Severe 

Truncation point (T)  µ-2 σ=0 µ-σ=0.4 µ=0.8 µ+σ=1.2 
Truncation level Φ(T) 0.023 0.1586 0.5 0.841 
Average Observed Sample Size  97.73 84.12 50.03 15.88 
Average Sample Bias (for µ) 0.022 0.114 0.319 0.610 
Average Sample Bias(for σ) -0.024 -0.084 -0.161 -0.227 
Average Error in Correction (for µ) -0.017 -0.040 -0.150 0.116 
Average Error in Correction (for σ) 0.0123 0.016 0.033 -0.056 
Median Improvement factor (for µ) 1.1724 2.147 1.889 4.233 
Median Improvement factor (for σ) 1.375 2.378 2.202 2.597 
% of Samples that benefited (µ) 52.83% 75.84% 72.70% 100% 
% of Samples that benefited (σ) 56.68% 80.90% 80.80% 96.4% 
95% CI range 0.48 0.939 0.921 11.29 
Does CI contain sample mean? 100% 100% 100% 100% 
Does CI contain true mean? 96.43% 96.93% 92.08% 85.68% 
Simulations based on 10,000 random samples from the normal (0.8, 0.4) for each truncation 
level. 

 
Answer to Question 1: The 

overestimation of µ increases with truncation 
level ranging from 0.02 to 0.609. 

Answer to Question 2: The 
underestimation bias of the standard deviation 
increases as the truncation gets progressively 
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worse, but it does so at a slower rate than the 
sample mean. It ranges from -0.02 to -0.22. 

Answer to Question 3: The observed 
sample size varies form 97 (almost the 100 
possible publications) to about 15 in the case of 
severe truncation. It is, of course, a linear 
function of the truncation level. 

Answer to Question 4: The average 
errors made in correcting for µ ranged form 0.02 
to 0.15 in absolute value, roughly increasing in a 
non-linear manner with the truncation level. At 
all levels of truncation, the average correction 
error was smaller than the corresponding 
average bias. 

Answer to Question 5: The average error 
made in correcting for σ ranged from 0.01 to 
0.05, roughly increasing in a non-linear manner 
with the truncation level. Answer to question 5. 
At all levels of truncation, the average correction 
error was smaller than the corresponding 
average bias. 

Answer to Question 6: The median 
improvement from using the correction ranges 
form 1.17 to 4.23. In other words, Cohen’s 
estimation method got us anywhere from 1.17 to 
four times closer to the true mean.  The 
improvement function is a nonlinear function of 
the truncation level, increasing with the 
truncation level at early stages of truncation, 
decreasing until past the 0.5 truncation level to 
quickly ascend again.  

The median improvement for the 
standard deviation ranged from 1.27 to 2.59. 
Again, the function is nonlinear with truncation 
level, although less dramatically non-linear than 
the improvement for the mean was. 

Answer to Question 7: Regardless of the 
level of truncation, the correction for both µ and 
σ was beneficial in more than half of the cases. 
With mild truncation the proportion of samples 
that benefited from the correction were over 
75%, there was a small decrease in the 
proportion of samples that benefit as truncation 
nears the 0.5 point and then a dramatic increase 
so that for serious truncation virtually all 
samples benefited form Cohen’s correction. This 

nonlinear risk function was carefully 
investigated in the next section. 

When almost no truncation is present 
(truncation level of 0.02) slightly half of the 
samples did not benefit from Cohen’s correction. 
At that small level of truncation, however, both 
the error of the correction and the bias are 
unlikely to have substantial scientific or policy 
implications. As truncation increases, both the 
chances of benefiting from using Cohen’s 
correction and the improvement in terms of 
distance to the true parameters are sizeable. 
Therefore, if truncation is detected, the use of 
Cohen’s estimates seems warranted even for 
small sample sizes. 

We now turn our attention to 
investigating in detail how the proportion of 
samples that benefit from correction increase as 
a nonlinear function of truncation level. 
 
Proportion of Samples that Benefit from 
Cohen’s Correction as a Function of Truncation 

The experiment of the previous section 
yielded that the proportion of samples that 
benefit from Cohen’s corrections were nonlinear 
functions of the truncation level Φ(ξ). To 
investigate these nonlinear functions further we 
generated 1000 random samples (µ=0.8, σ=0.4, 
N=100) for each of 121 levels of truncation 
ranging from T=µ-2σ=0 to T==µ+σ=1.2 at 0.01 
intervals. We then plotted the percentage of 
samples that benefit from Cohen’s correction for 
µ as a function of the truncation level, and 
proceeded similarly for σ. We repeated the 
process for different values of µ and σ but the 
nonlinear pattern remained essentially 
unchanged. 

We employed the absolute value 
distance function in our improvement measure 
as before; but also generated a complete 
independent set of random samples and 
calculated the improvement factors using 
standard Euclidean distance function. Figure 1 
and 2 show the results. 
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Figure 1. Samples Improved By Correction: The Mean 
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Figure 2: Samples Improved By Correction: The Standard Deviation. 
 

 
Note the following patterns: 1) for all 

truncation levels, the proportion of samples that 
benefit from Cohen’s correction for both µ and 
σ was over 50%, 2) for mild truncation levels, 
the proportion of samples that benefit from 
Cohen’s correction increases quite rapidly until 
about Φ(ξ)=0.25, 3) in the case of µ, the 
proportion of samples decreases until Φ(ξ)=0.65 
truncation level to then rise dramatically to 
100%, and 4) in the case of σ, the proportion of 
samples stabilizes at about 80% until past the 
Φ(ξ)=0.5 truncation level to then rise 
dramatically to almost 100%. 

Therefore, Cohen’s estimates perform 
adequately in small samples, with over 60% 
chance of obtaining a better point estimate 
through Cohen’s estimation method. The 
correction seems to be particularly beneficial for 

 
the mild levels (Φ(ξ) ≈ 0.2) of truncation 
commonly believed to be present in meta-
analysis. 
 
Illustrative Examples 

To demonstrate the applicability of the 
method we have chosen two meta-analysis. The 
meta-analysis were previously published by 
Psychological Bulletin and contained the 
necessary data to make the corrections. We are 
not presenting the corrections as substantive 
revisions, but simply as illustrations of the 
method. The two meta-analyses show different 
levels of truncation. 
 
Example 1: Mild Truncation 

The first example is taken from table 3 
of Yirmiya, et al. (1998) meta-analysis 
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comparing theory of mind abilities of 
individuals with autism, individuals with mental 
retardation and normally developing individuals. 
The data used here refers only to the comparison 
of individuals with autism versus normally 
developing individuals. The authors report 
different average statistics because they 
calculated a weighted average. We had no 
information to replicate the weights (sample size 
of the studies). 

There were 22 effect sizes, with sample 
mean 1.1173, standard deviation 0.9667, median 
1.030 and minimum value -0.40. The authors 
report different numbers because they used a 
weighted function to calculate average effect 
sizes. 

The histogram of the observed 
distribution and the fact that the median was 
larger than the sample mean revealed mild 
truncation on the left size. Cohen’s corrections 
are as follows: Corrected µ = 0.689, corrected σ 
=1.258. Degree of truncation 0.1933. Therefore, 
in this case the correction would cast some 
doubt on the average large effect differential 
between normally developing individuals and 
those with autism. 
 
Example 2: No Truncation 

The second example is taken from 
Appendix A of Rind, Tromovitch, and 
Bauserman’s (1998) controversial meta-analysis 
on the assumed consequences of child sexual 
abuse using college samples. This is an example 
of real-world research in which it was easier to 
explain the lack of significant positive findings 
by using a number of methodological and 
theoretical arguments. Because of this, one 
would expect less truncation to have occurred. 

Using the 56 studies, the average effect 
size is 0.0953, with a standard deviation of 
0.0947 and a minimum observation of -0.25.  
The histogram revealed little or no truncation, as 
did the fact that the median was almost identical 
to the sample mean. The corrected mean was 
0.09531. The point estimate is essentially 
identical to the uncorrected mean. The corrected 
standard deviation is 0.0948. The estimated 
degree of truncation was only 0.0001. 

This example illustrates how some 
meta-analysis may suffer very little from 
publication bias because negative and positive 

results are interpretable in the context of new 
theories or methodological issues. It is also 
suggestive that at least part of the controversy 
regarding diverse meta-analytic findings from 
several types of studies may be due to the degree 
of publication bias. 
 

Conclusion 
 
Publication bias is an important threat to the 
validity of meta-analysis. It can lead to error 
regarding the efficacy of classes of interventions 
or the importance of particular factors in 
psychological processes. These errors can have a 
detrimental effect on both scientific knowledge 
and on public policy. Therefore, it is important 
to find some correction, even if imperfect, to the 
problem. 

First, modeling publication bias by 
estimating a selection function of what remains a 
fundamentally unknown process seems to us 
unwise. Selection rules are likely to vary 
depending on the nature of the study, the 
availability of theoretical and methodological 
explanations for the unexpected result, the other 
results in the study, a very complex web of 
reputation and financial incentives, and the 
larger context of scientific or popular debate on 
the content of the study. Therefore, to correct 
publication bias using a selection approach one 
either needs to know the complexity of how the 
publication bias originated or oversimplify the 
problem substantially by using a simple 
mechanical rule. In either case, one is likely to 
impose additional assumptions on the data. 

We make a case for using truncation 
instead of selection as a method to correct for 
publication bias on practical grounds: truncation 
does not require any additional assumptions 
beyond the normality of the effect size 
distribution; in particular it does not require us 
to know how the publication selection took 
place. Truncation is easy to detect in practice by 
looking at simple statistics like the difference 
between the median and the mean or plotting a 
histogram. It can be corrected by well-developed 
estimators currently in use by other disciplines 
with the attendant benefits of on-going research 
and development in the area. 

In addition, our simulations demonstrate 
that in the small samples typical of meta-analytic 



CORRECTING PUBLICATION BIAS IN META-ANALYSIS 442 

studies Cohen’s correction  performs adequately. 
In cases of mild truncation (defined as around 
20%), the proposed correction will, on average, 
get point estimates that are two times closer to 
the true parameters, and the correction will 
benefit over 70% of the samples. Therefore, the 
odds favor making the correction. The size of 
the correction is likely to have a substantial 
impact on the interpretation of the results. 

Certainly, this approach is not perfect. 
The truncation approach is presented simply as 
an approximation to the real underlying structure 
of publication bias. Yet, complicating the 
statistics in favor of a more accurate portrayal of 
the underlying structure, given our wide 
ignorance of the phenomena and the increasing 
complexity of the statistics, seems to us not be a 
practical approach to a problem that has 
important policy ramifications. Given the 
seriousness of the potential damage publication 
bias may be doing both to social science and to 
public policy finding some correction procedure 
that requires minimal assumption and is easy to 
use seems to us as a more responsible course of 
action than ignoring the problem until a 
complete solution has been found. 
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The efficacy of antiretroviral therapies for human immunodeficiency virus (HIV) infection can be 
assessed by studying the trajectory of the changing viral load with treatment time, but estimation of viral 
trajectory parameters by using the implicit function form of linear and nonlinear parametric models can 
be problematic. Using longitudinal viral load data from a clinical study of HIV-infected patients in 
Taiwan, we described the viral trajectories by applying a nonparametric mixed-effects model. We were 
then able to compare the efficacies of highly active antiretroviral therapy (HAART) and conventional 
therapy by using Young and Bowman’s (1995) test. 
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Introduction 
 
Surrogate viral markers, such as the amount of 
HIV RNA in the plasma (the amount of HIV 
RNA in the patient’s plasma represents the 
patient’s  viral   load),  currently  play  important 
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roles in clinical research evaluating antiviral 
therapies for the acquired immunodeficiency 
syndrome (AIDS). Before HIV RNA assays 
were developed in mid-1990s, CD4+ cell counts 
served as the primary surrogate marker in AIDS 
clinical trials. Later, the amount of HIV RNA in 
the patient’s plasma (viral load, measured as the 
copy number of the viral RNA) was shown to 
better predict the clinical outcome (Mellors et 
al., 1995; Mellors et al., 1996; Saag et al., 1996), 
and thus replaced CD4+ cell counts as the 
primary surrogate marker used in most AIDS 
clinical trials. 
 It is, therefore, important to characterize 
the trajectory that describes the change in viral 
load that occurs during antiviral treatment, 
because it is this trajectory that is commonly 
used to evaluate the efficacy of the treatment. 
For example, if the viral load reduces, we may 
infer that the treatment has successfully 
suppressed the replication of the virus. The 
differences between the viral loads resulting 
from different antiviral treatments may be used 
to compare the antiviral activities of the 
treatments. Appropriate analysis of the viral load 
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is therefore very important in HIV/AIDS drug 
development. In general, it is believed that the 
replication of the virus is suppressed at the 
beginning of an antiviral treatment, but recovery 
of the virus (called rebound) can occur in later 
stages of treatment, because of drug resistance 
or treatment failure. Some parametric models 
have been developed to describe the progression 
of AIDS phenomenologically; among the best 
known of these models are the exponential 
models (Ho et al., 1995; Wei et al., 1995). More 
recently, biomathematicians and biologists have 
proposed a variety of complicated models that 
include the use of differential equations. The use 
of these models has led to a deeper 
understanding of the pathogenesis of AIDS (e.g., 
Perelson & Nelson, 1999; Wu and Ding, 1999). 
 In recent years, the necessity for 
appropriate models has gained more importance 
with the widespread use of highly active 
antiretroviral therapy (HAART) to treat 
HIV/AIDS (Ghani et al., 2003). Numerous 
studies have shown that HAART is effective in 
extending the time taken from the diagnosis of 
HIV-infection to AIDS or death in HIV-infected 
patients (e.g., Detels et al., 1998; Tassie et al., 
2002) as well as reducing the likelihood of 
perinatal HIV transmission (Cooper et al., 2002). 
However, in many clinical practices, 
combination antiviral therapy has failed to 
completely and durably suppress HIV 
replication (e.g., Deeks et al., 1999). 

To determine the efficacy of treatments 
in suppressing HIV replication in patients, the 
present study focuses on the following 
questions: (i) Given longitudinal viral load data, 
how can one identify a common feature of the 
antiviral activities of each treatment? (ii) How 
can we compare the antiviral efficacies of two 
different treatments? If we can answer question 
(ii), we may be able to demonstrate that the 
better treatment should be evaluated in a large-
scale clinical study.  However, it may be 
difficult to answer these questions by using 
existing parametric or semi-parametric methods. 
To sufficiently consider all of the information 
available from the observations, and to avoid the 
misspecification of parametric modeling, we 
will use a nonparametric mixed-effects model to 
analyze the longitudinal viral load data, and we 
will incorporate the local linear approximation 

technique developed by Wu and Zhang (2002). 
The test statistic proposed by Young and 
Bowman (1995) will then be used to answer 
question (ii). 
         The remainder of this paper is organized as 
follows.  In Section 2, we give details of the 
proposed model, with the method of estimation, 
and use the test statistic of Young and Bowman 
(1995) to determine whether there is a difference 
between the effects of two treatments. In Section 
3, we illustrate the use of the proposed 
methodology with longitudinal viral load data 
from 30 HIV-infected patients treated with 
HAART alone and another 30 patients treated 
with monotherapy or dual therapy. Some 
discussion is given in Section 4. 

 
Methodology 

 
Nonparametric Models and Estimation Methods 

We fit the viral load trajectory data of 
HIV-infected patients receiving a treatment by 
using a nonparametric mixed-effects (NPME) 
model: 
 
           

)()()()}({log)( 10 ttvttVty iiii εη ++== ,     
ni ,...,2,1=                                                   (2.1) 

 
where )(tVi  is the number of copies of HIV-1 
RNA per mL of plasma at treatment time t for 
the ith patient and )(tyi  is the corresponding 
value in log10 scale; )(tη is the population mean 
function, also called the fixed-effects or 
population curve; )(tvi are individual curve 
variations from the population curve )(tη and 
these variations are called random-effects 
curves; and )(tiε are measurement errors. We 
assume that )(tvi and )(tiε are independent in 
which )(tvi  can be considered as realizations of 
a mean 0 process with a covariance function γ(s, 
t) = E( )(svi )(tvi ), and εi(t) can be considered 
as realizations of an uncorrelated mean 0 process 

with variance )(2 tσ . The population curve 
)(tη reflects the overall trend or progress of the 
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treatment process in an HIV-infected population 
and, hence, can provide an important index of 
the population’s response to a drug or treatment 
in a clinical or biomedical study, so in this paper 
we are mainly interested in estimating )(tη . In 
addition, an individual curve 

)()()( tvtts ii +=η can represent an 
individual’s response to a treatment in a study, 
so a good estimate of )(tsi would help the 
investigator to make better decisions about an 
individual’s treatment management and would 
enable us to classify subjects on the basis of 
individual response curves. Similar models have 
been proposed by Shi et al. (1996) and Zeger 
and Diggle (1994) to describe CD4+ cell counts. 

Let gijt , ginj ,...,2,1= , be the design 
time points for the ith individual in treatment 
group g. Then, NPME model (2.1) becomes 

 
)()()()( gijgigijgigijggijgi ttvtty εη ++= ,

ginj ,...,2,1= ; gni ,...,2,1= ; 2,1=g  
               (2.2) 
 

Here, ng is the number of subjects in treatment 
group g, and ngi is the number of measurements 
made from subject i in treatment group g. We 
now wish to estimate )(tgη and 

)(tvgi simultaneously, via a local approximation 
of the NPME model (2.2), by using the local 
linear mixed-effects model approach of Wu and 
Zhang (2002), which combines linear mixed-
effects (LME) models (Laird & Ware, 1982) and 
local polynomial techniques (Fan & Gijbels, 
1996). For this purpose, we assume the existence 
of the second derivatives of )(tgη  and )(tvgi  at 
t, which are then approximated locally by a 
polynomial of order 2 as follows:  
 

)( gijg tη ≈ 
T
gijgihgg Xtttt ≡−′+ ))(()( ηη gβ  

 
and 
 

)( gijgi tv  ≈ 
T
gijgijgigijgi Xtttvtv ≡−′+ ))(()( gib  

where  

T
gijgij ttX ))(,1( −= , gβ = ( )(tgη , )(tgη′ )T, 

and gib = ( )(tvgi , )(tvgi′ )T.  
 
Consequently, the NPME model (2.2) can be 
approximated by the following model: 
 

gijy  = 
T
gijX ( gβ + gib ) + gijε , ginj ,...,2,1= ; 

gni ,...,2,1= ; 2,1=g                                  (2.3) 
 
which is called a LME model.  Note that, for 
simplicity of notation,  
 

)( gijgigij tyy = , )( gijgigij tεε = , giε  = 
T

gingi gi
),...,( 1 εε ∼ N(0, giΣ ), and gib  ∼ N(0, Dg) 

for giΣ = E(
T
gigiεε ) and Dg = E( gib T

gib ). 

          To estimate )(tgη and )(tvgi , which are 

the first element of gβ and gib , respectively, 
under the standard normality assumptions 
for gib , we can minimize the following objective 
function: 
 

T
giggigi

n

i
bXy

g

))(({
1

+−∑
=

β 2/1
λgiK 1−

giΣ
2/1
λgiK

))(( giggigi bXy +− β +
T
gib 1−

gD gib +

|}|log giΣ  
 
where 
 

giy T
gingi gi

yy ),...,( 1= ; giX T
gingi gi

XX ),...,( 1=

; λgiK =diag{ )(),...,( ttKttK
gigingij −− λλ } 

 
is the kernel weight of the residual term for Kλ(.) 
= K(. /λ)/λ, in which K(.) is a kernel function; λ 
is a bandwidth selected by a leave-one-subject-
out cross-validation approach (Wu & Zhang, 

2002); and the term 
T
gib 1−

gD gib  is a penalty 

term to account for the random effects gib , 
taking between-subject variation into account. 
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Thus, for given giΣ  and gD , the resulting 
estimators can be obtained as follows: 
 
         gβ̂ = 

∑
=

−
gn

i
gigi

T
gi XX

1

1)( Ω ∑
=

gn

i
gigi

T
gi yX

1
)( Ω  

 
T
gigi Xb (ˆ =

2/1
λgiK 1−

giΣ
2/1
λgiK giX  + 

1−
gD 1)− T

giX 2/1
λgiK 1−

giΣ
2/1
λgiK )ˆ( ggigi Xy β−            

(2.4) 
 
where  
 

=giΩ
2/1
λgiK (

2/1
λgiK giX gD T

giX 2/1
λgiK +

1)−giΣ
2/1
λgiK . As a result, the estimators of )(tgη  

 
and  
 

)(tvgi are )(ˆ tgη = (1, 0) gβ̂  and )(ˆ tvgi  = (1, 

0) gib̂ . 
 
The unknown variance-covariance parameters in 
Dg and giΣ can be estimated by using maximum 
or restricted maximum likelihood, implemented 
by using the EM algorithm or the Newton-
Raphson method (Davidian & Giltinan, 1995; 
Vonesh & Chinchilli, 1996). 
            Of particular interest are the comparative 
effects of the two treatments. Therefore, we need 
to compare the equality of the two population 
curves )(1 tη and )(2 tη . To do this, we fit the 
model )()( tvt cgic +η  to all data, where )(tcη  is 
the fixed-effects (population) curve for the data 
and )(tvcgi are random-effects curves that 

deviate from )(tcη .  As is done when estimating 
)(tgη and )(tvgi , we can use the local linear 

approximation approach of Wu and Zhang 
(2002) to obtain the estimators, 

)(ˆ tcη and )(ˆ tvcgi , of )(tcη and )(tvcgi . 
Our main concern is how to justify that 

the difference between the two population 

curves is statistically significant. To compare the 
effects of two treatments, we apply the 
following test statistic (Young & Bowman, 
1995): 

 
                        TS 

∑∑
= ∈

−
=

2

1
2

2

ˆ

)}(ˆ)(ˆ{

g Tj

gjcgjg

g

tt

σ

ηη
                    (2.5) 

 
where gT  = {all distinct times git  in  treatment 
g} and  
 

∑ ∑ ∑= = =
−−=

2

1 1

2

1

22 )/(ˆ)1(ˆ
g

n

i g ggigi
g nnn σσ  is 

an estimator of the variance of the measurement 

error with ∑ ∑= =
=

2

1 1g

n

i gi
g nn ; 

2ˆ giσ  are obtained 

by using the first-order difference approach 
proposed by Rice (1984), as follows: 
 

,)(
)1(2

1ˆ
1

1

2
][]1[

2 ∑
−

=
+ −

−
=

gin

j
kgijgi

gi
gi yy

n
σ   

gni ,...,2,1= ; 2,1=g  
 
If the two population curves are equal; that is, 
under the null hypothesis H0: η1(t) = η2(t), the 
distribution of the test statistic TS in (2.5) is then 
approximated by aχ2(b) + c, where χ2(b) is a 
chi-squared distribution with b degrees of 
freedom.  Moreover, a, b, and c are constants 
such that the mean, variance, and skewness of 
aχ2(b) + c are equal to the corresponding 
quantities of the test statistic TS, which can be 
calculated directly. The distribution of aχ2(b) + 
c is then used to calculate the p-value. The 
standard error of the difference between the 
estimates for the two population curves can be 
computed as 
 

sediff(t) = se{ )(ˆ)(ˆ 21 tt ηη − } = )t(se)t(se 2
2

2
1 +  

 
where se1(t) = se{ )(ˆ1 tη } and se2(t) = se{ )(ˆ2 tη } 
are the standard errors of the estimates of the 
population curves, respectively. A reference 
band whose width is centered at the average of 
the two estimated curves ±2 × sediff(t) can be 
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used to see how much difference there is 
between the two treatment groups (Young and 
Bowman, 1995). Note that, theoretically we 
should consider correlation when using the 
approach of Young and Bowman (1995), but we 
do not just because of mathematical simplicity. 
Ignoring the correlation may lose some 
efficiency, however, as you will see, for the real-
life data analysis given in the next section there 
is significant difference between the treatment 
effects of the two groups even using independent 
structure. Considering correlation may increase 
power but seems unnecessary. 
                 

Results 
 
The Analysis of  Longitudinal  Viral  Load  Data 
In this section, we illustrate the practical use of 
the proposed methodology with longitudinal 
viral load  data from  HIV-infected patients. The 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

data set we are using includes the longitudinal 
viral load data obtained from 30 HIV-infected 
patients who received monotherapy or dual 
therapy and 30 HIV-infected patients who 
received HAART in several hospitals in Taipei, 
Taiwan, between 1997 and 2002. These data are 
subsets of data from a much larger cohort data of 
1,195 HIV-infected patients in Taipei. Among 
the 1,195 HIV-infected patients, most of them 
received diverse treatments, so, to ensure the 
validity of the comparison, we chose to use data 
from the patients treated with HAART who had 
never been given any other treatment regimen 
and non-HAART patients who had never been 
treated with HAART. Treatment durations 
varied, because patients began receiving 
treatment at different times during the study 
period. Figure 1 presents scatter plots of viral 
load (in log10 scale) against treatment durations 
for the HIV-1-positive patients.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 1: Scatter plot of viral load (log10 of copy number of HIV RNA in plasma) versus 
duration of treatment with HAART (left) or non-HAART (right). 
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After excluding missing data, we have 
208 complete viral load observations in the 
HAART group, of which 108 have a value less 
than 400; and we have 164 complete viral load 
observations in the non-HAART group, of 
which 69 have a value less than 400. If we use 
the criterion that a treatment is considered 
successful in its antiviral effect when the viral 
load is below 400, the success rates in the 
HAART and non-HAART groups are 51.9% and 
42.1%, respectively. 

For data analysis, we used the quartic 
kernel, K(u) = (15/16)(1 – u2)2I(|u| ≤1). The 
estimates of the two population curves are 
depicted in Figure 2. From Figure 2, we can see 
that the estimates of the two population curves 
have different patterns although both decrease at 
the beginning of treatment. The estimated curve 
for the HAART group shows that the viral load 
is maintained at a constant level until the end of 
the treatment, whereas that for the non-HAART 
group shows that the viral load decreases sharply 
during  the  first  480 days,  reaching its  lowest 
point  on  day 480. However, after 480 days, the 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

viral load increases, remains constant for a short 
time, and increases again at the end of the 
treatment. 

A Chi-squared test for the success rates 
of the two treatments gives a p-value of 0.07. It 
is hard to say that there is a significant 
difference between the effects of the two 
treatments, although the success rate in the 
HAART group is greater than that in the non-
HAART group. Therefore, to look more closely 
at the difference between the effects of the two 
treatments, we use the principle described in 
Section 2. The p-value obtained by using this 
method is less than 10-4, which indicates that the 
two population curves for each treatment are 
substantially different. To confirm this 
conclusion, we obtained a range of reference 
values and plotted them with our viral load 
trajectory estimates in Figure 2. The two 
estimated population curves deviate from the 
reference band, and the efficacy of the HAART 
is seen to be almost significantly superior to that 
of the conventional therapy that does not include 
HAART.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

                                            Figure 2. Estimate of two population curves. 
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Discussion 
 

To determine the efficacy of antiviral treatments 
by using longitudinal viral load data, we applied 
nonparametric mixed-effects models to estimate 
the patterns of the viral trajectories in the two 
sampled populations. This approach avoids 
misspecification and, thus, the occurrence of an 
artificial bias. By combining the between-
subject and within-subject information, the 
models we have proposed can parsimoniously 
capture the features of viral response to an 
antiviral therapy, such that the estimated curve is 
able to show common features of the antiviral 
activity. 

In implementing the estimation of 
population curves, we used local linear 
regression and the     bandwidth selection 
method proposed by Wu and Zhang (2002) to 
select the bandwidth.    Besides the local linear 
methods applied in this article, the method of 
regression splines may    also be implemented 
for parameter estimation. The approach of 
regression splines transforms    the models to 
standard linear mixed-effects models and is easy 
to implement by using existing    software such 
as SAS and SPLUS. 

The result of our illustrative example 
indicates that HAART has effects that are 
significantly    different from those of treatment 
that did not include HAART. At the beginning 
of treatment,    non-HAART has strong antiviral 
activity, which is lacking with HAART.  
However, during    the course of the treatment, 
the superiority of non-HAART lessens, and this 
therapy ultimately    fails, whereas HAART 
maintains a constant effect throughout treatment. 
This maintenance of    the viral load at a 
constant level confirms previous findings and is 
preferable to the fluctuation    of load resulting 
from non-HAART. This result confirms that 
HAART is worth continuing,    despite its 
inability to suppress viral replication completely 
(Deeks & Martin 2001). 

Finally, the reference band covers a 
wider range of viral loads at the end of 
treatment, despite    the increasing difference 
between the two estimated curves. This is not 
surprising because of    the smaller sample size 
resulting from a shorter treatment duration for 
some patients at that time. 
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Alphabet Letter Recognition And Emergent Literacy Abilities 
Of Rising Kindergarten Children Living In Low-Income Families 
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Alphabet letter recognition item responses from 1,299 rising kindergarten children from low-income families 
were used to determine the dimensionality of letter recognition ability. The rising kindergarteners were 
enrolled in preschool classrooms implementing a research-based early literary curriculum. Item responses 
from the TERA-3 subtests were also analyzed. Results indicated alphabet letter recognition was unitary. The 
ability of boys and younger children was less than girls and older children. Child-level letter recognition was 
highly associated with TERA-3 measures of letter knowledge and conventions of print. Classroom-level mean 
letter recognition ability accounted for most of variance in classroom mean TERA-3 scores. 
  
Key words: Early childhood literacy, alphabet letter knowledge, latent variable modeling, two-level modeling, 
categorical factor analysis. 
 
 

Introduction 
 
The No Child Left Behind Act has focused 
attention on reading instruction in kindergarten 
through third-grade. Programs such as the 
Preschool Curriculum Evaluation Research 
(PCER) and Early Reading First (ERF) grants 
expand that focus to preschool curricula that 
support cognitive development including emergent 
literacy. Literacy researchers are connecting 
theories about the acquisition of reading and 
emergent literacy skills and experiences. 

The emergent literacy model embodies 
more than reading readiness and is used to 
describe the acquisition of literacy on a 
developmental continuum. The model provides a 
picture of the acquisition of literacy that occurs 
from early childhood rather than beginning at 
kindergarten and further suggests literacy skills 
develop concurrently and interdependently. 

Whitehurst and Lonigan (1998) listed 
vocabulary, conventions of print, emergent 
writing, knowledge of graphemes, grapheme-
phoneme     correspondence,    and     phonological 
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awareness as the skill and knowledge base of 
emergent literacy. They further suggested 
emergent literacy consists of outside-in processes 
that include the context in which reading and 
writing occurs and inside-out processes that 
include the knowledge and skills associated with 
the alphabetic principle, emergent writing, and 
cognitive processes. Specific examples of outside-
in processes include oral language, conceptual 
skills, and concepts of print. The inside-out 
processes are letter knowledge, phonological 
processing skills, and syntax awareness. A study 
by Whitehurst et al. (1999) of 4-year-old Head 
Start children indicated inside-out processes were 
much stronger influences on first- and second-
grade reading outcomes than outside-in processes. 
 Historically, reading has been defined in 
two ways; code breaking and meaning making 
(Riley, 1996) or as decoding and comprehension 
(Gough, Juel, & Griffin, 1992; Mason, 1980; 
Perfetti, 1984). Two stages of reading acquisition 
relative to the code breaking definition were 
originally proposed and those models were often 
refined to include three stages (Frith, 1985; Gough 
& Hillinger, 1980; Gough, Juel, & Griffith, 1992; 
Mason, 1980; Sulzby, 1992). 
 The first stage involves the association of 
a spoken word with some visual feature of the 
corresponding printed word. The second stage 
involves cryptanalysis of printed words or 
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phonological processing involving the 
correspondence of graphemes and phonemes, and 
the third stage involves orthographic processing 
involving the correspondence of spelling patterns 
and printed words. Baker, Torgeson, and Wagner 
(1992) studied the role of phonological and 
orthographic processing and determined that 
orthographic skills make an independent 
contribution to reading achievement. Goswami 
(1993) saw these stages as cyclical where 
orthographic skills enhance phonological skills, 
which in turn enhance orthographic skills. 

Mason (1980) suggested alphabet 
knowledge initiates the first level of reading 
acquisition by facilitating the breaking down of 
words into letters. Later, in a critique of five 
studies of children’s alphabet knowledge, Ehri 
(1983) went further and suggested children’s 
knowledge of the alphabet is the main skill that 
enables them to move from the first stage to the 
alphabetic or phonological stage of reading 
acquisition and that it is difficult to separate 
children’s letter-sound knowledge from other 
emergent literacy skills. Chall (1983) summarized 
17 studies of the relationship between knowledge 
of the alphabet and future reading achievement. 
Although causation was not claimed, knowledge 
of the letters of the alphabet was seen as an 
important predictor of reading achievement. 

Sulzby (1983) suggested children’s letter-
name ability is integrated into a more complex set 
of early literacy skills and that children attempt to 
use some mechanism as they learn to associate 
letter names with their visual forms. Children learn 
these skills from exposure to books, songs, blocks, 
and learning to write their names. Sulzby (1992) 
further suggested alphabet letter knowledge 
precedes understanding the concept of word and 
comprehension; however, these stages reinforce 
each other. Bialystok (1991) suggested that 
children who can identify letters in non-alphabetic 
order and understand that letters symbolize sounds 
are on their way to code breaking. Riley (1996) 
proposed the link between alphabet letter 
knowledge and concepts of print is the key to why 
alphabet letter knowledge is such a powerful 
predictor of reading achievement. 

Moreover, recent studies of emergent 
literacy have focused on the relationships between 
phonological awareness and later reading. But 
children’s letter knowledge is associated in some 

manner with their phonological sensitivity 
(Bowley, 1994; Stahl & Murray, 1994). Stahl and 
Murray suggested children’s letter knowledge 
enables them to manipulate initial sounds – a skill 
that leads to word recognition. 

Researchers have also found measures of 
phonological awareness independently predicted 
measures of word recognition and decoding 
(McGuiness, McGuiness, & Donohue, 1995), and 
that among preschool children from low-income 
families, measures of phonological sensitivity 
were associated with measures of letter knowledge 
(Lonigan, Burgess, Anthony, & Barker, 1998). 
Whitehurst et al. (1999) found that reading ability 
in early elementary school was strongly related to 
measures of preschool children’s skills that 
included items requiring them to name a pictured 
letter and to identify initial letters and sounds of 
pictured and named objects – tasks that measure 
grapheme-phoneme relationships. Lonigan, 
Burgess, and Anthony (2000), in a longitudinal 
study, found letter knowledge was independent of 
phonological sensitivity, environmental print, and 
decoding, and that 54% of the variation in 
kindergarten and first grade children’s reading 
skills was accounted for by preschool 
phonological sensitivity and letter knowledge. 

As Adams (1990) suggested, a child’s 
level of phonological processing is irrelevant if the 
child cannot identify the letters of the alphabet. If 
a beginning reader cannot identify the letters then 
the reader cannot associate sounds with letters 
(Bond & Dykstra, 1967; Chall, 1967; Mason, 
1980). Moreover, orthographic competency 
depends on the ability to visually identify and 
discriminate the individual letters of the alphabet. 
How children acquire this ability falls in the 
domain of perceptual learning theory. 

There are two prevalent theories (Adams, 
1990; Gibson & Levin, 1975); the template and 
the feature theories. In the template theory, the 
brain stores templates of the most typical 
representation of the letters and stimuli are 
compared to the stored templates. In the feature 
theory, the letters of the alphabet are considered a 
group of symbols that share common distinct 
features. The brain stores the common features of 
different letters and matches features of stimuli to 
the stored list. Both theories involve search and 
comparison. 



STEPHANIE WEHRY 453

Studies of children’s alphabet letter 
knowledge span more than four decades, involve 
preschool to third-grade children from low- and 
middle-income families, and use either all or a 
sample of the letters. Sulzby (1983) suggested 
knowledge of the alphabet measured in 
kindergarten, not later, is the predictor of reading 
achievement. However, Early Childhood 
Longitudinal Study-Kindergarten researchers 
reported 66% of children entering kindergarten for 
the first time recognized most of the letters of the 
alphabet (Zill & West, 2001). 

In recent studies of children’s alphabet 
knowledge, Whitehurst et al. (1999) studied Head 
Start children and used a sample of letters 
embedded as items in another measure; Lonigan et 
al. (1998) studied preschool children from low-
income families and used all uppercase letters; 
Lonigan et al. (2000) studied preschool children 
from middle- to upper-income families and used 
all uppercase letters; and Roberts (2003) studied 
preschool children whose primary language was 
not English and used a sample of letters. 

Studies of children from low-income 
families are especially important because one third 
of American children experience reading 
difficulties in school (Adams, 1990), and children 
from low-income families have comparatively 
lower levels of emergent literacy (Whitehurst & 
Lonigan, 1998). Because individual differences in 
emergent literacy at entry into kindergarten are 
stable or increase over school years (Baydar, 
Brooks-Gunn, & Furstenberg, 1993; Juel, 1988; 
Stevenson & Newman, 1986), the impact of lower 
levels of emergent literacy follows preschool 
children through school. For these reasons, this 
study analyzed responses from rising kindergarten 
children from low-income families using all 
upper- and lowercase letters of the alphabet and 
other items measuring emergent literacy abilities. 

Moreover, the children studied were 
nested in classrooms nested in locations. Head 
Start researchers (Westat, 1998) found significant 
variation in program quality across Head Start 
programs, centers, and classrooms with the largest 
variation occurring at the classroom level. 
Whitehurst et al. (1999) also found the 
performance of Head Start children differed across 
centers. Violating the assumption of independent 
observations across experimental units is a major 
concern with the use of nested data. In most cases, 

correlations between observations nested in groups 
are positive resulting in inflated Type I error rates 
in significance testing. 

Further research is needed to estimate the 
magnitudes of intraclass correlations in preschool 
achievement data. In this study, classrooms were 
studied because of the large number of single-
classroom locations in the data and because Head 
Start researchers found most of the variance in 
program quality occurred at the classroom-level. A 
two-level model was used to estimate the size of 
the intraclass correlations; however, a two-level 
study confounds the effects classrooms and sites 
for sites with more than one classroom. 

 
Purposes Of This Study 

 
The primary purpose of this study was to analyze 
the alphabet letter recognition ability of rising 
kindergarten children from low-income families 
and determine if the ability was unitary or if it 
divided along the perceptual learning or 
instructional features (Adams, 1990; Gibson & 
Levin, 1975). A second purpose of this study was 
to investigate the relationship between recognition 
of the letters of the alphabet and other measures of 
emergent literacy using methodology that 
developed an interval measurement scale and 
acknowledged the nested nature of the data. The 
three research questions about responses from 
rising kindergarten children from low-income 
families are 
 

1. Is the ability to recognize upper- and 
lowercase letters of the alphabet unitary or 
multidimensional? 

2. Does a latent trait model of children’s 
responses on the three Test of Early 
Reading Ability (TERA-3) subtests 
confirm the test publisher’s three-factor 
structure? 

3. Using children’s two-parameter normal 
ogive scores on alphabet letter recognition 
and TERA-3 subtests in a two-level model: 

a. What is the relationship between 
children’s alphabet letter knowledge and 
the TERA-3 subtest abilities? 

b. Do these relationships differ by the age 
and/or gender of the children? 
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c. What portion of the individual differences 
in the children’s scores is accounted for 
the by the classrooms in which they learn? 

d. Are differences in the classroom means of 
TERA-3 subtest scores predicted by 
classroom mean alphabet letter 
recognition scores? 

 
Methodology 

 
Participants 

Data were collected from 1,299 4-year-old 
children during a one-month period from April 15, 
2002 to May 17, 2002. All children were eligible 
to attend public school kindergarten the following 
year. Birth dates were available for 1,025 of the 
children and their ages as of September 1 of the 
school year ranged from 48 to 65 months with the 
average and median ages of 54.7 and 55 months, 
respectively. Gender was reported for 1001 
children: 530 (53%) were boys. The average 
(median) ages for boys and girls were 54.7 (55) 
and 54.6 (55) months, respectively. Ethnicity data 
were not collected; however, nearly all of the 
children were African American. 
 
Classroom Context 

The children were from low-income 
families; therefore, were considered at risk for 
academic failure. They were attending Head Start, 
faith-based, subsidized, and early intervention 
preschool programs located in six counties in 
southeastern United States. Most of the children 
attended classrooms in urban settings; however, a 
few classrooms were located in small towns. 
Children with complete scores and gender 
information were enrolled in 121 classrooms at 76 
locations. 

Fifty-five of the locations were single-
classroom sites, 16 of the locations were two- or 
three-classroom sites, and the remaining five 
locations had four or more classrooms at each site. 
All children in the study experienced at least one 
semester of an intensive early literacy curriculum. 
Classroom teachers explicitly taught the inside-out 
early literacy skills in classroom contexts that 
provided outside-in early literacy experiences 
(Whitehurst & Lonigan, 1998). Agencies funding 
participation in the literacy curriculum provided 
materials, teaching strategies, and weekly 
coaching for preschool teachers as they explicitly 

taught children alphabet letter knowledge, 
phonemic awareness, and print concepts. Teachers 
also used dialogic reading (Valdez-Menchara, & 
Whitehurst, 1992; Whitehurst, Arnold, Epstein, 
Angell, Smith, & Fischel, 1994) and provided 
opportunities for emergent writing, reading, and 
comprehension. All instruction occurred in print-
rich environments with labeled furniture and word 
walls. The evaluation of the literacy curriculum 
used measures of alphabet letter recognition and 
other emergent literacy abilities in a 
pretest/posttest design. Data used in this study 
were the posttest data of that evaluation. 
 
Measurement 
 Data were collected on the children’s 
ability to recognize the 52 upper- and lowercase 
letters of the alphabet and from Form A of the Test 
of Early Reading Ability (TERA-3) (Reid, Hresko, 
& Hammill, 2001a). Trained examiners collected 
responses from children in school settings in age 
appropriate one-on-one sessions. The children’s 
responses were recorded on scannable forms. 
 
Alphabet Letter Recognition 

Uppercase letter flashcards, arranged in a 
fixed non-alphabetic order, were presented one at 
a time to each child. The child was asked to name 
the letter. Following presentation of the 26 
uppercase letters, lowercase letter flashcards, also 
arranged in a fixed non-alphabetic order, were 
presented one at a time. 
 
TERA-3 

The TERA-3 is composed of three subtests 
measuring unique but related early literacy skills. 
Items within each subtest are arranged by 
difficulty and each subtest has a stopping 
mechanism. All children began testing with the 
first item in each subtest. According to Reid, 
Hresko, and Hammill (2001b), the Alphabet 
subtest measures graphophomenic knowledge, the 
Conventions subtest measures knowledge of 
conventions of English print, and the Meaning 
subtest measures ability to comprehend meaning 
of print. Published validity and reliability 
information indicates Cronbach Alpha coefficients 
of internal consistency for 4-year old children (5-
year-old children) for the Alphabet, Conventions, 
and Meaning subtests are .94 (.93), .88 (.86), and 
.94 (.84), respectively. 
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Data Analysis 
Data were analyzed using Mplus 2.13 

(Muthén & Muthén, 2003). The flexibility of 
Mplus permits latent variable modeling with 
categorical indicators. The use of raw scores 
formed by summing correct item responses 
assumes all items are equally important in 
measuring the underlying construct and that 
intervals between scores are uniform across the 
ability continuum. In contrast, measurement 
modeling within the latent variable context permits 
a distinction between observed item scores and the 
underlying construct, and the continuous latent 
variables are free from measurement error. 

Categorical confirmatory factor analyses 
(CFAs) were conducted using the item responses 
from the alphabet letter recognition and the three 
TERA-3 subtests. The analyses produced two-
parameter normal ogive item response theory 
(IRT) models. The CFAs resulted in error free 
continuous latent variables; however, Mplus does 
not have the capability to use these results directly 
in multilevel models. Factor scores, which are 
estimated as in IRT modeling, were used as 
continuous variables in the two-level model. This 
procedure reintroduced some measurement error. 
 

Results 
Alphabet Letter Recognition 

 
Distribution of Items and Summed Scores 

Item responses were available from 1,299 
rising kindergarten children. Correct responses 
were coded one and incorrect responses were 
coded zero. Table 1 shows alphabet letter item 
means and standard deviations. Additionally, three 
scores were formed by summing responses; one 
for uppercase letters, one for lowercase letters, and 
one for total of the upper- and lowercase scores. 
The means (standard deviations) for each of these 
summed scores were 16.41 (9.11), 13.69 (8.89), 
and 30.08 (17.74), respectively. 

Adams (1990) suggested alphabet letter 
recognition instruction begins with the uppercase 
letters for preschool children, and the mean scores 
indicated rising kindergarten children recognized 
more  uppercase than  lowercase  letters and  more  

 
 
 

than 22% of the children recognized all uppercase 
letters. Calfee, Cullenbine, DePorcel, and Royston 
(cited in Mason, 1980) found the distribution of 
children’s uppercase letter recognition ability was 
bimodal with most children either recognizing less 
than eight or more than 20 letters. Figure 1 shows 
the distribution of the children’s upper- and 
lowercase letter recognition summed scores. Data 
pile up on both extremes of the distribution 
(ceiling and floor effects) as previously 
determined. The pattern at both extremes is more 
obvious in the distribution of lowercase letter 
responses. 
 
Dimensionality of Alphabet Letter Recognition: 
Classical Test Theory 

Traditional methods of assessing test 
dimensionality use factor analytic methods and 
coefficients of internal consistency as indicators. 
Cronbach’s Alpha, a measure of internal 
consistency, for the 52 items was .98 indicating 
items consistently measured a unitary construct. 
Factor analysis of the alphabet letter recognition 
data produced four eigenvalues greater than 1.00; 
26.49, 1.97, 1.11, and 1.06 explaining 50.94, 3.79, 
2.14, and 2.04 percent of the variance in the 
observations, respectively. These eigenvalues 
suggested the presence of one central factor with 
possibly up to three additional minor or difficulty 
factors. 
 
Dimensionality of Alphabet Letter Recognition: 
Item Response Theory 

Latent variable modeling permits a 
measurement model of data that is error free, 
weighs the relative importance of each item, and 
places measurement on an interval scale. Several 
theoretical measurement models of alphabet letter 
recognition ability were evaluated using 
categorical CFA.  

Alphabet letter recognition often begins with 
the uppercase letters as they are more visually 
distinct than the lowercase letters (Tinker, 1931). 
Therefore, Model I was a two-factor model with 
one factor representing the uppercase letters and 
one representing the lowercase letters. Model I 
was based on instructional strategy. 
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Perceptual learning theory suggests other 

models. One theory suggests children holistically 
perceive the letters and form templates in their 
memories for each letter learned. Another theory 
suggests children recognize letters by a set of 
distinctive visual features stored in their 
memories. The feature theory is more mentally 
efficient than the template theory. 

Gibson and Levin (1975) reported that both 
children and adults sorted the uppercase letters of 
the   alphabet  by  whether  or  not  they  have only  

 
 
 

 

 
 
straight-line features or have curved features in 
possible combination with straight-line segments. 
The secondary sort was by whether or not the 
letters with curved features have places of 
intersections such as B and P, or look round such 
as O and Q. The tertiary sort was by whether 
letters with straight-line features have diagonal 
segments such as M and Z, or not such as E and F. 

 
 
 

 

Table 1. Summary Statistics and Model VII Factor Loadings for Items Measuring Recognition of the 
Upper- and Lowercase Letters of the Alphabet 
 

 Uppercase letters Lowercase letters 
Variable Mean Standard 

deviation 
Factor 
loading 

Mean Standard 
deviation 

Factor 
loading 

Aa .75 .43 .90 .51 .50 .86 
Bb .81 .39 .82 .43 .50 .84 
Cc .70 .46 .90 .68 .47 .91 
Dd .65 .48 .89 .32 .47 .77 
Ee .65 .48 .90 .58 .49 .90 
Ff .57 .50 .93 .42 .49 .91 
Gg .56 .50 .91 .39 .49 .89 
Hh .61 .50 .88 .43 .50 .86 
Ii .59 .49 .89 .60 .49 .87 
Jj .59 .49 .89 .56 .50 .89 

Kk .66 .47 .84 .64 .48 .84 
Ll .59 .49 .90 .31 .46 .79 

Mm .57 .50 .84 .55 .50 .86 
Nn .57 .50 .88 .39 .49 .82 
Oo .85 .36 .87 .82 .38 .86 
Pp .65 .48 .91 .54 .50 .86 
Qq .60 .49 .86 .36 .48 .81 
Ss .65 .47 .88 .63 .48 .89 
Tt .64 .48 .88 .56 .50 .89 
Uu .52 .50 .89 .43 .50 .85 
Vv .45 .50 .87 .46 .50 .86 
Ww .63 .48 .76 .64 .48 .75 
Xx .71 .45 .75 .72 .45 .76 
Yy .59 .49 .85 .55 .50 .86 
Zz .65 .48 .88 .63 .48 .86 
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Several models involving the distinct 

features of the letters were investigated. Model II 
was a two-factor model with one factor 
representing letters whose visual representation is 
composed of diagonal line segments with no 
curved features (AKMNVWXYZkvwxyz) and a 
factor representing the remaining letters 
(BCDEFGHIJLOPQRSTUabcdefghijlmnopqrstu). 
Model III was a two-factor model with one factor 
representing letters whose visual representation is 
composed only of line segments 
(AEFHIKLMNTVWXYZikltvwxyz) and one 
representing the remaining letters 
(BCDGJOPQRSUabcdefghjmnopqrsu). Model IV 
was a two-factor model with one factor 
representing letters whose visual representation 
exhibits line symmetry 
(ABCDEHIMOTUVWXYZclotvwxz) and one 
representing the remaining letters 
(FGJKLNPQRSabdefghijkmnpqrsuy). 

 

 
 

Roberts (2003) used explicit instruction to 
teach alphabet letter recognition to preschool 
children and suggested there are 44 distinct 
abstract symbols children must learn. She 
reasoned the upper- and lowercase forms for C, O, 
S, U, V, W, X, and Z are the same. Model V was a 
two-factor model with one factor representing 
these eight pairs (COSUVWXZcosuvwxz) and 
one factor representing the remaining letters 
(ABDEFGHIJKLMNPQRTYabdefghijklmnpqrty).  

Rotated exploratory factor analysis of the 
data suggested four highly correlated factors with 
one primary factor. Therefore, a unitary model, 
Model VI, was fit. Additionally there are at least 
seven letters whose upper- and lowercase visual 
forms are identical (C, O, S, V, W, X, and Z) and 
four more whose upper- and lowercase visual 
forms are nearly identical (K, P, U, and Y); 
therefore, another unitary model with errors for 
these eleven pairs of letters freed to correlate was 
also fit, Model VII. 

Figure 1.The distribution of simple summed upper- and lowercase alphabet letter recognition scores. 
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Categorical confirmatory factor analysis 
of the seven models was conducted using Mplus. 
A matrix of 1,299 observations, each observation 
having 52 binary items, was analyzed. Weighted 
least squares estimation (WLSM) was used to 
estimate model parameters. Five fit statistics are 
available for WLSM estimation: the comparative 
fit index (CFI), the Tucker-Lewis index (TLI), 
root mean square error approximation (RMSEA), 
weighted room mean square residual (WRMR), 
and standardized root mean square residual 
(SRMR). Guidelines for good fit of categorical 
models suggested CFI >.95, TLI >.95, RMSEA < 
.06, WRMR <. 90, and SRMR <. 08 (Hu & 
Bentler, 1999; Yu & Muthén, 2002). Table 2 
shows fit statistics for each of the seven models. 

All seven models had CFI, TLI, and SRMR 
fit statistics within limits established for good fit. 
None of the seven models had WRMR within 
limits established by Yu and Muthén (2002). The 
RMSEA fit statistic of Model VII was the only 
one within limits and Model VII had the lowest 
WRMR. Therefore Model VII, a unitary model, 
exhibited the best overall fit and is supported by 
classical test theory and parsimony. Table 1 shows 
factor loadings for Model VII, and factor scores 
from Model VII were used in the two-level model. 

 
 

 
 

 
 
 
 

TERA-3 
 
TERA-3 is composed of three subtests measuring 
graphophemic knowledge (Alphabet), knowledge 
of conventions of English print (Conventions), and 
the ability to comprehend meaning of print 
(Meaning), and is designed for use with children 
whose ages are between three years six months 
and eight years six months. There are 29 Alphabet 
items, 21 Conventions items, and 30 Meaning 
items. Any subtest item whose mean was less than 
.05 was not used in this study. TERA-3 was 
administered to 1009 children in one-on-one 
settings by trained examiners. Correct responses 
were coded one and incorrect responses were 
coded zero. Table 3 shows TERA-3 item means 
and standard deviations. 
 
 
Subtest Alphabet 

Twenty-two Alphabet items were included 
in the study, and these items required children to 
identify pictured upper- and lowercase named 
letters, to name identified pictured upper- and 
lowercase letters, to identify initial letters and 
sounds of text and named words, and to choose the 
correct text corresponding to a pictured object. 
Cronbach Alpha coefficient for the Alphabet 
subtest items used in the study was .93. 

 
 

 
 
 
 

Table 2. Fit Indices and Factor Correlations for Seven Measurement Models of Alphabet Letter 
Recognition. 
 

Model CFI TLI RMSEA WRMR SRMR Correlations 
I .99* .99* .09 2.52 .05* .77 
II .99* .99* .09 2.39 .05* .71 
III .99* .99* .09 2.48 .05* .71 
IV .99* .99* .09 2.51 .05* .80 
V .99* .99* .09 2.34 .05* .78 
VI .99* .99* .09 2.56 .05* - 
VII 1.00* 1.00* .04* 1.31 .03* .14-.37 

 
Note. * Denotes the value indicates model fit.  
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Subtest Conventions 
Twelve Conventions items were included 

in the study, and these items required children to 
identify pictured books that were oriented 
correctly for reading, to distinguish pictured text 
from other pictured line markings, to match 
pictured uppercase with corresponding lowercase 
letters, to distinguish between text, title, author’s 
name, and illustrations when presented pictured 
first pages of a story, to identify the first and last 
words of a pictured paragraph, and to follow (by 
pointing) pictured text as it was read indicating 
knowledge that text is read from left to right, top 
to bottom, and when to turn a pictured page. 
Cronbach Alpha coefficient for the Conventions 
subtest items used in the study was .80. 
 
Subtest Meaning 

Ten Meaning items were included in the 
study, and these items required children to identify 
pictured product labels corresponding to named 
product categories, to identify pictured upper- and 
lowercase text placed adjacent to named pictured 
objects, and to identify pictured text corresponding 
to named pictured objects when presented 
amongseveral sets of pictured objects with 
corresponding text. Cronbach Alpha coefficient 
for the Meaning subtest items used in the study 
was .74. 

 
Confirmatory factor analysis of these 45 

items was performed using Mplus. Items were  
 

 

 
 

 

restricted to measuring TERA-3 subtests suggested  
by test developers. However, one Conventions 
item, C3, involved alphabet letter knowledge; 
therefore, it was freed to load on both the Alphabet 
and Conventions latent variables. Figure 2 
provides a visual representation of the model, and, 
as can be seen, C3 was more strongly associated 
with the Alphabet latent variable. Model 
parameters were estimated using WLSM, and fit 
indices were CFI = .99, TLI = .99, RMSEA = .05, 
and WRMR = 1.50. Three of the indices, CFI, TFI, 
and RMSEA, indicated model fit (Yu & Muthén, 
2002). The three latent factors were correlated 
with the strongest correlation occurring between 
Alphabet and Conventions. Table 3 shows factor 
loadings for the TERA-3 model, and factor scores 
from the model were used in the two-level model. 

 
Two-Level Path Analysis of the Alphabet Letter 
Recognition and TERA-3: Emergent Literacy 
Abilities of the Rising Kindergartners 

Alphabet letter recognition Model VII 
factor scores (Letters) and the TERA-3 subtest 
factor scores (Alphabet, Conventions, and 
Meaning) were used in a two-level path analysis. 
The within-level used the child-level data and the 
between-level used the classroom-level data. Table 
4 shows summary statistics for the 986 child-level 
and the 121 classroom-level factor scores of the 
four variables. 

 The analysis in multilevel terms involved 
the following variables and notations: 

 
 

 
 
 

 is the  child of the 986 children studied,
 is the  classroom of the 121 classrooms studied,

 is the TERA-3 subtest factor score of the  child in the  classroom,

 is the 

th
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th th
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alphabet letter recognition Model VII factor score

           of the  child in the  classroom,
 is the gender girls coded 0 and boys coded 1  of the  child
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This set of equations was replicated for 
each of the three TERA-3 subtest factor scores. 
Figure 3 shows the child-level and classroom-level 
path models and results. Parameters for the 
multilevel path analysis were estimated using 
Muthén’s maximum likelihood estimator for 
balanced data (MUMLM). The fit indices for the 
model were CFI = 1.00, TFI = .99, RMSEA = .02, 
and SRMR <. 01 for the within model (.04 for the 
classroom-level model): all indicated good fit. The 
intraclass correlations were .19, .21, .15, and .17 
for Letters, Alphabet, Conventions, and Meaning, 
respectively. 

 
 
 

The analyses indicated that alphabet letter 
knowledge predicted all three TERA-3 subtest 
abilities. Not surprisingly, the strongest influence 
was on the Alphabet subtest scores. Both age and 
gender influenced the Alphabet subtest scores 
directly and indirectly through the Letters variable. 
Boys and younger children had lower Alphabet 
subtest ability than girls and older children. The 
child-level model accounted for almost 70% of the 
child-level variance in the Alphabet subtest scores.  

Alphabet letter recognition ability also 
influenced the Conventions subtest scores with the 
strength of association about two thirds as large as 
in the Alphabet subtest scores. Following the same 
pattern found with the Alphabet subtest scores, age  

All three TERA-3 subtests were simultaneously analyzed. The analysis in multilevel terms 
involved the following child-level and classroom-level equations: 
 

( ) ( ) ( )

( )

0 1 2 3

0 00 01 .

Child-Level
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ij j j ij j ij j ij ij

j j j
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 is the mean TERA-3 subtest factor score of the  classroom,

 is the expected change in children's TERA-3 subtest factor scores associated

       with a change in their alphabet letter recogniti
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on factor scores,
 is the expected difference in boys' TERA-3 subtest factor scores,
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   is the unaccounted for individual differences in children's TERA-3 subtest ability,

  is the unaccounted for classroom differences in TERA-3 factor score classroom
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 grand mean of the TERA-3 subtest factors scores, and
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      with a change in the classroom mean alphabet letter recog
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and gender influenced the Conventions subtest 
scores both directly and indirectly through the 
Letters variable. Boys and younger children had 
lower Conventions subtest ability than girls and 
older children. The child-level model accounted 
for almost 36% of the child-level variance in the 
Conventions subtest scores.  

Alphabet letter recognition knowledge 
also influenced the Meaning subtest scores with 
the strength of the influence more than one fourth 
as large as in the Alphabet subtest scores. Age 
influenced the Meaning subtest scores both 
directly and indirectly through the Letters variable; 
older children had higher Meaning subtest ability 
than younger children. Gender influenced 
Meaning subtest scores only indirectly through the  

 
 

 
 
letters variable. The child-level model accounted 
for almost 19% of the child-level variance in the 
Meaning subtest scores. 

The classroom means of the Letters 
variable predicted the classroom means of the 
Alphabet, Conventions, and Meaning subtest 
scores. Residuals of classroom means of all three 
subtest scores were significantly different from 
zero indicating the need for the multilevel model. 
The proportion of variance in TERA-3 subtest 
classroom means accounted for by the classroom 
mean ability to recognize the letters of the 
alphabet was 88, 60, and 27 percent, respectively 
for the Alphabet, Conventions, and Meaning 
subtests. 
 

Table 3. Summary Statistics and CFA Factor Loadings for TERA-3 Alphabet, Conventions, and 
Meaning Subtests 
 

Variable Mean Standard 
deviation 

Factor 
loading 

Variable Mean Standard 
deviation 

Factor 
loading 

A1 .90 .30 .82 M1 .94 .24 .29 
A2 .78 .41 .72 M2 .95 .22 .52 
A3 .71 .46 .60 M3 .92 .28 .61 
A4 .75 .43 .86 M4 .78 .41 .94 
A5 .55 .50 .61 M5 .79 .41 .93 
A6 .57 .50 .78 M6 .81 .39 .74 
A7 .43 .50 .70 M7 .89 .31 .87 
A8 .43 .50 .93 M8 .25 .43 .66 
A9 .36 .48 .87 M9 .46 .50 .77 

A10 .36 .48 .90 M10 .09 .29 .53 
A11 .40 .49 .94 C1 .62 .49 .66 
A12 .38 .49 .89 C2 .52 .50 .43 
A13 .33 .47 .91 C3 .72 .45 .20 
A14 .21 .41 .78 C4 .68 .47 .75 
A15 .24 .43 .88 C5 .22 .41 .69 
A16 .28 .45 .90 C6 .45 .50 .58 
A17 .25 .43 .94 C7 .16 .36 .85 
A18 .09 .29 .79 C8 .29 .46 .80 
A19 .16 .37 .87 C9 .12 .32 .75 
A20 .17 .38 .89 C10 .08 .28 .82 
A21 .09 .29 .85 C11 .13 .34 .99 
A22 .11 .31 .83 C13 .09 .29 .90 
C3 .72 .50 .64     

 
Note. n = 1,009 rising kindergarten children; A1-A22 are Alphabet Subtest items; C1-C11, and C13 are 
Conventions Subtest items; and M1-M10 are Meaning Subtest items.  
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Figure 2.The confirmatory factor analysis measurement model of the TERA-3 subtest items. All pictured 
correlations were statistically significant at α = .05. The t statistics ranged from a low value of 2.81 for 
Conventions measured by C3 to a high value of 48.35 for Alphabet measured by A4. The complete set of 
factor loadings is presented in Table 3. 
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Conclusion 
 
Participating classrooms were sponsored by 
agencies that were either recruited by curriculum 
developers for participation or whose sponsoring 
agencies requested participation and funded some 
extent of their participation. However, the 
participating children form a large, mostly urban, 
African American population of children from 
low-income families who attended a variety of 
preschool programs.  
  
Child-Level Path Analysis 

The path analyses indicated that alphabet 
letter knowledge predicted all three TERA-3 
subtest abilities. The TERA-3 items measured 
alphabet letter knowledge, conventions of print, 
and emergent comprehension. 
  
 

 

 
 The findings from this study indicated the 
ability to recognize the upper- and lowercase 
letters in non-alphabetic order in classroom 
environments suggested by Lonigan et al. (1998) 
was also highly associated with measures of 
graphophemic knowledge, conventions of print, 
and knowledge of environmental print. Moreover, 
the classroom mean ability to recognize the letters 
of the alphabet accounted for differences in 
classroom mean measures of other emergent 
literacy abilities. 

What is more, the link between 
phonological sensitivity and alphabet knowledge 
is especially problematic for boys from low-
income families. McGuiness et al. (1995) found 
that deficits in phonological awareness were more 
problematic to future reading achievement for 
boys than girls. The results of this study suggest 
these deficits for boys from low-income families 

Figure 3.The two-level path analysis of the child- and classroom-level TERA-3 and alphabet letter 
recognition (Letters) factor scores. The pictured child-level correlations were all statistically 
significant at α = .05. The child-level t statistics ranged from a low of 1.98 for Alphabet by gender to 
a high value of 42.14 for Letters regressed on Alphabet. Additionally, the classroom-level t statistics 
ranged from a low value of 4.67 for Mean Letters regressed on Mean Meaning to a high value of 
16.51 for Mean Letters regressed on Mean Alphabet. 
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may begin at the point of learning to recognize the 
letters of the alphabet. 

The residuals of the child-level Alphabet 
and Conventions subtest were correlated. Both 
Bialystok (1991) and Sulzby (1992) suggested the 
influence of alphabet letter knowledge is linked to 
concept of word. The relationship between the 
alphabet letter recognition variable and the 
Conventions subtest scores may reflect the 
influence of letter recognition ability on those 
Conventions items requiring children to use their 
concept of word to respond to items that required 
them to follow pictured text as it was read to them 
or to point to various words. 
 
Classroom-Level Path Analysis 

The classroom-level model used four 
variables, the Letters, Alphabet, Conventions, 
Meaning variables aggregated at the classroom 
level. The classroom mean of the Letters variable 
predicted the classroom means of the Alphabet, 
Conventions, and Meaning subtest scores. The 
intraclass correlations for Letters, Alphabet, 
Conventions, and Meaning were .19, .21, .15, and 
.17, respectively. These intraclass correlations are 
relatively large for a homogeneous population. For 
instance, in heterogeneous populations, Bryk and 
Raudenbush (1992) estimated 18% of the variance 
in math achievement scores of children in the 1982 
High School and Beyond Survey was between-
schools and Goldstein (1987) estimated 9% and 
13% of the variance in reading achievement of 
elementary school children was between-schools 
and between-classes, respectively. 

A possible explanation for these relatively 
large intraclass correlations is instruction of some 
of the subtest constructs is more readily adapted to 
the use of explicit instruction to enhance child 
learning. In fact, historical evaluation of the 
literacy curriculum used with preschool children 
indicated the greatest increases in mean TERA-3 
subtest scores occurred with the Alphabet subtest 
scores. Additionally, the percent of available 
subtest items used in this study (items with means 
greater than .05) were 76, 57 and 33 percent for 
the Alphabet, Conventions, and Meaning subtests, 
respectively, and 88 and 60 percent of the 
classroom-level variance in the Alphabet and 
Conventions subtest means was accounted for by 
the classroom mean ability of the children to 
recognize the letters of the alphabet. The children 

in this study could correctly respond to a much 
greater percent of the Alphabet and Conventions 
than Meaning items which suggests higher ability 
in those areas. That ability was directly related to 
their classrooms’ combined ability to identify the 
upper- and lowercase letters of the alphabet. 

Because of this evidence and the explicit 
teaching of letter knowledge among other skills, 
classroom mean letter knowledge is seen as a 
measure of the implementation of the literacy 
curriculum, especially because participation was 
not uniformly implemented across sites in terms of 
the length of involvement during the school year 
or in terms of previous literacy curriculum 
experience of classroom teachers. Some teachers 
were new to the curriculum having worked with it 
less than a semester and other teachers had worked 
with it for several years. Supporting this 
implementation explanation is the fact that of the 
classrooms with the 16 lowest mean Letters 
scores, 12 were new sites with teachers new to the 
curriculum and with participation beginning after 
the winter holidays. The remaining four 
classrooms were early intervention special 
education classrooms. The implications of this 
explanation suggest mean classroom letter 
recognition ability may be simple measure of the 
quality of emergent literacy curricula and 
experiences. 
 
Perceptual Learning Theory of Alphabet Letter 
Recognition 

Inspection of Table 1 indicates the most 
frequently recognized letters were uppercase A, B, 
and C and upper- and lowercase X and O. This 
coupled with the alphabet letter summed scores 
depicted in Figure 1 suggests rising kindergarten 
children recognized more of the uppercase letters; 
however, it cannot be determined from this study 
whether this is because the uppercase letters are 
more visually distinct and therefore more easily 
recognized (Tinker, 1931) or whether the 
uppercase letters are taught first to preschool 
children (Adams, 1990). The path analysis also 
indicated boys’ ability to recognize letters of the 
alphabet was lower than girls and older children’s 
ability was higher than younger children. 

These findings are limited by the lack of 
experimental design, but the size of the sample 
indicates these are areas for further research. The 
fact that alphabet letter knowledge is an integral 
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part of a broader set of emergent literacy skills and 
is frequently learned in conjunction with broader 
skills enhances Sulzby’s (1983) call for a better 
understanding of how children learn letter names 
and the processes they use to recognize the letter 
forms. If children, in fact, recognize letters of the 
alphabet by their distinctive features, a more 
controlled study is needed in which data are 
collected earlier in the learning process and at 
several time points with instructional strategy 
modeled into the design. Perhaps as children 
actively engage in learning to recognize the letters 
of the alphabet, the construct changes from a 
multidimensional to a unitary one. 
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Deconstructing Arguments From The Case Against Hypothesis Testing 
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The main purpose of this article is to contest the propositions that (1) hypothesis tests should be 
abandoned in favor of confidence intervals, and (2) science has not benefited from hypothesis testing. The 
minor purpose is to propose (1) descriptive statistics, graphics, and effect sizes do not obviate the need for 
hypothesis testing, (2) significance testing (reporting p values and leaving it to the reader to determine 
significance) is subjective and outside the realm of the scientific method, and (3) Bayesian and qualitative 
methods should be used for Bayesian and qualitative research studies, respectively. 
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Introduction 
 

There has been an increasing amount of journal 
space given to the case against hypothesis 
testing over the past quarter of a century. The 
ensuing debate has taken many directions and 
has been graced with many forms of 
argumentation (see, e.g., Sawilowsky, 2003a; 
Knapp & Sawilowsky, 2001). Two styles of 
attack against hypothesis testing are contested 
here. 
 The first is the proposition that 
hypothesis testing should be abandoned in favor 
of confidence intervals. (I prefer the term 
“bracketed” instead of “confidence” interval for 
reasons noted in Sawilowsky, 2003a.) Ancillary 
to this attack is the proposition that hypothesis 
testing is tolerable if and only if it is (a) 
buttressed with a report of effect sizes, (b) 
accompanied by graphical displays, or (c) 
Bayesian. 
 The second style of attack is that 
hypothesis testing should be abandoned due to 
philosophical arguments. An example is 
embodied in the question if science has 
benefited by hypothesis testing.  
_______________________________________ 
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The “Confidence” Interval Attack 
 Neyman (1934), who discovered the 
bracketed interval, equated the probabilities 
associated with its lower and upper bound with 
“the ordinary concept of probability” (1934, p. 
590). Initially, he seemed to equate it with the 
fiducial argument promulgated by Fisher (1930). 
The presumed lack of difference in the 
derivation of bracketed intervals and fiducial 
probabilities was the focus of the discussion 
subsequent to the reading of Neyman’s (1934) 
paper before the Royal Statistical Society. 
Bowley (1934) raised the question and presented 
his answer, “I am not at all sure that the 
‘confidence’ is not a ‘confidence trick’… Does 
it really take us any further?... I think it does 
not” (p. 609). He considered bracketed intervals 
to be nothing more than ordinary probabilities 
expressed in a new form. 
 Neyman (1934) replied that “questions 
raised in the discussion on the confidence 
intervals would require too much space. In fact, 
to clear up the matter entirely, a separate 
publication is needed…[and] this is in 
preparation” (p. 623). He alluded to the nature of 
the response that would follow: “It has been 
suggested in the discussion that I used the term 
‘confidence coefficient’ instead of the term 
‘fiducial probability’. This is certainly a 
misunderstanding” (p. 623). Did Neyman 
differentiate between his proposed bracketed 
interval and the venerable hypothesis test? 
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 No. Neyman (1935) immediately 
disabused readers of the statistical literature of 
this notion. He stated, “The problem of 
estimation in its form of confidence intervals 
stands entirely within the bound of the theory of 
probability” (p. 116), as does hypothesis testing. 
How, then, did the claim that bracketed intervals 
are superior and preferred eventually arise as a 
weapon in the arsenal of the camp attempting to 
make a case against hypothesis testing? 
 Neyman (1941) reviewed the 
development of the bracketed interval, which is 
translated from the Polish “przedzial ufności.” 
He mentioned this phrase in 1930 in lectures at 
the University of Warsaw and the Central 
College (Agriculture) in Warsaw, Poland. Prior 
to the redaction of the theory, Pytkowksi (1932) 
published a practical application. 
 Neyman (1941) recounted that he had 
noticed numerical similarities obtained with his 
method and that of the fiducial argument. As a 
result, he had initially assumed the two 
paradigms were identical. Neyman was satisfied 
with considering the bracketed interval as an 
extension of the fiducial argument because 
Fisher (1930) had priority. 
 Eventually, Neyman (1934) became 
estranged from the fiducial argument. He no 
longer considered the two theories 
interchangeable. He left the reasons unstated in 
his opening presentation before the Society. 
 Fisher (1934) attended the reading as a 
discussant. Historical accounts of the exchange 
were varied. Some expressed chagrin with 
Fisher, who offered minimal comments on the 
new methodology, and instead concentrated on 
the relative merits of random vs purposive 
sampling selection. Others, in noting Bowley’s 
(1934) comment that the paper was difficult to 
understand, assumed that Fisher might have 
neglected to read Neyman’s paper prior to the 
reading and simply didn’t follow it. Still others 
proposed that this was Fisher’s feeble attempt at 
blocking his baton from being passed to 
Neyman, just as Karl Pearson had tried in vain 
two decades prior with Fisher. 
 These reports misrepresented Fisher’s 
response. Most of his comments were directed to 
the sampling problem because that was the 
primary thesis of Neyman’s (1934) paper. 
Moreover, a careful review of the published 

discussion indicates that Fisher understood the 
paper’s implication quite well. His response was 
a terse defense of the fiducial argument as the 
explanation of ordinary probability. 
 Neyman (1941) was surprised! Fiducial 
probability and the fiducial distribution of a 
parameter were “more or less, lapsus linguae, 
difficult to avoid in the early stages of a new 
theory” (p. 129). The fiducial argument was 
vague, misconceived, and vacuous in explaining 
ordinary probability. 
 The aftermath took the form of 
considerable and animated debate in the 
literature on the fiducial argument. Many 
mathematical statisticians, regardless of 
theoretical persuasion, joined in the fray by 
publishing their support or concern. Wald 
(1939), Wald and Wolfowitz (1939), and Welch 
(1939) sided with the bracketed interval. Fisher 
(1935), Starkey (1938), Sukhatme (1938), and 
Yates (1939) defended the fiducial argument. 
Pitman (1939) opined that the two theories were 
essentially the same, as did Bartlett (1939) to a 
lesser extent. 
 Bartlett (1936, 1939) also escalated the 
debate with the contention that where results 
diverge, the fault lies within the fiducial 
argument. As can be imagined, Fisher (1937, 
1939a, 1939b) and Yates (1939) accepted the 
gauntlet. Jeffreys (1940) attempted to restore 
calm in claiming that the bracketed interval and 
the fiducial argument were both subsumed under 
inverse probability in the system of Bayes. This 
had no effect on the debate, of course, because 
few of the combatants were Bayesian. The 
controversy would only die with Fisher. 
 Neyman (1941) succinctly described the 
relationship between the two theories: “There is  
none” (p. 130) because “the theories of fiducial 
argument and of confidence intervals differ in 
their basic conceptions” (p. 149). He was: 
 

inclined to think that the literature on the 
theory of fiducial argument was born out 
of ideas similar to those underlying the 
theory of confidence intervals. These 
ideas, however, seem to have been too 
vague to crystallize into a mathematical 
theory. Instead, they resulted in 
misconceptions of ‘fiducial probability’ 
and ‘fiducial distribution of a 
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parameter’… In this light, the theory of 
fiducial inference is simply non-existent. 
(p. 149) 

 
 Return to the “confidence” interval 
attack against hypothesis testing. Fisher’s 
fiducial argument as the explanation of 
probability was challenged and defeated. 
However, the ordinary understanding of 
probability, even in its application to Fisher’s F 
test, was never challenged, much less defeated. 
Those who have raised the bracketed interval 
attack against hypothesis testing are merely 
exploiting Fisher’s discredited nomenclature and 
explanation of probability as he applied it to 
hypothesis testing. 
 Ordinary probability is synonymous in 
the theories of hypothesis testing and bracketed 
intervals. Certainly, this was Neyman’s (1934) 
view. That is why we concluded, “There is an 
illogical swagger associated with criticizing 
hypothesis testing and subsequently advocating 
CIs [confidence intervals]” (Compton & 
Sawilowsky,  2003, p. 584). 
 
Philosophical Attack 
 “Has science benefited from hypothesis 
testing?” The question is silly. No reputable 
quantitative physical, behavioral, or social 
scientist would overlook the breadth and depth 
of scholarly knowledge and its impact on society 
that has accrued from over a century of 
hypothesis testing. The definitive evidence: 
William Sealy Gosset created the t test to make 
better beer. 
 In an invited paper in this issue of 
Journal of Modern Applied Statistical Methods, 
Professor Dayton addresses alternative strategies 
to hypothesis testing. The motivating reference, 
Carver (1978), championed the case against 
hypothesis testing. Carver’s (1978) attack was 
based on a variant of the philosophical attack: 
speculation and assertion. “Even if properly used 
in the scientific method, educational research 
would still be better off without statistical 
significance testing” (p. 398). Carver (1993) 
offered an “Einstein” gambit: 
 

 An example from the history of 
science will help to illustrate this point. 
Michelson and Morley (1887) collected 

data relevant to the speed of light, testing 
the hypothesis that light travels through a 
medium called luminiferous ether. If this 
ether existed, then light should travel 
faster when moving in the same direction 
as the motion of the earth - similar to a 
boat traveling faster when going 
downstream compared with upstream. 
Michelson and Morley interpreted their 
published data, without tests of 
significance, as indicating that light 
traveled the same speed no matter what 
direction it was traveling. However, I 
subjected their published data to a simple 
analysis of variance (ANOVA) and found 
statistical significance associated with the 
direction the light was traveling (p. < .01). 
 It is interesting to speculate how the 
course of history might have been 
changed if Michelson and Morley had 
been trained to use this corrupt form of 
the scientific method, that is, testing the 
null hypothesis first. They might have 
concluded that there was evidence of 
significant differences in the speed of 
light associated with its direction and that 
therefore there was evidence for 
luminiferous ether. If this ether existed, 
then light should travel faster when 
moving in the same ether. That 
conclusion would have set back Einstein’s 
ideas many years, because his notions 
about relativity are based on light 
traveling in every direction at the same 
speed. Fortunately, Michelson and Morley 
did not corrupt the scientific method by 
testing the null hypothesis before they 
interpreted their data with respect to their 
research hypothesis.  (p. 288) 
 The best research articles are those 
that include no tests of statistical 
significance. In a single study, these tests 
can be replaced with estimates of effect 
size and of sampling error, such as 
standard errors and confidence intervals. 
Better still, by conducting multiple 
studies, replication of results can replace 
statistical significance testing. (p. 289-
290) 

 
 



DECONSTRUCTING THE CASE AGAINST HYPOTHESIS TESTING 470   

 Responses to Carver’s (1993) claims 
appear below. In order to understand these 
remarks, it is necessary to preface with a 
description of interferometer data. Carver (1993) 
claimed the results were null. Indeed, the 1887 
Michelson-Morley experiment is nearly 
unanimously touted as the most famous 
experiment that produced a null result. (See, 
e.g., Feynman, Leighton, & Sands, 1963.) 
 The interferometer was invented by 
Michelson to estimate the speed of light. It was 
refined by Michelson (1881) and by Michelson 
and Morley (1887a, 1887b) in an attempt to 
acquire evidence on the medium of propagation 
of light called ether proposed by Aristotle. The 
hypothesized value, equal to the Earth’s orbital 
velocity, was approximately 30 km/s. 
 Michelson and Morley (1887a) did not 
use hypothesis tests (which had yet to be 
invented, not withstanding allegations regarding 
the dating of the sign test). Initially, they 
presented “the results of the observations… 
graphically” (p. 333). Visual inspection led to 
the conclusion there was an observed fringe 
shift, although it was less than what would be 
expected if the ether existed as hypothesized. 
They wrote, “It seems fair to conclude from the 
figure that if there is any displacement due to the 
relative motion of the earth and the luminiferous 
ether, this cannot be much greater than 0.01 of 
the distance between the fringes” (Michelson & 
Morley, 1887a, p. 333). 
 Next, they presented descriptive 
statistics. This led to the conclusion that “the 
ether is probably less than one sixth the earth’s 
orbital velocity, and certainly less than one 
fourth” (p. 341). Values probably less than 5 
km/s and certainly less than 7.5 km/s are not 
null, although different from the expected value 
of 30 km/s. Some results on interferometer 
experiments conducted from 1887 - 1935 are 
compiled in Table 1. 
 The only null results via interferometry 
were obtained by Kennedy in 1926. His results 
were criticized by Illingsworth (1927), who 
found the equipment suffered from a “reduced 
optical system” (p. 692). Múnera (1998) noted 
that the Kennedy experiment was unclear 
regarding the local solar time of the initial 
orientation of the interferometer, which may 
have been at one of the four  times  per  day  that   

Table 1. A Sampling Of Interferometry Results. 
___________________________________________ 
    Velocity 
Experimenter Date   (k/s) 
Michelson & 
   Morley 1887  5 - ≤ 7.5 
Morley & Miller 1902-4  8.7  ±  0.6 
Morley & Miller 1905  7.5 
Miller  4/1/1925  10.1 ± .33 
Miller  8/1/1925  11.2 ± .33 
Miller  9/15/1925 9.6  ± .33 
Miller  9/23/1925 8.22 
Miller  2/8/26  9.3  ±  .33 
Picard & Stahel 1926  6.9 
Picard & Stahel 1927  1.45 ± .007 
Illingworth 1927  < 3 - 5 
Michelson, 
   Pease, 
   & Pearson 1929  20 
Joos  1930  < 1.5 
Kennedy & 
   Thornkike 1932  24 
Michelson, 
   Pease, 
   & Pearson 1935  20 
___________________________________________ 
 
the expected shift tends to zero. Subsequent 
experiments conducted by Illingsworth (1927) 
with Kennedy’s equipment, but with resilvered 
mirrors, presented nonnull results. 
 A variety of technical corrections were 
introduced to account for the non-null results. 
Experiments were carefully designed to rule out 
rival hypotheses, such as temperature, drift, sign 
of displacement, diurnal variation, and inter-
session averaging. Nevertheless, no study 
produced null results. 
 Most interferometer experiments were 
conducted by Miller (1933). He took more than 
200,000 readings from 1902 - 1927 based on 
12,500 turns of the interferometer, including a 
joint effort with Morley in the early 1900s. (In 
comparison, Michelson and Morley made 36 
turns in four days, and Piccard and Stahel made 
96 turns in Belgium and 60 turns in Brussels.) 
Yet, Miller never obtained a null result. 
 Shankland (et al., 1955) was Miller’s 
assistant, and subsequently was Professor of 
physics at Case Western Reserve University 
(where Morley was Professor of chemistry until 
1906). After the death of his boss, he criticized 
Miller’s work on the ether, notably with 
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assistance from Albert Einstein. DeMeo (2000, 
2001) strenuously defended Miller against 
Shankland’s criticisms. (The reader interested in 
the dissident literature on ether should read 
DeMeo, 2000, 2001; and Múnera, 1998). Later, 
Shankland (1973, p. 2283) cited a letter received 
from Einstein dated 31 August 1954:  
 

 I thank you very much for sending 
me your careful study about the Miller 
experiments. Those experiments, 
conducted with so much care, merit, of 
course, a very careful statistical 
investigation. This is more so as the 
existence of a not trivial positive effect 
would affect very deeply the fundament 
of theoretical physics as it is presently 
accepted. 
 You have shown convincingly that 
the observed effect... has nothing to do 
with ‘ether-wind’, but has to do with 
differences of temperature. 

 
 Einstein’s letter is instructive for many 
reasons. First, he believed the interferometer 
experiments on the ether “merit, of course, a 
very careful statistical analysis” [emphasis 
added]. Second, as late as the year of his death, 
Einstein still believed that the interferometer 
experiments were a threat to his special theory 
of relativity. Third, he had not updated his 
knowledge many years after the specter of 
temperature as a confounding variable was first 
raised. The Cleveland Plain Dealer (27 January 
1926) published an exchange between Einstein 
and Miller, with the latter concluding,  
 

 “The trouble with Prof. Einstein is 
that he knows nothing about my results,” 
Dr. Miller said. “He has been saying for 
thirty years that the interferometer 
experiments in Cleveland showed 
negative results. We never said they gave 
negative results, and they did not in fact 
give negative results. He ought to give me 
credit for knowing that temperature 
differences would affect results. He wrote 
to me in November suggesting this. I am 
not so simple as to make no allowance for 
temperature.” 
 

 In his experiments in 1923, and from 
1925 - 1926 at Mt. Wilson, Miller took many 
steps to control for the effects of temperature. 
The results were consistent with earlier 
measurements. Similarly, Miller (cited in Joos & 
Miller, 1934) noted, “when Morley and Miller 
designed their interferometer in 1904 they were 
fully cognizant of this... Elaborate tests have 
been made... especially with artificial heating, 
for the development of methods which would be 
free from this effect [of temperature]” (p. 114). 
The Cleveland Plain Dealer (27 January 1926) 
added, “Speaking before scientists at the 
University of Berlin, Einstein said the ether drift 
experiments [were null in the Michelson-Morley 
experiment but] on Mount Wilson they showed 
positive results”, although he attributed it to 
temperature and altitude. 
 
Einstein Gambit Declined 
 There were thousands of interferomic 
studies conducted by dozens of physicists since 
1887, and in all but one experiment the results 
were demonstrably non-null. The only known 
null result was subsequently determined to be 
caused by a miscalibrated instrument. When the 
instrument was resilvered, and the experiment 
replicated in the same location, the results were 
about 4 km/s. 
 Carver (1993) conducted a simple 
analysis of variance (ANOVA) and found 
statistical significance (p < .01). These results 
are tenable, assuming the null hypothesis was 
the observations did not differ from zero. 
Nevertheless, Carver’s (1993) analysis suffers 
from a bewildering array of questions, such as: 
 

• What data set was used? Was it from the 
noon readings, the afternoon readings, 
or a combination of readings? Was it 
from July 8th, 9th, 11th, or 12th of 1887; 
or perhaps some combination of days? 
Did it include all 36 turns of the 
interferometer, or some subset? 

• What was the value of F? 
• What were the degrees of freedom? 
• Were the underlying assumptions of 

independence, homoscedasticity, and 
normality considered? 
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• Were covariates such as diurnal 
variation or drift considered? 

• How was intersession averaging based 
on different calibration curves handled? 

• According to Carver’s (1993) advice 
and recommendation, why did he fail to 
present summary statistics or a graphic 
display of the results (either prior to the 
ANOVA or afterwards)?  

 
 Carver (1993) claimed that this 
significant result from the hypothesis test would 
have set Einstein back many years. This is 
unwarranted speculation. In his lecture in Berlin, 
Einstein rejected the 1887 Michelson-Morley 
results as being nonnull, despite the evidence 
contained within their descriptive statistics and 
graphs. Similarly, he would have ignored the 
outcome of a hypothesis test. 
 Einstein’s theory was not based on any 
experimental evidence. At various times 
throughout his career, Einstein reminisced that it 
was based on the principles of Maxwell and 
Lorentz, and he had not relied on the Michelson-
Morley experiment. Holton (1969, 1988) 
suggested that not only did the interferometer 
experiments have little or no impact, but there is 
evidence that Einstein was unaware of the 
Michelson-Morley experiment prior to 
developing the special theory of relativity. 
 Interferometer experimenters presented 
graphical displays, from simple scatter grams 
and histograms to more complex time series 
charts and hodograms. All pictorial 
representations substantiated nonzero results. 
Some of the latter interferometer experimenters 
reported standard errors. (Obviously, those who 
did not were remiss.) Many of the latter 
experimenters also reported bracketed intervals, 
and zero was not in them. Múnera (1998) 
summarized the bulk of interferometer studies 
with a bracketed interval, and zero was not in it. 
If statistical tests had been invented by 1887, it 
would have been easy to confirm the data were 
statistically significantly different from zero. 
Even Shankland (et al., 1955; 1973) was forced 
to admit this. 
 Carver (1993) reported an effect size 
(eta squared) of .005. He concluded “if 
Michelson and Morley had been forced … to do 
a test of statistical significance, they could have 

minimized its influence by reporting this effect 
size measure indicating that less that 1% of the 
variance in the speed of light was associated 
with its direction” (p. 289). The fallacy of his 
analysis is Michelson and Morley’s (1887a, 
1887b) experiment obtained results of 5 to 7.5 
km/s. Regardless of what percent of variance it 
represents, how can anyone call a speed that 
exceeds the Earth’s satellite orbital velocity 
“null” and “seek to minimize its influence”? 
 Of paramount importance, however, 
Carver (1993) tested the wrong hypothesis. Data 
inspection and graphs demonstrated interferomic 
data did not support the static model of 
luminiferous ether as a medium of propagation 
for light. Should a hypothesis test be desired, the 
correct test is whether the data were statistically 
significantly different – not from zero – but 
rather, from the hypothesized value of 30 k/s. 
 Carver (1993) described the process of 
conducting hypothesis tests prior to examining 
descriptive data as a corruption of the scientific 
method. This is a straw-person argument. Who 
promotes conducting hypothesis tests as a first 
step in the analysis of data?  Who objects to 
examining raw data (e.g., for data entry errors, 
outliers), computing descriptive statistics, and 
inspecting graphics prior, or as a follow-up, to 
conducting hypothesis tests? 
 Carver (1993) stated the best research 
articles are those that contain no hypothesis 
tests. This regressive approach would truly set 
quantitative physical, behavioral, and social 
science back more than a century. Reasonable 
people have different expectations of what 
constitutes a rare event vs what constitutes a 
common event expected by chance alone. This is 
true with a single study, and all the more so with 
many replications of a study. The debate is 
diminished, and possibly vanishes, with the 
simple agreement on a threshold (i.e., nominal 
alpha level) prior to conducting an experiment. 
 Carver’s (1993) reliance on reporting 
effect sizes as a panacea is naïve. Effect sizes 
are sensitive to their own underlying 
assumptions. In addition, the process of 
enclosing effect sizes in a bracketed interval 
relies on the same probabilities as does the 
obtained value of a hypothesis test. Carver 
(1993) also recommended the practice of 
reporting an effect size whether the hypothesis 



SHLOMO S. SAWILOWSKY 473

test “is significant or not” (p. 288). This leads to 
the “trouble with trivials” problem (see e.g., 
Sawilowsky,  2003b, 2003c). 
 Currently, it is a popular slogan among 
effect size enthusiasts to warn against 
“becoming stupid in another metric.” Yet, 
Carver (1993) interpreted an eta squared of .005 
as null to minimize the study outcome. The 
experimental results Carver (1993) sought to 
minimize were speeds of over 16,750 miles per 
hour! 
 
The Next Generation of Arguments 
 As soon as these two lines of attack 
against hypothesis testing falter, three more 
assaults are quickly proffered. This is not the 
place to elaborate on them, but they are parried 
briefly below. 
 The first is to replace hypothesis testing 
with significance testing. P values are reported 
and it is left to the reader to decide if it is 
significant. Aside from being outside the realm 
of the scientific method, subjective significance 
testing is, in my view, a recipe for disaster 
(Knapp & Sawilowsky, 2001). (Note that 
Carver’s, 1978, 1993, attack is actually against 
hypothesis testing, although he calls it a case 
against significance testing.) 
 The second is to abandon the frequentist 
approach and conduct a Bayesian analysis. I 
strongly promote the method of Bayes in 
selecting a pinch hitter in baseball because of the 
plethora of informative priors. However, in the 
absence of definitive objective priors, a 
condition that pervades most of physical, 
behavioral, and social science, Bayesian 
methods are not likely to be optimal. 
 The third is to abandon quantitative 
methodology altogether in favor of qualitative 
techniques. I discussed this option elsewhere 
(Sawilowsky, 1999). Qualitative methods should 
be used when the research hypothesis is 
qualitative, not because of some perceived 
limitation of a quantitative method in pursuing a 
quantitative research question. 
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Brief Reports 
A Note On MLEs For Normal Distribution Parameters 
Based On Disjoint Partial Sums Of A Random Sample 

 
W. J. Hurley 

Royal Military College of Canada 
 

 
 
Maximum likelihood estimators are computed for the parameters of a normal distribution based on 
disjoint partial sums of a random sample. It has application in the disaggregation of financial data. 
 
 

Introduction 
 
Motivation  

The Canadian Forces conducts much of 
its army individual training at the Combat 
Training Center (CTC) in eastern Canada. Over 
the 2001-2002 Training Year, 97 serials (a 
“serial” is an instance of a “course”) were run 
for a total of 2008 students. The overall 
expenditure on ammunition was $28.8 million. 
The Commander, CTC, was interested in 
developing a model of the ammunition dollar 
cost for each type of course in order to help him 
assess the risk of over-expending his annual 
ammunition budget for a given slate of serials. 
At the point of budgetary deliberations for a 
given fiscal year, the ammunition cost for any 
serial is uncertain due primarily to uncertain 
course enrollments, uncertain student failure 
rates, and uncertain weather (ranges are closed 
when it gets dry due to the threat of forest fires). 

As a first pass, we conceptualized the 
ammunition cost of a course as a normal random 
variable. To estimate its mean and variance, it 
would be reasonable to use historical data. For 
some courses this is what we did. However there 
were some high demand courses where a 
number of serials were run each year, and 
unfortunately, ammunition expenditures for 
these individual serials were aggregated into a 
single number for the year.  
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The expenditures for individual serials were not 
tracked. Hence, for these high demand courses, 
the problem was to estimate the normal 
distribution parameters using this aggregated 
data. 

With this background in mind, suppose 
the ammunition cost for a particular course is a 
normal random variable with mean µ  and 

variance 2σ .  Let   
 

},...,,{ 21 nXXXX =  
 

be an iid sample from this distribution. 
Unfortunately we cannot observe individual 
elements of this sample.  Rather, we can only 
observe a sample of disjoint partial sums. 
Suppose the sample is partitioned into sets 
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We want to compute MLEs for µ  and 2σ  
using Y  rather than .X  

There has been a lot of research on 
grouped and combined datasets. See, for 
example, the work of Rao (1973). However, to 
my knowledge, the estimation problem 
described above has not been mentioned in the 
literature. 

 
Solution 

Note first that iY  is normally distributed 

with mean µik  and variance 2σik .  Also, the 

iY  are independent since the partial sums are 
disjoint. Hence the likelihood function is  
 

.
)(

2
1exp

2

1),( 2

2

2

2 ∏ ∑ ⎥
⎦

⎤
⎢
⎣

⎡ −
−=

i i i

ii

i
k

ky

k
L

σ
µ

σπ
σµ  

 
Maximizing the ln of this likelihood function 
gives  
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Note that for the special case nm =  (we are 
working at the level of the iid sample), the last 
equation returns the usual MLE for variance. 

As for the properties of these estimators, 
the MLE for the mean is unbiased, 
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but, not surprisingly, the estimator for the 
variance is biased:  
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Hence, the estimator  
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is an unbiased estimate of the variance. 

Another aspect of this problem is how to 
revise these estimates as new data becomes 
available. At the CTC, this new data will not be 
aggregated. Suppose the new sample is 

}.,...,,{ 21 pZZZZ =   What now are the 
maximum likelihood estimates (MLEs) of µ  
and 2σ  based on Y  and ?Z   The answer is a 
straightforward application of the previous 
development. We simply think of iZ  as an 
additional element of Y  having cardinality 

.1=ik   Hence we have that 
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Another Example 

Returning to the CTC problem, suppose 
we have the following data set for a given 
course: 

 
  Total 

Ammunition 
Fiscal Year #Serials Dollars 

Expended 
2001 3 713,316 
2002 2 486,345 
2003 3 728,408 
2004 3 700,843 
2005 2 462,004 
  

The MLEs for the mean and standard deviation 
are 
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and 
 

2
2

1
( )1ˆ

1
11,691

m i i
i

i

y k y
m k=

−
σ = ∑

−

=

 

 
respectively. 

 
Discussion 

 
This analysis suggests that it would be easy to 
find maximum likelihood estimators for the 
parameters of other underlying distributions. The 
main requirement is to identify the distributions 
of sums of these random variables. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 An interesting extension would be to 
calculate maximum likelihood estimators in the 
case where the partial sums overlapped. In this 
case the iY  are no longer independent, and 
hence the likelihood function is more difficult to 
calculate. 
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On Treating A Survey Of Convenience Sample As A Simple Random Sample  
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Threat of bias has kept many from using data gathered in less than optimal conditions. We maintain  that 
when convenience sampling represents race and gender at nearly correct proportions and can be 
beneficial, as these two variables are quite often used as stratification variables. We compared a 
convenience sample with a proven sample. Race and Sex were nearly proportional as was found in the 
proven sample. We conclude that the convenience sample can be used as though it is simple random. 
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Introduction 
 
From the first semester of Introduction to 
Statistics through our career as scientists by 
whatever names, we are warned of the sampling 
and non-sampling errors and how to overcome 
them. Recently a question was asked: “May I 
treat my convenience sample as a simple random 
sample?” To answer the question we employed a 
sample of known qualities, SCYRBS99, the 
South Carolina Youth Risk Behavior Survey of 
1999. 

Representative coverage of Gender and 
Race is paramount, if the sample is to be 
instructive when formulating health policy, and 
we know that SCYRBS99 and earlier YRBS 
samples are constructed so that the estimates of 
prevalence among these two variables, as well as 
others, are nearly unbiased (CDC, 1999). 

If we can show that the estimates of the 
percentages of gender and race are nearly the 
same  in  the convenience sample  as  are  in  the 
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weighted estimates of the YRBS sample of the 
same year, then we can at least increase our 
confidence in the treatment of our sample as 
simple random. Such a comparison does not, nor 
will it ever, PROVE the convenience sample to 
be totally unbiased and simple random, but it 
will go a long way toward our believing the 
prevalence calculated are nearly unbiased. 
 

Results 
 
The estimates of gender and race prevalence will 
be compared to those obtained from the 
SCYRBS99 sample, which are treated as 
population constants. Tables 1 and 2 display 
those values together with the estimates from the 
convenience sample. 

Remembering that X2 is directly 
proportional to the sample size, which is 4421 in 
this case, then a Chi-square of 9.43 is not large 
at all. In order to reach a significance of only 
0.05, N had to be at least (4421/9.43)*3.84) = 
1800. This is a case in which we have too much 
power. From an administrative point of view we 
would require alpha to be equivalent to about 
four standard errors or 0.0001. Therefore, we are 
able to accept a difference of 46.66-
44.36=2.30% as non-significant and 
administratively not important. Further, we can 
treat this sample as a simple random sample. 
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Table 1: SCMS (Convenience Sample) with expected percentages and numbers obtained from 
SCYRBS99.  Variable = GENDER. Expected F = P (F|SCYRBS99)*4733. X2 = (2409-2376.91)2/2376.91 
+ (2324-2356.09)2/2356.09 = 0.87, df = 1, p-value = 0.35. 
 
 

 
GENDER 

SCMS 
Percent 
Count 

SCYRBS99 
Percent 

Expected number 
F 50.90 

2409 
50.22 

2376.91 
M 49.10 

2324 
49.78 

2356.09 
Total 4733 4733 

 
 
 
Table 2:  SCMS (Convenience Sample) with expected percentages and numbers obtained from 
SCYRBS99. Variable = RACE. Expected B = P (B|SCYRBS99)*4733. X2 = (1961-2022.41)2/2022.41 + 
(2460-2310.65)2/2310.65 + (312-399.94)2/399.94 = 30.85 df = 2, p-value =  0.0000002. 
 

 
RACE 

SCMS 
Percent 
Count 

SCYRBS99 
Percent 

Expected 
B 41.43 

1961 
42.73 

2022.41 
W 51.98 

2460 
48.82 

2310.65 
O 6.59 

312 
8.45 

399.94 
Total 4733 4733 

 
 
 
Table 3: A repeat of Table 2 with the O category excluded. Expected B = P(B|SCYRBS99)*4421. X2 = 
(1961-2062.84)2/2062.84 + (2460-2358.16)2/2358.16 = 9.43, df=1, p-value = 0.0021. 
 

 
RACE 

 

SCMS 
Percent 
Count 

SCYRBS99 
Percent 

Expected 
B 44.36 

1961 
46.66 

2062.84 
W 55.64 

2460 
53.34 

2358.16 
Total 4421 4421 
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Between female and male distribution 
the convenience sample is right on target, but the 
p-value of the chi-square among the three racial 
groups indicates a noticeable difference. An 
examination of actual count versus the 
expectations show there is an excess of white 
students at the expense of those captured as ‘O’ 
or other than Black or White. If those are 
omitted, as usually is the case because of small 
numbers in more complex analyses, we have the 
results in Table 3. 
 

Conclusion 
 
The convenience sample has nearly the same 
gender and racial compositions as is estimated 
from the SCYRBS99 data. It can then be treated 
as a simple random sample. For the skeptic or 
purist, caution should be used when generalizing 
across racial lines when using the SCMS data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If stratification is made along the four 
categories (B,F), (B,M), (W,F) and (W,M), 
estimates within category should be nearly 
unbiased. From those four strata, comparisons 
could still be made without hesitation. If you 
insist on a larger alpha, then the RACE variable 
should not appear in a regression, linear or 
logistic, in conjunction with a set of risk and 
confounder variables. 
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Early Scholars 
Conventional And Robust Paired And 

Independent-Samples t Tests: Type I Error And Power Rates 
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Monte Carlo methods were used to examine Type I error and power rates of 2 versions (conventional and 
robust) of the paired and independent-samples t tests under nonnormality. The conventional (robust) 
versions employed least squares means and variances (trimmed means and Winsorized variances) to test 
for differences between groups. 
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Introduction 
 
It is well known that the paired-samples t test 
has more power to detect a difference between 
the means of two groups as the correlation 
between the groups becomes larger. That is, as 
the population correlation coefficient, ρ, 
increases, the standard error of the difference 
between the means gets smaller, which in turn 
increases the magnitude of the t statistic (Kirk, 
1999). Equation 1, the population variance of the 
difference between mean values, demonstrates 
how the standard error of the difference between 
the means (

21 XX −σ ) is reduced as the value of ρ 

increases. 
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22 σ=σ  is the population variance of 

the mean for group j ( 2,1=j ). 
It must be kept in mind, however, that 

the independent-samples t test has twice the 
degrees of freedom of the paired-samples t test. 
Generally, an increase in degrees of freedom is 
accompanied by an increase in power. Thus, 
considering the loss of degrees of freedom for 
the paired-samples test, there is the question of 
just how large ρ must be in order for the paired-
samples t test to achieve more power than the 
independent-samples t test.  

Vonesh (1983) demonstrated that the 
paired-samples t test is more powerful than the 
independent-samples test when the correlation 
between the groups is .25 or larger. Furthermore, 
Zimmerman (1997) observed that many authors 
recommend the paired-samples t test only if “the 
two groups are highly correlated” and 
recommend the independent samples test if 
“they are uncorrelated or only slightly 
correlated” (p. 350). Zimmerman argued, 
however, that such authors often fail to take into 
account an important consequence of the use of 
the independent t test on dependent 
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observations. Namely, Zimmerman (1997) noted 
that the independence assumption is violated 
when the independent-samples t test is 
performed on groups that are correlated, even to 
a very small degree, and such a violation of the 
independence assumption distorts both Type I 
and Type II error rates.  

Zimmerman (1997) compared the Type 
I error and power performance of the paired and 
independent-samples t tests for normally 
distributed data, varying the magnitude of ρ. He 
found that a correlation as small as .1 seriously 
distorted Type I error rates of the independent-
samples t test. Thus, according to Zimmerman, 
the practice of employing the independent-
samples t test when groups are slightly 
correlated fails to protect against distortion of 
the significance level and concluded that “a 
correlation coefficient of .10 or .15 is not 
sufficient evidence of independence, not even 
for relatively small sample sizes” (p. 359). 
Zimmerman also demonstrated an example in 
which, even when the correlation between two 
groups was as low as .1, the paired t test was 
more powerful than the independent-samples t 
test. Consequently, contrary to the 
recommendations of the authors he cites (e. g., 
Edwards, 1979; Hays, 1988; Kurtz, 1965), 
Zimmerman advocates the use of the paired-
samples t test even when groups are only 
correlated to a very small degree (i.e., .1), when 
distributions are normal.   

The question regarding how large ρ 
should be in order for the paired-samples t test to 
achieve more power than the independent-
samples t test, when data are not normally 
distributed has not been examined (Wilcox, 
2002). Evaluating the performance of statistics 
under nonnormality is important, given that 
psychological data are often not normal in shape 
(Micceri, 1989; Wilcox, 1990). Hence, the goal 
of this study was to extend Zimmerman's (1997) 
work by examining the Type I error and power 
rates of both the paired-samples and the 
independent-samples t tests when distributions 
were nonnormal, again varying the magnitude of 
ρ. 

An investigation of the performance of 
both the paired and independent-samples t tests 
under nonnormality raises a problem, however. 
Both tests assume normally distributed data in 

the population. Violation of the normality 
assumption leads to distortion of Type I error 
rates and can lead to a loss of power to detect a 
difference between the means (MacDonald, 
1999; Wilcox, 1997). Thus, in addition to an 
examination of the performance of the 
conventional (least squares) versions of the 
paired and independent-samples t tests, the 
performance of a robust version of each of the 
tests was also investigated. 

The robust versions of the paired and 
independent-samples t tests involve substituting 
robust measures of location and scale for their 
least squares counterparts. Specifically, the 
robust versions of the tests substitute trimmed 
means for least squares means, and Winsorized 
variances for least squares variances. 
Calculation of the trimmed mean, which is 
defined later in Equation 7, involves trimming a 
specified percentage of the observations from 
each tail of the distribution (for symmetric 
trimming), and then computing the average of 
the remaining observations. The Winsorized 
variance, which is defined later in Equation 8, is 
computed by first Winsorizing the observations 
(see Equation 5), which also involves removing 
the specified percentage of observations from 
each end of the distribution. However, in this 
case the eliminated observations are replaced 
with the smallest and largest observation not 
removed from the left and right side of the 
distribution, respectively. The Winsorized 
variance is then computed in the same manner as 
the conventional least squares variance, using 
the set of Winsorized observations. 

Numerous studies have shown that, 
under nonnormality, replacing least squares 
means and variances with trimmed means and 
Winsorized variances leads to improved Type I 
error control and power rates for independent 
groups designs (e.g., Keselman, Kowalchuk & 
Lix, 1998; Keselman, Wilcox, Kowalchuck & 
Olejnik, 2002; Lix & Keselman, 1998; Yuen, 
1974), as well as dependent groups designs (e.g., 
Keselman, Kowalchuk, Algina, Lix & Wilcox, 
2000; Wilcox, 1993). In particular, Yuen (1974) 
was the first to propose that trimmed means and 
Winsorized variances be used with Welch’s 
(1938) heteroscedastic statistic in order to test 
for differences between two independent groups, 
when distributions are nonnormal and variances 
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are unequal. Thus, Yuen’s method helps to 
protect against the consequences of violating the 
normality assumption and is designed to be 
robust to variance heterogeneity. Yuen’s method 
reduces to Welch’s (1938) heteroscedastic 
method when the percentage of trimming is zero 
(Wilcox, 2002). Yuen’s method can also be 
extended to dependent groups. 

It is important to note that while the 
conventional paired and independent-samples t 
statistics are used to test the hypothesis that the 
population means are equal ( 210 : µ=µH ), the 
robust versions of the tests examine the 
hypothesis that the population trimmed means 
are equal ( 210 : ttH µ=µ ). Although the robust 
versions of the procedures are not testing 
precisely the same hypotheses as their 
conventional counterparts, both the robust and 
conventional versions test the hypothesis that 
measures of the typical score are equal. In fact, 
according to many researchers, the trimmed 
mean is a better measure of the typical score 
than the least squares mean, when distributions 
are skewed (e.g., Keselman et al., 2002). 

This study compared (a) the 
conventional (i.e., least squares means and 
variances) paired-samples t test, (b) the 
conventional independent-samples t test, (c) the 
robust (trimmed means and Winsorized 
variances) paired-samples t test, and (d) the 
robust independent-samples t test, based on their 
empirical rates of Type I error and power. As in 
Zimmerman's (1997) study with normal data, it 
was expected that as the size of the correlation 
between the groups increased, both the 
conventional and robust versions of the paired-
samples t tests would perform better than their 
independent-samples counterparts, in terms of 
their ability to maximize power while 
maintaining empirical Type I error rates close to 
the nominal α level. It was also expected, based 
on previous findings (e.g., Keselman, et al., 
1998; Keselman, et al., 2000; Keselman et al., 
2002; Lix et al., 1998; Wilcox, 1993; Yuen, 
1974), that the robust versions of both the paired 
and independent-samples t tests would perform 
better in terms of Type I error and power rates 
than the corresponding conventional versions. 
 
 

Methodology 
 
Definition of the Test Statistics 
Conventional Methods 

Suppose that jn  observations, 

jnjj j
XXX  , , , 21 … , are sampled from population 

j ( 2 ,1=j ). In order to compute the conventional 
independent-samples t test, let ∑= i jijj nXX  
be the jth sample mean ( jni ,,1…= ; ∑= j jnN ). 

Also let ( ) ( )122 −∑ −= nXXS ji jijj  be the jth 
sample variance. The estimate of the common 
(i.e., pooled) variance is 
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The test statistic for the conventional 
independent-samples t test is 
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which is distributed as a t variable with 

221 −+=ν nn  degrees of freedom, assuming 
normality and homogeneity of variances. 
In order to compute the conventional paired-
samples t test, which assumes that the two 
groups are dependent, let jjX nSS

j
22 = , where 

jXS  is the estimate of the standard error of the 

mean of group j. An estimate of the correlation 
between the two groups is also needed to 
compute the paired-samples t statistic. The 
correlation is defined as 2112 SSSr = , where 
 

)1())(( 221112 −−−∑= nXXXXS ii i , 
 
and n represents the total number of pairs. The 
paired-samples test statistic is 
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which is distributed as a t variable with 1−=ν n  
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degrees of freedom, assuming normality. 
 
Robust Methods 

Suppose, again, that jn  observations, 

jnjj j
XXX  , , , 21 … , are sampled from population 

j. For both the independent-samples and paired-
samples t tests, first let XXX jnjj j )()2()1( ≤≤≤  

be the ordered observations of group j, and let γ 
be the percentage of observations that are to be 
trimmed from each tail of the distribution. Also 
let =jg  [ jnγ ], where [x] is the largest integer 

x≤ . To calculate the robust versions of both 
statistics we must first Winsorize the 
observations by letting 
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The sample Winsorized mean is defined as 
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The sample trimmed mean for the jth group is 
also required to compute the robust versions of 
the paired and independent-samples t tests and is 
defined as 
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where jjj gnh 2−= . The sample Winsorized 
variance for the robust independent-samples t 
test is 
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where ijY  and WjY  are defined in Equations 5 and 
6, respectively. Finally, let 
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Then the robust independent-samples t test is 
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which is approximately distributed as a t 
variable with degrees of freedom 
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To compute the robust paired-samples t 

test, as enumerated by Wilcox (2002), the paired 
observations must first be Winsorized, as in 
Equation 5. It is important to note that when 
Winsorizing the observations for the paired-
samples t statistic, care must be taken to 
maintain the original pairing of the observations. 
The sample size for the robust version of the 
paired-samples t test is gnh 2−= , where n is the 
total number of pairs. Let 
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and 
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where ijY  and WjY  are defined in Equations 6 and 
7, respectively. The test statistic for the robust 
paired-samples t test is 
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which is approximately distributed as a t 
variable with 1−=ν h  degrees of freedom. 
 
Simulation Procedures 

Empirical Type I error and power rates 
were collected for the conventional and robust 
versions of the paired and independent-samples t 
tests using a Monte Carlo procedure. Thus, a 
total of four tests were investigated: (a) the 
conventional paired-samples t test, (b) the 
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conventional independent-samples t test, (c) the 
robust paired-samples t test, and (d) the robust 
independent-samples t test. Two-tailed tests 
were performed on each of the four procedures. 

Four variables were manipulated in the 
study: (a) sample size, (b) magnitude of the 
population correlation coefficient, (c) magnitude 
of the difference between groups, and (d) 
population distribution. Following Zimmerman 
(1997), four sample sizes (N) were investigated: 
10, 20, 40, and 80, and population correlations 
(ρ) ranging from -.5 to .5, in increments of .1, 
were induced.  

The difference in the mean (trimmed 
mean) value for the two populations was also 
manipulated. When empirical Type I error rates 
were investigated, there was no difference 
between the groups. When empirical power rates 
were investigated, three values of the effect size 
were investigated; the difference between the 
groups was set at .25, .5, and .75. These values 
were chosen in order to avoid ceiling and floor 
effects, a practice that has been employed in 
other studies (e.g., Keselman, Wilcox, Algina, 
Fradette, & Othman, 2003). 

There were two population distribution 
conditions. Data for both groups were generated 
either from an exponential distribution or a chi-
squared distribution with one degree of freedom 
( 2

1χ ). Skewness and kurtosis values for the 
exponential distribution are 21 =γ  and 62 =γ , 
respectively. Skewness and kurtosis values for 
the 2

1χ  distribution are 81 =γ  and 122 =γ , 
respectively. 

For the robust versions of both the 
paired and the independent-samples t tests, the 
percentage of trimming was 20%; thus, 20% of 
the observations from each tail of the 
distribution were removed. This proportion of 
trimming was chosen because it has been used in 
other studies (e.g., Keselman et al., 1998; 
Keselman et al., 2000; Keselman et al., 2002; 
Lix et al., 1998) and because 20% trimming has 
previously been recommended (e.g., Wilcox, 
1997). 

In order to generate the data for each 
condition, the method outlined in Headrick and 
Sawilowsky (1999) for generating correlated 
multivariate nonnormal distributions was used. 
First, the SAS generator RANNOR (SAS 

Institute, 1989) was used to generate pseudo-
random normal variates, iZ  ( Ni ,,1…= ). Next, 
the iZ s were modified using the algorithm 
 

ijiij ErrZY −+= 1 ,                  (15) 
 
where the ijE s are pseudo-random normal 
variates. In the case of this study, the ijE s were 
also generated by the SAS generator RANNOR. 
The variable r is determined as in Headrick and 
Sawilowsky (1999), and is dependent on the 
final desired population correlation (ρ). Both 1iY  
and 2iY  are random normal deviates with a 
correlation of 2r . Finally, the ijY s generated for 
the study were further modified in order to 
obtain nonnormally distributed observations, via 
the algorithm 
 

32* )( ijijijij dYYabYaY +−++= ,          (16) 
 
where a, b, and d are constants that depend on 
the desired values of skewness ( 1γ ) and kurtosis 
( 2γ ) of the distribution, and can be determined 
by solving equations found in Fleishman (1978, 
p. 523). The resultant *

ijY s are nonnormal 
deviates with zero means and unit variances, and 
are correlated to the desired level of ρ, which is 
specified when determining r. 

Observations with mean jµ  (or tjµ ) and 
variance 2

jσ  were obtained via 
*

ijjjij YX ×σ+µ= . The means (trimmed means) 
varied depending on the desired magnitude of 
the difference between the two groups. In order 
to achieve the desired difference, constants were 
added to the observations in each group. The 
value of the constants, corresponding to each of 
the four difference conditions investigated, were 
(a) 0, 0, (b) .25, 0, (c) .5, 0, and (d) .75, 0. These 
values were added to each observation in the 
first and second group, respectively. Thus, jµ  
( tjµ ) represents the value of the constants 
corresponding to a given desired difference. 
Variances were set to 12 =σ j  in all conditions. 
When using trimmed means, the empirically 
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determined population trimmed mean tµ was 
subtracted from the *

ijY  variates before 
multiplying by jσ  (see Keselman et al., 2002 
for further discussion regarding the generation 
of variates to be used with trimming). Ten 
thousand replications of the data generation 
procedure were performed for each of the 
conditions studied. 

 
Results 

 
Type I Error Rates 

Each of the four investigated tests was 
evaluated based on its ability to control Type I 
errors, under conditions of nonnormality. In the 
case of the two versions of the independent-
samples t tests, the independence assumption 
was also violated when ρ was not equal to zero. 

In order for a test to be considered robust, its 
empirical rate of Type I error ( α̂ ) had to be 
contained within Bradley's (1978) liberal 
criterion of robustness: α≤α≤α 5.1ˆ5.0 . Hence, 
for this study, in which a five percent nominal 
significance level was employed, a test was 
considered robust in a particular condition if its 
empirical rate of Type I error fell within the 

075.025. −  interval. A test was considered to be 
nonrobust in a particular condition if α̂  fell 
outside of this interval. Tables 1 and 2 display 
the range of Type I errors made by each of the 
investigated tests across all samples sizes (N = 
10, 20, 40, 80), as a function of ρ. We felt it was 
acceptable to enumerate a range across all 
sample sizes investigated because at all values of 
N, a similar pattern of results was observed. 

 
Table 1: Range of Proportion of Type I Errors for All Tests Under the Exponential Distribution 

 
Exponential Distribution 

Rho (ρ) 
 

Conventional Procedure 
  

Robust Procedure 
 
 

 
Independent Paired 

 
Independent Paired 

 
-0.5 

 
.116 - .143 .060 - .093 

 
.103 - .108 .051 - .057 

 
-0.4 

 
.100 - .128 .056 - .085 

 
.092 - .099 .052 - .054 

 
-0.3 

 
.089 - .116 .055 - .083 

 
.078 - .092 .047 - .054 

 
-0.2 

 
.081 - .108 .059 - .086 

 
.070 - .080 .049 - .057 

 
-0.1 

 
.071 - .091 .059 - .078 

 
.062 - .067 .049 - .053 

 
           0 

 
.042 - .048 .039 - .049 

 
.038 - .046 .035 - .045 

 
0.1 

 
.035 - .043 .042 - .053 

 
.031 - .038 .031 - .049 

 
0.2 

 
.025 - .029 .044 - .050 

 
.024 - .031 .030 - .052 

 
0.3 

 
.019 - .021 .042 - .053 

 
.017 - .021 .028 - .048 

 
0.4 

 
.011 - .012 .039 - .052 

 
.012 - .016 .03 - .044 

 
0.5 

 
.006 - .007 .04 - .047 

 
.006 - .01 .028 - .045 
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Table 2: Range of Proportion of Type I Errors for All Tests Under the 2
1χ  Distribution 

 
Chi-Squared Distribution ( 2

1χ ) 

Rho (ρ) 
 

Conventional Procedure 
  

Robust Procedure 
 
 

 
Independent Paired 

 
Independent Paired 

 
-0.5 

 
.120 - .171  .068 - .129 

 
.102 - .107 .056 - .073 

 
-0.4 

 
.100 - .161 .060 - .125 

 
.090 - .096 .056 - .068 

 
-0.3 

 
.093 - .145  .063 - .118 

 
.079 - .089 .051 - .066 

 
-0.2 

 
.087 - .135 .067 - .114 

 
.070 - .082 .052 - .067 

 
-0.1 

 
.075 - .114 .064 - .102 

 
.063 - .068 .052 - .058 

 
           0 

 
.038 - .046 .034 - .046 

 
.026 - .045 .025 - .042 

 
0.1 

 
.031 - .041 .033 - .049 

 
.023 - .036 .022 - .042 

 
0.2 

 
.026 - .029 .035 - .046 

 
.020 - .030 .023 - .044 

 
0.3 

 
.020 - .021 .033 - .052 

 
.018 - .023 .023 - .043 

 
0.4 

 
.011 - .015 .035 - .051 

 
.015 - .018 .022 - .046 

 
0.5 

 
.006 - .011 .035 - .045 

 
.009 - .013 .020 - .042 

 
Table 1 displays the range of empirical 

Type I error rates for each test, as a function of 
ρ, under the exponential distribution condition. 
It is apparent from the table that both versions of 
the paired-samples t test maintained Type I 
errors near the nominal level of significance, α. 
In fact, only 6 of 44 values fell outside the range 
of Bradley's 075.025. −  interval for the 
conventional paired t test; none did for the 
robust paired t test. Thus, for data that follow an 
exponential distribution, the robust paired t test 
was insensitive to nonnormality at every value 
of ρ . A comparison of the conventional and 
robust versions of the paired t test in Table 1 
reveals that, in particular, the robust version was 
more effective at controlling Type I errors when 
the population correlation (ρ) between the 
groups was negative. 

Table 1 also shows that the independent-
samples tests were not as robust, overall, as their 

paired-samples counterparts. In fact, the total 
number of values that fell outside of the range of 
Bradley's liberal criterion was 30 and 26 (out of 
44) for the conventional and robust versions of 
the independent t test, respectively. Thus, the 
robust independent t test was indeed slightly 
more robust, overall, than the conventional 
independent t test. Both versions of the 
independent-samples t test were effective at 
controlling Type I errors when the population 
correlation (ρ) was zero; however, this control 
was reduced the more that ρ deviated from zero. 

An inspection of Table 2, which 
displays the range of Type I errors for the tests 
for the 2

1χ  distribution, reveals a pattern of 
results similar to that for the exponential 
distribution. However, all of the tests were 
somewhat less robust under the 2

1χ  distribution 
than the exponential distribution condition. That 
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is, nonrobust liberal values were greater in value 
for 2

1χ  data than for exponentially distributed 
data. Specifically, the total number of values that 
fell outside of Bradley's liberal interval for the 
conventional versions of the paired and 
independent-samples t tests were 12 and 31 (out 
of 44), respectively. The total number of 
nonrobust values for the robust versions of the 
paired and independent-samples t tests were five 
and 28, respectively. 
Power Rates 

The four tests were also evaluated based 
on empirical power rates. Therefore, each test 
was judged on its ability to detect a true 
difference between the trimmed means of the 

groups (in the case of the robust tests), or the 
least squares means of the groups (in the case of 
the conventional tests). Figures 1, 2, and 3 
display the power of each of the investigated 
tests to detect a true difference between the 
(trimmed) means of the groups, as a function of 
the magnitude of the difference between the 
(trimmed) means. The results portrayed in these 
figures were averaged over all sample sizes. 
While the power rates of the tests increased as 
the size of N increased, again, we felt it was 
acceptable to collapse over the sample size 
conditions because the tests showed a similar 
pattern of results in relation to one another for 
all values of N. 
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Figure 1. Probability of rejecting H0 for the conventional and robust paired and independent-samples t 
tests; 0=ρ . 
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Figure 2. Probability of rejecting H0 for the conventional and robust paired and independent-samples t 
tests; 3.0=ρ . 
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Figure 3. Probability of rejecting H0 for the conventional and robust paired and independent-samples t 
tests; 3.0−=ρ . 
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Figure 1 displays the power rates of the 
tests for both the 2

1χ  and the exponential 
distributions when 0=ρ . The upper portion of 
the figure reveals that when data followed an 
exponential distribution, the power functions of 
the four tests were quite similar, with the 
empirical power of the robust versions only 
slightly higher than the corresponding power of 
the conventional versions. However, an 
inspection of the lower portion of Figure 1 
indicates that under the 2

1χ  distribution, the 
power functions of the robust tests were 
considerably higher than those of both 
conventional versions. In addition, Figure 1 
shows that when no correlation existed between 
the groups, the power functions of the 
independent-samples t tests were slightly higher 
than their paired-samples counterparts. 
    Figure 2 shows the power functions of 
the tests for both the 2

1χ  and exponential 
distributions when 3.=ρ . The upper portion of 
Figure 2 indicates that when the data were 
exponentially distributed and positively 
correlated, the power functions of both versions 
of the paired-samples t test were higher than 
those of the independent-samples tests. The 
lower portion of the figure, which displays 
power for the 2

1χ  distribution for this same value 
of ρ, demonstrates that while the power function 
of each of the paired-samples t tests was higher 
than its respective independent-samples 
counterpart, the power rates of both robust tests 
were higher than those of the conventional tests. 
 Figure 3 displays the power rates of the 
tests for the 2

1χ  and exponential distributions 
when 3.−=ρ . Unlike the results obtained for 
positively correlated data, the paired-samples t 
tests showed no apparent power advantage over 
the independent-samples t tests when the groups 
were negatively correlated, for either the 

exponential or the 2
1χ  distributions. In fact, the 

figure shows that the power functions of the 
independent-samples t tests were higher than 
their paired-samples counterparts under both 
distributions. The lower portion of Figure 3 
shows that under the 2

1χ  distribution, while the 
power functions of both versions of the 
independent-samples t test were higher than 
their corresponding versions of the paired-
samples test, the power rates of both robust tests 
were higher than the conventional tests, as was 
the case with the other levels of ρ. 
 

Conclusion 
 
Four different statistics for testing the difference 
between two groups were investigated based on 
their power to detect a true difference between 
two groups and their ability to control Type I 
errors. The primary objective for conducting the 
study was to determine which of the tests would 
perform best when the data for the two groups 
were correlated and the assumption of a normal 
distribution of the responses was violated.  

Although empirical Type I error and 
power rates are two separate measures of a test’s 
effectiveness, in order to evaluate the overall 
performance of the investigated procedures, 
power and Type I error rates must be considered 
concomitantly. The reason for this is that if a test 
does not maintain the rate of Type I errors at or 
around the nominal α level, this can cause a 
distortion in power. Figures 4 and 5 provide a 
summary of the results for the exponential and 

2
1χ  distributions, respectively. These figures 

were included to allow the reader to easily 
examine the Type I error and power rates of 
each of the distributions concurrently. 
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Figure 4. Probability of rejecting H0 as a function of ρ and the magnitude of the difference between 
(trimmed) means for the conventional and robust paired and independent-samples t tests exponential 
distribution. 
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Figure 5. Probability of rejecting H0 as a function of ρ and the magnitude of the difference between 
(trimmed) means for the conventional and robust paired and independent-samples t tests under the 2

1χ  
distribution.
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As the results indicated, the only time 
the independent tests maintained the Type I error 
rate close to the nominal level was when there 
was no correlation between the groups; this 
ability grew worse as ρ got larger. In fact, the 
Type I error control of the independent t tests 
began to break down when the correlation 
between the groups was as small as 1.± . Thus, 
with the exception of the 0=ρ  condition, both 
the robust and the conventional versions of the 
independent t test were quite poor at controlling 
Type I errors. Because of this distortion of the 
Type I error rate, the powers of the independent 
tests are not interpretable (Zimmerman, 1997) 
when ρ is not equal to zero.  

Both versions of the paired t test, 
however, did a much better job of controlling 
Type I errors than their independent-samples 
counterparts when there was a correlation 
between the groups, for nonnormal data. 
Because the paired-samples t tests maintained 
Type I errors close to the nominal level, the 
empirical power rates of the paired t tests, unlike 
those of the independent tests, can be taken to 
accurately represent their ability to detect a true 
difference between the groups. Thus, as 
expected, when power and Type I error rates are 
both taken into account, it can be said that the 
paired t tests were more effective than their 
independent samples counterparts when groups 
were correlated, even when this correlation was 
low (i.e., 1.± ). This finding agrees with 
Zimmerman's (1997) results for normally 
distributed data.  
 Furthermore, the robust paired-samples t 
test was more effective, in terms of Type I error 
control, than the conventional paired test. The 
robust paired test was also consistently more 
powerful than the conventional version, and this 
power advantage increased as skewness and 
kurtosis in the population increased. Therefore, 
as expected, the robust version of the paired-
samples t test performed better than the 
conventional version of the test, for nonnormal 
data. This result is supported by many other 
studies involving trimmed means and 
Winsorized variances (e.g., Keselman, et al., 
1998; Keselman, et al., 2000; Keselman et al., 
2002; Lix et al., 1998; Wilcox, 1993; Yuen, 
1974). 

In conclusion, there need only be a 
small positive or negative correlation between 
two groups in order for the paired t test to be 
more effective than the independent t test when 
the data are nonnormal. In fact, although Vonesh 
(1983) showed that there needs to be a 
correlation of at least .25 in the population for 
the paired t test to be more powerful than the 
independent test, when the distortion of Type I 
error rates, resulting from the application of the 
independent-samples t test on dependent data, 
was taken into account, the paired-samples t 
tests performed best when the correlation was as 
low as 1.± . Thus, just as Zimmerman (1997) 
cautions when dealing with normal data, 
researchers should take care to ensure that their 
data is not correlated in any way when using the 
independent t test on nonnormal data, lest the 
existence of even a slight dependence alters the 
significance level of the test.  In addition, given 
that the population distributions were not normal 
in shape, the robust version of the paired t test 
performed the best under all the conditions that 
were studied. Thus, based on the results of this 
investigation, it is recommended that researchers 
use the robust paired-samples t test, which 
employs trimmed means and Winsorized 
variances, when dealing with nonnormal data. 
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Fitting Generalized Linear Mixed Models For Point-Referenced Spatial Data 
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Non-Gaussian point-referenced spatial data are frequently modeled using generalized linear mixed 
models (GLMM) with location-specific random effects. Spatial dependence can be introduced in the 
covariance matrix of the random effects. Maximum likelihood-based or Bayesian estimation implemented 
via Markov chain Monte Carlo (MCMC) for such models is computationally demanding especially for 
large sample sizes because of the large number of random effects and the inversion of the covariance 
matrix involved in the likelihood. We review three fitting procedures, the Penalized Quasi Likelihood 
method, the MCMC, and the Sampling-Importance-Resampling method. They are assessed in terms of 
estimation accuracy, ease of implementation, and computational efficiency using a spatially structured 
dataset on infant mortality from Mali. 
 
Key words: Geostatistics, infant mortality, kriging, Markov chain Monte Carlo (MCMC), penalized quasi 
likelihood (PQL), risk mapping, sampling-importance-resampling (SIR) 
 
 

Introduction 
 
Point referenced spatial data arise from 
observations collected at geographical locations 
over a fixed continuous space. Proximity in 
space introduces correlations between the 
observations rendering the independence 
assumption of standard statistical methods 
invalid. Ignoring spatial correlation will result in 
underestimation of the standard error of the 
parameter estimates, and therefore liberal 
inference as the null hypothesis is rejected too 
often. A wide range of analytical tools within the 
field of geostatistics have been developed 
concerning with the description and estimation 
of spatial patterns, the modeling of data in the 
presence of spatial correlation and the kriging, 
that is the spatial prediction at unobserved 
locations. 
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Statistical inference of point referenced 
data often assumes that the observations arise 
from a Gaussian spatial stochastic process and 
introduce covariate information and possibly 
trend surface specification on the mean structure 
while spatial correlation on the variance-
covariance matrix Σ  of the process. Under 
second order stationarity, Σ  determines the 
well-known variogram. When isotropy is also 
assumed, the elements of Σ  are modeled by 
parametric functions of the separation between 
the corresponding locations. For non-Gaussian 
data, the spatial correlation is modeled on the 
covariance structure of location-specific random 
effects introduced into the model and assumed to 
arise from a Gaussian stationary spatial process. 

For Gaussian data, the generalized least 
squares (GLS) approach can be used iteratively 
to obtain estimates β̂  of the regression 
coefficients conditional on the covariance 
parameters. The covariance parameters θ  can 
be estimated conditional on β̂  by fitting the 
semivariogram empirically or by maximum 
likelihood or restricted maximum likelihood 
methods (Zimmerman and Zimmerman, 1991). 

Statistical estimation for non-Gaussian 
data is based on the theory of generalized linear 
mixed models (GLMM). A common approach is 
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to integrate out the random effects and proceed 
with maximum likelihood based approaches for 
estimating the covariate and covariogram 
parameters. This integration can be implemented 
numerically (Anderson and Hinde, 1998; 
Preisler, 1988; Lesaffre and Spiessens, 2001) 
when dimensionality is low or via 
approximations. Breslow and Clayton (1993) 
show, that for known covariance parameters, the 
Laplace approximation leads to the same 
estimator for the fixed and random effects 
parameters as the one arising by maximizing the 
penalized quasi-likelihood (PQL). 
Implementation of this approach requires 
iterating between iterated weighted least squares 
for estimating the fixed and random effects 
parameters and maximizing the profile 
likelihood for estimating the covariance 
parameters. An extension of the PQL procedure 
is discussed by Wolfinger and O’Connell 
(1993). The PQL approach is implemented in 
some statistical packages due to its relative 
simplicity, however it provides biased estimates 
when the number of random effects increases 
(McCulloch, 1997; Booth and Hobert, 1999) or 
when the data are far from normal. 

The generalized estimating equation 
methods developed by Liang and Zeger (1986) 
and Zeger and Liang (1986) estimate covariate 
effects under the assumption of independence, 
but correct their standard error to account for the 
spatial dependence. The method is unable to 
estimate the spatial random effects. The EM 
algorithm (Dempster, Laird and Rubin, 1977) 
has been implemented in model fit by treating 
the spatial random effects as "missing" data. The 
intractable integration of the random effects 
which is required in the E-step is overcome by 
simulation, such as Metropolis-Hastings 
algorithm (McCulloch, 1997) or importance 
sampling/rejection sampling method (Booth and 
Hobert, 1999). For spatial settings, particular 
Pseudo-Likelihood approaches have been 
established which capture solely the site to site 
variation between pairs or groups of 
observations (Besag, 1974). For the special case 
of a binary outcome, Heagerty and Lele (1998) 
have proposed a thresholding model using a 
composite likelihood approach. 

A drawback of the maximum likelihood-
based methods employed in geostatistical 
modeling is the large sample asymptotic 
inference. For a spatial stochastic process 
{ ( ); }D∈Y u u , with 2D R⊂  the asymptotic 
concept can be applied either to the sample size 
within a fixed space D  (infill asymptotics) or to 
the space D  (increasing domain asymptotics). 
In the latter, observations are spaced far enough 
to be considered uncorrelated. The results can 
differ, depending on the type of asymptotics 
used (see e.g. Tubilla, 1975). 

Bayesian hierarchical geostatistical 
models implemented via Monte Carlo methods 
avoid asymptotic inference as well as many 
computational problems in model fitting and 
prediction. Diggle et al. (1998) suggest inference 
on the posterior density via Markov chain Monte 
Carlo (MCMC). This iterative approach requires 
repeated inversions of the covariance matrix of 
the spatial process, which is involved in the 
likelihood. The size of this matrix increases with 
the number of locations. Inversion of large 
matrices can drastically slow down the running 
time of the algorithm and cause numerical 
instabilities affecting the accuracy of the 
estimates. To overcome this problem Gelfand et 
al. (1999) suggest non-iterative simulation via 
the Sampling-Importance-Resampling (SIR) 
algorithm (Rubin, 1987). The quality of SIR 
hinge on the ability to formulate an easy-to-
draw-from importance-density, which comes as 
close as possible to the true joint posterior 
distribution of the parameters. 

In this article, we review three fitting 
procedures; the maximum likelihood-based PQL 
method, the MCMC simulation and the SIR. We 
assess these methods in terms of estimation 
accuracy, ease of implementation and 
computational efficiency using a spatially 
structured dataset on infant mortality from Mali 
collected over 181 locations. A description of 
the dataset and the applied questions which 
motivated this work are given in the next 
section. Then we describe the model as well as 
the three fitting approaches. A discussion on the 
ease of implementation of each approach and a 
comparison of the inferences obtained is given 
in the conclusion section. 
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Data 
The data that motivated this work were 

collected under the Demographic and Health 
Surveys (DHS) program. The aim of the 
program is to collect and analyze reliable 
demographic and health data for regional and 
national family and health planning. Data are 
commonly collected in developing countries. 
DHS is funded by the U.S. Agency for 
International Development (USAID) and 
implemented by Macro International Inc. The 
standard DHS methodology involves collecting 
complete birth histories from women of 
childbearing age, from which a record of age 
and survival can be computed for each child. 
The data are available to researchers via the 
internet (www.measureDHS.com). 

Birth histories corresponding to 35,906 
children were extracted from the data of the 
DHS-III 1995/96 household survey carried out 
in Mali. Additional relevant covariates extracted 
were the year of birth, residence, mothers 
education, infant’s sex, birth order, preceding 
birth interval and mothers age at birth. Using 
location information provided by Macro 
International, we were able to geo-locate 181 
distinct sites by using digital maps and 
databases, such as the African data sampler 
(1995) and the Geoname Gazetteer (1995). The 
objective of data analysis was to assess the 
effect of birth and socio-economic parameters 
on infant mortality and produce smooth maps of 
mortality risk in Mali. These maps will help 
identifying areas of high mortality risk and assist 
child mortality intervention programs. 
 

Methodology 
 
Let ijY  be a binary response corresponding to 

the mortality risk of child j  at site is , 
1,...,i n=  taking value 1 if the child survived 

the first year of life and 0 otherwise, and let ijX  
be the vector of associated covariates. Within 
the generalized linear model framework (GLM), 
we assume ijY  are i.i.d. Bernoulli random 

variables with ( )ij ijE Y π=  and model predictors 

as ( ) t
ij ijg π = X β  where ( )g ⋅  is a link function 

such as logit in our mortality risk application. 
However the spatial structure of the data renders 
the independence assumption of ijY  invalid, 

leading to narrower confidence intervals for β  
and thus to overestimation of the significance of 
the predictors. 

One approach to take into account 
spatial dependence is via the generalized linear 
mixed model (GLMM) reviewed by Breslow 
and Clayton (1993). In particular, we introduce 
the unobserved spatial variation by a latent 
stationary, isotropic Gaussian process U  over 
our study region D , such that 

1 2( , , , ) ~ (0, )nU U U N=U Σ… , where ijΣ  is a 

parametric function of the distance ijd  between 

locations is  and js . Conditional on the random 

term iU , we assume that ijY  are independent 

with ( | )ij i ijE Y U π= . The iU  enters the model 
on the same scale as the predictors, that is 
 

( ) t
ij ij ig Uπ = +X β                   (1) 

 
and captures unmeasured geographical 
heterogeneity (small scale variation). 

A commonly used parameterization for 
the covariance Σ  is 2 ( ; )ij ijdσ ρ φΣ =  where 

2σ  is the variance of the spatial process and 
( ; )ijdρ φ  a valid correlation function with a 

scale parameter φ  which controls the rate of 
correlation decay with increasing distance. In 
most applications a monotonic correlation 
function is chosen i.e. the exponential function 
which has the form ( ; ) exp( )ij ijd dρ φ φ= − . 
Ecker and Gelfand (1997) propose several other 
parametric correlation forms, such as the 
Gaussian, Cauchy, spherical and the Bessel. 

A separate set of location-specific 
random effects, 1 2( , , , )t

nW W W=W …  is often 
added in Equation 1 to account for unexplained 
non-spatial variation (Diggle et al., 1998), where 

iW , 1, ,i n= …  are considered to be 
independent, arising from a Normal distribution, 

2~ (0, )iW N τ . The 2τ  is known in 
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geostatistics as the nugget effect and introduces 
a discontinuity at the origin of the covariance 
function: 

2 21( ) ( ; )ij iji j dτ σ ρ φΣ = = + . 
A large number of repeated samples at the same 
location make the nugget identifiable, otherwise 
its use in the model is not justifiable because the 
extra binomial variation is already accounted for 
by the spatial random effect. 
 
Parameter estimation 
 The above GLMM is highly 
parameterized and maximum likelihood methods  
can fail to estimate all parameters 
simultaneously. The estimation approach starts 
by integrating out the random effects and 
estimating the other parameters using the 
marginal likelihood 

2( | , , , )p σ φ∫ Y U β 2( | , )p dσ φU U . 

However, this integral has analytical solution 
only for Gaussian data. For non-Gaussian data 
the integrand can be approximated using a first-
order Taylor series expansion around its 
maximizing value, after which the integration is 
feasible. This approach, known as the Laplace 
approximation, results in the penalized quasi-
likelihood (PQL) estimator (Breslow and 
Clayton, 1993), which was shown in various 
simulation studies to produce biased results 
(Browne and Draper, 2000; Neuhaus and Segal, 
1997). Breslow and Lin (1995) determined the 
asymptotic bias in variance component problems 
for first- and second-order approximations in 
comparison to McLaurin approximations. 
 Following the Bayesian modeling 
specification, we need to adopt prior 
distributions for all model parameters. We chose 
non-informative Uniform priors for the 
regression coefficients, i.e. ( )p ∝β 1 , and vague 
inverse Gamma priors for the 2σ  and φ  
parameters: 1 1( ) ( , )p IG a bφ =  and 

2
2 2( ) ( , )p IG a bσ = . Bayesian inference is 

based on the joint posterior distribution 
 

2

2 2

( , , , | ) ( , ; )
( ) ( | , ) ( ) ( )

p L
p p p p

σ φ

σ φ σ φ

∝ ×β U Y β U Y
β U

, 

where 2( | , )p σ φU  is the distribution of the 
spatial random effects, that is 

2( | , ) (0, )p Nσ φ ≡U Σ . 
 
Markov chain Monte Carlo estimation 

Diggle et al. (1998) suggest Markov 
chain Monte Carlo and in particular Gibbs 
sampling for fitting GLMM for point-referenced 
data. The standard implementation of the Gibbs 
algorithm requires sampling from the full 
conditional posterior distributions which in our 
application have the following forms: 
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where 
 

1 1 1( , , , , , )t
k k k Kβ β β β− − +=β … … , 

           1 1 1( , , , , , )t
i i i nU U U U− − +=U … … , 

           , ,
t

i i i i− −= =Σ Σ ( , )i iCov U−U  and 
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            ( , )t
i i iCov− − −=Σ U U . 

 
Samples from 2( | , )p σ φU  can be drawn easily 
as this is a known distribution. The conditionals 
of the other parameters do not have standard 
forms and a random walk Metropolis algorithm 
with a Gaussian proposal density having mean 
equal to the estimate from the previous iteration 
and variance derived from the inverse second 
derivative of the log-posterior could be 
employed for simulation. 

The likelihood calculations in Equations 
3, 4, and 5 require inversions of the 
( 1) ( 1)n n− × −  matrices i−Σ , 1, ,i n= …  and 
the n n×  matrix Σ , respectively. Matrix 
inversion is an order 3 operation, which has to 
be repeated for evaluating the conditional 
distribution of all n  random effects iU  and that 
of the φ  parameter, within each Gibbs sampling 
iteration. This leads to an enormous demand of 
computing capacity and makes implementation 
of the algorithm extremely slow (or possibly 
infeasible), especially for large number of 
locations. 
 
Sampling-Importance-Resampling 

Gelfand et al. (1999) propose Bayesian 
inference for point-referenced data using non-
iterative Sampling-Importance-Resampling 
(SIR) simulation. They replace matrix inversion 
with simulation by introducing a suitable 
importance sampling density ( )g ⋅  and re-write 
the joint posterior as 
 

* 2

2
2

2

( , , , | )
( , , , | ) ( , , , ; ).
( , , , ; )

p
p g
g

=σ φ

σ φ σ φ
σ φ

β U Y
β U Y β U Y
β U Y

   (6) 

 
They construct the importance sampling density 
(ISD) by 
 

2

2 2

( , , , ; )
( | ; ) ( | , ) ( , )s s s

g
g g g=

σ φ

σ φ σ φ

β U Y
β U Y U

 (7) 

which is easy to simulate from and then re-
sample from 2( , , , ; )g σ φβ U Y according to the 
importance weights 
 

2
2

2

( , , , | )( , , , ) .
( , , , ; )

pw
g

=
σ φσ φ
σ φ

β U Yβ U
β U Y

     (8) 

 
The density 2( , )sg σ φ  of the ISD could 

be taken as a product of independent inverse 
Gamma distributions 2( ) ( )s sg gσ φ . It is 
however preferable to adopt a bivariate 
distribution which accounts for interrelations 
between the two parameters and thus it 
approximates closer the 2( , | )p σ φ Y . We 
considered a bivariate t-distribution on 2log( )σ  
and log( )φ  with low degrees of freedom and 
mean around the maximum likelihood estimates 
of 2log( )σ  and log( )φ . The spatial random 
effects can be simulated from a multivariate 
normal distribution,  
 

2 2( | , ) (0, ( , ))sg Nσ φ σ ρ φ≡ ⋅U . 
 
This step requires matrix decomposition of 

2 ( , )σ ρ φ ⋅ , repeatedly at every iteration. This is 
an operation of order 2 and the most expensive 
numerical part of the simulation from the ISD. 
The density ( | ; )sg β U Y  can be a Normal 

distribution, ˆ ˆ( | ; ) ( , )sg N≡ U ββ U Y β Σ , with 
ˆ

Uβ  equal to the regression coefficients 
estimated from an ordinary logistic regression 
with offset U  and ˆ

βΣ  equal to the covariance 

matrix of ˆ
Uβ . 

 When the ISD approximates well the 
posterior distribution, one expects that the 
standardized importance weights are Uniformly 
distributed. When this is not the case, the ISD 
would give rise to very few dominant weights 
leading to an inefficient and wrong sampler. A 
possible remedy would be to embed the 
Sampling-Importance-Resampling simulation in 
an iterative scheme which refines the initial 
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guesses of the ISD and allows after few 
iterations more uniform weights. 

Point estimates of the parameters should 
preferably be calculated from the importance 
weights using all sampled values, rather than 
from the re-sampled values, what leads to 
smaller bias. For example the mean and variance 
of iβ  is estimated by ( ) /k

i k i k
k k

w wβ β=∑ ∑  

and ( ) 2( ) /k
k i i k

k k
w wβ β−∑ ∑  respectively, 

where ( )k
iβ  is the k th sampled value of iβ  

from the ISD. 
 
Spatial Prediction 

Modeling point-referenced data is not 
only useful for identifying significant covariates 
but for producing smooth maps of the outcome 
by predicting it at unsampled locations. Spatial 
prediction is usually refereed as kriging. 

Let 0Y  be a vector of the binary 
response at new, unobserved locations 0is , 

01, ,i n= … . Following the maximum likelihood 
approach, the distribution of 0Y  is given by: 
 

2
0

2
0 0 0 0

ˆˆ ˆ ˆ( | , , , )
ˆˆ ˆ ˆ( | , ) ( | , , )

P

P P d

=

∫
σ φ

σ φ

Y β U

Y β U U U U
         (9) 

 
where β̂ , 2σ̂  and φ̂  are the maximum 
likelihood estimates of the corresponding 
parameters. In PQL, Û  is derived as part of the 
iterative estimation process (Breslow and 
Clayton, 1993). 0 0

ˆ( | , )P Y β U  is the Bernoulli-
likelihood at new locations and 

2
0

ˆˆ ˆ( | , , )P σ φU U  is the distribution of the 
spatial random effects 0U  at new sites, given 

Û  at observed sites and is Normal 
 

2
0

1 1
01 11 00 01 11 10

ˆˆ ˆ( | , , )
ˆ( , )

P

N − −

=

−

σ φU U

Σ Σ U Σ Σ Σ Σ
         (10) 

 

with 11 ( )tE=Σ UU , 00 0 0( )tE=Σ U U  and 

01 10 0( )t tE= =Σ Σ U U . The mean of the 
Gaussian distribution in (10) is the classical 
kriging estimator (Matheron, 1963). 

The Bayesian predictive distribution of 
0Y  is given by: 

2
0 0 0 0( | ) ( | , ) ( | , , )P P P σ φ= ×∫Y Y Y β U U U  

 2 2
0( , , , | )P d d d d dσ φ σ φβ U Y β U U            (11) 

 
2( , , , | )P σ φβ U Y  is the posterior distribution 

of the parameters and obtained by the Gibbs 
sampler or the SIR approach. Simulation-based 
Bayesian spatial prediction is performed by 
consecutive drawing samples from the posterior 
distribution, the distribution of the spatial 
random effects at new locations and the 
Bernoulli-distributed predicted outcome. In SIR, 
drawing is performed from the set of all sampled 
parameters with weighting given in Equation 
(8). 

The maximum-likelihood predictor 
(Equation 9) can be interpreted as the Bayesian 
predictor (Equation 11), with parameters fixed at 
their maximum-likelihood estimates. In contrast 
to Bayesian kriging, classical kriging does not 
account for uncertainty in estimation of β  and 
the covariance parameters. 
 

Results 
 
A generalized linear mixed model was fitted to 
the infant mortality data in Mali using the three 
estimation approaches discussed in the 
methodology-section, PQL, MCMC and SIR 
together with an ordinary logistic regression 
(GLM) which did not account for spatial 
dependence. The purpose of the analysis was to 
assess the effect of maternal and socio-economic 
factors on infant mortality, produce a smooth 
map of mortality risk in Mali and compare the 
results obtained from the above procedures. 
Univariate analysis based on the ordinary 
logistic regression revealed that the following 
variables should be included in the model: 
child’s birthday, region type, mother’s degree of 
education, sex, birth order, preceding birth 
interval and mother’s age at birth. 
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We fitted the non-spatial logistic model 
(GLM) in SAS (SAS Institute Inc., Cary, NC, 
USA) using Proc Logistic. The spatial model 
with the PQL estimation method was also fitted 
in SAS using the %GLIMMIX-macro. This 
macro is based on the approach of Wolfinger 
and O’Connell (1993) and does subsequent calls 
of Proc Mixed to iteratively estimate mixed 
models for non-normal data. It is supported by a 
collection of spatial correlation functions, such 
as the exponential, Gaussian, linear, power and 
spherical. In our application, we have chosen the 
exponential function. MCMC and SIR 
estimation were implemented in software written 

by the authors in FORTRAN 95 (Compaq 
Visual Fortran v6.6) and run on an Unix 
AlphaServer 8400. For small number of 
locations the freeware software WinBUGS 
(www.mrc-bsu.cam.ac.uk/bugs) can also be used 
to obtain MCMC simulation-based estimates. 
Proc Mixed for normal data supports Bayesian 
modeling by allowing specification of prior 
distributions for the parameters and MCMC 
simulation. However, this possibility is currently 
available only for variance component models 
and not for spatial covariances, which holds for 
the %GLIMMIX macro, too. 

 
Table 1: Comparison of the computational costs for the Bayesian, simulation based approaches. 
 

Model Initial 
sample 

size 

Final 
sample 
from 

posterior 

No. of batches and 
size 

Iterations to 
convergence 

Thinning* Time per 
1,000 

iterations 

MCMC 50,000 1,720 - 7,000 25 7 hrs 14 
min 

SIR 400,000 1,600 800 batches with 
500 values (2 

batches per draw) 

0 0 1 hr 23 
min 

*Minimum lag at which autocorrelation was not significant. 
 
Table 2: Comparison of parameter estimates from the binary spatial model using different estimation 
strategies. The binary outcome is the survival of the first year of life. 
 

 Birth year 
Model Estimate 2σ  φ  Intercept 1966-71 1972-77 1978-83 1984-89 

MLE - - 1.81 -0.18 0.04 0.09 0.12 GLM 
 95% CI - - 1.43,2.11 -0.44,0.09 -0.22,0.29 -0.16,0.34 -0.13,0.37 

MLE 1.05 2.07 2.59 -0.19 0.03 0.09 0.12 PQL 
95% CI 0.72,1.81 0.54,4.63 1.43,3.74 -0.48,0.11 -0.26,0.31 -0.19,0.37 -0.17,0.40 
Mean 1.32 0.07 1.76 -0.20 0.01 0.07 0.10 

Median 0.91 0.04 1.75 -0.21 0.01 0.07 0.09 
MCMC 

95% CI 0.22,3.89 0.008,0.24 1.47,2.09 -0.46,0.08 -0.25,0.27 -0.19,0.33 -0.16,0.36 
Mean 0.91 0.005 1.77 -0.19 0.03 0.08 0.11 

Median 0.61 0.03 1.73 -0.18 0.03 0.08 0.11 
SIR 

95% CI 0.22,2.62 0.0004,0.015 0.34,3.25 -0.44,0.06 -0.21,0.27 -0.16,0.31 -0.13,0.34 
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 Birth year Residency Education Sex Birth order 
Model Estimate 1990-96 Urban No Primary Male 2nd or 3rd 4th to 6th 

MLE 0.17 0.32 -0.56 -0.66 -0.14 -1.90 -1.97 GLM 
 95% CI -0.08,0.42 0.22,0.36 -0.75,-0.31 -0.83,-0.43 -0.16,-0.05 -2.40,-1.32 -2.48,-1.38 

MLE 0.16 0.29 -0.54 -0.58 -0.14 -1.88 -1.95 PQL 
95% CI -0.12,0.44 0.19,0.39 -0.75,-0.32 -0.78,-0.38 -0.20,-0.09 -2.42,-1.34 -2.50,-1.40 
Mean 0.15 0.3 -0.55 -0.6 -0.14 -1.90 -2.00 

Median 0.14 0.3 -0.54 -0.59 -0.14 -1.95 -2.02 
MCMC 

95% CI -0.11,0.40 0.23,0.38 -0.74,-0.36 -0.78,-0.42 -0.16,-0.10 -2.39,-1.44 -2.48,-1.51 
Mean 0.16 0.33 -0.50 -0.57 -0.14 -1.88 -1.96 

Median 0.16 0.34 -0.50 -0.57 -0.14 -1.88 -1.96 
SIR 

95% CI -0.08,0.39 0.25,0.41 -0.68,0.32 -0.75,-0.40 -0.19,-0.09 -2.34,-1.42 -2.43,-1.49 
 

 Birth 
order 

Preceding birth 
interval 

Mothers age at birth 

Model Estimate 7th or 
higher 

2-4 > 4 20-29 30-39 39-49 

MLE -2.10 2.34 2.71 0.24 0.31 0.19 GLM 
95% CI -2.62,-1.51 1.76,2.84 2.11,3.22 0.13,0.29 0.15,0.40 -0.02,0.42 
MLE -2.07 2.31 2.67 0.25 0.32 0.19 PQL 

95% CI -2.63,-1.52 1.77,2.85 2.12,3.22 0.17,0.33 0.19,0.44 -0.07,0.44 
Mean -2.10 2.37 2.73 0.26 0.33 0.20 

Median -2.15 2.38 2.74 0.26 0.33 0.20 
MCMC 

95% CI -2.16,-1.63 1.87,2.82 2.20,3.22 0.19,0.32 0.23,0.43 -0.009,0.43 
Mean -2.09 2.31 2.65 0.25 0.32 0.21 

Median -2.09 2.30 2.65 0.25 0.32 0.21 
SIR 

95% CI -2.56,-1.62 1.82,2.77 2.16,3.13 0.18,0.31 0.22,0.43 0.01,0.42 
 

 
Convergence of the PQL approach to the global 
mode of the likelihood was highly dependent on 
the starting values. We suggest to compare the 
results by running the procedure with several 
starting values. Computationally, the PQL is fast 
in comparison to the simulation-based 
procedures, MCMC and SIR, but it runs quickly 
out of workspace for larger dataset. A 
comparison of the computational time required 
for the MCMC and SIR algorithms is given in 
table 1. MCMC estimation was applied using a 
single chain. Convergence was assessed using 
Geweke’s (1992) criterion. The algorithm 
converged after 7,000 iterations. A final sample 
from the posterior distribution of size 1,720 was 
obtained by sampling every 25th iterations after 
convergence  was  reached.  The  SIR algorithm 

  
 

required extensive fine tuning in order to derive 
good estimates. We ran the sampler several 
times and adjusted the degrees of freedom and 
mean parameter in the bivariate t-distribution 

2( , )sg σ φ , according to those values leading to 
large weights. Instead of resampling from the 
whole sequence of parameters according to their 
weights, we obtained better results by dividing 
the generated parameters into batches and 
drawing an equal number of samples with 
replacement from every batch. The 
implementation of the SIR algorithm was found 
to be difficult. Despite the effort applied to 
improve the SIR estimator, the derived weights 
show a highly skewed distribution, with a few 
dominating values (Figure 1). 

 
 
 
 
 



GEMPERLI & VOUNATSOU 505

Figure 1: Distribution of the weights in the Sampling-Importance-Resampling (SIR) procedure. 
 

 
 

Table 2 gives the parameter estimates 
obtained by the four approaches. The fixed 
effect coefficients β  show no fundamental 
difference in their point estimates between the 
competitive models, with the exception of the 
intercept coefficient. The PQL estimate of the 
intercept is higher than from the other 
estimators. The standard error of β  estimated 
from GLM is narrower than in the spatial 
models, as we were expecting. Discrepancies 
between the fitting approaches are observed in 
the estimates of the covariance parameters 2σ  
and φ . The posterior density of 2σ  obtained 
from MCMC simulation was found to be highly 
skewed to the left. PQL overestimates φ  
suggesting a lower spatial variation than the 
Bayesian approaches. This confirms known 
results about bias in the PQL estimates 
especially for the covariance parameters 2σ  and 
φ  due to the bad quality of the first-order 
approximation of the integrand. The SIR 
estimates are similar to those obtained from 
MCMC. 
 
 

Figure 2: Variogram cloud of the residuals  
in a non-spatial model. 
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Figure 2 shows three plots of the 
semivariogram cloud based on the Anscombe 
residuals obtained after fitting the GLM model. 
The semivariogram cloud is a plot of half the 
squared difference of the residuals versus the 
distance between their sample locations. The 
mean of the squared differences at each lag 
gives an estimator of the semivariogram. The 
three plots correspond to the 5%, 50% and 95% 
quartile of the squared difference of the 
residuals. The semivariogram cloud shows high 
variability and an increasing trend from the 
origin indicating lag-dependent variation. For a 
stationary spatial process, the semivariogram 
relates to the covariance of the random effects. 
Therefore we expect high variability in the 
covariance parameters. 

Figure 3 depicts different 
semivariogram estimators. The classical 
estimator by Matheron (1963) was calculated by 
 

2
( )

1ˆ( ) ( ( ) ( ))
| ( ) | i jN h

h Z Z
N h

γ = −∑ s s , 

 
where ( )iZ s  is the Anscombe residual at 
location is , 

 ( ) {( , ) : }i j i jN h h ε= − = ±s s s s  

 
and | ( ) |N h  is its cardinality. This estimator is 
sensitive to outliers and a robust version was 

proposed by Cressie and Hawkins (1980), which 
is displayed in Figure 3, too. The MCMC, SIR 
and PQL based estimators were calculated by 
replacing the estimates of 2σ  and φ  obtained 
from the three approaches in  
 

2( ) (1 exp( ))h hγ σ φ= − − ⋅ . 
 
The MCMC and SIR estimators appear to be 
between the two other empirical semivariogram 
estimators. Because we have omitted the nugget 
term, they pass through the origin. Nevertheless, 
their values fit nicely into the graph. The PQL 
estimate does not capture the correlation present 
at large lags. It represents the classical 
semivariogram estimator well, but it is far off 
the robust version. 

Regarding our application, Figure 4 
displays the locations of the DHS surveys and 
the observed infant mortality risk in Mali. The 
risk factors which were found to be statistically 
significant related to infant mortality (table 2) 
confirm findings made by other authors. The 
negative association between maternal education 
and mortality has been described by Farah and 
Preston (1982) and Cleland and Ginneken 
(1989). Higher education may result in higher 
health awareness, better utilization of health 
facilities (Jain, 1988), higher income and ability 
to purchase goods and services which improves 
infants health (Schultz, 1979). 
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Figure 3: Semivariogram estimators: Classical semivariogram estimator by Matheron  (circles), Robust 
version by Cressie and Hawkins (triangles), MCMC (long dashed line), SIR (short dashed line) and PQL  
(line) fit. 

 
The observed time trend, with higher 

infant survival for more recent years, was found 
not statistically significant. Longer birth 
intervals and low birth order reduce the risk of 
infant death. Mortality was related to the 
residency and sex of the infant with girls and 
urbanites being at lower risk of dying during the 
first year of life. The impact mothers age has on 
infant mortality shows the typical J-shape 

(Kalipeni, 1993) with lowest risk for age around 
thirty. The higher risk in young women may be 
explained by not fully developed maternal 
resources and that in older women by the effect 
of ageing. The MCMC-based estimate of the φ  
parameter revealed strong spatial correlation 
which reduces to less than 5% for distances 
longer than 75km. 
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Figure 4: Observed mortality in 36,906 infants from the DHS surveys conducted in the years 1995 and 
1996 at 181 distinct locations in Mali. 
 

 
 
Figure 5: Predicted spatial random effects from the infant mortality model using MCMC. The darker the 
shading, the lower the survival. 
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Predictions of the child mortality risk 
using the MCMC approach were made at 
600,000 new locations on a regular grid, 
covering the whole area of Mali south of 18 
degrees latitude north. Because the covariates 
are infant-specific and can not be extrapolated 
for the new locations, we predict the random 
effects only. The map with prediction is 
displayed in Figure 5. The map indicates a 
higher infant mortality risk mainly in the 
Northern part of the Niger delta. This region has 
low population density and water availability is 
seasonal. The many lakes in this region are 
preferred breeding site for the malaria mosquito. 
Low mortality is predicted in North-Western 
Mali at the border to Mauritania and Senegal. In 
this region, the population is more active in 
migrating to other countries for business 
purposes, bringing money to the region. Health 
facility coverage is also reflected in the 
predictive map, where the coverage is low in the 
Northern Niger delta and high in the North-East. 
 

Conclusion 
 
Generalized linear mixed models for large point-
referenced spatial data are highly parameterized 
and their estimation is hampered by 
computational problems. Reliable estimation 
methods that can be applied in standard software 
or algorithms that can accurately estimate the 
model parameters within practical time 
constraints do not exist. In this paper we 
compared a few recent developments using a 
real dataset on infant mortality in Mali. 

The advantage of the PQL method is 
that it can be applied in standard statistical 
software package. However estimates are biased 
especially those for the covariance parameters. 
The algorithm depends highly on the starting 
values and can easily converge to a local mode. 
For medium to large number of locations 
implementations of this algorithm is impeded by 
computer memory problems. 

Bayesian methods can provide flexible 
ways of modeling point-referenced data, give 
unbiased estimates of the parameters and their 
standard error and have computational 
advantages for problems larger than the ones the 
maximum likelihood methods can handle. 
However, for very large number of locations, an 

implementation may be infeasible due to long 
computing time. The SIR runs considerably 
faster than MCMC, but it requires tedious 
tuning. Finding an ISD which approximates well 
the posterior distribution is difficult to develop 
and application-specific. Rigorous methods for 
evaluating the suitability of the ISD do not exist. 
This increases the possibility of drawing 
misleading inference. 

MCMC is the most practical and, when 
it comes to prediction, accurate approach to date 
for fitting geostatistical problems. However, it is 
computationally intensive, especially for dataset 
with large number of locations. More research is 
required in ways of improving the convergence 
of the algorithm and the inversion of large 
matrices. Gilks and Roberts (1996), Mira and 
Sargent (2000) and Haran et al. (2001) have 
proposed general MCMC algorithms for 
improving convergence. Rue (2000) and Pace 
and Barry (1997) have applied innovative 
numerical methods using sparse matrix solvers 
for fitting areal data. In future, similar 
approaches need to be adapted and assessed for 
modeling point-referenced spatial data. 
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A Monte Carlo simulation study compared four bootstrapping procedures in generating confidence 
intervals for the robust Winsorized and percentage bend correlations. Results revealed the superior 
resiliency of the robust correlations over r, with neither outperforming the other. Unexpectedly, the 
bootstrapping procedures achieved roughly equivalent outcomes for each correlation. 
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Introduction 
 
A number of “robust” (Box, 1953) analogs to 
traditional estimators, population parameters, 
and hypothesis-testing methods have seen 
development during the past 40 years. Robust 
procedures typically retain the statistical 
interpretations associated with classical 
procedures, but are more resistant to 
distributional non-normalities and outliers. The 
Pearson product-moment correlation is without 
question the most commonly used measure of 
linear association, yet is not robust to departures 
from normality, especially when the bivariate 
surface is non-normal and dependence exists 
(King, 2003). 

Two new robust alternatives to r appear 
promising. The Winsorized correlation (Devlin, 
Gnanadesikan, & Kettenring, 1975; 
Gnanadesikan & Kettenring, 1972; Wilcox, 
1993) and the percentage bend correlation 
(Wilcox, 1994, 1997) yield interpretations 
analogous to r and asymptotically equal zero 
under bivariate independence, yet possess 
properties that curb the influence of 
distributional non-normalities. 
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The Winsorized correlation (rw) is computed in 
an identical fashion to r except that a specified 
proportion of extreme scores in each tail are first 
Winsorized, that is, deleted and set equal to the 
most extreme score remaining in the tail of the 
distribution. The percentage bend correlation 
(rpb) is based on the percentage bend measures 
of location and midvariance and is less intuitive. 
See Wilcox (1994, 1997) for the relevant 
equations. 

Yet few researchers have explored these 
newer correlations, notably with respect to 
estimating confidence intervals and defining 
their sampling distributions. For statistics with 
no known sampling distribution, Efron’s (1979, 
1982) bootstrap has proven to be effective in a 
variety of contexts. The conjecture is that the 
sampling distribution of a statistic can be 
approximated by the distribution of a large 
number of resampled estimates of the statistic 
obtained from a single sample of observations. 

The distribution of resampled estimates 
forms an empirically-derived sampling 
distribution from which confidence intervals or 
other indices may be estimated, either for 
inferential or descriptive purposes (Thompson, 
1993). The usefulness of bootstrapping is 
evident because an increasing number of 
disciplines are now encouraging or requiring the 
reporting of confidence intervals (Thompson, 
2002; Vacha-Haase, Nilsson, Reetz, Lance, & 
Thompson, 2000; Wilkinson & APA Task Force 
on Statistical Inference, 1999). 

An “almost bewildering array” (Hall, 
1988, p. 927) of bootstrapping procedures is 
now available. These vary in the accuracy with 
which the bootstrap-generated interval spans the 
true interval. Accuracy is also contingent on the 
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type of statistic under examination. At the 
current level of knowledge, it is unknown which 
bootstrapping procedure produces the most 
accurate confidence intervals for rpb and rw. 
Although Wilcox (1993, 1994, 1997) compared 
Type I error rates for these robust correlations, 
only two studies (Wilcox, 1997; Wilcox & 
Muska, 2001) have examined the accuracy of 
bootstrapped confidence intervals for rpb, and 
none for rw. Clearly, more research is needed. 

The goal of this simulation study was to 
compare various means of bootstrapping 
confidence intervals for rw and rpb across a 
variety of conditions. The study compared four 
bootstrapping procedures, each of which has 
proven useful in some contexts: the ordinary 
percentile bootstrap (Efron, 1979), an adjusted 
bootstrap (Strube, 1988), the bias-corrected 
bootstrap (BC; Efron, 1981, 1982, 1985), and 
the bias-corrected and accelerated bootstrap 
(BCa; Efron, 1987). The Pearson r and Fisher’s 
inverse hyperbolic tangent transformation of r, 
rz, were included for comparative purposes, 
although the latter frequently fails to produce 
even asymptotically correct results (Duncan & 
Layard, 1973). 
 

Methodology 
 
The simulation procedure began by randomly 
generating 1,000,000 observations from a 
population with known characteristics, serving 
as a derived population. This step was necessary 
because the Winsorized and percentage bend 
correlation parameters (ρw and ρpb) will not 
necessarily exactly equal ρ under dependence 
conditions. The second step involved drawing m 
= 100 samples, each of size n, from the derived 
population and calculating sample estimates for 
each of the four correlational measures. Lastly, 
B = 500 bootstrap samples were drawn by 
sampling with replacement from each of the m 
samples and 95% confidence intervals calculated 
via each of the four bootstrapping procedures. 
Gamma (γ) and beta (β) are two constants that 
must be fixed in computing the Winsorized and 
percentage bend correlations, respectively. 
These were each set to .2 for all simulations. 

Real data often demonstrate excessive 
distributional non-normality (Bradley, 1977, 
1978; Micceri, 1989; Rasmussen, 1986; Stigler, 
1973; Wilcox, 1990) and such can moderate the 

accuracy of a bootstrapping procedure for a 
given statistic (Hall, 1988; Wilcox, 1997). Thus, 
the present study compared bootstrapped 
correlations across a wide range of conditions 
including nine distributional shape variations, 
one contaminated distribution, six mixed 
distributions, three independence and 
dependence conditions (i.e., population 
correlations of .0, .4, .8), and four sample sizes 
(i.e., ns of 20, 50, 100, 250). 

Four indices served as points of 
comparison for the bootstrapped correlations: 
Type I error rate, bias, efficiency, and interval 
width. The latter was constructed by modifying a 
ratio proposed by Efron (1988) such that the 
width of each bootstrap-estimated interval was 
divided by the width of a “true” (i.e., Monte 
Carlo-estimated) confidence interval. This 
required drawing an additional 10,000 samples, 
each of size n, from each simulated population 
to create the “true” sampling distributions. 

Simulation studies typically compare 
Type I error rates and other indices in an 
informal manner; however, a more formal 
analysis is useful for processing the large 
number of indices obtained in the present study. 
Analysis of Variance (ANOVA) is well suited 
for quantifying sources of variation. This 
procedure allowed for partitioning the 
systematic variance components affecting the 
indices (viz., correlational measure, 
bootstrapping procedure, distributional shape 
and type, sample size, and strength of bivariate 
relationship). 
 

Results 
 
Tables 1-5 and Figures 1-2 display 
representative results averaged across 
distributional shape. Disaggregated data and 
fuller explanations are available in King (2000). 
Efficiency varied little across the correlational 
measures and is not presented. 
 
Comparisons Among Bootstrapping Procedures 
 As regards Type I error rate (see Tables 
1, 2, and Figure 1) and bias (see Tables 3, 4, and 
Figure 2), no bootstrapping procedure emerged 
as unmistakably superior across a majority of 
conditions for either robust correlation (e.g., a  
Bootstrap by Correlation effect is absent in 
Tables 2 and 4).
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Table 1. Type I Error Rates Averaged Across All Distributional Conditions 

 
  n = 20  n = 50  n = 100  n = 250 
  r rz rw rpb  r rz rw rpb r rz rw rpb  r rz rw rpb 

ρ = 0  
   Percentile .06 .06 .03 .04  .07 .07 .06 .07 .05 .05 .05 .05  .07 .07 .04 .04 
   Adjusted .06 .06 .03 .04  .07 .07 .06 .07 .05 .05 .05 .05  .07 .07 .04 .04 
   BC .05 .05 .03 .05  .07 .07 .06 .06 .05 .05 .06 .05  .06 .06 .03 .04 
   BCa .05 .04 .03 .05  .07 .07 .05 .06 .06 .06 .06 .05  .07 .07 .04 .04 
ρ = .4  
   Percentile .11 .11 .03 .07  .08 .08 .04 .06 .07 .07 .04 .04  .08 .08 .05 .05 
   Adjusted .11 .11 .04 .08  .08 .08 .04 .06 .08 .08 .04 .04  .08 .08 .05 .05 
   BC .08 .08 .03 .06  .08 .08 .03 .06 .08 .08 .04 .04  .09 .09 .05 .05 
   BCa .09 .08 .04 .07  .09 .09 .04 .06 .10 .10 .04 .03  .11 .11 .04 .05 
ρ = .8  
   Percentile .09 .09 .06 .07  .06 .06 .06 .06 .06 .06 .06 .04  .07 .07 .05 .05 
   Adjusted .15 .15 .09 .12  .06 .06 .06 .06 .08 .08 .07 .07  .08 .08 .04 .05 
   BC .10 .10 .05 .05  .06 .06 .06 .07 .07 .07 .06 .04  .08 .08 .06 .05 
   BCa .12 .12 .06 .07   .07 .07 .05 .06  .10 .10 .06 .04   .09 .09 .06 .06 
Note. Italicized values are greater than two standard errors beyond the nominal .05 level. 
 

Table 2. Analysis of Variance for Type I Error Rate by Correlation and Bootstrapping Procedure 
 

Source df F p η2 

Model 15 11.028 <.001 .088 
CORR 3 50.511 <.001 .081 
BOOT 3 2.735 .042 .004 
CORR * BOOT 9 .631 .772 .003 
Error 1712 (.002)   
Total 1727    

Note. Mean square error enclosed in parentheses. 
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Figure 1. Mean Type I error rate by correlation and bootstrapping procedure. Reference line indicates the 
nominal alpha rate of .05. 
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Table 3. Interval Bias Averaged Across All Distributional Conditions 
 

 n = 20  n = 50 n = 100  n = 250 
         r rz rw rpb  r rz rw rpb  r rz rw rpb   r rz rw rpb 

ρ = 0                   
          Percentile .33 .33 .30 .31  .24 .24 .22 .22 .17 .17 .16 .16  .11 .11 .10 .10 
          Adjusted .36 .36 .35 .34  .24 .24 .23 .23 .17 .17 .16 .16  .11 .11 .10 .10 
          BC .32 .32 .31 .31  .23 .23 .22 .22 .16 .16 .16 .16  .11 .11 .10 .10 
          BCa .34 .33 .31 .31  .24 .24 .22 .22 .17 .17 .16 .16  .11 .11 .10 .10 
ρ = .4                   
          Percentile .36 .36 .33 .33  .24 .24 .20 .20 .21 .21 .15 .15  .15 .15 .10 .09 
          Adjusted .38 .38 .37 .37  .24 .24 .21 .21 .21 .21 .15 .15  .15 .15 .10 .09 
          BC .36 .36 .33 .32  .24 .24 .21 .20 .21 .21 .15 .14  .16 .16 .10 .10 
          BCa .38 .37 .33 .33  .26 .25 .21 .20 .23 .23 .15 .15  .17 .17 .10 .10 
ρ = .8                   
          Percentile .26 .26 .25 .23  .17 .17 .14 .13 .13 .13 .09 .08  .10 .10 .06 .05 
          Adjusted .31 .31 .31 .30  .17 .17 .15 .15 .13 .13 .09 .09  .10 .10 .06 .06 
          BC .26 .26 .28 .24  .17 .17 .14 .14 .14 .14 .09 .09  .11 .11 .06 .06 
          BCa .28 .28 .28 .25  .18 .18 .15 .15  .15 .15 .09 .09   .12 .12 .06 .06 

 
Table 4. Analysis of Variance for Bias by Correlation and Bootstrapping Procedure 

 
  Source df F p η2 

Model   15  3.497 <.001 .030 
CORR    3 15.558 <.001 .026 
BOOT    3  1.551  .199 .003 
CORR * BOOT    9   .125  .999 .001 
Error 1712   (.010)   
Total 1727    
Note. Mean square error enclosed in parentheses. 
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Figure 2. Mean bias by correlation and bootstrapping procedure. 
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Table 5. Confidence Interval Ratios Averaged Across All Distributional Conditions 
 
  n = 20  n = 50  n = 100  n = 250 
  r rz rw rpb  r rz rw rpb r rz rw rpb  r rz rw rpb 

ρ = 0  
   Percentile .91 .91 1.11 1.02  .91 .91 1.04 1.00 .92 .92 1.03 1.00  .93 .93 1.01 .99 
   Adjusted .98 .98 1.20 1.10  .94 .94 1.07 1.03 .94 .94 1.04 1.02  .94 .94 1.01 1.00 
   BC .92 .92 1.11 1.02  .91 .91 1.04 1.00 .92 .92 1.03 1.00  .93 .93 1.01 .99 
   BCa .92 .92 1.11 1.02  .92 .92 1.04 1.00 .93 .93 1.02 1.00  .94 .94 1.01 .99 
ρ = .4  
   Percentile .84 .84 1.09 1.00  .84 .84 1.04 .99 .92 .92 1.03 1.00  .86 .86 1.01 1.00 
   Adjusted .91 .91 1.17 1.08  .86 .86 1.07 1.02 .93 .93 1.04 1.02  .87 .87 1.02 1.00 
   BC .86 .86 1.11 1.02  .84 .84 1.05 1.00 .91 .91 1.02 1.00  .86 .86 1.01 1.00 
   BCa .85 .86 1.11 1.02  .84 .84 1.05 1.01 .92 .92 1.03 1.00  .86 .86 1.01 1.00 
ρ = .8  
   Percentile .81 .81 1.08 .98  .85 .85 1.05 1.02 .81 .81 1.00 .98  .84 .84 1.01 1.00 
   Adjusted .87 .87 1.16 1.06  .88 .88 1.08 1.05 .83 .83 1.01 .99  .84 .84 1.01 1.00 
   BC .85 .85 1.17 1.04  .87 .87 1.08 1.04 .82 .82 1.01 .99  .84 .84 1.01 1.00 
   BCa .83 .86 1.16 1.05   .85 .87 1.10 1.06  .81 .82 1.02 1.01   .84 .85 1.01 1.01 
Note: Ratios greater than 1.0 indicate a bootstrap-estimated interval wider than the “true” interval, and 
conversely. 
 

Under a few conditions, the BC and 
ordinary percentile procedures procured slightly 
more accurate intervals than did the BCa. In 
addition, the adjusted bootstrap intervals were, 
by and large, unacceptable, regardless of the 
robust measure under examination. 

Regarding the width of the estimated 
intervals (see Table 5), no bootstrapping 
procedure clearly bettered the others. For small 
sample size conditions the adjusted bootstrap 
averaged relatively wider intervals. This 
widening effect improved accuracy for the 
narrow r- and rz-generated intervals, but 

penalized rw and rpb. The BCa intervals 
frequently ran short, the BC intervals shorter 
still, and the percentile bootstrap the shortest of 
the four. These trends were slight and not 
unexpected (e.g., it is widely known that the 
percentile bootstrap tends to produce narrow 
intervals). 

 
Comparisons Among Correlations 

Confidence intervals formed for rw and 
rpb generally outperformed those for r and rz for 
both Type I error rate and bias. Although the 
present paper does not depict the data 
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disaggregated by distributional shape, 
predictable results surfaced. Under normality all 
four correlations produced similar Type I error 
rates, although the Pearson r and its transform 
saw slightly lower levels of bias, at least under 
small sample conditions. However, as 
distributional shape diverged from normality or 
included contaminated or mixed distributions, 
the robust correlations surpassed r. As an aside, 
the bias index generally produced neater, more 
theoretically consistent results than did Type I 
error rate. This is probably due to the 
dichotomous nature of the latter, that is, a given 
interval either does or does not enclose the 
parameter of interest and cause a Type I error, 
whereas bias is measured on the more sensitive 
ratio scale of measurement. 

Regarding interval width, r and its 
transform consistently underestimated the “true” 
endpoints, more so under non-normal 
conditions. At times, such intervals were little 
more than half the “true” width. Bootstrapped 
confidence intervals for the percentage bend 
correlation closely mimicked the “true” intervals 
in almost every instance, and intervals for the 
Winsorized correlation tended to run slightly 
wide. 
 

Conclusion 
 
This study confirmed that the Winsorized and 
percentage bend correlations are useful 
alternatives to the Pearson correlation and are 
preferred when resilience to distributional non-
normality is needed. Results for three of the four 
comparative indices (efficiency was virtually a 
constant) confirmed the robustness of the two 
robust measures under non-normal, mixed, and 
contaminated distributional conditions, with 
neither outperforming the other. The percentage 
bend and Winsorized correlations reduced bias, 
more accurately reflected theoretical Type I 
error probabilities, and more faithfully 
reproduced the width of true (Monte Carlo 
simulated) intervals. The robust measures 
compared favorably to r even under the bivariate 
normal conditions.  
 Interestingly, across a wide range of 
simulation conditions the four bootstrapping 
procedures achieved roughly equivalent 
outcomes as applied to either robust correlation. 
The complex BC and BCa procedures failed to 
offer sizeable improvements in interval accuracy 

over the percentile bootstrap, and the “adjusted” 
bootstrap may have even inflated bias and Type 
I error rate. While this finding may be 
interpreted as disappointing because the more 
elaborate procedures did not offer increased 
accuracy, researchers can be more confident that 
the ordinary percentile bootstrap is capable of 
delivering relatively precise confidence intervals 
for these robust measures. 

It may be that the more complicated 
procedures did not surpass the percentile 
bootstrap due to the technical specifications of 
the simulation. The original study design 
entailed drawing 1,000 samples for each 
condition, but this number was reduced to 100 
given excessive computational demands. Even 
though the goal in this component of the 
simulation procedure is not to fully reproduce a 
sampling distribution, more samples may be 
necessary to achieve stable asymptotic 
dynamics. Similarly, the number of bootstrap 
samples had to be reduced considerably (e.g., 
setting B to 3,000 produced only 25 samples in 
eight hours due to the large number of simulated 
conditions and the involved calculations for rpb). 
However, for this simulation component, the 
objective is indeed to model a theoretical 
sampling distribution, ( )θF , via a bootstrapped 
sampling distribution, ( )*ˆˆ θF . Five hundred 
bootstrap samples may be sufficient for 
estimating standard errors (Efron, 1987; Efron & 
Tibshirani, 1993; but cf. Booth & Sarkar, 1998), 
but not for forming tight confidence bands 
(Lunneborg, 2000). Follow-up studies should 
increase these quantities if possible. 

The study also revealed that Fisher’s 
transformation of r did not appreciably improve 
either Type I error rate or bias. When 
bootstrapping the Pearson correlation, it seems 
that the r-to-z transformation merely increases 
computational time without concomitantly 
affecting accuracy, as supported by Seivers 
(1996) in his conclusions about rz. 

In sum, the robust measures may be 
recommended for general use when it is desired 
to quantify the linear association underlying the 
majority of the sample observations, while 
excluding outliers. Each of the bootstrapping 
procedures reviewed maintained similar levels 
of accuracy and may be applied in estimating 
confidence intervals for the robust correlations, 
excepting the adjusted bootstrap. 
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We present SAS code to implement the method proposed by Brunner et al. (1997) for performing two-
way analysis of variance under variance heterogeneity. 
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Introduction 
 
Brunner et al. (1997) suggested a method to 
perform tests on main effects and interaction in 
two-way analysis of variance that allows 
variance heterogeneity. Their approach is to use 
a generalization of chi-square approximations 
dating back to Patnaik (1949) and Box (1954). 
Their statistic is identical to the classical 
ANOVA F-statistic, and thus their method can 
be regarded as a robust extension of the classical 
ANOVA to heteroscedastic designs. They 
recommend that their method should always be 
preferred (even in the homoscedastic case) to the 
classical ANOVA. Richter and Payton (2003) 
found that the performance of their statistic 
compares favorably to that of the usual ANOVA 
F-statistic for sample sizes of at least n = 7 per 
factor combination. 

In this article, we present a SAS 
program (SAS Institute, Cary, N.C.) for 
implementing the Brunner et al. (1997) method. 
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Brunner Method 
The method of Brunner et al. (1997) is a 

small sample adjustment to the well-known 
Wald statistic, which permits heterogeneous 
variance but is known to have inflated Type I 
error rates for small sample sizes. Consider a 
two-way layout with a levels of factor A and b 
levels of factor B. Assume a set of independent 
random variables 
 

2( , ), 1,..., .ij i iX N i abµ σ =∼  

Let ( )1 2, ,..., abµ µ µ ′=µ  denote the vector 
containing the a b• population means. Then the 
hypotheses of no main effects and interaction 
can be written as 
 

0 ( ) : 0AH A =M µ  

0 ( ) : 0BH B =M µ  

0 ( ) : 0ABH AB =M µ , 
where 

1
A a bb
= ⊗M P J  

1
B a ba
= ⊗M J P  

1 .AB a bb
= ⊗M P J  
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Here 
1

c c cc
= −P I J , where cI is a c c×  identity 

matrix, cJ  a c c×  matrix of 1’s, and the symbol 
⊗  represents the Kronecker product of the 
matrices. The vector of observed cell means is 

denoted by ( )1,..., abX X ′=X  and the estimated 

covariance matrix is given by 
22

1

1

ˆ ,..., ab
N

ab

SSN diag
n n

⎧ ⎫
= • ⎨ ⎬

⎩ ⎭
S , where 2

iS is the 

ith sample variance and 
1

ab

i
i

N n
=

=∑ . 

 For a complete cross-classification, the 
test statistic is 
 

( ) ( )1 ˆ
1 N

NFB
tr

n

′•
=

−

X MX

S
, 

 
which has an approximate F distribution with 
 

( )
( )

( )

2

2
1 ˆ
1

ˆ ˆ

N

num
N N

tr
n

f
tr

⎡ ⎤• ⎣ ⎦−
=

S

MS MS
 

 
numerator and 
 

( )
( )

2

2

ˆ

ˆ
N

den
N

tr
f

tr

⎡ ⎤
⎣ ⎦=

S

S Λ
 

 
denominator degrees of freedom, where  
 

1

1 1,...,
1 1ab

diag
n n

⎧ ⎫
= ⎨ ⎬− −⎩ ⎭

Λ  

 
(Brunner, 1997). 
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Appendix 
 
The following program can be used to perform the FB test described above. 
 
/* Program to compute unadjusted and Box-adjusted F-ratios 
and p-values for a two-way layout. */ 
 
data rcht; 
input a b RESP @@; 
datalines; 
<data> 
; 
proc sort; 
by a b; 
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/* Run Proc Mixed to calculate variances */   
proc mixed data=rcht; class a b; 
model RESP=a|b; 
repeated/type=un(1) group=a*b; 
 
/* Create data sets for covariances, means and class levels for input 
   to Proc IML */ 
ods listing exclude covparms; ods output covparms=tempcov; 
ods listing exclude classlevels; ods output classlevels=levels; 
ods listing exclude dimensions; ods output dimensions=sizes; 
 
/* Suppress printing of Proc Mixed tables */ 
ods listing exclude fitstatistics;  
ods listing exclude reml;  
ods listing exclude ConvergenceStatus; 
ods listing exclude IterHistory; 
ods listing exclude lrt; 
ods listing exclude modelinfo; 
ods listing exclude tests3; 
 
/* Use Proc GLM to calculate and output Type III F-statistics */ 
proc glm data = rcht noprint outstat=fstats; 
class a b; model RESP=a|b/ss3; run; 
 
/* Use Proc Means to calculate and output cell means and sample sizes 
*/ 
proc means data=rcht noprint; 
var RESP; by a b; 
output mean=means n=n out=tempss; 
 
/* Begin Proc IML to calculate adjusted df and p-values */ 
proc iml; 
 
/* Create matrices from data sets created above */ 
use levels; 
read point 1 var {levels} into nla; 
read point 2 var {levels} into nlb; use sizes; 
read point 1 var {value} into parms; 
read point 8 var {value} into nobs; use tempss; 
read all var {n} into ni; use tempcov; 
read all var {estimate} into tsighat; 
sighat=diag(tsighat); 
do i=1 to parms; 
  sighat[i,i]=sighat[i,i]/ni[i]; 
end; 
shat=nobs*sighat; use tempss; 
read all var {means} into Xbar; 
results=j(3,4,0); use fstats; 
read point 2 var {F} into FHA; 
read point 3 var {F} into FHB; 
read point 4 var {F} into FHAB; 
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read point 2 var {df} into dfa; 
read point 3 var {df} into dfb; 
read point 4 var {df} into dfAB; 
read point 1 var {df} into dfe; 
RESULTS[1,1]=FHA; 
RESULTS[2,1]=FHB; 
RESULTS[3,1]=FHAB; 
 
/* Calculations for Box-type adjustment */ 
MA=(i(nla)-(1/nla)*j(nla))@(1/nlb*j(nlb)); 
DMA=diag(MA); 
denA=trace(DMA*Shat); 
dmas=dma*shat; 
QA=nobs*Xbar`*MA*Xbar; 
FNA=QA/denA; 
RESULTS[1,3]=FNA; 
 
MB=((1/nla)*j(nla))@(i(nlb)-(1/nlb)*j(nlb)); 
DMB=diag(MB); 
denb=trace(DMb*Shat); 
Qb=nobs*Xbar`*Mb*Xbar; 
FNB=Qb/denb; 
RESULTS[2,3]=FNB; 
 
MAB=(i(nla)-(1/nla)*j(nla))@(i(nlb)-(1/nlb)*j(nlb)); 
DMAB=diag(MAB); 
denAb=trace(DMAb*Shat); 
QAb=nobs*Xbar`*MAb*Xbar; 
FNAB=QAb/denAb; 
RESULTS[3,3]=FNAB; 
Lambda=DIAG(1/NI); 
 
/* Calculate adjusted df */ 
fA=((trace(DMA*Shat))**2)/(trace((MA*Shat)*(MA*Shat))); 
foA=(trace(DMA*Shat))**2/(trace(DMA**2*Shat**2*Lambda)); 
fB=((trace(DMB*Shat))**2)/(trace((MB*Shat)*(MB*Shat))); 
foB=(trace(DMB*Shat))**2/(trace(DMB**2*Shat**2*Lambda)); 
fAB=((trace(DMAB*Shat))**2)/(trace((MAB*Shat)*(MAB*Shat))); 
foAB=(trace(DMAB*Shat))**2/(trace(DMAB**2*Shat**2*Lambda)); 
 
/* Calculate p-values */ 
adjpvalA=1-probf(FnA,fA,foA); 
RESULTS[1,4]=ADJPVALA; 
adjpvalB=1-probf(FnB,fB,foB); 
RESULTS[2,4]=ADJPVALB; 
adjpvalAB=1-probf(FnAB,fAB,foAB); 
RESULTS[3,4]=ADJPVALAB; 
pvala=1-probf(fHa,dfa,dfe); 
RESULTS[1,2]=PVALA; 
pvalb=1-probf(fHb,dfb,dfe); 
RESULTS[2,2]=PVALB; 
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pvalab=1-probf(fHab,dfab,dfe); 
RESULTS[3,2]=PVALAB; 
 
/* Print results */ 
headings={'      ANOVA F' '     P-value' '     Adjusted F' '     P-
value'}; 
EFFECT={A,B,AB}; mattrib RESULTS colname=HEADINGS             
FORMAT=7.3 label='Results'; 
print effect RESULTS; 
 
quit; 
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Expanding on past research, this study provides researchers with a detailed table for use in meta-analytic 
applications when engaged in assorted examinations of various r-related statistics, such as Kendall’s tau 
(τ) and Cohen’s d, that estimate the magnitude of experimental or observational effect. A program to 
convert from the lesser-used tau coefficient to other effect size indices when conducting correlational or 
meta-analytic analyses is presented. 
 
Key words: Effect size, meta-analysis 
 
 

Introduction 
 
There is a heightened effort within the social and 
behavioral sciences to report effect sizes with 
research findings (APA, 2001; Henson & Smith, 
2000; Knapp, 1998). Effect sizes show the 
strength and magnitude of a relationship and 
account for the total variance of an outcome. 
The American Psychological Association (APA) 
encouraged recently, “Always provide some 
effect size estimate when reporting a p value” 
(Wilkinson & The APA Task Force on 
Statistical Inference, 1999, p. 599). An analysis 
of effect sizes allows researchers to evaluate the 
importance of the result and not just the 
probability of the result (Kirk, 1996; Shaver, 
1985). 

Furthermore, effect sizes fall into two 
categories: d and r. The d group encompasses 
measures of effect size in terms of mean 
difference and standardized mean difference. 
Cohen (1988) defined the values of effect sizes 
for this group as small d = .20, medium d = .50, 
and large d = .80. 
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Gabel, DeKalb, IL 60115, 815-753-7886. E-mail 
him at: dawalker@niu.edu. 
 
 

The r group can be considered as based on the 
correlation between treatment and result (Levin, 
1994). For this group, “Effect size is generally 
reported as some proportion of the total variance 
accounted for by a given effect” (Stewart, 2000, 
p. 687). Cohen (1988) suggested that values of 
.01, .06, and .14 serve as indicators of small, 
medium, and large effect sizes for this group. 
However, it is at the discretion of the researcher 
to note the context in which small, medium, and 
large effects are being defined when using d and 
r related indices. 

A review of the literature indicated that 
researchers have discussed the merits, or lack 
thereof, of employing correlation coefficients, 
such as Kendall’s tau (τ), to assist in conducting 
meta-analytic studies or other forms of 
correlational and/or experimental analyses 
(Cooper & Hedges, 1994; Ferguson & Takane, 
1989; Gibbons, 1985; Gilpin, 1993; Roberts & 
Kunst, 1990; Smithson, 2001; Wolf, 1987). 
Indeed, the reporting of tau in research studies 
has not been as prevalent as found with 
Spearman’s rho (ρ) or Pearson’s r. However, tau 
has been emphasized recently as a substitute for 
r in various research contexts. For instance, 
Rupinski and Dunlap (1996) looked at the 
accuracy of formulas for estimating r from tau. 
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Methodology 
Purpose 

Tables for transforming correlation 
coefficients, such as Pearson’s r to Spearman’s 
rho, have been produced in the recent past 
(Gilpin, 1993; Strahan, 1982). Expanding upon 
Gilpin and Strahan’s research, this study will 
provide researchers with a detailed table for use 
in meta-analytic applications when engaged in 
assorted examinations of various r-related 
statistics, such as Fisher’s Zr and Cohen’s d, that 
estimate the magnitude of experimental or 
observational effect. In addition, the table will 
be expanded to measure values in increments of 
.001 of a percent from .001 to 1.000, add more 
commonly utilized effect size variants of r not 
found in the original, and, most importantly, 
provide SPSS syntax to convert from the lesser-
used tau coefficient to other effect size indices 
when conducting correlational or meta-analytic 
analyses. 
 
Assumptions 

This research study is not intended to be 
an exhaustive study of effect sizes, but serves as 
a prologue to impart contextual reference to the 
internal matrix table being presented. Also, it is 
presupposed that researchers understand that tau 
and rho apply distinct metrics, which means that 
they cannot be likened to one another due to a 
great difference between their absolute values 
(cf. Kendall, 1970; Strahan, 1982). As noted by 
researchers (Kendall, 1970; Gilpin, 1993), as the 
values of τ and ρ increase, their numerical 
similitude decreases greatly. The same trend 
holds for these two correlation coefficients’ 
squared indices, where “τ2 does not reflect at all 
adequately the proportion of shared variance...” 
(Strahan, 1982, p. 764). 

A further assumption is that the table 
produced by means of this procedure reflects 
accurate values when a normal distribution is 
present, as well as a relatively large sample size. 
Also, the true values of the squared indices will 
be non-negative and the non-squared index 
values are symmetrical (i.e., τ < 0), thus 
remaining the same numerically when negative. 
 
 

 
 

Results 
 
In the accompanying SPSS data set, we are 
given a value for tau ranging from .001 to 1.000. 
With a presented value of tau, the table that 
ensues can be created in total as an internal 
matrix via the SPSS syntax program provided in 
Appendix A or as individual, selected conditions 
by way of the subsequent formulas. 

With a presented value of tau, we can 
calculate a Pearson’s r using Kendall’s formula 
(1970, p. 126). 
 

r = sin (.5 πτ)                       (1) 
 
 

COMPUTE r=SIN (3.141592654*τ*.5). 
EXECUTE.  
 

Further, with a known value for τ and r, 
we can compute a Spearman’s rho statistic using 
Gilpin’s formula (1993, p. 91), 
 

ρ = 3[τ sin-1 (r/2)]/sin-1 r               (2) 
 
COMPUTE p=3*τ*ARSIN(r/2)/ARSIN(r). 
EXECUTE. 
 

To compute a Fisher’s Zr statistic from a 
given value of r, derived from tau, we can apply 
the following formula (Rosenthal, 1994, p. 237). 
 

Zr = ½ loge [(1 + r) / (1 – r)]              (3) 
 
COMPUTE z = .5*LN((1+r)/(1-r)). 
EXECUTE. 
 

To calculate a Cohen’s d from a known 
r, derived from tau, the subsequent formula was 
employed (Rosenthal, 1994, p. 239). Note that 
for small to medium sample sizes, this formula 
will yield positively biased estimates. To correct 
for this, if presented with this situation, the 
expression should be multiplied by the factor 
[(n-1) / n].5 
 

d = 2r/[(1-r2).5]                      (4) 
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COMPUTE  d = 2*r/SQRT(1-r**2). 
EXECUTE. 
 

To calculate a Cohen’s f statistic from a 
given d, derived from tau, the ensuing formula 
was utilized (Cohen, 1988, p.276). 
 

f = ½d                             (5) 
 
COMPUTE  f = .5*d. 
EXECUTE. 
 

To determine the amount of variance 
accounted for with correlation coefficients, such 
as r, ρ, or τ, we square their value, which yields 
the extent of the effect in terms of “how much of 
the variability in the dependent variable(s) is 
associated with the variation in the independent 
variable(s)” (Snyder & Lawson, 1993, p. 338). A 
caution should be noted, however, that when 
using squared indices to determine effect size, a 
loss of directionality is an issue and also the 
power affiliated with these indices is often 
distorted when reporting research findings 
(Rosenthal, 1994). 

With r-related squared indices, it should 
be mentioned that eta-squared (η2) and r2 are 
identical numerically and r2 and f2 are related 
monotonically. Cohen (1994) determined that η2 
was a population correlation ratio that could be 
“... computed on samples and its population 
value estimated therefrom” (p. 281). Effect size 
estimates of this order have been called epsilon-
squared (ξ2) and omega-squared (ω2). Thus, this 
type of effect size tends to measure the 
proportion of variance in the population due to a 
particular effect. Cohen’s formula for η2 (1994, 
p. 281) can be used if r2 is not preferred, where 
f2 = d2/4. 
 

η2 = f2/ (1 + f2)                      (6) 
 
COMPUTE  eta2 = f**2/(1+f**2). 
EXECUTE. 
 

Conclusion 
 
Methodological appropriateness is a consequent-
ial area within research that should be nearly 
perfect. Concepts such as effect size need to be 

addressed correctly in a research study to make 
reliable, justifiable decisions and have these 
decisions, based on the statistics of study, 
authenticated by others. Converting from the 
lesser-used tau coefficient to other effect size 
indices, the presented SPSS syntax program can 
create an internal matrix table and new data set 
to assist researchers in determining the size of an 
effect for commonly utilized r-related indices 
when engaging in correlational and meta-
analytic analyses. 
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Appendix 
 

Notes: To produce an internal matrix output and a complete table as a new data set in SPSS, access the 
embedded Tau Data Set and then run Tau Syntax. Create the data set in SPSS with a variable (1 column 
by 1000 rows) containing the values .001 - 1.000 (.001), or contact the author to obtain copies of the data 
set and the syntax. An example of the tabled values appears on the following page. 
 
 
compute r = SIN(3.141592654 * t * .5). 
compute rs = 3 * t  *  ARSIN(r / 2) / ARSIN(r). 
compute zr = .5 * LN((1 + r) / (1 - r)). 
compute d = 2 * r / SQRT(1 - r ** 2). 
compute f = d*.5. 
compute r2 = r **2. 
compute f2 = d**2/4. 
compute eta2 = (f2) / (1 + f2). 
execute. 
* FINAL REPORTS *. 
FORMAT r to eta2 (f9.4). 
VARIABLE LABELS t 'Tau' /r 'Pearsons r' /rs 'Spearmans Rank' /zr 'Fishers 
z' /d 'Cohens d' /f 'f (Related to d as an SD of Standardized Means when k 
= 2 and n = n)'/ r2 'R Square' / eta2 'Eta Square'. 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
 /VARIABLES=t r rs zr 
 /TITLE "Proportion of Variance-Accounted-For Effect Sizes: Measures of 
Relationship". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
 /VARIABLES=d f  /TITLE "Standardized Mean Difference Effect Sizes". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
 /VARIABLES= r2 eta2  
 /TITLE "Proportion of Variance-Accounted-For Effect Sizes: Squared 
Indices". 
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An Example Of Tabled Values 
 
             tau               r              p             Zr              d              f             R2            eta2 

0.001 0.0016 0.0015 0.0016 0.0031 0.0016 0.0000 0.0000
0.002 0.0031 0.0030 0.0031 0.0063 0.0031 0.0000 0.0000
0.003 0.0047 0.0045 0.0047 0.0094 0.0047 0.0000 0.0000
0.004 0.0063 0.0060 0.0063 0.0126 0.0063 0.0000 0.0000
0.005 0.0079 0.0075 0.0079 0.0157 0.0079 0.0001 0.0001
0.006 0.0094 0.0090 0.0094 0.0189 0.0094 0.0001 0.0001
0.007 0.0110 0.0105 0.0110 0.0220 0.0110 0.0001 0.0001
0.008 0.0126 0.0120 0.0126 0.0251 0.0126 0.0002 0.0002
0.009 0.0141 0.0135 0.0141 0.0283 0.0141 0.0002 0.0002
0.010 0.0157 0.0150 0.0157 0.0314 0.0157 0.0002 0.0002
0.011 0.0173 0.0165 0.0173 0.0346 0.0173 0.0003 0.0003
0.012 0.0188 0.0180 0.0189 0.0377 0.0189 0.0004 0.0004
0.013 0.0204 0.0195 0.0204 0.0408 0.0204 0.0004 0.0004
0.014 0.0220 0.0210 0.0220 0.0440 0.0220 0.0005 0.0005
0.015 0.0236 0.0225 0.0236 0.0471 0.0236 0.0006 0.0006
0.016 0.0251 0.0240 0.0251 0.0503 0.0251 0.0006 0.0006
0.017 0.0267 0.0255 0.0267 0.0534 0.0267 0.0007 0.0007
0.018 0.0283 0.0270 0.0283 0.0566 0.0283 0.0008 0.0008
0.019 0.0298 0.0285 0.0298 0.0597 0.0299 0.0009 0.0009
0.020 0.0314 0.0300 0.0314 0.0629 0.0314 0.0010 0.0010
0.021 0.0330 0.0315 0.0330 0.0660 0.0330 0.0011 0.0011
0.022 0.0346 0.0330 0.0346 0.0691 0.0346 0.0012 0.0012
0.023 0.0361 0.0345 0.0361 0.0723 0.0361 0.0013 0.0013
0.024 0.0377 0.0360 0.0377 0.0754 0.0377 0.0014 0.0014
0.025 0.0393 0.0375 0.0393 0.0786 0.0393 0.0015 0.0015
0.026 0.0408 0.0390 0.0409 0.0817 0.0409 0.0017 0.0017
0.027 0.0424 0.0405 0.0424 0.0849 0.0424 0.0018 0.0018
0.028 0.0440 0.0420 0.0440 0.0880 0.0440 0.0019 0.0019
0.029 0.0455 0.0435 0.0456 0.0912 0.0456 0.0021 0.0021
0.030 0.0471 0.0450 0.0471 0.0943 0.0472 0.0022 0.0022
0.031 0.0487 0.0465 0.0487 0.0975 0.0487 0.0024 0.0024
0.032 0.0502 0.0480 0.0503 0.1006 0.0503 0.0025 0.0025
0.033 0.0518 0.0495 0.0519 0.1038 0.0519 0.0027 0.0027
0.034 0.0534 0.0510 0.0534 0.1069 0.0535 0.0028 0.0028
0.035 0.0550 0.0525 0.0550 0.1101 0.0550 0.0030 0.0030
0.036 0.0565 0.0540 0.0566 0.1132 0.0566 0.0032 0.0032
0.037 0.0581 0.0555 0.0582 0.1164 0.0582 0.0034 0.0034
0.038 0.0597 0.0570 0.0597 0.1195 0.0598 0.0036 0.0036
0.039 0.0612 0.0585 0.0613 0.1227 0.0613 0.0037 0.0037
0.040 0.0628 0.0600 0.0629 0.1258 0.0629 0.0039 0.0039
0.041 0.0644 0.0615 0.0644 0.1290 0.0645 0.0041 0.0041
0.042 0.0659 0.0630 0.0660 0.1321 0.0661 0.0043 0.0043
0.043 0.0675 0.0645 0.0676 0.1353 0.0676 0.0046 0.0046
0.044 0.0691 0.0660 0.0692 0.1385 0.0692 0.0048 0.0048
0.045 0.0706 0.0675 0.0707 0.1416 0.0708 0.0050 0.0050
0.046 0.0722 0.0690 0.0723 0.1448 0.0724 0.0052 0.0052
0.047 0.0738 0.0705 0.0739 0.1479 0.0740 0.0054 0.0054
0.048 0.0753 0.0719 0.0755 0.1511 0.0755 0.0057 0.0057
0.049 0.0769 0.0734 0.0770 0.1542 0.0771 0.0059 0.0059
0.050 0.0785 0.0749 0.0786 0.1574 0.0787 0.0062 0.0062
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Letters To The Editor 
 

Additional Reflections On Significance Testing 
 
Knapp, T.R. (2002). Some reflections on 
significance testing. Journal of Modern Applied 
Statistical Methods, 1(2), 240-242. 
 
Knapp (2002) raised good points concerning 
significance testing. The bottom line, “If you 
have hypotheses to test … [then] test them”, not 
only makes sense, but in fact is an argument that 
I have often made when consulting, although the 
closest I have come to this issue in the literature 
is an allusion (Berger, 2000, Section 2.1). 

Yet, the support for this assertion, based 
on refuting the statement that confidence 
intervals provide identical or non-conflicting 
inferences with significance tests, might benefit 
from elaboration. In fact, the confidence interval 
constructed by Knapp (2002) is but one of 
several that could have been constructed. To 
argue that it is not the best among these is to 
argue that its discredit cannot serve as a 
simultaneous discredit to the class it purports to 
represent (albeit not very well). 

It would be a simple matter to construct 
a confidence region as precisely the set of 
parameter values which, when serving as the 
null hypothesis, lead to significance tests that 
cannot be rejected. With this definition of a 
confidence set (which often, but not always, 
reduces to a confidence interval), it is a 
tautology that the confidence set cannot 
contradict the results of the significance test. 
 Why, then, should hypotheses be tested? 
Because it is problematic to base policy 
decisions, that affect the public, on apparent 
directions of effect when the study is conducted 
by a party with a vested interest in the outcome.  
Requiring statistical significance is one 
reasonable way to operationalize the need for a 
preponderance of evidence, and raise the hurdle, 
in such a case.  If an alpha level were chosen 
strategically, perhaps based on safety, 
convenience, and cost in a medical study, then 
the results of the significance test of efficacy 
would correspond to the optimal decision.  
Clearly, there are other ways to raise the hurdle. 

Vance W. Berger, Biometry Research Group, 
National Cancer Institute. E-mail: 
vb78c@nih.gov. 
 

Reference 
 Berger, V.W. (2000). Pros and cons of 
permutation tests in clinical trials. Statistics in 
Medicine 19, 1319-1328. 
  

__________________ 
 

Predictor Importance In Multiple Regression 
 
Whittaker, T.A., Fouladi, R.T., & Williams, N.J. 
(2002). Determining predictor importance in 
multiple regression under varied correlational 
and distributional conditions. Journal of Modern 
Applied Statistical Methods, 1(2), 354-366. 
 
William Kruskal may have been right in noting 
that the relative importance of predictors in a 
regression analysis is meaningful to researchers, 
but I’m not so sure it should always be the case. 
 My principal concerns about the 
Whittaker et al. (2002) article are these: 
 
1. Multiple regression analysis is used for 
prediction and for causal analysis. When a user 
asks: “What are the most important variables in 
this regression?”, the answer depends upon the 
purpose of the analysis. Whittaker et al. failed to 
distinguish sufficiently between the two 
purposes and seem to advocate a “one size fits 
all” method for determining the relative 
importance of regressors (apparently Budescu’s 
dominance analysis, perhaps augmented by the 
Johnson index). 
 
2. I do not see the need for the Monte Carlo 
approach to the problem. In his text, Darlington 
(1990) provided a mathematical explanation for 
the equivalence with respect to rank-ordering of 
importance of their Methods 3 (the t statistics for 
the betas), 5 (the squared partials) and 6 (the 
squared semi-partials), along with two others 
(the p-values for the betas and the changes in R-
square from the reduced model with the variable 
deleted to the full model with the variable 
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included).  [They do cite Darlington (1968), but 
do not cite his later text.] On page 364 of their 
article they speculated as to why Methods 3, 5, 
and 6 “all performed identically”. Those three 
methods must perform identically. 
 As far as the other five methods are 
concerned, Method 1 (squared zero-order 
correlations, or unsquared zero-order 
correlations, for that matter) can be dismissed 
out of hand, because the other regressors are not 
statistically controlled.  
 I can’t see any reason why anyone 
would ever use Method 2 (the betas). For one 
thing, the betas aren't restricted to the -1 to +1 
range, so although they are standardized they are 
awkward to compare.  
 Method 4 (the beta-times-r products) has 
been criticized in the past (see, for example, 
Darlington, 1968). The fact that those products 
sum to the over-all R-square is a poor basis for 
variance partitioning and for the determination 
of relative importance (some of those products 
can even be negative--for suppressor variables). 
 That leaves Methods 7 (Budescu) and 8 
(Johnson). I have no doubt that similar, non-
Monte Carlo-based, arguments could be made 
regarding those methods for determining the 
relative importance of regressors, but even if 
such arguments were necessary, Whittaker et al. 
(2002) were interested in comparing all eight 
methods, not just those two. 
 
3. Two different meanings of the word 
“dominance” was confusing. One of the 
meanings, “dominance analysis”, is associated 
with Budescu’s method. The other meaning, 
identifying the “dominant predictor” (p. 358), 
was apparently the criterion for determining 
which methods were best. When I first read the 
article  I  thought  that  the  Budescu method was 
 
 
 
 
 
 
 
 
 
 
 

used as one of the methods AND as the 
goodness criterion, which would of course 
“stack the deck” in its favor. The confusion with 
the two meanings, however, remains. 
 
 I have a couple of other lesser concerns: 
 
1. Their definition of “the dominant predictor” is 
a bit strange. In what sense is an independent 
variable that correlates .40 - .60 with the 
dependent variable dominant over other 
independent variables that correlate .30 with the 
dependent variable? 
 
2. Their “Nursing Facility Consumer 
Satisfaction Survey” example is a poor example. 
The data are for seven-point Likert-type scales 
with ridiculously high means and there is an 
inherent regressor/regressand contamination 
since the three predictors are concerned with 
specific satisfactions and the dependent variable 
is over-all satisfaction. 
 
Thomas R. Knapp, Professor Emeritus, 
University of Rochester & The Ohio State 
University. 
  
Note: I would like to thank Richard Darlington 
for his very helpful suggestions regarding an 
earlier version of this critique. 
 

References 
 
 Darlington, R.B. (1968). Multiple 
regression in psychological research and 
practice. Psychological Bulletin, 69(3), 161-182. 
 Darlington, R.B. (1990). Regression and 
linear models. New York: McGraw-Hill. 
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Statistical Pronouncements II 
 
 “There are some who appear to pride 
themselves on their absence of knowledge of 
mathematics. I never understood why it should 
be a matter of pride” - Arthur L. Bowley, (1934, 
Discussion, The Journal of the Royal Statistical 
Society, 97, p. 607). 
 

“Do we know more than was known to 
Todhunter?” - Arthur L. Bowley, (ibid, p. 609). 
 
 “To try and state mathematics without 
either chalk or with a minimum of chalk [is] 
perhaps a hopeless task” - L. Isserlis (ibid, p. 
614). 
 
 “The advantage of excluding by severe 
mathematical requirements many quacks is 
bought too dear if it shuts out a single John 
Graunt” - Major Greenwood (1939, Journal of 
the Royal Statistical Society, 102, p. 552). 
 
 “Many important applications of 
statistics, while employing elementary statistical 
techniques, demand thorough knowledge and 
long experience in the applied field” - William 
G. Cochran (1945, Training at the professional 
level for statistical work in agriculture and 
biology, Journal of the American Statistical 
Association, 40, p. 163). 
 
 “Youth is the time to learn 
mathematics” - William G. Cochran (1946, 
Graduate training in statistics, American 
Mathematics Monthly, 53(4), p. 199). 
 
 “Statistics depends primarily on 
mathematics and mathematicians for its future 
development…Such mathematicians need not be 
regarded as lost or strayed from the fold” - 
William G. Cochran (ibid, p. 199). 
 
 “The missing link is that we do not 
know which of the theoretical non-normal 
distributions that have been studied are typical 
of the error distributions that turn up in practice” 
- William G. Cochran (1947, Some 
consequences when the assumptions for the 
analysis of variance are not satisfied, Biometrics, 
3(1), p. 25). 

“No valid sampling error formula exists 
unless the selection of the sample [is] through 
the use of an objective method of 
randomization” - William G. Cochran (1947, 
Recent developments in sampling theory in the 
United States, Proceedings of the International 
Statistical Institute, 3(A), p. 41). 
 
 “The student should be warned that he 
cannot expect miracles to be wrought by the use 
of statistical tools” - Quinn McNemar (1949, 
Psychological statistics, Wiley, p. 3.) 
 

“Much ingenuity is shown by 
investigators in concocting possible explanations 
of the discrepancies among the results of 
different workers” - William G. Cochran (1950, 
The present status of biometry, Bulletin of the 
International Statistical Institute, 32(2), p. 133). 
 
 “Any estimate made from a sample is 
subject to error” - William G. Cochran (1951, 
Modern methods in the sampling of human 
populations, American Journal of Public Health, 
41(6), p. 647). 
 
 “The principle that governs modern 
sampling practice is the familiar economic 
maxim that one should get the most for one’s 
money” - William G. Cochran (ibid, p. 648). 
 
 “Any theory is at best approximately 
true, but nevertheless, if we are going to reject a 
theory, we do so because it does not fit the data 
we have, not because it would not fit a much 
larger sample of data that we do not have” - 
William G. Cochran (ibid, p. 336). 
 
 “Sampling is all too often taken far too 
lightly” - William G. Cochran, (1954, Principles 
of sampling, Journal of the American Statistical 
Association, 49, p. 13). 
 

“[There are] unwarranted shotgun 
marriages between the quantitatively 
unsophisticated idea of sample as ‘what you get 
by grabbing a handful’ and the mathematically 
precise notion of a “simple random sample’” - 
William G. Cochran, (ibid, p. 13). 
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 “The scientist tends to think of seeing a 
statistician when he has some problem… mostly 
when something had gone wrong with the 
experiment or survey… As a result, 
statisticians… see a sorry collection of the 
wrecks of research projects” - William G. 
Cochran, (1955, Research techniques in the 
study of human beings, Milbank Memorial Fund 
Quarterly, 33(2), p. 122). 
 
 “In statistical training centers, 
something is done to teach young statisticians 
how to get along with scientists” - William G. 
Cochran (ibid, p. 123). 
 
 “The statistician is a poor marriage risk, 
and may be suffering from marital strain” - 
William G. Cochran (ibid, p. 124). 
 
 “The ability to do experiments is one of 
the most powerful weapons man has for making 
advances in his understanding of the world” - 
William G. Cochran (1957, The philosophy 
underlying the design of experiments, 
Proceedings of the 1st Conference on the Design 
of Experiments in Army Research, Development 
and Testing, p 1). 
 
 “All mathematical methods are 
oversimplifications” - William G. Cochran 
(1961, The role of mathematics in the medical 
sciences, New England Journal of Medicine, 
265, p. 176). 
 
 “Many of the standard results in 
theoretical statistics were obtained without 
encountering really difficult mathematics” - 
William G. Cochran (ibid, p. 230). 
 
 “Electronic machines… can free us from 
overdependence on the assumption of normality 
and from confinement to approximate linear 
solutions to nonlinear problems” - William G. 
Cochran (ibid, p. 232-232.) 
 
 “Nonparametric theory is elegant” - 
Jaroslav Hajek (1969. A course in 
nonparametric statistics, Holden-Day, preface.) 
  
 

 “As regard the rejection of observations 
[as outliers], I distrust any slick formal rule” - 
David J. Finney (1970, Discussion, Statistics in 
endocrinology, MIT Press, p. 72). 
 
 “Time is perhaps the most mysterious 
thing in a mysterious universe.” - Maurice 
Kendall (1976, Time-series, p. 1).  
 
 “The modern theory of statistics began 
with the realization that, although individuals 
might not behave deterministically, aggregates 
of individuals were themselves subjects to laws 
which could often be summarized in fairly 
simple mathematical terms” - Maurice Kendall 
(ibid, p. 4). 
 
 “Some data are not worth analyzing, 
even when we have the big guns of a 
mathematical arsenal ready for attack” - 
attributed to William G. Cochran by Frederick 
Mosteller in the Forward to Contribution to 
Statistics: William G. Cochran, Wiley, 1982, p. 
vii). 
 
 “There were just two qualifications for 
membership [in the national statistics society] - 
first you had to have $5 [and] second you had to 
be willing to give it to the society” - attributed to 
William G. Cochran by Frederick Mosteller 
(ibid, p. xi). 
 
 “You usually can’t follow papers at 
meetings” - Frederick Mosteller (Contribution to 
Statistics: William G. Cochran, 1982, p. xii). 
 

“It has been said that more time has 
been spent generating and testing random 
numbers than using them” - C. A. Whitney 
(1984, Generating and testing pseudo-random 
numbers, BYTE, October, 9(11), p. 128). 
 

“Someone told me that each equation I 
included in the book would halve the sales” - 
Stephen Hawkins (1988, A brief history of time: 
From the big bang to black holes, Bantam, p. 
vi.). 
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MANOVA*
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One-Way AOV
Planned Comparisons
Randomized Block AOV
New Repeated Measures AOV*
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Correlations (one or two)
Cox Regression*
Logistic Regression
Multiple Regression
Poisson Regression*
Intraclass Correlation
Linear Regression

Proportions
Chi-Square Test
Confidence Interval
Equivalence of McNemar*
Equivalence of Proportions
Fisher's Exact Test
Group Sequential Proportions
Matched Case-Control
McNemar Test
Odds Ratio Estimator
One-Stage Designs*
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Variances – 1 or 2

T Tests
Cluster Randomization
Confidence Intervals
Equivalence T Tests
Hotelling’s T-Squared*
Group Sequential T Tests
Mann-Whitney Test
One-Sample T-Tests
Paired T-Tests
Standard Deviation Estimator
Two-Sample T-Tests
Wilcoxon Test
Survival Analysis
Cox Regression*
Logrank Survival -Simple
Logrank Survival - Advanced*
Group Sequential - Survival
Post-Marketing Surveillance
ROC Curves – 1 or 2*

Group Sequential Tests
Alpha Spending Functions
Lan-DeMets Approach
Means
Proportions
Survival Curves
Equivalence
Means
Proportions
Correlated Proportions*
Miscellaneous Features
Automatic Graphics
Finite Population Corrections
Solves for any parameter
Text Summary
Unequal N's
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PASS comes with two manuals that contain
tutorials, examples, annotated output,
references, formulas, verification, and
complete instructions on each procedure.
And, if you cannot find an answer in the
manual, our free technical support staff
(which includes a PhD statistician) is
available.

System Requirements
PASS runs on Windows 95/98/ME/NT/
2000/XP with at least 32 megs of RAM and
30 megs of hard disk space.

PASS sells for as little as $449.95.
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PASS performs power analysis and
calculates sample sizes. Use it before
you begin a study to calculate an
appropriate sample size (it meets the
requirements of government agencies
that want technical justification of the
sample size you have used). Use it after
a study to determine if your sample size
was large enough. PASS calculates the
sample sizes necessary to perform all of
the statistical tests listed below.

A power analysis usually involves
several “what if” questions. PASS lets
you solve for power, sample size, effect
size, and alpha level. It automatically
creates appropriate tables and charts of
the results.
PASS is accurate. It has been
extensively verified using books and
reference articles. Proof of the
accuracy of each procedure is included
in the extensive documentation.

PASS is a standalone system. Although
it is integrated with NCSS, you do not
have to own NCSS to run it. You can use
it with any statistical software you want.

PASS Beats the Competition!
No other program calculates sample
sizes and power for as many different
statistical procedures as does PASS.
Specifying your input is easy, especially
with the online help and manual.

PASS automatically displays charts and
graphs along with numeric tables and
text summaries in a portable format that
is cut and paste compatible with all word
processors so you can easily include the
results in your proposal.

Choose PASS. It's more comprehensive,
easier-to-use, accurate, and less
expensive than any other sample size
program on the market.

Trial Copy Available
You can try out PASS by downloading it
from our website. This trial copy is
good for 30 days. We are sure you will
agree that it is the easiest and most
comprehensive power analysis and
sample size program available.

PASS 2002
Power Analysis and Sample Size Software from NCSS



PASS calculates sample sizes for...

PASS 2002 adds power analysis and sample size to your statistical toolbox

WHAT’S NEW IN PASS 2002?
Thirteen new procedures have been added
to PASS as well as a new home-base
window and a new Guide Me facility.

MANY NEW PROCEDURES
The new procedures include a new multi-
factor repeated measures program that
includes multivariate tests, Cox
proportional hazards regression, Poisson
regression, MANOVA, equivalence
testing when proportions are correlated,
multiple comparisons, ROC curves, and
Hotelling’s T-squared.

TEXT STATEMENTS
The text output translates the numeric
output into easy-to-understand
sentences. These statements may be
transferred directly into your grant
proposals and reports.

GRAPHICS
The creation of charts and graphs is
easy in PASS. These charts are easily
transferred into other programs such
as MS PowerPoint and MS Word.

NEW USER’S GUIDE II
A new, 250-page manual describes each new
procedure in detail. Each chapter contains
explanations, formulas, examples, and
accuracy verification.

The complete manual is stored in PDF
format on the CD so that you can read and
printout your own copy.
GUIDE ME
The new Guide Me facility makes it easy for
first time users to enter parameter values.
The program literally steps you through those
options that are necessary for the sample size
calculation.
NEW HOME BASE
A new home base window has been added just
for PASS users. This window helps you
select the appropriate program module.
COX REGRESSION
A new Cox regression procedure has been
added to perform power analysis and sample
size calculation for this important statistical
technique.
REPEATED MEASURES
A new repeated-measures analysis module
has been added that lets you analyze designs
with up to three grouping factors and up to
three repeated factors. The analysis includes
both the univariate F test and three common
multivariate tests including Wilks Lambda.
RECENT REVIEW
In a recent review, 17 of 19 reviewers
selected PASS as the program they would
recommend to their colleagues.
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My Payment Options:
___ Check enclosed
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___ Purchase order enclosed

Card Number
_______________________________________________Expires_______

Signature____________________________________________________
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Ship my PASS 2002 to:
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FOR FASTEST DELIVERY, ORDER ONLINE AT
WWW.NCSS.COM
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Announcing NCSS 2004 
Seventeen New Procedures 

NCSS 2004 is a new edition of our popular statistical NCSS package that adds seventeen new procedures. 
 

Meta-Analysis 
Procedures for combining studies 
measuring paired proportions, means, 
independent proportions, and hazard 
ratios are available. Plots include the 
forest plot, radial plot, and L’Abbe plot. 
Both fixed and random effects models 
are available for combining the results. 
 

Curve Fitting 
This procedure combines several of our 
curve fitting programs into one module. 
It adds many new models such as 
Michaelis-Menten. It analyzes curves 
from several groups. It compares fitted 
models across groups using computer-
intensive randomization tests. It 
computes bootstrap confidence intervals. 
 

Tolerance Intervals 
This procedure calculates one and two 
sided tolerance intervals using both 
distribution-free (nonparametric) 
methods and normal distribution 
(parametric) methods. Tolerance 
intervals are bounds between which a 
given percentage of a population falls. 
 

Comparative Histogram 
This procedure displays a comparative 
histogram created by interspersing or 
overlaying the individual histograms of 
two or more groups or variables. This 
allows the direct comparison of the 
distributions of several groups. 
 

Random Number Generator 
Matsumoto’s Mersenne Twister random 
number generator (cycle length > 
10**6000) has been implemented. 
 

Binary Diagnostic Tests 
Four new procedures provide the 
specialized analysis necessary for 
diagnostic testing with binary outcome 
data. These provide appropriate specificity 
and sensitivity output. Four experimental 
designs can be analyzed including 
independent or paired groups, comparison 
with a gold standard, and cluster 
randomized. 
 
ROC Curves 
This procedure generates both binormal 
and empirical (nonparametric) ROC 
curves. It computes comparative measures 
such as the whole, and partial, area under 
the ROC curve. It provides statistical tests 
comparing the AUC’s and partial AUC’s 
for paired and independent sample designs.  
 

Hybrid (Feedback) Model 
This new edition of our hybrid appraisal 
model fitting program includes several new 
optimization methods for calibrating 
parameters including a new genetic 
algorithm. Model specification is easier. 
Binary variables are automatically 
generated from class variables. 
 

New Procedures 
Two Independent Proportions 
Two Correlated Proportions 
One-Sample Binary Diagnostic Tests 
Two-Sample Binary Diagnostic Tests 
Paired-Sample Binary Diagnostic Tests 
Cluster Sample Binary Diagnostic Tests 
Meta-Analysis of Proportions 
Meta-Analysis of Correlated Proportions 
Meta-Analysis of Means 
Meta-Analysis of Hazard Ratios 
Curve Fitting 
Tolerance Intervals 
Comparative Histograms 
ROC Curves 
Elapsed Time Calculator 
T-Test from Means and SD’s 
Hybrid Appraisal (Feedback) Model 

Documentation 
The printed, 330-page manual, called 
NCSS User’s Guide V, is available for 
$29.95. An electronic (pdf) version of 
the manual is included on the distribution 
CD and in the Help system. 
 

Two Proportions 
Several new exact and asymptotic 
techniques were added for hypothesis 
testing (null, noninferiority, equivalence) 
and calculating confidence intervals for 
the difference, ratio, and odds ratio. 
Designs may be independent or paired. 
Methods include: Farrington & Manning, 
Gart & Nam, Conditional & 
Unconditional Exact, Wilson’s Score, 
Miettinen & Nurminen, and Chen. 
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Statistical Innovations Products 
Through a special arrangement with 
Statistical Innovations (S.I.), NCSS 
customers will receive $100 discounts on: 
  Latent GOLD - latent class modeling 
  SI-CHAID -  segmentation trees  
  GOLDMineR -  ordinal regression 

For demos and other info visit: 
www.statisticalinnovations.com 



 Please rush me the following products: 
Qty 
___ NCSS 2004 CD upgrade from NCSS 2001, $149.95 .................. $_____ 

___ NCSS 2004 User’s Guide V, $29.95............................................. $_____ 

___ NCSS 2004 CD, upgrade from earlier versions, $249.95........... $_____ 

___ NCSS 2004 Deluxe (CD and Printed Manuals), $599.95........... $_____ 

___ PASS 2002 Deluxe, $499.95 ......................................................... $_____ 

___ Latent Gold® from S.I., $995 - $100 NCSS Discount = $895..... $_____ 

___ GoldMineR® from S.I., $695 - $100 NCSS Discount = $595 ..... $_____ 

___ CHAID® Plus from S.I., $695 - $100 NCSS Discount = $595.... $_____ 

Approximate shipping--depends on which manuals are ordered (U.S: $10 
ground, $18 2-day, or $33 overnight) (Canada $24) (All other countries 
$10) (Add $5 U.S. or $40 International for any S.I. product) ........ $_____ 

 Total.......... $_____ 

TO PLACE YOUR ORDER 
CALL: (800) 898-6109 FAX: (801) 546-3907 

ONLINE: www.ncss.com 
MAIL: NCSS, 329 North 1000 East, Kaysville, UT 84037 

My Payment Option: 
___ Check enclosed 
___ Please charge my: __VISA   __ MasterCard ___Amex 
___ Purchase order attached___________________________  

Card Number ______________________________________Exp ________ 

Signature______________________________________________________ 

Telephone: 
(        ) ____________________________________________________ 

Email: 
____________________________________________________________ 

Ship to: 
NAME ________________________________________________________ 

ADDRESS ______________________________________________________ 

ADDRESS_________________________________________________________________________ 

ADDRESS_________________________________________________________________________ 

CITY _____________________________________________ STATE _________________________ 

ZIP/POSTAL CODE _________________________________COUNTRY ______________________ 

Analysis of Variance / T-Tests 
Analysis of Covariance 
Analysis of Variance 
Barlett Variance Test 
Crossover Design Analysis 
Factorial Design Analysis 
Friedman Test 
Geiser-Greenhouse Correction 
General Linear Models 
Mann-Whitney Test 
MANOVA 
Multiple Comparison Tests 
One-Way ANOVA 
Paired T-Tests 
Power Calculations 
Repeated Measures ANOVA 
T-Tests – One or Two Groups 
T-Tests – From Means & SD’s 
Wilcoxon Test 
 
Time Series Analysis 
ARIMA / Box - Jenkins 
Decomposition 
Exponential Smoothing 
Harmonic Analysis 
Holt - Winters 
Seasonal Analysis 
Spectral Analysis 
Trend Analysis 
 
*New Edition in 2004 
 

Regression / Correlation 
All-Possible Search 
Canonical Correlation 
Correlation Matrices 
Cox Regression 
Kendall’s Tau Correlation 
Linear Regression 
Logistic Regression 
Multiple Regression 
Nonlinear Regression 
PC Regression 
Poisson Regression 
Response-Surface 
Ridge Regression 
Robust Regression 
Stepwise Regression 
Spearman Correlation 
Variable Selection 
 
Quality Control 
Xbar-R Chart  
C, P, NP, U Charts 
Capability Analysis 
Cusum, EWMA Chart 
Individuals Chart 
Moving Average Chart 
Pareto Chart 
R & R Studies 
 

 

Plots / Graphs 
Bar Charts 
Box Plots 
Contour Plot 
Dot Plots 
Error Bar Charts 
Histograms 
Histograms: Combined* 
Percentile Plots 
Pie Charts 
Probability Plots 
ROC Curves* 
Scatter Plots 
Scatter Plot Matrix 
Surface Plots 
Violin Plots 
 
Experimental Designs 
Balanced Inc. Block 
Box-Behnken 
Central Composite 
D-Optimal Designs 
Fractional Factorial 
Latin Squares 
Placket-Burman 
Response Surface 
Screening 
Taguchi 
 

Survival / Reliability  
Accelerated Life Tests 
Cox Regression 
Cumulative Incidence 
Exponential Fitting 
Extreme-Value Fitting 
Hazard Rates 
Kaplan-Meier Curves 
Life-Table Analysis 
Lognormal Fitting 
Log-Rank Tests 
Probit Analysis 
Proportional-Hazards  
Reliability Analysis 
Survival Distributions 
Time Calculator* 
Weibull Analysis 

 
Multivariate Analysis 
Cluster Analysis 
Correspondence Analysis 
Discriminant Analysis 
Factor Analysis 
Hotelling’s T-Squared 
Item Analysis 
Item Response Analysis 
Loglinear Models 
MANOVA 
Multi-Way Tables 
Multidimensional Scaling 
Principal Components 

 

Curve Fitting  
Bootstrap C.I.’s* 
Built-In Models 
Group Fitting and Testing* 
Model Searching 
Nonlinear Regression 
Randomization Tests* 
Ratio of Polynomials 
User-Specified Models 

 
Miscellaneous 
Area Under Curve 
Bootstrapping 
Chi-Square Test 
Confidence Limits 
Cross Tabulation 
Data Screening 
Fisher’s Exact Test 
Frequency Distributions 
Mantel-Haenszel Test 
Nonparametric Tests 
Normality Tests 
Probability Calculator 
Proportion Tests 
Randomization Tests 
Tables of Means, Etc. 
Trimmed Means 
Univariate Statistics 

 

Statistical and Graphics Procedures Available in NCSS 2004 
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Meta-Analysis* 
Independent Proportions* 
Correlated Proportions* 
Hazard Ratios* 
Means* 
 
Binary Diagnostic Tests* 
One Sample* 
Two Samples* 
Paired Samples* 
Clustered Samples* 
 
Proportions 
Tolerance Intervals* 
Two Independent* 
Two Correlated* 
Exact Tests* 
Exact Confidence Intervals* 
Farrington-Manning* 
Fisher Exact Test 
Gart-Nam* Method 
McNemar Test 
Miettinen-Nurminen* 
Wilson’s Score* Method 
Equivalence Tests* 
Noninferiority Tests* 
 
Mass Appraisal 
Comparables Reports 
Hybrid (Feedback) Model* 
Nonlinear Regression 
Sales Ratios 

















 JOIN DIVISION 5 OF APA! 
 
 The Division of Evaluation, Measurement, and Statistics of the American Psychological 
Association draws together individuals whose professional activities and/or interests include 
assessment, evaluation, measurement, and statistics.  The disciplinary affiliation of division 
membership reaches well beyond psychology, includes both members and non-members of 
APA, and welcomes graduate students. 
 
 Benefits of membership include: 
$  subscription to Psychological Methods or Psychological Assessment (student members, 

who pay a reduced fee, do not automatically receive a journal, but may do so for an 
additional $18) 

$  The Score – the division’s quarterly newsletter 
$  Division’s Listservs, which provide an opportunity for substantive discussions as well as 

the dissemination of important information (e.g., job openings, grant information, 
workshops) 

 
 Cost of membership: $38 (APA membership not required); student membership is only $8 
 
 For further information, please contact the Division’s Membership Chair, Yossef Ben-Porath 
(ybenpora@kent.edu) or check out the Division’s website: 
 
  http://www.apa.org/divisions/div5/ 
______________________________________________________________________________ 
 

ARE YOU INTERESTED IN AN ORGANIZATION DEVOTED TO 
EDUCATIONAL AND BEHAVIORAL STATISTICS? 

 
Become a member of the Special Interest Group - Educational Statisticians of the 

American Educational Research Association (SIG-ES of AERA)! 
 

The mission of SIG-ES is to increase the interaction among educational researchers interested 
in the theory, applications, and teaching of statistics in the social sciences. 

 
Each Spring, as part of the overall AERA annual meeting, there are seven sessions sponsored 

by SIG-ES devoted to educational statistics and statistics education. 
We also publish a twice-yearly electronic newsletter. 

 
Past issues of the SIG-ES newsletter and other information regarding SIG-ES can be found at 

http://orme.uark.edu/edstatsig.htm 
 

To join SIG-ES you must be a member of AERA. Dues are $5.00 per year. 
 

For more information, contact Joan Garfield, President of the SIG-ES, at jbg@umn.edu. 



 
Position Available: Top bio-tech company seeks a seasoned statistical 
manager to hire, develop and lead a team of applied statisticians. Primary 
role is to integrate statistical methodology and practice into 
product/process development, manufacturing operations and quality. This 
key leader will provide linkage between manufacturing, engineering, 
development and biostatistics. MS in statistics or related field. 

Research Statistician:  Established clinical group adding staff to provide 
dedicated preclinical support to a development center.  Interact and 
support scientists with formulation, stability testing, bioanalytics and bio 
assays.  PhD w/3 yrs or MS w/ 6 years industry experience required along 
with expertise in complicated design methods.  Northeast location. 

Contact Information: Eve Kriz, Smith Hanley Associates, 99 Park 
Avenue, New York, NY 10016, 212-687-9696 ext. 228, 
ekriz@smithhanley.com. 
  

_____________________________________________ 
  

 
 

Statistics Through Monte Carlo Simulation 

With Fortran 

   Shlomo S. Sawilowsky and Gail F. Fahoome 
Copyright ©  2003 ISBN: 0-9740236-0-4  

 
Purchase Email, CD, & Softcover Versions Online Via Secure Paypal At 
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Instructions For Authors 
 
 Follow these guidelines when submitting a manuscript: 
 
 1. JMASM uses a modified American Psychological Association style guideline. 
 2. Submissions are accepted via e-mail only. Send them to the Editorial Assistant at 
ea@edstat.coe.wayne.edu. Provide name, affiliation, address, e-mail address, and 30 word biographical 
statements for all authors in the body of the email message. 
 3. There should be no material identifying authorship except on the title page. A statement should be 
included in the body of the e-mail that, where applicable, indicating proper human subjects protocols were 
followed, including informed consent. A statement should be included in the body of the e--mail indicating 
the manuscript is not under consideration at another journal. 
 4. Provide the manuscript as an external e-mail attachment in MS Word for the PC format only. 
(Wordperfect and .rtf formats may be acceptable - please inquire.) Please note that Tex (in its various 
versions), Exp, and Adobe .pdf formats are designed to produce the final presentation of text. They are not 
amenable to the editing process, and are not acceptable for manuscript submission. 
 5. The text maximum is 20 pages double spaced, not including tables, figures, graphs, and references. Use  
11 point Times Roman font. If the technical expertise is available, submit the manuscript in two column 
format. 
 6. Create tables without boxes or vertical lines. Place tables, figures, and graphs “in-line”, not at the end of 
the manuscript. Figures may be in .jpg, .tif, .png, and other formats readable by Adobe Illustrator or 
Photoshop. 
 7. The manuscript should contain an Abstract with a 50 word maximum, following by a list of key words 
or phrases. Major headings are Introduction, Methodology, Results, Conclusion, and References. Center 
headings. Subheadings are left justified; capitalize only the first letter of each word. Sub-subheadings are left-
justified, indent optional. 
 8. Do not use underlining in the manuscript. Do not use bold, except for (a) matrices, or (b) emphasis 
within a table, figure, or graph. Do not number sections. Number all formulas, tables, figures, and graphs, but 
do not use italics, bold, or underline. Do not number references. Do not use footnotes or endnotes. 
 9. In the References section, do not put quotation marks around titles of articles or books. Capitalize only 
the first letter of books. Italicize journal or book titles, and volume numbers. Use “&” instead of “and” in 
multiple author listings. 
 10. Suggestions for style: Instead of “I drew a sample of 40” write “A sample of 40 was selected”. Use 
“although” instead of “while”, unless the meaning is “at the same time”. Use “because” instead of “since”, 
unless the meaning is “after”. Instead of “Smith (1990) notes” write “Smith (1990) noted”. Do not strike 
spacebar twice after a period. 
 

Print Subscriptions 
 Print subscriptions including postage for professions is US $60 per year; graduate students is US $30 per 
year; and libraries, universities, and corporations is US $195 per year. Subscribers outside of the US and 
Canada pay a US $10 surcharge for additional postage. Online access is currently free at 
http://tbf.coe.wayne.edu/jmasm. Mail subscription requests with remittances to JMASM, P. O. Box 48023, 
Oak Park, MI, 48237. Email journal correspondence, other than manuscript submissions, to 
jmasm@edstat.coe.wayne.edu. 
 

Notice To Advertisers 
 Send requests for advertising information to jmasm@edstat.coe.wayne.edu. 



 
 
 
 

 



FREE trials available at:
programmersparadise.com/intel

“The Intel Fortran Compiler 7.0 was first-rate, and Intel Visual Fortran
8.0 is even better. Intel has made a giant leap forward in combining
the best features of Compaq Visual Fortran and Intel Fortran. This
compiler… continues to be a ‘must-have’ tool for any Twenty-First
Century Fortran migration or software development project.”

—Dr. Robert R. Trippi 
Professor Computational Finance 
University of California, San Diego

To order or request additional information call:
800-423-9990

Email: intel@programmers.com

Two Years in the Making...

Compatibility
• Plugs into Microsoft Visual Studio* .NET
• Microsoft PowerStation4 language and library support
• Strong compatibility with Compaq* Visual Fortran

Support
1 year of free product upgrades and Intel Premier Support

Visual Fortran Timeline

1997 DEC releases

Digital Visual Fortran 5.0

1998 Compaq acquires DEC

and releases DVF 6.0

1999 Compaq ships CVF 6.1

2001 Compaq ships CVF 6.6

2001 Intel acquires CVF 

engineering team

2003 Intel releases 

Intel Visual Fortran 8.0

Intel Visual Fortran 8.0

• CVF front-end + 

Intel back-end

• Better performance

• OpenMP Support

• Real*16

Intel® Visual Fortran 8.0 
The next generation of Visual Fortran is here!
Intel Visual Fortran 8.0 was developed jointly 
by Intel and the former DEC/Compaq Fortran 
engineering team.  

Now
Available!

Performance
Outstanding performance on Intel architecture including Intel®

Pentium® 4, Intel® Xeon™ and Intel Itanium® 2 processors,
as well as support for Hyper-Threading Technology.
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