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The efficacy of antiretroviral therapies for human immunodeficiency virus (HIV) infection can be 
assessed by studying the trajectory of the changing viral load with treatment time, but estimation of viral 
trajectory parameters by using the implicit function form of linear and nonlinear parametric models can 
be problematic. Using longitudinal viral load data from a clinical study of HIV-infected patients in 
Taiwan, we described the viral trajectories by applying a nonparametric mixed-effects model. We were 
then able to compare the efficacies of highly active antiretroviral therapy (HAART) and conventional 
therapy by using Young and Bowman’s (1995) test. 
 
Key words: AIDS clinical trial, HIV dynamics, longitudinal data, kernel regression, nonparametric 
mixed-effects model, viral load trajectory 
 
 

Introduction 
 
Surrogate viral markers, such as the amount of 
HIV RNA in the plasma (the amount of HIV 
RNA in the patient’s plasma represents the 
patient’s  viral   load),  currently  play  important 
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roles in clinical research evaluating antiviral 
therapies for the acquired immunodeficiency 
syndrome (AIDS). Before HIV RNA assays 
were developed in mid-1990s, CD4+ cell counts 
served as the primary surrogate marker in AIDS 
clinical trials. Later, the amount of HIV RNA in 
the patient’s plasma (viral load, measured as the 
copy number of the viral RNA) was shown to 
better predict the clinical outcome (Mellors et 
al., 1995; Mellors et al., 1996; Saag et al., 1996), 
and thus replaced CD4+ cell counts as the 
primary surrogate marker used in most AIDS 
clinical trials. 
 It is, therefore, important to characterize 
the trajectory that describes the change in viral 
load that occurs during antiviral treatment, 
because it is this trajectory that is commonly 
used to evaluate the efficacy of the treatment. 
For example, if the viral load reduces, we may 
infer that the treatment has successfully 
suppressed the replication of the virus. The 
differences between the viral loads resulting 
from different antiviral treatments may be used 
to compare the antiviral activities of the 
treatments. Appropriate analysis of the viral load 
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is therefore very important in HIV/AIDS drug 
development. In general, it is believed that the 
replication of the virus is suppressed at the 
beginning of an antiviral treatment, but recovery 
of the virus (called rebound) can occur in later 
stages of treatment, because of drug resistance 
or treatment failure. Some parametric models 
have been developed to describe the progression 
of AIDS phenomenologically; among the best 
known of these models are the exponential 
models (Ho et al., 1995; Wei et al., 1995). More 
recently, biomathematicians and biologists have 
proposed a variety of complicated models that 
include the use of differential equations. The use 
of these models has led to a deeper 
understanding of the pathogenesis of AIDS (e.g., 
Perelson & Nelson, 1999; Wu and Ding, 1999). 
 In recent years, the necessity for 
appropriate models has gained more importance 
with the widespread use of highly active 
antiretroviral therapy (HAART) to treat 
HIV/AIDS (Ghani et al., 2003). Numerous 
studies have shown that HAART is effective in 
extending the time taken from the diagnosis of 
HIV-infection to AIDS or death in HIV-infected 
patients (e.g., Detels et al., 1998; Tassie et al., 
2002) as well as reducing the likelihood of 
perinatal HIV transmission (Cooper et al., 2002). 
However, in many clinical practices, 
combination antiviral therapy has failed to 
completely and durably suppress HIV 
replication (e.g., Deeks et al., 1999). 

To determine the efficacy of treatments 
in suppressing HIV replication in patients, the 
present study focuses on the following 
questions: (i) Given longitudinal viral load data, 
how can one identify a common feature of the 
antiviral activities of each treatment? (ii) How 
can we compare the antiviral efficacies of two 
different treatments? If we can answer question 
(ii), we may be able to demonstrate that the 
better treatment should be evaluated in a large-
scale clinical study.  However, it may be 
difficult to answer these questions by using 
existing parametric or semi-parametric methods. 
To sufficiently consider all of the information 
available from the observations, and to avoid the 
misspecification of parametric modeling, we 
will use a nonparametric mixed-effects model to 
analyze the longitudinal viral load data, and we 
will incorporate the local linear approximation 

technique developed by Wu and Zhang (2002). 
The test statistic proposed by Young and 
Bowman (1995) will then be used to answer 
question (ii). 
         The remainder of this paper is organized as 
follows.  In Section 2, we give details of the 
proposed model, with the method of estimation, 
and use the test statistic of Young and Bowman 
(1995) to determine whether there is a difference 
between the effects of two treatments. In Section 
3, we illustrate the use of the proposed 
methodology with longitudinal viral load data 
from 30 HIV-infected patients treated with 
HAART alone and another 30 patients treated 
with monotherapy or dual therapy. Some 
discussion is given in Section 4. 

 
Methodology 

 
Nonparametric Models and Estimation Methods 

We fit the viral load trajectory data of 
HIV-infected patients receiving a treatment by 
using a nonparametric mixed-effects (NPME) 
model: 
 
           

)()()()}({log)( 10 ttvttVty iiii εη ++== ,     
ni ,...,2,1=                                                   (2.1) 

 
where )(tVi  is the number of copies of HIV-1 
RNA per mL of plasma at treatment time t for 
the ith patient and )(tyi  is the corresponding 
value in log10 scale; )(tη is the population mean 
function, also called the fixed-effects or 
population curve; )(tvi are individual curve 
variations from the population curve )(tη and 
these variations are called random-effects 
curves; and )(tiε are measurement errors. We 
assume that )(tvi and )(tiε are independent in 
which )(tvi  can be considered as realizations of 
a mean 0 process with a covariance function γ(s, 
t) = E( )(svi )(tvi ), and εi(t) can be considered 
as realizations of an uncorrelated mean 0 process 

with variance )(2 tσ . The population curve 
)(tη reflects the overall trend or progress of the 



LI, LIANG, HSIEH, & TWU 445

treatment process in an HIV-infected population 
and, hence, can provide an important index of 
the population’s response to a drug or treatment 
in a clinical or biomedical study, so in this paper 
we are mainly interested in estimating )(tη . In 
addition, an individual curve 

)()()( tvtts ii +=η can represent an 
individual’s response to a treatment in a study, 
so a good estimate of )(tsi would help the 
investigator to make better decisions about an 
individual’s treatment management and would 
enable us to classify subjects on the basis of 
individual response curves. Similar models have 
been proposed by Shi et al. (1996) and Zeger 
and Diggle (1994) to describe CD4+ cell counts. 

Let gijt , ginj ,...,2,1= , be the design 
time points for the ith individual in treatment 
group g. Then, NPME model (2.1) becomes 

 
)()()()( gijgigijgigijggijgi ttvtty εη ++= ,

ginj ,...,2,1= ; gni ,...,2,1= ; 2,1=g  
               (2.2) 
 

Here, ng is the number of subjects in treatment 
group g, and ngi is the number of measurements 
made from subject i in treatment group g. We 
now wish to estimate )(tgη and 

)(tvgi simultaneously, via a local approximation 
of the NPME model (2.2), by using the local 
linear mixed-effects model approach of Wu and 
Zhang (2002), which combines linear mixed-
effects (LME) models (Laird & Ware, 1982) and 
local polynomial techniques (Fan & Gijbels, 
1996). For this purpose, we assume the existence 
of the second derivatives of )(tgη  and )(tvgi  at 
t, which are then approximated locally by a 
polynomial of order 2 as follows:  
 

)( gijg tη ≈ 
T
gijgihgg Xtttt ≡−′+ ))(()( ηη gβ  

 
and 
 

)( gijgi tv  ≈ 
T
gijgijgigijgi Xtttvtv ≡−′+ ))(()( gib  

where  

T
gijgij ttX ))(,1( −= , gβ = ( )(tgη , )(tgη′ )T, 

and gib = ( )(tvgi , )(tvgi′ )T.  
 
Consequently, the NPME model (2.2) can be 
approximated by the following model: 
 

gijy  = 
T
gijX ( gβ + gib ) + gijε , ginj ,...,2,1= ; 

gni ,...,2,1= ; 2,1=g                                  (2.3) 
 
which is called a LME model.  Note that, for 
simplicity of notation,  
 

)( gijgigij tyy = , )( gijgigij tεε = , giε  = 
T

gingi gi
),...,( 1 εε ∼ N(0, giΣ ), and gib  ∼ N(0, Dg) 

for giΣ = E(
T
gigiεε ) and Dg = E( gib T

gib ). 

          To estimate )(tgη and )(tvgi , which are 

the first element of gβ and gib , respectively, 
under the standard normality assumptions 
for gib , we can minimize the following objective 
function: 
 

T
giggigi

n

i
bXy

g

))(({
1

+−∑
=

β 2/1
λgiK 1−

giΣ
2/1
λgiK

))(( giggigi bXy +− β +
T
gib 1−

gD gib +

|}|log giΣ  
 
where 
 

giy T
gingi gi

yy ),...,( 1= ; giX T
gingi gi

XX ),...,( 1=

; λgiK =diag{ )(),...,( ttKttK
gigingij −− λλ } 

 
is the kernel weight of the residual term for Kλ(.) 
= K(. /λ)/λ, in which K(.) is a kernel function; λ 
is a bandwidth selected by a leave-one-subject-
out cross-validation approach (Wu & Zhang, 

2002); and the term 
T
gib 1−

gD gib  is a penalty 

term to account for the random effects gib , 
taking between-subject variation into account. 
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Thus, for given giΣ  and gD , the resulting 
estimators can be obtained as follows: 
 
         gβ̂ = 

∑
=

−
gn

i
gigi

T
gi XX

1

1)( Ω ∑
=

gn

i
gigi

T
gi yX

1
)( Ω  

 
T
gigi Xb (ˆ =

2/1
λgiK 1−

giΣ
2/1
λgiK giX  + 

1−
gD 1)− T

giX 2/1
λgiK 1−

giΣ
2/1
λgiK )ˆ( ggigi Xy β−            

(2.4) 
 
where  
 

=giΩ
2/1
λgiK (

2/1
λgiK giX gD T

giX 2/1
λgiK +

1)−giΣ
2/1
λgiK . As a result, the estimators of )(tgη  

 
and  
 

)(tvgi are )(ˆ tgη = (1, 0) gβ̂  and )(ˆ tvgi  = (1, 

0) gib̂ . 
 
The unknown variance-covariance parameters in 
Dg and giΣ can be estimated by using maximum 
or restricted maximum likelihood, implemented 
by using the EM algorithm or the Newton-
Raphson method (Davidian & Giltinan, 1995; 
Vonesh & Chinchilli, 1996). 
            Of particular interest are the comparative 
effects of the two treatments. Therefore, we need 
to compare the equality of the two population 
curves )(1 tη and )(2 tη . To do this, we fit the 
model )()( tvt cgic +η  to all data, where )(tcη  is 
the fixed-effects (population) curve for the data 
and )(tvcgi are random-effects curves that 

deviate from )(tcη .  As is done when estimating 
)(tgη and )(tvgi , we can use the local linear 

approximation approach of Wu and Zhang 
(2002) to obtain the estimators, 

)(ˆ tcη and )(ˆ tvcgi , of )(tcη and )(tvcgi . 
Our main concern is how to justify that 

the difference between the two population 

curves is statistically significant. To compare the 
effects of two treatments, we apply the 
following test statistic (Young & Bowman, 
1995): 

 
                        TS 

∑∑
= ∈

−
=

2

1
2

2

ˆ

)}(ˆ)(ˆ{

g Tj

gjcgjg

g

tt

σ

ηη
                    (2.5) 

 
where gT  = {all distinct times git  in  treatment 
g} and  
 

∑ ∑ ∑= = =
−−=

2

1 1

2

1

22 )/(ˆ)1(ˆ
g

n

i g ggigi
g nnn σσ  is 

an estimator of the variance of the measurement 

error with ∑ ∑= =
=

2

1 1g

n

i gi
g nn ; 

2ˆ giσ  are obtained 

by using the first-order difference approach 
proposed by Rice (1984), as follows: 
 

,)(
)1(2

1ˆ
1

1

2
][]1[

2 ∑
−

=
+ −

−
=

gin

j
kgijgi

gi
gi yy

n
σ   

gni ,...,2,1= ; 2,1=g  
 
If the two population curves are equal; that is, 
under the null hypothesis H0: η1(t) = η2(t), the 
distribution of the test statistic TS in (2.5) is then 
approximated by aχ2(b) + c, where χ2(b) is a 
chi-squared distribution with b degrees of 
freedom.  Moreover, a, b, and c are constants 
such that the mean, variance, and skewness of 
aχ2(b) + c are equal to the corresponding 
quantities of the test statistic TS, which can be 
calculated directly. The distribution of aχ2(b) + 
c is then used to calculate the p-value. The 
standard error of the difference between the 
estimates for the two population curves can be 
computed as 
 

sediff(t) = se{ )(ˆ)(ˆ 21 tt ηη − } = )t(se)t(se 2
2

2
1 +  

 
where se1(t) = se{ )(ˆ1 tη } and se2(t) = se{ )(ˆ2 tη } 
are the standard errors of the estimates of the 
population curves, respectively. A reference 
band whose width is centered at the average of 
the two estimated curves ±2 × sediff(t) can be 
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used to see how much difference there is 
between the two treatment groups (Young and 
Bowman, 1995). Note that, theoretically we 
should consider correlation when using the 
approach of Young and Bowman (1995), but we 
do not just because of mathematical simplicity. 
Ignoring the correlation may lose some 
efficiency, however, as you will see, for the real-
life data analysis given in the next section there 
is significant difference between the treatment 
effects of the two groups even using independent 
structure. Considering correlation may increase 
power but seems unnecessary. 
                 

Results 
 
The Analysis of  Longitudinal  Viral  Load  Data 
In this section, we illustrate the practical use of 
the proposed methodology with longitudinal 
viral load  data from  HIV-infected patients. The 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

data set we are using includes the longitudinal 
viral load data obtained from 30 HIV-infected 
patients who received monotherapy or dual 
therapy and 30 HIV-infected patients who 
received HAART in several hospitals in Taipei, 
Taiwan, between 1997 and 2002. These data are 
subsets of data from a much larger cohort data of 
1,195 HIV-infected patients in Taipei. Among 
the 1,195 HIV-infected patients, most of them 
received diverse treatments, so, to ensure the 
validity of the comparison, we chose to use data 
from the patients treated with HAART who had 
never been given any other treatment regimen 
and non-HAART patients who had never been 
treated with HAART. Treatment durations 
varied, because patients began receiving 
treatment at different times during the study 
period. Figure 1 presents scatter plots of viral 
load (in log10 scale) against treatment durations 
for the HIV-1-positive patients.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 1: Scatter plot of viral load (log10 of copy number of HIV RNA in plasma) versus 
duration of treatment with HAART (left) or non-HAART (right). 
 

 



COMPARISON OF VIRAL TRAJECTORIES 448 

After excluding missing data, we have 
208 complete viral load observations in the 
HAART group, of which 108 have a value less 
than 400; and we have 164 complete viral load 
observations in the non-HAART group, of 
which 69 have a value less than 400. If we use 
the criterion that a treatment is considered 
successful in its antiviral effect when the viral 
load is below 400, the success rates in the 
HAART and non-HAART groups are 51.9% and 
42.1%, respectively. 

For data analysis, we used the quartic 
kernel, K(u) = (15/16)(1 – u2)2I(|u| ≤1). The 
estimates of the two population curves are 
depicted in Figure 2. From Figure 2, we can see 
that the estimates of the two population curves 
have different patterns although both decrease at 
the beginning of treatment. The estimated curve 
for the HAART group shows that the viral load 
is maintained at a constant level until the end of 
the treatment, whereas that for the non-HAART 
group shows that the viral load decreases sharply 
during  the  first  480 days,  reaching its  lowest 
point  on  day 480. However, after 480 days, the 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

viral load increases, remains constant for a short 
time, and increases again at the end of the 
treatment. 

A Chi-squared test for the success rates 
of the two treatments gives a p-value of 0.07. It 
is hard to say that there is a significant 
difference between the effects of the two 
treatments, although the success rate in the 
HAART group is greater than that in the non-
HAART group. Therefore, to look more closely 
at the difference between the effects of the two 
treatments, we use the principle described in 
Section 2. The p-value obtained by using this 
method is less than 10-4, which indicates that the 
two population curves for each treatment are 
substantially different. To confirm this 
conclusion, we obtained a range of reference 
values and plotted them with our viral load 
trajectory estimates in Figure 2. The two 
estimated population curves deviate from the 
reference band, and the efficacy of the HAART 
is seen to be almost significantly superior to that 
of the conventional therapy that does not include 
HAART.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

                                            Figure 2. Estimate of two population curves. 
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Discussion 
 

To determine the efficacy of antiviral treatments 
by using longitudinal viral load data, we applied 
nonparametric mixed-effects models to estimate 
the patterns of the viral trajectories in the two 
sampled populations. This approach avoids 
misspecification and, thus, the occurrence of an 
artificial bias. By combining the between-
subject and within-subject information, the 
models we have proposed can parsimoniously 
capture the features of viral response to an 
antiviral therapy, such that the estimated curve is 
able to show common features of the antiviral 
activity. 

In implementing the estimation of 
population curves, we used local linear 
regression and the     bandwidth selection 
method proposed by Wu and Zhang (2002) to 
select the bandwidth.    Besides the local linear 
methods applied in this article, the method of 
regression splines may    also be implemented 
for parameter estimation. The approach of 
regression splines transforms    the models to 
standard linear mixed-effects models and is easy 
to implement by using existing    software such 
as SAS and SPLUS. 

The result of our illustrative example 
indicates that HAART has effects that are 
significantly    different from those of treatment 
that did not include HAART. At the beginning 
of treatment,    non-HAART has strong antiviral 
activity, which is lacking with HAART.  
However, during    the course of the treatment, 
the superiority of non-HAART lessens, and this 
therapy ultimately    fails, whereas HAART 
maintains a constant effect throughout treatment. 
This maintenance of    the viral load at a 
constant level confirms previous findings and is 
preferable to the fluctuation    of load resulting 
from non-HAART. This result confirms that 
HAART is worth continuing,    despite its 
inability to suppress viral replication completely 
(Deeks & Martin 2001). 

Finally, the reference band covers a 
wider range of viral loads at the end of 
treatment, despite    the increasing difference 
between the two estimated curves. This is not 
surprising because of    the smaller sample size 
resulting from a shorter treatment duration for 
some patients at that time. 
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