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Using Zero-inflated Count Regression Models 
To Estimate The Fertility Of U. S. Women 

 
Dudley L. Poston, Jr.       Sherry L. McKibben 

Department of Sociology 
Texas A&M University 

 
 
 
In the modeling of count variables there is sometimes a preponderance of zero counts. This article 
concerns the estimation of Poisson regression models (PRM) and negative binomial regression models 
(NBRM) to predict the average number of children ever born (CEB) to women in the U.S. The PRM and 
NBRM will often under-predict zeros because they do not consider zero counts of women who are not 
trying to have children. The fertility of U.S. white and Mexican-origin women show that zero-inflated 
Poisson (ZIP) and zero-inflated negative binomial (ZINB) models perform better in many respects than 
the Poisson and negative binomial models. Zero-inflated Poisson and negative binomial regression 
models are statistically appropriate for the modeling of fertility in low fertility populations, especially 
when there is a preponderance of women in the society with no children. 
 
Key words: Poisson regression, negative binomial regression, demography, fertility, zero counts 
 
 

Introduction 
 
When analyzing variation in the number of 
children that women have born to them, 
demographers frequently use Poisson and 
negative binomial regression models rather than 
ordinary least squares models. Poisson and 
negative binomial regression models are 
statistically more appropriate for predicting a 
woman’s children ever born (CEB), particularly 
in societies where mean fertility is low (Poston, 
2002). Most women in such populations have 
children at the lower parities, including zero 
parity, and few have children at the higher 
parities.  The  CEB variable, which by definition  
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is a count variable, i.e., a nonnegative integer, is 
hence heavily skewed with a long right tail.  

The statistical modeling of these kinds 
of CEB data is best based on approaches other 
than the ordinary least squares (OLS) linear 
regression model because using it to predict a 
count outcome, such as CEB, will often “result 
in inefficient, inconsistent, and biased estimates” 
(Long, 1997, p. 217) of the regression 
parameters. Poisson regression models (PRM) 
and negative binomial regression models 
(NBRM) have been shown to be statistically 
more appropriate (Poston, 2002). 

However, sometimes there are so many 
zeros in the count dependent variable that both 
the PRM and the NBRM under-predict the 
number of observed zeros; the resulting 
regression models, therefore, often do not fit the 
data. Zero-inflated count regression models were 
introduced by Lambert (1992) and Greene 
(1994) for those situations when the PRM and 
the NBRM failed to account for the excess zeros 
and resulted in poor fit. This paper examines the 
use and application of zero-inflated count 
regression models to predict the number of 
children ever born to U.S. women. 
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Methodology 
 

The most basic approach for predicting a count 
variable, such as CEB, is the Poisson regression 
model (PRM). In the PRM, the dependent 
variable, namely, the number of events, i.e., in 
the case of this paper, the number of children 
ever born (CEB), is a nonnegative integer and 
has a Poisson distribution with a conditional 
mean that depends on the characteristics (the 
independent variables) of the women (Long, 
1997; Long & Freese, 2001). The PRM 
incorporates observed heterogeneity according 
to the following structural equation: 
 

)...(exp 2211 kkiiii bXbXbXa ++++=µ  

 
where µI is the expected number of children ever 
born for the ith woman; X1i, X2i ... Xki are her 
characteristics; and a, b1, b2 ... bk are the Poisson 
regression coefficients. 

The PRM is appropriate when the mean 
and the variance of the count distribution are 
similar, and is less applicable when the variance 
of the distribution exceeds the mean, that is, 
when there is over-dispersion in the count data. 
If there is significant over-dispersion in the 
distribution of the count, the estimates from the 
PRM will be consistent, but inefficient.  “The 
standard errors in the Poisson regression model 
will be biased downward. Resulting in 
spuriously large z-values and spuriously small p-
values” (Long & Freese, 2001; Cameron & 
Trivedi, 1986), which could lead the investigator 
to make incorrect statistical inferences about the 
significance of the independent variables. 

This is addressed by adding to the PRM 
“a parameter that allows the conditional variance 
of (the count outcome) to exceed the conditional 
mean” (Long, 1997, 230). This extension of the 
Poisson regression model is the negative 
binomial regression model (NBRM). The 
NBRM adds to the Poisson regression model the 
error term ε according to the following structural 
equation: 
 

)...(exp 2211 εµ ikkiiii bXbXbXa +++++=
 

However, sometimes there are many 
more zeros in the count dependent variable than 

are predicted by the PRM or NBRM, resulting in 
an overall poor fit of the model to the data. Zero-
inflated models respond to this problem of 
excess zeros “by changing the mean structure to 
allow zeros to be generated by two distinct 
processes” (Long & Freese, 2001, p. 250). 

Consider a few examples of excess 
zeros. Suppose one wishes to survey visitors to a 
national park to predict the number of fish they 
caught. Suppose that some of the visitors did not 
fish, but data were not available on who fished 
and who did not fish. The data gathered hence 
have a preponderance of zeros, some of which 
apply to persons who fished and caught no fish, 
and others to persons who did not fish (Stata, 
2001; Cameron & Trivedi, 1998). 

Or consider the problem of predicting 
the number of publications written by scientists. 
Some scientists will never publish either because 
they have chosen not to do so, or, perhaps, 
because they are not permitted to do so. But 
assume that there are no data telling which 
scientists have a zero probability of ever 
publishing. As with the example of the number 
of fish caught, there will be a preponderance of 
zeros among scientists with regards to the 
number of articles published. Some of the zeros 
will apply to scientists who tried to publish but 
were not successful and others to scientists who 
did not try to publish (Long & Freese, 2001; 
Long, 1990). 

Finally, consider the example to be 
addressed in this paper, namely, the number of 
children born to women. Some women will 
choose not to have children and are referred to 
as voluntarily childless women. Other women 
will try to have children but will not be 
successful in their attempts and are referred to as 
involuntarily childless women (Poston, 1976; 
Poston & Kramer, 1983). But, assume that it is 
not directly known to which group each woman 
belongs. Thus among women of the childbearing 
ages of 15-49, there will be many zeros on the 
CEB dependent variable; some of the zeros will 
apply to women who tried to produce children 
but were not successful, and others to women 
who voluntarily opted against having children. 

Long and Freese (2001) stated that in 
zero-inflated models it is assumed that “there are 
two latent (i.e., unobserved) groups. An 
individual in the Always-0 Group (Group A) has 
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an outcome of 0 with a probability of 1, while an 
individual in the Not Always-0 Group (Group 
~A) might have a zero count, but there is a 
nonzero probability that she has a positive 
count” (p. 251). 

In all cases, the investigator does not 
know into which of the two groups the 
respondents fall. If it was known into which 
group each subject was placed, one could 
subtract the persons belonging to the Always-0 
Group from the total sample, and estimate 
Poisson or negative binomial regression models. 
But typically one does not have this kind of 
information, thus requiring the introduction of 
zero-inflated regression. 

The estimation of zero-inflated 
regression models involves three steps: 1) 
predicting membership in the two latent groups, 
Group A and Group ~A; 2) estimating the 
number of counts for persons in Group ~A; and 
3) computing “the observed probabilities as a 
mixture of the probabilities for the two groups” 
(Long & Freese, 2001, p. 251). 

To analyze the fertility of U.S. women, 
one would follow these steps (for detail, see 
Long & Freese, 2001. p. 251-252; Cameron & 
Trivedi, 1998, p. 125-127, 211-215). 

In Step 1, use a logistic regression 
model to predict the woman’s membership in 
Group A (never have children) or Group ~A 
(may or may not have children). The 
independent variables used in the logistic 
equation may be “referred to as inflation 
variables since they serve to inflate the number 
of 0s” (Long & Freese, 2001, p. 251). 

In Step 2, for women in Group ~A (may 
or may not have children), depending on 
whether or not there is over-dispersion in the 
CEB dependent variable, use either a Poisson 
regression model or a negative binomial 
regression model to predict the probabilities of 
counts 0 to y (where y is the maximum number 
of children born to a woman). The independent 
variables used in Step 2 may or may not be the 
same as those used in Step 1. In the examples 
shown below, the same independent variables 
are used in both steps. Using the same variables 
in both steps is not required. Different variables 
could be used in each step. 

In Step 3, the results from the preceding 
steps are used to determine the overall 

probability of 0’s, which is “a combination of 
the probabilities of 0’s from each group, 
weighted by the probability of an individual 
(woman) being in the group” (Long, 1997, p. 
242-243). The probabilities of counts other than 
0 are adjusted in a similar way. 
 

Results 
 
Data are available for 1995 for U.S. (non-
Hispanic) white and Mexican-origin women, 
gathered in Cycle 5 of the National Survey of 
Family Growth (National Center for Health 
Statistics, 1995). The data are based on personal 
interviews conducted in the homes of a national 
sample of 10,847 females between the ages of 
14 and 44 in the civilian, non-institutionalized 
population in the United States. Table 1 reports 
the descriptive data on children born (CEB) for 
U.S. white and Mexican-origin women in 1995. 

White women have a mean CEB of 1.2 
with a variance of 1.6. Mean CEB for Mexican-
origin women is 1.9 with a variance of 2.8. For 
both white and Mexican-origin women, the 
variance of CEB is greater than the mean of 
CEB. There are several ways for determining if 
there is over-dispersion in the CEB data (see 
Poston, 2002). It turns out that there is not a 
significant amount of over-dispersion in the 
CEB data for whites, justifying the use of a 
Poisson regression model. There is a significant 
amount of over-dispersion in the CEB data for 
Mexican-origin women, so that a negative 
binomial regression model will be appropriate. 
Poisson Regression versus Zero-inflated Poisson 
Regression 

A Poisson regression model is thus 
estimated for the white women that predicts their 
CEB with socioeconomic and location 
characteristics that have been shown in the 
demographic literature to be associated with 
fertility. The independent variables pertain to 
education, rural residence, poverty status, age, 
regional location, and religion. Some are 
measured as dummy variables and others as 
interval. 

 



ESTIMATING THE FERTILITY OF U. S. WOMEN 374 

 
 
 
They are the following: X1 is the 

woman’s education measured in years of school 
completed; X2 is a dummy variable indicating 
whether the woman lives in a rural area; X3 is a 
dummy variable indicating whether the woman 
is classified as being in poverty (poverty status 
is based on whether the woman’s family income 
is below the national poverty threshold, adjusted 
for family size). 

Continuing, X4 is the woman’s age 
measured in years; X5 to X7 are three dummy 
variables  representing  the woman’s  region  of 
residence, namely, X5 residence in the Midwest, 
X6 residence in the South, and X7 residence in 
the West; residence in the Northeast is the 
reference category; and X8 to X10 are three 
dummy variables reflecting the woman’s 
religion, as follows: X8 indicates if the woman’s 
religion is Protestant, X9 if she is Catholic, and 
X10 if she has no religion, or religion is not 
specified; Jewish religion is the reference 
category. The first panel of Table 2 reports the 
results of the Poisson regression equation 
predicting CEB for U.S. white women in 1995. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
According to the Poisson coefficients 

shown in the first panel of Table 2, four of the 
ten independent variables are significantly 
related with the CEB of white women. The 
higher the woman’s education, the fewer her 
CEB; the older her age, the higher her CEB. If 
she is a rural resident or in poverty, she will 
have more children than urban residents or 
women not living in poverty. The geographic 
location and religion variables are not 
statistically significant. 

Using the above Poisson regression 
results, the predicted probabilities of each white 
woman may be calculated for each count of 
CEB from 0 to 10. The mean of the predicted 
probabilities at each count may then be 
determined, using this formula (Long & Freese, 
2001): 

∑
=

∧

===
N

i ii xm
N

my y
1

)|(Pr1)(Pr  

 
where y = m = the count of children ever born, 
and xi are the above ten independent variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Data for Children Ever Born: U.S. White and Mexican-Origin Women, Ages 15-49. 
_______________________________________________________________________________ 
 
Group   Mean  Standard Dev. Variance No. of Cases 
_______________________________________________________________________________ 
 
White   1.2471  1.2839  1.6486  6,456 
Mexican  1.8864  1.6592  2.7531     924 
_______________________________________________________________________________ 
Source of Data: National Center for Health Statistics (1995). 
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Figure 1 is a plot of the mean Poisson 

predicted probabilities at each count of CEB (the 
green x symbols), and they may be compared 
with the observed empirical distribution of CEB 
(the blue circles). Just over 40 percent 
(proportion of .4046) of U.S. white women have 
no children ever born, but the Poisson regression 
results predict a mean probability at zero count 
of .361, which is an under-prediction of the 
observed CEB. The Poisson regression results 
over-predict the observed CEB data at count 
one, under-predict at count two, and are more 
consistent with the observed CEB data at the 
third and higher counts. 

But, a central issue for this paper is the 
under-prediction by the Poisson regression 
model of the observed zero counts of CEB for 
white  women.  In  such a  situation,  it would be 

 
 

 

 
 

appropriate  to  estimate  a zero-inflated  Poisson 
regression model. The 2nd and 3rd panels of 
Table 2 present the results of such a model. 
Recall from the previous section that the first 
two steps in estimating a zero-inflated model 
involve 1) using a logistic regression model to 
predict the woman’s group membership in 
Group A (never have children) or Group ~A 
(may or may not have children), and 2) for 
women in Group ~A (may or may not have 
children), using a Poisson regression model to 
predict her number of children ever born. Thus 
there are two panels of zero-inflated Poisson 
results reported in Table 2. Panel 2, titled 
“Logit” are the logit coefficients obtained in 
Step 1, and Panel 3, titled “Poisson” are the 
Poisson coefficients obtained in Step 2. 
 
 

Table 2. Poisson Regression Model, and Zero-inflated Poisson Regression Model, U.S. White (non-Hispanic) 
Women, 1995. 
 
_______________________________________________________________________________________ 
 
         Poisson Model                      Zero-inflated Poisson Model                 

                                                     Logit                                Poisson 

Independent Variable           b              z                                   b              z                                 b               z 
                                                   
                                                  Panel 1                                       Panel 2                                        Panel 3 
 
X1 Education                   -.070       -15.45                             .905       12.83                         -.058         11.84 
X2 Rural Residence             .111          3.87                            -.336        -1.55                           .097           3.35 
X3 Poverty Status                .377        10.48                            -.482        -2.06                           .336           8.96 
X4 Age                           .076        48.41                            -.781      -14.79                           .034          16.01 
X5 Midwest                   .045          1.37                  -.714        -2.63                          .007              .22 
X6 South                  -.023          -.07                  -.289        -1.06                         -.048           -1.39 
X7 West                             .019           .53                   -.187        -0.63                          .011              .31 
X8 Protestant                       .074           .80               -2.483        -3.02                         -.030             -.31 
X9 Catholic                       .052           .56               -1.871        -2.28                         -.035             -.37 
X10 No Religion                  -.110       -1.14              -2.020        -2.15                         -.223           -2.23 
Constant                           -1.504     -11.98               8.780          8.12                          .096              .14 
 
Likelihood Ratio χ2         2857.59, P = 0.000                   458.66, P = 0.000 
________________________________________________________________________________________ 
Vuong Test of Zip vs. Poisson: 20.16 P = 0.000 
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The coefficients in the “Logit” panel 
(Panel 2) of Table 2 are the logit coefficients 
predicting a woman’s membership in Group A 
(never having children). The higher her 
education the greater the likelihood of her not 
having children. If she is in poverty, she is likely 
to not have children. The older her age, the less 
likely she will not have children. If she lives in 
the Midwest, she will be less likely than women 
living in the Northeast to not have children. And 
if she is a Catholic, or a Protestant, or has no 
religion, she will be less likely than Jewish 
women to have no children. The rural, South, 
and West variables are not significant. 

For the purpose of this paper, the more 
relevant coefficients are shown in the “Poisson” 
panel (Panel 3) of Table 2; these are the zero-
inflated Poisson coefficients predicting the 
woman’s CEB. The higher her education, the 
less number of children shill will have. If she is 
a rural resident, or in poverty, she will have 
more children. The older her age, the more the 
children. If she has no religion, she will have 
fewer children than Jewish women. The other 
variables are not significant. 

A relevant comparison is between the 
zero-inflated  Poisson  coefficients (Panel 3) and  

 
 

the Poisson coefficients (Panel 1). Note first that 
the Poisson coefficients (Panel 1) for most of the 
independent variables are slightly larger than 
those for the zero-inflated Poisson coefficients 
(Panel 3). However, the z-scores for many of the 
Poisson coefficients are quite a bit larger than 
the z-scores for the corresponding zero-inflated 
Poisson coefficients. Thus although the two sets 
of Poisson coefficients are not too different in 
magnitude, the standard errors for the zero-
inflated coefficients will tend to be larger than 
they are for the Poisson coefficients. 

Regarding issues of interpretation and 
statistical inference, the results of the two 
Poisson models allow the investigator to 
conclude that the effects on a woman’s CEB of 
her education, rural residence, poverty status and 
age are all statistically significant. However, the 
zero-inflated Poisson results, but not the basic 
Poisson results, also allow the investigator to 
conclude that the “no religion” variable has a 
statistically significant negative effect on CEB. 
Women who report no religion have fewer 
children than women in the reference (Jewish 
religion) category. This inference would not 
have been made using the results of the Poisson 
model (Panel 1). 

P
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Figure 1. Distributions of CEB, PRM, & ZIP, U.S. White Women
Number of Children ever Born

 Observed CEB Distribution  Zero-inflated Poisson (ZIP)
 Poisson Regression Model (PRM)
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Is the zero-inflated Poisson regression 
model (ZIP) statistically preferred over the basic 
Poisson model regression model (PRM)? There 
is a formal test statistic, the Vuong test (Vuong, 
1989) that determines statistically whether the 
zero-inflated model is a significant improvement 
over the Poisson model (for details, see Long, 
1997, p. 248; Long & Freese, 2001, p. 261-262). 
The Vuong statistic is asymptotically normal; if 
its value is > 1.96, the ZIP model is preferred 
over the PRM. If Vuong < 1.96, the PRM is 
preferred. The Vuong test statistic is shown at 
the base of Table 2, Vuong = 20.16. This is clear 
evidence that the zero-inflated Poisson 
regression results are preferred over the Poisson 
regression results. 

Another way to judge whether ZIP is 
preferred over PRM is to ascertain if the results 
from a ZIP regression improve the prediction of 
the mean probability at count zero. Recall from 
the discussion of Figure 1 (above) that the 
Poisson regression results under-predicted the 
mean probability at count zero. Figure 1 also 
contains mean predicted probabilities at each 
count that are based on the results of the zero-
inflated Poisson model. 

The ZIP predictions are shown in Figure 
1 as maroon diamonds. The ZIP model predicts 
a probability at count zero of .3988, which is 
very close to the observed proportion of CEB at  
count zero of .4046. The expected probabilities 
from the ZIP model at counts 1, 2 and 3 are also 
closer to the corresponding observed CEB 
counts than are those predicted by the PRM. The 
ZIP results seem to do a much better job 
predicting the observed CEB at counts 0, 1, 2, 
and 3 than do the results from the PRM. 
 
Negative Binomial Regression versus Zero-
inflated Negative Binomial Regression 

In the above example predicting CEB 
for U.S. white women, it was first determined 
that there was not a significant amount of over-
dispersion in CEB, thus justifying modeling 
CEB with the PRM. But recall that for the U.S. 
Mexican-origin women, the variance of CEB 
was significantly greater than the mean of CEB. 
In such a case, the PRM is not appropriate. 
Instead a negative binomial regression model 
(NBRM) is preferred. 

The first panel of Table 3 reports the 
results of a negative binomial regression 
(NBRM). The same independent variables are 
used in this regression, as were used in the 
regressions shown in Table 2, except that age is 
excluded and “no religion” is used as the 
reference religion category. Excluding age 
resulted in a better fit of the negative binomial 
model with the data. The “no religion” variable 
is removed from the equation and used as the 
reference category because the Jewish variable 
was removed altogether from the equation; only 
2 of the 924 Mexican-origin women were 
Jewish, so there was insufficient variation in this 
variable. Thus, regression results are shown in 
Table 3 for eight independent variables.  

The negative binomial regression 
coefficients in the first panel of Table 3 indicate 
that only two of the eight independent variables 
are significantly related with the CEB of 
Mexican-origin women. The higher the 
woman’s education, the lower her fertility; and 
if she is living in poverty, she will have more 
children than women not in poverty. The other 
independent variables are not statistically 
significant. 

There is a large number of zeros for the 
CEB of Mexican-origin women. Almost 27 
percent of them have zero children. Although 
this is not quite as high as the level of zero parity 
among white women (40.4 percent of the white 
women have no children), a zero-inflated 
negative binomial regression model (ZINB) was 
estimated to see if model fit would be improved 
over that of the NBRM. Its results may be 
compared with those of the NBRM shown in the 
first panel of table 3. 

Recall that zero-inflated models produce 
two sets of coefficients (see the discussion 
above). Thus, the coefficients in the “Logit” 
panel (Panel 2) of Table 3 are the logit 
coefficients predicting a Mexican-origin 
woman’s membership in Group A (never having 
children). The higher her education the greater 
her likelihood of not having children. And if she 
is Catholic, she is less likely than women with 
no religion to have no children. The other 
independent variables are not significant. 
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A comparison may be made between the 

zero-inflated negative binomial coefficients 
(Panel 3) and the negative binomial coefficients 
(Panel 1). Note first that the NBRM coefficients 
(Panel 1) for four of the independent variables 
are slightly larger than those for the ZINB 
coefficients (Panel 3). And the z-scores for four 
of the NBRM coefficients are larger than those 
for the corresponding ZINB coefficients. The 
results of the two models in Panels 1 and 3 allow 
the investigator to conclude that the effects on a 
woman’s CEB of her education and poverty 
status are statistically significant. However, the 
zero-inflated negative binomial regression 
results, but not the negative binomial results, 
also allow the investigator to conclude that 
Mexican-origin women living in the West have 
more children than those living in the Northeast. 
The  NBRM  results did not allow this  inference  

 

 
 

to be made.  
One may compare the ZINB regression 

results with the NBRM results to determine if 
one is statistically preferred over the other. The 
Vuong test statistic provided at the base of Table 
3 has a value of 70.67. Clearly the zero-inflated 
negative binomial regression results are 
preferred over the basic negative binomial 
regression results. 
 

 
Conclusion 

 
This article considered a situation that frequently 
occurs when modeling count variables, namely, 
that there is a preponderance of zero counts. The 
application addressed in this paper involved the 
estimation of Poisson regression models (PRM) 
and negative binomial regression models 

Table 3. Negative Binomial Regression Model, and Zero-inflated Negative Binomial Regression Model, 
U.S. Mexican-origin Women, 1995 
 
_____________________________________________________________________________________ 
      
        Negative                                  Zero-inflated  
   Binomial Model                               Negative Binomial Model                 
                                                                                Logit                       Negative 

Binomial 

Independent Variable        b               z                                 b               z                               b               z 
 
                                              Panel 1                                   Panel 2                                Panel 3 
 
X1 Education              -.076     -9.13                             .120         3.04                        -.058           7.35 
X2 Rural Residence  .156      1.36                             .150           .33                         .177            1.57  
X3 Poverty Status  .231      3.84                            -.089         -.29                         .213            3.51  
X4 Midwest                   .351        .85                           9.288           .04                         .698           1.76  
X5 South   .442      1.09                           8.922           .04                         .697           1.82  
X6 West   .478      1.18                           8.951           .04                         .736           1.93  
X7 Protestant               .202      1.72                            -.491       -1.18                         .084             .69  
X8 Catholic   .180          1.71                 -.903       -2.41                        -.004           -.03  
Constant   .694          1.63                        -11.176         -.05                         .589           1.46  
 
Likelihood Ratio χ2      126.36, P = 0.000     98.05, P = 0.000 
 
Vuong Test of Zero-inflated Negative Binomial versus Negative Binomial 70.67, P = 0.000 
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(NBRM) to predict the average number of 
children ever born (CEB) to women in the U.S. 
This is a count variable, and in a low fertility 
society such as the U.S., it is skewed with a long 
right tail. 

It was noted in this article that many 
U.S. women have no children, resulting in a very 
large percentage of zero counts. But two groups 
of women have no children; one group will have 
zero CEB because they have chosen to never 
have children; another group will have no 
children even though they are trying to do so. 
PRM and NBRM are best suited to predict CEB 
counts among women who are having, or trying 
to have, children. Thus these models end up 
under-predicting zero counts because strictly 
speaking they are not able to consider the zero 
counts of women who are not trying to have 
children. Zero-inflated Poisson (ZIP) and zero-
inflated negative binomial (ZINB) models have 
been proposed to handle such situations. 

Analyses conducted in this paper of the 
fertility of U.S. white and Mexican-origin 
women in 1995 demonstrated that the zero-
inflated models performed better in many 
respects than the straightforward Poisson and 
negative binomial models. Not only were the 
coefficients in the ZIP and ZINB models 
different from those in the PRM and NBRM, it 
was also shown that errors of statistical 
inference, in terms of failing to include 
significant effects, would have been made had 
the investigator only relied on the results of the 
PRM and NBRM. 

It would appear that the use of zero-
inflated Poisson and negative binomial 
regression models are statistically appropriate 
for the modeling of fertility in low fertility 
populations. This is especially the case when 
there is a preponderance of women in the society 
with no children.  
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