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Random Number Generators

George Marsaglia
Professor Emeritus of Statistics

Florida State University

The author discusses some promising new random number generators, as well as formulates the mathe-
matical basis that makes them random variables in the same sense as more familiar ones in probability and
statistics, emphasizing his view that randomness exists only in the sense of mathematics. He discusses the
need for adequate seeds that provide the axioms for that mathematical basis, and gives examples from Law
and Gaming, where inadequacies have led to difficulties. He also describes new versions of the widely
used Diehard Battery of Tests of Randomness.

Key words: Random number generator, Diehard Test

Introduction
In 1985 I was invited to give the keynote address
“A current view of random number generators”
at Statistics and Computer Science: XVI Sympo-
sium on the Interface. An article based on that
address was published in the Proceedings of that
conference,[5]. Judging from newsgroups and
citations, the article seems to have been widely

George Marsaglia is Professor Emeritus of Statis-
tics at Florida State University & Professor
Emeritus of Pure andApplied Mathematics &
Computer Science at Washington State Univer-
sity. His PhD was in Mathematics under H.B.
Mann at Ohio State Univ., 1950, and he was
a Fulbright Scholar under M. S. Bartlett and
Alan Turing at Univ. of Manchester in 1949-50,
then Associate under Harold Hotelling at Univ.
N. Carolina. He was Professor and Director
of the School of Computer Science at McGill
Univ. 1970-78. He has published articles in over
fifty math, computer science, statistics, physics,
medicine and law journals, & is probably best
known for work on random numbers, generating
non-uniform variates and testing for randomness.
His email address is geo@stat.fsu.edu

2

read, although such proceedings are often difficult
to access. Availability of the file keynote.ps in the
CDROM [6], stat.fsu.edu/pub/diehard, may have
made the article easier to get. Two other postscript
files in that CDROM provide more detail on topics
of the present article: mwc1.ps and monkey.ps.

In this article I will update that “cur-
rent” view, dwelling at some length on what
I see as more important kinds of RNGs,
particularly Multiply-With-Carry (MWC) and
Complimentary-Multiply-With-Carry (CMWC),
because they have simple implementations, are
very fast, can have incredibly long periods and
pass tests randomness at least as well as, and often
better than, other kinds of RNGs.

But first I will provide a summary discus-
sion of congruential RNGs, because they remain
the most common kind, and of xorshift RNGs,
because they are as fast and simple as congruen-
tial but better behaved in tests of randomness. I
will list all 648 of the full-period, 32-bit xorshift
RNGs. There will also be a short description of
lagged Fibonacci RNGs. These have diminished
in importance, because MWC and CMWC RNGs
provide far far longer periods for the same effort,
and have better performance on tests.
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The Importance Of Fortran In The 21st Century 

                                     
 

 
Walt Brainerd 

The Fortran Company 
Tucson, AZ 

 
 
 

 
 
 
A brief discussion on the history and purpose of Fortran for scientific and engineering computing is given. 
This leads to the role Fortran, in its various environments, will likely play well into the 21st century. 
 
Key words: Fortran 95, Fortran 2000, F, high performance computing. 
 
 

Introduction 
 
Let us start with a bold assertion: Fortran is still 
the best programming language for 
numerical/scientific computing. The reasons could 
be discussed and debated extensively, but they 
include: 
 

• There is a large investment in scientific 
software written in Fortran, including 
extensive libraries. 

• There is a large investment in the training 
and experience of scientists that do 
programming. 

• The language is more straightforward to 
learn and use than most "modern" 
languages. 

• Fortran produces efficient code. 
 
 
Walt Brainerd holds one of the first PhDs in 
computer science awarded in the USA.  He was a 
leader in the development of Fortran 90 and the 
co-author of several books, including  The Fortran 
95 Handbook.  He is one of the originators of the F 
programming language and maintains the F 
compiler. Email him at walt@fortran.com. 
 
 
 

 
• Fortran is very portable:  source code 

compiles on many platforms with little 
need for conditional compilation and 
results are consistent, particularly when 
executed on standard floating point 
hardware. 

 
The reason I make this statement is 

because it means that the continued development 
and implementation of Fortran will be important in 
the twenty-first century for the same reasons 
(listed above) that it has been important in the 
twentieth century. 
 However, the computing environment is 
continually changing. What is being done to 
ensure that Fortran will remain an outstanding tool 
for scientists and engineers? That is what will be 
discussed in the remainder of this article. 
 
Language Development and Standardization 
 In the last quarter century, most of the 
innovation in the Fortran programming language 
has come through the group responsible for its 
standardization. This work is done by the 
American standards committee J3 under the 
direction of the International Standards 
Organization committee WG5. Their web site is: 
http://www.nag.co.uk/sc22wg5. 
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 This work continues, and the next 
standard, being called Fortran 2003 informally is 
in the process of approval and publication. (See 
ftp://ftp.j3-fortran.org/j3/doc/standing/007). The 
major new features include help with 
interoperation with C programs and enhanced 
object-oriented facilities, including inheritance and 
polymorphism, which enhance the excellent data 
abstraction features of Fortran 95.  
 
Modern Development Environments 
 One of the significant changes for Fortran 
programmers in recent years has been the 
availability of modern graphical user interfaces for 
editing, compiling, executing, and analyzing 
Fortran programs. Many Fortran implementations 
include such an environment, in addition to 
traditional command-line execution and tools. 
 Unfortunately, these environments are 
different for almost every compiler. There is hope 
that there will be an open tool for at least 
Linux/Unix environments and there does seem to 
be some convergence by the vendors of Windows 
compilers to the Microsoft Visual Studio .NET 
environment. The url: http://msdn.microsoft.com/ 
vstudio/productinfo/overview/default.asp.  
 
High Performance Computing 
 In recent years, several tools have been 
made available to Fortran (and other programming 
language) programmers to assist them to take 
advantage of special high performance computer 
architectures, such as vector processors, 
distributed memory multiprocessors, and shared 
memory multiprocessors. These tools include High 
Performance Fortran (HPF), OpenMP, and MPI.  
It is reasonable to expect that these tools will 
continue to be developed as the new versions of 
Fortran are implemented. 
 
Free and Open Source Compilers 
 Unfortunately, due to the smaller number 
of compilers a vendor may expect to sell, 
spreading the development costs means that 
Fortran compilers are moderately expensive. The 
only open source Fortran compilers are g77 (but 
unless you need to compile  only legacy codes, 
who wants to use the quarter-century-old version 
of Fortran?), and Open64, 
(http://open64.sourceforge.net), a compiler that 
works only on the Itanium architecture under 

Linux. Intel's Linux compiler 
(http://www.intel.com/software/products/compiler
s/index.htm) is available for free, but only for non-
commercial use. 
 There is a g95 project under way to 
develop a GNU Fortran 95 compiler 
(http://g95.sourceforge.net). It will probably not be 
available until after Fortran 2003 compilers come 
out, so it will again be one step behind. Most 
vendors of Fortran compilers offer academic 
discounts. 
 
F 
 F is a subset of Fortran 95 consisting of its 
modern features and excluding the error-prone 
older features (http://www.fortran.com/F). 
Numerical Algorithms Group (the originators of 
the first Fortran 90 compiler) has made their 
compiler technology available for this software, 
which is maintained by the Fortran Company.  It is 
free, but it is not open source.  
 It is a compiler that can be used to develop 
production software, because anything that is 
compiled by the F compiler will also be compiled 
by any Fortran 95 compiler. It also provides free 
software for use by academic institutions that want 
to expose their students to Fortran programming. 
 

Conclusion 
 
 The Fortran language, Fortran compilers, 
Fortran environments, and Fortran tools continue 
to advance, along with other computing 
environments.  It looks like Fortran will still be the 
premier programming language to be used in the 
twenty-first century when serious numerical and 
scientific computing needs to be done. Additional 
information about Fortran can be found at 
http://www.fortran.com. 
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The Way Ahead In Qualitative Computing 
 

 
 

Tom Richards 

 
 
 
 

QSR International 
Melbourne, Australia  

 
 

Lyn Richards  
 
Specialized computer programs for Qualitative Research in social sciences have greatly changed ways of 
doing QR, the reliability and comprehensiveness of results, the ability to inspect and challenge a researcher’s 
working, and the relationship with quantitative methods in social research. This article explores these claims 
in the context of N6 (NUD*IST) and NVivo, the two programs designed by the authors; and considers 
possible future developments in the field. 
 
Key words: NUD*IST, NVivo, qualitative research, qualitative computing 
 
 

Introduction 
 
Qualitative Research (QR) has always centered on 
the analysis of conversational interviews, field 
notes and recorded conversations. Its raw data are 
people talking, and the people can be the 
researchers with their field notes and 
conversational turns, as much as the interviewees 
or subjects. Interviews may be one-on-one, or in 
groups, the records may be live transcripts or 
historical recollections. Questionnaires may be 
used, but mainly as topic prompts expecting prose 
responses not ticked boxes. 

 
 
Tom Richards is Chief Scientist at QSR 
International, and designer of NUD*IST and 
NVivo. He has a D. Phil. in Logic from Oxford 
University, and many publications on logic, 
computer science and methodology. Lyn Richards 
is founder and Director of Research Services at 
QSR. She has published books and papers on 
family sociology, qualitative research and QSR’s 
software. This article is based on a presentation 
given to the American Educational Research 
Association, SIG Professors of Educational 
Research, Chicago, April 21, 2003. 

 The methods and techniques of doing QR 
are often corralled into a number of schools, 
Ethnography, Grounded Theory, Phenomenology, 
and others. From our point of view these are seen 
as laying stress on different parts of the research 
process, and the aim of a developer of software for 
QR is to ensure there are enough tools to keep 
them all happy. Their actual practices, viewed as 
tool-users, have much in common: they just prefer 
to make different products or build them in 
different ways because they have different 
research goals. 
 QR was done manually until about twenty 
years ago with the rise of the word processor. 
Preferred techniques involved typing up the 
interviews or other raw data, and coding or 
flagging passages about topics of interest with the 
goal of gathering together all the passages on a 
given topic. Coding was done by making marginal 
notes, or photocopying into file folders, or making 
notes on system cards. This usually required a 
messy desk or a large living-room floor as a 
sorting ground. Needless to say these practices 
were rickety: clerical and management processes 
were onerous and scarcely fail-safe. Whilst you 
might do your initial coding thoroughly, it 
becomes hard to be sure, for example, that you’d 
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compared thoroughly how a particular viewpoint 
is presented by people with different 
demographics or sets of opinions – just because 
sorting the data into multiple such groups, often 
cross-cutting, then trying to do side-by-side 
comparisons, is so hard. Even trying to find 
vaguely remembered passages about this or that 
was a matter of luck. These and many other such 
difficulties we could call the access problem.  
 Moreover there is the revision problem. 
Revising your coding in the light of experience 
was virtually impossible because of the rigidity of 
handling coding imposed by paper records and 
coding management. Using manual methods also 
meant it was impossible to link the data 
systematically with quantitative research. 
Demographic data about respondents, or ticked 
response boxes, could be analyzed in SPSS; but 
studying interesting qualitative issues arising in 
conversational interviews with the respondents, in 
a way that sorted and compared those discussions 
using the demographic data, was very difficult. 
Only simple relations could be effectively 
investigated. Call this the qual-quant problem. 
 All of this meant that effective QR was 
best done with small data sets (by no means a bad 
thing, n is not often an important parameter in 
QR), or conclusions were impressionistic and 
bolstered by “juicy quotes” rather than 
dispassionate analyses. Checkability and the 
reaching of agreement suffered too: disputes over 
the conclusions reached by a researcher were hard 
to resolve since there was no way of reviewing the 
analysis steps. It was more a matter of starting 
again with the raw data. 
 
The Rise of Qualitative Computing 
 If the above characterized QR without 
computers, how did computing help? Early 
experiments with electronic files in a word 
processor improved on the manual situation. 
Codes could be inserted [like this] in the text, and 
word search would find all the instances of a code, 
enabling inspection of their passages. This greatly 
ameliorated the access problem, but clerical 
organization of codes, and their comparison, 
remained elusive. These problems led to the rise of 
the early dedicated QR programs, which basically 
provided tools for coding text documents, storing 
the coding references (usually to lines), and using 
them to find and display all passages referred to by 

a given code such as ‘playground bullying’. From 
the first dedicated QR programs, simple Boolean 
searches were supported, thus you could find all 
passages coded by  both ‘playground bullying’ and 
‘fear of going to school’. These features were 
much prized, because researchers could explore, 
with confidence of completeness, hunches about 
relationships between different situations or 
concerns or attitudes; and that is the way 
qualitative theories are built and tested. 
 This process came to be known as code-
and-retrieve, and because it was computationally 
simple to program, became the hallmark of 
computer-based QR. As we shall see however, this 
was a somewhat limiting approach to QR. For one 
thing, researchers couldn’t edit the text of their 
data any more, because to do so would invalidate 
the coding references made to the text passages; 
yet flexibility of amending, adding to, fleshing out, 
the text was a desirable tool for qualitative 
researchers that word-processing had provided. 
 Nevertheless code-and-retrieve has 
formed the core of all QR programs to date. Many 
of the current software offerings however provide 
much more than that. This, and the future, is what 
the rest of this paper will look at, in the context of 
QSR’s two QR programs.  
 

Methodology 
QSR has two products for qualitative researchers, 
NVivo and NUD*IST (Non-numerical 
Unstructured Data Indexing Searching and 
Theorizing, a name given when it was being 
programmed by one of us (TJR) for sole use by the 
other of us). Its latest version is known as N6 in an 
attempt to suppress a name, which, however 
memorable, definitely should not be searched for 
using a Web search engine! NUD*IST was first 
used by LR in the early 1980s, and went 
commercial in 1986 with the sale of one license 
(on a university mainframe and with scroll-mode 
display!). NVivo was launched in 2000. These are 
very different products, and aimed to support 
different work practices, as will be described 
below. Right now however, our aim is to set out 
how these products both go beyond the code-and-
retrieve paradigm just described. 
 
Edit-While -You-Code 
 We pointed out above that a restriction 
imposed by code-and-retrieve was that you 
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couldn’t edit a document – it was frozen. The 
reason: editing would, by adding or removing text, 
invalidate the references made by coding to 
passages in the document. Add a hundred 
characters at a given point and every reference by 
every code to passages later in the document will 
now pick up text a hundred characters before what 
it used to. Back in the days of paper the problem 
was different and not so bad. If you coded by 
photocopying passages to folders of codes, then if 
you altered the original the coded copy in the 
folder was unaltered, but might no longer be 
faithful to the altered original. 
 Researchers do want to make corrections 
to interview transcripts, to do partial transcription 
and flesh it out later as the direction of research 
indicates, to edit out privacy-infringing material, 
to add clarifications and greater detail to field 
notes. Researchers also want to code while they 
are typing up the transcription, because that’s 
often when they have their best thoughts about 
what the text is saying and implying and hinting 
and suggesting. The restriction that all your data 
documents must be complete and final before you 
dare to add one code, is a strait-jacketing QR 
cannot accept. 
 Aside from the ability to add text at the 
end of document, which doesn’t upset any existing 
coding, N4 and onwards has provided the ability 
to edit individual lines or paragraphs – the text 
units that are the smallest chunks of text that can 
be coded. NVivo however codes all the way down 
to individual characters, and moreover supports 
rich text documents, not just plain text as in N6. 
Despite this, NVivo supports full editability. Its 
Document Browsers, where you look at the text of 
a document, have full editing controls plus 
controls over the “richness” of the text – font, 
letter style and color and size, etc. And using the 
text editor does not in any way invalidate existing 
coding: NVivo’s way of recording coding keeps 
up with editing changes. So for the first time ever, 
researchers can feel completely free to modify 
their documents, and to code them while writing 
them up. 
 
Nodes – Going Beyond Code-and-Retrieve 
 The world of QR, including QR 
computing, talks of codes as the labels attached to 
and describing the contents of, passages of text. 
The process of coding is the labeling of the text, 

and retrieval of a code involves presenting, 
somehow or other, the passages referenced by the 
code. 
 But both of QSR’s products store coding 
at nodes. These are containers for topics, ideas, 
places, people, and attitudes, indeed anything that 
may be relevant to the QR project at hand. There 
may, for example, be a node ‘Schools’ which has 
under it sub-nodes for the schools in the project 
‘Valley High’ and ‘Hilltop Primary’ for example. 
‘Valley High’ might contain just a memo written 
by the researcher describing the school and its 
problems, and ‘Schools’ contain nothing – it’s 
there just as a generic locator for the nodes for 
individual schools (this demonstrates why we 
chose the word ‘node’ for these entities, and why 
the two programs can organize nodes in a tree-
structured hierarchy like a library catalog or a 
taxonomy). 
 Many nodes will however contain coding. 
If an interviewee talked about Hilltop Primary, it’s 
appropriate to code that passage at the ‘Hilltop 
Primary’ node. And of course some nodes are 
intended primarily for coding, such as ‘angry’ 
(marking where interviewees displayed anger) or 
‘reports of bullying’. 
 Nodes can also be used to mark cases. If 
we have ten interviewees, who got interviewed 
individually a couple of times then in groups, it is 
useful to collect everything each individual said in 
one place. This gives rise to case nodes ‘Mary’, 
‘Joe ’, etc., instances of the case type ‘Interviewee’.  
 It’s a small step beyond that to use trees of 
nodes to represent demographic data – called base 
data trees in N6. (NVivo represents demographic 
data in tables of so-called attributes). Thus we can 
have a ‘Religion’ node, with sub-nodes 
‘Christian’, ‘Hindu’, ‘Jewish’, etc. Then if Joe is 
Jewish, we copy all the coding at the ‘Joe’ case 
node to the ‘Jewish’ node. And the same goes for 
any other Jewish interviewee case. Why do this? 
Because now, using the ability to make Boolean 
combinations of coding at nodes, we can 
immediately find everything said by Jewish 
interviewees. And if we have coding at ‘Hilltop 
Primary’ and ‘reports of bullying’ we can find all 
reports by Jewish interviewees about bullying at 
Hilltop Primary. 
 Both N6 and NVivo support importing 
and exporting such demographic data as tables. 
For example an SPSS table, whose rows are the 
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Interviewee cases ‘Joe’ etc, and whose columns 
are variables such as ‘Religion’ etc., can be 
imported into N6 to create and code up an entire 
base data tree. Conversely such a tree (which may 
be created inside N6 rather than imported) can be 
exported as a table to any table -handling program. 
NVivo does this more directly with its attribute 
tables; but in either program a researcher might 
create a base data type of tree that records research 
results, perhaps various categories of social, 
political or educational opinion the researcher has 
labeled the interviewees with as a result of careful 
analysis of what they’ve said. An example would 
be, for parents or teachers discussing ideal 
curricula: ‘Curriculum priority/vocational', 
‘Curriculum priority/all-rounder’ and ‘Curriculum 
priority/none’. The exported table would record 
which case (interviewee) belongs to each category. 
 Nodes with coding represent views onto 
the textual data of a project that are orthogonal to 
that provided by documents. Any QR program will 
let you view the contents of a document, e.g. the 
first interview with Joe. In NVivo and N6, a 
Document Browser, like an edit window in 
Microsoft Word, shows you all the text in that 
document. A node by contrast refers to all 
passages that have been coded at it. How do you 
see such passages? In both N6 and NVivo, and 
unique to these programs, you can view everything 
coded at a node (in a browser window) in just the 
same way as you can view a document. This 
contrasts with being taken to each document in 
turn with the coded passage highlighted, or a 
series of cards holding the different passages. In 
the Node Browser, you can ask to see not only the 
passages coded, but as much of the context of 
those passages as you wish, if that helps to 
understand them. 
 Now when you’re browsing a document, 
you can of course code it. Both products provide 
comprehensive tools for making, viewing and 
modifying coding in their Document Browsers. 
But uniquely, they also provide exactly the same 
coding facilities in their Node Browsers. Since 
Node Browsers are the place to find and compare 
nuances in what the node is about, and the place to 
find what people are or are not talking about in the 
context of the topic of that node; the Node 
Browser is the place to code up those nuances and 
found topics – leading to lots of rich and deep 
analysis that might well be unrealizable otherwise. 

This process is called Coding On, and is made 
possible by “live” Node Browsers that display 
their text in context and support coding. 
 Difficult in the days of paper, the advent 
of the live Node Browser has made Coding On a 
simple and universally available tool for 
qualitative researchers, who are still exploring the 
power it gives them. 
 
Linking: Making the Web of Associations 
 Edit-while-you-code and the live Node 
Browser are, in the end, ways of removing fetters 
from coding. Now we will look at a bunch of tools 
that are not about coding at all, although the Node 
system and coding can certainly interact with 
them. These tools are about making links or 
associations, involving documents, nodes and 
other things. 
 
Memos and Links 
 Most qualitative researchers want to keep 
notes, commonly called memos, about their data 
and idea. If you have a one-on-one interview with 
Joe, you may want to have a memo about how Joe 
behaved in the interview, your thoughts about Joe, 
and the like. Most QR programs will support 
writing such a memo, attaching it to Joe’s 
interview, and adding to it and revising it later. 
 Such memos can be a valuable source, or 
indeed explicit repository, of research insights – 
where the researcher records their evolving 
thinking about aspects of the project, for instance 
the rise of a climate of fear and the many ways it 
interferes with self-esteem. In such a case it seems 
obvious to link such a memo not to some 
interview, but to the nodes on fear and self-esteem. 
N6 and NVivo support that. But more importantly, 
there is a felt need to code such memos, at 
anything of research importance they may say. N6 
supports this by allowing a memo to be turned into 
a data document where it can be coded. Obtaining 
first-class status, if you like. In NVivo, all memos 
have first-class status anyway. They are no 
different from any interview document – except 
that they are called memos. 
 A memo can be linked to several nodes 
and documents, so that when you are browsing 
them you can see they have memos and you can 
open them in new Browsers. In addition a memo 
can be linked to any point in the text of a 
document where it may be relevant, so you see a 
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little link icon in the text and can access it from 
there. These in-text links, and others we will be 
talking about, are all visible in Node Browsers too, 
and can be accessed from there. And if a memo is 
rather general in nature, such as a research plan or 
summary, it needn’t be linked anywhere at all, but 
will still be listed along with all other documents 
in NVivo’s user interface. After all, it is a 
document. And since it’s a document, it can 
contain links of its own. In this way we can build 
up a web of links between documents and 
documents, memos and other documents, nodes 
and memos or documents. For many researchers, 
these provide a new way, different from coding, 
for associating and exploring ideas, topics and 
themes. 
 Links can also be to nodes, which 
provides a sort of converse of coding. If a passage 
in an interview refers to Joe’s peculiar views about 
sport in the school curriculum, we can insert a link 
right there in the text, called an extract, to the 
passage in Joe’s interview where he expresses 
those views. When you set up an extract, the 
passage being extracted gets put into a node, the 
extract node, which is what the link in the text 
jumps you to. 
 
Hyperlinking to Other Data 
 So now in NVivo we can put into the text 
a fabric of links, joining documents (whether 
memos or not) to each other, nodes to each other, 
and between documents and nodes. In addition to 
such links, marked by little icons in the text, there 
are more standard hyperlinks to short comments 
or, significantly, to computer files and web 
documents. This means that material of any sort at 
all can be referenced at any place in a document – 
pictures, web pages, spreadsheets, movies, … and 
opened there in its appropriate program. This 
provides the ability to code such linked items as 
wholes, by simply coding the hyperlink in the 
document. In the case of audio and video files, by 
judicious use of programs that will “snip up” such 
files, you can attach just the relevant part of a 
video, for example where Joe is getting worked up 
about school sport, to the hyperlink. For many 
researchers, this way of handling the coding of 
videos is preferable to coding the video file 
directly. Moreover such links, like document and 
node links, are always visible and live when 
presented in Node Browsers, not just in the 

editable Document Browser. The ability to make 
associations, and to link the web of associations 
with nodes and coding, is now comprehensive. 
 
Beyond Retrieval: Asking Questions 
 Retrieving the text coded at a node may be 
interesting and illuminating, and lead to a lot of 
valuable coding-on; but it doesn’t show you 
anything new – you did all that coding. But 
finding simple Boolean combinations of coding 
does offer new knowledge. Simple intersection 
(and) is particularly effective: Given a 
demographic code such as ‘gender/male’ and a 
“thematic” node such as ‘bullying’ intersection 
will show us everything the males have said about 
bullying. We can by the same procedure put that 
result alongside what the female interviewees have 
said about bullying – a contrast likely to be 
productive of insights to code-on. 
 A couple of thematic nodes such as 
‘playground’ and ‘bullying’ can be intersected to 
see what’s said about bullying in the playground, 
and a similar search will lead to a contrast with 
bullying in the classroom. Using the Node 
Browser facility to see retrievals in context will 
counteract the way that intersection narrows down 
its finds. 
     Several nodes need to be intersected to 
answer some questions, such as “What do Jewish 
fathers have to say about playground bullying?” 
(intersecting four nodes). 
 N6 and NVivo handle all these searches 
using a facility called a Search Tool. This supports 
all other Boolean search operators, so that for 
example you can ask “What is said about bullying 
that is not in the playground?” A large range of 
proximity searches are also provided so that you 
can ask questions like “Amongst the people who 
talk about bullying, what do they say about fear of 
attending school?” – a simple example. The fact 
that nodes can be organized hierarchically for 
cataloguing purposes is not forgotten either. So if 
the ‘curriculum priority’ node has sub-nodes 
‘vocational’, ‘all-rounder’ and ‘ none ’, you can ask 
to retrieve all the curriculum priority views (nodes 
below the ‘curriculum priority’ node) and see 
them together. 
 Well, where, how, do you see them 
together? From the earliest versions of NUD*IST, 
and in NVivo, the results of any search for any 
combination of coding has always been stored at a 
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node. This sort of reflexivity, where results of 
analyses get stored as new data, is called system 
closure. It allows the researcher to view the results 
in a Node Browser, and hence code on – a very 
fruitful activity with the results of interesting 
searches. It also allows new questions to be asked 
involving the search results at any later date. For 
instance, having stored the answer to “What do 
Jewish fathers have to say about playground 
bullying?” as a node, you might ask “Amongst the 
Jewish fathers who spoke out on playground 
bullying, what do they have to say about other 
forms of bullying?” – a proximity search. Such 
questions are crucial in QR, but how would you 
get answers to them in a paper-and-file-cabinet 
research project? 
 System closure can have significant 
effects. Consider text search for example, which is 
supported in comprehensive ways in both 
products; involving pattern specifications as well 
as search strings, and in the case of NVivo, 
approximation searches to allow for misspellings 
and the like. Given system closure, text search is 
presented not merely as a way of displaying the 
next match in the next document; but as a way of 
collecting all the finds together, optionally in their 
sentence or paragraph context, and storing them at 
a node. This not only allows for the sort of coding-
on described above, but also means that text 
search can be brought into the sort of 
combinatorial searching just described, since the 
node holding text search results can be input to a 
Boolean, proximity or other search. It also means 
that text search can be used as the first rough pass 
for coding. You make a node holding the passages 
found by searching for ‘Napoleon’ and 
‘Bonaparte’, then add to that by coding when you 
find indirect references to him. 
 When you have such comprehensive 
search tools available, enabling you to ask just 
about any question expressed in terms of nodes in 
the project, the task of designing a coding system 
becomes very much easier, and the resulting 
system far more flexible. Without such tools, 
you’d need to ensure you’ve got all the different 
responses well catalogued by coding ‘Joe on 
playground bullying’, ‘Joe on classroom bullying’, 
‘Henry on playground bullying’, ‘Jewish fathers 
on classroom bullying’; and so on repetitively to 
create a morass of combinations of topics and 
demographics. And all you could do in the end 

would be to retrieve them, and asking novel 
questions like “Do older parents have different 
views on the effect of teacher discipline on the 
control of playground bullying than younger 
parents?” would not be possible. You’d simply 
have to go back to your documentary data and 
code for that from the beginning. 
 Whereas, aware of the power of the search 
tools, you need to code only for some 
demographics amongst parents interviewed, and 
for ‘parent’, ‘bullying’, ‘discipline’, ‘teacher’, 
‘playground’, ‘classroom’; then you can ask the 
questions in the previous paragraph and many 
others. For instance you find everything said on 
playground bullying by intersecting ‘playground’, 
holding everything said about playgrounds and 
happenings in them, with ‘bullying’, holding 
everything said about bullying. This makes for 
simple-to-code, clean, easily organizable node 
systems that lend themselves to powerful 
searching, and the crucial ability to make 
unforeseen searches. 
 A final but very powerful feature of 
searches needs to be mentioned. Most of the 
search operators such as intersection can be 
applied to not just a pair of nodes (to find their 
intersection) but to two groups of nodes to create a 
table or qualitative matrix of their pairwise 
intersections. For example, to find the views of 
parents of different religious persuasion on the 
different curriculum priorities, you take the node 
‘Religion’, (below which are ‘Jewish’ etc.) and the 
node ‘Curriculum priority’ (below which are 
‘vocational’ etc.) and you get a table whose cells 
show what everyone of each religion has said 
about each curriculum priority. The matrix is 
stored as coded data, with each cell effectively a 
node that can be viewed in a Node Browser, where 
it can be coded-on, used as input to some other 
search, and so on. A table of numerical data on the 
cells such as amount of text coded, can be 
exported to a table -handling program such as 
SPSS (if the researcher thinks that might be 
statistically useful data!). 
 The above outline gives an insight into 
what N6 and NVivo can do, and a taste of what 
it’s like to work in such a program. There is a 
great deal more that can be said, but these are 
complex and powerful programs, and it would be 
best to visit the literature on them. 
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How Do N6 and NVivo Differ? Two Worlds of 
Work. 
 In spite of all the common features and 
tools described above, N6 and NVivo are two 
rather different products that address two rather 
different ways of working. One simple example 
has been mentioned: demographics in N6 are 
handled in base data trees, but in NVivo in tables 
of attributes of documents or nodes. 
 The best way to sum up the differences 
between the two is that N6 and its forebears are 
designed for rapid access to textual data via 
coding, whereas NVivo can handle very complex 
data with a large variety of tools. Think of NVivo 
as flexible and subtle, suited for deep analyses as 
in a typical university PhD project; and N6 as 
containing a single workmanlike tool that 
nevertheless provides powerful analyses. Let us 
spell these out. 
 N6 requires its data documents to be plain 
ANSI text, whereas NVivo handles rich text in any 
font at all. Rich text is more attractive than plain, 
and is needed of course to display hyperlinks and 
link icons, but aside from that it gives the user the 
opportunity to mix languages in a document, to do 
“visual coding” by highlighting, and to use up to 
nine level of heading to divide a document into 
nested subsections. While this presents more 
opportunities to the researcher, it comes at the 
price of increased storage demands and slower text 
handling. In large volumes that can matter, 
whereas the plain text of N6 makes minimal 
demands. 
 For purposes of coding, N6 requires all 
text to be divided sequentially into text units, 
which the user can define as sentences, lines or 
paragraphs. These are the smallest passages of text 
that can be coded, whereas NVivo supports coding 
right down to the character level. Fine coding 
presents better opportunities for researchers 
interested in the details of what people say, 
enabling them to pick up words, phrases, and 
stylistic quirks. At the other extreme, coding at the 
paragraph level in N6 means it is easy to provide 
coarse coding economically to enormous volumes 
of text; and typically for large projects with 
thousands of interviewees, paragraphs are quite 
small enough thank you. 
 The above two features, combined with its 
ability to automate data handling (see below on 
Command File scripting), mean that N6 can 

handle enormously large projects, limited in 
general only by the computer’s speed and storage. 
We know of projects containing tens of thousands 
of multi-page interview documents, handled well 
by N6. NVivo would slow down unacceptably on 
such a big dataset – the recommended maximum is 
hundreds of documents if they are large and coded 
to a reasonable level. Of course, even that is no 
small project. 
 N6 essentially uses one data type, nodes 
and their coding, to handle everything – aside 
from having documents of course. And there’s 
only one analysis tool, the combinatorial Search 
Tool described above. NVivo on the other hand 
has not just nodes and their coding, but 
comprehensive links as described earlier. It also 
has sets for grouping documents or nodes in any 
ways at all. And as mentioned, NVivo avoids the 
need to use nodes and node trees to handle base 
data by having a comprehensive attribute/value 
data type. This is used to set up attributes for 
documents or nodes, and to assign values to 
individual documents and nodes – string, Boolean, 
numeric or date.  
 As to analysis tools in NVivo, sets have a 
very comprehensive filtering editor, and attributes 
have live table displays. In addition there is a 
Show Tool, for finding lists of related items – all 
the documents with a particular attribute value for 
example, or all the nodes coding a given 
document. And there’s an Assay Tool for looking 
at the numbers of documents or nodes in a set that 
have any selected feature – all presented in tabular 
format with marginals, ready for export to SPSS or 
other table-handling package. 
 Moreover Nvivo’s Search Tool is more 
complex than N6’s. Information can be located not 
just by coding at a node, but in values of attributes, 
and of course in text search finds. So NVivo’s 
Search Tool supports Boolean, proximity and 
Matrix searches, as in N6, but can take as input 
attribute values and text-search patterns as well as 
nodes with their coding. In N6 a question like 
‘What do Jewish fathers say about classroom 
bullying’ is framed as intersecting three or four 
nodes (depending on whether you’ve coded 
‘classroom bullying’ as one node or preferably 
two inviting intersection). In NVivo the 
intersection would be of attribute-values 
‘Religion=Jewish’, ‘Role=father’, and nodes for 
classroom bullying as before. And if you want to 
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find where parents talk about the curriculum you 
don’t have to do a ‘curriculum’ text search first, 
save the node then intersect with a node or 
attribute for being a parent. You just intersect the 
latter with paragraphs containing the word 
‘curriculum’. 
 N6 has a scripting tool called command 
files, allied with a Command Assistant that helps 
researchers construct complex series of commands 
to handle large jobs. These can be used over and 
over again (with editing if need be to change 
parameters) to cover repetitive work – in the one 
project or in a series of essentially similar projects. 
This provided great speedups for many parts of 
project work. It can even be used to analyze the 
comparative performance of many coders in a 
collaborative or multi-site project. NVivo has no 
scripting, but provides more interactive tools to 
assist with some complex routines. 
 NVivo contains a graphical tool for visual 
exploration of a project’s data and their relations. 
Nodes, documents, sets, attributes and their values 
can be placed in layers of a graphical model, each 
being live to its contents (click on a node in a 
model to open its browser). In addition to the links 
and groupings a researcher might draw in a model, 
links can automatically be added to show which 
nodes code a given document, which documents 
have a particular attribute value, and the like. 
Social scientists use “box-and-line” drawings to 
display a theory or some process or organization in 
the world, and the graphical modeler is designed 
to give them great freedom in preparing such 
diagrams, live to the underlying data. It makes for 
a great presentation tool! The workmanlike N6 
contains no such graphics. 
 Both products have an associated “Merge” 
program designed for combining two separate but 
essentially similar projects into one. They look, for 
example to see if two same-named documents in 
the projects are in fact the same in which case their 
coding can be combined, otherwise treat them as 
different and change the name of one on merging. 
N6 treats this merging as essentially a hands -off 
“batch” process. You set the parameters and let it 
run. Merge for NVivo however works far more 
interactively. Before the merging you are taken 
through an interactive alignment process of 
examining all potential clashes (like same-named 
documents) and deciding what to do. At the end of 
alignment you can stop, having “sorted out” the 

two parallel projects so they compare correctly in 
their document, node and attribute systems, or you 
can proceed to merge the two of them.  
 N6, then, is simpler – in its plain text, in 
its types of data (nodes only) and in its tools and 
displays. However people working on deep subtle 
projects, usually in a university research 
environment, find that compared to N6, NVivo 
really helps them to soar. It is exhilarating in its 
richness and flexibility and ways of comparing 
and showing information. People with simpler 
needs prefer N6 – there is less to learn and the 
power remains great. N6 is also the product to use 
for large projects, which are becoming quite 
common especially in government or semi-
government research organizations, where they are 
closely allied with extensive quantitative surveys.  
 These two types of work – simple but 
powerful and scalable versus complex, flexible 
and subtle, do effectively divide the field so that 
most people moving into QR computing recognize 
which program suits their needs best. These two 
ways of working, two types of project, are so 
different that it is unsatisfactory to try to provide 
one program that handles both excellently – 
instead you end up with a lowest-common-
denominator program. 
 
How Qualitative Research is Changing 
 One of the privileges of being the 
designers of these programs is to travel the world 
visiting universities and institutions in very many 
countries to conduct workshops with users and 
consult on their projects. This gives a unique 
insight into how qualitative research is changing 
under the impact of these computing tools over the 
last decade. Here are some of the headline changes 
we have observed since about 1990. 
 The areas employing QR, especially by 
computer, as a fundamental tool are broadening. 
Initially projects and people seemed to come from 
sociology, educational research, and (intriguingly) 
areas of engineering. Now there is far more 
qualitative research in business and organizational 
studies and consulting, demographics-oriented 
disciplines such as epidemiology, health sciences 
(which itself has been a burgeoning discipline over 
this period), and business-based survey research 
e.g. market research. Interestingly, history and 
literary studies remain somewhat aloof. 
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 QR by computer (especially if you’re 
using NVivo) is used to handle a research project 
end-to-end, not just to analyze filed notes or 
interviews. All project documentation – project 
plans, progress summaries, and importantly the 
research summaries and reports and presentations 
– are kept inside the NVivo project. This reflects 
the murky dividing line between data and analysis, 
and the value of using the linking and coding tools 
in particular to relate “research” to “data”. 
 Size of project has increased enormously. 
Whilst the median size, perhaps a hundred 
documents at most, remains unchanged, there is a 
growing tail of huge projects driven by the desire 
to provide some sort of qualitative analysis of 
studies with very large n, and to inform 
quantitative analysis with such data. Common 
fields here are government studies, epidemiology 
and population-wide health studies, global studies 
by international organizations, and the like. Some 
specific examples are learning-effectiveness 
studies of students of a given age across all 
schools in a state or country, district-by-district 
analysis of the effects of a new country-wide 
public safety system, and customer feedback 
worldwide (where customers are governments) of 
utilization of major infrastructural capital goods. 
These may not excite the NVivo-using sociologist 
who uses QR to develop a theory of social 
behavior, but their importance, and their need for 
QR, is great and usually of immediate relevance to 
communities. They are also all projects suited for 
N6. 
 Qualitative-quantitative wars have largely 
been replaced by collaboration. Some recalcitrant 
pockets remain, but the change has been 
remarkable. Of course for many projects on either 
“side”, there is no need for collaboration; but the 
incidence of collaborative or mixed-method 
projects as they are being called, is increasing 
sharply. The presence of software, particularly the 
NUD*IST line over the years, seems to have been 
quite instrumental here. Two reasons. One, the 
qual-quant problem mentioned at the start of this 
paper has been considerably ameliorated by table -
handling facilities within qualitative packages 
combined with table import/export facilities. Thus 
for example intriguing numerical patterns arising 
from a matrix search pitching some demographic 
attribute-values (themselves imported from survey 
data) against a range of viewpoints elucidated in 

interview conversations, can be investigated 
statistically to test significance or to graph a 
correspondence analysis. 
 Reliability is being taken seriously. When 
the access problem loomed large, researchers 
tended to erect a number of “monster-barring” 
defenses here – it’s a matter of insight and 
experience irreplaceable by mere machines, for 
example. Some defenses by qualitative researchers 
were quite correct though, for example QR doesn’t 
require a large n to give it reliability or validity 
(though some funding committees still think so). 
After all a biography (n=1) can provide 
tremendous insight into a personality type, a 
period of history, or a social situation. What 
matters more is that a QR project carried out in say 
N6 provides far more auditing of the conclusions a 
researcher makes. The use of the Search Tool to 
find the insightful “core” concepts that give an 
understanding of the problem at hand, can be 
traced as the results are preserved as nodes. 
Another researcher can get into the same project 
and use the Search Tool on the very nodes the 
original researcher built, to find counter-examples 
or problematic cases that challenge the original 
conclusions. Coding patterns can be studied quite 
directly to see how even they are across the data, 
and N6’s Command Assistant can even produce a 
script which will compare the coders in a team to 
find similarities and differences in their coding 
patterns. 
 Analysis is going far deeper. Even with 
smallish projects, the access problem and the 
clerical time consumed used to put a close limit on 
the results discoverable and on their exploration. 
Now however there is little time cost in exploring 
a large number of hunches and approaches, of 
combining them and extending them in many 
ways; in short in encouraging serendipity then 
putting the discoveries through rigorous analysis. 
 
Readings 
 There is a surprisingly small literature on 
computational QR, given its ubiquity and the 
effect it has had to change methods. The series of 
conferences since 1999 at the University of 
London, Institute of Education on doing research 
with QSR’s software have led to a special journal 
issue:   International  Journal  of  Social  Research
Methodology (2002a), 5:3. 
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 Amongst its many articles there is a most 
important discussion of mixed methods by 
Bazeley (2002a). The evolution of NUD*IST and 
NVivo is described in T. Richards (2002). An 
examination of the effect computing has had on 
QR methods is set out in L. Richards (2002a; 
2002b, 1998). Mixed methods are also discussed 
in Bazeley (2002b). Bazeley & Richards (2000), 
Morse & Richards (2002), and (Gibbs, 2002) are 
three books about how to do QR by computer. The 
first has a gentle mentoring approach for someone 
new to qualitative computing; the second is more 
methodology-oriented (ethnography, 
phenomenology and so on), while the third takes a 
more standard text-book approach to the subject. 
 There are no recent survey books of this 
fast-changing field. The latest Alexa and Zuell 
(1999). For a much more comprehensive 
bibliography of books and articles in the field, 
visit the following url: 
http://www.qsrinternational.com/resources/literatu
re/reading.htm. 
 

Conclusion 
 
The world of computing and software is 
notoriously unpredictable, which is probably why 
it has such a huge number of gurus doing the 
predicting. What shape qualitative research 
programs will take in ten, or even five years’ time 
is very indeterminate. Arrival in the market by a 
large established software vendor, or the 
development by some genius of an unforeseen 
way of doing QR with computers, can upset any 
prediction. After all the development of new ways 
of working has been the hallmark of computing in 
QR in the past, so why not in the future? 
 On the other hand, the pressures that 
might shape QR program revisions in the nearer 
future can be spelled out. Here are some: 
 The rise of mixed methods, the demand for 
better qual-quant interaction. This is unlikely to 
lead to a program that does both, but will lead to 
innovative thinking on how qualitative programs 
can better hold up their half of mixed methods. 
The shape this will take is unforeseeable – 
something new in research methods may well arise 
here. 
 The application of “intelligent” heuristics. 
Using natural language semantics automatically to 
code documents to the level of intelligence of a 

trained researcher, can safely be said to be a very 
long way off. But there are plenty of more modest 
artificial intelligence and statistical routines that 
can be applied to find inductive relationships, to 
find various sorts of associations between the 
coding of nodes, and to do data mining as a way of 
suggesting new and fruitful nodes. 
 The pressure to handle large projects with 
large datasets. These can be projects where one 
person or a small local team is studying huge 
amounts of data. Or there can be multiple 
researchers gathering data, or joint projects 
running in several different sites requiring a 
unified organization and various levels of 
comparison of site data. 
 Handling repetitive or multiple similar 
projects. Particularly in the business-driven 
research world, a successful project will modeled 
for re-application in similar situations, and hence 
require the easy definition of its model “skeleton” 
then easy fleshing-out to the new projects. This 
can include aggregating the repetitions to an 
“overall” project. 
 Exploiting the Internet. This is not just 
finding project data in emails and web pages. The 
Internet provides a ready-made remote networking 
and data storage system for people collaborating 
on projects from multiple sites, and for providing 
remote and special or customized processing of 
project data. 
 New modes of user interaction. QR 
famously makes huge demands on organizing and 
displaying data, having huge amounts of 
disorganized data. Early versions of NUD*IST 
relied on the scrolling 24 x 80 character display of 
“glass Teletypes” – which still held sway only 20 
years ago. High-resolution color graphics screens, 
windowing and mousing are all quite recent 
arrivals, and certainly by no means the last word in 
user interaction and control. When the next 
breakthrough arrives it is likely to desert the 
desktop-and-paper metaphor that the current 
windowing interface is based on, and provide 
unforeseen opportunities for novel organization 
and display of qualitative data. 
 Given all this, the last word is that we 
have not yet reached the last word. 
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While the distribution-free nature of permutation tests makes them the most appropriate method for 
hypothesis testing under a wide range of conditions, their computational demands can be runtime prohibitive, 
especially if samples are not very small and/or many tests must be conducted (e.g. all pairwise comparisons).  
This paper presents statistical code that performs continuous-data permutation tests under such conditions 
very quickly � often more than an order of magnitude faster than widely available commercial alternatives 
when many tests must be performed and some of the sample pairs contain a large sample.  Also presented is 
an efficient method for obtaining a set of permutation samples containing no duplicates, thus maximizing the 
power of a pairwise permutation test under a conventional Monte Carlo approach with negligible runtime cost 
(well under 1% when runtimes are greatest).  For multiple comparisons, the code is structured to provide an 
additional speed premium, making permutation-style p-value adjustments practical to use with permutation 
test p-values (although for relatively few comparisons at a time).   �No-replacement� sampling also provides a 
power gain for such multiple comparisons, with similarly negligible runtime cost. 
 
Key words: Permutation test, Monte Carlo, multiple comparisons, variance reduction, multiple testing 
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Introduction 

 
Permutation tests are as old as modern statistics 
(see Fisher (1935)), and their statistical properties 
are well understood and thoroughly documented in 
the statistics literature (see Pesarin (2001) and 
Mielke and Berry (2001) for extensive 
bibliographies).  Though not always as powerful 
as their parametric counterparts that rely on 
asymptotic theory, they sometimes have equal or 
even greater power (see Andersen and Legendre 
(1999) for just one example).  In addition to their 
utility when asymptotic theory falls short (e.g. 
small samples and the Central Limit Theorem), 
permutation tests are unbiased, and when fully  
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enumerated, they provide gratifyingly exact 
results.  Most important, however, is that with few 
exceptions, valid permutation tests rely on no 
distributional assumptions � only the requirement 
that the data satisfies the condition of 
exchangeability (i.e. distributional invariance 
under the null hypothesis to permutations of the 
subscripts of the data points).  This gives 
permutation tests a very broad range of 
application. 
 
Until recently the major drawback of permutation 
tests has been their high computational demands.  
Even when sampling from the permutation sample 
space, as is typically done, rather than fully 
enumerating it, computer runtimes still have been 
prohibitive, especially if samples are not very 
small.  Recent advances in computing speed and 
capacity increasingly have relaxed this constraint, 
but the continual development of new and 
computationally intensive statistical methods is 
easily keeping pace with such advances.   
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For example, Westfall and Young (1993) 
convincingly demonstrated, under a broad range of 
real-world data conditions, the need for 
resampling-based multiple testing procedures.  
However, if the unadjusted p-values themselves 
are derived from resampling methods, such as 
permutation tests, the multiple comparisons p-
value adjustment requires a computationally 
intensive nested loop, where a large number 
(thousands) of additional permutation tests must 
be performed for each original permutation test to 
properly adjust its p-value.  Obviously, even if 
each permutation test requires just a few seconds, 
runtimes quickly become prohibitive if there are 
many p-values that need to be adjusted. 
 
Similarly, power estimation of tests based on 
resampling methods require the same intensive 
nested loop structure (see Boos and Zhang (2000) 
for a useful computation reduction technique), 
while power estimation of the multiple 
comparisons adjustment procedure mentioned 
above requires an additional (third) loop. 
 
Such examples clearly demonstrate the ongoing 
need to develop faster code and algorithms that are 
also increasingly statistically efficient, since 
variance reduction lessens sampling requirements 
which, all else equal, increases speed.  The goal of 
the methods described below is to contribute to 
these efforts. 
 
Widely Available Permutation Sampling 
Procedures  
 
Three procedures in SAS® v8.2 � PROC 
NPAR1WAY, PROC MULTTEST, and PROC 
PLAN � and one procedure in Cytel�s Proc 
StatXact® v5.0 � PROC TWOSAMPL � can be 
used to perform two-sample nonparametric 
permutation tests.  All but PROC PLAN sample 
the input dataset itself, while PROC PLAN 
generates a record-by-record list, each record 
containing a number identifying the corresponding 
record on the input dataset to include in the 
�permutation� samples.  This list subsequently 
must be merged with the original data to obtain the 
corresponding data points, something PROC 
MULTTEST does automatically by directly 
generating all the �permutation� samples it uses 
for permutation-style p-value adjustments (these 

samples, however, can be used instead as the 
samples for the actual permutation tests).  In 
contrast, both PROC NPAR1WAY and PROC 
TWOSAMPL actually conduct the permutation 
test and provide a p-value, whereas the samples 
from both PROC MULTTEST and PROC PLAN 
must be manipulated �by hand� to calculate the 
value of the test statistic associated with the 
original sample pair, and then compare it to all 
those associated with each of the �permutation� 
samples to obtain a p-value.   
 
Nonetheless, effective use of PROC PLAN, as 
shown in benchmarks in the Results section below, 
is much faster than these other procedures � often 
more than an order of magnitude faster when one 
of the samples is large.  The only potential 
problem with using PROC PLAN is that it has a 
sample size constraint � the product of the sum of 
the two sample sizes (n1 + n2) and the number of 
�permutation� samples being drawn (T) cannot 
exceed 231 (about 2.1 billion, the largest 
representable integer in SAS) or the procedure 
terminates.  However, this can be circumvented by 
inserting calls to PROC PLAN in a loop which 
cycles roundup((n1 + n2)* T / 231) times, each loop 
drawing T * [roundup((n1 + n2)* T / 231)]-1 samples 
until T samples have been drawn (see code in 
Appendix C).  This looping in and of itself does 
not slow execution of the procedure. 
 
All of the abovementioned procedures can perform 
conventional Monte Carlo sampling without 
replacement within a sample, as required of all but 
a few stylized permutation tests, but none can 
avoid the possibility of drawing the same sample 
more than once.  In other words, when drawing the 
sample of �permutation� samples, these 
procedures can only draw from the sample space 
of samples (conditional on the data) with 
replacement (WR).  This problem of drawing 
duplicate samples, its effect on the statistical 
power of the permutation test, and a proposed 
solution that maximizes power under conventional 
Monte Carlo sampling for both pairwise and 
multiple comparisons are discussed in the 
Methodology section below.  First, the background 
issues of determining the number of �permutation� 
samples to draw, and sampling approaches other 
than conventional Monte Carlo, are addressed 
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below. 
 
Determining the Number of Permutation Samples 
 
When drawing samples from the permutation 
sample space, one must determine how many 
samples should be drawn.  Obtaining an exact p-
value from a permutation test via full enumeration 
� i.e. by generating all possible sample 
combinations by reshuffling the data points of the 
samples at hand � quickly becomes infeasible as 
sample sizes increase. As shown in (1), the 
number of possible sample combinations becomes 
very large even for relatively small sample sizes 
(two samples of 29 observations each, for 
example, have 30,067,266,499,541,000 possible 
sample combinations).  

(1) 
 
# of two-sample combinations 
 
where         sample one�s size,         sample two�s 
size, and       
 
Network algorithms (see Mehta and Patel (1983)) 
expand the sample size range over which exact p-
values realistically may be obtained, but the rapid 
combinatorial expansion of the �permutation� 
sample space � defined as conditional on the data 
in (1) �  still limits the full enumeration of 
continuous data samples to relatively small sample 
sizes.   
 
Sampling from the permutation sample space, 
however, can provide an estimate of the exact p-
value via a conventional Monte Carlo approach, 
whereby the probability of drawing any particular 
sample is equal to one divided by the number of 
possible sample combinations, as in (2) below: 
 

(2) 
 
 
(Note that permutations of the same sample do not 
affect this probability.)  A (one-sided) permutation 
test p-value is simply the number of test statistic 
values, each corresponding to a �permutation� 
sample, at least as large as that based on the 
observed data samples; therefore, the estimated p-
value based on conventional Monte Carlo 
sampling is simply an estimated proportion 

distributed binomially.  The normal approximation 
to the binomial distribution allows one easily to 
obtain specified levels of precision for this 
estimate, based either on the standard error (se) or 
the coefficient of variation (cv), as a function of T 
= the number of samples drawn.  This is done by 
straightforward solutions of (3) and (4) 
respectively (see Brown et al. (2001) for 
descriptions of the �Agresti-Coull� and �Wilson� 
intervals � superior, if slightly more complex, 
alternatives to the commonly used Wald 
approximation shown in (3)). 
 
 
                                                                                                 

(3) 
 
 
                                                                                             
   
                                                                                                 

(4) 
 
 
 
 
 
 
             and for                   ,            . 
 
For example, if cv<0.10 is needed, one would 
solve for T in (4) using the most relevant p-value 
(p-value = α) and adding one to the solution so 
that the inequality holds (see Efron and Tibshirani, 
1993, pp. 208-211 for an identical calculation).  If 
α = 0.05, then T=1,901, which also yields an 
approximate 95% confidence interval, based on 
(3), of just under 0.01 on either side of p-value = α 
= 0.05.  While this may be sufficiently precise for 
many applications, increased precision is 
obtainable with larger T, though as shown in 
Graph 1, marginal gains in precision decrease 
rapidly in T.  (Note that the normal approximation 
to the binomial distribution easily satisfies the 
strictest criteria in the statistical literature for T = 
1,901 and p-value = 0.05 (see Cochran (1977), p. 
58, and Evans, et al. (1993), p. 39)).  
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Graph 1: Permutation p-value -- cv and 1.96*se 
by T (# permutation samples) for p-value = alpha = 0.05
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An efficient alternative to a fixed level of 
precision, however, especially when conducting 
many permutation tests, is increasing T only when 
the confidence interval of a specific test includes 
the critical value.  Selectively tightening the 
confidence interval in this way avoids wasteful 
sampling when p-values are nowhere near the 
critical value of the test. 
 
Other Sampling Methods  
 
The level of precision a method provides for a 
given number of samples is its efficiency.  The 
efficiency, as well as speed, of conventional 
Monte Carlo sampling as described above 
typically are inferior to other sampling methods, 
such as various forms of importance sampling, 
which recently have received considerable 
attention and development (see Owen (2000) for a 
current survey and recent developments).  The 
idea is that samples are selected not with a 
uniform probability over the entire sample space, 
but rather, based on their �importance� for 
reducing the variance of the estimated p-value.  
While these and similar variance reduction 
methods are extremely effective under a wide and 
growing range of conditions, this paper focuses on 
conventional Monte Carlo sampling for several 
reasons:  first, some conditions remain under 
which such methods cannot (yet) be implemented 
reliably, and results based on quickly implemented 
conventional Monte Carlo should serve at least as 
an important verification of the validity of these 
more efficient methods when their results are 
suspect; secondly, to date there is little research on 
the use of such methods in resampling-based 

multiple testing procedures (see Naiman and 
Priebe (2001) and Ortiz and Kaelbling (2000) for 
related work in this area); and lastly, the sampling 
procedures in most statistical software packages 
utilize conventional Monte Carlo, making it much 
easier to implement when applying resampling 
methods to stylized statistical tests. 
   
Thus, this paper addresses the need for fast 
statistical code that quickly performs permutation 
tests based on conventional Monte Carlo sampling 
for pairwise and multiple comparisons.  It also 
proposes a simple modification to how most 
researchers implement conventional Monte Carlo 
permutation tests: it proposes sampling from the 
permutation sample space without replacement 
rather than with replacement which, by definition 
of conventional Monte Carlo, maximizes power 
under this sampling approach through variance 
reduction.  The proposed method 
(�oversampling�) can utilize any �with-
replacement� (WR) sampling procedure to 
accomplish this, in effect efficiently converting 
any WR sampling procedure into a �no-
replacement� (NR) sampling procedure.  Before 
describing �oversampling,� however, the power 
differential between WR sampling and NR 
sampling is examined below. 
 
 

Methodology 
 
Duplicate Permutation Samples and Power 
 
As mentioned above, all of the procedures 
examined in this study � PROC PLAN, PROC 
MULTTEST, PROC NPAR1WAY, and PROC 
TWOSAMPL � can perform conventional Monte 
Carlo sampling without replacement within a 
sample, as is required of almost all permutation 
tests (see Pesarin (2001), Ch. 10, for a notable 
exception).  In other words, no duplicates of the 
same data point exist within a single sample.  This 
reference to sampling �without replacement� is 
distinct from drawing an entire set of 
�permutation� samples that contains no entire 
sample more than once; this is referred to below as 
no-replacement (NR) sampling, while generating a 
set of �permutation� samples that may contain 
duplicate samples is referred to as �with 
replacement� (WR) sampling. 

  1,901 
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No-replacement (NR) Sampling and Pairwise 
Comparisons 
 
Regardless of the number of permutation samples 
drawn (T), a single pairwise permutation will lose 
statistical power if there are duplicate samples 
among the T samples drawn.  Intuitively, this 
makes sense because the fewer duplicates 
contained in the sample of �permutation� samples, 
the better represented is the empirical distribution 
function, and more information almost always 
implies greater power.  In other words, if a 
difference between population distributions truly 
exists, more information (i.e. fewer duplicates), on 
average, should allow us to more readily detect it.  
And drawing a sample that contains no duplicates 
will yield the greatest power attainable under 
conventional Monte Carlo. 
 
Statistically, the greater power attributable to NR 
sampling over WR sampling is due to variance 
reduction in the estimated p-value ((5.1) � (5.5)).  
Any permutation test relying on sampling rather 
than full enumeration will yield an actual 
significance level (asl) larger than α due to Monte 
Carlo error (see Berry & Mielke (1983)).  This 
(one-sided) sampling-based asl is simply the 
probability under the null hypothesis that the value 
of the test statistic, based on the �permutation� 
samples, is equal to or greater than that 
corresponding to the critical value of the test 
conditional on the true p-value (the conditional 
nature of this probability requires summing over 
all possible values of p, as in (5.8) and (5.9)).  The 
asl under NR sampling is smaller than the asl 
under WR sampling because the abovementioned 
conditional distribution of the former is based on 
the hypergeometric distribution: this has smaller 
variance than the conditional distribution of WR 
sampling, which is based on the binomial 
distribution ((5.6) and (5.7)).  This means that 
once the critical p-values are adjusted to account 
for asl>α (the Monte Carlo error), the adjusted 
critical  value for NR sampling will be larger than 
that of WR sampling ((5.10) � (5.13)).  This gives 
permutation tests based on NR sampling greater 
power.                                                                                        

 
 
 
 
 

 
(5.1) 

 
(5.2) 

 
(5.3) 
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(5.5) 

 
 
where 

(5.6) 
 

(5.7) 
 
 
where 
   
     = number of permutation samples drawn, 

                           
(5.8) 

 
 
 
 

(5.9) 
 
 
 
 
 
 
where 
 
    = number of �successes� (number of 
�permutation� sample test statistic values ≥ 
observed sample test statistic value) among  
       permutation samples drawn, 
 
 
         is an integer, and 
 
 
      = the critical value adjusted for Monte Carlo 
error. 
 
(Note that above, the critical p-value of the test is 
adjusted, rather than the p-values themselves, 
solely for heuristic and computational purposes 
when demonstrating the power differential 
between NR and WR sampling in (5.1)-(5.5).  In 
practice, it is the p-values themselves which 
should be adjusted for ease of interpretation of the 
test results.  Both adjustments yield identical 
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results statistically.)  The discreteness of both the 
binomial and hypergeometric distributions prevent 
the attainment of adjusted critical p-values 
yielding asl = α exactly.  However, interpolation 
between α and the largest p-value yielding asl<α, 
based on the percentage change in the 
corresponding asl�s, provides a reasonable 
approximation of the critical p-values that would 
yield asl = α if the distributions were continuous.  
Although this interpolation was used when 
calculating the asymptotic power differential 
between NR sampling and WR sampling ((6.2) vs. 
(6.3) and Table 2), a convenient shorthand 
provides similar results.  If (asl / α) is assumed to 
be constant for p-values close to α, then 
 

(5.10) 
 

so 
                                                                                         
(5.11) 

                 
and  

(5.12) 
                 
 
 

(5.13) 
                 

 
The power differential resulting from use of the 
two different critical values can be obtained by 
simulation.  An asymptotic approximation, 
however, provides, as a lower bound, a good idea 
of its order of magnitude, as well as a useful 
benchmark against which simulations based on 
different distributions can be compared to 
demonstrate relative rates of convergence 
(efficient use of Boos and Zhang (2000) to 
perform these simulations is the subject of 
continuing research). 
  
By the Central Limit Theorem, we know that 
asymptotically, 
 

                                                                                           
(6.1) 

 
where  
 
 
      = size of effect (a location shift) 
      = population variance 
(see Pesarin (2001), p. 65) 

Therefore 
                           

(6.2) 
 
 

                           
(6.3) 

 
 
(Note that knowledge of      is unnecessary if      is 
expressed in terms of     .)  The empirical results of 
this asymptotic analysis, which are lower bounds 
for the actual power gains provided by NR 
sampling, are included in the Results section 
below in Table 2 (the derivations shown in (5.1) � 
(6.3) were first presented in Opdyke (2002b)). 
 
NR Sampling and Multiple Comparisons 
 
The above rationale for the power gains of NR 
sampling applies to multiple comparisons as well.  
However, for permutation-style p-value 
adjustments of permutation test p-values, there are 
two sources of power gain:  a) a stochastically 
larger distribution of the minimum p-value under 
NR sampling, and b) smaller original p-values of 
the permutation tests themselves, after adjustment 
for Monte Carlo error as described above (note 
that here, the p-values themselves are adjusted, 
rather than the critical p-values). 
 
Take the single step multiple testing adjustment 
procedure described by Westfall and Young 
(1993) (Algorithm 2.5, pp. 46-48).  If we have, 
say, a family of ten permutation test p-values that 
need adjustment, we need to generate, under the 
complete null hypothesis, a vector of ten new p-
values by the same process (permutation test) 
some large number of times, and for each original 
p-value count the number of times the minimum p-
value of each vector is smaller than or equal to that 
original p-value.  Dividing each of these ten 
counts by the number of times the simulation is 
run yields ten proportions, which are the ten 
adjusted p-values.   
 
a) Note that since each p-value in each vector is 
simply another permutation test, NR sampling will 
yield a smaller variance for each of these p-values 
compared to WR sampling, as described in the 
previous section ((5.1) � (5.2), (5.6) � (5.7)).  As a 
consequence, the minimum p-value will be 
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stochastically larger when the p-values in each 
vector are generated using NR sampling than 
when using WR sampling (7.1).  Therefore, the 
probability that the minimum p-value will be 
smaller than a given original p-value will be 
smaller for NR sampling than for WR sampling 
(7.2).  This makes the corresponding numerator 
(the count) of the adjusted p-value smaller on 
average, and the adjusted p-value itself smaller on 
average (7.3), giving the p-value adjustment under 
NR sampling more power (7.4). 
 

(7.1) 
               is stochastically larger than                               
 

(7.2) 
 
fi 
 
fi  (7.3) 
 
fi  (7.4) 
 
where 
 
      = original p-value 
 
      = data-based p-value vector of j p-values 
 
      = joint random variable of j p-values 
 
       =   the complete null hypothesis, i.e. assuming 
that all null hypotheses included in the family of 
multiple comparisons are true 
 
       =  the adjusted p-value of  
 
 
b) Another source of power gain from NR 
sampling is the smaller p-values of the original 
permutation tests themselves, after adjustment for 
Monte Carlo error as described in the previous 
section.  Assume that none of the �simulated� p-
values in each vector are generated using NR 
sampling, but that the original p-values are 
generated, and then Monte Carlo-error adjusted, 
using NR sampling instead of WR sampling.  
Because the p-values of the former are smaller 
(8.1), the probability of the same minimum p-
value being less than or equal to the original p-
value is smaller for NR sampling (8.2).  This 
means the corresponding numerator (the count) of 

the adjusted p-value will be smaller on average, 
and the adjusted p-value itself will be smaller on 
average (8.3), giving the p-value adjustment under 
NR sampling more power (8.4). 

                           
(8.1) 

 
(8.2) 

 
fi  
 
 
fi  (8.3) 
 
 
fi  (8.4) 
 
 
Therefore, to maximize NR sampling power gains 
when using permutation-style p-value adjustments 
in multiple comparisons of permutation test p-
values, combine both a) and b) � use NR sampling 
to generate both the original Monte Carlo-error 
adjusted p-values, as well as the �simulated� p-
value vectors when making the multiple 
comparisons adjustment ((9.1) � (9.3)). 

                           
(9.1) 

 
 
 
fi  (9.2) 
 
fi  (9.3) 
 
The same rationale applies to stepwise multiple 
comparisons adjustments.  Whenever NR 
sampling is used to generate either or both the 
minimum p-value and the original Monte Carlo 
error-adjusted p-values, its variance reduction will 
yield greater power (these derivations, (7.1)-(9.3), 
were first presented in Opdyke (2002b)). 
 
Efficient simulation of the power differential 
shown in (9.1) � (9.3), which requires a 
computationally intensive nested loop with three 
levels, is the topic of continuing research.  
However, its magnitude may very well be larger 
than that of a single pairwise comparison since 
variance reduction is achieved from two sources � 
both a) and b) above � rather than from b) alone.   
 
Before presenting the asymptotic power 
calculations for a single pairwise comparison, the 
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next section derives and presents an efficient 
method for performing NR sampling based on any 
procedure which uses WR sampling, as do all the 
�permutation� sampling procedures examined in 
this paper and known to this author.  
�Oversampling,� in effect, efficiently converts any 
WR sampling procedure into an NR sampling 
procedure, as shown below. 
 
�Oversampling� to Avoid Duplicate Samples 
 
�Oversampling� involves simply drawing more 
than the desired T samples (say, r samples), 
deleting any duplicate samples, and then randomly 
selecting T samples from the remaining set (this 
method, and its results in Table 1, were first 
presented in Opdyke (2002a)).  This approach 
does not alter the probability of drawing any 
particular sample (see (2)), so �oversampling� is a 
statistically valid approach for obtaining T distinct 
samples.   
 
The next question to address is, what is the 
optimal size of (r-T)?  The goal is to minimize 
expected runtime, which is a function of (r-T), or 
simply r, and the size of r involves the following 
runtime tradeoff: larger r will contribute to longer 
runtimes due to the extra time required to generate 
more samples, but also will diminish the 
probability that fewer than T unique samples will 
be drawn, which would require another draw of r 
samples and increase overall runtime; smaller r 
will require less time to generate fewer samples, 
but at the price of an increased probability of 
being left with fewer than T unique samples and 
having to redraw the samples all over again.  
Expected runtime is simply the product of a) the 
expected number of times r samples need to be 
drawn to obtain at least T unique samples, and b) 
the time it takes to draw r samples.  So if expected 
runtime = g(r, x, y�), we seek r such that ∂g/∂r = 

0 (and ∂2g/∂r > 0). 
 
Minimizing Expected Runtime 
 
a) The number of times r samples must be drawn 
before obtaining at least T unique samples is a 
random variable that follows the geometric 
distribution, which identifies the number of events 
occurring before the first success: 

 
(10) 

                                                                                         
where p indicates the probability of success (of 
obtaining at least T unique samples) for each event 
(each call to PROC PLAN, or whichever WR 
sampling procedure is being used).  The expected 
value of the geometric distribution is E[S] = 1/p, 
and p is derived from a general form of the 
familiar (coupon or baseball card) collector�s 
problem.  This problem asks the question, �How 
many card packets must one purchase to collect a 
complete set of baseball cards?� or equivalently, 
�How many samples must one draw, when 
sampling with replacement (because the sample 
size is so large), to obtain a complete set of all 
samples from the sampling distribution?�  The 
more general problem, which is the relevant one 
for this analysis, is �How many samples are 
required, when sampling with replacement, to 
obtain T distinct samples from the sampling 
distribution?�  The number of samples �required� 
follows a probability mass function (11) which is 
the sum of geometric random variables. 
 

(11) 
 
                                                                                                    
 
 
where r = # of samples drawn and j ≤ r 
 
However, we are interested in the probability of 
obtaining at least T unique samples, which is 
simply the cumulative probability of obtaining T, 
T+1, T+2, � , r-1, and r unique samples, as shown 
below: 

(12) 
 
 
 
 
 
where T ≤ r. 
 
Thus, the expected number of times r samples 
must be drawn to obtain at least T unique samples 
is a function of the number of possible sample 
combinations and r, as shown in (13) below: 
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(13) 
expected # of calls to PROC PLAN =  
CTPP(         , r, T) =  
 
 
 
 
 
Graph 2 illustrates the functional relationship 
between p, 1/p, and r for n1 = 68, n2= 4, and T = 
1,901: 
 

Graph 2: Probability of at least T Unique Samples (p)
and Expected # of calls to Proc Plan (1/p) 

by r (for n1=4, n2=68, and T=1,901)
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b) Now to return to the other factor determining 
expected sampling runtime � the time it takes 
PROC PLAN to draw a sample of r samples.  This 
is simply the runtime of PROC PLAN as a 
function of, interestingly, not the number of 
possible two-sample combinations, but rather the 
sum of the two sample sizes (n1 + n2), as well as 
the number of samples drawn, r.  This is shown in 
Graph 3 (see Appendix A for simulation details).  
Obviously, r and (n1 + n2) are correlated, but 
runtime is very well predicted (adj R2 = 0.9884) by 
the simple ordinary least squares multivariate 
regression equation in (14): 
 

Graph 3: PROC PLAN Runtime by n1+n2 by r
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(14) 
PROC PLAN Runtime =  
PPRT(n1, n2, r) =  
β0 + β1*(n1 + n2) + β2*r + β3*(n1 + n2)*r 
 
Nonlinearity at about (n1 + n2) = 65,500 and (n1 + 
n2) = 73,500  prompted the inclusion of dummy 
and interaction terms, leading to the near perfect 
prediction (adjusted R2 = 0.9927) for PPRT(n1, n2, 
r) presented in Appendix B (see Graph 4, which is 
simply a magnification of Graph 3 up to (n1 + 
n2)=100,000). 
 

Graph 4: PROC PLAN Runtime by n1+n2 by r
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Thus, expected runtime g(n1, n2, r, T) is the 
product of PROC PLAN Runtime and the 
expected number of calls to PROC PLAN: 
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 (15) 
expected runtime = g(n1, n2, r, T) = (14) x (13) = 
PPRT(n1, n2, r) * CTPP(          , r, T) = 
[  
β0 + β1*(n1 + n2) + β2*r + β3*(n1 + n2)*r  
+ d1*β4 + d1*β5*(n1+n2)+ d1*β6*r+d1*β7*(n1+n2)*r 
+ d2*β8+d2*β9*(n1+n2)+d2*β10*r+d2*β11*(n1+n2)*r 
] 
* 
  
 
 
 
 
To get an intuitive feel for r as a function of n1 and 
n2 (for a given T), note again that the second term 
of (15) is a combinatorial function of the sample 
sizes while the first term is merely a linear 
function of the sample sizes (see Graph 5).   
 

Graph 5: Estimated PROC PLAN Runtime by r 
(for n1=4, n2=68, and T=1,901 -- based on PPRT in Appendix B)
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The combinatorial terms in the second term of (15) 
end up dominating as sample sizes increase, 
asymptotically converging to 1.0 (one call to 
PROC PLAN) faster than the first term (each 
PROC PLAN runtime) diverges.  Hence, for all 
but very small sample sizes, an optimal r in terms 
of expected runtime (where ∂g/∂r = 0) will be 
fairly close to T.  Graphs 6 and 7 below present 
g(n1, n2, r, T) � the product of 1/p in Graph 2 and 
PPRT in Graph 5 above � and demonstrate an 
optimal r, r* = 1,908, for T = 1,901, n1 = 4, and n2 
= 68 (and                               ). 
 

Graph 6: Expected Runtime (1/p * each runtime) by r
(for n1=4, n2=68, and T=1,901)
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Graph 7 magnifies the relevant expected runtime 
range. 
 

Graph 7: Expected Runtime (1/p * each runtime) by r
(for n1=4, n2=68, and T=1,901)
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Unfortunately, the high level of precision needed 
to calculate numeric solutions for r* based on (15), 
for different sample sizes and different values of 
T, requires use of a symbolic programming 
language (the Mathematica® v4.1 code used to 
obtain the exact probabilities in Table 1 is 
available from the author upon request).  Thus, 
exact solutions cannot be implemented �on the 
fly� in SAS, or any statistical software package, 
for encountered values of n1 and n2.  Good 
approximations to the probability mass function of 
the collector�s problem, however, do exist (see 
Kuonen (2000) and Read (1998), as well as 
Lindsay (1992) for a unique approach to the 
problem), but whether using exact or approximate 
probabilities, for all practical purposes r* need not 
be calculated for each and every combination of 
values of n1 and n2.  Nearly optimal r can be 
calculated for ranges of C because, as shown in 
Graph 7, the marginal runtime cost of drawing r 
slightly larger than r* is negligible (though the 
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marginal runtime cost of drawing r smaller than r* 
is relatively large).  Thus, if we define appropriate 
ranges of C, and for the lower bound of each range 
identify r*, these �low-end� r*s always will be 
larger than any other r* corresponding to any of 
the sample pairs within their respective ranges.  In 
other words, though not optimal for every 
combination of sample sizes within its range, the 
�low-end� r* will be nearly optimal because it will 
be slightly larger (never smaller) than all other r* 
for sample size pairs within its range, and the 
marginal runtime cost of being slightly larger than 
r* is negligible. 
   
Table 1 below shows the values of r used in the 
permutation test program � the �low-end� r*s � for 
ranges of C.  Although g(n1, n2, r, T) is a function 
of both C and n1 + n2, and n1 + n2 does vary for 
(essentially) constant C, the effect of this can be 
ignored since, as an empirical matter, it never 
affects the calculation of each of the �low-end� 
r*s.  In other words, CTPP (13) strongly 
dominates PPRT (14) because 1/p converges to 
one so quickly.  
 
The code in Appendix C proposes an efficient 
method for generalizing the results from Table 1, 
i.e. for obtaining estimates of the optimal �low-
end� r*s for any value of T.  This method is very 
fast, perhaps even faster than Kuonen (2000), 
although it provides only estimates to the exact 
solution.  It first utilizes optimal �low-end� r*s 
already calculated for a particular value of T (as in 
Table 1) as the basis for conservative estimates of 
the distance (standard deviations) between a new 
T and the mean of the collector�s problem mass 
function.  Different r*s are tested via any of 
several straightforward convergence algorithms 
(false position converges more quickly than 
bisection and, surprisingly, Newton-Raphson in 
this context) to find those r*s yielding distances 
arbitrarily close to the original conservative 
distance estimates, typically within just several 
iterations.  The method performs well in practice 
because of the shape of the runtime function 
(Graph 7): as long as the original distance 
estimates are conservative, i.e. slightly larger than 
necessary, the corresponding estimates of the 
optimal �low-end� r*s also will be slightly larger 
than necessary, causing only negligible runtime 
increases over use of the true optimal �low-end� 

r*s. 
 
TABLE 1.  
Nearly Optimal r (�low-end� r*),  
Probability (p) of T ≥ 1,901 Unique Samples,  
and Expected # of Calls to PROC PLAN (1/p)  
by Ranges of # of Sample Combinations, C 

 
C 

�low-
end� 

r* 

p (lower 
bound) 

1/p (lower 
bound) 

C < 10,626 C 
1.0 
(assuming 
C ≥ T) 

1.0 

10,626 
≤ C <  
52,360 

2,138 0.9979293
20330667 

1.00207497
6280530  
 

52,360 
≤ C <  
101,270 

1,956 0.9990583
42955471 
 

1.00094254
4598290 
 

101,270  
≤ C <  
521,855 

1,934 0.9994297
17692296 
 

1.00057060
7715190 
 

521,855  
≤ C < 
1,028,790 

1,912 0.9997265
55240808 
 

1.00027351
9551680 
 

1,028,790  
≤ C < 
10,009,125 

1,908 0.9995128
39120371 

1.00048739
8321020 

10,009,125  
≤ C < 
25,637,001 

1,904 0.9999615
94180711 

1.00003840
7294350 

25,637,001  
≤ C < 
100,290,905 

1,903 0.9999446
15376581 

1.00005538
7691050 

100,290,905  
≤ C < 
5,031,771,045 

1,902 0.9998396
91379204 

1.00016033
4323770 

5,031,771,045 
≤ C  

1,901 0.9996411
54940541 

1.00035897
3875460 

 
It is worth noting that, for T = 1,901, the largest 
value of C for which one has to actually 
�oversample� (although one must still check for 
duplicate samples and redraw if necessary) is 
relatively small � about 5x109.  This corresponds 
to sample sizes of only n1 = 17 and n2 = 18 for 
small n = n1 + n2, and n1 = 2 and n2 = 100,000 for 
large n.  This is due, of course, to the fantastic 
combinatorial growth of C, which causes 1/p�s 
rapid convergence to one.  This convergence 

1n nC=
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indicates that using �oversampling� as outlined 
above to perform NR sampling should be 
applicable to any WR sampling procedure, even if 
its runtime function, unlike (13), is not linear in n 
(i.e. even if it is convex and steep in n).   
 
 

Results 
 
How Fast Is It? 
 
Relative Speed – Some Benchmarks 
 
The start-to-finish runtime of the permutation test 
program using �oversampling� with PROC PLAN 
to perform NR sampling is fast relative to other 
programs and WR procedures, as shown below: 
 

Graph 8: Relative Start-to-Finish Runtime (T = 1,901)

19.7
11.7

2.5
1.5

0.5
14.2

7.7
1.6

1.2
0.5

1.3
1.5
1.4

0.6
0.2

1.0

12.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r

q

p

o

n

m

l

k

j

i

h

g

f

e

d

c

b

a

 
 
a = PROC PLAN with �oversampling� 
b = TWOSAMPL, (n1+n2)<10,000,                R = 1 
c = TWOSAMPL, (n1+n2)<10,000,                R > 1 
d = TWOSAMPL, 10,000<(n1+n2)<100,000, R = 1 
e = TWOSAMPL, 100,000<(n1+n2)<150,000, R=1 
f = TWOSAMPL, 1M < (n1+n2) < 1.5M,       R = 1 
g = TWOSAMPL, 1M < (n1+n2) < 1.5M,       R > 1 
h = NPAR1WAY, (n1+n2)<10,000,                R = 1 
i = NPAR1WAY, (n1+n2)<10,000,                 R > 1 
j = NPAR1WAY, 10,000<(n1+n2)<100,000, R = 1 
k = NPAR1WAY, 100,000<(n1+n2)<150,000, R=1 
l = NPAR1WAY, 1M < (n1+n2) < 1.5M,        R = 1 
m = MULTTEST, (n1+n2)<10,000,                R = 1 
n = MULTTEST, (n1+n2)<10,000,                  R > 1 

o = MULTTEST, 10,000<(n1+n2)<100,000,  R = 1 
p = MULTTEST, 100,000<(n1+n2)<150,000,  R=1 
q = MULTTEST, 1M < (n1+n2) < 1.5M,        R = 1 
r = looping in SAS, 1<(n1+n2)<1.5M,             R > 1 
 
where R = # Study Groups / # Control Groups 
 
(For r above, see Jackson (1998).  Beware, 
however, that this code enters an infinite loop if 
the number of possible sample combinations for a 
given sample pair is less than T.  Also note that the 
code, unlike the standard definition of a 
permutation test which includes �ties� in the 
numerator of the p-value, splits ties at the 
boundary after assuming exactly one tie at the 
boundary (apparently with the intent of making the 
test less statistically conservative)).  The only 
procedures or programs faster than PROC PLAN 
with �oversampling� are PROC MULTTEST and 
PROC NPAR1WAY with small samples and one 
study group per control group, as well as PROC 
TWOSAMPL with small samples, regardless of 
the study-control group ratio.  For larger samples, 
the relative speed of PROC PLAN with 
�oversampling� over MULTTEST and 
NPAR1WAY increases rapidly and nonlinearly, 
even with a study-control group ratio of one.  The 
relative speeds for large samples and larger study-
control group ratios (not shown in Graph 8) are 
many times larger still (note that MULTTEST 
runtimes reflect only the time required for sample 
generation, not p-value calculation, which would 
increase relative runtime by an additional several 
multiples for larger samples).  The relative speed 
advantage over TWOSAMPL is only pronounced 
when one sample is large and the study-control 
group ratio exceeds one. 
 
On the one hand, smaller samples are where one is 
most likely to need permutation tests.  However, 
this is where the speed differential matters the 
least in absolute terms � even when performing 
two hundred permutation tests with these smaller 
sample sizes and a study/control group ratio equal 
to one, none of the other three procedures was ever 
more than five minutes faster than PROC PLAN 
with �oversampling.�  So the tradeoff in this case 
is several minutes per run with MULTTEST, 
NPAR1WAY, or TWOSAMPL, versus maximum 
power with PROC PLAN with �oversampling.� 
 

          
       → 75.8 
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In contrast, when samples are larger, relative 
runtimes matter most because even small 
differences become large in absolute terms.  These 
are precisely the conditions under which PROC 
PLAN with �oversampling� maintains a very large 
relative speed advantage over MULTTEST and 
NPAR1WAY, as well as TWOSAMPL when the 
study-control group ratio exceeds one. 
 
In addition to the speed of PROC PLAN itself, a 
number of factors contribute to the speed of the 
entire SAS program used to perform permutation 
tests with PROC PLAN and �oversampling,� 
including: 
 
•  Use of PROC APPEND to �SET� two large 

datasets together (one on top of the other) 
      whenever possible. 
 
•  Judicious use of multiple PROC 

TRANSPOSE�s to evaluate the summarized 
results of the permutation sampling. 
 

•  Most test statistics can be constructed based 
on just one of the two samples in a pair and, if 
necessary, the pooled summary statistics of the 
pair.  Thus, when conducting permutation 
sampling, sample only the smaller of the two 
samples, but keep track of which sample is 
used (study or control) when constructing the 
test statistics based on the permutation 
samples.  
 

•  To quickly SET together the potentially large 
and numerous output dataset lists from PROC 
PLAN (one set of T samples for every 
permutation test), use a looping macro that 
returns all the dataset names into a single SET 
statement (see code in Appendix C).  
Alternately, looping on the SET statement and 
SETting the datasets together cumulatively, 
one at a time, is extremely inefficient and 

      runtime costly.  
 
•  If the dataset is large and contains a large 

percentage of records with the same response 
variable value (say, zero), delete these records 
to avoid sorting and later merging them with 
the PROC PLAN output.  After merging the 
remaining data with the PROC PLAN output 

and retaining all PROC PLAN records in the 
merge, reassign this value to the response 
variable when it is missing (i.e. when that 
record did not merge with the PROC PLAN 
output because it had been deleted). 
 

•  Most importantly, if the data contains multiple 
study groups per control group, there is no 
need to output control group records multiple 
times, once for each corresponding study 
group, when using PROC PLAN with 
�oversampling.�  The original data simply can 
be divided into two datasets � one for control 
group(s) and one for study groups � and each 
merged separately to the PROC PLAN output 
(then (PROC) APPENDed together after the 
merges).  Unless one constructs a separate 
dataset for each permutation test, PROC 
MULTTEST, PROC NPAR1WAY, and 
PROC TWOSAMPL require control group 
records duplicated in the input dataset for each 
study group against which they are being 
compared.  This is what gives PROC PLAN 
with �oversampling� an additional speed 
premium in these situations, and similarly, for 
multiple comparisons.  To test a complete null 
hypothesis under a multiple testing 
framework, the number of pairwise 
comparisons required is s (s-1)/2, where s is 
the number of samples.  This means that for 
the other three procedures, a much larger 
number of observations (16) must be output 
and sorted compared to the number similarly 
processed by PROC PLAN with 

      �oversampling� (17). 
 
 

(16) 
 

  
 
(17) 

 
 

 
where  
s = the number of samples, and  
n(i) = the number of observations in the sample 
with the ith largest number of observations 
 
If many permutation tests must be conducted 
and at least some of these contain large 
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samples, the runtime advantage of (17) over 
(16) can be extremely large, as seen in Graph 
8.  However, (17) does not assume the code 
exploits the fact that with multiple 
comparisons, the same groups of observations 
are being used repeatedly in different 
comparisons.  Although the other sampling 
procedures examined in this study cannot take 
advantage of this, code based on PROC PLAN 
can, allowing the researcher to achieve 
computational efficiencies even beyond those 

      gained by (17) over (16). 
 

Absolute Speed 
 
When run on data containing 220 sample pairs 
where the smaller sample was less than 30 
observations but the larger sample was sometimes 
as large as 64,000 observations, the runtime of the 
program was 7 minutes, 45 seconds on a desktop 
PC with two gigabytes of random-access memory 
and a two gigahertz Pentium® processor.  For data 
containing 6,682 sample pairs where the smaller 
sample was less than 30 observations but the 
larger was sometimes over 5,000,000 
observations, the runtime was 8 hours, 36 minutes.  
The former example obviously is more typical of 
the contexts in which permutation tests are used, 
but the latter is instructive for demonstrating the 
limits of the methods and software being relied 
upon.  This study shows that the runtime of PROC 
PLAN with �oversampling� is not prohibitive even 
when applied to sample sizes as large (if not far 
larger) than would ever be used with permutation 
tests.  The same cannot be said for the four 
alternate methods. (One notable and widespread 
example of the current application of permutation 
tests to sample pairs where one sample can be 
quite large is the telecommuncations regulatory 
arena.  Incumbent local exchange carriers have 
been required by a number of state public service 
commissions to perform permutation tests on 
performance measurement data if one sample 
(typically the CLEC sample) is small, even if the 
other (typically the ILEC sample) contains many 
millions of observations.) 
 
 
 
 

NR Sampling � How Much Power Gain? 
 
The asymptotic approximation of the power 
differential between NR sampling and WR 
sampling for a single pairwise comparison is 
calculated below (Table 2 and Graph 9) based on 
the Central Limit Theorem ((6.2 � (6.3)).  There 
are two notable findings: first, the power gains 
from using NR sampling over WR sampling are 
small, even for small values of δ (the location 
difference) and  ,  and even taking into 
consideration that these asymptotic power 
differences represent lower bounds for the actual 
power differences.  Secondly, these gains decrease 
rapidly in        .  Why is this the case?  Recall that 
the only difference between NR sampling and WR 
sampling is the variance of the estimated p-value;  
the former is based on the hypergeometric 
distribution (5.6) and the latter is based on the 
binomial distribution (5.7). 
 

 
 

(5.6) 
 
 

(5.7) 
 
 
These variances differ only by the finite 
population correction factor (fpc) of 
                          . As n1 and n2 increase,        
          increases dramatically, causing the rapid 
convergence of the fpc to one and thus, the 
practical equivalence of NR sampling and WR 
sampling.  Intuitively, this makes sense as it is 
clear that the probability of drawing any of a few 
thousand samples (np) more than once quickly 
approaches zero as the number of possible samples 
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from which to randomly draw rapidly surpasses 
trillions and quadrillions of possibilities (the exact 
probability is given by one minus (12) when T=r).  
Therefore, if sample sizes are not very small, it is 
fair to say that such small power gains would only 
make NR sampling worth considering if there was 
little or no runtime cost associated with its 
implementation.  Otherwise, unless the cost of 
Type II error is astronomically high, NR sampling 
may not be worth the trouble (however, note NR 
sampling�s more obvious benefit of shorter 
confidence intervals on the permutation p-values 
themselves compared to (3), which is based on 
WR sampling). 
 
NR Sampling � Power Gains at What Cost? 
 
A good metric for evaluating the runtime cost of 
employing NR sampling via �oversampling� is its 
start-to-finish runtime compared to that associated 
with WR sampling � i.e. just drawing T samples 
and ignoring the duplicate sample problem.  This 
difference is a function of the number of tests 
performed and their sample sizes.  When only two 
hundred permutation tests were conducted on 
small sample pairs (both less than 30 
observations), NR sampling was 20%-30% slower 
than WR sampling.  However, in absolute terms, 
this was less than two minutes.  When 1,862 tests 
were conducted, including some sample pairs with 
one large sample, the runtime cost was always 
under 2%; for all 6,682 tests, the runtime cost was 
always well below 1%.  Maximizing power via 
NR sampling arguably is worth this relatively 
small increase in runtime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 
This study provides a) statistical code that 
performs fast continuous-data permutation tests 
even if one sample is large, and which often is 
more than an order of magnitude faster than 
widely available commercial alternatives under 
these conditions, and b) an answer to the question: 
does drawing a set of permutation samples 
containing no duplicate samples increase the 
power of the permutation test for a single pairwise 
comparison?  If so, by how much, and are there 
also power gains for multiple comparisons?  It is 
analytically shown that �no-replacement� (NR) 
sampling of the permutation sample space 
provides a small power gain over the usual method 
of �with-replacement� (WR) sampling when using 
a conventional Monte Carlo approach (this power 
gain attains, by definition, maximum power under 
conventional Monte Carlo).  This finding holds for 
pairwise comparisons, as well as for multiple 
comparisons � specifically, permutation-style p-
value adjustments of permutation test p-values � 
which are made runtime feasible by an additional 
speed premium built into the code.  The power 
gain for such multiple comparisons, however, may 
be larger in absolute terms because these 
procedures achieve variance reduction from two 
sources rather than just one.  Simulating these 
gains is the focus of ongoing research.  The power 
gains of both pairwise and multiple comparisons, 
however, quickly diminish as sample sizes 
increase.  This is due to the rapid convergence of 
the conditional variance of the estimated 
permutation p-value (based on the hypergeometric 
distribution) to that of WR sampling (based on the 
binomial distribution).  However, the runtime cost 
of implementing NR sampling via the proposed 
method of �oversampling� is negligible � less than 
1% of runtime when many tests are conducted and 
at least some of the sample pairs contain one large 
sample (which is when runtime matters most in 
absolute terms).  So under a conventional Monte 
Carlo approach, if the cost of Type II error is not 
negligible and even if the power gains of NR 
sampling may be small, there seems to be no 
reason not to use this straightforward and readily 
applied method in order to maximize power. 
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      TABLE 2.  Asymptotic Approximation of Power Difference Between NR Sampling vs. WR Sampling  
                         for a Pairwise Permutation Test 

 
np 1,001 1,001 1,001 1,938 1,938 3,876 

nCn1
 2,002 5,005 8,008 3,876 11,628 11,628 

(nCn1
 - np)/( nCn1

 - 1) 0.5002 0.8002 0.8751 0.5001 0.8334 0.6667 

aslNR 0.0511734 0.0513080 0.0513416 0.0501677 0.0502451 0.0501290 
aslWR 0.0513977 0.0513977 0.0513977 0.0502838 0.0502838 0.0501677 
C*

α
NR

 0.0493837 0.0493128 0.0492950 0.0498490 0.0497793 0.0498968 

C*
α
WR

 0.0492655 0.0492655 0.0492655 0.0497445 0.0497445 0.0498658 

δ = 0.5 0.5870526 0.6121541 0.6361821 0.7030284 0.7027937 0.7031889 PowerNR δ = 1.0 0.9817270 0.9868391 0.9905697 0.9966619 0.9966550 0.9966665 
δ = 0.5 0.5866014 0.6119764 0.6360733 0.7026762 0.7026762 0.7030848 PowerWR δ = 1.0 0.9816750 0.9868234 0.9905623 0.9966516 0.9966516 0.9966635 
δ = 0.5 0.0004512 0.0001777 0.0001089 0.0003522 0.0001175 0.0001041 Power 

difference δ = 1.0 0.0000520 0.0000157 0.0000073 0.0000103 0.0000034 0.0000030 
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Appendix A 

 
To estimate PROC PLAN real runtime, 

SAS® v.8.2 was used on a desktop PC with 2GB 
RAM and a 2GHz Pentium processor.  Sample 
sizes were generated by assigning values of 3, 16, 
and 27 to the smaller of the two samples, and, 
beginning at 100, assigning values by 100 
increments to the larger sample up to 100,000, 
after which point increments of 10,000 were used 
up to 1.5 million (though the program has been run 
on sample pairs as large as 29 and 5,000,029).  
Three values of r were used: 1,901, 2,700, and 
3,500. 

 
 
 
 
 
 
 
 

Appendix B 
 

PROC PLAN RunTime, PPRT(n1, n2, r), 
regression results: 
Left hand side variable = real runtime seconds 
adjusted R2 = 0.9927 
 

Variable 
Key Variable 

A Intercept 
B (n1 + n2) 
C r 
D (n1 + n2) * r 
E [(n1 + n2) < 65.5K] 
F [(n1 + n2) < 65.5K] * (n1 + n2) 
G [(n1 + n2) < 65.5K] * r 
H [(n1 + n2) < 65.5K] * (n1 + n2) * r 
I [65.5K £ (n1 +n2) £ 73.5K] 
J [65.5K £ (n1 +n2) £ 73.5K] * (n1 + n2) 
K [65.5K £ (n1 +n2) £ 73.5K] * r 
L [65.5K £ (n1 +n2) £ 73.5K] * (n1 + n2) * r 

 
 

Variable 
Key Parameter Estimate t value

A 0.0432387277000000 1.80
B -0.0000001298032000 -2.88
C 0.0000838185000000 9.68
D 0.0000000038095955 234.72
E -0.0340413560000000 -0.89
F 0.0000004543242500 0.58
G -0.0000581740000000 -4.24
H -0.0000000024994500 -8.86
I -0.4873557050000000 -0.38
J 0.0000071862352000 0.39
K -0.0016941670000000 -3.70
L 0.0000000228154240 3.47

 
 

 
 
 
 
 
 
 
 
 
 



FAST PERMUTATION TESTS                                                  44

 

 

Appendix C 
 

options = nomprint nomlogic nomrecall; 
 
%MACRO RUN_PRG; 
   
*** the By Variables and npermsampT normally 
would be passed in the main macro (RUN_PRG).; 
 
%let byvars=byvar1 byvar2 byvar3 byvar4 
byvar5; 
 
*** npermsampT = # of permutation samples; 
%let npermsampT=1901; 
 
*** count the number of byvars for parsing; 
%let byvars=%cmpres(&byvars); 
%let num_byvars= 
  %eval(%length(&byvars)- 
        %length(%cmpres(&byvars))+1); 
 
*** summarized data (SUMDINPT) contains study 
group identifier (stdy), control group 
identifier (cntl), # study group obs, # 
control group obs, and any By Variables.; 
 
%let noconverge=0; 
data sumdinpt(keep=combins  nsamp    minrcomb 
                   minof3   bigcomb  ncalls2pp 
                   topdraws lastdraw smaller  
                 nobsmalr studynobs contrlnobs 
                 sumofnobs stdy cntl &byvars); 
  set sumdinpt;  
 
*** create variables to be passed to CREATSMP, 
which generates the permutation samples 
corresponding to each record on SUMDINPT; 
 
  if "&npermsampT"="1901" then 
    maxcombins=5031771045; 
  else maxcombins=9*10**16; 
 
*** for versions of SAS v6.12 and older, 
comb(,) terminates for results of 
approximately 10E70 and higher, so use the 
loop below instead; 
 
  if ("&sysver"*1)<8 then do; 
    combins=1; 
    minnobs=min(studynobs,contrlnobs); 
    bothnobs=sum(studynobs,contrlnobs); 
    do j=minnobs to 1 by -1; 
     combins=combins*(bothnobs-j+1)/j; 
     if combins>maxcombins then goto enufcomb; 
    end; 
    enufcomb: combins=round(combins); 
  end; 
  else do; 
    combins=comb(sum(studynobs,contrlnobs), 
                 min(studynobs,contrlnobs)); 
*** if still too large, assign large number; 
    if combins=. then combins=maxcombins; 
  end; 
 

*** The 'table' below was calculated based on 
the exact probabilities of the Collectors 
Problem distribution and presents the optimal 
"low-end" sample sizes by ranges of nCn1 (p.7 
above) only for npermsampT = 1901.; 
 
  IF “&npermsampT” = “1901” THEN DO;  
  if combins<&npermsampT then 
    nsamp=&npermsampT; 
  else if combins<10626 then nsamp=combins; 
  else if combins<52360 then nsamp=2138; 
  else if combins<101270 then nsamp=1956; 
  else if combins<521855 then nsamp=1934; 
  else if combins<1028790 then nsamp=1912; 
  else if combins<10009125 then nsamp=1908; 
  else if combins<25637001 then nsamp=1904; 
  else if combins<100290905 then nsamp=1903; 
  else if combins<5031771045 then nsamp=1902; 
  else if combins>=5031771045 then nsamp=1901; 
  END; 
 
*** For npermsampT other than 1901, obtain 
nsamp with a convergence routine based on the 
first and second moments of the Collectors 
Problem distribution and using the nsamp 
calculated above as a basis for the starting 
values.  Even for large npermsampT (e.g. 
32,000) and conservatively defined Xstdev, 
convergence (based on false position) 
typically is achieved in less than five 
iterations; 
 
  ELSE DO; 
 
*** Define X*stdev (Xstdev) here 
conservatively, based on the size of 
npermsampT compared to 1901 (the base would be 
Xstdev = 2.875 since this is (approximately) 
true when npermsampT = 1901).  Larger 
npermsampT allows for the use of smaller 
Xstdev, but smaller npermsampT requires larger 
Xstdev to maintain the same (approximate) 
probability of a redraw.  Any functional 
relationship between Xstdev and npermsampT 
similar to the one below can be used (the 
exponent below (0.25) was chosen based on a 
wide range of values for npermsampT).; 
   
    Xstdev= (1901/&npermsampT)**0.25; 
     
    if combins<&npermsampT  
      then startratio=-999; 
    else if combins<(&npermsampT*10626/1901)  
      * Xstdev then startratio=-888; 
    else if combins<(&npermsampT*52360/1901)  
      * Xstdev then startratio=2138/1901; 
    else if combins<(&npermsampT*101270/1901) 
      * Xstdev then startratio=1956/1901; 
    else if combins<(&npermsampT*521855/1901)  
      * Xstdev then startratio=1934/1901; 
    else if combins<(&npermsampT*1028790/1901)  
      * Xstdev then startratio=1912/1901; 
    else if combins<&npermsampT*10009125/1901  
      * Xstdev then startratio=1908/1901; 
    else if combins<&npermsampT*25637001/1901  
      * Xstdev then startratio=1904/1901; 
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    else if combins<&npermsampT*100290905/1901  
      * Xstdev then startratio=1903/1901; 
   else if combins<&npermsampT*5031771045/1901  
      * Xstdev then startratio=1902/1901; 
  else if combins>=&npermsampT*5031771045/1901 
      * Xstdev then startratio=1.0; 
     
    IF startratio=-999 | startratio=1  
      THEN nsamp=&npermsampT; 
    ELSE IF startratio=-888  
      THEN nsamp=combins; 
    ELSE IF startratio>1 THEN DO;   
 
*** Starting value for nsamp.; 
      nsamp=ceil(startratio*&nresamp); 
      nsampoldhigh=nsamp; 
      nsampoldlow=(&nresamp*1); 
      initgap=nsampoldhigh-nsampoldlow; 
  
      colldist_avg = combins*(1- 
                  (1-1/combins)**nsampoldlow); 
 
*** Numeric precision constraints prevent 
calculation of the second moment for large 
inputs, but a conservative (i.e. larger-than-
actual) approximation suffices in these 
cases.;  
      if (combins*(combins-1)* 
          (1- 2/combins)**nsampoldlow) >  
         100144465758007  
      then colldist_stdev = 0.4; 
      else  
      colldist_stdev =  
        sqrt(combins*(combins-1)* 
        (1-2/combins)**nsampoldlow+ 
        combins*(1-1/combins)**nsampoldlow- 
        combins**2*(1-1/combins)** 
        (2*nsampoldlow)); 
 
      lowpoint =(colldist_avg – Xstdev *  
                 colldist_stdev - &nresamp*1); 
 
      colldist_avg = combins*(1- 
                 (1-1/combins)**nsampoldhigh); 
 
      if (combins*(combins-1)* 
          (1- 2/combins)**nsampoldhigh) >  
         100144465758007  
      then colldist_stdev = 0.4; 
      else  
      colldist_stdev =  
        sqrt(combins*(combins-1)* 
        (1-2/combins)**nsampoldhigh+ 
        combins*(1-1/combins)**nsampoldhigh- 
        combins**2*(1-1/combins)** 
        (2*nsampoldhigh)); 
 
      highpoint = (colldist_avg – Xstdev *  
                   colldist_stdev-&nresamp*1); 
      point=highpoint; 
 
*** Use counter only to eliminate the 
possibility of infinite loop.; 
 
      DO z=1 to 1000; 
 
*** Obtain nsamp only to within 4 of optimal 
nsamp (when converging on nsamp from upper 

bound) to prevent unnecessary looping.; 
 
        TOPLOOPNSAMP: 
        if point>4 then do;  
    nsampoldhigh=nsamp; 
   nsamp=ceil((nsampoldlow * highpoint –  
                      nsampoldhigh * lowpoint) 
                     / 
                     (highpoint-lowpoint)); 
        end; 
 
*** If necessary, get upper bound above zero 
on 1st loop (& increment lower bound 
concurrently); 
 
        else if z=1 & point<-1 then  
        do y=1 to 1000; 
          nsampoldlow = nsamp; 
          nsamp = ceil(nsamp+initgap); 
          colldist_avg = combins*(1- 
                        (1-1/combins)**nsamp); 
          if (combins*(combins-1)* 
             (1- 2/combins)**nsamp) >  
             100144465758007  
          then colldist_stdev = 0.4; 
          else  
          colldist_stdev =  
            sqrt(combins*(combins-1)* 
                 (1-2/combins)**nsamp+ 
                 combins*(1-1/combins)**nsamp- 
                 combins**2*(1-1/combins)** 
                 (2*nsamp)); 
          highpoint = (colldist_avg - Xstdev *  
                       colldist_stdev -  
                       &nresamp*1); 
          point = highpoint; 
 
          if point>4 then do; 
            colldist_avg = combins*(1-  
                  (1-1/combins)**nsampoldlow); 
            if (combins*(combins-1)* 
               (1- 2/combins)**nsampoldlow) >  
               100144465758007  
            then colldist_stdev = 0.4; 
            else  
            colldist_stdev =  
              sqrt(combins*(combins-1)*  
                  (1-2/combins)**nsampoldlow+ 
                  combins* 
                  (1-1/combins)**nsampoldlow- 
                  combins**2*(1-1/combins)** 
                  (2*nsampoldlow)); 
 
            lowpoint = (colldist_avg - 
                       Xstdev*colldist_stdev - 
                       &nresamp*1); 
            goto TOPLOOPNSAMP; 
          end; 
 
          else if -1<=point<=4  
            then goto STOPCNVG; 
        end; 
 
*** Require a stricter convergence criterion 
on optimal nsamp when converging from lower 
bound; 
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        else if point<-1 then do;  
          nsampoldlow=nsamp; 
          nsamp=ceil((nsampoldlow*highpoint – 
                       nsampoldhigh*lowpoint) 
                     / 
               (highpoint-lowpoint)); 
        end; 
 
        else if -1<=point<=4 then goto 
         STOPCNVG; 
 
        if z = 1000 then do; 
          noconverge = 1; 
          goto STOPCNVG; 
        end; 
 
*** For next iteration; 
        temp_avg = combins* 
                   (1-(1-1/combins)**nsamp); 
        if (combins*(combins-1)* 
           (1- 2/combins)**nsamp) >  
           100144465758007  
        then temp_stdev = 0.4; 
        else  
        temp_stdev = sqrt(combins*(combins-1)* 
                          (1-2/combins)**nsamp 
                           + combins*(1-  
                           1/combins)**nsamp -   
                           combins**2* 
                    (1-1/combins)**(2*nsamp)); 
 
        temp_point = (temp_avg - Xstdev *  
                     temp_stdev - &nresamp*1); 
        if temp_point >= 0 then do; 
          highpoint = temp_point; 
          point = highpoint; 
        end; 
        else do; 
          lowpoint = temp_point; 
          point = lowpoint; 
        end; 
      END; 
 
      STOPCNVG: 
      if noconverge = 1 then do; 
        call symput('noconverge', 
                     compress(noconverge)); 
        stop; 
      end; 
    END; 
  END; 
 
  minrcomb=min(combins,nsamp); 
 
  minof3=min(combins,nsamp,&npermsampT); 
 
  if combins=minrcomb then bigcomb=0; 
  else if combins>minrcomb then bigcomb=1; 
 
  ncalls2pp=ceil(minrcomb* 
             sum(studynobs,contrlnobs)/2**31); 
  topdraws=floor(nsamp/ncalls2pp); 
  lastdraw=topdraws+mod(nsamp,ncalls2pp); 
 
  if studynobs<=contrlnobs then  
    smaller="stdy"; 
  else smaller="cntl"; 

 
  nobsmalr=min(studynobs,contrlnobs); 
  sumofnobs=sum(studynobs,contrlnobs); 
 
  run; 
 
 
*** Although algorithm should always converge, 
code should account for any contingency.; 
  %if &noconverge=1 %then %do; 
    %put; 
    %put WARNING: The permutation sample-size 
algorithm did not converge.; 
    %put Scrutinize the data and/or adjust the 
functional relationship between Xstdev and 
npermsampT.; 
    %put; 
    %goto EXITALL; 
  %end; 

 
*** define outside of CREATSMP (which is 
called in a loop) four macros used for 
assigning By Variables and their values 
(exactly as they exist on both the original 
data (FULLDATA) and SUMDINPT) to the sampling 
datasets generated by PROC PLAN in CREATSMP; 
 
%MACRO GETVARLEN(varname=); 
  %let dsetid=%sysfunc(open(fulldata)); 
  %let len=%sysfunc(varlen(&dsetid, 
         %sysfunc(varnum(&dsetid,&varname)))); 
  %let dsetid=%sysfunc(close(&dsetid)); 
  &len 
%MEND GETVARLEN; 
 
%MACRO ASSIGNBYVRLENS; 
  %do p=1 %to &num_byvars; 
    &&byvar&p $%GETVARLEN(varname=&&byvar&p) 
  %end; 
%MEND ASSIGNBYVRLENS; 
 
%MACRO ASSIGNBYVRVALS; 
  %do q=1 %to &num_byvars; 
    %let x=%scan(&byvars,&q,' '); 
    %str(&x=resolve("&"||"&x");) 
  %end; 
%MEND ASSIGNBYVRVALS; 
 
%MACRO GETBYVARVALUES; 
  %do q=1 %to &num_byvars; 
    %let x=%scan(&byvars,&q,' '); 
    %str(byvarval=resolve("&"||"&x"); output;) 
  %end; 
%MEND GETBYVARVALUES; 
 
*** When multiple loops on PROC PLAN 
required...; 
*** ...use for combining datasets.; 
%MACRO COMBBIGSAMPS; 
  %do s=2 %to &ncalls2pp; 
    ptemp&s.(in=in&s) 
  %end; 
%MEND COMBBIGSAMPS; 
 
*** ...use for assigning DRAWNUM values.; 
%MACRO ASSIGNDRAWNUM; 
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  %if &ncalls2pp>2 %then  
    %do k=3 %to &ncalls2pp; 
      %str(else if in&k then drawnum = 
                    drawnum+(&k-1)*&topdraws;) 
    %end; 
%MEND ASSIGNDRAWNUM; 
 
*** Obtains # of records in a dataset.; 
%MACRO NOBS(dset); 
  %if %sysfunc(exist(&dset)) %then %do; 
    %let dsid=%sysfunc(open(&dset)); 
    %let nobs=%sysfunc(attrn(&dsid,nobs)); 
    %let dsid=%sysfunc(close(&dsid)); 
  %end; 
  %else %let nobs=0; 
  &nobs 
%MEND NOBS; 
 
%let seednum   =-1; 
 
%MACRO CREATSMP(recountr = ); 
 
*** The automatic random seed for PROC PLAN, 
based on the time of day, does not update as 
fast as PROC PLAN is repeatedly called in the 
loops below.  Hence, ranuni() is used to 
generate the seed, & its value is explicitly 
checked to ensure the current random number is 
different from the previous one.  This ensures 
random sampling is unrelated across tests.; 
 
*** if combins <= r, choose all sample 
combinations, then select npermsampT samples 
from them.; 
 
%if &bigcomb=0 %then %do;  
 
  data _null_; 
    x=1000000000*ranuni(-1); 
    if compress(&seednum)=compress(" "||x)  
      then x=x+1; 
    call symput('seednum',compress(x)); 
    run; 
 
  %if &nobsmalr=1 %then %do; 
    proc plan seed=&seednum; 
    factors drawnum   = 1 
            dataobsid = &minof3 of &combins  
                        random / noprint; 
    output  out       = psamp&recountr; 
    run; 
  %end; 
 
  %if &nobsmalr>1 %then %do; 
     
*** cannot just select first npermsampT draws 
because the comb option orders them, and the 
data may be ordered in some way; 
 
    proc plan seed=&seednum; 
    factors drawnum   = &combins 
            dataobsid =&nobsmalr of &sumofnobs  
                        comb / noprint; 
    output  out       = psamp&recountr; 
    run; 
   

    %if &combins>&npermsampT %then %do; 
      data _null_; 
        x=1000000000*ranuni(-1); 
        if compress(&seednum)= 
           compress(" "||x) then x=x+1; 
        call symput('seednum',compress(x)); 
        run; 
   
      proc plan seed=&seednum; 
      factors drawnum   = 1 
             dataobsid=&npermsampT of &combins 
                         random / noprint; 
      output  out       = choosmp; 
      run; 
       
      data choosmp(keep=drawnum); 
        set choosmp(drop=drawnum); 
        drawnum=dataobsid; 
        run; 
       
      proc sort data=choosmp; 
        by drawnum; 
        run; 
       
      proc sort data=psamp&recountr; 
        by drawnum; 
        run; 
       
      data psamp&recountr; 
        merge psamp&recountr 
              choosmp(in=inchoos); 
        by drawnum; 
        if inchoos then output psamp&recountr; 
        run; 
       
      data psamp&recountr(drop=drawnum2); 
        set psamp&recountr(drop=drawnum); 
        retain drawnum2 0; 
        if mod(_n_,&nobsmalr)=1  
           then drawnum2 = drawnum2+1; 
        drawnum=drawnum2; 
        run; 
    %end; 
  %end; 
%end; 
 
*** if combins > r, check whether PROC PLAN 
needs to be looped multiple times -- if not, 
simply select r samples, delete duplicates, 
and keep npermsampT samples.  If so, loop it 
first to select r samples.  In either case, 
redraw samples if fewer than npermsampT unique 
samples are drawn the first time around.; 
 
%if &bigcomb=1 %then %do;  
 
  %redraw1: 
  data _null_; 
    x=1000000000*ranuni(-1); 
    if compress(&seednum)= 
       compress(" "||x) then x=x+1; 
    call symput('seednum',compress(x)); 
    run; 
 
  %if &ncalls2pp=1 %then %do; 
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    proc plan seed=&seednum; 
    factors drawnum   = &minrcomb 
            dataobsid= &nobsmalr of &sumofnobs  
                        random / noprint; 
    output  out       = psamp&recountr; 
    run; 
 
    proc sort data=psamp&recountr; 
      by drawnum; 
      run; 
 
    proc transpose data=psamp&recountr  
                    out=temp prefix=stdy; 
      var dataobsid; 
      by drawnum; 
      run; 
 
    proc sort data=temp out=temp nodupkey; 
      by stdy1-stdy&nobsmalr; 
      run; 
 
    %let ndrawn=%nobs(temp);  
    %if &ndrawn < &npermsampT %then %do; 
      %put; 
      %put Fewer than &npermsampT unique 
permutation samples (only &ndrawn) were drawn 
in a &sumofnobs-choose-&nobsmalr draw; 
      %put for the study - control group pair 
and "by variable" values listed below:; 
      %put 
====================================; 
      %put Study Control &byvars; 
 
      data holdvals; 
        %GETBYVARVALUES 
        run; 
 
      proc sql noprint; 
        select byvarval into  
               :byvarvals separated by ' ' 
        from holdvals; 
        quit; 
 
      proc datasets library=work nolist; 
        delete holdvals temp; 
        run; 
 
      %put &stdy &cntl &byvarvals; 
      %put; 
      %put A redraw has been performed.; 
      %put; 
      %goto redraw1; 
    %end; 
 
    %else %do; 
      proc datasets library=work nolist; 
        delete temp; 
        run; 
      %if &ndrawn>&npermsampT %then %do; 
   data psamp&recountr; 
         set psamp&recountr 
           (where=(drawnum<=&npermsampT)); 
     run; 

      %end; 
    %end; 
  %end; 
 
  %redraw2: 
  %if &ncalls2pp>1 %then  
    %do q=1 %to &ncalls2pp; 
 
    %if &q<&ncalls2pp %then %do; 
      data _null_; 
        x=1000000000*ranuni(-1); 
        if compress(&seednum)=compress(" "||x)  
           then x=x+1; 
        call symput('seednum',compress(x)); 
        run; 
 
      proc plan seed=&seednum; 
        factors drawnum   = &topdraws  
                dataobsid = &nobsmalr of  
                  &sumofnobs random / noprint; 
        output  out       = ptemp&q; 
        run; 
    %end; 
 
    %if &q=&ncalls2pp %then %do; 
      data _null_; 
        x=1000000000*ranuni(-1); 
        if compress(&seednum)= 
           compress(" "||x) then x=x+1; 
        call symput('seednum',compress(x)); 
        run; 
 
      proc plan seed=&seednum; 
        factors drawnum   = &lastdraw  
                dataobsid = &nobsmalr of  
                  &sumofnobs random / noprint; 
        output  out       = ptemp&q; 
        run; 
 
      data psamp&recountr; 
 set ptemp1 %COMBBIGSAMPS; 
        if in2 then drawnum=drawnum+&topdraws; 
 %ASSIGNDRAWNUM 
 run; 
 
      proc sort data=psamp&recountr; 
        by drawnum; 
        run; 
     
      proc transpose data=psamp&recountr  
                      out=temp prefix=stdyn; 
        var dataobsid; 
        by drawnum; 
        run; 
     
      proc sort data=temp out=temp nodupkey; 
        by stdyn1-stdyn&nobsmalr; 
        run; 
 
      %let ndrawn=%nobs(temp);  
      %if &ndrawn < &npermsampT %then %do; 
        %put; 
        %put Fewer than &npermsampT unique 
permutation samples (only &ndrawn) were drawn 
in a &sumofnobs-choose-&nobsmalr draw; 
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        %put for the study - control group 
pair and "by variable" values listed below:; 
        %put 
==================================; 
        %put Study Control &byvars; 
 
        data holdvals; 
          %GETBYVARVALUES 
          run; 
 
        proc sql noprint; 
          select byvarval into  
                 :byvarvals separated by ' ' 
          from holdvals; 
          quit; 
 
        proc datasets library=work nolist; 
          delete holdvals temp; 
          run; 
 
        %put &stdy &cntl &byvarvals; 
        %put; 
        %put A redraw has been performed.; 
        %put; 
        %goto redraw2; 
      %end; 
 
      %else %do; 
        proc datasets library=work nolist; 
          delete temp; 
          run; 
        %if &ndrawn>&npermsampT %then %do; 
      data psamp&recountr; 
        set psamp&recountr                     
              (where=(drawnum<=&npermsampT)); 
        run; 
        %end; 
      %end; 
    %end;  
  %end; 
%end; 
 
*** assign By Variable values on the sampling 
datasets generated by PROC PLAN in CREATSMP.; 
 
data psamp&recountr; 
  length %ASSIGNBYVRLENS; 
  set psamp&recountr; 
  %ASSIGNBYVRVALS   
  run;  
 
%MEND CREATSMP; 
 
*** In a loop, generate permutation samples 
for each record of SUMDINPT.; 
 
%let sumdsid=%sysfunc(open(sumdinpt)); 
%let topofloop=%sysfunc(attrn(&sumdsid,nobs)); 
%syscall set(sumdsid); 
%do i=1 %to &topofloop; 
  %let fo=%sysfunc(fetchobs(&sumdsid,&i)); 
  %CREATSMP(recountr=&i);  
%end; 
%let sumdsid=%sysfunc(close(&sumdsid)); 
 

*** After looping above, combine PROC PLAN 
output datasets to merge with the original 
unsummarized dataset (FULLDATA) by By 
Variables & record id variable (dataobsid).  
Use the variable “smaller” when calculating 
the test statistic for every permutation 
sample.; 
 
%MACRO COMBSAMPS; 
  %do i=1 %to &totsamps; psamp&i %end; 
%MEND COMBSAMPS; 
 
data samples; set %COMBSAMPS; run; 
 
proc datasets library=work nolist; 
  delete %COMBSAMPS; 
  run; 
 
%EXITALL: 
%MEND RUN_PRG; 
 
%RUN_PRG;  
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Analyzing Group by Time Effects in Longitudinal 
Two-Group Randomized Trial Designs With Missing Data 
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We investigated bias, sampling variability, Type I error and power of nine approaches for testing the group by 
time interaction in a repeated measures design under three types of missing data mechanisms. One procedure 
due to Overall, Ahn, Shivakumar, and Kalburgi (1999) performed reasonably well over a range of conditions. 
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Introduction 
 
Consider a design in which N participants are 
randomly assigned to 2K =  treatments. The 
researcher plans to observe each participant J 
times on the dependent variable, with the first 
observation prior to initiating a treatment and the 
remaining 1J −  observations following initiation of 
a treatment. 

This design has been referred to as a 
longitudinal two-group randomized trial design 
(Delucchi & Bostrom, 1999), randomized parallel-
groups design (Overall, Ghasser, Shobaki & Fiore, 
1996), or split-plot repeated measures design 
(Littell, Milligan, Stroup, & Wolfinger, 1996; 
Maxwell & Delaney, 1990). The effect of primary 
interest, typically, is whether there are differential 
rates of change over time, that is, whether there is 
a group by time interaction. 
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Let ijkY  denote a random variable 

underlying the score, in treatment k  ( )1,2k = , for 

participant i  ( )1, , ki n= L , on occasion j 

( )1, ,j J= L . A possible model for the subject-
specific regression of the dependent variable on 
time of measurement is 

 
ik ik ikβ ε= +y X  

 
where ( )1 , ,ik i k iJkY Y′ =y L , ikβ  is an unobservable r-
dimensional random vector, ikε  is a J-dimensional 
random vector,  
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and 1 , , Jt tL  indexes time of measurement. We 

assume ( )2~ 0,i k JNε σ I .  
In this paper we focus on situations in 

which it is reasonable to assume that the subject-
specific regressions are well described by a linear 
trend. Therefore  
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and ( )0 1ik ik ikβ β β′ = . The between-subjects model 
for ikβ  is 
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where 0z =  for the first treatment and 1 for the 
second treatment. More compactly ikβ γ= +W u . 
We assume that ( )~ ,Nu 0 D .  

In many studies, participants may not be 
observed on all occasions. In general, the correct 
method of analysis depends on the missing data 
mechanism. Using an incorrect method can result 
in inconsistent estimates of the parameters. Little 
(1995) reviewed two different classes of methods 
for use in longitudinal designs. The design 
considered in this paper is a special case of the 
longitudinal design considered by Little. Little 
presented his review in the context of monotone 
missing data patterns, a context we adopt here. 
That is, we assume that if a participant is not 
observed on a particular occasion, the participant 
is not observed on any subsequent occasion. 

  
Random Coefficient Models 

Let ikJ  denote the last occasion at which 
participant i  in group k was observed and 

ikJt  the 
value of t for this time point and iky  be partitioned 

as ( ),  ,  ik obs ik miss ik′ ′ ′=y y y , ikR J=  if the participant 

has complete data, and ik ikR J= , otherwise. The 
first class of methods is the random coefficient 
selection models. According to Little (1995), in 
this approach the joint distribution of iky , ikβ , and 

ikR  is factored as 
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In our context, the model for ( )| , ,ik ikf βy X W  is  
 

( ) ( )2| , , ~ ,ik ik JNβ γ σ+y X W W Xu I  
 
and  

( ) ( )| ~ ,ik Nβ =W u 0 D . 
 
 The model for ( )| , , ,ik ik ikf R βX W y  is the 
model for the missing data mechanism. The data 
are referred to as missing completely at random 
(MCAR) if  
 

( ) ( )| , , ,ik ik ik ikf R f Rβ =X W y  
 
(see Rubin, 1976; Little, 1995; Little & Rubin, 
1987). That is, the data are MCAR if the 
probability of a particular data point being missing 
does not depend on either iky , ikβ , X  or W . The 
missing data mechanism is called missing at 
random (MAR) if  
 

( ) ( ), , ,  | , , , , | , ,ik obs ik miss ik ik ik obs ikf R f R=X W y y X W yβ

, 
 
that is, the probability of a particular data point 
being missing does not depend on either ,missiky  or 

ikβ . Following Verbeke and Molenberghs (2000, 
p. 213), a missing data mechanism that does not 
meet either of these criteria can be referred to as 
missing not at random (MNAR). Consistent 
estimates for γ  can be obtained from the 
likelihood for ,  obs iky  and ikR . However if the data 
are MCAR or MAR (and if the parameters of the 
missing data mechanism are distinct from the 
parameters for the data), consistent estimates can 
be obtained by maximizing the likelihood 
for ,  obs iky , a process that is called ignoring the 
missing data mechanism. Thus, for the purposes of 
estimating the fixed effects, the missing data 
mechanism is ignorable if the mechanism is 
MCAR or MAR, but the missing data mechanism 
is non-ignorable if the mechanism is MNAR.  

As Hedeker and Gibbons (1997) noted 
“many instances of missing data are related to 
previous performance or other subject 
characteristics...” [See Little (1995, Section 2.2.2) 
and Schafer (1997, Ch. 2) for other examples of 
studies where MAR is a reasonable model of 
missingness]. Accordingly, MAR may very well 
be a reasonable process to presume for the missing 
data in one's study. Again, it should be noted for 
completeness, that in order to legitimately ignore 
the missing data mechanism for estimation 
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random but, as well, the parameters of the missing 
data mechanism must be independent of the 
parameters of the data model (Little, 1995; Little 
& Rubin, 1987; Schafer, 1997). This independence 
or distinctness of parameters is quite realistic in 
many contexts (See Schafer, 1997, pp. 11-15). 
When the missing data mechanism is ignorable, 
numerical results can easily be obtained with 
commercially available software, e.g., the SAS 
PROC (SAS, 1995) MIXED program (See Littell 
et al., 1996). 
 
Pattern Mixture Models 

The second class of models presented by 
Little (1995) is the class of random coefficient 
pattern-mixture models. As Little (1995, p. 1113) 
noted, “Pattern-mixture models stratify the 
population by the pattern of dropout, implying a 
model for the whole population that is a mixture 
over the patterns.” An advantage of this procedure 
is that when drop-out depends on X , W  and ikβ  
but not on iky , the missing data mechanism does 
not have to be explicitly introduced into the 
likelihood function.  

According to Little (1995) , pattern-
mixture models are based on the factorization 
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In this expression ( )| , , ,ik ik ikf Rβy X W  models the 
subject-specific regressions stratified by missing 
data pattern, ( )| ,ik ikf Rβ W  models the subject-
specific regression coefficients as a function of the 
between-subjects variables and the missing-data 
pattern, and ( )|ikf R W  models the proportions of 
each missing data pattern as functions of the 
between-subjects variables. The approach stratifies 
the sample by time and missing data pattern and 
models differences in the distributions of the 
dependent variables over these patterns.  
 Little (1995, p. 1118) presented a pattern-
mixture model in which ( )2~ ,i k JNε σ0 I , as in the 
model considered in this paper, and drop-out 
depends on W  and ikβ  but not on iky . In this case 
 
( ) ( )( )2| , , , ~ ,j

ik ik ik ik JR J Nβ γ σ= +y X W W Xu I   (2) 

and  
 
                       ( ) ( )| ~ ,ik Nβ =W u 0 D .                 (3) 

 
The notation ( )jγ  indicates that the fixed effects 
introduced in equation (1) depend on drop-out 
time. Let jkπ  denote the probability that a 
participant in treatment k  drops out after occasion 
j. The pattern-mixture model estimate of the 
treatment effect is 
 

                     ( ) ( )( ) ( )
2 10 11 1 10ˆ ˆ ˆ ˆ ˆj j j

j j
j j

π γ γ π γ+ −∑ ∑ .          (4) 

 
Little pointed out that the ( )jγ  can be estimated in 
PROC MIXED by introducing drop-out time as a 
categorical variable. The standard error can be 
computed using the delta method.  

Another alternative is to use the un-
weighted least squares (UWLS) approach 
presented by Wang-Clow, Lange, Laird, and Ware 
(1995). As Little (1995, p. 1120) noted, UWLS is 
maximum likelihood for the pattern-mixture 
model described in equations (2) and (3). In the 
UWLS approach, the estimated treatment effect is 
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where 1

ˆ
ikβ  is the ordinary least squares (OLS) 

estimate of the subject-specific slope for the ith 
subject in the k th group. The standard error of the 
estimated treatment effect is the (2,2) element of  
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Wang-Clow et al. (1995) showed how to estimate 

2σ̂  and µD  using the method of moments. These 
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quantities can also be estimated by using 
maximum likelihood. 
 Pattern-mixture modeling is potentially an 
important approach to analyzing longitudinal data 
collected in the design considered in this study. 
However, the method does have one drawback. 
The results of simulation studies reported by Wu 
and Carroll (1988), Wu and Bailey (1989), and 
Wang-Clow et al. (1995) indicated that when the 
pattern-mixture model in equations (2) and (3) is 
used the maximum likelihood estimate of the 
treatment effect may be highly inefficient. For 
example, Wang-Clow et al. compared various 
estimation procedures [e.g., un-weighted least 
squares, maximum likelihood, generalized least 
squares) under a number of missing data 
mechanisms (e.g., MAR and MNAR) in a two-
group longitudinal design in which measurements 
were taken over 14 occasions. Wang-Clow et al. 
tabulated the sampling mean and standard 
deviation (sd) of the estimated treatment 
difference between mean slopes (see their Table 
II), and Type I error and power rates for the test of 
the treatment difference between mean slopes (see 
their Table III). 
 The treatment difference between mean 
slopes estimates the treatment effect. With regard 
to their Table II results, the sds for the UWLS 
method were frequently considerably larger than 
the other estimation procedures (e.g., under one of 
their MNAR cases, the UWLS sd was 41.62, while 
the values for the other estimators ranged from 
16.97 to 18.05). The MSE for the UWLS 
estimator, again under one of the MNAR 
mechanisms, was 1730.80, a value much larger 
than those reported for the other estimators (range 
= 320.51-562.47). 
 Consequently, Wang-Clow et al. in their 
summary indicated that “the unweighted estimator 
is too inefficient to merit consideration.” (p. 294). 
(Of course, this conclusion may be limited to the 
conditions of their simulation.) They drew this 
conclusion despite the fact that the pattern-mixture 
model estimator of the treatment effect was 
unbiased in all conditions. Finally, Type I error 
rates were frequently conservative (range 3.2%-
3.8%) and importantly, power to detect differences 
was considerably less than when other estimators 
were used (e.g., 15.3% vs. 10.5%-32%). 
 Hedeker and Gibbons (1997) presented an 
example illustrating application of the pattern-

mixture model approach to data collected in the 
design considered in this paper. Whereas Little’s 
(1995) presentation indicated stratifying 
participants into as many strata as there are 
missing data patterns, Hedeker and Gibbons 
argued that, when the number of participants in 
some of the strata is small, the strata containing 
these participants can be combined. In their 
example, Hedeker and Gibbons had two strata. 
One included all participants who had a 
measurement on the last measurement occasion; 
the other included all other participants. Both 
groups included participants with different missing 
data patterns. 
 The potential problem with this approach 
can be seen by contrasting it with the UWLS 
approach used by Wang-Clow et al. (1995). Recall 
that this approach is maximum likelihood for the 
pattern-mixture model described in equations (2) 
and (3). In UWLS, the OLS estimate of the 
subject-specific slope is calculated for each 
participant. The un-weighted average of these 
slopes is then computed for each treatment group 
and the estimated treatment effect is the difference 
between these averages. The same estimate would 
be obtained if participants were stratified into as 
many strata as there are missing data patterns and 
ML were applied. This follows because the ML 
estimate of the expected value of ikβ  within 
stratum j and treatment group k is 
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where ˆ

ikβ is the OLS estimate of ikβ . When there 
are as many strata as missing data patterns, within 
a stratum and treatment group ˆ

iV  is a constant 

over i  and ˆ
kjB is the un-weighted average of the 

OLS estimates. Then, the estimated treatment 
effect is the second element of 
 

2 2 1 1
ˆ ˆˆ ˆj j j j

j j

B Bπ π−∑ ∑ , 

 
which is equivalent to equations (4) and (5). On 
the other hand, when the strata are combined as 
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suggested by Hedeker and Gibbons, the ˆ
iV  are not 

constant over i  and the ML estimate of the 
expected value of ikβ  within a stratum and 
treatment is a weighted average of the least 
squares estimates of the subject-specific slopes for 
that group. Then, if the expected values of the 
within-subject regression parameters vary over the 
missing data patterns that were combined into the 
missing-data groups, the Hedeker-Gibbons’ 
approach, with two strata, to the pattern-mixture 
model is likely to yield inconsistent estimators 
even when the missing data conform to the 
missing data mechanism assumed by the model in 
equations (2) and (3).   
 The Hedeker and Gibbons (1997) model is 
 
                          0 1ijk ik ik j ijkY tβ β ε= + +                  (7)  

            ( )0 00 01 02 2 03 2 0ik iz z z z uβ λ λ λ λ= + + + × +    (8) 

             ( )1 10 11 12 2 13 2 1ik iz z z z uβ λ λ λ λ= + + + × +     (9) 
 
where 2z  is 0 for participants with complete data 
and 1 otherwise. Using the gamma coefficients 
defined in equation (1), this model can also be 
written explicitly as a pattern-mixture model 
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where, as in equation (2), the superscript indicates 
the group (drop-out or completer) which the 
parameter describes. Using this notation ( )0

12γ  is the 
treatment effect for the completers (i.e., the Time 
×  Treatment interaction for the completers) and 

( )1
12γ  is the treatment effect for the dropouts. 

Further, 11λ̂  estimates ( )0
12γ  and 13λ̂  estimates 

( ) ( )1 0
12 12γ γ−  (the difference in the Time ×  Treatment 

interaction for the drop-outs and completers). 
Therefore the estimated treatment effect is 

( )11 11 13
ˆ ˆ ˆˆ ˆc dπ λ π λ λ+ +  where ˆcπ  and ˆdπ  are the 

estimated proportion of participants who 
completed and dropped out, respectively. The 
estimated sampling variance is  
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where  
 

( ) ( ) ( ) ( )11 13 11 13 11 13
ˆ ˆ ˆ ˆ ˆ ˆ2 ,V V V Cλ λ λ λ λ λ+ = + + , 

 
( )V i  denotes a sampling variance and ( ),C i i  

denotes a sampling covariance. 
 
Alternative Methods 
 A number of other analytic methods, that 
use information about the pattern of missing data, 
have been suggested in the literature and one of 
our goals in this paper is to review alternative 
methods for analyzing effects in longitudinal 
designs in which data are missing; the second goal 
is to report the results of a simulation study which 
compares the methods. 
 Wu and Bailey (1989) presented an 
alternative method, which they called the linear 
minimum variance unbiased estimator. Later 
Wang-Clow et al. (1995) referred to the method as 
the ANCOVA method and we use the latter term 
in this paper. Provided participants are randomly 
assigned to groups and it is reasonable to assume 
that the subject-specific regressions of the 
dependent variable on time of measurement are 
well-described by the simple linear regression 
model, the test of the treatment effect focuses on 
the average slope (i.e., the population average) in 
each treatment. Specifically, to test for a treatment 
effect one tests whether the average slopes are 
equal for the treatment groups. Wu and Bailey 
proposed the following procedure: 
 
 1. Use OLS to estimate the slope for each 
participant in each treatment group. 
 
 2. Using the estimated slopes as the 
dependent variable, conduct an ANCOVA with 
treatment group as the between-subjects factor of 
interest. Wu and Bailey discussed including two 
types of covariates. The first is the time point after 
which the participant dropped out and the second 
comprises the pretreatment score on the variable 
of interest and other pretreatment measures that 
may be available. In this paper we investigate the 
model without the second type of covariate, as did 
Wu and Bailey and Wang-Clow et. al (1995). 
However, we also investigate a related procedure 
due to Overall, Ahn, Shivakumar, and Kalburgi 
(1999) that includes the pretest as the covariate. 
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 Wu and Bailey showed that the error 
variance in this model will vary over dropout 
times and presented a weighted least squares 
procedure for estimation and hypothesis testing. 
The test for the treatment effect (i.e., the group ×  
time interaction) is the test of the treatment factor 
in the ANCOVA. In calculating the weights, Wu 
and Bailey assumed  
 

( )~ ,ik k kNβ B D . 
 
Wu and Bailey presented method of moment 
estimators for kD  and 2σ . Alternatively, 
maximum likelihood estimates for kD  and 2σ can 
be obtained by using PROC MIXED: 
 
proc mixed method=ml; 
class id group; 
model score=time group 
group*time/solution; 
random intercept time/type=un 
subject=id group=group; 
 
The following are definitions of the variables used 
in the code: 
 

• id-a categorical variable identifying 
the participant  

 
• group-a categorical variable 

identifying the treatment group  
 

In the random statement the code group=group 
specifies that the covariance matrix for the 
intercept and slope varies across treatment groups. 

The procedure described by Wu and 
Bailey (1989) is fairly complicated to implement 
because of the necessity of estimating the weights 
and inserting them in a weighted least squares 
procedure. However, we show that a related 
procedure can be easily implemented in PROC 
MIXED. Wu and Bailey proposed using the 
following model to compare treatment groups: 

 

1 10 11
ˆ

ikik k J iktβ λ λ δ= + + . 
 

They compare the groups by using 
 

10 11
ˆ ˆ

k ktλ λ+ , 

where kt  is the average of 
ikJt  for the k th group. If 

the model 
 

( )1 10 11 12
ˆ

ikik J k ikt t zβ λ λ λ δ= + − + +   (11) 

 
is estimated, then  
 

( ) ( )12 102 101 11 2 1
ˆ ˆ ˆ ˆ t tλ λ λ λ= − + − . 

 
 An alternative to equation (11) is 
 

( )1 10 11 12 1ikik J k it t z uβ λ λ λ= + − + + . (12) 

 
Readers familiar with multilevel models will 
recognize this model as a level-2 model for the 
slope in the level-1 equation 
 

0 1ijk ik ik j ijkY tβ β ε= + + .    (13) 
  
We also formulate a level-2 model for the 
intercept:  
 

( )0 00 01 02 0ikik J k it t z uβ λ λ λ= + − + + .   (14) 

 
The approach presented by Wu and Bailey 

(1989) does not include an equation for the 
intercept. Nevertheless, we include it because 
Bryk and Raudenbush (1992) have noted that 
omitting variables in one level-2 model can impact 
estimates in a second equation because of the 
correlated error terms for the level-2 models. By 
including ( )

ikJ kt t−  in equations (12) and (14), the 

model conditions on the missing data pattern and 
the model can be formulated as a pattern-mixture 
model. 

PROC MIXED can estimate the model 
represented by equations (12) to (14). The PROC 
MIXED program we suggest using is:  

 
proc mixed method=ml; 
class id group; 
model score=lobsc group time 
time*lobsc time*group/solution; 
random intercept time/type=un 
subject=id group=group; 
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The variable lobsc is ( )
ikJ kt t− . The inclusion of 

lobsc and time*lobsc is intended to improve 
estimation and testing when drop-out depends on 
W  and ikβ  as in Little’s (1995) pattern-mixture 
model presented in equations (2) and (3). If the 
data are MCAR or MAR valid estimates can be 
obtained with these terms excluded.   

Overall et al. (1999) investigated an 
analysis similar to the pre-post score analysis 
advocated by Delucchi and Bostrom (1999), 
namely an endpoint analysis involving a simple 
change score from baseline to the last available 
measurement (p. 206). Their endpoint analysis is a 
two-stage procedure. At stage-one they obtained a 
simple change score from baseline to last available 
measurement and apply these change scores in an 
ANCOVA, again using pretest score on Y 
( )1i kY and the number of available measurements 

for participant i  ( )ikJ as covariates: 

( )1 0 1 2 3 1ijk i k ik i k ikY Y J z Yλ λ λ λ δ− = + + + + . 
 Overall et al. (1999) employed pretest 
scores and number of available measurements as 
covariates because Overall et al., (1996) had 
shown that these covariates were necessary to 
control the Type I error rate in conditions where 
participants who drop out early show less change 
from the pretest than do later dropouts and 
completers.  

Overall et al. (1999, pp. 205-209) also 
investigated an ANCOVA approach implemented 
by using PROC MIXED, though their approach 
differs from Wu and Bailey (1989). They included 
the pretest score on Y and the number of available 
measurements for participant i  as covariates in 
order to have the same type of covariate control 
that they had in their change score analysis. Their 
model is 

 
0 1ijk ik ik j ijkY tβ β ε= + +  

0 00 01 02 03 1 0ik ik i k iJ z Y uβ λ λ λ λ= + + + +  

1 10 12 1ik iz uβ λ λ= + + . 
 
Substituting the right hand sides of the equations 
for the intercept and slope into the equation for the 
observed data 
 

00 01 02 03 1

10 12 0 1

ijk ik i k

j j i i j ijk

Y J z Y

t z t u u t

= + + +

+ + × + + × +

λ λ λ λ

λ λ ε
, 

 
we see that pretest scores appear in the model both 
as dependent variable scores and as independent 
variable scores. As Overall et al. (1999, pp. 213-
214) and Ahn, Tonidandel, and Overall (2000, 
pp.278-279) pointed out, use of this model has not 
been without controversy. A less controversial 
alternative is to include the pretest as a covariate, 
but to exclude pretest score from the dependent 
variable. However, simulations conducted by 
Overall et al. indicated that the more controversial 
procedure worked adequately for testing the group 
× time interaction. 
 Moreover, Ahn et al. compared the more 
controversial and less controversial procedure and 
showed that both had similar Type I error rates for 
testing the group × time interaction, but the 
procedure developed by Overall and his colleagues 
had better power. PROC MIXED code for the 
Overall et al. model is 
 
proc mixed method=ml; 
class id group; 
model score=nrm t1 group time 
time*group/solution; 
random intercept time/type=un 
subject=id; 
 
The variable nrm is the number of measurements 
available for a participant. The variable t1 is the 
pretest score. There are three major differences 
between our code and theirs. First the time of last 
observation (nrm) is not centered. Second t1 is 
included in their model but not in ours. Third, the 
time by nrm interaction is excluded in their model.  

Finally, Overall et al. (1999) investigated 
a two-stage ANCOVA procedure. They again used 
the pretest score on Y and the number of available 
measurements for participant i  as covariates. Like 
the Wu and Bailey (1989) approach, Overall et al. 
used OLS in stage 1 to estimate the subject-
specific regression coefficients. The slopes were 
multiplied by 

ikJt  and then used in a second stage 
ANCOVA model: 

 

1 10 11 12 13 1ikj ik ik i k ikt J z Yβ λ λ λ λ δ= + + + +
)

. 
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 Thus, the previously described analyses 
can be used to analyze the important group by 
time interaction effect in longitudinal designs in 
which data are missing. In this report we compare 
these methods because prior research either had 
not compared all the procedures just enumerated 
in one study under a common set of manipulated 
conditions, or, the comparisons were not made on 
all of the measures we assess. These measures are 
rates of Type I error and power for the test of 
equality of average slopes, bias in the difference in 
the average slopes, and the variability in 
estimating this difference. 
 

Method 
 

Nine methods of examining the group by time 
interaction effect in a between by within subjects 
repeated measures design were examined. 
Specifically, the methods (with their acronyms) 
were: 
 
(1) the PROC MIXED analysis that presumes the 
data are missing at random (PMMAR), 
(2) the un-weighted least squares (pattern-mixture) 
analysis (UWLS), 
(3) Hedeker and Gibbons’ (1997) approach to 
estimating the pattern-mixture model (HGPMM), 
(4) Overall et al.'s (1999) PROC MIXED analysis 
that uses t1 and nrm as covariates (OPMAOC), 
(5) Wu and Bailey's (1989) ANCOVA 
implemented in PROC MIXED (WBPMAOC), 
(6) the weighted least squares ANCOVA 
presented by Wang-Clow et al. (1995), where the 
weights for the weighted least squares part of the 
analysis are obtained from PROC MIXED 
(WLSAOC), 
(7) the weighted least squares ANCOVA 
presented by Wang-Clow et al. (1995), where the 
weights for the weighted least squares part of the 
analysis are obtained through the method of 
moments (See Wu & Bailey, 1998, p. 945) 
(WLSAOCMM),  
(8) Overall et al.'s (1999) two-stage ANCOVA 
(OTSAOC), and 
(9) Overall et al.'s (1999) two-stage endpoint 
ANCOVA (OEPAOC). 
 

In the UWLS method standard errors were 
calculated by using the procedure presented in 
equation (6). However, 2σ  and D were estimated 

by maximum likelihood rather than the method of 
moments.  

We investigated two factors in our study: 
number of equally spaced levels of the repeated 
measures variable (5 and 9) and missing data 
mechanism (MCAR, MAR and MNAR). Overall 
and his colleagues (See Ahn, Tonidandel & 
Overall, 2000; Overall et al., 1999; Overall et al., 
1996) examined the group by time interaction 
effect in a parallel-groups design containing a 
baseline score and eight additional repeated 
measurements; thus, for comparative purposes we 
had nine levels for one of our cases of number of 
repeated measurements. Overall and his colleagues 
designed their investigation to mirror design 
characteristics in clinical trials where a large 
number of repeated measurements would not be 
unusual. However, in behavioral science research, 
nine levels of the repeated measures variable may 
not be typical. Accordingly, we also included a 
smaller case, that is, five levels. 

To compare the procedures, we simulated 
data for a situation in which participants are 
randomly assigned to treatments. We used the 
following equation to generate data for the ith 
participant, in group k  on the jth occasion: 

 
0 1ijk i i j ijkY tβ β ε= + + . 

 
In each treatment group, data were simulated for 
100 participants. The variable jt  was coded (0, 
0.23077, 0.46154, 0.69231, 0.92308, 1.15385, 
1.38462, 1.61538, 1.84615). To get the codes for 
conditions with five time points we eliminated the 
last four codes. 
 The mean for 0iβ  was 50 in both groups, 
implying that both treatment groups had the same 
population pretest mean. For Type I error data, the 
mean for the slope was 4.5 in treatment 1 and 
treatment 2 [ 11 0γ = , where 11γ  is defined in 
equation (1)], indicating identical average rates of 
increase over time, hence, a null condition. For our 
power comparisons, the slope was 9.0 in treatment 
2 and 4.5 in treatment 1 ( 11 4.5γ = ) when there 
were nine occasions and 12.5 in treatment 2 and 
4.5 in treatment 1 ( 11 8γ = ) when there were five 
occasions. The slopes for treatment 2 were 
selected to provide similar power for both levels of 
the number of occasions factor. The errors ( ijkε ) 
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were assumed to be uncorrelated for different 
times of observation. This does not imply that the 
scores were uncorrelated over time. Allowing the 
slope and intercept to vary across participants 
implies that scores were correlated over time. The 
variance for the residuals, conditional on time, was 
240. In all cases the covariance matrix (D) for the 
intercept and slope was 
 

15.21 -12.42
-12.42 82.81

 
=  

 
D . 

 
The correlation between the slope and intercept 
was -.35, indicating that participants with higher 
pretest status increased less rapidly. We also 
replicated the entire study changing the covariance 
to 12.42 from -12.42 and retaining all other 
features of the design. Notable differences that 
emerged between the two sets of conditions will 
be highlighted in the Results section.  

Without further complications to the 
method, the ANCOVA methods can only be 
applied to participants who have at least two 
observations and was formulated for the situation 
in which the missing data occur in a monotone 
pattern. That is, once a participant drops out, 
subsequent measurements are not available. 
Therefore in our simulated data, every participant 
had an observation at the pretest and the first two 
follow-up occasions. 
 Once the data were generated, data were 
eliminated according to a MCAR, a MAR, or one 
of two MNAR missing data mechanisms. As 
indicated in our introduction, when the missing 
data mechanism is MNAR, ignoring the 
mechanism can result in inconsistent estimates of 
the unknown parameters. Accordingly, unlike 
Delucchi and Bostrom (1999), we compared 
approaches under a MCAR, a MAR, and two 
MNAR mechanisms. To select missing 
observations we used the following model 
 

( )1 2 0 3 1 4 51ijk j i i ijki j kZ Y Yθ θ β θ β θ θ−= + + + + . 

An observation was set as missing if ( )ijk ijkU Zφ<  
where ijkU  is a uniformly distributed random 

variable and φ  is the standard normal distribution. 
The missing data mechanism is MCAR if 

2 3 4 5 0θ θ θ θ= = = = , MAR if 2 3 5 0θ θ θ= = =  and 
MNAR if 2θ , 3θ , or 5θ  is not equal to zero. In one 
MNAR mechanism only 2θ  and 3θ  were not equal 
to zero (MNAR-SI). This mechanism meets the 
assumption required for the pattern-mixture model 
in equations (2) and (3) to yield consistent 
estimates. In the other MNAR mechanism, only 5θ  
was not equal to zero (MNAR-Y). The values of 

1 jθ  were selected to give cumulative missing data 
rates between 30% and 40% at the ninth occasion.  

Figure 1 shows estimated proportions of 
participants remaining in the study at each 
occasion in the non-null condition with nine time 
points under the MCAR, MAR, MNAR-SI and 
MNAR-Y mechanisms. To obtain these estimates, 
100,000 data points were generated for each 
treatment group. (For the MCAR mechanism, a 
total of 100,000 data points were generated since 
in our MCAR condition the dropout rate was the 
same in both treatments.) For our MAR condition 
the probability of dropping out at occasion j was 
positively related to the participant's score at 
occasion 1j − . For our MNAR-SI condition the 
probability of dropping out at occasion j was 
positively related to the participant's intercept and 
slope. For our MNAR-Y condition the probability 
of dropping out at occasion j was positively related 
to the score the participant would have attained at 
occasion j if the participant had not dropped out. 
Thus in all panels of Figure 1, except the top right, 
drop-out rates are higher for the treatment with the 
average slope equal to 9 (treatment 2). 

Drop out rates vary across type of missing 
data mechanism; however, because we will 
compare methods for a particular mechanism, and 
not the performance of a method across 
mechanisms, this variation in drop out rates across 
mechanisms is not problematic. Each condition 
was replicated 2,500 times. All hypotheses were 
conducted with a nominal alpha of .05. 
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Figure 1. Percent of Data that is Not Missing by Occasion and Missing Data Mechanism  

 
Results 

 
Tabled results are for conditions in which the 
correlation between the slope and intercept was 
negative. Important differences that emerged when 
the correlation between the slope and intercept 
was positive will be noted in the text. 

Type I error rates and power are reported 
in Table 1 for the MCAR and MAR conditions 
and in Table 2 for the MNAR conditions. All 
procedures exhibited adequate control of the Type 
I error rate. However, when the missing data 
mechanism was MAR and the correlation between 
the slope and intercept was positive 
WLSAOCMM, WLSAOC, and WBPMAOC had 
higher Type I error rates than those reported in 
Table 1. These error rates were .067. 068, and 
.069, respectively, when the number of time points 

was five and .076, .112, and .115 for nine time 
points. Although in some conditions, UWLS, 
HGPMM, and/or OEPAOC were competitive with 
the other procedures in terms of power, they 
generally had lower power than the other 
procedures. Excluding HGPMM, UWLS, and 
OEPAOC from consideration, under the MCAR 
and MAR conditions, power differences were 
fairly small among the remaining methods. In the 
MCAR conditions, OTSAOC and PMMAR had 
the highest power estimates; in the MAR 
conditions WBPMAOC had the best power 
estimates. The slight advantage of WBPMAOC 
relative to PMMAR may reflect the fact that 
WBPMAOC resulted in treatment effect 
estimators with a positive bias (see Table 5) when 
the data were MAR, whereas, as expected 
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theoretically, PMMAR provided a consistent 
estimator of the treatment effect.  

In the MNAR conditions the methods 
seem to separate into two groups; PMMAR, 
UWLS, OTSAOC, and OEPAOC tended to have 
lower power than the other procedures. Among 
OPMAOC, WBPMAOC, WLSAOC, and 
WLSAOCMM, WBPMAOC tended to have the 
highest power in MNAR-SI while WBPMAOC 
and OPMAOC tended to have the highest power in 
MNAR-Y. 

The slope difference ( 11γ ) can be 
estimated by all procedures except OTSAOC and 
OEPAOC. For each condition in the study, the 
slope difference was estimated by using each of 
the remaining six methods. Table 3 contains 
means and standard deviations of these estimates 
for the MCAR and MAR conditions when 11 0γ = . 
Table 4 contains the same information for the 
MNAR conditions. When 11 0γ = , none of the 
procedures had an average estimate that was 
significantly different from zero. In Tables 3 and 
4, UWLS and HGPMM tended to have larger 
standard deviations than the other procedures. The 
standard deviations for the remaining four 
procedures were similar in size. 

Table 5 contains means and standard 
deviations of these estimates for the MCAR and 
MAR conditions when 11 0γ ≠ ; Table 6 contains 
the same information for the MNAR conditions. 
Bold entries are average estimated slope 
differences that were significantly different from 
the population slope difference. The results 
suggest that all of the procedures are unbiased 
when the data were MCAR. When the data were 
MAR, only PMMAR did not show any significant 
evidence of bias. For the condition with five time 
points OPMAOC and HGPMM were not 
significantly biased. This finding probably reflects 
the larger standard error for the condition with five 
time points: For each of HGPMM and OPMAOC, 
the amount of estimated bias was similar when 
there were five and nine time points. When the 
covariance between the slope and intercept was 
positive, HGPMM exhibited more bias 
(average 11ˆ 7.680γ =  for five time points and 

11ˆ 3.967γ = for nine time points).  

In the MNAR-SI condition, missingness 
depends on the subject-specific intercepts and 
slopes and the pattern-mixture model presented in 
equations (2) and (3) is expected to result in a 
consistent estimator of the slope difference. As 
expected from theory, the UWLS procedure did 
not result in significant evidence of bias. 
HGPMM, which is also intended to be unbiased 
under MNAR-SI, was substantially biased. In fact 
HGPMM exhibited the second largest amount of 
bias, following PMMAR. WBPMAOC, 
WLSAOC, WLSAOCMM were also intended to 
be unbiased under MNAR-SI. WLSAOCMM was 
unbiased and WLSAOC exhibited a small but 
significant bias for nine time points. WBPMAOC 
was biased but its bias was much smaller than that 
for HGPMM.  

In the MNAR-Y condition missingness 
depends on the participant’s score at occasion j; 
under MNAR-Y none of the procedures were 
expected to result in consistent estimators of the 
slope difference. PMMAR exhibited substantial 
bias for both five and nine time points. The other 
procedures had fairly large bias when there were 
five time points and less bias when there were nine 
time points. When the covariance between the 
slope and intercept was positive HGPMM was 
substantially biased when there were five 
measurement occasions; the average value of 11γ̂  
was 7.12. 

The other procedures exhibited less 
evidence of bias in the positive covariance case 
than in the negative covariance case. Although 
OPMAOC did not exhibit significant evidence of 
bias when there were nine measurement occasions 
and a negative covariance, OPMAOC was 
substantially biased when the covariance between 
the slope and intercept was positive with an 
average value for 11γ̂  of 4.04. 

In both Tables 5 and 6 the standard 
deviations for UWLS and HGPMM are larger than 
for the other procedures which most likely 
accounts for their relatively poor power. The 
remaining procedures have similar standard 
deviations. 
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Table 1. Type I Error and Power Rates for MCAR and MAR Conditions. 

 
Missing Data  5-levels 9-levels 
Mechanism Method Type I Error Power Type I Error Power 

MCAR PMMAR 0.052 0.663 0.052 0.669 
 UWLS 0.052 0.612 0.052 0.419 

 HGPMM 0.053 0.631 0.054 0.577 

 OPMAOC 0.052 0.658 0.055 0.662 

 WBPMAOC 0.053 0.650 0.051 0.662 

 WLSAOC 0.052 0.647 0.050 0.654 

 WLSAOCMM 0.052 0.645 0.049 0.620 

 OTSAOC 0.052 0.711 0.050 0.669 

 OEPAOC 0.050 0.625 0.050 0.554 

      
MAR PMMAR 0.056 0.638 0.054 0.630 

 UWLS 0.054 0.564 0.051 0.371 
 HGPMM 0.047 0.555 0.048 0.473 

 OPMAOC 0.055 0.645 0.053 0.645 

 WBPMAOC 0.057 0.665 0.073 0.687 

 WLSAOC 0.057 0.658 0.067 0.670 

 WLSAOCMM 0.055 0.654 0.053 0.624 

 OTSAOC 0.050 0.642 0.045 0.585 

 OEPAOC 0.048 0.574 0.047 0.444 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation; OTSAOC- Overall et al.’s two-stage ANCOVA; OEPAOC- Overall 
et al.’s two-stage endpoint ANCOVA analysis. 
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Table 2. Type I Error and Power Rates for MNAR Conditions. 
 
Missing Data  5-levels 9-levels 
Mechanism Method Type I 

Error 
Power Type I Error Power 

MNAR-SI PMMAR 0.052 0.446 0.046 0.396 
 UWLS 0.049 0.449 0.045 0.236 

 HGPMM 0.053 0.364 0.044 0.273 

 OPMAOC 0.056 0.531 0.048 0.505 

 WBPMAOC 0.055 0.618 0.056 0.649 

 WLSAOC 0.056 0.581 0.055 0.579 

 WLSAOCMM 0.056 0.575 0.043 0.525 

 OTSAOC 0.052 0.261 0.041 0.249 

 OEPAOC 0.045 0.228 0.045 0.198 

      
MNAR-Y PMMAR 0.052 0.493 0.049 0.497 

 UWLS 0.042 0.435 0.049 0.258 

 HGPMM 0.046 0.488 0.053 0.430 

 OPMAOC 0.048 0.556 0.051 0.607 

 WBPMAOC 0.046 0.552 0.050 0.588 

 WLSAOC 0.050 0.528 0.049 0.532 

 WLSAOCMM 0.049 0.520 0.042 0.478 

 OTSAOC 0.048 0.449 0.045 0.435 

 OEPAOC 0.046 0.422 0.051 0.336 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation; OTSAOC- Overall et al.’s two-stage ANCOVA; OEPAOC- Overall 
et al.’s two-stage endpoint ANCOVA analysis. 
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Table 3. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group ( 11 0γ = ): MCAR and MAR Conditions. 
 
Missing data  5-levels 9-levels 
Mechanism Method MEAN SD MEAN SD 

MCAR PMMAR 0.008 3.402 -0.023 1.947 
 UWLS -0.028 3.625 -0.032 2.588 
 HGPMM -0.014 3.572 -0.029 2.150 

 OPMAOC 0.005 3.408 -0.022 1.971 

 WBPMAOC 0.006 3.417 -0.023 1.961 

 WLSAOC 0.004 3.416 -0.021 1.967 

 WLSAOCMM 0.004 3.417 -0.021 1.972 

      
MAR PMMAR 0.019 3.449 0.051 1.959 

 UWLS 0.006 3.875 0.084 3.000 
 HGPMM 0.006 3.725 0.075 2.248 

 OPMAOC 0.016 3.472 0.057 1.972 

 WBPMAOC 0.009 3.542 0.030 2.116 

 WLSAOC 0.013 3.541 0.045 2.109 

 WLSAOCMM 0.010 3.538 0.046 2.113 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation. 
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Table 4. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group ( 11 0γ = ): MNAR Conditions. 
 

Missing Data  5-levels 9-levels 
Mechanism Method MEAN SD MEAN SD 
MNAR-SI PMMAR 0.000 3.523 0.012 1.950 

 UWLS 0.086 4.008 -0.053 3.206 
 HGPMM 0.063 3.903 0.016 2.376 

 OPMAOC 0.028 3.545 -0.003 1.993 

 WBPMAOC 0.025 3.538 0.014 2.007 

 WLSAOC 0.033 3.551 -0.013 2.037 

 WLSAOCMM 0.035 3.554 -0.012 2.042 

      
MNAR-Y PMMAR -0.043 3.520 -0.028 1.968 

 UWLS -0.008 3.860 -0.045 3.105 
 HGPMM -0.066 3.783 -0.024 2.351 

 OPMAOC -0.044 3.480 -0.022 1.956 

 WBPMAOC -0.046 3.482 -0.021 1.936 

 WLSAOC -0.042 3.499 -0.023 1.970 

 WLSAOCMM -0.040 3.497 -0.020 1.978 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation. 
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Table 5. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group ( 11 0γ ≠ ): MCAR and MAR Conditions. 
 

Missing Data  5-levels 

11 8.0γ =  
9-levels 

11 4.5γ =  

Mechanism Method MEAN SD MEAN SD 
MCAR PMMAR 8.036 3.357 4.501 1.895 

 UWLS 8.094 3.597 4.542 2.560 
 HGPMM 8.109 3.558 4.495 2.082 

 OPMAOC 8.046 3.365 4.511 1.907 

 WBPMAOC 8.026 3.381 4.503 1.899 

 WLSAOC 8.032 3.381 4.513 1.901 

 WLSAOCMM 8.033 3.382 4.514 1.902 

      
MAR PMMAR 8.006 3.544 4.489 1.969 

 UWLS 8.253 3.993 4.805 3.031 
 HGPMM 7.862 3.833 4.311 2.235 

 OPMAOC 8.137 3.567 4.618 1.986 

 WBPMAOC 8.374 3.645 4.888 2.124 

 WLSAOC 8.338 3.644 4.865 2.113 

 WLSAOCMM 8.334 3.644 4.863 2.117 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation.  Bold values indicate average estimates that are significantly different 
than the population slope difference. 
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Table 6. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group ( 11 0γ ≠ ): MNAR Conditions. 
 

Missing Data  
 

5-levels 

11 8.0γ =  
9-levels 

11 4.5γ =  

Mechanism Method MEAN SD MEAN SD 
MNAR-SI PMMAR 6.606 3.671 3.411 2.037 

 UWLS 7.978 4.391 4.394 3.509 
 HGPMM 6.992 4.344 3.660 2.541 

 OPMAOC 7.489 3.676 4.057 2.052 

 WBPMAOC 8.318 3.733 4.809 2.082 

 WLSAOC 8.069 3.737 4.588 2.127 

 WLSAOCMM 8.066 3.739 4.582 2.136 

      

MNAR-Y PMMAR 6.893 3.437 3.964 1.997 
 UWLS 7.395 3.978 4.301 3.320 
 HGPMM 7.667 3.868 4.405 2.390 

 OPMAOC 7.477 3.452 4.455 1.996 

 WBPMAOC 7.491 3.439 4.379 1.994 

 WLSAOC 7.310 3.476 4.194 2.051 

 WLSAOCMM 7.309 3.477 4.202 2.052 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation.  Bold values indicate average estimates that are significantly different 
than the population slope difference. 
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Additional Conditions and Results 

Our results indicate that UWLS can 
be inefficient and have low power. As noted 
earlier the sampling variance of the UWLS 
estimator of the slope difference is the (2,2) 

element of 
µ

2
i

k i kn∑∑ V
 where 

µ ( ) µ12ˆi i iσ −′= +V X X D  and therefore depends 
on the relative sizes of the contributions of 

( ) 12ˆ i iσ −′X X  and µD . This being the case, in 
order to increase the generalizability of our 
results, we expanded our study by 
conducting additional simulations in which 
the X matrix used to generate the data 

 
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

 ′ =  
 

X  

rather than 
 

1 1 1 1 1 1 1 1 1
0 .23 .46 .69 .92 1.15 1.38 1.61 1.85

 ′ =  
 

X . 

These simulations were limited to 
MCAR and MNAR-SI missing data 
mechanisms. For the MAR and MNAR-Y 
missing data mechanisms in our study, it is 
not possible to change the initial X matrix 
without either increasing the rate of missing 
data or reducing the dependence of the 
missing data indicator on the variables in the 
missing data model to maintain the rates of 
missing data that occurred with the original 
X matrix. In either case, the change in the X 
matrix would be confounded with another 
feature of the data. For these simulations we 
used 1000 replications. All other features of 
the simulation were unchanged. Given that 
we only changed was the X matrix, the 
change simulates conducting a study over a 
longer time period.  

In the MCAR and MNAR-SI 
conditions with the X matrix, all procedures 
controlled the Type I error rate well. The 
same result was found with the revised X 
matrix except when the covariance between 
the slope and intercept was positive and the 
data were MNAR-SI. Then WLSAOCMM, 
WLSAOC, and WBPMAOC had higher 

Type I error rates than with the original X 
matrix. The error rates were .072, .072, and 
.076, respectively, when the number of time 
points was five and .078, .083, and .084 for 
nine time points.  

In general, with the new X matrix 
the UWLS procedure was more competitive 
in terms of sampling variability (see Tables 
7 and 8, which contain results for the 
condition with a negative correlation 
between the slope and intercept) and thus in 
power. Thus, contrary to the results in 
Wang-Clow et al. (1995), UWLS can be 
reasonably efficient in some situations. 
Apparently, the efficiency improves as the 
sampling variance of the OLS estimators of 
the within-subjects regression model 
improves, as might happen when data are 
collected over a longer time span. 

With the initial X matrix, UWLS 
was unbiased, as expected, in the MNAR-SI 
condition but HGPMM exhibited substantial 
bias when 11 0γ ≠  and therefore had less 
power. This result also occurred with the 
revised X matrix (see Table 8).  

PMMAR performed well in the 
MCAR condition in terms of bias and 
power. As expected from theory, PMMAR 
performed less well in the MNAR-SI 
condition. In particular, when 11 0γ ≠ , 
PMMAR exhibited evidence of bias and was 
not among the more powerful procedures. 
Similar results occurred with the revised X 
matrix (see Table 8). 
 With the initial X matrix, 11 0γ ≠ , 
and MNAR-SI missing data mechanisms, 
OPMAOC, tended to show evidence of bias, 
with bias ranging from 6% to 17% of the 
population slope difference. The bias was 
reduced with the revised X matrix, ranging 
from 3% to 5%. Similarly WBMAOC 
tended to show evidence of bias with the 
original X matrix, with bias ranging from 
2% to 7%. Bias was reduced with the 
revised X matrix. In the MNAR-SI 
condition WLSAOC, and WLSAOCMM 
tended to exhibit very little bias and this was 
true with the revised X matrix also (see 
Table 8). 
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Table 7. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group for the revised X matrix and 11 0γ = : MCAR and MNAR-SI Conditions. 
 

Missing Data  5-levels 9-levels 
Mechanism Method MEAN SD MEAN SD 

MCAR PMMAR 0.017 1.486 0.075 1.386 
 UWLS 0.019 1.501 0.060 1.399 
 HGPMM 0.017 1.509 0.070 1.390 
 OPMAOC 0.023 1.488 0.069 1.387 
 WBPMAOC 0.016 1.487 0.078 1.388 
 WLSAOC 0.019 1.488 0.076 1.387 
 WLSAOCMM 0.019 1.488 0.076 1.387 
      

MNAR-SI PMMAR 0.011 1.453 -0.002 1.389 
 UWLS 0.001 1.527 -0.017 1.485 
 HGPMM -0.002 1.468 0.007 1.385 
 OPMAOC 0.010 1.476 -0.001 1.406 
 WBPMAOC 0.008 1.494 -0.011 1.418 
 WLSAOC 0.009 1.492 -0.009 1.420 
 WLSAOCMM 0.009 1.492 -0.009 1.421 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation. Bold values indicate average estimates that are significantly different 
than the population slope difference. 
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Table 8. Mean and Standard Deviation of the Difference between the Control and Treatment 
Group for the revised X matrix and 11 0γ ≠ : MCAR and MNAR-SI Conditions. 
 

Missing Data  5-levels 

11 8.0γ =  
9-levels 

11 4.5γ =  

Mechanism Method MEAN SD MEAN SD 
MCAR PMMAR 8.024 1.438 4.462 1.307 
 UWLS 8.017 1.457 4.468 1.342 
 HGPMM 8.013 1.468 4.464 1.320 
 OPMAOC 8.022 1.442 4.462 1.313 
 WBPMAOC 8.024 1.437 4.461 1.309 
 WLSAOC 8.024 1.439 4.461 1.309 
 WLSAOCMM 8.024 1.439 4.461 1.309 
      

MNAR-SI PMMAR 7.545 1.515 4.218 1.366 
 UWLS 7.964 1.600 4.497 1.476 
 HGPMM 6.999 1.621 3.867 1.413 
 OPMAOC 7.751 1.533 4.304 1.378 
 WBPMAOC 8.106 1.534 4.561 1.380 
 WLSAOC 8.030 1.538 4.520 1.388 
 WLSAOCMM 8.025 1.538 4.518 1.387 

 
Notes: PMMAR-Proc Mixed MAR analysis; UWLS-Un-weighted least squares analysis which is 
ML for pattern-mixture models; HGPMM-Hedeker and Gibbons’ (1997) approach to pattern-
mixture models; OPMAOC-Overall et al.’s (1999) Proc Mixed ANCOVA; WBPMAOC- Wu and 
Bailey’s (1989) ANCOVA with PROC Mixed as defined in this paper; WLSAOC- Wang-Clow et 
al.’s (1995) ANCOVA analysis; WLSAOCMM-Wang-Clow et al.’s ANCOVA using the method 
of moments for estimation. Bold values indicate average estimates that are significantly different 
than the population slope difference. 
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Conclusion 

 
The purpose of our article  was to introduce 
and examine a number of methods of 
analysis for longitudinal designs in which 
data may be missing. Random coefficients 
selection models may be used to obtain 
estimates of parameters when data are not 
completely observed, that is when data are 
missing. As Little (1995) and others have 
noted, when random coefficients selection 
models are used, biased estimates can result 
if the data are MNAR and the missing data 
mechanism is not accounted for in the 
estimation procedure. An alternative method 
is random coefficients pattern-mixture 
modeling due to Little. 
 Little has presented a random 
coefficients pattern-mixture model that 
yields consistent estimators of the fixed 
effects when the missing data mechanism is 
MNAR-SI (i.e., the pattern of missingness is 
predictable from the random coefficients). 
Because recent evidence suggests that this 
pattern-mixture model can result in 
inefficient estimates, we presented and 
examined other methods of analysis that, 
also according to the literature, may result in 
better estimation of unknown parameters 
and which take MNAR-SI missingness into 
account in their analyses. In particular, we 
investigated methods due to Wu and Bailey 
(1988, 1989) and Wang-Clow et al. (1995). 
We also investigated several methods due to 
Overall et al. (1999) and we included the 
random coefficients selection model that 
ignores the missing data mechanism and an 
implementation of Little’s pattern-mixture 
model that is due to Hedeker and Gibbons 
(1997). 

All procedures except WBMAOC, 
WLSAOC, and WLSAOCMM controlled 
the Type I error rates well in all conditions. 
The latter three procedures had elevated 
Type I error rates in several conditions, 
although the elevation was severe only when 
there were nine time points. Even with nine 
time points, WLSAOCMM performed 
reasonably well, with a maximum Type I 
error rate of .076 for a nominal .05 test. 

WBMAOC and WLSAOC performed 
reasonably well when there were five time 
points with maximum estimated Type I error 
rates of .076 and .072 respectively.  

Although no single procedure 
dominated the other in terms of power, 
WBMAOC tended to be among the more 
powerful procedures in all conditions. This 
occurred in conditions in which WBMAOC 
controlled the Type I error rate well in 
addition to the conditions in which it did 
not. Procedures that tended to be 
competitive with WBMAOC over a range of 
conditions were OPMAOC, WLSAOC, and 
WLSAOCMM. 

All procedures produced estimators 
that were unbiased when the population 
treatment effect was null. Thus in the 
following all references to bias refer to 
conditions in which the treatment effect was 
non-null. UWLS was unbiased in MCAR 
and MNAR-SI conditions and had 
reasonably small biases in the other 
conditions. Consistent with evidence 
reported by Wu and Bailey (1989) and 
Wang-Clow et al. (1995), our results 
indicate that UWLS can be inefficient and 
have low power in some conditions. 
However, our results also indicate that 
UWLS can be competitive with the other 
procedures in terms of efficiency and power. 
The improved performance for UWLS 
occurred when the design permitted more 
accurate OLS estimates of the within-subject 
slopes. In these conditions, the standard 
errors produced by UWLS were fairly 
similar to those produced by PMMAR. 
Therefore a comparison of standard errors 
may be a useful diagnostic for determining 
when UWLS should be used.   

HGPMM can be inefficient and 
have low power in some conditions though 
it tends to be as or more efficient that 
UWLS. And like UWLS, efficiency and 
power for HGPPM improved when the 
design permitted more accurate OLS 
estimates of the within-subject slopes. 
Unlike UWLS, HGPMM produced a 
substantially biased estimate of the 
treatment effect in the MNAR-SI condition. 
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This is a serious weakness because the 
pattern-mixture model is designed to be 
unbiased in the MNAR-SI condition. It 
should be noted, however, that the bias of 
the Hedeker and Gibbons’ approach might 
improve if participants with different 
missing data patterns were combined into 
several missing data groups based on the 
similarity of the time points at which the 
data were missing. In addition if, within 
each treatment group, the expected value of 
the slope is the same for all participants with 
incomplete data, then the Hedeker and 
Gibbons’ approach should result in an 
unbiased estimator of the treatment effect.  

WBMAOC tended to have levels of 
bias similar to UWLS except with the 
original X matrix in the MNAR-SI 
condition. Then WBMAOC was slightly 
more biased. Similarly, OPMAOC also 
tended to have levels of bias similar to those 
of UWLS except in the MNAR-SI condition 
with the original X matrix. Then it tended to 
exhibit more bias than WBMAOC. 
WLSAOC and WLSAOCMM tended to 
have levels of bias similar to UWLS except 
with the original X matrix, nine 
measurement occasions, and the MNAR-Y 
missing data mechanism. Then WLSAOC 
and WLSAOCMM were more biased than 
UWLS, WBMAOC, and OPMAOC. 
PMMAR was unbiased in MCAR and MAR 
conditions, but exhibited fairly substantial 
bias in the MNAR conditions. 
 Our analyses of bias, sampling 
variability, Type I error and power indicated 
that no one procedure performed best for all 
missing data mechanisms. Clearly if one 
were to have valid information about the 
type of missing data, the information should 
be taken into account in selecting a 
procedure. Nevertheless, in our view, the 
Overall et al. (1999) ANCOVA (OPMAOC) 
performed better than the others over the 
range of conditions considered in the 
research, even though in any particular 
condition it may have been outperformed by 
one of the remaining procedures. The main 
drawback in OPMAOC was its negative bias 
in the MNAR-SI conditions; this bias made 
it less competitive in terms of power with 

other procedures, in particular with the Wu 
and Bailey (1989) procedure 
(WLSAOCMM), the Wu and Bailey 
procedure implemented with our PROC 
MIXED program (WBPMAOC), and the 
Wang-Clow et al. (1995) ANCOVA 
procedure with weights estimated using 
results from PROC MIXED (WLSAOC).  

WLSAOCMM also tended to 
perform well in terms of bias, sampling 
variability, Type I error and power over a 
range of conditions. Its main weakness was 
a somewhat elevated Type I error rate in 
some conditions. However, its maximum 
estimated Type I error rate was .078. 
WBPMAOC and WLSAOC performed well 
when there were five time points, but 
showed elevated Type I error rates in some 
conditions with nine time points. Because 
these procedures tended to be among the 
most powerful in conditions in which they 
controlled the Type I error rate, they may be 
attractive when there are relatively few time 
points.  

Of course, as is true of all empirical 
studies, the generalizability of our results is 
limited by the design of the study. The 
procedures may perform differently if 
different models for dropping out are 
adopted. Of particular interest are conditions 
in which the parameters for the missing data 
model vary across treatment groups. 
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A Parametric Bootstrap Version of Hedges’ Homogeneity Test 
 

    Wim Van den Noortgate Patrick Onghena 
           Katholieke Universiteit Leuven, Belgium 

 
 
Hedges’ Q-test is frequently used in meta-analyses to evaluate the homogeneity of effect sizes, but for several 
kinds of effect size measures it does not always appropriately control the Type 1 error probability. Therefore 
we propose a parametric bootstrap version, which shows Type 1 error control under a broad set of 
circumstances. This is confirmed in a small simulation study. 
 
Key words: Q-test, homogeneity, effect sizes, parametric bootstrap, Type 1 error 
 
 

Introduction 
 
A meta-analysis cumulates the findings of 
previous research. Often fixed effects techniques 
are used to summarize the findings of several 
studies into one single result. The individual effect 
size estimates are averaged (usually with each 
effect size weighted by the size of the study or by 
the inverse of its sampling variance), to obtain an 
estimate of the overall effect size. These 
techniques of course are only appropriate if studies 
can be assumed to be sharing a common 
population effect size or if in the meta-analysis no 
inference to a broader population of effect sizes is 
aimed at (Hedges & Vevea, 1998). 
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The suitability of the fixed effects 
techniques therefore is usually statistically tested 
by means of a homogeneity test. If effect sizes are 
found heterogeneous, study characteristics are 
included in the model as covariates to investigate 
their moderating effect, resulting in a fixed effects 
regression model. Alternatively, or in addition to 
the inclusion of moderator variables, the 
heterogeneity may be explicitly modeled, by 
defining random study effects. This results in a 
random effects model or a random effects 
regression model (see Raudenbush, 1994, for more 
details). The homogeneity test thus often plays a 
crucial role in a meta-analysis, since its results are 
often used to decide if the simple fixed effects 
model is to be extended with moderator variables 
and/or random effects, and fixed effects and 
random effects meta-analytic models often give 
dissimilar results (Van den Noortgate & Onghena, 
in press).  

Probably the most frequently used 
statistical test of the homogeneity of a set of effect 
sizes is the Q-test, which was described by Hedges 
(1982) and by DerSimonian and Laird (1986) and 
therefore is often referred to as the Hedges’ or the 
DerSimonian and Laird’s homogeneity test, 
although it was proposed before by Cochran 
(1954). 

The test statistic for this test is calculated 
as  
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with k   the number of studies, ti the observed effect 
size in study i, t  the precision weighted mean of 
the observed effect sizes, with the (estimated) 
precision of study i defined as 1/

i

2
( t )σ̂ , and 

i

2
( t )σ̂  the 

estimate of 
i

2
( t )σ , the sampling variance of the 

observed effect size given the ‘true’ effect size in 
study i. 
 Under the null hypothesis of 
homogeneous effect sizes, Q follows a χ² 
distribution with k-1 degrees of freedom, given 
relatively large study sizes, and given that σ̂ ²(ti) is 
independent of ti (DerSimonian & Laird, 1986; 
Takkouche, Cadarso-Suárez, & Spiegelman, 
1999). 

Although several simulation studies 
showed the advantages of the Q-test compared to 
other kinds of homogeneity tests (e.g., Baydoun, 
1995; Sanchez-Meca & Marin-Martinez, 1997; 
Takkouche, et al., 1999), using the Q-test is not 
without problems. Besides the problem that the Q-
test, like other homogeneity tests, suffers from a 
lack of power (Harwell, 1997; Sanchez-Meca & 
Marin-Martinez, 1997; Takkouche, et al., 1999), 
the Type 1 error rate of the Q-test is not always 
under control, since the underlying assumptions 
are usually only approximately met. The degree of 
the violation of the assumptions, and therefore the 
behavior of the homogeneity test, depends on the 
kind of effect size measure that is used and on the 
conditions under which it is applied. 

 The proportion of Type 1 errors for 
instance was found inflated if the Q-test is used for 
evaluating the homogeneity of correlation 
coefficients, but close to the nominal level if the 
correlation coefficients are first transformed to 
Fisher’s z-values (Alexander, Scozzaro, & 
Borodkin, 1989; Sagie & Koslowsky, 1993; 
Spector & Levine, 1987). Gavaghan, Moore and 
McQuay (2000) found a slightly inflated number 
of Type 1 errors when using the risk difference as 
a measure of effect size. The results of the Q-test 
for Hedges’ d are found highly liberal if used to 
test the homogeneity of a sample of Hedges’ 
standardized mean differences (d), in case within 
studies the group sizes and population variances 
are unequal and the smaller group size is 
associated with the largest population variance 
(Harwell, 1997). If under both conditions scores 
are normally distributed with a common variance, 

the Q-test has been shown slightly conservative, 
especially if the study sizes are relatively small 
compared to the number of studies (Hedges & 
Olkin, 1985; Harwell, 1997).  

In the following, we present a parametric 
bootstrap version of the Q-test, intended to 
estimate more closely the reference null 
distribution of Q in case the χ²-distribution is 
inappropriate due to a violation of the underlying 
assumptions. In a small simulation study, we 
evaluate the performance of the bootstrap Q-test 
for different conditions and different effect size 
measures. 
 

Methodology 
 

A Parametric Bootstrap Version of the Q-test 
In the bootstrap, the empirical data are 

used to estimate the population distribution(s), and 
samples are simulated from the estimated 
distribution(s) in order to approximate the 
sampling distribution of a certain quantity. For the 
application of the bootstrap procedure to the Q-test 
we propose the following procedure: 
 

1. Perform a meta-analysis using 
techniques for fixed effects 
models (Hedges & Olkin, 1985), 
calculate and store the Q-statistic. 

2. Simulate new raw data that could 
have been observed under the null 
hypothesis of homogeneity (see 
below).  

3. Calculate for the simulated data of 
each study the measure of effect 
size that was used in the initial 
meta-analytic data set. 

4. Perform a meta-analysis on those 
new effect sizes, calculate and 
store the Q-statistic. 

5. Repeat step 2-4 a large number of 
times B, for instance 1000. 

6. Compare the initial Q-value with 
the empirical distribution of Q-
values from the B bootstrap 
samples. The bootstrap p-value is 
the proportion of the Q-values that 
is larger than or equal to the initial 
Q-value. 
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In step 2, new raw data are sampled from 
the estimated population distributions, holding 
constant the study sizes and the number of studies. 
A general principle for estimating the population 
distributions is that for each study the population 
distributions must show the same effect size 
(fulfilling the null hypothesis of homogeneity). 
Furthermore, the population distributions are 
estimated based on the initial data and additional 
assumptions. The estimation of the distributions 
can easily be adapted according to the measure of 
effect size that is used and to the assumptions one 
is willing to make.  

We give some examples. First, suppose 
the correlation coefficient is used as the measure 
of effect size, and data can be assumed bivariate 
normal. In this case, we can draw new raw data for 
each study from a bivariate normal distribution. 
Since the data are used only to calculate the 
correlation coefficient, means and variances of the 
distributions can be chosen freely. The population 
correlation for each bivariate normal distribution is 
set equal to the overall estimated correlation 
coefficient. One could for instance draw new data 
from bivariate normal distributions with zero 
mean, variances equal to 1 and a covariance equal 
to the estimated overall correlation coefficient.  

As another example, suppose the risk 
difference or the difference between proportions is 
used as the effect size. If for each study the 
proportions for both groups can be retrieved (as is 
often the case), we can estimate the population 
proportions under both conditions by means of a 
precision weighted mean of the observed 
proportions, assuming equal population 
proportions in each study. For the bootstrap 
samples, new data are sampled for each study 
from two Bernoulli distributions, defined by the 
estimated population proportions.  

Third, if the standardized mean difference 
is used as a measure of effect size, and raw data 
under both conditions can be assumed normally 
distributed with a common variance, for each 
study data are drawn from two normal 
distributions with the same variance, and with 
standardized mean difference that is the same for 
each study. This standardized mean difference is 
estimated by the precision-weighted average of the 
observed effect sizes. One could for instance draw 
data from N( d , 1) and N(0,1) for both groups 

respectively. Note that drawing data from normal 
distributions with other variances and means will 
not alter the results, as long as the variances are 
equal and the effect size is unchanged, since the 
raw data are used only to calculate the 
standardized mean difference.  

The situation is somewhat more 
complicated if the population variances under both 
conditions cannot be assumed equal. If in the 
studies the observed within group variance 

estimates are reported, for study i these are 2
Aiŝ  

and 2
Biŝ , one can calculate the pooled within 

group variance estimate for each study (Hedges, 
1981). Multiplying the square root of this pooled 
variance with the estimated mean standardized 
mean difference estimate, results for study i in the 
estimated study-specific unstandardized mean 
difference, Est( BiAi µµ − ). Raw data can 
subsequently be drawn from 

N(Est( BiAi µµ − ), 2
Aiŝ ) and N(0, 2

Biŝ ). 
 
A Simulation Study 

In order to evaluate the parametric bootstrap 
version of the Q-test, we compared its results with 
the results of the ordinary Q-test, by means of a 
small simulation study. Here we show the results 
of both homogeneity tests for relatively extreme 
situations, in which (as described above) the 
ordinary Q-test has been shown in previous 
research failing to keep the proportion of Type 1 
errors under control. More specifically, we 
simulated: 

 
− sets of correlation coefficients,  
− sets of risks differences, 
− sets of standardized mean differences with 

small group sizes paired with large 
population variances (called negative 
paired variances and group sizes by 
Harwell, 1997),  

− large sets of standardized mean 
differences stemming from small studies, 
and 

− sets of values ("effect sizes") sampled 
from a normal distribution, with sampling 
variances independent of the effect sizes, 
intended as a control condition (see 
below). 



VAN DEN NOORTGATE & ONGHENA 76 

The characteristics of the simulated data sets 
are summarized in Table 1. The values are chosen 
such that the situations are comparable with those 
discussed in previous research. For each of the 
five situations, we simulated 1000 homogeneous 
as well as 1000 heterogeneous data sets, 10 000 in 
total, making possible the assessment of both the 
proportion of Type 1 and Type 2 errors. The 
bootstrap as well as the ordinary Q-test was used 
for each set to evaluate its heterogeneity. For each 
data set, we drew 1000 bootstrap samples and 
calculated Q for each sample in order to 
approximate its null distribution. Bootstrap 
samples were drawn as described above. (Table 1 
appears on following page.) 

Based on the results of previous research 
described above, we expect that the proportion of 
Type 1 errors when using the ordinary Q-test will 
be too high in the first three situations, while it 
will be lower than the nominal level in the fourth 
situation. When sampling effect sizes from a 
normal distribution (with a variance that is 
independent of the effect size), we expect that the 
proportion of Type 1 errors will be close to the 
nominal level. 

In Figure 1 (following page), histograms 
present the distributions of the p-values resulting 
from the ordinary Q-test and the bootstrap Q-test 
in case of homogeneous data. If the reference 
distribution is close to the true null distribution, 
we expect an approximately uniform distribution 
of the p-values. This means that under the null 
hypothesis, we expect that 1% of the p-values will 
be smaller than .01, 5% smaller than .05, 10 % 
smaller than .10 and so on, or otherwise stated, 
that regardless of the nominal α-level chosen, the 
nominal and the actual α-level correspond. 

As expected, the distribution of the p-values 
for the ordinary Q-test is skewed in the first four 
situations. The ordinary Q-test gives too much 
relatively small p-values when using r, when using 
risk differences, or when using d in case n and the 
within group variance are negatively paired, while 
it yields too much relatively large p-values when 
using d with a small N/k ratio. This means that for 
a homogeneous set of effect sizes, the null 
hypothesis of homogeneity is too often rejected in 
the first three situations, but less than optimal in 
the fourth situation. As an example, in Table 2 the 
proportion of Type 1 errors is presented for a 
nominal level of .05. Note that in case the 

sampling variance of the effect sizes is 
independent of the effect sizes, the distribution of 
the p-values is approximately uniform, and the 
proportion of Type 1 errors is near to the nominal 
level. 

Figure 1 and Table 2 (following page) 
furthermore reveal that the p-values of the 
bootstrap procedure are approximately uniformly 
distributed in all situations, yielding a relatively 
accurate proportion of Type 1 errors, although 
there seems to be a slightly liberal tendency. 

In Table 3, we see that both procedures are 
equally powerful when testing a set of normally 
distributed effect sizes with sampling variances 
that are independent of the effect sizes. In other 
situations, it is difficult to compare the power of 
both procedures, because for the ordinary Q-test 
the rejection rates are biased since the proportion 
of Type 1 errors is not under control. Anyway, we 
see that using the bootstrap procedure instead of 
the ordinary procedure affects the proportion of 
rejections in the same way in the homogeneous 
and the heterogeneous case. In case the Q-test is 
used for testing the homogeneity of a set of 
correlation coefficients, of a set of risk differences, 
or of a set of  standardized mean differences with 
small group sizes paired with large variances, the 
proportion of rejections is lower if the bootstrap 
version is used. In contrast, the bootstrap version 
of the Q-test rejects the null hypothesis more often 
if the homogeneity of a large set of standardized 
mean differences stemming from small studies is 
tested.  

 
Conclusion 

 
Although the Q-test is very often used in meta-
analysis to test the homogeneity of effect sizes, it 
has been shown in previous research that in 
several situations the test fails to keep the 
proportion of Type 1 errors under control. In this 
article, we therefore present a parametric bootstrap 
version of the test, which allows freeing one or 
more assumptions underlying the Q-test or the 
calculation of the effect size measures and their 
sampling distribution. The results of a small 
simulation study suggest that even in situations 
where the ordinary Q-test does not succeed 
controlling the proportion of Type 1 errors, the 
Type 1 error rate for the bootstrap version is still 
close to the nominal level.  
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   Table 1. Characteristics of the simulated data sets. 
 

   Population distribution 
   Homogeneous case Heterogeneous case 
 K N  80 % 20 % 
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coefficient 

50 N= 20 Raw data 
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150.
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Raw data 
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145.

1
,

0
0
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≈ N  

Raw data 
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155.

1
,

0
0
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≈ N  

Risk 
difference 

50 nA = nB 
= n = 
50 

Data group A  
 ≈ Bin(.2, 1) 
Data group B 
 ≈ Bin(.5, 1) 

Data group A  
 ≈ Bin(.2, 1) 
Data group B 
 ≈ Bin(.45, 1) 

Data group A 
 ≈ Bin(.2, 1) 
Data group B 
 ≈ Bin(.55, 1) 

Hedges’ d, 
negative 
pairing 

50 nA = 10 
nB = 20 

Data group A 
)2,6.0(N≈  

Data group B 
)1,0(N≈  

Data group A 
)2,3.0(N≈  

Data group B 
)1,0(N≈  

Data group A 
)2,1(N≈  

Data group B 
)1,0(N≈  

Hedges’ d, 
small N/k 

100 nA = nB 
= n = 5 

Data group A 
)1,5.0(N≈  

Data group B 
)1,0(N≈  

Data group A 
)1,1.0(N≈  

Data group B 
)1,0(N≈  

Data group A 
)1,8.0(N≈  

Data group B 
)1,0(N≈  

Control 
condition 

50 nA = nB 
= n = 
10 

Effect size 
)/2,5.0( nN≈  

Effect size 
)/2,3.0( nN≈  

Effect size 
)/2,8.0( nN≈  

 
 

Ordinary Q-test 
Correlation coeff. Risk Difference d, negative pairing       d, small N/k Control condition 

    
p-value p-value p-value p-value p-value 

Bootstrap procedure 
Correlation coeff. Risk Difference d, negative pairing d, small N/k  Control condition 

     

p-value p-value p-value p-value p-value 

   Figure 1. Distribution of the p-values in case of true homogeneity 
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   Table 2. Rejection rates of the null hypothesis (with a nominal α of .05) in the homogeneous case   
(proportion Type 1 errors). 
 

 Correlation 
coefficient 

Risk Difference d, negative pairing d, small N/k  Control condition 

Ordinary  .251 .091 .280 .024 .050 
Bootstrap  .076 .055 .065 .061 .052 

 
 
   Table 3. Rejection rates of the null hypothesis (with a nominal α of .05) in the heterogeneous case (power). 
 

 Correlation 
coefficient 

Risk Difference d, negative pairing d, small N/k  Control condition 

Ordinary  .720 .349 .731 .116 .247 
Bootstrap  .347 .258 .367 .302 .252 

 
 
 

Moreover, in case the assumptions of the 
ordinary Q-test are met, and the test yields 
appropriate Type 1 error rates, the bootstrap 
version seems to be equally powerful. A 
disadvantage of the bootstrap version of the test is 
that for some situations additional data are 
required, that may not always be available. E.g., 
for testing the homogeneity of a set of risk 
differences, the proportions for each of the groups 
must be available. 

Based on the encouraging results of our 
simulation study, we suggest comparing the Q-
statistic to the approximate null distribution based 
on the bootstrap, rather than to a χ²-distribution, 
whenever possible. Meanwhile however, we note 
that the power of both versions of the homogeneity 
test is low and recommend a prudent use of the 
tests in both modeling and evaluating the 
heterogeneity.  
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Randomization Technique, Allocation Concealment, 
Masking, And Susceptibility Of Trials To Selection Bias 
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It is widely believed that baseline imbalances in randomized clinical trials must necessarily be random. Yet 
even among masked randomized trials conducted with allocation concealment, there are mechanisms by 
which patients with specific covariates may be selected for inclusion into a particular treatment group. This 
selection bias would force imbalance in those covariates, measured or unmeasured, that are used for the 
patient selection. Unfortunately, few trials provide adequate information to determine even if there was 
allocation concealment, how the randomization was conducted, and how successful the masking may have 
been, let alone if selection bias was adequately controlled. In this article we reinforce the message that 
allocation details should be presented in full. We also facilitate such reporting by identifying and clarifying 
the role of specific reportable design features. Because the designs that eliminate all selection bias are rarely 
feasible in practice, our development has important implications for not only the implementation, but also the 
reporting and interpretation, of randomized clinical trials. 
 
Key words: Baseline imbalance, confounding, masking, randomized clinical trials, validity 
 
 

Introduction 
 
When lecturing on selection bias, we have 
addressed audience questions about how selection 
bias can occur in randomized clinical trials 
(RCTs). After all, it may be argued, if any 
subversion occurred, then the trial was not truly 
randomized. This statement implies that 
randomization confers absolute protection against 
any subversion, so that any covariate imbalances 
must be random. Similar abilities are often 
ascribed to allocation concealment or masking.  
Yet the effect of an action may differ from its 
objective; washed dishes, e.g., may remain dirty; 
cooked food may remain cold; and treated patients 
may remain sick. 
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It is in this light that we critically evaluate 

the ability of masking, allocation concealment, and 
randomization as actually implemented to produce 
treatment groups that differ only randomly. If they 
cannot do so, then observed covariate imbalances 
may be systematic, and may reflect selection bias. 
Observed treatment effects could then be 
attributable to biases, and not to the treatments 
themselves. 

Selection bias can compromise the 
credibility of standard between-group 
comparisons, especially when the trial is 
conducted by a sponsor with a vested interest in 
the outcome (Hogel & Gaus, 1999). Yet details 
sufficient to assess the success of randomization, 
allocation concealment, and masking are rarely 
reported (Kyriakidi & Ioannidis, 2002). 

This draws into question the reliability of 
the results of many RCTs that have been otherwise 
well conducted. In fact, if randomization is 
defined so as to eliminate the possibility of any 
subversion, then we question whether there has 
ever been a truly randomized trial. The irony is 
that until sufficient design details are routinely 
reported, it will be impossible to quantify the 
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extent to which selection bias actually occurs in 
RCTs, yet this lack of reporting is likely due to 
failure to appreciate the extent to which selection 
bias occurs in RCTs. Our development clarifies 
those details that should be presented in RCT 
reports. It is our hope that more RCT reports will 
provide these details, and test for selection bias 
explicitly (Berger & Exner, 1999). 
 
What Are Randomization, Allocation 
Concealment, and Masking? 

In a discussion of the distinction between 
a claim of masking and true masking, Oxtoby et 
al. (1989) pointed out that “the presumption that a 
plan to which one has aspired has come to fruition 
by virtue of aspiration alone is not science, and is 
particularly inapposite for a profession which 
should have a reputation for making clear 
distinctions between fantasy and reality”. This 
profound remark highlights the distinction 
between an action and its effect. Masking may be 
defined as either the process (researchers not 
revealing treatment codes until the database is 
locked) or the result (complete ignorance of all 
trial participants as to which patients received 
which treatments). A masking claim indicates only 
the former; this may help to ensure the ignorance 
of some parties, but is unlikely to ensure the 
desired state of complete ignorance. 

As the legal term “inevitable discovery” 
suggests, knowledge transfers by various 
mechanisms. It may be possible to fool all of the 
people some of the time, or some of the people all 
of the time, but it is not possible to fool all of the 
people all of the time. Just as a speed limit is a 
statement not about how fast drivers drive but 
rather about how fast they are encouraged to 
drive, so too is a policy of masking a statement not 
about who knew what (and when) but rather about 
a process. 

Masking is often said to be possible only 
some of the time, while allocation concealment 
(Schulz, 1995a,b; 1996), which is essentially the 
masking of each allocation just until it is executed, 
is always possible. This confusion of the two 
definitions is a double-standard. If masking is 
possible only some of the time, then clearly 
reference is being made to the result, and not the 
process. 

To be fair, then, one would have to ask if 
the result of allocation concealment is always 

possible. Sealed envelopes have been held to 
lights, phantom patients have been enrolled, and 
locked files have been raided to determine 
upcoming treatment allocations in successful 
subversions of allocation concealment (Schulz, 
1995a). Also, it may be clear what a given patient 
would receive, if enrolled, if cluster randomization 
(Jordhoy et al., 2002) or minimization (Pocock & 
Simon, 1975) is used. Drug bottle numbers can 
also lead to prediction (Kuznetsova, 2002). So 
only the process of allocation concealment, but not 
its result, can be ensured. Without the result of 
allocation concealment, selection bias remains a 
concern. 

 
Mechanisms for Selection Bias, and Specific 
Countermeasures 

To focus ideas, we confine our attention to 
selection bias that interferes with internal validity 
(a fair comparison, Mark, 1997); we do not 
consider external validity. Groups of patients to be 
compared may differ in important ways even 
before any intervention is applied (Prorok, 
Hankes, & Bundy, 1981). These baseline 
imbalances cannot be attributed to the 
interventions, but they can interfere with and 
overwhelm the comparison of the interventions 
(Green & Byar, 1984). 

If treatments are independent of patient 
characteristics, then any baseline imbalances (even 
if statistically significant) are due to chance 
variation only. This is one reason often cited for 
using randomization. 

On the other hand, a systematic 
explanation for the imbalances, known or 
unknown, would constitute selection bias, even if 
the imbalances are not statistically significant, or 
even readily observed (Berger & Exner, 1999). 
We present a sequence of mechanisms by which 
selection bias may occur, starting with 
observational studies in Section A, and such 
countermeasures as randomization, allocation 
concealment, and masking (see Table 1). 
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Table 1: What to Report in Randomized Clinical Trials To Control Selection Bias 
_____________________________________________________________________________________ 
 
Concern Report 
Differential Allocation Discretion Planned allocation proportions 

Number of screened and randomized patients by the group to which 
they were or would have been randomized had they been randomized 
 

Deferred Enrollment List patients who were screened twice or more, or that there were 
none 

 
Allocation Concealment Specific means of concealing the future allocations 
 
Predicted Allocations  Specific restrictions on the randomization (including block sizes) 
 Specific methods of concealing the past allocations (masking) 
 Evidence of unmasking (including differential rates of observable 

adverse events, any emergencies requiring intentional unmasking, 
and rates of correct treatment group guesses at de-briefing) 

 
Baseline Imbalances Compare baseline covariates across treatment groups 
 
Selection Bias Graph key covariates against P{active}, as in Berger and Exner 

(1999) 
 Graph response against P{active} within each treatment group, per 

Berger and Exner (1999). 
 List stratification errors (if any), or that there were none 
_____________________________________________________________________________________ 

 
A. Selection Bias in Observational Studies or with 
Consumer Randomization 

Investigators may assign treatments based 
on patient characteristics (Green & Byar, 1984; 
Rubin, 1977). Patients may select either their 
treatment or, with consumer randomization (Bird, 
2001), their randomization probability, at least 
from among a given set of choices. Allocation 
discretion may be available to the patient, the 
investigator, both, or neither (dictated allocation). 
Those patients selecting one treatment or 
probability may differ systematically from those 
selecting another (Green & Byar, 1984), so 
dictated allocation (no freedom of choice) is a 
countermeasure to prevent patient characteristics 
from influencing the allocation sequence through 
either overt treatment assignment based on patient 
characteristics or self-selection. 

 
B. Selection Bias with Dictated Allocation 

If allocation is alternated, then either 
patients with even accession numbers or patients 

with odd accession numbers receive the active 
treatment. The others receive the control. This 
dictated allocation would prevent the type of 
selection bias considered in Section A. But with 
sequential accrual, knowledge of the upcoming 
treatment, and enrollment discretion (Chalmers, 
1990), an investigator could deny enrollment to 
patients lacking the characteristics that would 
make them “suitable” to receive the upcoming 
treatment (Schulz, 1995a; Schulz & Grimes, 
2002a). 

The selection bias enabled by the 
predictable allocation sequence (Schulz & Grimes, 
2002b) can be controlled by creating instead an 
unpredictable allocation sequence, or randomizing 
(Rosenberger & Lachin, 2002). The second 
countermeasure is the use of actual (not virtual, 
quasi-, or pseudo-) randomization (Berger & 
Bears, 2003) to prepare the allocation sequence. 
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C. Selection Bias with Dictated Allocation and 
Randomization 

Urn randomization (Wei & Lachin, 1988) 
is conducted by tossing a (possibly biased) coin 
each time a patient is to be allocated. Heads 
indicates active treatment, and tails indicates 
control. There is no actual allocation discretion, 
yet having screened and evaluated a given patient, 
the investigator might exercise de facto  allocation 
discretion to reject the toss and repeat until the 
preferred allocation is observed. 

Another mechanism for selection bias 
with dictated allocation and randomization would 
be possible if minimization, or dynamic 
randomization (Pocock & Simon, 1975), were 
used to force balance with respect to certain 
covaria tes. The allocation is determined by 
minimizing an imbalance function, and 
randomization may be used to break the ties. So 
there is both dictated allocation and 
randomization. Yet because most allocations will 
be deterministic, it would be possible to determine 
the allocation to be made once a patient has been 
identified. A patient enrollment decision may be 
based on a combination of the treatment to be 
assigned and values of observed covariates that 
were not used to define the imbalance function.  
Randomization is conventional if the allocation 
sequence is generated in advance of screening any 
patients, and unconventional otherwise. 
Conventional randomization prevents the types of 
selection bias discussed in this section, and is our 
third countermeasure. 
 
D. Selection Bias with Dictated Allocation and 
Conventional Randomization 

As in Section B, selection bias may result 
from enrollment discretion and advance 
knowledge of the allocation sequence; the latter 
may be facilitated by conventional randomization, 
as the allocation sequence may be posted publicly 
before patients are screened (Schulz & Grimes, 
2002a). A countermeasure to eliminate this 
advance knowledge is that each allocation be 
determined only after the patient to be enrolled is 
identified (Clarke, 2002), as occurs with 
minimization (Pocock & Simon, 1975). Either the 
allocation to be made or the patient to be enrolled 
has to be selected first; whichever it is may 
influence the other, and the biases possible with 
unconventional randomization (Section C) are at 

least as serious as the biases possible with 
conventional randomization. 

Unconventional randomization may not be 
able to eliminate advance knowledge of patient 
characteristics, but one might hope to eliminate 
advance knowledge of the allocation sequence 
with conventional randomization and the fourth 
countermeasure, allocation concealment, which is 
often taken to mean precisely this lack of advance 
knowledge. But recall that allocation concealment 
signifies only that the allocation codes are not 
intentionally revealed. Even with steps to ensure 
that these codes cannot be observed, e.g. by 
holding an envelope to a light (Schulz, 1995a,b), it 
is not possible to enumerate, and rule out, all 
mechanisms by which allocations can be observed. 
We are not prepared to take the success of 
allocation concealment on faith in an actual trial; 
we do so for the purpose of this article to 
demonstrate that even in this unrealistically 
optimistic case, subversion is still possible. 
 
E. Selection Bias with (D) and Allocation 
Concealment 

In a randomized depression study of nurse 
telehealth care (Hunkeler et al., 2000), the initial 
40:60 randomization to two groups later became 
40:20 to those same two groups, with the 
remaining 40% allocated to a new third group. If 
the change in allocation proportions was planned 
(which need not be the case; see Lippman et al., 
2001), then even with allocation concealment it 
may still be possible to predict (but not observe) 
future allocations. Knowing that more late patients 
than early patients would be allocated to the third 
group constitutes advance knowledge of the 
allocations which, though imperfect, allows for 
deferred enrollment (Schulz, 1996) of those 
subjects most “suitable” for the third group until 
after the new proportions took effect. The fifth 
countermeasure, then, is the fixed allocation 
proportions that prevent this. 

 
F. Selection Bias with (E) and Fixed Allocation 
Proportions 

Randomization is unrestricted (Schulz & 
Grimes, 2002b) if a patient’s likelihood of 
receiving either treatment is independent of all 
previous allocations, and is restricted (ter Riet & 
Kessels, 1995) otherwise. The random allocation 
rule (Schulz & Grimes, 2002b), in which both 
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treatment groups must be assigned equally often, 
is one form of restricted randomization, as the 
final allocation would be determined by the prior 
ones. Even with allocation concealment and fixed 
allocation proportions, patterns created by 
restrictions on the randomization allow prediction 
of the allocation sequence. Berger and Exner 
(1999) quantified this extent of advance 
knowledge with the probability, P{active}, of a 
given patient being allocated to the active group 
given the previous allocations. 

With 1:1 allocation, P{active}=0.5 for the 
first patient; with alternation (Section B), 
P{active} is always either 0 or 1. Note that 
P{active} reflects the restrictions on the allocation 
sequences, and becomes a patient characteristic 
only after that patient is randomized. With 
enrollment discretion, P{active} may be used, in 
conjunction with the estimated potential outcomes 
of each patient to each treatment, say 
Y={Y(A),Y(C)} for the active and control 
treatments, respectively, as a basis for enrollment 
decisions. 

Gender, age, race, pre-existing medical 
conditions, or other baseline characteristics may 
be considered in deriving the value of Y for a 
given patient. Based on Y, the investigator might 
select a range of P{active} values for which the 
patient would be enrolled. If the P{active} value at 
the time this patient is screened happens to fall 
outside of this patient’s P{active} range, then the 
patient will be denied enrollment, and another 
patient will be screened. Only when a patient is 
found with a P{active} range to match the actual 
P{active} value will the patient be enrolled. 

Selection bias occurs if the P{active} 
range is restricted based on Y. It would be 
possible, e.g., to enroll patients only if P{active} 
and Y are both large (suppose that larger Y values 
indicate better responses) or both small, but not if 
they are discordant (Schulz, 1995a). This 
possibility is depicted in Table 2, using 
randomized blocks of size four to calculate 
P{active} (Berger & Exner, 1999). Notice that not 
only does treatment assignment for randomized 
patients depend upon the allocation sequence, but 
in fact Patients #S5, #S7, #S9, and #S10 may or 
may not be randomized depending on the 
allocation sequence, and Patient #S3 cannot get 
the control. 

 

Discussion 
 

Few RCT reports make any effort to address the 
potential for selection bias. Presumably, this is due 
to unrealistically optimistic definitions of 
randomization, allocation concealment, and 
masking. Unfortunately, even in combination, 
these design features as implemented cannot 
eliminate selection bias. One may argue that while 
selection bias is possible  in theory, its mechanisms 
are implausible, especially when the main analyses 
have low p-values. 
 Unfortunately, history has demonstrated 
the fallibility of the plausibility test; at best low p-
values rule out (probabilistically) chance events, 
but they do not rule out biases (Berger, 2000; 
Berger et al., 2000; Grimes and Schulz, 2002). 
Because of the one-sponsor problem (Hogel & 
Gaus, 1999) and the vested interest the one 
sponsor usually has in the outcome of the trial, the 
best way to offer a convincing argument that a 
trial was free of a certain bias is to eliminate the 
possibility of its occurrence. Hence, the burden 
needs to be on the researchers to demonstrate the 
reliability of their results. In this article we have 
presented a number of countermeasures, few 
combinations of which would eliminate the 
potential for selection bias. In most cases, then, it 
is unrealistically optimistic to believe that RCTs 
are insulated from severe bias (Schulz, 1996). 
 We are hopeful that the information 
presented in Table 1 will accompany reports of 
future trials, preferably in the text of the article, 
but possibly in an accompanying web site. Such 
transparency would enable readers to determine 
the extent to which various mechanisms for 
selection bias were possible in a given trial, and 
the extent to which it appears as though there 
actually was selection bias. The refined measures 
of trial quality could be used in determining the 
extent to which specific trials influence policy and 
meta-analyses. This would exert pressure on those 
who design trials to design better trials. We are 
hopeful that journal editors, regulators, and 
granting institutions will rely, in part, on this 
information to make their important decisions. 
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  Table 2: Selection Bias with Randomization and Allocation Concealment. 
 

     {(A C C A); (C C A A)}  {(A C A C); (C A A C)} 
 S P{active} Range* P{active} Randomized P{active} Randomized  
 S1 [0.50,1.00] 0.50 Active 0.50 Active  
 S2 [0.00,0.33] 0.33 Control 0.33 Control  
 S3 [1.00,1.00] 0.50 - 0.50 -  
 S4 [0.00,0.50] 0.50 Control 0.50 Active  
 S5 [0.50,1.00] 1.00 Active 0.00 -  
 S6 [0.00,0.50] 0.50 Control 0.00 Control  
 S7 [0.00,0.50] 0.67 - 0.50 Control  
 S8 [0.67,1.00] 0.67 Control 0.67 Active  
 S9 [0.67,1.00] 1.00 Active 0.50 -  
 S10 [0.00,0.50] 1.00 - 0.50 Active  
 S11 [0.33.0.67] 1.00 - 0.00 -  
 S12 [0.00,1.00] 1.00 Active 0.00 Control  

 

 
*The range of P{active} values for which the patient gets randomized. P{active} 
computed according to the formula of Berger and Exner [3] using the randomized 
block procedure with a fixed block size of four. Not only does treatment assignment 
for randomized patients depend upon the allocation sequence, but in fact Patients 
#S5, #S7, #S9, and #S10 may or may not be randomized depending on the 
allocation sequence, and Patient #S3 cannot get the control. 
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Screening designs are useful for situations where a large number of factors (q) is examined but only few (k) 
of these are expected to be important.  It is of practical interest for a given k  to know all the inequivalent 
projections of the design into the k  dimensions. In this paper we give all the inequivalent projections of 
inequivalent Hadamard matrices of order 28 into k=3 and 4 dimensions and furthermore, we give partial 
results for k=5. Then, we sort these projections according to their generalized resolution and their 
generalized aberration. 
 
Key words:  Hadamard matrices, inequivalent projections, screening designs, factorial designs, generalized 
resolution, generalized aberration, generalized wordlength pattern. 
 
 

Introduction 
 
In the early stages of an experimental situation, a 
large number of factors is likely to have been 
identified as possibly having an influence on the 
response.  However, it is believed that only a few 
of these actually have a substantial effect, a 
situation known as factor sparsity.  The small 
number of active factors can be identified through 
a screening experiment.  Screening designs are 
frequently used by experimenters to help 
understand the impact of a large number of factors 
in relatively few trials. Traditionally Hadamard 
matrices have been used for this purpose. A lot of 
work has been done in this area (see [7, 10, 11, 
16]). 

A design suitable for screening out the k 
relevant factors from the total factors is called a 
screening design, see [2, 7, 11]. An n-dimensional 
Hadamard matrix is an n by n matrix of 1’s and -
1’s with HTH=HHT=nIn.  
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 A Hadamard matrix is said to be 
normalized if it has its first row and column all 
1’s.  If not we can normalize the Hadamard matrix 
by multiplying rows and columns by -1 where is 
needed.  In these matrices, n is necessarily 2 or a 
multiple of 4. Two Hadamard matrices H1 and H2 
are called equivalent (or H-equivalent) if one can 
be obtained from the other by a sequence of row 
negations, row permutations, column negations 
and column permutations.  

Their usefulness in statistical analysis is as 
follows.  There are two general questions to be 
answered.  (i) If q factors are to be studied, which 
q columns should be assigned to the q factors?  
Since any set of q columns are orthogonal, we 
must compare them in terms of their ability in 
entertaining m two-factor interactions in addition 
to the q main effects.  (ii) For each assignment, 
main effect analysis may reveal that only k factors 
(i.e.  k columns), k ≤ q are significant. 

We can then raise the question (i) for these 
k factors.  Since the projection onto k columns 
varies with the outcome of the analysis, it will be 
desirable to study this problem for all (or most) 
projections.  The information obtained will be 
useful for experimenters in contemplating the 
choice of designs.  The choice of k factors is 
equivalent to the choice of a n × k  submatrix of a 
Hadamard matrix of order n.  Two such matrices 
are said to be (combinatorially) equivalent if one 
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can be obtained from the other by permutation of 
rows, columns and sign changes in columns.  In 
the context of design theory we refer to this 
equivalence as (combinatorial) equivalence of two 
factor assignments. 
 
Classification Criteria  

Orthogonal factorial designs can be 
classified into two categories:  the regular 
fractional factorials, that have simple aliasing 
structure in which any two effects are either 
orthogonal or fully aliased and the non-regular 
fractional factorials, that have complex aliasing 
structure in which effects are neither orthogonal 
nor fully aliased. 

Fractional factorial designs are the most 
popular experimental designs used in various 
fields.  There are many useful criteria for 
comparing and ranking fractional factorial designs, 
such as resolution [2], minimum aberration [6], 
estimation capacity [3] and uniformity [5]. Among 
them, the minimum aberration is the most used 
criterion, but it can be applied only to regular 
factorials. 

It is of practical use to rank and compare 
non-regular factorial designs in a systematic 
manner.  Deng and Tang [4] proposed generalized 
resolution as a criterion to rank such designs in a 
similar way as the resolution criterion is used for 
regular designs.  According to this criterion, an 
orthogonal design is regarded as a set of m 
columns D={d1,...,dm}. Then, for 1 ≤ k ≤ m and 
any k-subset s={dj1,...,djk} define 
 

Jk(s)=|∑ dij1...dijk |. 
 
If r is the smallest integer such that 
max|s|=rJr(s)>0 and the maximization is over all 
the subsets of r distinct columns of D, then the 
generalized resolution of D is defined to be: 
 

R(D)=r+[1-max|s|=rJr(s)/n]. 
 
Then, using simple calculations, we are 

able to calculate the generalized resolution of any 
fractional factorial design and therefore we can 
rank and compare any set of inequivalent 
projections of Hadamard matrices in any order 
n=0(mod4) and especially when n is not a power 

of 2. Designs with greater generalized resolution 
from the others are preferred. 

The previously stated criterion of 
generalized resolution is not strong enough to rank 
such designs since there are cases where two or 
more fractional factorial designs have the same 
generalized resolution (see Table 4, where there 
are 3 such designs with the same generalized 
resolution). Ma and Fang [12] proposed a stronger 
criterion that can be applied to all regular and non-
regular factorials.  Let D be a fractional factorial 
design with n runs and s factors, each factor in q 
levels.  The new criterion appends to the design D 
its generalized wordlength pattern, which is 
defined by:  Wg(D)={A1g(D),...,Asg(D)} where 
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Pi(j;s) are the Krawtchouk polynomials and Ej(D),  
j=0,...,s is the distance distribution of D, defined -
in a similar way with Hamming distance- as:   
 

n
idcdDdcdc

DE H
i

}),(,,|,),{(#
)(

=∈
=  

 
where dH(c,d) is the Hamming distance between 
two runs c and d of D. For the undefined terms in 
coding theory, we refer the interested reader to 
[13] and [15]. 

Let now D1 and D2 be two inequivalent 
designs.  Let t be the smallest integer for which 
Atg(D1) …Atg(D2) in their generalized wordlength 

patterns. Then, if At g(D1) < At g(D2) we say that 
D1 has less generalized aberration from D2 and 
hence it is preferred. A design D has minimum 
generalized aberration if no other design has less 
generalized aberration than it. 

By an algorithm which relies on the 
definition, we have found all the inequivalent 
projections for n=28, k=3, 4 and 5 as well as their 
frequencies.  Then by simple computations, we 
sort these projections according to their 
generalized resolution and aberration in order to 
present the best classification. 
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Inequivalent Hadamard Matrices Of Order 28 And  
Their Projections 

We know that by adding a column of 1’s 
to a Plackett and Burman design [14], we obtain a 
Hadamard matrix H which satisfies HTH=nI. For 
n=12, H is unique, but for higher n this is not true.  
Inequivalent Hadamard matrices have different 
projection properties. 

For n=28 there are 487 inequivalent 
Hadamard matrices [8, 9] but only one of them 
corresponds to a Plackett and Burman design 
designated as H28.487 here, that is, only one 
provides a 28-run design of the type whose 
projections are widely known and studied [1], 
[11]. We will now discuss the projection patterns 
of all the types, which we designate as H28.1, 
H28.2 ... H28.487 as found in 
http://www.research.att.com/~njas/hadamard/. 

From now on, in this paper we will denote 
each projection with (k .#) where k are the factors 
included in the projection and # is the number of 
the projection.  We present each projection as a set 
of k vectors to save space.  In each such vector we 
have used the letters from A to Z to denote the 
position of the +1 in each column but since these 
letters are 26, we need two more characters for the 
positions 27 and 28. So, we used # for position 27 
and * for position 28. For example, the vector 
ABEGIJLORUVXZ* applies to the ++--+-+-++-
+--+--+--++-+-+-+ column. 

For k=3 there are three different possible 
projections listed in Table 1. All of them contain a 
23 full factorial design.  

 
Table 1: Inequivalent projections of all 28-run 
inequivalent Hadamard matrices into k=3 
dimensions. 
 
No.    Projection 

 (3.1) ABEGIJLORUVXZ*, 
ACDFIKLORTWYZ*, 
AHIJKLMNOPQRS* 

 (3.2) ABEFGKLMOPSTUW, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 (3.3) ACEFGKLMNQRVXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

Table 2 shows the generalized resolution 
and the generalized wordlength pattern of the three 
inequivalent projections of Hadamard matrices of 
order 28 in 3 factors. Projection (3.2) has the best 
properties than the other two and hence it is 
preferred from the others. 

The frequencies of appearance of each 
projection in every Hadamard matrix are available 
on request.  It is worth mentioning that the 
Plackett and Burman design does not provide us 
the projection (3.1). 

 
Table 2:  Sorting of the inequivalent projections of 
Hadamard matrices of order 28 in 3 dimensions 
according to their generalized resolution and their 
generalized wordlength pattern. 
 

Projection    Generalized   Generalized 
number    Resolution    Wordlength Pattern

(3.2)    3.856    (0, 0, 0.2)  
(3.3)    3.571    (0, 0, 0.18) 
(3.1)    3.286    (0, 0, 0.51) 

 
 For k=4 there are seven different possible 

projections listed in Table 3. Projection (4.6) 
contains a full 24 factorial design while 
projections (4.2) and (4.5) contain a half fraction 
of the full 24 factorial design with defining 
relation I=ABCD contrary to the projections (4.3) 
and (4.7) that contain a half fraction with defining 
relation I=-ABCD. Finally, projections (4.1) and 
(4.4) do not have any geometrical property. 

The frequencies of appearance of each 
projection in every Hadamard matrix are available 
on request.  The Plackett and Burman design does 
not provide us the projections (4.1) and (4.2). It is 
also worth to mentioning that over the 90% of the 
projections in each Hadamard matrix contain a 
half fraction of the full 24 factorial design and 
furthermore, projection (4.6), which is the best 
under geometric approach as it contains a full 24 
factorial design, can be recognized in more than 
50% out of the whole 17550 possible projections 
of the 27 columns of each Hadamard matrix of 
order 28 in 4 factors. 
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Table 3:  Inequivalent projections of all 28-run 
inequivalent Hadamard matrices into k=4 
dimensions. 
 

Number                       Projection  
 

            (4.1)   
 ABEGIJLORUVXZ*, 
ACDFIKLORTWYZ*, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
(4.2)   

 ADEFIMNOQTUV#*, 
ADEGJKPRSTVY#*, 
ABCDFHJLNPRTUV, 
ABCDGHIKOQSUVY 

 
(4.3)   

 ADEGJKPRSTVY#*, 
ABCDEIJMQRSTWX, 
ABCDGHIKOQSUVY, 
ACEFGKLMNQRVXY 

 
(4.4)   

ABCDFHJLNPRTUV, 
ACEFGKLMNQRVXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
(4.5)  

ABCDGHIKOQSUVY, 
ABEFGKLMOPSTUW, 
ACEFGKLMNQRVXY, 
ADEFGHIJNOPWXY 

 
(4.6)   

 ABCDGHIKOQSUVY, 
ABEFGKLMOPSTUW, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS*  

 
(4.7)   

 ABEFGKLMOPSTUW, 
ACEFGKLMNQRVXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
Table 4 shows the generalized resolution 

and the generalized wordlength pattern of the 
seven inequivalent projections of Hadamard 
matrices of order 28 in 4 factors.  The 
classification has been made firstly by their 
generalized resolution and then by their 
generalized wordlength pattern.  So, there are 
three projections with generalized resolution equal 
to 3.857 but projection (4.6) is the best since it has 
better generalized wordlength pattern. On the 

other hand, projection (4.1) is the worst since it 
has the least generalized resolution among all. 
 
Table 4:  Sorting of the inequivalent projections of 
Hadamard matrices of order 28 in 4 dimensions  
according to their generalized resolution and their 
generalized wordlength pattern. 
 
Projection   Generalized    Generalized 
number    Resolution    Wordlength Pattern  

(4.6)    3.857    (0, 0, 0.08, 0.02)  
(4.5)    3.857    (0, 0, 0.08, 0.18)  
(4.2)    3.857    (0, 0, 0.08, 0.51)  
(4.7)    3.571    (0, 0, 0.24, 0.02)  
(4.3)    3.571    (0, 0, 0.24, 0.18)  
(4.4)    3.571    (0, 0, 0.41, 0.02)  
(4.1)    3.286    (0, 0, 0.57, 0.02)  

 
For k=5, we give partial results since the 

combinatorial equivalence algorithm we applied 
requires vast computational time which increases 
rapidly as the number of factors enlarges.  In 
particular, we have studied the problem for only 
the first thirty matrices listed in 
http://www.research.att.com/~njas/hadamard/. 
From these Hadamard matrices, 126 inequivalent 
projections arise and they are listed in Table  5. It 
is worth mentioning that projections (5.91) and 
(5.101) contain a 25-1V fraction with defining 
relations I=-ABCDE and I=ABCDE respectively. 

The classification of these 126 projections 
under the generalized resolution and aberration 
criteria is presented in Table 6. From this table one 
can notice that projection (5.124) is the best under 
the classification criteria concerned and on the 
other hand, projections (5.2) and (5.29) are the 
worst ones under the same criteria.  It is worth 
mentioning that several inequivalent projections 
have the same generalized resolution and 
wordlength pattern. 
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Table 5:  Inequivalent projections of all 28-run inequivalent Hadamard matrices into k=5 dimensions. 
 

Number   Projection  
 
 

(5.1)  

ABEFHIKNQSTWZ#, 
ABDGILMNSTXYZ*, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.2)  

AHIJKLMTUVWXY#, 
ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.4)  

ABEGHJMOQSUYZ#, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.5)  

ACDEHLMNORVWZ#, 
ACDGJKMNPQTXZ#, 
ABDFJKMNSVWYZ*, 
ABCFIMNOQUWX#*, 
ABCGHLNPSTWY#* 

 
 

(5.6)  

ACDGJKMNPQTXZ#, 
ABDEHKLPQUWXZ*, 
ABCGHLNPSTWY#*, 
ABCDEIJMPRSTUW, 
AHIJKLMNOPQRS* 

 
 

(5.7)  

ACDGJKMNPQTXZ#, 
ABDFJKMNSVWYZ*, 
ABCGHLNPSTWY#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX 

 
 

(5.8)  

ABDEHKLPQUWXZ*, 
ACEFHIMPQTVYZ*, 
ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
AHIJKLMNOPQRS* 

 
 

(5.9)  

ABDEHKLPQUWXZ*, 
ACFGHJKORTUWZ*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY 

 
 

(5.10)  

ABDEHKLPQUWXZ*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ACEFGKLMQRSWXY, 
AHIJKLMNOPQRS* 
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(5.11)  

ABDFJKMNSVWYZ*, 
ACEGIJLNSUVXZ*, 

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#* 

 
 

(5.12)  

ABDFJKMNSVWYZ*, 
ABCEJKOPRVXY#*, 
ADEFJLNQRTUY#*, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.13)  

ABDGILMORTXYZ*, 
ACEFHIMPQTVYZ*, 
ABCFIMNOQUWX#*, 
ADEGIKOQSTVW#*, 
AHIJKLMNOPQRS* 

 
 

(5.14) 
 
 

ABDGILMORTXYZ*, 
ACFGHJKORTUWZ*, 
ABCEJKOPRVXY#*, 
ADEGIKOQSTVW#*, 
AHIJKLMNOPQRS* 

 
 

(5.15)  

ABDGILMORTXYZ*, 
ABCEJKOPRVXY#*, 
ABCFIMNOQUWX#*, 
ADEFJLNQRTUY#*, 
ABCDFHJLOQSTVX 

 
 

(5.16)  

ABDGILMORTXYZ*, 
ABCFIMNOQUWX#*, 
ABCGHLNPSTWY#*, 
ADEFJLNQRTUY#*, 
ADFGHMPRSUVX#* 

 
 

(5.17)  

ACEFHIMPQTVYZ*, 
ACEGIJLNSUVXZ*, 
ABCEJKOPRVXY#*, 
ADEGIKOQSTVW#*, 
ABCDEIJMPRSTUW 

 
 

(5.18)  

ACEFHIMPQTVYZ*, 
ACEGIJLNSUVXZ*, 
ADEFJLNQRTUY#*, 

ADFGHMPRSUVX#*, 
AHIJKLMNOPQRS* 

 
 

(5.19)  

ACEFHIMPQTVYZ*, 
ACFGHJKORTUWZ*, 
ABCEJKOPRVXY#*, 
ABCFIMNOQUWX#*, 
ABCGHLNPSTWY#* 

 
 

(5.20)  

ACEFHIMPQTVYZ*, 
ACFGHJKORTUWZ*, 
ABCGHLNPSTWY#*, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY 
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(5.21)  

ACEFHIMPQTVYZ*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABEFGKLMNOPTUV, 
AHIJKLMNOPQRS* 

 
 

(5.22) 

ACEGIJLNSUVXZ*, 
ACFGHJKORTUWZ*, 
ABCEJKOPRVXY#*, 
ABCGHLNPSTWY#*, 
AHIJKLMNOPQRS* 

 
 

(5.23) 

ACEGIJLNSUVXZ*, 
ABCEJKOPRVXY#*, 
ABCFIMNOQUWX#*, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY 
 
 

(5.24)  

ACEGIJLNSUVXZ*, 
ABCEJKOPRVXY#*, 
ADEFJLNQRTUY#*, 
ABCDFHJLOQSTVX, 
ABEFGKLMNOPTUV 

 
 

(5.26)  

ACEGIJLNSUVXZ*, 
ABCGHLNPSTWY#*, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.27)  

ACFGHJKORTUWZ*, 
ABCEJKOPRVXY#*, 
ABCFIMNOQUWX#*, 
ADFGHMPRSUVX#*, 
AHIJKLMNOPQRS* 

 
 

(5.28)  

ACFGHJKORTUWZ*, 
ABCEJKOPRVXY#*, 
ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
AHIJKLMNOPQRS* 

 
 

(5.29)  

ACFGHJKORTUWZ*, 
ABCEJKOPRVXY#*, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.30)  

ACFGHJKORTUWZ*, 
ABCFIMNOQUWX#*, 
ADEFJLNQRTUY#*, 

ADFGHMPRSUVX#*, 
ABCDGHIKNQRUVY 

 
 

(5.31)  

ACFGHJKORTUWZ*, 
ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDGHIKNQRUVY 
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(5.32)  

ACFGHJKORTUWZ*, 
ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABEFGKLMNOPTUV 

 
 

(5.33) 
 
 

ACFGHJKORTUWZ*, 
ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY 

 
 

(5.34)  

ABCEJKOPRVXY#*, 
ABCFIMNOQUWX#*, 
ADEFJLNQRTUY#*, 
ABCDEIJMPRSTUW, 
ADEFGHIJNOPWXY 

 
 

(5.35)  

ABCEJKOPRVXY#*, 
ABCFIMNOQUWX#*, 
ADEGIKOQSTVW#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX 

 
 

(5.37)  

ABCEJKOPRVXY#*, 
ABCFIMNOQUWX#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY 

 
 

(5.38)  

ABCEJKOPRVXY#*, 
ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.39)  

ABCEJKOPRVXY#*, 
ADEFJLNQRTUY#*, 
ADEGIKOQSTVW#*, 
ABCDEIJMPRSTUW, 
ABEFGKLMNOPTUV 

 
 

(5.40)  

ABCEJKOPRVXY#*, 
ADEFJLNQRTUY#*, 
ADEGIKOQSTVW#*, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY 
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(5.41)  

ABCEJKOPRVXY#*, 
ADEFJLNQRTUY#*, 

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
AHIJKLMNOPQRS* 

 
 

(5.42)  

ABCEJKOPRVXY#*, 
ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.43) 
  

ABCFIMNOQUWX#*, 
ABCGHLNPSTWY#*, 
ADEFJLNQRTUY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#* 

 
 

(5.44)  

ABCFIMNOQUWX#*, 
ABCGHLNPSTWY#*, 
ADEFJLNQRTUY#*, 
ABCDEIJMPRSTUW, 
AHIJKLMNOPQRS* 

 
 

(5.45)  

ABCFIMNOQUWX#*, 
ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ACEFGKLMQRSWXY 

 
 

(5.47)  

ABCFIMNOQUWX#*, 
ABCGHLNPSTWY#*, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 

 
 

(5.48)  

ABCFIMNOQUWX#*, 
ADEFJLNQRTUY#*, 

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDGHIKNQRUVY 

 
 

(5.49)  

ABCFIMNOQUWX#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
AHIJKLMNOPQRS* 

 
 

(5.50)  

ABCFIMNOQUWX#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV 
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(5.51)  

ABCFIMNOQUWX#*, 
ADEGIKOQSTVW#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.52)  

ABCFIMNOQUWX#*, 
ADEGIKOQSTVW#*, 
ABCDEIJMPRSTUW, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.53)  

ABCFIMNOQUWX#*, 
ADEGIKOQSTVW#*, 
ABCDFHJLOQSTVX, 

ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY 

 
 

(5.54)  

ABCFIMNOQUWX#*, 
ADEGIKOQSTVW#*, 
ABCDFHJLOQSTVX, 

ABEFGKLMNOPTUV, 
AHIJKLMNOPQRS* 

 
 

(5.55)  

ABCFIMNOQUWX#*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY 

 
 

(5.56) 

ABCFIMNOQUWX#*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 

 
 

(5.58)  

ABCGHLNPSTWY#*, 
ADEFJLNQRTUY#*, 

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ADEFGHIJNOPWXY 

 
 

(5.59)  

ABCGHLNPSTWY#*, 
ADEFJLNQRTUY#*, 

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
AHIJKLMNOPQRS* 

 
 

(5.60)  

ABCGHLNPSTWY#*, 
ADEFJLNQRTUY#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.61)  

ABCGHLNPSTWY#*, 
ADEFJLNQRTUY#*, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 
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(5.62)  

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX 

 
 

(5.63)  

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ADEFGHIJNOPWXY 

 
 

(5.64)  

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY 

 
 

(5.65)  

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.66)  

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDGHIKNQRUVY, 
AHIJKLMNOPQRS* 

 
 

(5.67)  

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY 

 
 

(5.69)  

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.70)  

ABCGHLNPSTWY#*, 
ADEGIKOQSTVW#*, 

ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV, 
ADEFGHIJNOPWXY 

 
 

(5.71)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY 
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(5.72)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 
AHIJKLMNOPQRS* 

 
 

(5.73)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
AHIJKLMNOPQRS* 

 
 

(5.74)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABEFGKLMNOPTUV, 
AHIJKLMNOPQRS* 

 
 

(5.75)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ACEFGKLMQRSWXY, 
AHIJKLMNOPQRS* 

 
(5.76)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.77)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ABEFGKLMNOPTUV, 
ADEFGHIJNOPWXY 

 
 

(5.78)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY, 
AHIJKLMNOPQRS* 

 
 

(5.79)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.80)  

ABCGHLNPSTWY#*, 
ADFGHMPRSUVX#*, 
ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 
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(5.81)  

ABCGHLNPSTWY#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.82)  

ABCGHLNPSTWY#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 

 
 

(5.83)  

ABCGHLNPSTWY#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.84)  

ABCGHLNPSTWY#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 

 
 

(5.85)  

ABCGHLNPSTWY#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.86)  

ABCGHLNPSTWY#*, 
ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 

 
 

(5.87)  

ABCGHLNPSTWY#*, 
ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.88)  

ADEFJLNQRTUY#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY 

 
 

(5.89)  

ADEFJLNQRTUY#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
AHIJKLMNOPQRS* 

(5.90)  ADEFJLNQRTUY#*, 
ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 
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(5.91)  

ADEFJLNQRTUY#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.92)  

ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 
ABEFGKLMNOPTUV 

 
 

(5.93)  

ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY 
 
 

(5.94)  

ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY 

 
 

(5.95)  

ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 
AHIJKLMNOPQRS* 

 
 

(5.96)  

ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
AHIJKLMNOPQRS* 

 
 

(5.97)  

ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 

 
 

(5.98)  

ADEGIKOQSTVW#*, 
ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.99)  

ADEGIKOQSTVW#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 
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(5.100)  

ADEGIKOQSTVW#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.101)  

ADEGIKOQSTVW#*, 
ABCDFHJLOQSTVX, 

ABEFGKLMNOPTUV, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.102)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV 

 
 

(5.103)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY 

 
 

(5.104)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 

ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY 

 
 

(5.105)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.106)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV, 
AHIJKLMNOPQRS* 

 
 

(5.107)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY, 

AHIJKLMNOPQRS* 
 
 

(5.108)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.109)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 
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(5.110)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY, 

AHIJKLMNOPQRS* 
 
 

(5.111)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ABEFGKLMNOPTUV, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.112)  

ADFGHMPRSUVX#*, 
ABCDEIJMPRSTUW, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.113)  

ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV, 
ADEFGHIJNOPWXY 

 
 

(5.114)  

ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ACEFGKLMQRSWXY, 

AHIJKLMNOPQRS* 
 
 

(5.115)  

ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.116)  

ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 

 
 

(5.117)  

ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ABEFGKLMNOPTUV, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.118)  

ADFGHMPRSUVX#*, 
ABCDFHJLOQSTVX, 

ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.119)  

ADFGHMPRSUVX#*, 
ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 
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(5.120)  

ADFGHMPRSUVX#*, 
ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.121)  

ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV, 
AHIJKLMNOPQRS* 

 
 

(5.122)  

ABCDEIJMPRSTUW, 
ABCDFHJLOQSTVX, 

ABCDGHIKNQRUVY, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.123)  

ABCDFHJLOQSTVX, 
ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV, 
ACEFGKLMQRSWXY, 
ADEFGHIJNOPWXY 

 
 

(5.124)  
 
 

ABCDFHJLOQSTVX, 
ABCDGHIKNQRUVY, 
ABEFGKLMNOPTUV, 
ADEFGHIJNOPWXY, 
AHIJKLMNOPQRS* 

 
 

(5.125) 

ABCDFHJLOQSTVX 
ABCDGHIKNQRUVY 
ACEFGKLMQRSWXY 
ADEFGHIJNOPWXY 
AHIJKLMNOPQRS* 

 
 

(5.126) 

ABCDGHIKNQRUVY 
ABEFGKLMNOPTUV 
ACEFGKLMQRSWXY 
ADEFGHIJNOPWXY 
AHIJKLMNOPQRS* 
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Table 6:  Sorting of the inequivalent projections of Hadamard matrices of order 28 in 5 dimensions according 
to their generalized resolution and their generalized wordlength pattern. 

 
Projection    Generalized    Generalized  

number    Resolution    Wordlength Pattern  
(5.124)  3.857  (0, 0, 0.204, 0.102, 0) 
(5.91)  3.857  (0, 0, 0.204, 0.102, 0.082) 
(5.104)  3.857  (0, 0, 0.204, 0.102, 0.082) 
(5.101)  3.857  (0, 0, 0.204, 0.102, 0.327) 
(5.102)  3.857  (0, 0, 0.204, 0.265, 0) 
(5.119)  3.857  (0, 0, 0.204, 0.265, 0.082) 
(5.122)  3.857  (0, 0, 0.204, 0.265, 0.082) 
(5.121)  3.857  (0, 0, 0.204, 0.265, 0.327) 
(5.114)  3.857  (0, 0, 0.204, 0.429, 0) 
(5.123)  3.857  (0, 0, 0.204, 0.429, 0) 
(5.109)  3.857  (0, 0, 0.204, 0.429, 0.082) 
(5.93)  3.857  (0, 0, 0.204, 0.592, 0) 
(5.88)  3.857  (0, 0, 0.204, 0.592, 0.082) 
(5.92)  3.857  (0, 0, 0.204, 0.592, 0.082) 
(5.117)  3.571  (0, 0, 0.367, 0.102, 0) 
(5.61)  3.571  (0, 0, 0.367, 0.102, 0.082) 
(5.108)  3.571  (0, 0, 0.367, 0.102, 0.082) 
(5.113)  3.571  (0, 0, 0.367, 0.102, 0.082) 
(5.34)  3.571  (0, 0, 0.367, 0.102, 0.327) 
(5.40)  3.571  (0, 0, 0.367, 0.102, 0.327) 
(5.86)  3.571  (0, 0, 0.367, 0.265, 0) 
(5.90)  3.571  (0, 0, 0.367, 0.265, 0) 
(5.106)  3.571  (0, 0, 0.367, 0.265, 0) 
(5.107)  3.571  (0, 0, 0.367, 0.265, 0) 
(5.116)  3.571  (0, 0, 0.367, 0.265, 0) 
(5.58)  3.571  (0, 0, 0.367, 0.265, 0.082) 
(5.97)  3.571  (0, 0, 0.367, 0.265, 0.082) 
(5.103)  3.571  (0, 0, 0.367, 0.265, 0.082) 
(5.111)  3.571  (0, 0, 0.367, 0.265, 0.082) 
(5.115)  3.571  (0, 0, 0.367, 0.265, 0.082) 
(5.78)  3.571  (0, 0, 0.367, 0.429, 0) 
(5.96)  3.571  (0, 0, 0.367, 0.429, 0) 
(5.41)  3.571  (0, 0, 0.367, 0.429, 0.082) 
(5.99)  3.571  (0, 0, 0.367, 0.429, 0.082) 
(5.100)  3.571  (0, 0, 0.367, 0.429, 0.082) 
(5.110)  3.571  (0, 0, 0.367, 0.429, 0.082) 
(5.45)  3.571  (0, 0, 0.367, 0.429, 0.327) 
(5.89)  3.571  (0, 0, 0.367, 0.592, 0) 
(5.95)  3.571  (0, 0, 0.367, 0.592, 0) 
(5.47)  3.571  (0, 0, 0.531, 0.102, 0) 
(5.73)  3.571  (0, 0, 0.531, 0.102, 0) 
(5.83)  3.571  (0, 0, 0.531, 0.102, 0) 
(5.84)  3.571  (0, 0, 0.531, 0.102, 0) 
(5.98)  3.571  (0, 0, 0.531, 0.102, 0) 
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(5.49)  3.571  (0, 0, 0.531, 0.102, 0.082) 
(5.80)  3.571  (0, 0, 0.531, 0.102, 0.082) 
(5.82)  3.571  (0, 0, 0.531, 0.102, 0.082) 
(5.85)  3.571  (0, 0, 0.531, 0.102, 0.082) 
(5.105)  3.571  (0, 0, 0.531, 0.102, 0.082) 
(5.50)  3.571  (0, 0, 0.531, 0.265, 0) 
(5.52)  3.571  (0, 0, 0.531, 0.265, 0) 
(5.74)  3.571  (0, 0, 0.531, 0.265, 0) 
(5.77)  3.571  (0, 0, 0.531, 0.265, 0) 
(5.35)  3.571  (0, 0, 0.531, 0.265, 0.082) 
(5.44)  3.571  (0, 0, 0.531, 0.265, 0.082) 
(5.63)  3.571  (0, 0, 0.531, 0.265, 0.082) 
(5.70)  3.571  (0, 0, 0.531, 0.265, 0.082) 
(5.75)  3.571  (0, 0, 0.531, 0.265, 0.082) 
(5.43)  3.571  (0, 0, 0.531, 0.429, 0) 
(5.46)  3.571  (0, 0, 0.531, 0.429, 0) 
(5.54)  3.571  (0, 0, 0.531, 0.429, 0) 
(5.55)  3.571  (0, 0, 0.531, 0.429, 0) 
(5.56)  3.571  (0, 0, 0.531, 0.429, 0) 
(5.57)  3.571  (0, 0, 0.531, 0.429, 0) 
(5.64)  3.571  (0, 0, 0.531, 0.429, 0) 
(5.51)  3.571  (0, 0, 0.531, 0.429, 0.082) 
(5.53)  3.571  (0, 0, 0.531, 0.429, 0.082) 
(5.60)  3.571  (0, 0, 0.531, 0.429, 0.082) 
(5.62)  3.571  (0, 0, 0.531, 0.592, 0) 
(5.18)  3.571  (0, 0, 0.531, 0.592, 0.082) 
(5.94)  3.571  (0, 0, 0.531, 0.592, 0.082) 
(5.59)  3.571  (0, 0, 0.694, 0.102, 0) 
(5.76)  3.571  (0, 0, 0.694, 0.102, 0) 
(5.17)  3.571  (0, 0, 0.694, 0.102, 0.082) 
(5.32)  3.571  (0, 0, 0.694, 0.102, 0.082) 
(5.33)  3.571  (0, 0, 0.694, 0.102, 0.082) 
(5.38)  3.571  (0, 0, 0.694, 0.102, 0.082) 
(5.13)  3.571  (0, 0, 0.694, 0.102, 0.327) 
(5.36)  3.571  (0, 0, 0.694, 0.265, 0) 
(5.65)  3.571  (0, 0, 0.694, 0.265, 0) 
(5.66)  3.571  (0, 0, 0.694, 0.265, 0) 
(5.67)  3.571  (0, 0, 0.694, 0.265, 0) 
(5.69)  3.571  (0, 0, 0.694, 0.265, 0) 
(5.72)  3.571  (0, 0, 0.694, 0.265, 0) 
(5.79)  3.571  (0, 0, 0.694, 0.265, 0) 
(5.11)  3.571  (0, 0, 0.694, 0.265, 0.082) 
(5.37)  3.571  (0, 0, 0.694, 0.265, 0.082) 
(5.71)  3.571  (0, 0, 0.694, 0.265, 0.082) 
(5.68)  3.571  (0, 0, 0.694, 0.429, 0) 
(5.81)  3.571  (0, 0, 0.694, 0.429, 0) 
(5.6)  3.571  (0, 0, 0.694, 0.429, 0.082) 

(5.10)  3.571  (0, 0, 0.694, 0.429, 0.082) 
(5.16)  3.571  (0, 0, 0.694, 0.429, 0.082) 



EVANGELARAS & KOUKOUVINOS 
 

106 

(5.19)  3.571  (0, 0, 0.694, 0.592, 0) 
(5.39)  3.571  (0, 0, 0.694, 0.592, 0) 
(5.24)  3.571  (0, 0, 0.857, 0.102, 0) 
(5.30)  3.571  (0, 0, 0.857, 0.102, 0) 
(5.31)  3.571  (0, 0, 0.857, 0.102, 0.082) 
(5.25)  3.571  (0, 0, 0.857, 0.265, 0) 
(5.15)  3.571  (0, 0, 0.857, 0.265, 0.082) 
(5.9)  3.571  (0, 0, 0.857, 0.429, 0) 

(5.20)  3.571  (0, 0, 0.857, 0.429, 0) 
(5.7)  3.571  (0, 0, 0.857, 0.429, 0.082) 

(5.21)  3.571  (0, 0, 0.857, 0.429, 0.082) 
(5.48)  3.571  (0, 0, 0.857, 0.592, 0) 
(5.8)  3.571  (0, 0, 0.857, 0.592, 0.082) 

(5.23)  3.571  (0, 0, 0.857, 0.592, 0.082) 
(5.5)  3.571  (0, 0, 1.02, 0.102, 0.082) 

(5.120)  3.286  (0, 0, 0.694, 0.102, 0) 
(5.27)  3.286  (0, 0, 0.694, 0.102, 0.082) 
(5.125)  3.286  (0, 0, 0.694, 0.102, 0.082) 
(5.126)  3.286  (0, 0, 0.694, 0.265, 0) 
(5.118)  3.286  (0, 0, 0.857, 0.102, 0) 
(5.87)  3.286  (0, 0, 0.857, 0.265, 0) 
(5.14)  3.286  (0, 0, 0.857, 0.265, 0.082) 
(5.28)  3.286  (0, 0, 0.857, 0.265, 0.082) 
(5.112)  3.286  (0, 0, 0.857, 0.429, 0) 
(5.22)  3.286  (0, 0, 0.857, 0.592, 0) 
(5.42)  3.286  (0, 0, 1.02, 0.265, 0) 
(5.12)  3.286  (0, 0, 1.02, 0.429, 0) 
(5.3)  3.286  (0, 0, 1.02, 0.429, 0.082) 

(5.26)  3.286  (0, 0, 1.02, 0.429, 0.082) 
(5.4)  3.286  (0, 0, 1.184, 0.265, 0) 
(5.1)  3.286  (0, 0, 1.184, 0.592, 0) 
(5.2)  3.286  (0, 0, 1.184, 0.592, 0.082) 

(5.29)  3.286  (0, 0, 1.184, 0.592, 0.082) 
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Incorporating Sampling Weights Into The Generalizability Theory 
For Large-Scale Analyses 

 
          Christopher W.T. Chiu          Ronald S. Fecso 
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Large scale studies frequently use complex sampling procedures, disproportionate sampling weights, and 
adjustment techniques to account for potential bias due to nonresponses and to ensure that results from the 
sample can be generalized to a larger population. Survey researchers are concerned about measurement error 
and the use of weights in developing models. Consequently, multiple weighting factors are used and these 
weighting factors are manifested as a final survey (composite) weight available for analysis. We developed a 
method to incorporate an external weighting factor like this for analyses of measurement errors in the theory 
of generalizability to provide researchers with a tool to evaluate the measurement error components of survey 
quality and undesirable error components of large-scale assessment programs such as national and state 
assessments. 
 
Key words: Generalizability theory, large-scale performance assessment, rater reliability, sampling, Survey of 
Doctorate Recipients (SDR), variance component, weighting 
 
 

Introduction 
 
The focus of this research is to illustrate how to 
incorporate weights in the framework of 
generalizability theory (Brennan, 1992a; 
Cronbach, Gleser, Nanda, and Rajaratnam, 1972; 
and Shavelson and Webb, 1991) when it is applied 
to large-scale studies such as national surveys and 
educational assessments. 
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This research is important because 
educational researchers need to determine variance 
components and reliability coefficients to 
accurately reflect measurement errors in statewide 
or nationwide assessment programs, which often 
test only a sample of students for accountability 
purposes. Generalizability theory is a well-known 
method in educational and psychological research, 
but today, no one has examined the effect of 
sample survey data on the method. In addition, 
survey researchers can use such knowledge to 
understand, monitor, and improve survey quality. 
If a weighting scheme was used but researchers 
ignored the weights in generalizability studies (G 
studies), as is often the case with such a model, the 
estimated errors will be biased (Rosenbaum, 
1987). In addition, the standard error of the 
variance component estimates will be 
inappropriate.  

A very popular model in generalizability 
theory is the two-facet crossed model, which is 
frequently used in monitoring measurement errors 
(e.g., Brennan et al., 1995, Brennan, 2000b; Chiu 
and Wolfe, 2002; Lane et al., 1996) when human 
judgments are involved. The model can partition 
error variances into specific sources so that 
researchers can determine which error source(s) is/ 
are most in need for reduction. For example, one 
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can determine the score consistency in high-stake 
examinations where test-takers respond to a set of 
test questions scored by a group of raters (i.e., a 
person x item x rater two-facet model). 
Alternatively, one can use a two-facet crossed 
model (i.e., respondent x item x coding method) to 
determine the coding consistency in survey 
analysis where survey responses are coded using 
different schemes (e.g., self-report versus 
objectively coded responses). 

Despite the common applications of the 
generalizability theory in survey studies (Adam 
and Ujwal, 1999; Johnson and Bell, 1985; Shipper, 
et al., 1986), we did not find references discussing 
how one could incorporate weights into G studies 
— we searched monographs on G theory 
(Brennan, 1992a; Brennan, 2001b; Chiu, 2001; 
Cronbach, et. al., 1972; Fyans, 1983; Shavelson 
and Webb, 1991) and on variance estimations 
(Rao, 1997; and Wolter, 1985) using the five 
major modes of searching: footnote chasing, 
consultation, searches in subject indices, browsing, 
and citation searchers (White, 1994). Also, we 
contacted experts in G theory (Brennan, 2001b; 
Cronbach, 2000) and searched journal articles and 
electronic databases (PSYINFO, 1887–2001; 
ERIC, 1966-2001; MEDLINE, 1966-2001; 
JSTOR, 1887-1996; Sociological Abstracts, 1963-
2001). 
 In the current study, we first reviewed the 
purposes and importance of survey weights 
followed by a summary of the traditional variance 
component estimation procedures. Second, we 
discussed the concepts and essential steps of a new 
weighting method in G studies (i.e., the Chiu-
Fecso G-method, denoted CFG hereafter). 
Specifically, we used two examples to illustrate 
the method. The first example was a hypothetical 
dataset with a context in educational assessment 
and the other was an operational dataset from a 
large-scale survey used for research on science 
and engineering education. (The Survey of 
Doctorate Recipients is a longitudinal survey 
administered by the Division of Science Resources 
Statistics (SRS) at the National Science 
Foundation (NSF). Details of the survey can be 
found in the homepage of SRS: 
http://www.nsf.gov/sbe/srs).  We intentionally 
used a simple case in the first example to 
demonstrate the computational procedures of the 
new method. The example was simple enough for 

hand calculation. The second example, based on 
an operational dataset from a national study, was 
used to show the capacity of the method for a real 
data set. Given the wide applications of the two-
facet crossed model, we focus our discussions on 
the two-facet model throughout the manuscript. 
 
Basic Concepts of G Theory and Weighting 

An extension of the Classical Test Theory 
(Crocker and Algina, 1986) and the Analysis of 
Variance (ANOVA) methods, G theory has been 
applied to examine the reliability and validity of 
measurement procedures in educational 
assessments, psychological measurement, program 
evaluations, and survey analysis. As Shavelson 
and Webb (1991) stated: 

 
“The strength of G theory is that 
multiple sources of error in a 
measurement can be estimated 
separately in a single analysis. 
Consequently, in a manner similar 
to the way the Spearman-Brown 
‘prophecy formula’ is used to 
forecast reliability as a function of 
test length in classical test theory, 
G theory enables the decision 
maker to determine how many 
occasions, test forms, and 
administrators are needed to 
obtain dependable scores. In the 
process, G theory provides a 
summary coefficient reflecting the 
level of dependability, a 
generalizability coefficient that is 
analogous to classical test theory’s 
reliability coefficient.” (p. 2) 
 
Brennan (1992a, 1992b, and 2000a) and 

Shavelosn and Webb (1991) provided a succinct 
treatment of the essential features of G theory. 
Chiu (1999a, 2001) developed a subdividing 
method to estimate variance components in large-
scale performance assessments with missing 
observations. Brennan (2000a) discussed the 
misconceptions about the theory. Brennan and 
Johnson (1995) and Cronbach, Linn, Brennan, and 
Haertel (1997) covered basic concepts in G theory. 
Brennan (1997) and Shavelson and Webb (1981) 
summarized the history of the G theory. Despite 
the popularity of G theory, all of the 
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aforementioned studies assumed that simple 
random sampling was used.  

Traditionally, G theory assumes less than 
or equal to simple random sampling (Bell, 1985; 
Brennan, 1992a; Cronbach et al., 1972), only that 
every person has the same probability of being 
sampled from a population or, that every element 
is assigned a unit weight. Such an assumption is 
not viable in national studies where complex 
sampling procedures (e.g., disproportionate 
sampling of smaller demographic groups) are 
used. To create representative estimates in such 
cases, variable probabilities of selection or 
variable weights are needed. 

Another purpose of weighting is to adjust 
for the effects of non-respondents (Kish, 1995; 
Lee, Forthofer, and Lorimer, 1989; and Sarndal, 
1980). Bailar, Bailey, and Corby (1978) 
summarized the purposes and compared some 
adjustment and weighting procedures (e.g., 
reweighting, substitution, regression) that were 
actually used at the US Bureau of the Census, for 
survey data. The National Science Foundation 
provided a concise summary of using survey 
weights, for the Survey of Doctorate Recipients 
(SDR) — a longitudinal panel survey of 
individuals who have received their doctorates 
mainly in the sciences or engineering fields (the 
data of this survey is used as an example in 
subsequent sections): 

 
Sampling weights were 

defined as the reciprocal of the 
probability of selection for each 
sampled units, and the weights 
were adjusted by using weighting 
class or poststratification 
adjustment procedures. The final 
adjusted sampling weights 
become the analysis weights [also 
called Final Survey Weights], 
which have been added to each 
individual’s record in the survey 
database. (Author, 2002) 

 
 
Instead of making available multiple weights to 
researchers, survey developers create a single 
composite weight also called the final survey 
weight (e.g., in the Survey of Doctorate 
Recipients) for analysis. Designed as a proxy for 

all the weighting factors in the survey, the Final 
Survey Weights may be the only weighting 
information available in the survey data. In this 
paper, we first derived the methodological 
adjustments to incorporate such a composite 
weight on G theory estimation. We then applied 
the methodology in the context of a large-scale 
survey to examine the impact of the 
methodological change and substantively the 
occupational stability in the engineering 
profession of the United States. The methodology 
developed here can be used directly in any crossed 
design with two facets. The three principles of the 
weighting method discussed in this paper, 
however, can be used for other designs with any 
number of facets.  However, our intention is to 
focus on a two facet crossed design, which has a 
variety of applications in measurement. 
 

Methodology 
 
Detecting Measurement Errors and Estimating 
Variance Components 

Many have contributed to the methods in 
monitoring measurement errors and in estimating 
variance components. In the survey research 
context, Biemer and Fecso (1995), Rao and Sitter 
(1997), and Reiser, Fecso, and Chua (1992) 
discussed methods to characterize measurement 
errors. In the statistics and educational assessment 
context, Brennan (1992a), Chiu (1999a, 1999b), 
Chiu and Wolfe (1997), Corbeil and Searle (1976), 
Millman and Glass (1967), and Searle, Casella, 
and McCulloch (1992) among others, provided in-
depth discussions on variance component 
estimation methods. Brennan (1992a) offered an 
extensive treatment on the topic geared toward 
generalizability theory. Also, he used synthetic 
datasets to illustrate the computational steps for 
variance component estimations. Instead of 
repeating the details, we summarized the general 
procedures below and used the summary as 
building blocks to develop a weighted variance 
component method based on G theory discussed in 
the subsequent sections. 

In G theory, variance component estimates 
can be obtained by solving a set of Expected Mean 
Square (EMS) equations (Brennan, 1992a, chapter 
2 and 3; appendices A through B) relating the 
variance components and mean squares. In the 
sections that follow, we used a fully crossed two-
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faceted design (Brennan, 1992a) as an example. 
Unless stated otherwise, the universe of admissible  
observations contains person (p), item (i), and 
rater (r). The EMS equations can be expressed in 
the following matrix formula,  

 

 22 ˆˆ =s C a     (1) 

 

where C is an f x f upper-triangular matrix of 
coefficients for the variance components 
estimated, and f = 1,2, …, 7 represent the seven 

variance component estimates in a two faceted 

design. The column vector 2â  is a set of mean 
squares for the effects observed in the data 
(Brennan, 1992a). One can also explicitly write 

out the elements in C and 2â  as follows. 
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The mean squares vector 2â , in the above, can be estimated by dividing the set of “sum of squared means” 
by their corresponding degrees of freedom (Brennan, 1992a, p. 36). We represented such computations using 
Equation (3), whose elements are explicitly shown in Equation (4). 
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The elements of the D matrix in equations (3) and 
(4) are the sample sizes (np, ni, nr) involved in the 
seven variance components of the two faceted 
crossed design. The “sum of squared mean” 
denoted fT  is computed for each facet and for the 

grand mean, such that 1[ ,..., ] 'fT T=t . The 
rightmost side of equations (3) and (4), t , can be 
computed by summing individual scores, taking 
the average, squaring the mean, and multiplying 
the squared mean by the number of levels in the 
facet(s) other than the facet for which the sum of 
squared mean is computed. See equation (5). 
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Conceptual Framework of the Chiu-Fecso G-
Method 

One limitation of the traditional method is 
that it assumes that every person carries the same 
weight in an analysis. This assumption is often 
violated in sample surveys where persons typically 
receives a different weight as a result of complex 
sampling and valid response adjustments 
discussed earlier (See Basic Concepts of G Theory 
and Weighting). The Chiu-Fecso method enables 
such a weight (a composite weight supplied to 
analysts by survey developers and statisticians) to 
be incorporated in generalizability studies. See 
Equation (5) for the “sum of squared mean” shown 
in the t  vector. Prior to a thorough treatment in 
computing the weighed sum of squared means, we 
introduced three fundamental principles used in 
the Chiu-Fecso G-method. 
 

Multiplication Principle  
The summations in Equation (5) simply 

add up individual scores, assuming that each score 
occurs once in the data. For example, the total of a 
set of scores {2, 1, 3, 4} is obtained by 1•2 + 1•1 
+ 1•3 + 1•4 = 10. This approach, assuming that 
each score received a unit weight, is used in the 
traditional framework of G theory (Brennan, 
1992a, 1992b), discussed in the previous section. 
The Chiu-Fecso approach relaxed such assumption 
by allowing each score to have a different weight. 
This difference is critical when incorporating 
survey weights for computing the “sum of squared 
means” because the idea of using survey weights 
is equivalent to replicating an observed value by 
the number of times specified in the weights. 
Rosenbaum (1987) called such weighting 
approach “direct adjustment.” He pointed out that 
direct adjustment has two attractive properties: (a) 
it does not require explicit modeling of the 
stratification in the sampling design and (b) it 
produces parallel adjustments in the original 
statistical procedures so that only little 
modifications are needed in adapting the original 
procedures. Consistent with Rosenbaum (1987), 
Lee, Forthofer, and Lorimor (1989) advocated the 
use of weights, which they called the weights 
“expansion weights,” to compute unbiased 
estimates for means and sums. However, they did 
not develop a method for variance components. 
This limitation motivates the current study. To 
begin, we review the expansion weights. First, 
assume that the first two scores {2, 1} in the 
previous example came from a minority group, 
and each received a composite weight of 49. 
Further assume that the last two scores came from 
a majority group and thus received a unit 
composite weight. The total became 49•2 + 49•1 
+ 1•3 + 1•4 = 154. In the following two sections, 
we modified the “expansion weight” to obtain the 
adjusted degrees of freedom (using the Adjustment 
Principle) and the weighted mean (using the 
Relative Weighting Principle). These two 
quantities serve as the building blocks for the 
weighted variance components discussed in the 
subsequent section (Computational Equation of 
the Chiu-Fecso Method). 
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Adjustment Principle  
 The goal of inferential statistics is to 
determine the extent to which we can infer the 
results from a sample to a target population. A 
crit ical factor in making correct inferences is to 
determine the correct degrees of freedom 
reflecting the sample size. In the previous 
example, a sample size of 4 was collected and 
each person received a weight assigned by survey 
developers, statisticians, or policy makers. As 
shown earlier, if we were to apply the 
multiplication principle directly, we would obtain 
a total of 154 (49•2 + 49•1 + 1•3 + 1•4 = 154). 
However, this approach is problematic because it 
assumes that a sample of 100 was collected 
(49+49+1+1). Put differently, this approach 
erroneously expanded the degrees of freedom. To 
correct for this problem, we use an adjustment 
principle so that the weights reflect the actual 
sample size (n = 4) and also the correct degrees of 
freedom. Such adjustment is accomplished 
through dividing each weight in the vector of 
weight w = [49  49  1  1] by the mean of the 
weights (Σwp/n). After the adjustment, the 
“adjusted expansion weights” became w / (Σ wp / 
n)  = [49  49  1  1] / 25 = [1.96  1.96  0.04  0.04]. 
Note that the total of the adjusted expansion 
weights matches the sample size (n = 4) and the 
ratio between the first and third cases remains 49 
to 1. In general, the ratios among all the cases 
remain unchanged. 
 
Relative Weighting Principle  

One way to obtain the weighted mean for a 
set of values is to add up all the weighted scores in a 
set and then divided the total by the total weight or 
the number of scores in the set, (Σwx/Σw). An 
alternative is to multiply each unique value of a set 
of scores by its relative frequency and then add up 
the products (i.e., Σf(x)•x). For instance, the 
weighted average of the previous example is 0.49•2 
+ 0.49•1 + 0.01•3 + 0.01•4 = 1.54, where 0.49 was 
obtained by dividing the sampling weight for the 
first case by the total weight of the four cases (i.e., 
49 / 100). Hereafter we referred to f(x) as the relative 
frequency. 

With the multiplication principle, the 
adjustment principle, and the relative weighting 
principle, we have computed the adjusted total, 
adjusted degrees of freedom, and adjusted means 

in the above sections. Next we introduce the CFG 
method to analytically compute the weighted 
variance component estimates. 
 
Computational Equation of the Chiu-Fecso 
Method 

An assumption and three steps are 
involved in our modification of the G theory. We 
assume that a set of composite weights is given 
and stored in a row vector w. With this set of 
weights, we first compute the adjusted expansion 
weights (using the adjustment principle). Second, 
we compute the relative weights based on the 
adjusted expansion weights (using the relative 
weighting principle). Third, we apply two decision 
rules to determine when and how to use the two 
sets of weights obtained in steps 1 and 2. 
 
Step 1: Compute Adjusted Expansion Weights  

 
In general, a row vector of the 
adjusted expansion weights (wp) is 
obtained by dividing each of the 
weights in w by the mean of all 
the weights. That is, wp = [w1  w2  

w3 … wp] / (Σw/n). 
 
Step 2: Compute Relative Weights 
 

The relative weights, denoted 
wf(p), are obtained by dividing 
each of the adjusted expansion 
weights above by the sum of these 
weights. That is, wf(p) = [ wp1  w p2  

wp3
 … w pp

] / (Σwp). Since the sum 
of all the adjusted expansion 
weight equals to the sample size, 
an alternative is: wf(p) = [ wp1  w p2  

w p3
 … w pp

] / n. 
 
Step 3: Apply Decision Rules 
 

Rule #1: When finding the 
weighted sum in a facet of 
interest, we pre-multiply the 
adjusted expansion weighting 
vector ( pw , a row vector) to a set 
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of scores (s , a column vector), 
resulting in pw • s .  
Rule #2:  When finding the 
weighted average score in the 
facet of interest, we pre-multiply 
the vector of relative weights to 
the column vector of scores (i.e., 
wf(p) • s).  

 
How do we apply the two decision rules to the 
theory of generalizability? We replace all 

p
∑ in 

Equation (5) with 
p
∑wp when the facet of interest 

involves the weighting facet (in this case, the 
Object of Measurement, person); otherwise, we 
replace 

p
∑  in Equation (5) with 

p
∑wf(p). For 

example, the first entry in t of Equation (5) is the 
Object of Measurement (p), which is also the 
weighting facet, so we insert wp to 

p
∑, resulting 

p
∑wp. In the second entry of t of Equation (5), the 

facet of interest involves item (i) and does not 
involve the weighting facet (p), so we replace 

p
∑ 

with 
p
∑wf(p). By the same token, we apply the same 

rule to the remaining entries in t of Equation (5). 
Consequently, we have Equation (6). We 
highlighted wp in circle and w f(p) in square to show 
where to insert the weights. 
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  (6) 

 
where  wp  is the adjusted expansion weight for 
person p and wf(p) is the relative weight for person 
p. 

With the updated “sum of mean scores” in 
Equation (6), we obtained the weighted variance 
component estimates using the following steps. 
First, compute the weighted “sum of mean scores” 
vector ( ( )wt ) as shown in Equation (6). Second, 

substitute ( )wt  back to Equation (4) to obtain the 
updated Mean Squares 2 ( )ˆ[ ] wa , which in turn is 
substituted back to equation (2) to obtain weighted 
variance component estimates 2 ( )ˆ[ ] ws . In 
summary, we estimate the weighted variance 
component estimates using: 
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( )

8x17x 87x 1 7x 7

( )2ˆ
w

w 
  =
  

ts C D  (7) 

 
The standard error of the weighted 

variance components can be obtained by 

substituting the weighted means squares ( )w
jMS , 

their coefficients jc , and degrees of freedom jdf  
into Equation (8). Brennan (1992a) and Chiu 
(1999a) provided an in-depth discussion for the 
unweighted standard error equations. Chiu (2001, 
p. 127, Equations 34 through 40) expressed the 
standard errors in terms of variance components 
and the number of levels in each facet. Brennan 
(1992a, p. 101, equation 6.2.1) provided the 
general form of the equation. We modified the 
general equation to incorporate the composite 
weights as follows: 

 
( ) 2

( )2 2( )
[SE( )]ˆ

2

w
j jw

f j
j

c MS
df

σ =
+∑  (8) 

 
 One cautious note to Equation (8) is the 
distinction between the subscripts f and j. The 
former denotes the f th  variance component and the 
latter denotes the j th  Mean Square term for the f th 
variance component. As shown in Equation (2), 
each variance component estimate involves a 
different number of Mean Square terms and for 
this reason, J, the total number of mean square 
terms varies for each variance component 
estimate. For simplicity and consistency with the 
G theory literature, we use a single subscript 
notation j as opposed to the double subscript 
notation j f, although they are interchangeable in 
this context.  
 

Results 
 
Validation of the Weighted Method 

Being able to incorporate weights in 
generalizability studies are particularly important 
when the weights differ greatly among the 
samples. We used a published data set with 10 
hypothetical cases and purposely assigned highly 
disproportionate weights to the data set (one case 
received a weight of 10 while the rest received a 
unit weight). As a result, the ratio of the weighted 

and unweighted variance component estimates 
was between 0.3459 and 2.9865, for the seven 
components, indicating that the weighted estimates 
could be almost three times larger or three times 
lower than the unweighted estimates (See 
Appendix B). Such a result reminds researchers 
that weighted estimates could be different from 
their unweighted counterparts when extreme 
values appear in the weights. The extent to which 
the two types of estimates would become 
drastically different depends on the weighting 
scheme provided in the survey.  

We purposely chose an extreme example 
to contrast the weighted and unweighted results. 
Such an example is realistic because when 
applying a two-facet model where test items or 
tasks are involved, researchers may desire to 
explore the effect of assigning a much larger 
weight to one important item — a 300 word essay 
requiring 45 minutes of testing time may be 
weighted as much as 10 times more than a 
multiple-choice question requiring lower than two 
minutes of testing time. 
 The aforementioned example (discussed 
fully in Appendix B) also served as a benchmark 
comparison between the Chiu-Fecso method and 
the traditional unweighted method (Brennan, 
1992a). Appendix B shows that the unweighted 
method was a special case of the weighted method 
because when the weights were set to unity, the 
CFG method yielded identical variance component 
estimates to the traditional method.  
 
Example 1: Performance Assessment 

Performance assessment has been popular 
in the recent decades (Bejar and Braun, 1999; 
Bennett and Sebrechts, 1996; Braun, Bennett, 
Frye, and Soloway, 1990; Brennan, 2000b; Chiu, 
2001; Clauser, 2000). Many educational and 
professional testing programs employ constructed-
response items to assess performance (e.g. the 
National Assessment of Educational Progress, the 
Texas Assessments of Academic Skills, and the 
United States Medical Licensing Examination). 
Generalizability analysis is one of the popular 
techniques to examine the quality of test scores 
and it can provide guidance regarding the potential 
to reduce measurement error (Brennan, 2000b; 
Clauser, 2000). Of the many models in G theory, 
the two-facet crossed model (Brennan, 2000; Chiu, 
2001) is frequently used. Utilizing a two-faceted 
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model, the following hypothetical data set (3 items 
x 2 raters) demonstrates the computational 
procedures of the Chiu-Fecso method. As shown 
in the data matrix X, each of the four persons has 
six scores arranged in a row. Columns one through 
three represent the scores on the three items 
judged by the first rater; Columns four through six 
represent the scores on the same three items 
judged by the second rater. The gap between the 
third and forth columns is intended to visually 
separate the scores for the two raters.  

 

X = 

1 1 1    0 0 0
1 1 1    1 0 1
1 0 0 0 1 1
0 0 0 0 0 1

 
 
 
 
 
 

 (9) 

 
Assume that a final survey weight is derived by 
survey developers and it is the only weighting 
information available in the data given to the 
analyst. Further assume that the weights for the 
four persons are stored in a row vector [2 3 4 1] 
which is given to the analyst. We then obtained the 
adjusted expansion weights and relative weights as 
follows.  
 
wp = [0.8  1.2  1.6  0.4] = [2 3 4 1] / ( (2 + 3 + 4 
+1) / 4 ) and 
 
wf(p) = [0.2  0.3  0.4  0.1] = [0.8  1.2  1.6  0.4] /  
((0.8 + 1.2 + 1.6 + 0.4) ). 
 

With the wp and wf(p) computed, we used 
Equation (6) to obtain ( )wt  as shown below (see 
Appendix A for the step-by-step illustrations). 
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      4 x 1.7500

          12.4000
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 (10) 

 
 
 

By using n p = 4, n j = 3, and n r = 2, and 
equation (4), we post-multiplied ( )wt  to D . The 
product became the weighted mean square vector 

2 ( )[ ] wa . See equation (11) 
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 (11) 

 
 Next, we post-multiplied the mean square 
vector 2 ( )[ ] wa to the C  matrix to obtain the 
variance component estimates. See equation (12). 
Note that negative variance component estimates 
occurred in the hypothetical example because we 
used a randomly generated hypothetical data set, 
which had only a small sample (np = 4). Also, for 
simplicity, no distribution assumptions were 
specified in generating the data. In practice, one 
may not obtain negative estimates. Cronbach et. al. 
(1972) and Brennan (1992a) discussed the causes 
of negative variance components and developed 
methods to avoid negative variance component 
estimates. Those methods include Algorithm 2 
(Brennan, 1992a) and Bayesian procedures (see 
Box and Tiao, 1973; Searle, et al., 1992). 
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Example 2: Large-Scale Survey Analysis 

A panel sample of 2388 Engineers was 
obtained from a longitudinal survey for doctorate 
recipients. The survey was administered 
biennially. All survey respondents in the selected 
sample (a) were under the age 76, in 1999; (b) 
received at least one research doctorate in Science 
or Engineering from a U.S. institution in or prior 
to 1990; (c) were residing in the States on April 15 
in four survey years analyzed in the current study 
(1993, 95, 97, and 99); and (d) were employed in 
the Engineering profession for at least one of the 
four aforementioned survey years. The panel of 
2388 Engineers represented a population of 
approximately 50832 Engineers in the U.S. 
Engineers were broadly defined as those employed 
in professions such as Aerospace Engineering, 
Chemical Engineering, Civil and Architectural 
Engineering, Electrical, Electronic, Computer and 
Communications Engineering, Industrial 
Engineering, Mechanical Engineering, 
Postsecondary Engineering Teaching, and other 
Engineering fields. Using their age in 1999, the 

2388 Engineers with Ph.D degrees can be divided 
into the following age groups.  

 
Age 

Groups 
Below 

30 35-39 40-44 45-49 50-54 

Sample 
Size 

3 202 439 400 440 

      
Age 

Groups 
55-59 60-64 65-69 

Above 
70 

 

Sample 
Size 

392 256 140 116  

 
Respondents were given a list of 126 job 

codes and were asked to choose the most 
appropriate title for their principal jobs (i.e., self-
reported job codes). In addition, the respondents 
also reported their employment history and 
background information (e.g., sector of 
employment, work activities, number of people 
supervised directly). Such information was used to 
derive a second measure of occupational title, 
which was called the “best codes” of occupational 
titles. The best codes were derived using 
employment history, job activities, and such. 
Comprehensive discussions of the best coding 
process can be found in Hardy and Eisenhower 
(1994), McGuinness (1997), Rak, Chen, and Gray 
(1997).  

Due to complex sampling and adjustment 
of nonresponse rate, respondents were selected 
with a different probability and thus a weighting 
scheme was used to ensure the representativeness 
of the sample. The average weight for Engineers 
was 21.29 (SD = 9.71; median = 22.98; minimum 
= 1.05; maximum = 46.72).  

We conducted a generalizability study 
with a crossed design (G study, Brennan, 1992a; 
1992b) to measure occupational changes. 
Specifically, we employed the p x y x m design 
(person x year x method) in which all survey 
respondents (p) provided their occupational title in  
all four survey years (y). Whether or not one was 
classified as an Engineer was determined by two 
methods (m), namely the best and self coded 
methods. The universe of admissible observations 
(UAO, Brennan, 1992a), therefore, contains 
50,832 doctorate recipients who were ever 
employed in the Engineering profession between 
1993 and 1999. For any particular survey year, an 
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Engineer received a value 1 if s/he was employed 
in Engineering and a 0 otherwise. The 
generalizability analysis allowed one to determine 
the extent to which (1) the professionals were 
employed the same number of years in 
Engineering; (2) the Engineering occupation 
employed a similar number of Ph.D.s across the 
survey years; (3) survey respondents reported their 
occupations as consistently as the objectively 
derived occupation; and (4) the interactions of 
these three factors. 

Similar to Example 1, we estimated seven 
variance components (p, y, m, py, pm, ym, pym,e). 
Table 1 shows the estimates for the seven variance 
components and their corresponding standard 
errors. Both the weighted and unweighted methods 
yielded very similar results in the point estimate 
and the standard error of the variance components. 
For example, the ratio between the unweighted 
and weighted standard errors of the person effects 
was close to one because 0.00299 / 0.00296 = 

1.0102 (i.e., 
2 2( )ˆ ˆ w

p p
SE SEσ σ   

    ). 

 
 
 Table 1: Comparisons of Variance Component Estimates (Weighted VS Unweighted) 

 2ˆ pσ  2ˆ yσ  2ˆ mσ  2ˆ pyσ  2ˆ pmσ  2ˆ ymσ  2
,ˆ pymeσ  

 person year method 

 
person by 

year 
 

person by 
method 

year by 
method 

person by 
year by 
method, 

other 
errors 

Weighted 0.0675 0.0002 0.0008 0.0980 0.0047 0.0009 0.0477 

Unweighted 0.0690 0.0002 0.0007 0.0969 0.0047 0.0008 0.0471 

Ratio 1.0217 0.8984 0.9077 0.9888 0.9970 0.8485 0.9868 

        

Weighted SE 0.0030 0.0006 0.0009 0.0021 0.0005 0.0006 0.0008 

Unweighted SE 0.0030 0.0005 0.0008 0.0021 0.0005 0.0005 0.0008 

Ratio 1.0102 0.8711 0.8940 0.9884 0.9893 0.8514 0.9868 

Note: “Ratio” is the ratio of the unweighted estimates to the weighted estimates. The ratios 
were computed before the estimates were rounded to four decimal places. 

 
Table 2 shows the percent contribution for 

each of the variance component estimates. The 

largest component was 2ˆ pyσ  (0.098), which 
contributed to approximately 44.6% of the total 
variance in measuring occupationa l changes. Such 
results suggested that one can differentiate those 
who worked in the Engineering occupations for 
the same number of year by their job-switching 
patterns, where a job-switching pattern is 
characterized by the survey years in which a Ph.D. 
was employed in the Engineering profession as 
well as the years the doctorate was employed in 
other non-Engineering occupations (we summarize 
job switching patterns below and Chiu and Fecso, 

under review, offer an in-depth discussion). For 
example, two Ph.Ds. can be considered to have a 
different job-switching pattern even though they 
were both employed in an Engineering occupation 
for only one of the four survey years — 
hypothetically speaking, person A could work in 
an Engineering profession in 1993 but in a non-
engineering profession in the subsequent years 
(the occupation pattern for person A would be [0 0 
0 1], where the first, second, third, and fourth 
entries are binary variables for an Engineering 
employment in 1999, 1997, 1995, and 1993, 
respectively); person B could work in an non-
engineering profession prior to becoming an 
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Engineer in 1999 (person B would have an 
occupation pattern [1 0 0 0]). Indeed, among the 
487 doctorate recipients employed in Engineering 
for only one of the four survey years, 212 were 
employed in an Engineering occupation in only 
1993; 90 were in only 1995; 61 were in only 1997; 
and 124 were in only 1999. The aforementioned 
differential job-switching pattern explained the 

relatively large 2ˆ pyσ . 
 
Table 2: Comparisons of Variance Component 
Estimates Weighted VS Unweighted (Percent  
Contribution) 

 2ˆ pσ  
2ˆ yσ  

2ˆ mσ  2ˆ pyσ  

Weighted 30.7% 0.1% 0.4% 44.6% 
Unweighted 31.4% 0.1% 0.3% 44.2% 

     

 2ˆ pmσ  
2ˆ ymσ  

2
,ˆ pymeσ   

Weighted 2.1% 0.4% 21.7%  
Unweighted 2.1% 0.4% 21.5%  

 
The second large variance component 

estimate was 2ˆ pσ , which indicated that, on average 
across all survey years and measurement methods, 
some Engineers had been employed in the 
profession for a longer duration than the others 
and the difference in duration accounted for 
approximately one third (30%) of the total job 
change variation. 

Comparing the number of professionals 
employed in Engineering in different years can 
shed light in the stability of the occupation –– 
having a similar number of Engineers across 
different years can provide some evidence of 
stability whereas having a drastically different 
number of Engineers can provide some evidence 

of instability. The result that 2ˆ yσ  accounted for 
only 0.1% of variation of the total job change 
suggested that the profession employed a similar 
number of Engineers in the survey years.  

Like 2ˆ yσ , the 2ˆ mσ  accounted for only a 
small portion of total job change variation (0.4%) 
suggesting the objectively derived (best coding 
practice) and self-reported methods were relatively 
consistent in coding the Engineering profession. 
Resembling the 2ˆ yσ  and the 2ˆ mσ ,  the 2ˆ ymσ  was 

relatively small suggesting that the two 
measurement methods were implemented 
consistently across the survey years.  

The variance component estimate 2ˆ pmσ , 
however, contributed to a larger share (2.1%) of 

the total variation than 2ˆ yσ  and 2ˆ mσ . One can 

interpret 2ˆ pmσ as an interaction between the 
variations due to person and method. It showed 
that the two occupational-determining methods 
were slightly more consistent for some survey 
respondents than the others but such differential 
consistency was rela tively small comparing to the 
other sources of variation.  

The person-by-year-by-method with any 
systematic and unsystematic variability 2

,ˆ pymeσ  
accounted for 21.7% of the total variation, 
suggesting that about one fifth of the job change 
variability in Engineering was due to: (a) the 
observation that Engineers changed jobs 
differentially in different survey years and the 
extent to which such a differential change 
occurred depends on which method was used to 
measure occupational titles; (b) any systematic 
variability such as the possibility that Engineers in 
some geographical regions were more mobile; 
and/ or (c) any unsystematic variability that was 
not measured. 

 
Conclusion 

 
The goal of incorporating sampling or survey 
weights into the framework of generalizability is 
to ensure that variance component are correctly 
estimated. The Chiu-Fecso method is designed for 
this purpose. In practice, the CFG method can be 
applied to educational assessment, psychological 
measurement, professional testing, and survey 
research where generalizability studies are called 
for to examine desirable variations and undesirable 
variations (measurement errors). Regardless of its 
dependence on sampling, the traditional G Theory 
framework assumes that simple random sampling 
is used. Indeed, national surveys and large-scale 
assessment programs use a variety of 
disproportional sampling techniques to ensure 
sample representations and account for non-
responses. To this end a composite weight (final 
survey weight) is provided to analysts. Given that 
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the composite weight is frequently the only 
weighting information available to analysts, the 
current study extended the capacity of the G 
theory so that it can allow weights to be used. 
 In this article, we first introduced three 
principles in deriving the weighting method by 
showing how to estimate means and sums 
correctly. We then used the same principles to 
illustrate how to estimate variance components. 
Rules and step-by-step procedures were discussed. 
We validated the method using a published data 
set. The validation study suggested that weighted 
and unweighted variance component estimates can 
differ drastically if some cases receive a weight 
differ drastically from the others. Also, we showed 
that the traditional generalizability analysis is a 
special case of the weighted generalizability 
analysis. Two examples were provided to illustrate 
the applications of the weighting method in 
performance assessment and survey analysis. The 
weighted and unweighted variance component 
estimates of a large-scale operational data set 
yielded very similar conclusions.  
 Although the object of measurement, 
person, was the weighting facet in the two 
examples, this is not necessary to be the case. In 
practice, the weighting facet can be any facet in a 
crossed-two-faceted design (the main effect facets 
or the interaction effect facets). For instance, in 
standardized psychological or educational testing 
programs, researchers may desire to designate the 
item facet to be the weighting facet. This can be 
useful in examining the reliability of test scores 
when examinees do not respond to all items within 
the standard time. In the event that speededness 
happens, researchers can assign a lower weight to 
“not reached” items (those presented in the end of 
the test) than items presented in the beginning. 
Reese (1999) found that the true ability of low 
performing examinees is overestimated and that of 
high performing examinees is underestimated, 
when items are “locally dependent” or not reached 
by examinees (e.g., due to fatigue). The CFG 
method discussed in the current paper can be used 
to assign lower weights to not reached or locally 
dependent items. Future research can further 
investigate the extent to which different weights 
will change the reliability of test scores. Due to the 
page limits, it is not our intention to examine this 
topic in the current study. 

 Sometimes researchers are interested in 
assigning weights to multiple facets. For example, 
in educational assessment, one might be interested 
in oversampling minority students from the target 
population (i.e., weighting is used to adjust for the 
design effect). The weights to oversample 
minority students can be incorporated into a G 
study by assigning them to the facet related to 
persons (i.e., the object of measurement, Brennan, 
1992a). In addition to assigning weights to the 
object of measurement, one can also weight the 
person-by-item facet. This can allow items to be 
weighted differently for individual students. Such 
an adaptive weighting mechanism can enable 
psychometricians to take into consideration the 
“opportunity to learn” when deciding the 
importance of an item on the test score. For 
example, one might assign a lower weight to an 
item when it is responded by a student whose 
school does not emphasize the learning objective 
of the item than when it is responded by another 
student who came from a school with a strong 
emphasis on the same item. 
 Similarly, in survey analysis, statisticians 
may desire to assign one set of weights to the 
sample of respondents and a completely different 
set of weights to the measurement methods. By 
doing so, survey statisticians could put a stronger 
emphasis on one measurement method (e.g., 
objective method) than the other (e.g., self-
reported method) in evaluating quality of survey 
data. The aforementioned goal can be 
accomplished by developing a method to 
incorporate weighting schemes into multiple facets 
of a generalizability study (e.g., person and 
person-by-item). Future pursuit in developing a 
multifacet weighting scheme can apply the three 
principles discussed in the current study. 
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Appendix A: Derivations and Computational Examples for the Sum of Mean Scores used in Example One 
 
Matrix notations were adopted from Scott (1997). 

- diag is the operator to create a diagonal matrix. 
 

- ⊗  is the Kronecker product operator, which multiplies the entire matrix in the right side of the 
operator to every element in the matrix to the left of the Kronecker operator. If A is an m x n 
matrix and B is a p x q matrix, then the Kronecker product of A and B, denoted A⊗ B , is the mp 
x nq matrix. 

 

11 12 1

21 22 2

1 2

. . .

. . .
. . . . . .
. . . . . .
. . . . . .

. . .

n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
 
 
 
  

B B B

B B B

B B B

 

-    We defined w and wf(p) as row vectors. They are equivalent to the traditional matrix notation 
(Scott, 1997), which would define the two row vectors as transposes (i.e.,  wT and wT

f(p)). 
 

- e , the Hadamard operator, is the elementwise multiplication operator for two matrices. The 
traditional Hadamard operator e  requires that two quantities to be expressed separately in the 
left and in the right sides of the operator. This becomes cumbersome when the two quantities are 
identical, because one would have to repeat a quantity twice. For example, to perform an 
elementwise multiplication of f(p)

x x1
( (1/ ))

r r i
i

n n n
n• • ⊗ •w X I 1 to itself, one would write: 

f(p)
x x1

( (1/ ))
r r i

i
n n n

n• • ⊗ •w X I 1 e f(p)
x x1

( (1/ ))
r r i

i
n n n

n• • ⊗ •w X I 1 . To save space, we defined a 

parsimonious version of the Hadamard operator, to represent an elementwise power 
multiplication. For example, X  e 2 indicates that the elements in X were raised to the second 
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power. Using the new operator, the aforementioned cumbersome notation can be simplified as 
follows. f(p)

x x1
( (1/ ))

r r i
i

n n n
n• • ⊗ •w X I 1 e 2. In summary, X  e 2 = Xe X. 

 
- In each of the following equations, the first line shows the summation notation of the sums of 

squared means and the second line shows the matrix notation of the same quantity.  
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x x 1

1 0
1 0

1
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0 1 0 1

1
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    ⊗ = ⊗ =            
 
  

I   (34) 

By substituting (21) through (34) into the corresponding elements in (13) through (20), following results are 
obtained and used to compute the weighted sum of squared mean shown in (10). 
 

p..
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p
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Appendix B: A Comparison between the Traditional Unweighted and the Chiu-
Fecso Weighted Methods. 
  Unweighted VC Unweighted VC Weighted VC Ratio: 

 Brennan, 1992 Chiu-Fecso Chiu-Fecso Weighted VC / 

  
(p.38) Unit Weights Disproportionate 

Weights 
Unweighted VC 

 
    

P 0.5528 0.5528 0.9634 1.7428 
I 0.4417 0.4417 0.5656 1.2805 
R 0.0074 0.0074 0.0221 2.9865 
Pi 0.575 0.575 0.4432 0.7708 
Pr 0.1009 0.1009 0.0349 0.3459 
Ir 0.1565 0.1565 0.0562 0.3591 
pir,e 0.9352 0.9352 0.5776 0.6176 
Notes: Unit weights:  w = [1 1 1 1 1   1 1 1 1 1] , Disproportionate weights:  
   w = [1 1 1 1 1   1 1 1 1 10]. Data source: Brennan (1992a, p.38). 
 
Appendix C: Weighted Variance Component Estimates by Age Group for Example Two.  

Age Group Below 
30 35-39 40-44 45-49 50-54 55-59 60-64 65-69 Above 

70 

          
 

Variance Component Estimates      

p  0.1667 0.055 0.0658 0.0753 0.0732 0.0661 0.0677 0.0561 0.0398 
y  0 0.001 0.0002 0 0 0 0 0.0157 0.0203 
m  0 0.0003 0.0003 0.0007 0.0008 0.0013 0.0015 0.0002 0.0002 
py  0.0833 0.0848 0.0805 0.0943 0.0865 0.0973 0.0972 0.1314 0.1528 
pm  0 0.0022 0.0029 0.0029 0.0064 0.0076 0.0067 0.001 0.0056 
ym  0 0.0002 0.0001 0.0006 0.0011 0.0013 0.0015 0.001 0.0025 
pym,e  0 0.0332 0.044 0.0509 0.0525 0.0523 0.0475 0.0425 0.0348 
 p: person, y: year, m: method; py = person by year; pm: person by method, 

ym: year by method, pym,e: person by year by method and other errors. 
 

Percent Contribution       

Age Group Below 
30 35-39 40-44 45-49 50-54 55-59 60-64 65-69 Above 

70 
p  66.7% 31.1% 34.0% 33.5% 33.2% 29.3% 30.5% 22.6% 15.5% 
y  0.0% 0.6% 0.1% 0.0% 0.0% 0.0% 0.0% 6.3% 7.9% 
m  0.0% 0.1% 0.2% 0.3% 0.4% 0.6% 0.7% 0.1% 0.1% 
py  33.3% 48.0% 41.5% 42.0% 39.2% 43.1% 43.8% 53.0% 59.7% 
pm  0.0% 1.3% 1.5% 1.3% 2.9% 3.4% 3.0% 0.4% 2.2% 
ym  0.0% 0.1% 0.0% 0.3% 0.5% 0.6% 0.7% 0.4% 1.0% 
pym,e  0.0% 18.8% 22.7% 22.6% 23.8% 23.2% 21.4% 17.1% 13.6% 

Sample Size 3 202 439 400 440 392 256 140 116 
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A Different Future For Social And Behavioral Science Research 
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The dissemination of intervention and treatment outcomes as effect sizes bounded by conf idence intervals in 
order to think meta-analytically was promoted in a recent article in Educational Researcher. I raise concerns 
with unfettered reporting of effect sizes, point out the con in confidence interval, and caution against thinking 
meta-analytically. Instead, cataloging effect sizes is recommended for sample size estimation and power 
analysis to improve social and behavioral science research. 
 
Key words: Effect size encyclopedia, bracketed interval, confidence interval, sample size, power 
 
 

Introduction 
 
Recently, an article appeared in Educational 
Researcher describing a possible future of social 
science research. It was one in which research 
results were reported in terms of effect sizes 
bounded by so-called confidence intervals. The 
notion of thinking meta-analytically was touted, 
and to that end, the publication of effect sizes was 
promoted (Thompson, 2002). 
 
Bracketed Intervals (BI) 
 I prefer the phrase “bracketed interval” 
(BI) instead of confidence interval, for reasons 
discussed below. The Frequentist perspective of 
the BI was described by Thompson (2002) as a 
95% degree of confidence that the interval 
contains the parameter in question. According to 
this view it would be inappropriate to say there is a 
95% probability that  :, the population mean,  is 
within the interval, but it would not be 
inappropriate to say there is a 95% level of 
confidence that :is in the interval. 
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 The first intervals of a statistical nature 
were developed by de Moivre between 1733 - 
1742, but they were not positioned for interval 
estimation. That feat was first accomplished by 
Lagrange in 1776. 
 De Moivre stated that the interval refers to 
“the probability that the value of [a parameter] is 
enclosed between the [upper and lower] limits” 
(cited by Hald, 1998, p. 23). Thus, in modern 
classification schemes, the original expression of 
bracketed intervals was from a Frequentist 
perspective. 
 Now, return to the term confidence. The 
general idea originated with Pytkowski (1932), but 
the first use of the phrase confidence interval and 
its theoretical development was by Neyman (1934, 
1937, 1939). He referred to 
 

determining certain intervals, 
which I propose to call the 
confidence intervals (see Note 1), 
in which we may assume are 
contained the values of the 
estimated characters of the 
population, the probability of an 
error in a statement of this sort 
being equal to or less than 1 - ,, 
where , is any number 0 < , < 1,  
chosen in advance. The number , 
I call the confidence coefficient. 
(1934, p. 562) 
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He opined that “the solution of the 
problem which I described as the problem of 
confidence intervals has been sought by the 
greatest minds since the work of Bayes 150 years 
ago” (Neyman, 1934, p. 563). However, because 
Jerzy Neyman, along with Egon Sharpe Pearson, 
originated the Frequentist version of modern 
statistics (Neyman & Pearson, 1928a, 1928b), his 
definition was purposefully not “Bayesian”, and 
instead followed the Frequentist paradigm. 
 The student of Bayes would demur, 
claiming it doesn’t make sense to ascribe the 95% 
moniker to : being found within the interval. The 
1-"% probability only pertains prior to the 
collection of data, whereas afterwards either the 
parameter falls within the interval or it doesn’t. 
 Instead, the Bayesian perspective is that 
the judicious usage of specific prior information 
regarding the estimate is the only meaningful way 
to obtain such a probability. Thompson (2002) 
characterized this as “a better definition” (p. 26). 
 The weakness of the Bayesian approach, 
(which Fisher, Neyman, Wald, and others 
rejected) is the reliance on subjective prior 
information. I cannot resolve the philosophical 
debate between the Frequentist and the Bayesian, 
but it is inappropriate to call either perspective 
“better”, as did (Thompson, 2002, p. 26). 
 Furthermore, the philosophical contro-
versy Thompson (2002) alluded to is not relevant 
in practical application. What is of importance is 
the role of interval estimation vs hypothesis tests. 
There has been a flurry of activity since the early 
1990s where the usage of hypothesis tests was 
taken to task, particularly within the American 
Educational Research Association (AERA) and 
other professional organizations. For example, 
Carver (1992) presented a paper to the AERA 
attempting to make a case against statistical 
significance testing, and recommended banning its 
usage altogether.  
 Amazingly and inexplicably, proponents 
of the case against hypothesis testing are also 
proponents of the usage of interval estimation. The 
root of their misconception is the misnomer 
confidence, as if bracketed intervals have a certain 
amount of confidence to them that hypothesis tests 
do not. There is no more confidence associated 
with an interval based on (1-")100%  than in a 
point null hypothesis based on ". 
 Thompson (2002) incorrectly construed 

my position in Educational Researcher, claiming I 
“erroneously equate CIs and statistical 
significance tests” (p. 29).  In an article with 
Thomas Knapp, I pointed out that the statistical 
criteria regarding the probabilities associated with 
bracketed intervals are the same as those for point 
null hypothesis tests, but certainly the two 
procedures cannot be equated. Regarding the 
equivalency of probabilities: (1) Is zero really not 
in the interval? (Type I error), (2) is zero really in 
the interval?  (Type II error), and (3) is the width of 
the interval at a minimum (comparative statistical 
power)? The probabilities associated with these 
criteria are exactly the same (Knapp & 
Sawilowsky, 2001). 
 These three points are congruent with a 
careful examination of Neyman (1934). He 
equated the boundaries of the interval with the 
probabilities of classical Fisherian “fiducial” limits 
of 21(x) and 22(x), which represent the lower and 
upper bound of the bracketed interval. With a 
passing reference to the famous debate in the 
literature on what Sir Ronald Fisher meant by 
fiducial, Neyman  (1934) did not dissociate the so-
called confidence of the bracketed interval from 
the probabilities used in its construction: 
 

Since the word “fiducial” has... 
caused misunderstandings I have 
already referred to, and which in 
reality cannot be distinguished 
from the ordinary concept of 
probability, I prefer to avoid the 
term and call the intervals [21(x), 
22(x)] the confidence intervals. (p. 
590) 

 
 Although Wald (1950) subsumed both 
hypothesis tests and interval estimation in a single 
model, and expressed them as specific cases of the 
general theory of statistical decision functions, that 
does not mean the two procedures are equivalent 
in every respect. After pointing out the 
probabilities associated with BIs and hypothesis 
tests are the same, I noted there is an advantage of 
BIs over point null hypothesis tests. It results in a 
range of possible values wherein the parameter 
might fall, whereas hypothesis tests do not. 
 This doesn’t appear to be the tremendous 
advantage that many proponents claim it to be. 
What added benefit is there in knowing, for 
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example, that the BI for a student’s Wechsler IQ 
was 97-103 from a educator’s perspective? 
Furthermore, in Knapp and Sawilowsky (2001), 
we mentioned specific data analysis situations 
where the BI would be preferred over the 
hypothesis test, as well as the reverse. 
 I also pointed out there are areas of 
concern in unbridled promotion of BIs (Knapp & 
Sawilowsky, 2001): (1) Some statistics are not 
amenable to the determination of standard errors, 
relying instead on theoretically interesting but 
practically questionable asymptotic variances 
(which are mathematical inventions pertaining to 
the world of infinite sample sizes). This may make 
the BI yield poorer statistical properties than point 
hypothesis testing. (2) There is the question of 
whether or not the interval should be symmetric 
about the sample statistic (Low, 1997). 
 (3) There is the problem of the effects of 
measurement error in constructing the interval 
(Nunnally, 1978). (4) Here, I add yet another 
concern: Bienaymé’s complaint in 1852 against 
using BIs based on a single parameter expressed as 
a continuum on a line. Instead, he proposed the 
concept of Bracketed Ellipsoids, where 
simultaneous regions are constructed taking into 
account multiple parameters. For example, two 
parameters result in an ellipsoid continuum on a 
Cartesian plane. 
 
Meta-Analysis  
 These issues regarding BIs apply to all 
statistics, including effect sizes. Thompson (2002) 
focused on effect sizes to provide fodder for meta-
analyses. This became necessary following Gene 
Glass’ presidential address on meta-analysis to the 
AERA in April of 1976, because modern meta-
analysis depends on the proliferation of effect 
sizes. 
 Thompson (2002) viewed effect sizes as 
the enabler in thinking meta-analytically. His 
exuberance with meta-analysis led him to 
recommend that effect sizes “can and should be 
reported and interpreted in all studies, regardless 
of whether or not statistical tests are reported” 
(Thompson, 1996, p. 29), and “even [for] non-
statistically significant effects” (Thompson, 1999, 
p. 67). The same argument had previously been 
made by Carver (1979, 1993). 
 However, Sawilowsky and Yoon (2001, 
2002) reported a brief Monte Carlo simulation 

demonstrating the trouble with reporting research 
findings via effect size in the absence of statistical 
significance. The practice will wreak havoc in the 
literature, as the Monte Carlo simulation 
demonstrated that an intervention of random 
numbers will produce typical effect sizes that are 
not near zero, but rather, are at a magnitude Cohen 
(1988) calls a small treatment effect. 
 Roberts and Henson (2002) purported to 
rebut these results. However, their study was not a 
Monte Carlo simulation of typical effect sizes 
produced under the truth of the null hypothesis. 
Instead, it was a Monte Carlo study of the bias in 
d, a topic irrelevant to the point being made. See 
the ensuing Invited Debate in this issue of the 
Journal of Modern Applied Statistical Methods. 
 There have been many articles published 
here and there by a variety of authors, including 
myself, that addressed specific methodological and 
substantive issues with meta-analyses. In addition, 
I have raised questions about thinking meta-
analytically (e.g., Knapp & Sawilowsky, 2001). 
Rather than reviewing that literature here, I find it 
more instructive to recite an excerpt from Glass’ 
(2000) most recent vision of research synthesis: 
 

In the twenty-five years between 
the first appearance of the word 
"meta-analysis" in print and today, 
there have been several attempts 
to modify the approach, or 
advance alternatives to it, or 
extend the method to reach 
auxiliary issues. If I may be so 
cruel, few of efforts have added 
much... If our efforts to research 
and improve education are to 
prosper, meta-analysis will have 
to be replaced by more useful and 
more accurate ways of 
synthesizing research findings. 

 
Sample Size Estimation and Power Analysis 
 The role of effect sizes in sample size 
determination and power analysis is an entirely 
different matter from that of meta-analysis. The 
first part of my professorial career could be 
summarized by the many consultations I had with 
students, teachers, faculty, and researchers outside 
of academe on the “how large should my sample 
be?” question. The bottleneck was obtaining an 
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estimate of the effect size, which is necessary to 
enter Cohen’s (1988) sample size and power 
tables. I was not alone; every colleague I discussed 
this matter with in the past twenty years has 
reported the same difficulty. 
  I wrestled with this problem for a decade. 
During that time I had a series of written and 
telephone conversations with, and initiated by, 
Jacob Cohen. He recognized the weaknesses in 
educated guessing (Cohen, 1988, p. 12) or using 
his rules of thumb for small, medium, and large 
effect sizes (p. 532). I suggested cataloging and 
cross-referencing effect size information for 
sample size estimation and power analysis as a 
more deliberate alternative. 
 Cohen expressed keen interest in this 
project. His support led to me to delivering a paper 
at the annual meeting of the AERA on the topic of 
a possible encyclopedia of effect sizes for 
education and psychology (Sawilowsky, 1996). 
The idea was to create something like the 
“physician’s desk reference”, but instead of 
medicines, the publication would be based on 
effect sizes. (I presented papers every year at 
AERA from 1985 - 2000, but this session had a 
higher attendance than most of them put together.) 
I doubt any of those listening to the presentation 
envisioned a future for quantitative social and 
behavioral science research with sample size 
estimation and power analysis forever relegated to 
prestidigitation. 
 Encouraged by colleagues, in 1999 and 
again in 2000, I submitted proposals to the U. S. 
Department of Education to fund a  print and 
electronic encyclopedia project. Thirty-five 
experts on effect sizes and meta-analysis wrote 
supportive letters (Table 1). A summit would be 
held with these experts, the most recent ten ye ars 
of ninety journals in education and psychology 
would be culled for effect sizes and cataloged, and 
an internet-based data-base would be created in 
which authors/journal editors could submit 
additions or updates. Alas, the proposals were not 
judged to be a funding priority. Subsequently, I 
had a series of e-mail and telephone conversations 
with Herbert Walberg on creating the 
encyclopedia sans funding, but the enormity of the 
project was prohibitive. 
 
 
 

Table 1. Supporters of the Encyclopedia of Effect 
Sizes Project: 
__________________________________________ 
William Asher, Purdue University 
Betsy Becker, Michigan State University 
John Behrens, Arizona State University 
Patricia Busk, University of San Francisco 
C. Mitchel Dayton, University of Maryland 
Robert Donmoyer, Ohio State University 
Susan Embretson, University of Kansas 
Gene Glass, Arizona State University 
Robert Grissom, San Francisco State University 
John Hunter*, Michigan State University 
Carl Huberty, University of Georgia 
Harvey Keselman, University of Manitoba 
John Kim, San Francisco State University 
Roger Kirk, Baylor University 
Thomas Knapp, Ohio State University 
Dennis Leitner, Southern Illinois University 
Joel Levin, University of Wisconsin-Madison 
Lisa Lix, Private Scholar 
Jorge Mendoza, University of Oklahoma 
Theodore Micceri, University of South Florida 
Isadore Newman, University of Akron 
Steve Olejnik, University of Georgia 
Liora Pedhazur-Schmelkin, Hofstra University 
Bob Rosenthal, University of California-Riverside 
Donald Rubin, Harvard University 
Frank Schmidt, University of Iowa 
Michael Seaman, University of South Carolina 
Ronald Serlin, University of Wisconsin-Madison 
Juliet Shaffer, University of California-Berkeley 
Bruce Thompson, Texas A&M University 
Howard Wainer, ETS 
Herbert Walberg, University of Illinois-Chicago 
Rand Wilcox, University of Southern California 
Joe Wisenbaker, University of Georgia 
Bruno Zumbo, University of N. British Columbia 
_________________________________________ 
Notes: *Deceased. Affiliations were accurate in 
1999-2000.  
 

Conclusion 
 
Sample size estimation and power analysis in 
every grant funded by the U. S. Department of 
Education and every article published in AERA 
journals are based on guessing or Cohen’s (1988) 
rules of thumb. Those practices could be 
discontinued in a different future of social and 
behavioral science research. Along with a re-
commitment to true experimental design 



SHLOMO S. SAWILOWSKY 132 

(Sawilowsky, 1999), a compendium of effect sizes 
could improve research design in education and 
psychology, and propel disciplined inquiry 
forward in a scientific fashion. 
 The encyclopedia could be a globally 
cooperative effort among professional organi-
zations and learned societies, their journal editors, 
and authors. It could be internet-based and updated 
in real-time, cross-referenced by discipline/sub-
discipline and independent variable, have effect 
size entries categorized by statistically significant 
studies at various " levels, and classified 
according to whether the journal was peer 
reviewed. Finally, entries should be categorized 
based on whether the effect size arose from a true 
experimental design vs. quasi-experimental, post 
hoc, survey, and other non-experimental designs. 
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Without Supporting Statistical Evidence, Where Would Reported 
Measures of Substantive Importance Lead? To No Good Effect 

 
               Anthony J. Onwuegbuzie                  Joel R. Levin 

                                           University of South Florida             University of Arizona 
 
 
 
Although estimating substantive importance (in the form of reporting effect sizes) has recently received 
widespread endorsement, its use has not been subjected to the same degree of scrutiny as has statistical 
hypothesis testing. As such, many researchers do not seem to be aware that certain of the same criticisms 
launched against the latter can also be aimed at the former. Our purpose here is to highlight major concerns 
about effect sizes and their estimation. In so doing, we argue that effect size measures per se are not the 
hoped-for panaceas for interpreting empirical research findings. Further, we contend that if effect sizes were 
the only basis for interpreting statistical data, social-science research would not be in any better position than 
it would if statistical hypothesis testing were the only basis. We recommend that hypothesis testing and 
effect-size estimation be used in tandem to establish a reported outcome’s believability and magnitude, 
respectively, with hypothesis testing (or some other inferential statistical procedure) retained as a 
“gatekeeper” for determining whether or not effect sizes should be interpreted. Other methods for addressing 
statistical and substantive significance are advocated, particularly confidence intervals and independent 
replications. 
 
Key words: Effect-size concerns, statistical inference, substantive importance 
 
 

Introduction 
 
Statistical hypothesis testing has been 
implemented to assess the believability, or non-
“chanceness” (Levin, 1998b; Levin & Robinson, 
1999), of research findings for more than 75 years, 
stemming from the seminal works of Fisher 
(1925/1941) and Neyman and Pearson (1928). 
Despite the widespread use of hypothesis testing 
during most of the last century through today, its 
practice has been controversial. Indeed, over the 
past few decades testing for statistical significance 
has come under close scrutiny. 
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Since 1950, for example, the number of 
articles published in the fields of education, 
psychology, ecology, and medicine criticizing 
hypothesis testing has been increasing at an 
exponential rate (Anderson, Burnham, & 
Thompson, 2000). Additionally: 

 
(a) professional journals (e.g., The Journal of 
Experimental Education and Research in the 
Schools) have devoted special theme issues to 
statistical hypothesis testing; and 
 
(b) symposia have been held at national annual 
meetings , such as the American Educational 
Research Association, the American Psychological 
Association, and the American Psychological 
Society. Even an edited book, What if there were 
no significance tests? (Harlow, Mulaik, & Steiger, 
1997), has been devoted exclusively to the topic. 
 
The Case Against Statistical Hypothesis Testing 
 Some of the staunchest critics of statistical 
hypothesis testing contend that this practice has 
been extremely harmful to scientific progress in 
the social sciences. For example, Meehl (1978, p. 
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817) stated that it “is a terrible mistake, a basically 
unsound, poor scientific strategy, and one of the 
worst things that ever happened in the history of 
psychology.” Rozeboom (1997) continued: 
 

Null-hypothesis significance 
testing is surely the most bone-
headedly misguided procedure 
ever institutionalized in the rote 
training of science students...[I]t is 
a sociology-of-science 
wonderment that this statistical 
practice has remained so 
unresponsive to criticism. (p. 335) 
 

Similarly, Tryon (1998) complained: 
 

[T]he fact that statistical experts 
and investigators publishing in the 
best journals cannot consistently 
interpret the results of these 
analyses is extremely disturbing. 
Seventy-two years of education 
have resulted in minuscule, if any, 
progress toward correcting this 
situation. It is difficult to estimate 
the handicap that widespread, 
incorrect, and intractable use of a 
primary data analytic method has 
on a scientific discipline, but the 
deleterious effects are 
undoubtedly substantial. (p. 796) 
 

Schmidt and Hunter (1997, p. 37) claimed that 
“[s]tatistical significance testing retards the growth 
of scientific knowledge; it never makes a positive 
contribution,” and Thompson (1992b, p. 436) 
added: “[Statistical significance testing] has 
created considerable damage as regards the 
cumulation of knowledge.” 
 As a result of the purported flaws that 
statistical hypothesis testing has been accused of, 
several researchers have recommended that it be 
banned completely (e.g., Bakan, 1966; Cahan, 
2000; Carver, 1978, 1993; Cohen, 1994; Guttman, 
1985; Loftus, 1996; Meehl, 1967, 1978; Nix & 
Barnette, 1998; Rozeboom, 1960; Schmidt, 1992; 
1996; Schmidt & Hunter, 1997). Although we: (a) 
agree that statistical hypothesis testing has been 
misused, and (b) concur with many of the 
criticisms of it that have been offered, it is quite a 

leap to charge that hypothesis testing by itself has 
stunted “the cumulation of knowledge” 
(Thompson, 1992b, p. 436), is “one of the worst 
things that ever happened in the history of 
psychology” (Meehl, 1978, p. 817), or “retards the 
growth of scientific knowledge... [and]... never 
makes a positive contribution” (Schmidt & 
Hunter, 1997, p. 37). 
 Furthermore, some of the assertions made 
in an attempt to invalidate the hypothesis-testing 
practice either have been accompanied by 
unsubstantiated claims or represent flawed logic. 
As noted by Krantz (1999): 
 

It is one thing to accuse scientists 
of showing their ignorance of 
statistical reasoning in the course 
of their science, but this does not 
imply that their ultimate 
conclusions will be incorrect, nor 
even that their efficiency in 
reaching correct conclusions will 
be impaired. A causal attribution 
of this sort needs to be supported 
by careful empirical arguments. 
(p. 1378) 
 

 The foregoing concerns aside, valid 
criticisms of statistical hypothesis testing have 
nonetheless been made. Fan (2001) provided a 
summary of some of these criticisms: 
 

Thompson (1993) discussed three 
relevant criticisms for (sic.) 
statistical significance testing: (a) 
overdependency on sample size, 
(b) some nonsensical 
comparisons, and (c) some 
inescapable dilemmas created by 
statistical significance testing 
(e.g., testing for assumption vs. 
testing for the research 
hypothesis). In a similar vein, 
Kirk (1996) discussed three major 
criticisms of statistical 
significance testing: (a) 
Significance testing does not tell 
researchers what they want to 
know, but rather, it creates the 
illusion of probabilistic proof by 
contradiction (Falk & Greenbaum, 
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1995). (b) Statistical signif icance 
testing is often a trivial exercise 
because it simply indicates the 
power of the design (which 
primarily depends on the sample 
size) to reject the false null 
hypothesis. (c) Significance 
testing “turns a continuum of 
uncertainty into a dichotomous 
reject-do-not-reject decision,” and 
this dichotomous decision process 
may “lead to the anomalous 
situation in which two researchers 
obtain identical treatment effects 
but draw different conclusions” 
(Kirk, p. 748) because of the 
slight differences in their design 
(e.g., sample sizes). (p. 276) 
 

 Because of these and other concerns, 
many researchers have called for the reporting of 
measures of practical significance (or substantive 
importance, as reflected by effect size or strength 
of relationship indices), either in addition to or 
instead of testing for statistical significance. 
Indeed, the most recent edition of the influential 
Publication Manual of the American 
Psychological Association (2001) states: 
 

The general principle to be 
followed...is to provide the reader 
not only with information about 
statistical significance but also 
with enough information to assess 
the magnitude of the observed 
effect or relationship. (p. 26) 
 

Certain anti-hypothesis-testers (e.g., Carver, 1993) 
even go so far as to endorse effect-size estimates 
as replacements for statistical significance testing 
– that is, they contend that effect sizes are all that 
are needed to make inferences about empirical 
research outcomes. As is argued throughout the 
remainder of this manuscript, however, we believe 
that such practice would only lead to no good 
effect! 
 Debates about the value and warrants of 
statistical hypothesis testing can be traced back to 
Boring (1919) and Berkson (1938, 1942). Over the 
last decade, many researchers have seemingly 
jumped on the effect-size bandwagon without 

scrutinizing its use to the same degree as has 
occurred for hypothesis testing. Moreover, what 
appears to have been lost in all this fervor for 
effect-size provision – and as we illustrate later – 
is that many of the same criticisms launched 
against statistical hypothesis testing can also be 
aimed at effect sizes. As one salient illustration, 
cautions concerning hypothesis testing and its 
interpretation can be found in such sources as the 
aforementioned APA Publication Manual (2001) 
– namely, that p-values (statistical significance 
probabilities) do not directly reflect “the 
magnitude of an effect or the strength of a 
relationship” (p. 25). Yet, no such cautions about 
effect-size measures are found in that pivotal 
reference source. 
 
Concerns and Cautions About Effect Sizes 
 In what follows we highlight several 
major concerns about effect sizes and their 
estimation, in what might be called nine effect-size 
nuisances and no-no’s. In doing so, we consider 
several rarely acknowledged limitations of effect-
size measures. We (as others before us) argue that 
effect-size measures are influenced by, and 
therefore must be interpreted with respect to, a 
number of critical factors. As a preliminary 
comment, we regard certain of these 
considerations as being especially relevant when 
effect sizes are reported as sole indicators of an 
empirical study’s significance (i. e., as reflected in 
Carver’s, 1993, “effect-size only” recom-
mendation). We return to this fundamental issue in 
a later section. 
 According to Wilkinson and the Task 
Force on Statistical Inference (1999, p. 599) 
“[R]eporting and interpreting effect sizes...is 
essential to good research.” Unfortunately, this 
statement might suggest to some that the provision 
of effect sizes necessarily improves the quality of 
empirical studies. Yet, the uncritical acceptance of 
effect size measures is problematic because, as is 
now discussed, such measures are sensitive to a 
number of factors, such as: the research objective; 
sampling design (including the levels of the 
independent variable, choice of treatment 
alternatives, and statistical analysis employed); 
sample size and variability; type and range of the 
measures used; and score reliability (see, for 
example, Fern & Monroe, 1996; Frick, 1995; 
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O’Grady, 1982; Olejnik & Algina, 2000; and 
Sechrest & Yeaton, 1982). 
 1. The research objective. According to 
Fern and Monroe (1996), one’s interpretation of an 
effect size should vary, depending on whether the 
objective of the study is what they call theory 
application or effects application. In theory-
application research (or explanatory studies) the 
goal is to identify theories that increase our 
understanding of phenomena. Studies involving 
theory application, which consist primarily of 
theory generation and theory testing, typically 
focus on generalizing theories beyond the 
underlying sample and/or context. More 
specifically, in explanatory studies, the goal is to 
determine the “shape or functional nature of a 
relationship” (O’Grady, 1982, p. 770). 
 In such investigations, a large effect size is 
not necessarily of interest. Indeed, a large effect 
may be viewed as a negative outcome if it was not 
predicted by theory. That is, in theory-application 
research, a small effect may be more informative 
and useful than a large effect (Calder, Phillips, & 
Tybout, 1981). In fact, using “large” effect-size 
guidelines (e.g., Cohen, 1988) as the criterion for 
choosing among several independent variables in 
explanatory studies may culminate in misleading 
final theoretical models being selected. 
Conversely, in effects-application research (or 
predictive studies), researchers usually are not 
interested in generalizing the results beyond the 
levels of the variables selected. That is, in effects-
application studies, the interest is more on the size 
of the effect than on determining the 
generalizability of a particular theory. This 
suggests that effect sizes should not be interpreted 
without taking into account whether one’s research 
objective is essentially explanatory or predictive in 
nature.  
 2. Choice of a specific research design 
and experimental conditions. The selected 
research design also affects interpretation of effect 
sizes. Specifically, because within-subject 
sampling designs typically are more efficient than 
are between-subject sampling designs – inasmuch 
as they tend to minimize error variance (Maxwell 
& Delaney, 1990) – they tend to yield larger effect 
sizes (Keppel, 1991; O’Grady, 1982). Therefore, 
in interpreting effect sizes, consideration should be 
given to the sampling design used. 

 Although experimental studies allow the 
strongest causal inferences to be made and 
typically result in relatively smaller error variance 
in comparison to correlational studies, 
experimental designs also tend to yield smaller 
effect sizes than do correlational designs. This is 
because in experimental research the independent 
variable is artificially created specifically for the 
study and thus is weaker than it is in the 
population (Kerlinger, 1973). As such, comparing 
effect sizes stemming from experimental studies 
and those generated from correlational studies 
easily can be the equivalent of comparing apples 
and oranges. Moreover, in fixed-effects models, 
the magnitude of the omnibus effect size depends 
on the specific levels of the variables of interest. If 
different levels of the independent variable are 
studied, the effect sizes are not comparable 
(Oljenik & Algina, 2000).  
 Further, the number of experimental 
conditions (or levels of the independent variable) 
used in a study can either increase or decrease the 
effect size. O’Grady (1982, p. 773) provides a 
striking example of a two-conditions study 
(yielding M1 = 10 and M2 = 18, with common SDs 
of 2 and ns of 10) in which the proportion of 
variance accounted for by the treatment factor 
(sample 02) is .82. Yet, had the same two 
conditions been part of a study that also included 
three additional experimental conditions, whose 
resulting means ranged in equal increments 
between the two original means (i.e., M3 = 12, M4 
= 14, and M5 = 16), with the same SDs and ns as 
before, the proportion of variance accounted for by 
the treatment factor is reduced to .69. Of course, 
had the proportion of variance associated with just 
the two focal conditions been calculated and 
reported (i.e., the sample 02 associated with the 
Treatment 1 vs. Treatment 2 contrast), it would be 
equal to the original .82. 
 Interpretive problems resulting from 
omnibus, as opposed to contrast, strength-of-
relationship reporting were pointed out by Levin 
(1967). Such problems can be further illustrated by 
another hypothetical example, which represents 
the “flip side” of the one just presented. Suppose 
that a researcher compares two different 
experimental treatments and finds that M1 = 16 
and M2 = 17, with common SDs of 2.5 and ns of 8. 
Here, the sample 02 can be found to be a fairly 
“small” .04. However, had these two treatments 
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been part of a study that included a low-scoring 
“control” group (M3 = 6) with the same SD and n 
as in the other two conditions, now the sample 02 
would be found to leap to an “impressive” .81. As 
long as the researcher focused on the Treatment 1 
vs. Treatment 2 contrast (for which 02 = .04), the 
same conclusion about a “small” treatment 
difference would have been reached as before. 
Unfortunately, however, many researchers 
routinely report and interpret the omnibus measure 
(here, 02 = .81), to the detriment of the 
unquestioning consumer. In multifactor designs a 
similar opportunity arises for misleading the 
consumer – namely, by not recognizing Kirk’s 
(1995, p. 261) distinction between omnibus and 
partial strength-of-relationship measures. 
 The design of an experimental study also 
refers to the manner in which participants are 
assigned to experimental conditions and 
treatments administered (generally characterized 
as between-subjects designs, within-subjects 
designs, mixed designs, blocking designs, and 
hierarchical designs), whether or not concomitant 
variables (covariates) are included, and the 
statistical analyses employed. Effect-size measures 
are affected by all such factors in a design, 
compromising comparisons of effect sizes across 
studies that differ in their specifics (Oljenik & 
Algina, 2000). 
 In particular, when one or more factors in 
a comparison-of-means analysis represents an 
individual difference factor (e.g., a covariate or 
blocking variable), problems arise with respect to 
what to use as the standardizer in an effect-size 
index. For example, in a two-factor design in 
which one factor is a manipulated factor and the 
other an individual difference factor, it is often a 
matter of debate whether the standardizer should 
be computed by ignoring or controlling for the 
individual difference factor (Oljenik & Algina, 
2000). Whichever approach is taken leads to a 
different effect size being computed and, 
therefore, effect sizes using these two different 
standardizers are not comparable. In fact, as noted 
by Oljenik and Algina (2000): “depending on the 
sample size and effect sizes associated with the 
individual difference and interaction factors in a 
two-factor design, the effect size estimated for the 
manipulated factor can vary from trivial to quite 
large” (p. 250). 

 The difference in effect sizes is even 
greater if the individual difference factors vary 
across studies. Because varying standardizers for 
computing effect sizes are used in different 
studies, researchers should compare effect sizes 
only if they are completely aware of the 
standardizer that was used in each study of 
interest. Unfortunately, most researchers do not 
specify which standardizer was used in their 
effect-size computation. This discussion should 
make it clear that a researcher can make an effect 
size look larger or smaller by defining an effect 
size in terms of the specific design and control-
variable characteristics just mentioned – basically, 
by incorporating (or not) any design features that 
serve to affect the error variance – and which may 
have ethical implications as well. 
 3. Selection of an effect-size measure. We 
now turn our attention to another potentially 
ethically sensitive effect-size issue. Although there 
is general agreement that the provision of effect-
size information is valuable, recommendations 
concerning the specific measure that should be 
reported for a particular study are typically absent. 
In our view, such recommendations are critical, 
for as one of us noted previously: 
 

Which of, say, half a dozen 
different effect-size measures that 
could be summoned up for a given 
problem should a researcher 
report? The one that is most 
informative, the one that is most 
conservative, or the one that 
enhances the researcher’s case and 
misleads the unsuspecting reader? 
For example, researchers might 
report percent agreement 
measures or percentages of 
variance accounted for that have 
not been corrected for chance, or 
researchers might seek out a 
goodness-of-fit measure that 
places their data in the most 
favorable light. For dependent 
measures where a frame of 
reference is needed or helpful, 
providing scale -free (relative) 
effect sizes (e.g., Cohen’s d or 
percentages of variance accounted 
for) is not nearly as substantively 
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interpretable as is providing the 
scale-dependent (absolute) 
measures in addition or 
instead...In many domains, not 
even knowledgeable statisticians 
agree on what the “best” or “most 
informative” effect-size measure 
actually is. (Levin & Robinson, 
1999, p. 151) 
 

 Levin (1998b, pp. 45-46) similarly 
provided the following hypothetical example of 
the perplexing situation that effect sizes can create 
for researchers, readers, and other interpreters of 
the importance of an empirical finding: 
 

Suppose that an investigator wants 
to help older adults remember an 
ordered set of ten important daily 
tasks that must be performed 
(insert and turn on a hearing aid, 
take certain pills, make a 
telephone call to a caregiver, etc.). 
In a sample of six elderly adults, 
three are randomly assigned to 
each of two experimental 
conditions. In one condition (A), 
no special task instruction is 
given; and in the other (B1), 
participants are instructed in the 
use of self-monitoring strategies. 
Following training, the 
participants are observed with 
respect to their success in 
performing the ten tasks...[T]he 
average number of tasks the 
participants correctly remembered 
to perform was 1.33 [SD = .577, 
raw scores = 1, 1, and 2] and 3.33 
[SD = .577, raw scores = 3, 3, and 
4] for the no-instruction (A) and 
self-monitoring (B1) conditions, 
respectively. For [these data], it 
can be determined that the 
“conditions” factor accounts for a 
hefty 82% of the total variation in 
task performance (i.e., the squared 
point-biserial correlation is .82, 
which for the two-sample case, is 
equivalent to the sample 02). 
Alternatively, the self-monitoring 

mean is 3-½ within-group 
standard deviations higher than 
the no-instruction mean (i.e., 
Cohen’s d is 3.5). From either 
effect-size perspective (02 or d), 
certainly this represents an 
impressive treatment effect, 
doesn’t it? Or does it? 
 
Suppose that instead of self-
monitoring training, participants 
were taught how to employ 
“mnemonic” (systematic memory-
enhancing) techniques (B2) ...with 
the results [yielding a mean 
number correct of 7.67 (SD = 
2.517, raw scores = 5, 8, and 
10)]...[A] comparison with no-
instruction Condition A 
surprisingly reveals that once 
again, the conditions factor 
accounts for 82% of the total 
variation in task performance 
(equivalently, d again equals 3.5). 
Thus, when expressed in 
standardized/relative terms (either 
02 or d), the effect sizes associated 
with the two instructional 
conditions (B1 and B2) are exactly 
the same, and substantial in 
magnitude. Yet, when expressed 
in absolute terms and with respect 
to the task’s maximum, there are 
important differences in the 
“effects” of B1 and B2: Increasing 
participants’ average performance 
from 1.33 to 3.33 tasks 
remembered seems much less 
impressive than does increasing it 
from 1.33 to 7.67. Helping these 
adults remember an average of 
only 3 of their 10 critical tasks 
might be regarded as a dismal 
failure, whereas helping them 
remember an average of almost 8 
out of 10 tasks would be a 
stunning accomplishment. Yet, 
the conventional effect-size 
measures are the same in each 
case. 
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 To help shed light on this seeming 
paradoxical situation, Levin (1998b) pointed out:  
 

The major problem in this 
example arises from the 
conditions’ differing variabilities. 
That problem could be accounted 
for by defining alternative d-like 
effect-size measures based on just 
the control condition’s (Condition 
A’s) standard deviation... 
Interpreting effect sizes, in the 
absence of raw data, remains a 
problem for 02 and Cohen’s d, 
however. (p. 53) 
 

 Insofar as different effect-size measures 
are suitable for different types of data (e.g., 
Hogarty & Kromrey, 2001), it is surprising that 
some researchers do not even indicate the index to 
which they are referring when reporting effect 
sizes (Kirk, 1996). Neither do researchers appear 
to indicate whether the effect-size measure 
interpreted represents an adjusted or unadjusted 
index. The lack of information provided is 
disturbing because meta-analyses involve 
aggregating and comparing effect sizes across 
studies. How can effect sizes be aggregated if it is 
not clear whether they are based on the same type 
of index? Unfortunately, the practice of some 
meta-analysts to omit unlabeled effect sizes from 
the aggregate index introduces bias. 
 4. Varying, and generally arbitrary, 
guidelines for interpreting effect-size magnitudes. 
As was noted earlier, a way in which statistical 
hypothesis testing is abused occurs when a 
dichotomous decision (i.e., reject vs. do not reject) 
comprises the sole determinant of the significance 
(read importance) of an observed outcome. This is 
done by comparing the outcome’s significance 
probability (p-value) to some predetermined 
standard significance level (" level), such as .05. 
Yet, many researchers who interpret effect sizes 
appear to use equally rigid categorical criteria such 
as those provided by Cohen (1988), who 
popularized the use of effect-size reporting. This 
occurs even though recommendations vary with 
respect to how effect sizes should be interpreted 
(McLean, O’Neal, & Barnette, 2000) and despite 
Cohen’s (1988) admonishment that effect-size 

values are dependent on the specific content and 
methods that prevail in a given research context. 
 For example, in interpreting effect sizes 
associated with differences between two groups 
(i.e., Cohen’s d), Cohen (1988) recommended 
demarcations of .20 for small effects, .50 for 
medium effects, and .80 for large effects. In stark 
contrast, McLean (1995) suggested the following 
criteria: .50 for small effects, between .50 and 1.00 
for moderate effects, and above 1.00 for large 
effects. Regardless of which criteria are used, it is 
clear that adherence to such cutpoints has the 
effect of trichotomizing interpretations in much 
the same way as p-values dichotomize statistical 
decision making. As noted by Shaver (1993): 
“There already is a tendency to use criteria, such 
as Cohen’s (1988) standards for small, medium, 
and large effect sizes, as mindlessly as has been 
the practice with the .05 criterion in statistical 
significance testing” (p. 311). Similarly, 
Thompson (2001) stated: “If people interpreted 
effect sizes [using fixed benchmarks] with the 
same rigidity that " = .05 has been used in 
statistical testing, we would merely be being 
stupid in another metric” (p. 82-83). 
 In addition, blending the previous concern 
(different effect-size measures may lead to 
different conclusions) with the present one (effect-
size descriptors are arbitrary and vary by context) 
we consider the following confusing/conflicting 
medical-study conclusion presented by Rosenthal 
and DiMatteo (2001). The results of a study 
designed to examine the effect of taking aspirin on 
heart-attack prevention (Steering Committee of the 
Physicians’ Health Study Research Group, 1988) 
yielded what is typically regarded as a tiny 
Pearson r of .034. Yet, when the same outcome is 
interpreted from the perspective of Rosenthal and 
Rubin’s (1982) binomial effect size display 
(BESD), the “finding is, in fact, very important 
and translates into substantial reductions in 
morbidity and mortality” (Rosenthal & DiMatteo, 
2001, p. 78). For related discussion on the 
potential importance of conventionally small 
effect sizes, see Prentice and Miller (1992). 
 5. Sample size and sampling variability . 
The interpretation of effect sizes also varies as a 
function of sample size. Studies with smaller 
sample sizes often result in effect sizes being 
overestimated, whereas investigations with large 
sample sizes tend to lead to effect sizes being 
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underestimated (Bakan, 1966; Fern & Monroe, 
1996; Hedges & Olkin, 1985). Empirically, 
Barnette and McLean (1999) demonstrated that 
standardized effect-size variation is systematic 
rather than random. In their Monte Carlo 
investigation, these authors found that the number 
of groups and sample sizes were almost perfectly  
predictive (i.e., R2 = .999) of standardized effect 
sizes. Thus, comparing effect sizes across studies 
with very different sample sizes can be 
misleading.  
 One of the most repeated criticisms of 
statistical hypothesis testing is its over-reliance on 
sample size (Cohen, 1994; Fan, 2001; Kirk, 1996; 
Onwuegbuzie & Daniel, 2003, in press; Schmidt 
& Hunter, 1997; Thompson, 1993). Yet, as was 
noted recently by Fan (2001): “effect size can also 
be misleading because sample size influences the 
sampling variability of an effect-size measure” (p. 
275). Using Monte Carlo methods, Fan 
demonstrated that an observed finding that appears 
to have practical significance (i.e., a large effect 
size) actually could be the result of sampling error, 
thereby making any resultant conclusions 
unreliable and potentially misleading – which 
lends empirical support to a major facet of the 
argument promoted by Levin and Robinson (2000; 
see also Sawilowsky & Yoon, 2002), summarized 
later. Fan (2001) recommended that information 
about both statistical significance and effect sizes 
be reported for observed findings: 
 

Statistical significance testing and 
effect size are two related sides 
that together make a coin; they 
complement each other but do not 
substitute for one another. Good 
research practice requires that, for 
making sound quantitative 
decisions in educational research, 
both sides should be considered. 
(p. 275) 
 

 It should come as no surprise that effect 
sizes are affected by sample size in much the same 
way as are p-values. Indeed, effect-size statistics 
represent random variables. Consequently, effect-
size measures are affected by sampling variability, 
as dictated by its underlying sampling distribution. 
In turn, the amount of sampling variability of an 
effect-size estimate is influenced by the underlying 

sample size, in much the same way that p-values 
are affected by the number of cases utilized in the 
study. When the sample size is small, the 
discrepancy between the sample effect size and 
population effect size is larger (i.e., large bias) 
than when the sample size is large. Also, effect 
sizes are affected by nonrandom sampling, a 
condition that applies to the vast majority of 
empirical studies in education and psychology. 
Thus, solutions to compensate for the problems 
stemming from the role of sample size in statistical 
hypothesis testing (e.g., use of confidence 
intervals) should also apply to effect sizes. 
 A valid criticism of hypothesis testing that 
is supported by data pertains to the low statistical 
power that prevails in many studies. Indeed, the 
average power of null hypothesis significance tests 
typically ranges from .40 to .60 in empirical 
studies (Cohen, 1962, 1965, 1988, 1994; Schmidt, 
1996; Sedlmeier & Gigerenzer, 1989). With an 
estimated mean across-study power of .50 (Cohen, 
1962, 1997), Schmidt and Hunter (1997) decry 
that “[t]his level of accuracy is so low that it could 
be achieved just by flipping a (unbiased) coin!” (p. 
40). Yet, the finding that power is unacceptably 
low in most studies indicates to us that 
researchers’ application of statistical hypothesis 
testing, rather than its logic, is to blame. Indeed, it 
can be argued that low statistical power represents 
more of a research design issue than a statistical 
issue, since acceptable power can be rectified by 
incorporating a larger sample. 
 Unfortunately, as was discussed earlier, 
effect sizes also can fall victim to poor research 
designs, in general, and to small sample sizes, in 
particular. In fact, an obsession with effect sizes 
without considering the associated sample sizes 
can have the effect of promoting weak research 
designs. As such, in making decisions about which 
articles should be published, journal editors should 
focus less on p-values and effect sizes and more 
on the quality of the underlying research design 
(for related discussion and references, see Levin, 
1998b, p. 45). 
 6. Distribution nonnormality. Although 
this may surprise or disturb some readers, many of 
the commonly used effect-size measures rely 
heavily on the parametric hypothesis-testing 
assumptions of normality and homogeneity of 
variance (see, for example, Fan, 2001, Barnette & 
McLean, 1999, and Hogarty & Kromrey, 2001). 
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The numerator of common effect-size measures 
involves means and mean differences, which are 
sensitive to extreme observations, especially when 
sample sizes are small (Huck, 2000). In the small-
sample case, an extreme observation in one of the 
conditions (e.g., the experimental group) can 
seriously distort the true mean difference, thereby 
unduly inf luencing the effect-size estimate. Just as 
outlying observations affect the t-statistic and 
associated p-values (statistical significance), in the 
independent-samples test of means they also 
influence the effect size (practical significance). 
For this reason, nonparametric effect-size 
measures have been developed and considered. 
 Applyng Monte Carlo methods, Hogarty 
and Kromrey (2001) demonstrated that the most 
frequently used effect-size estimates (e.g., Cohen’s 
d and Hedges & Olkin’s g) are sensitive to 
departures from normality and variance 
homogeneity (discussed next). Even trimmed 
effect-size measures (Hedges & Olkin, 1985; 
Yuen, 1974) exhibit bias when sample sizes are 
small, as do several nonparametric effect-size 
indices, including Y1 (Kraemer & Andrews, 1982) 
and the Common Language (CL) effect-size 
statistic (McGraw & Wong, 1992).  
 7. Score variability (both between and 
within samples). Other characteristics of the 
sample also affect interpretation of effect sizes. In 
particular, the more heterogeneous the sample is 
with respect to the variable of interest, the greater 
the effect size typically tends to be. This is the 
case for both explanatory and predictive studies 
(O’Grady, 1982). Moreover, homogeneous 
samples, which more often arise from convenience 
sampling, can result in range restriction and, 
subsequently, attenuate effect sizes (Pedhazur & 
Schmelkin, 1991). Recognition of this 
complicating situation can be seen in a recent 
critique of a report challenging the effectiveness of 
teacher education programs by Darling-Hammond 
and Youngs (2002): 
 

The effect size also depends on 
other context factors, such as the 
range of variability in the measure 
used, which can change in 
different locations and time 
periods. For example, in some 
eras and in some locations 
virtually all teachers held content 

degrees or were fully certified, so 
these variables do not strongly 
predict variations in outcomes. 
When much more variability is 
present, these variables are 
strongly predictive of outcomes. 
Thus, several studies have found 
strong measured influences of 
certification status on student 
achievement in states like 
California and Texas during the 
1990s when there were wide 
differences in teachers’ 
qualifications. (p. 15) 
 

It is also possible for variance heterogeneity to 
reduce the effect size. This can be the case when 
the sample is too diverse and the heterogeneity 
increases error variance, thereby attenuating the 
effect size (Lesser, 1959). 
 Regardless of whether the effect size is 
increased or decreased by heterogeneous samples, 
interpreting effect sizes that arise from samples 
with different degrees of heterogeneity is 
inadvisable. In particular, researchers should 
exercise caution in comparing effect sizes across 
convenience samples. In fact, Daniel and 
Onwuegbuzie (2000) refer to sampling bias error 
that results in inconsistency of results across 
studies as a Type IX error. According to these 
authors, this type of error relates to “disparities in 
results generated from numerous convenience 
samples across a multiplicity of similar studies” 
(p. 23). 
 Further, because the denominator of 
common effect-size measures incorporates the 
pooled within-conditions variance, heterogeneity 
of variance affects effect-size estimation similarly 
to the way that it affects statistical hypothesis 
testing (and confidence-interval building - as was 
seen in Levin, 1998b, p. 53). Moreover, the 
problems caused by departures from normality and 
heterogeneity of variance when statistical 
significance testing is involved are very much an 
issue for effect-size measures associated with 
more complex family members of the general 
linear model. For example, the standard effect-size 
indices (e.g., 02, ,2, and T2) that are often 
calculated for OVA-type analyses (e.g., ANOVA, 
ANCOVA, MANOVA) assume equal variances – 
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an assumption that is not always met 
(Onwuegbuzie & Daniel, 2003). 
 However, these weaknesses do not imply 
that effect sizes should be banned or replaced by 
some other sort of index, echoing what some 
researchers (e.g., Carver, 1993) recommend 
should be the fate of statistical significance testing. 
Indeed, in cases where such violations come to the 
fore, nonparametric effect sizes (e.g., Y1 and CL) 
may be more appropriate, in much the same way 
that nonparametric inferential statistics often are 
more appropriate when the parametric 
assumptions are violated. The above limitations 
pertaining to effect sizes identified above suggest 
that: (a) assumptions underlying the selected 
effect-size method should be subjected to the same 
stringent scrutiny as are statistical significance 
tests; (b) combining statistical significance testing 
and effect-size indices, after checking all pertinent 
assumptions, provides an additional safety net 
from false or misleading conclusions, compared to 
using either technique alone; and (c) researchers 
should pay much more attention to maximizing the 
quality of their research designs (e.g., by selecting 
an appropriate or optimal sample size) in order to 
minimize threats to the model assumptions that 
pertain to both the statistical test and the 
accompanying effect-size measure of interest. 
 8. Reliability of the outcome measure 
(measurement error). Reliability is a concept that 
receives disproportionately scant attention in the 
interpretation of an observed finding 
(Onwuegbuzie & Daniel, 2000, 2001, 2003, in 
press; Onwuegbuzie, Daniel, & Roberts, in press; 
Roberts & Onwuegbuzie, 2003; Roberts, 
Onwuegbuzie, & Eby, 2001; Onwuegbuzie & 
Weems, in press; Weems & Onwuegbuzie, 2001). 
Reliability (or more precisely, unreliability) can 
adversely affect the internal validity of findings 
via “instrumentation” problems (e.g., Campbell & 
Stanley, 1963; Onwuegbuzie, 2003), through a 
reduction in statistical power. Specifically, 
Onwuegbuzie and Daniel (in press) demonstrated 
that subgroups with scores that generate markedly 
different reliability estimates can seriously reduce 
statistical power, even when the full-sample (i.e., 
across-groups) reliability coefficient is adequate. 
 Importantly, however, low reliability 
indices adversely affect not just statistical 
hypothesis testing; they also negatively impact 
effect-size measures. After all, low reliability 

coefficients stem from scores that do not behave in 
a consistent manner (Onwuegbuzie & Daniel, 
2000, 2001) and it is these scores that are used to 
calculate both inferential test statistics and effect-
size measures. Thus, effect-size measures are 
subject to the same limitations stemming from 
inadequate reliability as are p-values. Indeed, 
effect sizes should always be interpreted with 
respect to the reliability of the outcome measure, 
just as has been recommended for statistical 
hypothesis testing.  
 Specifically, there is an inverse 
relationship between the reliability of any of the 
variables of interest (whether the independent or 
dependent variable) and the corresponding effect 
size. In fact, such reliability provides an upper 
bound for the effect size (Lord & Novick, 1968; 
Nunnally & Bernstein, 1994). Because a study’s 
reliability is a function of the study’s obtained 
scores rather than a priori test norms 
(Onwuegbuzie & Daniel, 2000, 2002a, 2002b; 
Thompson & Vacha-Haase, 2000; Vacha-Haase, 
Kogan, & Thompson, 2000; Wilkinson & Task 
Force on Statistical Inference, 1999), effect sizes 
should not be compared across studies without 
taking into account the individual studies’ 
outcome-measure reliabilities. For further 
discussion of reliability and effect size in both 
correlational and experimental study contexts, see 
O’Grady (1982, pp. 767-770). 
 9. Scale of measurement. The type and 
range of measure used can affect the size of the 
effect. It is not unusual for researchers studying a 
phenomenon to use different measures. In 
particular, in a study of an affective variable, 
whereas one researcher might use a Likert-type 
scale, another researcher might employ a rating 
scale. Still another researcher might employ a 
semantic differential scale or a Thurstone or 
Guttman scale. Similarly, in an investigation of a 
cognitive outcome, whereas one researcher might 
administer a multiple -choice test, another 
researcher might administer some other type of 
closed-ended instrument (e.g., true-false, 
matching), and still another researcher might 
administer an open-ended measure such as an 
essay. 
 Although all of these measures yield 
scores that can be analyzed statistically, each type 
of scale might not be measuring exactly the same 
construct. For instance, multiple -choice and essay 
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examinations often target different levels of 
learning in Bloom’s taxonomy of cognitive 
objectives (Bloom, 1956). As such, the effect size 
likely would vary as a function of the type of 
measure used. Although this apples-and-oranges 
situation is typically offered as the primary 
rationale for meta-analytic effect-size 
combinations (e.g., Hunt, 1997; Rosenthal & 
DiMatteo, 2001), it rarely is recognized as a study-
comparison concern. 
 Even if scales with the same item format 
(e.g., a Likert-scale format) are used across 
studies, both the number/type of items and the 
number/type of response options employed can 
affect the size of the effect. With respect to the 
former, compared to their counterparts with more 
items, scales with a smaller number of items lead 
to restriction of range, thereby attenuating effect 
sizes. Similarly, the proportion of negatively 
worded and positively worded items can influence 
the effect size (Onwuegbuzie & Weems, in press; 
Weems & Onwuegbuzie, 2001). With regard to 
the latter, the number of response options also can 
influence the effect size. Specifically, a reduction 
in the number of response options attenuates the 
range of scores, which, in turn, may reduce the 
magnitude of the effect. 
 Similarly, and as was mentioned earlier, a 
restriction in the variability of one or more 
variables typically decreases the effect size. This 
holds for a study’s independent variables, as well 
as its outcome measures. As noted by 
Onwuegbuzie and Daniel (2003), lacking the 
realization that nearly all parametric analyses 
represent the general linear model, many analysts 
inappropriately categorize independent variables 
in nonexperimental research designs in order to 
perform analyses such as analysis of variance. 
Disturbingly, findings from such analyses are then 
used to make causal inferences, when all that has 
occurred is a discarding of relevant variance – see, 
for example Cliff (1987); Pedhazur (1982); 
Prosser (1990); and Thompson (1986, 1988, 
1992a). 
 Yet, categorizing a continuous variable 
has been found repeatedly to reduce the effect 
size. For instance, a median split of a continuous 
variable can reduce the observed correlation by 
20% (Cohen, 1983; Hunter & Schmidt, 1990) – 
see also Vargha, Rudas, Delaney, & Maxwell 
(1996). If the cutpoint used for splitting the 

continuous variable differs from the median, then 
the reduction in the relationship between the 
variables can be expected to be even larger (Fern 
& Monroe, 1996). 
 Moreover, as the number of categorized 
groups decreases, less variance in the dependent 
variable is accounted for by the categorical 
variable, compared to the continuous variable, and 
thus the effect size is attenuated (Peet, 1999). With 
regard to type of response options, the use of 
midpoint categories (e.g., neutral response 
options) has been found to affect both score 
reliability and effect size (Weems & 
Onwuegbuzie, 2001). Therefore, comparing effect 
sizes across studies using different types and 
formats of scales is questionable. 
 In addition, it does not appear to be 
obvious to some researchers that effect sizes are a 
function of the scale of measurement used. 
Evidence of this is provided by McLean et al. 
(2000), who demonstrated that “gain” effect sizes 
were different for the raw scores, scaled scores, 
and Normal Curve Equivalent (NCE) scores for 
students in Grades 4, 6, and 8 on a national norm-
referenced test. Specifically, as McLean et al. 
expected, the effect sizes for NCE scores were 
lower than those for raw and scaled scores. The 
researchers appropriately concluded that when 
effect sizes are computed, researchers should take 
into account the scale of measurement on which 
they are based. 
 
Summary 
 We have highlighted nine general 
concerns about effect-size indices. When 
researchers design their studies, they must make 
numerous decisions. Each of these decisions can 
affect the magnitude of the effect-size estimate. 
Unfortunately, the extent to which the effect-size 
index is influenced by the decisions is almost 
always unknown. This suggests that researchers 
are not justified in reflexively applying Cohen’s 
(1988) effect-size magnitude and adjectival 
guidelines across studies in different domains or 
across studies that have different research design 
and analytical factors. Even more importantly, 
because effect sizes vary as a function of research-
related factors, effect sizes should be compared 
only when all of these factors are comparable. 
Assessing the substantive significance of an 
observed finding based solely on the effect size 
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may be misleading and no more diagnostic than is 
a test of a statistical hypothesis (Fern & Monroe, 
1996). 
 This does not mean that effect sizes are 
useless. As noted by Fern and Monroe (1996), if 
the goal of the researcher is to determine the size 
of an effect given the unique combination of 
factors that underlie the data, then a computed 
measure of effect size is informative. On the other 
hand, effect sizes cannot be used as a meaningful 
basis for comparison across studies “unless the 
researcher understands what, if any, unique factors 
contributed to the effect-size estimate” (Fern & 
Monroe, 1996, p. 102). In any case, when 
reporting effect sizes, researchers should always 
specify as many design, analysis, and 
psychometric characteristics as possible to help 
subsequent researchers decide the extent to which 
they can compare their effect sizes with previous 
estimates. In other words, researchers should 
contextualize their effect sizes (i.e., they should 
interpret their effect sizes within study’s specific 
parameters).  
 Many researchers who criticize statistical 
hypothesis testing, in general, and those who 
advocate replacing p-values with effect size 
measures, in particular, fail to mention any of the 
limitations associated with effect-size reporting. 
Thus, methodologists who criticize hypothesis 
testing without also discussing the limitations of 
effect sizes are not providing a balanced analysis 
but are focusing on the bad practices that have 
traditionally been linked to the former approach. 
Unfortunately, the just-mentioned concerns about 
effect sizes typically are not mentioned by their 
advocates. In discussing the limitations, we argue 
that effect sizes are not the hoped-for panacea for 
empirical research in the social sciences. 
 Further, we contend that if only effect 
sizes were used to interpret statistical data, social-
science research would not be in any better 
position than it would if only statistical hypothesis 
testing were used in quantitative studies. In fact, in 
an effect-size-only world, we submit that social-
science research would be in a worse position, in 
that progress would be retarded (Thompson, 
1992b) to an even greater extent than that 
imagined by hypothesis-testing critic s, in that 
statistically “chance” findings would unjustifiably 
be promoted by researchers as “real.” We 

reconsider that unfortunate situation in the 
following concluding section. 
 
Toward a Détente 
 The effect-size flaws that we have 
reviewed support the assertion that statistical 
hypothesis testing and effect-size reporting should 
be used in combination. A logical, internally 
consistent, way of combining these two 
procedures is through Robinson and Levin’s 
(1997) two-step suggestion for analyzing 
empirical data – namely, that effect sizes are 
reported if and only if the observed finding is 
statistically significant. 
 That is, statistical hypothesis testing 
should serve as a gatekeeper, guarding against 
spurious effect-size estimation. As noted by 
Robinson and Levin (1997), the goal of these two 
complementary approaches is to prevent the over-
interpretation of seemingly impressive effect sizes 
“in the absence of formal assessments of their 
likelihood” (p. 23). We therefore recommend that 
statistical hypothesis testing and effect-size 
estimation be used in tandem to establish a 
reported outcome’s believability and magnitude, 
respectively. As such, tests of significance serve a 
valuable purpose in determining whether effect-
size measures should be ignored or reported, a 
position endorsed by Fan (2001), Levin (1993), 
Robinson and Levin (1997), Knapp and 
Sawilowsky (2001), and even – we think – Gliner, 
Leech, and Morgan (2002). 
 Let us take a moment to consider the last 
part of the foregoing sentence. We say “even” 
because Gliner et al.’s recommendation appeared 
in a journal whose editorial policy specifically 
calls for effect-size inclusions even in the absence 
of statistical confirmation: “Furthermore, authors 
are required to report and interpret magnitude-of-
effect measures in conjunction with every p value 
that is reported” (Journal of Experimental 
Education, 2002, p. 94). We say “we think” 
because Gliner et al. are internally inconsistent in 
their position about always reporting and 
interpreting effect sizes in their position. 
 For example, they agree with Levin and 
Robinson’s (2000) distinction between single -
study investigations and multiple -study syntheses: 
“Our opinion is that effect sizes should accompany 
all reported p values for possible future meta-
analytic use, but they should not be presented as 
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findings in a single study in the absence of 
statistical significance” (Gliner et al., 2000, p. 86). 
Yet, in the penultimate sentence of their article 
they write: “We also recommend reporting effect 
size for nonsignificant outcomes” (p. 91). 
Addressing this blanket effect-size reporting 
recommendation, one of us has pointed out 
previously: 
 

This practice is absurdly 
pseudoscientific and opens the 
door to encouraging researchers to 
make something of an outcome 
that may be nothing more than a 
“fluke,” a chance occurrence. 
Without an operationally 
replicable screening device such 
as statistical hypothesis testing, 
there is no way of separating the 
wheat (statistically “real” 
relationships or effects) from the 
chaff (statistically “chance” ones), 
where “real” and “chance” are 
anchored in reference to either 
conventional or researcher-
established risks or “confidence 
levels.”...In its extreme form, 
effect-size-only reporting 
degenerates to strong conclusions 
about differential treatment 
efficacy that are based on 
comparing a single score of one 
participant in one treatment 
condition with that of another 
participant in a different 
condition. (Levin, 1998b, p. 45) 

 
Moreover, in a recent survey of the editorial board 
members of four educational-research journals 
(Capraro & Capraro, 2003), the 97 respondents 
(estimated from the data provided) greeted the 
recommendation that their journals require effect-
size reporting with overwhelming indifference: On 
a 7-point Likert scale ranging from “very strongly 
disagree” to “very strongly agree” the mean rating 
was 4.26, t(96) = 1.33, p = .19, for testing the 
hypothesis that respondents’ mean ratings do not 
differ from the scale midpoint of 4. Given the 
study’s relatively large sample size, this 
nonrejection of the indifference hypothesis should 
be taken with more than a grain of salt. 

 One additional internal-inconsistency 
irony – or at least an example of journal non-
policing – is worth mentioning. In an article 
published by one of the present authors (Hwang & 
Levin, 2002) in the same issue of the Journal of 
Experimental Education that proclaims the above 
effect-size policy, effect sizes were not reported 
for every p-value included; nor were they reported 
for statistically nonsignificant outcomes. Yet, 
somehow, some way, the article was published 
anyway! And this is not an isolated event. 
 A colleague, Dan Robinson, has 
experienced effect-size nonenforcement with two 
of his articles that were published in the same 
journal (Katayama & Robinson, 2000; Robinson, 
Katayama, Dubois, & Devaney, 1998), a journal 
that has promoted its effect-size policy since 1997 
(D. H. Robinson, personal communication, 
January 13, 2003). As with Thompson’s (e.g., 
1996) argument in other contexts, perhaps JEE 
should be encouraged to take a closer look at its 
own editorial policy, for in that journal effect-size 
endorsement clearly does not translate into effect-
size enforcement. As an informative aside, the 
Journal of Experimental Education is apparently 
not alone in its effect-size non-enforcement 
practices for D. H. Robinson (personal 
communication, January 22, 2003) indicates a 
similar phenomenon with another effect-size 
mandated journal, Contemporary Educational 
Psychology. Out of 11 intervention experiments 
that he tallied for that journal in 2001, only two 
were accompanied by effect-size estimates. 
 Even those who contend that effect sizes 
should replace statistical significance testing (e.g., 
Carver, 1993; Schmidt, 1996) recommend the use 
of confidence intervals alongside effect sizes. A 
two-sided confidence interval, characterized by 
lower and upper bounds, identifies a probable 
range of magnitudes for the effect size (Abelson, 
1997). As such, confidence intervals can be used 
to estimate the range of the effect’s practical 
significance – for related discussion, see 
Onwuegbuzie (2001) and Thompson (2002). 
 Moreover, insofar as confidence intervals 
include all the information provided by statistical 
hypothesis tests, and more (Cohen, 1994; Levin, 
1998b; Serlin, 1993), constructing them allows 
researchers to conduct the corresponding 
hypothesis tests, if desired (Krantz, 1999). In that 
sense, then, the provision of an inferential 
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confidence interval (instead of a hypothesis test) 
has logical appeal because that approach kills two 
birds (statistical and practical significance) with 
one stone. So as not to confuse the issue, it should 
be made clear that the kind of confidence-interval 
approach we are endorsing is the single -interval 
procedure based on a pre-experimentally 
established Type I error probability, which is 
inferentially equivalent to applying a Neyman-
Pearson statistical test of hypothesis. This 
approach is fundamentally and logically different 
from that espoused by certain hypothesis-testing 
critics, which would have researchers 
simultaneously provide multiple confidence 
intervals (for either raw or standardized effects) 
based on different confidence levels, such as 99%, 
95%, 90%, 80%, etc. – see, for example, Schmidt 
& Hunter (1997) and Thompson (2002). 
 Alternatively, hypothesis testing per se 
can be substantially improved (strengthened) by 
applying it in forms that are more intelligent than 
the one that is currently practiced. Such more 
intelligent forms call for researchers to 
formulate/test more theoretically driven and 
precise hypotheses, to determine (through power 
calculations) optimal sample sizes to test those 
hypotheses, and to incorporate equivalence-testing 
procedures (e.g., Seaman & Serlin, 1998) for 
better establishing the truth of the null hypothesis 
(see, for example, Levin, 1998a, pp. 329-330). 
 At the same time, we contend that 
hypothesis tests, confidence intervals, and effect 
sizes do not go far enough in the way of 
maximizing a domain’s knowledge base. This can 
be accomplished only through independent 
replications of results (i.e., two or more 
independent studies yielding similar findings that 
produce statistically and substantively compatible 
outcomes). We believe that “a replication is worth 
a thousandth p value” (Levin, 1995), as well as its 
being worth more than a large effect size based on 
a single study. In contrast to Carver (1978), 
however, we do not believe that “replicated results 
should automatically make statistical significance 
unnecessary” (p. 393). Such independent 
replications not only will make “invaluable 
contributions to the cumulative knowledge in a 
given domain” (Robinson & Levin, 1997, p. 25) 
but will also help empirical researchers achieve a 
common goal. 
 

Conclusion 
 

As was noted by Onwuegbuzie (2003), a primary 
objective of empirical research – especially 
research designed to posit causal relationships – is 
to collect and analyze data that help a researcher 
make inferences from the sample(s) to the 
underlying population, leading to meaningful 
conclusions in which as many rival explanations 
as possible are eliminated. This is the goal that 
drives both statistical hypothesis testing and 
effect-size reporting. The extant literature has 
documented the limitations of hypothesis testing, 
whereas in this paper we have illustrated that 
effect-size interpretation is not without its flaws. 
No single index by itself is the magic bullet for 
analyzing and interpreting data. Rather, using both 
methods in combination, or combining confidence 
intervals and effect sizes, helps to rule out more 
rival threats to statistical-conclusion validity 
(Cook & Campbell, 1979; Shadish, Cook & 
Campbell, 2002) than would occur if either 
method were used alone to interpret observed 
findings. At the same time, however, to minimize 
both statistical-conclusion validity and external 
validity threats there is no substitute for 
independent replications.  
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Small sample properties of the method proposed by Brunner et al. (1997) for performing two-way analysis of 
variance are compared to those of the normal based ANOVA method for factorial arrangements.  Different 
effect sizes, sample sizes, and error structures are utilized in a simulation study to compare type I error rates 
and power of the two methods. An SAS program is also presented to assist those wishing to implement the 
Brunner method to real data. 
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Introduction 
 
Normal theory methods for analysis of variance 
depend on the assumption of homogeneity of the 
variance of the error distribution. For a one-way 
treatment structure, modifications are available 
when the homogeneity of variance assumption is 
violated. Milliken and Johnson (1992) suggest a 
method due to Box (1954) when sample sizes are 
equal. When samples sizes are unequal, they 
suggest Welch's (1951) test.  
 For multifactor layouts, however, there are 
few options available for testing effects of 
interaction and main effects. A parametric 
approach to this problem was presented by 
Weerahandi (1995), but it requires complex and 
intensive computing and isn’t yet practical for use 
on real data. Papers by Akritas (1990), Thompson 
(1991) and Akritas and Arnold (1994) present 
nonparametric rank test statistics in a multi-way 
ANOVA setting. One should see Brunner, et al. 
(1997) for a survey of references relating to this 
topic.  
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 One method that does not require the 
equal variance assumption is based on a Wald 
statistic, which has an asymptotic chi-square 
distribution. This method tends to reject too 
frequently under the null hypothesis for small 
samples. In fact, simulations of Brunner, et al. 
(1997) show the test to be liberal (by as much as 
0.05) for small to moderate sample sizes, and they 
suggest a small sample improvement over the 
Wald statistic. 
 Their approach is to use a generalization 
of chi-square approximations dating back to 
Patnaik (1949) and Box (1954). Simulation results 
indicate that this adjustment greatly improves the 
performance of the Wald statistic, and is effective 
for sample sizes as small as n=7 per factor 
combination. They also point out that for equal 
sample sizes, their statistic is identical to the 
classical ANOVA F-statistic, and thus their 
method can be regarded as a robust extension of 
the classical ANOVA to heteroscedastic designs. 
They recommend that their method should always 
be preferred (even in the homoscedastic case) to 
the classical ANOVA. However, they do not 
investigate how the performance of their statistic 
compares to the ANOVA F-statistic. 
 In this paper, we present results of a 
simulation study comparing the performance of 
the Brunner statistic to the ANOVA F-statistic, 
make a recommendation for the Brunner statistic 
for moderate sample sizes ( 7n ≥ ), and also 
present a SAS program (SAS Institute, Cary, N.C.) 
for implementing the method. 
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Brunner Method 
The method of Brunner et al. (1997) is a 

small sample adjustment to the well-known Wald 
statistic, which permits heterogeneous variance but 
is known to have inflated Type I error rates for 
small sample sizes. Consider a two-way layout a 
levels of factor A and b levels of factor B. Assume 
a set of independent random variables 

2( , ), 1,..., .ij i iX N i abµ σ =∼  

Let ( )1 2, ,..., abµ µ µ ′=µ  denote the 

vector containing the a b• population means. 
Then the hypotheses of no main effects and 
interaction can be written as 
 

0( ) : 0AH A =M µ  

0( ) : 0BH B =M µ  

0( ) : 0ABH AB =M µ  

 
where 
 

1
A a bb

= ⊗M P J  

1
B a ba

= ⊗M J P  

.AB a b= ⊗M P P  

 

Here , 
1

c c cc
= −P I J , where cI is a c c× identity 

matrix, cJ  a c c×  matrix of 1’s, and the symbol 
⊗  represents the Kronecker product of the 
matrices. The vector of observed cell means is 

denoted by ( )1 ,..., abX X ′=X  and the estimated 

covariance matrix is given by  
 

22
1

1

ˆ ,..., ab
N

ab

SS
N diag

n n
 

= •  
 

S , where 2
iS is the ith 

sample variance and 
1

ab

i
i

N n
=

= ∑ .  

            For a complete cross-classification, the test 

statistic is 

( ) ( )
 

1 ˆ
1 N

N
FB

tr
n

′•
=

−

X MX

S
, which has an 

approximate F distribution with 
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S

S ?
 denominator degrees of  

 

freedom, where 
1

1 1
,...,

1 1
 

Λ =  
− − ab

diag
n n

 

(Brunner, 1997). 
 

Results 
 

A simulation study was performed using SAS 
version 8.02 for a two-way layout with 

4 and 3a b= = , for various sample sizes. The 
model used for all simulations was 
 

2

,

 1,2,3,4, 1,2,3,

 1,..., , (0, )

= + + +

= =

= ∼

ijk i j ij ijk

ij ijk ij

Y a b ab

i j

k n N

ε

ε σ

. 

 
  The classical F test from ANOVA 
(denoted by F), assuming normality and equal 
variances, and the adjusted F-test (denoted by FB) 
of Brunner, et al. (1997) were calculated for 5000 
samples and the probabilities of rejection 
estimated using an α = 0.05. Differences in Type I 
error rates and powers are investigated for 
different sample sizes, effect sizes, and variance 
structures. 
 
Case 1: Homogeneous errors, equal sample sizes. 

  For this case, we let 
21,..., , (0, )ijk ik n Nε σ= ∼ . Table 1 shows 

nominal Type I error rate for both methods, for 
various sample sizes. Note that the FB statistic 
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underestimates the nominal level when n is small, 
but for sample size as small as n = 7, the nominal 
rates are comparable to the classical ANOVA test. 
As sample size increases beyond n = 7, the 
nominal rate remains stable near the target 

0.05α = . 
 Tables 2 and 3 give proportion of 
rejections when factor A effect is present, and 
when both main effects are present, respectively, 
for n = 3 and n = 7. When 3n = , the test based on 
the FB statistic has less power than the F statistic, 

and underestimates the nominal rate, especially for 
the test of interaction and when the effect size is 
small. When 7n = , power and nominal rate are 
very similar, with the exception that the nominal 
rate for interaction is still a bit too low. 
 Table 4 shows that when interaction only 
is present, the FB statistic again has less power for 
the small sample size case. When the sample size 
is 7n = , power is comparable for both tests, 
especially when effect sizes are not very small. 

 
 

Table 1. Proportion of rejections at 0.05α = , normally distributed errors, equal variance, based on 5000 
samples, no effects present, equal cell sample sizes. 
 
  n      
Test for: Method 2 3 5 7 10 20 
        
Main Effect A F .0492 .0496 .0478 .0482 .0494 .052 
 FB .0130 .0284 .0412 .0448 .0462 .0512 
        
Main Effect B F .0466 .0522 .0526 .0530 .052 .0466 
 FB .0142 .0360 .0448 .0502 .0502 .0466 
        
Interaction F .0458 .0470 .0474 .0512 .053 .0488 
 FB .0086 .0222 .0326 .0402 .0456 .0462 
 

 
Table 2. Proportion of rejections at 0.05α = , normally distributed errors, equal variance, based on 5000 
samples, factor A effect present (a1=c, a3=-c), equal cell sample sizes. 
 
  n = 3   n = 7   
  c   c   
Test for: Method .5 1.0 1.5 .5 1.0 1.5 
        
Main Effect A F .3446 .9302 1.000 .7530 .9998 1.000 
 FB .2642 .8876 .9992 .7370 .9998 1.000 
        
Main Effect B F .0522 .0522 .0522 .0530 .0530 .0530 
 FB .0360 .0360 .0360 .0502 .0502 .0502 
        
Interaction F .0470 .0470 .0470 .0512 .0512 .0512 
 FB .0222 .0222 .0222 .0402 .0402 .0402 
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Table 3. Proportion of rejections at 0.05α = , normally distributed errors, equal variance, based on 5000 
samples, factor A and B effects present (a2=b1=c, a3=b2=-c), equal cell sample sizes. 

 
  n = 3   n = 7   
  c   c   
Test for: Method .5 1.0 1.5 .5 1.0 1.5 
        
Main Effect A F .3440 .9214 .9998 .7422 1.000 1.000 
 FB .2604 .8780 .9986 .7276 1.000 1.000 
        
Main Effect B F .5268 .9902 1.000 .9140 1.000 1.000 
 FB .4576 .9830 1.000 .9100 1.000 1.000 
        
Interaction F .0470 .0470 .0470 .0512 .0512 .0512 
 FB .0222 .0222 .0222 .0402 .0402 .0402 

 
 

Table 4. Proportion of rejections at 0.05α = , normally distributed errors, equal variance, based on 5000 
samples, interaction effect present (ab11=ab33=c, ab13=ab31=-c), equal cell sample sizes. 

 
  n = 3   n = 7   
  c   c   
Test for: Method .5 1.0 1.5 .5 1.0 1.5 
        
Main Effect A F .0496 .0496 .0496 .0482 .0482 .0482 
 FB .0284 .0284 .0284 .0448 .0448 .0448 
        
Main Effect B F .0522 .0522 .0522 .0530 .0530 .0530 
 FB .0360 .0360 .0360 .0502 .0502 .0502 
        
Interaction F .1584 .5976 .9460 .4276 .9828 1.000 
 FB .0842 .4368 .8734 .3864 .9762 1.000 

 
 

Case 2: Heterogeneous errors, equal sample sizes. 
 Here we consider:  
 

2 21,..., , (0, (1 * /2) )ijk ijk n N i jε σ= = +∼ ,   
 
(errors increasing with the levels of A). Tables 5, 6 
and 7 are heterogeneous analogs to Tables 2, 3 and 
4, respectively.  They compare the tests under 
variance heterogeneity. Note that the classical F-

test shows inflated nominal rates for all effects, 
with the test for interaction the most inflated. The 
inflation becomes more severe as the ratio 
between smallest and largest variances becomes 
larger. The test using the Box-type adjustment, 
however, maintains the correct nominal rate in all 
conditions considered. 
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Table 5. Proportion of rejections at 0.05α = , normally distributed errors with unequal variance (variance 
increasing with factor A levels, ratio of largest to smallest variance ≈ 10 to 1), based on 5000 samples, factor 
A effect present (a1=c, a3=-c), equal cell sample size: ni=7. 

 
  c    
Test for: Method 0 .5 1.5 2.5 
      
Main Effect A F .0592 .1684 .9518 .9998 
 FB .0490 .1384 .9266 .9998 
      
Main Effect B F .0564 .0564 .0564 .0564 
 FB .0482 .0482 .0482 .0482 
      
Interaction F .0728 .0728 .0728 .0728 
 FB .0486 .0486 .0486 .0496 

 
 

Table 6. Proportion of rejections at 0.05α = , normally distributed errors with unequal variance (variance 
increasing with factor A levels, ratio of largest to smallest variance ≈ 22 to 1), based on 5000 samples, factor 
A effect present (a1=c, a3=-c), equal cell sample size: ni=7. 

 
  c    
Test for: Method 0 .5 1.5 2.5 
      
Main Effect A F .0652 .1008 .5324 .9672 
 FB .0488 .0750 .4408 .9392 
      
Main Effect B F .0612 .0612 .0612 .0612 
 FB .0488 .0488 .0488 .0488 
      
Interaction F .0824 .0824 .0824 .0824 
 FB .0494 .0494 .0494 .0494 

 
 

Table 7. Proportion of rejections at 0.05α = , normally distributed errors with unequal variance (variance 
increasing with factor A levels, ratio of largest to smallest variance ≈ 22 to 1), based on 5000 samples, factor 
A and B effects present (a2=b1=c, a3=b2=-c), equal cell sample size: ni=7. 

 
     
Test for: Method .5 1.5 2.5 
     
Main Effect A F .1030 .5234 .9518 
 FB .0784 .4422 .9220 
     
Main Effect B F .1228 .7868 .9980 
 FB .1014 .7298 .9962 
     
Interaction F .0824 .0824 .0824 
 FB .0494 .0494 .0494 
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Case 3: Homogeneous errors, unequal sample 
sizes. 
 In this case we consider: 
 

1,..., , (0,1)ij ijkk n Nε= ∼ , 
 

 where 1 2 3 47, 8, 9, 10= = = =j j j jn n n n . Here 
there was little difference in the performance of 
the two tests (See Tables 8 and 9). The Box-
adjusted test showed slightly higher power in 
some cases. 
 
Case 4: Heterogeneous errors, unequal sample 
sizes. 

Here we consider: 
21,..., , (0, )ij ijk ik n Nε σ= ∼ , 

with 1 2 3 47, 8, 9, 10j j j jn n n n= = = = .  When the 
largest variance was associated with the smallest 
sample the classical F-test always had inflated 
nominal Type I error rates (often more than twice 
the nominal rate) for any effects not present, while 
the Box-adjusted test maintained expected 
nominal Type I error rates (See Tables 10, 11 and 
12). The classical F-test had greater power for 
small effect sizes, but the power advantage 
became negligible as the effect size increased.  
 Although not shown here, when the 
largest variance was associated with the largest 
sample the power of the two tests was essentially 
equivalent, with the Box-adjusted test often having 
a slight power advantage. The classical F-test 
tended to underestimate the Type I error rate for 
effects not present. 

 
 
Table 8. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and equal variances, based on 5000 samples, factor A effect present 
(a1=c, a3=-c). 
 

  C   
Test for: Method 0 .5 1.5 
Main Effect A F .0482 .7962 1.000 
 FB .0500 .8258 1.000 
Main Effect B F .0518 .0552 .0598 
 FB .0514 .0514 .0514 
Interaction F .0500 .0502 .0462 
 FB .0414 .0414 .0414 

 
Table 9. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and equal variances, based on 5000 samples, factors A and B effects 
present (a2=b1=c, a3=b2=-c). 
 

  C  
Test for: Method .5 1.5 
Main Effect A F .8002 1.000 
 FB .8302 1.000 
Main Effect B F .9596 1.000 
 FB .9564 1.000 
Interaction F .0498 .0496 
 FB .0420 .0420 
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Table 10. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and unequal variances ( 2 2 2 2

1 2 3 410, 5, 2, 1j j j jσ σ σ σ= = = = ), based on 
5000 samples, factor A effect present (a1=c, a3=-c). 
 

  c   
Test for: Method 0 .5 1.5 
     
Main Effect A F .1056 .2902 .9850 
 FB .0476 .1666 .9422 
     
Main Effect B F .1000 .1024 .1034 
 FB .0418 .0418 .0418 
     
Interaction F .1244 .1246 .1230 
 FB .0494 .0494 .0494 

 
 

Table 11. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and unequal variances ( 2 2 2 2

1 2 3 410, 5, 2, 1j j j jσ σ σ σ= = = = ), based on 
5000 samples, factor A and B effects present (a2=b1=c, a3=b2=-c). 
 

  C   
Test for: Method .5 1.0 1.5 
     
Main Effect A F .3070 .8176 .9944 
 FB .1634 .6660 .9788 
     
Main Effect B F .4522 .9450 .9992 
 FB .3174 .8852 .9980 
     
Interaction F .1242 .1224 .1208 
 FB .0494 .0494 .0494 

 
Table 12. Proportion of rejections at 0.05α = , normally distributed errors with unequal sample sizes 
( 1 2 3 47, 8, 9, 10j j j jn n n n= = = = ) and unequal variances ( 2 2 2 2

1 2 3 410, 5, 2, 1j j j jσ σ σ σ= = = = ), based on 
5000 samples, interaction effect present (ab11=ab33=c, ab13=ab31=-c). 

  C   
Test for: Method .5 1.5 2.5 
     
Main Effect A F .1060 .1046 .1016 
 FB .0476 .0476 .0476 
     
Main Effect B F .1032 .1018 .1026 
 FB .0418 .0418 .0418 
     
Interaction F .2128 .8278 .9996 
 FB .0938 .6324 .9898 
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Conclusion 

 
Based on our results and the results of Brunner, et 
al. (1997), we agree with those authors that there 
is no reason to use the classical ANOVA F-test, as 
long as cell sample size is at least 7. For smaller 
samples, when the normal theory assumptions 
hold, we prefer the classical ANOVA F-test, since 
the FB statistic becomes very conservative in this 
case. When samples are very small and variances 
are not equal, the ANOVA test suffers from 
inflated nominal levels and thus should be used 
with caution. The FB test, on the other hand, is 
always conservative in these situations, and thus is 
a good choice for those concerned mostly with 
avoiding making Type I errors. The obvious trade-
off for small sample sizes, however, is that the FB 
test is virtually powerless to detect small to 
moderate effects. 
 
Example 1. 
 We illustrate the method using an example 
given in Sokal and Rohlf (1995). The data are 
from an experiment to examine differences in food 
consumption when rancid lard was substituted for 
fresh lard in the diet of rats. The data are classified 
by fat (fresh, rancid) and gender (male, female). 
The amount of food eaten (in grams) is given in 
the following table: 
 
 Fats  

 Fresh Rancid 
Gender   

Male 709 592 
 679 538 
 699 476 
   
Female 657 508 
 594 505 
 677 539 
  
 A SAS program (available from the first 
author) was used to compute the p-values for both 
the ANOVA F-test and the FB test. Since cell 
sample sizes are equal, values of the F and FB 
statistics are identical. Notice that although the 
sample sizes are small (n = 3), there is very little 

difference between the p-values associated with 
the two methods, and only a strong effect of 
gender is evident from the data.   
 
Source of 
variation 

F p-
value 

FB p-
value 

Fats 2.593 0.146 2.593 0.153 
Gender 41.969 <0.001 41.969 <0.001 
Fats*Gender 0.630 0.450 0.630 0.454 
 
 
Example 2. 
 This example utilizes data presented in 
Kuehl (2000), page 224.  It is a 3x2 factorial 
experiment involving 3 levels of alcohol and two 
levels of base. Note that the data are unbalanced in 
terms of the number of replications per treatment 
combination.    
 Because the cell sample sizes are not 
equal, the calculated test statistics are not the same 
for the two methods, although the conclusions 
might be the same for both methods depending 
upon the level of significance the researcher 
adopted. The FB statistic gives stronger evidence 
for effects of interaction and main effects. 
   
 
 Alcohol   
Base 1 2 3 
1 90.7 89.3 89.5 

 91.4 88.1 87.6 
  90.4 88.3 
   90.3 
Mean 91.05 89.27 88.93 
Std Dev 0.49 1.15 1.21 
    
2 87.3 94.7 93.1 
 88.3  90.7 
 91.5  91.5 
Mean 89.03 94.7 91.77 
Std Dev 2.19 --- 1.22 
 
 
Source of 
variation 

F p-
value 

FB p-
value 

Alcohol 1.931 0.195 4.297 0.053 
Base 7.167 0.023 12.858 0.006 
Alcohol*Base 7.357 0.011 14.087 0.002 
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In this paper, I extend the proposed model by McKeague and Tighiouart (2000) to handle  time-varying 
correlated covariate effects for the analysis of survival data. I use the conditional predictive ordinates    
(CPO’s) for model comparison and the methodology is illustrated by an application to nasopharynx cancer    
survival data. A reversible jump MCMC sampler to estimate the CPO’s will be presented. 
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Introduction 
 
The proportional hazards model of Cox (1972) is 
considered to be the most popular approach to the 
analysis of time-to-event data. In the past three 
decades, many authors have proposed variants of 
this model to relax the somehow restrictive 
proportional hazards assumption and to analyze 
multivariate survival data, see Andersen et al. 
(1992) and Ibrahim, et al. (2001).  
 In this paper, I use the local characteristics 
of Gaussian Markov random fields to describe the 
prior information of the conditional hazard 
function for right-censored survival data. 
McKeague and Tighiouart (2000) modeled the 
conditional hazard function (given covariates z) 
h(t|z) as a product of conditionally independent 
stochastic processes, corresponding to (1) a 
baseline hazard function h0(t), and (2) a regression 
function exp(β(t)’z) representing the effects of 
covariates: 
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 A discretized version of model (2) in 
which the jump times τ1, τ2, …, τk are fixed and the 
levels h1, h2,…, hk-1 form a first order auto-
regressive process has been considered by 
Gamerman (1991) and West (1992). Arjas and 
Gasbarra (1994) and McKeague and Tighiouart 
(2002) extended model (1) by allowing the jump 
times to be random and McKeague and Tighiouart 
(2000) considered a dynamic version of model (2) 
in which the log-levels λi=log(hi) and covariate 
effects βi, i=1,2,… form a Gaussian Markov 
random field. A related Markov random field 
model for the prior intensity of a non-homogenous 
Poisson process was introduced by Arjas and 
Heikkinen (1997), but was not studied in the 
survival analysis context and adjustment for 
covariate effects was not considered. 
  The class of priors used by McKeague and 
Tighiouart (2000) for β(t) implies independence 
between the covariate effects, an assumption that 
may not be true in practice. For instance, in a case 
study of nasopharynx cancer survival data, West 
(1992) and McKeague and Tighiouart (2000) 
showed a clear correlation between the posterior 
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mean effects of the two measures of the extent of 
the cancer, which was not accounted for in the 
model. 
 In  this paper, I extend the model proposed 
by McKeague and Tighiouart (2000) by 
implementing a correlation structure between 
some of the covariate effects in the prior. I use the 
pseudo-Bayes factor for model selection, and 
calculation of the conditional predictive ordinates 
(CPO’s) are performed using the output from the 
Metropolis-Hastings-Green (MHG) algorithm 
(Metropolis et al., 1953; Hastings, 1970; Green 
(1995). The analysis indicates that the null 
hypothesis of no correlation between the effects of 
the two measures of the extent of the cancer is 
rejected and a correlated prior process should be 
used to estimate conditional survival probabilities. 

 
Methodology 

 
Let T1,…,Tn be nonnegative independent random 
variables with associated p-dimensional covariate 
vectors zj, j = 1,…, n. Assume that the data may be 
subject to right censoring, i.e., we observe (X1, δ1, 
z1),…, (Xn, δn, zn) where Xj = min(Tj, Uj), Uj being 
the censoring time for the j-th individual, and δj = 
I{Tj ≤ Uj}. The conditional hazard function is 
given by (2), where I{} is the indicator function, 0 
= τ1 < τ2 < τ3 < … is an increasing sequence of 
jump times, the hi's represent the levels of the 
baseline hazard function h0(t), and {βi, i ≥ 1} = 
{(βi1,…,βip)’, i≥1} is a p-dimensional process 
describing the effect of covariate vector z.  

Let τmax = max{Xj, 1≤j≤ n}. The Bayesian 
approach consists of putting a prior distribution on 
the p covariate effects and the unknown baseline 
hazard function. The jump times τ2, τ3, … form a 
time-homogeneous Poisson process with rate γ. 
The pr ior distributions of the remaining parts of 
the model are specified conditionally given the 
number m of τi, i ≥ 1 in the interval [0, τmax], as 
follows. 

  
Covariate Effects Prior 
 I specify βm = {βkj: k=1,…, m, j=1,…, p} 
to be a Gaussian Markov random field with a 
neighborhood system {∂ (k , j)} of the following 
form: ∂ (k , j) = {(k-1, j), (k+1, j), (k , l), l∈ ∂ (j)}, 
where {∂ (j), j = 1,…, p} is a given neighborhood 
system for the covariate effects. This means that 

interactions in time are only permitted between the 
same components of the covariate effects. The 
model then amounts to: 
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 In addition, I assume only pairwise 
interaction between the covariate effects. It 
follows that the conditional mean νkj is given by 
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see Cressie (1993, Ch. 6). 

 
 The hyperparameters µkj = E(βkj), k = 1,…, 
m represent the trend in the levels of the j-th 
covariate effect, skj, rkj are used to smooth the j-th 
covariate effect, and ρkl, l∈∂(j) measure the 
correlation between βkj and βkl, l∈∂ (j). The 
distribution of βm is completely determined by its 
local characteristics provided the hyperparameters 
satisfy the following conditions: skj, rkj, ρkl, l∈∂ (j) 
are nonnegative with 
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kj kj kl klρ σ ρ σ=  for j∈∂ (l), 

 
see, e.g., Besag and Kooperberg (1995). 
McKeague and Tighiouart (2000) introduced a 
way of controlling the hyperparameters by the 
length of adjacent time intervals and I can adapt 
their approach to the present setting as follows: 
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where 1k k k+∆ = ∆ − ∆  is the gap between the k-th 
and (k+1)-st jump times, 2 ≤ k  ≤ m-1, and the 
parameters cj, σj > 0, and ρ ≥ 0 satisfy  

 
2

( )

1,j l
l j

c ρ σ
∈∂

+ <∑  j=1,…, p.  (4) 

 
 The parameter γ controls the rate of jump 
times, cj controls the nearest neighbor interaction 
between the levels of the j-th covariate effect, σj 
represents the precision of the prior information of 
the j-th covariate effect, and ρ controls the 
dependency structure between neighboring 
covariate effects: higher values of ρ signify greater 
correlation, and ρ = 0 gives rise to the 
conditionally independent time-varying covariate 
effects model analyzed by McKeague and 
Tighiouart (2000). For simplicity of presentation, I 
restrict attention to the case µkj = µj which 
indicates constant prior levels in the mean of the j-
th covariate effect. 
 The distribution of βm is Gaussian with 
mean vector µβm and covariance matrix (Imp-C1)-1 
M1, where µβm ={µkj: k=1,…, m, j=1,…, p}, C1 is 
an mp × mp matrix defined as follows. For j=1,…, 
p and i=m(j-1),…, mj, ci,i+1=rij, ci,i-1=sij, ci,i+ml=ρ il, 
for l ∈ ∂(j), ci+ml,i=ρ i+ml,i for i ∈ ∂(j), clk=0 
otherwise, M1=diag(σ2

kj, k=1,…, m, j=1,…, p), and 
Imp is the identity matrix. 

 
Baseline Hazard Prior 
 Let λi = log(hi). The prior distribution for 
the levels of the log-baseline hazard λ1,…, λm is 
taken to be the same as the prior for the j-th 
covariate effect when p=1. Denote by µk = E(λk) 
the trend in the levels of the baseline hazard 
function, 2

kσ  the conditional variance of λk given 
λi, i≠k , and sk, rk the influences of the left and right 
neighbors of λk, respectively. The corresponding 
nearest neighbor interaction and precision of the 
prior information parameters will be denoted by c 
and σ, respectively. 
 In what follows, I denote by λm both the 
random vector (λ1,…,λm) and the last log-level of 
the baseline hazard function. The joint distribution 
of λm=(λ1,…,λm) is Gaussian with mean vector µλm  
and covariance matrix (Im-C)-1 M, where µλm = 
(µ1,…,µm), C = (cij)1≤i,j≤m, ci,i+1 = ri, ci,i-1 = si, M = 

diag( 2
1σ ,…, 2

mσ ), and Im is the identity matrix. 
Again, I will assume that µi  = µ indicating a 
constant prior level in the mean of the log-baseline 
hazard function.  

 
Data Likelihood and Posterior 
 For k = 1,…, p, and i = 1,…, m, let Ni be 
the number of observed deaths in the interval (τi, 
τi+1], 

1{ : , 1}i j i j
ik jkj X

W z
τ τ δ+< ≤ =

= ∑ , and Wi = (Wi1,…, 

Wip) with τm+1 = τmax. Assuming that the censoring 
mechanism is non-informative, the likelihood is 
proportional to the product form 
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 Let τm = (τ1,…,τm), and λm = (λ1,…, λm), 
then the posterior density of the parameter (τm, λm, 
βm) is proportional to the product of the prior and 
likelihood 
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where A = M-1(Im-C) and A1 = M1

-1(I2m-C1). 
 
 I use a reversible jump MCMC algorithm 
to extract features from this posterior distribution, 
see the appendix. 

 
Model Comparison 
 In this section, I test the null hypothesis 
H0: ρ = 0 against the alternative H1: ρ > 0. This is 
equivalent to selecting between the conditionally 
independent time-varying covariate effects model 
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M1 analyzed by McKeague and Tighiouart (2000) 
and model M2, in which the covariate effects 
satisfy (3). Pseudo-Bayes factor is used to select 
the best model (Gelfand et al. (1992)), and its 
calculation uses the output of the MHG sampler. 
 Let X = (X1,…, Xn) denote the data vector, 
and θ = (λ(t), β(t)) be the model parameter. The 
predictive density is ( ) ( | , ) ( ) ,f X f X z dθ π θ θ= ∫  

where π(θ) denotes the prior density of θ and the 
conditional predictive ordinate (CPO) is given by 
 

( )
( )
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i i
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f Xf X X
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f X X z X dθ π θ θ

 

 
where X(i) is the data vector X with Xi deleted. The 
pseudo-Bayes factor is given by 
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and model selection proceeds by choosing M1 (M2) 
according to B > (<) 1. For a complete discussion 
and justification of this technique, see Geisser and 
Eddy (1979), Box (1980), Gelfand et al. (1992), 
and Gelfand and Mallick (1995). 
 Exact calculation of B is not possible, 
however Monte Carlo estimates of the CPO's can 
be obtained using the output of the MHG sampler 
θ1,…, θN and the idea of importance sampling 
density, see Gelfand and Dey (1994). The 
approximation is given by 

 
1
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1

1( | )
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N

i i
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 For a censored observation, I compute the 
conditional survival function S(Xi|X(i), Mj), j=1, 2. 

 
Results 

 
West (1992) and McKeague and Tighiouart (2000) 
studied data on 181 nasopharynx cancer patients 
whose cancer careers, culminating in either death 
(127 cases) or censoring (54 cases) are recorded to 
the nearest month, ranging from 1 to 177 months. 

The analyses were based on five covariates: (1) 
Sex of the patient (0 for male, 1 for female); (2) 
Age of the patient at time t = 0, the start of 
monitoring of the cancer career of that patient 
(standardized to have zero mean and unit standard 
deviation across all patients in the study); (3) 
Dosel, an average measure of the extent of 
radiotherapy treatment to which the patient has 
been subjected (also standardized, as with age); (4) 
Tumor1, a measurement of the extent of the cancer 
(in terms of an estimate of the number of 
cancerous cells), taking value 1, 2, 3 or 4; (5) 
Tumor2, a measure similar to Tumor1, taken from 
a different X-ray section, again taking values 1, 2, 
3 or 4.  

The right hand side of Figure 1 (following 
page) shows the posterior mean effects for tumor1 
and tumor2 obtained by McKeague and 
Tighiouart, and the left hand side the estimates 
obtained by West. The similar pattern of the 
posterior mean effects of tumor1 and tumor2 
suggests that a correlated prior process for the two 
effects is more realistic. I therefore fitted model 
M2 with ρ = 1/2 and compared it with model M1, 
fitted by McKeague and Tighiouart, which 
corresponds to ρ = 0. The remaining 
hyperparameters were the same for both models, 
and can be found in McKeague and Tighiouart 
(2000). The logarithm of the pseudo-Bayes factor 
is found to be 
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suggesting that a time-varying correlated covariate 
effect should be used to estimate conditional 
survival probabilities. 
 
 
 



MOURAD TIGHIOUART 165 

Conclusion 
 

I have presented a complete nonparametric 
Bayesian approach to inference from right-
censored survival data. The methodology is an 
extension of the model proposed by McKeague 
and Tighiouart (2000) in the sense that the 
Bayesian model accounts for any correlation 
structure between some of the time-varying 
covariate effects in the prior. Except for the 
constraints (4), direct specification of the 
parameter controlling the amount of correlation 
between the covariate effects is not possible. A 
second stage prior can easily be placed on the 
hyperparameter ρ ; I did not pursue this hierarchy 

here because my goal is to simplify the 
presentation of this methodology. 

The computational method used to extract 
features of the posterior distribution is similar to 
the one used in McKeague and Tighiouart (2000). 
The only difference is the extra term involved in 
the prior ratio of the correlated covariate effects. 
This is very convenient when writing the codes of 
this sampler. 

The methodology was illustrated by an 
analysis of a nasopharynx cancer survival data set. 
The class of prior processes defining the Bayesian 
model was flexible enough to detect a correlation 
structure between some of the time-varying 
covariate effects; in particular, pseudo-Bayes 
factors were calculated to support this evidence.  

 
 

Figure 1. 

 
 
 

  



MODELING CORRELATED TIME-VARYING COVARIATE EFFECTS 166 

References 
 
Andersen, P. K., Borgan, O., Gill, R. D., & 

Keiding, N. (1992). Statistical Models Based on 
Counting Processes. New York: Springer-Verlag. 

Arjas, E., & Gasbarra, D. (1994). Nonparametric 
Bayesian Inference for Right-Censored Survival 
Data, Using the Gibbs Sampler. Statistica Sinica, 2, 
505-524. 

Arjas, E., & Heikkinen, J. (1997). An Algorithm 
for Nonparametric Bayesian estimation of a Poisson 
intensity. Journal of Computational Statistics, 12, 
385-402. 

Besag, J. E., & Kooperberg, C. (1995). On 
Conditional and Intrinsic Autoregressions. 
Biometrika, 82, 733-746. 

Cox, D. R. (1972). Regression Models and Life-
Tables (with discussion). Journal of the Royal 
Statistical Society, B 34, 187-220. 

Cressie, N. (1993). Statistics for Spatial Data. 
New York: Wiley. 

Gamerman, D. (1991). Dynamic Bayesian 
Models for Survival Data. Applied Statistics, 40, 63-
79. 

Gelfand, A. E., Dey, D. K., & Chang, H. (1992). 
Model Determination using Predictive Distribution 
with Implementation via Sampling-Based Methods. 
Bayesian Statistics 4, 147-167. 

Gelfand, A. E., & Dey, D. K. (1994). Bayesian 
Model Choice: asymptotics and exact calculations. 
Journal of the Royal Statistical Society, B 56, 501-
514. 

Gelfand, A. E., & Mallick, B. K. (1995). 
Bayesian Analysis of Proportional Hazards Models 
Built from Monotone Functions. Biometrics, 51, 843-
852. 

Green, P. J. (1995). Reversible Jump Markov 
Chain Monte Carlo Computation and Bayesian 
Model Determination. Biometrika, 82, 711-732. 

Hastings, W. K. (1970). Monte Carlo Sampling 
Methods using Markov Chains and their 
Applications. Biometrika, 57, 97-109. 

Ibrahim, J. G., Chen, M.-H., & Sinha, D. (2001). 
Bayesian Survival Analysis. New York: Springer-
Verlag. 

McKeague, I. W., & Tighiouart, M. (2002). 
Nonparametric Bayes Estimators for Hazard 
Functions Based on Right Censored Data. Tamkang 
Journal of Mathematics, 33, No 2, 173-189. 

McKeague, I. W., & Tighiouart, M. (2000). 
Bayesian Estimators for Conditional Hazard 
Functions. Biometrics, 56, 1007-1015. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, 
M. N., Teller, A. H., & Teller, E. (1953). Equation of 
State Calculations by Fast Computing Machines. 
Journal of Chemical Physics, 21, 1087-1092. 

West, M. (1992). Modelling Time-Varying 
Hazards and Covariate Effects. Survival Analysis: 
State of the Art, J. P. Klein, P. K. Goel, eds. Kluwer, 
Boston, 47-62. 
 

Appendix 
 

To simplify the description of the algorithm, I will 
assume that p=2 and will denote by α(t) and β(t) the 
two time-varying correlated covariate effects and µα, 
µβ their constant prior means, respectively. The 
constant prior mean of the log-baseline hazard 
function λ(t) will be denoted by µλ. The procedure 
for calculating features of the posterior distribution 
of (τm, λm, αm, βm) (note that here m is random) 
consists of running a reversible Markov chain on the 
state space 

1
i

i

S S
≥

= ∪ , where 3i
i iS D= ×R , and 

Di={(x1, x2,…, xi): 0 = x1 < x2< …< xi <τmax}, using 
the Metropolis-Hastings-Green algorithm.  
 A transition from (τm, λm, αm, βm) to 

' ' ' '
' ' ' '( , , , )m m m mτ λ α β  is accomplished by randomly 

selecting one of five types of moves (H0, Hα, Hβ, B, 
D): a change of height of a randomly selected level 
of the baseline hazard rate, change of height of a 
randomly selected level of the covariate effect α(t), 
change of height of a randomly selected level of the 
covariate effect β(t), birth of a new jump time at a 
randomly selected location in (0,τmax), and death of a 
randomly selected jump time, respectively.  
 When selecting moves of type H0, Hα, Hβ, 
the acceptance probability is the same as in the 
classical Metropolis-Hastings algorithm:  

min {1, (likelihood ratio) × (prior ratio) × 
(proposal ratio)}, 

whereas if moves of type B or D are selected, the 
current state (τm, λm, αm, βm) is mapped onto 

' ' ' '
' ' ' '( , , , )m m m mτ λ α β  by a one-to-one transformation τ. 

The acceptance probability then takes the form: 
min {1, (likelihood ratio) × (prior ratio) × 
(proposal ratio) × J(τ)}, 
 

where J(τ) is the Jacobian of the transformation τ. 
Except for the  expressions of the prior ratios in the 
moves of type Hα, Hβ, B, and D, a complete 
description of the types of moves, transformation τ, 
expressions of the likelihood and proposal ratios, and 
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A More Efficient Way Of Obtaining A Unique Median Estimate For Circular Data 
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The procedure for computing the sample circular median occasionally leads to a non-unique estimate of the 
population circular median, since there can sometimes be two or more diameters that divide data equally and 
have the same circular mean deviation. A modification in the computation of the sample median is suggested, 
which not only eliminates this non-uniqueness problem, but is computationally easier and faster to work with 
than the existing alternative. 
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Introduction 
 
Two common choices for summarizing the 
preferred direction are the mean direction and the 
median direction. (Fisher 1993, p. 30-36). The 
notion of preferred direction in circular data is 
analogous to the “center” of a distribution for data 
on a linear scale. The sample mean direction is 
frequently preferred for moderately large samples, 
because when combined with a measure of sample 
dispersion, it acts as a summary of the data 
suitable for comparison and amalgamation with 
other such information. An alternative, the  sample 
median, can be thought of as balancing the number 
of observations on two halves of the circle.  

Because there is no natural preferred 
direction for data that are uniformly distributed 
around the circle, it is natural and desirable that 
any measures of preferred direction are undefined 
if the sample data are equally spaced around the 
circle. In this paper, we consider estimating the 
preferred direction for a sample of unimodal 
circular data.  
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Ko and Guttorp (1988) showed that for a 
very wide class of families of distributions on Sp-1, 
the mean has infinite standardized gross error 
sensitivity; i.e., the asymptotic effect of a small 
contamination can be  large compared with the 
dispersion. Hence, for the purposes of robust 
estimation, it is desirable to have a version of the 
sample median for circular data. As a 
nonparametric and robust estimate for the 
preferred direction of a distribution, the circular 
median has a different character from the sample 
circular mean as illustrated by different breakdown 
properties.  

The sample median direction θ̂  of angles 

1θ , . . ., nθ  is defined to be the point P on the 
circumference of the circle that satisfies the 
following two properties: (a) The diameter PQ 
through P divides the circle into two semi-circles, 
each with an equal number of observed data points 
and, (b) the majority of the observed data is closer 
to P than to the anti-median Q , See Mardia (1972, 
p. 28-30) or Fisher (1993, p. 35-36), for further 
details. For odd size samples, the medium is an 
observation, while for even sized samples, the 
median is the midpoint of two adjacent 
observations. Observations directly opposite each 
other do not contribute to the preferred direction, 
since these observations balance each other for all 
possible choices of medians. The procedure for 
finding the circular median has the flexibility to 
find a balancing point for situations involving ties, 
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by mimicking the midranking idea for linear data. 
Potential median values are shown in Figure 1. For 
even samples, the candidate values are the 
midpoints of all neighboring observations, as 
shown in Figure 1a. For odd samples, the 
candidate values are the observations themselves, 
as in Figure 1b.  

The circular median is rotationally 
invariant as shown by Ackermann (1997). Lenth 
(1981), and, Wehrly and Shine (1981) studied the 
robustness properties of both the circular mean 
and median using influence curves, and revealed 
that the circular mean is quite robust, in contrast to 
the sample mean on the real line. Durcharme and 
Milasevic (1987), show that in the presence of 
outliers, the circular median is more efficient than 
the mean direction. Many authors, including He 
and Simpson (1992), advocate the use of circular 
median as an estimate of preferred direction 
especially in situations where the data are not from 
the von Mises distribution.  

A strategy to deal with non-unique 
circular median estimates is desired, especially for 
small samples, which are commonly encountered 
in circular data as is the case described below. 

Consider the Frog data, given in Table 1 
and shown in Figure 2, which relates the homing 
ability of Northern cricket frog, Acris 
crepitans, (Ferguson, et. al., 1967). For this data 
set, it is thought that the preferred direction for the 
population is 1210 (where 00 is taken to be true 
North, and angles are measured in a clockwise 
direction), Collett (1980). The sample appears to 
be consist of a single modal group, with one 
observation which can be classified as an outlier. 
We wish to obtain the median as the point estimate 
of the preferred direction. 
 Notice that diameters P1Q1 and P2Q2 both 
divide the data evenly between the two 
semicircles, and hence both P1(1330) and 
P2(140.50) satisfy the definition of a circular 
median. This implies that the median for this data 
set is not unique. A method for dealing with this 
non-uniqueness is the focus of this paper. 
 

 
 
 
 
 

Methodology 
 
To find a unique estimate of median, it is 
suggested to select the angle satisfying the median 
definition, such that it has the smallest circular 
mean deviation (Fisher, 1993, p. 35-36). The 
circular mean deviation is given by 

∑
=

−−−=
n

i
in

d
1

~1
)

~
( θθππθ , where θ

~
 is the 

estimate of the preferred direction, and it is used as 
a measure of dispersion. Computing the circular 
median proposed by Mardia (1972, p. 28,31), 
henceforth referred to as “Mardia Median”,  
occasionally leads to a non-unique estimate of the 
circular median since there can sometimes be two 
or more diameters that divide the data equally and 
have the same circular mean deviation.  

In this section, we adapt the existing 
definition of circular median and propose that the 
estimate of the population circular median be the 
average (circular mean) of all angles satisfying the 
definition of median. This gives a unique estimate 
of the median, henceforth referred to as “New 
Median”.  

For the Frog data above, P1 (1330) and P2 
(140.50) are the two candidate sample medians. 
That is, the point estimate of the preferred 
direction based on Mardia Median can be taken to 
be either P1(1330) or P2(140.50), since both have 
equal circular mean deviation of 0.650759. 
However, based on the new procedure, the point P 
(136.750) in Figure 2 is the circular mean of the 
two sample medians (P1 & P2). We conjecture that 
P will be more robust to rounding and will be a 
unique estimate since it involves local averaging, 
Cabrera et.al. (1994). Note that in this procedure, 
we eliminate the step of computing the circular 
mean deviation of candidate medians.  

However, it is important to point out that 
if we treat P1(1330) and P2(140.50) as equally good 
choices of median, since they have the same 
circular mean deviation, the circular mean 
deviation of P (136.750) is also 0.650759, hence it 
is the unique median. S-Plus functions for 
computing the circular mean direction, the Mardia 
Median and the New Median are given in the 
Appendix. 
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Figure 1: Original Observation o, Potential Median p 
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Figure 1a: Even sample size
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Figure 1b: Odd sample size

 
 
   Table 1: Frog Data-Angles in degrees measured due North. 
   _______________________________________________ 
   104 110 117 121 127 130 136 
   144 152 178 184 192 200 316 
   _______________________________________________ 
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Figure 2: Homing Ability of Northern Cricket Frog
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Results 
 

Comparison of Mardia Median & New Median 
  To determine the relative performance of 
Mardia Median and the New Median, data was 
simulated from a von Mises (VM) distribution 
with probability density function 

)]cos(exp[)](2[)( 1
0 µθκκπθ −= −If , 
πµθ 2,0 <≤  and ∞<≤ κ0 ,  Where µ  is the 

mean direction, κ is the concentration parameter 
and 

∫ ∑
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π κ

φφκπκ
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j
j

j

j
dxosI  

is the modified Bessel function of order zero.  
 
 
Without loss of generality, the center of all the 
distributions considered was .0=µ  Ten thousand 
samples each of sizes between 5 & 20 from the 
distributions with 6 dispersion values ranging from 
κ =0.5 to 10 were obtained. The choice of sample 
size and dispersion values was based on the fact 
that non-uniqueness problems of the circular 
median are most common for small samples and 
large dispersions, so that is what we studied. For 
each sample, the sample circular medians (both 
Mardia Median and New Median) were computed.  

The results were summarized using the 
following measures: 1) Circular mean )ˆ(µ ; and 2) 

circular variance )ˆ1( ρ− of the 10000 estimates 
obtained by solving the equations  

)ˆcos(ˆcos
1

1

µρθ =∑
=

n

i
in

, )ˆsin(ˆsin
1

1

µρθ =∑
=

n

i
in

, 

where ρ̂  is the sample resultant length; 3) the 
95% Empirical Confidence Interval or the central 
95% of the 10000 values; 4)  Circular Mean 
Deviation (CMD) and 5) Circular Median 
Absolute Deviation (CMAD) given by 

Median θ1 − ˜ θ ,..., θn − ˜ θ [ ]. Some of the 

simulation results are given in Tables 2 and 3. 
 Table 2, illustrates the effect of sample 
size on the two measures for 2=κ . The measures 
appear unbiased, since the average of the point 
estimates is very close to zero, the true expected 
value. The confidence bands for the two medians 
are very similar and would be interchangeable for 

most required precision levels and become 
narrower as sample size increases for the two 
measures. The circular variances of the two 
medians, which could range between 1 for 
maximum variability to 0 for no variability, are 
consistently close over the whole range of sample 
sizes considered. Similarly, both the circular mean 
deviation (CMD), and the circular median absolute 
deviation (CMAD) are nearly the same for the two 
measures. These results were similar for other 
concentration parameters studied as well. 

The effect of changing the concentration 
parameter on the two measures of preferred 
direction is illustrated in Table 3 for n = 20. Again, 
the two measures appear unbiased, and their 
confidence bands are very similar. The confidence 
bands become narrower as the concentration 
parameter increases for the two measures. The 
remaining measures for both medians are nearly 
identical for all possibilities. These results were 
similar for other sample sizes studied as well.  
 Note that computationally, the new 
procedure for obtaining the circular median is 
faster and simpler, since it eliminates the step of 
computing the circular mean deviation of each 
candidate median as opposed to Mardia Median. 
From the above results, we observe that the new 
procedure results in an estimate which minimizes 
the circular mean deviation relative to its 
counterpart, utilizing the benefits of local 
averaging. 
 

 
Conclusion 

 
For a fixed sample size and concentration, the 
Mardia Median and New Median give remarkably 
consistent results for all combinations of sample 
sizes and concentrations studied. Most strikingly, 
the two estimators, Mardia Median and New 
Median are approximately identical, which implies 
that either of the two can be used as an estimate of 
preferred direction. Computationally, the new 
measure is easier and faster to work with. Both 
Mardia Median and New Median are robust 
alternatives to the mean. 
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Table 2. Mardia Median and New Median for VM(0, 2). 
 

 
Sample 

Size 

 
Measure 

 
Point Estimate 

Lower & Upper 
Confidence Limits 

 
Circular 
Variance 

 
Mean 

Deviation 

Median 
Absolute 
Deviation 

 
 
5 

Mardia 
 
 

New 

0.001206 
 
 

0.001347 

(-0.914198, 
0.884683) 

 
(-0.913211, 
0.889418) 

0.098107 
 
 

0.098065 

0.559813 
 
 

0.559152 

0.461589 
 
 

0.461589 

 
 
6 

Mardia 
 
 

New 

-0.002618 
 

 
  -0.002350 

(-0.77354, 
0.790136) 

 
(-0.774848, 
0.787038) 

0.075744 
 
 

0.075065 

0.593154 
 
 

0.592542 

0.484028 
 
 

0.484028 
 

 
 
7 

Mardia 
 
 

New 

0.004926 
 
 

0.004867 

(-0.773052, 
0.776042) 

 
(-0.771782, 
0.778294) 

0.075079 
 
 

0.075053 

0.597941 
 
 

0.597611 

0.499424 
 
 

0.499424 

 
 
8 

Mardia 
 
 

New 

-0.003863 
 
 

-0.004103 

(-0.700625, 
0.658065) 

 
(-0.699964, 

0.65746) 

0.059276 
 
 

0.058872 

0.612813 
 
 

0.612625 

0.507610 
 
 

0.507610 

 
9 

Mardia 
 
 

New 

-0.006341 
 
 

-0.006230 

(-0.69237, 
0.673193) 

 
(-0.693563, 
0.668901) 

0.059405 
 
 

0.059312 

0.615008 
 
 

0.614815 

0.515896 
 
 

0.515896 
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10 

Mardia 
 
 

New 

-0.001831 
 
 

-0.001734 

(-0.62134, 
0.631115) 

 
(-0.619628, 
0.631212) 

0.049014 
 
 

0.048872 

0.626990 
 
 

0.626892 

0.524162 
 
 

0.524162 

 
 

15 

Mardia 
 
 

New 

0.000521 
 
 

0.000580 

(-0.53107, 
0.515293) 

 
(-0.531013, 
0.515249) 

0.035605 
 
 

0.03559 

0.641045 
 
 

0.641003 

0.540889 
 
 

0.540889 

 
 

20 

Mardia 
 
 

New 

0.000071 
 
 

0.000010 

(-0.45413, 
0.457305) 

 
(-0.453727, 
0.455789) 

0.02582 
 
 

0.025815 

0.651075 
 
 

0.651067 

0.548252 
 
 

0.548252 

 
 
Table 3: Mardia Median and New Median for VM ),0( µ , n = 20. 

 
 

κ  

 
 

Measure 

 
Point Estimate 

Lower and 
Upper 

Confidence 
Limits 

 
Circular 
Variance 

 
Mean 

Deviation 

Median 
Absolute 
Deviation 

 
 

0.5 

Mardia 
 
 

New 

-0.005483 
 
 

-0.010259 

( -1.796451 
,1.664871) 

 
(-1.787609, 
1.647442) 

0.265584 
 
 

0.263658 

1.189068 
 
 

1.178366 

1.044356 
 
 

1.044356 

 
 
1 

Mardia 
 
 

New 

-0.002878 
 
 

-0.003105 

(-0.775017, 
0.777624) 

 
(-0.777569, 
0.777397) 

0.075995 
 
 

0. 076126 

0.959626 
 
 

0.958215 

0.815823 
 
 

0.815823 

 
   
  2 

Mardia 
 
 

New 

0.000071 
 
 

0.000010 

(-0.45413, 
0.457305) 

 
(-0.453727, 
0.455789) 

0. 02582 
 

 
0. 025815 

0.651075 
 
 

0.651067 

0.548252 
 
 

0.548252 

 
 
4 

Mardia 
 
 

New 

-0.000058 
 
 

-0.000058 

(-0.296221, 
0.285816) 

 
(-0.296221, 
0.285816) 

0.010901 
 
 

0.010901 

0.415821 
 
 

0.415821 

0.350094 
 
 

0.350094 

 
 
8 

Mardia 
 
 

New 

0.000323 
 
 

0.000323 

(-0.191746, 
0.200085) 

 
(-0.191746, 
0.200085) 

0.005015 
 
 

0.005015 
 

0.280498 
 
 

0.280498 
 

0.236698 
 
 

0.236698 
 

 
 

10 

Mardia 
 
 

New 

-0.000812 
 
 

-0.000812 

(-0.176491, 
0.169498) 

 
(-0.176491, 
0.169498) 

0.003927 
 
 

0.003927 

0.249753 
 
 

0.249753 

0.211066 
 
 

0.211066 
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Appendix 
A.1  cmed() 
 This function calculates circular median “New Median”. It is a main program, one that the user will 
need to run. Input: data vector, x. 
cmed<- function(x){ 
lenx <- length(x) 
sx <- sort(x) 
difsin <-c() 
numties <-c() 
if(lenx/2 == round(lenx/2)) { 
# Checks if sample size is odd or even 
# Computes median if sample size is even 
posmed<- checkeven(x) 
for(i in 1:length(posmed)) { 
newx <- sx - posmed[i] 
difsin[i] <-sum(round(sin(newx),10)> 0) - sum(round(sin(newx),10) < 0) 
numties[i] <- sum(round(newx, 10) == 0)} 
} 
else  
# Computes median if sample size is odd 
posmed <- checkodd(x) 
for(i in 1:length(posmed)) { 
newx <- sx - posmed[i] 
difsin[i] <- sum(round(sin(newx),10) >  0) - sum(round(sin(newx),10) < 0) 
numties[i] <- sum(round(newx, 10)  == 0)} 
} 
# Checks for ties 
cm <- c(posmed[round(difsin, 10)  == 0 | abs(difsin) >  numties]) 
circmed <- ave.ang(cm) 
} 
#takes into account if possible circmed are equidistant from mean 
direction 
circmed} 
 
A.2  cmedM() 
 This function calculates Mardia Median. It is a main program, one that the user will need to run. 
Input: data vector, x. 
cmedM <- function(x) {  
lenx <- length(x)  
sx <- sort(x) 
sx2 <- c(sx[2:lenx], sx[1])  
# Determines closest neighbors of a fixed observation 
posmed <- rep(0, lenx)  
difsin  <- rep(0, lenx)  
numties <- rep(0, lenx)  
med <- c()  
if(lenx/2 == round(lenx/2)) {  
\# Checks if sample is odd or even 
posmed <- posmedf(x)  
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# Computes median if sample size is even 
for(i in 1:length(posmed)) {  
newx <- sx - posmed[i] 
difsin[i]<- sum(round(sin(newx),10) > 0) - sum(round(sin(newx),10) < 0)  
numties[i]<- sum(round(newx, 10)  == 0)} 
} 
else {  
# Computes median if sample size is even  
posmed <- checkodd(x)  
for(i in 1:length(posmed)) { 
newx <- sx - posmed[i]  
difsin[i]<- sum(round(sin(newx),10) > 0) - sum(round(sin(newx),10) < 0)  
numties[i]<- sum(round(newx, 10) == 0) } 
} 
# Checks for ties 
cm <- c(posmed[round(difsin, 10) == 0 | round(abs(difsin),10) < numties])  
for (i in 1:length(cm)) {  
# Computes the circular mean deviation for candidate medians 
med[i] <- meandev(x,cm[i]) } 
circmed <- ave.ang(cm[round(med,10) == round(min(med),10)]) 
 } 
 # Chooses the candidate medians with smallest circular mean deviations 
and takes circular mean of them if more that one. 
  
A. 3  ave.ang() 
 This function calculates circular mean direction. It is an internal function needed for the main 
programs. Input: data vector a. 
ave.ang <- function(a) { 
y <- sum(sin(a))  
x <- sum(cos(a))  
ifelse(round(x, 10) == 0 & round(y, 10) == 0, 9999, atan(y, x))} 
# If both x and y are zero, then no circular mean exists, so assign it a 
large number (9999). 
 
A. 4  posmedf() 
 This function calculates all potential medians for even samples 
It is an internal function needed for the main programs. Input: data 
vector x. 
posmedf <- function(x){  
lenx <- length(x) 
sx <- sort(x)  
sx2 <- sx[c(2:lenx,1)]  
# Determines closest neighbors of a fixed observation 
posmed <- c()  
for(i in 1:lenx) {  
posmed[i]<- ave.ang(c(sx[i],sx2[i]))}  
# Computes circular mean of two adjacent observations 
posmed <- posmed[posmed ≠ 9999]  
posmed } 
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A.5  checkeven() 
 This function checks if the number of possible medians is even. It is an internal function for the main 
programs. Input: data vector x. 
checkeven<-function(x){ 
lenx <- length(x) 
sx <- sort(x) 
check <- c() 
# Computes possible medians 
posmed<- posmedf(x) 
for(i in 1:length(posmed)){ 
#Takes posmed[i] as the center, i.e. draws diameter at posmed[i] and 
counts observations on either side of the diameter 
newx <-sx-posmed[i] 
check[i]<-ifelse(sum(round(cos(newx),10)>0)<lenx/2, 9999,posmed[i])} 
nposmed<- check[check≠  9999]  
nposmed } 
  
A. 6  checkodd() 
 This function checks if the number of possible medians is odd. It is an internal function needed for the 
main programs. Input: data vector x. 
checkodd <- function(x) {  
lenx <- length(x)  
sx <- sort(x)  
check <- c()  
posmed <- sx  
# Each observation is a possible median 
for (i in 1:length(posmed)) { 
newx <- sx-posmed[i]  
#Takes posmed[i] as the center, i.e. draws diameter at posmed[i] and 
counts observations on either side of the diameter 
check[i] <- ifelse(sum(cos(newx) > 0) > (lenx-1)/2, 9999,posmed[i]) } 
nposmed <- check[check ≠ 9999]   
nposmed } 
 
A.7  meandev() 
 This function calculates circular mean deviation. It is an internal function needed for the main 
programs. Input: data vector x. 
meandev <- function(x, teta) { 
# Checks if circular mean exists 
ifelse(teta == 9999, 9999, (pi - mean(round(abs(pi -  
(abs(rangeang( x - teta)))), 10))))} 
 
A.8  rangeang() 
 This function puts data in ( )ππ ,−  range. It is an internal function needed for the main programs. 
Input: data vector x. 
rangeang <-function(x) { 
ang <-ifelse(x <  - pi, x + 2 * pi, x) 
ang2<- ifelse(ang > pi, ang - 2 * pi, ang) 
return(ang2)  
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Multinomial logistic regression was applied to data comprising 432 adolescents’ self reports of engagement in 
risky behaviors. Results showed that gender, intention to drop from the school, family structure, self-esteem, 
and emotional risk were effective predictors collectively. Three methodological issues were highlighted: (1) 
the use of odds ratio, (2) the absence of an extension of the Hosmer and Lemeshow test for multinomial 
logistic models, and (3) the missing data problem. Psychologists and educators can utilize findings to plan 
prevention programs, as well as to apply the versatile and effective logistic technique in psychological, 
educational, and health research concerning adolescents.   
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Introduction 
 
Adolescence is a very influential time in the life of 
a young person. It is a time of change and possible 
insecurity, accompanied by low self-esteem and 
emphasis on peer approval (Bergman & Scott, 
2001; Brack, Orr, & Ingersoll, 1988; McGee & 
Williams, 2000). This may be the reason that  
many risky health habits are developed during 
adolescence. One example is smoking. A study 
conducted by Everett and Husten (1999) revealed 
that 81% of college aged students who reported 
ever being daily smokers began smoking before 
the age of 18.  Furthermore, they found that 
among those who ever smoked a whole cigarette, 
43.0% did so for the first time at the age of 14 or 
younger; 23.7% at age 15 or 16. Other researchers 
have come to similar conclusions regarding the 
adoption of risky health habits during adolescents 
(Bergman & Scott, 2001; McGee & Williams, 
2000; Orr, Wilbrandt, Brack, Rauch, & Ingersoll, 
1989). 
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201 N. Rose Ave., Bloomington, IN 47405-1006 
or email peng@indiana.edu. E-mail Rebecca 
Naegle at rnaegle@yahoo.com. We wish to thank 
Gary M. Ingersoll for the use of the data. 

Because many health-endangering 
behaviors are engaged in for the first time during 
adolescence, one goal of health education is to 
reduce the initiation of health-endangering 
behaviors. These behaviors include, but are not 
limited to, unsafe sexual activity (Orr, et al., 1989) 
and the use of alcohol, tobacco, and marijuana 
(McGee & Williams, 2000). It is essential that 
health educators identify those youth at greatest 
risk so that effective programs may be targeted 
specifically toward minimizing or eliminating 
these behaviors. In this paper, we demonstrate the 
utility of multinomial logistic regression model in 
identifying adolescents at greatest health risk from 
their personal as well as family characteristics. 
Psychologists and educators can utilize findings to 
plan prevention programs, as well as to apply the 
versatile logistic regression technique in 
psychological, educational, and health research 
concerning adolescents.   
 Logistic regression is a promising 
statistical technique that can be used to predict the 
likelihood of a categorical outcome variable. It has 
found widespread use in the epidemiological 
literature, where often the dependent variable is 
presence or absence of a disease state. This 
technique has also proven useful in broader areas 
— social sciences (e.g., Chuang, 1997; Janik and 
Kravitz, 1994; Tolman and Weisz, 1995) and 
education, especially higher education (Austin, 
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Yaffee, & Hinkle, 1992, Cabrera, 1994; Peng, So, 
Stage, & St. John, 2002) — than the typical 
epidemiological situation. To prof ile adolescents 
who are at greatest risk of participation in risky 
health behaviors, multinomial logistic regression 
was applied to data comprising 432 adolescents’ 
self reports of engagement in risky behaviors. 
Results are interpreted in terms of substantive and 
methodological implications. The remainder of 
this paper is divided into four sections: (1) 
Methodology, (2) The Multinomial Logistic 
Regression Model, (3) Interpreting and Assessing 
Multinomial Logistic Regression Results, and (4) 
Conclusion. 
 

Methodology 
 

Self-reported health behavior data were collected 
from 517 adolescents enrolled in two junior high 
schools (grades 7 through 9) in the fall of 1988. 
Parents were notified by mail that the survey was 
to be conducted. Both the parents and the students 
were assured of their rights to optional 
participation and confidentiality of students’ 
responses. Written parental consent was waived 
with the approval of the school administration and 
the university Institutional Review Board 
(Ingersoll, Grizzle, Beiter, & Orr, 1993). Among 
the 517 students, 85 did not complete all 
questions. Thus, the final sample size was 432 
(83.4% were Whites and the remaining Blacks or 
others) with a mean age of 13.9 years and nearly 
even composition of girls (n=208) and boys 
(n=224). The problem with missing data is 
addressed later in a section titled Missing Data. 
 Health Behavior Questionnaire (HBQ; 
Ingersoll & Orr, 1989; Resnick, Harris, & Blum, 
1993) and Rosenberg’s self esteem inventory 
(Rosenberg, 1965) were administered on the same 
day to all students in all math classes (a mandatory 
subject). The HBQ asked adolescents to indicate 
whether they engaged in specific risky health 
behaviors (Behavioral Risk Scale) or had 
experienced selected emotions (Emotional Risk 
Scale). Examples of behavioral risk items were “I 
use alcohol (beer, wine, booze),” “I use pot,” and 
“I have had sexual intercourse/gone all the way.” 
These items measured frequency of adolescents’ 
alcohol and drug use, sexual activity, and 
delinquent behavior. They were responded to on a 
4-point ordinal scale (1=never, and 4=about once a 

week). Emotional risk items measured 
adolescents’ quality of relationship with others, 
and management of emotions (e.g., “I have 
attempted suicide,” “I have felt depressed,” etc.).  
Cronbach’s alpha reliability (Nunnally, 1977) was 
0.84 for the Behavioral Risk Scale and 0.81 for the 
Emotional Risk Scale.  
 Adolescents’ self esteem was assessed 
using Rosenberg’s self esteem inventory 
(Rosenberg, 1965). Self-esteem scores ranged 
from 9.79 to 73.87 with a mean of 49.97 and 
standard deviation of 10.09. Furthermore, among 
the 432 adolescents, 12.27% (or 53) indicated an 
intention to drop out of school; 44.68% (or 193) 
were from intact families, 22.69% (or 98) were 
from families with one step-parent, and 32.63% 
(or 141) were from families headed by a single 
parent.  

For the present data, we were interested in 
identifying adolescents at the greatest behavioral 
risk from their gender, intention to drop out from 
school, family characteristics, emotional risks, and 
self-esteem scores. In addition to identifying youth 
at the greatest behavioral risk, we were also 
interested in differentiating adolescents at medium 
level of risk from those at low risk so that 
psychologists and educators could utilize findings 
to design appropriate prevention programs to help 
adolescents with different needs. Given the 
objective of this study, the research hypothesis 
posed to the data was stated as follows: “the 
likelihood that an adolescent is at high, medium, 
or low behavioral risk is related to his/her gender, 
intention to drop out of school, family structure, 
emotional risk, and self esteem.” The dependent 
variable was students’ risk level on the Behavioral 
Risk Scale of the HBQ; it is hereafter referred to 
as the RISK variable. The explanatory variables 
included gender, intention to drop out of school, 
type of family structure, emotional risk, and self-
esteem scores. 
 Scores on the Behavioral Risk Scale of the 
HBQ ranged from 40.44 to 66.81 with a mean of 
47.69 and a standard deviation of 10.89. 
Adolescents at highest behavioral risk (n=29) were 
identified to be those scored at least one standard 
deviation above the mean, i.e., 60 or higher. Those 
scored between 45 and 59 were identified to be at 
medium behavioral risk (n=170), and those scored 
between 44 and 40 were at low behavioral risk 
(n=233). The cutoff used to separate those at 
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medium risk from those at low risk was the 
median of the distribution (between 44 and 45), 
given the positive skewness of the scores on the 
Behavioral Risk Scale and the 4- point scale used 
for each item. Those classified as at low behavior 
risk were adolescents who answered, on the 
average, between “never”, coded as 1, and “once 
in a while”, coded as 2. 
 The relationship between the RISK 
dependent variable and each of the three 
categorical explanatory variables is shown in 
Tables 1A through 1C. According to Table 1A, 
boys were classified into high or medium 
behavioral risk groups more frequently than girls 
while the trend was reversed for the low risk 
group. Table 1B revealed that adolescents 
intending to drop out of school were more likely to 
exhibit high or medium behavioral risk than those 
without such an intention. As for the relationship 
between family structures and behavioral risk, a 
majority of adolescents from either intact or step-
parent families exhibited a low level of behavioral 
risk whereas a majority of those from single -
parent families showed a medium level of 
behavioral risk (Table 1C). 
 
Table 1A. Distribution of Gender and Three 
Levels of Behavioral Risk. 
 
Behavioral Risk Gender  Total 
Levels  Girls=0 Boys=1  

High Risk 5 24 29 
Medium Risk  66 104 170 
Low Risk 137 96 233 
Total 208 224 432 
 

Table 1B. Distribution of Dropout and Three 
Levels of Behavioral Risk. 

 
Behavioral Risk Dropout  Total 
Levels  No=0 Yes=1  

High Risk 15 14 29 
Medium Risk  137 33 170 
Low Risk 227 6 233 
Total 379 53 432 
 

 

Table 1C. Distribution of Family Structure and 
Three Levels of Behavioral Risk. 
 
Behavioral 
Risk 

Family Structure Total  

Levels  Intact=1 Step=2 Single=3  

High Risk 8 7 14 29 
Medium Risk 62 38 70 170 
Low Risk 123 53 57 233 
Total  193 98 141 432 
 

The Multinomial Logistic Regression Model 
 Logistic regression is well suited for 
describing and testing hypotheses about 
relationships between a categorical dependent 
variable and one or more categorical or continuous 
explanatory variables. Specifically, multinomial 
logistic regression was chosen to answer the 
research question for two reasons. First, 
multinomial logistic regression provides an 
effective and reliable way to obtain the estimated 
probability of belonging to a specific population 
(e.g., high risk adolescents) and the estimate of 
odds ratio of adolescents’ characteristic on their 
behavioral risk (Peng, Lee, & Ingersoll, 2002; 
Peng, Manz, & Keck, 2001; Scott, Mason, & 
Chapman, 1999).  

Second, multinomial logistic regression is 
a procedure by which estimates of the net effects 
of a set of explanatory variables on the dependent 
variable can be obtained (Morgan & Teachman, 
1988). Even though logistic regression has been 
used in health research, the use of multinomial 
logistic regression is rare. In this section, we will 
first describe the general logic behind the 
multinomial logistic regression model. This is 
followed by the specification of a multinomial 
logistic model for the present data in order to 
answer the research question.  

The simplest form of the multinomial 
logistic regression model involves one categorical 
dependent variable Y (e.g., three levels of 
behavioral risk) and one explanatory variable, X 
(e.g., emotional risk score). Let p1= the probability 
of high behavioral risk (Y=3), p2= the probability 
of medium behavioral risk (Y=2), and p3= the 
probability of low behavioral risk (Y=1). The 
simplistic multinomial logistic regression model 
relates the log of odds (or logit) of Y to the 
explanatory variable, X, in a linear form: 
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Note both equations (1) and (2) constitute one 
multinomial logistic model with the constraint that 
Σpi = 1. They model the cumulative probabilities 
with a common slope parameter (b) but different Y 
intercepts (α1, α2). The two Y intercepts are two 
constants in the multinomial logistic model; they 
are not a function of the predictor X. 
 The predictor, X, can be categorical or 
continuous while the outcome (Y) is always 
categorical. Parameters, α1, α2, and β, are typically 
estimated by the maximum likelihood (ML) 
method. The ML method is designed to maximize 
the likelihood of reproducing the data given their 
parameter estimates (Peng, Lee, et al., 2002). The 
value of the coefficient β reveals the direction of 
the relationship between X and the logit of Y.  
When β is greater than 0, larger (or smaller) X 
values are associated with larger (or smaller) logits 
of Y, and the curve will resemble an increasing 
sigmoid (or S-shape). Conversely, if β is less than 
0, larger (or smaller) X values are associated with 
smaller (or larger) logits of Y. Such a relationship 
is often shown in data in the form of a reverse 
sigmoid curve. In other words, an increase in X is 
associated with a decrease in logits of Y and vice 
versa.  

Within the framework of inferential 
statistics, the null hypothesis states that β equals 
zero in the population. Rejecting such a null 
hypothesis implies that a linear relationship exists 
between X and the logit of Y. If an explanatory 
variable is binary, such as gender in Table 1A and 
dropout in Table 1B, the β coefficient can also be 
interpreted as an odds ratio which numerically 
equals e (the natural logarithm base) raised to the 
exponent of β (i.e., eβ). 
 If two or more explanatory variables are 
included in the model (say X1= gender and X2= 
emotional risk score), one may construct a 
complex logistic regression for the logit of Y 
(high, medium, or low levels of behavioral risk) as 
follows: 
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 As noted before, equations (3) and (4) 
constitute one complex multinomial logistic model 
with the constraint that Σpi = 1. They model the 
cumulative probabilities with common slope 
parameters ( ß 1 and ß2) but different Y intercepts 
(α1, α2). The two Y intercepts are two constants in 
the multinomial logistic model; they are not a 
function of the explanatory variables. Explanatory 
variables, X1 and X2, can be categorical or 
continuous while the dependent variable (Y) is 
always categorical. Parameters, α1, α2, ß1, and ß2, 
are estimated by the maximum likelihood (ML) 
method, as in the simple multinomial model. Data 
are entered into the analysis as 1, 2, or 3 coding 
for the trichotomous dependent variable, 
continuous values for continuous explanatory 
variables, and dummy coding (e.g., 0 or 1) for 
categorical explanatory variables.  

The null hypothesis underlying the 
complex multinomial logistic model states that all 
ß’s equal zero. Rejecting this null hypothesis 
implies that at least one ß does not equal 0 in the 
population. The interpretation of ß is rendered 
using odds ratios. If ßj represents the regression 
coefficient for predictor Xj, exponentiating ßj 
yields the odds ratio (eßj). When all other 
explanatory variables are held at a constant, odds 
ratio is the change in the odds of Y given a unit 
change in Xj.  
 For the behavioral risk data, we 
hypothesized the following linear relationship 
might exist: 
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where p1= the probability of high behavioral risk 
(Y=3), p2= the probability of medium behavioral 
risk (Y=2), and p3= the probability of low 
behavioral risk (Y=1), X1=GENDER (boys=1, 
girls=0), X2=intention to drop out of school 
(DROPOUT, yes=1, no=0), X3=family structure 
(FAMILY, intact family=1, step-family =2, and 
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single-parent family=3), X4=emotional risk score 
(EMOTION), and X5=self-esteem score 
(ESTEEM). 
 Alternatively , one can express the same 
functional relationship by taking the antilog 
function of Equations (5) and (6) to obtain a direct 
estimate of the probabilities of behavioral risk: 
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where e=2.71828 is the base of the system of 
natural logarithms. Equation (7) defines p1 
directly, whereas p2 and p3 are derived by 
subtraction; i.e., p2 = (p1 + p2) – p1 = equation 8 – 
equation 7, and p3 = 1 – (p1 + p2) = 1 – equation 8. 
As previously defined, p1= the probability of high 
behavioral risk (Y=3), p2= the probability of 
medium behavioral risk (Y=2), and p3= the 
probability of low behavioral risk (Y=1).    
 
Interpreting and Assessing Multinomial Logistic 

Regression Results 
 

Equations (7) and (8) were fitted to data 
using SAS® PROC LOGISTIC (Version 8e, SAS 
Institute Inc., 1999) in order to support/refute the 
research hypothesis posed earlier that “the 
likelihood that an adolescent is at high, medium, 
or low behavioral risk is related to his/her gender, 
intention to drop out of school, family structure, 
emotional risk, and self esteem.”  The result 
showed that 

 
Predicted logit (Y1=High RISK)= -0.6211 

+ (1.1070)*GENDER + (2.1818)*DROPOUT + 
(0.4135)*FAMILY + (0.00738)*EMOTION +  
(-0.0488)*ESTEEM,                                      (9) 
 
and 
 

Predicted logit (Y1+ Y2 =High + Medium 
RISK) = 2.5220 + (1.1070)*GENDER + 
(2.1818)*DROPOUT + (0.4135)*FAMILY + 
(0.00738)*EMOTION + (-0.0488)*ESTEEM  (10) 

        

The χ2 test of proportional odds 
assumption was insignificant (df=5; p=0.6548), 
indicating that there was no need to fit a second 
model with distinct β parameters (Peterson & 
Harrell, 1990). Hence, Equations (9) and (10) will 
be hereafter referred to as the MLR model. 

 
Interpreting Multinomial Logistic Regression 
Results 

According to the MLR model, the log of 
the odds of an adolescent’s behavioral risk level 
was positively related to gender (p<.0001, Table 
2), intention to drop out of school (p<.0001), and 
family structure (p<.001); it was negatively related 
to self-esteem (p<.0001), and insignificantly 
related to emotional risk (p =0.5211). The positive 
coefficient (1.1070) associated with GENDER in 
the MLR model implied that boys were more 
likely, than girls, to be at high behavioral risk, 
holding all other explanatory variables constant. In 
fact, the odds of a boy being at high behavioral 
risk were 3.025 (= e1.1070, Table 2) times greater 
than the odds for a girl. The same trend was 
observed with the dichotomous variable of 
DROPOUT from school. The odds of teen-age 
students engaging in high or medium risk of 
behavior, than not, were 8.8622 times higher for 
students intending to drop out than students 
without such an intention. This relationship can 
also be seen in Table 1B in which the majority of 
those intending to not stay in school were placed 
in high or medium level of behavioral risk, 
compared to those with intentions to stay in 
school. 

Regarding the third categorical variable 
family structure, interpretation should be based on 
the reference group of intact families. Thus, the 
higher the score on FAMILY, the less stability in 
the family structure and the greater is the 
behavioral risk for adolescents. This interpretation 
was rendered by the positive coefficient associated 
with FAMILY. As a family’s structure changed 
from 1 (intact family) to 2 (step family) or from 2 
to 3 (single family), the odds increased by 1.5121 
for adolescents to be at a higher behavioral risk 
than medium or low risk.  

The coefficient for self-ESTEEM 
indicated that the decrease in log odds of risky 
behavior corresponded to one unit increase in self-
esteem scores. In other words, the higher the self-
esteem score, the less likely an adolescent would 
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be at high behavioral risk. For each point increase 
on the self esteem score, the odds of participating 
in risky behavior, compared to the odds of not 
participating, decreased from one to 0.952 (=  
e–0.0488, Table 2). If the increase on the self-esteem 
score was 10 points, the odds decreased from one 
to 0.6139 [= e 10*(–0.0488)]. 

Combining the four explanatory variables 
that were found to be statistically significant in the 
MLR model, a profile emerged for a youth at the 
greatest predicted behavioral risk: a male who 
intended to drop out of school, came from a single 
parent household, scored low on the self-esteem 
measure, and possibly high on the emotional risk 
measure (based on the positive correlation 
between behavioral risk and emotional risk) — 
this last characteristic did not reach statistical 
significance in the MLR model.    
 
Assessing Multinomial Logistic Regression 
Results 

How effective was the MLR model 
expressed in Equations (9) and (10)? How can a 
health educator assess the soundness of a 
multinomial model? To answer these questions, 
we attended to (a) overall model evaluations, (b) 
statistical tests of each explanatory variable, (c) 
goodness-of-fit statistics, and (d) validations of 
predicted probabilities. These evaluations are 
discussed below based on Equations (9) and (10), 
or the MLR model. 

(a) Overall model evaluations. The 
Likelihood Ratio, Score, and Wald tests were 
examined to determine the improvement of the 
MLR model over the intercept-only model (also 
called the null model). According to Peng, Lee, 
and Ingersoll (2002, p.6), “An intercept-only 
model serves as a good baseline because it 
contains no predictors; consequently all 
observations would be predicted to belong in the 
largest outcome category, according to this 
model.”  All three tests yielded similar results 
(p<.0001, Table 2), namely, the MLR Model was 
more effective than the null model. It was 
therefore inferred that at least one explanatory 
variable was a significant predictor of adolescents’ 
behavioral risk. After splitting the sample 
randomly 5 times, resulting in 10 random sub-

samples, we applied the same multinomial model 
to the sub-samples. The overall significance of the 
MLR model was replicated in all 10 sub-samples. 
              (b) Statistical tests of individual 
predictors. The individual β coefficients were 
tested using the Wald  χ2 statistic (Table 2). All 
variables except for EMOTION were significant 
predictors of adolescents’ risk for self-injurious 
behaviors (p<.001). Two predictors (GENDER, 
and ESTEEM) were cross-validated to be 
significant; one predictor (EMOTION) was 
replicated to be statistically insignificant, all with 
10 random sub-samples. FAMILY structure and 
intention to DROPOUT were confirmed to be 
statistically significant predictors in 9 out of 10 
cross-validation random samples. It was not 
necessary to statistically test the intercepts for the 
two constants (CONSTANTs 1 and 2 in Table 2) 
as the test result merely indicates if intercepts 
should be included in a logistic model (Peng, Lee, 
& Ingersoll, 2002). 
 (c) Goodness-of-fit statistics. Goodness-
of-fit statistics assess the fit of a logistic model 
against actual classifications, i.e., high, medium, 
or low level of behavioral risk. Two descriptive 
measures of goodness-of fit are presented in Table 
2 for the MLR model: R2 indices defined by Cox 
and Snell (1989) and Nagelkerke (1991), 
respectively. These two measures were similar for 
the MLR model (24.67% and 29.78%). According 
to Peng, Lee, and Ingersoll (2002), these indices 
are variations of the R2 concept defined for the 
ordinary least squares (OLS) regression model.  

Even though the R2 has a clear definition 
in OLS regression, there have been no equivalents 
of this concept devised by methodologists for 
multinomial logistic models that render the 
meaning of variance explained; none correspond 
to predictive efficiency, and none can be tested in 
an inferential framework (Mendard, 2000). For 
these reasons, a researcher may treat these two R2 

indices reported in Table 2 as supplementary to 
other, more useful evaluative indices such as the 
overall evaluation of the model, tests of individual 
regression coefficients, and the inferential test of 
the goodness-of-fit suggested by Begg and Gray 
(1984) for multinomial logistic models.   
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Table 2. Multinomial Logistic Regression Analysis of Adolescent’s Self-inflicting Behavior Risk by SAS® 
PROC LOGISTIC (version 8). 

 
 
Predictor 

 
β 

 
SE β 

Wald’s 
χ2 (df=1) 

 
p 

eβ 
(odds ratio) 

CONSTANT 1 (Y1) −0.6211 1.0627 0.3416 0.5589 Not necessary 

CONSTANT 2 (Y1+Y2) 2.5220 1.0723 5.5317 0.0187 Not necessary 

GENDER (boys=1,girls=0) 1.1070 0.2111 27.5060 <0.0001 3.0253 

DROPOUT  

(yes=1, no=0) 
2.1818 0.3287 44.0618 <0.0001 8.8622 

FAMILY 0.4135 0.1179 12.2979 <0.001 1.5121 

EMOTION 0.0074 0.0115 0.4118 0.5211 1.0074 

ESTEEM −0.0488 0.0118 16.9867 <0.0001 0.9524 

Overall Model Evaluation 
 
Tests χ2 df p   

Likelihood Ratio Test 122.38 5 <0.0001   
Score test 110.47 5 <0.0001   
Wald test 97.87 5 <0.0001   

 
 

Notes. Cox and Snell R squared=0.2467.  Nagelkerke R squared (Max rescaled R squared)=0.2978. 
Kendall’s Tau-a = 0.297. Goodman-Kruskal’s Gamma= 0.548. Somers’ Dxy= 0.539. c-statistic = 
0.769.  

SAS® Programming Codes 

PROC LOGISTIC DATA=risk432 

           MODEL risk= gender dropout family emotion esteem; 

           OUTPUT out=probs  predicted=prob xbeta=logit; 

RUN; 
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 According to Begg and Gray (1984, cited 
in Hosmer & Lemeshow, 2001, p. 281), the 
goodness-of-fit test of a multinomial model may 
be carried out by applying the Hosmer and 
Lemeshow (H-L) test to two of the three outcome 
categories, then integrating the test results 
descriptively. For the logistic model comparing 
low risk adolescents with medium risk 
adolescents, the H-L test yielded a χ2 of 5.8011 
with 8 degrees of freedom. For the logistic model 
comparing low risk adolescents with high risk 
adolescents, the H-L test yielded a χ2 of 8.2925, 
also with 8 degrees of freedom. Both test results 
were statistically insignificant (p>.40) indicating 
that both models fit the data well. In other words, 
the null hypothesis of a good model fit to data was 
tenable. 

(d) Validations of predicted probabilities.  
As was explained previously, the MLR model 
predicts the logit of high and medium levels of 
behavioral risk from a set of explanatory variables. 
Since logit is the natural log of the odds [or 
probability/ (1-probability)], it can be transformed 
back to the probability scale, according to 
Equations (7) and (8). Once the predicted 
probability of behavioral risk is calculated, it can 
be compared with the actual risk behavior to 
determine if high probabilities are associated with 
the high level of behavioral risk, low probabilities 
with the low level of behavioral risk, and middle-
range probabilities with the medium level of 
behavioral risk.  
 SAS® PROC LOGISITC (version 8) 
provides four measures of association for logistic 
regression models. These are: Kendall’s Tau-a, 
Goodman-Kruskal’s Gamma, Somers’ D statistic, 
and the c statistic (Table 2). Kendall’s Tau-a is a 
rank-order correlation coefficient without 
adjustments for ties; for the MLR model, it 
equaled 0.287. Goodman-Kruskal’s Gamma 
equaled 0.548. According to Peng, Lee, and 
Ingersoll (2002), it is a more useful and 
appropriate measure than Tau-a when there are 
ties on both dependent variable categories and 
predicted probabilities (the present data had 923 
ties — approximately 1.8% of all pairs). This 
measure is interpreted as 54.8% fewer errors made 
in predicting which of two adolescents would be at 
a greater behavioral risk by utilizing the estimated 
probabilities, than by chance alone (Demaris, 

1992). Some caution is advised in using the 
Gamma statistic since: (1) it has a tendency to 
overstate the strength of association between 
estimated probabilities and outcomes (Demaris), 
and (2) a value of zero does not necessarily imply 
independence when the data structure exceeds a 2 
by 2 format (Siegel & Castellan, 1988). 
 Somers’ D is a preferred extension of 
Gamma whereby one variable is designated as the 
dependent variable and the other the independent 
variable (Siegel & Castellan, 1988). For the MLR 
model, Somers’ D was 0.539 (Table 2). There are 
two asymmetric forms of Somers’ D statistic: Dxy 
and Dyx. Only Dyx correctly represents the degree 
of association between the behavioral risk level 
(y), designated as the dependent variable, and the 
estimated probability (x), designated as the 
independent variable (Demaris, 1992). 
 Unfortunately, SAS® computes only Dxy, 
although this index can be corrected to Dyx in 
SAS® (Peng & So, 1998). For the present model, 
the c statistic was 0.769 (Table 2). This means that 
for 76.90% of all possible pairs of adolescents, one 
at a greater risk (e.g., high or medium level) than 
the other (e.g., medium or low level), the MLR 
model correctly assigned a higher probability to 
those measured by HBQ at greater behavioral risk. 
Thus the model worked better than assigning 
observations randomly into categories of high, 
medium, or low behavior risk. The c statistic 
ranges from 0.5 to 1.  
 A 0.5 value means that the model is no 
better than assigning observations randomly into 
categories of the dependent variable. A value of 1 
means that the assignment of probabilities matches 
perfectly with the ordered categories of the 
dependent variable (e.g., high with high, medium 
with medium, and low with low). If several 
models were fitted to the same data, the model 
chosen as the “best” model should be associated 
with the highest c statistic. Thus, the c statistic 
provides a basis for comparing different models 
fitted to the same data, or the same model fitted to 
different data sets.  
 
Reporting Multinomial Logistic Regression 
Results 
 In addition to Tables 1 and 2, it is helpful 
to profile adolescents with certain characteristics 
and relate these characteristics to the predicted 
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probability of engaging in high, medium, or low 
level of risky behaviors. For this purpose, several 
boys and girls, from either an intact, step-parent, 
or single-parent home, were selected from the data 
base. These characteristics, along with their 
indication to stay in or drop out of school and their 
emotional risk and self-esteem measure, are shown 
in Table 3 (following References section) to be 
related to their predicted probability of engaging 
in various levels of risky behaviors. It is noted in 
Table 3 that 8 cases (#6, 12, 19, 22, 30, 31, 34, and 
36) did not exist in the data. These cases may be 
explained by their refusal to participate, missing 
data (to be addressed in the next section), and the 
improbable likelihood of locating these 
adolescents in the population (e.g., case #30, 31, 
34, and 36).  

Among boys from the intact family (cases 
#1 to #5), the probability of engaging in low-level 
of risky behaviors (#3) was associated with a very 
low emotional risk score and no intention to drop 
out of school. Likewise, girls from the intact 
family (cases #7 to #11), who were predicted to 
engage in low-level of risky behaviors, did not 
intend to drop out from school and were measured 
low on emotional risk.  
 Boys from the step-parent family (#13 to 
#18), were predicted to engage in medium to high 
level of risky behaviors. The higher the emotional 
risk score, the greater was the probability of being 
associated with high-risk behaviors (#18). For 
girls from step-parent families (#20, 21, 23, and 
24), those with no intention to drop out of school 
(#20 and #21) were predicted to engage in lower 
levels of risky behaviors than those with an 
intention to drop out of school. 
 Among boys from the single -parent home 
(#25 to #29), engaging in high-level risky 
behaviors was predicted for the boy with an 
intention to drop out of school (#29), whereas low-
level was predicted for the boy who had no 
intention to drop out of school, scored low on the 
emotion risk measure, and high on the self-esteem 
test (#26). Among girls from the single -parent 
home (#32, 33, and 35), all were predicted to 
engage in medium level of risky behaviors. 
Though cases #32 and #33 did not intend to drop 
out of school, they scored high on emotional risk 
and low on self-esteem. Case #35 intended to drop 
out of school; she was measured comparatively 
low on emotional risk and high on self-esteem. 

Missing Data 
 It is important to point out the problem 
with missing data encountered in the multinomial 
logistic modeling, especially for the explanatory 
variable emotional risk (EMOTION). Descriptive 
analyses of the data suggested one plausible 
explanation for the insignificant relationship 
between emotional risk and behavioral risk (Table 
2). Of the 85 cases with missing data, 77 were 
missing behavioral risk data, 34 were missing 
emotional risk data, and six were missing drop-out 
scores. It was noted that the range (34.21 to 
82.03), mean (50.11), and standard deviation 
(10.94) for the 51 (=85−34) emotional risk scores 
not included in the analysis, were slightly higher 
than those used in the analysis. Furthermore, 25 
(or 49.02%) of the 51 emotional risk scores were 
above the overall sample mean of 48.72. It would 
be important to ascertain why adolescents with 
slightly higher emotional risk scores chose not to 
complete the behavioral risk assessment.  Thus, 
missing data on the dependent variable might not 
be missing completely at random (Little and 
Rubin, 1987). 

To answer this question statistically, we 
imputed all missing values using the EM method 
installed in the MVA (missing value analysis) 
module of SPSS Version 11.01. The complete data 
set with imputed values (N=517 observations) 
contained 255 adolescents at low behavioral risk, 
228 at medium risk, and 34 at high risk. The 
complete data set was submitted to SAS® PROC 
LOGISTIC (Version 8e) for multinomial logistic 
regression modeling. Results were very similar to 
those in Table 2, namely, gender, intention to drop 
out from school, family structure, and self-esteem 
were statistically significant at p<.0001. The 
emotional risk variable was again not a 
statistically significant predictor. An examination 
of correlations between the behavioral risk level 
and the five predictors showed that the positive 
correlation between emotional risk scores and the 
behavioral risk level, though positive, was not as 
high as the correlation between self-esteem scores 
and behavioral risks. And there was a strong 
negative correlation between emotion risk and 
self-esteem (Pearson r = -.494). Based on these 
results, we concluded that the missing data did not 
bias the interpretations given earlier for the MLR 
model. 
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Conclusion 
 

In this article, we applied multinomial logistic 
regression to data based on 432 adolescents’ self-
reported measures of behavioral risk, emotional 
risk, self-esteem, intention to drop out of school, 
and their gender and family structure to test a 
research hypothesis. The research hypothesis  
stated that, “the likelihood that an adolescent child 
is at high, medium, or low level of self-injurious 
behavioral risk is related to his/her gender, 
intention to drop out of school, family structure, 
emotional risk, and self esteem.” Logistic 
regression results supported the statistical 
significance of four explanatory variables. 
 Specifically, the likelihood of an 
adolescent participating in risky behaviors was 
negatively related to his/her self-esteem scores, 
but positively related to intention to drop out of 
school, family structure, and gender. If all other 
explanatory variables were held as constants, 
adolescents with the following profiles were more 
likely, than their counterparts, to engage in risky 
behaviors: boys, intending to drop out of school, 
living in a single-parent household, and having 
low self-esteem. The effectiveness of the 
multinomial logistic model was supported by 
multiple indices, including the model’s overall test 
of all explanatory variables, statistical significance 
test of each explanatory variable, the predictive 
power of the model, and its interpretability. 
 Three methodological issues encountered 
during the logistic regression analysis were 
highlighted and treated in our discussion of the 
results. These included (1) the use of odds ratio in 
interpreting results obtained from MLR models, 
(2) the absence of an extension of the Hosmer and 
Lemeshow goodness-of-fit test for multinomial 
logistic models, and (3) the missing data problem. 

From the standpoint of modeling 
categorical outcomes, logistic regression is more 
flexible and less restrictive than discriminant 
function analysis, log-linear models, or modified 
probability models (Peng, Manz, & Keck, 2001). 
While logistic regression is gaining popularity in 
health and social sciences research (Peng, Lee, & 
Ingersoll, 2002; Peng, So, Stage, & St. John, 
2002), there are few studies that demonstrate a 
preferred pattern of the application of multinomial 
logistic regression methods. It is hoped that this 
paper has demonstrated that multinomial logistic 

regression is an effective technique for profiling 
those youth at greatest risk for participation in 
risky health behaviors. Psychologists and 
educators can utilize findings to plan prevention 
programs, as well as to apply the versatile logistic 
technique in psychological, educational, and 
health research concerning adolescents.   
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Table 3. Predicated Probability of Participating in Self-injurious Behavior for 36 Children. 
 
Case 
No. 

SEX 
ß= 

1.107 
1=boy 
0=girl 

DROPOUT 
ß=2.1818 

1=yes 
0=no 

FAMILY 
ß=0.4135 
1=intact,  
2=step,  
3=single 

EMOTION 
ß=0.0074 

ESTEEM  
ß= 

−0.0488 

Intercept 
1 

α1 = 
−0.6211 

Intercept  
2 

α2 =2.522 

Predicted probability 
of participating in 

self-injurious behavior 
    p1                 p 2           p 3   
 (high) (medium)   (low)            

Actual Behavior risk, 
1=high, 2=med, 3=low 

(score on HBO,  
M=47.69, SD=10.89) 

1 1 0 1 62.39 32.68 −0.6211 2.5220 .0818 .5921 .3261 1   (60.40) 
2 1 0 1 80.74 32.68 −0.6211 2.5220 .0926 .6102 .2972 2   (52.77) 
3 1 0 1 32.07 71.58 −0.6211 2.5220 .0106 .1878 .8016 3   (42.65) 
4 1 1 1 72.72 46.41 −0.6211 2.5220 .3038 .6062 .0900 1   (95.21) 
5 1 1 1 63.07 37.25 −0.6211 2.5220 .3885 .5479 .0636 2   (50.00) 
6 1 1 1 ---- ---- −0.6211 2.5220 --- --- --- 3    (------) 
7 0 0 1 47.29 41.83 −0.6211 2.5220 .0166 .2645 .7189 1   (61.53) 
8 0 0 1 45.78 44.12 −0.6211 2.5220 .0147 .2422 .7431 2   (47.07) 
9 0 0 1 42.05 21.24 −0.6211 2.5220 .0425 .4643 .4932 3   (42.70) 
10 0 1 1 51.37 34.97 −0.6211 2.5220 .1772 .6559 .1669 1   (70.23) 
11 0 1 1 56.77 37.25 −0.6211 2.5220 .1670 .6559 .1771 2   (53.27) 
12 0 1 1 ---- ---- −0.6211 2.5220 --- --- --- 3   (-------) 
13 1 0 2 41.36 50.98 −0.6211 2.5220 .0451 .4776 .4773 1   (72.83) 
14 1 0 2 46.14 50.98 −0.6211 2.5220 .0467 .4848 .4685 2   (45.84) 
15 1 0 2 36.11 41.83 −0.6211 2.5220 .0663 .5559 .3778 3   (40.44) 
16 1 1 2 38.59 57.85 −0.6211 2.5220 .2269 .6449 .1282 1   (92.50) 
17 1 1 2 54.87 46.41 −0.6211 2.5220 .3665 .5641 .0694 2   (46.99) 
18 1 1 2 70.35 34.97 −0.6211 2.5220 .5312 .4321 .0367 3   (43.52) 
19 0 0 2 --- --- −0.6211 2.5220 --- --- --- 1   (-------) 
20 0 0 2 34.21 44.12 −0.6211 2.5220 .0203 .3041 .6756 2   (45.78) 
21 0 0 2 50.18 53.27 −0.6211 2.5220 .0147 .2421 .7432 3   (40.44) 
22 0 1 2 ---- --- −0.6211 2.5220 --- --- ---- 1   (------) 
23 0 1 2 54.84 50.98 −0.6211 2.5220 .1326 .6473 .2201 2   (48.64) 
24 0 1 2 50.18 46.41 −0.6211 2.5220 .1559 .6547 .1894 3   (43.08) 
25 1 0 3 63.52 23.52 −0.6211 2.5220 .2432 .6384 .1184 1   (67.90) 
26 1 0 3 32.07 67.00 −0.6211 2.5220 .0296 .3848 .5856 2   (56.69) 
27 1 0 3 50.18 48.70 −0.6211 2.5220 .0786 .5854 .3360 3   (40.44) 
28 1 1 3 43.54 48.70 −0.6211 2.5220 .4184 .5250 .0566 1   (85.49) 
29 1 1 3 56.74 44.12 −0.6211 2.5220 .4979 .4604 .0417 2   (54.31) 
30 1 1 3 --- --- −0.6211 2.5220 --- --- ---- 3   (-------) 
31 0 0 3 --- --- −0.6211 2.5220 --- --- --- 1   (-------) 
32 0 0 3 64.12 28.10 −0.6211 2.5220 .0786 .5856 .3358 2   (48.41) 
33 0 0 3 60.08 39.54 −0.6211 2.5220 .0453 .4781 .4766 3   (44.41) 
34 0 1 3 --- --- −0.6211 2.5220 --- --- --- 1   (-------) 
35 0 1 3 43.63 48.70 −0.6211 2.5220 .1922 .6543 .1535 2   (46.34) 
36 0 1 3 --- --- −0.6211 2.5220 --- --- ---- 3   (-------) 
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Bayesian Analysis Of Poverty Rates: 
 The Case Of Vietnamese Provinces 

 
        Dominique Haughton                    Nguyen Phong 

                         Bentley College, USA       General Statistics Office, Vietnam 
 
 
 
This paper presents a Bayesian analysis of poverty rates in urban Ho Chi Minh City and rural Nghe An 
province in Vietnam. Using mixtures of beta distributions as priors for the poverty rates, we find that, when 
the prior is reasonably informative, our approach yields more accurate estimated poverty rates than a 
frequentist approach. On the other hand, we find that, in the presence of poor/non-poor misclassification, 
average probabilities of posterior credible intervals for poverty rates can fall well short of .95 even with 
sample sizes such as 2000 or 3000 when the width of the interval is for example four percentage points. In 
general, we suggest reporting prior and posterior means and standard deviations along with traditional 
frequentist measures. Our results rely on techniques due to Nandram and Sedransk (1993) and Rahme, Joseph 
and Gyorkos (2000), and make use of the software WINBUGS. 
 
Key words: Vietnamese poverty, Bayesian analysis, WINBUGS 
 
 

Introduction 
 
The problem of estimating the binomial parameter 
has attracted a lot of attention among statisticians 
and others in the business of estimating 
proportions. It is widely known that, informally 
speaking, large sample sizes are needed to get 
acceptable accuracies when estimating 
proportions.  
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Sample size estimations are often based on 
classical computations of confidence intervals, 
sometimes adjusted to take into account special 
survey designs. Recent work of Brown (2001) has 
focused attention on the shortcomings of such 
confidence intervals, notably on the fact that “95% 
confidence intervals” have less than 95% coverage 
in a number of cases. 

In the context of the estimation of poverty 
rates, we are led to the estimation of a binomial 
parameter, since the poverty rate is in general 
defined as the proportion of households whose 
annual expenditure per capita falls below a given 
poverty line. In most of this paper we will assume 
that this poverty line is non-random, and that the 
classification poor/non-poor is known accurately. 
We will discuss the implications of an inaccurately 
known poverty line in the latter part of the paper. 

The estimation of poverty rates for 
Vietnamese provinces lends itself very well to a 
Bayesian analysis: informative prior information is 
frequently available; moreover sample sizes tend 
to be fairly small, since surveys are expensive and 
prone to non-sampling errors. Sampling 
statisticians and others involved in the design and 
analysis of such surveys (in Vietnam or elsewhere) 
have to date not performed a Bayesian analysis of 
poverty rates (see, for example , Glewwe & 
Yansaneh, 2001, for an exposition of a typical 
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analysis in this context). 
We will show in this article  that a gain in 

accuracy is obtained when a reasonably 
informative prior is used, and when the poverty 
line is assumed known. We will illustrate this 
result with a wealthier urban sample (urban Ho 
Chi Minh City), and a poorer rural sample (rural 
Nghe An). However, to qualify these results, one 
should keep in mind that when poor/non-poor 
misclassification occurs, as it almost certainly 
does, the average coverage of four-percentage-
point-wide probability intervals does not reach .95, 
even asymptotically in large sample sizes, while it 
is likely to do so for an eight-percentage-point-
wide probability interval. 
 

Methodology 
 
Bayesian Estimation Of Poverty Rates When The 
Poverty Line Is Known 
 In urban Ho Chi Minh City, our sample 
from the Vietnam Living Standards Survey of 
1998 has 433 households, 2 of which are poor. 
Frequentist weighted (according to sampling 
weights) computations yield a poverty rate of 
.00462, with a standard deviation of .00334 
(yielding a coefficient of variation of about .7). In 
order to perform the Bayesian analysis, we use a 
mixture of beta distributions as a prior for the 
unknown poverty rate as suggested in Nandram 
and Sedransk. This is justified by the work of 
Dalal and Hall (1983), who showed that any prior 
can be approximated by such a mixture. We then 
apply the closed form formulas of Nandram and 
Sedransk for the posterior mean and posterior 
standard deviation of the poverty rate for a two-
stage cluster sample design. 
 In our case, we assume that a commune is 
randomly selected, then a household randomly 
selected from the commune; in reality there is an 
additional step in the sampling design – a village 
is randomly selected from the commune – and 
then a household is randomly selected from the 
village. We expect to address the issue of three-
level clustering in future work; no closed form 
formula is available in this case for the posterior 
mean and standard deviation of the poverty rate. 
The present analysis is a close approximation of 
reality, though; we don’t expect the addition of the 
third level to make a large difference. We then 
simulate the posterior distribution using 

WINBUGS, with the code published in Congdon 
(2001; example 5.18 p. 196). In addition to the 
data on poor/non-poor households from surveyed 
communes, the analysis makes use of the number 
of households in each commune of urban Ho Chi 
Minh City and rural Nghe An respectively; the 
model specifies an individual poverty rate for each 
commune and then combines these poverty rates 
into an overall poverty rate for the province. 
 

Results 
 
In Table 1 and Figure 1, we present the results 
from four different priors for urban Ho Chi Minh 
City. In Table 2 and Figure 2, we present the 
results from two different priors for rural Nghe 
An. The posterior means and standard deviations 
are those of the overall poverty rate for the whole 
area (urban Ho Chi Minh City and rural Nghe An, 
respectively). The mixture of beta distributions 
used for the prior for a vector θ of N poverty rates 
for N communes is given by Nandram and 
Sedransk (1993) as: 
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where θk is the poverty rate for the k th province, 
and B denotes the Beta function. The values of ωr, 
ar and τ must be chosen when eliciting the prior. 
Note that the means of the beta distributions in the 
mixture are ar/τ, and that the value of τ controls 
the standard deviation of the beta distributions; the 
higher τ is, the smaller the standard deviation. 

The two first priors for urban Ho Chi 
Minh City are based loosely on poverty rates and 
their standard deviations for Vietnamese provinces 
estimated in Baulch et al. (2002) , using data from 
the Census of 1999 and regression equations based 
on VLSS data. These estimates were used to 
define 4 bins centered at the values indicated in 
the column “Mean” in Table 1 for each of 4 
components, and prior probabilities of .07, .43, .43 
and .07 for each of the 4 bins. Note that the value 
of 4 for R was chosen somewhat arbitrarily for 
convenience and flexibility. Priors 1 and 2 differ 
by the value of τ, and thus by the standard 
deviations. 
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The components are less separated in prior 
2, as seen on Figure 1. The results from both priors 
are close, a posterior poverty rate of about .01, 
with a standard deviation of about .005, an 
improvement (coefficient of variation of about .5) 
over the frequentist estimation. Figure 1 shows the 
two posterior densities from priors 1 and 2 to be 
close, and to give most of the posterior probability 
to two components, conceivably corresponding to 
more and less affluent communes. Prior 3 
corresponds to a prior elicited from the expert 
opinion that “we are 95% certain that the poverty 
rate for urban Ho Chi Minh City is between .01 
and .03”. As for priors 1 and 2, 4 bins were created 
for prior 3, centered at values given in Table 1 and 
with widths consistent with the expert prior belief. 
The summary statistics for the posterior poverty 
rate are quite similar to those for priors 1 and 2. 
Prior 4 is a very diffuse prior, and in this case, the 
posterior poverty rate is not accurate (standard 

deviation of .008) as can be expected. 
In this case, we have both closed form 

expressions for the posterior means and standard 
deviations, as well as the option of using 
WINBUGS to generate a sample from the 
posterior. The results from both analyses should 
be, and are, close. We note here that we have 
found that if the beta components are too well 
separated or if one of the components is too close 
to 0, it can happen that the MCMC chain in 
WINBUGS gets “stuck” in a component, and 
gives an incorrect posterior mean. This in fact is 
not surprising to the authors of WINBUGS (N. 
Best, personal communication), and could be 
remedied by checking the WINBUGS results 
against the closed form formulas for a two-level 
cluster sample design for a given prior, and then 
moving on to more complex survey designs if 
desired. 

 
 

Table 1: Prior And Posterior Means And Standard Deviations; Ho Chi Minh City Urban 
 

  Prior 1, τ = 200 Prior 2 τ, = 80 

ωi  Mean St. Dev. Mean St. Dev. 

.07 Comp. 1 .005 .005 .005 .008 

.43 Comp. 2 .015 .009 .015 .014 

.43 Comp. 3 .045 .015 .045 .023 

.07 Comp. 4 .075 .019 .075 .029 
 Overall .031 .023 .031 .027 

  Post. 
Mean 

Post. 
St. Dev 

Post. 
Mean 

Post. St. 
Dev. 

 Closed form .009872 .004982 .010765 .004911 
 Winbugs .009664 .004964 .010611 .004910 

 
Table 1 (continued) 

 
  Prior 3, τ = 80 Prior 4, τ = 40 

ωi  Mean St. Dev. Mean St. Dev. 

.07 Comp. 1 .009 .010 .005 .011 

.43 Comp. 2 .016 .014 .025 .024 

.43 Comp. 3 .024 .017 .080 .042 

.07 Comp. 4 .031 .019 .140 .054 
 Overall .020 .017 .055 .051 

  Post. 
Mean 

Post. St. 
Dev 

Post. 
Mean 

Post. St. 
Dev. 

 Closed form .013684 .004561 .008841 .007801 
 Winbugs .013530 .004508 .010130 .008632 
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FIGURE 1:  PRIOR DENSITIES AND POSTERIOR KERNEL DENSITIES; 
 HO CHI MINH CITY URBAN 
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Table 2: Prior And Posterior Means And Standard Deviations; Nghe An Rural 
 

  Prior 1, τ = 40 Prior 2, τ = 30 
ωi  Mean St. Dev. Mean St. Dev. 

.07 Comp. 1 .225 .065 .050 .039 

.43 Comp. 2 .375 .076 .125 .059 

.43 Comp. 3 .525 .078 .275 .080 

.07 Comp. 4 .675 .073 .425 .089 
 Overall .450 .133 .205 .122 

  Post. 
Mean 

Post. 
St. Dev 

Post. 
Mean 

Post. St. 
Dev. 

 Closed form .499810 .055138 .424697 .008203 
 Winbugs .503400 .051560 .424500 .009934 

 
 

For rural Nghe An, we have 225 sampled 
households, among which 110 are poor. Weighted 
frequentist estimations give an estimated poverty 
rate of .489, with a standard deviation of .104.  
Prior 1 is again based loosely on the estimations in 
Baulch et al. (2002); it yields a posterior mean for 
the poverty rate of about .5, with a posterior 
standard deviation of .05, an improvement in 
accuracy over the frequentist analysis. 

Prior 2 is based on an estimated poverty 
rate of about .2 from MOLISA (Ministry of 
Labour, Invalids and Social Affairs), used to 
create 4 bins of about the same width as in prior 1.  
The prior poverty rate of .2 is probably too low, 
and it is interesting to see how the Bayesian 
analysis uses the data to correct this prior 
information: the MCMC chain concentrates almost 
exclusively on one higher component to yield a 
posterior mean of .42 with a standard deviation of 
about .01 for the poverty rate. 
 
 
Bayesian Estimation Of Sample Sizes In The 
Presence Of Misclassification 

We now consider the case where it is in 
fact not known exactly which households are poor 
and which are not. Poverty lines are difficult to 
establish, in large part because of the difficulty in 
getting accurate data on the prices of basic goods. 
So the problem of identifying poor households is 
similar to the problem of diagnosing a disease on 
the basis of an imperfect test. 

We use here work of Rahme et al. (2000) 
where Bayesian sample size determinations are 
performed for the binomial parameter subject to 

misclassification, and applied to a situation in the 
medical area. In this context, the test for poverty 
has a sensitivity (probability of a poor household 
being classified as poor) and a specificity 
(probability of a non-poor household being 
classified as non-poor), both with a beta prior 
distribution following Rahme et al. (2000), and the 
prevalence of poverty (the poverty rate) is also 
given a beta prior distribution. 

We illustrate this approach in the case of 
rural Nghe An. We define a prior distribution of a 
beta with parameters α = 70.32 and β = 77.1 for 
the poverty rate, on the basis of the estimates for 
the poverty rate and its standard deviation in 
Baulch et al. (2002) , and elicit beta distributions as 
priors for the sensitivity and specificity of the 
poor/non-poor classification from the opinion that 
the mean sensitivity (and specificity) is about .95 
and that we are 95% certain that the sensitivity (or 
specificity) is between .9 and 1. This opinion 
yields the values for the beta parameters given in 
Table 3. 

The table gives average coverages of 
probability intervals for two different interval 
widths and three different sample sizes, calculated 
from an S-plus program made available by Rahme 
(2000)  et al. It is clear that the coverage will not 
attain .95 for a width of 4 percentage points, even 
with very large sample sizes. Such a coverage 
might be feasible with an interval of width .08, 
with large sample sizes. However, we note that the 
techniques in Rahme et al. (2002) assume i.i.d. 
samples, so the situation is likely to be somewhat 
worse in a situation where a more complex survey 
design was used. We also note that less 
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informative priors on the poverty rates and/or the 
sensitivity and the specificity of the poor/non-poor 

classification would be likely to yield even smaller 
average coverage probabilities. 

 
Table 3: Average Coverage Of Probability Intervals For 

Poverty Rates For Nghe An Rural Assuming I.I.D. Samples 
 
 

αsens = αspe c= 71.25; βsens = βspe c= 3.75; α = 70.32; β = 77.1 
 

Width of interval Sample size Prob. coverage 
.04 1000 .6439 
.04 2000 .6924 
.04 3000 .6995 
.08 1000 .9261 
.08 2000 .9471 
.08 3000 .9587 

 
 

Conclusion 
 
We have shown in this paper the benefits of a 
Bayesian approach to the estimation of poverty 
rates.  Poverty rates are often calculated – and 
reported – as sample proportions.  In some cases, a 
measure of accuracy such as standard deviation is 
reported as well. 
 In our analyses, the use of sensible prior 
information has provided a significant 
improvement in the accuracy of the poverty rates, 
as measured by their posterior standard deviation, 
provided that the poverty line is known exactly.  
Results tend to be robust with respect to the choice 
of a sensible prior.    
 Our Bayesian analysis has also shown that 
whenever there is uncertainty in the poor/non-poor 
classification, the accuracy of poverty rates as 
measured by the width of posterior credible 
intervals is significantly negatively affected.  For 
example, coverage probabilities of about 95% may 
require interval widths of about 8 percentage 
points, implying poverty rates known only up to 
four percentage points. 
 In general we suggest that posterior means 
and standard deviations be reported along with 
more traditional measures, and that a discussion of 
the accuracy of poverty lines accompany poverty 
rates reports. 
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Proprietary and syndicate surveys are often used in assessing appeal and initial quality of new vehicles for 
automobile manufactures. This study discusses the difference between the two types of studies, and proposes 
a computer simulation based method for checking the appropriateness of the comparisons. 
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Introduction 
 
Quality and assessing quality becomes more and 
more important issues to the modern automotive 
industry. The customer survey of J.D. Power and 
Associates was founded in 1968 as an independent 
professional information provider for management 
and it has been considered the most important 
source for assessing marketing, quality and 
customer satisfaction. 

As one of the important J. D. Power auto 
surveys, the Initial Quality Study 2 (IQS2) 
contains comprehensive and analytically rich 
information that can help auto manufacturers 
position their image and products. Consumers of 
new vehicles are surveyed regarding problems 
they experienced after 90 days of vehicle 
ownership. All the problems are weighted equally 
and the result is summarized with problems per 
100 vehicles. The pp100 scores are compared 
across models and platforms, by manufacturer and 
assembly plants. The survey contains 135 
problems (since 1998) and over nine categories. 
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  Auto manufacturers highly regard the 
results of J. D. Power auto surveys as a measure of 
their performance in terms of quality, service and 
customer’s satisfaction. Toyota considers that J. D. 
Power and Associates is the most respectable 
name in auto consumers’ minds and its IQS has 
been the industry standard benchmark for vehicle 
quality since 1987. Auto manufacturers would like 
to mention their achievement recognized through 
the surveys by J.D. Power and Associates. For 
example “Corolla was the highest ranked Compact 
Car in the J.D. Power and Associates’ 2000 Initial 
Quality Study.  Study based on a total of 47,909 
consumer responses indicating owner-reported 
problems during the first 90 days of ownership 
(Spring 2002 www.toyota.com)”. “Expedition 
shines when it comes to Initial Quality. The 
Expedition ranked as the Best Full-Size Sport 
Utility Vehicle in Initial Quality in the J.D. Power 
and Associates 2001 Initial Quality Study based 
on a total of 54,565 consumer responses indicating 
owner reported problems during the first 90 days 
of ownership (Spring 2002, www.ford.com).”  

Figure 1 is an example of IQS results, 
which give the industrial performance for the total 
of 36 manufacturers (Spring 2002, 
www.auto.com).  
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In order to monitor the continuous quality 

improvement and to forecast the IQS results, 
manufacturers often conduct proprietary studies 
similar to the IQS study through J.D. Power & 
Associates monthly or quarterly. However, due to 
the effect of many factors of sampling methods, 
the comparison of the two types of studies is 
questionable. For example a random sample is 
used for the IQS study while a stratified random 
sample is used for the IQS study. Other factors 
may include different periods for reporting 
problems, sample size of vehicles, complete 
sample base and incomplete sample base. A valid 
comparison cannot be made without appropriately 
addressing these issues. This article focuses on 
comparing the results using two different sampling 
methods. Concerns about partial sample base and 
complete sample base are also discussed.  

 
Methodology 

 
The two different sampling methods used in auto 
surveys of J. D. Power and Associates are 
introduced in this section with the notations and 
derived estimates.   

 
Syndicated Study and Proprietary Study 

The syndicated survey is a number of 
studies of automobiles conducted by J.D. Power 
and Associates independently. The results of these 
studies are published and the detail results for a 
specific model may be sent to the manufacturer.  
The detail results can be analyzed for quality and 
customer’s satisfaction improvement, especially 

for manufacturers who believe the philosophy that 
customer should determine what they want and 
what they like. The Appeal Study by J.D. Power 
Associates is also used for assessing customer’s 
satisfaction.  

Proprietary survey is the studies, which 
are usually similar to J.D. Power study conducted 
by J.D. Power and Associates but upon the request 
of a manufacturer.  In addition to the syndicated 
studies, the proprietary studies are considered as a 
continuous monitor of the product performance. 
Further the results are used for forecasting the 
future J.D. Power score. Instead of the three month 
time period for reporting problems for customers 
in the syndicated study, the time period for the 
proprietary study may vary. For example it could 
be one month or two months depending on the 
manufacture’s interest.     

Two different sampling methods have 
been used in the two types of auto survey. For the 
syndicated survey such as IQS study, stratified 
samples are drawn from the same model of 
vehicles, because minimum sample size is 
required for a model. Usually about 30% of the 
registrations for the total leased vehicles are not 
available for J.D. Power. Therefore using a 
stratified sample can help to obtain a desired 
number of vehicles in the sample, which include 
both purchased and leased vehicles. On the other 
hand, for the proprietary survey the manufacturers 
usually provide all possible registrations for the 
purchased and the leased vehicles. So a random 
sample is used for the proprietary study. Figure 2 
gives a typical example of the IQS2 scores 
sampled using different methods in different time 
periods for a type of vehicle.      

When a result of proprietary study is 
compared to the syndicated study, there are some 
concerns about how the difference of the sampling 
bases, and different sample methods and different 
time period for reporting problems. This study 
focuses on the discussion of comparing the two 
sampling methods given the same sample base, 
then discusses the results for the case of having 
different sample bases, which simulates the 
situation of the syndicated study without part of 
leased vehicles versus the proprie tary study with 
full sample base. 
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Estimates 
 

Suppose a stratified sample is drawn for 
the syndicated study with size n, then P Ln n n= +  

where Pn is the number of purchased vehicles and 

Ln is the number of leased vehicles in the sample. 
The estimated pp100 score the estimated as 
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where P  LN N N= +  is the total number of 

vehicles sampling from, PN and 
LN are the total 

numbers for the purchased and the leased. P

P

N

n
and 

L

L

N

n
 are the weights for the number of problems 

for the purchased vehicle P
iX  and the leased 

vehicle L
jX . Suppose the true average number of 

problems per vehicle for the purchased and the 
leased are Pµ and Lµ , then the estimate of the true 
pp100 score is  
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which is the weighted true pp100 score for the 

vehicles. The variance of pp100Ŝ is  
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 For the proprietary study, suppose a 

random sample is drawn with size n. The pp100 
score is notated as follows using the same type of 
notation. 
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where µ  is the true average number of problems 
per vehicle for all vehicles including both 
purchased and the leased. Since this is a random 
sample, both sample sizes for purchased *

Pn and 

leased group *
Ln are also random and they are 

correlated, because *
L

*
Pn nn= + . Therefore given 

the same sample base, both estimates of pp100 
scores for the two studies have the same mean, and 
they are unbiased. For the proprietary study, the 
variance can be denoted as 
 

( ) ( )
2 2

pp100

100ˆVar S Var 100X
n

σ
= =   

 
where 2σ  is the true variance for the number of 
problems per vehicle for all vehic les. This means 
the two studies give the unbiased estimates with 
different variances.  

If 30% of leased vehicles are excluded 
from the sample base due to certain reason, for 
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example the registration information is not 
available at the sampling time period, the 
parameters of the sample base Lµ , Lσ , µ  and σ  
are affected. So the estimates of pp100 scores will 
depend on how the samples are excluded for the 
leased base.   
 

Results 
 
It is clear that theoretically comparing the results 
of the two different surveys is impossible since too 
many assumptions have to be made about the 
unknown parameters. Especially for the 
proprietary sampling, the sample sizes for the 
purchased *

Pn and for the leased group *
Ln are 

random and they are correlated, but in the 
syndicated sampling they are both constant. Based 
on the discussion in the previous section, applied 
approaches are proposed to investigate the two 
sampling methods.  

For a specific model of vehicle, a 
computer simulation is used with a simulated 
sample base. The sample base can be built using 
existing J.D. Power data as a good approximation 
to the real sample base. Then exclude 30% or as 
desired portion of vehicles from the full base to 
obtain an approximation to sample base similar to 
the one used in the syndicated study. The next step 
is to write computer programs or macros for the 
syndicated study and the proprietary study, then 
apply them a large number of times to the sample 
bases built. Comparisons for two studies can be 
made based on the simulated results.  

A sample base for the proprietary study 
can be built using existing information, which 
could be from a published source or data for a 
model of vehicles if the study is conducted for an 
auto manufacturer. First chose the size of sample 
base N with NL for the leased and NP for the 

purchased. Then determine the proportions for the 
vehicles to have 0 problems to 12 problems, which 
is the maximum number of problems used in the 
IQS2 of J.D. Power and Associates. The problems 
can be also attributed to the nine different 
categories. Finally form the sample base for the 
syndicated study by excluding a proportion, for 
example 30% of leased vehicles from the sample 
base for the proprietary study.  

As an example, using the IQS2 1998 (J.D. 
Power, 2001 Knight Ridder Inc.) result for M-
Class, a sample base with following characteristics 
(see Table 1), where the mean is the mean numbe r 
of problems per vehicle. The above sample base is 
for the proprietary study and it can be considered a 
good approximation of the M-Class registered 
during the sampling period of 1998 J.D. Power 
IQS2 study. Now randomly exclude 30% of 
vehicles from the leased vehicles, the sample base 
for the syndicate study of J.D. Power is made with 
the following statistical summaries (see table). 

The structure of the sample base is 
hypothetical to allocate the proportion of the 
number of problems from 0 to 12 to all vehicles. 
The proportions for a specific model of vehicle 
can be obtained from the actual J. D. Power 
survey.   

Two Minitab macros, one for the 
syndicated study and the other for the proprietary 
study are created for the simulations. 5,000 
simulations are run for each of the two sampling 
methods, and for each of the full and partial 
sample bases. For each combination of sampling 
method and sampling base, the weighted and not-
weighted pp100 scores are reported. The results 
are shown in Table 3 (on next page) and are also 
presented as in the following distribution dot plots 
on the same scale. See figure 3 (next page). 
 

 
 
 
 
 

 
 
 
 
 
 

Table 1 
Descriptive Statistics for the Full Sample Base 

Variable            N          Mean  Median    StDev      Minimum     Maximum
Purch.&Leas   7760     2.4647     2.0000       2.5267      0.000            12
Purchased       5807     2.3337     2.0000       2.4395      0.000            12
Leased             1953     2.8541     2.0000       2.6965      0.000            11
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Figure 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 

Based on the discussions and the results the 
computer simulations with the examples in 

previous sections, the comments and 
recommendations are made as the following. 
 For the same sample bases, both the 
syndicate and proprietary studies give the same 
accurate estimates of the true pp100 score on the 
average. But the syndicate sampling method tends 
to have larger variation for the estimated score. 
This means that the syndicated sampling method 
introduces  extra  variation  into the sample scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore the syndicate study gives a less accurate 
sample score than that of the proprietary method. 
Even though this simulation does not provide in 
general by how much the variation is between the 
two sampling methods, it does provide informative 
details for comparing the results from different 
sampling methods for a particular model of an 
auto manufacturer. For example when the 
manufacturer compares the results from two 
sampling methods, the variation due to using 

Table 2 
Descriptive Statistics for Partial Sample Base 

without 30 % of Leased Vehicles 
 

Variable                     N       Mean      Median       StDev     Minimum      Maximum
Purch.&Leased        7174    2.4295    2.0000          2.4874     0.000             12

Purchased                 5807    2.3337    2.0000          2.4395     0.000             12
Leased                       1367    2.8361    2.0000          2.6440     0.000             11

Table 3 
Summary of the Simulations 

W/NW: Weighted/Not weighted 
F/P: Full Sample Base/Partial Sample Base 

 W/ 
NW F/P Simulated 

pp100 Score 

True 
pp100 
Score 

StDev 

N F   260.47  246.47     15.23 

W F   246.50  246.47     16.90 

N P   259.42  242.95     14.96 

    Syndicated   
    Study 

W P   242.91  242.95     17.56 

N F   246.41  246.47     14.91 

W F   246.40  246.47     14.89 

N P   243.03  242.95     14.72 

    Proprietary  
    Study 

W P   243.02  242.95     14.76 
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syndicated sampling can be assessed with the 
simulation results.  

The 30% exclusion of leased vehicles has 
some impact on the average score and this impact 
is significant depending on number and the way 
vehicles are excluded. The partial sample base 
introduces additional variation into the syndicated 
study. In general this is expected, but the 
simulation gives specific results. If the 
manufacturer has some knowledge about 
excluding the leased vehicles, then that can be put 
into the simulation to get more details about the 
effect of using partial sample base.  

For the proprietary study, both the 
weighted and the not-weighted scores are the same 
since random samples are used. But for the 
syndicated study they are different because 
stratified random samples are used. This helps the 
management of an auto manufacturer to 
understand the “weight” used in syndicated studies 
of J. D. Power and Associates. 

Finally, when comparing the syndicate 
and the proprietary studies, it is necessary to 
consider the effect of the variation due to using 
different sampling methods and different sample 
bases, especially for monitoring the on-going 
performance of an auto manufacturer through J.D. 
Power auto survey. The proposed simulation 
method can be adapted to a particular model for 
which both syndicated and proprietary surveys are 
available. The computer macros can be easily 
modified for carrying out the simulations. After 
assessing the variation attributed to the sampling 
methods and sample base, manufacturers can 
appropriately compare the pp100 scores of their 
products.  

Clearly, it would be better for the 
manufacturers to have the proprietary study 
conducted in the same way as the syndicated 
study. Although different sample bases are used 
for the two studies, the extra variation in 
estimating the pp100 score will be coming from 
just one source instead of two sources. It is 
important to get as many details as possible for the 
proprietary study. 

Comparing the pp100 scores with 
different reporting time periods is worth further 
study. The reason for auto manufacturers to have 
one or two month surveys is because the short 
time studies provide quick response. If the 
proprietary study is conducted using different time 

periods for reporting problems (one or two 
months), comparing the pp100 scores to that of 
two months or three months is more complicated 
because an extra source of variation is introduced. 
Manufacturers multiply a weight to the one-month 
or two-month proprietary scores and then compare 
them to the three-month scores. The weight may 
be obtained from J. D. Power, for example 70% 
percent of problems associated with new vehicles 
are usually reported in the first two months.        
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Steady State Analysis Of An M/D/2 Queue With Bernoulli Schedule Server Vacations 
 

Kailash C. Madan          Walid Abu-Dayyeh          Firas Tayyan 
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We examine an M/D/2 queue with Bernoulli schedules and a single vacation policy. We have assumed 
Poisson arrivals waiting in a single queue and two parallel servers who provide identical deterministic service 
to customers on first-come, first-served basis. We consider two models; in one we assume that after 
completion of a service both servers can take a vacation while in the other we assume that only one may take 
a vacation. The vacation periods in both models are assumed to be exponential. We obtain steady state 
probability generating functions of system size for various states of the servers. 
 
Key words: Two parallel servers, Bernoulli schedules, single vacation policy, deterministic service 
 

 
Introduction 

 
Vacation Queues have been studied by numerous 
researchers including   Kleinrock (1983) , Keilson 
and Servi (1986), Baba (1986), Doshi 
(1986,1990), Cramer (1989), Choi & Park (1990), 
Borthakur & Choudhury 1997), Madan (1992, 
1999, 2001), to mention a few. Most of these 
authors have investigated single server queues 
assuming Bernoulli schedules or exhaustive 
service or generalized vacations among several 
other vacation policies with a single or multiple 
vacations. Madan and Saleh (2001, 2001, 2001) 
have studied a single server queue with 
exponential service and deterministic vacations, 
deterministic service with exponential vacations 
and deterministic service with deterministic 
vacations, assuming Bernoulli schedules. 

Those articles considered single server 
vacation models. Here, we study a queueing 
system with two parallel servers providing 
identical deterministic service assuming Bernoulli 
schedule server vacations with a single vacation 
policy.  
 
 
Send correspondence to Kailash C. Madan, 
Department of Statistics, Faculty of Science, 
Yarmouk University, Irbid, Jordan. E-mail him at 
kailashmadan@hotmail.com. 
 
 

 
We consider two models. In model A we 

assume that after a service completion both servers 
may take a vacation of identical exponential 
duration and in model B, we assume that only one 
of the servers can take a vacation of exponential 
duration.  In both models, we assume a single 
vacation policy which means that whenever a 
vacation period of a server ends, then he must join 
the system irrespective of whether there are 
customers waiting for service or not. That is, the 
server must join the system even if he finds the 
system empty on return. The following 
assumptions briefly describe our models: 

 
Model A: Both Servers Can Take A Vacation. 

The Underlying Assumptions: 
 
A - Customers arrive at the system one by one and 
their arrivals follow a Poisson distribution with 
mean arrival rate 8, (8 > 0). 
 
B - Both servers provide identical deterministic 
(constant) service with constant service time of 
length b, (b > 0). 
 
C - After every service, both servers together may 
take a vacation with probability p or continue to 
stay in the system with probability 1- p. The 
vacation times follow an exponential distribution 
with mean vacation time 1/$, ( > 0). 
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D- All stochastic processes involved in the system 
are independent of each other. 
 
Definitions and Notations 
 
Define: 
 
Bn (t): as the probability that at time t both servers 
are available in the system providing service and 
there were n (0) customers in the system when the 
current service started. 
 
Nn (t): as the probability that at time t there are 
n (0) customers in the system and both servers are 
on vacation. 
 
 
 

Pn (t): as the probability that at time t there are 
n (0) customers in the system  without regardless 
of the state of the servers  
 
ki : as the probability of i arrivals during a service 
period of constant length b. 
 
Steady State Forward Equations of the System       

Assuming that the steady state exists, let 

nnt
BtB =

∞→
)(lim , nn N(t)N =

∞→t
lim , and 

nnt
PtP =

∞→
)(lim . Thus, nB , nN and nP denote the 

corresponding steady state probabilities. Then 
applying the usual probability reasoning we obtain 
the following set of steady state forward 
equations: 
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Steady State Probability Generating Functions for the System Size 
 We define the following probability generation functions: 
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We multiply (1) by 
2+nz  and add for all n = 0, 1, 2…Then we have 
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Then using (4) we obtain from (5)  
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Similarly we multiply (2) by 
2+nz  and (3) by z and add them for all n = 0,1,2… Then we have 
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Using (4) we obtain from (7) 
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Then we solve (6) and (8) simultaneously for )(zB and )(zN and obtain on simplifying 
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Hence, adding (9) and (10) we have  
 

)()()( zNzBzP += . (11) 
 
Now we have to determine the unknown probabilities 0B and 

1B  which appear in the numerators of the right 
hand sides of equations (9), (10) and (11). For this purpose we use Rouche's theorem as follows. Let 
 

[ ][ ]2)1(2 )()1()( zzepzzf zb βλλλ +−−−= −− , 
)1(2)( zbezpzg −−−= λβ . 
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Note that both f (z) and g (z) are regular on and inside  | z | =1. We aim to prove that )()( zgzf ≥  on 
| z | =1. Now, on | z | =1, 
 

  [ ][ ]2)1(2 )()1()( zzepzzf zb βλλλ +−−−= −−  

    2)1(2 )()1( zzepz zb βλλλ +−−−= −−  

   2 b(1 z ) 2z (1 p)e ( z ) z− λ −   ≥ − − λ − λ + β     

    [ ][ ] )()1(1 )1()1( zgepep zbzb ==+−−−= −−−− λλ ββλλ . 
 

Because )()( zgzf ≥ , therefore by Rouche’s theorem )()( zgzf +  has the same of zeros 

inside or on 1=z  as that of )( zf . Now, it is easy to show that )( zf has four zeros on or inside 1=z . 

Therefore, )()( zgzf + , i.e., the denominator of the right hand side of  (11) has four zeros on or inside 

1=z .  For each of these four zeros the numerator of the right hand side of (11) must vanish, thus giving us 

four linear equations in the two unknowns 0B and 1B . Then two of these four equations are sufficient to 
determine the two unknowns, whereas the other two may just be redundant. Hence, the probability generating 
functions B (z), N (z) and P (z) obtained in (9), (10) and (11) can be completely determined. 

 
Next, we shall use normalizing condition  

1)1()1()1( =+= NBP .   (12) 

At z = 1, 
zero
zero

P =)1( , therefore using L'Hopital's rule we have from (11) 
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which gives 
 

λβλββ pbBBp −−=++ 2)2)(( 10 .    (14) 
 
Equation (14) will hold only if λβλβ pb −−2  > 0 which gives the steady state condition 
 

β
βλ
2

)( pb +
 < 1.      (15) 

 Note that when there are no server vacations, then with p = 0, nN =0 for all n 0≥ , equation (10) 
yields N(z)=0  as it should be. Further, equations (9) and (15) respectively give 
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2<bλ .        (17) 
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 Note that (16) and (17) are the known 
results for the M/D/c queue for c=2. (See Kashyap 
and Chaudhury, 1988, p. 60-61.) 
 
Model B: Only One Server At A Time Can Take A 
Vacation 
 The Underlying Assumptions. 
 In this case, the assumptions (a), (b) and 
(d) in section 2.1 for the previous case are the 
same. However, assumption (c) is different in this 
case under which we assume that after every 
service completion, only one server may take a 
vacation with probability p or continue to stay in 
the system with probability 1- p. The vacation 
times follow an exponential distribution with mean 
vacation time 1/ β ,  (β  > 0). 
 
Definitions and Notations  
 We define: 
Bn (t): as the probability that at time t both servers 
are available in the system providing service and 
there were n ( ≥ 0) customers in the system when 

the current service started. 
 
On (t): as the probability that at time t only one 
server is available in the system providing service 
and there were n (≥ 0) customers when the current 
service started. 
 
Pn (t): as the probability that at time t there are n 
( ≥ 0) customers in the system  regardless of the 
state of the servers. 
 
Steady State Forward Equations of the System   
  Assuming that steady state exists, we let 

nnt
BtB =

∞→
)(lim , nnt

O(t)O =
∞→

lim  and 

nn
t

PtP =
∞→

)(lim . Thus nB , nO and nP denote the 

corresponding steady state probabilities.  Then we 
obtain the following set of steady state equations: 
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Steady State Probability Generating Functions for the System Size 
 In addition to the probability generating functions defined in (4a) and 4b) in section 2.4, we define the 
following probability generation function: 

∑
∞

=

=
0

)(
n

n
n zOzO , | z | ≤  1.        (20) 

 

We multiply both sides of equation (16) by 
2+nz  and add for all n = 0, 1, 2… Thus we have 
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Then using (4a), (4b) and (20) we obtain from (21) 
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Similarly, we  multiply both sides of (19) by 
2+nz  and add them for all n = 0, 1, 2… Then we have 
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Then using (4a), (4b) and (18) we obtain from (23) 
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Then, we solve equations (22) and (24) simultaneously for )(zB and )(zO and obtain 
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Then adding (25) and (26), we obtain  
  

)()()( zOzBzP += .     (27) 
                                 

 The unknowns 10 , BB and 0O  can be determined by applying Rouche’s theorem as before. Hence, 
the probability generating functions B(z), O(z) and P(z) can be completely determined.  
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 Further, we use the normalizing condition  
 

1)1()1()1( =+= OBP .   (28) 
 

At z = 1, because 
zero
zero

P =)1( , and hence, using L'Hopital's rule we have from   (27) 
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 Equation (30) will hold only if bppb λβλβ −+−2  > 0 which yields the steady state condition 
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 Again note that when there are no server vacations, then with p = 0 and nO =0 for all n 0≥ , equation 
(26) yields O(z)=0 as it should be. Further, (25) and  (31) respectively give 
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 Note that (32) and (33) are  the  same known results for the M/D/c queue for c=2 as in section 2.4.  
(See Kashyap & Chaudhury, 1988, p. 60-61.) 
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Homogeneous Markov Processes For Breast Cancer Analysis 
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Sometimes, the introduction of covariates in stochastic processes is required to study their effect on disease 
history events. However these types of models increase the complexity of analysis, even for simpler processes, 
and standard software to analyse stochastic processes is limited. In this paper, a method for fitting homogeneous 
Markov models with covariates is proposed for analysing breast cancer data. Specific software for this purpose 
has been implemented. 
 
Key words: Stochastic processes, Markov processes, cancer, covariates 
 

 
Introduction 

 
Multi-state Markov processes have been introduced 
recently in health sciences in order to study the 
evolution of patients through different states or 
stages before death, even in cases where exact 
transition times are not known (Kay, 1986). This 
type of model has been mainly applied in AIDS (De 
Gruttola & Lagakos, 1989; Frydman, 1992; 
Mariotto et al., 1992), cancer (Kay, 1986), and 
psychiatric research (Keiding & Andersen, 1989), 
employing different methodologies depending on 
the particular conditions of each study. In practice, it 
is often useful to use a homogeneous Markov 
process to model disease history events because 
generally they are easy to interpret and the 
assumption that the process is homogeneous 
simplifies the methods used to fit the model. 
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 In multivariate studies, the use of models 
that incorporate covariates allows analysis of the 
effect of these variables on the outcome variable. 
When multi-state models are used, it is also possible 
to study the effect of these covariates on different 
transitions between states throughout the patient’s 
disease history. 
 Some authors have worked on the 
introduction of covariates in multi-state processes 
and particularly in homogeneous Markov processes 
(Kalbfleisch & Lawless, 1985; Pastorello, 1993); 
however, they mentioned the increased complexity 
of analysis in this sort of model where an added 
problem is the shortage of standard software. In 
spite of these problems, the introduction of 
covariates in stochastic processes is required to 
explain the effect of these factors on disease history 
events. 
 In this paper we present a breast cancer 
study where two transient states and a death state 
have been defined. In this study, observation is 
continuous, i.e., information on exact transition 
times between transient states is available; in this 
context, the main objectives of this paper are: 
 
a) To propose a method, computationally tractable, 
to estimate homogeneous Markov models with 
covariates in continuous time. 
 
b) To study the evolution of patients diagnosed with 
breast cancer in Granada province (South of Spain). 
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Methodology 

 
The study was carried out with 241 women with 
breast cancer diagnosed in 1985-86 who received 
radical treatment and had a period free of symptoms. 
The follow-up ended on 31 of December 1990 
(Ocaña-Riola, 2002). Data originated from the 
Granada Cancer Registry (South of Spain). 
 The variables T, N and Hormonal Status 
(HS) on the disease history of individuals have been 
recorded. The definition of T and N was taken from 
the Classification of Malignant Tumours (Sobin and 
Wittekind, 1997), where these variables are two 
components of the TNM system for describing the 
anatomical extent of disease. Variable M was not 
considered because there were no patients with 
distant metastasis. Additional numbers on TNM 
components indicates the extent of the malignant 
tumour as follows: 
 
a) T: The extent of primary tumour; T0: No 
evidence of primary tumour; T1: Tumour 2 cm or 
less in greatest dimension; T2: Tumour more than 2 
cm but not more than 5 cm in greatest dimension; 
T3: Tumour more than 5 cm in greatest dimension; 
T4: Tumour of any size with direct extension to 
chest wall or skin. 
 
b) N: The absence or presence and extent of regional 
lymph node metastasis; N0: No regional lymph 
node metastasis; N1: Metastasis to movable 
ipsilateral axillary nodes(s); N2: Metastasis to 
ipsilateral axillary node(s) fixed to one another or to 
other structures; N3: Metastasis to ipsilateral internal 
mammary lymph node(s). 
 
 It is considered to be a three-state Markov 
model with two transient states and one absorbing 
(Chiang, 1968). These states are  “With symptoms “ 
(state 1),  “Without symptoms “ (state 2) and  
“Death “ (state 3) where the possible transitions are 
represented in Figure 1 in appendix. 
 We consider the transition intensity matrix: 
 
 
 

12 13 12 13

21 21 23 23

Q(x) =

-( (x)+ (x)) (x) (x)q q q q
 (x) -( (x)+ (x)) (x)q q q q

0 0 0

 
 
 
 
 

 

 
where each transition intensity is dependent on a 
vector of covariates; that is: 
 

)(x=(x)q

ji )(x=(x)q

ji
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β
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′
≠

′

∑
≠

exp

exp
 , 

 
where ),( 0 bx...,x=x , x0=1, is a vector of 

covariates and )( 0 βββ jbiijij ,...,= ′ is a vector of 
unknown parameters. 
 In order to estimate the model an 
approximate method was used (Ocaña-Riola, 
2002). The Likelihood Ratio Statistic (LRS) was 
used in a backward analysis to test the 
signification of regression parameters (De Groot, 
1986). Moreover, the LRS test was used for the 
goodness of fit of the final model (Kalbfleisch & 
Lawless, 1985). When the transition intensity 
matrix is estimated, the estimated transition 
probability matrix is P(u; x)=exp(Q(x)u), u>0. 
 

Results 
 

In order to estimate the model, we used a partition of 
the time using 35 intervals which extent was 
between 0.002 and 0.260 years (Figure 2 in 
appendix). Because of shortage of subjects in the 
groups N2 and N3 (Table 1), the variable N has 
been transformed in a binary variable as 0=N 1  if 
N=0 and 1=N 1  if N=1, N=2 or N=3.  
 There were not transitions from state 2 to 
state 3 in Non-menopause patients, however there 
are some in the Menopause group; if we interpret 2-
3 as the transition to other causes of death, the 
transitions observed in Menopause group could be 
due to an age effect because older women heavily 
weight this group. For this reason we propose the 
following model: 
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exp 2 3 4230 231 232 23323

1234

23

 = (   +   +  +   q T T T
+  )if  H S = 1N

 = 0if HS=0 q

β β β β

β  

 
exp 2 3 4230 231 232 23323

1234

23

 = (   +   +  +   q T T T
+  )if  H S = 1N

 = 0if HS=0 q

β β β β

β  

 
where T 2 ,T 3 ,T 4  are dummy variables from T (T1 
is the category of reference). 

 
 A backward analysis using LRS test 
showed that variable N is not statistically significant 
when T and HS are into the model (P=0.482). 
Besides, there is no evidence (P=0.370) against the 
codification of T in only two categories: patients 
with a better prognosis (T1 or T2) and patients with 
a bad prognosis (T3 or T4). Therefore it was 
considered a new covariable, TR, with value 0 for 
T1 or T2 and value 1 for T3 or T4. The final model 
is shown in Table 2. MLE’s for transition intensities 
in different groups of covariates are in Table 3. 
 Figures 3 and 4 show these transition 
probabilities by groups of covariates. These graphs 
show a notable difference between T1-T2 and T3-
T4. A LRS test for the goodness of fit of the final 
model shows that there is no evidence against a 
homogeneous Markov process (p=0.177). 
 

Conclusion 
 
Multi-state Markov models offer some advantages 
over traditional survival models for studying disease 
history events, making it possible to estimate the 
probability that a subject could be in different states 
at any time in the future. Homogeneous processes 
are the simplest of Markov models but in some 
studies it is possible to find evidence against this 
sort of model. The absence of homogeneity in time 
could be the result of the absence of homogeneity 
between people. In this case, the use of covariates 
could improve the fit of the model and 
homogeneous Markov models with covariates are an 
interesting option. 
 However, the incorporation of covariates in 
a stochastic process increases the complexity of 
analysis, even on simple processes. Because of that 
and the shortage of standard software to analyse 

Markov process with incomplete observations, 
many researchers refuse to use these multi-state 
models. In spite of these problems, some authors 
worked on the inclusion of covariates in a 
homogeneous Markov process (Andersen, 1988; 
Pastorello, 1993; Tuma & Robins, 1990). The more 
used methods are based on the extended Kalbfleisch 
and Lawless algorithm to incorporate covariates 
(Kalbfleisch & Lawless, 1985). 
 In this article we have used a particular 
partition of the time when observation is continuous. 
In this situation an approximate method has been 
proposed in order to introduce covariates and to 
estimate the intensity matrix in a homogeneous 
Markov process (Ocaña-Riola, 2002). MLE’s 
obtained from this method are not computationally 
costly and, in practice, the algorithm converges to 
very similar estimates of parameters given by other 
methods when the length of the intervals uk 1 tends 
to be small (Ocaña-Riola, 2002). Moreover, 
covariates can easily be introduced in the model. 
 The method proposed here consider only 
categorical covariates because this is the sort of 
variables analysed in the breast cancer study. 
Continuous covariables, as age, could be introduced 
in the analysis using different categories for them. 
This idea has been used in some research about 
stochastic processes and in practice it is the most 
used (Tuma & Robins, 1980; Pastorello, 1993). 
 In this breast cancer study, incorporation of 
variables T, N and Hormonal Status in the model 
have allowed us to evaluate its effects on disease 
history. However, covariate information was 
missing for 36 women not included in the analysis. 
In general, it is not a good statistical practice to 
leave out patients with missing values; therefore 
different statistical methods have been published 
recently in order to incorporate these patients into 
the analysis. Some authors have shown that using a 
Bayesian approach implemented via Markov Chain 
Monte Carlo it is possible to obtain a suitable 
regression model for the missing values 
(Raghunathan & Siscovick, 1996). 
 Due to the complexity of the Bayesian 
analysis in a Markov process with covariates, we 
have not implemented this method. However, it 
would an interesting research into stochastic 
processes. 
 Along these lines, Volinksy et al. (1997) 
applied Bayesian Model Averaging to the selection 
of variables in Cox proportional hazard models. 
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Their investigations into the risk factors for strokes 
using this model improve the results obtained by 
traditional stepwise, forward and backward selection 
methods, which have poor properties (Miller, 1990). 
Again, the implementation of Bayesian Statistics 
into Markov processes could yield interesting 
results, although some theoretical research is needed 
before using these methods in practice. 
 In a traditional backward analysis a 
relationship was found between T and Hormonal 
Status and the evolution of patients diagnosed with 
breast cancer. Non-menopausal women with a 
tumour T1 or T2 have the best prognosis since 
recurrence probability and death probability are the 
smallest. In the same way and using traditional 
survival models, other population base studies have 
found that both, T and Hormonal Status, are 
important factors in order to predict survival and 
recurrence probability in breast cancer (Coebergh et 
al., 1995). Other analytic  factors and hormonal data, 
not included in this study, could explain to a great 
extent part of breast cancer survival and recurrence. 
Vascular and lymphatic invasion of cancer cells, 
type of histology, age, site of first recurrence, female 
sex steroid receptors and ploidy measurements have 
been reported in some articles as prognostic factors 
for breast cancer recurrence (Blanco G et al., 1990; 
Murayama et al., 1986). In this way, a prospective 
study could be interesting in order to analyse the 
effect of all these variables on the evolution of 
patients through different states of their disease, 
obtaining a complete and detailed study on breast 
cancer history.  
 In this study, the interpretation of the 
transition from “without symptoms “ to  “death “ is 
difficult in menopausal women. Older women 
heavily weight this group and perhaps the effect of 
age can explain this situation. It might be interesting 
to consider a fourth state “death from other causes “ 
in order to know the proportion of patients dying 
from the direct or indirect consequences of breast 
cancer but unfortunately this information is rarely 
available in the Granada Cancer Registry. 
 From this paper’s findings, it will be 
possible to estimate the proportions of patients who 
shall be in each disease state in the future; therefore 
we will be able to obtain highly relevant information 
for health planning services. Furthermore, the 
proposed method can easily be used for other 
situations in cancer and other disciplines such as 

public health, economics, sociological research or 
medical sciences. 
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Figure 2. Length of the intervals that give a partition of the follow-up time 
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Figure 3. Estimated transition probabilities for T1-T2 and hormonal status 
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Figure 4. Estimated transition probabilities for T3-T4 and hormonal status 
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Table 1. Breast cancer data. Granada Cancer Registry, 1985-1986. 

 Non-menopause  Menopause 

 N0 N1 N2 N3 Total  N0 N1 N2 N3 Total 

T1 
T2 
T3 
T4 

15 
20 
1 
2 

8 
7 
5 
7 

0 
1 
1 
0 

0 
0 
0 
0 

23 
28 
7 
9 

 29 
41 
7 
4 

6 
21 
4 
15 

0 
3 
1 
2 

0 
0 
2 
3 

35 
65 
14 
24 

Total 38 27 2 0 67  81 46 6 5 138 
Note : There were 36 patients with missing values. 

 
 

Table 2. MLE’s estimates for breast cancer data (standard error in brackets) 

Transition (ij) Constant (β ij0 ) TR ( β ij1 ) Hormonal Status ( β ij2 ) 

1 - 2 *  -0.4665 (0.0108)  0.3321 (0.0067) 

1 - 3 -1.7584 (0.0203) *  0.5802 (0.0235) 

2 - 1 -2.7298 (0.0169)  0.7570 (0.0166)  0.4442 (0.0183) 

2 - 3 -3.7965 (0.0219) * No included 

(*) Null statistical significance for 0.05=α  
 
 
 

Table 3. Estimated transition intensities for breast cancer data. 

T Hormonal Status q12ˆ  q13ˆ  q21ˆ  q23ˆ  

T1 or T2 
T1 or T2 
T3 or T4 
T3 or T4 

Non-menopause 
Menopause 

Non-menopause 
Menopause 

1.0000 
1.3939 
0.6272 
0.8742 

0.1723 
0.3078 
0.1723 
0.3078 

0.0652 
0.1017 
0.1391 
0.2168 

0 
0.0224 

0 
0.0224 
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Effect sizes are important for power analysis and meta-analysis. This has led to a debate on reporting effect 
sizes for studies that are not statistically significant. Contrary and supportive evidence has been offered on the 
basis of Monte Carlo methods. In this article, clarifications are given regarding what should be simulated to 
determine the possible effects of piecemeal publishing trivial effect sizes. 
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Introduction 
 
“It would seem that power analysis has arrived” 
(Cohen, 1988, p. xiii). This was the conclusion of 
the late Jacob Cohen in reviewing twenty-six years 
of the literature since he brought the importance of 
effect size (and sample size) to the attention of 
behavioral and social science researchers (Cohen, 
1962). The explosion of meta -analyses being 
published, which followed Gene Glass’ 
presidential address to the American Educational 
Research Association (AERA) in April of 1976, 
also depends on the proliferation of effect sizes. 
 Researchers and editors, after neglecting 
power analyses in the past, or to provide raw 
materials for future meta-analyses, are now being 
asked to report effect sizes associated with 
statistically non-significant results. A recent 
motivating example of this call was made by 
Thompson (1996, 1999), who recommended effect 
sizes “can and should be reported and interpreted 
in all studies, regardless of whether or not 
statistical tests are reported” (1996, p. 29), and 
“even [for] non-statistically significant effects” 
(1999, p. 67). 

 
 
Shlomo S. Sawilowsky is Professor of Educational 
Evaluation and Research (EER), College of 
Education, Wayne State University, Detroit, MI. 
He is the program coordinator of (EER), and 
Wayne State University Distinguished Faculty 
Fellow. Email: shlomo@wayne.edu. The title of 
this article is based on Gerrold (1973). 

 Robinson and Levin (1997; see also Levin 
& Robinson, 1999) gave a reasoned approach to 
the reporting of effect sizes. On the basis of a 
thought experiment, they concluded that it is better 
to “First convince us that a finding is not due to 
chance, and only then, assess how impressive it is” 
(p. 23). Knapp and Sawilowsky (2001) added 
additional heuristic arguments against the practice. 
 Sawilowsky and Yoon (2001, 2002) 
conducted a Monte Carlo simulation to provide 
rigor for this position. Their results indicated that 
“effect sizes should not be reported or interpreted 
in the absence of statistical significance” 
(Sawilowsky & Yoon, 2002, p. 144). In contrast, 
Roberts and Henson’s (2002) Monte Carlo study 
came to the opposite conclusion. The purpose of 
this paper is to bring resolution to these opposing 
results. 
 
High Quality Monte Carlo Simulation & Sampling 
With Replacement 
 It is necessary to preface with a brief 
discussion of (a) simulation, (b) Monte Carlo, (c) 
Monte Carlo simulation, (d) sampling with vs 
without replacement, and (e) characteristics of a 
high quality Monte Carlo simulation. This will 
clarify the study conducted by Sawilowsky and 
Yoon (2001, 2002), and explicate the flaws in the 
design and conclusion of the study conducted by 
Roberts and Henson (2002). It will also serve as a 
brief review of Monte Carlo simulation methods. 
(For more complete coverage of the Monte Carlo 
simulation method, see Sawilowsky & Fahoome, 
2003). 
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Simulation 
 A simulation “mimics important 
elements” (Roberts, et. al, 1983, p. xi) of a system 
or phenomenon. It is “a representation ...in 
simplified form to study its behavior” (p. 452). 
Negoita and Ralescu (1987) noted that “In 
science... ‘simulation’ is forming an abstract 
model from a real situation in order to understand 
the impact of modifications and the effect of 
introducing various” (p. 29) interventions. 
 Norlén (1975) stated that simulation can 
be viewed as a “numerical technique for the 
carrying out of experiments” (p. 15). As an 
example, consider simulating the tossing of a fair 
die. This may be accomplished by accessing an 
uniform pseudo-random number generator that 
produces a value on the interval [0,1]. Draw a 
variate from the generator. Suppose it is .1770 
(rounding to four significant digits, or to as many 
significant digits as desired). Using the assignment 
in Table 1 below, this process results in the 
simulation of throwing a fair die and having two 
spots surface. 
 

Table 1. Simulation of a fair die  
using uniform variates on the 

interval [0,1]. 
 

Outcome Assignment 

.0000 - .1666 1 spot 

.1667 - .3333 2 spots 

.3334 - .5000 3 spots 

.5001 - .6666 4 spots 

.6667 - .8333 5 spots 

.8334 - 1.000 6 spots 
 
Monte Carlo 
 Monte Carlo, in the sense it is being used 
in this article, is of rather recent origin (Metropolis 
& Ulam, 1949). Its usage appeared over a half 
century ago in reference to the gaming 
establishments of previous centuries of a famous 
city in the Monaco principality. It is an explicit 
reference to the use of repetition as a method of 
discovery of the long run outcome of an event. 

 More technically, it is the “use of 
stochastic techniques to solve... a deterministic 
problem” (Moshman, 1967, p. 250). As such, “one 
of the simplest and most direct applications of the 
Monte Carlo methods is to the evaluation of 
integrals” (Kahn, 1966, p. 249-250), or the area of 
any geometric figure, but particularly those 
irregular in shape. (The first moment of the 
uniform distribution over the interval [0,1] can be 
obtained via the calculus:

 
1

0
xdx .5=∫ . 

 
This result could be estimated via Monte Carlo 
methods by drawing a large number of variates 
from a uniform pseudo-random number generator 
and computing the mean, but usually there is little 
point in doing so.)  
 As an example, consider the problem of 
determining the area of an irregular closed figure 
that is unwieldy to the calculus. Inscribe the figure 
within a unit square. Draw two variates from the 
uniform pseudo-random number generator to 
represent Cartesian coordinates for the ordered 
pair (x, y), and plot them accordingly. Repeat the 
previous step many times. The area of the irregular 
geometric figure is estimated (as accurately as 
desired) by the ratio of the number of dots that fall 
within the figure, divided by the total number of 
repetitions (i. e., pairs of dots created). Note, 
however, that no system or phenomenon was 
simulated. 
 A famous example of the Monte Carlo 
method was undertaken in 1908 by William Sealy 
Gosset (Student, 1908a, 1908b), a chemist 
working for the Guinness brewing company. He 
bolstered his analytical expression of the 
distribution of the Pearson product-moment 
correlation coefficient on small samples via a 
Monte Carlo conducted by hand. Similarly, he 
supported the derivation of the t statistic with a 
Monte Carlo demonstration of the sampling 
distribution of t. 
 
Monte Carlo Simulation 
 Statistical historians (e.g., Hald, 1998, p. 
196 - 201) noted that multinomial outcomes, such 
as tossing a fair die with equiprobability of one 
through six spots surfacing, was determined 
mathematically by Laplace in 1774. As an 
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alternative to the mathematical approach, the 
Monte Carlo simulation approach arose with 
Buffon in 1777, who tossed a coin 2,048 times and 
recorded the results. The distribution of outcomes 
indicated an expectation of heads to occur in 
50.693% of the tosses. In 1837, Poisson 
determined 0.48468 < p < 0.52918 to be what he 
called the 99.555% interval of the probability “p” 
representing the chance of a heads occurring. 
 A famous Monte Carlo simulation was 
reported in 1900 by the eugenicist, Karl Pearson. 
His zoologist colleague and co-founder of 
Biometrika, Walter Frank Raphael Weldon, tossed 
twelve dice at the same time, recorded the results, 
and repeated the process 26,306 times. Pearson 
(1900) procured this data set and applied his newly 
developed goodness of fit P2 test to demonstrate 
the frequency of obtained outcomes were as 
expected due to combinatorial analysis. 
 Norlén noted (1975) “the advent and use 
of computers... freed the method from manual 
calculations... and... afford richer possibilities for 
the creation of complex, dynamic, and multi-
variate” (p. 20) problems. Thus, the modern Monte 
Carlo simulation obviates the physical tossing of a 
die (or flipping of a coin). The combination of 
assignment in Table 1 (simulation) with many 
repetitions (Monte Carlo) via computer software 
and hardware results in the Monte Carlo 
simulation of the probability of outcomes in 
tossing a fair die with far more accuracy than 
could be achieved with the manual methods used 
by Buffon or Weldon. 
 The richness of possibilities for Monte 
Carlo simulation are truly amazing. Some 
examples include annealing, electromagnetism, 
image processing, and genetic linkage (Robert & 
Casella, 1999); inventory control, queuing systems 
at a two-minute car wash, expected waiting times, 
management planning, short-term forecasting, 
consumer behavior of switching brands, and 
customer product ordering behavior, (McMillan & 
Gonzalez, 1968); mass-supply systems, and 
quality and reliability of products (Sobol, 1974); 
growth of yeast in a sugar solution, cooling 
temperature of coffee, development of ability to 
perform pushups, estimating migration patterns, 
material or time delays, ecology of the Kaibab 
Plateau on the rim of the Grand Canyon, urban 
growth, sale and consumption of commodities, 
controlling dam water, projection of discovery of 

natural gas reserves, and heroin addiction’s impact 
on a community (Roberts et. al, 1983); and 
studying random neutron diffusion in fissile 
material in the development of the atom bomb 
during World War II. 
 
Sampling With vs Without Replacement 
 Sampling via Monte Carlo simulations can 
be conducted with or without replacement. In the 
examples using dice or coins, the correct sampling 
technique is with replacement. Once the result for 
the experiment has been recorded, the value 
obtained from the uniform pseudo-random number 
generator is returned to the repository of values 
that may again be drawn. This is because the spots 
don’t leave the dice after being tossed and the 
heads don’t leave the coin after being flipped. 
 Conversely, sampling without replacement 
would be appropriate in simulating the turning of 
cards. Once the Queen of Hearts has been turned, 
it is no longer in the deck, and cannot reappear. 
The Queen of Hearts must be prevented from 
further assignment. The choice of which technique 
to use in a Monte Carlo simulation is determined 
by what is being simulated. 
 The matter of sampling with vs without 
replacement is practically irrelevant when drawing 
variates from the continuous uniform distribution, 
which is represented by an infinite number of real 
numbers, each in turn with an infinite string of 
digits. Furthermore, this consideration is often 
moot with asymptotically large data sets. 
However, Monte Carlo simulation based on 
discrete and bounded distributions, and even more 
so with small sample data sets, may lead to 
different results based on which sampling 
technique is used. 
 
Characteristics Of A High Quality Monte Carlo 
Simulation 
 There are a variety of factors that must be 
attended to in order to assure a Monte Carlo 
simulation is correct and useful. Some of these 
factors are as follows: 
 

• the pseudo-random number generator has 
certain characteristics (e. g. a long 
“period” before repeating values) 

• the pseudo-random number generator 
produces values that pass tests for 
randomness 
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• the number of repetitions of the 
experiment is sufficiently large to ensure 
accuracy of results 

• the proper sampling technique is used 
• the algorithm used is valid for what is 

being modeled 
• the study simulates the phenomenon in 

question 
  

Sawilowsky and Yoon (2001, 2002) vs Roberts 
and Henson (2002) 

 
 The Monte Carlo simulation by 
Sawilowsky and Yoon (2001, 2002) was 
conducted with 
 

A Fortran 95 program “written to 
randomly draw variates from a de 
Moivreian (i. e., normal) 
distribution and then randomly 
assigned to two groups (n1 = n 2 = 
10), with the first group 
designated the treatment group 
and the second the control. A two-
sided two independent samples t 
test was conducted with nominal 
" = 0.05. 10,000 repetitions were 
conducted. (p. 143). 

 
Under the truth of the null hypothesis, the results 
indicated that the average of the absolute values of 
the effect size, Cohen’s d, was not near zero, but 
rather, was approximately what Cohen (1988) 
categorized as a small treatment effect. Thus, the 
conclusion of their brief report was the publishing 
of the constituent effects sizes would be 
misleading. 
 The Monte Carlo study by Roberts and 
Henson (2002) was designed to examine the 
“amount of bias in the effect size” (p. 241). They 
used an S-Plus macro to 
 

generate two normally distributed 
populations of 1 million cases... 
the factors in this simulation study 
included the size of Cohen’s d in 
the population, the standard 
deviation of the two populations, 
and the sample sizes of the two 
groups... A total of 5,000 pairs of 

samples were drawn from the 
populations within each condition 
of the simulation study. (p. 245) 

 
The results of their study found “the amount of 
bias in d remained small under most conditions of 
consideration” (p. 247). Because the “average 
across samples tended to more closely 
approximate zero” under the truth of the null 
hypothesis, meaning “Cohen’s d does not appear 
to be biased in practical terms” (p. 252), they 
concluded the opposite of Sawilowsky and Yoon 
(2001). Therefore, they supported the reporting of 
effect sizes for results that are not statistically 
significant. 
  
Criticism of Roberts and Henson’s (2002) Study 
Nine Minor Criticisms 
 (1) Roberts and Henson (2002) claimed 
that “effect sizes can serve a valuable function to 
help evaluate the magnitude of a difference or 
relationship” (p. 241). Although effect sizes do 
quantify the magnitude of a difference or 
relationship, they do not evaluate it. Content 
knowledge of the research question is required to 
decide if the difference or relationship is of 
theoretical, clinical, or practical importance. 
 (2) Their Monte Carlo study was written 
in a recent albeit dated version of S Plus, which is 
a superb statistical package. There are advantages 
of using statistical packages over programming 
languages, such as ease of use. There have been 
bugs, however, in this software’s pseudo-random 
number generator (e.g., see the discussion at www. 
insightful.com/support/faqdetail.asp?FAQID=137
&IsArchive=0). 
 On the positive side, if a glitch due to this 
bug occurred it should have produced an 
observable error message. The built generator has 
an excellent period length (i. e., 264 - 232) 
compared with most other statistical packages, but 
the algorithm it is based on fails at least four 
DIEHARD tests of randomness (available at 
http://stat.fsu.edu/~geo/. The default option 
requires the programmer to reset the seed, which 
was not mentioned by Henson and Roberts (2002). 
Otherwise, the two “populations” of 1 million 
values would be identical. The current version of S- 
Plus eliminated these potential concerns. 
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 (3) The entry of .0611 for the maximum r2 
when d = .00 and n 1 =  n 2 = 10 in Table 2 is 
obviously a typographical error. 
 (4) They presented “descriptive statistics” 
(p. 247), including the minimum and maximum d, 
in Tables 1 - 3. Roberts and Henson (2002) 
mistakenly labeled and considered the strongest  
negative effect size as a “minimum”. Although 
mathematically it is a “minimum”, in the context 
of effect sizes, the minimum d is, of course, 
defined as zero. 
 (5) Whereas Sawilowsky and Yoon (2001, 
2002) used 10,000 replications and reported 
results to three significant digits, Roberts and 
Henson (2002) used 5,000 repetitions , but reported 
results to four significant digits. The number of 
repetitions was likely due to the limitations of 
using an S-Plus macro instead of Fortran, as the 
latter is far more flexible to program and faster in 
terms of execution. (It is not uncommon to use 
millions of repetitions to gain precision.) 
 (6) Roberts and Henson (2002) conducted 
their study on “5,000 pairs of samples” that “were 
drawn from the populations” ( p. 245). Thus, they 
used sampling without replacement. This is 
incorrect if the intent was to simulate the 
occurrence of test scores, group means, p values, 
or effect sizes. For example, the appearance of an 
IQ score of 107.5 as one sample mean should not 
preclude another sample from having the same 
mean. Each sample mean of a pair must be 
returned to the population, with the chance of 
being drawn again being equal to every other 
possible sample mean. This is accomplished by 
sampling with replacement. 
 (7) Because the study was conducted on 
Cohen’s d (and r2), which is a standardized value, 
there was no need for Roberts and Henson (2002) 
to include three different population standard 
deviations, and hence, two-thirds of their study (i. 
e., Tables 2 - 3) is redundant. 
 (8) There is little justification for 
publishing Monte Carlo work when results can be 
computed easily and directly. The bias in d can be 
computed analytically under population normality, 
which is the only distribution Roberts and Henson 
(2002) examined. Cohen (1988) noted: 
  

It has been shown by Hedges 
(1981) and Kraemer (1983) , in the 
context of the use of ds in meta-

analysis that the absolute value of 
ds is positively biased by a factor 
of approximately (4df - 1)/(4df - 
4), which is of little consequence 
except for small samples. (p. 66) 

 
Their Monte Carlo results for the bias of Cohen’s 
d = .2, .5, and .8 in Table 2 for n1 = n2 = 10 differ 
from (4df - 1)/(4df - 4) by only .005, -.014, and -
.013, respectively. The results should converge as 
the number of repetitions in their Monte Carlo study 
increase. 
 (9) Roberts and Henson (2002) cited 
literature reviews indicating authors inadequately 
documented effect sizes. They cited editors who 
promoted citing effect sizes. They cited the same 
list of journals previously given by Thompson 
(2001, p. 83), whose editors require reporting of 
effect sizes. Their point is well taken, despite the 
apparent recanting of this form of persuasion by 
Thompson (2002), who cautioned “headcounts of 
views are not perfect indicators of truth” (p. 85). 
Nevertheless, Roberts and Henson’s (2002) Monte 
Carlo study did not present any compelling reason 
to report effect sizes when the null hypothesis 
remains tenable. 
 
Major Criticism 
 Sawilowsky and Yoon (2001, 2002) never 
“argued that small effects can in some cases be 
due solely to sampling error” (Roberts & Henson, 
2002, p. 245), as claimed by Roberts and Henson 
and which was the premise of their counter-study. 
Instead, Sawilowsky and Yoon (2002) 
demonstrated the trouble with reporting effect 
sizes for studies that were not statistically 
significant by simulating the process and 
examining the false impression that would 
subsequently be created in the literature. The 
following fabricated data sets (Data Set A and 
Data Set B) represent two possible patterns of 
results in terms of effect sizes when the null 
hypothesis is tenable. 
 
Table 2. Hypothetical Effect Sizes (e. g., Cohen’s 
d) For Data Sets A & B Over Six Replications. 
 

A .001 -.004 .003 .008 -.003 -.005 

B .23 .12 -.07 .17 -.27 -.17 
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 To appreciate the impact of the 
information (hypothetical results) in the table above, 
consider the following vignette. First, consider 
Data Set A. Readers of the literature will see an 
effect size of .001 published in a study of interest, 
-.004 in the subsequent study, and so forth. If the 
reader has a good memory, it would be 
remembered that the typical positive effect size 
averaged .004, and the typical negative effect size 
averaged -.004. The sign of the effect size, to be 
discussed further below, depends on the context of 
the study. Prior to the sought-after and highly 
prized meta-analysis, what message will have 
formed in the mind of the reader of the literature? 
Most likely, there isn’t much here. 
 Now consider Data Set B. The effect size 
for the first study was .23. Although marginally 
respectable, the study was published to publicize a 
subtle, yet detectable treatment effect in education 
or psychology research. A year later, a replication 
study appeared in the literature. The magnitude of 
the effect size was only .12. Explanations were 
given for the reduction (e. g., the reliability 
estimate was lower, the sampling plan was 
inadequate, the period of treatment was reduced). 
After another year passed and the next replication 
appeared in the literature, serious questions 
regarding the veracity of the intervention arose. 
This was because the effect size for the third non-
statistically significant study was only -.07. 
 This impression dissipated somewhat with 
the appearance of the fourth study and its effect 
size of .17. After the fifth and six studies, 
however, readers of the literature were thoroughly 
confused on the effectiveness of the intervention. 
What message might be formed in their minds? A 
reader with a good memory may recall the 
magnitude of the effect sizes averaged 
approximately .2, indicating there was a small but 
important treatment effect. Readers who (a) 
recalled the oldest studies maintained the direction 
was positive, or (b) recalled the newest studies 
maintained the direction was negative. 
 When the readers are presented with the 
published meta-analysis on the series of non-
statistically significant studies, they will realize 
they have been misled. In the absence of a Type I 
error, the meta-analytic synthesis will determine 
the studies conducted over the past half-decade are 
not statistically significant. The meta-analysis, and 
the misconceptions it clarified, would have been 

obviated initially had effect sizes for non-
statistically significant studies not been published 
in the first place. 
 The Sawilowsky and Yoon (2002) Monte 
Carlo was a simulation designed to determine 
which type of data set should readers of the 
literature expect to see under the truth of the null 
hypothesis. Are the magnitudes clustered about 
0.0? The absolute value was taken, and it was 
determined that the typical magnitude expected is 
not near zero, but rather, what Cohen (1988) labels 
a small treatment outcome. Their simulation 
showed readers should expect to see results such 
as that depicted by Data Set B, not Data Set A. In 
contrast, Roberts and Henson’s (2002) work was a 
Monte Carlo study of the bias of d, which does not 
relate to the process being simulated. 
 (Without remarking on it, Roberts and 
Henson, 2002, with slightly different study 
parameters,  found  the  strongest effect sizes to be
-2.31 and 2.06 for negatively and positively signed 
d’s, respectively. You think you’ve got trivials? 
These huge results occurred with a treatment 
modeled by random numbers! Publishing specious 
effect sizes of such astronomically high magnitude 
(i.e., ±2.19) could wreak havoc in the literature. 
Sawilowsky and Yoon, 2001, 2002, considered 
reporting results in this fashion. It was decided, 
however, that to be realistic, the simulation should 
depict the typical magnitude expected, not 
extrema.) 
 

Conclusion 
 
Consider the chaotic fashion in which meta-
analyses are currently being conducted. One 
researcher is not the holder of results from many 
tightly integrated experiments, publishing only the 
final meta-analysis. If that were the case, the 
presence of effect sizes for non-statistically 
significant results, duly noted and preserved as 
they occurred, would never become a misleading 
menace to the public. 
 Therefore, Sawilowsky and Yoon’s (2001, 
2002) brief report was based on taking the 
absolute value of Cohen’s d to determine the 
typical magnitude expected when an intervention 
was  random numbers. Roberts and Henson’s 
(2002) argument against taking the absolute value 
was “in real experiments, it is known which group 
received the intervention” (p. 244). Is their 
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position correct as far as readers of the literature 
are concerned? In some treatment vs control 
studies, the effect of the treatment is demonstrated 
when the mean of the treatment group is higher 
than that of the control group; in other contexts 
when the mean of the treatment group is lower 
than that of the control group. For example, the 
same intervention might be used to increase self-
esteem scores (treatment group mean is greater 
than control group mean), and reduce the number 
of times per week the bed was wet (treatment 
group mean is lower than control group mean).  
 The direction (sign of + or -) of that same 
intervention is entirely arbitrary. The sign depends 
on the context of the use of the intervention. If one 
researcher held all of the interim results, then the 
interpretation could safely rest on the meta-
analysis, as the context would be known. 
However, the reader of the literature, who is 
getting these results piecemeal, will have the nigh 
impossible task of making sense of the contexts of 
a series of independently conducted studies 
published sporadically over time. 
 In addition to the above vignette, consider 
using a compound designed to block the serotonin 
uptake pump in a treatment one vs treatment two 
study on patients at risk for suicide. Suppose 30 
mg, a common dosage for depression, was being 
compared with 70 mg, a common dosage for 
trichotillomania and other obsessive-compulsive 
disorders. Which dosage is the intervention? 
Clearly, the resulting direction (sign of + or -) is 
arbitrary. Thus, both the magnitude and the sign of 
published effect sizes for non-statistically 
significant studies mislead the public. 
 Cohen (1988) noted the researcher “hardly 
needs convincing of the centrality of the concept 
of effect size (ES) to the determination of power 
or necessary sample size in research design” (p. 
531). “It is, after all, what science is all about” (p. 
532).Yet, Cohen (1988, p. 10) opined that of all 
the factors in research design, behavioral scientists 
understand effect size the least. “Whatever the 
manner of representation of a phenomenon ... the 
null hypothesis always means the effect size is 
zero...[but] when the null hypothesis is false, it is 
false to some specific degree, i.e., the effect size 
(ES) is some specific nonzero value in the 
population” (Cohen, 1988, p. 10). Thompson 
(1996, 1999), supported by Roberts and Henson 
(2002), called for publishing specific nonzero 

values under the truth of the null hypothesis. 
According to Cohen (1988), however, “the ES 
serves as an index of degree of departure from the 
null hypothesis” (p. 10, italics added for 
emphasis). 
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measuring bias in Cohen’s d, and a rejoinder to Sawilowsky (2003) is presented. 
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Introduction 
 
Under a spirit of collegiality and zeal to further the 
field of research, dialogues like this play an 
important role in discussing areas where 
researchers both agree and disagree. Through 
open-ended dialogue, it is hoped that readers will 
continue to see the benefit in debate about 
important topics. 
 In this brief rejoinder to Sawilowsky 
(2003), we will provide discussion to the nine 
minor criticisms and one major criticism point by 
point. Although the first portion of his paper is 
lengthy, it does not bear comment on because it 
was expertly written and we do not disagree with 
any of the substance laid therein. 
 As we respond to each of the criticisms, 
however, we feel it important to note two things. 
First, the point of our paper was to show whether 
or not Cohen’s d contains any amount of bias and 
is therefore in need of a correction to account for 
this bias. 
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 For all practical purposes, our answer to 
this question was NO. As we stated in our article, 
“the amount of bias in d remained small under 
most conditions of consideration . . . [and the] 
incredibly small amount of difference between the 
population d and the average sample d leads us to 
believe that d is in fact not biased in terms of 
practical differences” (p. 247, 251). 
 Second, we examined Thompson’s (2002) 
proposed correction of d for accuracy and to see 
whether or not the correction was even necessary. 
In response to this proposed correction, we state, 
“although this correction of d seems to make sense 
theoretically, it overcorrects for the actual amount 
of bias” (p. 251). 
 As we begin our reply, we would like to 
note that NOWHERE in the rebuttal does 
Sawilwosky (2003) refute either of these findings. 
Instead, the arguments fall into two categories: 
minor criticisms that are mostly methodological, 
and one major criticism that has to do with the 
publishing of reported effect sizes. Once again, it 
bears mentioning that none of these criticisms, 
once having addressed and clarified the 
methodological issues, directly calls into suspect 
the findings of Roberts and Henson (2002). 
 
Responses to Minor Criticisms 
Criticism 1: Effect sizes help evaluate 
 Although we agree with Sawilowsky’s 
statement that effect sizes do not evaluate the 
effect of a difference or relationship, we want to 
note that we pointed out in our paper that the 
purpose of the effect size is to “help evaluate the 
magnitude of a difference” (emphasis ours, p. 
241); for judgments are of course made by people. 
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As Sawilowsky (2003) quoted this very statement, 
we do not see any point of disagreement here. 
 
Criticism 2: S-PLUS Random Number Generator 
 As Sawilowsky makes a good point about 
resetting the random number seed, it should be 
pointed out that this seed was reset for both 
populations so that they weren’t identical. 
Concerning the random number generator (RNG) 
in S-PLUS, however, we feel that the critic isms 
are unwarranted. The DIEHARD tests for 
randomness were designed to work on RNGs that 
assume 32 random bits. The RNG for S-PLUS is 
31 bit. As a result it should be assumed that the 
RNG will fail some of the tests that are 32 bit 
based. If there is a need for a 32 bit RNG, then S-
PLUS users can install a patch that will paste 
together 16 bits from each of two consecutive 
numbers and then the S-PLUS RNG will pass all 
of the DIEHARD tests. Also, the bug which 
Sawilowsky speaks of only applies to the Chi-
Square distribution function when X is large (e.g., 
10^13). (Our thanks to Tim Hesterberg from 
Insightful Corporation for his guidance concerning 
the RNG). 
 
Criticism 3: Typo!! 
 The entry of .0611 for the maximum r 2 
when d = .00 and n1=n2=10 in Table 2 should read 
.611. 
 
Criticism 4: Negative values for d 
 Although Sawilowsky (2003) disagrees, 
there are instances when a minimum d is actually 
less than zero. Consider the directional hypothesis 
t-test where we are comparing the effects of a diet 
pill on 100 people. We randomly assign people to 
one of two groups; experimental and control. The 
point of the study is to show the effect of the diet 
pill on the experimental group. Let’s suppose that 
when we compare the mean weights of the people 
at the beginning of the study and note that both 
group means are 200, and then again at the end of 

the study and note 225exp =X  and the 

200=controlX . If we were to consider that the σ = 
35, then we could compute the d for this study as: 
 

 714.0
35

225200
−=

−
=d .  (1) 

  
Consider that it would be incorrect to interpret the 
absolute value of this formula (Cohen, 1988, 
formula 2.2.2) because we are witnessing an actual 
negative effect of the diet pill (e.g., people who 
took the diet pill actually gained weight). If we 
were to follow the logic of Sawilowsky, we would 
either interpret this as a positive effect or simply 
assume the effect is zero. In this case, interpreting 
a negative effect is important. It means that the 
diet pill worked worse than if we had done nothing 
at all! Sawilowsky also mistakenly states that the 
minimum effect (or d) should be defined as zero 
when in fact this is not true (c.f., Cohen, 1988, 
formula 2.2.1, p. 20). 
 As this formula applies to our study, we 
explicitly stated in our manuscript (p. 247) that the 
design of the study was to test this specific effect 
with a directional hypothesis where the expected 
effect was that the experimental group would have 
a larger mean in the population than did the 
control group (except for the case where d = .00). 
 
Criticism 5: Repetitions 
 Although Sawilowsky and Yoon (2001) 
used 10,000 replication, we felt that 5,000 was 
plenty to obtain generalizability. This was not a 
limitation due to using a macro in S-PLUS as S -
PLUS is a programming language and changing 
the number of replications is as simple as typing a 
new number into the script file. However, since 
Sawilowsky posited this as a criticism of the 
study, we re-ran all analysis with 10,000 
replications and noticed that even under extreme 
condit ions, estimates typically did not differ until 
the 1000th decimal place! 
 
Criticism 6: Sampling without replacement 
 We feel that we may have been 
misleading with our statement, “5,000 pairs of 
sample data were randomly drawn without 
replacement at the specified sample sizes” 
(Roberts & Henson, 2002, p. 246). What would 
have been better stated is that we sampled without 
replacement within  each given replication. After 
people were drawn from the population for the 
replication, they were then re-inserted into the 
population at the completion of that replication. 
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We chose this method because it seemed 
counterintuitive to allow for the inclusion of the 
same person twice within each study (although the 
probability for being chosen twice is less than 1% 
for n = 100). We should have been clearer in 
pointing out that we sampled with replacement 
across the replications, just not inside each 
replication. 
 
Criticism 7: Redundancy is reinforcement!! 
 Although Sawilowsky points out that there 
was no need for 2/3 of our study since there was 
no change in the standardized values, we felt it 
important to further reinforce the point that the 
spread of the data make simply a marginal 
difference in effecting the bias (or lack thereof) in 
both d and r2. We would argue that if the results 
really were redundant then we would see exactly 
the same values in each of the tables, which we in 
fact did not. Therefore the inclusion of all three 
tables serves to reinforce the point that under 
multiple conditions, d shows practically no bias. 
 
Criticism 8: Results that shouldn’t be published? 
 This criticism probably should have been 
labeled under the “major criticisms” because it 
states “there is little justification for publishing 
Monte Carlo work when results can be computed 
easily and directly.” As per our manuscript, we 
would again point out that the purpose of it was 
two-fold: to see if d contained bias and to see if 
Thompson’s (2002) correction formula should be 
applied. If nothing else than to show that 
Thompson’s formula “overcorrects for the actual 
amount of bias” (Roberts & Henson, 2002, p. 
251), then the manuscript has merit. Furthermore 
our study shows that even though the correction 
cited by Sawilowsky may apply to meta-analysis, 
it seems of little concern to attempt to correct d in 
directional hypothesis settings. 
 
Criticism 9: Compelling reasons to report effect 
sizes 
 We might restate that it was not the 
purpose of our study to present a “compelling 
reason to report effect sizes when the null 
hypothesis remains tenable.” Our purpose was to 
investigate the bias in d. However, having said that 
we would like to add that in any given study, we 
may obtain a result in which the null hypothesis is 
tenable, but that doesn’t mean that the effect is not 

real! We will deal more thoroughly with this in 
the next section. 
 
Response to Major Criticism 
Is the Effect Trivial or Not? 

Sawilowsky (2003) suggests that he and 
Yoon (2001) never “argued that small effects can 
in some cases be due solely to sampling error” as 
we summized (Roberts & Henson, 2002, p. 245). 
Nevertheless, in their paper Sawilowsky and Yoon 
(2001) noted that reporting their simulated average 
Cohen’s d effect of .17 would be “misleading 
because these effect sizes are specious” (p. 2). In 
their conclusion, the authors claimed: “It was 
shown that effect sizes should not be reported or 
interpreted in the absence of statistical 
significance” (Sawilowsky & Yoon, 2001, p. 4). 
(It should be noted as well that only the 
Sawilowsky & Yoon [2001] paper was referenced 
in our original article. Sawilowsky and Yoon’s 
2002 article resulting from this paper was not in 
print during our manuscript development, and 
therefore was not considered in our article.) 
 If Sawilowsky is not arguing that these 
effect sizes could be solely due to sampling error, 
then why not report and interpret them? Indeed, 
the average d of .17 was presented as a case when 
a non-zero effect was obtained from purely 
random numbers. Surely the logic of this 
conclusion suggests that small effects can be 
obtained even when the null hypothesis remains 
tenable under a statistical significance test. If the 
significance test is to be trusted over the small 
effect size, then from whence must the researcher 
conclude the effect originated? Under this logic, 
the effect must have been a function of sampling 
error. 
 
Confused vs Informed Methodology and 
Readership 
 Sawilowsky (2003) proceeds in his major 
criticism by presenting two literatures of effect 
sizes (A and B). He supposes that after reading 
one of these literatures, a reader may be 
“thoroughly confused on the effectiveness of the 
intervention” (p. 223) because of the presence of 
non-statistically significant results mixed with 
other, presumably, statistically significant results. 
We agree that interpretation of such a literature 
may present certain challenges. Nevertheless, we 
would be hopeful that a more informed use of 
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statistics would be the solution to this difficulty 
rather than avoidance of potential confusion by 
replacing it with another source of misleading 
information.  

(As a caveat, we would also be hopeful 
that even a modestly informed consumer of 
research would be able to determine the expected 
directionality of an effect, and whether the 
experimental group is expected to outperform or 
underperform the control on relevant outcomes. 
This assumes, perhaps, at least a modestly 
effective job at communication from the authors.) 
 It is at this point that we fundamentally 
disagree with Sawilowsky (2003). It is perhaps 
very appealing to some to employ statistical 
significance as a gatekeeper for reporting and 
interpreting meaningful outcomes. As we cited 
previously, Robinson and Levin (1997) and Levin 
and Robinson (2000) propose a reasoned argument 
for just such a two-stage process, where a finding 
must be deemed statistically significant before 
evaluation of the effect size is permitted. Of 
course, this would work only to the extent that the 
gatekeeper is effective in performing its duties. 
 This process also will only work when (a) 
the readership of the article understands fully the 
factors impacting statistical significance tests and 
the elements of power that underlie them and (b) 
the author understands and communicates these 
issues directly. Unfortunately, empirical studies 
have demonstrated that there are a great number of 
misconceptions about statistical significance 
testing (cf., Nelson, Rosenthal, Rosnow, 1986; 
Oakes, 1986; Rosenthal & Gaito, 1963; M. 
Zuckerman, Hodgins, A. Zuckerman, & 
Rosenthal, 1993), and so neither of these outcomes 
is likely on a widespread basis. Is this the 
method’s fault or our own? We would suggest, of 
course, primarily the latter. Unfortunately, 
statistical significance testing has come to be 
treated among many researchers as a truly 
dichotomous outcome that relates directly to result 
importance. This interpretation is a result of many 
factors, none of which make the misinterpretation 
any more correct. As Sawilowsky (2003) correctly 
indicated, the context of the study is critical when 
interpreting both statistical significance and effect 
size outcomes.  
 It is of course very true that a small effect 
size may be due to sampling error. It is also just as 
true that the same small effect size may be a real 

effect in spite of it not being statistically 
significant due to a lack of power. The arguments 
presented by Sawilowsky (2003) simply do not 
discount the possibility (and yes, historical truth) 
that some very real effects may exist but be at risk 
of not being discovered due to a lack of statistical 
significance. Meta-analytically speaking, however, 
when these small but non-statistically significant 
effects are examined across studies, a more 
meaningful outcome may be discovered. While it 
is very easy for methodologists to say that these 
studies should have had more power, it is much 
more difficult to attain sufficient power for every 
study in all applied situations. Should we pay 
more attention to power? Yes, of course. Should 
we also recognize that some small effects may 
indeed be reasonable outcomes not due entirely to 
sampling error? Absolutely! 
 A better approach to this issue, in our 
view, would not just result in discussion of 
whether statistical significance should be the 
gatekeeper, or even whether small effects should 
necessarily be reported and/or interpreted, but 
rather how methodologists and applied researchers 
can seek a more informed understanding and use 
of both of these statistics for what they are. 
 

Conclusion 
 

Effect sizes are not final determinants regarding 
whether a result is meaningful any more than 
statistical significance tests are, and if we interpret 
effect sizes with the same rigidity that we have 
historically interpreted statistical significance 
testing, we are guilty of committing the same error 
yet again. Instead, researchers ought to view their 
studies in context with prior literature, make 
comparisons between their outcomes and those 
from prior studies, attend to power issues, and 
interpret the findings to the readership for what 
they are. 
 Is a small yet non-statistically significant 
effect important? Maybe, maybe not. We certainly 
would not know for sure without replication and 
some form of meta-analysis. We certainly could 
not do either of these, at least in a world where 
Type II error exists as much as its Type I 
counterpart, unless these same small effects were 
reported.  
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Introduction 
 
Yes, everybody has troubles, and not just with 
trivials (Sawilowsky, 2003). We adopt a different 
perspective on the Sawilowsky vs. Roberts-
Henson debates about appropriate methodologies 
for, and interpretations of, their respective Monte 
Carlo investigations (Roberts & Henson, 2002; 
Sawilowsky & Yoon, 2002). 

Although we have decided biases 
concerning the rights and wrongs of that particular 
debate, we also have decided not to jump into the 
fray for two related reasons: (1) Knapp (2003) 
considers a number of general issues that need to 
be considered in the context of Monte Carlo 
simulation studies; and (2) because we regard such 
issues more as background to certain more 
fundamental research-related effect-size-reporting 
foreground issues, we elected to forego additional 
hammering on the former so that we might nail 
down the latter. 

 
Single-Study Investigations vs Multiple-Study 
Syntheses 

The major argument promoted here is one 
that we have presented elsewhere (e.g., Levin, 
1998; Levin & Robinson, 2000; see also 
Onwuegbuzie   &   Levin,   2003). It  can  be sum- 
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marized as follows: Research conductors and 
consumers need to be more attentive to the 
different purposes/functions of an educational 
research article. Is it: (a) to report the results of an 
individual empirical study (a single-study 
investigation) or is it ( b) to summarize a set of 
empirical studies (a meta -analytic multiple-study 
synthesis)? 
 If a, then we contend that hypothesis 
testing should be a critical precursor to effect-size 
estimation in telling the researcher’s story; 
whereas if b, then effect-size reporting should play 
a more prominent role. In that context, a critical 
point of contention concerns whether the effect 
sizes associated with a single -study investigation 
should be interpreted in the absence of statistical 
significance. We have cast our nay votes on (and 
justifications for) this issue elsewhere (e.g., Levin, 
1993; Levin & Robinson, 1999; Robinson & 
Levin, 1997; Robinson, Funk, Halbur, & O’Ryan, 
in press; Wainer & Robinson, in press) and will 
summarize our stance here. 

Almost without exception, introductory 
statistics textbooks present examples based on 
single -study investigations. And, of course, a good 
number of single-study investigations are 
published in educational-research scholarly 
journals. Authors are forced to interpret the results 
of statistical inference tests – and this is where 
most of the troubles begin. In our previous 
writings, we have argued that statistical 
significance should serve a gatekeeper function to 
screen out effects whose direction has not been 
determined probabilistically. What may appear to 
be an interesting or important effect worth talking 
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about can easily be a chance finding, or one that is 
attributable solely to sampling error. In that case, 
by screening out spurious effects through a formal 
statistical test, an author protects the reader from 
erroneously interpreting the effects as if they were 
real. 

Let us insert an important comment that 
has rarely been mentioned in relation to the so-
called “significance-testing controversy.” It is 
simply that under the truth of the null hypothesis, 
testing the hypothesis that, say, two population 
means are equal or that the correlation between 
two variables is zero is equivalent to testing the 
hypothesis that the effect size is equal to zero. This 
may be readily appreciated when inferences about 
correlation coefficients are desired (because the 
correlation coefficient itself is an effect-size 
measure), though not as readily appreciated in the 
mean-difference situation. 

Yet, it becomes apparent when one 
realizes that if the two population means are equal, 
then :1 - :2 = 0, and the corresponding population 
Cohen’s d effect-size measure is 0/F = 0. Thus, if 
a researcher applies a formal statistical test and 
then proceeds to report/interpret the sample effect 
size regardless of the test’s outcome, the question 
arises: What function did the statistical test serve, 
and why was it even conducted in the first place? 
That conclusion coherence issue (Levin & 
Robinson, 2000) is one that Roberts and Henson 
(2003) need to reconcile. 

 
Another Troubling, Yet Telling, Hypothetical 
Example 

As a sequel to a perplexing example 
(Levin & Robinson, 2000, p. 34-35; see also 
Levin’s, 1993, p. 379), let us consider an 
instructional intervention study with n = 2 
participants in each of two conditions, where 
Condition 1’s scores are both 5 and Condition 2’s 
scores are both 6. For this example, a 
nondirectional permutation test would indicate that 
there is not sufficient evidence to conclude that the 
two populations are statistically different (p = 2/6 
= .333, which far exceeds the conventional .05 
level of statistical significance). 

On the other hand, if an effect-size 
measure were computed and reported, it would 
likely be communicated as gigantic  or even 
infinitely large, for in fact, in this particular 
instance d is equal to 4. Alternatively, with effect 

size defined as a squared point-biserial correlation 
coefficient, one would conclude that there is 
perfect prediction of scores from knowledge of 
condition, with no score variability left to be 
explained, for r2 turns out to be 1.00 here. Never 
mind that the study included only a couple 
participants per condition and that a valid 
statistical test performed on these data indicates a 
nonsurprising event associated with an outcome 
this or more extreme (i.e., p = .333), assuming that 
the population-identity hypothesis is true. 
Moreover, even if each condition were to include a 
third participant (resulting in n = 3) who produced 
the same scores of 5 and 6 for Conditions 1 and 2, 
respectively, the associated significance 
probability would be only p = 2/20 = .10, still 
above the conventional .05 level. 

Although this particular example may 
sound extreme, far fetched, or even ridiculous, 
consider the myriad experiments in the educational 
research literature that involve a comparison of 
two different instructional approaches each based 
on three teachers, classrooms, or schools. With 
those teachers/classrooms/schools representing the 
appropriate data-analysis units (e.g., Levin & 
O’Donnell, 1999) and with the aggregated data 
equal to the values just described, the above 
significance probability of .10 applies. 

This example also serves to clarify an oft-
made argument that statistically nonsignificant 
effects are invariably associated with small or 
trivial effect sizes. Yes, a large-scale study (e.g., N 
= 100) with trivial effects (e.g., d = .10) can 
produce nonsignificant results, but so can a very 
small-scale study with huge effects (as was just 
illustrated). Conscientious conclusion-coherent 
researchers should refrain from interpreting such 
effects as either real (in both cases) or important 
(in the second case). 

Our example leads to consideration of a 
converse situation as well, which was earlier 
discussed by Robinson and Levin (1997). The 
following question is regularly posed by one of us 
on Ph.D. qualifying examinations: “What is wrong 
with a researcher’s claim that ‘although the 
anticipated outcome did not quite reach statistical 
significance in this study, it would have if only a 
few more participants had been included’?” This 
claim is reminiscent of the substance of 
Thompson’s (e.g., 1989, 1996) proposed “what if” 
analyses and something toward which Roberts and 
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Henson (2003) tread dangerously close. (We are 
also troubled by the researcher’s use of the term 
“quite” in the qualifying-examination question, as 
will be reflected in our concluding paragraph.) 
Thus, in our above amended example based on n = 
3 participants per condition (for which p = .10), 
can it be claimed that if only one more participant 
were added to each condition the difference 
between conditions would have been statistically 
significant (since with n = 4, p = 2/70 = .029 
according to a two-sample permutation test)? 
Well, could it? 

Only if you are willing also to add that the 
outcome produced by the two additional scores 
(resulting in n = 4 participants per condition) 
mimicked exactly what was present in the original 
data. In the case of a two-sample permutation test, 
just as all three Condition 2 participants had higher 
scores than all three Condition 1 participants in the 
actually conducted study, only if the additional 
participant in each condition maintained that 
situation would there be a statistically significant 
difference at the .05 level. In contrast, if either the 
additional Condition 1 participant were to score 
higher than any Condition 2 participant or the 
additional Condition 2 participant were to score 
lower than any Condition 1 participant, then p < 
.05 statistical significance would not be attained 
(see, for example, Fisher, 1960, pp. 11-15). 

The key to answering the qualifying-
examination question is recognizing that one 
cannot simply assume that the mean difference or 
pattern will stay exactly the same with the addition 
of a few more participants. That is precisely the 
reason why one needs to collect actual data and 
conduct the analysis, rather than sitting around 
thinking in hypothetical “what if?” terms. 
Robinson, Fouladi, Williams, and Bera (2002) 
provide empirical data bearing on “what if” 
pondering and Hoenig and Heisey (2001) discuss 
an equally troubling related issue, post hoc or  
observed power analyses. 

But we have other fish to fry. In Roberts 
and Henson’s (2003) concluding paragraph, it is 
implied that researchers would be unable either to 
conduct replication studies or to perform meta-
analyses unless authors calculate and report all 
effect sizes – including statistically nonsignificant 
ones. Let us consider each of the two implied 
components (replication studies and meta-
analyses) of this contention in turn. 

Is Effect-Size Information A Necessity For 
Independent Replication Studies? 

First, the replication component. If a 
researcher chooses to replicate an experiment, 
knowledge of the specific magnitude of a 
nonsignificant outcome from that experiment is 
not a prerequisite. The forefather of experimental 
design and statistical hypothesis testing, Sir 
Ronald Fisher, certainly could  – and did – 
replicate his agricultural experiments without 
betting the farm on a single study’s effect sizes. 
Indeed, Fisher believed that the direction of an 
effect was only established if he could produce 
consistent results based on several replications. 

As investigators who have collected our 
share of primary research data, our replication 
philosophy is similar to Fisher’s. And the 
difference between that philosophy and the one 
apparently held by Roberts and Henson basically 
comes down to the difference between the 
publication of single-shot (one-experiment) studies 
(their conception of published educational 
research) and multiple -experiment replication-and-
extension studies (our conception). In fact, we 
contend that much of the fury that characterizes 
the debates between those who wish to do away 
with statistical hypothesis testing and those who 
defend the essence of it (see, for example, Harlow, 
Mulaik, & Steiger, 1997) would dissipate if 
researchers refrained from publishing and 
interpreting single -shot studies. 

Results that are statistically significant 
permit two conclusions. First, they provide 
evidence that the hypothesis under test (of which 
the null hypothesis is a special case) is not 
supported. Second, and less trivially (e.g., Cohen, 
1994), they provide evidence of the direction of 
the difference or relationship. For example, a 
statistically significant t-test comparing the mean 
scores of a treatment and control group tells us 
that it is likely that the treatment group 
outperformed the control group in the sampled-
from populations. Results that are not statistically 
significant do not permit either of these 
conclusions. 

On the other hand, it is also possible that 
certain statistically nonsignificant effects are real 
but too small or fragile to be detected within the 
parameters of the initial study. In that case, the 
researcher must decide whether or not the effect is 
worth pursuing. If so, a replication study is in 
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order, which may involve changing/tweaking one 
or more of the initial study’s features to make the 
statistical test of the treatment effect more 
sensitive – such as by incorporating a larger, more 
homogeneous, or differently defined sample, 
strengthening the treatment and/or its 
implementation, modifying the experimental 
design and analysis in some way (e.g., through 
blocking or by including a relevant antecedent 
variable in the analysis), or improving the 
psychometric properties of the outcome measure. 
If the replication study finds the effect to be 
statistically significant, and if that replication is 
followed by additional successful replications, 
then the initially spurned statistically 
nonsignificant effect will be resurrected. 

 
Is Explicit Effect-Size Reporting A Necessity For 
Meta-Analytic Literature Syntheses? 

Roberts and Henson (2003, p. 226- 230) 
argue (again, at least implicitly) that if multiple -
study syntheses are to be conducted, then reporting 
effect sizes for each experiment allows a meta-
analyst to compute an average effect size, as well 
as to see how the size of the effect may vary as a 
function of design changes. The argument has 
been made that single -study investigations should 
always include effect sizes, even for statistically 
nonsignificant outcomes, so that meta-analysts 
will be able to ply their trade using that study’s 
effect-size estimate. What is ignored in this 
argument is that a meta-analyst does not need the 
primary researcher to provide explicit effect-size 
information. As long as the researcher provides 
sufficient statistics (in the form of either means, 
variances/covariances, and sample sizes or the 
associated test statistics) then a competent meta-
analyst will be able to calculate the standardized 
effect-size measures required for multiple -study 
syntheses (see, for example, Robinson & Levin, 
1997). 

It is important to note here that we also 
differ from Roberts and Henson (2003, p. 227-
230) in our view of whether research syntheses 
should consist mostly of meta-analyses or of 
programmatic replication-and-extension studies. 
We opt mainly for the latter. We do not disagree 
that meta-analysis, as conceived by Gene Glass 
(1976) more than a generation ago, holds great 
potential for revealing potentially important 
findings that are shrouded in a literature where 

studies are classified only in terms of significant 
and nonsignificant (see also Hunt, 1997). 
However, much of what we have witnessed as 
passing for meta-analyses in the educational and 
psychological literature since Glass coined the 
term may be more masking than revealing. For 
example, certain meta-analytic studies consider all 
the research on, say, visual aids in learning from 
text (Robinson, 2002) or phonics/phonemic 
instruction in beginning reading (Ehri, Nunes, 
Willows, Schuster, Yaghoub-Zadeh, & Shanahan, 
2001) without attending to the type and quality of 
the materials or the specifics of the instruction. 
Reporting the average effect sizes in such global 
meta-analyses may inadvertently misinform the 
reader. 

Finally, we believe that there is another 
plausible meta-analytic reason to favor single -
study authors reporting sufficient summary data 
rather than the effect-size measures that can be 
derived from them. It is because (at least in our 
experience) that it is not unusual for authors to 
derive effect-size measures incorrectly – in the 
case of d, often with respect to the particular 
standard deviation selected for the specific design 
(e.g., between-subjects, within-subjects, 
ANCOVA) or question being asked, and in the 
case of r2, by not distinguishing between (or 
confusing) unconditional and conditional 
proportions of variance explained (see, for 
example, Olejnik & Algina, 2000). 

This could easily lead an incautious, or 
unchecking, meta-analyst down the wrong 
estimation path. Meta-analysts are generally more 
skilled in the nuances of effect-size types and 
variations and are less prone to calculating effect 
sizes incorrectly. Therefore, might it not even be a 
more judicious research practice/recommendation 
that meta-analysts routinely calculate effect sizes 
themselves based on a researcher’s provided 
summary statistics? 

 
Conclusion 

 
In summary, and in contrast to Roberts and 
Henson’s (2003) research philosophy, we argue 
that in the context of single -study investigations 
statistically nonsignificant effect sizes should not 
be reported or interpreted. That is because such 
reporting/interpreting may lead readers to believe 
– unwarrantedly – that evidence has been provided 
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concerning the direction of the effect. Reporting 
and interpreting effect sizes (with corresponding 
confidence intervals) in multiple -experiment 
studies where the effect of interest is replicated 
(i.e., its direction is confirmed) may provide 
readers with more useful information concerning 
the believability and magnitude of the effect, along 
with the consistency with which it can be 
produced. Additionally, when a multiple -
experiment study is programmatic  in nature (i.e., 
where the design is cumulatively extended to 
estimate the effect under differing contextual and 
procedural variations), then reporting effect sizes 
may be helpful in pinpointing the conditions under 
which the effect is strongest.  

We hope that editors of educational 
research journals will encourage authors to report 
work consisting of multiple -experiment studies 
that replicate and extend initial findings. This is 
routine procedure in many behavioral science 
disciplines; and as a clear illustration of editorially 
practicing what we are preaching, see Levin 
(1991, p. 5-6). For each experiment conducted, a 
priori " levels, a posteriori p-values, sample-size 
and power information, and sufficient statistics 
should be reported. 

In terms of summarizing the multiple 
experiments, an author may wish to quantify 
replicated effects, if that serves to inform 
practitioners who are considering adopting the 
intervention. At the same time, we are not so naive 
as to believe that a journal-policy change of this 
kind will happen overnight. Thus, until the 
practice of publishing single -shot, non-replicated 
findings changes, at least we hope that statistically 
nonsignificant results will be regarded as evidence 
that the direction of an effect of interest remains 
undetermined and further research is needed 
before a more definitive conclusion can be made. 
Single-study investigators should not routinely 
provide effect-size estimates for statistically 
nonsignificant outcomes. 

Multiple-study synthesizers can capture 
those effect sizes from the sufficient statistics 
reported. Finally, single -study authors should not 
persist in interpreting or promoting a statistically 
nonsignificant effect (which includes use of the 
terms “not quite significant,” “almost significant,” 
or “approaching significance”), due to the risk of 
consumers regarding the effect as having been 
formally screened as believable  – when, in fact, no 

formal evidence to that effect has been provided. 
With editorial changes such as these, we strongly 
suspect that many of educational research’s 
analysis-and-reporting troubles would simply burst 
like bubbles! 
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Introduction 
 
There are three principal matters to consider. They 
are (in my opinion) in order of decreasing 
importance: 
 
The Reporting and Interpreting of Non-significant 
Statistics. 
 I think that the matter of reporting, 
interpreting, publishing, etc. statistically non-
significant effect sizes can be argued without 
appealing to the results of any Monte Carlo 
investigations. Indeed, that matter has been 
debated almost ad nauseam over the last half-
century, as the reference to Melton (1962) in the 
exchange between Knapp & Sawilowsky (2001) 
and Thompson (2001) indicates.  
 Consider, for example, a researcher who 
draws a simple random sample from a population, 
assumes linearity and bivariate normality, 
calculates a Pearson product-moment correlation 
coefficient (one of the simplest and most 
important effect size measures) between two 
variables for the sample, tests it for statistical 
significance, and gets a p-value of .03.  
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 Should that correlation be reported? Of 
course; the correlation between those two 
variables in that sample is ___. Should it be 
interpreted? Of course; that correlation is not 
statistically significant at the .01 level, is 
statistically significant at the .05 level, etc. 
(depending upon the value of alpha chosen at the 
outset of the study). [Or, if interval estimation is 
preferred, one’s confidence is .99 (or .95, or 
whatever) that the interval from ___ to ___ covers 
the population correlation.] 
 Should that study be published? Aye, 
there’s the rub. Melton wouldn’t have (he insisted 
that p be less than .01); I presume Sawilowsky & 
Yoon wouldn’t either; and I further presume that 
Roberts & Henson would – all other things being 
equal (good theory, design, measurement, etc.). If 
statistically non-significant findings are not 
published occasionally, the literature will have an 
imbalance of Type I errors. 
 
One-sided vs Two-sided Inference 
 If I’m wrong and if one does need Monte 
Carlo evidence in order to decide whether or not a 
statistically non-significant effect size is of 
interest, should the focus be on one-sided 
inference or two-sided inference? Sawilowsky & 
Yoon (2002) chose two-sided inference and 
concentrated on the absolute value of Cohen’s d. 
Roberts & Henson (2002) chose one-sided 
inference by concentrating on d ’s that were greater 
than or equal to 0 (with the alternative hypothesis 
taken to be that the experimental mean is greater 
than the control mean). I agree with Roberts & 
Henson, since that better reflects the more typical 



THOMAS R. KNAPP                                                         238  

research hypothesis and is also simpler (it involves 
only two sampling distributions rather than three). 
 
Technical Aspects of Monte Carlo Investigations 
 Sawilowsky & Yoon (2002) carried out 
one kind of Monte Carlo investigation. Roberts & 
Henson (2002) carried out another kind of Monte 
Carlo investigation. The particular details (number 
of replications, Fortran vs S-Plus, etc.) also 
differed. I have no idea who’s right and who’s 
wrong there. 
 

Specific Comments 
 

Sawilowsky & Yoon (2002) 
1. They chose sample sizes of 10 and 10, and a 
power level of .2 “to mimic applied research” (p. 
143). Those sample sizes strike me as too small for 
typical educational experiments, and there is a 
considerable amount of evidence (see, for 
example, Aberson, et al., 2002) that the average a 
priori power for published studies in education is 
approximately .5, not .2. 
 
2. Their Monte Carlo investigation revealed an 
average obtained absolute effect size of .169 for 
statistically non-significant results when 
comparing the means of two samples of size 10 
drawn from normal populations in which the 
population effect size was zero. I believe such a 
result could have been determined analytically 
(mathematically), and I also believe that .169 is 
actually too low. In the Appendix to this critique I 
have outlined a proof of those beliefs. 
 
I conclude that the Sawilowsky & Yoon (2002) 
research was not necessary. 
 
Roberts & Henson (2002) 
 Roberts & Henson (2002) were reacting to 
Sawilowsky & Yoon (2001), not Sawilowsky & 
Yoon (2002), but those two papers are almost 
identical. 
 
1. In their opening sentence, Roberts & Henson 
(2002) referred to a controversy between “the role 
and function of effect sizes” and the use of 
“statistical significance tests” (p. 241). That is a 
false comparison. People who use statistical 
significance tests have almost always calculated 
some sorts of sample effect sizes before they carry 

out the significance tests (see the Pearson r 
example, above). 
 The general controversy involves whether 
or not significance tests should be prohibited; the 
specific controversy between Sawilowsky and 
Roberts & Henson involves whether or not 
statistically non-significant sample effect sizes 
should be reported and interpreted. 
 
2. They (Roberts & Henson) went through an 
elaborate discussion of Thompson’s (2002) 
recommendation of converting d to r, Friedman’s 
(1968) formula for converting r to d, Ezekiel’s 
(1930) correction formula, etc. That is 
unnecessary. All one needs to do is algebraically 
re-solve the d-to-r formula given by Cohen (1988) 
for r in terms of d (but see Aaron, Kromrey, & 
Ferron, 1998 regarding that formula - it only 
works for equal and large n’s) and/or appeal to the 
work of Hedges (1981), Kraemer (1983), and 
Hedges & Olkin (1985) concerning the amount of 
bias in Cohen’s d. 
 
3. They then went on to report in three separate 
tables the results of their Monte Carlo 
investigation, for various values of Cohen’s d in 
the population, various values of the population 
standard deviation (the mean for the control group 
was taken to be 100), and various sample sizes, 
including the n 1 = n 2 = 10 case that was of interest 
to Sawilowsky & Yoon. Several of those results 
are already reasonably well known. 
 The expected value (mean) of a sample r2 
is equal to 1/(N-1) when the population r2 is equal 
to zero (see, for example, Marascuilo & Levin, 
1983, p. 97), so the small differences between that 
expected value for n1 = n2 = 10 (an N = 20), i.e., 
.0526315..., and the mean sample r2 for a 
population r2 of 0 in their tables are all attributable 
to Monte Carlo sampling variation. Formulas for 
the expected value and sampling variance for 
Cohen’s d can be found in Hedges (1981), in 
Kraemer (1983), and in Hedges & Olkin (1985, 
pp. 78-81), so their results for d differ from those 
derived mathematically also because of Monte 
Carlo sampling variation.  
 Some of the other results are a bit baffling.  
For example, why isn’t the Bias row for d in each 
of those tables equal to the difference between the 
mean sample d and the d in the population? [Is it 
because of the discrepancies between the desired 
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population d’s and the Monte Carlo population d’s 
to which they referred on page 247?] And how can 
the bias for the sample d for a population d of .20 
be greater for n’s of 100 than for n’s of 50 in both 
Table 1 and Table 2? 
 
4. In their concluding section Roberts & Henson 
(2002) claimed that “...replication of a given study 
is the only true way to evaluate possible 
generalizability” (p. 252). I agree (by definition). 
They went on to say that “Statistically 
nonsignificant effects may be fully replicable.” Of 
course; if nothing is going on, nothing will keep 
getting replicated, but that doesn’t help their 
argument. 
 I equally regretfully conclude that the 
Roberts & Henson (2002) research was also not 
necessary. 
 
Sawilowsky (2003) 
1. He drew several distinctions among simulation, 
Monte Carlo, Monte Carlo simulation, sampling 
with replacement vs. sampling without 
replacement, and characteristics of a “high quality 
Monte Carlo simulation” (p. 218) The first three 
and the fifth are apparently important to make in 
any Monte Carlo investigation (I leave that to 
others to decide). The fourth distinction (sampling 
with replacement vs. sampling without 
replacement) is of course always important to 
make, especially when it comes to sampling within 
sample and sampling between samples. 
 Under “Monte Carlo” he properly 
acknowledged that there are some situations, such 
as finding the definite integral from 0 to 1 of f(x) = 
x, where the Monte Carlo approach could be used 
but should not be. However, under “Sampling 
With vs. Without Replacement” he claimed that 
sampling without replacement is appropriate when 
sampling from a deck of cards. I disagree; such 
sampling can be either with or without 
replacement within sample - it all depends upon 
whether or not a sampled card gets replaced in the 
deck prior to the sampling of a subsequent card -
but sampling must be with replacement between 
samples or you soon run out of cards to sample.  
 
2. The remainder of his response is the heart of his 
paper (in my opinion). He first listed what he 
called “Nine Minor Criticisms” of Roberts & 
Henson (2002). I would have identified at least 

two of those (# 7 and # 8) as major criticisms. 
Why Roberts & Henson bothered with three 
different tables is beyond me (their rationale on 
page 246 is interesting but irrelevant, given that 
both d and r2 are scale free); and I have already 
indicated above in my Comments #2 and #3 
regarding their study that the bias in d had already 
been addressed analytically by Hedges (1981), by 
Kraemer (1983), and by Hedges & Olkin (1985). 
 Sawilowsky’s “Major Criticism” 
apparently has to do with the kinds of results one 
might obtain when sampling from populations 
with d’s of 0, and with the order in which the 
results appear. I found that section rather difficult 
to follow. I guess the point he’s making is that the 
findings in Data Set B are more likely to be 
obtained and will look more impressive than the 
findings in Data Set A, but the obtained effect 
sizes in both data sets could easily be attributable 
to chance. 
 
Roberts & Henson (2003) 
1. At the beginning of their paper, Roberts & 
Henson (2003) stated that the first portion of 
Sawilowsky’s (2003) paper “does not bear 
comment on” (p. 226). Although I don’t 
particularly care for Monte Carlo investigations, 
Roberts and Henson apparently do (since their 
research was such an investigation), and 
Sawilowsky’s claims concerning how a good 
Monte Carlo simulation should be carried out 
deserved a response. (They did comment on some 
technical Monte Carlo features in their responses 
to Sawilowsky’s minor criticisms.) 
 
2. They then went on to address all of 
Sawilowsky’s minor criticisms. I have already 
implied my lack of interest in #2 and #5. And they 
appear to have accepted criticisms #1, 3, and 6. 
Where they disagreed most with Sawilowsky is 
with respect to criticisms #4, 7, 8, and 9. I shall 
accordingly concentrate on those matters. 
 As indicated above, I agree with them 
regarding negative values of d (#4). But I take 
exception to their responses to those last three 
criticisms. Their paragraph (regarding #7) that 
bears the heading “Redundancy is reinforcement!” 
(with an exclamation point yet) is bizarre. As 
Sawilowsky (2003) pointed out, and as I argued 
above, there was no good reason for including all 
three tables. Their sentence “We would argue that if 



THOMAS R. KNAPP                                                         240 

the results were redundant then we would see 
exactly the same values in each of the tables, 
which we in fact did not.” (p. 229) shows a lack of 
understanding of Monte Carlo. It is inherent in the 
method that you do not get “exactly” anything; it 
is subject to sampling variation just like any 
sample statistic is. And they missed the point 
regarding #8. The published work on the bias of d 
obviated the need for Monte Carlo. (I’m not sure 
what point they were trying to make regarding #9, 
other than the fact that Type II errors are possible.) 
 
3. They concluded their paper by responding to 
Sawilowsky’s (2003) major criticism. They may 
have been even more confused than I was by that 
section of Sawilowsky’s paper, because they 
seemed to be talking about Type II error all over 
again, introducing several citations to the literature 
on misconceptions regarding significance testing, 
etc. rather than directly addressing Sawilowsky’s 
examples of data sets that could be realized and 
how they should be interpreted. 
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Appendix 
It can be shown (personal communication from 
Ingram Olkin, May 5, 2003) that the expected 
value of the absolute value of Cohen’s d, i.e., 
E(|d|), can be expressed as an infinite series in 
terms of gamma functions of the two sample sizes 
and in terms of the population effect size. If the 
population effect size is equal to zero and n 1 = n 2 = 
10 (the case of particular interest to Sawilowsky 
and one of the cases of interest to Roberts & 
Henson), E(|d|) is approximately .3726. 
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 Kraemer (1983) showed that d follows the 
t sampling distribution with n 1 + n 2 -2 degrees of 
freedom and provided a formula for calculating 
the percentiles of that distribution. From the 97.5 
th percentile it can be determined that the cut-off 
point for the .05 significance level is 
approximately .940 for the absolute value of d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 And, from the middle 95% of that 
distribution it can be determined that the mean of 
the “non-rejectable” absolute values of d is 
approximately .336 (not .169). By appealing to 
the formula for a weighted mean it can be further 
determined that the mean of the “rejectable” 
absolute values of d is approximately 1.076 (not 
.508). 
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previously made points, even where I disagree with the response of Roberts & Henson (2003). 
 
Key words: Effect size, meta-analysis, Monte Carlo simulation, trivials 
 
 

Introduction 
 
Many such techniques were developed throughout 
the half-century before Gene Glass gave meta-
analysis its modern name in 1976. Twenty-four 
years later, despite considerable developments in 
the field, Glass (2000) lamented the use of meta-
analysis. Nevertheless, there remain powerful 
lobbyists for meta-analysis, including those who 
use their editorial position to coerce statistical 
policy to ensure its survival. 

The question arises: Has the advent of 
meta-analysis in social and behavioral sciences in 
the past quarter century increased the ability to 
synthesize and evaluate research, as compared 
with – for example – traditional scholarly 
analysis? Or, perhaps has meta-analysis become 
the favored tool in the hunt for Type I errors? 
When professional associations and learned 
societies are lobbied to require their journals 
report and interpret effect sizes, the coin of the 
realm of meta-analysis, “in all studies, regardless 
of whether or not statistical tests are reported” 
(Thompson, 1996, p. 29) even for “non-
statistically significant effects” (Thompson, 1999. 
p. 67), the answer to the initial question will be 
negative, and the latter question will be positive. 
 
 
Email the author at shlomo@wayne.edu. The title 
of this article is based on Gerrold (1973). 
 

 
This was the point I made in Knapp & 

Sawilowsky  (2001), and Sawilowsky and Yoon 
(2001, 2002). A Monte Carlo simulation was 
conducted to determine what magnitude of effect 
sizes should be expected if studies, whose results 
were obtained under the truth of the null 
hypothesis, were published piecemeal for the sake 
of meta-analysis. The Monte Carlo simulation 
indicated that effect sizes near zero should not be 
expected. Hence, publishing effect sizes for 
nonstatistically significant study results are ill 
advised. 

 
Roberts & Henson (2002) 
 Subsequently, Roberts and Henson (2002) 
demurred, and the battle was joined. They 
advanced the following argument: Sawilowsky 
and Yoon’s Monte Carlo simulation (2001) must 
imply that the bias associated with effect sizes is 
large under the truth of the null hypothesis. Hence, 
Sawilowsky and Yoon (2001) cautioned against 
the publication of effect sizes in the absence of 
statistical significance. Yet, Roberts and Henson’s 
(2002) Monte Carlo study indicated the bias was 
near zero. Therefore, the publication of such effect 
sizes should not be suppressed. 
 The purpose of the target article 
(Sawilowsky, 2003) in this debate was to illustrate 
this is a straw-person argument. The bias 
associated with effect sizes under population 
normality is easily determined, and indeed its 
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average is near zero. This result was known two 
decades prior to the Roberts and Henson (2002) 
Monte Carlo study (Cohen, 1988, p. 66). This does 
not, however, detract from the main 
pronouncement of Sawilowsky and Yoon (2001, 
2002). The expected magnitudes (i. e., absolute 
value) of the constituent effect sizes are not near 
zero. Publicizing these non-near zero values, for 
the sake of meta-analysis, will wreak havoc in the 
literature. 
 
Levin & Robinson (2003) 

Levin and Robinson’s (2003) comments 
are very insightful. A premise of Sawilowsky and 
Yoon (2001, 2002) is that scientific research is by 
definition comprised of multiple-study 
investigations, regardless of who actually conducts 
the experiment. 

 
Knapp (2003) 

Knapp’s (2003) comments prompt a (1) 
correction and a (2) clarification. 

 
(1) Material in Knapp’s (2003) 

appendix correctly estimates the non-near zero 
magnitudes of the effect sizes to be approximately 
d  = .34, not .17 as indicated in Sawilowsky and 

Yoon (2001, 2002). I reran the Monte Carlo 
simulation and got approximately the same value 
reported by Knapp (2003). I cannot find the errant 
value in my lab notes, so I must conclude that by 
some error I halved the result to present the value 
as a “"” when setting the table for publication. 
Nevertheless, the correct result doubles the 
warning raised by Sawilowksy and Yoon (2001, 
2002), as .34 is situated half-way between what 
Cohen (1988) loosely defines as a “small” and a 
“moderate” effect size. 

 
(2) Knapp (2003) estimated the 

correct value via formulas provided by Kraemer 
(1983), and thus, he argued that Monte Carlo 
methods were not necessary. He amplified this 
with remarks on the general utility of Monte Carlo 
in the presence of mathematical statistics. As the 
latter comment goes to the issue of one of the three 
missions of JMASM, it demonstrates to me that the 
message of the power of Monte Carlo methods 
requires further demonstration and publicity. 

 

As noted in the target article (Sawilowsky, 
2003), there usually is no need to invoke Monte 
Carlo methods when results may be obtained 
easily, conveniently, and accurately via 
mathematical statistics. For example, the statistical 
properties of the t test, under asymptotic 
conditions, can easily be determined through an 
expansion of moments. The question in applied 
statistics, however, pertains to the small samples 
properties of this test, and, its properties under 
departures from underlying assumptions, 
especially for real data sets. Here, asymptotic 
mathematical statistics have utterly failed, and 
have misled the discipline. Monte Carlo methods, 
however, have been used successfully and 
convincingly to set the record straight regarding 
the properties of the t and other statistics. 
 

Methodology 
 
Sawilowsky and Yoon (2001, 2002) was remiss in 
not explaining that in Monte Carlo work, (1) 
should desirable results be obtained when 
underlying assumptions are met, it is still 
necessary to proceed to when underlying 
assumptions are not met, but, (2) should 
undesirable results be obtained when underlying 
assumptions are met, there is little point in 
proceeding to when underlying assumptions are 
not met. Thus, when non-near zero results were 
obtained under normality, the remainder of the 
Monte Carlo simulation results obtained became 
irrelevant and were not presented in Sawilowsky 
and Yoon (2001, 2002). However, to respond to 
Knapp’s criticism against appealing to the use of 
Monte Carlo methods, these results are provided 
below. 
 

Results 
 

Table 1 contains the Type I error rates of the two 
independent samples t test under the De Moivre 
distribution for the purpose of demonstrating the 
viability of the algorithms used. The d  for fail to 
reject Ho is shown to be about .34 for "=.05, and 
about .38 for "=.01, when the sample size is 10. 
The 95% bracketed interval for d  is [.2841489 - 
.4107949] for "=.05, and  [.2968488 - .4601668] 
for "=.01. 
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 Because Knapp was concerned about this 
sample size, new results are presented below for 
samples of size 20 and 30. To address concerns 
regarding the number of repetitions, it was 
increased from 10,000 to ten million. Additional 
precision was obtained by using critical values to 
six decimals. The warning of Sawilowsky and 
Yoon (2001, 2002) remains fully supported by 
these new results. 
 
Table 1. Two Independent Samples t Test Type I 
Error Rates, d  (Fail To Reject Ho), d  (Reject 
Ho); For De Moivre (Normal) Distribution, And 
Various Sample Sizes And " Levels. 
 

Statistic "=.050000 "=.010000
 n1=n2=10  
Type I Error Rate .0499992 .0099861 
Fail to Reject Ho .3474719 .3785078 
Reject Ho 1.217658 1.571810 
   
 n1=n2=20  
Type I Error Rate .0499181 .0099800 
Fail to Reject Ho .2348740 .2547229 
Reject Ho .7940045 1.001228 
   
 n1=n2=30  
Type I Error Rate .0500528 .0099930 
Fail to Reject Ho .1891833 .2053082 
Reject Ho .6326703 .7928227 

Notes: Critical t Taken To Six Decimals. Each 
Cell Entry Is Based On 10,000,000 Repetitions. 
 

Knapp (2003) obtained approximately d  
= .34 without appealing to a Monte Carlo 
procedure. (Indeed, in e-mail correspondence, he 
delivered yet another method to obtain these 
results. It was a less satisfying solution 3, as it 
depended on the simulation of values with 
unknown characteristics by hand, instead of values 
with known characteristics by machine.) However, 
Sawilowsky and Yoon (2001, 2002) was not a 
Monte Carlo study to determine this value; it was a 
Monte Carlo simulation designed to determine the 
magnitude of effect sizes expected under the truth 
of the null hypothesis. In retrospect, perhaps the 
use of d  to communicate the study results 
obscured the objective. 

 Indeed, it takes a Monte Carlo simulation 
to determine the values in Table 2, which are the 
first 20 of ten million from the first run of the 
Fortran program that produced the value of 
.3474719 in Table 1. The simulation results are 
understood as follows. The first study to appear in 
the literature regarding a certain outcome, that is 
not statistically significant, will publicize a large 
effect size of .9. The second study to appear in the 
literature will be about .24, followed by a study 
that obtained an effect size of about -.18. The 
subsequent study will follow with an effect size of 
.31, and so forth. 
 
Table 2. First Twenty Of 10,000,000 Simulated 
Values of d  For (Fail To Reject Ho) For De 
Moivre (Normal) Distribution, n1=n2=10, "=.05. 
 

# ES # ES 
1 .902532 11 -.214086
2 .239664 12 -.386423
3 -.184106 13 .100410
4 .311091 14 -.682867
5 .291022 15 .305013
6 -.204143 16 -.537210
7 -.105137 17 -.410020
8 .662463 18 -.330778
9 .111973 19 .168260

10 -.366065 20 .202596
 

The objective of Sawilowsky and Yoon 
(2001, 2002) was to have proponents of publishing 
these effect sizes imagine the incorrect message 
this will promote in the literature. After all, these 
are effect sizes obtained for an intervention 
modeled as random numbers! Clearly, the 
magnitudes of these values are non-near zero. (It 
should be recognized that the interpretation of the 
simulation results can begin at any arbitrary point 
within the 10 million effect sizes.) 

Roberts and Henson (2002) indicated the 
maximum effect sizes obtained in their simulation. 
It was so huge that it prompted the title of 
Sawilowsky (2003). The maximum effect sizes 
obtained here for n1=n2=10, when there was a fail 
to reject decision under the truth of the null 
hypothesis, was max d "=.05 = .9942942 and max 
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d "=.01 = 1.56907 for the De Moivre distribution. 
This means that an intervention modeled by 
random numbers can produce an effect size as 
large as d = ".99 or d = "1.6, for " = .05 and .01, 
respectively! Why would the members of any 
committee on statistical practices and reporting 
empowered by their professional association or 
learned society give credence to the position of the 
lobbyist who promotes the piecemeal publication 
of apparently huge albeit trivial effect sizes? 

It is likely possible, although difficult, to 
obtain mathematical solutions for  d  for small 
samples under population nonnormality for certain 
theoretical distributions. It is easy, however, to 
obtain results via the Monte Carlo method, as 
indicated in Table 3. It is impossible, however, to 
obtain solutions for  d  using mathematical 
statistics for the populations represented by real 
data sets. The results are easily obtained, however, 
via Monte Carlo methods, as indicated in Table 4. 
 
Table 3. d  (Fail to Reject Ho) For Various 
Theoretical Distributions, Sample Sizes, And " 
Levels. 
 

Distribution "=.050000 "=.010000 
 n1=n2=10  
Uniform .3439692 .3748572 
Mixed Normal .4028708 .4149501 
Cauchy .4047977 .4177936 
   
 n1=n2=20  
Uniform .2336624 .2535020 
Mixed Normal .2713618 .2781797 
Cauchy .2766581 .2851480 
   
 n1=n2=30  
Uniform .1885313 .2046196 
Mixed Normal .2133092 .2209231 
Cauchy .2228022 .2299003 

Notes: Critical t Taken To Six Decimals. Each 
Cell Entry Is Based On 10,000,000 Repetitions. 
The Mixed Normal distribution is comprised of 
two distributions: (1) Z(0,1) with frequency of 
95%, (2) Z(22,10) with frequency of 5%. 
 

Table 4. d  (Fail to Reject Ho) For Various 
Psychology/Education Data Sets, Sample Sizes, 
And " Levels. 
 

Data Set "=.050000 "=.010000 
 n1=n2=10  
Bimodal (P) .3408427 .3716145 
Asymmetry (P) .3594031 .3877410 
Mass At Zero (E) .3646502 .3864528 
   
 n1=n2=20  
Bimodal (P) .2314171 .2512609 
Asymmetry (P) .2372115 .2572745 
Mass At Zero (E) .2355214 .2562985 
   
 n1=n2=30  
Bimodal (P) .1877642 .2036923 
Asymmetry (P) .1902705 .2064020 
Mass At Zero (E) .1909938 .2073510 

Notes: Critical t Taken To Six Decimals. Each 
Cell Entry Is Based On 10,000,000 Repetitions. P 
= psychometric instrument, A = education test. 
 

Conclusion 
 

As Knapp (2003) pointed out, “Kraemer (1983) 
showed that d follows the t sampling distribution 
with n1 + n2 - 2 degrees of freedom” (p. 242). 
From this statement alone it should be obvious that 
the publishing of effect sizes should be handled 
the same as p values associated with the t statistic 
in hypothesis testing (as opposed to so-called 
significance testing, which in my view is outside 
the boundary of the scientific method). 
  A nonsignificant obtained t is interpreted, 
based on the samples, as the difference in means 
between the two groups are not statistically 
significantly different from zero. More formally, 
there is no evidence that the two samples were 
drawn from populations with different values of :. 
For this reason, it is the policy at many journals 
that p values for nonsignificant t statistics are 
suppressed from publication. (Typically, the 
author supplies an “*” in tabled statistical material 
to indicate the result was not significant at the à 
priori specified " level.) 
 The same should hold true for d. When the 
t is not statistically significant, the effect size 
(regardless of its magnitude) is not statistically 
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significantly different from zero. Unfortunately, 
this type of argument has not been compelling to 
the meta-analysis lobby. 
 The purpose, therefore, for the Monte 
Carlo simulation by Sawilowsky and Yoon (2001, 
2002), was to provide another type of 
demonstration that the publicizing of effect sizes 
associated with nonstatistically significant results 
are an invitation to disaster in the literature. One 
has but to consider the effects of the proliferation 
of trivials (e.g., such as those in Table 2) to reject 
the position of lobbyists seeking to promote the 
piecemeal publishing of effect sizes for meta-
analysis in a fashion never envisioned by its 
developers. 
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A method to construct simultaneous confidence intervals about the difference in mean responses at the 
stationary point and at x for all x within a sphere with radius IR  is proposed. Results of an efficiency study to 
compare the new method and the existing method by Moore and Sa (1999) are provided.   
 
Key words: Comparison with the best, response surface methodology, bounding algorithm. 
 

Introduction 
 
Response surface methodology uses a polynomial 
response function to explain and analyze the 
relationship between a response variable y and 
several predictor variables 1( ,..., ) 'kξ ξ=ξ .  

Usually the iξ  will be converted to coded 

variables ix  by 0( )/( )i i i ix scξ ξ= − , where 0iξ  is 

a centering constant and ( ) 0isc >  is a scaling 
constant, 1,2,...,i k= .  The mean response at 

)',...,,( 21 kxxx=x , ( | )E y x , can be 
approximated using the quadratic polynomial 
model with k  predictor variables 
 

2
0 i i ii i ij i j

i i i j

y x x x xβ β β β ε
<

= + + + +∑ ∑ ∑ , 
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where iji βββ ,,0  are unknown constants, 

, 1,2,...,i j k=  and random error 
2~ (0, )NIDε σ . 

The mean response is optimized at the 
stationary point that may be a minimum, 
maximum, or a saddle point.  After determining 
the levels of the predictor variables where the 
mean response is optimized, it is possible that this 
point is not a reasonable option due to practical 
considerations, such as expense.  In this situation, 
multiple comparisons can be performed with other 
points in the region to determine if some other 
points provide responses that are not significantly 
different from the optimal point. 

This problem will subsequently be 
referred to as multiple comparisons with the best 
(MCB) in response surface methodology (RSM).  
The MCB problem was first approached by Hsu 
(1984) in design of experiments where he 
considered the problem of comparing the 
treatment means under study with the “best” 
treatment mean.  Moore and Sa (1999) first 
approached the MCB problem in the RSM setting.  
There has also been other substantial work on 
related problems within the field of response 
surface methodology.  Sa and Edwards (1993) and 
Merchant, McCann, and Edwards (1998) 
investigated the multiple comparisons with the 
control (MCC) problem. 

Sa and Edwards (1993) first addressed the 
MCC in RSM problem by constructing 
simultaneous confidence intervals for 

( ) ( | ) ( | )C E y E yδ = − 0x x  for all x within a 
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pre-specified distance IR  of the origin, such that 

for all x, 2 2
1

k
i Ii

x R
=

= ≤∑x'x , where IR  is the 

“radius of inference.”  They showed that for a 

rotatable design, the bounds of δ C x( ) ∈ $ ( )δ C x  ± 
(rFα,r,ν)1/2s(x) can be improved using a result of 
Casella and Strawderman (1980) where the 
Scheffé critical point, 1/2

, ,( )rrFα υ  can be replaced 

by a smaller value cα  depending on ,α  ,υ  and 
the nature of the predictor constraints as 
summarized by two other constraints, an integer m 
and a distance 2 0.q >  

Because the design used in practice is 
often not rotatable, Merchant, McCann, and 
Edwards (1998) introduced a new method which 
combined the Bonferroni method and the McCann 
and Edwards (1996) algorithm for two or more 
predictors that gives much sharper intervals than 
the Scheffé and also the Sa and Edwards (1993) 
adaptation of the Casella and Strawderman 
method.  Merchant, McCann, and Edwards’ 
method does not require a rotatable design and 
allows for one-sided bounds for ( )Cδ x . They 
generated a critical point d with simultaneous 
confidence bounds for 

 
( ) ( | ) ( | )C E y E yδ = − 0x x  

 
for all x within a specified distance of 0 via a 
bounding algorithm that requires only a few 
seconds to a few minutes of computer time. 

Closely related and within the field of 
RSM, Moore and Sa (1999) addressed the MCB 
problem.  They constructed confidence intervals 
about the difference in mean responses at the 
stationary point and alternate points over the entire 
k  dimensional hyperplane based on a theory that 
does not depend on the design of the experiment.  
To solve the MCB problem, they utilized the delta 
method to approximate the variance of the 
estimated difference for 
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where ( )Βδ x  represents the difference between 
the mean response at the stationary point 

11
2

−= −0x B b  and the mean response at any other 
point x , b = (β1, β2,..., βk)′, and 
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This confidence interval is useful in 

determining whether an alternate point could be 
substituted for the stationary point as an optimizer.  
Furthermore, it provides how much loss in the 
mean response can be expected if x is moved away 
from 0x .  They investigated both Bonferroni and 
Scheffé type confidence intervals for the MCB 
problem.  They also investigated Scheffé’s F-
projection method of constructing conservative 
confidence intervals.  However, the delta method 
is much less conservative than the F-projection 
method and of course, much easier to use. 

It is the purpose of this article to address 
the MCB problem in RSM, but instead of 
considering the entire k-dimensional space, it 
would be more realistic to restrict the region to 
provide confidence bounds for ( )Bδ x within a 
sphere with radius IR  for all x such that 

2
IR≤x'x .  The method proposed by Merchant, 

McCann, and Edwards (1998) for the MCC 
problem should be adaptable to the MCB problem 
since the requirement for using this method is that 
the covariance matrix of the estimators must be 
known. 

The delta method will be used to 

approximate the variance of $ ( )δ B x for the MCB 
problem.  The next section explains the theory and 
the bounding algorithm used to generate the 
critical point for the MCB problem. The algorithm 
is design free, that is, it does not depend on the 
design of the experiment and should therefore 
provide consistent results regardless of the design. 
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Theory Behind the Method 
The method proposed by Merchant, 

McCann, and Edwards (1998) will be adapted to 
solve the MCB problem.  The goal is to generate 
an improved critical point d with simultaneous 
upper confidence bounds of the form  
 

ˆ ( ) ( )B dsδ +x x        (1) 
 
where 
 

11
) =

4BΒδ −= − − −ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ( , ) ' ' ' ,x x x b x Bx b B bδ β  

such that $b  = ( $ , $ ,..., $β β β1 2 k )′ where the $βi ’s are 

the least square estimators for s'ß i  and B̂  is the 

matrix such that ijß̂  is substituted into the matrix 

B. The estimated standard error of )(ˆ xBδ  is s(x) 
2/1)s( ll' Σ=  derived by Moore and Sa (1999) 

where 2s  is the mean square error which satisfies 

)(~ 2
2

2
υχ

σ
υs  for integer 0>υ  and is 

independent of all $βi ’s, ∑  is the 1( ' )X X −  
matrix with the first row and the first column 
deleted and l is the vector of partial derivatives of 

( )Bδ βx, with respect to β  such that  
 

21 1 1
1 1 12 2 4

2 2 21 1
1 1 2 1 24 4

1
1 14
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,..., , ,...,
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k k

k k

k k k k

m x m x m
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m m x x− −

= − − − −

− − −

−
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where -1=m B b  such that im  is the ith 

component of m and 1 2( , ,..., )kx x xx = ′ is any 

point satisfying x′x ≤ RI
2 .   

In order to approximate the entire set of 
interest, we adapt the fine grid of inference IG , 
suggested by Merchant, McCann, and Edwards 
(1998) of individual xj points for pj ,...,2 ,1=  in 
the region.  This grid is constructed by user 
defined multiples of these x values within a radius 

IR  radiating from the center 0.  This matrix is 

defined as rp ×:L  whose thj  row is ( )j j= ''l l x  

where a simultaneous bound over this finite 
collection is calculated. 

The critical point d must satisfy 

           
1 /2

ˆ ( ) ( )
max 1

( )I

B B

G
P d

s
δ δ

α
∈

 −
≤ ≥ − 

 x

x x
l' l∑

.    (2) 

 

For each x, 
1/2

ˆ ( ) ( )
~

( )
B B t
s υ

δ δ−x x
l' l∑

, where 

tυ  is the univariate-t distribution with υ  degrees 
of freedom.  Equation (2) can be rewritten as 

 

, 1,2,..., 1jP T d j p α ≤ = ≥ −   

 
or 
 

, 1,2,...,jP T d j p α > = ≤   

 
where 1 2, ,..., pT T T  have a multivariate t 
distribution (Dunnett & Sobel 1954) with υ  
degrees of freedom and underlying correlation 
matrix R derived from 2 'σ ∑L L .  The critical 
point d is then solved by the following equation, 
 

1/

0

{
d

P∫ E(t)} ( )Tf t dt  = α  for 

E(t) '

1

( )
p

j
j

td
=

= >∪ a U ,  (Brown,1984) 

 
where Tf  is the probability density function of T, a 

random variable such that 2rT  is distributed as 
( , )F rυ ; U is a random vector independent of T, 

distributed uniformly on the r-dimensional sphere; 

and '
ja  are the rows of the full rank matrix 

: p r×A  such that '=R AA .   
 Finally, the probability P{E(t)}for the 
MCB problem can be calculated using the same 
bounding algorithm proposed by Merchant, 
McCann, and Edwards (1998) for the MCC 
problem. This bounding algorithm is a 
combination of Bonferroni method and the 
McCann and Edwards algorithm (1996) and is for 
upper bound only.  If a lower bound is required 
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over this region, that is )()(ˆ xx dsB −δ , it can be 
computed by constructing the upper bound for 

)(xBδ−  = )|( xyE  )|( 0xyE−  because an 

upper bound for )(xBδ−  is equivalent to a lower 

bound for )(xBδ .   
The critical points for the MCB problem 

were computed using a Fortran program and 
routines from the IMSL Fortran Numerical 
Libraries (1997).  These included calling the 
routines DLINRG to calculate the inverse of a 
matrix, DLFTDS to compute the Cholesky 
factorization of a matrix, DFDF to evaluate the F 
distribution function, and DQDAGS to perform 

the numerical integration.  The Fortran program is 
available from the first author. 
Examples and comparisons 

Box and Draper (1987) give an example 
from an investigation by Derringer and Suich 
(1980) in which RSM is used to analyze the 
effects of 1ξ = hydrated silica level in phr (parts 

per hundred) and 2ξ = silane coupling agent level 
in phr on the elongation at break of a tire tread 
compound.  One of the goals was to maximize y = 
elongation at break.  Convert 1ξ  to the coded 

variable 1x  = 1( 1.2)/0.5ξ −  and 2ξ  to the coded 
variable 2x  = 2(  - 50)/10ξ .  The design points 

ix  and the responses iy  are listed in Table 1.  
  

Table 1.  Experimental Results:  Elongation at break y of a tire tread compound Versus 1x =(phr silica – 
1.2)/0.5 and 2x = (phr silane – 50)/10 (Source:   Derringer 1980) 
 

Run 1x  2x  y 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-1 
 1 
-1 
 1 
-1 
 1 
-1 
 1 
-1.633 
1.633 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
-1 
 1 
 1 
-1 
-1 
 1 
 1 
 0 
 0 
-1.633 
1.633 
0 
0 
0 
0 
0 
0 
0 
0 

900 
860 
800 
2294 
490 
1289 
1270 
1090 
770 
1690 
700 
1540 
2184 
1784 
1300 
1300 
1145 
1090 
1260 
1344 

 
The estimated polynomial response function is 
 

$ . . . . . .y x x x x x x= + + − − +1412 892 268151 246 503 97 794 139 044 69 3751 2 1
2

2
2

1 2  . 
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The vector $ ( . , . )b = ′268 151 246 503 , the matrix $ . .
. .

B =
−

−
L
NM

O
QP

97 794 34 688
34 688 139 044

, and the matrix 

 
.075 0 0 0 0
0 .075 0 0 0

0 0 .075 .005 0
0 0 .005 .075 0
0 0 0 0 .125

 
 
 
 
 
 
  

∑ =  

 
are calculated. 
 The estimated stationary point for this surface where elongation at break (y) is maximized is 
ˆ (1.849, 1.348 )=0x  yielding an estimated response of 1826.91.   Figure 1 gives the estimated surface plot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Estimated Surface Plot for the Tire Tread Compound Example. 
 

As one can see, the stationary point is out 
of the experimental region and it may not be a 
reasonable option due to practical considerations 
or expense.  Therefore, multiple comparisons can 
be performed with other points in a region to 
determine if any other point within the region of 
operability will produce a response that is not 
significantly different from the point that 
maximizes elongation at break (y).  Since the 
optimal point was a maximum, this suggests that 
lower bounds for ( ) ( | ) ( | )B E y E yδ = −0x x x  
are more important than upper bounds.  

 
 Simultaneous 90% lower confidence 
bounds are constructed for ( )Bδ x  for all x whose 
values are on the grid defined by multiples of .2 

with a radius of 2IR =  radiating from the 
center of the region of interest.  Figure 2 shows the 
contours for the estimated difference and the 
simultaneous lower confidence bounds L(x) = 
$ ( )δ B x - ds(x) for generated 2d =  6.871607 by 

the method detailed in the previous section. 
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Figure 2.  Contour Plots 
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 In Figure 2 (above), the contour plots are 

for the estimated difference ˆ ( )Bδ x  (top) and the 
simultaneous 90% lower confidence bounds 
(bottom) for the Tire Tread Compound Example 
with generated 2 6.871607d = . The points that 
lie inside the negative contour lines indicate 
possible alternate points that will produce 
responses that are not significantly different from 
the point that maximizes elongation at break (y). 
The region inside the negative contour lines 
indicates possible region that will produce 
responses that are not significantly different from 
the point that maximizes elongation at break (y). 

The squared critical constant 2d =  
6.871607 compares very favorably to that of the 

Scheffé method, rFα(r,υ ) = 2
.10( 5 (5,14))F  = 

11.534702. Therefore, an experimenter using the 
Scheffé method would have to increase the 
experiment size by a factor of approximately 

 2
.10( 5 (5,14))F /d2 = 11.534702 / 6.871607 = 

1.6786, in other words, by 67.86% in order to 
achieve a precision of estimation (interval  
width) equal to what would be obtained using the 
adapted method’s critical constant. 

Next, three different designs will be used 
for an example using the bounding algorithm to 
generate improved critical points for the MCB 
problem where the sample -size savings will be 
compared to the Scheffé and Bonferroni critical 
points.   

Khuri and Cornell (1987) provide an 
example in which they use RSM to investigate the 
effects of the amounts of two fertilizers, 1x  and 

2x , on the yield of peanuts measured in pounds 
per acre.  For the purpose of the efficiency study, 
the estimated parameters from this example will 
be treated as the true parameters of an underlying 
model.  The true quadratic response function is 
given by  

 

1 2

2 2
1 2 1 2

13.85 .90 .56

1.94 .78 .57

y x x

x x x x

= − +

− − − + ε
. 

 
The vector (.90, .56)'b = , the matrix  
 

1.94 .285
.285 .78

− − 
=  − − 

B , and the matrix  

 
.125 0 0 0 0
0 .125 0 0 0

0 0 .144 .019 0
0 0 .019 .144 0
0 0 0 0 .25

 
 
 
 
 
 
  

∑ =  are found. 

 
The stationary point for this surface is 

(.189,  .290)=0x  yielding a response of 13.676.  
Assume that this option is not a reasonable option, 
multiple comparisons are performed to determine 
if alternate points can substitute for the stationary 
point in terms of maximizing peanut yield.  
Therefore, the critical point d is required to 
perform these comparisons.   

Three central composite designs were 
chosen.  The three designs are a rotatable central 
composite design with uniform precision, a 
rotatable central composite design without 
uniform precision, and a central composite design 
with one centerpoint.  These designs will be 
referred to as Design 1, 2, and 3 respectively. 

Table 2 (following References section) 
shows the critical points that were generated for 
one and two replications of the three different 

designs using multiples of .2, RI = 1, and 2  for 
this example using Merchant, McCann, and 
Edwards’ (1998) method in order to compare the 
critical values and the approximate sample-size 
savings for each design.  Because the Bonferroni 
method is conservative due to the large number of 
comparisons , only the approximate sample -size 
savings vs the Scheffé method were calculated. 

Considerable improvement (between 34% 
and 47%) over the Scheffé adaptation for all three 
designs is possible using the new method by 
choosing the radius of inference 1IR = .  For 

2IR =  (which is near the limits of the 
experimental region for Designs 1 and 2), the 
sample-size savings are 26% to 33% over the 
Scheffé method.  Also, as expected, the increased 
sample sizes produced by replicating the designs 
resulted in smaller critical values. 
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Conclusion 
 
In conclusion, this article has addressed the 
problem of multiple comparisons with the best in 
RSM via simultaneous confidence bounds for 

( ) ( | ) ( | )B E y E yδ = −0x x x  for all x such that 
2
IR≤x'x .  The  method  proposed  by Merchant,  
McCann, and Edwards (1998) for the 

MCC problem has been adapted to the MCB 
problem.  It has provided confidence bounds for 
an example for two predictors where the critical 
values compare favorably to the Bonferroni and 
Scheffé methods as shown by Table 2 (following 
page). 

This will also hold true for problems 
containing more than two predictor variables.  For 
the example provided, this method has been shown 
to provide approximate sample -size savings of at 
least 25% for three different central composite 
designs.  In fact, based on the theory behind the 
bounding algorithm, the Merchant, McCann, and 
Edwards' method for the MCB problem will 
always outperform the Scheffé and Bonferroni 
methods (Merchant, McCann, and Edwards, 
1998).  
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Table 2. Generated critical points using the improved method (one-sided bounds) and Scheffé and 
Bonferroni critical points with grid spacing = .2 for each design and approximate Sample -Size Savings of the 
New Method Versus the Scheffé method. 

 
 
  

Design 

 

IR  

 

reps 

 

υ  

Improved 
Critical 
Point d 

Scheffé 
Critical 
Point 

Bonferroni 
Critical 
Point 

Sample-Size 
Savings vs 
Scheffé 

1 1 1 7 3.233020 3.794733 4.605120 37.78% 

  2 20 2.803443 3.286335 3.460804 37.42% 

 2  1 7 3.368990 3.794733 5.207830 26.87% 

  2 20 2.918108 3.286335 3.756539 26.83% 

2 1 1 3 4.423153 5.152669 9.505157 35.71% 

  2 12 2.980882 3.456877 3.813342 34.49% 

 2  1 3 4.576950 5.152669 12.008948 26.74% 

  2 12 3.079915 3.456877 4.195280 25.98% 

3 1 1 3 4.255092 5.152669 9.505157 46.64% 

  2 12 2.875548 3.456877 3.813342 44.52% 

 2  1 3 4.482340 5.152669 12.008948 32.15% 

  2 12 3.018781 3.456877 4.195280 31.13% 
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A semiparametric model incorporating the spline smoothing technique is proposed to study oligonucleotide 
gene expression data. No specific parametric functional form is assumed for mismatch probe intensities, 
which allows much more flexibility in the fitted model. The new approach improves the model fitting, hence 
the estimation of expression indexes. The method is applied to a data set of 18 HuGeneFL arrays. 
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Introduction 
 
DNA microarray technologies have been 
increasingly used and began to play an important 
role in many areas of biomedical research. There are 
two most popular types, namely cDNA microarrays and 
oligonucleotide arrays. The common advantages of 
them are to monitor the expression levels of very 
large numbers of genes simultaneously and 
repeatedly in cell lines, human tissues and a wide 
range of organisms. Microarrays have the potential 
and power to advance our knowledge and 
understanding at a genomic scale. In particular, the 
high-density oligonucleotide array has been shown 
to be very promising. Not only does it have the 
capability of monitoring all yeast genes, mouse 
and human genes, but it also can identify 
important genes and classify disease types or 
states reliably, due to its special design feature. 

The distinctive feature of the 
oligonucleotide array technology is the effective 
utilization of the probe redundancy. Multiple 
oligonucleotides of different sequences are 
hybridized onto different regions of the same RNA 
that are complementary to the oligonucleotides. 
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It offers us the possibility to test and 
examine the stability and reliability of gene 
expression measurements (outlier detection), 
improve the accuracy of RNA quantification, 
reduce cross-hybridization effects, and thus reduce 
the measurement noise and false-positive 
percentages. Usually, a probe set of around 20 
pairs of a particular length (25 nucleotides 
typically) represents a gene uniquely (Lockhart et 
al., 1996). 

The other source of redundancy is that 
mismatch (MM) probes are used, which are 
identical to their correspondent perfect match 
(PM) except for a single base mutated at the 
central position (13th position typically). The MM 
probes can provide some information on 
background and cross-hybridization signals, and 
provide the ability to discriminate between “real” 
signals and those due to non-specific or semi-
specific hybridization (Lipshutz et al., 1999). In 
other words, the design of oligonucleotide arrays 
with PM/MM probe sets can improve the 
differentiating ability over the cDNA arrays that 
use a single spot. It can help to distinguish whether 
a signal detected is really due to the hybridization 
onto the intended RNA region or it happens just 
by chance due to cross-hybridization or other 
measurement errors.  

Obtaining an accurate gene expression 
index is essential and fundamental for further 
research and analysis of oligonucleotide arrays, 
such as differentiating important genes, classifying 
genes to co-regulated or anti-coregulated groups 
and categorizing samples. Hence, it is very 
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important to develop some methodologies to 
estimate the gene expression indexes as accurately 
as possible.  

In recent years, various statistical methods 
have been proposed for analyzing oligonucleotide 
arrays. For example, the GeneChip software 
computes the “average difference” (AD) 
(http://www.genechip.org/index.affx). 
 Affymetrix's average log ratio is based on 
log(PM/MM) where the log transformation may be 
helpful in reducing the skewness and the variation.  
Li and Wong (2001) proposed a parametric 
regression model to calculate the model-based 
expression indexes (MBEI) based on the 
difference (PM-MM). It can improve the fittness 
of hybridization intensity extracted from PM and 
MM, and model the probe effects explicitly. Also, 
MBEIs are closer to the underlying true gene 
expression indexes than those provided by most of 
other software. The way of dealing with the 
relationship between PM and MM for almost all 
the above methods is to subtract MM from PM or 
log(MM) from log(PM) directly. The model based 
on (PM-MM) assumes a linear relationship 
between PM and MM and the regression 

coefficient of MM equals one. Although the old 
Affymetrix pre-5.0 algorithm claims that there is a 
linear relationship between most PM and MM 
probes, there are still a certain amount of probes 
with nonlinearity. Better fitting models to these 
genes are desired in order to avoid missing some 
important biological information. 

In practice, the paired PM and MM probe 
expression levels may not be linearly correlated 
for a specific probe set (Schadt et al., 2001). As 
shown in Figure 1, we randomly chose the probe 
set 17 of Gene 2111 and obtained the scatter plot 
of PM versus MM intensity levels with a 
smoothing spline curve fitted after normalization.  
It is clear that the relationship between PM and 
MM is not simply linear and some curvature 
pattern needs to be addressed. For the same gene, 
we also plotted log(PM) versus log(MM) with a 
smoothing spline fit. Although the log 
transformation helps clarify the pattern between 
them, there is still a curve trend. Therefore, there 
may be some excess non-linearity that cannot be 
captured by the parametric model simply based on 
(PM-MM). 
 

 

 
 
Figure 1: Smoothing spline fitting curves of PM versus MM and log(PM) versus log(MM) for probe set 17 of 
Gene 2111. 
 

Another notable feature is that it is not 
rare for MM to be bigger than PM expression 
intensities after some are removed as outliers. The 
old Affymetrix pre-5.0 algorithm sets the 
expression levels of probes to be positive only if 
PM-MM ≥  SDT or PM/MM ≥  SRT, where SDT 

is the statistical difference threshold and SRT is 
the statistical ratio threshold. By this brutal 
truncation, it throws away many probes such that 
some useful biological information might be lost. 
Current Affymetrix MAS 5.0 handles this situation 
by setting MM always lower than its paired PM, 
which is similar to the approach of truncation 
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(Irizarry et al., 2001). But in many situations, the 
phenomenon of intensities of MM larger than PM 
may be caused by some sensible biological 
variations. Thus researchers still want to keep the 
features in the data analysis. Moreover, the 
algorithm is not as flexible and adjustable as 
model-based approaches.  

Li-Wong's reduced model has been proved 
to be simple, feasible and popular with 
collaborating biologists and have several aspects 
of superior behavior. It can produce better 
estimation for the gene expression indexes, which 
is one of the most critical steps for further 
analysis. Since MM probes are used to eliminate 
the background and hybridization noise as much 
as possible, the one of most interest to researchers 
is still PM probes. Validity and goodness-of-fit of 
a model is essential to obtain accurate parameter 
estimates and statistical inferences. 

We propose a semiparametric regression 
model to study PM probes with adjustment for 
MM probes in this article . After normalizations 
and dropping outliers, we keep the original feature 
for each gene and seek to obtain a better model-
fitting by capturing the nonlinear relationship 
between PM and MM probes with a 
semiparametric approach based on Li-Wong's 
reduced model. We do not assume any parametric 
functional form of MM while the multiplicative 
relationship between the gene expression index (θ) 
and the increasing rate (the probe sensitivity 
index,φ) is still kept as in Li-Wong's reduced 
model. The approach involves three stages and 
relaxes the restriction of the regression coefficient 
of PM on MM being one, which is completely 
data-driven. We apply the proposed mothed to the 
analysis of HuGeneFL oligonucleotide arrays for 
Antibody Stain CEL data (http://thinker.med.ohio-
state.edu/projects/fbss/index.html). 
 
 

Methodology 
 

Let θi be the expression index for the gene in the 
ith sample which is the primary target of interest. 
The full model proposed by Li and Wong (2001)  
for each gene is given by 

 
PMij = νj + θi(αj + φ j) + εij 

                   MMij = νj + θiαj + εij,           (1)                    

where PMij and MMij are the PM and MM 
intensity values for the ith array and the jth probe 
pair for this gene, i=1, …, I; j=1, …, J. Note that 
νj is the reference response due to nonspecific 
hybridization, αj is the increasing rate of MM 
response, φj is the additional increasing rate of PM 
response, and εij represents a random error. There 
are many parameters in the full mode l, whereas a 
parsimonious statistical model may be preferred 
with the smaller sample size. A simpler reduced 
model (LWR) for the difference PM-MM is 
strongly supported by collaborating biologists. The 
model is given by 
 
          PMij - MMij = θi φj + εij                 (2)                        

 
It states that the PM and MM intensity differences 
have a multiplicative relation between θ and φ.  
 For the purpose of identifiability, a 
constraint is set as Σjφ j

2=J. The error terms are 
assumed to be independent and identically 
normally distributed, i.e. ε ij ∼ N(0, σ2). Depending 
on the value of φ j, the least square estimate for θi is 
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and the approximate standard error is given by, 
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An iterative least square algorithm is carried out 
for the estimation of the parameters. A software 
DNA-Chip Analyzer (dChip) has been developed 
to fit the parametric regression model that Li and 
Wong proposed (http://www.dchip.org/). 

However, Li-Wong's reduced model 
(LWR) is analogous to the usual regression model 
for the difference between the pre-treatment 
(baseline) and post-treatment effects in clinical 
trials. In some sense, it forces the regression 
parameter of MM to be one which is a very 
stringent restriction and may affect the goodness-
of-fit of the model tremendously. Moreover, there 
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is strong evidence of a non-linear relationship 
between PM and MM intensities (see Figure 1). 
Therefore, we propose a semiparametric approach 
to model the expression intensity data for each 
gene. Inspired by the additive partially linear 
models (Heckman, 1986; Hastie & Tibshirani, 
1990), we model MM based on a nonparametric 
spline smoothing technique (LWS), namely, 

 
           PMij = g(MMij)+ θi φ j + εij          (5) 
 
where g(.) is an unknown smooth function and is 
estimated with the cubic spline smoothing method. 
In many instances, rather than modeling every 
covariate nonparametrically or parametrically, a 
semiparametric partially linear regression model is 
more desirable. The model specification for the 
oligonucleotide array data is particularly appealing 
since the gene expression index θ is the major 
interest, while the effects of MM are nuisance. 
 We can draw statistical inferences and 
estimate θ by making minimal assumptions about 
the effects of MM with a fully nonparametric 
function. LWR does not have the same 
computational issue (too many parameters for 
sample sizes of practical use) as Li-Wong's full 
model that involves too many parameters. 
Basically, we relax the relationship between PM 
and MM to get a better fitted model and expect to 
have a more accurate estimate of the expression 
indexes. Hence, it is practically applicable to 
oligonucleotide gene expression data analysis. 

Our estimating procedure involving three 
stages of iterative algorithms is described as 
follows: 

 
Stage 1: Take LWR estimates as the initial 

values of θi
(0) and φ j

(0). Note that LWR itself 
iteratively fits the sets of θi and φj while treating 
one of the two sets as known and fixed. We 
calculate the initial values using the dChip 
software. 

 
Stage 2: Use the cubic spline smoothing 

technique to fit a nonparametric model with  
PMij-θi

(0)φ j
(0) as the response and MMij as the 

predictor, and thereby get the predicted values of 
ĝ (MMij). 
 

Stage 3: Calculate the updated PM values 
PMij

new = PMij
old - ĝ (MMij), then regress the new 

estimates of PM on θ 's and φ  's, namely, PM ij
new 

= θi φ  j+εij 
. The new estimates of θ 's and φ 's have 

been obtained. Go back to Stage 2, and continue 
till the prescribed convergence criteria are met. 

 
 Spline smoothing methods consisting of 
piecewise cubic polynomials are popular because 
they provide great flexibility for fitting the data 
and model non-linearities without specifying a 
functional form, with fewer parameters than 
higher-degree splines. To reduce the undesirable 
instability in the tails, one may restrict the function 
to be linear before the first knot and after the last 
knot. Fitting a cubic spline model which 
minimizes the residual sum of squares while 
 

( ){ } ( ){ }2 2
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n
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′′− + λ∑ ∫    (6) 

 
adjusting the smoothness of the resulting spline 
can be achieved by minimizing the penalized 
residual sum of squares 
 The smoothing parameter λ controls the 
trade -off between bias and variance and may be 
estimated by the cross-validation procedure. 
Excellent reviews of nonparametric regression and 
spline smoothing are available in the literature 
(Silverman, 1985; Eubank 1999). 
 

Results 
 

Description of Experiment and Data set 
The data set is from an experiment 

conducted by the Division of Human Cancer 
Genetics at the Ohio State University (Lemon et 
al., 2002). There are 18 HuGeneFL arrays, each of 
which was loaded with 11 ug/200uL labeled 
cRNA. As shown by the graph in the Appendix, 
the process is described as the following. Human 
fibroblast cells were grown in media supplemented 
with 20% FBS for 5 passages (27 flasks) 
according to the distributor's recommendations. 
After 48 hours of placing cultures in serum-
reduced media (0.1% FBS), 9 flasks (Stimulated) 
were returned to a 20% serum condition for 24 
more hours and were then placed in RNA-Stat60. 
Cells from the other flasks (Starved) were placed 
in RNA-Stat60 directly after being placed in 
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serum-reduced media for 48 hours. Finally total 
RNA was extracted and purified according to a 
certain criterion. Based on the above steps, a set of 
stimulated and starved samples is produced. 
Another RNA sample was produced as a balanced 
mixture of simulated and starved samples, which 
is called the 50:50 sample.  

For each condition (serum stimulated, 
serum starved and a 50:50 mixture of serum 
stimulated and starved), two aliquots of RNA were 
drawn and processed separately on three 
consequent days. Meanwhile, spiked-in genes 
were added in the following way: Lys and Phe 
RNAs at 0.08 ng/8µg total RNA were added to 
Stimulated RNA samples. The Starved samples 
received the same amount of Dap and Thr and all 
the four spiked-in genes at 0.04 ng/8µg were 
assigned to the 50:50 samples. Another set of 
control genes were added as well, which were 
BioB, BioC, BioD and Cre with final 
concentrations of 1.5, 5, 25 and 100 pM, 
respectively. For each group (Stimulated, Starved 
and 50:50), six replicated HuGeneFL arrays were 
produced. Eighteen arrays were produced in total.  
The technical variability was minimized through 
using a single fluidics station and a same lot for 
the 18 arrays. Multiple experiments or arrays for 
each gene allows researchers to evaluate the 
potentially different variability of genes.   

There are 7129 probe sets in each array. 
Among them, a total of 149 genes are represented 
twice or more although they might not be in the 
same probe set. Most of the probe sets have 20 
probe pairs. However, there are 330 probe sets 
with probe pairs less or more than 20. To compare 
Li-Wong's reduced model with our new proposal, 
the 330 probe sets were left out without losing any 
practical meaning. 

The experimental design has very 
appealing features that the relationship among the 
arrays are known in advance and control genes are 
spiked in. Hence, it is suitable to use the data set to 
make comparisons among different estimation 
approaches. 
 
Normalization, Variance and Goodness-of-fit 

Because scanned images may have 
different overall brightness, it is important to 

normalize arrays such that they have comparable 
brightness before any analysis on expression 
levels. A traditional Average Difference (AD) 
method analyzes one array at a time, thus 
normalization among the different arrays can be 
done after calculating the quantities of interest. 
Because the model-based expression index 
analysis involves different arrays simultaneously, 
the comparable brightness of the arrays needs to 
be assured. As a very important issue, 
normalization has been extensively discussed and 
studied in the literature, and it is still an active 
research area.  

We use the normalization method based 
on an “invariant set” (Li & Wong, 2001; Schadt et 
al., 2002). Normalization is based on probe values 
of non-differentially expressed genes that are 
identified through an iterative procedure (called 
the “invariant set”). Keeping the array which has 
the median overall brightness (the baseline array) 
as the invariant one, all the other arrays are 
normalized to it. The two arrays are drawn on the 
y-axis and x-axis, respectively. A straight line 
through the origin or a curve (i.e. smoothing 
spline) is fitted to the scattered points, which 
shows the normalization relationship between the 
two arrays. 

If the variance of the model based 
expression index is overestimated, it may be 
possible not to differentiate some important genes 
that are supposed to express significantly, 
especially for genes with low expression levels. 
Hence, the model which yields smaller variances 
of the estimated expression indexes is desired. On 
average, LWS reduces the standard error of θ by 
22% with respect to LWR. It indicates that LWS 
gives the more stable estimated expression index 
in terms of the 20 probe pairs than LWR. Figure 2 
shows the histogram plots of standard errors of all 
the expression index estimates from both LWR 
and LWS. Obviously there are shifting differences 
between the distributions of S.E.'s from the two 
models (LWR and LWS). Most of the S.E.'s from 
LWS are within the range of (0, 500) while those 
from LWR even exceed beyond 1000. 
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Figure 2: Histograms for standard errors of the estimated gene expression indexes. 
 

Figure 3 presents the plot of residues of the fitted model versus predicted values for Gene 1007 
(chosen randomly) from the two models, respectively. The horizontal line is the reference with the residue 
being zero. It is clear that the scatter plot from LWS gives a more random and symmetric pattern around the 
reference line, while LWR has more points further deviated away from the zero-line. 
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Figure 3: Residuals versus predicted values for gene 1007. 
 

The better the model fits, the higher correlation of the predicted and observed PM values is supposed 
to be. Thus, correlations for all the probe sets are calculated for LWR and LWS. The histograms of the 
correlations obtained from the two models are shown in Figure 4, respectively. Note that most of the 
correlations obtained from LWS concentrate within 0.92 to 1, while the correlations from LWR even go 
below 0.90. 
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Figure 4: Histograms for correlations between observed and predicted PM intensities. 
 

During the three consecutive days of the 
experiment, six replicated arrays for each group 
(Stimulated, 50:50, Starved) were produced. The 
manufacturing process and analytical methods, 
including normalization, assure the biological 
variation among the six independent arrays as low 
as possible. The variation of the gene expression 
indexes across the six replicated arrays may serve 
as a good statistic for comparing the two different 
regression models. A better model should be able 
to produce a smaller variation of the gene 
expression indexes among the six duplicates. In 
Table 1, the simple descriptive statistics of the 
sample variances of the expression indexes among 

the six arrays in each condition (Stimulated, 50:50, 
Starved) are given to compare LWR with LWS. 
The result shows that the relationship generally 
holds that Var(θ̂ LWS) < Var(θ̂ LWR). In the 
Stimulated and 50:50 conditions, LWS yields 
much smaller variation among the six replicated 
arrays than LWR, while LWR and LWS perform 
roughly the same at the Starved condition. In other 
words, LWS gives more stable results such that 
the expression indexes from the six arrays in each 
condition (Stimulated, 50:50 and Starved) have a 
smaller variation than LWR. 
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Table 1: Descriptive statistics of sample variances among six arrays at each condition. 
 

 Stimulated  50:50  Starved  
 LWR LWS LWR LWS LWR LWS 
Minimum 143.620 37.663 39.357 77.091 29.797 8.655 
Maximum 3.029e7 3.653e7 1.210e8 8.310e7 6.217e7 4.129e7 
Median 89881.3 76892.1 138872.6 118526.1 98829.2 88985.3 
Mean 384779.9 369334.5 414866.1 395693.4 327800.8 329822.8 

 
Assessing Gene Expression Measurements 

In the experiment, the genes Lys and Phe 
were not spiked in starved samples, while Dap and 
Thr were not in stimulated sample. Therefore, 12 
probe sets and 18 samples of the four spiked-in 
genes are known to be expressed or not in 
advance. Totally 144 probe sets should be 
expressed and 72 should be unexpressed. We 
obtained the number of expressed and unexpressed 
genes using the criterion of θ̂ /S.E.(θ̂ ) > 6.0. The 
two methods (LWR and LWS) can detect the same 
number of expressed probe sets (132) and 
unexpressed probe sets (66). However, regarding 
the median standard error of the control probe sets, 
LWS gives a much smaller variation (S.E. of 
177.2) of the estimated expression indexes than 
LWR (S.E. of 307.9). Hence, LWS is more 
reliable and stable for the estimation of the gene 
expression indexes. 

Focusing on the four spiked-in genes, each 
gene known to be unexpressed should have a rank 
as low as possible among all the control genes. 
One probe set of Thr in a Stimulated condition that 
should be unexpressed has a unexpectedly high 
expression level. It is considered as an outlier and 
left out from our analysis. After averaging the 
expression indexes of each spiked-in probe set 
over their own six replicated arrays and 
calculating their ranks, the results are shown in 
Table 2. The ranks of the 11 unexpressed probe 
sets are listed with respect to the two models. The 
comparison between LWR and LWS based on the 
ranks is summarized with descriptive statistics as 
follows: LWS has the smaller median rank (6) and 
the smaller sum of ranks (68) with the smaller 
variance (13) while LWR has the median rank (8) 
and the sum of ranks (82) with the variance (17), 
respectively. 

 
Table 2: Ranks of unexpressed genes among the control genes. 
 

 Dap1 Dap2 Dap3 Lys1 Lys2 Lys3 Phe1 Phe2 Phe3 Thr1 Thr2 
LWR 2 1 6 13 12 11 10 9 7 8 3 
LWS 2 3 10 9 6 1 8 13 4 7 5 

 
Moreover, we examined the ranks of the 

11 probe sets of unexpressed control genes among 
all the genes in our study. Because we put no 
RNAs for these 11 probe sets, their measured 
expression levels should be close to zero and their 
ranks among all the genes should be among the 
lowest. As shown in Table 3, the ranks of the 11 
probe sets detected from LWS are much lower 

than those from LWR. In summary, LWS has the 
median rank (19) and the sum of ranks (312) with 
the variance (979) while LWR has the median 
rank (99) and the sum of ranks (2482) with the 
variance (79754), respectively. Based on the ranks 
of expression levels of the unexpressed control 
genes, LWS gives much better results than LWR. 
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Table 3: Ranks of unexpressed genes among all the genes in the study. 
 

 Dap1 Dap2 Dap3 Lys1 Lys2 Lys3 Phe1 Phe2 Phe3 Thr1 Thr2 
LWR 14 6 33 821 616 472 213 152 36 99 20 
LWS 15 16 28 22 19 14 21 122 17 20 18 

 
Among the spiked-in genes, Dap and Thr in 50:50 
samples obtained 0.04 ng/8µg total RNA, 0 in 
stimulated and 0.08 for starved samples, while Lys 
and Phe in 50:50 samples obtained 0.04, 0.8 in 
stimulated and 0 for starved samples. Better gene 
expression index estimates should have the ability 
of differentiating between samples in which the 
underlying true gene expression levels vary. 
Hence, a sensible criterion is to assess an 
estimated expression index according to its 
correlation with the underlying true expression. 
 Intuitively, the true expression index 
should be proportional to the mRNA 
concentration. Thus higher correlation between the 
estimated expression indexes and mRNA 
concentrations is expected if the indexes are closer 
to the true expression levels. The correlation from 
LWR is 0.608 and from LWS is 0.609 where LWS 
is slightly higher than LWR. Similar results are 
obtained from the study of the correlations among 
the hybridization genes (BioB, BioC, BioD, Cre) 
and quantities of mRNA (2.5, 5, 25, 100). 

   To this end, we have made comparisons between 
the two regression models from several different 
perspective. LWR is a parametric regression 
model while LWS is a semiparametric model that 
is more robust in terms of model mis-specification. 
 Meanwhile, we notice that LWS gives 
slightly lower estimation of the expression indexes 
than LWR does generally. To compare LWR and 
LWS by combining the mean and variance of the 
expression indexes, we order all the measures and 
divide them into 50 quantile groups, then compute 
the median coefficient of variation (C.V.) for each 
group. Based on this criterion, LWS gives the 
average of all the median C.V.'s (0.088), which is 
smaller than that from LWR (0.094). Figure 5 
shows a global and clear picture of the 
comparison. The median C.V. for each of the 50 
groups from LWS is plotted against those from 
LWR. The straight line is the reference line with 
unit slope through the origin. It can be seen that 
most points in the square are above the reference 
line which indicates that the C.V.'s from LWS are 
smaller than those from LWR in general.

 

 
Figure 5: Comparison of coefficients of variation (C. V.) between LWR and LWS. 
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Conclusion 
 

Recently, much effort has been devoted to 
obtaining good estimates of the gene expression 
indexes, where Li-Wong's reduced model is 
widely used in applications. In this paper, we have 
proposed a semiparametric model based on Li-
Wong's reduced model. The cubic spline 
smoothing technique allows a flexible functional 
form for MM expression intensities.  Hence, it 
offers a better model-fitting procedure and 
captures the important gene expression patterns 
that might be missed by Li-Wong's reduced model.  

From several aspects of comparison, our 
proposed model outperforms Li-Wong's reduced 
model. Practically and statistically, our new model 
is meaningful and easy to implement as well. The 
reason that we compare the proposed model with 
Li-Wong's reduced model is that the latter is very 
popular in practice and proved to perform better 
than the average expression index, the log-
transformed average expression and others.  

It is of interest to compare the proposed 
model with the new Affymetrix MAS 5.0 
algorithm and other approaches. The variation of 
expression indexes changes positively with the 
intensity, which suggests a certain correlation or a 
linear trend between them. From the biological 
point of view, the genes are not independent, 
especially those that co-regulate. However, so far 
almost all model-based methods assume the 
variation has an independent structure. Therefore, 
a new methodology to incorporate the correlation 
structures needs to be developed. 

For the comparison of measurements, we 
have extensively utilized the control genes which 
provided important and helpful information to our 
study. Control genes can also be used for 
normalization (Lemon et al., 2002). Hence if 
possible, we suggest that more control genes, 
especially those with more replicates should be 
used under reasonable biological consideration.  

As to the model goodness-of-fit, there is 
no standard criteria available to justify and 
compare models with regard to the gene 
expression data where further research is needed. 
In the proposed model, the cubic spline smoothing 
is used, while the kernel smoothing (Speckman, 
1988) and other nonparametric techniques may be 
applied to fit MM intensities as well. The 
proposed method can be improved in an adaptive 

way as follows. We first test the goodness of fit of 
LWR based on the likelihood ratios. If there is no 
enough evidence to reject LWR, we would accept 
the estimates (θ̂  and φ̂ ) from LWR, otherwise we 
would proceed to LWS (spline). 
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JMASM Algorithms and Code 
JMASM6: An Algorithm For Generating Exact Critical 

Values For the Kruskal-Wallis One-Way ANOVA 
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A Fortran 77 subroutine is provided for computing exact critical values for the Kruskal-Wallis test on k 
independent groups with equal or unequal samples sizes. The subroutine requires the user to provide sorting 
and ranking routines and a uniform pseudo-random number generator. The program is available from the 
author on request. 
 
Key words: Kruskal-Wallis test, nonparametric statistics, one-way ANOVA 
 
 

Introduction 
 
Kruskal and Wallis (1952) derived a rank-based 
nonparametric test as an alternative to the one-way 
analysis of variance (ANOVA) on k independent 
groups. It has been demonstrated that the Kruskal-
Wallis (K-W) test can have considerable power 
advantages over the ANOVA F test when the 
assumption of normality is violated (e.g., Aman & 
Headrick, 2003). 

The null distribution of the K-W statistic 
is derived under the assumption that all N 
observations are from the same population. 
Because the number of ways N ranks may be 
divided into groups of 1n ,…, kn  grows rapidly, 
most statistics textbooks (e.g., Conover, 1999; 
Gibbons, 1992; Siegel & Castellan, 1989) limit the 
reporting of exact critical values for the K-W 
statistic to no more than k = 3 groups and with 

jn ≤ 5 observations per group. 
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The asymptotic null distribution of the K-

W statistic is chi-squared with k −1 degrees of 
freedom. As such, for k > 3 and jn > 5 
observations per group, the K-W asymptotic null 
distribution is recommended as the reference for 
making the decision to reject or fail to reject the 
null hypothesis that all k  population distribution 
functions are identical (Conover, 1999, p. 289). 

Most commonly used statistical software 
packages (e.g., Minitab; SPSS) that compute the 
K-W statistic only provide the asymptotic p-value. 
This may present a problem to an applied 
researcher because this p-value can be 
conservative relative to the exact p-value when 
both k  are jn  are small. For example, for k  = 5 and 

jn  = 5 for all 1,...,5j = , the chi-squared critical 
value associated with α =  .05 is 9.4876 whereas 
the exact critical value is 8.8985. Thus, using the 
asymptotic critical value for this design has the 
effect of lowering the Type I error rate from .050 
to approximately .0363. 

In view of the above, the purpose of this 
paper is to provide a subroutine that computes the 
exact critical values for the K-W statistic. The 
subroutine will compute critical values for any 
number of k  populations with equal or unequal 
sample sizes. 
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Methodology 
 

The subroutine initially generates N uniform 
pseudo-random numbers on the interval (0,1). It is 
assumed that the probability of obtaining any tied 
scores is zero. The uniform deviates are then 
ranked to form a permutation of the numbers from 
1,…, N. The algorithm then sequentially splits the 
permutation of ranks into k  groups in accordance 
to the user’s specified sample sizes of 1n ,…, kn . 
The K-W statistic is then computed as 
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N N n=

 
= − +  + 
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where jR  is the sum of the ranks in the jth group. 
This process is repeated until a sufficient number 
of H statistics are generated to adequately model 
the null distribution. 

The algorithm then selects the critical values 
associated with the alpha levels of .01, .05, and 
.10. In general, the critical values returned by the 
subroutine are associated with a range of p-values. 
For example, for k = 3 and jn = 5 for all 

1,2,3j = , the subroutine will return the exact 
critical value of 5.659997 for α = .05. However, 
this critical value is associated with p-values 
ranging from approximately .0483 to .0537. As 
such, the program informs the user that the null 
hypothesis may be rejected if the computed K-W 
statistic is strictly greater than the critical value of 
5.659997. 

The method used in the subroutine for 
selecting critical values yields the same values 
reported in Conover (1999, Table A8, p. 539). It 
should be noted that this method is different from 
the method that was used for selecting the critical 
values reported in Gibbons (1992, Table K, p. 
503) and Siegel & Castellan (1989, Table O, p. 
356). Specifically, for the example above, these 
texts report a critical value of 5.78. This method 
indicates to the reader that the null hypothesis may 

be rejected if the computed K-W statistic is 
greater than or equal to  the critical value of 5.78. 

 
Conclusion 

 
The program leaves it to the user to specify the 

number of K-W statistics to generate. The larger 
the value of N requires a larger number of K-W 
statistics to be generated to adequately model the 
null distribution. Thus, it is recommended that 
trials be repeated with an increasing number (e.g., 
100,000; 500,000; 1,000,000, etc.) of K-W 
statistics generated in each trial run. It is suggested 
that the user terminate this process when changes 
in the critical values are less than 410− . 
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      SUBROUTINE KW(K, N, M, ISAMP, CRIT) 
C************************************************************************
C K is the specified number of populations in the one-way ANOVA. 
C N is the specified total sample size. 
C M is an array with K specified sample sizes 1n ,…, kn . 
C ISAMP is the specified number of K-W 
C sample statistics to be generated. CRIT is an array of critical 
C values for the K-W test to be returned. 
C************************************************************************ 
      REAL X(N), RKX(N), SMRKX(K), STAT(ISAMP), CRIT(3) 
      INTEGER M(K) 
      DOUBLE PRECISION DSEED 
C************************************************************************
C Generate the specified number of K-W sample statistics. 
C************************************************************************ 
      DO 10 I = 1, ISAMP 
C************************************************************************ 
C Call the uniform random number generator routine. Generate an array X 
C with N uniform deviates. Call the ranking routine. Rank the N uniform 
C deviates in X and place these ranks into the array RKX. 
C************************************************************************ 
      CALL UNIFORM (DSEED, N, X) 
      CALL RANK (X, N, RKX) 
C************************************************************************ 
C Compute the K-W statistic denoted below as H. 
C************************************************************************ 
      IE = 0 
      SUM1 = 0 
      DO 20 J = 1, K 
      IB = IE + 1 
      IE = IE + M(J) 
      SUM2 = 0       
      DO 30 L = IB, IE 
      SUM2 = SUM2 + RKX(L) 
      SMRKX(J) = SUM2**2 / FLOAT(M(J)) 
 30 CONTINUE 
      SUM1 = SUM1 + SMRKX(J) 
 20 CONTINUE 
      H = (12 / (FLOAT(N)*(FLOAT(N) + 1)))*SUM1 − 3*(FLOAT(N) + 1) 
C************************************************************************ 
C Store the H statistic in the array STAT. 
C************************************************************************ 
      STAT(I) = H 
   10 CONTINUE 
C************************************************************************ 
C Sort the array STAT. 
C************************************************************************ 
      CALL SORT (STAT, ISAMP) 
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C************************************************************************ 
C Obtain the critical values associated with the alpha levels 
C .01, .05, and .10. 
C************************************************************************ 
      DO 40 I = ISAMP, 1, −1 
      PR = (FLOAT(ISAMP) − FLOAT(I)) / FLOAT(ISAMP) 
               IF ( PR .LE. 0.01) THEN 
      CRIT(1) = STAT(I)       
      ELSEIF (PR .LE. 0.05) THEN 
      CRIT(2) = STAT(I) 
      ELSEIF (PR .LE. 0.10) THEN 
      CRIT(3) = STAT(I) 
      ELSEIF (PR .GT. 0.10) THEN 
      GOTO 50 
      END IF 
 40 CONTINUE 
 50 CONTINUE 
      RETURN 
      END 
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A Recursive Algorithm For Fractionally Differencing Long Data Series 
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We propose a recursive algorithm to fractionally difference time series data. The algorithm eliminates the 
need to evaluate the gamma function directly, and hence avoids the overflow problem that arises when 
fractionally differencing a long data series. The proposed algorithm can be implemented using any general 
matrix programming language. An implementation using SAS is presented. The algorithm and the code 
provide a practical approach to including fractional differencing as part of a time series data analysis. 
 
Key words: Fractionally differencing, time series 
 
 

Introduction 
 
The process of differencing is widely used in time 
series data analysis. First differencing is often 
adequate to deal with nonstationary data for an 
ARIMA model. A useful generalization of integer 
differencing is fractional differencing. The 
resulting FARIMA models, or fractional ARIMA 
models, are often used for time series exhibiting 
long-range dependence (Beran (1994); Geweke 
and Porter-Hudak (1983); Granger and Joyeux 
(1980); Mandelbrot and Van Ness (1968)). Long-
range dependent series have hyperbolically 
decaying autocorrelation functions, unlike the 
exponential decay found in autocorrelation 
functions for time series modeled by ARIMA. 
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Algorithms to do fractional differencing 
can be used in simulating FARIMA data, in 
fractionally differencing an empirical time series 
to obtain a series suitable for ARIMA modeling, 
and in testing for white noise of residuals after 
fitting a FARIMA model. Because long-range 
dependence is found in financial time series and in 
some geophysical time series, practical algorithms 
to accomplish fractional differencing are needed. 

Statistical packages are beginning to 
incorporate modules to do fractional differencing. 
However, some of these modules are limited to 
very small data sets. For example, the SAS 
function FDIF can only handle approximately 171 
observations (SAS release 8.2 Proc IML; SAS 
Institute, Inc. 2001). This limit is apparently due to 
use of the gamma function. Our proposed 
algorithm uses a recursive approach to eliminate 
the need to compute gamma directly. Thus it 
provides a practical way to fractionally difference 
a time series of much more than 171 observations. 
As discussed in the results section, we have tested 
this procedure for a time series as large as 10,000 
observations. The algorithm that we describe 
could be implemented in any general matrix 
programming language. We provide an 
implementation using the matrix language SAS 
IML (SAS Institute, Inc. 1990). 

 
Method 

 
Let yt be obtained by taking the dth difference of a 
time series ; 0,1, , 1tx t n= −… :  
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(1 )d
t ty B x= − ,                                (1) 

 
where B is the backshift operator defined by 
 1t tBx x −= . 
If d=1 , then yt is the first difference: 
 

1(1 )t t t t t ty B x x Bx x x −= − = − = − .        (2) 
 
If d=2 , then yt is the second difference: 
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We could also obtain this second difference by 
expanding 2(1 )B−  and applying the resulting 
second degree polynomial in B to xt. 
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In general, for any integer d, the dth 

difference can be found by expanding (1 )dB− and 
applying the resulting polynomial in B to xt. 
Fractional differencing (-.5 < d < .5) is defined in 
an analogous way. Expanding (1 - B)d in a Taylor 
series (see Kaplan, 1984, p431): 
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(5) 

 
where the numerator in the above expression has j 
factors except when j=0 where it is unity.  Now by 
multiplying each factor in the numerator by -1 we 
change the sign of each: 
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Next, multiplying by 
( )

1
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j j d
d
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reversing the order of the factors in the product we 
obtain: 
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Finally, by repeatedly using the recurrence 

property of the gamma function: 
( ) ( 1) ( 1)x x xΓ = − Γ −  we can re-express the 

numerator as ( )j dΓ − . Thus, we obtain 

0

( )
(1 )

( 1) ( )
d j

j

j d
B B

j d

∞

=

Γ −
− =

Γ + Γ −∑ , which is a 

commonly used representation for the fractional 
differencing operator (Jensen, 1999). 

To implement a fractional differencing 
algorithm it necessary to compute the coefficients 
in the above series: 

 
( )

0,1,2,
( 1) ( )j

j d
C j

j d
Γ −

= =
Γ + Γ −

…        (8). 

 
Because these coefficients are used to multiply 
observations in the time series, this infinite 
sequence of coefficients can be truncated to the 
length of the data series.  

A problem arises when calculating these 
coefficients because for large values of j the 
numerator and denominator become very large and 
exceed the computational capacity of the 
computer. For example, the gamma function 
evaluated at 171 is approximately 7.257E306. Our  
approach uses the recursive property of the gamma 
function, ( ) ( 1) ( 1)x x xΓ = − Γ − , to obtain a 

recursive property for the jC  as follows:  
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Because the above recursive formula does 

not involve use of the gamma function, it is 
possible to calculate Cj for large values of j. It is 

only necessary to multiply Cj-1 by 
( 1)j d

j
− −

 

which is computationally trivial. Our SAS 
program which implements this appears in 
Appendix I. The key lines of code which 
recursively calculate Cj follow. Note that in SAS 

the array [ ]jC  must be indexed from 1 to n, 
rather than from 0 to n-1. 
 
jj=0;                                                                  
do i=1 to n;                                                               
  if i=1 then Cj[i] = 1;                                                        
  else Cj[i]= Cj[i-1]*((jj-d- 
     1)/jj) ;                                                  
  jj=jj+1;                                                                
end;                                                                   
 
The fractionally differenced time series, yt, is 
obtained by convolving the input time series, xt, 
with the vector of coefficients Cj. That is 
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0
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=

= − = ∑
t

d
t t j t j

j

y B x C x  (10). 

 
The lines of SAS code that implement the 
convolution appear below.  
 
do i=1 to n;                                                               
  yt[i]=Cj[1:i]`*xt[i:1];                                                       
end;                                                                   
 

Using our approach we have been able to 
fractionally difference long data series. In the 

results section we give an example using a series 
of 10,000 observations. 

 
Results 

 
In the first example, we fractionally difference a 
small integer data series using d=.5, then 
fractionally difference the result again using d=.5. 
For this example, fractional differencing was done 
in two ways: first using the SAS function FDIF 
(SAS release 8.2 Proc IML); then using the code 
described above. 
 One reason for performing this test was to 
confirm that both approaches to fractional 
differencing produce the same result for a small 
time series. A second reason was to check that the 
d values are additive: fractional differencing twice 
with d=.5 is the same as first differencing. 
 The data series and the two fractionally 
differenced series are presented in Table 1. The 
column labeled XT is the integer data series. YJ is 
the fractional difference of XT using ‘Call FDIF’ 
with d=.5. ZJ is the fractional difference of YJ 
using Call FDIF with d=.5. Next, YT is the 
fractional difference of XT using our recursive 
procedure with d=.5. Finally, ZT is the fractional 
difference of YT using the procedure with d=.5. 
Clearly, YT = YJ and ZT = ZJ, showing that the 
two procedures produce the same results for this 
small data series. Also, the reader can check that 
ZT and ZJ are the same as would be obtained by 
doing first differencing. The program that 
produced all four series appears in Appendix II. 

In the second example we use our 
recursive method to fractionally difference a 
random series of 10,000 observations. Note that 
the method using the SAS FDIF function will not 
run on a time series that is longer than 
approximately 171 observations (using a Pentium 
IV, running at 1.7 GHz) and therefore was not 
included in this example. The SAS LOG in 
Appendix III shows that the program using our 
method successfully ran. Thus this method 
provides a practical way to fractionally difference 
long time series. Implementing this algorithm in 
SAS provides a convenient way to include 
fractional differencing as part of a complete 
analysis of a long memory time series. 
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Conclusion 
 
FARIMA models are commonly used to model 
long range dependent time series. In such cases, 
fractional differencing is often a useful part of the 
analysis. The practical way to fractionally 
difference a long time series is to use an algorithm 
that avoids calculating gamma(n) directly. 
(Although not discussed in the results section, we 
also ran our program on a series of 100,000 
observations using 5 minutes of CPU time). Our 
implementation in SAS is a convenient way to 
incorporate fractional differencing into time series 
data analysis. 
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Table 1. Fractional differencing using SAS Call 
Fdif and using the recursive procedure. 

 
XT YT ZT YJ ZJ 
582 582 582 582 582 
227 -64 -355 -64 -355 
410 223.75 183 223.75 183 
109 -160.75 -301 -160.75 -301 
686 543.3281 577 543.3281 577 
753 345.9688 67 345.9688 67 
903 399.7793 150 399.7793 150 
996 377.9981 93 377.9981 93 
60 -647.4 -936 -647.4 -936 
76 -201.273 16 -201.273 16 
716 523.3205 640 523.3205 640 
202 -272.01 -514 -272.01 -514 
637 361.6509 435 361.6509 435 
60 -394.921 -577 -394.921 -577 
314 109.65 254 109.65 254 
969 691.8636 655 691.8636 655 
87 -524.382 -882 -524.382 -882 
660 406.5947 573 406.5947 573 
719 248.2841 59 248.2841 59 
784 241.7671 65 241.7671 65 

 
 

 
 

 

 
Appendix I - SAS Program FRACDIFF.SAS 

 
*******************************;                                                    
* fracdiff.sas                *;                                                    
*                             *;                                                    
*******************************;                                                    
* create random data for fractional differencing algorithm *;                                      
data one ;                                                                
* for n=171 both methods of fractional differencing work *;                                       
* for n=172 call to fdif fails, but convolution works *;                                        
 do i=1 to 10000;                                                            
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 x=rand('NORMAL');                                                            
 output;                                                                 
 end;                                                                  
* fractional differencing algorithm implemented below *;                                        
proc iml ;                                                                
  use one;                                                                
  read all into xx;                                                           
  index=xx[,1];                                                             
  xt=xx[,2];                                                               
  n=nrow(xt);                                                              
* d = fractional differencing parameter *;                                          
  d=.5;                                                                 
* initialization;                                                             
 yt=j(n,1,0);                                                              
 Cj=j(n,1,0);                                                              
* do loop calculates coefficients using recursive method *;                                       
jj=0 ;                                                                  
do i=1 to n;                                                               
  if i=1 then Cj[i] = 1;                                                        
  else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ;                                                 
  jj=jj+1;                                                                
 end;                                                                   
* Convolution follows. The arrays are indexed in reverse order to 
implement the *;                      
* convolution. Also, the symbol for transpose in SAS IML is '          *;                     
do i=1 to n;                                                               
  yt[i]=Cj[1:i]`*xt[i:1];                                                       
end;                                                                   
quit; 
 

Appendix II - SAS Program TESTPROG4.SAS 
 
*****************;                                                            
* testprog4.sas *;                                                            
*               *;                                                            
*****************;                                                            
data one ;                                                                
* for n=171 both methods of fractional differencing work *;                                       
* for n=172 call to fdif fails, but convolution works *;                                        
 do i=1 to 20;                                                             
 x=int(rand(‘uniform’)*1000);                                                          
 output;                                                                 
 end;                                                                  
proc print data=one ;                                                           
 run;                                                                   
 proc iml ;                                                                
  use one;                                                                
  read all into xx;                                                           
  index=xx[,1];                                                             
  xt=xx[,2];                                                               
  n=nrow(xt);d=.5;                                                            
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* initialization;                                                             
 yt=j(n,1,0);                                                              
 zt=j(n,1,0);                                                              
 yj=j(n,1,0);                                                              
 zj=j(n,1,0);                                                              
 Cj=j(n,1,0);                                                              
  call fdif(yj, xt, .5);                                                        
  call fdif(zj, yj, .5);                                                        
jj=0 ;                                                                  
do i=1 to n;                                                               
  if i=1 then Cj[i] = 1;                                                        
  else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ;                                                 
  jj=jj+1;                                                                
 end;                                                                   
 do i=1 to n;                                                               
 * convolution follows *;                                                        
   yt[i]=Cj[1:i]`*xt[i:1];                                                      
 end;                                                                  
do i=1 to n;                                                               
 * convolution follows *;                                                        
   zt[i]=Cj[1:i]`*yt[i:1];                                                      
 end;                                                                  
print index xt yt zt yj zj; 
 

Appendix III - SAS LOG for FRACDIFF.SAS 
 
653 *******************************; 
654 * fracdiff.sas                *; 
655 *                             *; 
656 *******************************; 
657 
658 
659 * create random data for fractional differencing algorithm *; 
660 
661 data one ; 
662 * for n=171 both methods of fractional differencing work *; 
663 * for n=172 call to fdif fails, but convolution works *; 
664  do i=1 to 10000; 
665  x=rand('NORMAL'); 
666  output; 
667  end; 
668 
669 
670 * fractional differencing algorithm implemented below *; 
671 
 
NOTE: The data set WORK.ONE has 10000 observations and 2 variables. 
NOTE: DATA statement used: 
   real time      0.00 seconds 
 
672 proc iml ; 
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NOTE: IML Ready 
673   use one; 
674   read all into xx; 
675   index=xx[,1]; 
676   xt=xx[,2]; 
677   n=nrow(xt); 
678 * d = fractional differencing parameter *; 
679   d=.5; 
680 
681 * initialization; 
682  yt=j(n,1,0); 
683  Cj=j(n,1,0); 
684 
685 * do loop calculates coefficients using recursive method *; 
686 
687 jj=0 ; 
688 do i=1 to n; 
689   if i=1 then Cj[i] = 1; 
690   else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ; 
691   jj=jj+1; 
692  end; 
693 
694 * Convolution follows. Notice that the arrays are indexed in reverse 
order to implement the 
694! *; 
695 * convolution. Also, the symbol for transpose in SAS IML is ' 
695! *; 
696 
697 do i=1 to n; 
698   yt[i]=Cj[1:i]`*xt[i:1]; 
699 end; 
700 
701 quit; 
NOTE: Exiting IML. 
NOTE: 7659 workspace compresses. 
NOTE: PROCEDURE IML used: 
   real time      3.18 seconds 
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Statistical Pronouncements 
 
 “I do not see that the sex of the candidate 
is an argument against her admission. After all, we 
are a university, not a bathing establishment” - 
David Hilbert, regarding Emmy Amalie Noether’s 
unsuccessful application to the faculty at 
Göttingen in 1915. 
 
 “As I understand De Moivre the ‘Original 
Design’ is the mean occurrence on an indefinite 
number of trials…The Deity fixed the ‘means’ and 
‘chance’ provided the fluctuations…There is much 
value in the idea of the ultimate laws of the 
universe being statistical laws… [but] it is not an 
exactly dignified conception of the Deity to 
suppose him occupied solely with first moments 
and neglecting second and higher moments!” - 
Karl Pearson (1978, The History of statistics in the 
17th and 18 th centuries against the changing 
background of intellectual, scientific and religious 
thought: Lectures given at University College 
London during the academic sessions 1921-1923, 
p. 160.) 
 
 “We are passing from the scientific 
enthusiasm of the founders… to a period when 
men followed science as a profession, when the 
text-book writer appears seeking whom he may 
devour, and how his books will sell, rather than 
what new knowledge they may bring” - Karl 
Pearson (ibid, p. 176). 
 
 “You cannot too narrowly separate the 
history of statistics from the general history of 
science, still less from the history of philosophical 
and religious thought” - Karl Pearson (ibid , p. 
213). 
 
 “Mathematicians have always been rather 
of a jealous nature…[and] there is some excuse…, 
for their reputation stands for posterity largely not 
on what they did, but on what their contemporaries 
attributed to them” - Karl Pearson, ibid , p. 226). 
 
 “It is idle to measure a man’s real value by 
the number of memoirs he writes, although that is  
very influential just now in academic 
appointments on both sides of the Atlantic - it is 
easier to count than to weigh” - Karl Pearson (ibid , 
p. 245). 

 “History is to no purpose unless you try to 
grasp the general character of a man and of the age 
in which he lived” - Karl Pearson (ibid, p. 248). 
 
 “Extreme mathematical power is not 
necessarily combined with an extremely logical 
mind” - Karl Pearson (ibid , p. 249). 
 
 “Mixed up with mathematics is the 
philosophy and the theology of the day” - Karl 
Pearson (ibid, p. 249). 
 
 “The advance of a science even like 
statistics is linked up with the general history of 
human ideas” - Karl Pearson (ibid , p. 303). 
 
 “The religious belief of men colors not 
only what they collect, but how they interpret it” - 
Karl Pearson (ibid, p. 319). 
 
 “A wise reformer, if he wishes practically 
to influence his generation, must know not only 
what is true, but how much of that truth his 
contemporaries can possibly digest” - Karl 
Pearson (ibid, p. 349). 
 
 “Extreme repugnance for computing [is] a 
sin of too many mathematical statisticians” - Karl 
Pearson (ibid, p. 426). 
 
 “However beautiful a mathematical 
theory, however completely it be worked out, its 
weaknesses or its successes can only be 
ascertained, when it has been submitted to the test 
of numerical evaluation” - Karl Pearson (ibid , p. 
456). 
 
 “Experiments must be capable of being 
considered to be a random sample of the 
population to which the conclusions are to be 
applied. Neglect of this rule has led to the estimate 
of the value of statistics which is expressed in the 
crescendo ‘lies, damned lies, statistics’” - W. S. 
Gosset (“Student”), (1926, Mathematics and 
agronomy, Journal of the American Society of 
Agronomy, 18, p. 703.) 
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 “Sampling is the central problem in 
statistics” - George W. Snedecor (1946, Statistical 
methods, p. 453). 
 
 “Modern statistical method is a science in 
itself” - S. S. Wilks (1948, Elementary statistical 
analysis, p. 1). 
 
 “Human progress is based on 
‘permanencies’ or, rather, on our ability to detect 
permanencies both in the objects surrounding us and 
in changes in these objects” - Jerzey Neyman (1950, 
First course in probability and statistics, p. 1). 
 
 “In practical applications we seldom meet 
cases where the assumption of the existence of an a 
priori probability distribution seems to be justified; 
and even in those rare cases in which the latter 
assumption can be made, we usually do not know the 
shape of the a priori probability distribution and this 
makes the application of Bayes’ theorem impossible” 
- Abraham Wald (1950, On the principles of 
statistical inference, p. 26). 
 
 “An unfortunate publicity was given to 
discussions of the so-called foundations of 
probability, and thus the erroneous impression was 
created that essential disagreement can exist among 
mathematicians. Actually, these discussions concern 
only minor points which are of interest to but few 
specialists” - William Feller (1950, An introduction 
to probability theory and its applications, p. 6). 
 
 “The secret language of statistics, so 
appealing in a fact-minded culture, is employed to 
sensationalize, inflate, confuse, and oversimplify” - 
Darrell Huff, (1954, How to lie with Statistics, p. 8). 
 
 “I believe that the nonparametric techniques 
of hypothesis testing are uniquely suited to the data 
of the behavioral sciences” - Sidney Siegel (1956, 
Nonparametric statistics for the behavioral sciences, 
p. vii). 
 
 “Permutation tests are easy to define, but 
…the numerical calculations required to carry them 
out are usually hopelessly tedious” - Henry Scheffé 
(1959, The analysis of variance, p. 313). 
 
 
 
 

 “A good (although debatable) case can be 
made for means and variances as indices of location 
and dispersion when the normality assumption holds; 
the argument loses much of its force, however, when 
the assumption fails” - James V. Bradley (1968, 
Distribution-free statistical tests, p. 12). 
 
 “The easiest way to abuse any statistical 
technique is to disregard and/or violate the 
assumptions necessary for the validity of the 
procedure” - Jean Dickinson Gibbons (1976, 
Nonparametric methods for quantitative analysis, p. 
24). 
 
 “The rather naïve objection might be raised 
that educational data are rarely sufficiently non-
normal to warrant concern. Perhaps the most 
effective means of dealing with such a notion on the 
part of an educational researcher is to suggest that 
he/she routinely construct relative frequency 
histograms of the data that they submit to statistical 
analysis. This time-honored but often neglected 
practice usually paints pictures of distributions that 
are unimagined by researchers who think of data in 
terms of the normal curve” - R. C. Blair (1981, A 
reaction to ‘Consequences of failure to meet 
assumptions underlying the fixed effects analysis of 
variance and covariance’, Review of Educational 
Research, 51, p. 503-504). 
 
 “Any reader who has penetrated this book to 
this point hardly needs convincing of the centrality 
of the concept of effect size… a moment’s thought 
suggests that it is, after all, what science is all about” 
- Jacob Cohen (1988, Statistical power analysis for 
the behavioral sciences, p. 531-532.) 
  
 “There is no physical entity that is the 
number 1. If there were, it would surely be in a place 
of honor in some great scientific museum, and past it 
would file a steady stream of mathematicians, gazing 
at 1 in wonder and awe” - John B. Fraleigh (1989, A 
first course in abstract algebra, p. 20.) 
 
 “The Monte Carlo method provides the 
experimental scientist with one of the most powerful 
tools available for planning experiments and 
analyzing data” - R. Bevington and D. Keith 
Robinson (1992, Data reduction and error analysis 
for the physical sciences, p. 76). 
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