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Steady State Analysis Of An M/D/2 Queue With Bernoulli Schedule Server Vacations 
 

Kailash C. Madan          Walid Abu-Dayyeh          Firas Tayyan 
 

Department of Statistics, Faculty of Science 
Yarmouk University, Irbid, Jordan 

 
 
We examine an M/D/2 queue with Bernoulli schedules and a single vacation policy. We have assumed 
Poisson arrivals waiting in a single queue and two parallel servers who provide identical deterministic service 
to customers on first-come, first-served basis. We consider two models; in one we assume that after 
completion of a service both servers can take a vacation while in the other we assume that only one may take 
a vacation. The vacation periods in both models are assumed to be exponential. We obtain steady state 
probability generating functions of system size for various states of the servers. 
 
Key words: Two parallel servers, Bernoulli schedules, single vacation policy, deterministic service 
 

 
Introduction 

 
Vacation Queues have been studied by numerous 
researchers including   Kleinrock (1983) , Keilson 
and Servi (1986), Baba (1986), Doshi 
(1986,1990), Cramer (1989), Choi & Park (1990), 
Borthakur & Choudhury 1997), Madan (1992, 
1999, 2001), to mention a few. Most of these 
authors have investigated single server queues 
assuming Bernoulli schedules or exhaustive 
service or generalized vacations among several 
other vacation policies with a single or multiple 
vacations. Madan and Saleh (2001, 2001, 2001) 
have studied a single server queue with 
exponential service and deterministic vacations, 
deterministic service with exponential vacations 
and deterministic service with deterministic 
vacations, assuming Bernoulli schedules. 

Those articles considered single server 
vacation models. Here, we study a queueing 
system with two parallel servers providing 
identical deterministic service assuming Bernoulli 
schedule server vacations with a single vacation 
policy.  
 
 
Send correspondence to Kailash C. Madan, 
Department of Statistics, Faculty of Science, 
Yarmouk University, Irbid, Jordan. E-mail him at 
kailashmadan@hotmail.com. 
 
 

 
We consider two models. In model A we 

assume that after a service completion both servers 
may take a vacation of identical exponential 
duration and in model B, we assume that only one 
of the servers can take a vacation of exponential 
duration.  In both models, we assume a single 
vacation policy which means that whenever a 
vacation period of a server ends, then he must join 
the system irrespective of whether there are 
customers waiting for service or not. That is, the 
server must join the system even if he finds the 
system empty on return. The following 
assumptions briefly describe our models: 

 
Model A: Both Servers Can Take A Vacation. 

The Underlying Assumptions: 
 
A - Customers arrive at the system one by one and 
their arrivals follow a Poisson distribution with 
mean arrival rate 8, (8 > 0). 
 
B - Both servers provide identical deterministic 
(constant) service with constant service time of 
length b, (b > 0). 
 
C - After every service, both servers together may 
take a vacation with probability p or continue to 
stay in the system with probability 1- p. The 
vacation times follow an exponential distribution 
with mean vacation time 1/$, ( > 0). 
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D- All stochastic processes involved in the system 
are independent of each other. 
 
Definitions and Notations 
 
Define: 
 
Bn (t): as the probability that at time t both servers 
are available in the system providing service and 
there were n (0) customers in the system when the 
current service started. 
 
Nn (t): as the probability that at time t there are 
n (0) customers in the system and both servers are 
on vacation. 
 
 
 

Pn (t): as the probability that at time t there are 
n (0) customers in the system  without regardless 
of the state of the servers  
 
ki : as the probability of i arrivals during a service 
period of constant length b. 
 
Steady State Forward Equations of the System       

Assuming that the steady state exists, let 

nnt
BtB =

∞→
)(lim , nn N(t)N =

∞→t
lim , and 

nnt
PtP =

∞→
)(lim . Thus, nB , nN and nP denote the 

corresponding steady state probabilities. Then 
applying the usual probability reasoning we obtain 
the following set of steady state forward 
equations: 
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Steady State Probability Generating Functions for the System Size 
 We define the following probability generation functions: 
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We multiply (1) by 
2+nz  and add for all n = 0, 1, 2…Then we have 
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Then using (4) we obtain from (5)  
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Similarly we multiply (2) by 
2+nz  and (3) by z and add them for all n = 0,1,2… Then we have 
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Using (4) we obtain from (7) 
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Then we solve (6) and (8) simultaneously for )(zB and )(zN and obtain on simplifying 
 

B(z) 
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Hence, adding (9) and (10) we have  
 

)()()( zNzBzP += . (11) 
 
Now we have to determine the unknown probabilities 0B and 

1B  which appear in the numerators of the right 
hand sides of equations (9), (10) and (11). For this purpose we use Rouche's theorem as follows. Let 
 

[ ][ ]2)1(2 )()1()( zzepzzf zb βλλλ +−−−= −− , 
)1(2)( zbezpzg −−−= λβ . 
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Note that both f (z) and g (z) are regular on and inside  | z | =1. We aim to prove that )()( zgzf ≥  on 
| z | =1. Now, on | z | =1, 
 

  [ ][ ]2)1(2 )()1()( zzepzzf zb βλλλ +−−−= −−  

    2)1(2 )()1( zzepz zb βλλλ +−−−= −−  

   2 b(1 z ) 2z (1 p)e ( z ) z− λ −   ≥ − − λ − λ + β     

    [ ][ ] )()1(1 )1()1( zgepep zbzb ==+−−−= −−−− λλ ββλλ . 
 

Because )()( zgzf ≥ , therefore by Rouche’s theorem )()( zgzf +  has the same of zeros 

inside or on 1=z  as that of )( zf . Now, it is easy to show that )( zf has four zeros on or inside 1=z . 

Therefore, )()( zgzf + , i.e., the denominator of the right hand side of  (11) has four zeros on or inside 

1=z .  For each of these four zeros the numerator of the right hand side of (11) must vanish, thus giving us 

four linear equations in the two unknowns 0B and 1B . Then two of these four equations are sufficient to 
determine the two unknowns, whereas the other two may just be redundant. Hence, the probability generating 
functions B (z), N (z) and P (z) obtained in (9), (10) and (11) can be completely determined. 

 
Next, we shall use normalizing condition  

1)1()1()1( =+= NBP .   (12) 

At z = 1, 
zero
zero

P =)1( , therefore using L'Hopital's rule we have from (11) 
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which gives 
 

λβλββ pbBBp −−=++ 2)2)(( 10 .    (14) 
 
Equation (14) will hold only if λβλβ pb −−2  > 0 which gives the steady state condition 
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 Note that when there are no server vacations, then with p = 0, nN =0 for all n 0≥ , equation (10) 
yields N(z)=0  as it should be. Further, equations (9) and (15) respectively give 
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 Note that (16) and (17) are the known 
results for the M/D/c queue for c=2. (See Kashyap 
and Chaudhury, 1988, p. 60-61.) 
 
Model B: Only One Server At A Time Can Take A 
Vacation 
 The Underlying Assumptions. 
 In this case, the assumptions (a), (b) and 
(d) in section 2.1 for the previous case are the 
same. However, assumption (c) is different in this 
case under which we assume that after every 
service completion, only one server may take a 
vacation with probability p or continue to stay in 
the system with probability 1- p. The vacation 
times follow an exponential distribution with mean 
vacation time 1/ β ,  (β  > 0). 
 
Definitions and Notations  
 We define: 
Bn (t): as the probability that at time t both servers 
are available in the system providing service and 
there were n ( ≥ 0) customers in the system when 

the current service started. 
 
On (t): as the probability that at time t only one 
server is available in the system providing service 
and there were n (≥ 0) customers when the current 
service started. 
 
Pn (t): as the probability that at time t there are n 
( ≥ 0) customers in the system  regardless of the 
state of the servers. 
 
Steady State Forward Equations of the System   
  Assuming that steady state exists, we let 

nnt
BtB =

∞→
)(lim , nnt

O(t)O =
∞→

lim  and 

nn
t

PtP =
∞→

)(lim . Thus nB , nO and nP denote the 

corresponding steady state probabilities.  Then we 
obtain the following set of steady state equations: 
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Steady State Probability Generating Functions for the System Size 
 In addition to the probability generating functions defined in (4a) and 4b) in section 2.4, we define the 
following probability generation function: 

∑
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We multiply both sides of equation (16) by 
2+nz  and add for all n = 0, 1, 2… Thus we have 
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Then using (4a), (4b) and (20) we obtain from (21) 
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Similarly, we  multiply both sides of (19) by 
2+nz  and add them for all n = 0, 1, 2… Then we have 

 

∑ ∑ ∑∑∑
∞

=

∞

=

+

=

+
−+

∞

=

∞

=

++=+
0 0

1

2

2
1

0

2
1

0

2
0

2)1(
n n

n

j

n
jnj

n

n
n

n

n
n

n
n zkOzkzOzkzOzOzβ  

∑∑∑
∞

=

∞

=

∞

=

+++
0

2
2

0

2
1

0

2
0

n

n
n

n

n
n

n

n
n zkzpBzkzpBzkzpB  

∑∑
∞

=

+

=

+
−++

0

2

3

2
2

n

n

i

n
ini zkBp , n ≥ 0 .   (23) 

 
 
Then using (4a), (4b) and (18) we obtain from (23) 
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Then, we solve equations (22) and (24) simultaneously for )(zB and )(zO and obtain 
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Then adding (25) and (26), we obtain  
  

)()()( zOzBzP += .     (27) 
                                 

 The unknowns 10 , BB and 0O  can be determined by applying Rouche’s theorem as before. Hence, 
the probability generating functions B(z), O(z) and P(z) can be completely determined.  
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 Further, we use the normalizing condition  
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At z = 1, because 
zero
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P =)1( , and hence, using L'Hopital's rule we have from   (27) 
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 Again note that when there are no server vacations, then with p = 0 and nO =0 for all n 0≥ , equation 
(26) yields O(z)=0 as it should be. Further, (25) and  (31) respectively give 
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 Note that (32) and (33) are  the  same known results for the M/D/c queue for c=2 as in section 2.4.  
(See Kashyap & Chaudhury, 1988, p. 60-61.) 
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