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Invited Article: 
Preliminary Testing for Normality: Is This a 
Good Practice? 
H. J. Keselman 
University of Manitoba 
Winnipeg, Manitoba 

Abdul R. Othman 
Universiti Sains Malaysia 
Georgetown, Penang 

Rand R. Wilcox 
University of S. California 
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Normality is a distributional requirement of classical test statistics. In order for the test 
statistic to provide valid results leading to sound and reliable conclusions this 
requirement must be satisfied. In the not too distant past, it was claimed that violations of 
normality would not likely jeopardize scientific findings (See Hsu & Feldt, 1969; Lunney, 
1970). Recent revelations suggest otherwise (See e.g., Micceri, 1989; Keselman, Huberty, 
Lix et al., 1998; Erceg-Hurn, Wilcox, & Keselman, 2013; Wilcox and Keselman, 2003; 
Wilcox, 2012a, b). Unfortunately the data obtained in psychological investigations rarely, 
if ever, meet the requirement of normally distributed data (Micceri, 1989; Wilcox, 2012a, 
b). Consequently, it could be the case that the results from many of the investigations 
conducted in psychology provide invalid results. Accordingly, authors recommend that 
researchers attempt to assess the validity of assuming data are normal in form prior to 
conducting a test of significance (Erceg-Hurn, et al., 2013; Keselman, et al., 1998). 
Present evidence suggests that a popular fit-statistic, the Kolmogorov-Smirnov test does a 
poor job of evaluating whether data are normal. Our investigation based on this statistic 
and other fit-statistics provides a more favorable picture of preliminary testing for 
normality. 
 
Keywords: Assessing normality, fit statistics, g-and-h non-normal skewed and 
kurtotic data, contaminated mixed-normal distributions; outlying value(s), Likert scales  
 

Introduction 

Psychological researchers are often reminded that the validity of their statistical 
tests and the conclusions derived from these tests depends to a great extent on 
whether the derivational assumptions of the test procedures have been satisfied 
(e.g., See Keselman, Huberty, Lix et al., 1998; Wilcox, 2012a, b; Wilcox & 
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Keselman, 2003). Consequently, though not a common practice, researchers are 
still reminded about assessing derivational assumptions (See Erceg-Hurn, Wilcox, 
& Keselman, 2013; Kirk, 2013; Schoder, Himmelmann & Wilhelm, 2006; Wilcox 
& Keselman, 2003). Almost all inferential methods require that in the 
population(s) the data is (are) normally distributed (as well as other requirements 
not relevant to this paper). Violation of the normality assumption can have a 
deleterious effect on the Type I error rate of test statistics (See Wilcox, 2012a, b; 
Wilcox & Keselman, 2003). Although the Type I error rate is widely viewed as 
being relatively unaffected by non-normality, Bradley (1980) has pointed out 
conditions in which this is not true. This finding is also evident in the findings of 
recent studies and published texts (e. g., See Hempel, Ronchetti, & Rousseeuw, 
1986; Huber & Ronchetti, 2009; Maronna, Martin, & Yohai, 2006; Micceri, 1989; 
Schoder, et al., 2006; Staudte & Sheather, 1990; Wilcox, 2012a, b; Wilcox & 
Keselman, 2003).  
 Applied researchers can examine plots of their data and/or perform tests to 
assess the assumption, i. e., normality. Evaluating graphs (e.g., box-plots, stem-
and-leaf, box and whisker, QQ plots) of ones data to assess whether data are 
normally distributed can be problematic since the determination relies on a 
subjective assessment (Wilk & Gnanadesikan, 1968). Thus, this practice is 
oftentimes not typically used when assessing the shape of the distribution of data 
(See Schoder, et al., 2006). Researchers tend to prefer exact methods based on 
formal tests for normality such as the Kolmogorov-Smirnov (K-S) goodness-of-fit 
statistic (See Muller & Fetterman, 2002, Chapter 7). Furthermore, researchers 
commonly use the result from a goodness-of-fit test to determine whether the 
normality of classical test procedures is satisfied thus providing legitimacy to the 
use of a classical test statistic. Consequently, preliminary testing for normality or 
any distributional shape is quite important in the whole inferential process and has 
been discussed in various contexts (See e.g., Cardoso de Oliveira & Ferreira, 
2010; Doornik & Hansen, 2008; Sürücü, 2006). However, if the assumption of 
normality does not appear to be satisfied, researchers use this information to 
select alternative procedures such as nonparametric methods. Thus, it is important 
to know how well a preliminary test for normality, e. g., the K-S test, works in 
detecting non-normal data.  

Unfortunately, according to Schoder, Himmelman, and Wilhelm (2006) 
“The Kolmogorov-Smirnov test performs badly on data with single outliers, 10% 
outliers, and skewed data at sample sizes <100.” (p. 757) These authors 
investigated the performance of the K-S test for four types of non-normal data 
(e.g., normal distribution with a single outlier, normal distribution with 10% 
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outliers, skewed lognormal distribution with varying skewness, and an ordinal 5-
point Likert scale with varying multinomial probabilities) and varying sample size 
in a pretest-posttest design. The assessment for normality was conducted at a 5% 
significance level. Unfortunately, the results tabled by Schoder et al. do not 
support the use of the K-S test as a preliminary test to assess normality of the data.  

Because it is strongly believed that validity assumptions such as normality 
should be verified before adopting a classical test of significance that assumes the 
data in the population is normal in shape, it important to replicate the findings 
reported by Schoder, Himmelmann, and Wilhelm (2006) and extend their study in 
important ways. (For a contrary view previously noted in this journal, see 
Sawilowsky, 2002, p. 466-467). Other goodness-of-fit statistics are available (see, 
e.g., Muller & Fetterman, 2002, Chapter 7). Accordingly, a simulation study was 
conducted investigating three goodness-of-fit statistics, varying the degree of non-
normality with other distributional shapes not investigated by Schoder, 
Himmelmann, and Wilhelm (2006), using sample sizes more likely to be 
encountered in psychological and educational research. 

Method 

Specifically, in this study the following are manipulated: (1) the procedure used to 
assess shape of distribution [K-S, Cramer-von Mises (CvM), Anderson-Darling 
(A-D)] fit-statistics (available through the SAS system), (2) the shapes of 
distributions (26 cases—14 g-and-h distributions, 8 contaminated normal mixture 
models, and 4 multinomial models), (3) the sample sizes (20, 40, and 80), 
depending on distribution, and (4) the level of significance for the fit-statistics 
(i.e., .05,.10, .15 and .20)=α . 

Most statistical packages (e.g., the SAS system) provide numerous fit 
statistics. Accordingly, it is possible that other tests other than the K-S can 
adequately assess whether normality, or other distributions, exists in the data. The 
SAS system was used to implement the K-S, CvM, and A-D fit-statistics. The 
choices of non-normal distributions are modifications from Schoder, 
Himmelmann and Wilhelm (2006) and Zimmerman (1998). Schoder, et al. (2006) 
investigated a normal distribution with a single outlier, a normal distribution with 
10% outliers, skewed lognormal distributions with varying skewness, and an 
ordinal 5-point Likert scale with varying multinomial probabilities (common they 
state in dermatological investigations). Many non-normal distributions were 
investigated via g-and-h distributions (See Headrick, Kowalchuk, & Sheng, 2008; 
Hoaglin, 1983; 1985; Kowalchuk & Headrick, 2010; Tukey, 1960). These 
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distributions with their values for skewness and kurtosis are enumerated in Table 
1. A substantial number of values of g and h were chosen to cover as broad a 
spectrum of non-normal distributions that could occur in psychological and 
behavioral science experiments (e.g., See Keselman, Huberty, Lix et al., 1998; 
Micceri, 1989; Wilcox, 2012a, b). 
 
Table 1. g-and h-distributions examined in the simulation study with their corresponding 
measures of skewness and kurtosis 
 

Distribution Skewness Kurtosis 
 

  Distribution Skewness Kurtosis 
g=0,h=.05 0.00 0.82    g=.4,h=0 1.32 3.26 

g=0,h=.075 0.00 1.49    g=.6,h=0 2.26 10.27 

g=0,h=.1 0.00 2.51    g=1,h=0 6.19 110.94 

g=0,h=.125 0.00 4.16    g=.2, h=.1 1.08 5.50 

g=0,h=.15 0.00 7.17    g=.4,h=.1 2.45 20.30 

g=0,h=.2 0.00 33.22    g=.6,h=.1 4.69 89.80 

g=.2, h=0 0.61 0.68    g=.8,h=.1 9.27 603.61 

 
Table 2. Contaminated mixed-normal distributions used in the power studies of the three 
goodness-of-fit-tests for normality 
 

  Outliers 

n Distribution Distance (in standard 
Deviations) Number 

20 (.95)N(0,1) + (.05)N(0,25) 5 1 

20 (.90)N(0,1) + (.10)N(0,25) 5 2 

20 (.95)N(0,1) + (.05)N(0,100) 10 1 

20 (.90)N(0,1) + (.10)N(0,100) 10 2 

40 (.975)N(0,1) + (.025)N(0,25) 5 1 

40 (.95)N(0,1) + (.05)N(0,25) 5 2 

40 (.90)N(0,1) + (.10)N(0,25) 5 4 

40 (.975)N(0,1) + (.025)N(0,100) 10 1 

40 (.95)N(0,1) + (.05)N(0,100) 10 2 

40 (.90)N(0,1) + (.10)N(0,100) 10 4 

80 (.9875)N(0,1) + .(0125)N(0,25) 5 1 

80 (.975)N(0,1) + (.025)N(0,25) 5 2 

80 (.95)N(0,1) + (.05)N(0,25) 5 4 

80 (.9875)N(0,1) + (.0125)N(0,100) 10 1 

80 (.975)N(0,1) + (.025)N(0,100) 10 2 

80 (.95)N(0,1) + (.05)N(0,100) 10 4 
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The SAS system was used on a Sun Fire X4600 M2 x64 server: 8 x AMD 
Opteron Model 8220 processor (2.8GHz-dual-core) to generate g- and-h data, by 
modifying standard normal variates ~ (0,1)Z N  to non-normal variates by 
specifying values of g and h in the following quantile functions: 
 

 
2

,
exp( ) 1( ) ( ) exp ,

2
 −

= =  
 

g h
gZ hZq Z q Z
g

  (1) 

 

 ,0
exp( ) 1( ) ( ) ,−

= =g
gZq Z q Z
g

  (2) 

 

 
2

0, ( )( )  exp
2

 
= =  

 
h Z

hZq Z q Z   (3) 

 

Equations (2) and (3) generate lognormal and symmetric h distributions, 
respectively. As Kowalchuk and Headrick (2010) noted “The parameter ±g  
controls the skew of a distribution in terms of both direction and magnitude. The 
parameter h controls the tail weight or elongation of a distribution and is 
positively related with kurtosis.” (p. 63). As well, Type I error rates were 
investigated when data were obtained from a normal distribution [ 0= =g h , the 
standard normal distribution (skewness and kurtosis = 0)].  

A number of different contaminated mixed-normal distributions were 
examined, such as those reported in Zimmerman (1998). Contaminated mixed-
normal distributions have one or more outlying values that deviate from the 
central mean of the distribution by some amount measured in standard deviation 
units. For example, Zimmerman examined a mixed normal distribution consisting 
of samples from (0,1)N with probability .95 and from (0,400)N  with 
probability .05. Tukey (1960) suggested that outliers are a common occurrence in 
distributions and others have indicated that skewed distributions frequently depict 
psychological data (e.g., reaction time data). Accordingly, eight contaminated 
mixed normal distributions were examined that had one, two, or four outlying 
values which were five or ten standard deviations from the mean value. These 
distributions are enumerated in Table 2.  

Finally, like Schoder, Himmelmann and Wilhelm (2006), a 5-point Likert 
scale was simulated; such data is frequently gathered in psychological (e.g., from 
clinical, personality, and social psychological investigations) and other behavioral 
science investigations. The same conditions investigated by Schoder et al. (2006) 
were investigated. Specifically,  
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1) even distribution (p=.02 for each category 0-4);  
2) symmetric distribution 

( 0 1 2 3 40.1,  0.2,  p 0.4,  0.2,  0.1)= = = = =p p p p  ;  
3) moderately skewed distribution  

( 0 1 2 3 40.5,  0.3,  0.15,  0.04,  0.01)= = = = =p p p p p  ; and  
4) heavily skewed distribution  

( 0 1 2 3 40.7,  0.2,  p 0.06,  0.03,  0.01)= = = = =p p p p  .  
 

Thus, for the 5-point Likert scale data there were 4 multinomial distributions 
that were simulated (See Table 3). 
 
Table 3. Multinomial distributions based upon Schoder, Himmelmann, and Wilhelm’s 
(2006) probabilities simulated as a five-point Likert Scale 
 

  Even Symmetric Moderately 
Skewed Heavily Skewed 

n (p0,p1,p2,p3,p4) (p0,p1,p2,p3,p4) (p0,p1,p2,p3,p4) (p0,p1,p2,p3,p4) 

20 (.2, .2, .2, .2, .2) (.1, .2, .4. .2, .1) (.5, .3, .15, .04, .01) (.7, .2, .06, .03, .01) 

40 (.2, .2, .2, .2, .2) (.1, .2, .4. .2, .1) (.5, .3, .15, .04, .01) (.7, .2, .06, .03, .01) 

80 (.2, .2, .2, .2, .2) (.1, .2, .4. .2, .1) (.5, .3, .15, .04, .01) (.7, .2, .06, .03, .01) 
 

The same number of sample size conditions as Schoder, Himmelmann, and 
Wilhelm (2006) were not investigated, but a reasonable range of values (i.e., n = 
20,40,80) were includled, depending on the condition investigated. Specifically,  

 
(i) for the 14 g- and h- distributions, and 2 contaminated normal 

distributions, .95N(0,1) + .05N(0, k), k=25, 100, sample sizes of 20, 
40 and 80 were chosen.  

(ii) For 2 contaminated normal distributions, .9N(0,1) + .1N(0,k), k=25, 
100, sample sizes of 20 and 40 were chosen.  

(iii) For 2 contaminated normal distributions, .975N(01) + .025N(0,k), 
k=25, 100, sample sizes of 40 and 80 were chosen. 

(iv) For 2 contaminated normal distributions, .9875N(0,1) + .0125N(0,k), 
k=25, 100, sample size of 80 was chosen.  

 
Lastly, because in preliminary testing it would be quite important to guard 

against a Type II error (falsely accepting the null hypothesis that the data are 
normal in form), we selected significance levels of .10 , .15, and .20, in addition 
to the standard .05. Each condition in the investigation was replicated 5,000 times. 
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Table 4. Power rates for the goodness-of-fit test on normality (n = 20). 
 

    Distribution Skewness Kurtosis  α = .05  α = .10  α = .15 

    Normal* 0.00 0.00 0.0524 0.1082 0.1530 

Kolmogorov-
Smirnov 

 
g=0,h=.05 0.00 0.82 0.0726 0.1304 0.1834 

 
g=0,h=.075 0.00 1.49 0.0870 0.1540 0.2094 

 
g=0,h=.1 0.00 2.51 0.1066 0.1838 0.2392 

 
g=0,h=.125 0.00 4.16 0.1320 0.2156 0.2726 

 
g=0,h=.15 0.00 7.17 0.1626 0.2502 0.3100 

 
g=0,h=.2 0.00 33.22 0.2296 0.3194 0.3834 

 
g=.2, h=0 0.61 0.68 0.1030 0.1678 0.2286 

 
g=.4,h=0 1.32 3.26 0.2436 0.3506 0.4262 

 
g=.6,h=0 2.26 10.27 0.4450 0.5662 0.6416 

 
g=1,h=0 6.19 110.94 0.7852 0.8648 0.9008 

 
g=.2, h=.1 1.08 5.50 0.1662 0.2530 0.3100 

 
g=.4,h=.1 2.45 20.30 0.3218 0.4204 0.4842 

 
g=.6,h=.1 4.69 89.80 0.5018 0.6026 0.6642 

  g=.8,h=.1 9.27 603.61 0.6698 0.7602 0.8096 

  
 

Normal* 0.00 0.00 0.0494 0.1036 0.1490 

Cramer-von 
Mises 

 
g=0,h=.05 0.00 0.82 0.0752 0.1368 0.1952 

 
g=0,h=.075 0.00 1.49 0.0970 0.1658 0.2260 

 
g=0,h=.1 0.00 2.51 0.1286 0.1996 0.2632 

 
g=0,h=.125 0.00 4.16 0.1608 0.2426 0.3038 

 
g=0,h=.15 0.00 7.17 0.1990 0.2842 0.3400 

 
g=0,h=.2 0.00 33.22 0.2756 0.3580 0.4232 

 
g=.2, h=0 0.61 0.68 0.1100 0.1814 0.2444 

 
g=.4,h=0 1.32 3.26 0.3082 0.4064 0.4872 

 
g=.6,h=0 2.26 10.27 0.5570 0.6590 0.7204 

 
g=1,h=0 6.19 110.94 0.8822 0.9268 0.9484 

 
g=.2, h=.1 1.08 5.50 0.1990 0.2826 0.3454 

 
g=.4,h=.1 2.45 20.30 0.3808 0.4730 0.5370 

 
g=.6,h=.1 4.69 89.80 0.5922 0.6728 0.7216 

  g=.8,h=.1 9.27 603.61 0.7594 0.8552 0.8626 

    Normal* 0.00 0.00 0.0494 0.1036 0.1490 

Anderson-
Darling 

 
g=0,h=.05 0.00 0.82 0.0810 0.1456 0.2040 

 
g=0,h=.075 0.00 1.49 0.1090 0.1816 0.2378 

 
g=0,h=.1 0.00 2.51 0.1444 0.2162 0.2766 

 
g=0,h=.125 0.00 4.16 0.1784 0.2582 0.3200 

 
g=0,h=.15 0.00 7.17 0.2182 0.2992 0.3590 

 
g=0,h=.2 0.00 33.22 0.2924 0.3798 0.4386 

 
g=.2, h=0 0.61 0.68 0.1222 0.1966 0.2584 

 
g=.4,h=0 1.32 3.26 0.3388 0.4456 0.5258 

 
g=.6,h=0 2.26 10.27 0.6012 0.6988 0.7528 

 
g=1,h=0 6.19 110.94 0.9086 0.9448 0.9602 

 
g=.2, h=.1 1.08 5.50 0.2190 0.2984 0.3610 

 
g=.4,h=.1 2.45 20.30 0.4084 0.4968 0.5590 

 
g=.6,h=.1 4.69 89.80 0.6168 0.6972 0.7444 

  g=.8,h=.1 9.27 603.61 0.7876 0.8474 0.8766 
 
*Type 1 error rates 
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Table 5. Power rates for the goodness-of-fit test on normality (n = 40). 
 

    Distribution Skewness Kurtosis  α = .05  α = .10  α = .15 

    Normal* 0.00 0.00 0.0524 0.1082 0.1530 

Kolmogorov-
Smirnov 

 
g=0,h=.05 0.00 0.82 0.0726 0.1304 0.1834 

 
g=0,h=.075 0.00 1.49 0.0870 0.1540 0.2094 

 
g=0,h=.1 0.00 2.51 0.1066 0.1838 0.2392 

 
g=0,h=.125 0.00 4.16 0.1320 0.2156 0.2726 

 
g=0,h=.15 0.00 7.17 0.1626 0.2502 0.3100 

 
g=0,h=.2 0.00 33.22 0.2296 0.3194 0.3834 

 
g=.2, h=0 0.61 0.68 0.1030 0.1678 0.2286 

 
g=.4,h=0 1.32 3.26 0.2436 0.3506 0.4262 

 
g=.6,h=0 2.26 10.27 0.4450 0.5662 0.6416 

 
g=1,h=0 6.19 110.94 0.7852 0.8648 0.9008 

 
g=.2, h=.1 1.08 5.50 0.1662 0.2530 0.3100 

 
g=.4,h=.1 2.45 20.30 0.3218 0.4204 0.4842 

 
g=.6,h=.1 4.69 89.80 0.5018 0.6026 0.6642 

  g=.8,h=.1 9.27 603.61 0.6698 0.7602 0.8096 

  
 

Normal* 0.00 0.00 0.0564 0.1068 0.1542 

Cramer-von 
Mises 

 
g=0,h=.05 0.00 0.82 0.0950 0.1622 0.2212 

 
g=0,h=.075 0.00 1.49 0.1332 0.2094 0.2746 

 
g=0,h=.1 0.00 2.51 0.1860 0.2692 0.3328 

 
g=0,h=.125 0.00 4.16 0.2448 0.3314 0.3996 

 
g=0,h=.15 0.00 7.17 0.3132 0.4012 0.4722 

 
g=0,h=.2 0.00 33.22 0.4490 0.5294 0.5908 

 
g=.2, h=0 0.61 0.68 0.1936 0.2786 0.3474 

 
g=.4,h=0 1.32 3.26 0.5528 0.6618 0.7352 

 
g=.6,h=0 2.26 10.27 0.8628 0.9116 0.9360 

 
g=1,h=0 6.19 110.94 0.9948 0.9980 0.9990 

 
g=.2, h=.1 1.08 5.50 0.3286 0.4220 0.4894 

 
g=.4,h=.1 2.45 20.30 0.6394 0.7218 0.7738 

 
g=.6,h=.1 4.69 89.80 0.8728 0.9120 0.9308 

  g=.8,h=.1 9.27 603.61 0.9664 0.9798 0.9866 

    Normal* 0.00 0.00 0.0564 0.1024 0.1556 

Anderson-
Darling 

 
g=0,h=.05 0.00 0.82 0.1036 0.1724 0.2326 

 
g=0,h=.075 0.00 1.49 0.1504 0.2278 0.2968 

 
g=0,h=.1 0.00 2.51 0.2082 0.2978 0.3612 

 
g=0,h=.125 0.00 4.16 0.2766 0.3678 0.4288 

 
g=0,h=.15 0.00 7.17 0.3460 0.4326 0.4960 

 
g=0,h=.2 0.00 33.22 0.4740 0.5620 0.6216 

 
g=.2, h=0 0.61 0.68 0.2130 0.3046 0.3750 

 
g=.4,h=0 1.32 3.26 0.6130 0.7160 0.7776 

 
g=.6,h=0 2.26 10.27 0.8946 0.9398 0.9586 

 
g=1,h=0 6.19 110.94 0.9974 0.9988 0.9998 

 
g=.2, h=.1 1.08 5.50 0.3556 0.4522 0.5194 

 
g=.4,h=.1 2.45 20.30 0.6698 0.7510 0.7956 

 
g=.6,h=.1 4.69 89.80 0.8958 0.9252 0.9444 

  g=.8,h=.1 9.27 603.61 0.9738 0.9858 0.9890 
 
*Type 1 error rates 
 



PRELIMINARY TESTING FOR NORMALITY: A GOOD PRACTICE? 

10 

 
Table 6. Power rates for the goodness-of-fit test on normality (n = 80). 
 

    Distribution Skewness Kurtosis  α = .05  α = .10  α = .15 

    Normal* 0.00 0.00 0.0534 0.1082 0.1580 

Kolmogorov-
Smirnov 

 
g=0,h=.025 0.00 0.35 0.0696 0.1314 0.1828 

 
g=0,h=.05 0.00 0.82 0.0968 0.1742 0.2252 

 
g=0,h=.075 0.00 1.49 0.1446 0.2318 0.2980 

 
g=0,h=.1 0.00 2.51 0.2114 0.3172 0.3928 

 
g=0,h=.125 0.00 4.16 0.3012 0.4194 0.4934 

 
g=0,h=.15 0.00 7.17 0.3950 0.5154 0.5958 

 
g=0,h=.2 0.00 33.22 0.5904 0.6938 0.7526 

 
g=0,h=.225 0.00 154.84 0.6736 0.7624 0.8098 

 
g=.2, h=0 0.61 0.68 0.2530 0.3758 0.4494 

 
g=.4,h=0 1.32 3.26 0.7334 0.8334 0.8792 

 
g=.6,h=0 2.26 10.27 0.9692 0.9872 0.9936 

 
g=1,h=0 6.19 110.94 1.0000 1.0000 1.0000 

 
g=.2, h=.1 1.08 5.50 0.4448 0.5604 0.6296 

 
g=.4,h=.1 2.45 20.30 0.8196 0.8870 0.9132 

  
 

g=.6,h=.1 4.69 89.80 0.9762 0.9882 0.9932 

    g=.8,h=.1 9.27 603.61 0.9982 1.0000 1.0000 

  
 

Normal* 0.00 0.00 0.0558 0.1030 0.1512 

Cramer-von 
Mises 

 
g=0,h=.05 0.00 0.82 0.1194 0.1872 0.2480 

 
g=0,h=.075 0.00 1.49 0.1896 0.2740 0.3442 

 
g=0,h=.1 0.00 2.51 0.2792 0.3834 0.4538 

 
g=0,h=.125 0.00 4.16 0.3912 0.4936 0.5570 

 
g=0,h=.15 0.00 7.17 0.5004 0.5990 0.6626 

 
g=0,h=.2 0.00 33.22 0.6914 0.7654 0.8128 

 
g=.2, h=0 0.61 0.68 0.3172 0.4314 0.5108 

 
g=.4,h=0 1.32 3.26 0.8526 0.9082 0.9372 

 
g=.6,h=0 2.26 10.27 0.9950 0.9980 0.9990 

 
g=1,h=0 6.19 110.94 1.0000 1.0000 1.0000 

 
g=.2, h=.1 1.08 5.50 0.5402 0.6346 0.6942 

 
g=.4,h=.1 2.45 20.30 0.8926 0.9302 0.9498 

 
g=.6,h=.1 4.69 89.80 0.9928 0.9968 0.9982 

  g=.8,h=.1 9.27 603.61 1.0000 1.0000 1.0000 

    Normal* 0.00 0.00 0.0548 0.1046 0.1526 

Anderson-
Darling 

 
g=0,h=.05 0.00 0.82 0.1316 0.2112 0.2694 

 
g=0,h=.075 0.00 1.49 0.2158 0.3046 0.3804 

 
g=0,h=.1 0.00 2.51 0.3196 0.4220 0.4946 

 
g=0,h=.125 0.00 4.16 0.4328 0.5290 0.5996 

 
g=0,h=.15 0.00 7.17 0.5420 0.6396 0.7004 

 
g=0,h=.2 0.00 33.22 0.7270 0.7960 0.8358 

 
g=.2, h=0 0.61 0.68 0.3606 0.4802 0.5604 

 
g=.4,h=0 1.32 3.26 0.8982 0.9430 0.9608 

 
g=.6,h=0 2.26 10.27 0.9976 0.9996 0.9998 

 
g=1,h=0 6.19 110.94 1.0000 1.0000 1.0000 

 
g=.2, h=.1 1.08 5.50 0.5816 0.6692 0.7234 

 
g=.4,h=.1 2.45 20.30 0.9104 0.9424 0.9608 

 
g=.6,h=.1 4.69 89.80 0.9942 0.9976 0.9986 

  g=.8,h=.1 9.27 603.61 1.0000 1.0000 1.0000 
 
*Type 1 error rates 
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Table 7. Number of times the g- and h- non-normal power values are equal to or greater 
than .80 for the fit-statistics (K-S, CvM, and A-D) 
 

  n K-S CvM A-D   

α = .05 
20 0 1 1 

 40 3 4 4 
 80 5 6 6 
   Total 8 11 11 30 

 
          

α = .10 
20 1 2 2 

 40 4 4 4 
 80 6 7 8 
   Total 11 13 14 38 

 
          

α = .15 
20 2 2 2 

 40 4 4 5 
 80 7 8 8 

   Total 13 14 15 42 

 
          

α = .20 
20 --- 2 2 

 40 --- 5 6 
 80 --- 8 8 
   Total --- 15 16 31* 

      Grand Total 
 

53 56 
             

 
Note: --- and *: PROC UNIVARIATE in SAS does not provide exact p-values for K-S at α = .20 

Results 

g- and h- Non-normal Distributions 
Table 4 presents Type I error and power rates for the K-S, CvM, and A-D fit-
statistics when sample size was 20. A number of conclusions can be drawn from 
this table. First, Type I error was controlled for each level of significance. Second, 
for the non-normal alternatives investigated, the K-S was typically the least 
powerful procedure, followed by CvM, and the A-D is typically most powerful. 
Also evident from the data is that for kurtotic data, none of the procedures 
displayed reasonable power (i.e., >.80). Although for skewed and kurtotic data the 
fit-statistics were only reasonably powerful for extreme departures from normality. 
As expected, power to detect non-normal distributions increased with more liberal 
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levels of significance; we excluded the .20=α  values from the tables since the 
values are naturally larger than those reported for the other significance levels 
examined. 

For moderate sample size case (See Table 5) the same pattern of results 
held; however, the fit-statistics had more power to detect non-normal data when 
sample size was 40. Finally, the same pattern of results occurred for our largest 
investigated sample size of 80 (See Table 6). And as expected the power to detect 
non-normal data increased with the increase in sample size. 

To summarize the findings for the g-and-h non-normal distributions 
examined in this study we provide in Table 7 a count of the number of times the 
power values were equal to or greater than .80 across the simulated conditions. 
Over the significance levels that can be used with the K-S test (i.e., 

.05,.10,  and .15)=α  the A-D procedure was most powerful to detect non-normal 
distributions, followed closely by CvM and then by K-S. Clearly the A-D is most 
sensitive of the three. Also most evident is that the power to detect non-normal 
distributions is affected by the level of significance as would be expected. Also 
evident is that contrary to the warning given by Schoder, Himmelmann, and 
Wilhelm (2006) researchers can detect non-normal distributions with sample sizes 
less than 100 (80 in our case). 

Contaminated Mixed-Normal Distributions 
The power rates for the contaminated normal distributions for the three fit-
statistics, K-S, CvM, and A-D are contained in Tables 8, 9, and 10, respectively. 
As we found for the g- and- h non-normal data, the A-D fit-statistic was most 
powerful for detecting normal data with outlying values than both the CvM and 
K-S fit-statistics. And, as expected, power increased with sample size and level of 
significance. Indeed, to a large extent the reported power values are in reasonably 
close proximity to .80 for most of the contaminated normal distributions 
examined. Furthermore, again, as expected the power values were largest when 
the level of significance was > .05. 

Likert Non-normal data 
The final type of non-normal data that we investigated was data that is obtained 
when five-point Likert scales are used in measuring the dependent variable. 
Subjects in the investigations indicate their preference, liking, attitude, etc. on five 
point type scales (e.g., very unfavorable, unfavorable, neutral, pleasant, very 
pleasant). Such responses obviously cannot be normally distributed. 
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Table 8. Power of the Kolmogorov-Smirnov goodness-of-fit test on normality of data for 
contaminated normal distributions 
 

    Outliers       

N Distribution 
Distance 

(in std 
dev) 

Number  α =.05  α =.10  α =.15 

20 (.95)N(0,1) + (.05)N(0,25) 5 1 0.3238 0.4040 0.4568 

20 (.9)N(0,1) + (.1)N(0,25) 5 2 0.4950 0.5748 0.6270 

20 (.95)N(0,1) + (.05)N(0,100) 10 1 0.6022 0.6526 0.6866 

20 (.9)N(0,1) + (.1)N(0,100) 10 2 0.8164 0.8566 0.8782 

40 (.975)N(0,1) + (.025)N(0,25) 5 1 0.2898 0.3670 0.4240 

40 (.95)N(0,1) + (.05)N(0,25) 5 2 0.4630 0.5424 0.5988 

40 (.9)N(0,1) + (.1)N(0,25) 5 4 0.7050 0.7748 0.8144 

40 (.975)N(0,1) + (.025)N(0,100) 10 1 0.5838 0.6462 0.6864 

40 (.95)N(0,1) + (.05)N(0,100) 10 2 0.8160 0.8520 0.8732 

40 (.9)N(0,1) + (.1)N(0,100) 10 4 0.9660 0.9768 0.9818 

80 (.9875)N(0,1) + (.0125)N(0,25) 5 1 0.2472 0.3210 0.3804 

80 (.975)N(0,1) + (.025)N(0,25) 5 2 0.4144 0.5006 0.5572 

80 (.95)N(0,1) + (.05)N(0,25) 5 4 0.6754 0.7482 0.7852 

80 (.9875)N(0,1) + (.0125)N(0,100) 10 1 0.5436 0.6052 0.6464 

80 (.975)N(0,1) + (.025)N(0,100) 10 2 0.7874 0.8288 0.8546 

80 (.95)N(0,1) + (.05)N(0,100) 10 4 0.9606 0.9714 0.9778 

 
 
Table 9. Power of the Cramer-von Mises goodness-of-fit test on normality of data for 
contaminated normal distributions 
 

    Outliers       

N Distribution 
Distance 

(in std 
dev) 

Number  α =.05  α =.10  α =.15 

20 (.95)N(0,1) + (.05)N(0,25) 5 1 0.3692 0.4362 0.4844 
20 (.9)N(0,1) + (.1)N(0,25) 5 2 0.5582 0.6220 0.6700 
20 (.95)N(0,1) + (.05)N(0,100) 10 1 0.6386 0.6844 0.7164 
20 (.9)N(0,1) + (.1)N(0,100) 10 2 0.8534 0.8802 0.8962 

40 (.975)N(0,1) + (.025)N(0,25) 5 1 0.3374 0.4000 0.4590 

40 (.95)N(0,1) + (.05)N(0,25) 5 2 0.5346 0.6018 0.6428 

40 (.9)N(0,1) + (.1)N(0,25) 5 4 0.7776 0.8264 0.8540 

40 (.975)N(0,1) + (.025)N(0,100) 10 1 0.6250 0.6698 0.7028 
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Table 9, continued. Power of the Cramer-von Mises goodness-of-fit test on normality of 
data for contaminated normal distributions 
 

    Outliers       

N Distribution 
Distance 

(in std 
dev) 

Numb
er  α =.05  α =.10  α =.15 

40 (.95)N(0,1) + (.05)N(0,100) 10 2 0.8478 0.8716 0.8864 

40 (.9)N(0,1) + (.1)N(0,100) 10 4 0.9784 0.9836 0.9868 

80 (.9875)N(0,1) + (.0125)N(0,25) 5 1 0.2928 0.3596 0.4150 

80 (.975)N(0,1) + (.025)N(0,25) 5 2 0.4884 0.5548 0.6086 

80 (.95)N(0,1) + (.05)N(0,25) 5 4 0.7534 0.8002 0.8298 

80 (.9875)N(0,1) + (.0125)N(0,100) 10 1 0.5924 0.6366 0.6714 

80 (.975)N(0,1) + (.025)N(0,100) 10 2 0.8258 0.8580 0.8768 

80 (.95)N(0,1) + (.05)N(0,100) 10 4 0.9736 0.9800 0.9836 

 
Table 10. Power of the Anderson-Darling goodness-of-fit test on normality of data for 
contaminated normal distributions 
 

    Outliers       

N Distribution 
Distance 

(in std 
dev) 

Number  α =.05  α =.10  α =.15 

20 (.95)N(0,1) + (.05)N(0,25) 5 1 0.4024 0.4650 0.5136 

20 (.9)N(0,1) + (.1)N(0,25) 5 2 0.5974 0.6596 0.6994 

20 (.95)N(0,1) + (.05)N(0,100) 10 1 0.6688 0.7100 0.7368 

20 (.9)N(0,1) + (.1)N(0,100) 10 2 0.8704 0.8922 0.9076 

40 (.975)N(0,1) + (.025)N(0,25) 5 1 0.3802 0.4466 0.4944 

40 (.95)N(0,1) + (.05)N(0,25) 5 2 0.5860 0.6432 0.6854 

40 (.9)N(0,1) + (.1)N(0,25) 5 4 0.8174 0.8558 0.8762 

40 (.975)N(0,1) + (.025)N(0,100) 10 1 0.6572 0.7000 0.7276 

40 (.95)N(0,1) + (.05)N(0,100) 10 2 0.8664 0.8920 0.9056 

40 (.9)N(0,1) + (.1)N(0,100) 10 4 0.9824 0.9866 0.9896 

80 (.9875)N(0,1) + (.0125)N(0,25) 5 1 0.3356 0.4050 0.4576 

80 (.975)N(0,1) + (.025)N(0,25) 5 2 0.5460 0.6138 0.6574 

80 (.95)N(0,1) + (.05)N(0,25) 5 4 0.8036 0.8440 0.8694 

80 (.9875)N(0,1) + (.0125)N(0,100) 10 1 0.6284 0.6726 0.7042 

80 (.975)N(0,1) + (.025)N(0,100) 10 2 0.8568 0.8830 0.8990 

80 (.95)N(0,1) + (.05)N(0,100) 10 4 0.9792 0.9850 0.9886 
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Table 11. Power of the goodness–of-fit test on normality of data for multinomial data 
representing five-point Likert scale scores 
 

Kolmogoroc-Smirnov* 

Even 

 

Symmetric 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.2, .2, .2, .2, .2) 0.2742 0.4490 0.5630  
 

10 (.1, .2, .4, .2, .1) 0.4568 0.6164 0.7212  

20 (.2, .2, .2, .2, .2) 0.6368 0.8248 0.8918  
 

20 (.1, .2, .4, .2, .1) 0.8132 0.9390 0.9606  

40 (.2, .2, .2, .2, .2) 0.9978 1.0000 1.0000    40 (.1, .2, .4, .2, .1) 0.9998 1.0000 1.0000   

             Moderately Skewed 
 

Heavily Skewed 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.5, .3, .15, .04, .01) 0.7629 0.9176 0.9530  
 

10 (.7, .2, .06, .03, .01) 0.9747 0.9905 0.9971  

20 (.5, .3, .15, .04, .01) 0.9970 0.9992 1.0000  
 

20 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000  

40 (.5, .3, .15, .04, .01) 1.0000 1.0000 1.0000    40 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000   

             
Cramer-von Mises 

Even 
 

Symmetric 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.2, .2, .2, .2, .2) 0.2610 0.4000 0.5348 0.6620 

 

10 (.1, .2, .4, .2, .1) 0.4520 0.5596 0.7008 0.7714 

20 (.2, .2, .2, .2, .2) 0.6710 0.9060 0.9946 1.0000 

 

20 (.1, .2, .4, .2, .1) 0.8494 0.9664 0.9986 1.0000 

40 (.2, .2, .2, .2, .2) 0.9978 1.0000 1.0000 1.0000  40 (.1, .2, .4, .2, .1) 1.0000 1.0000 1.0000 1.0000 

             Moderately Skewed 
 

Heavily Skewed 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.5, .3, .15, .04, .01) 0.8501 0.9134 0.9734 0.9814 

 

10 (.7, .2, .06, .03, .01) 0.9825 0.9916 0.9981 0.9988 

20 (.5, .3, .15, .04, .01) 0.9998 1.0000 1.0000 1.0000 

 

20 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000 1.0000 

40 (.5, .3, .15, .04, .01) 1.0000 1.0000 1.0000 1.0000  40 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000 1.0000 

             
Anderson-Darlingb 

Even 
 

Symmetric 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.2, .2, .2, .2, .2) 0.3202 0.5086 0.6220 0.7250 

 

10 (.1, .2, .4, .2, .1) 0.4248 0.5820 0.6628 0.7898 

20 (.2, .2, .2, .2, .2) 0.8420 0.9888 1.0000 1.0000 

 

20 (.1, .2, .4, .2, .1) 0.8668 0.9916 1.0000 1.0000 

             Moderately Skewed 
 

Heavily Skewed 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

 

n (p0,p1,p2,p3,p4)  α = .05  α = .10  α = .15  α = .20 

10 (.5, .3, .15, .04, .01) 0.8996 0.9526 0.9738 0.9928 

 

10 (.7, .2, .06, .03, .01) 0.9897 0.9969 0.9988 0.9996 

20 (.5, .3, .15, .04, .01) 1.0000 1.0000 1.0000 1.0000 

 

20 (.7, .2, .06, .03, .01) 1.0000 1.0000 1.0000 1.0000 

 
*PROC UNIVARIATE does not allow α = .20 for the Kolmogorov-Smirnov test. 
bThe power values for non-tabled n = 40 values are all 1.000 



PRELIMINARY TESTING FOR NORMALITY: A GOOD PRACTICE? 

16 

Table 11 provides power rates for the three fit-statistics for detecting non-
normality arising from using a Likert scale for assessing the dependent variable. 
Preliminary findings indicated that power values were 100% for sample sizes 
greater than 20 in the vast majority of cases. Thus, it was decided to include a 
smaller sample size case (i.e., 10)=n  to examine power values for a relatively 
modest number of subjects. The findings are quite positive; that is, in just about 
every case examined, the power to detect non-normality is > .80. Indeed, out of 
the 106 tabled values 83 are greater in value than .80. Once again, the A-D 
statistic provides the best power values, followed by CvM, and then by K-S. 

Discussion 

Applied researchers use statistical tests to assess whether or not the effect of an 
experimental manipulation is significant. Unfortunately, the results of many of 
these investigations are suspect as they often involve the use of statistical 
procedures with questionable validity. In these cases, the reported effects may be 
misleading or, in many cases, wrong. Clearly, such erroneous decisions can have 
serious negative consequences for both the advancement of knowledge in a given 
field as well as the effective translation of research results into practice. The intent 
of this paper was to examine whether one can effectively test whether one’s data 
confirms to the validity assumption of normality—a requirement for most 
classical test statistics. Prior research suggested that one could not use the 
Kolmogorov-Smirnov goodness-of-fit test to effectively test whether data were 
normally distributed or not (See e.g., Schoder, Himmelmann, and Wilhelm, 2006).  

We looked into this negative finding by also investigating other fit statistics, 
the Cramer von Mises and Anderson-Darling tests (See Muller & Fetterman, 2002 
Chapter 7), varying the skewness and kurtosis values of numerous g-and h-
distributions, examining a number of contaminated mixed-normal distributions 
and examining results when the dependent variable was obtained from non-
normal five-point Likert data. We also manipulated sample sizes (n = 20,40,80 
and the level of significance for the test of normality .05,.10, .15 and .20).=α   

Of the three fit-statistics we found that the Anderson-Darling procedure was 
most effective in detecting non-normality being superior to both the Kolmogorov-
Smirnov and Cramer-von Mises tests. We also determined that one could 
reasonably detect non-normality with reasonable sample sizes (n = 10,20,40), 
unlike what was reported by Schoder, Himmelmann, and Wilhelm (2006). Lastly, 
and importantly, since in this context one would want to increase the power to 
detect effects and concomitantly reduce the probability of falsely accepting the 
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null hypothesis that data are normally distributed, we suggest that preliminary 
testing be performed with significance levels larger than .05, say 

.15 or .20.= =α α  
We conclude by reminding researchers that if normality is not present in the 

data current analytic practices allow researchers to test hypotheses say about 
mean equality in multiple group designs with software that does not require that 
data be normally distributed (See e. g., SAS’s Glimmix procedure). Or, 
researchers can choose to replace classical test statistics and their least squares 
estimators for the mean and variance with robust test statistics with robust 
estimators (i.e., trimmed means and Winsorized variances (See e.g., Wilcox, 
2012a, b; Wilcox & Keselman, 2003), procedures that have been found to be 
robust to non-normality [e.g., Erceg-Hurn, Wilcox, & Keselman (2013); 
Keselman, Algina, Lix, Wilcox, & Deering (2008a, b)]. 
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It is well known that when using the ordinary least squares regression estimator, outliers 
among the dependent variable can result in relatively poor power. Many robust regression 
estimators have been derived that address this problem, but the bulk of the results assume 
that the dependent variable is continuous. It is demonstrated that when there are tied 
values, several robust regression estimators can perform poorly in terms of controlling 
the Type I error probability, even with a large sample size. The presence of tied values 
does not necessarily mean that they perform poorly, but there is the issue of whether there 
is a robust estimator that performs reasonably well in situations where other estimators do 
not. The main result is that a modification of the Theil–Sen estimator achieves this goal. 
Results on the small-sample efficiency of the modified Theil–Sen estimator are reported 
as well. Data from the Well Elderly 2 Study, which motivated this study, are used to 
illustrate that the modified Theil–Sen estimator can make a practical difference. 
 
Keywords: Tied values, Harrell–Davis estimator, MM–estimator, Coakley–
Hettmansperger estimator, rank-based regression, Theil–Sen estimator, Well Elderly II 
Study, perceived control 
 

Introduction 

It is well known that the ordinary least squares (OLS) regression estimator is 
not robust (e.g., Hampel et al., 1987; Huber & Ronchetti, 2009; Maronna et al. 
2006; Staudte & Sheather, 1990; Wilcox, 2012a, b). One concern is that even a 
single outlier among the values associated with the dependent variable can result 
in relatively poor power. Numerous robust regression estimators have been 
derived that are aimed at dealing with this issue, a fairly comprehensive list of 
which can be found in Wilcox (2012b, Chapter 10). But the bulk of the published 
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results on robust regression estimators assume the dependent variable is 
continuous. 

Motivated by data stemming from the Well II study (Jackson et al. 2009), 
this paper examines the impact of tied values on the probability of a Type I error 
when testing hypotheses via various robust regression estimators. Many of the 
dependent variables in the Well Elderly study were the sum of Likert scales. 
Consequently, with a sample size of 460, tied values were inevitable. Moreover, 
the dependent variables were found to have outliers, suggesting that power might 
be better using a robust estimator. But given the goal of testing the hypothesis of a 
zero slope, it was unclear whether the presence of tied values might impact power 
and the probability of a Type I error.  

Preliminary simulations indicated that indeed there is a practical concern. 
Consider, for example, the Theil (1950) and Sen (1968) estimator. One of the 
dependent variables (CESD) in the Well Elderly study reflected a measure of 
depressive symptoms. It consists of the sum of twenty Likert scales with possible 
scores ranging between 0 and 60. The actual range of scores in the study was 0 to 
56. Using the so-called MAD-median rule (e.g., Wilcox, 2012b), 5.9% of the 
values were flagged as outliers, raising concerns about power despite the 
relatively large sample size. A simulation was run where observations were 
randomly sampled with replacement from the CESD scores and the independent 
variable was taken to be values randomly sampled from a standard normal 
distribution and independent of the CESD scores. The estimated Type I error 
probability, when testing at the .05 level, was .002 based on 2000 replications. A 
similar result was obtained when the dependent variable was a measure of 
perceived control. Now 7.8% of the values are declared outliers. As an additional 
check, the values for the dependent variable were generated from a beta-binomial 
distribution having probability function 
 

 ( ) ( )
( ) ( ) ( )

,
,

1 1, 1 ,
− + +

= =
+ − + +

B m y r y s
P Y y

m B m y y B r s
  (1) 

 
where B is the complete beta function and the sample space consists of the 
integers 0,…,m. For r = s = 1 as well as ( r, s ) = ( 1, 9 ), again, the actual level 
was less than .01. 

Other robust estimators were found to have a similar problem or situations 
were encountered where they could not be computed. The estimators that were 
considered included Yohai's (1987) MM-estimator, the one-step estimator derived 
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by Agostinelli and Markatou (1998), Rousseeuw's (1984) least trimmed squares 
(LTS) estimator, the Coakley and Hettmansperger (1993) M-estimator, the 
Koenker and Bassett (1978) quantile estimator and a rank-based estimator 
stemming from Jaeckel (1972). The MM-estimator and the LTS estimator were 
applied via the R package robustbase, the Agostinelli—Markatou estimator was 
applied with the R package wle, the quantile regression estimator was applied via 
the R package quantreg, the rank-based estimator was applied using the R 
package Rfit, and the Coakley–Hettmansperger and Theil—Sen estimators were 
applied via the R package WRS. A percentile bootstrap method was used to test 
the hypothesis of a zero slope, which allows heteroscedasticity and has been 
found to perform relatively well, in terms of controlling the probability of a Type 
I error, compared to other strategies that have been studied (Wilcox, 2012b). The 
MM-estimator, the Agostinelli—Markatou estimator and the Coakley—
Hettmansperger estimator routinely terminated in certain situations due to some 
computational issue. This is not to suggest that they always performed poorly, this 
is not the case. But when dealing a skewed discrete distribution (a beta-binomial 
distribution with m = 10, r = 9 and s = 1), typically a p-value could not be 
computed. The other estimators had estimated Type I errors well below the 
nominal level. The R package Rfit includes a non-bootstrap test of the hypothesis 
that the slope is zero. Again the actual level was found to be substantially less 
than the nominal level in various situations, and increasing n only made matters 
worse. So this raised the issue of whether any reasonably robust estimator can be 
found that avoids the problems just described. 

  For completeness, when dealing with discrete distributions, an alternative 
approach is to use multinomial logistic regression. This addresses an issue that is 
potentially interesting and useful. But in the Well study, for example, what was 
deemed more relevant was modeling the typical CESD score given a value for 
CAR. That is, a regression estimator that focuses on some conditional measure of 
location, given a value for the independent variable, was needed.  

 The goal in this paper is to suggest a simple modification of the Theil–Sen 
estimator that avoids the problems just indicated. Section 2 reviews the Theil–Sen 
estimator and indicates why it can be highly unsatisfactory. Then the proposed 
modification is described. Section 3 describes the hypothesis testing method that 
is used. Section 4 summarizes simulation estimates of the actual Type I error 
probability when testing at the .05 level and it reports some results on its small-
sample efficiency. Section 5 uses data from Well Elderly II study to illustrate that 
the modified Theil–Sen estimator can make a substantial practical difference. 
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The Theil–Sen Estimator and the Suggested Modification 

When the dependent variable is continuous, the Theil–Sen estimator enjoys good 
theoretical properties and it performs well in simulations in terms of power and 
Type I error probabilities when testing hypotheses about the slope (e.g., Wilcox, 
2012b). Its mean squared error and small-sample efficiency compare well to the 
OLS estimator as well as other robust estimators that have been derived (Dietz, 
1987; Wilcox, 1998). Dietz (1989) established that its asymptotic breakdown 
point is approximately .29. Roughly, about 29% of the points must be changed in 
order to make the estimate of the slope arbitrarily large or small. Other asymptotic 
properties have been studied by Wang (2005) and Peng et al. (2008). Akritas et al. 
(1995) applied it to astronomical data and Fernandes and Leblanc (2005) to 
remote sensing. Although the bulk of the results on the Theil–Sen estimator deal 
with situations where the dependent variable is continuous, an exception is the 
paper by Peng et al. (2008) that includes results when dealing a discontinuous 
error term. They show that when the distribution of the error term is discontinuous, 
the Theil–Sen estimator can be super-efficient. They establish that even in the 
continuous case, the slope estimator may or may not be asymptotically normal. 
Peng et al. also establish the strong consistency and the asymptotic distribution of 
the Theil–Sen estimator for a general error distribution. Currently, a basic 
percentile bootstrap seems best when testing hypotheses about the slope and 
intercept, which has been found to perform well even when the error term is 
heteroscedastic (e.g., Wilcox, 2012b).  

The Theil–Sen estimate of the slope is the usual sample median based on all 
of the slopes associated with any two distinct points. Consequently, practical 
concerns previously outlined are not surprising in light of results when dealing 
with inferential methods based on the sample median (Wilcox, 2012a, section 
4.10.4). Roughly, when there are tied values, the sample median is not 
asymptotically normal. Rather, as sample size increases, the cardinality of its 
sample can decrease, which in turn creates concerns about the more obvious 
methods for testing hypotheses  

Recent results on comparing quantiles (Wilcox et al., 2013) suggest a 
modification that might deal the concerns previously indicated: replace the usual 
sample median with the Harrell and Davis (1982) estimate of the median, which 
uses a weighted average of all the order statistics. 

To describe the computational details, let (Y1 , X1), …, (Yn , Xn) be a random 
sample from some unknown bivariate distribution. Assuming that   ≠j kX X  for any 
<j k , let 
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The Theil–Sen estimate of the slope, 1̂β , is taken to be the usual sample median 
based on the jkb  values. The intercept is typically estimated with 

0 1
ˆ ˆ= −y xM Mβ β  , where yM   is the usual sample median based on 1, ,… nY Y  . This 

will be called the TS estimator henceforth. 
For notational convenience, Let 1, ,…



Z Z  denote the jkb  values, where 
2( ) / 2= − n n . Let U be a random variable having a beta distribution with 

parameters ( )1= +a q  and ( )( )1 1= + −b q , 0 1< <q . Let 
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Let ( ) ( )1 ≤…≤



Z Z   denote the 1, ,…


Z Z   values written in ascending order. The 

Harrell and Davis (1982) estimate of the qth quantile is 
 
 ( )

ˆ =∑q i iW Zθ   

 
Consequently, estimate the slope with 1 .5

ˆ =β θ  . The intercept is estimated with 

the Harrell–Davis estimate of the median based on 1 1 1, ,− … − 

n n nY X Y Xβ β  . This 
will be called the HD estimator. 

So the strategy is to avoid the problem associated with the usual sample 
median by using a quantile estimator that results in a sampling distribution that in 
general does not have tied values. Because the Harrell–Davis estimator uses all of 
the order statistics, the expectation is that in general it accomplishes this goal. For 
the situations described in the introduction, for example, no tied values were 
found among the 5000 estimates of the slope. This, in turn, offers some hope that 
good control over the probability of a Type I error can be achieved via a 
percentile bootstrap method. 

It is noted that alternative quantile estimators have been proposed that are 
also based on a weighted average of all the order statistics. In terms of its standard 
error, Sfakianakis and Verginis (2006) show that in some situations the Harrell–
Davis estimator competes well with alternative estimators that again use a 
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weighted average of all the order statistics, but there are exceptions. Additional 
comparisons of various estimators are reported by Parrish (1990), Sheather and 
Marron (1990), as well as Dielman, Lowry and Pfaffenberger (1994). Perhaps one 
of these alternative estimators offers some practical advantage for the situation at 
hand, but this is not pursued here.  

Hypothesis Testing 

As previously indicated, a percentile bootstrap method has been found to be an 
effective way of testing hypotheses based on a robust regression estimators, 
including situations where the error term is heteroscedastic (e.g., Wilcox, 2012b). 
Also, because it is unclear when the HD estimator is asymptotically normal, using 
a percentile bootstrap method for the situation at hand seems preferable compared 
to using some pivotal test statistic based on some estimate of the standard error. 
(For general theoretical results on the percentile bootstrap method that are 
relevant here, see Liu & Singh, 1997.) 

When testing 
 
 0 1: 0=H β , (2) 
 
the percentile bootstrap begins by resampling with replacement n vectors of 
observations from ( ) ( )1 1 ,, , ,… n nY YX X   yielding say ( ) ( )* * * *

1 1, , , ,… n nY X Y X . Based 

on this bootstrap sample, let *
1
β   be the resulting estimate of the slope. Repeat this 

process B times yielding *
1 ,1,...,

b Bβ . Let A be the proportion of *
1


bβ  values that are 

less than null value, 0, and let C be the number of times *
1


bβ   is equal to the null 
value. Then a (generalized) p-value when testing (2) is 
 
 ˆ2min( ˆ,1 )= −p p p , 
 

where ˆ  .5= +
A Cp
B B

 . Here, B = 599 is used. This choice appears to work well 

with robust estimators in terms of controlling the probability of a Type I error 
(e.g., Wilcox, 2012b). However, based on results in Racine and MacKinnon 
(2007), 𝐵 > 599 might provide improved power. 
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Simulation Results 

Simulations were used to study the small-sample properties of the HD estimator. 
When comparing the small-sample efficiency of estimators, 4000 replications 
were used with n = 20. When estimating the actual probability of a Type I error, 
2000 replications were used with sample sizes 20 and 60. Some additional 
simulations were run with n = 200 as a partial check on the R functions that were 
used to apply the methods. 

To ensure tied values, values for Y were generated from one of four discrete 
distributions. The first two were beta-binomial distributions. Here m = 10 is used 
in which case the possible values for Y are the integers 0, 1, …, 10. The idea is to 
consider a situation where the number of tied values is relatively large. The values 
for r and s were taken to be (r,s) = (1,9), which is a skewed distribution with 
mean 1, and r = s = 3, which is a symmetric distribution with mean 5. The third 
distribution was a discretized version of the normal distribution. More precisely, n 
observations were generated from a standard normal distribution, say 1,… nV V , 
and Yi is taken to be 2Vi  rounded to the nearest integer. (Among the 4,000 
replications, the observed values for Y ranged between -9 and 10.) This process 
for generating observations will be labeled SN. For the final distribution, 
observations were generated as done in SN but with a standard normal replace by 
a contaminated normal having distribution 
 

 ( ) ( ).9Φ .1Φ
10
 = +  
 

yH y y , 

 
where ( )Φ y  is a is a standard normal distribution. The contaminated normal has 
mean zero and variance 10.9. It is heavy-tailed, roughly meaning that it tends to 
generate more outliers than the normal distribution. This process will be labeled 
CN. 

Estimated Type I error probabilities are shown in Table 1 for n = 20 and 60 
when testing at the α = .05 level. In Table 1, B(r,s,m) indicates that Y has a beta- 
binomial distribution. The column headed by TS shows the results when using the 
Theil–Sen estimator. Notice that the estimates are substantially less than the 
nominal level when n = 20. Moreover, the estimated level actually decreases 
when n is increased to 60. In contrast, when using the HD estimator, the estimated 
level is fairly close to the nominal level among all of the situations considered, the 
estimates ranging between .044 and .057. 
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Negative implications about power seem evident when using TS. As a brief 
illustration, suppose that data are generated from the model V = .25X + ε, where X 
and ε are independent and both have a standard normal distribution. Let Y = 2V, 
rounded to the nearest integer. With n = 60, power based on TS was estimated to 
be .073. Using instead HD, power was estimated to be .40. 
 
 
Table 1. Estimated Type I error probabilities, α =.05 
 

Distribution n TS HD 

B(3,3,10) 20 0.019 0.044 

B(3,3,10) 60 0.002 0.047 

B(1,9,10) 20 0.000 0.045 

B(1,9,10) 60 0.000 0.045 

SN 20 0.011 0.044 

SN 60 0.001 0.050 

CN 20 0.012 0.057 

CN 60 0.004 0.048 
 
 
Table 2. Estimated Efficiency, n = 20 
 

Distribution TS TD 

SN 0.809 1.090 

B(3,3,10) 0.733 0.997 

B(1,9,10) 0.689 2.610 

CN 2.423 2.487 
 
 

Of course, when Y has a discrete the least squares estimator
could be used. To gain some insight into the relative merits of the HD estimator, 
its small-sample efficiency was compared to the least squares estimator and the 
TS estimator for the same situations in Table 1. Let 2

0V  be the estimated squared 
standard error of least squares estimate of the slope based on 4000 replications. 
Let 2

1V  and 2
2V  be the estimated squared standard errors for TS and HD, 

respectively. Then the efficiency associated with TS and HD was estimated with 
0 1/V V  and 0 2/V V , respectively, the ratio of the estimated standard errors. Table 2 

summarizes the results. As can be seen, the HD estimator competes very well 
with the least squares estimator. Moreover, there is no indication that TS ever 
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offers much of an advantage over HD, but HD does offer a distinct advantage 
over TS in some situations. 

A related issue is the efficiency of the HD estimator when dealing with a 
continuous error term, including situations where there is heteroscedasticity. To 
address this issue, additional simulations were run by generating data from the 
model ( )Y Xλ ε=  where ε  is some random variable having median zero and the 

function ( )Xλ   is used to model heteroscedasticity. The error term was taken to 
have one of four distributions: normal, symmetric with heavy tails, asymmetric 
with light tails and asymmetric with heavy tails. More precisely, the error term 
was taken to have a g-and-h distribution (Hoaglin, 1985) that contains the 
standard normal distribution as a special case. If Z has a standard normal 
distribution, then 
 

 ( )2exp( )-1exp , if  0= >
gZW hZ g
g

  

and 

 
2

exp , if 0
2

 
= = 

 

ZW Z h g   

 
has a g-and-h distribution where g and h are parameters that determine the first 
four moments. As is evident, g = h = 0 corresponds to a standard normal 
distribution. Table 3 indicates the skewness ( )1κ  and kurtosis ( )2κ  of the four 
distributions that were used. 
 
 
Table 3. Some properties of the g-and-h distribution 
 

g h κ1 κ2 

0.00 0.00 0.00 3.00 

0.00 0.20 0.00 21.46 

0.20 0.00 0.61 3.68 

0.20 0.20 2.81 155.98 
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Three choices for λ  were used: ( ) 1=Xλ  (homoscedasticity), ( ) 1= +X Xλ  

and ( ) ( )1/ 1= +X Xλ . For convenience, these three choices are denoted by 

variance patterns (VP) 1, 2, and 3.  
Table 4 reports the estimated efficiency of TS and HD when X has a normal 

distribution. To provide a broader perspective, included are the estimated 
efficiencies of Yohai's (1987) MM-estimator and the least trimmed squares (LTS) 
estimator. Yohai's estimator was chosen because it has excellent theoretical 
properties. It has the highest possible breakdown point, .5, and it plays a central 
role in the robust methods discussed by Heritier et al. (2009). Both the MM-
estimator and the LTS estimator were applied via the R package robustbase. As 
can be seen, for the continuous case, there is little separating the TS, HD and MM 
estimators with TS and MM providing a slight advantage over HD. 
 
 
Table 4. Estimated efficiencies, the continuous case, X normal 
 

g h VP TS HD MM LTS 

0.000 0.000 1.000 0.861 0.930 0.967 0.708 

  2.000 0.994 0.991 1.019 0.769 

    0.300 0.997 0.966 0.999 0.776 

0.000 0.200 1.000 1.234 1.157 1.199 0.971 

  2.000 1.405 1.230 1.267 1.070 

    3.000 1.389 1.216 1.276 1.041 

0.200 0.000 1.000 0.897 1.146 0.960 0.989 

  2.000 1.019 1.009 1.051 0.815 

    3.000 0.978 0.999 1.026 0.793 

0.200 0.200 1.000 1.314 1.200 1.259 1.022 

  2.000 1.615 1.440 1.475 1.197 

    3.000 1.443 1.271 1.337 1.160 
 
 
There are situations where the differences in efficiency are more striking than 
those reported in Table 4. Also, no single estimator dominates in terms of 
efficiency: situations can be constructed where each estimator performs better 
than the others considered here. Suppose, for example, that X has a contaminated 
normal distribution and Y has a normal distribution. From basic principles, this 
situation favors OLS because as the distribution of X moves toward a heavy-tailed 
distribution, the standard error of the OLS estimator decreases. The resulting 
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efficiencies were estimated to be 0.514, 0.798, 0.844 and 0.533 for TS, HD, MM 
and LTS, respectively, with TS and LTS being the least satisfactory. Removing 
leverage points (outliers among the independent variable) using the MAD-median 
rule (e.g., Wilcox, 2012a, section 3.13.4), the estimates are 1.336, 1.727, 1.613 
and 2.1213. So now LTS performs best in contrast to all of the other situations 
previously reported. 

There is the issue of whether the MM-estimator has good efficiency for the 
discrete case. For the beta-binomial distribution with r = s = 3, the efficiency of 
the HD estimator is a bit better, but for the other discrete distributions considered 
here, the efficiency of the MM-estimator could not be estimated because the R 
function used to compute the MM-estimator routinely terminated with an error. 
For the same reason, the Type I error probability based on the hypothesis testing 
method used by the R package robustbase could not be studied. Switching to the 
bootstrap method used here only makes matters worse: bootstrap samples result in 
situations where the MM-estimator cannot be computed.  

An Illustration 

Using data from the Well Elderly II study (Jackson et al., 2009), it is illustrated 
that the choice between the TS and HD estimators can make a practical difference. 
A general goal in the Well Elderly II study was to assess the efficacy of an 
intervention strategy aimed at improving the physical and emotional health of 
older adults. A portion of the study was aimed at understanding the association 
between the cortisol awakening response (CAR), which is defined as the change 
in cortisol concentration that occurs during the first hour after waking from sleep, 
and a measure of Perceived Control (PC), which is the sum of 8 four-point Likert 
scales. So the possible PC scores range between 8 and 32. Higher PC scores 
reflect greater perceived control. (For a detailed study of this measure of 
perceived control, see Eizenman et al., 1997.) CAR is taken to be the cortisol 
level upon awakening minus the level of cortisol 30-60 minutes after awakening.) 
Approximately 8% of the PC scores are flagged as outliers using the MAD-
median rule. Extant studies (e.g., Clow et al., 2004; Chida & Steptoe, 2009) 
indicate that various forms of stress are associated with the CAR. After 
intervention, the TS estimate of the slope is -0.72 with a p-value of .34. Using 
instead HD, the estimate of the slope is -0.73 with a p-value less than .001. 
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Concluding Remarks 

In summary, when dealing with tied values among the dependent variable, several 
robust estimators can result in poor control over the Type I error probability and 
relatively low power, so they should be used with caution. Moreover, the 
performance of the Theil–Sen estimator can actually deteriorate as the sample size 
increases. One way of dealing with this problem is to use the HD estimator, which 
is simple modification of the Theil–Sen estimator. In some situations the HD 
estimator has better efficiency than other robust estimators, but situations are 
encountered where the reverse is true. The very presence of tied values does not 
necessarily mean that robust estimators other than HD will perform poorly. The 
only point is that when dealing with tied values, the HD estimator can be 
computed in situations where other robust estimators cannot and it can provide a 
practical advantage in terms of both Type I error probabilities and power. 

Various suggestions have been made about how to extend the Theil–Sen 
estimator to more than one independent variable (Wilcox, 2012b). One approach 
is the back-fitting algorithm, which is readily used in conjunction with the HD 
estimator. Here, the details are not of direct relevance so for brevity they are not 
provided. An R function, tshdreg, has been added to the R package WRS that 
performs the calculations. 
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Multivariate Analysis of Variance (MANOVA) is a popular statistical tool in the social 
sciences, allowing for the comparison of mean vectors across groups. MANOVA rests on 
three primary assumptions regarding the population: (a) multivariate normality, (b) 
equality of group population covariance matrices and (c) independence of errors. When 
these assumptions are violated, MANOVA does not perform well with respect to Type I 
error and power. There are several alternative test statistics that can be considered 
including robust statistics and the use of the structural equation modeling (SEM) 
framework. This simulation study focused on comparing the performance of the P test 
statistics with fifteen other test statistics across seven manipulated factors. These statistics 
were evaluated across 12,076 different conditions in terms of Type I error and power. 
Results suggest that when assumptions were met, the standard MANOVA test functioned 
well. However, when assumptions were violated, it performed poorly, whereas several of 
the alternatives performed better. Discussion focuses on advice for selecting alternatives 
in practice. This study’s focus on all these in one simulation and the 3 group case should 
be helpful to the practitioner making methodological sections. 
 
Keywords: MANOVA, robust statistics, structural equation modeling, 
nonparametric, mean comparisons, Monte Carlo simulation 
 

Introduction 

Much research in the social sciences involves the comparison of means for two or 
more groups across multiple related outcome measures. For example, studies 
examining the impact of interventions on multiple measures of academic, social, 
communication, and emotional development are common in education and 
psychology. Parenting our Children to Excellence (PACE) (Dumas et al., 1999) is 
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such an intervention project that has been tested through randomized control trials 
evaluating an 8-week program that teaches positive parenting techniques aimed at 
increasing parenting skills and child positive behavior. In programs such as this, 
there are typically multiple correlated outcome variables (e.g., child disruptive 
behaviors, child adjustment, parenting behaviors, parenting competence), which 
can have high-stakes implications (e.g., resource allocation, curriculum 
development, policy decisions). Therefore, given that high stakes decisions may 
be based upon the results of statistical analyses, precise modeling of data is 
paramount. 

This type of research design in intervention work may revolve around 
hypotheses regarding group differences on a set of variables, rather than on 
individual variables. Multivariate hypotheses lead a researcher to a multivariate 
analysis, as it may be most appropriate for assessing group differences on the set 
of variables (Huberty & Olejnik, 2006). Specifically, multivariate analysis of 
variance (MANOVA) is well-suited for testing hypotheses about differences 
between groups (Hair, Anderson, Tatham, & Black, 1987). MANOVA can be 
viewed as a direct extension of the univariate general linear model that is most 
appropriate for examining differences between groups on several variables 
simultaneously (Hair et al., 1987; Olejnik, 2010). As Hancock, Lawrence and 
Nevitt (2001) pointed out, “MANOVA evaluates group differences on a linear 
composite of observed variables constructed so as to maximally differentiate the 
groups in multivariate space" (p. 535).  

Situations are described here in which MANOVA may be the optimal 
analysis (particularly when compared with univariate analysis of variance 
(ANOVA)). Following this discussion, particular data structures that may cause 
problems for MANOVA will be described, particularly when key assumptions are 
violated, and then several approaches for dealing with the assumption violations. 
A simulation study comparing these methods across a variety of conditions is 
reported, and conclude the discussion with recommendations for researchers using 
MANOVA in cases where the assumptions are not met.  

Despite the fact that MANOVA may be the optimal analysis for a 
multivariate problem due to its relative ease of use and interpretation, researchers 
may often employ multiple independent ANOVA models to determine if there are 
significant differences among group means on each of several outcome measures 
of interest. In the previous example with PACE, five separate ANOVAs could be 
conducted to determine if the treatment and control groups differed on the related 
outcomes. Although this approach may be familiar to many researchers, the 
simplicity of the univariate ANOVA could also lead to unwarranted conclusions 
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due to inflation of the family-wise Type I error rate and a potential decrease in 
power when the response is actually multivariate in nature. In fact, McCarroll, 
Crays, & Dunlap (1992) provided evidence that Type I error rates are inflated 
when ANOVA is used in a sequential manner. For example, the family-wise Type 
I error rate for testing the 5 outcomes in the PACE data, assuming alpha = 0.05, 
would be 0.23. It is acknowledged that by adjusting critical values for the 
univariate situation, the Type I error rate can be controlled (Ramsey, 1982). In 
fact, Ramsey illustrated that the Bonferroni procedures showed greater robustness 
in many cases compared to methods based on Hotelling’s T2 statistic, which 
requires more and stronger assumptions (e.g., multivariate normality) compared to 
Bonferroni procedures.  

Often the research question of interest concerns differences on a set of 
related or correlated outcome variables, not each variable separately. That is, the 
researcher wants to examine questions about how groups differ along a 
combination of correlated dimensions or variables, not one dimension or variable 
at a time. Univariate procedures cannot provide insight on the former, as each 
variable is examined in isolation. As a result of this inability to consider the entire 
multivariate response space, the practice of following up a significant MANOVA 
result with individual ANOVAs does not provide insight to questions regarding 
multivariate differences (e.g., Huberty & Morris, 1989). Harris (2001) suggested 
that the use of MANOVA for between-group comparisons is more appropriate in 
the context of multiple dependent variables compared to the use of many 
individual univariate tests.  

There is recognition that MANOVA may not be the best choice in all cases 
in which multiple outcome variables are of interest. The choice of the analytic 
procedure does rest on several factors including the data, research design, and 
research questions. For example, if the outcome variables are uncorrelated or have 
high positive correlations, then MANOVA may not be as effective as conducting 
separate univariate ANOVAs (Tabachnick & Fidell, 2007). In contrast, 
MANOVA can have greater power compared to the univariate methods when 
there is a moderate to strong negative correlation between the dependent variables 
(Tabachnick & Fidell, 2007). Additionally, power can depend on the relationship 
between dependent variables and the effect size (Cole, Maxwell, Arvey, & Salas, 
1994). This study focuses on situations for which MANOVA may be most 
appropriate, based on recommendations from the works cited above, and 
considers the intercorrelations and effect sizes and how they relate to power of 
several test statistics as well as violations of assumptions, in order to highlight the 
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performance of these various test statistics associated with MANOVA, under 
different conditions.  

To summarize the discussion heretofore, the decision regarding whether to 
select a univariate or multivariate comparison of between groups means must be 
made based on both statistical and substantive considerations. If the research 
questions are essentially multivariate in nature (e.g. Do the groups differ on the 
set of dependent variables?) then MANOVA is preferred to ANOVA (Stevens, 
2001). In addition, when the dependent variables are at least moderately 
correlated, MANOVA will generally yield greater power compared to the 
univariate alternatives. Conversely, if the research questions are focused on the 
individual variables (e.g. Do the groups differ on Y1? Do the groups differ on 
Y2?), and/or if the dependent variables have little or no correlation or very strong 
positive correlations among them, then use of individual ANOVAs rather than 
MANOVA may be most appropriate (Stevens, 2001). In conclusion, the 
advantages of MANOVA, beyond Type I error control, can include (a) improving 
power for identifying group differences, (b) observing differences possibly missed 
in single ANOVAs (Huberty & Morris, 1989; Tabachnick & Fidell, 2007), and (c) 
understanding the outcome variables as a system rather than isolated 
measurements (Huberty & Morris, 1989). This study was conducted to examine 
performance of the several MANOVA test statistics in the case where 
multivariate questions are of primary interest and the multivariate procedure 
would be preferred. 

Standard parametric multivariate means comparisons 
In evaluating multivariate mean differences with MANOVA in the 2 group case, 
researchers test the null hypothesis of no group mean vector differences using 
Hotelling’s T2 statistic. Please see Johnson & Wichern (2002) for additional 
information on these multivariate test statistics. Hotelling’s T2 statistic which 
takes the form: 

 ( ) ( )
1

2
1 2 1 2

1 2

1 1T Y Y S Y Y
n n

−
  ′= − + −  

  
  (1) 

Where 
 

1 =Y  Mean vector for group 1 

2 =Y  Mean vector for group 2 

1n =  Sample size for group 1 
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2n =  Sample size for group 2 

=S  Sample pooled covariance matrix; ( ) ( )1 1 2 2

1 2

1 1
2

n S n S
n n

− + −
+ −

  

1S =  Covariance matrix for group 1 

2S =  Covariance matrix fro group 2 
In this equation, the transpose ( ' ) operator is used to create sums of squared 

differences, in the context of matrices, and the inverse (-1) is used for matrix 
division. Hotelling’s 𝑇2 has been extended to accommodate the case of more than 
two groups with four different F approximation tests: Pillai’s trace, (P) Wilk’s 
lambda (Λ), Hotelling-Lawley Trace (H) and Roy’s Greatest Root (R). These test 
statistics can be expressed as follows: 
 

where
within group sum of squares and cross products matrix
between group sum of squares and cross products matrix

W
W B

W
B

  Λ =
+  

=
=

  (2) 

1( )P tr B B W − = +     (3) 
1H tr BW − =      (4) 

1maximum eigenvalue of ( )R W B W −= +   (5) 
W = Determinant of matrix ,W  where the determinant can be viewed as 
 generalized or total variance of that matrix 

Prior research regarding standard MANOVA test statistic 
performance 
Accurate use and interpretation of these multivariate test statistics is dependent 
upon the assumptions of independent errors, multivariate normality, and 
homogeneity of group covariance matrices. When these assumptions are met, the 
tests perform similarly well with respect to controlling Type I error rates and 
maintaining appropriate statistical power, particularly in studies with relatively 
large sample sizes (e.g., Blair, Higgins, Karniski & Kromrey, 1994; Hopkins & 
Clay, 1963; Johnson & Wichern, 2002; Ramsey, 1982; Stevens, 2001). Several 
works cited in this review have informed multivariate researchers on how these 
statistics perform under various conditions. However, this work has primarily 
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been focused on the 2 group case. In addition, some of this work, particularly 
Ramsey, treated the data in a univariate fashion, rather than testing multivariate 
hypotheses about group means on several dependent variables simultaneously. 
Though this may be appropriate in some cases, many times where multivariate 
data are present, the hypothesis of interest concerns group differences on the set 
of means rather than on the individual means, in which case such univariate 
treatment of the data may be inappropriate (Huberty & Olejnik, 2006).  

The work presented here focuses on the situation where researchers are 
interested in conducting multivariate means testing (rather than univariate), and is 
unique as (a) many test statistics are compared in a single simulation study, 
including a latent variable approach, and (b) the 3 group case is considered to 
ascertain whether the results from the 2 group case can generalize to the 3 group 
case, certainly a more complex but also perhaps more realistic condition. Many of 
these methods have been examined in simulation studies. However, the methods 
included here have not all been examined in a single study. Therefore, though it 
has been possible to describe how two or three of these statistics perform relative 
to one another, this study allows for the comparison of all of these methods under 
the same conditions.  

Violations in assumptions of multivariate normality and homogeneity of 
covariance are often characteristic of social science research, and standard 
parametric MANOVA has limitations under such conditions (Blair et al., 1994; 
Everitt, 1979; Finch, 2005). Investigations of Type I error rates and power have 
suggested that these multivariate tests may not perform well when there are 
violations in assumptions of multivariate normality and equality of covariance 
matrices (e.g., Hakstian, Roed & Lind, 1979; Hopkins & Clay, 1963; Olson, 
1974; Lee, 1971; Pillai & Jayachandran, 1967). Perhaps most notable is the 
performance of Hotelling T2 in studies of unequal sample sizes when the 
assumptions of multivariate normality and particularly equality of covariance 
matrices has not been met. In such cases, the T2 demonstrated diminished power 
as the degree of skewness of the response variables increased (Everitt, 1979). 
Furthermore, when the groups’ covariance matrices were not homogeneous, the 
Type I error rate of the T2 was inflated when the groups were not of equal size and 
the smaller group had the larger variances (Hakstian, Roed & Lind, 1979; 
Hopkins & Clay, 1963).  

These results for T2 are similar to those reported in studies of the 
performance of Pillai’s Trace, Wilk’s Lambda, Hotelling-Lawley’s Trace and 
Roy’s Greatest Root when there are violations in the assumption of equality of 
covariance matrices (Finch, 2005; Olson, 1974; Sheehan-Holt, 1998). In these 
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studies, when the smaller group had the larger variance the Type I error rates were 
inflated, whereas when the larger group had the larger elemental covariance 
elements, there was a reduction in power. Non-normality characterized by 
relatively severe skewness also resulted in a reduction of power (Everitt, 1979; 
Finch, 2005). Furthermore, when the assumptions were violated, Pillai’s Trace 
was relatively more robust in terms of Type I error rate control compared to 
Wilk’s Lambda and Hotelling-Lawley’s Trace but exhibited somewhat lower 
power compared to these other tests. Not one of the common MANOVA statistics 
can be clearly identified as the single best test for use in all situations (Lee, 1971; 
Pillai & Jayachandran, 1967). The comparative effectiveness of these methods 
changed relative to specific features of the data. However, taken across a broad 
sweep of real data conditions, Λ, P and H all generally perform similarly, 
particularly when standard assumptions are met (Johnson & Wichern, 2002). In 
summary, the standard test statistics used with MANOVA are deleteriously 
affected by violations of the assumptions of normality and homogeneity of 
covariance matrices, particularly when samples are of unequal sizes. 

Alternative test statistics to standard MANOVA when assumptions 
are violated 
In response to these problems associated with assumption violations, a number of 
alternative test statistics have been investigated, particularly for use in the absence 
of multivariate normality and when group covariance matrices are not equal. The 
formulas for many of the basic versions of these statistics appear in Appendix A 
for the interested reader. Table 1 provides summary information across the 
different statistical tests to assist with organizing the information.  

Brown and Forsythe (1974), James (1954), Johansen (1980), Yao (1965) 
and Nel and van der Merwe (1986) each outlined alternatives to the standard 
multivariate test statistic in the presence of unequal covariance matrices. 
Extensions of Hotelling’s T2, these parametric multivariate alternatives examine 
multiple outcomes between two groups, and have been extended for use with 
more than two groups. In the two groups case, the James ( JAF ), Johansen ( JNF ), 
Nel and van der Merwe ( NVF ), and Yao ( YF ) statistics are based on the 
multivariate analog of the univariate t-test equation for unequal variances. 

Tunequal2 = �Y�1 -Y�2�' �S1
n1

+ S2
n2
�

-1
�Y�1 -Y�2�As with the univariate version of this 

statistic, the group variances (covariance matrices in the multivariate context) are  
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Table 1. General Conclusions based on the Literature of Test Statistics Examined for 
MANOVA Under Various Assumptions Conditions 
 

  Assumptions 
Statistic Met   Not Met 
    Standard (P, 
H, L) 

Type I error rate controlled; 
Optimal power 

  Inflated Type I error for unequal covariance 
matrices and reduction of power for severely 
skewed data 

    FJA Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices; low 
power for small ratios of sample size to number 
of dependent variables. Not robust to non-
normal data. 

    FJN, FNV Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices; low 
power for small ratios of sample size to number 
of dependent variables. Not robust to non-
normal data. 

    FY Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices; low 
power for small ratios of sample size to number 
of dependent variables. Not robust to non-
normal data. 

    FBF Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices; low 
power for small ratios of sample size to number 
of dependent variables. Not robust to non-
normal data. 

    FK Comparable results to the 
standard test statistic. 

  Robust to unequal covariance matrices but not 
to non-normal data. 

    TFJ, TFJN Comparable results to the 
standard test statistic. 

  For skewed and heavy tailed data, displayed 
higher power and better Type I error control than 
did FJN. 

    TFNV, TFY, 
TFBF, TFK 

Comparable results to the 
standard test statistic. 

  For skewed and heavy tailed data, displayed 
higher power than did FK. 

    Rank based 
test 

Comparable Type I error rates to 
standard test but lower power. 

  For unequal covariance matrices, displayed 
better Type I error control though rates were still 
inflated. 

    SEM Comparable Type I error and 
power rates to standard test for 
samples of 100 or greater. 

 Better Type I error control and higher power 
rates than standard tests for unequal covariance 
matrices 

        
 

Note: T2 = Hotelling’s (1931); BF = Brown&Forsythe (1974), J = James (1954); JN = Johansen (1980),K= 
Kim(1992);NV= Nel & van der Merwe (1986),Y=Yao (1965), SEM = Structural Equation Modeling (Raykov, 
2001), T with test = trimmed. 
 
not pooled. The difference between JAF  and JNF  is in the way that they determine 
the critical value for assessing statistical significance. The JAF  statistics is simply 

2
unequalT  (See Appendix A) with the critical value based on the 2χ  distribution 

adjusted by a complex term involving the traces of the covariance matrices for the 
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two groups. In contrast, the value for JNF  involves the conversion of 2
unequalT  to an 

F value, as seen in Appendix A.  
The NVF  test statistic also is a transformed version of 2

unequalT  (see Appendix 
A) and compared to a critical F value. Krishnamoorthy and Xia (2006) presented 
a modified version of the degrees of freedom for NVF  labeling their statistic the 
Modified Nel and van der Merwe test ( MNVF ). The test statistic remains the same, 
but the resulting value is compared to a critical F value with p, KXv  degrees of 
freedom, and the resulting test is affine invariant (results of the test are invariant 
under a linear transformation of the data). For a more thorough treatment of the 
calculation of KXv  the interested reader is encouraged to read Krishnamoorthy and 

Xia. Finally, among this set of statistics based upon the 2
unequalT  value is Yao’s YF , 

which incorporates a different weighting scheme involving the determinant of the 
ratio of group covariance matrices (See Appendix A). Given that these previously 
described methods share a common root, namely 2

unequalT , they are discussed as a 
set of test statistics (i.e., Family 1). An examination of Appendix A reveals that 
although these statistics share a common root, they vary in terms of how they 
weight the groups’ covariance matrices, and how degrees of freedom are 
calculated. 

Of the alternatives to the standard T2 described here, the Brown and 
Forsythe ( BFF ) and the Kim ( KF ) tests are not based on the 2

unequalT  statistic. The 

centerpiece of BFF  is BFT , which differs from the 2
unequalT  statistic in terms of how 

the group covariance matrices are weighted, as can be seen in Appendix A. 
Essentially, where 2

unequalT  weights them by the inverse of sample size, BFT  uses 
the proportion of the total sample not in a specific group as the weight. Otherwise, 

BFT  is generally similar to 2
unequalT . The BFF  statistic is then compared to the 

critical value 1, 2vBF vBFF . Kim’s ( KF ) statistic also is based on an alternative to 
2

unequalT  and is compared with the ,m vkF  critical value. The calculation for KF  can 

be found in Appendix A. In general, it differs from both 2
unequalT  and BFT  in the 

way in which the group covariance matrices are weighted and combined. A 
review of Appendix A demonstrates that KF  relies on a more complex weighting 
system to combine these covariance matrices, using as a weight the determinant 
of their ratio (in the simplest two groups case) raised to the 1/(2*number of 
predictor variables) power. To simplify further discussion, and given their 
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similarity in terms of calculation, as mentioned previously JNF , NVF , YF , and JAF  
have been organized into one family (Family 1) of statistics, and BFF  and KF  
constitute a another family of test statistics (Family 2). 

Prior research regarding alternative MANOVA test statistic 
performance 
The test statistics in Families 1 and 2 have demonstrated relative robustness to the 
presence of unequal group covariance matrices (see Algina, Oshima, & Tang, 
1991), which is reasonable given that their focus is on accounting for this 
condition by not relying on the pooled covariance matrix, S. Furthermore, the 
performance of these alternatives has proven to be superior to that of the standard 
Hotelling T2 when data are multivariate normal but covariance matrices are 
unequal, both in terms of Type I error rates and power (Holloway & Dunn, 1967). 
However, these statistics are sensitive to non-normality in the form of moderate to 
severe skewness (Algina et al., 1991). Coombs, Algina, and Oltman (1996) 
investigated the Type I error rates of five multivariate generalizations of the 
Brown-Forsythe and Nel-van der Merwe tests and found that both BFF  and NVF  
were able to maintain the nominal Type I error rate when heterogeneous group 
covariance matrices were present, but proved to be conservative when the ratio of 
total sample size to number of dependent variables was small. Christensen and 

Rencher (1997) observed increases in Type I error rates of JAF  and YF , 
particularly when the ratio of sample size to number of outcome variables was 

small. These authors recommended the use of KF  for cases in which the group 
covariance matrices were unequal. However, they acknowledged that this statistic 
was very conservative for cases in which the sample size to outcomes ratio was 

between 2 and 3. In a similar fashion, the BFF  and NVF  tests were shown to be 
conservative when the assumption of equal covariance matrices was violated and 
the sample size to outcome variables ratio was small (Coombs, Algina, and 
Olman, 1996). Additionally, Krishnamoorthy and Xia (2006) reported that MNVF  
was able to maintain the nominal Type I error rate when group covariance 
matrices were unequal, as long as the response variables were distributed as 
multivariate normal. When the latter condition was not met, their test will likely 
not be appropriate as it relies on multivariate normality. Yanagihara and Yuan 
(2005) also examined many different versions of modified tests (e.g., F statistic, 
Bartlett correction, modified Bartlett correction) showing that the modified 
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Bartlett was comparable to the F statistic in many cases. This summary of work 
represents many studies that have examined various test statistics in the 
MANOVA framework to find a balance between Type I error and statistical 
power assist in the obtainment of an accurate statistical conclusion.  

When the assumption of multivariate normality is violated these parametric 
MANOVA alternatives exhibit inflated Type I error rates, particularly with small 
sample sizes (Algina et al, 1991; Fouladi & Yockey, 2002; Wilcox, 1995). Thus, 
it appears that these alternative statistics are preferable to the standard 
multivariate test statistics when there are unequal group covariance matrices and 
the data are normally distributed. However, collectively they do not appear to be 
robust to violations of multivariate normality, yielding inflated Type I error rates.  

Robust alternative test statistics for MANOVA 
An alternative approach to the multivariate test statistics when there are violations 
of the normality assumption involves the use of trimmed means and Winsorized 
variance (Lix & Keselman, 2004). Statistical problems associated with 
nonnormality (e.g., Type I error inflation) in the univariate case can be 
ameliorated by using trimmed means and Winsorized variances in the 
construction of test statistics (e.g., Lix & Keselman, 2004; Keselman, Kowalchuk, 
& Lix, 1998; Wilcox, 1995). The use of the trimmed mean involves the removal 
of the most extreme data points of the response variable in each tail of the 
observed data distribution. The goal of such a statistic is to avoid the biasing of 
the mean estimate as a function of one or more outliers in the sample data. Wilcox 
(1995) recommended censoring 20% of the extreme observations at each tail of 
the distribution.  

The appropriate measure of variation to accompany the trimmed mean is the 
Winsorized variance (Yuen, 1974). This estimate of variance is based on the 
Winsorized mean, which is calculated by replacing some portion (e.g., top and 
bottom 20%) of the most extreme scores in the sample data distribution with the 
next most extreme scores. The calculation for the Winsorized variance for 
variable p can be seen in Appendix A. As an example of trimming, consider the 
following set of 10 height measurements in inches: 58, 60, 69, 70, 70, 71, 71, 72, 
73, 74. If the recommended 20% trimming were used, a total of 10 x 0.2, or 2, 
scores are removed. Thus the lower bound value ( LY ) is 60 and the upper bound 
value ( HY ) is 73, meaning that 58, 60, 73 and 74 are removed from each tail of the 
distribution, and thereby left out of the calculation of the trimmed mean, which in 
this case is 70.5. In contrast, the mean based on all 10 observations is 68.8. This is 
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how trimming was conducted for this study with SAS macros written by Lix and 
Keselman (2004). In other words, trimming and Winsorizing were conducted 
along each dimension individually, as described by Lix and Keselman. The 
Winsorized mean, which will be used in the calculation of the Winsorized 
variance, is based on 10 data points, with the lowest two values (58 and 60) 
replaced by 69, and the highest two values (73 and 74) replaced by 72. The value 
of wpY =  70.5, a 1.7 increase in the value used as the mean. 

Lix and Keselman (2004) demonstrated how Winsorized variances and 
covariances can be applied to multivariate statistics in order to create a 
Winsorized covariance matrix. Note that the null hypothesis being tested when 
trimmed means are used involves only the part of the population of interest for 
which the trimmed mean is appropriate. Thus, the null hypothesis applies to 
population trimmed means. Given the trimmed means and Winsorized variances 
for a set of outcome variables, robust alternatives to the test statistics described 
above can be computed. Specifically, Lix and Keselman (2004) showed that both 
T2 and 2

unequalT  can be calculated using the trimmed means and Winsorized 
covariance matrices. Likewise, the version of Hotelling’s T2 that does not use the 
pooled covariance matrix is available. See Appendix A. The robust test statistics 
will be organized into families using the same logic as described above for their 
non-trimmed versions; i.e. the trimmed versions reside under their home family (1 
or 2). 

Prior research regarding robust MANOVA test statistic performance 
A number of the MANOVA test statistic alternatives described above based on 
trimmed means and Winsorized variances have been empirically compared 
(Wilcox, 1995). Wilcox focused on the case with 4 response variables, with a 
variety of data distributions, correlations among the response variables and 
sample sizes. Results showed that when the data were normally distributed, the 
standard and robust (trimmed) statistics exhibited comparable Type I error rates. 
However, for non-normal distributions (whether skewed or heavy tailed), the 
trimmed statistics TKF  and TJNF  were found to be preferable to their non-trimmed 
counterparts KF  and JNF  in terms of power, and overall, TJNF  demonstrated 
superior control over the Type I error rate for most of the simulated conditions. 
Beyond Wilcox’s (1995) work, there is little empirical work comparing the 
performance of the robust alternatives to the other alternatives for multivariate 
mean comparisons when the group covariance matrices are not equal (Lix & 
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Keselman, 2004). It would appear, therefore, that an extensive evaluation of these 
methods under a variety of data conditions is warranted. Such work would inform 
the practitioner of which option may be optimal for use given data conditions. It 
also is noted that prior comparisons of these methods have been constrained to the 
two group case. 

Rank based nonparametric test 
Another alternative approach to dealing with violations of the standard 
MANOVA assumptions comes in the form of a rank based nonparametric test. A 
version of this test was first described by Puri and Sen (1971), and then further 
developed (Erdfelder, 1981; Katz & McSweeney, 1980). The statistic uses the 
ranks of the raw data as the dependent variables. Erdfelder’s extension of this 
work involves the conversion of the Pillai’s trace value obtained from conducting 
MANOVA using the ranks into the chi-square statistic 2 ( 1)n Pχ = −  (6), where P 
is Pillai’s trace and n is the total sample size. The resulting value is compared 
with the 2χ  distribution with ( 1)k p −  degrees of freedom, where k is the number 
of groups for the independent variable and p is the number of response variables 
as described above. Thus, to compute this rank based nonparametric test, the 
researcher would first rank each of the dependent variables, and then conduct the 
MANOVA with the software package of choice, using the ranked dependent 
variables. The resulting value of P for the independent variable would then be 
converted using the equation described above. The rank based test represents a 
third family (Family 3) of statistics considered in this study. 

Prior research regarding rank based MANOVA test statistic 
performance 
There has been some empirical evaluation of the performance of the rank based 
approach, particularly as it compares to the common parametric statistics when 
the assumptions of normality and/or homogeneity of covariance matrices were 
violated. Ittenbach, Chayer, Bruininks, Thurlow, and Beirne-Smit (1993), for 
example, compared the rank based test with the standard MANOVA test statistics 
and reported somewhat higher power rates for the rank approach. However, 
Ittenbach and colleagues employed a real dataset for which the population 
distribution and equality status of the group covariance matrices was not known. 
Finch (2005) conducted a Monte Carlo simulation study comparing the rank 
based test statistic with Pillai’s trace under a variety of conditions (e.g., normal 
and non-normal distributions, equal and unequal covariance matrices). When both 
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assumptions were met, Pillai’s Trace and the nonparametric rank test each 
maintained Type I error rates near the nominal level, but the rank test exhibited 
lower power. When the assumption of normality was violated, both statistics 
maintained the nominal Type I error rate of 0.05, regardless of the type of 
distribution (double exponential, skewed normal, uniform), and had comparable 
power rates. In the presence of unequal covariance matrices, Finch noted that the 
rank based nonparametric tests resulted in lower Type I error rates compared to 
the parametric approach, though both methods had inflated values. Furthermore, 
as with standard multivariate statistics, the Type I error inflation when there were 
violations in covariance matrices was more pronounced when group sizes were 
unequal and the smaller group had the larger variances. Thus, the rank based 
alternative represents an improvement in the case of unequal covariance matrices, 
but may not be an ideal solution. 

Structural equation models for MANOVA tests 
Raykov (2001) suggested the use of structural equation modeling (SEM) as a 
potential alternative to MANOVA for testing the equality of group mean vectors, 
particularly when the assumption of equal covariance matrices is violated. He 
argued that because in the SEM framework covariance matrices can be allowed to 
differ, this approach might prove superior to the standard MANOVA when group 
covariances are heterogeneous. This may be an important property, given the 
aforementioned evidence that other MANOVA test statistics appear to have 
difficulty in both controlling Type I error and maintaining high power in the 
heterogeneous covariance case. The basic approach in this case is based on the 
standard confirmatory factor analysis (CFA) model (see Raykov, 2001), which 
takes the form: 
 

where
observed variable
vector of latent variables with covariance matrix 
factor loading matrix
error term

x

x

ξ δ

ξ

δ

= Λ +

=
= Φ

Λ =
=

  (7) 

 
In most applications of CFA, each latent variable is associated with multiple 
observed variables. However, in this case each observed dependent variable in the 
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MANOVA context is related to its own unique latent variable, due to the 
following strictures: 
 
  and 0p pxpIΛ = Θ =   (8) 
 
Here Ip is the identity matrix and Θ is the covariance matrix for δ. In this special 
case, the covariance matrix for error is comprised of zero elements. These special 
restrictions, taken together with the CFA model imply that each latent variable is 
equal to one of the observed variables (Raykov, 2001) and that the latent variable 
covariance matrix is identical to that of the observed variables. In order to test the 
null hypothesis of equality of group mean vectors for the response variables, two 
further assumptions must be made (Raykov, 2001): 
 
(1)  ( ) ( )
(2)  ( ) 0

E E
E

ξ µ
δ

=
=

   (9) 

 
These additional restrictions to the model make the comparison of latent 

means equivalent to a comparison of observed means. The researcher can then 
test the null hypothesis of no group difference on the vector of observed 
dependent variable means by fitting two CFA models, one in which the response 
variable means are constrained to be equal across groups and the other in which 
they are allowed to vary. Then, the test of the null hypothesis of group difference 
on the responses is the difference in the 2χ  fit statistics: 2 2

Constrained Unconstrainedχ χ−  
(10). Allowing the group means to differ results in a saturated CFA model so that 
the value of 2

Constrainedχ will be 0. Therefore, the test of the null hypothesis of group 
differences across the vector of dependent variable means is equivalent to 

2 2 2 2
Constrained Unconstrained Constrained Constrained0χ χ χ χ− = − =  (11; Raykov, 2001). 

As noted above, the primary advantage of using the SEM approach to 
compare group mean vectors is that covariance matrices can be allowed to vary 
across groups (Raykov, 2001). In this way, the assumption of covariance matrix 
equality which underlies standard MANOVA and which has been shown in prior 
research to be important for other statistics for testing multivariate mean equality, 
is no longer a requirement. When the assumption of normality is violated, the 
standard 2χ  statistic used with ML estimation in SEM may not perform well (Yu 
& Muthén, 2002). Therefore, an adjusted version of this test statistic is 
appropriate when the dependent variables are not normally distributed. This 
alternative, developed by Satorra and Bentler (1994), was designed to correct for 
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multivariate kurtosis, and has been shown to be robust to departures from 
multivariate normality (Curran, West, & Finch, 1996).  

Given that the MANOVA test statistics are not as accurate as desired under 
violations of assumptions, alternative methods need to be explored to test the 
same hypotheses (Raykov, 2001) yet such evaluations have not occurred in 
sufficient number. As described above, prior simulation research examining 
alternatives to the standard MANOVA approach for testing multivariate mean 
differences (e.g., rank based and exact tests) has generally found that assumption 
violations, particularly that of homogeneity of covariance matrices, result in Type 
I error inflation similar to, if not as severe as, that reported for MANOVA (e.g., 
Finch, 2005; Ittenbach, Chayer, Bruininks, Thurlow, & Beirne-Smith, 1993). By 
contrast, very little empirical research has been conducted to evaluate the 
effectiveness of this fairly new SEM based approach for testing the null 
hypothesis of multivariate mean equality. One such effort (Finch & French, 2008) 
found that in the absence of assumption violations, the Satorra-Bentler corrected 

2χ  test and Pillai’s trace had comparable Type I error rates and power for total 
samples of 100 or more with normally distributed dependent variables. For 
smaller samples, the SEM based approach did have elevated Type I error rates 
(e.g., 0.09 for N of 30) when both assumptions of normality and homogeneity of 
covariance matrices were met. When the assumption of equal covariance matrices 
was violated and the smaller group had the larger elements, the SEM based 
approach had lower Type I error rates compared to the standard approach. When 
the larger group had the larger elements, both SEM and the standard approach had 
Type I error rates at or below the nominal level, but the SEM method had much 
higher power. Thus, it appeared that the SEM approach might be preferred. 
However, there is a need to examine the large number of viable MANOVA test 
statistics reviewed here under the same conditions to begin to inform the field as 
to which approach is preferred under different conditions. Additionally, little, if 
any prior work has examined the performance of this new SEM approach to 
MANOVA testing as well as with more than two groups. The SEM approach to 
testing hypotheses about multivariate mean differences represents a fourth family 
(Family 4) of test statistics investigated in this study. 

Goals of the study 
The first goal of this study was to review the various MANOVA test statistics to 
inform the reader of the 16 choices that are currently available for comparing 
multivariate means across groups. Table 1 provides summary information across 
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these 16 tests to aid understanding of performance from separate past evaluations. 
The second goal was to conduct a simulation study comparing the performance of 
the 16 methods across a variety of conditions designed to mirror those 
encountered in practice, in order to assess their Type I error and power rates. This 
Monte Carlo study is anticipated to provide information on performance of these 
tests to aid the researcher in selecting the test that appears to work well given the 
specific data at hand and corresponding assumptions that are or are not met. The 
literature review led to several predictions for comparing test statistics noting that 
it is impractical to make predictions for all combinations investigated. First, it was 
expected that when the data were normally distributed and group covariance 
matrices were homogeneous, all methods would have comparable Type I error 
and power rates. Second, Families 1, 2, 3 and 4 were expected to have, on average, 
lower Type I error and higher power compared to the standard MANOVA test 
statistic, when covariance matrices were heterogeneous. Third, given the 
advantages of latent variable modeling it was expected that SEM would have the 
lowest Type I error and highest power, across conditions, with the exception of 
for small sample sizes, where accurate parameter estimation would likely be a 
problem. Fourth and last, trimmed versions in Family 1 were expected to have the 
lowest Type I error and highest power in heavily skewed distribution conditions.  

A number of studies have previously conducted investigations of a few of 
these methods, but no study has simultaneously compared all of the techniques 
under a common set of conditions. In addition to all comparisons under similar 
conditions, this work adds to the literature by providing information on the use of 
SEM under these conditions and behavior of all statistics studied for the 2 and 3 
group case. The former is rarely included in such comparisons and no evaluation 
has investigated performance of all four test families in one simulation under the 
same conditions. Thus, the present work seeks to extend the literature by 
providing a full examination of methods for comparing multivariate group means 
when standard assumptions are not met. A total of seven factors were manipulated 
which allowed for the examination of 12,076 conditions to assist with meeting the 
second goal of the study. 

Methods 

This Monte Carlo study manipulated seven factors in a completely crossed design 
with 5000 replications per combination of conditions using a SAS program (SAS 
version 9.1, 2004) written by the authors. Manipulated factors included sample 
size, group size ratio, covariance matrix homogeneity/heterogeneity, distribution 
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of the dependent variables, group mean differences, correlations among the 
dependent variables, and the number of dependent variables. All of the statistical 
methods were conducted using SAS, with the exception of SEM, which was 
carried out with Mplus version 5.1 (Muthén & Muthén, 2008). A number of the 
alternative and robust methods were conducted with a macro described by Lix and 
Keselman (2004). The two outcome variables of interest were the Type I error 
rate (rejecting the null hypothesis of no multivariate mean difference when, 
actually, no differences were simulated) and power (correctly rejecting the null 
hypothesis of no multivariate mean differences). To assess which of the 
manipulated factors, or combinations of them, had a significant influence on the 
dependent variables, an ANOVA was conducted for each outcome, per 
recommendations for simulation research (Paxton, Curran, Bollen, Kirby, & Chen, 
2001). The dependent variable in each ANOVA was one of the outcomes (i.e., 
Type I error rate or power) taken across replications for each combination of 
conditions. The independent variables were the manipulated factors and their 
interactions. In addition, the ω2 effect size was calculated to describe the relative 
magnitude of the statistically significant effects. Given the scope of the simulation, 
discussion is limited only to those effects that most influenced the Type I error 
and power rates, which are defined as those effects that were both statistically 
significant (α = 0.05) and had an ω2 of 0.10 or greater. 

Statistical methods 
Because it has been demonstrated as more robust with respect to Type I error 
control when standard assumptions are violated (Olson, 1974), Pillai’s Trace (P) 
was selected for use as the standard MANOVA test statistic for this study, and 
will be referred to as such throughout the remainder of the manuscript, although it 
is acknowledged that other test statistics such as Wilks’ Lambda, are also 
frequently used in practice. However, note that with the two groups case the 
results across the standard tests will be identical, and equal to Hotelling’s T2. The 
other statistical tests included the rank based method, James (JA), Hotelling’s T2 
for unequal covariance matrices (H), Brown-Forsythe (BF), Johansen (JO), Kim 
(K), Nel van der Merwe (NV), Yao (Y), Raykov (SEM), and the trimmed 
versions of the robust methods, TJA, TH, TBF, TJO, TK, TNV, and TY. 
Consistent with the recommendation of Lix and Keselman (2004), 20% 
symmetric trimming of the data was employed. 
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Manipulated Factors 

Total sample size 
Seven total sample size (across groups) conditions were examined for the two 
groups case: 20, 30, 45, 60, 90, 100, and 150. For the three groups case, the 
following total sample size conditions were examined: 30, 40, 45, 50, 60, 75, 90, 
120, 150, 200, and 250. In the three groups, equal sample size condition for N=40, 
50, 200, and 250, the data were simulated so that one group had either one more 
or one fewer observations than did the others. For example, in the N=40 case, two 
of the groups were simulated with 16 individuals, whereas the other was 
simulated with 17. Similarly, in the N=250 condition, two of the groups were 
simulated with 83 individuals, whereas the other was simulated with 84. The same 
approach was used with 50 and 200. These values are in accord with previous 
simulation research with MANOVA and SEM approaches to multivariate 
comparisons, (e.g., Christensen & Rencher, 1997; Finch, 2005; Hancock, 
Lawrence & Nevitt, 2001; Hussein & Carriere, 2005; Wilcox, 1995). This range 
of values was selected to reflect conditions that applied social science researchers 
are very likely to encounter. 

Number of Groups 
Two conditions were simulated for number of groups: 2 and 3 groups. Much of 
the previous work comparing performance in the MANOVA situation has been 
conducted on 2 groups with several variables (e.g. Christensen & Rencher, 1997; 
Finch, 2005). A significant addition of this work to the literature is to evaluate the 
behavior of these tests with 3 groups. Two groups were included to aid the 
comparison to prior work. 

Group size ratio 
Three group size ratio conditions were used: (a) groups were equal, (b) group 1 
was half the size of group 2, and (c) group 1 was twice the size of group 2. In the 
three group case, for condition (b) groups 1 and 2 were half the size of group 3, 
and for condition (c) groups 1 and 2 were twice the size of group 3. Thus, for 
example, in the n=60 case, there were 30 simulees per group in condition a, 20 in 
group 1 and 40 in group 2 in condition b, and 40 in group 1 and 20 in group 2 in 
condition c. The combination of unequal group sizes with unequal group 
covariance matrices has been shown to influence both Type I error and power 
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rates (Sheehan-Holt, 1998; Stevens, 2001; Hakstian, Roed & Lind, 1979) and 
these particular ratios employed have been used in prior studies (e.g., Christensen 
& Rencher, 1997, Hakstian et al.,1979). As noted above, when the smaller group 
has the larger covariance matrix elements the Type I error rate will be inflated; 
when the larger group has the larger elements power will be diminished. 

Covariance matrix homogeneity/heterogeneity 
The group covariance elements were manipulated in three ways: (a) equal, (b) one 
group had elements 5 times as large as the others, and (c) one group had elements 
10 times as large as the others. Equality of the covariance matrices across groups 
is a vital assumption for the test statistics associated with MANOVA, and 
differences in these matrices can influence the performance of these tests (Fouladi 
& Yockey, 2002; Sheehan-Holt, 1998; Korin, 1972). Two unequal covariance 
conditions were simulated (a) the larger group had the larger elemental values and 
(b) the smaller group had the larger elemental values. 

Distribution of the dependent variables 
Normality of the dependent variables is another assumption of the standard 
statistical tests used in MANOVA. The Type I error rate of the common 
MANOVA tests may suffer from some inflation when the distribution of the 
dependent variables have large kurtosis (Olson, 1974). Therefore, in the current 
research the dependent variables were simulated under one of four distributional 
conditions: (a) normal (skewness=0, kurtosis=0), (b) beta (skewness = -0.82, 
kurtosis = 0.28), (c) lognormal (skewness = 6.18, kurtosis = 110.93), and (d) 
exponential (skewness =2, kurtosis = 6). These reflect conditions used in similar 
work (Algina et al., 1991). The non-normal data were simulated using a 
methodology described by Headrick and Sawilowsky (1999) to achieve the 
desired levels of skewness and kurtosis while maintaining the target correlations 
among the dependent variables. These distributions were selected to provide 
insights into the performance of the methods studied here under a variety of cases. 

Group means differences 
Differences in group means were simulated using values of Cohen’s (1988) d 
univariate effect sizes. This metric was selected because it allowed for a 
straightforward manipulation of this important variable and matches the 
methodology (though not the values) used in prior simulation research of 
MANOVA (Blair et al., 1994; Finch, 2005). The effect size of 0 allowed for the 
evaluation of the Type I error. The other values corresponded to group separation 
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at small (0,2), medium (0.5), and large (0.8) levels. The univariate Cohen’s d (i.e., 
meangroup1 – meangroup2 / SDpooled) effect size was selected for use in this study 
because there are generally agreed upon guidelines for its interpretation (Kim & 
Olejnik, 2004). In contrast, though there do exist multivariate effect size values, 
there is not a single such statistic that is considered the standard, nor is there any 
sort of agreement regarding what constitutes a small, medium, or large effect. 
Thus, in order to provide a useful context to researchers regarding the 
performance of the various methods described here, Cohen’s d was used. 

Correlation among the dependent variables 
The data were simulated under three conditions for correlation among the 
dependent variables, including no correlation (0.0), small (0.2) and large (0.8). 
These values were selected to represent the case where variables were orthogonal 
(0.0), where the correlation was small to moderate (0.2) and where the variables 
were highly correlated (0.8). Conditions are consistent with prior research (e.g., 
Finch, 2005; Wilcox, 1995) to aid comparability. 

Number of dependent variables 
Two levels were employed: 2 and 4 dependent variables, consistent with prior 
studies (e.g., Fouladi & Yockey, 2002; Wilcox, 1995) and representative of 
realistic numbers of response variables seen in practice (e.g., Dumas et al., 1999; 
Krull, Kirk, Prusick, & French, 2010) while maintaining a manageable set of 
simulation conditions for the current study. 

Results 

Two groups versus three groups 
Results for two and three group cases generally followed similar patterns in terms 
of how the methods compared relative to one another, with a couple of exceptions. 
Thus, to keep discussion of the results as brief as possible, only results for the 
three group condition are presented. However, prior to presenting these, note that 
the few cases where the two group condition results diverged from those for three 
group condition. In general, Type I error rates did not differ between the two 
number of groups conditions, but power was higher in the three group case 
compared to the two group case. In terms of relative comparison of the methods, 
with two groups the rank based approach had among the lowest power values. 
When three groups were present, the rank based approach had comparable power 
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to the other approaches, as is presented below. Outside of these differences, the 
results for the two group case were comparable to those for three group case, 
which are presented below. The two group case results are available from the 
authors upon request. 

The results for three group case are organized into two sections: (a) Type I 
error and power rates based on the variance homogeneity condition, and (b) Type 
I and power rates by the distribution of the response variables. In each case, a 
repeated measures ANOVA was employed to identify the significant main effects 
and interactions of the manipulated factors in terms of Type I error and power, 
where the repeated measures variable was the MANOVA test statistic. The 
ANOVA models had as the dependent variable the Type I error or power rates 
across the 5000 replications per combination of conditions. The independent 
variables were type of test statistic (within replication), correlation among the 
dependent variables, number of dependent variables, sample size ratio, variance 
ratio, sample size and in the case of power, and effect size. The assumptions of 
normality and sphericity were assessed and found to have been met. Sphericity 
was assessed using Mauchley’s test of Sphericity in conjunction with the ε 
statistic, which takes the value of 1 in the population when the covariance matrix 
satisfies sphericity (Warner, 2008). In the case of each set of repeated measures 
ANOVA results below, Mauchly’s test was not statistically significant with α = 
0.15, as recommended in Kirk (1995). In addition, across the repeated measures 
analyses described below, the value of ε ranged between 0.901 and 0.974. Finally, 
an examination of the Greenhouse-Geisser conservative F-test and MANOVA 
test results, both of which have been suggested for use when sphericity is violated, 
revealed the same main effects and interactions as significant and non-significant 
when compared with the unadjusted test. Therefore, given the general finding that 
sphericity was present, coupled with the similarity in results for the unadjusted 
and Greenhouse-Geisser adjusted test, it may be concluded that sphericity (or lack 
thereof) was not problematic in this case. 

Normality was assessed first by an examination of QQ-plots for the 
individual outcome variables, and all were found to conform reasonably closely to 
the line for the normal distribution. In addition, multivariate normality was tested 
for across repeated measurements (rejection rates for each test statistic) for each 
of the models described below using Mardia’s test (Mardia, 1970), and found 
none of them to be statistically significant. Taken together, the QQ-plot and 
Mardia’s test results satisfy the assumption of normality for repeated measures 
models as described in Warner (2008). The models were fully factorial with all 
main effects and interactions included. As mentioned previously, in order to focus 
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on only the most important of the manipulated factors, discussion will be limited 
to those significant (α = 0.05) terms in the ANOVA that had an effect size (ω2) 
greater than 0.10. This value was selected because it indicates that the main effect 
or interaction term accounted for at least 10% of the variation in rejection rates. 
By doing so, it is possible to avoid discussing a large number of statistically 
significant effects that actually accounted for a small amount of variance, which 
was a concern given the large number of replications for each combination of 
conditions. Full results tables are available by contacting the authors.  

Covariance Homogeneity: Type I error rate 
The ANOVA identified the interaction of test statistic by sample size ratio by 
covariance ratio as the highest order significant term (p < 0.01, ω2 = 0.527). The 
interaction of test statistic by number of dependent variables was also significant 
(p < 0.01, ω2 = 0.381). No other term was statistically significant with an effect 
size value greater than 0.10. 

Table 2 contains the Type I error rates by test statistic, sample size ratio, and 
covariance ratio for normally distributed data. When the groups’ covariances were 
equal, the Type I error rate for all of the statistics examined here were below 0.06, 
except for H, TH, and the rank approach across group ratio conditions, and for BF 
in the sample size ratio 2/1 condition. When the group covariances were not equal 
but the sample size ratio was equal, the Type I error rate of the P test was inflated 
above the nominal 0.05 level. Several of the alternative statistics, including the 
rank based approach, H, TH, and BF had inflated Type I error rates in the unequal 
covariance, equal sample size condition as well. In contrast, the Type I error rates 
for JA, JO, K, NV, Y, all members of Family 1 (except for K), and SEM did not 
have inflated error rates associated with inequality in group covariances when 
sample sizes were equal. To further investigate these effects, several interaction 
contrasts were employed, using Scheffé’s correction (Scheffé, 1953) to control the 
overall Type I error rate (α = 0.05) and allow for such post hoc investigations. 
Based on these contrasts, it was found that the rank and H statistics yielded 
significantly inflated Type I error rates as the degree of covariance inequality 
increased, whereas the rates of the other methods did not change significantly.  
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Table 2. Type I Error Rate by Test Statistic, Sample Size Ratio, and Group Covariance 
Ratio: Normally Distributed Data 
 

Sample 
Size Ratio   Statistic  Covariance 

ratio: 1/1 
Covariance 

ratio: 5/1 
Covariance 
ratio: 10/1 

Equal 

     
 Standard 0.050 0.060 0.064 

 Ranks 0.060 0.072 0.082 

 JA | TJA 0.043 | 0.031 0.049 | 0.033 0.052 | 0.040 

 H | TH 0.070 | 0.070 0.089 | 0.093 0.102 | 0.117 

 BF | TBF 0.053 | 0.038 0.071 | 0.046 0.072 | 0.046 

 JO | TJO 0.051 | 0.042 0.056 | 0.044 0.056 | 0.050 

 K | TK 0.047 | 0.034 0.040 | 0.027 0.035 | 0.024 

 NV | TNV 0.048 | 0.034 0.047 | 0.029 0.047 | 0.028 

 Y | TY 0.048 | 0.035 0.055 | 0.040 0.059 | 0.044 

 SEM 0.057 0.054 0.058 
          

1/2* 

     
 Standard 0.050 0.007 0.004 

 Ranks 0.061 0.023 0.019 

 JA | TJA 0.044 | 0.033 0.048 | 0.042 0.046 | 0.040 

 H | TH 0.061 | 0.061 0.031 | 0.034 0.024 | 0.018 

 BF | TBF 0.052 | 0.043 0.064 | 0.075 0.067 | 0.081 

 JO | TJO 0.051 | 0.045 0.051 | 0.041 0.046 | 0.040 

 K | TK 0.051 | 0.042 0.046 | 0.039 0.042 | 0.036 

 NV | TNV 0.047 | 0.035 0.047 | 0.042 0.044 | 0.041 

 Y | TY 0.053 | 0.046 0.048 | 0.043 0.049 | 0.039 

 SEM 0.053 0.055 0.061 
          

2/1** 

     
 Standard 0.049 0.092 0.109 

 Ranks 0.061 0.086 0.103 

 JA | TJA 0.042 | 0.033 0.047 | 0.037 0.050 | 0.041 

 H | TH 0.068 | 0.065 0.122 | 0.121 0.157 | 0.159 

 BF | TBF 0.064 | 0.052 0.069 | 0.050 0.070 | 0.049 

 JO | TJO 0.053 | 0.048 0.055 | 0.046 0.055 | 0.048 

 K | TK 0.050 | 0.041 0.041 | 0.033 0.037 | 0.029 

 NV | TNV 0.044 | 0.039 0.047 | 0.033 0.048 | 0.033 

 Y | TY 0.058 | 0.047 0.055 | 0.047 0.055 | 0.046 

 SEM 0.049 0.055 0.053 
           

*Sample size ratio of 1/2 couples larger variance with larger group size in the unequal variance condition. 
**Sample size ratio of 2/1 couples larger variance with smaller group size in the unequal variance condition. 
 

Based on interaction contrasts using Scheffé’s corrected critical value, when 
the larger group had the larger covariance (sample size ratio 1/2), the P, rank 
based statistic and H displayed significant declines in Type I error rates 
concomitant with increases in groups’ covariance matrix inequality. As the group 
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covariances became more unequal, however, TBF had a significant increase in the 
Type I error rate. As seen with an equal sample size ratio, members of Family 1 
and K generally demonstrated consistent Type I error rates, which were just 
below the nominal value of 0.05. The Scheffé corrected contrasts did not find any 
significant change in the error rates of the SEM method, though for the covariance 
ratio of 10/1 with the 1/2 sample size ratio, the rate was just above 0.06. When the 
smaller group had the larger covariance (sample size ratio 2/1), the standard, rank 
based, H, and TH approaches all showed a significant increase in the Type I error 
rate with increasing divergence in group covariance matrices. Family 1 and SEM 
maintained Type I error rates near the nominal 0.05 value, whereas K actually had 
a slight decline in the error rate as the covariance matrices became more unequal. 
Across all conditions simulated here, the trimmed versions of the test statistics 
had slightly lower Type I error rates compared to the untrimmed alternatives 
(except for TH in the covariance ratio 10/1, sample size ratio 2/1 case), though in 
most cases these differences were less than 0.01.  
 
 
Table 3. Type I Error Rate by Test Statistic and Number of Dependent Variables: 
Normally Distributed Data 

  Number of dependent variables 

Statistic 2 4 

   Standard 0.069 0.087 
Ranks 0.065 0.079 
JA | TJA 0.043 | 0.042 0.041 | 0.039 
H | TH 0.072 | 0.074 0.074 | 0.078 
BF | TBF 0.062 | 0.052 0.064 | 0.049 
JO | TJO 0.049 | 0.044 0.051 | 0.042 
K | TK 0.048 | 0.041 0.043 | 0.040 
NV | TNV 0.050 | 0.046 0.052 | 0.039 
Y | TY 0.046 | 0.046 0.053 | 0.038 
SEM 0.057 0.051 
      

 
 

Table 3 displays the Type I error rate for statistical test by number of 
dependent variables for normally distributed data. The error rates for the standard 
and rank based approaches were significantly greater for 4 variables compared to 
2 variables. The Type I error rates for the rest of the test statistics were essentially 
the same for 2 and 4 dependent variables. In addition to the standard and rank 
approaches, H, TH, and BF all had error rates in excess of 0.06; the other methods 
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had rates closer to the nominal 0.05. Because there were not significant results for 
the correlation among the dependent variables and the sample size, they are not 
discussed. 

Covariance Homogeneity: Power 
Repeated measures ANOVA was used to identify the manipulated terms that were 
significantly related to power rates across replications, using the same model used 
with Type I error rates. The interaction of the test statistic by sample size ratio by 
covariance ratio was the highest order significant term (p < 0.01, ω2 = 0.149), as 
were the main effects of effect size (p <0.01, ω2 = 0.811), correlation among the 
dependent variables (p < 0.01, ω2 = 0.360) and total sample size (p < 0.01, ω2 = 
0.781). No other terms in the ANOVA were statistically significant with an effect 
size greater than 0.10. 

Table 4 contains power by test statistic, sample size ratio and group 
covariance ratio. Power values for those conditions for which the Type I error rate 
was greater than 0.075 (from Table 2) are in bold, and should be interpreted with 
extreme caution. These values are included for completeness in results 
presentation. When the groups were of equal size, SEM, followed by the P 
statistic had the highest power rates among those for which the Type I error rates 
were not inflated (non-bolded values). For all of the methods studied here, power 
declined as the covariance matrix inequality increased when the larger group had 
the larger variance and when the smaller group had the larger variance. In 
addition, the power for the trimmed statistics was uniformly lower than that of the 
non-trimmed versions in this sample. Power for the rank based approach was 
comparable to that of the standard in the covariance 1/1 and 5/1 cases, but could 
not be interpreted for 10/1 due to Type I error inflation. 

When the group sizes were unequal but the covariance matrices were equal, 
SEM had the highest power rates, followed by the standard, and rank based 
approaches, all of which had significantly higher power than the other methods 
studied here. When the larger group had the larger covariance (sample size 1/2 
condition), power for all methods declined significantly with increases in variance 
heterogeneity, though the pattern of SEM, followed by standard and rank methods 
with highest power rates held. When the smaller group had the larger covariance 
(sample size 2/1 condition), a situation that resulted in inflated Type I error rates 
for several methods, the highest power rates among those that had Type I error 
rates lower than 0.075 belonged to SEM, followed by Family 1, K, BF, and TBF. 
For all of the methods power rates declined significantly as the degree of 
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covariance matrix inequality increased. Note that in this condition, the Type I 
error rates for the standard, rank based, and H approaches were inflated.  
 
 
Table 4. Power by Test Statistic, Sample Size Ratio, and Group Covariance Ratio: 
Normally Distributed Data 
 

Sample 
Size Ratio   Statistic  Covariance 

ratio: 1/1 
Covariance 

ratio: 5/1 
Covariance 
ratio: 10/1 

Equal 

     
 Standard 0.695 0.44 0.309 

 Ranks 0.684 0.464 0.353 

 JA | TJA 0.470 | 0.394 0.256 | 0.203 0.170 | 0.131 

 H | TH 0.530 | 0.496 0.330 | 0.309 0.248 | 0.241 

 BF | TBF 0.495 | 0.421 0.302 | 0.230 0.209 | 0.148 

 JO | TJO 0.490 | 0.432 0.268 | 0.223 0.178 | 0.145 

 K | TK 0.480 | 0.402 0.240 | 0.190 0.142 | 0.102 

 NV | TNV 0.483 | 0.405 0.253 | 0.189 0.162 | 0.112 

 Y | TY 0.481 | 0.404 0.266 | 0.210 0.177 | 0.135 

 SEM 0.738 0.489 0.357 
          

1/2* 

     
 Standard 0.764 0.538 0.413 

 Ranks 0.758 0.55 0.435 

 JA | TJA 0.537 | 0.463 0.319 | 0.267 0.222 | 0.184 

 H | TH 0.587 | 0.558 0.389 | 0.369 0.312 | 0.300 

 BF | TBF 0.558 | 0.500 0.363 | 0.300 0.261 | 0.206 

 JO | TJO 0.558 | 0.506 0.332 | 0.288 0.230 | 0.194 

 K | TK 0.551 | 0.491 0.310 | 0.259 0.201 | 0.159 

 NV | TNV 0.545 | 0.468 0.321 | 0.261 0.220 | 0.171 

 Y | TY 0.557 | 0.499 0.332 | 0.283 0.229 | 0.188 

 SEM 0.802 0.591 0.472 
          

2/1** 

     
 Standard 0.741 0.705 0.685 

 Ranks 0.734 0.721 0.69 

 JA | TJA 0.514 | 0.440 0.498 | 0.403 0.377 | 0.334 

 H | TH 0.568 | 0.537 0.536 | 0.511 0.436 | 0.367 

 BF | TBF 0.537 | 0.473 0.492 | 0.397 0.381 | 0.326 

 JO | TJO 0.535 | 0.482 0.488 | 0.401 0.379 | 0.319 

 K | TK 0.527 | 0.461 0.487 | 0.410 0.384 | 0.322 

 NV | TNV 0.525 | 0.447 0.500 | 0.389 0.380 | 0.343 

 Y | TY 0.532 | 0.467 0.519 | 0.402 0.399 | 0.338 

 SEM 0.811 0.732 0.691 
           

Note: Bold indicates when power values for these conditions were associated with Type I error rates greater 
than 0.075  
*Sample size ratio of 1/2 couples larger variance with larger group size in the unequal variance condition. 
**Sample size ratio of 2/1 couples larger variance with smaller group size in the unequal variance condition. 
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Power by effect size 
 

 
Power by sample size 

 
Power by correlation  

among dependent variables 
 
 
 
 
 
Figure 1. Three panels of power rates for 
five MANOVA statistics by effect size, 
correlation among dependent variables, 
and sample size. 
 
 
 
 

 
 

Figure 1 displays power by the main effects of effect size, correlation among 
the dependent variables and total sample size, in three panels. For clarity of 
presentation only selected testing methods were included, as they are 
representative of others studied. Specifically, JA was selected to represent Family 
1 (except H) and K, all of which had very similar rates, though BF displayed 
similar power to H under these conditions. The trimmed versions of these 
statistics had power rates that were similar to the untrimmed versions in terms of 
their pattern relative to one another and had slightly lower power values (though 
not significantly lower) than the untrimmed statistics. For all of the methods, 
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power increased significantly with increases in effect size and sample size, and 
declined with increases in the correlations among the dependent variables. These 
patterns were consistent across the methods studied here. 

Distribution: Type I error rate 
As with the covariance homogeneity data, a fully factorial repeated measures 
ANOVA was used to identify significant main effects and interactions of the 
manipulated variables that were related to the Type I error rates under differing 
distribution conditions. The highest order term that was identified as statistically 
significant with ω2  greater than 0.10 was the interaction of type of test statistic 
(method) by number of dependent variables by sample size (p < 0.01, ω2 = 0.624). 
In addition, the distribution of the dependent variables was a significant main 
effect (p = 0.034, ω2 = 0.063). Although its ω2  value did not meet the 0.10 
threshold used to identify terms for further consideration, it will be discussed 
briefly because the distribution of the response was of primary interest in this 
study. No other term was both statistically significant in the ANOVA and had ω2 
greater than 0.10. 
 
 
Table 5. Type I Error Rate by Test Statistic and Distribution of the Dependent Variables. 
 

 Distribution 

Statistic Normal Beta Lognormal Exponential 

     Standard 0.05 0.05 0.05 0.05 
Ranks 0.079 0.06 0.061 0.06 
JA | TJA 0.047 | 0.036 0.044 | 0.032 0.044 | 0.033 0.044 | 0.032 
H | TH 0.104 | 0.106 0.064 | 0.065 0.064 | 0.065 0.064 | 0.064 
BF | TBF 0.064 | 0.046 0.052 | 0.042 0.052 | 0.042 0.052 | 0.041 
JO | TJO 0.054 | 0.046 0.051 | 0.044 0.051 | 0.045 0.051 | 0.044 
K | TK 0.042 | 0.032 0.049 | 0.039 0.048 | 0.040 0.048 | 0.039 
NV | TNV 0.047 | 0.032 0.047 | 0.035 0.047 | 0.036 0.047 | 0.035 
Y | TY 0.054 | 0.044 0.052 | 0.043 0.051 | 0.043 0.051 | 0.042 
SEM 0.055 0.082 0.084 0.082 
           

 
Table 5 contains the Type I error rate for the test statistics by the distribution 

of the dependent variables. These results demonstrate that the P test statistic was 
robust to the distribution of the dependent variables, maintaining the nominal 
(0.05) Type I error rate across the four distributions. With the exception of the 
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rank based approach, BF, H, and TH in the normal case, and ranks, H/TH, and 
SEM in the nonnormal conditions, which had elevated rates, the tests displayed 
Type I error at the nominal level of 0.05.  
 
 

 
Type 1 error rate 

for Two dependent variables 

 
Type 1 error rate 

for Four dependent variables 
 
Figure 2. Two panels of Type I error rates for five MANOVA tests by sample size and 
number of dependent variables, across distribution of the dependent variables. 
 
 

Figure 2 contains two panels showing the Type I error rates for the methods 
by the number of dependent variables and the sample size, across distribution 
conditions. In order to simplify presentation of the results, only the selected 
methods described were examined, which are representative of other several 
others that performed extremely similarly. An examination of Figure 2, which has 
a reference line at the nominal α rate of 0.05, reveals that when there were 2 
dependent variables, BF and SEM consistently had elevated Type I error rates. 
The other methods largely maintained the nominal rate across sample sizes, 
although the standard statistic did have slightly rates slightly above the 0.05 line 
(though not as high as 0.06) at N=60 and 120. With 4 dependent variables the 
standard, rank, and JA methods exhibited Type I error rates near or just below the 
0.05 level, except for the standard statistic with samples of 50, 60, and 75, with 
rates slightly above the nominal rate but not breaking 0.06. In contrast, the error 
rates for SEM and BF were consistently elevated above 0.05, but declined with 
increasing sample size. SEM had the highest rates compared to any method. 
Please note again that these results combine the outcomes for all of the 
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distributions, and that SEM maintained the nominal Type I error rate when the 
data were normally distributed, though it did not for the nonnormal data. 

Distribution: Power 
The factorial repeated ANOVA for the power of the MANOVA test statistics 
when the distributions were varied identified the interaction of method by 
correlation among dependent variables by distribution by number of variables (p 
< 0.001, ω2 = 0.588) and the interaction of method by sample size by effect size 
(p < 0.001, ω2 = 0.694) as the highest order significant terms with ω2 greater than 
0.10. All other significant lower order main effects and interactions were 
subsumed in these interactions and will not be discussed further. 
 

 
Power for Large effect size 

 
Power for Small effect size 

 
Power for Medium effect size 

 
 
 
 
 
Figure 3. Three panels of power rates for 
five MANOVA tests by effect size and 
sample size. 
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Figure 3 (three panels) displays power for the representative statistics used 
previously (standard, rank based, JA, BF and SEM) by effect size and sample size. 
When interpreting these results, it is important to keep in mind that the Type I 
error rates for SEM were inflated when the data were not normally distributed, 
and therefore higher power rates with SEM must be viewed with caution. The 
following discussion will focus on power for those statistics that maintained the 
nominal Type I error rate of 0.05. Across effect size and sample size values, the 
standard and rank based approaches maintained the highest power values of those 
methods that were able to maintain the nominal Type I error rate across 
distributions. In contrast, when the effect size was large, the BF and JA methods 
had lower power compared to the other approaches for the smallest sample size 
condition. Not until N = 120 did power approach 0.8 for these methods. When the 
simulated effect size was of medium magnitude, none of the methods that 
controlled Type I error had power rates approaching 0.8 until sample sizes were 
90, and again the standard and rank approaches had higher power than JA or BF. 
In contrast, for the large effect condition the standard and rank statistics had 
markedly higher power rates across sample sizes, with values of 0.8 or greater for 
N of 60 or more. Finally, when the simulated effect size was small, the patterns 
were similar to those for larger effects, though none of the methods that controlled 
Type I error had power greater than 0.6 for any sample size, and the standard and 
rank based approaches had higher power than JA or BF.  
 

 

 
 
 
 
 
Figure 4. Power for five 
MANOVA tests by correlation (r) 
among dependent variables, 
distribution (dist) of dependent 
variables, and number of 
dependent variables (var) 
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Figure 4 includes the power rates for the significant 4-way interaction of test 
statistic by correlation among the dependent variables by distribution of the 
dependent variables by number of dependent variables. An examination of this 
figure reveals that across distributions and test statistics, power declined with 
increases in the correlation among the dependent variables. In terms of the test 
statistics that controlled Type I error, power for BF was generally the highest in 
the 2 variable case, and the standard, rank, and BF approaches displayed 
comparable power with 4 variables across distributions. With the normal 
distribution, SEM also had among the highest power values in the 4 variable 
condition, on par with standard and rank tests. And again, although SEM had the 
highest power values in most of the nonnormal conditions, it is not discussed in 
that context here due to the Type I error inflation it exhibited for the nonnormal 
distributions. JA consistently displayed among the lowest power results of the 
methods studied here. Power was consistently lower in the normal distribution 
condition compared to the other distributions studied here. Finally, note that 
power was below 0.80 across all conditions.  

Discussion 

The goals of this study were to provide a comprehensive review of the various test 
statistics available for MANOVA when standard assumptions are violated, and to 
conduct a large simulation study to compare the performance of the 16 identified 
(i.e., four families) test statistics across a variety of simulated conditions to 
evaluate Type I error and power. The results illustrate that Type I error and power 
do differ based on the selection of the test statistic for the MANOVA, dependent 
upon specific data conditions. This work is in accord with calls to make such 
comparisons. Raykov (2001), for example, encouraged comparison of the 
standard approach to testing the multivariate null hypothesis of no mean vector 
difference across groups as represented by P with an approach based upon SEM. 
This comparison was made, among several others, and extended this work to the 3 
group case. Thus, this study does provide information on performance of these 
tests to aid the researcher in selecting the test statistic(s) that appears to work well 
given the data at hand, corresponding assumptions that are satisfied, and the 
variable framework (latent vs. observed) under which the analysis is conducted. 
Seven factors were manipulated resulting in 12,076 comparison conditions to gain 
a greater understanding of the relative performance of the standard approach for 
testing the multivariate hypotheses with respect to mean differences, along with a 
number of purportedly more robust options. 
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Major Points 
Results revealed that when MANOVA assumptions are met, SEM and P are 
optimal in terms of Type I error and power rates. This result for P is consistent 
with prior research (e.g. Christensen & Rencher, 1997), though there is not a great 
deal of prior work examining many of the other alternative test statistics. 
Furthermore, both SEM and P maintained the nominal error rate in this condition, 
and SEM had the highest power rates. Even when data are not normally 
distributed, the P statistics maintain the nominal Type I error rate as do the 
Family 1 and Family 2 test statistics, thus partially supporting the first research 
hypothesis for this study. However, when the assumption of equal covariances is 
violated, but group sample sizes remains equal, the P statistic displays elevated 
Type I error rates whereas both SEM and Family 1 tests maintained the nominal 
rate. Moreover, the P statistic had severely inflated Type I error rates when the 
smaller group had the larger covariances. Again, both SEM and Family 1 test 
statistics were able to maintain the nominal error rate in this case. Family 3 
performed similarly to the standard approach in terms of both Type I error rate 
and power in the case of three groups. However, for two groups, Family 3 had 
low power, making it of questionable utility under these conditions. 

With regard to power under the unequal covariance matrix conditions, SEM, 
followed by the Family 1 tests, had the highest values compared to the other test 
statistics that were able to maintain the Type I error rate at or near the nominal 
0.05 level. This positive performance for SEM is in keeping with Raykov’s 
(2001) suggestion that this approach would be particularly useful when the group 
covariance matrices were not equivalent. When covariance matrices were unequal, 
the power rates of the standard statistic, or H, could not be fairly compared 
because their error rates were inflated, particularly when the smaller group was 
paired with the covariance matrix having the larger elemental values. H had 
inflated error rates across most conditions. In short, when the outcome variables 
followed the normal distribution, SEM was able to maintain the nominal Type I 
error rate, and yield higher rates of power than the other methods studied here. 
Furthermore, in accord with Raykov (2001), the SEM approach was optimal 
among all the methods when the group covariance matrices were not equal and 
the data were normally distributed. This result supports the expectation that by 
allowing the group covariance matrices to be independently estimated as in SEM, 
it is possible to produce accurate results even when the standard assumption of 
homogeneity of covariance matrices is not met. 

Results for procedures using trimmed estimators were similar to those that 
used the usual least squares estimators, with slightly lower Type I error and power 
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rates compared to their non-trimmed counterparts. However, these differences 
were consistently very small, and generally did not offer a substantive advantage 
over the non-trimmed test statistics. Note that power for all methods was higher in 
the nonnormal conditions (no differences among these three) than for normal data. 
At the same time, there was no concomitant inflation of the Type I error rates for 
a number of the test statistics when non-normal data were present. The lack of 
influence of non-normality may be due to the adjustments that were examined. 
For instance, Hotelling’s T2 is conservative with skewed distributions or when 
outliers are in the tails of the distribution, especially when the design is 
unbalanced (Everitt, 1979; Zwick, 1986). It may be that under these conditions 
and with adjustments such as the use of the trimmed means, the other methods 
remain conservative as well. Lix & Keselman (2004) state that using Family 1 
with the trimmed means can result in a test that is robust to the effects of both 
non-normality and covariance heterogeneity. When multivariate normality is 
violated, the performance of Hotelling’s T2, for example, can depend on the 
nature of the research design and the type of departure from normality present in 
the data. It appears this may be the case for the other tests as well. Furthermore, 
other findings have suggested it may be small sample sizes with non-normal data 
that result in liberal results or Type I error inflation (e.g., Fouladi & Yockey, 
2002; Wilcox, 1995) with these studied test statistics. Such effects with various 
combinations of conditions appear to deserve continued investigation to assist in 
sorting out when one would and would not expect a degrading of statistical power 
or inflation of Type I error. 

Given the relative success of the Family 1 tests, it may be beneficial to take 
a moment and reiterate how these differ from those of the other families. Recall 
from the earlier discussion of this issue that Family 1 are all based on 2

unequalT , 
which is an analog of the univariate t-test calculation when group variances differ. 
Thus, the variances are weighted by the inverse of the group size. For tests in 
Families 2 and 3, the weighting of group variances was based on more complex 
combinations of sample size or sample proportions. Thus, the use of a simple 
weighting of variances by the inverse sample size may be more effective than 
attempting to account for the proportion of total cases in the sample, for example. 
Furthermore, given the very similar performances of the statistics in Family 1 to 
one another, it seems that the alternative methods for calculating degrees of 
freedom that demarcate most of these may not be particularly meaningful in 
conditions similar to those simulated here. 

The results of this study partially supported the hypothesis that the SEM 
approach would have lower Type I error and higher power for all but the smallest 
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sample sizes. When the underlying data were normally distributed, this method 
would seem to be a good choice for applied researchers. SEM consistently 
maintained Type I error control, and yielded the highest power values, regardless 
of whether the group covariance matrices were equal or not. The maximum 
likelihood based SEM approach is closely associated with the familiar Wilks’ 
Lambda statistic, commonly used in MANOVA testing, when the data are 
normally distributed, with the exception that it can be used successfully when 
group variances are unequal. For nonnormal data distributions simulated here, 
SEM was not able to maintain the nominal error rate of 0.05.  

Finally, results for the trimmed methods did not differ substantially from 
their non-trimmed counterparts, other than by exhibiting slightly lower rejection 
rates. The lack of higher power in the skewed case, which was hypothesized 
might occur, could be due to the fact that the data were not simulated to contain 
true outliers, given that this was not the focus. Thus, future research should 
include cases where outliers are present. 

Practical Recommendations for Applied Researchers 
The following guideline of bullet points summarizes results; these may prove to 
be helpful to researchers working with MANOVA in situations where the 
assumptions of normality and/or equality of covariance matrices are violated. 
These points are organized based upon the type of assumption violation and 
provide the researcher with suggested test statistics to use in each situation, based 
upon the results of this simulation study. 

1) When data are normally distributed and the groups’ covariance matrices are 
equal, SEM provides optimal power and Type I error control. 

2) When the data are not normally distributed and the groups’ covariance 
matrices are equal, the P statistic maintains the nominal Type I error rate 
and has optimal power, whereas SEM yields an inflated Type I error, and 
members of Family 1 do not. 

3) When the groups’ covariance matrices are not equal and data are normally 
distributed, the P statistic will exhibit an inflated Type I error rate, whereas 
SEM, and members of the Family 1 test statistics (except for H) will 
maintain the nominal error rate. 

4) When the groups’ covariance matrices are not equal and data are normally 
distributed, SEM will have the highest power rates, and the Family 1 test 
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statistics will have lower power to find group mean differences compared to 
the P. 

5) Tests based on trimmed statistics demonstrated slightly lower Type I error 
rates and power than their non-trimmed analogs. 

Study limitations and directions for future research 
As with any simulation study, there are limitations to the current work. First, a 
limited number of covariance inequality conditions were considered in which 
values for one group were multiples of those for another. Future work should 
expand upon the current work by investigating other covariance structures. 
Second, for each distribution condition, the variables had the same distribution. In 
practice this may not be the case, and future research should simulate situations in 
which variables have different distributions from one another. Third, only three 
non-normal distributions were considered here. Further work could, for instance, 
examine heavy tailed symmetric distributions, such as the Cauchy. Finally, only 
positively correlated dependent variables were examined here. As was noted in 
the introduction, the presence of negative correlations among the responses can 
lead to increased power for MANOVA tests. Thus, future research could extend 
the current work by comparing the performance of several of these methods in the 
presence of negative dependent variable correlations. 

Conclusion 

There is little doubt that with sixteen options for test statistics for MANOVA, 
many researchers will be overwhelmed with the choice that must be made. Many 
applied researchers may even be completely unaware of the various choices that 
exist. Furthermore, many of the choices are not available as standard options in 
some commonly used statistical packages, which can hinder accurate as well as 
wide-spread use. The result of this relative lack of access is that valid hypothesis 
testing in multivariate means comparisons may not be obtained when assumptions 
underlying the hypotheses tests are not satisfied. However, the development of the 
SAS macro by Lix and Keselman (2004), as well as the increasing availability of 
easy to use and powerful software for SEM, make many of these alternatives 
more accessible than ever before. Therefore, the applied researcher is encouraged 
to carefully consider the selection of the test given data conditions and seek 
resources to assist in calculations of that statistic if need be. Developers of 
statistical software are also encouraged to continue to integrate the various 
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options of these test statistics even beyond MANOVA. Though there is likely to 
be a lag behind development of state-of-the-art methods and software to 
implement these methods, researchers are encouraged to continue to attempt the 
use of the most appropriate method or test given the data and research question at 
hand. It is anticipated that the review of test statistics and results of this study will 
assist in guiding applied researchers in selecting optimal methods for comparing 
multivariate group means. 

References 

Algina, J., Oshima, T. C. & Tang, K. L. (1991). Robustness of Yao’s, James’ 
and Johansen’s tests under variance-covariance heteroscedasticity and 
nonnormality. Journal of Educational Statistics, 16, 125-139. 

Blair, R. C., Higgins, J. J., Karniski, W.,  & Kromrey, J. D. (1994). A study 
of multivariate permutation tests which may replace Hotelling’sT2 test in 
prescribed circumstances. Multivariate Behavioral Research, 29, 141-163. 

Brown, M. B., & Forsythe, A. B. (1974). Robust Tests for Equality of 
Variances, Journal of the American Statistical Association, 69, 364–367. 

Christensen, W. F., & Rencher, A. C., (1997). A comparison of Type I error 
rates and power levels for seven solutions to the multivariate Behrens–Fisher 
problem. Communications in Statistics-Theory and Methods, 26, 1251–1273. 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Cole, D. A., Maxwell, S. E., Arvey, R., & Salas, E. (1994). How the power 
of MANOVA can both increase and decrease as a function of the intercorrelations 
among the dependent variables. Psychological Bulletin, 115, 465-474.  

Coombs, W. T., Algina, J., & Oltman, D. O. (1996). Univariate and 
multivariate omnibus hypothesis tests selected to control Type I error rates when 
population variances are not necessarily equal. Journal of Educational and 
Behavioral Statistics, 66, 137-179. 

Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test 
statistics to non-normality and specification error in confirmatory factor analysis. 
Psychological Methods, 1, 16-29. 

 
 



FINCH & FRENCH 

73 

Dumas, J. E., Prinz, R. J., Smith, P. E., & Laughlin, J. (1999). The EARLY 
ALLIANCE Prevention Trial: An Integrated Set of Interventions to Promote 
Competence and Reduce Risk for Conduct Disorder, Substance Abuse, and 
School Failure. Clinical Child and Family Psychology Review, 2, 37-53.  

Erdfelder, E. (1981). Multivariate Rangvarianzanalyse: Ein non-
parametrisches Analogonzurein- und mehrfaktoriellen MANOVA [Multivariate 
rank variance analysis: A nonparametric analogue for single and multivariate 
MANOVAs]. TriererPsychologischeBerichte, 8. Trier, German: Fachbereich 1-
Psychologie derUniversitat Trier. 

Everitt, B. S. (1979). A Monte Carlo investigation of the robustness of 
Hotelling’s one and two sample T2 tests. Journal of the American Statistical 
Association, 74, 48-51. 

Finch, H. (2005). Comparison of the performance of the nonparametric and 
parametric MANOVA test statistics when assumptions are violated. Methodology, 
1, 27-38. 

Finch, W. H., & French, B. F. (2008). Testing the null hypothesis of no 
group mean vector difference: A comparison of MANOVA and SEM. Paper 
presented at the Annual meeting of the Psychometric Society, Durham, NH, June. 

Fouladi, R. T., &Yockey, R. D. (2002). Type I error control of two-group 
multivariate tests on means under conditions of heterogeneous correlation 
structure and varied multivariate distributions. Communications in Statistics – 
Simulation and computation, 31, 360-378. 

Hair, J. F., Anderson, R. E., Tatham, R. L, & Black, W. C. (1987). 
Multivariate data analysis with readings (3rd ed). New York, NY, Macmillan. .  

Hakstian, A. R., Roed, J. C., & Lind, J. C. (1979). Two-sample T2 procedure 
and the assumptionfor homogeneous covariance matrices. Psychological Bulletin, 
86, 1255-1263. 

Hancock, G. R., Lawrence, F. R., & Nevitt, J. (2001). Type I error and 
power of latent mean methods and MANOVA in factorially invariant and 
noninvariant latent variable systems. Structural Equation Modeling, 7, 534-556 

Harris, R. J., (2001). A primer of multivariate statistics(3rd Ed). Mahwah, 
NJ: Lawrence Erlbaum.  

Headrick, T. C., & Sawilowsky, S. S. (1999). Simulating correlated non-
normal distributions: Extending the Fleishman power method. Psychometrika, 64, 
25-35. 



A MONTE CARLO COMPARISON OF ROBUST MANOVA STATISTICS 

74 

Holloway, L. N., & Dunn, O. J. (1967). The robustness of Hotelling’s T2. 
Journal of the American Statistical Association, 62, 124-136. 

Hopkins, J. W., & Clay, P. P. F. (1963). Some empirical distributions of 
bivariateT2 and homoscedasticity criterion M under unequal variance and 
leptokurtosis. Journal of the American Statistical Association, 58, 1048-1053. 

Huberty, C.  L., & Morris, J.  D., (1989). Multivariate analysis versus 
multiple univariate analysis, Psychological Bulletin, 105, 302-308. 

Huberty, C. J, & Olejnik, S. (2006). Applied MANOVA and discriminant 
analysis. New York: Wiley. 

Hussein, A., & Carriere C. K. (2005) Group Sequential Procedures under 
Variance Heterogeneity. Statistical Methods for Medical Research. 14, 1-8.  

Ittenbach, R. F., Chayer, D. E., Bruininks, R. H., Thurlow, M. L., & Beirne-
Smith, M. (1993). Adjustment of young adults with mental retardation in 
community settings: comparison of parametric and nonparametric statistical 
techniques. American Journal of Mental Retardation, 97, 607-615. 

James, G. S. (1954). Tests of linear hypotheses in univariate and 
multivariate analysis when the ratio of the population variances are unknown. 
Biometrika, 41, 19-43. 

Johansen, S. (1980). The Welch-James approximation to the distribution of 
the residual sum of squares in a weighted linear regression. Biometrika, 67, 85-92. 

Johnson, R.A. &Wichern, D.W. (2002). Applied multivariate statistical 
analysis. Upper Saddle River, NJ: Prentice Hall. 

Katz, B. M.. & McSweeney, M. (1980). A multivariate Kruskal-Wallis test 
with post hoc procedures. Multivariate Behavioral Research, 15, 281-297. 

Keselman, H. J., Kowalchuk, R. K., & Lix, L. M. (1998). Robust 
nonorthogonal analyses revisited: An update based on trimmed means. 
Psychometrika, 63, 145-163. 

Kim, S. & Olejnik, S. (2004). Bias and precision of multivariate effect size 
measures of association for a fixed-effect analysis of variance model. Paper 
presented at the annual meeting of the American Educational Research 
Association, San Diego, CA, April. 

Kirk, R. E. (1995). Experimental Design: Procedures for the behavioral 
sciences. New York: Wadsworth Publishing. 

Korin, B. P. (1972). Some comments on the homoscedasticity criterion M 
and the multivariate analysis of variance tests T2, W, and R. Biometrika, 59, 215-
216. 



FINCH & FRENCH 

75 

Krishnamoorthy, K., & Xia, Y. (2006). On selecting tests for equality of two 
normal mean vectors. Multivariate Behavioral Research, 41, 533-548. 

Krull, V., Choi, S., Kirk, K., Prusick, L., & French, B. F. (2010). Lexical 
effects on spoken-word recognition in children with normal hearing. Ear and 
Hearing, 31, 102-114.  

Lee, Y.-S. (1971). Asymptotic formulae for the distribution of a multivariate 
test statistic: Power comparisons of certain multivariate tests. Biometrika,58,647-
651. 

Lix, L. M., & Keselman, H. J. (2004). Multivariate tests of means in 
independent group designs: Effects of covariance heterogeneity and nonnormality. 
Evaluation in the Health Professions, 27(1), 45-69. 

McCarroll, D., Crays, N., & Dunlap, W. P. (1992). Sequential ANOVAs and 
type I error rates, Educational and Psychological Measurement, 52, 387-393.  

Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with 
applications. Biometrika, 57, 519-530. 

Muthén, L. K., &Muthén, B. O. (1998–2004). Mplus user’s guide (4thed.). 
Los Angeles: Muthén&Muthén. 

Nel, D. G., & Van der Merwe, C.A., (1986). A solution to the Multivariate 
Behrens–Fisher problem. Communications in Statistics-Theory and Methods, 15, 
3719–3735. 

Olejnik, S. (2010). Multivariate analysis of variance. . In G. R. Hancock & 
R. O. Mueller (Eds.), The reviewer’s guide to quantitative methods. (pp. 328 -
328). NY: Routledge. 

Olson, C.L. (1974). Comparative robustness of six test in multivariate 
analysis of variance. Journal of the American Statistical Association, 69, 894-908. 

Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte 
Carlo experiments: Design and implementation. Structural Equation Modeling, 8, 
287-312.  

Pillai, K. C. S., & Jayachandran, K. (1967) Power comparisons of tests of 
two multivariate hypotheses based on four criteria. Biometrika, 54,195-210. 

Puri, M. L., & Sen, P. K. (1971). Nonparametric methods in multivariate 
analysis. Malabar, FL: Krieger Publishing Company. 

Ramsey, P. H. (1982). Empirical power of procedures for comparing 2 
groups on p variables. Journal of Educational Statistics, 7, 139-156. 



A MONTE CARLO COMPARISON OF ROBUST MANOVA STATISTICS 

76 

Raykov, T. (2001). Testing multivariable covariance structure and means 
hypotheses via structural equation modeling. Structural Equation Modeling, 8(2), 
224-256. 

SAS Institute. (2004). SAS software version 9.1. Cary, NC: SAS Institute. 
Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and 

standard enors in covariance structure analysis. In A. von Eye & C.C. Clogg 
(Eds.), Latent variables analysis: Applications for developmental research (pp. 
399-419). Thousand Oaks, CA: Sage. 

Scheffé, H. (1953). A method for judging all contrasts in the analysis of 
variance. Biometrika,40, 87-104. 

Sheehan-Holt, J. K. (1998). MANOVA simultaneous test procedures: The 
power and robustness of restricted multivariate contrasts. Educational and 
Psychological Measurement, 58, 861-881. 

Stevens, J. (2001). Applied Multivariate Statistics for the Behavioral 
Sciences. Mahwah, NJ: Lawrence Erlbaum Associates, Publishers. 

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th 
ed.). Boston: Allyn and Bacon. 

Warner, R. M. (2008). Applied Statistics: From bivariate through 
multivariate techniques. Thousand Oaks: Sage 

Wilcox, R. R. (1995). Simulation results on solutions to the multivariate 
Behrens-Fisher problem via trimmed means. The Statistician, 44, 213-225. 

Yanagihara, H., & Yuan, K-H. (2005). Three approximate solutions to the 
multivariate Behrens-fisher problem. Communications in Statistics: Simulation 
and Computation, 34, 957-988. 

Yao, Y. (1965). An approximate degrees of freedom solution to the 
multivariate Behrens-Fisher problem. Biometrika, 52, 139-147. 

Yu, C., & Muthén, B. (2002). Evaluation of model fit indices for latent 
variable models with categorical and continuous outcomes. Paper presented at the 
annual meeting of the American Educational Research Association, New Orleans, 
LA. 

Yuen, K. K. (1974). The two-stage sample trimmed t for unequal population 
variances. Biometrika, 61, 165-170. 

Zwick, R. (1986). Rank and normal scores alternatives to Hotelling's T2, 
Multivariate Behavioral Research, 21, 169-186 
  



FINCH & FRENCH 

77 

Appendix A 

The below equations supplement the material in the text so the interested reader 
has the formulas at their disposal. The terms are defined below and correspond to 
terms which appear throughout the text. For addition information on the 
derivation of the statistics please see the cited sources in the text. 

Family 1 

1) The multivariate analog of the univariate t-test equation for unequal 
variances: 

( ) ( )
1

2 1 2
1 2 1 2
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2) FJN involves the conversion of 2
unequalT  to an F value: 

( )

( ) ( )

2

2

2

2 21 2 1

1

1 2

Where
62

1
Number of outcome variables

1.5

unequal
JN

j j
j j

j
j

j

T
F

c

Cc p C
p

p

C tr A A tr A A
n

S
A

n
A A A

− −

=

=

= + −
+

=

= +

=

= +

∑

  

This FJN value for this statistic is then compared with an F critical value p,vJ 
degrees of freedom with vJ = p (p + 2) / 3C. 
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3) The FNV test statistic is a transformed version of 2
unequalT : 

( ) ( )
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FNV is compared to a critical F value with p, vN degrees of freedom. 

4) Yao’s FY is based on 2
unequalT : 
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Family 2 

5) The Brown and Forsythe (FBF) test statistic: 
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6) The Kim (FK) test statistic: 
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7) Winsorized variance: 
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1  if i H i HZ Y Y Y−= ≥   

Otherwise i iZ Y=   

YL = Lower cut score corresponding to 20th percentile value. 

YH = Upper cut score corresponding to 80th percentile value. 

8) 2 2 and unequalT T  can be calculated using the trimmed means and Winsorized 
covariance matrices as: 
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TjY =  Trimmed mean for group j 

hj = Number of group j that is kept after trimming. 

9) A version of Hotelling’s T2 that does not use the pooled covariance 
matrix: 
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Family 3 

10) Rank based nonparametric test 

Convert Pillai’s trace value using ranks into the chi-square statistic: 
2 ( 1)n Pχ = −  where P is Pillai’s trace and n is the total sample size. Compare 

the value with the 2χ  distribution with k (p – 1) degrees of freedom, where k 
is the number of groups for the independent variable and p is the number of 
response variables. 
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Family 4 

11) Structural Equation Model based test 

To test of the null hypothesis of group differences on the responses is the 
difference in the 2χ  fit statistics: 2 2

Constrained Unconstrainedχ χ− . Allowing the group 
means to differ results in a saturated CFA model so that the value of 

2
Unconstrained 0χ = . 

The test of the null hypothesis of group differences across the vector of 
dependent variable means is equivalent to 

2 2 2 2
Constrained Unconstrained Constrained Constrained0χ χ χ χ− = − = . 
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A confidence interval for effect sizes provides a range of plausible population effect sizes 
(ES) that are consistent with data. This article defines an ES as a standardized linear 
contrast of means. The noncentral method, Bonett’s method, and the bias-corrected and 
accelerated bootstrap method are illustrated for constructing the confidence interval for 
such an effect size. Results obtained from the three methods are discussed and 
interpretations of results are offered. 
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Introduction 

The importance of reporting effect sizes (ESs) and confidence intervals (CIs) has 
been strongly emphasized in the debate over null hypothesis significance testing 
as a methodology in social science research (Cohen, 1994; McCartney & 
Rosenthal, 2000; Nix & Barnette, 1998; Schmidt, 1996, although see Sawilowsky 
& Yoon, 2002, in this journal for a contrary view). Cumming (2012) 
characterized the shift from reliance on null hypothesis significance testing to the 
use of ESs, CIs, and meta-analyses as new statistics. Thompson (2002) stated, 
“An improved quantitative science would emphasize the use of confidence 
intervals (CIs), and especially CIs for effect sizes” (p.25), and constructing CIs 
for ESs facilitates meta-analytic thinking and interpretation. Thompson explained 
that reporting CIs allows future researchers to incorporate prior knowledge into 
the estimation of the same population ES. Furthermore, CI is directly related to 
the precision of ES estimates obtained from different studies. (See Knapp & 
Sawilowsky, 2001a, 2001b for a contrary view.) 

Professional organizations such as the American Psychological Association 
(APA) and the American Educational Research Association (AERA) have both 

mailto:litchen@indiana.edu
mailto:peng@indiana.edu


CHEN & PENG 

83 

stressed the importance of reporting CIs for ESs, particularly since 1999. 
According to the APA Task Force Report, “Interval estimates should be given for 
any effect sizes involving principal outcomes” (Wilkinson and the Task Force on 
Statistical Inference, 1999, p. 599). The fifth and sixth editions of the APA 
Publication Manual stress that “The inclusion of confidence intervals (for 
estimates of parameters, for functions of parameters such as differences in means, 
and for effect sizes) can be an extremely effective way of reporting results” (APA, 
6th edition, 2010, p.34). In addition, the sixth edition of the APA Publication 
Manual emphasizes, “Whenever possible, provide confidence interval for each 
effect size reported to indicate the precision of estimation of the effect size” (APA, 
6th edition, 2010, p.34). Likewise, the AERA’s Standards for Reporting on 
Empirical Social Science Research suggest that, “For each of the statistical results 
that is crucial to the logic of the design and analysis, there should be included: … 
An indication of the uncertainty of that index of effect size …” (AERA, 2006, p. 
37). According to the sixth edition of the APA Publication Manual, it is crucial to 
report confidence intervals because “confidence intervals combine information on 
location and precision and can often be directly used to infer significance levels, 
they are, in general, the best reporting strategy” (p. 34). For ways to report CIs, 
the same APA manual states, “As a rule, it is best to use a single confidence level, 
specified on an a priori basis (e.g., a 95% or 99% confidence interval), throughout 
the manuscript. Wherever possible, base discussion and interpretation of results 
on point and interval estimates” (p. 34). 

Despite these efforts, the reporting rate of CIs for ESs in empirical studies is 
still low (Odgaard & Fowler, 2010; Peng, Chen, Chiang, & Chiang, 2013). This 
phenomenon may be due to a lack of understanding of the statistical properties of 
CIs for ESs, or a lack of suitable algorithms for the construction of CIs 
implemented in commercial statistic software (e.g., SPSS, SAS). Thus, this article 
aims to present three methods and algorithms for constructing the CI for a 
standardized linear contrast of means in a one-way fixed-effects univariate 
ANOVA design. This article defines a standardized linear contrast of means as a 
measure of ES for fixed-effects ANOVA designs. And the three methods are: the 
noncentral method, Bonett’s method, and the bias-corrected and accelerated 
bootstrap method.  

To facilitate the understanding of standardized linear contrasts of means and 
to illustrate the three methods, a sleep deprivation example from Kirk (1995) is 
used. This example serves as a template for discussing the construction of CI for a 
standardized linear contrast of means using the three methods. 
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A sleep deprivation example 
This example examines the effects of sleep deprivation on hand-steadiness. 
According to Kirk (1995): Assume an interest in the effects of sleep deprivation, 
treatment A, on hand-steadiness. The four levels of sleep deprivation of interest 
are 12, 18, 24, and 30 hours, which are denoted by a1, a2, a3, and a4, respectively. 
An experiment is conducted in which 32 subjects are randomly assigned to the 
four levels of sleep deprivation, with the restriction that eight subjects are 
assigned to each level. The dependent variable is the number of time during a 2-
minute interval that a stylus makes contact with the side of a ½-inch hole (p. 166). 
The independent variable is hours of sleep deprivation and the dependent variable 
is the number of times that a stylus held by a participant makes contact with the 
side of a ½-inch hole. The higher the number, the worse the performance, 
presumably affected by the deprivation of sleep. Data gathered from this study are 
shown in Table 1. 
 
 
Table 1. The number of times that a stylus held by a participant makes contact with a ½-
inch hole during a 2-minute interval from the sleep deprivation sample. 
 
          Hours of Sleep Deprivation 12 hours 18 hours 24 hours 30 hours 
Treatment Level a1 a2 a3 a4 
               
 4 4 5 3 

 6 5 6 5 

 3 4 5 6 

 3 3 4 5 

 1 2 3 6 

 3 3 4 7 

 2 4 3 8 

 2 3 4 10 
               
Group Sizes ( jn ) 8 8 8 8 

Group Means ( jY ) 3 3.5 4.25 6.25 

Standard deviation ( ˆ jσ ) 1.51 0.93 1.04 2.12 
           
 

Consider the hypothesis that a human’s fine motor skill decreases 
dramatically after being deprived of sleep for 24 hours or longer. Thus, interest 
lies in the contrast between the average performance of participants after 24 and 
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30 hours of sleep deprivation versus the average performance of participants after 
12  and 18 hours. The linear contrast of means (ψ) is written as 
 
 ( ) ( )24 hours 30 hours 12 hours 18 hours 10.5 0.5 ,k

j j jcψ µ µ µ µµ == × + − × + =∑   (1) 
 
where μj is the population mean for the jth group, k is the number of independent 
groups (= 4 for the sleep deprivation example), and cj is the coefficient or weight 
assigned to the jth group (= 0.5, 0.5, ̶  0.5, and  ̶ 0.5 for 24 hours, 30 hours, 12 
hours, and 18 hours of sleep deprivation, respectively). Equation 1 and all 
subsequent equations are written specifically to suit the sleep deprivation example 
first, followed by a general formulation (in blue). 

The value obtained from Equation 1 based on sampled data is an estimate of 
the corresponding population ES in original units. If a researcher wishes to 
standardize this ES, he/she needs to divide ψ with a standardizer. Such a 
standardizer is usually the population standard deviation, assumed to be equal and 
expressed as σ. For the specific ψ defined in Equation 1, its standardized form (δ) 
is written as follows: 
 

 ( ) ( )24 hours 30 hours 12 hours 18 o r 1h u s0.5 0.5
.

k
j j jcµ µ µ

δ
σ

ψ
σ σ

µµ =× + − × +
= = = ∑   (2) 

 
Reporting a standardized linear contrast of means is more informative than 

reporting a linear contrast of means in original units, when (1) the original unit of 
the dependent variable is not familiar to readers, or (2) a researcher intends to 
compare ESs obtained from studies that employ different dependent variables.  

The following three sections introduce three methods for constructing CIs 
for standardized linear contrasts of means as ESs. The three methods are the 
noncentral method, Bonett’s method, and the BCa (or the bias-corrected and 
accelerated bootstrap) method. After obtaining CIs results are compared and 
proper interpretations of CIs in this context are discussed. 

Methods 

Noncentral Method 
Within the null hypothesis significance testing framework, a linear contrast ψ 
defined in Equation 1 is tested with a t-statistic defined as: 
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 ( ) ( )
( ) ( ) ( ) ( )

24 hours 30 hours 12 hours 18 hours

2

1

2 2 2 2

1

0.5 0.5
,

0.5 0.5 0.5 0.5ˆ
8

ˆ

k
j j j

jk
j

j

c YY Y Y

c

Y
t

n
σσ

=

=

× + − × +
= =

+ + − + −
× ×

∑

∑
  (3) 

 
where jY  is the sample mean for the jth group (= 4.25, 6.25, 3.00, and 3.50 for 24, 
30, 12, and 18 hours of sleep deprivation, respectively), σ̂  is the pooled standard 
deviation that is used to estimate the equal population standard deviation 

( )2 2 2 2( 1.51 0.93 1.04 2.12 / 4 1.48)= + + + = , and jn  is the sample size for the jth 

group (= 8 for each of the four groups in sleep deprivation example). 
Under the null hypothesis of a 0 linear contrast of means, the t statistic is 

distributed as a symmetric central t distribution with a mean of 0. When the null 
hypothesis is false (meaning the population linear contrast of means does not 
equal 0), the t statistic follows a noncentral t distribution that is centered 
approximately at the noncentrality parameter λ, when the degree of freedom is 
large (see Cumming & Finch, 2001). The noncentral t distribution has two 
parameters: the degrees of freedom (or df = the number of participants  ̶  the 
number of independent groups) and λ. When λ is zero, the noncentral t distribution 
is the central t distribution, or simply the t distribution. 

One way to construct the CI for δ defined in Equation 2, is to use the 
noncentral t distribution. The noncentrality parameter λ of the noncentral t 
distribution is related to δ as follows, 
 

 ( ) ( )2 22 2

1

2 0.5 0.50.5 0.5 .
8 8 8 8

jk
j

j

c
n

λ λδ =

− −
= × + + = ×+ ∑   (4) 

 
And λ is defined as follows, 
 

 

( ) ( )
( ) ( )

( ) ( )

24 hours 30 hours 12 hours 18 hours

2 22 2

2 22 2

1

2

1

0.5 0.5

0.5 0.50.5 0.5
8 8 8 8

.
0.5 0.50.5 0.5

8 8 8 8

k
j j j

jk
j

j

c

c
n

µ µ µ

σ

µ

µ

λ

σ

δ =

=

× + − × +
= =

− −
× + + +

=
− −

+ ×+ +

∑

∑

  (5) 
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Steiger and Fouladi (1997) illustrated how to derive λ from the observed t statistic 
obtained from a sample. From λ, using Equation 4, δ can be derived. To construct 
a 95% confidence interval for δ, first compute the lower and the upper limits of λ 
from the observed t statistic. The lower limit for λ is the noncentrality parameter 
of the noncentral t distribution in which the observed t statistic is at the 97.5th 
percentile. The upper limit for λ is the noncentrality parameter of the noncentral t 
distribution in which the observed t statistic is at the 2.5th percentile. From the two 
limits of λ, the limits for δ can be derived. 

The use of noncentral distributions in constructing the CI for ESs involves 
sequence of iterations. In recent years, the computational difficulty for the 
noncentral t distribution has been overcome by algorithmic improvement. For 
example, the lower and upper limits of λ can be obtained in SAS® with the 
following syntax: 

 
lamda_lower=TNONCT (t_observed, df , .975); 

 
and  

 
lamda_upper=TNONCT (t_observed, df , .025); 
 
The df for the current example is 32  ̶  4 = 28. Once the lower limit and the 

upper limit of λ are obtained from SAS®, the lower limit and the upper limit of δ 
can be computed from the following according to Equation 4: 
 

 ( ) ( )2 22 2

lower lower

2

lower 1

0.5 0.50.5 0.5 , and
8 8 8 8

jk
j

j

c
n

λδ λ ==
− −

= × + + ×+ ∑    (6) 

 

 ( ) ( )2 22 2

upper uppe

2

uppr er 1

0.5 0.50.5 0.5 .
8 8 8 8

jk
j

j

c
n

δ λ λ == ×
− −

= × + + + ∑   (7) 

 
Applying the noncentral method for constructing the CI for a standardized 

linear contrast of means is discussed in the literature (Cumming & Finch, 2001; 
Kline, 2004; Steiger, 2004). Liu (2010) illustrated the geometric meaning of the 
noncentrality parameter for a linear contrast in a Euclidian space. Kelley and 
Rausch (2006) and Lai and Kelley (2012) considered the sample size required to 
achieve the desired accuracy in CI estimations. Readers should note that there are 
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two statistical assumptions associated with the noncentral confidence intervals for 
δ. These two assumptions are (1) normality for each population distribution and 
(2) equal variances for all population distributions. 

The SAS® macro “cinoncentral” (See Appendix A) yields the noncentral CI 
for a standardized linear contrast of means (δ). To execute this SAS® macro, 
readers first create a SAS data set in the DATA step of SAS®, or import the data 
into SAS®. This step is followed by the specification of a level of confidence, 
such as .95, and a coefficient for each group. 

Bonett’s Method 
Bonett (2008) proposed a more general definition of the standardized linear 
contrast of means in order to deal with unequal variances across populations: 
 
 ( ) ( )24 hours 30 hours 12 hours 18 hours

Bonett 2 2 2 2
24 hours 30 hours 12 hours 18 hours

1

2 2
1 1

0.5 0.5
.

4

k
j j j

k k
j j j j

c

k k

µ µ µ µ
δ

σ σ σ σ

µ ψ
σ σ

=

= =

× + − × +
=

+
=

+ +
= ∑
∑ ∑

  (8) 

 
It is worth noting that, when population variances are equal (i.e., 2

24 hoursσ =  
2
30 hoursσ =  2

12 hoursσ =  2
18 hoursσ = 2σ ), 

 

 

( ) ( )

( ) ( )

24 hours 30 hours 12 hours 18 hours
Bonett 2

24 hours 30 hours 12 hours 18 hours 1

0.5 0.5

4
4

0.5 0.5
.

k
j j jc

µ µ µ µ
δ

σ

µ µ µ µ
σ

µ
δ

σ
=

× + − × +
= =

× +
=

+ − ×
=∑

  (9) 

 
In other words, δ is a special case of δBonett when population variances are all 
equal. Based on a large sample approximation, Bonett derived the CI for δBonett as 
follows: 
 

 ( ) 1/2

Bonett critical Bonett
ˆˆ var ,zσ δ ±     (10) 

 
where zcritical is the critical value from the standard normal distribution, Bonettδ̂  is 

the sample estimate for the corresponding population δBonett, and ( )Bonett
ˆvar δ  is 
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the sample variance of Bonettδ̂ . The sample estimate for Bonett’s standardized 

linear contrast of means, i.e., Bonettδ̂ , is obtained from the following equation: 
 

 

( ) ( )24 hours 30 hours 12 hours 18 hours
Bonett 2 2 2 2

24 hours 30 hours 12 hours 18 ho

1 1

ur

2
Bonett1

s

0.5 0.5ˆ
ˆ ˆ ˆ ˆ

4

.
ˆˆ

k k
j j j j j j

k
j j

c Y

Y

Y

Y Y Y

c

k

σσ

δ
σ σ σ σ

= =

=

× + − × +
= =

+ + +
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∑

  (11) 

 
It is worth noting that when sample sizes are all equal, Bonettˆ ˆσ σ= . And 

( )Bonett
ˆvar δ  is obtained from the following equation: 

 

 

( )
2 4 4 4 4
Bonett 24 hours 30 hours 12 hours 18 hours

Bonett 2 4
Bonett

2 2 2 2 2 2
24 hours 30 hours 12 hours

ˆ ˆ ˆ ˆ ˆˆvar
ˆ4 2 (8 1) 2 (8 1) 2 (8 1) 2 (8 1)

ˆ ˆ ˆ(0.5) (0.5) ( 0.5) ( 0.
(8 1) (8 1) (8 1)

δ σ σ σ σδ
σ

σ σ σ

   
= × + + +     × − × − × − × −  

× × − × −
+ + +

− − −
+

2 2
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 (12) 

 
where dfj = the number of participants in the jth group minus 1. 

Bonett’s method assumes normality, but not equal variances for the 
population distributions. When population variances are equal, δ becomes a 
special case of δBonett. The SAS® macro “cibonett” (See Appendix B) yields 
Bonett’s CI for a standardized linear contrast of means (δBonett). To execute this 
SAS® macro, readers first create a SAS data set in the DATA step of SAS®, or 
import the data into SAS®. This step is followed by the specification of a level of 
confidence, such as .95, and a coefficient for each group. 
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The BCa Bootstrap Method 
The bootstrap method is a resampling technique that constructs an empirical 
distribution of estimates from data already collected. Thus, the bootstrap method 
does not require assumptions of either normality or equal variances. Nor does it 
rely on a theoretical sampling distribution, such as t or normal, to derive the lower 
or the upper limits of a confidence interval.  

Several methods of constructing CIs based on bootstrapping have been 
developed. These include the symmetric percentile bootstrap method, the bias-
corrected and accelerated (BCa) bootstrap method, and the approximate bootstrap 
confidence (ABC) interval method. The BCa bootstrap method introduced here 
corrects the bias in the symmetric percentile bootstrap method. To provide the 
general idea of bootstrapping technique, the symmetric percentile bootstrap 
method is presented first, followed by the BCa bootstrap method. 

The symmetric percentile bootstrap method constructs the CI by finding the 
α/2×Bth and [1 −  (α/2)]×Bth ranked values of the empirical distribution of the 
sample estimates. Here, α is the Type I error rate, such as .05; B is the number of 
bootstrap samples, such as 1,000. A bootstrap sample is a random sample of size 
n, drawn with replacement from the observed n scores. After a large number of 
bootstrap samples (e.g., 1,000) are formed, an empirical bootstrap distribution of 
the estimated effect sizes is constructed. From the empirical bootstrap distribution, 
the lower and upper confidence limits are derived. If α = 0.05 and B = 1,000, the 
lower limit of a 95% bootstrap confidence interval is the 0.05/2×1,000th ranked 
value of the empirical bootstrap distribution and the upper limit is the [1  ̶(0.05/2)]
×1,000th ranked value. 

Readers can apply the bootstrap technique to construct the CI for either δ 
(Equation 2) or δBonett (Equation 8). A step-by-step instruction for obtaining the CI 
for δBonett using the symmetric percentile bootstrap method is presented. Readers 
can use this instruction to construct the CI for δ as well. Assuming that a 95% CI 
is to be constructed for δBonett, based on the sample estimator Bonettδ̂ . Three steps 

are completed B times (e.g., 1,000) in order to yield B bootstrap estimates, *
Bonettδ̂ . 

The first step is to randomly sample eight scores with replacement from each of 
the four groups, where eight is the number of scores in each group. The second 
step is to compute the mean and the standard deviation of these eight scores from 
each group. The third step is to compute *

Bonettδ̂  by plugging the means and the 
standard deviations obtained from the second step into Equation 11. After 
obtaining the B (e.g., 1,000) bootstrap *

Bonettδ̂ , one lists them in an ascending order. 
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The .025×Bth (=25th) and the .975×Bth (=975th) ranked *
Bonettδ̂ are, respectively, 

the 95% lower and upper confidence limits. When estimates are tied, an average 
rank is assigned to the tied estimates.  

The BCa bootstrap method is an improvement over the symmetric percentile 
bootstrap method. Specifically, it constructs the CI for the standardized linear 
contrast of means (δ or δBonett) using CIlower×Bth and CIupper×Bth ranked values of 
bootstrapped estimates. The values of CIlower and CIupper depend on acceleration 
and bias-correction numbers, â  and 0ẑ , respectively. According to Efron and 
Tibshirani (1993), â  refers to the rate of change in the standard error of the 
estimated parameter (i.e., Bonettδ̂ ) with respect to the true population value (i.e., 
δBonett). The bias-correction number, 0ẑ , is interpreted as the median bias of the 
sample bootstrapped estimates. When exactly 50% of bootstrapped estimates are 
less than or equal to the observed estimate, 0ˆ 0z = . Using the notations described 
above for the symmetric percentile bootstrap method, 
 

 
( )

( )

*
Bonett Bonett1

0

ˆ ˆ#
ˆ ,

1,000
z

B

δ δ
−
 <
 = Φ
 =
 

  (13) 

 
where 1−Φ  is the inverse of the standard normal cumulative function and 

( )*
Bonett Bonett

ˆ ˆ# δ δ<  is the frequency of those bootstrap estimates (i.e., *
Bonettδ̂ ) that 

are less than the observed estimate (i.e., Bonettδ̂ ). The acceleration â  is obtained 
using the jackknife method that takes the form: 
 

 
( )
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∑
  (14) 

 
where Bonett

ˆ
iδ −  is the value of Bonettδ̂  with the ith score removed from the entire 

data (i = 1,…,32 in the sleep deprivation example), and Bonettδ̂  is the average of all 

possible Bonett
ˆ

iδ − . The CIlower and CIupper for a 95% confidence interval are given 
by 
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Here, 2z
α 
 
   is the (100

2
α

× )th percentile of a standard normal distribution. 

For a 95% confidence interval, 
.025

2z
α = 
  = −1.96 and 

1 .975
2z
α − = 

  = 1.96. The BCa 
confidence intervals yield the same results as the symmetric percentile bootstrap 
confidence intervals, when 0ẑ  and â  both equal 0. In other words, CIlower = Φ(‒
1.96) = .025 and CIupper = Φ(1.96) = .975, when 0ẑ  and â  both equal 0. The BCa 
method is superior to the symmetric percentile bootstrap method because it leads 
to better approximations to the lower and upper limits. However, Efron and 
Tibshirani (1993) stated, “their [the BCa] coverage accuracy can still be erratic 
for small sample sizes” (p.178). Chen’s dissertation (2013) uncovered that the 
coverage probability produced by the BCa method was satisfactory when each 
group size was 30. Kelley’s (2005) simulation found that BCa method’s coverage 
probability was poor when each group size was eight. 

The process for constructing the BCa CI for δBonett may appear complex to 
some readers. However, a SAS® macro “cibca” (See Appendix C) based on the 
SAS program written by Barker (2005) is provided here to assist researchers in 
constructing BCa CIs for δBonett, of which δ is a special case. To execute this 
SAS® macro, readers first create a SAS data set in the DATA step of SAS®, or 
import the data into SAS®. This step is followed by the specification of a number 
of bootstrap estimates (e.g., 1,000), a coefficient for each group, and a level of 
confidence, such as .95. 
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Results 

Given the standardized linear contrast of means (δ in Equation 2) from the sleep 
deprivation example, the 95% noncentral CI was computed to be [0.56758, 
2.12318]. Likewise, given the standardized linear contrast of means (δBonett in 
Equation 8), the 95% Bonett’s CI was computed to be [0.50045, 2.20958] and the 
BCa bootstrap CI to be [0.51967, 2.13941]. Thus, the CIs constructed by the three 
methods are slightly different from each other. The noncentral CI is the narrowest 
(= 2.12318  ̶  0.56758 = 1.55560) or most precise, followed by the BCa bootstrap 
CI (= 2.13941 ̶  0.51967 = 1.61973), and the Bonett’s CI (= 2.20958  ̶ 0.50045 = 
1.70913). These results are consistent with findings obtained by Chen (2013) in a 
thorough investigation of these three methods under a variety of conditions. 

In actuality, it is not necessary to compute more than one CI for a 
standardized ES. It is however necessary for researchers to be informed of the 
optimal method for a particular research context. For the purpose of 
demonstration, the correct interpretation of the noncentral CI for the contrast of 
interest (i.e., δ in Equation 2) is described. 

How to interpret confidence intervals for a standardized linear 
contrast of means? 
The 95% noncentral CI ranges from 0.56758 (or 0.57) to 2.12318 (or 2.12). 
Derived from the data presented in Table 1, all values contained in this interval 
cannot be rejected with a Type I error rate of 5%, if they are placed in a null 
hypothesis. Furthermore, all values in this interval are greater than 0. Thus, a null 
hypothesis of 0 standardized mean difference should be rejected at an α level 
of .05. Based on the data and the noncentral CI, readers can conclude that the 
difference in the number of times that a stylus touched the sides of a ½ hole 
between people deprived of sleep for 24 hours or longer and people deprived of 
sleep less than 24 hours can be as large as twice of the standard deviation of the 
data, or as small as a half of the standard deviation. 

Discussion 

A measure of an ES gives a point estimate of a treatment effect, whereas a CI of 
such an ES provides the precision of the estimation. Although both the APA and 
the AERA have encouraged researchers to report CIs for ESs, Odgaard and 
Fowler’s (2010) study found that the reporting rate of CIs for ESs was only 40% 
in the Journal of Consulting and Clinical Psychology—the first APA journal that 
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required the reporting of CIs for ESs for primary results. A similar finding is 
reported by Peng et al. (2013) across a variety of psychology and education 
journals. The reporting of CI can be encouraged through accessible and reliable 
computing algorithms. 

This article (1) illustrates the need to report CIs for ESs, (2) addresses the 
importance of reporting the CIs for ESs, (3) introduces, demonstrates, and 
compares three methods (the noncentral method, Bonett’s method, and the BCa 
bootstrap method) for constructing the CI for a standardized linear contrast of 
means (a measure of the ES), and (4) provides SAS programming codes for these 
methods. The readers should note that the SAS programming codes provided in 
Appendices A – C are applicable for unequal sample sizes as well. It is hoped that 
this paper facilitates researchers’ understanding of these three methods and 
enables them to report the CIs for ESs, defined as standardized linear contrasts of 
means in fixed-effects ANOVA designs. 
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Appendix A 

SAS® Macro “cinoncentral” 
***************************************************************************; 
*   format for data set: first variable = group, second variable = scores  ; 
*   data = data set name                                                   ; 
*   nominal = nominal confidence level                                     ; 
*   contrast = a coefficient for each group, e.g., {.5 .5 -.5 -.5}         ; 
***************************************************************************; 
%MACRO cinoncentral(data,nominal,contrast); 

PROC IML; 
USE &data; 
READ ALL INTO datain; 
nn=NROW(datain); 
groups = UNIQUE(datain[,1]);  *get group information of the data; 
ngroups = NCOL(groups);  *get number of groups of the data;      
CALL SYMPUTX("n_groups",ngroups); *set the macro variable n_groups to be the 

 number of groups; 
%DO i = 1 %TO &n_groups;  *loop for groups; 
group&i = datain[LOC(datain[,1]=&i),2]; /*obtain all the scores for each group*/  
mu&i=mean(group&i); 
sum&i = sum(group&i); 
v_sum&i =(sum&i)**2;  
n&i = nrow(group&i); 
v_sum_n&i=v_sum&i/ n&i; 
%END; 
mu=mu1; 
v_sum=v_sum1; 
n=n1; 
v_sum_n=v_sum1/n1; 
%DO i=2 %TO &n_groups; 
mu=mu//mu&i; 
v_sum = v_sum//v_sum&i; 
n = n//n&i; 
v_sum_n=v_sum_n//v_sum_n&i; 
contrast = t(&contrast); 
%END; 
df=n-1; 
numerator=(contrast)`*mu; 
mse1=(datain[,2])`*(datain[,2]); *squared values of all scores; 
mse2=sum(v_sum_n); 
mse=(mse1-mse2)/(nn-ngroups); 
contrast_square=(contrast)##2; 
n_1=1/n; 
nu=(contrast_square)`*(n_1); 
t=numerator/(SQRT(mse*nu)); 
lamda_lower = TNONCT(t,nn-ngroups,1-(1-&nominal)/2);  /*compute the lower 
        noncentrality*/ 
lamda_upper = TNONCT(t,nn-ngroups,(1-&nominal)/2);  /*compute the upper 
        noncentrality*/ 
coe = sqrt(nu); 
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NCt_lower=lamda_lower*coe;        /*Lower limit of noncentral ES*/ 
NCt_upper=lamda_upper*coe;        /*Upper limit of noncentral ES*/ 
Width= NCt_upper- NCt_lower; 
TITLE "The confidence interval based on the noncentral method"; 
TITLE2 "Coefficient=&contrast Confidence level=&nominal"; 
PRINT NCt_lower NCt_upper Width; 
QUIT; 
%MEND; 
data a; 
input group y @@; 
cards; 
1  3 2 5 3 4 4 4 
1  5 2 6 3 5 4 6 
1  6 2 5 3 4 4 3 
1  5 2 4 3 3 4 3 
1  6 2 3 3 2 4 1 
1  7 2 4 3 3 4 3 
1  8 2 3 3 4 4 2 
1 10 2 4 3 3 4 2 
; 
run; 

%cinoncentral(a,.95,{.5 .5 -.5 -.5}); 

Appendix B 

SAS® Macro “cibonett” 
***************************************************************************; 
*   format for data set: first variable = group, second variable = scores  ; 
*   data = data set name                                                   ; 
*   nominal = nominal confidence level                                     ; 
*   contrast = a coefficient for each group, e.g., {.5 .5 -.5 -.5}         ; 
***************************************************************************; 
 
%macro cibonett(data,nominal,contrast); 
TITLE "Bonett &nominal confidence interval"; 
proc IML; 
use &data; 
read all into datain; 
groups = UNIQUE(datain[,1]);  *get group information of the data; 
ngroups = NCOL(groups);  *get number of groups of the data;      
CALL SYMPUTX("n_groups",ngroups); *set the macro variable n_groups to be the 
      number of groups; 
%DO i = 1 %TO &n_groups;  *loop for groups; 
group&i = datain[LOC(datain[,1]=&i),2]; /*obtain all the scores for each group*/ 
mu&i = mean(group&i); 
var&i = var(group&i); 
n&i = nrow(group&i); 
%END; 
mu=mu1; 
var=var1; 
n=n1; 
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%DO i=2 %TO &n_groups; 
mu = mu//mu&i; 
var = var//var&i; 
n = n//n&i; 
contrast = t(&contrast); 
%END; 
df=n-1; 
delta_bonett=sum(mu#contrast)/sqrt(mean(var)); 
k = ngroups; 
v1=(delta_bonett**2/(k**2*(mean(var))**2)); 
v2=sum((var##2)/(2*df)); 
v3=sum(((contrast##2)#var)/df)/mean(var); 
var_delta_bonett=v1*v2+v3; 
bonett_upper = delta_bonett + PROBIT(1-(1-&nominal)/2)*SQRT(var_delta_bonett); 
bonett_lower = delta_bonett - PROBIT(1-(1-&nominal)/2)*SQRT(var_delta_bonett); 
width=bonett_upper-bonett_lower; 
PRINT delta_bonett bonett_lower bonett_upper width; 
quit; 
%mend; 
data a; 
input group y @@; 
cards; 
1  3 2 5 3 4 4 4 
1  5 2 6 3 5 4 6 
1  6 2 5 3 4 4 3 
1  5 2 4 3 3 4 3 
1  6 2 3 3 2 4 1 
1  7 2 4 3 3 4 3 
1  8 2 3 3 4 4 2 
1 10 2 4 3 3 4 2 
; 
run;  

%cibonett(a,.95,{.5 .5 -.5 -.5}); 

Appendix C 

SAS® Macro “cibca” 
***************************************************************************; 
*   format for data set: first variable = group, second variable = scores  ; 
*   data = data set name                                                   ; 
*   b = the number of bootstrap sample                                     ; 
*   con = a coefficient for each group, e.g., {.5 .5 -.5 -.5}              ; 
*   nominal = nominal confidence level                                     ; 
***************************************************************************; 
%MACRO cibca(data=,b=,con=,nominal=); 
/******************************************************************************/ 
/*This section of IML do the bootstrap resampling with B replications and     */ 
/*save the samples into zboots&i data sets (&i = 1 to number of groups)       */ 
/*It also calculate the delta_bonett for the original data set                */ 
/******************************************************************************/ 
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PROC IML;   
USE &data; 
READ ALL INTO datain; 
groups = UNIQUE(datain[,1]);  *get group information of the data; 
ngroups = NCOL(groups);  *get number of groups of the data;      
CALL SYMPUTX("n_groups",ngroups); *set the macro variable n_groups to be 

 the number of groups; 
%DO i = 1 %TO &n_groups;  *loop for groups; 
group&i = datain[LOC(datain[,1]=&i),2]; *obtain all the scores for each group; 
mu&i = mean(group&i); 
var&i = var(group&i); 
group_n=NROW(group&i); 
CALL SYMPUTX("n",group_n); 
z&i = j(1,2,.); *obtain the b times bootstrap sample for each group; 
%DO m = 1 %TO &b; *loop for the bootstrap samples; 

y = group&i; /*This part of code (bootstrap) is adapted from     */ 
z = j(&n, 1, 0) ; /*http://www.biostat.umn.edu/~john-c/5421/notes.016b*/  
ite = J(&n,1,&m); /*Identify the nth bootstrap sample */ 

do j = 1 to &n ;      
yrandindex = 1 + int(&n * ranuni(-1)) ; 
z[j] = y[yrandindex] ; 

end ; 
z = ite||z; 

z&i=z&i//z ; 
%END; 
CREATE zboots&i FROM z&i; /*Put matrices to data sets the first column 

 is the index for boot sample*/; 
APPEND FROM z&i;  *the second column is the boot sample data; 

*Save the matrices from IML to SAS data set; 
%END; 
mu=mu1;   *do the delta_bonett for original data; /*for jackknife*/ 
var=var1; 
%DO i=2 %TO &n_groups; 
mu = mu||mu&i; 
var = var||var&i; 
%END; 
o_delta_bonett=j(&b,1,(mu#&con)[,+]/sqrt((var[,+])/&n_groups)); 

CREATE origbonett FROM o_delta_bonett ; 
APPEND FROM o_delta_bonett; /* save the delta_bonett for original data 

   to origbonett data*/ 
QUIT; 
 
/******************************************************************************/ 
/* Below loop calculate the means and variances by each  
   boot index for each groups */ 
/******************************************************************************/ 
%DO i = 1 %TO &n_groups; 
proc means data = zboots&i noprint; /*Compute the group means and vars for each 
      bootstrap sample*/ 
class COL1; 
var COL2; 
output out=meanvar&i mean=mu var=sigmasq; 
run; 
data meanvar&i;set meanvar&i;  *delete unused information; 
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if _type_=1; 
drop _type_ _freq_; 
run; 
%END; 
/******************************************************************************/ 
/*Below IML calculate the delta_bonett for the bootstrap data set*/ 
/******************************************************************************/ 
PROC IML; 
%DO i = 1 %TO &n_groups; 
USE meanvar&i; 
READ ALL INTO mv&i; 
%END; 
mu = mv1[,2];    *assign the means of first group to mu; 
var = mv1[,3];    *assign the vars of first group to var; 
%DO i = 2 %TO &n_groups; /*this loop add means and vars of other groups 

  to mu and var*/ 
mu = mu||mv&i[,2]; 
var = var||mv&i[,3]; 
%END; 
con=repeat(&con,&b,1);  *make the contrast to a matrix for calculation; 
delta_bonett=mv1[,1]||(mu#&con)[,+]/sqrt((var[,+])/&n_groups); 

/*calculate delta_bonett for each bootstrap sample 
  and then add the bootstrap index to the first 
  column for later use*/; 

CREATE delta_bonett FROM delta_bonett ; 
APPEND FROM delta_bonett; 
QUIT; 
/*COMPUTE BIAS*/ 
data bonett  /* data set containing bootstrap values */ 
bias (keep=bias); /* data set containing bias correction value */ 
merge delta_bonett(rename=(COL1=sample COL2=delta_bonett)) 
origbonett(rename=(COL1=origbonett)) end=eof; 
if delta_bonett lt origbonett then lessthan=1; /*flag if bootstrap sample 
         gives lower */ 
else lessthan=0; /*value than original sample */ 
retain nless 0; /*retain variable nless with starting value 0, 

  the second value of nless will be 0 add to the 
  first value of lessthan*/ 

if sample gt 0 then nless=nless+lessthan; /* count samples with flag lessthan */ 
if sample ne 0 then output bonett; /* output only bootstrap sample statistics */ 
if eof then do; /* for the last value calculate: */ 
propless=nless/sample; /* 1. proportion of values below original estimate */ 
bias=probit(propless); /* 2. inverse normal of that proportion */ 
output bias;   /* 3. output only that record to new data set */ 
end; 
run; 
/*JACKKNIFING ACCELERATION*/ 
data origjack;  /* create a new data set which contains observation */ 
set &data end=eof; /* numbers 1 to &nobs (no. obs in data set) */ 
obsnum=_n_; 
if eof then call symput('nobs', put(obsnum, 2.)); /*assign the characterstring 

_n_ to macro variable nobs"*/ 
run; 
%macro jackdata;  /* use macro for %do processing utility */ 
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data jackdata; 
set 
%do i=1 %to &nobs;  /* do loop to create all samples */ 
origjack (in = in&i 
where=(obsnum ne &i))  /* remove a different value each time */ 
%end;; 
%do i=1 %to &nobs; 
if in&i then repeat=&i; /* add repeat number for each sample */ 
%end; 
run; 
%mend; 
%jackdata; 
proc means data=jackdata noprint nway; /*Group means for each JACKKNIFE sample*/ 
class repeat group; 
var Y; 
output out=jackmeanvar mean=mu var=sigmasq; 
run; 
data jackmeanvar;set jackmeanvar;  /*delete unused information*/ 
if _type_=3; 
drop _type_ _freq_; 
run; 
proc transpose data=jackmeanvar out=jackmeanvar let; /*data restructure*/ 
by repeat; 
id group; 
run; 
data jackmean ; set jackmeanvar; 
if _NAME_="mu"; 
drop repeat _NAME_; 
run; 
data jackvar ; set jackmeanvar; /*Group variance for each JACKKNIF sample*/ 
if _NAME_="sigmasq"; 
drop repeat _NAME_; 
run; 
/******************************************************************************/ 
/*Below IML calculate the delta_bonett for JACKKNIFING ACCELERATION*/ 
/*****************************************************************************/ 
PROC IML; 
USE jackmean; 
READ ALL INTO jackmean; 
USE jackvar; 
READ ALL INTO jackvar; 
n_jack=NROW(jackmean); 
CALL SYMPUTX("n_j",n_jack); 
con=repeat(&con,&n_j,1); 
delta_bonett=(jackmean#&con)[,+]/sqrt((jackvar[,+])/&n_groups); 
CREATE jackbonett FROM delta_bonett ; 
APPEND FROM delta_bonett; 
QUIT; 
DATA jackbonett (rename=(COL1 = delta_bonett)); 
SET jackbonett;  
PROC SQL NOPRINT; 
select mean(delta_bonett) /* put mean of jackknifed values 

   into macro variable */ 
into :mean_delta_bonett 
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from jackbonett; 
quit; 
data meanbonett; 
set jackbonett; 
cubed=(&mean_delta_bonett - delta_bonett)**3; /* create cubed value of 
          difference */ 
squared=(&mean_delta_bonett - delta_bonett)**2; /* create squared value of 
          difference */ 
run; 
proc means data=meanbonett noprint; 
output out=sumbonett 
sum(cubed)=sumcube  /* find sum of cubed values */ 
sum(squared)=sumsquar; /* find sum of squared values */ 
run; 
data accel; 
set sumbonett; 
accel=sumcube / (6 * (sumsquar**1.5)); /* plug values into equation for */ 
keep accel;      /* the acceleration statistic */ 
run; 
data ciends; 
merge accel 
bias; 
part1=(bias + probit((1-&nominal)/2))  / (1 - (accel*(bias + probit((1- 
 &nominal)/2)))); 
part2=(bias + probit(1-(1-&nominal)/2))  / (1 - (accel*(bias + probit(1-(1- 
 &nominal)/2)))); 
alpha1=probnorm(bias + part1); 
alpha2=probnorm(bias + part2); 
n1=alpha1*&b; 
n2=alpha2*&b; 
if n1 < 1 then n1 = 1; 
call symput('n1', put(floor(n1), 5.)); /* Create macro variables with values */ 
call symput('n2', put(ceil(n2), 5.));  /* of N1 and N2 for later use */ 
run; 
proc sort 
data=bonett; 
by delta_bonett; 
run; 
data ci_bca; 
set bonett end=eof; 
retain conf_lo conf_hi width; 
if _n_=&n1 then conf_lo=delta_bonett; /* select values for upper and lower */ 
if _n_=&n2 then conf_hi=delta_bonett; /* limits using N1 and N2 values */ 
if eof then output; 
width=conf_hi-conf_lo; 
run; 
proc print data=ci_bca; 
title "The Confidence interval based on BCa bootstrap method"; 
title2 "B=&b Coefficeint=&con Confidence level=&nominal"; 
var conf_lo conf_hi width; 
run; 
%MEND; 
Data BCa; 
INPUT group y @@; 
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DATALINES; 
1  3 2 5 3 4 4 4 
1  5 2 6 3 5 4 6 
1  6 2 5 3 4 4 3 
1  5 2 4 3 3 4 3 
1  6 2 3 3 2 4 1 
1  7 2 4 3 3 4 3 
1  8 2 3 3 4 4 2 
1 10 2 4 3 3 4 2 
; 
%cibca(data=Bca,b=1000,con={.5 .5 -.5 -.5},nominal=.95); /*con is the  
         coefficient  

 for contrast*/ 
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The normality assumption behind ANOVA and other parametric methods implies that 
response variables are measured on continuous scales. A simulation approach is used to 
explore the impact of continuity violation on the performance of statistical methods 
commonly used by applied researchers to compare locations across several groups. 
 
Keywords: Continuity violation, ANOVA, Brown-Forsythe, Welch, Kruskal-Wallis 
 

Introduction 

One of the standard research procedures to explore the effects of the violation of 
an assumption underlying a statistical method is to perform an experimental study 
using Monte Carlo simulation. The one-way ANOVA for comparing locations 
across three or more groups and alternative test procedures such as the Brown-
Forsythe test, Welch test, and Kruskal-Wallis test have been subject to similar 
research since the 1970s (e.g., Glass et al., 1972; Bevan et al., 1974; Keselman et 
al., 1977), and continue to be studied today (e.g., Lantz, 2013; Cribbie et al., 
2012; Cribbie et al., 2007). Some workers conclud the one-way ANOVA is 
relatively robust against violations of the homoscedasticity assumption as well as 
against violations of the normality assumption. However, textbooks in statistics 
(e.g., Lomax and Hahs-Vaughn, 2007; Ryan, 2007) often recommend the Brown-
Forsythe and Welch tests when the data are characterised by apparent 
heteroscedasticity, particularly at unequal sample sizes, or the Kruskal-Wallis test 
when the data are clearly not mound-shaped. 

Most research regarding the normality assumption on which the ANOVA 
relies focuses on continuous distributions that differ from the normal in terms of 
shape, skewness, or kurtosis (e.g., Ito, 1980; Khan and Rayner, 2003). The fact 
that the underlying distribution is assumed to be normal does not, however, imply 
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only a mound shape, zero skewness, and zero excess kurtosis; it also requires that 
the data be continuous by nature. In applied research, data subject to statistical 
analyses have often been collected using discrete scales. Assume, for example, 
that the subjects participating in a psychological experiment perform a certain 
task four times, and that the number of successful trials is recorded for each 
subject. In this case, an arbitrarily chosen subject will have zero, one, two, three, 
or four successful trials. Although means and standard deviations can be used to 
describe the locations of different groups of subjects in cases like this, the one-
way ANOVA and parametric alternatives like the Brown-Forsythe test and the 
Welch test are, at least technically, invalidated as methodologies to compare 
means across groups. This is because the dependent variable is assumed to be 
continuous even though it actually is discretely distributed, with only a small 
number of possible values.  

The impact of the relative violation of the continuity assumption emerges 
more strikingly when there are fewer possible values that the variable can take. 
Krieg (1999) derived equations for calculating the bias induced by coarse 
measurement scales, and showed that the bias is reduced as the number of scale 
points increases. Hence, one would assume that statistical comparisons of 
locations across groups should be relatively unproblematic even if data are 
discrete as long as the number of possible variable values is large. In contrast, it 
might be a problem when the number of possible variable values is small, or when 
the violation of continuity is more severe. However, explicit analyses on the 
violation of continuity are scarce in the literature, and most of the research in this 
area seems to be related to the scale coarseness issue (Symonds, 1924) rather than 
to continuity violation. Scale coarseness refers to the fact that Likert-type and 
similar ordinal-level scales are collapsed into discrete scale points to simplify the 
data collection process, even though the underlying constructs are assumed to be 
continuous. When respondents are faced with a scale that does not have a 
sufficient number of response options, information loss will occur. Continuity 
violation and scale coarseness are obviously related phenomena, but scale 
coarseness (see Symonds, 1924) is an issue primarily related to data collection, 
whereas violation of continuity (see Bevan et al., 1974) is an issue strictly related 
to data analysis. 

Although there seems to be little research on how continuity violation 
affects the statistical methods commonly used to compare locations across groups, 
nevertheless some results can be found in the literature. Bevan et al. (1974) 
considered the appropriateness of ANOVA techniques when the response variable 
was discretely distributed and able to take three, five, or seven different values. 



BJÖRN LANTZ 

107 

Their results suggested that the ANOVA was relatively robust to continuity 
violations with respect to Type I errors. However, Bevan et al. (1974) did not 
examine how power or alternative methods were affected by continuity violation. 
Gregoire and Driver (1987) tested the performance of selected parametric 
(including the F test) and nonparametric tests of location on the basis of sampling 
results from simulated Likert-type data and concluded that there was no clear-cut 
superiority for either type of test. It should be noted that their aim was to compare 
the methods rather than to explore the impact of scale discreteness. Rasmussen 
(1988) extended (and corrected) the analysis by Gregoire and Driver (1987), and 
demonstrated that the Type I and Type II error rates were not seriously 
compromised by the use of discrete data. 

The impact of continuity violation on the significance and power of 
statistical methods commonly used to compare locations across several groups is 
explored in the one-way ANOVA layout and its robust alternatives, the Brown-
Forsythe test, the Welch test, and the non-parametric Kruskal-Wallis test. The 
one-way ANOVA is based on the idea that the true means in groups are more 
likely to be equal if the variation between the groups is small compared to the 
variation within the groups. The Brown-Forsythe and Welch tests are considered 
robust compared with ANOVA, because their definitions of variation within 
groups are based on the relationships between the different sample sizes in the 
different groups, as opposed to a simple pooled variance estimate, which means 
that they become less sensitive to heteroscedasticity (see, e.g., Tomarken & Serlin, 
1986). The Kruskal-Wallis test is considered robust because it is based on ranks 
rather than actual values, which means that the underlying distribution does not 
matter so long as the observed values can be ranked. 

Methodology 

By definition, there is no discrete equivalent with only a few steps to the normal 
distribution, because a normally distributed random variable is unrestricted 
upward as well as downward, and can therefore take extreme values. Hence, it is 
technically impossible to make an exact evaluation of the impact of continuity 
violation on statistical methods that rest on the normality assumption. The best 
approximation compares results from a mound-shaped discrete distribution where 
the number of steps can be varied with results where the normality assumption 
holds, means and variances being equal. The binomial distribution is one such 
mound-shaped discrete distribution that exists for any number of steps, and it 
approaches the normal distribution when the number of steps becomes large 
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(Aczel and Sounderpandian, 2009). For example, Figure 1 displays the probability 
density function for the normal distribution with μ = 2 and σ2 = 1 and for the 
probability distribution for the binomial distribution with five possible outcomes, 
μ = 2 and σ2 = 1. Therefore, the binomial distribution is used in this study as an 
approximation of a continuity-violated normal distribution. 
 

 

 
Figure 1. A binomial 
distribution and its 
corresponding normal 
distribution 
 

 
 

An experimental design with three populations and four different 
combinations of small (defined as 5 observations) and large (defined as 25 
observations) sample sizes was used. Discrete scales based on binomial 
distributions with two, three, four, five, and seven steps were used in each case. 
For each combination, the proportion of significant ANOVA, Brown-Forsythe, 
Welch, and Kruskal-Wallis (adjusted for ties) tests was compared to the 
proportion of significant tests when data was simulated from normal distributions 
with identical means and variances. 

For each combination of sample sizes, test procedure, and number of steps, 
five different effect sizes were used. Table 1 shows the manner in which the 
values for the parameter p in the binomial distributions were varied for different 
values of n to achieve a suitable range of effect sizes (see Cohen, 1992), ranging 
from no effect (f = 0.00) to a very large effect (f = 0.65). For any individual 
combination of values of p and n, the distribution mean and variance could easily 
be calculated in order to obtain the corresponding normal distribution, because the 
mean is defined as np and the variance as np(1-p) for the binomial distribution 
(Aczel and Sounderpandian, 2009). For example, with five steps (n = 4) and f = 
0.25, p1 = 0.424, p2 = 0.500, and p3 = 0.576 because the mean and the variance 
then become 2.12 and 1.22 for group 1, 2.50 and 1.25 for group 2, and 2.88 and 
1.22 for group 3, respectively, corresponding to the medium effect size f = 0.25. 
Hence, the simulated impact of continuity violation in this case is based on a 
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comparison between the normal distributed random variables X1 ~ N(2.12, 1.22), 
X2 ~ N(2.50, 1.25), and X3 ~ N(2.88, 1.22) and the binomial distributed random 
variables Y1 ~ B(4, 0.424), Y2 ~ B(4, 0.500), and Y3 ~ B(4, 0.576). 
 
Table 1. Values for the parameter p in the binomial distributions 
 
 

  
Effect size (Cohen's f) 

Steps Group 0.000 0.100 0.250 0.400 0.650 
       2 1 0.500 0.439 0.351 0.273 0.166 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.561 0.649 0.727 0.834 
                     3 1 0.500 0.457 0.394 0.334 0.245 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.543 0.607 0.667 0.756 
                     4 1 0.500 0.465 0.413 0.346 0.285 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.535 0.587 0.654 0.715 
                     5 1 0.500 0.469 0.424 0.380 0.311 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.531 0.576 0.620 0.689 
                     7 1 0.500 0.475 0.438 0.401 0.343 

 2 0.500 0.500 0.500 0.500 0.500 

 3 0.500 0.525 0.562 0.599 0.657 
               
 

For each combination of distribution (normal and binomial), sample sizes 
(25/25/25, 5/5/5, 5/5/25, and 5/25/25), test procedure (ANOVA, Brown-Forsythe, 
Welch, and Kruskal-Wallis), number of steps (two, three, four, five, and seven), 
and size of effect (no, small, medium, large, and very large), 50,000 hypothesis 
tests based on simulated random numbers were conducted, where the null 
hypothesis, corresponding to no difference between the locations of the 
populations, was challenged at an alpha level of 0.05 in all cases. Hence, 
40,000,000 tests of simulated data were performed in the study. All simulations 
and analytical procedures were conducted using Microsoft Excel 2010. 
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Results 

Table 2 displays the number of significant tests where the discrete scale has two 
steps. For a better understanding of the reliability of the statistics presented in this 
section, it should be noted that the standard error of a sample proportion at a 
sample size of 50,000 is about 0.002 when the proportion is 0.5, and it decreases 
to about 0.001 when the proportion is 0.05 or 0.95. When one distribution is 
characterised by a significantly larger proportion of significant tests than the other 
for a given combination of effect size, sample sizes, and test method, this is 
indicated with an asterisk (*). 
 
Table 2: Proportion of significant tests, mean value 0.5 (two steps)  
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.052 0.051 0.052 0.050 0.051 0.051 0.052 0.05 

 5,5,5 0.058* 0.052 0.057* 0.041 0.000 0.039* 0.059* 0.045 

 5,5,25 0.052 0.051 0.046 0.047 0.000 0.052* 0.052* 0.044 
  5,25,25 0.052 0.051 0.070* 0.053 0.011 0.056* 0.044 0.047 
0.1 25,25,25 0.112* 0.107 0.112* 0.106 0.110* 0.104 0.112* 0.102 

 5,5,5 0.071* 0.061 0.069* 0.049 0.000 0.046* 0.071* 0.052 

 5,5,25 0.074* 0.070 0.061 0.062 0.001 0.067* 0.074* 0.060 
  5,25,25 0.077* 0.072 0.092* 0.074 0.020 0.075* 0.068 0.066 
0.25 25,25,25 0.468 0.466 0.468 0.465 0.463 0.466 0.468* 0.446 

 5,5,5 0.131* 0.111 0.128* 0.091 0.000 0.088* 0.132* 0.098 

 5,5,25 0.201 0.196 0.145 0.151* 0.009 0.152* 0.201* 0.170 
  5,25,25 0.235* 0.223 0.215 0.215 0.079 0.199* 0.218* 0.207 
0.4 25,25,25 0.858 0.879* 0.858 0.878* 0.855 0.889* 0.858 0.870* 

 5,5,5 0.248* 0.214 0.244* 0.180 0.000 0.177* 0.251* 0.190 

 5,5,25 0.447 0.455 0.308 0.321* 0.041 0.327* 0.445* 0.400 
  5,25,25 0.508 0.506 0.453 0.481* 0.218 0.459* 0.491 0.484 
0.65 25,25,25 0.999 1.000 0.999 1.000 0.978 1.000* 0.999 1.000 

 5,5,5 0.525 0.519 0.521* 0.456 0.000 0.500* 0.535* 0.488 

 5,5,25 0.855 0.907* 0.648 0.694* 0.147 0.760* 0.850 0.868* 
  5,25,25 0.894 0.921* 0.845 0.910* 0.422 0.910* 0.889 0.919* 

 
As a scale with two steps has the greatest degree of continuity violation, one 

would expect the most differences between the discrete binomial and continuous 
normal cases. When all sample sizes are small, the ANOVA becomes more 
powerful as a result of scale discreteness (i.e. the probability of avoiding a Type II 
error is often higher when data are discrete than when they are continuous), but at 
the cost of an elevated probability of a Type I error. For some combinations of 
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effect sizes and unequal sample sizes, the ANOVA becomes more powerful due 
to scale discreteness without an elevated probability of a Type I error. When all 
sample sizes are large, it becomes less powerful when the effect size is large, but 
more powerful when the effect size is small. 

The Brown-Forsythe test becomes more powerful due to scale discreteness 
when all sample sizes are small and, for small and medium effect sizes, when 
exactly one sample size is small, but in both cases at the cost of an elevated 
probability of a Type I error. When exactly one sample size is large, it becomes 
less powerful for medium and larger effect sizes. 

The Welch test algorithm does not work satisfactorily for coinciding 
dichotomous distributions when at least one sample size is small, which is the 
reason for the very low numbers for the discrete scale in those cases. Note, 
however, that for large sample sizes, it becomes more powerful when the effect 
size is small, but less powerful when the effect size is large. 

The Kruskal-Wallis test becomes more powerful as a result of scale 
discreteness when at most one sample size is large, but in both cases at the cost of 
an elevated probability of a Type I error. For small and medium effect sizes, it 
becomes more powerful when exactly one sample size is small. For large sample 
sizes, however, it becomes more powerful at small and medium effect sizes but 
less powerful at large effect sizes. 

Finally, note that there are no significant differences in performance 
between the four methods when they are used to analyse data on a discrete scale 
with two steps as long as the sample sizes are large; the only exception is that the 
Welch test performs less well when the effect size is very large.  

Table 3 displays the number of significant tests where the discrete scale has 
three steps. Here, the ANOVA shows no significant difference in performance 
due to scale discreteness, with the exception that it becomes more powerful when 
all sample sizes are small and the effect size is large. The Brown-Forsythe test 
exhibits elevated power when at least one sample size is small, but again, at the 
cost of an elevated probability of a Type I error. The Welch test displays the 
opposite reaction: it becomes less powerful when at least one sample size is small, 
but with a reduced probability of a Type I error. The Kruskal-Wallis test behaves 
erratically for some sample size combinations, and becomes less powerful at some 
effect sizes but more powerful at others. However, there is no significant change 
in the probability of a Type I error for any combination of sample sizes. Finally, 
note that there are no significant differences in performance between the four 
methods when they are used to analyse data on a discrete scale with three steps as 
long as the sample sizes are large. 
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Table 3: Proportion of significant tests, mean value 1.0 (three steps)  
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.051 0.05 0.051 0.049 0.052* 0.049 0.049 0.048 

 5,5,5 0.054 0.052 0.049* 0.041 0.033 0.041* 0.044 0.046 

 5,5,25 0.050 0.050 0.053* 0.047 0.037 0.054* 0.046 0.044 
  5,25,25 0.050 0.051 0.056* 0.053 0.044 0.057* 0.046 0.046 
0.1 25,25,25 0.108 0.108 0.108 0.107 0.108 0.105 0.104 0.103 

 5,5,5 0.060 0.062 0.055* 0.050 0.038 0.049* 0.049 0.054* 

 5,5,25 0.069 0.071 0.067* 0.062 0.049 0.067* 0.062 0.062 
  5,25,25 0.073 0.074 0.080* 0.074 0.063 0.075* 0.069 0.068 
0.25 25,25,25 0.461 0.46 0.460 0.459 0.457 0.455 0.453* 0.437 

 5,5,5 0.113 0.110 0.106* 0.091 0.076 0.088* 0.094 0.096 

 5,5,25 0.194 0.190 0.158* 0.149 0.127 0.152* 0.174* 0.168 
  5,25,25 0.226 0.224 0.221* 0.212 0.189 0.197* 0.214* 0.207 
0.4 25,25,25 0.865 0.875 0.864 0.874 0.859 0.877* 0.859 0.861 

 5,5,5 0.222* 0.211 0.209* 0.178 0.156 0.172* 0.191 0.186 

 5,5,25 0.438 0.435 0.333* 0.324 0.294 0.319* 0.402* 0.385 
  5,25,25 0.509 0.508 0.474 0.469 0.434 0.444* 0.491* 0.479 
0.65 25,25,25 0.999 1.000 0.999 1.000 0.999 1.000 0.999 0.999 

 5,5,5 0.496 0.501 0.474* 0.446 0.336 0.442* 0.444 0.458* 

 5,5,25 0.848 0.873* 0.686 0.706* 0.614 0.711* 0.812 0.827* 
  5,25,25 0.905 0.918* 0.852 0.886* 0.791 0.880* 0.894 0.905 
 
 

Table 4 displays the number of significant tests where the discrete scale has 
four steps. In this case, the ANOVA shows no significant difference in 
performance due to scale discreteness, except that it becomes powerful when at 
most one sample size is large and the effect size is very large. The Brown-
Forsythe test becomes more powerful when all sample sizes are small, but less 
powerful at unequal sample sizes when the effect size is very large. The Welch 
test performs somewhat erratically, as it exhibits reduced power when sample 
sizes are unequal, but increased power when all sample sizes are small and the 
effect size is medium or large. The Kruskal-Wallis test also behaves erratically: it 
becomes too conservative when all sample sizes are small, which reduces power. 
In contrast, it becomes more powerful at the medium effect size when all sample 
sizes are large and at unequal sample sizes when the effect size is medium or 
large. As in the previous cases, note that there are no significant differences in 
performance between the four methods when they are used to analyse data on a 
discrete scale with four steps as long as the sample sizes are large. 
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Table 4: Proportion of significant tests, mean value 1.5 (four steps)  
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.050 0.052 0.049 0.052 0.050 0.051 0.048 0.049 

 5,5,5 0.049 0.052 0.044 0.042 0.040 0.040 0.040 0.045* 

 5,5,25 0.050 0.050 0.051* 0.047 0.053 0.054 0.045 0.044 
  5,25,25 0.050 0.052 0.055 0.054 0.054 0.056 0.047 0.048 
0.1 25,25,25 0.111 0.110 0.110 0.109 0.110 0.107 0.107 0.105 

 5,5,5 0.059 0.062 0.053* 0.049 0.047 0.047 0.049 0.054* 

 5,5,25 0.072 0.071 0.065 0.062 0.066 0.068 0.063 0.061 
  5,25,25 0.075 0.074 0.079 0.076 0.072 0.076* 0.070 0.070 
0.25 25,25,25 0.459 0.457 0.458 0.456 0.455 0.451 0.449* 0.434 

 5,5,5 0.109 0.111 0.100* 0.091 0.092* 0.087 0.093 0.098* 

 5,5,25 0.191 0.189 0.151 0.149 0.132 0.150* 0.169 0.165 
  5,25,25 0.227 0.224 0.215 0.21 0.181 0.194* 0.213* 0.204 
0.4 25,25,25 0.933 0.939 0.933 0.938 0.930 0.940 0.928 0.930 

 5,5,5 0.264 0.257 0.244* 0.222 0.221* 0.210 0.228 0.228 

 5,5,25 0.530 0.525 0.403 0.40 0.352 0.389* 0.479* 0.470 
  5,25,25 0.618 0.615 0.563 0.565 0.512 0.540* 0.596* 0.584 
0.65 25,25,25 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.999 

 5,5,5 0.492 0.504* 0.465* 0.452 0.425 0.435* 0.441 0.458* 

 5,5,25 0.852 0.864* 0.703 0.714* 0.651 0.707* 0.808 0.816 

 5,25,25 0.913 0.918 0.862 0.879* 0.835 0.872* 0.900 0.903 
 
 

Table 5 displays the number of significant tests where the discrete scale has 
five steps. The ANOVA displays a similar pattern as with four steps; there is no 
significant difference in performance due to scale discreteness, except that it 
becomes powerful when exactly one sample size is large and the effect size is 
very large. The Brown-Forsythe test also shows a similar pattern (as in the 
previous case), becoming more powerful when all sample sizes are small and the 
effect size is at least medium, but less powerful at unequal sample sizes when the 
effect size is very large. The performance of the Welch test, however, behaves 
somewhat differently when the number of steps is increased from four to five. It 
becomes more conservative when at least one sample size is small, which reduces 
its power when the effect size is small. The effect disappears when the effect size 
is medium or large, but returns when it is very large. The Kruskal-Wallis test 
continues to behave erratically along the same pattern as with four steps. Finally, 
under a medium effect size, the Kruskal-Wallis test has significantly less power 
than the other three methods even if all sample sizes are large. 
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Table 5: Proportion of significant tests, mean value 2.0 (five steps)  
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.050 0.050 0.050 0.049 0.049 0.049 0.047 0.047 

 5,5,5 0.050 0.052 0.044 0.042 0.037 0.041* 0.041 0.045* 

 5,5,25 0.050 0.050 0.049 0.047 0.047 0.053* 0.044 0.044 
  5,25,25 0.049 0.049 0.053 0.053 0.053 0.057* 0.046 0.047 
0.1 25,25,25 0.111 0.110 0.111 0.110 0.110 0.108 0.107 0.105 

 5,5,5 0.059 0.062 0.052 0.050 0.045 0.048* 0.049 0.054* 

 5,5,25 0.071 0.073 0.064 0.064 0.064 0.071* 0.062 0.064 
  5,25,25 0.076 0.078 0.079 0.080 0.074 0.080* 0.071 0.072 
0.25 25,25,25 0.463 0.462 0.463 0.461 0.458 0.456 0.450* 0.441 

 5,5,5 0.110 0.108 0.099* 0.090 0.086 0.086 0.092 0.096* 

 5,5,25 0.192 0.188 0.153 0.148 0.151 0.148 0.170* 0.165 
  5,25,25 0.230 0.227 0.218 0.213 0.201 0.196 0.215* 0.207 
0.4 25,25,25 0.864 0.869 0.864 0.869 0.860 0.867 0.854 0.852 

 5,5,5 0.216 0.216 0.197* 0.183 0.173 0.174 0.185 0.189 

 5,5,25 0.433 0.431 0.332 0.331 0.317 0.318 0.389 0.384 
  5,25,25 0.515 0.511 0.466 0.468 0.437 0.436 0.491* 0.479 
0.65 25,25,25 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

 5,5,5 0.493 0.500 0.464* 0.448 0.415 0.428* 0.443 0.452* 

 5,5,25 0.846 0.858* 0.706 0.718* 0.664 0.702* 0.803 0.811 
  5,25,25 0.912 0.918 0.861 0.875* 0.843 0.869* 0.899 0.902 
 
 

Table 6 displays the number of significant tests where the discrete scale has 
seven steps. The ANOVA now becomes more conservative when at most one 
sample size is large, and it has reduced power at the medium effect size when all 
sample sizes are small. Both the Brown-Forsythe test and the Welch test lose 
power at very large effect sizes when sample sizes are unequal, but become more 
powerful at the large effect size when all sample sizes are small. The Kruskal-
Wallis test becomes too conservative and loses power when all sample sizes are 
small. It is also characterised by significantly less power than the other three 
methods when the effect size is small or medium. 
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Table 6: Proportion of significant tests, mean value 3.0 (seven steps) 
 
 
    ANOVA Brown-Forsythe Welch Kruskal-Wallis 
ES n1/n2/n3 Bin Norm Bin Norm Bin Norm Bin Norm 
0 25,25,25 0.051 0.051 0.051 0.051 0.051 0.051 0.049 0.049 

 5,5,5 0.048 0.052* 0.041 0.042 0.040 0.040 0.040 0.046* 

 5,5,25 0.049 0.052* 0.047 0.048 0.051 0.054 0.043 0.045 
  5,25,25 0.050 0.05 0.054 0.053 0.057 0.057 0.047 0.046 
0.1 25,25,25 0.108 0.109 0.108 0.108 0.108 0.106 0.103 0.102 

 5,5,5 0.059 0.058 0.050 0.047 0.048 0.046 0.048 0.051* 

 5,5,25 0.072 0.069 0.063* 0.060 0.068 0.067 0.063 0.061 
  5,25,25 0.076 0.076 0.077 0.075 0.076 0.075 0.071 0.068 
0.25 25,25,25 0.457 0.459 0.456 0.458 0.451 0.452 0.440 0.436 

 5,5,5 0.108 0.114* 0.094 0.094 0.088 0.088 0.091 0.099* 

 5,5,25 0.188 0.188 0.152 0.149 0.152 0.148 0.166 0.166 
  5,25,25 0.226 0.223 0.213 0.21 0.198 0.196 0.211 0.205 
0.4 25,25,25 0.869 0.870 0.869 0.869 0.863 0.866 0.856 0.853 

 5,5,5 0.215 0.213 0.191* 0.181 0.177* 0.170 0.184 0.187 

 5,5,25 0.427 0.429 0.331 0.326 0.315 0.317 0.380 0.379 
  5,25,25 0.519 0.514 0.472 0.465 0.442 0.437 0.49 0.482 
0.65 25,25,25 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

 5,5,5 0.491 0.499 0.453 0.447 0.420 0.416 0.437 0.449* 

 5,5,25 0.842 0.852 0.708 0.718 0.673 0.693* 0.794 0.806* 

 5,25,25 0.913 0.921 0.860 0.873* 0.848 0.867* 0.896 0.902 
 
 

Table 7 provides a qualitative summary of the simulation results. Note that 
cases where continuity violation has no or negligible impact on the probability of 
a Type I error (α ) or power (1 – β ) are not explicitly discussed. For the ANOVA, 
scale discreteness is considered to have a marked impact on power because the 
number of differences between the normal distribution and the binomial 
distribution that can be seen when the discrete scale has only two steps seems to 
decrease when the number of steps increases. Sample sizes are also considered to 
have a marked impact on power, because power is reduced in several cases where 
sample sizes are unequal, but not when they are equal. However, continuity 
violation was not found to have a marked impact on the probability of a Type I 
error in any of the examined aspects, which is in line with previous research 
(Bevan et al., 1974). 
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Table 7: Impact of continuity violation – summary of simulation results 
 
 
  ANOVA Brown-Forsythe Welch Kruskal-Wallis 
Explanatory 
variable α 1–β α 1–β α 1–β α 1–β 

Scale 
discreteness 

Negligible 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Effect size n/a Negligible 
impact n/a Negligible 

impact n/a Marked 
impact n/a Negligible 

impact 

Sample sizes Negligible 
impact 

Marked 
impact 

Negligible 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

Marked 
impact 

 
 

For the Brown-Forsythe test, scale discreteness is considered to have a 
marked impact on the probability of a Type I error because the significant 
differences between the normal and binomial distributions that can be seen when 
the discrete scale has only a few steps and at least one sample size is small seem 
to decrease when the number of steps increases. Furthermore, scale discreteness is 
considered to have a marked impact on power because the number of differences 
between the normal and binomial distributions that can be seen when the discrete 
scale has only two steps seems to decrease when the number of steps increases. 
Sample sizes are also considered to have a marked impact on power because 
power is increased in several cases where at least one sample size is small. 

For the Welch test, scale discreteness is considered to have a marked impact 
on the probability of a Type I error because the significant differences that can be 
seen between the normal and binomial distributions when the discrete scale has 
only at a few steps seem to decrease when the number of steps increase. Sample 
sizes are also considered to have a marked impact on the probability of a Type I 
error because this probability is consistently different in several cases where at 
least one sample size is small, but not when all sample sizes are large. 
Furthermore, scale discreteness is considered to have a marked impact on power 
because the number of differences between the normal distribution and the 
binomial distribution that can be seen when the discrete scale has only two steps 
seems to decrease when the number of steps increases. Effect size is also 
considered to have a marked impact on power, particularly in combination with 
scale discreteness, because the number of observable differences between the 
normal and binomial distributions tends to decrease faster at the medium and 
large effect sizes than at the small and very large effect sizes. In addition, sample 
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sizes are also considered to have a marked impact on power because the presence 
of unequal sample sizes seems to reduce power in general. 

Finally, for the Kruskal-Wallis test, scale discreteness is considered to have 
a marked impact on the probability of a Type I error because the significant 
differences that can be seen between the normal and binomial distributions when 
the discrete scale has only a few steps, and all sample sizes are small, seem to be 
reversed when the number of steps increases. Sample sizes are also considered to 
have a marked impact on the probability of a Type I error because this probability 
is consistently different when all sample sizes are small, but not otherwise. 
Furthermore, scale discreteness is considered to have a marked impact on power 
because the number of differences between the normal and binomial distributions 
that can be seen when the discrete scale has only two steps seems to decrease 
when the number of steps increases, although the major difference occurs between 
two and three steps. Sample sizes are also considered to have a marked impact on 
power because power is changed in several cases where at least one sample size is 
small. 

Conclusion 

Violation of continuity affects the performance of four statistical methods that are 
commonly used to compare locations across several groups. A dichotomous scale 
changes the probability of a Type I error for methods in all cases when all sample 
sizes are small and in many other cases when at least one sample size is small. 
However, the effect seems to decline as the number of scale points is increased, 
which is in line with theory (Krieg, 1999) and with similar published simulation 
results (e.g., Bevan et al., 1974). The probability of a Type II error also seems to 
decline as the number of scale points is increased, although the pattern is different 
for different methods and sample size combinations. 

This should not be seen as an argument in favour of a larger number of steps 
when, for example, Likert-type and similar discrete scales are used. Even a small 
number of steps may be too many for the respondent if comprehensible 
instructions and labelling of response alternatives are not included to enable the 
respondent to conceptualize and respond in spatial terms (Cox, 1980). Often, and 
for a variety of reasons, scales with only a few steps must be used during data 
collection processes, and the results in this study can help determine a suitable 
statistical procedure to compare locations across groups in such situations. 

In summary, ANOVA seems to be the most robust alternative of the four 
procedures when scales are discrete, as the violation of continuity has relatively 
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little impact on its performance. The Brown-Forsythe test can become more 
powerful when scales are discrete and at least one sample size is small, but at the 
cost of an elevated probability of a Type I error. When all sample sizes are large 
and scales with at least three steps are used, neither the ANOVA nor the Brown-
Forsythe test displays any significant sensitivity to continuity violation at any 
effect size level. Hence, these two tests can be used to make reliable analyses of 
discrete data in such situations. The Welch test can become less powerful when 
scales are discrete, in some cases even at large sample sizes. The Kruskal-Wallis 
test responds erratically to scale discreteness, particularly at unequal sample sizes, 
and has significantly less power than the other three methods when sample sizes 
are large. 

Even though the impact of continuity violation on ANOVA and the three 
alternative methods examined here seem to be relatively small in most realistic 
situations (the most obvious exception is when the Welch test is used to analyse 
dichotomous data), applied researchers should consider the above results when 
using these statistical methods to analyse data collected with discrete scales. The 
main implications of this study can be summarised as follows: 

 
• Collect data using continuous scales, if reasonable. 

• Be aware that power can be reduced when discrete scales are used. 
The reduction in power becomes less pronounced when the number 
of scale points is increased, but in some situations, it remains 
significant for scales with up to seven points. 

• Be aware that the actual probability of a Type I error may be affected 
when dichotomous scales are used if at least one sample size is small. 

• Do not use the Welch test with dichotomous data. 
 

Future research in this area should further explore the effects of data 
discreteness by combining continuity violation with, for example, 
heteroscedasticity. In general, the effects of concurrent violations can produce 
anomalous effects not observed in separate violations (see, e.g., Zimmerman, 
1998). Other types of parametric methods should also be tested for their 
robustness against continuity violation. 
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A generalized modified ratio estimator is proposed for estimating the population mean 
using the known population parameters. It is shown that the simple random sampling 
without replacement sample mean, the usual ratio estimator, the linear regression 
estimator and all the existing modified ratio estimators are the particular cases of the 
proposed estimator. The bias and the mean squared error of the proposed estimator are 
derived and are compared with that of existing estimators. The conditions for which the 
proposed estimator performs better than the existing estimators are also derived. The 
performance of the proposed estimator is assessed with that of the existing estimators for 
certain natural populations 
 
Keywords: Auxiliary variable, biases, natural population, mean squared error, 
parameters 
 

Introduction 

Consider a finite population U = { U1, U2, … , UN } of N distinct and identifiable 
units. Let Y be a study variable with value Yi measured on U1, i = 1, 2, 3, … , N 
giving a vector Y = { Y1, Y2, … , YN }. The problem is to estimate the population 

mean 1
1 N

i iY Y
N == ∑  on the basis of a random sample selected from the 

population U. The simple random sample mean is the simplest estimator for 
estimating the population mean. If an auxiliary variable X, closely related to the 
study variable Y, is available then one can improve the performance of the 
estimator of the study variable by using the known values of the population 
parameters of the auxiliary variable. That is, when the population parameters of 
the auxiliary variable X such as population mean, coefficient of variation, 
coefficient of kurtosis, coefficient of skewness etc., are known, then a number of 
estimators available in the literature (such as ratio, product and linear regression 

mailto:drjsubramani@yahoo.co.in
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estimators and their modifications) perform better than the usual simple random 
sample mean under certain conditions. Among these estimators, many researchers 
have used the ratio estimator and its modifications for the estimation of the mean 
of the study variable (see for example Sisodia and Dwivedi (1981), Kadilar and 
Cingi (2006a, 2006b), Yan and Tian (2010) and Subramani and Kumarapandiyan 
(2012a, 2012c)). Before discussing further the existing estimators and the 
proposed estimators, the notations to be used in this article are described below: 
 
N   Population size 
n  Sample size 
f = n/N  Sampling fraction 
Y  Study variable 
X  Auxiliary variable 

,X Y    Population means 
,x y    Sample means 

Sx, Sy  Population standard deviations 
Cx, Cy  Co-efficient of variations 
ρ  Co-efficient of correlation between X and Y 
β1  Co-efficient of skewness of the auxiliary variable 
β2  Co-efficient of kurtosis of the auxiliary variable 
Md  Median of the auxiliary variable 
B(.)  Bias of the estimator 
MSE(.)  Mean squared error of the estimator 

( )ˆ ˆ
ji pY Y

  ith existing (jth proposed) modified ratio estimator of Y   
 
In case of simple random sampling without replacement (SRSWOR), the sample 
mean srsy  is used to estimate population mean Y , which is an unbiased estimator, 
and its variance is given below: 
 

 
( ) ( ) 21

srs y

f
V y S

n
−

=
  (1) 

 
The ratio estimator for estimating the population mean Y  of the study variable Y 
is defined as: 
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 ˆ ˆ ˆ where R
y y yY X RX R
x x x

= = = =   (2) 

 
The bias and mean squared error of the ratio estimator to the first degree of 
approximation are given below: 
 

 ( ) ( ) ( )21ˆ
R x x y

f
B Y Y C C C

n
ρ

−
= −   (3) 

 

 ( ) ( ) ( )2 2 21ˆ 2R y x x y

f
MSE Y Y C C C C

n
ρ

−
= + −   (4) 

 
The usual linear regression estimator together with its variance is given below: 
 
 ( )ˆ

lrY y X xβ= + −   (5) 

 

 ( ) ( ) ( )2 21ˆ 1lr y

f
V Y S

n
ρ

−
= −   (6) 

 
Sisodia and Dwivedi (1981) have suggested a modified ratio estimator using the 
co-efficient of variation of auxiliary variable X for estimating Y . When the co-
efficient of kurtosis of auxiliary variable X is known, Singh et al. (2004) has 
developed a modified ratio estimator. Singh and Tailor (2003) proposed another 
estimator for estimating Y  when the population correlation co-efficient between 
X and Y is known. By using the population variance of auxiliary variable X, Singh 
(2003) proposed another modified ratio estimator for estimating population mean. 
More recently, Yan and Tian (2010) has suggested another modified ratio 
estimator using the co-efficient of skewness of the auxiliary variable X, and 
Subramani and Kumarapandiyan (2013a) suggested a new modified ratio 
estimator using known population median of auxiliary variable X. 

Upadhyaya and Singh (1999) suggested another modified ratio estimator 
using the linear combination of co-efficient of variation and co-efficient of 
kurtosis. Singh (2003) used the linear combination of co-efficient of kurtosis and 
standard deviation and co-efficient of skewness and standard deviation for 
estimating the populations mean Y . Motivated by Singh (2003), Yan and Tian 
(2010) used the linear combination of co-efficient of kurtosis and co-efficient of 
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skewness and co-efficient of variation and co-efficient of skewness. Subramani 
and Kumarapandiyan (2012a, 2012b, 2012c and 2013b) suggested modified ratio 
estimators using known median and co-efficient of kurtosis, median and co-
efficient of skewness, median and co-efficient of variation and median and co-
efficient of correlation. 

More detailed discussion about the ratio estimator and its modification can 
be found in Abdia and Shahbaz (2006), Ahmad et al. (2009), Al-Jararha and Al-
Haj Ebrahem (2012), Bhushan (2012), Cochran (1977), Dalabehera and Sahoo 
(1994), David and Sukhatme (1974), Goodman and Hartley (1958), Gupta and 
Shabbir (2008), Jhajj et al. (2006), Kadilar and Cingi (2003, 2004), Khoshnevisan 
et al. (2007), Koyuncu and Kadilar (2009), Kulkarni (1978), Murthy (1967), Naik 
and Gupta (1991), Olkin (1958), Pathak (1964), Perri (2007), Ray and Sahai 
(1980), Reddy (1973), Robinson (1987), Sen (1993), Shabbir and Yaab (2003), 
Sharma and Tailor (2010), Singh and Chaudhary (1986), Singh (2003), Singh and 
Espejo (2003), Singh and Agnihotri (2008), Singh and Solanki (2012), Singh and 
Tailor (2003, 2005), Singh et al. (2004, 2008), Sisodia and Dwivedi (1981) , 
Solanki et al. (2012), Srivenkataramana (1980), Tailor and Sharma (2009), Tin 
(1965), Upadhyaya and Singh (1999) and Yan and Tian (2010). 

The following table contains all modified ratio estimators using known 
population parameters of the auxiliary variable in which some of the estimators 
are already suggested in the literature. The remaining estimators are introduced in 
this article: 
 
Table 1. Modified Ratio estimators with the constant, the bias, and the mean squared 
errors. 
 
Estimator Constant θi Bias – B(.) Mean squared error MSE(.) 

ˆ x

x

X CY y
x C

 +
=  + 

 

Sisodia and 
Dwivedi (1981) 

1
x

X
X C

θ =
+

 ( ) ( )2 2
1 1

1
x x y

f
Y C C C

n
θ θ ρ

−
−

  ( ) ( )2 2 2 2
1 1

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

2
2

2

ˆ XY y
x

β
β

 +
=  + 

 

Singh et al. (2004) 
2

2

X
X

θ
β

=
+

 ( ) ( )2 2
2 2

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
2 2

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

1
3

1

ˆ XY y
x

β
β

 +
=  + 

 

Yan and Tian 
(2010) 

3
1

X
X

θ
β

=
+

 ( ) ( )2 2
3 3

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
3 3

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

4
ˆ XY y

x
ρ
ρ

 +
=  + 

 

Singh and Tailor 
(2003) 

4
X

X
θ

ρ
=

+
 ( ) ( )2 2

4 4

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
4 4

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  
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Table 1 Continued 

Estimator Constant θi Bias – B(.) Mean squared error MSE(.) 

5
ˆ x

x

X SY y
x S

 +
=  + 

 

Singh (2003) 
5

x

X
X S

θ =
+

 ( ) ( )2 2
5 5

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

5 5

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

6
ˆ d

d

X MY y
x M

 +
=  + 

 

Subramani and 
Kumarapandiyan 
(2013a) 

6
d

X
X M

θ =
+

 ( ) ( )2 2
6 6

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

6 6

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

2
7

2

ˆ x

x

X CY y
x C

β
β

 +
=  + 

 

Upadhyaya and 
Singh (1999) 

2
7

2 x

X
X C
βθ

β
=

+

 ( ) ( )2 2
7 7

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

7 7

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

2
8

2

ˆ x

x

C XY y
C x

β
β

 +
=  + 

 

Upadhyaya and 
Singh (1999) 

8
2

x

x

C X
C X

θ
β

=
+

 ( ) ( )2 2
8 8

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

8 8

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

1
9

1

ˆ x

x

X CY y
x C

β
β

 +
=  + 

 
1

9
1 x

X
X C
βθ

β
=

+
 ( ) ( )2 2

9 9

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

9 9

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

1
10

1

ˆ x

x

C XY y
C x

β
β

 +
=  + 

 

Yan and Tian 
(2010) 

10
1

x

x

C X
C X

θ
β

=
+

 ( ) ( )2 2
10 10

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
10 10

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

11
ˆ x

x

X CY y
x C

ρ
ρ

 +
=  + 

 
11

x

X
X C
ρθ

ρ
=

+
 ( ) ( )2 2

11 11

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

11 11

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

12
ˆ x

x

C XY y
C x

ρ
ρ

 +
=  + 

 
12

x

x

C X
C X

θ
ρ

=
+

 ( ) ( )2 2
12 12

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
12 12

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

13
ˆ x x

x x

S X CY y
S x C

 +
=  + 

 
13

x

x x

S X
S X C

θ =
+

 ( ) ( )2 2
13 13

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
11 11

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

14
ˆ x x

x x

C X SY y
C x S

 +
=  +   14

x

x x

C X
C X S

θ =
+  

( ) ( )2 2
14 14

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 
( ) ( )2 2 2 2

14 14

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −

 

15
ˆ d x

d x

M X CY y
M x C

 +
=  + 

 
15

d

d x

M X
M X C

θ =
+

 ( ) ( )2 2
15 15

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
15 15

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

16
ˆ x d

x d

C X MY y
C x M

 +
=  + 

 

Subramani and 
Kumarapandiyan 
(2012c) 

16
x

x d

C X
C X M

θ =
+

 ( ) ( )2 2
16 16

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
16 16

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

1 2
17

1 2

ˆ XY y
x

β β
β β

 +
=  + 

 

Yan and Tian 
(2010) 

1
17

1 2

X
X
βθ

β β
=

+

 ( ) ( )2 2
17 17

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
17 17

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  
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Table 1 Continued 

Estimator Constant θi Bias – B(.) Mean squared error MSE(.) 

2 1
18

2 1

ˆ XY y
x

β β
β β

 +
=  + 

 

Yan and Tian 
(2010) 

2
18

2 1

X
X
βθ

β β
=

+

 ( ) ( )2 2
18 18

1
x x y

f
Y C C C

n
θ θ ρ

−
−

 ( ) ( )2 2 2 2
18 18

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

2
19

2

ˆ XY y
x

ρ β
ρ β

 +
=  + 

 
19

2

X
X
ρθ

ρ β
=

+
 ( ) ( )2 2

19 19

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

19 19

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

2
20

2

ˆ XY y
x

β ρ
β ρ

 +
=  + 

 
2

20
2

X
X
βθ

β ρ
=

+
 ( ) ( )2 2

20 20

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

20 20

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

2
21

2

ˆ x

x

S XY y
S x

β
β

 +
=  + 

 
21

2

x

x

S X
S X

θ
β

=
+

 ( ) ( )2 2
21 21

1
x x y

f
Y C C C

n
θ θ ρ

−
−  ( ) ( )2 2 2 2

21 21

1
2y x x y

f
Y C C C C

n
θ θ ρ

−
+ −  

2
22

2

ˆ x

x

X SY y
x S

β
β

 +
=  + 

 

Singh (2003) 

2
22

2 x

X
X S
βθ

β
=

+

 ( ) ( )2 2
22 22

1
x x y

f
Y C C C
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Proposed generalized ratio estimator 

As stated earlier, the performance of the estimator of the study variable can be 
improved by using the known population parameters of the auxiliary variable, 
which are positively correlated with that of study variable. 

The proposed generalized modified ratio estimator for estimating the 
population mean Y  is defined as: 
 

 ( )
( )
1ˆ ; 1,2,3, ,36
1i

i
p

i

X
Y y i

x
α λ
α λ

 + +
= = + + 


  (7) 

 
The bias and mean squared error of the proposed estimator ˆ

ipY  have been derived 
(see Appendix A) and are given below: 
 

 ( ) ( ) ( )2 21ˆ ; 1, 2,3, ,36
i i ip p x p x y

f
B Y Y C C C i

n
θ θ ρ

−
= − =    (8) 

 

Table 1 Continued 

Estimator Constant θi Bias – B(.) Mean squared error MSE(.) 
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( ) ( ) ( )

( )

2 2 2 21ˆ 2 ;

where ; 1, 2,3, ,36
1

i i i

i

p y p x p x y

p
i

f
MSE Y Y C C C C

n
x i

x

θ θ ρ

θ
α λ

−
= + −

= =
+ −



  (9) 

 
where 1 ,xCλ =  2 2 ,λ β=  3 1,λ β=  4 ,λ ρ=  5 ,xSλ =  6 ,dMλ =  7 2/ ,xCλ β=  

8 2 / ,xCλ β=  9 1/ ,xCλ β=  10 1 / ,xCλ β=  11 / ,xCλ ρ=  12 / ,xCλ ρ=  13 / ,x xC Sλ =  

14 / ,x xS Cλ =  15 / ,x dC Mλ =  16 / ,d xM Cλ =  17 2 1/ ,λ β β=  18 1 2/ ,λ β β=  

19 2 / ,λ β ρ=  20 2/ ,λ ρ β=  21 2 / ,xSλ β=  22 2/ ,xSλ β=  23 2 / ,dMλ β=  

24 2/ ,dMλ β=  25 1 / ,λ β ρ=  26 1/ ,λ ρ β=  27 1 / ,xSλ β=  28 1/ ,xSλ β=  

29 1 / ,dMλ β=  30 1/ ,dMλ β=  31 / ,xSλ ρ=  32 / ,xSλ ρ=  33 / ,dMλ ρ=  

34 / ,dMλ ρ=  35 / ,x dS Mλ =  and 36 /d xM Sλ =  

Efficiency of the proposed estimator 

The variance of SRSWOR sample mean srsy  is given below: 
 

 ( ) ( ) 21
srs y

f
V y S

n
−

=   (10) 

 
The bias and mean squared error of the usual ratio estimator ˆ

RY  to the first degree 
of approximation are given below: 
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2
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f
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f
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ρ
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−
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−
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  (11) 

 
The bias and the mean squared error of the modified ratio estimators 1Ŷ  to 36Ŷ  
listed in the Table 1 are represented in a single class as given below: 
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 ( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2 2

ˆ ; 1, 2,3, ,36

1ˆ ; 1,2,3, ,36

1ˆ 2  where ; 1, 2,3, ,36

i
i

i

i i x i x y

i y i x i x y i
i

XY y i
x

f
B Y Y C C C i

n
f XMSE Y Y C C C C i

n X

λ
λ

θ ρθ

θ ρθ θ
λ

 +
= = + 

−
= − =

−
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+







  (12) 

 
As discussed earlier, the bias, the mean squared error and the constant of the 
proposed modified ratio estimator ˆ

ipY  are given below: 
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  (13) 

 
where 1 ,xCλ =  2 2 ,λ β=  3 1,λ β=  4 ,λ ρ=  5 ,xSλ =  6 ,dMλ =  7 2/ ,xCλ β=  

8 2 / ,xCλ β=  9 1/ ,xCλ β=  10 1 / ,xCλ β=  11 / ,xCλ ρ=  12 / ,xCλ ρ=  13 / ,x xC Sλ =  

14 / ,x xS Cλ =  15 / ,x dC Mλ =  16 / ,d xM Cλ =  17 2 1/ ,λ β β=  18 1 2/ ,λ β β=  

19 2 / ,λ β ρ=  20 2/ ,λ ρ β=  21 2 / ,xSλ β=  22 2/ ,xSλ β=  23 2 / ,dMλ β=  

24 2/ ,dMλ β=  25 1 / ,λ β ρ=  26 1/ ,λ ρ β=  27 1 / ,xSλ β=  28 1/ ,xSλ β=  

29 1 / ,dMλ β=  30 1/ ,dMλ β=  31 / ,xSλ ρ=  32 / ,xSλ ρ=  33 / ,dMλ ρ=  

34 / ,dMλ ρ=  35 / ,x dS Mλ =  and 36 /d xM Sλ =  
 
From the expressions given in (10) and (13), the conditions (see Appendix B ) for 
which the proposed estimator ˆ

ipY  are more efficient than the simple random 
sampling without replacement (SRSWOR) sample mean srsy  were derived and 
are: 
 

 ( ) ( )ˆ  if 2
i i

y
p r p

x

C
MSE Y V y

C
θ ρ≤ ≤   (14) 
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From the expressions given in (11) and (13), the conditions (see Appendix C) for 
which the proposed estimators ˆ

ipY  are more efficient than the usual ratio estimator 
ˆ
RY  were derived and are: 

 

 ( ) ( ) 2 2ˆ ˆ  either 1 1 (or) 1 1
i i i

y y
p R p p

x x

C C
MSE Y MSE Y

C C
ρ ρ

θ θ≤ − ≤ ≤ ≤ ≤ −   (15) 

 
From the expressions given in (12) and (13), the conditions (see Appendix D) for 
which the proposed estimators ˆ ; 1, 2, ,5

jpY j =   are more efficient than the 

existing modified ratio estimators given in Class 1, ; 1, 2,3, ,11iY i = 
 were 

derived and are: 
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j j j

y y
p i i p i i p i

x x

C C
MSE Y MSE Y

C C
ρ ρ

θ θ θ θ θ θ≤ − ≤ ≤ ≤ ≤ −  (16) 

 
The conditions in terms of α in which proposed estimator ˆ

ipY  performs better than 
the simple random sampling without replacement (SRSWOR) sample mean srsy  
were obtained and are: 
 

 ( ) ( )
1

ˆ  if 2 1
i

y i
p r i

i x

CXMSE Y V y
C X
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λ

−  
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  (17) 

 
From the expression given in (15), the range of α in which proposed estimator ˆ

ipY  

performs better than the usual ratio estimator ˆ
RY  is determined and is: 
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  (18) 
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From the expression given in (16), the range of α in which proposed estimator ˆ
ipY  

performs better than the existing modified ratio estimators listed in Table 1 is: 
 

 

( ) ( )
1

1
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i
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p i i i
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  (19) 

 
Particular case: 

1) At 
1

2 1 ; 1,2,3, ,36,y i
i

i x

CX i
C X

λα ρ
λ

−  
 = − − = 
   

  the mean squared 

error of the proposed estimator ˆ ; 1, 2,3, ,36
ipY i =   equal to the 

variance of the SRSWOR sample mean srsy . 
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i x
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 the mean 
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  the means squared 

error of the proposed estimator ˆ ; 1, 2,3, ,36
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variance of the usual linear regression estimator 1
ˆ

rY  
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Numerical Study 

The performance of the proposed generalized modified ratio estimator is assessed 
with that of the SRSWOR sample mean, the usual ratio estimator and the existing 
modified ratio estimators listed in Table 1 for certain natural populations. In this 
connection, four natural populations for the assessment of the performance of the 
proposed estimators with that of existing estimators were considered. Population 
1 is taken from Singh and Chaudhary (1986) given in page 108; population 2 and 
population 3 are taken from Singh and Chaudhary (1986) given in page 177; 
population 4 is taken from Cochran (1977) given in page 152. The population 
parameters and the constants computed from the above populations are given 
below in Table 2, whereas the range of α in which proposed estimator performs 
better than the existing estimators, the constants, the biases and the mean squared 
errors of the existing and proposed estimators for the above populations are 
respectively given from the Tables 3 to 8. 
 
 
Table 2. Parameters and constants of the population 
 

Parameters Population 1 Population 2 Population 3 Population 4 

N 70 34 34 49 

n 25 20 20 20 

Y   96.7000 856.4118 85.6412 127.7959 

X   175.2671 208.8824 19.9441 103.1429 

ρ 0.7293 0.4491 0.4453 0.9817 

Sy 60.4714 733.1407 73.3141 123.1212 

Cy 0.6254 0.8561 0.8561 0.9634 

Sx 140.8572 150.5060 15.0215 104.4051 

Cx 0.8037 0.7205 0.7532 1.0122 

β2(x) 7.0952 0.0974 3.7257 7.5114 

β1(x) 1.9507 0.9782 1.1823 2.2553 

 Md 121.5000 150.0000 14.2500 64.0000 
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Table 3. Range of α in which proposed estimator performs better than the usual ratio 
estimator 
 

Estimator 
α range (αL, αu) 

Population 1 Population 2 Population 3 Population 4 

1

ˆ
pY  (-1, 1396.1641) (-1, 4023.1475) (-1, 2138.4916) (-1, 14.3885) 

2

ˆ
pY  (-1, 157.2620) (-1, 29751.6396) (-1, 431.5268) (-1, 1.0738) 

3

ˆ
pY  (-1, 574.6399) (-1, 2963.2549) (-1, 1361.9917) (-1, 5.9068) 

4

ˆ
pY  (-1, 1538.6966) (-1, 6454.9931) (-1, 3617.8302) (-1, 14.8665) 

5

ˆ
pY  (-1, 6.9719) (-1, 18.2651) (-1, 106.2772) (-1, -0.8508) 

6

ˆ
pY  (-1, 8.2420) (-1, 18.3301) (-1, 112.0853) (-1, -0.7566) 

7

ˆ
pY  (-1, 9912.1584) (-1, 391.1699) (-1, 7970.1040) (-1, 114.5893) 

8

ˆ
pY  (-1, 126.1952) (-1, 21436.6645) (-1, 324.7792) (-1, 1.0991) 

9

ˆ
pY  (-1, 2724.4479) (-1, 3935.2639) (-1, 2528.5210) (-1, 33.7053) 

10

ˆ
pY  (-1, 461.6418) (-1, 2134.8341) (-1, 1025.6054) (-1, 5.9914) 

11

ˆ
pY  (-1, 1017.9517) (-1, 1806.3268) (-1, 951.7156) (-1, 14.1076) 

12

ˆ
pY  (-1, 1236.4542) (-1, 4650.7357) (-1, 2724.7029) (-1, 15.0607) 

13

ˆ
pY  (-1, 196799.6166) (-1, 605657.2149) (-1, 32137.3735) (-1, 1605.6390) 

14

ˆ
pY  (-1, 5.4070) (-1, 12.8811) (-1, 79.8012) (-1, -0.8490) 

15

ˆ
pY  (-1, 169754.4325) (-1, 603621.1259) (-1, 30486.7557) (-1, 983.8649) 

16

ˆ
pY  (-1, 6.4278) (-1, 12.9279) (-1, 84.1758) (-1, -0.7536) 

17

ˆ
pY  (-1, 307.7217) (-1, 29101.8696) (-1, 510.3764) (-1, 3.6769) 

18

ˆ
pY  (-1, 4083.2802) (-1, 287.8790) (-1, 5077.0982) (-1, 50.8800) 

19

ˆ
pY  (-1, 114.4205) (-1, 13361.518) (-1, 191.6042) (-1, 1.0359) 

20

ˆ
pY  (-1, 10923.4555) (-1, 628.1634) (-1, 13481.6757) (-1, 118.1797) 

21

ˆ
pY  (-1, 22291.3463) (-1, 4477948.8100) (-1, 6496.2013) (-1, 215.5109) 
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Table 3 continued. 

Estimator 
α range (αL, αu) 

Population 1 Population 2 Population 3 Population 4 

22

ˆ
pY  (-1, 55.5623) (-1, 0.8775) (-1, 398.6828) (-1, 0.1207) 

23

ˆ
pY  (-1, 19227.8366) (-1, 4462894.9330) (-1, 6162.5069) (-1, 131.7205) 

24

ˆ
pY  (-1, 64.5737) (-1, 0.8838) (-1, 420.3218) (-1, 0.8282) 

25

ˆ
pY  (-1, 418.8142) (-1, 1330.3074) (-1, 605.9402) (-1, 5.7807) 

26

ˆ
pY  (-1, 3002.4862) (-1, 6314.0002) (-1, 4277.5430) (-1, 34.7834) 

27

ˆ
pY  81082.0243) (-1, 446137.0551) (-1, 20473.1799) (-1, 720.1090) 

28

ˆ
pY  (-1, 14.5508) (-1, 17.8444) (-1, 125.8339) (-1, -0.6635) 

29

ˆ
pY  (-1, 69939.2477) (-1, 444637.2376) (-1, 19421.6318) (-1, 441.0376) 

30

ˆ
pY  (-1, 17.0283) (-1, 17.908) (-1, 132.7007) (-1, -0.4511) 

31

ˆ
pY  (-1, 216876.3557) (-1, 971664.4899) (-1, 54359.2581) (-1, 1655.5450) 

32

ˆ
pY  (-1, 4.8139) (-1, 7.6524) (-1, 46.7706) (-1, -0.8535) 

33

ˆ
pY  (-1, 187072.1402) (-1, 968397.9653) (-1, 51567.3306) (-1, 1014.4570) 

34

ˆ
pY  (-1, 5.7402) (-1, 7.6816) (-1, 49.3569) (-1, -0.7611) 

35

ˆ
pY  (-1, 967.5869) (-1, 2888.7708) (-1, 1527.7007) (-1, 8.5485) 

36

ˆ
pY  (-1, 1300.7996) (-1, 2908.2988) (-1, 1697.7104) (-1, 24.4109) 
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Table 4. Range of α in which proposed estimator performs better than the existing 
modified ratio estimators 
 

Estimator 
α range (αL, αu) 

Population 1 Population 2 Population 3 Population 4 

1 1
ˆ ˆ w.r.t. pY Y  (0, 1343.3398) (0, 3813.2012) (0, 517.1768) (0, 13.0911) 

2 2
ˆ ˆ w.r.t. pY Y  (0, 116.3312) (0, 29531.8209) (0, 25.2048) (-0.0717, 0) 

3 3
ˆ ˆ w.r.t. pY Y  (0, 524.4732) (0, 2757.1363) (0, 229.5184) (0, 4.6415) 

4 4
ˆ ˆ w.r.t. pY Y  (0, 1485.6902) (0, 6240.8577) (0, 1268.9984) (0, 13.5682) 

5 5
ˆ ˆ w.r.t. pY Y  (-0.1011, 0) (0, 0.4679) (0, 0.6773) (-1.2678, 0) 

6 6
ˆ ˆ w.r.t. pY Y  (0, 0.2071) (0, 0.4777) (0, 0.8631) (-1.3241, 0) 

7 7
ˆ ˆ w.r.t. pY Y  (0, 9857.5942) (0, 249.4093) (0, 4332.2435) (0, 113.2681) 

8 8
ˆ ˆ w.r.t. pY Y  (0, 87.6545) (0, 21217.4712) (0, 14.0810) (-0.0482, 0) 

9 9
ˆ ˆ w.r.t. pY Y  (0, 2670.6504) (0, 3725.5608) (0, 692.7328) (0, 32.3928) 

10 10
ˆ ˆ w.r.t. pY Y  (0, 412.5020) (0, 1934.1048) (0, 135.4434) (0, 4.7253) 

11 11
ˆ ˆ w.r.t. pY Y  (0, 965.8454) (0, 1608.9539) (0, 117.6363) (0, 12.8106) 

12 12
ˆ ˆ w.r.t. pY Y  (0, 1183.8818) (0, 4439.3079) (0, 787.7525) (0, 13.7621) 

13 13
ˆ ˆ w.r.t. pY Y  (0, 196744.7709) (0, 605435.8482) (0, 26599.1484) (0, 1604.3148) 

14 14
ˆ ˆ w.r.t. pY Y  (-0.4252, 0) (-0.2370, 0) (-0.0477, 0) (-1.2694, 0) 

15 15
ˆ ˆ w.r.t. pY Y  (0, 169699.5893) (0, 603399.7594) (0, 24999.7154) (0, 982.5405) 

16 16
ˆ ˆ w.r.t. pY Y  (-0.2210, 0) (-0.2317, 0) (0, 0.0582) (-1.3250, 0) 

17 17
ˆ ˆ w.r.t. pY Y  (0, 261.0105) (0, 28882.0870) (0, 35.2418) (0, 2.4381) 

18 18
ˆ ˆ w.r.t. pY Y  (0, 4029.1336) (0, 162.2788) (0, 2189.8216) (0, 49.5634) 

19 19
ˆ ˆ w.r.t. pY Y  (0, 77.0150) (0, 13143.6647) (0, 4.3618) (-0.1066, 0) 

20 20
ˆ ˆ w.r.t. pY Y

 
(0, 10868.8640) (0, 464.1746) (0, 9009.6165) (0, 116.8585) 

21 21
ˆ ˆ w.r.t. pY Y  (0, 22236.6179) (0, 4477727.3738) (0, 3199.5909) (0, 214.1880) 
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Table 4 continued. 

Estimator 
α range (αL, αu) 

Population 1 Population 2 Population 3 Population 4 

22 22
ˆ ˆ w.r.t. pY Y

 
(0, 27.4608) (-0.9926, 0) (0, 21.4756) (-0.9064, 0) 

23 23
ˆ ˆ w.r.t. pY Y

 
(0, 19173.1292) (0, 4462673.4962) (0, 2954.0212) (0, 130.3989) 

24 24
ˆ ˆ w.r.t. pY Y

 
(0, 34.4533) (-0.9925, 0) (0, 23.9023) (-0.2968, 0) 

25 25
ˆ ˆ w.r.t. pY Y

 
(0, 370.1916) (0, 1140.3196) (0, 49.3999) (0, 4.5165) 

26 26
ˆ ˆ w.r.t. pY Y

 
(0, 2948.5920) (0, 6100.0225) (0, 1667.5443) (0, 33.4704) 

27 27
ˆ ˆ w.r.t. pY Y

 
(0, 81027.2001) (0, 445915.7171) (0, 15429.9892) (0, 718.7848) 

28 28
ˆ ˆ w.r.t. pY Y

 
(0, 2.2599) (0, 0.4053) (0, 1.3412) (-1.3376, 0) 

29 29
ˆ ˆ w.r.t. pY Y

 
(0, 69884.4292) (0, 444415.8999) (0, 14444.8014) (0, 439.7137) 

30 30
ˆ ˆ w.r.t. pY Y

 
(0, 3.2704) (0, 0.4146) (0, 1.6000) (-1.2834, 0) 

31 31
ˆ ˆ w.r.t. pY Y  (0, 216821.5087) (0, 971443.0928) (0, 48401.3982) (0, 1654.2204) 

32 32
ˆ ˆ w.r.t. pY Y

 
(-0.5310, 0) (-0.7110, 0) (-0.6684, 0) (-1.2652, 0) 

33 33
ˆ ˆ w.r.t. pY Y  (0, 187017.2953) (0, 968176.5684) (0, 45644.6094) (0, 1013.1325) 

34 34
ˆ ˆ w.r.t. pY Y

 
(-0.3616, 0) (-0.7090, 0) (-0.6313, 0) (-1.3225, 0) 

35 35
ˆ ˆ w.r.t. pY Y  (0, 915.6162) (0, 2683.0193) (0, 283.1533) (0, 7.2673) 

36 36
ˆ ˆ w.r.t. pY Y

 
(0, 1248.1186) (0, 2702.4493) (0, 342.7819) (0, 23.1028) 
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Table 5. Constant, Bias and Mean squared error of the Existing and Proposed estimators 
for Population 1 
 

Estimator iθ   
( )( ).
ˆB Y  

( )( ).
ˆMSE Y  ( )ˆ

at  & 
ip

L u

MSE Y

α α

  at 
ip aθ α  ( )ˆBias

at 
ip

a

Y

α

  ( )ˆ

at 
ip

a

MSE Y

α

 

srsy  - - 94.0466 94.0466 - - - 

ˆ
RY  - 0.6946 73.0773 73.0773 - - - 

1

ˆ
pY  0.9954 0.6842 72.4673 72.4673 0.2448 0.1269 60.1973 

2

ˆ
pY  0.9611 0.6076 68.0853 68.0853 0.2945 0.1291 55.5981 

3

ˆ
pY  0.9890 0.6695 71.6173 71.6173 0.2545 0.1279 59.2452 

4

ˆ
pY  0.9959 0.6851 72.5232 72.5232 0.2442 0.1268 60.2610 

5

ˆ
pY  0.5544 0.0116 44.0518 44.0518 0.5672 0.0003 44.0253 

6

ˆ
pY  0.5906 0.0219 44.1080 44.1080 0.5666 0.0009 44.0254 

7

ˆ
pY  0.9994 0.6932 72.9906 72.9906 0.2389 0.1261 60.7979 

8

ˆ
pY  0.9520 0.5880 66.9919 66.9919 0.3069 0.1285 54.5701 

9

ˆ
pY  0.9977 0.6893 72.7631 72.7631 0.2415 0.1264 60.5354 

10

ˆ
pY  0.9863 0.6635 71.2712 71.2712 0.2584 0.1283 58.8657 

11

ˆ
pY  0.9938 0.6803 72.2439 72.2439 0.2474 0.1272 59.9443 

12

ˆ
pY  0.9948 0.6828 72.3894 72.3894 0.2457 0.1270 60.1089 

13

ˆ
pY  1.0000 0.6946 73.0729 73.0729 0.2380 0.1260 60.8934 

14

ˆ
pY  0.5000 0.0542 44.7328 44.7328 0.5595 0.0072 44.0353 

15

ˆ
pY  1.0000 0.6946 73.0722 73.0722 0.2380 0.1260 60.8925 

16

ˆ
pY  0.5369 0.0264 44.1707 44.1707 0.5659 0.0015 44.0257 

17

ˆ
pY  0.9797 0.6485 70.4101 70.4101 0.2682 0.1289 57.9425 

18

ˆ
pY  0.9984 0.6911 72.8672 72.8672 0.2403 0.1263 60.6553 

19

ˆ
pY  0.9474 0.5781 66.4416 66.4416 0.3132 0.1279 54.0709 
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Table 5 continued. 

Estimator iθ   ( )( ).
ˆB Y

 ( )( ).
ˆMSE Y

 
( )ˆ

at  & 
ip

L u

MSE Y

α α  
 at 

ip aθ α  
( )ˆBias

at 
ip

a

Y

α   

( )ˆ

at 
ip

a

MSE Y

α  

20

ˆ
pY  0.9994 0.6933 72.9986 72.9986 0.2388 0.1261 60.8072 

21

ˆ
pY  0.9997 0.6940 73.0387 73.0387 0.2383 0.1260 60.8536 

22

ˆ
pY  0.8983 0.4772 61.0160 61.0160 0.3747 0.1160 49.7965 

23

ˆ
pY  0.9997 0.6939 73.0325 73.0325 0.2384 0.1260 60.8465 

24

ˆ
pY  0.9110 0.5026 62.3499 62.3499 0.3596 0.1201 50.7382 

25

ˆ
pY  0.9850 0.6604 71.0929 71.0929 0.2604 0.1284 58.6722 

26

ˆ
pY  0.9979 0.6898 72.7920 72.7920 0.2411 0.1264 60.5687 

27

ˆ
pY  0.9999 0.6945 73.0667 73.0667 0.2380 0.1260 60.8861 

28

ˆ
pY  0.7082 0.1601 47.1006 47.1006 0.5326 0.0298 44.2143 

29

ˆ
pY  0.9999 0.6944 73.0650 73.0650 0.2380 0.1260 60.8841 

30

ˆ
pY  0.7378 0.2018 48.5296 48.5296 0.5164 0.0424 44.4309 

31

ˆ
pY  1.0000 0.6946 73.0733 73.0733 0.2379 0.1260 60.8938 

32

ˆ
pY  0.4757 -0.0701 45.3331 45.3331 0.5527 0.0132 44.0594 

33

ˆ
pY  1.0000 0.6946 73.0727 73.0727 0.2380 0.1260 60.8931 

34

ˆ
pY  0.5127 0.0451 44.4921 44.4921 0.5622 0.0048 44.0296 

35

ˆ
pY  0.9934 0.6796 72.2012 72.2012 0.2478 0.1272 59.8961 

36

ˆ
pY  0.9951 0.6834 72.4230 72.4230 0.2453 0.1269 60.1471 
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Table 6. Constant, Bias and Mean squared error of the Existing and Proposed estimators 
for Population 2 
 

Estimator iθ   ( )ˆ
iB Y  ( )ˆ

iMSE Y  ( )ˆ

at  & 
ip

L u

MSE Y

α α  
 at 

ip aθ α  
( )ˆBias

at 
ip

a

Y

α   

( )ˆ

at 
ip

a

MSE Y

α  

srsy  - - 11066.0800 11066.0800 - - - 

ˆ
RY  - 4.2694 10539.2700 10539.2700 - - - 

1

ˆ
pY  0.9966 4.2233 10514.2250 10514.2250 0.1319 0.4851 10098.8070 

2

ˆ
pY  0.9995 4.2631 10535.8620 10535.8620 0.1268 0.4721 10131.5920 

3

ˆ
pY  0.9953 4.2070 10505.3560 10505.3560 0.1340 0.4903 10085.4900 

4

ˆ
pY  0.9979 4.2406 10523.6170 10523.6170 0.1297 0.4795 10112.9870 

5

ˆ
pY  0.5812 0.2533 8851.7250 8851.7250 0.5294 0.0206 8834.0910 

6

ˆ
pY  0.5820 0.2581 8852.3420 8852.3420 0.5292 0.0213 8834.1010 

7

ˆ
pY  0.9658 3.8212 10298.4430 10298.4430 0.1835 0.5881 9794.7990 

8

ˆ
pY  0.9994 4.2607 10534.5420 10534.5420 0.1271 0.4729 10129.5790 

9

ˆ
pY  0.9965 4.2223 10513.6700 10513.6700 0.1321 0.4854 10097.9710 

10

ˆ
pY  0.9935 4.1831 10492.3780 10492.3780 0.1371 0.4977 10066.1290 

11

ˆ
pY  0.9924 4.1676 10483.9890 10483.9890 0.1392 0.5024 10053.6950 

12

ˆ
pY  0.9970 4.2295 10517.5830 10517.5830 0.1311 0.4831 10103.8680 

13

ˆ
pY  1.0000 4.2691 10539.1030 10539.1030 0.1260 0.4701 10136.5390 

14

ˆ
pY  0.5000 0.1538 8842.8000 8842.8000 0.5315 0.0103 8833.9850 

15

ˆ
pY  1.0000 4.2691 10539.1020 10539.1020 0.1260 0.4701 10136.5380 

16

ˆ
pY  0.5008 0.1502 8842.3620 8842.3620 0.5316 0.0098 8833.9810 

17

ˆ
pY  0.9995 4.2630 10535.7860 10535.7860 0.1268 0.4721 10131.4760 

18

ˆ
pY  0.9542 3.6732 10220.4740 10220.4740 0.2021 0.6133 9695.2120 

19

ˆ
pY  0.9990 4.2555 10531.6900 10531.6900 0.1277 0.4746 10125.2380 
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Table 6 continued 

Estimator iθ   ( )ˆ
iB Y  ( )ˆ

iMSE Y  ( )ˆ

at  & 
ip

L u

MSE Y

α α  
 at 

ip aθ α  
( )ˆBias

at 
ip

a

Y

α   

( )ˆ

at 
ip

a

MSE Y

α  

20

ˆ
pY  0.9784 3.9839 10385.0680 10385.0680 0.1628 0.5526 9911.8290 

21

ˆ
pY  1.0000 4.2693 10539.2480 10539.2480 0.1259 0.4700 10136.7600 

22

ˆ
pY  0.1191 0.4520 10180.5970 10180.5970 0.2117 0.6238 9646.3850 

23

ˆ
pY  1.0000 4.2693 10539.2480 10539.2480 0.1259 0.4700 10136.7600 

24

ˆ
pY  0.1195 0.4530 10178.2990 10178.2990 0.2122 0.6243 9643.6140 

25

ˆ
pY  0.9897 4.1318 10464.6450 10464.6450 0.1438 0.5130 10025.2640 

26

ˆ
pY  0.9978 4.2400 10523.2690 10523.2690 0.1298 0.4797 10112.4600 

27

ˆ
pY  1.0000 4.2690 10539.0430 10539.0430 0.1260 0.4701 10136.4470 

28

ˆ
pY  0.5758 0.2226 8847.9320 8847.9320 0.5303 0.0162 8834.0370 

29

ˆ
pY  1.0000 4.2690 10539.0420 10539.0420 0.1260 0.4701 10136.4460 

30

ˆ
pY  0.5767 0.2273 8848.4820 8848.4820 0.5301 0.0169 8834.0440 

31

ˆ
pY  1.0000 4.2692 10539.1660 10539.1660 0.1260 0.4700 10136.6350 

32

ˆ
pY  0.3840 0.5259 9009.4490 9009.4490 0.4916 0.1888 8847.7480 

33

ˆ
pY  1.0000 4.2692 10539.1660 10539.1660 0.1260 0.4700 10136.6350 

34

ˆ
pY  0.3848 0.5242 9007.5850 9007.5850 0.4921 0.1870 8847.4570 

35

ˆ
pY  0.9952 4.2054 10504.4910 10504.4910 0.1343 0.4908 10084.1940 

36

ˆ
pY  0.9953 4.2058 10504.7220 10504.7220 0.1342 0.4906 10084.5400 
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Table 7. Constant, Bias and Mean squared error of the Existing and Proposed estimators 
for Population 3 
 

Estimator iθ   ( )ˆ
iB Y  ( )ˆ

iMSE Y  ( )ˆ

at  & 
ip

L u

MSE Y

α α  
 at 

ip aθ α  
( )ˆBias

at 
ip

a

Y

α   

( )ˆ

at 
ip

a

MSE Y

α  

srsy  - - 379.4085 379.4085 - - - 

ˆ
RY  - 1.6938 375.8179 375.8179 - - - 

1

ˆ
pY  0.9636 1.5119 365.6490 365.6490 0.0926 0.1313 354.4061 

2

ˆ
pY  0.8426 0.9723 337.4291 337.4291 0.2824 0.2167 318.8736 

3

ˆ
pY  0.9440 1.4178 360.5017 360.5017 0.1272 0.1653 346.3464 

4

ˆ
pY  0.9782 1.5835 369.6218 369.6218 0.0658 0.0994 361.1082 

5

ˆ
pY  0.5704 0.1257 305.3883 305.3883 0.4979 0.0139 304.1944 

6

ˆ
pY  0.5833 0.1543 305.9229 305.9229 0.4944 0.0199 304.2154 

7

ˆ
pY  0.9900 1.6427 372.9362 372.9362 0.0435 0.0691 367.0206 

8

ˆ
pY  0.8013 0.8111 329.7622 329.7622 0.3340 0.1972 312.8772 

9

ˆ
pY  0.9690 1.5385 367.1190 367.1190 0.0827 0.1201 356.8370 

10

ˆ
pY  0.9270 1.3383 356.2136 356.2136 0.1560 0.1873 340.1698 

11

ˆ
pY  0.9218 1.3142 354.9318 354.9318 0.1647 0.1928 338.4184 

12

ˆ
pY  0.9712 1.5491 367.7088 367.7088 0.0787 0.1154 357.8285 

13

ˆ
pY  0.9975 1.6810 375.0921 375.0921 0.0290 0.0475 371.0234 

14

ˆ
pY  0.5000 0.0105 304.1857 304.1857 0.5060 0.0001 304.1748 

15

ˆ
pY  0.9974 1.6803 375.0531 375.0531 0.0293 0.0479 370.9498 

16

ˆ
pY  0.5132 0.0124 304.1895 304.1895 0.5060 0.0002 304.1748 

17

ˆ
pY  0.8636 1.0586 341.7007 341.7007 0.2537 0.2196 322.8924 

18

ˆ
pY  0.9843 1.6144 371.3460 371.3460 0.0542 0.0841 364.1476 

20

ˆ
pY  0.9940 1.6634 374.1000 374.1000 0.0357 0.0576 369.1661 
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Table 7 continued 

Estimator iθ   ( )ˆ
iB Y  ( )ˆ

iMSE Y  ( )ˆ

at  & 
ip

L u

MSE Y

α α  
 at 

ip aθ α  
( )ˆBias

at 
ip

a

Y

α   

( )ˆ

at 
ip

a

MSE Y

α  

21

ˆ
pY  0.9877 1.6314 372.2986 372.2986 0.0478 0.0752 365.8606 

22

ˆ
pY  0.8318 0.9292 335.3364 335.3364 0.2965 0.2132 317.0819 

23

ˆ
pY  0.9871 1.6281 372.1130 372.1130 0.0491 0.0769 365.5250 

24

ˆ
pY  0.8391 0.9582 336.7384 336.7384 0.2871 0.2157 318.2694 

25

ˆ
pY  0.8825 1.1392 345.7872 345.7872 0.2262 0.2171 327.1910 

26

ˆ
pY  0.9815 1.6000 370.5415 370.5415 0.0597 0.0913 362.7196 

27

ˆ
pY  0.9961 1.6737 374.6820 374.6820 0.0318 0.0517 370.2524 

28

ˆ
pY  0.6109 0.2194 307.3971 307.3971 0.4844 0.0360 304.3128 

29

ˆ
pY  0.9959 1.6726 374.6210 374.6210 0.0322 0.0523 370.1382 

30

ˆ
pY  0.6233 0.2505 308.2092 308.2092 0.4790 0.0446 304.3911 

31

ˆ
pY  0.9985 1.6862 375.3879 375.3879 0.0270 0.0444 371.5822 

32

ˆ
pY  0.3716 0.1715 309.4927 309.4927 0.4703 0.0577 304.5507 

33

ˆ
pY  0.9984 1.6858 375.3647 375.3647 0.0272 0.0447 371.5383 

34

ˆ
pY  0.3839 0.1609 308.5583 308.5583 0.4766 0.0482 304.4302 

35

ˆ
pY  0.9498 1.4452 361.9937 361.9937 0.1172 0.1563 348.6100 

36

ˆ
pY  0.9546 1.4682 363.2505 363.2505 0.1087 0.1482 350.5627 
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Table 8. Constant, Bias and Mean squared error of the Existing and Proposed estimators 
for Population 4 
 

Estimator iθ   ( )ˆ
iB Y  ( )ˆ

iMSE Y  ( )ˆ

at  & 
ip

L u

MSE Y

α α  
 at 

ip aθ α  
( )ˆBias

at 
ip

a

Y

α   

( )ˆ

at 
ip

a

MSE Y

α  

srsy  - - 448.5780 448.5780 - - - 

ˆ
RY  - 0.2542 18.3619 18.3619 - - - 

1

ˆ
pY  0.9903 0.2144 17.7773 17.7773 0.9311 0.0121 16.2363 

2

ˆ
pY  0.9321 0.0082 16.2333 16.2333 0.9344 0.0000 16.2307 

3

ˆ
pY  0.9786 0.1676 17.1984 17.1984 0.9323 0.0076 16.2329 

4

ˆ
pY  0.9906 0.2156 17.7934 17.7934 0.9310 0.0122 16.2364 

5

ˆ
pY  0.4970 0.8423 110.9857 110.9857 0.7296 0.5790 36.9976 

6

ˆ
pY  0.6171 0.7587 66.0867 66.0867 0.8266 0.3451 21.9799 

7

ˆ
pY  0.9987 0.2488 18.2780 18.2780 0.9300 0.0159 16.2404 

8

ˆ
pY  0.9329 0.0055 16.2319 16.2319 0.9344 0.0000 16.2307 

9

ˆ
pY  0.9957 0.2364 18.0897 18.0897 0.9304 0.0145 16.2387 

10

ˆ
pY  0.9789 0.1686 17.2095 17.2095 0.9323 0.0076 16.2330 

11

ˆ
pY  0.9901 0.2137 17.7674 17.7674 0.9311 0.0120 16.2362 

12

ˆ
pY  0.9907 0.2161 17.7996 17.7996 0.9310 0.0122 16.2364 

13

ˆ
pY  0.9999 0.2538 18.3558 18.3558 0.9298 0.0165 16.2412 

14

ˆ
pY  0.5000 0.8416 109.6730 109.6730 0.7324 0.5732 36.4262 

15

ˆ
pY  0.9998 0.2536 18.3520 18.3520 0.9298 0.0165 16.2411 

16

ˆ
pY  0.6200 0.7553 65.1890 65.1890 0.8286 0.3397 21.7747 

17

ˆ
pY  0.9687 0.1288 16.8141 16.8141 0.9331 0.0046 16.2315 

18

ˆ
pY  0.9971 0.2423 18.1775 18.1775 0.9302 0.0152 16.2395 

19

ˆ
pY  0.9309 0.0125 16.2366 16.2366 0.9344 0.0000 16.2307 
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Table 8 continued 

Estimator iθ   ( )ˆ
iB Y  ( )ˆ

iMSE Y  ( )ˆ

at  & 
ip

L u

MSE Y

α α  
 at 

ip aθ α  
( )ˆBias

at 
ip

a

Y

α   

( )ˆ

at 
ip

a

MSE Y

α  

20

ˆ
pY  0.9987 0.2490 18.2805 18.2805 0.9300 0.0160 16.2405 

21

ˆ
pY  0.9993 0.2513 18.3169 18.3169 0.9299 0.0162 16.2408 

22

ˆ
pY  0.8812 0.1815 17.6298 17.6298 0.9314 0.0109 16.2353 

23

ˆ
pY  0.9989 0.2495 18.2887 18.2887 0.9299 0.0160 16.2405 

24

ˆ
pY  0.9237 0.0383 16.2874 16.2874 0.9343 0.0004 16.2307 

25

ˆ
pY  0.9782 0.1661 17.1814 17.1814 0.9323 0.0074 16.2328 

26

ˆ
pY  0.9958 0.2369 18.0976 18.0976 0.9304 0.0145 16.2388 

27

ˆ
pY  0.9998 0.2533 18.3483 18.3483 0.9298 0.0165 16.2411 

28

ˆ
pY  0.6902 0.6531 45.7570 45.7570 0.8706 0.2153 18.2472 

29

ˆ
pY  0.9997 0.2528 18.3398 18.3398 0.9298 0.0164 16.2410 

30

ˆ
pY  0.7842 0.4563 27.3969 27.3969 0.9103 0.0851 16.5191 

31

ˆ
pY  0.9999 0.2538 18.3560 18.3560 0.9298 0.0165 16.2412 

32

ˆ
pY  0.4924 0.8433 112.9917 112.9917 0.7253 0.5877 37.8862 

33

ˆ
pY  0.9999 0.2536 18.3523 18.3523 0.9298 0.0165 16.2411 

34

ˆ
pY  0.6127 0.7637 67.4673 67.4673 0.8237 0.3534 22.3027 

35

ˆ
pY  0.9844 0.1909 17.4704 17.4704 0.9317 0.0097 16.2343 

36

ˆ
pY  0.9941 0.2299 17.9954 17.9954 0.9306 0.0138 16.2379 

 
 
From the values of Table 5—Table 8, it is observed that the bias of the proposed 
modified ratio estimator ˆ ; 1, 2, ,36

jpY j =   is less than the bias of the usual ratio 

estimator and the existing modified ratio estimators ˆ ; 1, 2,3, ,36iY i =  . Similarly, 

the mean squared error of the proposed modified ratio estimator ˆ ; 1, 2, ,36
jpY j =   
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is less than the variance of SRSWOR sample mean, the mean squared error of the 
usual ratio estimator and the existing modified ratio estimators ˆ ; 1, 2, ,36

jpY j =   

for all four populations. 

Conclusion 

In this article, a generalized modified ratio estimator has been suggested using the 
known population parameters of the auxiliary variable. Moreover, many modified 
ratio estimators have been introduced in this article, and have not been discussed 
earlier in the literature. The bias and mean squared error of the proposed 
generalized modified ratio estimator are obtained. Furthermore, the conditions 
have been derived for which the proposed estimator is more efficient than the 
existing estimators, and it is shown that the SRSWOR sample mean, the usual 
ratio estimator, the linear regression and the existing modified ratio estimators are 
particular cases of the proposed estimator. The performances of the proposed 
estimator are also assessed for some known populations. It is observed that the 
bias and the mean squared errors of the proposed estimators are less than the bias 
and the mean squared error of the existing estimators. Moreover, the proposed 
estimator will be a generalized modified ratio estimator for estimating the 
population mean of the study variable using the known population parameters of 
the auxiliary variable. 
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Appendix A 

An expression for the bias and mean squared error of the proposed estimators 
ˆ ; 1, 2,3, ,36

jpY i =   was derived to first order of approximation with the following 

notations: 

Let us define e0 = 
y Y

Y
−

 and e1 = 
x X

X
−

. Further, ( )01y Y e= +  and 

( )11x X e= +  and from the definition of e0 and e1: 

[ ] [ ]
( )

( )

[ ] ( )

0 1

2 2
0

2 2
1

0 1

0

1

1

1
 where ,  and 

y

x

y xyx
y x x y

x y

E e E e

f
E e C

n
f

E e C
n

S Sf SE e e C C C C
n X Y S S

ρ ρ

= =

−
  = 

−
  = 

−
= = = =

  

The bias of a class of proposed estimators ˆ ; 1, 2,3, ,36
ipY i =   is derived and is: 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( )
1

1

ˆ 1 ; 1,2,3, ,36
1

ˆ 1
1

ˆ 1

1 1
1

i

i

i

p i
i

p i
i

p i

i
i

yY X i
x

yY X
X e X

yY X
e XX

X

α λ
α λ

α λ
α λ

α λ

α λ
α λ

= + + =
+ +

⇒ = + +
+ + +

⇒ = + +
 

+ + +  + + 



  

( ) ( )1

ˆ  where 
11i i

i

p p
ip

y XY
Xe

θ
α λθ

⇒ = =
+ ++

  

( ) 1

1
ˆ 1

i ip pY y eθ
−

⇒ = +  

( )2 2 3 3
1 1 1

ˆ 1
i i i ip p p pY y e e eθ θ θ⇒ = − + − +  

Neglecting the terms more than 2nd order, results in 
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Neglecting the terms more than 3rd order, results in 
2 2
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Taking expectation on both sides, results in 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
0 1 0 1 1

2 2
1 0 1

2 2

2 2

2 2

ˆ

ˆBias

1 1ˆBias

1ˆBias

1ˆBias  where 
1

i i i i

i i i

i i i

i i i

i i i i

p p p p

p p p

p p x p y x

p p x p y x

p p x p y x p
i

E Y Y YE e Y E e Y E e e Y E e

Y Y E e Y E e e

f f
Y Y C Y C C

n n
f

Y Y C Y C C
n

f XY Y C C C
n X

θ θ θ

θ θ

θ θ ρ

θ θ ρ

θ θ ρ θ
α λ

− = − − +

⇒ = −

− −
⇒ = −

−
⇒ = −

−
⇒ = − ==

+ +

  

The mean squared error of the proposed estimator ˆ ; 1, 2,3, ,36
ipY i =   to first 

order of approximation is derived and is: 
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( ) 1
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Squaring both sides 
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Appendix B 

The conditions for which proposed estimator ˆ
ipY  perform better than the 

SRSWOR sample mean are derived and are given below: 

For ( ) ( )ˆ
jp rMSE Y V y≤   
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Appendix C 

The conditions for which proposed estimator ˆ
ipY  perform better than the usual 

ratio estimator are derived and are given below: 

For ( ) ( )ˆ ˆ
jp RMSE Y MSE Y≤  
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 Condition 1: ( ) ( )( )21 0 and 1 2 0
i ip p x x yC C Cθ θ ρ− ≤ + − ≥   
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Appendix D 

The conditions for which proposed estimator ˆ
ipY  perform better than the existing 

modified ratio estimators (Class 1) are derived and are given below: 

For ( ) ( )ˆ ˆ ; 1, 2,3, ,36
jp iMSE Y MSE Y i≤ =   
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Data
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A non-parametric method for the analysis of two sample data is proposed that 
intrinsically and structurally adjusts the test statistic for the possible presence of tied 
observations between the sampled populations, thereby obviating the need to require the 
populations to be continuous. The populations may be measurements on as low as the 
ordinal scale, and need not be homogeneous. In cases where the null hypotheses are 
rejected, the test statistic enables the determination of which of the sampled populations 
is likely to be responsible for the rejection (a determination which the Wilcoxon Mann 
Whitney test cannot handle). The proposed method is illustrated with some data, and 
shown to compare favorably with some existing methods available for the same purpose. 
 
Keywords: Two sampled data, proposed method, observations, hypothesis. 
 

Introduction 

Suppose a researcher has collected two random samples of sizes n1 and n2 from 
two populations x1 and x2 respectively. This researcher may be interested in 

testing a null hypothesis such as H0: 2 1
αµ µ σ
β

= +  verses either a two sided or 

any of the one sided alternative hypotheses, where α and β are non-zero real 
numbers, and σ is any real number including zero. The null hypothesis is that one 
of the populations is on the average at least (at most) a multiple (a proportion) of 
the other population. This situation may arise in many cases. In the health 
delivery system, researchers may be interested in testing the hypothesis that the 
effective dosage of a certain treatment drug is at least c times that of a control 
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drug, where c α
β

=  , or that the bed occupancy rate of public hospitals is at most c 

times that of private hospitals. In business studies, interest may be in determining 
whether the cost of a certain line of products in a certain retail shop or market is at 
least c times higher on the average than the cost in another retail shop or market, 
or whether Gender B workers on the average earn at most c times that of their 
Gender A counterparts of equal skill. In education and public affairs, interest may 
be in whether students of a certain instructor, or candidates under a certain panel 
of judges, score at least c times more than students of another instructor or 
candidates under another panel of judges; or whether the rate at which a certain 
set of trial judges deliver judgment in cases is at most c times the rate at which a 
second set of trial judges deliver judgments during the year, etc. 

In each of these and similar situations, the parametric t test cannot properly 
be used to test the hypothesis without first using appropriate data transformation, 
given the problem of homogeneity. If c = 1, then the t test may be used to test the 
desired null hypothesis provided the sampled populations are mutually 
homogeneous and normally distributed. If c is any real number other than 1, then 
the t test cannot be properly used for data analysis, even if the populations are 
normally distributed, without first applying some appropriate transformation to 
ensure homogeneity. This is because multiplying or dividing a data set by some 
non-zero constant changes the variance of the data set by the square of the 
constant, thereby violating the assumption of homogeneity necessary for the valid 
application of the t test. 

Rather than applying some data transformation aimed at achieving 
homogeneity of variances, which may not be readily available, use of non-
parametric statistical methods in these situations is usually preferable. If the 
sampled populations are related, paired or matched, then non-parametric methods 
that readily suggest themselves are the sign test and the Wilcoxon’s Signed Rank 
Sum Test (Gibbons, 1971). 

The problem with these two tests is that they require the sampled 
populations to be continuous, thereby theoretically making no definite provisions 
for the possible presence of tied observations between the populations. Oyeka et 
al. (2009) developed a method for the analysis of these types of data that 
intrinsically and structurally adjusts the test statistic for the presence of any ties 
between the sampled populations, which may now be measurements on as low as 
the ordinal scale and need not be continuous. If the sampled populations are 
independent, then the non-parametric methods often used in their analysis include 
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the median test and the Wilcoxon Mann Whitney U. Test (Gibbons, 1971; Oyeka, 
2009).  

A problem with these two test statistics is that they often resolve the 
problem of ties between sampled populations by assigning tied observations their 
mean ranks. If the numbers of ties are large, this approach would tend to 
compromise the power of the tests, which may seriously affect any conclusions 
based on them. An alternative non-parametric statistical method is proposed to 
test the desired null hypothesis when the populations are independent. The 
proposed method intrinsically and structurally adjusts the test statistic for the 
possible presence of ties between the sampled populations, obviating the need to 
require the populations to be continuous. These populations may therefore be 
measurements on as low as the ordinal scale. Other authors who have done some 
research in this area include Afuecheta et al (2012), Ebuh & Oyeka (2012), & 
Ebuh et al (2012).  

The Proposed Method 

Let xij be the ith observation independently drawn from population xj, for i = 
1,2,….,nj; j = 1,2. Population xj may be measurements on as low as the ordinal 
scale and need not be continuous. To develop the test statistic, first list unchanged 
all the observations xi from one of the sampled populations x1 while multiplying, 
(or dividing) each of the observations xj2 from the other sampled population x2 by 

the constant c = α
β

, then add (or subtract) the constant d = σ before pooling them 

together. For the purpose of determining the common median the pooled 
observations are then ranked together, either from the smallest to the largest or the 
largest to the smallest. Tied observations are assigned their mean ranks. The 
common median Mc of the pooled sample observations is then determined. Let rij 
be the rank assigned to xij in the combined ranking of n=n1+n2 sample 
observations. The proposed method is developed based on the common median 
Mc in particular. For the purposes of comparison with the Wilcoxon Mann 
Whitney test, let ri1 be the rank assigned xi1 and rj2 the rank assigned to xj2, 
adjusted values of xj2 in the combined ranking of the ‘n’ = n1 + n2 sample 
observations; for i = 1,2,…,n1 and j = 1,2,…n2. 
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 Let 

 

1
1

1

1

1,
0,
1,

i
i

i

i

u
if x Mc
if x Mc
if x Mc

= 
>

 =

− <

  (1) 

for i = 1,2…n1. Let  
 

( ) ( ) ( )
0

1 1 1 1 1 11 ; 0 ; 1i i iP u P u P uπ π π
+ −

= = = = = = −   (2) 
 

where 
0

1 11 1π π π
+ −

+ + =    (3) 
 
and 

 
1

1 1
1

n

i
i

W µ
=

=∑  . (4) 

W1 is the difference between the numbers of sample observations in population X1 
that are greater than, and the number of sample observations in X1 that are less 
than, the common median Mc. 
 
Similarly, let 

 

2
2

2

2

1,
0,
1,

i
j

j

j

u
if x Mc
if x Mc
if x Mc

= 
>

 =

− <

  (5) 

for j = 1,2,….,n2. Let 
 

( ) ( ) ( )
0

2 2 2 2 2 21 ; 0 ; 1j j jP u P u P uπ π π
+ −

= = = = = = −  ,            (6) 

 

where 
0

2 22 1π π π
+ −

+ + = , and define  (7) 

 

2

2 2
1

n

j
j

W µ
=

=∑  . (8) 

W2 is the difference between the numbers of sample observations in population X2 
that are greater than, and the number of sample observations in X2 that are less 
than, the common median Mc. Thus, 
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( )
2

1 1 1 1 1 11 1;  Var( )i iµ π π π π π π
+ − + − + − Ε = − µ = + − − 

 
 , (9) 

and 

( ) 11 1 1i nµ π π
−+ Ε = − 

 
, and  (10) 

Var(W1) = 
1

1

n

i=
∑ Var(µi1). Thus, 

2

1 1 1 11 1Var( )W n π π π π
+ − + −  = + − −     

 .  (11) 

 Note 
0

1 1 1, andπ π π
+ −

 are respectively the probabilities that a randomly 
selected observation from population x1 is on the average greater (higher), the 
same as (equal to), or smaller (lower) than the common median Mc of the 
combined sample observations. Their sample estimates are respectively 
 

 

00
1 1 1

1 1 1

1 1 1

; ;f f f
n n n

π π π
+ −+ −

= = =






 , (12) 

 
where 0

1 1 1, ,f f andf+ −  are respectively the number of 1’s, 0’s and -1’s in the 
frequency distribution of the n1 values of these numbers in uij, i =1,2,…,n1. 
 
Note from Equation 4  

 1 1 1W f f −= −   (13) 
 

( )
2

2 2 2 2 2 22 i2;  Var( )iµ π π π π π π
+ − + − + − Ε = − µ = + − − 

 
  (14) 

 

( ) 2 22 2W n π π
+ − Ε = − 

 
   (15) 

 

2

2 2 2 22 2Var( )W n π π π π
+ − + −  = + − −     

 . (16) 

 Note 
0

2 2 2, andπ π π
+ −

 are respectively the probabilities that a randomly 
selected adjusted sample observation from population x2 is on the average greater 
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(higher), the same as (equal to), or smaller (lower) than the common median Mc. 
Their sample estimates are respectively 
 

 

00
2 2 2

2 2 2

2 2 2

; ;f f f
n n n

π π π
+ −+ −

= = =






 , (17) 

 
where 0

2 2 2, ,f f andf+ −  are respectively the number of 1’s, 0’s and -1’s in the 
frequency distribution of these numbers in uj2, i =1,2,…,n2. 
Note from Equation 8 that  
 

 2 2 2W f f+ −= +   (18) 
 
A null hypothesis that is usually of interest in two sample problems, particularly 
when non-parametric methods are used, is that the two populations have equal 
medians M0. If population x1 has median M1 and population x2 has median M2, 
then a null hypothesis of interest may be 
 

 0 1 2 0:    H M M M= =   (19) 
 
versus any desired alternative hypothesis. 

Using the median test or the Wilcoxon Mann Whitney test to list the null 
hypothesis of Equation 17, and given the rejection of the null hypothesis, one 
could not immediately say which of the sampled populations actually led to the 
rejection of H0. This is because one of the population medians may (or may not) 
be equal to the hypothesized value M0 whereas the other population median may 
(or may not) be equal to M0, but the test being used may not immediately reveal 
this pattern. To help determine this possibility, the null hypothesis of Equation 19 
can be alternatively expressed as  

 
01 1 0 11 1 0:   versus :   H M M H M M= ≠   (20) 

 
and 
 

02 2 0 12 2 0:   versus :   H M M H M M= ≠   (21) 
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 If the null hypothesis of Equations 20 and 21 are simultaneously accepted, 
then the null hypothesis of Equation 19 would automatically be true. But if any of 
the null hypothesis of Equations 20 and 21 are rejected, then the null hypothesis 
of Equation 19 must also be rejected. 

The null hypothesis of Equation 20 is equivalent to the null hypothesis that 
the proportion of all observations in population x1 that are on the average greater 
(higher) than the common median of all the observations in populations x1 and x2 
combined is equal to the proportion of all observations in population x1 that are on 
the average smaller (lower) than the common median of the combined 
observations in populations x1 and x2. This is equivalent to testing the null 
hypothesis. 

101 11 1 1 1 101 1 or H ::    :    0 0. H Versus Hπ π π π π π
+ − + − + −

= ≠= − −   (22) 
 
Similarly the null hypothesis of Equation 21 is equivalent to the null hypothesis. 

202 12 2 2 2 202 2 or H ::    :    0 0. H Versus Hπ π π π π π
+ − + − + −

= ≠= − −   (23) 
 
 Under the null hypothesis of equation 22, the test statistic 
 

 

( )
( )2

2
1 12 1

1 2ˆ ˆˆ ˆ1
11 1 1 1

Var
f fW

W
n

χ
π π π π

+ −

+ − + −

−
= =

  + − −     

  (24) 

 
under H01 has approximately the chi-square distribution with 1 degree of freedom. 
Similarly, under the null hypothesis of Equation 23 the test statistic 

 

 

( )
( )2

2
2 22 2

2 2ˆ ˆˆ ˆ2
22 2 2 2

Var
f fW

W
n

χ
π π π π

+ −

+ − + −

−
= =

  + − −     

  (25) 

has approximately the chi-square distribution with 1 degree of freedom. 
The null hypothesis of Equations 22 and 23 are each rejected if the 

calculated chi-square values are at least equal to the tabulated or critical chi-
square value with 1 degree of freedom for a specified α level; otherwise the null 
hypothesis is accepted. 
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Finally, the proposed method may be easily modified and used to test a 
hypothesis concerning appropriately chosen measures of central tendency for two 

populations when c = 1
3
α

= , and d = α = 0. 

Illustrative Example 

Suppose Gender B students on the average earned one grade lower than their 
Gender A colleagues. On the basis of this finding, the instructor required Gender 
B students to mandatorily attend tutorials. The question arose whether the 
instructor was justified in this policy. Data were collected on a random sample of 
Gender A  and Gender B students. 

 
Gender 

A 
Students 

B+ A A- A C+ A- A+ A+ C+ A+ C A+ A- A+      

Gender 
B 

Students 
B+ F F B A- D B+ C+ B B- A+ B F E C+  A+ C- E C- 

 
First, list the Gender A students’ letter grades unchanged, here designated as 

xi1, and then list the Gender B students’ grades after increasing each of them by 
one grade level, here designated as xj2; the resulting grades are then pooled 
together and ranked from the highest, assigned the rank 1, to the lowest, assigned 
the rank 33. Tied grades are as usual assigned their mean ranks. The common 
median grade of the pooled sample is found to be a B+. 
 Equations 1 and 5 are now applied to the listed data. The values of ui1, uj2 
and the corresponding ranks are presented in Table 1. From the values of ui1 in 
column 6 of Table 1 it is shown that 
 

1 10,f + =  0
1 1f =  and 1 3f − =  so that 

 

1
10 0.714
14

π
+

= =


, 
0̂

1
1 0.071

14
π = =  and 

ˆ
1

3 0.214
14

π
−

= =
 

 
Also from Equation 11, it is found that the estimated variance of W1 is 
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Table 1: Values of ui1, uj2 and other Statistics for the illustrative Example 
 

Gender A 
Grade xi1 

Gender B 
Grade xj2 

Adjusted 
Gender B 
Grade xj2’ 

Rank of Ranking ui1 ui2 

xi1 in the 
combined 
ranking (ni1) 

xj2 in the 
combined 
ranking (ni1) 

(Eqn1)  (Eqn5) 

B+ B+ A- 17.5 13 0 1 

A F E 9 32 1 -1 

A- F E 13 32 1 -1 

A B B+ 9 17.5 1 1 

C+ A- A 23.5 9 -1 1 

A- D C- 13 28 1 -1 

A+ B+  A- 4 13 1 1 

A+ C+ B- 4 21.5 1 0 

C+ B B+  23.5 17.5 -1 1 

A+ B- B 4 20 1 1 

C A+ A+ 26 4 -1 1 

A+ B B+ 4 17.5 1 1 

A- F E 13 32 1 -1 

A+ E D 4 29.5 1 -1 

  C+ B-   21.5   0 

  A+ A+   4   1 

  C- C   26   -1 

  E D   29.5   -1 

  C- C   26   -1 

Total  167.5 393.5     

 
 

Var(W1) = 14((0.714 + 0.214) – (0.714 – 0.214)2) 
  = 14(0.928 – 0.25) = 14(0.678) = 9.492  . 

 
 To test the null hypothesis of Equation 22 that Gender A s have the same 
median grades as the entire class (both genders combined), Equation 24 shows 
that 
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( )2
2
1

7 49 5.162
9.492 9.492

χ = = =  (p value = 0.0231) , 

 
which with 1 degree of freedom is statistically significant, leading to a rejection of 
the null hypothesis. From the values of uj2 in column 7 of Table 1 

 
2 9,f + =  0

2 2f =  and 2 8f − =  so that 

2
9 0.474

19
π
+

= =


, 
0̂

2
2 0.105

19
π = =  and 

ˆ
2

8 0.421
19

π
−

= = . 

 
From Equation 8, 2 2 2 9 8 1W f f+ −= − = − = . The estimated variance of W2 is from 
Equation 15 
 

Var(W2) = 19((0.474 + 0.421) – (0.474 – 0.421)2) 
  = 19(0.895 – 0.003) = 19(0.892) = 16.948 . 

 
 The test statistic for the null hypothesis of Equation 23 that Gender B 
students have the same median score as the overall class in the course is from 
Equation 25. 

( )2
2
2

1
0.059

16.948
χ = =  (p value = 0.8081) 

 
which with 1 degree of freedom is not statistically significant, leading to an 
acceptance of the null hypothesis of Equation 23. Because the null hypothesis of 
Equations 22 and 23 are not both accepted, the null hypothesis of Equation 19 
cannot be accepted. It can therefore be concluded on the basis of these tests that 
the hypothesized relationship between Gender A and Gender B performances in 
the course may not be valid. 

Note that the median grade in the course for Gender A  students is about an 
A whereas the unadjusted or original median grade for Gender B students is about 
a C+ in the fabricated example. Hence, if the hypothesized relative relationship 
between Gender A and Gender B student grades were to hold then the original 
median grade for Gender B students would be expected to be about an A-, which 
the adjusted Gender B median grade does not attain. 

If the Wilcoxon Mann Whitney test had been used to analyze the data, it 
could be shown with R1 = 167.5 (see Table 1) that 
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( ) ( )( ) ( )1 1
1 2 1

1 14 15
14 19 167.5

2 2
n n

U n n R
+

= + − = + −   

= 266 + 105 – 167.5 = 203.5 with mean ( ) ( )( )1 2 14 19
133

2 2
n nUΕ = = =  

and  

Var(u) = ( ) ( )( )( )1 2 1 2 1 14 19 34
753.667

12 12
n n n n+ +

= = . 

 
Thus, Se(u) = 753.667 27.453= . 
 
 The test statistic for the null hypothesis of Equation 19 for the equality of 
the two population medians is  
 

( )
( )

203.5 133 70.5 2.568
27.453 27.453

u E u
Z

Se u
− −

= = = =  (p value = 0.0102) 

 
which is statistically significant with nominal alpha set to 0.05. 

The Wilcoxon Mann Whitney test, like the proposed test statistic, retained 
as tenable the null hypothesis of Equation 19. However, use of the usual median 
test with the data yielded a Chi-squared value of 0.24, which was not statistically 
significant, and led to an acceptance of the null hypothesis of equal population 
medians. This is probably due to the occasional inability of the usual median test 
to adequately provide for the presence of ties between the sampled populations, 
which may lead to an acceptance of a false null hypothesis. 
 From the values of ui1 in column 6 of the Table 2 it is shown that 

 
1 10,f + =  0

1 1f =  and 1 3f − =  so that 

1
10 0.714
14

π
+

= =


, 
0̂

1
1 0.071

14
π = =  and 

ˆ
1

3 0.214
14

π
−

= = . 

 
From Equation 4 1 1 1 10 3 7W f f+ −= − = − = . From Equation 11 it is shown that the 
estimated variance of W1 is 
 

Var(W1) = 14((0.714 + 0.214) – (0.714 – 0.214)2) 
  = 14(0.928 – 0.25) = 14(0.678) = 9.492 . 
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Table 2: Values of ui1, uj2 and other Statistics for simulated data 
 

Gender A 
Grade xi1 

Gender B 
Grade xj2 

Adjusted 
Gender B 
Grade xj2’ 

Rank of Ranking ui1 ui2 

xi1 in the 
combined 
ranking (ni1) 

xj2 in the 
combined 
ranking (ni1) 

(Eqn1) (Eqn5) 

B+ C- B+ 15 26.5 1 -1 

A C+ E 8.5 22.5 1 0 

A+ E A- 4 29.5 1 -1 

A- B+ C 11.5 15 1 1 

C B+ A+ 25 15 -1 1 

A+ D B- 4 28 1 -1 

A+ F B+ 4 32 1 -1 

A- A- A+ 11.5 11.5 0 1 

A C+ A 8.5 22.5 1 0 

A- B D 11.5 18 1 1 

C+ B- B- 22.5 20 -1 1 

A+ E A+ 4 29.5 1 -1 

C+ B C 22.5 18 -1 1 

A+ F B+ 4 32 1 -1 

 B B  18  1 

 A+ D  4  1 

 A+ E  4  1 

 C- C-  26.5  -1 

 F E  32  -1 

Total 156.5 404.5   
 
 To test the null hypothesis of Equation 22 that Gender A students have the 
same median grades as the entire class (both genders combined) it can be shown 
from Equation 24 that 

( )2
2
1

7 49 5.162
9.492 9.492

χ = = =  (p value = 0.0231) , 

 
which with 1 degree of freedom is statistically significant, leading to a rejection of 
the null hypothesis. 

Furthermore, from the values of uj2 in column 7 of Table 2 it is shown that 
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2 9,f + =  0
2 2f =  and 2 8f − =  so that 

2
9 0.474

19
π
+

= =


, 
0̂

2
2 0.105

19
π = =  and 

ˆ
2

8 0.421
19

π
−

= =  . 

 
 From Equation 8 2 2 2 9 8 1W f f+ −= − = − = . The estimated variance of W2 
from Equation 15 is 
 

Var(W2) = 19((0.474 + 0.421) – (0.474 – 0.421)2) 
  = 19(0.895 – 0.003) = 19(0.892) = 16.948 . 

 
The test statistic for the null hypothesis of Equation 23 that Gender B students 
have the same median score as the overall class in the course is from Equation 25. 
 

( )2
2
2

1
0.059

16.948
χ = =  (p value = 0.8081) 

 
which with 1 degree of freedom is not statistically significant, leading to an 
acceptance of the null hypothesis of Equation 23. 

Because the null hypothesis of Equations 22 and 23 are not both accepted, 
the null hypothesis of Equation 19 cannot be accepted. It can therefore be 
concluded on the basis of these tests that the hypothesized relationship between 
Gender A  and Gender B performances in the course may not be valid. 

Note that the median grade in the course for Gender A  students is about an 
A whereas the unadjusted or original median grade for Gender B students is about 
a C+. Hence if the hypothesized relative relationship between Gender A and 
Gender B student grades were to hold, then the original median grade for Gender 
B students would be expected to be about an A-, which the adjusted Gender B 
median grade does not attain. 

Using the Wilcoxon Mann Whitney U test to analyze the data would have 
the result, with R1 = 156.5 (see Table 2), that 
 

( ) ( )( ) ( )1 1
1 2 1

1 14 15
14 19 156.5

2 2
n n

U n n R
+

= + − = + −   

    = 266 + 105 – 156.5 = 214.5 with mean ( ) ( )( )1 2 14 19
133

2 2
n nUΕ = = =   
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and variance. 

Var(u) = ( ) ( )( )( )1 2 1 2 1 14 19 34
753.667

12 12
n n n n+ +

= = . 

 
Hence, Se(u) = 753.667 27.453=  . 
 
 The test statistic for the null hypothesis of Equation 19 for the equality of 
the two population medians is  
 

( )
( )

214.5 133 81.5 2.969
27.453 27.453

u E u
Z

Se u
− −

= = = =  (p value = 0.0030) , 

 
which is statistically significant, and the discussion on the previous example is 
repeated. 

Conclusion 

A non-parametric statistical method for the analysis of two sample data was 
presented that may be applied on measurements on as low as the ordinal scale and 
need not be homogeneous. The test statistic is intrinsically and structurally 
adjusted to provide for the possibility of any tied observations between the 
sampled populations and hence obviates the need to require the populations to be 
continuous. When the null hypothesis is rejected, it indicates which of the 
sampled populations may have been responsible for the rejection (a determination 
which the Wilcoxon Mann Whitney test cannot handle). Results from an example 
suggest that the test statistic may be as powerful as the Wilcoxon Mann Whitney 
test, and more powerful than the usual median test.   
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Three tests are proposed based on F-distribution, Likelihood Ratio Test (LRT) and large 
sample Z-test for intraclass correlation coefficient under unequal family sizes based on a 
single multinormal sample. It has been found that the test based on F-distribution 
consistently and reliably produces results superior to those of Likelihood Ratio Test 
(LRT) and large sample Z-test in terms of size for various combinations of intraclass 
correlation coefficient values. The power of this test based on F-distribution is 
competitive with the power of the LRT and the power of Z-test is slightly better than the 
powers of F-test and LRT when k = 15, but the power of Z-test is worse in comparison 
with the F-test and LRT for k = 30, i.e. for large sample situation, where k = sample size. 
This test based on F-distribution can be used for both small sample and large sample 
situations. An example with real data is presented. 
 
Keywords: Likelihood ratio test, Z-test, F-test, intraclass correlation coefficient. 
 

Introduction 

Suppose it is required to estimate the correlation coefficient between blood 
pressures of children on the basis of measurements taken on p children in each of 
n families. The p measurements on a family provide p(p-1) pairs of observations, 
(x,y) --- x being the blood pressure of one child and y that of another. From the n 
families a total of np(p-1) pairs are generated from which a correlation coefficient 
is computed in the ordinary way. 

The correlation coefficient thus computed is called an intraclass correlation 
coefficient. It is important to have statistical inference concerning intraclass 
correlation, because it provides information regarding blood pressure, cholesterol, 
etc., in a family within some race in the world. 
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The intraclass correlation coefficient ρ  has a wide variety of uses in 
measuring the degree of intrafamily resemblance with respect to characteristics 
such as blood pressure, cholesterol, weight, height, stature, lung capacity, etc. 

Several authors have studied statistical inference concerning ρ  based on a 
single multinormal sample ( Scheffe, 1959; Rao, 1973; Rosner et.al, 1977, 1979,; 
Donner and Bull, 1983; Srivastava, 1984; Konishi, 1985; Gokhale and SenGupta, 
1986; SenGupta, 1988; Velu and Rao, 1990). Donner and Bull (1983) discussed 
the likelihood ratio test for testing the equality of two intraclass correlation 
coefficients based on two independent multinormal samples under equal family 
sizes. Konishi and Gupta (1987) proposed a modified likelihood ratio test and 
derived its asymptotic null distribution. They also discussed another test 
procedure based on a modification of Fisher’s Z-transformation following 
Konishi (1985). 

Huang and Sinha (1993) considered an optimum invariant test for the 
equality of intraclass correlation coefficients under equal family sizes for more 
than two intraclass correlation coefficients based on independent samples from 
several multinormal distributions. For unequal family sizes, Young and Bhandary 
(1998) proposed Likelihood ratio test, large sample Z-test and large sample Z*-
test for the equality of two intraclass correlation coefficients based on two 
independent multinormal samples. 

For several populations and unequal family sizes, Bhandary and Alam 
(2000) proposed Likelihood ratio test and large sample ANOVA test for the 
equality of several intraclass correlation coefficients based on several independent 
multinormal samples. Donner and Zou (2002) proposed asymptotic test for the 
equality of dependent intraclass correlation coefficients under unequal family 
sizes. 

However, none of the above authors derived any test for a single sample and 
unequal family sizes. It is an important practical problem to consider a single 
sample test for intraclass correlation coefficient under unequal family sizes. 

This article considers three tests for intraclass correlation coefficient based 
on a single multinormal sample under unequal family sizes. Conditional analysis 
is conducted assuming family sizes fixed though unequal. It could be of interest to 
examine the blood pressure or cholesterol or lung capacity, etc., among families 
in U.S.A. or among some other races, and therefore it is necessary to develop a 
single sample test for intraclass correlation coefficient under unequal family sizes. 

Three tests are proposed: F-test, LRT and large sample Z-test. These three 
tests are compared in Section 3 using simulation technique. It has been found on 
the basis of simulation study that the test based on F-distribution consistently and 
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reliably produced results superior to those of Likelihood Ratio Test (LRT) and 
large sample Z-test in terms of size for various combinations of intraclass 
correlation coefficient values.  

The power of this test based on F-distribution is competitive with the power 
of the LRT, and the power of Z-test is slightly better than the powers of F-test and 
LRT when k=15; but the power of Z-test is worse in comparison with the F-test 
and LRT for k=30, i.e. for large sample situation, where k = sample size. 

This test based on F-distribution can be used for both small sample and large 
sample situations. 

An example with real data is presented in Section 4. 

Tests of 0 0H :ρ = ρ  Versus 1 0H :ρ¹ρ  

Likelihood Ratio Test: 

Let 1 2
~   

( , ,..., )
ii i i ipX x x x ′=  be a 1ip x  vector of observations from thi  family; 

1, 2,..., .i k=  
The structure of mean vector and the covariance matrix for the familial data 

is given by the following ( Rao 1973) : 
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where

~   
1i  is a 1ip x  vector of 1’s, ( )µ µ−∞ < < ∞  is the common mean and 

2 2( 0)σ σ > is the common variance of members of the family and ρ , which is 
called the intraclass correlation coefficient, is the coefficient of correlation among 

the members of the family and 
1

1max 1.
1i k

ip
ρ

≤ ≤

 
− ≤ ≤ − 

 

It is assumed that 
~   ~   

~ ( , ); 1,...,
ii p i ix N i kµ Σ = , where 

ipN  represents ip -

variate normal distribution and 
~   

, 'i i sµ Σ  are defined in (1).
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Let ( , ,..., )
ii i i ip iu u u u Q x′= =    (2) 

 
where Q  is an orthogonal matrix. 

Under the orthogonal transformation (2), it can be seen that 
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and { }1 1 ( 1)i i ip pη ρ−= + −  

The transformation used on the data from 
~ 
x  to 

~ 
u  above is independent of 

ρ . One can use Helmert’s orthogonal transformation. 
Srivastava (1984) gives the estimator of ρ  and 2σ  under unequal family 

sizes which are good substitutes for the maximum likelihood estimators and are 
given by the following: 
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and 11i ia p−= −  
 

Now, consider a random sample of k families from a population. 
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Let 1 2
~   
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Using orthogonal transformation, the data vector can be transformed from 

~   
ix  to 
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iu as follows: 

 
* *

1 2
~   ~   

( , ,..., ) ~ ( , ); 1,...,
i ii i i ip p i iu u u u N i kµ′= Σ =

 
 
where, * * 2

~   
( ,0,...,0) ,

0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

i i
i

µ µ σ
η

ρ

ρ

′= Σ =  
 
 −
 
 
 − 

 

 
{ }1 1 ( 1)i i ip pη ρ−= + −    (5) 

 
The transformation used on the data above from 

~ 
x  to 

~ 
u  is independent of

ρ . 
Under the above setup, likelihood ratio test statistic for testing 0 0:H ρ ρ=  

Vs. 1 0:H ρ ρ≠  is given by the following: 
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where, Λ  = likelihood ratio test statistic, 
 

ρ̂ = estimate of intraclass correlation coefficient under 1H , 
2σ̂  = estimate of 2σ  

 
and µ̂  is the estimate of mean. 

The estimators 2ˆ ˆ,ρ σ  and µ̂  can be obtained from Srivastava’s estimator 
given by (3). 

It is well-known from asymptotic theory that 2 log− Λ  has an asymptotic 
chi-square distribution with 1 degree of freedom. 

Large Sample Z-test: 
A large sample Z-test is proposed as follows : 
 

0ˆ
Z
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k

ρ ρ−
=    (7) 

 
where, ρ̂  = the estimator of ρ  from the sample using Srivastava (1984) and Var 
under 0H ( using Srivastava and Katapa (1986) ) is as follows : 
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where, k  = number of families in the sample 
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and 11i ia p−= −  
It is obvious ( using Srivastava and Katapa (1986) ) to see that under 0H , 

the test statistic Z given by (7) has an asymptotic N(0,1) distribution. Because the 
alternative hypothesis is 1 0:H ρ ρ≠ , the above Z-test is a two sided test. 

F-test: 

Using (5), 2
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 are independent. 

2
nχ  denotes Chi-square distribution with n degrees of freedom. 

Hence, an F-test is proposed as:  
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The performance of the three tests given by (6), (7) and (9) is discussed in 

terms of size and power in the next section using simulated data. 

Simulation Results: 

Multivariate normal random vectors were generated using R program in order to 
evaluate the power of the F statistic as compared to the LRT statistic and Z-
statistic. Five and thirty vectors of family data were created for the population. 
The family size distribution was truncated to maintain the family size at a 
minimum of 2 siblings and a maximum of 15 siblings. The previous research in 
simulating family sizes ( Rosner et al. (1977), Srivastava and Keen (1988) ) 
determined the parameter setting for FORTRAN IMSL negative binomial 
subroutine with a mean = 2.86 and a success probability = 0.483. 

Here, a mean = 2.86 and a theta = 41.2552 were set. 
All parameters were set the same except the value of ρ  which took on all 

combinations possible over the range of values from 0.1 to 0.9 at increments of 
0.1. 

The R program produced estimates of ρ  along with F statistic, the LRT 
statistic and the Z- statistic 3,000 times for each particular population parameter
ρ .  

The frequency of rejection of each test statistic at α =0.05 was noted and 
the proportion of rejections are calculated for various combination of ρ . 

The sizes for the LRT statistic, F statistic and Z statistic for various 
combination of ρ  were also calculated.  

On the basis of this study, it was found that the test based on F-distribution 
consistently and reliably produced results superior to those of Likelihood Ratio 
Test (LRT) and large sample Z-test in terms of size for various combinations of 
intraclass correlation coefficient values.  
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The power of this test based on F-distribution is competitive with the power 
of the LRT and the power of Z-test is slightly better than the powers of F-test and 
LRT when k=15 but the power of Z-test is worse in comparison with the F-test 
and LRT for k=30 i.e. for large sample situation. 

Hence, overall recommendation should be to use F-test given by (9). 
The LRT has a large bias under 0H  and this bias is probably due to the fact 

that 2 log− Λmay take some negative values (which it should not take) and those 
negative values are deleted for the calculation of size and power. But, for the F-
test or Z-test, this problem does not arise. 
 
  

 
 
Figure 1. Alpha Levels (k = 15, alpha = 
0.05) 
 
 

 
 
Figure 2. Alpha Levels (k = 30, alpha = 
0.01) 
 

 
 
Figure 3. Power (alpha = 0.05, k = 15, 
rho0 = 0.2) 
 
 

 
 
Figure 4. Power (alpha = 0.05, k = 30, 
rho0 = 0.2) 
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The test based on F-distribution can be used for both small sample and large 
sample situations. 

Hence, the F test is strongly recommended for use in practice.  

Example with Real Life Data 

The three tests are compared using real life data collected from Srivastava and 
Katapa (1986). Table 1 gives the values of pattern intensity on soles of feet in 
fourteen families, where values for daughters and sons are put together. In the 
Table below, for example, for family #11, the children (both sons and daughters) 
have feet sizes 5,3,4,4 respectively. 
 
 
Table 1. Pattern intensity values on soles of feet for 14 families. 
 
Sample Family Siblings 

A 12 2, 4  

A 10 4, 5, 4 

A 9 5, 6 

A 1 2, 2 

A 4 2, 2, 2, 2, 2 

A 5 6, 6 

A 8 2, 4, 7, 4, 4, 7, 8 

A 3 2, 2, 2 

A 6 4, 3, 3 

A 14 2, 2, 2 

A 7 2, 2, 3, 6, 3, 5, 4 

A 2 2, 3 

A 11 5, 3, 4, 4 

A 13 4, 3, 3, 3 
 
 

The data on the children from Table 1 was used to analyze the case of 
testing intraclass correlation coefficient. The above data were collected for the 
purpose of having inference on familial correlation. Srivastava and Katapa (1986) 
used the above data to estimate the intraclass correlation coefficient for unequal 
family sizes. 
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First, the data is transformed by multiplying each observation vector by 
Helmert’s orthogonal matrix Q 

 
where, 

1 1 1 1...

1 1 0 ... 0
2 2

1 1 2 0 0
6 6 6

... ... ... ... ...
( 1)1 1 1 ...

( 1) ( 1) ( 1) ( 1)

i ip xp

i i i i

i

i i i i i i i i

Q

p p p p

p
p p p p p p p p

=  
 
 
 
 − 
 
 − 
 
 
 − −
 − − − − 

  

 
This results in transformed vectors 

~   
iu  for 1,2,...,i k= . Here, k =14. 

Srivastava’s formula given by (3) is used to compute intraclass correlation 
coefficient and variance. The computed values of intraclass correlation coefficient 
and variance are ˆ 0.8118ρ =  and 2ˆ 8.8578σ = . Because ˆ 0.8118ρ =  is estimated 
from the above sample, it is necessary to know whether the intraclass correlation 
coefficient ρ  in the population from which the sample came is close to 0.8, and 
therefore necessary to test 0 : 0.8H ρ =  Vs. 1 : 0.8H ρ ≠ . 

Formulae (6) and (7) and (9) are used to obtain the values of the test 
statistics for testing 0 : 0.8H ρ =  Vs. 1 : 0.8H ρ ≠ . The computed values of the 
LRT statistic, Z statistic and F statistic obtained from formula (6), (7) and (9) 
respectively are as follows: 

 
LRT statistic = 331.31, Z statistic = 0.10642 and F statistic = 0.7316 

 
The critical values at α  = 0.05 and 0.10 for the tests are as follows: 
 

0.05 0.025 0.025 0.975

0.10 0.05 0.05 0.95

3.8415; 1.96; 2.8506; 0.33037;
2.7055; 1.645; 2.3973; 0.39763.

LRT Z F F
LRT Z F F

= = = =
= = = =

 

 
Hence, the null hypothesis is accepted by F- test and Z- test at 5% and 10% 

levels, whereas it is rejected by LRT at 5% and 10% levels. 
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If the F-test is used it provides information that the population intraclass 
correlation coefficient is 0.8 which should be true intuitively. But, LRT gives 
information that the population intraclass correlation coefficient is not 0.8. 
Therefore, it is important to choose the right test to produce the correct 
information. It was found before that LRT is biased in terms of size; therefore the 
recommendation is to use F-test given by (9) in real practice. 
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The sampling plan for the mean for correlated data is studied. The Operating 
Characteristic (OC) of the variable sampling plan for mean for correlated data are 
calculated and compared with the OC of known σ case. 
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Introduction 

Quality control methods are commonly used to determine acceptability of a 
product with regard to its usefulness at the time it is put into service. It is essential 
from the consumer point of view, however, that a product return its usefulness for 
a certain length of time. Acceptance sampling is the testing or the inspection of 
selected items from a given lot followed by acceptance or rejection of that lot on 
the basis of the results of the test and its indicator of the lot’s quality. It is 
assumed that a lot’s quality is determined by the proportion of defective items in 
the lot. Further, attention will be restricted to those types of defects that are 
determined by one sided specification limits. For the purpose of exactness, upper 
specification limits will usually be discussed, i.e. an item will said to be defective 
if its measured characteristics are greater than some specified value U. Variable 
plans, however, require that the characteristic of interest be continuous variable. 
The characteristic is measured and its actual value is recorded. In variable 
sampling plans an underlying process distribution form is assumed. Then the 
proportion defective in the lot can be estimated by estimating the parameters of 
that distribution. The variable model thus requires more restrictive assumptions 
on the manufacturing process. If these assumptions can be justified there would 
be a substantial saving in sample size corresponding to a given sampling list. 

mailto:jrsinghstat@gmail.com
mailto:rajshreesankle@gmail.com
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When the standard deviation of the lot quality is known, the criteria for 
acceptance and the associated mathematical computations get simplified. But, we 
should examine in each case whether treating the lot standard deviation (σ) as 
known and giving it a particular value are justified. When products are 
manufactured by automatic machinery whose inherent variation is known and 
tested, an example is provided where the lot standard deviation is known. When it 
is assumed that the lot standard deviation is known, and given a particular value σ, 
it must be remembered that σ is a constant in calcu1ations and discussions. Also, 
the previous assumption that the lots are formed in such a way as to ensure 
homogeneity within lots holds good here also; and we assume that the directly 
measurable quality X follows the normal law of pattern of variation in the lot; 
these assumptions must be examined and reviewed from time to time when 
variables plans with known σ are in use. 

Hapuaxachi and Macephexsan (1992) studied the effect of serial correlation 
on acceptance sampling plans by variables by comparing Operating Characteristic 
(OC) curves, sample size and producers risk, α with that of the independent case 
when the process standard deviation (σ) is known. When σ is unknown and for 
large n, sampling plans can be constructed using central limit theorem. Several 
works have studied the effect of correlated data (see Kaiyang & Hancock, 1990; 
Seal, 1959; and Qiu et al., 2010). This study examines the sampling plan for mean 
for correlated data. The OC function of the variable sampling plan for mean for 
correlated data are calculated and compared with the OC function of known σ 
case. 

Model Description And OC Function For Correlated Data 

For a single sampling plan, with known-sigma, the procedure of selection of 
sample is as in the other single sampling plans. The n units in the sample are 
measured, and the values x1, x2, x3,..., xn are obtained. The mean x  is calculated. 
Since the standard deviation sigma (σ) of the lot is known, σ is used. 

Suppose that observations x1, x2, x3, ..., xn have a multivariate normal 
distribution with E(xi) = μ and Var(xi) = σ2 and ρ as the common correlation 
coefficient between any xi and xj, i ≠ j. Then 
 
 ( )E x µ=   (1) 
 
and 
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( ) ( )

2

2
2

1 1Var x n
n

T
n

σ ρ

σ

= + −  

=
  (2) 

 
where 
 
 ( )2 1 1 .T n ρ= + −     (3) 

 
In connection with a single sampling variable plan, when data are correlated, 

the following symbols will be used, 
 
L = Lower specification limit, 
U = Upper specification limit, 
k = Acceptance parameter, 
x  = Sample mean of correlated data, 
ρ = Correlation Coefficient. 
 

 
2

21
2

( )
x z

eF zx d
π

−

−∞

= ∫   (4) 

 
where z ~ N(0,1). 

The OC function of single sampling plan can now be calculated. The 
acceptance criterion for correlated data mean plan is, for upper specification limit 
U, accept the lot if 
 

 k Tx U
n
σ

+ ≤   (5) 

 
reject the lot otherwise. 

The values of n and k are determined for a given set of values of the 
producer risk, α and consumer risk, β, AQL and LTPD, by formulae 
 

 
( )
( )1 2

2

p p

K K
n

K K
α β

 +
 =

−  
  (6) 
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 2 1p pK K K K
k

K K
α β

α β

 +
=  

+  
  (7) 

 
If p is the proportion defective in the lot 
 

 ,p
U Kµ
σ
−

=   (8) 

 

where 
2

21
2

p

z

K

p e dz
π

∞ −

= ∫ . 

 
The expression for probability of acceptance (OC) function of the plan in normal 
case is 
 

 ( ) ( ) p
TL p Prob x MSE x U K
n

µ σ 
= + ≤ = + 

 
  (9) 

 
where 
 

T2 = [1 + (n – 1)ρ]. 
 

Following Schilling (1982) the OC function for correlated data works out to 
be as 
 

 ( ) ( )p
nL p K k

T
Φ
 

= − 
 

  (10) 

 
where 
 

( ) ( )
t

t z dzφ
−∞

Φ = ∫   

 
The usual single sampling plan for known σ is 
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 ( ) ( )pL p n K k = Φ −    (11) 

 

Numerical Illustration and Result 

For illustration, consider an example of producers and consumers oriented single 
sampling plan p1 = 0.01, α = 0.05, p2 = 0.08, and β = 0.10. The values of n and k 
have been determined from equation (6) and (7) and are 10 and 18.09, 
respectively. The values of OC function for the above plan have been calculated 
for correlated data as well as for known standard deviation by using equation (10) 
and (11). These values of OC function for different values of correlation and usual 
known standard deviation case are presented in Table 1 and are plotted in Figure 1. 
 
 
Table 1. Values of OC for different values of ρ 
 

P ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.6 ρ = 0.8 ρ = 1 

0.005 0.9926 0.8944 0.8056 0.7867 0.7574 0.7354 

0.010 0.9500 0.8006 0.7196 0.7042 0.6812 0.6645 

0.020 0.7820 0.6553 0.6085 0.6003 0.5882 0.5797 

0.030 0.5908 0.5469 0.5323 0.5298 0.5262 0.5236 

0.040 0.4271 0.4625 0.4741 0.4761 0.4790 0.4811 

0.050 0.3016 0.3949 0.4271 0.4327 0.4408 0.4466 

0.060 0.2101 0.3396 0.3878 0.3963 0.4087 0.4176 

0.080 0.1000 0.2555 0.3252 0.3380 0.3568 0.3704 

0.100 0.0471 0.1953 0.2770 0.2925 0.3159 0.3328 

0.120 0.0221 0.1510 0.2384 0.2558 0.2823 0.3017 

0.140 0.0104 0.1177 0.2067 0.2253 0.2539 0.2752 

0.160 0.0049 0.0923 0.1803 0.1995 0.2296 0.2522 

0.180 0.0023 0.0728 0.1579 0.1774 0.2083 0.2319 

0.200 0.0011 0.0576 0.1388 0.1582 0.1896 0.2139 
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Figure 1. OC Curve for different 
values of Correlated Data ( ρ ) 

 
 
From Figure 1 it is evident that the effect of correlation data on OC increases as ρ 
increases. As ρ increases, a significant effect is seen in producers risk as well as 
consumers risk, which is not acceptable. Hence one should maintain the 
correlation between the observations as low as possible, so as to protect producer 
as well as consumer. 
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Case-Control Studies with Jointly 
Misclassified Exposure and Confounding 
Variables
Tze-San Lee 
Western Illinois University  
Macomb, IL 
 
 
The issue of 2 × 2 × 2 case-control studies is addressed when both exposure and 
confounding variables are jointly misclassified. Two scenarios are considered: the 
classification errors of exposure and confounding variables are independent or not 
independent. The bias-adjusted cell probability estimates which account for the 
misclassification bias are presented. The effect of misclassification on the measure of 
crude odds ratio either unstratified or stratified by the confounder, Mantel-Haenszel 
summary odds ratio, the confounding component in the crude odds ratio, the first and 
second order multiplicative interaction are assessed through the sensitivity analysis from 
using the data on the asthma deaths of 5-45 aged patients in New Zealand. 
 
Keywords: Asthma mortality, confounding, effect modification, Mantel-Haenszel 
summary odds ratio, multiplicative interaction. 
 

Introduction 

Misclassification is a ubiquitous problem in epidemiologic studies. A 2 × 2 case-
control study with a single exposure variable being misclassified has been 
thoroughly studied (Fleiss et al. 2003, Chapter 17; Gustafson 2004, Chapter 5; 
Kleinbaum et al. 1982, Chapter 12; Rothman et al 2008, Chapter 19). In contrast, 
the misclassification of a confounding factor has attracted less attention, although 
there are some important papers on this topic (Ahlbom & Steineck 1992; Axelson 
1978; Greenland 1980; Greenland & Robins 1985; Kupper 1984; Savitz & Baron 
1989; Walker 1985). However, few papers address the issue when the study (or 
exposure) factor and the confounding factor are simultaneously misclassified. 
Most articles focused merely on the aspect that the confounding factor is 
misclassified.  

mailto:tjl3@cdc.gov
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Although Fung & Howe (1984) considered the joint misclassification of 
polytomous exposure and confounding variables, they do not provide the bias-
adjusted estimator for the cell probability. Tzonou et al. (1986) investigates the 
effect of misclassification on the summary odds ratio in case-control studies in 
which both exposure and confounding variables are jointly misclassified. But they 
merely consider the scenario that the classification errors of the exposure and 
confounding factors are independent. Again, no bias-adjusted estimators are 
provided in their paper.  

The scenarios are addressed here in which the joint classification errors of 
the exposure and confounding factors are either independent or not independent. 
Below, necessary background materials are first reviewed. The misclassification 
probabilities are then defined. The formulas for all bias-adjusted measures of the 
effect caused by the joint misclassification of exposure and confounder are thus 
presented. A real-world data set is used as an example to illustrate how to 
calculate the misclassification probabilities by employing the counterfactual (or 
correctly classified) tables when the validation data are not available. A sensitivity 
analysis is then carried out for the admissible counterfactual tables.  

Methodology & Background 

Let D, E, and C be three dichotomous variables, in which D denotes the 
subject’s outcome (disease) variable (=1 if present, 0 otherwise), E the subject’s 
exposure variable (= 1 if exposed, 0 otherwise), and C (= 1 if present, 0 
otherwise) the extraneous (a suspected confounding) variable. Assume that a 
simple random sampling scheme is used to collect the data of size n which are 
then cross-classified into table 1 in which E* and C* are imperfect classification 
variables for E and C. 
 
 
Table 1: Observed contingency table of three dichotomous variables D × E × C 
 

   C* = 1 C* = 0 Total 

D = 1  
Cases) 
  

E* = 1 n111 n110 n11+ 

E* = 0 n101 n100 n10+ 

Total n1+1 n1+0 n1++ 

D = 0 
(Controls) 

E* = 1 n011 n010 n01+ 

E* = 0 n001 n000 n00+ 

Total n0+1 n0+0 n0++ 
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The crude cell probability estimators are given by: for fixed i  
 
 ( )ˆ /ijk ijk ip n n=   (1) 
 

where ( ) 11 10 01 00i i i i i in n n n n n++≡ = + + + , the “+” sign in the subscript 
represents summation in the usual way. 

It is assumed that Eq. 1 follows a multinomial distribution with parameters 
n(i) and ijkp . For fixed i, the variance-covariance matrix of { ˆ ijkp } is given by  

 
 4

( ) ( ) , 1 ( )
11 11 11 10 11 01 11 00

12( ) 10 10 10 01 10 00

13( ) 23( ) 01 01 01 00

14( ) 24( ) 34( ) 00 00

[ ]i jk i j k i
i i i i i i i i

i i i i i i i

i i i i i i

i i i i i

n
p q p p p p p p

p q p p p p
p q p p

p q

σ

σ
σ σ
σ σ σ

=Σ = = ⋅  
⋅ − ⋅ − ⋅ − ⋅ 

 ⋅ − ⋅ − ⋅
 

⋅ − ⋅ 
 ⋅ 

  (2) 

 
To measure the effect of the exposure E and the extraneous C, calculate 

respectively from Table 1 the following estimates for the exposure odds ratios of 
E unstratified and stratified by C: 

 
 11 00 10 01

ˆ ( ) / ( )ER n n n n+ + + += ⋅ ⋅   (3) 

 | 1 111 001 101 011
ˆ ( ) / ( )E CR n n n n= = ⋅ ⋅   (4) 

 
and 
 | 0 110 000 100 010

ˆ ( ) / ( )E CR n n n n= = ⋅ ⋅   (5) 
 

In addition, the Mantel-Haenszel summary odds ratio is given by (Mantel 
and Haenszel 1959) 
 
 1 1 1 1 1

| 111 001 1 110 000 0 101 011 1 100 010 0
ˆ ( ) ( )E MHR n n n n n n n n n n n n− − − − −

++ ++ ++ ++= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅   (6) 
 
Now let the ratios of odds ratios (Eqs. 3-6) be defined respectively by  

 
 | |

ˆ ˆ ˆ/E C E MH ER Rφ =   (7) 
 
and 
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 | 1 | 0

ˆ ˆ ˆ/hmg E C E CR Rφ = ==   (8) 
 
where “hmg” in the subscript of Eq. 8 denote the word “homogeneous”. If the 
estimated value of |Ê Cφ is greater or less than 10% of the null value of unity, the 
extraneous variable C is said to be a confounder. However, this condition is only 
sufficient, but not necessary as other conditions will be given in the section of 
Discussion. Two strata are said to be heterogeneous if the estimated value of ĥmgφ
is significantly different from the null value of unity; otherwise, it is said to be 
homogeneous.  

Let 
1 ( )st OI i

R  and 
2nd OI

R  denote respectively the 1st and 2nd order 

(multiplicative) interaction between E and C and among D, E and C (Lee 2012). 
Then the estimates of these ratios are given respectively as follows: 
 
 11 00 10 011 ( )

ˆ ( ) / ( )st i i i iOI i
R n n n n= ⋅ ⋅   (9) 

 
and 
 
 111 010 100 010 101 011 110 0002

ˆ ( ) / ( )nd OI
R n n n n n n n n= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   (10) 

 
Two variables E and C are said to be have a first order multiplicative 

interaction if the estimated value of Eq. 9 is significantly different from the null 
value of unity; otherwise, there does not exist multiplicative interaction between E 
and C. Three variables D, E and C are said to be have a second-order 
multiplicative interaction if the estimated value of Eq. 10 is significantly different 
from the null value of unity; otherwise, there does not exist second-order 
multiplicative interaction among D, E and C. The extraneous variable C is said to 
be an effect modifier if either the estimated value of Eqs. 8 or 10 are significantly 
different from the null value of unity; otherwise, C is not an effect modifier. By 
the way, it is easy to show that Eq. 8 equals Eq. 10. 

In addition, let RC denote a measure of the strength of confounding by the 
extraneous variable C (Miettinen 1972), 
 
 1 1

110 101 100 010 001 000 00 10 01
ˆ ( ) / ( )CR n n n n n n n n n− −

+ + += ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅   (11) 
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E and C are jointly misclassified  
Suppose that D is not misclassified at all, but only E and C are jointly 

misclassified. There are two scenarios between E and C which have to be 
considered separately. 

 
Scenario I: The classification errors of E and C are independent. 
 

For this scenario, each cell misclassification probability is obtained as the 
product of the corresponding two row/column marginal misclassification 
probabilities. The false positive and false negative probabilities for Y = E or C are 
defined as follows:  
 
 * *

( ) ( )Pr( 0 | 1; ) and Pr( 1| 0; )Y i Y iY Y D i Y Y D iγ δ= = = = = = = =   (12) 
 
For i = 1, 0, let 
 
 ( ) 11 10 01 00[ , , , ]T

i i i i ip p p p p=   (13a) 
 ( ) 11 10 01 00ˆ ˆ ˆ ˆ ˆ[ , , , ]T

i i i i ip p p p p=   (13b) 
 

Thus, by using Eq. 12, for i = 1, 0 
 

 ( ) ( ) ( )ˆ( )i I i iE p W p=   (14) 
 
where the misclassification matrix WI(i) is given by (Barron 1977; Tzonou et al. 
1986)

 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

[ ]

(1 )(1 ) (1 ) (1 )
(1 ) (1 )(1 ) (1 )

(1 ) (1 )(1 ) (1 )
(

I i I ijk

E i C i E i C i C i E i E i C i

E i C i E i C i E i C i E i C i

E i C i E i C i E i C i E i C i

E i C i E i

W w

γ γ γ δ γ δ δ δ
γ γ γ δ δ γ δ δ

γ γ γ δ δ γ δ δ
γ γ γ

=

≡
− − − −
− − − −

− − − −

( ) ( ) ( ) ( ) ( )1 ) (1 ) (1 )(1 )C i E i C i E i C iδ δ γ δ δ

 
 
 
 
 
 − − − − 

  (15) 

 
By conditioning on that and for Y = E or C are known, the vector of 

bias-adjusted cell probability estimator (BACP) 
( ) 11( ) 10( ) 01( ) 00( )( [ , , , ] )T

I i i I i I i I i Ip p p p p=     is then defined by 
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 1

( ) ( ) ( ) ( ) ( )ˆ ˆI i I i i I i ip W p V p−= =   (16) 
 
where the inverse VI(i) of WI(i) is given by 
 

1
2

1
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(

(1 )(1 ) (1 ) (1 )
(1 ) (1 )(1 ) (1 )
(1 ) (1 )(1 ) (1 )

I i I i

I i
E i C i C i E i E i C i E i C i

C i E i C i E i E i C i E i C i

E i C i E i C i E i C i C i E i

E

V W

δ δ γ δ γ δ γ γ
δ δ γ δ γ δ γ γ
δ δ δ γ γ δ γ γ
δ

−

−

≡

= ∆ ⋅
− − − − − −
− − − − − −
− − − − − −

) ( ) ( ) ( ) ( ) ( ) ( ) ( )(1 ) (1 ) (1 )(1 )i C i E i C i C i E i E i C iδ δ γ δ γ γ γ

 
 
 
 
 
 − − − − − − 

 (17) 

 
where 2

( ) ( ) ( ) ( ) ( ) ( )det( ) [(1 )(1 )]I i I i E i E i C i C iW γ δ γ δ∆ ≡ = − − − − . 
In order for W to be invertible, the following constraints on its false positive 

and false negative rates for both exposure and confounding variables are imposed: 
 

 ( ) ( ) ( ) ( )1 and 1E i E i C i C iγ δ γ δ+ < + <   (18) 
 

Scenario II: The classification errors of E and C are not independent. 
 

For this scenario, there are 16 possibly cross-classified conditional 
probabilities of E* and C* as follows: for fixed j’, k’, i, k = 1, 0  
 
 * *

' '( ) Pr( , | ', '; )jk
j k i E j C k E j C k D iλ = = = = = =   (19) 

 
where ' '( ){ }jk

j k iλ , for j’, k’ = 1, 0, are required to satisfy the following 
identities: 
 

 
1

' '( ) ' '( )
, 0

1, 0 1jk jk
j k i j k i

j k
λ λ

=

= ≤ ≤∑   (20) 

 
Among the ' '( ){ }jk

j k iλ , four are correctly classified and 12 are misclassification 
probabilities. Because the misclassification can go equally from one cell to 
another three cells, it is appropriate to assume that they all equal to one another, 
that is, 10 01 00

1( ) 11( ) 11( ) 11( )i i i iθ λ λ λ≡ = = , 11 01 00
2( ) 10( ) 10( ) 10( )i i i iθ λ λ λ≡ = = , 
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11 10 00
3( ) 01( ) 01( ) 01( )i i i iθ λ λ λ≡ = = , and 11 10 01

4( ) 00( ) 00( ) 00( )i i i iθ λ λ λ≡ = = . Thus, the 
misclassification matrix is given by 
 

( )
2( ) 3( ) 4( ) 2( ) 3( ) 4( )

1( ) 1( ) 3( ) 4( ) 3( ) 4( )

1( ) 2( ) 1( ) 2( ) 4( ) 4( )

1( ) 2( ) 3( ) 1( ) 2( ) 3( )

1
1

1
1

II i
i i i i i i

i i i i i i

i i i i i i

i i i i i i

W
θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ

=  
− − − 

 − − −
 

− − − 
 − − − 

  (21) 

 
In addition, the inverse matrix VII(i) of WII(i) is given by 

 

1
3

1
( ) ( )

( )
1( ) 2( ) 1( ) 1( ) 1( )

2( ) 2( ) 4( ) 2( ) 2( )

3( ) 3( ) 1( ) 3( ) 3( )

4( ) 4( ) 4( ) 3( ) 4( )

1 2
1 2

1 2
1 2

II i II i

II i
i i i i i

i i i i i

i i i i i

i i i i i

V W

θ θ θ θ θ
θ θ θ θ θ
θ θ θ θ θ
θ θ θ θ θ

−

−

≡

= ∆  
− − − − − 

 − − − − −
 

− − − − − 
 − − − − − 

  (22) 

 
where 3

( ) ( ) 1( ) 2( ) 3( ) 4( )det( ) (1 )II i II i i i i iW θ θ θ θ∆ = = − − − − . For this scenario, the 
BACP estimator is given by 

 
 1

( ) ( ) ( ) ( ) ( )ˆ ˆII i II i i II i ip W p V p−= =   (23) 
 
The misclassification probabilities ( ( , )Y Yγ δ  or 1( ) 2( ) 3( ) 4( )( , , , )i i i iθ θ θ θ ) are 

said to be feasible if the misclassification matrix (WI(i) or WII(i)) is nonsingular, or 
equivalently, its determinant is nonzero. The BACP estimator (Eqs. 16 or 23) is 
said to be admissible if every component of its vector is nonnegative and their 
sum equals to the total probability one. In theory, it is possible to find the 
admissibility constraints which are required to be imposed on the 
misclassification probability. Yet, because it does not yield inequalities as neat as 
that of case-control studies with a single exposure variable (Lee 2009), it is 
therefore omitted here. Nevertheless, the admissibility constraints can be checked 
in practical applications by taking a case-by-case approach as illustrated by the 
example in the next section. 
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From Eq. 16, for j, k = 1, 0 
 
 ( )ijk i ijkn n p≡ ⋅    (24) 
 

By substituting Eqs. 16 or 23 into Eqs. 3-11, obtain the corresponding bias-
adjusted estimates | 1 | 0 |, , , ,E E C E C E MHR R R R= =

   

Eφ


, Iφ


, 
1 ( )st OI i

R


, 
2nd OI

R


, and CR


. Note 

that the crude estimators are merely a special case of the lower end of the bias-
adjusted one when its false positive and false negative rates are all zero.  

Example 
The data in Table 2 are taken from Crane et al. (1989). A case-control study was 
conducted to examine the hypothesis that fenoterol by metered dose inhaler 
increases the risk of death in patients with asthma. Cases were drawn from the 
National Asthma Mortality Survey which identified all asthma deaths in New 
Zealand from August 1981 to July 1983. Of the 271 asthma deaths identified in 
the survey, 125 occurred in patients aged 5-45 years, and these formed the case 
group. For each case, 4 controls, matched for age and ethnic group, were selected 
from asthma admissions to hospitals to which the cases themselves would have 
been admitted, had they survived. Controls were obtained for 124 out of the 125 
cases. 7 cases were subsequently excluded because they died after admission to 
hospitals. Therefore the analysis pertains to 117 cases and 468 matched controls.  

In terms of symbols, the disease, exposure and extraneous variables are 
given as follows:  

 
D = asthma death (= 1 if outpatient deaths, = 0 if hospitalized controls),  
E = use of prescribed fenoterol (= 1 if yes, = 0 if no),  
C = use of corticosteroids (= 1 if used, = 0 if not used). 

 
If the data are not misclassified, the crude estimators with its 95% 

confidence interval (CI) are obtained by using Eqs. 3-11 and A.1-A.15 in the 
appendix: ˆ 1.55ER =  (95% CI: 1.03 – 2.33), | 1

ˆ 6.45E CR = =  (95% CI: 2.56 – 16.3), 

| 0
ˆ 0.96E CR = =  (95% CI: 0.59 – 1.55), |

ˆ 1.53E MHR =  (95% CI: 1.24 – 1.87), 

|
ˆ 0.98E Cφ =  (95% CI: 0.62 – 1.55), ˆ 6.73hmgφ =  (95% CI: 2.37 – 19.1), 

1 (1)
ˆ 5.46st OI
R =  (95% CI: 2.13 – 14.0), 

1 (0)
ˆ 0.81st OI
R =  (95% CI: 0.52 – 1.27), 

2
ˆˆ

nd hmgOI
R φ=  (95% CI: same as ĥmgφ ), and ˆ 1.34CR =  (95% CI:1.03 – 2.33). 
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As was pointed out by O’Donnell et al (1989) who reviewed the data for the 
group allegedly at highest risk, some of 20 such fatal cases which were recorded 
by Crane et al might not use prescribed fenoterol as reported by the general 
practitioner. In 7 of the 18 cases, the beta-agonist in use immediately before death 
was not or might not have been fenoterol. Hence, the data used by Crane et al 
were likely to be misclassified.  

Suppose that the data are misclassified. The proposed bias-adjusted 
estimator can be used, namely, replacing nijk in Eqs. 3-11 by the values of Eq. 24 
to account for the misclassification bias. However, before calculating ijkn  in Eq. 
24, calculate the misclassification probabilities. Here, the idea of counterfactual 
thinking was employed in creating the correctly classified table to serve as a gold 
standard for calculating the misclassification probability (Epstude & Roese 2008). 
Recall that the actually observed table is the only concrete source of information. 
Therefore, the observed table is taken as a factual one. Then, the correctly 
classified table is nothing but a counterfactual (CF) table corresponding to the 
factual (observed misclassified) table. CF tables are said to be feasible (or 
admissible) if the misclassification matrix associated with the calculated 
misclassification probabilities is nonsingular, namely, its determinant is nonzero 
(or if the bias-adjusted cell probability estimators (Eqs. 16 or 23) are admissible).  

At first, the construction of 20 CF tables was tried. However, only 8 
counterfactual models for cases and controls were listed here. Even among these 8 
models, only 2 models (models 4 and 5, boldface in Table 3a) for cases under 
scenario I were admissible. For all other models either the 3rd component of the 
BACP had a negative value (CF tables 1 and 8) or the sum of the all components 
of the BACP estimator did not equal one (CF tables 2-3 and 6-7) (Table 3a, 
column 5). Even worse, none under scenario II for cases were admissible, because 
either the 3rd component of the BACP estimator had a negative value (CF tables 
1-2 and 7-8) or the sum of all four components of BACP estimator did not equal 
one (CF tables 3-6) (Table 3a, column 8). For controls, only CF tables 3-6 were 
admissible under either scenario I or II (boldface in Table 3b). 
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Table 2: A case-control study for the asthma deaths in New Zealand  
 
D = 1   C* = 1 C* = 0 Total 
(Cases) E* = 1 26 34 60 
  E* = 0 7 50 57 
  Total 33 84 117 

D = 0 (Controls) 
E* = 1 38 151 189 
E* = 0 66 213 279 
Total 104 364 468 

 
 
Table 3: Counterfactual tables with its false positive and false negative rates, 
determinant of the misclassification matrix under two scenarios for  
 

(a) Cases 
 

CF table 
  Scenario I Scenario II 

(n111, n110, 
n101, n100) 
 

(γE(1), δE(1), 
(1)I∆   (111) (110)

(101) (100)

( , , 

, )
I I

I I

p p
p p

 

 

 1(1) 2(1)

3(1) 4(1)

( , ,

, )

θ θ

θ θ
 

(1)II∆  (111) (110)

(101) (100)

( , ,

, )
II II

II II

p p
p p

 

 

 

γC(1), δC(1)) 

1 
(30, 38, (0.06, 0.08, 

0.53 
(0.23, 0.28, (0.02, 0.02, 

0.59 
(0.23, 0.29, 

11, 38) 0.11, 0.05) -0.005, 0.46) 0.07, 0.05) -0.02, 0.38) 

2 
(29, 37, (0.05, 0.06, 

0.62 
(0.23, 0.29, (0.02, 0.01, 

0.67 
(0.23, 0.29, 

10, 41) 0.08, 0.04) 0.01, 0.45) 0.06, 0.03) -0.001, 0.39) 

3 
(28, 36, (0.03, 0.04, 

0.73 
(0.22, 0.29, (0.01, 0.01, 

0.77 
(0.22, 0.29, 

9, 44) 0.06, 0.02) 0.03, 0.44) 0.04, 0.02) 0.02, 0.40) 

4 
(27, 35, (0.02, 0.02, 

0.86 
(0.22, 0.29, (0.006, 0.005, 

0.87 
(0.224, 0.293, 

8, 47) 0.03, 0.01) 0.05, 0.43) 0.02, 0.01) 0.039, 0.416) 

5 
(25, 33, (0.02, 0.02, 

0.85 
(0.22, 0.29, (0.007, 0.005, 

0.87 
(0.224, 0.294, 

6, 53) 0.03, 0.01) 0.04, 0.43) 0.03, 0.01) 0.035, 0.415) 

6 
(24, 32, (0.03, 0.03, 

0.72 
(0.22, 0.29, (0.01,0.01, 

0.06, 0.02) 0.73 
(0.23, 0.30, 

5, 56) 0.06, 0.02) 0.03, 0.44) 0.003, 0.40) 

7 
(23, 31, (0.05, 0.05, 

0.60 
(0.23, 0.28, (0.02,0.02, 

0.09, 0.03) 0.61 
(0.23, 0.31, 

4, 59) 0.10, 0.03) 0.006, 0.45) -0.04, 0.38) 

8 
(22, 30, (0.07, 0.07, 

0.50 
(0.23, 0.28, (0.03,0.02, 

0.13, 0.04) 0.48 
(0.24, 0.32, 

3, 62) 0.14, 0.05) -0.02, 0.46) -0.10, 0.35) 
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Table 3 Continued 
 

(b) Controls 
 

CF table 
  Scenario I Scenario II 

(n011, n010, 
n001, n000) 
 

(γE(0), δE(0), 
(0)I∆  (011) (010)

(001) (000)

( , ,

, )
I I

I I

p p
p p

 

 

 1(0) 2(0)

3(0) 4(0)

( , ,

, )

θ θ

θ θ
 

(0)II∆  (011) (010)

(001) (000)

( , ,

, )
II II

II II

p p
p p

 

 

 

γC(0), δC(0)) 

1 
(42, 155 (0.02, 0.01, 

0.84 
(0.07, 0.32, (0.02, 0.004, 

0.88 
(0.07, 0.33, 

70, 201) 0.04, 0.01) 0.13, 0.46) 0.01, 0.01) 0.13, 0.45) 

2 
(41, 154, (0.02, 0.01, 

0.88 
(0.07, 0.32, (0.01, 0.003, 

0.91 
(0.07, 0.32, 

69, 204) 0.03, 0.01) 0.13, 0.46) 0.01, 0.01) 0.13, 0.46) 

3 
(40, 153, (0.01, 0.01, 

0.92 
(0.08, 0.32, (0.01, 0.002, 

0.94 
(0.07, 0.32, 

68, 207) 0.02, 0.01) 0.14, 0.46) 0.005, 0.005) 0.14, 0.46) 

4 
(39, 152, (0.005,0.004, 

0.96 
(0.08, 0.32, (0.004, 0.001, 

0.97 
(0.08, 0.32, 

67, 210) 0.01, 0.003) 0.14, 0.46) 0.003, 0.002) 0.14, 0.46) 

5 
(37, 150, (0.005,0.004, 

0.96 
(0.08, 0.32, (0.004, 0.001, 

0.97 
(0.08, 0.32, 

65, 216) 0.01, 0.003) 0.14, 0.46) 0.003, 0.002) 0.14, 0.46) 

6 
(36, 149, (0.01, 0.007, 

0.92 
(0.08, 0.32, (0.01, 0.002, 

0.94 
(0.07, 0.32, 

64, 219) 0.02, 0.005) 0.14, 0.46) 0.005, 0.005) 0.14, 0.46) 

7 
(35, 148, (0.02, 0.01, 

0.88 
(0.07, 0.32, (0.01, 0.003, 

0.91 
(0.07, 0.33, 

63, 222) 0.03, 0.01) 0.13, 0.46) 0.01, 0.001) 0.13, 0.46) 

8 
(34, 147, (0.02, 0.01, 

0.84 
(0.07, 0.32, (0.02, 0.004, 

0.88 
(0.06, 0.33, 

62, 225) 0.04, 0.01) 0.13, 0.46) 0.01, 0.01) 0.13, 0.46) 

 
 
 
Table 4: Estimated values of bias-adjusted estimators for all statistics (Eqs. 3-11) with its 
95% CI for selected admissible counterfactual tables 
 
Test (95% CI) CF table: (caseI, controlI) 

  (#4, #3) (#4, #4) (#4, #5) (#4, #6) 

ER


 
1.59 1.58 1.58 1.59 

(1.22 – 2.06) (1.22 – 2.05) (1.22 – 2.06) (1.22 – 2.06) 

 |E MHR


 
1.554 1.551 1.551 1.554 

(1.22 – 1.98) (1.22 – 1.97) (1.21 – 1.98) (1.22 – 1.97) 

 | 1E CR =



 
8.72 8.62 8.63 8.72 

(3.00 – 25.3) (2.98 – 25.0) (2.98 – 25.0) (2.99 – 25.4) 

 | 0E CR =



 
0.94 0.94 0.94 0.94 

(0.35 – 2.58) (0.35 – 2.57) (0.35 – 2.57) (0.35 – 2.58) 
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Table 4 Continued 

Test (95% CI) CF table: (caseI, controlI) 

 |E Cφ


 
0.98 0.98 0.98 0.98 

(0.23 – 4.23) (0.23 – 4.23) (0.23 – 4.23) (0.23 – 4.25) 

 hmgφ


 
9.23 9.16 9.29 9.36 

(2.22 – 38.3) (2.21 – 38.0) (2.21 – 38.1) (2.21 – 38.5) 

 
1 (1)st OI

R


 
7.39 7.39 7.39 7.39 

(1.97 – 27.6) (1.97 – 27.6) (1.97 – 27.6) (1.97 – 27.6) 

 
1 (0)st OI

R


 
0.8 0.81 0.81 0.8 

(0.47 – 1.36) (0.48 – 1.37) (0.47 – 1.38) (0.46 – 1.38) 

 
2nd OI

R


 
9.23 9.16 9.16 9.24 

(2.22 – 38.3) (2.21 – 38.0) (2.21 – 38.1) (2.21 – 38.5) 

 CR


 
1.58 1.6 1.6 1.58 

(1.04 – 2.39) (1.10 – 2.32) (1.09 – 2.33) (1.07 – 2.31) 

 
 

After getting all possible combinations from admissible CF tables under 
scenario I for cases and controls, the bias-adjusted values of Eqs. 3-11 were 
computed for all 8 combinations. Only 4 combinations were listed here because 
the results from the other 4 combinations were similar; hence it was omitted to 
save space (table 4). On the one hand, the bias-adjusted values for the unstratified 
exposure odds ratio, the Mantel-Haenezel summary odds ratios, the odds ratio for 
the stratum without the presence of C, the 1st order interaction for controls are 
almost unchanged. On the other hand, the bias-adjusted values for the stratified 
odds ratio with the presence of C and the 1st order interaction for cases were 35% 
higher than the crude estimator. Similarly, the bias-adjusted value for the 2nd order 
multiplicative interaction was 36% higher than the crude estimator.  

Discussion 

This is a study on the effect of joint misclassification of exposure and extraneous 
(confounding) variables on the association among the disease, exposure and 
confounding variables. Through the use of counterfactual tables as a gold standard, 
a sensitivity analysis was conducted to examine effects on various measures used 
in analyzing 2 × 2 × 2 tables. Both Cox & Elwood (1991) and Walker & Lanes 
(1991) also used the same data set to investigate the issue of misclassification. But, 
they only considered the effect of the confounder misclassification.  
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Some comments are appropriate to be given below: 
 
1. Two scenarios concerning the joint misclassification were considered, 

that is, the classification errors of exposure and confounding variables 
are independent (scenario I) or not (scenario II). It turned out that 
results were very different for cases and controls. Under scenario I, 
there were 2 and 4 admissible CF tables for cases and controls 
respectively. It was noticed that no admissible CF tables exist, once 
the false positive or negative rates were greater than 0.02. Under 
scenario II none and 4 CF tables were available for cases and controls. 
Similarly, no admissible CF tables exist for controls, once the false 
positive or negative rates were greater than 0.01. Evidently, the 
existence of admissible CF tables depends on the structure of their 
collected data for cases and controls.  

2. From the result of this study, the effect of joint misclassification of the 
exposure and confounding variables varies. It depends on which 
statistics is used to measure the effect (table 4). For example, although 
the value of ER



is just a little larger than that of ˆ
ER , it implies that the 

bias-adjusted estimator is significantly greater than one because its 
lower bound of 95% CI moves further from one than that of ˆ

ER . Its 
95% CI becomes widened than that of ˆ

ER , even though the values of 

|E MHR


 are approximately the same as that of |
ˆ

E MHR . The values of 

| 1E CR =



,
1 (1)st OI

R


 and hmgφ


 are much larger than that of the corresponding 

crude estimators | 1
ˆ

E CR = , 
1 (1)

ˆ
st OI

R  and ĥmgφ . The value of CR


which is 

greater than that of ˆ
CR indicates that the strength of confounding by 

the use of oral corticosteroids is at least 1.3 times of the group without 
using it. Lastly, the effect of joint misclassification of E and C on the 
measure of | 0E CR = , 

1 (0)st OI
R , and |E Cφ  is almost negligible. 

3. Advantages in using counterfactual tables to conduct the sensitivity 
analysis are many folds. First, it solves the problem of finding a gold 
standard in order to calculate the misclassification probability. Second, 
the assumption of nondifferential misclassification is not needed on 
any factor under study. For example, if the exposure factor is not 
misclassified, all that has to be done is to keep the marginal totals for 
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the exposure factor fixed in selecting counterfactual tables. Third, all 
results are strictly obtained from the collected data. Hence, the drawn 
conclusion is real data-based rather than the hypothetical data used by 
other authors (Greenland 1980; Greenland & Robins 1985).  

4. Although the extraneous variable C (the use of corticosteroid) was not 
judged as a confounder by the estimated value of |

ˆ 0.98E Cφ = , it was 
shown to be a confounder by indication (Psaty et al. 1999) or by 
association with the death and the exposure (Miettinen 1974) or by not 
being equally distributed (lack of comparability) in the categories of 
the exposure variable (the use of prescribed fenoterol) (Miettinen 
1985). Further, it was shown to be an effect modifier by the statistics 
of ĥmgφ  or 

2
ˆ

nd OI
R . Once an effect modification is present, whether C is 

a confounder becomes not an issue. Rather, stratum-specific odds ratio 
estimates ( |

ˆ
E C iR = ) should be reported because summary estimates do 

not convey information on the pattern of variation of stratum-specific 
estimates. For other references on the confounder, please see 
Wickramaratne & Holford (1987), Weinberg (1993), and Yiostalo & 
Knuuttila (2006). 
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Appendix A 

By adapting the variance formula obtained in Lee (2013), the variance formula is 
readily given for the crude and bias-adjusted estimators for the 1st order 
(multiplicative) interaction as follows:  
 
 1

( ) ( ) ( ) ( )1 ( )
ˆ(ln( ))st

T
i i i iOI i

Var R n a a−= ⋅ Σ   (A1) 

 
where 1 1 1 1

( ) 11 10 01 00( , , , )T
i i i i ia p p p p− − − −= − − . 

 
 1

( ) ( ) ( ) ( )1 ( )
(ln( )st

T
i i i iOI i

Var R n a a−= ⋅ Σ


    (A2) 

 
where ( ) 11(.; ) 11 22(.; ) 10 33(.; ) 01 44(.; ) 00( , , , )T

i i i i i i i i ia v p v p v p v p= − −   

 , {vjj(.;i)} are the jth 
diagonal entry of the inverse matrix 1

.( ) .( )i iV W −= , .( ) ( )i I iW W=  or ( )II iW , 

( ) .( ) ( )i i ip V p= , and ( )iΣ is given by Eq. 2. 
The variance formula is also readily given for the crude and bias-adjusted 

estimators for the 2nd order (multiplicative) interaction as follows:  
 

 
1

2 1 ( )
0

ˆ ˆ(ln( )) (ln( ))nd stOI OI i
i

Var R Var R
=

=∑   (A3) 

 
1

2 1 ( )
0

(ln( )) (ln( ))nd stOI OI i
i

Var R Var R
=

=∑
 

  (A4) 

 
Similarly, obtain the variance for the crude and bias-adjusted odds ratio ignoring 
the confounding factor C to be given respectively by using the delta method 
which is given by Eq. 14.4 in Agresti (2002): 
 

 
1

1
( ) ( ) ( ) ( )

0

ˆ(ln( )) T
E i i i i

i
Var R n b b−

=

= ⋅ Σ∑   (A5) 

 
where 1 1 1 1

(1) 11 11 10 10( , , , )Tb p p p p− − − −
+ + + += − − , and 1 1 1 1

(0) 01 01 00 00( , , , )Tb p p p p− − − −
+ + + += − − . 

The variance of ln( )ER


is given by 
 

 
1

1
( ) ( ) ( ) ( )

0
(ln( )) T

E i i i i
i

Var R n b b−

=

= Σ∑


    (A6) 
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where 1 1 1 1
(1) 11(.;1) 11 22(.;1) 11 33(.;1) 10 44(.;1) 10( , , , )Tb v p v p v p v p− − − −

+ + + += − −   

 , 
1 1 1 1

(0) 11(.;0) 01 22(.;0) 01 33(.;0) 00 44(.;0) 00( , , , )Tb v p v p v p v p− − − −
+ + + += − −   

 , and ( )ip  is defined in Eq. A2. 
The variances of the crude and bias-adjusted odds ratio stratified by the 

confounder C are given respectively by 
 

 
1

1
| 1 ( ) | 1 ( ) ( )| 1

0

ˆ(ln( )) T
E C i i C i i C

i
Var R n c c−

= = =
=

= ⋅ Σ∑   (A7) 

   (A8) 
 
where 1 1

( )| 1 11 01( ,0, ,0)T
i C i ic p p− −

= = − , and 1 1
( )| 0 10 00(0, ,0, )T
i C i ic p p− −

= = − . 
 
   (A9) 

 
1

1
| 1 ( ) ( )| 1 ( ) ( )| 1

0
(ln( )) T

E C i i C i i C
i

Var R n c c−
= = =

=

= Σ∑


    (A10) 

 
 
where 1 1

( )| 1 11(.; ) 11 33(.; ) 01( ,0, ,0)T
i C i i i ic v p v p− −

= = − 

 , and 
1 1

( )| 0 22(.; ) 10 44(.; ) 00(0, ,0, )T
i C i i i ic v p v p− −

= = −  

 .  
The variance of the crude Mantel-Haenszel summary odds ratio is given 

by 
 

 
1

1
| ( ) ( ) ( ) ( )

0

ˆ(ln( )) T
E MH i i i i

i
Var R n d d−

=

= ⋅ Σ∑   (A11) 

 
where ( ) 1( ) 2( ) 3( ) 4( )( , , , )T

i i i i id d d d d=  and each component in d(i) is given by 
 

1( 1) 0 1 1 001 101 011 001 0 101 011( / )[ ( ) ]id p p p p p p p pρ ρ= ++ ++= + + + , 

2( 1) 1 0 1 000 100 010 000 0 100 010( / )[ ( ) ]id p p p p p p p pρ ρ= ++ ++= + + + , 

3( 1) 0 1 1 111 001 0 011 111 011 001( / )[ ( )]id p p p p p p p pρ ρ= ++ ++= − + + + , 

4( 1) 1 0 1 110 000 0 010 110 010 000( / )[ ( )]id p p p p p p p pρ ρ= ++ ++= − + + + , 

1( 0) 0 1 1 111 001 0 101 111 101 001( / )[ ( )]id p p p p p p p pρ ρ= ++ ++= − + + + , 

2( 0) 1 0 1 110 000 0 100 110 100 000( / )[ ( )]id p p p p p p p pρ ρ= ++ ++= − + + + , 

3( 0) 0 1 1 111 111 101 001 0 101 011( / )[ ( ) ]id p p p p p p p pρ ρ= ++ ++= + + + , 

4( 0) 1 0 1 110 110 100 010 0 100 010( / )[ ( ) ]id p p p p p p p pρ ρ= ++ ++= + + + , 
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1
1 0 111 001 1 110 000( )p p p p p pρ −

++ ++≡ + , 
1

0 0 101 011 1 100 010( )p p p p p pρ −
++ ++≡ + . 

 
The variance for the BACP of the Mantel-Haenszel summary odds ratio is 

given by 
 

 
1

1
| ( ) ( ) ( ) ( )

0
(ln( )) T

E MH i i i i
i

Var R n d d−

=

= ⋅ Σ∑


    (A12) 

 
where ( ) 1( ) 2( ) 3( ) 4( )[ , , , ]T

i i i i id d d d d=      and each component in ( )id  is given by 
 

1( 1) 11(.;1) 0 1 1 001 101 011 001 0 101 011( / )[ ( ) ]id v p p p p p p p pρ ρ= ++ ++= + + +       



  , 

2( 1) 22(.;1) 1 0 1 000 100 010 000 0 100 010( / )[ ( ) ]id v p p p p p p p pρ ρ= ++ ++= + + +       



  , 

3( 1) 33(.;1) 0 1 1 111 001 0 011 111 011 001( / )[ ( )]id v p p p p p p p pρ ρ= ++ ++= − + + +       



  , 

4( 1) 44(.;1) 1 0 1 110 000 0 010 110 010 000( / )[ ( )]id v p p p p p p p pρ ρ= ++ ++= − + + +       



  , 

1( 0) 11(.;0) 0 1 1 111 001 0 101 111 101 001( / )[ ( )]id v p p p p p p p pρ ρ= ++ ++= − + + +       



  , 

2( 0) 22(.;0) 1 0 1 110 000 0 100 110 100 000( / )[ ( )]id v p p p p p p p pρ ρ= ++ ++= − + + +       



  , 

3( 0) 33(.;0) 0 1 1 111 111 101 001 0 101 011( / )[ ( ) ]id v p p p p p p p pρ ρ= ++ ++= + + +       



  , 

4( 0) 44(.;0) 1 0 1 110 110 100 010 0 100 010( / )[ ( ) ]id v p p p p p p p pρ ρ= ++ ++= + + +       



  , 
1

1 0 111 001 1 110 000( )p p p p p pρ −
++ ++≡ +     

 , 
1

0 0 101 011 1 100 010( )p p p p p pρ −
++ ++≡ +     

 . 
 

The variance of ˆln( )CR is given by 
 

 
1

1
( ) ( ) ( ) ( )

0

ˆ(ln( )) T
C i i i i

i
Var R n e e−

=

= ⋅ Σ∑   (A13) 

 
where each component of the vector ( ) 1( ) 2( ) 3( ) 4( )( , , , )T

i i i i ie e e e e= is given by 

1(1) 0e = , 2(1) 101 000e p pρ= , 1
3(1) 10 100 110 000 010 001( )e p p p p p pρ −

+= − , 
1 1 2 2

4(1) 10 100 110 000 101 010 001 100( )e p p p p p p p pρ − −
+= − ; 1

1(0) 01e p−
+= − , 

1
2(0) 01 100 001 011 000 110 101( )e p p p p p p pρ −

+= − , 

3(0) 000 110 101 100 010 100 010 001[ ( ) 2 ]e p p p p p p p pρ= + + , 
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1 2
4(0) 00 000 001 110 000 100 010 001( )e p p p p p p p pρ −

+= − ; 1
000 110 101 100 010 001( )p p p p p pρ −= + . 

 
The variance of ln( )CR



is given by 
 

 
1

1
( ) ( ) ( ) ( )

0
(ln( )) T

C i i i i
i

Var R n e e−

=

= ⋅ Σ∑


    (A14) 

 
 where each component of the vector ( ) 1( ) 2( ) 3( ) 4( )( , , , )T

i i i i ie e e e e=     is given by 
 

1(1) 0e = , 2(1) 22(.;1) 101 000e v p pρ=  

 , 1
3(1) 33(.;1) 10 100 110 000 010 001( )e v p p p p p pρ −

+= −     

 , 
1 1 2 2

4(1) 10 100 110 000 101 010 001 100 110 101 100 000( 2 )e p p p p p p p p p p p pρ − −
+= − + +           

 ;  
1

1(0) 11(.;0) 01e v p−
+= − 

 , 1
2(0) 22(.;0) 01 100 011 001 000 110 101( )e v p p p p p p pρ −

+= −      

 , 
1

3(0) 33(.;0) 00 000 110 101 100 010 100 010 001[ ( ) 2 ]e v p p p p p p p p pρ −
+= + +        

 , 
1 1 2 2

4(0) 44(.;0) 00 000 110 101 000 100 010 001( )e v p p p p p p p pρ − −
+= −       

 ; 
1

000 110 101 100 010 001( )p p p p p pρ −≡ +     

 . 
 

Lastly, the variances of the crude and bias-adjusted estimators for Eqs. 7 
& 8 are given respectively by 

 

| |
ˆ ˆ ˆ(ln( )) (ln( ) (ln( ))E C E MH EVar Var R Var Rφ ≈ +  , 

| |(ln( )) (ln( ) (ln( ))E C E MH EVar Var R Var Rφ ≈ +
  

, 

| 1 | 0
ˆ ˆ ˆ(ln( )) (ln( ) (ln( ))hmg E C E CVar Var R Var Rφ = == + ,  (A15) 

| 1 | 0(ln( )) (ln( ) (ln( ))hmg E C E CVar Var R Var Rφ = == +
  

. 
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Testing the Assumption of Non-differential 
Misclassification in Case-Control Studies 
Tze-San Lee 
Western Illinois University 
Macomb, IL 

Qin Hui 
Emory University 
Atlanta, GA 

 
 
One of the not yet solved issues regarding the misclassification in case-control studies is 
whether the misclassification rates are the same for both cases and controls. Currently, a 
common practice is to assume that the rates are the same, that is, the non-differential 
misclassification assumption. However, it has been suspected that this assumption may 
not be valid in practical applications. Unfortunately, no test is available so far to test the 
validity of the non-differential misclassification assumption. A method is presented to 
test the validity of non-differential misclassification assumption in case-control studies 
with 2 × 2 tables when validation data are not available. First, a theory of exposure 
operating characteristic curve is developed. Next, two non-parametric methods are 
presented to test the assumption of non-differential misclassification. Three real-data sets 
taken from practical applications are used as examples to illustrate the methods. 
 
Keywords: Exposure operating characteristic (EOC) curve, non-differential 
misclassification, sensitivity, specificity, Youden’s index 
 

Introduction 

One of the issues regarding the misclassification in case-control studies is whether 
the misclassification error rates are the same for both cases and controls (Walker 
& Irwig, 1988). Currently, a common practice is to assume that the rates are the 
same. This is the so-called “non-differential mis-classification (NDMC)” 
assumption. Many nice theoretical results are derived under this assumption. For 
example, in a case-control study with 2×2 contingency table, the adjusted odds 
ratio is always biased toward the value of the null hypothesis if the 
misclassification error rates are assumed to be non-differential (Bross, 1954; 
Goldberg, 1975). However, it is intuitively obvious that the assumption of NDMC 
might not be valid in many practical applications. Unfortunately, no test is 
available so far to test the validity of the NDMC assumption. 

mailto:tjl3@cdc.gov
mailto:qin.hui@emory.edu
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It is the purpose of this study to propose a test for assessing the validity of 
NDMC assumption in a case-control study with 2×2 contingency table. First, a 
theory of exposure operating characteristic curve is developed. Next, two methods 
are proposed to test the NDMC assumption. Three examples from practical 
applications are given to illustrate the proposed methods. 

Methods 

The curve of exposure operating characteristic 
The idea of exposure operating characteristic (EOC) curve is parallel to that of 
receiver operating characteristic (ROC) curve in medical diagnostic test (Zhou, 
McClish & Obuchoowski, 2002). Suppose that the collected data for a case-
control study is arranged to be given by Table 1. Assume that it is known that 
Table 1 is possibly misclassified; yet, the truly correct table is unknown. Here the 
counterfactual thinking comes into playing a crucial role in finding out what the 
possible true table is, that is, the true table is the counterfactual while the observed 
misclassified table is the factual (Epstude & Roese, 2008). It may thus be 
assumed that cell count in the observed table might be over- (or under-) 
misclassified by a certain number of subjects from the true table. The random 
variable E in Table 2 is assumed to be correctly classified on the subject’s 
exposure condition, whereas E* in Table 1 is its misclassified surrogate of E.  
 
 
Table 1. The observed cell frequencies in 
a contingency table for a case-control 
study.  
 
Classified 
exposure 
status 

Subject Group 
Y = 1 

(Cases) 
Y = 0 

(Controls) 
E* = 1 
(exposed) n11 n10 

E* = 0 
(unexposed) n01 n00 

 

Table 2. The [unobserved] true cell 
frequencies corresponding to Table 1. 
 
 
Classified 
exposure 
status 

Subject Group 
Y = 1 

(Cases) 
Y = 0 

(Controls) 
E = 1 
(exposed) N11 N10 

E = 0 
(unexposed) N01 N00 

 
 
Let the number of misclassified subjects be given by 
 

 ( )
( )  the number of misclassified subjects

           between true and observed cell frequencies 

j
i

ij ij

m

N n

=

= −
   (1) 
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where ( )

( )j
im  (= ±1, ±2, ±3, …) is assumed and Nij can be obtained as Nij = nij + 

( )
( )j
im . It will be clear how to choose the value of ( )

( )j
im  by applying the 

counterfactual thinking to the observed misclassified cell frequency as shown in 
the three examples of practical applications later in section 3. 

The observed cell frequency (nij) is said to be under-misclassified if ( )
( )

j
im  > 

0; otherwise it is called over-misclassified. Thus, the sensitivity (Se) and 
specificity (Sp) can be calculated for cases and controls as follows: 
 

( )
(1)( ) * *

(1)
1 1

( )
(0)( ) * *

(0)
0 0

| |
( ) Pr( 1| 1; ) 1 Pr( 0 | 1; ) 1

and
| |

( ) Pr( 0 | 0; ) 1 Pr( 1| 0; ) 1

j
j

j j

j
j

j j

m
Se m E E D j E E D j

N n

m
Sp m E E D j E E D j

N n

= = = = = − = = = = −
+

= = = = = − = = = = −
+

 (2) 

 
Note that not all ( )( )

(1)
jSe m and/or ( )( )

(0)
jSp m  are feasible. They have to satisfy the 

following three constraints which are imposed by the cell frequencies in Table 1 
(Lee, 2009): 
 

( )
( )( ) ( )

( )( )1 0 1j jSe m Sp m+ ≠  (3a) 
  

( )
( )( )1 ˆj

jSe m p>  (3b) 
  

( )
( )( )0 ˆj

jSp m q>  (3c) 
 
where ( )1 1 0ˆ /j j j jp n n n= +  and ˆ ˆ1j jq p= − , j = 0, 1. 

Varying the values of ( )
( )j
im , it is possible to obtain many feasible sensitivity 

and specificity pairs. A plot of all feasible pairs of points ( )
( )( ) ( )

( )( )( )1 0, 1j jSe m Sp m−  

is said to be the EOC curve for cases or controls depending on j = 1 or 0. 
Incidentally, let the number of points on the EOC curves for controls and cases be 
given respectively by m0 and m1. 
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Testing the assumption of non-differential misclassification 
In terms of the EOC curve, a test on the NDMC is equivalent to following pair of 
null and alternative hypotheses: 
 
 0 1 0 1 1 0:  versus :H EOC EOC H EOC EOC= ≠   (4) 
 

There are at least two ways to test equation 4. One way is to use a summary 
measure, the area under the curve (AUC). The measure of AUC has been widely 
used in testing whether the two ROC curves associated with the diseased and 
healthy populations are the same (Hanley & McNeil, 1982). The other way is to 
use the Kolmogorov-Smirnov test for the bivariate data of sensitivity and 
specificity pairs. 

If a linear interpolation is used to connect all the discrete points on the EOC 
curve, the area under the curve is calculated by using numerical method, namely, 
the trapezoidal rule. For convenience, let X(t) and Y(t) denote respectively the x-
axis (1 – Specificity) and y-axis (Sensitivity), where the variable t represents the 
misclassified number of subjects. The points ( )

( )( ) ( )
( )( )( )0 1,j j

k kx m y m  lying on the 

EOCj curve are given respectively as follows: for j = 0, 1; k = 1, …, mj. 
 
 

 
 

Figure 1. The ordinal dominance graph for the EOC curve 
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( )
( )( ) ( )

( )( )*
0 01; | 0;j j

k kx m P E t m E D j= = = = =  
 

( )
( )( ) ( )

( )( )*
1 11; | 1;j j

k ky m P E t m E D j= = = = =  
 
Thus, the EOCj curve can be viewed as the ordinal dominance (OD) graph with 
each point on the EOCj curve with ( )

( )( )0
j

kx m and ( )
( )( )1

j
ky m  as its horizontal and 

vertical coordinates (Fig. 1). Thus, the area under the EOCj curve (AUC) is 
calculated by using the trapezoidal rule as follows (Bamber, 1975): 
 

 

( )
( )( ) ( )

( )( )( ) ( )
( )( ) ( )

( )( )( )

( )
( )( )( ) ( )

( )( )( ) ( )
( )( )( )( )

( )
( )( )( ) ( )

( )( )( ) ( )
( )( )( )

( ) ( )( ) ( ) ( )( )

1 11 1 0 0
1

11 1 0
1

11 1 0
1

1
2

1
2

1
2

1
2

j

j

j

m
j j j i

k k k k
k

m
j j j

k k k
k
m

j j j
k k k

k

AUC y m y m x m x m

P Y t m P Y t m P X m

P Y t m P Y m P X m

P Y t X t P Y t X t

θ − −
=

−
=

−
=

≡ = + ⋅ −

= ≤ + ≤ ⋅

 = ≤ + ⋅ 
 

= < + =

∑

∑

∑
  (5) 

 
To estimate equation 5, it can be shown that the AUC under the EOC is equivalent 
to the Wilcoxon-Mann-Whitney test (Pepe, 2003). 

Two nonparametric methods for testing equation 4 are thereby summarized 
as follows: 
 
Method A: The Wilcoxon-Mann-Whitney (WMW) test For each point 
lying on the EOCi curve, define the Youden’s index (YI) as follows (Zhou, 
McClish & Obuchowski, 2002): 
 
 ( )( ) ( )( ) ( )( ) 1,i i iYI P Se P Sp P= + −   (6) 

 
where P(i) is the point lying on the EOCi curves, i = 0, 1. 

Let (1)
jP and (0)

kQ be the points lying on the empirical EOCi curves for i =1 
(cases) and i = 0 (controls) respectively. Define 
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 ( )( ) ( )( )1 01 if ; = 0 otherwise (assuming no ties).jk j kU YI P YI Q= >   (7) 

 
With equation 5 the null and alternative hypotheses of equation 4 are 

replaced by 
 
 0 1: 0.5 versus : 0.5H Hθ θ′ ′= >   (8) 
 
An unbiased estimator for θ of equation 5 is given by Mee (1990) 
 

 
01`

1 11 0

1ˆ
mm

jk
j k

U
m m

θ
= =

=
⋅ ∑∑    (9) 

 
where Ujk are defined by equation 7 and its variance is given by 
 
 ( ) ( )ˆvar 1 / ,Mθ θ θ= −    (10) 

 
where 
 
 ( ) ( )0 1 0 1 1 2/ 1 1 1M m m m mδ δ= − + − +      
 
and for 1,2= , 
 

  2( ) / ( (1 ))δ θ θ θ θ= − −
 

, 

  1 Pr( 1),ij kjU U i kθ = = ≠ , 

  2 Pr( 1),ij ikU U j kθ = = ≠ . 
 
Note that the estimators for θ1, θ2 , δ



, and M are 
 

 ( )
0 01

1 0 1 0
1 1

ˆ / 1
m mm

ij kj
i j k i

U U m m mθ
= = ≠

= −  ∑∑∑   
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 ( )
0 1 1

2 0 1 1
1 1

ˆ / 1
m m m

ij ik
i j k j

U U m m mθ
= = ≠

= −  ∑∑∑   

 ( ) ( ) ( )( )2 2
0 1 0 1 1 2 0 1

ˆ ˆ ˆ ˆ1 1 / 1 1m m m m m mθ θ θ θ θ = − − − − − − −   
 , (11) 

 ( ) ( )2 2ˆ ˆ/δ θ θ θ θ= − −
 

    

 ( ) ( ) ( ) ( )2 2 2
0 1 0 1 1 2

ˆ ˆ/ 1 1 1 /M m m m mδ δ θ θ θ θ = − + − + = − − 
     

 
Consequently, an estimator of ( )ˆvar θ  is given by 

 
 ( ) ( )ˆ ˆ ˆˆvar 1 / Mθ θ θ= −     (12) 

 
Hence, a standard normal zθ-statistic for testing equation 8 is given by 
 

 
( )

ˆ 0.5
ˆˆvar

zθ
θ

θ

−
=    (13) 

 
Method B: The Kolmogorov-Smirnov test Let 

1mS and 
0mT  be the sample 

cumulative distribution function of Youden’s index (equation 6) associated with 
the number of points lying on the EOC curves for cases and controls respectively, 
where 

1mS  and 
0mT  are defined respectively as 

 

 

( ) ( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

1

1

1

1 1
1 1

1

1

0, ,

/ ,

1, ;

m

k k

m

S t t YI P

k m YI P t YI P

t YI P

+

= <

= ≤ ≤

= ≥

  (14) 

 

( ) ( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

0

0

1

0 0
0 1

0

0

0, ,

/ ,

1, ,

m

k k

m

T t t YI Q

k m YI Q t YI Q

t YI Q

+

= <

= ≤ ≤

= ≥

  (15) 
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where YI(P(1))(i), i = 1,2, …, m1, and YI(Q(0))(j), j = 1, 2, …, m0 are the order 
statistics of Youden’s index (equation 6) associated with points lying on the EOC 
curves for cases and controls respectively. 

The Kolmogorov-Smirnov test is based on the statistic 
0 1m mK defined as 

 
 ( ) ( )

0 1 1 0
sup | |,m m t m mK S t T t= −   (16) 

 
A decision rule for testing equation 4 is given as follows: reject the null 

hypothesis of equation 4 if the observed number (
0 1m mK ) (equation 16) is larger 

than the two-sided critical value Kα, where α is the probability of type I error 
(Conover, 1971). 

Examples 
Three examples are used to illustrate how to employ the two methods mentioned 
in the previous section to test the assumption of non-differential misclassification. 
The problem now is to calculate the value of sensitivity and specificity when the 
validation sample data are not available. Here the counterfactual thinking comes 
into playing the critical role to overcome this barrier (Epstude & Roese, 2008), 
that is, if only the true (correctly classified) table is known, it is then possible to 
calculate the value of sensitivity and specificity pair from the observed 
[misclassified] table by regarding the true table which serves as the “gold 
standard.” Evidently, the potential true table, even though unknown, can be 
figured out from the observed table as shown below in each of the following three 
examples. Because it is unknown which potential outcome table is the genuine 
true table, it is necessary to consider all possible outcome tables figuring out from 
the observed table as the true table. This leads to a plot of the EOC curve 
separately for the over-/under-misclassification situation in all three examples. 

Because the critical values of K0.05 are not available for all the following 
three examples, it was calculated using the large sample approximation 

( ) ( )0 1 0 11.36 /m m m m+ , which provided in the last row of Table 17 in (Conover, 

1971). 
 
Example 1 The data in Table 3a are taken from a study of deaths caused by 
landslides that occurred in the State of Chuuk, Federated States of Micronesia, in 
which a case-control design was used to identify the risk factors (Sanchez et al., 
2009). A case was defined to be a person who died as a result of landslides. 
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Proxies were identified in the surviving villagers to provide information for the 
decedents, or persons in the control group who were too young to answer 
questions. Because proxies were used to obtain information on the questions 
asked in the survey, misclassification was likely to occur. For an illustration, one 
table was taken from their study regarding whether a person saw natural warning 
signs (Table 3a). In this example, Exposure = 1 if a person did not see natural 
warning signs; 0 otherwise. 

Assume that the observed table (Table 3a) is misclassified, the potential true 
table for the over-misclassification situation may be determined by identifying all 
possible positive integers less than the smallest observed frequency in the (0, 1) 
cell, n01 = 2. It turns out there is only one integer which is less than 2. Hence the 
only potential true (counterfactual) table is given by N11 = 38, N10 = 26, N01 =1, 
and N00 = 26. By using equation 2, Se1 = 1 – 1/(38 + 37) = 0.987 and Sp1 = 1 – 
1/(1 + 2) = 0.667; Se0 = 1 – 1/(26 + 27) = 0.981 and Sp0 = 1 – 1/(26 + 25) = 0.98. 
Hence, the EOC curves for cases and controls have just one point (Se1, 1 – Sp1) = 
(0.987, 0.333) and (Se0, 1 – Sp0) = (0.981, 0.02) as shown in Table 3b. Although 
there were 24 true (counterfactual) tables for the under-misclassification situation, 
only three and seventeen sensitivity and specificity pairs for cases and controls 
were proved respectively to be feasible, namely, they satisfy all the three 
constraints of Eqs. 3a-3c. All feasible (1 – Sp, Se) pairs are exhibited as boldface 
figures in Table 3b. A plot of the EOC curves for cases and controls in Example 1 
is given in Fig. 2. 

Because the results of both methods are not significant (Table 3c), the null 
hypothesis of equation 4 is not rejected at the significance level of 0.05. 
 
 
Table 3a. Survey data: whether or not a person saw natural warning signs for cases and 
controls 
 
  Cases Controls Total 
No  37 27 64 
Yes 2 25 27 

Total 39 52 91 
 
 
 
 
 
 
 



TESTING MISCLASSIFICATION IN CASE-CONTROL STUDIES 

220 

Table 3b. True (counterfactual) table and the corresponding feasible sensitivity and 
specificity 
 

Cases   Controls 

Over-misclassification 

N11 N01 Se1 Sp1  N10 N00 Se0 Sp0 

38 1 0.9867 0.6667  26 26 0.9811 0.9804 

Under-misclassification 

N11 N01 Se1 Sp1  N10 N00 Se0 Sp0 

13 26 0.5200 0.1429  51 1 0.6923 0.0769 

14 25 0.5490 0.1481  50 2 0.7013 0.1481 

15 24 0.5769 0.1538  49 3 0.7105 0.2143 

16 23 0.6038 0.1600  48 4 0.7200 0.2759 

18 21 0.6545 0.1739  46 6 0.7397 0.3871 

19 20 0.6786 0.1818  45 7 0.7500 0.4375 

20 19 0.7018 0.1905  44 8 0.7606 0.4848 

21 18 0.7241 0.2000  43 9 0.7714 0.5294 

22 17 0.7458 0.2105  42 10 0.7826 0.5714 

23 16 0.7667 0.2222  41 11 0.7941 0.6111 

24 15 0.7869 0.2353  40 12 0.8060 0.6486 

25 14 0.8065 0.2500  39 13 0.8182 0.6842 

26 13 0.8254 0.2667  38 14 0.8308 0.7179 

27 12 0.8438 0.2857  37 15 0.8438 0.7500 

28 11 0.8615 0.3077  36 16 0.8571 0.7805 

29 10 0.8788 0.3333  35 17 0.8710 0.8095 

30 9 0.8955 0.3636  34 18 0.8852 0.8372 

31 8 0.9118 0.4000  33 19 0.9000 0.8636 

32 7 0.9275 0.4444  32 20 0.9153 0.8889 

33 6 0.9429 0.5000  31 21 0.9310 0.9130 

34 5 0.9577 0.5714  30 22 0.9474 0.9362 

35 4 0.9722 0.6667  29 23 0.9643 0.9583 

36 3 0.9863 0.8000   28 24 0.9818 0.9796 
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Table 3c. Result of applying Methods A and B to Example 1 
 

Method A:  Method B: 
Wilcoxon-Mann-Whitney test  Kolmogorov-Smirnov test 

        
m0 18 1δ    -0.05  m0 18 

m1 4 2δ   0.17  m1 4 

1̂θ   0.22 M    19  1 0m mK   0.33 

2̂θ  0.28 θ̂    0.5  0.05K  0.75 

2θ   0.24 ( )ˆˆvar θ    0.11    

  ˆz
θ

  
 0    

        
 
 

 
 
Figure 2. EOC curves for cases and controls in Example 1 
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Example 2 The data in Table 4a are taken from table 7.2 in Schlesselman’s 
book (1982). This data set is in fact a subset of the data from a case-control study 
of the relation between estrogen use and endometrial cancer in women (Antunes 
et al., 1979). The use of estrogen is regarded as an exposure risk factor. The rates 
of exposure for cases and controls are given respectively by 1p̂  = 0.3 (= 55/183) 
and 0p̂  = 0.1 (= 19/183). Assume that the exposure data are misclassified for both 
cases and controls and there is interest in knowing whether their misclassification 
rates are the same. 

By designating the frequency in cell (1, 0) of Table 4a as a free parameter, 
there were 18 potential true (counterfactual) tables for the over-misclassification 
scenario. After checking for the feasibility constraints (Eqs. 3b-3c), all 18 pairs of 
sensitivity and specificity were feasible for cases, while only 17 pairs were 
feasible for controls. For the under-misclassification scenario, there were 64 
potential true (counterfactual) tables. Yet 45 pairs of sensitivity and specificity for 
cases were feasible, while 30 pairs were feasible for controls. Again, only the top 
and bottom five pairs are listed in Table 4b. A plot of their EOC curves is given in 
Fig. 3. 

Because the results of both methods are not significant (Table 4c), the null 
hypothesis of equation 4 is not rejected at the significance level of 0.05. By the 
way, the reason that ˆ 0.42θ =  < 0.5 is because equation 7 is defined in terms of 
controls rather than cases, that is, Ujk = 1 if ( ) ( )(0) (1)

j kYI Q YI P> . 
 
 
Table 4a. Use of oral conjugated estrogen (OCE) for endometrial cancer 
 
  Cases Controls Total 

User  55 19 74 
Nonuser 128 164 292 

Total 183 183 366 
 
 
Table 4b. True (counterfactual) table and the corresponding feasible sensitivity and 
specificity 
 

Cases   Controls 

Over-misclassification 

N11 N01 Se1 Sp1  N10 N00 Se0 Sp0 

54 129 0.9908 0.9961  20 163 0.9744 0.9970 
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Table 4b Continued 

Cases   Controls 

Over-misclassification 

N11 N01 Se1 Sp1  N10 N00 Se0 Sp0 

53 130 0.9815 0.9922  21 162 0.9500 0.9939 

52 131 0.9720 0.9884  22 161 0.9268 0.9908 

51 132 0.9622 0.9846  23 160 0.9048 0.9877 

50 
 

133 0.9524 0.9808  24 159 0.8837 0.9845 

                 

29 154 0.6905 0.9078  45 138 0.5938 0.9139 

28 155 0.6747 0.9046  46 137 0.5846 0.9103 

27 156 0.6585 0.9014  47 136 0.5758 0.9067 

26 157 0.6420 0.8982  48 135 0.5672 0.9030 

25 158 0.6250 0.8951  49 134 0.5588 0.8993 

                 

14 169 0.4058 0.8620  60 123 -* -* 

13 170 0.3823 0.8591  61 122 -* -* 

12 171 0.3582 0.8562  62 121 -* -* 

11 172 0.3333 0.8533  63 120 -* -* 

10 173 0.3077 0.8505  64 119 -* -* 

Under-misclassification 
N11 N01 Se1 Sp1  N10 N00 Se0 Sp0 

73 110 0.8594 0.9244  1 182 -* -* 

72 111 0.8661 0.9289  2 181 0.1905 0.9507 

71 112 0.8730 0.9333  3 180 0.2727 0.9535 

70 113 0.8800 0.9378  4 179 0.3478 0.9563 

69 114 0.8871 0.9421  5 178 0.4167 0.9591 

                 

60 123 0.9565 0.9800  14 169 0.8485 0.9850 

59 124 0.9649 0.9841  15 168 0.8824 0.9880 

58 125 0.9735 0.9881  16 167 0.9143 0.9909 

57 126 0.9821 0.9921  17 166 0.9444 0.9939 

56 127 0.9910 0.9961  18 165 0.9730 0.9970 
 
 
*The values of (Se, Sp) are infeasible. 
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Table 4c. Result of applying the two methods to Example 2 
 

Method A:  Method B: 
Wilcoxon-Mann-Whitney test  Kolmogorov-Smirnov test 

        
m0 63 1δ    0.46  m0 63 

m1 47 2δ   0.23  m1 47 

1̂θ   0.23 M    82.1  1 0m mK   0.21 

2̂θ  0.29 θ̂    0.42  0.05K  0.26 

2θ   0.17 ( )ˆˆvar θ    0.05    

  ˆz
θ

  
 -1.44    

        
 
 

 
 
Figure 3. EOC curves for cases and controls in Example 2 
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Example 3 The data of Table 5a are taken from a case control study of sudden 
infant death syndrome (SIDS) (Greenland, 1988). Among those women who were 
interviewed, it was asked if she had used the antibiotic medicine during 
pregnancy. The rate of using the antibiotic medicine for cases and controls were 
given respectively by 1p̂  = 0.22 (= 122/442) and 0p̂  = 0.17 (= 101/580). Assume 
that the interview data are misclassified for both cases and controls and there is 
interest in knowing whether their misclassification rates are the same. 

To do so, it is necessary to obtain their EOC curves. To construct the 
potential true (counterfactual) table, the observed cell frequency n10 = 101 were 
chosen as a reference. For the over-misclassification scenario, the possible values 
of N10 were determined to be integers running from 100 down to 1 (Column 5, 
Table 5b). After the value of N10 was determined, all other cell frequencies were 
uniquely determined because the column/row totals have to be fixed as the same 
as that of the observed table. There were 100 potential true (counterfactual) tables. 
After checking the feasibility constraints imposed by Eqs. 3b-c, all 100 (Se, Sp) 
pairs were feasible for cases, but only 91 (Se, Sp) pairs were feasible for controls. 
To save space, only the top and bottom five pairs are listed (Table 5b). Similarly, 
for the under-misclassification scenario, the possible values of N10 were 
determined to be integers running from 102 up to 222. There were 121 potential 
true (counterfactual) tables. Although all 121 true (counterfactual) tables 
produced feasible pairs of (Se, Sp) for controls, only 107 (Se, Sp) pairs were 
feasible for cases. Again, only the top and bottom five pairs are listed (Table 5b). 
A plot of their EOC curves for cases and controls is given respectively in Fig. 4.  

Because none of the results obtained from both methods are significant 
(table 5c), the null hypothesis of equation 4 is not rejected at the significance level 
of 0.05. 
 
 
Table 5a. Data of SIDS study of the exposure variable of interview response 
 
  Cases Controls Total 

Use  122 101 223 
No use 442 479 921 

Total 564 580 1144 
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Table 5b. True (counterfactual) table and the corresponding feasible sensitivity and 
specificity 
 

Cases   Controls 

Over-misclassification 
N11 N01 Se1 Sp1  N10 N00 Se0 Sp0 
123 441 0.9960 0.9989  100 480 0.9950 0.9990 

124 440 0.9919 0.9977  99 481 0.9900 0.9979 

125 439 0.9879 0.9966  98 482 0.9849 0.9969 

126 438 0.9839 0.9955  97 483 0.9798 0.9958 

127 
 

447 0.9799 0.9943  96 484 0.9746 0.9948 

                 

218 346 0.7176 0.8782  14 566 0.2435 0.9167 

219 345 0.7155 0.8768  13 567 0.2281 0.9159 

220 344 0.7135 0.8754  12 568 0.2124 0.9150 

221 343 0.7114 0.8739  11 569 0.1964 0.9141 

222 342 0.7093 0.8724  10 570 0.1802 0.9133 

Under-misclassification 
N11 N01 Se1 Sp1  N10 N00 Se0 Sp0 
121 443 0.9959 0.9989  102 478 0.9951 0.9990 

120 444 0.9917 0.9977  103 477 0.9902 0.9979 

119 445 0.9876 0.9966  104 476 0.9854 0.9969 

118 446 0.9833 0.9955  105 475 0.9806 0.9958 

117 447 0.9791 0.9944  106 474 0.9758 0.9948 

                 

19 545 0.2695 0.8956  204 376 0.6623 0.8795 

18 546 0.2571 0.8947  205 375 0.6601 0.8782 

17 547 0.2446 0.8938  206 374 0.6580 0.8769 

16 548 0.2319 0.8929  207 373 0.6558 0.8756 

15 549 0.2190 0.8920  208 372 0.6537 0.8743 

                 

5 559 -* -*  218 362 0.6332 0.8609 

4 560 -* -*  219 361 0.6313 0.8595 

3 561 -* -*  220 360 0.6293 0.8582 

2 562 -* -*  221 359 0.6273 0.8568 

1 563 -* -*  222 358 0.6254 0.8554 

                   
*The values of (Se, Sp) are infeasible. 
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Table 5c. Result of applying the two methods to Example 3 
 

Method A:  Method B: 
Wilcoxon-Mann-Whitney test  Kolmogorov-Smirnov test 

        
m0 212 1δ    0.33  m0 212 

m1 207 2δ   0.37  m1 207 

1̂θ   0.38 M    296.9  1 0m mK   0.05 

2̂θ  0.39 θ̂    0.54  0.05K  0.13 

2θ   0.29 ( )ˆˆvar θ    0.03    

  ˆz
θ

  
 1.52    

        
 
 

 
 
Figure 4. EOC curves for cases and controls in Example 3 
 
 

Discussion 

Some comments are worthy to be mentioned below: 
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1) The EOC curve is intrinsically different from that of the ROC curve. 
The ROC curve is interested in judging the accuracy of a diagnostic 
test on the individual’s disease status, while the EOC curve is 
concerned with the correct classification of the subject’s exposure 
condition. 

2) Unlike the ROC curve in which the entire curve is a single 
continuous curve, the EOC curve is comprised of two distinct pieces: 
one piece of the curve corresponds to the over-misclassification 
scenario, while the other piece of the curve to the under-
misclassification. Further, the ROC curve is strictly increasing, 
whereas the EOC curve is monotonically decreasing. 

3) It seems that equation 3a is redundant when both equations 3b &3c 
are satisfied. But, the expression of ( ) ( )( ) ( )

1 0 1j jSe m Sp m+ −  is the 

determinant of the misclassification matrix for the 2 × 2 contingency 
table. In fact, equation 3a is the first condition required for the 
existence of the bias-adjusted proportion estimator (Lee, 2009). 
Incidentally, the non-singularity of the misclassification matrix is 
always the first condition required to be satisfied for the existence of 
the bias-adjusted estimator in other applications too (Lee, 2010, 
2011). 

4) Method B is preferred to Method A because it is possible that two 
EOC curves are different, but they have the same area. 

Conclusion 

In this paper a theory of the exposure operating characteristic curve is developed 
to test the assumption of non-differential misclassification in case-control studies. 
In terms of the Youden’s index two nonparametric methods, the Wilcoxon-Mann-
Whitney and Kolmogorov-Smirnov test, are proposed to test whether the two 
exposure operating characteristic curves are the same for cases and controls. 
Three real-data examples were used to illustrate the proposed two methods. 

Apparently, the idea of the exposure operating characteristic curve for 
testing the assumption of non-differential misclassification for the 2 × 2 
contingency tables presented can be extended to the 2 × K or K × K matched-pair 
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case-control studies, where K ≥ 3. This topic will be pursued later in another 
paper. 
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The problem of estimating the population variance is presented using auxiliary 
information in the presence of measurement errors. The estimators in this article use 
auxiliary information to improve efficiency and assume that measurement error is present 
both in study and auxiliary variable. A numerical study is carried out to compare the 
performance of the proposed estimator with other estimators and the variance per unit 
estimator in the presence of measurement errors. 
 
Keywords: Population mean, study variate, auxiliary variates, mean squared error, 
measurement errors, efficiency. 
 

Introduction 

Over the past several decades, statisticians are paying their attention towards the 
problem of estimation of parameters in the presence of measurement errors. In 
survey sampling, the properties of estimators based on data usually presuppose 
that the observations are the correct measurements on characteristics being 
studied. However, this assumption is not satisfied in many applications and data is 
contaminated with measurement errors, such as non-response errors, reporting 
errors, and computing errors. These measurement errors make the result invalid, 
which are meant for no measurement error case. If measurement errors are very 
small and we can neglect it, then the statistical inferences based on observed data 
continue to remain valid. On the contrary, when they are not appreciably small 
and negligible, the inferences may not be simply invalid and inaccurate but may 
often lead to unexpected, undesirable and unfortunate consequences (see 
Srivastava and Shalabh, 2001). Some important sources of measurement errors in 

mailto:prayassharma02@gmail.com
http://www.bhu.ac.in/statistics/rsingh.html
mailto:rsinghstat@gmail.com
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survey data are discussed in Cochran (1968), Shalabh (1997), and Sud and 
Srivastva (2000). Singh and Karpe (2008, 2010), Kumar et al. (2011a, b) studied 
some estimators of population mean under measurement error. 

Many authors, including Das and Tripathi (1978), Srivastava and Jhajj 
(1980), Singh and Karpe (2009) and Diana and Giordan (2012), studied the 
estimation of population Variance 2

yσ  of the study variable y using auxiliary 
information in the presence of measurement errors. The problem of estimating the 
population variance and its properties are studied here in the presence of 
measurement errors. 

Consider a finite population U= (U1, U2, ........ UN) of N units. Let Y and X be 
the study variate and auxiliary variate, respectively. Suppose a set of n paired 
observations are obtained through simple random sampling procedure on two 
characteristics X and Y. Further assume that xi and yi for the ith sampling units are 
observed with measurement error as opposed to their true values (Xi, Yi) For a 
simple random sampling scheme, let (xi, yi) be observed values instead of the true 
values (Xi, Yi) for ith (i=1.2….n) unit, as 
 

 i i iu y Y= −    (1) 

i i iv x X= −    (2) 
 
where ui and vi are associated measurement errors which are stochastic in nature 
with mean zero and variances 2

uσ  and 2 ,vσ  respectively. Further, let the ui’s and 
vi’s are uncorrelated although Xi’s and Yi’s are correlated . 

Let the population means of X and Y characteristics be xµ and yµ , 

population variances of (x, y) be ( 2
xσ , 2

yσ ) and let ρ  be the population correlation 
coefficient between x and y respectively (see Manisha and Singh (2002)). 

Notations 

Let 
1

1 ,
n

i
i

x x
n =

= ∑  
1

1 ,
n

i
i

y y
n =

= ∑  be the unbiased estimator of population means X  

and Y  , respectively but ( )22

1

1
1

n

x i
i

s x x
n =

= −
− ∑  and ( )22

1

1
1

n

y i
i

s y y
n =

= −
− ∑  are not 

unbiased estimator of ( 2
xσ , 2

yσ ), respectively. The expected values of 2
xs and 2

ys  in 
the presence of measurement error are, given by, 
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( )2 2 2
x x vE s σ σ= +  

( )2 2 2
y y uE s σ σ= +  

 
When the error variance 2

vσ  is known, the unbiased estimator of 2
xσ , is 

2 2 2ˆ 0x x vsσ σ= − > , and when 2
uσ  is known, then the unbiased estimator of 2

yσ  is 
2 2 2ˆ 0y y usσ σ= − > . 

 
Define  
 

( )2 2
0ˆ 1y y eσ σ= +  

( )11xx eµ= +  
 
such that  
 
( )0E e = ( )1E e =0, 

2 2
2
1 2( ) 1x v

x

CE e
n

σ
σ

 
= + 

 
=

2
x

x

C
nθ

, 

 
and to the first degree of approximation (when finite population correction factor 
is ignored) 

 

( )2
0 ,yA

E e
n

=  ( )0 1
xCE e e

n
λ

= . 

 
where,  

 
2

4 2

2 2 4 22 1u u
y y u

y y

A σ σγ γ
σ σ

   = + + +      
, 12

2

( , )

x y

x yµλ
σ σ

= , x
x

x

C σ
µ

= , 
2

2 2
x

x
x v

σθ
σ σ

=
+

, 

2

2 2
y

y
y u

σ
θ

σ σ
=

+
 , 2 2 ( ) 3y yγ β= −  , 2 2 ( ) 3u uγ β= − , 4

2 2
2

( )( )
( )
uu
u

µβ
µ

= , 4
2 2

2

( )( )
( )
yy
y

µβ
µ

=  , 

4
4 ( ) ( )i yy E Yµ µ= −  , 4

4 ( ) ( )iu E uµ = . 
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xθ and yθ are the reliability ratios of X and Y, respectively, lying between 0 and 1. 

Estimator of population variance under measurement error 

According to Koyuncu and Kadilar (2010), a regression type estimator t1 is 
defined as  
 

2
1 1 2ˆ ( )y xt w w xσ µ= + −    (3) 

 
where w1 and w2 are constants that have no restriction . 
 
Expression (3) can be written as 
 

2 2 2
1 1 1 0 2 1( 1)y y y xt w w e w eσ σ σ µ− = − + −    (4) 

 
Taking expectation both sides of (4), results in  
 

2
1 1( ) ( 1)yBias t wσ= −    (5) 

 
Squaring both sides of (4)  
 

( ) ( )22 2 2
1 1 1 0 2 11y y y xt w w e w eσ σ σ µ − = − + −     (6) 

 
or 

 

( )22 4 2 2 4 2 2 2 2 4
1 1 1 0 2 1 1 1 0

2 2
1 2 1 1 2 0 1

( 1) 2( 1)

2( 1) 2 )

y y y x y

y x y x

t w w e w e w w e

w w e w w e e

σ σ σ µ σ

σ µ σ µ

− = − + + + −
− − − 

  (7) 

 
Simplifying equation (7), taking expectations and using notations, results in 

the mean square error of 1t up to first order of approximation, as  
 

22
1 24 2 4 2 2

1 1 1 2

2
( ) ( 1) (1 2 )y x y xx

y y x
x

A w w CCMSE t w w w
n n n

µ σ λ
σ σ µ

θ


= + + − + − 
 

   (8) 
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In the case, when the measurement error is zero, MSE of 1t  without 
measurement error is given by, 
 

{ }
4 2

* 4 2 2 2
1 2 1 2 1 2( ) 2 (1 2 ) 2y x x

y y x x y
C CMSE t n w w w w

n n n
σ

γ σ µ µ σ λ = + + + − + − 
  (9) 

 
and 
 

1

22 4 4 4 2 2
2 2

2 24 4 4 22 4y u u u x v
t u x

y y y x

CM w
n n
σ σ σ σ σγ µ

σ σ σ σ

  
 = + + +     

  (10) 

 
is the contribution of measurement errors in the MSE of estimator 1t . 

Differentiating (8) with respect to 1w  and 2w  partially, equating them to 
zero and after simplification, results in the optimum values of 1w  and 2w , 

respectively as  
 

4 4
* *
1 22 2, y yB C

w w
C AB C AB
σ σ− −

= =
− −

   (11) 

 

where, 4( 1)y
y

A
A

n
σ= +  , 

2 2
x x

x

CB
n
µ
θ

=  and 
2
y x xC

C
n

σ µ λ
= . 

Using the values of *
1ω  and *

2ω  from equation (11) into equation (8), gives 
the minimum MSE of the estimator t2 in terms of A, B and C as  

 

( )22 24
2 2

1 min 2 4( ) 3 2
( )

y

y

C AB
MSE t BC AB BC

C AB
σ

σ

 −   = + − −    −   
  (12) 

Another estimator under measurement error 

Based on Solanki and Singh (2012), an estimator 3t  is defined as 
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( )
( )

2
2 ˆ 2- exp   x

y
x x

xxt
x

α
β µ

σ
µ µ

  −  =     +     
   (13) 

 
where α and β are suitably chosen constants. 
Expressing the estimator 2t , in terms of e’s is 
 

( )
1

2 1 1
2 1ˆ 2 1 exp ( ) 1

2 2y
e et e α βσ

−    = − + +   
     

  (14) 

 
Expanding equation (14) and simplifying results in  
 

( ) ( )
2

2 2 21
2 0 1 0 1( ) 2

2 8y y
ekt e e e e k kσ σ

 
− = − + − − 

 
  (15) 

 
where ( )2k β α= + . 

On taking expectations of both sides of (15), the bias of the estimator 3t  up 
to the first order of approximation is obtained as  
 

( )
22

2
2

k 2  -    
2 8

x x
y

x

C Ck kBias t
n n

λσ
θ

  −
= −  

  
  (16) 

 
Squaring both sides of (15) and after simplification, 
 

( )
222 4 2

2 0 1 0 14y y
kt e e ke eσ σ

 
− = + − 

 
   (17) 

 
Taking expectations of (17) and using notations, the MSE of estimator t2 is 
calculated as 
 

4 2
2

2( )
4

y
y x x x x

x

kMSE t A C k C
n
σ

θ λ θ
θ

 
= + − 

 
  (18) 
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Differentiating equation (18) with respect to k and equating to zero and after 
simplification the optimum value of k is  
 

* 2 x

x

k
C
λθ

=    (19) 

 
Putting the optimum value of k from (19) to (18), results in the minimum MSE of 
estimator t2 as 
 

4
2

2 min( ) y
y xMSE t A

n
σ

λ θ = −     (20) 

Remark:  

Singh and Karpe (2009) defined a class of estimator for 2
yσ  as  

 
2ˆ ( )d yt d bσ=    (21) 

 
where, d(b) is a function of b such that d(1)= 1, and certain other conditions, 
similar to those given in Srivastava (1971). The minimum MSE of td is given by, 
 

4
2

min( ) y
d y xMSE t A

n
σ

λ θ = −     (22) 

 
which is the same as the minimum MSE of estimator t2, given in equation (20).  

A General Class of Estimators 

A general class of estimator t3 is proposed as 
 

( ) ( )
( )

2
3 1 2ˆ 2- exp   x

y x
x x

xxt m m x
x

α
β µ

σ µ
µ µ

  −   = + −      +     
  (23) 

 
Where 1m  and 2m  are constants chosen so as to minimize the mean squared error 
of the estimator t3. 

Equation (23) can be expressed in terms of e’s as  
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( )2

2 2 2
3 1 1 0 2 1 1 1

2
1

2 8y y x

k kkt m m e m e e eσ σ µ
 −

   = + − − −    
  (24) 

 
Expanding equation (24) and subtracting 2

yσ from both sides, results in 
 

( ) ( )

( )

2 2 2 2
3 1 1 1 1 0 2 1

22
12 2 21

1 0 1 2 1

1
2

2
8 2 2

y y y y x

y
y x

kt m m e m e m e

m ke km k k e e m e

σ σ σ σ µ

σ
σ µ

− = − − + −


− − − + 


  (25) 

 
On taking expectations of both sides of (25) the bias of the estimator 3t  up 

to the first order approximation is obtained as 
 

( ) ( ) ( )
22 2

12 2 2
3 1 1 2

1 1 2  
8 2 2

yx x x
y y x

x x

m kC C CkBias t m m k k m
n n n

σ λσ σ µ
θ θ

= − − − − +   (26) 

 
Squaring both sides of (25), results in 
 

( ) ( )
2

22 2 2 2
3 1 1 1 1 0 2 11

2y y y y x
kt m m e m e m eσ σ σ σ µ − = − − + −  

  (27) 

 
Simplifying equation (27) and taking expectations both sides the MSE of 

estimator 3t  up to the first order of approximation is obtained as  
 

( ) 4 2 2
3 1 1 2 1 2( ) 1 2 yMSE t m m P m Q m m Rσ = − + + −    (28) 

 

where 
2 2

41
4

y x
x y

x

A k C kP C
n n n

λ σ
θ

 
= + + − 
 

, 
2 2
x x

x

CQ
n
µ
θ

=  and 
2

2 2x x
y x

x

CR k C
n
µσ λ

θ
 

= + 
 

. 

 
Minimizing MSE t3 with respect to m1 and m2 the optimum values of 1m  and 

2m  is 
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4 4
* *
1 22 2

4 2
m   and  

4 4
y yQ R

m
R PQ R PQ

σ σ− −
= =

− −
 

 
Putting the optimum values of 1m  and 2m  in equation (28) results in the 
minimum MSE of estimator 3t  as 
 

( ) ( )
4

4
3 2

4
1

4
y

y

Q
MSE t

PQ R
σ

σ
 
 = =

−  
   (29) 

Empirical Study 

Data Statistics: 
The data used for empirical study was taken from Gujrati and Sangeetha (2007) -
pg, 539., where,  
 

iY  = True consumption expenditure, 

iX  = True income, 

iy  = Measured consumption expenditure, 

ix  = Measured income. 
 

From the data given we get the following parameter values: 
 
 
Table 1. Parameter values from empirical data 
 
N yµ  xµ  2

yσ  2
xσ  ρ  2

uσ  2
vσ  

10 127 170 1278 3300 0.964 36.0 36.0 
 
 
Table 2. Showing the MSE of the estimators with and without measurement errors 
 

Estimators MSE without meas. 
Error 

Contribution of meas. 
Errors in MSE 

MSE with meas. 
Errors 

 2ˆ yσ  245670 35458 281128 

 1t  229734 30354 260088 
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Table 2 continued.    

Estimators MSE without meas. 
Error 

Contribution of meas. 
Errors in MSE 

MSE with meas. 
Errors 

 2mint  245411 35461 280872 

 3min ( 1, 0)t α β= =  247440 30442 277862 

 ( )0, 1α β= =  234402 30555 267957 

 ( )1, 1α β= =  268144 30219 298363 

 ( )1, 1α β= = −  234402 33555 267957 

 ( )0, 1α β= = −  231969 30600 262569 

 ( )0.9, 2α β= − =  229145 30365 259510 

Conclusion 
Table 2 shows that the MSE of proposed estimator t3 (for 0.9, 2α β= − = ) is 
minimum among all other estimators considered. It is also observed that the effect 
due to measurement error on the estimator t1 and usual estimators is less than the 
effect on the estimator 2t  under measurement error for this given data set. 
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A.S.C. Ehrenberg first noticed and S. Weisberg then formalized a property of pairwise 
regression to keep its quality almost at the same level of precision while the coefficients 
of the model could vary over a wide span of values. This paper generalizes the estimates 
of the percent change in the residual standard deviation to the case of competing multiple 
regressions. It shows that in contrast to the simple pairwise model, the coefficients of 
multiple regression can be changed over a wider range of the values including the 
opposite by signs coefficients. Consideration of these features facilitates better 
understanding the properties of regression and opens a possibility to modify the obtained 
regression coefficients into meaningful and interpretable values using additional criteria. 
Several competing modifications of the linear regression with interpretable coefficients 
are described and compared in the Ehrenberg-Weisberg approach. 
 
Keywords: Pairwise and multiple regression, residual deviation change, Ehrenberg-
Weisberg analysis 
 

Introduction 

In a fascinating work by A.S.C. Ehrenberg (1982) it was shown that the 
coefficients of pairwise regression can be varied over a wide span of values yet 
the modified model would still have a high quality of fit. Andrew Ehrenberg was 
a famous English statistician and marketing scientist recognized as the founder of 
probability models for consumer buying behavior (Ehrenberg, 1959, 1966, 1988; 
Fader and Hardie, 2009), and a prolific educator in statistics (for several examples, 
see Ehrenberg, 1981, 1983a,b). As Ehrenberg found, “The residuals from a least 
squares regression equation are hardly any smaller than those from many other 
possible lines” (1982, p. 364), and “markedly different equations give almost as 
good a fit as the least-squares regression equation itself” (1983a, p. 526). The 

mailto:stan.lipovetsky@gfk.com
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technique considered by Ehrenberg was also described by S. Weisberg (1985, p. 
68-70) in a convenient analytical form, thus, it will be called the Ehrenberg-
Weisberg, or EW analysis.  

EW analysis had been developed for pairwise models, but the current paper 
generalizes it to multiple regression where the results are even more interesting – 
in particular, it is even possible to change all the predictors’ coefficients to the 
opposite sign, and still have almost the same precision of model fit. Such results 
show that the coefficients of linear regression can be adjusted by some additional 
criteria, where the coefficients become meaningful and the quality of the model 
stays high.  

Regression modeling is widely used for statistical analysis and prediction in 
various problems of applied research. The main tool of regression modeling is the 
ordinary multiple linear least squares (OLS) regression which yields the best 
quality of data fit estimated by the minimum residual square error achieved by the 
aggregate of the predictors. However, OLS was not designed to obtain meaningful 
coefficients for individual predictors, and it is prone to multicollinearity effects 
which impact the coefficients’ values and directions. Multicollinearity can make 
confidence intervals so wide that coefficients are incorrectly identified as 
insignificant, theoretically important variables receive negligible coefficients, or 
the coefficients have signs opposite to those of the corresponding pair correlations, 
so it is hardly possible to identify the individual predictors’ importance in the 
regression (Grapentine, 1997; Mason and Perreault, 1991). Multicollinearity 
makes the covariance matrix of predictors close to singular, so its inversion yields 
inflated regression coefficients, pushing them to large values of both signs. It is 
difficult to use such an OLS solution for the analysis of key drivers, either by the 
coefficients or by the net effects (shares of the coefficient of multiple 
determination related to the predictors impact). 

In the statistical literature and social sciences the effects of multicollinarity 
are explained by the so-called enhance, synergism, suppression, and masking 
effects among the predictors (Lipovetsky and Conklin, 2004). But such an 
explanation hardly helps to the interpretation and analysis of the regression results 
in applied research. For instance, in customer satisfaction studies in marketing 
research, the direction of the predictors’ influence on the dependent variable is 
often known in advance. Suppose, the key drivers should all have a positive 
impact on overall satisfaction and it is evidenced by the pair correlations. But in 
OLS regression many coefficients turned out to be negative, so it is hardly 
possible to interpret the model and estimate the individual driver’s importance. It 
is also difficult to use such a model for predicting a lift in the output because it is 
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not clear whether to increase or decrease a presumably useful variable if it has a 
negative sign in the model. 

This article describes the features of EW analysis and its application to 
several modifications of multiple regression. One of those is the so-called Shapley 
value regression which is based on cooperative game theory used for finding the 
predictors’ importance and then adjusting the regression coefficients via a 
nonlinear optimizing procedure. Another approach uses several modifications of 
the enhanced ridge regression technique to produce interpretable coefficients with 
a high overall quality of the model. A nonlinear parameterization of the 
coefficients of linear regression is also used in several forms to obtain sparse 
regression models with the features of interest. And finally, a model based on the 
elasticity criterion applied for building regression coefficients by data gradients is 
used for a comparison with OLS. In contrast to OLS, all the modified models are 
meaningful and easily interpretable, and have a quality of fit very close to the 
maximum defined by the OLS regression (for more detail on these models see 
(Lipovetsky and Conklin, 2001, 2010 a,b; Lipovetsky, 2009, 2010 a,b). 

This paper is organized as follows: the next section describes the 
characteristics of EW for multiple and pairwise regressions, followed by a 
description of numerical simulations and a comparison of several modified 
regression solutions. A summary concludes the paper. 

Ehrenberg-Weisberg Analysis 

Consider briefly some relations from regression analysis needed for further 
development. For centered and normalized (by the standard deviations) dependent 
yi and n design variables xi1,...,xin (i = 1,2,…,N – number of observations), a 
multiple linear regression model is: 
 
 1 1 2 2 ...i i i n in iy b x b x b x e= + + + +   (1) 
 
where ei denotes deviations from the model, and b are beta-coefficients of the 
standardized regression. In matrix form (1) can be represented as y Xb e= + , 
where y and e are the vectors of Nth order, and X is the matrix of N by n order. 
The least-squares objective is: 
 

 
2 2 2|| || || || ( ) ( )

2 1 2 ,
S e y Xb y Xb y Xb

y y b X y b X Xb b r b Rb
′= = − = − −

′ ′ ′ ′ ′ ′ ′= − + = − +
  (2) 
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where for the standardized variables it is 1y y′ = , the vector of pair correlations 
between y and each of n predictors x is X y r′ = , and the matrix of pair 
correlations between the xs is X X C′ = , and the prime denotes transposition. 
Minimizing by vector b yields the normal system of equations and its solution 
 
 1, ,Cb r b C r−= =   (3) 
 
where 1C−  is inverted correlation matrix. Vector b (3) presents coefficients of the 
ordinary least squares, or OLS, regression. With OLS estimates b, the minimum 
residual sum of squares (2) and corresponding to it coefficient of multiple 
determination 2R  are defined as: 
 
 2 2 21 , 1S b r R S b r b Cb′ ′ ′= − = − = =   (4) 
 
where r’ is a transposed row-vector of correlations of x-s with y. The coefficient 
of multiple determination is always non-negative and less than one, its other 
properties are considered, for instance, in (Reisinger, 1997). 

Next, describe EW, or Ehrenberg-Weisberg analysis deriving it from the 
beginning for the general case of multiple regression. Suppose each jth coefficient 
of regression bj is changed with the term kj, so the modified coefficients are 
 
 j j jb k b=   (5) 
 
or in the matrix form ( )b diag k b= , where diag(k) is the diagonal matrix of terms 
kj, and b  is the vector of modified coefficients of regression. With the new 
parameters b  the residual sum of squares (2) becomes: 
 

 ( ) ( )

2 2|| || ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) 2( ) ( ) ( ) ( )

S y Xb y Xb y Xb

y Xb X b b y Xb X b b

y Xb y Xb b b X y Xb b b X X b b

′= − = − −
′

= − − − − − −

′ ′ ′ ′ ′= − − − − − + − −

  

 

  

  (6) 

 
Taking (3) into account, the middle item in (6) equals zero because 

( ) 0X y Xb r Cb′ − = − = , so (6) can be reduced to: 
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 ( ) ( )2 2 2( ) ( ) ( ) ( )S S b b C b b S b diag k I C diag k I b′ ′= + − − = + − −    (7) 
 

In a simple case when all coefficients are changed by the same term kj = k, 
taking (4) into account, the expression (7) can be reduced to: 
 
 2 2 2 2 2 2(1 ) (1 )S S k b Cb S k R′= + − = + −   (8) 
 
Dividing (8) by S2 and using (4) yields the relation: 
 

 
2 2

2
2 21 (1 )

1
S Rk
S R

= + −
−



  (9) 

 
For the simple pairwise regression by only one predictor (n = 1 in (1)) this 

formula coincides with the one obtained by Ehrenberg and Weisberg up to the 
change of the multiple correlation R to the pair correlation, R2 = r2. Taking the 
square root of (9) produces a quotient of the standard errors of OLS to the 
modified model expressed as: 
 

 
1/2 1/22 2

2
2 21 (1 )

1
S Rk
S R

   
= + −   −  



  (10) 

 
It is the formula given in Weisberg (1985, p. 69) for the pairwise model with R2 = 
r2. Because the OLS solution has minimum standard error, (10) can be 
represented as 
 

 
1/22

2
21 (1 ) 1

1
Rk d

R
 
+ − = + − 

  (11) 

 
where d > 0 denotes the relative difference of the modified model’s and OLS 
standard errors. 

If d is assumed to be at a desirable level, for example, 5% or 10% , then it is 
possible find the range of k values for which the regression coefficient can be 
changed but the standard error will be kept within a d% increase from the 
minimum OLS standard error value: 
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 ( ) ( )1/2 1/22 2/ 1S S d≤ +   (12) 

 
For this aim, the inequality for k is solved as: 
 

 
1/22

2
21 (1 ) 1

1
Rk d

R
 
+ − ≤ + − 

  (13) 

 
and the solution is: 
 

 
1/2 1/22 2

2 2
2 2

1 11 (2 ) 1 (2 )R Rd d k d d
R R

   − −
− + ≤ ≤ + +   
   

  (14) 

 
So for regression coefficient change with the term k (5) in the range (14) the 
inequality (12) is satisfied. With R2 close to 1 the range (14) is narrow, but with 
small R2 the modified coefficient of regression (5) can vary in the wide span 
without changing much of the residual error. For example, if d = 5%, the span 
(14) is given by the inequalities: 
 

 
1/2 1/22 2

2 2

1 11 0.32 1 0.32R Rk
R R

   − −
− ≤ ≤ +   

   
  (15) 

 
or the span for the regression coefficient keeping the residual error in the limit of 
d = 10% is: 
 

 
1/2 1/22 2

2 2

1 11 0.46 1 0.46R Rk
R R

   − −
− ≤ ≤ +   

   
  (16) 

 
It could seem that for small R2 (for instance if |R|<0.3 in (15), or |R|<.4 in 

(16)) k can even be negative, so the regression changes its direction. However, for 
the pairwise regression it is not so, and it is not so for the multiple regression if all 
parameters of change are constant, kj = k. Indeed, using the coefficients of 
multiple determination of OLS (4) and of the modified regression 2 21R S= −  , the 
equality (8) is represented as: 
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 2 2 2 21 1 (1 )R R k R− = − + −   (17) 
 
which reduces to: 
 
 2 2(2 )R k k R= −   (18) 
 
To keep 2 0R ≥ , the values of k should belong to the range 0 2k≤ ≤ . Thus, k in 
(14)-(16) cannot become negative for the pairwise regression, and the same holds 
for multiple regression in the case where all k are equal. The sufficient condition 
to have 0 2k≤ ≤ , so 2 0R ≥ , is to keep the square roots in (14) less than one: 
 

 
1/22

2
2

1(2 ) 1Rd d
R

 −
+ ≤ 

 
  (19) 

 
which can be represented more concisely as follows: 
 
 2 2(1 ) (1 ) 1d R+ − ≤   (20) 
 
Thus, for a given value of 2R  the percent d satisfying the condition (20) which 
guarantees the modified 2R to be positive should be chosen. 

Continuing with EW description for multiple regression in a general case 
where different parameters of change are assigned to each coefficient, similar to 
the transformation of (8) to (9), the general expression (7) can be presented in 
explicit form as: 
 

 
2

2 2
2 2

1

11 (1 ) 2 (1 )(1 )
1

n n

j j j q j q jq
j j q

S k b k k b b r
S R = >

 
= + − + − − −  

∑ ∑


  (21) 

 
where rjq are the pair correlations between xj and xq. The terms with 1 – kj in (21) 
modify the inputs from 2

jb  (the so-called pure net-effects of each predictor) and 
from j q jqb b r  (the so-called mixed net-effects of the predictors) into the coefficient 
of multiple determination. If only one coefficient of regression is changed, say, 

1jk ≠ , and all the others are kept intact (k = 1) then the ratio (21) reduces to: 
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22

2
2 21 (1 )

1
j

j

bS k
S R

= + −
−



  (22) 

 
From (22) with the net effect of the jth predictor in the numerator, it is easy to 
derive the relations (10)-(14) for considering a model with only one modified 
coefficient. But a general case of different changes for all the coefficients (21) can 
be studied in numerical simulations. 

Numerical Simulation and Examples 

Consider the case of two predictors, n = 2, trying several values of pairwise 
correlations ry1 and ry2 of y with x1 and x2, and the r12 correlation between two 
predictors taken within the allowed range of the values: 
 
 2 2 2 2

1 2 1 2 12 1 2 1 2(1 )(1 ) (1 )(1 )y y y y y y y yr r r r r r r r r− − − ≤ ≤ + − −   (23) 

 
 
Table 1. Numerical simulation with various k: pair correlations, OLS regressions, k-terms, 
modified regressions, and residual STD change. 
 

Pair  
correlations   OLS  

regression   Terms of 
change   Modified  

regression   STD 
change 

ry1 ry2 r12  b1 b2 R2  k1 k2  1b   2b  2R    d 
                                -0.75 0.75 -0.900  -0.395 0.395 0.592  -0.1 2.0  0.039 0.789 0.556  0.043 

-0.75 0.75 -0.900  -0.395 0.395 0.592  0.1 2.0  -0.039 0.789 0.562  0.036 

-0.75 0.75 -0.900  -0.395 0.395 0.592  0.5 2.0  -0.197 0.789 0.538  0.065 

-0.75 0.75 -0.813  -0.414 0.414 0.621  2.0 -0.1  -0.828 -0.041 0.548  0.091 

-0.75 0.75 -0.813  -0.414 0.414 0.621  2.0 0.1  -0.828 0.041 0.561  0.076 

-0.75 0.75 -0.813  -0.414 0.414 0.621  2.0 0.5  -0.828 0.207 0.546  0.094 

-0.50 0.50 -0.150  -0.435 0.435 0.435  0.5 0.5  -0.217 0.217 0.326  0.092 

0.10 0.50 0.739  -0.595 0.940 0.410  0.5 0.5  -0.297 0.470 0.308  0.084 

0.50 0.50 0.100  0.455 0.455 0.455  0.5 0.5  0.227 0.227 0.341  0.099 

0.50 0.75 0.490  0.175 0.664 0.586  2.0 0.5  0.349 0.332 0.502  0.097 

0.50 0.75 0.604  0.074 0.705 0.566  5.0 0.5  0.369 0.353 0.480  0.094 

0.50 0.75 0.719  -0.081 0.808 0.566  -2.0 0.5  0.161 0.404 0.484  0.090 

0.75 0.75 0.825  0.411 0.411 0.616  2.0 -0.1  0.822 -0.041 0.550  0.083 

0.75 0.75 0.825  0.411 0.411 0.616  2.0 0.1  0.822 0.041 0.562  0.069 

0.75 0.75 0.825  0.411 0.411 0.616  2.0 0.5  0.822 0.205 0.545  0.090 
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Table 1 presents the sets of these three correlations in the first three columns, and 
in the next three columns there are OLS beta-coefficients of regression (1) and the 
coefficient of multiple determination R2 (4). The terms kj for the modified 
coefficients are given in the two middle columns of Table 1, then there are the 
modified coefficients themselves (5), and the corresponding modified coefficient

2 21R S= −   of multiple determination. The last column of Table 1 presents the 
relative change of the residual standard deviation (STD), which can be expressed 
via (12) and (21) as follows: 
 

 
2 2 2 2

1 1 2 2 1 2 1 2 12
2

(1 ) (1 ) 2(1 )(1 )1 1
1

k b k b k k b b rd
R

− + − + − −
= + −

−
  (24) 

 
As shown in Table 1, the change of coefficients can be very noticeable but the 
change in STD is below 10% of the precision in all fifteen examples given in 
rows. 
 
 
Table 2. Numerical simulation with negative k: pair correlations, OLS regressions, k-
terms, modified regressions, and residual STD change. 
 

Pair  
correlations   OLS  

regression   Terms of 
change   Modified  

regression   STD 
change 

ry1 ry2 r12  b1 b2 R2  k1<0 k2<0  1b   2b  2R    d 
                                -0.50 -0.25 0.628  -0.566 0.106 0.257  -0.1 -2.0  0.057 -0.212 0.016  0.151 

-0.50 -0.25 0.628  -0.566 0.106 0.257  -0.1 -2.0  0.028 -0.212 0.039  0.137 

-0.50 -0.25 0.628  -0.566 0.106 0.257  -0.1 -1.0  0.028 -0.106 0.016  0.150 

-0.50 -0.25 0.796  -0.821 0.403 0.310  -0.1 -1.0  0.082 -0.403 0.003  0.202 

-0.50 -0.25 0.796  -0.821 0.403 0.310  -0.1 -1.0  0.041 -0.403 0.023  0.190 

-0.50 -0.25 0.796  -0.821 0.403 0.310  -0.1 -0.5  0.041 -0.202 0.031  0.185 

-0.25 -0.10 0.603  -0.298 0.080 0.067  -0.1 -2.0  0.015 -0.160 0.002  0.034 

-0.25 -0.10 0.603  -0.298 0.080 0.067  -0.1 -1.0  0.015 -0.080 0.003  0.033 

-0.25 -0.10 0.796  -0.465 0.270 0.089  -0.1 -0.5  0.023 -0.135 0.002  0.047 

0.50 0.75 0.719  -0.081 0.808 0.566  -5.0 -0.1  0.404 -0.040 0.202  0.356 

0.50 0.75 0.719  -0.081 0.808 0.566  -2.0 -0.1  0.161 -0.081 0.026  0.497 

0.50 0.75 0.719  -0.081 0.808 0.566  -2.0 -0.1  0.161 -0.040 0.082  0.453 

0.50 0.75 0.833  -0.409 1.091 0.614  -2.0 -0.1  0.817 -0.055 0.139  0.493 

0.50 0.75 0.833  -0.409 1.091 0.614  -1.0 -0.1  0.409 -0.109 0.140  0.491 

0.50 0.75 0.833  -0.409 1.091 0.614  -1.0 -0.1  0.409 -0.055 0.194  0.444 
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Table 2 is organized as Table 1 but it contains both the k-terms of negative 
sign, k1 < 0 and k2 < 0, so the direction of y‘s connections with the predictors is 
flipped. Table 2 shows that although the direction of the model coefficients can be 
changed, the quality of such models is not high, and the precision of STD change 
could be low too. As can be expected, a model could receive the opposite signs of 
the coefficients and keep about the same quality of fit mostly in the cases of weak 
statistical relationships similar to those considered in (Langford et al., 2001). 

As it was discussed in the introduction, because of the effects of 
multicollinearity the coefficients of regression can be found in a wide range of the 
values of both signs. It can be shown in a simple example of the model with two 
predictors where the beta-coefficients of regression are defined as follows: 
 

 1 2 12 2 1 12
1 22 2

12 12

,
1 1

y y y yr r r r r r
b b

r r
− −

= =
− −

  (25) 

 
Suppose all correlations are positive, and x1 is strongly correlated with x2, so r12 is 
close to 1. Then the numerators in the coefficients (25) become close to 1 2y yr r−  
and 1 2y yr r− , respectively, so of opposite signs. At the same time the denominator 

2
121 r−  is close to zero, so b1 and b2 become big by the absolute value and of 

opposite signs. It is effect of inflation under multicollinearity, and changing 
directions of the connection from positive pairwise to opposite by sign in multiple 
regression. Using various methods of regularization, mentioned in the 
introduction, meaningful regression coefficients can be obtained. And the EW 
relative change of the residual standard deviations can be used for comparison of 
the several competing regression models and checking how far are the residual 
errors from their OLS minimum value. 

Consider a numerical example where several regressions were tried by the 
data on various cars’ characteristics given in (Chambers and Hastie, 1992; and 
also available in S-PLUS'2000, 1999, as “car.all” data). The data describes 
dimensions and mechanical specifications supplied by the manufacturers and 
measured by Consumer Reports. The variables are: y – Price of a car, US$K; x1 – 
Weight, pounds; x2 – Length overall, inches; x3 – Wheel base length, inches; x4 – 
Width, inches; x5 – Front Leg Room maximum, inches; x6 – Front Shoulder room, 
inches; x7 – Turning circle radius, feet; x8 – Displacement of the engine, cubic 
inches; x9 – HP, the net horsepower; x10 – Tank fuel refill capacity, gallons. The 
cars’ price is estimated in the regression model by the dimensions and 
specifications variables. 



HOW GOOD IS BEST? – ANALYSIS OF RESIDUAL ERRORS 

252 

Table 3. Cars example: correlations and several regressions. 
 
Name variable ryx OLS SV Grad RR RE2 RE3 Exp Multin 

Weight x1 0.653 0.278 0.129 0.101 0.053 0.105 0.116 0.088 0.000 

Length x2 0.533 0.225 0.072 0.083 0.039 0.056 0.062 0.066 0.099 

Wheel 
.base x3 0.496 -0.085 0.043 0.077 0.032 0.034 0.038 0.000 0.000 

Width x4 0.478 -0.144 0.047 0.074 0.029 0.024 0.026 0.000 0.000 

Frt.Leg 
.Room x5 0.567 0.245 0.140 0.088 0.063 0.129 0.143 0.258 0.248 

Frt.Shld x6 0.371 -0.060 0.012 0.057 0.017 0.006 0.007 0.000 0.000 

Turning x7 0.378 -0.199 0.022 0.059 0.017 0.003 0.003 0.000 0.000 

Disp. x8 0.642 0.101 0.110 0.100 0.053 0.097 0.107 0.000 0.000 

HP x9 0.783 0.409 0.191 0.121 0.082 0.293 0.323 0.512 0.528 

Tank x10 0.657 0.160 0.114 0.102 0.056 0.116 0.128 0.085 0.125 

 

R2  0.722 0.596 0.503 0.409 0.637 0.645 0.695 0.694 

  d     0.205 0.337 0.458 0.143 0.130 0.047 0.049 

 
 

Table 3 in the first and second numerical columns presents the pair 
correlations ryx of y with x, and the OLS beta-coefficients (1). All correlations are 
positive, but four of the ten variables have negative coefficients in the multiple 
OLS regression, although it has a good coefficient of multiple determination 

2 0.722R = . The next seven columns in Table 3 present several modified 
solutions referred to in the introduction: SV – Shapley value model, Grad – the 
model constructed by the data gradients; RR – the regular ridge regression, RE2 
and RE3 – two kinds of the ridge enhanced models, Exp and Multin – the model 
with exponential and multinomial-logit parameterization of the coefficients of 
multiple linear regression. Below each model, its coefficient of multiple 
determination is shown, together with the EW relative change characteristic of the 
residual standard deviation d.  

All the modified models have non-negative coefficients of regression, and 
their coefficients R2 are slightly less than the maximum R2 of OLS. But the more 
sensitive characteristic of d indicates rather clearly that RR and Grad models are 
fair, the SV and both RE models are good, and the Exp and Mult models give the 
best variants with less than 5% of the difference in standard deviations. As had 
been shown with more detail in (Lipovetsky, 2009, 2010a,b), the enhanced and 
adjusted ridge models systematically outperform regular ridge regression, and 
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special parameterization techniques produce nonnegative coefficients with a clear, 
sparse structure in the two last approaches. As an additional useful feature of the 
Mult model, the total of the beta-coefficients equals exactly one, so the 
coefficients equivalent to the shares of the predictors’ impact on the dependent 
variable. However, if it is desirable to keep and compare all the variables in the 
model then the SV and ridge regressions should be used, and the Grad model is 
preferable for an express analysis when no special software is available. 

Summary 

A modified least squares regression can have better interpretable coefficients and 
practically the same quality of fit, which can be estimated by the characteristic of 
the relative change in the residual standard deviation. This paper develops the 
Ehrenberg-Weisberg estimation of the characteristic of relative change in the 
residual standard deviation for pair regression to the general case of multiple 
regression. It shows that the coefficients of ordinary least-squares can be changed 
over a wide range of values, including the opposite sign, and the quality of fit can 
still be at an acceptable level. This estimation is applied for a comparison of 
several regressions with the ordinary least squares model, to identify the modified 
regressions with interpretable coefficients and good quality of fit. The obtained 
results help provide a better understanding of the properties of multiple regression, 
and are useful for theoretical consideration and practical applications of 
regression modeling and analysis. 
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In Bayesian inference, some researchers have examined the difference of binominal 
proportions using ( )1 2 0 1 2P | ,X Xθ π π= > −∆ , where iX  denote binomial random 

variable with parameter iπ . An approximate method and the MCMC method are 
compared with an exact method for θ , and results of actual clinical trials using θ  are 
presented. 
 
Keywords: Binominal proportions; Bayesian inference; MCMC method; 
hypergeometric series. 
 

Introduction 

Statistical inference concerning the difference between two independent 
binominal proportions is often discussed from the frequency rather than the 
Bayesian viewpoint. Some researchers have examined significant differences in 
binominal proportions using the index, ( )1 2 0 1 2P | ,X Xθ π π= > −∆ , which 
indicates the difference in the posterior density for two independent binomial 
proportions that are assumed to be random variables. 

Originally, this index can be shown in the framework of frequency theory to 
be, 1 2P( )Y Y> , where 1Y  and 2Y  are random variables. The inference for 

1 2P( )Y Y>  can be observed in various fields. In engineering, it is used in the 
`stress strength model' to evaluate the reliability of an industrial component (see 
for instance Kotz, et al. (2003)). In clinical research, it is used as an index for the 
comparison of two groups given different treatments. In addition, this probability 
corresponds to the area under the receiver operating characteristic (ROC) curve. 

mailto:yk_sep10@yahoo.co.jp
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In medicine, it is used as an index for evaluating the validity of a diagnostic 
method. Indeed, innumerable studies have been conducted for 1 2P( )Y Y>  in the 
framework of frequency theory (See for instance Sen (1960, 1967)). As for 
research papers on this index, Shirahata (1993), Zhou (2008) and Kawasaki and 
Miyaoka (2010) have published actively in recent years. 

Conversely, there have been a number of studies to apply a construction of 
1 2P( )Y Y>  to the Bayesian framework. Basu (1996) concisely showed the use of 

the Bayesian approach with respect to hypothesis testing. Berry (1995) using 
superior binomial proportions, presented a detailed comparison between two 
binomial proportions assumed to be random variables and presented some 
interesting examples. Zaslavsky (2009, 2010) applied θ  to a one-side hypothesis 
based on a one-sample situation. Kawasaki and Miyaoka (2012) showed an exact 
expression for θ , and applied θ  to a one-side hypothesis based on a two-sample 
situation. 

There are some pending issues with the above-mentioned method. An 
approximate method and exact method of θ  were adopted only while using a 
conjugate prior. The drawback of the approximate method is that it occasionally 
leads to a rough result in a small sample. The drawback of the exact method is 
that it is slightly complicated. In addition, the exact method requires extensive 
computing time with a large sample size. Hence, a Markov Chain Monte Carlo 
(MCMC) method is proposed for θ  as a solution to these problems. 

Methodology 

Let 1X  and 2X  denote binomial random variables for 1n  and 2n  trials with 
parameters 1π  and 2π , respectively. The conjugate prior density for iπ  is a beta 
distribution with parameters iα  and iβ , where 0iα > , 0iβ > , and 1,2i = . The 
proposed posterior density for iπ  is 

 

 ( ) ( ) ( ) 111| 1 †,
B ,

ii
ba

i i i i i
i i

g X
a b

π π π −−= −   (1) 

 
where i i ia xα= + , i i i ib n x β= − + , and ( )B ,a b  is the proposed beta function. Let 

,†i postπ  denote the binomial proportion following the posterior density. 
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Approximate method for θ  

θ  can be calculated via an approximation using the standard normal table. 
Assume that ia  and ib  of the posterior density are large. It is necessary to 
determine a Z-test statistic. The expected difference in the posterior density and 
the variance in this difference can be expressed as: 
 
 ( )1, 2, 1, 2,E †,post post post postπ π µ µ− = −   (2) 

 ( ) ( ) ( )1, 1, 2, 2,
1, 2,

1 1 2 2

1 1
V †,

1 1
post post post post

post post a b a b
µ µ µ µ

π π
− −

− = +
+ + + +

  (3) 

 
where ( ), /i post i i ia a bµ = +  denotes the posterior mean of iπ . The gZ -test statistic, 
 

 
( ) ( )

( )
1, 2, 1, 2,

1, 2,

E
†,

V

post post post post
g

post post

Z
π π π π

π π

− − −
=

−
  (4) 

 
is approximately distributed as the standard normal distribution. Therefore, the 
approximate probability of θ  is given by 
 

 

( )

( )
( ) ( )

1 2 1 2

1, 2,

1, 1, 2, 2,

1 1 2 2

P | ,

1
1 1

1 1

post post

post post post post

X X

a b a b

θ π π

µ µ
Φ

µ µ µ µ

= >

 
 

− − 
≈ −  

− − 
+ + + + + 

  (5) 

 
where ( )Φ ⋅  is the cumulative distribution function (CDF) of the standard normal 
distribution. Thus, the approximate probability can easily be calculated. 

Exact method for θ  

Kawasaki and Miyaoka (2012) derived the exact expression for θ  using the 
posterior density. The exact expression for θ  is 
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( )

( )
( ) ( ) ( )

1 2 1 2

1 2 1
3 2 2 2 1 2 2 1 2 1

2 1 1 2 2

P | ,

B ,
† F ,1 , ;1 ,† ;1 ,

B , B ,

X X

a a b
a b a a a a a b

a a b a b

θ π π= >

+
= − + + + +

  (6) 

 
where 
 

 ( ) ( ) ( ) ( )
( ) ( )

1 2 3
3 2 1 2 3 1 2 1 2 3 1 2

0 1 2

1† F , , ; , ;1 ,††
!

t t t

t t t

k k k
k k k l l k k k l l

l l t

∞

=

= + + < +∑   (7) 

 
is the hypergeometric series, and ( )t

k  is the Pochhammer symbol. 

MCMC method for θ  

A computational procedure for θ  using the MCMC method is now 
introduced. The MCMC method is a means of sampling from a posterior density. 
A random-walk Metropolis-Hasting algorithm was used as the MCMC Method. 
Given that the samples come from two independent populations, the posterior 
joint distribution of 1π  and 2π  is a product of its marginal distributions. For this 
reason, one can obtain samples from the posterior distribution of 1 2π π−  by 
simulating k  values from the posterior distribution of 1π  and 2π  using MCMC 
procedure of SAS, e.g., 1 2

1, 1, 1,, , , k
post post postπ π π  and 1 2

2, 2, 2,, , , †k
post post postπ π π , 

respectively. Then, by computing 
1 1 2 2
1, 2, 1, 2, 1, 2,,† †, , †k k

post post post post post postπ π π π π π− − − , the simulated values from the 
posterior distribution of 1, 2,post postπ π−  are obtained. The posterior samples 
obtained by the MCMC method after the burn-in period are 1 2, , , kδ δ δ . Let 

1 2, , , k∆ ∆ ∆  be independent identically distributed random variables with 
distribution function F. The posterior samples is the observed value of 

1 2, , , k∆ ∆ ∆ . Note the fact that 1, 2,P( )post postθ π π= >  equals 

1, 2,P( 0)post postθ π π= − > . Thus, θ  can be expressed as, 
 

 
( )
( ) ( )

1 2 1 2

1 2 1 2

P | ,

P 0 , 1 0ˆ| Fk

X X

X X

θ π π

π π

= >

= − > ≈ −
  (8) 
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where 
 

 ( ) ( )k i
1

1F s I sˆ
k

ik
∆

=

= ≤∑   (9) 

 
and 
 
 ( )I s

1† †
0† †

i
i

i

if s
if s

∆ ≤ =  ∆ ≤
 ∆ >

  (10) 

 
is the empirical distribution function. 

Results 

Comparison of three methods 
Now the probabilities of the three methods for θ  are compared. The difference 
between the sample proportions (horizontal axis) were plotted against the 
difference between the probabilities of the MCMC and exact methods (vertical 
axis), as shown in Figures 1, 3, and 5. Similarly, the difference between the 
sample proportions (horizontal axis) were plotted against the difference between 
the probabilities of the approximate and exact methods (vertical axis), as shown in 
Figures 2, 4, and 6. In Figures 1, and 2 consider small sample sizes, i.e., 

1 2n n 5= = , 10, 15, and 20. Conversely, in Figures 3 and 4 consider large sample 
sizes, i.e., 1 2n n= =  60, 70, 80, and 90. Figures 5 and 6 consider groups of 
different sample sizes, that is, 1n 15= , 2n 5= ; 1n 15= , 2n 10= ; 1n 15= , 

2n 20= ; and 1n 15= , 2n 20= . The following were confirmed from the results. 
First, the relationship between the difference in the probabilities and the 

difference in the sample proportions is described. In Figure 1(d) and Figure 3(d), 
the probability of the MCMC method is more or less equal to that of the exact 
method when the difference between the sample proportions is 0.8. On the other 
hand, the difference between the probabilities of the MCMC and exact methods is 
around 0.01 when the difference between the sample proportions is 0.05. Overall, 
when the difference between the sample proportions is large, the probabilities of 
the MCMC and exact methods are roughly equal. In contrast, when the difference 
between the sample proportions is small, the probability of the MCMC method is 
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different from that of the exact method. This general pattern is similar for the 
difference in the probabilities of the approximation and exact methods. 

Next, the relationship between the sample size and the difference in the 
probabilities is described. In Figure 2(a), the difference between the probabilities 
of the approximate and exact methods is around 0.013 when the difference 
between the sample proportions is 0.2. For a slightly larger sample size (Figure 
2(d)), the difference between the probabilities of the approximate and exact 
methods is around 0.006 for the same difference between the sample proportions. 
In addition, there is virtually no difference between the probabilities of the 
approximate and exact methods when the sample size is further increased, as 
shown in Figure 4(d). Thus, the sample size influences the accuracy of the 
probability of the approximate method. It also shows the difference in the 
probabilities of the MCMC and exact methods. In Figure 1(a), the difference 
between the probabilities of the MCMC and exact methods is around 0.006 when 
the difference between the sample proportions is 0.2. For a slightly larger sample 
size (Figure 2(d)), the difference between the probabilities of the MCMC and 
exact methods is around 0.005 for the same difference between the sample 
proportions. Thus, the accuracy of the probability of the MCMC method always 
remains high even when the sample sizes are small. 

Finally, the difference between the probabilities when groups of different 
sample sizes are considered is investigated. In Figure 2(d), the difference between 
the probabilities of the approximate and exact methods is around 0.006 when the 
difference between the sample proportions is 0.2. On the other hand, in Figure 
6(d), the difference between the probabilities of the approximate and exact 
methods is around 0.012 for the same difference between the sample proportions. 
In both the cases, the total sample size ( 1 2n n+ ) is the same. However, the 
difference between the probabilities of the approximate and exact methods is 
slightly greater in the case of groups with different sample sizes. It is also shown 
the case of the MCMC method. In Figure 1(d), the difference between the 
probabilities of the MCMC and exact methods is around 0.005 when the 
difference between the sample proportions is 0.2. On the other hand, in Figure 
5(d), the difference between the probability of the MCMC and exact methods is 
around 0.005 for the same difference between the sample proportions. Therefore, 
the difference between the probabilities of the MCMC and exact methods is the 
same regardless of whether the sample sizes are equal or different. 
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Figure 1: Comparison of the Exact and MCMC Method when sample sizes are small. 
(vertical axis：Differences of θ in Exact and MCMC method. Prior distribution is Beta(1,1). 
horizontal axis : Differences of two sample proportions. 
 
 

 
 
Figure 2: Comparison of the Exact and Approximate method when sample sizes are 
small. (vertical axis：Differences of θ in Exact and Approximation method. horizontal 
axis : Differences of two sample proportions. 
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Figure 3: Comparison of the Exact and MCMC Method when sample sizes are large. 
(vertical axis：Differences of θ in Exact and MCMC method. Prior distribution is Beta(1,1). 
horizontal axis : Differences of two sample proportions. 
 
 

 
 
Figure 4: Comparison of the Exact and Approximate method when sample sizes are 
large. (vertical axis：Differences of θ in Exact and Approximation method. horizontal 
axis : Differences of two sample proportions. 
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Figure 5: Comparison of the Exact and MCMC Method when sample sizes are 
unbalanced. (vertical axis：Differences of θ in Exact and MCMC method. Prior 
distribution is Beta(1,1). horizontal axis : Differences of two sample proportions. 
 
 

 
 
Figure 6: Comparison of the Exact and Approximate method when sample sizes are 
unbalanced. (vertical axis：Differences of θ in Exact and Approximation method. 
horizontal axis : Differences of two sample proportions. 
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Example 

Next the utility of θ  is illustrated by applying it to the results of clinical trials. A 
non-informative prior was assumed. Table 1 lists the results of a double-blind, 
randomized, 41-center study that compares the efficacy of TJN-318 cream with 
that of Bifonazole (BFZ) cream in the treatment of patients suffering from 
cutaneous mycosis (TJN-318 Solution Study Group (1992)). The main purpose of 
this clinical trial was to show that TJN-318 cream is more effective than BFZ 
cream in the treatment of cutaneous mycosis. The primary end point of this 
clinical trial is a binary variable. In other words, the patient either recovers or 
does not recover. In short, the alternative hypothesis is 1 2π π> . In general, the 
frequentist approach can be adopted to verify the purpose of the clinical trial via 
the calculation of a p-value. The p-value was calculated using the Z-test statistic 
for the purpose of reference, 
 

 

( )

1 2

1 2

ˆ ˆ

ˆ 1 11 ˆ

Z

n n

π π

π π

−
=

 
− + 

 

  (11) 

 
where /ˆi i ix nπ =  and ( ) ( )1 2 1 2/ˆ x x n nπ = + + . The values of θ  are listed in the 
rightmost column of Table 1. Consequently, a non-informative prior was adopted, 
that is, 1i iα β= =  and 1,†2i = . Clearly, θ  increases when the p-value is low, 
and 1θ ≈  when the null hypothesis is rejected. Moreover, 1 †θ ≈ − p-value. 

Next, the results of a double-blind, randomized, phase-3 clinical trial that 
compares the efficacies of follitropin alpha (hereafter, the study drug) and human 
menopausal gonadotropin (hereafter, the control drug) in the treatment of patients 
suffering from no-ovulation-cycle syndrome (from the assessment report of 
PMDA (2009)) was employed. Table 2 lists the resulting ovulation rate, that is, 
the primary end point. The Z-test affords a p-value of 0.764, which suggests no 
significant differences. Using the non-informative prior, the approximate 
probability of θ  is obtained as 0.238, whereas the exact probability and the 
MCMC probability is obtained as 0.237. 
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Table 1: The result of primary end point in clinical trial for TJN-318 cream vs Bifonazole 
cream. 
 
    Outcome   θ   

Disease Name Drug Name Cure Non-Cure p-value Approximate Exact MCMC 

Tinea Pedis 
TJN-318  110 27 0.264 0.734 0.735 0.735 

BFZ 96 31     

Tine Corporis 
TJN-318  70 13 0.417 0.581 0.582 0.581 

BFZ 69 14     

Candidal Intertigo 
TJN-318  39 4 0.472 0.531 0.530 0.531 

BFZ 37 4     

Candidal Interdigital 
TJN-318  25 2 0.021 0.978 0.977 0.977 

BFZ 23 9     

Ptyriasis Versicolor 
TJN-318  59 2 0.236 0.749 0.756 0.757 

BFZ 46 3     
 
 
Table 2: The result of primary end point in clinical trial for follitropin alpha vs human 
menopausal gonadotropin. 
 
  Outcome    θ  

Drug Name Cure Non-cure Total Ovulation Ratio p-value Approximate Exact MCMC 

Study 102 27 129 79.1% 0.764 0.238 0.237 0.237 

Control 109 23 132 82.6%     
 

Conclusion 

Three methods for the index 1 2 1 2P( | ,† )X Xθ π π= >  were presented to determine 
the probability that the binomial proportion for a study drug is superior to that for 
a control drug. In particular, a new procedure was described based on the MCMC 
method. The probabilities of these three methods were compared to test the 
relative effectiveness of each. 

The expression for the exact method was presented, which includes a 
hypergeometric series. It is speculated that this series causes the decrease in 
calculation efficiency when the sample size is very large. In addition, 
hypergeometric series are not built into SAS, which is a statistical software 
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program frequently used in pharmaceutical development. Therefore, if SAS is 
used, a calculation program for hypergeometric series must be developed. 

It is easy to calculate the probability for using the approximation method. 
This is an advantage when the approximate probability is used. Conversely, when 
the difference in the sample proportions is small and the sample sizes are 
unbalanced, the accuracy the approximation method is poor. That is, the accuracy 
of the probability of the approximation method depends on the sample size.  

This study showed that the accuracy of the MCMC method was greater than 
that of the approximation method. Moreover, the probability of the MCMC 
method can be easily calculated using SAS. In addition, it is possible to use the 
non-conjugate prior for the prior distribution in the MCMC method. The authors 
consider this as one of the advantages of the MCMC method 
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Mixtures models have received sizeable attention from analysts in the recent years. Some 
work on Bayesian estimation of the parameters of mixture models have appeared. 
However, the were restricted to the Bayes point estimation The methodology for the 
Bayesian interval estimation of the parameters for said models is still to be explored. This 
paper proposes the posterior interval estimation (along with point estimation) for the 
parameters of a two-component mixture of the Gompertz distribution. The posterior 
predictive intervals are also derived and evaluated. Different informative and non-
informative priors are assumed under a couple of loss functions for the posterior analysis. 
A simulation study was carried out in order to make comparisons among different point 
and interval estimators. The applicability of the results is illustrated via a real life 
example. 
 
Keywords: Bayes estimators, loss functions, posterior distributions, censoring, 
mixture densities 
 

Introduction 

The Gompertz distribution is used to model survival times, human mortality and 
actuarial tables. It has many real life applications, especially in medical and 
actuarial studies. The Gompertz distribution is also used as a survival model in 
reliability. It has an increasing hazard rate for the life of the systems. Due to its 
complicated form it has not received enough attention in past.  However, recently, 
this distribution has received considerable attention from demographers and 
actuaries. Pollard and Valkovics (1992) were the first to deal with the Gompertz 
distribution thoroughly. However, their results are true only in cases where the 
initial level of mortality is very close to zero. Willemse and Koppelaar (2000) 

mailto:navidferoz@hotmail.com
mailto:aslamsdqu@yahoo.com
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reformulated the Gompertz force of mortality and derived relationships for this 
new formulation. Jaheen (2003) applied the Bayesian approach on record values 
from the Gompertz distribution. The simulation study was used for illustration of 
the results. Wu et al. (2003) derived the point and interval estimators for 
parameters of the Gompertz distribution under progressive type II censored 
samples. Wu et al. (2004) used the least square method to estimate the parameters 
of the Gompertz distribution. Wu et al. (2006) obtained the maximum likelihood 
estimators and the estimated expected test time for the two-parameter Gompertz 
distribution under progressive censoring with binomial removals. Khedhair and 
Gohary (2008) proposed the bivariate Gompertz distribution and completed the 
analysis for the mixture of components of proposed distribution. Saracoglu et al. 
(2009) compared the maximum likelihood, uniformly minimum variance 
unbiased, and Bayes estimators for the parameter of the Gompertz distribution. 
The numerical example was used for illustration. Ismail (2010) considered the 
Gompertz distribution as a lifetime model for applying the Bayesian approach to 
the estimation problem in the case of step stress partially accelerated life tests 
with two stress levels and type-I censoring. Ismail (2011) discussed the point and 
interval estimations of a two-parameter Gompertz distribution under partially 
accelerated life tests with Type-II censoring. Kiani et al. (2012) studied the 
performance of the Gompertz model with time-dependent covariate in the 
presence of right censored data. Moreover, the performance of the model was 
compared at different censoring proportions (CP) and sample sizes.  

The mixture models have received great interest from analysts in recent era. 
These models include finite and infinite numbers of components that can analyze 
different datasets. A finite mixture of probability distribution is suitable to study a 
population categorized in number of subpopulations. A population of lifetimes of 
certain electrical elements can be classified into a number of subpopulations 
based on causes of failures. The analysis of mixture models under Bayesian 
framework has developed a significant interest among statisticians. Authors 
dealing with the Bayesian analysis of mixture models include: Saleem and Aslam 
(2008), Saleem et al. (2010), Majeed and Aslam (2012) and Kazmi et al. (2012). 
These contributions are concerned with Bayes point estimation of the parameters.  
The interval estimation of the parameters of the mixture models under a Bayesian 
framework has not yet been discussed by any author. We considered point and 
interval estimation of the parameters for a two-component mixture of the 
Gompertz distribution. The population of certain items is assumed to be 
partitioned into two subpopulations. The randomly selected observations from 
said population are considered to be a part of one of the above mentioned 
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subpopulations. These subpopulations are assumed to follow the Gompertz 
distribution. Therefore, the two components mixture of the Gompertz distribution 
has been proposed to model this population. The observations have been assumed 
to be right censored. The inverse transformation technique of simulation under a 
probabilistic mixing has been used to generate data and to evaluate the 
performance of different estimators. 

The Population and the Model 

A density function for the mixture of two component densities with mixing 
weights (p,q) is 
 
 ( ) ( ) ( )1 2 ,0 1f x pf x qf x p= + < <   (1) 
 
The following Gompertz distribution is considered for both mixture densities: 
 

 ( ) ( )1
; , 0, 0

xi
i ix e

i i i i if x e xα
α α α

− −
= > >   (2) 

 
with the cumulative distribution function as 
 

 ( ) ( )1
; 1

xi
i e

i iF x e α
α

− −
= −   (3) 

 
The cumulative distribution function for the mixture model is 
 
 ( ) ( ) ( )1 2F x pF x qF x= +   (4) 
 

Suppose n items are put on a life testing experiment and w units failed until 
time T, while n – w units are still working. Now based on causes of failure, the 
failed items are assumed to come either from subpopulation 1 or from 
subpopulation 2. Therefore it can be observed that w1 and w2 failed items come 
from the first and second subpopulation respectively, where w = w1 + w2. The 
remaining n – w items are assumed to be censored observations. The likelihood 
function for above type I censored data can be obtained as 
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After simplifications the likelihood function becomes 
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where 
 

 ( ) ( ) ( )( )
1

1
1

1
1 1j
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=

= − + − − −∑   

 
and 
 

 ( ) ( ) ( )
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1 1j
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x t
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x e k eξ
=
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The Posterior Distributions under Different Priors 
The main difference between the Bayesian and classical inference is the use of 
prior information under the Bayesian framework. However, in cases where the 
sufficient prior information regarding the parameter is not available, the use of 
non-informative priors becomes mandatory. An important non-informative prior, 
proposed by Laplace (1812), is a uniform prior. It has been applied to many 
problems, and often the results are entirely satisfactory. Here, this prior has been 
used for the posterior estimation. 

Let ( )1 1Uniform  0, ,α α∈ ∀ ∈ ∞ ( )2 2Uniform  0, ,α α∈ ∀ ∈ ∞ and 

( )0,1p U∼ . Assuming independence, these priors result into a joint prior that is 
proportional to a constant. That joint prior has been used to derive the joint 
posterior distribution of 1 2,  and .pα α  The marginal distribution for each 
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parameter can be obtained by integrating the joint posterior distribution with 
respect to nuisance parameters. The joint posterior distribution is 
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where 1 2 1k n k wψ = − − +  , 2 2 1k w kψ = + +  and ( )1 2,k kB ψ ψ  is standard beta 
function. 

Another non-informative prior has been suggested by Jeffreys (1961), and is 
frequently used in situations where one does not have much information about the 
parameters. This prior is defined as 
 

 ( ) ( ){ }
1
2p Iα α∝   

 
where ( )i i if x α  have been defined in (2) and ( )0,1p U∼ . Assuming 

independence, the joint prior is obtained as 
 

 ( )1 2 1 2
1 2

1, , , , 0h p a aα α
α α

∝ >   (8) 

 
The joint posterior distribution using the above prior is 
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The utilization of informative prior is of much importance under Bayesian 

inference. The results under informative priors are often better than non-
informative priors. The gamma, chi square and exponential priors have been 
assumed for the posterior analysis in the current study. The combined priors have 
been obtained by assuming the independence. 

Let ( )1 1 1: Gamma ,α σ τ  , ( )2 2 2 Gamma ,α σ τ  and ( ) Uniform 0,1p  . 
Under the assumption of independence, the joint prior becomes 
 
 ( ) ( )1 1 2 21 21 1

1 2 1 2 1 2, , , , 0h p e a aα τ α τσ σα α α α − +− −∝ >   (10) 
 
The posterior distribution under the assumption of above prior is 
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Again, suppose ( )1 1 Chi Squareα ν , ( )2 2 Chi Squareα ν  and

( ) Uniform 0,1p  . Assuming independence, the joint prior becomes 
 

 ( )
( )1 21 21 1

2 2 2
1 2 1 2 1 2, , , , 0h p e a a

α αν ν

α α α α
+

− − −
∝ >  (12) 

 
The posterior distribution under the assumption of the prior given in (12) is 
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Further, consider ( )1 1 Exponentialα ϕ , ( )2 2 Exponentialα ϕ  and

( ) Uniform 0,1p  . Under the assumption of independence, the joint prior 
becomes 
 
 ( ) ( )1 1 2 2

1 2 1 2, , , , 0h p e a aα ϕ α ϕα α − +∝ >   (14) 
 
The posterior distribution under the assumption of above prior is 
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Bayes Estimators and Posterior Risks 
The Bayes estimators and associated posterior risks have been derived under the 
squared error loss function (SELF) and precautionary loss function (PLF). The 
respective expressions have been presented in the following. 

Bayes estimator and posterior risk for α1, α2 and p under uniform prior using 
SELF are: 
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where, ( ).

PLF
B E  and ( ){ }.

PLF
B Eρ are the Bayes estimator and the posterior risk 

under PLF. The Bayes estimates and corresponding risks under other priors can 
be derived in the similar manner. 

Credible intervals 

The credible interval is defined as: Let ( )xg α  be the posterior distribution then 

a ( )100 1 %k−  credible interval in any set C is such that ( ) ( )x 1gP C kα = − . 

According to Eberly and Casella (2003) the credible interval can also be defined 

as: ( )
0 2

x
L kg dα α =∫ , ( )x

2U

kg dα α
∞

=∫  where L and U are the lower and upper 

limits of the credible interval respectively and k is level of significance. 
 



FEROZE & ASLAM 

277 

The ( )100 1 %k− credible intervals for α1, α2 and p under uniform prior can 
be obtained by solving the following two equations. 
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where h, i, j = 0.1, ( ),x yΓ  is incomplete gamma function, ( ), ,B x y z  is 
incomplete beta function and ( ),L U  define the limits of the credible intervals. 
Now, the credible interval for α1, α2 and p can be derived by putting 

0, 1, 0,h i j= = =  0, 0, 1,h i j= = =  and 1, 0, 0h i j= = = , respectively, in the 
above equations. It should be noted that ( ) ( ),0x xΓ = Γ  and ( ) ( )1, , ,B y z B y z= . 
It can be observed that the explicit solution of the limits for the credible intervals 
cannot be obtained. The numerical methods have been used to find the 
approximate solution of the limits. 

Posterior Predictive Distributions and Intervals 
The posterior predictive distribution is used to make predictions of future 
observations, based on the inferences drawn from the data at hand. Posterior 
predictive distribution can be simply obtained by the product of the posterior 
distribution and (conditional) independence (given the parameters) of the new 
observation from the current sample. It can be defined as 
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where y = xn+1 is the future observation given the sample information x = x1, x2, ..., 
xn, from the model (7). The posterior predictive distribution using (7) and (16) can 
be obtained as 
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The posterior predictive interval can be obtained by solving the following two 
equations 
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The simplification of the above equations leads to the following equations 
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As the limits of the posterior predictive interval cannot be derived explicitly, the 
numerical solutions of the limits have been obtained by iterative methods. 
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Prior Elicitation 

The elicitation is a technique to formulate an expert’s knowledge or belief about a 
certain quantity into a joint probability distribution. In the case of Bayesian 
analysis, it can be considered as a method to specify the values of hyper-
parameters in a prior distribution for one or more parameters of the sampling 
distribution.  

Much of the literature on elicitation has been concerned with formulating a 
probability distribution for unsure quantities when there is no data with which to 
supplement the knowledge expressed in that distribution. This process facilitates 
decision-making, where uncertainty about certain phenomena needs to be 
described in terms of a probability distribution in order to derive the posterior 
distributions. 

To achieve accurate elicitation is a difficult task, even if we are interested in 
elicitation of a single event. In such a situation, a single probability is needed, but 
the expert may not be familiar with the concept of probabilities. Even when the 
expert is familiar with the concept of probabilities, it is by no means 
straightforward to evaluate a probability value for an event exactly. In such cases, 
elicitation encourages the expert and the facilitator to consider the meaning of the 
parameters being elicited. This has two helpful consequences. First, it brings the 
analysis closer to the application by demanding attention to what is being 
modeled, and what is reasonable to believe about it. Second, it helps to make the 
posterior distributions, once calculated, into meaningful quantities. Many methods 
of elicitation have been discussed in the literature; among those, the method 
suggested by Aslam (2003) has been used to elicit the prior distribution in the 
recent study. This method requires the derivation of prior predictive distribution 
for elicitation. The prior predictive distribution can be defined as 
 

 ( ) ( )
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1 2 1 2 1 2
0 0 0

( , , ) , ,g y h p f y p dpd dα α α α α α
∞ ∞
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where 1 2( , , )h pα α and ( )1 2, ,f y pα α are prior distribution and mixture Gompertz 

model respectively. 
According to (18), the prior predictive distribution under gamma prior is 
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In order to elicit the four hyper-parameters, the following four integrals have been 
considered. The expert’s probabilities have been assumed to be 0.15 for each 
integral: 
 

, ,  and . 
 
A program has been developed in SAS package using the “PROC SYSLIN” 
command to solve the above integrals simultaneously. The set of hyper-
parameters with minimum values has been chosen to be the elicited values of the 
hyper-parameters. These elicited values of the hyper-parameters have been found 
to be ( ) ( )1 1 2 2, , , 0.000233,0.190642,0.000101,0.189112σ τ σ τ =  . The prior 
predictive distribution under chi square prior, given in (12), has been derived as 
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Using the similar program mentioned above, the elicited values of the hyper-
parameters are ( ) ( )1 2, 1.226759,1.064564v v = . 

The prior predictive distribution under chi square prior, given in (14), has 
been presented as 
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The elicited values of the hyper-parameters in the above prior predictive 
distribution are ( ) ( )1 2, 0.232768,0.322483ϕ ϕ = . 
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Results and Discussion 

A simulation study has been conducted to assess and compare the performance of 
Bayes estimators and to analyze the impact of sample size, mixing weight and 
magnitude of parametric values on the Bayes estimators. Samples of sizes n = 50, 
100, 200, 300, 400 and 500 have been generated by inverse transformation 
method from a two components mixture of the Gompertz distribution. The 
parametric values used are: ( ) ( ) ( ){ }1 2, 4,6 , 8,12α α ∈  and ( )0.45,0.60p∈ . 

Probabilistic mixing has been used to generate the mixture data. For each 
observation a random number u has been generated from ( )0,1U . If u p<  the 
observation has been randomly taken from first subpopulation and if u p>  then 
the observation has been taken from the second subpopulation. The observations 
above a fixed censoring time T have been assumed to be right censored. Under 
each combination of parametric values, the choice of censoring time has been 
made so that the censoring rate in the respective sample is 15%. As one sample 
cannot completely describe the behavior and properties of the Bayes estimators, 
the results have been replicated 1000 times and the average of results has been 
presented in the tables below (the amounts of posterior risks are presented in 
parenthesis). The abbreviations used in tables are; B.Es: Bayes estimates; P.Rs: 
posterior risks; LL: lower limit and UL: upper limit. 
 
 
Table 1. B.Es and P.Rs under Uniform Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.5131  4.5363  4.3991  4.4217  6.7921  6.8271  6.7307  6.7653  0.5190  0.5217  0.6709  0.6743  

(0.2039) (0.0464) (0.1987) (0.0452) (0.3068) (0.0698) (0.3040) (0.0692) (0.0612) (0.0139) (0.0845) (0.0192) 

100 
4.4795  4.4908  4.3664  4.3775  6.7416  6.7587  6.6806  6.6975  0.5151  0.5164  0.6659  0.6676  

(0.0989) (0.0227) (0.0964) (0.0221) (0.1488) (0.0342) (0.1475) (0.0339) (0.0297) (0.0068) (0.0410) (0.0094) 

200 
4.3936  4.3991  4.2827  4.2881  6.6124  6.6207  6.5525  6.5608  0.5053  0.5059  0.6531  0.6539  

(0.0472) (0.0111) (0.0460) (0.0108) (0.0710) (0.0166) (0.0704) (0.0165) (0.0142) (0.0033) (0.0196) (0.0046) 

300 
4.2706  4.2742  4.1628  4.1663  6.4273  6.4327  6.3691  6.3744  0.4911  0.4915  0.6348  0.6354  

(0.0297) (0.0072) (0.0289) (0.0070) (0.0446) (0.0108) (0.0442) (0.0107) (0.0089) (0.0021) (0.0123) (0.0030) 

400 
4.1707  4.1734  4.0655  4.0680  6.2770  6.2809  6.2202  6.2241  0.4796  0.4799  0.6200  0.6204  

(0.0212) (0.0052) (0.0207) (0.0051) (0.0319) (0.0079) (0.0316) (0.0078) (0.0064) (0.0016) (0.0088) (0.0022) 

500 
4.1428  4.1449  4.0383  4.0403  6.2350  6.2381  6.1785  6.1816  0.4764  0.4767  0.6158  0.6161  

(0.0167) (0.0042) (0.0163) (0.0040) (0.0252) (0.0063) (0.0249) (0.0062) (0.0050) (0.0012) (0.0069) (0.0017) 
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Table 2. B.Es and P.Rs under Uniform Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.8508 8.8963 8.8947 8.9404 13.3205 13.3890 13.4754 13.5447 0.5311 0.5338 0.7027 0.7063 

(0.3998) (0.0910) (0.3563) (0.0811) (0.6017) (0.1370) (0.6769) (0.1541) (0.0760) (0.0173) (0.0994) (0.0226) 

100 
8.7850 8.8072 8.8284 8.8508 13.2214 13.2549 13.3751 13.4090 0.5271 0.5284 0.6974 0.6992 

(0.1939) (0.0445) (0.1728) (0.0397) (0.2919) (0.0670) (0.3283) (0.0754) (0.0368) (0.0085) (0.0482) (0.0111) 

200 
8.6166 8.6274 8.6592 8.6701 12.9679 12.9842 13.1187 13.1352 0.5170 0.5176 0.6841 0.6849 

(0.0926) (0.0217) (0.0825) (0.0193) (0.1393) (0.0326) (0.1567) (0.0367) (0.0176) (0.0041) (0.0230) (0.0054) 

300 
8.3754 8.3824 8.4168 8.4239 12.6050 12.6155 12.7515 12.7622 0.5025 0.5029 0.6649 0.6655 

(0.0582) (0.0140) (0.0518) (0.0125) (0.0875) (0.0211) (0.0985) (0.0237) (0.0111) (0.0027) (0.0145) (0.0035) 

400 
8.1795 8.1847 8.2200 8.2252 12.3102 12.3179 12.4533 12.4611 0.4908 0.4911 0.6494 0.6498 

(0.0416) (0.0103) (0.0370) (0.0091) (0.0625) (0.0154) (0.0704) (0.0174) (0.0079) (0.0019) (0.0103) (0.0026) 

500 
8.1248 8.1289 8.1650 8.1691 12.2278 12.2339 12.3700 12.3762 0.4875 0.4877 0.6450 0.6454 

(0.0328) (0.0081) (0.0292) (0.0073) (0.0493) (0.0123) (0.0555) (0.0138) (0.0062) (0.0015) (0.0081) (0.0020) 

                      
 
 
Table 3. B.Es and P.Rs under Jeffreys Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.4679 4.4909 4.3551 4.3775 6.7242 6.7588 6.6634 6.6976 0.5138 0.5165 0.6642 0.6676 

(0.2018) (0.0459) (0.1967) (0.0448) (0.3037) (0.0691) (0.3010) (0.0685) (0.0550) (0.0125) (0.0760) (0.0173) 

100 
4.4347 4.4459 4.3227 4.3337 6.6742 6.6911 6.6138 6.6305 0.5100 0.5113 0.6592 0.6609 

(0.0979) (0.0225) (0.0954) (0.0219) (0.1473) (0.0338) (0.1460) (0.0335) (0.0267) (0.0061) (0.0369) (0.0085) 

200 
4.3497 4.3551 4.2399 4.2452 6.5462 6.5545 6.4870 6.4951 0.5002 0.5008 0.6466 0.6474 

(0.0467) (0.0109) (0.0456) (0.0107) (0.0703) (0.0165) (0.0697) (0.0163) (0.0127) (0.0030) (0.0176) (0.0041) 

300 
4.2279 4.2314 4.1212 4.1246 6.3630 6.3683 6.3054 6.3107 0.4862 0.4866 0.6285 0.6290 

(0.0294) (0.0071) (0.0286) (0.0069) (0.0442) (0.0107) (0.0438) (0.0106) (0.0080) (0.0019) (0.0111) (0.0027) 

400 
4.1290 4.1316 4.0248 4.0273 6.2142 6.2181 6.1580 6.1618 0.4748 0.4751 0.6138 0.6142 

(0.0210) (0.0052) (0.0204) (0.0050) (0.0316) (0.0078) (0.0313) (0.0077) (0.0057) (0.0014) (0.0079) (0.0020) 

500 
4.1014 4.1035 3.9979 3.9999 6.1726 6.1757 6.1167 6.1198 0.4717 0.4719 0.6097 0.6100 

(0.0165) (0.0041) (0.0161) (0.0040) (0.0249) (0.0062) (0.0247) (0.0061) (0.0045) (0.0011) (0.0062) (0.0015) 

                      
 
 
 
 
 



FEROZE & ASLAM 

283 

Table 4. B.Es and P.Rs under Jeffreys Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.7623 8.8074 8.8057 8.8510 13.1873 13.2551 13.3406 13.4092 0.5257 0.5284 0.6957 0.6992 

(0.3958) (0.0901) (0.3527) (0.0803) (0.5957) (0.1356) (0.6701) (0.1525) (0.0684) (0.0156) (0.0895) (0.0204) 

100 
8.6971 8.7191 8.7402 8.7623 13.0891 13.1223 13.2413 13.2749 0.5218 0.5231 0.6905 0.6922 

(0.1920) (0.0441) (0.1711) (0.0393) (0.2890) (0.0664) (0.3251) (0.0747) (0.0332) (0.0076) (0.0434) (0.0100) 

200 
8.5304 8.5411 8.5726 8.5834 12.8382 12.8544 12.9875 13.0039 0.5118 0.5125 0.6772 0.6781 

(0.0917) (0.0215) (0.0817) (0.0191) (0.1379) (0.0323) (0.1552) (0.0364) (0.0158) (0.0037) (0.0207) (0.0049) 

300 
8.2916 8.2986 8.3327 8.3397 12.4789 12.4893 12.6240 12.6346 0.4975 0.4979 0.6583 0.6588 

(0.0576) (0.0139) (0.0513) (0.0124) (0.0867) (0.0209) (0.0975) (0.0235) (0.0099) (0.0024) (0.0130) (0.0031) 

400 
8.0977 8.1028 8.1378 8.1429 12.1871 12.1947 12.3288 12.3365 0.4859 0.4862 0.6429 0.6433 

(0.0411) (0.0102) (0.0367) (0.0091) (0.0619) (0.0153) (0.0697) (0.0172) (0.0071) (0.0018) (0.0093) (0.0023) 

500 
8.0435 8.0476 8.0834 8.0874 12.1055 12.1116 12.2463 12.2524 0.4826 0.4829 0.6386 0.6389 

(0.0324) (0.0081) (0.0289) (0.0072) (0.0488) (0.0121) (0.0549) (0.0137) (0.0056) (0.0014) (0.0073) (0.0018) 

                      
 
 
Table 5. B.Es and P.Rs under Gamma Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.3777 4.4002 4.2672 4.2891 6.5884 6.6222 6.5287 6.5623 0.5034 0.5060 0.6507 0.6541 

(0.1835) (0.0418) (0.1788) (0.0407) (0.2761) (0.0629) (0.2736) (0.0623) (0.0428) (0.0097) (0.0591) (0.0135) 

100 
4.3451 4.3561 4.2354 4.2461 6.5393 6.5559 6.4801 6.4966 0.4997 0.5009 0.6459 0.6475 

(0.0890) (0.0204) (0.0868) (0.0199) (0.1339) (0.0308) (0.1327) (0.0305) (0.0208) (0.0048) (0.0287) (0.0066) 

200 
4.2618 4.2671 4.1542 4.1594 6.4140 6.4221 6.3559 6.3639 0.4901 0.4907 0.6335 0.6343 

(0.0425) (0.0100) (0.0414) (0.0097) (0.0639) (0.0150) (0.0634) (0.0148) (0.0099) (0.0023) (0.0137) (0.0032) 

300 
4.1425 4.1460 4.0379 4.0413 6.2345 6.2397 6.1780 6.1832 0.4764 0.4768 0.6158 0.6163 

(0.0267) (0.0064) (0.0260) (0.0063) (0.0402) (0.0097) (0.0398) (0.0096) (0.0062) (0.0015) (0.0086) (0.0021) 

400 
4.0456 4.0482 3.9435 3.9460 6.0887 6.0925 6.0336 6.0373 0.4652 0.4655 0.6014 0.6018 

(0.0191) (0.0047) (0.0186) (0.0046) (0.0287) (0.0071) (0.0284) (0.0070) (0.0044) (0.0011) (0.0061) (0.0015) 

500 
4.0185 4.0206 3.9171 3.9191 6.0479 6.0509 5.9932 5.9962 0.4621 0.4624 0.5974 0.5977 

(0.0150) (0.0037) (0.0147) (0.0036) (0.0226) (0.0056) (0.0224) (0.0056) (0.0035) (0.0009) (0.0048) (0.0012) 
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Table 6. B.Es and P.Rs under Gamma Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.5853 8.6295 8.6278 8.6722 12.9209 12.9873 13.0711 13.1383 0.5151 0.5178 0.6816 0.6851 

(0.3598) (0.0819) (0.3206) (0.0730) (0.5415) (0.1233) (0.6092) (0.1387) (0.0532) (0.0121) (0.0696) (0.0158) 

100 
8.5214 8.5430 8.5636 8.5853 12.8247 12.8572 12.9738 13.0067 0.5113 0.5126 0.6765 0.6782 

(0.1745) (0.0401) (0.1555) (0.0357) (0.2627) (0.0603) (0.2955) (0.0679) (0.0258) (0.0059) (0.0338) (0.0078) 

200 
8.3581 8.3686 8.3994 8.4100 12.5789 12.5947 12.7251 12.7412 0.5015 0.5021 0.6636 0.6644 

(0.0833) (0.0195) (0.0742) (0.0174) (0.1254) (0.0294) (0.1411) (0.0331) (0.0123) (0.0029) (0.0161) (0.0038) 

300 
8.1241 8.1309 8.1643 8.1712 12.2268 12.2370 12.3690 12.3793 0.4874 0.4879 0.6450 0.6455 

(0.0524) (0.0126) (0.0466) (0.0112) (0.0788) (0.0190) (0.0886) (0.0214) (0.0077) (0.0019) (0.0101) (0.0024) 

400 
7.9341 7.9391 7.9734 7.9784 11.9409 11.9484 12.0797 12.0873 0.4760 0.4763 0.6299 0.6303 

(0.0374) (0.0092) (0.0333) (0.0082) (0.0563) (0.0139) (0.0633) (0.0156) (0.0055) (0.0014) (0.0072) (0.0018) 

500 
7.8810 7.8850 7.9201 7.9240 11.8610 11.8669 11.9989 12.0049 0.4729 0.4731 0.6257 0.6260 

(0.0295) (0.0073) (0.0263) (0.0065) (0.0444) (0.0110) (0.0499) (0.0124) (0.0044) (0.0011) (0.0057) (0.0014) 

                      
 
 
Table 7. B.Es and P.Rs under Chi Square Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.4228 4.4455 4.3111 4.3333 6.6563 6.6905 6.5961 6.6300 0.5086 0.5112 0.6574 0.6608 

(0.1876) (0.0427) (0.1828) (0.0416) (0.2823) (0.0643) (0.2797) (0.0637) (0.0489) (0.0111) (0.0676) (0.0154) 

100 
4.3899 4.4010 4.2791 4.2899 6.6067 6.6235 6.5470 6.5635 0.5048 0.5061 0.6526 0.6542 

(0.0910) (0.0209) (0.0887) (0.0204) (0.1369) (0.0314) (0.1357) (0.0312) (0.0237) (0.0055) (0.0328) (0.0075) 

200 
4.3057 4.3111 4.1970 4.2023 6.4801 6.4883 6.4215 6.4295 0.4952 0.4958 0.6400 0.6409 

(0.0434) (0.0102) (0.0423) (0.0099) (0.0654) (0.0153) (0.0648) (0.0152) (0.0113) (0.0027) (0.0156) (0.0037) 

300 
4.1852 4.1887 4.0796 4.0830 6.2987 6.3040 6.2417 6.2469 0.4813 0.4817 0.6221 0.6227 

(0.0273) (0.0066) (0.0266) (0.0064) (0.0411) (0.0099) (0.0407) (0.0098) (0.0071) (0.0017) (0.0098) (0.0024) 

400 
4.0873 4.0899 3.9842 3.9867 6.1514 6.1553 6.0958 6.0996 0.4700 0.4703 0.6076 0.6080 

(0.0195) (0.0048) (0.0190) (0.0047) (0.0293) (0.0072) (0.0291) (0.0072) (0.0051) (0.0013) (0.0070) (0.0017) 

500 
4.0600 4.0620 3.9575 3.9595 6.1103 6.1133 6.0550 6.0580 0.4669 0.4671 0.6035 0.6038 

(0.0154) (0.0038) (0.0150) (0.0037) (0.0231) (0.0058) (0.0229) (0.0057) (0.0040) (0.0010) (0.0055) (0.0014) 
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Table 8. B.Es and P.Rs under Chi Square Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.6738 8.7184 8.7168 8.7616 13.0541 13.1212 13.2059 13.2738 0.5204 0.5231 0.6886 0.6922 

(0.3678) (0.0837) (0.3278) (0.0746) (0.5536) (0.1260) (0.6227) (0.1418) (0.0608) (0.0138) (0.0795) (0.0181) 

100 
8.6093 8.6311 8.6519 8.6738 12.9569 12.9898 13.1076 13.1408 0.5166 0.5179 0.6835 0.6852 

(0.1784) (0.0410) (0.1590) (0.0365) (0.2685) (0.0617) (0.3021) (0.0694) (0.0295) (0.0068) (0.0386) (0.0089) 

200 
8.4442 8.4549 8.4860 8.4967 12.7086 12.7246 12.8563 12.8725 0.5067 0.5073 0.6704 0.6712 

(0.0852) (0.0200) (0.0759) (0.0178) (0.1282) (0.0300) (0.1442) (0.0338) (0.0141) (0.0033) (0.0184) (0.0043) 

300 
8.2079 8.2147 8.2485 8.2554 12.3529 12.3632 12.4965 12.5070 0.4925 0.4929 0.6516 0.6522 

(0.0535) (0.0129) (0.0477) (0.0115) (0.0805) (0.0194) (0.0906) (0.0218) (0.0088) (0.0021) (0.0116) (0.0028) 

400 
8.0159 8.0210 8.0556 8.0607 12.0640 12.0715 12.2043 12.2119 0.4810 0.4813 0.6364 0.6368 

(0.0382) (0.0094) (0.0341) (0.0084) (0.0575) (0.0142) (0.0647) (0.0160) (0.0063) (0.0016) (0.0083) (0.0020) 

500 
7.9623 7.9663 8.0017 8.0057 11.9832 11.9892 12.1226 12.1287 0.4777 0.4780 0.6321 0.6325 

(0.0302) (0.0075) (0.0269) (0.0067) (0.0454) (0.0113) (0.0511) (0.0127) (0.0050) (0.0012) (0.0065) (0.0016) 

                      
 
 
Table 9. B.Es and P.Rs under Exponential Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 4, p = 0.45 α1 = 4, p = 0.60 α2 = 6, p = 0.45 α2 = 6, p = 0.60 p = 0.45 p = 0.60 

             

50 
4.4724 4.4954 4.3595 4.3820 6.7310 6.7656 6.6701 6.7044 0.5143 0.5170 0.6648 0.6682 

(0.1939) (0.0441) (0.1890) (0.0430) (0.2918) (0.0664) (0.2891) (0.0658) (0.0520) (0.0118) (0.0719) (0.0164) 

100 
4.4391 4.4504 4.3271 4.3381 6.6809 6.6978 6.6204 6.6372 0.5105 0.5118 0.6599 0.6616 

(0.0940) (0.0216) (0.0917) (0.0211) (0.1415) (0.0325) (0.1403) (0.0322) (0.0252) (0.0058) (0.0349) (0.0080) 

200 
4.3540 4.3595 4.2441 4.2495 6.5528 6.5611 6.4935 6.5017 0.5007 0.5013 0.6472 0.6480 

(0.0449) (0.0105) (0.0438) (0.0103) (0.0676) (0.0158) (0.0670) (0.0157) (0.0121) (0.0028) (0.0166) (0.0039) 

300 
4.2322 4.2357 4.1253 4.1288 6.3694 6.3748 6.3118 6.3171 0.4867 0.4871 0.6291 0.6296 

(0.0282) (0.0068) (0.0275) (0.0066) (0.0425) (0.0102) (0.0421) (0.0101) (0.0076) (0.0018) (0.0105) (0.0025) 

400 
4.1332 4.1358 4.0289 4.0314 6.2205 6.2244 6.1642 6.1680 0.4753 0.4756 0.6144 0.6148 

(0.0202) (0.0050) (0.0196) (0.0048) (0.0303) (0.0075) (0.0301) (0.0074) (0.0054) (0.0013) (0.0075) (0.0018) 

500 
4.1055 4.1076 4.0019 4.0039 6.1788 6.1819 6.1229 6.1260 0.4721 0.4724 0.6103 0.6106 

(0.0159) (0.0040) (0.0155) (0.0039) (0.0239) (0.0059) (0.0237) (0.0059) (0.0043) (0.0011) (0.0059) (0.0015) 
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Table 10. B.Es and P.Rs under Exponential Prior 
 

n 
SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF SELF PLF 

α1 = 8, p = 0.45 α1 = 8, p = 0.60 α2 = 12, p = 0.45 α2 = 12, p = 0.60 p = 0.45 p = 0.60 

             

50 
8.7712 8.8163 8.8146 8.8599 13.2006 13.2685 13.3541 13.4228 0.5263 0.5290 0.6964 0.6999 

(0.3802) (0.0866) (0.3388) (0.0771) (0.5722) (0.1303) (0.6437) (0.1465) (0.0646) (0.0147) (0.0846) (0.0193) 

100 
8.7059 8.7280 8.7490 8.7712 13.1024 13.1356 13.2547 13.2883 0.5224 0.5237 0.6912 0.6929 

(0.1844) (0.0424) (0.1643) (0.0377) (0.2776) (0.0637) (0.3123) (0.0717) (0.0314) (0.0072) (0.0410) (0.0094) 

200 
8.5390 8.5498 8.5813 8.5921 12.8512 12.8674 13.0006 13.0170 0.5123 0.5130 0.6779 0.6788 

(0.0880) (0.0206) (0.0785) (0.0184) (0.1325) (0.0310) (0.1491) (0.0349) (0.0150) (0.0035) (0.0196) (0.0046) 

300 
8.3000 8.3070 8.3411 8.3481 12.4915 12.5020 12.6368 12.6473 0.4980 0.4984 0.6589 0.6595 

(0.0553) (0.0133) (0.0493) (0.0119) (0.0833) (0.0201) (0.0937) (0.0226) (0.0094) (0.0023) (0.0123) (0.0030) 

400 
8.1059 8.1110 8.1460 8.1511 12.1994 12.2070 12.3412 12.3490 0.4864 0.4867 0.6435 0.6439 

(0.0395) (0.0098) (0.0352) (0.0087) (0.0595) (0.0147) (0.0669) (0.0165) (0.0067) (0.0017) (0.0088) (0.0022) 

500 
8.0517 8.0557 8.0915 8.0956 12.1177 12.1238 12.2586 12.2648 0.4831 0.4833 0.6392 0.6396 

(0.0312) (0.0077) (0.0278) (0.0069) (0.0469) (0.0117) (0.0528) (0.0131) (0.0053) (0.0013) (0.0069) (0.0017) 

                      

 
Table 11. 95% credible intervals under Uniform Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.4241  4.9498  1.5257  5.1532  7.4494  2.2962  0.3938  0.5692  0.1755  

100 3.4882  4.9129  1.4248  5.2497  7.3939  2.1443  0.4011  0.5650  0.1638  

200 3.5092  4.8187  1.3096  5.2813  7.2522  1.9709  0.4036  0.5542  0.1506  

300 3.5391  4.6839  1.1448  5.3263  7.0492  1.7229  0.4070  0.5386  0.1317  

400 3.6231  4.5743  0.9512  5.4528  6.8844  1.4316  0.4167  0.5260  0.1094  

500 3.6817  4.5437  0.8620  5.5410  6.8383  1.2973  0.4234  0.5225  0.0991  

                     
Table 12. 95% credible intervals under Jeffreys Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.3898 4.9003 1.5104 5.1017 7.3749 2.2732 0.3898 0.5635 0.1737 

100 3.4533 4.8638 1.4105 5.1972 7.3200 2.1228 0.3971 0.5593 0.1622 

200 3.4741 4.7705 1.2965 5.2285 7.1797 1.9512 0.3995 0.5486 0.1491 

300 3.5037 4.6370 1.1334 5.2730 6.9787 1.7057 0.4029 0.5333 0.1303 

400 3.5869 4.5286 0.9417 5.3983 6.8155 1.4172 0.4125 0.5208 0.1083 

500 3.6449 4.4983 0.8534 5.4856 6.7699 1.2843 0.4192 0.5173 0.0981 
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Table 13. 95% credible intervals under Gamma Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.3213 4.8013 1.4799 4.9986 7.2259 2.2273 0.3820 0.5521 0.1702 

100 3.3835 4.7655 1.3820 5.0922 7.1721 2.0799 0.3891 0.5480 0.1589 

200 3.4039 4.6742 1.2703 5.1228 7.0346 1.9118 0.3914 0.5375 0.1461 

300 3.4329 4.5433 1.1105 5.1665 6.8377 1.6712 0.3948 0.5225 0.1277 

400 3.5144 4.4371 0.9227 5.2892 6.6778 1.3886 0.4042 0.5103 0.1061 

500 3.5713 4.4074 0.8361 5.3748 6.6331 1.2584 0.4107 0.5069 0.0962 

                     
 
Table 14. 95% credible intervals under Chi Square Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.3556 4.8508 1.4952 5.0501 7.3004 2.2503 0.3859 0.5578 0.1719 

100 3.4184 4.8146 1.3963 5.1447 7.2460 2.1014 0.3931 0.5537 0.1606 

200 3.4390 4.7224 1.2834 5.1757 7.1071 1.9315 0.3955 0.5431 0.1476 

300 3.4683 4.5902 1.1219 5.2198 6.9082 1.6885 0.3989 0.5279 0.1290 

400 3.5507 4.4828 0.9322 5.3438 6.7467 1.4029 0.4083 0.5155 0.1072 

500 3.6081 4.4528 0.8447 5.4302 6.7015 1.2713 0.4149 0.5121 0.0971 

                     
 
Table 15. 95% credible intervals under Exponential Prior 
 

n 
α1 = 4  α2 = 6 p = 0.45  

LL UL UL – LL LL UL UL – LL LL UL UL – LL 

          50 3.3932 4.9052 1.5120 5.1068 7.3823 2.2755 0.3902 0.5641 0.1739 

100 3.4568 4.8687 1.4119 5.2024 7.3274 2.1250 0.3975 0.5599 0.1624 

200 3.4776 4.7754 1.2978 5.2338 7.1869 1.9532 0.3999 0.5492 0.1492 

300 3.5072 4.6417 1.1345 5.2783 6.9858 1.7074 0.4033 0.5338 0.1305 

400 3.5905 4.5332 0.9426 5.4037 6.8224 1.4187 0.4129 0.5213 0.1084 

500 3.6486 4.5028 0.8542 5.4911 6.7767 1.2856 0.4196 0.5178 0.0982 
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Table 16. 95% posterior predictive intervals under different priors 
 

n Limits Uniform Jeffreys Gamma Chi square Exponential 

50 

LL 2.4773  2.4037  2.2609  2.3316  2.4110  

UL 17.9778  17.4438  16.4078  16.9206  17.4967  

UL – LL 15.5005  15.0401  14.1469  14.5890  15.0858  

100 

LL 2.6190  2.5412  2.3903  2.4650  2.5489  

UL 17.5793  17.0572  16.0442  16.5455  17.1089  

UL – LL 14.9603  14.5160  13.6539  14.0805  14.5600  

200 

LL 2.6666  2.5874  2.4338  2.5098  2.5953  

UL 16.5876  16.0950  15.1391  15.6121  16.1438  

UL – LL 13.9210  13.5075  12.7053  13.1023  13.5485  

300 

LL 2.7354  2.6541  2.4965  2.5745  2.6622  

UL 15.2334  14.7810  13.9031  14.3376  14.8258  

UL – LL 12.4981  12.1269  11.4066  11.7631  12.1636  

400 

LL 2.9350  2.8478  2.6787  2.7624  2.8564  

UL 14.1895  13.7681  12.9504  13.3551  13.8098  

UL – LL 11.2546  10.9203  10.2717  10.5927  10.9534  

500 

LL 3.0797  2.9882  2.8108  2.8986  2.9973  

UL 13.9065  13.4935  12.6921  13.0887  13.5344  

UL – LL 10.8268  10.5052  9.8813  10.1901  10.5371  

 
 

The simulation study has been conducted under the assumption of different 
priors using two loss functions. The performance of different estimators has been 
compared in terms of posterior risks and rate of convergence. It has been observed 
that the estimated value of the parameter converges to the true value of the 
parameter by increasing the sample size. This pattern is similar under each prior 
and for every loss function. In cases of non-informative priors, the estimates 
under the Jeffreys prior provide better convergence, while among informative 
priors the gamma prior gives comparatively rapid convergence. On the other hand, 
use of squared error loss function results in faster convergence than precautionary 
loss function. It is interesting to note that for each combination of prior and loss 
function, the increased values of the parameters impose a negative impact on the 
convergence rate of the estimates. However, increasing the value of weight 
parameter has a positive effect on the convergence of the corresponding 
estimators but convergence rate of the weight estimator itself becomes slower. All 
the parameters have been overestimated in almost all the cases and the extent of 
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overestimation is greater for larger true parametric values. On the whole, it can be 
assessed that the estimates under gamma prior using precautionary loss function 
have the best convergence rate. Some prior elicitation technique may further 
strengthen this argument. 

It is apparent from the above tables that the magnitude of posterior risks is 
indirectly proportional to sample size, while it is directly related to the true value 
of the parameter. This property holds for all estimators. The estimates under the 
Jeffreys prior have smaller risks than those under uniform prior. Similarly, among 
all informative priors, the estimates using gamma prior are associated with the 
minimum risks. In a comparison of informative and non-informative priors, 
informative priors perform better. This indicates the dominance of informative 
priors over non-informative priors. The performance of the estimates 
(representing the corresponding component) has been positively affected by 
increasing the values of the weight parameter, but at the cost of inflated risks for 
the parameter itself. It can also be observed that the estimates under precautionary 
loss function have smaller risks than those based on squared error loss function, 
irrespective of choice of prior and the true parametric values. Therefore, in terms 
of posterior risks, the estimates using gamma prior based on precautionary loss 
function provide the best point estimation. 

In case of interval estimation (presented in Tables 11-16), the widths of 95% 
credible intervals decrease when increasing the sample size. The least amount of 
widths for credible intervals has been observed under gamma prior. In addition, 
the posterior predictions tend to be more specific under gamma prior. This is 
another indication that the gamma prior performs well as compared to other priors.  

Real Life Example 
Real life data regarding cancer survival times in years presented by Bekker et al. 
(2000) has been analyzed to illustrate the practical applicability of the results. The 
test termination time is considered to be such that the overall sample is 15% 
censored. 

The analysis of real life data replicated the patterns observed under 
simulation study. The point and interval estimates for the parameters of the 
Gompertz mixture model; based on gamma prior; using PLF are found to be the 
most efficient. The posterior predictive intervals have the least amounts of widths 
again under gamma prior. So, in order to estimate the said parameters and to make 
predictions of the future values of the variable from the mentioned model, the use 
of gamma prior under PLF may be preferred.  
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Table 17. Bayes estimates and posterior risks under real life data 
 

Priors 
SELF PLF 

α1 α2 p = 0.45 α1 α2 p = 0.45 

Uniform 
2.0841  2.3456  0.4963  2.0948  2.3577  0.4988  

(1.1218) (1.0466) (0.1298) (0.2554) (0.2382) (0.0296) 

Jefrreys 
2.0632  2.3222  0.4913  2.0738  2.3341  0.4939  

(1.1106) (1.0361) (0.1169) (0.2528) (0.2359) (0.0266) 

Gamma 
2.0215  2.2753  0.4814  2.0319  2.2870  0.4839  

(1.0096) (0.9419) (0.0909) (0.2298) (0.2144) (0.0207) 

Chi Square 
2.0424  2.2987  0.4864  2.0529  2.3105  0.4889  

(1.0321) (0.9629) (0.1039) (0.2349) (0.2192) (0.0236) 

Exponential 
2.0653  2.3245  0.4918  2.0759  2.3365  0.4944  

(1.0668) (0.9953) (0.1105) (0.2429) (0.2266) (0.0252) 
 
 
Table 18. 95% credible intervals under real life data 
 

Priors 
α1 α2 p = 0.45 

LL UL UL–LL LL UL UL–LL LL UL UL–LL 
Uniform 1.7475 2.4206 0.6731 2.0316 2.8689 0.8373 0.3924 0.5872 0.1948 

Jeffreys 1.7300 2.3964 0.6664 2.0113 2.8402 0.8289 0.3978 0.5731 0.1753 

Gamma 1.7186 2.3244 0.6058 1.9927 2.7462 0.7535 0.4087 0.5450 0.1363 

Chi Square 1.7328 2.3520 0.6192 2.0099 2.7801 0.7703 0.4033 0.5591 0.1558 

Exponential 1.7452 2.3854 0.6401 2.0259 2.8222 0.7962 0.4034 0.5692 0.1657 

 
 
Table 19. 95% posterior predictive intervals under real life data 
 

Priors LL UL UL–LL 
Uniform 0.6227 11.0830 10.4602 
Jeffreys 0.6165 10.9721 10.3556 
Gamma 0.6124 10.6426 10.0302 

Chi Square 0.6175 10.7688 10.1514 
Exponential 0.6219 10.9216 10.2997 
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Conclusion 

The study proposed the point and interval estimators for the parameters of the 
two-component mixture of the Gompertz distribution under a Bayesian 
framework along with posterior predictions for the future value from said model. 
The performance of the different estimators has been compared in terms of 
posterior risks (for point estimators) and widths of interval estimates with respect 
to various priors and loss functions. The findings of the study suggest that for 
Bayesian estimation of the parameters (along with posterior predictions) of the 
two-component mixture of the Gompertz distribution, the use of gamma prior 
under precautionary loss function is preferred. The proposed estimators are 
consistent in nature. The results of the study are useful for practitioners looking to 
model some failure time data, where the cases of failures are more than one. 
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Unbiased Estimators in Ordinary Least 
Squares Regression
Ghadban Khalaf 
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During the past years, different kinds of estimators have been proposed as alternatives to 
the Ordinary Least Squares (OLS) estimator for the estimation of the regression 
coefficients in the presence of multicollinearity. In the general linear regression model, 
Y X eβ= +





, it is known that multicollinearity makes statistical inference difficult and 
may even seriously distort the inference. Ridge regression, as viewed here, defines a class 
of estimators of β



 indexed by a scalar parameter k. Two methods of specifying k are 
proposed and evaluated in terms of Mean Square Error (MSE) by simulation techniques. 
A comparison is made with other ridge-type estimators evaluated elsewhere. The 
estimated MSE of the suggested estimators are lower than other estimators of the ridge 
parameter and the OLS estimator. 
 
Keywords: OLS estimator, linear regression, multicollinearity, ridge regression, 
Monte Carlo simulation. 
 

Introduction 

Consider the multiple linear regression model 
 

 Y X eβ= +




  (1) 
 
where Y



 is an ( 1)n×  response vector, X is a fixed ( )n p×  matrix of independent 

variables of rank p, β


 is the unknown ( 1)p× parameter vector of regression 
coefficients and, finally, e  is an ( 1)n×  vector of uncorrelated errors with mean 
zero and common unknown variance 2σ . If X X′  is nonsingular, the OLS 
estimator for β



 is given by 
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 1ˆ ( )X X X Yβ −′ ′=


  (2) 
 
For orthogonal data, the OLS estimator in the linear regression model is strongly 
efficient. But in the presence of multicollinearity, the OLS efficiency can be 
reduced and hence an improvement upon it would be necessary and desirable. 

The term multicollinearity is used to denote the presence of linear 
relationships, or near linear relationships, among explanatory variables. If the 
explanatory variables are perfectly linearly correlated, that is, if the correlation 
coefficient for these variables is equal to unity, then the parameters become 
indeterminate; i.e, it is impossible to obtain numerical values for each parameter 
separately and the method of lease squares breaks down. Conversely, if the 
correlation coefficient for the explanatory variables is equal to zero, then the 
variables are called orthogonal and there are no problems concerning the 
estimates of the coefficients. 

When multicollinearity occurs, the least squares estimates are still unbiased 
and efficient but the problem is that; the estimated standard error 

î
S
β

 for the 

coefficient îβ  become infinitely large; i.e, the standard error tends to be larger 
than it would be in the absence of multicollinearity and when 

î
S
β

is larger than it 

would be, then the t- value for testing the significance of iβ  is smaller than it 
should be. Thus one is likely to conclude that a variable iX  is not important in the 
relationship when it real1y is. 

To solve the problem of multicollinearity, there is no single solution that 
will eliminate multicollinearity altogether. One common procedure is to select the 
independent variable most seriously involved in the multicollinearity and remove 
it from the model. This procedure often improves the standard error of the 
remaining coefficients and may make formerly insignificant variables significant, 
since the elimination of a variable reduces any multicollinearity caused by it. The 
difficulty with this approach is that the model now may not correctly represent the 
population relationship and all estimated coefficients would contain a population 
specification. 

The procedure of increasing the sample size is sometimes recommended as 
another suggested procedure to solve the problem of multicollinearity. In fact this 
method improves the precision of an estimator and hence reduces the adverse 
effects of multicollinearity. 

Hoerl and Kennard (1970) suggested a new technique to overcome the 
problem of multicollinearity. This technique is called ridge regression. Ridge 
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regression is a variant of ordinary multiple linear regression whose goal is to 
circumvent the predictors collinearity. It gives up the least squares as a method for 
estimating the parameters of the model and focuses instead of the X X′  matrix. 
This matrix will be artificially modified so as to make its determinant appreciably 
different from zero. This is accomplished by adding a small positive quantity, say 
k (k > 0), to each of the diagonal elements of the matrix X X′  before inverting it 
for least squares estimation. The resulting estimator is given by 
 

 1ˆ( ) ( ) ,   0pk X X kI X Y kβ −′ ′= + >




  (3) 
 
which coincides with the OLS estimator, defined by (2), when k = 0. The resulting 
estimator will be biased, but have smaller variances than β̂



. This is precisely 
what the ridge regression estimator we study can accomplish. 

The plan of this paper is as follows: Section 2 presents the proposed 
estimators included in the study; a novel feature is our proposed ridge estimator 
which, as we shall see presently, has lower MSE. Section 3 is described the 
simulation technique that we have adopted in our study to evaluate the 
performance of the new values of the ridge parameter we suggest. The results of 
the simulation study, which appear in the tables, are presented in Section 4. 
Finally, Section 5 contains summary and conclusions. 

The Proposed Estimators  

With the ridge estimator method, there arises the problem of determining an 
optimal value of k. With a good choice of k, one might hope to improve on the 
OLS estimator for every coefficient.  

Hoerl, Kennard and Baldwin (1975) showed, through simulation, that the 
use of ridge estimator with the following biasing parameter 
 

 
2

2

1

ˆˆ
ˆ

p

i
i

pk σ

β
=

=

∑
  (4) 

 

implies that ˆ ˆ( ( )) ( )MSE k MSEβ β<
 

, where p denotes the number of parameters 
(excluding the intercept) and 2σ̂  is the usual unbiased estimate of 2σ , defined by; 
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2 2

1

ˆ / ( 1).
n

i
i

e n pσ
=

= − −∑
 

 
They showed that the probability of a smaller MSE using (4) increases with the 
number of parameters p. We will use the acronym HKB for the estimator (4).  

Khalaf and Shukur (2005) suggested a modification of Hoerl and Kennard 
(1970) given by; 
 

 
2

max
2 2

max max

ˆˆ
ˆˆ( )

tk
n p t

σ
σ β

=
− +

  (5) 

 
which guaranteed lower MSE, where maxt  is the maximum eigenvalue of X X′  
matrix. For this estimator we will use the acronym KS.  

From the estimators (4) and (5), we suggest as a modification of HKB and 
KS by multiplying them by the amount; 
 

max min
max min

1 1

1 ( )
2

ˆ ˆ2
p p

i i
i i

t t t t

β β
= =

+ +
=

∑ ∑
, 

 

where mint  is the minimum eigenvalue of the matrix X X′ . This leads to the 
following estimators; 
 

 
2

max min
1

2

1 1

ˆ( )ˆ .
ˆ ˆ2

p p

i i
i i

t t pk σ

β β
= =

+
=

∑ ∑
  (6) 

 

 
2

max min max
2

2 2
max max

1

ˆ( )ˆ .
ˆ ˆˆ2 (( ) )

p

i
i

t t tk
n p t

σ

β σ β
=

+
=

− +∑
  (7) 

 
For our two suggested estimators, defined by (6) and (7), we use the 

acronym 1K  and 2K , respectively. 
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The Simulation Study  

A simulation study was conducted in order to draw conclusions about the 
performance of our suggested estimators relative to HKB, KS and the OLS 
estimator. To achieve different degree of collinearity, following Kibria (2003), the 
explanatory variables are generated by using the following equation; 
 

2 1/2(1 ) ,              1, 2,..., . 1, 2,...,ij ij ipx z z i n j pρ ρ= − + = =  
 

where ijz  are independent standard normal distribution, p is the number of the 
explanatory variables and ρ  is specified so that the correlation between any two 

explanatory variables is given by 
2ρ  . Three different sets of correlation are 

considered according to the value of ρ = 0.85, 0.95 and 0.99. The n observations 
for the dependent variable are determined by the following equation; 
 

0 1 1 2 2 ... ,             1, 2,...,i i i p ip iy x x x e i nβ β β β= + + + + + =  
 
where ie  are i.i.d pseudo-random numbers. In this study, 0β  is taken to be zero 
and the term ie  is generated from each of the following distributions: N(0, 1), 

T(3), T(7) and F(3, 11). The parameters values are chosen so that 2

1
1

p

i
i
β

=

=∑ , 

which is a common restriction in simulation studies (see Muniz and Kibria 
(2009)). 

The other factors we chose to vary is the sample size and the number of 
regressions. We generate models consisting of 25, 50, 100 and 150 observations 
and with 2 and 4 explanatory variables. It is noted from the results of the previous 
simulation studies (see Khalaf and Shukur (2005), Alkhamisi and Shukur (2008) 
and Khalaf (2011)) that increasing the number of regressor and using non-normal 
pseudo random numbers to generate ie  leads to a higher estimated MSE, while 
increasing the sample size leads to a lower estimated MSE.  

The criterion proposed here for measuring the goodness of an estimator is 
the MSE using the following formula; 

 

 1ˆ ˆ ˆ( ) ( ) ( ),
5000r r rMSE β β β β β′= − −∑

  

 

  (8) 
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where ˆ
rβ


 is the estimator of β


 obtained from the OLS estimator or from the ridge 
estimator for different estimated values of k considered for comparison reasons 
and, finally, 5000 is the number of replicates used in the Monte Carlo simulation. 

The Simulation Results 

Tables 1 – 6 below, present the output from the Monte Carlo experiment 
concerning properties of the different methods that used to choose the ridge 
parameter k. The results showed that the estimated MSE is affected by all factors 
we choose to vary in the design of experiment. It is also noted that the higher the 
degree of correlation the higher estimated MSE, but this increase is much greater 
for the OLS than the ridge regression estimator. The distribution of the error term 
and the number of explanatory variables having a different impact on the 
estimators. 
 
 
Table 1. Estimated MSE when ρ = 0.85 and p = 2. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 0.238 0.181 0.190 0.243 0.181 

50 0.111 0.093 0.097 0.255 0.176 

100 0.057 0.051 0.053 0.266 0.178 

150 0.034 0.032 0.032 0.282 0.184 

T(3)           

25 2.259 0.957 1.325 0.506 0.497 

50 1.219 0.602 0.896 0.521 0.364 

100 0.531 0.312 0.445 0.588 0.329 

150 0.473 0.261 0.414 0.632 0.351 

T(7)           

25 0.350 0.248 0.266 0.304 0.218 

50 0.169 0.135 0.143 0.324 0.212 

100 0.076 0.067 0.069 0.352 0.220 

150 0.053 0.048 0.049 0.367 0.224 

F(3, 11)           

25 0.853 0.502 0.584 0.383 0.289 

50 0.391 0.261 0.309 0.429 0.236 

100 0.178 0.139 0.157 0.481 0.276 

150 0.126 0.104 0.115 0.520 0.290 
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Table 2. Estimated MSE when ρ = 0.85  and p = 4. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 0.796 0.549 0.572 0.187 0.159 

50 0.334 0.255 0.268 0.216 0.162 

100 0.156 0.131 0.137 0.257 0.182 

150 0.103 0.090 0.093 0.284 0.196 

T(3)      

25 7.387 3.781 4.330 1.049 1.205 

50 6.222 2.961 4.179 1.073 1.622 

100 1.685 0.969 1.318 0.509 0.409 

150 1.240 0.754 1.018 0.551 0.332 

T(7)      

25 1.159 0.730 0.776 0.212 0.178 

50 0.504 0.362 0.389 0.255 0.184 

100 0.235 0.188 0.200 0.323 0.218 

150 0.152 0.127 0.135 0.353 0.231 

F(3, 11)      

25 2.667 1.446 1.601 0.338 0.328 

50 1.130 0.699 0.805 0.316 0.226 

100 0.578 0.402 0.468 0.415 0.263 

150 0.362 0.271 0.311 0.467 0.282 

 
Table 3. Estimated MSE when ρ = 0.95 and p = 2. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 0.705 0.427 0.450 0.193 0.147 

50 0.353 0.250 0.265 0.193 0.134 

100 0.168 0.133 0.140 0.220 0.145 

150 0.114 0.095 0.010 0.231 0.149 

T(3)      
25 7.899 3.010 3.580 1.501 1.725 

50 5.575 2.137 2.969 0.988 1.256 

100 1.703 0.789 1.152 0.486 0.275 

150 1.283 0.655 0.959 0.541 0.299 

T(7)      
25 1.174 0.670 0.718 0.241 0.186 

50 0.528 0.340 0.371 0.249 0.164 

100 0.250 0.185 0.200 0.287 0.177 

150 0.161 0.127 0.137 0.311 0.187 

F(3, 11)      
25 2.556 1.223 1.372 0.401 0.343 

50 1.167 0.623 0.738 0.336 0.215 

100 0.566 0.346 0.419 0.397 0.224 

150 0.378 0.251 0.300 0.444 0.244 
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Table 4. Estimated MSE when ρ = 0.95 and p = 4. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 2.356 1.308 1.351 0.154 0.145 

50 1.057 0.673 0.705 0.125 0.099 

100 0.359 0.251 0.266 0.120 0.088 

150 0.323 0.245 0.258 0.194 0.138 

T(3)      

25 18.886 8.484 9.026 2.145 2.299 

50 14.573 7.274 8.218 1.939 2.315 

100 4.122 2.079 2.527 0.284 0.194 

150 3.390 1.815 2.266 0.422 0.306 

T(7)      

25 3.716 1.996 2.068 0.228 0.221 

50 1.502 0.892 0.948 0.146 0.114 

100 0.745 0.495 0.534 0.199 0.139 

150 0.478 0.341 0.368 0.239 0.162 

F(3, 11)      

25 8.220 4.148 4.334 0.776 0.796 

50 3.578 1.882 2.064 0.206 0.171 

100 1.755 1.034 1.170 0.248 0.164 

150 1.180 0.741 0.849 0.309 0.195 

 
Table 5. Estimated MSE when ρ = 0.99 and p = 2. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 4.050 1.850 1.905 0.349 0.331 

50 1.776 0.884 0.931 0.133 0.099 

100 0.913 0.533 0.568 0.138 0.091 

150 0.572 0.358 0.385 0.155 0.099 

T(3)      
25 43.786 15.618 16.407 12.046 12.512 

50 21.736 7.673 8.510 3.155 3.377 

100 8.794 3.602 4.217 0.481 0.399 

150 7.046 2.461 3.274 0.362 0.231 

T(7)      
25 6.108 2.657 2.745 0.561 0.544 

50 2.623 1.192 1.274 0.171 0.124 

100 1.370 0.732 0.797 0.178 0.111 

150 0.865 0.502 0.551 0.204 0.123 

F(3, 11)      
25 12.863 4.822 5.037 1.421 1.438 

50 6.402 2.550 2.779 0.343 0.296 

100 3.329 1.508 1.715 0.246 0.152 

150 1.901 0.899 1.060 0.279 0.151 
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Table 6. Estimated MSE when ρ = 0.99 and p = 4. 
 
  OLS HKB KS K1 K2 

N(0, 1)           

25 13.319 6.484 6.547 0.971 0.981 

50 6.095 3.078 3.141 0.109 0.107 

100 2.708 1.466 1.520 0.061 0.050 

150 1.720 0.990 1.036 0.076 0.057 

T(3)      

25 169.385 72.238 73.397 58.482 59.442 

50 65.170 33.982 34.732 15.466 15.685 

100 30.913 15.077 15.913 2.328 2.448 

150 19.922 8.885 9.738 0.505 0.556 

T(7)      

25 19.789 9.337 9.473 1.739 1.756 

50 8.782 4.342 4.442 0.230 0.229 

100 4.068 2.152 2.240 0.077 0.063 

150 2.550 1.390 1.467 0.086 0.062 

F(3, 11)      

25 44.422 20.834 21.062 7.010 7.089 

50 21.347 9.485 9.785 1.073 1.131 

100 9.172 4.498 4.730 0.145 0.131 

150 6.178 3.077 3.303 0.114 0.085 

 
 

For non-normal error term in combination with 0.95ρ =  and 0.99ρ =  
leads to a larger estimated MSE for the OLS estimator and the ridge parameter, 
especially when n is small, but when the sample size increases the estimated MSE 
of the suggested ridge parameters, namely 1K  and 2K  decreases substantially. 

The performance of 1K  and 2K  is well for all cases when the error term is 
distributed as a normal and, when n is greater than 25 and the error term in non-
normal . 

When n is greater than 25, the modified ridge parameter performance, 
defined by (6) and (7), is much better than the estimators HKB, KS and the OLS, 
where 2K  has a low estimated MSE when the number of regressor equals 4. 

Summary and Conclusions 

In multiple linear regression, the effect of non-orthogonality of the explanatory 
variables is to pull the least squares estimates of the regression coefficients away 
from the true coefficients, β



, that one is trying to estimate. The coefficients can 



A COMPARISON BETWEEN BIASED AND UNBIASED ESTIMATORS 

302 
 

be both too large in absolute value and incorrect with respect to sign. Furthermore, 
the variance and the covariance of the OLS tend to become too large.  

A slight movement away from this point can give completely different 
estimates of the coefficients. This is accomplished by adding a small positive 
quantity, k, to each of the diagonal elements of the matrix X X′ . The resulting 
estimator is called the ridge estimator, suggested by Hoerl and Kennard (1970) 
and given by (3). 

Several procedure for constructing ridge estimators have been proposed in 
the literature. These procedures were aiming at a rule (or algorithm) for selecting 
the constant k in equation (3). In fact, the best method of estimating k is an 
unsolved problem and there is no constant value of k that is certain to yield an 
estimator which is uniformly better (in terms of MSE) than the OLS in all cases.  

By means of Monte Carlo simulations two suggested ridge parameters were 
evaluated and the result were compared with ridge parameters evaluated by Hoerl 
et. al (1975) and Khalaf and Shukur (2005). The estimator HKB performed well in 
this study. It appears to outperform KS when ρ  is small and the sample size is 
greater than 25. The suggested estimators 1K  and 2K  performs well in our 
simulation. They appeared to offer an opportunity for large reduction in MSE 
when p = 2 and the error term in normally distributed. For non-normal error term 
the versions of the ridge parameter has a lower estimated MSE when the sample 
size is greater than 25. 2K is always minimizes the estimated MSE when the error 
term in normally distributed. 
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Lognormal distribution is widely used in scientific field, such as agricultural, 
entomological, biology etc. If a variable can be thought as the multiplicative product of 
some positive independent random variables, then it could be modelled as lognormal. In 
this study, maximum likelihood estimates and posterior estimates of the parameters of 
lognormal distribution are obtained and using these estimates we calculate the point 
estimates of mean and variance for making comparisons. 
 
Keywords: Lognormal distribution, maximum likelihood estimation, posterior 
estimates & R software 
 

Introduction 

Aitchison & Brown (1957) have given a very comprehensive treatment of 
lognormal distribution. The lognormal distribution arises in various different 
contexts such as in physics (distribution of particles due to pulverisation); 
economics (income distributions); biology (growth of organisms), etc. Epstein 
(1947), Brownlee (1949), Delaporte (1950), Moroney (1951) describes various 
applications of lognormal distribution to physical and industrial processes, textile 
research and quality control. In the context of life testing and reliability problems, 
the lognormal distribution answers a criticism sometimes raised against the use of 
normal distribution (ranging from -∞ to +∞) as a model for the failure time 
distribution which must range from 0 to ∞. 

A random variable X is said to have a lognormal distribution if logeU X=

has normal distribution with mean µ and variance 2σ . Thus, the pdf of lognormal 
distribution is given by  
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The likelihood function of the random sample (x1, x2, x3, ..., xn )T  would  be 
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  (2) 

 
The mean and variance of the lognormal distribution are given by 
 

  
2

1( ) exp
2

E X σα µ
 

= = + 
 

  (3) 

and  
 
 ( )( )2 2

1( ) exp 2 exp( ) 1V X β µ σ σ= = + −   (4) 
 

Maximum Likelihood Estimators 
Maximum Likelihood is a popular estimation technique for many distributions 
because it picks the values of the distribution's parameters that make the data 
“more likely" than any other values of the parameters would make them. This is 
accomplished by maximizing the likelihood function of the parameters given the 
data.  

Consider the estimation of the parameters α1 and β1. Let
log , 1,2, ,i iU x i n= =  . Then using the fact that (U1, U2 , ... , Un) is a random 

sample from Normal distribution with parameters (µ,σ2). The mle of µ and σ2 first 
are given by 
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1ˆ
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U U
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and  
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The mle of α1 and β1 are given by 
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σα µ

 
= + 

 
  (7) 

 
and  
 ( ) ( )( )2 2

1̂ ˆ ˆ ˆexp 2 exp 1β µ σ σ= + −   (8) 

 

Posterior estimation of the parameter 

Again, consider the estimation of the parameters 1α  and 1β . First obtain the 
posterior estimates of µ  and 2σ  and then simultaneously the posterior estimates 
for 1α  and 1β  will be obtained. Laplace (1774) found that it worked exceptionally 
well to simply always choose the prior probability distribution for the 
parameter(s) of the model to be constant on the parameter space. 

The joint prior pdf for µ  and 2σ  considered is 
 
 ( )2, 1P µ σ ∝   (9) 

 
According to Bayes theorem, Joint posterior density of µ  and 2σ is given 

by 
    Posterior density ∝ prior density* likelihood 
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From equation (2) and (9) the joint posterior density of µ  and 2σ  is given by  
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From the equation (10)  
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Marginal posterior densities of µ  and 2σ  

The marginal density of µ  is obtained by integrating out 2σ  from (12) and 
is given as 
 

 ( ) ( )2 2

0

| , |x x dπ µ π µ σ σ
∞

− −
= ∫   

 
 



SULTAN & AHMAD 

309 

 ( ) ( )

2

21
/2 22

0

log
1 1| exp

2

n

i
i

n

x
x c n d

n
π µ β µ σ

σσ

∞
=

−

         = − + −           

∑
∫   

 
 

 ( )
1

2

12 2

1

1 2
2|

log

n

n
n

i
i

n

x c

x
n

n

π µ

β µ

−

− −

=

 Γ − 
 =

  
  
  + −
  
  

  

∑

  

 
 

 ( ) 2
2 2

1

1|

log
1 3, 1
2 2

n
n

i
i

nx

x
n nB

n

π µ
β

µ
β

−−

=

=
  
  −    + −      
  

  

∑

  (13) 

 
The marginal density of 2σ  is obtained by integrating the joint posterior density 
of µ  and 2σ  given in (12) over the range of µ . It is given as 
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Posterior estimates of µ  and 2σ  

The marginal density of µ  is given in (13) is a student’s t pdf. Thus the posterior 
estimates of µ  is given as 
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which is the posterior estimate for µ  under uniform prior. Now the posterior 
estimate of 2σ  can be obtained from equation (14) as 
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Thus, the posterior estimates of 1α  and 1β  are given by 
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Simulation study and discussion 

The estimates of the mean and variance using MLE and Bayesian estimation was 
obtained above. Next to obtain is the numerical relationship of point estimates 
using true value of the parameters,  MLE and Bayesian estimation.  

In this study, samples of 10, 20, 30, 40 and 50 observations were generated 
from lognormal pdf with parameters 2µ =  and 1σ = . The simulations were done 
in R Software. The mean and variance were calculated to compare the methods of 
estimation. The results are presented in Table 1.  

In Table 1, when point estimates of lognormal distribution are compared 
using true values of parameters with MLE and Bayesian estimation (by using 
uniform prior), the best estimator is the Maximum Likelihood (MLE) because it 
has the minimum variance.  
 
 
Table 1. Point estimates of lognormal distribution compared using true values of 
parameters with MLE and Bayesian estimation 
 

n True values MLE Posterior estimates 

  
Mean Variance Mean Variance Mean Variance 

( 1α ) ( 1β ) ( 1α̂ ) ( 1̂β ) ( *
1α ) ( *

1β ) 

10     9.9004 21.336 9.1225 62.1358 

20     12.6952 72.127 9.8447 130.857 

30 12.1825 255.011 12.6655 52.1804 10.5913 70.6613 

40     12.6452 56.9317 10.2974 71.6757 

50     20.4039 267.461 12.5356 356.339 
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The estimation of two parameters of the Kumaraswamy distribution is considered under 
Type II progressive censoring with random removals, where the number of units removed 
at each failure time has a binomial distribution. The MLE was used to obtain the 
estimators of the unknown parameters, and the asymptotic variance - covariance matrix 
was also obtained. The formula to compute the expected test time was derived. A 
numerical study was carried out for different combinations of model parameters. 
Different censoring schemes were used for the estimation, and performance of these 
schemes was compared. 
 
Keywords: Expected test time, maximum likelihood estimation, progressive 
censoring, random removals 
 

Introduction 

Life tests are often one of the main research topics in many experimental designs. 
There are several situations in life testing, in reliability experiments and survival 
analysis in which units are lost or removed from the experiments while they are 
still alive. The loss may occur out of control or be reassigned. The out of control 
case can happen when an individual under study (testing) drops out. The other 
case may occur because of limitation of funds or to save time. For more details 
Balakrishnan and Aggarwala (2000) provide a comprehensive reference on the 
subject of progressive censoring and its applications. There are several types of 
censoring schemes; the Type II censoring scheme is one of the most common for 
consideration. In a Type II censoring, a total of n units are placed on test, but 
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instead of containing until all n units have failed, the test is terminated at time of 
the mth (1 ≤ m ≤ n) unit failure. Type II censoring with different failure time 
distributions has been studied by many authors including Mann (1971), Meeker 
and Escobar (1991), and Lawless (2003). 

If an experimenter desires to remove live units at points other than the nth 
termination point of the life test, the above described scheme will not be of use to 
the experimenter. Type II censoring does not allow for units to be lost or removed 
from the test at other than the nth termination point. This allowance may be 
desirable, as in the case of accidental breakage of experimental units, in which the 
loss of test units at points other than the termination point may be unavoidable. 
Intermediate removal may also be desirable when a compromise between reduced 
time of experimentation and the observation of at least some extreme lifetimes is 
sought. These reasons lead directly into the area of progressive censoring; see 
Balakrishnan and Agarwala (2000).  

A generalization of Type II censoring is progressive Type II censoring. The 
progressive Type II censored life test is described as follows. Firstly, the 
experimenter places n units on a test at time zero, with m failures to be observed. 
When the first failure is observed, r1 of the surviving units are randomly selected 
and removed. At the second observed failure, rth of the surviving units are 
randomly selected and removed. This experiment terminates at the time when the 
mth failure is observed and the remaining rm = n – r1 – ... – rm-1 – m surviving units 
are all removed. The statistical inference on the parameters of failure time 
distributions under progressive Type II censoring has been studied by several 
authors, such as Cohen (1963), Mann (1971), Viveros and Balakrishnan (1974), 
Balakrishnan and Aggarwala (2000), Ng et al. (2002), Chan and Balakrishnan 
(2004), Soliman (2008) and Raqab et al. (2010) (and the references therein). Note 
that, in this scheme, r1, r2, ..., rm are all pre-fixed. However, in some practical 
situations, these numbers may occur at random. Yuen and Tse (1996) indicated 
that, for example, the number of patients who drop out from a clinical test at each 
stage is random and cannot be pre-determined. In some reliability experiments, an 
experimenter may decide that it is inappropriate or too dangerous to carry on the 
testing on some of the tested units even though these units have not failed. In 
these cases, the pattern of removal at each failure is random. Suppose that any test 
unit being dropped out from the life test is independent of the others but with the 
same removal probability p. Then, Tse et al. (2004) indicated that the number of 
test units removed at each failure time has a binomial distribution. The main 
purpose of this article is to assess the required time to complete a life test under 
progressive Type II censored data with random removal (PCR). Assume that the 
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lifetime follows the Kumaraswamy distribution. The number of units removed at 
each failure time follows a binomial distribution with parameters n and p. 

The Model 

The maximum likelihood estimators for the parameters of the Kumaraswamy 
distribution are derived based on progressive Type II censoring. Let random 
variable X have a Kumaraswamy distribution with two positive shape parameters 
α and θ. The probability density function of X is given by 
 

   (1) 

 
while the cumulative distribution function is given by 
 

   (2) 

 
Kumaraswamy (1980) was interested in distributions for hydrological random 
variables and actually proposed a mixture of a probability mass, at zero and 
density (1) over (0,1). 

The corresponding survival function of random variable X is 
 
   (3) 
 
and the failure (hazard) rate function takes the following form 
 

   (4) 

 
For X ≥ 0, let X1 < X2 < ...< Xm be the m ordered failure times out of n 

randomly selected items, where m is predetermined before testing. At the ith 
failure, ri items are removed from the test. For progressive Type II censored 
sample with predetermined number of removals, say , 
where R = . 
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Let (X1, X2, ..., Xm) denote a progressive Type II censored sample. Then the 
joint probability density function of all m progressive Type II censored order 
statistic is given by 
 

   (5) 

 
Thus for progressive Type II censoring with pre-determined number of 

removals  the conditional likelihood function can be written as (Cohen, 
1963) 
 

   (6) 

 
Equation (6) is derived conditional on ri, where ri can be of any integer value 
between 0 and n – m – (r1 + r2 + ...+ rm-1). The main difference between Type II 
progressive censoring and PCR is that the R are pre-determined in the former case 
while they are random in the latter case. Note that m is predetermined in both 
cases. Under PCR, the ri terms are random. In particular, assume that each ri 
follows a binomial distribution, such that 
 

   (7) 

and 
 

   (8) 
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where . 

Furthermore, assume that Ri independent of Xi for all i. Then the likelihood 
function can be found as 
 
   (9) 

 
where P(R, p) is the is the probability distribution of the R terms (R = r1, r2, …, 
rm) and, in particular, results in 
 

   (10) 

 
Substituting (4) and (5) into (7) results in 
 

   (11) 

and 

   (12) 

Maximum Likelihood Estimation 

The maximum likelihood estimators of the parameters α, θ, and p are derived 
based on progressive Type II censored data with binomial removals. Both point 
and interval estimations of the parameters are derived. 
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Point Estimations 
Because P(R, p) does not depend on the parameters α and θ, the maximum 
likelihood estimators (MLEs) of α and θ can be derived by maximizing (6) 
directly. Similarly, because L1(x, α, θ ׀ R = r) does not involve the binomial 
parameter p, then the MLE of p can be found by maximizing P(R, p) directly. The 
log likelihood function of (9) is given by 
 

   (13) 

 
Take the partial derivative of logL1(x, α, θ |R = r) with respect to α and θ and let 
them be zero 
 

   (14) 

 

 is given by . Thus the MLE  and the 

MLE is the numerical solution of equation (14). 
It is observed from (14) that the MLE of the parameter α cannot be obtained 

in closed form. It can be obtained by solving a one dimensional optimization 
problem. A simple fixed point iteration algorithm can be used to solve this 
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optimization problem. Firstly, the parameter θ in log-likelihood (13) has been 
replaced by its MLE the  resultant log-likelihood becomes  
 

   

 
After some simplification it can be presented as 
 

   (15) 

 
MLE of α can be obtained by maximizing (15) with respect to α and it is 

unique. Most of the standard iterative process can be used for finding the MLE. 
The following simple algorithm is proposed: If  is the MLE of α, then it is 

obvious from  that  satisfies the following fixed 

point type equation;   
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   (16) 

 
The iterated result of the above function has been considered as an MLE of α 

and denoted by . Now the approximate MLE of α has been incorporated in (14) 
to obtain the MLE of β. 

Similarly, from (12) the partial derivative of log P(R, p) with respect to 
binomial parameter p can be obtained by solving the following equation 
 

   

 
thus the MLE of  of p is given by 
 

   

Interval Estimations 
The approximate confidence intervals of the parameters based on the asymptotic 
distributions of the MLE of the parameters α, θ and p are derived in this 
subsection. The elements of the Fisher information matrix for the parameters of 
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the Kumaraswamy distribution based on progressive censored samples have been 
derived explicitly. The Fisher information matrix can be defined as 
 

   (17) 

 
For the information matrix for α, θ and p, find 
 

   

   

   

   

and 
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In order to derive the expressions for  the distribution of 

the ith order statistics from the Kumaraswamy distribution is required, which can 
be written as 
 

,  

 

where   

Here, the expectations necessary to derive the elements of the Fisher 
information matrix are 
 

   

 

   

 
where  are Euler gamma and Poly gamma functions respectively. 

Using these results, the Fisher information matrix can be obtained, which can 
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further be used to derive the elements of the approximate variance-covariance 
matrix as 
 

   

 
. It is known that the asymptotic distribution of the MLE is given by 

 

   (18) 

 
Because V involves the parameters α, θ and p, replace the parameters by the 
corresponding maximum likelihood estimators in order to obtain an estimate of V, 
which is denoted by . Using (18), approximate 100(γ)% confidence intervals for 
α, θ and p are determined respectively as , , , 

where zγ is the upper 100(γ)% percentile of the standard normal distribution. 

The Expected Time Test 

In practical applications, it is often useful to have an idea of the test time of the 
whole test. For progressive Type II censoring sampling plan with random or 
binomial removals, the expected test time for the experiment is given by the 
expectation of the mth order statistic X(m). From Balakrishnan and Aggarwala 
(2000), the conditional expectation of X(m) for a fixed set of R = R1 = r1, R2 = r2, 
Rm−1 = rm−1 is given by 
 

   (19) 
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where  
 

   

 
and ‘i’ is the number of live units removed from experimentation (or number of 
failure units). Substituting (1) and (2) into (19) results in the following 
 

   (20) 

 
Let 
 

   

 
Plugging this quantity into the right hand side of equation (20), the expected test 
time of progressive Type II censoring with fixed number of removal will be 
 

   (21) 
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Also, the expected time under the Type II censoring scheme without removal is 
defined by the expected value of the mth failure time, denoted by X*(m) where 
 

   (22) 

 
Because ri = 0 for all i = 1, 2, …, m − 1. Similarly, the expected value of X(m) for 
complete sample can be derived from (22) by setting m = n and ri = 0 as 
 

   (23) 

 
Under PCR, the R terms are random. The expected time to complete an 
experiment under PCR is given by taking the expectation of both sides equation 
(21) with respect to the R terms. That is 
 

   (24) 

 
where g(ri) = n – m – (r1 + r2 + … + ri−1) and P(R) is given in (10). Thus equation 
(24) gives an expression to compute the expected time for given values of m and n. 
To see how much time is saved under Type II progressive censoring, compare  
equations (23) and (24) where the ratio of the expected test time for Type I 
progressive censoring sample with binomial removals (PCR) with respect to the 
expected time for complete sample , that is 
 

   (25) 

 
If replacing the numerator by the expected test time under Type II 

progressive censoring with random removals (PCR), this ratio is defined by 
REET2. Notice that the ratios REET1 and REET2 provide important information in 
determining the shortest experiment time significantly if the sample size n is large. 
When REET1 and REET2 are closer to one, the test time under respective 
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censoring scheme is closer to the complete sample. The influence of the binomial 
probability removals p on the expected time can be studied by analyzing REET1 
for various values of p. The comparisons between the three expected times will be 
made in order to reward some information about m and n on the duration of the 
experiment. As it seems, analytical comparisons between these three expected 
times is difficult. Therefore, these comparisons can be made numerically for 
various values of m, n, α, and θ. 

Numerical Study 

The MLEs, their variances and 95% confidence intervals for parameters of the 
Kumaraswamy distribution using progressively censored data with random 
removals are now computed. The computations were made for different censoring 
schemes including various choices of m and n. the parametric space includes 

. 

 
The censoring schemes are framed as follows: 
 
Scheme 1: 
n = 20, m = 15,  
r1 = …= r14 = 0, 
r15 = 5 

Scheme 2: 
n = 20, m = 15,  
r1 = …= r7 = r9 = …= r15 = 0, 
r8 = 5 

Scheme 3: 
n = 20, m = 15, 
r2 = …= r15 = 0, 
r1 = 5 

 
Scheme 4: 
n = 20, m = 18, 
r1 = …= r17 = 0, 
r18 = 2 

Scheme 5: 
n = 20, m = 18, 
r1 = … = r8 = r11 = …= r18 = 0, 
r9 = r10 = 1 

Scheme 6: 
n = 20, m = 18, 
r2 = … = r18 = 0, 
r1 = 2 

 
Scheme 7: 
n = 30, m = 20,  
r1 = … = r19 = 0, 
r20 = 10 

Scheme 8:  
n = 30, m = 20,  
r1 = …= r10 = r13 = …= r20 = 0, 
r11 = r12 = 5 

Scheme 9:  
n = 30, m = 20,  
r2 = … = r20 = 0, 
r1 = 10 

 
Scheme 10: 
n = 30, m = 25,  
r1 = … = r19 = 0, 
r20 = 5 
 

Scheme 11: 
n = 30, m = 25,  
r1 = …= r10 = r13 = …= r20 = 0, 
r11 = 2, r12 = 3 
 

Scheme 12: 
n = 30, m = 25,  
r2 = …  = r20 = 0,  
r1 = 5 
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Scheme 13: 
n = 40, m = 30,  
r1 = …  = r29 = 0, 
r30 = 10 

Scheme 14:  
n = 40, m = 30,  
r1 = …= r14 = r17 = …= r30 = 0, 
r15 = r16 = 5 

Scheme 15:  
n = 40, m = 30,  
r2 = … = r30 = 0, 
r1 = 10 

 
Scheme 16: 
n = 40, m = 36,  
r1 = …  = r35 = 0, 
r36 = 4 

Scheme 17:  
n = 40, m = 36,  
r1 = …= r17 = r20 = …= r36 = 0,  
r18 = r19 = 2  

Scheme 18:  
n = 40, m = 36,  
r2 = …  = r36 = 0,  
r1 = 4 

 
The notations used in the tables are 
 

: Variance of the estimator 

: Lower limit of the confidence interval 

: Upper limit of the confidence interval 
 
 
Table 1. MLEs, their variances and 95% confidence intervals for parameters using 
α = 0.50, θ = 0.75 
 

Schemes                  

1 0.674492 0.941582 0.088685 0.059105 0.090802 1.258182 0.465076 1.418088 

2 0.675560 0.955438 0.090411 0.060857 0.086219 1.264902 0.471920 1.438956 

3 0.689900 0.988406 0.096476 0.065130 0.081111 1.298689 0.488204 1.488608 

4 0.640946 0.917092 0.087820 0.046725 0.060112 1.221780 0.493417 1.340766 

5 0.640955 0.926610 0.088027 0.047700 0.059434 1.222475 0.498538 1.354682 

6 0.649568 0.934912 0.088397 0.048559 0.066829 1.232306 0.503005 1.366819 

7 0.615257 0.909485 0.073949 0.041358 0.082264 1.148250 0.510886 1.308085 

8 0.620614 0.912566 0.080909 0.041639 0.063103 1.178126 0.512616 1.312516 

9 0.632944 0.915290 0.084524 0.041888 0.063112 1.202776 0.514146 1.316433 

10 0.581573 0.836671 0.071226 0.028001 0.058485 1.104661 0.508696 1.164646 

11 0.584405 0.854518 0.072029 0.029208 0.058375 1.110434 0.519547 1.189490 

12 0.602121 0.896171 0.073575 0.032125 0.070475 1.133767 0.544872 1.247470 

13 0.546138 0.809125 0.058654 0.021823 0.071455 1.020821 0.519583 1.098667 

14 0.546197 0.816111 0.059933 0.022201 0.066365 1.026028 0.524069 1.108152 

15 0.553892 0.823240 0.064746 0.022591 0.055164 1.052621 0.528647 1.117833 

16 0.510985 0.774778 0.038303 0.016674 0.127392 0.894579 0.521684 1.027872 

17 0.532987 0.781340 0.042096 0.016958 0.130846 0.935128 0.526102 1.036577 

18 0.536114 0.796164 0.048681 0.017608 0.103665 0.968562 0.536084 1.056245 
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Table 2. MLEs, their variances and 95% confidence intervals for parameters using 
α = 1.00, θ = 0.80 
 

Schemes                  

1 1.232107 1.026742 0.103913 0.070280 0.600290 1.863925 0.507139 1.546344 

2 1.238510 1.026802 0.105153 0.070288 0.602936 1.874084 0.507168 1.546435 

3 1.242170 1.027064 0.106155 0.070324 0.603573 1.880767 0.507298 1.546830 

4 1.218273 0.985327 0.099675 0.053937 0.599476 1.837070 0.530129 1.440525 

5 1.220254 0.987677 0.099778 0.054195 0.601136 1.839372 0.531393 1.443960 

6 1.220848 1.008086 0.103164 0.056458 0.591313 1.850382 0.542374 1.473797 

7 1.174262 0.958474 0.095742 0.045934 0.567794 1.780731 0.538404 1.378543 

8 1.190808 0.961994 0.097742 0.046272 0.578039 1.803578 0.540381 1.383606 

9 1.215313 0.969807 0.098676 0.047026 0.599623 1.831002 0.544770 1.394844 

10 1.132875 0.937474 0.083493 0.035154 0.566531 1.699219 0.569984 1.304964 

11 1.141405 0.941570 0.089372 0.035462 0.555460 1.727350 0.572475 1.310666 

12 1.163471 0.942070 0.092902 0.035500 0.566065 1.760876 0.572779 1.311362 

13 1.113024 0.878943 0.080758 0.025751 0.556034 1.670015 0.564417 1.193469 

14 1.128151 0.928314 0.081152 0.028726 0.569802 1.686501 0.596121 1.260507 

15 1.129390 0.936065 0.081241 0.029207 0.570737 1.688044 0.601098 1.271031 

16 1.110531 0.853722 0.076051 0.020246 0.570015 1.651048 0.574840 1.132605 

17 1.111389 0.856941 0.078882 0.020399 0.560905 1.661872 0.577007 1.136875 

18 1.111504 0.865018 0.080522 0.020785 0.555328 1.667680 0.582445 1.147590 
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Table 3. MLEs, their variances and 95% confidence intervals for parameters using 
α = 2.00, θ = 3.00 
 

Schemes                  

1 2.405773 3.331680 0.173545 0.740006 1.589262 3.222285 1.645617 5.017742 

2 2.420848 3.341618 0.175239 0.744427 1.600362 3.241334 1.650526 5.032709 

3 2.424628 3.349518 0.180851 0.747951 1.591108 3.258149 1.654428 5.044608 

4 2.363294 3.323579 0.153386 0.613677 1.595669 3.130919 1.788164 4.858994 

5 2.390266 3.328627 0.161481 0.615542 1.602645 3.177887 1.790880 4.866374 

6 2.395203 3.331073 0.172947 0.616447 1.580101 3.210306 1.792196 4.869950 

7 2.309179 3.258572 0.131193 0.530914 1.599256 3.019103 1.830440 4.686704 

8 2.313648 3.285888 0.133527 0.539853 1.597437 3.029859 1.845784 4.725992 

9 2.325209 3.321773 0.135464 0.551709 1.603822 3.046596 1.865942 4.777604 

10 2.254230 3.191529 0.110980 0.407434 1.601281 2.907178 1.940450 4.442609 

11 2.255714 3.220759 0.121270 0.414931 1.573166 2.938263 1.958221 4.483296 

12 2.278655 3.255155 0.125297 0.423841 1.584868 2.972441 1.979134 4.531176 

13 2.180235 3.120957 0.102417 0.324679 1.552983 2.807487 2.004137 4.237778 

14 2.184516 3.135531 0.102438 0.327719 1.557201 2.811832 2.013496 4.257567 

15 2.253760 3.140167 0.103276 0.328688 1.623882 2.883637 2.016473 4.263862 

16 2.104538 3.112679 0.082326 0.269133 1.542166 2.666911 2.095871 4.129487 

17 2.133270 3.117755 0.099195 0.270011 1.515963 2.750577 2.099288 4.136221 

18 2.177042 3.117986 0.100672 0.270051 1.555156 2.798928 2.099444 4.136528 
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Table 4. MLEs, their variances and 95% confidence intervals for parameters using 
α = 2.50, θ = 1.50 
 

Schemes                  

1 2.747904 1.730365 0.239122 0.199611 1.789462 3.706346 0.854679 2.606050 

2 2.757010 1.732250 0.240154 0.200046 1.796503 3.717517 0.855610 2.608889 

3 2.792415 1.733128 0.241268 0.200249 1.829681 3.755148 0.856044 2.610212 

4 2.708039 1.681290 0.227382 0.157041 1.773420 3.642658 0.904574 2.458007 

5 2.735921 1.713229 0.228650 0.163064 1.798701 3.673141 0.921757 2.504700 

6 2.739513 1.728698 0.237295 0.166022 1.784740 3.694287 0.930080 2.527315 

7 2.704854 1.647548 0.191089 0.135721 1.848065 3.561643 0.925478 2.369617 

8 2.705733 1.665756 0.214797 0.138737 1.797348 3.614119 0.935706 2.395806 

9 2.705802 1.678866 0.221835 0.140930 1.782654 3.628950 0.943071 2.414662 

10 2.677496 1.612695 0.171758 0.104031 1.865201 3.489791 0.980518 2.244871 

11 2.691698 1.616866 0.182896 0.104570 1.853477 3.529919 0.983055 2.250678 

12 2.700314 1.624152 0.183897 0.105515 1.859804 3.540824 0.987484 2.260819 

13 2.601492 1.542551 0.139221 0.079315 1.870170 3.332814 0.990556 2.094546 

14 2.628847 1.554005 0.165617 0.080498 1.831203 3.426491 0.997912 2.110099 

15 2.652432 1.581927 0.167527 0.083416 1.850203 3.454662 1.015842 2.148012 

16 2.564242 1.518715 0.118527 0.064069 1.889457 3.239027 1.022602 2.014829 

17 2.585654 1.532091 0.126751 0.065203 1.887853 3.283454 1.031608 2.032574 

18 2.590843 1.538084 0.128757 0.065714 1.887542 3.294144 1.035643 2.040524 
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Table 5. MLEs, their variances and 95% confidence intervals for parameters using 
α = 3.00, θ = 5.00 
 

Schemes                  

1 5.516209 3.339823 0.350879 0.743628 4.355202 6.677216 1.649639 5.030007 

2 5.532574 3.379539 0.352004 0.761419 4.369708 6.695441 1.669256 5.089822 

3 5.540173 3.381127 0.356985 0.762135 4.369107 6.711238 1.670041 5.092213 

4 5.484345 3.318767 0.332414 0.611901 4.354300 6.614389 1.785575 4.851959 

5 5.505484 3.325015 0.337346 0.614207 4.367087 6.643880 1.788936 4.861093 

6 5.509684 3.333368 0.343636 0.617297 4.360723 6.658645 1.793431 4.873306 

7 5.312807 3.283075 0.317312 0.538929 4.208731 6.416883 1.844204 4.721946 

8 5.462259 3.311419 0.321464 0.548275 4.350982 6.573536 1.860126 4.762713 

9 5.466648 3.313941 0.322346 0.549110 4.353848 6.579448 1.861542 4.766339 

10 5.241934 3.232154 0.287640 0.417873 4.190746 6.293123 1.965150 4.499159 

11 5.252454 3.250657 0.292829 0.422671 4.191826 6.313081 1.976400 4.524915 

12 5.271842 3.252974 0.308544 0.423274 4.183126 6.360557 1.977808 4.528140 

13 5.189160 3.208891 0.269755 0.343233 4.171176 6.207144 2.060604 4.357177 

14 5.203086 3.220785 0.276195 0.345782 4.173022 6.233150 2.068242 4.373328 

15 5.221027 3.226427 0.277078 0.346994 4.189318 6.252735 2.071865 4.380989 

16 5.160790 3.144943 0.251366 0.274741 4.178117 6.143463 2.117595 4.172291 

17 5.185568 3.147283 0.265617 0.275150 4.175422 6.195714 2.119170 4.175395 

18 5.187746 3.196740 0.266302 0.283865 4.176298 6.199194 2.152472 4.241009 
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Table 6. MLEs, their variances and 95% confidence intervals for parameters using 
α = 4.00, θ = 2.50 
 

Schemes                  

1 4.388710 2.724225 0.315652 0.494760 3.287524 5.489896 1.345577 4.102873 

2 4.419342 2.761146 0.318780 0.508262 3.312714 5.525969 1.363813 4.158478 

3 4.444269 2.786841 0.325157 0.517766 3.326626 5.561911 1.376505 4.197178 

4 4.362571 2.681995 0.292876 0.399617 3.301859 5.423284 1.442977 3.921014 

5 4.366521 2.690268 0.295321 0.402086 3.301390 5.431652 1.447428 3.933109 

6 4.380645 2.721175 0.309534 0.411378 3.290184 5.471106 1.464056 3.978294 

7 4.274244 2.667550 0.270601 0.355791 3.254665 5.293822 1.498445 3.836655 

8 4.315312 2.668255 0.274710 0.355979 3.288022 5.342602 1.498840 3.837669 

9 4.347334 2.671510 0.281012 0.356848 3.308326 5.386341 1.500669 3.842352 

10 4.212643 2.589071 0.267819 0.268132 3.198320 5.226967 1.574155 3.603987 

11 4.242698 2.638366 0.268059 0.278439 3.227919 5.257478 1.604127 3.672606 

12 4.254647 2.644628 0.270255 0.279762 3.235719 5.273574 1.607934 3.681322 

13 4.160297 2.574998 0.252870 0.221021 3.174688 5.145906 1.653547 3.496450 

14 4.198490 2.579545 0.259322 0.221802 3.200386 5.196594 1.656467 3.502624 

15 4.205975 2.580193 0.266779 0.221913 3.193622 5.218328 1.656883 3.503503 

16 4.097057 2.552605 0.234649 0.180994 3.147622 5.046492 1.718754 3.386456 

17 4.106227 2.554844 0.237447 0.181312 3.151148 5.061306 1.720262 3.389426 

18 4.159811 2.558519 0.239472 0.181834 3.200668 5.118953 1.722736 3.394302 

 
 
Tables 1-6 include the maximum likelihood estimates (MLEs), the variances of 
MLEs, and 95% confidence intervals for the parameters of the Kumaraswamy 
distribution under progressively Type II censored samples using different 
parametric values for various censoring schemes. It has been observed that by 
increasing the sample size (keeping censoring rate fixed), the estimated value of 
the parameter become closer to the true value, the variances of the MLEs decrease 
and widths of 95% confidence intervals tend to be lesser. This is an indication that 
the estimators are consistent in nature. It can further be assessed that the censoring 
schemes, concerned with survivals from the right, result in more precise results 
than their counterparts. As expected, the increase in true parametric values leads 
to the slower convergence of the estimates along with larger variances of the 
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estimates which lean to increase the widths of the confidence intervals. The 
increase in censoring rate, that is, the smaller values of ‘m’ has the same natural 
consequences. However, these negative impacts can be protected by employing 
larger (n > 30) sample sizes. 

Conclusion 

This study addressed the problem of estimation of parameters of the 
Kumaraswamy distribution under progressive censoring based on random 
removals. The maximum likelihood estimation was used to serve the purpose. The 
findings of the study indicate that the proposed estimators are consistent in nature. 
It is interesting to note that the removal of items from the right leads to the most 
efficient results. 
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A test statistic based on population quantiles using sample order statistics is suggested. 
The quantiles of the test statistics are evaluated for generalized exponential distribution. 
Similar test statistic based on moments of sample order statistic is referred and the 
proposed test formula is compared with it. Between the pairs of the above models it is 
established that the test formula proposed by us is more effective and useful than the 
formula based on the moments of order statistics as developed by Sultan (2007). 
 
Keywords: Population quantiles, generalized exponential distribution 
 

Introduction 

The three-parameter generalized exponential (GE) distribution has its probability 
density function (pdf) as  
 

 ( )
1

1 , , 0, 0, 0
x x

f x e e x
αµ µ

σ σα µ µ α σ
σ

−− −   − −   
   

 
= − > > > >  
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Its cumulative distribution function (cdf) is given by 
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The two-parameter GE distribution has its pdf as 
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Its cdf is given by 
 

 ( ) 1 , 0, 0, 0
x

F x e x
α

σα α σ
σ

 − 
 

 
= − > > >  

 
  (4) 

 
The GE distribution was introduced by Gupta and Kundu (1999). It is compared 
with the two-parameter Gamma and Weibull distributions in Gutpa and Kundu 
(2001a). Different models of estimations are discussed in Gutpa and Kundu 
(2001b). Raqab and Ahsanullah (2001) and Raqab (2002) studied the properties of 
order and record statistics from the two-parameter GE distribution respectively. 
Discriminating between gamma and GE distribution were studied by Gutpa and 
Kundu (2004). Discriminating between lognormal and GE distribution was given 
in Kundu et al (2005). The expected values of order statistics may not always be 
available in numerical form nor analytically simple beyond a given sample size. 
However if the distribution function is invertible analytically the population 
quantile for any ‘n’ can be easily obtained. Also moment of order statistics are 
conceptually similar to the population quantiles with an admissible measure of 
closeness. Therefore, quantiles are used to develop the test statistic and to 
distinguish the GE distribution from other well-known life testing models. The 
proposed work is similar to that of Sultan (2007) wherein moments of order 
statistics are used to develop the test statistic with GE distributions null 
population. The aim of this article is to explore the usefulness of analytical 
expressions of population quantiles of GE distribution. In section 2 the GE 
distribution and its quantiles are developed. In section 3 the goodness of fit tests 
of the two-parameter and three parameter GE distribution are developed. Section 
4 deals with the power of the proposed test procedure in comparison with that of 
Sultan (2007) with the same alternative populations. In section 5 the performance 
of quantiles of GE distribution is tested, and Section 6 contains concluding 
remarks. 

The GE distribution and its quantiles 
The pth quantile of population is defined as the solution of the equation ( ) iF x p=
where F(x) is the cdf given in (1.4). This is also called the standard population 
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quantile. If 1 2, ,... nx x x  is an ordered sample of size n and 
1i

ip
n

=
+

 then the 

solution of ( ) iF x p=  is defined as ith population quantile corresponding to its 

order statistic ix . In the sample this is denoted by ( ) i.e., 
1i i

id F d
n

=
+

 . Expected 

value of its order statistic in the sample is denoted by iµ , the theory of order 
statistics indicate that iµ , id  can be approximated by each other. If the distribution 
function of the population is in a closed form, 'sid  sometimes can be obtained 
more easily than 'sα  , moments of order statistics. This possibility is explored in 
developing the proposed test statistics of this article. Given the form of ( )F x and 
a natural number n, 'sid  can be obtained by inverting the population distribution 
function. This was done for the GE distribution with the shape parameter 

0.5, 2.0α =  and sample size 10, 20, 25n = . To make use of them in the proposed 
test statistic, the details are given in the following sections. 

Goodness-of-Fit Test using quantiles 
Test for two-parameter case  Let 1 2, ,... nx x x denote a sample from two-
parametric GE distribution. The correlation type goodness of fit test procedure in 
this case using quantiles can be formed as follows: 

0 :H F  is correct, that is 1 2, ,... nx x x have ( )0, ,GE σ α  given in (4) versus 

1 :H F is not correct, that is 1 2, ,... nx x x  have another cdf and the test statistic used 
to run the test is given by 
 

 1
1 2 2

1 1

n
i i i

n n
i i i i

x dT
x d
=

= =

Σ
=

Σ Σ
  (5) 

 
The test statistic 1T  is simulated through Monte-Carlo method based on 

10,000 simulations. Table 1 represents the percentages points of 1T  for sample 
sizes 10, 20, 25n = and 0.5, 2.0α = . It can be seen from the Table 1, the 
percentage points of 1T  follow the naturally expected order. 
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Table 1. Percentage points of 1T  
 
α n 0.50% 1% 2% 2.50% 5% 10% 20% 30% 40% 50% 

0.5 10 0.9947 0.9931 0.991 0.9901 0.9865 0.9808 0.9708 0.9611 0.9499 0.9374 
  20 0.9921 0.9903 0.9879 0.9865 0.9818 0.9747 0.963 0.9506 0.9375 0.9221 
  25 0.991 0.989 0.986 0.9847 0.9796 0.9717 0.959 0.9462 0.9334 0.9189 
2 10 0.9954 0.9944 0.9933 0.9928 0.9908 0.9877 0.9829 0.9782 0.9734 0.9674 
  20 0.9944 0.9932 0.9918 0.9912 0.9891 0.9863 0.9818 0.9773 0.9723 0.9665 
  25 0.9936 0.9925 0.9911 0.9906 0.9886 0.9856 0.9812 0.977 0.9722 0.9669 

 
 
Test for the three-parameter case Let 1 2, ,... nx x x denote a sample from three-
parametric GE distribution and let 1i iZ X X= −  and , 1, 2,.... 1i i iv d d i n= − = − . 
The correlation type goodness of fit test in this case using quantiles can be formed 
as follows: 

0 :H F is correct, that is 1 2, ,... nx x x  have ( )0, ,GE σ α  given in (2) versus

1 :H F is not correct, that is 1 2, ,... nx x x  have another cdf and the test statistic used 
to run the test is given by 
 

 1
2 2 2

1 1

n
i i i

n n
i i i i

z vT
z v
=

= =

Σ
=

Σ Σ
  (6) 

 
The statistic 2T  is simulated through Monte-Carlo method based on 10,000 
simulations. Table 2 represents the percentages points of 2T for sample sizes 

10, 20, 25n = and 0.5, 2.0α = . It can be seen from the Table 2 the percentage 
points of 2T follow the naturally expected order. 
 
Table 2. Percentage points of 2T  

 
α n 0.50% 1% 2% 2.50% 5% 10% 20% 30% 40% 50% 

0.5 10 0.9951 0.9934 0.9914 0.9905 0.9869 0.9813 0.9712 0.9615 0.9505 0.9382 
  20 0.9923 0.9904 0.998 0.9865 0.9818 0.9748 0.963 0.507 0.9376 0.9222 
  25 0.9912 0.9891 0.9861 0.9847 0.9797 0.9718 0.959 0.9462 0.9334 0.919 
2 10 0.9968 0.9958 0.9947 0.9943 0.9928 0.9902 0.9857 0.9812 0.9767 0.971 
  20 0.9953 0.9942 0.9929 0.9924 0.9905 0.9879 0.9834 0.979 0.974 0.9682 
  25 0.9945 0.9935 0.9922 0.9917 0.9898 0.987 0.9826 0.9785 0.9737 0.9683 
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Power of the test 

The power of the test is calculated by replacing ( ), ,GE µ σ α  random variates 
generator in the simulation program with generators from the alternative 
distributions including: normal, lognormal, Cauchy, Weibull and gamma. Based 
on different sample sizes and 10,000 simulations, the power is calculated to be 
 

 0# of rejections of
10,000

HPower =   

 
Where 0H is rejected if ( )1 2T T  greater than or equal to the corresponding 

percentage points given in Table 1 (Table 2 and ( )1 2T T  is evaluated from the 
alternative distributions. Table 3 and 4 represent the power of the test for the two-
parameter and three-parameter cases, respectively. The different alternative 
distributions considered are: (i) normal distribution N(µ, σ), (ii) lognormal Ln(µ, 
σ), (iii) Weibull distribution with location parameter µ, scale parameter σ and 
shape parameter α, W(µ, σ, α), (iv) gamma distribution with location parameter µ, 
scale parameter σ and shape parameter k G(µ, σ, k) and (v0 Cauchy distribution 
with location parameter µ and scale parameter σ C(µ, σ). Table 3 and 4 indicate 
that the correlation test has good power to reject sample from the chosen 
alternative distributions. 
 
 
Table 3. Power of the test of the two-parameter case ( )1σ =   
 

    N(0,1) W(0,1,3) G(0,1,7) 

α n 5% 10% 5% 10% 5% 10% 

0.5 10 0.9227 0.745 1 1 0.9991 0.9946 

  20 0.9999 0.9985 1 1 0.9845 0.9306 

  25 0.9989 0.9986 1 1 0.9959 0.9857 

2 10 0.9971 0.9999 0.9991 0.9947 1 0.9996 

  20 0.9997 0.9996 1 0.998 0.9972 0.9944 

  25 0.9998 0.9997 1 1 0.9995 0.9986 

 
 
 
 



RAO & KANTAM 

341 

Table 4. Power of the test of the two-parameter case ( )0, 1µ σ= =   
 

    LN(1,5) W(0,1,6) C(0,1) 

α n 5% 10% 5% 10% 5% 10% 

0.5 10 0.975 0.937 1 1 1 1 

  20 0.975 0.943 1 1 1 1 

  25 0.982 0.959 1 1 1 1 

2 10 1 1 1 1 1 1 

  20 1 1 1 1 1 1 

  25 1 1 1 1 1 1 
 
 

Tables similar to that of 3 and 4 are available in Sultan (2007), evaluated 
using the moments of order statistics. By comparison, notice that the coverage 
probability given in the tables are uniformly larger than what are given in Sultan 
(2007). Therefore, the test statistic proposed based on the population quantiles is 
more powerful than that based on the moments of order statistics. Moreover, for a 
distributional GE distribution moments of order statistics are not available 
completely beyond a given sample size whereas population quantiles are available 
for any sample size provided the mathematical form of the cdf is analytically 
invertible. Therefore it can be concluded that the proposed test statistic T is more 
powerful than that of Sultan (2007). 

Numerical Examples 
In order to show the performances of the test of GE distribution in both cases 
(two-parameter and three-parameter), four sets of order statistics each of size 25 
were simulated, they are 
 

1. Sample from GE(0,1,2): two-parameter case of the GE distribution 
with scale parameter is equal to 1 and shape parameter is equal to 2 

2. Sample from GE(1,1,2): three-parameter case of GE distribution with 
location parameter is equal to 1, scale parameter is equal to 1 and 
shape parameter is equal to 2. 

3. Sample from G(0,2,2): gamma distribution with location parameter is 
equal to 0, scale parameter is equal to 2 and shape parameter is equal 
to 2. 
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4. Sample from GE(2,2,2): gamma distribution with location parameter is 
equal to 2, scale parameter is equal to 2 and shape parameter is equal 
to 2. 

 
The above four order statistics samples with the analogous quantiles of order 

statistics from GE(0,1,2) are used to run the test. The results of the test at 5% 
significance level and at α=2 (whether accept (A) or reject (R) 0H ) are given for 
different values in the following table. 
 
 
Table 5. Results at 5% significance, α = 2 
 

Decision 
GE(0,1,2) GE(1,1,2) G(0,2,2) G(2,2,2) 

A A R R 
 

Conclusions 

This article proposed a test formula parallel to the one developed by Sultan (2007). 
It was found to be simple and can be used for any sample size. Moreover, it is 
more effective with respect to power evaluation and coverage probabilities. 
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Among different candidate parametric detection functions, it is suggested to use Akaike 
Information Criterion (AIC) to select the most appropriate one of them to fit line transect 
data. Four different detection functions are considered in this paper. Two of them are 
taken to satisfy the shoulder condition assumption and the other two estimators do not 
satisfy this condition. Once the appropriate detection function is determined, it also can 
be used to select the smoothing parameter of the nonparametric kernel estimator. For a 
wide range of target densities, a simulation results show the reasonable and good 
performances of the resulting estimators comparing with some existing estimator, 
particularly the usual kernel estimator when the half normal model is use as a reference to 
select the smoothing parameter. 
 
Keywords: Line transect sampling, Akaike Information Criterion, kernel method, 
smoothing parameter 
 

Introduction 

Line transect sampling is one of the popular sampling method adopted by 
ecologists to estimate the population density D of specific objects in a given 
region. The estimation procedure can be performed by walking a distance L 
following a specific line transect, counts the number objects being investigated 
and records the perpendicular distance, X from the detected object to the center of 
the line transect. Let g(x) be the detection function of observing an object at 
distance X, then X will tend to have a probability density function f (x) of the same 
shape as g(x) but scaled so that the area under f (x) equals unity. Buckland et al. 
(2001) and Burnham et al. (1980) constitute the key references for this distance 
sampling procedure. 

mailto:omarm@yu.edu.jo
mailto:alsalman85@yahoo.com
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The first logical assumption related the detection function g(x) indicates that 
g(x) is monotonically decreasing function in x. The second important assumption 
is that g(0) = 1, which indicates the objects located on the center of line will never 
be missed. In other words, this condition means that the probability of detected an 
object given that its perpendicular distance is zero equals one. In addition to the 
previous two assumptions, some authors (see Mack and Quang, 1998) stated that, 
in many practical situations the shape of the detection function of the data should 
have a shoulder at distance x = 0. If that is required then it can be translated 
mathematically as g' (0) = 0. The condition g' (0) = 0 is known in the literature as 
the shoulder condition assumption. However, Buckland et al. (2001) pointed out 
that the shoulder condition assumption may not be satisfied for some cases in 
practice, especially for the experiment with small objects or the experiment that 
performed with existing a fog or a tall grass etc. If g(x) is monotonically 
decreasing and g' (0) = 0 then this ensures that f (x) is in turn monotonically 
decreasing with f ' (0) = 0. 

Burnham and Anderson (1976) gave the fundamental relation for estimating 
the density of objects in a specific area, which can be expressed as 

, and the general estimate for D is given by , 

where E(n) is the expected value of the number of detected objects n, and  is 
an approximate sample estimator of f (0) based on the n observed perpendicular 
distances x1, x2, …, xn. Hence, the key aspect in line transects sampling can be 
reduced to be the modeling of f (x) as well as the estimation of f (0). 

Let X1, X2, …, Xn be a random sample of n perpendicular distances from 
unknown pdf f (x). A parametric approach would involve by assuming that f (x)  is 
a member of a family of proper pdf of a known functional form but depends on an 
unknown parameter θ, where θ may take a vector value and should be estimated 
by using the perpendicular distances. A variety of approaches to estimate θ will 
lead to  In contrast to the parametric method, the nonparametric 

kernel method requires no assumptions about the form of f (x). This method 
allows the data at hand to talk about themselves. 

Given that the line transect data are available and their true pdf is unknown, 
our first aim in this paper is to choose the most appropriate pdf for these data by 
considering four logical parametric models. The Akaiki Information Criterion 
(AIC) is suggested for use to select the best parametric model. The second aim is 
to use the AIC to determine the best parametric model that can be used as a 
reference to determine the smoothing parameter of the kernel estimator of f (0). 
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Some Parametric Estimators 

A number of parametric models have been proposed in the literature for f (x). The 
negative exponential model and the half normal model are the most prominent 
models. Gates et al. (1968) suggested the negative exponential model with 
detection function, 
 
   
 
The corresponding pdf is, 
 

   (1) 

 
The maximum likelihood (ML) method indicates that the ML estimator of f (0) is 

, where  is the sample mean. The detection function g1(x) (or the 
pdf f1(x)) do not satisfy the shoulder condition, which minimizes the importance 
of utilizing this model in line transect sampling. In contrast to the exponential 
model, the half normal model (Burnham et al., 1980) satisfies the shoulder 
condition assumption. The half normal detection function is given by 
 
   
 
and the pdf is 
 

 ( ) 2 2/2
2

2 , x 0.
2

xf x e σ

σ π
−= ≥  (2) 

 

The ML estimator of f (0) is ( )
1/2

2
2ˆ 0f
Tπ

 =  
 

 under the half normal model, where 

 is the ML estimator of σ2. Ababneh and Eidous (2012) suggested the 

weighted exponential detection function with the form, 
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and the corresponding pdf is 
 

   (3) 

 
The parameter required to estimate is 
 

   

 
The expected value of X based on Model (3) is 7/(6θ), which gives  

as the moment estimator for . The moment estimator for  is given in a 
closed form, while the maximum likelihood estimator needs a numerical method 
to find it. It is worthwhile to note that the Model (3) satisfies the shoulder 
condition assumption. That is, f3' (0) = 0. Finally, Burnham et al. (1980) suggested 
the Reversed Logistic detection function, which is given by 
 

 ( )
0

4 0

3 ,
1 2

x

x

eg x
e

−

−=
+

  

 
and the corresponding pdf is given by 
 

   (4) 

 
It is easy to verify that Model (4) does not satisfy the shoulder condition 
assumption. Based on Model (4), the parameter that to estimate is 

 If one decides to use the moment estimator for , then he 

obtains ( ) ( )4
2 1.3078 0.7936ˆ 0 .

3ln 3
f

X X
= =  Again the ML estimator of θ based on 

Model (4) does not exist in closed form and consequently it is not exist in closed 
form for . Therefore, a numerical method is required to find the 
corresponding ML estimator. 
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The Nonparametric Kernel Estimator 

Let X1, X2, …, Xn be n perpendicular distances (assumed to be independent and 
identically distributed) from a continuous probability density function f (x). 
Because the perpendicular distances are nonnegative, the usual kernel estimator of 
f (x) (Silverman, 1986 and Chen, 1996) is 
 

   (5) 

 
where h is called the smoothing parameter (or bandwidth) and K is a symmetric 
kernel function assumed to satisfy the following conditions 
 

   (6) 

 
The kernel estimator of f (0) is obtained by taking x = 0 in Equation (5), which 
gives 
 

   

 
Since K is a symmetric function (i.e., K(−x) = K(x)), then 
 

   (7) 

 
If f (x) has a second continuous derivative at x = 0 then under the assumption that 

 and  when , the bias and variance of  are (Chen, 
1996) 
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   (8) 

 
and 
 

   (9) 

 

where  is the ith derivative of f (x) at x = 0,  and 

 Hence, if f ' (0) = 0, then the bias convergence rate is O(h2), 

if not (i.e., f ' (0) ≠ 0), the bias convergence rate is only O(h), which is slower than 
O(h2) as . 

The estimator of D by using the kernel method is now obtained by 
substituting the estimator  from (7) back into the formula of . 

The Optimal Smoothing Parameter 

There are many kernel functions that satisfy Condition (6). Wand and Jones 
(1995) pointed out that there is very little to choose between the various kernel 
functions on the basis of the mean square error of the estimator. In other words, 
given that the kernel function that satisfies (6) is selected, then the performance of 
the kernel estimator remains almost the same as any other kernel estimator when 
the kernel function is changed. However, it becomes very well know that the way 
to select the smoothing parameter h is very sensitive on the performance of the 
kernel estimator (see for example, Gerard and Schucany, 1999 and Eidous, 2005). 
The popular method that used to select h using line transect data is the reference 
method. This method can be used by adopting the half normal detection function 
as a reference. Gerard and Schucany (1999) pointed out that this technique is very 
acceptable in line transect sampling and there is no need to adopt the other 
computational methods such as least squares cross validation and likelihood cross 
validation methods. 

As opposed to referring to only the half normal detection function to 
compute h, the other detection functions as stated in the section on Parametric 
Estimators are introduced as references to select h. This gives a choice to select 
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the most appropriate model to select the smoothing parameter and then, as 
expected, to improve the performances of the kernel estimator. 

As stated, the smoothing parameter h has a strong effect on the accuracy of 
the kernel estimator (7) as illustrated by examining Formulas (8) and (9). As they 
demonstrated, the choice of a large value of h gives a large bias and small 
variance and vice versa. The logical method to determine h is to find its optimal 
value that minimizes the asymptotic mean square error (MSE) of the estimator 

. The formula of the asymptotic MSE of  (based on (8) and (9)) is 
given by 
 

   (10) 

 
Formula (10) is obtained by assuming that f ' (0) = 0. By differentiating both sides 
of (10) with respect to h and equating the resulting equation with zero, the value 
of h that minimize the asymptotic MSE of f (0) can be obtained. This value is 
known as the optimal smoothing parameter with respect to the asymptotic MSE, 
which is given by 
 

   (11) 

 
The smoothing parameter h is now computed by assuming a reasonable form for 
f(x). Gerard and Schucany (1999) compared among different methods to compute 
h in practice. They recommended to use the half-normal pdf as a reference, i.e., 

they assumed that f (x) = f2(x) (see Formula (2)), which gives  and 

, where σ is now estimated by its maximum likelihood estimator 

2
1ˆ

n
i ix
n

σ == ∑ . Now, assume that the kernel function is the standard normal, i.e. 
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K(t) = N(0,1), then . By adopting the same technique, the formulas 
of h for the other densities can be derived, and are stated as follows: 

• If , then , where  is the 
maximum likelihood of θ. 

• If , then , where  is the 

maximum likelihood of θ under the weighted exponential pdf. 

However if the moments estimator of θ is required then . 

• If , then , where  is the 

maximum likelihood of θ under the reversed Logistic pdf. Note that 

the moments estimator of θ is . 

Akaike Information Criterion (AIC) and the Proposed 
Estimators 

The AIC (Buckland et al., 2001) is defined by 
 
 ( )2 2eAIC Log L p= − +  
 
Where  is the log-likelihood function evaluated at the maximum 
likelihood estimates of the model parameter and p is the number of parameters in 
the model. The above criterion provides a method to select the best model (among 
a set of models) that fit the data at hand. For a given data set, AIC is computed for 
each model and the model with the smallest AIC is considered to be better than 
the others. For models (1), (2), (3), and (4), the AICs are given by 

• ( )1 2 2 2eAIC n nLog X= + +  for the negative exponential (Model 1). 

• ( ) ( )2
2 ˆ2 log 2 log 2 2e eAIC n n nπσ= − + + +  for the half normal 

(Model 2), where 
2

1ˆ
n
i ix
n

σ == ∑  is the maximum likelihood 

estimator for σ2. 
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• ( ) ( )( ){ }3 1 1
ˆ ˆ ˆ2 log 2 / 3 log 2 exp 2n n

e i i i e iAIC n x xθ θ θ= == − − + − − +∑ ∑  

for the weighted exponential (Model 3), where  is the maximum 
likelihood estimator for θ. 

•  

for the reversed Logistic (Model 4), where  is the maximum 
likelihood estimator for θ. 

Two proposed estimators will be constructed for f (0) based on the AIC. For 
a random sample of n perpendicular distances X1, X2, …, Xn, the first proposed 
estimator is constructed by computing the AIC for each model and the model with 
the smallest AIC is selected to estimate f (0). If the selected model is fj (x), 

1, 2,3, 4j =  then ( )ˆ 0jf  is the estimator of f (0). For example, if f1 (x) is selected 

based on the AIC then ( )ˆ 0 1/f X=  is the estimator of f (0). The first estimator of 

f (0) will be denoted by , where the sub P stands for “parametric.” The 
second estimator is the usual kernel estimator (Estimator 7) but here the 
smoothing parameter of the kernel estimator is computed by using the reference 
model that is selected based on the AIC. In other words, compute the AIC for the 
previous four models and then select the model that has the smallest AIC, then 
based on the selected model, use the corresponding optimal formula to compute h. 
For example, if f1 (x) is selected based on the AIC then 1/50.8918h Xn−= . This 
value is substituted in Estimator (7), which enables us to compute its final value 
for a given data set. The second estimator of f (0) is denoted as ( )ˆ 0Nf , where the 
sub N stands for “non-parametric.” 

Simulation Study and Results 

In order to assess the performances of the proposed estimators  and  
of f (0), discussed in the previous section, a simulation study is performed. For the 
sake of comparison, the usual kernel estimator  with smoothing parameter 

 (Gerard and Schucany, 1999) is also considered. Four target 
families were considered in the simulation. These families were chosen using the 
criterion that they are representative of many different shapes that might occur in 
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the field. The target models – not necessary the same as the four models discussed 
in the Introduction – that used to simulate the perpendicular distances are 

1) Exponential Power (EP) family (Pollack, 1978) 

 ( ) ( )
1 , 0, 1

1 1/
xf x e x
β

β
β

−= ≥ >
Γ +

  

2) Hazard-Rate (HR) family (Hayes and Buckland, 1983)  

 ( ) ( ) ( )1 1 , 0, 1
1 1/

xf x e x
β

β
β

−−= − ≥ >
Γ −

  

3) Beta (BE) family (Eberhardt, 1968)  

 ( ) ( )( )1 / , 0 , 0f x w x w x wββ β= + − ≤ ≤ >   

4) General Reversed Logistic (GRL) family (Burnham et al., 1980)  

 ( )
( )( )

, 0, , 0
ln 1 1 x

bf x x b
b be β

β β
−

= ≥ >
+ +

 

Two target models with two values for parameter β are selected from each 
of the above families. The selected model is truncated at a distance w. The 
selected values for β and for w for each model are as follows: (β, w) = (1,5), (2,3) 
for EP family; (β, w) = (1.5,20), (2,12) for HR family; (β, w) = (10,5), (20,9) for 
BE family; and (β, b, w) = (6,10,1), (8,30,1) for GRL family. These models cover 
a wide range for the detection functions of perpendicular distances, which vary 
near zero from spike to flat. It is worthwhile to mention here that the Reversed 
Logistic model (i.e. f4 (x)) is a special case of the above GRL with b = 2. The 
target GRL models that selected to simulate the data are taken for b = 10,30, 
which differ in their shape for f4 (x). This choice is made to avoid our knowledge 
of the true detection function of the perpendicular distances. 

It should be remarked that the EP model with β = 1, BE family and the GRL 
family do not satisfy the shoulder condition assumption. These choices were made 
in order to assess the robustness of the considered estimators with respect to the 
violation of the shoulder condition assumption. Note also that the other 
considered models satisfy the shoulder condition assumption. 

For each model and for sample sizes n = 50,100,200, one thousand samples 
of perpendicular distances were randomly drawn. For each model and for each 
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sample size, Tables 1 – 4  demonstrate the simulated value of the relative bias 
(RB); ( )( ) ( ){ } ( )ˆ 0 0 / 0RB E f f f= −  and the relative mean error (RME); 

( )( ) ( )ˆ 0 / 0RME MSE f f=  for each considered estimator. 
 
 
Table 1. RB, RME, and EFF of the different estimators when the perpendicular distances 
are simulated from EP detection function 
 
    n = 50   n = 100   n = 200 
Estimator Parameters RB RME EFF  RB RME EFF  RB RME EFF 

 

β = 1 
w = 5 

-0.322 0.337 1.000  -0.288 0.298 1.000  -0.265 0.272 1.000 
 -0.043 0.209 1.614  -0.031 0.166 1.798  -0.024 0.133 2.038 

 -0.221 0.259 1.302  -0.194 0.224 1.332  -0.177 0.192 1.417 

             
 

β = 2 
w = 2.5 

-0.083 0.156 1.000  -0.070 0.120 1.000  -0.052 0.097 1.000 
 0.043 0.172 0.908  0.008 0.080 1.511  0.006 0.055 1.765 

 -0.087 0.173 0.906  -0.082 0.124 0.971  -0.058 0.098 0.994 
 
 
Table 2. RB, RME, and EFF of the different estimators when the perpendicular distances 
are simulated from HR detection function 
 
    n = 50   n = 100   n = 200 
Estimator Parameters RB RME EFF  RB RME EFF  RB RME EFF 

 

β = 1.5 
w = 20 

-0.474 0.485 1.000  -0.439 0.444 1.000  -0.398 0.401 1.000 
 -0.255 0.297 1.633  -0.269 0.284 1.563  -0.277 0.285 1.411 

 -0.301 0.333 1.457  -0.268 0.284 1.562  -0.227 0.238 1.689 

             
 

β = 2 
w = 12 

-0.266 0.290 1.000  -0.215 0.231 1.000  -0.171 0.183 1.000 
 0.050 0.188 1.536  0.069 0.146 1.581  0.068 0.113 1.612 

 -0.119 0.190 1.522  -0.080 0.131 1.760  -0.050 0.094 1.944 
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Table 3. RB, RME, and EFF of the different estimators when the perpendicular distances 
are simulated from BE detection function 
 
    n = 50   n = 100   n = 200 
Estimator Parameters RB RME EFF  RB RME EFF  RB RME EFF 

 

β = 10 
w = 5 

-0.299 0.316 1.000  -0.271 0.281 1.000  -0.244 0.252 1.000 
 -0.064 0.233 1.354  -0.039 0.194 1.451  -0.014 0.147 1.716 

 -0.217 0.264 1.197  -0.184 0.217 1.298  -0.147 0.166 1.516 

             
 

β = 20 
w = 9 

-0.317 0.333 1.000  -0.285 0.296 1.000  -0.257 0.264 1.000 
 -0.068 0.220 1.518  -0.036 0.168 1.756  -0.020 0.133 1.984 

 -0.229 0.266 1.253  -0.198 0.224 1.318  -0.171 0.184 1.431 
 
 
Table 4. RB, RME, and EFF of the different estimators when the perpendicular distances 
are simulated from GRL detection function 
 
    n = 50   n = 100   n = 200 
Estimator Parameters RB RME EFF  RB RME EFF  RB RME EFF 

 

β = 6 
b = 10 
w = 1 

-0.092 0.166 1.000  -0.087 0.132 1.000  -0.070 0.107 1.000 
 0.028 0.172 0.968  -0.013 0.075 1.758  -0.009 0.050 2.155 

 -0.098 0.181 0.922  -0.097 0.135 0.975  -0.073 0.107 1.001 

             
 

β = 8 
b = 30 
w = 1 

-0.058 0.150 1.000  -0.040 0.115 1.000  -0.035 0.094 1.000 
 0.101 0.168 0.891  0.088 0.115 1.001  0.080 0.095 0.996 

 -0.063 0.157 0.953  -0.045 0.114 1.015  -0.035 0.094 1.000 
 
 

For simple comparison, compute the efficiency (EFF) of the proposed 
estimators  and  with respect to the classic kernel estimator , 
which is given by 

 
( )( )
( )( )or

ˆ 0
ˆ 0P N

MSE f
EFF

MSE f
=   

 
Depending on the simulation results of Tables 1 – 4, several conclusions can be 
drawn by inspecting the results in regard to RB, RME, and EFF 
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• The RBs that associated with the proposed estimators  and 

 are generally smaller in their magnitude than that associated 

with the classic kernel estimator . 

• The RMEs for different estimators decrease when the sample size 
increases. This is a strong sign for the consistency of these 
estimators. 

• The performance of the classical kernel estimator seems to be 
reasonable for EP model with β = 2 and for GRL model comparing 
to the proposed estimator , at which the performances of the 

two estimators are similar. However,  beats  for the 
other cases. 

• By comparing between the two proposed estimators  and 

, the performance of the former one seem to be surprisingly 
for most considered cases especially when the sample size increases. 

Generally, Tables 1 – 4 demonstrate clearly that there is a significantly 
improvement by applying the estimator  or even  instead of the 

classic kernel estimator . 
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The Bayesian approach of joinpoint regression is widely used to analyze trends in cancer 
mortality, incidence and survival data. The Bayesian joinpoint regression model was used 
to study the childhood brain cancer mortality rate and its average percentage change 
(APC) per year. Annual observed mortality counts of children ages 0-19 from 1969-2009 
obtained from Surveillance Epidemiology and End Results (SEER) database of National 
Cancer Institute (NCI) were analyzed. It was assumed that death counts are 
probabilistically characterized by the Poisson distribution and they were modeled using 
log link function. Results were compared with the mortality trend obtained using 
joinpoint software of NCI.  
 
Keywords: Bayesian statistics, brain cancer, joinpoint regression, mortality, SEER. 
 

Introduction 

The social and economic burden due to cancer is growing and is the major public 
health problem in the United States. Brain cancer (brain tumor and other central 
nervous system (CNS) cancers) is one of the leading cancers ranking the second 
largest cause of childhood death due to cancers. Based on 1975-2007 incidence 
data reported by Kohler, et al. (2011), 65.2 percent of the children with brain 
tumors are diagnosed with malignant tumor whereas the percentage in adult is 
only 33.7. According to National Cancer Institute (NCI), leukemias and the 
cancers of the brain and nervous system in children account for more than half of 
the new cases. Brain tumors are the most common solid tumors and are the 
second most common type of pediatric cancer. The central brain tumor registry of 
the United States reports that approximately 4,300 children younger than age 20 
are expected to be diagnosed with primary malignant and non-malignant brain 
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cancer in 2013. According to Kleihues, et al. (1993), the histological appearances 
of childhood brain tumors differ significantly from that of adult and are classified 
into several large groups. The overall distribution of these tumors also differ 
significantly (Peterson, et al., 2006; Pollack, 1994; Pollack, 1999). Ullrich and 
Pomeroy (2003) reported that the Pilocytic astrocytoma is the main histologic 
types in children CNS tumors with relatively high frequency of occurrence. 
According to Ries et al. (2007), the overall incidence for childhood brain cancer 
rose from 1975 to 2004 with the greatest increase occurring from 1983 through 
1986. But, it is found that the mortality rates are continuously decreasing, with 
relatively higher rate from 1969 to 1980 and slower rate from 1980 onwards. 
These previous works provide motivation to study the mortality trend in 
childhood brain cancer using a statistical model that is based on realistic 
assumptions. 

 The main objective of this study is to give the reliable estimates of the 
measure of cancer mortality trend that provide up-to-date information and recent 
changes in childhood brain cancer. The joinpoint regression model is preferable 
when analyzing the trend for several years as it enables the identification points in 
the trend where the significant changes occur (Kohler, et al., 2011). If it is 
assumed that the joinpoints are random variables that can occur at any locations 
within the data range, the log likelihood is not differentiable with respect to break 
points suggesting that the Bayesian method is a more realistic approach. The 
actual Bayesian Joinpoint Regression Model will be solely based on Bayesian 
model selection criteria with the smallest number of joinpoints that accurately 
describe the Annual Percentage Change (APC) in the trend of mortality rates. 
Having good estimates of the mortality rates will allow the detection of points in 
time where significant changes occur and provide the best possible predictions. 
More practically, it helps to monitor the progress being made in childhood brain 
cancer, and evaluate the effectiveness of current treatment methods with respect 
to the mortality rate.  

The history of joinpoint is not very long. In 1992, Charlin et al. developed 
hierarchical Bayesian analysis of changepoint problem in which they used an 
iterative Monte Carlo method. Kim et al. (2000, 2004) proposed a nonparametric 
approach which is widely used for analyzing and predicting the mortality and 
incidence data. NCI still uses this methodology, among others to find the trends in 
mortality, incidence, and survival of cancers in the United States. Tiwari et al. 
(2005) first developed a Bayesian model selection method for joinpoint regression. 
They discussed two criteria to select the best model, one with smallest BIC and 
other related to the Bayes factor. All of the previous studies assumed that the 
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errors are IID normal which is not always relevant with the real application data 
such as mortality and incidence of a specific disease in a population. This 
normality assumption is relaxed by Ghosh et al. (2009) proposing a Bayesian 
approach on parametric and semi-parametric joinpoint regression model. They 
introduced a continuous prior for the joinpoints induced by the Dirichlet 
distribution. The generalized linear model with log link function in joinpoint 
regression model that evaluates and incorporates the uncertainty in both model 
selection and model parameters has been recently introduced and implemented by 
Martinez-Beneito et al. (2011).  

Studied here is the mortality trend of childhood brain cancer data obtained 
from SEER database of NCI. The total annual observed mortality counts of 
children below 20 years of age from 1969-2009 is extracted. Being rare events, 
assume the mortality counts are probabilistically characterized by the Poisson 
probability distribution and model them using log link function. The Bayesian 
joinpoint regression model discussed previously was used to obtain the mortality 
trend assuming that the break points are continuous over time. The joinpoint 
regression model is also fitted using the joinpoint software of NCI for the same 
data and compare these two results. Observe that the model using Bayesian 
approach describes the data very well giving best possible short term predictions 
and performs a better improvement over the existing methods. 

Joint Point Model 

Let , = 1,2,...,iY i n  be the number of mortality counts during a period of time it  in 
a population. Let there be k  change points that describe the behavior of the data, 
then the mean of the above outcome process can be expressed as the following 
generalized linear model  
 

 ( ) 0
=1

| = ( ) ( ) ,
k

i i i j i j
j

g E Y t t t tα β β τ ++ − + −   ∑   (1) 

 
where t  is the mean of it , and jτ  is the change point in the model and g  is 
monotonic and differentiable function, called the link function. The value of 
( )i jt τ +−  is ( )i jt τ−  if ( ) > 0i jt τ +−  and 0  otherwise. For example, if there is no 
breakpoint in the model then  
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( ) 0| = ( );i i ig E Y t t tα β+ −    

 
and if there is one break point, the model becomes  

 
( ) 0 1 1| = ( ) ( ) .i i i ig E Y t t t tα β β τ ++ − + −    

 
The model with no breakpoint is named as 0M , one breakpoint as 1M  and so on. 
There will be 1kM +  nested models over the model space in total depending upon 
the number of breakpoints. 

In the proposed model given in (1), α , and 0β  represent the common 
parameters where as '

j sβ  are non-common parameters that are model-specific. 

0β together with '
j sβ  gives the slope for the different models with at least one 

change point. To give the same meaning across different models for all common 
parameters, Martinez-Beneito et al. (2011) proposed an alternative 
parametrization imposing different conditions. This work is motivated by their 
work and follows the same parametrization. 

The purpose of this study is to fit the joinpoint regression model for the 
childhood brain and other CNS cancer mortality counts. This model is based on 
its probabilistic framework that provides a reliable estimates of annual mortality 
trend. Because the behavior of the mortality count data in the population is a rare 
event, characterized by Poisson distribution ( , ( , = 1,2, , ))i iY Poi i nλ  , it is 
modeled using natural log link function. Hence, the model in the equation (1) 
becomes 
 

 0
=1

log( ) = log( ) ( ) ( )
k

i i i j j ij
j

n t t B tτλ α β δ β+ + − +∑   (2) 

 
where in  is the total number of population at time it , ( )

j
B tτ  is the piecewise 

linear function reparametrized as in Martinez-Beneito et al. (2011), called as 
break-point centered at jτ , and , = 1,2, ,j j kδ   are binary indicator variables for 
the inclusion or exclusion of the change points in the model i.e. 
 

jδ = 1 for each breakpoint
0 otherwise{   
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The above equation (2) leads to the following estimated rate:  
 

 0
=1

( ) = ( ( ) ( )).
k

i i j j ij
j

E r exp t t B tτα β δ β+ − +∑   (3) 

 
The annual percentage change(APC) is used to characterized the trends or the 
change in rates over time. APC from thi  year to ( 1)thi +  year is given as  
 

1= 100.i i
i

i

r rAPC
r

+ −
×  

 
Because the model can choose an infinite number of breakpoints, it is necessary to 
impose some restrictions on the position of the change points in the model. This is 
done by assigning minimum gap of two years between two joinpoints starting 
after the first years and ending before the last two years.  

The aim is to find the trend that describes the behavior of the data well. This 
will be carried out by detecting the points and their locations where the significant 
changes occur within the data range. Finding such locations in this model 
selection problem is carried out by using Bayes Factor in which data updates the 
prior odds to yield posterior odds. Bayes Factor summarizes the relative support 
for one model versus another for all competing models by selecting a model with 
highest posterior probability. Therefore, the posterior probability of each model is 
calculated and the one with highest posterior probability is selected as the best 
model. 

The specification of priors plays a major role in Bayesian model selection 
problem. In an objective Bayes solution to the model selection problem, the 
nature of the posterior distributions depends upon the selection of priors and is 
very sensitive if there are non-common parameters in the models as explained in 
Berger and Pericchi (2001), and Bayarri and García-Donato (2008). Furthermore, 
the choice of improper or vague priors would lead to arbitrary Bayes Factor and 
make the result computationally challenging (see Charlin et al., 1992; Martinez-
Beneito et al., 2011). For the commmon parametersα , and 0β , choose flat priors 
i.e. 0( , ) 1π α β ∝ . For non-common parameters, the divergence-based (DB) priors 
introduced in Bayarri, et al. (2008) as a generalization of the ideas discussed in 
Zellner and Siow (1980), Jeffreys (1961), and Zellner (1984) and implemented in 
Martinez-Beneito et al. (2011) is considered. The parameter space for τ  is 
bounded, and hence the default prior ( ) 1π τ ∝  was chosen. Based on the nature of
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δ , it is reasonable to choose independent Bernoulli priors with a probability of 

success p  with hyper priors for p  being 1 1( , )
2 2

kBeta −  where k is the number of 

joinpoints in the model.  
In Bayesian paradigm, finding a good candidate model from a set of nested 

models can be computationally intensive. The high dimensionality of the integrals 
makes the model selection procedure even more complex. In choosing priors, the 
distribution of the posterior probability is not analytically tractable, thus Gibbs 
variable selection approach in WinBUGS software is used to select the best model 
with significantly minimum number of joinpoints that describes the trend. The 
process is carried out in such a way that if one more joinpoint is added in the 
model, the model becomes insignificant.  

Results 

To apply the model discussed, annually observed mortality counts for childhood 
brain and other CNS cancers from the Surveillance Epidemiology and End 
Results (SEER) database of National Cancer Institute (NCI) from 1969-2009 were 
used. The data were extracted from publicly used database of the SEER program 
7.1.0 with the adjustments of Katrina/Rita population. 

The joinpoint model is fitted using WinBUGS software. The model is 
described by four unknown joinpoints ( = 4k ) to identify the time where changes 
in the slope of child brain cancer mortality trend occurs. Two parallel chains using 
different initial values are implemented. Each chain is run for 150,000 iterations 
giving 50,000 iterations as burn-in period. The posterior inferences is based on 
100,000 iterations for each chain combining total of 200,000 iterations for each of 
the parameters. The posterior summaries for the parameters are given in Table 1. 
Out of competing five nested models, the model selection procedure selected the 
model with one joinpoint as given in Figure 1 (left). For the selected model with 
one joinpoint, the posterior distribution of each of the parameters is observed by 
monitoring the trace, iterations, Monte Carlo errors, standard deviations, and 
density curves. The trace for each of the parameters satisfy the convergence 
criteria. Also, the Monte Carlo errors are within 0.1% of the posterior standard 
deviations. 
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Figure 1: Posterior distribution of the number of joinpoints in child brain cancer mortality 
trend in United States (left), Box plot for parameters of joinpoints (right). 
 
 
 
Table 1: Parameter estimates 
 
node mean sd MC error 2.50% median 97.50% start sample 

alpha -11.76 0.006448 3.35E-05 -11.77 -11.76 -11.75 50000 200002 

beta0 -0.01176 5.33E-04 2.79E-06 -0.01281 -0.01176 -0.01071 50000 200002 

beta[1] -0.0176 0.05287 7.68E-04 -0.09726 -0.02668 0.09301 50000 200002 

beta[2] -0.01679 0.09534 0.001723 -0.1736 -0.02925 0.1602 50000 200002 

beta[3] -0.00151 0.1265 0.001355 -0.218 -0.00167 0.2119 50000 200002 

beta[4] -7.90E-04 0.1114 0.001049 -0.1963 -1.52E-04 0.1938 50000 200002 

delta[1] 0.5254 0.4994 0.01384 0 1 1 50000 200002 

delta[2] 0.4684 0.499 0.01359 0 0 1 50000 200002 

delta[3] 0.1156 0.3197 0.005156 0 0 1 50000 200002 

delta[4] 0.05771 0.2332 0.001234 0 0 1 50000 200002 
 
 

As depicted in the graph given in Figure 1 (left), the probability of the 
posterior distribution for one joinpoint is about 80%. The probability of the 
posterior distribution for no joinpoint is very low indicating that the linear trend is 
not a choice. Similary, the probability of posterior distribution does not support 
two, three, and four joinpoints as well. The boxplot for the parameters 

, = 1,2,3,4j jβ  associated with change points is plotted in Figure 1 (right). 
Posterior means and 95% credible intervals of jβ 's suggest that their posterior 
distributions are not discriminable. This indicates that no more than one joinpoint 
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is required and if more joinpoints are added, the model is not statistically 
significant.  

The estimated rates for each year from 1969-2009 are obtained by averaging 
the estimates of joinpoint and other parameters in the model at every step of 
MCMC. The graph for the estimated rate and its prediction is given in Figure 2. 
The solid curve represents the estimated trend line for annual mortality rate 
whereas the dashed lines represent its 95% pointwise credible interval. The 
observed death rates are represented by unfilled circles. The extended graph 
beyond dashed vertical line represents the prediction of rate from 2010 to 2012. 
The predicted rates are obtained by averaging the joinpoint curve at every steps of 
the MCMC from the posterior predictive distribution.  

 The graph shows that the childhood cancer mortality rates declined faster 
from 1969 to 1978 compared to the rest of the time interval in a decreasing 
fashion. The overall mortality rate decreased from 1.056 to 0.63 per 100,000 by 
2009 and is predicted to decrease continuously. 
 
 

 
Figure 2: Estimated time trend for the annual observed mortality rate per 100,000 
children 
 
 
 

For the same data, the joinpoint regression model is fitted using the 
joinpoint software of NCI. The model was fitted with the assumption of Poisson 
variance using crude death rate with an autocorrelated errors based on the data. 
Here, the heteroscedasticity is conducted by joinpoint using weighted least square. 
Grid search method is used to select the joinpoint model with grid size of 2 years 
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leaving two years at the two ends of the data values. This was done to exactly 
match the condition imposed for identifiability problem in the Bayesian joinpoint 
model. The model selection method was performed using permutation test for 
four joinpoints which performs multiple tests to select the number of joinpoints 
using the Bonferroni correction at 0.05 overall significance level for multiple 
testing. The output is as shown in Figure 3. 
 
 

 
 
Figure 3: Mortality rates of child brain cancer(1969-2009) using the joinpoint software of 
NCI. 
 
 
 

The solid line represents the estimated mortality rates obtained by using the 
joinpoint software of NCI. The graph shows that there is one joinpoint observed 
exactly at 1978. The trend line is piecewise linear indicating that the slopes of the 
rate curve before and after joinpoint are constant. It is not the case for the applied 
Bayesian joinpoint model as it gives the slope of the rate curve at any point. Also, 
the location of change point is discrete and occurs exactly at the whole number 
year in case of the regression trend given by joinpoint software whereas the 
location of change point is continuous in this case and can occur in between the 
years. Another difference is that the trend obtained from joinpoint software is 
descriptive but the regression trend obtained can give the insights for the mortality 
trend in future with credible bands. 

The graph in Figure 4 gives the average rate of change in mortality rate per 
year from 1969 to 2009 and its predictions up to 2011. APC is approximately -
2.31 for the first three years and increases from -2.29 in 1973 to -1.12 in 1980. 
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After 1980, APC looks almost contant with a fluctuation of 0.01 to 0.02 over the 
entire range. It means that the average rate of change per year in childhood brain 
cancer mortality rate has not been changed in recent years and is predicted to 
remain almost the same in the consequent years. 
 
 

 
Figure 4: Estimated Annual Percentage Change in child brain cancer rates over time per 
100,000 children 
 
 
 

To check the validity, goodness of fit, and the assumptions of the proposed 
model, different model validation techniques discussed in literature are performed. 
The residual analysis is performed to check the robustness and fit of the 
developed model. The mean and standard deviation of the standardized residual 
are 0.000527 and 0.927 respectively. This indicates that the developed model fits 
the observed data well. The Chi-square statistics for the observed mortality data 
as well as for the predicated data in each iteration of MCMC are calculated.The 
difference between two statistics is monitored and their corresponding posterior 
p -value is obtained. The p -value based on the difference of Chi-squares 

obtained as a posterior mean using WinBUGS is 0.5513. The large p -value 
shows that the observed statistic is close from what is expected under the assumed 
model. Also, the observed mortality counts fall not only inside the 95% posterior 
intervals of replicated data but also close to their mean values indicating that the 
assumptions of Poisson distribution is valid. 
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Conclusion 

This study applied newly developed Bayesian joinpoint regression model to 
uncover the patterns of childhood brain cancer mortality that provides an 
important information pertaining further study in the cases and control of the 
disease. Although, different studies have shown that the childhood cancer 
mortality rates continue to decline dramatically by more than 50% in the past two 
decades (Ries, et al., 2007; Kohler, et al., 2011) in the United States, only few 
studies have considered the probability distribution of the observed counts as 
Poisson and the location of the change points continuous in time. The application 
discussed here based on these probabilistic assumptions. The trend is obtained 
such that it describes the behavior of the observed data very well and gives the 
best possible short term predictions. The temporal trend provides the different 
slopes of the rate curve at each point of time. In contrast, the joinpoint software of 
NCI gives the same slope at each year between two change points. Also, it was 
possible to obtain the more accurate annual percentage change (APC) and it is 
observed that the APC is almost constant from 1981 and is predicted to remain 
constant. SEER routinely collects the data covering 28% of the US population and 
there is a three years lag in time to collect and process the data. In this scenario, 
predictions in the temporal trend and APC are very helpful to evaluate the 
effectiveness of the current status of the disease and play an important role to 
make evidence based policy. This improvement over the existing methods allow 
observation of the real progress being made in childhood brain cancer. 

This work may be extended to study the influence in the mean of the 
outcome by incorporating covariates in the model. But the addition of covariates 
increases the complexity of the model. The Bayes Factors are sensitive to the 
prior specifications, and therefore further study is needed in selecting the 
objective priors by exploring different objective model selection criteria for priors 
that can deal with model uncertainty. Moreover, age standardized rates in this 
methodology could be a future extension. Also, studying incidence and mortality 
rates at the same time will depict the clear picture of real improvements being 
made in cancer research. 

Acknowledgements 

The authors wish to thank the University of Tampa Dana Foundation Grant. 



KAFLE, KHANAL & TSOKOS 

369 

References 

Bayarri, M. J., & García-Donato, G. (2008). Generalization of Jeffreys' 
divergence based priors for Bayesian hypothesis testing. Journal of the Royal 
Statistics Society; Series B (Statistical Methodology, 70(5), 981-1003. 

Berger, J. O., & Pericchi, L. R. (2001). Objective Bayesian methods for 
model selection: introduction and comparison (with discussion). Model Selection, 
38, 135-207. Institute of Mathematical Statistics. 

Carlin, B. P., Gelfand, A. E., & Smith, A. F. M. (1992). Hierarchical 
Bayesian analysis of changepoint problems. Applied Statistics, 41(2), 389-405. 

Ghosh, P., Basu, S., & Tiwari, R. C. (2009). Bayesian analysis of cancer 
rates from SEER program using parametric and semiparametric joinpoint 
regression models. Journal of the American Statistical Association, 104(486), 
439-452. 

Ghosh, K., & Tiwar, R. C. (2007). Prediction of U.S. cancer mortality 
counts using semiparametric Bayesian techniques. Journal of the American 
Statistical Association, 102(477), 7-15. 

Jeffreys, H. (1961). Theorey of Probability. London: Oxford University 
Press, 3rd edition. 

Kim, H., Fay, M. P., Feuer, E. J., & Midthune, D. N. (2000). Permutation 
tests for joinpoint regression with applications to cancer rates. Statistics in 
Medicine, 19(3), 335-351. 

Kim, H. J., Fay, M., Yu, B., Barrett, M.J., & Feuer, E.J. (2004). 
Comparability of segmented line regression models. Biometrics, 60(4), 1005-1014. 

Kleihues, P., Burgers, P. C., Scheithauer, B. W. , et al. (1993). World health 
organization histological typing of tumors of the central nervous system. New 
York: Springer-Verlag. 

Kohler, B. A., Ward, E., McCarthy, B. J., et al. (2011). Annual report to the 
nation on the status of cancer, 1975-2007, featuring tumors of the brain and other 
nervous system. Journal of National Cancer Institute, 103(9), 714-736. 

Levy, A. S. (2005). Brain tumors in children: evaluation and management. 
Current Problems in Pediatric and Adolescent Health Care, 35, 230-244. 

Martinez-Beneito, M. A., Garcia-Donato, G., Salmeron, D. A. (2011). 
Bayesian joinpoint regression model with an unknown number of break-points. 
Annals of Applied Statistics, 5(3), 2150-2168. 



REGRESSION MODEL FOR CHILDHOOD BRAIN CANCER MORTALITY 

370 

Ntzoufras, I. (2009). Bayesian Modeling Using WinBUGS. New York: 
Wiley Publication. 

Peterson, K. M., Shao, C., McCarter, R., MacDonald, T., & Byrne, J. (2006). 
An analysis of SEER data of increasing risk of secondary malignant 
neoplasmsamong long-term survivors of childhood brain tumors. Pediatric Blood 
Cancer, 47(1), 83-88. 

Pollack, I. F. (1994). Brain tumors in children. The New England Journal of 
Medicine, 331(22), 1500-1507. 

Pollack, I. F. (1999). Padiatric brain tumors. Seminars in Surgical Oncology, 
16(2), 73-90. 

Ries, L., Melbert, D., & Krapcho, M. (2007). SEER Cancer Statistics 
Review, 1975-2004. National Cancer Institute. 

Surveillance Epidemiology and End Results (SEER) Program 
(www.seer.cancer.gov) SEER*Stat Database: Mortality - All COD, Aggregated 
With State, Total U.S. (1969-2009) <Katrina/Rita Population Adjustment>. 

Serveillance Research, National Cancer Institute, Joinpoint Regression 
program (serveillance.cancer.gov/joinpoint). 

Tiwari, R. C., Cronin, K. C., Davis, W., Feuer, E. J., Yu, B., & Chib, S. 
(2005). Bayesian model selection for joinpoint regression with application to age-
adjusted cancer rates. Applied Statistics, 54(5), 919-939. 

Ullrich, N. J., & Pomeroy, S. L. (2003). Pediatric brain tumors. Neurologic 
Clinics, 21(4), 897-913. 

Zellner, A. (1984). Posterior odds ratios for regression hypothesis: general 
considerations and some specific results. Basic Issues in Econometrics, 275-305. 
Chicago: University of Chicago Press. 

Zelner, A., & Siow A. (1980). Posterior odds ratio for selected regression 
hypotheses. In Bayesian Statistics 1 (J.M. Bernardo, M.H. Degroot, D.V. Lindley 
and A.F.M. Smith, eds.), 31(1), 585-603. Valencia: University Press. 

http://serveillance.cancer.gov/joinpoint


Journal of Modern Applied Statistical Methods 
November 2013, Vol. 12, No. 2, 371-380. 

Copyright © 2013 JMASM, Inc. 
ISSN 1538 − 9472 

 

 
 
Dr. Min is assistant professor in the Department of Sociology, Anthropology, and Social 
Work. Email him at: hksmin@gmail.com 

 
371 

Ordered Logit Regression Modeling of the 
Self-Rated Health in Hawai‘i, With 
Comparisons to the OLS Model 
Hosik Min 
University of South Alabama 
Mobile, AL 

 
 

 
 
Despite the ordinal nature of Self-Rated Health (SRH) variable, logistic regression 
models or regression models have been used without adequate justification for these 
applications. It is shown that ordered-logit regression model is the appropriate statistical 
strategy to estimate SRH, whereas the Ordinary LeastSquares model leads to biased 
conclusions. 
 
Keywords: Ordered logit regression, OLS, ordinal outcome, self-rated health, health 
status 
 

Introduction 

Self-Rated Health (SRH) has long been a major research topic in health-related 
research (Mossey & Shapiro, 1982; Idler & Angel, 1990; Miilunpalo, Vuori, Oja, 
Pasanen, & Urponen, 1997; Eriksson, Unden, & Elofsson, 2001). The main 
reasons for this are that SRH can be used as an individual’s general health status 
and/or an indicator of his or her quality of life and that the research importance of 
SRH will continue to increase because of a growing interest in health and healthy 
living (McMurdo, 2000; Eriksson, Unden, & Elofsson, 2001). Given the increased 
life expectancy and the aging of the population (NCHS, 2007), suffering and 
death from various diseases have declined, while the topic of healthy living has 
received greater attention (Row & Kahn, 1987; Glasgow, 2004; Glasgow, Min, & 
Brown, 2013). Health or lack thereof includes not only physical factors such as 
limitations to daily life activities (ADL) but also mental indicators such as SRH. 
As health condition and/or status can impact an individual’s well-being in positive 
or negative ways, it is an important topic in public health.  
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Here the focus will be on methodological aspects; that is, the 
appropriateness of the ordered logit model for SRH, by comparing the results 
obtained using this method with those from the OLS model. SRH has often been 
measured as an ordinal variable; for instance, it is measured as a 5-point scale in 
this study (1=Poor, 2=Fair, 3=Good, 4=Very Good, and 5=Excellent). The 
analytical approach to handling this type of variable, however, is often logit 
regression (Avanath & Kleinbaum, 1997; Manor, Matthew, & Power, 2000; 
Pohlmann & Leitner, 2003) or Ordinary Least Squares (OLS) model (Winship & 
Mare, 1984; Wardle & Steptoe, 2003). The use of logit regression model can be 
easily denied because the logit model cannot deal with a dependent variable with 
more than two categorical and ordered outcomes in an appropriate way. In other 
words, if the SRH is developed as a dichotomous variable—e.g., poor versus 
good—and then a logit model is employed to estimate the logit coefficients, the 
results would lead to the loss of important information about the dependent 
variable (Hamilton, 1992; Berry, 1993; Hamilton, 1995; Avanath & Kleinbaum, 
1997; Pohlmann & Leitner, 2003). In addition, only small percentage of Hawai‘i 
adults were having poor SRH (only 3%) in this study. Moreover, other kinds of 
social, cultural, and socioeconomic factors differentiating people who have good, 
very good, and excellent SRH will not be estimated if we use logit model. 

Therefore, the goals of this paper are to present the methodological 
problems by comparing OLS, which often used to estimate ordinal outcome, and 
ordered logit models and to offer an easily understandable comparison of two 
methods by examining the likelihood of having a higher SRH in Hawai‘i. 
Considering wide use of OLS model for the dependent variable with many 
categories in ordered measurement (Mekelvey & Zavonia, 1975; Avanath & 
Kleinbaum, 1997), examining the statistical assumptions and violations the OLS 
model causes with ordered logit model would provide us a meaningful insights for 
employing an appropriate statistical methodology. In addition, this is a 
particularly important and relevant concern, given the expected increase in 
interest in general health status, both physical and mental.  

As was indicated (Hawkes, 1971; Reynolds, 1973; Mekelvey & Zavonia, 
1975; O’Brien, 1982), analyzing an ordinal variable with an ordinal regression 
model could lead to incorrect conclusions by violating the assumptions of the 
ordinal regression model. The OLS model has several assumptions known as a 
best linear unbiased estimating method (BLUE) (Hamilton, 1992; Berry, 1993; 
Hamilton, 1995; Avanath & Kleinbaum, 1997; Menard, 2001). For instance, the 
OLS model expects the dependent variable as linear and continuous one; the OLS 
model assumes that the mean of errors of prediction in the population regression 
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function must be zero; and the variance of the error term is constant for all values 
of independent variables, homoscedasticity  

If the dependent variable is ordinal, however, these assumptions in general 
are not met (Mekelvey & Zavonia, 1975; Fox, 1991; Hamilton, 1992; Berry, 
1993; Hamilton, 1995; Avanath & Kleinbaum, 1997). First of all, the ordinal 
dependent variable is non-linear, the values are presented in 0 to 1 probability as 
in a logit regression model; a non-linear model must have a different error 
structure and the error term does not have constant variance. As McKelvey and 
Zavoina (1975) argued, the OLS model may, in some cases, have the undesirable 
effect of causing regression analysis to severely underestimate the relative impact 
of certain variables. Accordingly, the ordered logit model, instead OLS model is 
considered to be the most appropriate methods if the dependent variable is ordinal 
to estimate more accurately (Hawkes, 1971; Reynolds, 1973; Mekelvey & 
Zavonia, 1975; O’Brien, 1982; Avanath & Kleinbaum, 1997; Pohlmann & Leitner, 
2003). 

Consequently, the best-fitting and most appropriate statistical model for 
handling the ordinal outcome is an ordered or probit model. This study, however, 
will use and focus on an ordered logit model, because the results of these two 
methods are similar and the ordered logit model is more common and its results 
are easier to interpret (Long & Freese, 2003).  

Data and Methods 

As described above, to measure the overall assessment of respondents’ health, 
self-rated health (SRH) is used as a dependent variable. SRH is measured by a 
five-point scale and thus has a categorical and ordered nature. The best-fitting 
statistical model for handling the ordered outcome is known as an ordered-logistic 
regression model, which will be used as an analytical model here. 

Here is an explanation of the ordered logit regression model. For the sake of 
explanation, symbols rather than actual variable names will be used (Long & 
Freese, 2003). Posit that Y is an ordinal dependent variable with c categories, and 

( )Pr Y j≤  denotes the probability that the response on Y falls in category j or 
below (i.e., in category 1, 2, …, or j). This is called a cumulative probability. It 
equals the sum of the probabilities in category j and below: 
 
 ( ) ( ) ( ( ) ( )Pr Pr 1 Pr 2 ...PrY j Y Y Y j≤ = = + = + =   (1) 
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A “c-category Y-dependent variable” has c cumulative probabilities: 
( )Pr 1Y ≤ , ( )Pr 2Y ≤ , …, ( )Pr Y c≤ . The final cumulative probability uses the 

entire scale; as a consequence, therefore, ( )Pr 1Y c≤ = . The order of forming the 
final cumulative probabilities reflects the ordering of the dependent variable scale, 
and those probabilities themselves satisfy: 
 
 ( ) ( ) ( )Pr 1 Pr 2 ... Pr 1Y Y Y c≤ ≤ ≤ ≤ ≤ ≤ =   (2) 
 

In an ordered logit model, an underlying probability score for an observation 
of being in the ith response category is estimated as a linear function of the 
independent variables and a set of cut points. The probability of observing 
response category i corresponds to the probability that the estimated linear 
function, plus random error, is within the range of the cut points estimated for that 
response. 
 

 
( )
( )1 1 1 2 2

Pr Response Category for the j  Outcome

Pr ...

th

i j j k kj j i

i

k b X b X b X u k−

= =

< + + + + ≤
  (3) 

 
It is necessary to estimate the coefficients 1 2, ,...,bkb b  along with cut points 

1 2 1, ,...,k ik k − where i is the number of possible response categories of the 
dependent variable. The coefficients and cut points are estimated using maximum 
likelihood.  

To do this, the data used in this paper were obtained from the 2005 Hawaii 
Health Survey (HHS). The HHS is a representative-sample survey based on 
household, administered as a telephone interview survey to adult residents in 
more than 6,000 households each year. The principle objective of the survey is to 
provide statewide estimates of population parameters that describe (1) the current 
health status of the population; (2) respondents’ access to and utilization of health 
care; and (3) the distribution of the population by age, sex, and ethnicity (SMS 
Research & Marketing Services, Inc., 2006).  

The ordered logit regression model is thus estimated for the Hawai‘i 
residents that predict their SRH using other socio-demographic and locale 
characteristics that have been shown in the demographic literature to be 
associated with SRH (Mossey & Shapiro, 1982; Idler & Angel, 1990; Kennedy, 
Kawachi, Glass, & Prothrow-Stith, 1998; Kawachi, Kennedy, & Glass, 1999; 
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Eriksson, Unden, & Elofsson, 2001). The controlling variables pertain to age, sex, 
race/ethnicity, marital status, education, and residential location. Some are 
measured as dummy variables and others as interval.  

The variables are as follows: 1) Age is measured in years from age 18 to 99; 
2) Male is a dummy variable indicating whether the respondent is male; if yes, it 
is coded as 1; 3) Married is a dummy variable indicating whether s/he is married; 
if yes, it is coded as 1; 4) Hawaiian is a dummy variable indicating whether the 
respondent is Native Hawaiian; if yes, it is coded as 1; 5) Japanese is a dummy 
variable indicating whether s/he is Japanese American; if yes, it is coded as 1; 6) 
Filipino is a dummy variable indicating whether the respondent is Filipino 
American; if yes, it is coded as 1; and 7) Other is a dummy variable indicating 
whether s/he belongs to Other ethnic categories; if yes, it is coded as 1 (with 
White used as the reference group); 8) Education is measured as 6 categories from 
illiterate to 4 or more years of college education (1=Illiterate/Only Kindergarten; 
2=Grade 1 to 8; 3=Grade 9-11; 4=Grade 12 or GED; 5=College, 1 to 3 years; 
6=College, 4 years or more); 9) Big Island is a dummy variable indicating 
whether the respondent lives in Big Island; if yes, it is coded as 1; 10) Kaua‘i is a 
dummy variable indicating whether s/he lives in Kaua‘i; if yes, it is coded as 1; 
11) Maui is a dummy variable indicating whether the respondent lives in Maui; if 
yes, it is coded as 1 (with O‘ahu used as reference variable).  

 

Results of Ordered Logit Regression Versus OLS Analysis  
Table 1 presents frequency distributions for all independent variables as well as 
the dependent one. The average score of SRH for Hawai‘i residents was 3.57, 
which lies between good and very good. The average age was 47.6 years old 
among the adult population (age 18 and over). Half of them were male (49%). Six 
out of ten Hawai’i adults were married (60%). As for race/ethnicity, 21% were 
Native Hawaiian, 22% were Japanese American, 15% were Filipino, and 17% 
were Other. The average level of education was 4.86, or close to 1-3 years of 
college education. As for residence, 13% lived in Big Island, 5% lived in Kaua‘i, 
12% lived in Maui, and the remaining 70% lived in O‘ahu.  

Table 2 presents the results of the ordered-logistic regression and the OLS 
analysis for Hawai‘i adults in 2005. The results show that overall model fit was 
significant for both models, and most coefficients in both models were significant. 
The older the respondent, the lower the SRH; if s/he was married, s/he was more 
likely to have a higher SRH; compared to white respondents, all other racial and 
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ethnic categories, such as Native Hawaiian, Japanese American, Filipino 
American, and Other, show a lower likelihood of having a higher SRH. Also, as 
expected, the more educated the respondent, the higher the SRH; a person living 
in Kaua‘i and Maui has a higher likelihood of having higher SRH compared to a 
person living in O‘ahu.  
 
 
Table 1. Descriptive Statistics from the 2005 Hawaii Health Survey (n=898, 593, 
weighted) 
 

Variable Mean Std. Dev. 

 
Self-rated Health 3.57 1.04 

 
Age 47.60 17.59 

 
Male 0.49 0.50 

Marital Status   

 
Married 0.60 0.49 

Race/Ethnicity   

 
Hawaiian 0.21 0.41 

 
Filipino 0.15 0.35 

 
Japanese 0.22 0.42 

 
Other 0.17 0.38 

Socioeconomic Status  

 
Education 4.86 1.02 

Residence Island   

 
Big Island 0.13 0.34 

 
Kaua‘i 0.05 0.22 

 
Maui 0.12 0.32 

 
 

The results, however, indeed present the evidence of inappropriateness of 
using OLS model compared to the ordered logit model. The male variable 
provided important information regardless of whether an ordered logit model or 
OLS was used to deal with an ordinal dependent variable. A male was shown to 
have a higher likelihood of having a higher SRH compared to female counterparts 
in the ordered logit regression model, but not in the OLS. As previous studies 
have pointed out, using an OLS model for an ordinal-dependent variable indeed 
produces this inconsistent and biased result: It could be concluded that male did 
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not have any effect on SRH, which would be crucially misleading in the OLS 
model. In addition, all the values of the coefficients in the OLS model were 
severely underestimated compared to those of the ordered logit model, which 
lessened the effects of contributing factors on SRH.  
 
 
Table 2. Comparison of the Analysis Results of Ordered Logit Regression and OLS from 
2005 Hawaii Health Survey (n=898, 593, weighted) 
 

  Ordered Logit Regression  OLS 

Variable b z   b t  

 Age -0.026 -220.65 *  -0.014 -232.6 * 

 Male 0.013 3.38 **  -0.003 1.68  

Marital Status 
       

 Married 0.143 35.35 *  0.083 38.11 * 

Race/Ethnicity 
       

 Hawaiian -0.583 -98.76 *  -0.298 -94.64 * 

 Japanese -0.59 -10.18 *  -0.297 -97.14 * 

 Filipino -0.642 -98.69 *  -0.315 -90.29 * 

 Other -0.406 -65.85 *  -0.207 -62.84 * 

Socioeconomic Status 
      

 Education  162.95 *  0.176 165.57 * 

Residence Island       

 Big Island  0.71   0.005 1.52  

 Kaua‘i  3.71 *  0.032 6.74 * 

 Maui  11.52 *  0.031 9.38 * 

         

  LR Chi2 106,789.24   F 10,379.23  

  Pseudo-R2 0.043 *  Adj. R2 0.113 * 
 
* p<.05; ** p<.001 
Note: The values of cut points to ordered logit regression and the value of constants for OLS are not shown 
here. 
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Discussion 

This paper deals with an appropriate use of statistical modeling that frequently 
occurs when modeling ordinal variables, Self-Rated Health, which is measured 
using a 5-point scale here. By comparing the results of ordered logit regression 
and OLS models, this study could illustrate the potential problems with using 
OLS in the analysis of ordinal SRH variables. While most of the conclusions from 
the OLS model were similar to those from the ordered logit regression model, 
significant differences do exist. Most of all, the insignificance of male in the OLS 
model could lead to incorrect conclusions regarding this variable. In fact, the 
significant and positive effect for male had on a respondent’s SRH score was 
revealed when this study used the ordered logit model. Furthermore, the OLS 
model underestimated the effects of all coefficients. 

Accordingly, this study appears to show that the use of an ordered logit 
regression model is statistically appropriate for the modeling of Self-Rated Heath, 
which has an ordinal characteristic, in Hawai‘i’s adult population. More 
specifically, the use of the ordered logit regression model could help avoid 
inconsistent and biased conclusions and their detrimental effects on public health 
policy. 

Considering the fact that the importance of studying health status indicators 
such as SRH continues to rise, the use of an appropriate analytical strategy will be 
invaluable in the future.  
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A new tree growth model called the hyperbolic exponential nonlinear growth model is 
suggested. Its ability in model prediction was compared with the Malthus or exponential 
growth model an approach which mimicked the natural variability of heights/diameter 
increment with respect to age and therefore provides more realistic height/diameter 
predictions as demonstrated by the results of the Kolmogorov Smirnov test and Shapiro-
Wilk test. The mean function of top height/Dbh over age using the two models under 
study predicted closely the observed values of top height/Dbh in the Hyperbolic 
exponential nonlinear growth models better than the ordinary exponential growth model 
without violating most of the assumptions about the error term. 
 
Keywords: Model, height, Dbh, forest, Pinus caribaea, hyperbolic. 
 

Introduction 

The Caribbean Pine, Pinus caribaea, is a hard pine, native to Central 
America, Cuba, the Bahamas, and the Turks and Caicos Islands. It belongs to 
Australes Subsection in Pinus Subgenus. It inhabits tropical and subtropical 
coniferous forests, which include both lowland savannas and montane forests. 
Wildfire plays a major role limiting the range of this species, but it has been 
reported that this tree regenerates quickly and aggressively, replacing latifoliate 
trees. In zones not subject to periodic fires, the succession continues and a tropical 
forest thrives. It has been widely cultivated outside its natural range, and 
introduced populations can be found today in Jamaica, Colombia, South Africa or 
China. The species has three distinct varieties, one very distinct and treated as a 
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separate species by some authors. These are Pinus caribaea var. caribaea, Pinus 
caribaea var. bahamensis (Bahamas Pine), and Pinus caribaea var. hondurensis 
(Honduras Pine).  

Pines are a member of the gymnosperms, which literally means ‘naked seed’. 
This is because the ovule (which develops into the seed) is not enclosed during 
fertilization within a fruit-like structure like it is in flowering plants. 
Gymnosperms are an ancient lineage of plants that were abundant during the era 
of the dinosaurs. Pines are wind ‘pollinated’ and do not have flowers. They bear 
their seeds in distinctive pinecone. Other gymnosperms in Belize include the 
cycads that are common in the savanna and mountain cypress (Podocarpus 
guatemalensis) a tree found particularly in upland forests. 
 
 

 
 
Figure 1. Growing Pines 

 
 
Figure 2. A young Pine 
 

 
A mathematical description of a real world system is often referred to as a 

mathematical model. A system can be formally defined as a set of elements also 
called components. A set of trees in a forest stand, producers and consumers in an 
economic system are examples of components. The elements (components) have 
certain characteristics or attributes and these attributes have numerical or logical 
values. Among the elements, relationships exist and consequently the elements 
are interacting. The state of a system is determined by the numerical or logical 
values of the attributes of the system elements. Experimenting on the state of a 
system with a model over time is termed simulation (Kleijnen, 1987). Scientific 
forest management relies to a large measure on the predictions of the future 
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conditions of individual stands. This is achieved by predicting the increment from 
the current stand structure and updating the current values at each cycle of 
iteration using a growth model. The structural changes over time can be 
monitored under different cutting cycles and cutting intensities and optimal 
management policies can be arrived at based on the results of such simulation 
runs 

Jayaraman and Bailey (1988) proposed a growth model useful for 
simulating the changes occurring in an uneven aged mixed species stand. The 
mean annual increment in basal area and number of trees is predicted from the 
current values of basal area, number of trees, site quality and species composition 
of the stand and the simulation proceeds by progressive updating of the values of 
predictor variables in annual cycles. Changes in site quality are carried forward 
through a linear difference equation. Volume estimates at each time point can be 
obtained by an appropriate height-diameter relation and a volume table function. 

Kumar (1988) reviews the different supply and demand models available in 
forestry and suggests a new model for a small wood producing country. The 
model essentially consists of a supply equation, an export function, a home 
demand equation and ar: identity on the inventories. Functional forms for the 
equations will have to be determined by empirical verification. Parameters can be 
estimated if data are available on a lengthy time series basis after converting the 
model to its reduced form. The reduced form expresses each current exogenous 
variable as a function of exogenous and lagged endogenous variables. 
Deterministic simulation can then be undertaken by tracing the time path of 
endogenous variables by specifying initial values for exogenous and lagged 
endogenous variables. 
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Figure 3. Components of forest growth and the analogous representation in a stand 
growth model. 
 
 

Growth models assist forest researchers and managers in many ways. Some 
important uses include the ability to predict future yields and to explore 
silvicultural options. Models provide an efficient way to prepare resource 
forecasts, but a more important role may be their ability to explore management 
options and silvicultural alternatives. For example, foresters may wish to know 
the long-term effect on both the forest and on future harvests, of a particular 
silvicultural decision, such as changing the cutting limits for harvesting. With a 
growth model, they can examine the likely outcomes; both with the intended and 
alternative cutting limits and can make their decision objectively. The process of 
developing a growth model may also offer interesting new insights into stand 
dynamics. 
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Figure 4. The role of growth models and complementary data in providing forest 
management information. 
 
 

The total height (Ht) of a tree is important for assessing tree volume 
(Walters et al., 1985; Walters and Hann, 1986) and stand productivity through site 
index (Hann and Scrivani, 1987), but accurate measurement of this variable is 
time consuming. As a result, foresters often choose to measure only a few trees’ 
heights and estimate the remaining heights with height-diameter equations. 
Foresters can also use height-diameter equations to indirectly estimate height 
growth by applying the equations to a sequence of diameters that were either 
measured directly in a continuous inventory or predicted indirectly by a diameter-
growth equation. The diameter-growth prediction approach can be valuable for 
modeling growth and yield of trees and stands as it’s done in ORGANON (Hann 
et al., 1997). A number of studies of height-diameter relationships in northwestern 
Oregon, western Washington, and southwest British Columbia have already been 
published. Curtis (1967) investigated several equations for Douglas-fir that 
included tree diameter outside bark at breast height (DBH) as an explanatory 
variable. Larsen and Hann (1987), and Wang and Hann (1988), using a variant of 
Curtis’s (1967) recommended model, found that an equation which included tree 
diameter and site index was a better height predictor for 6 of 16 species in the 
mid-Willamette Valley. Krumland and Wensel (1988) included top height and 
quadratic mean diameter in their height-diameter equation. 

Predicting total tree height based on observed diameter at breast height 
outside bark is routinely required in practical management and silvicultural 
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research work (Meyer, 1940). The estimation of tree volume, as well as the 
description of stands and their development over time, relies heavily on accurate 
height-diameter functions (Curtis, 1967). Many growth and yield models also 
require height and diameter as two basic input variables, with all or part of the 
tree height predicted from measured diameters (Burkhart et al., 1972; Curtis et al., 
1981; Wykoff et al., 1982). In the cases where actual measurements of height 
growth are not available, height-diameter functions can also be used to indirectly 
predict height growth (Larsen and Hann 1987). Curtis (1967) summarized a large 
number of available height-diameter functions and used Furnival’s index of fit to 
compare the performance of 13 linear functions fitted to second-growth Douglas-
fir (Pseudotsuga menziesii (Mirb.) Franco) data. Since then, many new height-
diameter functions have been developed. With the relative ease of fitting 
nonlinear functions and the nonlinear nature of the height-diameter relationships, 
nonlinear height-diameter functions have now been widely used in height 
predictions (Schreuder et al., 1979; Curtis et al., 1981; Wykoff et al., 1982; Wang 
and Hann 1988; Farr et al., 1989; Arabatzis and Burkhart, 1992). 

Individual tree heights and diameters are essential measurements in forest 
inventories, and are used in estimating timber volume, site index and other 
important variables related to forest growth and yield, succession and carbon 
budget models (Peng, 2001). The time taken to measure tree heights takes longer 
than measuring the diameter at breast height. For this reason, often only the 
heights of a subset of trees of known diameter are measured, and accurate height-
diameter equations must be used to predict the heights of the remaining trees to 
reduce the cost involved in data acquisition. If stand conditions vary greatly 
within a forest, a height regression may be derived separately for each stand, or a 
generalized function, which includes stand variables to account for the variability, 
may be developed (Curtis, 1967; Zhang et al., 1997; Sharma and Zhang, 2004). 
Two trees within the same stand and that have the same diameter are not 
necessarily of the same height; therefore a deterministic model does not seem 
appropriate for mimicking the real natural variability in height (Parresol and 
Lloyd, 2004). 

The objective of the present study was to evaluate the performance of a 
stochastic height-diameter approach in mimicking the observed natural variability 
in Gmelina Arborea heights recorded in 2011. 
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Material and Methods 

A fundamental nonlinear least squares assumption is that the error term in all the 
height-diameter functions considered are independent and identically distributed 
with zero mean and constant variance. However, in many forestry situations there 
is a common pattern of increasing variation as values of the dependent variable 
increase. This is clearly evident from the scatterplots of height versus DBH in 
Figure 2, where the values of the error are more likely to be small for small DBH 
and large for large DBH. When the problem of unequal error variances occurs, 
weighted nonlinear least squares (WNLS) is applied, with the weights selected to 
be inversely proportional to the variance of the error terms. 

We used data from Gmelina Arborea even-aged stands located in Federal 
College of Forestry, Ibadan. The stand conditions within the plantation were 
similar and thus we consider the data obtained as belonging to the stands.  

Method of Estimation 

Consider a nonlinear model  
 
 ( ),i iH f D= + iB    (1) 
 

1, 2, ,i n= … , Where H  is the response variable, D  is the independent variable, B 
is the vector of the parameters jβ  to be estimated ( 1 2,† ., pβ β β…… ), i  is a 
random error term , p  is the number of unknown parameters, n  is the number of 
observation. The estimator of jβ ’s are found by minimising the sum of squares 
residual ( RssSS ) function 
 

 ( ) 2

1

,
n

Rss i i
i

SS H f D B
=

 = − ∑   (2) 

 
Under the assumption that the i are normal and independent with mean zero and 
common variable 2σ . Since iH  and Di  are fixed observations, the sum of 
squares residual is a function of B, these normal equations take the form of  
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 ( ){ } ( )
1

,
, 0

n
i

i i
i j

f D B
H f D

β=

 ∂
− = 

∂  
∑ B   (3) 

 
For 1, 2, ,j p= … . When the model is nonlinear in the parameters so are the 
normal equations consequently, for the nonlinear model, consider Table 2, it is 
impossible to obtain the closed solution of the least squares estimate of the 
parameter by solving the p  normal equations describe in Eq (3). Hence an 
iterative method must be employed to minimize the Resss  (Draper and Smith 1981, 
Ratkowsky 1983).  

The hyperbolic functions have similar names to the trigonometric functions, 
but they are defined in terms of the exponential function. The three main types of 
hyperbolic functions and the sketch of their graphs are given below. 
 
 

 
 
(a) Cosh Function 

 
 
(b) Sinh function 

 
 
(c) Tanh Function 
 

 
The function (b) above is pronounced as ‘shine’, or sometimes as ‘sinch’. The 
function is defined by the formula 
 

sinh
2

x xe ex
−−

=  

 
Again, we can use our knowledge of the graphs of ex and e−x to sketch the 

graph of sinh x. First, let us calculate the value of sinh 0. When x = 0, ex = 1 and 
e−x = 1. So 
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0 0 1 1sinh 0
2 2

e ex
−− −

= = =  

 
Next, let us see what happens as x gets large. We shall rewrite sinh x as; 
 

sinh
2 2

x xe ex
−

= −  

 
To see how this behaves as x gets large, recall the graphs of the two exponential 
functions. 
 
 

 
 
Graph of exponential functions 
 
 
As x gets larger, ex increases quickly, but e−x decreases quickly. So the second 

part of the difference 
2 2

x xe e−

−  gets very small as x gets large. Therefore, as x gets 

larger, sinh x gets closer and closer to 
2

xe . This is written as; 

Sinh
2

xex ≈  For large x 
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But the graph of Sinh x will always stay below the graph 
2

xe . This is because, 

even though 
2

xe−

−  (the second part of the difference) gets very small, it is always 

less than zero. As x gets larger and larger the difference between the two graphs 
gets smaller and smaller. 

Next, suppose that x is negative. As becomes more negative, −e−x becomes 
large and negative very quickly, but ex decreases very quickly. So as x becomes 

more negative, the first part of the difference 
2 2

x xe e−

−  gets very small. So sinh x 

gets closer and closer to 
2

xe−

− . This is written as; 

 

Sinh
2

xex −
≈  For large negative x 

 

Now the graph of sinh x will always stay above the graph of 
2

xe−

 when x is 

negative. This is because, even though 
2

xe  (the first part of the difference) gets 

very small, it is always greater than zero. But as x gets more and more negative 
the difference between the two graphs gets smaller and smaller. 

We can now sketch the graph of sinh x. Notice that sinh(−x) = − sinh x. 
 

 
 
Graph of sinh (x) 
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Hence, the hyperbolic sine function and its inverse provide an alternative method 
for evaluating; 
 

2

1
1

dx
x+

∫  

 
If we make the substitution, then; 
 

( ) ( ) ( )2 2 21 1 coshx sinh u cosh u u+ = + = =  

 
Where the second equality follows from the identity cosh2(u) − sinh2(u) = 1 and 
the last equality from the fact that cosh(u) > 0 for all u. Hence; 
 

( )
( ) ( )1

2

cosh1
cosh1

u
dx du du u c sinh x c

ux
−= = = + = +

+
∫ ∫ ∫  

 
The following proposition is a consequence of the integral above i.e. 
 

( )1

2

1
1

d sinh x
dx x

− =
+

 

 

Also, using the substitution x = tan (u), 
2 2

uπ π
− < <  , that  

 
2

2

1 1
1

dx log x x c
x

= + + +
+

∫  

 
Since two anti-derivatives of a function can differ at most by a constant, there 
must exist a constant k such that 
 

( )1 21sinh x log x x k− = + + +  

 
for all x. Evaluating both sides of this equality at x = 0, we have 
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( ) ( )10 0 log 1sinh k k−= = + =  
Thus k = 0 and 
 

( )1 21sinh x log x x− = + +  

 
for all x. Since the hyperbolic sine function is defined in terms of the exponential 
function, we should not find it surprising that the inverse hyperbolic sine function 
may be expressed in terms of the natural logarithm function. 
 
 

 
 
Graph of arcsinh (x) 
 

Hyperboloastic Exponential Growth Model (HEGM) 

 

21
H H r
t t

θ ∂
= + ∂ + 

 

 
Separating the variables we have that; 
 

21
H r dt
H t

θ ∂
= + 

+ 
 

 
Integrating both sides we have that; 
 

( ) 1ln arcsinhH rt t Cθ= + +  
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Hence,  
 

( )arcsinhrt tH Ae θ+=  
 

Therefore, we shall apply the two models below on Age-height and Age-
Diameter of pines (pinus carean) growth; 

 
(1) ( ) ( )arcsinh arcsinh, and rt t rt tH Ae D Aeθ θε ε+ += + = +  
 
(2) , and rt rtH Ae D Aeε ε= + = +  
 

Result and Discussion 

Tables 1-4 below shows the estimated parameter for exponential and hyperbolic 
exponential growth model with their respective coefficient of determination (R2) 
for age-height/age-diameter models 
 
 
Table 1. Height Parameter Estimates using Exponential growth model 
 

   
95% Confidence Interval 

Parameter Estimate Std. Error Lower Bound Upper Bound 

a 9.33 0.559 8.138 10.522 

b 0.013 0.001 0.01 0.015 
 
R-Square = 90.9% 
 
 
Table 2. Height Parameter Estimates using Hyperbolic Exponential growth model 
 

   
95% Confidence Interval 

Parameter Estimate Std. Error Lower Bound Upper Bound 

a 2.178 .992 .051 4.306 

b .001 .003 -.006 .009 

c .448 .138 .153 .743 
 
R-Square = 95.2% 
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Table 3. Diameter Parameter Estimates using Exponential growth model 
 

   
95% Confidence Interval 

Parameter Estimate Std. Error Lower Bound Upper Bound 

a 10.945 .515 9.847 12.043 

b .013 .001 .011 .015 
 
R-Square = 94.5% 
 
 
Table 4. Diameter Parameter Estimates using Hyperbolic Exponential growth model 
 

   
95% Confidence Interval 

Parameter Estimate Std. Error Lower Bound Upper Bound 

a 2.503 .680 1.044 3.963 

b .002 .002 -.003 .006 

c .452 .082 .276 .628 
 
R-Square = 98.3% 
 
 

Also, the predicted and observed height and diameter were plotted to show 
the relationship and how best the models predicted the observed data on height 
and diameter of pines. This is also shown in the figure below: 
 

 
Figure 5. Observed Height against 
Predicted height 
(Exponetial growth model) 

 
Figure 6. Observed Diameter against 
Predicted diameter 
(Exponetial growth model) 
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Figure 7. Observed Height against 
Predicted height 
(Hyperbolic exponetial growth model) 

 
Figure 8. Observed Diameter against 
Predicted diameter 
(Hyperbolic exponetial growth model) 
 

 
 
Table 5. ANOVA summary for Height Parameter Estimates using Exponential growth 
 

Source Sum of Squares df Mean Squares 

Regression 4873.136 2 2436.568 

Residual 29.424 15 1.962 

Uncorrected Total 4902.560 17  

Corrected Total 323.678 16  
 
Dependent variable: height 
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .909. 
 
 
Table 6. ANOVA summary for Height Parameter Estimates using Hyperbolic Exponential 
growth model 
 

Source Sum of Squares df Mean Squares 

Regression 4886.955 3 1628.985 

Residual 15.605 14 1.115 

Uncorrected Total 4902.560 17 
 

Corrected Total 323.678 16 
 

 
Dependent variable: height 
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .952. 
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Table 7. ANOVA summary for Diameter Parameter Estimates using Exponential growth 
model 
 

Source Sum of Squares df Mean Squares 

Regression 6910.833 2 3455.417 

Residual 25.417 15 1.694 

Uncorrected Total 6936.250 17 
 

Corrected Total 464.198 16 
 

 
Dependent variable: height 
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .945. 
 
 
Table 8. ANOVA: Diameter Parameter Estimates using Hyperbolic Exponential growth 
model 
 

Source Sum of Squares df Mean Squares 

Regression 6928.553 3 2309.518 

Residual 7.697 14 .550 

Uncorrected Total 6936.250 17 
 

Corrected Total 464.198 16 
 

 
Dependent variable: height 
a. R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .983. 
 

Testing for Independence of Errors (Run test) and 
Normality of Error (Shapiro-Wilk test) 

Two assumptions made in the models are: 
 

Errors are independent 
Errors are normally distributed. 

 
These assumptions were verified by examining the residuals. If the fitted models 
are correct, residuals should exhibit tendencies that tend to confirm or at least 
should not exhibit a denial of the assumptions. 

Hence, we tested the following hypotheses stated below; 
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H0: Errors are independent  (Using Runs Test) 
H1: Errors are not independent 

 
And 
 

H0: Errors are normally distributed  (Using Shapiro-Wilk test) 
H1: Errors are not normally distributed 

 
Let m be the number of pluses and n be the number of minuses in the series 

of residuals. The test is based on the number of runs(r), where a run is defined as 
a sequence of symbols of one kind separated by symbols of another kind. A good 
large sample approximation to the sampling distribution of the number of runs is 
the normal distribution with mean; 

 
2 1mnMean
m n

= +
+

 

 
and,  
 

( ) ( )
( )

2
2

2 2
( ) 1

mn mn m n
Variance

m n m n
σ

− −
=

+ + −
 

 
Therefore, for large samples like ours the required test statistic is; 
 

( ) ( )0,1
r h

Z N
µ

σ
+ −

= ∼  

 
where, 
 

0.5,   
0.5,  

h
if r

r
µ
µ

=  <
 − >

 

 
Also, the required test statistic for the test of normality (Shapiro-Wilk test) is 
given by; 
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2SW
b

=  

Where; 

( ) ( ){ }2
1n k kS a k x x+ −= −∑  

and, 
( )2

ib x x= −∑  
 
In the above, the parameter k takes the values; x(k) is the kth order statistic of the 
set of residuals and the values of coefficient a(k) for different values of n and k 
are given in the Shapiro-Wilk table (1965). H0 is rejected at level α i.e. W is less 
than the tabulated value. 
 
 
Table 9. Result of the test of independence of Residuals using Run Test 
 

Residual Test Value No. of Runs Z Asymp. Sig.(2 tailed) 

Exp. Height -0.2000 5 -1.802 0.072* 

Exp. Diameter -0.0318 3 -3.002 0.003*** 

HExp. Height -0.0047 6 -1.494 0.135ns 

HExp. Diameter 0.0035 4 -2.499 0.012** 
 
* Significant at 10%, ** significant at 5%, *** significant at 99% and ns not significant 
 
 
Table 10. Result of the test of normality of Residuals using K-S & S-W Tests 
 

Residual 
Kolmogorov-Sminov Shapiro-Wilk 

Statistic Asmp. Sig. Statistic Asmp. Sig. 

Exp. Height 0.262 0.003*** 0.842 0.008*** 
Exp. Diameter 0.198 0.077* 0.933 0.244ns 
H Exp. Height 0.172 0.193ns 0.954 0.519ns 

H Exp. Diameter 0.192 0.095ns 0.953 0.500ns 
 
* Significant at 10%, ** significant at 5%, *** significant at 99% and ns not significant 

Conclusion 

The mean function of top height and Dbh over age using the Hyperbolic 
Exponential growth model predicted closely the observed values of top height and 
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Diameter of Pines. However, large correlations of the estimated parameters do not 
necessary mean that the original model is inappropriate for the physical situation 
under study. For example, in a linear model, when a particular β (a coefficient) 
does not appear to be different from zero, it does not always imply that the 
corresponding x (independent variable) is ineffective; it may be that, in a 
particular set of data under study, x does not change enough for its effect to be 
discernible. In general, efficient parameter estimation can best be achieved 
through a good understanding of the meaning of the parameters, the mathematics 
of the model, including the partial derivatives, and the system being modeled. 
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The multivariate distribution of five main indices of Tehran stock exchange is 
approximated using a pair-copula model. A vine graphical model is used to produce an 𝑛-
dimensional copula. This is accomplished using a flexible copula called a minimum 
information (MI) copula as a part of pair-copula construction. Obtained results show that 
the achieved model has a good level of approximation. 
 
Keywords: Minimum information copula, pair-copula, vine. 
 

Introduction 

Sometimes in applied probability and statistics it is necessary to model multiple 
uncertainties or dependencies using multivariate distributions. To do it, it is 
common to use discrete model such as Bayesian networks but when modeling 
financial data, it is necessary to have model of continuous random variables. 
Copulas are quickly gaining popularity as modeling dependencies e.g. surveys by 
Nelsen (1999), Joe (1997). Copulas have found application in a number of areas 
of operations research including combining expert opinion and stochastic 
simulation, (e.g. Abbas et al. (2010) and references cited therein). A copula is a 
joint distribution on the unit square (or more generally on the unit n-cube) with 
uniform marginal distributions. Under reasonable conditions, a joint distribution 
for 𝑛-random variables can be found by specifying the univariate distribution for 
each variable, and in addition, specifying the copula. Following Sklar (1959) the 
joint distribution function of random vector ( )1, , nX X…  is 
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 ( ) ( ) ( )( )1 n 1 1 n nF x , ,x C F x , ,F x… = …   (1) 
 

Where 𝐶 is a copula distribution function, and 𝐹1, … ,𝐹𝑛 are the univariate, 
or marginal, distribution functions. A special case is that of the 'Gaussian copula', 
obtained from Gaussian joint distribution and parameterized by the correlation 
matrix. Use of the Gaussian copula to construct joint distributions is equivalent to 
the NORTA method (normal to anything). Clearly the use of a copula to model 
dependency is simply a translation of one difficult problem into another: instead 
of the difficulty of specifying the full joint distribution is the difficulty of 
specifying the copula.  The main advantage is the technical one that copulas are 
normalized to have support on the unit square and uniform marginals. As many 
authors restrict the copulas to a particular parametric class (Gaussian, multivariate 
t, etc.) the potential flexibility of the copula approach is not realized in practice.  

As mentioned because of difficulty in specifying the copulas and restricted 
to the exact class, copula approximation is to some extend new topic in this case. 
The approach used herein allows a lot of flexibility in copula specification that 
was analyzed and some properties of it was said in Bedford et al. (2013) and 
developed by Daneshkhah et al. (2013), and for approximation multivariate 
distribution, a graphical model, called a vine, is used to systematically specify 
how two-dimensional copulas are stacked together to produce an 𝑛-dimensional 
copula. 

The main objectives is to show that a vine structure can be used to 
approximate Tehran stock exchange multivariate copula to any required degree of 
approximation. The standing technical assumptions are that the multivariate 
copula density 𝑓under study is continuous and is non-zero. No other assumptions 
are needed. A constructive approach involves the use of minimum information 
(MI) copula that can be specified to any required degree of precision based on the 
data available. According to Bedford et al. (2013) good approximation locally 
guarantees good approximation globally. 
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Figure 1. A Regular Vine with 5 Elements 
 
 
A vine structure imposes no restrictions on the underlying joint probability 
distribution it represents (as opposed to the situation for Bayesian networks, for 
example). However this does not mean to ignore the question about which vine 
structure is most appropriate, for some structures allow the use of less complex 
conditional copulas than others. Conversely, if only certain families of copulas are 
allowed then one vine structure might fit better than another. 

Vine constructions for multivariate dependency 

A copula is a multivariate distribution function with standard uniform marginal 
distributions. Using (1) it may be observed that a copula can be used, in 
conjunction with the marginal distributions, to model any multivariate distribution. 
However, apart from the multivariate Gaussian, Student, and the exchangeable 
multivariate Archimedean copulas, the set of higher-dimensional copulas 
proposed in the literature is limited and is not rich enough to model all possible 
mutual dependencies amongst the n  variants (see Kurowicka & Cooke, 2006 for 
details of these copulas). Hence it is necessary to consider more flexible 
constructions. 

A flexible structure, here denoted the pair-copula construction or vine, 
allows for the free specification of (at least) ( )1 / 2n n −  copulas between n  
variables. (Note that ( )1 / 2n n −  is the number of entries above the diagonal of an 
n n×  correlation matrix - though these are algebraically related so not completely 
free variables). This structure was originally proposed by Joe (1997), and later 
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reformulated and discussed in detail by Bedford and Cooke (2001, 2002), who 
considered simulation, information properties and the relationship to the 
multivariate normal distribution but who also considered a more general method 
called a Cantor tree construction. Kurowicka and Cooke (2006) considered 
simulation issues, and Aas et al. (2009) examined inference. The modeling 
scheme is based on a decomposition of a multivariate density into a set of 
bivariate copulas. The way these copulas are built up to give the overall joint 
distribution is determined through a structure called a vine, and can be easily 
visualized. A vine on n  variables is a nested set of trees, where the edges of the 
tree j  are the nodes of the tree 1j +  (for 1,..., 2j n= − ), and each tree has the 
maximum number of edges. For example, Figure 1 shows a vine with 5 variables 
which consists of four trees ( )1 2 3 4, , ,T T T T  with 4, 3, 2 and 1 edges, respectively. A 
regular vine on n  variables is a vine in which two edges in tree j  are joined by 
an edge in tree 1j +  only if these edges share a common node, for 1,..., 2j n= − . 
There are ( )1 / 2n n −  edges in a regular vine on n  variables. The formal 
definition is as follows. 
 
Definition: (Vine, regular vine) V is a vine on n  elements if 
 

1. 1 1( , ), nV T T −= … . 
 
2. 1T  is a connected tree with nodes { }1 1,...,N n=  and edges 1E ; for 

2,..., 1, ii n T= −  is a connected tree with nodes 1N  = 1iE − . 
V  is a regular vine on n  elements if additionally the proximity condition 
holds: 
 
3. For 2,..., 1i n= − , if a  and b  are nodes of iT  connected by an edge in 

iT , where { }1 2,a a a= , { }1 2,b b b= , then exactly one of the ia  equals one of 
the ib . 

 
One of the simplest regular vines is shown in Figure 1 - this structure is 

called D-vine, see Kurowicka and Cooke, 2006, pp. 93. Here, 1T  is the tree 
consisting of the straight edges between the numbered nodes. 2T is the tree 
consisting of the curved edges that join the straight edges in 1T , and so on. 
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For a regular vine each edge of 1T  is labelled by two numbers from { }1,..., n . 
If two edges of 1T , for example 12 and 23, which are nodes joined by an edge in 

2T  are taken, then of the numbers labeling these edges one is common to both (2), 
and they both have one unique number (1,3 respectively). The common number(s) 
will be called the conditioning set eD  for that edge e  (in this example the 
conditioning set is simply {2}) and the other numbers will be called the 
conditioned set (in this example {1, 3}). For a regular vine the conditioned set 
always contains two elements. 

A vine distribution is associated to a vine by specifying a copula to each 
edge of  1T  and a family of conditional copulas for the conditional variables given 
the conditioning variables, as shown by the following result of Bedford and 
Cooke (2001). 
 
Theorem 1: Let ( )1 1,..., nV T T −=  be a regular vine on n  elements. For each edge 

( ), ie j k T∈ , 1,..., 1i n= −  with conditioned set { },j k  and conditioning set eD , let 
the conditional copula and copula density be | ejk DC and | ejk Dc  respectively. Let the 
marginal distributions iF  with densities if , 1,...,i n=  be given. Then the vine-
dependent distribution is uniquely determined and has a density given by 
 

 ( ) ( ) ( )e e j e k

i

n

1 n i jk|D j|D ( x ) jk|D ( x )
i 1 e( j ,k ) E

f x , , x f x c F ,F  
= ∈

… =∏ ∏   (2) 

 
The existence of regular vine distributions is discussed in detail by Bedford and 
Cooke (2002). 

The density decomposition associated with 5 random variables 
( )1 5,...,X X X=  with a joint density function ( )1 5,† ,†f x x…  satisfying a copula-

vine structure shown in Figure 1 with the marginal densities 1 5, ,f f…   is 
 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

n

12345 i 12 1 2 23 2 3 34 3 4 45 4 5
i 1

13 1 2 3 2 24 2 3 4 3 35 3 4 5 4

14 1 2 3 4 2 3 25 2 3 4 5 3 4

15 1 2 3 4 5 2 3 4

f f x   c F x ,F x c F x ,F x c F x ,F x c F x ,F x

c F x | x ,F x | x c F x | x ,F x | x c F x | x ,F x | x

c F x | x ,x ,F x | x ,x c F x | x ,x ,F x | x ,x

c F x | x ,x ,x ,F x | x ,x ,x

=

= ×

×

×

×

∏
  (3) 
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This formula can be derived for this case using the general expression 
 

( ) ( ) ( ) ( )( )12 1 2 12 1 2f ( x, y ) f x f y c F x ,F y=  
 
or equivalently 
 

( ) ( ) ( )( )1|2 1 12 1 2f ( x | y ) f x c F x ,F y=  
 
where 12c  is the copula density and 1F , 2F  are the univariate distributions. Starting 
with 
 

( ) ( ) ( ) ( )
( ) ( )

12345 1 5 1 1 2|1 2 1 3|12 3 1 2

4|123 4 1 2 3 5|1234 5 1 2 3 4

f x , , x f x f x | x f x | x ,x

f x | x ,x ,x f x | x ,x ,x ,x

… =
 

 
inductively convert the latter expression in to that shown in (3). This results in 
 

( ) ( ) ( )( )2|1 2 1 2 2 12 1 1 2 2f ( x | x ) f x c F x ,F x=  
 
Next, 
 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )
| |3|12 3 1 2 3|2 3 2 13|2 1|2 1 2 3|2 3 2

3 3 23 2 2 3 3 13|2 1 1 2 3 3 2

f x x ,x f x x c F x | x ,F x | x

f x c F x ,F x c F x | x ,F x | x

=

=
  (4) 

 
The calculation for the remaining term ( )5|1234 5 1 2 3 4| , , ,f x x x x x  is left to the reader. 

Note that in the special case of a joint normal distribution, the normal copula 
would be used everywhere in the above expression and the conditional copulas 
would be constant (i.e. not depend on the conditioning variable). This means that 
the joint normal structure is specified by ( )1 / 2n n −  (conditional) correlation 
values, which are algebraically free between -1 and +1 (unlike the values in a 
correlation matrix). See Bedford and Cooke (2002) for more details. The above 
theorem gives a constructive approach to build a multivariate distribution given a 
vine structure: If choices of marginal densities and copulas are made then the 
above formula will give a multivariate density. Hence, vines can be used to model 
general multivariate densities. However, in practice it is necessary to use copulas 
from a convenient class, and this class should ideally be one that allows any given 
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copula to be approximated to an arbitrary degree. Having this class of copulas 
allows any multivariate distribution to be approximated using any vine structure. 

Unlike the situation with Bayesian networks, where not all structures can be 
used to model a given distribution, the theorem shows that - in principle - any 
vine structure may be used to model a given distribution. However, when specific 
families of copulas are used it seems that some vine structures do work better than 
others. That is, given a family of copulas, some vine structures may give a better 
degree of approximation than others. It is worth stressing the point that the 
flexibility of vines gives the potential to capture any fine grain structure within a 
multivariate distribution. A key aspect that cannot be modeled by Bayesian 
networks is that of conditional dependence. Bayesian networks are built around 
the concept of conditional independence -arrows from a parent node to two child 
nodes means that the child variables are conditionally independent given the 
parent variable. However, different models of conditional dependence are not 
available as building blocks in Bayesian networks. Multivariate Gaussian copulas 
do allow for a specification of conditional dependence, but do not allow that 
dependence to change - in a multivariate normal distribution, the conditional 
correlation of two variables given a third may be non-zero but is always constant. 
This approach, by contrast, allows the explicit modeling of non-constant 
conditional dependence. 

The minimum information (MI) copula using the D1AD2 
algorithm 

Bedford et. al (2013) presented a way to approximate a copula using minimum 
information methods which demonstrate uniform approximation in the class of 
copula used. Bedford and Meeuwissen (1997) applied a so-called DAD   
algorithm to produce discretized MI copula with given rank correlation. This 
approach can be used whenever it is desirable to specify the expectation of any 
symmetric function of ( )U F x=  and ( )V F y= . 

In order to have asymmetric specifications the 1 2D AD  algorithm must be 
used where A  is a positive square matrix, thus, diagonal matrices 1D  and 2D  can 
be found such that the product of 1 2D AD  is doubly stochastic. It is possible to 
correlate the variables of interest X  and Y  by introducing constraints based on 
knowledge about functions of these variables. Suppose there are k  of these 
functions, namely ( ) ( ) ( )' ' '

1 2, , , , , ,kh X Y h X Y h X Y…  and mean values 1,..., kα α  are 
specified for all functions respectively from the data or the expert judgment. 
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Corresponding functions of the copula variables U and V , defined by 
( ) ( ) ( )( )' 1 1

1 1 1 2, ,h U V h F U F V− −= , etc. can be defined and clearly these should also 

have the specified expectations 1,..., kα α . The kernel 
 
 1 1 k kA( u, v )  exp( h ( u, v )  . . .  h ( u, v ))λ λ= + +   (5) 
 
is formed, where u  denotes the realization of U  and v  the realization of V . 

For practical implementations it is necessary to discretize the set of ( ),u v  
values such that the whole domain of the copula is covered. This means that the 
kernel A  described above becomes a 2-dimensional matrix A  and that the 
matrices 1D  and 2D  are required to create a discretized copula density 
 
 1 2P D AD=   (6) 
 
Suppose that both U  and V  are discretized into n  points, respectively iu , and jv , 

, 1,...,i j n= . Then ( ) ( ) ( )( )1 1
1 1, , ,ij nA a D diag d d= = … and ( ) ( )( )2 2

2 1 , , nD diag d d= …

where ( ) ( ) ( )1
1, ,ij i j i ia A u v d D u= = and ( ) ( )2

2i id D u= . The double stochastically 

of 1 2D AD with the extra assumption of uniform marginals means that 
 

( 1 ) ( 2 )
i j ij

j

1 i 1, ,n   d d a
n

∀ = … =∑  

 
and 
 

( 1 ) ( 2 )
i j ij

i

1 j 1, ,n    d d a
n

∀ = … =∑  

 
because for any given i  and j  the selected cell size in the unit square is 1/ n . 
Hence 
 

( 1 )
i ( 2 )

j ijj

nd
d a

=
∑
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and 
 

( 2 )
j ( 1 )

i iji

nd
d a

=
∑

 

 
The 1 2D AD  algorithm works by fixed point iteration and is closely related to 
iterative proportional fitting algorithms. 

It can be shown that a multivariate distribution can be arbitrarily well 
approximated by using a fixed family of bivariate copula. A key step to 
demonstrating this is to show that the family of bivariate (conditional) copula 
densities contained in a given multivariate distribution forms a compact set in the 
space of continuous functions on [ ]20,1  (see Bedford et al. (2013) for proof). 
Based on this it can be shown that the same finite parameter family of copula can 
be used to give a given level of approximation to all conditional copula 
simultaneously. 

The set [ ]( )20,1C  can be considered as a vector space, and in this context a 

basis is simply sequence of functions [ ]( )2
1 2, ,... 0,1h h C∈ for which any function 

[ ]( )20,1g C∈  can be written as 
1

i i
i

g hλ
∞

=

=∑ . There are lots of possible bases, for 

example 
 

2 2 2 2u, v, uv, u , v , u ,vu,v , . . . . 
 
Given an ordered basis [ ]( )2

1 2, ,... 0,1h h C∈  and a required degree of 

approximation 0∈>  in the sup metric, Bedford et al. (2013) stated the following 
theorem. 
 
Theorem 2: Given 0∈> , there is a k  such that any member of ( )LNC f  can be 
approximated to within error 0∈> by a linear combination of 1,..., kh h . 

First consider a practical guide to build a minimally informative copula 
structure briefly discussed to approximate any multivariate distribution. A 
multivariate distribution can be approximated as follows: 
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• Specify a basic family ( )B k  
• Specify a pair-copula structure 
• For each part of pair-copula specify either 

 
1. mean 1,..., kα α  for 1,..., kh h  on each pairwise copula; 
2. functions ( | )m eji Dα  for the mean values as functions of the 
conditioning variables, for 1,...,m k= , where eD  is the conditioning 
set for the edge e . 

Data set 

A data set of Tehran stock exchange is used that includes five time series of daily 
data: the overall index (O), the industry index (I), the free float index (F), the 
main board index (M) and the secondary index (S). All are for the period January 
5th2008 to October 30th 2011. (number of observation equal to 668) These five 
variables are denoted by O, I, F, M and S, respectively. 

First, remove serial correlation in the five time series i.e. the observation of 
each variable must be independent over time. Hence, the serial correlation in the 
conditional mean and the conditional variance are modeled by an AR(1) and a 
GARCH(1,1) model (Bollerslev, 1986), respectively. That is for time series i , the 
following model for log-return ix ; 
 

i ,t i i i ,t 1 i ,t i ,tx c x zα σ−= + +  
 

i ,tE z 0=    
 
and 
 

i ,tVar z 1=    
 
Where , 1 , ,i t i t i tzε σ− = + . Aas et al. (2009) 

The further analysis is performed on the standard residuals iz . If the AR(1)-
GARCH(1,1) models are successful at modeling the serial correlation in the 
conditional mean and the conditional variance, there should be no autocorrelation 
left in the standard residuals and squared standard residuals. The modified Q-
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statistic is used (Ljung and Box, 1979) and the Lagrange Multiplier Test (LM) 
Engle (1982), respectively, to check this. For all series and both tests, the null 
hypothesis that there is no autocorrelation left cannot be rejected at the 5% level. 
Because interest lies mainly in estimating the dependence structure of the risk 
factor, the standard residual vectors are converted to the uniform variables using 
the kernel method before further modeling. 

It is necessary to generate a vine approximation fitted as in Figure 2 to this 
data set using minimum information distributions. It should be noted that the 
corresponding functions of the copula variables X, Y, Z, U and V associated with 
O, I, F, M and S can be found. These are defined by, for example, 
( ) ( ) ( )( )' 1 1

1 2, ,i ih X Y h F O F I− −= and should have the same specified expectation, in 

this case ( ) ( )'[ , [ ,i iE h X Y E h O I =  . The minimum information copulas 

calculated in this example are derived based on copula variables X, Y, Z, U and V. 
It should be noticed that to generalize to other stock exchanges and other 

applications, a vine structure can be determined uniquely by specifying the order 
of variables in the first tree 1T . To specify this order, we can use correlation 
scatter plot, Kendall’s τ  or the tail dependence coefficient (see e.g., Aas et al., 
2009) to measure the strongest bivariate dependencies among the variables in the 
first tree of the D-vine (or C-vine) of interest. Once the  Kendall’s τ  or the tail 
dependence coefficients between any pair of the variables in the first tree 
calculated, then order these measures, and put the variables with the highest 
measures next to each other and place the ones with weak dependencies farther 
away. Skipping to present the numerical details of these measures, and following 
Aas et al. (2009), use the pair-copula construction given in Figure 2  as the 
selected D-vine structure. In the case, that there is no data to compute these 
measures to specify the vine structure (or variables order in the first tree), we can 
use the expert's judgement to elicit these measures or other relevant measures that 
are more convenient to express by the expert (see Bedford et al. (2013) for a 
relevant work).  
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Figure 2. Selected vine structure for the Tehran stock exchange with 5 variables:  overall 
index (O), industry index (I), free float index (F), main board index (M)  and  secondary 
index (S). 
 
 

Initially minimally informative copulas are constructed between each set of 
two adjacent variables in the first tree, 1T . To do so it is necessary to decide upon 
which bases to take and how many discretization points to use in each case. The 
recommended procedure for first copula in T1, between O and I is considered next. 

Basis function 

Which basis functions to include in the copula must first be decided. Basis 
functions could be chosen, starting with simple polynomials and moving to more 
complex ones, and including them until satisfied with our approximation. For 
example if the following basis functions in order is included, 
 

2 2 2 2 3 3 2 3 3 2 4 4 5 5 3 3 2 4 4 2OI ,O I ,OI ,O I ,O I ,OI ,O I ,O I ,O I ,OI ,OI ,O I ,O I ,O I ,O I  
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Figure 3. The log-likelihood of the minimally informative copula calculated based on 
different functions 
 
 
then the log-likelihood for the copula changes as in Figure 3. There is a jump in 
the log-likelihood as the third basis function, 2OI  is added. This could imply that 
we are not adding the basis functions in an optimal manner. Instead at each stage, 
it is proposed to assess the log-likelihood of adding each additional basis function, 
then include the function which produces the largest increase in the log-likelihood. 
Thus the method is similar to a stepwise regression. Doing so for the initial copula 
yields the basis functions 2 3 2, ,OI O I O I .  

There is no longer a jump in the log-likelihood when adding the four basis 
function. The log-likelihood also increase more quickly and reaches its plateau 
value of around 1030 using fewer basis functions. 

Fixing the values of the expectations of these functions by using the 
empirical data as follows 
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1 i i
i 1
667

2
2 i i

i 1
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3 i i

i 1
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The minimum information copula OIC  With respect to the uniform distribution 
given the three constraint above can then be constructed. In order to do so it is 
necessary to decide on the number of discretization points (or grid size). A larger 
grid size will provide a better approximation to the continuous copula but at the 
cost of more computation time. Similarly, the more iteration of the D1AD2 and the 
optimization algorithms that are run, the more accurate the approximation will 
become. This is again at the expense of speed. Comments on the convergence of 
the DAD algorithm are given in Bedford et al. (2013) and Daneshkhah et al. 
(2013). In terms of the optimization it is possible to specify how accurate the 
approximation should be and then judge the effect on the number of iterations 
required for convergence. In number of iterations needed will also depend on the 
grid size. In order to be consistent throughout the rest of the example, choose a 
grid size 50 50. 

Having done this, the MI copula COI can now be found. This gives 
parameter value of 

 
907.8, 
-1025.1,
389.41

1

2

3

λ
λ
λ

=
=
=

 

 
The result has been summarized in table 1 and copula plotted in Figure 4. Note 
that the Log-likelihood for this copula is 1031.4. 
 
 
Table 1. Minimum information copula between O and I 
 

Base Expectation Parameter Value 

OI 0.3280 907.8 
O2I 0.2428 -1025.1 
O3I2 0.1578 389.41 

 
 
 



PARHAM, DANESHKHAH & CHATRABGOUN 

419 

 
 

Figure 4. Minimum information copula between O and I 
 
 
The second copula in 1T  is IFC . Using the stepwise method as illustrated the 
following results obtained and the log-likelihood is 521.8.IFl =  The summarized 
result are given in Table 2, and Figure 5 shows the fitted copula. 
 
 
Table 2. Minimum information copula between I and F. 
 
Base Expectation Parameter Value 
IF 0.3209 81.2 
I3F3 0.1254 38.6 
I3F 0.1851 -75.7 
 
 

 
 
Figure 5. Minimum information copula between I and F 
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The third marginal copula is between F and M. Given a 50×50 grid and a required 
error of no more than 1×10−12 the three bases chosen using the stepwise procedure, 
the constraint for each base and the resulting parameter values are given in Table 
3 and Figure 6 . The log-likelihood for this copula is 462.31. 
 
 
Table 3. Minimum information copula between F and M 
 

Base Expectation Parameter Value 

FM 0.3195 60.97 
F4M2 0.1252 26.42 
FM3 0.1839 -45.46 
 
 

 

Figure 6. Minimum information copula between F and M 
 
 
and the last copula in first tree, 1T , between M and S is MSC . The result are 
summarized in Table 4 and Figure 7. 
 
 
Table 4: Minimum information copula between M and S 
 

Base Expectation Parameter Value 

MS 0.2928 25.52 
MS2 0.2064 -23.22 
M2S4 0.0989 8.44 
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Figure 7: Minimum information copula between M and S 
 
 
The conditional copulas in the second tree, 2T , can similarly be approximated 
using the minimum information approach. Initially the conditional MI copula 
between O|I and F|I is constructed. In order to calculate this copula, divide the 
support of I into some arbitrary sub-intervals or bins and then construct the 
conditional copula within each bin. To do so, find bases in the same way as for 
the marginal copulas and fit the copulas to the expectations calculated for these. 
Two bins are used so that the first copula is for O,F|I∈ (0,0.5). The bases for this 
copula are 
 

( )( ) ( )( )' ' 2
1 2, | 0,0.5 , , | 0,0.5 ,h O F I OF h O F I OF∈ = ∈ =  

( )( )' 3
3 , | 0,0.5h O F I OF= ∈ =  

 
The expectations given these basis functions which will constrain the MI copula 
are 
 

1 2 30.0902,    0.0368,    0.168α α α= = =  
 
This process can be followed again for the remaining bins. Table 5 shows the 
constraints and corresponding Lagrange multipliers required to build the 
conditional MI copula between O|I∈ (0.5,1) and F|I∈ (0.5,1). It also gives the log-
likelihood in each case. 
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Table 5. Minimum information copula between O and F given I 
 

Condition Base Expectation Parameter Value Log-
likelihood 

0< I <= 0. 5 (OF, OF2, OF3) (.0902,.0368,.0168) (274.76,-627.3 , 482.6) 195.94 

0. 5< I <= 1 (O2F4,O5F, O4F2) (0.247,0.254,0.247) (-18.2,-69.98 , 81.93) 162.92 

 
 
Similarly, the MI copula can be constructed between remaining nodes in 2 ,T  one 
of them I|F and M|F and another between F|M and S|M based on 2 bins and 3 
constraints found in the usual manner. The resulting MI copula are summarized in 
Table 6 and Table 7. 
 
 
Table 6. Minimum information copula between I and M given F 
 

Condition Base Expectation Parameter Value Log-
likelihood 

0< F <= 0.5 (IM, IM2, I4M2) (0.1193,0.06,0.017) (982.3 , -881.7 , 298.2) 551.3 

0.5<F<= 1 (I3M3, I4M2, I4M) (0.258,0.259,0.302) (704.4 , -242.1 , -216.8) 555.4 

 
 
Table 7. Minimum information copula between F and S given M 
 

Condition Base Expectation Parameter Value Log-
likelihood 

0<M<= 0.5 (FS, F3S, FS2) (0.1314,0.0258,0.078) (51.3 , -51.9 , -11.3) 87 

0.5<M<= 1 (F5S, FS5, F3S3) (0.222,0.197,0.193) (5.3 , -5.3 , 6.5) 73.7 

 
 
O|(I,F) and M|(I,F) are calculated on each combination of bins for I,F. Thus in 3T  
there are 4 bins altogether. The bins, bases and log-likelihoods ( l ) associated with 
each copula are given in Table 8. 

Similarly the MI copulas for I|(F,M) and S|(F,M) are calculated on each 
combination of bins for F,M. Table 9 shows the result in this case. 
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Table 8. Minimum information copula between O and M given I and F 
 

Condition Base Expectation Parameter Value  l 

I <=0.5& F <=0.5 (OM, OM2, OM3) (.082,.031,.0124) (2685.4 , -7892.9 , 783) 405.95 

I <=0.5 & F >0.5 (OM, O5M, O4M2) (0.164,0.006,0.007) (2046.3 , -27710 , 1263) 41.9 

I >0.5 & F <=0.5 (OM5, OM3, O2M4) (0.153,0.245,0.152) (1481 , -206 , -556) 37.9 

I >0.5 & F >0.5 (O5M, OM, OM3) (0.282, 0.582, 0.39) (728.4, -2054.7, 1025.2) 243.4 

 
 
Table 9. Minimum information copula between I and S given F and M 
 

Condition Base Expectation Parameter Value  l 

F <=0.5 & M <=0.5 (IS, IS2, IS3) (.0994,.0542,.0345) (108.9 , -190.2 , 3243.1) 92.3 

F <=0.5 & M >0.5 (I2S, IS2, I5S) (0.202,0.17,0.061) (32.2 , -5.6 , -16.5) 6 

F >0.5 & M <=0.5 (IS2, I2S3, I2S4) (0.218,0.082,0.067) 70.9 , -72.9 , 26.7) 4.7 

F >0.5 & M >0.5 (I4S2, I3S, I2S) (0.233, 0.344, 0.42) (7.5, 2.8,-0.4) 79.9 

 
 
Table 10. Minimum information copula between O and S given I,F and M 
 

Condition Base Expectation Parameter Value  l 

I <=0.5&F <=0.5& M <=0.5 (OS, OS2, OS3) (.0976,.0503,.03) (111.7 , -173.6 , 80.7) 81.1 

I <=0.5 & F <=0.5& M >0.5 (O5S, OS5, OS4) (0.005,0.002,0.001) (229.5 , -476.5 , -640) 3.7 

I <=0.5 & F >0.5& M <=0.5 (OS, O4S, O4S2) (0.207,0.014,0.008) (44.7, -211.8 , 16.6) 1.9 

I <=0.5 & F >0.5& M >0.5 (OS5, OS, O4S2) (0.001, 0.12, 0.003) (22.9, -985.7, 253.5) 0.1 

I >0.5 & F <=0.5& M <=0.5 (O4S, O3S, O2S) (0.131, 0.203, 0.321) (17.5, 23.8,- 36.4) 0.2 

I >0.5 & F <=0.5& M >0.5 (O3S, OS, O4S2) (0.194, 0.36, 0.095) (11.5, -8.5,- 1.1) 0.72 

I >0.5 & F >0.5& M <=0.5 (O2S4, O2S2, O2S3) (0.136, 0.185, 0.158) (722.7, -211.9,- 633) 0.84 

I >0.5 & F >0.5& M >0.5 (O3S3, OS4, OS) (0.226, 0.266, 0.519) (11.8, -8.4,-3.14) 77.1 
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The conditionally MI copula in the fourth tree, 4T , can be obtained. In this 
situation, first divide each of the conditioning variables’ supports into 2 bins as in 

2T and 3T , then the MI copulas for O|(I,F,M) and S|(I,F,M) are calculated on each 

combination of bins for I,F,M. Thus in 4T  there are 8 bins altogether. The bins, 
bases and log-likelihoods associated with each copula are given in Table 10. 

Comparison to the other approaches 
Table 11. Comparison to the other approaches 
 
Type of 
Copula Variables (X,Y ) Parameters l 

Gaussian 
copula 

(O,I)-(I,F)-(F,M)-(M,S) 

Gaussian copula are used 
as building blocks 3721.04 

(O|I,F|I)-(I|F,M|F)-(F|M,S|M) 

(O|I,F,M|I,F) (I|F,M,S|F,M) 

(O|I,F,M,S|I,F,M) 

t-copula 

(O,I)-(I,F)-(F,M)-(M,S) 

t- copula are used as 
building blocks 3987.1 

(O|I,F|I)-(I|F,M|F)-(F|M,S|M) 

(O|I,F,M|I,F) (I|F,M,S|F,M) 

(O|I,F,M,S|I,F,M) 

MI copula 

(O,I)-(I,F)-(F,M)-(M,S) 

Details are provided in 
this article 4845.12 

(O|I,F|I)-(I|F,M|F)-(F|M,S|M) 

(O|I,F,M|I,F) (I|F,M,S|F,M) 

(O|I,F,M,S|I,F,M) 
 
 
As mentioned, multivariate copula function are limited and weak to modeling 
multivariate dependency, the proposed method was compared with two different 
multivariate copula function. When the multivariate Gaussian copula was fit to 
this data the Log-likelihood is 3458.7 and by multivariate t-copula is 3468.4. In 
order to make a comparison the log-likelihood of the data sample was computed 
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for three different copula models used on the same vine structure: The Gaussian 
copula, the t-copula used by Aas (2009), and our minimum information copula. 
The results are shown in Table 11. 

Conclusion 

If choices of marginal densities are made for any indexes of Tehran stock 
exchange and copulas between them then the above formula will give a 
multivariate density for each proposed level of variables. 
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For transfer functions to map the input layer of the statistical neural network model to the 
output layer perfectly, they must lie within bounds that characterize probability 
distributions. The heterogeneous transfer function, SATLINS_TANH, is established as a 
Probability Distribution Function (p.d.f), and its mean and variance are shown. 
 
Keywords: Statistical neural network, SATLINS, TANH, SATLINS_TANH, mean, 
variance 
 

Introduction 

Anders (1996) proposed a statistical neural network model given as 
 
 ( ),y f X w u= +   (1) 
 
where y is the dependent variable, ( )0 11, , , IX x x x= ≡ …  is a vector of 
independent variables, w = (α, β, γ) is the network weight: α is the weight of the 
input unit, β is the weight of the hidden unit, and γ is the weight of the output unit, 
and ui is the stochastic term that is normally distributed (that is, ui ~ N( 0, σ2In )). 

Basically, f (X, w) is the artificial neural network function, expressed as 
 

 ( )
1 0

,
H I

h hi i
h i

f X w X g xα β γ
= =

 
= +  

 
∑ ∑   
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where g(.) is the transfer function. 

The proposed convoluted form of the artificial neural network function used 
in this study is 
 

 ( ) 1 2
1 0 0

X,w X
H I I

h hi i hi i
h i i

f g x g xα β γ γ
= = =

    
= +     

    
∑ ∑ ∑   

 
and thus, the form of the statistical neural network model proposed is 
 

 1 2
1 0 0

H I I

h hi i hi i i j
h i i

y X g x g x u uα β γ γ
= = =

    
= + +    

    
∑ ∑ ∑   (2) 

 
where y is the dependent variable, ( )0 11, , , IX x x x= ≡ …  is a vector of 
independent variables, w = (α, β, γ) is the network weight: α is the weight of the 
input unit, β is the weight of the hidden unit, and γ is the weight of the output unit, 
ui and uj are the stochastic terms that are normally distributed (that is, ui, uj ~ N( 0, 
σ2In )) and g1(.) and g2(.) are the transfer functions. 

The distributional properties of the heterogeneous model arising from the 
convolution of SATLINS and TANH is investigated here. Let g1(.) = Symmetric 
Saturated Linear function (SATLINS), defined as 
 
 ( ) ( )1 1.

1, 1
, 1 1

1, 1

satlins g f n
n

n n
n

= = = 
− < −
 − ≤ ≤


>

  (3) 

 
Let g2(.) = Hyperbolic Tangent function (TANH), defined as 

 

 ( ) ( )2 2tanh .
n n

n n
e eg f n
e e

−

−

−
= = =

+
  (4) 
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Symmetric Saturating Linear and Hyperbolic Tangent 

(i) 

Let ( ) ( ) ( ) ( ) ( )1 2 1 2

b

a

f n f n f n f n m f m dm= ⊗ = −∫   (5) 

 
For n < −1, f1(n) = −1, which implies also that f1(n − m) = −1. 
 

( )2

m m

m m
e ef m
e e

−

−

−
=

+
  

 
Therefore, 
 

 
( ) ( ) ( )

( )

1 2

--1-
-

1 , 1

log log

n m m

m m
r

r rn
m m

n n
r

e ef n f n dm r n
e e

e ee e
e e

−

−
−

 −
⊗ = − < < − + 

 +
= + =  + 

∫
  (6) 

(ii) 
Similarly, for −1 ≤ n ≤ 1, f1(n) = n, which implies that f1(n − m) = n – m, such that 
−1 ≤ m ≤ n. 
 
Therefore, 
 

 
( ) ( ) ( ) ( )

( )

1 1 1 2
-1

1

-
n

n m m

m m

f n f n f n m f m dm

e en m dm
e e

−

−
−

⊗ =

 −
= −  + 

∫

∫
  (7) 

 
Using integration by part, and noting that 
 

'uv uv u v=′ −∫ ∫   

 
Let u = n – m. This implies that du = −dm. 
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and 
m m

m m

d e e
v

e e

−

−

  
+

′
+

= . This implies that ( )log m mv e e−= + . 

 
Thus, 
 

 ( ) ( ) ( ) ( ) ( )1 2
1

log log
n

m m m mf n f n n m e e e e dm− −

−

⊗ = − + + +∫   (8) 

 

In (6), let ( )
1

log
n

m mI e e dm−

−

= +∫   

 
Now, let ( )log m mx e e−= + , which implies that x m me e e−= +  

 
But x k= ∈  for 1 1m− ≤ ≤ . Hence 0I = . 
 
Therefore, 
 
 ( ) ( ) ( ) ( )1

1 2 1 logf n f n n e e−⊗ = − + +   (9) 

(iii) 
Also, for n > 1, f1(n) = a = 1. This implies that f1(n − m) = 1 
 
Therefore, 
 

 
( ) ( ) ( ) ( )1 2 1 2

1

1
1

n

n m m n n

m m

f n f n f n m f m dm

e e e edm log
e e e e

− −

− −

⊗ = −

 − +
= =  + + 

∫

∫
  (10) 

 
The summary of the derived function is given as 
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 ( )

( ) ( )

1 2
0 0

11

1

log , for 1

1 log , for -1 1

log , for 1

I I

hi i hi i r r
i i

n n

n n

g x g x f n
e e n
e e

n e e n

e e n
e e

γ γ
−

= =

−

−−

−

−

   
= =    

 +     < −  + 
 + + ≤ ≤

  + > +  

∑ ∑  (11) 

 
(11) is the derived transfer function for the Symmetric Saturated Linear transfer 
function and the Hyperbolic Tangent transfer function. 

Distributional Properties of the SATLINS_TANH SNN Model 

Next it is shown that the derived transfer functions are probability density 
functions. By definition, the probability density function (p.d.f) of function f(x) of 
a random variable :ΩX →  is said to be a proper p.d.f if for 

( ), ,x x X∈ −∞ +∞ ∈ , thus, 
 

( ) 1,f x dx x X
∞

−∞

= ∈∫   

 
From the derived transfer function in (11), 
 

 

( ) ( )

( ) ( )

1 2

1 1
11

1

1
1

log 1 log

log

r r

n n

n n

f n f n dn

e e dn n e e dn
e e

e e dn
e e

∞

−∞

− − −−
−

−∞ −

∞ −

−

⊗

 +
= + + + + 

 +
+  + 

∫

∫ ∫

∫
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( ) ( )

( ) ( )

( ) ( )

1

1
11

1

1

1

log log

log 1

log

r r n n

n n

e e e e dn

e e n dn

e e log e e dn

−
− −

−∞

−−

−

∞
− −

 = + − + 

+ + +

 + + − + 

∫

∫

∫

  

 ( ) ( ) ( ) ( )
1 1

11 1

1 1

log log 1 logr re e dn e e n dn e e dn
− ∞

−− − −

−∞ −

= + + + + − +∫ ∫ ∫   (12) 

 ( ) ( ) ( )
121 1 1

1
1

log log log
2

r r nn e e e e n n e e
− ∞

− − −

−∞
=

     = + + + + − +       
  

 ( )12 log e e−= ∞ + + −∞   

 ( )12 log e e−= +   

 
The mean and variance of the derived transfer functions are obtained next. 
 
For ( ) ( )1 2f n f n⊗   
 
 ( ) ( )

( ) ( )

1 2

11

1

log , for 1

1 log , for 1 1

log , for 1

r r

n n

n n

f n f n
e e n
e e

n e e n

e e n
e e

−

−

−−

−

−

⊗ = 
 + < −  + 

 + + − ≤ ≤

  + > +  

  

 

( ) ( ) ( )( )1 2E n n f n f n dn
∞

−∞

= ⊗∫  

( ) ( )
1 1

11
1

1 1

log 1 log log
r r n n

n n
e e e en dn n n e e dn n dn
e e e e

− ∞− −−−
− −

−∞ −

   + +
= + + + +   + +   
∫ ∫ ∫   
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( ) ( )

( ) ( )

( ) ( )

1 1

1
11

1

1

1 1

log log

1 log

log log

r r n n

n n

n e e dn n e e dn

n n e e dn

n e e dn n e e dn

− −
− −

−∞ −∞

−−

−

∞ ∞
− −

= + − +

+ + +

+ + − +

∫ ∫

∫

∫ ∫

 

( ) ( ) ( ) ( ) ( ) ( )
1 1

11 2 1

1 1

log log logr re e n dn e e n n dn e e n dn
− ∞

−− − −

−∞ −

= + − + + − +∫ ∫ ∫  

( ) ( ) ( )
1 12 3 2 211 1

1 1

log log log
2 3 2 2

r r n n n ne e e e e e
∞

−− − −

−∞ −

     
= + − + + − +     

     
 

( ) ( ) ( )11 11 1 1 1 1 1log log log
2 2 3 2 2 3 2 2

r re e e e e e
−− − − ∞ ∞       = + − − + + − − − + −                

 
 
Hence, the mean of derived transfer function in is 
 

 ( ) ( ) 112 log
3

E n e e
−−= +   (13) 

 
Similarly, 
 

( ) ( ) ( )( )2 2
1 2E n n f n f n dn

∞

−∞

= ⊗∫  

( ) ( )
1 1

12 2 1 2
1

1 1

log 1 log log
r r n n

n n
e e e en dn n n e e dn n dn
e e e e

− ∞− −−−
− −

−∞ −

   + +
= + + + +   + +   
∫ ∫ ∫  

( ) ( )

( ) ( )

( ) ( )

1 1
2 2

1
11 3 2

1

2 1 2

1 1

log log

log

log log

r r n n

n n

e e n dn n e e dn

e e n n dn

n e e dn e e n dn

− −
− −

−∞ −∞

−−

−

∞ ∞
− −

= + − +

+ + −

+ + − +

∫ ∫

∫

∫ ∫
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( ) ( ) ( )
1 13 4 3 311 1

1 1

log log log
3 4 3 3

r r n n n ne e e e e e
− ∞

−− − −

−∞ −

     
= + + + − + +     

     
 

( ) ( ) ( )11 11 1 1 1 1 1log log log
3 3 4 3 4 3 3 3

r re e e e e e
−− − − ∞ ∞       = + − + + + − − − + −                

 

( ) 112 log
3

e e
−−= +  

 
Therefore, variance of ( ) ( )( )1 2f n f n⊗  is 

 

 

( ) ( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

22

2
1 11 1

21 1

1 1

var

2 2log log
3 3

2 4log log
3 9

4 2log log
9 3

n E n E n

e e e e

e e e e

e e e e

− −− −

− −

− −

 = −  

 = + − +  

= − + + +

 = + + −  

  (14) 

 
Thus, 
 

 ( )

( ) ( )

1 2
0 0

11

1

log , for 1

1 log , for 1 1

log , for 1

I I

hi i hi i r r
i i

n n

n n

g x g x f n
e e n
e e

n e e n

e e n
e e

γ γ
−

= =

−

−−

−

−

   
= =    

 +     < −  + 
 + + − ≤ ≤

  + > +  

∑ ∑   

 

with mean, ( ) ( ) 112 log
3

E n e e
−−= +  

and variance, ( ) ( ) ( )1 14 2var log log
9 3

n e e e e− − = + + −  
. 
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The ratio of independent random variables arises in many applied problems. The 

distribution of the ratio X
Y  is studied when X  and Y  are independent Normal and 

Rice random variables, respectively. Ratios of such random variables have extensive 
applications in the analysis of noises in communication systems. The exact forms of 
probability density function (PDF), cumulative distribution function (CDF) and the 
existing moments are derived in terms of several special functions. As a special case, the 
PDF and CDF of the ratio of independent standard Normal and Rayleigh random 
variables have been obtained. Tabulations of associated percentage points and a computer 
program for generating tabulations are also given. 
 
Keywords: Normal distribution, Rice distribution, ratio random variable, special 
functions. 
 

Introduction 

For given random variables X and Y , the distribution of the ratio X
Y  arises in 

a wide range of natural phenomena of interest, such as in engineering, hydrology, 
medicine, number theory, psychology, etc. More specifically, Mendelian 
inheritance ratios in genetics, mass to energy ratios in nuclear physics, target to 
control precipitation in meteorology, inventory ratios in economics are exactly of 
this type. The distribution of the ratio random variables (RRV) has been 
extensively investigated by many authors especially when X  and Y  are 
independent and belong to the same family. Various methods have been compared 
and reviewed by authors including Pearson (1910), Greay (1930), Marsaglia 
(1965, 2006) and Nadarajah (2006).  

mailto:n.b.khoolenjani@gmail.com
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The exact distribution of X
Y  is derived when X  and Y are independent 

random variables (RVs) having Normal and Rice distributions with parameters 
2( , )µ σ  and ( , )vλ , respectively. The Normal and Rice distributions are well 

known and of common use in engineering, especially in signal processing and 
communication theory. In engineering, there are many real situations where 
measurements could be modeled by Normal and Rice distributions. Some typical 
situations in which the ratio of Normal and Rice random variables appear are as 
follows. In the case that X  and Y represent the random noises corresponding to 
two signals, studying the distribution of the quotient X

Y  is of interest. For 

example in communication theory it may represent the relative strength of two 
different signals and in MRI, it may represent the quality of images. Moreover, 
because of the important concept of moments of RVs as magnitude of power and 
energy in physical and engineering sciences, the possible moments of the ratio of 
Normal and Rice random variables have been also obtained. Applications of 
Normal and Rice distributions and the ratio RVs may be found in Rice (1974), 
Helstrom (1997), Karagiannidis and Kotsopoulos (2001), Salo, et al. (2006), 
Withers and Nadarajah (2008) and references therein. 

The probability density function (PDF) of a two-parameter Normal random 
variable X  can be written as: 
 

 2
2

1 1( ) exp{ ( ) },  
22Xf x x xµ
σπσ

= − − −∞ < < ∞   (1) 

 
where µ−∞ < < ∞  is the location parameter and 0σ >  is the scale parameter. For 

0µ =  and 2 1σ =  , (1) becomes the distribution of standard Normal random 
variable. A well known representation for CDF of X  is as 
 

 
1( ) 1 ( )
2 2X

xF x erf µ
σ
− = + 

 
  (2) 

 
where ( )erf ⋅  denotes the error function that is given by 
 

 
2

0

2( )
x

uerf x e du
π

−= ∫   (3) 
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Also, 
 

 
22

2
0

1( ) ! ( ) .
( 2 )! ! 2

k

k k j

j
E X k

k j j
σµ
µ

 
  

=

= ⋅
−∑   (4) 

 
If Y  has a Rice distribution with parameters ( , )vλ  , then the PDF of Y  is as 

follows: 
 

 
2 2

02 2 2

( )( ) exp{ } ( ),  0,  0,  0
2Y

y y v yvf y y v λ
λ λ λ

+
= − Ι > ≥ >   (5) 

 
where y  is the signal amplitude, 0 (.)Ι  is the modified Bessel function of the first 
kind of order 0, 22λ  is the average fading-scatter component and 2v  is the line-
of-sight (LOS) power component. The Local Mean Power is defined as 

2 22 vλΩ = +  which equals 2( )E X , and the Rice factor K  of the envelope is 
defined as the ratio of the signal power to the scattered power, i.e., 2 22K v λ=  . 
When K  goes to zero, the channel statistic follows Rayleigh distribution, whereas 
if K goes to infinity, the channel becomes a non-fading channel. For 0v = , the 
expression (5) reduces to a Rayleigh distribution. 

Notations and Preliminaries 

Recall some special mathematical functions, these will be used repeatedly 
throughout this study. The modified Bessel function of first kind of order v , is  
 

 
2

0

1( )1 4( ) ( )
2 ( !) ( 1)

k

v
v

k

x
I x x

k v k

∞

=

=
Γ + +∑   (6) 

 
The generalized hypergeometric function is denoted by 
 

 1 2
1 2 1 2

0 1 2

( ) ( ) ...( )
( , ,..., ; , ,..., ; )

( ) ( ) ...( ) !

k
k k p k

p q p q
k k k q k

a a a zF a a a b b b z
b b b k

∞

=

=∑   (7) 
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The Gauss hypergeometric function and the Kummer confluent hypergeometric 
function are given, respectively, by 
 

 2 1
0

( ) ( )( , ; ; )
( ) !

k
k k

k k

a b zF a b c z
c k

∞

=

=∑   (8) 

 
and 
 

 1 1
0

( )( ; ; )
( ) !

k
k

k k

a zF a b z
b k

∞

=

=∑   (9) 

 
where ( )ka , ( )kb  represent Pochhammer’s symbol given by  

( )( ) ( 1) ( 1)
( )k

ka a a a k α
α

Γ +
= + ⋅⋅⋅ + − =

Γ
. 

 
The parabolic cylinder function is  

 

 
2

22 4 1 1 1( ) 2 ( , ; )
2 2 2

v z

vD z e v z
−

= Ψ −   (10) 

 
where ( , ; )a c zΨ  represents the confluent hypergeometric function given by 
 

1
1 1 1 1

1 1
( , ; ) ( ; ; ) 2 (1 ;2 ; )

1
cc c

a c z F a c z F a c c z
a c a

−− −   
Ψ = Γ +Γ + − −   + −   

,  

 
in which  
 

1 1

1

1

( ),...,
,..., ( )

m

i
m i

n
n

j
j

aa a
b b b

=

=

Γ
 

Γ = 
  Γ

∏

∏
. 

 
The complementary error function is denoted by  
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22( ) u

x

erfc x e du
π

∞
−= ∫   (11) 

 
The following lemmas are of frequent use. 
 
Lemma 1 (Equation (2.15.5.4), Prudnikov, et al., 1986). For Re 0p > ,
Re( ) 0vα + > ; arg c π<  
 

21

0

( ) 2
1 2

1 1

( )

( )
2 ( ; 1; )2

2 41

px
v

v
v v

x e I cx dx

v
v cc p F v

pv

α

α α
α

∞
− −

+
−− −

+ 
+ = Γ +

 
+ 

∫
. 

 

Lemma 2 (Equation (2.8.9.2), Prudnikov, et al., 1986). For Re 0p > ; arg
4

c π
<  

 
22 1

1
0

2

22 2

( ) 0 ! ( 1)
( 1 2 2

1 ( ) exp( ) ( ) .

n
n px

n

n

n

erf cx b nx e dx
erfc cx b p

c pb bcerf b erfc
P p c pp c p c p

∞
+ −

+

+    −
= ±   +   

 ∂
+ − 

∂ + + +  

∫
 

 
 
Lemma 3 (Equation (3.462.1), Gradshteyn & Ryzhik, 2000). For Re 0β > , 
Re 0v >  
 

{ }
2

1 2 2

0

exp( (2 ) ( ) exp( ) ( ).
8 2

v
v

vx x x dx v Dγ γβ γ β
β β

∞
−−

−− − = Γ∫  
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The Ratio of Normal and Rice Random Variables 

The explicit expressions for the PDF and CDF of X Y  are derived in terms of 
the Gauss hypergeometric function. The ratio of standard Normal and Rayleigh 
RVs is also considered as a special case. 
 
Theorem 1: Suppose that X  and Y  are independent Normal and Rice random 
variables with parameters 2( , )µ σ  and ( , )λ ν , respectively. The PDF of the ratio 

random variable XT Y=  can be expressed as ( ) ( ) ( )f t g t g t= + − , where  

 

 

2 2 2 2 2

2 2 2 2 2 2{ }
22 2 4 ( )

3
2 2 2 2

2

2

(2 3)2 2 2 2
0

( )
2 ( )

( )
4 (2 3) ( ).
( !)

v t
t

k

k
k

eg t
t

v
tk D

k t

µ µ λ
λ σ σ λ σ σ λ

π λ σ

µ λλ
σ λ σ

− + −
+

∞

− +
=

=
+

−
× ⋅Γ + ⋅

+
∑

  (12) 

 
Theorem 1 Proof: 
 

 

X Y X Y
0 0

2 2
2

02 2 2 2
0

2 2
2

02 2 2 2
0

f ( t ) yf ( ty ) f ( y )dy yf ( ty ) f ( y )dy

1 1 y ( y v ) yvy exp ( ty ) exp I ( )dy
2 22

1 1 y ( y v ) yvy exp ( ty ) exp I ( )dy
2 22

µ
σ λ λ λπσ

µ
σ λ λ λπσ

∞ ∞

∞

∞

= + −

 + = ⋅ − − ⋅ −   
   

 + + ⋅ − − − ⋅ −   
   

∫ ∫

∫

∫

  (13) 

 
The two integrals in (13) can be calculated by direct application of Lemma 3. 
Thus the result follows. 
 
Remark 2: By using expression (10), elementary forms for ( )g t  in Theorem 1 
can be derived as follows: 
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2 2 2 2

2 2

2
1 ( ) 2 2 2 22 2

3 2 3 2 2 2 2
02 2 2 22 2

( ) (2 3) 2 3 14( ) ( , ; )
2 2 2 ( )2 ( ) ( !) 2

kv

k
k

v ke k tg t
tt k

σ µ λ
σ λ λσ µ λλ

σ λ σ
π λ σ

− +
∞

+
=

Γ + +
= Ψ

+
+

∑   (14) 

 
Corollary 3 Assume that X  and Y  are independent standard Normal and 
Rayleigh random variables, respectively. The PDF of the ratio random variable 

XT Y=  can be expressed as 

 

 2 2 3 2( ) , 0
( 1)Tf t t
t

λ
λ

= >
+

  (15) 

 
Theorem 4: Suppose that X  and Y  are independent Normal and Rice random 
variables with parameters 2( , )µ σ  and ( , )λ ν , respectively. The CDF of the ratio 

random variable XT Y=  can be expressed as ( ) ( ) ( )F t G t G t= − −  where  

 

 

2

2

2
v k

k k2 4
2

2 2
k 1 kk 0

2 2

3 2

2 2 22 2 2 2 2 2

v( )e n! ( 1)4G( t ) { [ 2 erf ( )1 12 ( k !) 2 22( ) ( )
2 2

2t texp( )erfc( )]}.
2( t )t 2( t )

λ µλ λ
λ σ

λ λ
λ µ µ λ

λ σλ σ σ λ σ

−
∞

+=

− ∂ −
= −

∂

− × − −
++ +

∑
  (16) 

 
Theorem 4 Proof: The CDF ( ) Pr( )XF t tY= ≤  can be written as  

 

 
0

( ) ( ) ( ) ( ) ,Y
ty tyF t f y dyµ µ
σ σ

∞ − − − = Φ −Φ 
 ∫   (17) 

 
where (.)Φ  is the cdf of the standard Normal distribution. Using the relationship 
 

 1( ) ( ),
2 2

xx erfcΦ − =   (18) 

 
Eq. (17) can be rewritten as 
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0

2 2

02 2 2
0

2 2

02 2 2
0

1( ) ( ) ( ) ( )
2 2 2

1 ( )( ) exp ( )
2 22

1 ( )( ) exp ( ) .
2 22

Y
ty tyF t erfc erfc f y dy

ty y y v yverfc I dy

ty y y v yverfc I dy

µ µ
σ σ

µ
λ λ λσ

µ
λ λ λσ

∞

∞

∞

− + = − 
 

 − +
= ⋅ − 

 
 + +

− ⋅ − 
 

∫

∫

∫

  (19) 

 
The result follows by using Lemma 2. 
 
Corollary 5: Assume that X  and Y  are independent Normal and Rice random 
variables with parameters 2(0, )σ  and ( ,0)λ , respectively. The CDF of the ratio 

random variable XT Y=  is  

 

 
2 2 2

( ) , 0.tF t t
t

λ
λ σ

= >
+

  (20) 

 
Figures (1) and (2) illustrate possible shapes of the pdf corresponding to (20) for 
different values of 2σ  and λ . Note that the shape of the distribution is mainly 
controlled by the values of 2σ  and λ . 
 

 
Figure 1 Plots of the pdf corresponding to (20) for 0.5,1,3,5λ =  and 1σ = . 
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Figure 2 Plots of the pdf corresponding to (20) for 0.2,0.5,1,2σ =  and 1λ = . 

 
 

Kth Moments of the Ratio Random Variable 
In the sequel, the independence of X  and Y  are used several times for 

computing the moments of the ratio random variable. The results obtained are 
expressed in terms of confluent hypergeometric functions. 
 
Theorem 6: Suppose that X  and Y  are independent Normal and Rice random 
variables with parameters 2( , )µ σ  and ( , )λ ν , respectively. A representation for 
the kth moment of the ratio random variable T X Y= , for 2k < , is: 
 

 
2

2

[ ]2 22
2

1 1 2 2
0

2 2 1[ ] ! ( ) ( ;1; ) ( )
2 2 2 ( 2 )! ! 22

k
k v

k j

j

k k vE T k e F
k j j

λµ σ
λ µλ

−

=

− + − + = Γ  − 
∑  (21) 

 
Theorem 6 Proof: Using the independency of X  and Y  the expected ratio can 
be written as 
 

 1( ) ( ) ( ) ,
k

k k
k k

XE T E E X E
Y Y

 
= = 

 
  (22) 

 
in which 
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2 2

02 2 2
0

1 1 ( )( ) exp ( )
2k k

y y v yvE I dy
Y y λ λ λ

∞  +
= ⋅ − 

 
∫   (23) 

 
By using lemma 2.1, the integral (23) reduces to  
 

 

2

2 22

1 1 2
2 2

1 2 2( ) ( ) ( ;1; )
2 2 2(2 )

v

kk

e k k vE F
Y

λ

λ
λ

−
− + − +

= Γ   (24) 

 
The desired result now follows by multiplying (4) and (24). 
 
Remark 7: Formula (21), displays the exact forms for calculating ( )E T , which 
have been expressed in terms of confluent hypergeometric functions. The delta-
method can be used to approximate the first and second moments of the ratio
T X Y= . In detail, by taking ( )X E Xµ = , ( )Y E Yµ =  and using the Delta-
method (Casella & Berger, 2002) results in: 
 

2

22

2

1 1 2

2( )
3( ,1; )
2 2

X

Y

eE T
F

ν
λµ µ
νµ π λ
λ

≈ = . 

 
For approximating ( )Var T , first recall that 2 2 2( )E X µ σ= +  and 

2 2 2( ) 2E Y λ ν= + . Thus, 
 

2

2 2 2

( ) ( )( ) ,X

Y X Y

X Var X Var YVar
Y

µ
µ µ µ

  
≈ +  
  

 

 
which involves confluent hypergeometric functions, but in simpler forms.  
 
Remark 8: The numerical computation of the obtained results in this article 
entails calculation of special functions, their sums and integrals, which have been 
tabulated and available in determinds books and computer algebra packages (see 
Greay, 1930; Helstrom, 1997; and Salo, et al. 2006 for more details.  
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Percentiles 

Table 1. Percentage points of XT Y=  for 0.1 2.5λ = − . 

 
λ  0.01p =  0.05p =  0.1p =  0.9p =  0.95p =  0.99p =  

0.1 0.100005 0.500626 1.005023 20.64741 30.4243 70.1792 

0.2 0.050002 0.250313 0.502518 10.32370 15.2121 35.0896 

0.3 0.033335 0.166875 0.335012 6.882471 10.1414 23.3930 

0.4 0.025001 0.125156 0.251259 5.16185 7.6060 17.5448 

0.5 0.020001 0.100125 0.201007 4.12948 6.0848 14.0358 

0.6 0.016667 0.083437 0.167506 3.44123 5.0707 11.6965 

0.7 0.014286 0.071518 0.143576 2.94963 4.3463 10.0256 

0.8 0.012503 0.062578 0.125629 2.58092 3.8030 8.7724 

0.9 0.011111 0.055625 0.111670 2.29415 3.3804 7.7976 

1 0.010002 0.050062 0.100503 2.06474 3.0424 7.0179 

1.1 0.009091 0.045511 0.091367 1.87703 2.7658 6.3799 

1.2 0.008333 0.041718 0.083753 1.72061 2.5353 5.8482 

1.3 0.0076926 0.038509 0.077310 1.58826 2.3403 5.3984 

1.4 0.0071432 0.035759 0.071788 1.47481 2.1731 5.0128 

1.5 0.0066670 0.033375 0.067002 1.37649 2.0282 4.6786 

1.6 0.0062503 0.031289 0.062814 1.29046 1.9015 4.3862 

1.7 0.0058826 0.029448 0.059119 1.21455 1.7896 4.1281 

1.8 0.0055558 0.027812 0.055835 1.14707 1.6902 3.8988 

1.9 0.0052634 0.026348 0.052896 1.08670 1.6012 3.6936 

2 0.0050002 0.025031 0.050251 1.03237 1.5212 3.5089 

2.1 0.0047621 0.023839 0.047858 0.98321 1.4487 3.3418 

2.2 0.0045456 0.022755 0.045683 0.93851 1.3829 3.1899 

2.3 0.0043480 0.021766 0.043697 0.89771 1.3227 3.0512 

2.4 0.0041668 0.020859 0.041876 0.86030 1.2676 2.9241 

2.5 0.0040002 0.020025 0.040201 0.82589 1.2169 2.8071 
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Table 2. Percentage points of XT Y=  for 2.6 5λ = − . 

 
λ  0.01p =  0.05p =  0.1p =  0.9p =  0.95p =  0.99p =  

2.6 0.0038463 0.019254 0.038655 0.79413 1.1701 2.6992 

2.7 0.0037038 0.018541 0.037223 0.76471 1.1268 2.5992 

2.8 0.0035716 0.017879 0.035894 0.73740 1.0865 2.5064 

2.9 0.0034484 0.017262 0.034656 0.71197 1.0491 2.4199 

3 0.0033335 0.016687 0.033501 0.68824 1.0141 2.3393 

3.1 0.0032259 0.016149 0.032420 0.66604 0.9814 2.2638 

3.2 0.0031251 0.015644 0.031407 0.64523 0.9507 2.1931 

3.3 0.0030304 0.015170 0.030455 0.62567 0.9219 2.1266 

3.4 0.0029413 0.014724 0.029559 0.60727 0.8948 2.0640 

3.5 0.0028572 0.014303 0.028715 0.58992 0.8692 2.0051 

3.6 0.0027779 0.013906 0.027917 0.57353 0.8451 1.9494 

3.7 0.0027028 0.013530 0.027163 0.55803 0.8222 1.8967 

3.8 0.0026317 0.013174 0.026448 0.54335 0.8006 1.8468 

3.9 0.0025642 0.012836 0.025770 0.52942 0.7801 1.7994 

4 0.0025001 0.012515 0.025125 0.51618 0.7606 1.7544 

4.1 0.0024391 0.012210 0.024513 0.50359 0.7420 1.7116 

4.2 0.0023810 0.011919 0.023929 0.4916 0.7243 1.6709 

4.3 0.0023256 0.011642 0.023372 0.48017 0.7075 1.6320 

4.4 0.0022728 0.011377 0.022841 0.46925 0.6914 1.5949 

4.5 0.0022223 0.011125 0.022334 0.45883 0.6760 1.5595 

4.6 0.0021740 0.010883 0.021848 0.44885 0.6613 1.5256 

4.7 0.0021277 0.010651 0.021383 0.43930 0.6473 1.4931 

4.8 0.0021145 0.010532 0.020672 0.42654 0.6311 1.4752 

4.9 0.0021073 0.010380 0.019823 0.41839 0.6277 1.4613 

5 0.0020094 0.010157 0.018782 0.41027 0.6120 1.4479 
 
 

Tabulations of percentage points pt  associated with the cdf (20) of XT Y=  are 

provided. These values are obtained by numerically solving: 
 

 
2 2 2

p

p

t
p

t

λ

λ σ
=

+
  (25) 
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Tables 1 and 2 provide the numerical values of pt  for 0.1,0.2,...,5λ =  and 1σ = . 
It is hoped that these numbers will be of use to practitioners as mentioned in the 
introduction. Similar tabulations could be easily derived for other values of ,λ σ
and p  by using the sample program provided in Appendix A. 
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Appendix A 

The following program in R can be used to generate tables similar to that 
presented in the section headed 'Percentiles.' 
 
p=c(0.01,.05,0.1,0.9,0.95,0.99) 
sig=1 
vlambda=seq(0.1,5,0.1) 
lvl=length(vlambda) 
mt=matrix(0,nc=length(p),nr=lvl) 
for(i in 1:lvl) 
  { 
  lambda=vlambda[i] 
  t=p*sig*sqrt(1/(1-p^2))/lambda 
  mt[i,]=t 
  } 
print(mt) 
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The RcmdrPlugin.SCDA plug-in package is discussed. It integrates three R packages in 
the R commander interface: SCVA (for Single-Case Visual Analysis), SCRT (for Single-
Case Randomization Tests), and SCMA (for Single-Case Meta-Analysis). This way the 
plug-in package covers three important steps in the analysis of single-case data. 
 
Keywords: Single-case studies, data analysis, software, R package, R commander 
plugin, GUI 
 

Introduction 

To investigate research questions in educational, behavioral, and medical science, 
single-case experiments are very well suited. To bring these experiments to the 
attention of (applied) researchers a software package is suggested to analyze data 
resulting from single-case experiments. 

Single-case designs are increasingly popular in educational, behavioral, and 
medical research (Hammond & Gast, 2010; Matson, Turygin, Beighley, & 
Matson, 2012; Shadish & Sullivan, 2011; Swaminathan & Rogers, 2007). Bliss, 
Skinner, Hatau, and Carroll (2008), for example, classified all articles published 
in four school psychology journals (School Psychology Quarterly, School 
Psychology Review, Journal of School Psychology, and Psychology in the 
Schools) between 2000 and 2005 and found that, with the exception of 2004, 
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single-subject designs were more prevalent than group designs. In this time frame, 
55% of the causal-experimental studies in these journals utilized single-subject 
designs. This may seem odd given the strong emphasis on large N designs in most 
statistical and methodological courses and handbooks for the educational, 
behavioral, and medical sciences. 

A possible explanation for the findings of Bliss et al. (2008) lies in the fact 
that single-case designs can provide a viable alternative or supplement to group 
designs to answer causal questions. This can be said about educational, behavioral, 
and medical research in general, but the published applications of single-case 
designs are certainly not that predominantly present in all subareas. In many 
subareas of educational, behavioral, and medical research single-case designs 
however there is a huge potential for single-case designs to complement the 
standard group designs because of the necessity of pilot data in early stages of 
larger group studies, because of the relevance of research concerning rare types of 
participants (e.g., patients with a very specific neuropsychological disorder due to 
brain injury), or the examination of idiographic questions like ‘does this 
intervention (e.g., restructuring) work for this particular organization?’; and, of 
course, when research funds are scarce and it is not possible to obtain enough 
participants for large-scale group studies (Barlow et al., 2009; Edgington & 
Onghena, 2007; Franklin, Allison, & Gorman, 1997; Kazdin, 2011). Because of 
the close link of single-case evaluations to individual care, single-case designs are 
also ideally suited to bridge the scientist-practitioner gap (Barlow, Hayes, & 
Nelson, 1984; Bliss et al., 2008). 

Unfortunately, most of the commonly used statistical software packages, 
like SPSS and SAS, do not present readily available procedures or options for 
designing single-case experiments and analyzing single-case data. To fill this gap, 
an R package for designing single-case experiments and analyzing single-case 
data is presented. 

R was chosen as the computational environment, because it is open source 
software, running on a variety of UNIX platforms, as well as on Windows and 
MacOS (Hornik, 2012). R has excellent graphical possibilities, but is also a very 
powerful and flexible statistical environment, which facilitates the combination of 
visual and statistical data analysis (Kelley, 2007). However, because of the use of 
a standard command line interface, R is not very user-friendly. Especially for 
practitioners who never engaged in any basic programming, the threshold to start 
working with R can be too high. 

Fortunately, Fox (2005) created a window-based graphical user interface 
(GUI) to R, called the “R Commander” with menus and dialog boxes (very 
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similar to, e.g., SPSS), which are far more familiar to most people (see Figure 1). 
Working with the R commander is hands-down: by selecting the menus, 
submenus open which lead to dialog boxes. Each dialog box contains a ‘help’ 
button, which refers the user to a help page with more information. By making 
selections in the dialog boxes, R commands are generated and executed. 
 
 

 
 
Figure 1. The R commander interface upon starting up. 
 
 
 

An advantage of the R commander is that these R commands are not just 
executed ‘behind the scene’. They also appear in the script window, so R users 
can always see the code and adapt it if necessary. This visibility of commands can 
also be a useful first step in learning R, by gently getting acquainted with the R 
language. In this script window, also other commands can be typed, or previous 
commands can be rerun. In the output window, the given command appears 
together with the output, and in the messages window, error messages, warnings, 
and notes appear (Fox, 2005). 

An additional advantage of the R commander is that users can add their own 
menus and dialog boxes. This extensibility became even more practical with the 
possibility of writing plug-in packages (Fox, 2007). Besides the already 
mentioned advantages of R and the R Commander, a huge advantage is that all 
functionalities that are already available in the standard R Commander and in 
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other plug-in packages can be used. Instead of developing a stand-alone GUI, 
therefore a plug-in for the R Commander was created. The SCDA (Single Case 
Data Analysis) plug-in created is a GUI for three R packages presented: SCVA 
(Single Case Visual Analysis; Bulté & Onghena, 2012), SCRT (Single Case 
Randomization Tests; Bulté & Onghena, 2008, 2009) and SCMA (Single Case 
Meta-Analysis; Bulté et al., submitted). 

The RcmdrPlugin.SCDA Package: An Illustration 

When planning an experiment, first the study design should be carefully chosen 
based on, among other things, the research question. Then data can be collected 
according to the selected design. Single-case data analysis, just like any other 
analysis of empirical data, best starts with a visual exploration of the data. Unless 
the visualization is that convincing that the effect of the intervention is very 
obvious (e.g., a dramatic shift in level without any variability or trend), statistical 
data analysis might be a useful supplementary technique. And often it is not only 
useful to know whether an intervention had a statistically significant effect, but 
also what the size of the effect was. The SCDA plug-in for the R commander 
provides R functions for each of those steps of research design and data analysis. 
It adds one menu item to the R commander (“SCDA”), which contains three 
submenus (see Figure 2). Each of the submenus leads to several menu items. 
 
 

 
 
Figure 2. The R commander with the SCDA plugin. 
 
 
 

1) SCVA (Single-Case Visual Analysis) 

• Graphical display 
• Plot measure of central tendency 
• Plot estimate of variability 
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• Plot estimate of trend 

2) SCRT (Single-Case Randomization Tests) 

• Design your experiment 
o Number of possible assignments 
o Display all possible assignments 
o Choose 1 possible assignment 

• Analyze your data 
o Observed test statistic 
o Randomization distribution 
o P-value 

3) SCMA (Single-Case Meta-Analysis) 

• Calculate effect size 
• Combine p-values 

What follows will illustrate the functionality of the package with an example 
from ter Kuile et al. (2009). A more detailed manual can be found in the 
Appendix. 

Ter Kuile et al. (2009) investigated the effectiveness of therapist-aided 
exposure for lifelong vaginismus. Lifelong (or primary) vaginismus occurs when 
a woman has never been able to have sexual penetrative intercourse during her 
whole life. From a cognitive-behavioral perspective, fear and avoidance behavior 
are connected to vaginismus. Therefore it was hypothesized that exposure to the 
feared stimuli (i.e., penetration) would increase the ability to have sexual 
intercourse. The exposure therapy was aided by a trained female therapist and 
consisted of vaginal penetration exercises (performed by the woman herself) at 
the hospital, together with several specific homework assignments in which the 
partner was involved. 

 

Research Design and Data Collection 
Ter Kuile et al. (2009) used a replicated single-case AB-phase design to test 
whether the therapy would lead to an increase in sexual intercourse. In an AB-
phase design all baseline measurements (A) precede all treatment measurements 
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(B). The idea behind this design is to be able to attribute a change in intercourse 
behavior after the exposure onset to the therapy. To control for time-related 
confounding variables, randomization was incorporated in the study design: the 
random aspect was the start of the exposure therapy. This random determination 
of therapy onset is of course not unlimited. To decide whether the therapy had any 
effect on the ability to have intercourse, baseline as well as treatment observations 
are needed. Therefore, in this illustration a constraint of a minimum of one week 
of diary recordings in each phase is guarded. With a total of 24 weeks of data 
recordings, this leads to 23 possible start points for the therapy (after week 1, after 
week 2, …, after week 23) (Figure 3: SCRT -> Design your experiment -> 
Number of possible assignments). 
 
 

 
 
Figure 3. The RcmdrPlugin.SCDA menu, with the SCRT (Single-Case Randomization 
Tests) ‘design your experiment’ submenu. 
 
 
 

By replicating this experiment over several participants, the strength of the 
findings is increased and more general statements can be made. Ten patients in 
sexology clinics, who suffered from primary vaginismus, participated in the study. 
They kept a daily diary in which they noted (amongst other things) whether they 
were able to have sexual intercourse with their partner that day. To analyze these 
data, they should be put into the R commander. This can be accomplished by 
reading in a created text file with the observations or by entering the observations 
directly as an active data set (see Appendix). 

First the focus is on the diary data of the first patient (P1). She started 
recording her sexual intercourse attempts from the moment she was referred to the 
outpatient sexology clinic. The start of the exposure therapy was randomly 
determined after seven weeks of ‘baseline’ and she continued filling in the diary 
for seventeen more weeks. 
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SCVA (Single-Case Visual Analysis) 
 

 
 
Figure 4. The RcmdrPlugin.SCDA menu, with the SCVA (Single-Case Visual Analysis) 
submenu. 
 
 
 

  
 
Figure 5. Graphical representation of the diary data of P1, averaged per week (SCDA -> 
SCVA -> Graphical display; see Figure 4). On the right, the shift in mean level is 
visualized (SCDA -> SCVA -> Plot measure of central tendency; see Figure 4). 
 
 
 
A first impression can be obtained by making a graphical representation of her 
data (SCDA -> SCVA -> Graphical display; see Figure 4). The left panel of 
Figure 5 shows the average number of successful intercourse attempts per week 
for P1. The dotted vertical line indicates the start of the intervention phase. The 
introduction of the exposure therapy clearly made a difference: before therapy this 
woman had never experienced sexual intercourse with penetration. The shift in 
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mean level between the phases is illustrated in the right panel of Figure 5, where 
the phase means are plotted as a horizontal reference line on the raw data. 
 
 

 

 

 

 
 
Figure 6. The upper panels illustrate the variation in the data (SCDA -> SCVA -> Plot 
estimate of variability; see Figure 4): range bars on the left and trended range lines on 
the right. Possible trends in the data are made visible in the lower panels (SCDA -> 
SCVA -> Plot estimate of trend; see Figure 4). On the left a linear function is drawn on 
the raw data by means of ordinary least-squares regression and on the right a nonlinear 
trend is visualized by displaying running medians of batch size four averaged by pairs. 
 
 

The range bars in the upper left panel of Figure 6 illustrate the lack of 
variability in the baseline phase. In the treatment phase variation is shown by the 
vertical line connecting the minimum and the maximum value, with a small 
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horizontal bar marking the phase mean. The trended range lines depicted in the 
upper right panel of Figure 6 show that the variability decreases over time. There 
is also an upward trend in level noticeable from the linear function in the lower 
left panel of Figure 6. That this trend is not entirely linear can be seen from the 
nonlinear smoothed curve produced by calculating running medians of batch size 
four and averaging each successive pair. 
 

SCRT (Single-Case Randomization Tests) 
Visual analysis is an important first step when evaluating intervention effects. In 
addition, several statistical tests might be conducted to evaluate the statistical 
significance of the intervention effects. The SCDA GUI includes functions to 
conduct randomization tests: permutation tests based on random assignment, to 
test a null hypothesis about treatment effects in a randomized experiment 
(Onghena & Edgington, 2005). The alternative hypothesis in the illustration 
presented was that the exposure therapy will lead to an increase in successful 
sexual intercourse attempts. In other words, the mean of the treatment 
observations is expected to be higher than the mean of the baseline observations. 
Therefore, the difference between those means was chosen as test statistic. 
 
 

 
 
Figure 7. The RcmdrPlugin.SCDA menu, with the SCRT (Single-Case Randomization 
Tests) ‘analyze your data’ submenu. 
 
 
 

Visual analysis of the data already indicated that the exposure therapy had a 
positive effect on the intercourse frequency of P1. This effect is also statistically 
significant, shown by the randomization test’s p-value of .04 (Figure 7: SCRT -> 
Analyze your data -> P-value). More information on randomization tests can be 
found, for example, in Bulté and Onghena (2008). 
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SCMA (Single-Case Meta-Analysis) 
The combination of visual analysis and statistical significance testing, however, 
does not tell the whole story. It is often also useful to know what the size of the 
effect is. How large an effect is, is expressed by means of effect size measures 
(Figure 8: SCDA -> SCMA -> Calculate effect size). The pooled standardized 
mean difference, which uses the pooled standard deviation of both phases, for P1 
equals 2.35. The percentage of data in the treatment phase that is higher than the 
median of the baseline phase (=”PEM”) is 94%. 
 
 

 
 
Figure 8. The RcmdrPlugin.SCDA menu, with the SCMA (Single-Case Meta-Analysis) 
submenus. 
 
 
 

These effect sizes are not only used to show the magnitude of an effect, but 
they also help comparing results over different studies and they can be combined 
in meta-analyses to come to one general estimate of the effect size. Another meta-
analytical procedure is statistically combining the p-values of several sequentially 
replicated single-case experiments, to determine whether a general significant 
result is obtained (Figure 8: SCDA -> SCMA -> Combine P-values). Ten women 
with primary vaginismus participated in the study of ter Kuile et al. (2009). When 
combining their results with the additive method for combining independent p-
values, a general significant result of p = .0016 was obtained. 

Conclusion 

The use of the SCDA plugin package for the R commander was illustrated. A 
more elaborated overview of all functionalities and an explanation of the different 
parts in the dialogue windows is given in the Appendix. 

The presented software package contains one technique for statistically 
analyzing the data resulting from single-case experiments. These randomization 
tests have several advantages over other techniques suggested in the literature. 
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Most importantly, the presence of serial dependency in the data will not invalidate 
the result of a randomization test. This is of considerable interest in the context of 
single-case experiments, because these data tend to have autocorrelated residuals, 
which can seriously bias the results of for example t-tests, by inflating the Type I 
error rate. Another advantage is that they are free from the assumption of random 
sampling. This random sampling assumption, on which the probability tables of 
parametric tests are built, is usually an unrealistic ideal and most experiments do 
not use randomly sampled subjects. Also, unlike parametric t-test, randomization 
tests are not based on assumptions about the homogeneity of variances. But they 
do have one requirement: the incorporation of random assignment not only 
enhances the internal validity of the study, as indicated before, but it also justifies 
the application of a randomization test that is based on the random assignment 
used in the experimental design of the study. This way it is possible to infer causal 
relations between the treatment and the observed changes in behavior. Because 
randomization tests acquire validity by mirroring the random assignment schedule 
used in the study, their extreme versatility permits researchers to make valid tests 
by devising a test that is suitable for the particular design used. They can be used 
with all sorts of data (continuous, discrete, ranks,...) and all kinds of data patterns 
(trends, outliers, skewed distributions, zero variance in baseline,...) (see e.g., 
Edgington, 1973, 1980; Edgington & Onghena, 2007; Gorman & Allison, 1997; 
Kazdin, 2011; Ludbrook, 1994; Onghena & Edgington, 2005; Dugard, File & 
Todman, 2012). 

An alternative to these nonparametric tests is time series analysis, which 
investigates whether there is a significant change in level and/or slope between 
the phases. This technique is also suitable for the analysis of data when serial 
dependency is present. It, however, requires many data points to determine the 
existence and the pattern of autocorrelation and to identify the model correctly, 
which could cause problems for small-n experiments where the phases are usually 
rather short. Another difficulty is the complexity of the mathematical theories on 
which it is based (Box, Jenkins & Reinsel, 1994; Gorman & Allison, 1997; 
Kazdin, 2011). Another alternative is hierarchical linear modeling (HLM). Van 
den Noortgate and Onghena (2003a, 2003b) suggested using such a model for 
calculating effect sizes and for combining effect sizes of single-case data or 
combining the raw data of several studies. By modeling the hierarchical structure, 
the possible dependence of the scores is taken into account. Also study or case 
characteristics can be included as covariates to explain possible variation. For 
time series analysis a plug-in for the R commander already exists 
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(RcmdrPlugin.epack); this is not the case for hierarchical linear modeling, but R 
packages do exist (e.g., ‘nlme’). 

As a useful extension of the RcmdrPlugin.SCDA package, these techniques 
could be included. Not only the HLM suggestion of Van den Noortgate and 
Onghena (2003a, 2003b), but also other methods for combining effect sizes could 
be adopted in the package. The simplest method is probably just taking the 
(weighted) average of all effect sizes to obtain one overall measure that reflects 
the general effect of the intervention over the different studies. This could for 
example be done with the effect size estimates already included in the package. 
Additionally, more effect size measures could be added, such as the percentage of 
all non-overlapping data (PAND; Parker, Hagan-Burke, & Vannest, 2007). Other 
possibilities for combining effect sizes include the three approaches presented by 
Busk and Serlin (1992), which differ in the assumptions made about the 
distribution and the variability of the data. Also the inclusion of more methods for 
combining p-values could be interesting: Stouffer’s method, in which the Zs 
associated with the p-values are added and divided by the square root of the 
number of studies, after which the resulting Z-value is converted to an overall p; 
Mosteller and Bush’s modification, that computes a t-test on the obtained Z value; 
Winer’s suggestion of adding t-values and dividing the sum by the square root of 
the degrees of freedom (Rosenthal, 1978); and the iterative procedure for 
combining p-values, by applying more than one combining function to the same 
partial tests and then combining the resulting second order p-values into a third 
order of combination by means of a combining function, until the final p-value 
becomes reasonably invariant (Pesarin, 2001; Pesarin & Salmaso, 2010). 
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Appendix: Getting started with the RcmdrPlugin.SCDA 

Installation 
To make the SCDA GUI work, R should be downloaded and installed. This can 
be done at no cost from the CRAN (Comprehensive R Archive Network; cran.r-
project.org) website. Hornik (2012) gives a detailed explanation of how to do this 
for Windows, Macintosh and UNIX (the R package presented here is, however, 
only tested on Windows). Once R is running, the GUI can be installed from 
within the R console (Packages -> Install packages). After choosing a CRAN 
mirror nearby, the ‘RcmdrPlugin.SCDA’ package should be selected from the list. 
Note that the downloading process can take a while because several supporting 
packages are downloaded automatically as well. Then the RcmdrPlugin.SCDA 
package can be loaded into R by selecting ‘Packages -> Load package’ (or by 
typing the command library('RcmdrPlugin.SCDA') into the R console). Only this 
last step needs to be repeated when using the GUI. Note that under Windows, the 
R commander functions best with the single-document interface (SDI: Edit -> 
GUI preferences -> Single or multiple windows: SDI). By loading the 
RcmdrPlugin.SCDA package, the R commander opens with ‘SCDA’ as an 
additional menu button (Figure A1). 
 
 

 
 
Figure A1. By loading the RcmdrPlugin.SCDA package, the “SCDA” menu button is 
added to the R commander interface. 
 
 

Data Input 
Most of the functions in the SCDA GUI need data input, which can be taken 

from a .txt file that has been created in advance in a text editor (e.g., EditPad or 
NotePad) or in Excel (save the file as ‘Text(Tab delimited)’). Text files 
containing the raw data should consist of two tab-separated columns for single-
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case phase and alternation designs: the first with the condition labels (“A” and “B” 
when there are two conditions/phases, and “A1”, “B1”, “A2” and “B2” for three 
or four phases) and the second with the observations. For multiple-baseline 
designs they should consist of these two columns for each unit. This way, each 
row represents one measurement occasion. Text files containing p-values for the 
‘combine’ function should consist of one column of p-values. In text files 
containing the possible start points for multiple baseline designs, each row should 
contain all possibilities for one unit, separated by a tab. It is important not to label 
the rows or columns. 

Another way of data input is by using the active data set of the R 
commander. Creating an active data set has the advantage that also other 
functions than the SCDA-functions (e.g., built-in statistical functions of the R 
commander or from other plug-ins) can be applied to the data. This way one can 
fully benefit from the functionality of the R commander and its plug-ins. There 
are several ways to construct this active data set: a text file created as described 
above can be read into the R commander via the Data menu (Figure A2: Data -> 
Import data -> from text file, clipboard, or URL -> uncheck the box ‘Variable 
names in file’ if necessary -> OK -> select the text file within the ‘Open file’ 
dialog box), or data can be entered directly via ‘Data -> New data set’. The active 
data set can be consulted at any time by clicking the ‘View data set’ button. 
 
 

 
 
Figure A2. Constructing the active data set by reading a text file into the R commander. 
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Functions 
The SCDA menu contains three submenus with several menu items. Each menu 
item opens a dialogue box. 
 
SCVA (Single-Case Visual Analysis) 
 
Graphical display The observed single-case data are plotted. As can be seen 
in Figure A3, two selections should be made in the dialogue box. In section A, the 
design type used has been indicated. The options are: 
 

Phase Designs 
Comparisons are made within a time series and the subject’s performance is 
evaluated over time across baseline (A) and intervention (B) phases. 
 
 AB Phase Design 
All baseline 
measurements precede all 
treatment measurements. 
 
 

ABA Phase Design: 
Withdrawal or reversal 
design in which the 
treatment is administered 
between two baseline 
phases. 

ABAB Phase Design 
An extra intervention 
phase is added. 
 
 

 
Alternation Design 
The basic strategy is the rapid alternation of two or more conditions within a 
single subject. 
 
Completely Randomized 
Design 
The random assignment 
procedure mirrors the one 
used when randomly 
assigning subjects to 
different groups for an 
independent samples t 
test (no restrictions). 
 

Alternating Treatments 
Design 
The temporal clustering 
of treatments is prevented 
by ensuring that the 
randomization does not 
permit more than a 
specified number of 
successive time blocks 
with the same condition.  

Randomized Block 
Design 
Adjacent treatment times 
are grouped together in 
blocks and the conditions 
are assigned randomly 
within each block. 
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Multiple Baseline Design 
This is an extension of the basic AB phase designs, in which several of those 
AB designs are implemented simultaneously to different persons, behaviors, 
or settings. A characteristic feature is that the intervention is introduced in a 
staggered way to the different units. 

 
In section B, the data file in which the data can be found should be selected. This 
could either be the active data set or a previously created text file. In the latter 
case, the file can be chosen with the ‘Select File’ button. 
 
 

 
 
Figure A3. The dialogue box for the ‘graphical display’ menu. 
 
 
 
Plot measure of central tendency a measure of central tendency is plotted as a 
horizontal reference line superimposed on the raw time series data. 
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Figure A4. The dialogue box for the ‘Plot measure of central tendency’ menu. 
 
 
 
In the marked section of the dialogue box (see Figure A4), the measure of central 
tendency should be selected. There are four built-in possibilities: 
 

Mean 
The arithmetic mean (the average) of the data. This measure is rather sensitive 
to outliers. 
 
Median 
The middle value of the data (for an even number of data points, the median 
equals the average of the two central data points). This measure is more robust 
than the mean, but it only takes into account the central data points, while 
disregarding other numerical information. 
 
Broadened median 
Calculated based on the three, four, five or six middle values of the data set 
(depending on the total number of data points). This measure is more robust 
than the mean, and sensitive to a larger proportion of the data than the median. 
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Trimmed mean 
Calculates the mean after discarding the extreme observations. The percentage 
of observations that has to be removed from each end of the distribution can 
be indicated in the upper right box (Figure A4). This can be any value from 0 
(= regular arithmetic mean) to 0.5. The default value is 20 percent. The 
trimmed mean is more robust than the mean and less affected by observations 
in the centre of the distribution than the (broadened) median. 
 
M-estimator 
Huber’s M-estimator of location first evaluates each observation to determine 
if it is actually an outlier compared to the rest of the data and then gives less 
weight to those outlying values. For this evaluation a constant K needs to be 
specified that can have any value between 0 and ∞. Usually a percentile of the 
standard normal distribution is chosen. Wilcox (2005) suggests using K = 1.28, 
which corresponds to the 90th percentile of the standard normal distribution 
and covers 80 percent of the underlying distribution. By determining the 
sensitivity of the estimator, one can balance between robustness and 
efficiency (see e.g., Huber & Ronchetti, 2009). 

 
Plot estimate of variability Information about variability in the data is 
displayed by one of three methods. 
 
 

 
 
Figure A5. The dialogue box for the ‘Plot estimate of variability’ menu. 
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In box A (Figure A5) the measure of variability should be selected. The three 
options are: 
 

Range lines 
Range lines are a pair of lines parallel to the X-axis, passing through the 
lowest and highest values for each phase, and superimposed on the raw data. 
 
Range bar graphs 
Range bar graphs consist of a vertical line for each phase, connecting the 
minimum and the maximum value, with a small horizontal bar crossing this 
line to display a measure of central location ((trimmed) mean, (broadened) 
median, or M-estimator). This estimate of central tendency should be selected 
in the middle part of the dialogue box (Figure A5). 
 
Trended ranges 
Trended ranges display changes in variability within phases by two lines, one 
connecting the minimum values of the phase halves and one connecting the 
maxima. 

 
For all these methods the influence of outliers may be lessened by using a 
trimmed range, in which only a sample of the data set is used. This can be 
selected in box B (Figure A5): default the whole dataset is used, but by checking 
the box the 10 to 20 percent extreme values are removed from each phase. 
 
Plot estimate of trend  This function visualizes systematic shifts in central 
location over time using several methods. The method of trend visualization 
should be selected (Figure A6): 
 

Vertical line plot 
A vertical line plot draws the deviations from each data point to a measure of 
central tendency against time. The measure of central tendency should be 
selected in the middle part of the dialogue box (Figure A6). 
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Trend lines 
Trend lines superimpose a linear function on the raw data, which shows if 
there is an increase or a decrease in the observed behavior over time. 
 
Least squares regression 
Minimizes the squared 
vertical distances 
between the regression 
line and the data points. 
 
 
 
 

Split-middle method 
Connects the crossings of 
the median dependent 
variable value and the 
middle time value of both 
phase halves  
 
 
 

Resistant trend line fitting 
Comparable to the split-
middle method, but here 
the phases are divided 
into three sections instead 
of two. This makes this 
method more suited for 
longer time series. 
 

Running medians 
The presence of a nonlinear trend can be displayed with running medians, 
with which the time series is smoothed by dividing it into successive segments 
of a given size and calculating the median for each segment (Tukey, 1977). 
Three sizes of segments are easy to use with time series data: batch size 3, 
batch size 5, and batch size 4 averaged by pairs. 

 
 

 
 
Figure A6. The dialogue box for the ‘Plot estimate of trend’ menu. 
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SCRT (Single-Case Randomization Tests) 
 
Design your experiment 
 

Number of possible assignments 
The number of assignment possibilities for the specified design is calculated. 
In box A (Figure A7) the total number of observations in the experiments 
should be indicated. This is not necessary when the design used is a multiple 
baseline design. In box B a constraint on the randomization schedule should 
be provided. In phase designs the moment of phase change is randomly 
determined, so the restriction is placed on the minimum number of 
observations per phase. In alternation designs the observations are randomly 
assigned to different conditions, so in other words the treatment order is 
randomly determined. To avoid too long sequences of the same condition, in 
alternating treatment designs there is a restriction on the maximum number of 
consecutive administrations of the same condition. For multiple baseline 
designs, there is one extra selection to be made: in box C the location of the 
file with the possible start points should be selected (see ‘Data input’). 

 
 

 
 
Figure A7. The dialogue box for the ‘Number of possible assignments’ menu. 
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Display all possible assignments 
All assignment possibilities for the specified design are enumerated. In the 
dialogue box (Figure A8) can be chosen if the possibilities should only be 
displayed in the output window of the R commander, or also should be saved 
to a file. The location to save the assignment possibilities has to be indicated 
with the ‘Select location’ button. 

 
 

 
 
Figure A8. The dialogue box for the ‘Display all possible assignments’ menu. 
 
 
 

Choose 1 possible assignment 
One assignment possibility is randomly selected from all theoretical 
possibilities. The dialogue box is similar to that of the ‘Number of possible 
assignments’ function. 

 
Analyze your data 
 

Observed test statistic 
The observed test statistic is calculated from the obtained raw data. There are 
several built-in possibilities as test statistic (see Figure A9). For alternation 
designs, multiple-baseline designs and AB phase designs, there are three 
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options: “A-B”, “B-A”, and “|A-B|”, which stand for the (absolute value of 
the) difference between the condition/phase means. For phase designs with 
more than two phases, six more options are available: “PA-PB”, “PB-PA”, 
and “|PA-PB| refer to the (absolute value of the) difference between the 
means of phase means, and “AA-BB”, “BB-AA”, and “|AA-BB|” represent the 
(absolute value of the) difference between the sums of phase means. 

 
 

 
 
Figure A9. The dialogue box for the ‘Observed test statistic’ menu. 
 
 
 

Randomization distribution 
The randomization distribution is generated. One can choose between the 
exhaustive (‘systematic’) and the nonexhaustive (‘Monte Carlo’) 
randomization distribution (Figure A10 box A). For the exhaustive 
randomization distribution all assignment possibilities are enumerated, while 
the nonexhaustive randomization distribution is generated by a random 
sample of all assignment possibilities. The size of this random sample should 
be indicated in the box ‘number of randomizations’. In box B (Figure A10) 
can be chosen if the randomization distribution should only be displayed in 
the output window of the R commander, or also should be saved to a file. The 
location to save the randomization distribution has to be indicated with the 
‘Select location’ button 
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Figure A10. The dialogue box for the ‘Randomized distribution’ menu. 
 
 
 

P-value 
The p-value corresponding to the observed value of the test statistic is 
obtained by locating this value in the exhaustive or nonexhaustive 
randomization distribution. The dialogue box is similar to that of the 
‘randomization distribution’ function. 

 
SCMA (Single-Case Meta-Analysis) 
 
Calculate effect size  The specified effect size measure is calculated 
(Figure A11). Four effect size measures are included in the RcmdrPlugin.SCDA: 
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Standardized mean difference 
The mean of the baseline condition is subtracted from the mean of the 
treatment condition, and this difference is divided by the baseline standard 
deviation.  
 
Pooled standardized mean difference 
Similar to the standardized mean difference, but with the pooled standard 
deviation used as denominator 
 
PND (percentage of nonoverlapping data) 
The percentage of data points in the treatment phase that exceed the most 
extreme value in the baseline phase (i.e., the proportion lower than the lowest 
baseline point for interventions designed to decrease unwanted behavior, and 
the proportion higher than the highest baseline point for interventions intended 
to increase desired behavior). 
 
PEM (percentage of data points exceeding the median) 
The overlap is calculated as the percentage of data points in the treatment 
phase that are located above the extended median line of the previous baseline 
phase (or below this line, if the undesired behavior is expected to decrease). 

 
 

 
 
Figure A11. The dialogue box for the ‘Calculate effect size’ menu. 
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Combine p-values Nonparametric combination of p-values, with the 
multiplicative approach using Pearson’s formula or the additive approach using 
Edgington’s formula (Figure A12 box A). In box B (Figure A12) the location of 
the file in which the p-values to be combined can be found should be selected. 
 
 

 
 
Figure A12. The dialogue box for the ‘Combine p-values’ menu. 
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