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do i1=1,4
     j(1)=i1
        do i2=1,4
           j(2)=i2
              do i3=1,4
                 j(3)=i3
                    do i4=1,4
                       j(4)=i4
                          if (j(1) .eq. j(2) .or. j(1) .eq. j(3) .or. j(1) .eq. j(4)) cycle
                          if (j(2) .eq. j(3) .or. j(2) .eq. j(4)) cycle
                          if (j(3) .eq. j(4)) cycle
                       print*,j(1),j(2),j(3),j(4)
                    end do
              end do
       end do
 end do
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INVITED ARTICLES 
Constructive Criticism 

 
 
Attempts to attain knowledge as certified true belief have failed to circumvent Hume’s injunction against 
induction. Theories must be viewed as unprovable, improbable, and undisprovable. The empirical basis is 
fallible, and yet the method of conjectures and refutations is untouched by Hume’s insights. The implications 
for  statistical methodology is that the requisite severity of testing is achieved  through the use of robust 
procedures, whose assumptions have not been shown to be  substantially violated, to test predesignated range 
null hypotheses. Nonparametric range null hypothesis tests need to be developed to examine whether or not 
effect sizes or measures of association, as well as distributional assumptions underlying the tests themselves, 
meet satisficing criteria. 
 
Keywords: Probability, knowledge, satisficing, statistical methodology 
 
 

Introduction 
 
In the middle of the seventeenth century,            
a remarkable confluence of scientists, 
mathematicians, and philosophers laid the 
foundations for the theory of probability and 
formulated new philosophical underpinnings for 
the justification of claims to knowledge. These 
individuals knew one another, posed problems 
as challenges to one another, and criticized and 
defended the work of one another. Although 
investigations in probability had been conducted 
for  well  over two hundred years before, Fermat  
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nonparametric statistics, multivariate statistics, 
and the philosophy of science and statistics. He 
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and Pascal were credited (by many historians of 
probability) with its mathematical development. 
Although many modern philosophical problems 
had been addressed by Aristotle, Socrates, and 
Protagoras, the interplay between probability 
and philosophy did not begin in earnest until the 
end of the seventeenth century and did not give 
birth to what Stigler (1986) called the infant 
discipline of statistics until 1900.  
 One reason for this fairly long dalliance 
is that it was not clear how the information 
provided by a probabilistic analysis could 
warrant knowledge claims, claims that at the 
time required justification as certain and true. 
Only slowly did probable knowledge get 
recognized as having any veracity, and this on a 
secondary level as opinion or belief. By the end 
of the eighteenth century, philosophers began to 
view even the possibility of acquiring certain 
knowledge of the real world as uncertain at best. 
It was only in the middle of the nineteenth 
century, when the philosophical focus shifted 
from the justification of the source of scientific 
knowledge to the validity of the methods of 
science, that the true romance between 
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probability and philosophy blossomed in the 
testing of scientific theories. 

This relationship continues to flourish, 
and the occasional disagreements are healthy, 
for “statistics requires a dynamic balance 
between its philosophical underpinnings and its 
practice to remain vital” (Kadane, 1976, p. 735). 
In order better to understand this balance and to 
maintain and strengthen the vitality of the 
applied and theoretical aspects of modern 
statistics, it will be helpful to examine the 
history of probability and its joint effort with 
philosophy of science. Such study will 
encourage researchers in statistical theory and 
methods to focus on problems whose solutions 
are essential to the continued health of the 
scientific enterprise, it will allow those 
researchers to avoid repeating mistakes of the 
past, and it is hoped that it will engender an 
appreciation for the incredible insights and 
magnificent oversights of our scientific 
forebears. 

As Stigler wrote (1986), “the advances 
in scientific logic that took place in statistics 
before 1900 were to be every bit as influential as 
those associated with the names of Newton and 
Darwin” (p. 361). Indeed, even though Newton 
dabbled in probability theory, and Darwin=s 
indirect affect on statistics through his cousin, 
Francis Galton, is well known, less well known 
perhaps are Newton=s and Darwin=s influence on 
philosophers of science and statistics. An 
understanding of these kinds of mutual 
influences of statisticians and philosophers may 
help to limn modern statistics in a new yet 
joyously familiar way, “...a recognition, the 
known appearing fully itself, and more itself 
than one knew” (Levertov, 1961). 

  
Origins of Probability Theory 

According to Walker (1927), the 
foundations of the theory of probability were 
laid by Blaise Pascal and Pierre de Fermat in 
1654 in response to two questions asked of 
Pascal by Antoine Gombauld, the Chevalier de 
Mere, Sieur de Baussay. As with many, if not 
most, scientific advances, the work of Pascal and 
Fermat culminated the efforts of other scientists 
and mathematicians that had been accruing over 
a period of hundreds of years. Pascal and Fermat 
were first brought together through the auspices 

of Pierre de Carcavi and Marin Mersenne. 
Mathematicians, including Pierre Gassendi, 
Pierre de Carcavi, Gilles Roberval, Rene 
Descartes, and Blaise Pascal=s father, Etienne, 
met at Mersenne=s house once a week. Etienne 
introduced Blaise to the Mersenne Academy 
when Blaise was fourteen years old. Carcavi 
brought his friend Fermat, with whom he served 
in parliament in Toulouse, into correspondence 
with Mersenne and the others in 1636, and he 
suggested that Etienne and Roberval write to 
Fermat regarding their questions into methods of 
integration and centers of gravity. When 
Descartes criticized (erroneously) Fermat’s 
method of finding tangents, it was Etienne and 
Roberval who defended him. Carcavi also first 
put Fermat and Blaise Pascal in touch with one 
another (David, 1962). 

One of the questions that de Mere asked, 
known as the problem of points, concerned the 
fair distribution of stakes between two players 
when a game they were playing was interrupted 
mid-contest. The problem of points had been 
solved more than 250 years beforehand in some 
works by Antonio de Mazzinghi from around 
1400 (Kiernan, 2001). The first time that the 
problem appeared in a mathematical work, it 
was solved incorrectly by Pacioli in 1494 
(David, 1962; Kiernan, 2001). Cardano, who 
offered his own solution in 1539 (four years 
before Copernicus published his heliocentric 
theory!), referred to Pacioli=s error as one that a 
child should recognize. 

Unfortunately, Cardano’s solution was 
wrong. In 1556, Tartaglia again took up the 
problem of points, commenting that Cardano’s 
solution didn’t make sense. Kiernan (2001, p. 
181) notes that Tartaglia’s answer was “way 
off”, as well. Peverone in 1558 also attempted to 
solve the problem and failed, but according to 
David (1962), M. G. Kendall called this one of 
the near misses of history. It was not until Pascal 
and Fermat discussed the problem in a series of 
letters during the summer of 1654 that a correct 
solution was again found. This time the problem 
of points was solved in three different ways, one 
by Fermat using the enumeration of all cases, 
one by Pascal that used the process of recursion, 
and a second solution by Pascal using his 
arithmetic triangle. (The use of a triangular array 
such as Pascal=s triangle to determine binomial 
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coefficients appeared in works by Chu Shih-
chieh in 1303, Apianus in 1527, Stifel in 1545, 
and Tartaglia in 1556. According to David, 
1962, Fermat dealt with it in 1636, which is 
perhaps the reason that Fisher has referred to it 
as Fermat=s triangle.) 

The second question posed by de Mere 
and solved by Fermat and Pascal dealt with 
probabilities associated with dice. He asked 
Pascal (and Roberval) why the probability of 
throwing at least one six in four rolls of a fair die 
was in the ratio 671 to 625, whereas the 
probability of obtaining at least one pair of sixes 
in twenty-four rolls of two dice was less than 
0.5. Because the expected number of sixes rolled 
in four rolls of a single die is the same as the 
expected number of pairs of sixes in twenty-four 
rolls of two dice, the unequal probabilities that 
de Mere discovered led him, according to 
Pascal, to think he had found a “falsehood in the 
theory of numbers” and that “Arithmetic is self-
contradictory” (cited in David, 1962, p. 88-89). 
That de Mere was able to distinguish empirically 
between two probabilities whose true values are 
0.4914 and 0.5177, concluding that the former 
was less than 0.5, indicates that he was an 
assiduous gambler and note-taker.  

Dice of reasonable quality are known to 
have existed since about 3000 B.C., used chiefly 
at the time in religious rites (David, 1962). A 
complete enumeration of the various outcomes 
on three dice appeared in a thirteenth century 
poem attributed to Fournival (David, 1962), and 
a 1477 commentary by Libri on Dante’s Divine 
Comedy contains the first indication of the 
probabilities of various throws in a three-dice 
game of hazard (Todhunter, 1865). Cardano, 
however, possibly in concert with Ferrari, 
introduced in about 1526 (published 
posthumously in 1663) “the idea of 
combinations to enumerate all the elements of 
the fundamental probability set” and noticed that 
if all elements are equiprobable the ratio of 
favorable to total numbers of cases gives a result 
“in accordance with experience” (David, 1962, 
p. 58). 

From this, David (1962) concluded that 
Cardano was the first mathematician to correctly 
calculate a theoretical probability. 
Unfortunately, Cardano was incorrect in his 
solution of what was essentially de Mere=s 

second question. Galileo also took up the subject 
of dice games and published a fragment on them 
in around 1620 (David, 1962). His benefactor, to 
whom Galileo was Mathematician to his 
Serenest Highness, Cosimo II of Tuscany, had 
posed a problem that had been solved by 
Cardano and that was similar to that posed by de 
Mere: Why, in the throwing of three dice, is the 
number of partitions of 9 and 10 the same, 
though their probability in practice was not 
equal, with 9 being the less probable (David, 
1962)? (His Serenest Highness was almost as 
discerning as de Mere, being able to distinguish 
between probabilities of 0.116 and 0.125.)   

We can see that the topics addressed by 
Pascal and Fermat had a long history before the 
summer of 1654. Nevertheless, as Todhunter 
(1865) commented, “neglecting the trifling hints 
which may be found in preceding writers, we 
may say that the Theory of Probability really 
commenced with Pascal and Fermat” (p. 20). 
And yet, this work was never published by either 
Pascal or Fermat, though both desired that it be 
published. 

 It was Christian Huygens who 
incorporated their work into a small tract 
published in 1657, the first printed work on 
games of chance (Walker, 1929). Huygens 
learned the problem of points from one of 
Carcavi=s friends (David, 1962). After Huygens 
solved the problem and sent his solution to 
Roberval, Carcavi sent Huygens the outlines of 
the discussion of the problem between Fermat 
and Pascal, and he later sent Fermat’s solution to 
Huygens, which turned out to be the same as 
Huygens’. Fermat posed even more difficult 
problems to Huygens, which he solved and 
incorporated into his tract (David, 1962). 
According to David (1962), if one says that “the 
real begetter of the calculus of probabilities is he 
who first put it on a sound footing” (p. 110), 
then one should look to Huygens, Lord of Zelem 
and of Zuylichem, “the scientist who first put 
forward in a systematic way the new 
propositions..., who gave the rules and who first 
made definitive the idea of mathematical 
expectation”. For nearly fifty years, Huygen’s 
work (in Latin) was the unique introduction to 
the theory of probability (David, 1962). 
Todhunter (1865) attributes a 1692 English 
translation of Huygens’ tract to John Arbuthnot. 
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Newton was familiar with Huygens’ 
writings (David, 1962). With the arrival of The 
Great (bubonic) Plague (1664-65), Trinity 
University was closed, and Newton retired to 
Woolsthorpe for two years to invent calculus, 
discover the universal law of gravitation, and 
prove experimentally that white light is 
composed of all colors. Newton’s Principia was 
presented to the Royal Society in 1686 and 
published in 1687 (printed at Edmund Halley's 
expense), thirty years after Huygens published 
the work of Pascal and Fermat. And in 1693, 
Newton solved what was essentially de Mere=s 
dice problem in response to a query by Samuel 
Pepys, thus revealing what David (1962) 
described as at least elementary knowledge of 
probability theory.  

 
Certain Knowledge 

Probability theory has clearly long been 
of interest to gamblers. As Bellhouse (1993) 
noted, “familiarity with probability theory can 
enhance the strategy of play.” Putting the 
parentage of the theory aside, one must wonder, 
given that Pascal and Fermat’s theory 
culminated well over one hundred years of work 
on probability, why the methods of probability 
were not beginning to be incorporated into the 
scientific pursuit of knowledge. David (1962) 
opined, “At a time when it was still possible for 
an able mathematician to take all knowledge for 
his province, moreover when dicing, and 
gambling with annuities, were practiced as 
assiduously in England as anywhere else, it is 
indeed strange that not only Newton but nearly 
the whole of the English school showed no 
interest in them” (p. 124-125). 

David (1962) suggested that the 
introduction of probability into science did not 
come before the Renaissance “because the 
philosophic development which opened so many 
doors for the human intellect engendered a habit 
of mind which made impossible the construction 
of theoretical hypotheses from empirical data” 
(p. 26). One or another form of Aristotelianism 
was dominant at the beginning of the 
seventeenth century (Garber, 1995). And yet, 
even late into the Renaissance, during a period 
in which Newton seemed to have obtained 
hypotheses from data (despite his hypotheses 

non fingo claim to the contrary), probability had 
yet to enter the scientific arena.  

One possible reason for this late entry of 
probability into scientific method is that in the 
middle of the seventeenth century, and through 
the middle of the nineteenth century, knowledge 
was defined as certified true belief. Indeed, even 
Pascal claimed that he was not satisfied with the 
probable, seeking instead the sure (Watkins, 
1978). At the heart of this epistemological view, 
according to Suppe (1977), was the argument 
that S knows that P if and only if (a) P is true, 
(b) S believes that P, and (c) S has adequate 
evidence for believing that P. From the late 
sixteenth through the early twentieth centuries, 
natural philosophers were preoccupied by 
systematic methods for discovering knowledge 
(Mulaik, 1987). In this regard, the justification 
clause (c) was satisfied only by finding a 
demonstrably incorrigible base knowledge 
consisting either of the intuitionist Descartes' a 
priori clear and distinct ideas or by the sense 
data of inductivists such as Bacon and Gassendi. 

Greek philosophers recognized that the 
senses can deceive us. For example, atomists 
such as Democritus believed the world to be 
made from tiny entities known as atoms whose 
action on the senses cause us to experience smell 
and heat, for example. Yet, as the atoms have no 
smell or heat, the world of appearance is illusory 
(Mulaik, 1987). For Descartes, whom Peirce 
called “the father of modern philosophy” 
(Peirce, 1868), the broadest aspects of nature are 
understood by deduction from incorrigible first 
principles, which are grounded in pure reason 
(Salmon, 1966). 

So committed to certainty was Descartes 
that in his Discourse on Method of 1637 he 
claimed as false all that was only probable. 
According to Cartesianism, the world is full of 
an infinitely divisible matter, reason dominates, 
and philosophy is based on his own clear and 
distinct perceptions (Garber, 1995). For 
example, as Descartes wrote in his Meditations 
(1642), “Now it is manifest by the natural light 
that there must at least be as much reality in the 
efficient and total cause as in its effect. For, 
pray, whence can the effect derive its reality, if 
not from its cause?” Salmon wonders how the 
intuitionist Descartes, a man who could not be 
certain that 2+2=4 or that he had hands unless he 
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could prove that God is not a deceiver, found it 
impossible to conceive of the falsity of the 
foregoing principle. 

Descartes prepared his Meditations in 
Holland in 1640. Huygens transported it in 
manuscript form to Mersenne, who solicited 
responses from “learned men who would take 
the trouble to scrutinize them” (Descartes, cited 
in Joy, 1995, p. 431). Among those who 
contributed were Hobbes, Gassendi, and 
Mersenne, himself. According to Agassi (1975), 
Gassendi asked why one would deduce “I think, 
therefore I am?” Why not “I walk, therefore I 
am?” Descartes understood the point and agreed 
that if one walked, one necessarily existed. But 
he could not be sure that he walked; he could be 
sure that he thought, and that is why he preferred 
his “Cogito”. He didn’t doubt the validity of 
Gassendi’s inference, he only doubted the truth 
of the premise that he walked. (Agassi 
misattributed this Fifth Objection to Hobbes, 
who actually wrote the Third.) 

Gassendi was an empiricist. For him, 
experience dominates, and philosophy begins 
with our sensations of a public world; this world 
is made up of atoms and a void, and he 
attempted to reconcile Epicurean atomism in a 
way that was more congenial to the Church. In 
rejecting Aristotelianism, he, like Descartes, 
adopted the mechanist philosophy’s premise that 
physical phenomena could be described fully in 
terms of matter and motion. He also believed 
that our senses can fool us, which caused him to 
formulate a kind of moderate skepticism that 
influenced Locke, Peirce, and others. 

For other empiricists, like Bacon, the 
justification of scientific theory is based on its 
ability to explain experimental results. Until 
Bacon, logic as described in Aristotle’s Organon 
(Greek for “tool”) was deductive. What was 
needed was a method that abandoned 
Aristotelianism’s approach that began with 
hypotheses and deduced truths from them 
(Mulaik, 1987). Bacon introduced his inductive 
logic in his Novum Organum (Latin for “New 
Tool”) in 1620. According to Bacon's doctrine 
(Lakatos, 1978), a discovery is scientific only if 
it is guided by facts through a method of 
induction “that would begin without hypotheses 
or speculations, systematically interrogate 
nature, and move to ever more general truths by 

means of an automatic procedure or algorithms” 
(Mulaik, 1987, p. 273). The scientist starts by 
clearing his mind of theory (bias), and nature 
will then make itself known. For Bacon, science 
is an experimental enterprise through which one 
investigates phenomena in controlled 
circumstances. Bacon’s method of eliminative 
induction includes the logical insight that 
affirming instances do not provide evidence for 
inductive generalizations, whereas negative 
instances do provide disconfirming evidence 
(Mulaik, 1987). Bacon, apocryphally, died of 
pneumonia that developed while he was 
investigating refrigeration by stuffing a chicken 
with snow. 

Although Bacon’s Novum Organum of 
1620 preceded Descartes’ Discourse on Method 
by seventeen years, Descartes’ philosophy was 
dominant at the time of Newton’s Principia. 
According to the justificationist standards of the 
day, then, Newton’s theory was non-knowledge 
(Lakatos, 1978). Newton’s theory was not 
proved in the Cartesian sense, because it was not 
derived from Cartesian metaphysics. Newton 
instead proposed that propositions required only 
an empirical-experimental and not a 
rational-metaphysical proof (Lakatos, 1978). 
Because of the extraordinary success of 
Newton's theory, “for 200 years after Newton no 
one could advocate the use of hypotheses 
without an uneasy backward glance” (Medawar, 
1974). This, despite inductivism having suffered 
what should have been severe setbacks at the 
hands of Locke, Hume and Kant. 

 
Probable Knowledge 

The beauty and power of Newton’s 
mathematical approach to physics clearly had an 
effect on John Arbuthnot, who wrote in 1692, 
“There are very few things which we know; 
which are not capable of being reduc’d to a 
Mathematical Reasoning; and when they cannot, 
it’s a sign our Knowledge of them is very small 
and confus’d” (Stigler, 1986, p. 1). Arbuthnot 
implemented a binomial test in 1710 to examine 
“the constant regularity observ’d in the births of 
both sexes,” (Stigler, 1986, p. 225), and he is 
often credited with publishing the first statistical 
test. Fisher, however, attributed the first 
published significance test to de Moivre in 1718, 
and Barnard stipulated that the first published 
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test was due to Daniel Bernoulli in 1734 
(Bennett, 1990, p. 23-26). Regardless of which 
test is deemed to have been the first, it is clear 
that the eighteenth century held promise for 
great discoveries in probability and statistics. 
Some of the early discoveries in probability and 
statistics were important to philosophers, as 
well. Jacob Bernoulli developed the theory of 
permutations and combinations and contributed 
the weak law of large numbers, the theorem that 
with an increasing number of observations, the 
probability increases that an estimator will lie 
within any specified distance of the true value. 

According to Stigler (1986), at least five 
Bernoullis worked on probability, writing “So 
large is the set of Bernoullis that chance alone 
may have made it inevitable that a Bernoulli 
should be designated father of the quantification 
of uncertainty” (Stigler, 1986, p. 63). Jacob 
Bernoulli and philosopher Gottfried Leibniz are 
known to have composed twenty-one letters to 
one another, although one may not have been 
sent (Sylla, 1998). Leibniz may have first 
learned of Jacob’s work in probability from 
Jacob’s brother, Johann, with whom Jacob was 
not speaking. In a letter written in 1697, Leibniz 
spoke of the “need for establishing on firm 
foundations an art of measuring degrees of 
proofs” (Sylla, 1998, p.48). And after the 
publication in 1713 of Jacob Bernoulli’s Ars 
Conjectandi, accomplished eight years 
posthumously by his nephew Nicholas because 
of the rift between brothers, Leibniz noted that 
the probabilities of obtaining an 11 and a 12 in 
rolling two dice are equal. 

John Locke is considered to be the 
father of British empiricism, and he is perhaps 
the first major philosopher to discuss probable 
knowledge as a somewhat tenable, “second-rate 
way of becoming cognitively aware of the nature 
of the world” (Owen, 1993, p. 38). For Locke, 
probable knowledge is faith or opinion. Owen 
noted that Locke and other non-Cartesians stood 
at a junction between the old and new ways of 
looking at the world. Locke’s account 
“recognizes the limitations of knowledge, rather 
traditionally conceived, but looks ahead in 
allowing its rational supplementation by 
probable conjectures” (Owen, 1993, p. 39). 

In his 1690 An Essay Concerning 
Human Understanding, Locke sought to support 

Bacon’s empiricism by arguing that knowledge 
can not have a component based on innate ideas. 
He argued that if knowledge is not received 
through the senses, then the mind at birth must 
have some kind of intellectual ability, at least in 
applying the concepts of logic (Clark, 1957). 
Instead, he felt that a person enters the world 
with a mind that is a blank slate. There are only 
two sources of ideas, sensation and reflection. 
For Locke, complex ideas are formed out of the 
simple ones entering the mind through the 
mental activities of compounding, abstracting, 
and relating. By a method of analysis, Locke 
was able to trace back from complex ideas to the 
simple ones out of which they arose, but he 
could not find the simple idea from which the 
concept of substance came (Mulaik, 1987). 
Because of this, and because he argued that the 
certain qualities of objects, such as color and 
odor, exist only in the mind and are not 
representative of reality, we can not be certain 
that any of our ideas are representative of reality. 

The case for the demise of inductivism 
was made well and irremediably in David 
Hume=s Enquiry concerning the human 
understanding of 1748. Hume’s objections to 
induction can be variously phrased. According 
to Harris (1992), Hume concluded that it is 
impossible to justify epistemologically that 
unobserved cases will resemble observed cases 
in some crucial respect. Because of this, neither 
certain nor probable knowledge can be justified. 

Reichenbach (1951) discussed two 
theses put forward by Hume. In the first thesis, 
Hume makes clear the nonanalytic nature of 
induction by pointing out that we can very well 
imagine the contrary of the inductive conclusion. 
The possibility of a false conclusion in 
combination with a true premise proves that the 
inductive inference does not carry a logical 
necessity with it. Hume's second thesis is that 
induction cannot be justified by reference to 
experience--the inference with which we want to 
justify induction is itself an inductive inference 
(we believe in induction because induction has 
so far been successful), and so we are caught in 
circularity. Russell (1945, p. 672) stated Hume’s 
conclusion as, “We cannot help believing, but no 
belief can be grounded in reason.” Of Hume’s 
conclusion, Russell (1945) exclaimed, “It is 
therefore important to discover whether there is 
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any answer to Hume within the framework of a 
philosophy that is wholly or mainly empirical. If 
not, there is no intellectual difference between 
sanity and insanity. The lunatic who believes 
that he is a poached egg is to be condemned 
solely on the ground that he is in a minority” (p. 
673). It would seem that as of 1748, unless 
arguments could be mounted against Hume’s 
attack, inductivism was dead. Yet, it lived on, 
because of the success of Newton's theory. 

Expanding on the work of Jacob and 
Nicholas Bernoulli, De Moivre published the 
first appearance of the normal curve in 1733 
(Stigler, 1986). And in 1763, Bayes’ Theorem 
was published posthumously by Richard Price, 
who presented it to the Royal Society. Fisher 
(1956) thought Bayes was reluctant to publish 
his work because Bayes felt that his postulating 
a uniform prior distribution might be considered 
disputable. Price, according to Gillies (1993), 
was strongly influenced by Hume’s criticisms of 
induction and thought that Bayes’ Theorem 
could be used to resolve the problems raised by 
Hume by making generalizations probable, 
rather than certain (this despite Hume’s 
injunction against such a possibility).  

 
Synthetic a priori Knowledge 

The first major intuitionist response to 
Hume's empiricist attack was due to Kant, who 
wrote Critique of pure reason in 1781, 
according to Reichenbach (1951), “with the 
intention of saving scientific knowledge from 
the annihilating consequences of Hume’s 
criticism.” Kant, who in his preface to the 
Critique compared his work to that of 
Copernicus, made clear two distinctions among 
types of propositions. First, he distinguished 
between analytic propositions (true virtually by 
definition, such as the statement “All bachelors 
are unmarried”) and synthetic propositions 
(those that inform us about a fact, such as 
observations, and add to our knowledge). 
Second, he distinguished between a priori 
propositions, those which have a basis other than 
experience, and a posteriori (or empirical) 
propositions, needing observational evidence to 
determine their truth. He posited that objects 
conform to the conditions set forth by the mind, 
that whereas the senses provide the subject 
matter, the mind imposes the form of thought. 

Rather than the mind being a Baconian blank 
slate, Kant specified what he called the 
categories of thought as the a priori equipment 
for thinking. He felt that by showing that the 
axioms of Euclidean geometry were synthetic 
and yet known a priori, he could establish the 
incorrigible basis that justified Suppe’s clause 
(c) mentioned earlier. It would seem, then, that 
at this point, intuitionism held the upper hand, 
due to Hume’s crushing blow against 
inductivism and to Kant’s intuitionist argument 
that Euclidean geometry was synthetic and yet 
known a priori.  

The nineteenth century saw major 
upheavals in science and philosophy. As 
described by Reichenbach (1951), “Ever since 
the death of Kant in 1804 science has gone 
through a development, gradual at first and 
rapidly increasing in tempo, in which it 
abandoned all absolute truths and preconceived 
ideas.” Lagrange introduced the method of least 
squares in 1805, and in 1809 Gauss addressed 
the same problem but couched it in probabilistic 
terms (he also claimed priority for the method of 
least squares, claiming he had used it since 1795 
- Stigler, 1986). 

Laplace contributed the central limit 
theorem in 1810, inverse probability and the 
principle of insufficient reason in 1812. His 
definition of probability was as a state of mind 
(Fisher, 1956; Epstein, 1977), whereas Bayes 
seems to have used a frequentist definition 
(Fisher, 1956). The definition of probability as 
the limit of a frequency was due to Poisson in 
1837. According to Epstein (1977), the theory of 
probability is more indebted to Laplace than to 
any other mathematician; indeed, Stigler (1986, 
p. 122) claims that Laplace’s work brought 
about “a truly Copernican revolution in 
statistical concept.” The Gauss-Laplace 
synthesis brought together two lines - the 
combination of observations and the use of 
probability to make inferences - into a coherent 
whole that was widely disseminated through the 
middle of the century (Stigler, 1986).  

But Gauss, along with Bolyai and 
Nikolai Ivanovich Lobachevsky, called the 
Copernicus of geometry by English 
mathematician William Clifford (Bell, 1937), 
made a discovery that had far greater 
philosophical import - the discovery of 
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non-Euclidean geometry. Lobachevsky’s 
publication appeared in 1829-30 and Bolyai’s in 
1832. Gauss claimed to have obtained similar 
results earlier but did not publish because, 
according to Gillies (1993, p. 80), “he was 
‘afraid of the clamour of the Boeotians.’ Boeotia 
was a region of ancient Greece whose 
inhabitants were considered by the Athenians to 
be stupid and uncultured” (p. 80). The arrival of 
non-Euclidean geometry showed that Kant’s 
implication that humans could never conceive of 
non-Euclidean geometries was untenable. 
Despite this, Kant’s impact was strong and 
lasting. 

 
Descriptive Knowledge 

Burtt (1924) saw elements of positivism 
in Galileo's work, and Burtt cited Brewster’s 
claim that Newton was the first great positivist. 
The founder of positivism in its 19th century 
form was Auguste Comte. Comte's Cours de 
philosophie Positive was completed in 1842. 
Comte is also known as the founder of 
sociology. Positivism was Comte’s response to 
the upheavals in society and to Laplace’s 
“scientifically reasoned deterministic 
interpretation of the universe” (Epstein, 1977, 
p.7). It was Comte’s hope that science could be 
turned into a religion, “in which the great 
philosophers and scientists took the place of the 
Christian saints, and an organized devotion to 
the cause of humanity was substituted for the 
worship of God” (Fuller, 1938, p. 384). 
According to Comte, there are three stages in the 
history of thought: 1) a theological stage, 
explaining the universe in terms of the purposes 
of deities; 2) a metaphysical stage, explaining in 
terms of abstract principles which are 
personified; and 3) a scientific stage, in which 
uniformities in nature are described without 
reading any evidence of purpose or design or 
consciousness into them. The meaning of terms 
are referred to what is found in experience. 

Positivists eschew metaphysics and 
refrain from explanation in physics. Science 
organizes knowledge using laws that are merely 
descriptions, approximate at that, of the patterns 
in which phenomena occur, and science gives us 
the power of prediction. Bradley (1971) 
paraphrased Martineau in saying it is strange 

that something so negative should be called 
positivism. 

Fortunately, although an actual Religion 
of Positivism was started, with priests, rituals, 
and baptisms, most of Comte’s excesses in this 
direction were ignored. Comte’s positivist heir 
was physicist Ernst Mach, who was ecumenical 
in his influences, including Hume, Kant, and 
Darwin (Cohen, 1970, p. 127). According to 
Cohen (1970), Mach “apparently succeeded in 
combining a Kantian appreciation of the active, 
even constitutive, role of the mind in generating 
science with a scientific, which is to say, 
empirical-biological, theory of the origins and 
functions of the mental life” (p. 156). For Mach, 
“not knowledge attained, but the method of 
attaining it, could be certified” (Cohen, 1970, 
p.129). 

 Mach, like Comte, was an 
instrumentalist and felt that laws were mere 
descriptions of nature. Mach, however, did not 
completely do away with theories (as opposed to 
laws), as long as they were testable. Mach’s 
positivism differs from Comte's in that nothing 
was “more foreign to Mach than the tendency 
towards absolutism which finally disfigured both 
the philosophical and the human image of 
Comte” (von Mises, 1970, p. 266). Even by the 
turn of the twentieth century, physicists such as 
Plank and Einstein, although influenced greatly 
by Mach early on, began to turn against 
positivism. 

 
Conjectural Knowledge 

William Whewell, who coined the word 
‘scientist’ (as well as ‘anode’ and ‘cathode’ for 
Faraday and the words ‘physicist’, ‘eocene’, 
‘miocene’, and ‘pliocene’ - Medawar, 1974) 
upon the request of the poet Samuel Taylor 
Coleridge in 1833, tried to reformulate the 
problems of the philosophy of science in a 
Kantian way (Wettersten, 1993), while not 
relying on Kant’s fixed a priori categories. He 
attempted to “explain the facts of the growth and 
stability of science without appeal to induction, 
which he saw to be useless” (Wettersten, 1993, 
p. 482). In his Novum Organum Renovatum of 
1858, Whewell considered induction to be “the 
representation of facts with principles” 
(Wettersten, 1993, p. 497), a notion that will be 
seen in the pragmatacist philosophy of Charles 
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Sanders Peirce, and not the Baconian induction 
from facts to generalizations. He showed that 
neither empiricism nor intuitionism, including 
Kant=s, could account for the growth of scientific 
knowledge; instead, both experience and 
intuition were needed. He gave importance to 
independent tests and to new predictions, and he 
claimed that science needs guesses (Medawar, 
1974 noted that Whewell also used the phrase 
‘felicitous strokes of inventive talent’ when a 
more formal phrase than ‘happy guesses’ was 
required.) As Medawar (1974, p. 281) explained, 
“To say that Einstein formulated a theory of 
relativity by guesswork is on all fours with 
saying that Wordsworth wrote rhymes and 
Mozart tuneful music. It is cheeky where 
something grave is called for to explain how 
scientists discover true principles.” According to 
Wettersten (1993, p. 506), Whewell’s theory 
makes clear that Aeven if we start with poor 
guesses and treat them critically we can come to 
the truth: there are many paths to the truth but 
only one goal’. We see then that Whewell’s 
approach is essentially deductivist and that the 
process consists above all in criticism. In this, 
Whewell is a direct predecessor to Karl Popper’s 
philosophy of conjectures and refutations 
(Wettersten, 1992). 

According to Reichenbach (1951), “the 
turning point in the history of logic was the 
middle of the nineteenth century, when 
mathematicians like Boole and de Morgan 
undertook to set forth the principles of logic in a 
symbolic language.” Peirce, a mathematician 
and logician by training, carried on this work. It 
was not until Boole, DeMorgan, and Peirce 
mathematically overhauled traditional formal 
logic that the logic of probability was put on a 
more scientifically useful basis (Wiener, 1972). 
That Peirce was a frequentist could have been 
due to Boole’s strong criticism in 1854 of the 
postulate of which Bayes was so chary. Like 
Whewell, Peirce was heavily influenced by 
Kant. He claimed that he read Kant=s Critique of 
Pure Reason two hours per day for three years, 
and he named his philosophy ‘pragmatism’ in 
honor of Kant, whom he called The Philosopher. 
He did not use the term practicalism, because in 
Kant pragmatism and practicalism are virtually 
polar opposites (Buchler, 1939). 

Pragmatic means empirical or 
experimental, whereas Kant’s notion of practical 
laws are given purely a priori. Indeed, so often 
were these terms misunderstood that Peirce 
threatened to call his philosophy pragmaticism, a 
term he felt was so ugly that it wouldn’t be 
kidnapped. 

According to Wiener (1972), the great 
difference between the American pragmatists 
and Kant is their denial that over and above 
contingent pragmatic belief are the purely 
rational, necessary, and absolute ideas of Kant's 
transcendental philosophy. The purpose of 
inquiry, wrote Peirce, is to enable us to pass 
from a state of doubt to a state of belief. Despite 
his high regard for Kant, Peirce’s philosophy 
differed from that of Kant. For example, 
whereas Kant considered mathematics to be 
synthetic and yet true a priori, Peirce held that 
mathematics and logic are not synthetic 
(Buchler, 1939). 

He also provided his own version of 
Kant’s categories, writing of them that in 
making their character unchangeable, Kant was 
hostile to the spirit of empiricism. Because of 
the constant nature of Kant’s categories, Kant’s 
epistemology formed a closed system. But 
Peirce, having the benefit of Darwin’s Origin of 
Species of 1859, provides an adaptive 
mechanism behind his categories. Peirce 
attempted to convert the Darwinian ideas of 
chance variation and natural selection into the 
idea of an evolution of the mind by means of a 
logical competition among thoughts, which 
eliminates ideas not fit to stand for the truth 
fated to be discovered by those who investigate. 
It was the nonevolutionary character of the old 
forms of a static empiricism and a rigid a priori 
intuitionism that engaged the pragmatists. 

Peirce was a fallibilist, extending the 
views of Gassendi and Locke in a most thorough 
way. “I will not,” he wrote, “admit that we know 
anything with absolute certainty. It is possible 
that twice two is not four” (Peirce, 1958, p. 64). 
Although he felt that the notion of certain 
knowledge is absurd for a variety of reasons, 
there were two main reasons underpinning his 
fallibilism. First, all claims to knowledge are 
criticizable and only held conditionally, for there 
is no ultimate inductivist or empiricist basis that 
can stop the respective infinite regress in the 
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justification of the claims. And second, he felt 
that no theory was true, able to satisfy all 
features of the facts. In terms of Newton=s law of 
gravity, he pointed out that if, instead of inverse 
square attraction, the exponent of the distance 
between bodies was 2.000001, there would only 
be a minor consequence observable in the orbits 
of the planets, resulting in only slight 
discrepancies in estimated planet masses (Peirce, 
1958).  

Peirce (1878) classified all inference as 
either deductive (or analytic) or synthetic, which 
he subdivided into induction and hypothesis. 
(One difficulty encountered in reading Peirce 
results from his using ‘hypothesis’, 
‘retroduction’, and ‘abduction’ for the same 
synthetic inference. In addition, Peirce 
delineated several types of induction.) 
Deduction is a syllogism in which the truth of a 
rule and a case is transmitted to the result, and 
conversely from the falsity of the conclusion, the 
falsity of the premise follows. In induction, we 
infer from a number of cases that the same thing 
is true of a whole class. Peirce showed that an 
induction is the inverse of a deductive syllogism, 
so that from the case and the result, the rule is 
inferred. As an example (Peirce, 1878), from the 
deduction: 

 Rule: All the beans in the bag were           
white. 
 
 Case: These beans were in the bag. 
 

Result: These beans are white. 
 
we can obtain the induction: 
 
 Case: These beans were in the bag. 
 

Result: These beans are white. 
 
Rule: All the beans in the bag were       

white. 
 
Hypothesis infers the case from the rule and the 
result: 
 
 Rule: All the beans from this bag       
are white. 
 

Result: These beans are white. 
 

 Case: These beans are from this bag. 
Peirce described the scientific method in 

terms of these three modes of inference in the 
following way (Peirce, 1958):  

 
Accepting the conclusion that an 
explanation is needed when facts 
contrary to what we should expect 
emerge, it follows that the explanation 
must be such a proposition as would 
lead to the prediction of the observed 
facts 
 
A hypothesis then, has to be adopted, 
which is likely in itself, and renders 
the facts likely. This step of adopting a 
hypothesis as being suggested by the 
facts, is what I call abduction. 
 
[T]he first thing that will be done, as 
soon as a hypothesis has been adopted, 
will be to trace out its necessary and 
probable experiential consequences. 
This step is deduction. (p. 122). 

 
An abduction for Peirce is an explanation. 

The third step in the process involves 
induction (Peirce, 1958): 

 
Having...drawn from a hypothesis 
predictions...we proceed to test the 
hypothesis by making the experiments 
and comparing those predictions with 
the actual results of the experiment. 
  
This sort of inference it is, from 
experiments testing predictions based 
on a hypothesis, that is alone properly 
entitled to be called induction.  
 
Induction...is not justified by any 
relation between the facts stated in the 
premisses and the fact stated in the 
conclusion...But the justification of its 
conclusion is that that conclusion is 
reached by a method which, steadily 
persisted in, must lead to true 
knowledge in the long run. (p. 124-
125) 
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Peirce distinguished two major types of 
valid induction (there is actually a third type that 
Peirce called the Pooh-pooh argument, but 
enough said). The first, quantitative induction, 
involves the ascertainment of a ratio in the 
population from samples. Through this type if 
induction, we can attain moral certainty of the 
population value, by which Peirce means a 
probability of 1 based on Bernoulli’s results 
concerning the probability that the sample value 
lies within certain limits of the population value. 
“Of course,” he wrote, “there is a difference 
between probability 1 and absolute certainty” 
(Peirce, 1958, p. 131). The second type of 
induction Peirce called qualitative induction, 
from which the most that can be said is that 
there is no reason yet for giving up the 
hypothesis. Of this second type, Peirce (1958)  
wrote, “the only justification for this would be 
that it is the result of a method that persisted in 
must eventually correct any error that it leads us 
into” (p. 134). 

Peirce claimed for induction a 
trustworthiness because of the manner of 
proceeding (Buchler, 1939). The concept of a 
probable argument referred to a class of 
arguments, and an induction belongs to the class 
of all inductions. Saying an induction was 
probable meant that the majority of inductions 
were successful. “[T]hat real and sensible 
difference between one degree of probability 
and another...is that in the frequent employment 
of two different modes of inference, one will 
carry truth with it oftener than the other” (Peirce, 
1878).  

Neither qualitative nor quantitative 
induction and the associated probabilities of 
success involves the probability that a 
generalization itself is true. According to 
Buchler (1939), “After 1883 Peirce does not 
even regard induction as ‘probable’...but rather 
as not probable at all” (p. 251). Peirce said that 
talking about the probability of a law was 
nonsense, as if universes were as plentiful as 
blackberries, and we could pick one. This later 
view reflects Peirce’s distinction between two 
types of probability, the empirical probability 
associated with ratios or with the class of 
inductions and what Peirce called 
conceptualistic probability that is not strictly a 

probability, but is instead only a sense of 
probability (Buchler, 1939). 

As with Whewell, Peirce emphasized 
that potential explanatory hypotheses are 
formulated as guesses. For Peirce, as with Mach, 
the force of scientific reason lies in its methods. 
“[T]he method of methods, is the true and 
worthy idea of the science” (Peirce, 1958, p. 44). 
Science is rational, according to Peirce (1958, p. 
49), where “...‘rational’ means essentially self-
criticizing, self-controlling and self-controlled, 
and therefore open to incessant question.” And 
rather than leading to the probability that the 
inductive inference itself is true, the ability to 
draw valid conclusions lies with the probability 
of correctness of its inductive method, “the 
relative frequency with which this class of 
inferences is found to yield true conclusions” 
(Buchler, 1939, p. 233). 

 
Unprovable and Improbable Knowledge 
 By the end of the nineteenth century, the 
philosophical focus was on American 
Pragmatism and Machian positivism. Both 
Galton and Pearson were Machian 
instrumentalists, which would at least partly 
explain Pearson’s emphasis on fitting data to his 
own system of curves. The continuation of 
Mach’s doctrines fell to the logical empiricists. 
The response of Russell and the Vienna Circle 
philosophers was to search for an empirical basis 
and an inductive logic. Realizing that justifying 
an inductive principle on the basis of 
observation would lead to an infinite regress - to 
justify it would require inductive inferences - 
Russell advocated accepting the principle of 
induction on the ground of its intrinsic evidence 
(Gillies, 1993), that is, on an a priori basis. But 
even if we accepted a priorism as a justification 
of an inductive principle, the positivists' search 
for an empirical basis was doomed to failure, as 
shown by Duhem, who advanced two theses 
against inductivism. One of these, afterwards to 
become known as the Duhem-Quine thesis, will 
be discussed later.  

The other thesis shows that all 
observations are theory-laden. According to 
Agassi (1983), the claim that empirical evidence 
has a theoretical bias was recognized by Bacon 
and Galileo; if one has a theory, it biases 
perception. This led to Bacon’s request that 
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scientists first make observations with no theory 
in mind. Galileo realized, of course, that this 
would result in “just a heap of observations” 
(Agassi, 1983, p. 10), and he was convinced that 
geometry, based on a priori intuitions, must 
precede facts. This led to Kant’s argument 
against empiricism, and  Whewell, influenced by 
Kant, deduced that all data are interpreted, either 
on the basis of theory or of a priori intuitions. 
Therefore, trying to prove a theory inductively 
ultimately requires proving a theory from a 
theory, which is impossible. All one could 
conclude on this basis is that the theories 
involved are consistent. Thus, the 
theory-ladenness of observations meant that 
theories could no longer be hoped to be proved 
from an incorrigible basis. 

It was still felt, however, that although 
theories may not be provable, they still could be 
disproved, or falsified, a view that flies in the 
face of the Duhem’s second thesis, which states 
that an experiment can never condemn an 
isolated hypothesis but only a whole theoretical 
group. Underpinning this thesis is the realization 
that no theory can specify any observable 
consequences. Rather, it requires the conjunction 
of the theory, initial conditions, and auxiliary 
hypotheses. Thus, there can not be such a thing 
as a crucial experiment, on the basis of which a 
theory is falsified and dropped, because an 
observation contrary to prediction can only 
condemn the collective and not any individual 
part. Quine (1951) concluded that any statement 
can be held to be true, if we make enough 
adjustments elsewhere in the system. Thus, not 
only did the theory-ladenness of observations 
make theories unprovable, the Duhem-Quine 
thesis makes them undisprovable. So positivists 
had to fall back on the hope that theories could 
at least be shown to be probable. 

Neyman and Pearson (1933) and Fisher 
(1935) approached these issues from different 
perspectives, and certainly different from the 
probabilist approach of Jeffreys (1939). For 
probabilists, theories have different degrees of 
probability (Lakatos, 1978). Scientific honesty 
then consists in uttering only highly probable 
theories, or the probability in light of the 
evidence. But Ritchie (1926) showed that the 
probability of any inductive generalization is 
zero, and Lakatos (1978) points out that in the 

early 1940’s, Carnap found that the degree of 
confirmation of all genuinely universal 
propositions was zero. So not only can no theory 
be proved or disproved with certainty, but 
theories are also equally improbable. This, then, 
was finally the end of positivism.  

 
Criticism and Knowledge 
 Popper, in his Logic der Forshung in 
1934 (Popper, 1959), attempted to address the 
issues that have been raised, especially Hume’s 
skepticism, the theory-ladenness of 
observations, and the inability to condemn a 
hypothesis in isolation. In his solution, we can 
see much of what was good in Hume, Kant, 
Mach, and especially Whewell and Peirce. 
Popper’s view of knowledge is fallibilist, as was 
Peirce’s, and for him method is fallible as well, 
as distinguished from Mach’s view that method 
was certain. Indeed, Peirce’s overall view of the 
inductive process is virtually indistinguishable 
from the conjecture-and-refutation model 
advocated by Popper (Wiener, 1972). Popper 
(1962) claimed that his method of conjectures 
and refutations had its origins in the writings of 
Kant. Popper never questioned Hume’s 
indictment of induction; instead, he insisted 
there was no problem. Instead of an inductive 
principle, Popper advanced “the theory of the 
deductive method of testing, or as the view that 
a hypothesis can only be empirically tested--and 
only after it has been advanced” (Popper, 1959, 
p. 30).  

Musgrave (1993) described Popper’s 
solution to the problem of induction in the 
following way. Popper, he said, rejected the 
assumption that an ampliative hypothesis is 
reasonable if, and only if, it is justified by the 
evidence, if, and only if, the evidence shows it to 
be true or probably true. In this, it is not clear 
whether justifying beliefs refers to justifying the 
things we believe or providing a warrant for our 
believing those things. According to the classical 
argument, we are justified in believing 
something if, and only if, we can show it to be 
true or at least show it to be more likely true 
than not. Popper rejected this assumption, 
allowing him to endorse Hume’s inductive 
skepticism while rejecting his irrationalism. To 
get from the skeptical thesis to the irrationalist 
thesis you also must assume that a belief is 
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reasonable if and only if it is justified. Popper 
rejected this also. 

In Musgrave’s (1993) view, Popper 
affirmed that some evidence-transcending 
beliefs are reasonable. The central claim of 
Popper’s approach, said Musgrave (1993), is 
that an evidence-transcending belief is 
reasonable if, and only if, it has withstood 
criticism, including, where appropriate, attempts 
to refute it by appeal to evidence. When a 
prediction is falsified we will say that what we 
predicted was wrong, not that it was 
unreasonable to have predicted it. For any 
reasonable theory of reasonable belief, 
according to Musgrave (1993), must make room 
for reasonable beliefs in untruths. In short, 
Hume’s criticism of induction applied to the 
search for a warrant for our beliefs, whereas in 
Musgrave=s view, it does not apply to obtaining 
a warrant for our act of believing. 

By contrast, according to the pancritical 
rationalism of Bartley (1984) and the 
comprehensively critical rationalism of Miller 
(2002), reflecting and extending the philosophy 
of Peirce and Popper, “neither beliefs nor acts of 
belief, nor decisions, nor even preferences, are 
reasonable or rational except in the sense that 
they are reached by procedures or methods that 
are reasonable or rational...Still less are beliefs, 
or decisions, or preferences ever justified” 
(Miller, 2002, p. 81). According to Miller 
(1982), the major difference between Popper’s 
falsificationism and the justificationist 
philosophy of others is methodological, not 
epistemological.  

Virtually all modern philosophers of 
science agree that certain knowledge can not be 
attained. Popper was the first to say outright that 
the attempt to attain certainty should not even be 
made. Miller (1982) pointed out that for 
justificationists, a hypothesis has to be 
confirmed, perhaps inductively, before it is 
admitted to science, and if it fails the tests, or is 
disconfirmed, or not confirmed at all, it is 
excluded from science. For Descartes, ideas that 
can not be justified by being reduced to clear 
and distinct ideas should be rejected, and 
anything that is accepted must be justified in this 
way. For Hume, any idea that can be justified by 
being derived from experience, the empiricist=s 
only source of knowledge, should be accepted, 

and any idea that can not should be rejected 
(Bartley, 1984). 

For Popper, as with Peirce, a hypothesis 
is tested only after it is admitted by being 
conjectured. There is a policy of “open 
admission”, restricted only by the requirement 
that no hypothesis be admitted without there 
being some way to test it (Miller, 1982, p. 22). If 
the hypothesis passes a test, nothing happens, 
whereas if it fails a test, it is expelled. Because 
of the open admission policy, “it is of the 
greatest importance that the expulsion 
procedures should be brought into play at every 
possible opportunity...If we are seriously 
searching for the truth, we should submit any 
hypothesis proposed to the most searching 
barrage of criticism, in the hope that if it is false 
it will reveal itself as false” (Miller, 1982, p.23). 

 
Criticism 
 One objection that could be raised 
regarding the critical rationalist methodology 
concerns the use of logic in a rational approach 
to science. Surely, this line of thinking would 
go, the principles of logic must be assumed to be 
true on an a priori basis. Are we not committed 
to an un-revisable logic, because logic itself can 
not be used to criticize logic? It is true that 
“critical argument...cannot be carried on without 
some system of logic. You cannot in this sense 
abandon logic and remain a rationalist” (Miller, 
1994, p. 91). But the system of logic one uses 
can be criticized if the logical rules consistently 
lead to errors. Miller (1994) gives the example 
of a program written in FORTRAN that can be 
used to test the correctness of an operating 
system, even though the operating system is 
presupposed. Miller (1994) noted that it is “logic 
itself” (p. 91) that is supposedly assumed to be 
beyond criticism by critical rationalism. Yet, 
logic is involved in the critical argument in a 
particular formulation, at a minimum usually 
involving the principle of noncontradiction and 
the law of excluded middle, which might be 
right or wrong, and not in an unformulated way 
as logic itself. And whatever the particular 
formulation, it can certainly be criticized. 

Does not the approach presuppose an 
inductive principle, such as the uniformity of 
nature or that the future will resemble the past, 
at least as far as specifying that we expect that 
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the laws we’ve discovered should work in the 
future? As Miller (1982) pointed out, “In order 
to provide genuinely interesting knowledge of 
the world inductivism needs to assume that there 
is some order and regularity in the world, whilst 
falsificationism requires only that there is some 
order and regularity in the worldBbut it does not 
need to make any sort of assumption to this 
effect” (p. 33). Miller went on to note that if 
there were no regularity, falsificationism would 
yield little, except the conjecture that there is no 
regularity. Hypotheses propose order, but if 
there is none, none will be found. They do not 
presuppose it.  

As regards the reliability of a theory, no 
theory is reliable, in that Hume showed that 
without an inductive principle such as that the 
future will resemble the past, there is no logical 
way to infer that the theory will work in the 
future (or that it will fail). But if a theory is 
conjectured and stands up to severe testing, then 
it has not been discorroborated (a term used to 
emphasize the tentative nature of falsifications), 
and it may be tentatively classified as true; and 
one can deduce from the conjecture that various 
predictions will hold without relying on the 
uniformity of nature. As Miller (1980) wrote, 
“Whatever one calls them, Hume’s problem 
simply does not arise for guesses” (p. 123). But, 
the issue might be pursued, if theories are 
unreliable, then why should any decisions be 
based on them? 

Again, it seems rational to base a 
decision on a theory that has stood up to severe 
testing instead of one that has failed a severe 
test. As Miller (2002) pointed out, if one wants 
to avoid bad outcomes tomorrow, he can cross 
his fingers or he can try to be rational today. 
This does not mean, of course, that we can not 
hope that our favorite theories will continue to 
stand up to severe criticism. Radnitzky (1982) 
explained, “we have a subjective belief that the 
regularities described by a highly corroborated 
theory will also hold in the future. But this 
subjective belief is not granted any 
methodological significance” (p. 74). 

Finally, the question arises as to how 
one could base a rejection of theory on the basis 
of experience if all basic statements are 
tentative. In this regard, Popper (1985) pointed 
to the well-known asymmetry between 

corroboration and rejection, namely that no 
matter how many confirmatory observations are 
observed, a theory can never be proved, whereas 
a single disconfirmatory observation can falsify 
(tentatively) a theory. Thus, as regards the 
observational basis, “No matter whether they are 
true or whether they are false, a universal law 
may not be derived from them. However if we 
assume that they are true the universal law may 
be falsified by them” (Popper, 1985, p. 185). 
Here the basic statements are conjectured to be 
true and are severely tested. “No falsification is 
conclusive,” Miller (1982) wrote, “if only 
because all test statements are themselves 
fallible and open to dispute. But it would be 
incorrect to conclude from this that no 
hypothesis can be properly falsified... [T]hat a 
falsification has not been done conclusively does 
not mean that it has not been done correctly” (p. 
24). The important thing about basic statements, 
Miller (1982) pointed out, is that they should be 
true. If there is doubt about a basic statement, it 
is rational to test it. It is not enough simply to 
doubt, because doubt is not the same thing as 
criticism.  

 
Gambling with Nature 

The philosophical underpinnings of the 
demand for severity in testing hypotheses has 
been discussed and codified by Mayo (1996). 
“What are needed,” she wrote (Mayo, 1996), are 
arguments that H is correct, that experimental 
outcomes will very frequently be in accordance 
with what H predictsBthat H will very frequently 
succeed...We obtain such experimental 
knowledge by making use of probabilitiesBnot 
of hypotheses but probabilistic characteristics of 
experimental testing methods (e.g., their 
reliability or severity)” (p. 122). 

Mayo (1996) explained, “The control of 
error probabilities has fundamental uses in 
learning contexts. The link between controlling 
error probabilities and experimental learning 
comes by way of the link between error 
probabilities and severity. The ability to provide 
methods whose actual error probabilities will be 
close to those specified by a formal statistical 
model, I believe, is the key to achieving 
experimental knowledge” (p. 411). 

Mayo seemed to concur with Peirce in 
this, including Peirce’s focus on verification. 
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Yet, as we have seen, inductive support is not 
possible. Miller (1982) described the task of 
empirical science as separating as best it can true 
statements about the world from false ones, and 
to retain the true ones. The mission, of course, is 
to classify, and not certify, truths. Scientific 
conjectures are “hopelessly fallible, hopelessly 
improbable, hopelessly unlikely to be true” 
(Miller, 1982, p. 20). And yet, the conjectural 
nature of our hypotheses makes them ready to be 
shown to be wrong. In so doing, we must strictly 
control the rate at which we make errors in order 
to ensure a desired level of severity. This 
imposition of severe testing is a methodological 
one (Miller, 1982), and it is consistent with both 
Peirce’s philosophical views and with Neyman’s 
(1957) philosophy of inductive behavior. 

Neyman (1957) wrote that the 
concluding phase of scientific research, often 
labeled inductive reasoning, involves mental 
processes that are very different from those 
involved in proving a theorem. Instead of 
inductive reasoning, which may be considered a 
misnomer, Neyman preferred the phrase 
inductive behavior. Neyman pointed out that 
theories are models of natural phenomena, that 
is (Neyman, 1957, p. 8)  

A model is a set of invented 
assumptions regarding invented entities such 
that, if one treats these invented entities as 
representations of appropriate elements of the 
phenomena studied, the consequences of the 
hypotheses constituting the model are expected 
to agree with observations. 
 In describing the concluding phase, 
which he pointed out was frequently described 
as induction, he felt that the constituent 
processes were of three types (Neyman, 1957, p. 
10). First, the visualization of several possible 
sets of hypotheses relevant to the phenomenon, 
second deductions from these sets of hypotheses, 
and third an “act of will or a decision to take a 
particular action, perhaps to assume a particular 
attitude towards the various sets of hypotheses.” 
We need to specify in advance the desired 
properties of our decision procedure and try to 
determine the decision rule that has these 
properties. Given that the hypothesized model is 
adequate, probability calculations are used to 
“tell us how frequently the given rule will 
prescribe any of the actions contemplated” 

(Neyman, 1957, p. 18). The mental processes 
involved in the third step, according to Neyman, 
amount to taking a calculated risk.  

Levi (1980) commented on the 
connection between Peirce’s approach to 
induction and the Neyman and Pearson theory of 
hypothesis testing: “Peirce’s inductions are 
inferences according to rules specified in 
advance of drawing the inferences where the 
properties of the rules which make the 
inferences good ones concern the probability of 
success in using the rules. These are features of 
the rules which followers of the Neyman-
Pearson approach to confidence interval 
estimation would insist on” (p. 138). Peirce’s 
call for predesignation is echoed in Pearson’s 
(1936) insight that “to base the choice of the test 
of a statistical hypothesis upon an inspection of 
the observations is a dangerous practice; a study 
of the configuration of a sample is almost certain 
to reveal some feature, or features, which are 
exceptional if the hypothesis is true” (p. 317). 
Mayo (1993), in drawing out the common 
philosophical underpinnings of the Peirce and 
the Neyman-Pearson methodologies, noted that 
Birnbaum and Armitage showed that violating 
predesignation permits tests which can be wrong 
with extremely high probability.  

It may be illustrative to view the 
appropriate use of statistical methods in the 
course of taking Neyman’s calculated risk as a 
system to use, similar say to a system for 
playing blackjack, while “gambling with truth” 
(Levi, 1967) in what Milnor (1954) called 
“games against nature.” In a sense, probability 
theory is returned to its roots. If the game 
against nature is to be played, it seems only 
rational to adopt a system that is known to yield 
a particular advantageous probability of 
winning. 

In blackjack, even the best systems yield 
an overall probability of winning of 0.51 or so 
(Epstein, 1977), so a player must follow a 
system rigorously or the chances of winning will 
be reduced, if not reversed. The system is not 
totally rigid, in that each decision is based on the 
available information at the time the decision is 
to be made, but this adaptive decision-making 
scheme is figured into the overall winning 
probability, which is known in advance. The 
player must be steeled against following 
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intuition or building up superstitions. If a high 
card is needed, and if the cards so far observed 
indicate that there is a sufficient proportion of 
high cards left in the deck to require the player 
to request a card, the decision should not be 
influenced by having seen the previous three 
players receive high cards; nor by the memory 
that taking a card in a previous similar 
circumstance led to a losing hand; nor by the 
feeling that the queen of diamonds is an unlucky 
card. 

Analogously, if prior theoretical or 
empirical information led on the basis of 
superior power in a three-group design to the 
choice of Fisher’s (1935) Least Significant 
Difference (LSD) method of planned 
comparisons, then that must be the procedure 
that is carried out. There will be losing hands, 
experiments in which the Holm procedure would 
have found significant results that LSD missed. 
But unless the background information that led 
to the choice of LSD is substantially changed, 
the researcher must be comforted by the 
knowledge that the gambling system that is 
being employed will in the long run yield errors 
at the low prespecified rate. On the other hand, if 
the researcher chooses between LSD and Holm, 
say, only after the data are seen, the control of 
error rates is lost. As Miller wrote (1994), “Of 
course, we can be less zealous, and criticize 
more mildly. That will not disqualify the 
proposals that would survive harsher 
criticism...But it will inevitably compromise the 
rationality of the decision-making process” (p. 
43). 

Other well-known examples of the price 
paid in violating predesignation involve the 
choice of a one-tailed test (and direction) after 
the results are known or the choice of a 
significant covariate for use in an analysis of 
covariance in the same data set, both of which 
would increase the Type I error rate. Freedman 
(1983) similarly found that screening for 
potential predictors in regression analysis before 
a final model is fit and tested results in inflated 
Type I error rates (this result applies to the 
previous example of covariate choice), and 
Zimmerman (1996) showed that choosing 
between Student=s t test and the Welch (1947) 
test on the basis of a test of homogeneity of 
variance results in a two-stage procedure whose 

Type I error rates are inflated. Similar problems 
would arise when the choice between analysis of 
covariance and analysis of variance is made on 
the basis of results of tests for baseline 
differences, (This is especially peculiar when the 
baseline test is performed even when random 
assignment was used, because in that case the 
only conclusion to draw is that the 
randomization was not successful. Should we 
redo the randomization until we like the results?) 
or when the choice between the t test and a 
particular form of nonparametric test is made on 
the basis of the skewness and kurtosis of the 
dependent variable in the current sample. 

The reason that error rates are changed 
as a result of any similar two-stage procedure is 
that the first stage test incurs its own errors, 
which are then compounded in the second stage. 
Consider Zimmerman=s results. If the population 
variances are equal and the other assumptions of 
the t test hold, then Student=s t test is optimal in 
holding its Type I error rate and yielding desired 
power. But the error characteristics of the t test 
are based on all possible samplings, some of 
which will yield two samples with apparently 
different variances. If, in this case, the 
preliminary test commits a Type I error of its 
own, the Welch test used at the second stage has 
lower power than it should, and these cases are 
also removed from the sampling distribution of 
the t test. The t is left to operate only on samples 
whose variances are too close. Conversely, if the 
population variances are unequal, a Type II error 
at the first stage results in the use of the t test 
when it is inappropriate, yielding an inflation of 
the Type I error rate of the method. 

Mayo (1993) also pointed out that 
Pearson, whom she said shied away from 
Neyman’s notion of inductive behavior, 
‘specifically denied that the tests are to be used 
as automatic routines for testing claims” (p. 
171). Indeed, in this regard, Neyman (1957) 
criticized Fisher’s significance testing approach 
of having an automatic character in apparently 
always selecting a one per cent p-value as the 
cutoff for significance, concluding, “There are 
weighty arguments against this automatism. In 
fact, it appears desirable to determine the level 
of significance in accordance with quite a few 
circumstances that vary from one particular 
problem to the next” (p. 12). These would 
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include a consideration of the severity of the 
errors, both Type I and Type II. Rosnow and 
Rosenthal (1989, p. 1277) may have been right 
in this connection when they wrote, “Surely, 
God loves the .06 nearly as much as the .05”, but 
once they have decided in advance of 
experiment on a value that would not be too 
displeasing to the statistical deity, they must 
ensure that the methods they choose control the 
error rate at this level.  

Mayo (1993) observed that 
predesignation is only called for when violating 
predesignation would conflict with the goal of 
controlling the error probabilities. One example 
of the use of changing error rates mid-
experiment that does not affect the overall 
properties of the test of a theoretical hypothesis 
is seen in the context of multiple comparisons. A 
family is defined as the set of comparisons, the 
significance of any one of which would lead to 
the conclusion that the theory has been 
discorroborated. 

Any contrast whose significance does 
not impinge on the truth of the theory under test 
is not part of the family. Darlington’s (1990) 
notion of conceptual dependence, to be 
distinguished from statistical dependence, 
among contrasts that constitute a family may be 
helpful in deciding whether or not contrasts 
belong to a family. Because methodology must 
be committed to controlling the rate at which the 
theory is falsely rejected, all legitimate multiple 
comparison procedures do so successfully, 
usually through the use of the Dunn-Bonferroni 
or the improved Dunn-Sidak procedure. (The 
Bonferroni inequality is due to Boole. Cox, 
1977, suggested a sequential adjustment of alpha 
like the one that is due to Holm, 1979. He gave 
credit for the suggestion to test the most 
significant comparison at a Dunn-protected 
alpha to Tippett in 1931, whereas O=Neill and 
Wetherill,  1971, call the Dunn-Bonferroni 
procedure Fisher=s Significant Difference 
method, attributed to Fisher, 1935. For some 
reason, Dunn=s name is too often not included in 
references to these methods of error rate 
control.) 

Control at the familywise level assures 
that the probability that one or more of the 
comparisons is falsely rejected is at most the 
desired alpha. Because the false rejection of one 

or more of the comparisons would lead to the 
false discorroboration of the theory under test, it 
is this error rate that must be controlled. Any of 
the sequentially rejective testing procedures, 
such as those of Holm (1979) or Shaffer (1986), 
adjusts the Type I error rate assigned to the test 
of particular comparisons as a function of the 
results that have been obtained prior to the test 
of the particular comparisons. This is legitimate, 
however, because the rate of false 
discorroboration of the theory is still controlled 
at the desired level, which itself must be 
predesignated. 

Recently, some interest has been shown 
in the false discovery rate (FDR) multiple 
comparison procedure of Benjamini and 
Hochberg (1995). The FDR is the expected 
proportion of rejections that are false. Shaffer 
(1995) suggested that a common misconception, 
that alpha refers to the proportion of the rejected 
hypotheses that have been falsely rejected, may 
have been the reason for the interest in defining 
and controlling FDR. Benjamini and Hochberg 
(1995) concluded that familywise (FWE) control 
is important “when a conclusion from the 
various individual inferences is likely to be 
erroneous when at least one of them is” 
(Benjamini & Hochberg, 1995, p. 290), as, of 
course, did Peirce and Neyman and Pearson. 
Benjamini and Hochberg (1995) showed that 
when all of the hypotheses associated with the 
multiple comparisons are true, and so the 
omnibus null hypothesis is true, FDR is equal to 
FWE, and so in this crucial circumstance, the 
two procedures are equally viable. 

There are other circumstances, 
Benjamini and Hochberg (1995) felt, in which 
the less stringent control of FDR is acceptable, 
such as in exploratory analyses, especially 
screening problems in which it is desired to 
obtain as many potential discoveries as possible, 
but at a controlled rate so as not overly to burden 
the later confirmatory stage. When considering 
the different approaches that may be used in 
exploratory as compared with confirmatory 
analyses, it is helpful to place the analyses in the 
context of Peirce’s abductions and inductions or 
of Popper’s conjectures and refutations. Because 
there is an open admission policy toward 
hypotheses, there is no need for any conjectured 
relationship to pass a preliminary test, except for 
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reasons of economy. In the abductive phase, 
then, any level of alpha can be used that suitably 
reduces the number of variables later to be tested 
in an independent study, even values far higher 
than the conventional five percent level. In the 
confirmatory stage, however, it is absolutely 
essential to decide on low and predesignated 
values of the Type I and Type II error rates, so 
that the tests are as severe as possible. 

 
Satisficing 
 In order to test a theory in isolation, 
instead of as a mix of theory, initial conditions, 
and auxiliary theories, one must specify in 
advance of experiment that aspect of the theory 
that is under test and to assign the remainder, 
including theories of measurement, to 
unproblematic background knowledge. To deal 
with the theory-ladenness of observations, one 
must remember that the observations are 
interpreted in terms of theories, including the 
theory under test. In order to subject the theory 
to a severe test, we must specify in advance of 
the experiment what the potential falsifiers of 
the theory will be, what observational outcomes 
of the experiment will cause us to regard the 
theory as falsified. 
 One of Peirce’s rules regarding 
induction, the inferential method by which 
hypotheses are tested, is that of predesignation: 
the property for which a sample is proposed 
must be specified before sampling, for otherwise 
“it will always be possible to find some 
character, however obscure, in which the 
instances sampled agree, and whether the same 
proportion of the entire class...has the property 
will be simply a matter of accident” (Buchler, 
1939, p. 246). Indeed, without predesignation, 
“the induction can serve only to suggest a 
question, and ought not to create any belief” 
(Peirce, 1883, p.436).  

Peirce (1958) wrote, “The essential 
thing is that it shall not be known beforehand, 
otherwise than through conviction of the truth of 
the hypothesis, how these experiments will turn 
out” (p. 58). In this regard, Berkson’s (1938) 
observation is pertinent, that if “the result of 
the...test is known, it is no test at all!” (p. 537). 
But as discussed previously, it is known that the 
probablility associated with a universal 
generalization is zero. Recall that in Peirce’s 

view, no theory is true, that Ritchie showed that 
the probability of any inductive generalization is 
zero, and that Carnap found that the degree of 
confirmation of all genuinely universal 
propositions was zero. Additionally, Peirce 
claimed that laws of Nature, expressed as simple 
formulae relating physical phenomena, “are not 
usually, if ever, exactly true” (Peirce, 1878, p. 
334), and finally, Lakatos (1978) opined “that 
precise particular numerical predictions would 
have zero measure” (p. 139). Such views are not 
only expressed by philosophers, and the transfer 
to statisticians’ views concerning the null 
hypothesis is fairly straightforward. For 
example, Kempthorne (1976) similarly offered 
that “A potentially mystifying aspect of this 
process is that no one, I think, really believes in 
the possibility of sharp null hypothesesBthat two 
means are absolutely equal in noisy sciences” (p. 
772), and Anscombe (1956) wrote that “no one 
expects any scientific theory to be complete and 
exact (p. 25). 

There are those who defend the 
possibility of the truth of the point null 
hypothesis. For instance, Frick (1995) offered as 
an example of a true point null hypothesis one 
involved in testing for evidence of extrasensory 
perception (ESP), and Wainer (1999) considered 
the case of measuring the speed of light in two 
reference frames, wherein it is hypothesized that 
light speed is the same in both experiments. Of 
note is the fact that the claimed truth of both of 
these point null hypotheses is based on the 
assumption of truth of the theories under test, 
dubious at best given the fallible nature of all 
knowledge. In terms of the test involving the 
speed of light, it has been conjectured (Webb et. 
al., 2001) that certain physical constants such as 
the speed of light, Planck’s constant, and the 
charge of the electron have been decreasing with 
time. And if the speed of light were decreasing, 
then the hypothesis that the two experiments 
would yield the same value would be false, 
unless the experiments were conducted 
simultaneously, again difficult according to the 
special theory of relativity. The point to be 
emphasized is that the falseness of point null 
hypotheses is consistent with the fallibility of 
theories. 

In the case of Frick’s ESP example, 
assume for the sake of argument that ESP is 
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indeed not possible. In order to test this 
hypothesis, a person is assigned to guess 
pictures drawn on a set of cards that are held up 
in a random order, and the actual content of the 
card and the guess are recorded. It would be 
expected that if the cards are selected and the 
guesses are made at random, there would be zero 
correlation between them. Unfortunately, neither 
the guesses nor the card selection are truly 
random. Diaconis and Mosteller (1989) pointed 
out that “subjects guess in a notoriously 
nonrandom manner’ (p. 856). Similarly, the 
order of card selection would be made on the 
basis of a random device, say a pseudo-random 
number generator, whose properties are 
excellent but not perfect. Indeed, MacLaren 
(1992) showed that the usable length of a 
pseudorandom sequence was the two-thirds 
power of its period, after which the uniformity 
of the sequence no longer conforms to that of a 
true random sequence. Therefore, the 
nonrandom sequences of guesses and cards 
selected will evidence a nonzero correlation. In 
any experiment, not only must the theory under 
consideration be true in all respects, but all other 
aspects of the conditions of experiment would 
have to be perfectly controlled in order that the 
value specified in the point null hypothesis be 
true. This is not at all likely to occur.  

This is not to say that it can not happen. 
The complement to Peirce’s previously cited 
insight that there is a difference between 
certainty and a probability of unity is that an 
event whose probability is zero is not 
impossible. Consider being handed a lottery 
ticket. If there are a finite number of possible 
winners, then you have a finite probability of 
holding the ticket with the winning number. But 
if the population of possible winning numbers is 
truly infinite, then your probability of winning is 
zero, despite your having an actual ticket in your 
hand. Analogously, although it is not impossible 
that the numerical value specified in a point null 
hypothesis is equal to the population parameter, 
the probability that they are equal for an infinite 
population is zero. 

As a possible solution to the dilemma 
posed by false point null hypotheses, Lakatos 
(1978) suggested, “One could...argue...that 
confirmation theory should be further restricted 
to predictions within some finite interval of error 

(p. 139). Similarly, Anscombe (1956) concluded 
that “we expect some discrepancy between the 
deduced theoretical hypothesis and our 
observations. We wish to know if the agreement 
of observation with hypothesis is good enough 
(p. 25). This notion of specifying a range within 
which an effect is essentially zero corresponds to 
Simon’s (1957) principle of satisficing and 
Serlin and Lapsley’s (1985) good-enough 
principle. As an example of the application of 
the satisficing principle, consider the eclipse 
experiment in which Einstein’s General Theory 
of Relativity was found to have greater 
predictive power than Newton=s theory (Dyson 
et. al., 1920). The conclusion that light seemed 
to be bent by a gravitational object according to 
Einstein=s theory was acclaimed by Thomson 
(1919) as the most important result obtained in 
connection with the theory of gravitation since 
Newton’s day” (p. 389). Yet the average of the 
four widely differing experimental values was 
off by 10% from theoretical prediction. When 
asked about the discrepancy, Einstein said that 
for the expert, this thing is not particularly 
important.  

It is felt that our best theories are close 
to the truth, that is, that they evidence 
verisimilitude, and perhaps that over time our 
theories become closer approximations to the 
truth. It is necessary to shift our focus to 
providing a method that allows the conclusion 
that the theory under test is better than the old 
one, or that a single prediction is closer to the 
truth, rather than simply that the difference is 
nonzero or that the prediction is in error. We 
could, of course, be wrong. But the emphasis 
here is on drawing a conclusion concerning the 
magnitude of an effect. As Anscombe (1956) 
wrote in this regard, “When testing a theoretical 
hypothesis, should we not in any case begin by 
treating the problem as one of estimation, by 
estimating the magnitude of departure from the 
theoretical hypothesis” (p. 25). Often, the 
hypothesis test and the estimation of magnitude 
are considered separate parts of the analysis. For 
example, Yates (1948) noted, “The first point 
that struck the practical man was that 
experiments in general performed two different 
functions, one being to test the significance of a 
certain hypothesis, and the other to estimate the 
magnitude of the deviation from that hypothesis 
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if, in fact, it was found to be, or was suspected 
of being, untrue” (p. 204). 

One reason for this apparent disconnect 
between hypothesis testing and estimation by 
confidence interval is that the traditional point 
null hypothesis only allows the conclusion that 
the parameter is not exactly as specified, 
whereas the essential information to be obtained 
in an experiment regards whether the parameter 
is outside of the good-enough region. 
Unfortunately, the classical Neyman-Pearson 
confidence interval can not answer this question 
well. In the traditional case, it is posited that the 
test statistic has a certain distribution, given that 
the parameter is equal to a specific value, and 
the inversion of this distribution yields the 
confidence interval for the parameter, given the 
observed test statistic. But the results of the 
hypothesis test can be significant, indicating a 
nonzero effect, without the confidence interval 
indicating that the magnitude of the effect is 
important. 

Of course, the logic underpinning the 
standard confidence interval is solid. We can 
legitimately reason that if the population mean 
equals a particular value, then given the data, the 
confidence interval can be derived using the 
solid statistical principles offered by Neyman 
and Pearson. The logic is impeccable. But 
because the value specified in a point null 
hypothesis has zero probability of being correct, 
Descartes might have said, “I don't doubt the 
validity of your inference, only the premise.” 

Equally troubling is the finding by 
Meeks and D’Agostino (1983) that the coverage 
probability of the classical confidence interval is 
liberal if one only constructs the confidence 
interval after rejection of the point null 
hypothesis. Instead, if the confidence interval is 
derived from the inversion of the distribution of 
the test statistic that would be used to test a 
range null hypothesis, the interval answers the 
question of interest regarding whether the 
magnitude of the effect is large enough, there is 
a nonzero probability that the range specified in 
the null hypothesis covers the limit to the 
population range, and the results of the 
confidence interval and hypothesis test are 
consistent. Hodges and Lehmann (1954) and 
Serlin and Lapsley (1985, 1993) provided tests 
of range null hypotheses that allow the 

conclusion that an effect is large enough. An 
example of the use of a range null hypothesis 
test to show large effects was provided by 
MacCallum, Browne, and Sugawara (1996) in 
the context of covariance structure modeling. 
Examples of the use of confidence intervals that 
provide good-enough information are given in 
Steiger and Fouladi (1997), Cumming and Finch 
(2001), Fidler and Thompson (2001), and 
Smithson (2001).  

In addition, range null hypotheses (and 
confidence intervals) can be used to examine 
theories that predict effects of at least a certain 
magnitude by allowing the discorroborating 
conclusion that the effect is smaller than that 
demanded by the theory. The bioequivalence 
literature introduced many tests that allow the 
conclusion that an effect is small, as did Serlin 
and Lapsley (1985, 1993), Rogers, Howard, and 
Vessey (1993), and Seaman and Serlin (1998). 
Serlin (2000) showed how such a test could be 
used in a Monte Carlo study to establish that a 
statistical procedure satisfies specified criteria 
for robustness. As previously indicated for the 
general case, in using any of these procedures, 
the criterion for a large enough effect or an 
effect that is small enough to discorroborate the 
theory must be predesignated. 

 
Implications for future research 
 In his book on games of chance, 
according to David (1962), Cardano lamented 
that the facts of probability that he discovered 
contribute to mathematical understanding but 
not to the gambler. It has been shown, however, 
that quite to the contrary, the theory of 
probability is essential to a rational scientific 
methodology in the game against nature. Point 
null hypotheses, like universal theories, are quite 
probably false, as are the assumptions 
underlying statistical tests. As Cox (1958) wrote, 
“Assumptions that we make, such as those 
concerning the form of the populations sampled, 
are always untrue” (p. 369). It is essential, then, 
that we be able to examine the verisimilitude of 
theories through the application of severe range 
null hypothesis tests whose assumptions are 
themselves subjected to serious scrutiny. The 
Journal of Modern Applied Statistical Methods 
is particularly well-placed to advance statistical 
methodology in this regard. 
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In order to conduct a severe test of a 
hypothesis, the Type I error rate of the statistical 
procedure must be held as close as possible to its 
predesignated size, and the power of the test 
must not fall far from its specified level, 
regardless of the nature of the populations 
sampled. To this end, robust procedures for 
testing range null hypotheses have to be 
developed and investigated. The most difficult 
problem to be addressed likely will involve 
finding a means to incorporate the hypothesized 
good-enough range, expressed in actual or 
standardized units of the raw scale, into the 
distribution-free procedure. 

For example, in a one-sample test that a 
theoretical prediction is no more than 0.2 
standard deviations from the true value, the 
satisficing range must be introduced in both the 
hypothesis to be tested and the sampling 
distribution of the test statistic. The satisficing 
limit of 0.2 standard deviations must be 
expressed in terms of the population median for 
the range null hypothesis addressed by the 
signed-rank Wilcoxon test, and the null range 
must also be incorporated into the sampling 
distribution of the signed-rank statistic. Similar 
accommodations must be made in a multiple-
sample, multiple-predictor, and/or multiple 
dependent variable test in which the null range is 
specified in terms of a measure of association, 
such as R-squared, or in terms of a function of 
eigenvalues or the Mahalanobis distance.For 
instance, if the range null hypothesis is stated in 
terms of the squared multiple correlation 
coefficient between a set of predictors and a 
dependent variable, what are the corresponding 
parameters and sampling distribution of the 
sample statistic in a rank regression test of the 
appropriate range null hypothesis? 

Regardless of the nature of the 
hypotheses and tests, the assumptions 
underlying the procedures must be taken into 
account. In the one-sample case, asymmetric 
pre- and post-tests with unequal variances will 
yield asymmetric difference scores, which 
would violate the assumptions underlying the 
matched-pair Wilcoxon test, as would having a 
single asymmetric dependent variable. As with 
the matched-pair Wilcoxon test, the properties of 
the adjusted Mann-Whitney test of Fligner and 
Policello (1981) and the modified Kruskal-

Wallis test of Rust and Fligner (1984), which 
accommodate unequal variances in multiple-
group tests of location, are affected by 
asymmetry. Although much work has been done 
in this regard, the properties of tests of 
symmetry seem to depend on other properties of 
the distribution, such as kurtosis (Antille, 
Kersting, & Zucchini, 1982; Fan & Gencay, 
1995; Brizzi, 2002), and so more work in this 
area is needed. In addition, differing variances 
and covariances of sets of difference scores in a 
repeated measures design violate the 
assumptions of the Friedman test and other 
competitors (Harwell & Serlin, 1994). The 
multiple group, multiple measure design would 
analogously require nonparametric tests of 
sphericity and homogeneity of covariance 
matrices, as would the test of identity of 
regression lines and the test of parallelism that is 
used to examine hypotheses concerning 
moderating variables.  

Most importantly, the need for range 
null hypothesis tests applies both to the test of 
theory and to the tests of assumptions. That is, 
the requirement of satisficing applies at all levels 
of the scientific endeavor. Because theories are 
improbable, a good-enough region must be 
determined in advance of experiment, so that 
potential falsifiers can be specified. This, in turn, 
requires that a range null hypothesis be tested, in 
order to determine if a discorroborating outcome 
has occurred. And the test can only be 
considered severe if the error probabilities are 
held within an acceptable range of the 
predesignated levels, according to a criterion of 
robustness. 

When examining whether or not the 
assumptions underlying a statistical procedure 
are satisfied, the hypothesis to be tested 
concerning the assumptions must specify that 
the statistical model that is conjectured to apply 
to the data is a good enough fit, that is, that the 
assumptions underlying the statistical test of a 
substantive theory are met well enough that the 
statistical test itself meets its criterion of 
robustness. This means that a good-enough 
region must be specified in a range null 
hypothesis of the test of the validity of the 
assumptions underlying the statistical test of the 
substantive theory, and robust tests of these 
range null hypotheses concerning assumptions 
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need to be developed. To this end, Monte Carlo 
studies of the robustness of procedures must 
provide response surfaces reflecting the Type I 
error rate and power as a function of the inexact 
agreement of model and data. Pearson and 
Please (1975), for example, present the Type I 
error rates for the one- and two-tailed, one- and 
two-sample t tests and tests of variances in a 
series of graphs for varying kurtosis at specific 
values of skewness. A researcher could 
determine limits to the skewness and kurtosis 
that lead to the two-sample t test, say, meeting a 
criterion for robustness; then these limits, in 
turn, would be implemented in range null 
hypotheses in a pilot study to determine if the 
skewness and kurtosis of the distribution of the 
population from which the proposed sample is to 
be drawn adequately meet the requirements for 
robustness of the t test. 
 

Conclusion 
 

Attempts to attain knowledge as certified true 
belief have failed to circumvent Hume=s 
injunction against induction. Unfortunately, 
Hume also showed that the search for probable 
knowledge, that which Locke called opinion or 
belief, also depended on an inductive principle. 
Instead, theories must be viewed as unprovable, 
improbable, and undisprovable (Lakatos, 1970) 
because, in addition to Hume=s criticism of 
justificationism, Peirce among others showed 
that the empirical basis is fallible. Importantly, 
though, as Whewell advocated, the method of 
conjectures and refutations is untouched by 
Hume=s insights. 
 The implication for statistical 
methodology is that the requisite severity of 
testing is achieved through the use of robust 
procedures, whose assumptions have not been 
shown to be substantially violated, to test 
predesignated range null hypotheses. 
Nonparametric range null hypothesis tests need 
to be developed to examine whether or not effect 
sizes or measures of association, as well as 
distributional assumptions underlying the tests 
themselves, meet satisficing criteria. 
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Chronic disease usually spans years of a person’s lifetime and includes a disease free period, a preclinical, or 
latent period, where there are few overt signs of disease, a clinical period where the disease manifests and is 
eventually diagnosed, and a follow-up period where the disease might progress steadily or remain stable. It is 
often of interest to investigate the relationship between risk factors measured at a point in time (usually during the 
disease free or preclinical period), and the development of disease at some future point (e.g., 10 years later). We 
outline some popular designs for the identification of subjects and discuss issues in measurement of risk factors 
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dependent nature of the risk factors and missing data issues. We then describe some popular statistical modeling 
techniques and outline the situations in which each is appropriate. We conclude with some speculation toward 
future development in the area of chronic disease data and analysis. 
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Introduction 
 
A chronic disease is a disease first characterized 
by  a   development   period  or  latent period  in 
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which the disease progresses subclinically. The 
latent period can be extensive in time. For 
example, in cardiovascular disease, build up of 
plaque in the arteries can begin in childhood. 
During this latent period the person often 
displays no overt effects or problems. Then the 
disease manifests itself in a clinical phase.  
 With cardiovascular disease, this may 
begin with a myocardial infarction (heart attack) 
where the heart suffers permanent injury due to 
the blockage caused by the plaque. After the 
appearance of the clinical phase, the affected 
person (or host) may follow a course that leads 
to little or substantial deterioration and possibly 
death.  
 In this example of cardiovascular 
disease, the clinical phase is initiated by a 
clinical  event,  a heart attack, and then followed 
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by a post event phase where there may be a 
general weakening of the body which increases 
the risk of subsequent cardiovascular events 
such as a second heart attack or a stroke 
resulting in death. 
 Lung cancer is an example of another 
chronic disease. Here the subclinical, latent 
period can consist of lung tumors developing 
over a period of more than 10 years before 
clinical manifestation and diagnosis.  After 
diagnosis, there can be periods of stabilization, 
remission and progression.  AIDS is still 
another example, where the subclinical stage 
can be characterized by a positive HIV 
infection. The clincal manifestation of AIDS 

may then appear followed by a series of 
infections, increased deterioration and 
ultimately death.  Alzheimer’s disease provides 
an example where the distinction between the 
preclinical stage and clinical stage is blurred.  In 
the preclinical phase, there is a progressive 
decline in cognitive function, especially noted in 
short term memory, and often personality 
changes.  These ultimately lead to a stage where 
the person is unable to care for him or herself.  
The diagnosis of Alzheimer’s disease often 
results when the person is debilitated and other 
forms of dementia (e.g., caused by a series of 
strokes) are ruled out. 

 
 
A simple model for chronic disease is as follows:                   (1) 
 
 
Disease Free       Preclinical (Latent Period)         Clinical Manifestation                 Follow-Up 
 
 
 
 
Interest focuses on all four components.  Each 
presents detailed and sophisticated modeling, 
data collection and analytic issues.  Consider, 
for example, the ‘Disease Free  -> Preclinical 
(Latent Period) -> Clinical Manifestation’ 

component.  This can be further refined to three 
submodels (shown below) where DF represents 
a completely disease-free state, PC represents 
preclinical signs and symptoms and C 
represents disease manifestation (clincal): 

 
  DF      PC  C    (2.1) 

 
    PC1  
  DF      
    PC2  C    (2.2) 
 
  DF      PC  C    (2.3) 

 
 
In (2.1), the disease free (DF) stage leads to the 
preclinical (PC) stage which in turn leads 
directly to the clinical stage (C).  In such a 
situation knowledge of the preclinical stage 
could be useful in delaying or averting the 
clincal stage (C).  Simple models of breast and 
colon cancer fit this situation.  In (2.2), the 
disease free (DF) stage can lead to preclinical 
stages 1 or 2 (PC1 and PC2, respectively).  PC1 
does not progress to the clinical stage (C) while 
PC2 does.  In this situation, identification of the 

preclinical stage (PC) does not imply that the 
clincal stage (C) follows.  Cervical cancer is an 
example of this situation.  Lastly, (2.3) displays 
a situation where the preclinical stage (PC) may 
actually revert to the completely disease free 
(DF) stage or may lead to the clinical (C) stage. 
 We could extend and elaborate the 
second component of model (1) ‘Clinical 
Manifestation -> Follow-Up’ in a similar 
fashion incorporating the complexities that are 
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involved in diagnosing the presence of the 
disease and the follow-up after that.   
 Chronic disease data and analysis 
questions relate to all aspects of the above 
(disease free, preclinical, clinical manifestation 
and follow-up). Good statistical approaches 
involve hypothesizing models for these aspects, 
collecting appropriate data, and then fitting and 
testing the appropriate models.  Before fitting 
statistical models, biological models need to be 

formulated.  Both (1) and (2) above represent 
simple models.   
 One important set of models relate risk 
factors (RF) of a disease free individual to the 
probability of manifestation of the clinical stage 
of the disease.  For example, the relationship 
between age, gender, smoking status, blood 
pressure and cholesterol to the development of a 
myocardial infarction could be modelled as: 

 
 
 Risk Factors    Clinical Manifestation 
 Age 
 Gender 
 Smoking Status                 Myocardial Infarction   (3) 
 Systolic Blood Pressure 
 Total Cholesterol 
 
 
 
 To turn this into a statistical model one 
needs to decide how to identify appropriate 
(disease free) subjects, how many subjects to 
sample, when to measure the risk factors and 
how long to follow them. The latter item of 
follow-up is to ensure that a sufficient number 
develop a myocardial infarction so the 
components (or parameters) of the mathematical 
model can be estimated with good precision.  
 In a later part of this article we discuss 
in more detail the methods of statistical 
modeling for chronic disease. We discuss some 
popular designs for studies of chronic disease 
and we use cardiovascular disease as an 
example throughout the discussion. We review 
some of the methodologic issues that arise in 
studies of chronic disease and outline some 
popular statistical modeling and analysis 
techniques. We conclude with some speculation 
towards future developments. In the next section 
we present an example to motivate the 
discussion that follows. 
 
2. Motivation: Cardiovascular Disease Example 
 Consider a study of cardiovascular 
disease, in particular a study of the risk factors 
associated with the development of 
cardiovascular disease. A first challenge is to 
understand the outcome, and in particular the 
conditions that should be considered part of the 

outcome and how they should be measured. A 
second challenge is to determine which risk 
factors should be measured and how frequently 
they should be measured in the study subjects. 
A related challenge is the specification of the 
appropriate statistical model to relate candidate 
risk factors to the outcome. In the following we 
illustrate the complexities of each step using 
cardiovascular disease as an example. 
 Defining the Outcome. Cardiovascular 
disease includes a number of conditions and is a 
major cause of morbidity and mortality 
worldwide. The most common serious 
cardiovascular disease is coronary heart disease 
(also called cardiac ischemia, defined as 
insufficient blood supply due to atherosclerosis 
of the coronary arteries). It consists of 
myocardial infarction (heart attack), which is 
direct damage to the heart, coronary deaths, and 
angina (persistent chest pain due to cardiac 
ischemia). Cardiovascular disease also includes 
other conditions such as stroke (or brain attack), 
and peripheral artery disease (circulation 
problems often in the calves). Cardiovascular 
disease is believed to have a long preclinical or 
latent stage.  
 For example, patients with coronary 
heart disease (CHD) are diagnosed (and enter 
the clinical stage) in a variety of ways. One 
patient may present with angina at an early 
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stage while another may suffer a heart attack 
after an otherwise asymptomatic history. 
Accurate determination of a cardiovascular 
event is critical, and the technologies to 
determine specific events are evolving over 
time. At one time an MI was mainly diagnosed 
by electocardiogram. Now it is standard to use 
enzyme tests (e.g., SGOT and CPK) Often 
chronic disease outcomes include condition-
specific mortality (e.g., death due to 
cardiovascular disease). In such cases, elaborate 
protocols are required to ascertain outcome 
status. These include, in some cases, reviewing 
death certificates and/or hospital records. 
Determining cause of death can be further 
complicated by incomplete or ambiguous 
specification of the cause of death by the 
medical personnel evaluating the death. 
 Specifying the Risk Factors and the 
Data Collection Schedule. Determining the risk 
factors associated with the development of 
chronic disease (e.g., cardiovascular disease) 
requires an understanding of the biological 
complexity of the disease, some of which might 
change over time. Generally, studies of 
cardiovascular disease consider the following 
risk factors: gender, age, blood pressure, 
cholesterol, smoking status, and history of 
diabetes. Cardiovascular diseases span decades 
of individuals lives (from the preclinical to the 
clinical and follow-up stages).  
 Studies of cardiovascular disease often 
take years to complete, with the duration of the 
study influenced by the time it takes to observe 
a sufficient number of outcome events. The 
importance and influence of risk factors may 
vary over time (e.g., obesity at an early age and 
maintained over time may be important in 
leading to cardiovascular disease while the most 
recent blood pressure may be more important 
than blood pressure measured decades earlier). 
So, often risk factors are measured at the outset, 
and then repeated over the follow-up period. 
Investigators must decide what intervals are 
most appropriate to obtain repeat measurements. 
The interval is influenced by the stability (or 
lack of) of the risk factors over time.  
 For example, total cholesterol level is a 
relatively stable risk factor whereas smoking 
status is not. The latter would need to be 
measured on a more frequent basis. In recent 

studies of cardiovascular disease, investigators 
consider genetic and environmental factors, 
along with a broader array of clinical risk 
factors. In some cases, investigators have the 
flexibility to add new risk factors to a data 
collection protocol during an ongoing study. 
This introduces an analytic issue in that these 
new risk factors will not be measured on the 
same schedule as the core set (i.e. those 
measured since the outset). In cardiovascular 
disease, surgical procedures have also advanced 
rapidly in the last two decades and include 
introduction of artificial aortic valves, open 
heart surgery, angioplasty (opening blocked 
arteries using balloon catheters) and regulation 
of heart rythms by implanted pacemakers. 
 In parallel, pharmacologic treatments 
have become increasingly effective in treating 
known risk factors of cardiovascular disease 
(e.g., hypertension, hyperlipidemia) thereby 
slowing the manifestation and progression of 
disease. It is important to measure these 
interventions, which generally modify the 
effects of the risk factors on the development of 
disease, along with the risk factors themselves. 
Designs for studies of chronic disease and 
methologic issues that arise in studies of chronic 
disease are discussed in detail in Section 3. 
 Choosing the Correct Model. The 
choice of the appropriate statistical model 
should be based primarily on a biological 
model. It should also be influenced by specific 
aspects of the design such as whether subjects 
are followed for a fixed period of time and then 
determined to have or not have the disease at the 
end of the observation period or whether 
subjects are followed for different amounts of 
time and have disease status ascertained at the 
end of the observation period. In a study of 
cardiovascular disease, a subject might die 
during the observation period due to cancer (or 
some disease other than cardiovascular disease) 
and at the time of death be free of 
cardiovascular disease. The most appropriate 
statistical model is one that utilizes all of the 
information that was measured on this person 
rather than exclude him or her because of the 
complexity of the data. Popular statistical 
models for studies of chronic disease are 
discussed in detail in Section 4. 
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3. Designs, Subject Selection and Data for 
Studies of Chronic Disease 
 The data for studies of the relationship 
between risk factors and development and 
progression of chronic disease can be 
prospective, retrospective or cross-sectional. 
Prospective study designs involve identifying 
individuals who are free of the disease of 
interest and following them over time. These 
studies can include repeated measurements of 
risk factors over time and monitoring for the 
development and progression of disease. The 
schedule for following individuals and repeating 
measurements depends on a number of factors 
including the stability of the risk factors over 
time and the nature of the relationship between 
the risk factors and disease status over time. 
Retrospective studies (also called case control 
studies) usually involve identifying two groups 
of individuals; those with the disease of interest 
(often called cases) and matches who are free of 
the disease of interest (often called controls). 
 Data are collected retrospectively usually 
by way of individual’s recollection of prior 
health and risk behaviors or through medical 
record review. These studies are not optimal. It 
is usually difficult to assemble representative 
groups of cases and controls. Often the cases 
represent either the sickest (e.g., subjects 
enrolled through an Alzheimer’s clinic) or the 
healthiest (e.g., those who have not died) of 
those affected with the disease. Further, the 
controls often differ in many ways from the 
cases, confounding the comparison of cases and 
controls. In addition, these studies can be 
subject to a number of biases (for example, 
recall bias or inaccurate recollection of specific 
behaviors or measurment based on incomplete 
medical records). 
 Cross-sectional studies are conducted at a 
point in time and represent concurrent risk 
factor and disease status. In some cross-
sectional studies, individuals provide historical 
data on risk behaviors on the basis of 
recollection, thereby also subjecting these 
studies to recall bias.  
 Longitudinal cohort studies are most well 
suited for the analysis of chronic disease. We 
now describe in detail the specifics of 
longitudinal cohort studies and outline a well 

known study of cardiovascular disease, the 
Framingham Heart Study. 
 
3.1. Longitudinal Cohort Studies: The 
Framingham Heart Study 
 In longitudinal cohort studies, a group or 
cohort of individuals is assembled at the outset. 
The inclusion criteria often require a set of 
individuals to be free of the disease of interest. 
This is not always the case and those with 
prevalent disease may be enrolled at the outset. 
Individuals are followed prospectively in time. 
Serial measurements can be taken on a 
predetermined schedule, often at fixed time 
intervals (e.g., measurements every 2 years or 
every 5 years). Outcome or disease status is 
measured over time. For those individuals who 
develop disease, measures of the progression or 
severity of disease are also taken. There are 
several, large longitudinal cohort studies of 
cardiovascular disease, probably the best known 
study is the Framingham Heart Study, described 
below. 
 The Framingham Heart Study began in 
1948 and is one of the most ambitious and 
daring longitudinal medical studies ever 
initiated. A cohort of 5,209 individuals, 2336 
males and 2873 females, was enrolled from 
Framingham, MA. These represented a 60% 
sample of the town with ages from 28 to 62 
years. Multiple risk factors were measured 
biennially, and the study continues today with 
surviving participants involved for over 50 
years. Major cardiovascular risk factors have 
been measured since the outset (e.g., blood 
pressure, total cholesterol and smoking status) 
while others have been introduced as they were 
hypothesized to have an impact on the 
develoment of cardiovascular disease (e.g., 
HDL cholesterol, LDL cholesterol, 
homocystene and fibrinogen). Development of 
cardiovascular events is recorded over time 
including coronary heart disease (and its 
components; myocardial infarction, coronary 
death and angina), stroke, intermittent 
claudication (a peripheral arterial disease), 
congestive heart failure and cardiovascular 
disease death. Intense efforts continue to be 
utilized to gather complete information on every 
subject. There are some missing data due to 
subjects moving from the area or discontinuing 
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participation (which is minimal). The total loss 
to follow-up is less than 3 percent. The 
Framingham Heart Study was expanded in 1971 
to include a cohort of the offspring of the 
original participants and their spouses. These 
data allow for an investigation of the evolution 
of new detection technologies such as 
echocardiogram and carotid ultrasound and the 
study of the effects of genetics on development 
of cardiovascular and other chronic diseases 
such as dementia. 
 
3.2. Methodological Issues in Chronic Disease 
Studies 
 There are a number of major methodologic 
issues that arise in longitudinal studies, two are 
discussed here. The first issue is based on 
changing definitions of risk factors and 
outcomes over time. For example, technological 
advances have resulted in better diagnostic tests 
for determining the presence or absence of 
chronic disease. Studies utilizing better 
diagnostic tests might observe more outcome 
events and possible different relationships 
between risk factors and disease. In some 
chronic diseases (e.g., diabetes) medical 
specialists have revised the clinical criteria for 
diagnosing an individual (e.g., different 
threshold criteria on laboratory tests).  
 Even the definition of myocardial infarction 
has chenged over time. In the late 1940s, its 
determination was based mainly on 
electrocardiogram. Later, enzyme tests, SGOT 
and CPK, became standard components of the 
definition of myocardial infarction starting in 
the mid 1950s and proceeding during the 1960s. 
In other areas, more sensitive assays have been 
developed over time for measuring risk factors 
(e.g., HDL and LDL cholesterol). As 
modifications occur during a study, analysts 
must take steps to make the data as comparable 
over time as possible. The same applies when 
making comparisons to external studies, these 
may have employed different definitions and 
assays. 
 A second methodological issue in 
longitudinal studies concerns missing data. 
Even when intensive surveillance programs are 
in place, such as those used in the Framingham 
Heart Study, there are often situations where 
complete data is not gathered on every subject. 

In longitudinal studies of chronic disease, there 
are instances where data are missing because 
subjects fail to show up at scheduled 
examinations, fail to complete certain 
assessments even when attending the 
examination, or drop out during the course of 
the study. These circumstances produce unequal 
numbers of repeated measurements on different 
individuals. There are several approaches for 
performing analysis in the presence of missing 
data. 
 First, analysis can be restricted to only those 
individuals with complete data. This approach is 
not optimal in terms of efficiency and is biased 
in some situations. A second approach involves 
imputing or ascribing values for the missing 
values and then analyzing the revised dataset. 
There are sophisticated procedures and software 
packages available for this imputation and 
subsequent analysis. This analysis can be biased 
and can artifically improve precision. A third 
approach involves analyzing the incomplete 
dataset (i.e., without attempting to impute 
values for the missing data). 
 Statistical techniques and associated 
computer software (e.g., mixed models) exist 
that take advantage of all available data and 
minimize bias that are associated with analysis 
restricted to only individuals with complete data 
or analysis of imputed data. These techniques, 
however, require assumptions about the non-
response or the missing data mechanisms. If 
these assumptions are incorrect, these models 
can also produce biased results.  
 The most appropriate analytic techniques in 
the presence of missing data are those closely 
tied to the underlying missing data mechanism. 
When the missingness does not depend on the 
value of the complete or missing outcome, the 
data are said to be missing completely at 
random. Data are missing completely at random 
if the probability of observing a missing value 
does not depend on current or future data. For 
example, if a data monitor forgets to ask a 
patient if he or she has persistent chest pains 
(angina) the missingness has nothing to do with 
this subject’s cardiovascular health. A less strict 
assumption about the missing data mechanism 
is one in which the missingness is related only 
to the data observed (and not related to 
unmeasured or missing data). 
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 This missing data mechanism is called 
missing at random and the probability of 
observing a missing value depends on past data 
but does not depend on current or future data. 
For example, missing at random results when 
missingness is related to past cardiovascular 
health but is independent of unavailable current 
or future cardiovascular health. Data that are 
missing completely at random or missing at 
random are said to be ignorable and to produce 
a valid analysis it is not necessary to model the 
missing data mechanism explicitly. Appropriate 
analysis that include variables related to the 
mechanism for missingness produce unbiased 
results. 
 The final classification of missing data 
mechanisms is called nonignorable missingness. 
If the probability of observing a missing value 
depends on unmeasured current and future data, 
the missingness is nonignorable. An example 
would be a subject who fails to show up for an 
evaluation because his/her health has started to 
deteriorate. The deterioration continues, and if 
outcomes were measured, they would reflect the 
decline. When missing data are nonignorable, it 
is critical to model the missing data mechansim 
explicitly in statistical models otherwise results 
will be biased. 
 Even with these classifications for missing 
data and the available statistical techniques and 
software, there is no formal means to test which 
mechanism is operating in a given situation. The 
validity of the analysis often depends heavily 
upon the assumptions of the technique. 
Therefore, analysis and interpretation of results 
in the presence of missing data are often open to 
criticism. The best recommedation for handling 
missing data is to avoid it wherever possible.  
 
4. Analytic Techniques for Chronic Disease 
Modeling 
 After the sample is selected and the risk 
factors, the outcomes and the sampling 
schedule determined, mathematical/statistical 
modeling is needed to tie these together. 
Several analytic techniques can be applied to 
investigate this relation of the risk factors to 
the development and progression of chronic 
disease. Some of these are designed 
specifically to relate baseline risk factors to 
disease development. Some are able to exploit 

the time dependent nature of the risk factors 
and the outcome events. We now describe 
some popular techniques. 
 
4.1 Logistic Regression Analysis: 
Dichotomous Outcome 
 Logistic regression analysis can examine 
and quantify the effects of risk factors on the 
development of disease. The outcome of 
interest is dichotomous (e.g., development or 
non-development of chronic disease over a 
time period), and the independent variables or 
risk factors can include continuous or discrete 
characteristics. The logistic regression model 
is of the form: 
 
 

pp1111 xβ...xβxβα
p1

pln ++++=
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where Y is a dichotomous outcome variable 
(e.g., 0=no chronic disease, 1=chronic disease) 
and p=P(Y=1) is the probability of a subject 
with the disease, x1, x2, …, xp are the risk 
factors, and β1, β2,…βp are the regression 
parameters reflecting how the risk factors 
affect the log of the odds of developing 
disease.  Logistic regression analysis is a very 
useful technique for analyzing dichotomous 
outcomes and the individual is considered the 
unit of analysis. 
 Logistic regression analysis is appropriate 
in studies of chronic disease where originally 
disease free subjects are followed for a pre-
specified observation period and at the end of 
the observation period, each subject can  be 
classified as having developed the disease or 
not.  In many studies of chronic disease, there 
are often have a number of individuals for 
whom we do not have data at the end of the 
observation period and the last time they were 
observed they had not yet developed disease.  
Logistic regression can not deal directly with 
these subjects.  The analysts must arbitrarily 
drop them from analyses or assume a disease 
status at the end of the observation period.  
The techniques described in the next section 
can handle this and other issues that arise in 
longitudinal studies of chronic disease. 
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4.2 Survival Analysis: Time to Event Data 
 Survival analysis includes a set of 
techniques that deal with time until the event 
of interest occurs (e.g., onset of disease).  It is 
often the case in studies of chronic disease that 
there are many patients who do not develop 
the disease or for whom we do not know if 
they ever develop the disease.  This happens 
when the disease is rare, when patients are lost 
to follow-up (e.g., move away but do not 
develop the disease), when patients die during 
the observation period but are free of the 
disease of interest at the time of death, or 
when they drop out of the study (e.g., due to 
lack of interest). 
 In all of these situations, we do not have 
the time to the development of disease.  
However, these individuals can contribute a 
substantial amount of information (up to the 
end of the observed time period when we 
know they are disease free) – information 
which can be utilized through survival analytic 
techniques.  It is this aspect of the data that 
distinguish survival analysis techniques from 
other statistical techniques. 
 These observations in which we know the 
individual is disease free for some period of 
time, but do not know if they developed the 
disease in other time periods are called 
censored observations.  There are several 
different types of censoring, the most common 
in studies of chronic disease is right censoring.  
Right censored obervations are observations in 
which we do not observe the time to event 
because if it occurs it occurs after the last 
observation point. 
 Some survival models are based on 
parametric assumptions about the distribution 
of the survival function, while others are not 
(parametric and nonparameteric models, 
respectively).  A useful method to characterize 
survival is by the hazard function (the 
instantaneous rate of developing disease).  
There are a number of popular parametric 
survival models.  The exponential model is 
perhaps the simplest, but assumes constant 
hazard over time and is therefore not generally 
applied to chronic disease data.  The Weibull 
distribution model is a generalization of the 
exponential model and is popular for 
analyzing chronic disease risk (e.g., cancer 

risk) and the hazard function is given by the 
following: 
 

1γλγth(t) −=  
 
where λ=-ln(p)/t and p=P(disease free at time 
t).  The hazard at time t, h(t), increases as t 
increases for γ>1 and decreases as t increases 
if 0<γ<1.  The exponential model is a special 
case of the Weibull model with γ=1 (constant 
risk with time). 
 Survival analysis methods can be used to 
assess the effects of risk factors on the 
development of chronic disease.  There are 
several models that are appropriate for this 
purpose.  A popular parametric model for 
analysis of chronic disease is the accelerated 
failure time model whose hazard function is  
 

t)(eheh(t) xβ'
0

Xβ'=  
 
where t reflects the time until disease onset, 
h0(t) is the baseline hazard at time t (i.e., the 
hazard if all of the risk factors were set to 
zero), β'x=β1x1 +  β2x2 + . . . + βpxp, x1, x2, 
…, xp are the risk factors, and β1, β2,…βp 
are the regression parameters. 
 A popular “nonparametric” survival 
analysis model is the proportional hazards 
model (also called the Cox regression model), 
and it is commonly used to assess the relative 
impact of a set of risk factors measured at a 
point in time (baseline) on survival and 
assumes that additive differences in risk 
factors are related to multiplicative changes in 
the hazard function. 
 The proportional hazards model can also 
be used to assess the impact of time-dependent 
covariates (i.e., risk factors that change over 
time) on the hazard function and on survival.  
This is a particularly useful feature of the 
model in studies of chronic disease as 
individuals may undergo procedures during 
the observation period which alter their 
prognosis.  For example, an individual’s risk 
of cardiovascular disease may change after 
undergoing coronary artery bypass surgery.  
The form of the Cox model is: 
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)xβ...xβx(t)exp(βhh(t) pp22110 +++=  
 
where h(t) is the hazard at time t, h0(t) is the 
baseline hazard at time t (i.e., the hazard if all 
of the risk factors were set to zero), and as 
above x1, x2, …, xp are the risk factors, β1, 
β2,…βp are the regression parameters 
reflecting how the risk factors affect the 
hazard. The risk factors, xi above, can be 
variables measured at some baseline period or 
variables that vary over time (called time 
dependent variables).The proportional hazards 
model is actually a semi-parametric model 
because the distribution of the underlying 
hazard is not specified.  
 Estimating the risk of developing chronic 
disease per se or assessing the effects of a set 
of risk factors on the development of chronic 
disease may be complicated by a common 
situation in studies of chronic disease, namely, 
the competing risk of other diseases or death. 
For example, in studying the relation of risk 
factors to the development of coronary heart 
disease the competing risk of someone 
developing stroke needs to be considered. 
Similarly, in examining the relation of 
cigarette smoking to lung cancer the 
competing risk of developing a heart attack 
before the lung cancer is a real possibility. 
 Recently, there have been major efforts 
to estimate the lifetime risk of developing 
chronic diseases such as breast cancer, 
coronary heart disease and Alzheimer’s 
disease. A major methodological issue 
involves the handling of death which can 
occur before the chronic disease, such as 
Alzheimer’s disease, develops. 
 
4.3 Longitudinal Data Analysis: Mixed 
Models, Generalized Linear Models and 
Generalized Estimating Estimating Equations 
 A key feature of chronic disease data is 
the repeated aspect of the measurements. In 
longitudinal studies with multiple 
measurements taken on a set of individuals 
over time, analytic techniques must take into 
account the correlation between measurements 
taken on the same individual. An added 
complexity is the unbalanced nature of the 
data due to different numbers of 

measurements taken on different subjects. We 
now describe some popular methods for 
analyzing incomplete longitudinal data; mixed 
models and generalized estimating equations. 
 Mixed models procedures assume that 
measurements taken over time are correlated 
and that regression coefficients vary randomly 
across subjects according to a specified 
distribution. In these applications, some of the 
effects are modeled as fixed (e.g., the effects 
of risk factors on outcome, called within 
subjects effects) and some as random 
(between subject effects). These mixed effects 
models are also referred to as random 
coefficients models, growth curve models or 
hierarchical models. They can also be 
extended to incorporate time-dependent 
covariates. 
 In these mixed effects models a parametric 
structure is assumed also for the covariances 
of the repeated measurements. There are many 
distinct structures that can be assumed, 
including the independence structure (all 
observations are independent), compound 
symmetry (the correlation between any two 
observations is equal to some common value), 
autoregressive, and unstructured (no 
specification of the structure of the 
correlations). 
 Currently available statistical computing 
packages offer many of these structures as 
options in their mixed models applications. 
Estimates of the fixed effects and the 
covariances of the random effects can be 
estimated using maximum likelihood using 
Newton-Raphson techniques or the 
Expectation Maximization (EM) algorithm. 
The estimates of the covariances are biased 
because they do not take into account the 
estimation of the fixed effects and therefore it 
is recommended that these be estimated using 
restricted maximum likelihood which 
produces unbiased estimates. Estimates of the 
standard errors of effects are robust for large 
samples. 
 Mixed models are appealing models for 
longitudinal data as they are flexible and 
handle unbalanced data in a highly efficient 
manner. It is important to note that these 
models produce consistent estimates (unbiased 
for large samples) only when data are missing 
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at random or missing completely at random. 
These models require careful specification of 
the fixed and random effects and a covariance 
structure. When appropriate specifications are 
made, the final estimates of the fixed and 
random effects, as well as the magnitude of 
the variance components are statistically 
correct and highly informative. 
 A generalized linear model is a model in 
which a specific link function (e.g., binomial, 
Poisson, Gamma) is specified to relate the 
mean (or expected) value of the outcome to a 
linear function of the risk factors. This has the 
effect of transforming the data to a linear 
model, but involves correct specification of 
the link or distribution of the outcome 
variable. Parameters of the model are 
estimated through maximum likelihood. The 
appropriateness of the estimates in a 
generalized linear model are highly dependent 
on the distributional assumptions.  
 Generalized estimating equations (GEE) 
are used to analyze correlated data (e.g., data 
measured on the same subject over time) that 
could otherwise be analyzed using a 
generalized linear model but require fewer 
distributional assumptions than generalized 
linear models, making them more appealing. 
The method of estimation is an extension of 
least squares. 
 Generalized estimating equations produce 
consistent estimates (unbiased for large 
samples) and robust standard errors for large 
samples. Generalized estimating equations are 
appropriate when interest lies in “marginal” 
effects (i.e., effects averaged over all 
individuals) rather than subject-specific 
effects. The approach is now available in 
many statistical computing packages and again 
requires specification of a covariance 
structure. It is appropriate under the 
asusmption of data missing completely at 
random. 
 
4.4 Tree-Based Classification Methods 
 Still another set of techniques for relating 
risk factors to development of chronic disease 
are tree-based classification methods. These 
include a number of applications which are 
intuitively appealing, many of which are based 

on a technique called binary recursive 
partitioning. 
 In binary recursive partitioning, a dataset 
is partitioned first into two distinct groups on 
the basis of the risk factor that best 
discriminates the groups in terms of disease 
status (present or absent). The process is 
recursive in that this partitioning continues 
until pre-specified stopping criteria are met 
(e.g., the final groups represent the last 
statistically significant splits). The outcome of 
these analyses is in the form of a clinical 
prediction rule or algorithm that resembles a 
tree where the branches represent splits on a 
risk factor. 
 Figure 1 illustrates a simple tree where 
there are two splits. The first split is on the 
basis of age (over 65 years versus 65 years and 
younger). A second split is made among those 
65 years of age and younger on the basis of 
systolic blood pressure (less than 130 mm Hg 
versus 130 or more mm Hg). Persons over 65 
years of age have a 25% probability of 
developing coronary heart disease. Persons 65 
years of age and younger with systolic blood 
pressure less than 130 have a 1% probability 
of developing CHD, while persons 65 years of 
age and younger with systolic blood pressure 
of 130 or more have a 20% probability of 
developing CHD. 
 When the outcome is dichotomous 
(presence or absence of chronic disease) the 
rule can be used to classify patients, on the 
basis of specific criteria, as likely or unlikely 
to develop the disease. The criteria are based 
on specific values of risk factors. These 
models are particularly appealing to clinicians 
as they mirror common practice. For example, 
a physician might gather information from a 
patient on his/her risk factors (e.g., systolic 
blood pressure, smoking status, alcohol 
consumption), and may conduct a series of 
laboratory tests (e.g., total Cholesterol level, 
HDL cholesterol, triglycerides). Based on this 
information, the clinician can appeal to the 
empirical tree-based prediction rule to classify 
the subject as likely or not likely to develop 
the disease. These methods can also be used to 
estimate the probability that this patient will 
develop chronic disease.  
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Figure 1.   Tree-Based Classification Methods: Example of A Simple  
   Classification Tree for Coronary Heart Disease (CHD) 
 
 
        10% with CHD  
 
   Age > 65     Age < 65 
 
       25% with CHD        9% with CHD 
 
   Classify as High Risk 
      SBP < 130    SBP > 130 
 
           1% with CHD      20% with CHD 
 
      Classify as Low Risk  Classify as High Risk 
 
 
 
4.5 Neural Networks 
 Neural network models are a large class of 
elaborate mathematical techniques used for 
developing prediction rules. They are now 
becoming popular methods for predicting 
chronic disease. They are very flexible 
prediction models that can accommodate large 
datasets (i.e., many risk factors and large 
sample sizes) and more complex relationships 
among the variables. 
 
4.6 Model Building 
 All of the above methods often involve a 
development phase and a validation phase. 
Investigators split a dataset into two distinct 
parts, one part is used for developing the 
model and the other part is used to evaluate 
how the model performs (the validation 
phase). 
 
5. Future Directions 
 The collection and analyses of chronic 
disease data have evolved over time to a new 
level of sophistication. The development of 
new statistical methodologies for longitudinal 
data analysis and analysis of complex systems, 
coupled with advances in statistical 
computing, have greatly influenced the 
statistical analysis of chronic disease data. As 
health care delivery systems continue to strive 
for quality, more data will be collected and 
available for analysis of chronic disease (and 

also for acute and epidemic disease). 
Longitudinal data will be available on many 
subjects thereby allowing for more complete 
investigations of risk factors and interactions 
between risk factors. 
 Advances in statistical computing 
software will also allow for the estimation of 
more complex statistical models, not restricted 
to those which assume linear associations 
between risk factors and chronic disease. 
Finally, as more data become available on 
families, analysis of chronic disease will include 
exploration of genetic factors on the 
development and progression of disease. 
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Introduction 
 
In addition to $.25 Senior Coffee at McDonald’s, 
one of the few advantages of being old at the 
beginning of the 21st century is that you have 
actually lived through certain events (World War 
II comes immediately to mind), rather than reading 
about them in history books. 

An interesting statistical event that I have 
lived through is the controversy regarding the use 
of tests of significance. As David Salsburg (2001) 
points out in his book, The lady tasting tea, that 
controversy started in the 1930s as part of the 
ongoing feud between R.A. Fisher and Jerzy 
Neyman. It was resurrected about 35 years later 
with the publication of the book, The significance 
test controversy, edited by Morrison and Henkel 
(1970); and was revisited recently in a subsequent 
book entitled What if there were no significance 
tests?, edited by Harlow, Mulaik, and Steiger 
(1997), by a task force of the American 
Psychological Association (see Wilkinson, 1999), 
and elsewhere (e.g., Nickerson, 2000). 
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Much nonsense has been written in 
attempts to resolve this controversy. In what 
follows I would like to suggest a middle-of-the-
road solution. I leave it to you, dear reader (as the 
late Ann Landers used to say), to decide whether 
or not my suggestion is more nonsense.  
 
Significance testing vs. hypothesis testing 

Some writers (see Huberty, 1987; Huberty 
& Pike, 1999) distinguish between significance 
testing (a la Fisher) and hypothesis testing (a la 
Neyman & Pearson). Although the distinction is 
sometimes important and sometimes not, for the 
purposes of this paper I will not make the 
distinction. Here, a significance test is something 
one uses to test statistical hypotheses. I will also 
not get into null vs. nil hypotheses or one-tailed 
tests vs. two-tailed tests. If you are interested in 
such things, I recommend that you read Cohen 
(1965), Cohen (1994), or almost any of the late 
Jacob Cohen’s other work. 
 
Significance tests vs. confidence intervals 

Since most of the controversy revolves 
around this matter, I will concentrate on it, along 
with the associated matter of “effect sizes” and 
what to do about them. It has often been claimed 
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that confidence intervals subsume significance 
tests: If the hypothesized value of a parameter is 
outside of the interval, reject it; if it is inside the 
interval you can’t reject it. (See, for example, 
Steiger & Fouladi’s contention that “the 
significance test rejects at the α significance level 
if and only if the 1-α confidence interval for the 
mean difference excludes the value zero—1997, p. 
226.) Unfortunately, it’s not that simple, as Dixon 
and Massey (1983) and others have pointed out, 
especially when the parameter of interest is a 
population proportion or percentage, as the 
following example will illustrate. 
 
An example 

Suppose you were interested in the 
proportion of nurses who smoke cigarettes. (As a 
former holder of joint appointments in education 
and nursing in two different universities, I’ve 
always wondered why ANY nurses smoke!) 
Suppose further that you have rather limited 
resources and you must restrict your efforts to a 
relatively small population (all nurses in 
Rochester, New York, say) and a relatively small 
sample size (16, say) from same. You are familiar 
with some of the literature on cigarette smoking 
and some of the literature regarding the 
significance testing controversy, so you believe 
that you have two choices: (1) test the hypothesis 
that P, the population proportion, is equal to some 
number, say .25 (that’s roughly the national 
average); or (2) put a confidence interval around p, 
the sample proportion. Let’s assume that you 
decide on the latter choice, you draw your random 
sample of 16 nurses, and you find that one of the 
nurses smokes cigarettes.  

Here is a summary of your results:  
 
Sample n = 16 Sample p = .0625 
 
Estimated standard error =  
 

 √p(1-p)/n = √ (.0625)(.9375)/16 = .0642 
 
95% confidence interval = .0625 ± 1.96 (.0642) = 
.0625 ± .1258, i.e., from 0 (since you can’t have a 
negative proportion) to .1883. 

But something isn’t quite right here. First 
of all, the normal approximation to the binomial 
doesn’t work so well for sample sizes of 16. 
Secondly, the p for this particular sample is used 

to estimate the population P in the calculation of 
the standard error, so that’s a problem, since the P 
for this population of nurses is unknown  Finally, 
and perhaps most importantly, that standard error 
is almost certain to be an under-estimate of the 
“true” standard error. (It would be even worse if 
you just happened to draw a sample that consisted 
of no smokers, in which case the estimated 
standard error would be equal to zero!) As Wilcox 
(1996) and others have pointed out, you need 
special techniques to handle the small n, small p 
case. 

So what? The “so what?” is that for 
examples like this the interval estimation approach 
DOES NOT subsume the hypothesis testing 
approach. The otherwise hypothesis-tested value 
of .25 is not inside the interval around your effect 
size of .0625 (“no effect” would be a proportion of 
0), but that’s not the right interval. It’s too narrow. 
The standard error that would be used in 
significance testing would be a function of the .25, 
not the .0625. 
 

Conclusion 
Tom Knapp’s bottom line 

If you have hypotheses to test (a null 
hypothesis you may or may not believe a priori 
and/or two hypotheses pitted against one another), 
use a significance test to test them. If you don’t, 
confidence intervals are fine. 

I think that makes sense. Do you? 
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Permutation tests provide exact p-values in a wide variety of practical testing situations. But permutation tests 
rely on the assumption of exchangeability, that is, under the hypothesis, the joint distribution of the 
observations is invariant under permutations of the subscripts. Observations are exchangeable if they are 
independent, identically distributed (i.i.d.), or if they are jointly normal with identical covariances. The range 
of applications of these exact, powerful, distribution-free tests can be enlarged through  exchangeability-
preserving transforms, asymptotic exchangeability, partial exchangeability, and weak exchangeability. 
Original exact tests for comparing the slopes of two regression lines and for the analysis of two-factor 
experimental designs are presented. 
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Introduction 
 
Because the permutation tests can provide exact 
significance levels and are powerful and 
distribution free, they have an enormous number 
of applications.. See, for example,  Manly(1997). 
The observations on which these tests are based 
may be drawn from finite populations or represent 
a particular realization of a set of random 
variables. Rank tests are permutation tests based 
on the ranks of the observations rather than their 
original values.  
 Permutation tests rely on the assumption of 
exchangeability, that is, under the hypothesis, the 
joint  distribution  of  the  observations is invariant  
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under permutations of the subscripts. Observations 
are exchangeable if they are independent, 
identically distributed (i.i.d.), or if they are jointly 
normal with identical covariances. For additional 
examples, see Galambos (1986) or Draper et al. 
(1993). 
 A caveat is that a set of units may be 
exchangeable for some purposes and not for 
others, depending on what is measured and the 
questions of interest. A simple example suggested 
by Draper et al (1993) is a circadian series in 
which observations within days are not 
exchangeable because of serial correlation, while  
observations between days (at the same point in 
time) are exchangeable as are the residuals from a 
model incorporating serial correlation. 

The range of applications of these exact, 
powerful, distribution-free tests are enlarged 
below through exchangeability - preserving 
transforms, asymptotic exchangeability, partial 
exchangeability, and weak exchangeability. 
Original exact tests for comparing the slopes of 
two regression lines and for the analysis of two-
factor experimental designs are presented. 

Exchangeable Variables 
  Let G{x; y1,y2, …yn-1} be a distribution 
function in x and symmetric in its remaining 
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arguments—that is, permuting the remaining 
arguments would not affect the value of G. Let the 
conditional distribution function of xi given x1, …, 
xi-1,xi+1, …., xn be G for all i. Then the {xi} are 
exchangeable. 
  It is easy to see that a set of i.i.d. variables 
is exchangeable. Or that the joint distribution of a 
set of normally distributed random variables 
whose covariance matrix is such that all diagonal 
elements have the same value σ2 and all the off-
diagonal elements have the same value ρ2 is 
invariant under permutations of the variable 
subscripts. 
 Polya's urn or contagion model variables 
are also exchangeable.  An urn contains b black 
balls,  r red balls, y yellow balls, … and so forth.  
A series of balls is extracted from the urn.  After 
the ith extraction, the color of the ball Xi is noted 
and k balls of the same color are added to the urn., 
where k can be any integer, positive, negative, or 
zero. The set of random events {Xi} form an 
exchangeable sequence.  See, also, Dubins and 
Freedman (1979). 

Transformably Exchangeable  
   Suggesting the concept of transformably 
exchangeable is the procedure for testing a non-
null two-sample hypothesis H: F[x] =G[x−d]; for 
if there are two sets of independent observations 
{Zi} and {Yi} with Zi distributed as F and Yi as G, 
an exact test of H can be obtained by first 
transforming the variables by subtracting 0 from 
each of the Zi's and d from each of the Yi's. 

A set of observations (random variables) 
X will be said to be transformably exchangeable if 
there exists a transformation (measureable 
transformation) T, such that TX is exchangeable 
(Commenges, 2001). 

If there are a set of observations {X[t], t= 
1, 2,…n} where X[t] = a + bX[t−1] + zt and the 
{zt} are i.i.d., then the variables {Y[t], t= 2,…n} 
where Y[t] = X[t] − bX[t−1] are exchangeable. 

Dependent non-collinear normally 
distributed variables with the same mean are 
transformably exchangeable for as the covariance 
matrix is non-singular, use the inverse of this 
matrix may be used to transform the original 
variables to independent (and hence exchangeable) 
normal ones. By applying two successive 
transformations, an exact permutation test can be 
obtained of the non-null two-sample univariate 

hypothesis for dependent normally distributed 
variables providing the covariance matrix is 
known. Unfortunately, as Commenges (2001) 
showed, the decision to accept or reject in a 
specific case may depend on the transformation 
that was chosen. 
 Michael Chernick notes the preceding 
result applies even if the variables are collinear. 
Let R denote the rank of the covariance matrix in 
the singular case.  Then, there exists a projection 
onto an R-dimensional subspace where R normal 
random variables are independent.  So if there is 
an N dimensional (N > R) correlated and singular 
multivariate normal distribution, there exists a set 
of R linear combinations of the original N 
variables so that the R linear combinations are 
each univariate normal and independent of one 
other. 

Exchangeability-Preserving Transforms 
  Suppose it is desired to test whether two 
regression curves are parallel, even though the 
value of the intercepts are not known. Given that 
  

   1, 2; k 1,...,ik i i ik ik iy a b x for i nε= + + = =  
 
where the errors {εij} are exchangeable. To obtain 
an exact permutation test for H: b1= b2, the {ai} are 
needed to be eliminated, while preserving the 
exchangeability of the residuals. It is known that 
under the null hypothesis 
 

 . . .i i i iy a bx ε= + +  
 

1 2 1 2 1 2 1 2
1 1 1 1' ( ); ' ( ); ' ( ); ' ( ).
2 2 2 2

y y y x x x a a aε ε ε= − = − = − = +
 

 

Define 
1 1 1

2 2 2

' '   for  k 1    , and
 ' '   for  k 1    .

k k

k k

y y y to n
y y y to n

= − =

= + =
 

 
Define 

1 1 1 2 2 2' ' for k 1   and x' ' for k 1  .k k k kx x x ton x x ton= − = = + =
 
 
Then 
 

' ' ' '   1,2; k 1,...,ik ik ik iy a bx for i nε= + + = =  
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Two cases arise. If the original predictors were the 
same for both sets of observations, that is, if x1k= 
x2k for all k, then the errors {ε'i k} are 
exchangeable and the method of matched pairs can 
be applied; see, for example, Good (2000, p51). 
Otherwise, proceed as follows: First, estimate the 
two parameters a' and b by least-squares means. 
Use these estimates to derive the transformed 
observations {y'ik}. Then test the hypothesis that 
b1=b2 using a two-sample comparison. If the 
original errors were exchangeable, then the errors 
{ε'ik} though not independent are exchangeable 
also and this test is exact. 

Now suppose  
 

  1, 2; k 1,...,ik i k i ik ik iy A Z b x for i nε= + + = =  
 
where Zk is a column vector of covariates with Ai 
a row vector of the corresponding coefficients. 
Defining A'i as the mean of A1 and A2, then 
 

 ' ' ' '   1, 2; k 1,...,ik k ik ik iy A Z bx for i nε= + + = =  
 
which are analogous results for the general case. 
 Dean and Verducci (1990) characterized 
the linear transformations that preserve 
exchangeability. Commenges (2001) characterized 
the linear transformations that also preserve the 
permutation distribution. Clearly any 
transformation which preserves the ordering of the 
order statistics preserves exchangeability. 
 
Asymptotic Exchangeability  
  Illustrating the concept of asymptotic 
exchangeability are the residuals in a two-way 
complete balanced experimental design. Our 
model is that  
 

 ijk i j ij ijkX µ α β γ ε= + + + +  
 
where 
 

 0i j ij iji j
α β γ γ= = = =∑ ∑ ∑ ∑  

 

and the { }ijkε are exchangeable. Eliminating the 
main effects in the traditional manner, that is, 
setting  

.. . . ...'ijk ijk i jX X X X X= − − + , 
 
the test statistic obtained is  
                I= 2( ' )i j k ijkX∑ ∑ ∑ , 
 
which was first derived by Still and White (1981). 
A permutation test based on this statistic will not 
be exact for finite samples as the residuals    

                .. . . ...'ijk ijk i jε ε ε ε ε= − − +  
 
are weakly correlated, the correlation depending 
on the subscripts. It is easy to show the 
Studentized correlations converge to a common 
value as the sample size increases, thus the 
residuals are asymptotically exchangeable, and the 

permutation test of the hypothesis 0ijγ = for all i 
and j based on I is asymptotically exact.  
 Romano (1990) proved asymptotic 
exchangeability for the two-sample comparison of 
independent observations with not necessarily 
identical distributions providing the underlying 
variables have the same mean and variance under 
the hypothesis. Baker (1995) used simulations to 
demonstrate the asymptotic exchangeability of the 
deviates about the sample median that are used in 
Good's test for equal variances. 
 
Exchangeability and Invariance 
  The requirement for exchangeability in 
testing arises in either of two ways: 
 

�    Sufficiency—the order statistics are 
sufficient for a wide variety of problems. 

�    Invariance—the joint distribution of the 
observations is invariant under 
permutation of the subscripts. 

 
For many testing problems, the underlying model 
must remain invariant under permutations of the 
subscripts. This can only be accomplished in many 
cases if the set of permutations are restricted. 
Recall that in the classic definition (de Finetti, 
1930; Galambos, 1986) a set of n random variables 
is said to be exchangeable if the joint distribution 
of the variables is invariant with respect to the 
group Sn of all possible permutations of the 
subscripts. 
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 Define the weak exchangeability of a set 
of random variables as the invariance of their joint 
distribution with respect to a subset of 
permutations.  Clearly, a set of variables that is 
exchangeable is also weakly exchangeable. 
 Exchangeability is a necessary and 
sufficient condition for exactness in the classic 
testing problems to which permutation methods 
have been applied such as the 2- and k-sample 
tests.   But in the two-factor experimental design 
considered in the previous section, only the error 

terms { }ijkε are exchangeable; the { }ijkX are not.  

Nonetheless, because the{ }ijkX are weakly 
exchangeable under any of the three null 

hypotheses (H1: 0iα = for all i, H2: 0jβ = for all 

j, and H3: 0ijγ = for all i and j), Pesarin (2001) 
and Salmaso (2001) were able to derive 
independent exact tests for each of the main 
effects and the interactions. 
 To see this, consider that the set of 

observations { }ijkX  may be thought of in terms of 
a rectangular lattice L with K colored, shaped balls 
at each vertex.  All the balls in the same column 
have the same color initially, a color which is 
distinct from the color of the balls in any other 
column.  All the balls in the same row have the 
same pattern initially, a shape which is distinct 
from the shape of the balls in any other row.  
 
  
      
 

 
 
  A 2x3 design with three observations per cell. 
 
 Let P denote the set of transformations 
that preserve the number of balls at each row and 
column of the lattice. P is a group. 
 Let PR denote the set of exchanges of balls 
among rows which a) preserve the number of balls 
at each row and column of the lattice, and b) result 
in the numbers of each shape within each row 
being the same in each column.  PR is the basis of 
a subgroup of P. 
 
 

  
 

 
 

 
A 2x3 design with three observations per cell after 
π ε PR. 

 
Let PC denote the set of exchanges of balls 

among columns which a) preserve the number of 
balls at each row and column of the lattice, and b) 
result in the numbers of each color within each 
column being the same in each row.  PC is the 
basis of a subgroup of P. 
  
 
 
 
 
   
A 2x3 design with three observations per cell after 
π ε PC. 

 
Let PRC denote the set of exchanges of 

balls which preserve the number of balls at each 
row and column of the lattice, and result in a) an 
exchange of balls between both rows and columns 
(or no exchange at all), b) the numbers of each 
color within each column being the same in each 
row, c) the numbers of each shape within each row 
being the same in each column. PRC is the basis of 
a subgroup of P.  Moreover, PRC ∩PR= PRC ∩PC = 
PR ∩PC = I and P is the group generated by the 
union of PR , PC and PRC. 
 

 Define [ ; ] [ ]j ijp X f xι κ∆ = Π Π Π − ∆ where  
 

 ,ij i j ijµ α β γ∆ = + + +  

iα =∑ jβ =∑ iji
γ =∑ 0ijj

γ =∑  
 
 and f is a density function that is continuous a.e. 
 Without loss of generality, it may be 
assumed µ=0, or, equivalently, the set of 
observations {X’ijk} obtained by subtracting µ 

from each element of { }ijkX  may be used.  

Suppose, now, the hypothesis H1:  0iα =  for all i 
holds. Then the joint distribution of the vector 
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(xi1k’, xi2k”,…, xijk*) obtained by taking an arbitrary 
element from each column of the ith row is 
identical with the joint distribution of  
 

     1 1 2 2( , ,. . ., )i i J iJz z zβ γ β γ β γ− − − − − −  
 
where f is the probability density of z.   The 
probability density of the sum of these latter 
elements is identical with the probability density 
of nz −

1
 J

jj
β

=∑ 1
 J

ijj
γ

=
− ∑  =  nz; that is, f(z/n). 

 Under H1 
�    f is the probability density of the mean of 

each of the rows of X.  
�    Applying any of the elements of PR leaves 

this density unchanged. 
�    Applying any of the elements of PR leaves 

the density of the test statistic 
2

2 ( )j k ijkF xι= Σ Σ Σ unchanged. 
 Similarly, to test H2, the permutation 
distribution over PC of any of the statistics 

2
2 ( )j i k ijkF x= Σ Σ Σ , 1 | |j i k ijkF x= Σ Σ Σ , or 

2 [ ]j i k ijkR g j x= Σ Σ Σ , where g[j] is a monotone 
function of j may be used. 
 If q ε PR and s ε PC, then under H3, the 
density of Sij = ijkxκΣ is invariant with respect to p 
= qt ε PRC, and, by induction, applying any of the 
elements of PRC leaves the density of the test 
statistic 2( )j ijS Sι= Σ Σ unchanged. As only the 
identity I is common to the corresponding 
permutation groups, the permutation tests of the 
three hypotheses are independent of one another. 
 
Partial and Weak Exchangeability 
  Consider a sequence of discrete random 
variables that represent the outcomes of a finite 
Markov Chain whose transition matrix is such that 
pij = pji for all i and j.  Such a sequence is said to 
be partially exchangeable (see, for example, 
Zaman, 1984).  If the transition matrix is 
connected then the sequence is also weakly 
exchangeable. 
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Nonparametric procedures are often more powerful than classical tests for real world data which are rarely 
normally distributed. However, there are difficulties in using these tests. Computational formulas are scattered 
throughout the literature, and there is a lack of availability of tables and critical values. The computational 
formulas for twenty commonly employed nonparametric tests that have large-sample approximations for the 
critical value are brought together. Because there is no generally agreed upon lower limit for the sample size, 
Monte Carlo methods were used to determine the smallest sample size that can be used with the respective 
large-sample approximation. The statistics reviewed include single-population tests, comparisons of two 
populations, comparisons of several populations, and tests of association. 
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Introduction 
 
Classical parametric tests, such as the F and t, 
were developed in the early part of the twentieth 
century. These statistics require the assumption of 
population normality. Bradley (1968) wrote, “To 
the layman unable to follow the derivation but 
ambitious enough to read the words, it sounded as 
if the mathematician had esoteric mathematical 
reasons for believing in at least quasi-universal 
quasi-normality” (p. 8). “Indeed, in some quarters 
the normal distribution seems to have been 
regarded as embodying metaphysical and awe-
inspiring properties suggestive of Divine 
Intervention” (p. 5). 

When Micceri (1989) investigated 440 
large-sample education and psychology data sets 
he concluded, “No distributions among those 
investigated passed all tests of normality, and very 
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few seem to be even reasonably close 
approximations to the Gaussian” (p. 161). This is 
of practical importance because even though the 
well known Student’s t test is preferable to 
nonparametric competitors when the normality 
assumption has been met, Blair and Higgins 
(1980) noted:  
 

Generally unrecognized, or at least not made 
apparent to the reader, is the fact that the t 
test’s claim to power superiority rests on 
certain optimal power properties that are 
obtained under normal theory. Thus, when the 
shape of the sampled population(s) is 
unspecified, there are no mathematical or 
statistical imperatives to ensure the power 
superiority of this statistic. (p. 311) 

 
Blair and Higgins (1980) demonstrated the 

power superiority of the nonparametric Wilcoxon 
Rank Sum test over the t test for a variety of 
nonnormal theoretical distributions. In a Monte 
Carlo study of Micceri’s real world data sets, 
Sawilowsky and Blair (1992) concluded that 
although the t test is generally robust with respect 
to Type I errors under conditions of equal sample 
size, fairly large samples, and two-tailed tests, it is 
not powerful for skewed distributions. Under those 
conditions, the Wilcoxon Rank Sum test can be 
three to four times more powerful. See Bridge and 
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Sawilowsky (1999) and Nanna and Sawilowsky 
(1998) for other examples. 

The prevalence of nonnormally distributed 
data sets in applied studies in education and 
related fields has its initial impact on parametric 
procedures with regard to Type I errors. Thus, the 
immediate advantage of nonparametric 
procedures, such as the Wilcoxon test, is that their 
Type I error properties are not dependent on the 
assumption of population normality.  

A difficulty in using nonparametric tests is 
the availability of computational formulas and 
tables of critical values. For example, Siegel and 
Castellan (1988) noted, “Valuable as these sources 
are, they have typically either been highly 
selective in the techniques presented or have not 
included the tables of significance” (p. xvi). This 
continues to be a problem as evidenced by a 
survey of 20 in-print general college statistics 
textbooks, including seven general textbooks, 
eight for the social and behavioral sciences, four 
for business, and one for engineering. Formulas 
were given for only eight nonparametric statistics, 
and tables of critical values were given for only 
the following six: (a) Kolmogorov-Smirnov test, 
(b) Sign test, (c) Wilcoxon Signed Rank test, (d) 
Wilcoxon (Mann-Whitney) test, (e) Spearman’s 
rank correlation coefficient, and (f) Kendall’s rank 
correlation coefficient. 

This situation is somewhat improved for 
nonparametric statistics textbooks. Eighteen 
nonparametric textbooks published since 1956 
were also reviewed. Table 1 contains the statistical 
content of the eighteen textbooks. The most 
comprehensive texts in terms of coverage were 
Neave and Worthington (1988), which is currently 
out of print, and Deshpande Gore, and 
Shanubhogue (1995). 

Many nonparametric tests have large 
sample approximations that can be used as an 
alternative to tabulated critical values. These 
approximations are useful substitutes if the sample 
size is sufficiently large, and hence, obviate the 
need for locating tables of critical values. 
However, there is no generally agreed upon 
definition of what constitutes a large sample size. 
Consider the Sign test and the Wilcoxon tests as 
examples. Regarding the Sign test, Hájek (1969) 
wrote, “The normal approximation is good for 

12≥N ” (p. 108). 
 

Table 1. Survey of 18 Nonparametric Books 
 
 

Statistic 
 

  Number of Books That 
Included Tables 

of Critical Values 
Single Population Tests  
Kolgomorov-Smirnov Test 11 
Sign Test 4 
Wilcoxon Signed Rank Test 14 
  
Comparison of Two Populations 
Kolmogorov-Smirnov2-sample Test  11 
Rosenbaum’s Test 1 
Wilcoxon (Mann-Whitney) 14 
Mood Test 1 
Savage Test 1 
Ansari-Bradley Test 1 
  
Comparison of Several Populations 
Kruskal-Wallis Test 10 
Friedman’s Test 9 
Terpstra-Jonckheere Test 5 
Page’s Test 4 
Match Test for Ordered Alternatives         1 
  
Tests of Association  
Spearman’s Rank Correlation Coefficient  12 

Kendall’s Rank Correlation Coefficient   10 

 
 

 Gibbons (1971) agreed, “Therefore, for 
moderate and large values of N (say at least 12) it 
is satisfactory to use the normal approximation to 
the binomial to determine the rejection region” (p. 
102). Sprent (1989) and Deshpande, Gore, and 
Shanubhogue (1995), however, recommended N 
greater than 20. Siegel and Castellan (1988) 
suggested N ≥ 35, but Neave and Worthington 
(1988) proposed N > 50. 

The literature regarding the Wilcoxon 
Rank Sum test is similarly disparate. Deshpande, 
Gore, and Shanubhogue (1995) stated that the 
combined sample size should be at least 20 to use 
a large sample approximation of the critical value. 
Conover (1971) and Sprent (1989) recommended 
that one or both samples must exceed 20. Gibbons 
(1971) placed the lower limit at twelve per sample. 
For the Wilcoxon Signed Rank test, Deshpande, 
Gore, and Shanubhogue (1995) said that the 
approximation can be used when N is greater than 
10. Gibbons (1971) recommended it when N is 
greater than 12, and Sprent (1989) required N to be 
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greater than 20. The general lack of agreement 
may indicate that these recommendations are 
based on personal experience, the sample sizes 
commonly accommodated in tables, the author’s 
definition of acceptable or large, or some other 
unstated criterion.  

There are two alternatives to tables and 
approximations. The first is to use exact 
permutation methods. There is software available 
that will generate exact p-values for small data sets 
and Monte Carlo estimates for larger problems. 
See Ludbrook and Dudley (1998) for a brief 
review of the capabilities of currently available 
software packages for permutation tests. However, 
these software solutions are expensive, have 
different limitations in coverage of procedures, 
and may require considerable computing time 
even with fast personal computers (see, e.g., 
Musial, 1999; Posch & Sawilowsky, 1997). In any 
case, a desirable feature of nonparametric statistics 
is that they are easy to compute without statistical 
software and computers, which makes their use in 
the classroom or work in the field attractive. 

A second alternative is the use of the rank 
transformation (RT) procedure developed by 
Conover andIman (1981). They proposed the use 
of this procedure as a bridge between parametric 
and nonparametric techniques. The RT is carried 
out as follows: rank the original scores, perform 
the classical test on the ranks, and refer to the 
standard table of critical values. In some cases, 
this procedure results in a well-known test. For 
example, conducting the t test on the ranks of 
original scores in a two independent samples 
layout is equivalent to the Wilcoxon Rank Sum 
test. (However, see the caution noted by 
Sawilowsky & Brown, 1991). In other cases, such 
as factorial analysis of variance (ANOVA) 
layouts, a new statistic emerges. 

The early exuberance with this procedure 
was related to its simplicity and promise of 
increased statistical power when data sets 
displayed nonnormality. Iman and Conover noted 
the success of the RT in the two independent 
samples case and the one-way ANOVA layout. 
Nanna (1997, 2001) showed that the RT is robust 
and powerful as an alternative to the independent 
samples multivariate Hotelling’s T2. 

However, Blair and Higgins (1985) 
demonstrated that the RT suffers power losses in 
the dependent samples t test layout as the 

correlation between the pretest and posttest 
increases. Bradstreet (1997) found the RT to 
perform poorly for the two samples Behrens-
Fisher problem. Sawilowsky (1985), Sawilowsky, 
Blair, and Higgins (1989), Blair, Sawilowsky, and 
Higgins (1987), and Kelley and Sawilowsky 
(1997) showed the RT has severely inflated Type I 
errors and a lack of power in testing interactions in 
factorial ANOVA layouts. Harwell and Serlin 
(1997) found the RT to have inflated Type I errors 
in the test of β = 0 in linear regression. In the 
context of analysis of covariance, Headrick and 
Sawilowsky (1999, 2000) found the RT’s Type I 
error rate inflates quicker than the general 
ANOVA case, and it demonstrated more severely 
depressed power properties. Recent results by 
Headrick (personal communications) show the RT 
to have poor control of Type I errors in the 
ordinary least squares multiple regression layout. 
Sawilowsky (1989) stated that the RT as a bridge 
has fallen down, and cannot be used to unify 
parametric and nonparametric methodology or as a 
method to avoid finding formulas and critical 
values for nonparametric tests. 

 
Purpose Of The Study 
 As noted above, the computational formulas 
for many nonparametric tests are scattered 
throughout the literature, and tables of critical 
values are scarcer. Large sample approximation 
formulas are also scattered and appear in different 
forms. Most important, the advice on how large a 
sample must be to use the approximations is 
conflicting. The purpose of this study is to 
ameliorate these five problems. 

Ascertaining the smallest sample size that 
can be used with a large sample approximation for 
the various statistics would enable researchers who 
do not have access to the necessary tables of 
critical values or statistical software to employ 
these tests. The first portion of this paper uses 
Monte Carlo methods to determine the smallest 
sample size that can be used with the large sample 
approximation while still preserving nominal 
alpha. The second portion of this paper provides a 
comprehensive review of computational formulas 
with worked examples for twenty nonparametric 
statistics. They were chosen because they are 
commonly employed and because large sample 
approximation formulas have been developed for 
them. 
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Methodology 
 

Each of the twenty statistics was tested with 
normal data and Micceri’s (1989; see also 
Sawilowsky, Blair, & Micceri, 1990) real world 
data sets. The real data sets represent smooth 
symmetric, extreme asymmetric, and multi-modal 
lumpy distributions. Monte Carlo methods were 
used in order to determine the smallest samples 
that can be used with large-sample 
approximations. 

A program was written in Fortran 90 
(Lahey, 1998) for each statistic. The program 
sampled with replacement from each of the four 
data sets for n = 2, 3, … N; (n1, n2) = (2, 2), (3,3), 
… (N1,N2), and so forth as the number of groups 
increased. The statistic was calculated and 
evaluated using the tabled values when available, 
and the approximation of the critical value or the 
transformed obtained value, as appropriate. The 
number of rejections was counted and the Type I 
error rate was computed. Nominal α was set at .05 
and .01. Bradley’s (1978) conservative estimates 
of .045 < Type I error rate < .055 and .009 < Type 
I error rate < .011 were used, respectively, as 
measures of robustness. The sample sizes were 
increased until the Type I error rates converged 
within these acceptable regions. 
 
Limitations 

In many cases there are different formulas 
for the large sample approximation of a statistic. 
Two criteria were used in choosing which formula 
to include: (1) consensus of authors, and (2) ease 
of use in computing and programming. All 
statistics were examined in the context of balanced 
layouts only. 

Some statistics have different large sample 
approximations based on the presence of ties 
among the data. Ties were corrected using average 
ranks for rank-based tests, obviating tie correction 
formulae. For nonrank-based tests, simple deletion 
of ties results in a failure to adjust for variance. (A 
well-known example is the necessity of using a 
winsorized standard deviation – or some other 
modification to the estimate of population variance 
– in constructing a confidence interval for the 
trimmed mean when tied scores are deleted.) 
Nevertheless, many authors (e. g., Gibbons, 1976) 
indicated that adjustment for ties makes little 
difference for rank- or nonrank-based tests unless 

there is an extreme number of ties. The issue of 
correcting for ties is discussed in the section 
below. 
 
Data Sets For Worked Examples In This Article 

The worked examples in this study use the 
five data sets in Table 3 (Appendix). Some 
statistics converged at relatively large sample 
sizes. In choosing the sample size for the worked 
example, a compromise was made based on the 
amount of computation required for large samples 
and an unrepresentatively small but convenient 
sample size for presentation in this article. 
Therefore, a sample size of n = 15 or N = 15, as 
appropriate, was selected, recognizing that some 
statistics’ large sample approximations do not 
converge within Bradley’s (1968) limits for this 
sample size. The data sets were randomly selected 
from Micceri’s (1989) multimodal lumpy data set 
(Table 4, Appendix). Because the samples came 
from the same population, the worked examples 
all conclude that the null hypothesis cannot be 
rejected. 
 
Statistics Examined 

The twenty statistics included in this 
article represent four layouts: (1) single population 
tests, (2) comparison of two populations, (3) 
comparison of several populations, and (4) tests of 
association. Single-populations tests included: (a) 
a goodness-of-fit test, (b) tests for location, and (c) 
an estimator of the median. Comparisons of two 
populations included: (a) tests for general 
differences, (b) two-sample location problems, and 
(c) two-sample scale problems. Comparisons of 
several populations included: (a) ordered 
alternative hypotheses, and (b) tests of 
homogeneity against omnibus alternatives. Tests 
of association focused on rank correlation 
coefficients. 

 
Results 

 
Table 2 shows the minimum sample sizes 
necessary to use the large sample approximation 
of the critical value or obtained statistic for the 
tests studied. The recommendations are based on 
results that converged when underlying 
assumptions are reasonably met. The minimum 
sample sizes are conservative, representing the 
largest minimum for each test. If the test has three 



TWENTY NONPARAMETRIC LARGE SAMPLE APPROXIMATIONS 252

or more samples, the largest group minimum is 
chosen. Consequently the large-sample 
approximations will work in some instances for 
smaller sample sizes. This is the smallest size per 
sample when the test involves more than one 
sample. 
 
Table 2. Minimum Sample Size for Large-Sample 
Approximations. 
 

Test α= .05 α= .01 
Single Population Tests   
Kolmogorov-Smirnov  
Goodness-of-Fit Test 

 
25 ≤ n ≤ 40 

 
28 ≤ n ≤ 50 

Sign Test n > 150 n > 150 
Signed Rank Test 10 22 
Estimator of Median for  
a Continuous Distribution 

 
n > 150 

 
n > 150 

   
Comparison of Two Populations 
Kolmogorov-Smirnov Test n > 150 n > 150 
Rosenbaum’s Test 16 20 
Tukey’s Test  10 ≤ n ≤ 18 21 
Rank-Sum Test 15 29 
Hodges-Lehmann Estimator  15 20 
Siegel-Tukey Test 25 38 
Mood Test 5 23 
Savage Test 11 31 
Ansari-Bradley Test 16 29 
   
Comparison of Several Populations 
Kruskal-Wallis Test 11 22 
Friedman’s Test 13 23 
Terpstra-Jonckheere Test 4 8 
The Match Test (k > 3) 86 27 
Page’s Test k > 4 11 18 
   
Tests of Association   
Spearman’s Rho 12 40 
Kendall’s Tau 14 ≤ n ≤ 24 15 ≤ n ≤ 35 

 
Some notes and cautionary statements are 

in order with regard to the entries in Table 2. The 
parameters for the Monte Carlo study were limited 
to n (or N) = 1, 2, … 150. The Kolmogorov-
Smirnov goodness-of-fit test was conservative 
below the minimum value stated and liberal above 
the maximum value stated. Results for the Sign 
test indicated convergence for some distributions 
may occur close to N = 150. The results for the 
confidence interval for the Estimator of the 

Median suggest convergence may occur close to N 
= 150 only for normally distributed data. 
However, for the nonnormal data sets the Type I 
error rates were quite conservative (e.g., for α = 
.05 the Type I error rate was only 0.01146 and for 
α = .01 it was only 0.00291 for N = 150 and the 
extreme asymmetric data set). 

The Kolmogorov-Smirnov two samples 
test was erratic, with no indication convergence 
would be close to 150. Results for Tukey’s test 
were conservative for α = .05 when the cutoff for 
the p-value was .05, and fell within acceptable 
limits for some sample sizes when .055 was used 
as a cutoff. The Hodges-Lehmann estimator only 
converged for normal data. For nonnormal data the 
large sample approximation was extremely 
conservative with n = 10 (e.g., for the extreme 
asymmetric data set the Type I error rate was only 
0.0211 and 0.0028 for the .05 and .01 alpha levels, 
respectively) and increased in conservativeness 
(i.e., the Type I error rate converged to 0.0) as n 
increased. The Match test only converged for 
normally distributed data, and it was the only test 
where the sample size required for α = .01 was 
smaller than for α = .05. 

These results relate to the large sample 
approximation of the critical values associated 
with those tests. These procedures work quite well 
with small sample sizes when tabled critical values 
are used. The difficulty, as noted above, is that 
tabled critical values are generally not available, or 
the implementation of exact procedures is still by 
far too time-consuming or memory intensive to 
compute with statistical software. For example, 
Bergmann, Ludbrook, and Spooren (2000), noted 
“What should be regarded as a large sample is 
quite vague …,most investigators are accustomed 
to using an asymptotic approximation when group 
sizes exceed 10” (p. 73). If they are correct with 
their perception of common practices using as few 
as n = 11, the results in Table 2 demonstrate that 
the large sample approximation of the critical 
value prevents the statistic from converging with 
nominal alpha for seventeen of the twenty 
procedures for α = 0.05, and for nineteen of 
twenty procedures for α = 0.01. 

The vagueness of what constitutes a large 
sample for the purposes of using the 
approximation to the critical values vanishes in 
view of the results in Table 2. For example, with α 
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= 0.05, large for the Match test is greater than 85. 
This does not mean the test performs poorly and 
should be removed from the data analyst’s 
repertoire if one has a smaller sample size; rather, 
it means the researcher is advised to have at least 
86 per group before relying on the large sample 
approximation of the critical values.  

 
Statistics, Worked Examples, Large Scale 

Approximations 
 
Single Population Tests 

Goodness-of-fit statistics are single-
population tests of how well observed data fit 
expected probabilities or a theoretical probability 
density function. They are frequently used as a 
preliminary test of the distribution assumption of 
parametric tests. The Kolmogorov-Smirnov 
goodness-of-fit test was studied. 

Tests for location are used to make 
inferences about the location of a population. The 
measure of location is usually the median. If the 
median is not known but there is reason to believe 
that its value is M0, then the null hypothesis is 

00 : MMH = . The tests for location studied were 
the Sign test, Wilcoxon’s Signed Rank test, and 
the Estimator of the Median for a continuous 
distribution. 
 
Kolmogorov-Smirnov Goodness-of-Fit Test 

The Kolmogorov-Smirnov (K-S) statistic 
was devised by Kolmogorov in 1933 and Smirnov 
in 1939. It is a test of goodness-of-fit for 
continuous data, based on the maximum vertical 
deviation between the empirical distribution 
function, FN(x), and the hypothesized cumulative 
distribution function, F0(x). Small differences 
support the null hypothesis while large differences 
are evidence against the null hypothesis.  

The null hypothesis is H0: FN(x) = F0(x) 
for all x, and the alternative hypothesis is H1: FN(x) 
≠ F0(x) for at least some x where F0(x) is a 
completely specified continuous distribution. The 
empirical distribution function, FN(x), is a step 
function defined as: 

 

N
xxFN

≤
=

  valuessample ofnumber )(     (1) 

 
where N = sample size.    

Test statistic. The test statistic, DN, is the 
maximum vertical distance between the empirical 
distribution function and the cumulative 
distribution function.  

 
[ ] )()(max,)()(maxmax 010 iiNiiNN xFxFxFxFD −−= − (2)

       
Both vertical distances )()( 0 iiN xFxF −  
and )()( 01 iiN xFxF −− have to be calculated in 
order to find the maximum deviation. The overall 
maximum of the two calculated deviations is 
defined as Dn.  

For a one-tailed test against the 
alternatives H1: FN(x) > F0(x) or H1: FN(x) < F0(x) 
for at least some values of x, the test statistics are 
respectively: 

 
         [ ]  )()(max 0 xFxFD NN −=+                       (3) 
 
or 
 

  [ ]  )()(max 0 xFxFD Nn −=−               (4) 
 
The rejection rule is to reject H0 when 

α,NN DD ≥ where DN,α is the critical value for 
sample size N and level of significance α. 
 Large sample sizes. The null distribution of 

)4(or  4
22 −+

NN NDND is approximately 2χ with 2 
degrees of freedom. Thus, the large sample 
approximation is 
 

       
N

Dn

2
2,

2
1 αχ≈+                              (5) 

 
where 2

2,αχ  is the value for chi-square with 2 
degrees of freedom.  

Example. The K-S goodness-of-fit 
statistic was calculated for sample 1 (Table 3, 
Appendix), N = 15, against the cumulative 
frequency distribution of the multimodal lumpy 
data set. The maximum difference at step was 
0.07463 and the maximum difference before step 
was 0.142610. Thus, the value of Dn is 0.142610. 
For a two-tail test, with α = .05, the large sample 
approximation is  

1.3581/ 15 =1.3581/ 15 =0.35066.  
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Because 0.142610 < 0.35066, the null hypothesis 
cannot be rejected 

. 
The Sign Test  

The Sign test is credited to Fisher as early 
as 1925. One of the first papers on the theory and 
application of the Sign test is attributed to Dixon 
and Mood in 1946 (Hollander & Wolfe, 1973). 
According to Neave and Worthington (1988), the 
logic of the Sign test is “almost certainly the oldest 
of all formal statistical tests as there is published 
evidence of its use long ago by J. Arbuthnott 
(1710)!” (p. 65). 

The Sign test is a test for a population 
median. It can also be used with matched data as a 
test for equality of medians, specifically when 
there is only dichotomous data. (Otherwise, the 
Wilcoxon Signed Rank is more powerful.) The test 
is based on the number of values above or below 
the hypothesized median. Gibbons (1971) referred 
to the Sign test as the nonparametric counterpart of 
the one-sample t test. The Sign test tests the null 
hypothesis H0: M = M0, where M is the sample 
median and M0 is the hypothesized population 
median, against the alternative hypothesis H1: M ≠ 
M0. One-tailed test alternative hypotheses are of 
the form H1: M < M0 and H1: M > M0. 

Procedure. Each xi is compared with M0. 
If 0Mxi > then a plus symbol ‘+’ is recorded. If 

0Mxi < then a minus symbol ‘–’ is recorded. In 
this way all data are reduced to ‘+’ and ‘–’ 
symbols.  

Test statistic. The test statistic is the 
number of ‘+’ symbols or the number of ‘–’ 
symbols. If the expectation under the alternative 
hypothesis is that there will be a preponderance of 
‘+’ symbols, the test statistic is the number of ‘–’ 
symbols. Similarly, if the expectation is a 
preponderance of ‘–’ symbols, the test statistic is 
the number of ‘+’ symbols. If the test is two-tailed, 
use the smaller of the two. Thus, depending on the 
context, 

        S = number of ‘+’ or ‘–’ symbols            (6) 
Large sample sizes. The large sample 

approximation is given by  

           

4

2*

N

NS
S

−
=                                 (7) 

where S is the test statistic and N is the sample 
size. S* is compared to the standard normal z 
scores for the appropriate α level. 

Example. The Sign test was calculated 
using sample 1 (Table 3, Appendix), N = 15. The 
population median is 18.0. The number of minus 
symbols is 7 and the number of plus symbols is 8. 
Therefore S = 7. The large sample approximation, 
S*, using formula (7) is -.258199. The null 
hypothesis cannot be rejected because -.258199 > -
1.95996. 
 
Wilcoxon’s Signed Rank Test 

The Signed Rank test was introduced by 
Wilcoxon in 1945. This statistic uses the ranks of 
the absolute differences between xi and M0 along 
with the sign of the difference. It uses the relative 
magnitudes of the data. This statistic can also be 
used to test for symmetry and to test for equality 
of location for paired replicates. The null 
hypothesis is H0: M = M0, which is tested against 
the alternative H1: M ≠ M0. The one-sided 
alternatives are H1: M < M0 and H1: M > M0. 

Procedure. Compute the differences, Di, 
by the formula  

 
        0MxD ii −= .            (8) 

 
Rank the absolute value of the differences in 
ascending order, keeping track of the individual 
signs. 

Test statistic. The test statistic is the sum 
of either the positive ranks or the negative ranks. If 
the alternative hypothesis suggests that the sum of 
the positive ranks should be larger, then  

 
  T– = the sum of negative ranks             (9) 
 
If the alternative hypothesis suggests that the sum 
of the negative ranks should be larger, then  
 
  T+ = the sum of positive ranks          (10) 
 
For a two-tailed test, T is the smaller of the two 
rank sums. The total sum of the ranks is 

2
)1( +NN , which gives the following relationship: 
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2

)1( .                (11) 



GAIL FAHOOME 255

 Large sample sizes. The large sample 
approximation is given by 
 

   

24
)12)(1(

4
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−
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NNN

NNT
z              (12) 

 
where T is the test statistic. The resulting z is 
compared to the standard normal z for the 
appropriate alpha level. 

Example. The Signed Rank test was 
computed using the data from sample 1 (Table 3, 
Appendix), N = 15. The median of the population 
is 18.0. Tied differences were assigned midranks. 
The sum of the negative ranks was 38.5 and the 
sum of the positive ranks was 81.5. Therefore the 
Signed Rank statistic is 38.5. The large sample 

approximation is   22112.1
6068.17

5.21
310

5.21
−=

−
=

− .  

Because –1.22112 > –1.95996, the null hypothesis 
is not rejected. 
 
Estimator of the Median (Continuous Distribution) 
  The sample median is a point estimate of the 
population median. This procedure provides a 1-α 
confidence interval for the population median. It 
was designed for continuous data.  

Procedure. Let N be the size of the 
sample. Order the N observations in ascending 
order, )()2()1( Nxxx ≤≤≤ … . Let −∞=)0(x  and 

∞=+ )1( Nx . These N+2 values form N+1 intervals 

),( ),,(,  .  .  .  ),,( ),,( )1()()()1()2()1()1()0( +− NNNN xxxxxxxx . 
The ith interval is defined as ),( )()1( ii xx − with i = 1, 
2, . . . , N, N+1. The probability that the median is 
in any one interval can be computed from the 
binomial distribution. The confidence interval for 
the median requires that r be found such that the 
sum of the probabilities of the intervals in both the 
lower and upper ends give the best conservative 
approximation of α/2, according to the following: 
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Thus, (x(r), x(r+1)) is the last interval in the lower 
end, making x(r+1) the lower limit of the confidence 

interval. By a similar process, x(N-r) is the upper 
limit of the confidence interval. 

Large sample sizes. Deshpande, Gore, and 
Shanubhogue (1995) stated “one may use the 
critical points of the standard normal distribution, 
to choose the value of r + 1 and n – r, in the 
following way”: r + 1 is the integer closest to 
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where zα/2 is the upper α/2 critical value of the 
standard normal distribution. 
 
 Example. The data from sample 1 (Table 3, 
Appendix), N = 15, were used to compute the 
Estimator of the Median. The population median is 
18.0. For the given N and α = .05, the value of r is 
3. The value of r + 1 is 4, and n – r is 12. The 4th 
value is 13 and the 12th value is 33. Therefore the 
interval is (13, 33). The large sample 
approximation yields 7.5 – 1.95996(1.9365) = 7.5 
– 3.70 = 3.80. The closest integer is r + 1 = 4, so r 
= 3 and N – r = 12, resulting in the same interval, 
(13, 33). The interval contains the population 
median, 18.0. 
 
Two Sample Tests 

The two-sample layout consists of 
independent random samples drawn from two 
populations. This study examined two sample tests 
for general differences, two sample location tests, 
and two sample scale tests. 
 When differences between two samples are 
not expected to be predominantly differences in 
location or differences in scale, a test for general 
differences is appropriate. Generally differences in 
variability are related to differences in location. 
Two tests for differences were considered, the 
Kolmogorov-Smirnov test for general differences 
and Rosenbaum’s test.  

Two sample location problems involve 
tests for a difference in location between two 
samples when the populations are assumed to be 
similar in shape. The idea is that F1(x) = F2(x+θ) 
or F1(x) = F2(x-θ) where θ is the distance between 
the population medians. Tukey’s quick test, the 
Wilcoxon (Mann-Whitney) statistic, and the 
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Hodges-Lehmann estimator of the difference in 
location for two populations were considered. 

In two sample scale tests, the population 
distributions are usually assumed to have the same 
location with different spreads. However, Neave 
and Worthington (1988) cautioned that tests for 
difference in scale could be severely impaired if 
there is a difference in location as well. The 
following nonparametric tests for scale were 
studied: the Siegel-Tukey test, the Mood test, the 
Savage test for positive random variables, and the 
Ansari-Bradley test.  
 
Kolmogorov-Smirnov Test for General 
Differences 

The Kolmogorov-Smirnov test compares 
the cumulative distribution frequencies of the two 
samples to test for general differences between the 
populations. The sample cdf “is an approximation 
of the true cdf of the corresponding population – 
though, admittedly, a rather crude one if the 
sample size is small” (Neave & Worthington, 
1988, p. 149). This property was used in the 
goodness-of-fit test above. Large differences in the 
sample cdfs can indicate a difference in the 
population cdfs, which could be due to differences 
in location, spread, or more general differences in 
the distributions. The null hypothesis is 

)()(: 210 xFxFH = for all x. The alternative 
hypothesis is )()(: 211 xFxFH ≠ for some x. 
  Procedure. The combined observations are 
ordered from smallest to largest, keeping track of 
the sample membership. Above each score, write 
the cdf of sample 1, and below each score write 
the cdf of sample 2. Because the samples are of 
equal sizes, it is only necessary to use the 
numerator of the cdf. For example, the cdf(xi) = 

n
i

. Then, write i above xi for sample 1. Find the 

largest difference between the cdf for sample 1 
and the cdf for sample 2.  

Test statistic. The test statistic is D*. D* = 
n1n2D, and D* = n2D for equal sample sizes. The 
above procedure yields nD. Thus  

 
     D* = n(nD) .           (15) 
 
The greatest difference found by the procedure is 
multiplied by the sample size. 

 Large sample sizes.  The distribution is 
approximately 2χ  with 2 degrees of freedom as 
sample size increases, as it is for the goodness-of-
fit test. The large sample approximation for D is 
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where 2

2,αχ  is the value for chi-square with 2 
degrees of freedom for the appropriate alpha level, 
and n1 and n2 are the two sample sizes. The 
resulting D is used in formula (15).  
 Example. This example used the data from 
sample 1 and sample 5 (Table 3, Appendix), n1 = 
n2 = 15. The greatest difference (nD) between the 
cdfs of the two samples is nD = 3. Therefore D* = 
15(3) = 45. The large sample approximation is 

225
30)3581.1(152  = 225(1.3581)(.365148) = 

111.579301. Because 45 < 111.579301, the null 
hypothesis cannot be rejected. 
 
Rosenbaum’s Test 

Rosenbaum’s test, which was developed 
in 1965, is useful in situations where an increase in 
the measure of location implies an increase in 
variation. It is a quick and easy test based on the 
number of observations in one sample greater than 
the largest observation in the other sample. The 
null hypothesis is that both populations have the 
same location and spread against the alternative, 
that both populations differ in location and spread. 

Procedure. The largest observation in 
each sample is identified. If the largest overall 
observation is from sample 1, then count the 
number of observations from sample 1 greater 
than the largest observation from sample 2. If the 
largest overall observation is from sample 2, then 
count the number of observations from sample 2 
greater than the largest observation from sample 1. 

Test statistic. The test statistic is the 
number of extreme observations. R is the number 
of observations from sample 1 greater than the 
largest observation in sample 2, or the number of 
observations from sample 2 greater than the 
largest observation in sample 1. 
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Large sample sizes. As sample sizes 

increase, p
N
n

→1 and the probability that the 

number of extreme values equals h approaches ph. 
Example. Rosenbaum’s statistic was 

calculated using samples 1 and 5 (Table 3, 
Appendix), n1 = n2 = 15. The maximum value 
from sample 1 is 39, and from sample 2 it is 33. 
There are three values from sample 1 greater than 
33: 34, 36, and 39. Hence, R = 3. The large sample 
approximation is (.5)3 = 0.125. Because 0.125 > 
.05, the null hypothesis cannot be rejected. 
 
Tukey’s Quick Test 

Tukey published a quick and easy test for 
the two-sample location layout in 1959. It is easy 
to calculate and in most cases does not require the 
use of tables. The most common one-tailed critical 
values are 6 (α = .05) and 9 (α = .01). These 
critical values can be used for most sample sizes. 
The statistic is the sum of extreme runs in the 
ordered combined samples. When a difference in 
location exists, more observations from sample 1 
will be expected at one end and more observations 
from sample 2 will be expected at the other end. 
  Procedure.  The combined samples can be 
ordered, but it is only necessary to order the 
largest and smallest observations. If both the 
maximum and minimum values come from the 
same sample the test is finished, the value of Ty = 
0, and the null hypothesis is not rejected. 

For the one-tailed test, the run on the 
lower end should come from the sample expected 
to have the lower median, and the run on the upper 
end should come from the sample expected to 
have the larger median. For a two-tailed test, it is 
possible to proceed with the test as long as the 
maximum and minimum observations come from 
different samples.  

Test statistic. Ty is defined as follows for 
the alternative hypothesis, H1: M1 > M2. Ty is the 
number of observations from sample 2 less than 
the smallest observation of sample 1, plus the 
number of observations from sample 1 greater 
than the largest observation from sample 2. For the 
alternative H1: M2 > M1 the samples are reversed. 
For the two-tailed hypothesis H1: M1 ≠ M2, both 
possibilities are considered. 
 Critical values. As stated above, generally, 
the critical value for α = .05 is 6, and is 9 for α = 

.01. There are tables available. As long as the ratio 
of nx to ny is within 1 to 1.5, these critical values 
work well. There are corrections available when 
the ratio exceeds 1.5. For a two-tailed test the 
critical values are 7 (α = .05) and 10 (α = .01).  

Large sample sizes. The null distribution 
is based on the order of the elements of both 
samples at the extreme ends. It does not depend on 
the order of the elements in the middle. Neave and 
Worthington (1988, p. 125 ) gave the following 
formula:  
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for h ≥ 2. When the sample sizes are equal, p = q = 
.5. Then the probability of Ty ≥ h is )1(2 +− hh . For a 
two-tailed test the probability is doubled. 

Example. The Tukey test was calculated 
using the data in sample 1 and sample 5 (Table 3, 
Appendix), n1 = n2 = 15. The maximum value (39) 
is from sample 1 and the minimum (2) is from 
sample 5, so the test may proceed. The value of Ty 
= 1 + 3 = 4. For a two-tailed test with α = .05, the 
large sample approximation is 2(4)(2-5) = 0.25. 
Because 0.25 > .05, the null hypothesis cannot be 
rejected.  
 
Wilcoxon (Mann-Whitney) Test 
 In 1945, Wilcoxon introduced the Rank Sum 
test, and in 1947 Mann and Whitney presented a 
different version of the same test. The Wilcoxon 
statistic is easily converted to the Mann-Whitney 
U statistic. The hypotheses of the test are 

xxFxFH  allfor  )()(: 210 =  against the two-tailed 
alternative,  )()(: 210 xFxFH ≠ . The one-tailed 
alternative is )()(: 211 θ+= xFxFH . 

Procedure. For the Wilcoxon test, the 
combined samples are ordered, keeping track of 
sample membership. The ranks of the sample that 
is expected, under the alternative hypothesis, to 
have the smallest sum, are added. The Mann-
Whitney test is conducted as follows. Put all the 
observations in order, noting sample membership. 
Count how many of the observations of one 
sample exceed each observation in the first 
sample. The sum of these counts is the test 
statistic, U. 
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Test statistic. For the Wilcoxon test,  
 

      Sn = ∑
=

n

j
jR

1

           (18) 

 
where Rj are the ranks of sample n and Sn is the 
sum of the ranks of the sample expected to have 
the smaller sum.  

For the Mann-Whitney test, calculate the 
U statistic for the sample expected to have the 
smaller sum under the alternative hypothesis. 

   
Un2 = the sum of the observations in n1 

       exceeding each observation in n2.             (19) 
 

Un1 = the sum of the observations in n2  
       exceeding each observation in n1.             (20) 

 
There is a linear relation between Sn and Un. It is 
expressed as  
 

       )1(
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and similarly, 
 

       )1(
2
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where    
 
          

21 21 nn UnnU −=  .           (23) 

 
In a two-tailed test, use the smallest U statistic to 
test for significance. 

Large sample sizes. The large-sample 
approximation using the Wilcoxon statistic, Sn1 is: 
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The large-sample approximation with the U 
statistic is 
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In either case, reject H0 if z < -zα (or z < - zα/2 for a 
two-tailed test). 

Example. The Wilcoxon Rank Sum 
(Mann-Whitney) statistic was calculated with data 
from sample 1 and sample 5 (Table 3, Appendix), 
n1 = n2 = 15. The combined samples were ranked, 
using midranks in place of the ranks of tied 
observations. The rank sum for sample 1 was 
258.5 and for sample 5, 206.5. Hence S = 206.5. 
Calculating the U statistic, U= 206.5 – 0.5(15)(16) 
= 86.5. The large sample approximation for U is 

1091.24
5.25

12
)31(15

)15(5.5.5.86
2

2 −
=

−+ = –1.05769. Because 

–1.05769 > –1.95996, the null hypothesis cannot 
be rejected.  
 
Hodges-Lehmann Estimator of the Difference in 
Location  

It is often useful to estimate the difference 
in location between two populations. Suppose two 
populations are assumed to have similar shapes, 
but differ in locations. The objective is to develop 
a confidence interval that will have the probability 
of 1-α that the difference lies within the interval. 

Procedure. All the pairwise differences 
are computed, xi–yj . For sample sizes of n1 and n2, 
there are n1n2 differences. The differences are put 
in ascending order. The task is to find two integers 
l and u such that the probability that the difference 
lies between l and u is equal to 1–α. These limits 
are chosen symmetrically. The appropriate lower 
tail critical value is found for the Mann-Whitney U 
statistic. This value is the upper limit of the lower 
end of the differences. Therefore, l is the next 
consecutive integer. The upper limit of the 
confidence interval is the uth difference from the 
upper end, found by u = n1n2 - l+1. The interval (l, 
u) is the confidence interval for the difference in 
location for the two populations. 
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Large sample sizes. Approximate l and u 
by 
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and 
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“where the square brackets denote integer nearest 
to the quantity within, and zα/2 is the suitable upper 
critical point of the standard normal distribution” 
(Deshpande, et al., 1995, p. 45, formulas rewritten 
for consistency of notation with this article). 

Example. The Hodges-Lehmann estimate 
of the difference in location was computed using 
samples 1 and 5 (Table 3, Appendix), n1 = n2 = 15. 
All possible differences were computed and 
ranked. Using the large sample approximation 
formula (26), l = 112.5–1.95596(24.109)–0.5 = 
64.844. Thus, l = 65 and the lower bound is the 
65th difference, which is -4. The upper bound is 
the 65th difference from the upper end, or the 225 
–65+1=161st value, 14. The confidence interval is 
(-4, 14). 
 
Siegel-Tukey Test 
 The Siegel-Tukey test was developed in 
1960. It is similar in procedure to the Wilcoxon 
Rank Sum test for difference in location. It is 
based on the logic that if two samples come from 
populations with the same median, the one with 
the greater variability will have more extreme 
scores. An advantage of the Siegel-Tukey statistic 
is that it uses the Wilcoxon table of critical values 
or can be transformed into a U statistic for use 
with the Mann-Whitney U table of critical values.  

The hypotheses for a two-tailed test are 
H0: There is no difference in spread between the 
two populations, which is tested against the 
alternative H1: There is some difference in spread 
between the two populations. 

Procedure. The two combined samples are 
ordered, keeping track of sample membership. The 
ranking proceeds as follows: the lowest 
observation is ranked 1, the highest is ranked 2, 
and the next highest 3. Then the second lowest is 

ranked 4 and the subsequent observation ranked 5. 
The ranking continues to alternate from lowest to 
highest, ranking two scores at each end. If there is 
an odd number of scores, the middle score is 
discarded and the sample size reduced 
accordingly. Below is an illustration of the ranking 
procedure: 

 
1  4  5  8  9 … N … 7  6  3  2 

where N = n1 + n2. 
 
 Test statistic. The sum of ranks is calculated 
for one sample. The rank sum can be used with a 
table of critical values or it can be transformed 
into a U statistic by one of the following formulas: 
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or  
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+−= nnRU n .    (29) 

 
Large sample sizes. The large-sample 

approximations are the same for the Siegel-Tukey 
test as for the Wilcoxon Rank Sum or the Mann-
Whitney U statistic, formulas (24) and (25). 

Example. The Siegel-Tukey statistic was 
calculated using sample 1 and sample 5 (Table 3, 
Appendix), n1= n2 = 15. The samples were 
combined and ranked according to the method 
described. Then, tied ranks were averaged. The 
sum of ranks was 220.5 for sample 1, and 244.5 
for sample 5. The U statistic is 220.5 – .5(15)(16) 
= 100.5. The large sample approximation is  

z = 
109127.24

5.11

12
)31(15

)15(5.5.5.100
2

2 −
=

−+ = –0.476998. 

Because –0.476998> –1.95996, the null hypothesis 
cannot be rejected. 
 
The Mood Test 

In 1954, the Mood test was developed 
based on the sum of squared deviations of one 
sample’s ranks from the average combined ranks. 
The null hypothesis is that there is no difference in 
spread against the alternative hypothesis that there 
is some difference.  
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Procedure. Let sample 1 be 121 ,,, nxxx …  
and let sample 2 be 221 ,,, nyyy … . Arrange the 
combined samples in ascending order and rank the 
observations from 1 to n1+ n2. Let Ri be the rank of 
xi. Let N = n + n2. If N is odd, the middle rank is 
ignored to preserve symmetry. 

Test statistic. The test statistic is 
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Large sample sizes. The large sample 

approximation is 
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where N = n1 + n2 and M is the test statistic. 

Example. The Mood statistic was 
calculated using sample 1 and sample 5 (Table 3, 
Appendix), n1 = n2 = 15. The combined samples 
are ranked, with midranks assigned to the ranks of 
tied observations. The mean of the ranks is 15.5, 
and the sum of squared deviations of the ranks 
from the mean for sample 1 was calculated, 
yielding M=1257. The large sample approximation 

is 
333.186
25.133

34720
75.11231257

=
− = 0.71512. Because 

0.71512 < 1.95596, the null hypothesis cannot be 
rejected. 
 
The Savage Test for Positive Random Variables 

Unlike the Siegel-Tukey test and the 
Mood test, the Savage test does not assume that 
location remains the same. It is assumed that 
differences in scale cause a difference in location. 
The samples are assumed to be drawn from 
continuous distributions. 

The null hypothesis is that there is no 
difference in spread, which is tested against the 
two-tailed alternative that there is a difference in 
variability. 

Procedure. Let sample 1 be 121 ,,, nxxx …  
and let sample 2 be 221 ,,, nyyy … . The combined 
samples are ordered, keeping track of sample 

membership. Let Ri be the rank for xi. The test 
statistic is computed for either sample. 

Test statistic. The test statistic is  
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Large sample sizes. For large sample sizes 

the following normal approximation may be used. 
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S* is compared to the critical z value from the 
standard normal distribution. 

Example. The Savage statistic was 
calculated using samples 1 and 5 (Table 3, 
Appendix), n1 = n2 = 15. Using sample 1, S = 
18.3114. The large sample approximation is 

59334.2
114.3

)86683(.7586.7
153114.18

=
− = 1.27689. Because 

1.27689 < 1.95596, the null hypothesis cannot be 
rejected. 
 
Ansari-Bradley Test 

This is a rank test for spread when the 
population medians are the same. The null 
hypothesis is that the two populations have the 
same spread, which is tested against the alternative 
that the variability of the two populations differs. 

Procedure. Order the combined samples, 
keeping track of sample membership. Rank the 
smallest and largest observation 1. Rank the 
second lowest and second highest 2. If the 
combined sample size, N, is odd, the middle score 

will be ranked 
2

1+N and if N is even the middle 
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two ranks will be 
2
N . The pattern will be either 1, 

2, 3, . . . , 
2

1+N , . . . , 3, 2, 1 (N odd), or 1, 2, 3, . . 

., 
2
N , 

2
N , . . . , 3, 2, 1 (N even).  

Test statistic. The test statistic, W, is the 
sum of the ranks of sample 1.  
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where Ri is the rank of the ith observation of a 
sample. 

Large sample sizes. There are two 
formulas. If N is even, use 
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and if N is odd, use 
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Reject the null hypothesis if W*≥  zα/2. 

Example. The Ansari-Bradley statistic was 
calculated using samples 1 and 5 (Table 3, 
Appendix), n1 = n2 = 15. The combined samples 
were ranked using the method described, and the 
ranks of tied observations were assigned average 
ranks. The two-tailed statistic, W, is 126.5, the 
rank sum of sample 5. The large sample 

approximation is 
034.12
5.6

8276.144
1205.126

=
−  = 0.54. 

Because 0.54 < 1.95596, the null hypothesis 
cannot be rejected. 
 
Comparisons Of Several Populations  

This section considered tests against an 
omnibus alternative and tests involving an ordered 
hypothesis. The omnibus tests were the Kruskal-
Wallis test and Friedman’s test. The tests for 

ordered alternatives are the Terpstra-Jonckheere 
test, Page’s test, and the Match test. 

The Kruskal-Wallis statistic is a test for 
independent samples. It is analogous to the one-
way analysis of variance. Friedman’s test is an 
omnibus test for k related samples, and is 
analogous to a two-way analysis of variance.  

Comparisons of several populations with 
ordered alternative hypotheses are extensions of a 
one-sided test. When an omnibus alternative states 
only that there is some difference between the 
populations, an ordered alternative specifies the 
order of differences. Three tests for an ordered 
alternative were included: the Terpstra-Jonckheere 
Test, Page’s Test, and the Match Test. 
 
Kruskal-Wallis Test 

The Kruskal-Wallis test was derived from 
the F test in 1952. It is an extension of the 
Wilcoxon (Mann–Whitney) test. The null 
hypothesis is that the k populations have the same 
median. The alternative hypothesis is that at least 
one sample is from a distribution with a different 
median.  

Procedure. Rank all the observations in 
the combined samples, keeping track of the sample 
membership. Compute the rank sums of each 
sample. Let Ri equal the sum of the ranks of the ith 
sample of sample size ni. The logic of the test is 
that the ranks should be randomly distributed 
among the k samples.  

Test statistic. The formula is  
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where N is the total sample size, ni is the size of 
the ith group, k is the number of groups, and Ri is 
the rank-sum of the ith group. Reject H0 when H 
≥  critical value. 

Large sample sizes. For large sample 
sizes, the null distribution is approximated by the 

2χ  distribution with k – 1 degrees of freedom. 
Thus, the rejection rule is to reject H0 if 2

1, −≥ kH αχ  
where 2

1, −kαχ  is the value of 2χ at nominal α with 
k – 1 degrees of freedom.  

Example. The Kruskal-Wallis statistic was 
calculated using samples 1–5 (Table 3, Appendix), 
n1 = n2 = n3 = n4 = n5 = 15. The combined samples 
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were ranked, and tied ranks were assigned 
midranks. The rank sums were: R1 = 638, R2 = 
595, R3 = 441.5, R4 = 656.5, and R5 = 519. The 
sum of Ri

2 = 1,656,344.5, i = 1, 2, 3, 4, 5. 
 

47.422897.422,110( 00211.0

)76(3
15

5.344,656,1
)76(75

12
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Thus, H = 4.47. The large sample approximation 
with 5 – 1 = 4 degrees of freedom at α = .05 is 2χ  
= 9.488. Because 4.47 < 9.488, the null hypothesis 
cannot be rejected. 
 
Friedman’s Test 

The Friedman test was developed as a test 
for k related samples in 1937. The null hypothesis 
is that the samples come from the same 
population. The alternative hypothesis is that at 
least one of the samples comes from a different 
population. Under the truth of the null hypothesis, 
this test only requires exchangeability (or, if 
variances differ, compound symmetry) and the 
ability to rank the data. The data are arranged in k 
columns and n rows, where each row contains k 
related observations. 

Procedure. Rank the observations for each 
row from 1 to k. For each of the k columns, the 
ranks are added and averaged, and the mean is 
designated jR . The overall mean of the ranks is 

)1(
2
1

+= kR . The sum of the squares of the 

deviations of mean of the ranks of the columns 
from the overall mean rank is computed. The test 
statistic is a multiple of this sum. 

Test statistic. The test statistic for 
Friedman’s test is M, which is a multiple of S, as 
follows: 

 

    ∑
=

−=
k

j
j RRS

1

2)(     (39) 

   

    S
kk

nM
)1(

12
+

=     (40) 

 
where n is the number of rows, and k is the 
number of columns. An alternate formula that does 
not use S is as follows. 
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where n is the number of rows, k is the number of 
columns, and Rj is the rank sum for the jth column, 
j = 1, 2, 3, . . . , k. 

Large sample sizes. For large sample 
sizes, the critical values can be approximated by 

2χ with k – 1 degrees of freedom. 
Example. Friedman’s statistic was 

calculated with samples 1 – 5 (Table 3, Appendix), 
n1 = n2 = n3 = n4 = n5 = 15. The rows were ranked, 
with the ranks of tied observations replaced with 
midranks. The column sums are: R1 = 48.5, R2 = 
47, R3 = 33, R4 = 52.5, and R5 = 44. The sum of 
the squared rank sums is 10,342.5. 

M= 6153)5.342,10(
6515

12
⋅⋅−

⋅⋅
=0.0267(10,342.5)

–270 = 5.8. The large sample approximation is 2χ  
with 5 – 1 = 4 degrees of freedom and α = .05, 
which is 9.488. Because 5.8 < 9.488, the null 
hypothesis cannot be rejected. 
 
Terpstra-Jonckheere Test 

This is a test for more than two 
independent samples. It was first developed by 
Terpstra in 1952 and later independently 
developed by Jonckheere in 1954. The null 
hypothesis is that the medians of the samples are 
equal, which is tested against the alternative that 
the medians are either decreasing or increasing. 
This test is based on the Mann-Whitney U 
statistic, where U is calculated for each pair of 
samples and the U statistics are added. 

Suppose the null hypothesis is H0: F1(x) ≥ 
F2(x) ≥ F3(x) ≥ … ≥ Fk(x) and the alternative 
hypothesis is H0: F1(x) < F2(x) < F3(x) < … < Fk(x) 
for i = 1, 2, . . . k. The U statistic is calculated for 

each of the 
2

)1( −kk  pairs, which are ordered so 

that the smallest U is calculated.  
Test statistic. The test statistic is the sum 

of the U statistics.  
1,22,31,32,1, UUUUUW kk +++++= …      (42) 

where Ui,j is the number of pairs when the 
observation from sample j is less than the 
observation from sample i. 
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Large sample sizes. The null distribution 
of W approaches normality as the sample size 
increases. The mean of the distribution is  

 

   
4
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and the standard deviation is  
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The critical value for large samples is given by 
 

2
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where z is the standard normal value, and 
2
1  is a 

continuity correction.  
Example. The Terpstra-Jonckheere 

statistic was calculated with samples 1 – 5 (Table 
3, Appendix), n1 = n2 = n3 = n4 = n5 = 15. This was 
done as a one-tailed test with α = .05. The U 
statistics for each sample were calculated. U5,1 = 
135, U5,2 = 124, U5,3 = 91, U5,4 = 136, U4,1 = 103, 
U4,2 = 97, U4,3 = 71, U3,1 = 145, U3,2 = 142, and 
U2,1 = 121, for a total W = 1,165. The large sample 
approximation was calculated with µ = 1125 and σ 
= 106.94625. The approximation is 1125 – 
1.6449(106.9463) - .5 = 948.584. Because 1165 > 
948.584 the null hypothesis cannot be rejected. 
 
Page’s Test 

Page’s test for an ordered hypothesis for k 
> 2 related samples was developed in 1963. It 
takes the form of a randomized block design with 
k columns and n rows. The null hypothesis is 

kMMMH === …210 : and the alternative 
hypothesis is kMMMH <<< …211 :  for i = 1, 2, 
. . . k. For this test, the alternative must be of this 
form. The samples need to be reordered if 
necessary. 

Procedure. The data are ranked from 1 to 
k for each row, creating a table of the ranks. The 
ranks of each of the k columns are totaled. If the 
null hypothesis is true, the ranks should be evenly 
distributed over the columns, whereas if the 

alternative is true, the ranks sums should increase 
with the column index. 

Test statistic. Each column rank-sum is 
multiplied by the column index. The test statistic 
is 
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where i is the column index, i = 1, 2, 3, . . . , k, and 
Ri is the rank sum for the ith column.  
 
 

Large sample sizes. The mean of L is  
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For a given α, the approximate critical region is  
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Example. Page’s statistic was calculated 

with samples 1 – 5 (Table 3, Appendix), n1 = n2 = 
n3 = n4 = n5 = 15. This was done as a one-tailed 
test with α = .05. The rows are ranked with 
midranks assigned to tied ranks. The column sums 
are: R1 = 48.5, R2 = 47, R3 = 33, R4 = 52.5, and R5 
= 44. The statistic, L, is the sum of iRi

2 = 671.5, 
where i = 1, 2, 3, 4, 5. The large sample 
approximation was calculated with µ = 675 and σ 
= 19.3649. The approximation is 675 + 
1.64485(19.3649) + .5 = 707.352. Because 671.5 < 
707.352, the null hypothesis cannot be rejected. 
 
The Match Test for Ordered Alternatives 

The Match test is a test for k > 2 related 
samples with an ordered alternative hypothesis. 
The Match test was developed by Neave and 
Worthington (1988). It is very similar in concept 
to Page’s test, but instead of using rank-sums, it 
uses the number of matches of the ranks with the 
expected ranks plus half the near matches. The 
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null hypothesis is H0: M1= M2= … = Mk and the 
alternative hypothesis is H0: M1< M2< …< Mk for i 
= 1, 2, . . . k. 

Procedure. A table of ranks is compiled 
with the observations in each row ranked from 1 to 
k. Tied observations are assigned average ranks. 
Each rank, ri, is compared with the expected rank, 
i, the column index. If the rank equals the column 
index, it is a match. Count the number of matches. 
Every non-match such that 0.5 ≤ |ri - i | ≤ 1.5 is 
counted as a near match.  

Test statistic. The test statistic is 
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where L1 is the number of matches. 

Large sample sizes. The null distribution 
approaches a normal distribution for large sample 
size. The mean and standard deviation for L2 are as 
follows: 
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For a given level of significance α the critical 
value approximation is  
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where z is the upper-tail critical value from the 

standard normal distribution and 
2
1 is a continuity 

correction. 
Example. The Match statistic was 

calculated with samples 1 – 5 (Table 3, Appendix), 
n1 = n2 = n3 = n4 = n5 = 15. This was done as a 
one-tailed test with α = .05. The rows are ranked, 
with midranks assigned for tied observations. The 
number of matches for the five columns are 3, 3, 
2, 2, and 1, for L1 = 11. The number of near 
matches were 1, 6, 8, 8, and 4, for L2 = 27. The 

statistic, L = 11 + .5(27) = 24.5. For the large 
sample approximation, µ = 27 and σ = 3.68103. 
The approximation is 27 + 1.6449(3.68103) + .5 = 
33.5549. Because 24.5 < 33.5549, the null 
hypothesis cannot be rejected. 
 
Rank Correlation Tests 

The rank correlation is a measure of the 
association of a pair of variables. Spearman’s rank 
correlation coefficient (rho) and Kendall’s rank 
correlation coefficient (tau) were studied. 
Spearman’s Rank Correlation Coefficient 

Spearman’s rank correlation (rho) was 
published in 1904. Let X and Y be the two 
variables of interests. Each observed pair is 
denoted (xi, yi). The paired ranks are denoted (ri, 
si), where ri is the rank of xi and si is the rank of yi. 
The null hypothesis for a two-tailed test is 

0:0 =ρH , which is tested against the alternative 
0:1 ≠ρH . The alternative hypotheses for a one-

tailed test are 0:1 >ρH  or 0:1 <ρH .  
Procedure. Rank both X and Y scores 

while keeping track of the original pairs. Form the 
rank pairs (ri, si ) which correspond to the original 
pair, (xi, yi). Calculate the sum of the squared 
differences between ri and si. 

Test statistic. If there are no ties, the 
formula is  

 

    
)1(

61 2 −
−=

nn
Tρ       (54) 

 
where 
  
    2)( ii srT −=∑ .      (55) 

 
Large sample sizes. For large n the 

distribution of ρ  is approximately normal. The 

critical values can be found by 1−= nz ρ . The 
rejection rule for a two-tailed test is to reject H0 if 
z > zα/2 or z < - zα/2 where zα/2 is the critical value 
for the given level of significance. 

Example. Spearman’s rho was calculated 
using sample 1 and sample 5 (Table 3, Appendix), 
n = 15. The sum of the squared rank differences 
for the two samples is T = 839. Rho is 

3360
50341

)224(15
)839(61 −=− =1–1.498 = –0.498. So z = 
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–0.498 14 = –1.864. Because –1.864 > –1.956, 
the null hypothesis cannot be rejected. 
 
Kendall’s Rank Correlation Coefficient 

Kendall’s rank correlation coefficient (tau) is 
similar to Spearman’s rho. The underlying concept 
is the tendency for concordance, which means that 
if ji xx > then ji yy > . Concordance implies that 
the differences xi – xj and yi - yj have the same 
sign, either “+” or “–”. Discordant pairs have 
opposite signs, that is, ji xx > but ji yy < , or the 
opposite, ji xx <  but ji yy > .  

Procedure. Arrange the pairs in ascending 
order of X. Count the number of yi smaller than y1. 
This is the number of disconcordant pairs (ND) for 
x1. Repeat the process for each xi, counting the 
number of yj < yi , where j = i + 1, i + 2, i + 3, . . . , 
n. 

Test statistic. Because the total number of 

pairs is )1(
2
1

−nn , Nc = )1(
2
1

−nn – ND. The tau 

statistic (τ ) is defined as  
 

    
)1(

2
1

−

−
=

nn

NN DCτ .      (56) 

 
This formula can be simplified by substituting Nc 

= )1(
2
1

−nn – ND into the formula so that 

   

    
)1(

41
−

−=
nn
N Dτ .      (57) 

 
Large sample sizes. For large sample 

sizes, the formula is  
 

    
)52(2
)1(3

+

−
=

n
nn

z
τ

      (58) 

 
where z is compared to the z score from the 
standard normal distribution for the appropriate 
alpha level. 

Example. Kendall’s tau was calculated 
using sample 1 and sample 5 (Table 3, Appendix), 
n = 15. The number of discordant pairs for each 
pair, (x1, x5), were 12, 8, 8, 5, 9, 5, 6, 3, 5, 3, 0, 3, 

0, 1, and 0. The total number of discordant pairs, 

ND is 68. Tau is 
210
2721

1415
6841 −=
⋅
⋅

− = –0.295. 

Thus z =
366.8

835.12
)35(2

)14)(15()295.(3 −
=

− = –1.534. 

Because –1.534 > –1.95596, the null hypothesis 
cannot be rejected. 
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Appendix 
 
Table 3. Samples Randomly Selected from 
Multimodal Lumpy Data Set (Micceri, 1989) 
 
Sample 

1 
Sample 

2 
Sample 

3 
Sample 

4 
Sample 

5 
20 11 9 34 10 
33 34 14 10 2 
4 23 33 38 32 

34 37 5 41 4 
13 11 8 4 33 
6 24 14 26 19 

29 5 20 10 11 
17 9 18 21 21 
39 11 8 13 9 
26 33 22 15 31 
13 32 11 35 12 
9 18 33 43 20 

33 27 20 13 33 
16 21 7 20 15 
36 8 7 13 15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 4. Multimodal Lumpy Set (Micceri, 1989). 
 

Score cum freq cdf score cum freq cdf 

0 5 0.01071 22 269 0.57602
1 13 0.02784 23 279 0.59743
2 21 0.04497 24 282 0.60385
3 24 0.05139 25 287 0.61456
4 32 0.06852 26 297 0.63597
5 38 0.08137 27 306 0.65525
6 41 0.08779 28 309 0.66167
7 50 0.10707 29 319 0.68308
8 62 0.13276 30 325 0.69593
9 80 0.17131 31 336 0.71949

10 91 0.19486 32 351 0.75161
11 114 0.24411 33 364 0.77944
12 136 0.29122 34 379 0.81156
13 160 0.34261 35 389 0.83298
14 180 0.38544 36 401 0.85867
15 195 0.41756 37 418 0.89507
16 213 0.45610 38 428 0.91649
17 225 0.48180 39 434 0.92934
18 234 0.50107 40 445 0.95289
19 244 0.52248 41 454 0.97216
20 254 0.54390 42 460 0.98501
21 261 0.55889 43 467 1.00000
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Adaptive Tests for Ordered Categorical Data 
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Consider testing for independence against stochastic order in an ordered 2xJ contingency table, under product 
multinomial sampling. In applications one may wish to exploit prior information concerning the direction of 
the treatment effect, yet ultimately end up with a testing procedure with good frequentist properties. As such, 
a reasonable objective may be to simultaneously maximize power at a specified alternative and ensure 
reasonable power for all other alternatives of interest. For this objective, none of the available testing 
approaches are completely satisfactory. A new class of admissible adaptive tests is derived. Each test in this 
class strictly preserves the Type I error rate and strikes a balance between good global power and nearly 
optimal (envelope) power to detect a specific alternative of most interest. Prior knowledge of the direction of 
the treatment effect, the level of confidence in this prior information, and possibly the marginal totals might 
be used to select a specific test from this class. 
 
Key words: Contingency table; exact conditional test; linear rank test; omnibus test; permutation test. 
 

Introduction 
When comparing two treatments on the basis of an 
ordinal endpoint, the data can be summarized as a 
2xJ contingency table. The objective tumor 
response data, e.g., from 35 ovarian cancer 
patients treated with cisplatin-based combination 
chemotherapy and salvage platinum-based therapy 
(Chiara et al., 1993) are (4,7,2,2) and (1,6,7,6) for 
patients with treatment-free intervals ≤ 12 months 
and > 12 months, respectively, with categories for 
‘progressive disease’, ‘stable disease’, ‘partial 
response’, and ‘complete response’. Combining 
the two ‘non-response’ categories, as is common, 
yields counts C1 = (11,2,2) and C2 = (7,7,6) in the 
two groups. For simplicity, the case J = 3 is 
treated, but with modification the results apply 
more generally.  It is common in practice to 
dispense with the specification of the alternative 
hypothesis, and proceed directly to the analysis. 
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 This failure to make the specific 
alternative hypothesis explicit is unfortunate, 
because it should serve as the basis for selecting 
and evaluating the analysis.  Linear rank tests, 
based on assigning numerical scores to the 
categories, are the most powerful tests to detect 
point alternatives.  If one wishes to test for the 
superiority of one treatment to another, then 
stochastic order serves as a reasonable (composite) 
alternative hypothesis (Cohen and Sackrowitz, 
1998). Unless the margins satisfy pathological 
conditions, there is no uniformly most powerful 
test or monotone likelihood ratio.  When testing 
for stochastic order, nonlinear rank tests, including 
the Smirnov, improved (Berger and Sackrowitz, 
1997), convex hull (Berger, Permutt, and Ivanova, 
1998; henceforth BPI), and COM(L) Fisher tests, 
tend to have better overall power profiles than 
linear rank tests do. 

Berger’s (1998) adaptive nonlinear rank 
test can be generalized to provide an entire class of 
exact, admissible, adaptive nonlinear rank tests, 
each of which balances omnibus power for any 
stochastically ordered alternative against optimal 
power to detect a specific alternative of greatest 
interest. The margins may be used to suggest the 
selection of one particular test from this novel 
class of tests. The exact conditional powers of 
some of the aforementioned tests are compared. 
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Notation and Formulation 

 Consider product multinomial sampling, 
with n1 and n2 (each fixed by the design) patients 
treated with the control and active treatments, 
respectively. The vectors of cell probabilities 
(each summing to one) are π1=(π11,π12,π13) and 
π2=(π21,π22,π23), respectively, and the 
corresponding trinomial random vectors are C1 = 
(C11,C12,C13) and C2 = (C21,C22,C23), with ni = 
Ci1 + Ci2 + Ci3, i = 1, 2. The log odds ratios, θ1 
and θ2, are calculated from π1 and π2 as 

θ1 = log{(π11π23)/(π21π13)} and  
θ2 = log{(π12π23)/(π22π13)}.  

Let Tj = C1j + C2j, j = 1,2,3. Conditional on T = 
(T1,T2,T3), the sample space Γ is the set of 2 × 3 
contingency tables with nonnegative integer cell 
counts, and row and column totals n = (n1,n2) and 
T, respectively.  Given T, n, and c = (C11,C12), 
the entire 2 × 3 contingency table can be 
reconstructed as C13 = n1 – C11 – C12 and C2 = 
T – C1. Thus, c suffices to denote a point of Γ.  
 
Figure 1.  The permutation sample space �for the 
data set {(11,2,2);(7,7,6)}, with n=(15,20) and 
T=(18,9,8). 

C11
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v=1/7, p=0.066, o=2
v=0, p=0.228, o=10

7C11+6C12=89

C11+C12=13

 Figure 1 displays C12 plotted against C11 
for all 87 tables of Γ for the example, 
{(11,2,2);(7,7,6)}, with observed table (11,2) 

circled.  With K(T;θ)=1/ (H
∈Γ∑c

c)exp[θ 'c], 

θ =(θ1,θ2 ), π =(π1,π2 ), and 

H(c)=n1!n2!/ 2
1=Π i

3
1=Π j Cij!, the density follows 

the exponential family: 
 

Pπ{c|T} = Pθ{c|T} = K(T;θ )H(c)exp[θ 'c]. (2.1) 

 
 Let ∆1 = π11 - π21, and ∆2 = (π11 + 
π12)- (π21 + π22) = π23 - π13. If ∆1 ≥ 0, and ∆2 
≥ 0, at least one strictly, then the active treatment 
is objectively superior to the control. One may 
wish to test H: π1 = π2 against the one-sided 
alternative hypothesis that the active response 
distribution is stochastically larger than the control 
response distribution, HA

' : ∆1 ≥ 0, ∆2 ≥ 0, π1 ≠  
π2. As will be explained, this is not actually 
possible with a conditional test. By (2.1), Pπ{c|T} 
depends on π only through θ (π), so if θ (π) = 
θ (π∗), then c offers no information with which to 
distinguish π from π∗.  To be identifiable, then, 
the hypotheses must be formulated in terms of 
θ (Berger, 1998). 

The null hypothesis π1 = π2 is equivalent 
to H: θ (π) = 0, but unless 0≤ θ2 ≤ θ1, θ (π) 
provides insufficient information with which to 
determine if π satisfies HA

' because no conditional 
alternative hypothesis is equivalent to H'A.  Note, 
e.g., that {(3,3,4)/10;(2,4,4)/10} satisfies HA

' and 
{(21,51,328)/400; (7,34,164)/205} does not, yet 
θ = (log(3/2),log(3/4)) for both. The conditional 
power to detect π depends on θ (π) only, so no 
conditional test that preserves the α-level 
whenever H'A does not hold can be globally 
powerful whenever it does hold. 

However, if π satisfies H'A, then θ1(π) > 0; 
and if θ1 > 0, then for any θ2 there exists (Berger 
and Sackrowitz, 1997) π satisfying H'A such that 
θ (π) = (θ1,θ2). As such, θ1 is the key parameter; 
the active treatment is superior on ΩA = {θ |θ1 > 
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0}, no different on Ω0 = {θ |θ1 = 0}, and inferior 
on ΩC = {θ |θ1 < 0}. It is reasonable, then, to test 
H against HA : θ1 > 0. The large unconditional 
indifference region, where neither group 
stochastically dominates the other, has, by 
conditioning, been absorbed into Ω0 ∪ ΩA ∪ ΩC. 

 Let δ(θ) = 1 - θ2/θ1 be the direction of 
the effect.  As θ1 increases in both ∆1 and ∆2, 
while θ2 (θ1 - θ2) increases in ∆2 (∆1), and 
decreases in ∆1 (∆2), the superiority of the active 
treatment to the control is due primarily to a shift 
from the middle to the best outcome (∆2 > ∆1) if 
δ(θ) is small, or from the worst to the middle 
outcome (∆1 > ∆2) if δ(θ) is large. Let Ωv = {θ |θ1 
> 0, δ(θ) = v}. As δ(θ) is generally unknown a 
priori, omnibus tests that are sensitive to 
departures from H0 in each direction of ΩA = 

∪v∈ℜ
1 Ωv are preferred to tests that lack this 

desirable property. 
If the ϕ rejection region Rα(ϕ) contains 

D[Γ], the set of directed extreme points of Γ (BPI, 
1998), then ϕ is omnibus. The challenge is to 
exploit prior information about δ(θ) to construct 
omnibus tests with especially good power in one 
preferred direction, Ωv. For reasons articulated by 
Berger (2000) and Berger et al. (2002), we 
consider only exact conditional tests in this 
formulation.  

 
A New Look at Linear Rank Tests 
 Linear rank tests are based on numerical 
scores (v1,v2,v3), v1 < v3, assigned to the three 
outcome levels. With v = (v2 - v1)/(v3 - v1), ϕv 
uses test statistic zv(c) = C11 + (1 - v)C12. New 
notation allows for greater insight into linear rank 
tests. Let Mv(c) = {c∗∈ Γ | zv(c∗) ≥  zv(c)} be the ϕv 
extreme region of c, with boundary Bv(c) and p-
value pv(c) = P0{Mv(c)|T}. The level set (Frick, 
2000, p. 719) of zv(c) is Bv(c) ∩ Γ, with ov(c) its 
order, or the number of points of Bv(c) ∩ Γ. If c = 

(C11,C12)∈Γ and c∗ = ( *
,C11 , *C12 ) ∈ Γ - c, then 

zv(c∗) = zv(c) if and only if v = 1 - (C11 - 
*C11 )/( *C12  - C12), say v = vc,c∗ (vector valued for 

J > 3). Let V(c) = {v1(c),v2(c),..., 
cKv (c)} be the 

ordered set { *,cc
v  | | *,cc

v | < ∞, c∗∈ Γ - c}, and let 

v0(c) = -∞ and 1+cKv  (c) = ∞. For finite v, ov(c) > 
1 if and only if v ∈ V(c). 
 Let ε(c) = mink[vk+1(c) - vk(c)]/2, ⊥

vz (c) = 

C12 + (v - 1)C11, +Βv (c) = {c∗ ∈ Bv(c) ∩ Γ | 

z ⊥
v (c∗) > z ⊥

v (c)}, B −
v (c) = {c∗∈ Bv(c) ∩ Γ  | 

z ⊥
v (c∗) < z ⊥

v  (c)}, v∗(c) = {v∗ | pv∗(c) ≤  pv(c) for 
all v}. 
 By Lemma 1 (in the Appendix), v∗(c) 
consists of the scores that minimize not just pv(c) 
but also pmin(v)(c) = min(limu⇓vpu(c), limu⇑vpu(c)) = 

p
v
(c) - max(P

0
{B −

v (c)},P
0
{B +

v (c)}).  Hence, 
pmin(v)(c), which also equals min{pv-ε(c)(c), 
pv+ε(c)(c)}, is a true p-value.  As Γ has finitely 
many subsets, there can be only a finite number of 
values for pv(c), so the minimum p-value is 

attained, and v∗(c) ≠ ∅. If v ∈ V(c), then ov(c) > 1, 
−Βv (c) ∪ +Βv (c) ≠ ∅, pmin(v)(c) < pv(c), and v ∉ 

v∗(c). Hence, v∗(c) ∩ V(c) = ∅, and, by Lemma 1, 
v∗(c) consists of one or more open intervals of the 
form (vk(c),vk+1(c)).  For {(11,2,2);(7,7,6)}, c = 
(11,2), Kc = 42, ε(11,2) = 1/84, and V(c) = 
{-6, -5, -4, -3, -5/2, -2, -5/3, -3/2, -4/3, -5/4, -6/5, -
1, -5/6, -4/5, -3/4, -2/3, -3/5, -4/7, -1/2, -3/7, -2/5, -
1/3, -2/7, -1/4, -1/5, -1/6, -1/7, 0, 1/7, 1/6, 1/5, ¼, 
2/7, 1/3, 2/5, ½, 2/3, 1, 3/2, 2, 5/2, 3, 4, 5, 6}. 

 Figure 1 shows M
1/7

(11,2) by dark dots 
and M

0
(11,2)-M

1/7
(11,2) by crosses. Because 

(11,2) minimizes z ⊥
71 / (11,2) = 7C

12 
- 6C

11
 over 

B
1/7

(11,2) ∩  Γ (Table 1), −Β 71 / (11,2) = ∅ and 
p1/7(11,2) = lim

u⇑1/7 p
u
(11,2) = 0.066. Also 

p
v
(11,2) = 0.020 for v ∈ (1.0,1.5) = v∗(11,2). If v 
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∈ V(11,2), then P
0
{ −Βv } ≤  P0{ +Βv } for v > 1.5, 

and P
0
{ −Βv } ≥  P

0
{ +Βv } for v < 1.0. The 

optimality of most powerful (MP) test ϕδ(θ) to 
detect lθ , for l>0 (BPI, 1998), is offset by its  

potentially poor power on ΩA - Ωδ(θ). In fact, 
D[Γ] may not be contained in the ϕv critical region 
Rα(ϕv) for any ν, so for  

 

 

Table 1.  All possible linear rank tests with scores (0,v,1), with middle score v∈[0,2], for the data set 

{(11,2,2);(7,7,6)}, along with the number of points in its level set, the endpoints and null probabilities of 

each segment of its level set, and various p-values. (null probabilities of various extreme regions). 
_________________________________________________________________________________________________ 
 
v  ov(11,2)    Endpoints of: pv           pv

-         pv
+ P0{Bv

+} P0{Bv
-} pv,∞  Mv-Mv,∞ 

      Bv
+ Bv

- (minimum is underlined) 
 
v ∈ (-1/7,0)  1      0.2262  0.2262  0.2262    0.2262 
v = 0   10   (4,9)  (12,1)  0.2277  0.2262  0.0661  0.1615 0.0015  0.0726 (7,6)- 
   -(10,3) -(13,0)       (10,3)  
v ∈ (0,1/7)  1      0.0661  0.0661  0.0661    0.0661   
v = 1/7    2   (5,9)   0.0661  0.0661  0.0661   2.1*10-5  0.0661 
v ∈ (1/7,1/6)  1      0.0661  0.0661  0.0661     0.0661 
v = 1/6    2   (6,8)   0.0661  0.0661  0.0657   0.0004  0.0661 
v ∈ (1/6,1/5) 1      0.0657  0.0657  0.0657     0.0657 
v = 1/5    2  (7,7)    0.0657  0.0657  0.0629   0.0028  0.0657 
v ∈ (1/5,1/4)  1      0.0629  0.0629  0.0629     0.0629 
v = 1/4    2   (8,6)   0.0629  0.0629  0.0538   0.0091  0.0629 
v ∈ (1/4,2/7)  1     0.0538  0.0538  0.0538     0.0538 
v = 2/7    2   (6,9)   0.0538  0.0538  0.0538   5.7*10-6  0.0538 
v ∈ (2/7,1/3)  1     0.0538  0.0538  0.0538     0.0538 
v = 1/3    3   (7,8)   0.0538  0.0538  0.0387   0.0152  0.0387 (9,5) 
   -(9,5) 
v ∈ (1/3,2/5)  1    0.0387  0.0387  0.0387     0.0387 
v = 2/5    2   (8,7)  0.0387  0.0387  0.0382   0.0005  0.0387 
v ∈ (2/5,1/2)  1     0.0382  0.0382  0.0382     0.0382 
v = 1/2    4   (9,6) (12,0)  0.0385  0.0382  0.0237  0.0148 0.0003 0.0249 (10,4) 
   -(10,4) 
v ∈ (1/2,2/3)  1    0.0237  0.0237  0.0237     0.0237 
v = 2/3    2  (10,5)  0.0237  0.0237  0.0220   0.0017  0.0237 
v ∈ (2/3,1) 1     0.0220  0.0220  0.0220     0.0220 
v = 1    5  (11,4) (11,1) 0.0276  0.0220  0.0198  0.0078  0.0056 0.0276 
   -(11,3) -(11,0) 
v ∈ (1,3/2) 1    0.0198  0.0198  0.0198     0.0198 
v = 3/2    2   (10,0)  0.0205  0.0198  0.0205   0.0008  0.0205 
v ∈ (3/2,2)  1     0.0205  0.0205  0.0205     0.0205 
v = 2    4  (12,3) (10,1)  0.0294  0.0205  0.0289  0.0005 0.0089  0.0294 
    -(9,0) 
v ∈ (2,5/2)  1      0.0289  0.0289  0.0289     0.0289 
_________________________________________________________________________________________________ 
 
Note that all the values are calculated at the outcome (11,2); pv,∞ and Mv,∞ are the p-value and extreme 
region, respectively, of the adaptive test based on v and τ =∞. 



BERGER & IVANOVA 273

each ν there will exist θ ∈ Ω
A
 for which the power 

of ϕv to detect lθ tends to zero as l gets large (BPI, 
1998). Podgor, Gastwirth, and Mehta (1996) 
proposed the maximin efficiency robust test 
(MERT) in hopes of providing better power than 
linear rank tests. Ironically, the MERT is itself a 
linear rank test; its rejection region may also fail to 
contain D[Γ], leading to poor power on parts of Ω

A
 

and no power in the limit in some directions. 
Berger and Ivanova (2002) showed that at certain 
α-levels the most stringent linear rank test is ϕvS, 
where v

S
 is such that the two points of D[Γ] that 

are furthest (in Euclidean distance) from each 
other are equated by zvS(c). For {(11,2,2),(7,7,6)}, 
this gives vS = 0, because Γ has two directed 
extreme points, D[Γ]={(15,0);(6,9)}, and z0(15,0) 
=15+(1-0)(0)=15=6+(1-0)(9)= z0(6,9). 

 

Nonlinear Rank Tests 

 By allowing the boundary of Rα(ϕ) to 
curve, nonlinear rank tests often require smaller α-
levels to ensure that D[Γ] ⊂ Rα(ϕ) than linear 
rank tests would. However, this is not always the 
case. Berger and Ivanova (2002) provide an 
example in which the proportional odds and 
proportional hazards tests (McCullagh, 1980) are 
not nonlinear enough to be omnibus at reasonable 
α-levels. The Smirnov test, ϕS, uses as the test 
statistic the largest of three quantities, 0, D1 = 
C11/n1 - C21/n2, and D2 = (C11 + C12)/n1 - (C21 + 
C22)/n2. Among tests routinely available in 
standard statistical software packages (ϕS is a 
standard feature of StatXact), ϕS minimizes the α-
level required for its rejection region to contain 
D[Γ]. However, ϕS is not generally admissible 
(Berger, 1998). 

Permutt and Berger (2000) and Ivanova 
and Berger (2001) each proposed refinements of 
ϕS that break its ties. Although such refinements 
are necessarily uniformly more powerful than ϕS 
(Rohmel and Mansmann, 1999, p. 158), the term 

“improvement of ϕ” is reserved for a test whose 
exact (possibly randomized) version is uniformly 
more powerful than the exact (possibly 
randomized) version of ϕ. By this definition, 
refinements are rarely improvements. Berger and 
Sackrowitz (1997) developed methodology for 
constructing improvements of a given 
inadmissible test. In fact, by improving the 
“ignore-the-data” test, ϕITD(c) = α for all c ∈ Γ, 
Berger and Sackrowitz (1997) constructed the first 
known test for this problem that is simultaneously 
admissible and unbiased. However, rejection 
regions at different α-levels need not be nested, so 
these improved tests may not yield unambiguous 
p-values, and thus are of somewhat limited value. 

Berger (1998) established the one-to-one 
correspondence between the class of convex hull 
type tests and the minimal complete class of 
admissible tests. The convex hull test (BPI, 1998), 
ϕCH, is the simplest member of this convex hull 
class, and is qualitatively similar to the 
improvements of both ϕS and ϕITD, while 
minimizing, among all families of tests, the α-
level required for its rejection region to contain 
D[Γ]. 

In addition, ϕCH is based on a test 
statistic, so rejection regions at different α-levels 
are nested, and p-values are provided. As such, 
ϕCH is about as good a test as there is for testing 
H against HA, which is about as close as one can 
get to testing H against H'A when dealing with 
θ instead of π. Specifically, admissible (unbiased) 
tests of H against HA are conditionally admissible 
(unbiased) as tests of H against H'A (Berger and 
Sackrowitz, 1997).  However, θ (π) is a nonlinear 
function, and maps small corners of π -space 
(neighborhoods of structural zeros) into large 
regions of θ -space. By giving each direction δ(θ ) 
equal consideration, ϕCH accommodates these 
small corners as much as it does the large regions 
of π -space that are of greatest unconditional 
interest. As such, ϕCH may not be ideal when 
viewed unconditionally. Cohen and Sackrowitz 
(1998) proposed another member of the convex 
hull class, called the COM(L) Fisher test, or 
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ϕCOM(L), based on repeatedly adding to the 
critical region those directed extreme points of the 
current acceptance region that are least likely 
under H0. Because the test statistics of ϕCOM(L) 
and ϕCH are defined not algebraically but 
relationally, by the relative position of c within Γ, 
the rejection regions need to be constructed 
recursively. This feature is a barrier to their use. 

 
Adaptive Tests 

 Gross (1981, Section 5) suggested that an 
”analysis based on ... data-dependent scores may 
yield procedures that compare favorably to fixed-
score procedures ...”. Distinct from another 
definition used, e.g., by Rukhin and Mak (1992), 
Hogg (1974, p. 917) and Edgington (1995, pp. 
371-373) defined adaptive tests as tests with data-
based test statistics. This allows Γ to be partitioned 
into regions sharing a common test statistic. 
Because the region need not be even nearly 
ancillary, conditioning on the region (as suggested 
by Donegani, 1991, and Good, 1994, p. 122) may 
entail a loss of power. Comparing the value of the 
test statistics across regions avoids this loss of 
power. The intuitive objection to ”comparing 
apples to oranges” notwithstanding, such an 
approach is “good” or “bad” only to the extent to 
which it produces a “good” or “bad” test. This 
approach results in tests with excellent power 
properties. In fact, Gastwirth (1985) stated that 
“when the MERT for a particular problem has a 
low r2, adaptive procedures are needed”. 

Without knowing θ a priori, it is unclear 
where to maximize the power. One could estimate 

δ(θ ) from c, say as δp(c), perhaps using maximum 

likelihood, and use the MP test 
Pδ

ϕ ˆ . The p-value 

of 
Pδ

ϕ ˆ evaluated at observed outcome c, 
P

p
δ̂

(c), 

is stochastically too small to serve as a valid p-
value, but 

P
p

δ̂
(c) can be used as a test statistic, to 

be compared to its null distribution (Rohmel and 
Mansmann, 1999, p. 165). Variation in c is 
reflected in 

P
p

δ̂
(c) through both the argument and 

the subscript. Using either 
P

p
δ̂

(c) or 
P

z
δ̂

(c), 

suitably normalized, as a test statistic, any 

estimator δp(c) of δ(θ) induces an adaptive test, 

with regions Γv = δ-1(v ) = {c ∈ Γ| δp(c) = v}. If 
the regions are Γ0 = {c ∈ Γ | C12 > n1T2/(n1 + 
n2)}, Γ1 = Γ - Γ0, and Γv = ∅ for v ∉ {0,1}, and 
the ϕv test statistic zv(c) is used on Γv, with C11 + 
C12 (v = 0) and C11 (v = 1) normalized to D2 and 
D1, respectively, to facilitate the comparison of 
points from Γ1 (D1 > D2) to those from Γ0 (D2 
≥  D1), then ϕS results. Similar binary adaptive 
tests might define Γ0 and Γ1 by whichever of ϕ0 

and ϕ1 yields a smaller p-value or a larger χ2. 
Berger (1998) proposed judging outcome 

c by how small a p-value it can yield with an MP 
test; that is, ϕA uses pv∗(c)(c)=min-∞≤v≤∞pv(c) as 
the test statistic. This is a continuous version of the 
adaptive test based on min(p0(c), p1(c)), and 

estimates δ(θ) non-uniquely as δc=v for any value 

v∈ v∗(c). The induced regions are Γv = {c ∈Γ|v 

∈ v∗(c)}. The ϕA critical region is Rα(ϕA) = 

∪v∈R1 Rα
∗(v)(ϕv) for some set of α∗(v) < α, so 

ϕA is intuitively similar to union-intersection tests 
(Roy, 1953; Marden, 1991). Despite being 
constructed non-recursively, ϕA is a convex hull 
type test (Berger, 1998); hence ϕA is always 
admissible. Also, ϕA tends to be omnibus, as D[Γ] 
⊂ Rα(ϕA) for reasonable α-levels. 
 
Accommodating a Favored Alternative 
 Suppose that one believes a priori that 
δ(θ) = δP. Let τ≥0 be a measure of the strength in 
the belief that δ(θ) = δP. The dual objectives are 
ensuring nearly MP power on 

PδΩ and reasonable 

power on ΩA - 
PδΩ , with relative importance 

dictated by τ. One might use
Pδϕ (which is MP on 

PδΩ ) for large τ, or ϕA (which is a good omnibus 
test) for small τ, but none of the aforementioned 
test suffices for intermediate values of τ. Linear 
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combinations such as (τ
Pδϕ  + ϕA)/(τ + 1) would 

not suffice either, because they have large 
randomization regions and small critical regions, 
consisting only of the intersection Rα(

Pδϕ ) 

∩ Rα(ϕA). Of course, these inadmissible tests 
could be improved to admissibility, but then the 
procedure would be complicated, and p-values 
may not be defined.  There is another approach to 
bridge the gap between 

Pδϕ and ϕA. Specifically, 

start with ϕA, but penalize those c whose 
minimizing MP p-value is obtained by v far from 
δP. To this end, let ατδϕ ,,P

 (or τδϕ ,P
) be the level-

α adaptive test based on the test statistic 
Α(δP ,τ,c) = 

∞≤ν≤∞−
min [ρmin(v)(c)(1 + |δP - v|)τ]. 

Let ],[ τδP
v (c) ={v | pmin(v)(c)(1 + |δP - v|)τ  = 

A(δP,τ,c)}. Clearly, 0,Pδϕ =ϕA for any δP and 

pmin(v)(c)(1 + |δP - v|)τ  ≤  1 if v ∈ ],[ τδP
v (c). 

Lemmas 2-4 confine ],[ τδP
v (c) to a finite subset of 

an interval that shrinks, as τ gets large, to {δP}. 
By Lemma 4, ∞δϕ ,P

 induces the same ordering on 

Γ as 
Pδϕ  does, thereby optimizing power on 

PδΩ . 

Yet because the ∞δϕ ,P
 test statistic is )min( P

p δ (c), 

and not necessarily 
P

pδ (c), ∞δϕ ,P
 is a refinement 

of 
Pδϕ , and pmin(v)(c) ≤ pv,∞(c) ≤ pv(c) for all v 

and c. From Table 1, e.g., p0.5(11,2)=0.0385, but 
p0.5,∞(11,2)=0.0385-P0{(10,4)|T}=0.0249.  Each 
test in the class of adaptive tests is admissible. 
 
Theorem 1. For any triple δP ∈ ℜ1, τ  ≥  0, and 
α ∈ [0,1], ατδϕ ,,P

 is admissible. Graubard and 
Korn (1987) suggested that without a reason to use 
a different δP, ϕ0.5 should be used. The desire to 
focus power on the ”central” direction, Ω0.5, is 
understandable, but the use of linear rank tests in 
general (BPI, 1998; Berger and Ivanova, 2002), 
and ϕ0.5 in particular (Ivanova and Berger, 2001), 
have been criticized. Now ϕ0.5,τ offers good 
central power without sacrificing global power 

(unless τ = ∞).  Βut even if τ = ∞, ϕ0.5,∞ is still 
more powerful than, and hence preferable to ϕ0.5. 
 
Margin-Based Selection of δP and τ 
 Recall that vS can be determined from the 
margins (n and T, summarized by Γ). In some 
cases, it may be reasonable to use vS as δP. In 
others, it may be reasonable to use the margins to 
find the largest τ that allows Rα( ατδϕ ,,P

) to 
contain D[Γ]. Unless |δP-vS| is small, the larger τ 
is, the less τδϕ ,P

 focuses on omnibus power.  

Hence, the α-level required for Rα( ατδϕ ,,P
) to 

contain D[Γ] tends to increase in τ. If a range of α-
levels would be considered, say 0.01 ≤ α ≤ 0.1, 
then use the smallest α-level in selecting τ. 
Restricting attention to the integer values of τ, and 
using δP = 0.5, note that for {(11,2,2),(7,7,6)}, 
D[Γ] = {(6,9);(15,0)} is contained by 
R0.01(ϕ0.5,18), R0.025(ϕ0.5,20), R0.05(ϕ0.5,22), 
and R0.1(ϕ0.5,24); but none of R0.01(ϕ0.5,19), 
R0.025(ϕ0.5,21), R0.05(ϕ0.5,23), or 
R0.1(ϕ0.5,25) contain (6,9). Consequently, 
ϕ0.5,18 would be used by this approach. 
 
Comparisons of Tests 

 The exact conditional power of the one-
sided nonrandomized versions of ϕ0.0, ϕ0.5, ϕ1.0, 
ϕS, ϕCH, ϕCOM(L), and some adaptive tests, at 
α ≤ 0.05, are compared considering all 87 2 × 3 
tables with row and column margins as in the 
example, T = (18,9,8), n = (15,20). Figure 2 
illustrates extreme regions. The exact conditional 
power of ϕ to detect θ is calculated as 
Pθ{R0.05(ϕ)|T}. Here 4 × 7 = 28 alternatives, 
with θ1∈{0.5,1.0,1.5,2.0} and θ2 = {-1.5,-1.0,-
0.5,0.0,0.5,1.0,1.5}, are considered, along with the 
null case, θ1 = θ2 = 0. Bold entries represent the 
best power, for given θ, among the six targeted 
tests in columns 4-9 and among five omnibus tests 
in columns 10-13. Because the linear rank tests 
ϕ0.0 (α = 0.005), ϕ0.5 (α = 0.038), and ϕ1.0 (α = 
0.028) are excessively conservative, per the top  
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Figure 2. Extreme regions and p-values for {(11,2,2);(7,7,6)} and several tests including the linear rank test with 

equally-spaced scores ϕ0.5, the adaptive tests with similar direction but varying second parameter ϕ0.5,3, ϕ0.5,20, 

ϕ0.5,100, the omnibus adaptive test ϕA, the Smirnov test ϕS, the convex hull test ϕCH, and the ϕCOM(L) test.
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Table 2.  Exact conditional power of the conservative (nonrandomized) versions of linear rank tests (ϕ0, ϕ1, ϕ0.5), 

adaptive tests (ϕ0,100, ϕ1,100, ϕ0.5,100, ϕ0.5,1), omnibus adaptive test ϕA, the ϕCOM(L) test, Smirnov test ϕS, 

and convex hull test ϕCH, with α≤0.05, and table margins T=(18,9,8), n=(15,20).  Bold entries represent the best 

power among the tests in each block (narrow and omnibus) for each given θ. 

___________________________________________________________________________________  
 δ(θ)    θ      ϕ0    ϕ0,100  ϕ0.5   ϕ0.5,100            ϕ1    ϕ1,100  ϕ0.5,1     ϕA      ϕCOM(L)    ϕS     ϕCH  
___________________________________________________________________________________ 
 

0.0  0.0     0.005  0.040      0.038  0.044      0.028  0.039 0.046  0.047  0.050  0.031  0.035 
 
 -2.000   0.5  1.5    0.054  0.232      0.046  0.063      0.006  0.015 0.258  0.375  0.316  0.058  0.255                   
 -1.000   0.5  1.0      0.038  0.163      0.071  0.080      0.021  0.032         0.150  0.198  0.152  0.053  0.145 
 -0.500   1.0  1.5      0.107  0.325      0.151  0.174      0.039  0.067 0.290  0.332  0.244  0.131  0.285 
  0.000   0.5  0.5     0.025  0.120      0.103  0.110      0.057  0.070 0.109  0.108  0.090  0.073  0.093 
  0.000   1.0  1.0     0.079  0.264      0.212  0.223      0.099  0.126 0.219  0.215  0.169  0.151  0.200 
  0.000   1.5  1.5     0.184  0.447      0.352  0.371      0.149  0.208 0.366  0.361  0.292  0.270  0.349 
  0.250   2.0  1.5     0.280  0.606      0.603  0.615      0.370  0.445 0.524  0.491  0.460  0.485  0.489 
  0.333   1.5  1.0     0.143  0.417      0.442  0.455      0.288  0.328 0.379  0.333  0.310  0.346  0.330 
  0.500   1.0  0.5     0.055  0.231      0.274  0.291      0.200  0.225 0.244  0.196  0.189  0.223  0.193 
  0.500   2.0  1.0     0.231  0.593      0.689  0.704      0.560  0.597 0.615  0.543  0.537  0.605  0.542 
  0.667   1.5  0.5     0.109  0.390      0.521  0.550      0.454  0.481 0.483  0.391  0.395  0.475  0.390 
  0.750   2.0  0.5     0.188  0.560      0.754  0.785      0.723  0.741 0.738  0.634  0.640  0.735  0.634 
  1.000   0.5  0.0     0.015  0.096      0.137  0.157      0.121  0.147 0.140  0.104  0.116  0.127  0.100 
  1.000   1.0  0.0     0.038  0.201      0.333  0.378      0.332  0.368 0.347  0.258  0.283  0.339  0.257 
  1.000   1.5  0.0     0.082  0.349      0.585  0.646      0.612  0.642 0.621  0.499  0.521  0.617  0.499 
  1.000   2.0  0.0     0.153  0.514      0.799  0.851      0.836  0.852 0.841  0.736  0.748  0.839  0.736 
  1.250   2.0 -0.5     0.126  0.467      0.830  0.896      0.906  0.924 0.908  0.828  0.844  0.906  0.828 
  1.333   1.5 -0.5      0.062  0.302      0.634  0.729      0.736  0.779 0.744  0.628  0.665  0.737  0.628 
  1.500   1.0 -0.5      0.026  0.167      0.384  0.472      0.471  0.536 0.483  0.377  0.432  0.472  0.375 
  1.500   2.0 -1.0      0.106  0.429      0.854  0.920      0.944  0.963 0.948  0.899  0.915  0.944  0.899 
  1.667   1.5 -1.0      0.048  0.262      0.671  0.784      0.822  0.876 0.834  0.752  0.795  0.823  0.750 
  1.750   2.0 -1.5      0.093  0.401      0.874  0.930      0.965  0.983 0.970  0.945  0.958  0.965  0.945 
  2.000   0.5 -0.5      0.010  0.077      0.171  0.221      0.212  0.273 0.227  0.167  0.217  0.214  0.163 
  2.000   1.0 -1.0    0.018  0.136      0.426  0.552      0.593  0.692 0.617  0.524  0.604  0.593  0.520 
  2.000   1.5 -1.5      0.038  0.231      0.703  0.811      0.877  0.934 0.895  0.848  0.889  0.877  0.845 
  2.500   1.0 -1.5      0.013  0.111      0.463  0.602      0.687  0.810 0.730  0.668  0.756  0.687  0.660 
  3.000   0.5 -1.0      0.006  0.059      0.203  0.292      0.318  0.433 0.350  0.284  0.377  0.318  0.275 
  4.000   0.5 -1.5      0.004  0.044      0.231  0.348      0.419  0.591 0.487  0.435  0.558  0.419  0.416 
   
  Mean power    0.083  0.293  0.447  0.500      0.458  0.505  0.519  0.469  0.481  0.482  0.457 
___________________________________________________________________________________  
p-value for 
(11,2,2;7,7,6)    0.228  0.073      0.038   0.025     0.028  0.028 0.037  0.069  0.080  0.031  0.080 
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Table 3.  Pairwise comparisons of 11 tests for 4x7=28 values of θ, where each entry is the number of parameter values 
(out of 28 considered in the power calculations) for which the test to the left (defining the row) had greater power than 
the test above (defining the column). 
_________________________________________________________________________________________________ 

      ϕ0 ϕ0,100  ϕ0.5  ϕ0.5,100  ϕ1  ϕ1,100  ϕ0.5,1 ϕA  ϕCOM(L)   ϕS  ϕCH  Total 
 
ϕ0     -       0       1      0      4      3         0      0      0       0      0    8 
ϕ0,100     28     -        7      6    10      9         7      7      9       9      9 101 
ϕ0.5        27    21      -       0    14    12         6     14    13     12    17 136 
ϕ0.5,100    28    22    28      -    18    15     13     21    18     17    21 201 
ϕ1        24    18    14    10      -      0         0     19    14       0    20 119 
ϕ1,100       25    19    16    13    28      -     17     20    21     19    20 198 

 
ϕ0.5,1      28    21    22    15    28    11         -      25    23     28    28 229 
ϕA  28    21    14      7      9      8         3      -      10       8    28 136 
ϕCOM(L)    28    19    15    10    14      7         5     18      -      12    20 148 
ϕS  28    19    16    11    28      9         0     20     16       -    21 168 
ϕCH  28    19    11      7      8      8         0       0      8        7     -   96 

 
Total    272  179  144    79   161   82    51  144   132   112  184  

 
 
 

row of Table 2, they are dominated at α = 0.05 by 
their corresponding adaptive tests ϕ0.0,100 (α = 
0.040), ϕ0.5,100 (α = 0.044), and ϕ1.0,100 (α = 
0.039).  This is not surprising, and will be the case 
quite generally.  Note that ϕ0.5,1 maximizes the 
average power, at 0.519, or the area under the 
power curve.  The non-adaptive tests did not fare 
as well.  Among the omnibus tests (ϕA, ϕCOM(L), 
ϕS, and ϕCH), ϕ0.5,1 maximizes the power for 22 
of the 28 θ values (ϕA and ϕCOM(L) each 
maximize the power for three θ values). Also, 
ϕ0.5,1 (p = 0.037) and ϕS (p = 0.031) are the only 
omnibus tests to yield statistical significance at 
α = 0.05 for {(11,2,2);(7,7,6)}. Table 3, above, 
shows that ϕ0.5,1 dominates both ϕS and ϕCH, 
and almost dominates ϕA and ϕCOM(L) too, and 
does dominate them when δ(θ) is near the δP 
value of 0.5 used by ϕ0.5,1. In fact, only where 
δ(θ) ≤ -0.5 or δ(θ) ≥ 2.5 is ϕA or ϕCOM(L) more 
powerful than ϕ0.5,1. Among pairwise 
comparisons, ϕ0.5,1 has larger power than its 
competitor (each of the other ten tests are 
considered for each of 28 alternatives) for 229 out 

of 280 comparisons, and 104 of the 112 
comparisons to omnibus tests.  The non-adaptive 
tests did not fare as well, but ϕS attained168/280 
or 57/112, respectively, which is quite respectable. 
 

Conclusion 

In an effort to improve the comparison of two 
treatments on the basis of ordinal data, a new class 
of adaptive tests was defined, and shown to be 
admissible, while providing unambiguous p-values 
and a non-iterative construction.  If one is 
interested in testing for θ1 > 0, and has no 
particular preference for any subset of ΩA relative 
to any other, then ϕCH would be a fine test to use. 
 However, ϕA and ϕ0.5,1 are also excellent 
omnibus tests, and are easier to compute then 
ϕCH. If one is interested in testing for stochastic 
order, and uses θ1 > 0 only as a surrogate, then ϕA 
and ϕ0.5,1 are probably better tests than ϕCH. 
Certainly if one is in the situation treated in this 
article, with a preferred direction, then an 
appropriate adaptive test would be the test of 
choice. There is nothing particular about ordered 
trinomial distributions that makes this problem 
especially amenable to treatment with the adaptive 
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approach. For any hypothesis testing problem with 
a composite alternative hypothesis, one can 
enumerate the alternatives and the corresponding 
MP test for each. One can then apply each of these 
MP tests to a given outcome, and find the smallest 
of the resulting p-values.  Using this minimized 
MP p-value as a test statistic produces a test 
analogous to ϕA, and reduces to the uniformly 
most powerful test if one exists.  If not, then the 
adaptive tests that bridge the gap between ϕA and 
the MP tests to detect a favored direction should 
have good properties in a variety of contexts. 
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Appendix 

Lemmas (with Proofs), and Proofs of Theorems 
 
Lemma 1. Let c ∈ Γ and k ∈{0,1,...,Kc}. If |vk(c) ± 
ε(c)|< ∞ then vk(c)± ε(c)∉V(c). If 

v∈(vk(c),vk+1(c)), then Mv(c)= )()1( c+kvM (c)-
−

+ )()1( ckvB (c) = )()( ckvM (c) - +
)()( ckvB (c). 

Proof. Increasing (decreasing) v by ε(c) moves 
−
vB (c) ( +

vB (c)) into the interior of, and +
vB (c) 

( −
vB ((c)) completely out of, the new critical 

region, but if v ∈ V(c), then no points of Γ - Mv(c) 
are moved into the new critical region (Table 1). 
Hence, ov-ε(c)(c) = ov+ε(c)(c) = 1, and neither 
vk(c) - ε(c) nor vk(c) + ε(c) is in V(c). If v ∉ V(c), 

say vk(c) < v < vk+1(c), then ov(c) = 1, so +
vB (c) = 

−
vB (c) = ∅ and Mv(c) will not change when v 

varies within (vk(c),vk+1(c)). 
 
Lemma 2. If δP ∈ ℜ1, τ > 0, v∗ ∈ ],[ τδP

v (c), and 

v∗ ∈ v∗(c), then |δP -v∗| ≤ |δP-v∗|. 

Proof.  If there exist v∗ ∈ v∗(c) and 
v∗ ∈ v[δP,τ](c) such that |δP -v∗| < |δP-v∗|, then 

pv∗(c)(1 + |δP - v
∗|)τ < pmin(v∗)(c)(1 + |δP - v∗|)τ, 

and v∗ cannot be in ],[ τδP
v (c). 

Lemma 3. For any δP, τ > 0, and c ∈ Γ, ],[ τδP
v (c) 

⊂ V(c) ∪ δP. 

Proof. Assume there exists v ≠ δP in ],[ τδP
v (c) - 

V(c), say vk(c) < v < vk+1(c). Let v∗ = vk(c) if δP 
≤  vk(c), v∗ = δP if vk(c) < δP < vk+1(c), or v∗ = 

vk+1(c) if vk+1(c) ≤ δP. Now v∗ ⊂ V(c) ∪ δP and 

pmin(v)(c)(1 + |δP-v|)τ > pmin(v∗)(c)(1 + |δP-

v∗|)τ. 

Lemma 4. For any δP and c ∈ Γ, ],[ τδP
v (c) = {δP} 

for sufficiently large τ. 

Proof. Let Dc(δP) = 
PcVv δ−∈ )(min |δP-v| > 0. For 

τ > 0, let v ∈ ],[ τδP
v (c) - δP. By Lemma 3, v ∈ V(c) 

- δP, so |δP-v| ≥ Dc(δP). If τ > -
ln( )min( P

p δ (c))/ln(1 + Dc(δP)), then )min(vp (c)(1 + 

|δP-v|)τ ≥ )min(vp (c)(1 + |Dc(δP)|)τ >1, 

contradicting v∈ ],[ τδP
v (c). 

Proof of Theorem 1. By Theorem 3.3 of Berger 
(1998), it suffices to show that for any B ⊂ Γ, if c∗ 
minimizes A(δP,τ,c) over B, then c∗ ∈ D[B]. If 

c∗ ∉ D[B], then c∗ cannot, for any v, uniquely 
minimize pv over B, and for every v there exists c 

∈ B - c∗ such that pv(c) ≤ pv(c∗). If v ∉ V(c∗), 

then ov(c∗) = 1, so pv(c) ≠ pv(c∗), and pv(c) 

≤ pv(c∗) -minc∈ΓP0{c|Γ}. Let v1 ∈ ],[ τδP
v (c∗). By 

the continuity in v of the function (1 + |δP-v|)τ, 

one can, for any ε > 0, choose v
2 ∉V(c∗) suitably 

close to v1 to satisfy 
2vp (c∗) = )min( 1vp (c∗), and, 

thus, 

A(δP,τ,c) = min
∞≤ν≤∞−

[pmin(v)(c)(1 + |(δP – v|)τ] ≤ 

2vp (c)(1 + |(δP – v2|)τ 

≤ [
2vp (c∗) - min

Γ∈c
P

0
{c|Γ}](1+|δP - v2|)τ   

= [ )min( 1vp (c∗) - min
Γ∈c

P
0
{c|Γ}](1 + |δP - v2|)τ 

 <A(δP,τ,c∗) - min
Γ∈c

P
0
{c|Γ}(1 + |δP - 

 v2|)τ  + ε  < A(δP,τ,c∗),  
the last inequality holding for ε < 
minc∈Γ P0

{c|Γ}. This is a contradiction. 
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Consider the problem of performing all pair-wise comparisons among J dependent groups based on measures 
of location associated with the marginal distributions. It is well known that the standard error of the sample 
mean can be large relative to other estimators when outliers are common. Two general strategies for 
addressing this problem are to trim a fixed proportion of observations or empirically check for outliers and 
remove (or down-weight) any that are found. However, simply applying conventional methods for means to 
the data that remain results in using the wrong standard error. Methods that address this problem have been 
proposed, but among the situations considered in published studies, no method has been found that gives good 
control over the probability of a Type I error when sample sizes are small (less than or equal to thirty); the 
actual probability of a Type I error can drop well below the nominal level. The paper suggests using a slight 
generalization of a percentile bootstrap method to address this problem. 
 
Key words: M-estimators, trimming, bootstrap.  
 
 

Introduction 
 
Outliers (unusually small or large values) can 
inflate the standard error of the sample mean 
which in turn can result in relatively poor power, 
and outliers can distort the sample mean resulting 
in a misleading representation of the typical 
response (e.g., Rosenberger & Gasko, 1983; 
Staudte & Sheather, 1990; Wilcox, 2001). When 
dealing with measures of location, two general 
strategies have been proposed for dealing with this 
problem.  
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  The first is to simply trim a fixed 
proportion of the extreme values. In terms of 
maintaining a relatively low standard error under 
normality yet deal with situations where outliers 
are rather common, a 20% trimmed mean is often 
recommended (which is formally defined in the 
next section of this paper). The other strategy is to 
empirically check for outliers and remove (or 
downweight) any that are found. Various 
textbooks recommend some variation of the latter 
strategy and often refer to this as data cleaning. 

If outliers are removed and the values are 
not erroneous (merely unusually large or small), 
applying standard methods for means to the 
remaining data results in using the wrong standard 
error, which in turn means poor control over the 
probability of a Type I error and inaccurate 
confidence intervals. Effective methods for 
dealing with this problem were derived for a range 
of situations, but when comparing measures of 
location associated with the marginal distributions 
of dependent groups, practical problems remain. 
Methods that avoid Type I error probabilities well 
above the nominal level are available, but when 
empirically checking and discarding outliers, the 
actual probability of a Type I error can drop well 
below the nominal level.  
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For J dependent groups, let θj be some 
measure of location associated with the jth 
marginal distribution. More formally, this paper is 
concerned with all pairwise comparisons where for 
every j < k, the goal is to test 

 
: .0H j kθ θ=            (1) 

 
 Of particular interest is controlling the 
family-wise error rate (FWE), meaning the 
probability of at least one Type I error. When the 
sample size is small and the goal is to have FWE 
equal to .05, extant simulation results indicate that 
it is possible to ensure FWE will not exceed .05 by 
a substantial amount using 20% trimmed means in 
conjunction with a generalization of the bootstrap 
method (Wilcox, 1997b). A concern, however, is 
that the actual FWE can drop well below the 
nominal level suggesting that the method might 
have relatively low power. 
 Wilcox (1997b) also found that when 
using an estimator that in effect discards outliers 
(called a one-step M-estimator with Huber’s Ψ), 
poor control over FWE is obtained with sample 
sizes less than or equal to thirty. Currently, no 
method has been found that performs reasonably 
well in simulations when using this particular M-
estimator and the sample size is small. So a 
practical issue remains: Is it possible to find a 
method that, in simulations, not only avoids FWE 
rates larger than the nominal level, it ensures that 
FWE will not be substantially below the nominal 
level when extreme values are discarded. This 
paper describes such a method which is based on a 
slight generalization of the percentile bootstrap. 
 
Description of the Robust Estimators  
 The focus is on three measures of location. 
The first is a 20% trimmed mean. Generally, 
trimmed means simply remove a fixed proportion 
of the extreme observations. By fixed proportion is 
meant that the amount of trimming is not 
determined empirically by, for example, checking 
to see what proportion of the observations are 
outliers. The median and mean are trimmed means 
that represent the two extremes of the maximum 
amount and least amount of trimming, 
respectively. The choice of 20% trimming 
provides reasonably good efficiency under 
normality and it maintains relatively high 

efficiency in situations where the sample mean 
performs poorly (Rosenberger & Gasko, 1983; 
Wilcox, 1997a), so we focus on it here. The 20% 
trimmed mean removes the smallest 20% of the 
observations, as well as the largest 20%, and 
averages the values that remain. If X 1,…,X n is a 
random sample, let X (1) ≤ …≤ X (n) be the 
observations written in ascending order and let g 
be equal to .2n rounded down to the nearest 
integer. Then a 20% trimmed mean is 
 

1 .( )2 1

n g
X X it n g i g

−
= ∑− = +

 

 
However, 20% trimmed means in particular, and 
trimmed means in general, suffer from at least two 
practical concerns. First, the amount of trimming 
is assumed to be fixed in advance. If the amount of 
trimming is set at 20%, efficiency is reasonably 
good versus the mean under normality, but when 
sampling from a sufficiently heavy-tailed 
distribution, efficiency can be poor versus using 
more trimming or switching to some robust M-
estimator of location. A second general concern is 
that typically trimmed means assume symmetric 
trimming. That is, the same proportion of 
observations are trimmed from both tails of an 
empirical distribution. When sampling from an 
approximately symmetric distribution, symmetric 
trimming seems reasonable, but asymmetric 
trimming might be more appropriate as the degree 
of skewness increases. Well known theoretical 
results indicate how to estimate the standard error 
of a trimmed mean when asymmetric trimming is 
used (e.g., Huber, 1981), but now unsatisfactory 
probability coverage can result when sample sizes 
are small (e.g., Wilcox, 1997a). Also, if the 
amount of trimming is empirically determined, 
and the standard error is estimated by conditioning 
on this amount of trimming, even poorer control 
over probability coverage can result.  
 The second measure of location is a 
particular robust M-estimator. Generally, robust M 
estimators are more flexible than trimmed means 
in the sense that they empirically determine 
whether a value is unusually large or small and 
then such values are down weighted in some 
manner. The particular M-estimator of interest 
here is the one-step M-estimator based on Huber’s 
Ψ: 
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where M is the usual median, MAD is the median 
of the values X1-M ,…, Xn-M , 
MADN=MAD/.6745, i1 is the number of 
observations X i such that (X i - M ) < -K(MADN), 
i 2 is the number of observations X i such that (X i - 
M ) > K(MADN), and K is some constant usually 
chosen to achieve good properties under 
normality. (See, for example, Staudte and 
Sheather, 1990.) This estimator empirically 
determines whether an observation is an outlier, 
trims it, averages the values that remain, but with 
asymmetric trimming an adjustment is made based 
on a measure of scale, MAD. The adjustment 
based on MAD is a consequence of how the 
population value of the one-step M-estimator is 
defined. It is the value θ satisfying  
 

0,XE
MADN

θ −  Ψ =    
                  (3) 

 
where Ψ(x) = max[-K; min(K; x)]. Equation (3) 
can be solved with the Newton-Raphson method 
and a single iteration of this technique yields (with 
K = 1.28) equation (2). The choice K = 1.28 
provides good efficiency under normality and its 
finite sample breakdown point is .5, the highest 
possible value. (The finite sample breakdown 
point of an estimator is the smallest proportion of 
observations, which when altered, can drive the 
value of an estimator to plus or minus infinity.) 
However, when performing all pair-wise 
comparisons among J dependent groups based on 
this one-step M-estimator, none of the techniques 
examined by Wilcox (1997b) performed well in 
simulations. Moreover, situations arise where even 
the most successful method can have Type I error 
probabilities well below the nominal level.  

The third measure of location considered 
here is a so-called modified one-step M-estimator 
(MOM). The MOM estimator belongs to the class 
of skipped estimators originally proposed by 
Tukey and studied by Andrews, Bickel, Hampel, 
Huber, Rogers and Tukey (1972). The idea is 
simple: Check for outliers, discard any that are 

found, and then average the values that remain. 
The class of skipped estimators studied by 
Andrews et al. is based on a boxplot outlier 
detection rule which has a finite sample 
breakdown point of only .25. Here an outlier 
detection rule based on M and MADN is used 
instead resulting in a location estimator having a 
finite sample breakdown point of .5 as well. 
(Huber, 1993, argues that at a minimum, an 
estimator should have a finite sample breakdown 
point of at least .1.) 

An apparent disadvantage of skipped 
estimators is that expressions for their standard 
errors are very complicated when sampling from 
an asymmetric distribution. One of the main points 
in this paper is that a variation of the percentile 
bootstrap method not only circumvents this 
problem, it provides good probability coverage in 
simulations where no effective method based on a 
robust M-estimator has been found.  

The modified one-step M-estimator begins 
by declaring X i an outlier if  

 
 

 
.6745

,iX M
K

MAD
−

>  

 
where K is adjusted so that efficiency is good 
under normality. (Outlier detection rules based on 
the sample mean and variance are known to be 
unsatisfactory, e.g., Wilcox, 2001, pp. 34-35.) 
Then MOM is given by  
 

2

1

( )

1 1 2

ˆ ,
n i

i

i i

X
n i i

θ
−

= +

=
− −∑       (4) 

 
where now i 1 (i 2) is the number of observations 
less (greater) than the median that are declared 
outliers. Here, K = 2.24 is used which is 
approximately equal to the square root of the .975 
quantile of a chi-square distribution with one 
degree of freedom. This particular outlier 
detection rule is a special case of a general method 
suggested by Rousseeuw and van Zomeren (1990.) 
It is noted that this choice for K yields good 
efficiency under normality. 
 In particular, using simulations with 
10,000 replications, we found that with K = 2.24, 
the standard error of the sample mean divided by 
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the standard error of θ̂ is approximately .9 for n = 
20(5)100. For n = 10 and 15, this ratio is .88. 
 
The Proposed Method for Pair-wise Comparisons 
 Here, ˆ

jθ represents the estimate of the 
measure of location associated with jth marginal 
distribution. Let X ij , i = 1, …, n, j = 1,…, J 
represent a random sample of size n from some J-
variate distribution. So for fixed j and when using 
a trimmed mean, ˆ

jθ would be the 20% trimmed 
mean associated with X 1j ,…, X nj , ignoring the 
other data.  

First consider a basic percentile bootstrap 
method for testing (1) which stems from Liu and 
Singh (1997) as well as Hall (1986) and is applied 
as follows. Obtain bootstrap samples by 
resampling with replacement n rows from the n by 
J matrix of X ij values. Repeat this process B times 
and let *ˆ

bjθ be the bootstrap estimate of θj based on 
the bth bootstrap sample, b = 1,…, B; j = 1,…, J . 
(Here, θj represents the population value of any of 
the three estimators under consideration.) Let 
 * * *ˆ ˆ( )jk j kp P θ θ= >  
based on a random bootstrap sample. Here this 
probability is estimated with *ˆ jkp , the proportion 

of bootstrap samples having * *
bj bkθ θ> . Then if H0 

is true, *ˆ jkp  has, asymptotically, a uniform 

distribution, so reject if * *ˆ ˆmin( ,1 ) 2.jk jkp p α− ≤  
 To control FWE, some type of 
sequentially rejective method can be used. Here 
consideration was given to the approach derived 
by Rom (1990) as well as Hochberg (1988) which 
are outlined below. A positive feature of the 
methods just outlined is that for all three measures 
of location, simulation estimates of the FWE were 
less than or equal to the nominal level for all of the 
situations described in our simulations. This is true 
when using the Rom or the Hochberg method. 
However, a negative feature when testing at the 
.05 level was that when using MOM or Huber’s 
M-estimator, the estimated FWE was typically less 
than .05 by an unacceptable amount. In fact, 
estimates dropped below .01, particularly when the 
correlations among the variables are high. 
 An examination of the simulation results 

indicated why this problem arose. When ˆ ˆ
j kθ θ= , 

it should be the case that *ˆ .5jkp = . Near equality 
was found when the correlation between X ij and 
Xik is close to zero, but as the correlation 
increased, the difference between E( *ˆ jkp ) and .5 
increased as well.  

This observation suggests the following 
modification. Set  

 
ˆ

ij ij jD X θ= − .  
 
That is, shift the data so that the null hypothesis is 
true. Obtain a bootstrap sample of size n from the 
Dij values and let *

ĉjθ be the resulting estimate of 

jθ . Repeat this process B times and let *ˆ cjkp  be the 

proportion of times *
ĉjθ  is greater than *

ĉkθ . Set 
  

       * * *ˆ ˆ ˆ( .5)ajk jk cjkp p pλ= − − , 
 
where λ is a constant to be determined. Then for 
fixed j and k, reject 0 : j kH θ θ=  if *ˆ ajkp  is 
sufficiently large or small.  

For convenience, set  
 

* * *ˆ ˆ ˆmin( ,1 )p p pmjk ajk ajk= −  

 
and assume the goal is to have FWE equal to α. 
One approach to controlling FWE is to proceed 
along the lines in Hochberg (1988). Writing the 

2 ˆ( ) / 2 mjkC J J p= −  values as pm1,…,pmC , put 
these C values in ascending order yielding 

( 1 ) ( )ˆ ˆ...m m Cp p≤ ≤ . For any i = C, C-1, … , 1, if 

( )ˆ / 2( 1)m ip C iα≤ − + , reject the corresponding 
hypothesis as well as all hypotheses having 
smaller ( )ˆ m ip  values.  

Rom’s (1990) method is applied in the 
same manner as Hochberg’s technique, only 

/ 2( 1)C iα − +  is replaced by a value tabled by 
Rom. Situations were found where Rom’s method 
was a bit less satisfactory in avoiding FWE above 
the nominal level, so it is not considered further. 
Yet another approach was derived by Benjamini 
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and Hochberg (2000), but it is known that this 
method does not control FWE, so it is not 
considered here.  

There remains the problem of choosing λ. 
The strategy was to determine an appropriate 
value under normality with all correlations equal 
to zero and all marginal distributions having a 
common variance. The reason for considering all 
correlations equal to zero was that when using a 
trimmed mean, MOM, or an M-estimator with 
Huber’s Ψ, this was found to maximize the 
probability of at least one Type I error among all 
the situations considered in the next section. For n 
= 11 and 20, it was found that λ = .1 gave good 
results when using MOM or the M-estimator 
considered here when used in conjunction with 
Hochberg’s method, and as n increases, the term 

*ˆ( .5 )cjkpλ − becomes negligible. Using λ = 0 
results in FWE typically being less than the 
nominal level, but often it was far below the 
nominal level. As for 20% trimmed means, λ = 0 
performed well (no correction is needed) when 
using Hochberg. 
 

Results 
 
The small-sample properties of the methods just 
described were studied for J = 4 with simulations 
where observations were generated from a 
multivariate normal distribution via the IMSL 
(1987) subroutine RNMVN. Nonnormal 
distributions were generated using the g-and-h 
distribution (Hoaglin, 1985). That is, first generate 
Z ij from a multivariate normal distribution and set  
 

2exp( ) 1
exp( / 2 ).ij

ij ij

gZ
X hZ

g
−

=  

 
For g = 0 this last expression is taken to be  
 

2exp( / 2 ).ij ij ijX Z hZ=  
 
The case g = h = 0 corresponds to a normal 
distribution. Setting g = 0 yields a symmetric 
distribution, and as g increases, skewness 
increases as well. Heavy-tailedness increases with 
h. The values for g and h were taken to be (g, h) = 
(0, 0), (0, .5), (.5, 0) and (.5, .5). Table 1 contains 

skewness 1( )κ  and kurtosis 2( )κ  values for the 
four g-and-h distributions used in the simulations. 
 

 
 When h > 1/k, ( )kE X µ− k is not 
defined and the corresponding entry in Table 1 is 
left blank. A possible criticism of simulations 
performed on a computer is that observations are 
generated from a finite interval, so the moments 
are finite even when in theory they are not, in 
which case observations are not being generated 
from a distribution having the theoretical skewness 
and kurtosis values listed in Table 1. In fact, as h 
gets large, there is an increasing difference 
between the theoretical and actual values for 
skewness and kurtosis. Accordingly, Table 1 also 
lists the estimated skewness 1ˆ( )κ and kurtosis 

2ˆ( )κ  values based on 100,000 observations 
generated from the distribution. Simulations were 
also run where the marginal distributions were 
lognormal or exponential.  

Simulations were run where the marginal 
distributions had equal and unequal variances. 
When working with skewed distributions, the 
marginal distributions were first shifted so that 
they have a θ value of zero, and for the unequal 
variance case the ith observation in the jth group 
was multiplied by σj , (σ1, σ2, σ3, σ4) = (1, 3, 4, 5). 
That is, for skewed distributions, before 
multiplying the X ij by σj, the observations were 
shifted by subtracting the population value of θ so 
that when multiplying by σj, the null hypothesis 
remains true.  

Five patterns of correlations were used. 
Four of the five correlation matrices have a 
common correlation, ρ, with ρ = 0, .1, .5 and .8. 
The fifth correlation matrix had ρ12 = .8, ρ13= .5, 
ρ14= .2, ρ23= .5, ρ24= .2 and ρ34= .2. The largest and 
smallest estimates of FWE consistently occurred 
with the first and latter two correlation matrices, 
so for brevity, only the results for the first and fifth 
matrices are reported. These two correlation 
matrices are labeled C1 and C2, respectively. 
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Table 2 contains the estimated probability of at 
least one Type I error when using the multiple 
comparison procedure described in the previous 
section. The results are based on 2,000 
replications. As is evident, reasonably good 
control over the probability of a Type I error is 
achieved. The main difficulty is that when using 
MOM, there are two instances where the estimate 
drops below .02. 
 

Conclusion 
 
The main point is that currently, no method for 
comparing robust measures of location associated 
with the marginal distributions is very satisfactory 
in simulations with small sample sizes. The results 
reported here illustrate that by using a slight 
generalization of the percentile bootstrap method, 
good control over the probability of a Type I error 
can be achieved in a wide range of situations when 
outliers are removed. 
 As for trimmed means, a basic 
(unmodified) percentile bootstrap method 
performs well. The three estimators used in Table 
2 are designed to have reasonably good efficiency 
under normality, they have high efficiency when 
sampling from a heavy-tailed distribution where 
the sample mean performs poorly, so comparing 
groups as described would seem to have practical 
value. The M-estimator and modified M-estimator 
seem particularly attractive, and now it appears 
that a viable method for performing all pair-wise 
comparisons, based on the measures of location 
associated with the marginal distributions, is 
available when sample sizes are small. 
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Researchers can adopt different measures of central tendency and test statistics to examine the effect of a 
treatment variable across groups (e.g., means, trimmed means, M-estimators, & medians. Recently developed 
statistics are compared with respect to their ability to control Type I errors when data were nonnormal, 
heterogeneous, and the design was unbalanced: (1) a preliminary test for symmetry which determines whether 
data should be trimmed symmetrically or asymmetrically, (2) two different transformations to eliminate 
skewness, (3) the accuracy of assessing statistical significance with a bootstrap methodology was examined, 
and (4) statistics that use a robust measure of the typical score that empirically determined whether data 
should be trimmed, and, if so, in which direction, and by what amount were examined. The 56 procedures 
considered were remarkably robust to extreme forms of heterogeneity and nonnormality. However, we 
recommend a number of Welch-James heteroscedastic statistics which are preceded by the Babu, 
Padmanaban, and Puri (1999) test for symmetry that either symmetrically trimmed 10% of the data per group, 
or asymmetrically trimmed 20% of the data per group, after which either Johnson's (1978) or Hall's (1992) 
transformation was applied to the statistic and where significance was assessed through bootstrapping. Close 
competitors to the best methods were found that did not involve a transformation. 
 
Key words: Symmetric vs. asymmetric trimming, Heteroscedastic statistic, Transformations to eliminate 
skewness, Preliminary test for symmetry, Bootstrapping. 
 
 

Introduction 
 

Circumventing the Biasing Effects of 
Heteroscedasticity and Nonnormality  
 Developing new methods for locating 
treatment effects in the one-way independent 
groups design is a very active area of study. Much 
of the work  centers on comparing measures of the 
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typical score when group variances are unequal 
and/or when data are obtained from nonnormal 
distributions. This continues to be an important 
area of work because the classical method of 
analysis, e.g., the analysis of variance F-test, is 
known to be adversely affected by heterogeneous 
group variances and/or nonnormal data. In 
particular, these conditions usually result in 
distorted rates of Type I error and/or a loss of 
statistical power to detect effects. Wilcox and 
Keselman (2002) discuss why this is so. 
        Many treatises have appeared on the topic of 
substituting robust measures of central tendency 
such as 20% trimmed means or M-estimators for 
the usual least squares estimator, i.e., the (least 
squares) means. Indeed, many investigators have 
demonstrated that one can achieve better control 
over Type I errors when robust estimators are 
substituted for least squares estimators in a 
heteroscedastic statistic such as Johanson’s (1980) 
Welch-James (WJ)-type test (See e.g., Guo & Luh, 
2000; Keselman, Kowalchuk,  & Lix, 1998; 
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Keselman, Lix, & Kowalchuk, 1998; Keselman, 
Wilcox, Taylor & Kowalchuk, 2000; Lix & 
Keselman, 1998; Luh & Guo, 1999; Wilcox, 1995, 
1997; Wilcox, Keselman  & Kowalchuk, 1998).       
 Another development in this area was to 
apply a transformation to a heteroscedastic statistic 
to eliminate the biasing effects of skewness. 
Indeed, Luh and Guo (1999) and Guo and Luh 
(2000) demonstrated that better Type I error 
control was possible when transformations (Hall’s, 
1992, or Johnson’s, 1978, method) were applied to 
the WJ statistic with trimmed means. 
        Despite the advantages of using (20%) 
trimmed means, a heteroscedastic statistic with 
20% trimming suffers from at least two practical 
concerns. First, situations arise where the 
proportion of outliers exceeds the percentage of 
trimming adopted, meaning that more trimming or 
some other measure of location, that is relatively 
unaffected by a large proportion of outliers, is 
needed. Second, if a distribution is highly skewed 
to the right, say, then at least in some situations it 
seems more reasonable to trim more observations 
from the right tail than from both tails. 
 Thus, using a heteroscedastic statistic with 
robust estimators, with or without transforming the 
statistic, may still not provide the best Type I error 
control. Two solutions that we consider in this 
paper are using a preliminary test for symmetry in 
order to determine whether data should be 
trimmed from both tails (symmetric trimming) or 
just from one tail (asymmetric trimming) and 
whether an estimator, other than the trimmed 
mean, that is, one that does not fix the amount of 
trimming a priori but empirically determines the 
amount and direction, or even the need for 
trimming, can provide better Type I error control. 
        The prevalent method of trimming is to 
remove outliers from each tail of the distribution 
of scores. In addition, the recommendation is to 
trim 20% from each tail (See Rosenberger & 
Gasko, 1983; Wilcox, 1995). However, 
asymmetric trimming has been theorized to be 
potentially advantageous when the distributions 
are known to be skewed, a situation likely to be 
realized with behavioral science data (See De Wet 
& van Wyk, 1979; Micceri, 1989; Tiku, 1980, 
1982; Wilcox, 1994, 1995). Indeed, if a 
researcher's goal is to adopt a measure of the 
typical score, that is, a score that is representative 
of the bulk of the observations, then theory 

certainly indicates that he/she should trim just 
from the tail in which outliers are located in order 
to get a score that represents the bulk of the 
observations; trimming symmetrically in this 
circumstance would eliminate representative 
scores, scores similar to the bulk of observations. 
 A stumbling block to adopting asymmetric 
versus symmetric trimming has been the inability 
of researchers to determine when to adopt one 
form of trimming over the other. That is, previous 
work has not identified a procedure which reliably 
identifies when data are positively or negatively 
skewed, rather than symmetric; thus researchers 
have not been able to successfully adopt one 
method of trimming versus the other. However, 
work by Hogg, Fisher and Randles (1975), later 
modified by Babu, Padmanaban, and Puri (1999), 
may provide a successful solution to this problem 
and accordingly enable researchers to successfully 
adopt asymmetric trimming in cases where it is 
needed thus providing them with measures of the 
typical score which more accurately corresponds 
to the bulk of the observations. The by-product of 
correctly identifying and eliminating only the 
outlying values should result in better Type I error 
control for heteroscedastic statistics that adopt 
trimmed means. 
        A concomitant issue that needs to be resolved 
is knowing how the 20% rule should be applied 
when trimming just from one tail. That is, should 
40% of the longer tail of scores be trimmed since 
in total that amount is trimmed when trimming 
20% in each tail? Or, should just 20% be trimmed 
from the one tail of the distribution? As well, the 
20% rule is not universally recommended; others 
have had success with values other than 20%. For 
example, Babu et al. (1999) obtained good Type I 
error control, for the procedures they investigated, 
with 15% symmetric trimming. Indeed, as Huber 
(1993) argues, an estimator should have a 
breakdown point of at least .1; thus, even 10% 
trimming might provide effective Type I error 
control. 
        A second approach to the problem of 
direction and amount of trimming would be to 
adopt another robust estimator that does not a 
priori set the amount of trimming. Wilcox and 
Keselman (in press) introduced a modified M-
estimator which empirically determines whether to 
trim symmetrically or asymmetrically and by what 
amount, or whether no trimming at all is 
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appropriate. In the context of a correlated groups 
design, they showed that their estimator does 
indeed provide effective Type I error control. 
        A last refinement that we will examine is the 
use of the bootstrap for hypothesis testing. 
Bootstrap methods have two practical advantages. 
First, theory and empirical findings indicate that 
they can result in better Type I error control than 
nonbootstrap methods (See Guo & Luh, 2000; 
Keselman, Kowalchuk,  & Lix, 1998; Keselman, 
Lix, & Kowalchuk, 1998; Keselman, Wilcox, 
Taylor & Kowalchuk, 2000; Lix & Keselman, 
1998; Luh & Guo, 1999; Wilcox (1995, 1997); 
Wilcox, Keselman  & Kowalchuk, 1998). Second, 
certain variations of the bootstrap method do not 
require explicit expressions for standard errors of 
estimators. This makes hypothesis testing in some 
settings more flexible when other robust 
estimators (soon to be discussed) are used instead 
of trimmed means. 
        Thus, the purpose of our investigation was to 
compare rates of Type I error for numerous 
versions of the WJ heteroscedastic statistic versus 
two test statistics that use the estimator introduced 
by Wilcox and Keselman (2002). Variations of the 
WJ statistic will be based on asymmetric versus 
symmetric trimming, the amount of trimming, 
transformations of WJ and bootstrap versus 
nonbootstrap versions.  
 

Methods 
 

The WJ Statistic 
        Methods that give improved power and better 
control over the probability of a Type I error can 
be formulated using a general linear model 
perspective. Lix and Keselman (1995) showed 
how the various Welch (1938, 1951) statistics that 
appear in the literature for testing omnibus main 
and interaction effects as well as focused 
hypotheses using contrasts in univariate and 
multivariate independent and correlated groups 
designs can be formulated from this perspective, 
thus allowing researchers to apply one statistical 
procedure to any testable model effect. We adopt 
their approach in this paper and begin by 
presenting, in abbreviated form, its mathematical 
underpinnings. 
        A general approach for testing hypotheses of 
mean equality using an approximate degrees of 
freedom solution is developed using matrix 

notation. The multivariate perspective is 
considered first; the univariate model is a special 
case of the multivariate. Consider the general 
linear model:  
 
  = β+ ξY X ,                      (1) 
 
where Y is an N x p matrix of scores on p 
dependent variables or p repeated measurements, 
N is the total sample size, X is an N x r design 
matrix consisting entirely of zeros and ones with 
rank(X) = r,  β is an r x p matrix of nonrandom 
parameters (i.e., population means), and ξ  is an N 
x p matrix of random error components. Let Yj (j = 
1,…, r) denote the submatrix of Y containing the 
scores associated with the n subjects in the jth 
group (cell) (For the one-way design considered in 
this paper n = nj). It is typically assumed that the 
rows of Y are independently and normally 
distributed, with mean vector jβ  and variance-

covariance matrix j∑  [i.e., N( jβ , j∑ )], where 

the jth row of β , j j jp1β = [µ µ ] , and 

j j ( j j )′ ′∑ ≠ ∑ ≠ . Specific formulas for 

estimating  β and j∑ , as well as an elaboration of 
Y are given in Lix and Keselman (1995, see their 
Appendix A). 
        The general linear hypothesis is  
 
         0H : =Rµ 0 ,             (2) 

 
where T= ⊗R C U , C is a dfC x r matrix which 
controls contrasts on the independent groups 
effect(s), with rank(C) = dfC ≤ r, and U is a p x dfU 
matrix which controls contrasts on the within-
subjects effect(s), with rank(U) = dfU ≤ p, ‘⊗ ’ is 
the Kronecker or direct product function, and ‘T’ is 
the transpose operator. For multivariate 
independent groups designs, U is an identity 
matrix of dimension p (i.e., Ip). The R contrast 
matrix has dfC x dfU rows and r x p columns. In 
Equation 2, T T

rvec( ) 1= β = [β …β ]µ . In other 
words, µ is the column vector with r x p elements 
obtained by stacking the columns of Tβ . The 0 
column vector is of order dfC x dfU. (See Lix & 
Keselman, 1995, for illustrative examples.) 
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        The generalized test statistic given by 
Johansen (1980) is 
 
 T T 1

WJ
ˆˆ ˆ( ) ( ) ( )−Τ = µ ∑ µR R R R  ,           (3)                  

 
where  µ̂  estimates µ , and 

1 1 r r
ˆ ˆ ˆdiag[ n n ]∑ = ∑ ∑… , a block matrix with 

diagonal elements r r
ˆ n∑ . This statistic, divided 

by a constant, c (i.e., TWJ/c), approximately 
follows an F distribution with degrees of freedom 
v1 = dfC x dfU, and v2  = v1(v1 +2)/(3A), where c = 
v1 + 2A - (6A)/(v1 + 2). The formula for the 
statistic, A, is provided in Lix and Keselman 
(1995).  
        When p = 1, that is, for a univariate model, 
the elements of Y are assumed to be independently 
and normally distributed with mean jµ  and 

variance 2
jσ  [i.e., N( jµ , 2

jσ )]. To test the general 
linear hypothesis, C has the same form and 
function as for the multivariate case, but U = 1, 

T
1 rˆ ˆ ˆµ = [µ µ ]…  and 2 2

1 1 r r
ˆ diag n n∑ = [σ σ ]… . 

(See Lix & Keselman’s, 1995, Appendix A for 
further details of the univariate model.)   
 
Robust Estimation 
        In this paper we apply robust estimates of 
central tendency and variability to the TWJ statistic. 
That is, heteroscedastic ANOVA methods are 
readily extended to the problem of comparing 
trimmed means. The goal is to determine whether 
the effect of a treatment varies across J (j =1,…, J) 
groups; that is, to determine whether a typical 
score varies across groups. When trimmed means 
are being compared the null hypothesis pertains to 
the equality of population trimmed means, i.e., the 
µts. That is, to test the omnibus hypothesis in a 
one-way completely randomized design, the null 
hypothesis would be  
 

t1 t 2 tJ:0Η µ = µ = = µ . 
 
        Let 

j( 1 ) j ( 2 ) j ( n ) jY Y Y≤ ≤ ≤ represent the 

ordered observations associated with the jth group. 
Let j jg n= [γ ] , where γ  represents the 
proportion of observations that are to be trimmed 
in each tail of the distribution and [x] is the 

greatest integer ≤ x. The effective sample size for 
the jth group becomes j j jh n 2g= − . The jth 
sample trimmed mean is   
 

 
j j

j

n g

tj (i) j
i g 1j

1 Y
h

−

= +

µ = ∑ .                        (4)                      

 
Wilcox (1995) suggested that 20% trimming 
should be used. (See Wilcox, 1995 and his 
references for a justification of the 20% rule.). 
        The sample Winsorized mean is necessary 
and is computed as  
 

  
jn

wj ij
i 1j

1ˆ X
n =

µ = ∑ ,              (5) 

                       
 where 
 

j j

j j j

j j j j

ij ( g 1 ) j ij ( g 1 ) j

ij ( g 1 ) j ij ( n g ) j

( n g ) j ij ( n g ) j

X Y if Y Y

Y if Y Y Y

Y if Y Y .

+ +

+ −

− −

= ≤

= < <

= ≥

 

 
 
The sample Winsorized variance, which is 
required to get a theoretically valid estimate of the 
standard error of a trimmed mean, is then given by 
 

 
jn

2 2
wj ij wj

i 1j

1 ˆ( X ) .
n 1 =

σ = −µ
− ∑             (6)   

                                          
The standard error of the trimmed mean is 
estimated with  

 
2

j wj j jˆn 1 h h 1 .( − )σ [ ( − )]  

 
        Under asymmetric trimming, and assuming, 
without loss of generality, that the distribution is 
positively skewed so that trimming takes place in 
the upper tail, the jth sample trimmed mean is  

 
j jn g

tj ( i ) j
i 1j

1ˆ Y
h

−

=

µ = ∑ , 
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and the jth sample Winsorized mean is  
 

jn

wj ij
i 1j

1ˆ X
n =

µ = ∑ , 

where 
 

j j

j j j j

ij ij ij (n g ) j

(n g ) j ij (n g ) j

X Y if Y Y

Y if Y Y
−

− −

= <

= ≥ . 

The sample Winsorized variance is again defined 
as (given the new definition of  wjµ̂ ) 
 

n
2 2
wj ij wj

i 1j

1ˆ ˆ( X )
n 1 =

σ = −µ
− ∑ , 

 
and the standard error of the mean again takes its 
usual form (given the new definition of  wjµ̂ ). 
        Thus, with robust estimation, the trimmed 
group means ( tjµ̂ s) replace the least squares group 

means ( jµ̂ s), the Winsorized group variances 

estimators (
2
wjσ s) replace the least squares 

variances (
2
jσ s), and hj replaces nj and accordingly 

one computes the robust version of TWJ, WJtT .(See 
Keselman, Wilcox, & Lix, 2001; for another 
justification of adopting robust estimates see 
Rocke, Downs & Rocke, 1982). 
 
Bootstrapping 
        Now we consider how extensions of the 
ANOVA method just outlined might be improved. 
In terms of probability coverage and controlling 
the probability of a Type I error, extant 
investigations indicate that the most successful 
method, when using a 20% trimmed mean (or 
some M-estimator), is some type of bootstrap 
method. 
        Following Westfall and Young (1993), and as 
enumerated by Wilcox (1997), let ij ij tjˆC Y= −µ ; 
thus, the Cij values are the empirical distribution of 
the jth group, centered so that the sample trimmed 
mean is zero. That is, the empirical distributions 
are shifted so that the null hypothesis of equal 
trimmed means is true in the sample. The strategy 

behind the bootstrap is to use the shifted empirical 
distributions to estimate an appropriate critical 
value. 
 For each j, obtain a bootstrap sample by 
randomly sampling with replacement nj 
observations from the Cij values, yielding 

j

* *
1 nY , ,Y… . Let *

WJtT be the value of Johansen’s 

(1980) test based on the bootstrap sample. Now 
we randomly sample (with replacement nj), B 
bootstrap samples from the shifted/centered 
distributions each time calculating the statistic 

*
WJtT . The B values of *

WJtT are put in ascending 

order, that is, * *
WJt( 1 ) WJt( B )T T≤ ≤ , and an 

estimate of an appropriate critical value is *
WJt( a )T , 

where a (1 )B= −α , rounded to the nearest 
integer. One will reject the null hypothesis of 
location equality (i.e., t1 t 2 tJ0Η : µ =µ = =µ ) 

when *
WJt WJt( a )T T> , where WJtT  is the value of the 

heteroscedastic statistic based on the original 
nonbootstrapped data. Keselman et al. (2001) 
illustrate the use of this procedure for testing both 
omnibus and sub-effect (linear contrast) 
hypotheses in completely randomized and 
correlated groups designs. 
 
Transformations for the Welch-James Statistic 
        Guo and Luh (2000) and Luh and Guo (1999) 
found that Johnson’s (1978) and Hall’s (1992) 
transformations improved the performance of 
several heteroscedastic test statistics when they 
were used with trimmed means, including the WJ 
statistic, in the presence of heavy-tailed and 
skewed distributions.  
        In our study we, accordingly, compared both 
approaches for removing skewness when applied 
to the WJtT  statistic. Let 

jij 1 j 2 j n jY (Y ,Y , ,Y )= …  be 

a random sample from the jth distribution. Let 

tj wjˆ ˆ,µ µ and 2
wjσ̂  be, respectively, the trimmed 

mean, Winsorized mean and Winsorized variance 
of group j. Define the Winsorized third central 
moment of group j as 
 

jn
3

3 j ij wj
i 1j

1ˆ ˆ(X )
n =

µ = −µ∑ . 
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Let 
j2 2

wj wj
j

(n 1)
ˆ

(h 1)
−

σ = σ
−

, 

 

j
wj 3 j

j

n
ˆ

h
µ = µ , 

 
2
wj

j
j

q
h
σ

= , 

 

tj
j

1w
q

= , 

 
J

t tj
j 1

U w
=

= ∑ , 

and 
 

J

t tj tj
j 1t

1ˆ ˆw
U =

µ = µ∑ . 

 
 Guo (2000) defined a trimmed mean 
statistic with Johnson’s transformation  as: 
 
 

j

wj wj 2
Johnson tj t tj t2 4

wj j wj

ˆ ˆ ˆ ˆT ( ) ( )
6 h 3
µ µ

= µ − µ + + µ − µ
σ σ
                                                                                

                                                                                     (7) 
 
From Guo and Luh (2000) we can deduce that a 
trimmed mean statistic with Hall's (1992) 
transformation would be: 
 

j

wj wj 2
Hall tj t tj t2 4

wj j wj

2
wj 3

tj t8
wj

ˆ ˆ ˆ ˆT ( ) ( )
6 h 3

ˆ ˆ( )
27

µ µ
= µ − µ + + µ − µ

σ σ

µ
+ µ − µ

σ

            

 
                                                              (8) 
 
        Keselman et al. (2001) indicated that sample 
trimmed means, sample Winsorized variances and 
trimmed sample sizes can be substituted for the 

usual sample means, variances and sample sizes in 
the Twj statistic. That is,  
 

J
2

WJ tj tj t
j 1

ˆ ˆT w ( )
=

= µ −µ∑ , 

 
  
which, when divided by c, is distributed as an F 
variable with df of J - 1 and 
 

12J
tj t2

j 1 j

(1 w / U )
v (J 1) 3

h 1

−

=

 −
= −  

−  
∑ , 

 
 
where  
 

2J
tj t

2
j 1 j

(1 w / U )2(J 2)c (J 1) 1
J 1 h 1=

 −−
= − +  − − 

∑ . 

 
        Now we can define 
 

 
Jo h n so n j

J
2

W J tj Jo h n so n
j 1

T w (T )
=

= ∑     (9) 

and 
 

                   
H all j

J
2

W J tj H all
j 1

T w (T )
=

= ∑ ,           (10) 

 
Then 

J o h n s o nW JT  and 
H a llW JT , when divided by 

c, are also distributed as F variates with no change 
in degrees of freedom. 
 
A Preliminary Test for Symmetry 
        A stumbling block to adopting asymmetric 
versus symmetric trimming has been the inability 
of researchers to determine when to adopt one 
form of trimming over the other. Work by Hogg et 
al. (1975) and Babu et al. (1999), however, may 
provide a successful solution to this problem. The 
details of this method are presented in Othman, 
Keselman, Wilcox, and Fradette (2003). 
 
The One-Step Modified M-Estimator (MOM) 
        For J independent groups (this estimator can 
also be applied to dependent groups) consider the 
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MOM estimator introduced by Wilcox and 
Keselman (in press). In particular, these authors 
suggested modifying the well-known one-step M-
estimator 
 

    

j 2

1

n i

j 2 1 ( i ) j
i i 1

j 1 2

1.28( MADN )( i i ) Y

n i i

−

= +

− +

− −

∑
,            (11) 

 
by removing j 2 11.28( MADN )( i i )− , where 
MADNj = MADj / .6745, MADj = the median of 
the values 

jij j n j j
ˆ ˆY M , , Y M− −… , jM̂  is the 

median of the jth group, i1 = the number of 
observations where ij j j

ˆY M 2.24( MADN )− < , 
and i2 = the number of observations where 

ij j j
ˆY M 2.24( MADN )− > . Thus, the modified 

M-estimator suggested by Wilcox and Keselman is 
 

                    
j 2

1

n i
( i ) j

j
i i 1 j 1 2

Yˆ
n i i

−

= +

θ =
− −∑ .          (12) 

 
The MOM estimate of location is just the average 
of the values left after all outliers (if any) are 
discarded. The constant 2.24 is motivated in part 
by the goal of having a reasonably small standard 
error when sampling from a normal distribution. 
Moreover, detecting outliers with Equation 12 is a 
special case of a more general outlier detection 
method derived by Rousseeuw and van Zomeren 
(1990). 
        MOM estimators, like trimmed means, can be 
applied to test statistics to investigate the equality 
of this measure (θ) of the typical score across 
treatment groups.  The null hypothesis is  
 

0 1 2 JH : θ = θ = = θ , 
 
where θj is the population value of MOM 
associated with the jth group. Two statistics can be 
used. The first was a statistic mentioned by 
Schrader and Hettsmansperger (1980), examined 
by He, Simpson and Portnoy (1990) and discussed 
by Wilcox (1997, p. 164). The test is defined as 
 

                         
J

2
j j .

j 1

1 ˆ ˆH n ( )
N =

= θ −θ∑               (14) 

 
where j jN n= ∑ and . j j

ˆ ˆ / Jθ = ∑ θ . To assess 
statistical significance a (percentile) bootstrap 
method can be adopted. That is, to determine the 
critical value one centers or shifts the empirical 
distribution of each group; that is, each of the 
sample MOMjs is subtracted from the scores in 
their respective groups (i.e., ij ij jC Y MOM= − ). 
As was the case with trimmed means, the strategy 
is to shift the empirical distributions with the goal 
of estimating the null distribution of H which 
yields an estimate of an appropriate critical value. 
Now one randomly samples (with replacement), B 
bootstrap samples from the shifted/centered 
distributions each time calculating the statistic H, 
which when based on a bootstrap sample, is 
denoted as H*. The B values of H* are put in 
ascending order, that is, * *

( 1 ) ( B )H H≤ ≤ , and an 

estimate of an appropriate critical value is *
( a )H , 

where a (1 )B= −α , rounded to the nearest 
integer. One will reject the null hypothesis of 
location equality when *

( a )H H> . 
        The second method of analysis presented can 
be obtained in the following manner (See Liu & 
Singh, 1997). Let 
 
 jj j j ( j j )′ ′ ′δ = θ −θ <                  (15) 
 
Thus, the jj′δ s are the all possible pairwise 
comparisons among the J treatment groups.  
 Now, if all groups have a common 
measure of location, (i.e., 1 2 Jθ = θ = = θ ), then 

0 12 13 J 1,JH : 0−δ = δ = = δ = . A boot-strap 
method can be used to assess statistical 
significance, but for this procedure the data does 
not need to be centered. In contrast to the first 
method, the goal is not to estimate the null 
distribution of some appropriate test statistic. 
Rather, bootstrap samples are obtained for the Yij 
values and one rejects if the zero vector is 
sufficiently far from the center of the bootstrap 
estimates of the delta values. Thus, bootstrap 
samples are obtained from the Yij values rather 
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than the Cijs. For each bootstrap replication (B = 
599 is again recommended) one computes the 
robust estimators (i.e., MOM) of location (i.e., 

*
jbθ̂ , j = 1,…, J; b = 1,…, B) and the 

corresponding estimates of 
* * *

jj b jj b jb j b
ˆ ˆ ˆ( )′ ′ ′δ δ = θ −θ . The strategy is to 

determine how deeply 0  = (0 0…0) is nested 
within the bootstrap values *

jj b
ˆ

′δ , where 0 is a 
vector having length K = J(J-1)/2. This assessment 
is made by adopting a modification of 
Mahalanobis’ distance statistic. 
        For notational convenience, we can rewrite 
the K differences jj

ˆ
′δ as 1∆̂ ,…, K∆̂ and their 

corresponding bootstrap values as *
kb∆̂  (k = 1,…, 

K; b = 1,…, B). Thus, let 
 

B
* *
k kb

b 1

1 ˆ
B =

∆ = ∆∑  

 
and 
 

* *
kb kb k k

ˆ ˆZ = ∆ −∆ + ∆ . 
 
 (Note the Zkbs are shifted bootstrap values having 
mean k∆̂ .) Now define 
 

        kk kb k k b k
1S (Z Z )(Z Z )

B 1′ ′ ′= − −
− ∑ ,     (16) 

 
 where 

                     
B

k k b
b 1

1Z Z
B =

= ∑ . 

 
(Note: The bootstrap population mean of *

k∆ is 

known and is equal to k∆̂ .) 
        With this procedure, one next computes 
 
                  * 1 *

b b b
ˆ ˆ ˆ ˆD ( ) ( )− ′= ∆ − ∆ ∆ −∆S ,           (17) 

  
where * * *

b 1b Kb
ˆ ˆ ˆ( , , )∆ = ∆ ∆… and 1 K

ˆ ˆ ˆ( , , )∆ = ∆ ∆… . 

Accordingly, Db measures how closely b∆̂  is 

located to ∆̂ . If the null vector (0) is relatively far 

from ∆̂ one rejects H0. Therefore, to assess 
statistical significance, put the Db values in 
ascending order ( 1 ) ( B )( D D )≤ ≤  and let 

a (1 )B= −α  (rounded to the nearest integer). 
Reject H0 if 
 
   ( a )T D≥ ,                   (18) 
 
where 

 
                         1ˆ ˆT ( ) ( )− ′= − ∆ −∆O S O .         (19) 
  
It is important to note that 1 2 Jθ = θ = = θ  can 
be true iff: 
 

        0 1 2 J 1 JH : 0−θ − θ = = θ −θ = . 
 
(Therefore, it suffices to test that a set of K 
pairwise differences equal zero.) However, to 
avoid the problem of arriving at different 
conclusions (i.e., sensitivity to detect effects) 
based on how groups are arranged (if all MOMs 
are unequal), we recommend that one test the 
hypothesis that all pairwise differences equal zero. 
 
Empirical Investigation 
        Fifty-six tests for treatment group equality 
were compared for their rates of Type I error 
under conditions of nonnormality and variance 
heterogeneity in an independent groups design 
with four treatments. The procedures we 
investigated were: 
 
Trimmed Means with Symmetric Trimming (No 
preliminary test for symmetry): 
1.-3. WJ10(15)(20)-WJ with 10% (15%) (20%) 
trimming 
4.-6. WJB10(15)(20)-10% (15%) (20%) trimming 
and bootstrapping 
7.-9. WJJ10(15)(20)-10% (15%) (20%) trimming 
and Johnson's transformation 
10.-12. WJJB10(15)(20)-10% (15%) (20%) 
trimming with Johnson’s transformation and 
bootstrapping 
13.-15 WJH10(15)(20)-10% (15%) (20%) 
trimming and Hall’s transformation 
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16.-18 WJHB10(15)(20)-10% (15%) (20%) 
trimming and Hall’s transformation and 
bootstrapping 
WJ with Q Statistics: Symmetric and Asymmetric 
Trimming: 
19.-21. WJ1010(1515)(2020)-WJ. If data is 
symmetric use 10% (15%) (20%) symmetric 
trimming, otherwise use 10% (15%) (20%) one 
sided trimming. 
22.-24. WJB1010(1515)(2020)-WJ with 
bootstrapping. If data is symmetric use 10% (15%) 
(20%) symmetric trimming, otherwise use 10% 
(15%) (20%) one sided trimming. 
25.-27. WJJ1010(1515)(2020)-WJ with Johnson’s 
transformation. If data is symmetric use 10% 
(15%) (20%) symmetric trimming, otherwise use 
10% (15%) (20%) one sided trimming. 
28.-30. WJJB1010(1515)(2020)-WJ with 
Johnson’s transformation and bootstrapping. If 
data is symmetric use 10% (15%) (20%) 
symmetric trimming, otherwise use 10% (15%) 
(20%) one sided trimming. 
31.-33. WJH1010(1515)(2020)-WJ with Hall’s 
transformation. If data is symmetric use 10% 
(15%) (20%) symmetric trimming, otherwise use 
10% (15%) (20%) one sided trimming. 
34.-36. WJHB1010(1515)(2020)-WJ with Hall’s 
transformation and bootstrapping. If data is 
symmetric use 10% (15%) (20%) symmetric 
trimming, otherwise use 10% (15%) (20%) one 
sided  trimming. 
37.-39. WJ1020(1530)(2040)-WJ. If data is 
symmetric use 10% (15%) (20%) symmetric 
trimming, otherwise use 20% (30%) (40%) one 
sided trimming. 
40.-42. WJB1020(1530)(2040)-WJ with 
bootstrapping. If data is symmetric use 10% (15%) 
(20%) symmetric trimming, otherwise use 20% 
(30%) (40%) one sided trimming. 
43.-45. WJJ1020(1530)(2040)-WJ with Johnson’s 
transformation. If data is symmetric use 10% 
(15%) (20%) symmetric trimming, otherwise use 
20% (30%) (40%) one sided trimming. 
46.-48. WJJB1020(1530)(2040)-WJ with 
Johnson’s transformation and bootstrapping. If 
data is symmetric use 10% (15%) (20%) 
symmetric trimming, otherwise use 20% (30%) 
(40%) one sided  trimming. 
49.-51. WJH1020(1530)(2040)-WJ with Hall’s 
transformation. If data is symmetric use 10% 

(15%) (20%) symmetric trimming, otherwise use 
20% (30%) (40%) one sided trimming. 
52.-54. WJHB1020(1530)(2040)-WJ with Hall’s 
transformation and bootstrapping. If data is 
symmetric use 10% (15%) (20%) symmetric 
trimming, otherwise use 20% (30%) (40%) one 
sided  trimming. 
Modified M-Estimators: 
55. MOMH 
56. MOMT 
        We examined: (a) the effect of using a 
preliminary test to determine whether data are 
symmetric or not in order to determine whether 
symmetric or asymmetric trimming should be 
adopted (we present in Appendix A a SAS/IML 
program that can be used to obtain the Q-
statistics), (b) the percentage of symmetric (10%, 
15% or 20%) and asymmetric (10%, 15%, 20%, 
30% or 40%) trimming used, (c) the utility of 
transforming the WJ statistic with either Johnson’s 
(1978) or Hall’s (1992) transformation, (d) the 
utility of bootstrapping the data, and (e) the use of 
two statistics with an estimator (MOM) that 
empirically determines whether data should be 
symmetrically or asymmetrically trimmed and by 
what amount, allowing also for the option of no 
trimming. 
        Additionally, four other variables were 
manipulated in the study: (a) sample size, (b) 
pairing of unequal variances and group sizes, and 
(c) population distribution. 
 We chose to investigate an unbalanced 
completely randomized design containing four 
groups because previous research efforts pertained 
to this design (e.g., Lix & Keselman, 1998; 
Wilcox, 1988). The two cases of total sample size 
and the group sizes were N = 70 (10, 15, 20, 25) 
and N = 90 (15, 20, 25, 30). We selected our 
values of nj from those used by Lix and Keselman 
(1998) in their study comparing omnibus tests for 
treatment group equality; their choice of values 
was, in part, based on having group sizes that 
others have found to be generally sufficient to 
provide reasonably effective Type I error control 
(e.g., see Wilcox, 1994). The unequal variances 
were in a 1:1:1:36 ratio. Unequal variances and 
unequal group sizes were both positively and 
negatively paired. For positive (negative) pairings, 
the group having the fewest number of 
observations was associated with the population 
having the smallest (largest) variance, while the 
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group having the greatest number of observations 
was associated with the population having the 
largest (smallest) variance. These conditions were 
chosen since they typically produce conservative 
(liberal) results. 
 With respect to the effects of distributional 
shape on Type I error, we chose to investigate 
nonnormal distributions in which the data were 
obtained from a variety of skewed distributions. In 
addition to generating data from a 2

3χ  distribution, 
we also used the method described in Hoaglin 
(1985) to generate distributions with more extreme 
degrees of skewness and kurtosis. These particular 
types of nonnormal distributions were selected 
since educational and psychological research data 
typically have skewed distributions (Micceri, 
1989; Wilcox, 1994). Furthermore, Sawilowsky 
and Blair (1992) investigated the effects of eight 
nonnormal distributions, which were identified by 
Micceri on the robustness of Student’s t test, and 
they found that only distributions with the most 
extreme degree of skewness (e.g., 1 1.64γ = ) 
affected the Type I error control of the 
independent sample t statistic. Thus, since the 
statistics we investigated have operating 
characteristics similar to those reported for the t 
statistic, we felt that our approach to modeling 
skewed data would adequately reflect conditions 
in which those statistics might not perform 
optimally. 
 For the 2

3χ  distribution, skewness and 
kurtosis values are 1 1.63γ = and 2 4.00γ = , 
respectively. The other nonnormal distributions 
were generated from the g and h distribution 
(Hoaglin, 1985). Specifically, we chose to 
investigate two g and h distributions: (a) g = .5 and 
h = 0 and (b) g = .5 and h = .5, where g and h are 
parameters that determine the third and fourth 
moments of a distribution. To give meaning to 
these values it should be noted that for the 
standard normal distribution g = h = 0. Thus, when 
g = 0 a distribution is symmetric and the tails of a 
distribution will become heavier as h increases in 
value. Values of skewness and kurtosis 
corresponding to the investigated values of g and h 
are (a) 1 1.75γ =  and 2 8.9γ = , respectively, and 
(b) 1 2 undefinedδ = δ = . These values of 
skewness and kurtosis for the g and h distributions 

are theoretical values; Wilcox (1997, p. 73) reports 
computer generated values, based on 100,000 
observations, for these values--namely 

1 1.81γ = and 2 9.7γ = for g = .5 and h = 0 and 

1ˆ 120.10γ =  and 2 18,393.6γ =  for g = .5 and h 
= .5. Thus, the conditions we chose to investigate 
could be described as extreme. That is, they are 
intended to indicate the operating characteristics of 
the procedures under substantial departures from 
homogeneity and normality, with the premise 
being that, if a procedure works under the most 
extreme of conditions, it is likely to work under 
most conditions likely to be encountered by 
researchers. 
 In terms of the data generation procedure, 
to obtain pseudo-random normal variates, we used 
the SAS generator RANNOR (SAS Institute, 
1989). If Zij is a standard unit normal variate, then 

ij j j ijY = µ +σ ×Z is a normal variate with mean 

equal to jµ  and variance equal to 2
jσ . To generate 

pseudo-random variates having a 2χ  distribution 
with three degrees of freedom, three standard 
normal variates were squared and summed. 
 To generate data from a g- and h-
distribution, standard unit normal variables were 
converted to random variables via 
 

1 2
ij ij

ij

exp( gZ ) hZ
Y exp

g 2

−  
=   

 
, 

 
according to the values of g and h selected for 
investigation. To obtain a distribution with 
standard deviation σj, each Yij was multiplied by a 
value of σj. It is important to note that this does not 
affect the value of the null hypothesis when g = 0 
(See Wilcox, 1994, p. 297). However, when g > 0, 
the population mean for a g- and h-distributed 
variable is  
 

2g / 2(1 h)
gh 1/ 2

1 (e 1)
g(1 h)

−µ = −
−

 

 
 (See Hoaglin, 1985, p. 503.) Thus, for those 
conditions where g > 0, µtj was first subtracted 
from Yij before multiplying by σj. When working 
with MOMs, θj was first subtracted from each 
observation (The value of θj was obtained from 
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generated data from the respective distributions 
based on one million observations.). Specifically, 
for procedures using trimmed means, we 
subtracted µtj from the generated variates under 
every generated distribution. Correspondingly, for 
procedures based on MOMs, we subtracted out θj 
for all distributions investigated. 
 Lastly, it should be noted that the standard 
deviation of a g- and h-distribution is not equal to 
one, and thus the values reflect only the amount 
that each random variable is multiplied by and not 
the actual values of the standard deviations (See 
Wilcox, 1994, p. 298). As Wilcox noted, the 
values for the variances (standard deviations) more 
aptly reflect the ratio of the variances (standard 
deviations) between the groups. Five thousand 
replications of each condition were performed 
using a .05 statistical significance level. According 
to Wilcox (1997) and Hall (1986), B was set at 
599; that is, their results suggest that it may be 
advantageous to chose B such that 1 - α is a 
multiple of (B + 1)-1. 
 

Results 
 

For previous investigations, when we have 
evaluated Type I error rates, we adopted Bradley's 
(1978) liberal criterion of robustness. According to 
this criterion, in order for a test to be considered 
robust, its empirical rate of Type I error ˆ( )α  must 
be contained in the interval ˆ0.5 1.5α ≤ α ≤ α . 
Therefore, for the five percent level of statistical 
significance used in this study, a test would be 
considered robust in a particular condition if its 
empirical rate of Type I error fell within the 
interval ˆ.025 .075≤ α ≤ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Correspondingly, a test was considered to 
be nonrobust if, for a particular condition, its Type 
I error rate was not contained in this interval. We 
have adopted this standard because we felt that it 
provided a reasonable standard by which to judge 
robustness. That is, it has been our opinion that 
applied researchers should be comfortable 
working with a procedure that controls the rate of 
Type I error within these bounds, if the procedure 
limits the rate across a wide range of assumption 
violation conditions.  
 Type I error rates can be obtained from the 
first author’s  web  site  at  the  following address: 
www.umanitoba.ca/faculties/arts/psychology.  
Based on this criterion of robustness, the 
procedures we investigated were remarkably 
robust to the cases of heterogeneity and 
nonnormality. That is, out of the 672 empirical 
values tabled (Tables 1-10) only 24, or 
approximately 3.5 percent of the values, did not 
fall within the .025-.075 interval (Values not 
falling in this interval are in boldface in the 
tables.) 
 Even though, in general, the procedures 
exhibited good Type I error control from the 
Bradley (1978) liberal criterion perspective, in the 
interest of making discriminations between the 
procedures, we went on to a second examination 
of the data adopting Bradley’s stringent criterion 
of robustness. For this criterion, a statistic is 
considered robust, under a .05 significance level, if 
the empirical value falls in the interval .045-.055 
(Non-bolded values not falling in this interval are 
underlined in the tables.). The tables as well 
contain information regarding the average Type I 
error rate and the number of empirical values not 
falling in the stringent interval for each procedure 
investigated; these values (excluding MOMH and 
MOMT values), along with the range of values 
over the 12 investigated conditions, are 
reproduced in summary form in Table 1.  
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Table 1. WJ Summary Statistics 
 

20% Symmetric Trimming 
 

 
 

WJ20 
 

WJJ20 
 

WJH20 
 

WJB20 
 

WJJB20 
 

WJHB20 
 

Range 
 

.041-.079 
 
.043-.075 

 
.043-.076 

 
.030-.047 

 
.033-.047 

 
.033-.047 

 
Average 

 
.058 

 
.056 

 
.056 

 
.040 

 
.041 

 
.041 

 
# of Nonrobust 

Values  
 

12 
 

9 
 

9 
 

10 
 

9 
 

10 
 

20% Symmetric and 40% Asymmetric Trimming 
 

 
 

WJ2040 
 
WJJ2040 

 
WJH2040 

 
WJB2040 

 
WJJB2040 

 
WJHB2040 

 
Range 

 
.059-.084 

 
.051-.077 

 
.051-.079 

 
.040-.053 

 
.037-.053 

 
.037-.052 

 
Average 

 
.071 

 
.066 

 
.068 

 
.045 

 
.048 

 
.047 

 
# of Nonrobust 

Values  
 

12 
 

11 
 

11 
 

4 
 

2 
 

2 
 

20% Symmetric and 20% Asymmetric Trimming 
 

 
 

WJ2020 
 
WJJ2020 

 
WJH2020 

 
WJB2020 

 
WJJB2020 

 
WJHB2020 

 
Range 

 
.048-.075 

 
.054-.071 

 
.054-.072 

 
.030-.051 

 
.033-.055 

 
.034-.054 

 
Average 

 
.059 

 
.060 

 
.060 

 
.043 

 
.047 

 
.046 

 
# of Nonrobust 

Values  
 

8 
 

9 
 

9 
 

6 
 

4 
 

4 
 

15% Symmetric Trimming 
 

 
 

WJ15 
 

WJJ15 
 

WJH15 
 

WJB15 
 

WJJB15 
 

WJHB15 
 

Range 
 

.036-.067 
 
.047-.067 

 
.048-.067 

 
.025-.047 

 
.033-.048 

 
.032-.048 

 
Average 

 
.051 

 
.053 

 
.054 

 
.039 

 
.042 

 
.041 

 
# of Nonrobust 

Values  
 

8 
 

4 
 

4 
 

9 
 

8 
 

8 
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Table 1. WJ Summary Statistics (continued) 

 
15% Symmetric and 30% Asymmetric Trimming 

 
 

 
WJ1530 

 
WJJ1530 

 
WJH1530 

 
WJB1530 

 
WJJB1530 

 
WJHB1530 

 
Range 

 
.057-.078 

 
.050-.079 

 
.050-.082 

 
.035-.049 

 
.041-.054 

 
.039-.054 

 
Average 

 
.064 

 
.063 

 
.064 

 
.045 

 
.049 

 
.048 

 
# of Nonrobust 

Values  
 

12 
 

7 
 

9 
 

3 
 

3 
 

2 
 

15% Symmetric and 15% Asymmetric Trimming 
 

 
 

WJ1515 
 
WJJ1515 

 
WJH1515 

 
WJB1515 

 
WJJB1515 

 
WJHB1515 

 
Range 

 
.043-.065 

 
.053-.072 

 
.053-.073 

 
.025-.045 

 
.037-.050 

 
.036-.050 

 
Average 

 
.053 

 
.059 

 
.060 

 
.039 

 
.046 

 
.045 

 
# of Nonrobust 

Values  
 

7 
 

8 
 

8 
 

9 
 

4 
 

5 
 

10% Symmetric Trimming 
 

 
 

WJ10 
 

WJJ10 
 

WJH10 
 

WJB10 
 

WJJB10 
 

WJHB10 
 

Range 
 

.038-.075 
 
.053-.072 

 
.055-.073 

 
.025-.048 

 
.033-.053 

 
.033-.053 

 
Average 

 
.053 

 
.059 

 
.060 

 
.039 

 
.045 

 
.043 

 
# of Nonrobust 

Values  
 

10 
 

9 
 

9 
 

9 
 

4 
 

4 
 

10% Symmetric and 20% Asymmetric Trimming 
 

 
 

WJ1020 
 
WJJ1020 

 
WJH1020 

 
WJB1020 

 
WJJB1020 

 
WJHB1020 

 
Range 

 
.047-.075 

 
.055-.072 

 
.056-.074 

 
.032-.052 

 
.039-.057 

 
.041-.057 

 
Average 

 
.059 

 
.062 

 
.063 

 
.044 

 
.049 

 
.049 

 
# of Nonrobust 

Values  
 

8 
 

11 
 

12 
 

5 
 

2 
 

2 
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Table 1. WJ Summary Statistics (continued) 

 
10% Symmetric and 10% Asymmetric Trimming 

 
 

 
WJ1010 

 
WJJ1010 

 
WJH1010 

 
WJB1010 

 
WJJB1010 

 
WJHB1010 

 
Range 

 
.038-.075 

 
.055-.075 

 
.056-.076 

 
.023-.050 

 
.033-.058 

 
.032-.058 

 
Average 

 
.054 

 
.064 

 
.065 

 
.039 

 
.048 

 
.042 

 
# of Nonrobust 

Values 
 

10 
 

11 
 

12 
 

7 
 

6 
 

5 
Note: Nonrobust values are those outside the interval 
.045-.055. 
 
Tests Based on MOMs  
 Of the 12 conditions examined, MOMH 
values ranged from .027 to .073, with an average 
value of .049; nine values fell outside of Bradley's 
(1978) stringent interval. MOMT values ranged 
from .014 to .060, with an average value of .038; 
six values fell outside the interval and most 
occurred when data were obtained from the g = .5 
and h = .5 distribution. We describe our results 
predominately from Table 1; however, we, 
occasionally, also rely on the detailed information 
contained in the ten tables not contained in the 
paper. 
 
 20% Symmetric and 20% (40%) Asymmetric 
Trimming  
 Empirical results for 20% symmetric 
trimming conform to those reported in the 
literature. That is, the WJ test is generally robust 
with the liberal criterion of robustness, 
occasionally, however, resulting in a liberal rate of 
error (see Wilcox et al., 1998). Adopting a 
transformation for skewness improves rates of 
Type I error and further improvement is obtained 
when adopting bootstrap methods (see Luh & 
Guo, 1999). However, most of the values reported 
in the tables did not fall within the bounds of the 
stringent criterion. In particular, the number of 
these deviant values ranged from a low of 9 
(WJJ20, WJH20, WJJB20) to a high of 12 (WJ20). 
        Keeping the total amount of trimmed values 
at 40%, regardless of whether data were trimmed 
symmetrically or asymmetrically, based on the 
preliminary test for symmetry, resulted in liberal 
rates of error, except when bootstrapping methods  

 
were adopted. Indeed, when bootstrapping was 
adopted for assessing statistical significance and a 
transformation was/was not applied to the statistic 
(WJJB2040, WJHB2040, WJB2040), rates of 
Type I error were well controlled; the number of 
values falling outside the stringent interval were 
two, two and four, respectively, with 
corresponding average rates of error of .048, .047 
and .045. 
 
15% Symmetric and 15% (30%) Asymmetric 
Trimming.  
 Similar results were found to those 
previously reported, however, a few differences 
are noteworthy. First, none of the values fell 
outside the liberal criterion, though with the 
exception of WJJ15 and WJH15, the number of 
values outside of the stringent criterion was large, 
obtaining values of 8 and 9. Also noteworthy is 
that for 15% symmetric trimming bootstrapping 
did not result in improved rates of Type I error. 
        On the other hand, bootstrapping was quite 
effective for controlling errors when trimming was 
based on the preliminary test for symmetry and 
either 15% or 30% of the data were trimmed 
symmetrically or asymmetrically. Without 
bootstrapping, rates, on occasion, reached values 
above .075 and the number of values falling 
outside the stringent criterion ranged from 7 to 12. 
With bootstrapping, no value exceeded .075, in 
fact no value exceeded .054, and the number of 
values outside the stringent criterion was small--3 
(WJB1530), 3 (WJJB1530) and 2 (WJHB1530). 
        When trimming was 15%-symmetric or 15%-
asymmetric, based on the preliminary test for 
symmetry, again, all empirical values were 
contained in the liberal interval, ranging from a 
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low value of .025 (WJB1515) to a high value of 
.073 (WJH1515). However, the number of values 
falling outside the stringent interval varied over 
the tests examined, ranging from a low of 4 values 
(WJJB1515) to a high value of 9 values 
(WJB1515). The best two procedures were 
WJJB1515 (4 values outside the stringent 
criterion) and WJHB1515 (5 values outside the 
stringent criterion). 
 
10% Symmetric and 10% (20%) Asymmetric 
Trimming  
 Results are not generally dissimilar from 
those reported for the other two trimming rules. 
That is, when adopting a 10% symmetric rule, all 
rates were contained in the liberal interval, though 
with the 10% rule, bootstrapping and transforming 
the statistic for skewness was effective in limiting 
the number of deviant values (WJJJB10 and 
WJHB10), while the remaining methods were not 
nearly as successful. 
        For 10% symmetric trimming or 20% 
asymmetric trimming, based on the preliminary 
test for symmetry, empirical rates were again best 
controlled when bootstrapping methods were 
applied. In particular, the number of deviant 
values ranged from 2 to 5, with fewer deviant 
values occurring when a transformation for 
skewness was applied to WJ (i.e., WJJB1020 and 
WJHB1020). The nonbootstrapped tests, on the 
other hand, frequently had rates falling outside the 
stringent interval; 8 for WJ1020 and 11 for 
WJJ1020 and WJH1020. 
        Adopting 10% symmetric or asymmetric 
trimming resulted in rates that generally also fell 
within the liberal criterion of Bradley (1978), 
except for two exceptions: .076 for WJH1010 and 
.023 for WJB1010. Once again, using a 
transformation to eliminate skewness and adopting 
bootstrapping to assess statistical significance 
resulted in relatively good Type I error control. 
That is, WJJB1010 and WJHB1010 had, 
respectively, 6 and 5 values falling outside the 
stringent interval, with corresponding average 
rates of error of .048 and .042. 
 
Symmetric Trimming (10% vs 15% vs 20%).  
 Our last examination of the data was a 
comparison of the rates of Type I error across the 
various percentages of symmetric trimming. Only 
two liberal values (.076 and .079), according to the 

.025-.075 criterion, were found across the three 
cases of symmetric trimming and they occurred 
under 20% symmetric trimming. The total number 
of values outside the .045-.055 criterion for  20%, 
15% and 10% symmetric trimming were 58, 41 
and 45, respectively; the corresponding average 
Type I error rates (across the six averages reported 
in the table) were .049, .047 and .050. The four 
procedures with the fewest values (i.e., 4) outside 
the stringent interval were WJJ15, WJH15, 
WJJB10 and WJHB10. 
 

Discussion 
 

In our investigation we examined various test 
statistics that can be used to compare treatment 
effects across groups in a one-way independent 
groups design. Issues that we examined were 
whether: (1) a preliminary test for symmetry can 
be used effectively to determine whether data 
should be trimmed symmetrically or asymetrically 
when used in combination with a heteroscedastic 
statisic that compares trimmed means, (2) the 
amount of trimming affects error rates of these 
heteroscedastic statistics, (3) transformations to 
these heteroscedastic statistics improve results, (4) 
bootstrapping methodology provides yet additional 
improvements and (5) an estimator (MOM) that 
empirically determines whether one should trim, 
and, if so, by what amount and from which tail(s) 
of the distribution, can effectively control rates of 
Type I error, and how those rates compare to the 
other methods investigated. 
        We found that the fifty-six procedures 
examined performed remarkably well. Of the 672 
empirical values, only 24, or approximately 3.5 
percent of the values, did not fall within the 
bounds of .025-.075, a criterion that many 
investigators have used to assess robustness. 
Based on this criterion, only six procedures did not 
perform well--namely MOMT, WJ2040, 
WJJ2040, WJH2040, WJJ1530 and WJH1530; 
that is, they all had two or more values less than 
.025 or greater than .075. The vast majority of 
these nonrobust values occurred under our most 
extreme case of nonnormality: g = .5 and h = .5. 
        On the basis of the more stringent criterion 
defined by Bradley (1978), five methods 
demonstrated exceptionally tight Type I error 
control. They were WJJB2040, WJHB2040, 
WJHB1530, WJJB1020 and WJHB1020. The 



KESELMAN, WILCOX, OTHMAN, & FRADETTE 
 

 

303

number of values not falling in the stringent 
interval was two for each procedure. In addition, 
the average rate of error was .048, .047, .048, .049 
and .049, respectively. Common to these six 
procedures is the use of a transformation to 
eliminate skewness (either Hall’s, 1992, or 
Johnson’s, 1978) and the use of bootstrapping 
methodology to assess statistical significance. Two 
close competitors were the WJB1530 and 
WJJB1530 tests, each had three values outside 
.045-.055, with average rates of error of .045 and 
.049, respectively. 
        Based on our results we recommend 
WJJB1020 or WJHB1020; that is, the WJ 
heteroscedastic statistic which trims, based on a 
preliminary test for symmetry, 10% in each tail or 
20% in one of the two tails and then transforms the 
test with a transformation to eliminate the effects 
of skewness (either Hall, 1978, or Johnson, 1992) 
and where statistical significance is determined 
from bootstapping methodology. We recommend 
one of these methods, over the other three tests 
which also limited the number of discrepant values 
to two, because the other methods can result in 
greater numbers of data being discarded. It is our 
impression that applied researchers would prefer a 
method that compared treatment performance 
across groups with a measure of the typical score 
which was based on as much of the original data 
as possible--a very reasonable view. It is also 
worth mentioning that relatively good results are 
also possible by adopting a simpler WJ method--
namely the WJ test with just bootstapping. In 
particular, WJB1530 and WJB2040 resulted in 3 
and 4 values outside the stringent interval and each 
had an average Type I error rate of .045. 
        Another noteworthy finding was that other 
percentages of symmetric trimming work better in 
the one-way design than 20% symmetric 
trimming. In particular, we found four methods 
involving less trimming than 20% (WJJ15, 
WJH15, WJJB10 and WJHB10) that provided 
good Type I error control, resulting in fewer 
values outside .045-.055 than identical procedures 
based on 20% trimming. For two of the methods 
(WJJ15 and WJH15), bootstrapping methodology 
is not required. 
        We conclude by reminding the reader that we 
examined fifty-six test statistics under conditions 
of extreme heterogeneity and nonnormality. Thus, 
we believe we have identified procedures that are 

truly robust to cases of heterogeneity and 
nonnormality likely to be encountered by applied 
researchers and therefore we are very comfortable 
with our recommendation. That is, we believe we 
have found a very important result--namely, very 
good Type I error control is possible with 
relatively modest amounts of trimming. 
        We demonstrate the computations involved 
for obtaining the test of symmetry in Appendix A. 
We include this illustration, even though we 
provide software in Appendix A to obtain 
numerical results, because we believe it is 
instructive to see how Q2 and Q1 are obtained. 
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Appendix A SAS/IML Program for Q-Statistics 
*Checking for symmetry using the Q2 and Q1 indices presented in Babu, 
 Padmanabhan and Puri (1999); 
*This program details all the steps in obtaining the Q2 and Q1 indices; 
OPTIONS NOCENTER; 
PROC IML; 
RESET NONAME; 
*Although the Q2 and Q1 calculations differ, both share common steps; 
*Hence, they are incorporated into one module QMOD with the variable 
 QCHOICE being the switch that activates Q2 or Q1: 1 activates Q1 and 2 
 activates Q2; 
START QMOD(QCHOICE,Y,OSY,GINFO,Q) GLOBAL(NY,WOBS,BOBS,PER); 
  G = INT(PER#NY); 
  NYPRIME = NY - 2#G; 
  NPRIME = SUM(NYPRIME); 
  *Initialize group information matrix; 
  IF QCHOICE = 1 THEN GINFO = J(BOBS,8,0); 
  ELSE IF QCHOICE = 2 THEN GINFO = J(BOBS,9,0); 
  *Initialize for first pass; 
  F = 1; 
  M = 0; 
  DO J = 1 TO BOBS; 
    SAMP = NY[J]; 
    SAMPPR = NYPRIME[J]; 
    L = M + SAMP; 
    YT = Y[F:L]; 
    TEMP = YT; 
    *Sorting group elements in ascending order; 
    YT[RANK(TEMP),] = TEMP; 
    FIRST = G[,J] + 1; 
    LAST = SAMP - G[,J]; 
    FPRIME = F + FIRST - 1; 
    LPRIME = F + LAST - 1; 
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    *Get group information; 
    GINFO[J,1] = J;         *Group number; 
    IF QCHOICE = 1 THEN DO; 
      GINFO[J,2] = SAMPPR; *Possibly trimmed group size; 
      GINFO[J,3] = FPRIME; *Starting position in possibly trimmed data 
                            stream for group j; 
      GINFO[J,4] = LPRIME; *Ending position in possibly trimmed data 
                            stream for group j; 
    END; *if QCHOICE = 1; 
    ELSE IF QCHOICE = 2 THEN DO; 
      GINFO[J,2] = SAMP; *Group size; 
      GINFO[J,3] = F;    *Starting position in data stream for group j; 
      GINFO[J,4] = L;    *Ending position in data stream for group j; 
    END; *if QCHOICE = 2; 
    *Calculating the mean of the upper and lower 5% of data in group j; 
    *This is common in both Q1 and Q2; 
    NJP05 = (LAST-FIRST+1)#0.05; 
    IF NJP05 <= 1 THEN DO; 
      UP05J = YT[LAST]; 
      LP05J = YT[FIRST]; 
    END; *if NJP05 <=1; 
    ELSE DO; 
      A = INT(NJP05); 
      FR = NJP05 - A; 
      UP05 = YT[LAST-A+1:LAST]; 
      UP05J = (FR#YT[LAST-A] + SUM(UP05))/NJP05; 
      LP05 = YT[FIRST:FIRST+A-1]; 
      LP05J = (SUM(LP05) + FR#YT[FIRST+A])/NJP05; 
    END; **if NJP05 > 1; 
    GINFO[J,5] = UP05J; *Upper 5% mean of group j; 
    GINFO[J,6] = LP05J; *Lower 5% mean of group j; 
    IF QCHOICE = 1 THEN DO; 
      *Calculating the mean of the middle 50% of data in group j; 
      *This calculation is done in Q1 only; 
      NJP25 = (LAST-FIRST+1)#0.25; 
      A = INT(NJP25); 
      FR = NJP25 - A; 
      ME = YT[FIRST+A+1:LAST-A-1]; 
      MIDJ = ((1-FR)#YT[FIRST+A] + SUM(ME) + (1-FR)#YT[LAST-A])/(2#NJP25); 
      Q1J = (UP05J - MIDJ)/(MIDJ - LP05J);  
      GINFO[J,7] = MIDJ; *Middle 50% mean of possibly trimmed group j; 
      GINFO[J,8] = Q1J;  *Q1 index of group j; 
    END; *if QCHOICE = 1; 
    IF QCHOICE = 2 THEN DO;  
      *Calculating the mean of the upper and lower 50% of data in group j; 
      *This calculation is done in Q2 only; 
      NJP5 = (LAST-FIRST+1)#0.5; 
      A = INT(NJP5); 
      FR = NJP5 - A; 
      UP5 = YT[LAST-A+1:LAST]; 
      UP5J = (FR#YT[LAST-A] + SUM(UP5))/NJP5; 
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      LP5 = YT[FIRST:FIRST+A-1]; 
      LP5J = (SUM(LP5) + FR#YT[FIRST+A])/NJP5; 
      Q2J = (UP05J - LP05J)/(UP5J - LP5J); 
      GINFO[J,7] = UP5J; *Upper 50% mean of group j; 
      GINFO[J,8] = LP5J; *Lower 50% mean of group j; 
      GINFO[J,9] = Q2J;  *Q2 index of group j; 
    END; *if QCHOICE = 2;   
    *Update for next pass; 
    M = L; 
    F = F + NY[J]; 
    IF J = 1 THEN OSY = YT; 
    ELSE OSY = OSY//YT; 
  END; *DO J; 
  IF QCHOICE = 1 THEN Q = SUM(GINFO[1:3,8]`#NYPRIME)/NPRIME; 
  ELSE IF QCHOICE = 2 THEN Q = SUM(GINFO[1:3,9]`#NYPRIME)/NPRIME; 
FINISH; *QMOD; 
START SHOWGRP(X, GINFO); 
  X1 = X[GINFO[1,3]:GINFO[1,4]]`; 
  X2 = X[GINFO[2,3]:GINFO[2,4]]`; 
  X3 = X[GINFO[3,3]:GINFO[3,4]]`; 
  PRINT 'GRP1:' X1[FORMAT=3.0]; 
  PRINT 'GRP2:' X2[FORMAT=3.0]; 
  PRINT 'GRP3:' X3[FORMAT=3.0]; 
FINISH; *SHOWGRP; 
START Q2Q1AD; 
  PRINT 'DETAILED OUTPUT FOR THE Q-STATISTICS'; 
  *Calculating Q2; 
  PER = 0; *Q2 does not require trimming of data; 
  QCHOICE = 2; 
  CALL QMOD(QCHOICE,Y,OSY,Q2INFO,Q2); 
  PRINT ,; 
  PRINT 'Y IN THE VARIOUS GROUPS'; 
  CALL SHOWGRP(Y,Q2INFO); 
  PRINT ,; 
  PRINT 'ORDER STATISTICS OF Y'; 
  CALL SHOWGRP(OSY,Q2INFO); 
  OUTQ2 = Q2INFO[,1:2]||Q2INFO[,5:9]; 
  C1 = {"GRP" "GRP SIZE" "UP5% MEAN" "LO5% MEAN" "UP50% MEAN" "LO50% MEAN" "Q2J"}; 
  PRINT ,; 
  PRINT 'INTERMEDIATE OUTPUTS FOR Q2'; 
  PRINT OUTQ2[COLNAME=C1 FORMAT=10.4]; 
  PRINT 'Q2 =' Q2[FORMAT=10.4]; 
  IF Q2 < 3 THEN DO; 
    PER = 0; 
 PRINT 'DATA DISTRIBUTION IS NORMAL-TAILED. USE ALL DATA TO DETERMINE Q1.'; 
  END; *if Q2 < 3; 
  ELSE IF Q2 > 5 THEN DO; 
    PER = 0.2; 
  PRINT 'DATA DISTRIBUTION IS VERY HEAVY-TAILED. DO 20% SYMMETRIC TRIMMING TO 
DETERMINE Q1.'; 
  END; *if Q2 > 5; 
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  ELSE DO; *if 3 <= Q2 <= 5; 
    PER = 0.1;  
 PRINT 'DATA DISTRIBUTION IS HEAVY-TAILED. DO 10% SYMMETRIC TRIMMING TO 
DETERMINE Q1.'; 
  END; *if 3 <= Q2 <=5; 
  *Calculating Q1; 
  QCHOICE = 1; 
  CALL QMOD(QCHOICE,Y,OSY,Q1INFO,Q1); 
  PRINT /; 
  PRINT 'ORDER STATISTICS OF POSSIBLY TRIMMED Y'; 
  CALL SHOWGRP(OSY,Q1INFO); 
  OUTQ1 = Q1INFO[,1:2]||Q1INFO[,5:8]; 
  C2 = {"GRP" "GRP SIZE" "UP5% MEAN" "LO5% MEAN" "MID50% MEAN"  "Q1J"}; 
  PRINT ,; 
  PRINT 'INTERMEDIATE OUTPUTS FOR Q1'; 
  PRINT OUTQ1[COLNAME=C2 FORMAT=10.4]; 
  PRINT 'Q1 =' Q1[FORMAT=10.4]; 
  IF Q1 < 0.5 THEN PRINT 'DATA DISTRIBUTION IS LEFT-SKEWED.'; 
  ELSE IF Q1 > 2 THEN PRINT 'DATA DISTRIBUTION IS RIGHT-SKEWED.'; 
  ELSE PRINT 'DATA DISTRIBUTION IS SYMMETRIC.'; *if 0.5 <= Q1 <= 2; 
FINISH; *Q2Q1AD; 
***INPUT DATA VECTOR; 
*Data is purposely typed in the following manner to show where Groups 1-3 
 entries are; 
*SAS treats this as a 35x1 column vector; 
Y = {42, 40, 32, 48, 32, 52, 41, 35, 30, 99, 40, 35, 34, 39, 
50, 49, 35, 43, 36, 40, 56, 41, 40, 64, 42, 
48, 51, 63, 51, 60, 51, 83, 55, 55, 48}; 
*Group sizes are entries in the following 1x3 row vector; 
NY = {15 10 10}; 
*WOBS and BOBS are variable names carried over from past programs; 
*WOBS = within subjects groups; 
WOBS = NCOL(Y); 
*BOBS = between subject groups; 
BOBS = NCOL(NY); 
RUN Q2Q1AD; 
------------------------------------------------------------------------------------------------------------- 
DETAILED OUTPUT FOR THE Q-STATISTICS 
Y IN THE VARIOUS GROUPS 
GRP1:  42  40  32  48  32  52  41  35  30  99  40  35  34  39  50 
GRP2:  49  35  43  36  40  56  41  40  64  42 
GRP3:  48  51  63  51  60  51  83  55  55  48 
ORDER STATISTICS OF Y 
GRP1:  30  32  32  34  35  35  39  40  40  41  42  48  50  52  99 
GRP2:  35  36  40  40  41  42  43  49  56  64 
GRP3:  48  48  51  51  51  55  55  60  63  83 
INTERMEDIATE OUTPUTS FOR Q2 
GRP GRP SIZE UP5% MEAN LO5%MEAN UP50%MEAN LO50% MEAN Q2J 

1 15 99 30 52.2667 34.2667 3.8333
2 10 64 35 50.8 38.4 2.3387
3 10 83 48 63.2 49.8 2.6119
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Q2 = 3.0573 
DATA DISTRIBUTION IS HEAVY-TAILED. DO 10% SYMMETRIC TRIMMING TO DETERMINE Q1. 
ORDER STATISTICS OF POSSIBLY TRIMMED Y 
GRP1:  32  32  34  35  35  39  40  40  41  42  48  50  52 
GRP2:  36  40  40  41  42  43  49  56 
GRP3:  48  51  51  51  55  55  60  63 
INTERMEDIATE OUTPUTS FOR Q1 
GRP GRP SIZE UP5% MEAN LO5% MEAN MID50% MEAN Q1J 

1 13 52 32 38.8846 1.9050 
2 8 56 36 41.5 2.6364 
3 8 63 48 53 2 

Q1 = 2.1330 
DATA DISTRIBUTION IS RIGHT-SKEWED. 
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When data are nonnormal in form classical procedures for assessing treatment group equality are prone to 
distortions in rates of Type I error and power to detect effects. Replacing the usual means with trimmed 
means reduces rates of Type I error and increases sensitivity to detect effects. If data are skewed, say to the 
right, then it has been postulated that asymmetric trimming, to the right, should be better at controlling rates 
of Type I error and power to detect effects than symmetric trimming from both tails of the data distribution. 
Keselman, Wilcox, Othman and Fradette (2002) found that Babu, Padmanabhan and Puri's (1999) test for 
symmetry when combined with a heteroscedastic statistic which compared either symmetrically or 
asymmetrically determined means provided excellent Type I error control even when data were extremely 
heterogeneous and very nonnormal in form. In this paper, we present a detailed discussion of the Babu et al. 
procedure as well as a numerical example demonstrating its use. 
 
Key words: Symmetry, Preliminary test 
 
 

Introduction 
 
Keselman, Wilcox, Othman and Fradette (2002) 
found that by utilizing a test for symmetry prior to 
testing for equality of trimmed means they were 
able to achieve excellent Type I error control even 
though data were extremely heterogeneous and 
very nonnormal in form. In particular, they used a 
test  for  symmetry first proposed by Hogg, Fisher,  
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and Randles (1975) and subsequently modified by 
Babu, Padmanaban and Puri (1999) in order to 
determine whether data should be trimmed 
symmetrically or asymmetrically. Asymmetric 
trimming has been theorized to be potentially 
advantageous when the distributions are known to 
be skewed, a situation likely to be realized with 
behavioral science data (See De Wet & van Wyk, 
1979; Micceri, 1989; Tiku, 1980, 1982; Wilcox, 
1995). That is, theoretical considerations suggest 
that when data are say skewed to the right then in 
order to achieve robustness to nonnormality and 
greater sensitivity to detect effects one should trim 
data just from the upper tail of the data 
distribution. Indeed, Keselman et al. found that by 
combining a test for mean equality with a 
preliminary test for symmetry Type I error rates 
could be substantially improved for the nonnormal 
and heterogeneous distributions they examined. 
Because space considerations prevented them 
from providing a full description of the symmetry 
test we present the method herein and illustrate its 
application with a numerical example. 
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Theoretical Background 
 The Babu et al. (1999) procedure is based, 
in part, on the work of Hogg et al. (1975). 
Specifically, for these authors, the hypothesis of 
interest was H0: θ = 0 against HA:  θ > 0, where θ  
is the location parameter of interest. They 
proposed a test to detect the nature of the 
underlying distribution before proceeding with 
(nonparametric) tests of H0. 
 In particular, they defined Y1, Y2,…, Ym 
as a random sample from F(y), and Ym+1, Ym+2,…, 
Yn as a random sample from F(y - θ). Then Y(1), 
Y(2),…, Y(n) are the ordered statistics of the 
combined random samples and Ymed is the median 
of the combined samples.  
 Hogg et al.’s (1975) procedure to detect 
the nature of the underlying distribution is 
composed of two tests, a test of the heaviness of 
the tail of the distribution using the Q2 statistic and 
a test of symmetry using the Q1 statistic. Their 
work was based on papers by Uthoff (1970, 1973). 
Hogg et al. (1975) chose a test statistic enumerated 
by Uthoff (1973, Equation 2) as a basis to define 
their Q2 index. This index determined whether the 
tail of the underlying distribution is light or heavy. 
They first approximated it as 
 

(n) (1)

(i) med

Y   - Y  
.

2 Y -Y / nΣ
 

 
They transformed this ratio into  
 

0.05 0.05
2

0.5 0.5

(U L )Q ,
(U L )

−
=

−
 

 
where U0.05 and L0.05 are, respectively, the means 
of the upper and lower 5% of the order statistics of 
the sample and U0.5 and L0.5 are, respectively, the 
means of the upper and lower 50% of the order 
statistics of the combined sample. 
 Again, based on the work of Uthoff (1970, 
Equation 1), Hogg et al. (1975) derived their Q1 
index:  
 

0.05
1

0.05

( ) ,
( )
U MIDQ
MID L

−
=

−
 

 

where MID is the mean of the middle 50% of the 
combined sample. Thus, this index determines the 
symmetry of the underlying distribution. 
 Babu et al. (1999) extended the use of 
these two indices to more than two groups. They 
proposed that both indices be calculated within the 
groups and weighted means of these indices be the 
overall estimates of Q2 and Q1. They also proposed 
adjustments to the Q1 index whereby the amount 
of data needed to calculate the index depended on 
the outcome of the calculation of the Q2 index.  
 
Determination of Symmetry 
 Consider the problem of comparing 
distributions F1 = F2 = … = FJ. One way of 
approaching this problem is to consider the one-
way ANOVA problem of comparing means µ1 = 
µ2  = … = µJ from J distributions F1(y) = F(y- µ1), 
F2(y) = F(y- µ2), … , FJ(y) = F(y- µJ). When the 
distributions are unknown and one cannot assume 
that they are normal with equal variances, Babu et 
al. (1999) suggested the following procedure to 
determine heavy-tailedness and symmetry prior to 
applying the appropriate test on the location 
parameters: 
 Let 

jij 1 j 2 j n jY (Y ,Y ,...,Y )=  be a sample 

from an unknown distribution Fj. Let 

j(1) j (2) j (n ) jY Y Y≤ ≤ ≤  represent the ordered 

observations associated with the jth group. Let  γ 
be the proportion of the data in the sample that are 
of interest as either the proportion of data to be 
trimmed or the proportion of data to be used in the 
calculation of several intermediate variables 
leading to two statistics, namely Q2 and Q1. Let g 
= [γnj] +1, where [x] represents the greatest integer 
less than γnj and r = g - γnj. It is important to note 
that trimming here, and the amount trimmed, is 
just for purposes of assessing symmetry. 
 
Q2 Index 

Prior to determining the symmetry of the 
distributions, the nature of their tails is examined. 
The Q2 index determines whether F1(y), F2(y),…, 
FJ(y) are normal-tailed, heavy-tailed or very 
heavy-tailed. Tail classification is determined in 
the following manner: 

1. Define Uγj and Lγj as the means of the upper 
and lower γnj order statistics, respectively, of 
the sample Yj. 
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Case 1. If γnj  ≤ 1,  
then Uγj = Y

j(n ) j  and Lγj = Y (1) j . 

 
Case 2. If γnj  > 1 
 then  
 

j

j

j

n

, j (i) j (n g 1), j
j n g 2j

1U Y (1 r)Y
nγ − +

= − +

 
= + −  γ  

∑   and 

 
g 1

, j (i) j (g) j
i 1j

1L Y (1 r)Y
n

−

γ
=

 
= + − γ  

∑  

 
 
2. Calculate U0.05, j and L0.05, j as the mean of the 
upper and lower 0.05nj order statistics of Yj, 
respectively. 
3. Calculate U0.5, j and L0.5, j as the mean of the 
upper and lower 0.5nj order statistics of Yj, 
respectively. 
4. For each j, set Q2, j  = (U0.05, j  -  L0.05, j ) / (U0.5, j  -  
L0.5, j ).  
5. Using Q2, j, j = 1, 2,…, J, from # 4 compute 
 

J J

2 j 2, j j
j 1 j 1

Q n Q n
= =

   
=    
   
∑ ∑  

 
6. If Q2 <  3 then F is classified as normal-tailed. If 
3  ≤  Q2 <  5 then F is classified as heavy-tailed. If 
Q2  ≥ 5 then F is classified as very heavy-tailed. 
 
Q1 Index 
 Once the nature of the tails of the 
distributions is known, the Q1 index, which 
determines the symmetry of the distributions, is 
calculated. To calculate the Q1 index one should: 
1. Based on Q2, determine the number of sample 
points in each sample Yj to be used. Define this as 
nj*. (This is the Babu et al., 1999, modification of 
the Hogg et al., 1975, proposal for computing Q1.) 
Specifically, if Q2 <  3 then use all sample points in 
Yj. If 3  ≤  Q2 <  5  then trim the top and bottom 
10% of the sample points and use the middle 80% 
in Yj. If Q2  ≥ 5  then trim the top and bottom 20% 
of the sample points and use the middle 60% in Yj. 
2. Let MIDj to be the mean of the middle 50% of 
the order statistics of the sample points in sample 
Yj defined in #1. According to A. R. Padmanaban 

(personal communication, June 26, 2001), MIDj is 
calculated in the following manner: 
  Discard the top and bottom 25% of the 
order statistics of Yj. 
  The remainder is the middle 50% of the 
order statistics of Yj. 
 Hence, * *

jg [ 0.25n ] 1= +  and 
* * *

jr g 0.25n= − . Therefore, MIDj is given by 
 

* *
j

* * *
j*

n g
*

j (i) j* (g ) j (n g 1) j
i g 1j

1MID Y r (Y Y ) .
0.5n

−

− +
= +

 
= + + 

  
∑

 
 
3.  For each j, set  
 
           1, j 0.05, j j j 0.05, jQ (U MID ) ( MID L )= − − . 
 
4. Using Q1, j, j = 1, 2,…, J, from # 3 compute 
 

       
j

J J
* *

1 j 1, j
j 1 j 1

Q n Q n
= =

   
=    
   
∑ ∑   . 

 
5. If Q1 < ½, F is deemed to be left skewed. If  ½ ≤ 
Q1 ≤ 2, then F is considered to be symmetric. If Q1 
> 2, then F is designated as right skewed. 
 
Computational Example 
 Suppose we want to test the null hypothesis,  
Ho: F1(x) = F2(x) = F3(x) based on the following 
data set. 
 
Table 1. Data set. 
 
Groups Order Statistics nj 
1 30 32 32 34 35 35 39 40 40 41 42 

48 50 52 99 
15

2 35 36 40 40 41 42 43 49 56 64 10
3 48 48 51 51 51 55 55 60 63 83 10
Note: The tabled values were chosen so that the 
data would be classified as heavy-tailed.  
 
 
Calculating Q2 (Tail thickness)  
 Notice that 0.05nj < 1 for j = 1, 2, 3. 
Therefore, U0.05, 1  = Y(15, 1) = 99, U0.05, 2  = Y(10, 2)  = 
64, U0.05, 3  = Y(10, 3) = 83, and L0.05, 1  = Y(1, 1) = 30, 
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L0.05, 2  = Y(1, 2) = 35, and L0.05, 3  = Y(1, 3) = 48. When 
γ = 0.5, the calculations for U0.5, j, L0.5, j and Q2, j for 
each group are as follows: 
 
Group 1 
n1 = 15, 0.5 n1 = 7.5, g = 8 and r = 0.5. 
 

15

0.5,1 (i1) (8,1)
i 9

1U Y 0.5Y
7.5
1 ((40 41 99) (0.5)40)

7.5
52.2667

=

 = + 
 

= + + + +

=

∑

 

 
7

0.5,1 (i1) (8,1)
i 1

1L Y 0.5Y
7.5
1 ((30 32 39) (0.5)40)

7.5
34.2667

=

 = + 
 

= + + + +

=

∑

 

 

2,1

(99 30)Q 3.8333
(52.2667 34.2667)

−
= =

−
 

 
Group 2 
 
n2 = 10, 0.5 n2 = 5, g = 6 and r = 0. 
 

10

0.5,2 (i2) (5,2)
i 6

1U Y (0)Y
5
1 ((42 43 64) 0)
5
50.8

=

 = + 
 

= + + + +

=

∑

 

 
5

0.5,2 (i2) (6,2)
i 1

1L Y (0)Y
5
1 ((35 36 41) 0)
5
38.4

=

 = + 
 

= + + + +

=

∑

 

 

2,2

(64 35)Q 2.3387
(50.8 38.4)

−
= =

−
 

 
 

Group 3 
 n3 = 10, 0.5 n3 = 5, g = 6 and r = 0. 
 

10

0.5,3 (i3) (5,3)
i 6

1U Y (0)Y
5
1 ((55 55 83) 0)
5
63.2

=

 = + 
 

= + + + +

=

∑

 

 
5

0.5,3 (i3) (6,3)
i 1

1L Y (0)Y
5
1 ((48 48 51) 0)
5
49.8

=

 = + 
 

= + + + +

=

∑

 

 

2,3

(83 48)Q 2.6119
(63.2 49.8)

−
= =

−
 

 
Therefore,  
 

2

(15( 3.8333 ) 10( 2.3387 ) 10( 2.6119 ))Q
(15 10 10 )

3.0573

+ +
=

+ +
=

 

 
and F is classified as heavy-tailed. 
 
Calculating Q1  
 Because F if classified as heavy-tailed, we 
have to symmetrically trim 10% of the data before 
calculating Q1. 
 Notice that 0.05 *

jn < 1 for j = 1, 2, 3. 
Therefore: 
 
           

* *
0.05,1 (13,1)U Y 52= = , * *

0.05,2 (8,2)U Y 56= = ,   
 
        

* *
0.05,3 (8,3)U Y 63= = , and * *

0.05,1 (1,1)L Y 32= = ,      
 
          * *

0.05,2 (1,2)L Y 36= = , * *
0.05,3 (1,3)L Y 48= = . 

 
Let us calculate MIDj and Q1, j, for j = 1, 2, 3. 
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Table 2. 10% Trimming. 
 
Groups Order Statistics Following 

10% Symmetric Trimming 
*
jn

1 32 32 34 35 35 39 40 40 41 42 48 
50 52 

13 

2 36 40 40 41 42 43 49 56 8 
3 48 51 51 51 55 55 60 63 8 

 
 
Group 1  

* * * *
1 1n 13, 0.25n 3.25, g 4,and r 0.75= = = = . 

 
9

* * *
1 (i1) (4,1) (10,1)

i 5

1MID Y 0.75(Y Y )
6.5
1 ((35 39 40 40 41) (0.75)(35 42))

6.5
38.8846

=

 = + + 
 

= + + + + + +

=

∑

 

 

1,1

(52 38.8846)Q 1.905
(38.8846 32)

−
= =

−
 

 
Group 2 
 

* * * *
2 2n 8, 0.25n 2, g 3,and r 0= = = =  

 
6

*
2 (i2)

i 3

1MID Y
4
1 (40 41 42 43)
4
41.5

=

 =  
 

= + + +

=

∑

 

 

1,2

(56 41.5)Q 2.6364
(41.5 36)

−
= =

−
 

 
Group 3 

* * * *
3 3n 8, 0.25n 2, g 3,and r 0= = = = . 

 

6
*

3 (i3)
i 3

1MID Y
4
1 (51 51 55 55)
4
53

=

 =  
 

= + + +

=

∑

 

 

1,3

(63 53)Q 2
(53 48)

−
= =

−
 

 
Therefore, 
 

1

( 13(1.905 ) 8( 2.6364 ) 8( 2 ))Q
(13 8 8 )

2.133

+ +
=

+ +
=

  

 
and F is classified as right skewed.  
 

Discussion 
 

As indicated in our introduction, Keselman et al. 
(2002) found that by first applying the Babu et al. 
(1999) procedure prior to testing for treatment 
group equality with sample symmetrically or 
asymmetrically determined trimmed means one 
could achieve excellent control over Type I errors 
even though data were obtained from very 
heterogenous distributions that were extremely 
nonnormal in form. Accordingly, they 
recommended that users adopt the Babu et al. 
(1999) test for symmetry. 
 It is also interesting to note that Babu et al. 
(1999) used the preliminary test for symmetry in 
order to determine whether groups should be 
compared on their symmmetrically determined 
trimmed means, when distributions were deemed 
symmetric, or on their medians, when distributions 
were deemed asymmetric. Thus, a test for 
symmetry can be beneficial in many different 
applications. 
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A Comparison Of The D’Agostino Su Test To The Triples Test For Testing  
Of Symmetry Versus Asymmetry As A Preliminary Test To Testing The  
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This paper evaluates the D’Agostino SU test and the Triples test for testing symmetry versus asymmetry. 
These procedures are evaluated as preliminary tests in the selection of the most appropriate procedure for 
testing the equality of means with two independent samples under a variety of symmetric and asymmetric 
sampling situations. 
 
Key words: symmetry; asymmetry; preliminary testing. 
 
 

Introduction 
 
The purpose of this paper is to evaluate the 
performance of two tests, the D'Agostino SU test 
and the Triples test for the testing of symmetry 
versus asymmetry (or skewness) as a preliminary 
test using two levels of significance: α = 0.05 and 
α = 0.25. The results could be used to select a 
method for testing the equality of two means, Ho: 
µ1 = µ2, based on two classes of preliminary tests: 
(1) a test of variance homogeneity, and (2) a test 
of symmetry.  

Procedures for the D’Agostino SU test and 
the Triples test for symmetry are given below, as 
well as details of the four symmetric distributions 
and five asymmetric distributions used in the 
simulations. Results of a simulation study 
comparing     the  two   tests  for  the   one - sample  
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cases and as well as preliminary tests in two 
sample contexts are presented below. 

 
Methodology 

 
Testing of Symmetry Versus Skewness 
 The D'Agostino test and the Triples test of 
symmetry are described first for a general random 
sample x1, . . ., xn from some distribution ƒ (x; µ, 
σ). It is convenient to let x denote the sample 
mean of x1, . . ., xn and to let the sample estimates 
of β1

1/2, the third standardized moment, and β2, the 
fourth standardized moment, be denoted as  
 
 m / m=  b 3/2

23
2/1

1 , (1) 
 
and  b2 = m4 / m2

2 ,  (2) 
 
where n / )  x - x ( = m k

ik ∑  for k = 2, 3, 4.  (3) 
 

D’Agostino’s Skewness Test 
 D’Agostino’s test is a test of normality 
versus non-normality, which is sensitive to skewed 
nonnormal alternatives. A sketch of this procedure 
is now described.  
 First, compute 2/1

1b  from the sample data. 
Secondly compute Z( 2/1

1b ), where 
Z( 2/1

1b ) = δ ln(Y/a + [(Y/a)2 + 1]½ ),  (4a) 
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) 3 + n ( 1) + (n 
  b = Y 







2/1
1  (4b) 

 ,] ) 1 - (b( 2 [ +1- = W 2
2 )2/1

1
2/1

β  (4c) 
 

( )  ,
) 9 + n ( )  7 + n ( ) 5 + n ( ) 2 - n (

) 1 + n ( ) 70 - 27n + n ( 3 =  b
2

2
2/1

1β  (4d) 

 
2/1)(lnW/ 1  =  δ  and )1 - W( / 2  =  a 1/22 . (4e) 

 
             The α-level D'Agostino test of skewness 
is: 
 
Z( 2/1

1b ) > zα ,  (5) 
 
where zα is the upper α-point of the standard unit 
normal. Z((b1)1/2) is approximately n(0, 1) under 
the null hypothesis of population normality for 
cases where n > 8 (D'Agostino, Belanger, & 
D'Agostino, Jr., 1990). 

Results from D’Agostino’s Monte Carlo 
simulations for n < 25 and checks with an existing 
table of Pearson and Hartley (1966) for n ≥ 25 
show that the accuracy of the transformation is 
very good. Therefore, due to its sensitivity to 
skewed nonnormal alternatives, the D’Agostino 
test was chosen as a possible preliminary test for 
symmetry/skewness. 

 
Triples Test 
       The Triples test is described in a paper by 
Randles, Fligner, Policello, and Wolfe (1980). Let 
xi,. . .,xn denote a random sample from a 
continuous population where i, j, k are distinct 
integers such that 1≤ i < j< k ≤ n. The Triples test 
is an asymptotically distribution-free procedure 
which examines each triple ( xi ,xj, xk ). If the 
middle observation is closer to the smaller 
observation than it is to the largest observation, 
then a “right triple” is formed (looks skewed to the 
right). If the middle observation is closer to the 
larger observation than it is to the smaller 
observation, then a “left triple” is formed (looks 
skewed to the left). The Triples test statistic is a 
function of the number of right triples and left 
triples. 

The Triples test rejects Ho of symmetry if 
T1 > tn, (α/2) where tn, (α/2) is the upper α/2 point 
of a t distribution with n degrees of freedom, 

   , /   n = n
1/2

1 ση ˆˆΤ    (6a) 
 
 
η̂ = {(number of right triples) - (number of left triples)} (6b) 


















3

n
3  

 
and σ̂n is the standard deviation of η̂.  The statistic 
η̂ is calculated as 
 

)x,x,x(*f  
3

n
 = kji

k<j<i

-1

∑







η̂  (7) 

 
where f* (xi, xj, xk) = {sign (xi + xj - 2xk) + sign (xi 
+ xk – 2xj) + sign (xj + xk - 2xi)}/3, and sign(u) =    
-1, 0, or 1 as u <, =, or > 0. 
          To compute var (η^) = σ̂n

2, let 
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where ξ̂ c = var [fc

*(x1, . . ., xc)].  (8b) 
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 and .  - 
9
1 = 2

3 ηξ ˆˆ  (11) 

 
 Randles, et al. (1980) compared three 
procedures for testing whether a univariate 
population is symmetric about some unspecified 
value compared to an immense class of 
asymmetric distribution alternatives.  The Triples 
test was compared to Gupta’s skewness test 
(Gupta, 1967) and Gupta's nonparametric 
procedure (Gupta, 1967). Randles et al. (1980) 
show that the Triples Test is superior to either 
competitor, even for sample sizes as small as 20, 
while possessing good power for detecting 
asymmetric alternative distributions. 

Cabilio & Masaro (1996) compared their 
symmetry test, SK , to several other tests of 
symmetry including the Triples test. The Triples 
test again performed well and therefore, is selected 
as a second possible preliminary test of 
symmetry/skewness. 
 
Generation of Random Realizations From Six 
Distributions 
        This section contains details of how the 
random realizations are generated for each specified 
distribution among members of the normal, 
uniform, double exponential, logistic, lognormal, 
and gamma families of random variables used in 
the simulations. The normal, uniform, double 
exponential, and logistic are symmetric; the 
lognormal and gamma are asymmetic. 
 For one-sample cases, it is convenient to let 
x1, . . ., xn be a random sample of size n from f(x ). 
Let the sample mean and sample standard deviation 
be denoted as x and s, respectively. 
 The IMSL random number generator 
RNSET, which initializes the seed, is used in all of 
the simulations. 
 
Normal Distribution 
 In the case of the normal distribution, 
population means are set to zero, µ = 0 with unit 
standard deviations, σ = 1. The distribution f(x) is 
normal (0, 1). The FORTRAN function RNNOF 
was used to generate the normal (0, 1) random 
numbers.  
 
 
 

Uniform Distribution 
Let x be uniform (a, b) with mean µ = (a + 

b)/2 and standard deviation σ = (b - a) / 12 . The 
uniform distribution f(x) used in the simulations is a 
uniform (-1/2, 1/2) distribution yielding a mean µ= 
0 and standard deviation σ = 1/ 12 .  
 The random numbers ui from a uniform 
(0,1) distribution are first generated using the 
FORTRAN function RNUN. The uniform (-1/2, 
1/2) random realizations are then generated using 
the transformation: 
 
 xi = (ui – ½) (12) 
 
Double Exponential Distribution 
 Let x have the double exponential 
probability density function f (x) where  
 

 [ ]
∞∞ <x<-  ,|x|-=f(x)

2
exp . (13) 

 
 
The mean and variance are 
 
 µ = 0 and (14) 
 
 σ2 =  2. (15) 
 
To simulate x for this double exponential 
distribution, we use the following transformation: 
 
 x = (y1 - y2)/2 (16) 
 
where y1 and y2 are two independent chi-square 
random variables, each with two degrees of 
freedom. The two degree of freedom chi-squared 
random number y is generated as  
 
 y = -2 ln (u) (17) 
 
where u is an independent random number from a 
uniform (0,1) distribution (see Uniform Distribution 
subsection). 
 
Logistic Distribution 
          Let f(x) represent the probability density 
function for a logistic distribution  
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1 2
 (18) 

 
The mean and variance are 
 
 µ = 0 and (19) 
 
 σ2 = 3/π2 (20) 
 

The random numbers xi for this logistic 
distribution are generated using the transformation 

 

 








u-
u=x

i

i
i 1

log3
π

 (21) 

 
where ui is uniform (0,1). 
 
Lognormal Distribution 

The probability density function for the 
lognormal distribution with parameters a and b is: 

 









= )a-x  ( 

b
-  

 x b
bax=f(x) 2

22/1
ln

2
1exp

)2(
1),;ln(
π

 

                                for x > 0.                            (22) 
 
The mean µ, variance σ2, and coefficient of 
skewness are  
 

 )b+(a  = 
2

exp
2

µ  (23) 

 
a)()- w(w= 2exp12σ , and  (24) 

 
coefficient of skewness = (w + 2) (w - 1)½   (25) 
 
where w = exp (b2). Let y be n(a, b), which 
designates a normally distributed variable with 
mean a and standard deviation b, then x = ey has the 
lognormal probability density function ln(x; a, b) in 
(22). 
 Three lognormal distributions are selected 
due to their varying degrees of skewness. In each of 
the three cases, the sample from the lognormal 
distribution ln(x; a, b), denoted as lognormal (a, b), 
has a set to zero. The three b parameter values 
chosen are: (1) b = 0.4, (2) b = 1.0, and (3) b = 1.75. 
The coefficient of skewness for these cases are 1.3, 
6.2, and 105.6, respectively. The case of b = 0.4 is 

denoted as slight skewness, b = 1.0 as moderate 
skewness, and b = 1.75 as heavy skewness.  
 The FORTRAN function RNLNL is used 
to create the random realizations for the ln (x; a, b) 
distributions using the transformation x = ey , where 
y is n(a, b) (IMSL, STAT/Library, 1989). 
 
Gamma Distribution 
        The probability density function for the 
gamma distribution with shape parameter α and 
scale parameter β is 
 

11 exp

0 0 0

- xf(x)= -  x
( )

where x > , > , >

α
α βα β

α β

 
 Γ                         (26) 

   
with mean αβ, variance αβ2 and coefficient of 
skewness 2(α)-1/2. 
 Two gamma distributions are selected, one 
with shape parameter equal to 3 and unit scale 
parameter (denoted as G(3,1)), and the other with 
shape parameter equal to 2 and unit scale parameter 
(denoted as G(2,1)). The G(3,1) distribution is only 
slightly skewed (coefficient of skewness = 1.15), 
whereas the skewness is more pronounced in the 
G(2,1) distribution (coefficient of skewness = 1.41).  
 The gamma random realizations are 
generated using RNGAM (IMSL Routine) which 
yields random numbers with shape parameter α and 
unit scale parameter (β = 1). 

 
Results 

 
Results For Testing of Symmetry Versus 
Asymmetry For One Sample Cases 
        The robustness and the power of the 
D'Agostino SU test for skewness at significance 
levels of α = 0.05 and 0.25, denoted D(α), and the 
Triples test for symmetry at significance levels of α 
= 0.05 and 0.25, denoted as T(α), are examined in 
this section for the one sample cases.  
 To assess the Type I error, the simulated 
null rejection rates are examined for the four 
symmetric distributions (normal, uniform, double 
exponential, and logistic). The Type I error 
simulated results for the two procedures are 
presented below. The five asymmetric distributions 
(lognormal (0,0.4), lognormal (0,1), lognormal 
(0,1.75), gamma (3,1) and gamma (2,1)) are used to 
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investigate the power. The simulated power results 
for the two tests, and discussion of the one sample 
results also appear below. 
 
Type I Error Comparisons in One Sample Case 
        For the one sample cases, n random realizations 
are generated from each of the four symmetric 
distributions for each of three samples: n = 10, 20, 
or 40. The hypothesis of symmetry is tested using 
the D'Agostino SU test and the Triples test.  

The two procedures are compared for 
control of significance level at two levels: α = 0.05 
and α = 0.25 using the four symmetric distributions. 
A total of 10,000 simulation runs are obtained for 
each of the three sample sizes for each of the four 
symmetric distributions. Hence, twelve simulated 
Type I error p-values are obtained for the Triples 
test for the α = 0.05 cases, and twelve simulated p-
values are also obtained for the α = 0.25 cases. 
Likewise, twelve simulated Type I error p-values are 
obtained for the D’Agostino SU test for each of these 
two levels. 
 
Significant Level Testing at 5% 
        For the 5% significance-level testing cases, the 
simulated Type I error rates (expressed as 
percentages) are categorized into one of the 
following five 5% significance level categories: 
 
 1. x ≤ 2.5 (extremely conservative)     (27) 
 2. 2.5 < x ≤ 4.0 (slightly conservative) 
 3. 4.0 < x ≤ 6.0 (robust) 
 4. 6.0 < x ≤ 10.0 (slightly liberal) 
 5. x > 10.0 (extremely liberal) 
 
 The value "x" represents the percentage of 
rejections for testing Ho: symmetry based on the 
10,000 simulations. A value “x” is obtained for each 
sample size and symmetric distribution combination 
for each procedure. Hence, twelve x values were 
obtained for the T(.05) cases, and twelve for the 
D(.05) cases. 
 The five 5% significance-level testing 
categories in (27) are labeled as robust, conservative 
(slightly or extremely), and liberal (slightly or 
extremely). These five Type I error categories are 
now further defined. 
 The outcome of the D(.05) test and the 
T(.05) test for a particular symmetric case is defined 
to be robust if the simulated null rejection rate is > 

4.0 and ≤ 6.0. The outcome of the D(.05) and the 
T(.05) test is defined to be slightly conservative if 
the simulated null rejection rate is > 2.5 and ≤ 4.0; 
and extremely conservative if the simulated null 
rejection rate is ≤ 2.5. Likewise, the test is 
categorized as slightly liberal if the simulated null 
rejection rate is > 6.0 and ≤ 10.0; and extremely 
liberal if the simulated rejection rate is > 10.0. 

The frequency and percentage of simulated 
Type I error rates observed in each of the five 
categories: a< x ≤ b (given in (27)) is presented in 
Table 1 for the D(.05) and T(.05) tests. 
 
Significance Level Testing at 25% 
 For the D(.25) test and the T(.25) test, the 
percentages of rejections (%) is tabulated for the 
five categories listed below: 
 
 1. x ≤ 12.5 (extremely conservative)     (28)  
 2. 12.5 < x ≤ 17.5 (slightly conservative) 
 3. 17.5 < x ≤ 32.5 (robust)  
 4. 32.5 < x ≤ 37.5 (slightly liberal) 
 5. x > 37.5 (extremely liberal) 
 
 The outcome of the D(.25) test and the 
T(.25) test for the symmetric cases is defined to be 
robust if the simulated null rejection rate is > 17.5 
and ≤ 32.5. The definitions for the conservative and 
liberal classifications in (28) for the D(.25) and 
T(.25) tests are similar to those defined in (27) for 
the D(.05) and T(.05) cases.  

The frequency and percentage of simulated 
Type I error rates observed in each of the categories: 
a< x ≤ b (given in (28)) are also presented in Table 
2 for the D(.25) and T(.25) tests. 
 
Discussion of Robustness for Symmetric Cases 
 Tables 1 and 2 show that the Triples test is 
more robust than the D’Agostino SU test for 
symmetric cases, especially for α = 0.25 testing. The 
T(.25) test is robust in 91.7% (11 of 12) of the cases 
compared to 33.3% (4 of 12) of the cases for the 
D(.25) test. The T(.05) test is robust in 41.6% (5 of 
12) of the cases compared to 25.0% (3 of 12) for the 
D(.05) test. 
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Table 1. Summary of Symmetric Distributions: Frequency of Simulated Null Rejection Rate (%) for 
Symmetry Versus Asymmetry Tests With Nominal 5% Level--One Sample Cases. 
________________________________________________________________________________________ 
 Extremely Slightly  Slightly  Extremely 
Test Conservative Conservative Robust Liberal Liberal 
 ≤2.5  >2.5, ≤4.0 >4.0, ≤6.0 >6.0, ≤10     >10 

 
D(.05) 3 (25.0%) 0 (0.0%) 3 (25.0%) 0 (0.0%) 6 (50.0%)  
T (.05) 3 (25.0%) 2 (16.7%) 5 (41.6%) 2 (16.7%) 0 (0.0%) 
Note: Table 1 results are based on the four symmetric distributions (normal, uniform, double exponential, and 
logistic) and three sample sizes (n = 10, 20 and 40). 
 
 
Table 2. Summary of Symmetric Distributions: Frequency of Simulated Null Rejection Rate (%) for 
Symmetry Versus Asymmetry Tests With Nominal 25% Level--One Sample Cases. 
________________________________________________________________________________________ 
 Extremely Slightly  Slightly Extremely 
Test Conservative Conservative Robust Liberal Liberal 
  ≤12.5 >12.5, ≤17.5 >17.5, ≤32.5 >32.5, ≤37.5     >37.5 
  
D(.25) 2 (16.7%) 1 (8.3%) 4 (33.3%) 1 (8.3%) 4 (33.3%) 
T (.25) 0 (0.0%) 1 (8.3%) 11 (91.7%) 0 (0.0%) 0 (0.0%) 
Note: Table 2 results are based on the four symmetric distributions (normal, uniform, double exponential, and 
logistic) and three sample sizes (n = 10, 20 and 40). 
 
 
 Tables 1 and 2 also show that the 
D’Agostino SU test is appreciably more liberal than 
the Triples test for symmetric cases. The D(.05) test 
is observed to be liberal in 50.0% (6 of 12) of the 
cases compared to 16.7% (2 of 12) for the T(.05) 
test. Also, the D(.25) test is observed to be liberal in 
41.6% (5 of 12) of the cases compared to 0.0% (0 of 
12) of the T(.25) cases. 
 On the basis of the results presented in 
Tables 1 and 2, it is concluded that the Triples Test 
is superior to the D'Agostino SU test for controlling 
Type I error. It is also concluded that the 
D’Agostino SU test does not control the Type I error 
rate for symmetric cases since it fails to maintain the 
Type I error rate at or below the stated level of 
significance. 
 
Results of Power Analysis in One Sample Cases 
        The results of a power comparison of the 
D'Agostino SU test and the Triples test is now 
reported. A total of 10,000 simulation runs are 
obtained for each of the three sample sizes n = 10, 
20, and 40 for each of the five asymmetric 

distributions.  Hence, fifteen simulated power p-
values are obtained for the Triples test for each of 
the T(.05), T(.25), and D(.05), and D(.25) cases.  
 
Definition of Power Categories 
 The results of the simulation for the five 
asymmetric distributions are combined in Table 3 
over all sample sizes for the four power categories 
defined below: 
 1. x ≤ 50.0 (low power)                     (29) 
 2. 50.0 < x ≤ 75.0 (moderate power) 
 3. 75.0 < x ≤ 90.0 (high power) 
 4. x > 90.0 (extremely high power) 
 
 The value "x" represents the power to 
detect asymmetry based on 10,000 simulations for 
each sample size configuration. Each entry in 
Table 3 denotes both the frequency and percentage 
at which a < x ≤ b occurs, as in Table 1. 
 The four power categories in (29) are 
conveniently labeled in order of increasing power: 
low power (power <50%), moderate power (50% 
< power ≤ 75%), high power (75% < power ≤ 
90%), and extremely high power (power > 90%).  
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Table 3. Summary of Asymmetric Distributions: Frequency of Simulated Power Rates (%) for Symmetry 
Versus Asymmetry Tests With Nominal 5% and 25% Levels, One Sample Cases. 
 
 
Test Low Power Moderate Power  High Power Extremely High 
 ≤50.0 >50.0, ≤75.0  >75.0, ≤90.0 Power >90.0 

 
Nominal 5% Level 

D(.05) 6 (40.0%) 3 (20.0%)  3 (20.0%) 3 (20.0%) 
T(.05) 7 (46.7%) 3 (20.0%)  2 (13.3%) 3 (20.0%) 
 

 
Nominal 25% Level 

D(.25) 2 (13.3%) 3 (20.0%)  3 (20.0%) 7 (46.7%) 
T(.25) 3 (20.0%) 4 (26.7%)  2 (13.3%) 6 (40.0%) 
 
Note: Table 3 results are based on the asymmetric distributions [lognormal ( 0, 0.40), lognormal ( 0, 1.0), 
lognormal ( 0, 1.75), G(3,1), and G(2,1)] and three sample sizes (n = 10, 20 and 40). 
 
 
These four power categories are used in Table 3 for 
both 5% and 25% results. 
 
Discussion of Power for Asymmetric Cases 
 Table 3 shows that both the T(.05) and 
D(.05) tests lack power. The power is ≤ 0.75 for 
60% of the cases when using the D(.05) test, and is 
≤ 0.75 for 66.7% of the cases when using the 
T(.05) test. The D(.05) test is generally more 
powerful then the T(.05) test for asymmetric cases. 
 The D(.25) test tends to be somewhat 
more powerful than the T(.25) test. The power is > 
.90 for approximately 47% of the cases when 
using the D(.25) test compared to 40% of the cases 
when using the T(.25) test. In addition, the power 
is ≤ 0.50 for 20% of the cases when using the 
T(.25) test compared to approximately 13% when 
using the D(.25) test. 
 It is concluded that the D'Agostino SU test 
is somewhat more powerful than the Triples test for 
detecting asymmetric distributions. 
 
Discussion of One Sample Simulation Results 
 Table 4 contains summary statistics 
describing the mean, standard deviation (denoted 
as s), minimum, and maximum of the four sets of 
twelve simulated p-values obtained by using the 
D(.05), T(.05), D(.25), and T(.25) procedures for 
the symmetric cases. The symmetric case 

summary statistics can be used to characterize the 
Type I error properties of these test procedures. 

The symmetric mean p-value is denoted as  p─s in 
Table 4. 
 Table 5 also contains the corresponding 
summary statistics of the four sets of fifteen 
simulated p-values obtained by the same four test 
procedures for the asymmetric cases. The 
asymmetric case summary statistics can be used to 
characterize the power properties of these 
procedures. The asymmetric mean p-value is 

denoted as  p─a in Table 5. 
 For the symmetric cases summarized in 
Table 4, the average Type I error rates for the 
T(.05) and T(.25) procedures are sp = 4.1% and 

sp  = 21.5%, respectively, compared to sp  = 
11.2% and sp  = 31.0% for the D(.05) and D(.25) 
procedures, respectively. The average Type I error 
rates for the Triples test are observed to be closer 
to the stated significance levels of 5% and 25% 
then are those for the D'Agostino SU test. 
 For the symmetric cases summarized in 
Table 4, the standard deviations s and ranges of 
the p-values for the T(.05) and the T(.25) 
procedures are appreciably smaller than the 
comparable standard deviations and ranges for the 
D(.05) and the D(.25) procedures. 
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Table 4. Descriptive Statistics of the Simulated p-
values for Four Test Procedures: D(.05), T(.05), 
D(.25), and T(.25) for Symmetric Cases 
(Summary statistics displayed as percentages) 
__________________________________________ 
Type I Error     Significance  Significance 
Summary       level 5%     level 25% 
Statsitics   D(.05)    T(.05)  D(.25) T(.25) 
__________________________________________ 

ap    11.2   4.1  31.0  21.5 
s   10.5   1.6  16.0    2.6 
minimum     0.2   1.6    8.0  16.3 
maximum   33.2   6.3  58.0  25.0 
n   12   12  12  12 
__________________________________________ 
 
 Table 5 contains the corresponding 
summary statistics of the four sets of fifteen 
simulated p-values obtained by the same four test 
procedures for the asymmetric cases. The 
asymmetric case summary statistics can be used to 
characterize the power properties of these 
procedures. The asymmetric mean p-value is 

denoted as  p─a in Table 5. 
 
Table 5. Descriptive Statistics of the Simulated p-
values for Four Test Procedures: D(.05), T(.05), 
D(.25), and T(.25) for Asymmetric Cases 
(Summary statistics displayed as percentages). 
__________________________________________ 
Power   Significance  Significance 
Summary     level 5%     level 25% 
Statsitics    D(.05)   T(.05)  D(.25) T(.25) 
__________________________________________ 

ap    60.4    52.6  80.0   75.2 
s   30.0    34.2  20.1   24.0 
minimum   16.8      5.7  44.3   33.0 
maximum   100.0   100.0  100.0 100.0 
n   15   15  15  15 
__________________________________________ 
 
Summary 
      For symmetric cases summarized in Tables 
1,2, and 4, it is concluded that the Triples test is 
superior to the D'Agostino SU test for the control 
of Type I error. The Triples test tends to hold to 
the stated level of significance. The D'Agostino SU 
test does not hold to the stated level of 
significance and often tends to be liberal. 
 For the asymmetric cases summarized in 
Table 5, the average powers of the T(.05) and the 

T(.25) procedures are ap  = 52.6% and ap  = 
75.2%, respectively, compared to ap  = 60.4% and 

ap  = 80.0%, respectively for the D(.05) the D(.25) 
procedures. The D’Agostino SU test is observed to 
be slightly more powerful than the corresponding 
Triples test. The D'Agostino SU test may be more 
powerful for asymmetric alternatives because the 
D'Agostino SU test tends to be liberal with respect 
to Type I error control. 
 
Testing Symmetry Versus Asymmetry In 
Preliminary Testing For Two Sample Cases 
  A purpose of this study is to select a 
preliminary test of testing symmetry versus 
asymmetry, and using the preliminary test to select 
the most appropriate method for testing the 
equality of two independent means Ho: µ1 = µ2 . A 
two sample t procedure is commonly used if the 
underlying distributions are symmetric, and a 
Mann-Whitney-Wilcoxon (MWW) procedure may 
be more appropriate if the underlying distributions 
are asymmetric. The decision to use the t or the 
MWW procedure is often based on the personal 
preference of the investigator, or an examination 
of descriptive and graphical comparative statistics 
between the two samples. 
 Little evidence exists in the statistical 
literature of the use of tests of symmetry versus 
asymmetry as a preliminary test to select the t or 
MWW methods prior to testing Ho: µ1 = µ2. In 
these situations, the t procedure would be used if 
the preliminary test for skewness is non-
significant; otherwise, the MWW procedure is 
used. 
 
Two Sample Preliminary Testing Strategies 

Assume there are two independent 
samples of sizes n1 and n2 from two distributions 
f1(x1; µ1, σ1) and f2(x2; µ2, σ2), respectively. Let us 
assume that the same skewness test is applied to 
the data from the two samples separately where 
the same significance level α is used for both tests. 
 Two preliminary testing protocols are 
defined. One utilizes the MWW test of Ho: µ1 = µ2 
if at least one (ALO) of the two preliminary 
skewness tests is significant. The other utilizes the 
MWW test if both (BOTH) preliminary tests are 
significant. There two preliminary testing 
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strategies are conveniently labeled: ALO and 
BOTH. 
 
Selection of a Preliminary Testing Strategy 
 The one-sample simulation results 
summarized in Tables 4 and 5 are used to select a 
preliminary testing method between the BOTH 
and ALO protocols. For this purpose, it is 
convenient to utilize the average p-values: sp  and 

ap  p-values of the twelve symmetric and fifteen 
asymmetric distributions, respectively, 
summarized in Tables 4 and 5 for the D(.05), 
T(.05), D(.25), and T(.25) one-sample skewness 
test procedures. 
 Assuming symmetry (SYM) is true, the 
probability of correct selection of the t method for 
testing Ho: µ1 = µ2 is approximately given as: 
 
 1 - sp 2 for the BOTH method, and   (30a) 
 
 (1 - sp )2 for the ALO method.      (30b) 
 
 Assuming asymmetry (ASY) is true, the 
probability of correct selection of the MWW 
method for testing Ho: µ1 = µ2 is approximately 
given as: 
 
 ap 2 for the BOTH method, and      (31a) 
 
 1- (1 - ap )2 for the ALO method.    (31b) 
 
 Table 6 contains the probabilities of 
correct preliminary test selection of the t or MWW 
method for testing Ho: µ1 = µ2 depending on 
whether the underlying distribution in symmetric 
(SYM) or asymmetry (ASY), and whether the 
BOTH or ALO preliminary test strategy is used. 
 For SYM cases, the BOTH method has the 
higher probabilities of correct selection of the t test 
since:  1- 2

sp  > (1 - sp )2.  Whereas for ASY cases, 
the ALO method has the higher probabilities of 
correct selection of the MWW test since: 1- (1 -   

 p─a)2 > p─a
2. 

 
 
 
 

Table 6. Probabilities of Correct Preliminary Test 
Selection of the Method to Test Ho: µ1 = µ2 
____________________________________________ 
Correct Preliminary          
Selection Test       Underlying Correct 
Probability Protocol      Distribution Methods 
____________________________________________ 

1 - p
─

s
2  BOTH     SYM t 

 (1 - p
─

s)2 ALO      SYM t  

 p
─

a
2    BOTH     ASY MWW 

1- (1 - p
─

a)2 ALO       ASY MWW 
_____________________________________________ 
 
 Table 7 contains the estimated 
probabilities of correct preliminary test method 
selection described in Table 6 for the various 
methods. The estimated probabilities in Table 7 

are calculated utilizing the average ps
─ and p─a 

values tabled in Tables 4 and 5. 
 
Table 7. Estimated Preliminary Test Probabilities 
of Correct Selection of the Method to Test Ho: µ1 
= µ2 
__________________________________________ 
                                          BOTH            ALO 
                                     ----------------  ----------------- 
Method  sp       ap      SYM  ASY      SYM  ASY 
__________________________________________ 
D(.05)  .112   .604    .987   .365       .789   .843 
T(.05)  .041   .526    .998   .277       .920   .775 
D(.25)  .310   .800    .904   .640       .476   .960 
T(.25)  .215   .752    .954   .556       .616   .938 
__________________________________________ 
 
 
Discussion 
 Preliminary testing methods are 
recommended that maximize the Table 7 
probabilities of correct selection for the SYM and 
ASY cases. Using this criterion, the BOTH 
method is preferred for correct t test selection for 
SYM cases, and the ALO method is preferred for 
correct MWW test selection for ASY cases. Also, 
the 5% significance level is preferred for SYM 
cases, and the 25% level is preferred for ASY 
cases. Furthermore, the Triples tests are preferred 
for SYM cases, and the D'Agostino SU tests are 
preferred for ASY cases. 
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 How then can a single preliminary testing 
strategy be selected if different strategies, 
significance levels, and methods are preferred for 
SYM versus ASY cases?  
 To resolve this question another 
preliminary test comparison criterion is 
introduced. 
 Preliminary testing methods are 
recommended that tend to provide equal or nearly 
equal probabilities of correct method selection for 
both SYM and ASY cases. Using this criterion 
with the results in Table 7, two methods are 
recommended for preliminary test usage. These 
are the T(.05) and D(.05) procedures, where both 
use the ALO method. 
 The probabilities of correct method 
selection are 0.920 for SYM cases and 0.775 for 
ASY cases using the T(.05) ALO method. The 
corresponding probabilities are 0.789 and 0.843, 
respectively, for the D(.05) ALO method. No other 
procedures in Table 7 have this high degree of 
balance between the equality of probabilities of 
correct model selection for typical SYM and ASY 
cases.  The T(.05) method is preferred if more 
emphasis is needed for correct method selection 
for SYM cases, whereas, the D(.05) method is 
preferred if more emphasis is needed for correct 
method selection for ASY cases. 
 

Conclusion 
 

One Sample Symmetry Versus Asymmetry Tests 
 The one sample Triples test is superior to 
the D'Agostino SU test for the control of Type I 
error for symmetric cases, whereas, the one 
sample D'Agostino SU test is slightly more 
powerful than the Triples tests for asymmetric 
alternatives. 
 
Preliminary Test Of Symmetry Versus Asymmetry 
Prior To A Test Of Equality Of Means 

The Triples test using a 5% level of 
significance is preferred if more emphasis is 
needed for correct method selection for symmetric 
cases, whereas, the D'Agostino SU test using a 5% 
level of significance level is preferred if more 
emphasis is needed for correct method selection 
for asymmetric cases. 
 
 
 

Recommendations 
A simulation study examining the 

characteristics of the use of a preliminary test of 
skewness versus asymmetry prior to testing Ho: µ1 
= µ2 would be of interest. On the basis of the 
analyses reported here, the Triples test or the 
D'Agostino SU test with a 5% level of significance 
is recommended over the Triples test or the 
D'Agostino SU test with a 25% level of 
significance as a preliminary test of skewness 
versus asymmetry prior to testing Ho: µ1 = µ2. 
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On the Estimation of Binomial Success 
Probability With Zero Occurrence in Sample 
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The problem of estimating the probability of a rare event when the sample shows no incidence of the event is 
considered. Several methodologies based on various statistical techniques are described and their relative 
performances are investigated. A decision theoretic approach for estimation of response probability when the 
sample contains zero responses is examined in depth. The properties of each method are discussed and an 
example from teratology is used to provide illustration and to demonstrate the results. 
 
Key words: Binomial distribution, response probability estimation.  
 

Introduction 
 
There are many instances in practice that an 
estimate of the probability of occurrence of a rare 
event is desired. Because of the low probability of 
the event, however, the experimental data may 
conceivably indicate no occurrence of that event. 
For example, in cancer risk estimation with 
laboratory animals, often at low doses, data may 
exhibit no animals with tumors, even though there 
is a nonzero probability of response at that dose. 
More specifically, suppose that X is the number of 
occurrences of an event in a sample of n 
independent and identical Bernoulli trials. Then X 
has a binomial distribution with 

n , 1, 0,   x )p1(p
x
n

   x) P(X x-nx =−







==  (1) 

where p is the probability of occurrence in each 
trial.   It     is   well   known   that  the     maximum  
  
Professor Mehdi Razzaghi’s area of interest is 
environmental statistics with applications of 
statistical modeling and risk assessment in 
toxicological experiments. Address: Mathematics, 
Computer Science, & Statistics, Bloomsburg 
University, Bloomsburg, PA  17815. E-mail: 
razzaghi@bloomu.edu. The author is grateful to the 
Editor and the anonymous referees for their 
helpful comments. 
 

likelihood estimate of p is x/n. But when x = 0, 
this estimate is often unrealistic and alternative 
methods should be utilized to estimate p. 
Observation of zero occurrence in a sample is not 
uncommon in practice. Table 1 provides numerical 
values of the probability of zero successes in 
binomial experiments for different sample sizes.  
 
Table 1. Probability of zero response for varying 
sample sizes and different true response 
probabilities. 
 
   p 
\ 
n 

 
 
0.01 

 
 
0.02 

 
 
0.05 

 
 
0.07 

 
 
0.10 

 
 
0.15 

 
 
0.20 

1 0.990 0.980 0.950 0.930 0.900 0.850 0.800 
2 0.980 0.960 0.902 0.865 0.810 0.722 0.640 
4 0.961 0.922 0.814 0.748 0.656 0.522 0.410 
10 0.904 0.817 0.599 0.484 0.349 0.197 0.107 
20 0.818 0.668 0.358 0.234 0.122 0.039 0.011 
30 0.740 0.545 0.215 0.113 0.423 0.008 0.001 
 
     Note that even when p is as high as 0.05 and the  
sample is as high as twenty, there is still a 36% 
chance of no response in the data. Bailey (1997) 
considered the problem of estimating p when the 
sample has no occurrence and proposed a method 
currently used in risk analysis of energetic 
initiation in the explosive testing field. This 
estimator is given by 
 
  1/n(0.5) - 1  p̂ =               (2) 
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which is obtained by setting the probability of 
observing n failures equal to 0.5 and solving for p. 
Bailey noted that this estimator is nearly identical 
to the median of the Bayesian posterior 
distribution for p, derived with respect to a 
uniform distribution using the absolute error loss 
(AEL) function. 

The problem of Bayesian estimation of p 
with respect to the more general class of a 
conjugate beta prior distribution but using the 
squared error loss (SEL) was considered by Basu 
et at. (1996). By comparing (2) with a few other 
estimates, Bailey (1997) concluded that p̂  
performs relatively well in practice and can be 
used in certain circumstances. It is also worth 
noting that because the upper 100(1 - α)% 
confidence limit for p is (see Bickel & Doksum, 
2001) given by  

 
 1/n - 1 u α=  
 

then (2) can be interpreted as the median of the 
sampling distribution of the random variable X/n. 
Moreover, as mentioned in Louis (1981), u may be 
thought of as the proportion of the number of 
successes in a future experiment of the same size 
and it is the upper 100(1 - α)% Bayesian 
prediction interval based on a uniform prior 
distribution. 

In this paper, the problem of point 
estimation of p when a sample shows no 
occurrence is considered from a more general 
viewpoint. Several potential estimates based on 
statistical methods in addition to those suggested 
in Bailey (1997) and Basu et al. (1996) will be 
proposed and their properties will be discussed. 
Next, I review the Bayesian approach and consider 
the use of other loss functions, and then discuss 
the properties of an estimate derived from 
information theory. The next section is devoted to 
the discussion of a decision theoretic approach for 
estimating p, and the use of minimax estimation of 
p is considered. In the final section of this article, I 
give an example from teratology to provide further 
illustration of the results. 

 
Bayesian Estimation 

It is well known that when the prior 
distribution of p belongs to the family of a beta 
distribution β(a, b), 

 

1  p  0 0,  b a,  p)1(p
b)B(a,

1  g(p) 1-b1a <<>−= −  

                                                          (3) 
where 
 

  
b) (a
(b)(a)  b)B(a,

+Γ
ΓΓ

=   

      
then the posterior distribution of p belongs to the 
beta family β(a + x, b + n – x) and the Bayes 
estimate p* of p based on the SEL function L(p,p*) 
= (p – p*)2, is given by (Basu et al., 1996)  
 

  
n)  b  (a

 x) (a  p*

++
+

=              (4) 

 
Thus, if x = 0, then the Bayes estimator for a zero 
occurrence is 
 

  
n  b  a

a  p*

++
=               (5) 

 
and in particular if a = b = 1, then the Bayes 
estimator under a uniform prior is derived. Also, 
when Jeffreys’ non-informative prior, for which a 
= b = 0.5 is used, then the Bayes estimator of no 
response is given by   

  
)1n(2

1p*
ni +
=              (6) 

 
Basu et al. (1996) compared (5) and (6) with the 
classical approach based on upper confidence 
limits and conclude that the Bayes estimate under 
an informative prior is best. Both estimates (5) and 
(6), however, are derived using the SEL function 
which is but one of several possible loss functions 
that may be used to derive the Bayes estimate of p. 
In practice, there are many instances that other 
functions may be preferred. 

Actually the SEL is a special case of a 
larger class of weighted quadratic loss functions 

 
  2** )p-p)(p(w)p L(p, =         (7) 
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where w(p) ≥ 0 is an appropriate weight function. 
For the class (7) the posterior expected loss is 
minimized when 
 

  
E(w(p))
E(pw(p))p* =               (8) 

 
where the expectation is with respect to the 
posterior distribution of p. In particular if w(p) is 
of the form 
 
  βα p)1(p  w(p) −=               (9) 
 
for some α and β, then from (8) 
 

  
)p)1(E(p

))p1(1E(p*P βα

βα

−

−+
=             (10) 

 
which for the family of beta prior, yields 
 

  
    n   b  a

xa*p
βα

α
++++

++
=            (11) 

 
Now, if 0== βα , then (4) is obtained as a 
special case of this larger class of estimates. 
Another special case, and possibly more 
appropriate for the purpose of risk assessment, in 
(11) is when ,1−== βα  corresponding to the 
scaled square error loss (SSEL) function 
 

  
p) -p(1
)p - p()p L(p,

2*
* =  

 
In this case, however, it is easy to see that when x 
= 0, and a = 1, then *p  is the only estimate which 

produces an infinite posterior expected loss.  
Hence, when there is no occurrence in the sample 
the SSEL function does not produce a useful 
solution. Indeed, when x = 0, the SSEL function 
produces a negative estimate of p for a < 1. Note 
also from (11) that in this case the Bayes estimate 
with respect to a uniform distribution is identical 
to the maximum likelihood estimate. 

Aside from the class of squared error loss 
functions, a class of functions often used in 

Bayesian estimation is the absolute error loss 
(AEL) given by 

 
  ,  |p-p|)p L(p, ** =  
 
for which the Bayes estimate is the median of the 
posterior distribution. Hence for the family of beta 
prior (3), when x = 0, we seek *

1p  such that 
 

∫ =−
+

=+ +
*
1

*
1

p 
0 

1-nb1-a
p 0.5  dpp)1(p

n) b B(a,
1 n)b a,(I

                (12) 
 
which for given values of a and b can be evaluated 
using tables of incomplete beta functions (e.g. 
Pearson & Hartley, 1956) or any standard 
numerical technique. Specifically, if a = b = 1, 
then (12) yields 
 
  1)1/(n*

1 )5.0(1p +−=             (13) 
 
which, as noted earlier, is for large n 
approximately equal to the Bailey (1997) estimate. 
Also, when Jeffrey’s non-informative prior (a = b 
= 0.5) is used, an approximation to the solution of 
(12) may be obtained by using a procedure 
described in Johnson and Kotz (1995) regarding 
the approximations to the beta function ratio. 
Accordingly, if  *

1.ni
p  denotes the solution of (12) 

for a = b = 0.5, then an approximate value of 
*

n 1, i
p  can be obtained as the solution of 
 

0
1 n

1/2-x
1 2n

x2 
5
1  x)1(

3
7 n 

6
1n =

+
+

+
+−






 +−+

                (14) 
 
where the error of approximation is generally 
below .001. 

Another choice of a loss function for 
Bayesian estimation is the so-called zero-one loss 
defined as 
  

 






>
≤=
ε
ε

 |p-p|  if1
 |p-p|  if0)pL(p, *

*
*  
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which amounts to no loss if the estimate p* is 
within a distance ε from p. For this loss function, 
the expected posterior is given by 
 
       x).| |p-pP(| - 1    x)|   |)p-pP(| ** εε ≤=>  
 

Consequently, if a modal interval of 
length 2ε is defined as an interval with center at 
the mode of the distribution, then as ε→0, the 
Bayes estimate with respect to the zero-one loss 
approaches the mode of the posterior distribution, 
provided that a mode exists. This in turn implies 
that the Bayes estimate in this case becomes the 
maximum likelihood estimate. 

 
 
Maximum Information Estimation 

Good(1965) and Typlados and Brimley 
(1962) showed that Shannon’s information content 
of the observation x from the binomial distribution 
(1) is given by 

 









−








+= x-nx )p1(p

x
n

lnp) - p)ln(1 - (1  -  pln(p)-  I(p)

                (15) 
 
By maximizing I(p), one obtains the maximum 
information (MIE) estimate pMIE of p as the 
solution of the equation 
 

  
p1
x-n

p
x

p-1
pln

−
−=








            (16) 

 
In particular when x = 0, the MIE of p is the 
solution of 
 

  .
p1

1exp
p-1

p
n 








−

−=           (17) 

 
Chew (1971) pointed out that for n > 7, the 
solution of (17) is up to 3 decimals equal to zero 
and, once again, it is seen that this method fails to 
produce a reasonable estimate for p. 
 
Minimax Estimation 

The minimax criterion stems from the 
general theory of two-person zero-sum games of 
von Neuman and Morgenstern (1944). Loosely, 

instead of averaging the risk as in Bayesian 
estimation, one looks at the least favorable 
scenario for each decision, that is the worst 
possible risk for that decision, and chooses a 
decision which gives the least value of the worst 
risk. Thus, the minimax rule minimizes the 
maximum risk. Although the methodology ignores 
all references to prior knowledge, but in the 
absence of any information regarding p, the 
minimax estimator provides a Bayesian estimate 
without knowing the prior distribution. As pointed 
out by Cox and Hinkley (1974), the minimax rule 
is defensible when the risk is small, since it 
ensures that, whatever the true parameter value, 
the expected loss is small. Although there may be 
an apparently better rule, any improvement can 
only be small and may carry with it the danger of a 
seriously bad performance for some values of the 
parameter. 

Now, for the binomial parameter p in (1), 
it can be shown that the minimax decision rule, 
based on the SEL function, is given by (Bickel and 
Doksum, 2001) 

 

  
nn

2
n x 

  p~
+

+
=              (18) 

 
with variance bounded by 
 

  [ ] 2
)n2(1v
−

+=             (19) 
 
The minimax estimator (18) is Bayes with respect 
to a beta prior with parameters 
 

2/n  and .2/n  If x = 0, then from (18), 
  

[ ] 1
)n2(1p~
−

+=             (20) 
which can be used to estimate the probability of a 
rare event. In order to compare the minimax 
estimator given in (20) with those considered in 
Bailey (1997), p~  was evaluated for several values 
of n. Table 2 presents these numerical values, 
where for comparison, the values of p̂  in (2), the 
estimator suggested by Bailey and the Bayes 

estimator *
nip  based on a noninformative prior 

given in (6) are also included. As the sample size 
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increases, the minimax method appears to produce 
numerically larger point estimates. 
 
Table 2. Numerical values of minimax ( )p~ , Bayes 

( )*
nip  and Bailey ( )p̂  estimator.  

  

 
 
 

 
 
Example 

Kochhar et al. (1992) describes an 
experiment to examine the developmental toxicity 
of two retinoylamino acids, RG and RL in IRC 
mice and compare them with other retinamides. 
One of the observed effects was the incidence of 
cleft palate in the viable fetuses. Table 4 presents 
the percentage of fetuses with cleft palate for 
different doses together with the number of 
implants per dose group as a result of maternal 
exposure to retinoic acid (RA). 

 
 Table 4. Incidence of cleft palate in offspring of 
mice exposed to retinoic acid (RA). Source: 
Kochhar et al. (1992). 

Because the binomial distribution E(X) = 
np, it is clear from (4) and (18) that 

  
1)2(n
12np)E(p*

ni +
+

=             (21) 

and 

  
)1n(2
1n2  )p~E(

+
+

=
p

            (22) 

Table 3 provides the numerical values of (21) and 
(22) for selected values of n and p where for 
completeness we also include a crude estimate of 

),p̂E(  computed by using (2) for x = 0. 
 
 
 

 
 
It is observed that even though there was 

1% response rate in the control group, there was 
no occurrence of cleft palate in the 5 mg/kg dose 
group. The incidence rate in other dose groups 
showed a statistically significant difference from 
the control group. For risk assessment purposes, in 
practice one would fit a suitable dose-response 
model to these data and extrapolate to low 
exposure levels to obtain an upper confidence 
limit for the risk at a fixed low dose. 

 The model can equivalently be used to 
obtain a benchmark dose, which is the lower 
confidence limit for dose corresponding to a given 
low negligible level of risk.  However, because of 
no incidence at the lowest non-zero dose level, one 
might erroneously consider fitting a non-
monotonic dose-response function. 

That is, the analysis might lead to the 
conclusion that the chemical has a hormetic effect, 
i.e. it is low dose stimulative and high dose 
inhibitive. For a discussion on the concept of 

n 1 2 4 10 20 30 40 
p~  .250 .207 .167 .120 .091 .077 .062 

*
nip  .250 .167 .100 .045 .024 .016 .010 

p̂  .500 .293 .159 .067 .034 .023 .014 

p .01 .05 .10 
n p~  *

nip  p̂  p~  *
nip  p̂  p~  *

nip  p̂  

4 0.173 0.108 0.169 0.200 0.140 0.209 0.233 0.180 0.259 
10 0.128 0.054 0.077 0.158 0.091 0.117 0.196 0.136 0.167 
20 0.099 0.033 0.044 0.132 0.071 0.084 0.173 0.119 0.134 
30 0.086 0.026 0.033 0.119 0.064 0.073 0.162 0.113 0.123 
40 0.077 0.022 0.027 0.111 0.061 0.067 0.155 0.110 0.117 
50 0.071 0.020 0.023 0.105 0.059 0.064 0.149 0.108 0.114 

Table 3. Expected values of minimax ( )p~ , Bayes ( )*
nip  and Bailey ( )p̂  estimators for varying sample 

sizes and for different true response probabilities. 
 

Dose mg/kg 0 5 10 25 100
Number of 
Implants 

152 98 78 86 164

% with Cleft 
Palate 

1 0 13 33 82 
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chemical hormesis we refer to Calabrese and 
Baldwin (2000). However, as shown in Razzaghi 
and Loomis (2001), in developmental toxicology, 
more than a single replication of an experiment 
must be considered before a chemical can be 
declared as being hormetic. For the present data, 
therefore, in order to fit a monotonic dose-
response function, one might consider replacing 
the observed incidence of zero by an estimate of it. 
In such a situation, it would seem unreasonable to 
estimate the probability of response in the 5 mg/kg 
dose group as 0, as given by the maximum 
likelihood method. In this case, because n = 98, 
from (2), (6), (14) and (20), 

0.046  p~   ,021.p   ,005.p    .007,  p̂ *
ni 1,

*
ni ====

are four different point estimates for the 
probability of response at the first nonzero dose 
level. 

In order to further investigate the 
properties of these estimates, a probit model was 
used to fit the response probability p as a function 
of the natural logarithm of dose, i.e.  
  d) log b  a(p +Φ=             (23) 
Using PROC PROBIT in SAS (1996), it was 
found that the maximum likelihood estimates of 
the model parameters are 

0.987.b̂ and  03.601  â ==  Using these 
parameter estimates, it is found that the point 
estimate of p when d = 5 mg/kg is .022. 
Furthermore, the standard deviation of 

5  log  b̂  â +  is 0.163. Based on these quantities, if 
the 95% confidence interval is evaluated for the 
predicted proportion, one finds that this range is 
(.010, .046). Interestingly, although the minimax 
estimator p~  is equal to the upper bound in this 
range, both the Bailey estimator p̂  and the 

Bayesian estimator   p*
ni are outside this range and 

far too small to be plausible. Therefore, in this 
instance, and p*

ni1,  the minimax procedure appear 
to produce more realistic estimates of p compared 
to other methods. 
 

Discussion 
 
Lack of occurrence of rare events in biological and 
physical experiments is not uncommon. In such 
situations, the maximum likelihood estimate 

becomes unusable and one needs to resort to 
alternative statistical methods.  Here, I have 
considered this problem and investigated the use 
of several other statistical techniques and the 
minimax estimator. 

It is immediately noted from (2) that for 

the Bailey estimator, .
n
10  p̂ 





=  This property 

also holds for the Bayesian estimator considered 
by Basu et al. (1996). However, for the minimax 

estimator, from (18) .
n

10  p~ 







=  This means that 

for relatively large values of n, both p̂  and the 
Bayes estimate lead to numerically smaller values 
than the minimax estimator. Actually, it can be 
shown (Roussas, 1997) that the Bayes estimate for 
the family of beta prior and SEL has the same 
asymptotic distribution as the maximum likelihood 
estimate for arbitrary fixed values of α and β, 
while the asymptotic distribution of p)- p~(n  is 

normal with mean p
2
1
−  and variance p(1-p). 

Thus, I can say that the minimax estimator is 
comparatively more conservative. 

However, as discussed by Carlin and 
Louis (1996), although informative priors enable 
more precise estimation, extreme care must be 
taken in their use because they also carry the risk 
of disastrous performance when their informative 
content is in error. Although using a non-
informative prior leads to a more conservative 
Bayes estimate, there may be situations when 
Bayes and other methods underestimate the value 
of this rare event. This result is demonstrated 
through an example in developmental toxicology. 

The conclusion of this paper is not 
necessary to recommend the minimax or any other 
estimator in all situations when there is a zero 
response. Rather, the goal is to increase awareness 
and recommend that more caution should be taken 
when any single method is used to estimate the 
success probability when sample shows zero 
occurrence. The choice of the estimate should to a 
large extent depend on which kind of optimality is 
judged to be most appropriate for the case in 
question. 
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Despite recent publications exploring model complexity with modern regression methods, their 
dimensionality is rarely quantified in practice and the distributions of related test statistics are not well 
characterized. Through a simulation study, we describe the null distribution of the likelihood ratio statistic for 
several different feed-forward neural network models. 
 
Key words: degrees of freedom, model complexity, chi-square distribution. 
 

Introduction 
 
Neural networks have become a popular 
regression method for classification and prediction 
of high-dimensional and/or highly non-linear data 
(Ripley, 1994). Their appeal in such circumstances 
is due to their implicitly non-linear model 
structure, which does not require the user to 
explicitly define the presence, or degree, of 
interactions and non-linear terms, and subsequent 
ability to universally approximate any function 
(Ripley, 1996). In cases where complex models 
are needed to fit the underlying associations, but 
the nature of those associations is not well 
understood, neural networks are hypothesized to 
offer a more effective approach to classification. 
Other consequences of this implicit non-linearity, 
however, are 1) the propensity of neural networks 
to over-fit the training data, and 2) the inability to 
equate the number of model parameters with the 
effective model dimension. 
 
 
Douglas Landsittel (landsittel@upci.pitt.edu) is 
Research Assistant Professor, Biostatistics Dept., 
University of Pittsburgh, and Statistician, 
Pittsburgh Cancer Institute. Harshinder Singh 
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Researcher, Biostatistics Branch, NIOSH/HELD. 
Vincent C. Arena (arena@pitt.edu) and Stewart 
Anderson (andersons@nsapb.pitt.edu) are 
Associate Professor, Biostatistics Department, 
University of Pittsburgh. 

Other studies have rigorously investigated 
the issue of model complexity, both specifically 
for neural networks, and more generally for non-
parametric and non-linear regression models. 
Hastie and Tibshirani (1990), and Loader (1999) 
calculated degrees of freedom for scatterplot 
smoothers, local regression, and other 
nonparametric models using the trace of the hat 
matrix. For more complex models or model 
selection procedures, where the hat matrix cannot 
be explicitly specified, Ye (1998) proposes the 
generalized degrees of freedom, which estimates 
the hat matrix diagonal based on the sensitivity of 
fitted values to changes in observed response 
values. Hodges and Sargent (2001) extended 
degrees of freedom to random effects, hierarchical 
models, and other regression methods (and show a 
connection to Hastie & Tibshirani, 1990; and Ye, 
1998) using a re-parameterization of the trace of 
the hat matrix.  

More specific to neural networks, Moody 
(1992) and others (Ripley, 1995; Liu, 1995; Amari 
& Murata, 1993; Murata, Yoshizawa, & Amari, 
1991) calculated the effective number of model 
parameters based on approximating the test set 
error as a function of the training set error plus 
model complexity. Other methods (as summarized 
by Ripley, 1996; and Tetko, Villa, & Livingstone, 
1996) include cross-validation, and eliminating 
variables based on small (absolute) parameter 
values, or variables with a small effect on 
predicted values (i.e. sensitivity methods). 
Bayesian approaches have also been proposed 
(Ripley, 1995; Ripley, 1996; Paige & Butler, 
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2001) for model selection with neural networks. 
Implementation of such methods, however, has 
been limited by either computational issues, 
dependence on the specified test set, or lack of 
distributional theory.  

To our knowledge, no previous studies 
have directly investigated the distribution of the 
likelihood ratio statistic with neural networks. In 
this study, simulations are conducted to 
empirically describe the distribution of the 
likelihood ratio statistic under the null assumption 
of the intercept model (versus the alternative of at 
least one non-zero covariate parameter). All 
simulations are conducted with a single binary 
response; in contrast, the previously cited 
literature primarily focuses on continuous 
outcomes. In cases where the likelihood ratio can 
be adequately approximated by a chi-square 
distribution, the degrees of freedom can be used to 
quantify neural network model complexity under 
the null. Derivation of the test statistic null 
distribution is pursued through simulation 
approaches, rather than theoretical derivations, 
because of the complexity of the network response 
function and the lack of maximum likelihood or 
other globally optimal estimation. 

The two main objectives of this simulation 
study are to 1) verify that the chi-square 
distribution provides an adequate approximation to 
the empirical test statistic distribution in a limited 
number of simulated cases, both for the test of 
independence and tests of nested models, and 2) 
quantify how the distribution and number of 
covariates, and the number of hidden units affects 
model degrees of freedom. Adequacy of the chi-
square approximation will be judged by how close 
the α -level based on the simulation distribution 
(i.e. the percent of the test statistic distribution 
greater than the corresponding chi-square quantile) 
is to various percentiles of the chi-square 
distribution. The variance, which should be 
approximately twice the mean under a chi-square 
distribution, is also displayed for each simulation 
condition. 
 

Methodology 
 
A Feed-Forward Neural Network Model 
 This study is restricted to feed-forward 
models, which are the most common type of 
neural networks implemented in classification of 

single dichotomous outcomes. We assume that y 
follows a Bernoulli distribution; x-values can 
follow any distribution, but are scaled to the 
interval [0,1] before fitting the model. Without 
doing so, the initial weights of the network would 
have to account for differences in magnitude, as 
would the process of weight decay (described 
later).  

The predicted value, ŷ , for the kth 
observation, with covariate values (or inputs) 
xk 1 2( , ,..., )k k pkx x x= , is given by  

 

   0
1 1

ˆ ( { })
pH

k j jo ji ik
j i

y f v v f w w x
= =

= + +∑ ∑       (1) 

 
(Ripley, 1996), where ( )f x  is the logistic 

function, 1
(1 )xe−+

. Each logistic function of the 

weight sum of the data, 
1

{ }
p

jo ji ik
i

f w w x
=

+∑ , is 

referred to as the jth hidden unit. The predicted 
response of the neural network is calculated as a 
linear combination of these hidden unit values; the 
parameters 0 1, ,..., Hv v v  are referred to as the 
connections between the hidden and output layer. 
Each set of parameters 1 2, ,...,j j jpw w w  then 
represents the weights of the p covariate values 
specific to the jth hidden unit, or the connections 
between the input and hidden layer. One 
implication of this non-linear model structure is 
that none of the parameter values directly 
corresponds to any specific main effect or 
interaction. 
 Model fitting is typically accomplished 
through the procedure of back-propagation 
(Rumelhart, et al., 1995), where model parameters 
are iteratively updated using a gradient descent-
based algorithm. We used the nnet function by 
Ripley in S-Plus (Venables & Ripley, 1997) to fit 
all neural network models in this study. The error 
criteria for dichotomous outcomes, namely 
minimization of 
 

 
1

1[ log (1 ) log ],
ˆ ˆ1
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with respect to the parameters of interest is 
equivalent to finding global maxima of the 
corresponding likelihood function. 
 This study also incorporated weight decay, 
which is almost universally used to improve 
optimization and generalization. Rather than 
minimizing E in Equation 2, the fitting algorithm 
is applied to minimize 
 

2 2

1 1

[ ],
pH

j ji
j i

E v wλ
= =

+ +∑∑           (3) 

 
and thus penalize the network for large parameter 
values. To determine the magnitude of λ  for 
dichotomous outcomes, Ripley (1996) 
recommended exploration in the range of 
[0.001,0.1], which is based on Bayesian arguments 
and the range of the logistic function. For this 
study, we utilized λ  = 0.01 for most simulations; 
additional simulations were also conducted with 
λ  = 0.10. 
 
Likelihood Ratio Test of Independence 
 The likelihood ratio statistic for testing 
model independence with neural networks 
corresponds to the usual expression from logistic 
regression,  
 

1

1 1 0 0

ˆ ˆ2{ [ log (1 ) log(1 )]

           [ log log log ]},
=

= + − −

− + −

∑
n

k k k k
k

D y y y y

n n n n n n
  

                            (4) 
 

where 1
1

n

k
k

n y
=

= ∑ , 0 1n n n= − , and ˆky  is 

calculated from Equation 1 (Cox & Snell, 1989). 
As opposed to the logistic model, however, the ˆky  
do not typically represent the maximum likelihood 
estimates, rather they represent only locally 
optimal parameter values. A primary aim of this 
study will therefore be to assess the adequacy of 
the chi-square distribution for approximating the 
null distribution of likelihood ratio test (of model 
independence) with neural networks. 

This study will also investigate the null 
test statistic distribution for differences between 
nested models. Denoting DR and DF as the 

likelihood ratio statistics for model independence 
of the reduced and full models, respectively, DF – 
DR gives the usual likelihood ratio test for 
significance of the covariates in the full but not the 
reduced model. 
 
A Simulation Study 
 To investigate the null distribution (i.e. 
under the intercept model) of the likelihood ratio 
statistic (Equation 3), we simulated random data 
with the following characteristics. Covariate 
values {xik} were simulated with n = 2,000 
observations and between two and five covariates. 
Covariates and a single binary outcome were first 
randomly generated from a Bernoulli distribution 
with Pr[xik=1] = 0.5 and Pr[yk=1] = 0.5. The first 
two covariates, x1 and x2, were simulated with 75 
percent concordance, i.e. Pr[x2k=1| x1k=1] = 0.75 
and Pr[x2k=0| x1k=0] = 0.75; all other Bernoulli 
covariates were independently generated. 
Covariates were then generated from a standard 
normal distribution with a correlation of 0.50 
between x11 and x12; all other normal covariates 
were independently generated. All simulations 
included the two correlated (either Bernoulli or 
standard normal) variables and 0 to 3 independent 
covariates. Neural network models with 2, 5, and 
10 hidden units were fit to the simulated data. 
Model fitting incorporated weight decay (λ = 0.01 
or 0.10) (as previously-described).  

Means and variances of the simulated 
likelihood ratio statistics, Ds, are displayed for 
each simulation condition. Each simulated 
distribution (for a given number of inputs and 
hidden units) was then associated with the chi-
square distribution having degrees of freedom 
equal to the mean (simulated) likelihood ratio 
( D ). Simulated α -levels ( ( )S

qα ) were then 
defined as the percentage of simulated values 
greater than qth percentile of the corresponding 
chi-square distribution. For instance, the nominal 
α -level for the simulated distribution is given by 

 
 ( ) 2

0.05 0.05[ ( )]S P D Dα χ= ≥ .    (5) 
 
Simulated α -levels will then be compared to the 
chi-square percentiles at significance levels of 
0.75, 0.50, 0.25, 0.10, and 0.05. Q-Q plots will 
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also be presented to quantify agreement with the 
appropriate chi-square distribution. 
 

Results 
 

Simulations were first conducted to investigate the 
null distribution of the likelihood ratio for testing 
model independence with strictly binary input 
variables (Table 1, following page). Results 
indicate reasonable agreement between the 
simulated α -levels and the corresponding 
percentiles of the chi-square distribution. The 
average simulated α -levels, across the 12 
conditions, were all within 0.02 of the expected 
values. Individually, none of the simulated α -
levels varied more than 0.04 from the 
corresponding chi-square percentile. Based on this 
correspondence between the simulated results and 
the chi-square distribution, the mean likelihood 
ratio can be interpreted as model degrees of 
freedom.  

The Q-Q plot of the likelihood ratio 
statistic (for testing model independence) with 5 
binary inputs and 10 hidden units is displayed in 
Figure 1, which is generally representative of the 
other Q-Q plots. The diagonal line through x = y 
represents perfect agreement between the two 
distributions. The somewhat greater than expected 
test statistic variance (66.8 as opposed to twice the 
mean, which is 57.6) is evidenced by larger values 
of the statistic at the upper end of the distribution; 
slightly lower test statistic values were observed at 
the lower end of the distribution. This deviation in 
the variance, however, led to only slightly liberal 
α -levels. 

The degrees of freedom varied between 
approximately 3 for 2 binary inputs, to almost 30 
for five binary inputs (with 10 hidden units). The 
number of hidden units seemed to have a greater 
effect on the resulting degrees of freedom with 5 
inputs than with 2-4 inputs. The model with 5 
inputs and 10 hidden units had nearly twice the 
degrees of freedom as the model with 5 inputs and 
2 hidden units. 

Table 2 (next page) displays simulation 
results for comparing the reduced model with 
between 2 and 4 binary covariates to the full 
model with all 5 binary covariates. The reduced 
models were specified by removing x5 to x3 in 
reverse order. For instance, a model reduced to 3 

covariates, {x1, x2, x3}, would be compared to the 
full model with all 5 covariates. 
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Figure 1. Q-Q Plot of the Likelihood Ratio with 5 
Binary Covariates and 10 Hidden Units 

 
The average simulated α -levels, across 

the 12 conditions, were all within 0.02 of the 
expected values. With one exception (2 hidden 
units and 4 inputs in the reduced model), none of 
the simulated α -levels individually varied more 
than 0.04 from the corresponding chi-square 
percentile, and most simulated results were within 
0.02 of the chi-square percentile.  

The degrees of freedom varied between 
approximately 5 when adding 1 binary input to the 
reduced model with 4 inputs (and 2 hidden units), 
to 26 when adding 3 binary inputs to the reduced 
model with 2 inputs (and 10 hidden units). The 
number of hidden units seemed to have a greater 
effect on the resulting degrees of freedom using 
the reduced model with 4 inputs. Testing the 
addition of a single binary input to the reduced 
model with 4 inputs equated to 15 degrees of 
freedom with 10 hidden units, as opposed to 5 
degrees of freedom with 2 hidden units. 

Table 3 (following page) presents simulation 
results for the case of standard normal covariates. 
Results again indicated reasonable agreement between 
the simulated α -levels and the corresponding 
percentiles of the chi-square distribution. The average 
simulated α -levels, across the 12 conditions, were all 
within 0.02 of the expected values. Individually, all of 
the simulated α -levels were within approximately 0.05 
of the corresponding chi-square percentile plot in 
Figure 1 was also generally representative of the Q-Q 
plots for testing nested models.
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Table 1. Likelihood Ratio Statistic for Model Independence with Binary Inputs 

 Hidden Likelihood Ratio Simulated "-levels 
Inputs Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 2 2.8 6.2 0.715 0.535 0.245 0.090 0.055 
 5 2.8 6.1 0.720 0.530 0.240 0.085 0.050 
 10 2.8 6.1 0.720 0.530 0.240 0.085 0.050 
3 2 5.9 13.5 0.700 0.480 0.285 0.120 0.060 
 5 6.2 14.3 0.710 0.485 0.270 0.095 0.060 
 10 6.3 14.3 0.710 0.480 0.270 0.100 0.060 
4 2 10.5 22.6 0.730 0.495 0.265 0.105 0.040 
 5 13.7 34.4 0.735 0.490 0.245 0.105 0.070 
 10 13.8 34.5 0.740 0.490 0.245 0.105 0.070 
5 2 15.6 33.3 0.750 0.520 0.235 0.125 0.080 
 5 27.4 61.7 0.755 0.475 0.240 0.115 0.065 
 10 28.8 66.8 0.740 0.490 0.265 0.125 0.065 

Mean Simulated α -levels 0.727 0.500 0.254 0.105 0.060 

Table 2. Likelihood Ratio Statistic for Nested Models with Binary Inputs 

Reduced Hidden Likelihood Ratio Simulated "-levels 

Model Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 inputs 2 12.8 26.1 0.760 0.515 0.240 0.105 0.065 
 5 24.6 51.7 0.755 0.490 0.240 0.105 0.070 
 10 26.0 56.4 0.750 0.455 0.265 0.110 0.085 
3 inputs 2 9.7 23.2 0.750 0.500 0.285 0.110 0.060 
 5 21.2 43.6 0.755 0.475 0.255 0.105 0.070 
 10 22.6 47.5 0.745 0.490 0.265 0.100 0.075 
4 inputs 2 5.1 18.1 0.695 0.535 0.305 0.145 0.090 
 5 13.7 26.3 0.750 0.490 0.240 0.095 0.055 
 10 15.1 28.2 0.750 0.495 0.250 0.090 0.050 

Mean Simulated α -levels 0.746 0.494 0.261 0.107 0.069 
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Table 3. Likelihood Ratio Statistic for Model Independence with Standard Normal Inputs 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 Hidden Likelihood Ratio Simulated "-levels 
Inputs Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 2 9.1 19.3 0.750 0.540 0.290 0.105 0.045 
 5 21.8 50.8 0.735 0.500 0.270 0.100 0.045 
 10 39.4 101.3 0.725 0.540 0.280 0.135 0.040 
3 2 13.8 24.2 0.765 0.555 0.250 0.085 0.030 
 5 34.9 65.6 0.760 0.505 0.270 0.095 0.040 
 10 69.4 133.7 0.755 0.540 0.250 0.075 0.025 
4 2 19.1 31.0 0.795 0.520 0.250 0.085 0.040 
 5 47.5 84.7 0.775 0.525 0.255 0.075 0.045 
 10 100.4 158.1 0.800 0.530 0.220 0.075 0.030 
5 2 23.5 49.6 0.765 0.495 0.240 0.110 0.045 
 5 61.3 110.9 0.775 0.495 0.225 0.095 0.025 
 10 128.5 206.4 0.780 0.520 0.205 0.085 0.025 

Mean Simulated α -levels 0.765 0.522 0.250 0.093 0.036 

Table 4. Likelihood Ratio Statistic for Nested Models with Standard Normal Inputs 

Reduced Hidden Likelihood Ratio Simulated "-levels 
Model Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 inputs 2 14.4 54.1 0.705 0.510 0.315 0.150 0.090 
 5 39.5 150.3 0.705 0.540 0.320 0.155 0.085 
 10 88.1 262.5 0.710 0.505 0.300 0.140 0.100 
3 inputs 2 9.7 52.5 0.660 0.510 0.340 0.215 0.135 
 5 26.4 135.8 0.685 0.515 0.340 0.210 0.145 
 10 58.1 266.0 0.665 0.505 0.355 0.230 0.130 
4 inputs 2 4.4 56.6 0.605 0.515 0.400 0.245 0.195 
 5 13.8 152.8 0.615 0.535 0.350 0.260 0.205 
 10 27.1 260.3 0.630 0.500 0.385 0.270 0.230 

Mean Simulated α -levels 0.664 0.515 0.345 0.208 0.146 
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The degrees of freedom varied between 

approximately 9 for 2 binary inputs (with 2 hidden 
units), to 128 for five binary inputs (with 10 
hidden units). The number of hidden units greatly 
affected the resulting degrees of freedom for all 
simulated cases. The model with 5 hidden units 
corresponded to approximately twice the degrees 
of freedom as the model with 2 hidden units, and 
half the degrees of freedom as the model with 10 
hidden units. 

The Q-Q plot of the likelihood ratio 
statistic (for testing model independence) with 5 
standard normal inputs and 10 hidden units is 
displayed in Figure 2. It is generally representative 
of the other Q-Q plots. The somewhat lesser than 
expected test statistic variance (206.4 as opposed 
to twice the mean, which is 257.0) is evidenced by 
smaller values of the statistic at the upper end of 
the distribution. The nominal α -level were 
subsequently somewhat conservative. 
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Figure 2. Q-Q Plot of the Likelihood Ratio with 5 
Standard Normal Covariates and 10 Hidden Units 
 

Table 4 (previous page) displays 
simulation results for comparing the reduced 
model with between 2 and 4 standard normal 
covariates to the full model with all 5 standard 
normal covariates. These results, as opposed to 
previous simulations, do not reflect 
correspondence to a chi-square distribution. The 
simulated distributions for testing nested models 
with continuous covariates are far more skewed; 
the variance was often 4 or more times greater 
than the mean (in contrast to the expected 1:2 
mean-variance ratio). On average, across the 12 
conditions, the difference between simulated α -
levels and chi-square percentiles was 
approximately 10 percent. 

Table 5. Likelihood Ratio Statistic for Nested Models with Standard Normal Inputs and Weight Decay of 0.10 

Reduced Hidden Likelihood Ratio Simulated "-levels 
Model Units Mean Variance 0.75 0.50 0.25 0.10 0.05 
2 inputs 2 10.8 21.6 0.780 0.550 0.235 0.120 0.060 
 5 35.2 95.1 0.710 0.495 0.255 0.160 0.090 
 10 73.0 158.5 0.725 0.525 0.255 0.125 0.060 
3 inputs 2 7.5 20.1 0.745 0.520 0.280 0.105 0.075 
 5 24.1 94.5 0.695 0.500 0.315 0.185 0.120 
 10 51.9 181.0 0.695 0.520 0.305 0.165 0.090 
4 inputs 2 4.1 21.3 0.585 0.450 0.365 0.210 0.130 
 5 12.3 72.9 0.655 0.515 0.380 0.210 0.135 
 10 25.6 134.6 0.675 0.520 0.350 0.240 0.140 

Mean Simulated α -levels 0.696 0.511 0.304 0.169 0.100 
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To address the substantial discrepancies in 
Table 4, simulations were rerun using a weight 
decay of 0.10. Results in Table 5 show a slightly 
better correspondence to the chi-square 
distribution under some conditions, but still reflect 
far greater variability in the test statistic, and 
subsequently large differences from the chi-square 
percentiles. The nominal 0.05 α -level, for 
instance, was between 0.06 and 0.09 for testing the 
reduced model with 2 standard normal covariates, 
but was at least 13 percent for testing the reduced 
model with 4 covariates. 
 

Conclusion 
 
The chi-square distribution appears to provide an 
adequate approximation to the null distribution 
(assuming no association between covariates and 
response) for likelihood ratio tests of 
independence with feed-forward neural networks. 
Tests between nested models are approximately 
chi-square for strictly binary inputs, but not for 
standard normal covariates. Apart from 
significance testing, one contribution of these 
simulations is to quantify the model complexity 
(under the null) for various neural network 
models. Although the implicitly non-linear nature 
of neural networks is commonly known, 
specifically quantifying the effective number of 
model parameters remains a difficult task. 
 These simulations illustrate that even a 
neural network with only 5 strictly binary inputs 
(and ten hidden units) can implicitly fit nearly 29 
degrees of freedom. Testing the significance of a 
single binary input, against the reduced model 
with 4 binary inputs, equates to approximately 15 
degrees of freedom. Neural networks with 
continuous covariates resulted in even greater 
model complexity; the neural network with 5 
standard normal covariates and 10 hidden units 
equated to approximately 129 degrees of freedom. 

The degrees of freedom with strictly 
binary inputs can be conceptualized as the number 
of main effects and interaction terms fit by the 
neural network model; other non-linear functions 
of a binary term are still 0 or 1, and therefore not 
relevant. In a related technical report (Landsittel, 
et al., 2002a), we explored these same models (of 
strictly binary data) using globally optimal 
parameter estimates; numerous initial weights 
were implemented to conduct a grid search of the 

likelihood surface.  In that study, the degrees of 
freedom was equal to the number of covariate 
patterns minus one for the intercept (i.e. 2p-1, 
where p is the number of parameters) given a 
sufficient number of hidden units. For simulations 
where there was an insufficient number of model 
parameters to fit the saturated model (i.e. the 
number of parameters was less than 2p-1), the 
degrees of freedom was greater than the number of 
model parameters, but less than the number of 
covariate patterns. In the current study, based on 
the usual algorithm which picks only one 
randomly chosen set of initial parameters, the 
degrees of freedom was always less than the 
number of covariate patterns. For instance, 2 
binary inputs equates to 2 main effects and 1 
interaction term yielding 3 degrees of freedom. 
The simulated degrees of freedom subsequently 
equaled 3.0 in the previously-described technical 
report (based on globally optimal models), and 
was slightly less, at 2.8, in this current study.  

The neural network models with standard 
normal covariates implicitly fit not only main 
effects and interactions, but also an indeterminate 
number of non-linear terms (of an indeterminate 
nature). This is evidenced by the greater degrees 
of freedom associated with standard normal 
covariates (i.e. Table 3 versus Table 1). Consider, 
for instance, the Taylor series expansion (using the 
first q terms) of the neural network response 
function for the kth observation with a single 
continuous covariate. 
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No clear correspondence can be derived between 
the number of parameters and the number of 
implicitly fit non-linear terms. This approximation 
underscores both the implicitly nonlinear structure 
and the lack of interpretable coefficients. Each 
expansion term is a function of multiple network 
parameters and, with the exception of v0 (the 
hidden layer intercept term), each network 
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parameter is involved in calculating multiple 
expansion terms. 
 The results of this simulation reflect the 
unpredictable nature of model complexity with 
neural networks. The degrees of freedom varies 
both according to the number of input variables 
and the distribution of these covariates, as well as 
the number of hidden units. Furthermore, the 
degrees of freedom will also depend significantly 
on other issues not investigated here, such as the 
underlying association (all simulations here were 
under the null), use of additional training 
modifications (e.g. model averaging or early 
stopping of training based on a test set), and 
further variations in the covariate distributions. 
This would imply that, from these simulations, we 
can still only specify the appropriate degrees of 
freedom in very limited cases. 

To address this limitation, we are 
currently investigating an explicit approach to 
calculate degrees of freedom with neural networks 
and dichotomous outcomes. The approach is based 
on a simple modification to Ye’s (1998) procedure 
for generalized degrees of freedom in the 
continuous case. The resulting measure for a 
binary outcome corresponds to Fay’s range of 
influence (ROI) statistic for logistic regression. In 
a recent commentary (Landsittel, et al., 2002), we 
empirically show that Fay’s ROI statistic 
asymptotically corresponds to the hat matrix 
diagonal, and therefore (the sum of these ROI 
statistics) provides a potential measure of degrees 
of freedom. Additional simulations will focus on 
connecting this statistic to the mean likelihood 
ratio over simulated distributions with neural 
networks. 

In addition to the methods employed here, 
numerous other training modifications, such as 
committees of networks, or early stopping of 
training based a test set, are frequently used and do 
affect model complexity. Additional simulations 
(not shown here) indicated that neither network 
committees nor early stopping lead to 
correspondence with a chi-square distribution. 
Greater values of weight decay, or other 
modifications to model fitting, may lead to a better 
correspondence with chi-square percentiles in the 
case of testing nested models with standard normal 
covariates. In addition to slight improvement of 
the chi-square approximation, increasing the 
weight decay tends to reduce the mean likelihood 

ratio implicitly fit under the null. Further 
variations on neural network models, such as other 
covariate distributions, will likely effect the model 
complexity in an unpredictable manner. These 
issues can be better explored once an explicit 
measure is derived for calculating degrees of 
freedom with a binary outcome. 
 Although other methods exist for 
inference and quantifying model complexity with 
neural networks, these approaches are not widely 
implemented because of associated computational 
issues (see Introduction). Use of the likelihood 
ratio statistic provides a more widely utilized 
approach, which is easily calculated from the 
observed and predicted response values (using 
common statistical programs such as S-Plus). 
Results of this approach can also be easily 
interpreted by applied researchers.  
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Introduction 
 
Many traditional control charts were developed 
under the assumption that the measurements 
resulting from the in-control process are 
independent and identically distributed (iid) 
random variables. 

Recently, many advances in measurement 
technology and sampling frequency yield sample 
measures that are not independently distributed. 
Hence, an alternative to the traditional control 
charting approach is to utilize a forecast-based 
monitoring scheme, which involves identifying the 
proper time-series model characterizing the 
process, obtaining the appropriate Box-Jenkins 
one-step-ahead forecast of process observations,  
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and then applying traditional control charts to 
forecast errors (Alwan & Roberts, 1988; Wardell, 
Moskowitz, & Plante, 1994; Lin & Adams, 1996; 
Lu & Reynolds, 1999a; Lu & Reynolds, 1999b; Lu 
& Reynolds, 2001). If the assumed time-series 
model is correct, the forecast errors are iid normal 
random variables. Hence, the errors perform in a 
manner predictable through traditional control 
charting techniques, enabling monitoring for 
detection of step-shifts in the process mean level.  

One problematic characteristic of forecast-
based monitoring schemes is the phenomenon of 
forecast recovery; that is, the process forecasts 
recover quickly from process disturbances. Hence, 
the resulting forecast errors also recover quickly. 
This article describes models for autocorrelated 
data and the impact of forecast recovery for three 
special cases of the general autoregressive moving 
average (ARMA) model, and investigates the 
impact of forecast recovery on the Individuals, 
Exponentially Weighted Moving Average 
(EWMA), and the Combined EWMA-Shewhart 
(CES) control charts applied to forecast errors 
resulting from the ARMA models. A description 
of the simulation study is also provided. 
Recommendations are provided that will enable 
the practitioner to more readily identify the most 
appropriate control chart for use in monitoring 
various ARMA processes. 
 

Methodology 
 
When control chart performance has been 
evaluated, the average run length (ARL) has 
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typically been used to quantify performance of the 
chart. The ARL is defined as the average number 
of time periods until the control chart signals. 
When the process is in-control, this is the expected 
time until a false-alarm. When the process shifts 
out-of-control, the ARL measures the expected 
time to detect the shift. The desired chart is one 
that simultaneously provides large in-control 
ARLs and low out-of-control ARLs. An 
alternative performance criterion is the cumulative 
distribution function (CDF). The CDF measures 
the cumulative proportion or percent of signals 
given by the ith period following the shift. It should 
be noted that the CDF completely characterizes 
the run length distribution, while the ARL is only 
the mean. Additionally, the median run length 
(MRL) can be used in conjunction with the ARL 
and CDF since it is a better measure of central 
tendency for skewed distributions such as the run 
length distribution. The MRL is defined as the 
median (50th percentile) number of time periods 
until the control chart signals. The desired chart is 
one with a high probability of early detection of a 
shift. In most cases, a trade-off between obtaining 
a low out-of-control ARL and high probability of 
early detection results.  

The impact of forecast error recovery on 
ARLs has been discussed (Adams, Woodall, & 
Superville; 1994; Superville & Adams, 1994), and 
the CDF technique has been recommended as a 
meaningful criterion for evaluating the 
performance of charts on forecast errors. In light 
of forecast recovery, both ARL and CDF 
performance for step-shifts in the process mean 
were evaluated (Lin & Adams, 1996) on the 
Individuals chart, the exponentially weighted 
moving average (EWMA) chart, and the combined 
EWMA-Shewhart (CES), in regard to monitoring 
forecast errors arising from particular forecast-
based monitoring schemes. It was found that the 
Individuals chart provides relatively high ARLs 
and CDFs, the EWMA provides low ARLs and 
CDFs, and theCES borrows the best properties 
from both charts, low ARLs and high CDFs. High 
(low) CDFs are defined as those exhibiting a high 
(low) probability of initial shift detection relative 
to competing control charts. 

In this article, control chart performance 
results are based primarily on ARL and CDF 
measures, but the MRL is also provided for each 
chart. Standard error of the run length (SRL) 

measures were provided to summarize the 
variability of each chart’s run length distribution, 
as well as to give the reader an idea of the 
accuracy of each ARL measure. Performance 
results of the traditional control charts applied to 
forecast errors resulting from various ARMA(1,1), 
AR(1), and MA(1) processes with a step shift of c 
= 1σε are given in Table 5. 

Simulations of the performance of the 
Individuals, EWMA, CES control applied to the 
forecast errors arising from various ARMA(1,1), 
AR(1), and MA(1) processes in this article give 
some insight into the impact of forecast recovery 
on these traditional control charts. This insight will 
better enable the practitioner to choose the 
appropriate control chart for various ARMA 
processes. The control charts were designed to 
provide in-control ARLs of 300. The EWMA and 
CES control charts were designed to detect a shift 
of the magnitude of the sustained expected 
forecast error for each model. A thorough 
discussion of sustained forecast recovery and 
sustained expected forecast error is provided in the 
following subsections. 
 
Simulation Description 

The simulation programs were designed, 
compiled, and run in Microsoft FORTRAN 
PowerStation for Windows, Version 4.0, utilizing 
FORTRAN 90. The program for finding ARLs 
were also used to estimate the appropriate control 
limits through trial and error. The simulations 
conducted are as follows. 
1.  A series of 4,100 ARMA(2,1) variates were 

generated by FORTRAN MSIMSL subroutine 
RNARM. These variates were the simulated 
observations, Yi’s, for each of the models 
investigated. 

2.  The first 100 observations were used to allow 
a burn-in period. 

3.  A step shift was induced in the simulated 
observations. The magnitudes of shift range 
from 0 to 3σε in increments of 1σε. 

4.  The appropriate Box-Jenkins OSA forecast 
and OSA forecast errors were calculated. 

5.  The programmed control chart monitored the 
forecast errors. The run lengths for the 
specified shift size were recorded. 

6.  Steps 1 through 5 were repeated 10,000 times 
for each model and process shift. The run 
length for the control chart was recorded for 
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each simulation repetition and the ARL was 
obtained based on 10,000 repetitions. For the 
CDF programs, the percentages of runs 
producing a signal within the first 300 
observations following the shift were 
obtained. 

One issue concerning the simulation 
should be addressed. Each program can be run to 
simulate a process in a zero state or steady state. 
Zero state provides for simulating a process from 
start-up, while steady state provides for simulating 
a process that has been running in an in-control 
state for some time. When simulating for control 
limits and Null case ARL, MRL, and CDF 
performance, the programs were run from zero 
state. When simulating the ARL, MRL, and CDF 
performance for a process that has experienced a 
shift, the programs were run from steady state. 
 
Models for Autocorrelated Data 
 Two ARMA(p, q) models have been found to 
have application in statistical process control. The 
first model of interest is the ARMA(1,1). Wardell, 
Moskowitz, and Plante (1992) address the 
ARMA(1,1) model, as it is a reasonable fit to data 
for some manufacturing processes. The second 
model of interest is the ARMA(1,0), also known 
as the AR(1). Montgomery and Mastrangelo 
(1991) and Alwan and Roberts (1988) have 
addressed the importance of the AR(1) model in 
manufacturing processes. Atienga, Tang and Ang 
(1998) discussed a time series approach to 
detecting level shifts in AR(1) processes. Lastly, 
the ARMA(0, 1), also known as the MA(1), is 
considered for the sake of completion of all 
possible first order ARMA(p, q) models. The next 
section briefly discusses process shifts associated 
with the various time-series models before 
description of the models. 
 
ARMA(1,1), AR(1), MA(1) Models & Process 
Shifts 
 In building an empirical model of an actual 
time-series process, the inclusion of both 
autoregressive and moving average terms 
sometimes leads to a more parsimonious model 
than could be achieved with either the pure 
autoregressive or pure moving average alone. This 
results in the mixed autoregressive-moving 
average. When both terms are mixed in first order, 
the resulting model is the ARMA(1, 1). The model 

for an in-control ARMA(1, 1), AR(1), and MA(1) 
processes are given by Eq.s (1), (2), and (3) 
respectively,  
 t t-1t t-1 =  +  + Y Yξ φ − θε ε   (1) 

 t tt-1YY = ξ + φ + ε  (2) 
 t-1t t=  -  + Y ξ θε ε  (3) 
where ξ is a constant and the sequence of εt (t = 
1,2,...) values are independent N(0, 2

εσ ) random 
variables. The ARMA(1, 1) process is stationary 
for <  1  an d   <  1φ θ , the AR(1) process is 

stationary for < 1 φ , and the MA(1) process is 
stationary for all values of θ.  
 Now, suppose a step shift of size c occurs in 
any of the ARMA(1,1), AR(1), or MA(1) 
processes between time periods r-1 and r, that is, 
the process mean suddenly changes from ξ to ξ+c 
at observation r. The Box-Jenkins one-step-ahead 
(OSA) forecasts are defined by 

t-1t t-1ˆ  = + eYY ξ φ −θ for the ARMA(1,1) process, 

t-1tˆ  = YY ξ+φ  for the AR(1) process, and 

t-1tˆ  = - eY ξ θ for the MA(1) process. 
 The OSA forecast errors are calculated as 
et = Y - Yt t , for all processes. The expected 
OSA forecast errors for an ARMA(1,1) process 
can be described mathematically as 

t
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Similar results for the AR(1) and MA(1) 
processes can be obtained by setting θ = 0 or φ = 
0, respectively in Eq. (4). This general 
representation is consistent with the special cases 
of the ARMA(1,1) model presented in Atienga, 
Tang and Ang (1998), Lin and Adams (1996), and 
Wardell, Moskowitz and Plante (1994). 

Tables 1, 2, and 3 portray a realization of 
the expectation of forecast errors at time periods t 
< r, t = r, and t >r, for a c = 1σε step shift in 
ARMA(1,1), AR(1), and MA(1) models. These 
choices of models were designed by Wardell, 
Moskowitz, and Plante (1994) to systematically 
cover the region over which the ARMA series is 
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stationary. Although the models possessing 
positive autocorrelation are most likely to be 
encountered in manufacturing processes, those 
possessing negative correlation may be more 
prevalent in nonmanufacturing applications. 
 When an ARMA(p,q) process undergoes a 
step shift in the mean, the expected value of the 
forecast of the process varies for a time and then 
converges to a new equilibrium level (Wardell et 
al. (1994)), referred to in this paper as the 
sustained level of the shift. The response of the 
forecasts also causes the forecast errors to respond 
dynamically, as can be seen in Tables 1, 2, and 3. 
For the ARMA(1,1) model, the forecast errors 
react much differently, depending on the degree 
and direction of the first order autocorrelation, ρ1, 
as well as the values of φ1 and θ1. For all 
ARMA(p,q) models, the expected forecast error at 
time t = r is equal to c, but the dynamic response 
of the errors can vary dramatically for times t > r. 
 
Table 1: Forecast Error Expectation for Positively 
Autocorrelated ARMA(1,1) Processes with a Shift of c 
= 1σε at Time Period t = r. 

Model 1 2 3 4 5 6 7 8 
φ1 .950 .950 .950 .950 .475 .475 .475 -.475 
θ1 .900 .450 -.45 -.90 .450 -.45 -.90 -.900 
ρ1 .072 .824 .971 .975 .025 .689 .737 .255 
t Expected Forecast Errors, E(et) 

< r .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
r 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

R + 1 .95 0.50 -.40 -.85 0.98 0.08 -.38 0.58 
R + 2 .91 0.28 0.23 0.82 0.96 0.49 0.86 0.96 
R + 3 .86 0.17 -.05 -.68 0.96 0.30 -.25 0.61 
R + 4 .83 0.13 0.07 0.67 0.96 0.39 0.75 0.92 
R + 5 .80 0.11 0.02 -.55 0.96 0.35 -.15 0.64 

. . . . . . . . . 
r + 44 .50 0.09 0.03 0.04 0.95 0.36 0.28 0.78 
r + 45 .50 0.09 0.03 0.02 0.95 0.36 0.27 0.77 
 

For positively autocorrelated ARMA(1,1) 
processes, the following is observed in Table 1: 
The E(et) recovers to a value less than c for all 
times t > r. The recovery rate depends not only 
upon the values of φ1 and θ1, but also upon the 
particular time t after the shift. Defining E(et

*) to 
be the expected sustained level of the original shift 
of size c resulting from an ARMA(1,1) process, 
Eq. (5) can be derived from Eq. (4) when t > r, as 
k → ∞ , and it can be shown that 
 
 
 

Table 2: Forecast Error Expectation for Negatively 
Autocorrelated ARMA(1,1) Processes with a Shift of c 
= 1σε at Time Period t = r. 

φ1 .475 -.475 -
.475 

-
.475 

-.950 -.95 -.95 -.95 

θ1 .900 .900 .450 -.45 .900 .450 -.45 -.90 
ρ1 -.255 -.737 -

.689 
-

.025 
-.975 -

.971 
-

.824 
-

.072 
t Expected Forecast Errors, E(et) 

< r 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 
r 1.00 1.0 1.00 1.00 1.00 1.00 1.00 1.00 

r + 1 1.43 2.38 1.93 1.03 2.85 2.40 1.50 1.05 
r + 2 1.81 3.61 2.34 1.01 4.52 3.03 1.28 1.01 
r + 3 2.15 4.73 2.53 1.02 6.01 3.31 1.38 1.05 
r + 4 2.46 5.73 2.61 1.02 7.36 3.44 1.33 1.01 
r + 5 2.74 6.63 2.65 1.02 8.58 3.50 1.35 1.04 

. . . . . . . . . 
r + 44 5.21 14.62 2.68 1.02 19.32 3.55 1.34 1.03 
r + 45 5.21 14.63 2.68 1.02 19.34 3.55 1.34 1.03 
 
 
Table 3: Forecast Error Expectation for AR (1) and 
MA(1) Processes with a Shift of c = 1σε at Time Period 
t = r. 
Model 9 10    11 12   

φ1 .950 .475 -.475 -.950 .000 .000 .000 .000 .000
θ1 .000 .000 .000 .000 .000 -.45 -.90 .900 .450
ρ1 .950 .475 -.475 -.950 .000 .374 .497 -

.497
-

.374
t Expected Forecast Errors, E(et) 

< r 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

r + 1 0.05 0.53 1.48 1.95 1.00 0.55 0.10 1.90 1.45
r + 2 0.05 0.53 1.48 1.95 1.00 0.75 0.91 2.71 1.65
r + 3 0.05 0.53 1.48 1.95 1.00 0.66 0.18 3.44 1.74
r + 4 0.05 0.53 1.48 1.95 1.00 0.70 0.84 4.10 1.78
r + 5 0.05 0.53 1.48 1.95 1.00 0.68 0.25 4.69 1.80

. . . . . . . . . . 
r + 44 0.05 0.53 1.48 1.95 1.00 0.69 0.53 9.91 1.82
r + 45 0.05 0.53 1.48 1.95 1.00 0.69 0.52 9.92 1.82
 
 

 E(et) → 1
1

1 1

1

−
−

−
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( )
φ θ

θ
c = E(et

*).  (5) 

Table 4 contains values of E(et
*) for various 

combinations of φ1 and θ1, hence providing a 
realization of the dynamic response of the forecast 
errors. Again, the degree of autocorrelation as well 
as the values of φ1 and θ1 determines the rate of 
convergence. It is obvious from Eq. (4) that k 
enters into the determination of E(et) only through 
θ1; hence, only ARMA(1,1) and MA(1) models 
with nonzero θ1 converge to E(et

*). In general, it 
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appears that ARMA(1,1) models with large 1θ  

converge more slowly than when 1θ  is small. 
 Models with large ρ1 tend to converge to a 
value of E(et

*) close to zero, while models with 
small ρ1 (i.e., close to zero) tend to quickly attain a 
value of E(et

*) close to c. For some combinations 
of φ1 and θ1, most noticeably φ1 positive while θ1 
negative, the E(et) oscillates between values less 
than c, until finally converging to E(et

*). Again, 
depending upon the magnitude of φ1 and θ1, the 
oscillation may go between positive and negative 
values less than c (φ1 = 0.95, θ1 = -0.45), or 
between strictly positive values less than c (φ1 = 
0.475, θ1 = -0.45).  
 For negatively autocorrelated ARMA(1,1) 
processes, Table 2 reveals that the E(et) exceeds c 
for all times t > r. The magnitude of E(et) again 
depends on the values of φ1 and θ1, as well as the 
time t following the shift. In most instances where 
ρ1 approaches zero, E(et

*) assumes a value trivially 
larger than c. In instances where ρ1 approaches 
negative one, E(et

*) often assumes a value much 
larger than c. Again, some oscillation among the 
values of E(et) occurs at times t > r, but not to the 
degree as when ρ1 is positive. Only ARMA(1,1) 
processes exhibiting forecast recovery, that is, 
positively autocorrelated processes, are further 
considered in this article. The ARMA(1,1) 
processes in Table 1 to be further considered are 
labeled Models 1 through 8. 
 For positively autocorrelated AR(1) 
processes, the following is observed in Table 3: 
E(et) recovers to a constant value less than c for all 
t > r, for all ρ1 between zero and one. Larger 
values of φ1 lead to greater degrees of forecast 
recovery. Defining E(et

*) to be the expected 
sustained level of the original shift of size c 
resulting from an AR(1) process, Eq. (6) can be 
derived from Eq. (4) for all periods t > r, and it 
can be shown that 
 

E(et
*) = (1- φ1)c. (6)  

 
For negatively autocorrelated AR(1) processes, the 
following is observed in Table 3: E(et) increases to 
a constant value greater than c for all t > r, for all 
ρ1 between zero and negative one. Values of φ1 
closer to negative one lead to greater increases in 
values of the expected forecast errors. Only AR(1) 

processes exhibiting forecast recovery, that is, 
positively autocorrelated processes, are considered 
in this article. The AR(1) processes to be further 
considered in Table 3 are labeled Models 9 and 10. 
 For positively autocorrelated MA(1) 
processes, the following is observed in Table 3: 
E(et) recovers to a value less than c for all times t 
> r. The recovery rate depends not only upon the 
value of θ1, but upon the particular time t after the 
shift. Defining E(et

*) to be the expected sustained 
level of the original shift of size c resulting from 
an MA(1) process, Eq. (7) can be derived from Eq. 
(4) when t > r, as k → ∞ , and it can be shown 
that 

 E(et) → 
1

1 1( )−











θ
c = E(et

*).  (7) 

 
The degree of autocorrelation as well as the value 
of θ1 determines the rate of convergence. As in the 
case with the ARMA(1,1), E(et) oscillates, 
converging to the value E(et

*), which is less than c, 
for all t > r. At no time does E(et) exceed the value 
c. For negatively autocorrelated MA(1) processes, 
the following holds: the E(et) exceeds c for all 
times t > r. The magnitude of E(et) again depends 
on the value θ1, as well as the time t following the 
shift. The response of E(et) and the sustained level 
of the shift, E(et

*), is much like that for the 
ARMA(1,1) model in regards to various degrees 
of autocorrelation. Only MA(1) processes 
exhibiting forecast recovery, that is, positively 
autocorrelated processes, are considered in this 
article. The MA(1) processes to be considered in 
Table 3 are labeled Models 11 and 12. 
 Table 4 contains the sustained expected 
forecast error values, E(et

*), for various 
combinations of φ1 (left most column) and θ1 (top 
most row) for ARMA(1,1), AR(1), and MA(1) 
models, given a c = 1σε shift in the process mean 
level. The values φ1 and θ1 corresponding to the 
upper diagonal of Table 4 produce values of E(et) 
whose sustained level of shift is less than c. In this 
case, the forecast errors are said to recover. The 
lower diagonal region contains values of E(et), 
whose sustained level of shift is greater than or 
equal to c. All entries represent combinations of φ1 
and θ1 that result in stationary ARMA(1,1) 
processes. 
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 Now consider the following example for 
understanding Table 4. Given an ARMA(1,1) 
model (φ1 = -0.15, θ1 = -0.65) with time t < r (in-
control) E(et) of zero, the values of E(et) at times t 
< r, t = r, and t > r, are as follows for a c = 1σε 
shift in the process mean: 
 

E te
t r
t r

t r k k

(
, ,...

.
( . . )

( . )
. .

) =  
              

    

0 1 2 1
100

1
015 0 65
1 0 65

0 70

= −
=

−
− +

+








 = = + → ∞














 

      (8) 
 
 
 Notice that E(et) in Eq. (8) at time t > r is 
equal to 0.70 for k → ∞ . The intersection of φ1 = -
0.15 (left most column) and θ1 = -0.65 (top most 
row) in Table 4 also yields the expected forecast 
error value of 0.70. Additionally, the relationship 
between the lag one autocorrelation, ρ1, for the 
various combinations of φ1 and θ1, and the 
sustained expected forecast errors, E(et

*), in Table 
4, is very strong and linear, with a correlation of r 
= -0.997. Eq. (9) provides an estimate of the 
sustained expected forecast errors as a function of 
ρ1 for most ARMA(1,1), AR(1), or MA(1) models. 
Again, it is obvious from this relationship that 
large first order autocorrelation provides for more 
extreme forecast recovery. 
 
 ( ) . .*E et = −104 102 1ρ .   (9) 
 

Considering the AR parameter alone, 
forecast recovery occurs for all values of  
φ1 > 0, while the most extreme sustained forecast 
recovery occurs for values of φ1 > 0.50. 
Considering the MA parameter alone, the 
sustained level of forecast error recovery never 
falls below E(et

*) = 0.50, so no value of θ1 alone 
results in extreme forecast recovery. Considering 
both parameters, the most extreme sustained 
forecast recovery occurs when φ1 > 0 while θ1 < 0, 
and in most cases in which φ1 is large, that is, φ1 > 
0.50, regardless of the value of θ1. 
 

Results 
 
Recall that the degree and rate of forecast 
recovery, as well as the time until sustained level 

of forecast recovery occurs provide a source of 
conflict when choosing among control charts for 
monitoring forecast errors. Traditionally, if the 
ARL is used for the basis of comparison, the 
EWMA control chart most often provides smaller 
out-of-control ARLs than any other chart for small 
shifts, particularly when compared to the 
Individuals chart. However, the Individuals chart 
generally provides the greatest probability of 
obtaining a signal within the first few observations 
following the shift although a much larger ARL is 
provided. One can best understand the impact of 
forecast recovery by first examining chart 
performance applied to the AR(1) processes. 
 
Control Charts Applied to AR(1) Models   

Recall that when a shift occurs in any 
AR(1) process, the first forecast error following 
the shift appreciates the full impact of the shift, c. 
The forecast errors suddenly recover for all 
subsequent periods to a sustained level less than 
the original shift, (1-φ1)c. In contrast, the 
ARMA(1,1) and MA(1) processes recover 
gradually over time until finally converging to the 
sustained level less than the original shift. 
Depending on the particular process, oscillation 
may occur between values of sequential forecast 
errors. Since the forecast errors arising from the 
AR(1) process recover instantly to the sustained 
level of the shift, the worst performance of most 
control charts applied to a general ARMA(p,q) 
process should usually be obtained in the case of 
the AR(1) process for a given shift and sustained 
level of the shift. Performance results of the 
traditional control charts applied to forecast errors 
resulting from various ARMA(1,1), AR(1), and 
MA(1) processes with a step shift of c = 1σε are 
given in Table 5. 

Table 5, Models 9 and 10, show that the 
EWMA control chart maintains good ARL 
performance relative to the Individuals chart over 
a wide range of AR(1) parameter values and shift 
sizes, but the Individuals control chart consistently 
provides higher probabilities of initial shift 
detection, particularly for larger shifts (not 
shown). As found by Lin and Adams (1996), the 
CES control chart provides out-of-control ARLs 
similar to those of the EWMA chart while 
simultaneously maintaining the high probability of 
an early signal provided by the Individuals chart. 
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Table 4: Sustained Expected Forecast Errors for Combinations of φ1 and θ1. 
 
           
As the degree of forecast recovery worsens 
though, ARL and CDF performance decreases for 
all of the control charts. In regard to these 
traditional control charts, the CES chart provides 
the best compromising performance over a wide 
range of AR(1) process parameter values and shift 
sizes. 

Performance of Control Charts Applied to 
ARMA(1,1) and MA(1) Models 
 For the ARMA(1,1) and MA(1) processes, 
the behavior of the forecast errors prior to the 
sustained level has an impact on all of the control 
charts. 

 -.95 -.85 -.75 -.65 -.55 -.45 -.35 -.25 -.15 -.05 .00 .05 .15 .25 .35 .45 .55 .65 .75 .85 .95 
.95 .03 .03 .03 .03 .03 .03 .04 .04 .04 .05 .05 .05 .06 .07 .08 .09 .11 .14 .20 .33 1.0 
.85 .08 .08 .09 .09 .10 .10 .11 .12 .13 .14 .15 .16 .18 .20 .23 .27 .33 .43 .60 1.0 3.0 
.75 .13 .14 .14 .15 .16 .17 .19 .20 .22 .24 .25 .26 .29 .33 .38 .45 .56 .71 1.0 1.7 5.0 
.65 .18 .19 .20 .21 .23 .24 .26 .28 .30 .33 .35 .37 .41 .47 .54 .64 .78 1.0 1.4 2.3 7.0 
.55 .23 .24 .26 .27 .29 .31 .33 .36 .39 .43 .45 .47 .53 .60 .69 .82 1.0 1.3 1.8 3.0 9.0 
.45 .28 .30 .31 .33 .35 .38 .41 .44 .48 .52 .55 .58 .65 .73 .85 1.0 1.2 1.6 2.2 3.7 11 
.35 .33 .35 .37 .39 .42 .45 .48 .52 .57 .62 .65 .68 .76 .87 1.0 1.2 1.4 1.9 2.6 4.3 13 
.25 .38 .41 .43 .45 .48 .52 .56 .60 .65 .71 .75 .79 .88 1.0 1.2 1.4 1.7 2.1 3.0 5.0 15 
.15 .44 .46 .49 .52 .55 .59 .63 .68 .74 .81 .85 .89 1.0 1.1 1.3 1.5 1.9 2.4 3.4 5.7 17 
.05 .49 .51 .54 .58 .61 .66 .70 .76 .83 .90 .95 1.0 1.1 1.3 1.5 1.7 2.1 2.7 3.8 6.3 19 
.00 .51 .54 .57 .61 .65 .69 .74 .80 .87 .95 1.0 1.1 1.2 1.3 1.5 1.8 2.2 2.9 4.0 6.7 20 
-.05 .54 .57 .60 .64 .68 .72 .78 .84 .91 1.0 1.1 1.1 1.2 1.4 1.6 1.9 2.3 3.0 4.2 7.0 21 
-.15 .59 .62 .66 .70 .74 .79 .85 .92 1.0 1.1 1.2 1.2 1.4 1.5 1.8 2.1 2.6 3.3 4.6 7.7 23 
-.25 .64 .68 .71 .76 .81 .86 .93 1.0 1.1 1.2 1.3 1.3 1.5 1.7 1.9 2.3 2.8 3.6 5.0 8.3 25 
-.35 .69 .73 .77 .82 .87 .93 1.0 1.1 1.2 1.3 1.4 1.4 1.6 1.8 2.1 2.5 3.0 3.9 5.4 9.0 27 
-.45 .74 .78 .83 .88 .94 1.0 1.1 1.2 1.3 1.4 1.5 1.5 1.7 1.9 2.2 2.6 3.2 4.1 5.8 9.7 29 
-.55 .79 .84 .89 .94 1.0 1.1 1.1 1.2 1.3 1.5 1.6 1.6 1.8 2.1 2.4 2.8 3.4 4.4 6.2 10 31 
-.65 .85 .89 .94 1.0 1.1 1.1 1.2 1.3 1.4 1.6 1.7 1.7 1.9 2.2 2.5 3.0 3.7 4.7 6.6 11 33 
-.75 .90 .95 1.0 1.1 1.1 1.2 1.3 1.4 1.5 1.7 1.8 1.8 2.1 2.3 2.7 3.2 3.9 5.0 7.0 12 35 
-.85 .95 1.0 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.8 1.9 1.9 2.2 2.5 2.8 3.4 4.1 5.3 7.4 12 37 
-.95 1.0 1.1 1.1 1.2 1.3 1.3 1.4 1.6 1.7 1.9 2.0 2.1 2.3 2.6 3.0 3.5 4.3 5.6 7.8 13 39 
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Table 5: ARLs , MRLs, and CDFs for the ARMA(1,1) Process with Step Shift c = 1σε. 
 

ARMA Control   Cumulative Percentage of Signals Following Shift 
Model Chart  ARL MRL  SRL 1st 2nd 3rd 4th 5th 6th 7th 

 IND 115 70 128 2.52 4.67 6.81 8.61 10.06 11.70 13.10
1 EWMA 15 12 12 2.03 4.04 6.95 10.75 15.48 21.03 26.94
 CES 21 16 19 2.41 4.65 7.05 9.55 12.28 15.48 18.91
 IND 279 191 284 2.52 3.23 3.62 3.98 4.28 4.62 5.00
2 EWMA 136 96 141 7.15 8.32 9.35 10.05 10.74 11.31 11.91
 CES 184 136 177 3.03 3.88 4.41 4.86 5.27 5.66 6.13
 IND 290 199 295 2.52 3.23 3.60 3.93 4.23 4.53 4.88
3 EWMA 217 145 239 7.01 7.92 8.63 9.22 9.83 10.39 10.86
 CES 259 178 265 3.03 3.74 4.19 4.54 4.90 5.24 5.64
 IND 270 177 293 2.52 4.34 5.97 7.14 8.10 8.93 9.75
4 EWMA 227 150 252 7.03 8.16 8.96 9.48 10.16 10.71 11.22
 CES 252 165 276 3.03 4.77 6.32 7.39 8.32 9.08 9.86
 IND 42 29 42 2.52 4.80 7.25 9.44 11.43 13.63 15.80
5 EWMA 9 8 5 1.51 4.28 8.73 15.38 23.33 32.56 41.75
 CES 12 11 7 2.34 4.93 8.09 12.14 16.89 22.85 29.38
 IND 177 122 180 2.52 2.94 3.68 4.13 4.59 5.10 5.67
6 EWMA 35 30 26 2.59 3.38 4.34 5.13 6.09 7.28 8.46
 CES 51 43 39 2.45 2.95 3.71 4.30 4.95 5.68 6.53
 IND 205 138 218 2.52 3.18 5.08 5.46 6.70 7.03 8.15
7 EWMA 48 41 37 4.46 5.19 6.27 6.72 7.80 8.31 9.32
 CES 67 57 52 2.79 3.48 5.34 5.76 6.97 7.33 8.53
 IND 64 43 63 2.52 3.38 5.84 6.85 8.78 9.92 11.85
8 EWMA 13 11 8 1.61 3.06 5.99 9.03 14.30 19.20 26.22
 CES 17 15 11 2.36 3.40 6.11 7.77 11.08 13.76 18.36

AR(1) IND 290 199 295 2.52 2.93 3.24 3.56 3.84 4.14 4.51
9 EWMA 194 131 209 7.05 7.95 8.72 9.26 9.89 10.44 10.97
 CES 242 167 246 3.03 3.51 3.93 4.30 4.66 5.03 5.44

AR(1) IND 119 81 120 2.52 3.27 4.08 4.91 5.60 6.41 7.21
10 EWMA 21 19 14 2.24 3.51 4.82 6.24 8.10 10.16 12.67
 CES 29 26 20 2.44 3.28 4.18 5.22 6.32 7.59 8.98

MA(1) IND 79 54 79 2.52 3.34 4.77 5.93 7.01 8.29 9.51
11 EWMA 15 13 9 1.70 3.11 5.11 7.85 11.34 15.65 20.50
 CES 20 18 14 2.38 3.35 5.04 6.68 8.60 10.99 13.83

MA(1) IND 117 78 120 2.52 2.93 5.13 5.49 7.04 7.45 8.92
12 EWMA 22 19 14 2.24 3.05 4.63 5.43 7.64 9.02 11.96
 CES 29 26 20 2.44 2.91 4.99 5.45 7.32 8.01 10.07
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Consider, for example, ARMA(1,1) Model 1 and 
AR(1) Model 10 in Table 5. Both exhibit a similar 
level of sustained forecast recovery (0.50 versus 
0.53). Model 10’s forecast errors attain a sustained 
level of shift at t = r + 1, while Model 1’s forecast 
errors attain a sustained level at t = r + 34. 
Although Model 10 has a slightly higher sustained 
level of forecast recovery, the Individuals control 
chart performs better when applied to Model 1. 
The reason for this difference is a result of the 
magnitude of the gradually recovering forecast 
errors of Model 1. The Individuals chart takes 
advantage of the magnitude of forecast errors from 
time periods t = r + 1 to t = r + 33. Again, the 
AR(1) process forecast errors recover immediately 
to the sustained level of the shift at time period t = 
r + 1. The other control charts also exhibit similar 
behavior when applied to these two models. 
 Consider another example using Model 1 
compared with MA(1) Model 12 in Table 5. Both 
exhibit similar levels of sustained forecast 
recovery (0.50 versus 0.53), and both models 
attain a sustained level of shift at approximately t 
= r + 34. Both models exhibit gradually recovering 
forecast errors, but again the magnitude of the 
recovering forecast errors has a profound effect on 
the control charts. While the forecast errors arising 
from Model 1 gradually decrease from E(et

*) = 
0.95 to 0.50, those for Model 12 oscillate between 
values from E(et) = 0.10 to 0.91 until converging 
upon the sustained level of the shift at E(et

*) = 
0.53. As a result of this oscillating behavior, the 
control charts applied to Model 12 do not perform 
as well as the same charts applied to Model 1 even 
though Model 12 has a higher sustained level of 
the shift. 
 Many ARMA(1,1) processes exhibit 
oscillating behavior of forecast errors to some 
degree. The worst cases are those in which the 
forecast errors oscillate between values that alter 
in sign as well as magnitude and finally converge 
to the sustained level of the shift. ARMA(1,1) 
Models 3 and 4 in Table 5 are good examples of 
forecast errors exhibiting this oscillation behavior. 
Table 1 displays this behavior numerically for a 
shift of size c = 1σε. The forecast errors in Model 
3 oscillate between sequential values that differ in 
sign as well as absolute magnitude. The forecast 
errors in Model 4 oscillate between sequential 

values that differ in sign, but the absolute 
magnitudes of the forecast errors are very similar. 

The behavior of the forecast errors in 
Model 4 dampens the performance of any control 
chart that requires the summing or averaging of 
forecast errors over time such as the EWMA or 
CUSUM control charts. If the forecast errors differ 
in sign but not in absolute magnitude, the result is 
a canceling-out effect of summed or averaged 
forecast errors, until finally reaching the sustained 
level of the shift. Models producing forecast errors 
that differ in sign as well as absolute magnitude 
(Model 3) experience the same canceling out 
effect but not to the same degree as is seen in 
Model 4. 

Consider a comparison of the performance 
of control charts applied to Models 3 and 4. Both 
exhibit the same level of sustained forecast 
recovery (0.03). Model 3’s forecast errors attain a 
sustained level of shift at t = r + 5, while Model 
4’s forecast errors attain a sustained level at t = r + 
38. Longer time until sustained recovery is 
attained usually provides for an all around better 
chart performance for a given sustained level of a 
shift, but the oscillation behavior of the forecast 
errors in Model 4 negates this advantage in the 
case of the EWMA control chart. The Individuals 
control chart takes advantage of the magnitude of 
the recovering forecast errors in Model 4, ignoring 
the sign of each forecast error value. As a result, 
the Individuals chart applied in Model 4 was found 
to have phenomenally better ARL, MRL, and CDF 
performance than in the case of Model 3, over all 
shift sizes. In contrast, the EWMA control chart 
applied in Model 4 was found to perform 
significantly worse than in the case of Model 3 
providing ARLs, MRLs, and CDFs that are lower 
for every shift size. Although the EWMA chart 
suffers in Model 4, the good performance of the 
Individuals chart results in CES control chart 
performance that is also good. 
 
Recommendations 

As a result of the phenomenon of forecast 
recovery and the behavior of recovering forecast 
errors, the authors have several recommendations 
in regards to selecting the appropriate control chart 
to use with various autocorrelated processes. The 
practitioner should: 
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1. Determine the appropriate ARMA model and 
parameters regarding the process to be 
monitored, and use Eq. (9) to estimate the 
degree of forecast recovery. 

2. Use Eq. (4) to determine the effect of forecast 
recovery on the forecast errors that will result 
from a step-shift of size c in the mean of the 
underlying ARMA process.  

3. Use one of Eq. (5), (6), or (7), depending on if 
the model is an ARMA(1,1), AR(1), or 
MA(1), to determine the sustained level of 
recovery resulting from the step-shift of size c. 
The expected behavior of the recovering 
forecast errors should also be studied in 
regards to the rate of recovery, oscillation, the 
magnitude and sign of recovering forecast if 
oscillating, and the expected sampling period 
when the forecast will recover to the sustained 
level.  

4. Select and apply the control chart who’s 
performance is least affected by the forecast 
recovery, in face of the magnitude of the shift 
to be detected as well as the behavior of the 
recovering forecast. 

The practitioner should take note that in 
the selection of the control chart, one first 
determines the magnitude of the shift that is 
deemed most important to detect. Recall, while the 
Individuals chart is best suited for rapidly 
detecting relatively large shifts, the EWMA chart 
is best suited for the eventual detection of small 
shifts. The CES chart serves as a compromise. 
Second, one must bear in mind that the behavior of 
recovering forecast might yield an otherwise 
favorable chart unsuitable for the monitoring the 
process at hand. 
 

Conclusion 
 
This article provided a description of various 
models for autocorrelated data, as well as an 
introduction to the Box-Jenkins OSA forecast and 
forecast error often used to monitor an 
autocorrelated process. Also provided was a 
mathematical description of the impact of forecast 
recovery on the ARMA(p,q) process, and 
particularly the ARMA(1,1), AR(1), and MA(1) 
processes. 
 Additionally, the article included a 
discussion concerning the relationship between 
initial/sustained rates of forecast recovery, and a 

model’s particular parameter values and first order 
autocorrelation structure. It was shown that while 
the rates of forecast recovery differ for all models, 
these recovery rates are indeed a function of the 
model parameters. Additionally, knowledge of 
first order autocorrelation was shown helpful in 
determining the degree of sustained forecast error 
recovery in the ARMA(1,1), AR(1), and MA(1) 
processes. Examples were given of various 
ARMA(p,q) forecast error recovery rates over 
time, while tables were provided relating the 
sustained expected value of forecast errors for a 
wide variety of ARMA(p,q) processes. 

Finally, it was found that the sustained 
level of forecast recovery following a shift had a 
tremendous effect on the performance of each 
control chart examined. The rate of recovery as 
well as the absolute magnitude and sign of forecast 
errors prior to attaining the sustained level of 
recovery were found to greatly influence the 
performance of the control charts. It was shown 
that for a given shift and sustained level of 
recovery, the control charts generally perform 
worse when applied to the forecast errors arising 
from AR(1) processes. The worsening of 
performance was shown to be due to the sudden 
forecast recovery characteristics inherent in these 
processes. As a result of the phenomenon of 
forecast recovery and the behavior of recovering 
forecasts, recommendations were made in regards 
to a practitioner selecting the most appropriate 
control chart for various ARMA processes. 
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This study examines the performance of eight methods of predictor importance under varied correlational and 
distributional conditions. The proportion of times a method correctly identified the dominant predictor was 
recorded. Results indicated that the new methods of importance proposed by Budescu (1993) and Johnson 
(2000) outperformed commonly used importance methods.  
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Introduction 
 

One of the most common statistical techniques 
used today is Multiple Regression (MR) Analysis 
(Neter, Kutner, Nachtsheim, & Wasserman, 1996). 
Once the predictors are selected for the MR 
model, researchers typically wish to establish the 
relative importance of the predictors when 
predicting the dependent variable. According to 
Healy (1990), the most typical request of statistical 
consultants when conducting MR analyses is to 
determine the relative importance of the predictor 
variables in the model, with the key focus on the 
question: Of all the predictors in the MR model, 
which one influences the criterion variable the 
most? 

According to Kruskal (1984), there are 
two   motives  as  to why  relative  importance is so  
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meaningful to researchers: 1) technological 
motives and 2) scientific motives. The 
technological motive is produced from the hopes 
of implementing change that is effective and 
economical. For example, “what should we attend 
to first in trying to reduce cancer deaths, improve 
education, maintain our systems of highways, 
increase productivity growth, etc.” (Kruskal, 1984, 
p. 39). The scientific motive is produced from the 
attempt to increase one’s basic understanding of 
some phenomenon with no concern of 
implementing immediate change. For example, 
“which variables should we examine in our next 
experiment or survey…since we never have the 
resources to examine all?” (Kruskal, 1984, p. 39). 
Regardless of the motive, predictor importance is 
of great concern when conducting MR analyses. 

Consider p predictors, x1 ...xp , of the 
criterion variable y. When the predictor variables 
in the MR model are perfectly uncorrelated, 
relative importance can simply be determined 
from the squared value of the zero-order 
correlations between the criterion and each of the 
predictors ( pj

jyx ...1,2 =ρ ) which, in that case, 

sum to the model’s squared multiple correlation 
(Budescu, 1993):  

 ∑
=

=
p

j
yxxxy jp

1

22.... 1 ρρ .       (1)     
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Thus, the relative contribution of each predictor 
may be expressed in terms of percentages, as can 
be seen from the following equation (Lindeman, 
Merenda, & Gold, 1980, p. 119):  

Percentage Contribution = 100 2
1

2

.... pxxy

jyx

ρ

ρ
,       (2) 

 
and this can be interpreted as the percentage of 
total variance in the criterion accounted for by a 
predictor. However, when the predictors are 
correlated with each other, which is normally the 
case, the above relationship is no longer viable. 
This is because part of a predictor’s contribution 
becomes a shared contribution with one or more of 
the other predictor variables with which it happens 
to be correlated (Lindeman et al., 1980).  

Many techniques have been proposed to 
assess the relative importance of predictors in 
ordinary least squares (OLS) MR models, with 
little consensus on which method is best employed 
(for reviews, see Budescu, 1993; Darlington, 
1968). Proposed methods to determine the 
importance of the jth predictor of y include: 1) the 
squared zero-order correlation between the 
criterion variable and the predictor, 2

jyxρ ; 2) the 

standardized regression coefficient for the 
predictor in the p-predictor MR model, β j

*; 3) the 
t-statistic for the test of the regression coefficient 
in the p-predictor MR model, tj; 4) the product of 
the standardized regression coefficient for a 
predictor and its zero-order correlation with the 
criterion (Pratt, 1987), βj* ρyx j

; 5) the squared 

partial correlation of the criterion variable and the 
predictor, ρyx j .x1...xj −1x j+1...xp

2 ; and 6) the squared 

semi-partial correlation of the criterion variable 
and the predictor, ρy( xj . x1...x j−1x j+1...x p )

2  (c.f., 

Darlington, 1968; Budescu, 1993; Johnson, 2000). 
All of these methods of determining predictor 
importance provide the same information when the 
predictors are not intercorrelated. However, the 
information they provide is not equivalent when 
the predictors are correlated (Darlington, 1968).  

The lack of consensus as to which 
importance method to use is understandable when 
one considers the differences between these 
methods, the most visible difference being the 
definition of importance adopted when using these 

various methods (Budescu, 1993). For instance, 
the squared value of the zero-order correlation 
between the criterion and the predictor, ρyx j

2 , is 

the proportion of variance in the criterion 
accounted for by the predictor (Cohen & Cohen, 
1975). Thus, it only illustrates a predictor’s direct 
effect on the criterion (Budescu, 1993). 
Standardized regression coefficients, β j

*, are 
interpreted as the amount of change that occurs in 
the criterion variable for each standard deviation 
change in a predictor variable while holding all 
other predictors in the model constant (Bring, 
1994).  

Hence, a predictor’s importance is 
dependent upon its own contribution to the model, 
which is contingent upon the other predictors’ 
contributions (Budescu, 1993). The t-values 
associated with the estimates of the coefficients 
for the predictors are computed to test the null 
hypothesis that each population regression 
coefficient in the model is equal to zero (βj = 0) 
(Lindeman et al., 1980). When computing a t-
value for a predictor, it represents the increase in 
the model’s squared multiple correlation when 
adding the predictor to the MR model after all the 
additional p – 1 predictors have already been 
included in the MR model (Bring, 1994). Hence, a 
predictor’s importance is dependent upon its own 
contribution to the model, which is contingent 
upon the other predictors’ contributions. The 
product of the standardized regression coefficient 
for a predictor and its zero-order correlation with 
the criterion (Pratt, 1987), βj* ρyx j

, represents both 

a predictor’s total effect (βj*) and direct effect 
( ρyx j

). The squared partial correlation, 

ρyx j .x1...xj −1x j+1...xp

2 , and the predictor’s “usefulness” 

(i.e., the squared semipartial correlation), 
ρy( xj . x1...x j−1x j+1...x p )

2 , (Darlington, 1968) can be 

perceived as the proportion of variance in the 
criterion that can be explained by each predictor 
variable contingent upon the other predictors’ 
contributions (Budescu, 1993). Evidently, the 
definition of importance varies widely from 
method to method. Accordingly, these methods 
can often lead to different conclusions as to the 
relative importance of the same predictor variables 
(Budescu, 1993).  
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Dominance Analysis  
Budescu (1993) recently suggested a new 

method, called Dominance Analysis, that 
identifies predictor importance while accounting 
for a predictor’s direct, partial, and total effect. 
Where xi and xj are a pair of predictors in the 
original set of p predictors, and xh is any subset of 
the remaining p−2 predictors, xi “weakly 
dominates” xj , if the following relationships 
among squared multiple correlations hold for all 
possible xh: 
         
  

2
.

2
. hxjxyhxixy ρρ ≥                   (3) 

 
or 

       
 (ρy .xi xh

2
− ρy. xh

2
) ≥ (ρy.x j xh

2
− ρy.xh

2
) , (4) 

 
where 2

. hi xxyρ  is the squared multiple correlation 
of the model which includes predictor xi and the 
remaining predictors, xh, while excluding predictor 
xj. After establishing pairwise “dominance or 
equality” for each p(p–1)/2 xi xj pairings, the next 
step is to compute  
      
  Cxi

( k) = (ρy. xi∑ x h
2 − ρy.xh

2 ) / m         (5) 
 
for each variable xi across all m models with k + 
1 predictors (xi and k = 0…p − 1 variables), where 
xh is any possible subset of k predictors with xi 
excluded and m = k

p − 1( ). Lastly, Budescu advises 

the computation of  
      

  Cxi =
k =0

p −1

∑ Cxi
( k) / p ,                  (6) 

 
which provides a meaningful decomposition of the 
p-predictor model’s squared multiple correlation.  
 
Johnson’s Index  

Johnson (2000) critiqued Budescu’s 
method and noted that computations are tedious 
and require more time as the number of predictor 
variables in the model increases (Johnson, 2000). 
Johnson (2000) suggested an alternative method 
that yields similar results with less computation, 
extending the work of Gibson (1962), Johnson 

(1966), and Green Carroll, and DeSarbo (1978). 
Without loss of generality, let X be an N × p full-
rank matrix of predictor scores in standard score 
form, and y be the p × 1 criterion score vector also 
in standard score form. Singular value 
decomposition yields X = P∆Q’, where P consists 
of eigenvectors of XX’, Q consists of eigenvectors 
of X’X, and ∆ is the diagonal matrix with the 
square roots of corresponding eigenvalues on the 
diagonal. Let Z= PQ’, which yields a best-fitting 
(minimum sum of squared residuals) set of 
orthogonal variables to X. Let the regression of y 
on Z yield the vector of regression weights βZ

* , 
and the regression of X on Z yield the matrix of 
regression weights Λ*. Using the notation,  
      
   Λ*[2] = λ jk

2
                             (7) 

 
and 

   
      

   β*[2] 
2*
jkZβ= ,              (8) 

 
Johnson’s index for each predictor’s relative 
importance is obtained from the elements of ε = 
Λ*[2] β*[2] , which when summed yield the original 
p-predictor model’s squared multiple correlation 
(Johnson, 2000).  

Using an actual data set, Johnson 
compared his method (ε) with seven other 
measures of importance. These seven measures 
included the following: 1) the squared zero-order 
correlation between the criterion and the predictor; 
2) the squared value of the standardized regression 
coefficient; 3) the product of the standardized 
regression coefficient for a predictor and its zero-
order correlation with the criterion, βj*ρyx; 4) the t-
statistic associated with a predictor; 5) the squared 
value of the standardized partial regression 
coefficient from regressing the criterion on the 
orthogonal predictors (Gibson, 1962); 6) Green, 
Carroll, and DeSarbo’s (1978) relative weight 
measure (δj

2); and 7) Budescu’s (1993) 
Dominance Analysis method (C

ix
). Relative 

weights for various predictor variables were 
calculated using each of the different importance 
methods. Johnson concluded that his method (ε), 
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Budescu’s (1993) method (C
ix ), and Green et al.’s 

(1978) method (δj
2) were comparable in terms of 

the relative weights assigned to the predictors and 
that these methods are the most efficient in 
obtaining the indirect and direct effects of the 
predictors on the criterion variable. 

Johnson further examined the efficiency 
of his method by comparing it to both Budescu’s 
(1993) C

ix  and Green et. al.’s (1978) δj
2 across 

various regression models. Using 31 different sets 
of data (both authentic and simulated), Johnson 
calculated the relative importance weights 
assigned by each of the three different methods. 
The number of predictors in the MR model varied 
from 3 to 10, and the mean correlation among 
predictor variables varied from .10 to .70. Using 
Budescu’s (1993) method as the standard, mean 
differences between the weights were calculated 
across the predictor variables. Johnson found that 
the mean difference between his method and 
Budescu’s (1993) method was smaller than the 
mean difference between Budescu’s method and 
Green et. al.’s (1978) method. The mean 
differences between the relative importance 
weights were not related to the number of 
predictors in the model, but were related to the 
mean correlation among predictors in the model. 
Thus, Johnson’s and Budescu’s methods 
demonstrated similar findings as to the relative 
weights assigned, but as the mean correlation 
between the predictor variables increased, so did 
the differences between Johnson’s and Budescu’s 
(1993) methods. Still, as the mean correlation 
among predictors increased, Green et al.’s (1978) 
method deviated more from Budescu’s (1993) 
method than Johnson’s method. Johnson attributed 
the deviation between his method and Budescu’s 
(1993) method to the fact that regression 
coefficients become unstable under conditions of 
multicollinearity, suggesting that both measures 
may generate questionable results under these 
conditions. Nevertheless, Johnson (2000) did not 
report which method performed the best in terms 
of correctly identifying the known dominant or 
most important predictor. In addition, results were 
not reported with respect to the performance of the 
predictor importance methods under various 
distributional conditions, such as multivariate 
nonnormality.  

Normality of predictor and criterion 
variables is not an assumption of MR, however, 
nonnormality of predictor and criterion variables 
may create nonnormality in the error (residual) 
distributions, which is an assumption of MR. A 
violation of this assumption affects the validity of 
significance tests, such as t-tests, and increases the 
sample to sample variance of the regression 
coefficients. These effects are both due to the 
increase in the standard errors for the regression 
coefficients which occurs when the errors are 
nonnormally distributed (Hamilton, 1992).    

Therefore, this study seeks to compare the 
performance of the new importance methods (i.e., 
Johnson’s and Budescu’s methods) to the other 
proposed measures of predictor importance in 
terms of identifying the known, correct dominant 
predictor. In addition, the current study will 
investigate the performance of these methods 
under a range of sample and distributional 
conditions using simulated data as well as a 
sample data set. 

 
Methodology 

 
Monte Carlo Study 

A Monte Carlo simulation experiment was 
first conducted to compare methods of predictor 
importance under conditions of normality and 
nonnormality in the predictors and criterion, 
homogenous correlations among predictors, and 
heterogeneous correlations between predictors and 
the criterion. Data were generated from 
multivariate normal and nonnormal populations 
using the Headrick and Sawilowsky (1999) 
approach, which has been proposed as an 
alternative to other methods used for generating 
skewed and kurtotic distributions (e.g., Vale & 
Maurelli, 1983).  

The correct identification of the known 
dominant predictor was examined under the 
following conditions: 

Methods of Importance. Eight methods of 
importance were investigated. These included: 1) 
the squared zero-order correlation between the 
criterion variable and the predictor, ρyx j

2 ; 2) the 

standardized regression coefficient for the 
predictor in the p-predictor MR model, β*

j; 3) the 
t-statistic for the test of the regression coefficient 
in the p-predictor MR model, tj; 4) the product of 
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the standardized regression coefficient for a 
predictor and its zero-order correlation with the 
criterion (Pratt, 1987), βj* ρyx j

; 5) the squared 

partial correlation of the criterion variable and the 
predictor, ρyx j .x1...xj −1x j+1...xp

2 ; 6) the squared semi-

partial correlation of the criterion variable and the 
predictor, ρy( xj . x1...x j−1x j+1...x p )

2 ; 7) Budescu’s (1993) 

dominance measure, Cx j , and 8) Johnson’s (2000) 
Epsilon index, εj. 
 Correlations among predictors. To 
represent low, moderate, and high 
multicollinearity levels among the predictor 
variables, data were generated from populations 
where predictors were homogeneously 
intercorrelated where the magnitude of the 
correlations equaled .10, .40, or .70. 
 Correlations between dominant predictor 
and criterion. Data were from populations where 
the predictors were heterogeneously correlated 
with the criterion. To establish known dominance 
of a predictor, the most important predictor 
correlated .40 or .60 with the criterion while the 
correlation between the additional predictors and 
the criterion equaled .30. 
 Distribution type. Data were distributed 
from both multivariate normal and nonnormal 
distributions, where the levels of skew and 
kurtosis for the predictors and the criterion were 
(sk, ku): (0, 0) for a normal distribution, (0, 6) for 
a symmetric and heavy-tailed distribution, or (2, 6) 
for an asymmetric and heavy-tailed distribution. 
These levels of skew and kurtosis were selected to 
compare the performance of the importance 
methods under the normal distribution as well as 
under some commonly encountered nonnormal 
distributions (Micceri, 1989). 
 Number of predictors, p. To represent a 
low, moderate, and high number of predictors in 
the MR model, data were from p-variate 
multinormal and multi-nonnormal populations, 
where p equaled 4, 6, or 8. 
 Sample size, n. To represent a wide range 
of sample sizes similar to those that may be 
encountered in the health, behavioral, and social 
scienes where extremely small as well as large 
sample studies are conducted, data were generated 
at specific ratios of sample size to number of 
variables, where n was either 2p, 4p, 10p, 20p, or 
40p.  

 The six factors were fully crossed and 
each condition was replicated 1,000 times. Under 
each condition, the number of times that the 
correct predictor was identified as dominant was 
recorded.  
 

Results 
 
A six-way factorial ANOVA [8 (methods of 
importance) × 3 (correlations among predictors) × 
2 (correlations between dominant predictor and 
criterion) × 3 (distribution type) x 3 (number of 
predictors) × 5 (sample size)], with repeated 
measures on the importance methods, was 
performed on the hit rates. However, only a 
maximum of three-way interactions was 
investigated. 
 Four-way and five-way interactions were 
not investigated because separate ANOVAs for 
each importance method indicated that the three-
way ANOVA models accounted for more than 
90% of the variance in the hit rates (R2 ranged 
from .93 to .96). Because differential performance 
of the importance methods was the focus of the 
current research, only the interactions between the 
repeated measures factor (importance method) and 
the additional between-subjects factors were 
examined, as well as the main effect for 
importance method. 
 To control for Type I error, only those 
interactions with the repeated measures factor that 
obtained a significance level less than .001 were 
examined. These interactions consisted of the 
following and are discussed in this order: 
Importance Method × Correlation Between 
Dominant Predictor and Criterion × Sample Size; 
Importance Method × Correlation Among 
Predictors × Sample Size; Importance Method × 
Correlation Among Predictors; Importance 
Method × Sample Size.  The Least Significant 
Difference (LSD) test was used for post hoc 
multiple comparisons. Again, to control for Type I 
error, only the pairwise differences that obtained a 
significance level less than .001 were examined.   
 Importance Method × Correlation 
Between Dominant Predictor and Criterion × 
Sample Size. The ANOVA indicated a significant 
interaction between importance method, 
correlation between dominant predictor and 
criterion, and sample size, F(28, 840) = 2.20, p < 
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.001 (η2 = .07). Post-hoc tests indicated that when 
the correlation between dominant predictor and 
criterion was low (.40) and sample size was small 
(2p), Budescu’s method and Johnson’s εj method 
performed comparably, outperforming the 
standardized regression coefficient and the method 
endorsed by Pratt (1987) (the product of the 
standardized regression coefficient for a predictor 
and its zero-order correlation with the criterion) in 
terms of identifying the dominant predictor (see 
Figure 1a); the standardized regression coefficient 
was outperformed by all of the other seven 
methods.  
 When the correlation between dominant 
predictor and criterion was low (.40) and sample 
size was at 4p, Budescu’s and Johnson’s methods 
again performed comparably, outperforming the t-
statistic, the squared partial correlation, and the 
squared semi-partial correlation; Pratt’s method 
significantly outperformed the standardized 
regression coefficient while the squared zero-order 
correlation did not significantly differ from any of 
the other importance methods. There were no 
significant differences between the importance 
methods when sample sizes ranged from 10p to 
40p. 

When the correlation between the 
dominant predictor and criterion was high (.60) 
and sample size was low (2p), the squared zero-
order correlation, Pratt’s method, Budescu’s 
method, and Johnson’s method all performed 
comparably and outperformed the standardized 
regression coefficient, the t-statistic, the squared 
partial correlation, and the squared semi-partial 
correlation (see Figure 1b). When the correlation 
between dominant predictor and criterion was high 
(.60) and sample size was at 4p, Budescu’s method 
and Johnson’s method again performed 
comparably, outperforming the t-statistic, the 
squared partial correlation, and the squared semi-
partial correlation while Budescu’s and Pratt’s 

methods outperformed the standardized regression 
coefficient; the squared zero-order correlation did 
not significantly differ from any of the importance 
methods in terms of identifying the dominant 
predictor. There were no other significant 
differences between importance methods for 
sample sizes ranging from 10p to 40p.  

Importance Method × Sample Size. The 
ANOVA also indicated a significant interaction 
between importance method and sample size, 
F(28, 840) = 4.84, p < .001 (η2 = .14). Post hoc 
tests indicated that when sample size was small 
(2p), the squared zero-order correlation, Budescu’s 
method, and Johnson’s method performed 
comparably, significantly outperforming the 
standardized regression coefficient, the t-statistic, 
Pratt’s method, the squared partial correlation, and 
the squared semi-partial correlation (see Table 2); 
Pratt’s method significantly outperformed the 
standardized regression coefficient. 

 When the sample size was 4p, Pratt’s 
method, Budescu’s method, and Johnson’s method 
performed comparably, significantly 
outperforming the standardized regression 
coefficient, the t-statistic, the squared partial 
correlation, and the squared semi-partial 
correlation; the squared zero-order correlation did 
not significantly differ from any of the other 
importance methods. No other significant 
differences were detected at other sample sizes 
(10p-40p). 
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Figures 1a-b.  Mean hit rates (out of 1,000 replications) as a function of importance method and sample size at a) low 
(.40), and b) high (.60) correlation between dominant predictor and criterion.  Importance methods are:  1 = squared 
zero-order correlation; 2 = standardized regression coefficient; 3 = t-statistic; 4 = Pratt’s method; 5 = squared partial 
correlation; 6 = squared semi-partial correlation; 7 = Budescu’s method; 8 = Johnson’s method.
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Figures 2a-b. Mean hit rates (out of 1,000 replications) as a function of importance method and sample size at 
a) low (.10), and b) moderate (.40) correlation among predictors. Importance methods are: 1 = squared zero-
order correlation; 2 = standardized regression coefficient; 3 = t-statistic; 4 = Pratt’s method; 5 = squared 
partial correlation; 6 = squared semi-partial correlation; 7 = Budescu’s method; 8 = Johnson’s method. 
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Figure 2c. Mean hit rates (out of 1,000 replications) as a function of importance method and sample size at 
high (.70) correlation among predictors. Importance methods are: 1 = squared zero-order correlation; 2 = 
standardized regression coefficient; 3 = t-statistic; 4 = Pratt’s method; 5 = squared partial correlation; 6 = 
squared semi-partial correlation; 7 = Budescu’s method; 8 = Johnson’s method. 

 
 
 
Table 1 Mean Number of Hits (Standard Deviations) out of 1,000 as a Function of Correlation Among 
Predictor 
 
 ρyx j

2  β*
j tj βj* ρyx j

 2

...1. pxxjyxρ
2

)...1.( pxxjxyρ
Cx j  εj 

Correlation Among Predictors 
 .10 639.04 650.57 657.09 654.34 657.09 657.09 657.84 658.39 
 (308.56) (280.38) (276.92) (288.04) (276.92) (276.92) (289.53) (287.38) 
 .40 674.47 640.32 646.70 659.93 646.70 646.70 669.93 672.99 
 (258.34) (285.23) (272.93) (269.14) (272.93) (272.93) (260.16) (257.07) 
 .70 754.11 710.88 715.03 742.28 715.03 715.03 748.61 746.11 
 (258.55) (290.35) (286.93) (266.94) (286.93) (286.93) (264.19) (268.64) 
 

Main Effect of Importance Method. The 
ANOVA also indicated a significant main effect of 
importance method, F(7, 840) = 20.01, p < .001 
(η2 = .14). The mean number of hits out of 1,000 
for each importance method is reported in Table 3. 
Post hoc tests indicated that Budescu’s method 
(Cx j ), and Johnson’s index (εj) performed 
similarly by outperforming the remaining 

measures when identifying the dominant predictor, 
with the exception of the squared zero-order 
correlation. The squared zero-order correlation and 
Pratt’s method significantly outperformed the 
standardized regression coefficient, the t-statistic, 
the squared partial correlation, and the squared 
semi-partial correlation, which all performed 
comparably. 
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Table 2: Mean Number of Hits (Standard Deviations) out of 1,000 as a Function of Sample Size 
 
 ρyx j

2  β*
j tj βj* ρyx j

 2

...1. pxxjyxρ
2

)...1.( pxxjxyρ
Cx j  εj 

Sample 
Size 

        

 2p 416.04 348.50 374.91 394.09 374.91 374.91 414.80 414.70 
 (195.50) (182.51) (177.38) (186.74) (177.38) (177.38) (188.25) (186.70) 
 4p 588.69 554.56 552.59 584.02 552.59 552.59 587.48 588.11 
 (254.93) (250.73) (254.55) (249.80) (254.55) (254.55) (255.49) (254.33) 
 10p 720.98 718.04 724.56 725.30 724.56 724.56 729.39 731.04 
 (269.44) (252.66) (246.10) (256.93) (246.10) (246.10) (254.59) (253.97) 
 20p 802.15 807.96 809.19 809.24 809.19 809.19 811.85 812.06 
 (234.72) (208.31) (208.01) (215.61) (208.01) (208.01) (215.50) (215.47) 
 40p 918.19 907.22 903.46 914.94 903.46 903.64 917.13 916.57 
 (106.50) (117.46) (124.86) (105.94) (124.86) (124.86) (103.89) (104.46) 

 
 

Table 3: Mean Number of Hits (Standard Deviations) out of 1,000 
 

ρyx j

2  β*
j tj βj* ρyx j

 2

...1. pxxjyxρ  2

)...1.( pxxjxyρ
Cx j  εj 

689.21ab 667.26c 672.94bc 685.52bd 672.94bc 672.94 bc 692.13a 692.50ad 
(279.33) (285.99) (279.58) (276.79) (279.58) (279.58) (273.58) (273.03) 

Note. Means that share the same letter superscript do not significantly differ. 
 

Conclusion 
 
One of the primary reasons for conducting this 
study was to determine which importance measure 
performs better in terms of identifying the correct 
dominant predictor. Similar to Johnson’s (2000) 
findings, this Monte Carlo study indicates that 
Budescu’s method (Cx j ) and Johnson’s index (εj) 
perform comparably in terms of identifying the 
dominant predictor. Overall, both Budescu’s and 
Johnson’s methods also outperform the additional 
importance methods, with the exception of the 
squared zero-order correlation. 
 Trends did appear in the interactions that 
further substantiate the use of either Budescu’s 
method or Johnson’s method when determining 
predictor importance, especially under very small 
sample size conditions (2p-4p). As sample size 
increased (at 10p), however, the differences 
between all the importance methods became 
negligible, regardless of multicollinearity or 
dominance level. Budescu’s method did differ 
from Johnson’s method under the various levels of  
multicollinearity, in that Johnson’s method 
performed better than Budescu’s under moderate 

multicollinearity with a very small sample size 
(2p), whereas Budescu’s method performed better 
than Johnson’s under high multicollinearity with a 
very small sample size (2p). Again, however, as 
sample size increased, the differences between 
these two methods became negligible under these 
multicollinearity conditions. The squared zero-
order correlation did not appear to differentiate 
itself as a viable measure of importance as it did 
not significantly differ from additional importance 
methods under certain conditions. 
 Interestingly, two of the factors 
investigated in the current study did not interact 
with the various importance methods in either 
two-way or three-way interactions, such as the 
number of predictors in the MR model or 
distribution type. This indicates that no significant 
differences emerge between the importance 
methods as a function of the levels of either of 
these factors. Still, the levels of the factors used in 
the current study may not have been extreme 
enough to be able to examine differences between 
importance methods. Thus, future studies could 
examine the effect of MR models with a larger 
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number of predictors under more extreme levels of 
multivariate nonnormality.  
 In the current study, the t-statistic, the 
squared partial correlation, and the squared semi-
partial correlation all performed identically, 
identifying the dominant predictor the same 
number of times under each condition. This may 
have been due to the homogeneous correlations 
among the predictor variables. As a result, real and 
simulated data sets with heterogeneous 
correlations among predictors were used to 
determine if these methods would differ under 
such conditions. The results of these analyses 
indicated that these three methods still identified 
the dominant predictor identically, indicating that 
the similarities between these three methods must 
be due to their definitions. In other words, all three 
methods are related to the variance in the model’s 
multiple squared correlation that is attributable to 
a predictor variable after consideration of the 
additional variables’ contribution to the model’s 
squared multiple correlation. 
 

Nursing Facility Consumer Satisfaction Survey 
 In an effort to improve the quality of care 
provided in nursing facilities, the Nursing Facility 
Consumer Satisfaction Survey (NFCSS) was 
developed (c.f., Cortés, Montgomery, Morrow, & 
Monroe, 2000). The survey consists of 12 items 
that assess general and specific consumer 
satisfaction with nursing facility care in certain 
domains, such as incontinence, physical activity, 
and medication management. Two versions of the 
survey were developed, one for nursing home 
residents and the other for family respondents. 
Each item is scored using a 7-point Likert scale 
ranging from 1 (very dissatisfied) to 7 (very 
satisfied). 
 In the first phase of a statewide 
longitudinal study, the survey was administered to 
a total of 138 family respondents of residents 
across 100 nursing facilities (Fouladi, 2001). For 
the purposes of this paper, 3 items which assess 
different types of activity satisfaction were 
selected to predict general satisfaction with the 
goal of identifying which activity satisfaction item 
is most associated with general satisfaction. One 
predictor variable was represented by the item on 
the survey: “How satisfied are you with the 
facility’s ability to provide activities that your 
family member enjoy(s)?”, to which responses 

symbolized satisfaction with enjoyable or 
recreational activities. 
 The second predictor variable was 
represented by the item: “How satisfied are you 
with the facility’s ability to provide activities that 
keep your family member as physically active as 
possible?”, which symbolized satisfaction with 
physical activities. The third predictor was 
represented by the item: “How satisfied are you 
with the facility’s ability to provide activities that 
keep your family member as mentally alert as 
possible?”, which symbolized satisfaction with 
mental alertness activities. The criterion variable 
represented overall satisfaction with the nursing 
facility and corresponded to the item: “Overall, 
how satisfied are you with your family member’s 
experience in this nursing facility?”. 
 These four items on the survey are shown 
in the Appendix. This particular model was 
selected due to the high level of multicollinearity 
among the predictor variables and the moderate 
correlation between each predictor variable and 
the criterion. In addition, the distributional 
properties of the variables in the data set are 
comparable to the distributional properties of the 
variables from the simulation study. 
Intercorrelations among the predictor variables 
and the criterion variable and their descriptive 
statistics are shown in Table 4. 
 

Results 
 

Table 5 shows the predictor variables’ relative 
weights assigned by each importance method. 
With the exception of the squared zero order 
correlation and Pratt’s method, βj* ρyx j

, all of the 

importance methods selected the enjoyable 
activities predictor (predictor 1) as the most 
important variable. In contrast, the squared zero 
order correlation selected the physical activities 
predictor as most important and Pratt’s method, 
βj* ρyx j

, assigned the same weights to both 

enjoyable and physical activities, producing a tie 
between these two variables in terms of 
importance.  
 

Conclusion 
 
This data set demonstrates how similar both 
Budescu’s (Cx j ) and Johnson’s (εj) methods are in 
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that they assigned identical weights to each 
predictor variable. Excluding the squared zero 
order correlation and Pratt’s method, βj* ρyx j

, all 

of the importance methods performed similarly to 
these two new methods, selecting enjoyable 
activities as the most important of the three 
predictor variables. Nonetheless, these additional 
methods do not take into account a predictor’s 
direct and indirect effects as do both Budescu’s 
(Cx j ) and Johnson’s (εj) methods. 
  Researchers typically wish to establish the 
relative importance of predictors in MR models. 
Many techniques are used to do this, however, no 
consensus exists as to which is best. This is due to 
the common problem of multicollinearity, which 
renders the typical methods ambiguous and 

dependent upon the measure’s definition of 
importance. 
 Budescu (1993) and Johnson (2000) have 
both established methods of importance that 
attempt to control for multicollinearity problems. 
The results of the simulation study are consistent 
with Johnson’s (2000) finding that Budescu’s 
method and Johnson’s index perform comparably.  

However, Budescu’s method requires one 
to perform all possible regressions, which 
becomes fatiguing as the number of predictors in 
the MR model increases. Because Budescu’s 
measure and Johnson’s index performed 
comparably, it appears that Johnson’s index would 
be the most computationally efficient measure to 
use if one is interested in determining predictor 
importance while accounting for a predictor’s 
 

 
Table 4: Nursing Facility Consumer Satisfaction Survey Variables’ Intercorrelations and Descriptive 
Statistics (N = 138) 
 
Variables 1 2 3 4 
1. Enjoyable Activities -- .63* .59* .49* 
2. Physical Activites   -- .73* .50* 
3. Mental Alertness 
Activities 

  -- .45* 

4. Overall Satisfaction    -- 
     
Mean 6.01 5.77 5.79 6.25 
Standard Deviation 1.02 1.19 1.10 0.93 
Skew -1.93 -1.72 -1.42 -1.85 
Kurtosis 5.55 3.57 2.64 4.29 
Note. * p < .001.  
 
 
Table 5 
Comparison of Relative Weights Calculated by Each Importance Method for the NFCSS Data 
Predictors ρyx j

2  β*
j tj βj* ρyx j

 2

...1. pxxjyxρ
2

)...1.( pxxjxyρ
Cx j  εj 

Enjoyable Activities .24 .27 2.80 .13 .06 .04 .12 .12 
Physical Activities .25 .25 2.26 .13 .04 .03 .11 .11 
Mental Alertness 
Activities 

.20 .11 .99 .05 .01 .01 .08 .08 

Note. N = 138. Average intercorrelation (in absolute value) among predictors = .65. 
 
direct and total effects. 
 Future research should examine how 
various importance methods perform with 
heterogeneous correlations among predictor 
variables, which is typically the case with MR  

 
models. The focus of the current study was to 
determine the correct known dominant predictor, 
which is a commonly asked question by 
researchers. Still, there are instances in which 
researchers wish to know the rank order of 
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predictor importance. In other words, which is the 
most important, the next most important, etc. 
Thus, future research could be implemented to 
investigate the performance of importance 
methods in terms of identifying the correct ranking 
of predictor variable importance. 

The effects of multicollinearity and 
multivariate nonnormality on the importance 
methods were of particular interest in the current 
study. Although multicollinearity did affect the 
performance of relative importance methods, 
multivariate nonnormality did not. This is 
encouraging because multivariate nonnormality is 
typically found in real world data sets (Micceri, 
1989). Additional research could examine extreme 
levels of multivariate nonnormality to determine 
whether there is a threshold at which point 
nonnormality does affect importance methods.  
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A time-modulated frailty model is proposed for analyzing multivariate failure data. The effect of frailties, 
which may not be constant over time, is discussed. We assume a parametric model for the baseline hazard, but 
avoid the parametric assumption for the frailty distribution. The well-known connection between survival 
times and Poisson regression model is used. The parameters of interest are estimated by generalized 
estimating equations (GEE) or by penalized GEE. Simulation studies show that the procedure is successful to 
detect the effect of time-modulated frailty. The method is also applied to a placebo controlled randomized 
clinical trial of gamma interferon, a study of chronic granulomatous disease (CGD). 
 
Key words: Frailty models; multivariate failure data; generalized linear models. 
 
 

Introduction 
 
In the analysis of failure time data, one of the 
common assumptions made is that the life 
histories for subjects under study are statistically 
independent (at least conditionally on the observed 
fixed-time covariates). This assumption may be 
violated when individuals within some subgroup 
(e.g. siblings or parents in the same family, litter 
mates in animal study) share common unmeasured 
factors. Frailty models have been widely used for 
correlated survival data after Vaupel et. al. (1979) 
introduced the concept of frailty for making 
adjustments for the over-dispersion 
(heterogeneity) in their mortality study. 
 A frailty is an unobserved random effect 
shared by subjects within a subgroup. These 
include shared frailty (Hougaard, 1986a), bivariate 
frailty (Xue, 1998) as well as correlated frailty 
(Yashin, et. al. 1995), but few of them deal with 
time-dependent frailty (Self, 1995; Yau and 
McGilchrist, 1998). Most papers in the literature 
assume  that  individuals  in  the  same  cluster  are 
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born at a certain level of relative frailty and stay at 
this level through out life. As mentioned by 
Vaupel et. al. (1979), this may not be true in 
reality, for example, in human population 
mortality study, the frailty of an individual is large 
during an early period of life, after which it 
stabilizes, followed by an increasing frailty due to 
the natural aging process. For univariate frailty 
model, there are several limitations, for example, 
the model only allows positive correlations within 
the cluster, and the unobserved factor (frailty) is 
the same within the cluster (Xue, 1998). 

Typically we assume that the frailty acts 
multiplicatively on each individual's hazard rate. 
We propose a time-modulated frailty model to 
analyze multivariate failure time data. The 
proposed model is more general than other frailty 
models, having as special members regular frailty 
models, such as shared frailty and bivariate frailty 
models if we ignore the time-modulated 
component in the model. Using the well-known 
connection to Poisson regression (Aitkin and 
Clayton, 1980), the derived model is a generalized 
linear mixed model (glmm). We adopt a robust 
approach for estimating some parameters using the 
generalized estimating equations (GEE) in this 
Poisson regression setting. For other parameters, 
the estimating procedures are equivalent to a 
generalized penalized estimating equations 
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(GPEE). Under this approach, we do not specify 
the exact distribution of frailty and in this sense, 
our approach is robust. 
 
Model construction 

Self (1995) introduced a time-dependent 
frailty model  

 
)),(exp()()()()( 0 txtttYt iiii βλςλ ′=  

 
where Yi(t) and xi(t) are predictable scalar and p-
vector value processes, respectively, )(tiς  is a 
stationary stochastic process with positive, 
continuous sample paths, ),...,,( 21 pββββ = and 

)(0 tλ  are unknown parameters. Instead of putting 
a stochastic process )(tiς , a time-dependent frailty 
process, in the hazard function, we introduce an 
“interaction" term between the frailty and time as 
a time-modulated frailty. In the following sections, 
we will give the model formulation in two 
different settings. 
 
Single-level of clustering 
 The most common situation in the 
multivariate survival data is the time to the 
recurrence of some chronic disease for a patient, 
for example, breast cancer, or survival of litters of 
rats, survival of twins, etc. All these can be 
thought to consist of single-level clustering of 
data. The survival times in each cluster (patient, 
litter, twins) are correlated and the survival times 
between the clusters are assumed independent. Let 
the triple (Tik, δik, xik) represent the data, where i is 
the cluster index (i = 1, …, n) consisting of 
correlated survival times Tik (k = 1, … , ni). Thus, 
the kth individual in the ith group is modeled as 
  
           ),exp()()()( 0 ikiik xttwt βλλ ′=  
 
where ii ttw ξθ=)( and θ is unknown parameter. 
Here ξi are realizations of a nonnegative random 
variable with density function g (ξ).  

Assume E (ξi)= 1 (see Nielsen et. al., 
1992) and 2)var( σξ =i for the distribution of the 
frailty ξi. When θ = 0, the model is a shared frailty 
model, ).exp()(0 iki xt βλξ ′  The above model can 
also be easily generalized to the correlated 

individual frailty model studied by Yashin et. al. 
(1995) by specifying iii ttw ηξ θ+=)( and letting 
ni = 2 and θ = 0. 
 
Multiple-levels of clustering 

In some studies it may be reasonable to 
expect more than one level of within-cluster 
association. For example, the association between 
a parent and child versus that two siblings in 
studies of familial disease aggregation, or the 
durations inside and outside of hospitals for a 
patient who is admitted into a hospital several 
times for the same disease (Xue, 1998). The 
single-level clustering model can be extended to 
allow for grouping defined by multiple nested 
factors. 

Again, suppose the data consists of the 
usual triple (Tijk, δijk, xijk), using i to index the 
clusters (litters, families) (i = 1, 2, …, n). Each 
cluster contains two distinguishable subgroups (j = 
1, 2). Within each cluster, individuals have 
correlated survival times Tijk for k = 1, …, nij. 
When nij = 1, then (Ti11, Ti21) is bivariate survival 
time, for example, as used in the adult Danish 
twins study (Hougaard et. al., 1992). We will 
assume the frailty acts multiplicatively on the 
individual's hazard with following form 

 
            ),exp()()()( 0 ijkijijk xttwt βλλ ′=  
 
where ijij ttw ηθ=)( and ηi1, ηi2 are the realizations 
of two correlated random variables with 
nonnegative values (with joint density function h 
(u, v)). The ηij is the frailty for the ith cluster and 
jth subgroup. The frailties can be characterized by 
a parametric bivariate distribution, for example,  
 
           ).,,;0,0(~))log(),(log( 12

2
2

2
121 σσσηη N  

 
We also assume E (ηij) = 1, i = 1, …, n, j = 1,2, 

2)var( jij ση = and .),cov( 2121 ρσσηη =  If θ = 
0, then it is a case studied by Xue (1998); if θ > 0 
or θ < 0, then we can see that the effect of frailty 
increases or decreases as time increases. 

As we can see from the model 
construction in both single-level and multiple-
level of clustering cases, given the frailty, its effect 
on the hazard changes over time.  
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For the exponential model, the baseline 
cumulative hazard is ,)(0 tt =Λ and the hazard 

function becomes ).exp()|( ijkijijijk xtwt βηλ θ ′=  

For the Weibull model, ,)(0
νtt =Λ  and the 

hazard function is 
 
    ).exp()|( 1

ijkijijijk xttwt βνηλ νθ ′= −  
 
We assume that observations between different 
clusters are independent and given the frailty wij 
(namely ηi1 and ηi2), the observations in each 
cluster are conditionally independent. It can be 
shown that, approximately,  
 

 ),(~),(| 21 ijkiiijk Poisson µηηδ  
 
where 
 

  .)()()( 00
duuuwet

t

ij
x

ijk
ijk λµ β ∫
′=  

 
The details are given in Appendix 1. 
 
Robust estimation procedures 

As described in Appendix 1, we can treat 
the censoring variable as a correlated Poison 
random variable with degree of over-dispersion 
depending on its mean. Since the full likelihood 
method is not feasible without numerical 
integration, and because of the intractability of the 
marginal likelihood function, we may apply the 
generalized estimating equations (GEE) approach 
(Liang and Zeger, 1986), which only requires the 
specification of the first two moments of the 
responses for each individual. 

As mentioned by Hougaard (1984), the 
choice of the frailty distribution is crucial since the 
results for the survival population will be rather 
different with different frailties. In the following 
section, we will examine this robust approach, 
which only requires up to second-order of 
moments of the frailty distribution. It is robust in 
the sense that the full likelihood is not required 
and a fully parametric assumption for the frailty is 
avoided. The following procedures are for the 
single-level of clustering case, but they can be 
easily generalized to the multiple-level clustering 
case. 

Exponential case 
Estimation of coefficients 

We assume that the baseline hazard is 
from exponential distribution. Given the frailty ξi 
as mentioned before, ),~(~| iikiik Poisson ξµξδ  

where .
1

~
1

+
=

+
′

θ
µ

θ
β ikx

ik
t

e ik  It is easy to get 

following quantities from the formulae for the 
multiple-level of clustering case (see Appendix 1). 
 

1
~)(

1

+
==

+
′

θ
µδ

θ
β ikx

ikik
t

eE ik , 

 
 22~~)~var()~()var( σµµξµξµδ ikikiikiikik E +=+=  
 
and the unconditional covariance 
 

ik il ik i il i
2

ik il

cov( , ) cov( , )
,k l,

δ δ = µ ξ µ ξ

= µ µ σ ≠
 

.,0)~,~cov(),cov( iiiiliikliik ′≠== ′′ ξµξµδδ  
 
In order to get the estimates of the regression 
parameters, we apply the quasi-likelihood score 
equations in spirit of GEE, i.e. 
 

 ,0)~()()
~

(),( 1

1
=−′

∂
∂

= −

=
∑ iii

n

i

i YYVarU µ
β
µ

θββ     

                                            (1) 

where ),...,( 1 iiniiY δδ=′ and ).~,...,~(~
1 iinii µµµ =′  

Note that ),;()( θβii YVarYVar = , which depends 
on β and θ in the above equations. Thus, we need 
the estimating procedure for θ. 
 
Estimation of time-modulated frailty parameters 

The estimate of the variance component 
2σ  is treated as nuisance parameter, which is 

estimated by a method of moments defined as 
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The conditional likelihood function has form: 
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the second term in the above equation equals to 
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Thus, the log of the likelihood 

function can be approximated as 
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where ),( θβQl is the log of the quasi-likelihood 
function for correlated Poisson variates.  

We then introduce the penalized score 
equation for the θ, 
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the equation (3) can be viewed as a regularized 
generalized estimating equation with a penalty 

term ∑ +ki

ikn
, 1
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θ
δ

κ , where τκ −= nn)( with 

.0>τ When the tuning parameter 1)( =nκ , the 
left hand side of equation (3) is the partial 

derivative
θ∂
∂l

. The estimators for β and θ 

can be obtained by iterating between (1) and (3). 
 
 
Weibull case 

When the baseline hazard is assumed to 
have a Weibull distribution, the model is more 
flexible by introducing an additional scale 
parameter ν. 
 
Estimation of coefficients 
As before, given the frailty,  
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and the unconditional covariance 
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The estimate of the regression parameters can be 
obtained by the following generalized estimating 
equations, i.e. 
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where ),...,( 1 iiniiY δδ=′ and ).~,...,~(~
1 iinii µµµ =′  

Note that ),,;()( νθβii YVarYVar =  which 
depends on β, θ and ν in the above equations, as 
mentioned in exponential case, we have to get the 

2/1n -consistent estimates for ν and θ. 
 
Estimation of other parameters 

The estimate of the variance component 
2σ is defined the same way as the exponential 

case: 
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The conditional likelihood function in this case 
has a form 
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with the second term in the above equation equals 

to .])([ ik

ikt
δνθ +

 Thus, the log of the likelihood 

function can be approximated as 
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where ),,( νθβQl is the log of the quasi-
likelihood function for correlated Poisson variates.  
If we re-parameterized νθ +  as φ, then 
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Thus, we introduce the penalized score equations 
for φ as we did in the exponential case, 
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where the tuning parameter τκ −= nn)( , 

0>τ and when 0=τ , the left hand side of 

equation (6) is .
ϕ∂
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 Because ν is unidentifiable 

from the score equations, we use plug-in estimate 
for it. Notice that, if we have estimates of φ and β, 

then, from equation ..~ ϕβ

ϕ
νµ ik

x
ik te ik′=  we can 

obtain the estimate of ν by following formula, 
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which is moment estimate if we replace ikµ~ by its 
sample mean. 

 In summary, we propose following 
algorithm for the estimates of β, φ, ν and θ, 

 
1. Given initial values of φ, ν:  φ (0), ν (0), 

and fit Poisson regression by generalized 
estimating equations (4) using log link 
function with offset equals to 
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        4. Go to step 1, 2, and 3 again until the 
convergence criteria is satisfied. 

 
Because θ̂  is consistent and )ˆ(var θJ is 
asymptotically unbiased (see the results in 
Appendix 2 and 3), we can use statistic 

2/1)]ˆ([var

ˆ

θ
θθ

J

−
, which is asymptotically )1,0(N for 

inference; thus, the null hypothesis 0=θ can be 
tested. If we reject the null hypothesis from the 
test, then we claim that the effect of time-
modulated frailty exists. In the following sections, 
we examine our method by simulation followed by 
analyzing CGD dataset. 
 
Simulations 

There is a difficulty with conducting 
simulations in this setting, since it's difficult to 
generate correlated survival times with time-
modulated frailties as we can see it in the 
specification of the hazard function which 
involves time-modulated frailties.  
 We generate datasets of correlated 
Weibull (without time-modulated frailty, i.e. 

0=θ ) by using positive mixing distributions 
(Hougaard, 1986a) along with the random effects 
approach. Let Tik be the survival times of 
observation k of individual (cluster) i conditional 
on an observed covariate Zi. In this setup we 
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assume that the Tik's in different clusters are 
independent.  Now assume Z to be positive stable 
with index α. The Laplace transform for Z 
is )exp())(exp( αssZE −=− .  If we now define 
another random variable Yik to be Weibully 
distributed with scale parameter )exp( ikxβ ′ and 

shape parameter a, then a
iikik ZYT /−= .  Thus the 

Tik's within a cluster are multivariate Weibull with 
Weibull margins having scale )exp( ikxβα ′  and 
shape αa. The correlation between )log( ikT and 

)log( ilT is then just 21 α−  for lk ≠ . The 
generation of positive stable variates iZ can be 
done using Splus which employs Chambers et. 
al.'s (1976) algorithm.   

Instead of choosing different values of 
index of positive stable random variable, different 
cluster size and different percentage of censoring, 
we just generate two datasets with clusters 50 and 
150. In each cluster, there are 5 observations and 
the index of positive stable random variable 

6.0~ =α , the coefficient of the linear predictor 
3~

=β  and the shape parameter of the 
Weibull ,2~ =ν thus, the marginal distribution of 
the correlated Weibull is still Weibull with shape 
parameter 2.1=ν and the scale 
parameter 8.1=β  (actually )exp( βx′ ) where x is 
from the design matrix which is 1 or 0 depending 
whether a random number from standard normal is 
nonnegative or negative. The survival times are 
censored at fixed value to achieve 10% censoring. 
The estimates of parameters interested are the 
means of 100 replicates. The tuning parameter in 
the penalized score equation is 1)( =nκ  and 

30/1)( −= nnκ which is arbitrarily picked. We 
understand that the optimal choice of the tuning 
parameter may be selected by many methods, for 
example, the cross validation approach. 

In this correlated Weibull case, as we 
know, there is no time-modulated frailty in it.  We 
still assume the time-modulated frailty model, and 
the frailty term is in the form of iikik ttw ηθ=)( , 

and 1
0 )( −= ννλ tt is the baseline hazard from the 

Weibull distribution. 
As we can see from Table 1, the parameter 

estimate of θ is not significant from 0 for two 

different values of tuning parameter which means 
we can not reject null hypothesis 0=θ  based on 
asymptotic Wald type test. Thus, there does not 
appear to be a time-modulated frailty effect in this  
dataset. The estimates of β and ν are very close to 
the true values. 
 
Table 1: Results of fitting the correlated Weibull 
by time -dependent frailty model with two values 
of )(nκ in the penalized score equation, number 
of clusters = 50 and 100 simulations. 
_____________________________________________ 
 
                 BC (no BC)   GJ Standard 
Parameter     Estimate         error       t Value     Pr > |t|| 
------------------------------------------------------------------- 

:1)( =nκ  
β                1.783 ( 1.827)    0.2718     6.560    < 0.0001 
θ                0.001 (-0.097)    0.3463     0.001       0.9998  
ν                1.208 ( 1.316)    0.4406     2.742       0.0061 
φ               1.208 ( 1.219)     0.1094   11.042    < 0.0001 
------------------------------------------------------------------- 

:)( 30/1−=nnκ  
β               1.645 ( 1.696)    0.2578      6.381    < 0.0001 
θ               0.150 ( 0.093)    0.1704      0.879        0.3793 
ν               0.936 ( 1.016)    0.2605      3.593       0.00033 
φ               1.086  (1.109)    0.1012    10.73      < 0.0001 
------------------------------------------------------------------- 
β (SN, 1993)   1.781           0.3852     4.624      < 0.0001 
_____________________________________________ 
Note: The true value of β is 1.8 and 1.2 for ν. BC 
stands for bias corrected, GJ for grouped 
jackknife, and SN for Segal and Neuhaus. 
 

The estimate of β by our procedure is 
consistent with other two approaches. From the 
variance estimates of β, there is small gain in term 
of efficiency although there is no time-modulated 
frailty effect in this case. 

The biased estimates (values in the `no 
BC' column) overestimated the parameters when 
the tuning parameter 1)( =nκ , and underestimated 
when .)( 30/1−= nnκ  The optimal tuning 
parameter τ may be a positive value that is very 
close to zero. We can do further simulation for 
large number of clusters and for different values of 
τ, as well as other parameters, such as different 
percentage of censoring, different value of index 
in the positive stable distribution. The results from 
Table 2 are more close to the true values, this is 
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because we have larger number of clusters (150 
clusters) and the estimates of β, φ and θ are 
consistent. 
Table 2: Results of fitting the correlated Weibull 
by time-dependent frailty model with two values 
of )(nκ in the penalized score equation, number 
of clusters = 150 and 100 simulations. 
________________________________________ 
 
  BC (no BC)    GJ Standard 
Parameter  Estimate         error         t Value   Pr > |t|| 
------------------------------------------------------------------ 

:1)( =nκ  
β             1.808 ( 1.822)     0.1526    11.85    < 0.0001 
θ             0.000 (-0.013)    0.1166     0.004    0.9968  
ν             1.205 ( 1.215)     0.1783     6.758    0.0001 
φ            1.205 ( 1.203)     0.0644     18.71   < 0.0001 
------------------------------------------------------------------ 

:)( 200/1−=nnκ  
β            1.779 ( 1.792)      0.1508      11.8      < 0.0001 
θ            0.034 ( 0.014)      0.1017      0.332       0.7396  
ν            1.147 ( 1.171)      0.1626     7.054    < 0.0001 
φ            1.181 ( 1.185)     0.0635      18.6      < 0.0001 
------------------------------------------------------------------ 
β (SN)           1.781           0.3852      4.624    < 0.0001 
________________________________________ 
Note: The true value of β is 1.8 and 1.2 for ν. BC 
stands for bias corrected, GJ for grouped 
jackknife, and SN for Segal and Neuhaus. 
 
 
A real data example 

The well-known Chronic Granulomatous 
Disease (CGD) dataset, which is described in the 
Appendix D of the book by Fleming and 
Harrington (1991), has been analyzed by many 
authors. CGD is a group of inherited rare disorders 
of the immune function characterized by recurrent 
pyogenic infections, which usually present early 
life and may lead to death in childhood. 
Phagocytes from CGD patients ingest 
microorganisms normally but fail to kill them, 
primarily due to the inability to generate a 
respiratory burst dependent on the production of 
superoxide and other toxic oxygen metabolites. 
Thus, it is the failure to generate microbicidal 
oxygen metabolites within the phagocytes of CGD 
patients. 

There is evidence that gamma interferon is 
an important macrophage activating factor which 
could restore superoxide anion production and 

bacterial killing by phagocytes in CGD patients. In 
order to study the ability of gamma interferon to 
reduce the rate of serious infections, a double-
blinded clinical trial was conducted in which 
patients were randomized to placebo vs. gamma 
interferon. The data we use here, which is a little 
different from the one used by Fleming and 
Harrington (1991) in the example at page 162, has 
65 patients in placebo group, 63 in gamma 
interferon group, of 30 placebo patients who 
experienced at least one infection, 4 experienced 
2, 4 experienced 3, 1 experienced 4, 1 experienced 
5 and 1 experienced 7; of 14 treatment patients 
who experienced at least one infection, 4 
experienced 2 and 1 experienced 3.  

It is reasonable to assume that the patients' 
frailties are time-modulated, since the risk of 
infection may increase once a first failure event 
occurs. In this data set, we treat each patient as a 
cluster, and the frailty term is in the form of 

iikik ttw ξθ=)( . 
 

Table 3. Results of fitting the CGD dataset by 
proposed method with other two models. 
________________________________________ 
 
     BC (no BC)   GJ Standard 
Parameter    Estimate         error         t Value   Pr > |t|| 
------------------------------------------------------------------- 

:1)( =nκ  
β           -0.835 (-0.856)     0.2588      -3.207       0.0013  
θ            1.293 ( 1.321)      0.1995        6.481    < 0.0001 
φ            1.328 ( 1.357)      0.1945        6.828    < 0.0001 
ν            0.035  ( 0.037)      0.0184        1.944       0.052  
------------------------------------------------------------------- 

:)( 30/1−=nnκ  
β            -0.822 (-0.845)    0.2468      -3.332       0.0009 
θ             1.116 ( 1.169)     0.1809        6.169    < 0.0001 
φ             1.148 ( 1.204)     0.1736        6.613    < 0.0001 
ν             0.032 ( 0.034)     0.01461      2.204       0.0275 
β (SN, 1993)    -0.856      0.2489     -3.4389      0.00058 
________________________________________ 
Note: BC stands for bias corrected, GJ for grouped 
jackknife, and SN for Segal and Neuhaus. 
 

Table 3 provides estimates of β with 
several methods, the estimates of other parameters 
followed by standard error for case of 1)( =nκ by 
our time-modulated frailty model are ν̂ =0.035 
(0.0184), =θ̂ 1.293 (0.1995), =ϕ̂ 1.328 (0.1945). 
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The negative value of β̂ = -0.8353 means that the 
treatment (gamma interferon) effectively reduces 
the recurrence of pyogenic infections as compare 
to the placebo. The estimate of β is consistent to 
that from other approaches. 

From the estimates of θ and its variance, 
we can see that there is a time-modulated frailty 
effect in this dataset as noticed by Self (1995) 
though we have different model formulations. The 
parameter estimate of the time-modulated frailty 

293.1ˆ =θ  is statistically significant from 0; the 
positive sign also means that given the frailty, its 
effect on the hazard is increasing as the life goes 
on. 

The estimate of the treatment effect β is 
consistent with other two approaches; all of them 
indicate a statistically significant difference 
between the gamma interferon and placebo. The 
time-modulated frailty model does not seem to 
improve the efficiency, but the proposed model 
does help us to understand the nature of the frailty. 
In CGD case, the existence of effect of time-
modulated frailty means that if a patient has a 
large frailty at the beginning, then (s)he will have 
an increasing chance of recurrence of pyogenic 
infections. 
 

Conclusion 
 
Few results about time-modulated frailty models 
are available in the literature (Yau and 
McGilchrist, 1998; Self, 1995). Our model 
provides one way to detect whether there is a trend 
in the hazard function with time given the frailty. 
Our model is different from Yau and McGilchrist's 
(1998), which assumes a different frailty for each 
time period of recurrence of disease; and different 
from Self's (1995) which introduces a stochastic 
process of frailty in the hazard function. The 
models proposed can also be extended in more 
general case, for example, in the multiple-level of 
clustering case, the time-modulated frailty can 
have the following form ,)( ijiij ttw ηξ θ+=  

where ),(, 21 iii ηηξ are independent realizations of 
two independent random variables with positive 
values. The resulting models are more complex 
than the one we proposed. To fit this model, we 
may use techniques of nonlinear mixed-effects 
models (Pinheiro and Bates, 2000). 

Clinically speaking, the significance of the 
model is to realize whether there is an effect of 
time-modulated frailty in some diseases. If it does 
exist, for example, the pyogenic infection case 
(CGD data), it will tell us that more frail patients 
(say, have recurrence at the beginning) are more 
likely to have recurrence late in their life, which 
may suggest that those patients need more 
aggressive treatment (e.g. high dosage). 
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Appendix 1: Likelihood and moments 
 
Likelihood construction. For the model with 
multiple-levels of clustering, the hazard function is  
 ).()()( 0 tetwt ijkx

ijijk λλ β′=  
 
Its corresponding density and survival functions: 
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Thus, the contribution of the ith individual to the 
conditional likelihood given frailty ijw  is 
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independent given ,ijw therefore the conditional 
likelihood is 
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and the conditional log likelihood: 



ROBUST ESTIMATION OF MULTIVARIATE FAILURE DATA 376

 )]}.)()(log())(log())([log()log({)log(
0 00 duuuwttwL ijkt

ijijkijkijkijkijkijkijk ∫∑ −++−= λλδµµδ
 
 
 Therefore, from the above arguments, we 
have the following : 
 
Result: Given the frailties 1iη and ,2iη  ijkδ can be 
thought as a Poisson random variable with mean  

.ijkµ  We will focus on the baseline hazard from 
Weibull distribution since it has a fairly flexible 
hazard function; baseline hazards from other 
distributions can be modeled by piece-wise 
exponential distribution which is a special case of 
Weibull. Assume the hazard function from 
Weibull distribution is ,)( 1−= νφνλ tt  
here φ  is a scale parameter, and ν is a shape 
parameter. The Weibull distribution is flexible 
enough to accommodate increasing (ν >1), 
decreasing (ν < 1) or constant hazard rate (ν = 1). 
When we have Weibull baseline distribution, the 
above log likelihood becomes 
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Moments of censoring indicator variable 
 Under the Weibull baseline survival 
function, the hazard function for observation k of 
individual j in cluster i is  
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By the assumption that, conditional on the 
frailties, censoring is not 
 

 
 
informative of the frailties (Nielsen et. al., 1992), 
we have ),(~),(| ijkijiijk Poisson µηξδ  where 
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2.  Unconditional Variance: 
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3.  Unconditional Correlation (covariance): 
If ,kk ′≠ , note that given kijijkij TTw ′,, are 
independent and conditional on the frailties, 
censoring is uninformative of the frailties. 
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Thus, ijkδ 's can be treated as a sequence of 
correlated Poisson variables with over-dispersion 
since the variance of ijkδ  is not constant. 
 
Appendix 2: Asymptotic properties 
 
As we can see that the variance matrices in 
equation (1), (4) involve parameters besides β. 
Consistent estimate of β can be obtained by 

replacing θ and ν with their −− 2/1n consistent 
estimates (Liang and Zeger, 1986) and the 
asymptotic properties are well established in this 
case. As stated in Liang and Zeger (1986), under 
mild regularity conditions, the estimate of β̂  from 
the generalized estimating equation (1) and (4) is 
consistent and )ˆ(2/1 ββ −n is asymptotically 
multivariate Gaussian as ∞→n , where β is the 
true value. For the estimates of variance of θ, φ 
and ν, we adopt the grouped jackknife approach 
because the exact formulae are not available. The 
estimates are bias corrected and the asymptotic 
properties for φ, and θ will be shown in the 
following section, thus, we can use Wald type 
statistic ),ˆ(var/ˆ2 θθ J  to test the existence of 

time-modulated frailty, where )ˆ(var θJ is grouped 

jackknife variance estimate for .θ̂  
For the estimate of φ from the penalized 

score equation (3) or (6), under mild regularity 
conditions, we have following theorem and give a 
semi-rigorous proof. 
Theorem 1. The estimate ϕ̂ of φ is consistent and 

)ˆ(2/1 ϕϕ −n  is asymptotically normal as ∞→n  
if Mnii <)(max , where M is a known integer. 
 
 Proof: Under the true values of β, ν and φ, 
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law of large numbers, we have ,0)( →−
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U ϕϕ  

in probability as ∞→n . Therefore, from the 

above two equations, ).1(1
poU

n
=ϕ  Thus, ϕ̂  is 

consistent estimate of φ. The asymptotical 
normality of ϕ̂ can be obtained following the 
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proof in the appendix of Liang and Zeger (1986). 
Q.E.D. 
 Because ν̂  is moment estimate which is 
consistent and θνϕ += , thus, θ̂  is also 
consistent. 
 
Appendix 3: Jackknife variance estimation and 
bias correction 
 
For the parameter β, we can use the robust 
estimate building in the existing procedure. The 
parameter θ is indicator of the effect of time-
modulated frailty, and it is our interest to see 
whether this effect exist, thus we cannot treat it as 
a nuisance parameter. First, we notice that the 
estimate of θ is not unbiased because of the 
penalty term in equation (3) or (6) and  

           0≠
∂
∂
θ
lE  

(Page 28, McCullagh and Nelder, 1983). We will 
obtain the variance estimate as well an estimation 
of bias by grouped jackknife method (Therneau 
and Hamilton, 1997). 

The grouped jackknife procedure is the 
following: Each time we delete the observations 
from each cluster (or a patient), say cluster i, and 
obtain the estimate, say ,ˆ

)(iθ by applying above 

estimating procedure to the rest of the data. Let θ̂  
be the estimate based on the all the observations, 
then the grouped jackknife estimation of variance 
for θ is 
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The bias estimate for θ is )).ˆˆ)(1(ˆ

(.) θθθ −−= nB  
Thus, the bias corrected estimate for θ is 
 
 
    .ˆ)1(ˆˆˆ~

(.)θθθθ θ −−=−= nnB  
 
The reason that we apply the grouped jackknife 
procedure is that we have correlated observations 
in each cluster and the observations from different 
clusters are independent.  
 
Theorem 2. Under suitable conditions, the grouped 
jackknife estimates )ˆ(var ϕJ  and )ˆ(var θJ  are 
asymptotically unbiased estimates of the variance 
of ϕ̂  and variance of .θ̂  
 
Proof: The arguments are similar to Grambsch and 
Therneau (2000).  Q.E.D. 
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Introduction 
 
Participants in epidemiologic studies may not 
represent statistically independent observations. 
For instance, some individuals may belong to the 
same family. This will usually make simple 
statistical tests for exposure-risk relationships 
anti-conservative, i.e., the strength of evidence for 
a relationship will be exaggerated by ignoring the 
lack of independence. We consider a method to 
modify the standard statistical tests for 2×2 tables 
in this setting, in order to account for such non-
independent observations. 

For convenience and clarity, we describe 
the method in terms of an example comparison of 
“exposed” and “unexposed” children born to 
mothers enrolled in a study. Intra-family 
correlations may induce inter-dependence or 
clustering of outcomes between siblings. If the 
exposure of interest is a fixed characteristic of the 
mother,   such  as   whether  or  not  the   mother is 
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positive for a hereditary gene mutation, then all 
children of that mother will be concordant on their 
exposure. This will tend to induce positive 
correlations between outcomes in the siblings. 
Other exposures (e.g., gender of the child) may be 
concordant or discordant, and some exposures 
(e.g., birth-order) will always be discordant. Most 
previous research in this area has focused only on 
settings with no discordant exposures. 

In this paper we provide a correction 
factor for the ordinary Pearson chi square test for 
independence, and for the construction of 
confidence intervals, and also propose a method 
for applying the correction factor to Fisher’s exact 
test. The correction factor depends on the numbers 
of concordant pairs in each exposure group, the 
number of discordant pairs, and the intra-family 
correlation in outcome. We evaluate properties of 
the new tests using simulations. 

An important application of these methods 
is in evaluating published epidemiologic findings 
based on a 2×2 table when correlated observations 
have been naively assumed to be independent. The 
methods in this paper can then be used to check 
the robustness of their findings after accounting 
for non-independence. 
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Methodology 

Suppose there are N1 and N2 subjects, respectively, 
in the exposed and unexposed groups (N=N1+N2). 
Let 1π̂ and 2π̂ denote the estimated probabilities 
of a binary disease outcome in the two groups. 
Assuming all observations are independent, under 
the null hypothesis of equal response probabilities, 
H0: 21 π=π , the variance of 21 ˆˆ ππ −  is 

 

 [ ] ( )[ ]1 2 1 2ˆ ˆvar 1 1 1 ,− = − +N Nπ π π π  

 (1) 

where 1 2π π π= = . 

Thus the normal approximation statistic for testing 
H0 is  
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where ( ) ( )212211 /ˆˆ NNNN ++= πππ  denotes 
the overall estimate of response probability from 
both groups combined. Z has approximately a 
standardized normal distribution under H0 when 
N1 and N2 are large, and Z2 is the statistic from the 
ordinary Pearson chi square test for independence. 

To account for lack of independence, let ρ 
be the within-family correlation of disease 
outcome (i.e., the correlation between binary 
variables), which is assumed known. Let S be the 
total number of sibling pairs. Note that each 
individual can be in more than one of the S pairs, 
for example four siblings would contribute six 
pairs to S. Let S11, S12 and S22 denote the number 
of concordant exposed, discordant and concordant 
unexposed pairs, respectively (where “concordant 
exposed” means that both members of the pair are 
exposed and the other terms are defined similarly). 
Thus S= S11+S12+S22. Using standard results for 
the variance of a linear combination of correlated 
variables, it can be shown that  

 

1 2 1 2
2 2
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Expressions (1) and (2) suggest that the Pearson 
chi square statistic should be multiplied by a 
correction factor.  
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We refer to this as the modified chi square test for 
independence. In practice, ρ needs to be estimated, 
or a range of values used, because it is usually 
unknown. 

It seems plausible that the correction 
factor can also be used to account for 
non-independence when performing Fisher’s exact 
test, as would be appropriate in studies with small 
sample sizes. Suppose one wants an α=0.05 level 
Fisher’s exact test. Rather than rejecting H0 when 
the sum of probabilities of extreme tables is less 
than 0.05 (which corresponds to rejecting H0 if 
Pearson’s chi square statistic is greater than 3.84), 
one would use the nominal p-value which 
corresponds to the probability that the chi square 
distribution exceeds 3.84×CF. We refer to this as 
the modified Fisher’s exact test. 

The methods described so far have been in 
terms of hypothesis testing. By relaxing the null 
hypothesis assumption that π1=π2, one can extend 
the results so that confidence intervals can be 
constructed. Generalizing expression (2) by 
allowing π1≠π2 yields the following formula for 
the variance of the risk difference, which accounts 
for correlations: 
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 In practice, π1 and π2 would be replaced 
by observed proportions from the data. Similarly, 
the familiar variance estimate for the log odds 
ratio (OR) based on a 22×  table with cell entries 
{a,b,c,d}, where 1π̂ =a/(a+b) and 2π̂ =c/(c+d), is 
 

( ) .1111ˆlogrâv
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  With correlated observations this 
generalizes to: 
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These variance estimates can be used to construct 
confidence intervals for a risk difference or odds 
ratio based on a normal approximation. 

We evaluate the true size of the modified 
Pearson chi square test for independence and 
modified Fisher’s exact tests via simulations. For 
simplicity, in all simulations we assumed equal 

exposure group sample sizes (N1=N2) and a 
maximum number of siblings per family of two. 

Letting θ denote the response probability, 
consider a fairly rare and a common outcome 
probability, θ = 0.1 and 0.5; small and large intra-
family correlations, ρ={0.2, 0.8}; three total 
sample sizes, N=N1+N2={24, 100, 500}; and a low 
and high proportion of N which is made up of 
siblings, 2S/N≈{0.08, 0.64}. (A footnote to Table 
3 below explains why we were not always able to 
achieve 2S/N=0.08 and 0.64 exactly.) 

For each combination, we considered 
three ways that the S sibling pairs could be divided 
into concordant exposed, concordant unexposed 
and discordant pairs, as shown in Table 1. In 
configurations A and B all sibling pairs are 
concordant whereas in configuration C all pairs 
are discordant. Configuration A represents the 
extreme case where all concordant pairs are in a 
single exposure group. We did not consider cases 
with both concordant and discordant pairs because 
the signs on the Sij terms in expression (2) show 
that these terms would tend to cancel each other 
out and the results would be intermediate between 
configurations considered. 

All combinations of θ, ρ, N, S and 
configurations A-C were simulated (except for 
combinations with {N=24, θ=0.1}, which has a 
substantial probability of a zero marginal total 
because the study was too small). Thirty thousand 
simulations for each combination guaranteed that 
for a true rejection probability of 0.05, we would 
have a 95% chance of observing a rejection 
probability within [0.0475, 0.0525]. 
In the simulations, we used randomized critical 
regions (Cox and Hinkley, 1974) to correct for 
discreteness of the test statistic. Although this may 
not be used in practice, it makes the different 
procedures comparable by removing the inherent 
conservatism in Fisher’s exact test (Agresti, 1996). 

 

Example 

Dickover et al. (1996) analyzed 
mother-to-child transmission of human 
immunodeficiency virus (HIV) in 97 mother-
infant pairs, including two pregnancies resulting in 
twins and three mothers each having two singleton 
pregnancies. Thus, the 97 mother-infant pairs 
represented 95 pregnancies in 92 women. 
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Table 1. Three configurations for allocating 
siblings to concordant exposed, concordant 
unexposed and discordant pairs in the simulation 
study. 

 Configuration 

 A  B  C 

 conc disc   conc disc   conc disc  

exp  100  0 100   50  0  50   0  50  50

unexp  0  0  0   50  0  50   0  50  50

  100  0 100   100  0 100   0 100  100

 
Note: Numbers in each cell represent the 
percentage of the total number of siblings. (conc = 
concordant, disc = discordant, exp = exposed, 
unexp = unexposed). 
 

 
One of the exposures considered is the use 

of the antiretroviral treatment zidovudine (ZDV) 
by the mother during pregnancy and/or during 
labor and delivery. In all, four of 43 ZDV exposed 
infants were HIV infected compared with 16 of 54 
ZDV unexposed infants. The conventional Pearson 
χ2 statistic without continuity correction is 6.043, 
corresponding to a two-sided p-value of 0.014. 
The two-sided Fisher’s exact test p-value is 0.022. 

Although we know S11+S12+S22=5, we 
have only partial information on the values of S11, 
S12 and S22 from the paper. Clearly, ZDV exposure 
within each of the twin pairs must be concordant, 
although we do not know if each pair is exposed or 
unexposed, leading to the restriction S11+S22≥2. 
The paper states that ZDV was used in both 
pregnancies by at least one of the mothers with 
two singleton births, yielding S11≥1. 

 Given these restrictions, the most extreme 
allocations of {S11,S12,S22} result from setting 
{S11=5,S12=0,S22=0}, or at the other extreme, 
{S11=1,S12=3,S22=1}. Table 2 shows for both these 
extremes, the p-values for the modified Pearson χ2 
and the modified Fisher’s exact test over a range 
of values for ρ from –1.0 to 1.0. The ρ=0 column 
corresponds to the naïve analysis. The true 
(unknown) correlation is plausibly small and 
positive, although there are not sufficient data to 
evaluate this. However, even at the theoretical 

extremes (ρ=±1.0) the p-values change very little, 
illustrating that the presence of a small number of 
correlated observations in this data set has only 
minimal impact on the statistical findings. 

The estimated odds ratio relating HIV 
infection to ZDV exposure is 0.243 with 95% 
confidence interval (CI), assuming independence, 
of (0.075, 0.795). Assuming {S11=5,S12=0,S22=0} 
and a correlation of ρ=.20, the CI becomes (0.073, 
0.812). With a correlation of ρ=1.0 the CI 
becomes (0.068, 0.879). Again, the correlation has 
only minimal impact on statistical findings. 

 
Table 2. Modified Pearson chi square test for 
independence square p-value (top entry) and 
modified Fisher’s exact test p-value (bottom 
values) for mother-to-child HIV transmission 
example. 

 

 ρ 

{S11,S12,S22} -1.0 -0.5 -0.2 0.0 0.2 0.5 1.0

{5,0,0} .008
.014

.011 

.018 
.013 
.020 

.014 

.022 
.015
.024

.017

.026
.021
.031

{1,3,1} .015
.023

.014 

.023 
.014 
.022 

.014 

.022 
.014
.022

.013

.021
.013
.021

 

Simulation 

Simulation results for configurations B 
and C are shown in Table 3. Because N1=N2, the 
properties of the different tests are nearly invariant 
to any allocation of concordant siblings to the 
exposed and unexposed groups, and hence results 
for configuration A (not shown) are very similar to 
configuration B. Both the modified tests perform 
well, although the modified Fisher’s exact test 
appears to correct for correlation better than the 
modified Pearson chi square test in most situations 
studied.  
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 Table 3. Simulation Results. 

 
     Actual Test Size for Nominal α=.05 Test 

 
N1 

 
θ2 

 
Config3 

 
ρ4 

 
2S/N5 

 
Pearson 

Modified
Pearson 

 
Fisher 

Modified
Fisher 

100 .1 B .2 Low .0493 .0470 .0496 .0473 

100 .1 B .8 Low .0598 .0462 .0594 .0520 

100 .1 B .2 High .0639 .0414 .0635 .0485 

100 .1 B .8 High .1164 .0519 .1117 .0504 

500 .1 B .2 Low .0523 .0523 .0537 .0523 

500 .1 B .8 Low .0557 .0494 .0576 .0503 

500 .1 B .2 High .0666 .0515 .0673 .0517 

500 .1 B .8 High .1094 .0498 .1110 .0507 

24 .5 B .2 Low .0687 .0687 .0541 .0502 

24 .5 B .8 Low .0804 .0499 .0624 .0489 

24 .5 B .2 High .0829 .0533 .0647 .0495 

24 .5 B .8 High .1422 .0729 .1178 .0520 

100 .5 B .2 Low .0571 .0571 .0500 .0480 

100 .5 B .8 Low .0650 .0444 .0562 .0492 

100 .5 B .2 High .0733 .0486 .0650 .0505 

100 .5 B .8 High .1188 .0481 .1077 .0489 

500 .5 B .2 Low .0557 .0451 .0508 .0489 

500 .5 B .8 Low .0624 .0507 .0579 .0499 

500 .5 B .2 High .0667 .0453 .0614 .0472 

500 .5 B .8 High .1168 .0541 .1096 .0504 
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Table 3. (Continued) 
     Actual Test Size for Nominal α=.05 Test 

 
N1 

 
θ2 

 
Config3 

 
ρ4 

 
2S/N5 

 
Pearson 

Modified
Pearson 

 
Fisher 

Modified
Fisher 

100 .1 C .2 Low .0491 .0578 .0489 .0501 

100 .1 C .8 Low .0440 .0529 .0440 .0517 

100 .1 C .2 High .0373 .0532 .0377 .0523 

100 .1 C .8 High .0065 .0635 .0079 .0585 

500 .1 C .2 Low .0480 .0514 .0499 .0509 

500 .1 C .8 Low .0403 .0474 .0413 .0487 

500 .1 C .2 High .0357 .0504 .0367 .0511 

500 .1 C .8 High .0053 .0502 .0053 .0498 

24 .5 C .2 Low .0614 .0614 .0487 .0513 

24 .5 C .8 Low .0577 .0577 .0443 .0535 

24 .5 C .2 High .0456 .0488 .0352 .0519 

24 .5 C .8 High .0058 .0497 .0057 .0582 

100 .5 C .2 Low .0537 .0537 .0471 .0488 

100 .5 C .8 Low .0489 .0490 .0428 .0501 

100 .5 C .2 High .0412 .0424 .0364 .0507 

100 .5 C .8 High .0070 .0614 .0061 .0510 

500 .5 C .2 Low .0544 .0544 .0501 .0521 

500 .5 C .8 Low .0508 .0508 .0474 .0549 

500 .5 C .2 High .0392 .0507 .0361 .0509 

500 .5 C .8 High .0055 .0465 .0047 .0495 
1N: Total sample size 
2θ: Probability of disease outcome 
3Config:Configuration of concordant exposed, concordant unexposed and discordant sibling pairs 

(see Table 1) 
4ρ: Within-family correlation 
52S/N: Number of siblings as a proportion of total sample size. Target low and high values of 2S/N are 0.08 

and 0.64. With a small total sample size of N=24, it was not possible to achieve 2S/N=0.08 or 0.64 
exactly. For example, in configuration A (Table 1), with one concordant pair, 2S/N=2/24=0.08333 
instead of 0.08. Similarly, the actual values of 2S/N for configurations B and C were 0.1667 and 
0.0833, respectively. Instead of 0.64, the values of 2S/N were 0.50, 0.6667 and 0.50, respectively, for 
configurations A, B and C. With N=100 or 500, the only combination where it was impossible to 
achieve the target values of 2S/N was for {2S/N=0.64, Configuration A}, where allocating 64% of the 
sample to the exposed group would make N1 exceed N/2. Thus we used 2S/N=0.50 here. 
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As expected, the conventional tests tend to 

be anti-conservative when there are concordant 
siblings (configurations A and B) and conservative 
when there are discordant siblings. (configuration 
C). The conventional Pearson chi square test for 
independence and Fisher’s exact tests perform 
well when there are <10% siblings in the data set 
(2S/N≈0.08), even with correlation as high as 0.8.  
The magnitude of conservatism or anti-
conservatism increases with the correlation (ρ) and 
as the number of sibling pairs in the data set (S) 
increases. 

 
Conclusion 

 
We have presented modifications to the ordinary 
Pearson χ2 test for independence and to Fisher’s 
Exact test for the analysis of 2×2 tables when 
some of the observations are correlated. The 
methods achieve the desired properties across a 
wide range of possible data sets even with quite 
small sample sizes. Formulae for constructing 
modified confidence intervals are also provided. 

Previous work has focused on unstratified 
and stratified 2×2 tables and clustered data where 
it is assumed that exposure status is common to all 
units in a cluster (i.e., no discordant pairs) (Donald 
& Donner, 1987; Donner, 1989; Rao & Scott, 
1992; Rosner, 1982). This would occur, for 
example, if the exposure of interest was a genetic 
characteristic of the mother of children in a 
cluster. This assumption is not required in other 
research (Rosner & Milton, 1988; Begg, 1999) but 
these methods require enough clustered 
observations to allow the nature of the correlation 
to be estimated from the data. 

Another possible approach to analysis 
would be to use a logistic regression model with 
correlation between siblings from the same family. 
Standard errors that take the correlation into 
account can be obtained using generalized 
estimating equations (Diggle, Liang & Zeger, 
1994). Advantages of this modeling approach are 
that additional covariates can be added to the 
model, the covariates can be specific to each 
cluster unit and and the exposures of interest need 
not be dichotomous. However, its complexity is a 
problem and since it requires availability of the 
raw data it could not ordinarily be used to evaluate 
published results. 

Our modified procedures require 
knowledge of the correlation, ρ, which would be 
difficult to estimate unless the number of pairs is 
large. However, by repeating the analysis over a 
range of possible values for ρ, one can assess the 
sensitivity of conclusions to the presence of 
correlation. 

Determining a reasonable range of 
plausible values for ρ is difficult in part because 
correlations of binary variables have unusual 
properties. It is known that the correlation between 
binary variables is constrained by the true 
probabilities as follows (Prentice, 1988): If π1<π2 
then 
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Estimates of π1 and π2 can therefore aid in 

setting bounds on ρ. Published results from 
analyses that naively assumed independence can 
easily be checked in such a sensitivity analysis, 
provided one is given enough information about 
the numbers of pairs in which both pair members 
are exposed, both are unexposed and exposure 
status is discordant. Unlike the value of ρ, these 
numbers would ordinarily be known when 
analyzing one’s own data but may not be known 
when assessing the impact of non-independence 
on published results, in which case a range of 
possible numbers can be used in a sensitivity 
analysis. 

Although the methods here are presented 
as for epidemiologic risk relations, they could also 
apply to clinical trials in which some (but not 
necessarily all) subjects have more than one 
“outcome,” for example on two eyes in 
ophthalmologic studies, two legs in studies of 
walking impairment or multiple teeth in dental 
studies. 

The procedures in this paper are most 
useful when there is a small amount of clustering 
so that the correlation cannot be reliably estimated, 
and when it is desired to evaluate the robustness of 



ACCOUNTING FOR NON-INDEPENDENT OBSERVATIONS IN 2×2 TABLES 

 

386

conclusions to deviations from the assumption of 
independence. 

In conclusion, it is important to recognize 
that non-independent observations, such as 
subjects within the same family, may make 
conventional statistical analyses based on 
independence assumptions prone to be 
conservative or anti-conservative. Simple 
correction methods, such as that described here for 
dichotomous exposure and outcome, are of value 
in ensuring that appropriately valid inferences are 
drawn when non-independent observations are 
present. 
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The Statistical Modeling Of The Fertility Of Chinese Women 
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This article is concerned with the statistical modeling of children ever born (CEB) fertility data. It is shown 
that in a low fertility population, such as China, the use of linear regression approaches to model CEB is 
statistically inappropriate because the distribution of the CEB variable is often heavily skewed with a long 
right tail. For five sub-groups of Chinese women, their fertility is modeled using Poisson, negative binomial, 
and ordinary least squares (OLS) regression models. It is shown that in almost all instances there would have 
been major errors of statistical inference had the interpretations of the results been based only on the results of 
the linear regression models. 
 
Key words: Poisson, negative binomial, OLS, modeling Chinese fertility 
 
 

Introduction 
 
The national censuses of many countries include a 
question that asks women about the number of 
children they have had ever born to them; these 
are referred to as children ever born (CEB) data. 
Demographers often use such data in statistical 
models of fertility. CEB data may be referred to as 
event count or count data. “An event count refers 
to the number of times an event occurs... (and) is 
the realization of a nonnegative integer-valued 
random variable” (Cameron & Trivedi, 1998, p. 
1). For many count variables, such as the CEB 
variable, its distribution is heavily skewed with a 
long right tail. This is certainly the case in low-
fertility populations, such as China, the population 
analyzed in this article. This reflects the fact that 
most women in such populations have children at 
the  lower  parities,  including zero parity, and few 
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have children at the higher parities. In this paper 
CEB data from the 1990 census of China are 
analyzed for five sub-groups of ever-married 
women. It is shown that the use of linear 
regression to model CEB for these sub-groups is 
statistically inappropriate.  

Table 1 (all tables and figures are in the 
appendix) is a compilation of descriptive 
information on the CEB variable for ever-married 
Chinese women aged 15-49 from five sub-groups, 
namely, the Han (the majority nationality group), 
and four of China’s 55 minority groups (the 
Korean, Manchu, Hui and Uygur minorities). The 
Han women have an average of 2.13 children ever 
born. The Korean and Manchu women have mean 
CEB values that are less than that of the Han, both 
with values of 1.8. Hui women have a mean CEB 
of 2.33, and Uygur women report one of the 
higher average CEB values of any of the Chinese 
minority nationalities, a mean of 3.16. Tables and 
figures appear at the end of this paper. 

Figures 1-5 (appendix) show frequency 
distributions of the observed CEB data  (the blue 
lines with circles as symbols) for these five sub-
groups: Han women (Figure 1), Manchu women 
(Figure 2), Korean women (Figure 3), Uygur 
women (Figure 4), and Hui women (Figure 5). For 
Han women (Figure 1), about 8 percent have no 
children, over 30 percent have one, about 29 
percent have two, 19 percent have three, 9 percent 
have four, 4 percent have five, and progressively 
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smaller percentages of women have children at the 
higher parities. The Han distribution is heavily 
skewed with a long right tail. This characterization 
also applies to the Manchu, Korean and Hui 
distributions. Only the Uygur women (Figure 4), 
with one of the highest fertility rates in China, do 
not show as skewed a CEB distribution as the 
others, although their distribution too has a long 
right tail. 

A major point is that none of the 
distributions in Figures 1-5 is normally distributed, 
and most are heavily skewed, and all have long 
right tails. Therefore, the statistical modeling of 
these kinds of CEB data should be based on 
approaches other than the ordinary least squares 
(OLS) linear regression model. Using an OLS 
model to predict a count outcome, such as children 
ever born, will often “result in inefficient, 
inconsistent, and biased estimates” (Long, 1997, p. 
217) of the regression parameters. 
 

Methodology 
 
There are several alternative models that take into 
account the characteristics of a count variable such 
as CEB. The most basic is the Poisson regression 
model in which “the probability of a count (of 
CEB) is determined by a Poisson distribution, 
where the mean of the distribution is a function of 
the independent variables” (Long, 1997, pp. 217-
218), which, in this case would be the 
characteristics of the individual women. The 
Poisson regression model, and alternate models 
such as the negative binomial regression model 
and some types of zero-inflated regression models, 
are based on the univariate Poisson distribution, 
which will now be considered. 

 
The Univariate Poisson Distribution      

Figures 1-5 also show for the five sub-
groups of Chinese women the univariate Poisson 
distributions (the purple lines with triangle 
symbols) that correspond to the mean CEB values 
for the respective groups. The shape of the 
univariate Poisson distribution depends entirely on 
the value of the mean, and is based on the 
following formula: 
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where the parameter µ represents the mean, and  

y is an integer indicating the number of times the 
count has occurred, ranging from 0 to some higher 
positive integer.  

This purely theoretical distribution was 
developed by the French mathematician Simeon-
Denis Poisson (1781-1840) and is fundamental in 
the statistical analysis of an assortment of issues 
involving radioactivity, traffic, and many other 
count events that occur in time and/or space.  

Some properties of the theoretical Poisson 
distribution are (Long & Freese, 2001, p. 224): 

  
1)With increasing values of the mean, µ, the shape 
of the distribution moves to the right; this is seen 
in the above CEB distributions;  
 
2) The variance of the univariate Poisson 
distribution equals the mean, µ, a property known 
as equi-dispersion. Empirically, however, the 
variance of many count variables tends to be 
greater than the mean. To illustrate, the descriptive 
CEB data in Table 1 indicate that the variance of 
CEB for Uygur women is more than twice its 
mean. The variance of CEB for Hui women is also 
larger than its mean.  
 
3) As µ  increases, the probability of zero counts 
decreases.  
 
4) As µ  increases, the Poisson distribution 
approximates a normal (Gaussian) distribution. 
 
 Consider once again Figures 1-5. Observe 
their empirical distributions of children ever born, 
and compare these distributions with the univariate 
Poisson distributions that correspond to their mean 
CEB values. For Han women (Figure 1), the fitted 
Poisson distribution (the purple line with triangle 
symbols) slightly over-predicts the observed 
proportion of women with zero children, under-
predicts the proportion with one child, slightly 
under-predicts the proportion with two children, 
and predicts fairly well the proportions of women 
at the higher parities. The univariate Poisson 
distributions for the other four nationality groups 
of Chinese women also show various patterns of 
under-prediction and over-prediction of the 
numbers of women at most of the different counts 
of children ever born. In some cases these patterns 
of under- and over-prediction are similar to those 
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of the Han Chinese shown in Figure 1, and in 
other cases they are not. 
 One should not expect the univariate 
Poisson distributions to perfectly predict the 
proportions of women at each count of CEB 
because the Poisson distributions do not take into 
account the heterogeneity of the women. That is, 
one reason why the Poisson distributions shown in 
Figures 1-5 do not perfectly fit the observed CEB 
distributions is that the women in the five samples 
vary in the numbers of children they produce. It 
would be unrealistic to expect that all Han women 
have the same rate of child production, that all 
Manchu women have the same rate, and similarly 
for the other groups of women. The researcher 
needs to introduce heterogeneity into the models 
by drawing on the observed characteristics of the 
women. Therefore, the issue of statistical 
modeling will now be considered and the results of 
the analyses presented. 
 

Results 
 

Most demographic analyses of CEB have used 
linear regression models (e.g., see Ritchey, 1975; 
Johnson, 1979; Janssen and Hauser, 1981; 
Entwisle and Mason, 1985; Bean and Tienda, 
1987). This is an appropriate statistical strategy if 
the mean CEB count is high because in such a 
situation the distribution of the dependent variable 
tends to be approximately normal. But if the mean 
of the counts is not high, as is the case with 
children ever born responses of women in low-
fertility populations, then the “common regression 
estimators and models, such as ordinary least 
squares in the linear regression model, ignore the 
restricted support for the dependent variable” 
(Cameron &Trivedi, 1998, p. 2). 
 There is a host of regression models that 
may be used in the analysis of count data (see 
Cameron & Trivedi, 1998). The Poisson 
regression model is the most basic and the 
standard model for analyzing count outcomes and 
is derived from the Poisson distribution. The 
Poisson regression model is an appropriate 
strategy when the mean and the variance of the 
count distribution are similar, and is less 
applicable when the variance of the distribution 
exceeds the mean, that is, when there is over-
dispersion in the count data. In such instances an 

alternate modeling approach would be negative 
binomial regression. 
 
The Poisson Regression Model 
  In a Poisson regression model, the 
dependent variable, namely, the number of events, 
i.e., the number of children ever born, is a 
nonnegative integer and has a Poisson distribution 
with a conditional mean that depends on the 
characteristics (the independent variables) of the 
women. The model thus incorporates observed 
heterogeneity according to the following structural 
equation: 
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where: µi is the expected number of children ever 
born for the ith woman; X1i, X2i ... Xki are her 
characteristics; and a, b1, b2 ... bk are the Poisson 
regression coefficients. 

The Poisson regression model is a 
nonlinear model, predicting for each individual 
woman the number of children she has had ever 
born to her, µi. The X variables are related to µ  
nonlinearly. Some applications of the Poisson 
regression model will now be illustrated in 
separate statistical analyses of children ever born 
for Han, Korean, and Manchu women, using data 
from the 1% Sample of the 1990 Census of China. 
The Chinese samples have been restricted to ever-
married women between the ages of 15 to 49. 
Poisson models would appear to be appropriate for 
estimating CEB for the Han, Manchu and Korean 
because their mean and variance CEB values are 
so similar (Table 1). 

A selection of independent variables is 
used that reflect socioeconomic and locational 
characteristics that have been shown to be 
associated with fertility. The independent variables 
pertain to age, education, residence, regional 
location, and marital status. Some are measured as 
dummy variables, and others as interval. They are 
the following:X1 is the woman’s age measured in 
years (age); X2 to X5 are four dummy variables 
representing the levels of education of the women, 
namely, X2, completed at least some elementary 
school; X3, completed at least some middle school; 
X4, completed at least some high school; and X5, 
completed at least some college; illiterate women 
are treated as the reference group; X6 is the 
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woman’s employment status, a dummy variable 
coded 1 if she is employed; X7 and X8 are dummy 
variables representing the woman’s residence in a 
city (yes/no) and her residence in a town (yes/no); 
the reference category is residing in a rural area; 
X9 to X13 are five dummy variables representing 
the woman’s region of residence, namely, X9 
residence in the North, X10 residence in the East, 
X11 residence in the South Central, X12 residence 
in the Southwest, and X13 residence in the 
Northwest; residence in the Northeast region is 
treated as the reference category; and X14 and X15 
are two dummy variables reflecting the woman’s 
marital status as follows: X14  indicates if the 
woman is widowed (yes or no), and X15 if she is 
divorced (yes or no); currently married is the 
reference category. 
 The Poisson regression model is estimated 
with maximum likelihood procedures. Table 2 
reports the results of the above Poisson regression 
model for Han women, Manchu women and 
Korean women. All three models converged after 
three iterations. The overall structure of the 
models may be appraised with the Likelihood 
Ratio χ2 statistic, which tests the null hypothesis 
(H0) that all the Poisson coefficients are not 
significantly different from zero. In all three 
models the null hypothesis may be rejected, 
indicating that there is some predictive utility in 
the three models. This conclusion is reinforced by 
the significant values of the three Pseudo R2  

statistics. 
The decision to use a Poisson regression 

approach to model CEB  for the Han, Manchu and 
Korean women may be formally and directly 
appraised with the Poisson Goodness of Fit χ2 test 
statistic (bottom of Table 2); it compares the 
observed empirical distribution with the 
distribution predicted by the Poisson regression 
model. The null hypothesis (H0) is that there is no 
difference between the observed data and the 
modeled data, indicating that the Poisson model 
fits the data. A small χ2 value, with a probability > 
0.05, indicates that one cannot reject the null 
hypothesis that the observed CEB data are Poisson 
distributed. In all three models, the values of the 
Poisson Goodness of Fit χ2 statistic indicate that 
using Poisson regression to model the CEB data 
was appropriate.  
 The Poisson regression coefficients for the 
fifteen independent variables will now be 

examined. Table 2 reports for each independent 
variable the value of the Poisson coefficient (b) 
and its standard error (s.e.). Coefficients that are 
not significant have been asterisked. The Poisson 
coefficients indicate the degree of nonlinear 
association of the independent variable with the 
dependent variable of CEB, controlling for the 
effects of the other independent variables.  

Looking first at the model for Han 
women, age is positively associated with CEB. 
And the four education dummy variables are 
negatively associated with CEB (the reference 
variable here is illiterate status). If the woman is 
employed (X6), she has fewer children than if she 
is not employed. Women who live in cities (X7), or 
in towns (X8), have fewer children than women 
who live in rural areas. Women who live in the 
North (X9), or in the South Central (X11), or in the 
Southwest (X12), or in the Northwest (X13) have 
more children than women living in the Northeast 
region (the reference region). The CEB of women 
living in the East (X10) is not significantly 
different from the CEB of women living in the 
Northeast. The CEB of widowed women (X14) is 
not significantly different from the CEB of 
married women, but the CEB of divorced women 
(X15) is significantly less than that of married 
women. None of the signs of the Poisson 
coefficients are surprising. They are what one 
would expect.  

The effects of the Poisson coefficients for 
the independent variables in the other two 
regression models, those for Manchu women and 
for Korean women, are quite similar in sign, and 
in magnitude as those for Han women. However, 
more of the coefficients in the Manchu and Korean 
models are not statistically significant compared to 
the number of insignificant coefficients in the Han 
model. Five of the fifteen coefficients in the 
Manchu regression model are not significant (four 
of the region variables, and the widowed variable). 
And eleven of the fifteen coefficients in the 
Korean model are not statistically significant; only 
the age, college, city residence, and divorced 
variables are statistically significant. 

It was noted earlier in the review of the 
demographic literature on the statistical modeling 
of children ever born that many CEB analyses 
have used linear regression approaches. It was also 
noted that such a strategy is not appropriate in low 
fertility populations owing to the heavily skewed 
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distribution of CEB. One thus might ask how 
similar, or different, would the regression results 
reported in Table 2 be if linear regression models 
had been used instead of Poisson regression 
models. 

Table 3 reports ordinary least squares 
regression results for the same Han, Manchu and 
Korean populations using the same independent 
and dependent variables. There are many 
differences between the OLS regression results 
shown in Table 3 and the Poisson regression 
results shown in Table 2. The most important 
differences have to do with the statistical 
significance of many of the coefficients. For 
instance, in the equations for the Han women, and 
in the equations for the Korean women, more OLS 
coefficients are statistically significant than are the 
corresponding Poisson coefficients. In the two 
Manchu equations, the same five coefficients do 
not achieve statistical significance. 

Among Han women all the OLS 
coefficients are significant, whereas two of their 
corresponding Poisson coefficients are not 
significant. Among the Korean women, six of their 
fifteen OLS coefficients are not significant, but 
eleven of their Poisson coefficients are not 
significant. 

Had an OLS model, instead of a Poisson 
model, been used to predict the number of children 
ever born among Korean women, incorrect 
statistical inferences would have been made for 
the effects of five of the fifteen variables. The 
results of the OLS model would have allowed the 
inferences that Korean women who have 
completed middle school (X4), and high school 
(X5), have fewer children than Korean women 
who are illiterate. In the Poisson regression these 
coefficients are not significant. Also, the OLS 
regression results permit the inferences that 
employed Korean women (X5) have fewer 
children ever born than unemployed Korean 
women, and women living in towns (X8) have a 
lower CEB than women living in rural areas; these 
are two more erroneous statistical inferences. And, 
according to the OLS results, it would have been 
concluded that women living in the South Central 
region (X11) have more children ever born than 
women living in the Northeast region, another 
incorrect inference. 

Poisson regression models were estimated 
for Han, Manchu and Korean women because their 

mean and variance values for CEB were similar 
(Table 1). However, Poisson regression models 
were not estimated for the Hui and Uygur women 
because their respective variance CEB values were 
larger than their corresponding mean CEB values 
(Table 1) indicating the apparent presence for each 
group of over-dispersion in their CEB 
distributions.  

If there is significant over-dispersion in 
the distribution of the count (CEB) variable for a 
population, the estimates from the Poisson 
regression model will be consistent, but 
inefficient. “Further the standard errors from the 
(Poisson regression model) will be biased 
downward, resulting in spuriously large z-values” 
(Long, 1997, p. 230), which could lead the 
investigator to make incorrect statistical inferences 
about the significance of the variables. This 
situation is addressed by extending the Poisson 
regression model by adding “a parameter that 
allows the conditional variance of (the count 
outcome) to exceed the conditional mean” (Long, 
1997: 230). This extension of the Poisson 
regression model is the negative binomial 
regression model, which is now considered. 
 
The Negative Binomial Regression Model 
 It was noted earlier that the Poisson 
regression model “accounts for observed 
heterogeneity (i.e., observed differences among 
sample members) by specifying the (predicted 
count, µ) as a function of the observed” 
independent variables (Long & Freese, 2001, p. 
243). Often, however, the Poisson regression 
model does not fit the observed data because of 
over-dispersion. “That is, the model 
underestimates the amount of dispersion in the 
outcome” (Long & Freese, 2001, p. 243). In the 
negative binomial regression model, variation in µ 
“is due both to variation in (the independent 
variables) among the individuals (in the sample 
population) and to unobserved heterogeneity 
introduced by ε” (Long, 1997, p. 231). The term ε 
is a “random error that is assumed to be 
uncorrelated with (the independent variables) ... (ε 
may be thought of) “either as the combined effects 
of unobserved variables that have been omitted 
from the model or as another source of pure 
randomness” (Long, 1997, p. 231). 
 The negative binomial regression model 
thus adds to the Poisson regression model the error 
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term ε according to the following structural 
equation: 
 

)...(exp 2211 εµ ikkiiii bXbXbXa +++++=
 
 It may be shown that the distribution of 
the observations in the negative binomial 
regression model is still Poisson. In the negative 
binomial regression model, the mean structure is 
the same as in the Poisson regression model, but 
the distribution about the mean is not the same 
(Long, 1997, p. 233: Long & Freese, 2001, p. 
243). If there is not a statistically significant 
amount of dispersion in the count outcome data, 
then the negative binomial regression model will 
reduce to the Poisson regression model. 

One way, therefore, to test for dispersion 
in the count outcome it to estimate a negative 
binomial regression model along with a Poisson 
regression model, and to compare the results of the 
two models. Like the Poisson regression model, 
the negative binomial regression model is 
estimated by maximum likelihood procedures. 

As already noted, given a data-set with 
over-dispersion, if one were to estimate both 
Poisson and negative binomial regression models, 
both will have the same mean structure. But the 
Poisson model will tend to under-estimate the 
dispersion in the dependent variable. Hence, “the 
standard errors in the Poisson regression model 
will be biased downward, resulting in spuriously 
large z-values and spuriously small p-values” 
(Long & Freese, 2001, p. 243; Cameron & 
Trivedi, 1986, p. 31). Also, in the negative 
binomial model, compared to the Poisson 
regression model, there will be an increased 
probability of both low and high counts.  

The left panel of Table 4 contains the 
results of a negative binomial regression model 
using the fifteen independent variables to estimate 
the number of children ever born for ever-married 
Hui women. For comparison purposes, the middle 
panel of the table contains the results of a Poisson 
regression estimating Hui CEB using the same 
independent variables. And in the right panel are 
presented the results from an OLS regression.  

Comparing the values of the negative 
binomial  regression coefficients (left panel of 
Table 4) with the values of the Poisson regression 
coefficients (middle panel), it may be seen that the 

two sets of coefficients are virtually identical. This 
suggests that there is not a significant amount of 
dispersion in the CEB data for the Hui women. 

The formal statistical test for appraising 
the presence of dispersion in the negative binomial 
distribution is the parameter, alpha (in the Poisson 
regression model, thus, alpha = 0). (See StataCorp, 
2001, volume 2, p. 386-387, 390-391; Long & 
Freese, 2001, p. 243-245 for more discussion.) At 
the bottom of Table 4 (left panel) is the value of 
alpha, and immediately below it, the likelihood-
ratio χ2 test of alpha. The value of alpha is .000, 
indicating that there is not a statistically significant 
amount of dispersion in the distribution of CEB 
for the Hui women. The likelihood ratio χ2 test of 
alpha has a value of .000, with a probability of .5. 

This χ2 test is based on a comparison of 
the value of the final log likelihood from the 
negative binomial regression model and the 
corresponding value from the Poisson model. 
There is no difference in the values, indicating that 
the CEB data for the Hui women are Poisson 
distributed. This conclusion is reinforced by the 
results of the Poisson Goodness of Fit of Fit χ2 
(bottom of the middle panel of the table), which 
has a probability of 1.0. This means that the 
Poisson model fits the data; the Poisson goodness 
of fit χ2 test indicates that given the Poisson 
regression model one cannot reject the null 
hypothesis that the observed data are Poisson 
distributed. 

Before leaving the CEB regressions for 
the Hui women, the Poisson results will be 
compared with the OLS regression results. What 
kinds of inference errors would have been made 
had the Hui CEB been estimated with a linear 
regression model? The results of the OLS 
regression model would have allowed the 
conclusion that among the Hui women 
employment status (X6) has a significant negative 
effect on CEB. Thus it would have been inferred 
that employed women have fewer children ever 
born than women who are not employed. This 
turns out to be an incorrect inference. The Poisson 
regression model results indicate no statistical 
relationship between employment status and CEB. 

Similar errors of inference would have 
been regarding the effects on CEB of the woman’s 
location in the East region (X10), the South Central 
region (X11), and the Northwest region (X13). For 
all three of these regional location variables the 
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OLS regression results indicate that the effects are 
significant, but the Poisson regression results show 
they are not. The Poisson regression model is the 
more statistically appropriate approach for 
modeling CEB among the Hui women. 

Finally, the estimation of children ever 
born among the Uygur women may be considered. 
For Uygur women the variance of their CEB is 
more than twice the magnitude of the mean of 
their CEB, values of 6.99 and 3.16, respectively. 
Table 5 presents in the left panel the results of a 
negative binomial regression model estimating 
Uygur CEB, along with the results of a Poisson 
regression model in the center panel, and the 
results of an OLS regression model in the right 
panel. The first question is whether there is 
enough over-dispersion in Uygur CEB to justify 
the use of a negative binomial regression model. 

The first indication that the negative 
binomial model is appropriate is the fact that the 
coefficients from the model are very different 
from the corresponding coefficients from the 
Poisson model. A second and more formal 
indication is that alpha, the over-dispersion 
parameter (bottom of the table, left panel), has a 
value of .113, with a probability of .005. And the 
likelihood-ratio χ2 test of alpha has a high value of 
776.0, with a probability of .000, indicating that 
the probability that one would observe these data 
if the process was Poisson, i.e., if alpha = 0, is 
virtually zero. The Uygur data are clearly not 
Poisson. A final and related indication is that the 
Poisson Goodness of Fit χ2 test statistic performed 
on a Poisson regression of the Uygur CEB data 
(bottom of the middle panel of the table) has a 
probability of .000. This means that the Poisson 
model does not fit the data; according to the 
Poisson goodness of fit χ2 test, the null hypothesis 
that the observed data are Poisson distributed must 
be rejected. 

The negative binomial and Poisson 
coefficients (Table 5) may now be compared. 
First, the signs of the effects of the independent 
variables on CEB are all the same. Also, the six 
predictors that are not statistically significant in 
one model are not significant in the other model. 
However, for thirteen of the independent variables, 
the standard errors in the Poisson model are 
smaller than those in the negative binomial model 
(the standard errors for the age variable (X1) are 
the same in both models). This means that for 

thirteen of the fourteen independent variables, in 
the Poisson model the z-values will be spuriously 
high and the p-values spuriously low. Although 
there would have been no errors of statistical 
inference had these Poisson regression results, 
rather than the negative binomial regression 
results, been used to predict Uygur CEB, the 
potential for error is much greater using the 
Poisson results. For all the above reasons, the 
negative binomial model is the preferred 
regression model for predicting children ever born 
among Uygur women. 

Finally, the results of the negative 
binomial regression predicting Uygur CEB may be 
compared with the OLS results (left and right 
panels of Table 5). Would any inference errors 
been committed had the OLS results been used? 
The major error that would have occurred is with 
regard to the effect on CEB of employment status. 
The results of the OLS regression model indicate 
that among Uygur women employment status (X6) 
has a statistically significant negative effect on 
CEB. Thus one would have inferred that employed 
Uygur women have fewer children ever born than 
Uygur women who are not employed, controlling 
for the effects of the other independent variables. 
This turns out to be an incorrect inference. The 
negative binomial regression results show no 
statistical relationship between employment status 
and CEB. Some of the implications of the research 
reported in this paper will now be addressed. 

 
Conclusion 

 
This article considered distributions of CEB data 
for five sub-groups of Chinese women. It was 
shown that they were not normal (Gaussian), but, 
rather, heavily skewed with long right tails. Such 
distributions are characteristic of low-fertility 
populations. Given such distributions, a linear 
regression model is inappropriate for the statistical 
modeling of children ever born. Fifteen 
socioeconomic and locational variables drawn 
from the 1990 Census of China were then used as 
independent variables to model CEB for the Han 
and minority group women. 
 For the Han and Manchu and Korean 
women, both Poisson regression and ordinary least 
squares (OLS) regression models were estimated. 
And for the Hui and Uygur women, these same 
two approaches along with negative binomial 
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regression were used. It was shown that in almost 
all instances there would have been major errors of 
statistical inference had the interpretations been 
based only on the results of linear regression 
models.   
 The literature on the statistical modeling 
of CEB data indicates that in many instances, 
linear regression models have been used. The 
decision to use a linear model, however, is only 
appropriate if the average CEB value is high. 
When the mean of a count outcome is high, say, at 
least above 4 or 5, but certainly around 8 or 9, then 
the distribution of the outcome will often tend to 
be approximately normal. However, few 
populations these days, except mainly those in 
sub-Saharan Africa, have fertility this high. It 
would appear thus that the use of a linear model 
for modeling a fertility variable such as children 
ever born is becoming more and more 
inappropriate. And in low fertility populations, 
such as China, using a linear model would clearly 
be inappropriate statistically. 
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Appendix: Tables and Figures 
 
Table 1: Descriptive Data for Children Ever Born: 
Ever-Married Han, Manchu, Korean, Uygur, and 
Hui Women, Ages 15-49, China, 1990 
 
        Standard   No. of 

Group    Mean      Dev.      Variance     Cases 
Han       2.1326   1.4202     2.0170     216,312 
Manchu      1.8047   1.1745     1.3795       20,210 
Korean       1.7959   1.0478     1.0978         3,837 
Uygur       3.1577   2.6443     6.9921       14,553 
Hui       2.3289   1.7662     3.1194       17,976 
 
Source of Data: 1% Sample of the 1990 Census of 
China. The sample of Han women is a 1/10 sample 
of the 1% sample. 
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Fig. 1: CEB Dist. for the Han and Poisson Dist. with mu = 2.1326
Number of Children ever Born

 Observed CEB Distribution  Univariate Poisson, mu = 2.1326
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Table 2: Poisson Regression Models Predicting 
Number of Children Ever-born for Ever-Married 
Han, Manchu and Korean Women, Ages 15-49, 
China, 1990 
_______________________________________ 
                             Han         Manchu      Korean 

Sample Size  216,312  20,210         3,837 
________________________________________________ 
 
Independent 
Variable         b     s.e.      b      s.e.      b     s.e.    
 
X1 Age   .050  .000    .055  .001   .052  .002 
X2 Elem. Sch -.092  .004  -.076  .019   .005  .085* 
X3 Middle Sch -.239  .005  -.189  .020  -.058  .085* 
X4 High School -.353  .007  -.248  .025  -.117  .089* 
X5 College -.583  .020  -.466  .054  -.301  .123 
X6 Employ Status -.063  .005  -.095  .012  -.013  .031* 
X7 City Residence  -.398 .006  -.335  .022  -.234  .038 
X8 Town Residence  -.096 .004  -.055  .013  -.029  .028* 
X9 North Region     .018 .007    .050  .013  -.099  .086* 
X10 East Region  -.003 .006*-.055  .069*-.045  .181* 
X11 S. Central Reg.   .120  .006   .014  .054*  .152  .134* 
X12 SW Region   .034  .007   .060  .097*-.182  .290* 
X13 NW Region     .089  .008  -.029  .071*-.032  .236* 
X14 Widowed  -.022  .012*-.040  .048*-.023  .071* 
X15 Divorced        -.285  .028  -.261  .081  -.341  .129 
Constant                -.809  .010-1.057  .034-1.145  .111 
 
Pseudo R2                 .145  .000   .136  .000    .112  .000 
  
Likelihood  
Ratio χ2       106740.4   0.00   8456.5  0.00   1283.5  0.00 
Poisson 
Goodness  
of Fit χ2      106486.4   1.00   7527.8  1.00   1322.9  1.00 
_____________________________________________ 
*Coefficient not significant at p <.05. 
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Fig. 2: CEB Dist. for the Manchu and Poisson Dist. with mu = 1.8047
Number of Children ever Born

 Observed CEB Distribution  Univariate Poisson, mu = 1.8047
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Table 3: Ordinary Least Squares Regression 
Models Predicting Number of Children Ever-born 
for Ever-Married Han, Manchu and Korean 
Women, Ages 15-49, China, 1990 
____________________________________________     
                          Han           Manchu        Korean 

Sample Size        216,312         20,210           3,837 
_________________________________________________ 
 
Independent 
Variable               b      s.e.        b      s.e.         b      s.e.  
 
X1 Age            .110   .000     .106   .001      .095  .002 
X2 Elem Sch      -.311  .006    -.277   .023     -.028  .097* 
X3 Middle Sch   -.569  .007    -.478   .024     -.220  .096  
X4 High Sch      -.727  .009     -.591  .027     -.333  .098  
X5 College         -.975  .021    -.858   .048     -.521  .117 
X6 Employ Stat -.192  .007    -.224   .012     -.062  .030  
X7 City Resid    -.762  .007    -.557   .020     -.383  .034 
X8 Town Resid  -.223  .006   -.110   .013      -.067  .027  
X9 North Region .023  .009     .091   .013     -.144  .077* 
X10 East Region -.019  .008    -.119   .063*   -.100  .175* 
X11 S. Cent Reg   .262  .008     .025   .052*    .293  .143  
X12 SW Region    .082  .009     .106   100*    -.370 .234* 
X13 NW Region   .189   .011    .013   .067*   -.001 .233* 
X14 Widowed       .096  .021    .074   .062*   -.060  .081* 
X15 Divorced      -.482  .032   -.354   .067     -.492  .095 
Constant             -.951  .014 -1.012   .036   -1.066 .115 
 
R2 (adj.)                .531  .000     .577  .000       .559 .000 
 
F-test       16293.0  .000   1839.1 .000   1283.5  .000 
 
_____________________________________________ 
*Coefficient not significant at p <.05. 
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g. 3: CEB Dist. for the Koreans and Poisson Dist. with mu = 1.795
Number of Children ever Born

 Observed CEB Distribution  Univariate Poisson, mu = 1.7959
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Table 4:Negative Binomial Regression Model 
(NBR), Poisson Regression Model (PR), and 
Ordinary Least Squares Regression Model (OLS) 
Predicting Number of Children Ever-born for 
17,976 Ever-Married Hui Women, Ages 15-49, 
China, 1990 
_____________________________________________ 
                      NBR Model PR Model      OLS Model 

Independent 
Variable             b       s.e.    b       s.e.       b        s.e.    
X1 Age           .054   .001     .054   .001     .133   .001 
X2 Elem Sch     -.108  .014    -.108   .014    -.412  .026  
X3 Middle Sch  -.234  .017    -.234   .017    -.559  .029  
X4 High Sch      -.341 .024     -.341   .024    -.674  .037  
X5 College        -.575  .062    -.575   .062    -.998  .079 
X6 Employ       -.013  .017*  -.013   .017*  -.081  .031  
X7 City Res.     -.354  .017    -.354   .017    -.828  .027 
X8 Town Res.  -.072  .017    -.072   .017    -.225  .029  
X9 North Reg.  -.024  .026*  -.024   .026*  -.061  .040* 
X10 East Reg.     .047  .029*   .047   .029*   .117  .045  
X11 S. Cent Reg..048  .029*   .048   .029*   .109  .045  
X12 SW Reg.     -.008 .030*  -.008   .030*  -.039  .049* 
X13 NW Reg.     .287  .026     .286   .026     .689  .042  
X14 Widowed    -.029 .037*  -.029   .037*   .084  .083* 
X15 Divorced    -.490  .058   -.490   .058    -.913  .081 
 
Constant                  -.959   .039   -.959  .039   -1.742  .066 
Pseudo R2 / R2 (adj.) .181    .000    .189  .000       .550  .000 
Likelihood Ratio χ2 or      
F-test                     12072.2 .000 12763.3.000  1462.7  .000 
Alpha               000  .000 
L-Ratio χ2 test of alpha         .000  .500 
Poisson Goodness of Fit χ2         11049.0 1.000 
_____________________________________________ 
 
*Coefficient not significant at p <.05. 
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Fig. 4: CEB Dist. for the Uygur & Poisson Dist. with mu = 3.1576
Number of Children ever Born

 Observed CEB Distribution  Univariate Poisson, mu = 3.1576
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Table 5: Negative Binomial Regression 
Model(NBR), Poisson Regression Model (PR), 
and Ordinary Least Squares Regression Model 
(OLS) Predicting Number of Children Ever-born 
for14,553 Ever-Married Uygur Women, Ages 15-
49, China, 1990 
________________________________________ 
                    
           NBR Model   PR Model   OLS Model 
Independent 
Variable                  b     s.e.        b     s.e.        b      s.e.         
 
X1 Age               .060   .001     .057   .001    .184    .002 
X2 Elem Sch          .059  .014      .071   .012    .213    .045  
X3 Middle Sch       .071  .018      .085   .015    .202    .055  
X4 High Sch         -.074  .026     -.060   .022   -.196    .075  
X5 College            -.259  .070    -.234    .061   -.608   .183 
X6 Employ           -.019  .016*  -.025    .013* -.121   .048  
X7 City Res.         -.247  .021    -.248    .018   -.817   .061 
X8 Town Res.      -.052  .019    -.060    .016   -.232   .056  
X9 N Region         -.076  .949*  -.103   .867*   .289 2.326* 
X10 E Region         .147  .899*   .117    .817*   .798 2.253* 
X11 S. Cent Reg.    .218  .830*   .195    .750* 1.091 2.113*    
X12 SW Region              variable not included                   
X13 NW Region     .649 .783*   .629    .707*  2.116  2.014* 
X14 Widowed       -.202 .035    -.183    .028    -.608   .117  
X15 Divorced        -.800 .032    -.802    .029  -1.426   .066 
Constant             -1.480.784* -1.348   .708* -4.518  2.017 
 
Pseudo R2 / R2 (adj.) .190  .000  .123   .000      .421   .000 
Likelihood Ratio χ2 or      
F-test         8042.6  .000  13645.7  .000    755.2   .000 
Alpha             .113  .005 
L-Ratio χ2  
test of alpha     776.0  .000 
Poisson Goodness of Fit χ2     21413.4  .000 
_____________________________________________ 
*Coefficient not significant at p <.05. 
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Fig. 5: CEB Dist. for the Hui & Poisson Dist. with mu = 2.3289
Number of Children ever Born

 Observed CEB Distribution  Univariate Poisson, mu = 2.3289
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The combined effects of the activities of different chemicals are of interest of this study. We simulate for the 
synthetic data, and fit experimental data for three models and estimate the parameters. We assess the fit of the 
synthetic data and the experimental data by comparing the coefficients of variation for the parameter 
estimates and identify the best model for the inhibition process. 
 
Key words: Additive model, coefficient of variation, combination model, product model 
 
 

Introduction 
 
Pharmacological data deal with the study of 
chemicals in a body. Researchers are interested in 
the distributions of these chemicals and their 
retention times. Studies by clinicians (e.g., 
Wagner, 1988; Bass, 1988; Beck, 1988) on the 
specific activities of chemicals under various 
conditions are examples. Thakur (1988), Matis 
(1988), and Jacquez (1985), to name a few, 
developed methods to study the dynamic behavior 
of chemicals using tools in mathematical 
modeling. 

Sen and Mohr (1990), and Sen, Bell, and 
Mohr (1992) studied the distribution of a chemical 
in a body and modeled its activities as nonlinear 
time-dependent functions. In this paper we 
develop mathematical models of two chemicals in 
order to study the inhibition effects of one 
chemical on the other. This inhibition between two 
chemicals may be indicated by suppression or 
amplification of their individual effects. The 
specific activities of two interacting chemicals are 
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measured on laboratory animals during an 
experiment. 

Three models are developed here for 
study: an additive model, a product model, and a 
combination model. The purpose of the study is to 
select the best model from these three models, to 
describe the inhibition effect of two interacting 
chemicals and to interpret the observed data. A 
simulation study of the models and their parameter 
estimation using the synthetic data is described in 
the result section. A numerical example of the 
evaluation of the models is also presented in the 
result section. 
 

Methodology 
 
Consider a chemical flow in a body and its 
concentration changes at different times and at 
different points. We observe the flow discretely at 
a certain location in the body and at certain times, 
and we visualize a one-compartment model with a 
single input and output from the system. After the 
initial dose of a chemical is injected into the 
system, some amount of it will escape the 
compartment and the chemical itself will slowly 
decay over time. We assume the rate changes in 
concentration, p(t), of the chemical at any time in 
the body will follow the differential equation 
given below. 
 

dp(t)/dt = -"p(t) + f(t),         (2.1)  
 

where " is the rate at which the absorbed chemical 
leaves the system. f(t) is a decreasing function of 
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the chemical applied initially, which enters the 
system and is assumed to have the form   
  

f(t) = d e 
-βt

,                                            (2.2)  
  

where d is the initial amount of the input, and β is 
the rate of absorption of the chemical.  The 
solution of the equation (2.1) may be extended for 
two chemicals, since they follow essentially the 
same equation. Hence the solution of equation 
(2.1) for each chemical is written as, 
 
pi(t)= di (exp(-βit) - exp(-"it))/(" i - βi),         (2.3) 
 
for i = 1, 2. 
 
 We now consider an ‘activator-inhibitor’ 
system for the combined concentrations, p(t), of 
the activity levels, which consists of two 
chemicals that each exhibits the mutual effect of 
inhibiting the other’s formation , Edelstein - 
Keshet, (1989). By selecting models for each of 
the combining effects, we have models that take 
the following forms:  
 
Model 1:    p(t) = p1(t) – p2(t).                          (2.4) 
 
Model 2:    p(t) = p1(t)*p2(t).                      (2.5) 
 
Model 3:    p(t) = p1(t) – p2(t) + p1(t)*p2(t)       (2.6) 
 

The rationale for these models is based on 
the physiological combination effects of two 
chemicals. Sometimes the combined effects 
produce a reduction, and at other times a surge in 
the activity levels, depending on the chemical 
balance of the concentration levels. The negative 
sign in (2.4) indicates inhibition of the first 
chemical by the second, which is an antagonistic 
effect. Next, we consider the product model since 
the combination may alternatively cause the 
effects to rise. The product of the two equations is 
similar to an interaction effect, which we believe 
is a competitor for model 1. The third model is a 
combination of models 1 and 2, which intuitively 
may be viewed as a synergistic effect. We want to 
achieve a trend to identify a best inhibition model 
using experimental and synthetic data.  

Computationally, the proposed models in 
(2.4), (2.5), and (2.6) yield different combinations 
of exponential terms. To simplify the notations, 
we use ", $, (, * instead of "1, $1, "2, $2. Here, ( 
represents the rate at which the second chemical 
leaves the system and * is the rate at which the 
second chemical is absorbed in the system. The 
initial input (di) is considered to be of the same 
amount, d, for both the chemicals. We write 
equations (2.4), (2.5), and (2.6) in the following 
equations. 

 
p(t) = d[exp(-$t) – exp(-"t)]/(" - $) – d[exp(-*t) –  
     exp(-(t)]/(( - *).                       
                                       (2.7) 
 
p(t) = d2[exp( -($t + (t)) – exp(-($t + *t)) – exp(- 
     ("t + (t)) + exp(-("t + *t))]/("-$)(*-(). (2.8) 
 
p(t) = d[exp(-$t) – exp(-"t)]/(" - $) – d[exp(-*t) –  
     exp(-(t)]/(( - *) + d2[exp( -($t + (t)) – exp(- 
     ($t + *t)) – exp(-("t + (t)) + exp(-("t + *t))]/ 
     ("-$)(*-().                                                    (2.9) 
 

The above equations are similar even 
though the combinations of the parameters are 
different in each equation. Each equation in (2.7) – 
(2.9) consists of four parameters. We compare the 
fit of the generated curves with the observed 
values and then study the errors of estimation for 
each fitted curve. 
 

Results 
 
We want to compare the models by generating 
data from the respective equations for a period of 
time. We simulate the models with four unknown 
parameters and for thirteen time points. d is a 
proportionality constant and may be set to any 
number. A value of d = 10 units is considered for 
the analysis. The random numbers are generated 
for ten sets of data at each time point 0, 30, ...360. 
The system of random numbers is perturbed by a 
sigma of 1 unit. The Monte Carlo method of the 
program is written using Fortran language and the 
Levenberg -Marquardt is used to fit the model 
parameters (Press, 1986). The initial guesses of the 
parameters and the first derivatives of the 
parameters are supplied in order for the nonlinear 
equations to converge when a chi-square value has 
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reached to a pre set number. Convergence implies 
that the best estimates of the parameters have been 
obtained, under the assumption that the model is 
adequate. Two convergence criteria are used here. 
 

1) Continue iterative method until the 
parameter values on successive iterations 
stabilize. This can be measured by the size 
of the each parameter increment relative to 
the previous parameter value. 

2) Continue till relative change in sum of 
squares on successive iterations is small. 

 
Compliance with both criteria does not guarantee 
convergence; instead it could indicate a lack of 
progress. Often a small pivot element will generate 
a large correction in the parameter values, which 
will then be rejected. This near degeneracy of the 
minimum causes the parameters to fluctuate 
around a value (a local minimum) without ever 
converging to a global minimum. 

Table 1 gives the estimated parameter 
values along with their standard errors for the data 
generated using the additive model for initial 
estimates of the parameters " = .0699, $ = .0173, 
( = .3742, and * = .057, with respective parameter 
estimates α̂  = .0958, β̂  = .00535, γ̂  = .420862, 

δ̂  = .0228. The change in the Chi-Squares is from 
186326.5 to 110324.7 with a 41% drop in the 
value. 

 
Table 1 -Parameter estimates for three models for 
the first set of simulated data± indicates 
asymptotic standard errors 

 
Model 
 

" $ ( * 

Additive 
 

.096± 

.000028 
.005± 
.000001 

.421 ± 

.00018 
.023 ± 
.000056 
 

Product 
 

.0019± 
26.5040  

.0083± 
26.5040 

15.19± 
26.5040 

-.0014± 
26.5040 
 

Combination 
 

5.816± 
.000516 

.00009± 

.000004 
.0002± 
.0000015 

.0078± 

.000019 
 

 
Table 2 gives the estimated parameter 

values along with their standard errors for the data 
generated using the combination model for initial 
estimates of the parameters " = .0818, $ = .0108, 

( = .0114, and * = .114 with respective parameter 
estimates α̂  = .845261, β̂  = .00622, γ̂  = .00669, 

δ̂  = 3.145268. The change in the Chi-Squares is a 
99% drop in the value. 

 
Table 2 -Parameter estimates for three models for 
the second set of simulated data± indicates 
asymptotic standard errors. 

 
Model 
 

" $ ( * 

Additive 
 

.1396± 

.00012 
.0004± 
.00003 

.3087 ± 

.00043 
.0015 ± 
.00003 

Product 
 

.0016± 
77.223  

.3669± 
77.229 

5.445± 
78.636 

-.0013± 
77.224 

Combination
 

.845± 

.000939 
.006± 
.00003 

-.007± 
.00003 

3.145± 
.00503 

 
Tables 1 and 2 show some similarity in the 

estimates of the parameters. We have obtained  the 
convergence criteria by all three models for the 
above two sets of parameters. It was extremely 
difficult to find the initial estimates of the 
parameters for the product model, but we included 
it in the analysis as well. The additive and the 
combination models both gave very good 
estimates of the standard errors, but the product 
model had the estimated standard errors very large 
to indicate the convergence might have reached 
locally. The data were generated using the additive 
and the combination models and both sets of data 
converged for both models 1 and 3 with good sets 
of parameter estimates, but neither set worked well 
for the product model. The coefficients of 
variation for estimated parameters fitted from the 
simulation data were calculated by dividing the 
standard errors of estimation by the estimated 
parameters for the sets given in the accompanying 
tables. 

Once the validity of the models has been 
established, we want to see how the three models 
compare at each other, we use the estimated 
parameter values from the tables to draw the 
curves for all three models and place them on the 
same axes. Figure 1 shows that all three graphs 
basically follow the same pattern but in figure 2 
the product model shows a slight fluctuation from 
the other two curves, and the combination model 



SIMULATION STUDY OF CHEMICAL INHIBITION MODELING 400

separates from the other two at the end of 360 
minutes. These pictures confirm that all three 
models are equally good in describing the 
chemical inhibition process. 
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Figure 1. Simulated curves for three models using 
the parameter estimates in Table 1. 
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Figure 2. Simulated curves for three models using 
the parameter estimates in Table 2. 
 

The simulation study is convincing 
enough for us to look further into the models using 
the real data. The data used for this study were 
collected at the Ohio State University 
pharmacological laboratory in Columbus, Ohio. 
Researchers administered two chemicals, 
morphine and midazolam, to laboratory rats. The 
experiment is to study the effects of two 
chemicals, Midazolam and Morphine when they 
are administered simultaneously. A high dose of 
Morphine, a common anesthetic agent, may have 

an irreversible side effect on the body. Midazolam 
has been shown to either increase or decrease 
spinal activity depending on the relative combined 
concentration of morphine and midazolam , Niv 
(1988); Tejwani, (1990). Also midazolam has been 
shown to have minimal side effects even with high 
dosages.  

The purpose of their study for the 
combination effects was to see the effects of 
morphine in high doses when applied with varying 
dose levels of midazolam. Researchers especially 
want to determine if a combination level of two 
chemicals can produce the desired anesthetic 
effect that reaches high within 50 minutes to 100 
minutes and gets out of the system within 3 hours. 
The experimenters used a group of five to six 
laboratory rats to administer midazolam at three 
levels and morphine at the same three levels as a 
3X3 factorial design. 

The combined effects of those two 
chemicals were observed on the rats. The 
concentration levels for each chemical were used 
at 10:g (low), 20:g (moderate), and 30:g (high) 
and each of the nine combinations of the 
concentrations. The numbing effects of the 
combined chemicals were recorded by measuring 
the tail flickering of the rats. These measurements, 
known as the specific activities, represent the 
percentage increase over the baseline values of the 
anesthetic effects, which are due to the chemicals. 
Higher measurement readings indicate a stronger 
effect of the chemicals. 

The average percentages of the maximal 
possible effects on tail flickering of these animals 
were measured. A high number indicated the 
effect of analgesia (anesthetic effect) was strongly 
present. A descriptive study of the data has been 
published in one of the pharmacological journals, 
Rattan (1991).  

Nonlinear regression fits of the models to 
the data are obtained using the Marquardt method. 
The estimates of the parameters are also obtained. 
The procedure is iterative based on the least 
squares method. The initial guess for each 
parameter is supplied and a known value of the 
initial amount (d) of 10 units is used for each level 
of the chemicals for the observed thirteen time 
points. The coefficients of variation for estimated 
parameters fitted from the data are calculated for 
the converged sets. 
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To avoid repetition and lack of any further 
meaningful information, only three selected 
combination levels of midazolam and morphine 
are presented here. The tables 3, 4, and 5 show the 
estimates of the four parameters with their 
corresponding asymptotic standard errors of 
estimation.  

A well-known result is that the method of 
maximum likelihood asymptotically produces an 
estimated density, which is closest to the true 
density in the information sense. Maximizing the 
log- likelihood is equivalent to minimizing the 
expected logarithmic difference between the two 
densities. Akaike (1974) has suggested an estimate 
of the approximate loss between the true normal 
density and the approximating density. This 
estimate uses the maximum log-likelihood of the 
observation vector minus the number of 
parameters. Akaike’s information criterion (AIC) 
is a useful statistic for statistical model evaluation 
and has been widely accepted in some areas of 
statistics, Bozdogan (1987). It is calculated for 
each selected model as AIC = (n)ln(SSEs/n) + 2k, 
SAS (1990). A low value for AIC indicates a 
better fit.  

We notice in table 5, the combination data 
of both high levels of concentrations (Mor30 and 
Mid30), fit with AIC values equal to 28.89 for the 
additive model, and 34.07 for the combination 
model, those are the smallest among all other AIC 
values. The AIC values are in the similar range in 
the table 3 for the combination data of low 
morphine with high midazolam concentrations 
(Mor10 and Mid30). For the combination data of 
medium morphine with low midazolam 
concentrations (Mor20 and Mid10) in table 4, the 
AIC values are relatively high but similar for the 
additive model and the combination model and 
even higher for the product model. 

We compare the standard errors of the 
parameter estimates in these tables. In tables 3 and 
4 only the combination model has reliable 
estimated standard errors, and in table 5 models 1 
and 3 have reliable estimated standard errors. So 
the combination model is the only one that is 
holding steady for the data. 

 
 
 
 
 

Table 3 -Parameter estimates of three models for 
low level of Morphine± indicates asymptotic 
standard errors. * = Concentration Level. 
Level* " $ ( * AIC 

Mor10 
Mid30 
Model 1 

.0383 ± 
2.469 
  

.0382 ± 
2.4645 
  

.3771 ± 
617.19 

.3765 ± 
616.3 
   

56.42318072  

Mor10 
Mid30 
Model 2 

.2005 ± 
0.0000 

.1748 ± 
263.9 

.0001 ± 
27.961 

-.1400± 
74.52 

53.15877737  
 

Mor10 
Mid30 
Model 3 

.0809 ± 

.0423 
.0168 ± 
.0178 

.0120 ± 

.0152 
.1431 ± 
.0676 

53.46542876  
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Figure 3. Distribution of Morphine 10:g and 
Midazolam 30:g with predicted models. 
 
 
Table 4 -Parameter estimates of three models for 
medium level of Morphine ± indicates asymptotic 
standard errors. 
 
Level*   "   $ (   *   AIC  

  
Mor20 
Mid10 
Model 1 

.0836 ± 

.0050 
   

.0027 ± 

.0005 
   

67739± 
.0000 

47398± 
.0000 
   

64.50291081  

Mor20 
Mid10 
Model 2 

-.0286 ± 
.0016 

.4917 ± 
6.972 

.0299 ± 
0.0000 

.4951 ± 
7.8581 

74.11086129  
 

Mor20 
Mid10 
Model 3 

.1445 ± 

.0876 
.0012 ± 
.0008 

.0094 ± 
0.0130 

.1828 ± 

.1063 
63.81358576  
 

Note: * = Concentration Level. 
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Figure 4. Distribution of Morphine 20:g and 
Midazolam 10:g with predicted models. 

 
 
 
 
Table 5 -Parameter estimates of three models for 
high level of Morphine± indicates asymptotic 
standard errors. 
 
Level*   "    $    (    *   AIC  

  
Mor30 
Mid30 
Model 1 

.0699 ± 

.0082 
   

.0173 ± 

.0020 
   

.3742 ± 

.1141 
.0570 ± 
.0489 
   

28.89092708  

Mor30 
Mid30 
Model 2 

.0796 ± 
0.0000 

.0705 ± 
14528 

.0288 ± 
701.31 

-.0446 ± 
1396 

68.71982797  
 

Mor 30 
Mid 30 
Model 3 

.0818 ± 

.0286 
.0108 ± 
.0235 

.0114 ± 

.0396 
.1141 ± 
.0267 

34.07428277  
 

Note: * = Concentration Level. 
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     Figure 5. Distribution of Morphine 30:g and 
     Midazolam 30:g with predicted models. 

 
 
Figures 3 – 5, refer to the respective tables 

3 - 5, show the actual data with the estimated fitted 
lines by the models 1, 2, and 3.  The estimated 
parameter values from the tables are used to draw 
the respective fitted curves and placed them with 
the original data points. Figure 3 shows a very 
close fit by all three curves, figure 4 shows very 
different fit by all three of them and figure 5 again 
shows very good fit by all three models.  

We now focus on the estimated values to 
decide how good these fits are. Tables 3 - 5 show a 
lack of reliability in the measurements of the 
coefficients of variation by the product model for 
all of its estimated parameter values. They are 
quite large, indicating that the convergence may 
have reached locally, which is also the case with 
the simulation results for the product model, even 
though it fit the experimental data in figures 3 and 
5. Table 3 shows only the combination model with 
a set of reasonable coefficients of variation for it’s 
estimated parameter values but all curves fit data 
well. The standard errors for estimated parameter 
values for the other two models are large in Table 
3. For the combination and addition models in 
table 5, the parameter estimates are extremely 
good with mostly low coefficients of variation, 
and all three models fit well. The estimated 
standard errors with the low coefficients of 
variation may be used to make the confidence 
intervals for the parameters for the combination 
model. 
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Conclusion 
 
The AIC criteria has been criticized in literature 
for adding two times the number of parameters of 
the model in the calculation, but we overcome this 
criticism by having equal number of parameters 
for each model. The AIC values are used heavily 
in the literature for model comparisons, but how 
low is a value to be considered for a good fit. Our 
studies show that the values range from 28.89 to 
74.11 for the set of data that we have used. It is 
then reasonable to suggest that this range of AIC 
values meet the standards since they meet the 
convergence criteria for the study.  
 However to select a best model, only the 
AIC criteria may not be enough, the estimated 
parameter values also play a key role in 
determining a good model. One does not need to 
do the testing of hypothesis to decide if the 
estimated values are acceptable or not, as the 
coefficients of variation are instant indicators for 
the decision. The coefficients of variation for the 
estimated parameters are always large for the 
product model, but they are low for the 
combination model with no exception, indicating 
that the combination model is probably a better 
choice. This indicates that the coefficients of 
variation should also be considered for the choice 
of a model.  

When we look into the simulation of the 
models, we find that all three models generate 
extremely similar patterns. The data under study 
contain a lot of variations for measurements and 
has only thirteen time points for each set. This 
may contribute to some of the convergence 
problems for model 1, which sometimes produces 
unusable estimates of the parameters in tables 3 
and 4. Otherwise the simulation results in tables 1 
and 2 are perfectly fine for the additive model. The 
combination model always did extremely well for 
fitting the data, estimating the parameters with low 
coefficients of variations, but producing the AIC 
values similar to the other two models.  
 This study indicates that there are a 
number of conceivable reasons why a particular 
model should be chosen. Beyond the reasonable 
AIC values, we looked into the fit and the 
coefficients of variation for estimating the 
parameters. This study showed that the reliable 
estimates of the parameter values were obtained 
from the combination model always, from the 

additive model sometimes and none of the times 
from the product model. The fit of the models are 
extremely close in two of the three graphs shown 
here. The models 1 and 2 have the potential for 
simpler interpretation of an inhibition model as 
being either an additive or a multiplicative in 
nature, but as we have seen the estimated 
parameter values are not always reliable, whereas 
a combination of the two models produces reliable 
estimates of the parameters. 

In conclusion we would like to remark 
that AIC criteria are a very simple technique to 
identify the goodness of fit, but we need other 
statistical techniques as well to evaluate a model. 
This paper addresses the issue to identify a model 
that will best describe the inhibition process, even 
though that may not be a flawless model for the 
entire process. The models are based on simple 
approach to the physical description of the 
inhibition process with a few parameters. The data 
we have used for the numerical example may be 
modeled by much complicated equations than 
these models can describe. Any chemical 
interaction is a complicated process but the 
observable data points are restricted. Moreover, 
this type of experiment requires live subjects for 
study, which makes it harder to collect a large set 
of data. The proposed models have only four 
parameters to estimate and require a moderate size 
of the data set. In real experimental process if 
more data is available, the initial equation set up 
must be more elaborate before the three proposed 
models could be introduced. The simulation 
results and the numerical example show that the 
combination model better describe the inhibition 
effects of two chemicals. 
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Combining Quantum Mechanical Calculations And A χ2 Fit In A Potential Energy 
Function For The CO2 + O+ Reaction 
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In order to compute a highly accurate statistical rate constant for the CO2 + O+ reaction, it is necessary to first 
calculate the potential energy of the system at many different geometric configurations. Quantum mechanical 
calculations are very time-consuming, making it difficult to obtain a sufficient number to allow for accurate 
interpolation. The number of quantum mechanical calculations required can be significantly reduced by using 
known relations in classical physics to calculate energy for configurations where the oxygen is relatively far 
from the CO2. A chi-squared fit to quantum mechanical points is obtained for these configurations, and the 
resulting parameters are used to generate an equation for the potential energy. This equation, combined with 
an interpolated set of quantum mechanical points to give the potential energy for configurations where the 
molecules are closer together, allows all configurations to be calculated accurately and efficiently. 
 
Key words: Potential energy surface, χ2 fit 
 

 
Introduction 

 
The reaction of carbon dioxide with the O+ oxygen 
ion is of interest because experimental rate 
measurements show that at low energies the rate is 
constant at the expected value, but at high energies 
the rate steadily decreases to values below the 
expected rate (Viggiano, et al.,1992). RRKM rate 
calculations were done for the purpose of 
explaining this experimentally observed decrease 
(Forst, 1973).  

In order to calculate the rate of reaction 
using statistical rate theories such as RRKM 
theory, the potential energy of the reacting 
molecules must be known at any geometric 
configuration that might be found near the 
transition state. This refers to the small portion of 
the potential surface that is near the maximum 
point on the minimum-energy path.  
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The accuracy of a rate calculation is directly 
related to the accuracy of the potential surface 
employed, and a good potential is needed if the 
rate calculation is to be highly accurate. Because 
calculating the potential energy at any one 
configuration involves time-consuming quantum 
mechanical calculations, constructing the potential 
surface with energies for all probable 
configurations near the transition state using 
quantum mechanical calculations becomes an 
impossible task. Instead, it is common to do 
calculations at judiciously chosen configurations 
and use interpolation to obtain good 
approximations for the energies of configurations 
for all other geometries. 

The potential is split into long and short-
range portions in order to further reduce the 
number of quantum mechanical calculations. Ab 
initio quantum mechanical calculations were done 
for the short-range portion only. At separation 
distances of 6.9 Å or greater, the long-range 
portion of the potential is invoked. It consists of a 
fit to the long range ab initio points with a 
functional form, which is a parameterized 
variation of the ion-induced dipole plus 
quadrupole potential:  
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2 2

4 3

q Q [(3cos ) 1]V
2r 2 r
α θ −

= − +           (1) 

 
where r is the distance between the ion and the 
carbon in the CO2, θ is the angle formed by the 
CO2 axis and the line connecting the ion and the 
carbon atom in the CO2, and Q is the quadrupole 
moment. 
 

Methodology 
 
Quantum Mechanical Calculations  

The short-range portion of the potential is 
calculated with the Gaussian 86 suite of programs 
(Frisch, et al., 1984). MP2 calculations are done 
using a 6-311++G** basis set. The r and ϑ values 
shown in Figure 1 below are varied appropriately. 
At separation distances (r’s in Fig. 1) of 1.9 to 6.9 
Å, the short-range portion of the potential is a grid 
of points with spacings every 15° and 0.4 Å 
connected by a spline fit. Extra data points were 
added at r = 2.3 Å and 2.1 Å and θ = 90°, 105°, 
120°, and 135° and at r = 1.9 Å and θ = 90°. The 
potential energies between the grid points were 
obtained by means of a cubic spline interpolation 
(Press, et. al, 1992). These energies are given in 
Table 1. 

 
                       O+    
                            r 
 
                          θ 
            O===C===O 
 
Fig. 1. Parameters used to describe potential 
surface 
 
 
Long Range Potential 

Because quantum chemistry calculations 
are time-consuming, it is generally more efficient 
to use classical physics to calculate the potential 
whenever accuracy allows it. Classical physics 
gives long-range potential energy terms, which are 
exact at large separation distances and provide a 
good analytic form for the long range potential as 
long as the separation distance is large.  

The two potentials which need to be 
evaluated are the potential which the O+ ion 
induces in the CO2 and that which is produced by 

the CO2’s charge distribution. The sum of these 
two potentials provides the analytic form which 
contains parameters fit to ab initio data by 
minimizing the χ2 function: 

 
Table 1. MP2/6-311++G** Energies (cm-1) 

 
 90° 105° 120° 135° 150° 165° 180° 

1.9 Å 3295 -  -  - - - - 

2.1 Å 1659 471 492 11363  - - - 

2.3 Å 1023 -463 -2744 354  - - - 

2.5 Å 
 

776 -438 -3224 -4121 2833 19351 30093 

2.9 Å 
 

627 -89 -2087 -4550 -5457 -3461 -1698 

3.3 Å 
 

565 115 -1163 -2981 -4644 -5363 -5391 

3.7 Å 
 

496 194 -663 -1899 -3710 -4048 -4332 

4.1 Å 
 

421 208 -388 -1251 -2156 -2825 -3067 

4.5 Å 
 

349 195 -236 -856 -1511 -2005 -2187 

4.9 Å 
 

286 172 -148 -609 -1095 -1465 -1604 

5.3 Å 
 

236 150 -94 -447 -818 -1101 -1208 

5.7 Å 
 

199 131 -60 -335 -625 -846 -929 

6.1 Å 
 

170 115 -38 -258 -487 -662 -727 

6.5 Å 
 

147 102 -24 -203 -387 -527 -579 

6.9 Å 
 

128 90 -19 -162 -313 -427 -469 

 
 
 

2

fit2 abinitio

n abinitio

V V
V
−

χ =∑            (2) 

 
where n is the number of points used for the fit, 
Vfit is the value of the fitted potential at each point, 
and the Vab initio are the ab initio data points used in 
the fitting process (Bevington & Robinson, 1992). 
The parameters, which are fit to the ab initio 
points, are the isotropic polarizabilities and the 
quadrupole moments of CO2. The fit uses the ab 
initio values obtained from Hartree-Fock 
calculations to begin the parameter search (Levine, 
1991). This long-range potential is used to 
describe the CO2 + O+ system at separation 
distances larger than 6.9 Å. 
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The Ion-Induced Dipole Term of the Long Range 
Potential 
 The ion-induced dipole potential,  

         V r
q

r
( ) = −

2

42
α

               (3)        

where q is the charge on the ion, α is the 
polarizability of the neutral, and r is the distance 
between the ion and the center of mass of the 
neutral, is the potential which the O+ induces in 
the CO2 (Gilbert & Smith, 1990) The 
polarizability may be expressed as a second order 
perturbation  correction to the  dipole moment 

(Levine, 1991) in a Taylor series expansion of the 
classical energy of a molecule in the presence of 
an electric field (Flyglare, 1978). 
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where W is the classical potential energy due to 
the electric field, E, and α and β are the indices for 

the coordinates.  
∂
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 in the first term of 

equation 4 is the dipole moment of the molecule 

and  
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 in the second term 

is the polarizability tensor. In the case of the CO2 
molecule, the dipole moment is zero and the off 
diagonal elements of the polarizability tensor are 
zero, reducing equation 4 to the simpler form: 
 

       W W Eo
ii i

i
= − ∑

=

1
2

2

1

3
α          (5) 

 
The minus sign in Equation 5 is added in order to 
keep the sign of the polarizability tensor consistent 
with convention. Because the energy given in 
Equation 5 is generated from the O+ point charge, 
the electric field, E , is given by: 
 

           E
q
r

= 2                    (6) 

where q is the charge on the ion and r is the 
distance between the center of mass of the CO2 
molecule and the O+ ion. The electric field vector 
points along the same direction as the vector 
connecting the center of mass of the CO2 molecule 
and the O+ ion. With θ the same angle as shown in 
the picture in Figure 1, the angle between the line 
connecting the CO2 center of mass and the O+ ion 
and the line along the body of the CO2 molecule, 
the components of the electric field vector areas 
follows, for a system lying in the x-z plane: 

      E
q
rx = 2 sin ϑ                 (7) 

      Z 2

qE cos
r

= ϑ                    (8) 

 
and the second derivative term in (5) becomes: 

( )W
q
r xx zz

( ) sin cos2
2

2 21
2 4= − +α ϑ α θ  (9) 

 
Comparing Equation 9 with Equation 3, it is clear 

that ( )α ϑ α θxx zzsin cos2 2+  is the 

anisotropic form of the polarizability, α in 
Equation 3. Equation 9 is the form of the ion-
induced dipole potential used in the program that 
fits the anisotropic polarizabilites to the ab initio 
data. The initial values in the fitting program are 
the quantum mechanical ones generated from 
MP2/6-311++G** calculations shown in Table 2. 
 In carrying out the fit, it is important to 
use the anisotropic form of the polarizability since 
otherwise all of the angular dependence of the 
long range potential is in the quadrupole term, 
giving it a physically unrealistic value, and 
possibly affecting the accuracy of the potential. 
            
Table 2. Parameters for the Long Range Potential 

 
   Ab initio   Fitted  
______________________________________ 
αxx (Å3)            1.85    1.68  
αzz (Å3)            3.24    3.68     
Θxx (Debye-Å)      -12.12  -11.89 
Θzz (Debye-Å)      -15.95  -16.53 
 
Note: ab initio calculations are done at the MP2/6-
311++G** level 
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Quadrupole Term of the Long Range Potential 
The other term of the long range potential 

is derived from the potential generated by the CO2 
molecule. The potential generated by a collection 
of charges, qα, at a point outside of the body of 
charges can be expressed as a Taylor series 
expansion 

,i
,i i

2
" '

,i ,j
i,j i j

1'
r r

1 1 ...
2 r

q q x x

q x x x x

α

αα
α α

α αα

∂  Φ = +  ∂  

 + + ∂ ∂  

∑ ∑

∂∑
           (10)  

 
where r is the distance between the origin and the 
point and xα,i is the distance between the origin 
and the charge qα (Marion & Heald, 1980). The 
first term is the monopole term, the second is the 
dipole term, and the third is the quadrupole term. 
Although there are several ways to express the 
quadrupole moment, all of them are based on this 
third term, which can also be expressed in the 
form: 

          Φ( )

,

( )3
2

5
1
6

3
= ∑

−
Q

x x r

rij
i j

i j ijδ
      (11) 

 
where the Qij are components of the quadrupole 
tensor, r is the distance from the center of mass of 
the CO2 molecule to the ion, and the xi are the 
components of the vector, r. This definition of the 
quadrupole moment is called a traceless 
quadrupole moment because the trace, 

Qii
i
∑ = 0 . If the axis along the body of the CO2 

molecule is defined as the z-axis, and the carbon 
atom is at the origin, the off-diagonal elements of 
the quadrupole tensor are zero and Qxx = Qyy. 
Because the trace is zero, Qzz = -2Qxx and there is 
only one independent element in the quadrupole 
tensor. Equation 11 becomes: 
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         (12) 

 
where θ is the angle formed by the line connecting 
the carbon in CO2 and the oxygen ion and the z-
axis. The third portion of Equation 12 is the form 
used for the potential generated by the CO2 
molecule at the location of the oxygen ion. 

Quantum mechanical parameters were 
used instead of experimental ones in the long 
range potential because (a) a smooth and 
continuous transition is needed to the short range 
quantum mechanical potential, and (b) a good 
comparison between the two is needed in order to 
decide at what separation distance to change from 
the long to short range potential. The quantum 
mechanical quadrupole moments which come out 
of Gaussian 86 are not the traceless Q’s in 
Equation 12, but instead correspond to another 
definition (Hirschfelder, et al.,1954): 

 
      Θij i jq x x= ∑ α

α
α α, ,                   (13) 

 
where qi are the individual charges and xα,i is the i 
component of the vector, r, connecting the charge 
α to the origin. The analogous traceless definition 
is (Marion & Heald, 1980): 
 

  Q q x x rij i j ij= ∑ −α
α

α α α δ( ), ,3 2    (14) 

 
Substituting equation.13 into 14, 
 
             zz zz xx yy zzQ = − + +3Θ Θ Θ Θ( )  (15) 
 
and because for the CO2 molecule, Θxx = Θyy,  
 

   zz zz xxQ = −2( )Θ Θ                    (16) 
 
hence, Equation 12 becomes: 
 

          ( )Φ
Θ Θ( ) ( )

cos3
3

2
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3 1=
−

−zz xx
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The potential energy due to the electric field 
generated by the CO2 molecule at a point located a 
distance r from the carbon is: 
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           ( )V q
r

zz xx=
−

−
( )

cos
Θ Θ

2
3 13

2 θ     (18) 

 
where q is the charge on the O+ ion. Equation18 is 
the form used in the fitting program and the values 
for the quadrupole moments, Θzz and Θxx, are 
generated by Gaussian 86 and given in Table 2. 

 
Results 

 
Combination of Terms to Form the Long-Range 
Potential 
 Equations 9 and 18 are added together to 
give the final form for the long range potential. 
The two anisotropic polarizability parameters and 
the two quadrupole moment ones are optimized by 
doing the χ2 fit (Equation 2) to MP2/6-311++G** 

data points with separation distances of 6.9 Å to 
18 Å. Figure 2 shows how the long range potential 
using the optimized values obtained from the χ2 fit 
compares to the ab initio points. The long-range 
form gives a very accurate representation of the 
quantum mechanical potential at separation 
distances larger than 6.9 Å. For this reason, the 
quantum mechanical grid of points was calculated 
only for separation distances less than 6.9 Å, and 
the ion-induced dipole plus quadrupole long range 
potential was used at larger separation distances. 
Figure 3 is a contour plot of the entire potential 
surface. 
 

Conclusion 
 

It has been demonstrated that a substantial 
reduction in the amount of time required to 
produce an accurate potential surface may be 
obtained by combining the short-range quantum 
mechanical portion with the less-time intensive 
long-range one. Starting with an appropriate 
functional form, the ion-induced dipole and the 
quadrupole potentials of classical physics, the 
long-range potential was generated by doing a χ2 
fit of four parameters to the highly accurate ab 
initio quantum mechanical points. The fitted form 
of the potential provides the accuracy needed 
without resorting to difficult quantum mechanical 
calculations. 
 
 

 
Fig. 2.  Comparison of the long range potential 
with optimized parameters to ab initio points. 

 
 
Fig. 3. Contour plot of the complete potential 
surface for the CO2 + O+ system. The contour at 
the top left       corner is 548 cm-1 and that in the 
bottom of the well       is -5328 cm-1. The contours 
are spaced 226 cm-1 apart. 
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The first part of this paper discusses a five-year systematic review of the Journal of Consulting and Clinical 
Psychology following the landmark power study conducted by Sawilowsky and Hillman (1992). The second 
part discusses a five-year longitudinal follow-up of a radically nonnormal population distribution: discrete 
mass at zero with gap. This distribution was based upon a real dataset. 
 
Key words: Discrete mass at zero with gap, longitudinal data, nonnormality, onset variables, power. 
 
 

Introduction 
 
There has been a historical concern among 
researchers and statisticians regarding the 
prevalence of normally distributed data in real-
world populations (Pearson 1895; Geary 1947; 
Pearson & Please, 1975; Micerri, 1989). For 
example, Micceri (1989) conducted a study 
involving population characteristics by examining 
440 large-sampled achievement and psychometric 
data sets in the fields of education and psychology. 
All of the distributions failed tests of normality, 
and only 3% remotely resembled a Gaussian 
distribution (e.g., symmetric with light tails). The 
concern about nonnormality in real-world data sets 
has fostered inquiry into the power and robustness 
of commonly employed parametric statistics under 
nonnormal   conditions   (Blair  &  Higgins,  1980;  
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Sawilowsky & Hillman, 1992; Sawilowsky & 
Blair, 1992; Bridge & Sawilowsky, 1999). 

An implication of normality is that the 
probabilities associated with hypothesis tests 
become inaccurate, and power tables become 
inexact. Sawilowsky and Hillman (1992) 
conducted a study that examined the utility of 
Cohen’s (1988) power tables with radically 
nonnormal distributions. Specifically, the Type I 
and Type II error properties of the discrete mass at 
zero distribution were analyzed. 

This distribution occurs when portions of 
the scores fall on zero, and the remaining scores 
begin to form the shape of the group’s distribution. 
It is common in the fields of public health, as well 
as education and psychology, and is most 
prevalent with first use or onset variables, 
including the age of first cigarette use, age of first 
alcoholic drink, or the age of first suicide attempt. 
Sawilowsky and Hillman made two major 
findings. First, the independent samples t test was 
robust as it pertained to Type I error. Second, and 
thusly, researchers were not discouraged from 
using Cohen’s power tables when analyzing 
radically nonnormal distributions. 

In addition to the findings by Sawilowsky 
and Hillman (1992), a question was raised 
regarding the comparative power of radically 
nonnormal distributions, such as discrete mass at 
zero with gap. For example, Bridge and 
Sawilowsky (1999) found the Wilcoxon Rank-
Sum test to be more powerful than the independent 
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samples t test when analyzing distributions with 
heavy tails or extreme skew, including the discrete 
mass at zero with gap distribution. Therefore 
researchers should consider the comparative 
power of nonparametric statistics when choosing 
procedures.  

An important question stemming from 
Sawilowsky and Hillman (1992) is what happens 
to the shape of radically nonnormal distributions 
over time?  Equally important is to assess how 
researchers approached statistical analysis, as well 
as the comparative power of nonparametric 
statistics when faced with extreme nonnormal 
distributions. For example, were the zero scores 
re-coded, removed, or treated as outliers? The 
main point is, however, if the data become normal 
over time, these issues vanish.  
 
Purpose of the Study 

The seminal power study conducted by 
Sawilowsky and Hillman (1992), and Bridge and 
Sawilowsky (1999) should have raised concerns 
among researchers and statisticians who encounter 
radically nonnormal distributions, such as discrete 
mass at zero with gap. The first purpose of this 
study was to conduct a five-year systematic review 
of the Journal of Consulting and Clinical 
Psychology, following Sawilowsky and Hillman 
(1992), to determine the extent to which 
researchers who encounter discrete mass at zero 
with gap address the comparative power issues 
within their studies. The second purpose is to 
report on a five-year longitudinal analysis of an 
academic data set meeting discrete mass at zero 
with gap. The distributions were assessed in order 
to determine if there was a shift towards normality 
or to determine if the distributions remained 
radically nonnormal overtime. 
 

Methodology – Part 1 
The Journal of Consulting and Clinical 

Psychology was systematically reviewed over a 
five-year period following the Sawilowsky and 
Hillman (1992) publication, involving a power 
study of the independent samples t test under a 
radically nonnormal psychometric distribution. 
Each article was examined in order to identify any 
study, which had considered discrete mass at zero 
with gap or without gap within the context of the 
population distributions and inclusion variables. 
Any article that had included onset variables or 

distributions that appeared to follow discrete mass 
at zero with and without gap were flagged.  

 
Results 

The five-year systematic review identified 
n= 44 studies that met the criteria for discrete mass 
at zero with gap (see Appendix). There appeared 
to be no evidence of the term “discrete mass at 
zero with gap” used by the authors when either 
plotting or discussing their distributions. Several 
studies utilized multiple statistical approaches with 
scores that fell on zero. For example, Farrell and 
Danish (1993) re-coded scores with zero, Darkes 
and Goldman (1993) excluded n= 148 participants 
due to either non-use (zero) and or extreme scores, 
and Curran, Stice and Chassin (1997) dropped n= 
74 families because a child had reported no (zero) 
individual and or no (zero) peer alcohol use.   

Several studies, however, raised concerns 
about measurement issues and statistical 
assumptions. For example, Willett and Singer 
(1993) introduced discrete-time survival analysis, 
Loeber and Farrington (1994) discussed violations 
of population normality, and Gardner, Lidz, 
Mulvey, and Shaw (1996) noted extreme skew and 
nonnormality with their discrete mass at zero 
without gap distribution. 

 
Methodology – Part 2 

The second phase of this study included 
identifying a real-live, academic data set which 
consisted of N= 357 undergraduates who had 
enrolled in a developmental math course during 
the Fall of 1995. This cohort was selected because 
69 of the students (19%) received a zero in the 
remedial math course. Each of the students’ grade 
point average (G.P.A.) during the Fall semester 
was then tracked over a five-year period (1996-
2000) in order to describe and analyze the 
distributions. The academic data were obtained by 
permission from a mid-western junior college. The 
appropriate Institutional Review Board approved 
the study design. All student identifiers were 
removed from the database and were replaced by a 
unique identifier.  

The cohort was obtained from the 
colleges’ database, with assistance from the 
school’s Institutional Research Office using 
Microsoft Access 2000 (Microsoft, 2000). The 
abstracted variables included the developmental 
math grade for the Fall of 1995, the Fall semester 
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G.P.A. (1996-2000), as well as the unique 
identifier. The data were then imported into a 
database using SPSS for Windows, version 11.00 
(SPSS Inc, 1999). Descriptive statistics were then 
generated and included the mean, median, 
standard deviation, proportions, frequency counts, 
kurtosis and skew.      
 

Results 
Table 1 includes descriptive data derived from the 
academic distributions. There were a total of n= 69 
(19.3%) cases that fell on zero at baseline. This 
number decreased to n= 4 (1.1%) cases by year 
2000. All of the distributions had negative skew 
and negative kurtosis. Further, all of the 
distributions remained radically nonnormal over 
time (see Figure 1 to the right, and continuing on 
next page). Each distribution could be described as 
discrete mass at zero with gap except for year 
1999, which had no gap. A total of 21 (5.88%) 
zero scoring performers at baseline had shifted to a 
positive score at least one time. Additionally, 26 
(7.28%) of positive grades at baseline had shifted 
back to zero at least one time.  

 
Table 1: Descriptive Data 
_____________________________________________ 

Base- 
Line   1996   1997   1998   1999   2000 

N 357    178     106     57       44       47 
Mean 2.51   2.61    2.62    2.71    2.53    2.76 
SD         1.46   1.23    1.24    1.22    1.43     1.20 
Skew -.685  -.991   -.962   -.962  -.650   -1.058 
Kurtosis -.924  -.090   -.080   -.031  -1.001 .277 
Scores of Zero   
   n 69      20      12      5      6      4 
   %        19.3   5.6     3.4  1.4   1.7   1.1 
________________________________________ 
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Figure 1 (continued). Distributions. 
 
 

Conclusion 
 
A systematic five-year review of the Journal of 
Consulting and Clinical Psychology following the 

Sawilowsky and Hillman (1992) power 
publication involving prevalent psychometric 
distributions with the independent samples t test 
was performed. The results found that none of the 
authors had considered the outcomes and 
recommendations reported by Sawilowsky and 
Hillman despite employing onset variables, which 
may include radically nonnormal distributions 
such as discrete mass at zero with gap. This may 
lead to the inappropriate application of a statistical 
test, thus, raising concerns about validity. 

The compendium clearly diagrams the 
various approaches that the authors adopted in 
order to evaluate the variables including recoding 
zero to a positive number, excluding non-users 
(those responses who fell on zero), as well as 
beginning age of onset at age ten. Several authors, 
however, raised concerns about nonnormality, 
extreme skew, and the general lack of longitudinal 
data beyond one year.  

The five-year follow-up of discrete mass 
at zero with gap data set, which was based upon 
real, radically nonnormal academic data, found 
that the shape of the distribution remained 
unchanged over time. Despite a decrease in 
population size from baseline of N= 357 to N= 47 
by year five, the radically nonnormal distribution 
did not shift towards normality. Four of the five 
distributions met the criteria for discrete mass at 
zero with gap, and one distribution, the Fall of 
1999, could be described as discrete mass at zero 
without gap. 

An interesting finding among the student 
G.P.A. scores included the shift from a positive 
G.P.A. to a zero G.P.A. n= 26 (7.28%) and, vice 
versa, a shift from a zero G.P.A. to a positive 
G.P.A. n= 21 (5.88%). This phenomenon may 
occur with other onset variables, perhaps within a 
30-day, 6-month, and 12-month alcoholic relapse 
log that a family maintains following a loved one’s 
discharge from an inpatient treatment program. 
However, onset variables such as age at first 
abortion and or age at first sexual experience do 
not permit the responder to migrate from a positive 
value back to a zero response.  

Besides understanding onset variables, 
applied researchers should consider the following 
three points when analyzing radically nonnormal 
distributions: 1) Type I error rates are fine and do 
not make much difference as it relates to power; 2) 
Researchers are encouraged to use Cohen’s (1988) 
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power tables with no adverse effect; and, 3) A 
study is likely to have more power if a 
nonparametric statistic is employed rather than a 
parametric statistic. 

 This study represents the first longitudinal 
report of discrete mass at zero with gap. Future 
research should investigate other constructs and 
onset variables in order to determine if the 
population distributions behave in a similar or 
dissimilar fashion.  It would also be important to 
gain an understanding of academic data sets in 
which student scores consistently remain at zero 
over time as well as to understand the factors 
associated with migration towards zero. 
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Appendix. Five-year Systematic Review 
 

Information provided from least current to most 
recent: Author/Year, Population, Inclusion 
Variable, DMZ (Discrete Mass at Zero) 
Consideration. 
 

Simons & Thase (1992), 53 patients with 
major depression, Age of onset of first depression, 
No  

Barkley et al.(1992), 61 adolescents with 
ADHD, Age of ADHD onset, No 

Mulhern et al.(1992), 49 long-term 
survivors of childhood leukemia,Age at diagnosis 
Age at testing, No  

Wieczorek & Miller (1992), 156 
convicted-while-intoxicated offenders, Age at first 
drink, No 

Killen et al. (1992), 618 smoking 
cessation participants, Age began smoking, No 

Mueser et al. (1992), Review article, Age 
at first Hospitalization, No 

Burman et al. (1993), Married couples: 17 
physically aggressive 15 verbally aggressive 18 
withdrawing 15 non-distressed, low-conflict 
Physical aggression scores, No 

St. Lawrence (1993), 195 African-
American adolescents, Sexual behavior: Number 
sexual partners & frequency of un- protected sex 
in past 6 months; Condom use during first 
intercourse & frequency of protected & 
unprotected sex in past 6 months, No 

Ludwick-Rosenthal & Neufeld (1993), 72 
first-time cardiac catherization patients, Age at 
first catherization, No  

Farrell & Danish (1993), 1,256 middle 
school Students, Frequency of drug use past 30 
days & frequency of peers offering alcohol & 
drugs past 30 days, Zero was removed from the 
scale and replaced with a “1” = never  
 Darkes & Goldman (1993), 218 male 
undergraduates screened for a sample of70 who 
drank ≥ 6 & ≤40 servings of alcohol/week, 4-week 
retrospective consumption record, 148 non-users 
&extreme drinkers were excluded 

Leaf et al. (1993), 820 records from 466 
female & 361 male,  Retrospective analysis 
included the General Health Questionnaire used to 
detect acute case onset of distress, Zero treated as 
the best possible mental health. Scattergram 
provided 

Thackwray et al. (1993), 65 bulimic 
females in different types of treatment for bulimia 
nervosa, Six-month follow-up of binge eating & 
purging frequency,  15-69% of participants were 
abstinent from binge eating & purging 

Domencio & Windle (1992), 616 female 
adult children of alcoholics and non-alcoholics,
 Number years married Alcohol use past 30 
days Cigarette/marijuana use, No 

Fairburn et al. (1993), 75 bulimic patients, 
Degree of attitudinal disturbance: 0-7, 8-10, & 11-
12, No 

Hughes (1993), Review of pharma- 
cotherapy of smoking cessation, Abstinence rates, 
DMZ distribution included 

Kalichman et al. (1993), 468 males, HIV-
related risk factors, Two risk behaviors moved to 
zero following disclosure at 17 days 

Willett & Singer (1993), Review of 
discrete-time survival analysis as it pertains to 
event occurrence, Onset of : Suicide ideation 
Depression Cocaine relapse,  Authors introduce 
discrete-time survival analysis with real clinical 
data. DMZ distributions included 

Stephens et al. (1994), 161 males & 51 
females seeking treatment for marijuana use, Age 
first marijuana use or age first daily use. Alcohol 
& drug use past 90 days. Marijuana relapse over 
12 months., Included DMZ line graph that plots 
abstinence post-treatment 

Harris et al. (1994), 653 serious criminal 
Offenders, Year of index offense Teen alcohol 
abuse 0(none) Elementary school maladjustment 0 
(never drank), DMZ distributions generated 
using PCL-R scores  

Delucchi (1994), Review of binary 
outcome results, 2-group p values, DMZ 
distributions generated using p values 

Miller-Johnson (1994), 88 children with 
Type II diabetes, Age at Diagnosis, No 

Hiss et al. (1994), 18 participants with 
obsessive-compulsive disorder, Mean age of onset 
of symptoms, No 

Drummond & Glautier (1994), 35 
alcoholic men, Age of first drink. Age first 
problem drinking. Age first morning drinking. Age 
first morning withdrawal. Alcohol consumption 
post follow-up period., No 
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Loeber & Farrington (1994), Review, Age 
of onset. Age at termination. Age at committing 
behavior for the last time., Discussed violations of 
normality. Notes that it is rare to follow subjects > 
1 year. 

Epstein & McCrady (1994), Review & 
Commentary, Age of onset. Degree of sociopathy., 
Authors suggest comparing subjects along a 
continua such as age of onset. 

Ball et al. (1995), 399 cocaine abusers, 
Age at onset of drug abuse. Frequency cocaine use 
past 30 days., No  

St. Lawrence et al. (1995), 246 African 
American adolescents, Age at first intercourse. 
Number of sex partners past 12 months. Alcohol& 
marijuana use past 2 months. Perception of 
personal HIV risk: 0 (no) to 10 (high-risk) scale., 
No  

Talcot et al. (1995), 332 military recruits, 
Number months smoking. Percent smoking per 
day: 0-10, 11-20 & 21+., No 

Simons et al. (1995), 53 outpatients prior 
to cognitive therapy treatment, Age at onset of 
first depression, No  

Curry et al. (1995), 1,137 smokers, Age at 
smoking onset. Longest previous period of 
abstinence., No 

McMillen et al. (1995), 154 low-income 
women who were sexually abused as children, 
Age at first abuse, No 

O’Connor et al. (1996), 516 smoking 
cessation participants, Age of onset of smoking. 
Number of lifetime quit attempts., No  

Pianta et al. (1996), 110 women in second 
trimester of pregnancy, Number of T ≥ 65 
elevations range: 0 (44%) to 7 (5%), No   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Newman et al. (1996), 961, 21-year- olds 
from New Zealand’s Health & Development 
Study(DMHDS), Age of onset of mental disorders, 
Authors did not assess disorders before age 10 

Bartlett et al. (1996), 130 obese women, 
Age of onset of obesity. Age first overweight 
by6.8 kg. Number diets lasting < 3 days past year., 
No 

Gardner et al. (1996), 357 pairs of 
psychiatric Emergency Room Patients, Level of 
seriousness of violence, DMZ distribution 
included. Authors note extreme skew & non- 
normality. 

Basen-Engquist et al. (1996), 5,537 high 
school students, 25 health risk behaviors 
beginning with zero, No 

Ichiyama et al. (1996), 274 men in MSU-
UM Longitudinal Study, Onset of alcohol-related 
difficulties over the life- span, No 

Dobkin et al. (1997), 82 mother-son dyads 
subsampled from 1,037 French-speaking Canadian 
boys. All Fathers were alcoholic, Early-onset of 
substance abuse, No  

Webster-Stratton & Hammond (1997), 97 
children with early-onset conduct problems. 
Parents: 95 mothers & 71 fathers., Age of onset of 
conduct problems., No 

Curran et al. (1997), 363 Hispanic & 
Caucasian adolescents, Individual & peer alcohol 
use, 74 families dropped from study because child 
reported no individual or peer alcohol use  

Grilo et al. (1997), 114 adolescent 
Psychiatric inpatients, Age at first psychiatric 
contact & psychiatric hospitalization; number of 
prior psychiatric hospitalizations, No 

Agras et al. (1997), 93 obese women, Age 
of onset of being overweight and age of onset of 
binge eating, No 
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This paper explores empirically the first two moments of ratio of the partial sum of the first two sample 
eigenvalues to the sum of all eigenvalues when the population eigenvalues of a covariance matrix are all the 
same. Estimation of the first two moments can be practically crucial in assessing non-randomness of observed 
patterns on planar graphical displays based on lower rank approximations of data matrices. For derivation of 
the moments, exact and large sample asymptotic distributions of the sample ratios are reviewed but neither 
can be applicable to derivation of the moments. Therefore, I rely on simulations, where data matrices X with 
order n×m element-wise independent normal distribution with mean 0 and variance σ2 are assumed, that is, 

( )nmN I0X 2,~ σ , and then derive formulas for estimates of means and standard deviations of the sample 
ratios within a range of order of the data matrix. The derivations are based on the biplot graphical diagnostic 
methods proposed by Bradu and Gabriel (1976). 
 
Keywords: Bias, biplot, eigenvalues, multivariate Gaussian; Schönemann-Lingoes-Gower coefficient. 
  
 

Introduction 
 
Lower rank approximations of data matrices X (n 
rows for individuals, m columns for variables) are 
much used in data analysis. The closeness of their 
fit to X is frequently measured by the ratio of the 
sum of the first s (< m) eigenvalues of 22

2
2

1 ,,, slll  
of XTX to the total of all the eigenvalues 

22
2

2
1 ,,, mlll  of XTX, where s is the rank of the 

approximation. In particular, the rank s is usually 
chosen to be 2 for planar graphical displays, by 
which data analysts often want to see if they reveal 
any patterns in population expectations E(X) = Ξ 
and/or covariance structure. 
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T. Hutchens for the manuscript preparation. This 
study was supported in part by NIH grants 
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Accordingly, confirmation of such visual 
assessments is usually based on the quantities of 
the closeness of the planar displays to the data 
matrix measured by ( ) ∑ =

+=
m

i illlr
1

22
2

2
1

2
)2( . 

This closeness coefficient is equal to the 
Schönemann - Lingoes - Gower coefficient 

( ){ } XXXXXX ~~~ 212
)2(

TTtracer =  (Gower 

1971; Lingoes & Schönemann, 1974) as noted by 
Heo (1996), where X~  is the Euclidian minimum 
distance rank 2 approximation of X. 
 It has not been clear, however, how large 
value of 2

)2(r  can play the role of a threshold for 
signaling non-random patterns on the planar 
displays, which are not overwhelmed by 
sampling variations. Furthermore, the threshold 
will depend on the order of data matrices, m and 
n. First, with respect to dependence on m, 2

)2(r  has 
its algebraic minimum 2/m because the sample 
eigenvalues 2 2 2

1 2, , , ml l l  are ordered in a 
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descending manner. Secondly, the larger n, the less 
will be sampling variations of the patterns of 
graphical displays. Therefore, observed patterns on 
graphical displays with 2

)2(r  = 0.45 when m = 5 may 

be less meaningful than those with 2
)2(r  = 0.45 

when m = 30 for the same n ― the former is 
relatively much closer to its minimum. One 
example of the latter case can be found in the biplot 
of n = 100 archetypal patients with m = 30 
psychiatric variables (Strauss et al., 1979; Heo & 
Gabriel, 2001), where five distinctive clusters of 
patients of the same diagnosis within each cluster 
are displayed well enough to convince a data 
analyst that the patterns on the biplot may indeed 
represent patterns of population expectation, 
despite of the moderate 2

)2(r  = 0.45.  
The significance of non-random pattern, 

however, must be inferred based on a sampling 
distribution of 2

)2(r . Specifically, if an observed 2
)2(r  

is above the 95 or 97.5 percentile of the sampling 
distribution, it may indicate that the pattern on 
planar displays may not be random and may be 
revealing patterns of population characteristics. 
Therefore, to provide such thresholds or critical 
values, I attempt to draw the sampling distribution 
of 2

)2(r  under an m-variate null Gasussian model:  
 

( )nmN I0X 2,~ σ .  (1) 
 
In this situation, planar displays of X~  show 
patterns solely due to random noise σ2, not due to 

E(X) = Ξ, and all the eigenvalues of E(XTX), 
22

2
2
1 ,,, mλλλ , are the same as σ2.  

I review what is known about the exact and 
asymptotic distribution of the sample eigenvalues 

22
2

2
1 ,,, slll  of XTX under the null Gaussian 

model (1) and try to derive sampling distributions 
of 2

)2(r  thereof. However, based on this review and 
to my knowledge, currently existing normal 
theories do not seem to be either practical or 
applicable for derivations of the sampling 
distribution. Therefore, relying on computer 
simulations under the null model (1), I attempt to 
derive empirical models for estimates of ( )2

(2)E r  

and ( )2
(2)SD r , the first two moments, through 

assessments of a relative bias β2 = 
( )2

(2) (2 / )E r m  in comparison to the algebraic 

minimum and its SD. These two moments can 
provide basis for normal approximations to the 
sampling distributions and eventually for the 
thresholds, or the critical values. I use biplot for a 
model diagnostic tool as demonstrated in Gabriel 
and Braud (1971). Issues concerning normal 
approximation, practical meaning of non-random 
patters displayed on the planar spaces and a 
justification of the null model (1) are discussed. 

 
Methods 

 
Exact distribution 

When all the population eigenvalues 2
iλ  

are equal, i.e. 22 λλ =i  for all i, the exact joint 

distribution of the sample eigenvalues 2
il  can be 

expressed as (e.g., James, 1964): 
 

( ) ( ) ( )
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where ( )Tmlll 22
1

2 ,,=  and  
 

( ) ( ) ( )( )∏ −−⋅Γ=⋅Γ −
m

mm
m i 2/14/1π . Based on 

this, the exact density of 2
)2(r = ( ) ∑ =

+
m

i illl
1

22
2

2
1  

under the null model, can be obtained by using 
the change of variable technique. Also, 
Krishnaiah and Waikar (1971) studied the exact 
marginal distribution of each individual sample 
eigenvalue, when all the population eigenvalues 
are equal, by applying Lapalce's expansion to the 
Vandermonde determinant ( )∏

<

−
ji

ji ll 22 . 

Nevertheless, whichever way is used for 
calculation of the moments of 2

)2(r  under the Null 
Gaussian model (1), the calculation will be very 
complicated and tedious, even by numerical 
computations. Therefore, application of 
asymptotic or approximation theories might be 
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preferred for a derivation of the sample moments of 
2

)2(r  as follows. 
 
Asymptotic distributions 

Under the assumption of simplicity (or at 
least two different multiplicities) of the population 
eigenvalues, asymptotic (representations for) 
distributions of the sample eigenvalues were 
extensively discussed in the 1960s and 70s (e.g., 
Muirhead, 1978). The joint distributions of sample 
eigenvalues, under that assumption, involve 
hypergeometric functions expressed in integral 
representations. On these integrals are focused the 
approximations, which are basically determined by 
the maximum values of the integrands involving 

‘linkage factors’ of ( ) 122 −
− ji ll . Such 

approximations are, therefore, inapplicable to the 
joint (or marginal) asymptotic behaviors of sample 
eigenvalues when all the population eigenvalues are 
equal. Hence, the derivation of an asymptotic 
distribution of 2

)2(r  under multiplicity from the 
asymptotic joint distribution of sample eigenvalues 
under the simplicity would be misleading. The 
following are such examples. 

An asymptotic distribution of 2
il is 

( ))1(2,~ 422 −nNl iii λλ  (Anderson, 1963) and 

( ) 0, 22 ≈ji llCov  for i ≠ j, provided all eigenvalues 
are distinct. Under the Null Gaussian model (1), it 
might become ( ))1(2,~ 222 −nNli σσ  for all i, 

if the multiplicity of 2
iλ  is ignored, i.e., the fact 

that 22 λλ =i  for all i is ignored. Applying Taylor 

approximation to each 2
il  about each corresponding 

2
iλ : 
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where I{⋅} is an indicator function. Under the Null 
Gaussian model (1), the right hand side can be 
reduced to ( )2 2 2 2 2 2

1 22 2 im l l m l mσ σ+ + − ∑ , 

which is asymptotically Gaussian with mean 2 m  
and variance 34( 2) ( 1)m n m− − . This shows very 

roughly that the distribution of 2
)2(r does not 

depend asymptotically on σ2, as it should not, 
because 2

)2(r  is a studentized ratio. However, the 
asymptotic expectation 2/m is wrong, since 
( )2 2 2

1 2 il l l+ ∑  is greater than 2/m with 

probability one because the sample eigenvalues 2
il  

are ordered in a descending manner.  
Asymptotic distributions of functions of 

sample eigenvalues were investigated by several 
authors (e.g., Fang & Krishiniah, 1982). 
Fujikoshi (1980), for example, showed that the 
distribution functions of functions of sample 
eigenvalues can be expanded up to the order of 

21−n , when certain assumptions (including the 
simplicity of the population eigenvalues) are met. 
Based on his approximation for the multivariate 
Gaussian X, E( 2

)2(r ) ≈ 2
2R  + a/n and Var( 2

)2(r ) = 

ς2/n, where ∑+= 22
2

2
1

2
2 )( iR λλλ , a = 

22122 )( jiji jiiT λλλλ∑ ≠
−−  + ∑ 4

iiiT λ , 

{ } ∑−≤= 22
22 ii RiIT λ , 

∑+−= 2)( ijiij TTT λ ,  and ς2 = ∑ 422 iiT λ . 
Then, apply Fujikoshi's approximations to the set 
of population eigenvalues such that 

ελλ += +
2

1
2

ii , for i = 1,…, m−1, and 2
mλ =1, 

where the difference ε of the consecutive 
population eigenvalues is very small. Numerical 
evaluations of the expectation of 2

)2(r / 2
2R  and its 

standard deviation are tabulated in Table 1 for ε = 
0.001. It is clear from this table that the 
approximation formulae do not work for these 
settings of population eigenvalues. 
 It follows that either exact or asymptotic 
normal theory does not seem to be applicable to 
the case of equal eigenvalues. This inapplicability 
leads us to simulation-based studies, which are 
described in the following, for empirical 
exploration of the behavior of the expectation and 
SD of 2

)2(r  under the null Gaussian model (1). 
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Results 
 

Bias, standard deviation, and simulation fit 
The n-by-m data matrices X with 3 ≤ m ≤ 

30 and 30 ≤ n ≤ 1000 (m ≤ n) under the null 
Gaussian model (1) are randomly generated for 
1000 times for each combination of n and m, and 
then 2

)2(r  is computed for each data matrix X. 
 
Table 1: Asymptotic expectation and (SD) of 

2
)2(r / 2

2R : ε = 0.001. 
 M      

n 3 5 10 15 20 30 
30 26.0 

(0.1
1) 

49.7 
(0.1
4) 

77.1 
(0.1
7) 

92.3 
(0.1
7) 

102.
9 

(0.1
7) 

118.
1 

(0.1
8) 

60 13.5 
(0.0
7) 

25.3 
(0.1
0) 

39.1 
(0.1
2) 

46.7 
(0.1
2) 

52.0 
(0.1
2) 

59.6 
(0.1
3) 

90 9.3 
(0.0
6) 

17.2 
(0.0
8) 

26.4 
(0.0
9) 

31.4 
(0.1
0) 

35.0 
(0.1
0) 

40.1 
(0.1
0) 

120 7.3 
(0.0
5) 

13.2 
(0.0
7) 

20.0 
(0.0
8) 

23.8 
(0.0
9) 

26.5 
(0.0
9) 

30.3 
(0.0
9) 

150 6.0 
(0.0
5) 

10.7 
(0.0
6) 

16.3 
(0.0
7) 

19.3 
(0.0
8) 

21.4 
(0.0
8) 

24.4 
(0.0
8) 

500 2.5 
(0.0
3) 

3.9 
(0.0
4) 

5.6 
(0.0
4) 

6.5 
(0.0
4) 

7.1 
(0.0
4) 

8.0 
(0.0
4) 

100
0 

1.8 
(0.0
2) 

2.5 
(0.0
2) 

3.3 
(0.0
3) 

3.7 
(0.0
3) 

4.1 
(0.0
3) 

4.5 
(0.0
3) 

 
 

The sample bias B2 of 2
)2(r  is calculated for 

each data matrix X of the same order by the ratio to 
its absolute lower bound 2/m, that is, 

2 2
(2) 2B mr= . Table 2 contains averages of B2 and 

standard deviations SD(B2) from 1,000 simulations 
for each combination of m and n. 

 
 
 
 

Table 2: Averages and (SD) of B2 from 1000 
simulations for each combination of m and n. 
 M      

n 3 5 10 15 20 30 
30 1.19 

(0.0
6) 

1.46 
(0.0
9) 

1.96 
(0.1
3) 

2.38 
(0.1
5) 

2.75 
(0.1
6) 

3.43 
(0.1
8) 

60 1.13 
(0.0
4) 

1.32 
(0.0
7) 

1.65 
(0.0
9) 

1.92 
(0.1
0) 

2.16 
(0.1
0) 

2.58 
(0.1
2) 

90 1.11 
(0.0
4) 

1.26 
(0.0
5) 

1.52 
(0.0
7) 

1.73 
(0.0
8) 

1.92 
(0.0
8) 

2.23 
(0.0
8) 

120 1.09 
(0.0
3) 

1.22 
(0.0
5) 

1.45 
(0.0
6) 

1.62 
(0.0
7) 

1.78 
(0.0
7) 

2.04 
(0.0
7) 

150 1.08 
(0.0
3) 

1.20 
(0.0
4) 

1.40 
(0.0
5) 

1.55 
(0.0
6) 

1.68 
(0.0
6) 

1.92 
(0.0
6) 

500 1.05 
(0.0
2) 

1.11 
(0.0
2) 

1.21 
(0.0
3) 

1.29 
(0.0
3) 

1.36 
(0.0
3) 

1.47 
(0.0
3) 

100
0

1.03 
(0.0
1) 

1.08 
(0.0
2) 

1.15 
(0.0
2) 

1.20 
(0.0
2) 

1.25 
(0.0
2) 

1.32 
(0.0
2) 

 
It shows that B2 seems to converge 

slowly to 1 as n increases and that the bias 
depends on the order of X; it goes down with n 
but up with m. 
 
Fit of bias 

I first fit averages of B2, an estimate of 
the expected bias β2 = ( )2

(2) (2 / )E r m  by taking 

n and m as factor levels. The biplot is used for a 
model diagnostic tool (Bradu & Gabriel, 1978). 
The biplot of the data matrix of the averages of B2 
in Table 2 minus the grand mean of the averages 
is displayed in Figure 1.  
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Figure 1: A biplot of β2 with rank 2 goodness              
of fit greater than 0.99. 

 
This figure shows that the data matrix of B2 

in Table 2 is virtually of rank 2 based on the 
goodness of fit greater than 0.99. Moreover, it is 
immediately seen that the sets of column and row 
markers are both collinear. This suggests that the 
data matrix must be closely fitted by means of 
Tukey's Degree of Freedom For Non-Additivity 
model (DOFNA; Tukey, 1949), i.e.,  

 

ijjijiij edada ++++= τδαµβ 2        (2) 
 

subject to ∑ ∑ == 0ji da  and 

∑ ∑ == 122
ji da . The subscripts i and j 

represent the levels of n and m, respectively. (Still, 
a rank 1 multiplicative model may be an alternative 
choice. However, a biplot of the data matrix 
without centering on the grand mean, though not 
presented herein, shows that the multiplicative 
model does not fit well.) 

A summary graphic of the DOFNA model 
fit is shown in Figure 2. The residual sum of 
squares is 0.0037 with df 29, which means that the 
fit is almost perfect. In short, Figure 2 shows that: 
(a) There exists a clear interaction between row and 
column effects, which means that the coefficient τ 
is significantly different from 0: τ̂ =1.84, p<0.001; 
that is, the magnitude of the bias increases as m for 
a fixed n but the rate of increment is not constant 
over n; (b) β2 seems to converge to 1 as n increases, 
as can be seen in Table 2; (c) Roughly, the effect of 

the number of columns is close to linear but that 
of the number of rows is not; the intervals 
between consecutive row effects are not constant 
when the magnitude of the number of rows is 
taken into consideration. 
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Figure 2: DOFNA fit to β2 with residual sum of           
squares 0.0037. 

 
It should be recalled, however, that I am 

trying to formulate a function, which relates this 
model's parameters to the values (not the factor 
levels) of n and m. For this purpose, on the basis 
of plots of column effects versus m and row 
effects versus n, we modeled row and column 
effects as αai = γ3/ n  and δdj = γ1m + γ2m2, 
respectively. In light of the DOFNA model (2), 
this yields the following model: 

 
( )2 2 2

1 2 3 4 5m m m m n eβ η γ γ γ γ γ= + + + + + +

 
 
The least-square fit with significant (p-values 
<0.001) coefficients results in the following: 
 

( )
2

2

ˆ 1.0301 0.0068

0.8319 0.6652 0.0060

m

m m n

β = −

+ − + −
 

                    (3)
     
The residual sum of squares of this fit is 0.036 
with df 37 and the multiple R2 is greater than 
0.99. All of the fitted values of β2 are greater than 
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1 over the ranges of m and n considered: 30 ≤ n ≤ 
1000 and 3 ≤ m ≤ 30. 
 
Fit of standard deviation 

The biplot in Figure 3 with goodness of fit 
greater than 0.99 shows that the data matrix of 
SD(B2) in Table 2 is also virtually of rank 2 and that 
the column markers are collinear. On the basis of 
Bradu and Gabriel (1976), the data matrix of 
SD(B2) must be closely fitted by Mandel's row 
regression model (Mandel, 1961), that is, 

 
( ) ijjiji edcdaBSD ++++= θδαµ2  

 
subject to ∑ ∑∑ === 0jii dca  and 

∑ ∑∑ === 1222
jii dca . The resulting residual 

sum of squares is 0.89×10−4 with df 24, which 
shows that this is an almost perfect fit.  
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Figure 3: A biplot of SD(B2) with rank 2 goodness          
 of fit greater than 0.99. 
 

The biplot in Figure 3, however, shows that 
the row markers are also virtually collinear. 
Furthermore, it was observed, thought not 
presented herein, that the ai’s and ci’s are very 
similar up to a scale factor. These strongly suggest 
that Tukey's DOFNA model in a form of (2) can be 
an alternative fit to the data matrix of SD(B2) in 
Table 2. The DOFNA fit results in a residual sum 
of squares of 1.75×10−4 with df 29. A summary 
graphic of this DOFNA fit is presented in Figure 4.  
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Figure 4: DOFNA fit to SD(B2) with                 
 residual sum of squares 0.00018. 

 
The structural relationship between 

SD(B2) and the order of X is clear; SD(B2) seems 
to vanish slowly as n increases, which implies β2 
converges in probability.  Mandel's model is 
significantly better than the DOFNA model in 
fitting SD(B2) data matrix with an approximated 
F ratio 4.65 and p-value 0.004. This DOFNA 
model, however, is simpler and easy to see 
graphically as shown in Figure 4, and its fit is 
also nearly perfect, which I chose for a functional 
model construction. Again, based on plots of 
column effects versus m and row effects versus 
m, I modeled column and row effects as follows: 

1 logjd mδ γ=  and 2ia nα γ= , respectively. 
It follows that 

 
( )2

1 2 3( ) log logSD B m m n eη γ γ γ= + + + +
 
(Nevertheless, Mandel's model yields the same 
form of this model.) The least-square fit with 
significant (p-values <0.001) coefficients results 
in the following: 
 

2( ) 0.0128 0.0094 log

0.3123log

SD B m

m n

= −

+
       

               (4) 
     
The residual sum of squares of this fit is 
5.98×10−4 with df 39 and the multiple R2 is 
greater than 0.99. All of the fitted values of 
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SD(B2) are positive over the ranges of m and n 
considered: 30 ≤ n ≤ 1000 and 3 ≤ m ≤ 30. 
 

Discussion 
 
Regarding features of the distribution of 2

)2(r  under 
the null Gaussian model (1), I observe from the 
simulation that it is slightly skewed to the right for 
almost all combinations of m and n, but particulars 
of the asymptotic distributions are unknown. It 
follows that normal approximation of the 
distribution of 2

)2(r  under the null Gaussian model 
with the expectation and standard deviation 
obtained from the formulae (3) and (4) is rather 
crude. Hypothesis testing based on this normal 
approximation would, therefore, be conservative. 
One might consider power transformations of 2

)2(r  
to have better approximations to normal 
distributions, or application of “delta” method to 
the first two moments.  

Nevertheless, the crude normal 
approximation provides an idea of what the 
distribution of 2

)2(r  might be under the null model. 
For example, to see how many multiples of SD(B2) 
below the mean ensures B2 to be greater than 1, I 
calculate a multiple c from the fitted β2 and SD(B2) 
in the following way: 2 2( 1) ( )c SD Bβ= − . From 
formulae (3) and (4), the estimated minimum c over 
the considered ranges is 3.26 when m = 3 and n = 
30. This confirms that 2

)2(r  is distributed well above 
the algebraic minimum of 2/m. Moreover, the 
multiple c increases with m, implying that farther 
above 2/m 2

)2(r  is distributed for bigger m. Indeed, 
as calculated based on the formulae (3) and (4), the 
percentiles of 2

)2(r =0.45 are >99% and 1.4% when 
m are 30 and 5, respectively, for the same n=100. 
This confirms that observed patterns on graphical 
displays with 2

)2(r  = 0.45 when m = 5 may be less 

meaningful than those with 2
)2(r  = 0.45 when m = 

30 for the same n, as stated in the introduction 
section. 

It has been, however, suspected that 2
)2(r  

tends to locate between 2
)2(ρ  and the absolute 

minimum 2/m, where 2
)2(ρ  is the “actual” 

goodness of fit of X~  to the expectation Ξ, that 

is ( ){ }1 22
(2)

T Ttraceρ = ΞΞ ΞX X X , which 

should be a more appropriate measure for the 
“usefulness” of the lower rank approximation 
than the measure 2

)2(r  of the closeness of X~  to 
the data X themselves, because patterns of the 
population expectations are to be inferred rather 
than patterns of data matrix. A simulation study 
of approximations using data generated under the 
m-variate Gaussian model ( )2~ , nmN σΞX I  

with affine rank 2 expectation matrix Ξ has 
shown that 2

)2(r  indeed underestimates 2
)2(ρ  for 

many situations (Heo and Gabriel, 2001). Thus, 
non-significant 2

)2(r  (less than 95- or 97.5%-tiles 
of the “null” sampling distribution) implies that 
the noise σ is much larger relative to the 
magnitude of Ξ ― large enough so that σΞ is 
approximately 0. This is the situation where the 
limiting distribution of ( )2~ , nmN σΞX I  can be 

approximated by ( )2~ 0, nmN σX I  because Ξ 

reaches its zero limit relative to σ. That is, 
although it maintains all the time its rank, the 
expectation matrix Ξ tends to zero as the 
magnitude of σ increases, and at the limit it 
would not have any rank. Therefore, the null 
distribution ( )2~ 0, nmN σX I  is valid for 

inferences of the critical values for significant 
2

)2(r , which indicates that a planar display reveals 

patterns of population expectation of Ξ with a 
higher 2

)2(ρ . 
In sum, the present study shows that 

there are clear structural patterns of expectation 
and variance of 2

)2(r  under the null Gaussian 
model (1) as the order of data matrix X varies. 
Construction of formulae for the expectations and 
standard deviations is elaborated through model 
diagnosis by use of the biplot. Similar application 
of the biplot diagnostic method can be extended 
to exploration of distributions of other ratios of 
partial sums of sample eigenvalues from data 
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matrices with bigger orders. The simulation-based 
approach employed in this paper seems appealing, 
since any large sample asymptotic theory does not 
seem to be applicable when all the population 
eigenvalues are the same. Therefore, the estimated 
first two moments of 2

)2(r  may be useful in judging 
non-randomness of patterns of population 
expectations of data matrices displayed in a 2-
dimensional space. 
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Double median ranked set sample (DMRSS) and its properties for estimating the population mean, when the 
underlying distribution is assumed to be symmetric about its mean, are introduced. Also, the performance of 
DMRSS with respect to other ranked set samples and double ranked set samples, for estimating the 
population mean and ratio, is considered. Real data that consist of heights and diameters of 399 trees are used 
to illustrate the procedure. The analysis and simulation indicate that using DMRSS for estimating the 
population mean is more efficient than using the other ranked samples and double ranked samples schemes 
except in case of uniform distribution. Also, using double sampling schemes substantially increase the relative 
efficiency of ratio estimators relative to their counterpart schemes of one stage samples. Moreover, DMRSS is 
superior to other double sampling schemes for ratio estimation. 
 
Key words: Double extreme ranked set sample; double median ranked set sample, ratio estimation. 
 
 

Introduction 
 
In many agricultural and environmental studies 
and recently in human populations, it is common 
for quantification of a sampling unit to be costly as 
compared with the physical acquisition of the unit. 
For example, level of bilirubin in the blood of 
infants can be ranked visually by observing: a) 
color of the face, b) color of the chest, c) color of 
lower part of the body, & d) color of terminal parts 
of the whole body. Then, as the yellowish goes 
from i to iv, the level of bilirubin in the blood goes 
higher (Samawi & Al-Sakeer, 2001). In such 
circumstances, considerable cost savings can be 
achieved if the number of quantification is only a 
small fraction of the number of available units but 
all units contribute to the information content of 
the quantification. 
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 Ranked set sampling (RSS) is considered 
to be a new method of sampling compared with 
other sampling methods that can achieve this goal. 
RSS was first introduced by McIntyre (1952). The 
use of RSS is highly powerful and much superior 
to the standard simple random sampling (SRS) for 
estimating some of the population parameters. 
 As a variation of RSS Samawi et al. 
(1996) and Muttlak (1997) investigated extreme 
ranked set sample (ERSS) and median ranked set 
sample (MRSS) respectively. Samawi and Muttlak 
(1996 & 2001) used RSS and MRSS to improve 
the performance of the ratio estimator. Also, 
Samawi (2001) suggested the double extreme 
ranked set sampling (DERSS). They showed that 
ERSS, MRSS and DERSS are more practical than 
RSS and more efficient at least than SRS for 
estimating the population mean. Moreover, Al-
Saleh and Al-Kadiri (2000) showed that the 
efficiency of estimating the population mean could 
be improved even more by double ranked set 
sampling technique (DRSS). Also, they proved 
that ranking in the second stage is easier than in 
the first stage.  
 In this article, DMRSS is introduced. The 
properties of DMRSS for estimating the 
population mean, when the underlying distribution 
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is assumed to be symmetric about its mean, are 
discussed. Also, the performance of DMRSS with 
respect to the other ranked set samples and double 
ranked set samples, for estimating the population 
mean and ratio, is considered.  
 In Section 2 samples notations and 
definition and some basic results are introduced . 
DMRSS scheme and properties are introduced in 
Section 3. Also, its performance with other 
sampling schemes will be compared for estimating 
the population mean. In Section 4, the 
performance of different double ranked samples 
schemes will be compared with their counterpart 
one stage ranked samples for ratio estimation 
based on the relative efficiency. Illustration of the 
procedure using real data set with final comments 
and conclusions is discussed in Section 5. 
 
Sample Notations And Definitions With Some 
Useful Results 
One Stage Sampling 
 
Univariate population 
 For any of RSS, ERSS and MRSS 
schemes, the procedure can be described by 
selecting r random sets each of size r from the 
target population. In the most practical situations, 
the size r will be 2, 3 or 4. Rank each set by a 
suitable method of ranking like prior information, 
visual inspection or by the experimenter. In 
sampling notation this implies: 

11 12 1r

21 22 2r

r1 r2 rr

1(1) 1(2) 1(r)

2(1) 2(2) 2(r)

r(1) r(2) r(r)

X , X , , X
X , X , , X after  ranking

X , X , , X

X , X , , X
X , X , , X

X , X , , X

 
 
  →
 
 
 
 
 
 
 
 
  
         (2.1) 
where Xji denotes the i-th observation in the j-th 
set and Xj(i) the i-th ordered statistic in the j-th 
set.  
1) If only )()2(2)1(1 ,...,, rrXXX , quantified by 

obtaining the element with smallest rank from the 

first set, the second smallest from the second set, 
and so on until the largest unit from the r-th set is 
measured. Then, this represents one cycle of RSS. 
We can repeat the whole procedure m times to get 
a RSS of size n = mr. (See Takahasi and 
Wakimoto, 1968.) 
 
2) Similarly, as in Samawi et al. (1996), we have 
two cases: In case of r is even, and if only RSS, 

( ) ( ) ( ) ( )XXXX krrkrkrk ,,,, 11211 −… , 
k=1,2,…,m, quantified, then this will denote the 
ERSSE . In case of r is odd, and if only 

( ) ( ) ( ) ( )XXXX krkrrkrk r
2

1,,,, 1211 +−… , 

k=1,2,…,m, quantified, then this will denote the 
ERSSO. 
 
3) Again, similar to Muttlak (1997), we have two 
cases: In case of r is odd, and if only 

, ..., m, , kX,  ,X krrkr 21
2

1
2

11 =





 +





 + … , 

quantified, then this will denote the MRSSO. In 
case of r is even, select for measurement from the 

first 
2
r  samples the ( )

2
r -th smallest unit and from 

the last 
2
r

 samples select the 





 +1

2
r

-th smallest 

unit. This will be denoted by MRSSE (i.e.  
 

( ) ( ) ( )
( )

r r r r r1 k k 1 1 k2 2 2 2 2

rr 1 k2

 , , , ,X X X

, , k 1,  2, ..., mX

+ +

+ =

…

…
). 

 
For bivariate population 
 Samawi and Muttluk (1996) modified the 
above procedure in case of bivariate distributions 
to estimate the population ratio. The procedure is 
described as follows: 
 First choose r2 independent bivariate 
elements from a population, with bivariate 
distribution function F(x, y).  Rank each set with 
respect to one of the variables Y or X. Suppose 
ranking is on variable X. Apply the same 
procedures as in case of univariate population but 
for each measured unit from the X’s, the 
associated unit from the Y’s is measured too. This 
may be repeated m times to get a bivariate sample 
of size n = rm. 
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In sample notation: 
1) The sample { ( ) [ ]( )YX kiikii , , i=1,2,…,r, 
k=1,2,…,m} will denote the bivariate RSS. 
 
2) The sample, 

( ) ( )

( ) ( )

1[1]k 2 r k 2[ r ]k1 1 k

r 1[1]k r[ r ]kr 1 1 k r r k

, ), ( , ),{(X Y X Y
 , , ), , )}(X (XY Y−−…

, 

 
 k=1,2,…,m, will denote the bivariate ERSSE and     

 
( ) ( )

( ) ( )
2 r k1[1]k 2[r]k1 1 k

r 1r 1r 1 r k r k r kr -1[r]k 2 2

, Y ), ( , Y ),{(X X
 , ( , Y ), ( ,  )}X X Y + +−   
…

, 

 
k=1,2,…,m, will denote the bivariate ERSSO. 

1) Similarly, 

( )( )r 1 r 1i k i k2 2
, : i 1, 2 , ,X Y

r a n d k 1, 2 , ,m

+ + 
  

 = 
 
 = 

…

…
 

2)  will denote the bivariate MRSSO 
and  

 

( )( ) ( )( )
( )( )

r r r r r r1  k 1  k k  k2 2 2 2 2 2

r r r r1 1  k 1 12 2 2 2

,  , , ,X Y X Y

, ,X Y

   
      

 + + + +  

…

( ) [ ]( )Y,X, rrrr 1
2

1
2

, ++… , k=1,2, …, m will denote 

the bivariate MRSSE. 
 
Double Ranked Samples (Two Stage Sampling) 
 
1) Al-Saleh and Al-Kadiri (2000) introduced 
DRSS procedure as follows: 
 

1. Identify r3 elements from the target 
population and divide these elements 
randomly into r sets each of size r2 
elements.  

 2. Use the usual RSS procedure on each 
 set to obtain r RSS each of size r.  
 3. Employ again the RSS procedure in 
 Step 2, to obtain the DRSS of size r.  
 4. We may repeat steps 1-3 m times to 
 obtain a sample of size n = rm.  

  
 In sampling notations, after ranking each 
sample separately in each subset, we get:  
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,          (2.2) 

k=1,2,…,m , where ( )
)(l
kiiX is the i-th ordered 

observation in the l-th set in the i-th sample in the 
k-th cycle.  Use RSS scheme on each subset 
separately, we get  

( )
( )

( )
( )

( )
( ){ }

( )
( )

( )
( )

( )
( ){ }

1 1 1
1k 1 1 k 2 2 k r r k

r r r
r k 1 1 k 2 2 k r r k

, , , ,A X X X

 , ,  A X X X

=

=

… …

…
. 

 Then in the second stage, let ( )W kii =i-th 
smallest observation in Aik , then { ( )W kii , 
i=1,2,…,r, k=1,2,…,m} will denote the DRSS. 
Now let ( ) ( )krk WW ,...,1 , k=1, 2, …., m, be a DRSS, 

with mean and variance of ( )kiW are ( )
**
iµ  and 

( )
2**

iσ , respectively. Al-Saleh and Al-Kadiri (2000) 

also showed that:  

  ( )
**

1

1
i

r

ir
µµ ∑

=
=   and 

( ) ( ) 



 −+= ∑∑

==

2**

1

2**

1

2 )(1 µµσσ i

r

i
i

r

ir
   

 

where µ and 2σ  are the mean and the variance of 
the population, respectively. Also, it was shown 
that ranking in the second stage is easier than in 
the first stage. 
 
2) DERSS is an extension to ERSS procedure by 
Samawi (2001). The procedure is just similar to 
that for DRSS, but taking ERSS instead of RSS in 
the first and in the second stage. Implies that 
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( ) ( ) ( ) ( ) } m ...., 2, 1,k , ..., , , ,{ 13211 =krrkkrk WWWW d
enotes DERSSE. The case when r is odd is similar. 
For more about RSS see for example Kaur et al., 
(1995) and Patil et al. (1999).  
 
Double Median Ranked Set Sample 
 In this Section a modification to MRSS, 
namely double median ranked set sample 
(DMRSS) is introduced. The properties of this 
scheme for estimating the population mean, which 
is considered to be finite, is discussed when the 
underlying distribution function is assumed to be 
symmetric. Also, some numerical and theoretical 
comparisons with SRS, RSS, MRSS, ERSS, 
DERSS and DRSS are included. 
 
Sample Notation and Definitions 
 For each cycle k=1,2,…,m (m= number of 
cycles), assume a simple random sample, of size 
r3, is selected from a target population with c.d.f. 
F(x) and p.d.f. f(x), where F(x) is assumed to be 
symmetric and absolutely continuous, with mean µ 
and variance σ2. Suppose we divided the sample 
independently into r sets of data where each set 
contains r samples, each of size r. Two cases are 
considered:  
 
Case 1: From (2.2) and when r is odd, for the k-th 
cycle, get r2 ranked samples as in (2.2): 

Take the median ( )
( )j

kri
X

2
1+ from each sample in 

each set, then the following sets are resulted: A1k= 

{ ( )
( )1

2
11 krX + , ( )

( )1
k

2
1r2

X + , ..., ( )
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2
1 krr
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2
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11 + , ( )
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krX
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12 + , ..., ( )
( )r

krr
X

2
1+ }. 

These sets are the first stage MRSS samples. The 
second stage MRSS or double MRSS is the set of 
medians of A1k, A2k, …, Ark. Define ( )krW

2
11 +  = 

med(A1k), ( )krW
2

12 + = med(A2k), …, ( )krr
W

2
1+ = 

med(Ark), then the sample  { ( )krW
2

11 + , ( )krW
2

12 + , …, 

( )krr
W

2
1+ }, k=1,2,…,m is denoted by DMRSSO. 

The sample mean using DMRSSO is given by  

                    ( )∑∑=
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   (3.1)  
 
Case 2: When r is even, for the k-th cycle, after 
ranking each sample in each set, as in Case 1, 
divide the r sets in (2.2) in half to two independent 

sets. From the first 
2
r  sets take the (

2
r )-th 

smallest unit from each sample and from the last 

2
r  sets take the (

2
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sample, that is, we will get the following sets: 
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k=1,2,…, m. This is the first stage. Again from 

each Aik take the ( 2
r

)-th smallest units, while 

from each Bik take the ( 2
r

+1)-th smallest unit as 

follows: th-
2

 the
2







=








rW
kri

 ordered statistic 

from Aik, i=1, 2,… , 2
r

, k= 1, 2, …, m  and 

th-1
2

 the
1

2





 +=






 +

rW
kri

 ordered  statistic from 

Bik, i=1, 2, … , 2
r

, k= 1,2,…,m. Then the resulted 
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sample 
( ) ( ) ( )
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r r r r1 k 2 k k
2 2 2 2

r r r r1 1 k 2 1 k 1 k2 2 2 2
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k=1,2,…,m denotes DMRSSE. The sample mean 
using DMRSSE is given by 
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                   (3.2) 
 To study the properties of DMRSSO and 
DMRSSE, next we derive the distribution 
functions of ( )

2
1+rW , ( ) ( )1

22
and 

+rr W W  respectively 

and some of their properties.  
 
Distribution Function and Properties of DMRSS 
Case 1: When r is odd. To find the distribution of 

( )kri
W

2
1+ , i=1,2, …, r say ( )( )wG r

2
1+ , first the 

distribution of ( )
( )j
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2
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(see Arnold, et al. 1992). Let u = F(t), then 
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 which is the usual incomplete beta function. 
Hence, ( )

( )j
krX

2
11 + , ( )
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2
12 + , …, ( )
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krr

X
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independent and identically distributed (i.i.d.) with 
incomplete beta ( )2
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xFI  distribution. Now 
from the definition of DMRSSO, the p.d.f. of 
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Note that, ( ) ( ) ( )  ,, ,

2
1

2
12

2
11 krrkrkr WWW +++ … , k=1 ,2 

,…, m are i.i.d. with the (3.6 ) distribution 
function. 
 
Case 2: Distribution function of ( )

2
ri

W  and ( )1
2
+ri

W , 

i=1, 2,  …, 
2
r

 when r is even.  

Recall the assumption that the MRSS is based on a 
simple random sample of size r3 with the 
symmetric and i.i.d.  distribution function F(x). 
 
Distribution function of ( )

2
ri

W  

Using the same steps as in case 1, the p.d.f. and 

c.d.f. of 
kri

W
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respectively  
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 Note that, the ( )kri
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2, …, m are i.i.d. with (3.7) distribution function. 
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 Hence, 
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are i.i.d. with the distribution function as in (3.10). 
However, 
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identically distributed. 
 
DMRSS for Estimating the Population Mean 
 The following results are stated and 
proved in the Appendix. Using DMRSS when the 
underlying distribution is assumed to be 
symmetric.   ODMRSSW EDMRSSW  and  are 
unbiased estimators for µ, and 

( ) ( )
n

     
2σ≤≤ XW MRSSDMRSS

VarVar , where 
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 (see the Appendix for Theorem 1, Lemma 1 and 
Theorem 2. 
 
Simulation Study 
 Based on 5000 replication, a computer 
simulation is conducted to study the behavior of 
the efficiency of the sample mean using SRS, 
MRSS, RSS, ERSS, DERSS and DRSS with 
respect to DMRSS. Random observations are 
generated from (1) standard normal distribution 
(2) Logistic distribution with α =2, β=1 and (3) 
uniform distribution with θ1 =0, θ2=4. The 
performance of the samples means for r=4,5,6 
and7 and m=4 and 6 are investigated.  
 
Results of simulation study 
 The results of these simulations are 
summarized by the relative efficiency ( the ratio of 
the variances) of the estimators of the mean. The 
simulation results are given in Table 3.1.  
 Table 3.1 shows that estimating the 
population mean using DMRSS is substantially 
more efficient than SRS, MRSS, ERSS and RSS. 
Comparing the sample mean using MRSS with the 
sample mean using DMRSS, our simulation 
confirms the results of Theorem 3.2 for the three 
distributions. Comparing the efficiency for 
estimating the population mean using DMRSS 
relative to DERSS, there is a notable difference 
between them according to the distributions. The 
best performance was in case of logistic 
distribution. In normal distribution, the relative 
efficiency was slightly lower than in logistic 
distribution.  
 Clearly in case of uniform distribution, 
estimating the population mean using DERSS is 
more efficient than using DMRSS. Also, the 
population mean estimator using DMRSS is more 
efficient than the population mean estimator using 
DRSS, when the underlying distribution is 
assumed to be symmetric. 
 Regarding the sample size r, the relative 
efficiency of the population mean estimators, 
using   DMRSS  with  respect  to  any  of the other  

Table 3.1: The efficiency of the mean estimators 
using DMRSS relative to the others 
m r SRS MRSS ERSS RSS DERSS DRSS 
Normal(2,1) 

4 7.51 2.74 3.56 3.13 2.71 1.99 
5 11.83 3.49 5.20 4.53 3.69 2.81 
6 16.41 4.16 6.73 5.21 4.59 3.01 

 
4 

7 23.36 4.88 8.32 6.34 5.98 3.59 
4 7.28 2.69 3.67 3.18 2.71 2.01 
5 12.42 3.66 5.26 4.67 3.83 2.81 
6 15.85 3.82 6.86 4.83 4.45 2.81 

 
6 

7 22.96 4.93 8.54 6.65 6.13 3.80 
Logistic (2,1) 

4 8.53 2.57 5.20 3.79 4.54 2.80 
5 14.63 3.61 7.70 6.06 7.00 4.08 
6 19.38 4.11 10.74 6.54 10.25 4.35 

 
4 

7 29.47 4.81 14.74 8.79 13.95 5.43 
4 8.50 2.77 5.11 3.89 4.61 2.79 
5 15.03 3.77 7.28 6.13 6.90 4.07 
6 19.85 3.83 11.68 6.29 9.84 4.11 

 
6 

7 29.86 4.95 14.06 8.88 13.26 5.62 
Uniform(0,4) 

4 4.35 2.17 1.44 1.83 0.52 1.00 
5 6.82 2.97 1.89 2.29 0.81 1.21 
6 8.95 3.34 1.70 2.58 0.26 1.27 

 

7 11.75 4.00 2.10 3.10 0.68 1.35 
4 4.46 2.20 1.45 1.78 0.50 1.04 
5 7.45 3.11 1.94 2.39 0.87 1.25 
6 8.99 3.28 1.60 2.50 0.27 1.27 

 

7 18.19 4.40 1.75 3.42 0.16 1.46 
 
previous sampling techniques, increases as r 
increases. While considering the cycle size m, the 
relative efficiency for the sample mean using 
DMRSS relative to the other sampling schemes is 
not affected by the value of m. 
 
Ratio Estimators 
 Frequently the quantity that is to be 
estimated from a bivariate random sample is the 
ratio of two means of two correlated variables, say 
X and Y, which both vary from unit to unit. For 
example, in a household survey, the average 
expenditure on cosmetics per adult female, and the 
average number of hours per week spent watching 
television for child aged 10 to 15. 
 Examples of this kind occur frequently 
when the sampling unit (the household) comprises 
a group or cluster of elements and our interest is in 
the population mean per element. Also, the ratio 
estimation method is used to obtain increased 
precision of estimating the population mean or 
total by taking advantage of the correlation 
between an auxiliary variable X and the variable 
of interest Y. In this paper, we assume that the 
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[ ]∑ ∑=
i k

kiYrm
Y 1

bivariate random variable (X,Y) has symmetric 
marginal distributions. 
 
Ratio Estimator Using SRS 
 Let the bivariate random variable (X,Y) 
has c.d.f. F(x,y) with means µµ y and x ,variances 

σσ 22   and  yx , and correlation coefficient ρ, then 

x

yR
µ
µ

=  will denote the population ratio. Using a 

simple bivariate random sample from F(x, y), the 
estimator of R is given by: 

                         
X
YRSRS =                               

(4.1) 
where YX   and   are the means of X and Y 
respectively. 
 Hansen et al.(1953) showed that the 

variance of SRSR  can be approximated by 
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Ratio Estimator Using RSS 
 Samawi and Muttlak (1996) showed that 
the ratio estimator using RSS when ranking is on 

the variable X, is 
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where xixT i µµ −= )()( , yiyiyT µµ −= ][][  and    

))(( ][)(][)( yiyxixiyixT µµµµ −−= . 
 As demonstrated by Samawi and Muttluk 
(1996), that ranking on X is more efficient than 
ranking on Y in ratio estimation in terms of 
variance, therefore we introduce only the case 
where ranking on the variable X is assumed to be 
without errors. In the next subsections, we will 
introduced and study the performance of ratio 
estimators using the double ranked samples 
discussed in the pervious sections. 
 
Ratio Estimation Using DRSS 
 Using the notation of Section 2.3, the 
second stage a subsample of size n=rm, 

( ) },,2,1 , ,,2,1 ,{ mkriW kii …… ==  is selected. 

Also, in the second stage, for each ( )kiiW  measure 

(quantify) the associated value of the random 
variable Y. The bivariate DRSS 

( ) [ ]( ){ }mkri, YW kiikii ,...,2,1 ,,...,2,1 : ==  is 

measured, where ( )kiiW  as defined above, and 

[ ]kiiY  is the corresponding value of Y obtained 

from the i-th RSS sample in the k-th cycle. 
Now, let YW yx == ****   and µµ , 

 
  
 

 

where ( )∑ ∑=
i k

kiWrm
W 1

, and then the 

estimate of population ratio R using DRSS is 
given by   
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                                .
W
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           (4.4) 
 By using Taylor expansion and assuming 
large population size, it is easy to show that 
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where    and 22 V V y

 
x as in equation (4.2). 

 
Ratio Estimation Using DMRSS 
 Using similar modification for bivariate 
case, and assuming that ranking is on variable X in 
the two stages. Then as in section 2, (W1(s)k,Y1[s]k), 
(W2(s)k ,Y2[s]k), …,(Wr(s)k ,Yr[s]k) k=1, 2, …,m will 

denote the bivariate DMRSS where s is (
2
r

) for 

the first 
2
r

 units and ( 1
2
+

r
) for the last 
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 units 

in case when r is even and (
2

1+r
) when r is odd. 

Wi(s)k is the s-th smallest X unit in the k-th cycle of 
the i-th bivariate MRSS in the first stage and Yi[s]k 
is the corresponding Y observation in the k-th 
cycle of the  i-th bivariate MRSS.  
Two cases are considered here: 

Case(1): When r is odd, the estimate of the 
population ratio R using DMRSSO is defined by  
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Again, by using Taylor expansion we have 
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Case(2): When r is even, the estimate of the 
population ratio R using DMRSSE is given by 
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Ratio Estimation Using DERSS 
 Assume without loss of generality that r is 
even. The case when r is odd is similar and it will 
be indicated in the numerical results only. Also 
assume ranking is on variable X. Let 
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DERSS  (see Samawi, 2001). This set of 
bivariate observations is independent but not 
identically distributed. 
The estimate of the population ratio R using 
DERSS is given by   
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Once again, by using Taylor expansion we have  
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Simulation Study 
 A computer simulation is conducted to 
study the efficiency of estimating R when ranking 
is performed on the variable X. Using SRS, RSS, 
MRSS, ERSS, DRSS, DERSS and DMRSS, 
bivariate random samples where generated from a 
bivariate normal distribution with µx=2, µy=4, 
σx=1, σy=1and ρ= 0.5. 0.8, 0.9, ±±±   
 The performance of the ratio estimate will 
be investigated for r=4, 5, 6 and 7 and m=4 and 6. 
The ratios of the population means are estimated 
from SRS, RSS, MRSS, ERSS, DRSS, DERSS 
and DMRSS data sets. Using 5000 replications, 
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estimates of the means, the mean square errors and 
the ratio of the mean squrare errors (relative 
efficiency) for the ratio were computed.  
 
Results of the simulation study 
 The values obtained by the simulation 
study are given in Table 4.1. In all cases the 
simulation showed that the efficiency of 
estimating R is not affected by the cycle size m, an 
explanation for this is that m is canceled in the 
numerator and dominator when relative efficiency 
is used. The values in the tables vary from a value 
of m to another because of the simulation 
variation. When the underlying distribution is 
N2(2,4,1,1,ρ), Table 4.1 shows that estimating the 
population ratio using DMRSS is more efficient 

than using SRS, RSS, and MRSS. Also, using 
DRSS to estimate the population ratio is more 
efficient than using SRS and RSS, and using 
DERSS is more efficient than using SRS, RSS and 
ERSS.  
 Moreover, using the definition of relative 
efficiency, the double sampling schemes can be 
compared with each other. Our simulation 
indicates that, estimating the population ratio 
using DMRSS is more efficient than using DRSS 
and DERSS. Also, whenever    ρ increases the 
efficiency increases in all cases. Note that negative 
values of ρ give higher efficiency than the positive 
values. 
 

 
 

Table 4.1 Efficiency of the estimators of R when ranking on X and (X,Y) has  N2(4,2,1,1,ρ) 
 

 

M 

 

r 

DMRSS relative to 

SRS     RSS     MRSS 

DRSS relative to 

SRS      RSS 

DERSS relative to 

SRS       RSS      ERSS 

ρ= 0.9 
4 4 4.15 1.95 1.67 2.79 1.31 2.19 1.03 1.15 
 5 5.47 1.14 1.88 3.33 1.30 2.62 1.02 1.16 
 6 5.77 2.27 1.89 3.61 1.42 2.77 1.09 1.38 
 7 6.05 2.15 1.82 3.78 1.34 2.94 1.04 1.26 

6 4 4.24 2.07 1.83 2.85 1.39 2.36 1.15 1.27 
 5 4.87 2.14 1.81 3.02 1.33 2.48 1.09 1.20 
 6 5.67 2.33 1.87 3.49 1.44 2.75 1.13 1.37 
 7 5.91 2.17 1.85 3.72 1.36 2.76 1.01 1.24 
     ρ= 0.8     

4 4 3.74 1.81 1.62 2.69 1.30 2.24 1.08 1.23 
 5 4.28 1.88 1.66 2.99 1.31 2.37 1.04 1.14 
 6 4.44 1.77 1.58 3.27 1.31 2.56 1.02 1.24 
 7 4.41 1.79 1.61 3.31 1.35 2.54 1.03 1.20 

6 4 3.55 1.71 1.53 2.52 1.21 2.14 1.03 1.21 
 5 4.09 1.91 1.70 2.72 2.37 2.38 1.11 1.24 
 6 4.10 1.91 1.65 2.83 1.32 2.30 1.07 1.19 
 7 4.22 1.80 1.59 2.96 1.26 2.43 1.04 1.18 
     ρ= 0.5     

4 4 3.11 1.69 1.52 2.37 1.29 2.04 1.11 1.19 
 5 3.60 1.84 1.63 2.67 1.36 2.20 1.12 1.14 
 6 3.90 1.80 1.59 2.88 1.33 2.43 1.12 1.30 
 7 3.52 1.56 1.40 2.68 1.19 2.33 1.03 1.24 
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6 4 2.99 1.68 1.52 2.36 1.33 2.01 1.13 1.16 
 5 3.45 1.67 1.51 2.53 1.23 2.15 1.04 1.10 
 6 3.66 1.66 1.47 2.85 1.29 2.26 1.02 1.20 
 7 3.46 1.65 1.46 2.63 1.26 2.29 1.09 1.22 
     ρ= -0.5     

4 4 5.12 2.22 1.99 3.17 1.37 2.55 1.11 1.24 
 5 6.08 2.40 2.01 3.51 1.38 2.91 1.15 1.34 
 6 7.67 2.55 2.01 4.14 1.51 2.94 1.07 1.37 
 7 7.23 2.23 1.96 4.22 1.41 3.23 1.08 1.33 

6 4 4.52 2.08 1.78 2.96 1.36 2.39 1.10 1.27 
 5 5.63 2.39 2.01 3.32 1.41 2.74 1.16 1.34 
 6 6.93 2.44 2.00 4.17 1.88 3.11 1.09 1.40 
 7 6.91 2.23 1.95 4.21 1.72 3.09 1.00 1.26 
     ρ= -0.8     

4 4 6.73 2.73 2.37 3.83 1.56 2.89 1.17 1.35 
 5 8.77 3.15 2.58 4.19 1.51 3.06 1.10 1.29 
 6 10.31 3.52 2.72 4.97 1.70 3.41 1.17 1.42 
 7 12.95 3.64 3.03 5.72 1.61 3.83 1.08 1.36 

6 4 5.90 2.54 2.19 3.49 1.50 2.71 1.17 1.32 
 5 9.33 3.12 2.62 4.24 1.42 3.25 1.09 1.27 
 6 9.07 3.30 2.71 4.42 1.61 3.13 1.14 1.43 
 7 11.84 3.60 2.79 5.62 1.71 3.72 1.13 1.39 
     ρ= -0.9     

4 4 6.76 2.18 2.43 3.50 1.45 2.72 1.13 1.34 
 5 11.03 3.84 3.05 4.54 1.58 3.52 1.23 1.36 
 6 12.91 3.83 3.13 5.20 1.54 3.66 1.08 1.45 
 7 17.19 4.66 3.56 6.36 1.72 3.99 1.08 1.42 

6 4 6.84 2.90 2.46 3.56 1.51 2.78 1.18 1.40 
 5 10.63 3.69 2.92 4.41 1.53 3.40 1.18 1.36 
 6 12.82 4.04 3.19 5.17 1.63 3.43 1.08 1.41 
 7 16.33 4.50 3.50 5.80 1.60 3.77 1.04 1.37 

 
 
Application To Real Data Set And Conclusions 
 We illustrate the double ranked sample 
mean estimation procedure using a real data set 
which consists of the height (Y) and the diameter 
(X) at breast height of 399 trees. See Platt et al. 
(1988) for a detailed description of the data set. 
The summary statistics for the data are reported in 
Table 5.1. Note that the correlation coefficient  is 
ρ=0.908. 
 
 
 
 

 
Table 5.1. Summary Statistics of trees data. 
 

Variable Mean Variance 

Height (Y) in 
feet 

52.36 325.14 

Diameter (X) 
in cm 

20.84 310.11 

 
 In this article, ranking is performed on the 
variable X exactly measured. However, in practice 
ranking is done before any actual quantification. 
Using a set size r = 3 and the cycle size m = 3, we 
draw bivariate SRS, DRSS, and DMRSS of size 9, 
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however DERSS is the same as DRSS in this case. 
Table 5.2 contains all the above proposed 
estimators and their estimated variances using the 
drawn samples.  
 
Table 5.2. Results from the drawn samples. 

Sample Naïve 
Estimator 
of the 
Diameter 
(X) 

9(Estimated 
Variance)* 

Ratio 
Estimator 

9(Estimated 
Variance)* 

SRS 13.57 168.60 2.50 1.036 
DRSS 19.39 148.37 2.29 0.633 
DMRSS 15.89 131.35 2.15 0.297 
 
 Table 5.2 confirms the simulation results. 
However, this example is just to illustrate the 
application using the proposed estimators. 
 Finally, the theortical and simulation 
results showed that the population mean estimator 
using DMRSS is an unbiased estimator for the 
population mean whenever the underlying 
distribution is assumed to be symmetric. Also, it 
was shown theoretically that the variance of this 
estimator is less than the variance of the sample 
mean using MRSS (the first stage). Although 
using numerical simulation it was noticed that the 
sample mean based on DMRSS is more efficient 
than using other sampling methods (see Table 3.1) 
with respect to there variances. 
 Note there are difficulties in selecting the 
DMRSS because of the similarity of the subjects 
from the first stage. However, in practice this is 
not a problem because the number of units we 
rank in the second stage will not exceed 5.  
 In ratio estimation using the two stage 
sampling for different schemes, the estimator of 
the population ratio of two variables was 
introduced and the variance in each case was 
derived. Our numerical study indicated that the 
two stage sampling is more efficient than the first 
stage sampling considering the same sampling 
scheme with respect to their variances. 
 Comparing the two stage sampling 
schemes, namely DRSS, DMRSS and DERSS, 
superiority in efficiency depends on the 
distribution of the bivariate variable. However, 
DMRSS was more efficient than DRSS and 
DERSS when the underlying distribution is the 
bivariate normal. Moreover, those efficiencies 
depend on the set size r and the strength of the 
correlation between X and Y.  
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Appendix 
Theorem 1: Let X be a random variable with 
symmetric distribution function F (x) and mean µ, 
then  
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EDMRSS  when r is even. If the c.d.f. F(x) is 
symmetric about its mean µ, then 

  ODMRSSW EDMRSSW  and  are unbiased 
estimators for µ. 
 
Proof:  The proof is a consequence of Theorem 1.  
 
Theorem 2: If the random variable X has a 
symmetric distribution function F(x) about µ, then 
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Proof:  Because Yang (1982) showed that 

( ) 2
)(   σ≤medXVar ,  

where )(medX  is the sample median of i.i.d sample 
of size r, then we need to prove only that 
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Case 2: When r is even, ( )kri
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As a variation of ranked set sampling (RSS); double ranked set sampling (DRSS) was introduced by Al-Saleh 
and Al-Kadiri (2000), and it has been used only for estimating the mean of the population. In this paper DRSS 
will be used for estimating the distribution function (cdf). The efficiency of the proposed estimators will be 
obtained when ranking is perfect.  Some inference on the distribution function will be drawn based on 
Kolomgrov-Smirnov statistic. It will be shown that using DRSS will increase the efficiency in this case. 
 
Key words: Double ranked set sample, distribution function estimation, Kolomgrov-Smirnov, ranked set. 
  
 

Introduction 
 
In some practical situations, collecting units from 
the population is not too costly comparing with 
quantification of the sampling units.  A large 
number of those units may be identified to 
represent the population of interest and yet only a 
carefully selected subsample is to be quantified. 
This potential for observational economy was 
recognized for estimating the mean pasture and 
forge by McIntyre (1952).  He proposed a method, 
later called ranked set sampling (RSS) by Halls 
and Dell (1966), currently under active 
investigation. 

RSS procedure can be described as 
follows: Identify a group of sampling units 
randomly from the target population. Then, 
randomly partition the group into disjoint subsets 
each having a pre-assigned sizer r, in the most 
practical situations, the size r will be 2, 3 or 4.   
Then, rank each subset by a suitable method of 
ranking such as prior information, visual 
inspection or by the experimenter himself. 
 In terms of sampling notation, 
 
________________________________________   
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where Xj(i) denotes the i-th ordered statistic in the 
j-th set. Then the i-th ordered statistic from the i-th 
subset will be quantified, i = 1, …, r. Then  
X X Xr r1 1 2 2( ) ( ) ( ), ,...,  will be obtained. The 

whole process can be repeated  k-times, to get a 
RSS of size n = kr. The resulting sample is called 
the balanced ranked set sample (RSS).  Through 
all the paper, only balanced RSS will be used.  

Al-Saleh and Al-Kadiri (2000) extended 
RSS to double rank set sample (DRSS).  DRSS 
can be described as follows:  

1. Identify r3 elements from the target 
population and divide these elements 
randomly into r subsets each of size r2 
elements.  

2. Use usual RSS procedure to obtain r RSS 
each of size r.  

3. Apply again the RSS procedure in Step 2, 
on the r RSS’s.   

We may repeat steps 1, 2 and 3 k-times to obtain 
DRSS sample of size n = rk. In DRSS, ranking in 
the second stage is easier than ranking in the first 
stage, (see Al-Saleh and Al-Kadiri, 2000). 

Moreover, an up-to-date annotated 
bibliography for RSS can be found in Kaur et al., 
(1995) and Patil et al. (1999).   Stokes and Sager 
(1988) estimate the distribution functions, F(x) 
say, for a random variable X by the empirical cdf 
(F*) based on  the RSS, which will be given in 
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Section 2. They pointed out that, F*(t) is an 
unbiased for F(t) and is more efficient than the 
empirical distribution function of a SRS 

))t(F̂(  of size n with 

[ ](t)iF1(t)iF
m

1i2kr

1(t))*Var(F −∑
=

= , where 

1)ir(i,F(t)I(t)(i)F(t)iF +−==           (1.1) 

for perfect ranking, and )1ir,i(I )t(F +−  is the 

incomplete beta ratio function. 
 
Basic Setting of DRSS 
 
Let r1 Y,...,Y  be a DRSS, and assume that 

)(yig~iY  with df, mean and variance are: 

*
iµ(y),iG  and 2*

iσ , respectively. Al-Saleh and 

Al-Kadiri (2000) showed that:  

 (i) (y)ig
r

1ir
1f(y) ∑

=
= ,           (1.2)  

 (ii) )(yiG
r

1ir
1F(y) ∑

=
= ,          (1.3)  

 (iii) *
i

r

1ir
1

µ=µ ∑
=

 ,          (1.4)  

 (iv) 












µ−µ+σ=σ ∑∑

==

2*
i

r

1i

2*
i

r

1i

2 )(
r
1

,    (1.5)  

where f, F, µ and 2σ  are the pdf, cdf, mean and 
variance of the population.  
 In this paper, we will consider the problem 
of estimating the distribution function F using 
DRSS. In Section 2, the empirical cdf estimator 

based on DRSS )DRF̂(  will be considered. The 
efficiency between the DRSS estimator and those 
estimators based on SRS and RSS will be obtained 
when ranking is perfect. In Section 3 the 
Kolmogrov-Smirnov statistic will be studied based 
on a DRSS. Also, a confidence interval of F(t) will 
be constructed using the Kolmogrov-Smirnov 
statistic based on DRSS. 

Estimating The Distribution Functions Using 
DRSS 
 
 In this Section the distribution function 
will be estimated using the DRSS, in the cases 
where ranking is perfect and when ranking is 
imperfect. The suggested estimator will be 
compared with the cdf estimators based on SRS 
and RSS via their variances. 
 
Definition and Some Basic Results 
 For the l-th cycle, let }rlY,...,2lY,1l{Y , 

l = 1, …, k, be a DRSS of size r, and assume that 
Yi has the probability density function (pdf) gi(y) 
and the cdf Gi(y). Note that gi(y) is the density of 
the i-th ordered statistic of a RSS with densities 

(r)f,...,(2)f,(1)f  and distribution functions 

(r)F,...,(2)F,(1)F  respectively. Then  





 −∏

+=
∏
=

∑∑
=

= (t)(L)F1
r

1jL
(t)(L)F

j

1LSj

r

ij
(y)G i

                 
             (2.1)  
where the set Si consists of all permutations 

)ri,...,2i,1(i  of 1, 2, …, r for which ji...1i <<  

and ri...ji <<+1  (see Al-Saleh and Al-Kadiri, 

2000).  

 Let F̂,DRF̂  and F* be the edf’s 
(empirical distribution functions) of DRSS, SRS 
and RSS from the population with cdf F, then:  

]tY[I
kr
1)t(DRF̂ ij

r

1i

k

1j
≤= ∑∑

==
          (2.2)  

]tX[I
kr
1)t(F̂ i

rk

1i
≤= ∑

=
           (2.3)  

]ti(i)jI[X
r

1i

k

1jkr
1(t)*F ≤∑

=
∑
=

=           (2.4)  

respectively, where I(.) is the indicator function. 
Then, we have the following results.   
a) F(t)DR(t)]F̂E[ =   
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b) )]t(G1)[t(G
kr
1))t(DRF̂var( ii

r

1i
2 −= ∑

=
,

           
             (2.5) 
  
(see the Appendix for the prove of these results.) 
Also, we show in the Appendix that 

2/1))]t(DRF̂[var())]t(DRF̂(E)t(DRF̂[ −  
converges in distribution to a standard normal 
random variable as ∞→k  when r and t are held 
fixed.  Moreover, it can be shown that an unbiased 
estimator of  

)]t(DRF̂[var  is given by  

)]t(Ĝ1)[t(Ĝ
r)1k(

1)]t(DRF̂[var ii
r

1i
2

^
−

−
= ∑

=
, 

             (2.6) 

where ]tY[I
k
1)t(Ĝ ij

k

1j
i ≤= ∑

=
 is the edf based 

on all k of the i-th judgment order statistic and 
hence it can be shown also that 

2/1^
)]]t(DRF̂[var/[))]t(DRF̂(E)t(DRF̂[ −

 converges in distribution to a standard normal 
random variable as ∞→k  when r and t are held 
fixed. (See the Appendix for the prove of the above 
results.) Therefore, when k is large for a specified 
value t, an approximate 100(1-α)% confidence 
interval for F(t) is 

 )]t(DRF̂[varZ)t(DRF̂
^

2/α±          (2.7)  
Finally, as a special case when r = 2, it 

can be shown that  )]t(F̂var[)]t(DRF̂var[ ≤  

and )]t(*Fvar[)]t(DRF̂var[ ≤ . (See the 
Appendix Lemma 2 for the prove of this results.)  
 

Efficiency of DRF̂  
 The edf is used for making pointwise 
estimates of F(t), as well as for making inference 
concerning the overall population distribution. In 
this section, we will examine the magnitude of the 

improvement in precision that results when 

estimating F(t) by )t(DRF̂  rather than by )t(F̂  
or F*(t).  
 Now, the relative precision (RP) of the 
double ranked set to the simple random sampling 
estimator and to ranked set sample estimator, are 
defined by: 

  
)]t(DRF̂var[

)]t(F̂var[)t(RP1 =   

 

  












−

−
=

∑
=

r)t(G)t(F

)]t(F1)[t(F

2
i

r

1i

  

             (2.8)  
 

 
)]t(DRF̂var[

)]t(*Fvar[)t(RP2 =  

 

(t)2
iG

r

1i
rF(t)

(t)2
(i)F

r

1i
rF(t)

∑
=

−

∑
=

−

=    

                      (2.9)  
   
 Table 1 and Table 2 show the value of 

))p(F(RP 1
1

−  and ))p(F(RP 1
2

−  
respectively, for some values of p and r = 2, 3, 4, 
5. It can be noticed that both of 1RP  and 2RP  
are monotone increasing from p = 0 to    p = 0.5,   
to achieve their maximum at p = 0.5. Also, they 
are symmetric about p = 0.5. Table 1 and Table 2 
show that the gain in efficiency from DRSS for 
estimation of F(t) is substantial when the ranking 
can be done perfectly. 
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Table 1. ))p(F(RP 1
1

−  when ranking of X is 
perfect. 

P 
r  0.0

1 
0.0
5 

0.1
0 

0.1
5 

0.2
0 

0.3
0 

0.4
0 

0.5
0 

2 1.0
1 

1.0
5 

1.1
2 

1.1
9 

1.2
7 

1.4
4 

1.5
8 

1.6
4 

3 1.0
2 

1.1
1 

1.2
6 

1.4
2 

1.6
0 

1.9
1 

2.0
8 

2.1
2 

4 1.0
3 

1.1
8 

1.4
1 

1.6
8 

1.9
4 

2.3
2 

2.5
2 

2.6
0 

5 1.0
4 

1.2
5 

1.5
8 

1.9
5 

2.2
9 

2.8
8 

3.4
3 

4.2
7 

 
 
Table 2. ))p(F(RP 1

2
−  when ranking of X is 

perfect. 
P 

R 0.0
1 

0.0
5 

0.1
0 

0.1
5 

0.2
0 

0.3
0 

0.4
0 

0.5
0 

2 1.0
0 

1.0
0 

1.0
2 

1.0
4 

1.0
7 

1.1
4 

1.2
0 

1.2
3 

3 1.0
0 

1.0
1 

1.0
5 

1.1
1 

1.1
7 

1.2
8 

1.3
2 

1.3
3 

4 1.0
0 

1.0
3 

1.1
0 

1.1
8 

1.2
6 

1.3
6 

1.4
0 

1.4
2 

5 1.0
0 

1.0
4 

1.1
4 

1.2
6 

1.3
6 

1.5
3 

1.7
2 

2.1
0 

 
Inference on the distribution function 
 Because the distribution function F can be 
estimated more efficiently from a double ranked 
set sample than from a SRS and a RSS, it is 
suffices to note that the statistics based on an 
estimate of F(t), such as the Kolmogrov-Smirnov 
statistic, would be improved in some sense as well.   

In particular, we observe that the null 
distribution of the statistic 

[ ] (t)0FDR(t)F̂  t sup**D −=  is stochastically 

smaller than [ ] (t)0F(t)*F  t supD* −=  and smaller 

than [ ])t(F)t(F̂supD 0t −=  when D**, D* 
and D are all based on the same number of 
measured observations. We mean that 

)d(H)d(H *
k)r(

**
k)r( ≥ and )d(H)d(H k)r(

**
k)r( ≥  

with strict inequality for some d, where 

]dD(p)d(H ***
k)r( ≤=  

)dD(p)d(H **
k)r( ≤=  and  ]dD(p)d(Hrk ≤= . 

Where D, D*, and D** are calculated from a SRS, 
a RSS and a DRSS of size rk respectively.  

This implies that 100(1-α)% of D**, 

which be denoted by **Cα , will always be less 

than or equal to corresponding percentile of the 

statistics D and D*, denoted by αC  and *Cα  

respectively. A confidence band for F based on 

D** is 

  **CDRF̂ α± ,                       (3.1)  

is narrower than the corresponding band based on 

D and D*.  

 In this section, the simulations which we 

done, is true for some finite values of r and k in 

the case of perfect judgment ranking. To find the 

table of critical values of D** )C( **
α  we draw a 

double ranked set sampling s)'i(Y  of size n from 

uniform distribution with parameters 0, 1. Then all 

elements in the sample will be rank )s'X( )i( . 

Now for k=1,  







 −−

≤≤
−

≤≤
= ,0

n
1i)(i)(Y0F

ni1
max,)(i)(Y0F

n
1

ni1
maxmax**D

 

where  

 )i()i(0 X)X(F = . 
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The previous procedure will be repeated 

until we get, **
10000

**
2

**
1 D,...,D,D . Also,  

s'D **
i  will be ranked to find **Cα  such that,  

α−=≤ α 1)C**D(P ** , i.e., the **
(i)D**

αC =  

where [ ]α)10000(1i −= , where [d] is the 

greatest interge of d.  

 Now, Table 3 reports the critical values 

**Cα  for the test statistic D** for α = 0.01, 0.05 

and 0.10 for r = 2, 3, 4, 5 and k = 2, 3, …, 20. The 

table shows that DRSS can result in a substantial 

decrease in width of the simultaneous confidence 

band. The amount of the improvement can be 

described by the quantities,  

 

2

**1
C
CR 










=

α

α
α      (3.2) 

2

**

*
2

C
CR 










=

α

α
α    (3.3)  

 

 

 

 

 

 

 

 

 

 

 

 

 Because 1Rα  and 2Rα  are the square 

of the ratio of confidence-band widths, then they 

can be interpreted as a measure of relative 

precision.  The ratios 1Rα  and 2Rα  are 

computed from the entries of Table 3 ( **Cα ), 

Table 2 )C( *
α  (from Stokes and Sager; 1988) and  

the Table of critical values for the Kolmogrove-

Smirnov statistic D (from Gibbons and 

Chakraborti (1992)).  

 Table 4 gives the values of 1Rα  and 

2Rα  at r = 2,…,5 and k = 2, …, 10. These 

values are comparable with those of Table 1 and 

Table 2. So, 1Rα  and 2Rα  indicate the same 

thing which given by )t(Rp1  and )t(Rp2 , 

when ranking of X is perfect. 
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Table 3.  Critical values of  D** (
**Cα  ) 

 

 

 r=2 r=3 r=4 r=5 

                                               α: 

k 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

2 0.43 0.47 0.01 0.36 0.40 0.47 0.13 0.35 0.42 0.28 0.32 0.38 

3 0.33 0.36 0.57 0.27 0.30 0.36 0.24 0.26 0.31 0.21 0.24 0.28 

4 0.27 0.29 0.44 0.22 0.24 0.28 0.19 0.21 0.26 0.17 0.19 0.23 

5 0.23 0.25 0.34 0.19 0.21 0.24 0.17 0.18 0.21 0.15 0.16 0.19 

6 0.20 0.22 0.29 0.16 0.18 0.21 0.14 0.16 0.18 0.13 0.14 0.17 

7 0.18 0.19 0.25 0.15 0.16 0.19 0.13 0.14 0.16 0.12 0.13 0.15 

8 0.16 0.17 0.22 0.13 0.15 0.17 0.11 0.13 0.15 0.10 0.11 0.13 

9 0.15 0.16 0.20 0.12 0.13 0.15 0.11 0.12 0.13 0.10 0.10 0.12 

10 0.14 0.15 0.19 0.11 0.12 0.14 0.10 0.11 0.12 0.09 0.10 0.11 

11 0.13 0.14 0.17 0.10 0.11 0.13 0.09 0.10 0.12 0.08 0.09 0.10 

12 0.12 0.13 0.16 0.10 0.11 0.12 0.08 0.09 0.11 0.08 0.08 0.10 

13 0.11 0.12 0.15 0.09 0.10 0.12 0.08 0.09 0.10 0.07 0.08 0.09 

14 0.10 0.11 0.14 0.09 0.09 0.11 0.08 0.08 0.09 0.07 0.07 0.08 

15 0.09 0.11 0.13 0.08 0.09 0.10 0.07 0.08 0.09 0.06 0.07 0.08 

16 0.09 0.10 0.12 0.08 0.08 0.10 0.07 0.07 0.09 0.06 0.07 0.08 

17 0.09 0.10 0.12 0.07 0.08 0.09 0.07 0.07 0.08 0.06 0.06 0.07 

18 0.09 0.09 0.11 0.07 0.08 0.09 0.06 0.07 0.08 0.06 0.06 0.07 

19 0.08 0.09 0.11 0.07 0.07 0.08 0.06 0.06 0.07 0.05 0.06 0.07 

20 0.08 0.09 0.10 0.07 0.07 0.08 0.06 0.06 0.07 0.05 0.06 0.06 
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Table 4.  The values of 1Rα  and 2Rα  

 

1Rα  

 r= 2 r=3 

α: 

r=4 

 

k  0.01 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

2 1.17 1.76 1.79 1.70 1.72 1.74 1.75 1.65 1.65 

3 2.03 2.09 2.15 2.09 2.05 20.1 2.01 2.14 2.11 

4 2.31 2.41 2.52 2.39 2.51 2.58 2.49 2.47 2.25 

5 0.59 2.69 2.85 2.49 2.62 2.78 2.52 2.60 2.78 

6 2.89 2.98 3.24 3.06 2.97 3.10 2.94 2.85 3.16 

7 2.97 3.39 3.64 .300 3.29 3.20 3.13 3.19 3.52 

8 3.52 3.77 3.80 3.41 3.24 3.45 3.64 3.13 3.48 

9 3.48 3.75 3.79 3.67 3.70 4.27 3.30 3.36 4.31 

10 3.72 3.74 4.24 4.00 4.00 4.29 4.00 3.64 4.34 

2Rα  

2 1.41 1.42 1.34 1.23 1.16 1.18 1.15 1.27 1.22 

3 1.70 1.70 1.62 1.49 1.44 1.43 1.36 1.33 1.27 

4 1.88 2.00 2.08 1.74 1.78 1.74 1.60 1.54 1.42 

5 2.19 2.19 2.30 1.87 1.78 20.1 1.67 1.78 1.78 

6 2.40 2.39 2.56 2.25 2.09 2.18 2.04 1.72 2.09 

7 2.60 2.66 2.83 2.15 2.25 2.33 1.92 2.04 2.07 

8 2.85 3.11 3.06 2.61 2.35 2.52 2.39 2.14 2.15 

9 2.78 3.06 3.02 2.78 2.86 2.78 2.12 2.25 2.61 

10 2.94 3.00 .354 2.98 2.51 2.94 2.56 2.39 2.78 
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Appendix 

Proposition 1. DRF̂  is an unbiased estimator of 
F.  
a) F(t)DR(t)]F̂E[ =   
b) 

)]t(G1)[t(G
kr
1))t(DRF̂var( ii

r

1i
2 −= ∑

=
. 

    
Proof: 
From the definition of a DRSS the proof will 
follow simply by using (1.3) and (2.1). 
 
Proposition 2.  

2/1))]t(DRF̂[var())]t(DRF̂(E)t(DRF̂[ −  
converges in distribution to a standard normal 
random variable as ∞→k  when r and t are held 
fixed.  
Proof: This follows from rewriting DRF̂ as 

j
k

1j
U

k
1DRF̂ ∑

=
= , where 

r
]tY[I

U ijr

1i
j

≤
= ∑

=
 , then sU j '  are iid, 

therefore the proof follows directely from the 
Central Limit Theorem.  
 
 Lemma1.  

(a) )]t(DRF̂[var
^

 is an unbiased estimator of 

)]t(DRF̂[var .  
where:  

 
 

)]t(Ĝ1)[t(Ĝ
r)1k(

1)]t(DRF̂[var ii
r

1i
2

^
−

−
= ∑

=
    

and ]tY[I
k
1)t(Ĝ ij

k

1j
i ≤= ∑

=
 is the edf 

based on all k of the i-th judgment order 
statistic.  

(b) 

2/1^
)]]t(DRF̂[var/[))]t(DRF̂(E)t(DRF̂[ −

 converges in distribution to a standard normal 
random variable as ∞→k  when r and t are held 
fixed.  
Proof:  
(a)  

)]t(Ĝ[E))t(Ĝ(E[
r)1k(

1))]t(DRF̂[var[E 2
ii

r

1i
2

^
−

−
= ∑

=

  

because  )t(G))t(Ĝ(E ii =  
and  
 

2
iij

k

1j
2

2
i )]t(G[])tY[Ivar(

k
1))t(Ĝ(E +≤= ∑

=
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)t(G])tY[Ivar(
k
k 2

ii2 +≤=  

        

k
)t(kG

k
)]t(G1)[t(G 2

iii +
−

=   

     
k

)t(G)1k()t(G 2
ii −+

=  . 

Then  
^

2r
i i i

2
i 1

ˆE[var(FDR(t))]
kG (t) G (t) (k 1)G (t)1

k k(k 1)r =

=

 + −
− −  

∑
  

         

)]t(G1)[t(G
kr
1

ii
r

1i
2 −= ∑

=
  

         )]t(DRF̂var[=   
Part (b) can be shown by noting that:  

 
1  p   

DR(t))F̂(var

DR(t))F̂r(a
^

v
→

 as ∞→k , and 

________________________________________ 
 
 
 

 

because  )t(G  )t(Ĝ i
p

i → .  
Furthermore, by Lemma 1 when k is large for a 
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The purpose of this study was to explicate two issues concerning the standard and rank based test of 
homogeneity of slopes. Two alternative ranking methods intended to address nonnormality and additive 
treatment effect patterns were developed and compared in terms of their ability to control Type I error. The 
results replicated previous findings of inflated Type I error rates with leptokurtic curves and with rank based 
tests with some patterns of additive treatment effects. The new nonparametric procedures generally control 
Type I error although they were slightly inflated with skewed distributions. 
 
Key words: Slope homogeneity, ranking methodology, type I error  
 
 

Introduction 
 
Psychology and education have long 
acknowledged the need for methods to address the 
interaction between treatment variables on the one 
hand and individual difference variables on the 
other. Cronbach (1957) in his presidential address 
to the American Psychological Association called 
for a fusion of the “two schools of psychology”, a  
field later to be identified as Aptitude x Trait 
interaction (ATI) research (Cronbach & Snow, 
1981). While ATI research was originally 
developed within educational psychology it has 
spread throughout psychology including  industrial 
psychology (see for instance, Hunter, Schmitt & 
Hunter, 1979) and psychotherapy (see for instance 
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Dance & Neufeld, 1988).Two major strategies are 
used to explore ATIs. The first is based on 
stratification of the individual difference variable, 
which produces a randomized block design. The 
desired information is contained in the Block x 
Treatment interaction. The alternative is a 
regression based approach that can be viewed 
either as a test of moderated regression or of 
homogeneity of slopes within an analysis of 
covariance design. 

The usual form of the regression approach 
is to assume a linear relationship between the 
individual difference variable used as the covariate 
(X) and the outcome measure (Y). The issue 
investigated is whether the treatment alters the 
nature of the linear relationship. The presence of 
an interaction between the treatment and X is 
reflected in the difference between the slopes. This 
finding may be the primary finding of the study 
and may also inform the researcher regarding 
appropriate strategies for looking for main effects. 

 We will adopt the regression vantage 
point for describing the issues addressed. 
Cronbach and Snow (1981) argued for the 
regression approach as more powerful than 
stratification, an assertion that was supported in 
simulations by Klockars and Beretvas (2001). The 
issue of power is particularly important given the 
high Type II error rates associated with attempts to 
identify interactions, especially in field studies 
(McClelland & Judd, 1993). For a comparison of 
randomized block and analysis of covariance see 



KLOCKARS & MOSES 453

Klockars, Potter, and Beretvas (1999), and 
Klockars and Beretvas (2001).  
 The test of homogeneity of slopes is based 
on a set of assumptions common to both 
regression and covariance. Of primary importance 
in the current investigation is the assumption that 
the variables are normally distributed. The 
assumption is part of a mathematical model and, 
as with any model, it is unexpected that empirical 
data will ever exactly fulfill the model (e.g. scores 
are discrete while the model is continuous). 
  However, Micceri (1989) in a survey of 
typical variables analyzed in psychology and 
education journals reported that the distributions 
were often far from normal with considerable 
skew and kurtosis.  Conover and Iman (1982) and 
more recent work by Headrick and Sawilowsky 
(2000) showed that the Type I error control of the 
test of homogeneity of slopes is greatly impacted 
by the shape of the distributions involved. 
Platykurtic or light-tailed distributions produce 
Type I error rates that are conservative while 
leptokurtic or heavy-tailed distributions produce 
liberal Type I error rates. Klockars and Moses 
(2001) found that the Type I error rates for 
distributions with shapes that Micceri (1989) 
indicated were typical far exceeded both Bradley’s 
(1978) conservative (.055) and liberal (.075) 
definition of robustness. 

Prior research has not directly addressed 
the question of the relative impact of nonnormality 
in X and Y on Type I error. Atiquallah (1964) 
showed analytically that the shape of the 
distribution of X plays a role in the magnitude of 
the calculated F ratio as does the distribution of Y. 
In simulation studies three different patterns of X 
and Y distributions have been used. 

Conover and Iman (1982) and Stephenson 
and Jacobson (1988) varied the shape of the Y 
distribution but used a normally distributed X 
distribution throughout. Headrick and Sawilowsky 
(2000) let the X and Y distributions have the same 
shape so that if Y were moderately right skewed 
the X distribution would also be moderately right 
skewed. Klockars and Moses (2001) 
systematically varied the shape of the Y 
distribution and created the X distribution as a 
linear combination of Y and normally distributed 
random error. Thus the covariate, X, had a 
distribution less extreme than that of the Y 
distribution. This was particularly true with the 

low correlation condition in which the normally 
distributed random error was more heavily 
weighted.  
 The first issues under investigation in the 
current study are (1) a replication of the finding 
that the shape of the Y distribution systematically 
influences Type I error rates of the test of 
homogeneity of slopes, and (2) an evaluation of 
the relative importance and independence of the 
shape of the X distribution compared to that of the 
Y distributions in producing Type I errors. 

A number of authors have proposed non-
parametric, rank based analyses of covariance to 
avoid the distributional requirements of analysis of 
covariance as a test of adjusted means 
(Quade,1967; Puri & Sen, 1969; Burnett & Barr, 
1977; Shirley, 1981). These strategies, however, 
focused primarily on the null hypothesis regarding 
the adjusted means of the treatment groups. Slopes 
were assumed to be homogeneous and the 
question of an interaction was not addressed. 

Shirley (1981) developed χ2 tests for both 
the test of parallel lines and equal adjusted means 
on data where the outcome measure Y was 
converted to ranks. Conover and Iman (1982) 
proposed standard analysis of covariance on data 
where both X and Y were replaced with their 
ranks. Stevenson and Jacobsen (1988) offered a 
“hybrid” alternative in which only the Y variable 
was ranked while X was retained in its original 
form.  A standard ANCOVA was conducted on 
the raw X and ranked Y scores to test for both 
differences in slopes and adjusted means. In the 
latter two studies simulated data were generated to 
evaluate how robust the methods were. The rank 
and hybrid ANCOVA methods tended to control 
Type I error in situations where the error rate for 
the original observations was problematic, that is, 
where the Y distributions were leptokurtic.  
 More recent inquiries using analysis of 
covariance with ranks have returned to considering 
only questions about the adjusted means (Seaman, 
Algina, & Olejnik, 1985; Harwell & Serlin, 1988; 
Hettermansperger, 1984; Rheinheimer & Penfield, 
2001). However, Headrick and Sawilowsky (2000) 
presented simulation evidence that indicated that 
the Conover and Iman approach to testing 
differences in slopes can have very elevated Type 
I error rates under conditions of additive treatment 
effects. In particular, simulations in which a small 
proportion of the treatment effects had large 
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additive effects resulted in extremely high Type I 
error rates when the test for homogeneity of slopes 
was conducted. When X and Y were highly 
correlated and the sample size was large there was 
essentially a 100% chance of rejecting the null 
hypothesis that the slopes differed. This happened 
even though the only effects built into the data 
were additive effects that should have been 
reflected in the test of adjusted means rather than 
slopes. The present study (3) replicates the 
Headrick and Sawilowsky finding and (4) 
develops alternative methods for testing for 
differences in slopes within the general analysis of 
covariance framework that may have better control 
of Type I error.  
 The development of alternative non-
parametric methods relies on understanding why 
there is an elevated level of Type I error when 
additive treatment effects are present. Let the 
parameters of the original measurements be 
indicated by standard Greek letters with X, Y, and 
k subscripts, and those of the ranked scores by 
Greek letters with the addition of the subscript R 
to denote ranked. The null hypothesis in a test of 
homogeneity of slopes for the original scores is 
β= β2=…= βk with each of the slopes given by 
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We dealt with the case where the null hypothesis 
concerning slopes implies equality of the elements 
on the right side of equation 1. If the null 
hypothesis for slopes is true then the variability of 
the X scores, the Y scores and the XY correlations 
are homogeneous. The special case where the 
slopes are equal because of compensating effects 
such as inversely related correlations and Y 
variances was not considered. 

The question of interest concerns the 
equality of the βks but is tested by evaluating the 
null hypothesis concerning the equality of the βRks. 
This will be an equivalent test if the terms on the 
right side of: 
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are homogeneous when the terms on the right side 
of (1) are homogeneous.  

The variances of the raw X scores (σ2
Xk) 

are homogeneous by the nature of an experiment. 
Under the standard procedures associated with 
ANCOVA the subjects are randomly assigned to 
conditions with no impact of treatment present in 
the X scores. The variances for the ranked X 
scores, σ2

RXk, will be ((kn)2-1)/12 and the sampled 
set of ranks from all k groups should estimate this 
parameter because of the random assignment. 
Additive treatment effects will have no impact on 
either σ2

Xk or σ2
RXk 

 The correlation between the ranked XY 
scores (ρRk) will be similar but not identical to the 
correlation between the original scores. If the 
treatment conditions have equal correlations in 
their raw score form, that equality of correlation 
will be maintained in the ranked scores. Additive 
treatment effects should have no or only minor 
influences on the homogeneity of correlations 
based on ranked scores. 

As with the ranked X scores, the variance 
of the ranked Y scores is a simple function of 
sample size (n) and number of groups (k). If there 
are no additive treatment effects the variance of 
the ranked Y scores is: 
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Additive treatment effects have the possibility of 
changing the variance of ranked Y scores within a 
group. Since group slopes are a function of the 
standard deviations of X and Y, additive 
treatments could produce the appearance of an 
interaction. This possibility is most easily seen in 
an exaggerated example. Consider the pattern of 
treatment effects for 4 groups of {0, 0, 0, c} where 
c is an additive constant. Let c be so large that the 
fourth sample of scores is raised so that no 
member of group 4 has a score lower than the 
highest score in the remaining groups. In this case 
the ranked Y variances estimated by the first 3 of 
the k=4 groups would be: 
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while the variance of the fourth group would 
reflect the variability in ranks of n adjacent scores 
which is 
    

 
12

1n 2

RY
2

4

−
=σ          (5) 

 
The differences in the variability from 

equation 4 and 5 would produce a set of slopes in 
which the last group would have a slope almost k-
1 times smaller than the slopes of the remaining 
groups. For smaller additive treatment effects the 
separation would be less complete but still result 
in the reduction of the Y variability for the 
separated group and thus a reduction in the slope. 
Headrick and Sawilowsky’s (2000) report of high 
rejection rates of the null hypothesis concerning 
equal slopes are Type I errors in the sense that 
there were only additive rather than interactive 
effects present. The rejections are also correct 
rejections of the null hypothesis concerning slopes 
after the additive treatment effects have 
confounded additive and interactive effects when 
Y is ranked. The proportion of rejected hypotheses 
will depend on the power, which is a function of 
the correlation and sample size. 

Other configurations of additive effect 
would not produce the same effect. Patterns such 
as {0, 0, c, c} or (-2c, -c, 0, c, 2c) would alter all 
of the groups’ Y variabilities equally and thus 
retain equal slopes in the ranked scores if there 
were equal slopes in the original distributions. In 
the simulations performed by Stephenson and 
Jacobson (1988) the vector of additive effects was 
(1, 0, 1.5, 3). This pattern did not produce inflated 
Type I error rates as the spacing is relatively equal 
and the sample size and correlation were much 
lower than in Headrick and Sawilowsky, providing 
little power. 
 To eliminate the potential of additive 
treatment effects confounding the test of 
differences in slope we propose that the ranking of 
observations be based on a function of the scores 
that would eliminate any additive effects. The first 
alternative is to subtract the appropriate group 
sample mean from each score prior to ranking the 
observations and conducting the analysis of 
covariance. Scores within a treatment condition 
are defined as Yij=µ+αj+εij. The sample mean has 
an expected value of µ+αj. Analysis of the 

deviation from the group mean provides estimates 
of a common εij. 

The second alternative is to subtract the 
sample median prior to ranking the observations. 
Like the sample mean, the sample median will 
cancel additive treatment effects. Any constant 
difference reflecting the difference between the 
population mean and median should be eliminated 
when the differences are ranked. The median is 
offered as an alternative when the distribution of Y 
scores may be highly skewed. 

 Consider the situation in which the null 
hypothesis concerning slopes is true but the 
outcome measure is a right skewed, heavy-tailed 
distribution. The presence in a sample of a single, 
outlying score would produce deviations from the 
mean that were primarily negative, reflecting the 
inflating effect of the extreme score on the sample 
mean. The predominance of negative deviations 
along with the outlying positive deviation would 
distort the slope and inflate the Type I error rate. 

 A number of robust statistics are available 
to decrease the influence of extreme scores. The 
sample median is one of the simplest and is used 
in the current alternative approach. In both 
proposed methods the test for additive treatment 
effects would have to be conducted using the 
normal Conover and Iman (1982) or alternative 
method. The subtraction of either the sample mean 
or the sample median from scores eliminates any 
additive effects and precludes the deviations from 
being used to evaluate additive effects. 
 

 
Methodology 

 
All simulations were conducted on a Unix 
computer using programs written in FORTRAN 
77. Unit normal distributions were generated using 
the RNNOR subroutine of IMSL. All Type I error 
rates were obtained from 50,000 iterations of the 
program. For the nominal value of .05 this number 
of iterations produces a standard error of .001. The 
simulations were all based on a one-way design 
with k=4 groups, n=20 subjects, and a single 
covariate.  Two levels of relationship between X 
and Y were created to represent a relatively low 
and relatively high degree of relationship. In the 
normally distributed X and Y scores the two levels 
represent correlations of .3 and .7.  
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The normally distributed covariate X was 
generated by RNNOR. The Y variable was created 
as a weighted linear combination of X and a 
second randomly created normal distribution to 
introduce random error. The weights were selected 
so that the variance of the Y scores was 1 and the 
slopes for all groups would be either .3 or .7. The 
original normally distributed X and Y variables 
(NOR X and NOR Y, respectively) were then 
transformed to three other shaped distributions 
using Fleishman’s (1978) power vector method. 

A platykurtic distribution was selected for 
study with skew of 0 and kurtosis of -1 (PLAT X 
and PLAT Y). The other two distribution were 
leptokurtic, the first with skew of 0 and kurtosis of 
1.5 (LEPTO X and LEPTO Y) and finally, a more 
extreme, skewed, leptokurtic distribution with 
skew of 1.75 and kurtosis of 3.75 (SKLPT X and 
SKLPT Y).  

All 16 possible combinations of shape of 
X and shape of Y were analyzed. Because of the 
multiple pairings no attempt was made to correct 
the correlations to exactly .3 and .7 in all pairings 
(see Headrick and Sawilowsky, 1999). The actual 
correlations for the 16 pairings varied from .22 to 
.30 for the nominal .3 and from .55 to .70 for .7. 
The first three shapes with no skew had much 
more homogeneous correlations, ranging from .28 
to .30 and from .66 to .70 for .3 and .7, 
respectively. We shall refer to the two conditions 
as Low and High correlation, respectively. 

Three configurations of additive treatment 
effects were used to evaluate the previously 
reported confounding of additive treatment effects 
with the test of slopes. The first condition had no 
additive effects. The second and third had 
configurations of 0, 0, 0, c and 0, 0, c, c, 
respectively. The four levels of additive constant c 
were .8, 1.4, 2.0, and 2.6. This produced 
1+(2)(4)=9 distinct patterns. Because both X and 
Y have unit variance the additive constants are in 
z-scores.  

Each data set was analyzed with four 
representations of the data. These are: 
1. X- Original Scores Y-Original Score (XY) 
2. X- Ranked Scores Y-Ranked Scores (RxRy) 
3. X- Ranked Scores Y-Ranked deviation from  

sample mean (RxR1y) 
4. X- Ranked Scores Y- Ranked deviation from   

sample median(RxR2y) 

The analysis of the data set (XY) is the 
standard parametric analysis of covariance, the 
second (RxRy) is the Conover and Iman (1982) 
non-parametric analysis of covariance, the third 
(RxR1y) and fourth (RxR2y) are the non-
parametric analyses of covariance developed in the 
current paper based on the mean and median, 
respectively. 
 

Results 
 
The results were obtained by averaging the 
probabilities of Type I error across the 
simulations. The primary findings are a 
description of those variables that impact Type I 
error. In addition each Type I error rate is 
classified as to whether it exceeds either Bradley’s 
(1978) conservative or liberal criterion for 
robustness. Although these criteria are arbitrary 
they provide a commonly known standard for 
evaluating the magnitude of the elevation of Type 
I error.  

The first two issues deal with the 
relationship between the shape of the underlying 
distribution and Type I error. The analyses are 
based on the conventional analysis of covariance 
of the original scores, XY. Table 1 contains the 
mean Type I error rates for all combinations of 
shapes for X and Y. The results are presented 
separately for the low and high correlation 
conditions. Each mean is based on the simulations 
representing the nine different additive treatment 
combinations. Preliminary analyses indicate that 
additive configurations and magnitude represent 
trivial factors and could be combined without loss 
of information. Also included in Table 1 are the 
number of the simulations that had Type I error 
rates that exceeded Bradley’s conservative (.055) 
and liberal (.075) criterion level for robustness. 
Only the upper limits are considered, as the 
present concern is for unacceptably high Type I 
error rates. Low error rates are more likely to be 
reflected in poor power. 

The average Type I error rate for both 
LEPTO Y and SKLPT Y are considerably larger 
than for the normal curve. PLATY has a 
conservative Type I error rate. The inflated Type I 
error rates associated with leptokurtic curves is 
further seen in the frequency with which the Type 
I error rate exceeds even the most liberal of 
robustness criteria. 
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Table 1.Average Type I error rates across raw X 
and Y distributions and correlations. 
                X Distribution 
Corr. Y Dist. PLAT X NOR X LEPTO 

X 
SKLPT 
X 

PLAT 
Y 

.044 
(0,0) 

.041 
(0,0) 

.040 
(0,0) 

.043 
(0,0) 

NOR  
Y 

.050 
(0,0) 

.050 
(0,0) 

.051 
(0,0) 

.052 
(0,0) 

LEPTO 
Y 

.056 
(7,0) 

.059 
(9,0) 

.062 
(9,0) 

.062 
(9,0) 

 
LOW 
r≈.3 

SKLPT 
Y 

.060 
(9,0) 

.068 
(9,0) 

.072 
(9,0) 

.124 
(9,9) 

PLAT 
Y 

.025 
(0,0) 

.020 
(0,0) 

.034 
(0,0) 

.051 
(0,0) 

NOR  
Y 

.055 
(6,0)  

.049 
(0,0) 

.058 
(9,0) 

.068 
(9,0) 

LEPTO 
Y 

.083 
(9,9) 

.094 
(9,9) 

.103 
(9,9) 

.094 
(9,9) 

 
HIGH 
r≈.7 

SKLPT 
Y 

.114 
(9,9) 

.178 
(9,9) 

.213 
(9,9) 

.225 
(9,9) 

Note. Numbers in parentheses are the number of 
times Type I error exceeded .055 and .075 in that 
condition where the maximum is 9. 
 
 

The variability in the means presented in 
Table 1 is partitioned into the main effects and 
interactions between the independent variables in 
the simulation. Table 2 contains the mean square 
deviations for these sources. Because of the 
number of iterations all of the effects are 
significant based on the most conservative of 
standards. In the current discussion it is the 
relative size of the effects that is of primary 
concern.  
 Three effects are much larger than the 
remaining sources. These are the shape of the 
original Y distribution, the strength of the XY 
correlation, and the interaction between the shape 
of the Y distribution and the correlation. The 
shape of the X distribution has a mean square less 
than one-tenth that of the shape of the Y 
distribution. The interaction between the shapes of 
X and Y is small and trivial. 
 
 
 
 
 
 
 
 
 

Table 2.Sources of variation on Type I error rate 
with raw X and Y scores (XY). 
Source SS df MS 
Y Distribution shapes 0.365 3  0.122 
Correlation (COR) 0.079 1  0.079 
Y * COR 0.129 3  0.043 
X Distribution shapes 0.034 3  0.011 
X*Y 0.044 9  0.005 
X * COR 0.008 3  0.003 
X*Y * COR 0.012 9  0.001 
Residual 0.0004 256 0.000 
 

 
The main effect for the shape of Y reflects 

the variability in the overall means. The 
interaction is reflected in Type I error rates that are 
more extreme with a higher correlation. 
Platykurtic curves become more conservative and 
leptokurtic curves more liberal. Because there 
were more leptokurtic curves than platykurtic 
curves the average Type I error rate for the higher 
correlation is larger. The pattern of the means for 
the shapes of the X distribution mirror those of Y 
but are much less extreme. 

The next two issues deal with the ability 
of ranking methods to control Type I errors for 
differences in slopes when there are additive 
treatments present. Table 3 presents the Type I 
error rates for the ANCOVA test of slopes 
proposed by Conover and Iman (1982), the 
ANCOVA test of slopes based on deviations of 
scores from the appropriate sample mean, and the 
ANCOVA test of slopes based on deviations of 
scores from the appropriate sample median. Two 
patterns of treatment effect, {0,0,0,c} and {0, 0, c, 
c} are paired with four levels of c. The results are 
summed across the 4x4=16 distributional pairings. 
Results are reported separately for low and high 
correlations. The parenthetical values indicate how 
many of these 16 simulations produced Type I 
error rates that exceeded the conservative and 
liberal robustness criteria. 
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Table 3. Average Type I error across correlation, treatment effect, treatment effect 
pattern and ranking method. 
   Treatment Effect (c) 
Corr.  Pattern Data Set .8 1.4 2.0 2.6 

0 0 0 c RxRy .048 (4,0) .053 (4,0) .061(16,0) .068 (16,0) 
0 0 c c RxRy .052 (4,0) .048 (4,0) .047 (2,0) .046 (0,0) 
0 0 0 c RxR1y  .045 (4,0) .045 (4,0) .045 (4,0) .045 (4,0) 
0 0 c c RxR1y  .046 (4,0) .045 (4,0) .046 (4,0) .045 (4,0) 
0 0 0 c RxR2y  .048 (0,0) .048 (0,0) .048 (0,0) .048 (0,0) 

 
LOW 
r≈.3 

0 0 c c RxR2y  .048 (0,0) .047 (0,0) .048 (0,0) .048 (0,0) 
0 0 0 c RxRy .050 (4,4) .088(11,5) .155(16,16) .254 (16,16) 
0 0 c c RxRy .044 (4,4) .045 (4,4) .041 (4,3) .034 (4,0) 
0 0 0 c RxR1y  .031 (4,0) .031 (4,4) .031 (4,4) .031 (4,4) 
0 0 c c RxR1y  .031 (4,4) .031 (4,4) .031 (4,4) .031 (4,4) 
0 0 0 c RxR2y  .044 (4,0) .044 (4,0) .043 (4,0) .043 (4,0) 

 
HIG
H 
r≈.7 

0 0 c c RxR2y  .044 (4,0) .044 (4,0) .043 (4,0) .043 (4,0) 
 
Note. Numbers in parentheses are the number of times Type I error exceeded .055 and .075 
in that condition where the maximum is 16. Rx indicates ranked X scores. Ry indicates ranked 
Y scores. R1y indicates ranked deviations of Y from the group Y mean. R2y indicates ranked 
deviations of Y from the group Y median. 

 
 

The Type I error rate for RxRy increases 
as the magnitude of the treatment effect increases 
for the {0,0,0,c} pattern but not for the {0,0,c,c} 
pattern. The corresponding values for the methods 
based on deviations, RxR1y and RxR2y, have 
mean Type I error rates near .05. The simulations 
based on deviation scores with Type I error rates 
that surpassed the conservative robustness criteria 
are those based on SKLPT Y. The effects are more 
pronounced when there is a high correlation than 
when there is a low one.  
 The two new methods perform similarly in 
most of the simulations. The difference between 
them is predicted to be when there is a very 
skewed distribution. Table 4 presents the average 
Type I error rate of the {0,0,0,c} pattern for 
LEPTO Y and SKLPT Y distributions. The results 
are summed across shape of the X distribution and 
the additive constants. As expected the Type I 
error rate for the method based on deviations from 
the mean became problematic when the 
distribution is skewed. A symmetric leptokurtic 
distribution showed no elevation of Type I error 
with either of the new methods. The method based 
on the median is generally within acceptable 
bounds although it has more than a .06 error rate 
with the Skewed Leptokurtic, SKLPT Y. 

Table 4. Comparing the two ranking alternatives 
across correlation, treatment effect and Y 
distribution. 
 

 Correlation 
 LOW 

r≈.3 
HIGH 
r≈.7 

 LEPTO 
Y 

SKLPT 
Y 

LEPTO 
Y 

SKLPT  
Y 

RxR1y .044 
(0,0) 

.059 
(32,0) 

 .023 
(0,0) 

.105  
(36,36) 

RxR2y .044 
(0,0) 

.052 
(0,0) 

 .021 
(0,0) 

 .063  
(36, 0) 

Note. Numbers in parentheses are the number of 
times Type I error exceeded .055 and .075 
respectively where the maximum is 36. Rx 
indicates Ranked X scores. R1y indicates Ranked 
Y deviations from the group Y mean. R2y 
indicates Ranked Y deviations from the group Y 
median. 

 
Conclusion 

 
Both of the problems associated with conducting a 
test of differences in slopes were replicated in the 
present study. Analysis of covariance on scores 
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that are not normally distributed have Type I error 
rates that systematically vary from the nominal 
value. If the distribution is leptokurtic the Type I 
error rate will be liberal and if it is platykurtic it 
will be conservative. It is difficult to determine if 
skew plays a role as most skewed distributions are 
also leptokurtic. The effect of shape is most 
clearly present when there is considerable shared 
variation in X and Y.  
 It is clearly the shape of the outcome 
measure rather than the covariate that results in 
manipulation of the Type I error rate. There is a 
small effect for the shape of X and little 
interaction between the shapes of X and Y. The 
complete set of 16 shapes is probably unrealistic in 
real world settings. The shapes of both X and Y 
are likely to be related to underlying 
characteristics of the sample chosen so that if Y is 
leptokurtic then X will likely also be somewhat 
leptokurtic. This would result in an accumulation 
of the major impact of the leptokurtic Y-scores 
and the minor impact of leptokurtic X scores to 
produce even more extreme Type I error elevation. 

Tests of significance involving ranks 
rather than the original scores largely control the 
inflated Type I error rate although there appear to 
be unexplained differences in the error rate 
associated with ranking methods as a function of 
the underlying distribution. Specifically, the error 
rate is consistently higher for the Conover and 
Iman (1982) method when the SKLPT Y 
distribution was the source of the ranks. This trend 
for skewed distributions to produce larger Type I 
error rates even after being ranked was also found 
in Conover and Iman (1982) and Stephenson and 
Jacobson (1988). 
 The influence of additive treatment effects 
is shown to have the potentially serious inflation 
of Type I error noted by Headrick and Sawilowsky 
(2000). The effect was found where the additive 
effects tended to isolate one treatment group away 
from the remaining groups. Since the variance of 
ranks is based on the range of the ranks within the 
complete set, the separation of one group from a 
set of other groups will reduce the range and 
variance and produce a reduced slope. The effect 
appeared as the magnitude of the additive 
treatment effect increased. The beginning additive 
constant of .8 corresponds to a large effect in 
Cohen’s (1988) terms. This effect showed no 
inflation of Type I error rate. Only as the additive 

effect increased beyond this did the error rate 
become problematic. 

Both of the proposed methods for testing 
slopes in the presence of potential additive effects 
reduced the Type I error rate to a generally 
acceptable level. The simulations that resulted in 
somewhat higher error rates were those with the 
most extreme distribution SKLPT Y. The method 
using deviations from the sample median was 
superior in controlling Type I error with SKLPT Y 
but was still somewhat elevated. 
 The two tests developed differ from others 
in that they are solely for testing the differences in 
slopes. There is no companion test for the 
presence of additive effects. A separate test such 
as that in Conover and Iman (1982) would need to 
be used for additive effects.  

The ranking methods developed herein 
will have to be compared to other options to 
determine whether they have sufficient power to 
replace the traditional methods. The level of 
additive treatment effect used in the simulation is 
large and, at the upper end, may represent a level 
seen in relatively few experiments.  

The experimenter should be able to 
anticipate this magnitude of effect. If the analysis 
of simple ranked scores as proposed by Conover 
and Iman (1982) is more powerful than the 
methods based on deviations the experimenter 
may choose to use simple ranks unless there is the 
expectation that very large additive treatment 
effects exist. However, if the power is equivalent 
the methods proposed herein should be preferred 
as they have more general Type I error control. 

 Lastly, the power of the tests using 
deviations from the mean and median need to be 
compared. While the median based method has 
superior Type I error control with the skewed 
leptokurtic distribution if it has less power the 
researcher may again want to determine if that 
condition within the outcome measure is likely to 
be present in the data and select accordingly. 
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Fermat, Schubert, Einstein, and Behrens-Fisher: 
The Probable Difference Between Two Means When F1

2…F2
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The history of the Behrens-Fisher problem and some approximate solutions are reviewed. In outlining 
relevant statistical hypotheses on the probable difference between two means, the importance of the Behrens-
Fisher problem from a theoretical perspective is acknowledged, but it is concluded that this problem is 
irrelevant for applied research in psychology, education, and related disciplines. The focus is better placed on 
“shift in location” and, more importantly, “shift in location and change in scale” treatment alternatives. 
 
Key words: Behrens-Fisher problem, t test, heterogeneous variances. 
 
 

Introduction 
 
Simply stated, the Behrens-Fisher problem arises 
in testing the difference between two means with a 
t test when the ratio of variances of the two 
populations from which the data were sampled is 
not equal to one. This condition is known as 
heteroscedasticity, which is a violation of one of 
the underlying assumptions of the t test. The 
resulting statistic is not distributed as t, and 
therefore the associated p values based on the 
entries found in standard t tables are incorrect. Use 
of tabulated critical values may lead to increased 
false positives, which are known as Type I errors, 
or a conservative test that lacks statistical power to 
detect significant treatment effects. 
 
Development of Student’s Distribution For a 
Unique Sample 

Regarding the development of the t test, 
Fisher (1939) noted,  
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To the present generation of statisticians, 
familiar with ‘Student’s’ distribution..., it 
has for some time appeared to be a 
somewhat puzzling historical fact that this 
advance in simple statistical procedure was 
not made long before, and was not made 
rather by a mathematician than a research 
chemist. 
  Light is perhaps thrown on this puzzle by 
the contrast, which has been striking during 
the last twenty years, between the facility, 
confidence, and skill with which the new 
tests have been applied by practical men in 
research departments, and the 
embarrassment and confusion of many 
discussions, in journals devoted to 
mathematical statistics, by mathematically 
minded authors lacking contact with 
practical research (p. 141). 
 

Prior to ‘Student’ or W. S. Gosset, the 
mathematician Helmert was able to determine the 
distribution of the sum of squares ( )2µx −∑  

(Helmert, 1875) and ( )2x x−∑  (Helmert, 1876), 
but indicated no practical value for the results. 
Subsequent to Gosset, another mathematician, 
Burnside (1923), used Bayesian methods in 
rediscovering the t distribution, although the 
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inclusion of an à priori distribution for a precision 
constant resulted in a difference of one degree of 
freedom. Interestingly, he presented a table of 
quartiles of the t distribution, prompting Fisher 
(1941) to remark, “It evidently did not occur to 
him that a 5 or 1% table would be more 
useful...[this] may be taken to indicate that he 
regarded his solution rather as a matter of 
academic interest than as meeting a need for 
guidance in practical decisions” (p. 142). 
 According to Jeffreys (1937), the t 
distribution was not discovered earlier because it 
“involves an unstated assumption” (p. 48) that for 
the sample mean (0), estimated variance of the 
mean (s2), and population mean (:), then the 
distribution of  

    
µ−

=
xt

s
             (1) 

depends only on the sample size n. Fisher (1941) 
added that novel reasoning also left unstated by 
Gosset was that 0 and s2 should be unbiased. 
 The question of bias in s2 was troublesome 
indeed. The prepublication title of “The Probable 
Error of a Mean” (Student, 1908) was “On the 
Probable Error of a Unique Sample”. The 
uniqueness that worried Gosset was the 
requirement that s2 be unbiased. Although Gosset’s 
paper pertained to the difference distribution of 
paired observations, Fisher (1941) extended this 
concern to the two independent samples case. 
Fisher suggested that one of the “difficulties in the 
way of an early discovery of ‘Student’s’ test” was 
because of “the application of the same methods to 
the more intricate problem of the comparison of 
the means of samples having unequal variances, or 
more correctly from populations, of which the 
variance ratio is unknown, and itself constitutes 
one of the parameters which require to be 
‘Studentized’”(1941, p. 146). 
 
The Behrens-Fisher Problem 

The first expression and solution to this 
problem was by Behrens (1929), and reframed by 
Fisher (1939a) from a Fisherian perspective as 
 

( ) ( )1 2 1 2
2 2
1 2

1 2

µ µ

2 1 2 1

x x
t

s s
n n

− − −
′ =

+
+ +

 (2), 

 

where s1 and s2 are fixed and F1 and F2 have 
fiducial distributions. Tables of critical values 
were given in Fisher and Yates (1957). This 
solution was challenged by Bartlett (1936) on the 
principle of inverse probability from a Bayesian 
perspective. Fisher responded with his usual 
tenacious and acrid style: “From a purely 
historical standpoint it is worth noting that the 
ideas and nomenclature for which I am responsible 
were developed only after I had inured myself to 
the absolute rejection of the postulate of Inverse 
Probability” (1937a, p. 151; see also 1937b, 
1939b). Jeffreys (1940) restored calm by 
demonstrating that Bartlett’s perspective was not a 
challenge to the Fisherian approach, but rather was 
another way of starting with the same hypothesis 
and ending with the same conclusion. 
 Commonly available solutions 
implemented in computer software statistics 
packages have eschewed both of those approaches 
in favor of a third theoretical perspective. This is 
the frequentist approach of Neyman-Pearson, 
where F1 and F2 are fixed, but s1 and s2 are free to 
vary in (2). The typical solution in statistics 
packages for solving the two sample problem (k = 
2) is the Welch separate variances test, which has 
become known as the Welch-Aspin test with 
modified degrees of freedom, given by 
 

     

22 2
1 2

1 2
2 22 2

1 2

1 2

1 2

ν

1 1

s s
n n

s s
n n

n n

 
+ 

 =
   
   
   +

− −

 (3). 

 
(Welch, 1937, 1949a, 1949b; Satterthwaite, 1941, 
1946; Aspin 1948, 1949). Although the exact 
distribution of the Welch statistic is known under 
normality (Ray & Pitman, 1961), it remains an 
approximate solution to the Behrens-Fisher 
problem. Welch (1947) also provided a solution 
for the generalized problem (k $ 2). 
 The Behrens-Fisher problem continued to 
attract the attention mathematical statisticians and 
applied researchers. For example, different 
perspectives were given by Wald (1955), Banerjee 
(1960), and Pagurova, (1968). These are but a few 
of the many solutions published in the literature. 
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Robustness With Respect To Unequal n’s and 
Population Normality 
 Eventually, however, questions arose on 
the robustness with respect to Type I errors for 
unequal n’s. Fisher (1939a) tried to quash this line 
of research by restating the fact that Gosset’s 
paper (Student, 1908) was on pairs of 
measurements (height vs length of middle finger 
for 3,000 criminals), obviating the unequal n 
problem. Nevertheless, in the context of k $ 2 
independent samples, studies indicated that the 
various solutions were not robust to unequal n’s 
(e.g., Kohr, 1970; Mehta & Srinivasa, 1970; Kohr 
& Games, 1974; Tomarkin & Serlin, 1986). 
Solutions to the unequal n situation appeared 
which preserved nominal alpha (e.g., Scheffé, 
1943; McCullough, Gurland, & Rosenberg, 1960), 
although some of them were subsequently found 
to be not very powerful. 
 This line of research was soon 
overshadowed by the concern of robustness with 
respect to Type I errors for departures from 
population normality. Monte Carlo studies showed 
that the Behrens-Fisher, Bartlett, and Welch-
Aspin/Satterthwaite approximate solutions are not 
robust to departures from normality (e.g., James, 
1959; Yuen, 1974). A similar fate awaited many of 
the other solutions, such as the Brown & Forsythe 
(1974) test (Clinch & Keselman, 1982), and the 
Hm test by Wilcox (1990) which had “the tendency 
to be conservative” (Oshima & Algina, 1992, p. 
262) for long-tailed distributions. The inability of 
these procedures to maintain the Type I error rate 
at nominal alpha created the opportunity for 
another round of alternative solutions being 
published. 
 Some solutions based on nonparametric or 
nonparametric-like procedures were unsuccessful. 
For example, Pratt (1964) showed that the Mann-
Whitney U (Mann & Whitney, 1947) and the 
expected normal scores test (Hájek & Sidák, 1967) 
resulted in nonrobust Type I error rates. Bradstreet 
(1997) found the rank transform test (Conover & 
Iman, 1982) to result in severely inflated Type I 
error rates. For the case of k > 2, Feir-Walsh and 
Toothaker (1974) and Keselman, Rogan, and Feir-
Walsh (1977) found the Kruskal-Wallis test 
(Kruskal & Wallis, 1952) and expected normal 
scores test (McSweeney & Penfield, 1969) to be 
“substantially affected by inhomogeneity of 
variance” (p. 220). 

 Other nonparametric solutions met with 
more success. Yuen (1974) provided a robust 
solution based on trimmed means and matching 
sample variances. Tiku and Singh’s (1981) 
solution was based on modified maximum 
likelihood estimators. Tan and Tabatabai (1985) 
combined the Tiku and Singh procedure with the 
Brown-Forsythe test to produce a more powerful 
procedure than those based only on Huber’s M 
estimator (Huber, 1981; Schrader & 
Hettmansperger, 1980). 

The development of procedures involving 
the Behrens-Fisher problem is not restricted to the 
usual k $2 independent samples case. Games and 
Howel (1976) examined pairwise mulitiple 
comparison solutions. Bozdogan and Rameriz 
(1986) proposed a likelihood ratio for situations 
where only subsets respond to a treatment. 
Johnson and Weerahandi (1988) provided a 
Bayesian solution to the multivariate problem. 
Koschat and Weerahandi (1992) developed a class 
of tests for the problem of inference for structural 
parameters common to several regressions. 
 Despite the many approximate solutions 
published to date, the Behrens-Fisher problem 
remains actively studied. In the past 35 years, 
there were 37 doctoral dissertations completed 
pertaining to some aspect of the Behrens-Fisher 
problem, including newly proposed approximate 
solutions (Dissertation Abstracts Online, 
2000).There was one dissertation completed in the 
1960s, six in the 1970s, 16 in the 1980s, and 14 in 
the 1990s. 
 
Hypothesis Testing 
 Consider the entries in Table 1. It contains 
the various hypotheses on the probable error of a 
mean, and the probable difference between two 
means. Hypotheses #1-#3 rarely occur in applied 
studies because they pertain to the Z test which 
requires F2 to be known. It is unusual for a social 
and behavioral science researcher to have the 
entire population at her or his disposal, or to know 
the parameters of the population. Z tests are 
valuable mainly as a pedagogical tool for 
introducing inferential statistics to students of data 
analysis methods. 
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Table 1. Parametric Nondirectional (Two-Sided) 
Null (Ho:) And Alternative (Ha:) Hypotheses For 
One Sample (:0) And Two Samples (:1, :2) Z 
And t Tests. 
 
 
Z tests: Hypotheses That Rarely Occur In Applied 
Studies 
#1: Ho: :1 = :0; F2 is known 
 Ha: :1 … :0; F2 does not change 
#2: Ho: :1=:2; F1

2=F2
2 and known 

 Ha: :1…:2; F1
2 and F2

2 do not change 
#3: Ho: :1=:2; F1

2…F2
2, but known 

 Ha: :1…:2; F1
 2 and F2

2 do not change 
 
t tests: Hypotheses That Occur In Applied Studies 
- The “Shift in Location Alternative” 
#4: Ho: :1=:0; F2 is unknown, but assumed to 

be unbiased 
 Ha: :1…:0; F2 does not change 
#5: Ho: :1=:2; F1

2 and F2
2 are unknown, but 

assumed to be equal 
 Ha: :1…:2; F1

2 and F2
2 do not change 

 
The Two Sample Behrens-Fisher Problem 
(Fisherian & Bayesian) 
#6a: Ho: :1=:2; F1

2 and F2
2 are unknown, but it 

is known that F1
2…F2

2 
#6b: Ho: :1=:2; F1

2 and F2
2 are unknown, but 

cannot be assumed to be equal 
 
The Two Sample Behrens-Fisher Problem 
(Neyman-Pearson) 
#6c: Ho: :1=:2; F1

2 and F2
2 are unknown, but it 

is known that F1
2…F2

2 
 Ha: :1…:2; F1

2 and F2
2 do not change 

#6d: Ho: :1=:2; F1
2 and F2

2 are unknown, but 
cannot be assumed to be equal 

 Ha: :1…:2; F1
2 and F2

2 do not change 
 
Hypotheses That Frequently Occur in Applied 
Studies: The “Shift in Location and Change in 
Scale” Alternative 
#7: Ho: :1=:2 and F1

2=F2
2 

 Ha: :1…:2 and F1
2…F2

2 

 
Note: Ha: can be expressed as a directional (one-
sided) hypothesis by replacing “…” with either “>” 
or “<”. 

Hypotheses #4 and #5 refer to the “shift in 
location” alternative and are tested by the t test. 
Although no test can survive violations of 
independence of observations, under certain 
commonly occurring conditions (i.e., sample sizes 
are equal or nearly so and are at least 25 to 30, and 
tests are two-tailed rather than one-tailed), the t 
test is remarkably robust with respect to both Type 
I and II errors for departures from normality (e.g., 
Sawilowsky, 1990; Sawilowsky & Blair, 1992).  
 Editors and reviewers challenge the shift 
alternative as a realistic treatment outcome, which 
in turn, questions the applicability of Hypotheses 
#4 and #5 to real world data sets. After studying 
the histograms of many real treatment vs control 
and pretest-posttest data sets, I argue that, indeed, 
shift happens. An example with 714 admit vs 
discharge Functional Independence Measure 
scores (Keith, Granger, Hamilton, & Sherwin, 
1987), an instrument that is frequently used in the 
field of rehabilitation counseling, was shown in 
Nanna and Sawilowsky (1998). 
 (I would be remiss if I failed to note that 
numerous Monte Carlo studies have shown that 
the nonparametric Wilcoxon Rank Sum test can be 
three to four times more powerful in detecting 
differences in location parameters when the 
normality assumption was violated (e.g., Blair & 
Higgins, 1980a, 1980b, 1985; Blair, Higgins, & 
Smitley, 1980; Sawilowsky & Blair, 1992). 
Micceri (1989) found that only about 3% of real 
data sets in psychology and education are 
relatively symmetric with light tails. Therefore, the 
Wilcoxon procedure should be the test of choice. 
The t test remains a popular test, however, most 
likely due to the inertia of many generations of 
classically parametrically trained researchers who 
continue its use for this situation.) 
 As noted by #6a - #6d, the hypotheses 
tested by the Behrens-Fisher problem can be 
expressed from the Fisherian/Bayesian perspective 
by the absence of an alternative hypothesis, or in 
the Neyman-Person frequentist paradigm. In the 
first example according to both perspectives (i.e., 
#6a and #6c), it is known that samples were drawn 
from two different populations (e.g., the first may 
have been extreme asymmetric such as 
exponential decay and the second may have been 
multimodal from a likert scale), but the population 
parameters remain unknown. Thus, the Behrens-
Fisher problem arises because the ratio of 
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population variances is different from one, 
although neither constituent value is known. The 
second and more common example, according to 
both perspectives (i.e., #6b and #6d), indicates that 
no information is available on the population from 
which the samples were drawn, and it cannot be 
safely assumed that the ratio of population 
variances is equal to one. Now, I discuss two 
reasons why these situations are important, and 
two reasons why they are irrelevant to applied 
researchers. 
 
Two Reasons Why The Behrens-Fisher Problem Is 
Important 
 
 1. The Behrens-Fisher problem is a 
classic. Many prestigious mathematical 
statisticians and applied researchers have 
addressed this problem. For some, their careers 
began with this problem; for others, their careers 
ended with this problem. The Behrens-Fisher 
problem has as much mystique and has received as 
much fanfare in its discipline as other classical 
problems that remain unsolved or unfinished in 
their disciplines, such as these: 
 
$ In 1630, Pierre de Fermat, an amateur 

mathematician, wrote “hanc marginis 
exigiutas non caperet” - he found a proof 
that was too large to write in a marginal 
note in his copy of the ancient Greek 
Diophantus’ Arithmetica that xn+ yn = zn 
has no nonzero integer solutions for x, y 
and z when n>2. In October, 1994, the 
mathematician Andrew Wiles solved the 
final aspect of this conjecture. (Fermat’s 
last conjecture is a special case of xn+ yn = 
czn, which remains unproven.) However, 
Wiles noted, “Fermat couldn't possibly 
have had this proof. It's a 20th-century 
proof. There's no way this could have been 
done before the 20th-century” (Wiles, 
1996).Thus, the conjecture remains 
unproven using 17th century mathematics. 

 
$ In 1822, Franz Schubert wrote what was 

later to be known as the ‘Unfinished’ 
Symphony No. 8 (or No. 7 according to 
some numbering schemes) in B Minor. He 
worked on it for six years, but only 
completed the first two movements of an 

intended four movement symphony. 
Mysteriously and uncharacteristically, he 
moved on to other pieces without finishing 
this symphony. Many musicians have 
written what they imagine the final two 
movements might have been if Schubert 
had finished it. 

 
$   In the 20th Century, physicists theorized on the 

unification of the laws of the universe. 
However, the solution eluded physicists 
from Albert Einstein to Stephen 
Hawkings. (The so-called “Grand 
Unification Theories” combine the weak, 
strong, and electromagnetic forces, but 
leave out gravity.) 

 
2. The second reason that the Behrens-

Fisher problem is important is due to the 
byproducts that have been developed in the course 
of creating approximate solutions. Some examples 
include: 
 
$ Bartlett’s (1937) study of 

heteroscedasticity culminated in a well 
known Chi-Squared test on variances, 
which is useful for testing the underlying 
assumption of homoscedasticity. Bartlett’s 
test is a logarithmic modification of the 
Neyman and Pearson (1931) L1 test for the 
equality of variances of k groups. 

 
$   James’ (1959) attempt to improve on the 

Behrens-Fisher, Welch, and Yates (1939) 
solutions led to the development of a 
Cornish-Fisher expansion for a symmetric 
distribution. 

 
$   Statistics were developed throughout the 20th 

Century based on asymptotic or large 
sample theory. Many were published 
based on elegant mathematical statistical 
theory, but turned out to be invalid for use 
in applied work. The Behrens-Fisher 
problem highlighted the importance of 
conducting robustness and comparative 
power studies relative to small samples. 

(Regarding the last point, my 
recommendation is that authors of new statistics or 
procedures publish their work after they have 
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conducted studies on the properties of the statistic 
when underlying assumptions are violated. Note 
that further study is moot if results for expedient 
mathematical distributions produce poor results; 
but if good results are obtained, verification is still 
required with real data sets.) 
 
Two Reasons Why The Behrens-Fisher Problem Is 
Irrelevant 
 1. Howell and Games (1974) suggested 
that “Educational and psychological researchers 
often deal with groups that tend to be 
heterogeneous in variability” (p. 72). This is 
mitigated by the fact that, “We have spent many 
years examining large data sets but have never 
encountered a treatment or other naturally 
occurring condition that produces heterogeneous 
variances while leaving population means exactly 
equal” (Sawilowsky and Blair, 1992, p. 358). 
None of Micceri’s (1989) 440 real psychology and 
education data sets reflected this condition, nor 
have I seen an example in the literature. Thus, the 
issue of heterogeneous variances and their impact 
on Type I errors is moot.  
 Zumbo and Coulombe (1997) demurred, 
and claimed “We could simply counter that in our 
experience we have seen it occur” (p. 148), but 
there was no data set in their article. Algina and 
Olejnik (1984) referred to a data set in Box and 
Cox from 1964, but the reference is missing from 
their bibliography. The ratios of minimum 
(0.0001) to maximum (0.1131) variances given for 
the 12 entries in their 3H4 layout are impressive; 
the frequency with which psychological and 
educational instruments produce variances less 
than one-twelveth of a single point remains 
problematic. Koschat and Weerahandi (1992) refer 
to what appears to be a real data set from business 
and economics, although they only published 
summary statistics and not the actual data set. 
Even if examples can be found, the question 
remains if the Behrens-Fisher problem surfaces 
with such frequency that merits the journal space it 
has been given. 
 2. The most prolific treatment outcome in 
applied studies is known. It is where a change in 
scale is concomitant with a shift in means. As an 
intervention is implemented, the means increase or 
decrease according to the context. Simultaneously, 
the treatment group may become more 
homogeneous on the outcome variable due to 

sharing the same intervention, method, conditions, 
etc. Alternatively, the group may become more 
heterogeneous, as some respond to the treatment 
while others do not respond, or even regress. 
 
What Is Wrong With Testing For Homogeneity 
Prior To The t-Test? 
 A common strategy is to conduct a test on 
variances prior to the pooled samples t test (e.g., 
SAS, 1990, p. 25; SPSS, 1993, p. 254-255; 
SYSTAT, 1990, p. 487). If the F test on variances, 
for example, is not significant, then the researcher 
continues with the t test. However, if the F test is 
significant, then the researcher is advised to 
conduct the separate variances t test (e.g., Welch-
Aspin) with modified degrees of freedom. 
 There is a serious problem with this 
approach that is universally overlooked. The 
sequential nature of testing for homogeneity of 
variance as a condition of conducting the 
independent samples t test leads to an inflation of 
experiment-wise Type I errors. A small Fortran 
program was written, compiled, and executed to 
demonstrate this, with the results noted in Table 2. 
 
Table 2. Type I Error And Power For The Pooled-
Variances Independent Sample t-test Conducted 
Unconditionally Or Conditionally On The F Test 
For Homogeneity Of Variance, " = 0.050; n1 = n2 
= 5, 100,000 Repetitions. 
 
     t-test            F-test 

      Unconditional  Conditional     Type I  
    L     R         L     R            Error 
Distribution 
Normal 
c=0.0   .025  .025    .023 .023          .051 
c=0.95             .000  .265    .000 .252 
c=2.0               .000  .790    .000 .750 
Chi-Square 
 (<=2) 
c=0.0              .023  .019     .015 .013          .172 
c=1.5              .000  .252     .000 .202 
c=3.5              .000  .735     .000 .632 
Note: “c” = shift in location to produce 
approximately small or large Effect Sizes. A study 
of robustness with respect to Type II errors 
requires “c” to represent equal Effect Sizes across 
distributions, which was not done for this 
illustration. “L” = left tail. “R” = right tail. 
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 An examination of Table 2 highlights a 
number of important points: 
 
$ The experiment-wise Type I error rate, 

under normality, is .097 (.051+.023+.023) 
when the t test is conducted conditional on 
the F test for homogeneity of variance. 
This is almost twice nominal alpha. 

 
$ The experiment-wise Type I error rate 

when the data were sampled from a Chi-
Squared distribution (<=2) is .200, which 
is four times nominal alpha! 

 
$ The F test on variances, as is well known, 

is nonrobust to departures from normality. 
In this case the Type I error rate for 
Gaussian data of 0.051 ballooned up to 
.172 for the Chi-Squared (<=2) data. This 
inflation level of about 3.5 times nominal 
alpha means the data analyst will 
frequently abandon the pooled samples t 
test in favor of the separate variances test, 
when in fact, the condition of 
homoscedasticity holds. This problem can 
be ameliorated somewhat by using 
Levene’s (1960) test, which is more robust 
to departures from normality. 

 
$ Conducting the t-test conditioned on the F 

test for variances resulted in a 5% loss of 
power under normality, which is ill 
afforded in small samples applied 
research. 

 
$ Conducting the t-test conditioned on the F 

test for variances resulted in a 20% loss of 
power under the Chi-Squared (<=2) 
distribution for the small Effect Size, and 
a 14% loss in power for the large Effect 
Size, which is ill afforded in small 
samples applied research. 

 
 Hyman (1995) opined that methodology 
articles are less helpful when they are restricted to 
pointing out errors or deficiencies, and are more 
helpful when they redirect researchers toward a 
useful methodology. Given the severity of the 
problem of pursuing Hypothesis #6 sequentially 
after a test on variances, it is appropriate to review 
Hypothesis #7 in more detail. 

Refocusing On Treatments That Impact Location 
And Scale 
 Hypothesis #7 pertains to the situation 
where naturally occurring differences or treatment 
outcomes produce a shift in location and a change 
in scale. Diamond (1981, p. 73-74) discussed a 
simple procedure where variances and means are 
tested separately. What is needed, however, is a 
test of both parameters simultaneously. Lepage 
(1971, 1975), Gastwirth and Podgor (1992), and 
Podgor and Gastwirth (1994) offered some early 
work and hypothesis tests that depend on location 
and scale. Two more recently developed statistics 
for Hypothesis #7 were given by O’Brien (1988) 
and Brownie, Boos, and Hughes-Oliver (1990). 
They are discussed below because they are 
promising for small samples applied research. 
 (1) O’Brien’s (1988) generalized t-test is 
carried out by ordinary least squares or logistic 
regression. In terms of the former, a dummy 
variable of 1, representing group membership, or 
0, representing nonmembership, is regressed on 
the outcome variable, w, as well as w2: 
 

yN=$o+$1w+$2w2                       (4).
 
If $2 is not near zero, the test for treatment effects 
is conducted with the 2 degrees of freedom F test 
of Ho:$1 = $2 = 0. If $2 is near 0, however, (4) is 
replaced with 
 

yN=$o+$1w            (5), 
 
and the one degree of freedom test of Ho: $o = 0, 
an independent samples t test, is conducted. It is 
called a generalized t-test because of the variety of 
levels of nominal " which may be selected for 
testing (4). 
 Blair and Morel (1991) examined the 
experiment-wise Type I error rate of conducting 
(5) conditional on (4). The sequential conditional 
testing procedure resulted in inflated Type I errors. 
Grambsch and O’Brien (1991) provided a “2/3” 
rule, where approximately correct Type I errors 
are obtained by reducing alpha to two-thirds of the 
desired size. Subsequently, a superior solution was 
made available by Blair (1991), who provided a 
corrected table of critical values for O’Brien’s 
procedure which results in correct Type I error 
rates. 
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 (2) Brownie, Boos, and Hughes-Oliver 
(1990) provided a modification to the t test: 
 

* 1 2

2
1

1 2

1 1
x xt

s
n n

−
=

×
           (6), 

 
where s1

2 is the sample variance from the control 
group, and < = n1-1. Subsequently, Sawilowsky et 
al. (1991) and Blair and Sawilowsky (1993a, 
1993b) demonstrated through Monte Carlo 
methods that t* is not robust with respect to Type I 
errors for departures from population normality. In 
addition, it requires that the change in scale 
increase, but not decrease. Blair and Sawilowsky 
(1992a, 1992b, 1993a, 1993b) fixed the Type I 
error properties by developing two new tests based 
on t* and F*, the extension based on k >2. In the 
context of F*, the first test is a permutation 
analogue (pF*), which does not require à priori 
knowledge of the expected change (i.e., increase 
or decrease) in variability relative to the control 
groups. 

The second (pF*min) designates the group 
with the smallest variance as the control group, 
and substitutes smin

2 for s1
2 in (6). (Both procedures 

can also be conducted as an approximate 
randomization test with negligible loss in precision 
or power.) These tests and other procedures were 
examined further by Troendle, Blair, Rumsey, and 
Moke (1997). 
 Podgor and Gastwirth (1994) compared 
O’Brien’s test with Brownie, Boos, Hughes-
Oliver’s test in various configurations. However, 
they did not use Blair’s corrected critical values or 
Blair and Sawilowsky’s approximate 
randomization correction. One of my doctoral 
students is comparing both procedures with their 
respective corrections with two nonparametric 
tests. One statistic is the Savage test for positive 
random variables (which received some attention 
by Podgor & Gastwirth, 1994). It assumes that a 
difference in scale causes a difference in location 
(see, e.g., Deshpande, Gore, & Shanubhogue, 
1995, p. 53-56). The other is the Rosenbaum test 
for general differences (see, e.g., Neave & 
Worthington, 1988, p. 144-149). 
 
 
 

Conclusion 
 
The Behrens-Fisher problem is a classic, but its 
many and continuing solutions are perhaps better 
housed in journals catering to theoretical 
developments. Sufficient journal space has been 
given to this problem in comparison with the 
frequency with which it occurs. Instead, applied 
researchers should focus on more practical 
treatment outcomes, such as a treatment or 
naturally occurring condition that brings about a 
shift in location and a change in scale. This is the 
most realistic treatment outcome in applied 
psychology and education research. It presents an 
exciting area in which considerable additional 
research is warranted. 
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Comparing individual confidence intervals of two population means is an incorrect procedure for determining 
the statistical significance of the difference between the means. We show conditions where confidence 
intervals for the means from two independent samples overlap and the difference between the means is in fact 
significant. 
 
Key words: Overlapping confidence intervals, significance tests, statistical tests of significance, tests for 
differences of means 
 
 

Introduction 
 
When conducting a hypothesis test on the 
difference between two means (i.e., Ho: F1 - F2 = 
0) or the special case of the difference between 
two proportions (i.e., Ho: p1 - p2 = 0) from two 
independent samples, some practitioners, 
researchers, and students may be tempted to 
compare the confidence intervals for the two 
individual means to determine the statistical 
significance of the difference. If the individual 
confidence intervals overlap, one might conclude, 
in error, that the means do not differ because of 
this overlap.  
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 We say that confidence intervals for 
means F1 and F2 computed from sample means 1x  
and 2x , where 1x  < 2x , overlap if the upper 
bound on 1x  exceeds the lower bound on 2x . This 
misinterpretation of confidence intervals occurs 
widely in practice (Schenker & Gentleman, 2001); 
many researchers and even some statisticians 
mistakenly believe it. Accordingly, we consider 
the separate confidence intervals associated with 
the individual hypothesis tests for F1 and F2 (i.e., 
H

10 : F1 = 0 and H
20 : F2 = 0) and the implications 

of attempting to test the hypothesis Ho: F1 - F2 = 0 
in terms of the individual confidence intervals 
associated with H

10  and H
20 . 

Examples of overlapping confidence 
intervals for means that differ significantly are 
provided by Nelson (1989) and Barr (1969). 
Assuming a common known population variance, 
Nelson (1989) and Barr (1969) show that when 
given sample means from two normally distributed 
populations, the appropriate confidence interval 
for testing the hypothesis  Ho: F1 - F2 = 0 is based 
on the difference of the sample means, 1x  - 2x . 
We generalize this result to include the assumption 
of unequal sample variances and the special case 
of two proportions. 
  

Methodology 
Statistically Significant Difference of Two Means  
Consider the case of independent random samples 
of size n1 and n2 from two populations with sample 
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means 1x  and 2x  and variances s1
2, s2

2. For 
simplicity, assume the population variances are 
equal and the populations are either normally 
distributed or the samples are sufficiently large so 
the assumptions of the Student=s t-test are satisfied 
for the hypothesis tests and confidence intervals 
(Woodward, 1999). (This assumption will avoid 
any unnecessary complications with the 
distribution of the test statistic when the 
population variances are unequal.) The two sample 
means differ significantly at the .05 alpha level if 
the difference | 1x - 2x | exceeds about 2 standard 
errors of the difference of the means (i.e., | 1x - 2x | 
> 2s

21 xx −
). 

 For simplicity and clarity, because this 
discussion is in an instructional context, we use 
the quantity 2 as a sufficiently close 
approximation to the critical value of the Student=s 
t-distribution at the .05 alpha level, which for large 
sample sizes will be close to the standard normal 
distribution critical value of 1.96. How can this 
difference hold if the individual confidence 
intervals for F1 and F2 overlap? If the confidence 
intervals overlap and the sample means 1x  and 2x  
differ significantly, then (from Figure 1 below), it 
is necessary that s

1x
+ s

2x
> s

21 xx −
. That is, the sum 

of the individual standard errors must exceed the 
standard error of the difference of the means. 

An estimate of F2
21 xx −
 is given by s2

21 xx −
 

= s2(1/n1 + 1/n2), where s2 = [(n1 - 1)s1
2 + (n2 - 

1)s2
2]/(n1  + n2 - 2) is an estimate of F2 obtained by 

pooling s1
2 and s2

2 (Woodward, 1999). To be 
significant at the .05 alpha level, the difference in 
means | 1x - 2x | must equal or exceed 

 
  2s 21 /1/1 nn +             (1) 
 
But for the confidence intervals to overlap, the 
difference between the means must be less than  
 
  2(s1 / 1n  + s2 / 2n )             (2) 
 
Accordingly, if | 1x - 2x | is greater than or equal to 
(1) but less than (2), the difference of the means is 
significant and the individual confidence intervals 
overlap. 

 Example. The following data for two 
independent samples is taken from Woodward 
(1999). For the first sample, n1 = 39, 1x  = 6.168, 
and s1 = 0.709; for the second sample, n2 = 11, 2x  
= 6.708, and s2 = 0.803. The computed t-statistic 
for the test of the hypothesis Ho: F1 - F2 = 0 is 
t(48) = -2.17 (Woodward, 1999, p. 78) with a 
resulting p-value of .0351, indicating significance 
at the .05 alpha level. The 95% confidence 
intervals for F1 and F2 are (5.938, 6.398) and 
(6.169, 7.247), respectively. Accordingly, the 
sample means 1x  and 2x  differ significantly (p = 
.0351) yet the confidence intervals overlap. 
Moreover, note the conditions from (1) and (2) 
above and in Figure 1 are satisfied; i.e., 2s

1x
+ 

2s
2x
> | 1x - 2x | > 2s

21 xx −
; for this example, .711 > 

.540 > .498. 
 
Statistically Significant Difference of Two 
Proportions 

Two independent proportions, p1 and p2, 
may also be used to illustrate that overlapping 
confidence intervals do not imply nonsignificance 
of the observed difference. We now assume the 
samples are sufficiently large so that p1 and p2 
(and hence their difference) are normally 
distributed. To be significant at the .05 alpha level, 
the difference |p1 - p2| in the proportions must 
equal or exceed 

 
       2 222111 /)1(/)1( nppnpp −+−        (3) 
 
However, individual confidence intervals for p1 
and p2 will overlap if |p1 - p2| is less than 
 
      2( 111 /)1( npp − + 222 /)1( npp − )  (4) 
 
using the quantity 2 as a sufficiently close 
approximation to the appropriate value (1.96) of 
the standard normal distribution. For 0 < p1 , p2 < 
1, and n1

 , n2 > 1, the quantity (3) will always be 
less than (4). So, it could happen that |p1 - p2| is 
greater than or equal to (3) but less than (4), in 
which case the difference between the proportions 
would be significant and the confidence intervals 
would overlap. 
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Results 
 

The Texas Bicycle Helmet Study (Logan, 
Leadbetter, & Gibson, 1998) provides an example 
of two independent proportions p1 and p2 with 
overlapping confidence intervals and a significant 
difference between the proportions. Elementary 
and middle school students were surveyed over 
three time periods to assess their attitudes on such 
issues as helmet use, school rules, and social 
acceptability of bicycle helmets. In this example, 
let p1 be the proportion of students in grades 4 - 6 
in survey period 3 who agree that students Amust 
wear helmets@ and p2 the corresponding proportion 
of students in grades 7 - 8 (see Figure 2 above). 
We are interested in testing Ho: p1 = p2. What 
result is obtained by observing the individual 95% 
confidence intervals? How does this result 
compare with the hypothesis test? 

The upper bound of the confidence 
interval for p2 (.593) is greater than the lower 
bound for p1 (.590), leading some to conclude 
incorrectly that the observed difference p1 - p2 is 
not significant. However, dividing the difference 
of the proportions (.253) by the standard error of 
the difference (.098) results in a test statistic of z = 
2.58, which corresponds to a significance 
probability (p-value) of .0099. As shown 
previously, the individual confidence intervals 
overlap even though p1 and p2 differ significantly 
at the .05 alpha level provided |p1 - p2| is less than 
twice the sum of the individual standard errors of 
p1 and p2. In this example, p1 and p2 differ 
significantly, but the individual confidence 
intervals overlap as the difference p1 - p2 (.253) is 
less than twice the sum of the individual standard 
errors (2(.042 + .089) = .262). 

Of course, the proper interpretation of 
hypothesis testing in the context of confidence 
intervals consists (using the present example) of 
the estimated difference d = p1 - p2 with its 
associated lower and upper bounds to see if that 
confidence interval includes zero (see Figure 2) 
(Woodward, 1999). For any significance level, 
failure of the associated confidence interval to 
Acover@ zero will always indicate significance in 
the corresponding hypothesis test. To correctly 
interpret the relationship between confidence 
intervals and hypothesis tests, one needs to use the 
confidence interval of the difference.       

Conclusion 
 

Our purpose has been to show that an overlap of 
individual confidence intervals for two means or 
proportions does not necessarily indicate that the 
difference between the means is nonsignificant. 
The proper interpretation of confidence intervals is 
important because of their increased use in recent 
years as an inferential tool in preference to 
traditional hypothesis testing (Chow, 1996). In 
disciplines such as medicine  (Gardner & Altman, 
1986), epidemiology (Savitz, Tolo, & Poole, 
1994), education (Nix & Barnette, 1998), and 
psychology (Krantz, 1999), many believe that 
confidence intervals are more meaningful and 
easier to interpret than tests of significance. 

This erroneous use of individual 
confidence intervals to determine the significance 
of the difference between two means could lead 
one to fail to reject the hypothesis of no difference 
when the difference is indeed significant. This 
misuse of individual confidence intervals results in 
an overly conservative test (Schenker & 
Gentleman, 2001). In the Texas Bicycle Helmet 
Study, which used .05 as the stated alpha level, the 
actual significance probability (p-value) was 
.0099, indicating a significant difference of means. 

The erroneous interpretation of 
overlapping confidence intervals would lead one 
to conclude otherwise. The potential for 
misinterpretation is even more profound if the 
observations are taken from a sample of paired 
data since the standard error of the difference 
(between the observations in each pair) can be 
considerably smaller (assuming the sample means 
are positively correlated) than the standard errors 
of the means from the individual samples 
(Woodward, 1999). Using the individual 
confidence intervals here to test the hypothesis Ho: 
d = 0 (d being the difference within each paired 
observation) would be an exceedingly 
conservative procedure.    

To indicate how individual 95% 
confidence intervals can overlap even when the 
means differ significantly, we generated 
confidence intervals for two proportions p1 and p2 
for a range of sample sizes. Using values of p1 = 
.65 and p2 = .40 (chosen because they are 
comparable to the values in the previous example) 
and, for simplicity, equal size samples from each 
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population (i.e., n1 = n2 = n), we computed 
confidence intervals for p1 and p2. Percent overlap 
is defined as the ratio of the amount of overlap of 
the confidence intervals to the difference p1 - p2. 
For sample sizes ranging from 30 to 57 from each 
population, the individual confidence intervals 
overlap and the two proportions differ 
significantly (see Figure 3). 

For n < 30, the individual confidence 
intervals overlap, but the difference of the 
proportions is no longer significant at the .05 alpha 
level. For n > 57, the proportions are significantly 
different, but the confidence intervals no longer 
overlap. It is within the range of sample sizes from 
30 to 57 (for the selected values of p1 and p2) that 
one could erroneously conclude that the difference 
p1 - p2 is significant on the basis of overlapping 
confidence intervals. As the percent overlap 
decreases, so too does the significance probability 
(see Figure 3). Accordingly, the consequences of 
misinterpretation are greater as the overlap 
becomes smaller. In the example in Figure 2, the 
percent overlap is (.593 - .590) / (.672 - .419), or 
1.2%, but the significance probability, as 
previously noted, is .0099. 

Note that for any value n selected within 
the range (30, 57) in Figure 3 (next page) for equal 
sample sizes (n1 = n2 = n), the difference p1 - p2 
(.25) will be greater than expression (3) and less 
than (4), the conditions previously noted for 
overlapping 95% confidence intervals for two 
significantly different proportions. 

Why does this problem persist? Some 
users may be accustomed to viewing graphical and 
other displays of data, such as results of multiple 
range tests, in which overlapping segments of 
output do indicate nonsignificant differences. They 
may jump to the erroneous conclusion that 
overlapping confidence intervals imply that the 
difference of the means is nonsignificant. Another 
notion that may contribute to the belief that 
overlapping confidence intervals imply a 
nonsignificant difference is the case of 
nonoverlapping confidence intervals for 
proportions from two independent samples 
(Centers for Disease Control and Prevention, 
1995). 

In the case of two proportions, from the 
conditions noted in (3) and (4), the sum of the 
individual standard errors always exceeds the 
standard error of the difference. It then follows 

that if the confidence intervals do not overlap, the 
difference of the proportions is indeed significant. 
This fact may lead some to conclude that two 
proportions do not differ significantly if their 
confidence intervals do overlap.  
 So what do the individual confidence 
intervals say about the difference between the 
means? These intervals are statements only about 
the variability of each individual estimate; they 
say nothing about their difference. To determine 
the significance of the difference in the context of 
a confidence interval, lower and upper bounds for 
the difference can be computed quite routinely 
once the standard error of the difference between 
the means has been obtained. Only by looking at  
the lower and upper confidence limits for this 
difference (see Figure 2) and noting whether the 
interval includes (or excludes) zero, can one 
determine the statistical significance of the 
difference. 
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Figure 3.  Percent overlap of confidence intervals for p 1 and p 2 and significance
 probabilities (30 < n  < 57, p 1 = .65, p 2 = .40).   
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Introduction 
 
Exploratory model building is often used within 
the context of multiple regression (MR) analysis. 
As noted by Draper and Smith (1998), these 
undertakings are usually motivated by the 
contradictory goals of maximizing predictive 
efficiency and minimizing data 
collection/monitoring costs. A popular 
compromise has been to adopt some strategy for 
selecting a “best” subset of predictors. 
 Many different definitions of best can be 
found in the literature, including incremental 
procedures such as forward selection MR, 
backward elimination MR, stepwise MR, all-
possible subsets MR with criteria related to 
residual variance, multiple correlation, Mallows 
Cp, etc. Incremental procedures are efficient, 
computationally,  but  do  not  necessarily  result in  
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the selection of an unconditionally best model. For 
example, as usually implemented, forward 
selection MR includes additional variables in the 
regression model based on maximizing the 
increment to R-squared from step to step. At the 
third step, for example, the model contains the best 
three predictors only in a conditional sense. Also, 
the modifications to forward selection incorporated 
into stepwise MR do not guarantee finding the best 
three predictors.  

In contrast to incremental procedures, all-
possible subsets does choose a best model for a 
fixed number of predictors but not necessarily an 
overall best model. For the mth model based on pm 
out of a total of p independent parameters, 
Mallows Cp, for example, utilizes a criterion of the 
form SS n pm e m/ [ ( )]σ 2 2 1− − + where σ e

2 is the 
residual variance estimate based on the full model 
(i. e., the model with all p predictors). Models with 
values close to pm + 1 are best in a final prediction 
error (FPE) sense. Thus, a best model can be 
identified for fixed values of pm, but there is no 
general method for selecting an overall best model. 

Akaike (1973) adopted the Kullback-
Leibler definition of information, I f g( ; ) , as a 
natural measure of discrepancy, or asymmetrical 
distance, between a true model, f y( ) , and a 
proposed model, g y( | )β , whereβ  is a vector of 
parameters. Based on large-sample theory, Akaike 
derived an estimator for I f g( ; ) of the form: 
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 AIC Ln L km m m= − + ⋅2 2( )  , 
 
where Lm is the sample log-likelihood for the mth 
of M alternative models and km is the number of 
independent parameters estimated for the mth 
model. The term, 2 ⋅ km , may be viewed as a 
penalty for over-parameterization. The derivation 
of AIC involves the notion of loss of information 
that results from replacing the true parametric 
values for a model by their maximum likelihood 
estimates (MLE’s) from a sample. In addition, 
Akaike (1978b) has provided a Bayesian 
interpretation of AIC. 

A min(AIC) strategy is used for selecting 
among two or more competing models. In a 
general sense, the model for which AICm is 
smallest represents the “best” approximation to the 
true model. That is, it is the model with the 
smallest expected loss of information when MLE’s 
replace true parametric values in the model. In 
practice, the model satisfying the min(AIC) 
criterion may or may not be (and probably is not) 
the “true” model since there is no way of knowing 
whether the “true” model is included among those 
being compared. Unlike traditional hypothesis 
testing procedures, the min(AIC) model selection 
approach is holistic rather than piecemeal. Thus, 
for example, in comparing four hierarchic linear 
regression models, AIC is computed for each 
model and the min(AIC) criterion is applied to 
select the single “best” model. This contrasts with 
the typical procedure of testing the significance 
between models at consecutive levels of 
complexity. An excellent and more complete 
introduction to model selection procedures based 
on information criteria is presented by Burnham 
and Anderson (1998).  
 Typically, for regression models, the 
number of independent parameters, km , is equal to 
the number of predictor variables in the equation 
plus two since, in addition to partial slope 
coefficients, an intercept and residual variance 
term are estimated. It should be noted that the 
maximum likelihood estimator for the residual 
variance is biased (i. e., the denominator is the 
sample size, n, rather than n – pm– 1 for a pm-
predictor model). In particular, for p predictors 
based on a normal regression model (i. e., residuals 
assumed to be normally distributed with 
homogeneous variance), the log(likelihood) for the 

model is: − ⋅ + +. (ln( ) ln( / ) )5 2 1n SS neπ  where 
SSe  is the sum of squared residuals. Then, the 
Akaike information measure is: 
 
  AIC n SS n pe m= + + + +(ln( ) ln( / ) ) ( )2 1 2 2π .  
 
The Akaike model selection procedure entails 
calculating AIC for each model under 
consideration and selecting the model with the 
minimum value of AIC as the preferred, or “best,” 
model. In the context of selecting among 
regression models, a “best” model can be selected 
for each different size subset of predictors as well 
as overall. 
 AIC, which does not directly involve the 
sample size, n, has been criticized as lacking 
properties of consistency (e.g., Bozdogan, 1987; 
but see Akaike, 1978a for counter arguments). A 
popular alternative to AIC presented by Schwarz 
(1978) and Akaike (1978b) that does incorporate 
sample size is BIC where: 
 
 BIC Ln L n km m m= − + ⋅2 ( ) ln( ) . 
 
 BIC has a Bayesian interpretation since it 
may be viewed as an approximation to the 
posterior odds ratio. Note that BIC entails heavier 
penalties per parameter than does AIC when the 
sample size is eight or larger. When the order of 
the model is known and for reasonable sample 
sizes, there is a tendency for AIC to select models 
that are too complex and for BIC to select models 
that are too simple. In fact, the relative tendencies 
for the occurrence of each type of misspecification 
can be derived mathematically as shown by 
McQuarrie and Tsai (1998). The tendency for AIC 
to select overly complex models in cases where 
complexity is known has been interpreted as a 
shortcoming of this measure. Hurvich and Tsai 
(1991), for example, argue for a modified version 
of AIC that incorporates sample size. In practical 
applications, however, the performance of criteria 
such as AIC and BIC can be quite complex. 
 AIC was originally developed by Akaike 
within the context of relatively complex 
autoregressive time series models for which he 
presented some simulation results (Akaike, 1974). 
Bozdogan (1987) compared rates of successful 
model identifications for AIC and CAIC (a close 
kin of BIC) for a single cubic model with various 
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error structures. Hurvich and Tsai (1991) 
compared AIC and their own consistent estimator, 
AICC, for a normal regression case and for a 
complex time series. Bai et al. (1992) compared 
AIC and several modifications of AIC within the 
context of multinomial logistic regression models. 
Although each of these previous studies has 
investigated the use of AIC and related criteria in 
exploratory frameworks, the present study expands 
the focus to applications of multiple regression 
analysis that are more typical of a behavioral 
science setting. More specifically, AIC and BIC 
were investigated under a variety of realistic 
scenarios. 
 

Methodology 
 
AIC and BIC were evaluated under several 
simulated multiple regression conditions. Data 
were collected regarding the accuracy of both 
information criteria for each condition and the 
nature of the incorrect choices. The accuracy of an 
information criterion was defined as the percentage 
of iterations in which it selected the correct model. 
Incorrect model selections fell into one of three 
categories: 1) Low: The chosen model had too few 
predictors in it; 2) High: The chosen model had too 
many predictors in it; 3) Off: The chosen model 
had the correct number of predictors but included 
one or more that had a correlation of 0 with the 
criterion without including one or more that had a 
nonzero correlation with the criterion. 
 The number of total predictors, the number 
of valid predictors, R-squared, and sample size 
were manipulated. For total number of predictors, 
p, the values of 4, 7, and 10 were chosen. These 
values are a reasonable representation of the 
number of predictors found in applied research 
settings and they are sufficiently different to 
illustrate potential relationships between p and 
accuracy of the information criteria. With 4 total 
predictors, conditions with 2, 3, and 4 valid 
predictors (v) were simulated; with 7 total 
predictors, conditions with 2 through 7 valid 
predictors were simulated; and with 10 total 
predictors, conditions with 2 through 8 valid 
predictors were simulated. For p = 10, 9 and 10 
valid predictors were not included because 
predictor-criterion correlations for a ninth and 
tenth valid predictor at R² = .1, after controlling for 
the first eight predictors would have been trivially 

small. Furthermore, research contexts rarely 
incorporate 9 or 10 valid predictors for a single 
criterion. 
 Three values of R-squared, .1, .4, and .7, 
were evaluated. These values were chosen to 
represent small, moderate, and large multiple 
correlations, respectively. They were also chosen 
to allow for consideration of accuracy trends that 
were a linear function of R-squared. 
 Each combination of the above factors was 
tested with sample sizes that were 5, 10, 20, 30, 40, 
60 and 100 times the number of total predictors. 
Relative sample sizes were used rather than 
absolute sample sizes, because sample size 
recommendations in multiple regression are 
typically a function of the number of predictors in 
the model. These values for relative sample size 
were chosen to simulate conditions that were 
below generally accepted levels, at or somewhat 
above generally accepted levels, and clearly above 
generally accepted sample sizes. 
 All simulations were carried out by 
programs written and executed using SAS 8.0, and 
1000 iterations were conducted for each condition. 
The simulated data were generated for each 
condition based on a correlation matrix with the 
designated number of nonzero correlations 
between predictors and the criterion. The 
correlations in each combination increased from 
zero in a linear fashion based on their squared 
values, such that the r²-values summed to the 
designated R²-value. All correlations among 
predictors were set at 0. Although, in applied work, 
predictors are not independent of each other, this 
design does not lose generalizability since this is 
equivalent to residualizing the predictor-criterion 
correlations for all but the strongest predictor to 
compute R-squared, which results in all these 
intercorrelations becoming 0, regardless of their 
original values. 

Results 
 
Best Overall Models 
 The valid predictor ratio, VPR = v/p, is 
defined as the ratio of valid predictors (v) to total 
predictors (p). For purposes of interpreting 
accuracy in selecting true models, values of at least 
70% were considered satisfactory. The percentage 
of correct selection is presented for AIC and BIC 
in Tables 1 and 2 (see Appendix A). Results based 
on sample size sorted by total numbers of variables 
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equal to 4, 7 and 10 are summarized as graphs in 
Figures 1, 2, and 3, respectively (shown following 
tables in Appendix A). 
 
BIC 
 The accuracy of BIC for selecting the best 
overall model consistently improved as sample size 
increased and as R-squared increased. In general, 
accuracy declined with increases in the total 
number of predictors, p, with an exception being 
the behavior for two valid predictors, where 
accuracy steadily improved as p increased. The 
relationship of accuracy to VPR was not as 
straightforward, being complicated by interactions 
with sample size, R-squared, and p. For all 
combinations of R-squared and total number of 
predictors, there was an inverse relationship 
between accuracy and VPR for values of p at n = 
5p. For R² = .1, this relationship held across all 
sample sizes, with the differences between VPR’s 
generally increasing with sample size. For R² = .4, 
the differences in accuracy between the VPR’s 
within p slowly decreased, with the mid-range 
VPR’s consistently being superior to the others at 
the two largest relative sample sizes. For R² = .7, 
there was an inverse relationship between VPR and 
accuracy at the lowest sample sizes; the 
relationship became direct, however, by n = 30p 
with p = 7, and n = 20p at 4 and 10 total predictors. 
 For R² = .1, the accuracy of BIC was 
generally low. In only 10 of the 112 combinations 
in the simulation design did BIC achieve 
acceptable accuracy, doing so when n ≥ 400 with 
two valid predictors, n ≥ 600 with three valid 
predictors, and at n = 1000 with a VPR of 4/10. 
For R² = .4, the accuracy of BIC improved. For v = 
2, sample sizes of 10p were adequate to achieve 
acceptable accuracy. As VPR increased within p, 
and as p increased, the sample size necessary for 
acceptable accuracy also increased. At VPR’s of 
7/7 and 8/10, for example, acceptable accuracy 
was not achieved until n = 60p, while at VPR = 
4/4, BIC was 69.2% accurate at n = 30p and 80.5% 
accurate at 40p. 

 For R² = .7, BIC was quite accurate at all but 
the smallest relative sample size. At n = 5p, BIC’s 
accuracy was only acceptable with VPR = 2/4. At 
n = 10p, only VPR’s of 7/7, 7/10, and 8/10 failed 
to achieve acceptable accuracy. For the remaining 

relative sample sizes with R² = .7, BIC was at least 
80% accurate. 

AIC 
 Like BIC, the accuracy of AIC at selecting 
the best overall model consistently declined as the 
total number of predictors was increased. This was 
the only similarity in the pattern of results for AIC 
and BIC. The change in accuracy of AIC was not 
stable across any other single variable. 
 AIC was consistently at its worst at the 
smallest sample sizes, with improved accuracy 
attained with medium sample sizes. For larger 
sample sizes, AIC behaved nearly at its asymptote, 
although rarely at or near 100% accuracy. Only 
VPR’s of 4/4 and 7/7 approached 100% accuracy, 
doing so at the higher relative sample sizes with R² 
= .4, and doing so for n ≥ 30p with R² = .7. As R-
squared increased, each VPR behaved 
asymptotically at gradually smaller relative sample 
sizes. Lower VPR’s stabilized around their 
asymptotes sooner, in terms of sample size, than 
higher VPR’s due to a general tendency for the 
higher VPR’s to be less accurate at the smaller 
sample sizes and due to the fact that higher VPR’s 
consistently had higher asymptotes. 
 For the combinations with R² = .1, AIC 
achieved acceptable levels of accuracy even less 
frequently than did BIC, breaking the 70% barrier 
in only two cases: n = 400 at VPR’s of 2/4 and 3/4. 
With R² = .4, AIC did poorly for p = 10 with only 
the v = 8, n = 1000 case reaching satisfactory 
accuracy. At VPR = 7/7, AIC performed well for 
sample sizes of at least 30p.  
 AIC achieved acceptable accuracy at 
VPR’s of 2/4, 3/4, and 4/4 by n = 20p (albeit 
asymptotically for 2/4). For R² = .7, all VPR’s with 
p = 4, reached acceptable accuracy by 10p (again 
asymptotically for 2/4). With VPR = 5/7, the 
accuracy of AIC again appeared asymptotic at 
70%, but the VPR’s 6/7 and 7/7 demonstrated 
acceptable accuracy for all but the smallest sample 
size With eight valid predictors out of 10 total, 
AIC’s accuracy seemed to be asymptotic for a 
value just above 70% at n ≥ 30p. 
 
Comparison of BIC and AIC 
 At VPR’s of 4/4 and 7/7, AIC was 
consistently as good as or better than BIC at 
selecting the correct overall model regardless of 
sample size and R-squared. With R² = .1, AIC 
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outperformed BIC at all sample sizes when the 
VPR > .5. For R² = .4, AIC consistently 
outperformed BIC only at n = 5p and n = 10p in 
conjunction with VPR’s above .5. For R² = .7 and 
VPR > .5, AIC outperformed BIC only at n = 5p 
and for all other cases BIC outperformed AIC. 

Patterns of Misselection 
 Unlike the accuracy patterns of BIC and 
AIC, patterns of incorrect choices are nearly 
identical and relatively straightforward. The 
incorrect decisions made by both AIC and BIC 
tended to be in the direction of more complex 
models when sample size was large and valid 
predictor ratio was low. At lower sample sizes and 
higher valid predictor ratios, both criteria tended to 
select models that were too simple. 
 The rates of change from errors of 
complexity to errors of simplicity, however, were 
appreciably different for AIC and BIC. As sample 
size increased with decreasing VPR, incorrect 
decisions by BIC tended toward simpler models 
until reaching the higher relative sample sizes with 
the lower VPR’s. AIC, by contrast, made more 
errors of simplicity than of complexity only at the 
combination of the lower sample sizes and higher 
VPR’s. 
 Results were also obtained for incorrectly 
selecting models with the correct number of 
predictors but not the actual best predictors. This 
type of error occurred more often with AIC than 
with BIC and in general, it happened more often at 
smaller sample sizes, smaller R²-values, and for 
more total predictors. The relationship between 
VPR’s and the frequency of this type of incorrect 
selection interacted with R-squared and sample 
size. For R² = .1, these errors occurred 
predominantly at lower relative sample sizes with 
lower VPR’s. As VPR increased, the distribution 
became slightly quadratic, with the error occurring 
most at the moderate sample sizes and tapering to 
either side of the middle. At the higher values of 
VPR, the larger relative sample sizes contained the 
highest frequencies of this type of error. 
 For R² = .4, incorrectly selecting the right 
number but wrong set of predictors was generally 
limited to the lower sample sizes with the overall 
frequency dropping off rapidly after VPR = .5. For 
R² = .7, this type of error was rare; at no sample 
size above 5p was the frequency greater than 4.3% 
of the iterations, the frequency never exceeded 

10% for BIC and only at VPR’s of 7/10 (.136) and 
8/10 (.139) did it exceed 10% for AIC. 
 

Conclusion 
 
The results of the present study suggest that 
different multiple regression scenarios in applied 
research call for different information criteria for 
selecting the best set of predictors. As is so often 
the recommendation in research, the larger the 
sample sizes the better; both BIC and AIC were 
increasingly more accurate as sample size 
increased. The information criteria were also 
generally more accurate as the number of total 
predictors decreased, although the reverse was true 
of BIC with two valid predictors. The results also 
provide some unfortunately complex 
recommendations for accuracy based on 
interactions of VPR with other facets of model 
conditions. 
 When all, or nearly all, predictors in a set 
are valid predictors, AIC is as good as or better 
than BIC at selecting the best overall model at 
every sample size and R²-value tested. When R-
squared is low, the advantage of AIC at higher 
valid predictor ratios is essentially moot, because 
at higher VPR’s neither information criterion 
reached satisfactory accuracy (except AIC at VPR 
= 3/4 and n = 100p). With higher multiple 
correlations, however, AIC was at least 70% 
accurate at high VPR’s and sample sizes of 20 to 
30 times the number of predictors (with a negative 
relationship between sample size and R-squared 
required for good accuracy). For VPR’s above .5 
but below .8, sample size affects the relative 
performance of BIC and AIC. AIC is the better 
choice for relative sample sizes below 30p when 
R² < .7. BIC is generally the better choice for 
relative sample sizes of at least 30p or when R² ≥ 
.7, with one exception in the current study at VPR 
= 3/4 and R² = .1 in which AIC is better across 
sample size. It should be noted, however, that with 
VPR’s in the .5 to .8 range and relative sample 
sizes below 30p, neither AIC nor BIC reached 
satisfactory accuracy with R² < .7, so AIC’s 
advantage in such situations may not have practical 
importance. 
 For VPR’s ≤ .5, BIC performed uniformly 
better than AIC. The importance of this advantage 
was related to R-squared. With small multiple 
correlations, BIC only achieved satisfactory 
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accuracy at low VPR’s for relatively large sample 
sizes (n ≥ 400). At moderate levels of R-squared, 
BIC begins to perform well at lower relative 
sample sizes (20p with 3 valid predictors and 10p 
at v = 2, with R² = .4) when the VPR is low. At 
extremely high values of R-squared, BIC is at least 
70% accurate with sample sizes that are 10 times 
the number of predictors when VPR is low. 
 The sample sizes chosen for the present 
study seemed to provide a reasonable illustration 
of the patterns of accuracy at fixed relative sample 
sizes. There were, however, very few conclusions 
that could be made based on absolute sample size. 
Restructuring the tables and charts to line up 
sample sizes would line up only similar sample 
sizes, the conclusions of which would be 
confounded by having only similar valid predictor 
ratios. It might therefore be fruitful to investigate 
patterns of the accuracy of information criteria as a 
function of absolute sample size. 
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Appendix A: Tables & Figures 

Table 1. Percentage of correct model selection for AIC. 
 p 4 7 10
R² v 2 3 4 2 3 4 5 6 7 2 3 4 5 6 7 8

n=5p 9.7 3.9 1.8 8.8 2.2 0.7 0.4 0.1 0 8.7 3.3 0.4 0.2 0.1 0.1 0
10p 17.2 4.8 2.1 19 6 1.9 0.5 0.1 0.1 14.5 8.6 2.8 1.6 0.5 0 0
20p 35.5 18.2 5.7 29.3 20.2 10.5 5.6 2 1.3 20.9 18.1 10.6 6.5 3.4 1.7 0.2
30p 48 30.5 13.3 38 33 20.5 11 4.6 2.7 23 21.6 19.2 13.5 7.8 4.6 2.3
40p 57.8 42.1 23 37.6 39.8 30.3 20.3 12 6.1 23.6 26.5 23.6 20.3 13.2 8.3 7
60p 66.6 59.5 39.6 43.5 43.3 42.4 37.7 25.9 19.7 27.1 28.6 28.8 30.6 25.7 20.1 16.7

.1 100p 72.7 73.6 69.3 40.1 47.7 53.1 53.7 51.1 40.3 25.1 29.1 34.3 37 40.1 39.4 35.8
n=5p 44.4 25.3 13.3 28.5 21.9 13.4 9.7 6 2.5 16.6 19.6 13.8 8.1 6.6 3.9 2.2
10p 61.1 54 39.4 35.9 41.4 40.2 32.6 24.2 16.9 22.9 25.4 29.1 25.9 21.9 19.5 15.6
20p 68.7 77.2 74.7 43 46.5 55.3 59.2 56.6 49.2 24.3 31.8 33.1 39.1 39.4 41.6 40.5
30p 69.3 81.5 91.8 39.9 49.1 59.7 66.2 70.4 72.7 23.5 29.7 37.7 38.9 48.3 49.9 56.1
40p 70.1 82.6 95.9 43.9 48.4 57.1 67 79.9 88.2 25 28.7 33.7 39.6 47 54.6 64.8
60p 71.4 84.2 99.2 39.7 49.7 61.1 71.7 83.4 95.8 22 28.4 33.9 39.3 48.1 60.1 67.3

.4 100p 69.6 82.2 100 43.4 48 59.7 68.3 85.5 99.5 24.5 32.2 35 44.5 48.5 61.7 70.6
n=5p 60 62.4 61.8 35 41.6 41.5 45 45.4 38.7 19.1 26 29.5 27.5 33.1 31.3 28.2
10p 69.3 77.7 92.5 38.2 48.1 56.8 66.2 72.9 76.8 22.8 26.2 31.3 39.1 42.9 50.1 54.3
20p 67 81.9 100 41.6 52 58.6 66.8 84.4 95.4 23.5 29.7 33.2 40.7 47.6 56.9 68.3
30p 69.2 84.5 100 40.3 49.3 59.5 68.8 84.8 99.7 22.1 30.8 35.3 40.2 49.2 61.2 70.3
40p 71 83.6 100 39.9 47.7 61.3 68.6 83.1 100 27.4 28.8 33.7 40.6 49.6 60.6 72.6
60p 70.9 83.2 100 39.2 48.6 59.3 71.3 84.5 100 26.7 32.2 35.1 42.2 50 59.9 70.5

.7 100p 71.8 83.8 100 44.2 48 61.3 70.7 82.2 100 25.7 30.9 35.6 43.2 49.2 58.3 73.4
 
Table 2. Percentage of correct model selection for BIC. 
 p 4 7 10
R² v 2 3 4 2 3 4 5 6 7 2 3 4 5 6 7 8

n=5p 6 2 0.3 7.7 0.9 0.1 0.1 0 0 8.2 1.4 0.1 0 0 0 0
10p 8.8 1.5 0 16.3 1.5 0.1 0 0 0 21.5 3.9 0.1 0.2 0 0 0
20p 22.3 4.1 0.3 34.6 8.5 1.4 0.1 0 0.1 48.5 17.6 3.8 0.1 0.1 0 0
30p 34.3 7.5 0.9 57.9 21.3 4.2 0.5 0 0 69 32.4 11.6 2.2 0.4 0.3 0
40p 45.8 12.4 1.7 69 29.2 13.3 1.9 0.4 0.1 82.9 46.8 19.5 5.6 1.3 0.2 0
60p 68.3 26.8 7.2 86.8 53.6 25.1 6.8 1.2 0.3 89.5 71.2 40.5 18 4.9 1.4 0.7

0.1 100p 88.2 53.2 21.1 94.2 79.8 49.9 24.3 8.9 2.9 91.8 91 70.4 46.9 23.5 10.4 3.4
n=5p 44.5 17.9 6.5 48.4 23.5 8.3 4.1 1.4 0.2 50.4 35.5 15.2 5.7 2.1 0.2 0.2
10p 72.2 40.1 17.7 73.1 58.8 33.8 17.5 5.7 2.7 74.8 63.4 48.3 27.3 11.7 5.3 2.2
20p 88.8 74.1 46.4 86.9 85.9 69.8 46.2 29.1 13.6 83.1 86 74.9 63.5 44.7 28.2 14.9
30p 93.1 87.9 69.2 89.8 90.4 84.3 71.9 51.2 33.1 85.9 87.4 88.8 81.4 66.7 52.4 36
40p 94.7 94.1 80.5 91.7 92.9 90.5 82.2 67.3 50.7 88.5 90 90.5 89.3 79.1 65.9 52.5
60p 95.5 97.2 93.3 91.8 94.6 96.7 92.3 87.3 70.6 90.6 91.1 94.3 94.4 92.1 86.2 75.6

0.4 100p 97 98.6 99.3 94.6 94.1 97.1 97.4 96.7 91.9 92.2 94.6 94.3 95.8 96.8 97.3 93.4
n=5p 72.7 62.8 45.7 65.4 67.2 54.1 43.7 33.1 17.3 58 61.6 61.3 50.6 38.5 26.8 18.2
10p 88.2 87.4 80.6 79.2 83.1 80.8 77.3 67.9 51.6 74.8 77.2 77.4 79 72.1 63.3 51
20p 91.7 95.2 97.9 86.8 88 90.9 91.5 91.1 85 83.2 84.7 87.1 89.9 89.9 89.4 84.9
30p 92.6 96.8 99.9 89.7 90.7 92.5 96.1 97.1 96.5 85.5 87.2 90.2 91.5 93.6 93.8 93.2
40p 94.6 96.6 100 89.9 92.2 94.3 95.6 98.4 99.2 88.2 90.6 91.8 92.7 95.1 95.2 96.3
60p 95.5 97.9 100 92.5 94.5 94.4 97.7 98.3 100 90.3 91.7 92.8 94.4 95 95.8 97.2

0.7 100p 97.2 98.6 100 94.2 96.9 96.6 98.1 99 100 93.4 94.5 95.7 95.2 96.4 97.7 98.4
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Figure 1. Percentage of correct model selection for BIC and AIC; four total predictors 
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Figure 2. Percentage of correct model selection for BIC and AIC; seven total predictors 
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 BIC      R² = .7       AIC 
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Figure 3. Percentage of correct model selection for BIC and AIC; ten total predictors 
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Researchers engaged in computer-intensive studies may need exact critical values, especially for sample sizes 
and alpha levels not normally found in published tables, as well as the ability to control ‘best-fit’ criteria. 
They may also benefit from the ability to directly generate these values rather than having to create lookup 
tables. Fortran 90 programs generate ‘best-conservative’ (bc) and ‘best-fit’ (bf) critical values with associated 
probabilities for the Kolmogorov-Smirnov test of general differences (bc), Rosenbaum’s test of location (bc), 
Tukey’s quick test (bc and bf)) and the Wilcoxon rank-sum test (bc). 
 
Key words: Kolmogorov-Smirnov test, Rosenbaum test, Tukey quick test; Wilcoxon rank-sum test. 
 

 
Introduction 

 
Researchers, especially those engaged in Monte 
Carlo studies, may have a need for exact critical 
values over a wider range of sample sizes and/or 
alpha levels than are generally available from 
published tables. They may also benefit from the 
ability to generate the values directly, as opposed 
to creating lookup tables, and to control best-fit 
criteria. Fortran 90 programs that generate critical 
values for four nonparametric/distribution-free 
tests of location for two independent samples are 
presented. Included are the Kolmogorov-Smirnov 
test of general differences, Rosenbaum’s test of 
location, Tukey’s quick test and the Wilcoxon 
rank-sum test. The programs for Tukey’s test also 
generate ‘best-fit’ critical values and associated 
probabilities. The best-fit method could be adapted 
to the other programs. 
 
 
Bruce R. Fay is an Assessment Consultant. He 
works with K-12 public schools in school 
accountability, accreditation, and assessment of 
student learning. Contact him at 30580 Springland 
St., Farmington Hills, MI 48334 or by e-mail at 
bfay@twmi.rr.com. 
 

 
Tukey Quick Test 

Tukey (1959) described a method for 
generating critical values for his Two-Sample Test 
to Duckworth’s Specifications, now commonly 
known as Tukey’s Quick Test. The test is both 
quick and compact, which makes it portable. The 
“rule of thumb” critical values, however, are not 
consistently ‘best-conservative’ or ‘best-fit’ to 
specific criteria. 

 
Test Description 

Tukey’s (1959) test is quick in the sense 
that the method is easily remembered and the 
statistic, based on the combined length of extreme 
runs, easily calculated. The two samples are 
combined and ordered. For a two-sided test, if the 
overall maximum and minimum come from 
different groups, the statistic is the number of 
observations from the group with the global 
maximum that are greater than the greatest 
observation from the group with the global 
minimum plus the number of observations from 
the group with the global minimum that are less 
than the least observation from the group with the 
global maximum. If the global maximum and 
minimum are from the same group the statistic is 
generally taken to be zero. Tukey (1959) 
suggested dealing with ties (consequential, 
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between-group) by counting each tied observation 
as ½ rather than 1. The one-sided (directional) test 
statistic is calculated just like the two-sided 
statistic with the additional requirement that the 
overall maximum observation is from the group 
that is expected to have the higher median under 
the alternative hypothesis (assuming a pure shift 
model). If not, the statistic is taken to be zero. 

The test is compact in the sense that the 
critical values do not vary much with sample size, 
especially if the sample sizes are not too different. 
As such, they can also be easily committed to 
memory. For two-sided tests at nominal alpha 
levels of .10, .05, .02 and .01 (or one-sided tests at 
.05, .025, .01 and .005) the best-conservative 
critical values are 6, 7, 9 and 10 respectively with 
equal sample sizes from 9 to 24 per group. Tukey 
(1959) suggested that these critical values be used 
for all sample sizes as long as they were not too 
different. He noted, however, that under these 
conditions the test was not strictly conservative in 
the classical sense. He also gave relatively simple 
corrections to apply when the sample sizes were 
different, although not by too much. These 
corrections, however, still do not guarantee that 
the test will be strictly conservative, and add a 
level of complexity to the test that reduces both its 
quickness and compactness. 

The best-fitting critical values for nominal 
alpha levels (1-sided) of .05, .025, .01, .005 (with 
a +10% tolerance) are 6, 7, 8 and 9 for equal 
samples sizes from 5 to 9 and 6, 7, 9, 10 for equal 
sample sizes from 11 to 30. Using 6, 7, 9, 10 as the 
critical values for all equal sample sizes is 
conservative for samples sizes less than 11 at .02 
and .01 alpha levels (2-sided) but may be liberal 
up to +10% for other sample sizes and nominal 
alphas. 

Quickness and compactness combine to 
make Tukey’s (1959) test portable in the sense that 
everything needed to apply the test can be carried 
around in one’s memory and the calculations can 
be performed mentally, or with pencil and paper. 
This simplicity is gained at the expense of some 
statistical power, but the practical power may be 
high. Tukey (1959) referenced a definition of 
practical power from Churchill Eisenhart (without 
formal citation) as “the product of the 
mathematical power by the probability that the 
procedure will be used” and noted that the 
practical power of a test might prove to be quite 

high, in spite of lower statistical power, if it 
became widely used. 

Because of its portability and potentially 
high practical power, Tukey (1959) referred to this 
test as a “pocket test” and proposed that it filled a 
particular niche, i.e., “as a footrule”, “on the 
floor”, or “in the field” to “indicate the weight of 
the evidence roughly.” He recommended that 
more sensitive tests be used “if a delicate and 
critical decision is to be made.” 

 
Methodology for Generating Critical Values and 
Associated Probabilities 

Tukey (1959) described in detail a method 
for generating strictly conservative, exact critical 
values. That method is implemented in the 
program modules presented here, along with a 
variation that produces best-fitting critical values 
to a specified tolerance level above nominal alpha. 

Tukey’s (1959) method involves building 
a table, A, that contains “a certain summation of 
binomial coefficients.” Differences of pairs of 
entries from A, based on the sample sizes j and k 
and a parameter h, are compared to nCj, the 
number of combinations of n things taken j at a 
time, where n = j + k, j ≥ 1, k ≥ 1, and j ≤ k. The 
differences A(k – h, j) – A(k, j – h) are formed 
starting with h = 1 and counting up until the 
difference is less than (nominal alpha)x(nCj). The 
first such value of h, if one exists, is the best-
conservative critical value for that pair of sample 
sizes and nominal alpha level. Additional details 
of the method are given in the comments that 
accompany the programs. Based on the use of 
integer*8 and real*8 variables, critical values and 
associated probabilities are generated for all 
combinations of sample sizes from (1, 1) to (30, 
30) in increments of 1 for each sample. Tukey 
(1959) also presented asymptotic methods that 
may be appropriate for larger sample sizes. 

The module that generates the critical 
values and associated probabilities contains two 
versions of the method and a subroutine for 
calculating combinations. The first version of the 
method generates strictly conservative critical 
values for one-sided tests at .05, .025, .01 and .005 
nominal alpha levels. The second version 
generates ‘best-fit’ critical values for one-sided 
tests at the same nominal alpha levels. The ‘best-
fit’ version allows critical values greater than 
nominal alpha so long as they do not exceed 
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nominal alpha by more than 10% and are closer to 
nominal alpha than the nearest value that is less 
than nominal alpha. The +10% tolerance is based 
on a definition of robustness due to Bradley 
(1978). 
 
Rosenbaum’s Test of Location 

Rosenbaum (1953, 1954) described tests 
for dispersion and location based on Wilks (1942) 
and gave tables of critical values. Rosenbaum 
(1965) revisited these tests, comparing them to 
other tests that had arisen in the intervening 
decade. Neave & Worthington (1988) described 
the location form of the test as particularly well 
suited to situations in which spread is expected to 
increase with an increase in the median and gave a 
method for generating critical values. Their 
method is the basis for the programs presented 
here. Rosenbaum’s (1954) test is quick and 
relatively compact, which makes it somewhat 
portable. 

 
Test Description 

The test is quick in the sense that the 
method is easily remembered and the statistic, 
based on the length of an extreme run, easily 
calculated. The two samples are combined and 
ordered. For a two-sided test, the statistic is taken 
as the number of observations from the group with 
the overall maximum that exceeds the maximum 
value of the other group. One way to deal with 
consequential (between-group) ties is to count 
each observation as ½ rather than 1. Another 
method is to average the values of the statistic 
arrived at by resolving the ties in all possible 
ways. The later technique, however, causes the test 
to lose some of its portability, at least for larger 
sample sizes. The one-sided (directional) test 
statistic is calculated just like the two-sided 
statistic with the additional requirement that the 
overall maximum observation is from the group 
that is expected to have the higher median under 
the alternative hypothesis (assuming a pure shift 
model). If not, the statistic is taken to be zero. 

The test is compact in the sense that the 
critical values do not vary much with sample size, 
especially if the sample sizes are not too different. 
As such, they can also be easily committed to 
memory. For two-sided tests at nominal alpha 
levels of .10, .05, .02 and .01 (or one-sided tests at 
.05, .025, .01 and .005) the best-conservative 

critical values are 5, 6, 7 and 8 respectively for 
equal sample sizes from 27 to 50 per group. 
Critical values of 5, 6, 7, and 8 can be used for 
equal sample sizes from 20 to 50, and critical 
values of 4, 5, 6 and 7 for equal sample sizes from 
5 to 19, if one is willing to accept results that are 
not strictly conservative in all cases, and 
somewhat overly conservative in others. Under 
these conditions the test can be considered 
compact. Quickness and compactness combine to 
make the test portable as previously described. 

 
Methodology for Generating Critical Values and 
Associated Probabilities 

Neave & Worthington (1988) described a 
method for generating strictly conservative, exact 
critical values. Their method is implemented in the 
program modules presented here to calculate the 
critical values for one-sided tests at .05, .025, .01 
and .005 nominal alpha levels. 

Neave & Worthington (1988) calculated 
the probability of a run of h values from a sample 
of size m out of a combined sample of size N = m 
+ n, where n is the size of the other group, using 
the formula: 
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The value of h associated with the largest such 
probability that is less than or equal to nominal 
alpha is the critical value for a given m and n. 
Thus all critical values are best-conservative with 
pr(CV) ≤ nominal alpha. Additional details of the 
method are given in the comments that accompany 
the programs. Based on the use of integer*8 and 
real*8 variables, critical values and associated 
probabilities are generated for all combinations of 
sample sizes from (1, 1) to (50, 50) in increments 
of 1 for each sample. 
 
Kolmogorov-Smirnov Test of General Differences 

Kim and Jennrich (1970, 1973) cited 
Smirnov (1939) as introducing the criterion Dmn 
for the two-sample problem. As the name implies, 
the test is sensitive to general differences between 
two populations and is often used as a 2-sided test. 
Neave and Worthington (1988) pointed out, 
however, that the test functions quite well as a 
directional (1-sided) test, especially against a pure 
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shift alternative. Kim and Jennrich (1970, 1973) 
provided a brief review of work on approximate 
and exact distributions of the statistic and resultant 
critical values under the null hypothesis leading up 
to their method and tables. 

 
Test Description 

The 2-sided test is conducted by 
constructing and then comparing the empirical 
cumulative distributions, Sm(x) and Sn(x), of two 
samples of size m and n (m ≤ n without loss of 
generality) and then computing the criterion as 
Dmn = sup | Sm(x) – Sn(x) | over all x. The null 
hypothesis is that the two samples are drawn from 
identical (continuous) populations Fm(x) and Fn(x) 
(of any shape). The alternative hypothesis is that 
the samples were drawn from two populations that 
differ in some way. For a 1-sided test under a pure 
shift model, the criterion is taken to be Dmn

+ or 
Dmn

– , where Dmn
+ = max [ Sm(x) – Sn(x) ] ≥ 0 and 

Dmn
– = min [ Sm(x) – Sn(x) ] ≤ 0. The choice 

depends on which sample is presumed to come 
from the population with the higher median under 
the alternative hypothesis. If the alternative 
hypothesis is that the samples came from 
populations with cumulative distributions such 
that Fn(x) ≥ Fm(x) then Sn(x) will lie to the right of 
Sm(x). Thus, Sm(x) will rise faster than Sn(x) and lie 
above it for any given value of x. This makes Dmn

+ 
the correct choice of criterion in this case. 

 
Methodology for Generating Critical Values and 
Associated Probabilities 

The Kim and Jennrich (1970, 1973) 
method of generating critical values for the 
Kolmogorov- Smirnov test is based on the work of 
Kim (1969) which, in turn, was an extension of the 
successive recursion relation of Massey (1951). 
Their method calculates: 
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Kim and Jennrich (1970, 1973) provided a 

FORTRAN IV function subroutine 
ASKCDF(M,N,D,U) that returned the probability 
of D (= c/mn) for sample sizes m and n by 
calculating U(m,n) as above. The U referenced in 
their function subroutine argument list, however, 
was merely a working storage vector of at least 
length N+1. In the Fortran 90 implementation of 
ASKCDF that follows, the working storage vector 
argument has been eliminated and replaced in the 
code with an allocatable array. A subroutine 
calculates D = c/mn for c = (1,mn,1) for each 
combination of n = (1,50,1) and m = (1,n,1) and 
calls ASKCDF for each value of D to obtain the 
probability and tests it against various nominal 
alpha levels. 
 
Wilcoxon Rank-sum Test 

Wilcoxon (1945) introduced the non-
parametric/distribution-free test based on a sum of 
ranks that bears his name. Wilcoxon (1946, 1947) 
expanded on this work, followed by Mann and 
Whitney (1947), who described a test that turned 
out to be equivalent to the rank-sum test. The 
Wilcoxon-Mann-Whitney test is probably the best 
known of the nonparametric/distribution-free 
procedures. However, the early work of both 
Wilcoxon and Mann-Whitney provided only 
limited critical values. Additional work on both 
exact and approximate critical values and 
significance probabilities followed these seminal 
articles, e.g. Fix & Hodges (1955). 

Jacobson (1963) provided a nice synopsis 
of critical value tables and work-to-date with an 
extensive bibliography. Wilcoxon and Wilcox 
(1964, revised 1968) provided a workable method 
for generating critical values and probability 
levels. This work subsequently appeared in 
Wilcoxon, Katti and Wilcox (1970, revised 1973) 
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and forms the basis for the programs presented 
here. 

 
Test Description 

 The Wilcoxon rank-sum version of the 
test is conducted by combining the observations 
from two samples. The combined samples are then 
ranked while keeping track of the original group 
membership. The ranks from one of the groups are 
then summed to form the statistic. Which group to 
sum for a 1-sided test depends on the critical value 
tables that are available (lower-tail, upper tail, or 
both) and on which group is expected to have the 
least (or greatest) ranks under the alternative 
hypothesis. For example, if lower tail critical 
values are available, and the alternative hypothesis 
is that sample B comes from a population that is 
greater than the population from which sample A 
was obtained, then sample A will tend to have the 
lower ranks, and the sum of those ranks would be 
taken as the statistic. For a two- sided test, one 
would form the sum of the ranks of both samples 
and test the resulting values against the critical 
value, taking the test to be significant if either 
comparison so indicated. 

 
Methodology for Generating Critical Values and 
Associated Probabilities 

Although critical values are readily 
available for the Wilcoxon rank-sum test and 
Mann-Whitney U test, the probability levels are 
not as accessible. The method of Wilcoxon, Katti 
and Wilcox (1970, 1973) proceeds along the 
following lines given samples M and N from two 
continuous populations, Fm(x) and Gn(x) of size m 
and n respectively, m ≤ n without loss of 
generality. The minimum sum of ranks for sample 
M is m(m+1)/2. Thus the sum of ranks in general 
for sample M is: 
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The number of ways, f(U), of obtaining a specific 
rank sum U, is the coefficient of tU in the 
expansion of the generating function, in powers of 
t, given by: 
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The total number of ways of obtaining any rank 
sum in this situation is: 
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Given Fm(x) ≡ Gn(x), the probability of obtaining 
U is given by: 
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In turn, f(U) can be found from: 
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In order to evaluate equation (10) it is necessary to 
find the values of z. Subroutine CV_WRSJ4_init 
in module CVWRSJmod includes the code for 
generating the values of z. 
 
Source Code and Computing Platforms 

All source code provided here is Fortran 
90 free format. For each of the four tests there is a 
module that contains the critical value generation 
subroutines and functions and a main program that 
can be used with that module to generate printed 
tables of critical values and probabilities. The 
programs were developed on a 500 MHz AMD 
Athlon-based system using Compaq Visual 
Fortran 6.6 and tested on systems with Intel 
Pentium III and Pentium IV Xeon processors. The 
programs execute reasonably quickly on all of 
these systems. Even with integer*8 and real*8 
variables these programs can run into arithmetic 
overflow problems, thus limiting the range of 
sample sizes for which critical values and 
probabilities can be generated. 
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Programs 

Tukey’s (1959) Two-sample Test to Duckworth’s Specifications (Tukey’s Quick Test) 

Main program for printing tables 
! *************************************************************************** 
! program: CVTQTJ.exe 
! source: CVTQTJ.f90 
! author: Bruce R. Fay 
! date: 17 Oct 2002 17:32 EDT 
! purpose: Test harness for critical value modules for Tukey's Quick 
!  test of location to Duckworth's specifications 
! desc: Prints tables of critical values with associated probabilities. 
! *************************************************************************** 
program CVTQTJ 
use CVTQTJmod 
implicit none 
! DECLARE LOCAL VARIABLES 
integer :: i, j, LU1, LU2, ios, testnum 
integer, dimension(:) :: CVi(4) 
real*8, dimension(:) :: PVr(4) 
! GET USER INPUTS 
write(*,*) "Program CVTQTJ.exe by Bruce R. Fay" 
write(*,*) "Critical values for Tukey's Quick Test" 
write(*,*) 
write(*,*) "Creates output files CVTQTJbc_.txt and CVTQTJbf_.txt" 
write(*,*) "in current directory." 
write(*,*) 
write(*,*) "Select one of the following:" 
write(*,*) 
write(*,*) " 0 - to exit program" 
write(*,*) " 1 - to generate CV/PV tables" 
write(*,*) 
Do 
  read(*,*) testnum 
  If ( (testnum >= 0).and.(testnum <= 1) ) EXIT 
  write(*,*) "enter O to exit, 1 to run" 
End Do 
If (testnum == 0) GOTO 9999  ! check for user termination 
! OPEN FILES FOR OUTPUT 
LU1 = 8  
open(unit=LU1, file='CVTQTJbc_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVTQTJbc_.txt' " 
  GOTO 9999 
End if 
LU2 = 9 
open(unit=LU2, file='CVTQTJbf_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVTQTJbf_.txt' " 
  GOTO 9999 
End if 
! DEFINE OUTPUT FORMATS 
100 format(" 1-tailed CVs at stated alpha levels") 
200 format(" n1 n2 - .05 - -.025 - - .01 - -.005 - | & 

& - .05 - -.025 - - .01 - -.005 -") 
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300 format(2I3,4I8,3x,4F8.4) 
! CREATE BEST-CONSERVATIVE TABLES 
write(LU1,*) "Program CVTQTJ by Bruce R. Fay" 
write(LU1,*) 
write(LU1,*) "Tukey's quick test of location for two independent samples," 
write(LU1,*) "best-conservative critical values generated based on" 
write(LU1,*) "Tukey (1959) using CVTQTJbc() in CVTQTJmod." 
write(LU1,*) 
call CV_TQTJbc_init ! generate the BC CV/PV tables 
write(LU1,100)  ! print header information 
write(LU1,*) 
write(LU1,200)  ! print column headers for this format 
write(LU1,*) 
Do i = 1,30   ! output the tables to file 
  Do j = i,30 
    call CV_TQTJbc(i,j,CVi,PVr) 
    write(LU1,300) i,j,CVi(1:4),PVr(1:4) 
  End Do 
  write(LU1,*) 
End Do 
! CREATE BEST-FIT TABLES 
write(LU2,*) "Program CVTQTJ by Bruce R. Fay" 
write(LU2,*) 
write(LU2,*) "Tukey's quick test of location for two independent samples." 
write(LU2,*) "Best-fitting critical values generated based on Tukey (1959)" 
write(LU2,*) "using CVTQTJbf() in CVTQTJmod, where best-fit is defined as" 
write(LU2,*) "pr <= alpha + 10% when this probability is closer to alpha" 
write(LU2,*) "than the first available CV with pr < alpha." 
write(LU2,*) 
call CV_TQTJbf_init ! generate the BF CV/PV tables 
write(LU2,100)  ! print header information 
write(LU2,*) 
write(LU2,200)  ! print column headers for this format 
write(LU2,*) 
Do i = 1,30   ! output the tables to file 
  Do j = i,30 
    call CV_TQTJbf(i,j,CVi,PVr) 
    write(LU2,300) i,j,CVi(1:4),PVr(1:4) 
  End Do 
  write(LU2,*) 
End Do 
! CLOSE FILES 
close(unit=LU1, status='keep', iostat=ios) 
If (ios > 0) then 
  write(*,*) "Error closing file 'CVTQTJbc_.txt' " 
End If 
close(unit=LU2, status='keep', iostat=ios) 
If (ios > 0) then 
  write(*,*) "Error closing file 'CVTQTJbf_.txt' " 
End If 
9999 stop 
end program CVTQTJ 
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Module for generating critical values and probabilities 

 
! *************************************************************************** 
! module: CVTQTJmod 
! source: CVTQTJmod.f90 
! based on: Tukey (1959) A quick, compact, two-sample test to Duckworth's 
!  specifications, Technometrics Vol. 1 No. 1 (Feb) pgs.31-48, 
!  method for generating exact critical values. 
! author: Bruce R. Fay 
! date: 17 Oct 2002 19:03 EDT 
! purpose: Provide the exact critical values for Tukey's Quick Test for 
!  2-independent-samples, both best-conservative and best-fit.   
! desc: Generates the CVTs and PVTs on initialization and provides 
!  an entry point that returns up to four critical values based 
!  on the incoming values of n1 and n2.  Checks are made that 
!  n1, n2 are in the appropriate range and relationship for the 
!  tables with 1 <= n1 <= n2 <= 30. 
! Notes: Best-conservative values are those for which pr(h) <= nominal 
!  alpha.  Best-fit CVs are generated by the same method but with 
!  pr(h) <= alpha+10% if pr(h+1) < alpha and is further from alpha 
!  than pr(h). 
! *************************************************************************** 
module CVTQTJmod 
implicit none 
private 
public :: CV_TQTJbc_init, CV_TQTJbc, CV_TQTJbf_init, CV_TQTJbf, N_c_m 
contains 
! *************************************************************************** 
subroutine CV_TQTJbc_init 
! INTERFACE 
! There are no arguments for CV_TQTJbc_init.  The calling routine must call  
! this subroutine once to build the CV and PV tables prior to calling 
! CV_TQTJbc() to obtain critical values for specific n1, n2.  Calling routine 
! must also declare an integer vector of length 4 and a real*8 vector of 
! length 4 and pass them into receive the critical values and their 
! associated probability values.  For entry CV_TQTJbc(s1,s2,CV,PV): 
! s1 :: sample size for 1st group ( <= s2 ) 
! s2 :: sample size for 2nd group 
! CV :: critical values vector (length 4) 
! PV :: probability values vector (length 4) 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: s1, s2 
integer, intent(out), dimension(:) :: CV 
real*8, intent(out), dimension(:) :: PV 
! DESCRIPTION 
! At entry CV_TQTJbc(), for s1 <= s2, returns up to four critical values, 
! if available, in vector CV(:), as follows: 
! CV(1) = 1-tailed alpha .05  (2-tailed alpha .10) 
! CV(2) = 1-tailed alpha .025 (2-tailed alpha .05) 
! CV(3) = 1-tailed alpha .01  (2-tailed alpha .02) 
! CV(4) = 1-tailed alpha .005 (2-tailed alpha .01) 
! The actual 1-tailed probabilities corresponding to the above CVs are 
! returned in PV(1:4).  If a critical value is not available, a -1 is 
! returned instead, with associated probability zero.  Critical values may 
! not be available because s1 and s2 are a) too small, b) too large, or 
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! c) too different.  Unequal s1, s2 are supported for 1 <= s1 <= s2 <= 30. 
! DECLARE LOCAL VARIABLES 
integer :: h, n1, n2, v1, v2, w1, w2 
integer (kind=8) :: wv1, wv2 
integer (kind=8), dimension(30,30), save :: CVTbc05, CVTbc025 
integer (kind=8), dimension(30,30), save :: CVTbc01, CVTbc005 
integer (kind=8), dimension(0:30,1:30), save :: Atbl 
integer (kind=8) :: comb, A1, A2, Adiff 
integer (kind=8), parameter :: zero=0, one=1, two=2 
real (kind=8), dimension(30,30), save :: PVTbc05, PVTbc025, PVTbc01, PVTbc005 
real (kind=8), parameter :: m05=0.050, m025=0.025, m01=0.01, m005=0.005 
real (kind=8) :: c05, c025, c01, c005, rcomb, rdiff 
logical :: fnd05, fnd025, fnd01, fnd005 
! Build the A table 
! 
!    Column(w) 
!  -2 -1  0  1  2  3  4 ... 30    
!    ------------------------------------------------------ 
! -1|  0  0 |  0 |  0  0  0   0 ...  0 
!  0|  0  0 |  0 |  0  0  0   0 ...  0 
!       |------------+-----+----------------------------------- 
!      1|  0  1 |  1 |  1  1  1   1 ...  1 
!      |------------+-----+----------------------------------- 
! Row  2|  1  1 |  2 |   3  4  5   6 ... 32 
! (v)  3|  1  2 |  4 |  7 11 16  22 ...  . 
!  4|  2  4 |  8 | 15 26 42  64 ...  . 
!  5|  4  8 | 16 | 31 57 99 163 ...  . 
!  6|  8 16 | 32 |  .  .  .  . ...  .    
!  .| 16 32 |  . |  . 
!  .| 32  . |  . | 
!  .|  .  . |  . | 
! 30|  .   536870912 
! 
! Note: The A table is only built for columns 0 to 30 and rows 1 to 30.  All 
! entries for rows less than one are zero and all entries for columns 
! less than zero (with rows of 1 or more) can be determined by direct 
! formula (see code). 
Atbl(0:30,1) = one ! first row, all columns, entries = 1 
Do v1 = 2,30  ! first (zero) column, row entries are 2^(row-1) 
  Atbl(0,v1) = two**(v1-1) 
End Do 
Do v1 = 2,30  ! previous column same row + same column previous row 
  Do w1 = 1,30 
 Atbl(w1,v1) = Atbl(w1-1,v1) + Atbl(w1,v1-1) 
  End Do 
End Do 
CVTbc05 = -1   ! initialize the CV tables to -1 (indicates no valid entry) 
CVTbc025 = -1 
CVTbc01 = -1 
CVTbc005 = -1 
PVTbc05 = 0.0  ! initialize the PV tables to 0.0 (indicates no valid entry) 
PVTbc025 = 0.0 
PVTbc01 = 0.0 
PVTbc005 = 0.0 
! Determine the critical values and associated actual probabilities 
Do n1 = 1,30  ! n1 for CV/PV tables 
  Do n2 = n1,30  ! n2 for CV/PV tables 
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    fnd05 = .false. ! reset found flags for each alpha level 
    fnd025 = .false. 
    fnd01 = .false. 
    fnd005 = .false. 
    comb = N_c_m(n1,n2) ! get the number of combinations for n1 and n2 
    rcomb = real(comb) 
    c05 = rcomb * m05 ! calculate the comparison values for each alpha 
    c025 = rcomb * m025 
    c01 = rcomb * m01 
    c005 = rcomb * m005 
    Do h = 1,(n1+n2) ! h will be the CV if/when we find the right one 

w1 = n2-h   ! Find A1 as Atbl(n2-h,n1) 
 v1 = n1   ! since n1 >= 1, v is a valid row for Atbl 
 wv1 = w1 + v1  ! = n1 + n2 - h 
 If (w1 >= 0) then  ! it's OK to use the Atbl to get A1 
   A1 = Atbl(w1,v1) 
 Else    ! calculate A1 by formula 
   If (wv1 > 0) then  ! w < 0,  v > 0,  |v| > |w| 
     A1 = two**(wv1-1) 
   Else If (wv1 == 0) then ! w = -v 
     A1 = one 
   Else If (wv1 < 0 ) then ! w < 0,  v > 0,  |v| < |w| 
     A1 = zero 
   End If 
 End If 
 v2 = n1-h   ! Find A2 as Atbl(n2,n1-h) 
 w2 = n2   ! since n2 >= 1, w is a valid column for Atbl 
 If(v2 >= 1) then  ! valid row for Atbl 
   A2 = Atbl(w2,v2) 
 Else 
   A2 = zero 
 End If 
 Adiff = A1 - A2 
 rdiff = real(Adiff) 
 If ( (rdiff <= c05).and.(.not.fnd05) ) then 
   CVTbc05(n1,n2) = h 
   PVTbc05(n1,n2) = rdiff/rcomb 
   fnd05 = .true. 
 End If 
 If ( (rdiff <= c025).and.(.not.fnd025) ) then 
   CVTbc025(n1,n2) = h 
   PVTbc025(n1,n2) = rdiff/rcomb 
   fnd025 = .true. 
 End If 
 If ( (rdiff <= c01).and.(.not.fnd01) ) then 
   CVTbc01(n1,n2) = h 
   PVTbc01(n1,n2) = rdiff/rcomb 
   fnd01 = .true. 
 End If 
 If ( (rdiff <= c005).and.(.not.fnd005) ) then 
   CVTbc005(n1,n2) = h 
   PVTbc005(n1,n2) = rdiff/rcomb 
   fnd005 = .true. 
 End If 
 If (fnd05.and.fnd025.and.fnd01.and.fnd005) exit 
    End Do 
  End Do 
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End Do 
Return 
! --------------------------------------------------------------------------- 
entry CV_TQTJbc(s1,s2,CV,PV) 
CV(:) = -1  ! initialize all return CVs to 'not available' 
PV(:) = 0.0  ! initialize all return PVs to 'not available' 
If ((1<=s1).and.(s1<=30).and.(1<=s2).and.(s2<=30).and.(s1<=s2)) then 
  CV(1) = CVTbc05(s1,s2) 
  CV(2) = CVTbc025(s1,s2) 
  CV(3) = CVTbc01(s1,s2) 
  CV(4) = CVTbc005(s1,s2) 
  PV(1) = PVTbc05(s1,s2) 
  PV(2) = PVTbc025(s1,s2) 
  PV(3) = PVTbc01(s1,s2) 
  PV(4) = PVTbc005(s1,s2) 
End If 
Return 
! -------------------------------------------------------------------------- 
end subroutine CV_TQTJbc_init 
! *************************************************************************** 
subroutine CV_TQTJbf_init 
! see subroutine CV_TQTJbc_init above for documentation and comments 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: s1, s2 
integer, intent(out), dimension(:) :: CV 
real*8, intent(out), dimension(:) :: PV 
! DECLARE LOCAL VARIABLES 
integer :: h, n1, n2, v1, v2, w1, w2 
integer (kind=8) :: CV1tmp, CV2tmp, CV3tmp, CV4tmp, wv1, wv2 
integer (kind=8), dimension(30,30), save :: CVTbf05, CVTbf025 
integer (kind=8), dimension(30,30), save :: CVTbf01, CVTbf005 
integer (kind=8), dimension(0:30,1:30), save :: Atbl 
integer (kind=8) :: comb, A1, A2, Adiff 
integer (kind=8), parameter :: two=2 
real (kind=8), dimension(30,30), save :: PVTbf05, PVTbf025, PVTbf01, PVTbf005 
real (kind=8), parameter :: m05=0.05, m025=0.025, m01=0.01, m005=0.005 
real (kind=8), parameter :: m055=0.055, m0275=0.0275 
real (kind=8), parameter :: m011=0.011, m0055=0.0055 
real (kind=8) :: c05, c025, c01, c005, c055, c0275, c011, c0055, rcomb, rdiff 
real (kind=8) :: ptmp, PV1tmp, PV2tmp, PV3tmp, PV4tmp 
logical :: fnd05, fnd025, fnd01, fnd005 
! BUILD THE A TABLE 
Atbl(0:30,1) = 1  ! first row 
Do v1 = 1,30 ! first column 
  Atbl(0,v1) = two**(v1-1) 
End Do 
Do v1 = 2,30 ! previous column same row + same column previous row 
  Do w1 = 1,30 
    Atbl(w1,v1) = Atbl(w1-1,v1) + Atbl(w1,v1-1) 
  End Do 
End Do 
CVTbf05 = -1   ! initialize the CV tables to -1 (indicates no valid entry) 
CVTbf025 = -1 
CVTbf01 = -1 
CVTbf005 = -1 
PVTbf05 = 0.0  ! initialize the PV tables to 0.0 (indicates no valid entry) 
PVTbf025 = 0.0 
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PVTbf01 = 0.0 
PVTbf005 = 0.0 
! Determine the critical values and associated actual probabilities 
Do n1 = 1,30 
  Do n2 = n1,30 
    fnd05 = .false.  ! reset found flags for each alpha level 
    fnd025 = .false. 
    fnd01 = .false. 
    fnd005 = .false. 
    comb = N_c_m(n1,n2)  ! get the number of combinations for n1 and n2 
    rcomb = real(comb) 
    c05 = rcomb * m05  ! calculate the comparison values for each alpha 
    c025 = rcomb * m025 
    c01 = rcomb * m01 
    c005 = rcomb * m005 
    c055 = rcomb * m055  ! comparison values for alpha + 10% 
    c0275 = rcomb * m0275 
    c011 = rcomb * m011 
    c0055 = rcomb * m0055 
    PV1tmp = 1.0  ! initialize temporary probability values 
    PV2tmp = 1.0 
    PV3tmp = 1.0 
    PV4tmp = 1.0 
    Do h = 1,(n1+n2) 
 w1 = n2-h 
 v1 = n1 
 wv1 = w1 + v1 
 If (w1 >= 0) then 
   A1 = Atbl(w1,v1) 
 Else 
   If (wv1 > 0) then 
     A1 = 2**(wv1-1) 
   Else If (wv1 == 0) then 
     A1 = 1 
   Else If (wv1 < 0) then 
     A1 = 0 
   End If 
 End If 
 w2 = n2 
 v2 = n1-h 
 If (v2 >= 1) then 
   A2 = Atbl(w2,v2) 
 Else 
   A2 = 0 
 End If 
 Adiff = A1 - A2 
 rdiff = real(Adiff) 
 If((c05 < rdiff).and.(rdiff <= c055).and.(.not.fnd05)) then 
   CV1tmp = h 
   PV1tmp = rdiff/rcomb 
 Else If((rdiff <= c05).and.(.not.fnd05)) then 
   ptmp = rdiff/rcomb 
   If((.05 - ptmp) <= (PV1tmp - .05)) then 
     CVTbf05(n1,n2) = h 
     PVTbf05(n1,n2) = ptmp 
   Else 
     CVTbf05(n1,n2) = CV1tmp 
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     PVTbf05(n1,n2) = PV1tmp 
   End If 
   fnd05 = .true. 
 End If 
 If((c025 < rdiff).and.(rdiff <= c0275).and.(.not.fnd025)) then 
   CV2tmp = h 
   PV2tmp = rdiff/rcomb 
 Else If((rdiff <= c025).and.(.not.fnd025)) then 
   ptmp = rdiff/rcomb 
   If((.025 - ptmp) <= (PV2tmp - .025)) then 
     CVTbf025(n1,n2) = h 
     PVTbf025(n1,n2) = ptmp 
   Else 
     CVTbf025(n1,n2) = CV2tmp 
     PVTbf025(n1,n2) = PV2tmp 
   End If 
   fnd025 = .true. 
 End If 
 If((c01 < rdiff).and.(rdiff <= c011).and.(.not.fnd01)) then 
   CV3tmp = h 
   PV3tmp = rdiff/rcomb 
 Else If((rdiff <= c01).and.(.not.fnd01)) then 
   ptmp = rdiff/rcomb 
   If((.01 - ptmp) <= (PV3tmp - .01)) then 
     CVTbf01(n1,n2) = h 
     PVTbf01(n1,n2) = ptmp 
   Else 
     CVTbf01(n1,n2) = CV3tmp 
     PVTbf01(n1,n2) = PV3tmp 
   End If 
   fnd01 = .true. 
 End If 
 If((c005 < rdiff).and.(rdiff <= c0055).and.(.not.fnd005)) then 
   CV4tmp = h 
   PV4tmp = rdiff/rcomb 
 Else If((rdiff <= c005).and.(.not.fnd005)) then 
   ptmp = rdiff/rcomb 
   If((.005 - ptmp) <= (PV4tmp - .005)) then 
     CVTbf005(n1,n2) = h 
     PVTbf005(n1,n2) = ptmp 
   Else 
     CVTbf005(n1,n2) = CV4tmp 
     PVTbf005(n1,n2) = PV4tmp 
   End If 
   fnd005 = .true. 
 End If 
 If (fnd05.and.fnd025.and.fnd01.and.fnd005) exit 
    End Do 
  End Do 
End Do 
Return 
! --------------------------------------------------------------------------- 
entry CV_TQTJbf(s1,s2,CV,PV) 
CV(:) = -1  ! initialize all return CVs to 'not available' 
PV(:) = 0.0  ! initialize all return PVs to 'not available' 
If ((1<=s1).and.(s1<=30).and.(1<=s2).and.(s2<=30).and.(s1<=s2)) then 
  CV(1) = CVTbf05(s1,s2) 
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  CV(2) = CVTbf025(s1,s2) 
  CV(3) = CVTbf01(s1,s2) 
  CV(4) = CVTbf005(s1,s2) 
  PV(1) = PVTbf05(s1,s2) 
  PV(2) = PVTbf025(s1,s2) 
  PV(3) = PVTbf01(s1,s2) 
  PV(4) = PVTbf005(s1,s2) 
End If 
Return 
! --------------------------------------------------------------------------- 
end subroutine CV_TQTJbf_init 
!**************************************************************************** 
function N_c_m(a,b) result(F) 
! Calculates number of combinations, 'N chose m' or nCm where 
! N = a+b and m = a (equivalent to m = b).  The formula is 
! N!/(m!(N-m)!) = (a+b)!/(a!b!) = 
! [1*2*...*b*(b+1)*...*(a+b)]/[(1*2*...*a)*(1*2*...*b))] 
! This is equivalent to [(b+1)(b+2)...(b+a)]/[a!] or 
! [(b+1)(b+2)...(b+a)]/[1*2*...*a], which is implemented here. 
! This computation is particularly efficient if a <= b, as it is in 
! subroutines CV_TQTJbc_init and CV_TQTJbf_init above.  Both a and b must 
! be >= zero, otherwise the function returns with value -1 to indicate an 
! error. 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: a, b 
! DECLARE LOCAL VARIABLES 
integer :: i 
integer (kind=8) :: C, F, num 
! VARIABLE DEFINTIONS 
! a :: number of items in first group 
! b :: number of items in second group 
! C :: accumulator for number of combinations 
! F :: function result 
! i :: loop variable 
! num :: numerator factor for combinations computation 
If((a>=0).and.(b>=0)) then ! both inputs non-negative 
  If((a>=1).and.(b>=1)) then ! both inputs > 0, proceed 
    C = 1 
    Do i = 1,a 
      num = i + b 
      C = (C * num) / i 
    End Do 
  Else ! both inputs zero or one positive and one zero 
    C = 1 
  End If 
Else  ! at least one negative input 
  C = -1  ! error 
End If 
F = C 
return 
end function N_c_m 
! ************************************************************************* 
end module CVTQTJmod 
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Rosenbaum’s Test of Location 
 

Main program for printing tables 
! *************************************************************************** 
! program:  CVRBTJ 
! source:   CVRBTJ.f90 
! based on: CVRBT.f90 as of 29 Apr 2002 15:22 EDT 
! author:   Bruce R. Fay 
! date:     18 Oct 2002 18:13 EDT 
! purpose:  Generate and print critical value table for Rosenbaum's test 
!           of location for 2 independent samples. 
! *************************************************************************** 
program CVRBT 
use CVRBjmod 
implicit none 
! DECLARE VARIABLES 
integer :: i, j, LU, ios, testnum 
integer, dimension(:) :: CVi(4 
real*8, dimension(:) :: PVr(4) 
! DEFINE FORMATS FOR OUTPUT FILE 
100 format(" 1-tailed CVs at stated alpha levels") 
200 format("       | - - - - - -   CV  - - - - - -  |  & 
    &- - - - - -  PV  - - - - - -  |") 
300 format(" n1 n2 - .05 - - .025- - .01 - - .005-     & 
    &- .05 - - .025- - .01 - - .005-") 
400 format(2I3,4I8,4x,4F8.4) 
! GET USER INPUTS 
write(*,*) "Program CVRBTJ.exe by Bruce R. Fay" 
write(*,*) "Generate best conservative critical values and associated" 
write(*,*) "probabilities for Rosenbaum's Test for two-independent-samples" 
write(*,*) "and output results to file" 
write(*,*) 
write(*,*) "Select one of the following:" 
write(*,*) 
write(*,*) " 0 - to exit program" 
write(*,*) " 1 - to generate values" 
write(*,*) 
Do 
  read(*,*) testnum 
  If ( (testnum >= 0).and.(testnum <= 1) ) then 
    EXIT 
  Else 
    write(*,*) "enter 0 - 4 please" 
  End if 
End Do 
If (testnum == 0) GOTO 9999  ! check for user termination 
! OPEN OUTPUT FILE AND WRITE FILE HEADER 
LU = 8 
open(unit=LU, file='CVRBTJ_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVRBTJ_.txt' " 
  GOTO 9999 
End if 
write(LU,*) "Program CVRBTJ.exe by (Author's name here)" 
write(LU,*) "Output file CVRBTJ_.txt" 
write(LU,*) 
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write(LU,*) "Generate best conservative critical values and associated" 
write(LU,*) "probabilities for Rosenbaum's Test for two-independent-samples" 
write(LU,*) "based on formula in Neave & Worthington (1988)" 
write(LU,*) "Distribution-free Tests, p. 148" 
write(LU,*) 
write(LU,*) "n1 = m, n2 = n, n1 is the size of the sample from which" 
write(LU,*) "the test statistic is calculated (length of extreme run)" 
write(LU,*) 
! GENERATE VALUES AND OUTPUT TO FILE 
call CV_RBJ_init 
write(LU,100)  ! print header information 
write(LU,*) 
write(LU,200)  ! print column headers for this format 
write(LU,300) 
write(LU,*) 
Do i = 1,50 
  Do j = 1,50 
    call CV_RBJbc(i,j,CVi,PVr) 
    write(LU,400) i,j,CVi(1:4),PVr(1:4) 
  End Do 
  write(LU,*) 
End Do 
! CLOSE FILE 
close(unit=LU, status='keep', iostat=ios) 
If (ios > 0) then 
  write(*,*) "Error closing file 'CVRBTJ_.txt' " 
End If 
9999 stop 
end program CVRBT 

 
Module for generating critical values and probabilities 

 
! *************************************************************************** 
! module:   CVRBJmod 
! source:   CVRBJmod.f90 
! based on: CVRB4mod.f90 as of 20 Apr 2002 23:01 EDT and 
!           Neave & Worthington (1988) Distribution-free Tests, Table J, 
!           383-386 and Rosenbaum (1954) Tables for a nonparametric 
!           test of location, Annals of Mathematical Statistics, Vol. 25, 
!           146-150.  The later tables also appear in Owen (1962) 
!           Handbook of Statistical Tables, 499-503. 
! author:   Bruce R. Fay 
! date:     18 Oct 2002 18:12 EDT 
! purpose:  Provide the critical values for Rosenbaum's Test of Location 
!           for 2-independent-samples based on the method of Neave & 
! desc:     Worthington (1988) p. 148 to calculate probability of a run of h 
!           values from sample m out of a combined sample of N = m + n.  The 
!           formula is 
!           m!(N-h)!/[N!(m-h)!] = m/N x (m-1)/(N-1) x ... x (m-h+1)/(N-m+1) 
!           The value of h associated with the largest such probability that 
!           is <= nominal alpha is the critical value for that situation. 
!           Thus all CVs are BEST CONSERVATIVE with pr(CV) <= nominal alpha. 
!           Creates the CVTs and PVTs on initialization and provides an 
!           entry point that returns up to 4 critical values, and their 
!           associated probabilities, based on the incoming values of m 
!           and n.  Checks are made that m and n are in the appropriate 
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!           ranges, 1 <= m <= n and 1 <= n <= 50.  The sample from which 
!           the statistic is calculated must have sample size m. 
!**************************************************************************** 
module CVRBJmod 
implicit none 
private 
public :: CV_RBJ_init, CV_RBJbc 
contains 
! *************************************************************************** 
subroutine CV_RBJ_init 
! INTERFACE 
! There are no arguments for CV_RBJ_init.  The calling routine must call this 
! subroutine once to build the CV and PV tables prior to calling CV_RBJbc() 
! to obtain critical values and associated probabilities for specific n1, n2. 
! The calling routine must declare an integer vector of length 4 and a real*8 
! vector of length 4 and pass them in as arguments to receive the critical 
! values and their associated probabilities.  For entry CV_RBJbc(m,n,CV,PV): 
!    m   ::  sample size for group from which the statistic is calculated 
!    n   ::  sample size for the other group 
!    CV  ::  critical values vector (integer, length 4) 
!    PV  ::  probability values vector (real, length 4) 
! Unequal n1, n2 are supported for all n1, n2, both <= 50, where m is the 
! sample size of the sample from which the statistic is calculated, i.e., 
! the sample with the global maximum. 
! DESCRIPTION 
! At entry CV_RBJ(), returns up to four critical values, if available, in 
! vector CV(:), as follows: 
!    CV(1) = 1-tailed alpha .05  (2-tailed alpha .10) 
!    CV(2) = 1-tailed alpha .025 (2-tailed alpha .05) 
!    CV(3) = 1-tailed alpha .01  (2-tailed alpha .02) 
!    CV(4) = 1-tailed alpha .005 (2-tailed alpha .01) 
! If a critical value is not available, a -1 is returned instead with 
! associated probability 0.  Critical values may not be available because 
! n1 and n2 are a) too small, b) too large, or c) too different. 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: m, n 
integer, intent(in out), dimension(:) :: CV 
real*8, intent(in out), dimension(:) :: PV 
! DECLARE LOCAL VARIABLES 
integer, dimension(50,50), save :: CVTbc1, CVTbc2, CVTbc3, CVTbc4 
integer :: h, mm, nn, mn 
real*8, dimension(50,50), save :: PVTbc1, PVTbc2, PVTbc3, PVTbc4 
real*8 :: R, rm, T 
logical :: p05, p025, p01, p005 
CVTbc1 = -1  ! initialize the CV tables to -1 (indicates no valid entry) 
CVTbc2 = -1 
CVTbc3 = -1 
CVTbc4 = -1 
PVTbc1 = 0.0  ! initialize the PV tables to 0 (indicates no valid entry) 
PVTbc2 = 0.0 
PVTbc3 = 0.0 
PVTbc4 = 0.0 
Do nn = 1,50  ! generate the CV and PV tables 
  Do mm = 1,50 
    p05 = .false. 
    p025 = .false. 
    p01 = .false. 
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    p005 = .false. 
    mn = mm + nn 
    T = real(mn) 
    rm = real(mm) 
    R = 1.0 
    Do h = 1,mm 
      R = R * rm / T 
      rm = rm - 1.0 
      T = T - 1.0 
      If( (R <= .05).and.(.not.p05) ) then 
        CVTbc1(mm,nn) = h 
        PVTbc1(mm,nn) = R 
        p05 = .true. 
      End If 
      If( (R <= .025).and.(.not.p025) ) then 
        CVTbc2(mm,nn) = h 
        PVTbc2(mm,nn) = R 
        p025 = .true. 
      End If 
      If( (R <= .01).and.(.not.p01) ) then 
        CVTbc3(mm,nn) = h 
        PVTbc3(mm,nn) = R 
        p01 = .true. 
      End If 
      If( (R <= .005).and.(.not.p005) ) then 
        CVTbc4(mm,nn) = h 
        PVTbc4(mm,nn) = R 
        p005 = .true. 
      End If 
      If (p05.and.p025.and.p01.and.p005) exit 
    End Do 
  End Do 
End Do 
return 
! --------------------------------------------------------------------------- 
entry CV_RBJbc(m,n,CV,PV) 
! CV_RBJbc() must be called with m = sample size of group from which the 
!  statistic is calculated (group with global maximum value). 
CV(:) = -1  ! initialize all return CVs to 'not available' 
PV(:) = 0.0  ! initialize all return PVs to 'not available' 
If ((m >= 1).and.(m <= 50).and.(n >= 1).and.(n <= 50)) then 
  CV(1) = CVTbc1(m,n) 
  CV(2) = CVTbc2(m,n) 
  CV(3) = CVTbc3(m,n) 
  CV(4) = CVTbc4(m,n) 
  PV(1) = PVTbc1(m,n) 
  PV(2) = PVTbc2(m,n) 
  PV(3) = PVTbc3(m,n) 
  PV(4) = PVTbc4(m,n) 
End If 
return 
! --------------------------------------------------------------------------- 
end subroutine CV_RBJ_init 
! *************************************************************************** 
end module CVRBJmod 
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Kolmogorov-Smirnov Test of General Differences 
 

Main program for printing tables 
 
! *************************************************************************** 
! program:  CVKSTJ 
! source:   CVKSTJ.f90 
! based on: CVKST.f90 as of 29 Apr 2002 15:10 EDT 
! author:   Bruce R. Fay 
! date:     19 Oct 2002 10:59 EDT 
! purpose:  Test harness for critical value modules for Kolmogorov- 
!           Smirnov 2-independent-samples test for general differences. 
! desc: Provides user choice of printing critical values and 
!           associated probability values for 2-sided tests based on ABS(Dmn) 
!           or for 1-sided tests based on either on Dneg or Dpos.  Module 
!           CVKSJmod generates the 2-sided values. 
! *************************************************************************** 
program CVKSTJ 
use CVKSJmod 
implicit none 
! DECLARE VARIABLES 
integer :: i, j, k, LU, ios, testnum 
integer, dimension(:) :: CVi(4) 
real, dimension(:) :: PVr(4) 
! GET USER INPUTS 
write(*,*) "Program CVKSTJ.exe by Bruce R. Fay" 
write(*,*) "Kolmogorov-Smirnov test of general differences for" 
write(*,*) "two independent samples - critical value tables with" 
write(*,*) "probabilities" 
write(*,*) 
write(*,*) "Select one of the following:" 
write(*,*) 
write(*,*) " 0 - exit" 
write(*,*) " 1 - generate 1-tailed CVs and actual p values using CVKSJmod" 
write(*,*) " 2 - generate 2-tailed CVs and actual p values using CVKSJmod" 
write(*,*) 
Do 
  read(*,*) testnum 
  If ( (0 <= testnum).and.(testnum <= 2) ) EXIT 
  write(*,*) "enter 0 - 2 please" 
End Do 
If (testnum == 0) GOTO 9999  ! check for user termination 
! OPEN OUTPUT FILE AND WRITE FILE HEADER 
LU = 8 
open(unit=LU, file='CVKSTJ_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVKSTJ_.txt' " 
  GOTO 9999 
End if 
write(LU,*) "Program CVKSTJ by (Author's name goes here)" 
write(LU,*) "File CVKSTJ_.txt" 
write(LU,*) 
! DEFINE FORMATS FOR OUTPUT FILE 
100 format(" 2-tailed CVs and PVs at stated alpha levels") 
110 format(" 1-tailed CVs and PVs at stated alpha levels") 
120 format("        ---- nominal alpha 2-tailed ---   & 



BRUCE R. FAY 509

           &-------- actual 2-tailed prob ---------") 
130 format("  n1 n2 - .10 - - .05 - - .02 - - .01 -  & 
     & -- .10 -- -- .05 -- -- .02 -- -- .01 --") 
140 format("        ---- nominal alpha 1-tailed ---   & 
           &-------- actual 1-tailed prob ---------") 
150 format("  n1 n2 - .05 - - .025  - .01 - - .005   & 
     & -- .05 -- -- .025 - -- .01 -- -- .005 -") 
160 format(1x,2I3,4I8,2x,4F10.6) 
Select Case(testnum) 
Case(1) 
  write(*,*) "Outputing CVT to file for K-S 2-i-s t-g-d" 
  write(*,*) "generated CVs based on Kim & Jennrich, with" 
  write(*,*) "actual 1-tailed probabilities" 
  write(*,*)  
  write(LU,*) "Kolmogorov-Smirnov test of general differences for" 
  write(LU,*) "two independent samples, critical values based on" 
  write(LU,*) "Kim & Jennrich (1970,1973), with actual 1-tailed" 
  write(LU,*) "probabilities generated by CVKSJmod" 
  write(LU,*) 
  write(*,*) "Generating CV tables" 
  call CV_KSJ_init 
  write(*,*) "CV_KSJ_init completed - CV tables built" 
  write(LU,110)  ! print header information 
  write(LU,*) 
  write(LU,140)  ! print column headers for this format 
  write(LU,150) 
  write(LU,*) 
  Do j = 1,50 
    Do i = 1,j 
      call CV_KSJbc(i,j,CVi,PVr) 
      PVr = PVr/2.0 
      write(LU,160) i,j,CVi(1:4),PVr(1:4) 
    End Do 
    write(LU,*) 
  End Do 
Case(2)  ! 2-sided values w/ actual probabilities 
  write(*,*) "Outputing CVT to file for K-S 2-i-s t-g-d" 
  write(*,*) "generated CVs based on Kim & Jennrich, with" 
  write(*,*) "actual 2-tailed probabilities" 
  write(*,*)  
  write(LU,*) "Kolmogorov-Smirnov test of general differences for" 
  write(LU,*) "two independent samples, critical values based on" 
  write(LU,*) "Kim & Jennrich (1970,1973), with actual 2-tailed" 
  write(LU,*) "probabilities generated by CVKSJmod" 
  write(LU,*) 
  write(*,*) "Generating CV tables" 
  call CV_KSJ_init 
  write(*,*) "CV_KSJ_init completed - CV tables built" 
  write(LU,100)  ! print header information 
  write(LU,*) 
  write(LU,120)  ! print column headers for this format 
  write(LU,130) 
  write(LU,*) 
  Do j = 1,50 
    Do i = 1,j 
      call CV_KSJbc(i,j,CVi,PVr) 
      write(LU,160) i,j,CVi(1:4),PVr(1:4) 
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    End Do 
    write(LU,*) 
  End Do 
End Select 
! CLOSE FILE 
close(unit=LU, status='keep', iostat=ios) 
If (ios > 0) then 
  write(*,*) "Error closing file 'CVKSTJ_.txt' " 
End If 
9999 stop 
end program CVKSTJ 

 
Module for generating critical values and probabilities 

 
! *************************************************************************** 
! module:   CVKSJmod 
! source:   CVKSJmod.f90 
! based on: CVKS3mod as of 05 Jun 2002 19:00, which is based on the 
!           Kim & Jennrich Tables of the exact sampling distribution of 
!           the two-sample Kolmogorov=Smirnov criterion, Dmn, m<=n in 
!           Selected Tables in Mathematical Statistics, Vol. 1, 77-170 
!           (1970) Harter & Owens (eds) 2nd printing (1973) with revisions, 
!           published by American Mathematical Society for the 
!           Institute of Mathematical Statistics  
! author:   Bruce R. Fay 
! date:     19 Oct 2002 10:48 EDT 
! purpose:  Provide the best conservative critical values for the 
!           Kolmogorov-Smirnov 2-independent-samples test for general 
!           differences. 
! desc: Generates the CVTs on initialization and provides an entry 
!           point that returns up to 4 critical values based on the 
!           incoming values of m and n.  Checks are made that 
!           1 <= m <= n <= 50.  If n1, n2 are not in this range and 
!           relationship, the lookup is not performed.  When CVs are 
!           not available, a value of -1 is returned. 
! *************************************************************************** 
module CVKSJmod 
implicit none 
private 
public :: CV_KSJ_init, CV_KSJbc 
contains 
! *************************************************************************** 
subroutine CV_KSJ_init 
! INTERFACE 
! There are no arguments for CV_KSJ_init.  The calling routine must call this 
! subroutine once to build the CV table prior to calling CV_KSJbc() to obtain 
! critical values and probabilities for specific m and n.  The calling 
! routine must also declare an integer vector of length 4 and pass it in to 
! receive the critical values as well as a real vector of length 4 and pass 
! it in to receive the probabilities.  For entry CV_KSJbc(m,n,CV,PV): 
!   m   ::  sample size for 1st group (<= n) 
!   n   ::  sample size for 2nd group 
!   CV  ::  critical values vector (length 4) 
!   PV  ::  probability values vector (length 4) 
! DESCRIPTION 
! At entry CV_KSJbc(m,n,CV,PV), for m <= n, returns up to four critical 
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! values, if available, in vector CV(:), with actual probabilities in PV(:), 
! as follows: 
! CV(1) = 1-tailed alpha .05  (2-tailed alpha .10) 
! CV(2) = 1-tailed alpha .025 (2-tailed alpha .05) 
! CV(3) = 1-tailed alpha .01  (2-tailed alpha .02) 
! CV(4) = 1-tailed alpha .005 (2-tailed alpha .01) 
! PV(1) = 1-tailed .05  (2-tailed .10) actual probability 
! PV(2) = 1-tailed .025 (2-tailed .05) actual probability 
! PV(3) = 1-tailed .01  (2-tailed .02) actual probability 
! PV(4) = 1-tailed .005 (2-tailed .01) actual probability 
! If a critical value is not available, a -1 is returned instead with p = 0.0 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: m, n 
integer, intent(out), dimension(:) :: CV 
real, intent(out), dimension(:) :: PV 
! DECLARE LOCAL VARIABLES 
integer, dimension(50,50), save :: CVTbc10, CVTbc05, CVTbc02, CVTbc01 
integer :: c, i, ixj, j 
real*8, dimension(50,50), save :: PVTbc10, PVTbc05, PVTbc02, PVTbc01 
real*8 :: d, pc, prevc 
real*8, parameter :: p90=.90, p95=.95, p98=.98, p99=.99 
logical :: f10, f05, f02, f01 
CVTbc10 = -1   ! initialize CV tables to -1 (indicates no valid entry) 
CVTbc05 = -1 
CVTbc02 = -1 
CVTbc01 = -1 
PVTbc10 = 0.0  ! initialize PV tables to zero 
PVTbc05 = 0.0 
PVTbc02 = 0.0 
PVTbc01 = 0.0 
! BUILD THE CV AND PV TABLES 
Do j = 1,50  ! this is n 
  Do i = 1,j  ! this is m 
    f10 = .false. 
    f05 = .false. 
    f02 = .false. 
    f01 = .false. 
    prevc = 0.0 
    ixj = i*j 
    Do c = 1,ixj  ! possible critical values 
      d = real(c)/real(ixj)  ! Dmn 
      pc = akscdf(i,j,d)     ! get the probability of Dmn <= C/(m*n) 
      If ((.not.f10).and.(prevc >= p90).and.(pc > prevc)) then 
        CVTbc10(i,j) = c 
        PVTbc10(i,j) = 1.0 - prevc 
        f10 = .true. 
      End If 
      If ((.not.f05).and.(prevc >= p95).and.(pc > prevc)) then 
        CVTbc05(i,j) = c 
        PVTbc05(i,j) = 1.0 - prevc 
        f05 = .true. 
      End If 
      If ((.not.f02).and.(prevc >= p98).and.(pc > prevc)) then 
        CVTbc02(i,j) = c 
        PVTbc02(i,j) = 1.0 - prevc 
        f02 = .true. 
      End If 
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      If ((.not.f01).and.(prevc >= p99).and.(pc > prevc)) then 
        CVTbc01(i,j) = c 
        PVTbc01(i,j) = 1.0 - prevc 
        f01 = .true. 
      End If 
      prevc = pc 
      If ( f10.and.f05.and.f02.and.f01 ) exit 
    End Do 
  End Do 
End Do 
return 
! --------------------------------------------------------------------------- 
entry CV_KSJbc(m,n,CV,PV) 
CV = -1 ! initialize all return CVs to 'not available' 
PV = 0.0 ! initialize all probabilities to zero 
 
If ((1 <= n).and.(n <= 50).and.(1 <= m).and.(m <= n)) then 
  CV(1) = CVTbc10(m,n) 
  CV(2) = CVTbc05(m,n) 
  CV(3) = CVTbc02(m,n) 
  CV(4) = CVTbc01(m,n) 
  PV(1) = PVTbc10(m,n) 
  PV(2) = PVTbc05(m,n) 
  PV(3) = PVTbc02(m,n) 
  PV(4) = PVTbc01(m,n) 
End If 
return 
! --------------------------------------------------------------------------- 
end subroutine CV_KSJ_init 
! *************************************************************************** 
real*8 function akscdf(a,b,d) 
! From Kim & Jennrich tables of the exact sampling distribution of 
! the two-sample Kolmogorov=Smirnov criterion, Dmn, m<=n in 
! Selected Tables in Mathematical Statistics, Vol. 1, 77-170 
! (1970) Harter & Owens (eds) 2nd printing (1973) with revisions, 
! published by American Mathematical Society for the Institute of 
! Mathematical Statistics. 
! requires a <= b 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: a, b 
real*8, intent(in) :: d 
! DECLARE LOCAL VARIBLES 
integer :: i, j 
real*8 :: k, w 
real*8, allocatable, dimension(:) :: u 
allocate(u(b+1)) 
k = (real(a*b))*d + .5 
u(1) = 1. 
Do j = 1,b 
  u(j+1) = 1. 
  If (real(a*j) > k) then 
    u(j+1) = 0. 
  End If 
End Do 
Do i = 1,a 
  w = real(i)/real(i+b) 
  u(1) = w*u(1) 
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  If (real(b*i) > k) then 
    u(1) = 0. 
  End If 
  Do j = 1,b 
    u(j+1) = u(j) + (u(j+1)*w) 
    If (real(IABS(b*i-a*j)) > k) then 
      u(j+1) = 0. 
    End If 
  End Do 
End Do 
akscdf = u(b+1) 
deallocate(u) 
return 
end function akscdf 
! *************************************************************************** 
end module CVKSJmod 
 
 
Wilcoxon Rank-sum Test 
 

Main program for printing tables 
 
! *************************************************************************** 
! program:  CVWRSTJ.exe 
! source:   CVWRSTJ.f90 
! author:   Bruce R. Fay 
! date:     25 Oct 2002  14:22 EDT 
! based on: CVWRST.f90 as of 08 Jun 2002 13:02 EDT 
! purpose:  Test harness for critical value tables (CVTs) for the 
!           Wilcoxon rank sum test for 2-i-s. 
! desc:     Provides user choice of critical value module and then 
!           outputs results to a file. 
! *************************************************************************** 
program CVWRSTJ 
use CVWRSJ4mod 
implicit none 
! DECLARE VARIABLES 
integer :: i, j, LU, ios, testnum 
integer, dimension(:) :: CVi(4) 
real*8, dimension(:) :: PVr(4) 
! GET USER INPUTS 
write(*,*) "Program CVWRSTJ.exe by Bruce R. Fay" 
write(*,*) 
write(*,*) "Wilcoxon rank-sum test for two independent samples." 
write(*,*) "Best-conservative critical values generated by method of" 
write(*,*) "Wilcoxon, Katti & Wilcox (1963,68,70,73)." 
write(*,*) 
write(*,*) "Select one of the following:" 
write(*,*) 
write(*,*) "0 to exit program or 1 to generate critical values" 
write(*,*) 
Do 
  read(*,*) testnum 
  If ((0<=testnum).and.(testnum<=1)) EXIT 
  write(*,*) "enter 0 or 1 please" 
End Do 
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If (testnum==0) GOTO 9999  ! check for user termination 
! OPEN FILE FOR OUTPUT AND WRITE HEADER 
LU = 8 
open(unit=LU, file='CVWRSTJ_.txt', iostat=ios) 
IF (ios > 0 ) then 
  write(*,*) "Error opening file 'CVWRSTJ_.txt' " 
  GOTO 9999 
End if 
write(LU,*) "File CVWRSTJ_.txt for program CVWRSTJ.exe" 
write(LU,*) "by Bruce R. Fay" 
write(LU,*) 
write(LU,*) "Wilcoxon rank-sum test for two independent samples." 
write(LU,*) "Best-conservative critical values generated by method of" 
write(LU,*) "Wilcoxon, Katti & Wilcox (1963,68,70,73)." 
write(LU,*) 
write(LU,*) 
! DEFINE FORMATS FOR OUTPUT FILE 
100 format(" 1-tailed CVs and PVs at stated nominal alpha levels") 
110 format("        -------- nominal alpha -------- & 
           &  ----- actual probabilities ----") 
120 format(" 1-tail - .05 - - .025  - .01 - - .005  & 
           &  - p05 - - p025- - p01 - - p005-") 
130 format("  n1 n2") 
140 format(1x,2I3,4I8,2x,4F8.4) 
! RETRIEVE AND OUTPUT CVs AND PVs 
write(*,*) "Generating best-conservative 1-tailed CVs and PVs" 
write(*,*) "for WRST for 2-i-s by the method of"  
write(*,*) "Wilcoxon, Katti & Wilcox (1963,68,70,73)." 
write(*,*) 
call CV_WRSJ4_init 
write(*,*) "CV_WRSJ4_init completed - CV/PV tables built" 
write(LU,100)  ! print header information 
write(LU,*) 
write(LU,110)  ! print column headers for this format 
write(LU,120) 
write(LU,130) 
write(LU,*) 
Do j = 1,50 
  Do i = 1,j 
    call CV_WRSJ4bc(i,j,CVi,PVr)  ! returned CVs, PVs are 1-tailed 
    write(LU,140) i,j,CVi(1:4),PVr(1:4) 
  End Do 
  write(LU,*) 
End Do 
! CLOSE FILE 
close(unit=LU, status='keep', iostat=ios) 
If (ios > 0) then 
 write(*,*) "Error closing file 'CVWRSTout_.txt'" 
End If 
9999 stop 
end program CVWRSTJ 
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Module for generating critical values and probabilities 

 
! *************************************************************************** 
! module:   CVWRS4Jmod 
! source:   CVWRS4Jmod.f90 
! author:   Bruce R. Fay 
! date:     25 Oct 2002 14:04 
! based on: CVWRS4mod.f90 as of 08 Jun 2002 12:52 EDT 
!  Wilcoxon, Katti & Wilcox (1963) Critical values and 
!  probability levels for the Wilcoxon rank sum test (and the 
!  Wilcoxon signed rank test), revised Oct 1968, as it appears 
!  in Harter & Owen, editors (1970,73) Selected Tables in 
!  Mathematical Statistics, Volume I, 171-259. 
!  (Values for n1 = 1 and n1 = 2 from Bradley (1968) 
!  Distribution-free Statistical Tests, 318, Table III.) 
! purpose: Provide the BEST CONSERVATIVE 1-tailed critical values and 
!  associated actual probabilities for the Wilcoxon rank sum 
!  test. 
! desc:     Generates CV and PV tables on initialization and provides an 
!  entry point that returns up to 4 critical values based on the 
!  incoming values of n1 and n2.  Checks are made that n1, n2 
!  are in the appropriate range and relationship for the tables, 
!  with 1 <= n1 <= n2 <=50. 
! *************************************************************************** 
module CVWRSJ4mod 
implicit none 
private 
public :: CV_WRSJ4_init, CV_WRSJ4bc 
contains 
! *************************************************************************** 
subroutine CV_WRSJ4_init 
! INTERFACE 
! There are no arguments for CV_WRSJ4_init.  The calling routine must call 
! this subroutine once to build the CV table prior to calling CV_WRSJ4bc() to 
! obtain critical values for specific m and n.  The calling routine must 
! declare two vectors and pass them as arguments: an integer vector of length 
! 4 to receive the critical values and a real*8 vector of length 4 to receive 
! the associated probabilities.  For entry CV_WRSJ4bc(a,b,CV,PV): 
!    a   :: sample size for 1st group (<= b) 
!    b   :: sample size for 2nd group 
!    CV  :: critical values vector (length 4) 
!    PV  :: actual probability values vector (length 4) 
! DECLARE DUMMY VARIABLES 
integer, intent(in) :: a, b 
integer, intent(out), dimension(:) :: CV 
real*8, intent(out), dimension(:) :: PV 
! DECLARE LOCAL VARIABLES 
integer :: h, i, j, k, k1, k2, M, minRS, N, RS, u, ub 
integer, dimension(50,50), save :: CVTbc10, CVTbc05, CVTbc02, CVTbc01 
real*8, dimension(50,50), save :: PVTbc10, PVTbc05, PVTbc02, PVTbc01 
real*8, allocatable, dimension(:) :: cf, f, z 
real*8 :: Pr, Prev 
real*8, parameter :: p05=0.05, p025=0.025, p01=0.01, p005=0.005 
real*8, parameter :: oneppt = 0.001 
logical :: f10, f05, f02, f01, Pr_underflow, Prev_underflow 
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CVTbc10 = -1  ! initialize CV and PV tables 
CVTbc05 = -1 
CVTbc02 = -1 
CVTbc01 = -1 
PVTbc10 = 0. 
PVTbc05 = 0. 
PVTbc02 = 0. 
PVTbc01 = 0. 
Do N = 2,50 
  Do M = 1,N  ! build the z vector 
    minRS = M*(M+1)/2 
    k = (M+50)**2 
    allocate (z(0:k)) 
    z = 0. 
    Do i = 1,N 
      Do j = 1,k 
        k1 = (M+i)*j - 1 
        K2 = i*j - 1 
        If (k1 <= k) then 
          z(k1) = z(k1) - real(M+i) 
        End If 
        If (k2 <= k) then 
          z(k2) = z(k2) + real(i) 
        End If 
        If (k1 > k .and. k2 > k) exit 
      End Do 
    End Do 
!   build the freq and cumfreq vector and find the critical values 
    f10 = .false. 
    f05 = .false. 
    f02 = .false. 
    f01 = .false. 
    ub = (M+N)*(M+N+1)/2 ! set upper bound on u 
    allocate (f(0:ub))  ! allocate the frequency vector 
    allocate (cf(0:ub))  !  and the cumulative frequency vector 
    f = 0. 
    f(0) = 1. 
    cf = 0. 
    cf(0) = 1. 
    Do u = 1,ub 
      Do h = 0,(u-1) 
        f(u) = f(u) + ( f(h)*z(u-h-1) ) 
      End Do 
      f(u) = f(u)/u 
      cf(u) = cf(u-1) + f(u) 
      Pr = cf(u) 
      Prev = cf(u-1) 
      Pr_underflow = .false. 
      Prev_underflow = .false. 
!     The probabilities Pr and Prev get smaller with each pass 
!     through the following loop.  Thus, once they both drop below 
!     oneppt (see declaration) there is no point continuing the loop. 
      Do i = 1,M 
        If (Pr > oneppt) then 
          Pr = Pr*(M+1-i)/(N+i) 
        Else 
          Pr_underflow = .true. 
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        End If 
        If (Prev > oneppt) then 
          Prev = prev*(M+1-i)/(N+i) 
        Else 
          Prev_underflow = .true. 
        End If 
        If (Pr_underflow .AND. Prev_underflow) exit 
      End Do 
      RS = minRS + u-1  ! rank sum = M(M+1)/2 + u-1 
!     Find the best conservative CVs for specified alphas 
      If ((Prev <= p05).and.(Pr > p05).and.(.not.f10)) then 
        CVTbc10(M,N) = RS 
        PVTbc10(M,N) = Prev 
        f10 = .true. 
      End If 
      If ((Prev <= p025).and.(Pr > p025).and.(.not.f05)) then 
        CVTbc05(M,N) = RS 
        PVTbc05(M,N) = Prev 
        f05 = .true. 
      End If 
      If ((Prev <= p01).and.(Pr > p01).and.(.not.f02)) then 
        CVTbc02(M,N) = RS 
        PVTbc02(M,N) = Prev 
        f02 = .true. 
      End If 
      If ((Prev <= p005).and.(Pr > p005).and.(.not.f01)) then 
        CVTbc01(M,N) = RS 
        PVTbc01(M,N) = Prev 
        f01 = .true. 
      End If 
      If (f10.and.f05.and.f02.and.f01) exit  ! found all 4 CVs!  
    End Do 
    deallocate(z,f,cf) 
  End Do 
End Do 
return 
! --------------------------------------------------------------------------- 
entry CV_WRSJ4bc(a,b,CV,PV) 
CV = -1  ! initialize all return CVs to 'not available' 
PV = 0.  ! initialize all return p's to zero 
If ((b >= 1).and.(b <= 50).and.(a >= 1).and.(a <= b)) then 
  CV(1) = CVTbc10(a,b) 
  CV(2) = CVTbc05(a,b) 
  CV(3) = CVTbc02(a,b) 
  CV(4) = CVTbc01(a,b) 
  PV(1) = PVTbc10(a,b) 
  PV(2) = PVTbc05(a,b) 
  PV(3) = PVTbc02(a,b) 
  PV(4) = PVTbc01(a,b) 
End If 
return 
! --------------------------------------------------------------------------- 
end subroutine CV_WRSJ4_init 
! *************************************************************************** 
end module CVWRSJ4mod
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A Program for Generating All Permutations of { }1, 2, , n…  
 
 

Robert DiSario 
Bryant College 

 
 
A Visual Basic program that generates all permutations of {1, 2, …, n} is presented. The procedure for 
running the program as an Excel macro is described. An application is presented which involves selecting 
permutations which meet a specific constraint. 
 
Key words: Visual Basic, permutation. 
 
 

Introduction 
 

A Visual Basic program for generating all 
combinations of n elements taken m at a time was 
presented in Stamatopoulos (2002). The present 
work presents a program for generating all 
permutations of n elements. Applications 
involving combinations and permutations often 
arise in designing experiments and in other areas. 
As an example, the program was used to find all 
permutations that meet a specific requirement. 

The procedure given in the present work 
meets the requirements stated in Stamatopoulos 
(2002) for algorithms which implement automatic 
enumeration: a) all possible cases are exhausted; 
b) none of the permutations need to be stored – the 
current case that has been formulated is the basis 
for generating the next one. Therefore it presents a 
practical means for generating permutations.  
 

Methodology 
 
The program consists of a main module,     
Macro1( ), and 3 functions: Permute( ), Findlarg( ) 
and Sort( ). The main module handles input and 
output (input from Excel ; output to a text file), 
dimensions   and    initializes   an  array,  and  calls  
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Permute( ). Findlarg( ) returns the largest element 
to the right of a given position in an array. Sort( ) 
sorts the elements to the right of a given position 
in an array. Permute( ) takes as input a 
permutation of {1,2,…,n} and creates the next 
permutation in the “natural sequence”. For an 
example of the “natural sequence” of permutations 
of {1,2,3,4} see the output below. Permute( ) also 
returns 0 when the final permutation in the natural 
sequence has been created. A general description 
of Permute( ) follows. A listing of the program, 
written in Visual Basic, appears in an appendix. 
 
Description of Permute( ) function 

 
Permute(x(),n)  
Set bigfix = n.  
Note: bigfix is an element that 
serves as a reference point in the 
array.  
Top: 
Find position of bigfix (call it 
bigindx). Check whether array is 
in descending order from bigindx 
to the right. If descending, work 
left. Else, work right. 
Work left: (refers to left of 
bigfix) 
If nothing to left of bigfix, then 
done (this is the last permutation 
in natural sequence). 
Else the element to the left of 
bigfix, x(bigindx-1), needs to be 
changed. Switch it with the 
smallest element on its right 
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which is bigger than it. Then sort 
the elements from bigindx to the 
right. 
Permute( ) is done (indicated by 
done = 1). 
end Work left 
 
Work right: (refers to right of 
bigfix) 
Find the largest element on the 
right of bigfix. Set bigfix equal 
to this largest element.  
Permute( ) is not done (indicated 
by done = 0) 
end Work right 
 
Return to top:  
 
Results 
 
Application 1 

As a first example, the program was used 
to generate all 24 permutations of the set 

{1,2,3,4}. The results are shown in Table 1. This 
output reveals the order referred to above  
as the “natural sequence”. Note that the output file 
contains a single column of permutations, but that 
Table 1 has been reformatted into 6 columns to 
save space. 
 
Application 2 

As a typical application, experimenters are 
often interested in the order of presentation of 
experimental conditions or stimuli. In some cases, 
the orders used must be selected according to very 
specific considerations. Furthermore, the 
experimenter may desire to use a different order 
for each of the subjects or replications. As an 
example, suppose an experimenter wants a list of 
all the permutations of {1,2,3,4,5} in which “1” is 
not next to “2”, “2” is not next to “3”, “3” is not 
next to “4”, and “4” is not next to “5”. The 
program was modified (as described below) to 
check each permutation to determine whether or 
not it meets this constraint. The list of all such 
permutations appears in Table 2. 

 
Table 1. “Natural Sequence” of Permutations of {1,2,3,4}. Read down then across. 

 
1 2 3 4 1 4 2 3 2 3 1 4 3 1 2 4 3 4 1 2 4 2 1 3 
1 2 4 3 1 4 3 2 2 3 4 1 3 1 4 2 3 4 2 1 4 2 3 1 
1 3 2 4 2 1 3 4 2 4 1 3 3 2 1 4 4 1 2 3 4 3 1 2 
1 3 4 2 2 1 4 3 2 4 3 1 3 2 4 1 4 1 3 2 4 3 2 1 

 
 

Table 2. All permutations of {1,2,3,4,5} with the property that adjacent elements are not consecutive integers. 
 

1 3 5 2 4   2 4 1 3 5   2 5 3 1 4   3 1 5 2 4   3 5 2 4 1   4 2 5 1 3   5 2 4 1 3  

 1 4 2 5 3   2 4 1 5 3   3 1 4 2 5   3 5 1 4 2   4 1 3 5 2   4 2 5 3 1   5 3 1 4 2  
 
 
To select only those permutations that meet the 
constraint, the section of the program that prints 
the permutation was modified. First the 
permutation was checked to see if it satisfies the 
constraint. Then printing was conditional on the 
outcome of this check. This was accomplished by 
setting a “satisfy” flag to 0 if the constraint was 
not met and to 1 if the constraint was met. The 
specific lines that were changed (both original and 
modified) are presented in Appendix III. A similar 

approach could be used to select permutations 
according to other constraints.  
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Appendix I 
 

The BASIC code that appears in Appendix 
II can be run as an Excel macro. The procedure for 
doing this is described in Stamatopoulos (2002). 
Note that before pasting the program lines into the 
Visual Basic editor, it is necessary to first delete 

two lines which are automatically generated by 
Excel: Sub Macro1( ) and End Sub.  

The program can be assigned to a control 
key. It will read a value of n from the cell B4 in 
Sheet1 of the Excel workbook. It outputs the 
permutations to a text file called perms.txt. 

 
 

 
Appendix II 

 
Program listing 
Sub Macro1() 
'Open file for output. 
'Read n from worksheet 
'Set initial permutation {1,2,...,n} 
Open "c:\perms.txt" For Output As #1 
n = Range("B4") 
ReDim x(n) 
For i = 1 To n 
 x(i) = i 
Next i 
 
'Notdun=0 iff current permutation is n, n-1, ..., 1 
notdun = 1 
Do While (notdun) 
 For i = 1 To n 
'Print current permutation 
  Print #1, x(i); 
 Next i 
'Print line feed 
 Print #1, "" 
'Find next permutation and note whether it is the final one 
 notdun = permute(x(), n) 
Loop 
Close 
End Sub 
 
Function permute(x(), n) 
'Creates the next permutation in the "natural sequence" 
'Returns 0 if permutation is n, n-1, ..., 1 
'Default is to return 1 
permute = 1 
bigfix = n 
'Done = 1 indicates next permutation is complete, 0 not. 
done = 0 
Do While (done = 0) 
 done = 1 
 
'Find the index of bigfix 
 For i = 1 To n 
  If x(i) = bigfix Then bigindx = i 
 Next i 
 descend = 1 
 If bigindx <> n Then 
 For i = bigindx To n - 1 
  If x(i) < x(i + 1) Then descend = 0 
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 Next i 
 End If 
 If descend And bigindx = 1 Then permute = 0 
 If descend Then 
'Work left 
  current = x(bigindx - 1) 
  candidx = bigindx 
'Find element to switch with x(bigindx-1) 
  For i = bigindx To n 
   If x(i) > current And x(i) < x(candidx) Then candidx = i 
  Next i 
'Switch them 
  temp = x(candidx) 
  x(candidx) = x(bigindx - 1) 
  x(bigindx - 1) = temp 
  temp = sort(x(), bigindx) 
 End If 
'End of work left 
  
'Work right 
 If descend = 0 Then 
  done = 0 
  bigfix = findlarg(x(), bigindx + 1) 
 End If 
'End of work right 
Loop 
End Function 
 
Function findlarg(x(), start) 
'Finds largest x(i) from i = start to i = n 
candid = x(start) 
ub = UBound(x) 
For i = start To ub 
 If x(i) > candid Then candid = x(i) 
Next i 
findlarg = candid 
End Function 
 
Function sort(x(), start) 
'Sorts x() from i = start to i = n 
ub = UBound(x) 
For i = start To ub 
For j = i To ub 
If x(i) > x(j) Then 
temp = x(i) 
x(i) = x(j) 
x(j) = temp 
End If 
Next j 
Next i 
 
End Function 
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Appendix III 
 

Program modification used to select permutations meeting constraint described in application 2. 
 
Original code: 
For i = 1 To n 
'Print current permutation 
  Print #1, x(i); 
 Next i 
'Print line feed 
 Print #1, "" 
 
Modified code: 
 
'Check whether permutation meets constraints 
satisfy = 1 
For i = 2 To n 
If Abs(x(i) - x(i - 1)) = 1 Then satisfy = 0 
Next i 
 
If satisfy Then 
 For i = 1 To n 
' print current permutation 
  Print #1, x(i); 
 Next i 
' print line feed 
 Print #1, "" 
End If 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

    The fastest, most comprehensive and robust   
   permutation test software on the market today. 
       
       Permutation tests increasingly are the statistical method of choice for addressing business questions and research 
hypotheses across a broad range of industries.  Their distribution-free nature maintains test validity where many parametric 
tests (and even other nonparametric tests), encumbered by restrictive and often inappropriate data assumptions, fail 
miserably.  The computational demands of permutation tests, however, have severely limited other vendors’ attempts at 
providing useable permutation test software for anything but highly stylized situations or small datasets and few tests.  
PermuteItTM addresses this unmet need by utilizing a combination of algorithms to perform two-sample, non-parametric 
permutation tests very quickly – often more than an order of magnitude faster than widely available commercial alternatives 
when one sample is large and many tests and/or multiple comparisons are being performed (which is when runtimes matter 
most).  PermuteItTM can make the difference between making deadlines, or missing them, since data inputs often need to be 
revised, resent, or recleaned, and one hour of runtime quickly can become 10, 20, or 30 hours. 
 
In addition to its speed even when one sample is large, some of the unique and powerful features of PermuteItTM include: 
  
•      the availability to the user of a wide range of test statistics for performing permutation tests on continuous, count, & 
binary data, including: pooled-variance t-test; separate-variance Behrens-Fisher t-test; joint tests for scale and location 
coefficients; Brownie et al. “modified” t-test; exact inference; Poisson normal-approximate test; Fisher’s exact test 
 
•      extremely fast exact inference (no confidence intervals – just exact p-values) for most count data and high-frequency 
continuous data 
 
•      the availability to the user of a wide range of multiple testing procedures, including: Bonferroni, Sidak, Stepdown 
Bonferroni, Stepdown Sidak, Stepdown Bonferroni and Stepdown Sidak for discrete distributions, Hochberg Stepup, FDR, 
Dunnett’s one-step (for MCC under ANOVA assumptions), Stepdown Permutation (for FWE, FDR, and FDP), Permutation-style 
adjustment of permutation p-values 
 
•      fast, efficient, and automatic generation of all pairwise comparisons 
 
•      efficient variance-reduction under conventional Monte Carlo via self-adjusting permutation sampling when confidence 
intervals contain the user-specified critical value of the test  
 
•      maximum power under conventional Monte Carlo via a new sampling optimization technique (see Opdyke, JMASM, Vol. 2, 
No. 1:  forthcoming, May, 2003) 
 
•      fast permutation-style p-value adjustments for multiple comparisons (the code is designed to provide an additional speed 
premium for these resampling-based multiple testing procedures)  
 
•      simultaneous permutation testing and permutation-style p-value adjustment, although for relatively few tests at a time 
(this capability is not even provided as a preprogrammed option with any other software currently on the market)  
 
       For Telecommunications, Pharmaceuticals, fMRI data, Financial Services, Clinical Trials, Insurance, Bioinformatics, and 
just about any data rich industry where large numbers of distributional null hypotheses need to be tested on samples that are 
not extremely small and parametric assumptions are either uncertain or inappropriate, PermuteItTM is the optimal, and only, 
solution. 
 
       To learn more about how PermuteItTM can be used for your enterprise, and to obtain a demo version in early 2003, please 
contact its author, J.D. Opdyke, President, DataMineItSM, at jdopdyke@datamineit.com or www.datamineit.com.  
 
       DataMineItSM is a technical consultancy providing statistical data mining, econometric analysis, and data warehousing 
services and expertise to the industry, consulting, and research sectors.  PermuteItTM is its flagship product. 
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 JOIN DIVISION 5 OF APA! 
 
 The Division of Evaluation, Measurement, and Statistics of the American Psychological 
Association draws together individuals whose professional activities and/or interests include 
assessment, evaluation, measurement, and statistics.  The disciplinary affiliation of division 
membership reaches well beyond psychology, includes both members and non-members of 
APA, and welcomes graduate students. 
 
 Benefits of membership include: 
$  subscription to Psychological Methods or Psychological Assessment (student members, 

who pay a reduced fee, do not automatically receive a journal, but may do so for an 
additional $18) 

$  The Score – the division’s quarterly newsletter 
$  Division’s Listservs, which provide an opportunity for substantive discussions as well as 

the dissemination of important information (e.g., job openings, grant information, 
workshops) 

 
 Cost of membership: $38 (APA membership not required); student membership is only $8 
 
 For further information, please contact the Division’s Membership Chair, Yossef Ben-Porath 
(ybenpora@kent.edu) or check out the Division’s website: 
 
  http://www.apa.org/divisions/div5/ 
______________________________________________________________________________ 
 

ARE YOU INTERESTED IN AN ORGANIZATION DEVOTED TO 
EDUCATIONAL AND BEHAVIORAL STATISTICS? 

 
Become a member of the Special Interest Group - Educational Statisticians of the 

American Educational Research Association (SIG-ES of AERA)! 
 

The mission of SIG-ES is to increase the interaction among educational researchers interested 
in the theory, applications, and teaching of statistics in the social sciences. 

 
Each Spring, as part of the overall AERA annual meeting, there are seven sessions sponsored 

by SIG-ES devoted to educational statistics and statistics education. 
We also publish a twice-yearly electronic newsletter. 

 
Past issues of the SIG-ES newsletter and other information regarding SIG-ES can be found at 

http://orme.uark.edu/edstatsig.htm 
 

To join SIG-ES you must be a member of AERA. Dues are $5.00 per year. 
 

For more information, contact Joan Garfield, President of the SIG-ES, at jbg@umn.edu. 
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Instructions For Authors 
 
 Follow these guidelines when submitting a manuscript: 
 
 1. The most recent American Psychological Association style guidelines are preferred. 
 2. Submissions are accepted via e-mail only. Send them to the Editorial Assistant at 
ea@edstat.coe.wayne.edu. Provide name, affiliation, address, e-mail address, and 30 word biographical 
statements for all authors in the body of the email message. 
 3. There should be no material identifying authorship except on the title page. A statement should be 
included in the body of the e-mail that, where applicable, indicating proper human subjects protocols were 
followed, including informed consent. A statement should be included in the body of the e--mail indicating 
the manuscript is not under consideration at another journal. 
 4. Provide the manuscript as an external e-mail attachment in MS Word for the PC format only. 
(Wordperfect and .rtf formats may be acceptable - please inquire.) Please note that Tex (in its various 
versions), Exp, and Adobe .pdf formats are designed to produce the final presentation of text. They are not 
amenable to the editing process, and are not acceptable for manuscript submission. 
 5. The text maximum is 20 pages double spaced, not including tables, figures, graphs, and references. Use  
11 point Times Roman font. If the technical expertise is available, submit the manuscript in two column 
format. 
 6. Create tables without boxes or vertical lines. Place tables, figures, and graphs “in-line”, not at the end of 
the manuscript. Figures may be in .jpg, .tif, .png, and other formats readable by Adobe Illustrator or 
Photoshop. 
 7. The manuscript should contain an Abstract with a 50 word maximum, following by a list of key words 
or phrases. Major headings are Introduction, Methodology, Results, Conclusion, and References. Center 
headings. Subheadings are left justified; capitalize only the first letter of each word. Sub-subheadings are left-
justified with indent. 
 8. Do not use underlining in the manuscript. Do not use bold, except for (a) matrices, or (b) emphasis 
within a table, figure, or graph. Do not number sections. Number all formulas, tables, figures, and graphs, but 
do not use italics, bold, or underline. Do not number references. Do not use footnotes or endnotes. 
 9. In the References section, do not put quotation marks around titles of articles or books. Capitalize only 
the first letter of books. Italicize journal or book titles, and volume numbers. Use “&” instead of “and” in 
multiple author listings. 
 10. Suggestions for style: Instead of “I drew a sample of 40” write “A sample of 40 was selected”. Use 
“although” instead of “while”, unless the meaning is “at the same time”. Use “because” instead of “since”, 
unless the meaning is “after”. Instead of “Smith (1990) notes” write “Smith (1990) noted”. 
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