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The purpose of this study was to explicate two issues concerning the standard and rank based test of 
homogeneity of slopes. Two alternative ranking methods intended to address nonnormality and additive 
treatment effect patterns were developed and compared in terms of their ability to control Type I error. The 
results replicated previous findings of inflated Type I error rates with leptokurtic curves and with rank based 
tests with some patterns of additive treatment effects. The new nonparametric procedures generally control 
Type I error although they were slightly inflated with skewed distributions. 
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Introduction 
 
Psychology and education have long 
acknowledged the need for methods to address the 
interaction between treatment variables on the one 
hand and individual difference variables on the 
other. Cronbach (1957) in his presidential address 
to the American Psychological Association called 
for a fusion of the “two schools of psychology”, a  
field later to be identified as Aptitude x Trait 
interaction (ATI) research (Cronbach & Snow, 
1981). While ATI research was originally 
developed within educational psychology it has 
spread throughout psychology including  industrial 
psychology (see for instance, Hunter, Schmitt & 
Hunter, 1979) and psychotherapy (see for instance 
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Dance & Neufeld, 1988).Two major strategies are 
used to explore ATIs. The first is based on 
stratification of the individual difference variable, 
which produces a randomized block design. The 
desired information is contained in the Block x 
Treatment interaction. The alternative is a 
regression based approach that can be viewed 
either as a test of moderated regression or of 
homogeneity of slopes within an analysis of 
covariance design. 

The usual form of the regression approach 
is to assume a linear relationship between the 
individual difference variable used as the covariate 
(X) and the outcome measure (Y). The issue 
investigated is whether the treatment alters the 
nature of the linear relationship. The presence of 
an interaction between the treatment and X is 
reflected in the difference between the slopes. This 
finding may be the primary finding of the study 
and may also inform the researcher regarding 
appropriate strategies for looking for main effects. 

 We will adopt the regression vantage 
point for describing the issues addressed. 
Cronbach and Snow (1981) argued for the 
regression approach as more powerful than 
stratification, an assertion that was supported in 
simulations by Klockars and Beretvas (2001). The 
issue of power is particularly important given the 
high Type II error rates associated with attempts to 
identify interactions, especially in field studies 
(McClelland & Judd, 1993). For a comparison of 
randomized block and analysis of covariance see 
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Klockars, Potter, and Beretvas (1999), and 
Klockars and Beretvas (2001).  
 The test of homogeneity of slopes is based 
on a set of assumptions common to both 
regression and covariance. Of primary importance 
in the current investigation is the assumption that 
the variables are normally distributed. The 
assumption is part of a mathematical model and, 
as with any model, it is unexpected that empirical 
data will ever exactly fulfill the model (e.g. scores 
are discrete while the model is continuous). 
  However, Micceri (1989) in a survey of 
typical variables analyzed in psychology and 
education journals reported that the distributions 
were often far from normal with considerable 
skew and kurtosis.  Conover and Iman (1982) and 
more recent work by Headrick and Sawilowsky 
(2000) showed that the Type I error control of the 
test of homogeneity of slopes is greatly impacted 
by the shape of the distributions involved. 
Platykurtic or light-tailed distributions produce 
Type I error rates that are conservative while 
leptokurtic or heavy-tailed distributions produce 
liberal Type I error rates. Klockars and Moses 
(2001) found that the Type I error rates for 
distributions with shapes that Micceri (1989) 
indicated were typical far exceeded both Bradley’s 
(1978) conservative (.055) and liberal (.075) 
definition of robustness. 

Prior research has not directly addressed 
the question of the relative impact of nonnormality 
in X and Y on Type I error. Atiquallah (1964) 
showed analytically that the shape of the 
distribution of X plays a role in the magnitude of 
the calculated F ratio as does the distribution of Y. 
In simulation studies three different patterns of X 
and Y distributions have been used. 

Conover and Iman (1982) and Stephenson 
and Jacobson (1988) varied the shape of the Y 
distribution but used a normally distributed X 
distribution throughout. Headrick and Sawilowsky 
(2000) let the X and Y distributions have the same 
shape so that if Y were moderately right skewed 
the X distribution would also be moderately right 
skewed. Klockars and Moses (2001) 
systematically varied the shape of the Y 
distribution and created the X distribution as a 
linear combination of Y and normally distributed 
random error. Thus the covariate, X, had a 
distribution less extreme than that of the Y 
distribution. This was particularly true with the 

low correlation condition in which the normally 
distributed random error was more heavily 
weighted.  
 The first issues under investigation in the 
current study are (1) a replication of the finding 
that the shape of the Y distribution systematically 
influences Type I error rates of the test of 
homogeneity of slopes, and (2) an evaluation of 
the relative importance and independence of the 
shape of the X distribution compared to that of the 
Y distributions in producing Type I errors. 

A number of authors have proposed non-
parametric, rank based analyses of covariance to 
avoid the distributional requirements of analysis of 
covariance as a test of adjusted means 
(Quade,1967; Puri & Sen, 1969; Burnett & Barr, 
1977; Shirley, 1981). These strategies, however, 
focused primarily on the null hypothesis regarding 
the adjusted means of the treatment groups. Slopes 
were assumed to be homogeneous and the 
question of an interaction was not addressed. 

Shirley (1981) developed χ2 tests for both 
the test of parallel lines and equal adjusted means 
on data where the outcome measure Y was 
converted to ranks. Conover and Iman (1982) 
proposed standard analysis of covariance on data 
where both X and Y were replaced with their 
ranks. Stevenson and Jacobsen (1988) offered a 
“hybrid” alternative in which only the Y variable 
was ranked while X was retained in its original 
form.  A standard ANCOVA was conducted on 
the raw X and ranked Y scores to test for both 
differences in slopes and adjusted means. In the 
latter two studies simulated data were generated to 
evaluate how robust the methods were. The rank 
and hybrid ANCOVA methods tended to control 
Type I error in situations where the error rate for 
the original observations was problematic, that is, 
where the Y distributions were leptokurtic.  
 More recent inquiries using analysis of 
covariance with ranks have returned to considering 
only questions about the adjusted means (Seaman, 
Algina, & Olejnik, 1985; Harwell & Serlin, 1988; 
Hettermansperger, 1984; Rheinheimer & Penfield, 
2001). However, Headrick and Sawilowsky (2000) 
presented simulation evidence that indicated that 
the Conover and Iman approach to testing 
differences in slopes can have very elevated Type 
I error rates under conditions of additive treatment 
effects. In particular, simulations in which a small 
proportion of the treatment effects had large 



TYPE I ERROR RATES FOR RANK-BASED TESTS 454

additive effects resulted in extremely high Type I 
error rates when the test for homogeneity of slopes 
was conducted. When X and Y were highly 
correlated and the sample size was large there was 
essentially a 100% chance of rejecting the null 
hypothesis that the slopes differed. This happened 
even though the only effects built into the data 
were additive effects that should have been 
reflected in the test of adjusted means rather than 
slopes. The present study (3) replicates the 
Headrick and Sawilowsky finding and (4) 
develops alternative methods for testing for 
differences in slopes within the general analysis of 
covariance framework that may have better control 
of Type I error.  
 The development of alternative non-
parametric methods relies on understanding why 
there is an elevated level of Type I error when 
additive treatment effects are present. Let the 
parameters of the original measurements be 
indicated by standard Greek letters with X, Y, and 
k subscripts, and those of the ranked scores by 
Greek letters with the addition of the subscript R 
to denote ranked. The null hypothesis in a test of 
homogeneity of slopes for the original scores is 
β= β2=…= βk with each of the slopes given by 
 

 
k

k

X

Y
kk σ
σ

ρβ =    (1) 

 
We dealt with the case where the null hypothesis 
concerning slopes implies equality of the elements 
on the right side of equation 1. If the null 
hypothesis for slopes is true then the variability of 
the X scores, the Y scores and the XY correlations 
are homogeneous. The special case where the 
slopes are equal because of compensating effects 
such as inversely related correlations and Y 
variances was not considered. 

The question of interest concerns the 
equality of the βks but is tested by evaluating the 
null hypothesis concerning the equality of the βRks. 
This will be an equivalent test if the terms on the 
right side of: 
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are homogeneous when the terms on the right side 
of (1) are homogeneous.  

The variances of the raw X scores (σ2
Xk) 

are homogeneous by the nature of an experiment. 
Under the standard procedures associated with 
ANCOVA the subjects are randomly assigned to 
conditions with no impact of treatment present in 
the X scores. The variances for the ranked X 
scores, σ2

RXk, will be ((kn)2-1)/12 and the sampled 
set of ranks from all k groups should estimate this 
parameter because of the random assignment. 
Additive treatment effects will have no impact on 
either σ2

Xk or σ2
RXk 

 The correlation between the ranked XY 
scores (ρRk) will be similar but not identical to the 
correlation between the original scores. If the 
treatment conditions have equal correlations in 
their raw score form, that equality of correlation 
will be maintained in the ranked scores. Additive 
treatment effects should have no or only minor 
influences on the homogeneity of correlations 
based on ranked scores. 

As with the ranked X scores, the variance 
of the ranked Y scores is a simple function of 
sample size (n) and number of groups (k). If there 
are no additive treatment effects the variance of 
the ranked Y scores is: 
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Additive treatment effects have the possibility of 
changing the variance of ranked Y scores within a 
group. Since group slopes are a function of the 
standard deviations of X and Y, additive 
treatments could produce the appearance of an 
interaction. This possibility is most easily seen in 
an exaggerated example. Consider the pattern of 
treatment effects for 4 groups of {0, 0, 0, c} where 
c is an additive constant. Let c be so large that the 
fourth sample of scores is raised so that no 
member of group 4 has a score lower than the 
highest score in the remaining groups. In this case 
the ranked Y variances estimated by the first 3 of 
the k=4 groups would be: 
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while the variance of the fourth group would 
reflect the variability in ranks of n adjacent scores 
which is 
    

 
12

1n 2

RY
2

4

−
=σ          (5) 

 
The differences in the variability from 

equation 4 and 5 would produce a set of slopes in 
which the last group would have a slope almost k-
1 times smaller than the slopes of the remaining 
groups. For smaller additive treatment effects the 
separation would be less complete but still result 
in the reduction of the Y variability for the 
separated group and thus a reduction in the slope. 
Headrick and Sawilowsky’s (2000) report of high 
rejection rates of the null hypothesis concerning 
equal slopes are Type I errors in the sense that 
there were only additive rather than interactive 
effects present. The rejections are also correct 
rejections of the null hypothesis concerning slopes 
after the additive treatment effects have 
confounded additive and interactive effects when 
Y is ranked. The proportion of rejected hypotheses 
will depend on the power, which is a function of 
the correlation and sample size. 

Other configurations of additive effect 
would not produce the same effect. Patterns such 
as {0, 0, c, c} or (-2c, -c, 0, c, 2c) would alter all 
of the groups’ Y variabilities equally and thus 
retain equal slopes in the ranked scores if there 
were equal slopes in the original distributions. In 
the simulations performed by Stephenson and 
Jacobson (1988) the vector of additive effects was 
(1, 0, 1.5, 3). This pattern did not produce inflated 
Type I error rates as the spacing is relatively equal 
and the sample size and correlation were much 
lower than in Headrick and Sawilowsky, providing 
little power. 
 To eliminate the potential of additive 
treatment effects confounding the test of 
differences in slope we propose that the ranking of 
observations be based on a function of the scores 
that would eliminate any additive effects. The first 
alternative is to subtract the appropriate group 
sample mean from each score prior to ranking the 
observations and conducting the analysis of 
covariance. Scores within a treatment condition 
are defined as Yij=µ+αj+εij. The sample mean has 
an expected value of µ+αj. Analysis of the 

deviation from the group mean provides estimates 
of a common εij. 

The second alternative is to subtract the 
sample median prior to ranking the observations. 
Like the sample mean, the sample median will 
cancel additive treatment effects. Any constant 
difference reflecting the difference between the 
population mean and median should be eliminated 
when the differences are ranked. The median is 
offered as an alternative when the distribution of Y 
scores may be highly skewed. 

 Consider the situation in which the null 
hypothesis concerning slopes is true but the 
outcome measure is a right skewed, heavy-tailed 
distribution. The presence in a sample of a single, 
outlying score would produce deviations from the 
mean that were primarily negative, reflecting the 
inflating effect of the extreme score on the sample 
mean. The predominance of negative deviations 
along with the outlying positive deviation would 
distort the slope and inflate the Type I error rate. 

 A number of robust statistics are available 
to decrease the influence of extreme scores. The 
sample median is one of the simplest and is used 
in the current alternative approach. In both 
proposed methods the test for additive treatment 
effects would have to be conducted using the 
normal Conover and Iman (1982) or alternative 
method. The subtraction of either the sample mean 
or the sample median from scores eliminates any 
additive effects and precludes the deviations from 
being used to evaluate additive effects. 
 

 
Methodology 

 
All simulations were conducted on a Unix 
computer using programs written in FORTRAN 
77. Unit normal distributions were generated using 
the RNNOR subroutine of IMSL. All Type I error 
rates were obtained from 50,000 iterations of the 
program. For the nominal value of .05 this number 
of iterations produces a standard error of .001. The 
simulations were all based on a one-way design 
with k=4 groups, n=20 subjects, and a single 
covariate.  Two levels of relationship between X 
and Y were created to represent a relatively low 
and relatively high degree of relationship. In the 
normally distributed X and Y scores the two levels 
represent correlations of .3 and .7.  
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The normally distributed covariate X was 
generated by RNNOR. The Y variable was created 
as a weighted linear combination of X and a 
second randomly created normal distribution to 
introduce random error. The weights were selected 
so that the variance of the Y scores was 1 and the 
slopes for all groups would be either .3 or .7. The 
original normally distributed X and Y variables 
(NOR X and NOR Y, respectively) were then 
transformed to three other shaped distributions 
using Fleishman’s (1978) power vector method. 

A platykurtic distribution was selected for 
study with skew of 0 and kurtosis of -1 (PLAT X 
and PLAT Y). The other two distribution were 
leptokurtic, the first with skew of 0 and kurtosis of 
1.5 (LEPTO X and LEPTO Y) and finally, a more 
extreme, skewed, leptokurtic distribution with 
skew of 1.75 and kurtosis of 3.75 (SKLPT X and 
SKLPT Y).  

All 16 possible combinations of shape of 
X and shape of Y were analyzed. Because of the 
multiple pairings no attempt was made to correct 
the correlations to exactly .3 and .7 in all pairings 
(see Headrick and Sawilowsky, 1999). The actual 
correlations for the 16 pairings varied from .22 to 
.30 for the nominal .3 and from .55 to .70 for .7. 
The first three shapes with no skew had much 
more homogeneous correlations, ranging from .28 
to .30 and from .66 to .70 for .3 and .7, 
respectively. We shall refer to the two conditions 
as Low and High correlation, respectively. 

Three configurations of additive treatment 
effects were used to evaluate the previously 
reported confounding of additive treatment effects 
with the test of slopes. The first condition had no 
additive effects. The second and third had 
configurations of 0, 0, 0, c and 0, 0, c, c, 
respectively. The four levels of additive constant c 
were .8, 1.4, 2.0, and 2.6. This produced 
1+(2)(4)=9 distinct patterns. Because both X and 
Y have unit variance the additive constants are in 
z-scores.  

Each data set was analyzed with four 
representations of the data. These are: 
1. X- Original Scores Y-Original Score (XY) 
2. X- Ranked Scores Y-Ranked Scores (RxRy) 
3. X- Ranked Scores Y-Ranked deviation from  

sample mean (RxR1y) 
4. X- Ranked Scores Y- Ranked deviation from   

sample median(RxR2y) 

The analysis of the data set (XY) is the 
standard parametric analysis of covariance, the 
second (RxRy) is the Conover and Iman (1982) 
non-parametric analysis of covariance, the third 
(RxR1y) and fourth (RxR2y) are the non-
parametric analyses of covariance developed in the 
current paper based on the mean and median, 
respectively. 
 

Results 
 
The results were obtained by averaging the 
probabilities of Type I error across the 
simulations. The primary findings are a 
description of those variables that impact Type I 
error. In addition each Type I error rate is 
classified as to whether it exceeds either Bradley’s 
(1978) conservative or liberal criterion for 
robustness. Although these criteria are arbitrary 
they provide a commonly known standard for 
evaluating the magnitude of the elevation of Type 
I error.  

The first two issues deal with the 
relationship between the shape of the underlying 
distribution and Type I error. The analyses are 
based on the conventional analysis of covariance 
of the original scores, XY. Table 1 contains the 
mean Type I error rates for all combinations of 
shapes for X and Y. The results are presented 
separately for the low and high correlation 
conditions. Each mean is based on the simulations 
representing the nine different additive treatment 
combinations. Preliminary analyses indicate that 
additive configurations and magnitude represent 
trivial factors and could be combined without loss 
of information. Also included in Table 1 are the 
number of the simulations that had Type I error 
rates that exceeded Bradley’s conservative (.055) 
and liberal (.075) criterion level for robustness. 
Only the upper limits are considered, as the 
present concern is for unacceptably high Type I 
error rates. Low error rates are more likely to be 
reflected in poor power. 

The average Type I error rate for both 
LEPTO Y and SKLPT Y are considerably larger 
than for the normal curve. PLATY has a 
conservative Type I error rate. The inflated Type I 
error rates associated with leptokurtic curves is 
further seen in the frequency with which the Type 
I error rate exceeds even the most liberal of 
robustness criteria. 
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Table 1.Average Type I error rates across raw X 
and Y distributions and correlations. 
                X Distribution 
Corr. Y Dist. PLAT X NOR X LEPTO 

X 
SKLPT 
X 

PLAT 
Y 

.044 
(0,0) 

.041 
(0,0) 

.040 
(0,0) 

.043 
(0,0) 

NOR  
Y 

.050 
(0,0) 

.050 
(0,0) 

.051 
(0,0) 

.052 
(0,0) 

LEPTO 
Y 

.056 
(7,0) 

.059 
(9,0) 

.062 
(9,0) 

.062 
(9,0) 

 
LOW 
r≈.3 

SKLPT 
Y 

.060 
(9,0) 

.068 
(9,0) 

.072 
(9,0) 

.124 
(9,9) 

PLAT 
Y 

.025 
(0,0) 

.020 
(0,0) 

.034 
(0,0) 

.051 
(0,0) 

NOR  
Y 

.055 
(6,0)  

.049 
(0,0) 

.058 
(9,0) 

.068 
(9,0) 

LEPTO 
Y 

.083 
(9,9) 

.094 
(9,9) 

.103 
(9,9) 

.094 
(9,9) 

 
HIGH 
r≈.7 

SKLPT 
Y 

.114 
(9,9) 

.178 
(9,9) 

.213 
(9,9) 

.225 
(9,9) 

Note. Numbers in parentheses are the number of 
times Type I error exceeded .055 and .075 in that 
condition where the maximum is 9. 
 
 

The variability in the means presented in 
Table 1 is partitioned into the main effects and 
interactions between the independent variables in 
the simulation. Table 2 contains the mean square 
deviations for these sources. Because of the 
number of iterations all of the effects are 
significant based on the most conservative of 
standards. In the current discussion it is the 
relative size of the effects that is of primary 
concern.  
 Three effects are much larger than the 
remaining sources. These are the shape of the 
original Y distribution, the strength of the XY 
correlation, and the interaction between the shape 
of the Y distribution and the correlation. The 
shape of the X distribution has a mean square less 
than one-tenth that of the shape of the Y 
distribution. The interaction between the shapes of 
X and Y is small and trivial. 
 
 
 
 
 
 
 
 
 

Table 2.Sources of variation on Type I error rate 
with raw X and Y scores (XY). 
Source SS df MS 
Y Distribution shapes 0.365 3  0.122 
Correlation (COR) 0.079 1  0.079 
Y * COR 0.129 3  0.043 
X Distribution shapes 0.034 3  0.011 
X*Y 0.044 9  0.005 
X * COR 0.008 3  0.003 
X*Y * COR 0.012 9  0.001 
Residual 0.0004 256 0.000 
 

 
The main effect for the shape of Y reflects 

the variability in the overall means. The 
interaction is reflected in Type I error rates that are 
more extreme with a higher correlation. 
Platykurtic curves become more conservative and 
leptokurtic curves more liberal. Because there 
were more leptokurtic curves than platykurtic 
curves the average Type I error rate for the higher 
correlation is larger. The pattern of the means for 
the shapes of the X distribution mirror those of Y 
but are much less extreme. 

The next two issues deal with the ability 
of ranking methods to control Type I errors for 
differences in slopes when there are additive 
treatments present. Table 3 presents the Type I 
error rates for the ANCOVA test of slopes 
proposed by Conover and Iman (1982), the 
ANCOVA test of slopes based on deviations of 
scores from the appropriate sample mean, and the 
ANCOVA test of slopes based on deviations of 
scores from the appropriate sample median. Two 
patterns of treatment effect, {0,0,0,c} and {0, 0, c, 
c} are paired with four levels of c. The results are 
summed across the 4x4=16 distributional pairings. 
Results are reported separately for low and high 
correlations. The parenthetical values indicate how 
many of these 16 simulations produced Type I 
error rates that exceeded the conservative and 
liberal robustness criteria. 
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Table 3. Average Type I error across correlation, treatment effect, treatment effect 
pattern and ranking method. 
   Treatment Effect (c) 
Corr.  Pattern Data Set .8 1.4 2.0 2.6 

0 0 0 c RxRy .048 (4,0) .053 (4,0) .061(16,0) .068 (16,0) 
0 0 c c RxRy .052 (4,0) .048 (4,0) .047 (2,0) .046 (0,0) 
0 0 0 c RxR1y  .045 (4,0) .045 (4,0) .045 (4,0) .045 (4,0) 
0 0 c c RxR1y  .046 (4,0) .045 (4,0) .046 (4,0) .045 (4,0) 
0 0 0 c RxR2y  .048 (0,0) .048 (0,0) .048 (0,0) .048 (0,0) 

 
LOW 
r≈.3 

0 0 c c RxR2y  .048 (0,0) .047 (0,0) .048 (0,0) .048 (0,0) 
0 0 0 c RxRy .050 (4,4) .088(11,5) .155(16,16) .254 (16,16) 
0 0 c c RxRy .044 (4,4) .045 (4,4) .041 (4,3) .034 (4,0) 
0 0 0 c RxR1y  .031 (4,0) .031 (4,4) .031 (4,4) .031 (4,4) 
0 0 c c RxR1y  .031 (4,4) .031 (4,4) .031 (4,4) .031 (4,4) 
0 0 0 c RxR2y  .044 (4,0) .044 (4,0) .043 (4,0) .043 (4,0) 

 
HIG
H 
r≈.7 

0 0 c c RxR2y  .044 (4,0) .044 (4,0) .043 (4,0) .043 (4,0) 
 
Note. Numbers in parentheses are the number of times Type I error exceeded .055 and .075 
in that condition where the maximum is 16. Rx indicates ranked X scores. Ry indicates ranked 
Y scores. R1y indicates ranked deviations of Y from the group Y mean. R2y indicates ranked 
deviations of Y from the group Y median. 

 
 

The Type I error rate for RxRy increases 
as the magnitude of the treatment effect increases 
for the {0,0,0,c} pattern but not for the {0,0,c,c} 
pattern. The corresponding values for the methods 
based on deviations, RxR1y and RxR2y, have 
mean Type I error rates near .05. The simulations 
based on deviation scores with Type I error rates 
that surpassed the conservative robustness criteria 
are those based on SKLPT Y. The effects are more 
pronounced when there is a high correlation than 
when there is a low one.  
 The two new methods perform similarly in 
most of the simulations. The difference between 
them is predicted to be when there is a very 
skewed distribution. Table 4 presents the average 
Type I error rate of the {0,0,0,c} pattern for 
LEPTO Y and SKLPT Y distributions. The results 
are summed across shape of the X distribution and 
the additive constants. As expected the Type I 
error rate for the method based on deviations from 
the mean became problematic when the 
distribution is skewed. A symmetric leptokurtic 
distribution showed no elevation of Type I error 
with either of the new methods. The method based 
on the median is generally within acceptable 
bounds although it has more than a .06 error rate 
with the Skewed Leptokurtic, SKLPT Y. 

Table 4. Comparing the two ranking alternatives 
across correlation, treatment effect and Y 
distribution. 
 

 Correlation 
 LOW 

r≈.3 
HIGH 
r≈.7 

 LEPTO 
Y 

SKLPT 
Y 

LEPTO 
Y 

SKLPT  
Y 

RxR1y .044 
(0,0) 

.059 
(32,0) 

 .023 
(0,0) 

.105  
(36,36) 

RxR2y .044 
(0,0) 

.052 
(0,0) 

 .021 
(0,0) 

 .063  
(36, 0) 

Note. Numbers in parentheses are the number of 
times Type I error exceeded .055 and .075 
respectively where the maximum is 36. Rx 
indicates Ranked X scores. R1y indicates Ranked 
Y deviations from the group Y mean. R2y 
indicates Ranked Y deviations from the group Y 
median. 

 
Conclusion 

 
Both of the problems associated with conducting a 
test of differences in slopes were replicated in the 
present study. Analysis of covariance on scores 
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that are not normally distributed have Type I error 
rates that systematically vary from the nominal 
value. If the distribution is leptokurtic the Type I 
error rate will be liberal and if it is platykurtic it 
will be conservative. It is difficult to determine if 
skew plays a role as most skewed distributions are 
also leptokurtic. The effect of shape is most 
clearly present when there is considerable shared 
variation in X and Y.  
 It is clearly the shape of the outcome 
measure rather than the covariate that results in 
manipulation of the Type I error rate. There is a 
small effect for the shape of X and little 
interaction between the shapes of X and Y. The 
complete set of 16 shapes is probably unrealistic in 
real world settings. The shapes of both X and Y 
are likely to be related to underlying 
characteristics of the sample chosen so that if Y is 
leptokurtic then X will likely also be somewhat 
leptokurtic. This would result in an accumulation 
of the major impact of the leptokurtic Y-scores 
and the minor impact of leptokurtic X scores to 
produce even more extreme Type I error elevation. 

Tests of significance involving ranks 
rather than the original scores largely control the 
inflated Type I error rate although there appear to 
be unexplained differences in the error rate 
associated with ranking methods as a function of 
the underlying distribution. Specifically, the error 
rate is consistently higher for the Conover and 
Iman (1982) method when the SKLPT Y 
distribution was the source of the ranks. This trend 
for skewed distributions to produce larger Type I 
error rates even after being ranked was also found 
in Conover and Iman (1982) and Stephenson and 
Jacobson (1988). 
 The influence of additive treatment effects 
is shown to have the potentially serious inflation 
of Type I error noted by Headrick and Sawilowsky 
(2000). The effect was found where the additive 
effects tended to isolate one treatment group away 
from the remaining groups. Since the variance of 
ranks is based on the range of the ranks within the 
complete set, the separation of one group from a 
set of other groups will reduce the range and 
variance and produce a reduced slope. The effect 
appeared as the magnitude of the additive 
treatment effect increased. The beginning additive 
constant of .8 corresponds to a large effect in 
Cohen’s (1988) terms. This effect showed no 
inflation of Type I error rate. Only as the additive 

effect increased beyond this did the error rate 
become problematic. 

Both of the proposed methods for testing 
slopes in the presence of potential additive effects 
reduced the Type I error rate to a generally 
acceptable level. The simulations that resulted in 
somewhat higher error rates were those with the 
most extreme distribution SKLPT Y. The method 
using deviations from the sample median was 
superior in controlling Type I error with SKLPT Y 
but was still somewhat elevated. 
 The two tests developed differ from others 
in that they are solely for testing the differences in 
slopes. There is no companion test for the 
presence of additive effects. A separate test such 
as that in Conover and Iman (1982) would need to 
be used for additive effects.  

The ranking methods developed herein 
will have to be compared to other options to 
determine whether they have sufficient power to 
replace the traditional methods. The level of 
additive treatment effect used in the simulation is 
large and, at the upper end, may represent a level 
seen in relatively few experiments.  

The experimenter should be able to 
anticipate this magnitude of effect. If the analysis 
of simple ranked scores as proposed by Conover 
and Iman (1982) is more powerful than the 
methods based on deviations the experimenter 
may choose to use simple ranks unless there is the 
expectation that very large additive treatment 
effects exist. However, if the power is equivalent 
the methods proposed herein should be preferred 
as they have more general Type I error control. 

 Lastly, the power of the tests using 
deviations from the mean and median need to be 
compared. While the median based method has 
superior Type I error control with the skewed 
leptokurtic distribution if it has less power the 
researcher may again want to determine if that 
condition within the outcome measure is likely to 
be present in the data and select accordingly. 
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