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Cornell University 
 

 
This paper explores empirically the first two moments of ratio of the partial sum of the first two sample 
eigenvalues to the sum of all eigenvalues when the population eigenvalues of a covariance matrix are all the 
same. Estimation of the first two moments can be practically crucial in assessing non-randomness of observed 
patterns on planar graphical displays based on lower rank approximations of data matrices. For derivation of 
the moments, exact and large sample asymptotic distributions of the sample ratios are reviewed but neither 
can be applicable to derivation of the moments. Therefore, I rely on simulations, where data matrices X with 
order n×m element-wise independent normal distribution with mean 0 and variance σ2 are assumed, that is, 

( )nmN I0X 2,~ σ , and then derive formulas for estimates of means and standard deviations of the sample 
ratios within a range of order of the data matrix. The derivations are based on the biplot graphical diagnostic 
methods proposed by Bradu and Gabriel (1976). 
 
Keywords: Bias, biplot, eigenvalues, multivariate Gaussian; Schönemann-Lingoes-Gower coefficient. 
  
 

Introduction 
 
Lower rank approximations of data matrices X (n 
rows for individuals, m columns for variables) are 
much used in data analysis. The closeness of their 
fit to X is frequently measured by the ratio of the 
sum of the first s (< m) eigenvalues of 22

2
2

1 ,,, slll  
of XTX to the total of all the eigenvalues 

22
2

2
1 ,,, mlll  of XTX, where s is the rank of the 

approximation. In particular, the rank s is usually 
chosen to be 2 for planar graphical displays, by 
which data analysts often want to see if they reveal 
any patterns in population expectations E(X) = Ξ 
and/or covariance structure. 
 
  
The author is very grateful to Dr. K. Ruben Gabriel 
for his valuable insights and comments, and to John 
T. Hutchens for the manuscript preparation. This 
study was supported in part by NIH grants 
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Accordingly, confirmation of such visual 
assessments is usually based on the quantities of 
the closeness of the planar displays to the data 
matrix measured by ( ) ∑ =

+=
m

i illlr
1

22
2

2
1

2
)2( . 

This closeness coefficient is equal to the 
Schönemann - Lingoes - Gower coefficient 

( ){ } XXXXXX ~~~ 212
)2(

TTtracer =  (Gower 

1971; Lingoes & Schönemann, 1974) as noted by 
Heo (1996), where X~  is the Euclidian minimum 
distance rank 2 approximation of X. 
 It has not been clear, however, how large 
value of 2

)2(r  can play the role of a threshold for 
signaling non-random patterns on the planar 
displays, which are not overwhelmed by 
sampling variations. Furthermore, the threshold 
will depend on the order of data matrices, m and 
n. First, with respect to dependence on m, 2

)2(r  has 
its algebraic minimum 2/m because the sample 
eigenvalues 2 2 2

1 2, , , ml l l  are ordered in a 
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descending manner. Secondly, the larger n, the less 
will be sampling variations of the patterns of 
graphical displays. Therefore, observed patterns on 
graphical displays with 2

)2(r  = 0.45 when m = 5 may 

be less meaningful than those with 2
)2(r  = 0.45 

when m = 30 for the same n ― the former is 
relatively much closer to its minimum. One 
example of the latter case can be found in the biplot 
of n = 100 archetypal patients with m = 30 
psychiatric variables (Strauss et al., 1979; Heo & 
Gabriel, 2001), where five distinctive clusters of 
patients of the same diagnosis within each cluster 
are displayed well enough to convince a data 
analyst that the patterns on the biplot may indeed 
represent patterns of population expectation, 
despite of the moderate 2

)2(r  = 0.45.  
The significance of non-random pattern, 

however, must be inferred based on a sampling 
distribution of 2

)2(r . Specifically, if an observed 2
)2(r  

is above the 95 or 97.5 percentile of the sampling 
distribution, it may indicate that the pattern on 
planar displays may not be random and may be 
revealing patterns of population characteristics. 
Therefore, to provide such thresholds or critical 
values, I attempt to draw the sampling distribution 
of 2

)2(r  under an m-variate null Gasussian model:  
 

( )nmN I0X 2,~ σ .  (1) 
 
In this situation, planar displays of X~  show 
patterns solely due to random noise σ2, not due to 

E(X) = Ξ, and all the eigenvalues of E(XTX), 
22

2
2
1 ,,, mλλλ , are the same as σ2.  

I review what is known about the exact and 
asymptotic distribution of the sample eigenvalues 

22
2

2
1 ,,, slll  of XTX under the null Gaussian 

model (1) and try to derive sampling distributions 
of 2

)2(r  thereof. However, based on this review and 
to my knowledge, currently existing normal 
theories do not seem to be either practical or 
applicable for derivations of the sampling 
distribution. Therefore, relying on computer 
simulations under the null model (1), I attempt to 
derive empirical models for estimates of ( )2

(2)E r  

and ( )2
(2)SD r , the first two moments, through 

assessments of a relative bias β2 = 
( )2

(2) (2 / )E r m  in comparison to the algebraic 

minimum and its SD. These two moments can 
provide basis for normal approximations to the 
sampling distributions and eventually for the 
thresholds, or the critical values. I use biplot for a 
model diagnostic tool as demonstrated in Gabriel 
and Braud (1971). Issues concerning normal 
approximation, practical meaning of non-random 
patters displayed on the planar spaces and a 
justification of the null model (1) are discussed. 

 
Methods 

 
Exact distribution 

When all the population eigenvalues 2
iλ  

are equal, i.e. 22 λλ =i  for all i, the exact joint 

distribution of the sample eigenvalues 2
il  can be 

expressed as (e.g., James, 1964): 
 

( ) ( ) ( )
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<
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where ( )Tmlll 22
1

2 ,,=  and  
 

( ) ( ) ( )( )∏ −−⋅Γ=⋅Γ −
m

mm
m i 2/14/1π . Based on 

this, the exact density of 2
)2(r = ( ) ∑ =

+
m

i illl
1

22
2

2
1  

under the null model, can be obtained by using 
the change of variable technique. Also, 
Krishnaiah and Waikar (1971) studied the exact 
marginal distribution of each individual sample 
eigenvalue, when all the population eigenvalues 
are equal, by applying Lapalce's expansion to the 
Vandermonde determinant ( )∏

<

−
ji

ji ll 22 . 

Nevertheless, whichever way is used for 
calculation of the moments of 2

)2(r  under the Null 
Gaussian model (1), the calculation will be very 
complicated and tedious, even by numerical 
computations. Therefore, application of 
asymptotic or approximation theories might be 
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preferred for a derivation of the sample moments of 
2

)2(r  as follows. 
 
Asymptotic distributions 

Under the assumption of simplicity (or at 
least two different multiplicities) of the population 
eigenvalues, asymptotic (representations for) 
distributions of the sample eigenvalues were 
extensively discussed in the 1960s and 70s (e.g., 
Muirhead, 1978). The joint distributions of sample 
eigenvalues, under that assumption, involve 
hypergeometric functions expressed in integral 
representations. On these integrals are focused the 
approximations, which are basically determined by 
the maximum values of the integrands involving 

‘linkage factors’ of ( ) 122 −
− ji ll . Such 

approximations are, therefore, inapplicable to the 
joint (or marginal) asymptotic behaviors of sample 
eigenvalues when all the population eigenvalues are 
equal. Hence, the derivation of an asymptotic 
distribution of 2

)2(r  under multiplicity from the 
asymptotic joint distribution of sample eigenvalues 
under the simplicity would be misleading. The 
following are such examples. 

An asymptotic distribution of 2
il is 

( ))1(2,~ 422 −nNl iii λλ  (Anderson, 1963) and 

( ) 0, 22 ≈ji llCov  for i ≠ j, provided all eigenvalues 
are distinct. Under the Null Gaussian model (1), it 
might become ( ))1(2,~ 222 −nNli σσ  for all i, 

if the multiplicity of 2
iλ  is ignored, i.e., the fact 

that 22 λλ =i  for all i is ignored. Applying Taylor 

approximation to each 2
il  about each corresponding 

2
iλ : 

 

( ) { }
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where I{⋅} is an indicator function. Under the Null 
Gaussian model (1), the right hand side can be 
reduced to ( )2 2 2 2 2 2

1 22 2 im l l m l mσ σ+ + − ∑ , 

which is asymptotically Gaussian with mean 2 m  
and variance 34( 2) ( 1)m n m− − . This shows very 

roughly that the distribution of 2
)2(r does not 

depend asymptotically on σ2, as it should not, 
because 2

)2(r  is a studentized ratio. However, the 
asymptotic expectation 2/m is wrong, since 
( )2 2 2

1 2 il l l+ ∑  is greater than 2/m with 

probability one because the sample eigenvalues 2
il  

are ordered in a descending manner.  
Asymptotic distributions of functions of 

sample eigenvalues were investigated by several 
authors (e.g., Fang & Krishiniah, 1982). 
Fujikoshi (1980), for example, showed that the 
distribution functions of functions of sample 
eigenvalues can be expanded up to the order of 

21−n , when certain assumptions (including the 
simplicity of the population eigenvalues) are met. 
Based on his approximation for the multivariate 
Gaussian X, E( 2

)2(r ) ≈ 2
2R  + a/n and Var( 2

)2(r ) = 

ς2/n, where ∑+= 22
2

2
1

2
2 )( iR λλλ , a = 

22122 )( jiji jiiT λλλλ∑ ≠
−−  + ∑ 4

iiiT λ , 

{ } ∑−≤= 22
22 ii RiIT λ , 

∑+−= 2)( ijiij TTT λ ,  and ς2 = ∑ 422 iiT λ . 
Then, apply Fujikoshi's approximations to the set 
of population eigenvalues such that 

ελλ += +
2

1
2

ii , for i = 1,…, m−1, and 2
mλ =1, 

where the difference ε of the consecutive 
population eigenvalues is very small. Numerical 
evaluations of the expectation of 2

)2(r / 2
2R  and its 

standard deviation are tabulated in Table 1 for ε = 
0.001. It is clear from this table that the 
approximation formulae do not work for these 
settings of population eigenvalues. 
 It follows that either exact or asymptotic 
normal theory does not seem to be applicable to 
the case of equal eigenvalues. This inapplicability 
leads us to simulation-based studies, which are 
described in the following, for empirical 
exploration of the behavior of the expectation and 
SD of 2

)2(r  under the null Gaussian model (1). 
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Results 
 

Bias, standard deviation, and simulation fit 
The n-by-m data matrices X with 3 ≤ m ≤ 

30 and 30 ≤ n ≤ 1000 (m ≤ n) under the null 
Gaussian model (1) are randomly generated for 
1000 times for each combination of n and m, and 
then 2

)2(r  is computed for each data matrix X. 
 
Table 1: Asymptotic expectation and (SD) of 

2
)2(r / 2

2R : ε = 0.001. 
 M      

n 3 5 10 15 20 30 
30 26.0 

(0.1
1) 

49.7 
(0.1
4) 

77.1 
(0.1
7) 

92.3 
(0.1
7) 

102.
9 

(0.1
7) 

118.
1 

(0.1
8) 

60 13.5 
(0.0
7) 

25.3 
(0.1
0) 

39.1 
(0.1
2) 

46.7 
(0.1
2) 

52.0 
(0.1
2) 

59.6 
(0.1
3) 

90 9.3 
(0.0
6) 

17.2 
(0.0
8) 

26.4 
(0.0
9) 

31.4 
(0.1
0) 

35.0 
(0.1
0) 

40.1 
(0.1
0) 

120 7.3 
(0.0
5) 

13.2 
(0.0
7) 

20.0 
(0.0
8) 

23.8 
(0.0
9) 

26.5 
(0.0
9) 

30.3 
(0.0
9) 

150 6.0 
(0.0
5) 

10.7 
(0.0
6) 

16.3 
(0.0
7) 

19.3 
(0.0
8) 

21.4 
(0.0
8) 

24.4 
(0.0
8) 

500 2.5 
(0.0
3) 

3.9 
(0.0
4) 

5.6 
(0.0
4) 

6.5 
(0.0
4) 

7.1 
(0.0
4) 

8.0 
(0.0
4) 

100
0 

1.8 
(0.0
2) 

2.5 
(0.0
2) 

3.3 
(0.0
3) 

3.7 
(0.0
3) 

4.1 
(0.0
3) 

4.5 
(0.0
3) 

 
 

The sample bias B2 of 2
)2(r  is calculated for 

each data matrix X of the same order by the ratio to 
its absolute lower bound 2/m, that is, 

2 2
(2) 2B mr= . Table 2 contains averages of B2 and 

standard deviations SD(B2) from 1,000 simulations 
for each combination of m and n. 

 
 
 
 

Table 2: Averages and (SD) of B2 from 1000 
simulations for each combination of m and n. 
 M      

n 3 5 10 15 20 30 
30 1.19 

(0.0
6) 

1.46 
(0.0
9) 

1.96 
(0.1
3) 

2.38 
(0.1
5) 

2.75 
(0.1
6) 

3.43 
(0.1
8) 

60 1.13 
(0.0
4) 

1.32 
(0.0
7) 

1.65 
(0.0
9) 

1.92 
(0.1
0) 

2.16 
(0.1
0) 

2.58 
(0.1
2) 

90 1.11 
(0.0
4) 

1.26 
(0.0
5) 

1.52 
(0.0
7) 

1.73 
(0.0
8) 

1.92 
(0.0
8) 

2.23 
(0.0
8) 

120 1.09 
(0.0
3) 

1.22 
(0.0
5) 

1.45 
(0.0
6) 

1.62 
(0.0
7) 

1.78 
(0.0
7) 

2.04 
(0.0
7) 

150 1.08 
(0.0
3) 

1.20 
(0.0
4) 

1.40 
(0.0
5) 

1.55 
(0.0
6) 

1.68 
(0.0
6) 

1.92 
(0.0
6) 

500 1.05 
(0.0
2) 

1.11 
(0.0
2) 

1.21 
(0.0
3) 

1.29 
(0.0
3) 

1.36 
(0.0
3) 

1.47 
(0.0
3) 

100
0

1.03 
(0.0
1) 

1.08 
(0.0
2) 

1.15 
(0.0
2) 

1.20 
(0.0
2) 

1.25 
(0.0
2) 

1.32 
(0.0
2) 

 
It shows that B2 seems to converge 

slowly to 1 as n increases and that the bias 
depends on the order of X; it goes down with n 
but up with m. 
 
Fit of bias 

I first fit averages of B2, an estimate of 
the expected bias β2 = ( )2

(2) (2 / )E r m  by taking 

n and m as factor levels. The biplot is used for a 
model diagnostic tool (Bradu & Gabriel, 1978). 
The biplot of the data matrix of the averages of B2 
in Table 2 minus the grand mean of the averages 
is displayed in Figure 1.  

 



RATIO OF PARTIAL SUM OF EIGENVALUES 424

-1.0 -0.5 0.0 0.5

-1
.0

-0
.5

0.
0

0.
5

30

60

90
120

150

500
1000

3

5

10

15

20

30

Figure 1

row markers
column markers

 
Figure 1: A biplot of β2 with rank 2 goodness              
of fit greater than 0.99. 

 
This figure shows that the data matrix of B2 

in Table 2 is virtually of rank 2 based on the 
goodness of fit greater than 0.99. Moreover, it is 
immediately seen that the sets of column and row 
markers are both collinear. This suggests that the 
data matrix must be closely fitted by means of 
Tukey's Degree of Freedom For Non-Additivity 
model (DOFNA; Tukey, 1949), i.e.,  

 

ijjijiij edada ++++= τδαµβ 2        (2) 
 

subject to ∑ ∑ == 0ji da  and 

∑ ∑ == 122
ji da . The subscripts i and j 

represent the levels of n and m, respectively. (Still, 
a rank 1 multiplicative model may be an alternative 
choice. However, a biplot of the data matrix 
without centering on the grand mean, though not 
presented herein, shows that the multiplicative 
model does not fit well.) 

A summary graphic of the DOFNA model 
fit is shown in Figure 2. The residual sum of 
squares is 0.0037 with df 29, which means that the 
fit is almost perfect. In short, Figure 2 shows that: 
(a) There exists a clear interaction between row and 
column effects, which means that the coefficient τ 
is significantly different from 0: τ̂ =1.84, p<0.001; 
that is, the magnitude of the bias increases as m for 
a fixed n but the rate of increment is not constant 
over n; (b) β2 seems to converge to 1 as n increases, 
as can be seen in Table 2; (c) Roughly, the effect of 

the number of columns is close to linear but that 
of the number of rows is not; the intervals 
between consecutive row effects are not constant 
when the magnitude of the number of rows is 
taken into consideration. 
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Figure 2: DOFNA fit to β2 with residual sum of           
squares 0.0037. 

 
It should be recalled, however, that I am 

trying to formulate a function, which relates this 
model's parameters to the values (not the factor 
levels) of n and m. For this purpose, on the basis 
of plots of column effects versus m and row 
effects versus n, we modeled row and column 
effects as αai = γ3/ n  and δdj = γ1m + γ2m2, 
respectively. In light of the DOFNA model (2), 
this yields the following model: 

 
( )2 2 2

1 2 3 4 5m m m m n eβ η γ γ γ γ γ= + + + + + +

 
 
The least-square fit with significant (p-values 
<0.001) coefficients results in the following: 
 

( )
2

2

ˆ 1.0301 0.0068

0.8319 0.6652 0.0060

m

m m n

β = −

+ − + −
 

                    (3)
     
The residual sum of squares of this fit is 0.036 
with df 37 and the multiple R2 is greater than 
0.99. All of the fitted values of β2 are greater than 
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1 over the ranges of m and n considered: 30 ≤ n ≤ 
1000 and 3 ≤ m ≤ 30. 
 
Fit of standard deviation 

The biplot in Figure 3 with goodness of fit 
greater than 0.99 shows that the data matrix of 
SD(B2) in Table 2 is also virtually of rank 2 and that 
the column markers are collinear. On the basis of 
Bradu and Gabriel (1976), the data matrix of 
SD(B2) must be closely fitted by Mandel's row 
regression model (Mandel, 1961), that is, 

 
( ) ijjiji edcdaBSD ++++= θδαµ2  

 
subject to ∑ ∑∑ === 0jii dca  and 

∑ ∑∑ === 1222
jii dca . The resulting residual 

sum of squares is 0.89×10−4 with df 24, which 
shows that this is an almost perfect fit.  
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Figure 3: A biplot of SD(B2) with rank 2 goodness          
 of fit greater than 0.99. 
 

The biplot in Figure 3, however, shows that 
the row markers are also virtually collinear. 
Furthermore, it was observed, thought not 
presented herein, that the ai’s and ci’s are very 
similar up to a scale factor. These strongly suggest 
that Tukey's DOFNA model in a form of (2) can be 
an alternative fit to the data matrix of SD(B2) in 
Table 2. The DOFNA fit results in a residual sum 
of squares of 1.75×10−4 with df 29. A summary 
graphic of this DOFNA fit is presented in Figure 4.  
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Figure 4: DOFNA fit to SD(B2) with                 
 residual sum of squares 0.00018. 

 
The structural relationship between 

SD(B2) and the order of X is clear; SD(B2) seems 
to vanish slowly as n increases, which implies β2 
converges in probability.  Mandel's model is 
significantly better than the DOFNA model in 
fitting SD(B2) data matrix with an approximated 
F ratio 4.65 and p-value 0.004. This DOFNA 
model, however, is simpler and easy to see 
graphically as shown in Figure 4, and its fit is 
also nearly perfect, which I chose for a functional 
model construction. Again, based on plots of 
column effects versus m and row effects versus 
m, I modeled column and row effects as follows: 

1 logjd mδ γ=  and 2ia nα γ= , respectively. 
It follows that 

 
( )2

1 2 3( ) log logSD B m m n eη γ γ γ= + + + +
 
(Nevertheless, Mandel's model yields the same 
form of this model.) The least-square fit with 
significant (p-values <0.001) coefficients results 
in the following: 
 

2( ) 0.0128 0.0094 log

0.3123log

SD B m

m n

= −

+
       

               (4) 
     
The residual sum of squares of this fit is 
5.98×10−4 with df 39 and the multiple R2 is 
greater than 0.99. All of the fitted values of 
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SD(B2) are positive over the ranges of m and n 
considered: 30 ≤ n ≤ 1000 and 3 ≤ m ≤ 30. 
 

Discussion 
 
Regarding features of the distribution of 2

)2(r  under 
the null Gaussian model (1), I observe from the 
simulation that it is slightly skewed to the right for 
almost all combinations of m and n, but particulars 
of the asymptotic distributions are unknown. It 
follows that normal approximation of the 
distribution of 2

)2(r  under the null Gaussian model 
with the expectation and standard deviation 
obtained from the formulae (3) and (4) is rather 
crude. Hypothesis testing based on this normal 
approximation would, therefore, be conservative. 
One might consider power transformations of 2

)2(r  
to have better approximations to normal 
distributions, or application of “delta” method to 
the first two moments.  

Nevertheless, the crude normal 
approximation provides an idea of what the 
distribution of 2

)2(r  might be under the null model. 
For example, to see how many multiples of SD(B2) 
below the mean ensures B2 to be greater than 1, I 
calculate a multiple c from the fitted β2 and SD(B2) 
in the following way: 2 2( 1) ( )c SD Bβ= − . From 
formulae (3) and (4), the estimated minimum c over 
the considered ranges is 3.26 when m = 3 and n = 
30. This confirms that 2

)2(r  is distributed well above 
the algebraic minimum of 2/m. Moreover, the 
multiple c increases with m, implying that farther 
above 2/m 2

)2(r  is distributed for bigger m. Indeed, 
as calculated based on the formulae (3) and (4), the 
percentiles of 2

)2(r =0.45 are >99% and 1.4% when 
m are 30 and 5, respectively, for the same n=100. 
This confirms that observed patterns on graphical 
displays with 2

)2(r  = 0.45 when m = 5 may be less 

meaningful than those with 2
)2(r  = 0.45 when m = 

30 for the same n, as stated in the introduction 
section. 

It has been, however, suspected that 2
)2(r  

tends to locate between 2
)2(ρ  and the absolute 

minimum 2/m, where 2
)2(ρ  is the “actual” 

goodness of fit of X~  to the expectation Ξ, that 

is ( ){ }1 22
(2)

T Ttraceρ = ΞΞ ΞX X X , which 

should be a more appropriate measure for the 
“usefulness” of the lower rank approximation 
than the measure 2

)2(r  of the closeness of X~  to 
the data X themselves, because patterns of the 
population expectations are to be inferred rather 
than patterns of data matrix. A simulation study 
of approximations using data generated under the 
m-variate Gaussian model ( )2~ , nmN σΞX I  

with affine rank 2 expectation matrix Ξ has 
shown that 2

)2(r  indeed underestimates 2
)2(ρ  for 

many situations (Heo and Gabriel, 2001). Thus, 
non-significant 2

)2(r  (less than 95- or 97.5%-tiles 
of the “null” sampling distribution) implies that 
the noise σ is much larger relative to the 
magnitude of Ξ ― large enough so that σΞ is 
approximately 0. This is the situation where the 
limiting distribution of ( )2~ , nmN σΞX I  can be 

approximated by ( )2~ 0, nmN σX I  because Ξ 

reaches its zero limit relative to σ. That is, 
although it maintains all the time its rank, the 
expectation matrix Ξ tends to zero as the 
magnitude of σ increases, and at the limit it 
would not have any rank. Therefore, the null 
distribution ( )2~ 0, nmN σX I  is valid for 

inferences of the critical values for significant 
2

)2(r , which indicates that a planar display reveals 

patterns of population expectation of Ξ with a 
higher 2

)2(ρ . 
In sum, the present study shows that 

there are clear structural patterns of expectation 
and variance of 2

)2(r  under the null Gaussian 
model (1) as the order of data matrix X varies. 
Construction of formulae for the expectations and 
standard deviations is elaborated through model 
diagnosis by use of the biplot. Similar application 
of the biplot diagnostic method can be extended 
to exploration of distributions of other ratios of 
partial sums of sample eigenvalues from data 
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matrices with bigger orders. The simulation-based 
approach employed in this paper seems appealing, 
since any large sample asymptotic theory does not 
seem to be applicable when all the population 
eigenvalues are the same. Therefore, the estimated 
first two moments of 2

)2(r  may be useful in judging 
non-randomness of patterns of population 
expectations of data matrices displayed in a 2-
dimensional space. 
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