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Confidence intervals must be robust in having nominal and actual probability coverage in close 
agreement. This article examined two ways of computing an effect size in a two-group problem: (a) the 
classic approach which divides the mean difference by a single standard deviation and (b) a variant of a 
method which replaces least squares values with robust trimmed means and a Winsorized variance. 
Confidence intervals were determined with theoretical and bootstrap critical values. Only the method that 
used robust estimators and a bootstrap critical value provided generally accurate probability coverage 
under conditions of nonnormality and variance heterogeneity in balanced as well as unbalanced designs. 
 
Key words: Effect size, confidence interval, trimmed means, Winsorized variance, noncentral distribution 
 
 

Introduction 
 
Estimating effect size (ES) and setting intervals 
for such estimates has become a requirement in 
many scientific journals as a result of the 
American Psychological Association’s (APA) 
Task Force on Statistical Inference (Wilkinson 
& APA Task Force on Statistical Inference, 
1999). Indeed, according to Thompson (2003, 
personal communication) at least 23 journals 
require authors to follow the recommendation 
put forth by the task force. 
 
 
James Algina (algina@ufl.edu) is Professor of 
Educational Psychology. His research interests 
are in applied statistics and psychometrics. H. J. 
Keselman (kesel@ms.umanitoba.ca) is Professor 
of Psychology. His research interests are in 
applied statistics. Randall D. Penfield 
(penfield@miami.edu) is Assistant Professor of 
Education. His research interests are in 
educational measurement and psychometrics. 

 Not surprisingly, there has been a 
renewed interest in ES estimates and 
accompanying confidence intervals (CIs). See, 
for example, Algina and Keselman (2003), Bird 
(2002), Cumming and Finch (2001), and Steiger 
and Fouladi (1997). 

Glass (1976) used a control group 
standard deviation (in a two-group problem) to 
standardize the difference between the group 
means. However, other values have been used to 
standardize the mean difference. For example, 
Hedges (1981) used the square root of the 
pooled variance, which is referred to as the 
pooled standard deviation. If the variance 
equality assumption is not met, then the standard 
deviation for either one of the groups could be 
used as the standardizer. In the context of 
comparing an experimental and control 
treatment, Glass, McGaw, and Smith (1981) 
recommended using the standard deviation for 
the control group, but pointed out that the 
experimental group standard deviation could be 
used. Glass et al. (1981) presented an example 
demonstrating that the value of the ES estimate 
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can vary depending on which group’s standard 
deviation is used as the standardizer. As well, 
they point out that both ES estimates would be 
correct. As Glass et al. (1981) noted, “These 
facts are not contradictory; they are two distinct 
features of a finding which cannot be expressed 
by one number” (p 107). 

Thus, Olejnik and Algina (2000) noted 
that when the equality of variance assumption is 
violated, the researcher will have to select one 
standard deviation that expresses the contrast 
(i.e., the effect) on the scale the researcher 
imagines is most important, or will have to 
report the mean difference standardized by 
several standard deviations and discuss the 
implications of these ESs. Before turning to 
methods that can be used when variances appear 
to be heterogeneous, it is important to point out 
that heterogeneity of variance can occur due to 
some additional factor in the data that is not 
modeled in the analysis. It is better to model 
such factors than to uncritically use methods that 
are appropriate for heterogeneous variances. 

When the population variances are 
assumed to be equal for the two levels of the 
factor, the population ES (PES) is 

 

2 1
Pooled

µ µδ
σ
−=  

 
where jµ  is the population mean for level j and 

σ  is the population standard deviation, which is 
assumed to be equal for the two levels of the 
factor. The PES can be estimated by  
 

2 1ˆ
Pooled

Pooled

Y Y

S
δ −=  

 
where jY  ( )1,2j =  is a treatment level group 

mean, jn  ( )1 2n n N+ =  is the sample size for 

the jth group, and PooledS  is the pooled standard 
deviation. 

According to Steiger and Fouladi 
(1997), a CI for the PES, which is exact under 
the assumptions for the independent samples t 
test, can be derived by using the noncentral t 
distribution with N – 2 degrees of freedom. 
First, a CI for the noncentrality parameter 

1 2 2 1 1 2

1 2 1 2
Pooled

n n n n

n n n n

µ µλ δ
σ
−⎛ ⎞= =⎜ ⎟+ +⎝ ⎠

 

 
is obtained. Then, by multiplying the limits of 
the interval for λ  by the inverse of 
 

1 2

1 2

n n

n n+
 

 
a CI for Pooledδ  is obtained. The lower limit of 
the CI for λ  is the noncentrality parameter for 
the noncentral t distribution in which the 
calculated t statistic 
 

1 2 2 1

1 2 Pooled

n n Y Y
t

n n S

⎛ ⎞−= ⎜ ⎟+ ⎝ ⎠
 

 
is the 1 2α−  quantile. For example, if 

2.131t =  and 2 15N − = , the lower limit of the 
95% CI for λ is zero, because 2.131 is the .975 
quantile of the t distribution with a noncentrality 
parameter equal to zero. The upper limit of the 

( )100 1 2 %α−  interval for λ  is the 

noncentrality parameter for the noncentral t 
distribution in which the calculated t statistic is 
the 2α  quantile of the distribution (See Steiger 
& Fouladi, 1997).  

The PES based on the standard 
deviation for the jth group is 

 

2 1
j

j

µ µδ
σ
−=  

 
and can be estimated by 
 

2 1ˆ
j

j

Y Y

S
δ −=  

 
where jS  is the square root of the usual 

unbiased sample variance. With this ES, the 
noncentral t-based interval for δ  is no longer 
correct. However, under the assumptions that the 
data  in  each group are normally distributed and 
all data are distributed independently, a 
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noncentral t-based approximate CI for δ j  can be 

derived. Thus, the CI does not assume equal 
variances, but the interval is based on normal 
distribution theory. This normality assumption is 
likely to be problematic because 2 1Y Y−  and jS  

are not distributed independently when the 
distribution is skewed for the jth treatment. For 
example, if the distribution is positively skewed 
for the first treatment, the sampling correlation 
between 2 1Y Y−  and 1S  will be negative. 

 Therefore, large values for 2 1Y Y−  will 

tend to be associated with small values for 1S  

and δ̂1  will tend to be positively biased. 
Moreover, the distribution theory used in 
deriving the CI will no longer apply. As a result 
the CI may not have the correct probability 
coverage. In fact, in an investigation of CIs for 
ESs in dependent samples designs, Algina, 
Keselman, and Penfield (2005a) showed that 
nonnormality has a negative impact on coverage 
probability for a noncentral t based approximate 
CI for jδ . 

 
Purposes of this article 
 Therefore, one purpose of the research 
was to investigate coverage probability for the 
noncentral t-based CI for δ j  when data are 

sampled in an independent samples design from 
a nonnormal distribution. Considering the 
prediction that the noncentral t-based CI for jδ  

is likely to be negatively impacted by 
nonnormality, a second purpose of the article 
was to investigate alternatives to the interval. 
 One reasonable alternative is to use the 
percentile bootstrap to construct a CI for jδ . A 

second alternative is to replace the least squares 

estimates in ˆ
jδ  with robust estimates. This 

approach was recommended by Algina et al. 
(2005a) in the context of CIs for jδ in repeated 

measures designs and by Algina, Keselman, and 
Penfield (2005b) in the context of CIs for δ in 
independent samples and is consistent with the 
observation in Wilcox and Keselman (2003) that 
the common population definition and sample 

estimate of ES (i.e., Pooledδ  and ˆ
Pooledδ  or jδ  and 

ˆ
jδ  for the two-group problem), based on least 

squares estimators, are not robust to distribution 
shape. That is, skewed distributions and 
distributions containing outliers can cause the 
PES value and its estimate to be grossly 
misleading (Wilcox, 2003, Sec 8.11). 

Accordingly, in place of ˆ
jδ  , the following is 

used 
 

2 1ˆ .642
j

j

t t
R

W

Y Y

S
δ

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (1) 

 
where tjY is the 20% trimmed mean for the jth 

group ( )1,2j =  and 2

jWS is the 20% Winsorized 

variance for group j. Twenty percent refers to 
the percentage trimmed from each tail. The 
constant .642 is the population value for the 
Winsorized standard deviation for a standard 
normal distribution for 20% trimming. (See 
Wilcox, 2003, for a justification of 20% 
trimming and computational definitions of the 
trimmed mean and Winsorized variance). For a 

normal distribution, both ˆ
jRδ and ˆ

jδ  converge to 

jδ  as the sample sizes increase. Probability 

coverage for a noncentral t-based CI and for a 
percentile bootstrap CI for 

jRδ  was investigated 

(defined later in equation (2)).  
 
A Noncentral t-Based CI forδ j  

If the variances are unequal, in a two-
group independent samples design, the 
population and sample ES is defined as 

 

2 1
1

1

µ µδ
σ
−

=  

and 
 

2 1
1

1

ˆ Y Y

S
δ −= , 

 
respectively. (The standard deviation for the 
second group could also be used. Glass et al. 
(1981) pointed out that these ESs provide 
different information.) 
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It is well known that 
if ( )~ ,1U N µ , ( )2~V kχ , and U and V are 

independently distributed, then  
 

( )~ ,
U

t k
V
k

µ  

 
where ( ),t k µ  is the noncentral t distribution 

with degrees of freedom k and noncentrality 
parameter µ . Using this result with 
 

2 1

2 2
1 2
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n n

σ σ
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+
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( ) 2
1

2
1
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σ
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=  

 
then 
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12 2

1 2
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~ 1,
1
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n n Y Y
t n

S
S

n n

σ σ
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σ

σ σ

−

+
−
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where 
 

2 1

2
2

1 2
1 2 1

1
n n

µ µλ
σσ
σ

−=
+

. 

 
If the estimate of λ is calculated as 
 

2 1 1

2 2
2 2

1 2 2
1 2 1 1 2 1

ˆ
ˆ

1 1

Y Y

S S
S

n n S n n S

δλ −= =

+ +
 

 

the noncentral t distribution, with 1 1n −  degrees 
of freedom, can be used to find a CI on λ . 
Specifically, the upper limit of a ( )100 1 %α−  

interval for λ  is the noncentrality parameter for 
the noncentral t distribution with 1 1n −  degrees 

of freedom in which λ̂  is the 2α  quantile of 
the distribution; the lower limit is the 
noncentrality parameter for the noncentral t 

distribution in which λ̂  is the ( )1 2α−  

quantile. Then, multiplying the lower and upper 

limit by
2
2

2
1 2 1

1 S

n n S
+ , an approximate CI for 1δ is 

obtained. The interval is approximate because 
the limits of the CI for λ  are multiplied by a 
random variable.  

To obtain an estimate of the robust ES, 

let .2 jn⎡ ⎤⎣ ⎦  indicate that .2 jn  is rounded down to 

the nearest integer, .2j jg n⎡ ⎤= ⎣ ⎦ , 2j j jh n g= − , 

and then let 
 

( ) 2

2
1

1
jj W

j
j

n S
S

h

−
=

−
�  

 
and 
 

( ) 2

2
1

1
jj W

j
j

n

h

σ
σ

−
=

−
�  

 
where 2

jWσ is the population Winsorized variance 

for treatment j. To obtain a CI for 
 

                         
1

1

2 1.642 t t
R

w

µ µδ
σ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
             (2) 

 
define 
 

 12 1

2 2
2 1 2

1 2 2
1 2 1 1 1 2 1

1 1 1
.642

1

Rt t
R

n
h h h h h

δµ µλ
σ σσ
σ σ

−= =
⎛ ⎞−+ +⎜ ⎟− ⎝ ⎠

�
�

�

�
�

(3) 
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where tjµ  is the population trimmed mean. Also 

define 
 

12 1

2 2
2 1 2

1 2 2
1 2 1 1 1 2 1

ˆ
ˆ

1 1 1
.642

1

Rt t
R

Y Y

S n SS
h h S h h h S

δ
λ −

= =
⎛ ⎞−+ +⎜ ⎟− ⎝ ⎠

�
�

�

�
�

.  (4) 

 

The upper limit of a ( )100 1 %α−  interval for 

Rλ  is the noncentrality parameter for the 

noncentral t distribution, with 1 1h −  degrees of 

freedom, in which ˆ
Rλ  is the 2α  quantile of the 

distribution; the lower limit is the noncentrality 
parameter for the noncentral t distribution in 

which ˆ
Rλ  is the ( )1 2α−  quantile. An 

approximate CI for 
1Rδ  is obtained by 

multiplying the lower and upper limit by  
 

2
1 2

2
1 1 2 1

1 1
.642

1

n S

h h h S

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

�

�

. 

 
The interval is approximate for two reasons. 
First, when trimmed means and Winsorized 
variances are used, there is no guarantee that the 
noncentral t distribution is the appropriate 
distribution for calculating a CI for Rλ . Second, 
the interval is approximate because the limits of 
the CI for Rλ  are multiplied by a random 
variable.  
 The investigations of these intervals 
were carried out in three studies.  

 
Study 1 

Methodology 
 

Probability coverage of CIs for 1δ  and 
1Rδ  

based on the noncentral t distribution were 
investigated. It is important to recognize that 1δ  

and
1Rδ  are different parameters. When applied 

to normal distributions, the parameters will be 
equal, but otherwise will most likely be unequal. 
Thus, there is no attempt to compare the interval 
estimates of the 1δ and

1Rδ . 

Probability coverage was investigated 
for all combinations of the following three 
factors: 1 2 20n n= = to 100 in steps of 20, PESs 

( )
11  and Rδ δ  ranging from 0 to 1.6 in steps of .4, 

and population distribution (four cases from the 
family of g and h distributions). The nominal 
confidence level for all intervals was .95 and 
each condition was replicated 5000 times. 

The data were generated from the g and 
h distribution (Hoaglin, 1985). Specifically, four 
g and h distributions were chosen for 
investigation: (a) 0g h= = , a standard normal 
distribution; (b) .76g =  and .098h = − , a 
distribution with skew and kurtosis equal to that 
for an exponential distribution ( )1 22,  6γ γ= = ; 

(c) g 0=  and .225h = , a long-tailed symmetric 

distribution ( )1 20 and 154.84γ γ= = ; and (d) 

.225g =  and .225h = , a long-tailed skewed 

distribution ( 1 4.90 γ = and 2 4673.80γ = ). To 
generate data from a g and h distribution, 
standard unit normal variables ijZ  were 

converted to g and h distributed random 
variables via 

 

( ) 2exp 1
exp

2
ij ij

ij

gZ hZ
Y

g

− ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
when both g and h were non-zero. When g was 
zero 
 

2

exp
2

ij
ij ij

hZ
Y Z

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. 

 

ijZ  scores were generated by using RANNOR in 

SAS (SAS, 1999). For simulees in treatment 2, 
the 2iY  scores were transformed to 
 

               ( )2 2 2 1 1iPVR Y µ µ σ δ− + + ×           (5) 

 
where PVR is the ratio of the population 
variance for the transformed 2iY  scores to the 

variance of the 1iY  scores and was set equal to 4 
for all conditions in Study 1. The scores 
generated by using equation (5) were used in the 
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CI for 1δ . Additional levels of PVR were 

planned for investigation. Because the results for 
4PVR =  indicated poor probability coverage in 

some conditions and the focus should be to find 
intervals that work well in a wide variety of 
conditions, the intervals being estimated were 
dismissed.  

To facilitate reporting of results for the 
CI for 

1Rδ , the 2iY  scores were transformed to 

 

         ( ) 1

2 2 2 1.642
W

i t tPVR Y
σ

µ µ δ− + + .          (6) 

 
This method of generating the scores in 
treatment 2 results in

11 Rδ δ= . The CI for 
1Rδ was 

also investigated using equation (5) to generate  

2iY  scores, 
11 Rδ δ≠ . The general pattern of 

results was the same in the two sets of 
conditions. 

 
Results 

 
Estimated coverage probability for the two CIs 
are reported in Table 1 for the four g and h 
distributions, all sample size values, and all 
values of the PES (The CI for 

1Rδ is based on 2iY  

generated by using equation (6)). The results 
show that both CIs had estimated probability 
coverage near the nominal confidence level 
when the data were normally 
distributed ( )0g h= = , but both could have poor 

probability coverage when the data were 
nonnormal. As the PES increased, both CIs had 
increasingly worse coverage probability. 
Coverage probability appeared to be largely 
unaffected by sample size. 
 
Study 2 
 Both noncentral t-based CIs had good 
coverage probability when the data were normal 
despite the fact that both CIs are only 
approximately correct. However, both could 
have poor coverage probability when the data 
were nonnormal. Therefore, the use of a 
percentile bootstrap CI to construct an interval 
on 1δ was investigated.  

 

Methodology 
 

Probability coverage of a percentile bootstrap CI 
for all combinations of the following 

1 2 20n n= =  to 100 in steps of 20, population 
distribution (four cases from the family of g and 
h distributions), and 1δ  ranging from 0 to 1.6 in 
steps of .4 was investigated. In all conditions, 

4PVR = . The distributions from Study 1 were 
investigated and the data was generated by using 
the procedure described for Study 1. Because a 
CI for 1δ was being investigated, the data for 
treatment 2 were generated by using Equation 
(5). As in Study 1, 5000 replications were 
conducted for each condition combination. 600 
bootstrap replications were used. In all 
conditions, the nominal confidence level was 
.95. 
 

Results 
 

Estimated coverage probability for the bootstrap 
CI for 1δ  is reported in Table 2 for all sample 
size values and all levels of PES. The results 
show that the percentile CI for 1δ  can have poor 

coverage probability and therefore should not be 
used. These intervals were particularly poor 
when the sample size was small and 1δ  was 
large. 
 
Study 3 

The results indicate that each of the 
noncentral t-based and percentile bootstrap CIs 
for 1δ  and the noncentral t-based CI for 

1Rδ can 

have poor coverage probability with nonnormal 
data. Therefore, coverage probability for a 
percentile bootstrap interval for 

1Rδ was 

investigated.  
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Table 1. Estimated Coverage Probabilities for Noncentral t Distribution-Based CIs for 1δ  and 

1Rδ  

 
Note: 4PVR = . 
 

  .000g = , 

.000h =  
.000g = , 

.225h =  
.760g = , 

.098h = −  
.225,g =  

.225h =  

1δ  
1Rδ  

1δ  
1Rδ  

1δ  
1Rδ  

1δ  
1Rδ  

0.00 20 .954 .955 .954 .954 .943 .949 .956 .962 
 40 .959 .955 .955 .954 .948 .951 .957 .957 
 60 .954 .957 .956 .955 .947 .950 .954 .958 
 80 .953 .954 .952 .948 .949 .953 .951 .953 
 100 .954 .951 .955 .952 .948 .948 .952 .949 
          

0.40 20 .948 .950 .955 .955 .924 .932 .940 .954 
 40 .955 .952 .949 .951 .920 .925 .932 .952 
 60 .957 .953 .943 .951 .928 .928 .931 .943 
 80 .945 .943 .937 .952 .930 .932 .921 .948 
 100 .948 .946 .937 .953 .920 .926 .918 .944 
          

0.80 20 .949 .949 .936 .948 .900 .913 .906 .937 
 40 .948 .947 .927 .948 .894 .907 .891 .927 
 60 .952 .951 .919 .949 .895 .911 .874 .933 
 80 .949 .943 .915 .951 .895 .915 .872 .931 
 100 .953 .948 .913 .948 .893 .902 .859 .934 
          

1.20 20 .951 .943 .914 .940 .871 .890 .876 .925 
 40 .953 .943 .893 .941 .867 .892 .843 .925 
 60 .953 .948 .885 .940 .858 .894 .825 .922 
 80 .950 .939 .877 .938 .859 .887 .809 .920 
 100 .946 .940 .871 .933 .858 .886 .799 .914 
          

1.60 20 .956 .949 .883 .931 .836 .866 .837 .915 
 40 .948 .941 .862 .920 .836 .872 .802 .911 
 60 .953 .945 .843 .932 .831 .875 .773 .909 
 80 .948 .939 .836 .933 .823 .860 .764 .915 
 100 .947 .941 .834 .928 .830 .865 .749 .917 
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Methodology 
 

Probability coverage was investigated for all 
combinations of: sample size n1 = 20, 40, and 60 
in combination with 2 1 n n= and 2 1 20n n= + ; 
population distribution (four cases from the 
family of g and h distributions), various PESs, 

1
.00Rδ = , .40, .80, 1.20 and 1.60, and 

.25PVR = , .5, 1, 4, and 8. As in Study 2, 
0g h= = ,  .76g =   and  .098h = − ,  0g =   and      

.225h = ,   and   .225g =    and   .225h =    were 

 
 
investigated. Because a CI for 

1Rδ was being 

investigated, the data for treatment 2 were 
generated by using Equation (6). In all 
conditions the nominal confidence level was .95. 
As in the previous study, 5,000 replications and 
600 bootstrap replications were used. 
 

Results 
 

Table 3 contains estimated coverage 
probabilities for the percentile bootstrap CI for 
all conditions with 8PVR = . Estimated coverage  

Table 2. Estimated Coverage Probabilities for the Bootstrap Percentile CI for 1δ  
 

1δ  1 2n n=  .000g = , 

.000h =  
.000g = , 

.225h =  
.760g = , 

.098h = −  
.225,g =  

.225h =  
0.0 20 .936 .929 .920 .921 

 40 .942 .937 .939 .935 
 60 .939 .935 .935 .938 
 80 .948 .946 .935 .940 
 100 .945 .939 .940 .941 
      

0.4 20 .934 .922 .926 .915 
 40 .939 .929 .930 .928 
 60 .942 .935 .937 .932 
 80 .950 .941 .940 .933 
 100 .948 .936 .947 .931 
      

0.8 20 .931 .904 .915 .900 
 40 .934 .921 .928 .904 
 60 .943 .921 .933 .916 
 80 .945 .933 .940 .907 
 100 .944 .929 .938 .916 
      

1.2 20 .929 .882 .905 .862 
 40 .937 .901 .922 .874 
 60 .943 .905 .925 .884 
 80 .938 .918 .930 .880 
 100 .949 .913 .934 .892 
      

1.6 20 .926 .861 .883 .824 
 40 .940 .881 .911 .838 
 60 .945 .889 .908 .850 
 80 .943 .895 .927 .850 
 100 .942 .893 .927 .848 
      

Note: 4PVR =  
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Table 3. Estimated Coverage Probabilities for the Percentile Bootstrap CI for 

1Rδ  

 
Note. 8PVR = . 
 

 

1n , 2n  
 

1Rδ  
.000g = , 
.000h =  

.000g = , 
.225h =  

.760g = , 
.098h = −  

.225,g =  

.225h =  

20, 20 .00 .943 .945 .945 .950 
 .40 .950 .956 .954 .951 
 .80 .948 .955 .952 .954 
 1.20 .961 .964 .957 .966 
 1.60 .960 .966 .962 .960 
      

20, 40 .00 .949 .957 .949 .952 
 .40 .951 .954 .956 .958 
 .80 .953 .959 .951 .961 
 1.20 .967 .964 .958 .965 
 1.60 .959 .969 .957 .963 
      

60, 60 .00 .949 .947 .947 .948 
 .40 .953 .944 .943 .952 
 .80 .949 .950 .948 .957 
 1.20 .952 .951 .952 .949 
 1.60 .947 .959 .954 .958 
      

60 80 .00 .945 .952 .944 .950 
 .40 .952 .949 .946 .951 
 .80 .949 .959 .951 .959 
 1.20 .955 .954 .953 .956 
 1.60 .955 .961 .954 .953 
      

100,100 .00 .950 .948 .949 .947 
 .40 .947 .948 .953 .951 
 .80 .950 .946 .949 .957 
 1.20 .951 .953 .951 .952 
 1.60 .953 .956 .953 .956 
      

100,120 .00 .948 .955 .947 .948 
 .40 .939 .951 .948 .948 
 .80 .955 .949 .950 .948 
 1.20 .951 .947 .955 .955 
 1.60 .956 .960 .959 .959 
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probabilities for other values of PVR were not 
noticeably different from those in Table 3. Over 
the 120 conditions reported in Table 3, empirical 
coverage ranged from .939 to .969, with an 
average coverage value of .953. The results 
suggest coverage probability increased as 

1Rδ  

increased, but was largely unaffected by the 
sampled distribution and whether the sample 
sizes were equal.  

 
Conclusion 

 
Estimating the magnitude of a treatment effect 
has become a required mode of analysis for 
many scientific journals in the social and 
behavioral sciences as a result of 
recommendations made by the APA Task Force 
regarding statistical inference. Not surprisingly, 
issues related to estimating the magnitude of an 
effect have become of paramount interest to 
applied researchers. One issue is what standard 
deviation to use in the denominator of the ES 
statistic. That is, since Glass’s (1976), which 
used the control group’s standard deviation to 
standardize the mean difference, other 
approaches have been recommended. Hedges 
(1981) recommended using the pooled standard 
deviation when the variances are homogeneous. 
Glass et al. (1981) recognized that if 
homogeneity of variances is not a reasonable 
assumption, the standard deviation for either 
group could be used as the denominator. This 
applies regardless of whether one of the 
treatment groups is a control group. 

A second issue is how to use the ES 
measures to construct a CI. It is well known that 
when the pooled standard deviation is used in 
the denominator, CIs can be constructed by 
using the noncentral t distribution and will be 
exact when the scores are independently drawn 
from normal distributions and with equal 
variances. As shown in this article, an alternative 
interval based on the noncentral t distribution 
can be used when the standard deviation for one 
of the groups is used in the denominator, as 
would be done if Glass’s (1976) ES were used or 
if the recommendation of Glass et al. (1981) 
were used when the variances are not 
homogeneous. However, the theory underlying 
this interval assumes data that are normal in 

form, which implies that the numerator and 
denominator of the ES are independently 
distributed. Independence does not hold when 
the data for the group that contributes the 
standard deviation are skewed. Accordingly, the 
interval could not be recommended without first 
examining its operating characteristics under 
nonnormality 

As Wilcox and Keselman (2003) 
indicated, ES measures can be inaccurate when 
the data are drawn from nonnormal distributions 
because of the effects of nonnormality on means 
and standard deviations. Therefore, CIs 

calculated from a robust effect size ( )1

ˆ
Rδ in 

which trimmed means replace means and the 
square root of the Winsorized variance replaces 
the standard deviation were also investigated. 
An additional issue considered was whether one 
could obtain accurate probability coverage for 
CIs for ES when coverage was based on 
theoretically obtained critical values (i.e., based 
on the noncentral t distribution) or obtained 
through a bootstrapping method. This was an 
important issue because others have 
demonstrated the benefits of using bootstrapping 
methodology (See, e.g., Keselman et al., 2002). 

It this article, it was found that: (1) the 
classical approach, which divides the mean 
difference by a standard deviation from one 

group ( )1̂i.e., δ in combination  with the interval 

based on the noncentral t distribution had poor 
probability coverage when data were skewed, 
(2) the robust approach, which divides the 
difference of the trimmed means by the square 
root of the Winsorized variance from one group 

( )1

ˆi.e., Rδ in combination with the interval based 

on the noncentral t distribution also had poor 
probability coverage when data were nonnormal, 
(3) bootstrap CIs for 1δ  can perform poorly, and 

(4) the percentile bootstrap interval for 
1Rδ  was 

very little affected by nonnormality, providing a 
very good interval for 

1Rδ . 

An emphasis must be placed on the 
belief that it is important to estimate a robust 
parameter, that is, the robust PES, rather than the 
usual parameter of ES, when data are 
nonnormal. Researchers should be interested in 
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estimates of a parameter that is robust to 
conditions of skewness and outlying values. 
Inferences pertaining to robust parameters may 
be more valid than inferences pertaining to the 
least squares derived parameters when dealing 
with populations that are nonnormal (e.g., 
Hample, Ronchetti, Rousseeuw & Stahel, 1986; 
Huber, 1981; Staudte & Sheather, 1990). Hogg 
(1974, p. 919) maintained that most distributions 
are skewed in practice, and Tukey (1960) argued 
that most distributions will have heavy tails. 
Therefore, according to this perspective, the 
justification for (testing hypotheses and) setting 
robust intervals for robust parameters is that 
(testing the usual hypotheses and) setting 
intervals around the usual parameters is a 
mistake or at least shortsighted when other 
robust methods are available, methods that are 
not generally affected by a relatively few data 
points in a distribution or some minor 
characteristic of the distribution, points and 
characteristics that need not affect the quantity 
researchers are interested in.  

As well, it was found that the natural 
sample estimate of the robust parameter, one 
based on trimmed means and a Winsorized 
variance, provides probability coverage that is 
fairly close to the target value of .95, when 
upper and lower critical values for the interval 
were obtained through a percentile bootstrap 
method. Despite the preference for a robust 
parameter, others may feel that, given a 
hypothesis about the least square means (which 
is not recommended with nonnormal data), δ is 
the appropriate effect size measure. These 
researchers must face the fact that neither the 
noncentral t distribution-based CI nor the 
percentile bootstrap CI will necessarily have 
coverage probability near the nominal value. 
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ANCOVA: A Robust Omnibus Test Based On Selected Design Points 
 

 

Rand R. Wilcox 
Dept of Psychology 

University of Southern California 
 
 
Many robust analogs of the classic analysis of covariance method have been proposed. One approach, 
when comparing two independent groups, uses selected design points and then compares the groups at 
each design point using some robust method for comparing measures of location. So, if K design points 
are of interest, K tests are performed. There are rather obvious ways of performing, instead, an omnibus 
test that for all K points, no differences between the groups exist. One of the main results here is that 
several variations of these methods can perform very poorly in simulations. An alternative approach, 
based in part on the usual sample median, is suggested and found to perform reasonably well in simulations. It 
is noted that when using other robust measures of location, the method can be unsatisfactory. 
 
Key words: ANCOVA, bootstrap methods, measures of depth, smoothers 
 
 
 

Introduction 
 
The analysis of covariance (ANCOVA) problem 
is to compare two independent groups based on 
some outcome of interest, Y ,  in a manner that 
takes into account some covariate, X.  A classic 
and well-known approach assumes that the error 
term of the usual linear regression model is 
homoscedastic and has a normal distribution, the 
regression lines associated with each group are 
parallel, and the variances associated with the 
error terms for each group are assumed to be 
identical. More formally, if for the jth group ( j  
= 1, 2 ), then there are n j randomly sampled 
pairs of observations, say (X ij, Y ij), i  = 1, . . . n j,  
the classic assumption is that for the jth group,                               
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                       ij ij oj ijY Xβ β ε= + +                  (1) 

 

where ijε  has variance 2 2 2
1 2,jσ σ σ= , and ijε  is 

independent of ijX . So by implication, for each 

group, the conditional variance of Y ,  given X,  
does not vary with X,  and each group has the 
same slope. 

It is known that violating one or more of 
these assumptions can result in serious practical 
problems. Concerns about the robustness of the 
method date back to at least Atiqullah (1964) 
who concluded that non-normality is a practical 
problem. Another obvious concern is the 
assumption that the regression lines are parallel. 
There are several robust methods for testing this 
assumption (e.g., Wilcox, 2003, 2005), but it 
remains unclear when such tests have enough 
power to detect situations where having non-
parallel lines is a practical concern. Yet another 
concern about equation (1) is the assumption 
that the association between Y and X is linear. 
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Of course, in some situations this is a reasonable 
approximation, but this is not always the case. 
Many alternative methods have been derived 
that eliminate the assumption that the 
association is linear (e.g. Bowman & Young, 
1996; Delgado, 1993; Dette & Neumeyer, 2001; 
Hall, Huber, & Speckman, 1997; Kulasekera, 
1995; Kulasekera & Wang, 1997; Munk & 
Dette, 1998; Neumeyer & Dette, 2003; Young & 
Bowman, 1995; Wilcox, 2003). However, some 
of these methods require homoscedasticity and 
for most there are few if any simulation results 
that support their use with small to moderate 
sample sizes. 

A simple and very flexible approach to 
ANCOVA is described in Wilcox (2003, section 
14.8). It allows the regression lines to be non-
linear, it allows heteroscedasticity, it performs 
well in simulations, and in the event standard 
assumptions are met, all indications are that it has 
nearly the same amount of power as the classic 
ANCOVA method (e.g., Wilcox, 2005, p. 526). 
Roughly, the method is based on multiple 
comparisons. Examination of the method 
suggests a simple and rather obvious approach to 
performing an omnibus test instead. But results 
reported here make it clear that several 
variations of this approach perform very poorly 
in simulations. (Details are given later in the 
article). The main result in this article is that an 
alternative approach, based in part on the usual 
sample median and the depth of the null vector 
in a bootstrap cloud, nearly eliminates this 
problem. The main exception is a situation 
where, simultaneously, the conditional 
distribution of Y is discrete, skewed, and the 
possible values for Y are relatively small in 
number.  
 
Considered and Discarded Methods 
 It helps to describe the first general 
method that was considered and discarded and 
then suggest a related approach that gives more 
satisfactory results. It is assumed that for the jth 
group, Y and X are related through some 
unknown function, m j.  More formally, it is 
assumed that 

 
( )ij j ij ijY m X ε= +  

 

where ijε  has a median of zero, variance 2
ijσ , 

and is independent of ijX . Let ( )jm x  be the 

population median of Y for the jth group, given 
that the covariate of the jth group is jX x= .  

(Comments on using other location estimators 
are given later in the article). Let 1,..., Kx x  be 

K values of X that are of interest. The method 
in Wilcox (2003, section 14.8) includes as a 
special case the problem of testing 
 

0 1 2: ( ) ( ), 1,..., ,k kH m x m x k K= =  

 
for each k.  That is, K tests are to be performed. 
Let 1 2( ) ( ) ( )k k kx m x m xδ = − .  The goal here is 

to test  
                      
                   0 1: ( )  = ( ) 0KH x xδ δ= ⋅ ⋅ ⋅ =           

(2) 
 
Here, it is assumed that K = 5 and that the 
choices for 1 5,...,x x  are made empirically in a 

manner about to be described. Of course, it is 
not being suggested that other choices for the 
design points or K are inappropriate. For 
example, a researcher might have interest in K 
specific design points, rather than points 
determined as is done here. The idea is to 
provide a data-driven method for checking 
whether the regression lines differ, paying 
particular attention to design points where valid 
inferences about the medians of the Y values can 
be made. 

The choice of the five design points stems in 
part from what is called a running interval 
smoother. To describe the details, attention is 
temporarily focused on a single group of 
subjects. The basic strategy is to find all iX  

values close to x and estimate m(x) with the 
median of the corresponding Y values. The 
method begins by computing the median 
absolute deviation statistic: 

 

1{| |,..., | |},nMAD median X M X M= − −  

 
where M is the usual sample median of the X 
values. Let MADN = MAD/.6745. The only 
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reason for rescaling MAD is that under 
normality, MADN estimates σ . This rescaling 
helps describe the running interval smoother in 
terms of familiar concepts, but ultimately it is 
not important. Then iX  is said to be close to x  

if 
 

| | ,iX x f MADN− ≤ ×  

 
where f  is some constant, called the span. 
Here, following Wilcox (2003), f  = 1 is used. 

Let ( ) /j j km m x K= Σ .  A seemingly natural 

alternative to (2) is to test 
 

                             1 20 :H m m=         (3) 

 
That is, view the problem in the context of a 2 
by K ANOVA and test the hypothesis that 
there is no main effect for the first factor. Many 
robust methods for testing this hypothesis have 
been proposed (Wilcox, 2005), which include 
various bootstrap techniques. But when 
checking the ability of this approach to control 
the probability of a Type I error for the problem 
at hand, poor results were obtained in situations 
described later in the article. Included were non-
bootstrap methods for 20% trimmed means and 
medians (Wilcox, 2003, sections 10.3 & 10.5) 
plus bootstrap variations of these methods 
described in Wilcox (2005). In particular, it 
was found that in some situations, when testing 
at the .05 level, the actual Type I error 
probability was estimated to exceed .2. 
 
Description of the Recommended Method 
 The one method that performed well in 
simulations is based on testing (2) rather than 
(3). The general strategy is to generate 
bootstrap samples, yielding bootstrap estimates 
of ,kδ  and then determine how deeply the null 

vector is nested within this bootstrap cloud. Two 
approaches to measuring the depth of the null 
vector are considered. General theoretical results 
related to this approach are reported in Liu and 
Singh (1997). 
 To elaborate, momentarily assume that 
the x k values have been chosen and let 

ijkY ( 1..., ; 1,..., )jki n k K= =  be the ijY  values 

such that 
                     | | .ij kX x f MADN− ≤ ×             (4) 

 
For fixed k  and j ,  generate a bootstrap sample 
by randomly sampling with replacement jkn  

values from ijkY  yielding * , ( 1,..., )ijk jkY i n= . Let 
*
jkM  be the usual sample median based on the 

*
ijkY  values and let * * *

1 2k k kM Mδ = − . Repeat this 

process B times yielding * , 1,...,bk b Bδ = . So, 

there are B  vectors of bootstrap *
bkδ  values, 

each vector having length K .  Then roughly, the 
null hypothesis is rejected depending on how 
deeply the null vector (0,...,0)  is nested within 
this bootstrap cloud. 

The problem of choosing the kx  values 

is approached as follows. Let ( )jN x  be the 

number of points in the jth group that are 
considered close to x  based on (4). For 
notational convenience, assume that for fixed j ,  
the ijX  values are in ascending order. That is, 

1 j njJX X≤ ⋅⋅ ⋅ ≤ . The regression lines are said 

to be comparable at x  if simultaneously 
( ) 12jN x ≥  for both j  = 1 and 2. The value 12 

is chosen simply to reflect a sample of points 
large enough so as to expect reasonable control 
over the probability of a Type I error, but 
obviously some other (larger) value could be 
used if desired.  

Suppose 1x  is taken to be the smallest 

1iX  value for which the regression lines are 

comparable. That is, search the first group for 
the smallest 1iX  such that 1 1( ) 12iN X ≥ . If 

2 ( ) 12ilN X ≥ , the two regression lines are 

considered comparable at 1iX  and 1 1ix X=  is 

set. If 2 ( ) 12ilN x < , consider the next largest 

1iX  value and continue until it is 

simultaneously true that 1 1( ) 12iN X ≥  and 

2( 1) 12N Xi ≥ . 5K =  is used, but again some 

other value is certainly reasonable. Let 5x  be 
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the largest 1iX  value in the first group for 

which the regression lines are comparable. That 
is, 5x  is the largest 1iX  value such that 

1 5( ) 12N x ≥  and 2 5( ) 12N x ≥ . Let 5i  be the 

corresponding value of i .  The other three 
design points are chosen as follows. Let 

3 1 5( ) / 2i i i= + , 2 1 3 / 2i i i= + , and 

4 3 5( ) / 2i i i= + . Round 2i , 3i , and 4i  down to 

the nearest integer and set 
22 1ix X= , 

33 1ix X= , 

and 
44 1ix X= . 

There are various ways of measuring 
how deeply a point is nested within a 
multivariate cloud of data (e.g., Liu & Singh, 
1997, Wilcox, 2005). The simplest is based on 
Mahalanobis distances and is the first of the 
two methods considered here. However, the 
most obvious estimate of the covariance matrix 
associated with the bootstrap vectors is not 
used. Rather, it is estimated with 

 

* *

1

1
( )( )

1

B

km bk k bm m
b

s
B

δ δ δ δ
=

= − −
− ∑

. 

 

That is, for fixed k,  rather than use * /bk BδΣ  as 

the estimate of the center of the bootstrap 
cloud, use kδ  instead. Put another way, there is 

no need to estimate the center of the bootstrap 
cloud, it is already known and given by the vector 

1( ,..., )Kδ δ . Indeed, if it is estimated with 
* /bk BδΣ , control over the probability of a 

Type I error deteriorates, consistent with a 
variety of other methods surveyed by Wilcox 
(2005). Let ( )kmS s=  be the corresponding 

covariance matrix, in which case the distance of 
the bth bootstrap vector from the center is given 
by  
 

* * 1 * *
1 1 1 1( ,..., ) ( ,..., )b b bK K b bK Kd Sδ δ δ δ δ δ δ δ−= − − − − ′ . 

 
Let  
 

1
1 1( 0,..., 0) ( 0,..., 0)K KD Sδ δ δ δ−= − − − − ′ , 

 

which is the distance of the null vector from the 
center of the bootstrap cloud. The (generalized) 
p-value is 
 

�

* 1
( )bp I D d

B
= Σ ≤ , 

 

where     ( ) 1bI D d≤ =     if    bD d≤     and 

( ) 0bI D d≤ =  if bD d> . This will be 

called method M. 
 The second method considered here for 
measuring the depth of a point in the bootstrap 
cloud is a projection-type method given in 
Wilcox (2005, section 6.2.5); it represents a 
slight variation of a method discussed by 
Donoho and Gasko (1992) and has been found 
to perform well in connection with other methods 
described in Wilcox (2005). The computational 
details are relegated to an appendix. This will be 
called method P. 
 
A Simulation Study 
 Simulations were used to assess the 
small-sample properties of the method just 
described. Observations were generated 
according to the models 
 

Y ε=  
 

Y X ε= +  
 
and 
 

2Y X ε= + , 
 

where X  has a standard normal distribution and 
ε  has one of four g-and-h distributions 
(Hoaglin, 1985), which contain the standard 
normal distribution as a special case. If Z  has a 
standard normal distribution, then 
 

2

2

exp( ) 1
exp( / 2),

exp( / 2),

gZ
hZ

gW

Z hZ

−⎧
⎪= ⎨
⎪
⎩

    

if

if

0

0

g

g

>

=
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has a g-and-h distribution, where g  and h  are 
parameters that determine the first four mo-
ments. The four distributions used here were the 
standard normal ( g  = h  = 0.0), a symmetric 
heavy-tailed distribution ( h  = 0.2, g  = 0.0), an 
asymmetric distribution with relatively light 
tails ( h  = 0.0, g  = 0.2), and a symmetric 
distribution with heavy tails ( g  = h  = 0.2). In 
Table 1, the theoretical skewness and kurtosis 
for each distribution is considered. Additional 
properties of the g-and-h distribution are 
summarized by Hoaglin (1985). 

A general concern about methods 
aimed at comparing population medians, based 
on the usual sample median, is that for discrete 
data where tied values can occur, control over 
the probability of a Type I error can be poor. 
This is the case when using the method 
proposed by Bonett and Price (2002) as well as 
a related method in Wilcox (2003, section 
8.7.1). In a paper submitted for publication, the 
author has found that certain bootstrap methods 
correct this problem while others do not. The 
main point here is that considering discrete 
distributions where tied values are likely is 
crucial for the problem at hand. Accordingly, 
additional simulations were run by generating 
ε  from a beta-binomial distribution: 

 
( , )

( )
( 1) ( 1, 1) ( , )

B m x r x s
P X x

m B m x x B r s

− + += =
+ − + +

, 

 
 
 
 

where B is the complete beta function. Here m = 
10, 12 and 20 were considered. With m = 12, for 
example, the possible values for X are the 
integers 0,1,...,12 . The values for r and s were 
taken to be r = s = 4, as well as r = 1 and r = 9. 
For r = s = 4 the distribution is bell-shaped and 
symmetric with mean m/2. In Figure 1, the 
probability function when r = 1, s = 9 and m = 
12 is exhibited. 

In Table 2, the estimated probability of a 
Type I error when testing at the .05 level and 

1 2 40n n= =  is exhibited. The estimates are 

based on 1,000 replications with B = 600. (From 
Robey & Barcikowski, (1992), 1,000 
replications is sufficient from a power point of 
view. More specifically, if the hypothesis that 
the actual Type I error rate is .05 is tested, and if 
power is to be .9 when testing at the .05 level 
and the true α  value differs from .05 by .025, 
then 976 replications are required.) The results 
for Y X ε= +  did not reveal any new insights, 
and so for brevity they are not reported. To get 
some idea of the effect of homoscedasticity, 
additional simulations were run where values in 
the first group were multiplied by 1 4σ = . The 

g-and-h distribution has a median of zero, so the 
null hypothesis remains true. For the beta-
binomial distributions, the data were shifted to 
have a median of zero before multiplying by 

1 4σ = . The top portion of Table 2 are the 

results when there is homoscedasticity 1( 1)σ = . 

 
 

Table 1: Some properties of the g-and-h distribution. 

 
g h 

1k  2k  

0.0 0.0 0.00 3.0 

0.0 0.2 0.00 21.46 

0.2 0.0 1.75 8.9 

0.2 0.2 2.81 155.99 
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Figure 1: The beta-binomial probability function with m = 12 , r  = 1 and s  = 9 

 
 
 

Table 2: Estimated Type I error probabilities 
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First, consider the homoscedastic case 
with continuous g-and-h distributions. Both 
methods P and M perform reasonably well. To 
avoid an estimated Type I error probability 
greater than .07, method P is preferable. Under 
heteroscedasticity, method M can be unsatisfac-
tory, with estimates exceeding .08, while again 
method  P  gives  fairly  satisfactory  results. But 
when tied values occur, method P can be 
disastrous and should not be used. Method M 
now performs well under homoscedasticity 

1( 1)σ = , but under heteroscedasticity, it breaks 

down as well with estimates exceeding .1. 
All simulations were repeated with 

1 2 60n n= = , no new insights were found, so 

the results are not reported. 
 

Conclusion 
 
A positive result is that when tied values occur 
with probability zero, method P performs fairly 
well in terms of Type I errors, even when there 
is heteroscedasticity. However, when tied values 
are likely, it can be unsatisfactory. If tied values 
are likely and there is homoscedasticity, method 
M performs reasonably well, but it can break 
down when there is heteroscedasicity. So a 
possible argument in favor of method M is that 
when the (conditional) distributions of Y do not 
differ, it provides good control over the 
probability of a Type I error. But a negative 
feature is that it is sensitive to more than one 
feature of the data. That is, it does not isolate the 
reason for rejecting, which could be due to 
differences between medians or 
heteroscedasticity. 

Some additional simulations were run with m  
= 2 0,r  = 2 and s  = 9. The ability of method P to 
control the probability of a Type I error 
improved substantially versus the situation 
where r  = 1, but the estimated probability of a 
Type I error for the model Y ε=  was .099. So it 
seems that some tied values can probably be 
tolerated when using method P, but it is difficult 
to know when this is the case. 
 A criticism of the sample median is that 
under normality, or when sampling from a light-
tailed distribution, it is relatively inefficient. By 
trimming less, say 20%, good efficiency is 
obtained under normality and some protection 

against low efficiency due to heavy-tailed 
distributions is obtained. (Note that the usual 
sample median belongs to the class of trimmed 
means with the maximum amount of trimming.) 
However, replacing the usual sample median with 
a 20% trimmed mean, the methods studied here 
are unsatisfactory in terms of estimated Type I 
errors, at least for the situations considered. 
Consideration was given to estimating the 
population median with the Harrell and Davis 
(1982) estimator with the goal of achieving better 
efficiency under normality, but again control 
over the probability of a Type I error was no 
longer satisfactory. 

 
References 

 
Atiqullah, M. (1964). The robustness of 

the covariance analysis of a one-way 
classification. Biometrika, 51, 365–372. 

Bonett, D. G. & Price, R. M. (2002). 
Statistical inference for a linear function of 
medians: Confidence intervals, hypothesis 
testing, and sample size requirements. 
Psychological Methods, 7, 370–383. 

Bowman, A. & Young, S. (1996). 
Graphical comparison of nonparametric curves. 
Applied Statistics, 45, 83–98. 

Delgado, M. A. (1993). Testing the 
equality of nonparametric regression curves. 
Statistics and Probability Letters, 17, 199–204. 

Dette, H. (1999). A consistent test for 
the functional form of a regression based on a 
difference of variance estimators. Annals of 
Statistics, 27, 1012–1040. 

Dette, H. & Neumeyer, N. (2001). 
Nonparametric analysis of covariance. Annals of 
Statistics, 29, 1361–1400. 

Donoho, D. L. & Gasko, M. (1992). 
Breakdown properties of the location estimates 
based on halfspace depth and projected 
outlyingness. Annals of Statistics, 20, 1803–
1827. 

Hall, P., Huber, C., & Speckman, P. L. 
(1997). Covariate-matched one-sided tests for 
the difference between functional means. 
Journal of the American Statistical Association, 
92, 1074–1083. 
 Harrell, F. E. & Davis, C. E. (1982). A 
new distribution-free quantile estimator. 
Biometrika, 69, 635–640. 



RAND R. WILCOX 
 

21 

 Hoaglin, D. C. (1985). Summarizing 
shape numerically: The g-and-h distribution. In 
D. Hoaglin, F. Mosteller & J. Tukey (Eds.) 
Exploring Data Tables Trends and Shapes. 
New York: Wiley. 
 Kulasekera, K. B. (1995). Comparison 
of regression curves using quasi-residuals. 
Journal of the American Statistical Association, 
90, 1085–1093. 
 Kulasekera, K. B. & Wang, J. (1997). 
Smoothing parameter selection for power 
optimality in testing of regression curves. 
Journal of the American Statistical Association, 
92, 500–511. 
 Liu, R. G. & Singh, K. (1997). Notions 
of limiting P values based on data depth and 
bootstrap. Journal of the American Statistical 
Association, 92, 266–277, 
 Munk, A. & Dette, H. (1998). 
Nonparametric comparison of several 
regression functions: Exact and asymptotic 
theory. Annals of Statistics, 26, 2339–2368. 
 Neumeyer, N. & Dette, H. (2003). 
Nonparametric comparison of regression 
curves: An empirical process approach. Annals 
of Statistics, 31, 880–920. 
 Robey, R. R. & Barcikowski, R. S. 
(1992). Type I error and the number of 
iterations in Monte Carlo studies of robustness. 
British Journal of Mathematical and Statistical 
Psychology, 45, 283–288. 
 Young, S. G. & Bowman, A. W. 
(1995). Nonparametric analysis of covariance. 
Biometrics, 51, 920–931. 
 Wilcox, R. R. (2003). Applying 
Contemporary Statistical Techniques Testing. 
San Diego CA: Academic Press. 
 Wilcox, R. R. (2005). Introduction to 
Robust Estimation and Hypothesis Testing (2nd 
Ed). San Diego CA: Academic Press. 
 

Appendix 
 
For notational convenience, projection distance 
is described in terms of a sample of n vectors 
from some multivariate distribution. The 
sample is denoted by , 1,...,iX i n=  . Let  ξ  be 

some multivariate measure of location. Here, ξ  
is taken to be the W-estimator stemming from 
the minimum volume ellipsoid estimator. (For a 

detailed discussion of the minimum volume 
ellipsoid estimator, see Rousseeuw & Leroy, 
1987). The outlier detection method in 
Rousseeuw and van Zomeren (1990) is applied, 
any points flagged as  outliers  are  removed,  
and ξ  is taken to be the mean of the remaining 
vectors. For any i, let 

i iU X ξ= − , 
 

2
1

i i i

p
k ik

B U U

U=

= ′

= Σ
 

  
and for any j let (j=1,…,n) let 
 

1

p

ij ik jk
k

W U U
=

=∑ , 

 
and 

                          1( ,..., )ij
ij i ip

i

W
T U U

B
=              (5) 

  
The distance between ξ  and the projection of 

jX  (when projecting onto the line 

connecting iX and ξ ) is 

 
|| ||ij ijV T= , 

 
where || ||ijT  is the Euclidean norm associated 

with the vector ijT . Let 

 

                               
2 1

ij
ij

V
d

q q
=

−
,                    (6) 

 
where for fixed i , 2q  and 1q  are estimates of 

the upper and lower quartiles, respectively, of 
the ijV  values. (Here, the ideal fourths based on 

the values 1,...i inV V  were used; see, for 

example, Wilcox, 2004.) The projection 
distance associated with jX  say jD , is the 

maximum value of ijd ,  the maximum being 

taken over 1,...,i n= . 



Journal of Modern Applied Statistical Methods   Copyright © 2006 JMASM, Inc. 
May, 2006, Vol. 5, No. 1, 22-40                                                                                                                                1538 – 9472/06/$95.00 

22 

REGULAR ARTICLES 
The Effect On Type I Error And Power Of Various Methods Of Resolving Ties 

For Six Distribution-Free Tests Of Location 
 

Bruce R. Fay 
Wayne County Regional Educational Service Agency, Michigan 

 
 
The impact on Type I error robustness and power for nine different methods of resolving ties was 
assessed for six distribution-free statistics with four empirical data sets using Monte Carlo techniques. 
These statistics share an underlying assumption of population continuity such that samples are assumed to 
have no equal data values (no zero difference–scores, no tied ranks). The best results across all tests and 
combinations of simulation parameters were obtained by randomly resolving ties, although there were 
exceptions. The method of dropping ties and reducing the sample size performed poorly. 
 
Key words: Distribution-free, ties, location-shift, Monte Carlo, Rosenbaum’s test, Tukey’s quick test, 
Kolmogorov-Smirnov test, Wilcoxon rank-sum test, Kruskal-Wallis test, Terpstra-Jonckheere test. 
 
 

Introduction 
 

Distribution-free tests are important in the 
context of social and behavioral science research 
because they have less stringent assumptions 
than parametric statistics. Micceri (1986, 1989) 
showed that many variables studied in the social 
and behavioral sciences clearly do not meet 
distributional assumptions of parametric tests, 
such as normality or homoscedasticity. 
 In terms of hypotheses of a pure shift in 
location parameter combined with a violation of 
the normality assumption, nonparametric 
statistics are much more powerful than their 
parametric counterparts. In many layouts, these 
advantages are evident with very small samples 
and improve dramatically as sample sizes 
increase (Blair & Higgins, 1980, van den Brink 
&   van   den  Brink,  1989,  Sawilowsky,  1990,  
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Sawilowsky & Blair, 1992, Kelley, Sawilowsky, 
& Blair, 1994, MacDonald, 1999). 

Many distribution-free statistics lose 
efficiency when there is a violation of their 
underlying assumption of population continuity. 
In practice, this means the samples are assumed 
to have no equal data values (no zero 
difference–scores, no tied ranks), either within 
groups or between groups. Data in the social and 
behavioral sciences almost never meet this 
assumption either because of the inherently 
discrete nature of the data (Micceri, 1986, 1989) 
or because of a lack of precision in measurement 
(Cliff, 1996a, 1996b). 

Sparks (1967) conducted one of the few 
empirical studies to have specifically examined 
violation of continuity. He investigated 
Student’s t-test (Student, 1908) and the 
Wilcoxon Rank-sum (Mann-Whitney U) test 
(Wilcoxon, 1945, Mann & Whitney, 1947) using 
discrete approximations to the normal, 
rectangular, and exponential distributions. 
Results were similar for both Student’s t-test and 
the Wilcoxon-Mann-Whitney test when ties 
were randomly resolved. The Wilcoxon-Mann-
Whitney test, however, produced very 
conservative results when ties were resolved 
using mid-ranks.  

The practical consequence of violating 
the assumption of population continuity is that 
samples will contain equal data values resulting 
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in zero difference–scores or tied ranks. A useful 
distinction can be made, however, between 
consequential (critical, meaningful) and 
inconsequential (non-critical) ties. Ties can 
occur in such a way that regardless of how they 
are resolved they have no effect on the 
calculation of the test statistic or the resulting 
inference. Such ties are clearly inconsequential. 
Ties that occur only within a group, when 
looking for between group effects, are often of 
this type. By definition, inconsequential ties may 
be resolved by any simple procedure that 
maintains the integrity of the ranks, such as 
arbitrary assignment in sequence of the set of 
ranks for which the group of scores is tied. Other 
ties occur in such a way that different 
resolutions result in different values of the 
statistic that may, in turn, result in different 
inferential decisions. Such ties are clearly 
consequential. 
 
Purpose of the Study 

Even though the less stringent 
underlying assumptions of distribution-free tests 
are rarely met in practice, the effects of violation 
of assumptions on robustness of Type I error 
rates and power have not been studied 
extensively. Given the potentially deleterious 
effects of ties on these tests, and the necessity of 
dealing with them in some way, a careful 
investigation of the impact of different methods 
of resolution is warranted. This is especially true 
given the subtle nature of robustness (Bradley, 
1978, Wilcox, 1998). Therefore, nine methods 
were used, as applicable, to resolve 
consequential ties prior to the computation of six 
statistics. 

Fahoome (1999, 2002) studied the Type 
I error properties of large-sample approximation 
formulas for twenty nonparametric and/or 
distribution-free statistics, including the six 
presented here, using the theoretical standard 
Normal distribution and four of the Micceri 
(1986) data sets. Ties, however, were either 
ignored or resolved in one specific way on a 
test-by-test basis. These same data sets served as 
pseudo-population models for the present study. 
 
Tests 

The following distribution-free tests 
were investigated: 

1. Kolmogorov-Smirnov Test of General 
Differences for Two Independent Samples 
(Kolmogorov, 1933). 

 
2. Rosenbaum’s Test of Location for 

Two Independent Samples (Rosenbaum, 1953, 
1954, 1965). 

 
3. Tukey’s Quick Test of Location for 

Two Independent Samples (Tukey, 1959). 
 
4. Wilcoxon-Mann-Whitney Test for 

Two Independent Samples (Wilcoxon, 1945, 
Mann & Whitney, 1947, Kruskal, 1957). 

 
5. Kruskal-Wallis Test for k 

Independent Samples (k = 3 to 6) (Kruskal, 
1952, Kruskal & Wallis, 1952). 

 
6. Terpstra-Jonckheere Test of an 

Ordered Alternative Hypothesis for k 
Independent Samples (k = 3 to 6) (Terpstra, 
1952, Jonckheere, 1954). 
 
Resolution of Ties 

The nine methods for dealing with 
consequential ties (zero difference–scores or tied 
ranks) were: 

 
1. (M-1) Resolve consequential ties in 

the manner least favorable to rejection of the 
null hypothesis and in the manner most 
favorable to rejection of the null hypothesis, 
calculate the statistic for each of these 
resolutions, and then calculate the mid-range 
(mean) value of these two statistics and use it to 
conduct the test. 

 
2. (M-2) Count ties as 1/2 (Rosenbaum’s 

Test and Tukey’s Quick Test only). 
 
3. (M-3) Alternately resolve each set of 

tied-for ranks. 
 

 4. (M-4) Randomly resolve each set of 
tied-for ranks. 
 
 5. (M-5) Delayed increment 
(Kolmogorov-Smirnov Test of General 
Differences only). 
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 6. (M-6) Assign the mid-rank of a set of 
tied ranks to each score without further 
correction. 
 
 7. (M-7) Weighted average of all 
possible resolutions (Rosenbaum’s Test only). 
 
 8. (M-8) Drop matching tied-for ranks 
and reduce N accordingly. 
 
 9. (M-9) Drop all tied-for ranks (if 
possible) and reduce N accordingly. 
 

Methods 3, 4, 6, and 9 were described 
by Bradley (1968) as well as Gibbons and 
Chakraborti (1992). Methods 1, 2, 5, and 7 were 
described by Neave and Worthington (1988). 
Method 1 is related to a method described by 
Bradley (1968). Method 9 is widely mentioned 
in textbooks. Method 8 was not encountered in 
the literature but was added to the study as a 
variation of Method 9 that preserved equal 
sample sizes when dropping tied values. 

Bradley (1968) also described methods 
involving calculation of statistics for all possible 
resolutions of consequential ties, the results 
being used to establish probability bounds for 
the test or to calculate a mean probability. 
Although theoretically attractive, these methods 
are often impractical, requiring the calculation of 
very large numbers of statistics and/or the 
availability of the probabilities (see, however, 
Fay, 2002, for a discussion of methods for 
generating critical values and associated 
probabilities for some of these tests). For many 
tests, the calculation of an average statistic, 
based on all possible resolutions of ties, turns 
out to be equivalent to resolving each set of tied-
for ranks using the mid-rank (Neave & 
Worthington, 1988). Bradley (1968) warned, 
however, that under some circumstances the use 
of mid-ranks might give a statistic something 
closer to its minimum or maximum value rather 
a median or mean value. This might account for 
the results in Sparks (1967). 

Many of the methods involve schemes 
for eliminating ties, either by: (a) breaking them, 
that is, by somehow assigning the available 
ranks to the tied observations, or (b) dropping 
them. Other methods, such as mid-ranks, result 
in modified samples that still contain duplicate 

(and perhaps non-integer) ranks, even though 
this cannot happen when all assumptions of the 
test are met. Averaging the statistics from the 
least and most likely to reject resolutions can 
also result in non-integer values of statistics that 
are normally integer-valued. Such statistics were 
still referred to a standard table of critical values, 
for example, Neave (1981), as the performance 
when used in this manner was a major point of 
this study. The test/method combinations 
investigated are shown in Table 1. 

 
Data Sets 

A theoretical distribution and four 
empirical data sets were used as sources of 
samples. The theoretical standard Normal 
distribution (µ = 0, σ = 1) did not produce 
samples with significant numbers of duplicate 
data values and thus served as a baseline for the 
performance of these tests under conditions 
meeting their underlying continuity assumption. 
The four empirical data sets, due to Micceri 
(1986), were (a) Extreme Asymmetric (EA), (b) 
Extreme Bi-modal (EB), (c) Multi-modal 
Lumpy (ML), and (d) Smooth Symmetric (SS). 

The four Micceri (1986) data sets are 
inherently discrete and decidedly non-normal 
(see Appendix, Figures A1 through A4). They 
were also discussed in Micceri (1989), 
Sawilowsky, Blair and Micceri (1990), 
Sawilowsky and Blair (1992), and Fahoome 
(1999, 2002). With regard to the extreme 
bimodal data set, Fahoome (1999) concluded: 
 

[B]ecause of the small number (6) of 
data points, there were an extremely 
large number of ties, even for relatively 
small sample sizes. This data is Likert-
type data. The performance by most 
tests was extremely poor. Most of the 
tests had inflated Type I error rates, 
some as high as 0.99999. A few had 
very low Type I error rates. (p. 462) 
 

In spite of this finding, the extreme bimodal data 
set was retained for this study because of the 
widespread existence of such data. Properties of 
these data sets are given in Table 2. 
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Table 1. Tests and Applicable Methods of Resolving Ties 
_________________________________________________________  
 
                               Test 
             ____________________________________________ 
 
Method       K-Sa    Rb      TQc      W-M-Wd  K-We    T-Jf      
_________________________________________________________ 

M-1g         X       X       X       X       X       X 

M-2h         na      X       X       na      na      na 

M-3i         X       X       X       X       X       X 

M-4j         X       X       X       X       X       X 

M-5k         X       na      na      na      na      na 

M-6l         na      na      na      X       X       X 

M-7m         na      X       na      na      na      na 

M-8n         X       X       X       X       X       X 

M-9o         X       X       X       X       X       X 
_________________________________________________________  

Note: Cells marked ‘na’ indicate that the method does not apply to the test. 
aK-S = Kolmogorov-Smirnov Test, bR = Rosenbaum’s Test, cTQ = Tukey’s Quick Test, 
dW-M-W = Wilcoxon-Mann-Whitney Test, eK-W = Kruskal-Wallis Test,  
fT-J = Terpstra-Jonckheere Test, gM-1 = Average of least and most likely to reject, 
hM-2 = Count ties as ½, iM-3 = Alternating, jM-4 = Random, kM-5 = Delayed Increment, 
lM-6 = Mid-ranks, mM-7 = Weighted average, nM-8 = Drop matching, oM-9 = Drop all. 
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Methodology 
 
The simulations were programmed in Fortran 
90/95. A main program was built for each of the 
six tests to conduct both the Type I error and 
power studies by controlling the combinations of 
simulation parameters and making calls to the 
appropriate modules. For each unique 
combination of distribution, sample size, number 
of groups (for k-sample tests only), and effect 
size (for power studies only), 1 million samples 
were drawn. For each sample one- and two-
sided tests where conducted at both nominal 
alpha .01 and .05 for each applicable method of 
resolving ties (Table 1). Counts were maintained 
of significant and non-significant results, as well 
as un-testable trials, until the end of the 
simulation cycle when they were converted to 
proportions and written to output files. 
 Separate programs were written for each 
of the six tests to conduct the simulations for the 
drop ties and reduce N methods of resolving ties 
as  these  methods  often  led  to tests on unequal  
 
 

 
 
sample sizes for which the test statistic could 
either not be computed or for which critical 
values  were  unavailable. This   necessitated   a 
modified approach to the simulations in which 
un-testable samples were discarded and 
additional samples were drawn until: (a) 10,000 
testable samples were obtained, or (b) the 
program reached its 10,000,000th cycle, 
whichever came first. 
 All sample sizes from 3 to 30 [3(1)30] 
were examined, limited only by the availability 
of critical values. Because the method of 
dropping ties and reducing N often resulted in 
unequal sample sizes, this method was only 
studied for tests where tables of critical values 
for unequal sample sizes were available (Neave, 
1981, Neave & Worthington, 1988) or could be 
generated (Fay, 2002). Power studies were 
conducted for equal initial per-group sample 
sizes of 3(3)30 if Type I error results were 
satisfactory and critical values were available. 

One of the most widely suggested 
methods for dealing with (consequential) ties is 
to resolve them in all possible ways, obtaining a 
value of the statistic (or its associated 

Table 2. Properties of Selected Micceri (1986,1989) Data Sets 
_____________________________________________________________  
 
                                      Parameter 
                         ____________________________________ 
Data Set                   µa               φb      σc       γ3

d      γ4
e     

_____________________________________________________________ 

Extreme Asymmetric       24.50   27.00   5.79    –1.33   4.11 

Extreme Bi-modal          2.97    4.00   1.69    –0.08   1.30 

Multi-modal Lumpy        21.15   18.00   1.90     0.19   1.80 

Smooth Symmetric         13.19   13.00   4.91     0.01   2.66 
     _____________________________________________________________ 
 
Note: Excerpted from “A more realistic look at robustness and type II error properties of the t test to 
departures from population normality,” by S. S. Sawilowsky & R. C. Blair, 1992, Psychological 
Bulletin, 111(2), 352-360, Table I, p. 353, copyright 1992 by Psychological Bulletin. Adapted with 
permission. 
aµ = mean, bφ = median; cσ = variance, dγ3 = skewness, eγ4 = kurtosis. 
 



BRUCE R. FAY 
 

27 

probability) for each resolution. A mean value of 
the statistic is then obtained and tested, or a 
mean value of the probability established. This 
method was only implemented for Rosenbaum’s 
test as there was a practical method for doing so. 
It was not otherwise used in this study because 
of the practical difficulties involved in 
implementing it for even moderate sample sizes 
when there are numerous ties at several different 
values. Also, comprehensive tables of exact 
probabilities are even more difficult to obtain 
than critical value tables for some of these tests. 
 Bradley (1978) recommended 
conservative bounds for robust Type I error of 
nominal alpha ± 10% and liberal bounds of 
nominal alpha ± 50%. Many distribution-free 
tests, however, cannot achieve nominal alpha at 
small sample sizes. The entries in critical value 
tables are typically best conservative values that 
may fall below Bradley’s recommended 10% 
lower bound. As the main interest in the Type I 
error studies was the ability of each test to resist 
inflation of Type I error rate the conservative 
and liberal criteria were combined such that 
Type I error rates were considered acceptable if 
they fell in the range of .5α to 1.1α or were no 
more conservative than the results obtained 
when sampling from the standard Normal 
distribution. 
 The power of a test was of no interest if 
the Type I error rate was not robust to violations 
of assumptions. A priori, it was expected that 
those combinations of test conditions that 
produced Type I error rates well below nominal 
alpha would also have attenuated power. 
 For the power studies, a one-sided test 
was made in the direction of the simulated 
effect, while significant results in the wrong tail 
constituted Type III errors (MacDonald, 1999). 
Pure shift-effects of known size were simulated 
by shifting one or more of the groups relative to 
a base group. Nominal effect size multipliers of 
0.2, 0.5, 0.8 and 1.2 were planned following 
Cohen (1988) and Sawilowsky and Blair (1992). 
Because of the necessity of generating integral 
shifts with the empirical data sets in order to 
obtain between-group ties, actual effect size 
multipliers for each empirical data set differed 
slightly from these targets, as shown in Table 3. 
The performance of the six tests with  respect  to 
the various methods of resolving ties, when used 

with such data, was of primary interest in this 
study. 

 
Statistical Tests 

All six tests share the assumptions of: 
(a) random and independent sampling of 
continuous populations, with sufficient precision 
of measurement to avoid tied observations 
(Bradley, 1968, Conover, 1999), (b) 
independence of sample observations both 
within and between groups (Hollander & Wolfe, 
1999). All the tests have null hypotheses that 
assume all samples are drawn from identical 
populations. Assumptions about the populations 
under the alternative hypothesis differ for each 
test. The tests can be used successfully with 
discrete populations, but become approximate 
with the tabled critical values generally 
providing best conservative estimates. 

 
Kolmogorov-Smirnov Test 

Background. Neave and Worthington 
(1988) and Conover (1999) identified this as 
Smirnov’s (1939) application of Kolmogorov’s 
(1933) goodness-of-fit test. Everitt (1998) 
described it as “A distribution free method that 
tests for any difference between two population 
probability distributions. The test is based on the 
absolute maximum difference between the 
cumulative distribution functions of the samples 
from each population” (p. 179). The maximum 
distance referred to is the vertical distance 
between the cumulative probability distributions. 

Hypotheses. The null hypothesis for 
the two-sided test is that the two sampled 
populations have identical distributions. The 
two-sided alternative hypothesis is simply that 
the two sampled populations are different in 
some way. In the case of a one-sided test, the 
alternative hypothesis is that one population is 
stochastically greater than the other. Neave 
(1981) suggested that the test only be used in the 
two-sided situation, the Wilcoxon–Mann–
Whitney test being more powerful for the 
directional hypothesis. 
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Procedure and Test Statistic. 
 The following procedure was described 
in Neave and Worthington (1988). Let there be 
N = nA + nB ranked observations, each 
designated as an A or B. For the A observations, 
maintain a count above the letter sequence, 
starting from zero and incremented by nB each 
time an A is encountered. For the B 
observations, maintain a count below the letter 
sequence, starting from zero and incremented by 
nA each time a B is encountered. The final count 
for both A’s and B’s should be

A B
M n n= × . 

Compute the differences, di = Bi – Ai,  by  
subtracting   the  A counts from the B counts for 

 
 

 
 

each letter position. Find the absolute value of 
these differences. For the two-sided test, take D* 
= max|di|. For a one-sided test take 

( )* max
i

D pos d
+
=  or ( )* max

i
D neg d
−
=  

depending on what is expected under H1. 
Conover (1999) defined the test statistic, T, in 
terms of two empirical distribution functions, SA 
and SB, using the supremum. For the two-sided 
test, ( ) ( )sup A B

x

T S x S x= − . For the one-sided 

test that A < B (stochastically), 

( ) ( )[ ]sup
A B

x

T S x S x+ = − . Thus, for the one-

sided test that A > B (stochastically), 

( ) ( )[ ]sup
B A

x

T S x S x− = − . 

Table 3. Actual Shifts and Effect Sizes for Nominal Effect Sizes 
_____________________________________________________________   
                                 Nominal Effect Size 
                          ___________________________________ 
Data Set (σa)                                Sb(.2σ)  Mc(.5σ)  Ld(.8σ)  VLe(1.2σ) 
_____________________________________________________________   
 
Extreme Asymmetric (5.79)  
     NSf                 1.158    2.895    4.632   6.948 
     ASg                 1        3        5       7  
     AESh                0.173σ   0.518σ   0.864σ  1.209σ 
Extreme Bi-modal (1.69)  
     NS                  0.338    0.845    1.352   2.028 
     AS                  n/a      1        n/a     2  
     AES                 n/a      0.592σ   n/a     1.183σ 
Multi-modal Lumpy (11.90) 
     NS                  2.380    5.950    9.520  14.280 
     AS                  2        6       10      14  
     AES                 0.168σ   0.504σ   0.840σ  1.176σ 
Smooth Symmetric (4.91) 
     NS                  0.982    2.455    3.982   5.892  
     AS                  1        2        4       6  
     AES                 0.204σ   0.407σ   0.815σ  1.222σ  
Standard Normal (1.00) 
     NS                  0.200    0.500    0.800   1.200  
     AS                  0.200    0.500    0.800   1.200 
     AES                 0.200σ   0.500σ   0.800σ  1.200σ 
_____________________________________________________________  

 
Note: Developed based on Cohen (1988) and Sawilowsky and Blair (1992). 
aσ = Standard deviation, bS = Small, cM = Medium, dL = Large, eVL = Very Large. 
fNS = Nominal Shift, gAS = Actual Shift, hAES = Actual Effect Size (rounded). 
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Rejection Region. 
Critical regions are usually tabulated as 

D critical value∗ ≥ . Note that *
A BD n n D= , 

where D is the statistic derived from a direct 
comparison of the sample cdf’s, is more 
convenient to work with as it takes only integer 
values (Neave & Worthington, 1988). 

 
Rosenbaum’s Test 

Background. 
This test first appeared in its current 

form in Rosenbaum (1954), which was based on 
Rosenbaum (1953). In both articles, Rosenbaum 
cited Wilks (1942) as the original source of the 
formulas for deriving the critical value tables. 
Rosenbaum (1965) reiterated this earlier work. 
The test is classified as a runs test. It is a quick 
and easy test, but is not routinely included in 
textbooks on nonparametric statistics. Neave and 
Worthington (1988) presented it as a test for 
general differences between two sampled 
populations where spread tends to increase with 
an increase in the mean, consistent with 
Rosenbaum (1954). They claimed that under the 
conditions of an increase in spread with an 
increase in the median tests such as the 
Wilcoxon-Mann-Whitney test and Tukey’s 
Quick test have almost no power because of the 
change in spread. Likewise, tests for spread, 
such as the Siegel-Tukey test (Siegel & Tukey, 
1960), have little or no power because of the 
change in location. If more general differences 
were suspected, or needed to be protected 
against, the Kolmogorov-Smirnov test was 
suggested as a better choice. Processes that are 
known to be exponential or Poisson in nature, 
where the standard deviation is related to the 
mean, would be excellent candidates for analysis 
by Rosenbaum’s test. Thus, Rosenbaum’s test 
appears to occupy a somewhat unique place 
among its better-known peers. 

Hypotheses. 
The null hypothesis is that there is no 

difference in the two sampled populations. The 
alternative hypothesis can be two-sided or one-
sided. The two-sided alternative hypothesis is 
simply that the two sampled populations are 
different in some way. In the case of a one-sided 
test,   the   alternative   hypothesis   is   that   one  

 

population is stochastically greater than the 
other. 

Procedure and Test Statistic. 
The following procedure was described 

in Neave and Worthington (1988). For the two-
sided test, determine which sample has the 
overall greatest value and then count the number 
of observations in that sample that are greater 
than the greatest value in the other sample and 
let this be the test statistic R. For the one-sided 
test, determine if the greatest overall value 
comes from the sample whose population is 
hypothesized under H1 to have the greater mean. 
If it does, proceed as for the two-sided test, if 
not, set R = 0. 

Rejection Region. 
Critical regions are of the form R ≥ 

critical value. The table of critical values must 
be entered with n1 as the size of the sample from 
which R is calculated and n2 as the size of the 
other sample (Neave & Worthington, 1988). 

 
Tukey’s Quick Test 

Background. 
This test first appeared in Tukey (1959). 

It is a two-sample test constructed according to 
Duckworth’s (1958) portability specifications. It 
is a quick test because it only requires a few of 
the sample observations to be ordered. It is also 
compact, in the sense that tables of critical 
values are not generally needed for most 
applications, as only a limited number of critical 
values occur in practice. These two 
characteristics combine to make the test 
portable. Like Rosenbaum’s test, Tukey’s Quick 
test is based on extreme runs and is not routinely 
included in applied textbooks. 

Hypotheses. 
The test is primarily a test for 

differences in location of the medians of the two 
sampled populations and is most appropriate 
when there is reason to believe that the sampled 
populations have the same spread, or better, the 
same shape (Neave & Worthington, 1988). The 
null hypothesis is that there is no difference in 
the two sampled populations or no difference in 
the medians of the populations. The alternative 
hypothesis can be two-sided or one-sided. The 
two-sided alternative hypothesis is simply that 
the two sampled populations are different in 
some way, or have different medians. In the case 
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of a one-sided test the alternative hypothesis is 
that one population is stochastically greater than 
the other, or that there is a directional difference 
in the medians. 

Procedure and Test Statistic. 
The following procedure was described 

in Neave and Worthington (1988). It begins by 
arranging the sample observations in a single 
combined array from least to greatest, keeping 
track of original sample membership, say A and 
B, and then ranking them. For a two-sided test, 
if the minimum and maximum observed values 
come from the same sample then the test statistic 
is Ty = 0. If the minimum and maximum 
observed values come from different samples, 
then the test statistic is the sum of the extreme 
runs, that is, if the minimum value comes from 
sample A and the maximum from sample B, 
then count the number of A’s from the 
beginning of the array until the first B is 
reached, say CL, and count the number of B’s 
from the end of the array back until the first A is 
reached, say CU, and set Ty = CL + CU. For a one-
sided test, if the minimum and maximum 
observed values come from the same sample, set 
Ty = 0. If the minimum and maximum observed 
values come from different samples, determine 
if the maximum observation comes from the 
sample that is expected to have the greater 
median. If not, set Ty = 0. If so, calculate Ty just 
as for the two-sided. 

Rejection Region. 
Critical regions are of the form Ty ≥ 

critical value and tables are available in Neave 
and Worthington (1988). However, for one-
sided tests with sample sizes that are not too 
small and not too dissimilar, the .05 and .01 
critical values are generally 6 and 9, 
respectively. For a two-sided test under the same 
conditions, the .05 and .01 critical values are 
generally 7 and 10, respectively. These critical 
values are reported to work well for ratios of 
sample sizes from 1 to 1.5. Equal sample sizes 
are not required, although tables of critical 
values should be employed when the ratio of 
larger to smaller sample exceeds 1.5 (Tukey, 
1959). 

 
 
 
 

Wilcoxon-Mann-Whitney Test 
Background. 
Wilcoxon (1945) introduced the rank-

sum version of this test for equal sample sizes in 
the same article as the signed-rank test, while 
Mann and Whitney (1947) independently 
developed the Mann–Whitney U test. The two 
versions are procedurally different but 
mathematically equivalent and are often referred 
to jointly in the literature as the Wilcoxon-
Mann-Whitney test (Sprent & Smeeton, 2001). 
The test is applied to ordinal data. Tables of 
critical values are more commonly available for 
the Mann-Whitney version of the test. In either 
form this is one of the better-known distribution-
free tests, and is the one that corresponds most 
directly to Student’s t-test for two independent 
samples (Student, 1908). It is also a powerful 
test, with an asymptotic relative efficiency that 
never falls below 0.864 with respect to the t-test 
(Lehmann, 1998), although it is often much 
more powerful under conditions that violate the 
assumptions of the t-test, yet respect its own 
assumptions (Blair & Higgins, 1980). 

The Wilcoxon-Mann-Whitney test is 
generally regarded as a test of whether two 
independent samples represent the same 
population versus populations that differ in 
location, either of their medians or with respect 
to the rank ordering of their scores (Sheskin, 
1997). Bergmann, Ludbrook, and Spooren 
(2000) described it as a test of group mean ranks 
or, equivalently, rank sums, for testing two 
different hypotheses: (a) a shift in otherwise 
identical populations, or (b) a difference in mean 
ranks between randomized groups. A detailed 
theoretical treatment of the test was given in 
Lehmann (1998). Kruskal (1957) detailed the 
history of the test from 1941 to 1957. 

Hypotheses. 
The alternative hypothesis under the 

population model assumes that the populations 
have identical probability distributions other 
than a constant shift (Sheskin, 1997), also 
known as a translation, or location–shift, model. 
If F and G are the population distribution 
functions, the location-shift model 

requires ( ) ( ),G x F x x= − ∆ ∀ . The null 

hypothesis is then H0: [ 0∆ = ] (Hollander & 
Wolfe, 1999). The null hypothesis can also be 
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stated as no difference in the medians of the 
populations, or H0: [ 1 2φ φ= ] (Neave & 

Worthington, 1988). With equal sample sizes, 
this is equivalent to the hypothesis that the sum 
of ranks for each group is the same, or 
H0: [ 1 2R R=∑ ∑ ]. For unequal sample sizes this 

generalizes as the mean rank of the groups being 

equal, or H0: [ 1 2R R= ] (Sheskin, 1997). The 
parallel to Student’s t-test is most evident in this 
form. 

The test can be one-sided or two-sided. 
The two-sided alternative hypothesis for shift is
H1: [ 0∆ ≠ ] (Hollander & Wolfe, 1999) and the 
alternative hypothesis for medians is 
H1: [ 1 2φ φ≠ ] (Neave & Worthington, 1988). 
The alternative hypotheses for ranks are 

H1: [ 1 2R R≠∑ ∑ ] or H1: [ 1 2R R≠ ] (Sheskin, 

1997). For a one-sided test, the alternative 
hypotheses for shift are either H1: [ 0∆ < ], or 
H1: [ 0∆ > ] (Hollander & Wolfe, 1999). The 
alternative hypotheses for medians are 
H1: [ 1 2φ φ< ] or H1: [ 1 2φ φ> ] (Neave & 
Worthington, 1988). The alternative hypotheses 
for ranks are H1: [ 1 2R R<∑ ∑ ], 

H1: [ 1 2R R>∑ ∑ ], H1: [ 1 2R R< ] or 

H1: [ 1 2R R> ] (Sheskin, 1997). 
Procedure and Test Statistic. 
Siegel and Castellan (1988) and Neave 

and Worthington (1988) described the Wilcoxon 
version of the test. Given two samples, A and B, 
with N = nA + nB, combine the observations in a 
single array, keeping track of original sample 
membership, and then rank them from 1 to N. 
Compute RA as the sum of the ranks of the 
observations from sample A and RB as the sum 
of the ranks of the observations from sample B. 
The test statistic, W, is the rank sum that would 
be expected to be smaller if H1 were true. 

Rejection Region. 
Tables of critical values are usually 

given for the Mann-Whitney U test (Neave & 
Worthington, 1988, Sheskin, 1997), with critical 
regions of the form Umin ≤ critical value 
representing best conservative values. The test 
can be applied to unequal sample sizes with 
appropriate critical value tables. Because they 
are mathematically equivalent, the results of the 

Wilcoxon procedure can be converted to values 
of U. Neave and Worthington (1988) gave the 
conversion for a two-sided test as: 

[ ]min ,A BU U U= , with ( )
1

1
2

A A A AU R n n= − +  

and ( )
1

1
2

B A B A B B BU n n U R n n= − = − + . For 

a one-sided test, use either UA or UB according 
to which one is expected to have the smaller 
value under H1. Converting to values of U also 
accounts for the effect of unequal sample sizes. 

 
Kruskal-Wallis Test 

Background. 
This test was introduced in Kruskal 

(1952) and Kruskal and Wallis (1952). Vogt 
(1999) described it as, “A nonparametric test of 
statistical significance used when testing more 
than two independent samples. It is an extension 
of the Mann-Whitney U test, and of the 
Wilcoxon [rank-sum test], to three or more 
independent samples. It is a nonparametric one-
way ANOVA for rank order data” (p. 151). 

Everitt (1998) described the test as a 
“distribution free method that is the analogue of 
the analysis of variance of a one-way design. It 
tests whether the groups to be compared have 
the same population median” (p. 180). The test 
is applied to ordinal (rank ordered) data 
(Sheskin, 1997). Power comparisons with the F-
test are very favorable. Conover (1999) gave the 
following asymptotic relative efficiencies for the 
Kruskal-Wallis test relative to the F-test: (a) For 
distributions that differ only in their means, 
never less than 0.864, but as high as infinity, (b) 
for Normal populations, 0.955, (c) for uniform 
distributions, 1.0, and (d) for exponential 
distributions, 1.5. 

Hypotheses. 
For k groups, the population distribution 

functions, F1,…,Fk are assumed to have the 

relationship ( ) ( ),j jF x F x jτ= − − ∞ < < ∞  

over all j (j = 1 to k) where F is a continuous 
distribution function with unknown median and 
τj is the unknown treatment effect for the jth 
population (Hollander & Wolfe, 1999). The null 
hypothesis can be stated as no difference in the 
medians of the populations, 
H0: [ 1 2 ... nφ φ φ= = = ] (Neave & Worthington, 
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1988, Siegel & Castellan, 1988), identical 
populations, H0: [All of the k population 
distribution functions are identical] (Conover, 
1999) or identical treatment effects, 
H0: [ 1 2 kτ τ τ= = =� ] (Hollander & Wolfe, 

1999). The alternative hypothesis assumes that 
the populations differ only in location (Sprent & 
Smeeton, 2001) and that at least one of the 
populations, medians or treatment effects is 
different from the others. 

Vargha and Delaney (1998) took 
exception to the use of the Kruskal-Wallis test 
with the foregoing assumptions on the grounds 
that the attendant hypotheses, while 
mathematically correct, were too narrow to be of 
practical value to researchers. They claimed that 
the Kruskal-Wallis test “cannot detect with 
consistently increasing power any alternative 
other than exceptions to stochastic 
homogeneity” (p.170). This, in turn, is 
mathematically equivalent to the “equality of 
expected values of the rank sample means” 
(p.170). They argued that the requirement for 
identical distributions under H0 is too strict, and 
that only variance homogeneity is needed. 
Further, they asserted that the H1 to which the 
test is actually sensitive is “the tendency for 
observations in at least one of the populations to 
be larger (or smaller) than all the remaining 
populations together” (p. 186). 

The test is two-sided with an omnibus 
alternative hypothesis for shift of 
H1: [ 1, , not all equalkτ τ… ] (Hollander & Wolfe, 

1999), H1: [not all of 1 2, , ..., kφ φ φ  are equal] 
(Neave & Worthington, 1988, Siegel & 
Castellan, 1988) or H1: [At least one of the 
populations tends to yield larger observations 
than at least one of the other populations] 
(Conover, 1999). All of these hypotheses can be 
formulated in terms of rank-sums (for the equal 
sample size case) or mean ranks (for the general 
case) as H0: [ 1 2 kR R R= = =∑ ∑ ∑… ] or 

H0: [ 1 2 kR R R= = =… ], with the alternative 
hypothesis of H1: [not H0] (Sheskin, 1997). The 
alternative hypothesis is stated in this way 
because it only requires that some pair of groups 
be different, not that all groups are different, 
consistent with Conover (1999). 

 

Procedure and Test Statistic. 
The general procedure, which does not 

assume equal sample sizes, is to combine the 
samples and rank the observations while keeping 
track of original group membership. For each of 
the k groups, let the number of observations be 
ni ( 1,2, , )i k= …  such that the total number of 

observations is 
1

k

i
i

N n
=

= ∑ . Calculate the rank-

sum for each group as 
1

in

i ij
j

s r
=

= ∑ , where rij is the 

rank assigned to the jth observation in the ith 
group. The sum of the mean squared ranks is 

calculated as
2

1

k
i

i
i

k

s
S

n=
= ∑

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The statistic is then 

calculated as 
( )

( )
12

3 1
1

k
H S N

N N
= − +

+

. This 

is the common computational formulation 
(Sprent & Smeeton, 2001, Neave & 
Worthington, 1988, Feir-Walsh & Toothaker, 
1974, Siegel & Castellan, 1988, Conover, 1999). 

Conover (1999) defined the test statistic 

as 
( )2

2

11

4
k

N N
T S

S

+
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 where Sk and N are 

as defined above and 

( ) ( )2

22 11

1 4
ij

all

ranks

N
S R X N

N

+
= −

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ . He noted 

that S2 simplified to ( )1 12N N +  in the absence 

of ties such that T = H as defined above. H can 
also be defined as 

( )
( )

2

1

12

1

k

ii

i

H n R R
N N

=

= −

+
∑ , where ni is as 

above, iR  is the mean rank of group i, and R  is 
the overall mean rank of the N total observations 
(Neave & Worthington, 1988, Siegel & 
Castellan, 1988). In this form it can be seen most 
clearly that the statistic is a weighted sum of 
squared deviations. Post-hoc procedures using 
pairwise comparisons are available (Conover, 
1999, Sheskin, 1997, Siegel & Castellan, 1988), 
but are not considered further here. 
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Rejection Region. 
Critical regions are of the form 

H critical value≥  (Neave & Worthington, 
1988). Approximate critical values can be 
obtained from a chi-squared distribution with k – 
1 degrees-of-freedom, but see Fahoome (1999, 
2002). The test will work with unequal sample 
sizes since the calculation of the statistic 
involves a weighted sum of squares of 
differences between group mean ranks and the 
overall mean rank, although critical value tables 
tend to be limited (Neave, 1981). 

 
Terpstra-Jonckheere Test 

Background. 
The Terpstra-Jonckheere test was 

developed independently by Terpstra (1952) and 
Jonckheere (1954). Like the Kruskal-Wallis test, 
it is an extension of the Wilcoxon-Mann-
Whitney test on ranks for the one-way design. It 
differs from the Kruskal-Wallis test in that it 
postulates a specific ordering of the groups 
under the alternative hypothesis based on prior 
knowledge, that is, that the situation being tested 
supports an a priori expectation of a specific, 
identifiable order of the population medians 
based on the experimental design, not on the 
observed data (Hollander & Wolfe, 1999, Siegel 
& Castellan, 1988). A general assumption is that 
all of the possible assignments of joint ranks are 
equally possible (Hollander & Wolfe, 1999). 

Hypotheses. 
For k groups, the population distribution 

functions, F1,…,Fk are assumed to have the 

relationship ( ) ( ) ,
j j

F x F x xτ= − − ∞ < < ∞  

over all j, (j = 1 to k), where F is a continuous 
distribution function with unknown median and 
τj is the unknown treatment effect for the jth 
population (Hollander & Wolfe, 1999). The null 
hypothesis can be stated in terms of medians as 
H0: [ 1 2 ... kφ φ φ= = = ] (Neave & Worthington, 
1988, Siegel & Castellan, 1988), identical 
populations as H0: [ ( ) ( ) ( )1 2

, 
k

F x F x F x x= = = ∀� ] 

(Sprent & Smeeton, 2001), or treatment effects 
as H0: [ 1 2 kτ τ τ= = =� ] (Hollander & Wolfe, 
1999). If the k groups are numbered to 
correspond to the expected order, the alternative 
hypothesis is one-sided and given by 

H1: [ 1 2 k
τ τ τ≤ ≤ ≤� , with at least one strict 

inequality] (Hollander & Wolfe, 1999), 
H1: [ ( ) ( ) ( )1 2 k

F x F x F x≤ ≤ ≤� , at least one 

inequality strict for some x ] (Sprent & Smeeton, 
2001), or H1: [ 1 2 ... kφ φ φ≤ ≤ ≤ , at least one 
of the inequalities is strict ] (Neave & 
Worthington, 1988, Siegel & Castellan, 1988). 

Procedure and Test Statistic. 
The procedure calculates the Mann-

Whitney U statistic for all pairs of samples and 
then combines the results. If the Wilcoxon rank-
sum procedure is used the resulting statistics 
must be converted to Mann-Whitney U statistics 
before being combined. For the alternative 
hypothesis, as stated above, the test statistic was 
given by Neave and Worthington (1988) as  

 

( )21 31 1 32 1

1

1 1

... ... ...
k ij k k

k k

ij

j i j

J U U U U U U

U

−

−

= = +

= + + + + + + + +

=∑∑
  ,  

 
where Uij represents the Mann-Whitney U 
statistic for each pair of samples, computed in 
the order dictated by H1 to give the least value of 
each Uij. This is consistent with Siegel and 
Castellan (1988) and others. To the extent that 
H1 tends to be true, each of the Uij will tend to 
be small and thus their sum will tend to be small. 

For k groups there will be k(k - 1)/2 
values of U. Hollander and Wolfe (1999) gave 
the Mann-Whitney procedure for calculating the 
values of U directly, including an adjustment for 
ties (equivalent to using mid-ranks in the 
Wilcoxon version of the procedure) as 

 

( )*

1 1

, , 1
u v

n n

uv iu jv

i j

U X X u v kφ
= =

= ≤ < ≤∑∑ , 

 
where  
 

( )*

1 if 

1
,  if 

2

0 if 

a b

a b a b

a b

φ

<

= =

>

⎧
⎪⎪
⎨
⎪
⎪⎩

        . 

 
This is consistent with Siegel and Castellan  



RESOLVING TIES FOR SIX DISTRIBUTION-FREE TESTS OF LOCATION 34 

 
 
(1988). The test is approximate when ties are 
present. 

Rejection Region. 
Critical regions are of the form 

J critical value≤ . The test supports unequal 
samples sizes and more extensive critical value 
tables are available as Table R in Neave and 
Worthington (1988). As the sample size 
increases, the null distribution of J becomes 
asymptotically normal. Formulas exist for 
obtaining approximate critical values (Neave & 
Worthington, 1988, Siegel & Castellan, 1988), 
but see Fahoome (1999, 2002). 
 

 
 

 
 

Results 
Type I Error Results 

Question 1: For samples drawn from the 
same population, is the Type I error rate 
maintained between .5α and 1.1α for each 
combination of test, method, number of groups, 
directionality, sample size, and distribution? 

Combinations of tests, methods and 
Micceri (1986) data sets that demonstrated 
acceptable Type I Error rates are shown in Table  
4. Results for the theoretical standard Normal 
distribution are not shown, as it did not produce 
ties. Note, however, that the performance of 
these tests with the theoretical Normal 
distribution was not always acceptable due to the  
 

Table 4. Test / Method Combinations with Acceptable Type I Error Results 
________________________________________________________  
 
                               Test 
           _____________________________________________ 
 
Method     K-Sa    Rb      TQc      W-M-Wd  K-We    T-Jf  
________________________________________________________  

M-1g       EA,--   EA,--   --,--   EA,EB   --,--   EA,EB  
           ML,SS   ML,SS   ML,--   ML,SS   ML,(SS) ML,SS  
M-2h       na      EA,--   --,--   na      na      na  
                   ML,SS   ML,-- 
M-3i       EA,--   --,--   --,--   --,EB   --,EB   EA,EB  
           ML,SS   ML,SS   ML,--   ML,SS   ML,SS   ML,SS  
M-4j       EA,EB   EA,EB   EA,--   EA,EB   EA,EB   EA,EB  
           ML,SS   ML,SS   ML,--   ML,SS   ML,SS   ML,SS    
M-5k       --,--   na      na      na       na     na  
           ML,-- 
M-6l       na      na      na      EA,EB   EA,EB   EA,EB  
                                   ML,SS   ML,SS   ML,SS 
M-7m       na      --,--   na      na      na      na  
                   ML,SS 
________________________________________________________  

Note. EA = Extreme Asymmetric Data Set, EB = Extreme Bi-modal Data Set, ML = Multi-modal 
Lumpy Data Set, SS = Smooth Symmetric Data Set. 
aK-S = Kolmogorov-Smirnov Test, bR = Rosenbaum’s Test, cTQ = Tukey’s Quick Test,  
dW-M-W = Wilcoxon-Mann-Whitney Test, eK-W = Kruskal-Wallis Test,  
fT-J = Terpstra-Jonckheere Test.  
gM-1 = Average of least and most likely to reject, hM-2 = Count ties as ½, iM-3 = Alternating, 
jM-4 = Random, kM-5 = Delayed Increment, lM-6 = Mid-ranks, mM-7 = Weighted average. 
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discrete  nature of the  statistics  and  the  use  of 
best conservative critical values whose 
probabilities were sometimes less than 0.5α. 
Following Bradley (1978), Type I error 
performance was judged to be acceptable if it 
was not inflated beyond 1.1α and was not more 
conservative than the corresponding 
performance with the theoretical Normal 
distribution. As shown in Table 4, the random 
method provided acceptable Type I error rates 
for the largest combination of tests and 
distributions. Most of the other methods 
provided acceptable results for specific 
combinations of test and data set with the 
exception of Methods 8 and 9 (not shown). 
 Method   9,   the    drop    all    ties    and  
reduce   N   method,   is     one   of     the     most   
widely recommended, especially in textbooks, 
for situations where there are not too many ties.  

 
But how many is too many?  Methods 8 and 9 
are absent from Table 4 because the Type I error 
results were unacceptable across all 
combinations of tests and simulation parameters. 
 
Power Results 
 The remaining research questions were 
only studied for those combinations of test, 
method,    number    of    groups,   directionality, 
sample size and distribution for which Question 
1 was answered in the affirmative as shown   in 
Table 4. In order to answer the 3rd and 4th 
research questions it was necessary to analyze 
the   power   results   from   a   large  number   of 
simulation runs in a manner that might permit 
determination of the order of preference of 
methods across various combinations of 
simulation parameters for each test. 

 

Table 5. Preferred Methodsk, l, m, n, o, p by Test and Micceri (1986) Data Set 
________________________________________________________  
 
                                 Test 
             ___________________________________________ 
 
Data Set     K-Sa    Rb      TQc     W-M-Wd   K-We    T-Jf 
________________________________________________________  

EAg          M-4,    M-1/    na      M-4     M-4,    M-4 
             M-1     M-2/                    M-6 
                     M-4 
EBh          na      na      na      M-4     M-4/    M-4 
                                             M-6 
MLi          M-4     M-3    M-4      M-3     M-4/    M-4 
                                             M-6, 
                                             M-1 
SSj          M-4     M-3    M-4      M-4,    M-4/    M-4 
                                     M-3     M-6, 
                                             M-1 

     ________________________________________________________ 
 
Note. A/B indicates very similar results, A, B indicates A better than B. 
aK-S = Kolmogorov-Smirnov Test, bR = Rosenbaum’s Test, cTQ = Tukey’s Quick Test. 
dW-M-W = Wilcoxon-Mann-Whitney Test, eK-W = Kruskal-Wallis Test. 
fT-J = Terpstra-Jonckheere Test. 
gEA = Extreme Asymmetric Data Set, hEB = Extreme Bi-modal Data Set, 
iML = Multi-modal Lumpy Data Set, jSS = Smooth Symmetric Data Set. 
kM-1 = Average of least and most likely to reject, lM-2 = Count ties as ½, mM-3 = Alternating,  
nM-4 = Random, oM-5 = Delayed Increment, pM-6 = Mid-ranks. 
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Question 2: For samples drawn from 
populations differing only in location, is there a 
preferred method of resolving tied ranks for each 
combination  of test  and data set, irrespective of  
the number of groups, directionality, and sample 
size? 

As shown in Table 5, the random 
method was the preferred method (13 of 20), or 
tied for first (4 of 20), for the vast majority of 
combinations of test and data set (17 of 20). The 
method of analysis employed for this purpose 
involved ranking the power results across 
methods for each specific combination of test, 
number of groups, nominal alpha level and 
distribution at each combination of nominal 
effect size multiplier and initial sample size. 
Mean ranks were then calculated in three ways: 
(a) by summing across nominal effect size 
multipliers at each initial sample size, (b) by 
summing across initial sample sizes at each 
nominal effect size multiplier, and (c) by 
summing across both nominal effect size 
multipliers and initial sample sizes. 

Question 3: For samples drawn from 
populations differing only in location, is there a 
preferred method of resolving tied ranks for each 
test, irrespective of the number of groups, 
directionality, sample size, and data set? 

This question requires a conclusion to 
be drawn about the relative behavior of the 
methods across data sets. The results of the 

preceding analysis were used to determine the 
number of first   place   finishes   for   each   test   
for each combination of method and distribution 
across nominal alpha and number of groups. If a 
particular method consistently had the most first 
place finishes for a particular test, across data 
sets, then it could in some sense be considered 
the best method for that test/data set 
combination. As shown in Table 6, random 
resolution of ties was clearly superior for four of 
the six tests, and a close second for another. 

Question 4: Is there a best method for 
resolving ties across all tests and data sets in the 
study? 

Given the results presented in Tables 4, 
5, and 6, random resolution of ties performs best 
across the set of tests, data sets and methods 
examined in this study. 
 

Conclusion 
 

This study examined various methods of 
resolving equal data values (tied ranks) in a set 
of distribution-free statistical tests of location or 
general difference for k independent samples 
using Monte Carlo simulations with theoretical 
Normal and discrete, non-normal data. These 
tests were all based on the assumption of 
continuity in the underlying population. As such, 
the presence of ties—which occurred frequently 
with the discrete, non-normal data sets—and the 

Table 6. Best Methodg, h, i, j By Test Across Distributions 
___________________________________________  
 
K-Sa     Rb      TQc    W-M-Wd   K-We    T-Jf 
___________________________________________  

M-4i     M-3h    M-4     M-4     M-4,    M-4, 
                                M-3     M-6j, 
                                        M-1g 

     ___________________________________________ 
 
Note. A, B indicates A better than B. 
aK-S = Kolmogorov-Smirnov Test, bR = Rosenbaum’s Test, cTQ = Tukey’s Quick Test,  
dW-M-W = Wilcoxon-Mann-Whitney Test, eK-W = Kruskal-Wallis Test,  
fT-J = Terpstra-Jonckheere Test. 
gM-1 = Average of least and most likely to reject, hM-3 = Alternating, iM-4 = Random. 
jM-6 = Mid-ranks. 
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efficacy of various methods of resolving them 
were of theoretical and practical interest. 

Of the methods investigated for 
resolving ties, random resolution seemed to 
perform best, in the sense of guarding against 
inflation of Type I error rates while maintaining 
power, for the majority of combinations of 
simulation parameters, but not all. This is of 
interest both theoretically and practically. First, 
although random resolution might be expected 
to produce the best results on theoretical 
grounds, it does not always do so. There are also 
strong objections in practice to resolving ties at 
random as the outcome of any particular test 
then depends on a secondary random event. But 
what are the consequences of the alternatives if 
random resolution is rejected on these grounds? 
How well do the common alternatives, such as 
mid-ranks or dropping tied values, work? 

The often-recommended method of 
dropping tied values and reducing the sample 
size performed very poorly across all 
combinations of simulation parameters. Based 
on the results of this study, this method should 
not be used. All of these tests and methods also 
performed poorly with Likert scale data (i.e., 
Micceri, 1986, Extreme Bi-modal data set). 
They should not be used with discrete 
population data sets that contain relatively few 
distinct values. 
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Appendix 
 Micceri (1986) data sets (see 
Sawilowsky & Blair, 1992): 
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Figure A1. Micceri (1986) extreme asymmetric data set. See Sawilowsky & Blair (1992). 
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Figure A2. Micceri (1986) extreme bi-modal data set. See Sawilowsky & Blair (1992). 
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Figure A3. Micceri (1986) multi-modal lumpy data set. See Sawilowsky & Blair (1992). 
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Figure A4. Micceri (1986) smooth symmetric data set. See Sawilowsky & Blair (1992). 
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Limitations Of The Analysis Of Variance 
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Conditions under which the analysis of variance will yield inexact p-values or would be inferior in power 
to a permutation test are investigated. The findings for the one-way design are consistent with and extend 
those of Miller (1980). 
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Introduction 
 
The analysis of variance has three major 
limitations: 
 

1. It is designed to test against any and all 
alternatives to the null hypothesis and 
thus may be suboptimal for testing 
against a specific hypothesis. 

 
2. It is optimal when losses are 

proportional to the square of the 
differences among the unknown 
population means, but may not be 
optimal otherwise. For example, when 
losses are proportional to the absolute 
values of the differences among the 
unknown population means, expected 
losses would be minimized via a test 
that makes use of the absolute values of 
the differences among the sample 
means; see, for example, Good (2005). 
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3. It is designed for use when the 
observations are drawn from a normal 
distribution and though it is remarkably 
robust, it may not yield exact p-values 
when the observations come from 
distributions that are heavier in the tails 
than the normal. Even in cases when the 
analysis of variance yields almost exact 
p-values, it may be less powerful than 
the corresponding permutation test when 
the observations are drawn from non-
normal distributions under the 
alternative. 

 
The use of the F-distribution for 

deriving p-values for the analysis of variance is 
based upon the assumption of normality; see, for 
example, the derivation in Lehmann (1986). 
Nevertheless, Jagers (1980) shows that the F-
ratio is almost exact in many non-normal 
situations. 

The purpose of the present note is to 
explore the conditions under which a 
distribution would be sufficiently non-normal 
that the analysis of variance applied to 
observations from that distribution would be 
either inexact or less powerful than a 
permutation test.  
    
Findings: General Hypotheses 

When the form of the distribution is 
known explicitly, one often can transform the 
observations to normally-distributed ones and 
then apply the analysis of variance; see, Lehman 
(1986) for a list of citations. Consequently, the 
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present investigation is limited to the study of 
observations drawn from contaminated normal 
distributions, both because such distributions are 
common in practice and because they cannot be 
readily transformed. 

In R, examples of samples such 
distributions would include the following: 
 
 
rnorm(n,2*rbinom(n,1,0.3)) 
ifelse(rbinom(n,1,0.3),rnorm(n,0.5), 
   rnorm(n,1.5,1.5)) 
 

 
for both of which the analysis of variance was 
exact in 1000 simulations of an unbalanced 1x3 
design with 3, 4, and 5 observations per cell. 

Regardless of the underlying 
distribution, providing the observations are 
exchangeable under the null hypothesis, one can 
always make use of the permutation distribution 
of a test statistic to obtain an exact test. Let Xij 
denote the jth observation in the ith cell of a 
one-way design. Eliminating factors from the F-
ratio that are invariant under rearrangement of 
the observations between cells, such as the 
within sum of squares that forms its 
denominator, a permutation test based on the F-
ratio reduces to a test based on the 

sum 2( )iji j
X∑ ∑ . It was this test that was 

used in head-to-head comparisons with the one-
way analysis of variance. 

When a 1x3 design was formed using 
the following code 
 
 
s1=rnorm(size[1],rbinom(size[1],1,0.3)) 
s2=ifelse(rbinom(size[2],1,0.3), 
   rnorm(size[2],0.5),rnorm(size[2],1.5,1.5))  
s3=ifelse(rbinom(size[2],1,0.3), 
   rnorm(size[3],1),rnorm(size[3],2,2)) 
 

 
the power of the analysis of variance and the 
permutation test based upon 1000 simulations 
were comparable for a balanced design with as 
few as three observations per cell (α=10%, 
β=22%). But for an unbalanced design with 3, 4, 
and 5 observations per cell, the permutation test 
was more powerful at the 10% level with 

β=30%, compared to 18% for the analysis of 
variance. 
 When a 1x4 design was formed using the 
following code: 
 
 
s0=rnorm(size[1],rbinom(size[1],1,0.5)) 
s1=rnorm(size[2],rbinom(size[2],1,0.5)) 
s2=rnorm(size[3],rbinom(size[3],1,0.5)) 
s3=rnorm(size[4],2 + rbinom(size[4],1,0.5)) 
 

 
the power of the analysis of variance and the 
permutation test were comparable for a balanced 
design with as few as three observations per cell 
(α=10%, β=57%). However, for an unbalanced 
design with 2, 3, 3, and 4 observations per cell, 
the permutation test was more powerful at the 
10% level with β=86%, compared with 65% for 
the analysis of variance. 
 If the designs are balanced, the 
simulations support Jagers (1980) result, that the 
analysis of variance is both exact and powerful, 
whether observations are drawn from a 
contaminated normal distribution, a distorted 
normal distribution (z=2*z if z>0), a censored 
normal distribution (z = -0.5 if z< -0.5), or a 
discrete distribution such as would arise from a 
survey on a five-point Likert scale. When the 
design is unbalanced, Jagers’ result does not 
apply, and the permutation test has superior 
power. The results confirm and extend the 
findings of Miller (1986). 
 
Findings: Specific Hypotheses 

When testing for an ordered dose 
response, the Pearson’s product moment 
correlation coefficient is usually employed as a 
test statistic with p-values obtained from a t 
distribution. Alternatively, the exact permutation 
procedure due to Pitman (1937) could be 
employed. In the simulations with contaminated 
normal distributions, it was found that the 
parametric procedure for testing for an ordered 
dose response was both exact (to within the 
simulation error) and as powerful as the 
permutation method. 

For testing other specific hypotheses, 
the permutation method may be preferable, 
simply because no well-tabulated parametric 
distribution  exists.  An  example  would  be  the  
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alternative that exactly one of the k-populations 
from which the samples are drawn is different 
from the others for which an exact test based on 

the distribution of .max | |k kX X− is readily 

obtained by permutation means. 
To further explore the possibilities, a 

copy of the code along with a complete listing of 
the simulation results is provided at 
mysite.verizon.net/res7sf1o/AnovPower.txt. (A 
manuscript assessing the robustness of the two-
way analysis of variance is in preparation.) 
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A modification to testing pairwise comparisons that may provide better control of Type I errors in the 
presence of non-normality is to use a preliminary test for symmetry which determines whether data 
should be trimmed symmetrically or asymmetrically. Several pairwise MCPs were investigated, 
employing a test of symmetry with a number of heteroscedastic test statistics that used trimmed means 
and Winsorized variances. Results showed improved Type I error control than competing robust statistics.  
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Introduction 
 
Pairwise multiple comparison procedures 
(MCPs) are adversely affected by nonnormality, 
particularly  when  variances  are  heterogeneous 
and group sizes are unequal (Keselman, Lix, & 
Kowalchuk, 1998). Specifically, Type I errors 
are liberal, resulting in spurious rejections of 
null hypotheses. The deleterious effects of 
nonnormality on rates of Type I error are, for the 
most part, attributable to asymmetry of 
distributions, that is, to skewness (Westfall & 
Young, 1993). These results are predictable on 
theoretical grounds. Cressie and Whitford 
(1986) showed that Student’s two-sample t test 
is not asymptotically correct when the group 
distributions have unequal third cumulants and 
sample sizes are unequal; therefore, Type I error 
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inflation is expected. In the one-way 
independent groups problem, Keselman, Lix, et 
al. (1998) found Type I error rates for popular 
pairwise MCPs approached .21 ( .05α = ) when 
data were obtained from skewed distributions 
where group variances and sample sizes were 
unequal and negatively paired with one another. 
 One potential solution to this Type I 
error inflation is to replace the usual least 
squares estimators with estimates which are less 
influenced by the effects of nonnormality. 
Indeed, many investigators have shown that 
better results can be obtained by using statistics 
designed for heterogeneity combined with robust 
estimators of central tendency and variability 
(see Keselman, Kowalchuk, & Lix, 1998; Lix & 
Keselman, 1998; Wilcox, Keselman, & 
Kowalchuk, 1998; Yuen, 1974). For example, 
Keselman, Lix et al. (1998) found that the 
methods due to Ryan (1960), Welsch (1977), 
Peritz (1970), Shaffer (1979; 1986), Hayter 
(1986), and Hochberg (1988) provided much 
better Type I error control, typically having rates 
less than .075 when based on a heteroscedastic 
statistic with trimmed means and Winsorized 
variances. Though rates improved, these 
methods were, nonetheless, still occasionally 
affected when distributions were nonnormal, 
variances were heterogeneous, and group sizes 
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were unequal. That is, rates occasionally 
exceeded .075. 
 An approach that may provide improved 
Type I error control for tests of trimmed mean 
equality (pairwise) is to use a preliminary test 
for symmetry which determines whether data 
should be trimmed symmetrically or 
asymmetrically. Keselman, Wilcox, Othman, 
and Fradette (2002) found that by using a test for 
symmetry in conjunction with a test for equality 
of trimmed means, Type I error rates were well 
controlled when data were extremely 
heterogeneous and nonnormal in a one-way 
independent groups design. The test of 
symmetry investigated was first proposed by 
Hogg, Fisher, and Randles (1975) and later 
modified by Babu, Padmanabhan and Puri 
(1999). Specifically, two indices are computed, 
one that determines tail thickness and the other 
symmetry of the underlying distribution. The 
calculations determine whether a test of mean 
equality is based on symmetrically or 
asymmetrically trimmed means (see Othman, 
Keselman, Wilcox, Fradette, & Padmanabhan, 
2002, for details of the test of symmetry). 
 Keselman, Lix, et al. (1998) 
symmetrically trimmed 20% of the data per 
group and used an approximate degrees of 
freedom Welch (1938) test statistic for the 
pairwise comparisons. Although, 20% 
symmetric trimming is recommended (Wilcox, 
1995), theory would imply that asymmetric 
trimming would be more appropriate when data 
are skewed (Keselman et al., 2002; Othman et 
al., 2002). The rationale behind asymmetric 
trimming is to remove more of the offending 
data (i.e., data that does not represent the bulk of 
the observations, that is, the 'typical' score) from 
the tail containing more of the outlying values. 
Keselman et al. (2002) found other percentages 
of trimming, either symmetrically or 
asymmetrically, resulted in better Type I error 
control than uniformly adopting 20% symmetric 
trimming. For example, 15% symmetric 
trimming or 15% asymmetric trimming resulted 
in fewer non-robust values compared to always 
adopting 20% symmetric trimming.  
 In addition, Keselman et al. (2002) 
found that transformations (i.e., Johnson, 1978; 
Hall, 1992) of the Welch-James heteroscedastic 
statistic improved Type I error control. The 

Johnson and Hall transformations are intended 
to remove the bias due to skewness. This is 
consistent with Guo and Luh (2000) and Luh 
and Guo (1999) who found that transformations 
of the Welch-James statistic improved its 
performance when trimmed means were used 
and distributions were skewed and heavy-tailed. 
As well, Keselman et al. (2002) found improved 
Type I error control when the transformed 
heteroscedastic statistics were preceded by a test 
of symmetry under extreme conditions of 
nonnormality and variance heterogeneity in a 
one-way independent groups design. Thus, the 
purpose of this article was to investigate whether 
these procedures would be beneficial in the 
pairwise multiple comparison problem. 
 
Test of Symmetry 
 Othman et al. (2002) provided the 
details for the test of symmetry, a test based on 
the work of Hogg et al. (1975) and Babu et al. 
(1999). Essentially, two indices are computed, 
one index (Q2) determines tail-weight (light or 
heavy) while the other index (Q1) determines the 
symmetry of an underlying distribution. The 
value of the Q2 index classifies a distribution as 
normal-tailed, heavy-tailed, or very heavy-tailed 
which then determines the number of sample 
points to be used in the computation of the Q1 

index. If the distribution is determined to be (a) 
normal-tailed, then all sample points are used, 
(b) heavy-tailed, then the top and bottom 10% of 
sample points are trimmed, or (c) very heavy-
tailed, then the top and bottom 20% of sample 
points are trimmed. That is, the value of the Q1 
index determines the symmetry/asymmetry of a 
distribution (i.e., left skewed, symmetric or right 
skewed) which then determines the type of 
trimming (symmetric vs asymmetric). Keselman 
et al. (2002) provided a SAS/IML (1989) 
program to compute the test of symmetry.  
 
Robust Estimation 
 Robust estimates of central tendency 
and variability were applied to heteroscedastic 
statistics. Specifically, trimmed means and 
Winsorized variances were used in order to test 
the hypothesis of the equality of population 
trimmed means in the pairwise multiple 
comparison problem. Let 
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represent the ordered observations associated 
with the jth (j=1,…,J) group, where nj is the 
sample size in the jth group. Let 
 

j jg nγ⎡ ⎤= ⎣ ⎦  

 
where γ represents the proportion of 
observations to be trimmed in each tail of the 
distribution and [x] is the greatest integer ≤ x. 
The effective sample size for the jth group 
becomes 2j j jh n g= − . The jth sample trimmed 

mean is 
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order to compute the Winsorized variance. The 
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The sample Winsorized variance is required in 
order to get a valid estimate of the standard error 
of a trimmed mean. The sample Winsorized 
variance for the jth group is  
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and the estimated standard error of the trimmed 
mean is  
 

( ) ( )2ˆ1 1j wj j jn h hσ ⎡ ⎤− −⎣ ⎦ . 

 
 Under asymmetric trimming, and 
assuming that the distribution is positively 
(right) skewed so that observations in the upper 
tail of the distribution are trimmed, the effective 
sample size for the jth group 
becomes j j jh n g= − . The jth sample trimmed 

mean is  
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and the jth sample Winsorized mean is 
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The sample Winsorized variance is computed 
based on the previous equation with the new 
definition of ˆwjµ  and the estimated standard 

error of the trimmed mean is also computed 
based on the previous equation with the new 

definitions of 2ˆ and j wjh σ . 

 
Definitions of the Heteroscedastic Statistics 
 Johanson’s (1980) Welch-James (WJ)-
type heteroscedastic statistic (see Lix & 
Keselman, 1995) with robust estimators has 
been found to obtain better Type I error control 
than the WJ statistic with least squares 
estimators in independent groups designs under 
nonnormality and variance heterogeneity (see 
Guh & Luh, 2000; Keselman, Kowalchuk, et al., 
1998; Keselman, Lix, et al., 1998; Lix & 
Keselman, 1998; Luh & Guo, 1999; Wilcox et 
al. 1998). Guo and Luh (2000) found that two 
transformations of the WJ statistic combined 
with the use of trimmed means and Winsorized 
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variances resulted in better Type I error control 
than the WJ statistic with trimmed means and 
without a transformation for various skewed and 
heavy-tailed distributions. Specifically, 
Johnson’s (1978) or Hall’s (1992) 
transformations of the WJ statistic are intended 
to remove skewness. Hence, the transformations 
contend with skewness, trimmed means contend 
with heavy tails, and a heteroscedastic statistic 
contends with variance heterogeneity (Luh & 
Guo, 1999). 
 In the present study, both 
transformations of the WJ statistic for removing 
skewness were investigated along with the 
nontransformed WJ statistic. Let 

2ˆ ˆ ˆ, ,  and tj wj wj jhµ µ σ be the trimmed mean, 

Winsorized mean, Winsorized variance, and 
trimmed sample size, respectively, for group j. 
The third central Winsorized moment of the jth 
group is  
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Luh and Guo (1999) defined Johnson’s (1978) 
transformed trimmed mean statistic as 
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From Guo and Luh (2000), Hall’s (1992) 
transformed trimmed mean statistic can be 
defined as: 
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 Keselman, Wilcox, and Lix (2003) 
indicated that sample trimmed means, sample 
Winsorized variances, and trimmed sample sizes 
can be used to compute the WJ statistic. That is, 
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which, when divided by c, is distributed as an F 
variable with degrees of freedom equal to  J – 1 
and 
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Thus, the transformed WJ statistics may be 
defined as 
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When Johnson’s transformed WJ statistic (JWJ) 
and Hall’s transformed WJ statistic (HWJ) are 
divided by c, they are also distributed as F 
variates with no change in degrees of freedom. 
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The WJ, JWJ, and HWJ statistics were used not 
only for the omnibus test, if one was required, 
but for the pairwise tests for each of the MCPs 
investigated. 
 
Multiple Comparison Methods 
 The MCPs investigated, adopt stepwise 
testing for controlling the overall (familywise) 
rate of Type I error. Specifically, the MCPs 
examined were the: (a) Ryan (1960)-Welsch 
(1977) multiple range procedure, (b) Peritz 
(1970) procedure, (c) Shaffer (1986) 
sequentially rejective Bonferroni procedure, (d) 
Shaffer (1986) sequentially rejective Bonferroni 
procedure that begins with an omnibus test, (e) 
Hochberg (1988) step-up sequentially acceptive 
Bonferroni procedure, (f) multiple range 
procedure that begins with an omnibus test (see 
Shaffer 1979; 1986), and (g) Hayter (1986) two-
stage modified least significant difference (LSD) 
procedure. These MCPs were previously 
investigated by Keselman, Lix, et al. (1998). 
 The Ryan (1960) and Welsch (1977) 
multiple range procedure begins by examining 
the J range, and steps down to examine 
successively smaller ranges only when a larger 
range test is declared significant. The 
designation q is used to denote this MCP. 
According to Ryan and Welsch, the overall rate 
of Type I error is controlled at α (when 
assumptions are satisfied) for a set of p (p = 
2,…, J) means if each test is assessed for 
significance at a level equal to 
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 The Peritz (1970) procedure follows the 
same step-down logic of the usual range 
procedure, but assesses significance with 
Newman (1939), Keuls (1952), and/or Ryan-
Welsch critical values. This MCP is designated 
PER. Shaffer’s (1986) sequentially rejective 
Bonferroni procedure uses probability (p) values 
in assessing the pairwise hypotheses taking into 
account the number of hypotheses rejected at 
earlier stages in the sequence of testing in 
arriving at decisions regarding significance. The 
abbreviation for this MCP is SRB. 

 Shaffer’s (1986) sequentially rejective 
Bonferroni procedure begins with an omnibus 
test (i.e., WJ, JWJ, HWJ), and if rejected, 
assesses significance of the pairwise 
comparisons by taking into account the number 
of true pairwise hypotheses remaining given 
previous rejections. Because three omnibus 
statistics are being investigated, there are three 
SRB MCPs and they are designated as WJ/SRB, 
JWJ/SRB, and HWJ/SRB. 
 Hochberg’s (1988) step-up sequentially 
acceptive Bonferroni procedure uses the p 
values associated with the pairwise tests to 
arrive at accept-reject decisions; these are 
determined sequentially and hypotheses can be 
rejected by implication. Hochberg’s MCP is 
designated as HOCH. Another set of MCPs were 
based on the modified range procedure due to 
Shaffer (1979; 1986), which starts with an 
omnibus test and only upon rejection, moves on 
to test range hypotheses with Ryan-Welsch 
critical values, modifying the J-range critical 
value to one based on J-1 means. The 
abbreviations of these three (stage 1 omnibus) 
Shaffer MCPs are WJ/q, JWJ/q, and HWJ/q. 
Lastly, Hayter’s (1986) modified LSD begins 
with an omnibus test, which if rejected leads to 
the Stage 2 tests of the pairwise comparisons 
using a Studentized range critical value for J-1 
means. The three MCPs based on Hayter’s 
method are designated: WJ/HAY, JWJ/HAY, 
and HWJ/HAY. Detailed descriptions of all the 
pairwise MCPs can be found in the original 
references. 
 

Methodology 
 
Seven pairwise MCPs were compared in terms 
of Type I error control under conditions of 
nonnormality and variance heterogeneity in one-
way independent groups designs. Variables that 
were examined by Keselman, Lix, et al. (1998) 
were chosen for investigation. Eight variables 
were manipulated in the present study: (a) 
number of groups (3 and 6), (b) sample size 
(equal or not equal), (c) degree/pattern of 
variance heterogeneity [moderate and large/all 
(mostly) unequal and all but one equal], (d) 
pairing of groups sizes and variances, (e) type of 
nonnormal population distribution, (f) method of 
computing a test of symmetry, (g) percentage of 
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trimming, and (h) type of heteroscedastic 
statistic. 
 One-way independent groups designs 
containing three and six groups to evaluate the 
effect of number of pairwise comparisons on 
Type I error were chosen for investigation. That 
is, for the former case, only three pairwise 
comparisons were tested, whereas, in the latter 
case, 15 pairwise comparisons were tested. 
 The sample sizes in each of the groups 
were either equal or unequal. When equal, C = 
0, and when unequal, C = .163 and .327, where 
C denotes a coefficient of group size variation 
defined as 
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is the average group size. When equal, group 
sizes were set at 20 in both the J = 3 and J = 6 
designs. When unequal, and for the J = 3 design, 
the two cases of group size inequality were 16, 
20, 24 (C = .163) and 12, 20, 28 (C = .327), 
while for the J = 6 design, the group sizes were 
16, 16, 20, 20, 24, 24 (C = .163) and 12, 12, 20, 
20, 28, 28 (C = .327). 
 Two patterns of variance heterogeneity 
were examined: (a) all (most) variances unequal 
(Pattern 1) and (b) all variances equal but one 
(Pattern 2). When J = 3, Pattern 1 was 1, 9, 16 
and Pattern 2 was 1, 1, 16. The patterns for J = 6 
were, respectively, 1, 1, 4, 9, 9, 16, and 1, 1, 1, 
1, 1, 16.  
 Seven cases of group sizes and 
variances pairings were investigated. Group 
sizes were both equal and unequal and paired 
with equal and unequal variances. Specifically, 

the combinations were: (a) equal jn ; equal 2
jσ , 

(b/b’) equal jn ; unequal 2
jσ , (c/c’) unequal jn ; 

unequal 2
jσ  (positively paired), (d/d’) unequal 

jn ; unequal 2
jσ  (negatively paired). The b/c/d 

notation represents the Pattern 1 variance 
conditions, whereas the b’/c’/d’ notation 
represents the Pattern 2 variance conditions. 
Considering the group size and variance 
inequalities, there were a total of eleven 
combinations. 

 To examine distributional shape, four 
nonnormal distributions with varying degrees of 
skewness (γ1) and kurtosis (γ2) were chosen for 

investigation. A chi-square ( 2χ ) distribution 
and three g- and h-distributions (Hoaglin, 1985) 
were selected. Specifically, the four nonnormal 

distributions were: (a) 2
)3(χ  distribution (γ1 = 

1.63, γ2 = 4.00); (b) g = .5 and h = 0 distribution 
(γ1 = 1.75, γ2 = 8.9); (c) g = 1 and h = 0 
distribution (γ1 = 6.2, γ2 = 114); and (d) g = .25 
and h = .25 distribution (γ1 and γ2 undefined). 
The three g- and h- distributions are hereafter 
notated as (g = .5, h = 0), (g = 1, h = 0), and (g = 
.25, h = .25), respectively. These nonnormal 
distributions were selected because educational 
and psychological research data are typically 
skewed and/or heavy-tailed (Micceri, 1989; 
Wilcox, 1990). 
 To generate pseudorandom variates 

having a chi-square ( 2χ ) distribution with 3 
degrees of freedom, three standard normal 
variates were squared and summed. The variates 

were transformed to 2
)3(χ  variates having 

mean tjµ  (population trimmed mean) and 2
jσ  

(see Hastings & Peacock, 1975, p. 46-51, for 
further details). To generate data from a g- and 
h-distribution, standard unit normal variables (Z) 
were converted to the random variable 
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according to the values of g and h selected for 
investigation. tjµ  was subtracted from each 

observation. To obtain a distribution with 
standard deviation jσ , each transformed Xij (j = 

1, …, J) was then multiplied by a value of jσ . 

The standard deviation of a g- and h-distribution 
is not equal to one, and thus the values for the 
variances/standard deviations reflect the ratio of 
the variances/standard deviations between the 
groups (see Wilcox, 1994). Each population 
distribution was empirically generated and the 
indices of tail weight and symmetry were 
computed in order to determine whether the 
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population trimmed mean used for centering 
should be based on symmetric or asymmetric 
(e.g., right tailed) trimming for the percentage of 
trimming cases investigated. 
 Three approaches to computing the test 
of symmetry were examined by calculating the 
indices (Q1 and Q2) within each group and then: 
(a) using a weighted mean of the indices across 
all groups to determine the type of trimming for 
every group (average estimate; see Othman et al. 
2002); (b) using the value for each particular 
group to determine the type of trimming for that 
group (individual estimate), and (c) using a 
weighted mean of the indices across two groups 
to determine the type of trimming for the groups 
involved in each particular comparison (pairwise 
estimate). The test of symmetry based on 
pairwise estimates could not be applied to an 
omnibus test, so only the MCPs that do not 
require an omnibus test were considered for this 
approach. In addition, the pairing of groups had 
to be predetermined in order to compute the 
weighted mean of the indices across the two 
groups in each pairwise comparison and this 
prevented the use of the approach with the range 
MCPs. Thus, the third approach was applied to 
only the SRB and HOCH procedures. The three 
approaches to symmetric/asymmetric trimming 
were compared to always adopting symmetric 
trimming. The Q1 and Q2 indices determine 
whether symmetrically/asymmetrically trimmed 
means for each group were used in the pairwise 
MCPs. For those MCPs that require an omnibus 
test, the same approach to trimming (i.e., 
average estimate, individual estimate or 
symmetric trimming) was adopted for the 
omnibus and the pairwise tests. 
 The following combinations of 
symmetric and asymmetric trimming 
percentages were investigated: (a) either 10% 
symmetric or 20% asymmetric trimming 
(10/20), (b) either 15% symmetric or 30% 
asymmetric trimming (15/30), (c) either 20% 
symmetric or 40% asymmetric trimming 
(20/40),  (d) either 10% symmetric or 10% 
asymmetric trimming (10/10), (e) either 15% 
symmetric or 15% asymmetric trimming 
(15/15), and (f) either 20% symmetric or 20% 
asymmetric trimming (20/20). As well, 
symmetrically trimming 10%, 15%, and 20% of 
the data was investigated. Hence, the various 

combinations of trimming percentages were 
chosen to evaluate whether there would be an 
optimal proportion of trimming. 
 Three heteroscedastic statistics were 
examined: (a) Welch-James statistic (WJ), (b) 
Johnson’s (1978) transformation of WJ (JWJ), 
and (c) Hall’s (1992) transformation of WJ 
(HWJ) (see Guo & Luh, 2000; Keselman et al. 
2002; Luh & Guo, 1999). The seven pairwise 
MCPs were computed with each of the 
heteroscedastic statistics, resulting in a total of 
21 pairwise MCPs.  
 Type I error rates were based on five 
thousand replications using a .05 level of 
significance for the complete null hypothesis. 
 

Results 
 
Bradley’s (1978) liberal criterion of robustness 
to assess Type I error rates was chosen. That is, 
if an empirical estimate of Type I error (α̂ ) was 

contained within the interval of .5α ≤ α̂ ≤ 1.5α, 
then the procedure was considered robust. For a 
significance level of .05, the interval is .025 ≤ 
α̂ ≤ .075. If the Type I error was not contained 
in this interval, then a procedure was considered 
nonrobust for that particular condition. In the 
tables, bold entries correspond to these latter 
values. 
 Because of the large number of MCPs 
investigated and the form of assumption 
violations examined, only the mean Type I error 
rates (percentages), averaging across the eleven 
combinations of group sizes, and variances were 
tabled. Plus and minus symbols next to the 
tabled error rates are used to identify whether 
the minimum to maximum range of Type I error 
rates across the eleven combinations contained a 
conservative (-) value, a liberal (+) value, or 
both conservative and liberal (±) values. A 
conservative value is defined as an error rate 
below Bradley’s lower limit (2.50%) and a 
liberal value is defined as an error rate above 
Bradley’s upper limit (7.50%). Because of space 
considerations and the similar pattern of results 
for the chi-square and (g = .5, h = 0) 
distributions, only the latter are tabled. 
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J = 3 
 Tables 1 through 3 contain the summary 
percentages for the (g = .5, h = 0), (g = 1, h = 0), 
and (g = .25, h = .25) distributions, respectively. 
When the number of groups is equal to three, a 
few of the MCPs investigated are identical. 
Specifically, the Hayter (1986) two-stage and 
Shaffer (1986) sequentially rejective Bonferroni 
procedure that begins with an omnibus test are 
identical (denoted as WJ/*, JWJ/*, and HWJ/* 
in Tables 1 through 3). Additionally, the Ryan 
(1960)–Welsch (1977) and Peritz (1970) 
procedures are identical (denoted as q / PER in 
Tables 1 through 3). 
  
g = .5 and h = 0 Distribution 
 When data were obtained from this 
particular nonnormal distribution, all MCPs 
were robust when preceded by the symmetry test 
with 10/10 symmetric/asymmetric trimming 
where the indices of tail weight and symmetry 
were averaged over all groups and under the 
10%, 15%, and 20% symmetric trimming cases 
(see Table 1). The chi-square distribution had a 
similar pattern of results, however all MCPs 
were also robust under the 15/15 and 20/20 
symmetric/asymmetric trimming where the 
indices were averaged over all groups. MCPs 
preceded by the test of symmetry generally had 
mean Type I error rates closer to the nominal 5% 
level compared to the strategy of always 
adopting symmetric trimming. For the symmetry 
test based on averaging (tail-weight and 
symmetry) indices across all groups, the mean 
error rates across robust MCPs were 4.83%, 
4.80%, and 5.22% for the 10/10, 15/15, and 
20/20 trimming cases, respectively and for the 
symmetry test based on the indices taken per 
group, the mean error rate across robust MCPs 
was 5.32% for the 10/10 trimming case. For the 
symmetric trimming conditions of 10%, 15%, 
and 20%, the mean error rates across MCPs 
were 4.75%, 4.68%, and 4.80%, respectively. In 
addition, the general pattern for MCPs preceded 
by a test for symmetry was for error rates to 
increase as the proportion of trimming increased 
(i.e., from 10/20 to 15/30 to 20/40 and from 
10/10 to 15/15 to 20/20). 
 The MCPs based on the WJ statistic 
generally had more conservative error rates than 
the same MCPs based on the modified WJ 

statistics (i.e., JWJ and HWJ), when preceded by 
a test of symmetry, a pattern opposite to that 
observed for the symmetric trimming cases. For 
example, under the 10/10 trimming case 
preceded by the test of symmetry based on 
indices (tail weight and symmetry) averaged 
across all groups, the mean error rates for the 
MCPs based on the WJ, JWJ, and HWJ statistics 
were equal to 4.70%, 4.87%, and 4.91%, 
respectively. However, when adopting 20% 
symmetric trimming, the mean error rates across 
MCPs based on the WJ, JWJ, and HWJ statistics 
were equal to 4.94%, 4.73%, and 4.74%, 
respectively. For the chi-square distribution, 
regardless of whether the MCPs were preceded 
by a test of symmetry, the MCPs based on the 
JWJ and HWJ statistics generally had more 
conservative Type I error rates than the 
corresponding MCPs based on the WJ statistic. 
 The mean error rates for the SRB and 
HOCH procedures based on symmetric 
trimming were more conservative than when the 
MCPs were preceded by a test of symmetry. 
When the test of symmetry was based on 
individual group estimates of tail weight and 
symmetry, the MCP’s mean error rates were 
highest, and decreased when the test was based 
on pairwise estimates and further decreased 
when the symmetry test was based on average 
estimates across groups (a result consistent with 
that obtained for the chi-square distribution). 
Noteworthy is that the error rates for the SRB 
and HOCH MCPs fell within Bradley’s (1978) 
limits for the 10/10 trimming percentage 
regardless of the method of computing the test 
for symmetry; a result consistent with that 
obtained for the chi-square distribution. An 
optimal strategy is to use a test of symmetry 
with either pairwise estimates or average 
estimates across groups with either 10/10 or 
15/15 symmetric/asymmetric trimming.   
 
g = 1 and h = 0 Distribution 
 The use of the test of symmetry resulted 
in improved Type I error control when data were 
obtained from the (g = 1, h = 0) nonnormal 
distribution (see Table 2). That is, the MCPs 
with conservative and/or liberal error rates based 
on symmetric trimming became either robust or 
closer to Bradley’s (1978) limits when  preceded  
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Table 1. Summary Percentages of Type I Error for Multiple Comparison Procedures (J = 3; g = .5, h = 0 Distribution) 
 Average Estimate Individual Estimate 
 10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20 
q / PER (WJ) 5.45+ 7.29+ 9.56+ 4.07 4.50 5.00 11.58+ 19.96+ 29.43+ 4.90 6.58+ 9.10+ 
WJ / q (WJ) 6.37+ 8.50+ 11.03+ 4.64 5.06 5.64 13.28+ 23.15+ 33.42+ 5.57 7.51+ 10.43+ 
WJ / * (WJ) 7.48+ 9.73+ 12.42+ 5.70 6.10+ 6.73+ 15.50+ 26.68+ 38.03+ 6.72+ 8.99+ 12.33+ 
SRB (WJ) 5.65+ 7.39+ 9.50+ 4.46 4.73 5.26 12.31+ 21.63+ 31.96+ 5.24 6.95+ 9.61+ 
HOCH (WJ) 5.87+ 7.67+ 9.83+ 4.62 4.90 5.43 12.68+ 22.17+ 32.65+ 5.43 7.19+ 9.91+ 
q / PER (JWJ) 5.72+ 7.31+ 9.28+ 4.25 4.43 4.87 12.58+ 21.57+ 31.46+ 5.05 6.67+ 9.30+ 
JWJ / q (JWJ) 6.55+ 8.48+ 10.69+ 4.80 5.09 5.44 14.28+ 24.71+ 35.19+ 5.70+ 7.63+ 10.56+ 
JWJ / * (JWJ) 7.66+ 9.71+ 12.15+ 5.83 6.15+ 6.52+ 16.62+ 28.38+ 40.00+ 6.80+ 9.14+ 12.51+ 
SRB (JWJ) 5.86+ 7.43+ 9.43+ 4.66 4.72 5.08 13.53+ 23.41+ 34.29+ 5.36 7.13+ 9.80+ 
HOCH (JWJ) 6.06+ 7.68+ 9.74+ 4.82 4.89 5.25 13.87+ 23.97+ 35.03+ 5.54 7.34+ 10.08+ 
q / PER (HWJ) 5.75+ 7.36+ 9.37+ 4.29 4.46 4.89 12.62+ 21.63+ 31.53+ 5.10 6.71+ 9.33+ 
HWJ / q (HWJ) 6.58+ 8.52+ 10.79+ 4.83 5.11 5.46 14.31+ 24.77+ 35.30+ 5.75+ 7.67+ 10.58+ 
HWJ / * (HWJ) 7.69+ 9.76+ 12.25+ 5.87 6.17+ 6.54+ 16.66+ 28.44+ 40.12+ 6.87+ 9.17+ 12.53+ 
SRB (HWJ) 5.90+ 7.49+ 9.55+ 4.70 4.76 5.10 13.58+ 23.47+ 34.40+ 5.42 7.17+ 9.83+ 
HOCH (HWJ) 6.09+ 7.73+ 9.86+ 4.86 4.92 5.27 13.90+ 24.01+ 35.12+ 5.59 7.39+ 10.10+ 
Pairwise 
Estimate 

            

SRB (WJ) 6.39+ 9.03+ 12.41+ 4.46 4.91 5.70       
HOCH (WJ) 6.59+ 9.24+ 12.68+ 4.62 5.08 5.86       
SRB (JWJ) 6.85+ 9.31+ 12.53+ 4.68 4.96 5.62       
HOCH (JWJ) 7.00+ 9.51+ 12.79+ 4.83 5.10 5.77       
SRB (HWJ) 6.89+ 9.37+ 12.63+ 4.73 4.99 5.64       
HOCH(HWJ) 7.03+ 9.57+ 12.88+ 4.88 5.13 5.79       
No Preliminary Test (symmetric 
trimming) 

         

 10 15 20          
q / PER (WJ) 4.24 4.26 4.43          
WJ / q (WJ) 4.65 4.65 4.80          
WJ / * (WJ) 5.60 5.59 5.84          
SRB (WJ) 4.62 4.65 4.75          
HOCH (WJ) 4.74 4.77 4.87          
q / PER (JWJ) 4.23 4.09 4.29          
JWJ / q (JWJ) 4.54 4.47 4.54          
JWJ / * (JWJ) 5.52 5.43 5.56          
SRB (JWJ) 4.55 4.46 4.57          
HOCH (JWJ) 4.71 4.58 4.69          
q / PER (HWJ) 4.26 4.11 4.30          
HWJ / q (HWJ) 4.60 4.50 4.55          
HWJ / * (HWJ) 5.59 5.47 5.57          
SRB (HWJ) 4.61 4.49 4.59          
HOCH (HWJ) 4.77 4.61 4.71          
  

Notes: 10/20 = 10% symmetric/20% asymmetric trimming; 15/30 = 15% symmetric/30% asymmetric trimming; 20/40 = 20% 
symmetric/40% asymmetric trimming; 10/10 = 10% symmetric/10% asymmetric trimming; 15/15 = 15% symmetric/15% 
asymmetric trimming; 20/20 = 20% symmetric/20% asymmetric trimming;  q/PER indicates that q and Peritz procedures are 
equivalent; /* indicates that the SRB and Hayter procedures are equivalent; HOCH is the Hochberg procedure; 10 = 10% 
symmetric trimming; 15 = 15% symmetric trimming; 20 = 20% symmetric trimming; bold entries indicate values that exceeded 
Bradley’s (1978) lower and upper limits; + indicates a liberal value, - indicates a conservative value, and ± indicates both 
conservative and liberal values in the minimum to maximum range of error rates. 
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Table 2. Summary Percentages of Type I Error for Multiple Comparison Procedures (J = 3; g = 1, h = 0 Distribution) 
 Average Estimate Individual Estimate 
 10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20 
q / PER (WJ) 4.46 4.55 4.83 4.33 4.09 4.31 6.77+ 10.28+ 14.18+ 4.25 4.47 5.34 
WJ / q (WJ) 5.01 5.14 5.42 4.97 4.78 4.84 7.55+ 11.35+ 15.64+ 4.82 5.14 6.06+ 
WJ / * (WJ) 6.26+ 6.31+ 6.55+ 6.46+ 6.12+ 6.06+ 9.11+ 13.36+ 18.05+ 6.16+ 6.46+ 7.46+ 
SRB (WJ) 5.06- 5.04 5.22 5.30± 4.85- 4.93- 7.42+ 10.99+ 15.02+ 5.05 5.14 5.89+ 
HOCH (WJ) 5.17- 5.18 5.38 5.42± 4.97- 5.03- 7.63+ 11.32+ 15.49+ 5.15 5.29 6.06+ 
q / PER (JWJ) 4.42 4.22 4.29 4.74 4.18 4.20 7.24+ 10.92+ 14.85+ 4.61 4.61 5.33 
JWJ / q (JWJ) 5.01 4.78 4.78 5.23 4.87 4.76 8.03+ 11.96+ 16.08+ 5.07 5.30 6.12+ 
JWJ / * (JWJ) 6.22+ 5.95+ 6.02+ 6.70+ 6.22+ 5.94+ 9.66+ 14.12+ 18.68+ 6.43 6.62+ 7.48+ 
SRB (JWJ) 4.97- 4.81- 4.90- 5.53 4.89 4.78- 7.94+ 11.82+ 15.92+ 5.25 5.15 5.89+ 
HOCH (JWJ) 5.11- 4.92- 5.04- 5.67 5.01 4.91- 8.12+ 12.16+ 16.36+ 5.39 5.28 6.06+ 
q / PER (HWJ) 4.43 4.24 4.35 4.83 4.23 4.21 7.26+ 10.96+ 14.92+ 4.70 4.66 5.34 
HWJ / q (HWJ) 5.03 4.82 4.86 5.33 4.90 4.78 8.06+ 12.03+ 16.17+ 5.15 5.34+ 6.14+ 
HWJ / * (HWJ) 6.24+ 5.98+ 6.11+ 6.81+ 6.25+ 5.97+ 9.69+ 14.15+ 18.75+ 6.53+ 6.66+ 7.50+ 
SRB (HWJ) 4.99- 4.84- 4.97- 5.64 4.93 4.80- 7.97+ 11.86+ 16.00+ 5.36 5.20 5.90+ 
HOCH (HWJ) 5.14- 4.95- 5.11- 5.78 5.05 4.94- 8.16+ 12.20+ 16.44+ 5.51 5.32 6.09+ 
Pairwise Estimate             
SRB (WJ) 5.22 5.39+ 5.82+ 5.25± 4.80- 4.93       
HOCH (WJ) 5.33 5.53+ 5.97+ 5.35± 4.91- 5.02       
SRB (JWJ) 5.31 5.31± 5.62± 5.50 4.84 4.81-       
HOCH (JWJ) 5.43 5.41± 5.74± 5.62 4.95 4.93-       
SRB (HWJ) 5.33 5.34± 5.68± 5.61 4.89 4.83-       
HOCH(HWJ) 5.46 5.44± 5.81± 5.74 5.00 4.96-       
No Preliminary Test (symmetric trimming)          
 10 15 20          
q / PER (WJ) 4.61 4.41 4.60-          
WJ / q (WJ) 5.22 5.00 5.00          
WJ / * (WJ) 6.64+ 6.31+ 6.31+          
SRB (WJ) 5.57± 5.24- 5.31-          
HOCH (WJ) 5.66± 5.36- 5.40±          
q / PER (JWJ) 4.80 4.41 4.50          
JWJ / q (JWJ) 5.24 4.94 4.89          
JWJ / * (JWJ) 6.66+ 6.18+ 6.09+          
SRB (JWJ) 5.59 5.11 5.15-          
HOCH (JWJ) 5.71+ 5.23 5.24          
q / PER (HWJ) 4.91 4.45 4.52          
HWJ / q (HWJ) 5.34 5.01 4.91          
HWJ / * (HWJ) 6.78+ 6.24+ 6.12+          
SRB (HWJ) 5.68+ 5.17 5.17-          
HOCH (HWJ) 5.82+ 5.30 5.26          
  

Note. See note from Table 1 
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Table 3. Summary Percentages of Type I Error for Multiple Comparison Procedures (J = 3; g = .25, h = .25 
Distribution) 

 Average Estimate Individual Estimate 
 10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20 
q / PER (WJ) 4.72 6.11+ 7.64+ 3.66 4.11- 4.69 6.62+ 11.73+ 17.69+ 3.36- 4.49 6.38+ 
WJ / q (WJ) 5.17 6.83+ 8.62+ 3.94 4.48 5.09 7.28+ 12.92+ 19.32+ 3.71 4.95 6.88+ 
WJ / * (WJ) 6.11+ 7.92+ 9.93+ 4.77 5.40 6.07+ 8.63+ 15.25+ 22.51+ 4.47 5.90 8.23+ 
SRB (WJ) 4.92 6.29+ 7.86+ 3.91 4.35 4.88 7.15+ 13.03+ 19.75+ 3.59 4.82 6.83+ 
HOCH (WJ) 5.07 6.45+ 8.05+ 4.03 4.48 5.03 7.32+ 13.30+ 20.12+ 3.70 4.95 7.03+ 
q / PER (JWJ) 5.95+ 7.87+ 10.06+ 4.47 4.81 5.47 8.20+ 15.19+ 22.75+ 3.95 5.29 7.71+ 
JWJ / q (JWJ) 6.49+ 8.57+ 10.90+ 4.84 5.22 5.95+ 8.85+ 16.47+ 24.37+ 4.23 5.72 8.18+ 
JWJ / * (JWJ) 7.57+ 9.68+ 12.16+ 5.84 6.22+ 6.99+ 10.54+ 19.24+ 28.16+ 5.11 6.77+ 9.75+ 
SRB (JWJ) 6.31+ 8.11+ 10.40+ 4.79 5.10 5.74+ 9.06+ 16.97+ 25.65+ 4.15 5.64 8.40+ 
HOCH (JWJ) 6.45+ 8.29+ 10.58+ 4.92 5.25 5.89+ 9.25+ 17.21+ 25.99+ 4.28 5.80 8.61+ 
q / PER (HWJ) 6.02+ 7.97+ 10.21+ 4.51 4.85 5.53 8.29+ 15.37+ 23.00+ 3.98 5.33 7.80+ 
HWJ / q (HWJ) 6.57+ 8.66+ 11.02+ 4.88 5.26 5.98+ 8.96+ 16.65+ 24.60+ 4.27 5.76+ 8.26+ 
HWJ / * (HWJ) 7.67+ 9.80+ 12.28+ 5.91 6.27+ 7.02+ 10.66+ 19.46+ 28.42+ 5.16 6.82+ 9.84+ 
SRB (HWJ) 6.38+ 8.23+ 10.57+ 4.85 5.17 5.80+ 9.17+ 17.22+ 26.01+ 4.19 5.69 8.51+ 
HOCH (HWJ) 6.52+ 8.41+ 10.74+ 4.97 5.32 5.95+ 9.36+ 17.48+ 26.32+ 4.33 5.85 8.70+ 
Pairwise Estimate            
SRB (WJ) 5.33 7.24+ 9.42+ 3.99 4.55 5.20       
HOCH (WJ) 5.44 7.36+ 9.57+ 4.10 4.66 5.31       
SRB (JWJ) 6.88+ 9.71+ 13.14+ 4.93 5.42 6.24+       
HOCH (JWJ) 7.01+ 9.86+ 13.28+ 5.05 5.54 6.36+       
SRB (HWJ) 6.98+ 9.86+ 13.45+ 4.99 5.47 6.31+       
HOCH(HWJ) 7.11+ 10.00+ 13.58+ 5.10 5.60 6.42+       
No Preliminary Test (symmetric 
trimming) 

         

 10 15 20          
q / PER (WJ) 3.42- 3.50- 3.72          
WJ / q (WJ) 3.64 3.82 3.98          
WJ / * (WJ) 4.42 4.62 4.84          
SRB (WJ) 3.61 3.72 3.94          
HOCH (WJ) 3.72 3.81 4.05          
q / PER (JWJ) 4.07 3.81 3.84          
JWJ / q (JWJ) 4.39 4.15 4.11          
JWJ / * (JWJ) 5.32 5.00 4.98          
SRB (JWJ) 4.29 4.04 4.03          
HOCH (JWJ) 4.43 4.16 4.14          
q / PER (HWJ) 4.10 3.83 3.85          
HWJ / q (HWJ) 4.44 4.17 4.11          
HWJ / * (HWJ) 5.37 5.03 5.00          
SRB (HWJ) 4.34 4.06 4.05          
HOCH (HWJ) 4.47 4.18 4.15          
  

Note. See note from Table 1 
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by a test of symmetry, particularly for the MCPs 
based on the modified WJ statistic (i.e., JWJ or 
HWJ). 
 Specifically, all the MCPs based on the 
10/10 trimming case with the test of symmetry 
based on individual group estimates of tail 
weight and symmetry had rates of Type I error 
within Bradley’s (1978) limits except the Hayter 
(1986) two-stage and Shaffer (1986) 
sequentially rejective Bonferroni procedure that 
begins with an omnibus test utilizing the WJ 
statistic (denoted WJ/*) and the HWJ statistic 
(denoted HWJ/*) with liberal rates of 8.28% and 
7.52%, respectively. Interestingly, this particular 
condition had the largest number of MCPs that 
fell within Bradley’s lower and upper limits. The 
mean error rates across robust MCPs based on 
the JWJ and HWJ heteroscedastic statistics for 
the 10/10 and 15/15 trimming cases were 5.34% 
and 4.76%, respectively for the test of symmetry 
based on average estimates across groups and 
5.27% and 5.07%, respectively for the test of 
symmetry based on individual group estimates. 
 The MCPs based on the WJ statistic 
generally had more conservative error rates than 
the same MCPs based on the modified WJ 
statistic (i.e., JWJ and HWJ) when preceded by a 
test of symmetry except under the 10/20, 15/30, 
20/40, and 20/20 trimming cases for the test of 
symmetry based on average estimates across 
groups where the opposite pattern was observed 
(i.e., WJ based MCPs had higher mean error 
rates). Additionally, Type I error rates for the 
MCPs tended to decrease with an increase in the 
percentage of trimming (i.e., from 10/20 to 
15/30 to 20/40 and from 10/10 to 15/15 to 
20/20), except for the MCPs preceded by a test 
of symmetry based on individual group 
estimates where the pattern was reversed, that is, 
error rates tended to increase as the proportion 
of trimming increased. 
 The mean error rates for the SRB and 
HOCH procedures indicate that an optimal 
strategy is to use a test of symmetry based either 
on indices of tail weight and symmetry averaged 
across the pairwise comparisons or averaged 
across all groups with 15/15 
symmetric/asymmetric trimming (i.e., mean 
error rates closer to the nominal 5% level). A 
result consistent with the (g = .5, h = 0) 
distribution. 

g = .25 and h = .25 Distribution 
 When nonnormal data were obtained 
from the (g = .25, h = .25) distribution, the use 
of the symmetry test based on the individual 
group indices resulted in all MCPs having liberal 
Type I error rates, for the 10/20, 15/30, 20/40, 
and 20/20 trimming cases (see Table 3). 
However, improved Type I error control was 
obtained when the test of symmetry was based 
on indices averaged across all groups or 
averaged across the two groups defining the 
pairwise comparison. Interestingly, all MCPs 
had rates below Bradley’s (1978) upper limit for 
the 10/10 trimming case when preceded by the 
preliminary test of symmetry, regardless of the 
method of computing the test. In addition, all 
MCPs had rates of Type I error below Bradley’s 
upper limit when always adopting 10%, 15%, or 
20% symmetric trimming.  
 The use of the averaged over all groups 
tail weight and symmetry indices resulted in 
Type I error rates closer to the nominal level 
compared to always adopting symmetric 
trimming. For example, the 10/10 and 15/15 
trimming cases had mean rates of Type I error 
across non-liberal MCPS equal to 4.69% and 
4.91%, respectively, whereas the 10%, 15%, and 
20% symmetric trimming cases had mean error 
rates, across MCPs equal to 4.27%, 4.13%, and 
4.19%, respectively. 
 The MCPs based on the JWJ or HWJ 
heteroscedastic statistics had rates of Type I 
error closer to the nominal level compared to 
MCPs based on the WJ statistic. For example, 
(a) with the symmetry test based on average 
estimates across groups, the mean rates of Type 
I error across all five MCPs when based on the 
WJ, JWJ, and HWJ test statistics for the 10/10 
trimming condition equaled 4.06%, 4.97%, and 
5.02%, respectively, (b) with the symmetry test 
based on individual group estimates, the mean 
error rates for the 10/10 trimming condition 
equaled 3.77%, 4.34%, and 4.39%, respectively, 
and (c) with symmetric trimming, the mean rates 
for 20% trimming equaled 4.11%, 4.22%, and 
4.23%, respectively. 
 Mean rates of Type I error for the SRB 
and HOCH procedures, when preceded by a test 
of symmetry based on tail weight and symmetry 
estimates from the two groups forming the 
pairwise comparison, were higher than when the 
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symmetry test was based on the average estimate 
of the indices across all groups for a given 
trimming condition, with the highest rates 
occurring when individual group indices of tail 
weight and symmetry were used. The optimal 
level of trimming occurs under the 10/10 
symmetric/asymmetric trimming case when the 
MPCs were based on the JWJ or HWJ statistics 
(i.e., mean error rates closest to the nominal 5% 
level). 
 
J = 6 
 Tables 4 through 6 contain the summary 
percentages of Type I error for the MPCs for the 
(g = .5, h = 0), (g = 1, h = 0), and (g = .25, h = 
.25) distributions, respectively. The SRB and 
HOCH procedures had identical error rates 
across the eleven pairings of groups sizes and 
variances, thus they have been combined into 
one row in the tables (denoted as SRB/HOCH). 
 
g = .5 and h = 0 Distribution 
 All MCPs had Type I error rates below 
Bradley’s (1978) upper limit (i.e., 7.50%) when 
based on the test of symmetry with indices of 
tail weight and symmetry averaged over groups 
except Hayter’s (1986) two-stage and Shaffer’s 
(1986) sequentially rejective Bonferroni 
procedure that begins with an omnibus test (i.e., 
WJ/HAY, JWJ/HAY, HWJ/HAY, WJ/SRB, 
JWJ/SRB, HWJ/SRB) under the 20/40 
symmetric/asymmetric trimming case (see Table 
4). Unlike when J = 3, some MCPs had error 
rates below Bradley’s lower limit (i.e., 2.50%). 
Specifically, the effected MCPs were the range 
procedures [(PER (WJ), q (WJ), WJ/q, PER 
(JWJ), q (JWJ), JWJ/q, PER (HWJ), q (HWJ), 
and HWJ/q)] when they were based on the test 
of symmetry using an average estimate of tail 
weight and symmetry across all of the groups 
and symmetric trimming (a result consistent 
with that obtained for the chi-square 
distribution). 
 The mean error rate across MCPs for the 
10/20, 15/30, 10/10, 15/15, and 20/20 trimming 
cases when preceded by the test of symmetry 
based on average estimates of tail weight and 
symmetry across all groups was equal to 3.57%, 
 
 
 

 3.94%, 3.39%, 3.31%, and 3.39%, respectively 
and for the 10/10 trimming case, when preceded 
by the test of symmetry based on individual 
group estimates of tail weight and symmetry, the 
mean error rate was equal to 4.17%. Thus, an 
optimal strategy and level of trimming is to use 
10/10 symmetric/asymmetric trimming with the 
test of symmetry based on individual group 
estimates (a result consistent with that obtained 
for the chi-square distribution).  
 The pattern of error rates differed with 
the type of heteroscedastic statistic. Error rates 
tended to increase as the proportion of trimming 
increased for the 10/20, 15/30 and 20/40 
trimming cases and for the 10/10, 15/15, and 
20/20 trimming cases. However, MCPs based on 
the JWJ and HWJ statistics, had rates that tended 
to decrease as the proportion of trimming 
increased for the 10/10, 15/15, and 20/20 
conditions with the test of symmetry based on 
average group estimates (a result consistent with 
that obtained for the chi-square distribution). 
 The MCPs based on the WJ statistic 
generally had more conservative rates of error 
than the same MCPs based on the modified WJ 
statistics (i.e., JWJ and HWJ), when preceded by 
a test of symmetry based on individual group 
estimates or pairwise estimates of tail weight 
and symmetry, a pattern opposite to that 
observed for the symmetry test based on average 
estimates across groups (except under the 10/10 
trimming case) or when always adopting 
symmetric trimming. 
 For example, under the 10/10 trimming 
case with the test of symmetry based on indices 
(tail weight and symmetry) for individual 
groups, the mean error rates for the MCPs based 
on the WJ, JWJ, and HWJ statistics were equal 
to 4.07%, 4.20%, and 4.25%, respectively and 
when based on average indices across groups, 
the mean error rates were equal to 3.29%, 
3.43%, and 3.46%, respectively. On the other 
hand, when adopting 20% symmetric trimming 
the mean error rates across MCPs based on the 
WJ, JWJ, and HWJ statistics were equal to 
3.63%, 3.45%, and 3.47%, respectively. This 
pattern is consistent with the results obtained for 
the chi-square distribution.  
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Table 4. Summary Percentages of Type I Error for Multiple Comparison Procedures (J = 6; g =.5, h = 0 Distribution) 
 Average Estimate Individual Estimate 
 10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20 
PER (WJ) 3.05- 3.59- 4.43- 2.67- 2.77- 2.97- 9.35+ 17.72+ 27.66+ 3.29- 4.83± 7.00+ 
q (WJ) 2.97- 3.47- 4.23- 2.58- 2.69- 2.84- 9.06+ 17.20+ 26.59+ 3.18- 4.70± 6.64+ 
WJ / q (WJ) 2.61- 3.13- 4.04- 2.26- 2.41- 2.50- 8.90+ 17.70+ 27.83+ 2.89- 4.34± 6.41+ 
WJ / SRB (WJ) 4.33 4.84 6.00+ 3.97 4.06 4.25 14.31+ 28.11+ 44.63+ 4.95 7.20+ 11.11+ 
WJ / HAY (WJ) 5.13 5.69 7.18+ 4.67 4.73 5.01 16.69+ 32.57+ 50.30+ 5.79 8.41+ 13.06+ 
SRB/HOCH (WJ) 3.84 4.19 5.07 3.57 3.53 3.79 12.09+ 23.83+ 38.70+ 4.33 6.19 9.42+ 
PER (JWJ) 2.86- 3.21- 3.98- 2.82- 2.71- 2.67- 10.74+ 20.23+ 30.90+ 3.50- 4.98± 7.36+ 
q (JWJ) 2.75- 3.08- 3.78- 2.75- 2.63- 2.56- 10.45+ 19.63+ 29.87+ 3.39- 4.83± 7.02+ 
JWJ / q (JWJ) 2.52- 2.80- 3.45- 2.39- 2.29- 2.29- 10.32+ 20.13+ 31.07+ 2.99- 4.45+ 6.73+ 
JWJ / SRB (JWJ) 4.22 4.45 5.49+ 4.11 3.95 3.99 16.08+ 31.60+ 49.35+ 4.99 7.29+ 11.52+ 
JWJ / HAY (JWJ) 5.01 5.30 6.51+ 4.76 4.57 4.71 18.72+ 36.12+ 54.93+ 5.83 8.56+ 13.53+ 
SRB/HOCH (JWJ) 3.70 3.91 4.88 3.74 3.46 3.54 13.87+ 27.27+ 43.70+ 4.48 6.37 9.83+ 
PER (HWJ) 2.91- 3.27- 4.09- 2.85- 2.73- 2.70- 10.80+ 20.32+ 31.03+ 3.55- 5.03+ 7.40+ 
q (HWJ) 2.78- 3.14- 3.91- 2.77- 2.66- 2.58- 10.51+ 19.70+ 30.01+ 3.43- 4.85± 7.04+ 
HWJ / q (HWJ) 2.56- 2.85- 3.58- 2.41- 2.33- 2.31- 10.38+ 20.21+ 31.22+ 3.03- 4.48+ 6.78+ 
HWJ / SRB (HWJ) 4.28 4.55 5.68+ 4.15 3.99 4.03 16.18+ 31.76+ 49.57+ 5.04 7.35+ 11.58+ 
HWJ / HAY (HWJ) 5.06 5.40 6.71+ 4.80 4.61 4.76 18.82+ 36.24+ 55.13+ 5.89 8.61+ 13.59+ 
SRB/HOCH (HWJ) 3.75 4.00 5.03 3.79 3.49 3.58 13.97+ 27.42+ 43.96+ 4.54 6.42 9.89+ 
Pairwise Estimate             
SRB/HOCH (WJ) 4.58 6.21+ 8.98+ 3.46 3.72 4.35       
SRB/HOCH (JWJ) 4.97 6.33+ 9.16+ 3.77 3.75 4.23       
SRB/HOCH (HWJ) 5.01 6.42+ 9.29+ 3.81 3.78 4.25       
No Preliminary Test (symmetric 
trimming) 

         

 10 15 20          
PER (WJ) 2.69- 2.81- 2.89-          
q (WJ) 2.60- 2.71- 2.69-          
WJ / q (WJ) 2.36- 2.38- 2.43-          
WJ / SRB (WJ) 4.14 4.23 4.53          
WJ / HAY (WJ) 4.81 4.86 5.21          
SRB/HOCH (WJ) 3.66 3.77 4.01          
PER (JWJ) 2.85- 2.77- 2.81-          
q (JWJ) 2.76- 2.67- 2.58-          
JWJ / q (JWJ) 2.35- 2.28- 2.27-          
JWJ / SRB (JWJ) 4.11 4.06 4.25          
JWJ / HAY (JWJ) 4.72 4.67 4.97          
SRB/HOCH (JWJ) 3.78 3.62 3.81          
PER (HWJ) 2.90- 2.79- 2.82-          
q (HWJ) 2.80- 2.70- 2.60-          
HWJ / q (HWJ) 2.38- 2.30- 2.28-          
HWJ / SRB (HWJ) 4.19 4.08 4.27          
HWJ / HAY (HWJ) 4.77 4.70 5.00          
SRB/HOCH (HWJ) 3.81 3.67 3.85          
  

Notes: 10/20 = 10% symmetric/20% asymmetric trimming; 15/30 = 15% symmetric/30% asymmetric trimming; 20/40 = 20% 
symmetric/40% asymmetric trimming; 10/10 = 10% symmetric/10% asymmetric trimming; 15/15 = 15% symmetric/15% 
asymmetric trimming; 20/20 = 20% symmetric/20% asymmetric trimming;  PER is the Peritz procedure; HAY is the Hayter 
procedure; SRB/HOCH indicates that SRB and Hochberg procedures had equivalent rates; 10 = 10% symmetric trimming; 15 = 
15% symmetric trimming; 20 = 20% symmetric trimming; bold entries indicate values that exceeded Bradley’s (1978) lower and 
upper limits;  + indicates a liberal value, - indicates a conservative value, and ± indicates both conservative and liberal values in 
the minimum to maximum range of error rates. 
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Table 5. Summary Percentages of Type I Error for Multiple Comparison Procedures (J = 6; g =1, h=0 Distribution) 
 Average Estimate Individual Estimate 
 10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20 
PER (WJ) 2.43- 2.43- 2.53- 2.39- 2.27- 2.43- 5.05 8.49+ 12.78+ 2.35- 2.74- 3.45- 
q (WJ) 2.33- 2.32- 2.38- 2.32- 2.23- 2.32- 4.88 8.16+ 12.13+ 2.29- 2.67- 3.30- 
WJ / q (WJ) 2.17- 2.06- 2.17- 2.18- 2.11- 2.17- 4.58 7.91+ 12.02+ 2.14- 2.55- 3.15- 
WJ / SRB (WJ) 4.46- 3.99 4.28 4.77± 4.36- 4.45- 7.85+ 12.51+ 18.40+ 4.52± 4.72 5.88+ 
WJ / HAY (WJ) 5.11+ 4.71 5.07 5.44± 5.01 5.08± 9.16+ 14.66+ 21.50+ 5.21+ 5.59 6.92+ 
SRB/HOCH (WJ) 3.90- 3.53- 3.68- 4.14± 3.84- 3.88- 6.76+ 10.57+ 15.68+ 3.87- 4.07- 4.96 
PER (JWJ) 2.36- 1.89- 1.88- 2.93- 2.50- 2.34- 5.84+ 9.52+ 13.99+ 2.81- 3.00- 3.50- 
q (JWJ) 2.25- 1.82- 1.76- 2.85- 2.44- 2.23- 5.62+ 9.19+ 13.32+ 2.73- 2.93- 3.30- 
JWJ / q (JWJ) 2.10- 1.66- 1.56- 2.51- 2.26- 2.08- 5.31+ 8.99+ 13.18+ 2.40- 2.67- 3.19- 
JWJ / SRB (JWJ) 4.28- 3.56- 3.65- 5.08+ 4.37- 4.24- 8.80+ 13.92+ 19.98+ 4.76 4.77 5.78+ 
JWJ / HAY (JWJ) 4.93- 4.13- 4.24- 5.86+ 5.07 4.91- 10.20+ 16.19+ 22.90+ 5.54 5.64 6.90+ 
SRB/HOCH (JWJ) 3.79- 3.10- 3.22- 4.72± 3.84- 3.77- 7.82+ 12.02+ 17.40+ 4.32- 4.11- 4.98 
PER (HWJ) 2.37- 1.93- 1.94- 3.00- 2.52- 2.35- 5.89+ 9.58+ 14.10+ 2.87- 3.03- 3.52- 
q (HWJ) 2.27- 1.85- 1.82- 2.92- 2.47- 2.25- 5.68+ 9.27+ 13.43+ 2.80- 2.96- 3.32- 
HWJ / q (HWJ) 2.11- 1.68- 1.63- 2.58- 2.29- 2.09- 5.36+ 9.04+ 13.28+ 2.47- 2.70- 3.22- 
HWJ / SRB (HWJ) 4.30- 3.59- 3.74- 5.21+ 4.41- 4.26- 8.87+ 14.03+ 20.11+ 4.88 4.82 5.81+ 
HWJ / HAY (HWJ) 4.96- 4.17- 4.36- 6.01+ 5.12 4.93- 10.27+ 16.29+ 23.07+ 5.68+ 5.70 6.94+ 
SRB/HOCH (HWJ) 3.80- 3.13- 3.31- 4.83± 3.88- 3.77- 7.87+ 12.09+ 17.51+ 4.41- 4.16- 5.00 
Pairwise Estimate             
SRB/HOCH (WJ) 3.99- 3.88- 4.30- 3.95± 3.65- 3.83-       
SRB/HOCH (JWJ) 4.10- 3.60- 3.99- 4.55± 3.73- 3.78-       
SRB/HOCH (HWJ) 4.12- 3.64- 4.07- 4.66± 3.77- 3.79-       
No Preliminary Test (symmetric trimming)          
 10 15 20          
PER (WJ) 2.52- 2.44- 2.49-          
q (WJ) 2.43- 2.37- 2.34-          
WJ / q (WJ) 2.28- 2.18- 2.17-          
WJ / SRB (WJ) 4.84± 4.53- 4.68-          
WJ / HAY (WJ) 5.51± 5.14± 5.42+          
SRB/HOCH (WJ) 4.23± 3.95- 4.12-          
PER (JWJ) 3.00- 2.61- 2.54-          
q (JWJ) 2.90- 2.52- 2.37-          
JWJ / q (JWJ) 2.52- 2.25- 2.10-          
JWJ / SRB (JWJ) 5.01+ 4.37- 4.48-          
JWJ / HAY (JWJ) 5.78+ 5.08 5.22+          
SRB/HOCH (JWJ) 4.65± 3.99- 4.03-          
PER (HWJ) 3.07- 2.65- 2.56-          
q (HWJ) 2.96- 2.56- 2.37-          
HWJ / q (HWJ) 2.60- 2.28- 2.12-          
HWJ / SRB (HWJ) 5.13+ 4.45- 4.53          
HWJ / HAY (HWJ) 5.92+ 5.15 5.25+          
SRB/HOCH (HWJ) 4.78± 4.05- 4.07-          
  

Note. See note from Table 4 
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Table 6. Summary Percentages of Type I Error for Multiple Comparison Procedures (J = 6; g =.25, h=.25 Distribution) 
 Average Estimate Individual Estimate 
 10/20 15/30 20/40 10/10 15/15 20/20 10/20 15/30 20/40 10/10 15/15 20/20 
PER (WJ) 2.57- 3.25- 3.99- 2.17- 2.43- 2.62- 4.84 10.70+ 17.47+ 2.16- 3.12- 4.55 
q (WJ) 2.48- 3.13- 3.79- 2.08- 2.33- 2.47- 4.66 10.33+ 16.82+ 2.07- 3.00- 4.30 
WJ / q (WJ) 2.16- 2.85- 3.60- 1.74- 1.96- 2.17- 4.25 9.86+ 16.52+ 1.69- 2.52- 3.87 
WJ / SRB (WJ) 3.57 4.46 5.55+ 3.04 3.37 3.81 7.14+ 16.38+ 27.48+ 3.00- 4.42 6.81+ 
WJ / HAY (WJ) 4.21 5.29 6.67+ 3.58 3.97 4.54 8.25+ 18.37+ 30.36+ 3.45 5.13 7.91+ 
SRB/HOCH (WJ) 3.04 3.83 4.71 2.66- 2.95- 3.31- 6.40+ 14.60+ 24.66+ 2.67- 3.93 6.11 
PER (JWJ) 3.74- 4.79± 6.06+ 3.00- 3.16- 3.29- 7.08+ 16.04+ 25.79+ 2.63- 3.96- 6.44+ 
q (JWJ) 3.63- 4.65± 5.81+ 2.90- 3.05- 3.11- 6.88+ 15.71+ 25.15+ 2.54- 3.83- 6.12+ 
JWJ / q (JWJ) 3.16- 4.24- 5.56+ 2.44- 2.57- 2.72- 6.30+ 14.98+ 24.86+ 2.11- 3.28- 5.52+ 
JWJ / SRB (JWJ) 5.10 6.36+ 7.95+ 4.25 4.32 4.58 10.40+ 24.27+ 39.41+ 3.69 5.66 9.44+ 
JWJ / HAY (JWJ) 5.85 7.26+ 9.05+ 4.89 4.96 5.35 11.63+ 26.25+ 41.98+ 4.20 6.40+ 10.61+ 
SRB/HOCH (JWJ) 4.56 5.65+ 7.14+ 3.85 3.81 4.12 9.58+ 22.47+ 36.87+ 3.36 5.19 8.81+ 
PER (HWJ) 3.80- 4.92+ 6.24+ 3.04- 3.21- 3.33- 7.25+ 16.46+ 26.33+ 2.68- 4.02- 6.58+ 
q (HWJ) 3.69- 4.76± 5.99+ 2.93- 3.10- 3.17- 7.04+ 16.08+ 25.70+ 2.59- 3.90- 6.25+ 
HWJ / q (HWJ) 3.24- 4.33- 5.74+ 2.49- 2.63- 2.79- 6.42+ 15.35+ 25.38+ 2.13- 3.34- 5.64+ 
HWJ / SRB (HWJ) 5.23 6.51+ 8.17+ 4.34 4.39 4.66 10.65+ 24.80+ 40.10+ 3.73 5.74 9.62+ 
HWJ / HAY (HWJ) 5.70+ 7.39+ 9.26+ 4.98 5.03 5.46 11.86+ 26.74+ 42.66+ 4.24 6.50+ 10.81+ 
SRB/HOCH (HWJ) 4.66 5.80+ 7.35+ 3.92 3.89 4.19 9.82+ 23.13+ 37.70+ 3.42 5.31 9.06+ 
Pairwise Estimate             
SRB/HOCH (WJ) 3.86 5.50+ 7.42+ 2.84 3.30 3.84       
SRB/HOCH (JWJ) 6.14+ 9.45+ 13.92+ 4.14 4.56 5.36       
SRB/HOCH (HWJ) 6.31+ 9.82+ 14.51+ 4.22 4.69 5.51+       
No Preliminary Test (symmetric trimming)          
 10 15 20          
PER (WJ) 2.06- 2.18- 2.24-          
q (WJ) 1.97- 2.10- 2.10-          
WJ / q (WJ) 1.65- 1.74- 1.81-          
WJ / SRB (WJ) 2.90 3.06 3.35          
WJ / HAY (WJ) 3.41 3.62 3.99          
SRB/HOCH (WJ) 2.53- 2.70- 2.95-          
PER (JWJ) 2.67- 2.53- 2.39-          
q (JWJ) 2.58- 2.44- 2.21-          
JWJ / q (JWJ) 2.19- 2.03- 1.91-          
JWJ / SRB (JWJ) 3.87 3.60 3.52          
JWJ / HAY (JWJ) 4.44 4.17 4.15          
SRB/HOCH (JWJ) 3.46 3.17 3.15          
PER (HWJ) 2.70- 2.56- 2.40-          
q (HWJ) 2.61- 2.46- 2.23-          
HWJ / q (HWJ) 2.22- 2.05- 1.92-          
HWJ / SRB (HWJ) 3.92 3.63 3.54          
HWJ / HAY (HWJ) 4.50 4.21 4.18          
SRB/HOCH (HWJ) 3.50 3.21 3.17          
  

Note. See note from Table 4 
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 The SRB and HOCH methods had mean 
error rates closest to the nominal level when 
preceded by the test of symmetry based on 
average group estimates for the 20/40 trimming 
case or pairwise estimates for the 10/20 
trimming case. Specifically, the mean error rates 
for the procedures based on the WJ, JWJ, and 
HWJ statistics were 5.07%, 4.88%, and 5.03%, 
respectively when using the average group 
estimates of tail weight and symmetry and 
4.58%, 4.97%, and 5.01%, respectively for the 
pairwise estimate indices. It is worth noting that 
under the 20/40 trimming case, the SRB/HOCH 
procedures were the only MCP to have robust 
error rates when preceded by a test of symmetry.  
 
g = 1 and h = 0 Distribution 
 All MCPs had rates of Type I error 
below Bradley’s (1978) upper limit when 
preceded by a test of symmetry based on indices 
averaged across all groups for the 15/30, 20/40, 
and 15/15 trimming conditions and when the test 
of symmetry was based on individual group 
indices for the 15/15 trimming condition (see 
Table 5). Few trimming conditions resulted in 
MCPs with error rates within Bradley’s limits. 
The condition with the most robust MCPs 
occurred with a test of symmetry based on tail 
weight and symmetry estimates from the 
individual groups with 15/15 
symmetric/asymmetric trimming. For this 
particular trimming condition, the mean error 
rates were closer to the nominal 5% level for 
MCPs preceded with the symmetry test based on 
the individual group estimates (average rate 
equal to 3.82%) compared to MCPs preceded 
with the test of symmetry based on average 
estimates across all groups (average rate equal to 
3.39%). Furthermore, MCPs based on the JWJ 
and HWJ statistics generally had error rates 
closer to the nominal level compared to MCPs 
based on the WJ statistic. For example, under 
the 15/15 trimming case with the test of 
symmetry based on tail weight and symmetry 
estimates from individual groups, the mean error 
rates across the MCPs based on WJ, JWJ, and 
HWJ statistics were equal to 3.72%, 3.85%, and 
3.90%, respectively. 
 Noteworthy is that the form of the 
heteroscedastic statistic had an influence on 
Type I error rates regardless of whether a test of 

symmetry was used. For example, under the 
15% symmetric trimming condition, the liberal 
error rate for the Hayter (1986) procedure based 
on the WJ statistic became nonliberal when 
based on the JWJ or HWJ statistic. This follows 
the general pattern that error rates tended to be 
smaller (more conservative) for MCPs based on 
the JWJ or HWJ statistics compared to when the 
MCPs were based on the WJ statistic. However, 
under the 10/10 and 15/15 symmetric/ 
asymmetric trimming cases when preceded by 
the test of symmetry, the opposite pattern was 
obersed, that is, the MCPs based on the WJ 
statistic were more conservative than the same 
MCPs based on the modified WJ statistics (i.e., 
JWJ and HWJ), a result consistent with the (g = 
.5, h = 0) distribution under the 10/10 trimming 
case. In addition, Type I error rates for the 
MCPs tended to decrease with an increase in the 
proportion of trimming cases (i.e., from 10/20 to 
15/30 to 20/40 and from 10/10 to 15/15 to 
20/20), except for the MCPs preceded by a test 
of symmetry based on individual group 
estimates where the pattern was reversed, that is, 
error rates tended to increase as the proportion 
of trimming increased (i.e., a pattern consistent 
with the results for J = 3). 
 Type I error rates for the SRB and 
HOCH procedures indicated that a test of 
symmetry based on the individual group indices 
provided mean error rates closer to the nominal 
5% level compared to always adopting 
symmetric trimming or trimming 
symmetrically/asymmetrically based on the 
pairwise or across all groups average indices. 
For example, the mean error rates for 
SRB/HOCH, based on the WJ, JWJ, and HWJ 
statistics, were 4.96%, 4.98%, and 5.00%, 
respectively, under the 20/20 trimming case 
when using  individual group indices of tail 
weight and symmetry, and were 4.12%, 4.03%, 
and 4.07%, respectively, for the 20% symmetric 
trimming case. 
 
g = .25 and h = .25 Distribution 
 All MCPs had rates of Type I error 
below Bradley’s (1978) upper limit for the 
10/10, 15/15, and 20/20 trimming cases when 
preceded by the test of symmetry with average 
estimates across groups and the 10/10 trimming 
case when preceded by the test of symmetry 



KOWALCHUK, KESELMAN, WILCOX, & ALGINA 
 

61 

with individual group estimates (see Table 6). 
Under the 10%, 15%, and 20% symmetric 
trimming cases, all MCPs had non-liberal error 
rates. The MCPs based on the range statistic 
tended to have conservative error rates, whereas 
under these trimming cases, the MCPs with rates 
within Bradley’s limits were the WJ/SRB, 
WJ/HAY, JWJ/SRB, JWJ/HAY, SRB/HOCH 
(JWJ), HWJ/SRB, HWJ/HAY, and SRB/HOCH 
(HWJ). 
 The mean error rates, however, were 
more conservative under the symmetric 
trimming cases compared to the rates obtained 
for the MCPs when a symmetric/asymmetric 
strategy based on indices of tail weight and 
symmetry was adopted. Specifically, the mean 
error rates across non-liberal MCPs for the 
10/10, 15/15, and 20/20 trimming cases when 
preceded by the test of symmetry with average 
group estimates were equal to 3.24%, 3.40%, 
and 3.65%, respectively and the mean rate for 
the 10/10 and 15/15 trimming case when 
preceded by the test of symmetry with individual 
group estimates were equal to 2.91% and 4.15%, 
respectively. Whereas, under the 10%, 15%, and 
20% symmetric trimming cases, the mean error 
rates across MCPs were equal to 2.95%, 2.86%, 
and 2.85%, respectively. 
 MCPs based on the WJ statistic tended 
to have more conservative rates than when based 
on the JWJ or HWJ statistic. For example, under 
the 20/20 trimming case with the test of 
symmetry based on average group estimates, the 
mean error rates for the MCPs based on the WJ, 
JWJ, and HWJ statistics were 3.15%, 3.86%, 
and 3.93%, respectively and under the 15/15 
trimming case with the test of symmetry based 
on individual group estimates, the mean error 
rates for non-liberal MCPs based on the WJ, 
JWJ, and HWJ statistics were 3.69%, 4.38%, 
and 4.46%, respectively. The general pattern 
was for error rates to increase as the proportion 
of trimming increases when the MCPs were 
preceded by a test of symmetry. However, this 
pattern only occurred for the MCPs based on a 
WJ statistic when always adopting symmetric 
trimming.  
 The SRB and HOCH procedures had 
higher mean error rates when based on 
symmetric/asymmetric trimming obtained from 
pairwise estimates than when based on indices 

obtained from all the groups. For example, 
liberal rates under the 10/20 trimming case 
based on pairwise estimates became robust when 
symmetric/asymmetric trimming was based on 
indices of tail weight and symmetry averaged 
over all groups. The data suggests that an 
optimal strategy was 10/20 
symmetric/asymmetric trimming based on Q1 
and Q2 obtained from all groups in the design. 
Specifically, the mean error rates for the 
SRB/HOCH procedures, based on the JWJ and 
HWJ statistics, were 4.56% and 4.66%, 
respectively. 
 

Conclusion 
 
In the present study, the strategy of computing a 
test of symmetry in order to determine whether 
to trim nonnormal data symmetrically (from 
both tails of the empirical distributions) or 
asymmetrically (from one tail of the empirical 
distributions) was compared to always utilizing 
an a priori symmetric trimming strategy, an 
approach previously investigated by Keselman, 
Lix et al. (1998) and typically recommended in 
the empirical literature (e.g., see Wilcox, 2003). 
We investigated the utility of testing for 
symmetry within the context of pairwise 
multiple comparison testing in a one-way 
independent groups design. 
 Three variations of a test of symmetry 
were investigated, each utilizing indices of tail 
weight and symmetry. The first variation obtains 
the indices of tail weight and symmetry by 
computing them within each group of a one-way 
completely randomized layout and then averages 
these values across the groups to obtain a 
summary measure of tail weight and symmetry. 
A second variation also takes an average of 
group indices, but only from the two groups 
comprising a particular pairwise comparison. 
The third variation, does no averaging across 
groups but measures tail weight and symmetry 
within each group of the pairwise comparison, 
using this information to determine whether data 
should be trimmed symmetrically or 
asymmetrically within each particular group. 
 The rationale behind all three 
approaches is to obtain an estimate of the typical 
score, that is, an estimate that represents the bulk 
of the observations, and accordingly outlying 
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values are not wanted, found in the tail(s) of the 
nonnormal distributions, to adversely affect the 
score to be selected as typical – selecting a score 
that is not central to the distribution (e.g., the 
usual mean can be very far away from the 
central portion of a distribution of scores for 
skewed data). Though the rationale is the same 
for these three approaches, they respond to the 
need to obtain a good representation of the 
typical score in different ways. 
 The first method uses all of the data, 
across groups, to measure symmetry in the data 
and applies the results across all groups, that is, 
trims in a consistent fashion across all groups. 
The second and third approaches measure 
symmetry, or the lack there of, by only looking 
at the data involved in the pairwise comparison. 
The logic here is to ignore the type of 
nonsymmetry that may exist in groups that are 
not involved in a particular comparison. This 
rationale is similar to the approach of using a 
nonpooled error term, rather than a pooled error 
term, in order to avoid the biasing effects of 
variance heterogeneity in tests of mean equality. 
The third approach takes this rationale to its 
logical completion by finding the typical score 
in each group of the pairwise comparison by 
assessing symmetry/asymmetry within each 
individual group, rather than averaging over the 
two groups and applying the same form of 
trimming to both groups. That is, with this 
approach we are comparing the typical score 
from one group with the typical score from a 
second group, even though these typical scores 
were developed through different methods of 
trimming. 
 In addition to the use of a test of 
symmetry, the type of heteroscedastic statistic 
used in the computation of the MCPs was also 
investigated. The WJ statistic was investigated 
by Keselman, Lix et al. (1998) and the Johnson 
(1978) and Hall (1992) transformed WJ statistics 
investigated by Keselman et al. (2002). The 
MCPs with transformed WJ statistics [i.e., Hall 
(1992) or Johnson (1978)] based on a test of 
symmetry provided better Type I error control 
when distributions were nonnormal in form and 
had heterogeneous variances compared to the 
use of the WJ statistic with 20% symmetric 
trimming, the approach investigated by 

Keselman, Lix et al. (1998) and generally 
recommended in the literature. 
 Specifically, MCPs showed improved 
Type I error control, that is, nonrobust MCPs 
became robust and mean Type I error rates were 
closer to the nominal 5% level when data were 
first checked for symmetry and the MCPs were 
computed based on modified WJ statistics (i.e., 
JWJ or HWJ). A test of symmetry based on each 
individual group’s indices of tail weight and 
symmetry generally provided mean Type I error 
rates closer to the nominal level for the MCPs 
than when the symmetry test was based on 
indices averaged over all groups in the design or 
just the groups in a particular pairwise 
comparison, particularly for the more extreme 
non-normal distributions. Across all nonnormal 
distributions investigated, optimal percentages 
of trimming in terms of controlling Type I error 
rates within Bradley’s (1978) limits were the 
10/10 and 15/15 symmetric/asymmetric 
trimming conditions. Interestingly, these 
proportions are less than the recommended 20% 
symmetric trimming. 
 The magnitude of Type I error rates 
changed as the pattern and percentage of 
trimming changed. Across the nonnormal 
distributions investigated, Type I error rates 
generally increased for the MCPs as the 
proportion of trimming increased over the 10/20, 
15/30, and 20/40 trimming cases and for the 
10/10, 15/15, and 20/20 trimming cases when 
preceded by a test of symmetry. However, under 
the following conditions the opposite pattern 
occurred when the MCPs were preceded by a 
symmetry test where the indices of tail weight 
and symmetry were obtained by averaging 
across the indices within each group of the 
design (a) for the chi-square distribution, Type I 
error rates decreased as the proportion of 
trimming increased (10/10, 15/15, and 20/20) for 
MCPs based on the JWJ and HWJ statistics, (b) 
for the (g = .5, h = 0) distribution, Type I error 
rates decreased as the proportion of trimming 
increased (10/10, 15/15, and 20/20) for MCPs 
based on the JWJ and HWJ statistics only for J = 
6, and (c) for the (g = 1, h = 0) distribution, 
Type I error rates generally decreased as the 
proportion of trimming increased (from 10/20 to 
15/30 to 20/40 and from 10/10 to 15/15 to 
20/20). 
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 The Type I error rates for the MCPs 
based on the JWJ or HWJ statistics were 
generally more conservative than the same 
MCPs based on the WJ statistic for the chi-
square distribution. However, as the degree of 
nonnormality increased, this pattern reversed 
itself, firstly for the J = 3 condition and smaller 
percent trimming condition (10/10) for J = 6 for 
the (g = .5, h = 0) distribution, the smaller 
percent trimming conditions (10/10 and 15/15) 
for the (g = 1, h = 0) distribution, and across all 
trimming cases for the most extreme non-normal 
distribution (g = .25, h = .25) investigated. As 
the population distribution became more non-
normal (e.g., skewed), the advantage of the 
transformed WJ statistics in terms of providing 
more robust MCPs was evident. This is not 
surprising given that the JWJ and HWJ statistics 
were developed to deal with the skewness bias. 
The Type I error rates for MCPs based on the 
JWJ statistic were slightly smaller (i.e., more 
conservative) than the rates for the same MCPs 
based on the HWJ statistic across the non-
normal distributions investigated. 
 Taking into consideration the trimming 
cases that resulted in non-liberal error rates 
across most MCPs preceded by a test of 
symmetry with the pattern of error rates across 
trimming percentages and the generally superior 
performance of the MCPs with either the JWJ or 
HWJ statistics, the following general 
recommendations are provided for a strategy to 
achieve good Type I error control in a one-way 
independent groups design: (a) for distributions 
with skewness less than 2, adopt the 10% 
symmetric or 10% asymmetric trimming 
condition based on a test of symmetry where the 
indices of tail weight and symmetry are obtained 
by averaging over all groups when J = 3, 
whereas for J = 6, use a test of symmetry based 
on individual group indices of tail weight and 
symmetry and (b) for distributions with 
skewness greater than 2, adopt the 15% 
symmetric or 15% asymmetric trimming 
condition based on a test of symmetry using 
individual group indices of tail weight and 
symmetry.  
 As an overall recommendation, 
researchers may adopt any one of the MCPs 
with either the JWJ or HWJ statistic with 
trimmed means and Winsorized variances 

preceded by a test of symmetry in order to deal 
with nonnormal data and heterogeneous 
variances, conditions likely to be encountered in 
applied research. The importance of this finding 
is that educational researchers will be assured 
that the method will provide good Type I error 
control with generally more modest amounts of 
trimming compared to the generally 
recommended strategy of uniformly adopting 
20% symmetric trimming. 
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A nonparametric Bayesian multiple comparisons problem (MCP) for dependence parameters in I bivariate 
exponential populations is studied. A simple method for pairwise comparisons of these parameters is also 
suggested. The methodology by Gopalan and Berry (1998) is extended using Dirichlet process priors, 
applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation 
of the posterior probabilities of all possible hypotheses are carried out through a Markov Chain Monte 
Carlo, Gibbs sampling, due to the intractability of analytic evaluation. The process of MCP for the 
dependent parameters of bivariate exponential populations is illustrated with a numerical example. 
 
Key words: Bivariate exponential population; Dirichlet process prior; Gibbs sampler; mixture of Dirichlet 
processes; multiple comparison; nonparametric Bayes. 
 
 

Introduction 
 
In reliability studies of mechanical components, 
dependence between two components occurs 
quite often.  A system, which functions as long 
as at least one of the two identical components 
functions, has a functional correlation between 
the system components. Initially, let the two 
components be independently on test with life 
distributions that are exponential with parameter 
λ, denoted as exp(λ). Failure of one changes the 
life distribution of the other to exp(λθ), θ >0. 
When θ =1, the two components function   
independently. For θ>1, the workload of the 
remaining component is increased, thereby 
decreasing    the     mean     life.    Here     θ     is 
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called the dependence parameter. Weier (1981) 
provided the Bayes estimators of the parameters 
and reliability using a conjugate prior for such 
problems. 
 The multiple comparison problem 
(MCP) for I bivariate exponential populations 
with dependence parameters θ =(θ1,……,θI) can 
be viewed as making inferences concerning 
relationships among the θ's based on 
observations. This is tantamount to testing the 
following hypothesis, 
 

H0 : θ1 = ……..= θI  vs.  H1 : not  H0. 
                                                      
For bivariate exponential populations, the 
frequentist approach of multiple comparison is 
not very straightforward. This is partly due to 
the difficulty in handling the distributional 
aspects and associated computations. The 
multiple comparison problem using   
nonparametric priors in a Bayesian inferential 
setup was studied by Gopalan and Berry (1998) 
providing specific applications to the Binomial 
and Normal populations. Following similar 
approach, the MCP for a set of geometric and 
negative binomial populations (Masoom, Cho, 
& Begum, 2005) was studied. In this article, the 
MCP for the dependence parameters of a set of 
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bivariate exponential populations along the same 
line was studied. 
 In a Bayesian approach, the posterior 
probabilities of respective hypotheses in MCP 
can be calculated with moderate effort. The prior 
information on the unknown parameters has to 
be quantified as a distribution. However, the 
selection of the prior distribution could be 
tricky. One of the criticisms Bayesian inferential 
methods often face is the subjectivity in prior 
specification. In real data analysis prior 
specification could be based on scientific 
knowledge about the parameters. Non-
informative prior specification is optimal in 
cases when there is little known about the 
background information. It is very important that 
prior distributions be as objective as possible 
while doing Bayesian inference. A typical 
objective prior distribution is the Dirichlet 
process prior (DPP) that leads to nonparametric 
Bayesian inference. 
 The DPP is a prior distribution on the 
family of distributions that is dense in the space 
of distribution functions. The family of DPPs 
was introduced by Ferguson (1973) and was 
extended to mixtures of DPP by Antoniak 
(1974) in order to treat problems including the 
estimation of a mixing distribution, bio-assay, 
empirical Bayes problems and discrimination 
problems. Escobar (1988) started the application 
of Markov chain Monte Carlo (MCMC) 
methods in nonparametric Bayesian modeling. 
Novel computational techniques and 
developments of  MCMC schemes, including 
key contributions by Doss (1994), Bush and 
MacEachern (1996), Escobar and West (1997), 
MacEachern and Müller (1998), West, Müller 
and Escobar (1994) made it possible to study 
nonparametric Bayesian methods widely. 
 The focus was on the Bayesian approach 
to the multiple comparisons problem for I 
bivariate exponential populations based on the 
nonparametric Dirichlet process priors in this 
article. The MCMC techniques, in particular 
Gibbs sampling, is adopted here to evaluate the 
posterior probabilities of the hypotheses.  
 
Preliminaries 
 Let (X, Y) denote the lifetimes of the two 
components that have a bivariate exponential 

model. The joint probability density function of 
(X, Y) can be written as,  
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with θ as the dependence parameter.  
 It is assumed that (x, y) = {(x1, y1) , (x2, 
y2) , ….., (xI, yI)} be a set of observations 
available on I populations, where (xi, 

yi)={(xi1,yi1),……,(xini,yini)} is an ni ×1 vector of 
conditionally independent observations on 
population i, i =1,2, ……, I ; j =1,2, ……, ni and  
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. Then the probability density 

function of  (xij,yij) is, 
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 Now a distribution function G0 (.) and a 
positive scalar precision parameter α together 
determine the Dirichlet process prior G. Here G0 

(.) that defines the location of the DPP is 
sometimes called prior guess or baseline prior. 
The precision parameter α determines the 
concentration of the prior for G around the prior 
guess G0, and therefore measures the strength of 
belief in G0.  The DPP is usually denoted by G ~ 
D (G | G0, α). For large values of α, G is very 
likely to be close to G0, while for small values of 
α, G is likely to put most of its probability mass 
on just a few atoms. 
 It is assumed that the θi's come from G, 
and that G ~ D (G | G0 ,α) as stated above. This 
structure results in a posterior distribution which 
is a mixture of Dirichlet processes (Antoniak 
1974). Now following the Polya urn 
representation of the Dirichlet process 
(Blackwell & MacQueen, 1973), the joint 
posterior distribution can be written as, 
 



NONPARAMETRIC BAYESIAN MULTIPLE COMPARISONS 68 

0

1

( ) ( | )
| , ( , | ) ,

1

i i kI
k i

i i i i
i

G
f

i

α θ δ θ θ
θ θ

α
<

=

+
∝ ×

+ −

∑
∏x y x y  

(3) 
 
where δ (θi | θk) is the distribution putting a point 
mass on θk. For each i =1,….. I, the conditional 
posterior distribution of θi is given by,  
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where Gb(θi | xi, yi) is the baseline posterior 

distribution, ( ) ( )∫∝ ,|, 00 iii dGfq θθα yx  
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Θ = {θ = (θ1, θ2, ……, θI ) : Ri ∈θ , i=1,2, ……, 

I }  be the I-dimensional parameter space. 
Equality and inequality relationships among θ's 
induce statistical hypotheses that are subsets of 
Θ. Thus, the MCP becomes testing the 
following hypotheses. 
 
H0 : θ0 = {θi: θ1 = θ2 = ……. = θI},  
H1 : θ1 = {θi: θ1 ≠ θ2, θ2 = θ3 = ……= 
θI},……HN : θN = {θi: θ1 ≠ θ2 ≠ θ3 ≠ …… ≠ θK}. 
 

The hypotheses Hr : θr, r = 0,1,2, …….., N, are 

disjoint, and 
0

n

r
r =

=∪ Θθ . 

 The elements of Θ themselves behave as 
described by (3) and so with positive 
probability, they will reduce to some p < I 
distinct values. Let superscript * denote distinct 
values of the parameters. Then, any realization 
of I parameters θi generated from G lies in a set 
of p < I distinct values, denoted by (θ* = θ1

*, θ2
*, 

….., θp
*). The computation of posterior 

probabilities for different hypotheses through 
Gibbs algorithm becomes manageable using the 
notion of configuration as termed by Gopalan 
and Berry (1998). Their definition of 
configuration is restated here: 

Definition (Configuration): The set of indices S 
= {S1,…..,SI} determines a classification of the 
data Θ={θ1,…….,θI} into I* distinct groups or 
clusters; the nj= #{Si=j} observations in group j 
share the common parameter value θj

*. Now, 
define Ij as the set of indices of observations in 
group j; That is, Ij={i: Si =j }. Let (X,Y)(j) = 
{(Xi,Yi): Si = j} be the corresponding group of 

∑
∈

=
j

j
Ii

iI nn  observations. Thus, a one-to-one 

correspondence between hypotheses and 
configurations follows and the required 
computations are reduced by the fact that the 
distinct θi's are typically reduced to fewer than I 
due to the clustering of the θi's inherent in the 
Dirichlet process. Hence, (4) can be rewritten as:  
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In addition to the simplification of notations, the 
cluster structure of the θi also improves the 
efficiency of the algorithm. 
 
Posterior Sampling In Dirichlet Process 
Mixtures 
 A gamma distribution with parameters 
(α0i, β0i) is considered as baseline prior G0. This 
implies that θ1, θ2,……, θI are i.i.d. from G0. 
Then, a hierarchical set up for the Dirichlet 
process analysis as outlined above becomes,  
 
          iii θ|,yx  ~ ( ),,|, iiiiBVE θλyx         

(6)   
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iii 11 ,| βαλ  ~ ( ),, 11 iiGam βα  

 (10)                                                                     
 
BVE and Gam stand for bivariate exponential 
and gamma distributions, respectively. Now, the 
choice of the precision parameter α in Dirichlet 
process is extremely important for the model. A 
gamma prior for α with a shape parameter a and 
scale parameter b is considered, that is, α ~ 
Gam(a,b). Thus, the Gam(a,b) becomes the 
reference prior if a → 0 and b → 0 and one has 
access to a neat data augmentation device for 
sampling α by Escobar and West (1995). 
 The configuration notation is more 
convenient to use in describing the Gibbs 
sampling algorithm as the full conditionals can 
be written in closed form as under: 
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Gibbs sampling proceeds by simply iterating 
through (11) - (15) in order, sampling at each 
stage based on the current values of all the 
conditioning variables. 
 The configuration induces the equality 
and inequality relationships among the θ’s that 
corresponds to the partitions on the parameter 
space Θ and in turn to the hypotheses of interest. 
In order to estimate the posterior probability of a 
hypothesis Hr from a large number (L) of sample 
draws, one takes 
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where ( )rS H

l
δ  denotes unit point mass for the 

case where l th draw of S, S0 corresponds to Hr. 
The probability of equality for any two θ's can 
be calculated from the posterior distributions on 
hypotheses, P(Hr | X,Y),  r =1,2, ……., N. This 
can be achieved by adding probabilities of those 
hypotheses in which the two θi and θj are equal. 
That is 
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unit point mass for the case where Sl and Hr 
indicate ji θθ = . 
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Illustrative Example 
A numerical illustration of the multiple 

comparisons for the dependence parameters in 
bivariate exponential populations is presented in 
this section using simulated data. Four bivariate 
exponential populations each with size ni=20 are 
considered. Then, the numbers of possible 
hypotheses for multiple comparisons are 15. The 
observed summary statistics for these data are 
given in Table 1. 
 It follows from Table 1, that the true 
hypothesis may be Htrue : θ1 = θ2 ≠ θ3 = θ4. For 
the precision parameter α, one considers three 
Gamma priors with parameters (a,b)=(1.0, 1.0), 
(0.1, 0.1) and (0.01, 0.01) in order to have equal 
mean 1 and different variances 1, 10, and 100, 
respectively. This also facilitates that the latter 
prior be fairly non-informative, giving 
reasonable mass to both high and low values of 
α. As well, each θi, i=1,……, 4 were set a priori 
following a gamma distribution with parameters 
α0i = α1i = 2.0  and β0i = β1i = 0.001 to reflect 
vagueness of the prior knowledge. 
 The posterior probabilities for all 
possible hypotheses are approximated by the 
Gibbs sampling algorithm using 20,000 
iterations with 10,000 burn-ins and 5 
replications and are presented in Table 2.  It is to 
 
 
 
 
 

 
 
 
 
 
 
 
 

be noted that the hypothesis θ1 = θ2 ≠ θ3 = θ4 has 
the largest posterior probabilities 0.7883, 0.7274 
and 0.7410 for all priors of the precision 
parameter α. Thus, the data lend greatest support 
to equalities for θ1 = θ2 and θ3 = θ4 being 
different from the others.  
 Table 3 presents the pairwise posterior 
probabilities for the equalities in pairs of θ’s. 
The equalities of (θ1 = θ2) and (θ3 = θ4) have the 
largest posterior probabilities (0.9943, 0.9903, 
0.9729) and (1.0000, 1.0000, 1.0000) for three 
cases of (a, b) respectively. This suggests that 
there is strong evidence in the equality (θ1 = θ2) 
and (θ3 = θ4). 
 The Bayesian approach using 
nonparametric Dirichlet process priors facilitates 
studying the problem of multiple comparisons in 
a number of different distributions. So far, the 
MCP was carried out for a univariate 
distribution. Here, it has been shown that the 
method can be extended to a bivariate 
distribution as well, with moderate effort. As an 
alternative to a formal Bayesian analysis of a 
mixture model that usually leads to intractable 
calculations, the DPP is used to provide a 
nonparametric Bayesian method for obtaining 
posterior probabilities for various hypotheses of 
equality among the dependence  parameters of 
bivariate exponential populations. 
 
 
 
 

 
 
 
 

 
Table 1  The observed summary statistics for each populations 

 
                                               Populations                     1             2            3               4  

1

in

i ijj
X X

=
=∑               1.500    1.560      0.700        0.720 

1

in

i ijj
Y Y

=
=∑                 6.500    6.000      1.300        1.130 

     MLEθ̂                          0.462    0.520      1.077        1.274 
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Table 3 Pairwise Posterior Probabilities with three cases of (a, b) 
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Understanding Eurasian Convergence: Application Of Kohonen  
Self-Organizing Maps 

 
Joel I. Deichmann Abdolreza Eshghi Dominique Haughton 

       Selin Sayek  Nicholas Teebagy        Heikki Topi 
 

Data Analytics Research Team, Bentley College 
 
 
Kohonen self-organizing maps (SOMs) are employed to examine economic and social convergence of 
Eurasian countries based on a set of twenty-eight socio-economic measures. A core of European Union 
states is identified that provides a benchmark against which convergence of post-socialist transition 
economies may be judged. The Central European Visegrád countries and Baltics show the greatest 
economic convergence to Western Europe, while other states form clusters that lag behind. Initial 
conditions on the social dimension can either facilitate or constrain economic convergence, as discovered 
in Central Europe vis-à-vis the Central Asian Republics. Disquiet in the convergence literature is resolved 
by providing an analysis of the Eurasian states over time. 
 
 

Introduction 
 
The definition of what constitutes the entity of 
Europe   is   debated   widely  (Almström,  2000;  
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Jordan,  2002).   In   particular,   no   satisfactory 
physiographic barriers exist to distinguish 
Europe from neighboring Asia. Many scholars 
approximate the border as the Ural Mountains, 
the Volga River, or the Bosporus Strait, dividing 
Russia and Turkey between Europe and Asia 
(Jordan, 2002). Others conveniently define 
Europe according to the membership of the 
fifteen EU member states, but this definition 
leaves out Norway, Switzerland, and several 
wealthy micro-states, as well as (until 2004) the 
Central European candidate states. Jordan 
(2002) defined Europe in terms of the people 
who live there, identifying the cultural traits that 
define the source of Western civilization, in 
addition to ten secondary socio-economic 
characteristics that most European states share.  

The collapse of the Soviet empire in 
1989, coupled with the deepening and widening 
debate within the EU, has fueled an 
unprecedented movement toward a unified 
Europe. The post-socialist countries of Central 
and Eastern Europe have embarked upon a 
daunting task of instituting a series of dramatic 
economic and social reforms to create western-
style market economies with the objective of 
becoming full-fledged members of the EU as 
quickly as possible. As noted by the Economic 
Analysis Division of the United Nations 
Economic Commission for Europe: 
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One of the strategic goals of the transition 
economies is to achieve sustained and 
high rates of economic growth that would 
enable them to catch up with – to 
converge upon – the living standards of 
the developed economies of Western 
Europe. And many of them regard EU 
membership as instrumental to promote 
this process. (United Nations Economic 
Commission for Europe, 2000) 
 

In their efforts to join the EU, Central 
and Eastern European countries have opted for a 
wide variety of transition paths to treat their 
unique set of initial conditions, in turn leading to 
a correspondingly heterogeneous set of results. 
While some have either regained (e.g., Poland, 
Slovakia, and Slovenia) or are close to regaining 
(Czech Republic and Hungary) their pre-
transition GDP levels, others (notably Georgia, 
Ukraine, and Moldova) continue to struggle with 
their transformational recession (United Nations 
Economic Commission for Europe, 2000). 

The question of post-socialist 
convergence has been the subject of extensive 
scholarly research from various perspectives 
(see Szalkowski & Jankowicz, 1999; Genov, 
1998; Bartlett, 1997; Brabant, 1998; Lang, 2003; 
Graham & Hart, 1999, to name just a few). 
However, there is no consensus on the extent of 
convergence and the factors that have led to 
highly heterogeneous outcomes. The research 
presented here is intended to address these issues 
by analyzing a comprehensive set of socio-
economic variables for all of the Western 
European and post-Communist countries for 
which data are available. 

More specifically, the purpose of this 
article is to map the progress of post-socialist 
countries in catching up with, or converging 
upon the advanced Western European 
economies over the past decade. In particular, 
not only is the overall convergence mapped, but 
the macroeconomic, social, and institutional 
factors that are responsible for the convergence, 
or lack thereof, are identified. In this context, the 
role played by economic factors versus social 
factors in catching up and converging with the 
EU is discussed. A secondary purpose of this 
research is to extend previous Kohonen analysis 
on transition economies (Deichmann et al., 

2003) to include the existing EU members plus 
Norway, Switzerland, the USA (see note 1 in 
Fig.9), and Turkey. In so doing, it is hoped that 
the extent to which this broader group of 
Eurasian states clusters geographically when all 
reference to location is absent will be 
determined, and use the changes in the clusters 
over time to observe whether or not patterns of 
convergence exist among these groups of 
economies.  

 
Post-Socialist Heterogeneity 

A significant body of literature has 
documented the differential levels of 
convergence throughout Eurasia during the first 
ten years after the Iron Curtain fell. Using data 
through 1998, Estrin, Urga, and Lazarova (2001) 
examine average (GDP) growth rates for 
transition economies leading up to and following 
the abrupt changes that began in the early 1990s. 
Focusing upon twenty-six countries over twenty-
seven years, the level of pre-transition 
convergence was examined since 1991. Among 
the twenty-six states, they found that Hungary, 
Poland, Slovenia, Estonia, and Armenia are the 
only states with positive average growth rates 
since the transition and only Armenia, Slovenia, 
and Hungary have sustained growth that might 
eventually allow their economies to catch up 
with those of Western Europe. 

Also citing disparities in growth prior to 
the 1990s transition, the authors highlight the 
failure of reallocation mechanisms within the 
Soviet bloc, with the possible exception of the 
former Yugoslavia, which was only loosely 
affiliated with Moscow. They concluded that the 
failure of Soviet-led central planning to 
ameliorate regional disparities within the 
socialist bloc is likely to have facilitated the 
demise of supranational affiliations within the 
region. Unfortunately, the authors also find little 
evidence for convergence during the first decade 
of individual state policies.  

Kočenda (2001) modeled the time-path 
of several macroeconomic variables to evaluate 
convergence of Central European and Baltic 
states. Variables under investigation include 
industrial output, prices, money (capital), and 
interest rates. Among these countries, there are 
dramatically differing initial conditions that 
favor the Czech Republic and its neighbors, 
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while putting the Baltic states at a comparative 
disadvantage; for example, the former enjoy an 
earlier 1989 starting point, while the latter 
became independent in 1991 and have only 
recently introduced their own new currencies. 
Despite the countries’ unique initial conditions, 
Kočenda (2001) found considerable evidence of 
convergence by these otherwise similar 
countries through the natural process of 
increased international trade and through the 
institutional processes of coordination to satisfy 
EU pre-accession requirements. However, Kutan 
and Yigit (2004) emphasized the importance of 
model specification and how it changes the 
results of Kočenda (2001). They showed that 
when heterogeneity is taken into account the 
within-group convergence is not as evident as 
suggested by Kočenda.  

Brada and Kutan (2001) examined the 
extent of convergence of monetary policy of EU 
candidate and non-candidate transition states to 
the German monetary policy, which is viewed to 
be broadly representative of the European 
Central Bank. They concluded that the transition 
states (both candidate and non-candidate) lag far 
behind the non-transition EU candidates 
(Cyprus, Malta, and Turkey), revealing deeply 
rooted disadvantages of central planning that 
endure in transition countries. They contended 
that Hungary and Poland, which have pursued 
independent monetary policies throughout the 
1990s, have the best prospects of converging to 
EU fiscal policies.  

Brada, Kutan, and Zhou (2002) 
employed a rolling cointegration technique to 
evaluate the convergence of base money, 
broader money (M2), the consumer price index 
(CPI), and industrial output in five leading EU 
candidate countries: the Czech Republic, 
Estonia, Hungary, Poland, and Slovenia. Brada 
et al. (2002) argue that adequate convergence 
has yet to occur in the areas of monetary policy 
and industrial output, but that consumer prices 
and M2 are comparable to those in the EU, 
confirming earlier findings (Brada & Kutan, 
2001) with a wider frame of inquiry. They 
concluded that considerable time will be 
necessary following accession and before the 
candidates join the Euro zone.  

 Wagner and Hlouskova (2001) focused 
on convergence in the real (vis-à-vis nominal) 

dimension, mainly economic growth. In doing 
so, they study the correlation between the initial 
level of GDP of ten Central and Eastern 
European economies and their average growth 
rates over the 1990s and find evidence for 
convergence only after 1998. They applied the 
distributional dynamics technique, formulating a 
statistical model to describe the evolution of the 
joint distribution of real per capita GDP of the 
CEE and EU economies. This method allows for 
the investigation of the mobility of each 
economy within the cross country income 
distribution over time. They concluded that their 
evidence reveals high persistence in the data 
combined with a low probability of an economy 
changing its location in the distribution. 
Therefore, neither of their methods suggested 
evidence of convergence among the CEE and 
EU economies through 1998. 

 
Theoretical Explanation 

The issue of heterogeneity in economic 
convergence among post-socialist countries can 
be explained with reference to a number of 
theoretical and conceptual arguments. First, 
theoretical models in development economics 
(Barro & Sala-i Martin, 1992) posited that 
economies with low initial GDP levels should 
grow faster than those with higher initial GDP 
levels, and eventually catch up with these more 
developed economies. This is certainly the case 
among post-socialist countries. These countries 
began the journey toward a free-market 
economy with varying initial economic 
conditions.  

A second explanation was offered by 
Romer (1986) who argued that the 
characteristics inherent in technology prevent 
convergence from occurring because increasing 
returns to scale cause the rich countries to 
become richer while the poor countries fall 
further behind. A related argument is that 
convergence will only occur among countries 
with a well-developed human capital base, 
which allows for such countries to benefit from 
modern technology. 

Third, Barro (1991) and Barro and Sala-
i Martin (1992) suggested that absolute 
convergence does not exist as all countries have 
different long-run per capita income levels that 
prevent such convergence. However, they 
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showed that each country converges to these 
differing long-run equilibria, and they labeled 
this phenomenon as conditional convergence. 

Fourth, Sachs and Warner (1995) argued 
that unconditional convergence depends upon 
the policy choices of the respective economies, 
and that countries that pursue market-based 
economic policies, liberal trade policies, and 
respect private property rights show strong 
tendencies to convergence. Sachs and Warner 
(1995) found that the transition economies that 
have undertaken significant economic reforms 
show convergence signs to the European Union, 
while those that have not converged show 
persistence in their economic position.  

Fifth, the specific manner of 
implementing economic reforms is also believed 
to be responsible for heterogeneous patterns of 
convergence. Some countries opted primarily for 
a top-down approach by privatizing the state-
owned enterprises, whereas others (mainly the 
Central and Eastern European economies) 
generally favored a bottom-up approach by 
encouraging the establishment of new start-up 
enterprises and development of existing private 
firms (Brezinski & Fritsch, 1996; Woo, 1998). 
Ellman (1997) argued that experience from the 
past decade demonstrates that the development 
of new private firms is more important for the 
resumption of economic growth than is rapid 
privatization. 

Another factor that may have influenced 
the convergence outcome is the pace at which 
reforms were implemented. Some countries 
implemented drastic macroeconomic 
stabilization policies known as the shock therapy 
approach, whereas others insisted upon a policy 
of gradualism, which entails structural and 
institutional reforms as a pre-condition to 
introducing macroeconomic stabilization 
reforms (Popov, 2000). 

Finally and perhaps most importantly, 
the success of economic and social reforms is 
not only contingent upon their contents but upon 
the social and historical context in which they 
are implemented (Rosenbaum, 2001). In other 
words, market reforms presuppose societal 
values and norms that are consistent with 
democracy and a free-market economy. Some 
post-socialist countries have been more 
successful in implementing market reforms due 

to their historical and cultural ties with Western 
Europe. Rosenbaum’s (2001) review of the 
economic history of Central and Eastern Europe 
indicates that the development of a secular civil 
society in Western and Central Europe resulted 
from conflict between the state and the princes 
on the one hand and the church on the other. 
Consequently, the intellectuals gained the 
opportunity to play off competing authorities 
against one another, giving rise to new 
philosophical and political ideas that led to the 
overthrow of the autocratic and feudal order and 
relegated the church to just one of many interest 
groups. By contrast, the church and the political 
authority remained in one hand in the East under 
Orthodoxy, which tended to block 
individualistic tendencies and the introduction of 
new ideas such as private property. 

As also noted in Rosenbaum (2001, p. 
895), whereas Christianized Poles, Czechs, and 
Hungarians adopted the institutional order of the 
West and became part of Western culture, 
Russia and much of the Balkan region remained 
insulated from the infusion of new ideas, leading 
to consolidation of power in the hands of the 
state. As a consequence, Orthodox cultures tend 
to accept the dominant role of the state in society 
and economy as fait accompli. Clearly, the 
historical experiences of post-socialist countries 
have far reaching implications for the role of the 
individual in determining her/his economic 
destiny. In short, when the historical and cultural 
experiences are consistent with free market 
values and norms, substantial progress toward 
convergence is observed over a relatively short 
period of time. However, when there is a 
mismatch between the historical and cultural 
experiences and the free market values and 
norms, the transition is likely to be slow and 
painful.  

 
Methodology 

 
Kohonen Self-organizing maps were used 
(SOMs) to examine post-socialist convergence 
in Eurasian countries. Kohonen maps were 
pioneered during the 1980s and have been used 
as a method of visualizing non-spatial data 
(Kohonen, 1982). Techniques for creating and 
interpreting Kohonen maps have been refined 
and reviewed by their namesake in a series of 
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subsequent volume editions (Kohonen, 2001). 
SOMs have been employed in many contexts, 
for example in mapping non-geographic data 
ranging from text documents (Kohonen, 1999) 
to conference abstracts (Skupin, 2002; 
Kloptchenko et al., 2003).  

The application of Kohonen maps 
continues to grow in a variety of disciplines 
(Deboeck, 1998; Oja & Kaski, 1999). One 
application that is particularly relevant here is 
the work of Costea, Kloptchenko, and Back 
(1998). They compared the relative advantages 
of SOMs and cluster analysis in evaluating the 
economic status of six transition economies: 
Russia, Ukraine, Romania, Poland, Slovenia, 
and Latvia. They introduced a very insightful 
way of depicting statistical trends in data over 
time: each observation corresponds to a country 
at a specific point in time, which facilitated a 
clear understanding of how countries migrate 
across the map over time.  

 
The Kohonen Algorithm 

The Kohonen algorithm can be briefly 
described as follows (see for example Kaski and 
Kohonen 1996): the algorithm assigns to each 
position i in a grid an arbitrary (random) vector 

)0(im with as many components as input 
variables. At each time t the vector of variables 
x(t) corresponding to one of the observations 
updates the current vectors )(tmi  according to 
the formula 

))()()(()()1( tmtxthtmtm iciii −+=+ , where 

||)(||minarg ii mxc −= and )(thij is a 

function of t and of the geometric distance on 
the lattice between position i and position j. 
Typically 0→ijh  with increasing distance 

between i and j and increasing time. So the 
vector x(t) is allowed to update the vector )(tmc  
it is closest to as well as some neighboring 
vectors )(tmi . When the algorithm converges, 

the im  tend to be ordered along the lattice in a 
meaningful way (see note 2 in Fig. 9). 
 
Data Issues 

Due to data restrictions, the analysis is 
limited to the period 1992-2000. The breakups 
of      the     Soviet    Union,    Yugoslavia,     and 

Czechoslovakia all resulted in missing values for 
the resulting new states during the early years of 
our analysis. These were addressed by entering 
the unions’ values for each state (for example, 
the Czech Republic and Slovakia were both 
assigned the 1992 value for Czechoslovakia). 
After that point, any missing entries were 
replaced with the value estimated by regressing 
each variable on time for each country. Finally, 
many missing values for the year 2001 limited 
the analysis to the years through 2000.  
 
Description of Variables 

Procuring accurate, complete, and 
current socioeconomic data for the transition 
states is a formidable challenge (Costea, 
Kloptchenko, & Back, 2001). Most of the data 
were collected by national authorities and 
reported by the World Bank Development 
Indicators CD-ROM (2002) for the years 1992-
2000.  

The list of variables under consideration 
is presented in Table 1. The variables include 
economic, social, and political measures. The 
measures were chosen to capture each country’s 
preconditions as well as subsequent measures 
(both absolute numbers and rates of change). 
The economic variables can be sub-grouped into 
real and nominal variables. The real variables 
encompass indicators of economic development, 
the role of government and fiscal policy in the 
economy, the level of physical infrastructure, the 
depth of financial markets, and international 
openness measures. The nominal variables 
include indicators regarding the domestic price 
of goods and the foreign currency price of the 
domestic currency, the inflation rate and the real 
exchange rate respectively, and the real interest 
rates. Explicit reform variables, as addressed by 
Sach and Warner (1995), are available only for 
transition states, and are therefore unsuitable for 
this analysis that spans the EU and other wealthy 
states as well.  
 The social infrastructure measures, 
which include variables that impact the 
development    of    human    capital,    such     as 
education and health measures, are covered in 
the social dimension of the analysis. In addition 
to such social infrastructure measures several 
physical infrastructure measures are also 
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included in this group, as they also contribute 
more to the development of social infrastructure  

than anything else. These measures include 
efficiency in electricity distribution and access 
to communication means such as telephone and 
the internet. Finally, the social indicators also 
include measures of extent of political rights and 
civil liberties. 

 
Analysis 

As in Costea, Kloptchenko, and Back 
(2001), all countries under investigation for each 
individual year are first plotted on a single map 
to monitor movements over time throughout the 
lattice on the basis of all available variables. The 
variables are then subdivided into social/political 
and economic measures in an effort to examine 
the role they play in convergence. 

 
 

Analysis of Aggregate Maps 
Figure 1 represents a self-organizing 

map of all country-year pairs (such as Moldova 
1992, for example) over 1992-2000, constructed 
on the basis of all variables in Table 1 for all 
countries under investigation. The largest group 
of countries can be thought of as a European 
core—composed of mainly EU states located in 
the center-top of the figure (such as France, 
Germany, Ireland, Luxembourg, the 
Netherlands, the UK). Outside this core, several 
noteworthy peripheries exist,   in    addition   to 
several   distinct   groups   of   laggard transition 
countries. As was observed in past work (Kaski 
& Kohonen, 1996; Deichmann et al., 2003), an 

 
TABLE 1. LIST OF ECONOMIC, SOCIAL, AND POLITICAL VARIABLES 

 
Variable Description 
Prscgdp Private sector credit as share of GDP 
Electricyt Electric power transmission and distribution losses 
Kgdp Gross capital formation as share of GDP 
Infl Inflation (GDP deflator based) 
Growth Real GDP per capita growth  
Tradegdp Trade as a share of GDP 
Figdp FDI as a share of GDP 
Reserves Reserves, months of import coverage 
Cagdp Current account balance as a share of GDP 
Gdppc GDP per capita (in real 1995 USD) 
Fiscgdp Overall fiscal balance including grants (share of GDP) 
Rer Real exchange rate 
Rir Real interest rate 
Bankresliq Bank reserves to liquid assets 
Tellines Telephone lines (per 1000) 
Stuteach Student to teacher ratio 
Schoolenroll Secondary school enrollment (gross) 
Immunmeasl Immunization against measles 
Lifeexp Life expectancy 
Nodoctors Number of physicians (per 1000) 
Immunization Immunization against DPT 
Agedepend Age dependency ratio (dependents to working-age population) 
Healthpub Public health expenditures (share of GDP) 
Healthpr Private health expenditures (share of GDP) 
Healthsum Total health expenditures (share of GDP) 
Internet Internet users as share of population 
Civlib Score for civil liberties (1=lowest, 7=highest)* 
Polrights Score for political rights (1=lowest, 7= highest)* 

 
Data Source: World Bank (2002) except for *, which were obtained from Freedom House (2003) 
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outstanding feature of this first U-matrix is the 
preservation  of  many  geographic  relationships 
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FIGURE 1. U-MATRIX OF COUNTRY MOVEMENTS FROM 1992-2000. 

Note: See http://tbf.coe.wayne.edu/jmasm for map in color. 
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in the absence of explicitly geographic variables. 
This is clearly the case in Figure 1 and in 
subsequent figures.  

Figure 2 provides estimated (by the 
Kohonen algorithm) values of the input 
variables at each grid position in the U-matrix. 
For example, it may be seen that estimated 
values of private health expenditures are high at 
the US (for all years) map position (top left of 
the U- matrix). Note that the U-matrix, in 
addition   to   actual   grid   positions,     includes 
slots      between      grid positions which are 
colored to represent how close the grid positions 
are to one another. The color on an actual grid 
position  represents  how  close the position is to     
 

 
its neighbors. For example, it is known that the 
positions of Switzerland and the US (at the top 
left of the map) are very close in terms of 
estimated variable values because the hexagon 
between them is dark blue (very light grey in 
grey scale format). Conversely, it may be seen 
that the position occupied by Croatia 92/93    
and   Latvia   93 (about two thirds of the way 
down on the left of the map),   is   distant   from    
its neighbors because it is colored orange (a 
large distance color, as indicated by the color 
legend), dark grey in grey scale format. 

A study of Figure 2 yields an 
interpretation - presented on Figure 3 – of the 
vertical and horizontal dimensions on the map. 
Together, the visual tools presented in Figures 1- 
3 facilitate an overall impression of how the 
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FIGURE 2. COMPONENT MAP OF ALL SOCIOECONOMIC VARIABLES 

Note: See http://tbf.coe.wayne.edu/jmasm for map in color. 
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countries  have  fared since 1992 based upon the 
aggregate set of variables. Although these maps 
are useful for facilitating a holistic view of 
multifaceted convergence, they are cumbersome 
because they include a very complex set of 
social and economic variables. Accordingly, an 
analysis of the patterns in detail is not included 
at this point because they are more efficiently 
and effectively discussed in the next sections as 
distinct social and economic dimensions. 
Instead, Figure 3 is provided as an overarching 
summary of the main movements of clusters 
observed in the aggregate U-matrix. From this 
diagram, it may be asserted that there exists 
some evidence of positive change throughout 
Europe. Whether the transition states are indeed 
converging with the west or simply maintaining 
positions/falling behind is an issue that is best 
addressed with specific reference to the 
identified dimensions.  

In an effort to glean a more explicit 
understanding of the dimensions/axes 
interpreted in Figure 3, the variables are now 
subdivided into (mainly) social and economic 
sub-sets. From these new maps, one may then 
glean clearer insights on the nature of the 
SOMs’ axes, as well as the extent of 
convergence along these axes for all Eurasian 
states in the sample.   

 
Analysis of Social Clusters and Dimensions 

In order to evaluate social convergence, 
this method first identifies clusters of stable 
states, and then examines movement among 
clusters and individual states. Figure 4 provides 
a U-Matrix constructed on the basis of social 
variables only -infrastructure, health indicators, 
and political freedom measures, estimated 
values of which are shown individually in Figure 
5. The U-matrix makes it possible to identify 
several groups, and ultimately combined with an 
inspection of Figure 5, to identify consistent 
dimensions and evaluate the degree of 
convergence over time.   

Several groups are identified from 
Figure 4: a European Core including regionally 
cohesive sub-groups, the USA, and a former 
USSR-core state group including Russia, 
Belarus, and Ukraine. Outside of these groups, 
very little cohesion exists, and large distances 
separate each state, most of which tend to move 

quite substantially over time, with the exception 
of Turkey, Tajikistan, Armenia, and Albania.   

The largest and most cohesive cluster in 
Figure 4 is the European Core. This includes 
most of the EU plus, at its edges, the Visegrád 
states (Czech Republic, Poland, Hungary, and 
Slovakia), and the Baltics (Estonia, Latvia, and 
Lithuania). This clustering of EU states with EU 
candidates is remarkable, underscoring 
longstanding social similarities that underlie 
recent economic differences. The clustering 
together of these states based upon several social 
variables lends credence to the argument that the 
Visegrád and Baltic states (formerly of the 
Warsaw Pact) are truly Western European on a 
social development level, while also supporting 
cultural assertions by Rosenbaum (2001).  

Within the European Core, separated by 
sporadic yellow (grey in grey scale format) cells, 
three somewhat discrete clusters exist: first, a 
southern/central group (Italy, Greece, Austria, 
Germany). This group of welfare states is 
distinguished by a high number of doctors per 
1000 population. On this specific measure the 
EU is similar to the group comprised of Russia, 
Ukraine, Belarus, and Kazakhstan (see 
Healthpub in Figure 5) where extensive public 
health services were extended to the population, 
a legacy of central planning in the Soviet core 
area. Second, a recent (late 1990s) Scandinavian 
group can be identified, distinguished by high 
levels of internet use, fewer doctors, more 
teachers, and higher school enrollment levels. 
Finally, Ireland stands alone throughout much of 
the decade, but is joined by Spain and Belgium 
in recent years. Separating these countries from 
the rest of Europe are larger school classes and 
much lower immunization rates. The USA is at 
the top of the social map, but clearly distinct 
from Europe. Again, by examining Healthpub in 
Figure 5, one may see how U-matrix positions 
can be attributed to an extreme estimated score 
on a specific variable, in this case the diminutive 
role of government in American healthcare. In 
association with US isolation on the left side of 
the U-matrix, this set of observations provides 
considerable insight for defining the overarching 
horizontal dimension as individual responsibility 
(left) versus government welfare (right).  
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FIGURE 3. ABSTRACTED DIAGRAM OF GROUPS BASED ON FIGURE 1 
Note: See http://tbf.coe.wayne.edu/jmasm for map in color. 
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FIGURE 4. U-MATRIX BASED ON SOCIAL INDICATORS 

Note: See http://tbf.coe.wayne.edu/jmasm for map in color. 
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Several countries remain either 

completely or virtually stable between 1992 and 
2000. Sharing few commonalities other than the 
fact that most of them are not EU-Core, these 
countries include Switzerland, the USA (our 
benchmark), Ireland, Turkey, Tajikistan, 
Albania, and Armenia. Several noteworthy 
differences were revealed by the estimated 
variables. First, the position of the US is clearly 
a result of high private versus public health 
expenditures, the only social variables in which 
the US varies notably from the European Core.  

 

 
 This means that although Americans on 
average enjoy a comparatively high standard of 
living, they are unique in how much they pay for 
healthcare. Second, Ireland has fewer teachers 
and doctors per thousand, and its infrastructure 
lags behind the European Core. Third, Turkey is 
isolated from the European Core by low scores 
on healthcare and education variables, as well as 
by civil liberties and political rights measures. 
Fourth, Albania’s stability is based upon high 
scores on democracy, which conflict with 
inadequate infrastructure (electricity losses) and  
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FIGURE 5. COMPONENT MAPS OF CONTRIBUTING SOCIAL VARIABLES 

Note: See http://tbf.coe.wayne.edu/jmasm for map in color. 
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poor estimated healthcare and education. 
Finally, Tajikistan seems to confirm the nature 
of the horizontal dimension with its high level of 
age dependency (Figure 5), which draws it to the 
left side of Figure 4.  In drawing this conclusion, 
it is assumed that birth rates in Tajikistan are 
higher partially in response to an absence of 
state social security systems. 

Given the aforementioned observations, 
the horizontal (left-right) dimension is 
interpreted as a continuum of social 
individualism vis-à-vis social welfare as 
exemplified by the relatively less individualistic 
European Core. Further, the quality of life 
variables (life expectancy, infrastructure, 
education, medical care, and political rights) 
along the vertical dimension lead us to conclude 
that the quality of life increases as one moves 
from the bottom to the top of the map (Figure 6). 

 
Convergence on the Social Dimensions  

Overall, the U-matrix of social variables 
(Figure 4) indicates relatively less movement 
than that which is found later on the economic 
map (Figure 7). This means that little evidence 
exists for convergence in the social dimension. 
In order to understand the movements in the 
map, both the component maps (Figure 5) and 
the original data file were consulted for dramatic 
changes in variable values. The largest jump and 
convergence to Western Europe occurs in 
Estonia. Although its starting point is similar to 
that of Latvia, it converges much faster to 
Europe and by the end of the decade groups 
together with the periphery European countries 
such as Portugal. Portugal in turn moves from 
center-right to top-center during the final two 
years of analysis due to a major improvement in  

 

 
school enrollment, internet use, and public 
health expenditures during these years.  

Another major movement is that of 
Germany and Austria, which move from center-
left to top-center in 2000. Austria’s improved 
quality of live appears to be driven by an 
estimated increase in immunizations, internet 
use, and doctors, corresponding to the dates 
following its own EU accession in 1995. 
Similarly, Figure 5 hints that Germany’s 
improvement is due to increased internet use, 
measles immunizations, and public health 
expenditures. This observation confirms a move 
toward a larger welfare state in Germany, which 
is in line with Germany’s mid-1990s election of 
a Red-Green alliance government led by Social 
Democrats.  

All of the Visegrád states witness an 
increase in the quality of life dimension during 
the final three to four years. Like Germany 
under the Social Democrats, these fledgling 
democracies appear to be moving toward the top 
right, more toward the model of a European 
welfare state than the individualistic model of 
the USA or Switzerland. As an example, the 
Czech Republic enjoyed improvements since 
1997 in nearly all social indicators (except 
school enrollments and immunizations); these 
changes were faster than the average changes 
and suggest evidence of social convergence, 
especially in internet use, public and private 
health expenditures, availability of doctors, and 
quality of infrastructure.  

Finland and Norway move from the top-
center to the top-right, indicating again a recent 
improvement in the quality of life, as well as a 
modest increase in the role of government. This 
movement  appears  to  be  driven primarily by a  
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FIGURE 6. INTERPRETATION OF SOCIAL DIMENSIONS 
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large increase in estimated internet penetration, 
and an increase in the estimated number of 
doctors. Several states outside of the European 
Core show a very gradual horizontal move, but 
little or no vertical move. One such country is 
Turkmenistan, showing a gradual sign of 
improvement in political rights with no change 
in its quality of life dimension. Azerbaijan and 
the Kyrgyz Republic show movements similar to 
Turkmenistan in the political rights dimension; 
however, this improvement is accompanied by a 
worsening in the quality of life for both 
countries. Ukraine and Bulgaria show no 
evidence of social convergence to the European 
Core, but both show some modest positive 
changes on the political rights dimension.  

Other countries show no change in the 
role of government dimension but indicate 
significant movements in the quality of life 
dimension. For example, Romania’s sheer 
vertical move indicates improvements in quality 
of life since 1997. Similarly, Moldova shows no 
sign of change in its role of government, but it 
converges to the European criteria in the quality 
of life dimension, approaching Slovakia and 
Croatia. Kazakhstan contrasts with Moldova, 
showing deterioration in quality of life over 
time, while political rights have improved. 
Belarus shows signs of similar worsening in 
quality of life, with very slight improvements in 
political rights (similar to Kazakhstan). 

Three countries — Russia, Latvia, and 
Lithuania — move along multiple dimensions. 
Russia has a very gradual increase in the quality 
of life, providing some evidence of convergence, 
accompanied by gradual improvements in the 
political and civil rights. Lithuania also shows 
similar positive movements, with signs of 
convergence to Western Europe. Latvia shows a 
more  volatile  pattern  over  the  decade,  but the  

 
 
 
 
 
 
 
 
 

 

end point is very similar to that of Lithuania. 
They retreat on both dimensions in 1993, but 
their recovery in 1996 results in net convergence 
to Western Europe over the decade.  

To summarize the maps of social 
indicators, the European Core and its multiple 
fringes clearly corresponds to slight variations 
on Western Civilization (Rosenbaum, 2001; 
Jordan, 2002). For example, a Scandinavian 
cluster of welfare states seems to define the 
epicenter, surrounded by a Germanic cluster 
(Germany, Austria, Switzerland), a French 
cluster (France, Belgium), and a group that 
encompasses the Central European leading 
transition states (Visegrád and Baltics); this 
cluster is in slight contrast to the United States, 
which shares a high quality of life, but 
prescribes a smaller role for government. When 
considering these and other examples, 
considerable stability exists in the social 
dimensions, indicating that little convergence 
has occurred. It is likely that the convergence 
that has occurred in the region hearkens back to 
cultural linkages that preceded the superficial 
division of Europe by the Iron Curtain. 

 
Analysis of Economic Clusters and Dimensions 

On the basis of the earlier review of the 
literature (Rosenbaum, 2001), it is expected that 
economic change can be readily achieved if 
deeply-rooted cultural and societal values are in 
place. In an effort to confirm this expectation, 
Figure 7 was constructed using variables that 
represent only the economic measures of the 
states for comparison with Figure 4. The 
economic U-matrix includes a combination of 
absolute indicators and change indicators (such 
as inflation and growth), as well as domestic 
measures (GDP per capita, reserves) versus 
measures of international linkages (FDI, trade). 
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FIGURE 7. U-MATRIX BASED ON ECONOMIC INDICATORS 

Note: See http://tbf.coe.wayne.edu/jmasm for map in color. 
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In many ways, this U-Matrix is more 
complex than the U-Matrix of social indicators. 
First, there is considerably more movement 
among the countries over time. Second, 
relatively more barriers exist that distinguish 
groups from one another, challenging the notion 
of a cohesive European Core group based upon 
economic characteristics. The more nebulous 
nature of this map is likely attributable to the 
fact that two of the economic variables are 
measures of rates of change (inflation, growth). 

At a basic level, a European Core exists, 
made up of large EU countries and the US. 
These are all wealthy countries with plenty of 
capital—both public and private. Several 
wealthy, integrated countries with core locations 
(and geographically close to one another) remain 
stable throughout the entire period. These 
include Luxembourg, Belgium, Switzerland, 
Germany, and Austria. Within this core, a sub-
group of countries can be identified in the upper-
right that experienced exceptional growth at 
very specific time periods; examples include 
Ireland 98-2000 and Sweden 98-2000. Ireland’s 
recent growth is widely attributed to relatively 
inexpensive, well-trained, English speaking 
labor force and targeted government policies, 
and the significant foreign direct investment 
these advantages attracted (see, e.g., Trauth, 
2000; 2002). 

The transition states are much more 
volatile on the economic map than on the map of 
social dimensions. This is unsurprising, as the 
lifestyles of Europeans, as established on the 
basis of the social map, are more homogeneous 
than their economic characteristics. Greece 
remains fairly stable in the bottom portion of 
this economic group of peripheral Southern 
Europe, which is periodically joined by shock-
therapy Poland (1992-95), some unstable and 
rapidly changing former Soviet Republics 
including    Ukraine   1999-2000 and   
Kazakhstan  

 
 
 
 
 
 
 
 

2000, as well as Turkey (whose growth efforts 
are often derailed by economic crises, with 
correspondingly volatile economic growth) and 
Albania, which shows rapid change throughout 
the 1990s in response to far-reaching reforms.  

Only a faint barrier distinguishes 
Europe’s core (EU plus Switzerland and USA, 
minus Spain, Portugal, and Greece) from the 
transition states (which include the EU’s 
periphery). This lack of clear distinction is 
attributed to the fact that there is a mixed bag of 
absolute and relative/change variables. In 
interpreting the patterns in Figure 7 on the basis 
of the specific variables in Figure 8, it may be 
seen that Europe’s core has good initial 
conditions but has experienced less growth and 
fewer effects of reforms (in particular, growth, 
real GDP per capita growth).  

In contrast to the Core, most transition 
states had worse initial conditions but have 
experienced more dramatic growth because of 
their reforms. As expected, it was found that 
slow starters converge faster (e.g., Albania, 
which features some of the worst initial 
conditions, but is propelled toward the top of 
Figure 7 by its growth rate throughout the 
nineties). The position of Turkey, which by 
comparison was much better off in 1992, 
remains closer to the bottom partially because of 
more modest changes since that time and 
constrained by the real effects of economic 
crises. These observations corroborate Barro and 
Sala-i Martin’s (1992) assertion that high growth 
rates can be more easily achieved in economies 
with less advantageous initial conditions. The 
nature of economic variables therefore further 
complicates the position of each state, and in 
interpreting states’ positions close attention 
should be paid to whether each measure is 
absolute (e.g., real exchange rate, real interest 
rate) or an indication of change (e.g., growth, 
inflation).  
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Convergence on the Economic Dimensions 
Movement of countries—both from left 

to right and from bottom to top—provide 
evidence of migration to where the EU core 
rests, namely at the upper-right corner of the 
map. The EU core itself moves in this direction 
over time, as indicated in particular by the 
movements of the Scandinavian states plus 
Holland and Ireland. In this northeastwardly 
direction,    the    United    States    and   United  

 

 
 

Kingdom move toward the top, with the same 
relative distance between them, and Italy moves 
toward the Core by itself. Note however the 
stability of Belgium and Luxembourg over the 
same period. 

The Caucasus, Baltics, and Turkestan 
(see note 3 in Fig.9) all cover substantial space 
(even crossing red and yellow cells – very dark 
and dark cells in grey scale format) during 
the first few years of the 1990s. This migration 
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FIGURE 8. COMPONENT MAPS OF ECONOMIC INDICATORS 
Note: See http://tbf.coe.wayne.edu/jmasm for map in color. 
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represents a movement away from historical 
USSR-oriented trade and toward truly globally 
integrated trade and investment, which 
reinforces our interpretation of openness being 
both on the left and on the right side of the map. 
Among these states, the most profound moves 
are in the case of Tajikistan, which had been 
firmly lodged in the Soviet sphere of influence 
at the outset of our study (Figure 7), but 
approaches the Central European success stories 
by 2000.  

France is a notable exception to the 
overarching upward trend, moving slightly 
toward the bottom and left. Similarly, the Czech 
Republic moves slightly toward the bottom, 
which is probably indicative of the difficult 
fiscal conditions during the late 1990s, 
corroborated by evidence in the component map 
that points to a shortage of capital. The Czechs 
responded by looking to FDI to treat their 
current account deficit since 2000.  

Hungary, Estonia, Latvia and Lithuania 
demonstrate the greatest convergence among the 
sixteen transition economies in the data, both 
horizontally toward the right and vertically 
toward the top. Underscoring this substantial 
move across Figure 7 is the fact that these states 
cross a yellowish color (grey in grey scale 
format) barrier toward Europe, indicating a 
significant decline in economic distance. Among 
these four, Hungary is the lone state with a right-
side starting point from which it moved 
vertically upwards. The three Baltic countries 
show a significant movement away from the 
other former European Soviet Republics that are 
concentrated in the lower-left corner.  

The remaining countries show either 
extremely modest convergence or considerable 
volatility over time. Tajikistan and Kazakhstan 
show the largest vertical move in this group of 
eight. Specifically, they move in a mostly 
northeastward direction, incorporating the 
convergence features of both the horizontal and 
the vertical move. Belarus and Ukraine can be 
grouped together, moving mainly toward the top 
and right until the late 1990s when the direction 
seems to shift to the left. This is interpreted as a 
slowdown in their trajectories of convergence, 
but it could also be brought on by embracing 
foreign trade and investment. Armenia, 

Azerbaijian, Moldova, and Turkmenistan are 
propelled   by   increasing  GDP  per  capita  and  

 
growth rates, declining inflation, deeper 
financial markets, and improved fiscal balances. 
Moldova seems to have made a late move of 
convergence after 1998 when it separated from 
the others in this group. While some progress is 
evident, this cluster seems to have converged 
least among the Eurasian states.  

The remaining states show considerable 
volatility. The Kyrgyz Republic demonstrates 
some of the most volatile movement among 
transition states, moving to the top and right in 
1993-94 and then falling back in 1995, only to 
jump toward the top again in 2000. Given a lack 
of data to support this jump the sustainability 
and the evidence for a continuing convergence is 
not very clear at this point. 

Distinct from the Kyrgyz Republic, but 
similar in volatility, Turkey and Bulgaria also 
show considerable circularity in their 
movements. Turkey is very unique in that it 
seems to complete a full circle in its move over 
the past decade. It finishes the decade at its 
starting point; the 1994 crisis pushes Turkey off 
the convergence path (toward the bottom of 
Figure 7) and the recovery brings Turkey back 
to its initial point with no further evidence for 
convergence through the end-point of the 
analysis. While it shows similar circularity 
during the 1990s, Bulgaria seems to have 
converged to Europe much more than Turkey. 

Romania shows more of a horizontal 
move to the right, especially in the latter part of 
the decade. It also converges toward the EU 
Core significantly in 1994 before retreating 
again. This observation notwithstanding, 
Romania seems to be much more open to 
international goods and capital flows after this 
period. Finally, Russia’s most dramatic period of 
convergence was 1997 toward the top and right, 
but following its 1998 economic crisis it 
returned to its approximate initial level. Russia’s 
leftward movement can also be interpreted as a 
change toward integration, which lies in marked 
contrast to Russia’s historical policy of autarky 
(self-sufficiency).  

Taking into account the aforementioned 
movements and subsequent investigation of the 
component  variables  and data set,  Figure  9  is  
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presented as a conceptual simplification of the 
economic dimensions. 

As in Figure 6, the labels are based upon 
the variables that have distinct top/bottom or 
left/right trends in Figure 8. For example, 
according to the measure of trade as a share of 
GDP in Figure 8, the countries on the right and 
on the left of the map clearly trade more than 
those in the middle, and the same holds true for 
FDI as a percentage of GDP; this signifies open 
(integrated) economies on both the left and the 
right side of Figure 7. Moreover, bank reserves, 
reserves, income levels, current account 
balances and private sector credit all tend to 
indicate that the top/bottom dimension 
represents a continuum of capital 
abundance/capital scarcity. 

The meaning of the horizontal axis is 
less clear than the vertical axis. The right side 
seems to represent greater capital account 
openness because FDI as a share of GDP is 
higher from left to right. But the openness story 
is less clear when one considers trade as a share 
of GDP. In any case, the horizontal move seems 
to capture some of positive aspects of the 
vertical move as well, because lower inflation is 
evident when one moves toward the right (and 
top). Similarly, growth and GDP per capita, FDI 
as a share of GDP, all increase in that direction, 
and the fiscal balances improves toward the top  

 
 

and right. This interpretation could suggest that 
a move toward the right represents a stage in 
convergence; however, the full convergence 
occurs if the horizontal move is combined with 
the vertical move.  

Along these lines, Wagner and 
Hlouskova (2001) also differentiate between 
convergence and loosely-speaking convergence, 
where the latter captures convergence in the 
economic structure of the countries involved on 
account of strengthened linkages via trade and 
foreign direct investment.  

 
Conclusion 

 
This article demonstrates the utility of Kohonen 
maps for visualizing Eurasian convergence over 
time (1992-2000) on the basis of 28 
socioeconomic measures. It contributes to the 
literature by identifying and explaining the 
relative movements of states on a two-
dimensional map, concurrently taking into 
account a large number of measures. In past 
work, measures had to be considered 
individually when discussing convergence, 
which explains why past work has to a certain 
extent led to sometimes conflicting conclusions. 
This analysis, thus, sheds some light on this 
debate. 

 
Capital rich- abundant private credit, liquid assets 

Economic stability 
 
↨ 
 

Integration (established)  � �    Autarky/  � �  Integration (recent) 
“Self-sufficiency” 

↨ 
Capital poor: Scarce public and private capital 
Stagnant transition (low growth, high inflation) 

 
 

FIGURE 9. INTERPRETATION OF ECONOMIC DIMENSIONS 
 
1 The USA is included in the analysis as a point of reference. 
2 To build our Kohonen maps, we used Matlab code (Laboratory of Computer and Information Science at the 
Helsinki University of Technology), available at www.cis.hut.fi/projects/somtoolbox/. 
3Turkestan is the supranational physiographic and cultural region that includes Kazakhstan, Uzbekistan, 
Turkmenistan, Tajikistan, and Kyrgyzstan—all former Soviet Socialist Republics in Central Asia 
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In addition to the overall analysis that 
included the aggregate set of variables, the 
economic and social variables were analyzed 
separately. The resulting maps demonstrate 
several differences between the economic and 
social convergence processes. On one hand, the 
social variables seem to capture more stable 
traits of states than economic variables. 
Interestingly, the 2004 newcomers to the 
European Union are clearly clustered with most 
of the rest of the EU in the analysis of social 
variables, suggesting deeper cultural 
commonalities between these groups of states.  

Nevertheless, there is clearer evidence 
to support economic convergence than social 
convergence. It is believed that this is because 
initial conditions vary, which is particularly 
evident in the Visegrád states and the Baltics, 
and to a lesser degree Russia, the other European 
former Soviet Republics, and the Balkans. This 
supports the argument regarding the effects of 
historical and cultural linkages presented by 
Rosenbaum (2001). This regional gradient of 
European-ness corresponds to the notion of 
Brussels distance introduced by Fisher, Sahay, 
and Végh (1998). Conversely, states that are 
culturally distant from Western Europe (such as 
Central Asian Republics or the region known as 
Turkestan) exhibit less economic convergence.  

The main dimensions identified in the 
analysis suggest major higher-level constructs 
that can be used in interpretation of the results 
and potentially also in future research. In the 
overall analysis, the two major dimensions were 
the level of political justice and social well-
being and the extent of economic integration. In 
the more detailed analyses, the dimensions of 
the social map were related to the quality of life 
and the respective roles of governments and 
individuals in providing social welfare. Finally, 
the analysis of the economic variables led to the 
identification of two dimensions related to the 
timing of economic integration and the 
availability of capital. Future research should 
use multiple methods to analyze the relevance of 
these constructs as well as specific policy 
reforms.  

Methodologically this study 
demonstrates the usefulness of Kohonen maps to 
visualize large numbers of variables and 
complex sets of data in a two-dimensional space. 

It was found that the approach of using the state-
year pairs as the basic unit of analysis, originally 
introduced by Costea et al. (2001), very useful in 
mapping the time-dependent changes in the 
relative positions of the states. Future research 
should pay special attention to the implications 
of analyzing absolute variables and measures of 
change, which may have impacted the results of 
this analysis. 

In summary, this article provides an 
analysis of the socio-economic convergence of 
Eurasian states with the European Core. It 
demonstrates the usefulness of Kohonen maps as 
a tool for analyzing large sets of macroeconomic 
data over time. The study also distinguishes 
between economic and social factors, identifying 
much more proof of the former than the latter. 
This study identifies and reports indisputable 
evidence of economic convergence by European 
transition states that becomes less clear in 
countries farther to the east. It is argued that 
such convergence is either facilitated or 
constrained by preconditions that are either 
specific to each country or to a broader culture. 
This article lays the groundwork for further 
analysis of country-specific reforms and how 
they interact with initial conditions to impact 
convergence in the transition states. 
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Entropy Criterion In Logistic Regression And Shapley Value Of Predictors 
 

Stan Lipovetsky 
GfK Custom Research Inc. 

 
 
 
Entropy criterion is used for constructing a binary response regression model with a logistic link. This 
approach yields a logistic model with coefficients proportional to the coefficients of linear regression. 
Based on this property, the Shapley value estimation of predictors’ contribution is applied for obtaining 
robust coefficients of the linear aggregate adjusted to the logistic model. This procedure produces a 
logistic regression with interpretable coefficients robust to multicollinearity. Numerical results 
demonstrate theoretical and practical advantages of the entropy-logistic regression. 
 
Keywords: entropy, logistic regression, multicollinearity, net effects, Shapley value. 
 
 

Introduction 
 
Logistic regression is a widely used tool in 
regression modeling for a data with a binary 
output (Pregibon, 1981; Arminger et al., 1995; 
Long, 1997; Hastie & Tibshirani, 1997; 
McCullagh & Nelder, 1997; Lloyd, 1999; 
Lipovetsky & Conklin, 2000). The logistic model 
is usually obtained by the maximum likelihood 
criterion applied to the binary output with the 
logistic link. In this article, the criterion of 
entropy is applied for constructing a logistic 
model. Various techniques based on the entropy 
criterion are well known in information theory, 
fuzzy data analysis, and other statistical 
applications (Lindley, 1956; Zeimer & Tranter, 
1976; Dukhovny, 2002; Levene & Loizou, 2003; 
Maes & Netocny, 2003; Handscombe & 
Patterson, 2004; Bar-Yam, 1997, 2004). The 
entropy-logistic model yields the coefficients 
and   forecasts   very   similar   to multiple linear 
regression. It opens a possibility to apply some 
techniques developed in linear regression to 
binary modeling, particularly,  for  estimation of 
 
 
Stan Lipovetsky is an Analytical Services 
Manager for GfK Custom Research Inc. He 
serves as an internal and external consultant to 
GfK-CRI. His primary areas of research are 
multivariate statistics, multiple criteria decision 
making, econometrics, microeconomics, and 
marketing research. 

 
the predictor’s contribution and construction of a 
model robust to the effects of multicollinearity.  
          Contribution of the predictors in a linear 
aggregate can be found by the net effects 
technique. In linear regression analysis the net 
effect of a predictor is a combination of the direct 
(as measured by its coefficient squared) and the 
indirect effects (measured by the combination of 
its correlations with other variables). The sum of 
the net effects equals the coefficient of multiple 
determination of the model. However, the net 
effect values themselves can be subjected to the 
multicollinearity in the data so that the estimated 
net effects can be negative, which is difficult to 
interpret. 
 Even in presence of multicollinearity, it 
is often desirable to keep all variables in the 
model if their comparative importance is 
evaluated. A regression model can be considered 
from the perspective of a coalition among players 
(predictors) to maximize the total value (quality 
of fitting). In the cooperative games a useful 
decision tool developed to evaluate the worth of 
participants is the Shapley Value imputation 
(Shapley, 1953; Roth, 1988; Straffin, 1993; 
Jones, 2000). The Shapley Value (SV) presents 
each player's input over all possible combinations 
of players. This technique proved to be very 
useful in various complicated estimation 
problems (Conklin et al., 2004; Conklin & 
Lipovetsky, 2005). In application to statistical 
modeling, this approach yields a model called 
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Shapley Value regression (Lipovetsky & Conklin, 
2001, 2004, 2005). In the current work, the SV 
approach to the logistic regression modeling is 
considered. 
           
Entropy in Binary Response Modeling 
           Consider a data matrix with the elements 
xij of i-th observations (i=1, ..., N) by j-th 
variables (j=0, 1, ..., n), and a dependent 
variable y of the observed event’s success or 
failure, presented by the binary output (yi equals 
1 if the event occurs, and 0 if it does not). The 
logistic probability function can be presented as: 
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Maximizing (5) by the parameters in (1)-(2) 

yields the procedure for constructing a regular 
logistic regression, as it is known by the 
literature on categorical data modeling.  
          Instead of the ML (4) it is possible to 
consider an objective of a Gibbs distribution: 
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so its logarithm that defines the entropy of the 
data: 
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where the binary probability outcome is defined 
in (3). The maximum entropy criterion (7) 
differs from the logarithm of maximum 
likelihood (5) by weighting the probabilities iP  

by their logarithms. The first-order conditions 
for maximizing the objective (7) by the 
parameters of the aggregate (2) yields a gradient 
vector with the elements: 
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       (8)   
 
where the derivatives are sequentially taken 
from the functions (3), (1), and (2).  
          To solve a non-linear system of equations 
the Newton-Raphson algorithm can be applied. 
The vector with elements (8) is approximated as:  
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where a is a vector of the (n+1)-th order of all 
the coefficients ak (2), and t denotes a step of 
iteration. The process of estimating the vector of 
parameters is: 

UHa
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(10) 
 
where H is a matrix of second derivatives, or 
Hessian, and 1−H  is this matrix inversed. 
          Using (8), this matrix is constructed: 
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  (11) 

 
In the brackets at the right-hand side (11), the 

difference of the items 2)( ii py −  and 

)1( ii pp − of two forms of the variance 

estimations is always small. The total of these 
items is negligible (Becker & Le Cun, 1988; 
Bender, 2000), so (11) can be presented as:   
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(12) 

where the diagonal matrix of weights W is 
defined using (1) and (3), and X is the data 
matrix in the aggregate (2) (with a uniform first 
column corresponded to the intercept). So (12) is 
a weighted matrix of the second moments of the 
predictors in the model (2). 
          The gradient vector (8) can be rewritten in 
a matrix form as: 
 
          ( ) )()ln1( pyPPdiagXU −+′= ,    (13)                     
 
where P, p, and y are the vectors with the 
elements Pi (3), pi (1), and the binary output yi, 
respectively. Then the iterative process (10) is: 
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where )(tξ  is the so called working dependent 
variable that denotes the expression in figure 
parentheses (14). The right-hand side of the 
expression (14) presents the solution of the 
system (8) as a weighted linear regression with 
the adjusted response variable:    
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(15) 

 

where )()( tt Xaz =  is a vector of the linear 

aggregate (2), pyt −=)(ε  is a vector of 
deviations between the empirical binary 
response and the theoretical probability (1). The 
solution (14) corresponds to the normal system 
of equations of the weighted least square 
problem ξWXaWXX ′=)'(  with the adjusted 
dependent variable (15), so the process (14)-(15) 
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is the Iteratively Reweighted Least Squares, or 
IRLS. Numerical simulations show that the 
weight matrix W in Hessian (12) quickly 
becomes approximately a scalar matrix, and the 
IRLS process converges already after several 
steps.  
          Consider numerical results from a real 
research project involving bank mortgages with 
the data elicited from 403 customers. The binary 
response defines the customers’ "Satisfied or 
not" feeling on the bank performance with a 
mortgage, and the independent variables from x1 
to x8 are shown in Table 1. The management of 
the bank is interested in estimating the predictors 
influence on increasing the client’s satisfaction 
with the bank. Table 1 presents the pair 
correlations of the dependent with independent 
variables,  and  the  coefficients (beginning from 
 
 
 

 
 
 
 
 
 

the intercept) with their t-statistics for the 
multiple linear, the regular logistic, and the 
entropy-logistic regressions. The entropy-logit 
model is constructed using the IRLS approach 
(14)-(15), and the t-statistics for the coefficients 
are estimated using bootstrapping.  
 Table 1 shows that the variables x2, x3, 
x5, and also x7 are the most significant 
predictors, while the other variables x1, x4, x6, 
and x8 are unimportant in the models. In spite of 
all positive pair correlations with the binary 
dependent variable, the coefficients of the least 
significant variables change their sign in the 
models (negative sign for x8 in the linear, for x1 
in the logit, and for both of them in the entropy-
logit model). It is the effect of multicollinearity 
that distorts the estimation by the models.  
          
 
 
 

 
 
 
 
  
 

 
Table 1. Binary models of customer satisfaction. 

 
Linear  

regression 

Regular 

Logistic 

Entropy 

Logistic 

Variable Correlation coeff t-stat coeff t-stat coeff t-stat 

Overall sat. w. mortgage loan y 1 -.919 -6.73 -10.841 -7.73 -1.600 -6.68 

Satisfaction with rate x1 .347 .0002 0.01 -.026 -0.34 -.0002 -0.01 

Right type of loan x2 .402 .038 3.11 .233 2.89 .043 2.35 

Feel like a valued customer x3 .498 .049 3.43 .340 3.76 .055 2.91 

Bank knows customers needs x4 .438 .007 0.57 .060 0.79 .007 0.36 

Communication x5 .423 .026 2.61 .120 1.98 .031 1.95 

Handling mortgage payment x6 .359 .023 1.13 .127 0.92 .027 0.89 

Posting payments accurately x7 .352 .039 1.76 .396 2.34 .044 1.29 

Posting payments timely x8 .338 -.009 -0.40 .022 0.13 -.011 -0.32 

 



LIPOVETSKY 99 

 Table 2 contains the ratios of the 
coefficients of the regular logit to the linear 
model, of the regular logit to the entropy-logit 
model, and of the entropy-logit to the linear 
model, respectively. The coefficients themselves 
vary differently in each model, and the ratios of 
the regular logit coefficients to the coefficients 
of the other models belong to a wide span of 
values. However, the ratio of the coefficients of 
the entropy-logit to the linear model is 
amazingly stable.  
 The last column in Table 2 shows that 
with exception of the intercept (that incorporates 
the influence of all the predictors), and slightly 
different ratios for the most insignificant 
variables x1, x4, and x8, all absolute values of all 
the ratios are practically the same.  
          Denoting the theoretical, predicted values 
of the output as liny~ , log

~y , and enty~  for the 

linear, logit, and entropy-logit models, 
respectively (where 0 and 1 values correspond to 
the rounded values of the probability below or 
above 0.5), and estimating the coefficient of pair 
correlation between the linear and entropy-logit 
predictions, it is possible to obtain a value of 
0.9995, while the correlations between the 
predictions by the other models are about 0.94-
0.95. Comparison of the models’ predictive 
ability is presented in Table 3 by several cross-
sections. 
 Section A of Table 3 presents the cross-
tabulation of the empirical binary output y with 
the prediction liny~  by the linear model, where 0 

and 1 values are correctly identified 169 and 143 
times, so the total of the correct forecasts is 312 
within 403 observations, or 77.4%. The next 
section B in Table 3 shows the cross-tabulation 
of the empirical y with the prediction log

~y  by the 

regular  logit  model,  where  0 and 1 outputs are  
 
 
 
 
 
 
 
 
 
 

correctly identified 173 and 138 times, with the 
total of correct forecasts equal 311, or 77.2%. 
Section C in this table presents the cross-
tabulation of the empirical y with the prediction 

enty~  by the entropy-logit model, that correctly 

identifies 0 and 1 outputs 167 and 143 times, so 
the total rate of correct forecasts is 310, or 
76.9%. It is interesting to note that both linear 
and entropy-logit models better identify the level 
y=1 of the satisfied customers. The other 
sections D, E, and F of Table 3 compare 
predictions by each two of the three constructed 
models, where again the linear and entropy-logit 
models yield very close counts of 204 and 195 
for 0 and 1 binary outputs, so the total rate of the 
coinciding results equals 99%. 
          The observed results are typical for 
various data sets. They show that all the 
considered models produce results of a similar 
quality. However, while a linear regression 
could yield an output beyond 0-1 interval in its 
prediction, both logistic regressions have the 
same link (1) with the linear aggregate of the 
predictors, so they always yield a probability in 
the 0-1 range. On the other hand, a close 
inspection of the results produced by the 
entropy-logit and linear models suggests a 
possibility to apply techniques developed for the 
linear models to a logistic model in its entropy-
logit formulation. In the work (Lipovetsky and 
Conklin, 2001) the Shapley value regression was 
introduced for estimating the net effects of the 
predictors shares in the linear model. The 
proportionality between the coefficients of linear 
and entropy-logit models (see Table 2) suggests a 
possibility to extend the Shapley value net effects 
technique to the estimation of the contribution of 
the regressors into the linear aggregate (1) of the 
logistic link, and to adjust the coefficients of the 
logistic model using the obtained net effects. 
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Shapley Value Regression 
          A model of linear multiple regression can 
be presented as: 
 
                        εε +=+= bXzy ,              (16)                                               
  
where z is a linear aggregate (2) by the 
parameters b of the linear model , and ε denotes a  
 
 
 
 

 
vector of errors. The Least Squares (LS) 
objective for minimizing is: 
 

2

( ) ( )

2

y Xb y Xb

y y b X y b X Xb

ε ε ε′=
′= − −

′ ′ ′ ′ ′= − +
.        

 
(17) 

Minimization of (17) by its parameters yields a 
normal system of equations with the solution: 
 

 
Table 2. Ratios of the models’ coefficients. 

 
Variable Logit to Linear Logit to Entropy-Logit Entropy-Logit to Linear 

x0 11.80 6.78 1.74 

x1 -168.62 116.64 -1.45 

x2 6.19 5.38 1.15 

x3 6.95 6.18 1.12 

x4 8.03 8.25 0.97 

x5 4.62 3.94 1.17 

x6 5.51 4.71 1.17 

x7 10.14 9.07 1.12 

x8 -2.45 -2.04 1.20 

 
 
 

Table 3. Predictive ability of binary models. 
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                       yXXXb ')'( 1−= .                  (18)                                            
 
Substituting (18) into (17) gives a value of LS 
objective in minimum, or residual sum of squares 

εε ′ . The known LS relation y’y = z’z + ε’ε  says 
that the original sum of squares of the dependent 
variable equals the theoretical sum of squares 
around the regression plus residual sum of 
squares. The coefficient of multiple 
determination for the regression is:  
                           

yy

yXXXXy

yy

zz

yy
R

'

')'('
1

1
2

−

=
′
′

=
′
′

−= εε
    (19)                     

 
The minimum of the deviations (17) corresponds 
to the maximum regression quality estimated by 
R2 (19). In the standardized variables the 
coefficient of multiple determination can be 
represented in a convenient form:  
                           

rbbyXXXXyR pair β ′≡′== − ')'(' 12 ,     (20)                            

 
where b is the vector of multiple regression 
coefficients, and bpair is a vector compounded 
from the coefficients of pairwise regressions of y 
by each x. The presentation R2 =β’r in (20) is 
given using a vector β of beta-coefficients of 
multiple regression (the coefficients of the 
standardized regression with all variables 
centered and normalized by their standard 
deviations), and vector r of pair correlations of y 
with each x (those correlations are equal to the 
coefficients in pair regressions by each predictor 
separately). Items of the scalar product at the 
right-hand side of total R2 (20) define the so 
called Net Effects (NEF) of each j-th regressor: 
 
                            NEFj  =  βj rj .                      (21) 
 
The multiple determination and net effects are 
widely used in practice for estimation of the 
regressors’ contribution to the model. 
          Another measure of predictor comparative 
usefulness is utility Uj of each regressor that is 
estimated via the increment of multiple each 
determination of the models with and without 
particular xj in the set of predictors (Darlington, 
1968; Harris, 1975):           
         

                                Uj  =  R2  - R2
-j                 (22)                   

 
Here R2 denotes multiple determination in the 
model with all predictors including xj, and R2

-j 
denotes multiple determination in the model 
without xj .  
          Consider the Shapley Value (SV) 
estimation of predictors’ shares. SV assigns a 
value for each predictor calculated over all 
possible combinations of predictors in the linear 
model, so it includes the competitive influence of 
any subsets of predictors in the analysis. The SV 
is defined as each j-th participant’s input to a 
coalition: 
 

( ) { }( ) ( )[ ]MjMMj
allM

n
SV υυγ −=∑ ∪

                           
 

(23)
 

 
with weights of proportions to enter into a 
coalition M defined as  
 

                
( ) !/)!1(! nmnmM

n
−−=γ . (24) 

 
In (23)-(24) n is the total number of participants, 
m is the number of participants in the M-th 

coalition, and ( )υ  is the characteristic function 

used for estimation of utility for each coalition. 

By { }∪ jM a set of participants which includes 

the j-th participant is denoted, when M means a 
coalition without the j-th participant. In 
regression, the participants of the coalition game 
are predictors incorporated into the model. 
          As indicated above, the coefficient of 
multiple determination (20), net effects (21), and 
utility values (22) can be used as measures of 
quality in regression models. For ease of 
exposition, it is convenient  to use notations A, B, 
C, etc., for variables x1, x2, x3, etc., so R2

ABC , for 
example, defines the multiple determination in 
the model with the corresponding predictors. The 
characteristic function υ  (23) via these R2 values 
are estimated by the results of linear modeling. 
For instance, if  n = 5, the characteristic function 
for variable A is: 
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(25) 

 
Substitution of characteristic function (25) into 
the SV (23) shows that each expression in 
brackets (23) coincides with the utility (22). So 
SVA is a measure of the predictor A usefulness 
averaged by all the models that contain this 
predictor. The weights (24) are: 
 

( ) ( ) ( ) ( ) ( ) .033.02,05.031,20.040 ===== γγγγγ                 
 

(26) 
 
Then the SVA (23) for the variable A can be 
written explicitly as: 
 

( ) ( )
( )
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.2 .05

.033
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(27) 

with the values of utility (22): 
                    
UA = R2

A , 
UAB = R2

AB - R2
B , ... , 

UABC = R2
ABC - R2

BC , ... , 
UABCD = R2

ABCD - R2
BCD , ... , 

UABCDE = R2
ABCDE - R2

BCDE  . 
(28) 

 
The items in sum (27) correspond to the utility 
margins from the variable A to all coalitions, and 
the SVA is the mean margin over all coalitions. 
Similar formulas are used for each of the other 
variables B, C, D, and E, and their SV define 
margins from each of the predictors. The total of 
margins from all the variables equals the value of 
R2 in the model with all the predictors together: 

( ) .2
ABCDE

n

j
j

RallSV ==∑ υ
                                 

(29) 

The SV are shares of total R2 defining importance 
of each predictor in their aggregate. 
          Regrouping items in (27) with help of (28) 
represents the SV as following: 
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(30) 
 
The first item in sum (30) presents a difference of 

2
AR  for the model with one predictor A and mean 

value 2
1R  (marked by bar over R2) for all the 

models with just one predictor (marked by sub-
index 1). In the second item of this sum a 

difference between mean 2
*AR  for all the models 

with two predictors one of which is A (marked by 
sub-index A* with asterisk denoting any other 

variable x) and mean 2
2R  for all the models with 

any two predictors (marked by sub-index 2) is 
shown, etc. 
 The last item presents a share that the 
predictor A has in the total R2 of the model with 
all predictors together. The important feature of 
the formula (30) is the presentation of sequential 
inputs of coalitions of the 1st, 2nd, etc. levels to the 
total SV. If the data is available only on the 
several initial stages of coalitions with one, two, 
and some other subsets of variables, it is possible 
to use (30) for approximation of the partial inputs 
to the total SV. Comparison of such cumulative 
values for each variable allows one to evaluate 
the stability of the SV imputation. This suggests 
an approach for reducing the computation time of 
the SV by limiting evaluation to the number of 
levels where stability is achieved. Each term in 
(30) is constructed via mean values of 
combinations with a predictor and without it, so 
these means can be estimated by sampling 
combinations. 
          The expression (29) presents the 
estimations of the net effects (20)-(21) obtained 
via the SV approach. So in place of the regular 
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net effects one can use decomposition of the 
multiple determination by the SV net effects: 
 
                               R2 = ∑j SVj   .                    (31) 
 
Each item in (31) is a very robust estimate of the 
net effect because SV is an average across all 
possible models with different subsets of 
predictors. These values are not as volatile as the 
regular net effects, and they are not prone to 
multicollinearity. In difference to regular net 
effects (21), the SV net effects (31) are always 
positive, so they are interpretable and suggest an 
easy way for graphical (pie-charts) presentation 
of predictors’ shares in their contribution to the 
linear aggregate of the model. 
          When the SV net effects are found, they 
can be used for adjusting the coefficients in the 
linear aggregate, that can be performed by the 
following procedure. The objective of multiple 
determination can be presented using (17) and 
(19) as:  
 

2 1

1 ( ) ( )

2

(2 )

R

y X y X

X y X X

r S

ε ε
β β

β β β
β β

′= −
′= − − −

′ ′ ′ ′= −
′= −

, 

(32) 
 
where the standardized beta-coefficients are used, 
and S denotes a matrix of predictors’ correlations. 
Equalizing items in sums (31) and (32) yields a 
system of quadratic equations that can be used for 
finding the coefficients of regression adjusted by 
the SV net effects:   
 
        njSVSr jjj ...,,1,)2( ==− ββ .     (33) 

 
Solution of the system (33) can be achieved by 
minimizing the objective: 

 

( )∑
=

−−=
n

j
jjj SVSrF

1

2)2( ββ . (34)                                       

Initial value for the parameters in minimization 
(34) can be taken as jjj rSV /=β  obtained from 

(21) where the SV net effects are used. Having 
the adjusted beta-coefficients of the standardized 

regression, one returns to the coefficients of the 
original regression (16) by the regular 
transformation jyjjb σσβ /= , where yσ  and 

jσ  are the standard deviations of the dependent 

and the independent variables. 
          Using the obtained coefficients b of the 
adjusted SV regression (34) and the property of 
approximate proportion between the coefficients 
of the entropy-logit and linear models (see Table 
2), it is possible to use a proportionality: 
 
                       njbka jj ...,,1, == ,         (35)                   

 
with a constant k between the coefficients ja  of 

the logistic model and the SV regression 
coefficients jb  for all the predictors. Then, the 

logistic aggregate (2) can be presented as a linear 
transformation  
 

                               SV
lini ykqz ~+=                (36)                     

 

of the vector SV
liny~  of theoretical estimation of the 

dependent variable by the adjusted SV model 
(34), with q and k as unknown parameters. The 
parameters of the transformation (36) can be 
found by a simple logistic model with only one 

variable SV
liny~ : 

 

                   ( ))~(exp1

1
SV
linykq

p
+−+

= ,     (37) 

 
using the original data on the binary output.  
         Table 4 in its left-hand side presents 
some additional estimates for the linear 
regression – there are columns of the net effects 
(21), their shares in the total coefficient of 
multiple determination (20), the SV net effects 
(31), and their shares in the same R2. The last 
predictor in the linear regression has negative 
sign in the model (see Table 1), and its net effect 
is negative in Table 4. Estimated by SV, the net 
effects are all positive, so all the predictors 
contribute to the model, as it should be expected 
because any additional variable increases the 
quality of data fitting. Shares of the SV net 
effects are rather substantial even for the 
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variables x1, x4, x6, and x8 (considered as 
unimportant by the previous model – see the 
discussion by Table 1).  
 The right-hand section of Table 4 
presents the results of the adjusted SV 
regressions. Procedure (34) yields the adjusted 
SV regression with all positive predictor 
coefficients, positive net effects, and R2 =0.313 
that is slightly less than R2 =0.324 of the regular 
regression – this is a price of the trade-off for the 
adjusted model with interpretable coefficients and 
positive net  effects. Although the  coefficients of 
 
 
 
 

 
 
 
 
 

the regular and adjusted linear regressions are 
rather different, the SV net effect shares by the 
regular linear and the adjusted linear models are 
very similar. They can be used as the estimates 
of the variables role in increasing the clients’ 
satisfaction with the bank’s mortgage products. 

The last column in Table 4 presents the 
logistic model constructed by the procedure 
(35)-(37). At first a vector 

821 019....024.015.~ xxxy SV
lin +++=  of the 

aggregate  with  the   coefficients of the adjusted  
 
 
 
 

 

 
Table 4. Net Effects, Shapley Value, Adjusted SV Linear and Logistic Models. 

 
 
 

Linear regression  Adjusted SV regressions 

Variable 

Net 

Effect 

Share 

% 

SV net 

effect 

Share 

SV %  

Linear 

model 

Net  

Share % 

Logistic 

model 

x0      -0.943  -9.683 

x1 0.000 0.1 0.025 7.7  0.015 7.5 0.099 

x2 0.070 21.6 0.049 15.1  0.024 15.3 0.160 

x3 0.117 36.2 0.077 23.8  0.030 24.2 0.197 

x4 0.017 5.3 0.045 14.0  0.020 14.1 0.129 

x5 0.060 18.6 0.050 15.5  0.020 15.7 0.134 

x6 0.028 8.7 0.026 8.1  0.022 7.9 0.145 

x7 0.041 12.8 0.030 9.3  0.027 9.1 0.181 

x8 -0.010 -3.2 0.021 6.6  0.019 6.2 0.126 

R2 0.324 100.0 0.324 100.0  0.313 100 0.313 
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SV linear model is constructed. Then the 
parameters of the logistic model (37) are 
estimated as q = -9.683 and k = 6.617, and by 
(35) the   coefficients of the adjusted SV logistic 
model are obtained (the last column in Table 4). 
In this model all the coefficients are positive, 
and the shares of the predictor contributions 
coincide with the net effect shares (Table 4, the 
column before the last one) because the 
proportionality of the coefficients (35) does not 
change the shares of the net effect (20)-(21). 
 The predictive ability of the SV logistic 
model in comparison with several others is 
presented in Table 5. There are cross-sections of 

the binary output SVy log
~  of the SV logistic model 

with the empirical outcome y, and with the 
predictions liny~ , log

~y , and enty~  by the linear, 

regular logit, and entropy-logit models, 
respectively. 
 Section A of Table 5 shows that the SV 
logistic correctly predicts (169+135)/403 or 
75.4% of the original binary data. By Table 3, the 
rate of the correct identifications by the models 
with the coefficients non-adjusted to 
multicollinearity was about 77%. The next cross-
sections in Table 5 show that the SV logit 
predictions coincides with the other models’ 
predictions at the total rate of 95%. Thus, the 
adjusted SV logit model has both high predictive 
rate and interpretable coefficients of the model.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
So the management of the bank can elaborate an 
appropriate   program  for  improving  the  clients 
service based on the results of the adjusted SV 
logistic model. 

 
Conclusion 

 
The entropy criterion applied to the binary 
response data with the logistic link yields a 
logistic model with the coefficients proportional 
to the linear regression, and with the predictive 
ability similar to both linear and regular logistic 
models. Using the properties of the entropy-
logistic regression, the Shapley value net effects 
are applied for estimating the contributions of 
the predictors in the logistic model, and for 
adjusting the coefficient of regression itself. The 
Shapley value logistic regression is robust, has 
interpretable coefficients, and demonstrates a 
high rate of predictive ability. The partnership of 
the entropy-logistic approach and the Shapley 
value binary response regressions can enrich 
theoretical possibilities and serve as a useful tool 
for categorical data modeling in practical 
applications.  
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The Efficiency Of OLS In The Presence Of 
Auto-Correlated Disturbances In Regression Models 
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The ordinary least squares (OLS) estimates in the regression model are efficient when the disturbances 
have mean zero, constant variance, and are uncorrelated. In problems concerning time series, it is often 
the case that the disturbances are correlated. Using computer simulations, the robustness of various 
estimators are considered, including estimated generalized least squares. It was found that if the 
disturbance structure is autoregressive and the dependent variable is nonstochastic and linear or quadratic, 
the OLS performs nearly as well as its competitors. For other forms of the dependent variable, rules of 
thumb are presented to guide practitioners in the choice of estimators. 
 
Key words: Autocorrelation, autoregressive, ordinary least squares, generalized least squares, efficiency 
 
 

Introduction 
 
Let the relationship between an observable 
random variable y and k explanatory variables 

k21 X , ,X ,X … in a T-finite system be specified 
in the following linear regression model: 
 

                u+β X=y            (1) 
 
where y is a ( )1T ×  vector of observations on a 

response variable, X is a ( )kT ×  design matrix, 

β  is a ( )1k ×  vector of unknown regression 

parameters, and u is a ( )1T ×  random vector of 
disturbances. For convenience, it is assumed that 
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X is full column rank Tk <  and its first column 
is 1's. The ordinary least squares (OLS) 
estimator of β  in the regression model (1) is 

            

             ( ) yXXXˆ 1 ′′=β −
           (2) 

 
In problems concerning time series, it is 

often the case that the disturbances are, in fact, 
correlated. Practitioners are then faced with a 
decision, use OLS anyway, or try to fit a more 
complicated disturbance structure. The problem 
is difficult because the properties of the 
estimators depend highly on the structure of the 
independent variables in the model. For more 
complicated disturbance structures, many of the 
properties are not well understood. If the 
disturbance term has mean zero, i.e. E(u) = 0, 
but is in fact, autocorrelated, i.e. 

( ) ∑σ= 2
uuCov , where∑  is a TT ×  positive 

definite matrix and the variance 2
uσ  is either 

known or unknown positive and finite scalar, 
then the OLS parameter estimates will continue 

to be unbiased, i.e. ( ) β=β̂E . But it has a 
different covariance matrix; 

 

     ( ) ( ) ( ) .XXXXXXˆCov 112
u

−−
∑

′∑′′σ=β  (3) 
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The most serious implication of 
autocorrelated disturbances is not the resulting 
inefficiency of OLS, but the misleading 
inference when standard tests are used. The 
autocorrelated nature of disturbances is 
accounted for in the generalized least squares 
(GLS) estimator given by: 

 

      ( ) yXXX
~ 111 −−−

∑′∑′=β           (4)                     
         

which is unbiased, i.e. ( ) β=β~E , with 
covariance matrix 
 

                  ( ) ( ) .XX
~

Cov
112

u

−−
∑′σ=β             (5)                                  

 
The superiority of GLS over OLS is due to the 
fact that GLS has a smaller variance. According 
to the Generalized Gauss Markov Theorem, the 
GLS estimator provides the Best Linear 
Unbiased Estimator (BLUE) of β . But the GLS 
estimator requires prior knowledge of the matrix 

correlation structure, Σ . The OLS estimator β̂  
is simpler from a computational point of view 
and does not require a prior knowledge of Σ . 

A common approach for modeling 
univariate time series is the autoregressive 
model. The general finite order autoregressive 
process of order p or briefly, AR(p), is 

 
~  ,uuuu ttptp2t21t1t εε+φ++φ+φ= −−− �

.d.i.i ( )2,0N εσ                                                  (6) 

 
There are numerous articles describing 

the efficiency of the OLS coefficient 

estimator β̂ , which ignore the correlation of the 

error, relative to the GLS estimator β~ , which 
takes this correlation into account. One strand is 
concerned with conditions on regressors and 
error correlation structure, which guarantee that 
OLS is asymptotically as efficient as GLS (e.g. 
Chipman, 1979; Krämer, 1980). The efficiency 
of the OLS estimators in a linear regression 
containing an autocorrelated error term depends 
on the structure of the matrix of observations on 
the independent variables (e.g. Anderson, 1948; 
1971; Grenander & Rosenblatt, 1957). 

For a linear regression model with first 
order autocorrelated disturbances, several 
alternative estimators for the regression 
coefficients have been discussed in the literature, 
and their efficiency properties have been 
investigated with respect to the OLS and GLS 
estimators (e.g. Kadiyala, 1968; Maeshiro, 1976; 
1979; Ullah et al., 1983). 

The relative efficiency of GLS to OLS 
in the important cases of autoregressive 
disturbances of order one, AR(1), with 
autoregressive coefficient ρ  and second order, 

AR(2), with autoregressive coefficients ( )21 ,φφ  
for specific choices of the design vector have 
been investigated. 

Building on work on the economics and 
time series literature, the price one must pay for 
using OLS under suboptimal conditions required 
investigation. Different designs are being 
explored, under which relative efficiency of the 
OLS estimator to that of GLS estimator 
approaches to one or zero, determining ranges of 
first-order autoregressive coefficient, ρ , in 
AR(1) disturbance and second order of 
autoregressive coefficients, ( )21 ,φφ  in AR(2) 
for which OLS is efficient and quantifying the 
effect of the design on the efficiency of the OLS 
estimator. Furthermore, a simulation study has 
been conducted to examine the sensitivity of 
estimators to model misspecification. In 
particular, how do estimators perform when an 
AR(2) process is appropriate and the process is 
incorrectly assumed to be an AR(1) or AR(4)? 

 
Performance Comparisons 
 In this section, numerical results are 
presented using the formulas in (3) and (5). 
Focus will be placed on two issues; first, the 
relative efficiency of GLS estimator as 
compared with the OLS estimator when the 
structure of the design vector, X, is 
nonstochastic. For example, linear, quadratic, 
and exponential design vectors with an intercept 
term included in the design vector. Secondly, the 
relative efficiency of the GLS estimator as 
compared with the OLS for a stochastic design 
vector. In the example considered here, a 
standard Normal stochastic design vector of 
length 1000 was generated. The three finite 
sample sizes used are 50, 100, and 200 for 
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selected values of the autoregressive 
coefficients. Both AR(1) and AR(2) error 
processes are considered to discuss the behavior 
of OLS as compared to GLS. 
 
Performance Comparisons for AR (1) Process 
 The relative efficiencies of OLS to GLS 
are discussed when the disturbance term follows 
an AR(1) process, T,,2,1t,uu t1tt …=ε+ρ= − , 

assuming that the autoregressive coefficient, ρ , 
is known priori. The three finite sample sizes 
used are 50, 100, and 200 for the elected values 

of 9.≤ρ , evaluated in steps of .2. 

Table (1) shows the relative efficiencies 
of the variances of GLS to OLS for a regression 
coefficient on linear trend with an intercept term 
included in the design. For estimating an 
intercept term, the relative efficiency of the OLS 
estimator as compared to the GLS estimator 

 

 
 
 

decreases with increasing values of ρ . For small 

and moderate sample sizes, the efficiency of the 
OLS estimator appears to be nearly as efficient 

as the GLS estimator for 7.≤ρ . In addition, for 

large size sample data, the OLS estimator 
performs nearly as efficiently as the GLS 
estimator for the additional values of 9.±=ρ . 
Further, the efficiency for estimating the slope 
mimics the efficiency of the intercept, except for 
large sample size; the efficiency of the OLS 
estimator appears to be nearly as efficient as the 
GLS estimator for 9.±≠ρ . 

The efficiency of GLS estimator to the 
OLS  estimator  for  the  quadratic  design agrees  
with the behavior for the linear design vector. In 
contrast, the gain in efficiency of the GLS 
estimator for different design vectors such as 
exponential and 1000 standard Normal, N(0,1)  
 
 

 
 
 

 
Table 1: Relative Efficiency of GLS to OLS for Linear Design 

 
Intercept Slope   

T = 50 T =100 T = 200 T = 50 T =100 T = 200 

-0.9 0.7097 0.8276 0.9047 0.6739 0.8012 0.8881 

-0.7 0.9162 0.9552 0.9768 0.9024 0.9471 0.9724 

-0.5 0.9694 0.9840 0.9918 0.9640 0.9810 0.9903 

-0.3 0.9908 0.9952 0.9976 0.9891 0.9943 0.9971 

-0.1 0.9991 0.9995 0.9998 0.9989 0.9994 0.9997 

0.1 0.9991 0.9995 0.9998 0.9989 0.9994 0.9997 

0.3 0.9911 0.9953 0.9976 0.9894 0.9944 0.9971 

0.5 0.9717 0.9846 0.9920 0.9662 0.9816 0.9904 

0.7 0.9288 0.9585 0.9777 0.9147 0.9503 0.9732 

0.9 0.8359 0.8691 0.9164 0.8000 0.8418 0.8993 

 
 

ρ 
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compared to the OLS estimator is substantial for 
moderate  and  large  values of ρ  . However, for 
small values of ρ  the OLS appears to be nearly 
as efficient as GLS. 
 
Performance Comparisons for AR (2) Process 
 The relative efficiencies of OLS to GLS 
are discussed for linear, quadratic, and 
exponential design vectors when the disturbance 
term follows an AR(2) process, 

T,2,,1t  ,uuu t2t21t1t …=ε+φ+φ= −− , assuming 

that the autoregressive coefficients 1φ  and 2φ  
are known priori. The three finite sample sizes 
used are 50, 100, and 200 for the selected 45 
pairs of the autoregressive coefficients. These 
coefficients were chosen according to stationary 

conditions ( )1and,1,1 21221 <φ<φ−φ<φ+φ  

and so that ( ) 1
211 1 −φ−φ=ρ  is positive. This 

second condition was chosen since this is the 
case in most econometric studies. 

To demonstrate the efficiency of OLS, 
consider the linear design vector. When the 
disturbance term follows an AR(2) process for 
the linear design with small sample size, OLS 
performs nearly as efficiently as GLS for 
estimating the slope for all AR(2) 
parametrizations except when s'φ are close to 
the stationary boundary. As the sample size 
increases, the difference between the 
performance of OLS and GLS decreases. Only 
when 9.2 −=φ , does OLS perform badly 
regardless of the sample size. The efficiency of 
GLS to OLS for the quadratic design mimics the 
behavior for the linear design. Finally, for 
exponential and 1000 standard Normal design 
vectors, the efficiency of OLS appears to be 
nearly as efficient as GLS for 2.1 =φ  and small 

values of 2φ ₂  for all sample sizes. Otherwise, 
OLS performs poorly. 

 
Simulation Study 
 In this section, the robustness of various 
estimators are considered, including estimated 
generalized least squares (EGLS). These 
simulations examine the sensitivity of estimators 
to model misspecification. In particular, how do 
estimators perform when an AR(2) process is 

appropriate and it is incorrectly assumed that the 
process is an AR(1)? The finite sample 
efficiencies of the OLS estimator relative to four 
GLS estimators are compared: the GLS based on 
the correct disturbance model structures and 
known AR(2) coefficients denoted as GLS-
AR(2); the GLS based on the correct disturbance 
model structures, but with estimated AR(2) 
coefficients denoted as EGLS-AR(2); the GLS 
based on AR(1) incorrect disturbance model 
structures with an estimated AR(1) coefficient 
denoted as EIGLS-AR(1); and the GLS based on 
AR(4) incorrect disturbance model structures 
with estimated AR(4) coefficients denoted as 
EIGLS-AR(4). This study focuses only on 
AR(p) GLS corrections disturbances which are 
widely used in econometric studies. 
 
The Simulation Setup 
 Three finite sample sizes (50, 100, and 
200) and three nonstochastic design vectors of 
the independent variable are used; linear, 
quadratic, and exponential. A standard Normal 
stochastic design vector of length 1000 is also 
generated (Assuming that the variance of the 

error term in AR(2) process 12 =σε ). Further, 

1000 observations for each of the AR(2) error 
disturbances with four pairs of autoregressive 
coefficients; (.2,-.9), (.8,-.9), (.2,-.7), and (.2,-.1) 
were also generated. Table (2) shows the values 
of autocorrelation coefficients 21  , ρρ , 

disturbance variances, 2
uσ , ( )( )[ ] 12

1
2
2

2
u 11

−ρ−φ−=σ  

and the relative efficiencies for estimating an 
intercept 0β , and the slope, 1β  of GLS to OLS 

for linear design with T=50, denoted ( )0RE β , 

and ( )1RE β . Looking at the table, it may be 
seen that the choices (.2,  -.9) and (.8, -.9) give 
the worst performance of OLS as compared to 
GLS for estimating ( 0β , 1β ) of the regression 

coefficients and the largest values of 2
uσ . 

However, the choices (.2, -.7) and (.2, -.1) give 
the moderate and best performance of OLS as 
compared to GLS and the smallest values of 

2
uσ . Results for other sample sizes and designs 

demonstrate a similar pattern as in Table (2). 
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The regression coefficients 0β , and 1β  

for an intercept and the slope were each chosen 
to be equal one. Breusch (1980) has shown that 

for a fixed design, the distribution of 
2
u

EGLS
ˆ

σ
β−β

 

does not depend on the choice for β  and 2
uσ , 

and the result holds even if the covariance 
matrix Σ  is misspecified. When the design 
vector is stochastic, the assumption of a fixed 
design can be constructed as conditioning upon a 
given realization of the design, provided that the 
design is independent of tu , Koreisha et al. 

(2002). 
 
Definition 
 The efficiency of the GLS estimates 
relative to that of OLS in terms of the mean 

squared error of the regression coefficient, 
j

ˆ
βζ , 

is given by: 

                  
( )
( )∑ β−β

∑ β−β
=ζ

=

=
β k

1i

2

jOLS,ij

k

1i

2

jGLS,ij

ˆ

~

ˆ
j

         (7) 

  
where j = 0,1, for four GLS estimates, and k is 
the number of simulations. A ratio less than one 
indicates that the GLS estimates is more 

efficient  than  OLS,  and  if  
j

ˆ
βζ is  close to one,  

 

 
 
 
 
 

then the OLS estimate is nearly as efficient as 
GLS estimates. 
  

The Simulation Results for 
j

ˆ
βζ  

 Tables (3) through (6) show the 
complete simulation results of the ratios of the 
GLS estimators relative to the OLS estimator in 
terms of the mean squared error of the 

regression coefficients, 
0

ˆ
βζ  and 

1

ˆ
βζ  in (7), 

when the serially correlated disturbance follows 
an AR(2) process. Each table presents the results 
for the three sample sizes considered, as well as 
all four selected pairs of AR(2) parametrizations. 
Each of the different designs is presented in a 
separate table. 
 Note that regardless of the sample size, 
selected design vectors, and AR(2) 
parametrizations the efficiency in estimating an 
intercept, 0β , and the slope, 1β , of the 

regression coefficients is higher for the GLS-
AR(2) estimator than OLS. This result 
emphasizes that GLS is the BLUE. However, 
OLS performs nearly as efficiently as GLS for 
all selected sample sizes and designs when Φ = 
(.2, -.1). This result is not surprising since the 
choice of Φ = (.2, -.1) gives the highest 
performance of OLS as compared to GLS, in 
addition, it gives the smallest values of 21  , ρρ , 

and 2
uσ . 

 

 
 
 
 
 

Table 2: Autocorrelation Coefficients, Disturbance Variances and the Relative Efficiencies of GLS to 
OLS for Standardized Linear Design with T = 50 

 

( )21   , φφ  1ρ  2ρ  2
uσ  ( )0RE β  ( )1RE β  

(.2, -.9) .1053 -.8789 5.3221 .7656 .5645 

(.8, -.9) .4211 -.5632 6.3973 .8325 .6026 

(.2, -.7) .1176 -.6765 1.9883 .9414 .8531 

(.2, -.1) .1818 -.0636 1.0446 .9993 .9980 
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When the order of the disturbance term 
is under estimated, i.e. EIGLS-AR(1), the GLS 
estimate performs poorly. In fact, OLS is more 
efficient for nearly every situation considered 
here. For example, when Φ  = (.8, -.9) for 

quadratic design with T = 50, ( )
10

ˆ,ˆ
ββ ζζ  = 

( )1.72961.4179,  as shown in Table (3).  
This shows that EIGLS-AR(1) can be 

much less efficient than OLS. The poor 
performance of EIGLS-AR(1) relative to OLS is 
most marked when the sample size is relatively 

 
 
 
 

 
 

 
 
 

estimation is smaller than an appropriate 
estimated   AR   structure.   This    suggests    the  
small (i.e. T = 50) and the order of the 
autoregressive process used in the GLS 
surprising result that OLS may often be better 
than assuming an AR(1) when the actual process 
is AR(2). However, for the choice of  Φ  = (.2, -
.1) there is little difference between OLS and 
EIGLS-AR(1). For example, for linear design 

with T=200, ( )
10

ˆ,ˆ
ββ ζζ  = (.9998, .9984) as 

presented in Table (4).  
 
 
 
 
 

 
 
 
 
 

 
Table 3: Efficiency for MSEs of the Regression Coefficients of the GLS Estimators Relative to OLS 

Estimator for Quadratic Design 
 
  ( Φ1, Φ2) 

 (.2, -.9) (.8, -.9) (.2, -.7) (.2, -.1) 

Size Estimator     

50 GLS-AR(2) 0.7929 0.5540 0.8321 0.6174 0.9435 0.8349 1.0002 0.9954

EGLS-AR(2) 0.7934 0.5567 0.8342 0.6172 0.9453 0.8409 1.0079 1.0094

EIGLS-AR(1) 1.0935 1.1973 1.4179 1.7296 1.0355 1.0861 1.0063 1.0050

EIGLS-AR(4) 0.7968 0.5623 0.8399 0.6182 0.9564 0.8500 1.0385 1.0332

100 GLS-AR(2) 0.8660 0.6950 0.8849 0.7104 0.9638 0.9287 1.0003 0.9993

EGLS-AR(2) 0.8661 0.6957 0.8844 0.7089 0.9676 0.9319 0.9993 0.9980

EIGLS-AR(1) 1.0453 1.0963 1.2136 1.4127 1.0207 1.0348 0.9989 1.0001

EIGLS-AR(4) 0.8651 0.6974 0.8861 0.7093 0.9723 0.9342 1.0078 1.0091

200 GLS-AR(2) 0.9410 0.8331 0.9700 0.8269 0.9628 0.9400 1.0004 0.9984

EGLS-AR(2) 0.9409 0.8326 0.9702 0.8265 0.9637 0.9400 1.0016 0.9990

EIGLS-AR(1) 1.0180 1.0417 1.0453 1.2683 1.0094 1.0187 1.0014 1.0023

 EIGLS-AR(4) 0.9418 0.8338 0.9707 0.8290 0.9627 0.9407 1.0018 1.0021
 

0βζ̂ 0βζ̂ 0βζ̂ 0βζ̂1β
ζ̂

1β
ζ̂

1β
ζ̂

1β
ζ̂
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This result is expected because the 

choice of 1.2 −=φ  indicates that the serially 
correlated disturbance very nearly AR(1) since 

2φ  is close to zero. 
To further demonstrate the efficiency of 

OLS, consider the quadratic and linear designs. 
OLS is nearly as efficient or more efficient in 
estimating ( )10 ,ββ  than the GLS estimators; 

EGLS-AR(2), and EIGLS-AR(4), for moderate 
and large sample sizes (i.e. T=100 and 200) with 
AR(2) parametrizations Φ  = (.2, -.7) and (.2, -
.1) Tables (3) and (4). However, there are 
examples where OLS performs poorly as well. 
For the exponential design, OLS is nearly as 
efficient as EGLS-AR(2), and EIGLS-AR(4) for 
all sample sizes only when Φ  = (.2, -.1).  

 
 
 

 
Otherwise, OLS performs poorly as shown in 
Table (5). For example, when T = 50 with Φ  =  

(.2, -.9), 
1

ˆ
βζ  = (.2035, .2108). However, even in 

this case, the performance of the OLS estimator 

for estimating the intercept is not bad, 
0

ˆ
βζ  = 

(.7561, .7606). In fact, the performance of OLS 
is always better for estimating the intercept than 
the slope. 

For the standard Normal stochastic 
design model, OLS fares more poorly. Only for 
Φ  = (.2, -.1) does the efficiency of OLS match 
GLS as shown in Table (6). However, regardless 
of the sample size, OLS performs as nearly as 
efficiently or better than EIGLS-AR(1) for all 
selected autoregressive coefficients for 
estimating 0β . 

 
 

 
Table 4: Efficiency for MSEs of the Regression Coefficients of the GLS Estimators Relative to 

OLS Estimator for Linear Design 
 
  ( Φ1, Φ2) 

Size Estimator (.2, -.9) (.8, -.9) (.2, -.7) (.2, -.1) 

      

50 GLS-AR(2) 0.7472 0.5740 0.8214 0.6193 0.9740 0.8511 1.0012 0.9964

EGLS-AR(2) 0.7485 0.5771 0.8219 0.6200 0.9773 0.8548 1.0091 1.0073

EIGLS-AR(1) 1.1004 1.1893 1.3624 1.6995 1.0181 1.0895 1.0055 1.0079

EIGLS-AR(4) 0.7490 0.5824 0.8255 0.6220 0.9868 0.8595 1.0122 1.0448

100 GLS-AR(2) 0.8756 0.6641 0.8992 0.7340 0.9724 0.9204 1.0005 0.9996

EGLS-AR(2) 0.8766 0.6632 0.8992 0.7323 0.9718 0.9219 1.0025 1.0003

EIGLS-AR(1) 1.0349 1.0995 1.1826 1.4783 1.0156 1.0266 1.0025 1.0023

EIGLS-AR(4) 0.8782 0.6654 0.8992 0.7391 0.9758 0.9285 1.0133 1.0021

200 GLS-AR(2) 0.9127 0.8137 0.9584 0.8662 0.9623 0.9262 0.9990 0.9977

EGLS-AR(2) 0.9127 0.8135 0.9586 0.8662 0.9621 0.9271 1.0000 0.9980

EIGLS-AR(1) 1.0252 1.0464 1.0666 1.2104 1.0092 1.0175 0.9998 0.9984

 EIGLS-AR(4) 0.9117 0.8123 0.9584 0.8668 0.9618 0.9255 1.0022 1.0032
 

0βζ̂ 0βζ̂ 0βζ̂ 0βζ̂1β
ζ̂

1β
ζ̂

1β
ζ̂

1β
ζ̂
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Table 5: Efficiency for MSEs of the Regression Coefficients of the GLS Estimators 

Relative to OLS Estimator for Exponential Design 
 

  ( Φ1, Φ2) 

  (.2, -.9) (.8, -.9) (.2, -.7) (.2, -.1) 

Size Estimator     

50 GLS-AR(2) 0.7529 0.1951 0.8208 0.2160 0.9394 0.5576 0.9986 0.9706

EGLS-AR(2) 0.7561 0.2035 0.8256 0.2241 0.9464 0.5642 0.9987 1.0030

EIGLS-AR(1) 1.0451 1.1030 1.1649 1.1683 1.0167 1.0656 0.9969 1.0019

EIGLS-AR(4) 0.7606 0.2108 0.8293 0.2322 0.9473 0.5815 1.0042 1.0775

100 GLS-AR(2) 0.8922 0.1979 0.9139 0.2311 0.9668 0.5461 1.0009 0.9830

EGLS-AR(2) 0.8895 0.2021 0.9163 0.2353 0.9682 0.5467 0.9993 0.9980

EIGLS-AR(1) 1.0115 1.0803 1.0893 1.1383 1.0077 1.0575 0.9991 0.9965

EIGLS-AR(4) 0.8904 0.2068 0.9149 0.2357 0.9692 0.5578 0.9997 1.0187

200 GLS-AR(2) 0.9168 0.2139 0.9771 0.2084 1.0162 0.5293 1.0022 0.9877

EGLS-AR(2) 0.9164 0.2143 0.9782 0.2132 1.0150 0.5303 1.0008 0.9990

EIGLS-AR(1) 1.0053 1.0645 1.0492 1.2352 0.9999 1.0390 1.0012 0.9900

 EIGLS-AR(4) 0.9171 0.2161 0.9802 0.2151 1.0149 0.5425 1.0006 1.0062

 
 

0βζ̂ 0βζ̂ 0βζ̂ 0βζ̂1β
ζ̂

1β
ζ̂

1β
ζ̂

1β
ζ̂
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Discussion 
 In investigating the simulation results in 
the previous section, the following significant 
results were observed. First and foremost, it was 
noticed that regardless of the sample size for all 
design structures and selected autoregressive 
coefficients, the efficiency in estimating an 
intercept, 0β , and the slope, 1β , of the 

regression model is higher for the GLS estimator 
based on the correct disturbance model 
structures and known AR(2) coefficients. This 
result is expected since GLS is BLUE, but 
because GLS requires a priori knowledge of Σ , 
this is not a viable option. 

 
 
 

 
 
In addition, the relative efficiency of 

OLS is better than EIGLS-AR(1) in estimating 
( 0β , 1β ) for all sample sizes and nonstochastic 

design vectors. The relative efficiency of OLS to 
be superior to that of EIGLS in estimating the 
slope when T=50 with AR(2) parametrization 
(.8, -.9) was also observed. This choice of (.8, -
.9) gives the highest first-order autoregressive 
coefficient ( ).42111 =ρ  and largest variance of 

the error process ( )6.39732
u =σ  among the 

other choices of AR(2) parametrizations. This 
explains the poor relative  performance  of  OLS  
to     GLS      for    this   choice    of    parameter.   

 
 
 

 
Table 6: Efficiency for MSEs of the Regression Coefficients of the GLS Estimators Relative to 

OLS Estimator Standard Normal Stochastic Design 
 

  ( Φ1, Φ2) 

  (.2, -.9) (.8, -.9) (.2, -.7) (.2, -.1) 

Size Estimator     

50 GLS-AR(2) 0.6416 0.1127 0.7427 0.0667 0.8851 0.3334 0.9998 0.8838

EGLS-AR(2) 0.6437 0.1149 0.7442 0.0676 0.8807 0.3428 1.0176 0.9513

EIGLS-AR(1) 1.0536 0.9591 1.2168 0.5186 1.0129 0.9598 1.0091 0.9244

EIGLS-AR(4) 0.6509 0.1211 0.7477 0.0737 0.8908 0.3652 1.0385 1.0221

100 GLS-AR(2) 0.7601 0.1055 0.8466 0.0640 0.9350 0.3230 0.9978 0.8902

EGLS-AR(2) 0.7598 0.1060 0.8472 0.0639 0.9341 0.3274 0.9984 0.9076

EIGLS-AR(1) 1.0241 0.9568 1.1141 0.5261 1.0121 0.9546 0.9994 0.9158

EIGLS-AR(4) 0.7611 0.1109 0.8477 0.0668 0.9346 0.3386 1.0033 0.9359

200 GLS-AR(2) 0.8624 0.1002 0.9323 0.0720 0.9715 0.3226 1.0038 0.9194

EGLS-AR(2) 0.8628 0.1006 0.9319 0.0725 0.9707 0.3245 1.0028 0.9331

EIGLS-AR(1) 1.0141 0.9581 1.0400 0.5181 1.0021 0.9598 1.0033 0.9418

 EIGLS-AR(4) 0.8630 0.1033 0.9314 0.0748 0.9719 0.3307 1.0058 0.9512

 
 

0βζ̂ 0βζ̂ 0βζ̂ 0βζ̂1β
ζ̂

1β
ζ̂

1β
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1β
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However, from Table (3) through Table (6), it 
may be seen that the performance of EIGLS-
AR(1) is even worse. This appears to occur 
because AR(2) parametrization (.8, -.9) produces 
large values of 21 , ρρ  in absolute value 

( 5632.2 −=ρ ) and disturbance variance 
comparing to the other parameter choices. This 
means using OLS is better than assuming 
another incorrect error process. 

The third general conclusion from the 
simulation study is that regardless of the sample 
size, all of the estimators perform equally well 
with AR(2) parametrization       (.2, -.1). This 
result is not surprising because the choice of (.2, 
-.1) gives the smallest variance of the 

process ( )0446.12
u =σ , which is sufficiently 

close to the variance of standard OLS. 
Fourth, for all stochastic and non-

stochastic design vectors, the differences in the 
relative efficiency of OLS and all GLS 
estimators in estimating 0β  with a few expected 

exceptions are negligible. In fact, this is so even 
when the variance of the process is large, in 
other words, when AR(2) parametrizations are 
(.2, -.9) and (.8, -.9). 

Similar to results for section 2, when the 
design vector is linear or quadratic, the relative 
efficiency of OLS is nearly as good as the 
EGLS-AR(2) and EIGLS-AR(4) estimators for 
moderate and large sample sizes for estimating 

1β  with small variance of the disturbances. 
It is observed that the differences in the 

relative efficiencies of GLS-AR(2), EGLS-
AR(2), and EIGLS-AR(4) in estimating ( 0β , 1β ) 

are insignificant. Hence, when confronted with 
an error with unknown order p, it appears that 
using AR(4) is the best bet. 

Finally, OLS may often be more 
preferable than assuming an AR(1) process 
when the actual process is AR(2). In other 
words, it is sometimes better to ignore the 
autocorrelation of the disturbance term and use 
the OLS estimation rather than to incorrectly 
assume the process is an AR(1). 

 
Future Research 
 Perhaps, even more important than the 
efficiency of the different estimation methods in 

these models, is the effect on forecasting 
performance. Koreisha et al. (2004) investigated 
the impact that EIGLS correction may have on 
forecast performance. They developed a new 
procedure for generating forecasts for regression 
models with auto-correlated disturbances based 
on OLS and a finite AR process. They found 
that for predictive purposes there is not much 
gained in trying to identify the actual order and 
form of the auto-correlated disturbances or using 
more complicated estimation methods such as 
GLS or MLE procedures, which often require 
inversion of large matrices. It is necessary to 
extend Koreisha et al. (2004) results for different 
design vectors of the independent variables 
including both stochastic and nonstochastic 
designs instead of using one independent 
variable generated by an AR(1) process as in 
their investigation. 

A second important consideration is the 
estimation of the standard errors of the 
estimators. In practice, if one were using a 
statistical package to compute the OLS 
estimators the variance estimate produced would 

be based on ( ) 12
u XX −′σ , which may be biased 

for the true variance 

( ) ( ) 112
u XXXXXX −− ′∑′′σ . For GLS 

estimation ( Σ  known), on the other hand, the 
variance estimate is unbiased for the true 
variance of the GLS estimator. It is unclear, 
however, how the variance estimators for EGLS 
estimation behave. The impact that the variance 
estimators may have on inference based on the 
OLS estimator is currently being investigated. 

Finally, the long range goal is the 
creation of guidelines or rules of thumb which 
will aid the practitioner when deciding which 
regression estimation procedure to use. 

 
Conclusion 

 
This article has investigated an important 
statistical problem concerning estimation of the 
regression coefficients in the presence of 
autocorrelated disturbances. In particular, the 
comparison of efficiency of the ordinary least 
squares (OLS) estimation to alternative 
procedures such as generalized least squares 
(GLS) and estimated GLS (EGLS) estimators in 
the presence of autocorrelated disturbances was 
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discussed. Both stochastic and non-stochastic 
design vectors were used with different sample 
sizes. 

It was found that regardless of the 
sample size, design vector, and order of the 
auto-correlated disturbances, the relative 
efficiency of the OLS estimator generally 
increases with decreasing values of the 
disturbance variances. In particular, if the 
disturbance structure is a first or second order 
autoregressive and the dependent variable is 
nonstochastic and linear or quadratic, OLS 
performs nearly as well as its competitors for 
small values of the disturbance variances. The 
gain in efficiency of the GLS estimator for 
different design vectors such as exponential and 
standard Normal compared to the OLS estimator 
is substantial for moderate and large values of 
the autoregressive coefficient in the case of an 
AR(1) process and large values of the 
disturbance variance in the presence of an AR(2) 
process. However, for small values of the 
autoregressive coefficient and disturbance 
variance the OLS estimator appears to be nearly 
as efficient as the GLS estimator. 

It was also found that if the error 
structure is autoregressive, and the dependent 
variable is nonstochastic and linear or quadratic, 
the OLS estimator performs nearly as well as its 
competitors. When faced with an unknown error 
structure, however, AR(4) may be the best 
choice. 
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Choosing Smoothing Parameters For Exponential Smoothing: 
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When choosing smoothing parameters in exponential smoothing, the choice can be made by either 
minimizing the sum of squared one-step-ahead forecast errors or minimizing the sum of the absolute one-
step-ahead forecast errors. In this article, the resulting forecast accuracy is used to compare these two 
options. 
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Introduction 
 

In a number of comparisons of forecasting 
methods, exponential smoothing methods have 
been shown to be simple but relatively accurate 
techniques for generating forecasts (See 
Makridakis et al., 1982; Makridakis et al., 1993; 
Makridakis & Hibon, 2000). When using 
exponential smoothing methods to forecast a 
time series, a smoothing parameter (or 
parameters) must be chosen. One way this 
choice can be made is to choose the parameter or 
parameters that minimize some error criterion 
over the history of the data available. Typically, 
the choice made is to minimize the sum of 
squared one-step-ahead forecast errors (SSE). 
Another option would be to minimize the sum of 
the absolute one-step-ahead forecast errors 
(SAE). Minimizing SSE is the most often used 
criterion for choosing the smoothing parameter, 
but minimizing SAE could provide protection 
against outliers in the time series. This article 
examines the question of which of these choices 
might be best in practice.  
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 In the context of regression models, 
forecasts generated from least squares 
(equivalent to SSE) coefficient estimates and 
least absolute value (equivalent to SAE) 
coefficient estimates were studied by Dielman 
(1986). When the disturbance distribution was 
long-tailed, presenting the opportunity for 
outliers, the least absolute value based forecasts 
were, on the whole, superior to the least squares 
based forecasts. These results were obtained 
from a simulation study assuming that an 
exogenous independent variable was available 
for use in the regressions. Whether the 
superiority of a least absolute value type 
criterion could exist for smoothing parameter 
choice and subsequent generation of forecasts in 
exponential smoothing methods is the issue 
considered in this article. 

The analyses presented in this article 
support three main conclusions: First, while 
instances where outliers will degrade forecast 
performance may not be common, such 
instances do occur in practice. Second, 
minimizing SAE to determine exponential 
smoothing parameters can provide protection 
against such outliers. Finally, on average, 
minimizing SAE does not result in much, if any, 
deterioration in forecast accuracy over 
minimizing SSE when conditions are optimal for 
SSE.  
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Methodology 
M1-Competition Data  

Three exponential smoothing techniques 
are examined in this part of the study: single 
exponential smoothing, Brown’s double 
exponential smoothing, and Holt’s two-
parameter exponential smoothing.  

The one-period-ahead forecast for single 
exponential smoothing can be written as 

 

1ˆ +Ty  = αyT + (1 – α) Tŷ                                    (1) 
  
All subsequent forecasts have the same value. 
The smoothing parameter, α, must be chosen to 
implement this forecasting technique. The 
choice is made by performing a grid search over 
the range 0.01, 0.02, …, 0.99 and choosing the 
value of α from this range that minimizes either 
the SSE or SAE.  

Brown’s double exponential smoothing 
is often suggested when data are trended. The m-
period-ahead forecasts are generated from the 
following equations: 

 
'

1
' )1( −−+= ttt SyS αα                                  (2)  

      
''

1
''' )1( −−+= ttt SSS αα                                  (3)   

    

TTmT mbay +=+ˆ                                           (4) 

    
where  
 

'''2 ttt SSa −=                                                  (5) 

     
and  
 

)(
1

'''
ttt SSb −

−
=

α
α

                            (6) 

  
As with single exponential smoothing, 

the smoothing parameter, α, is chosen by 
performing a grid search over the range 0.01, 
0.02, …, 0.99 and choosing the value of α from 
this range that minimizes either the SSE or SAE.  

Holt’s two-parameter exponential 
smoothing is also suggested when data are 
trended, but is somewhat more flexible than 
Brown’s method because separate parameters 

are allowed for the two smoothing equations. 
The m-period-ahead forecasts are generated 
from the following equations: 

 
Lt = αyt + (1 – α)(Lt-1 + Tt-1)                             (7) 
    
Tt = β(Lt – Lt-1) + (1 – β)Tt-1                                               (8) 

      

mTy +ˆ  = LT + mTT                                                                        (9) 

       
Values for two parameters, α and β, must be 
chosen in this case. Again, a grid search is used 
with values of 0.01, 0.02, …, 0.99 for each 
parameter. All possible parameter value 
combinations are examined and the pair of 
values that minimizes either the SSE or SAE is 
chosen.  

The 1001 time series used in the M1 
forecasting competition (See Makridakis et al., 
1982) are used to evaluate the choice of criteria 
for choosing the smoothing parameter. The 
optimal values of the smoothing parameter(s) 
are chosen for each of the time series. The 
smoothing parameters for each method that 
minimize either the SSE or the SAE for each 
individual time series are chosen. One to six-
period-ahead out-of-sample forecasts are then 
generated using the optimal values under the two 
criteria. The out-of-sample forecasts are 
compared to the actual values and accuracy 
measures are computed for the forecasts. The 
three accuracy measures reported in this article 
are the mean absolute percentage error (MAPE), 
the root mean square error (RMSE), and the 
mean absolute deviation (MAD). These 
accuracy measures will be presented to compare 
the forecasting accuracy for the parameter 
choices of each criterion.  
 
A Brief Simulation  

A small simulation was run to further 
compare forecast performance for the SAE and 
SSE criteria. Only single exponential smoothing 
was examined in this simulation. Single 
exponential smoothing provides optimal 
forecasts when the data generation process is 
ARIMA (0,1,1). This was the process used to 
generate the data for the simulation experiment. 
The procedures outlined in Dunne (1992) were 
used to generate data from an ARIMA (0, 1, 1) 
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process. The following were factors considered 
in the experiment: 

 
1. Sample sizes of T = 20, 30 and 50 were 
used. 
 
2.    The error distributions considered were: 
 
a) Normal with mean zero and standard 
deviation one (Normal). The following 
distributions will be referred to as outlier-
producing distributions: 
 
b) Contaminated Normal with 0.75 probability 
of observations coming from a N(0,1) 
distribution and 0.25 probability from a N(0,5) 
distribution. The contamination was introduced 
in three different ways to assess potential 
situations where the minimum SAE criterion 
might outperform the minimum  SSE criterion.  
CNR5: The contamination was allowed to occur 
randomly throughout the time series. 

 CNB5: The first 25% of the observations were 
from the N (0, 5) distribution. 

 CNE5: The last 25% of the observations were 
from the N (0, 5) distribution. 

  
c) Same as b but the contaminating distribution 
was N (0, 10) (CNR10, CNB10 and CNE10). 

  
d) Cauchy with median zero and scale parameter 
one (Cauchy). These errors represent a 
pathological situation where extreme outliers are 
possible and should be the best-case scenario for 
minimizing SAE.  
 
3.  The true value of the exponential 
smoothing parameter was set at 0.2, 0.3, 0.5, 0.7 
and 0.8. 

 
For each experimental setting of the 

simulation, 10,000 time series were generated, 
the optimal value of the smoothing parameter 
was estimated using a grid search over the 
values 0.01, 0.02, …, 0.99, and one period ahead 
forecasts  were  computed  using  this  parameter  

 
 
 

 

value. Out-of-sample forecasts were computed 
and were compared to the actual values (which 
were generated from the process used in the 
simulation) and the MAPE, RMSE, and MAD 
were computed for these 10,000 forecasts. All 
programs were written in FORTRAN and IMSL 
subroutines were used for random number 
generation. 

 
Results 

 
M1-Competition Results 
Each of the three exponential smoothing 
methods was applied to each of the 1001 time 
series from the M1-competition. Optimal 
smoothing parameters to minimize both SSE and 
SAE were chosen and forecasts were generated. 
Table 1 shows the values of the accuracy 
measures for the one through six period ahead 
forecasts (combined). Table 2 shows the values 
for the one period ahead forecast. Cases where 
minimizing SAE results in greater accuracy are 
highlighted in bold. The choice of criterion is 
dependent to some extent on the accuracy 
measure. For example, in Table 1 the MAPE is 
smaller for the SAE criterion for single 
exponential smoothing, although the RMSE and 
MAD are both smaller for the SSE criterion. 
This experiment was conducted using seasonally 
adjusted data as well (where appropriate) with 
little difference in the results of the comparison. 
The forecast accuracy was improved regardless 
of criterion (because of the presence of seasonal 
series in the data set), but the difference in 
forecast accuracy between SAE and SSE did not 
change appreciably. The tables for the 
seasonally adjusted results have not been 
included in the article. 

The results suggest that there are 
instances where the SAE forecasts provide 
improvement over the SSE forecasts according 
to some accuracy criterion. In other words, there 
are cases with outliers present that can affect 
forecast accuracy. The results from the 
simulation are intended to shed additional light 
on situations when the SAE forecasts might be 
most beneficial. 
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Simulation Results  

Tables 3 through 17 summarize the 
simulation results. In all experimental settings 
when the disturbances were normal, there was 
little difference between accuracy measures for 
minimizing SAE versus SSE. In cases where 
there was a difference, the accuracy measures 
for minimizing SSE were smaller. In most of the 
outlier-producing distributions, the accuracy 
measures for minimizing SAE were smaller than 
those for minimizing SSE. The differences in the  
 
 
 
 
 
 
 
 

 
 
accuracy measures in favor of SAE are more 
pronounced in cases where the true smoothing 
constant is larger and where outliers are more 
likely. When the contaminated normal 
disturbances were used, the differences in the 
accuracy measures in favor of SAE occurred 
when the standard deviation was larger (10 
rather than 5) and when the occurrence of the 
outliers was at the end or throughout the series 
rather than at the beginning. 
 
 
 
 
 
 
 
 
 

 
Table 1:  Accuracy Measures One Through Six Period Ahead Forecasts 

                                 MAPE          RMSE           MAD 
 

               SAE   SSE     SAE      SSE    SAE   SSE 
 

Single  17.5 17.7  578348   572521 32884 32668 
 

Brown  20.7 19.9  290890   272913 19475 18056 
 

Holt  22.5 22.3  290928   389576 19657 25428 
 

 
 
 

Table 2:  Accuracy Measures One Period Ahead Forecasts 

                    MAPE             RMSE           MAD 
 

               SAE  SSE     SAE      SSE     SAE   SSE 
 

Single  11.1 11.1  297704   291140 14001 13695 
 

Brown  13.3 13.5  120026   119844   9713 10088 
 

Holt  14.0 14.0  123836   170598 10714 13391 
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Table 3:  Accuracy Measures for Simulation using T = 50 and alpha = 0.2 

                         MAPE                 RMSE               MAD 
 

Errors  SAE SSE    SAE    SSE  SAE SSE 
 

Normal  0.82 0.81    1.03    1.02  0.82 0.81 
 

CNR5  1.64 1.67    2.69    2.71  1.63 1.66 
 

CNR10  2.71 2.84    5.14    5.21  2.63 2.77 
 

CNB5  0.83 0.83    1.03    1.04  0.82 0.83 
 

CNB10  0.84 0.85    1.03    1.05  0.83 0.84 
 

CNE5  4.16 4.18    5.19    5.23  4.14 4.16 
 

CNE10  8.54 8.58              10.47     10.55  8.34 8.38 
 

Cauchy  7.24 7.90              85.14     86.00  6.07 6.72 

 

Table 4:  Accuracy Measures for Simulation using T = 30 and alpha = 0.2 

                         MAPE                RMSE               MAD 
 

Errors  SAE SSE   SAE   SSE  SAE SSE 
 

Normal  0.82 0.81   1.03   1.02  0.82 0.81 
 

CNR5  1.65 1.70   2.69   2.73  1.64 1.69 
 

CNR10  2.73 2.91   5.13   5.25  2.67 2.85 
 

CNB5  0.82 0.83   1.03   1.05  0.82 0.83 
 

CNB10  0.83 0.86   1.03   1.07  0.82 0.85 
 

CNE5  4.15 4.22   5.21   5.31  4.13 4.20 
 

CNE10  8.54 8.67             10.56     10.76  8.37 8.50 
 

Cauchy  7.59 9.26             63.97     98.24  5.10 7.21 
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Table 5:  Accuracy Measures for Simulation using T = 20 and alpha = 0.2 

                           MAPE                 RMSE               MAD 
 

Errors    SAE   SSE    SAE     SSE  SAE   SSE 
 

Normal    0.83   0.83    1.04     1.04  0.83   0.83 
 

CNR5    1.68   1.73    2.73     2.77  1.68   1.72 
 

CNR10    2.79   2.96    5.20     5.34  2.74   2.91 
 

CNB5    0.84   0.85    1.05     1.07  0.83   0.85 
 

CNB10    0.85   0.89    1.05     1.11  0.84   0.88 
 

CNE5    4.12   4.22    5.15     5.28  4.11   4.21 
 

CNE10    8.36   8.75              10.30       10.80  8.21   8.59 
 

Cauchy  10.15 11.86          1574.45   1570.05             23.62      23.60 

 

Table 6:  Accuracy Measures for Simulation using T = 50 and alpha = 0.3 

                         MAPE                 RMSE              MAD 
 

Errors  SAE SSE    SAE   SSE  SAE SSE 
 

Normal  0.82 0.82    1.03   1.02  0.82 0.82 
 

CNR5  1.64 1.67    2.69   2.71  1.62 1.66 
 

CNR10  2.72 2.85    5.13   5.21  2.62 2.76 
 

CNB5  0.83 0.84    1.03   1.04  0.83 0.83 
 

CNB10  0.85 0.86    1.04   1.06  0.83 0.85 
 

CNE5  4.15 4.19    5.18   5.23  4.13 4.16 
 

CNE10  8.58 8.63  10.46 10.54  8.33 8.39 
 

Cauchy  6.62 7.17  85.13 86.17  6.04 6.68 
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Table 7:  Accuracy Measures for Simulation using T = 30 and alpha = 0.3 

                                                     MAPE                  RMSE   MAD 
 

Errors  SAE   SSE    SAE    SSE  SAE SSE 
 

Normal  0.82   0.81    1.03    1.02  0.82 0.81 
 

CNR5  1.64   1.70    2.68    2.73  1.64 1.69 
 

CNR10  2.72   2.91     5.11    5.23  2.65 2.84 
 

CNB5  0.83   0.84    1.03    1.06  0.82 0.84 
 

CNB10  0.84   0.87    1.04    1.09  0.83 0.86 
 

CNE5  4.15   4.20    5.20    5.27  4.13 4.18 
 

CNE10  8.52   8.60  10.51  10.62  8.34 8.42 
 

Cauchy  9.38 10.39  64.54 103.00  5.16 7.36 
 

 

Table 8:  Accuracy Measures for Simulation using T = 20 and alpha = 0.3 

                            MAPE                RMSE                MAD 
 

Errors    SAE   SSE   SAE   SSE  SAE   SSE 
 

Normal    0.83   0.83   1.05   1.04  0.83   0.83 
 

CNR5    1.68   1.73   2.72   2.78  1.67   1.73 
 

CNR10    2.77   2.98   5.19   5.33  2.72   2.92 
 

CNB5    0.83   0.85   1.04   1.07  0.83   0.85 
 

CNB10    0.84   0.89   1.05   1.10  0.83   0.88 
 

CNE5    4.13   4.22   5.16   5.27  4.11   4.20 
 

CNE10    8.38   8.69             10.32      10.71  8.22   8.52 
 

Cauchy              32.31     32.89         1572.09   1569.45             23.20      23.50 
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Table 9:  Accuracy Measures for Simulation using T = 50 and alpha = 0.5 

                           MAPE                 RMSE                 MAD 
 

Errors  SAE SSE  SAE   SSE  SAE SSE 
 

Normal  0.82 0.82  1.03   1.02  0.82 0.81 
 

CNR5  1.65 1.68  2.69   2.71  1.62 1.65 
 

CNR10  2.79 2.91  5.14   5.19  2.62 2.73 
 

CNB5  0.84 0.84  1.04   1.05  0.83 0.83 
 

CNB10  0.87 0.89  1.04   1.07  0.83 0.85 
 

CNE5  4.17 4.21   5.18   5.23  4.12 4.16 
 

CNE10  8.73 8.79             10.45      10.55  8.32 8.39 
 

Cauchy  5.84 6.25             85.13      87.23  6.03 6.68 

 

 

Table 10:  Accuracy Measures for Simulation using T = 30 and alpha = 0.5 

                          MAPE                 RMSE                 MAD 
 

Errors  SAE SSE   SAE   SSE  SAE SSE 
 

Normal  0.82 0.81   1.03   1.02  0.82 0.81 
 

CNR5  1.64 1.69   2.67   2.72  1.63 1.68 
 

CNR10  2.76 2.92   5.10   5.21  2.64 2.80 
 

CNB5  0.83 0.85   1.04   1.06  0.82 0.84 
 

CNB10  0.85 0.89   1.04   1.10  0.83 0.86 
 

CNE5  4.14 4.17   5.17   5.22  4.11 4.14 
 

CNE10  8.50 8.58             10.40      10.50  8.26 8.34 
 

Cauchy  9.07 9.84              65.21    124.25  5.22 7.77 
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Table 11:  Accuracy Measures for Simulation using T = 20 and alpha = 0.5 

                            MAPE                   RMSE      MAD 
 

Errors  SAE   SSE  SAE    SSE   SAE  SSE 
 

Normal  0.84   0.83  1.05    1.04   0.84  0.83 
 

CNR5  1.67   1.73  2.71    2.77   1.66  1.72 
 

CNR10  2.78   2.97  5.17    5.31   2.70  2.89 
 

CNB5  0.85   0.86  1.06    1.08   0.84  0.86 
 

CNB10  0.86   0.90  1.06    1.12   0.85  0.88 
 

CNE5  4.15   4.21  5.19    5.26   4.13  4.19 
 

CNE10  8.45   8.69             10.38       10.69   8.26  8.50 
 

Cauchy  8.39      10.76         1568.82   1569.82             22.45     23.53 

 

 

Table 12:  Accuracy Measures for Simulation using T = 50 and alpha = 0.7 

                             MAPE    RMSE                  MAD 
 

Errors  SAE SSE   SAE   SSE  SAE SSE 
 

Normal  0.82 0.82    1.03   1.02  0.82 0.81 
 

CNR5  1.66 1.68    2.69   2.70  1.62 1.64 
 

CNR10  2.97 3.07    5.13   5.18  2.62 2.71 
 

CNB5  0.84 0.85    1.03   1.04  0.82 0.83 
 

CNB10  0.91 0.93    1.04   1.07  0.83 0.85 
 

CNE5  4.19 4.22    5.16   5.20  4.11 4.14 
 

CNE10  8.97 9.05  10.40 10.52  8.28 8.37 
 

Cauchy  9.10 9.42  85.15 89.06  6.04 6.74 
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Table 13:  Accuracy Measures for Simulation using T = 30 and alpha = 0.7 

                         MAPE                 RMSE               MAD 
 

Errors  SAE   SSE    SAE     SSE  SAE SSE 
 

Normal  0.82   0.81     1.02     1.02  0.82 0.81 
 

CNR5  1.65   1.69     2.67     2.70  1.63 1.67 
 

CNR10  2.87   3.00     5.10     5.19  2.64 2.77 
 

CNB5  0.83   0.84     1.03     1.05  0.82 0.83 
 

CNB10  0.87   0.90     1.04     1.08  0.83 0.85 
 

CNE5  4.11   4.15     5.13     5.17  4.07 4.11 
 

CNE10  8.52   8.63                10.30   10.43  8.18 8.30 
 

Cauchy  7.98  8.52   65.47  161.36  5.21 8.51 
 
 
 
 

Table 14:  Accuracy Measures for Simulation using T = 20 and alpha = 0.7 

                        MAPE              RMSE               MAD 
 

Errors  SAE SSE  SAE   SSE   SAE   SSE 
 

Normal  0.83 0.83  1.05   1.04   0.83   0.83 
 

CNR5  1.67 1.72  2.71   2.75   1.66   1.70 
 

CNR10  2.82 2.97  5.18   5.28   2.69   2.84 
 

CNB5  0.85 0.86  1.06   1.08   0.84   0.86 
 

CNB10  0.88 0.91  1.07   1.11   0.85   0.88 
 

CNE5  4.16 4.21  5.20   5.26   4.14   4.18 
 

CNE10  8.50 8.78             10.40      10.75   8.28   8.55 
 

Cauchy  7.98 8.92         1567.46   1571.71             21.81      23.71 
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Table 15:  Accuracy Measures for Simulation using T = 50 and alpha = 0.8 

                           MAPE                   RMSE    MAD 
 

Errors  SAE  SSE   SAE    SSE  SAE SSE 
 

Normal  0.82  0.81   1.02    1.02  0.82 0.81 
 

CNR5  1.67  1.69   2.69    2.70  1.62 1.64 
 

CNR10  3.37  3.45   5.13    5.17  2.62 2.70 
 

CNB5  0.84  0.85   1.03    1.04  0.82 0.83 
 

CNB10  1.00  1.01   1.03    1.06  0.82 0.84 
 

CNE5  4.19  4.22   5.14    5.18  4.10 4.12 
 

CNE10  9.26  9.34              10.35      10.48  8.24 8.33 
 

Cauchy            11.10      11.77                  85.17      89.92  6.05 6.73 
 
 
 

Table 16:  Accuracy Measures for Simulation using T = 30 and alpha = 0.8 

                           MAPE                RMSE                 MAD 
 

Errors  SAE SSE  SAE  SSE  SAE SSE 
 

Normal  0.81 0.81  1.02  1.02  0.81 0.81 
 

CNR5  1.66 1.68  2.67  2.69  1.63 1.66 
 

CNR10  4.22 5.07  5.10  5.17  2.64 2.75 
 

CNB5  0.83 0.84  1.03  1.05  0.82 0.83 
 

CNB10  0.88 0.91  1.04  1.08  0.82 0.85 
 

CNE5  4.10 4.14  5.11  5.15  4.06 4.10 
 

CNE10  8.55 8.69                  10.25     10.43  8.14 8.29 
 

Cauchy  8.33 8.70             65.71   181.03  5.26 8.91 
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Conclusion 

The analyses presented suggest that minimizing 
SAE to determine exponential smoothing 
parameters can provide protection against 
outliers. Analysis of the M1-competition data 
suggests that cases where parameters selected by 
minimizing SAE result in superior forecasts do 
occur in practice. However, on average, 
minimizing SSE appears to provide forecasts 
that are reasonably robust to most outliers 
encountered. The simulation recommends that 
use of the SAE criterion would be most 
beneficial with the presence of outliers in 
conjunction with one or more of the following: 
larger values of the true smoothing parameter, 
outliers occurring near the end or throughout the 
series where forecasts are to be generated rather 
than at the beginning, and, obviously, cases 
where larger outliers are more likely. Further, 
even if outliers are not present, using the SAE 
criterion will not result in much deterioration in 
forecast accuracy. 
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Table 17:  Accuracy Measures for Simulation using T = 20 and alpha = 0.8 

                        MAPE                RMSE                MAD 
 

Errors  SAE SSE    SAE    SSE    SAE   SSE 
 

Normal  0.83  0.82    1.04    1.03    0.83   0.82 
 

CNR5  1.67  1.71    2.71    2.75    1.65   1.69 
 

CNR10  2.86  2.98    5.18    5.26    2.69   2.81 
 

CNB5  0.85  0.86    1.06    1.08    0.84   0.85 
 

CNB10  0.88  0.91    1.07    1.11    0.85   0.88 
 

CNE5  4.16  4.21    5.18    5.27    4.13   4.18 
 

CNE10  8.50  8.85              10.38      10.83    8.26   8.59 
 

Cauchy  9.66     10.72          1567.28   1572.77              21.71     23.72 
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Penalized Splines For Longitudinal Data 
With An Application In AIDS Studies 
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A penalized spline approximation is proposed in considering nonparametric regression for longitudinal 
data. Standard linear mixed-effects modeling can be applied for the estimation. It is relatively simple, 
efficiently computed, and robust to the smooth parameters selection, which are often encountered when 
local polynomial and smoothing spline techniques are used to analyze longitudinal data set. The method is 
extended to time-varying coefficient mixed-effects models. The proposed methods are applied to data from 
an AIDS clinical study. Biological interpretations and clinical implications are discussed. Simulation studies 
are done to illustrate the proposed methods. 
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Introduction 
 
Recently, nonparametric regression has been 
used to analyze longitudinal data, which arise 
frequently in clinical trials and biological 
research and cannot be analyzed by traditional 
parametric approaches. The aims of 
nonparametric regression analysis include 
exploration of curves for a particular population 
and individual characteristic by introducing a 
mixed-effects framework. For parametric 
longitudinal data, for surveys, see Diggle, Liang 
and Zeger (1994), Davidian and Gilti-nan (1995), 
Vonesh and Chinchilli (1996) among others. 
Mixed-effects models provide a useful and 
flexible framework in which population 
characteristics are modeled as fixed effects, while 
individual variation is modeled as a random 
effect. Parametric mixed-effects models such as  
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linear mixed-effects (LME) models (Laird & 
Ware 1982, Ware 1985, Diggle, et al. 1994) and 
nonlinear mixed-effects models (Davidian & 
Giltinan 1995, Vonesh & Chinchilli 1996) are 
widely used in longitudinal data analysis. Shi, 
Weiss, and Taylor (1996) and Rice and Wu (2001) 
proposed a nonparametric mixed-effects model for 
longitudinal data: 
 

,...,,2,1),()()()( nittvtty iii =++= εη                          

                                                                            (1) 
where )(tη  models the population mean 
function, also called the fixed-effect or 
population curve; )(tvi  models individual 

variations from )(tη  (these variation are called 

random-effect curves); )(tiε  are measurement 

errors; and )(tyi  are response processes. The 

)(tvi  and )(tiε are assumed to be independent. 

)(tvi ’s  can be considered as realizations of a 

zero mean process with a covariance function 
)}()({),( tvsvEts ii=γ , and )(tiε  can be 

regarded as realizations of an uncorrelated zero 

mean process with a variance function  )(2 tσ . 

Let iij mjt ...,,2,1, = , be the design time 

points for the i-th individual, then model (1) 
becomes 
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,...,,2,1;...,,2,1),()()()( nimjttvtty iijiijiijiji ==++= εη
                                    

(2) 
 
where n is the number of subjects and mi is the 
number of measurements from subject i. For 
convenience, ijy  is denoted as being equal to 

)( iji ty  and ijε  as being equal to )( iji tε . 

The primary goal is to estimate the 
fixed-effect (population) curve )(tη  and 

random-effect curves )(tvi  or individual curves 

)()()( tvtts ii += η ,  for ni ...,,2,1= . The 

mean function )(tη  is important because it 
reflects the overall trend or progress of an 
underlying population process and can be used as 
an important index for the population response to 
a drug or a treatment in a clinical or biomedical 
study. The estimation of  )(tvi  or )(tsi  is also 

important. The estimates of )(tvi  are crucial 

for the estimation of the covariance of )(tyi , 

which, in turn, can be used to better the 
estimate of the population curve )(tη  (see later 

sections). Because an individual curve )(tsi  

may represent an individual response to a 
treatment in a study, a good estimate of  )(tsi  

may help investigators to make a better decision 
about individual treatment. The estimates of 
individual curves )(tsi  are also useful if the 

investigators wish to group or classify the 
subjects on the basis of individual response 
curves. 

Several methods have been proposed for 
the nonparametric modeling of longitudinal data. 
Diggle and Hutchison (1989), Altman (1990), 
Hart (1991), Rice and Silverman (1991) and 
others proposed modifications to criteria for 
selection of smoothing parameters. These 
modifications include leave-one-subject-out 
cross-validation (CV) or generalized cross-
validation (GCV) to indirectly account for the 
correlations among data. Zhang et al. (1998) 
considered the correlation structure of 
longitudinal data in their smoothing spline semi-
parametric mixed-effects models, but only the 

population curve (mean function) is modeled non-
parametrically. 

Wang (1998a, b) included the correlation 
in a mixed-effects smoothing spline models, but 
the special correlation structure of longitudinal 
data was not emphasized. Hart and Wehrly 
(1986) and Fan and Zhang (2000) suggested a 
two-step approach (local averaging or local 
regression first, then smoothing) to indirectly 
account for the data correlation. Hoover et al. 
(1998) and Wu, Chiang and Hoover (1998) 
proposed a standard local polynomial kernel 
method for varying-coefficient model with 
longitudinal data. Lin and Carroll (2000) propose 
a local polynomial generalized estimating 
equation (GEE) method for clustered data that 
may also be used to estimate the population 
curve )(tη  in our model. More recently, Wu and 

Zhang (2002) suggested that )(tη  and )(tvi  be 

estimated simultaneously by combining LME 
models and local polynomial techniques, and 
they propose new bandwidth selection methods 
that are hybrid approaches of leave-one-subject-
out and leave-one-point-out CV. 

Although all of these approaches have 
demonstrated promise, several potential 
weaknesses exist. 

(a) All these existing methods, except that 
of Wu and Zhang (2002), did not 
consider estimating the random-effect 
curves )(tvi  or individual curves )(tsi , 

which are very important in the 
application of the models to data from 
clinical and biological studies. 

(b) The approach of Wu and Zhang (2002) 
has been shown to be more efficient 
than the other approaches, and the 
authors considered individual 
curves )(tsi , but the computation of 

their methods is very expensive and 
sometimes unstable for bandwidth 
variation. 

(c) Even if these weaknesses are ignored, 
the selection of smoothing parameters 
depends heavily upon selection criterion 
such as AIC, BIC or GCV. 
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Here, a new method is proposed to 
simultaneously estimate )(tη  and )(tvi  by 

combining LME models (Laird & Ware 1982) 
and penalized techniques (Carroll & Ruppert 
1999). The resulting estimators are called 
penalized spline LME (PSLME) estimators. This 
approach overcomes the above weakness, and is 
simple, easily and quickly implemented and 
robust to smoothing parameters. 

An approach similar to the one proposed 
here has been used for common nonparametric 
regression. Parise, Ruppert, Ryan and Wand 
(2001) proposed penalized spline model to study 
the relationship between animal body weight and 
tumor onset by incorporating variation from one 
experiment to another. A similar mixed model 
was used to analyze the data from a study of the 
Utah Valley respiratory health/air pollution study 
by Coull, Schwartz and Wand (2001), and from a 
study of ragweed pollen data by Coull, Ruppert 
and Wand (2001). 

The rest of the paper is organized as 
follows. Section 2 shows the derivation of the 
PSLME estimators and an extension to time 
varying coefficient mixed-effects model. As an 
illustration, an application of the model to a data 
set from an AIDS study is shown in section 3.1. 
A simulation study is presented in section 3.2. 
Some discussions are given in section 4. 

 
Estimation Framework 

Before the estimation framework is 
established, the principle of penalized spline for 
classic non-parametric regression is briefly 
introduced. More details were described by 
Ruppert and Carroll (1999). 
 
The penalized least-squares estimator 

The data ),( ii YX  follow 

iii eXmY += )(  for i = 1, 2, …, n, where iX  

is univariate. To estimate m , β   is equal to 
T

p ),,,( 10 βββ …  and a regression spline model 

∑ = +−++++= K

k

p
kk

p
p xbxxxm

110 )();( ζββββ �  
  
is used to approximate )(xm , where 1≥p  is 

an integer and Kζζ <<�1  are fixed knots, 

)0,max(aa =+ . The traditional method of 
"smoothing" the estimate is knot selection. The 

estimator )(ˆ αβ  of β  is defined as the 
minimizer of  

∑∑ ==
+− K

k k

n

i ii bXmY
1

2

1

2)};({ αβ ,                             

                                                                         (3) 
where α  is a smoothing parameter. 

As shown by Brumback, Ruppert and Wand 

(1999), the estimator )(ˆ αβ  based on equation 

(3) is equivalent to the estimator of β  based on 
an LME model 

 
εβ ++= ZbXy , 
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22
bσαα ε= . 

 
This fact implies that penalized spline 

smoother under the framework in equation (3) is 
equivalent to a standard LME. The solution can 
be obtained through the use of an LME macro 
available for S-PLUS software. The penalized 
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parameter α   is automatically estimated as 
22 ˆˆˆ bααα ε=  by a restricted maximum 

likelihood (RML) approach. 
 
Estimation Procedures for Model (3) 

Motivated by the idea stated in Section 
2.1, an estimation approach is proposed as 
follows. First, )},{( ijij Yt  ( imj ...,,2,1=  and 

ni ...,,2,1= ) are the data drawn from the model 

in (2). The fixed effects functions )(tη  are 
approximated by 

 

∑∑ = +=
−+= K

k

p
kk

p

k

k
k tutut

10
)(),,(~ ζββη  

 

and those of )(tvi  are approximated by 

 

∑∑ = +=
−+= K

k

p
kik

p

k

k
ikiii twtbwbtv

10
)(),,(~ ζ  

 
Here 

0 1

0 1

( , , ) , ( , , ) ,

( , , ) , ( , , ) .

T T
p K

T T
i i ip i i iK

u u u

b b b w w w

β β β= =

= =

… …

… …

   
 

 
Assume that  ),0(~}{),,0(~}{ 2

,
2

kbikuk NbNu σσ  

and ),0(~}{ 2
wik Nw σ  for Kk ,,1 …=

  
and 

ni ...,,1= . Then  ),,(~),,(~
iii wbtvut +βη  is 

the individual curve of the thi  subject. Define the 
following matrix notation. 
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The approximation of the model in (2) can be 
rewritten as 
 

y X b Zu w= + + + +β εΛ Γ  
 

This standard LME has unknown 
population parameters β  and unknown 

individual effects b , u  and w . The estimates 

β̂ , b̂ , û  and ŵ  of the parameter vector can be 
easily given closed forms, and the well-
developed SAS and S-plus macros can be 
directly applied for computation. As a 
consequence, population and individual curves 

can be obtained from the estimates )ˆ,ˆ,(~ ut βη  

and ).ˆ,ˆ,(~
iii wbtv

 
For a common penalized spline, the 

penalty parameter α  and the number of knots 
K  must be selected. Relatively speaking 
smoothing is controlled by the penalty parameter 
α, and the number of knots K is not a crucial 
parameter. See also Ruppert (2002) for a 
detailed discussion. As indicated in section 2.2, 
the formulation of mixed-effects model 
automatically derives an estimated of α . Only 
K  needs to be specified. Computation 
experience indicates )4,10max( n  is a good 

choice as a value of K  and that the results are 
very insensitive to different values of K . The 
knots are then at equally spaced sample 
quantiles of }{ ijt . 

 
Extension to Time Varying-coefficient Models 

As an effective approach to reduce curse 
of dimensionality suffered in high-dimension 
non-parametric regression, time varying-
coefficient models were first proposed in 
longitudinal data structure by Hoover, Rice, Wu 
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and Yang (1998) and Wu, Chiang and Hoover 
(1998). The standard time-varying coefficient 
models (Hoover et al. 1998, Wu et al. 1998) can 
be written as 

 
y t c t t t i ni

T
i i( ) ( ) ( ) ( ), , , ,= + + =η ε 1 …  

                                                               (4) 
 

Where T
L tctctc )}(,),(,1{)( 1 …= and 

)()()( tvtt ii +=ηη with  T
L ttt )}(,),({)( 0 ηηη …= and 

T
Liii tvtvtv )}(,),({)( 0 …= . The functions 

)(tlη  and )()( tvt lil +η  indicate the population 

and individual effects of  )(tcl  for subject i . 

Both smoothing spline and local 
polynomial kernel regression methods are pro-
posed by Hoover et al. (1998). Alternatively, 
Fan and Zhang (2000) proposed a two-step 
method for the same model. However, none of 
these methods efficiently considered the 
important features of longitudinal data such as 
between-subject and within-subject variation, 
and the special correlation structure of 
longitudinal data. Lin and Carroll (2000), 
however, showed that specifying the correlation 
structure when using kernel methods to estimate 
the nonparametric function results an 
asymptotically less efficient estimator than the 
one obtained assuming independence among re-
peated measures. Welsh, Lin and Carroll (2000) 
showed regression and smoothing splines do not 
suffer from this difficulty. 

Local polynomial estimates of Hoover et 
al. (1998) rely upon one bandwidth to smooth all 
coefficient curves, but these estimates may not be 
enough to capture smoothness of all coefficient 
curves simultaneously. The smoothing spline 
method of Hoover et al. (1998) permits the use of 
multiple smoothing parameters, but the 
computation is very intensive even only a single 
smoothing parameter is included when the 
number of distinct observation time is large. 
 More recently, Liang, Wu and Carroll 
(2003) proposed a global fitting method for a 
varying-coefficient model based on basis spline 
approximation. The purpose of their method is to 
approximate the coefficient functions by the 
basis spline. Their approach is shown to be 

simple to estimation and inference for the timing 
varying coefficient models. 

Approximate )(tlη  and )(tvli  by using 

the following: 
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for Ll ,,1…= . After notation similar to that in 
section 2.2 is introduced, model (4) can be 
approximated by 
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Again, the estimates for all parameters and 
subsequent population and individual curves can 
be derived. 
 
Numerical Examples 
Analyses of Data from the ACTG 315 Study 

ACTG 315 was a single-arm clinical trial 
in which 53 enrolled subjects with moderately 
advanced HIV-1 infection received combination 
antiretroviral therapy consisting of zidovudine, 
lamivudine, and ritonavir for 48 weeks. The 
primary objective of the study was to assess 
whether the treatment was associated with 
evidence of immunologic restoration. Of the 53 
subjects (49 men, 4 women, age range 6-63 
years), 44 remained on treatment for at least 9 
of the first 12 weeks. Lederman et al. (1998) 
reported the results of the study after 12 weeks 
of follow-up. The lower limit of quantification 
of HIV-1 RNA viral-load is 100 copies/ml. The 
HIV-1 RNA measures below this limit are not 
considered reliable; therefore, we censor values 
that are below 100 copies/ml. HIV-1 RNA 
measurements were observed on days 0, 2, 7, 
10, and weeks 2, 3, 4, 8, 12, 24, and 48 of 
follow-up. 

One aim of the ACTG 315 study is to 
characterize the viral load trajectory in the 
population and the individual patients during 
antiviral treatment. The population estimate of the 
viral-load trajectory was obtained as a function of 
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treatment time by using the PSLME method. The 
estimated curves are presented in Figure 1 in 
dotted lines. The PSLME method was used to 
estimate the viral-load trajectories for individual 
patients. The ability to estimate values for 
population and individual characteristics is 
another important advantage of the PSLME 
method. The individual estimates of viral-load 
traj ectory for four selected patients are shown in 
Figure 1, which indicates that individual viral-load 
trajectories may differ from that estimate for the 
population. The viral-load trajectory of subject 
18 is identical to the viral-load trajectory of the 
population and the pattern of viral-load trajectory 
in subject 1 is similar to that of the population, but 
the difference in magnitude is obvious. Other large 
differences between individual viral-load trajectory 
in subjects 23 and 3 5 and that in the population are 
observed. The estimated trajectories of viral-load 
in individual patients can provide more accurate 
information for physicians with which to 
individualize treatment management for 
individual patients with AIDS. 

To study the relationship between 
virologic and immunologic responses, repeatedly 
measured by HIV RNA levels (viral load) and 
CD4+ cell counts respectively in an AIDS clinical 
trial ACTG 315, observe that the viral load and 
CD4+ cell counts are negatively and 
approximately linearly related in most of the 
treatment times, but the regression coefficients 
may not be constant during the whole treatment 
period. Motivated by this feature of the data, 
Liang, Wu and Carroll (2003) proposed a mixed-
effects varying-coefficient model. The model 
captures population and individual relationships 
for the two longitudinal variables. The method 
proposed above is used to analyze this data set 
again. In the implementation, set 2== qp , 

and 61 =lK  and 102 =lK . Other values were 

tried, and the results are very stable. The 
discoveries are similar to what Liang, Wu, and 
Carroll (2003) obtained. The viral load and 
CD4+ cell counts are inversely related in the 
study population during the treatment. 
However, the strength of the association varies 
smoothly, where the association is very strong at 
the beginning of the treatment to the weakest 
about 4 weeks of treatment. The association 
gradually recovered and is strongest from week 4 

to week 24. See the dotted line in Figure 2 for the 
population curve. 

Figure 2 also shows the individual 
estimates of )(1 tβ  from four arbitrarily selected 
patients and the corresponding population 
estimate of )(1 tβ . Not only the magnitude but 
also the patterns differ between the population 
and individual estimates of )(1 tβ  (Figure 2). 
The pattern for subject 18 is almost identical to 
that of the population pattern. The patterns for 
subjects 1 and 47 are similar to the population 
pattern. However, the viral load and CD4+ cell 
counts of subject 1 was positive correlated with 
those of subject 47 during the early treatment 
stage. For subject 47, there is a negative 
correlation between viral load and CD4+ cell 
counts in the later stage. Interestingly we also 
observe discordance between patterns of the 
population estimate and individual estimates of 

)(1 tβ . See pattern for subject 2 shown in Figure 
2. Because of the large between-subject variation, 
the individual estimates become very important 
in individualizing treatment and care for patients 
with AIDS. 
 
A Simulation Study 

A simulation model is designed as 
)()()()( tttty iii εγη ++= , where 

)2sin()2cos(1)( ttt ππη ++=  and 

)2sin()2cos()( 210 tataat iiii ππγ ++=  with 

),)0,0,0((~),,( 33210 ×INaaa TT
iii , and 

)1,0(~)( Ntiε , for 20,,1 == ni … . The 

design time points are )1( mjtij +=  for 

35,,1 == mj … . To mimic the unbalanced 
data feature in longitudinal studies, randomly 
remove ijy  with a probability of rm = 0.35 (i.e., 

rm is the missing rate of the data). Thus, there 
are an average of 23 observations for each 
subject and 460 observations in total. Note that 
the data from different subjects are independent, 
but the within-subject data are correlated. The 
within-subject correlation coefficient can be 
calculated as: 
 

2/)}(2cos1{)}(),({ stsytycorr iiy −+== πρ   
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for ts ≠ . In this simulation experiment and in 

later examples, let p = 3 and K = 8 set 02 =wσ . 

When a Dell PC machine (2GHz CPU) was used, 
the computation for the simulation experiment 
require only 8 seconds. The estimated value of 
the penalized parameter α  is 034.0ˆ =α . 

Figure 3 shows the profiles of data for 6 
arbitrarily selected subjects. The generated data,  

 
 
 

 
 
 
 
 
 
 
 

the real population curve, the estimated 
population and individual curves are depicted for 
comparison. Although the population estimate is 
similar to the true characteristic of the population, 
the estimated individual curves more precisely 
describe individual trends than the estimated 
population curves. For comparison, this 
simulation data was set for p = 2 and K = 10,15, 
20. The corresponding results are not 
distinguishable from those in Figure 3. 

 
 

 
 
 
 
 
 
 
 

 

 
 

Figure 1. 
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Figure 2. 
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Conclusion 

 
Considering nonparametric regression modeling 
for longitudinal data, a very effective routine is 
proposed by combining a penalized spline 
technique and LME models. The principal 
advantage of this approach is that it avoids 
computational challenges that occur when local 
kernel smoothing or smoothing spline 
techniques in which bandwidths or smoothing 
penalty parameters have to be selected are used. 
This approach avoids these challenges by using a 
concern of LME. Penalty parameters were 
automatically calculated out. Curves for 
population and individual characteristics are 
easily derived. The approach is also effective to 
time varying coefficient mixed-effects models. 
The method has been shown to be useful in 
analyzing AIDS data set. It is believed that the 
approach can be used to other clinical trail or 
biological data. 
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Properties Of The GAR(1) Model For Time Series Of Counts 
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Models for time series count data include several proposed by Zeger and Qaqish (1988), subsequently 
generalized into the GARMA family. The GAR(1) model is examined in detail. The maximum likelihood 
estimation of the parameters will be discussed and the properties of Pearson and randomized residuals 
will be examined.  
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Introduction 
 
Many of the time series recorded in practice 
consist of count data, in which each observation 
represents the number of events occurring at a 
point in time or in a given time interval. 
Examples include the number of cases of a 
particular disease reported each month. 
Especially when the counts are low, standard 
Gaussian time series models may need to be 
replaced by other models more suitable for count 
data, based on the Poisson distribution or 
another discrete distribution on the non-negative 
integers. 
 A number of models of this type have 
been developed. In this article, regression 
models for time series count data will be 
examined. These models, originally proposed by 
Zeger and Qaqish (1988), have been considered 
subsequently by several other authors (see, in 
particular, Kedem and Fokianos, 2002) and 
extended by Benjamin, Rigby, and 
Stasinopoulos     (2003).   In     these     models,  
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each observation yt in the series is represented as 
a Poisson variate which is conditionally 
independent of previous observations, given its 
mean, but whose mean depends on the previous 
observations -1 1,...,ty y  and possibly on 
covariates. These are examples of observation-
driven models for time-dependent data in the 
terminology introduced by Cox (1981). In the 
simplest case, with first-order dependence and 
no covariates: 

 

-1| ~  ( )t t ty y Poisson µ   

 

where   

-1( )=t t tyµ µ . 

 
In this article, the basic model is 

examined from several points of view relevant to 
its practical application to data. Principally, the 
performance of maximum likelihood estimation 
of the parameters and the properties of the 
residuals from the models are examined. 

 
Models 

Following Zeger and Qaqish (1988), let 

ty  be an outcome random variable and tx  an 
x1m  vector of covariates at time t . Define 

tµ =E(yt |Dt) where Dt = {xt , xt-1,…,  yt-1, …, y1} 
includes past outcomes and the past and present 
covariates. It is assumed that 

p
'

t t i i t
i 1

g( ) x f ( D )µ β θ
=

= +∑  
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where g is a link function, the if  are functions 
of the past data and the parameters β  and 

θ =(θ 1,…,θ p)
′ are to be estimated. Because the 

link function is applied to the lagged 
observations -t jy , this model goes beyond 

standard generalized linear models (GLM) with 
independent data (McCullagh and Nelder, 1989). 
A general model for tµ  is: 

 

{ }

{ }

' '
- -

1

- -
1

( )

( )

( )

t t

p

t j t j t j
j

q

j t j t j
j

g

x g y x

g y

µ η

β θ β

φ η

=

=

=

= + −

+ −

∑

∑

 

(1) 
 

This defines a class of models called 
generalized autoregressive moving average 
models (GARMA: Benjamin, Rigby, and 
Stasinopoulos, 2003). A special case of 
GARMA arises when the conditional 
distribution for ty  (given tD ) is Poisson and g  
the canonical link function as in standard GLM, 
that is, the logarithm. Equation (1) becomes: 

 

{ }

{ }

' * '
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- -

1

( ) log( )

log( )
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t t
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t j t j t j
j
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x y x
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µ µ
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φ η
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=

=

= + −

+ −

∑
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(2) 
 

where *
-1 -1max( , ) ,  0 1t ty y c c= < <  (Zeger and 

Qaqish, 1988; Benjamin, Rigby, and 
Stasinopoulos, 2003). The effect of using *

ty  in 

place of ty  is that zero values of ty  are replaced 
by c. This device is adopted in order to avoid an 
absorbing state at y = 0. If 0,=jφ for 1,..., ,=j q  

the model is autoregressive order p, GAR(p). If 
0,=jθ  for 1,..., ,j p=  it is a moving average 

model of order q, GMA(q) (Li, 1994). In the 
special case of 0,=jφ  and p = 1, the model (2) 

is GAR(1) with the form: 

{ }' * '
1 -1 -1log( ( )) log( ) -         (3)= +t t t tg x y xµ β θ β  

 
If there are no covariates x, then writing 

' = =tx β µ constant, equation (3) becomes: 
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Positive values of 1θ  represent positive 
autocorrelation within the series and negative 
values represent negative autocorrelation. Zeger 
and Qaqish (1988) also proposed another way of 
solving the problem of the absorbing state. 
Instead of introducing *

ty , this model defines:  
 

1 
-1exp( )                           (5)
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where c is a constant added to each observation 
rather than only to zero outcomes. In some 
situations it might be interpreted as an 
immigration rate. This model is not part of the 
GARMA family.  
 
Maximum Likelihood Estimation 
 The likelihood function conditional on 
the first term of the series is given by 
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with log-likelihood  
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Let the vector of model parameters to be 
estimated be denoted by η . Then  
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Closed-form expressions are not available for 
the estimation of η . Consequently, the 
likelihood must be maximised numerically. The 
BCOAH subroutine was used from the IMSL 
library to minimize the negative of the log-
likelihood. This employs a modified Newton 
method and a user-supplied Hessian. Zeger and 
Qaqish (1988) fitted their models by quasi-
likelihood estimation. Benjamin, Rigby, and 
Stasinopoulos (2003) fitted GARMA models by 
maximum likelihood using iteratively weighted 
least squares. 
 
Simulation study 
 To examine the GAR(1) model from 
several points of view relevant to its practical 
application to data, a numerical study of 
simulated data was carried out. The limitation to 
first-order autoregression is common throughout 
the time series literature, chiefly for practical 
reasons (Greene, 2000). Because there is only 
one autoregressive parameter θ 1, its subscript 
will be dropped from this point on. To generate 
a realization of a time series of length m for 
selected values of µ , θ  and c, the GAR(1) 
model (4) was used to generate a sequence of m 
+ 50 counts, starting from a Poisson deviate. The 
pseudorandom number generator RNPOI from 
the IMSL library was used to generate Poisson 
deviates. The first 50 counts were discarded and 
the remaining m values were retained for 
analysis. A relatively short series of m = 50 
observations and longer series of m = 150 
observations were examined. 
 From (4), the parameter c appears in the 
likelihood only in the terms, if any, that 
immediately follow a zero. If there are few zeros 
in the series, then there is very little information 
available for the estimation of c. If desired, its 
estimation can be avoided in order to simplify 
the likelihood equations. As well, a very flat 
likelihood surface (with respect to c) can be 
avoided  by  dividing  the  series  into  blocks. A  
 
 
 
 
 
 
 

block   ends   when   a    zero   occurs,   and   the 
following block starts with the next non-zero 
outcome. The overall likelihood is the product of 
the likelihoods of the separate blocks, each of 
which is conditional on the first member of the 
block, and it is a function of θ  and µ  only. The 
minor drawback of this procedure is that some 
information is lost, because the overall 
likelihood consists not of m - 1 but m - 1 - m0 
terms, where m0 is the number of zeros 
occurring within the series.  

 
Results 

 
Table 1 shows summary statistics for the 
estimates of θ  in the GAR(1) model. Difficulties 
with the numerical fitting procedure prevented 
the use of the larger values of θ  when µ  was 

small. It appears that the maximum likelihood 
estimate of µ  is effectively unbiased, although a 
minor downward bias appears as θ  increases to 
large positive values. The precision of the 
estimate of µ  increases as µ  increases, and 
appears to be a decreasing function of θ  being 
lowest when θ  takes large positive values. 
Table 2 shows results for the estimation of θ . 
There is some downwards bias in θ , larger 

when 0>θ  than when 0≤θ , and larger for 
series of length 50 than ones of length 150. The 
precision of estimation of θ  is also a decreasing 
function of θ  but depends less heavily on the 
value of µ . Comparison of mean squared errors 
between Tables 1 and 2 shows that µ is 
estimated relatively much more precisely thanθ . 
 Table 3 shows the correlation between 
estimates of θ  and µ . Correlations appear to be 
a decreasing function of θ  and also of µ , but 
do not depend heavily on the length of the 
series. For the larger values of µ  (= 4, 6) and 
for θ  positive or moderately negative, the 
estimates of the two parameters are virtually 
uncorrelated. 
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Table 1. Average and mean squared error of maximum likelihood estimate of µ in the GAR(1) 
model. Each entry is based on 2,000 simulated sets of data.  

  Length 50 Length 150 
µ  θ  mean m.s.e. mean m.s.e. 

2 -0.6 2.000 0.0011 2.000 0.0004 
 -0.3 1.998 0.0017 2.001 0.0057 
 0 1.996 0.0028 1.999 0.0010 
 0.3 1.996 0.0057 1.998 0.0021 
 0.6 1.976 0.0215 1.990 0.0068 
      
4 -0.8 4.000 0.0001 4.000 0.00004 
 -0.6 4.000 0.0001 4.000 0.00005 
 -0.3 3.999 0.0002 4.000 0.0001 
 0 3.999 0.0004 4.000 0.0001 
 0.3 3.999 0.0007 4.000 0.0003 
 0.6 3.997 0.0023 3.999 0.0008 
 0.8 3.988 0.0102 3.995 0.0032 
      
6 -0.8 6.000 0.00002 6.000 0.00001 
 -0.6 6.000 0.00002 6.000 0.00001 
 -0.3 6.000 0.00003 6.000 0.00001 
 0 6.000 0.00005 6.000 0.00002 
 0.3 6.000 0.0001 6.000 0.00004 
 0.6 5.999 0.0003 6.000 0.00011 
 0.8 5.998 0.0013 5.999 0.0018 

Table 2. Average and mean squared error of maximum likelihood estimate of θ in the GAR(1) model. 
Each entry is based on 2,000 simulated sets of data. 
 
 

  Length 50 Length 150 
µ  θ  mean m.s.e. mean m.s.e. 

2 -0.6 -0.586 0.0087 -0.596 0.0026 
 -0.3 -0.300 0.0129 -0.298 0.0044 
 0 -0.014 0.0162 -0.007 0.0053 
 0.3 0.267 0.0173 0.288 0.0054 
 0.6 0.549 0.0165 0.584 0.0046 
      
4 -0.8 -0.776 0.0086 -0.790 0.0025 
 -0.6 -0.586 0.0127 -0.596 0.0036 
 -0.3 -0.303 0.0168 -0.301 0.0056 
 0 -0.021 0.0186 -0.007 0.0065 
 0.3 0.258 0.0206 0.285 0.0064 
 0.6 0.539 0.0186 0.580 0.0049 
 0.8 0.727 0.0168 0.777 0.0033 
      
6 -0.8 -0.777 0.0094 -0.791 0.0027 
 -0.6 -0.587 0.0130 -0.597 0.0041 
 -0.3 -0.307 0.0177 -0.302 0.0059 
 0 -0.021 0.0202 -0.009 0.0069 
 0.3 0.258 0.0202 0.285 0.0064 
 0.6 0.542 0.0184 0.578 0.0053 
 0.8 0.729 0.0162 0.775 0.0034  
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Residuals 
 In any regression model, it is important 
to examine residuals in order to assess the 
model’s adequacy. Our ability to do this depends 
quite heavily on whether or not the residuals 
follow the normal distribution; otherwise it may 
be difficult to draw conclusions from their 
behavior. Benjamin, Rigby, and Stasinopoulos 
(2003) advocated using Dunn and Smyth’s 
(1996) randomized quantile residuals for this 
purpose, because they expected Pearson or 
deviance residuals to be highly non-normally 
distributed for count data, at least when the 
mean count is low. Randomized quantile 
residuals are defined by 
 
                           ( )1

t tr uΦ −=                        (6) 

 

where -1Φ  is the inverse standard normal 
cumulative distribution function, ut is a random 
variable  uniformly   distributed  on  the  interval 

( ) ( )ˆ ˆ-1;  ,  ;  ⎡ ⎤⎣ ⎦t t t tF y F yµ µ and ( )ˆ;  t tF y µ  is the 

fitted Poisson cumulative distribution function. 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 Figures 1-4 show examples of the 
behavior of ordinary Pearson residuals 
( ) 1/ 2ˆ ˆ/−t t ty µ µ and randomized quantile residuals 

in series of length 50, first within a series (all 
residuals from one simulated series) and then 
across series (the residual for t=20 examined 
across all 2000 simulations of the same set of 
parameter values). Figure 1 shows that, even 
though the counts are quite low ( µ =2), the 
Pearson residuals within a series do not depart 
from normality as much as might be expected, 
so although the randomized quantile residuals 
(Figure 2) give an improvement, this does not 
seem to be important. However, across series the 
Pearson residuals depart markedly from a 
normal distribution (Figure 3) in the extreme 
tails whereas the randomized quantile residuals 
have much better behavior (Figure 4).  
 In the corresponding Figures 5-8 for 
series of length 150, it can be seen that the 
Pearson residuals are quite satisfactory; 
therefore there is little scope for the randomized 
quantile residuals to offer any improvement. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Correlations between maximum likelihood estimates of  µ and θ . 
 
 Length 50 Length 150 

θ  µ =2 4 6 µ =2 4 6 

-0.8  0.179 0.082  0.201 0.081 
-0.6 0.309 0.145 0.040 0.351 0.125 0.049 
-0.3 0.246 0.084 0.033 0.246 0.043 0.035 

0 0.168 0.060 0.054 0.168 0.069 0.001 
0.3 0.108 0.065 0.025 0.150 0.055 0.059 
0.6 0.021 0.070 0.006 0.055 -0.015 -0.027 
0.8  0.063 0.015  0.008 0.028  
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Figure 1. Normal probability plot of Pearson residuals from one realization of GAR(1) with m = 50, 
µ = 2, θ  = 0.3. 

 
 
 

 
 

Figure 2. Normal probability plot of randomized residuals from one realization of GAR(1) with m = 
50, µ = 2, θ  = 0.3. 
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Figure 3. Normal probability plot of Pearson residuals at t = 20 from 2000 realizations of GAR(1) with m = 
50, µ = 2, θ  = 0.3. 
 
 
 

 
 

Figure 4. Normal probability plot of randomized residuals at t = 20 from 2000 realizations of GAR(1) with m 
= 50, µ = 2, θ  = 0.3. 
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Figure 5. Normal probability plot of Pearson residuals from one realization of GAR(1) with m = 150, µ = 

4, θ  = -0.6. 
 
 

 
 

Figure 6. Normal probability plot of randomized residuals from one realization of GAR(1) with m = 150, 
µ = 4, θ  = -0.6. 
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Figure 7. Normal probability plot of Pearson residuals at t = 20 from 2000 realizations of GAR(1) with m 
= 150, µ = 4, θ  = -0.6. 
 
 

 
 

Figure 8. Normal probability plot of randomized residuals at t = 20 from 2000 realizations of GAR(1) 
with m = 150, µ = 4, θ  = -0.6. 
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 Table 4 presents results on the 
distribution of the residuals in relation to the 5% 
and 1% critical values of the standard normal 
distribution. Binomial standard errors of these 
simulated exceedance probabilities with n = 
2000 are about 0.5% for the 5% point and about 
0.2% for the 1% point. There is a moderate 
tendency for the exceedance probabilities to be 
lower  than  the  nominal  values,  which  would  
 
 

 
 
 
 
 
 

 
lead to conservative tests based on the normal 
distribution. Fitting logistic regression models 
with factors µ ,θ  and the type of residual 
(Pearson or randomized) confirmed a difference 
between the exceedance probabilities of the two 
residuals for m = 50 at the 5% point (logistic 
regression coefficient for randomized versus 
Pearson = 0.154 with standard error 0.029) but 
not at the 1% point (-0.067, s.e. 0.067). 
 
 

 
 
 
 
 

 

 
Table 4. Simulated exceedance probabilities (x1000) of normal 5% and 1% critical values of a randomly 
selected Pearson residual (P) and randomized residual (R). Each entry is based on 2,000 simulations of 
the GAR(1) model. 
 
 
  Length 50 Length 150 
  5% 1% 5% 1% 

µ  θ  P R P R P R P R 
2 -0.6 430 445 90 90 475 485 135 80 
 -0.3 430 440 60 80 425 470 100 85 
 0 500 550 130 130 510 470 65 95 
 0.3 460 510 105 95 430 500 90 80 
 0.6 370 435 65 65 435 465 80 75 
          
4 -0.8 435 420 110 105 550 565 110 110 
 -0.6 415 410 80 75 480 510 75 95 
 -0.3 490 495 85 105 445 455 85 100 
 0 450 485 115 85 445 435 90 65 
 0.3 440 460 110 100 570 560 70 90 
 0.6 465 465 130 125 525 505 95 90 
 0.8 440 420 85 85 460 485 85 75 
          
6 -0.8 490 485 120 100 505 510 80 90 
 -0.6 435 420 80 70 490 495 100 100 
 -0.3 415 410 35 40 485 490 95 105 
 0 500 505 125 120 515 525 105 115 
 0.3 520 545 140 140 545 550 110 130 
 0.6 460 470 55 55 505 515 105 115 
 0.8 500 490 110 110 535 525 130 135 
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Conclusion 
 

These results suggest that the GAR(1) model 
without covariates is numerically well behaved, 
except in the case of the combination of small µ  

and large θ . Restricting the study to GAR(1) is 

not unreasonable, because this is likely to be the 
most important practical case. According to 
Greene (2000), “The first-order autoregression 
has withstood the test of time and 
experimentation as a reasonable model for 
underlying processes that probably, in truth, are 
impenetrably complex” (p.531). 
 The results also show that the Pearson 
residuals do not depart from normality as much 
as might have been expected. However, the 
randomized residuals are available for use, if 
preferred, and their distribution seems to be very 
close to normal. Sometimes there are objections 
to using randomization within statistical analysis 
but, as Dunn and Smyth (1996) pointed out, 
these do not apply when the aim is to look at the 
overall pattern of residuals, which is what 
happens when all the residuals within one run 
are being considered. On the other hand, the 
random element does become an issue when 
specific residuals are being examined. This is 
the case when, for instance, extreme values are 
under consideration as potential outliers. 
 Although the simulation results show 
that the normal distribution applies quite well 
even at the 1% points, outlier detection may be 
based on much more extreme values than this 
(for example, when Bonferroni adjustments are 
used). Figure 4 compared to Figure 3 and to a 
lesser extent, Figure 8 compared to Figure 7, 
show that the randomized residuals would work 
far better than the Pearson residuals for this 
purpose. One way of obtaining the advantage of 
adjusting the residuals, but avoiding 
randomization, is as follows. Instead of 
definition (6), define adjusted residuals by 
 

( )* 1 *−=t tr uΦ  

 

where *
tu  is the mid-point of the interval 

( ) ( )t tˆ ˆ1;  ,  ;  ⎡ ⎤−⎣ ⎦t tF y F yµ µ . In other words, the 

random variable ut in (6) is replaced by its 

expected value. The distribution of these 
adjusted residuals across series in the 
simulations was very close to the distribution of 
the randomized residuals shown in Figures 4 and 
8. 
 One unsatisfactory feature of the model 
(2) or (4) is the necessity for introducing *

ty . 
This is an artificial device to enable the series to 
restart from zero, which otherwise would be an 
absorbing state. As remarked above, the amount 
of information available on the parameter c is 
very small and it is preferred to ignore it entirely 
by dividing the series up into blocks. This is 
only an issue when µ  is small, because 
otherwise the chances of reaching zero are 
negligible. On the other hand, this case may be 
the most interesting for the application of these 
models. It is noted that Benjamin, Rigby, and 
Stasinopoulos (2003) did not discuss this 
problem and in their example (which includes 
many zeroes) they appear simply to have used c 
= 0.1 without estimation. Kedem and Fokianos 
(2002) used examples without zeroes.  
 During the course of the investigations, 
the alternative model (5) was also examined. It 
was found that the likelihood surface tends to be 
very flat with respect to c. Because of this 
practical problem, but especially because of the 
dislike of the unrealistic device of adding a 
constant to every observation, this work has not 
been pursued and was not reported in this article. 
Another model, replacing both (4) and (5), could 
allow a random quantity (independent of other 
parts of the model and other time periods) to be 
added to each observation. This could be a much 
more satisfactory physical model of immigration 
from elsewhere than is offered by the existing 
proposals. 
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Analysis Of Type-II Progressively Hybrid 
Censored Competing Risks Data 

 
   Debasis Kundu    Avijit Joarder 
      Department of Mathematics         Reserve Bank of India 
    Indian Institute of Technology 
 
 
A Type-II progressively hybrid censoring scheme for competing risks data is introduced, where the 
experiment terminates at a pre-specified time. The likelihood inference of the unknown parameters is 
derived under the assumptions that the lifetime distributions of the different causes are independent and 
exponentially distributed. The maximum likelihood estimators of the unknown parameters are obtained in 
exact forms. Asymptotic confidence intervals and two bootstrap confidence intervals are also proposed. 
Bayes estimates and credible intervals of the unknown parameters are obtained under the assumption of 
gamma priors on the unknown parameters. Different methods have been compared using Monte Carlo 
simulations. One real data set has been analyzed for illustrative purposes. 
 
Key words: Competing risk; maximum likelihood estimator; Type-I and Type-II censoring; Fisher 
information matrix; asymptotic distribution; bayesian inference; exponential distribution; gamma 
distribution; Type-II progressive censoring scheme. 
 
 

Introduction 
 
In medical studies or in reliability analysis, it is 
quite common that more than one cause or risk 
factor may be present at the same time. In 
analyzing the competing risks model, it is 
assumed that data consists of a failure time and 
an indicator denoting the cause of failure. 
Several studies have been carried out under this 
assumption for both the parametric and the non-
parametric set up. For the parametric set up it is 
assumed that different lifetime distributions 
follow some special parametric distribution, 
namely exponential, Weibull or gamma. Several 
authors,  for  example   Berkson   and   Elveback  
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(1960), Cox (1959), David and Moeschberger 
(1978) considered the problem from the 
parametric point of view. In the non-parametric 
set up, no specific lifetime distribution is 
assumed. Kaplan and Meier (1958), Efron 
(1967) and Peterson (1991) analyzed the non-
parametric version of this model. 
 The two most common censoring 
schemes, namely Type-I and Type-II censoring 
schemes, are widely used in practice. Briefly, 
they can be described as follows. Consider n 
items are under observations in a particular 
experiment. In the conventional Type-I 
censoring scheme, the experiment continues up 
to a pre-specified time T. On the other hand, the 
conventional Type-II censoring scheme requires 
the experiment to continue until a pre-specified 
number of failures m ≤  n occurs. In this 
scenario, only the smallest lifetimes are 
observed. The mixture of Type-I and Type-II 
censoring schemes is known as the hybrid 
censoring scheme. This hybrid censoring 
scheme was first introduced by Epstein (1954; 
1960). But, recently it becomes quite popular in 
the reliability and life-testing experiments. See 
for example the work of Chen and Bhattacharya 
(1988), Childs, Chandrasekhar, Balakrishnan, 
and Kundu (2003), Draper and Guttman (1987), 
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Fairbanks, Madasan and Dykstra (1982), Gupta 
and Kundu (1998), and Jeong, Park and Yum 
(1996). 
 One of the drawbacks of the 
conventional Type-I, Type-II, or hybrid 
censoring schemes is that they do not allow for 
removal of units at points other than the terminal 
point of the experiment. When the items are 
highly reliable it might be necessary to know the 
causes for which the items are failed and also 
necessary to remove items in between the 
experiment (at the time of each failure) for 
efficient estimation of the parameters. Because 
of this, one censoring scheme known as 
progressive censoring scheme under competing 
risks becomes very popular for the last few 
years. It can be described as follows: Consider n 
items in a study and assume that there is K 
causes of failure, which are known. Suppose m 
< n is fixed before the experiment. Moreover, m 
other integers, R1, . . . ,Rm are also fixed before 
so that R1 + . . . + Rm + m = n. At the time of the 
first failure X1:m:n, R1 of the remaining units are 
randomly removed. Similarly, at the time of the 
second failure X2:m:n, R2 of the remaining units 
are randomly removed and so on. Finally, at the 
time of the mth failure Xm:m:n, the rest of the Rm 
units are removed. It is also known that the first 
failure takes place due to cause 1δ , similarly the 

second failure takes place due to cause 2δ and so 
on, finally the mth failure takes place due to 
cause mδ . For an exhaustive list of references 

and further details on Type-II progressive 
censoring, the readers may refer to the book by 
Balakrishnan and Aggarwala (2000). 
 In this article, a Type-II progressively 
hybrid censoring scheme under competing risk 
is introduced. As the name suggests, it is a 
mixture of Type-II progressive and hybrid 
censoring schemes under the competing risk 
data. In this new censoring scheme, the 
likelihood inference of the unknown parameters 
is obtained, under the assumptions that the 
lifetime distributions of the different causes are 
independent identically distributed (i.i.d.) 
exponential random variables. It is observed that 
the maximum likelihood estimators of the 
unknown parameters always exist and one 
obtains the explicit form of the maximum 
likelihood estimators (MLEs) of the unknown 

parameters. One also obtains the asymptotic 
confidence intervals and proposed two bootstrap 
confidence intervals. Bayes estimates and 
credible intervals are also obtained under the 
assumption of the gamma priors on the unknown 
parameters. Different methods are compared 
using Monte Carlo simulations and for 
illustrative purposes, one real data set is 
analyzed. 
  
Model Description and Notation 
 Suppose n identical items are put on a 
test and the lifetime distributions of the n items 
are denoted by X1, . . .,Xn. The integer m < n is 
pre-fixed and also R1, . . .,Rm are m pre-fixed 
integers satisfying R1 + . . . + Rm + m = n. T is a 
pre-fixed time point. At the time of first failure 
R1 of the remaining units are randomly removed. 
Similarly at the time of the second failure R2 of 
the remaining units are removed and so on. If 
the mth failure occurs before the time point T, 
the experiment stops at the time point Xm:m:n. On 
the other hand, suppose the mth failure does not 
occur before time point T and only J failures 
occur before the time point T, where 0 ≤  J < m, 
then at the time point T all the remaining RJ

* 

units are removed and the experiment terminates 
at the time point T. Note that RJ

*= n -(R1+. . .+RJ 
) - J. The two cases are denoted as Case I and 
Case II respectively and this censoring scheme is 
referred to as the Type-II progressively hybrid 
censoring scheme under competing risk data. In 
the presence of Type-II progressively hybrid 
censoring scheme under competing risks data, 
the following is a type of observation: 
 
Case I: {(X1:m:n, 1δ , R1), . . . , (Xm:m:n, mδ , Rm)};              

if  Xm:m:n < T, or  Case II: {(X1:m:n, 1δ , R1), . . . , 

(XJ:m:n, Jδ , RJ ), (T, RJ
*)}; if  XJ:m:n < T < 

XJ+1:m:n. 
 
Note that for Case II, XJ:m:n < T < XJ+1:m:n < . . . < 
Xm:m:n  and  XJ+1:m:n < . . . < Xm:m:n  are not 
observed. 
 The conventional Type-I progressive 
censoring scheme needs the pre-specification of 
R1, . . . ,Rm and also T1, . . . , Tm, see Cohen 
(1963; 1966) for details. The choices of T1, . . ., 
Tm are not trivial. For the conventional Type-II 
progressive censoring scheme the experimental 
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time is unbounded. In the proposed censoring 
scheme, the choice of T depends upon how 
much maximum experimental time the 
experimenter can afford to spend. Moreover, the 
experimental time is bounded. 
 Without loss of generality, it is assumed 
that there are only two independent causes of 
failure i.e. K = 2. It may be extended to the case 
of K > 2. Before progressing further, the 
following notations are introduced/ reviewed: 
 
Xji : lifetime of the ith individual under cause j; 
for j = 1, 2 and i = 1, . . . , n 
 
Xi:m:n : i

th observed failure time; i = 1, . . . ,m             
 
f(.) : probability density function (PDF) of Xi            
 
F(.) : cumulative distribution function (CDF) of 
Xi 
 
Fj(.) : cumulative distribution function (CDF) of 
Xji 
 
m1 : the number of failures observed before 
termination due to cause 1 for Case I 
 
m2 : the number of failures observed before 
termination due to cause 2 for Case I 
 
m : total number of failures observed before 
termination for Case I; i.e. m = m1 + m2 
               
J1 : the number of failures observed before 
termination due to cause 1 for Case II 
 
J2 : the number of failures observed before 
termination due to cause 2 for Case II 
 
J : total number of failures observed before 
termination for Case II; i.e. J = J1 + J2 
D1 : the number of failures due to cause 1, i.e. D1 
= m1 for Case I and D1 = J1 for Case II 
                
D2 : the number of failures due to cause 2, i.e. D2 
= m2 for Case I and D2 = J2 for Case II 
                  
D : total number of failures, i.e. D = m = m1 + 
m2 for Case I and D = J = J1 + J2 for Case II 
                  

Ri : the number of units removed at the time of 
ith failure; Ri ≥  0 
 
RJ

* : the number of remaining units left at the 
time point T for Case II 
                  

iδ  : indicator variable denoting the cause of 

failure of the ith individual 
 
e( λ ) : exponential random variable with PDF  

xe λλ −  
 
gamma( ,α λ ) : gamma random variable with 

PDF  xex λα
α

α
λ −−

Γ
1

)(
 

 
 It is assumed that (X1i, X2i); i = 1, . . ., n 
are n i.i.d. exponential random variables. 
Further, X1i and X2i are independent for all i = 1, 
. . ., n and Xi = min(X1i, X2i). Now, the MLEs of 
the unknown parameters are provided when Xji's 
(for I = 1, . . ., n) are i.i.d. exp( jλ ), for j= 1, 2. 

 
Maximum Likelihood Estimator 
 Based on the observations as discussed 
in the previous subsection, the log-likelihood 
function (without the constant term) can be 
written as; 
 
 L( 1λ , 2λ ) = D1 ln 1λ  + D2 ln 2λ  - ( 1λ  + 2λ )W,                     

(1) 
 
where  
 

D1 = m1, D2 = m2, W =  nmi

m

i
i xR ::

1

)1(∑
=

+   

 
for Case I and  
 

D1 = J1, D2 = J2, W =    
*

::
1

)1( Jnmi

J

i
i TRxR ++∑

=
  

 
for Case II. From (1), it is clear that the MLEs of 

1λ  and 2λ  always exists and they are 
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W

D1
1 =

∧
λ             and           .2

2 W

D
=

∧
λ             (2) 

 
It is not possible to obtain the exact distribution 

of 
∧

1λ  and 
∧

2λ  because of the complicated nature 
of the conditional distributions of X1:m:n, . . ., 
Xm:m:n given Xm:m:n < T. Interestingly, the 

distribution of 
∧

1λ  and 
∧

2λ are the mixture of 
discrete and continuous distributions. They have 
positive masses at the point 0 and have the 
bounded supports. Since, the exact distributions 

of 
∧

1λ  and 
∧

2λ are not known, the exact 
confidence intervals also cannot be obtained.  
 
Confidence Intervals 
 In this section, three different 
confidence intervals are proposed. One is based 

on the asymptotic distribution of 
∧

1λ  and 
∧

2λ and 
two different bootstrap confidence intervals. 
 
Asymptotic Confidence Interval 
 In this section, we present the Fisher 
Information matrix of 1λ and 2λ . Let I( 1λ , 2λ ) 

= (Iij( 1λ , 2λ )); i, j =1, 2, denote the Fisher 

Information matrix of the parameters 1λ and 2λ , 
where 
                                       

⎥
⎥
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From (1) it follows that 
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Simple calculation shows that 
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i
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and 
 

)()(
2

1
::2 TXPDE

m

i
nmi <=∑

=
. 

 
It is not easy to compute P(Xi:m:n < T) for general 
i, because Xi:m:n is a sum of i independent, but 
not identically distributed exponential random 
variables. Therefore, for D1 > 0 and D2 > 0, the 
following approximate 100(1-α )% confidence 
interval for 1λ and 2λ  are proposed, 
 

2

1

1

2

1 D
z

∧
∧

± λλ α  

 
and  
 

2

2

2

2

2 D
z

∧
∧

± λλ α  

(4) 
 
respectively. 
 
 
Bootstrap Confidence Intervals 
 In this subsection, two confidence 
intervals based on the bootstrapping are 
proposed. The two bootstrap methods that are 
widely used in practice are: 
 
(1) The percentile bootstrap (Boot-p) proposed 
by Efron (1982), and 
 
(2) The bootstrap-t method (Boot-t) proposed by 
Hall (1988). 
 
 It is observed that in this type of 
situations (Kundu, Kannan, & Balakrishnan, 
2004), the non-parametric bootstrap method 
does not work well. Hence, the following two 
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parametric bootstrap confidence intervals for 

1λ and 2λ  are proposed. The procedure is 

illustrated for the parameter 1λ . For the other 

parameter ( 2λ ), a confidence interval may be 
constructed in an analogous manner. 
 
Boot-p Method 

1. Estimate 
∧

1λ  and 
∧

2λ from the sample 
using (2). 

2. Generate a bootstrap 

sample },...,{ ::
*

::1
*

* nmDnm XX , using 
∧

1λ  

and
∧

2λ , R1, . . .,Rm and T. Obtain the 

bootstrap estimate of  1λ  say, 
∧

*
1λ using 

the bootstrap sample. 
3. Repeat Step 2 NBOOT times. 

4. Let )()( *
1 xPxCDF ≤=
∧∧

λ ,  be  the  
cumulative  distribution  function  of  

∧
*

1λ . Define      )()(
1

1 xCDFxpBoot

−∧

−

∧
=λ  

for   a  given  x. The   approximate  
100(1-α )%  confidence interval for 

1λ is given by:   
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Boot-t Method 

1. Estimate 
∧

1λ  and 
∧

2λ from the sample 
using (2) as before. 

2. Generate a bootstrap 

sample },...,{ ::
*

::1
*

* nmDnm XX , using 
∧

1λ  

and
∧

2λ , R1; . . .;Rm and T. Also compute 

*
1

2
*

1
*

1 )(
D

V

∧
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=
λλ  for D1

* > 0. 

3. Determine the T1
* statistic  
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4. Repeat Steps 2 - 3 NBOOT times. 

5. Let )()( *
1 xTPxCDF ≤=

∧
, be the 

cumulative distribution function of 
*

1T . 
For a given x, define 

)()()(
1*
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The approximate 100(1-α )% 

confidence interval for 1λ is given by  
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Bayesian Analysis 
 In this section, the problem is 
approached from the Bayesian point of view. In 
the context of exponential lifetimes, 1λ and 2λ  
may be reasonably modelled by the gamma 
priors. It is assumed that 1λ and 2λ  are 
independently distributed as gamma (a1, b1) and 
gamma (a2, b2) priors, respectively. The gamma 
parameters a1, b1, a2 and b2 are all assumed to be 
positive. When a1 = b1 = 0 (a2 = b2 = 0), one 
obtains the non-informative priors of 1λ  ( 2λ ). 

The posterior density of 1λ and 2λ  based on the 
gamma priors is given by 
 

l( 1λ , 2λ |data) 
)()(1

2
1

1
22112211 bWbWaDaD ee +−+−−+−+∝ λλλλ  

 
(5) 

 
From (5), it is clear that the posterior density 
functions of 1λ and 2λ , say l( 1λ |data) and 

l( 2λ |data), respectively, are independent. 

Further, l( 1λ |data) is the density function of a 
gamma(D1 + a1, W + b1) random variable, and 
l( 2λ |data) is the density function of a 
gamma(D2 + a2, W + b2) random variable. 
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Therefore, the Bayes estimates of 1λ and 2λ  
under squared error loss functions are 
 

1

11
1

bW

aD
Bayes

+
+=

∧
λ  

 
and 
 

2

22
2

bW

aD
Bayes

+
+=

∧
λ  

(6) 
 
respectively. Interestingly, when the non-
informative priors a1 = b1 = a2 = b2 = 0, the 
Bayes estimators coincide with the 
corresponding MLEs. 
 The credible intervals for 1λ and 2λ  can 
be obtained using the posterior distributions of 

1λ and 2λ . Note that a posteriori Z1 = 2 1λ  (W + 

b1) and Z2 = 2 2λ  (W + b2) follow 2χ  
distributions with 2(D1 +a1) and 2(D2 +a2) 
degrees of freedom respectively, provided both 
2(D1 + a1) and 2(D2 + a2) are positive integers. 
Therefore, 100(1-α )% credible intervals for 

1λ and 2λ  are 
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(7) 

 
respectively for (D1 + a1) > 0 and (D2 + a2) > 0. 

Here 
2

,
2 αχ k  and 

2
1,

2 αχ −k denote the lower and 

upper 
2

α
-th percentile points of a 2χ  

distribution with k degrees of freedom. Note that 
if 2(D1 + a1) and 2(D2 + a2) are not integer 
values, then gamma distribution can be used to 
construct the credible intervals. If no prior 
information is available, then non-informative 

priors can be used to compute the credible 
intervals for 1λ and 2λ . Alternatively, using the 
suggestion of Congdon (2001), very small 
positive values of a1, b1, a2 and b2 can be used to 
construct the Bayes estimates or the 
corresponding credible intervals. 
 
Numerical Results and Discussions 
 Since the performance of the different 
methods cannot be compared theoretically, 
Monte Carlo simulations are used to compare 
different methods for different parameter values 
and for different sampling schemes. The term 
different sampling schemes means for different 
sets of Ri’s and for different T values. All the 
computations are performed using Pentium IV 
processor and using the random number 
generation algorithm RAN2 of Press, Flannery, 
Teukolsky, & Vetterling.(1991). All the 
programs are written in FORTRAN and they can 
be obtained from the authors on request. 
 Before progressing further, first a 
description of how the Type-II progressively 
hybrid censored competing risk data was 
generated for a given set n, m, R1, . . ., Rm and T. 
The following transformation as suggested in 
Balakrishnan and Aggarwala (2000) is used. 
 
Z1 = nX1:m:n 
Z2 = (n - R1 - 1)(X2:m:n - X1:m:n) 
�  
Zm=(n - R1 - …- Rm-1 – m +1)(Xm:m:n – Xm-1:m:n).    

(8) 
 

It is known that if Xi’s are i.i.d. exp( 1λ + 2λ ), 

then the spacings Zi’s are also i.i.d. exp( 1λ + 2λ ) 
random variables. From (8) it follows that 
 

X1:m:n = 1

1
Z

n
 

X2:m:n = 12
1

1

1

1
Z

n
Z

Rn
+

−−
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Xm:m:n= 1
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1
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1
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(9) 
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Using (9), Type-II progressively hybrid 
censored competing risk data can be easily 
generated as follows. For a given n, m, 
R1,…,Rm, X1:m:n,…,Xm:m:n is generated using (9). 
Again using the random number generation 
algorithm RAN2 of Press et al. (1991), a new 
random variable U(i), for i = 1…m is generated. 

Now if U(i) < 
21

1

λλ
λ
+

, then assign iδ  = 1 

otherwise, iδ  = 2. If Xm:m:n < T. Then, one has 

Case I and the corresponding sample is 
( ) ( ){ }mmnmmnm RXRX ,,,...,,, ::11::1 δδ otherwise, 

one has Case II and J, such that XJ:m:n < T < 
XJ+1:m:n is found. The corresponding sample 

is ( ) ( ) ( ){ }Jmmnmmnm RTRXRX *
::11::1 ,,,,,...,,, δδ , 

where R*
J   is same as defined before.

 Different n, m, T, 1λ , 2λ  and Ri’s are 
considered. In all of the simulation experiments, 

1λ  = 1.0 and 2λ  = 0.8 is taken. The following 
are taken n = 15, 25, 50, 100, m = 5, 10, 15, T = 
0.25, 0.50, 1.00, 2.00 and three different 
sampling schemes. Scheme 1: R1 = … = Rm-1 = 0 
and Rm = n - m. Scheme 2: R1 = n - m and R1 = 
… = Rm = 0. Scheme 3: R1 = … = Rm-1 = 1 and 
Rm = n -2m + 1. For each case, the MLEs and 
the 95% confidence intervals of 1λ and 2λ  are 
computed using all three of the proposed 
methods. For comparison purposes, the 95% 
credible intervals are computed using non-
informative prior. The process is replicated 1000 
times in each case and the average bias, mean 
squared errors, and the coverage percentages are 
reported. The results are reported in Tables 1 - 9. 
 Some of the important observations are 
as follows. For fixed n as m increases the biases 
and   MSEs  of  both  1λ  and 2λ  decrease for all 
 
 
 
 
 
 
 
 
 
 

cases as expected. But, interestingly for fixed m 
as n increases the biases increase and the MSEs 
decrease for both 1λ  and 2λ . This phenomenon 
is quite counter intuitive and a proper 
explanation cannot be found for this. Now, 
comparing different confidence intervals in 
terms of their average lengths and coverage 
percentages, it is observed that the MLEs, 
BOOT-T confidence intervals and Bayes 
credible intervals behave quite satisfactory 
unless the T is very small. 
 Otherwise, most of the cases of these 
three confidence intervals maintain the nominal 
coverage probabilities. Since BOOT-T method 
is involved numerically and the confidence 
intervals based on the asymptotic distributions 
are slightly larger than the Bayes credible 
intervals, it is recommended to use the Bayes 
credible intervals for all cases. Among the 
different schemes, it is observed that scheme 1 
produces the smallest confidence intervals, 
followed by scheme 3 and scheme 2. 
 
Data Analysis 
 In this section, one real-life dataset 
originally analyzed by Hoel (1972) is 
considered. The data arose from a laboratory 
experiment in which male mice received a 
radiation dose of 300 roentgens at 5 to 6 weeks 
of age. The cause of death for each mouse was 
determined by autopsy to be thymic lymphoma, 
reticulum cell sarcoma, or other causes. For the 
purpose of analysis, reticulum cell sarcoma is 
considered as cause 1 and the other causes of 
death are combined as cause 2. There were n = 
77 observations in the data. A progressively 
type-II censored sample was generated from the 
original measurements. 
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Table 1: n = 15, m = 5*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  0.2406 (1.2953)  0.2834 (1.2330) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  0.1422 (0.6589)  0.1754 (0.6266) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  2.8876 (86.4)  2.9185 (93.3) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  2.4473 (90.5)  2.4790 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

1 Boot-P 
1λ  4.0095 (88.3)  4.0829 (91.1) 4.0721 (91.6) 4.0717 (91.6) 

  
2λ  3.2510 (87.0)      3.3224 (89.1) 3.3175 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  2.6389 (87.7)  2.8758 (90.7) 2.9050 (90.6) 2.9055 (90.6) 

  
2λ  2.1035 (89.8)  2.3166 (88.7) 2.3436 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  2.7977 (93.1)  2.8322 (93.8) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  2.3545 (88.9)  2.3885 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

  
1λ  0.2280 (1.7153)  0.2247 (1.3883) 0.2417 (1.2802) 0.2759 (1.2423) 

  
2λ  0.1689 (1.0298)  0.1461 (0.7663) 0.1475 (0.6577) 0.1706 (0.6320) 

 MLE 
1λ  3.6133 (79.0)  3.1929 (88.3) 2.9571 (90.7) 2.9142 (92.8) 

  
2λ  3.0330 (69.5)  2.6902 (81.5) 2.5017 (87.5) 2.4762 (89.2) 

2 Boot-P 
1λ  4.1914 (77.3)  4.0090 (85.5) 4.0136 (90.7) 4.0654 (89.9) 

  
2λ  3.3645 (67.7)  3.2375 (79.9) 3.2395 (86.2) 3.3093 (88.9) 

 Boot-T 
1λ  3.3581 (78.7)  2.9655 (87.4) 2.8422 (91.3) 2.8636 (90.8) 

  
2λ  2.6215 (69.4)  2.3683 (80.9) 2.2597 (88.1) 2.3070 (89.0) 

 Bayes 
1λ  3.4450 (77.3)  3.0707 (87.1) 2.8612 (92.9) 2.8273 (93.6) 

  
2λ  2.8805 (67.8)  2.5721 (80.6) 2.4046 (88.0) 2.3851 (91.0) 

  
1λ  0.2199 (1.3079)  0.2804 (1.2382) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  0.1269 (0.6734)  0.1725 (0.6300) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  2.9090 (89.5)  2.9144 (92.6) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  2.4540 (87.9)  2.4755 (89.3) 2.4801 (89.6) 2.4801 (89.6) 

3 Boot-P 
1λ  3.9577 (89.2)  4.0778 (90.5) 4.0734 (91.6) 4.0717 (91.6) 

  
2λ  3.2041 (85.2)  3.3183 (88.9) 3.3180 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  2.6347 (91.1)  2.8461 (90.7) 2.9038 (90.6) 2.9055 (90.6) 

  
2λ  2.0913 (88.2)  2.2907 (88.6) 2.3413 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  2.8142 (92.0)  2.8282 (93.7) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  2.3580 (86.2)  2.3848 (91.1) 2.3895 (91.6) 2.3895 (91.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 2: n = 25, m = 5*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.2825 (1.2347)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1741 (0.6284)  0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9170 (93.1)  2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4770 (89.6)  2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

1 Boot-P 
1λ  

4.0845 (90.8)  4.0726 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3214 (89.3)  3.3178 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.8529 (90.8)  2.9056 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.2954 (88.9)  2.3428 (88.7) 2.3437 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8308 (93.6)  2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3864 (91.2)  2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

  
1λ  

0.2370 (1.6967)  0.2279 (1.3813) 0.2414 (1.2803) 0.2759 (1.2423) 

  
2λ  

0.1712 (1.0103)  0.1482 (0.7633) 0.1483 (0.6561) 0.1715 (0.6314) 

 MLE 
1λ  

3.6058 (80.1)  3.1899 (88.8) 2.9538 (90.9) 2.9139 (92.8) 

  
2λ  

3.0232 (70.7)  2.6895 (81.9) 2.5017 (87.7) 2.4777 (89.3) 

2 Boot-P 
1λ  

4.2070 (78.3)  4.0052 (85.3) 4.0114 (90.8) 4.0654 (90.0) 

  
2λ  

3.3690 (68.8)  3.2410 (79.5) 3.2438 (86.4) 3.3097 (88.9) 

 Boot-T 
1λ  

3.4596 (79.9)  2.9826 (87.5) 2.8495 (90.8) 2.8646 (90.7) 

  
2λ  

2.6999 (69.9)  2.3953 (81.5) 2.2670 (88.0) 2.3073 (89.0) 

 Bayes 
1λ  

3.4403 (78.2)  3.0685 (87.7) 2.8583 (93.0) 2.8271 (93.6) 

  
2λ  

2.8724 (69.2)  2.5718 (81.3) 2.4047 (88.2) 2.3866 (91.1) 

  
1λ  

0.2812 (1.2368)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1718 (0.6308)  0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9159 (92.4)  2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4744 (89.3)  2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

3 Boot-P 
1λ  

4.0860 (90.7)  4.0736 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3216 (89.1)  3.3181 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.8364 (90.4)  2.9047 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.2802 (88.8)  2.3412 (88.7) 2.3437 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8297 (94.2)  2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3838 (90.8)  2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ  represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 3: n = 25, m = 10*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.0812 (0.3105)  0.1225 (0.2790) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0560 (0.2404)  0.0882 (0.2188) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8802 (90.8)  1.8411 (94.0) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6573 (92.5)  1.6259 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

1 Boot-P 
1λ  

2.1524 (91.4)  2.1440 (94.0) 2.1319 (94.1) 2.1317 (94.1) 

  
2λ  

1.8623 (88.6)  1.8597 (91.8) 1.8537 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.7514 (92.6)  1.8218 (93.7) 1.8341 (93.7) 1.8340 (93.7) 

  
2λ  

1.5029 (89.7)  1.5810 (90.8) 1.5951 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8460 (92.8)  1.8120 (94.3) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.6194 (91.1)  1.5932 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

  
1λ  

0.0753 (0.5199)  0.0778 (0.3620) 0.0984 (0.3136) 0.1181 (0.2821) 

  
2λ  

0.0400 (0.4258)  0.0497 (0.2902) 0.0733 (0.2355) 0.0828 (0.2208) 

 MLE 
1λ  

2.5991 (90.3)  2.1705 (91.5) 1.9260 (92.9) 1.8488 (93.7) 

  
2λ  

2.2059 (85.2)  1.8888 (87.7) 1.7022 (91.6) 1.6304 (92.7) 

2 Boot-P 
1λ  

2.7334 (91.7)  2.3661 (92.2) 2.1893 (93.5) 2.1398 (93.9) 

  
2λ  

2.2943 (85.3)  2.0360 (92.0) 1.8917 (89.8) 1.8541 (91.3) 

 Boot-T 
1λ  

2.4446 (91.5)  2.0895 (91.9) 1.8889 (93.4) 1.8255 (93.8) 

  
2λ  

2.0044 (85.7)  1.7540 (91.0) 1.6192 (89.9) 1.5852 (91.1) 

 Bayes 
1λ  

2.5100 (90.7)  2.1177 (92.9) 1.8908 (93.4) 1.8191 (94.4) 

  
2λ  

2.1189 (83.9)  1.8330 (92.0) 1.6633 (92.9) 1.5971 (93.4) 

  
1λ  

0.0752 (0.3272)  0.1142 (0.2855) 0.1226 (0.2788) 0.1225 (0.2789) 

  
2λ  

0.0445 (0.2500)  0.0823 (0.2222) 0.0890 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.9918 (90.5)  1.8449 (94.0) 1.8407 (93.9) 1.8406 (93.9) 

  
2λ  

1.7386 (88.3)  1.6301 (92.3) 1.6261 (92.7) 1.6261 (92.7) 

3 Boot-P 
1λ  

2.2036 (92.2)  2.1502 (93.5) 2.1335 (94.1) 2.1317 (94.1) 

  
2λ  

1.9051 (89.8)  1.8606 (91.3) 1.8547 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8715 (92.3)  1.8015 (93.6) 1.8326 (93.7) 1.8340 (93.7) 

  
2λ  

1.5931 (89.6)  1.5596 (91.0) 1.5940 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.9504 (92.7)  1.8152 (94.0) 1.8117 (94.1) 1.8116 (94.1) 

  
2λ  

1.6939 (90.7)  1.5968 (93.7) 1.5935 (93.6) 1.5935 (93.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 4: n = 50, m = 5*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.2842 (1.2314)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1759 (0.6258)  0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9192 (93.4)  2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4801 (89.6)  2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

1 Boot-P 
1λ  

4.0723 (91.6)  4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3176 (89.4)  3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.9049 (90.6)  2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.3430 (88.7)  2.3437 (88.7) 2.3438 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8331 (93.9)  2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3895 (91.6)  2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

  
1λ  

0.2378 (1.6791)  0.2302 (1.3733) 0.2427 (1.2795) 0.2757 (1.2485) 

  
2λ  

0.1761 (1.0055)  0.1494 (0.7596) 0.1493 (0.6548) 0.1716 (0.6312) 

 MLE 
1λ  

3.5945 (80.7)  3.1875 (89.5) 2.9530 (90.8) 2.9136 (92.8) 

  
2λ  

3.0208 (71.5)  2.6866 (82.2) 2.5029 (87.8) 2.4777 (89.3) 

2 Boot-P 
1λ  

4.2231 (78.9)  4.0181 (85.7) 4.0113 (90.4) 4.0653 (90.1) 

  
2λ  

3.3637 (69.2)  3.2376 (79.8) 3.2436 (86.2) 3.3096 (88.9) 

 Boot-T 
1λ  

3.4955 (80.4)  2.9977 (87.6) 2.8515 (90.9) 2.8656 (90.7) 

  
2λ  

2.7151 (70.4)  2.3951 (81.7) 2.2697 (87.8) 2.3087 (89.0) 

 Bayes 
1λ  

3.4304 (78.9)  3.0669 (88.0) 2.8577 (92.8) 2.8267 (93.6) 

  
2λ  

2.8714 (70.1)  2.5696 (81.4) 2.4060 (88.5) 2.3866 (91.0) 

  
1λ  

0.2842 (1.2314)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1759 (0.6258)  0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9192 (93.4)  2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4801 (89.6)  2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

3 Boot-P 
1λ  

4.0726 (91.6)  4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3178 (89.4)  3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.9056 (90.6)  2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.3428 (88.7)  2.3437 (88.7) 2.3438 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8331 (93.9)  2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3895 (91.6)  2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 5: n = 50, m = 10*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.1226 (0.2789)  0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0890 (0.2183)  0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8408 (93.9)  1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6261 (92.7)  1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

1 Boot-P 
1λ  

2.1406 (94.0)  2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1) 

  
2λ  

1.8576 (91.7)  1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8280 (93.7)  1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 

  
2λ  

1.5886 (91.1)  1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8118 (94.1)  1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.5935 (93.6)  1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

  
1λ  

0.0812 (0.5127) 0.0794 (0.3626) 0.1002 (0.3127) 0.1183 (0.2816) 

  
2λ  

0.0405 (0.4190)  0.0510 (0.2876) 0.0733 (0.2343) 0.0831 (0.2204) 

 MLE 
1λ  

2.5875 (90.1)  2.1628 (91.3) 1.9254 (93.4) 1.8488 (93.6) 

  
2λ  

2.1918 (85.7)  1.8825 (87.8) 1.7004 (91.7) 1.6306 (92.9) 

2 Boot-P 
1λ  

2.7158 (92.1)  2.3613 (92.3) 2.1873 (93.3) 2.1396 (93.8) 

  
2λ  

2.3004 (86.0)  2.0385 (91.6) 1.8924 (90.2) 1.8550 (91.3) 

 Boot-T 
1λ  

2.4721 (91.7)  2.0908 (91.5) 1.8900 (93.3) 1.8256 (93.8) 

  
2λ  

2.0481 (86.1)  1.7653 (90.9) 1.6233 (90.3) 1.5857 (91.1) 

 Bayes 
1λ  

2.5003 (91.0)  2.1106 (92.4) 1.8904 (93.5) 1.8191 (94.5) 

  
2λ  

2.1061 (84.8)  1.8274 (91.9) 1.6616 (93.0) 1.5972 (93.6) 

  
1λ  

0.1225 (0.2790)  0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0882 (0.2188)  0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8411 (94.0)  1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6259 (92.7)  1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

3 Boot-P 
1λ  

2.1440 (94.0)  2.1319 (94.1) 2.1317 (94.1) 2.1317 (94.1) 

  
2λ  

1.8597 (91.8)  1.8537 (91.8) 1.8536 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8218 (93.7)  1.8341 (93.7) 1.8340 (93.7) 1.8340 (93.7) 

  
2λ  

1.5810 (90.8)  1.5951 (91.2) 1.5950 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8120 (94.3)  1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.5932 (93.6)  1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 6: n = 50, m = 15*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.0800 (0.1570)  0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 

  
2λ  

0.0336 (0.1174)  0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 

 MLE 
1λ  

1.4553 (93.5)  1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 

  
2λ  

1.2720 (93.1)  1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 

1 Boot-P 
1λ  

1.6128 (93.6)  1.5828 (94.3) 1.5826 (94.3) 1.5826 (94.3) 

  
2λ  

1.4223 (93.1)  1.4045 (93.5) 1.4043 (93.5) 1.4043 (93.5) 

 Boot-T 
1λ  

1.4274 (94.0)  1.4515 (93.9) 1.4516 (93.9) 1.4516 (93.9) 

  
2λ  

1.2578 (93.0)  1.2819 (93.5) 1.2817 (93.5) 1.2817 (93.5) 

 Bayes 
1λ  

1.4400 (94.0)  1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 

  
2λ  

1.2545 (95.9)  1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 

  
1λ  

0.0746 (0.3559)  0.0651 (0.2411) 0.0682 (0.1739) 0.0819 (0.1545) 

  
2λ  

0.0313 (0.2689)  0.0270 (0.1677) 0.0275 (0.1314) 0.0332 (0.1180) 

 MLE 
1λ  

2.1969 (87.6)  1.7837 (90.7) 1.5448 (93.3) 1.4626 (94.1) 

  
2λ  

1.8902 (90.7)  1.5599 (92.3) 1.3513 (92.6) 1.2771 (92.9) 

2 Boot-P 
1λ  

2.2113 (91.7)  1.8593 (94.5) 1.6663 (94.0) 1.5974 (94.7) 

  
2λ  

1.8917 (91.8)  1.6091 (92.0) 1.4683 (94.4) 1.4134 (93.4) 

 Boot-T 
1λ  

2.0680 (91.0)  1.7434 (94.6) 1.5346 (93.4) 1.4580 (93.9) 

  
2λ  

1.7138 (91.4)  1.4864 (91.5) 1.3445 (93.0) 1.2842 (93.3) 

 Bayes 
1λ  

2.1411 (93.0)  1.7534 (92.2) 1.5258 (93.6) 1.4471 (94.3) 

  
2λ  

1.8314 (92.3)  1.5262 (93.1) 1.3298 (94.4) 1.2594 (95.2) 

  
1λ  

0.0686 (0.1630)  0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 

  
2λ  

0.0241 (0.1216)  0.0365 (0.1151) 0.0366 (0.1150) 0.0366 (0.1150) 

 MLE 
1λ  

1.4702 (93.2)  1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 

  
2λ  

1.2846 (93.1)  1.2687 (93.6) 1.2687 (93.7) 1.2687 (93.7) 

3 Boot-P 
1λ  

1.6215 (93.1)  1.5844 (94.3) 1.5826 (94.3) 1.5826 (94.3) 

  
2λ  

1.4262 (93.3)  1.4056 (93.4) 1.4043 (93.5) 1.4043 (93.5) 

 Boot-T 
1λ  

1.4336 (94.1)  1.4499 (93.9) 1.4516 (93.9) 1.4516 (93.9) 

  
2λ  

1.2587 (93.3)  1.2813 (93.5) 1.2817 (93.5) 1.2817 (93.5) 

 Bayes 
1λ  

1.4539 (93.7)  1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 

  
2λ  

1.2660 (94.9)  1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 7: n = 100, m = 5*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.2842 (1.2314)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

1 Boot-P 
1λ  

4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.3438 (88.7) 2.3438 (88.7) 2.3438 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

  
1λ  

0.2398 (1.6732)  0.2317 (1.3679) 0.2428 (1.2792) 0.2759 (1.2422) 

  
2λ  

0.1783 (1.0011) 0.1500 (0.7576) 0.1512 (0.6542) 0.1715 (0.6313) 

 MLE 
1λ  

3.5902 (80.8) 3.1872 (89.8) 2.9520 (90.7) 2.9141 (92.7) 

  
2λ  

3.0201 (71.6) 2.6851 (82.3) 2.5047 (87.9) 2.4775 (89.3) 

2 Boot-P 
1λ  

4.2216 (78.9) 4.0150 (85.8) 4.0098 (90.5) 4.0650 (90.1) 

  
2λ  

3.3769 (69.5) 3.2425 (79.8) 3.2461 (86.2) 3.3100 (88.9) 

 Boot-T 
1λ  

3.4957 (80.4) 2.9995 (87.4) 2.8521 (90.9) 2.8666 (90.7) 

  
2λ  

2.7357 (71.0)  2.4007 (81.6) 2.2715 (87.9) 2.3092 (89.0) 

 Bayes 
1λ  

3.4270 (78.9)  3.0669 (88.4) 2.8568 (92.8) 2.8272 (93.6) 

  
2λ  

2.8711 (70.6)  2.5683 (81.5) 2.4079 (88.5) 2.3865 (91.0) 

  
1λ  

0.2842 (1.2314)  0.2842 (1.2314) 0.2842 (1.2314) 0.2842 (1.2314) 

  
2λ  

0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 0.1759 (0.6258) 

 MLE 
1λ  

2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 2.9192 (93.4) 

  
2λ  

2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 2.4801 (89.6) 

3 Boot-P 
1λ  

4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 4.0717 (91.6) 

  
2λ  

3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 3.3172 (89.4) 

 Boot-T 
1λ  

2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 2.9055 (90.6) 

  
2λ  

2.3437 (88.7) 2.3438 (88.7) 2.3438 (88.7) 2.3438 (88.7) 

 Bayes 
1λ  

2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 2.8331 (93.9) 

  
2λ  

2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 2.3895 (91.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 8: n = 100, m = 10*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.1225 (0.2789)  0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

1 Boot-P 
1λ  

2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1) 2.1317 (94.1) 

  
2λ  

1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 

  
2λ  

1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

  
1λ  

0.0833 (0.5097)  0.0795 (0.3643) 0.1005 (0.3126) 0.1182 (0.2817) 

  
2λ  

0.0418 (0.4155) 0.0512 (0.2890) 0.0729 (0.2342) 0.0830 (0.2204) 

 MLE 
1λ  

2.5789 (90.0) 2.1578 (91.4) 1.9246 (93.5) 1.8485 (93.6) 

  
2λ  

2.1851 (86.0) 1.8791 (87.9) 1.6989 (91.7) 1.6303 (92.9) 

2 Boot-P 
1λ  

2.7055 (91.9) 2.3619 (92.4) 2.1864 (93.3) 2.1397 (93.9) 

  
2λ  

2.3012 (86.6) 2.0384 (91.4) 1.8924 (90.3) 1.8552 (91.3) 

 Boot-T 
1λ  

2.4757 (91.7) 2.0947 (91.7) 1.8898 (93.3) 1.8258 (93.9) 

  
2λ  

2.0653 (86.3) 1.7689 (90.7) 1.6233 (90.5) 1.5857 (91.1) 

 Bayes 
1λ  

2.4928 (91.4) 2.1060 (92.5) 1.8896 (93.7) 1.8189 (94.5) 

  
2λ  

2.1004 (85.2) 1.8243 (91.8) 1.6603 (93.0) 1.5970 (93.6) 

  
1λ  

0.1225 (0.2789)  0.1225 (0.2789) 0.1225 (0.2789) 0.1225 (0.2789) 

  
2λ  

0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 0.0891 (0.2182) 

 MLE 
1λ  

1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 1.8406 (93.9) 

  
2λ  

1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 1.6261 (92.7) 

3 Boot-P 
1λ  

2.1318 (94.1) 2.1317 (94.1) 2.1317 (94.1) 2.1317 (94.1) 

  
2λ  

1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 1.8536 (91.8) 

 Boot-T 
1λ  

1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 1.8340 (93.7) 

  
2λ  

1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 1.5950 (91.2) 

 Bayes 
1λ  

1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 1.8116 (94.1) 

  
2λ  

1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 1.5935 (93.6) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Table 9: n = 100, m = 15*. 
 

Scheme Methods  T = 0.25 T = 0.50 T = 1.00 T = 2.00 
  

1λ  
0.0862 (0.1520)  0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 

  
2λ  

0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 

 MLE 
1λ  

1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 

  
2λ  

1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 

1 Boot-P 
1λ  

1.5826 (94.3) 1.5826 (94.3) 1.5826 (94.3) 1.5826 (94.3) 

  
2λ  

1.4044 (93.5) 1.4043 (93.5) 1.4043 (93.5) 1.4043 (93.5) 

 Boot-T 
1λ  

1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9) 

  
2λ  

1.2818 (93.5) 1.2817 (93.5) 1.2817 (93.5) 1.2817 (93.5) 

 Bayes 
1λ  

1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 

  
2λ  

1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 

  
1λ  

0.0739 (0.3503)  0.0675 (0.2395) 0.0678 (0.1735) 0.0819 (0.1545) 

  
2λ  

0.0343 (0.2643) 0.0264 (0.1671) 0.0275 (0.1315) 0.0332 (0.1180) 

 MLE 
1λ  

2.1841 (87.9) 1.7816 (90.9) 1.5434 (93.3) 1.4625 (94.2) 

  
2λ  

1.8860 (90.7) 1.5555 (92.0) 1.3503 (92.4) 1.2770 (92.9) 

2 Boot-P 
1λ  

2.2098 (92.0) 1.8572 (94.6) 1.6646 (94.0) 1.5972 (94.7) 

  
2λ  

1.8977 (91.8) 1.6063 (92.6) 1.4677 (94.4) 1.4136 (93.4) 

 Boot-T 
1λ  

2.0764 (91.3) 1.7421 (94.2) 1.5339 (93.3) 1.4576 (93.9) 

  
2λ  

1.7271 (91.6) 1.4871 (91.7) 1.3446 (93.1) 1.2843 (93.3) 

 Bayes 
1λ  

2.1292 (92.6) 1.7515 (91.8) 1.5245 (93.7) 1.4469 (94.3) 

  
2λ  

1.8280 (92.5) 1.5221 (93.0) 1.3289 (94.4) 1.2593 (95.2) 

  
1λ  

0.0862 (0.1520)  0.0862 (0.1520) 0.0862 (0.1520) 0.0862 (0.1520) 

  
2λ  

0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 0.0366 (0.1150) 

 MLE 
1λ  

1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 1.4530 (94.0) 

  
2λ  

1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 1.2687 (93.7) 

3 Boot-P 
1λ  

1.5828 (94.3) 1.5826 (94.3) 1.5826 (94.3) 1.5826 (94.3) 

  
2λ  

1.4045 (93.5) 1.4043 (93.5) 1.4043 (93.5) 1.4043 (93.5) 

 Boot-T 
1λ  

1.4515 (93.9) 1.4516 (93.9) 1.4516 (93.9) 1.4516 (93.9) 

  
2λ  

1.2819 (93.5) 1.2817 (93.5) 1.2817 (93.5) 1.2817 (93.5) 

 Bayes 
1λ  

1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 1.4379 (94.4) 

  
2λ  

1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 1.2515 (94.8) 

* In each cell, the first row of 1λ and 2λ represents the average biases and the corresponding mean squared errors are 

reported within brackets for the MLEs. The second, third, fourth and fifth rows of 1λ and 2λ represent the average 95% 
confidence lengths of asymptotic confidence intervals, Boot-p confidence intervals, Boot-t confidence intervals and the 
credible intervals with respect to the non-informative priors respectively. The corresponding coverage percentages are 
reported within brackets. 
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Example 1: In this case, n = 77 and m = 25, T = 
700, R1 = R2 = . . . = R24 = 2 and R25 = 4 are 
taken. Thus, the Type II progressively hybrid 
censored sample is: 
 
(40, 2), (42, 2), (62, 2), (163, 2), (179,2), (206, 
2), (222, 2), (228, 2), (252, 2), (259, 2), (318, 1), 
(385, 2), (407, 2), (420, 2), (462, 2), (507, 2), 
(517, 2), (524, 2), (525, 1), (528, 1), (536, 1), 
(605, 1), (612, 1), (620, 2), (621, 1).  
 
In      this      case,      D1 = 7,      D2 = 18      and  

W = ∑
=

+
25

1
::)1(

i
nmii xR  = 28962. Therefore, 

 

4
1 1041696.2

28962

7 −
∧

×==λ  

and        
 

4
2 1021504.6

28962

18 −
∧

×==λ . 

 
The 95% asymptotic, Boot-P, Boot-t confidence 
intervals and also the 95% credible intervals of 

1λ  and 2λ  are reported in Table 10. 
 It is clear that although all of them 
provided almost similar confidence/credible 
intervals, but Bayes credible intervals have the 
smallest lengths. Now, the data using T = 600 
instead of T = 700 is generated, while m and 
R(i)’s are the same as before. 
 
Example 2: In this case the progressively hybrid 
censored sample obtained as:  
 
(40, 2), (42, 2), (62, 2), (163, 2), (179,2), (206, 
2), (222, 2), (228, 2), (252, 2), (259, 2), (318, 1), 
(385, 2), (407, 2), (420, 2), (462, 2), (507, 2), 
(517, 2), (524, 2), (525, 1), (528, 1), (536, 1). 
 
Here            D1 = 4,              D2 = 17               and  

W = ∑
=

+
21

1
::)1(

i
nmii xR  = 20346. Therefore, the 

following is obtained: 
 
 
 

4
1 1039150.1

28746

4 −
∧

×==λ  

 
and        
 

4
2 1023809.20

28746

17 −
∧

×==λ . 

 
In this case, the 95% asymptotic, Boot-P, Boot-t 
confidence intervals and also the 95% credible 
intervals of 1λ  and 2λ  are reported in Table 11. 
 From Table 11, it is observed that T 
plays a major role for the estimation of λ ’s and 
for the construction of the corresponding 
confidence intervals. As T decreases, the lengths 
of the confidence/credible intervals for both the 
parameters are as expected. It is also important 
to note that Boot-p and Boot-t are the most 
affected due to T and the Bayes confidence 
intervals are the least affected. Therefore, Bayes 
confidence intervals are quite robust also with 
respect to T. 
 

Conclusion 
 
In this article, a new censoring scheme is 
discussed, namely the Type II progressively 
hybrid censoring scheme under competing risks 
data. Assuming that the lifetime distributions are 
exponentially distributed, one may obtain the 
maximum likelihood estimators of the unknown 
parameter and propose different confidence 
intervals using asymptotic distributions as well 
as using bootstrap methods. Bayesian estimates 
of the unknown parameters are also proposed 
and it is observed that the Bayes credible 
intervals with respect to non-informative prior 
work quite well in this case and it has several 
desirable properties. Although it is assumed that 
the lifetime distributions are exponential, most 
of the methods may be extended for other 
distributions also, such as the Weibull or gamma 
distribution. 
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Comparison Of Some Simple Estimators Of The Lognormal Parameters 
Based On Censored Samples 
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Point estimation of the parameters of the lognormal distribution with censored data is considered. The 
often employed maximum likelihood estimator does not exist in closed form and iterative methods that 
require very good starting points are needed. In this article, some techniques of finding closed form 
estimators to this situation are presented and extended. An extensive simulation study is carried out to 
investigate and compare the performance of these techniques. The results show that some of them are 
highly efficient as compared with the maximum likelihood estimator. 
  
Keywords: Modified maximum likelihood estimator, least squares estimators, lognormal distribution, 
mean squared error, Persson Rootzen estimators 
 
 

Introduction 
 
Let the random variable Y  be normally 

distributed with mean µ  and variance 2σ . Let 
YeT = , then T  is said to have a lognormal 

distribution. The probability density function of 
T  is given by (Lawless, 1982);  
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The many special features of the lognormal 
distribution together with its relation with the 
normal distribution have allowed it to be used as  
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a model in various real life applications. It is 
used in  analyzing  biological data (Koch, 1966),  
and for analyzing data in workplace exposure to 
contaminants (Lyles & Kupper, 1996). It is also 
of importance in modeling lifetimes of products 
and individuals (Lawless, 1982). Various other 
motivations and applications of the lognormal 
distribution can be found in Johnson et al. 
(1994) and Schneider (1986).  
 In most life testing experiments, one is 
faced with censored data (Lawless, 1982) arising 
from either terminating the experiment at a 
certain prespecified time (Type 1 censoring) or 
when a predetermined number of failures occur 
(Type 2 censoring).  Censoring is often 
employed because of time and cost 
considerations. However, complications do often 
arise in inference from censored data and usually 
likelihood based inference procedures are used. 
Assume that the data is Type 2 censored, 
whereby the following is observed: ( ) ( )rtt ,,1 … , 

nr ≤ . The likelihood function is given by 
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where ( )φ and ( )Q  are the probability density 
and the survival functions of the standard normal 
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distribution. The likelihood function 
corresponding to Type 1 censoring is obtained 
by replacing ( )rtln  by 0ln t , the censoring time 

under Type 1 censoring. The maximum 
likelihood estimator is obtained by finding µ̂  

and σ̂  that maximize the likelihood function. 
This is often done by equating the first partial 
derivatives of the log-likelihood function to zero 
and solving for µ  and σ  simultaneously by 
applying an iterative numerical procedure for 
root finding like the Newton-Raphson method. 
However, this is problematic unless very good 
starting values are available (Lawless, 1982); the 
problem becomes serious when the proportion of 
censored observations is large, especially when 
the total sample size is relatively small to 
moderate. In such cases, alternatives to the 
maximum likelihood estimator are needed, 
either on their own or as initial approximations 
to the maximum likelihood estimators. The 
books of Lawless (1982), Schneider (1986) and 
Balakrishnan and Cohen (1991) survey much of 
the work in this area.   
 In this article, the performances of three 
techniques for point estimation of parameters in 
the case of censored data from a lognormal 
distribution will be extended, investigated, and 
compared. The first technique is based on 
finding the least squares estimator by regressing 
certain estimators of the linearized distribution 
function on a function of the observations 
themselves. This approach is used in Hossain 
and Howlader (1996) and Hossain and Zimmer 
(2003) for the parameters of the Weibull 
distribution.  Their results showed that the 
estimators are a reasonable substitute for the 
maximum likelihood estimator in most 
situations. 
 The second technique is due to Perrson 
and Rootzen (1977) where they presented some 
modified likelihood function with Type 1 
censored data whose maximizing point does not 
require iterative techniques. The last technique is 
based on expanding certain terms in the first 
derivatives of the log-likelihood function in an 
appropriate Taylor series to get a new system of 
likelihood equations whose solution exists in 
closed form. This last approach was studied for 
Type 2 censored data. An account of this work 
can be found in Balakrishnan and Cohen (1991).  

Recently Al-Haj Ebarahem and Baklizi (2005) 
used the first and the last techniques to estimate 
the parameters of the Log-Logistic distribution      
based on complete and censored samples  
 
Least Squares Estimators 
 The distribution function of the 
lognormal random variable is given by 
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⎠
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⎜
⎝

⎛ −Φ=
σ

µt
tF

ln
. 

 
Linearization of this distribution function gives 

( )( ) ttF ln
11

σσ
µ +−=Φ− .which is a linear 

regression model between ( )( )tF1−Φ  and tln . 

Let ( ) ( )rTT ,,1 …  be the observed censored 

sample and let iS  be an estimate of 

( )( )( )iTF1−Φ , then the least squares estimators 

of  
σ
1=b  and 

σ
µ−=a  are given respectively 

by 
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An estimate of riSi ,,1  , …=  is now required. 

Two methods of estimation of  ( )( )iTF  and 

hence iS  will be considered: 

 

a) Let ( )( ) ( ) riRTF ii ,,1 ,1ˆ
…=−=  

 
where 

( ) ( )11 −+
= i

i

i
i R

r

r
R , ( ) 10 =R  

and 
1+′−= ii rnr  

 
where ir′ is the rank of the i-th failure in the 

original sample. Hence, ( )( )ii RS −Φ= − 11 . 

Substituting these values in b̂  and â , one 
obtains the estimators 1µ̂  and 1σ̂ . 
 

b) Use ( ) ( )1
1 5.0

5.0
−

− −
−

= i
i

i
i R

r

r
R . In this case the 

new least squares based estimators are based on 

2µ̂  and 2σ̂ . 
 
Approximate Maximum Likelihood Estimators  
 Let ( ) ( ) ( ) 21 rTTT ≤≤≤ …  be a Type 2 

censored sample consisted of the smallest r  
ordered observations obtained from the 
lognormal population with probability 
distribution function given by (1), the remaining 
( )rn −  observations being censored at ( )rT . Let 

( ) riTY ii ,,1,ln …==  be the corresponding 

order statistics from the normal distribution. The 
likelihood function of ( )σµ,  is given by 
equation (2). The maximum likelihood 
estimators µ̂  and σ̂  of µ  and σ  are given as 
the solution to the following simultaneous 
system of nonlinear equations (Lawless, 1982); 
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(3) 
 
The likelihood equations corresponding to Type 
1 censoring are obtained by replacing 

( )rr ty ln=  by 00 ln ty = , the censoring time 

under Type 1 censoring. As stated in the 
introduction, the system of equations (3) does 
not admit a closed form solution and a numerical 
method is needed to find the solution (the MLE). 
In the following two subsections, some 
modifications of these likelihood equations will 
be presented to obtain a closed form solution. 
 
The Persson-Rootzen Approach  
 Consider the likelihood function (2) 
given by 
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Putting  
                                         

Lii yyx −=  

 
and  
 

σ
µθ −

= Ly
                                          

                                                                         (4) 
 
where 
  

( )

0ln ,   for type 1 censoring

,     for type 2 censoringL
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t
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where 0t  is the censoring time, write:  
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Persson and Rootzen (1977) suggested replacing 
the survival function ( )θQ  in (4) by its 

nonparameteric estimator 
n

rn −
 and therefore 

replacing θ  by ⎟
⎠

⎞
⎜
⎝

⎛ −= −

n

rn
Q 1*θ , the ( )thnr  

quantile of the standard normal distribution. 
Substituting these quantities in (4), one obtains a 
function of σ  alone which is maximized by  
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Substituting 3σ̂   in (4) yields 

 

3
*

3 ˆˆ σθµ −= Ly                                                                     

                                                                      (7) 
 
Approximate MLE Based on Taylor Series 
Expansion 
 Consider the likelihood equations given 
by (3)    
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Expanding the function 
( )
( )r

r

zQ

zφ
 in a Taylor 

series about the point ( )rr p1−Φ=ξ , where 

( ).1−Φ  is the inverse of the distribution function 
of the standard normal distribution and 
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r
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Substituting these quantities in the likelihood 
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Solving these equations yields the following: 
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( ) mrnC γ−−= , 
 

( ) ( )ByrnD r −−−= γ , 
 

( )∑
=

−−+=
r

i
ri mByrnyE

1

222 δ  

 and  
( )δrnrm −+= . 

                                                                       
Performance of the Estimators 
 A simulation study is conducted to 
investigate the performance of the estimators. 
The simulation indices are the sample 
size 150,100,80,60,50,40,30,20,15,10=n . The 
censoring proportion cp : 0.1, 0.3, 0.5, 

cpa −= 1 . For each combination of the 
simulation indices, 2,000 pairs of samples are 
generated and the maximum likelihood estimator 
( )σµ ˆ,ˆ  and the closed form estimators 

( ) 4,1,ˆ,ˆ …=iii σµ  are calculated. Their biases 

σµ ˆ,ˆ BB  and 4,,1,ˆ,ˆ …=iBB ii σµ  and their 

mean squared errors and the relative efficiencies 
( )
( )i

i MSE

MSE
ef

µ
µµ
ˆ

ˆ
ˆ =  and 

( )
( )i

i MSE

MSE
ef

σ
σσ
ˆ

ˆ
ˆ =  

4,1, …=i  are obtained. 
 

Results 
 

The results are given in Tables 1 – 4. The biases 
of the estimators are given in Tables   1 – 2 and 
the efficiencies of the estimators are given in 
tables 3 – 4. Inspection of the simulation 
numerical results lead to the following 
observations and conclusions. It appears that, 
under Type 1 censoring, 1µ̂  and 2µ̂  are 
positively biased when the censoring proportion 
is moderate to heavy. This is true for all sample 
sizes.  In all other cases, all estimators tend to be 
negatively biased, regardless of the sample size.  
It appears that 3µ̂ has the highest bias, and the 

least  bias  is achieved by 3µ̂  for light censoring  

  
 
  
 

and 2µ̂  and 5µ̂  for moderate to heavy 

censoring. 
 For estimators of the scale parameter σ  
under Type 1 censoring, it appears that σ̂  has 
the least bias followed by 3σ̂  and 4σ̂ . The 

performances of 3σ̂  and 4σ̂  in terms of bias is 

about similar. However, 1σ̂  tends to have the 
largest bias among the estimators considered. 
 The relative performance of estimators 
under Type 2 censoring is similar to that of Type 
1 censoring. In all cases, the bias decreases as 
the sample size increases. It is also smaller for 
lighter censoring. 
 Concerning the relative efficiencies of 
the estimators under Type 1 censoring, it 
appears that the following schemes hold, 

1234 ˆˆˆˆ µµµµ >>>  under heavy censoring 

regardless of the sample size and 

3214 ˆˆˆˆ µµµµ >>> for moderate to light 

censoring, where (>) means more efficient. It 
also appears that the relative efficiencies of 

21 ˆ,ˆ µµ and 3µ̂  do not depend on the sample 

size. However, the relative efficiency of 

4µ̂ increases as sample size increases. The 

relative efficiencies of 2µ̂  and 3µ̂ increase as 

the censoring proportion becomes smaller, while 
it decreases for 4µ̂ .  
 The results show that, under Type 1 
censoring 4µ̂  are more efficient than the MLE. 
With regard to scale estimators under Type 1 
censoring, it appears that 1234 ˆˆˆˆ σσσσ >>> , 

whereas before (>) indicated more efficient. It 
appears that the relative efficiencies of the scale 
estimators do not depend on n ; however, they 
depend on the censoring proportion. As the 
censoring proportion becomes smaller, the 
relative efficiencies of 21 ˆ,ˆ σσ  and 4σ̂  increases 

and it decreases for 3σ̂ . Surprisingly, in all 

cases considered, the approximate estimators 

4σ̂  are more efficient than the corresponding 
MLE. 
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Table 1. Bias of the Estimators Under Type 1 Censoring 
 

 n   a  1µ̂B  2µ̂B  3µ̂B  4µ̂B  µ̂B  
1σ̂B  2σ̂B  3σ̂B  4σ̂B  σ̂B  

10 0.5 0.106 0.039 -0.121 -0.114 -0.099 0.268 0.239 -0.194 -0.195 -0.188 

10 0.7 0.040 -0.033 -0.083 -0.055 -0.041 0.231 0.193 -0.141 -0.138 -0.125 

10 0.9 -0.000 -0.086 -0.103 -0.016 -0.015 0.191 0.131 -0.149 -0.108 -0.099 

15 0.5 0.088 0.043 -0.075 -0.066 -0.056 0.221 0.203 -0.118 -0.118 -0.112 

15 0.7 0.030 -0.019 -0.047 -0.032 -0.018 0.175 0.149 -0.085 -0.086 -0.073 

15 0.9 -0.007 -0.069 -0.103 -0.010 -0.014 0.153 0.107 -0.115 -0.062 -0.057 

20 0.5 0.079 0.047 -0.062 -0.059 -0.051 0.184 0.171 -0.094 -0.096 -0.091 

20 0.7 0.027 -0.008 -0.041 -0.028 -0.021 0.139 0.122 -0.074 -0.074 -0.066 

20 0.9 0.005 -0.038 -0.050 -0.009 -0.001 0.126 0.096 -0.069 -0.055 -0.041 

30 0.5 0.078 0.057 -0.036 -0.033 -0.026 0.147 0.139 -0.063 -0.064 -0.061 

30 0.7 0.025 0.001 -0.024 -0.018 -0.010 0.108 0.096 -0.046 -0.049 -0.041 

30 0.9 0.007 -0.021 -0.031 -0.007 0.003 0.098 0.079 -0.041 -0.035 -0.021 

40 0.5 0.051 0.036 -0.039 -0.033 -0.033 0.117 0.111 -0.050 -0.050 -0.049 

40 0.7 0.013 -0.004 -0.026 -0.019 -0.016 0.089 0.081 -0.033 -0.033 -0.029 

40 0.9 -0.000 -0.022 -0.030 -0.008 -0.003 0.071 0.057 -0.038 -0.030 -0.022 

50 0.5 0.050 0.038 -0.030 -0.025 -0.024 0.102 0.097 -0.041 -0.041 -0.040 

50 0.7 0.015 0.001 -0.020 -0.013 -0.010 0.079 0.072 -0.025 -0.025 -0.022 

50 0.9 0.002 -0.014 -0.022 -0.006 0.000 0.066 0.054 -0.026 -0.021 -0.012 

60 0.5 0.051 0.041 -0.022 -0.019 -0.016 0.103 0.099 -0.024 -0.024 -0.022 

60 0.7 0.013 0.002 -0.014 -0.011 -0.007 0.065 0.060 -0.023 -0.024 -0.020 

60 0.9 0.001 -0.012 -0.019 -0.005 -0.001 0.053 0.044 -0.025 -0.020 -0.014 

80 0.5 0.035 0.027 -0.019 -0.016 -0.016 0.076 0.074 -0.020 -0.020 -0.019 

80 0.7 0.014 0.006 -0.008 -0.005 -0.003 0.050 0.047 -0.019 -0.020 -0.017 

80 0.9 -0.002 -0.012 -0.016 -0.004 -0.003 0.036 0.029 -0.022 -0.019 -0.015 

100 0.5 0.034 0.028 -0.014 -0.012 -0.011 0.069 0.067 -0.014 -0.015 -0.014 

100 0.7 0.009 0.003 -0.010 -0.007 -0.005 0.048 0.045 -0.011 -0.011 -0.009 

100 0.9 -0.001 -0.010 -0.014 -0.006 -0.002 0.036 0.030 -0.013 -0.012 -0.007 

150 0.5 0.026 0.022 -0.008 -0.007 -0.006 0.048 0.046 -0.011 -0.012 -0.011 

150 0.7 0.005 0.001 -0.009 -0.005 -0.005 0.035 0.033 -0.008 -0.007 -0.006 

150 0.9 -0.001 -0.006 -0.008 -0.004 -0.001 0.025 0.022 -0.008 -0.008 -0.004 
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Table 2. Bias of the Estimators Under Type 2 Censoring 
 

 n   a  1µ̂B  2µ̂B  3µ̂B  4µ̂B  µ̂B  
1σ̂B  2σ̂B  3σ̂B  4σ̂B  σ̂B  

10 0.5 0.117 0.049 -0.114 -0.092 -0.091 0.285 0.256 -0.185 -0.178 -0.178 

10 0.7 0.050 -0.023 -0.064 -0.028 -0.027 0.221 0.184 -0.141 -0.128 -0.127 

10 0.9 -0.000 -0.086 -0.108 -0.016 -0.015 0.201 0.140 -0.145 -0.094 -0.093 

15 0.5 0.100 0.057 -0.109 -0.093 -0.092 0.231 0.214 -0.143 -0.138 -0.138 

15 0.7 0.059 0.011 -0.040 -0.014 -0.014 0.193 0.170 -0.089 -0.081 -0.080 

15 0.9 0.007 -0.048 -0.064 -0.009 -0.009 0.160 0.124 -0.087 -0.059 -0.059 

20 0.5 0.088 0.056 -0.060 -0.048 -0.047 0.192 0.180 -0.092 -0.089 -0.089 

20 0.7 0.034 -0.001 -0.032 -0.013 -0.013 0.140 0.122 -0.072 -0.065 -0.065 

20 0.9 0.007 -0.036 -0.048 0.000 0.001 0.123 0.094 -0.071 -0.043 -0.043 

30 0.5 0.078 0.057 -0.039 -0.029 -0.029 0.149 0.141 -0.065 -0.062 -0.062 

30 0.7 0.027 0.003 -0.025 -0.010 -0.010 0.115 0.104 -0.043 -0.037 -0.037 

30 0.9 0.002 -0.026 -0.034 -0.001 -0.001 0.084 0.065 -0.052 -0.033 -0.033 

40 0.5 0.063 0.047 -0.034 -0.026 -0.026 0.123 0.117 -0.049 -0.047 -0.047 

40 0.7 0.022 0.005 -0.018 -0.007 -0.007 0.089 0.081 -0.035 -0.030 -0.030 

40 0.9 0.004 -0.017 -0.025 0.001 0.001 0.069 0.055 -0.039 -0.024 -0.024 

50 0.5 0.047 0.035 -0.035 -0.028 -0.028 0.101 0.097 -0.043 -0.042 -0.041 

50 0.7 0.020 0.007 -0.013 -0.004 -0.004 0.076 0.069 -0.027 -0.024 -0.024 

50 0.9 -0.000 -0.017 -0.024 -0.002 -0.002 0.061 0.050 -0.029 -0.016 -0.016 

60 0.5 0.041 0.031 -0.027 -0.023 -0.023 0.090 0.086 -0.033 -0.032 -0.032 

60 0.7 0.019 0.007 -0.014 -0.004 -0.004 0.067 0.061 -0.025 -0.022 -0.022 

60 0.9 -0.001 -0.015 -0.020 -0.003 -0.003 0.053 0.043 -0.023 -0.013 -0.013 

80 0.5 0.040 0.033 -0.014 -0.011 -0.011 0.076 0.073 -0.022 -0.021 -0.021 

80 0.7 0.011 0.002 -0.012 -0.006 -0.006 0.054 0.050 -0.016 -0.014 -0.014 

80 0.9 0.001 -0.009 -0.015 -0.001 -0.001 0.039 0.032 -0.022 -0.013 -0.013 

100 0.5 0.034 0.028 -0.012 -0.009 -0.009 0.060 0.058 -0.022 -0.021 -0.021 

100 0.7 0.016 0.009 -0.005 0.000 0.000 0.048 0.045 -0.012 -0.010 -0.010 

100 0.9 0.002 -0.005 -0.009 0.001 0.001 0.035 0.030 -0.014 -0.008 -0.008 

150 0.5 0.028 0.024 -0.007 -0.005 -0.005 0.050 0.049 -0.010 -0.009 -0.009 

150 0.7 0.010 0.005 -0.004 -0.001 -0.001 0.031 0.029 -0.010 -0.009 -0.009 

150 0.9 0.001 -0.004 -0.006 0.001 0.001 0.026 0.022 -0.008 -0.004 -0.004 
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Table 3. Efficiencies of the Estimators Under Type 1 Censoring 
 

 n   a   1µ̂ef   2µ̂ef   3µ̂ef   4µ̂ef   1σ̂ef   2σ̂ef   3σ̂ef   4σ̂ef  

10 0.5 0.741 0.835 0.977 1.718 0.388 0.419 0.994 1.054 

10 0.7 0.917 0.957 0.932 2.095 0.421 0.477 0.975 1.143 

10 0.9 1.000 0.937 0.822 1.563 0.472 0.600 0.863 1.200 

15 0.5 0.745 0.811 0.981 2.109 0.399 0.425 0.991 1.097 

15 0.7 0.930 0.952 0.927 2.208 0.459 0.510 0.964 1.180 

15 0.9 0.999 0.935 0.755 1.438 0.495 0.623 0.792 1.278 

20 0.5 0.732 0.787 0.966 2.320 0.446 0.467 0.989 1.098 

20 0.7 0.891 0.915 0.936 2.373 0.496 0.537 0.959 1.179 

20 0.9 0.997 0.971 0.810 1.485 0.535 0.626 0.856 1.293 

30 0.5 0.674 0.714 0.989 2.521 0.439 0.454 1.000 1.100 

30 0.7 0.878 0.902 0.939 2.520 0.534 0.565 0.971 1.243 

30 0.9 0.983 0.973 0.832 1.438 0.551 0.625 0.855 1.335 

40 0.5 0.736 0.767 0.966 2.727 0.489 0.503 0.993 1.126 

40 0.7 0.897 0.910 0.925 2.753 0.548 0.575 0.968 1.291 

40 0.9 0.989 0.973 0.814 1.494 0.635 0.701 0.837 1.377 

50 0.5 0.725 0.752 0.973 2.847 0.512 0.524 0.994 1.132 

50 0.7 0.890 0.905 0.930 2.827 0.571 0.594 0.972 1.291 

50 0.9 0.986 0.978 0.813 1.505 0.613 0.670 0.852 1.358 

60 0.5 0.707 0.734 0.970 3.018 0.490 0.501 0.992 1.145 

60 0.7 0.884 0.898 0.935 2.867 0.601 0.624 0.963 1.306 

60 0.9 0.991 0.982 0.804 1.528 0.663 0.715 0.859 1.354 

80 0.5 0.712 0.730 0.977 3.119 0.518 0.528 0.993 1.145 

80 0.7 0.910 0.924 0.911 3.171 0.625 0.643 0.969 1.277 

80 0.9 0.991 0.980 0.801 1.571 0.754 0.798 0.836 1.447 

100 0.5 0.702 0.718 0.975 3.224 0.532 0.541 0.993 1.145 

100 0.7 0.901 0.911 0.919 3.152 0.616 0.632 0.975 1.307 

100 0.9 0.988 0.978 0.801 1.482 0.725 0.764 0.821 1.437 

150 0.5 0.719 0.733 0.972 3.309 0.588 0.595 0.998 1.158 

150 0.7 0.913 0.918 0.923 3.307 0.677 0.691 0.956 1.351 

150 0.9 0.988 0.983 0.806 1.528 0.758 0.789 0.833 1.436 
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Table 4. Efficiencies of the Estimators Under Type 2 Censoring 
 

 n   a   1µ̂ef   2µ̂ef   3µ̂ef   4µ̂ef   1σ̂ef   2σ̂ef   3σ̂ef   4σ̂ef  

10 0.5 0.723 0.821 0.978 0.999 0.370 0.400 0.992 0.999 

10 0.7 0.921 0.972 0.929 1.000 0.445 0.505 0.961 0.999 

10 0.9 0.999 0.934 0.807 0.999 0.452 0.577 0.869 0.999 

15 0.5 0.688 0.753 0.980 0.999 0.395 0.416 0.996 0.999 

15 0.7 0.853 0.910 0.954 0.999 0.425 0.463 0.980 0.999 

15 0.9 0.978 0.950 0.866 0.999 0.487 0.575 0.900 0.999 

20 0.5 0.709 0.764 0.975 0.999 0.429 0.449 0.992 0.999 

20 0.7 0.908 0.939 0.917 1.000 0.507 0.547 0.963 0.999 

20 0.9 0.982 0.961 0.856 1.000 0.531 0.622 0.842 1.000 

30 0.5 0.693 0.733 0.974 0.999 0.439 0.454 0.996 0.999 

30 0.7 0.880 0.907 0.919 1.000 0.499 0.529 0.975 0.999 

30 0.9 0.990 0.970 0.814 1.000 0.621 0.698 0.851 0.999 

40 0.5 0.687 0.720 0.982 0.999 0.455 0.468 1.001 0.999 

40 0.7 0.896 0.919 0.919 1.000 0.549 0.576 0.971 0.999 

40 0.9 0.986 0.976 0.825 1.000 0.639 0.703 0.864 0.999 

50 0.5 0.700 0.725 0.978 0.999 0.503 0.515 0.991 1.000 

50 0.7 0.890 0.909 0.936 1.000 0.572 0.595 0.974 1.000 

50 0.9 0.992 0.977 0.796 1.000 0.652 0.710 0.846 0.999 

60 0.5 0.716 0.738 0.977 0.999 0.492 0.502 1.001 0.999 

60 0.7 0.882 0.900 0.926 0.999 0.590 0.611 0.972 0.999 

60 0.9 0.994 0.981 0.795 1.000 0.670 0.722 0.847 1.000 

80 0.5 0.709 0.729 0.970 1.000 0.525 0.534 0.995 1.000 

80 0.7 0.903 0.915 0.912 1.000 0.610 0.629 0.968 1.000 

80 0.9 0.986 0.981 0.833 1.000 0.722 0.765 0.844 0.999 

100 0.5 0.728 0.745 0.974 1.000 0.572 0.581 0.994 1.000 

100 0.7 0.902 0.917 0.917 1.000 0.616 0.633 0.973 1.000 

100 0.9 0.987 0.985 0.815 1.000 0.725 0.765 0.830 1.000 

150 0.5 0.713 0.726 0.981 1.000 0.573 0.580 0.998 1.000 

150 0.7 0.912 0.921 0.918 1.000 0.689 0.701 0.967 1.000 

150 0.9 0.988 0.986 0.823 1.000 0.751 0.780 0.865 1.000 
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The performance of the estimators under Type 2 
censoring is similar to their performance under 
Type 1 censoring. However it appears that 3σ̂  

and 4σ̂  are about as efficient as the MLE for all 
sample sizes and censoring proportions, except 
for 3σ̂  when the censoring proportion is small, 

in which case 3σ̂  is less efficient. 

 
Conclusion 

 
It appears that good substitutes to the MLE in 
closed form do exist. The performance of some 
of them is highly competent with that of the 
MLE and sometimes they are better, as is the 
case with the approximation based on the Taylor 
series expansion  4µ̂  and 4σ̂ . 
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Variability in individual causal effects, treatment effect heterogeneity (TEH), is important to the 
interpretation of clinical trial results, regardless of the marginal treatment effect. Unfortunately, it is 
usually ignored. In the setting of two-arm randomized studies with binary outcomes, there are estimators 
for bounds on the probability of control success and treatment failure for an individual, or the treatment 
risk. Here, those bounds were refined and the sampling properties were assessed using simulations of 
correlated multinomial data via the Dirichlet multinomial. Results indicated low bias and mean squared 
error. Moderate to high intraclass correlation (ICC) and large numbers of clusters allow narrower 
confidence interval widths for the treatment risk. 
  
Key words: Blocked or clustered data, bounds, causal effects, Dirichlet multinomial, intraclass 
correlation, marginal treatment effect, randomized trial, potential outcomes, treatment effect 
heterogeneity, unit-treatment interaction. 
 
 

Introduction 
 
In randomized clinical trials comparing an 
experimental treatment (T) to a control (C), the 
focus is usually on the marginal treatment effect, 
(i.e., mean causal effect) estimated by the 
difference in means or the difference in the 
proportion having a successful outcome. 
Unfortunately, the amount of variability of the 
individual causal effects is usually ignored. 
Recent work has seen the development of 
bounds on a treatment effect heterogeneity 
parameter for binary outcomes (Gadbury, Iyer, 
& Albert, 2004; Albert, Gadbury, & Mascha, 
2005). The latter provided bound estimates and 
confidence intervals in the case of blocked 
binary outcomes. However, no study has been 
yet conducted to evaluate the properties and 
practicality of these methods. 
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Treatment effect heterogeneity (TEH), 
also called unit-treatment interaction (Gadbury 
& Iyer, 2000) or subject-treatment interaction 
(Gadbury, Iyer, & Allison, 2001), is the amount 
of variability in the causal effect of T versus C 
on some outcome Y. The causal effect for an 
individual is defined as the difference in the 
individual’s potential outcomes (Neyman, 1923; 
Rubin, 1974; 2000) on T and C, respectively. 
This is an unobservable latent variable since 
only one of the two potential outcomes may be 
observed for an individual. For example, 
consider a binary outcome scenario with success 
proportions of 0.50 and 0.30 for treatments T 
and C, respectively, giving a marginal treatment 
effect of 0.20. With these marginals, the 
minimum possible TEH would be that no 
patients who succeed on C would fail on T, 
implying that 0.20 of the patients would fail on 
C and succeed on T. With the same marginals, 
the maximum possible TEH would be that 0.30 
of patients would succeed on C but fail on T, 
and that 0.50 would fail on C but succeed on T.   

Thus, in the case of a binary outcome 
for two treatments, individuals fall into a 
category based on their potential outcomes: (1) 
failure on both T and C, (2) success on T and C, 
or (3) success on one but not the other. The 
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probabilities of membership into each of these 
categories are denoted as π00 , π01, π10 , π11, 
where indices indicate response (1=success, 
0=failure) to T and C, respectively. The 
probability of doing worse on a new treatment 
(T) than on standard treatment (C ), π01, may be 
understood as the treatment risk because patients 
would not expect to do worse on the new 
treatment. Although this quantity is typically 
overlooked in analyses of clinical trials, it would 
be of potential interest for both individual 
treatment decisions and the understanding of the 
population impact of treatment. 

Albert, Gadbury and Mascha (2005, 
AGM) provided bounds and bound estimators 
for the treatment risk π01  (referred to by AGM 
as π2). However, the AGM bounds cannot be 
reliably used in practice until their sampling 
properties have been assessed. Such is the 
purpose of this article. 
 
Background  

Gadbury and Iyer (2000) derived bounds 
for the probability of an unfavorable individual 
treatment effect where the outcome is 
continuous; for example, an individual doing 
better (higher value) on control than on 
treatment. They assumed a trivariate normal 
distribution between the potential outcomes on 
treatment X and control Y, and a covariate Z 
which is measured on all patients. Such methods 
are not easily applicable to binary outcomes 
because of the difficulty in specifying a 
meaningful multivariate distribution for the 
binary setting. 

New methods are available, however, to 
estimate bounds on treatment effect 
heterogeneity for binary outcomes. These 
include simple bounds and bounds which make 
use of clustering. Based on the fact that 
π11, π00,  π10,  π01 sum to 1.0 and that 
π10 − π01 =πΤ − πC; Gadbury, Iyer, and Albert 
(2004), which is referred to as GIA, derived 
simple bounds for π01 such that 

 

01C CT T
s smax  min π(0,π - π ) L U (1-π ,π )≡ ≤ ≤ ≡  

(1) 
 

For example, with true marginal successes πT  = 
.80 and πC =.70, simple bounds for π01 are (0, 
.20), and by substituting πT for πC and visa 
versa, the simple bounds for π10 are (.10, .30). 
The marginal proportions πΤ  and πC have a large 
effect on the possible range of unit-treatment 
interaction in the binary outcome case. A 
proportion close to 0 or 1 greatly limits the range 
of TEH, and so allows tighter bounds on the 
parameters of interest. When neither of the 
marginals is close to 0 or 1, there is a wider 
range of possible heterogeneity, and therefore 
greater opportunity for narrowing through more 
refined methods.  

GIA also give more refined bounds on 
π01, first using a matched-pairs design in which 
one member of a pair is randomly assigned to 
receive treatment and the other member receives 
control. They construct bounds which narrow as 
the quality of the matching improves. Further, 
they consider an extended matched-pairs design, 
in which some pairs are randomized to either 
both treatment or both control, which allows the 
refined bounds to be estimated. 

Gadbury, Iyer, and Albert (2004) 
defined the probability that a treatment unit fails 
(YT(u1)=0) and the matched control unit has 
success (YC(u2)=1), i.e., control beats treatment, 
or, 

2
g

1 2( ( ) 0, ( ) 1)T CP Y u Y u= = =  

 
where u1 and u2 are two members of a matched 

pair. GIA also define  Th and Ch as 

probabilities of success for both members of a 
pair of randomly chosen matched treated or 
control units, respectively, such that 
 

1 2( ( ) 1, ( ) 1)T T Th P Y u Y u= = =  

 
and 

 

1 2( ( ) 1, ( ) 1)C C Ch P Y u Y u= = =  

 
Higher hT and hC indicate better matching and 
will lead to tighter bounds. Lower and upper 
bounds for π01, with the “B” subscript referring 
to the blocked (in the present case, the extended 
matched pairs) design, are as follows: 
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2 T T C C

2 T T C C

 C

C

Max (0, min(π ,π ))

Min (1, min(π ,π ))

L g h h

U g h h

≡ − − −
≡ + − −

 

(2) 
 

The bounds for π01 (equation 2) were derived by 
first expressing g2 , hT and hC as functions of the 
underlying parameters of interest, and then 
adding terms to the expression for g2 so that the 
resulting form consisted of quantities for which 
one has estimators. 

In the latest development, Albert, 
Gadbury, and Mascha (2005, AGM) used 
bounds with the same form as (2) for π01, but 
extend definitions to the more general blocked 
or clustered design. That is, the pair of 
individuals u1 and u2 in the definitions of 2g , 

 Th and Ch , is now considered as belonging to 

the same cluster. In many cases this is more 
realistic than the matched or extended pairs 
design. Blocks can be created post-hoc. Good 
blocking or matching gives narrower bounds.  

AGM provide non-parametric estimators 
of the bounds in (2). Each represents a 
proportion with the given outcome combination, 
and is estimated as the ratio of the sum across 
clusters of the number of pairs observed with the 
given outcome combination to the number of 
pairs with the given treatment assignments. For 
example, 
 

C1j T0j
j

Cjj Tj
2

n n

ĝ = ,
n n

∑

∑
 

 
is the estimator for g2, and is the proportion of 
observed pairs with treatment failure and control 
success out of the total number of possible 
treatment-control pairs. Substitution into (2) 

yields estimated cluster bounds BL̂  and ˆ
BU . 

AGM (equations 6 through 11) give variances 
and covariances for estimators of the lower and 
upper bounds on π01 and for their components. 
Refer to their article for details on the formulae, 
which are quite extensive. 

In this study, the AGM estimators for 
bounds on π01 are first refined. Then, through 

simulations their statistical properties, including 
bias, variance, MSE, and coverage are 
evaluated. Because the AGM bound estimators 
depend on clustering in the data, a simulation 
method that allows specification of the intraclass 
correlation (ICC) as well as the underlying 
probabilities has been devised. Simultaneous 
confidence intervals for the lower and upper 
bounds are shown to provide at least 1-α 
coverage of π01, the real parameter of interest. 
Properties are shown to depend on degree of 
ICC, TEH, marginal success, number of clusters, 
and sample size. 

 
Methodology 

 
First, a refinement to the AGM bounds is 
proposed, and then the Dirichlet-multinomial 
(DMN) is introduced as the model for the 
potential outcomes. Finally, the treatment effect 
heterogeneity scenarios and simulation methods 
used to assess statistical properties of the 
estimators for bounds on π01 and their 
components are outlined.  

 
Refinement to AGM Bounds 

With good blocking, the AGM cluster 
bounds in (2) are narrower than the simple 
bounds (1) on π01. However, it can be shown 
that the cluster bounds are the same or wider 
than the simple bounds when subjects are 
independent from each other (and thus, hT = πT

2 
and g2 = (1-πT) πC), which would occur if the 
matching or clustering were at random or non-
existent. Therefore, a modification of the AGM 
cluster bounds to be the narrower of the simple 
and AGM cluster bounds is proposed, such that: 

 

S T T C

S T T

MC

MC

2 C

2 C C

( ,g min(π -h ,π -h ))

( ,g min(π -h ,π -h ))

L Max L

U Min U

≡ −
≡ +

 

(3) 
 

With random matching, the modified AGM 
cluster bounds (MAGM) and simple bounds are 
identical, and the cluster bound width will 
always be at least as narrow as the simple bound 
width, sometimes significantly narrower, 
depending on the TEH scenario, the marginals, 
and the amount of clustering.  
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Property assessment 
In order to assess the statistical 

properties of the bound estimators for π01, a 
model of the underlying (i.e., latent) correlated 
multinomial data was needed, where each unit or 
subject belongs to one of the four potential 
outcome categories (C00, C01, C10, C11), indexed 
by the latent response to treatment and control, 
respectively, with probabilities π00,  π01,  π10,  π11, 
and where units are correlated within clusters. 
Various approaches to modeling correlated 
multinomial data have been used (Gange, 1995, 
Morel & Nagaraj, 1993, Banergee & Paul, 
1999). Mosimann (1962) and Brier (1980) extol 
the Dirichlet multinomial (DMN) distribution, 
also called the multivariate beta-binomial 
distribution, as a natural way to model over-
dispersed multinomial data. The DMN is used 
because it also allows direct specification of the 
intra-class correlation and there is no need to 
assume an underlying continuous distribution of 
the data. It is less computationally intensive than 
some of the other methods and can therefore be 
used with large numbers of clusters and units per 
cluster, r, where the method of Gange (1995), 
for example, cannot. 

It is assumed that each unit latently falls 
into one of the four population categories with 
the corresponding probabilities 
π00,   π01,  π10,  π11, denoted as the vector π. Each 
cluster’s set of probabilities deviates randomly 
from the underlying vector according to the 
Dirichlet distribution and the counts within each 
cluster are independent multinomial data 
conditional on the realized cluster probabilities. 
The unconditional counts in the 4 categories are 
distributed as DMN, or DMN4(n,π,k), where k is 
a structural parameter related to the ICC, the 
correlation among units within the same cluster 
and category, such that k= (1-ICC)/ICC, and so 
ICC=1/ (1+k). This relationship between k and 
the ICC is used to induce varying levels of 
correlation among subjects within clusters in the 
simulations. 

The statistical properties of the MAGM 
and AGM estimators for bounds on π01 and 
estimators for their components (g2, HT,HC, πT 

and πC ) were evaluated under five treatment 
effect heterogeneity (TEH) scenarios (Table 1). 
Scenarios are distinguished by the level of TEH 

(low, medium or high value of π01 for the given 
marginals) and the marginal success proportions 
πT and πC: one marginal close to zero (πT =.20, 
πC =.10) or both close to .50 (πT =.45, πC =.55). 
Each scenario is also described by the amount of 
correlation among the potential outcomes on T 
and C, or ρ PO. This correlation is a function of 
π01 and the marginal success proportions, so that 
zero ρ PO indicates independence of the potential 
outcomes, in which case π01 and π10 are the 
product of the corresponding marginals, and 
which may be the most natural case. Negative 
ρ PO indicates high TEH (π01 and π10 are higher 
than under independence) and positive ρ PO 
indicates low TEH (π01 and π10 are lower than 
expected under independence). Within each 
scenario, the ICC (.15, .50, and .85), the total 
sample size N (600, 3000), and the number of 
clusters C (20, 40, and 100) are varied to assess 
the effect of each factor on the estimator 
properties. 

A set of simulations was conducted for 
each TEH scenario from Table 1, for each 
variation of ICC, total sample size, and number 
of clusters. For each cluster i , Dirichlet random 

deviates 
(i) (i)

1 4
p ,...,p  were formed of success 

probabilities from the underlying vector π as the 
ratio of random gamma deviates over the sum of 
the associated four gamma deviates (Jensen, 
1998), where subscripts 1, …, 4 indicate the four 
population categories C00, C01, C10, C11, 
respectively. The parameter for each of the four 
gamma deviates is the clustering parameter k 
times the probability of the associated 
underlying population category. Next, n units 
(where n=N /C) were randomly sampled from 
the four population categories according to a 
multinomial distribution with probabilities 

(i) ( i)
p ,.. ., p1 4 for the ith cluster. Each unit 

within each cluster was randomly assigned to 
have either the response to YT or YC observed. 
Finally, the estimated bounds (and estimated 
bound components) for π01, plus individual and 
simultaneous (lower, upper bound) confidence 
intervals for the bounds were calculated. This 
was repeated 1,000 times for each scenario 
combination (each particular scenario, sample 
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size, ICC and number of clusters combination) 
and summarized across simulations.     

For the AGM and MAGM bound 
estimators and their components within each 
scenario, the expected value (mean over 1,000 
simulations), bias, true variance (variance of the 
estimated values over the simulations), mean 
estimated variance and mean squared error 
(MSE) were assessed. Formula-based 95% 
confidence intervals (CI) and their widths for 
lower and upper bounds were then obtained. 
Approximate confidence intervals were 
calculated using a normal approximation for the 
distribution of the bound estimators. For 
example, a 100(1-α) % confidence interval (CI) 
for the AGM upper bound, BU , is 

2/1
2/1 ))ˆ(ˆ(ˆ

BB UVzU α−±  , where z1-α/2 is the (1-

α/2) percentile of the standard normal 
distribution. A CI for the lower bound, BL , was 
obtained similarly. Finally, coverage of the true 
bounds for both the lower and upper bound 
estimators was obtained. 

Simultaneous (i.e., joint) asymptotic (1- 
α)% confidence intervals intended to have at 
least a 1- α probability of containing the true 
population values of both the lower and upper 
bounds were also obtained. These were formed 
by the estimated lower 95% CL of the lower 
bound and the estimated upper 95% CL of the 
upper bound from the AGM formulae. Because 
the formed intervals are designed to have the 
given nominal probability of containing the true 
bounds on π01, by definition they should have at 
least as great a probability of containing the true 
π01, the parameter of interest. Using these 
intervals, the mean estimated width, the 
simultaneous estimated coverage of the true 
bounds, and the estimated coverage of the true 
parameter π01 are reported. 

For comparison purposes, and because 
the joint distribution of the lower and upper 
bounds is not readily available (assumed to be 
independent in forming the confidence intervals 
above), joint confidence intervals were also 
estimated using a bootstrap method which 
naturally accounts for dependency between the 
bounds and also allows non-symmetric intervals 
around the estimators. Bickel and Friedman 
(1981) proved that the bootstrap can be used to 
construct confidence intervals for two unknown 

parameters simultaneously. Horowitz and 
Manski (2000) use the bootstrap to put bounds 
on the treatment effect for missing-value data, 
where either baseline covariates and/or 
outcomes are missing for some subjects. The 
same method was used to provide a joint 
confidence interval for a pair of lower and upper 
cluster bounds on the parameter π01. The goal 

was to create an interval of the form [ L̂  – dα , 

Û  + dα ], where L̂  and Û . An appropriate 
value of a constant dα was chosen such that the 
interval contains the true parameters L and U 
with probability 1- α asymptotically. The delta 
was applied non-symmetrically in hopes of 
achieving even better coverage with equivalent 
or smaller confidence interval widths as with the 
formula method. 

 
Results 

 
Tables 2 and 3 report bias, variance and MSE of 
the MAGM lower and upper bound estimators 
for two representative scenarios: scenario 1, the 
combination of low treatment heterogeneity 
(π01= .01 ) and marginals close to zero and 
scenario 5, the combination of high treatment 
heterogeneity (π01= .40) and marginals close to 
.50. Bias of the lower and upper bound 
estimators and their components is consistently 
low, typically much less than 5% of the expected 
value of the estimator  for low, medium, or high 
ICC for each scenario assessed. Bias decreases 
with increasing ICC. Higher ICC increases the 
mean estimated variance of the lower and upper 
bound estimators and components and therefore 
the MSE, given the consistently low bias. As 
expected, the mean estimated variances and 
covariances of the bound estimators across 
simulations using the AGM formulas are also 
very close to the true variances and covariances 
for each estimator. Having a larger number of 
clusters for a fixed ICC and sample size steadily 
decreases the variance of all estimators and their 
associated MSEs. Similar properties and 
relationships were observed for scenarios 2, 3, 
and 4 (results not shown).  

Confidence interval width and coverage 
results of both the individual and the 
simultaneous lower and upper bound estimators 
on π01 are given in Tables 4 and 5 for scenarios 



PROPERTIES OF BOUND ESTIMATORS 186 

1 and 5, respectively, and in Figures 1 (all 
scenarios, 20 clusters) and 2 (scenarios 1, 3 and 
5 for 20, 40 and 100 clusters). As expected from 
results on the variance of the bound estimators, 
CI widths for the individual lower and upper 
bounds were in general much narrower for 
scenario 1 (Table 4) and scenario 2 (data not 
shown), where at least one of the marginal 
success proportions is close to 0 or 1. Mean CI 
widths for the lower and upper bounds increase 
substantially as the ICC increases from 0.15 to 
0.85, and this is a function of the variance 
increasing with ICC. Widths decrease 
substantially with increasing number of clusters 
(but C=100 also has a larger total N). The 
MAGM and AGM methods produce very 
similar or identical simultaneous (lower, upper) 
bound widths in cases where the ICC is at least 
0.50 (Tables 4, 5) or where neither marginal is 
close to 0 or 1 (Table 5). The MAGM method 
has widths that are a 0-20% narrower than the 
AGM for low ICC and marginals close to 0 or 1 
(Table 4, ICC=.15).   

Joint CI width of the lower and upper 
bounds is much narrower when either marginal 
is close to zero, especially with low to moderate 
ICC (Figures 1 and 2). The average width of the 
simultaneous intervals narrows by as much as 
50% as the ICC increases from 0.15 to 0.85, and 
this is more pronounced with larger total sample 
size. The average joint CI width also decreases 
substantially as the number of clusters is 
increased within a fixed sample size, particularly 
when the ICC is 0.50 or 0.85 (Figure 2). Across 
all of the scenarios assessed, the average width 
of the joint intervals is only 3-15 percentage 
points wider than the width of the true bounds. 
Higher values of π01 (and thus higher TEH) for 
fixed marginals increase the joint CI width 
(Figure 1). 

Coverage of the individual true bounds 
was between 90% and 100% for both the AGM 
and MAGM methods in most situations (Tables 
4 and 5, columns H and M). Coverage was 
above 90% under all scenarios when the ICC 
was 0.15 or when it was 0.50 and with 30 or 
more clusters (data shown for 40 and 100 
clusters). However, it dropped below 90% with 
the combined scenario of smaller number of 
clusters (20), marginals closer to zero, and 
moderate to high ICC. In a few situations with 

only 10 clusters (not shown), the coverage was 
as low as 65-70%. With the unlikely ICC of 0.85 
and marginals close to zero or one, forty or more 
clusters were sometimes needed to obtain 
coverage of at least 90%.  

Simultaneous coverage of the true 
bounds (column O in Tables 4 and 5) is at least 
90% in most cases, and often above 95%. It 
follows a pattern similar to coverage of the 
individual bounds, being best when the ICC is 
moderate or low and with a non-trivial number 
of clusters (20 or more). In most situations, the 
coverage was close to or slightly better than the 
worst of the individual lower and upper bound 
coverages for that scenario. The width of the 
simultaneous interval was sometimes narrower 
for the bootstrap method, but the slightly 
narrower width was usually accompanied by 
lower coverage of the true bounds. In general, 
coverage of the true MAGM bounds was better 
with the variance formula method than for the 
bootstrap method (as much as 0.15 better) for 
similar CI width.  

Finally, coverage of the unobservable 
quantity π01 using the simultaneous confidence 
intervals (column P in Tables 4 and 5) is often 
100% and nearly always above 95%. It is 
affected by the ICC, number of clusters, TEH 
scenario and total sample size with the same 
pattern as for the simultaneous bounds coverage. 

 
Conclusion 

 
AGM and refined AGM estimators have good 
statistical properties (low bias, MSE) and can 
thus be used in practice to estimate bounds for 
treatment effect heterogeneity with a binary 
outcome. Moderately or highly clustered data 
result in narrower confidence intervals for the 
measure of treatment heterogeneity π01, the 
probability of treatment failure and control 
success, which is termed the treatment risk. 
Higher ICC is preferable because the bounds 
themselves move considerably closer to the 
parameter they are bounding, π01, for larger ICC, 
and this phenomenon leads to narrower 
confidence interval widths for the simultaneous 
bounds as well as for π01.. A moderate or large 
number of clusters (at least 20) and larger 
sample    size  allow     more  narrow  confidence  
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Table 1. Simulation scenarios used to assess π01 bound estimators and components. 

 
 

Marginal Success 
Heterogeneity  
Descriptions 

 

 
Prob (YT=i, YC=j) 

 
Scenario 

πT πC TEH ρ PO
1 π00 π01 π10 π11 

         
1 0.20 0.10 Low .58 .79 .01 .11 .09 
2 “ “ Med .00 .72 .08 .18 .02 
3 0.55 0.45 Low .78 .44 .01 .11 .44 
4 “ “ Med .00 .25 .20 .30 .25 
5 “ “ High -.80 .05 .40 .50 .05 

 

Note: 1 = correlation among potential outcomes on T, C 
  

 
Table 2.  Bias, variance and MSE for Scenario #1 (low TEH + marginals near 0). 

 
 

PROPERTY                       

    θ        ICC    # Clusters    ( )θΕ   ˆ( )θΕ       ˆ( )θ θΕ −  ˆˆ( ( ))V θΕ  ( )ˆV θ   MSE 

    _______________________________________________________________ 
      
    LB       0.15     20         0.0000 0.0012 0.0012 0.0001 0.0000 0.0000 
                      40              . 0.0009 0.0009 0.0001 0.0000 0.0000 
                      100             . 0.0001 0.0001 0.0000 0.0000 0.0000 
             0.5      20         0.0000 0.0063 0.0063 0.0003 0.0001 0.0002 
                      40              . 0.0061 0.0061 0.0002 0.0001 0.0001 
                      100             . 0.0030 0.0030 0.0001 0.0000 0.0000 
             0.85     20         0.0070 0.0149 0.0079 0.0006 0.0005 0.0005 
                      40              . 0.0162 0.0092 0.0005 0.0003 0.0004 
                      100             . 0.0107 0.0037 0.0001 0.0001 0.0001 
 
    UB       0.15     20         0.1000 0.0998 -.0002 0.0014 0.0010 0.0010 
                      40              . 0.1008 0.0008 0.0010 0.0006 0.0006 
                      100             . 0.1004 0.0004 0.0003 0.0002 0.0002 
             0.5      20         0.0900 0.0804 -.0096 0.0015 0.0016 0.0017 
                      40              . 0.0831 -.0069 0.0009 0.0009 0.0009 
                      100             . 0.0874 -.0026 0.0003 0.0003 0.0003 
             0.85     20         0.0340 0.0268 -.0072 0.0010 0.0009 0.0009 
                      40              . 0.0304 -.0036 0.0007 0.0006 0.0006 
                      100             . 0.0344 0.0004 0.0002 0.0002 0.0002 
    _______________________________________________________________ 
        
 

Notes:Marginals: πΤ = .20 , πC= .10;    P(YT=i,YC=j): π00= .79 , π01= .01,  π10= .11 , π11= .09; Τotal 
N=600 (for C=20, 40), N=300 (for C=100);  1,000 simulations per scenario. 
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Table 3.   Bias, variance and MSE for Scenario #5 (high TEH + marginals near 0.5). 

 
PROPERTY 

     θ        ICC    # Clusters   ( )θΕ   ˆ( )θΕ      ˆ( )θ θΕ −  ˆˆ( ( ))V θΕ  ( )ˆV θ  MSE 

    _______________________________________________________________ 
    
     LB     0.15      20         0.0218 0.0377 0.0159 0.0021 0.0014 0.0017 
                      40              . 0.0334 0.0116 0.0014 0.0010 0.0011 
                      100             . 0.0266 0.0049 0.0004 0.0004 0.0004 
             0.5      20         0.1775 0.1891 0.0116 0.0068 0.0066 0.0068 
                      40              . 0.1863 0.0088 0.0039 0.0039 0.0040 
                      100             . 0.1815 0.0040 0.0014 0.0015 0.0015 
             0.85     20         0.3333 0.3447 0.0114 0.0106 0.0112 0.0114 
                      40              . 0.3434 0.0102 0.0058 0.0060 0.0061 
                      100             . 0.3382 0.0050 0.0022 0.0021 0.0022 
 
     UB      0.15     20         0.4425 0.4284 -.0141 0.0022 0.0021 0.0023 
                      40              . 0.4248 -.0177 0.0015 0.0013 0.0016 
                      100             . 0.4365 -.0060 0.0005 0.0004 0.0005 
             0.5      20         0.4250 0.4084 -.0166 0.0063 0.0062 0.0065 
                      40              . 0.4082 -.0168 0.0035 0.0035 0.0038 
                      100             . 0.4192 -.0058 0.0013 0.0013 0.0014 
             0.85     20         0.4075 0.3954 -.0121 0.0103 0.0105 0.0106 
                      40              . 0.3930 -.0145 0.0056 0.0054 0.0056 
                      100             . 0.4047 -.0028 0.0021 0.0019 0.0019 
    _______________________________________________________________ 
      

Notes: Marginals:   πΤ =.55, πC=.45;      P(YT=i, YC=j):  π00= .05 , π01= .40,  π10= .50, π11= .05 
 Τοtal N=600 (for C=20, 40), N=300 (for C=100);  1000 simulations per scenario. 
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Table 4. CI width and coverage of bounds on π01 for scenario 1: Low heterogeneity and 
marginals near zero. 
                             Simultaneous 
       Lower Bound(LB)       Upper Bound(UB)       Lower, Upper 
 

ICC #C/#U  Meth   True L95 U95 W  Cov   True L95 U95  W Cov    W  Cov Cπ01  

 
.15 20/30  AGM   .000 .00 .02 .02 1.0   .15 .07 .22 .15 .90   .22 .92 1.0 
           MAGM  .000 .00 .02 .02 1.0   .10 .03 .17 .15 .97   .17 .97 1.0 
 
    40/15  AGM   .000 .00 .02 .02 1.0   .15 .09 .21 .12 .93   .21 .95 1.0 
           MAGM  .000 .00 .02 .02 1.0   .10 .04 .16 .12 .97   .16 .98 1.0 
 
   100/30  AGM   .000 .00 .01 .01 1.0   .15 .11 .18 .07 .94   .18 .96 1.0 
           MAGM  .000 .00 .01 .01 1.0   .10 .07 .13 .07 .98   .13 .99 1.0 
 
.50 20/30  AGM   .000 .00 .03 .03 1.0   .09 .02 .16 .14 .88   .16 .89 1.0 
           MAGM  .000 .00 .03 .03 .99   .09 .01 .15 .14 .86   .15 .87 1.0 
 
    40/15  AGM   .000 .00 .03 .03 1.0   .09 .03 .15 .12 .91   .15 .91 1.0 
           MAGM  .000 .00 .03 .03 1.0   .09 .03 .14 .11 .89   .14 .89 1.0 
 
   100/30  AGM   .000 .00 .02 .02 1.0   .09 .06 .12 .07 .94   .12 .95 1.0 
           MAGM  .000 .00 .02 .02 1.0   .09 .05 .12 .07 .93   .12 .94 1.0 
 
.85 20/30  AGM   .007 .00 .05 .05 .87   .03 .00 .08 .08 .76   .08 .76 .92 
           MAGM  .007 .00 .05 .05 .87   .03 .00 .08 .08 .75   .08 .75 .92 
 
    40/15  AGM   .007 .00 .05 .05 .96   .03 .00 .08 .08 .89   .08 .89 .98 
           MAGM  .007 .00 .05 .05 .96   .03 .00 .08 .08 .89   .08 .89 .98 
 
   100/30  AGM   .007 .00 .03 .03 .96   .03 .01 .06 .06 .92   .06 .93 1.0 
           MAGM  .007 .00 .03 .03 .96   .03 .01 .06 .06 .92   .06 .93 1.0 
      
__________________________________________________________________ 
Legend: Table values are means over 1000 simulations, except for columns labeled ‘True’ values 
ICC= Dirichlet multinomial correlation;  #C= number of clusters, #U= number of units per cluster 
AGM=Equation 2.2; MAGM=Equation 2.6;  W=width of 95% CI= U95-L95;  Cov=coverage;  
Simultaneous: coverage of both Lb and UB using L95 of LB, U95 of UB; Cπ01: coverage of π01  using 
L95 of LB, U95 of UB 
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Table 5. CI width and coverage of bounds on π01 for scenario 5: High heterogeneity and 
marginals near 0.50. 
             
                                                              Simultaneous 
                                                                           
                  Lower Bound(LB)        Upper Bound(UB)       Lower, Upper 
 

ICC #C/#U  Meth   True L95 U95 W  Cov   True L95 U95  W Cov    W  Cov Cπ01  

 
.15    20/30  AGM   .022 .00 .12 .12 .99   .44 .35 .53 .18 .93   .53 .94 1.0 
           MAGM  .022 .00 .12 .12 .99   .44 .34 .52 .18 .92   .52 .92 1.0 
 
    40/15  AGM   .022 .00 .11 .11 .98   .44 .36 .51 .15 .95   .51 .94 1.0 
           MAGM  .022 .00 .11 .11 .98   .44 .35 .50 .15 .94   .50 .92 1.0 
 
   100/30  AGM   .022 .00 .07 .06 .98   .44 .40 .48 .08 .94   .48 .94 1.0 
           MAGM  .022 .00 .07 .06 .98   .44 .39 .48 .08 .94   .48 .93 1.0 
 
.50 20/30  AGM   .178 .04 .35 .31 .93   .43 .26 .57 .31 .93   .53 .93 .97 
           MAGM  .178 .04 .35 .31 .93   .43 .25 .56 .31 .92   .52 .92 .97 
 
    40/15  AGM   .178 .07 .31 .24 .95   .43 .30 .53 .23 .93   .46 .93 .98 
           MAGM  .178 .07 .31 .24 .95   .43 .29 .52 .23 .93   .46 .92 .98 
 
   100/30  AGM   .178 .11 .25 .15 .94   .43 .35 .49 .14 .95   .38 .94 1.0 
           MAGM  .178 .11 .25 .15 .94   .43 .35 .49 .14 .95   .38 .94 1.0 
 
.85 20/30  AGM   .333 .14 .55 .40 .93   .41 .20 .60 .40 .92   .45 .92 .95 
           MAGM  .333 .14 .55 .40 .93   .41 .20 .59 .40 .92   .45 .92 .94 
 
    40/15  AGM   .333 .19 .49 .30 .95   .41 .25 .54 .29 .93   .35 .93 .96 
           MAGM  .333 .19 .49 .30 .95   .41 .25 .54 .29 .93   .35 .92 .95 
 
   100/30  AGM   .333 .25 .43 .18 .95   .41 .31 .50 .18 .96   .25 .95 .98 
           MAGM  .333 .25 .43 .18 .95   .41 .31 .50 .18 .96   .25 .95 .98 
__________________________________________________________________ 
Legend: Table values are means over 1000 simulations, except for columns labeled ‘True’ values 
ICC= Dirichlet multinomial correlation;  #C= number of clusters, #U= number of units per cluster 
AGM=Equation 2.2; MAGM=Equation 2.6;  W=width of 95% CI= U95-L95;  Cov=coverage;  
Simultaneous: coverage of both Lb and UB using L95 of LB, U95 of UB; Cπ01: coverage of π01  using 
L95 of LB, U95 of UB 
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intervals for the individual bounds, the 
simultaneous bounds and for π01.. 

The effect of ICC on confidence interval 
widths is more dramatic in the case where the 
marginal success probabilities are closer to 0.5. 
In this case, when there is high heterogeneity 
(π01=0.4), 95% CI widths for π01  are reduced 
from around 0.5 (at ICC=0.15) to as low as 0.3 
(at ICC = 0.8), and a similar reduction in width 
(from roughly 0.4 to 0.2) is seen in the low 
heterogeneity (π01=0.01). This is important 
because CI widths of more than .20 or so are 
unlikely to be very useful. 

Although nominal or near-nominal 
coverage of the true bounds was attained for 
most of the scenarios considered, the estimators 
did not give sufficient coverage of either the 
individual bounds or the simultaneous bounds 
with the combination of very high ICC and 
small number of clusters (20 or less) when using 
the fixed total sample size of 600. In results not 
presented, it was found that using less than 20 
clusters (specifically, 10) gave very poor 
coverage in most scenarios. Creating a 
confidence interval estimator which directly 
takes into account the number of clusters and the 
ICC might greatly improve the coverage in these 
outlying situations. 

These methods assume that the observed 
data consist of clusters (or blocks) that are either 
natural or can be created post-hoc. Post-hoc 
clusters can be created by first predicting the 
observed outcome on either T or C using all 
available baseline covariables, excluding 
treatment group, and then grouping patients by 
percentiles of their predicted probability of 
success. In order to be able to apply these 
methods and obtain appropriately narrow 
confidence intervals on bound estimators, 
studies would best collect data on as many 
baseline covariables as feasible. SAS macros 
will soon be available to calculate the bound 
estimators and confidence intervals. 

Confidence intervals for the treatment 
risk could be used in several ways in practice. 
First is the case where the lower confidence 
limit on treatment risk is zero, and the interval 
width is small. Being able to conclude that the 
new intervention is expected to be successful for 
a certain proportion of the existing treatment 
failures, but not likely to change any of the 

existing treatment successes, seems ideal. But a 
non-zero upper bound estimate would imply that 
the treatment risk may be non-zero, and this may 
provoke interest, concern and perhaps more 
research. Second, if the lower estimated 
confidence limit was above zero, non-zero 
treatment risk would be concluded, and 
researchers would best search for patient subsets 
that would be better off with the standard 
treatment. Researchers for a new drug or 
treatment would likely be more satisfied with an 
intervention that had very low probability of 
failing in patients already expected or known to 
have success on the standard treatment.  

For individual decision-making, the 
confidence intervals on treatment risk might be 
useful in some situations. An individual with no 
experience with either intervention might well 
choose the one with the largest observed 
marginal success, regardless of the estimated 
bounds on the treatment risk. On the other hand, 
if it was believed that the treatment risk was 
high, an individual with known or supposed 
success on the control might be hesitant to 
switch to an intervention with greater marginal 
success, even with fewer expected side effects. 
The gamble would be more likely if the 
treatment risk was thought to be low. In future 
work, study of the methods of using covariate 
information to help predict an individual’s 
underlying category is planned. 

The Dirichlet multinomial (DMN) was 
found to be a useful model for assessing the 
statistical properties of estimators for bounds on 
treatment effect heterogeneity because the ICC 
can be directly specified and because of the 
natural clumping of the data with higher ICC. 
One potential limitation of the DMN for this 
work is that the covariance structure is based on 
the underlying proportion of individuals in each 
category, and the corresponding structure of the 
intraclass between-category correlations may not 
be intuitive for some real situations. However, 
there is no reason to believe that an underlying 
model, allowing full specification of the 
covariance between the four categories of 
interest, would yield substantially different 
property assessment results. Because the 
parameters of interest are non-estimable (only 
one of two potential outcomes is observed for 
each unit or individual), without distributional 
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assumptions, at best bounds may be put on the 
parameters of interest. 
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Two New Unbiased Point Estimates Of A Population Variance 
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Two new unbiased point estimates of an unknown population variance are introduced. They are compared 
to three known estimates using the mean-square error (MSE). A computer program, which is available for 
download at http://program.20m.com, is developed for performing calculations for the estimates. 
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Introduction 
 
The statistical analysis of sample data often 
involves determining point estimates of 
unknown population parameters. A desirable 
property for these point estimates is that they be 
unbiased. An unbiased point estimate has an 
expected value (or mean) equal to the unknown 
population parameter it is being used to 
estimate. For example, consider the mean x  and 
variance v calculated from a random sample of 
size n (x1, x2, …, xn) obtained from a population 
with unknown mean µ and variance σ2. The 
equations for these two statistics are equations 
(1) and (2): 
 

n/xx
n

1i
i∑

=

=  (1) 

( ) )1n/(xxv
n
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2

i −−=∑
=

 (2) 

 

It is well known that x  and v are unbiased point 
estimates of µ and σ2, respectively (e.g., see 
Theorems 8.2.1 and 8.2.2, respectively, in Bain 
& Engelhardt, 1992). This means the expected 

value of the sampling distribution of x  is equal 
to  µ (i.e., E( x )=µ)  and  the  expected  value  of 
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the sampling distribution of v is equal to σ2 (i.e., 
E(v)=σ2). 

It is important to have a sample that is 
random when calculating unbiased point 
estimates of unknown population parameters. In 
a random sample, each value comes from the 
same population distribution. If the values come 
from different population distributions (i.e., 
populations with different distributions, means, 
and/or variances), then the point estimates they 
are used to calculate will be inaccurate. For 
example, if the values come from population 
distributions with different means, then v 
calculated from this sample using equation (2) 
will be inflated. 

Many situations exist in which it is 
difficult to obtain a random sample. One of these 
is when the population is not well-defined, as is 
the case when studying on-going processes. On-
going processes are often encountered in 
manufacturing situations. An approach to obtain 
unbiased point estimates of unknown population 
parameters from these types of processes is to 
collect data as some number m of subgroups, 
each having size n. This is the procedure that is 
used when constructing control charts to monitor 
the centering and/or spread of a process. The 
idea is for the data within a subgroup to come 
from the same process distribution. If any 
changes are to occur in the process distribution, 
it is desirable for them to show up between 
subgroups. An additional procedure in control 
chart construction, which may be called a delete-
and-revise (D&R) procedure, is performed as an 
additional safeguard to ensure data within 
subgroups has the same distribution. 
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Two new unbiased point estimates of an 
unknown population variance are introduced. 
They are derived assuming the sample data is 
drawn from an on-going process as m 
subgroups, each of size n. The Methodology 
section has an example showing how the control 
charting procedure works. Also, it presents the 
three known unbiased point estimates used in the 
situation considered in this article, it derives the 
two new unbiased point estimates, and it 
explains a Mathcad (1999) computer program 
that performs calculations for the unbiased point 
estimates. The Results section has mean-square 
error (MSE) results for the unbiased point 
estimates. These are useful for the purpose of 
comparing the unbiased point estimates. The 
Conclusion section summarizes the 
interpretations of the analyses in the Results 
section. 

 
Methodology 

 
Control Charting Procedure. Consider the data in 
Table 1 obtained from a normally distributed 
process with µ=100.0 and σ=7.0 (the data was 
generated in Minitab (2003) and a few changes 
were made to simulate a process with a 
nonconstant mean). The true unknown 
variability for the process is estimated using 
within subgroup variability. A control chart for 
spread may be used to determine if data within a 
subgroup comes from the same process 
distribution. The control chart for spread used 
here is the range (R) chart. It is constructed 
using equations (3a)-(3c): 
 

RDUCL 4 ×=  (3a) 
 

RCL =  (3b) 
 

RDLCL 3 ×=  (3c) 
 

UCL, CL, and LCL are the upper control limit, 
center line, and lower control limit, respectively, 
for   the   R   chart. Values  for  the  control chart 
factors   D4   and  D3  for  various  n  are   widely 
 
 
 
 

available in control chart factor tables (e.g., see 
Table M in the appendix of Duncan, 1974). The 
value R  (Rbar) is the mean of the m subgroup 
ranges. The subgroup ranges are calculated for 
each subgroup as the maximum value in the 
subgroup minus the minimum value in the 
subgroup (these calculations are in the "R" 
column of Table 1). Equations (4a)-(4c) are the 
R chart control limit calculations for the data in 
Table 1: 
 

999.30584.13282.2RDUCL 4 =×=×=  (4a) 

584.13RCL ==  (4b) 

0.0584.130.0RDLCL 3 =×=×=  (4c) 
 
Figure 1 is the R control chart generated in 
Minitab (2003). 
 The delete-and-revise (D&R) procedure 
involves identifying any subgroup ranges that 
are greater than the UCL or less than the LCL. 
The identified subgroups are then removed from 
the analysis as long as, in this case, each 
identified subgroup was an indication of a shift 
in the process mean. The R chart control limits 
are recalculated using the remaining subgroups. 
For the Table 1 data, the range (R) for subgroup 
seven is above the UCL (see the point marked 

with a "1" in Figure 1). The new value for R  
calculated using the remaining m=19 subgroups 
after subgroup seven is removed is shown as the 
Revised R  in Table 1. The revised control 
limits are calculated in equations (5a)-(5c): 
 

762.28604.12282.2RDUCL 4 =×=×=  (5a) 
 

604.12RCL ==  (5b) 
 

0.0604.120.0RDLCL 3 =×=×=  (5c) 
 
Because all of the remaining subgroup ranges 
are between the revised control limits, the 
conclusion is that the data within each subgroup 
comes from the same process distribution. 
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Table 1. Data Collected as m=20 Subgroups, Each of Size n=4 

 

Subgroup X1 X2 X3 X4 R 
1 89.558 99.593 99.069 91.211 10.035 
2 98.263 98.745 96.959 102.132 5.173 
3 93.246 108.054 98.811 102.767 14.808 
4 95.493 94.852 109.277 98.418 14.425 
5 109.667 108.467 88.994 105.678 20.673 
6 94.636 105.764 93.755 88.376 17.388 
7 88.000 108.000 113.203 81.000 32.203 
8 112.215 104.877 97.752 104.484 14.463 
9 87.578 90.221 108.198 99.202 20.620 
10 100.029 92.639 96.211 94.332 7.390 
11 97.998 101.717 98.704 92.989 8.728 
12 107.147 102.370 103.020 95.581 11.566 
13 94.597 105.221 103.527 94.565 10.656 
14 110.381 93.632 103.740 102.841 16.749 
15 96.551 104.145 102.043 102.206 7.594 
16 108.505 100.040 99.048 110.904 11.856 
17 107.918 104.065 94.514 93.943 13.975 
18 114.000 116.000 121.000 123.000 9.000 
19 109.304 99.160 97.338 114.353 17.015 
20 96.920 104.280 100.290 101.984 7.360 

    R  13.584 

   Revised R  12.604 
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Figure 1. R Control Chart for the Data in Table 1 
 



MATTHEW E. ELAM 
 

197 

The next two subsections, Known 
Unbiased Point Estimates of σ2 and Two New 
Unbiased Point Estimates of σ2, explain how 
data collected and cleaned in this manner is used 
to obtain an unbiased point estimate of an 
unknown process variance using the following 
statistics: 

 

• v , the mean of the subgroup variances, 
where each subgroup variance is calculated 
using equation (2). 

• vc, the variance of the m×n data values 
grouped together as one sample. It is 
calculated using equation (2) with n replaced 

by m×n and with x  calculated using 
equation (1), also with n replaced by m×n. It 
should be noted that vc cannot be used when 
cleaning subgrouped data using a delete-
and-revise (D&R) procedure as explained in 
this subsection. The reason is it would 
include between subgroup variability, which 
would inflate its value if the process from 
which the data is collected is operating 
under multiple distributions. 

• R , as previously demonstrated. 

• s , the mean of the subgroup standard 
deviations, where each subgroup standard 
deviation is calculated using the square root 
of equation (2). 

• MR , the mean of the moving ranges. When 
data is collected as m individual values, m-1 
moving ranges may be calculated as the 
absolute value of the difference between 
consecutive individual values. In this case, 
the subgroup size n is taken to be two. For 
example, if the first three individual values 
are 5.1, 5.3, and 4.8, the first two moving 
ranges are |5.1-5.3|=0.2 and |5.3-4.8|=0.5. 

 
Known Unbiased Point Estimates of σ2 

The three known unbiased point 
estimates of σ2 calculated from data collected as 
m subgroups, each of size n, considered in this 

article are v , vc, and ( )2*
2dR . The unbiasedness 

of v  is shown in the Appendix of Elam and 
Case (2003). Wheeler (1995), in his Tables 3.6, 

3.7, and 4.2, indicated the unbiasedness for v  
(listed as the pooled variance) as well as 

for ( )2*
2dR . The value *

2d  may be called an 

unbiasing factor, as ( )2R  by itself is a biased 

point estimate of σ2. The value *
2d  is tabled for 

various m and n (e.g., see Table D3 in the 
appendix of Duncan, 1974). 

David (1951) gave the equation for *
2d  

(i.e., d2star) as equation (6): 
 

m/3d2dstar2d 22 +=  (6) 
 
The value d2 (i.e., d2) is the mean of the 
distribution of the range W. Its values for 
various n are widely available in control chart 
factor tables. Assuming a normal population 
with mean µ and variance equal to one, Harter 
(1960) gave the equation for d2 as equation (7) 
(with some modifications in notation): 
 

−+⎢⎣

⎡ ××−×= ∫ ∫
∞

∞−

∞
)Wx(F(W     )1n(n2d

  

  

  

0  
 

] dx)x(fdW)Wx(f))x(F 2n ×+×−  (7) 
 
The function F(x) is the cumulative distribution 
function (cdf) of the standard normal probability 
density function (pdf) f(x). The value d3 (i.e., 
d3) is the standard deviation of the distribution 
of the range W. Its values for various n are 
widely available in control chart factor tables. It 
is calculated using equation (8): 
 

22d2EW3d −=  (8) 
 
Harter (1960) gave the equation for EW2, the 
expected value of the second moment of the 
distribution of the range W for subgroups of size 
n sampled from a normal population with mean 
µ and variance equal to one, as equation (9) 
(with some modifications in notation): 
 

−+⎢⎣

⎡ ××−×= ∫ ∫
∞

∞−

∞
)Wx(F(W )1n(n2EW

  

  

  

0  

2  

] dx)x(fdW)Wx(f))x(F 2n ×+×−  (9) 
 
Equations (6)-(9) are the forms used in the 
Mathcad (1999) computer program explained in 
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the Mathcad (1999) Computer Program 
subsection. 
 
Two New Unbiased Point Estimates of σ2 

Elam and Case (2005a), in their 
Appendix 7, derived the equation for the factor 
that allows for an unbiased point estimate of σ2 
to be calculated using s . Elam and Case (2005a) 

denoted this factor as *
4c  (i.e., c4star) and gave 

its equation as equation (10): 
 

m/5c4cstar4c 22 +=  (10) 
 

The fact that ( )2*
4cs  is an unbiased point 

estimate of σ2 is shown in the Appendix. In 
equation (10), the value c4 (i.e., c4) is the mean 
of the distribution of the standard deviation. Its 
values for various n are widely available in 
control chart factor tables. Mead (1966) gave the 
equation for c4 as equation (11) when σ=1.0 
(with some modifications in notation): 
 

−×−= )2/n(gammlnexp()1n/(24c  

))2/)1n(gammln( −  (11) 
 
The equivalency of this form to that given by 
Mead (1966) is shown in Appendix 3 of Elam 
and Case (2005a). The function gammln 
represents the natural logarithm of the gamma 
(Γ) function. The value c5 (i.e., c5) is the 
standard deviation of the distribution of the 
standard deviation. Mead (1966) also gave the 
equation for c5 as equation (12) when σ=1.0 
(with some modifications in notation): 
 

−+×−= )2/)1n(gammln([exp())1n/(2[(5c  
−×−− )2/n(gammln(2exp())2/)1n((gammln  

]] 5.0)))2/)1n((gammln −−  (12) 
 
The equivalency of this form to that given by 
Mead (1966) is shown in Appendix 4 of Elam 
and Case (2005a). The value c5 is also equal 

to 2
4c1 − . Equations (10)-(12) are the forms 

used in the Mathcad (1999) computer program 
explained in the Mathcad (1999) Computer 
Program subsection. 

Elam and Case (2006a), in Appendix 1, 
derived the equation for the factor that allows 
for an unbiased point estimate of σ2 to be 

calculated using MR . Elam and Case (2006a) 

denoted this factor as )MR(d*
2  (i.e., d2starMR) 

and gave its equation as equation (13): 
 

r2n2d2n2dstarMR2d 22 ×+=  (13) 
 

The fact that ( )2*
2 )MR(dMR  is an unbiased 

point estimate of σ2 is shown in the Appendix. 
In equation (13), the value d2n2 is d2 when n is 
equal to two. Harter (1960) gave the equation for 
d2n2 as equation (14) (with some modifications 
in notation): 
 

π= /22n2d  (14) 
 
The value r is the ratio of the variance to the 
squared mean, both of the distribution of the 

mean moving range σMR , an approximation 
to which is derived in Elam and Case (2006a). 
Palm and Wheeler (1990) gave the equation for r 
as equation (15): 
 

×−+π−−××+−π×= 212)1m()32184((r 5.1  

))1m(6/()3 25.1 −×  (15) 
 
Equations (13)-(15) are the forms used in the 
Mathcad (1999) computer program explained in 
the Mathcad (1999) Computer Program 
subsection. 
 
Mathcad (1999) Computer Program 

A computer program was coded in 
Mathcad (1999) with the Numerical Recipes 
Extension Pack (1997) in order to calculate the 

unbiasing factors *
2d , *

4c , and )MR(d*
2  in 

equations (6), (10), and (13), respectively, 
regardless of the number of subgroups m and the 
subgroup size n. The program is in the Appendix 
and is named UEFactors.mcd. It is on one page 
which is divided into seven sections. Download 
instructions for the program are available at 
http://program.20m.com. 

The first section of the program is the 
data entry section. The program requires the user 
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to enter m (number of subgroups) and n 
(subgroup size). Before a value can be entered, 
the cursor must be moved to the right side of the 
appropriate equal sign. This may be done using 
the arrow keys on the keyboard or by moving 
the mouse arrow to the right side of the equal 
sign and clicking once with the left mouse 
button. The program is activated by paging 
down once the last entry is made. The user is 
allowed to immediately page down to the output 
section of the program (explained later) after the 
last entry is made. 

In section 1.1 of the program, the value 
TOL is the tolerance. The calculations that use 
this value will be accurate to ten places to the 
right of the decimal. The functions dnorm(x, 0, 
1) and pnorm(x, 0, 1) in Mathcad (1999) are the 
pdf and cdf, respectively, of the standard normal 
distribution. 

Section 1.2 of the program has the 
equations for d2, d3, and EW2 given earlier as 
equations (7), (8), and (9), respectively. Section 
1.3 of the program has the equations for c4 and 
c5 given earlier as equations (11) and (12), 
respectively. The function gammln is a 
numerical recipe in the Numerical Recipes 
Extension Pack (1997). Using it in equations 
(11) and (12) allows for c4 and c5, respectively, 
to be calculated for large values of n. Section 1.4 
of the program has the equations for d2n2 and r, 
given earlier as equations (14) and (15), 
respectively. Section 1.5 of the program has the 
equations for d2star, c4star, and d2starMR, 
given earlier as equations (6), (10), and (13), 
respectively. 

The last section of the program has the 
output. The two values entered at the beginning 
of the program are given. Accurate values for 

the unbiasing factors *
2d , *

4c , and )MR(d*
2  are 

also given. The value for )MR(d*
2  is always 

calculated for n=2, regardless of the value for n 
entered at the beginning of the program. To copy 
results into another software package (like 
Excel), follow the directions from Mathcad’s 
(1999) help menu or highlight a value and copy 
and paste it into the other software package. 
When highlighting a value with the mouse 
arrow, place the arrow in the middle of the 
value, depress the left mouse button, and drag 
the arrow to the right. This will ensure just the 

numerical value of the result is copied and 
pasted. 

 
Results 

 
The two new unbiased point estimates of σ2 are 
compared to the three known unbiased point 
estimates of σ2 using the mean-square error 
(MSE) calculation in equation (16), which is 
based on Luko’s (1996) equation (A3): 
 

22222 ])ˆ(E[)ˆ(Var)ˆ(MSE σ−σ+σ=σ  (16) 
 

The value 2σ̂  represents v , vc, ( )2*
2dR , ( )2*

4cs , 

or ( )2*
2 )MR(dMR , and Var represents the 

variance as calculated in equation (2). Because 
these five point estimates of σ2 are all unbiased, 

0)ˆ(E 22 =σ−σ . Therefore, calculating their 
MSEs is identical to calculating their variances. 
Better point estimates are those with smaller 
MSEs. 

MSEs for v , vc, ( )2*
2dR , and ( )2*

4cs  
are calculated using the FORTRAN (1994) 
computer program named "simulate" in the 
Appendix. The program simulates the random 
sampling of m subgroups (m: 1-20, 25, 30, 50, 
75, 100, 150, 200, 250, 300), each of size n (n: 
2-8, 10, 25, 50), from a standard normal 
distribution (uniform (0, 1) random variates are 
generated using the Marse-Roberts code (1983)). 
This process is repeated 5000 times for each 
combination of m and n in order to generate 

5000 values each of v , vc, ( )2*
2dR , and ( )2*

4cs  
so that their variances can be determined. The 

necessary values for *
2d  and *

4c  are taken from 
Table A1 in Appendix III: Tables of Elam and 
Case (2001) and Table A.1 in Appendix II of 
Elam and Case (2005b), respectively. 

MSEs for ( )2*
2 )MR(dMR  are 

calculated using the FORTRAN (1994) 
computer program named "simulate_MR" in the 
Appendix. The program simulates the random 
sampling of m subgroups (m: 2-20, 25, 30, 50, 
75, 100, 150, 200, 250, 300) from a standard 
normal distribution (uniform (0, 1) random 
variates are generated using the Marse-Roberts 
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code (1983)). This process is repeated 5000 
times for each m in order to generate 5000 

( )2*
2 )MR(dMR  values so that the variance can 

be determined. The necessary values for 

)MR(d*
2  are taken from Table A.1 in Appendix 

2 of Elam and Case (2006b). 
The Appendix has the MSE results for 

v , vc, ( )2*
2dR , ( )2*

4cs , and ( )2*
2 )MR(dMR  in 

its Tables A.1-A.5, respectively. As m increases 
for any n, or as n increases for any m, the MSEs 
in Tables A.1-A.4 decrease. As m increases, the 
MSEs decrease in Table A.5. This is not 
surprising because as more information about 
the process is at hand, the unbiased estimates 

should perform better. Only the MSEs for v , vc, 

( )2*
2dR , and ( )2*

4cs  when n=2 and m=1 can be 

compared to the MSE for ( )2*
2 )MR(dMR  when 

m=2. In this case, the moving range is 
interpreted to be the same as the range. These 
results are the same. 

Tables A.6-A.8 in the Appendix have 

the percent change in MSE ( v ) over MSE (vc), 

( )
⎥⎦
⎤

⎢⎣
⎡ 2*

4csMSE  over MSE ( v ), and 

( )
⎥⎦
⎤

⎢⎣
⎡ 2*

2dRMSE  over ( )
⎥⎦
⎤

⎢⎣
⎡ 2*

4csMSE , 

respectively. The calculations in Tables A.6-A.8 
were performed using Excel’s full accuracy. 
Because most of the percentages in these tables 
are zero or positive, it can be stated that, in 

general, MSE (vc) ≤ MSE ( v ) ≤ ( )
⎥⎦
⎤

⎢⎣
⎡ 2*

4csMSE  

≤ ( )
⎥⎦
⎤

⎢⎣
⎡ 2*

2dRMSE . The following additional 

conclusions can be drawn from Tables A.6-A.8: 
• In Tables A.6 and A.7, the percent changes 

decrease as n increases for any m. This 

means the MSEs for v , vc, and ( )2*
4cs  

converge to each other as n increases for any 
m. 

• The MSEs for v , vc, and ( )2*
4cs  are the 

same when m=1. 
 
 
 
 

• The MSE for ( )2*
2dR  when n=2 and m=1 is 

almost identical to that for v , vc, and 

( )2*
4cs ; however, as n gets larger for m=1 

(or any m), the MSEs for ( )2*
2dR  grow 

larger than those for v , vc, and ( )2*
4cs . This 

is because of the well known fact that the 
range calculation loses efficiency as the size 
of the sample from which it is calculated 
increases. 

• The MSEs for ( )2*
2dR  and ( )2*

4cs  when 
n=2 are almost identical. This is because the 
range and standard deviation calculations 
differ by only a constant when n=2. 

 
Conclusion 

 
From the analyses in the Results section, it may 

be concluded that ( )2*
4cs  is at least as good of 

an unbiased point estimate of σ2 as ( )2*
2dR . In 

fact, as n increases for any m, ( )2*
4cs  becomes a 

much better unbiased point estimate of σ2 

than ( )2*
2dR . Also, the performance of ( )2*

4cs  

approaches that of v  and vc as n increases for 

any m. Additionally, ( )2*
2 )MR(dMR  appears to 

be an adequate unbiased point estimate of σ2, as 
indicated by its reasonably small MSE values. 
This means that, for the first time, there is an 
alternative to equation (2) for obtaining an 
unbiased point estimate of σ2 from individual 
values. 
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program simulate 
implicit none 
INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p=15) 
real(kind=double) :: mean, sd, pi, d2star, c4star, r1, r2, X, large, small, v, s, R, vc 
real(kind=double) :: sumvc, sumvc2, sumvbar, sumvbar2, sumsbar2, sumsbar22, sumRbar2, sumRbar22 
real(kind=double) :: sumX, sumX2, sumv, sums, sumR, sumXsv, sumX2sv 
real(kind=double) :: vbar, sbar2, Rbar2, varvc, varvbar, varsbar2, varRbar2 
INTEGER :: c, b, a, rep, i, j, seed = 1973272912 
integer, dimension(1:29) :: m 
integer, dimension(1:10) :: n 
open(unit=1, file="simulate.txt") 
open(unit=2, file="d2star.txt") 
open(unit=3, file="c4star.txt") 
 
mean = 0.0 
sd = 1.0 
pi = ACOS(-1.0) 
m = (/ (c, c = 1, 20), 25, 30, 50, 75, 100, 150, 200, 250, 300 /) 
n = (/ 2, 3, 4, 5, 6, 7, 8, 10, 25, 50 /) 
 
write(1, 5) "n", "m", "c4star", "d2star", "varvc", "varvbar", "varsbar2", "varRbar2" 
5 format(2X, A, 3X, A, 2X, A, 2X, A, 5X, A, 8X, A, 5X, A, 5X, A) 
 
do b = 1, 10 
! n loop 
   
  do a = 1, 29 
!   m loop 
 
    sumvc = 0.0 
    sumvc2 = 0.0 
    sumvbar = 0.0 
    sumvbar2 = 0.0 
    sumsbar2 = 0.0 
    sumsbar22 = 0.0 
    sumRbar2 = 0.0 
    sumRbar22 = 0.0 
 
    read(2, *) d2star 
    read(3, *) c4star 
 
    do rep = 1, 5000 
!     replication loop 
 
      sumX = 0.0 
      sumX2 = 0.0 
      sumv = 0.0 
      sums = 0.0 
      sumR = 0.0 
 
      do i = 1, m(a) 
 
        sumXsv = 0.0 
        sumX2sv = 0.0 
 
!       new subgroup 
         
        do j = 1, n(b) 
      
          call random(r1, seed) 
          call random(r2, seed) 
 
          X = mean + sd * ((SQRT(-2. * LOG(r1))) * (COS(2. * pi * r2))) 
 
          sumX = sumX + X 
          sumX2 = sumX2 + X**(2.0) 
          sumXsv = sumXsv + X 
          sumX2sv = sumX2sv + X**(2.0) 
 
          if (j == 1) then 
            large = X 
            small = X 
          else 
            if (X > large) large = X 
            if (X < small) small = X 
          end if 
 
        end do 
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        v = (sumX2sv - ((sumXsv)**(2.0)) / n(b)) / (n(b)-1) 
        s = v**(0.5) 
        R = large - small 
 
        sumv = sumv + v 
        sums = sums + s 
        sumR = sumR + R 
 
      end do 
 
      vc = (sumX2 - ((sumX)**(2.0)) / (m(a)*n(b))) / (m(a)*n(b)-1.0) 
      vbar = sumv / m(a) 
      sbar2 = ((sums / m(a))/c4star)**2 
      Rbar2 = ((sumR / m(a))/d2star)**2 
 
      sumvc = sumvc + vc 
      sumvc2 = sumvc2 + vc**(2.0) 
      sumvbar = sumvbar + vbar 
      sumvbar2 = sumvbar2 + vbar**(2.0) 
      sumsbar2 = sumsbar2 + sbar2 
      sumsbar22 = sumsbar22 + sbar2**(2.0) 
      sumRbar2 = sumRbar2 + Rbar2 
      sumRbar22 = sumRbar22 + Rbar2**(2.0) 
 
!     replication loop 
    end do 
 
    varvc = (sumvc2 - ((sumvc)**(2.0)) / (rep - 1.0)) / (rep - 2.0) 
    varvbar = (sumvbar2 - ((sumvbar)**(2.0)) / (rep - 1.0)) / (rep - 2.0) 
    varsbar2 = (sumsbar22 - ((sumsbar2)**(2.0)) / (rep - 1.0)) / (rep - 2.0) 
    varRbar2 = (sumRbar22 - ((sumRbar2)**(2.0)) / (rep - 1.0)) / (rep - 2.0) 
 
    write(1, 10) n(b), m(a), c4star, d2star, varvc, varvbar, varsbar2, varRbar2 
10 format(1X, I2, 1X, I3, 1X, F7.5, 1X, F7.5, 1X, F12.10, 1X, F12.10, 1X, F12.10, 1X, F12.10) 
 
!   m loop 
  end do 
 
! n loop 
end do 
 
stop 
 
contains 
 
subroutine random(uniran, seed) 
! 
! ******************************************************** 
! ***** This subroutine generates Uniform (0, 1)     ***** 
! ***** random variates using the Marse-Roberts code ***** 
! ******************************************************** 
! 
    implicit none 
    INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p=15) 
    REAL(KIND=DOUBLE), INTENT(OUT) :: uniran 
    INTEGER, INTENT(IN OUT) :: seed 
    INTEGER :: hi15, hi31, low15, lowprd, ovflow 
    INTEGER, PARAMETER :: mult1 = 24112, mult2 = 26143, & 
                          b2e15 = 32768, b2e16 = 65536, & 
                          modlus = 2147483647 
! 
    hi15 = seed / b2e16 
    lowprd = (seed - hi15 * b2e16) * mult1 
    low15 = lowprd / b2e16 
    hi31 = hi15 * mult1 + low15 
    ovflow = hi31 / b2e15 
    seed = (((lowprd - low15 * b2e16) - modlus) + & 
            (hi31 - ovflow * b2e15) * b2e16) + ovflow 
! 
    if (seed < 0) seed = seed + modlus 
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! 
    hi15 = seed / b2e16 
    lowprd = (seed - hi15 * b2e16) * mult2 
    low15 = lowprd / b2e16 
    hi31 = hi15 * mult2 + low15 
    ovflow = hi31 / b2e15 
    seed = (((lowprd - low15 * b2e16) - modlus) + & 
            (hi31 - ovflow * b2e15) * b2e16) + ovflow 
! 
    if (seed < 0) seed = seed + modlus 
! 
    uniran = (2 * (seed / 256) + 1) / 16777216.0 
! 
    return 
  end subroutine random 
! 
end program simulate 

 
 
program simulate_MR 
implicit none 
INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p=15) 
real(kind=double) :: mean, sd, pi, d2starMR, r1, r2, X, first, second, MR 
real(kind=double) :: sumMRbar2, sumMRbar22, sumMR, MRbar2, varMRbar2 
INTEGER :: c, a, rep, i, seed = 1973272912 
integer, dimension(1:28) :: m 
open(unit=1, file="simulate_MR.txt") 
open(unit=2, file="d2starMR.txt") 
 
mean = 0.0 
sd = 1.0 
pi = ACOS(-1.0) 
m = (/ (c, c = 2, 20), 25, 30, 50, 75, 100, 150, 200, 250, 300 /) 
 
write(1, 5) "m", "d2starMR", "varMRbar2" 
5 format(3X, A, 2X, A, 3X, A) 
 
do a = 1, 28 
! m loop 
 
  sumMRbar2 = 0.0 
  sumMRbar22 = 0.0 
  
  read(2, *) d2starMR 
   
  do rep = 1, 5000 
!   replication loop 
 
    sumMR = 0.0 
   
    do i = 1, m(a) 
 
      call random(r1, seed) 
      call random(r2, seed) 
      X = mean + sd * ((SQRT(-2. * LOG(r1))) * (COS(2. * pi * r2))) 
    
      if (i == 1) then 
        first = X 
      else 
        second = X 
        MR = abs(first - second) 
        sumMR = sumMR + MR 
        first = second 
      end if 
 
    end do 
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    MRbar2 = ((sumMR / (m(a) - 1))/d2starMR)**2 
    sumMRbar2 = sumMRbar2 + MRbar2 
    sumMRbar22 = sumMRbar22 + MRbar2**(2.0) 
 
!   replication loop   
  end do 
 
  varMRbar2 = (sumMRbar22 - ((sumMRbar2)**(2.0)) / (rep - 1.0)) / (rep - 2.0) 
 
  write(1, 10) m(a), d2starMR, varMRbar2 
10 format(1X, I3, 2X, F7.5, 2X, F12.10) 
 
! m loop 
end do 
 
stop 
 
contains 
 
subroutine random(uniran, seed) 
! 
! ******************************************************** 
! ***** This subroutine generates Uniform (0, 1)     ***** 
! ***** random variates using the Marse-Roberts code ***** 
! ******************************************************** 
! 
    implicit none 
    INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p=15) 
    REAL(KIND=DOUBLE), INTENT(OUT) :: uniran 
    INTEGER, INTENT(IN OUT) :: seed 
    INTEGER :: hi15, hi31, low15, lowprd, ovflow 
    INTEGER, PARAMETER :: mult1 = 24112, mult2 = 26143, & 
                          b2e15 = 32768, b2e16 = 65536, & 
                          modlus = 2147483647 
! 
    hi15 = seed / b2e16 
    lowprd = (seed - hi15 * b2e16) * mult1 
    low15 = lowprd / b2e16 
    hi31 = hi15 * mult1 + low15 
    ovflow = hi31 / b2e15 
    seed = (((lowprd - low15 * b2e16) - modlus) + & 
            (hi31 - ovflow * b2e15) * b2e16) + ovflow 
! 
    if (seed < 0) seed = seed + modlus 
! 
    hi15 = seed / b2e16 
    lowprd = (seed - hi15 * b2e16) * mult2 
    low15 = lowprd / b2e16 
    hi31 = hi15 * mult2 + low15 
    ovflow = hi31 / b2e15 
    seed = (((lowprd - low15 * b2e16) - modlus) + & 
            (hi31 - ovflow * b2e15) * b2e16) + ovflow 
! 
    if (seed < 0) seed = seed + modlus 
! 
    uniran = (2 * (seed / 256) + 1) / 16777216.0 
! 
    return 
  end subroutine random 
! 
end program simulate_MR 
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Table A.1. MSE of v  
 

n 
m 

2 3 4 5 6 7 8 10 25 50 
1 1.752 0.988 0.670 0.476 0.410 0.331 0.288 0.222 0.084 0.040 
2 1.039 0.504 0.313 0.244 0.184 0.169 0.145 0.111 0.042 0.021 
3 0.667 0.334 0.223 0.165 0.135 0.107 0.099 0.071 0.027 0.013 
4 0.527 0.245 0.167 0.127 0.096 0.086 0.074 0.056 0.021 0.011 
5 0.395 0.202 0.132 0.102 0.080 0.067 0.057 0.045 0.016 0.008 
6 0.338 0.163 0.112 0.084 0.067 0.056 0.048 0.037 0.014 0.007 
7 0.294 0.145 0.094 0.071 0.055 0.047 0.040 0.031 0.012 0.006 
8 0.245 0.127 0.085 0.063 0.050 0.042 0.036 0.027 0.011 0.005 
9 0.224 0.109 0.074 0.054 0.044 0.039 0.031 0.025 0.009 0.005 

10 0.200 0.098 0.067 0.050 0.039 0.034 0.028 0.022 0.008 0.004 
11 0.181 0.094 0.062 0.046 0.037 0.031 0.025 0.020 0.008 0.004 
12 0.163 0.086 0.056 0.043 0.035 0.027 0.023 0.018 0.007 0.003 
13 0.151 0.077 0.050 0.038 0.031 0.025 0.022 0.017 0.006 0.003 
14 0.142 0.072 0.047 0.036 0.028 0.023 0.021 0.015 0.006 0.003 
15 0.134 0.068 0.045 0.033 0.026 0.022 0.020 0.015 0.006 0.003 
16 0.127 0.062 0.042 0.032 0.025 0.020 0.017 0.014 0.005 0.003 
17 0.118 0.059 0.039 0.030 0.023 0.020 0.017 0.013 0.005 0.002 
18 0.110 0.057 0.038 0.027 0.022 0.018 0.016 0.012 0.004 0.002 
19 0.101 0.053 0.035 0.026 0.021 0.018 0.015 0.012 0.004 0.002 
20 0.100 0.051 0.033 0.025 0.019 0.017 0.014 0.011 0.004 0.002 
25 0.079 0.041 0.027 0.020 0.016 0.013 0.012 0.009 0.003 0.002 
30 0.066 0.034 0.022 0.017 0.014 0.012 0.010 0.007 0.003 0.001 
50 0.041 0.020 0.014 0.010 0.008 0.006 0.006 0.004 0.002 0.001 
75 0.028 0.013 0.009 0.007 0.005 0.004 0.004 0.003 0.001 0.001 
100 0.021 0.010 0.007 0.005 0.004 0.003 0.003 0.002 0.001 0.000 
150 0.013 0.007 0.004 0.003 0.003 0.002 0.002 0.001 0.001 0.000 
200 0.010 0.005 0.003 0.002 0.002 0.002 0.001 0.001 0.000 0.000 
250 0.008 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.000 0.000 
300 0.007 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 
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Table A.2. MSE of vc 
 

n 
m 

2 3 4 5 6 7 8 10 25 50 
1 1.752 0.988 0.670 0.476 0.410 0.331 0.288 0.222 0.084 0.040 
2 0.683 0.400 0.268 0.216 0.168 0.156 0.136 0.104 0.041 0.021 
3 0.396 0.247 0.184 0.143 0.120 0.097 0.092 0.066 0.026 0.013 
4 0.300 0.181 0.134 0.107 0.086 0.077 0.068 0.051 0.021 0.011 
5 0.214 0.142 0.104 0.085 0.070 0.059 0.052 0.041 0.016 0.008 
6 0.178 0.116 0.087 0.071 0.056 0.049 0.043 0.034 0.014 0.007 
7 0.159 0.100 0.073 0.056 0.047 0.042 0.036 0.028 0.011 0.006 
8 0.132 0.085 0.065 0.051 0.043 0.037 0.032 0.025 0.010 0.005 
9 0.118 0.076 0.057 0.045 0.037 0.034 0.028 0.023 0.009 0.005 

10 0.106 0.067 0.052 0.041 0.033 0.029 0.025 0.020 0.008 0.004 
11 0.095 0.064 0.047 0.038 0.031 0.027 0.023 0.018 0.007 0.004 
12 0.087 0.060 0.042 0.035 0.029 0.024 0.021 0.017 0.007 0.003 
13 0.078 0.054 0.040 0.030 0.026 0.022 0.019 0.015 0.006 0.003 
14 0.077 0.050 0.035 0.029 0.024 0.021 0.018 0.014 0.006 0.003 
15 0.070 0.045 0.033 0.027 0.022 0.019 0.017 0.013 0.005 0.003 
16 0.067 0.042 0.032 0.025 0.022 0.018 0.015 0.013 0.005 0.002 
17 0.061 0.039 0.030 0.024 0.019 0.017 0.015 0.011 0.005 0.002 
18 0.058 0.038 0.028 0.022 0.018 0.016 0.014 0.011 0.004 0.002 
19 0.052 0.036 0.026 0.021 0.018 0.016 0.013 0.011 0.004 0.002 
20 0.050 0.034 0.025 0.020 0.016 0.015 0.012 0.010 0.004 0.002 
25 0.041 0.028 0.020 0.016 0.013 0.011 0.010 0.008 0.003 0.002 
30 0.033 0.023 0.017 0.014 0.012 0.010 0.008 0.007 0.003 0.001 
50 0.020 0.014 0.010 0.008 0.007 0.005 0.005 0.004 0.002 0.001 
75 0.014 0.009 0.007 0.005 0.004 0.004 0.003 0.003 0.001 0.001 
100 0.010 0.007 0.005 0.004 0.003 0.003 0.002 0.002 0.001 0.000 
150 0.007 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.000 
200 0.005 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.000 0.000 
250 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 
300 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 
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Table A.3. MSE of ( )2*
2dR  

 
n 

m 
2 3 4 5 6 7 8 10 25 50 

1 1.752 1.000 0.693 0.517 0.452 0.378 0.331 0.273 0.131 0.085 
2 1.089 0.531 0.331 0.262 0.204 0.190 0.165 0.135 0.064 0.044 
3 0.709 0.356 0.240 0.181 0.150 0.125 0.113 0.088 0.042 0.028 
4 0.586 0.264 0.181 0.136 0.108 0.098 0.086 0.068 0.032 0.022 
5 0.441 0.222 0.142 0.113 0.089 0.076 0.067 0.055 0.025 0.017 
6 0.366 0.180 0.122 0.093 0.075 0.064 0.055 0.046 0.022 0.014 
7 0.333 0.158 0.103 0.079 0.061 0.052 0.047 0.038 0.019 0.012 
8 0.289 0.137 0.092 0.068 0.055 0.048 0.042 0.033 0.016 0.011 
9 0.250 0.121 0.081 0.060 0.048 0.044 0.037 0.030 0.014 0.009 

10 0.222 0.107 0.073 0.055 0.044 0.039 0.032 0.026 0.013 0.008 
11 0.205 0.104 0.067 0.051 0.041 0.035 0.030 0.025 0.012 0.008 
12 0.182 0.093 0.060 0.048 0.038 0.031 0.027 0.022 0.010 0.007 
13 0.178 0.084 0.055 0.041 0.035 0.029 0.026 0.021 0.010 0.006 
14 0.163 0.078 0.051 0.040 0.032 0.026 0.024 0.019 0.009 0.006 
15 0.154 0.074 0.049 0.036 0.029 0.025 0.023 0.018 0.009 0.006 
16 0.144 0.067 0.046 0.035 0.029 0.023 0.020 0.017 0.008 0.005 
17 0.132 0.064 0.043 0.032 0.025 0.022 0.020 0.015 0.008 0.005 
18 0.124 0.062 0.042 0.031 0.025 0.021 0.018 0.015 0.007 0.005 
19 0.113 0.058 0.039 0.028 0.023 0.021 0.017 0.014 0.007 0.005 
20 0.111 0.056 0.036 0.028 0.022 0.019 0.016 0.013 0.007 0.004 
25 0.090 0.045 0.030 0.022 0.018 0.015 0.013 0.011 0.005 0.003 
30 0.076 0.037 0.024 0.019 0.016 0.013 0.011 0.009 0.004 0.003 
50 0.046 0.022 0.015 0.011 0.009 0.007 0.006 0.005 0.003 0.002 
75 0.032 0.014 0.010 0.008 0.006 0.005 0.004 0.004 0.002 0.001 
100 0.024 0.011 0.007 0.006 0.005 0.004 0.003 0.003 0.001 0.001 
150 0.015 0.007 0.005 0.004 0.003 0.002 0.002 0.002 0.001 0.001 
200 0.011 0.005 0.004 0.003 0.002 0.002 0.002 0.001 0.001 0.000 
250 0.009 0.004 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.000 
300 0.008 0.004 0.002 0.002 0.002 0.001 0.001 0.001 0.000 0.000 
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Table A.4. MSE of ( )2*
4cs  

 
n 

m 
2 3 4 5 6 7 8 10 25 50 

1 1.752 0.988 0.670 0.476 0.410 0.331 0.288 0.222 0.084 0.040 
2 1.089 0.517 0.322 0.250 0.187 0.171 0.147 0.113 0.042 0.021 
3 0.709 0.354 0.234 0.171 0.139 0.111 0.102 0.072 0.027 0.013 
4 0.586 0.259 0.174 0.131 0.100 0.089 0.076 0.058 0.021 0.011 
5 0.441 0.220 0.138 0.107 0.083 0.069 0.058 0.046 0.016 0.008 
6 0.366 0.177 0.118 0.087 0.069 0.058 0.049 0.038 0.014 0.007 
7 0.333 0.156 0.100 0.075 0.056 0.048 0.042 0.032 0.012 0.006 
8 0.289 0.135 0.090 0.066 0.052 0.043 0.037 0.028 0.011 0.005 
9 0.250 0.120 0.079 0.057 0.045 0.040 0.033 0.026 0.010 0.005 

10 0.222 0.106 0.071 0.052 0.041 0.035 0.028 0.022 0.008 0.004 
11 0.205 0.103 0.065 0.049 0.039 0.032 0.026 0.021 0.008 0.004 
12 0.182 0.093 0.059 0.046 0.036 0.029 0.024 0.019 0.007 0.003 
13 0.178 0.083 0.053 0.040 0.033 0.026 0.023 0.017 0.006 0.003 
14 0.163 0.078 0.050 0.038 0.030 0.024 0.021 0.016 0.006 0.003 
15 0.154 0.073 0.047 0.035 0.027 0.023 0.020 0.015 0.006 0.003 
16 0.144 0.066 0.044 0.033 0.027 0.021 0.018 0.015 0.005 0.003 
17 0.132 0.064 0.042 0.031 0.023 0.020 0.017 0.013 0.005 0.002 
18 0.124 0.062 0.041 0.029 0.023 0.019 0.016 0.012 0.005 0.002 
19 0.113 0.057 0.038 0.027 0.021 0.019 0.016 0.012 0.004 0.002 
20 0.111 0.056 0.035 0.027 0.020 0.018 0.014 0.011 0.004 0.002 
25 0.090 0.045 0.029 0.021 0.016 0.014 0.012 0.009 0.003 0.002 
30 0.076 0.036 0.024 0.018 0.015 0.012 0.010 0.008 0.003 0.001 
50 0.046 0.022 0.014 0.011 0.008 0.007 0.006 0.004 0.002 0.001 
75 0.032 0.014 0.009 0.007 0.006 0.005 0.004 0.003 0.001 0.001 
100 0.024 0.011 0.007 0.005 0.004 0.003 0.003 0.002 0.001 0.000 
150 0.015 0.007 0.005 0.004 0.003 0.002 0.002 0.002 0.001 0.000 
200 0.011 0.005 0.004 0.003 0.002 0.002 0.002 0.001 0.000 0.000 
250 0.009 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.000 0.000 
300 0.008 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.000 
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Table A.5. MSE of ( )2*
2 )MR(dMR  

 
m MSE 
2 1.752 
3 1.498 
4 1.015 
5 0.790 
6 0.677 
7 0.519 
8 0.440 
9 0.397 

10 0.366 
11 0.340 
12 0.297 
13 0.270 
14 0.248 
15 0.242 
16 0.213 
17 0.199 
18 0.199 
19 0.183 
20 0.178 
25 0.135 
30 0.118 
50 0.068 
75 0.043 
100 0.032 
150 0.022 
200 0.017 
250 0.014 
300 0.011 
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Table A.6. Percent change in MSE( v ) (Table A.1) over MSE(vc) (Table A.2) 
 

n 
m 

2 3 4 5 6 7 8 10 25 50 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 52.073 25.903 16.884 13.289 9.206 8.055 6.425 6.544 2.664 0.815 
3 68.193 35.431 20.908 15.835 13.093 10.186 7.706 7.619 2.964 1.380 
4 75.557 35.226 24.624 18.797 12.587 12.943 9.253 9.351 1.935 0.722 
5 84.482 41.662 27.244 20.039 15.126 13.957 10.916 9.449 2.340 1.101 
6 89.940 40.801 28.364 17.146 19.364 14.511 10.580 9.076 3.501 0.988 
7 84.869 45.270 28.358 25.440 17.214 10.842 11.563 10.332 4.594 1.879 
8 85.890 48.805 30.047 22.209 16.430 14.215 12.691 10.746 3.352 2.133 
9 89.357 43.492 31.116 20.060 18.264 14.980 11.704 9.735 3.795 1.924 

10 88.726 44.652 30.283 23.127 16.977 16.780 11.599 9.772 2.714 1.527 
11 90.284 47.833 31.328 20.932 17.115 15.487 12.731 10.912 3.942 1.449 
12 87.522 43.637 33.993 23.695 18.684 14.152 13.556 10.073 2.775 1.944 
13 92.710 43.511 26.581 26.125 19.541 13.470 14.819 9.337 2.875 2.287 
14 85.025 44.385 32.747 22.168 17.461 14.061 12.865 9.206 3.346 1.852 
15 92.841 51.279 34.034 21.948 19.869 16.353 13.868 9.921 3.877 0.501 
16 88.865 48.512 31.479 24.520 17.975 15.630 12.666 9.818 3.403 2.457 
17 93.852 49.103 30.251 22.397 18.714 15.667 13.909 10.301 4.064 1.888 
18 90.367 49.454 35.143 23.567 19.157 12.699 13.300 9.184 2.637 2.173 
19 93.210 46.948 33.387 23.265 16.551 17.442 14.703 10.343 3.472 2.220 
20 98.648 51.753 31.433 24.018 19.463 16.540 12.286 11.093 3.394 1.117 
25 92.231 50.113 32.890 24.573 19.684 15.712 15.426 10.608 3.755 1.647 
30 101.498 47.193 30.602 20.961 19.572 14.935 12.462 10.124 3.892 2.687 
50 99.336 49.047 32.104 25.351 19.752 17.257 14.353 11.368 3.573 1.625 
75 104.021 42.990 31.257 27.672 19.255 14.066 13.853 12.540 4.104 2.447 
100 103.253 48.012 32.163 27.019 20.347 15.836 14.674 9.487 4.611 2.196 
150 99.622 49.317 32.110 25.578 19.767 14.875 13.895 12.096 2.737 2.173 
200 99.086 48.312 33.452 27.408 20.831 18.136 14.511 11.227 4.837 1.806 
250 98.234 50.075 28.355 24.681 18.559 14.259 14.870 11.612 3.553 1.313 
300 95.180 48.556 33.210 26.037 20.520 16.140 14.207 10.015 4.702 2.797 
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Table A.7. Percent change in ( )
⎥⎦
⎤

⎢⎣
⎡ 2*

4csMSE  (Table A.4) over MSE( v ) (Table A.1) 

n 
m 

2 3 4 5 6 7 8 10 25 50 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 4.881 2.705 3.097 2.504 1.781 1.503 1.720 2.002 0.189 0.251 
3 6.383 6.081 5.074 3.414 2.595 3.238 2.916 1.927 1.082 0.419 
4 11.288 5.917 4.175 3.449 3.254 2.920 2.719 3.323 0.639 0.536 
5 11.460 8.756 4.641 5.167 3.533 2.564 1.907 2.180 0.679 0.462 
6 8.302 8.807 5.859 3.842 3.447 2.976 2.243 2.439 0.578 0.187 
7 13.171 7.632 5.779 5.650 2.772 2.706 3.247 2.562 1.147 0.338 
8 18.372 6.216 6.211 5.034 3.692 2.920 2.442 2.343 0.496 0.307 
9 11.715 9.304 5.771 4.618 2.924 3.732 4.079 2.461 0.581 0.643 

10 11.246 8.445 5.271 3.988 4.625 2.571 3.133 1.124 1.383 0.094 
11 13.623 8.562 6.059 6.324 4.598 3.544 2.660 2.845 0.916 0.507 
12 11.798 8.239 4.983 5.454 3.129 4.335 3.421 2.974 0.628 0.576 
13 17.774 8.531 6.361 4.593 3.890 2.999 3.081 1.622 0.779 0.217 
14 14.660 8.359 6.573 4.902 3.807 3.132 2.695 3.011 1.096 0.684 
15 14.841 8.254 6.022 5.661 4.008 3.416 2.771 2.536 0.759 0.491 
16 14.061 6.759 5.745 5.270 4.246 3.923 2.975 2.291 1.029 0.149 
17 12.719 9.391 7.298 4.528 3.963 3.591 3.355 1.873 1.131 0.211 
18 12.691 8.229 5.910 5.397 4.580 4.292 2.302 3.021 1.005 0.694 
19 12.543 8.205 7.148 3.732 3.448 4.753 2.423 2.115 0.903 0.100 
20 11.823 8.412 4.982 5.763 4.035 3.235 3.461 2.196 1.116 0.705 
25 14.414 8.806 8.196 5.137 4.691 3.476 3.517 2.900 1.079 0.311 
30 14.684 8.077 5.816 5.742 4.475 3.819 3.185 3.060 1.102 0.633 
50 13.124 8.101 5.945 5.744 4.827 3.670 2.727 3.491 0.909 0.284 
75 14.217 8.798 6.347 4.371 4.961 3.834 3.423 3.404 1.392 0.477 
100 11.679 8.384 6.871 5.844 3.480 2.562 3.648 2.768 1.351 0.920 
150 11.609 10.482 7.403 5.020 5.131 3.924 3.077 3.138 0.797 1.006 
200 13.577 9.599 5.333 5.454 4.021 3.456 4.161 2.549 0.938 0.571 
250 14.803 9.349 8.450 5.100 4.652 3.561 3.576 2.826 1.459 0.940 
300 12.505 8.421 6.809 5.323 3.496 3.308 3.730 1.700 0.698 0.437 
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Table A.8. Percent change in ( )
⎥⎦
⎤

⎢⎣
⎡ 2*

2dRMSE  (Table A.3) over ( )
⎥⎦
⎤

⎢⎣
⎡ 2*

4csMSE  (Table A.4) 

 
n 

m 
2 3 4 5 6 7 8 10 25 50 

1 0.001 1.215 3.480 8.627 10.131 13.936 15.067 22.798 55.428 113.664 
2 -0.001 2.594 2.563 4.613 9.264 11.179 11.860 18.848 52.969 107.533 
3 0.003 0.573 2.603 6.292 8.040 12.618 11.690 22.479 54.757 108.073 
4 0.004 1.784 4.013 3.941 8.350 10.524 13.311 17.925 51.426 105.104 
5 0.000 1.115 3.106 5.287 7.480 10.261 14.058 19.329 54.490 107.180 
6 -0.001 1.379 3.138 6.893 7.902 9.331 12.450 20.489 52.802 109.893 
7 0.002 0.942 3.337 5.896 8.455 9.545 12.367 18.134 55.828 102.097 
8 0.001 1.123 2.172 3.487 7.175 11.319 13.533 19.499 53.487 105.157 
9 0.002 1.121 2.672 6.139 7.143 10.362 14.281 17.587 47.735 103.686 

10 -0.001 0.825 3.198 4.816 7.233 10.044 12.150 17.570 53.828 105.455 
11 -0.004 1.292 3.164 5.275 6.896 9.743 13.373 18.760 57.409 100.255 
12 0.001 0.775 1.920 4.957 7.255 9.834 11.513 19.786 49.903 106.588 
13 -0.003 0.558 2.048 3.359 6.969 10.947 13.622 20.044 58.465 97.759 
14 0.002 0.246 3.045 5.150 8.640 8.495 12.859 17.647 55.959 99.568 
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Variance Estimation and Construction of Confidence Intervals for GEE Estimator 
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The sandwich estimator, also known as the robust covariance matrix estimator, has achieved increasing 
use in the statistical literature as well as with the growing popularity of generalized estimating equations 
(GEE). A modified sandwich variance estimator is proposed, and its consistency and efficiency are 
studied. It is compared with other variance estimators, such as a model based estimator, the sandwich 
estimator and a corrected sandwich estimator. Confidence intervals for regression parameters based on 
these estimators are discussed. Simulation studies using clustered data to compare the performance of 
variance estimators are reported.  
 
Key words: Generalized estimating equation, sandwich estimator, bias corrected estimator, variance-
covariance matrix 
 
 

Introduction 
 

Once the estimators of regression parameters are 
obtained from a generalized estimating equation 
(GEE) (see Diggle, Liang & Zeger,1994; Liang 
& Zeger,1986), one needs the variance estimator 
to conduct inferences about the parameters. The 
sandwich estimator, also known as the robust 
covariance matrix estimator, has been used to 
achieve this goal. Its virtue is that it provides 
consistent estimates of the covariance matrix for 
parameter estimates even if the correlation 
structure in the parametric model is mis-
specified. However, the properties of the 
sandwich method, other than consistency, had 
been little discussed until Kauermann and 
Carroll (2001). Further discussion about the 
properties will be provided, as well as a new 
variance estimator. This will be compared with 
other variance estimators: (a) a model based 
estimator,  (b) the sandwich estimator, and (c) a 
corrected sandwich estimator. 
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Thompson is Professor of Statistics. The authors 
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Estimation of )cov( iY  will be discussed 

first, where T
imii yyY ),,( 1 �=

 

is a vector of 

repeated measurements taken on the i th  
subject; associated with each measurement ijy  

is a vector of covariates T
ijpijij xxx ),,( 1 �=  

,1( mj ≤≤  )1 ni ≤≤ .  The mean of the 

marginal distribution of ijy  is denoted by ijµ . It 

is assumed that iY  and kY  are independent 

vectors for all ki ≠ .  A bias reduced variance 
estimator will be provided next, and its 
consistency and efficiency will be discussed. 
Also, methods of constructing confidence 
intervals based on the variance estimators will 
be discussed.  The simulation studies using 
clustered data to compare the performance of 
variance estimators will be reported. 
 
Estimating Covariance 
 The main parameter of interest 

is T
p ),,( 1 βββ �= , where β , covariates  ijx  

and the mean ijµ  of the marginal distribution 

are connected by a link    function (.).h  The 

variance )()var( 1
ijij vy µφ −= , where (.)v  is a 

known function, and where φ  is a dispersion 
scalar that is either unknown or a known 
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constant. Let )(αR  be a mm×  symmetric 
matrix which is a ‘working’ correlation matrix. 
The estimation of the nuisance parameter α  
will not be discussed  and will be assumed to be 
known. The results could be generalized to the 
estimated α̂  of the α . Let    
  

T
ij ijxη β= . 

Then   
 

)( ijij h ηµ = , 

 
and  
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are matrices with order pm× , mm×   and 
mm×  respectively. It is well known that the 

general estimating function is defined as the 
following (Liang & Zeger, 1986): 
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 iV1−φ  was used to replace the true 

covariance )cov( iY  in the optimal estimating 

function linear in iS .  Because )cov( iY  is 

usually unknown, the estimation of )cov( iY is 

first discussed. Typically, the residual estimator 
T

iiii YY )ˆ)(ˆ( µµ −− is used to estimate )cov( iY , 

where )ˆ,,ˆ(ˆ 1 imii µµµ �=  is the vector of fitted 

values based on the estimated parameters GEEβ̂  

obtained by solving equation 0),( =αβng .  

Because the fitted values tend to be closer to the 
observed values than the true values are, the 
residuals tend to be too small. Therefore, 

)cov( iY  tends to be underestimated by this 

method. To reduce the bias in general, another 
estimator of )cov( iY  will be proposed. 

Considering a first-order Taylor series 

expansion of )ˆ(ˆ GEEii βµµ =
 

at the true 

parameter 0β , one has the following 

expressions:  
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Based on an expansion for 0
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(see 

Zhang , 2003),  
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and  
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 ),( αβf  is used to denote the value of a 

function f at ),( αβ . For example,  
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Taking expectation on both sides of (4), under 
certain integral conditions, 
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where 
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                 (7)                                                                                                                
 
for nki ,,1, �= , and  iI   is an identity matrix 

of the  same dimension as that of iih .  An alter-

native estimator for )cov( iY  was proposed by 

Mancl and DeRouen (2001) that is intended to 
compensate for the bias  of the residual 

estimator in hypothesis testing: )cov( iY could 

be estimated by  
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under the assumption that  
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is negligible. Let ),ˆ(ˆ αβGEEiiii hh =  and 

)ˆ(ˆ
GEEii SS β= . It is hard to tell whether (8) is a 

good estimator, because the assumption is not 
always reasonable. If R(α) correctly specifies the 
correlation structure, the expectation of the 
estimator defined by (8) has the following 
expression: 
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and the estimator is biased upwards with order 

)( 1−nO . This makes it more conservative than 
the residual estimation. For the residual 
estimator of )cov( iY , 
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Because  
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is positively definite, the residual estimator 
appears to be biased downward with order 

)( 1−nO . 
          If the parameter values were known, one 
could use the following covariance estimator of 
the )cov( iY :  
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The notation )(v̂co iY  in (10) means an 

estimation of the )cov( iY . In this case, the first 

order asymptotic bias disappears, because  
 

)()cov(])(v̂[co 2

3−
+=Ε nOYY ici . 

 
Therefore, if the covariance estimator (10) was 
able to be used, the first order bias reduction 
would hold even if the correlation structure were 
not correctly specified. In practice, plug-in 
estimates are proposed 
 

),ˆ(ˆ αβGEEikik hh =  

 
and  
 

)ˆ(ˆ GEEii βµµ =  

 
to get ciY )(v̂co .  

         If there is a common correlation structure 
)()()( ii YcorrRR == αα , observations are 

pooled across different clusters to estimate 
)(αR  by 
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where ciY )(v̂co  and iΓ  are the same as before.  

The estimator R̂  is similar to Liang and Zeger’s 
suggestion for estimation of correlation structure 
(see Zeger & Liang, 1992; Zhao & Prentice, 

1990; Fahrmeir & Tutz, 2001). Once estimation 
of the correlation matrix R  is obtained, then, 
the )cov( iY   may be estimated by another way 

(also see Pan, 2001): 
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                                                                (12) 
 

The newiY )(v̂co  is a consistent estimator of  

)cov( iY  . 

If there is not a common correlation 
structure )(αR  across all clusters, one may 
classify clusters into several groups such that all 
subjects in the same group have the same 
correlation structure, and then apply (12) to 
obtain a correlation matrix for that group.  
 
Estimating Covariance Matrix Of GEE 
Estimator 
 It is known that the covariance matrix of 

the estimator GEEβ̂  has the following 

approximation:  
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If the  )(αR   is correctly specified, that is, if  
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then the first order approximation to )ˆcov( GEEβ  

is ),(
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0
][ αβφ −−−

ngn � .  So, one can estimate 

)ˆcov( GEEβ   by  
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                                                                       (14) 
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The estimate  φ̂   may be obtained by  
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where )ˆ(ˆ 2
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iiii YZ µ−Γ= −
. It was suggested 

(see Chaganty, 1997) that  the  φ̂ can be replaced 

by  )/(ˆˆ pnmnmbc −= φφ  if a bias-corrected 

estimate for φ  is preferable.  However, the 
correlation structure could be mis-specified,  that 
is  
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1
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because the correlation matrix may not be 
known in practice. In this case, it is well known 

that the variance )ˆcov( GEEβ  can be estimated 

consistently by the sandwich formula  
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where T
imimiii yy ),,( 11 µµε −−= � are the 

residuals. As previously discussed, estimating  

)cov( iY  by fitted 
T

iiεε ˆˆ  (
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ˆ
αβεε

GEE
ii = ) could 

be biased downward. Thus, the sandwich 

estimate sandGEE )ˆ(v̂co β  will be biased 

downward for estimating ).ˆcov( GEEβ  Recently, 

the bias corrected sandwich estimators have  
been provided by  Mancl  and DeRouen (2001) 
and Kauermann and Carroll (2001), where the 

estimation of )ˆcov( GEEβ  is obtained by 

replacing  
T

iiεε ˆˆ  by  ciY )(v̂co  defined by   (10),  

that is  
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Finally, if newiY )(v̂co  is used, a more efficient 

sandwich estimator could be obtained:  
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Consider the following:  
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where nΩ is nonnegative definite, nδ has higher 

order than nΩ and the operator “ vec ’’  is used 

to  stack the columns of a matrix together to 
obtain a vector.  
 

Proof: Because GEEβ̂  is n -consistent, expand 

newGEE )ˆ(v̂co β  and sandGEE )ˆ(v̂co β  at ( αβ ,0 ).  

Then, the following expansions are obtained: 
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where 11 )( −−−= iiii hnIH . Similarly,  
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By Theorem 7.16 in Schott (1997), 
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The covariance matrices of  
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and  
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can be obtained from (19) and (18): 
 

),(,
1

,4 0
})(cov({

1

)))ˆ(v̂(cocov(

αβεε

β
T

ni
T
i

n

i
ini

sandGEE

AvecA
n

vec

∑
=

≈
 

 
and  
 

0

, ,6
1 1

, , ( , )

ˆˆcov( (cov( ) ))

1
{ cov( ( )

} .

GEE new

n n
T

i n k i k k
i k

T T
k i i n

vec

A B vec
n

B A β α

β

ε ε
= =

≈ ∑ ∑  

 

Notice that )( T
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independent and free of n . It is clear that ikB ,  

is bounded when ∞→n . Hence, under some 
regularity conditions (see details in Zhang, 
2003), there is the following result: 
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as ∞→n .  Finally,  
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is a non-negative definite matrix and the nδ  has 

higher order of convergence to zero than nΩ .  

Thus, it has been proven that  
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asymptotically. The proof of the Theorem is 
completed.  
            In summary, the estimator of the 
covariance matrix of regression parameters 
could gain some efficiency. Also it is expected 
that the method is more plausible for small 
sample sizes n  than other estimators of the 
covariance.  
              For construction of confidence 

intervals, inference about βTL  is of interest, 

where TL
 

is a p×1   dimensional contrast 
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Based on (20), a symmetric confidence interval 
is given by  
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where qz  is the q  quantile of the standard 

normal    distribution and T
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 Based on the estimation of the 
covariance matrix (17), if the ( )iR α  is mis-

specified, the variance var( )T
GEEL β
�

 can be 

estimated consistently by the sandwich formula 
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where the iε ’s are the same as before. Then, 

based on (22), the symmetric confidence interval 
is given by  
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It follows from the discussion that the sandwich 
estimate appears to be biased downward. 
Therefore, the bias corrected sandwich 

estimation of  ˆvar( )T
GEEL β   can be obtained by 

replacing T
i iε ε  by cov( )i cY  defined by (10). 

Thus, the bias reduced sandwich estimate of the 
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 is obtained by 
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Corresponding to this estimate, another 
symmetric confidence interval is obtained 
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Then, a confidence interval is obtained: 
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Simulation Study and Discussions 
 Suppose that ijy  has marginally a 

negative binomial distribution, that is, 
),1(~ ijij NBy µ , i =1,...,n and j =1,...,m. The 

link function is log, i.e. log( ) ,T
ij ijxµ β=  where 

0 1 2( , , )Tβ β β β=  and   1 2(1, , )T
ij ij ijx x x=  

 

are 

the covariates: )1,0(~2 Nxij and 1ijx  are 

constants. The correlation structure among  

1 , ,i imy y�  is assumed to be given as an AR(1) 

with ρ =0.8. Now, the procedures developed in 
the last two sections are applied to the model 

( )
T

ijx

ijy e
βΕ = . The simulation study is 

completed for the number n of clusters as 10, 20, 
30, � , 90, 100 respectively. 
             A comparison of the performance of the 
estimators of the asymptotic variances is 

required. The estimators, 2
mod ( )el GEEσ β
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, 
2 ( )sand GEEσ β

�

�

, 2 ( )
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, and 2 ( )new GEEσ β
�
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, 

are defined by taking the vector L in an 
appropriate form in (20), (22), (24) and (26).  
Each of these variance estimators is related to a 
specified correlation structure ( )iR α . 

 First, the situation is observed, where 
the ( )iR α  in the estimators of variances are 

correctly specified to a constant. Figure 1 shows 

the comparisons of 2
mod 1( )elσ β

�

�

, 2
1( )sandσ β
�

�

, 
2

1( )
usandσ β

�

�

, and 2
1( )newσ β
�

�

  and the true variance 

(empirical variance) 1var( )β
�

 over 1000 

simulations, when the regression parameters are 
estimated by the GEE estimator. From Figure 1, 

it is found that the estimator 2
newσ�  of the 

variance is better than other three, since the 
biases are smaller, even for the clusters with 
small sample size. 
 The curves shown in Figure 1 are 
consistent with the property that all four 
estimators are asymptotically unbiased. Notice 
that, in all these plots, the sandwich estimator 

2
1( )sandσ β
�

�

 has the biggest bias when the sample 

size is small. It corresponds to the fact that the 
sandwich estimator would be expected to 

underestimate the variance of 1β
�

. It is not 

surprising that the model based estimator 
2
mod 1( )elσ β

�

�

 performs better than the sandwich 

estimator because the model is correct (the 
( )iR α  is correctly specified except for the 

constant α).  
               When the model is mis-specified, for 
example, if  ( )iR α  is an identity matrix, the 

model based estimator 2
mod 1( )elσ β

�

�

  is the worst 

one.  Figure 2 shows that (i) estimators     
2 ( )sand GEEσ β
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, 2 ( )
usand GEEσ β
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, and 2 ( )new GEEσ β
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are asymptotically unbiased; (ii) the 
2
mod ( )el GEEσ β

�

�

 is significantly biased;  (iii) the 

new estimator 2
1( )newσ β
�

�

 of the variance is the 

best one to estimate the 1var( )β
�

.  

 Now, the efficiency of the variance 
estimators is compared. For Figure 3,   the study 
is based on 1000 simulations for each number of 
clusters being 10, 20, �  , 100 respectively. The 
variances are calculated by  
 

2 2var( )estimator estimatorsσ =�

 , 

 

where 2
estimators  is sample variance of values of  

2
estimatorσ�   

 
which is obtained from the  formula in 

the last section for each simulation. The 
estimator can be “model”, “sand”, “sand u  ” and 

“new” respectively. Figure 3 illustrates that the 
corrected sandwich variance estimator 

2
1( )sandσ β
�

�

  has the biggest
 
standard error even 

for large sample size. 
 When the correlation structure is 
correctly specified, the model based estimator 

2
mod 1( )elσ β

�

�

 could be better than the corrected 

sandwich variance estimator, especially, when 
the sample size is small. When the number of 
clusters is greater than 30, the simulation shows 
that new variance estimator is the most stable 
one. It follows from Figure 4 that these facts still 
hold when the correlation structure is mis-
specified in the variance estimators in the 
manner of the example. Of course, the model 
based variance estimator should not be used in 
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this case because it is biased, although its 
variance is the smallest one. If the sample size is 
small, the sandwich estimator performs well. 
 With variance estimators at hand, 
confidence intervals could be constructed with 
different variance estimators. It will be seen that 
the confidence intervals obtained by the new 
variance estimator perform better than the other 
three   in   terms   of   coverage   probability. The 
problem of testing a null hypothesis 0 0:H β ϑ∈  

will be considered.  Essentially, confidence 
intervals are closely related with tests. The aim 
is to compare CI’s which are related to the 
various estimators introduced in the third 
sections of this article.  In the simulation study, 
the CI for 1β  corresponds to a test that 

0 1 10:H β β= . The test statistic could be  

1 10 1( ) / ( )new newT β β σ β= −
� �

�

 or other ones 

obtained by different variance estimators. It 
follows from Figure 5 that the coverage 
percentages with the new variance estimator are 
bigger; therefore, the confidence interval based 
on the new variance estimator is accurate for 
smaller sample sizes than other ones with the 
variance estimators ‘model’, ‘sand’ or ‘sand u ’ . 

 It appears to be better to use the new 
variance estimator to construct confidence 
intervals, especially when the sample size is 
small.  In the example of a mis-specified 
correlation structure in the variance estimators, 
the new and adjusted sandwich estimators both 
give accurate confidence intervals (see Figure 
6). Again, the model based variance estimator 
should not be used in this case. 
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Figure 6 
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The Use Of Hierarchical ANCOVA In Curriculum Studies 
 
                   Show-Mann Liou                  Chao-Ying Joanne Peng 
                    National Taiwan Normal University  Indiana University-Bloomington 
 
 
Many educational studies are carried out in intact settings, such as classrooms or groups in which 
individual data were collected before and after a treatment. Researchers advocate either the use of 
individual scores as the unit of analysis or class means. Both approaches suffer from conceptual and 
methodological limitations. In this article, the use of hierarchical ANCOVA for analyzing quasi-
experimental data including baseline measures is designed and promoted. It is illustrated with a real-
world data set collected from a curriculum study. Results showed that the hierarchical ANCOVA is a 
conceptually and methodologically sound approach, and is better than ANCOVA based on individual 
scores or ANCOVA based on class means. The potential of using hierarchical ANCOVA designs for 
curriculum studies is discussed in terms of statistical power and congruence with study plans. 
 
Key words: Educational research methodology, hierarchical ANCOVA, Project Citizen, civic education, 
civic skills, civic dispositions, adolescent students 
   
 

Introduction 
 
Among educational research methods, true 
experiments are designed to investigate causes 
and consequences in behavior (Fraenkel & 
Wallen, 2000; McMillan & Schumacher, 2001). 
However, most circumstances in education 
prevent the possibility of random selection and 
random assignment of subjects into experimental 
and control conditions. Consequently, the use of 
true experiments is limited in educational 
research. Instead, quasi-experiments are much 
more prevalent. 
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Even with quasi-experiments, 
educational researchers are faced with another 
difficulty that weakens the internal validity of a 
study. Namely, students in the same classroom 
are often administered the same treatment by the 
same instructor making their performances not 
statistically independent. Consider a study in 
which a researcher is interested in studying the 
effectiveness of two instructional strategies on 
students’ achievement in biology. To carry out 
this study, a researcher may randomly select 
intact classes and train teachers of these classes 
to implement the instructional strategies. 
Consequently, students in a classroom cannot be 
randomly assigned to learn from a particular 
strategy, nor can teachers teach students 
independently or in isolation. To account for the 
difference in students’ achievement that already 
existed in the beginning of the study and to 
compensate for the lack of independence among 
students’ performances, a researcher can 
administer a pretest to determine a baseline 
measure of the outcome (i.e., biology 
achievement in this case). A one-way analysis of 
covariance (ANCOVA) can be subsequently 
applied to posttest measures to test differences 
due to the two strategies while statistically 
controlling for pretest differences. The 
ANCOVA approach has been a method of 
choice since Lindquist (1940) brought to light 
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the issues with non-independence in subjects’ 
responses in intact groups.  

It is generally agreed that ANCOVA is 
an appropriate statistical technique for analyzing 
quasi-experimental data with baseline measures 
as long as its assumptions—linearity and 
independence between the covariate and the 
independent variable—are met (Buser, 1995; 
Henson, 1998; Hines & Foil, 2000; Loftin & 
Madison, 1991). There is, however, one issue 
remaining: what is the proper unit of analysis in 
quasi-experimental studies, class means or 
individual scores? (Barcikowski, 1981; Blair & 
Higgins, 1986; Hopkins, 1982; Morran, 
Robison, & Hulse-Killacky, 1990; Peckham, 
Glass, & Hopkins, 1969).  

The issue has generated and received 
considerable attention in the literature ever since 
Lindquist (1940) presented an argument and 
rationale for using group means as the unit of 
analysis for data collected from intact groups. At 
the heart of the disagreement is: what is the most 
appropriate unit for data analysis and 
interpretation? With the use of individual scores, 
it is assumed that students in the same classroom 
are unrelated, as far as treatments are concerned, 
and therefore statistically independent. This 
assumption and its computational approach 
could lead to an overestimation of treatment 
effects with sufficiently large samples. 
Conversely, using group means as the unit of 
analysis ensures that the independence 
assumption is met, at the individual level, and 
the interpretation of the data has internal validity 
(Peckham, Glass, & Hopkins, 1969). However, 
this approach results in a great loss in sample 
size; hence, a decrease in statistical power 
(Barcikowski, 1981). Furthermore, the use of 
group means limits the generalizability of the 
findings only to classes, and results may not be 
informative to educators in general. It is evident 
from the brief summary that each approach has 
its own conceptual and methodological 
limitations. 

This article addresses the limitations 
raised above regarding the use of these two 
traditional ANCOVAs, one based on 
individual’s scores and the other on group 
means, and proposes a third approach. This 
approach applies the hierarchical ANCOVA to 
data collected from intact settings such as 

classrooms. It will be shown that the hierarchical 
ANCOVA is a conceptually and 
methodologically sound analytical approach that 
is well suited to educational research. 
Specifically, this approach isolates the nuisance 
variable of classes and incorporates the inherent 
hierarchical nature of the data structure into the 
analysis. Consequently, this approach not only 
takes into account the independence assumption 
required of individuals’ scores but also makes 
valid and meaningful inferences at the 
individual’s level.  

The hierarchical ANCOVA is 
introduced and demonstrated using a real world 
data set (Liou, 2002). The Liou study was 
primarily interested in the effects of We the 
People…Project Citizen on civic skills and four 
dimensions of the civic dispositions of 
adolescent students. The study exemplified most 
educational research in which classrooms are 
randomly selected or even assigned to treatment 
conditions but students are not. Furthermore, 
students’ levels of civic skills and civic 
dispositions were assessed both before and after 
the implementation of Project Citizen. Data 
were analyzed by three methods: ANCOVA 
based on individual scores, ANCOVA based on 
class means, and hierarchical ANCOVA based 
on individual scores. Results from the three 
methods were shown to be different; they were 
interpreted in terms of substantive implications 
and methodological considerations (i.e., 
statistical power, practical as well as statistical 
significance). Recommendations and 
implications for educational researchers are 
offered in light of the relative superiority of 
hierarchical ANCOVA over the other two 
methods.  

 
Design Structures: Crossed and Nested 
(Hierarchical) Designs 
 To ensure the internal and external 
validities of statistical analysis of quasi-
experiments, one should carefully plan two 
aspects of a study: the structure of the design 
and the unit of analysis. Specifically, two major 
structures are possible for a quasi-experimental 
design: crossed and nested (or hierarchical) 
(Peng, 2004). Likewise, two types of units of 
analysis need to be distinguished conceptually 
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and computationally: the unit of research design 
and the unit of statistical analysis.  
 A crossed design employs all 
combinations of levels of two or more 
independent variables in a study. It is typically 
used to test differences in a dependent variable 
due to main effects of independent variables and 
their interactions. A nested design is a research 
design in which levels of one independent 
variable (say B) are hierarchically subsumed 
under (or nested within) levels of another 
independent variable (say A). As a result, 
assessing the complete combination of A and B 
levels is not possible in a nested design.  

Nested design is alternatively called 
hierarchical design; it is used most often in 
quasi-experimental studies in which researchers 
have little or no control over random assignment 
of observations into treatment conditions. The 
design is popular, and sometimes necessary, 
among curriculum studies, clinical, sociological, 
and ethological research in which participants 
belong to intact groups (such as classes, 
therapeutic groups, etc.); these intact groups 
cannot be dismantled to allow for a random 
assignment of participants into different 
treatment conditions.  

Many studies in education can be 
carried out only in nested designs. Consider the 
example mentioned earlier in which instructional 
strategies are administered in classroom settings. 
Even though students individually learn and are 
tested on their achievement in biology, their 
learning effects are to an extent dependent on 
the learning environment and dynamics of 
interactions among peers. Thus, students are 
nested within classrooms which in turn are 
nested within instructional strategies. In this 
case, a crossed design neglects the hierarchical 
nature of the data and produces incorrect 
interpretations of the results. According to 
Roberts (2000), neglecting a nested design leads 
to the following consequences: 

 
Neglecting a nested design when 
one actually exists will make the 
research: (1) wrongly attribute a 
main effect to an interaction effect 
when, in fact, no interaction 
exists; (2) divide by the wrong 
degrees of freedom when 

determining the mean square and 
F-value (and the statistical 
significance of the F-value); and 
(3) assume that a main effect has a 
smaller effect size (eta square) 
because the sum of squares for 
that effect is being partly 
attributed to the interaction effect. 
(Roberts, 2000, p. 6)  

 
Unit of Research Design and Unit of Statistical 
Analysis 

Another issue that should be taken into 
consideration when analyzing quasi-experiments 
is the unit of analysis. Valid statistical inferences 
from data depend on the compatibility between 
the unit of a research design and that of 
statistical analysis (Peckham, Glass & Hopkins, 
1969; Glass & Stanley, 1970; Morran, 
Robinson, & Hulse-Killacky, 1990). Units of a 
research design refer to entities that are allocated 
to a condition of the independent variable, 
independently from other entities. Units of 
statistical analysis refer to entities whose 
measures or scores form the basis of statistical 
inferences. Clearly, a research design unit can be 
either individuals or classes. Even if classes are 
the research design units, students’ scores can 
still be treated as units of statistical analyses. 

When analyzing data in an ANOVA 
framework, educational researchers may, and 
frequently do, make an a priori decision to treat 
individuals as the unit of statistical analysis 
(Morran, Robinson, & Hulse-Killacky, 1990). 
Several reasons contribute to this decision. One 
is to ensure that the statistic, whether it is F, q, 
or t, is tested with the maximal df based on the 
sample. Another reason for regarding 
individuals as the unit of analysis is to retain the 
variability at the individual level, thus, 
maximizing information a research can glean 
from the data. This approach further affords 
researchers the opportunity to study the effects 
of certain organismic or demographic 
characteristics and their interactions with 
independent variables on the dependent variable 
(Hopkins, 1982; Morran, Robinson, & Hulse-
Killacky, 1990; Peckham, Glass, & Hopkins, 
1969). It is impossible to study these effects if 
group means are analyzed. Thus, the group 
means approach ignores the hierarchical nature 
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of the data collected in typical educational 
settings and consequently impoverishes 
inferences that may be drawn at the individual 
level. 

Yet, a few researchers advocate the use 
of group means on statistical grounds. They 
argue that participants studied in intact settings 
are not the appropriate unit of analysis since 
they fail to meet the independence assumption. 
The result of such a violation is deflated within-
group variability, hence, inflated treatment 
effects. In a typical educational setting, the 
classroom provides a shared educational 
experience; thus, students are not entirely 
independent insofar as sampling errors are 
concerned. According to Peckham, Glass, and 
Hopkins (1969), “violating the assumption of 
independence of errors may substantially affect 
the validity of probability statements” (p.338). 
They concluded that the use of group means 
promotes “the greatest insurance that the 
independence assumption has been met” 
(p.344); and therefore statistical inferences from 
the result are valid. Some proponents went 
further in arguing that when the independent 
assumption is not tenable, treating individuals as 
the unit of statistical analysis leads to non-
replicable findings.  

As Hopkins (1982) showed that the 
recommendation of using class means proves to 
be restrictive, unnecessary, and less powerful 
than alternatives that are derived directly from 
individual data and proper statistical models. A 
better treatment of the inter-dependence among 
units of observation is to employ an efficient 
statistical modeling technique, such as the 
hierarchical ANCOVA, that adequately 
represents the condition under which data were 
collected and provides the greatest statistical 
power and external validity.  
 
Hierarchical ANCOVA 

In light of the issues raised in the 
preceding two sections, it is not without 
understanding that the two ordinary ANCOVA’s 
– one based on class means and the other on 
individual scores – are unlikely to yield 
satisfactory interpretation of data collected from 
hierarchical settings that include pretests or 
baseline measures. In their places, researchers 
have proposed that nested or hierarchical 

ANCOVA be used in order to account for 
variances due to treatments, classes, and 
individual students nested within classrooms 
(Hopkins, 1982; Lindman, 1992; Morran, 
Robison & Hulse-Killacky, 1990; Robert, 2000). 
Hierarchical ANCOVA combines features from 
a hierarchical research design with those of 
analysis of covariance.  

Assume that a researcher wishes to 
study the effect of Internet search strategies 
(Factor A) on college students’ information 
seeking efficiency (the dependent variable). Six 
classes of freshmen English at a state college are 
randomly selected; three classes are assigned to 
the linear search condition and the other three to 
the nonlinear search condition. At the onset of 
the study, all freshmen are assessed in terms of 
their information seeking efficiency. These 
measures will be treated as covariates in analysis 
of covariance. Figure 1 illustrates the research 
design. 

Because freshmen enrolled in these 
classes form intact groups, they cannot be 
randomly assigned to the two treatment 
conditions on an individual basis. Furthermore, 
their learning processes and behaviors are likely 
to be mutually dependent; differences in 
students’ information seeking behavior among 
classes are embedded within each treatment 
condition. This restriction makes this design a 
nested design rather than a fully crossed design. 
In addition, the pretest measures taken from all 
participants can serve as a covariate in the 
hierarchical ANCOVA model presented below: 

      

)()()( jkijkjxijkyijk eXbetaY +++−+= βαµµ , 

             (1) 
Where  
 
i =  1, …,n (number of freshman in a class,   
 say, 20); 
 
j =  1, …,p (number of treatment 
 condition=2 in this example); 
 
k= 1,…,q (number of classes=3 in this 
 example); 
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Yijk is the dependent score of the ith 

participant in the jth level of Factor A 
and kth level of Factor B; 

 
µy is the population mean of the dependent 
 scores; 
 
beta is the pooled within-group regression 

coefficient derived from regressing the 
covariate score, Xijk on the dependent 
score Yijk; 

 
Xijk is the covariate measure (such as the 

pretest score) of the ith participant in the 
jth level of Factor A and kth level of 
Factor B; 

 
µx is the population mean of the covariate 

measures; 
 
αj is the effect of the jth treatment 

condition of Factor A; algebraically, it 
equals the deviation of the jth 
population mean (

jyµ ) from the grand 

mean (µy). It is a constant for all 
participants’ dependent scores in the jth 
condition, subject to the restriction that 
all αj sum to zero across all conditions. 

 
βk(j) is the effect of the kth condition under 

Factor B, nested within the jth level of 
Factor A; algebraically, it equals the 
deviation of the population mean (

jkyµ ) 

in the kth and jth combined level from 
the grand mean (µy). It is a constant for 
all observations’ dependent scores in the 
kth condition, nested within Factor A’s 
jth condition. The effect is assumed to 
be normally distributed in its underlying 
population. 

 
ei(jk) is the random sampling error associated 

with the ith participant in the jth 
condition of Factor A and kth condition 
of Factor B. It is a random variable that 
is normally distributed in the underlying 
population and is independent of βk(j). In 
comparison, the ordinary ANCOVA 
model based on individual scores does 
not examine nor acknowledge the nested 
effect, βk(j) in its model as follows: 
 

            ,)( ijkjxijkyijk eXbetaY ++−+= αµµ   

                                                                         (2) 
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where all terms are defined as previously, except 
that there is no βk(j) effect and no nested effect of 
classes within treatment conditions. 
 A third approach, i.e., the ordinary 
ANCOVA based on class means, follows the 
same model as model (2) except that data are 
aggregated over the entire class before they are 
analyzed by the ANCOVA model as stated 
below: 
            
       ,)( jkjxjkyjk XbetaY εαµµ ++−+=  

            (3) 
where  
 
j =  1, …,p (number of treatment 
 condition=2 in this example); 
 
k= 1,…,q (number of classes=3 in this 
 example); 
 
Yjk is the average dependent score of the kth 

class in the jth level of Factor A; 
 
µy is the population mean of average class 
 dependent scores; 
 
beta is the within-group regression 

coefficient derived from regressing the 
covariate score, Xjk on the dependent 
score Yjk; 

 
Xjk is the average covariate measure (such 

as the pretest score) of the kth class in 
the jth level of Factor A; 

 
µx is the population mean of average class 

covariate measures;  
 
αj is the effect of the jth treatment 

condition of Factor A; algebraically, it 
equals the deviation of the jth 
population mean (

jyµ ) from the grand 

mean (µy). It is a constant for all class 
average dependent scores in the jth 
condition, subject to the restriction that 
all αj sum to zero across all conditions; 

 
 
 

ejk is the random sampling error associated 
with the kth class in the jth condition of 
Factor A. It is a random variable that is 
normally distributed in the underlying 
population.  

 
Note in model (3), the i subscript is no longer 
present due to the fact that individuals are not 
the unit of analysis. Instead, class means are 
used; they are denoted by the k subscript. 
 
Statistical Assumptions and Tests 

The null hypothesis (H0) for all the three 
models is identical, namely, the parameter αj 
equals zero in the population for all conditions 
(or linear search and nonlinear search according 
to the present example). The alternative 
hypothesis (H1) states that some of the αj’s do 
not equal zero. To test the null hypothesis 
according to models (1), (2), or (3), data are 
organized to form a ratio of mean squares 
treatment (MSt) over mean squares error (MSe). 
The ratio is distributed as a central F distribution 
under the null hypothesis but non-central F 
distribution under the alternative, provided that 
statistical assumptions are met. For all three 
models, it is assumed that random sampling 
errors [ei(jk), eijk, or ejk] are normally distributed, 
homogeneous in variances, and independent 
from each other in the population. Furthermore, 
the covariate (pretest in the example) is assumed 
by three models to be linearly related with the 
dependent variable, independent of the 
independent variable, homogeneous in 
regression slopes and variances, and measured 
without errors. Finally, for Model (1) alone, it is 
assumed that the βk(j) effect is normally 
distributed in its underlying population, as stated 
earlier.  

It might be asked why researchers need 
three models when any of the three can be used 
to test the null hypothesis. The answer lies in 
selecting a model that renders the greatest 
statistical power and the least bias. In terms of 
statistical power, the hierarchical ANCOVA 
model in (1) enables a researcher to separate the 
nuisance variable of classrooms that may affect 
the participant’s   performance   on   the    
dependent  
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variable, from the sampling error. The inclusion 
of the nested effect βk(j) in Model (1) effectively 
removes a portion of the sum of squares due to 
this effect from the error sum of squares (or 
SSe). Consequently, the magnitude of SSe in 
Model (1) is smaller than that in Model (2). The 
reduction in SSe is accompanied by a reduction 
in degrees of freedom for the error term as well. 
As it will be shown with real world data in the 
next section, if the reduction in SSe is sizeable, it 
can offset the loss in degrees of freedom. Hence, 
the MSe (=SSe/dfe) is made smaller in Model (1) 
than in Model (2). A smaller MSe in the 
denominator of an F-ratio inevitably leads to a 
greater F statistic and potentially more powerful 
F test. Compared with Models (1) and (2), 
Model (3) has the lowest statistical power 
because it aggregates data over all participants in 
a classroom. This approach reduces the sample 
size (in terms of number of classes, rather than 
number of individuals) and therefore the 
statistical power. 

All three models employ a covariate to 
statistically adjust differences due to covariates 
in nonrandomized studies, or to provide a more 
precise estimation of the treatment effect (i.e., 
αj) in randomized studies. Thus, three models 
are comparable in these regards. In the next 
section, the application of hierarchical 
ANCOVA is illustrated in a curriculum study. 
Results of this application will be contrasted 
with those obtained from two ordinary 
ANCOVA’s based on individual scores and 
class means, respectively. The empirical 
evidence based on real data will support the 
recommendation for the hierarchical ANCOVA 
as a conceptually sound and analytically 
powerful method for interpreting data gathered 
from intact groups that also include a pretest or 
baseline measure.  
 
An Illustration 

To help illustrate the superiority of 
hierarchical ANCOVA modeling over two 
ordinary ANCOVA’s, a real world data set with 
all three methods was analyzed. Results will be 
shown to be different. They are discussed in 
terms of interpretability, generalizability, and 
statistical power. 
 
 

Data Set and Its Related Study  
 Data came from a curriculum study  by 
Liou (2002), which was carried out in Taiwan. 
There were dramatic political changes in Taiwan 
in recent years. These political changes created a 
society that is becoming politically more open 
and democratic than ever before. In order to 
prepare citizens for future developments of a 
truly democratic society and the rule of law, the 
civic curricula in the Taiwanese educational 
system aim at cultivating in students the 
knowledge, skills, and dispositions 
indispensable for such developments and 
fostering a participatory perspective. However, 
civic education faces formidable barriers, most 
notably a gap between pedagogical theory and 
classroom practice, and a conventional emphasis 
on the acquisition of factual knowledge 
regarding the political system instead of actual 
civic participation. Consequently, the goal of 
adequately preparing democratic citizens 
through education is not being fulfilled.  

Project Citizen is a civic education 
program for middle school students. The 
program actively engages students in learning 
how to monitor and influence public policy 
through an interactive and cooperative process. 
It is typically implemented as a class project. For 
the project, students work together to identify 
and study a public policy issue, eventually 
developing an action plan for implementing their 
policy solution. According to its developers, the 
goal of Project Citizen is to motivate and 
empower adolescents to exercise their rights and 
to accept the responsibilities of democratic 
citizenship through the intensive study of a local 
community problem. Specifically, Project 
Citizen is designed to help adolescents: 

  
• learn how to monitor and influence 

public policy in their communities; 
• learn the public policy-making 

process; 
• develop concrete skills and the 

foundation needed to become 
responsible participating citizens; 

• develop effective and creative 
communication skills; and 

• develop more positive self-concepts 
and confidence in exercising the 
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rights and responsibilities of 
citizenship. (Center for Civic 
Education, 2000) 

 
In light of the goals of Project Citizen 

and problems facing Taiwan’s civic education, it 
seems that Project Citizen can be used as a 
curriculum supplement to remedy some of the 
weaknesses of Taiwan’s civic education and to 
help Taiwan prepare participatory citizens. 
Consequently, Liou conducted the study to 
evaluate the effects of Project Citizen on the 
civic skills and dispositions of adolescent 
students in Taiwan.  
 
Research Design 

For administrative reasons, it was 
deemed impractical to randomly assign students 
into different pedagogical conditions. Therefore, 
the study employed a pretest-posttest quasi-
experimental design with one treatment and one 
comparison conditions. Twelve Taiwanese high 
school teachers, each teaching one experimental 
and one comparison class, participated in this 
research. Classes taught by the same teacher 
were randomly assigned to either the treatment 
or the comparison condition. In the fall of 2001, 
students in the experimental classes received 
instruction in Project Citizen as an adjunct to the 
traditional instruction of Civics or Three 
Principles of the People. The comparison 
students received traditional, discipline-based 
instruction that focused on the hierarchical 
model of knowledge acquisition. Liou collected 
data from 942 students on the pre- and post-
treatment assessment of their civic skills and 
civic dispositions along with their demographic, 
experiences, teacher-related, and school-related 
information.  
 
Measurements 

To help illustrate the hierarchical 
ANCOVA approach, students’ pre-test and post-
test of the civic skills and four dimensions of 
civic dispositions as a function of their group 
(treatment versus comparison) information were 
analyzed; all extracted from Liou’s study (2002). 
Civic skills are those intellectual and 
participatory capacities that enable active 
involvement in civic life (Vontz, et al., 2000). 
Civic dispositions are those traits of public and 

private character that contribute to both the 
political efficacy of the individual and the 
common good of society (Vontz, et al., 2000). 
Civic dispositions in the Liou study were 
operationalized by summing the mean scores 
derived from four subscales of Adolescent 
Student Civic dispositions Scale (ASCDS): 
Politic Interest, Propensity to Participate in 
Future Political Life, Commitment to Rights and 
Responsibilities of Citizenship, and Sense of 
Political Efficacy. 

Means on the civic skills and 
dispositions ranged from 1 to 6; the higher the 
score, the better was the performance. 
Descriptive information about the pre-test and 
the post-test of civic skills and civic dispositions 
is presented in Table 1. The post-test means 
were adjusted for the pre-test scores using the 
ANCOVA approach based on individual scores. 
The group information was coded 
dichotomously, 1 for the experimental group 
(participated in Project Citizen) and 2 for the 
comparison group (did not participate in Project 
Citizen). There were equal numbers of students 
in each group.  
 
Research Hypothesis and Data Analyses 

The research hypothesis posted to data 
was: there was significant difference between 
experimental and comparison students in their 
civic skills and four dimensions of civic 
disposition, namely, political interest, propensity 
to participate, commitment of rights and 
responsibilities of citizenship, and sense of 
political efficacy due to the implementation of 
Project Citizen. To test this research hypothesis, 
three statistical procedures were applied to the 
data: ANCOVA based on individual scores, 
ANCOVA based on class means, and 
hierarchical ANCOVA based on individual 
scores. The statistical model underlying 
ANCOVA based on individual scores was 
Model (2); Model (3) underlay ANCOVA based 
on class means, and Model (1) for hierarchical 
ANCOVA based on individual scores. All three 
ANCOVA’s treated the post-test scores of the 
five outcome variables as the dependent  
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variables and the pre-test scores as the covariate. 
The independent variable was the 
implementation (or lack of) of Project Citizen in 
civic education curriculum. Prior to analyses, 
statistical assumptions such as normality, equal 
variance, independence of errors, linearity 
between pretest (the covariate) and posttest 
scores, and common slope for all treatment 
conditions were examined. All assumptions 
associated with the three procedures were 
satisfactorily met. Appendix A lists SAS® 
programming codes for examining these 
assumptions. 

Based on the rationale and previous 
research, it was hypothesized that Project 
Citizen would have a positive impact on 
adolescent’s civic skills and civic dispositions. 
Hence, statistical tests pertaining to the research 
hypothesis were conducted as one-tailed at an 
alpha level of .025. It was also decided that 
univariate tests were preferred over multivariate 
tests of all five dependant variables because the 
objective of this article was to compare models, 
instead of accounting for underlying 
relationships among these dependant variables. 
The data were analyzed using SAS® version 8.2 
(SAS Institute Inc., 1999) and SPSS® version 
10 (SPSS Inc., 1999) in the Windows 2000 
environment.  

 

 
ANCOVA Results Based on Individual Scores 

Data of the 942 observations were 
submitted to the GLM procedure in SPSS® 
version 10 to determine the effect of Project 
Citizen on the civic skills and dispositions of 
Taiwanese adolescents. Univariate ANCOVA 
results based on individual scores are shown in 
Table 2. The five F-tests were carried out using 
MSerror as the denominator. An examination of 
the results indicated that students participating in 
Project Citizen significantly outperformed 
students in the comparison group on civic skills 
and three dimensions of civic dispositions 
including political interest, propensity to 
participate, and commitment to rights and 
responsibilities of citizenship. The two groups 
were comparable on the fourth dimension of 
civic disposition, namely, sense of political 
efficacy. 
 
ANCOVA Results Based on Class Means  

The second ANCOVA procedure used 
class means instead of individual scores as the 
unit of statistical analysis. In order to perform 
ANCOVA based on class means, data were first 
aggregated by classes resulting in 24 classroom 
means (12 treatment class means with 471 
students and 12 comparison class means with 
471   students). ANCOVA   was   subsequently  

 

Table 1. Descriptive Information about the Sample Data. 
 

Pretest Adjusted Posttest Outcome variables Group 
Mean SD Mean 

Experiment 3.45 .85 3.62 Civic skills 
   Comparison 3.60 .80 3.45 

Experiment 3.40 .87 3.47 Political interest  
  Comparison 3.55 .86 3.38 

Experiment 3.61 .78 3.64 Propensity to participate  
  Comparison 3.67 .72 3.56 

Experiment 5.22 .51 5.11 Commitment of rights and 
responsibilities of citizenship Comparison 5.19 .53 4.97 

Experiment 4.47 .84 4.49 Sense of political efficacy 
Comparison 4.41 .81 4.42 

  
Note. Full sample: N=942. Females: nf = 475 (50.4%). Males: nm = 467 (49.6%). Experimental group: ne = 
471 (50%). Comparison group: nc = 471 (50%). 
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applied to these 24 class means using the GLM 
procedure in SPSS® version 10. Results are 
shown in Table 3. According to Table 3, 
students participating in Project Citizen 
significantly   outperformed    students    in    the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
comparison group on civic skills. Furthermore, 
two dimensions of civic dispositions, namely, 
propensity to participate and commitment to 
rights and responsibilities of citizenship were 
also found to be significant with experimental 
students outperforming comparison students.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. ANCOVA Results Of Civic Skills And Four Civic Dispositions Subscales Using Individual Scores 
As The Unit Of Analysis  

 
Source SS df MS F p 
Civic skills      

Group 7.93 1 7.93 19.89 < .001** 
Error 374.352 939 .399   

Political interest      
Group 1.62 1 1.62 4.15 .011* 
Error 365.45 939 .389   

Propensity to participate      
Group 1.17 1 1.17 4.29 .010* 
Error 255.78 939 .272   

Commitment to rights and 
responsibilities of citizenship 

     

Group 4.98 1 4.98 17.12 < .001** 
Error 273.26 939 .291   

Sense of political efficacy      
Group 1.22 1 1.22 2.44 NS a 
Error 468.86 939 .499   

  
* p < .025 (one-tailed), **p < .01 (one-tailed). 
a Not significant at α = .025. 
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Hierarchical ANCOVA Results 

The results of the hierarchical 
ANCOVA are presented in Table 4 that treated 
intact classes as nested in the two experimental 
conditions and students nested in classes. As 
shown in Table 4, students participating in 
Project Citizen significantly outperformed 
students in the comparison group in civic skills 
and also in three dimensions of civic 
dispositions,      namely,       political      interest, 
propensity to participate, and commitment to 
rights and responsibilities of citizenship.  

SAS® programming codes for 
performing the hierarchical ANCOVA is 
provided in Appendix A for each of the 
dependent variables. Note that for each 
dependent variable (such as civic skills); two 
statistical procedures in SAS® were applied to 
data: PROC REG and PROC GLM, twice. The  

 
 
 
 

 
purpose of each statistical analysis is explained 
in the TITLE statement immediately preceding 
the RUN; statement. For example, the purpose 
of REG procedure was to test the linearity 
assumption regarding the linear relationship 
between the covariate and the dependent 
variable. The linear relationship was assumed 
within each condition as well as for the entire 
data set. The first GLM procedure was to apply 
the ANCOVA model to the data according to 
equation (1) presented earlier. The second GLM 
procedure was to test the equal slope assumption 
assumed by the ANCOVA model. This 
assumption was tested via the interaction 
between the covariate (i.e., pretest) and the 
independent variable (participating in Project 
Citizen or not). Non-significant F test results 
were obtained for all five dependent variables 
indicating that the equal slope assumption was 
met.  
 
 

Table 3. ANCOVA Results of Civic Skills and Four Civic Dispositions Subscales with Class Means as 
The Unit Of Analysis. 

 

Source SS df MS F p 
Civic skills      

Group .19 1 .19 10.77 .001** 
Error .37 21 .018   

Political interest      
Group .037 1 .037 2.66 NS a 
Error .288 21 .014   

Propensity to participate      
Group .039 1 .039 3.21 .022* 
Error .254 21 .012   

Commitment to rights and 
responsibilities of citizenship 

     

Group .111 1 .111 5.40 .008* 
Error .431 21 .021   

Sense of political efficacy      
Group .020 1 .020 1.07 NS a 
Error .393 21 .019   

  
* p < .025 (one-tailed), **p < .01 (one-tailed). 
a Not significant at α = .025. 
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Comparison of Three Results 
Results obtained from three statistical 

approaches regarding the research question are 
contrasted in Table 5. For civic skills, propensity 
to participate, commitment to rights and 
responsibilities of citizenship, and sense of 
political efficacy, there was agreement among 
the three approaches. For the political interest of 
Taiwanese adolescent students, ANCOVA based 
on class means yielded a non-significant result; 
this contrasted with a significant finding (p < 
.025) obtained from the hierarchical ANCOVA 
and ANCOVA based on individual scores. As 
stated earlier, ANCOVA based on class means 
aggregated scores into class means leading to 
great loss in units of analysis and therefore, 
statistical power, compared to the other two 
approaches. Further,  findings  from  the  means 

approach limit the interpretation and 
generalizability to class averages only—a result 
not useful or relevant to most educators or 
parents.  

The hierarchical ANCOVA approach 
yielded results comparable to those obtained 
from ANCOVA based on individual scores. Yet, 
the hierarchical approach uncovered additional 
class differences that could not be found by 
ANCOVA based on individual scores due to its 
model configuration. As shown in Table 4 in 
gray areas, the 12 classes nested in each 
treatment condition exhibited statistically 
significant differences (p < .05, two tailed) on 
civic skills, propensity to participate, and 
commitment to rights and responsibilities of 
citizenship. On sense of political efficacy, class 
differences were significant at the p < .10 (two-
tailed) level but not at .05. 

Table 4. Hierarchical ANCOVA Results for Civic Skills And Four Civic Dispositions Subscales Using 
Individual Scores as The Unit of Analysis  

 
Source SS df MS F p 

Civic skills      
Group 7.37 1 7.37 10.89 < .001** 
Class (Group) 14.90 22 .677 1.73 .0201 
Error 359.46 417 .391   

Political interest      
Group 1.803 1 1.803 3.53 .019* 
Class (Group) 11.233 22 .511 1.32 .1466 
Error 354.219 917 .386   

Propensity to participate      
Group 1.280 1 1.280 2.81 .024* 
Class (Group) 10.031 22 .156 1.70 .0232 
Error      

Commitment to rights and 
responsibilities of citizenship 

     

Group 4.8855 1 4.885 6.03 .006* 
Class (Group) 17.815 22 .810 2.91 < .001** 
Error 255.441 917 .279   

Sense of political efficacy      
Group 1.062 1 1.062 1.43 NS a 
Class (Group) 16.315 22 .742 1.50 .0643 
Error 452.549 917 .494   

  
* p < .025 (one-tailed), **p < .01 (one-tailed). 
a Not significant at α = .025. 
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These differences merited further 
investigation as to why and how these 
differences existed, as well as to what extent 
these differences were due to teacher-related, 
school-related, or student-related characteristics. 
Research into these class differences can be a 
worthy endeavor; findings may suggest curricula 
or cultural changes to schools or classes in order 
to bring about equality.  

Implications for Educational Researchers 
In this article, the application of 

hierarchical ANCOVA for analyzing quasi-
experimental data including baseline measures is 
demonstrated. This procedure is illustrated with 
a real-world data set to investigate the effect of 
Project Citizen on Taiwan adolescent students’ 
civic skills and four dimensions of civic 
dispositions, namely, political interest, 
propensity to participate, commitment of rights 
and responsibilities of citizenship, and sense of 
political efficacy. Results obtained from the 
hierarchical ANCOVA and ANCOVA based on 
individual scores were comparable. Both 
statistical approaches were shown to be more 
powerful than ANCOVA based on class means. 
Additional   statistically   significant  differences  

 

among classes assigned to either the treatment or 
the comparison condition were uncovered by the 
hierarchical ANCOVA, but not by ANCOVA 
based on individual scores. On the basis of 
statistical power, interpretability, and 
generalizability, it was concluded that the 
hierarchical ANCOVA was superior to 
ANCOVA based on individual scores or class 
means. The latter two approaches suffered from 
conceptual and methodological limitations.  

In accounting for effects associated with 
Project Citizen, the hierarchical ANCOVA 
approach incorporated the hierarchical (or 
nested) nature of Liou’s (2002) quasi-
experimental design into the analysis of 
covariance model. Consequently, data analysis 
was congruent with the way the study was 
actually carried out. It retained the maximum 
number of degrees of freedom for testing 
pertinent population parameters. It employed the 
pretest score as a covariate in order to control for 
pre-existing differences in students that were 
unrelated to Project Citizen. The hierarchical 
ANCOVA was shown in this article to be well 
suited to educational research in which data are 
collected from intact settings (such as 

Table 5. Comparison Of Three ANCOVA Results For Civic Skills And Four Civic Dispositions Subscales 
 

Hierarchical  
ANCOVA 

ANCOVA 
(Individual Scores) 

ANCOVA 
(Class Means) 

 
Source 

p p p 

Civic skills < .001** < .001** <.001** 

Political interest .019* .011* NS a 

Propensity to participate .024* .010* .022* 

Commitment to rights and 

     responsibilities of citizenship 

.006* < .001** .008* 

Sense of political efficacy NS a NS a NS a 

  

* p < .025 (one-tailed), **p < .01 (one-tailed). 
a Not significant at α = .025. 
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classrooms) in quasi-experimental designs that 
also include one or more baseline measures.  

To ensure credibility and to minimize, if 
not eliminate, potential bias in the findings 
reported in quasi-experimental research, it is 
necessary that educational researchers keep the 
following recommendations in mind.  

First and the foremost, efforts should be 
exerted to randomly assign subjects to 
treatments. By so doing, educational researchers 
exclude the confounding issue of unit of analysis 
from their research and therefore, reduce bias 
and distortion in estimating population 
parameters or testing pertinent hypotheses. 
Researchers are advised to achieve random 
assignment whenever possible. 

Second, data collected in intact groups 
deserve a rigorous examination. In educational 
research, it is possible to randomly assign 
subjects to treatment conditions and to establish 
circumstances in which the outcome measures 
are isolated from systematic carryover effects or 
threats to the independence assumption. Yet, it is 
often impossible or even undesirable to 
administer treatments individually in isolation. 
To account for the hierarchical nature of 
research designs and to maintain the 
interpretation of results at the individual level, 
an appropriate statistical model such as 
hierarchical ANCOVA should be employed.  

Lastly, it should be noted that, even 
though the hierarchical ANCOVA has been 
proven to be a conceptually and 
methodologically sound procedure, this 
approach should be regarded as a viable 
approach that exercises only statistical control of 
biases. Moreover, the hierarchical ANCOVA is 
computationally more complex than an ordinary 
ANCOVA; it requires a set of restrictive 
statistical assumptions (Kirk, 1995). These 
assumptions must be met before valid inferences 
can be drawn from data analysis. 
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Appendix A   SAS® Programming Codes 
 
*----------------------------------------------------Test of Civic Skills-----------------------------------------------------------; 
PROC  REG; 

MODEL q2_ski=q1_ski; 
 PLOT q2_ski*q1_ski; 
 BY q1_group; 
TITLE  'TEST OF LINEARITY ASSUMPTION: Civic Skills'; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group class; 
 MODEL q2_ski=q1_ski q1_group class(q1_group)/SOLUTION; 
 TEST H=q1_group E=class(q1_group); 
 Means q1_group; 
 LSMEANS q1_group/E=class(q1_group) ADJUST=BON E STDERR PDIFF; 
TITLE  'Hierarchical ANCOVA for Civic Skills'; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group; 
 MODEL q2_ski=q1_ski q1_group q1_ski*q1_group; 
TITLE  'TEST OF EQUAL SLOPE ASSUMPTION: Civic Skills'; 
RUN; 
 
*----------------------------------------------------Test of Political Interest------------------------------------------------------; 
PROC  REG; 
 MODEL q2_int=q1_int; 
 PLOT q2_int*q1_int; 
 BY q1_group; 
TITLE 'TEST OF LINEARITY ASSUMPTION: Political Interest'; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group class; 
 MODEL q2_int=q1_int q1_group class(q1_group)/SOLUTION; 
 TEST H=q1_group E=class(q1_group); 
 Means q1_group; 
 LSMEANS q1_group/E=class(q1_group) ADJUST=BON E STDERR PDIFF; 
TITLE 'Hierarchical ANCOVA for Political Interest'; 
RUN; 
PROC  GLM; 
 CLASS q1_group; 
 MODEL q2_int=q1_int q1_group q1_int*q1_group; 
TITLE 'TEST OF EQUAL SLOPE ASSUMPTION: Political Interest'; 
RUN; 
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*----------------------------------------------------Test of Propensity to Participate------------------------------------------; 
PROC  REG; 
 MODEL q2_par=q1_par; 
 PLOT q2_par*q1_par; 
 BY q1_group; 
TITLE 'TEST OF LINEARITY ASSUMPTION: Propensity to Participate'; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group class; 
 MODEL q2_par=q1_par q1_group class(q1_group)/SOLUTION; 
 TEST H=q1_group E=class(q1_group); 
 Means q1_group; 
 LSMEANS q1_group/E=class(q1_group) ADJUST=BON E STDERR PDIFF; 
TITLE 'Hierarchical ANCOVA for Propensity to Participate'; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group; 
 MODEL q2_par=q1_par q1_group q1_par*q1_group; 
TITLE 'TEST OF EQUAL SLOPE ASSUMPTION: Propensity to Participate'; 
RUN; 
 
*---------------------------------Test of Commitment to Rights and Responsibilities--------------------------------------; 
PROC  REG; 
 MODEL q2_right=q1_right; 
 PLOT q2_right*q1_right; 
 BY q1_group; 
TITLE 'TEST OF LINEARITY ASSUMPTION: Commitment to Rights and Responsibilities' ; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group class; 
 MODEL q2_right=q1_right q1_group class(q1_group)/SOLUTION; 
 TEST H=q1_group E=class(q1_group); 
 Means q1_group; 
 LSMEANS q1_group/E=class(q1_group) ADJUST=BON E STDERR PDIFF; 
TITLE 'Hierarchical ANCOVA for Commitment to Rights and Responsibilities'; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group; 
 MODEL q2_right=q1_right q1_group q1_right*q1_group; 
TITLE 'TEST OF EQUAL SLOPE ASSUMPTION: Commitment to Rights and Responsibilities'; 
RUN; 
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*----------------------------------------------------Test of Political Efficacy----------------------------------------------------
-; 
PROC  REG; 
 MODEL q2_effic=q1_effic; 
 PLOT q2_effic*q1_effic; 
 BY q1_group; 
TITLE 'TEST OF LINEARITY ASSUMPTION: Political Efficacy'; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group class; 
 MODEL q2_effic=q1_effic q1_group class(q1_group)/SOLUTION; 
 TEST H=q1_group E=class(q1_group); 
 Means q1_group; 
 LSMEANS q1_group/E=class(q1_group) ADJUST=BON E STDERR PDIFF; 
TITLE 'Hierarchical ANCOVA for Political Efficacy'; 
RUN; 
 
PROC  GLM; 
 CLASS q1_group; 
 MODEL q2_effic=q1_effic q1_group q1_effic*q1_group; 
TITLE 'TEST OF EQUAL SLOPE ASSUMPTION: Political Efficacy'; 
RUN; 
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A Combined Individuals and Moving Range Control Chart 
 

Michael B. C. Khoo        S. H. Quah        C. K. Ch’ng 
School of Mathematical Sciences 

Universiti Sains Malaysia 
 
 
 
An individuals control chart is usually used to monitor shifts in the process mean when it is not possible 
to form subgroups. The moving range of two successive process measures is used as the basis for 
estimating the process variability. Similar to the case of the RX −  and SX −  charts, the individuals-
moving range (I-MR) charts are used simultaneously in the monitoring of the process mean and variance 
respectively for individual observations, requiring maintaining two different charts. In this article, a new 
approach is suggested where the measurements of both the process mean and variance are plotted on one 
chart. It is referred to as the combined I-MR chart. An average run length (ARL) study is conducted to 
evaluate its performance with respect to shifts in the process mean and variance. Examples are provided. 
 
Key words: Individuals charts; moving range charts; average run length (ARL); process mean; process 
variance 
 

 
Introduction 

 
There are many situations in which the sample 
size used for process monitoring is one 
(Montgomery, 2001). Some of these are in 
situations involving the use of automated 
inspection and measurement technology where 
every unit manufactured is analyzed. Situations 
where the production rate is slow and 
monitoring of the process is required before the 
time needed to form subgroups may also call for  
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process monitoring involving individual 
observations. The monitoring of individual 
observations is also important in situations 
where repeat measurements on a process differ 
only because of laboratory or analysis error, as 
in many chemical processes. 
 Traditionally, individuals control charts 
are used in the monitoring of processes 
involving individual observations. For such 
cases, the moving range charts are employed in 
the monitoring of the process variability. Here, 
the moving range of two successive observations 
is defined as (Montgomery, 2001): 
 
  

1−−= iii XXMR ,   i = 2, 3, …        (1) 

                    
A moving range chart is established by plotting 
the moving ranges computed from eq. (1) based 
on the limits  
 

                  MRDUCL 4=        (2a) 
 

                               MRCL =        (2b) 
  

                            MRDLCL 3=        (2c) 
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where MR  is the average of the moving range 
computed from a preliminary set of data. After 
establishing an in-control state for the process 
variability, the individuals chart is set up by 
plotting the individual observations, iX , on a 
chart with limits (Montgomery, 2001): 
 

             
2

3
d

MR
XUCL +=        (3a) 

  
                                   XCL =                        (3b) 
  

                        
2

3
d

MR
XLCL −=        (3c) 

 
Note that in eqs. (2a), (2c), (3a) and (3c), 3D , 

4D  and 2d  are control chart constants for n = 2 
whose values are given in most quality control 
textbooks. 
 
A Combined I-MR Chart 
 Let iX , i = 1, 2, …, represent individual 
observations from a process for a quality 
characteristic of interest. It is assumed that iX  ∼ 

( )22σσ+µ baN , , where a = 0 and b = 1 indicate 
that the process is in-control; otherwise, the 
process is out-of-control. Here, µ and σ denote 
the on-target mean and standard deviation. 
Define 
 

 
σ

µ−
= i

i

X
M  ∼ N(0,1),   i = 1, 2, …  (4)  

 
and  
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                             N(0,1),   i = 2, 3, …             (5) 
where )(   ⋅Φ −1  and )(1   H ⋅  are the inverse of the 
standard normal distribution function and the 
chi-square distribution function with one degree 
of freedom respectively. Because the value of 

iX  is unavailable when i = 0, 
1

V  is computed 

using ( )
⎭
⎬
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⎧
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XH . It is found that 

iV  follows a standard normal distribution 
(Appendix). 
 Due to the transformation of the iV  

statistic in (5), ( )ii VM ,cov  is intractable. Thus, 

in finding the correlation of iM  and iV  to 
determine the extent of the relationship between 
the two statistics, 500 individual observations 
from a N(0,1) distribution are generated, the iM  

and iV  statistics computed and the sample 

correlation coefficient of iM  and iV  is 
calculated using the Pearson correlation 
procedure from SPSS version 11. The output is 
shown in Figure 1. Note that the individual 
observations can also be generated from other 
normal distributions. From Figure 1, the 
correlation of iM  and iV  is insignificant at the 
1% significance level because its associated p-
value is 0.657. Here, the sample correlation 
coefficient is –0.02. Based on this result, it can 
be concluded that the correlation of iM  and iV  
is negligible if the underlying distribution of the 
individual observations is normal. 
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Figure 1. The Sample Correlation Coefficient 
of the iM  and iV  Statistics based on 500 
Individual Observations (Output from SPSS) 
 

 

iM  monitors the process mean while iV  the 
process variability. These two statistics are 
combined to form a new statistic given by 
 
                        ( )iii V MC ,max=          (6) 
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The statistic iC  will be large when the process 
mean has shifted away from its target value 
and/or when the process variance has increased 
or decreased. 
 Because the correlation of iM  and iV  is 
negligible, it is shown (Appendix) that the 
approximate density function of iC  for the in-
control case is  
 
 ( ){ }12)(4)( −Φφ= cccf ,   c ≥ 0         (7) 
 
where ( )  ⋅φ  and ( )  ⋅Φ  are the density and 
distribution functions of a standard normal 
random variable respectively. The combined I-
MR chart only requires an upper control limit 
(UCL) because iC  is nonnegative. Suppose that 

the desired Type-I error set by management is α, 
then the UCL can be obtained from the 
following integral: 
 

               ∫
∞

α=
 

UCL 
dccf )(           (8) 

 
Steps for Implementing the Combined I-MR 
Chart 
 The following steps serve as guidelines 
in setting up a combined I-MR chart: 
 

(i) If the process parameter(s) are 
unknown, then they are estimated as 
follow: The process mean, µ, is 
estimated from the formula, 

m

X

X

m

i
i∑

== 1 , where m is the number 

of observations in the stable 
preliminary data set used in the 
estimation. The process standard 
deviation,   σ,   is   estimated   using 

            ,
2d

MR
where      

            
2 3 ...

1

mMR MR MR
MR

m

+ + +
=

−
 

 
 

           
 

 is  the   average  of  the  moving  ranges.         
 Here, 2d  is the value of the control chart 
 constant for sample size, n = 2. 
 
(ii) Compute iM , iV  and iC  for each 

observation. 
 
(iii) Determine the UCL using eq. (8) based 

on a desired Type-I error. 
 
(iv) When iC  ≤ UCL, plot a dot at time i. 

When iC  > UCL, check both iM  and 

iV  against UCL. If only iM  is greater 

than UCL, plot “m+” at time i when iM  
> 0 to indicate the process mean has 
increased, and plot “m−” at time i when 

iM  < 0 to indicate the process mean has 
decreased. 

 
Similarly, if iV  alone is greater than 

UCL, plot “v+” at time i when iV  > 0 to 
indicate the process variability has 
increased, and plot “v−” at time i when 

iV  < 0 to indicate the process variability 
has decreased. For the case when both 

iM  and iV  are greater than the UCL, 

plot “++”, “+−”, “−+” or “−−” if iM  > 0 

and iV  > 0, iM  > 0 and   iV  < 0, iM  < 

0 and iV  > 0, or iM  < 0 and iV  < 0 
respectively. 

 
(v) Investigate the cause(s) for each out-of-

control point so that appropriate 
corrective actions can be taken. 

 
Plots for Determining the UCL 
 Figure 2 gives a plot for approximating 
the UCL based on a desired Type-I error. The 
plot  is   based  on in-control   ARLs    ( sARL0 ) 
between 100 and 1000. It is constructed from 
points (UCL , 0ARL ) obtained using a simple 
Mathematica 4.0 program shown in Figure 3 
based on eq. (8). 
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Figure 2. A Plot of UCL vs. 0ARL  for the Combined I-MR Chart 
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Figure 3. A Mathematica 4.0 Program to Compute the UCL for a Combined I-MR Chart 
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 A sensitivity analysis can be performed 
using the Mathematica 4.0 program in Figure 3 
to obtain the exact UCL for a desired Type-I 
error. The following example shows how a 
sensitivity analysis is performed, assuming that 
the Type-I error is set at α = 0.004. The 
corresponding in-control ARL is 0ARL  = 250. 
The value of UCL approximated from the plot in 
Figure 2 is 3.08. Values of α which correspond 
to values of UCLs close to the one 
approximated, i.e., 3.08 are computed using the 
program in Figure 3 and are tabulated in Table 
1. From Table 1, it is noticed that the value of 
UCL which produces the closest Type-I error to 

α = 004.0
250

1 =  is 3.09. 

 
A Study on the Performance of the Combined I-
MR Chart 
 A simulation study is conducted using 
SAS version 8 to compute the ARL values of the 
combined I-MR chart based on 0ARL  = 250 
and 500. Each ARL reading is based on 5000 
simulation trials. The UCLs are determined, 
using the approach discussed in the previous 
section, to be 3.09 and 3.29 for 0ARL  = 250 
and 500 respectively. Shifts in both the process 
mean and variance are considered. The process 
mean shifts from µ to µ + aσ while the process 
variance from σ to bσ, where a = 0 and b = 1 
represent the in-control case. The values of a ∈ 
{0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3} and b ∈ {1, 
1.05, 1.1, 1.2, 1.25, 1.5, 2, 2.5, 3, 4, 5} are 
considered. The simulation results for 0ARL  =  
 
 

 
 

250 and 500 are given in Tables 2 and 3 
respectively. 
 Both Tables 2 and 3 show that as the 
magnitude of the shift (either in the process 
mean or variance or both) increases, the value of 
ARL decreases. For example, consider the case 
of b = 1 and a ∈ {0, 0.25, 0.5, …, 3} in Table 2, 
where only the process mean shifts. The ARL 
values for this case are 275.71, 234.75, 153.14, 
…, 2.13 for a = 0, 0.25, 0.5, …, 3 respectively, 
where the values show a declining trend as the 
magnitude of the shift in the mean increases. A 
similar trend is observed when only the process 
variance shifts. For example, from Table 2, 
when a = 0 and b ∈ {1, 1.05, 1.1, …, 5}, the 
ARL values of 275.71, 192.88, 133.86, …, 1.84 
show a declining trend as b increases, i.e., as the 
magnitude of the shift in the variance increases. 
Note that the ARL values will also show a 
decreasing trend if the magnitude of shifts in 
both the mean and variance increase 
simultaneously. It is shown in Tables 2 and 3 
that the computed 0ARL  values are 275.71 and 
546.38 respectively, where they differ only 
slightly from the desired values of 250 and 500. 
This shows that the UCL computed from the 
approximate density function, f (c) in eq. (7) is 
reliable, which indicates that the correlation 
between iM  and iV  is negligible. The 
difference in the estimated versus intended 
Type-I errors is very little, i.e., 

00363.0
71.275

1 =  vs. 004.0
250

1 =  and 

00183.0
38.546

1 =  vs. 002.0
500

1 = .  

  
 

 
 
 

 
Table 1. Values of the Type-I Error (α) Computed from Corresponding UCLs 

 
UCL α 
3.07 0.00427659 
3.08 0.00413573 
3.09 0.00399912 
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Table 2. ARL Profiles of the Combined I-MR Chart for 0ARL = 250 with UCL = 3.09 

 

 a 

b 0 0.25 0.5 0.75 1 1.25 1.5 2 3 

1 275.71 234.75 153.14 87.97 50.43 29.15 17.39 7.16 2.13 

1.05 192.88 163.40 108.28 67.63 40.59 24.28 15.00 6.59 2.12 

1.1 133.86 116.37 81.44 52.36 32.71 20.65 13.13 6.13 2.12 

1.2 71.61 64.18 49.05 34.37 23.12 15.33 10.62 5.44 2.11 

1.25 55.41 50.93 39.89 28.31 19.80 13.52 9.82 5.21 2.10 

1.5 20.70 19.46 16.98 13.70 10.90 8.51 6.59 4.23 2.08 

2 7.21 7.04 6.72 6.13 5.51 4.84 4.26 3.27 2.04 

2.5 4.29 4.28 4.12 3.94 3.72 3.47 3.21 2.75 1.99 

3 3.10 3.10 3.07 3.01 2.93 2.80 2.65 2.39 1.92 

4 2.22 2.21 2.19 2.17 2.13 2.10 2.06 1.97 1.77 

5 1.84 1.84 1.83 1.82 1.81 1.79 1.78 1.74 1.64 
  

 
 

Table 3. ARL Profiles of the Combined I-MR Chart for 0ARL = 500 with UCL = 3.29 
 

 a 

b 0 0.25 0.5 0.75 1 1.25 1.5 2 3 

1 546.38 457.34 283.45 156.09 83.45 46.63 26.52 10.25 2.57 

1.05 358.51 302.16 196.48 110.97 64.00 37.53 22.57 9.08 2.54 

1.1 240.74 205.22 137.70 83.06 50.35 30.53 19.04 8.27 2.51 

1.2 115.87 101.70 75.92 50.99 33.47 23.77 14.34 7.01 2.46 

1.25 85.47 76.72 59.06 41.48 27.85 18.86 12.85 6.52 2.44 

1.5 27.48 26.38 22.79 18.12 14.00 10.76 8.26 5.10 2.34 

2 8.67 8.42 7.93 7.26 6.40 5.64 4.88 3.69 2.23 

2.5 4.89 4.81 4.65 4.44 4.18 3.87 3.60 3.01 2.13 

3 3.41 3.41 3.37 3.28 3.16 3.04 2.90 2.58 2.03 

4 2.33 2.33 2.33 2.30 2.27 2.22 2.18 2.08 1.85 

5 1.94 1.94 1.92 1.90 1.89 1.88 1.85 1.80 1.71 
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 The combined I-MR chart has an 
advantage over the traditional individuals and 
moving range charts because the former allows 
practitioners to set the joint Type-I error of the 
two charts. Conversely, the Type-I error of the 
traditional moving range chart cannot be set by 
practitioners because it is based on fixed limits 
given in eqs. (2a) – (2c). Another advantage of 
using the combined chart is practitioners do not 
have to plot two charts separately, i.e, one each 
for individual measurements and moving ranges. 
Due to the advent of modern computers, the 
computation of the combined I-MR chart’s 
statistics in eqs. (4), (5) and (6) is only a trivial 
problem. 
 
Applications 
 Two examples will be given to illustrate 
how the combined I-MR chart is used in real 
situations. They are based on observations 
generated from SAS version 8. The in-control 
observations are assumed to follow a standard 
normal distribution. Out-of-control observations 
are generated from a ( )22, σσ+µ baN  

distribution with a > 0, b > 1, µ = 0 and σ = 1. 
The first example deals with a shift in the 
process mean while the second a shift in the 
process variance. The Type-I error for the two 
examples is set as α = 0.004 which corresponds 
to 0ARL  = 250. Thus, the UCL is determined to 
be 3.09. 
 
Example 1 
 The first 5 observations are generated 
from a N(0,1) distribution to represent the in-
control situation. Observations 6 to 20 which 
represent the out-of-control situation involving a 
shift in the mean are generated from a N(3,1) 
distribution. Here, the magnitude of the shift in 
the mean in multiples of standard deviation is a 
= 3. The individual observations generated, iX ,  
 
 
 
  
 
 
 
 

i = 1, 2, …, 20 together with the computed iM , 

iV  and iC  statistics are shown in Table 4. The 
combined I-MR chart is plotted in Figure 4. 
 The chart shows that out-of-control 
signals due to a shift in the mean are detected at 
observations 7, 9, 12, 13, 15, 19 and 20. 
Following the first out-of-control signal at 
observation 7, an investigation needs to be made 
to search for the assignable cause(s) so that the 
process can return to an in-control state again. 
 
Example 2 
 This example involves a shift in the 
variance. The first 5 observations which 
represent the in-control case are generated from 
a standard normal distribution. This is followed 
by generating the next 15 observations from a 
N(0,4) distribution, where the magnitude of the 
shift in the standard deviation is b = 2. Table 5 
summarizes the values of the individual 
observations, iX , and their corresponding 

computed iM , iV  and iC  statistics. The 
combined I-MR chart is given in Figure 5. 
 

Conclusion 
 

The proposed combined I-MR chart extends the 
work of Chen, Cheng and Xie (2001) where they 
suggested a joint monitoring of the process mean 
and variance of subgrouped data with one 
EWMA chart. The combined I-MR chart enables 
a simultaneous monitoring of the process mean 
and variance involving individual 
measurements. It combines the usual individuals 
chart and the moving range chart into a single 
chart. The advantages of the combined chart 
discussed in an earlier section serve as basis for 
practitioners to use the chart in place of its 
traditional counterparts.  
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Table 4. An Example of Application for a Shift in the Process Mean based on a = 3 and UCL = 3.09 

 
Obs. No., i 

iX  iM  iV  iC  

1 0.7508 0.7508 −0.2416 0.7508 
2 0.7835 0.7835 −2.0870 2.0869 
3 0.6009 0.6009 −1.2660 1.2660 
4 0.1087 0.1087 −0.6063 0.6063 
5 −0.1614 −0.1614 −1.0300 1.0300 
6 2.4860 2.4860 1.5447 2.4860 
7 4.2386 4.2386* 0.7884 4.2386* 
8 2.9663 2.9664 0.3363 2.9664 
9 3.2089 3.2089* −1.0978 3.2089* 

10 1.1256 1.1256 1.0771 1.1256 
11 2.9149 2.9149 0.8211 2.9149 
12 3.4370 3.4370* −0.5592 3.4370* 
13 3.2020 3.2020* −1.1171 3.2020* 
14 2.9880 2.9880 −1.1737 2.9880 
15 4.3715 4.3715* 0.4456 4.3715* 
16 3.0377 3.0377 0.3972 3.0377 
17 2.6764 2.6764 −0.8357 2.6764 
18 2.1498 2.1498 −0.5523 2.1498 
19 4.6574 4.6574* 1.4311 4.6574* 
20 3.2859 3.2859* 0.4340 3.2859* 

  
Note: * indicates the out-of-control points 
 

 
 
                 

Figure 4. A Combined I-MR Chart for a Shift in the Process Mean 
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Table 5. An Example of Application for a Shift in the Process Variance based on b = 2 and  

UCL = 3.09 
 

Obs. No., i 
iX  iM  iV  iC  

1 −0.3487 −0.3487 −0.8605 0.8605 
2 −1.2907 −1.2907 −0.0134 1.2907 
3 1.0317 1.0317 1.2784 1.2784 
4 0.0442 0.0442 0.0376 0.0442 
5 −0.1895 −0.1895 −1.1207 1.1207 
6 −2.0778 −2.0778 0.9086 2.0778 
7 −0.1000 −0.1000 0.9864 0.9864 
8 0.4558 0.4558 −0.5081 0.5081 
9 −0.3241 −0.3241 −0.2053 0.3241 

10 3.0338 3.0338 2.1065 3.0338 
11 0.4064 0.4064 1.5286 1.5286 
12 1.8603 1.8603 0.5132 1.8603 
13 2.3679 2.3679 −0.5818 2.3679 
14 −2.7172 −2.7172 3.4111* 3.4111* 
15 1.8373 1.8373 3.0162 3.0162 
16 −1.4168 −1.4168 2.0258 2.0258 
17 −0.7237 −0.7237 −0.3162 0.7237 
18 0.9509 0.9509 0.7180 0.9509 
19 −0.5085 −0.5085 0.5184 0.5184 
20 −1.6768 −1.6768 0.2308 1.6768 

  
Note: * indicates the out-of-control point 
 

 
                 

Figure 5. A Combined I-MR Chart for a Shift in the Process Variance 
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Appendix 
 

If iX  ∼ ( )2,σµN , i = 1, 2, …, then  
 

σ
µ−

= i
i

X
M  ∼ N(0,1),  i = 1, 2, … .           (A1) 

 
Because 
  
 1−− ii XX  ∼ ( )22,0 σN ,  i = 2, 3, …, 
 
it follows that  
 

 ( )1
2

1
−−

σ
ii XX  ∼ N(0,1),  i = 2, 3, … .     

 
Since the square of a standard normal statistic is 
a chi-square statistic with one degree of freedom 
(Hogg & Craig, 1978), it follows that 
 

 ( )2

122

1
−−

σ ii XX  ∼ )1(2χ ,  i = 2, 3, … . 

 
Then, 
 

     ( ) ⎥
⎦

⎤
⎢
⎣

⎡ −
σ −

2

121 2

1
ii XXH  ∼ U(0,1),  i = 2, 3, … 

 
 
 
 
 
 
 
 

where )(1   H ⋅  is the chi-square distribution 
function with one degree of freedom. Let 

)(1   ⋅Φ −  be the inverse of the standard normal 
distribution function so that 
 

     ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦

⎤
⎢⎣

⎡ −
σ

Φ= −
− 2

121
1

2

1
iii XXHV  ∼ N(0,1),    

     i = 2, 3, …    
          (A2) 
 
Note that 

1
V  is computed using  

 

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ µ−
σ

Φ − 2

121
1

2

1
XH  

 
because 0X  is unavailable at time i = 1. Define  
  
            ( )iii V MC ,max=  ,  i = 1, 2, …     (A3) 

 
so that 

( )cCPcF i ≤=)(  

                      = ( )cV  cMP ii ≤≤ ,  

  
where F( ⋅ ) is the distribution function of iC . 

Since the correlation of iM  and iV  is negligible,  

( )cV  cMP ii ≤≤ ,  can be approximated by 

 
 ( )cV  cMP ii ≤≤ ,  ≈ ( )cMcP i ≤≤−  ×
 ( )cVcP i ≤≤−  

                    = ( )[ ]2cZcP i ≤≤−  

        = [ ]21)(2 −Φ c  
 
Thus, the approximate density function of iC  is 
 
              ( ){ }12)(4)( −Φφ= cccf ,   c ≥ 0 . 
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A Combined Standard Deviation Based Data Clustering Algorithm 
 

                           Kuttiannan Thangavel     Durairaj Ashok Kumar 
                          Department of Mathematics                            Department of Computer Science  
           Gandhigram Rural Institute, Deemed University              Government Arts College 
 
 
The clustering problem has been widely studied because it arises in many knowledge management 
oriented applications. It aims at identifying the distribution of patterns and intrinsic correlations in data 
sets by partitioning the data points into similarity clusters. Traditional clustering algorithms use distance 
functions to measure similarity centroid, which subside the influences of data points. Hence, in this article 
a novel non-distance based clustering algorithm is proposed which uses Combined Standard Deviation 
(CSD) as measure of similarity. The performance of CSD based K-means approach, called K-CSD 
clustering algorithm, is tested on synthetic data sets. It compared favorably to widely used K-means 
clustering algorithm. 
 
Key words: Clustering algorithm; combined standard deviation. 
 
 

Introduction 
 
A fundamental problem that frequently arises in 
a great variety of fields, such as pattern 
recognition, image processing, machine learning 
and statistics in the clustering problem 
(Narasimha, Jain, & Flyinn, 1999). In its basic 
form, the clustering problem is defined as the 
problem of finding homogenous groups of data 
points in a given data set. Each of these groups 
is called a cluster and can be defined as a region 
in which the density of objects is locally higher 
than in other regions.  
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Clustering methods can be classified 
into two categories: Hierarchical and Non-
Hierarchical. The hierarchical methods can be 
further divided into agglomerative methods is 
viewed as a cluster and at each level, some 
clusters are divided into smaller clusters. There 
are also many non-hierarchical methods, which 
divide the set into clusters. These methods are 
further divided into two: the partitioning 
method, in which the clusters are mutually 
exclusive and the clumping method, in which 
overlap is allowed. 

The simplest form of clustering is 
partitional clustering which aims at partitioning 
a data set into disjoint subsets (clusters) so that 
specific clustering criteria are optimized. The 
most widely used criteria in this clustering is the 
error criterion, which for each point computes its 
squared distance from the corresponding cluster 
center and then takes the sum of these distances 
for all points in the data set. A popular clustering 
method that minimizes the clustering error is the 
K-means clustering algorithm. However, the k-
means clustering algorithm is a local search 
procedure and it is well known that its 
performance heavily depends on the initial 
starting conditions and centroid computed based 
on that (Pena & Larranaga, 1999). To treat this 
problem, several other techniques have been 
developed that are based on stochastic global 
optimization methods (eg. Genetic algorithm 
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simulated annealing). However, it must be noted 
that these techniques have not gained wide 
acceptance and in many practical applications 
the clustering method that is used in the K-
means clustering algorithm with multiple restarts 
(Maulik & Bandyopadhyay, 2000). 

The K-CSD clustering algorithm is 
proposed, which constitutes an effective 
clustering for minimization of the clustering 
error. The basic idea underlying the proposed 
method is that an optimal solution for a 
clustering problem with K clusters can be 
obtained using combined standard deviation. At 
each step, instead of placing the data point by 
minimum distance between centroid and the data 
point, the minimum combined standard 
deviation is used which leads to optimal clusters. 
In addition to effectiveness, the method is 
deterministic and does not depend on centroid. 
These are significant advantages over all 
clustering approaches mentioned above. 

 
Clustering 

Clustering has been always a key task in 
the process of acquiring knowledge. The 
complexity and especially the diversity of 
phenomena have forced society to organize the 
things based on their similarities (Spath, 1989). 
One can say that the objective of the cluster 
analysis is to sort out the observations into 
groups such that the degree of natural 
association is high among members of the same 
group and low between members of different 
groups. And clustering is a technique, which is 
used to find groups of clusters that are somehow 
similar in characteristic from the given data set 
for which the real structure is unknown.  

Clustering is often confused with 
classification, but there are some differences 
between the two. In classification, the data are 
assigned to predefined classes or clusters, 
whereas in clustering the classes or clusters are 
also to be defined and also when the only data 
available are unlabelled. The classification 
problems are, sometimes, referred to as 
unsupervised classification. Cluster analysis can 
be defined as a wide variety of procedures that 
can be used to create a classification. These 
procedures empirically form clusters of groups 
of highly similar entities.  In other words, it can 
be said that cluster analysis defines group of 

cases through a number of procedures, which are 
more similar among them than all the others.   
 The clustering methods can be basically 
classified into two categories: Hierarchical and 
Nonhierarchical. The hierarchical methods can be 
further divided into the agglomerative methods 
and the divisive methods. The agglomerative 
methods merge together the most similar clusters 
at each level and the merged clusters will remain 
in the same cluster at all higher levels. In the 
divisive methods, initially, the set of all object is 
viewed as a cluster and at each level, some 
clusters are divided into smaller clusters. There 
are also many nonhierarchical methods which 
divide the dataset into clusters. These methods 
are further divided into two: the partitioning 
method, in which the clusters are mutually 
exclusive and the clumping method, in which 
overlap is allowed.  
 For years, many clustering techniques 
were proposed in partitional clustering and are 
now available in the literature (Narasimha, Jain, 
& Flyinn, 1999). The methods are Forgy's 
algorithm, Kmeans algorithm, ISODATA and its 
variants. The extensive studies (Tseng & Yang, 
1999; Narashinha & Sridhar, 1991; Maulik & 
Bandyopadhyay, 2000) dealing with comparative 
analysis of different clustering methods suggests 
that there is no general strategy, which works 
equally well in the different problems domain. 
However, it has been found that it is usually 
beneficial to run schemes that are simpler, and 
execute them several times, rather than using 
schemes that are very complex but need to be run 
only once.  
 
K-Means Clustering Algorithm   
 The aim of this study is a clustering 
technique that will not assume any particular 
underlying distribution of the data set being 
considered. As well, it should be conceptually 
simple like the K-means algorithm (Duda & 
Hart, 1973; Macqueen, 1967). The searching 
through algorithm is explored in order to search 
for appropriate cluster centers in the feature 
space such that a similarity metric of the 
resulting cluster is optimized.  

In fact, to compare the performance or to 
check the optimality, one does not have the 
sufficient information regarding the structure of 
the data set. Thus, to determine the best clusters, 
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a better algorithm is devised which is more valid. 
It can be established by ranking the utility of 
clustering results obtained from different clusters 
algorithms, with respect to certain application 
domains, where utility can be measured. As the 
cluster centers are updated in the K-means and 
proposed algorithms, the distance between the 
cluster centers and each of its points can be 
treated as a unique measure. Mathematically, the 
clustering metric µ for K clusters C1, C2, …, CK  

 
K

1 2 K

i = 1 xj    Ci

µ( C , C ,..., C ) =     ||xj - zi||  
∈

∑ ∑  

 
where Ci are clusters and zi are cluster centers.  

The clustering algorithm searches for the 
appropriate cluster centers z1, z2, …, zK such that 
the clustering metric µ is minimized. The K-
means algorithm is briefly described below in the 
sequel:  
 
Input: Set of sample patterns {x1, x2, …, xm}, 
             xi ∈ Rn 

 
Output: Set of Clusters { C1, C2, …, CK }.  
 
Step 1: Choose K initial cluster centers z1, z2,     
            …, zK randomly from the m patterns 

 { x1, x2, …, xm } where K < m.  
 
Step 2:  Assign pattern xi to cluster Cj, where  i = 

1, 2, …, m and j ∈ {1, 2, …, K}, if and 
only if  ||xj - zj|| < ||xj - zp||, p = 1, 2, …, 
K and j ≠ p. Ties are resolved arbitrarily. 
Compute cluster centers for each point xi 
as follows,  
zi = (1/ni) ∑ xj , i = 1, 2 , … , K.  xj ∈ Ci  
Where ni is the number of elements 
belongs to cluster Ci.  

 
Step 3: Assign each pattern xi to cluster Cj, where 

i = 1, 2, …, m and j ∈ {1, 2, …, K} if and 
only if ||xj - zj|| < ||xj - zp||, p = 1, 2, …, K 
and j ≠  p, where || • || is an Euclidean 
metric norm. Ties are resolved arbitrarily, 
without changing the cluster centers zj, j 
= 1, 2, …, K  

 
Step 4: Stop.  
 

K-CSD Clustering Algorithm  
 In a nutshell, the clustering capability of 
proposed clustering technique using combined 
standard deviation (Gupta, 2001) is stated in the 
following steps:  
 
Input: Set of sample patterns {x1, x2, …, xm}, xi 

∈ Rn 
 
Output: Set of clusters { C1, C2, …, CK }.  
 
Step 1: Choose K initial cluster points z1, z2, …, 

zK randomly from the m patterns {x1, x2, 
…, xm} (where K < m) for each cluster. 

 
Step 2: Assign pattern xi to cluster Cj, where  i = 

1, 2, …, m and j ∈ {1, 2, …, K}, if and 
only if CSD(xj , Cj) < CSD(xj, Cp), p = 1, 
2, …, K and j ≠ p. Ties are resolved 
arbitrarily. The CSD(xj , Cj) is obtained 
by including point xi into Cluster Cj  and 
find the Combined Standard Deviation 
of new cluster Cj . 

 
Step 3: Compute cluster centers for each point xi                 
            as follows, zi = (1/ni)∑ xj , i = 1, 2 , … ,   
            K. xj ∈ Ci Where ni is the number of              
            elements belongs to cluster Ci.  
 
Step 4: Assuming zi are the new initial points to 

each cluster Cj. Assign each pattern xi to 
cluster Cj, where i = 1, 2, …, m and j ∈ 
{1, 2, …, K} if and only if CSD(xj , Cj) < 
CSD(xj, Cp), p = 1, 2, …, K and j ≠  p. 
Ties are resolved arbitrarily, without 
changing the cluster centers zj, j = 1, 2, 
…, K  

 
Step 5: Stop 
 
Experimental Results  
 The experimental results are carried out 
to compare the Proposed Algorithm clustering 
algorithm with the K-means clustering algorithm 
using two synthetic data sets: Data1 and Data2. 
These are described below:  
 
Data1:  This is a non-overlapping two 

dimensional data set where the number 
of classes is three. It has several 
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patterns which are selected from those 
classes by giving equal probabilities. 
The value of K is chosen to be 3 for this 
data set.  

 
Class 1: [ 0, 20] X [40, 60]  
Class 2: [40, 60] X [ 0, 20]  
Class 3: [80,100] X [60, 80]  

 
 

 
 

The results of K-means clustering 
algorithm  and  Proposed   Algorithm  clustering  
algorithm are shown in the following Tables: 
Table 1, Table 2, Table 3, and Table 4 for 30, 
60, 90, and 120 patterns of Data 1 respectively 
for different configurations of data sets 
generated. 

 
 
 

 
 
 

 
 

Table 1 :  30 patterns  
 

K-means K-CSD  
Configu-

ration 
 

Number of 
Clusters  

µ – Euclidean 
metric 

Number of 
Clusters  

µ - Euclidean 
metric 

1 3 186.17 3 115.69 
2 3 145.12 3 131.74 
3 3 156.12 3 130.42 
4 3 186.05 3 235.82 
5 3 77.52 3 129.23 

Total 15 750.98 15 742.90 
Average 3 150.196 3 148.58 

  
 
 
 

Table 2 : 60 patterns 
 

K-means K-CSD  
Configu-

ration 
 

Number of 
Clusters  

µ – Euclidean 
metric 

Number of 
Clusters  

µ - Euclidean 
metric 

1 3 282.32 3 320.43 
2 3 214.27 3 187.92 
3 3 274.54 3 201.53 
4 3 102.26 3 187.97 
5 3 224.85 3 179.29 

Total 15 1098.24 14 1077.14 
Average 3 219.648 2.8 215.428 
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Data2:  This is an overlapping two dimensional 
data set where the number of classes is 
three. It has several patterns which are 
selected from those classes by giving 
equal probabilities. In the K-means 
algorithms, the value of K is chosen to 
be 3 for this data set.  

 
Class 1: [-3.3,-0.7] X [ 0.7, 3.3]  
Class 2: [-1.3, 1.3] X [ 0.7, 3.3]  
Class 3: [-3.3,-0.7] X [-1.3, 1.3]  
 
 

 
 

 
 
The results of K-means clustering 

algorithm and the Proposed Algorithm clustering 
algorithm are shown in the following Tables: 
Table 5, Table 6, Table 7 and Table 8 for 30, 60, 
90 and 120 patterns of Data 2 respectively for 
different configurations of data sets generated. 

 
 
 
 
 
 
 

 
Table 3 :  90 patterns 

 
K-means K-CSD  

Configu-
ration 

 
Number of 

Clusters  
µ – Euclidean 

metric 
Number of 

Clusters  
µ - Euclidean 

metric 
1 3 264.46 3 216.52 
2 3 282.80 3 250.27 
3 3 187.65 3 140.41 
4 3 338.13 3 344.81 
5 3 128.46 3 128.94 

Total 15 1201.50 15 1080.95 
Average 3 240.30 3 216.19 

  
 

Table 4 :  120 patterns 
  

K-means K-CSD  
Configu-

ration 
 

Number of 
Clusters  

µ – Euclidean 
metric 

Number of 
Clusters  

µ - Euclidean 
metric 

1 3 252.87 3 272.63 
2 3 326.26 3 278.94 
3 3 371.83 3 272.04 
4 3 323.89 3 277.12 
5 3 276.22 3 248.57 

Total 15 1551.07 15 1349.30 
Average 3 310.214 3 269.86 
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Table 5 :  30 patterns 

 
K-means K-CSD  

 
Configu-

ration 
Number of 

Clusters  
µ Euclidean 

metric 
Number of 

Clusters  
µ Euclidean metric 

1 3 10.22 3 14.33 
2 3 13.55 3 9.40 
3 3 8.17 3 9.82 
4 3 14.27 3 14.21 
5 3 16.22 3 9.88 

Total 15 62.43 15 57.64 
Average 3 12.486 3 11.528 

  
 

Table 6 : 60 patterns  
 

K-means K-CSD  
 

Configu-
ration 

Number of 
Clusters  

µ Euclidean 
metric 

Number of 
Clusters  

µ Euclidean metric 

1 3 13.65 3 10.07 
2 3 13.54 3 12.92 
3 3 14.03 3 16.64 
4 3 13.25 3 17.64 
5 3 17.79 3 13.10 

Total 15 72.26 15 70.37 
Average 3 14.452 3 14.074 

  
 

Table 7 :  90 patterns  
 

K-means K-CSD  
 

Configu-
ration 

Number of 
Clusters  

µ Euclidean 
metric 

Number of 
Clusters  

µ Euclidean metric 

1 3 26.38 3 15.29 
2 3 21.22 3 27.18 
3 3 23.83 3 17.03 
4 3 20.83 3 16.55 
5 3 17.19 3 16.63 

Total 15 109.45 15 92.68 
Average 3 21.88 3 18.536 
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Conclusion 
 
The implemented K-means and proposed K-
CSD clustering algorithm is tested with two 
different synthetic datasets to optimize the 
clustering metric µ. The tested average metric 
measures of the Data 1 and Data 2 are tabulated 
in Table 9. 

  

 
 
 From the Table 9, it could be seen that 
the average metric is reduced in the proposed 
algorithm. Future work is planned to design and 
implement algorithms to cluster data sets with 
large amount of objects. Such algorithms are 
required in a number of data mining 
applications, such as partitioning very large 
heterogeneous  sets  of  objects  into a number of  

 
Table 8 :  120 patterns  

 
K-means K-CSD  

 
Configu-

ration 
Number of 

Clusters  
µ Euclidean 

metric 
Number of 

Clusters  
µ Euclidean metric 

1 3 28.63 3 24.74 
2 3 30.44 3 19.80 
3 3 18.56 3 18.37 
4 3 19.22 3 21.87 
5 3 20.13 3 20.72 

Total 15 116.98 15 105.5 
Average 3 23.396 3 21.10 

  
 
 
 

Table 9 
 

K-means K-CSD  
 

Data 

 
 

No. of 
Patterns 

Number of 
Clusters  

Average  
Euclidean 
metric - µ 

Number of 
Clusters  

Average   
Euclidean metric 

- µ  
30 3 150.196 3 148.580 
60 3 219.648 3 215.428 
90 3 240.30 3 216.190 

 
1 

120 3 310.214 3 269.860 
30 3 12.486 3  11.528 
60 3 14.452 3  14.074 
90 3 21.88 3  18.536 

 
2 

120 3 23.396 3  21.100 
Total 24 992.572 24 915.296 

Average 3 124.072 3 114.412 
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smaller and more manageable homogeneous 
subsets that can be more easily modeled and 
analyzed and detecting underrepresented 
concepts, e.g., fraud in a very large number of 
insurance claims. 
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JMASM22: A Convenient Way Of Generating Normal Random Variables 
Using Generalized Exponential Distribution 
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A convenient method to generate normal random variable using a generalized exponential distribution is 
proposed. The new method is compared with the other existing methods and it is observed that the 
proposed method is quite competitive with most of the existing methods in terms of the K S−  distances 
and the corresponding p-values. 
 
Key words:  Generalized exponential distribution; Kolmogorov-Smirnov distances; random number 
generator. 
 

 
Introduction 

 
Generating normal random numbers is an old 
and very important problem in the statistical 
literature.  Several algorithms are available in 
the literature to generate normal random 
numbers like Box-Muller methods, Marsaglia-
Bray method, Acceptance-Rejection method, 
Ahrens-Dieter method, etc.  The book of 
Johnson, Kotz and Balakrishnan (1995) 
provided an extensive list of references of the 
different algorithms available today.  Among the 
several  methods   the   most   popular   ones  are  
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the Box-Muller transformation method or the 
improvement suggested by Marsagilia and Bray. 
Most of the statistical packages like, SAS, 
IMSL, SPSS, S-Plus, or Numerical Recipes use 
this method. In this article, a simple and 
convenient method of generating normal random 
numbers using generalized exponential 
distribution is proposed. 
 Generalized exponential ( )GE  
distribution has been proposed and studied quite 
extensively recently by Gupta and Kundu (1999; 
2001a; 2001b; 2002; 2003a). The readers may 
be referred to some of the related literature on 
( )GE  distribution by Raqab (2002), Raqab and 
Ahsanullah (2001), and Zheng (2002). The two-
parameter GE  distribution has the following 
distribution function: 
 

( ; , ) (1 ) ; , 0x
GEF x e λ αα λ α λ−= − >              (1)                     

 
for 0x >  and 0  otherwise. The corresponding  
density function is; 
 

1( ; , ) (1 ) ; , 0x x
GEf x e eλ α λα λ αλ α λ− − −= − > ,  (2) 

                                                     
for  0x >  and  0  otherwise. Here α  and λ  are 
the shape and scale parameters respectively. 
When 1,α =  it coincides with the exponential 

distribution. If 1,α ≤  the density function of a 
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GE  distribution is a strictly decreasing function 
and for 1α > ,  it has a uni-modal density 
function.  The shape of the density function of 
the GE  distribution for different α  can be 
found in Gupta and Kundu (2001a). 
 In a recent study by Kundu, Gupta and 
Manglick (2005), it was observed that in certain 
cases log-normal distribution can be 
approximated quite well by GE  distribution and 
vice versa.  In fact, for certain ranges of the 
shape parameters of the GE  distributions the 
distance between the GE  and log-normal 
distributions can be very small. 
 The main idea in this article is to use 
this particular property of a GE  distribution to 
generate log-normal random variables and in 
turn generate normal random variables. It may 
be mentioned that the GE  distribution function 
is an analytically invertible function, therefore, 
the generation of  GE  random variables is 
immediate using uniform random variables.  
 

Methodology 
 
The density function of a log-normal random 
variable with scale parameter θ   and shape 
parameter σ  is denoted as 
 

2

(ln ln )

2
1

( ; , ) ; , 0
2

θ
σθ σ θ σ

π σ

−−
= >

x

LNf x e
x

  , (3)                                                    

 
for  0x >  and  0  otherwise. If  X  is a log-

normal random variable with scale parameter θ  
and shape parameter σ , then 
 

2

2( )E X e
σ

θ=    
 

and     
 

2 22( ) ( 1).V X e eσ σθ= −                                   (4)                                     
 
Note that ln X is a normal random variable with 

mean lnθ µ=  (say) and variance 2σ . 

 Similarly, if X  is a generalized 
exponential random variable with the scale 
parameter λ  and shape parameter α , then 

1
( ) ( ( 1) (1))E X ψ α ψ

λ
= + −  

 
and 
 

2

1
( ) ( (1) ( 1)).V X ψ ψ α

λ
′ ′= − +                       (5)                     

 
It was observed by Kundu, Gupta and Manglick  
(2005) that a generalized exponential 
distribution can be approximated very well by a 
log-normal distribution for certain ranges of the 
shape parameters.  The first two moments of the 
two distribution functions are equated to 
compute σ  and θ  from a given α  and λ . 
Without loss of generality, 1λ =  is taken. For a 
given 0α α= ,  equating (4)  and  (5)  one 

obtains 
 

2

2
0 0( 1) (1)e A

σ

θ ψ α ψ= + − =                           (6)                     

 
2 22

0 0( 1) (1) ( 1)e e Bσ σθ ψ ψ α′ ′− = − + =       (7)                     

 
Therefore, solving (6)  and  (7) , one obtains 
 

0
0 0 0 2

0

1
ln ln ln(1 ),

2

B
A

A
θ µ= = − +                   (8)                     

  

0
0 2

0

ln(1 )
B

A
σ = + .                                           (9)                    

  
Using (8)  and (9) ,  standard normal random 
variable can be easily generated as follows: 
 
Algorithm 
 Step 1:  Generate U   an uniform (0,1)  
random variable. 
 Step 2:  For a fixed 0α , generate  

0

1

ln(1 )X U σ= − − . Note that X  is a 
generalized exponential random variable with 
shape parameter 0α  and scale parameter1. 
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 Step 3: Compute 0

0

ln X
Z

µ
σ

−= .  Here 

Z is the desired standard normal random 
variable. 
 An alternative approximation is also 
possible.  Instead of equating the moments of the 
two distributions, one can equate the 
corresponding L -moments also. The L -
moments of any distribution are analogous to the 
conventional moments, but they are based on the 
quantiles and they can be estimated by the linear 
combination of order statistics, i.e.  by L -
statistics (see Hosking, 1990, for details).  It is 
observed by Gupta and Kundu (2003b) in a 
similar study of approximating gamma 
distribution by generalized exponential 
distribution that the L -moments perform better 
than the ordinary moments. 
 Let Z  be any random variable having 
finite first moment and suppose 1: :....n n nZ Z≤ ≤   

be the order statistics of a random sample of size 
n  drawn from the distribution of Z .  Then the 
L -moments are defined as follows:  
 

1

:
0

11
( 1) ( ); 1,2,...

r
k

r r k r
k

r
E Z r

kr
λ

−

−
=

−⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑  (10)                                          

 
The two L − moments of a log-normal 
distribution are  

  

2

2
1 e

σ

λ θ=   

 
and 
 

2

2
2 ( ),

2
e erf

σ σλ θ=                                          (11)                            

 

where erf ( )x 2 ( 2 ) 1xφ= −  and  ( )xφ is  the 
distribution function of the standard normal 
distribution.  Similarly, the two L -moments of a 
GE   random variable are  
 

1

1
( ( 1) (1))λ ψ α ψ

λ
= + −    

 
and  

2 2

1
( (2 1) ( 1)).λ ψ α ψ α

λ
= + − +                  (12) 

 
Therefore, as before equating the first two L -
moments for a given 0α α=  and for 1λ = , one 

obtains  
 

2

2
0 0( 1) (1)e A

σ

θ ψ α ψ= + − =                      (13)                     

 
2

2
0 0 1( ) (2 1) ( 1)

2
e erf B

σ σθ ψ α ψ α= + − + =     (14) 

 
Solving (13)  and (14) , one obtains the solutions 

of θ  and  σ  as 
   

2
1

1 1 0ln ln
2

A
σθ µ= = −                                 (15)                     

   

1 1
1

0

1
2 ( (1 )),

2

B

A
σ φ −= +                              (16)                     

 
where φ  is the cumulative distribution function 
of standard normal distribution. Therefore, in the 
proposed algorithm, instead of using 

0 0 1 1( , ), ( , )µ σ µ σ   also can be used. 

 
Numerical Comparisons and Discussions 
 In this section, an attempt is made to 
determine the value of 0α , so that the distance 

between the generalized exponential distribution 
and the corresponding log-normal distribution is  
minimum.  All the computations are performed 
using Pentium IV processor and the random 
number generation routines by Press et al.  
(1993). The distance function between the two 
distribution functions is considered as the 
Kolmogorv-Smirnov ( )K S−  distance only. To 

be more precise, the K S−  distance between 
the GE  is computed, with the shape and scale 
parameter as  0σ  and 1   respectively, and log-

normal distribution with the corresponding 
shape and scale parameter as 0 1( )σ σ  and 

0 1( )θ θ respectively. It is believed that the 
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distance function should not make much 
difference, any other distance function may be 
considered also. It is observed that as 0α  

increases from 0 , the K S−  distance first 
decreases, and then increases.  When the 
moments ( L -moments) equations have been 
used, the minimum K S−  distance occurred at 

0 12.9(12.8)α =  .   When 0 12.9 (12.8)α = , then 

from (8) and (9) ((15) and (16)), the 
corresponding 0µ  = 1.0820991 ( 1µ  = 

1.0792510) and  0σ  = 0.3807482 ( 1σ  = 

0.3820198) was obtained. 
 To compare the proposed method with 
the other existing methods, the K S−  statistics 
and the corresponding p-values were mainly 
used.  The method can be described as follows.  
The standard normal random variables for 
different sample sizes namely n  = 10, 20, 30, 
40, 50 and 100  by using Box-Muller (BM) 
method, Marsaglia-Bray (MB) method, 
Acceptance-Rejection (AR) method, Ahren-
Dieter (AD) method were generated, using 
moments equations (MM) and using L -
moments equations (LM). In each case, the 
K S−  distance and the corresponding p-value 
between the empirical distribution function and 
the standard normal distribution function was 
computed.  The process was replicated 10,000 
times and the average K S−  distances, the 
average p -values and the corresponding 
standard deviations were computed.  The results 
are reported in Table 1. In each case the standard 
deviations are reported within bracket below the 
average values. From the table values it is quite 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

clear that, based on the K S−  distances and p  
values the proposed methods work quite well. 
Also, an effort is made to compute ( )Z z≤  

using the proposed approximation, where Z  
denotes the standard normal random variable. 
Note that 
 

 
0 0 12.9( ) (1 )

zeP Z z e
σ µ+−≤ ≈ −    

 
or 
 

1 1 12.8( ) (1 )
zeP Z z e
σ µ+−≤ ≈ − .                          (17)                    

 
The results are reported in Table 2.  It is clear 
from Table 2 that using 0µ  and 0σ  the 

maximum error can be 0.0005, where as using 

1µ  and 1σ  the maximum error can be 0.0003.  

From Table 2, it is clear that L -moments 
approximations work better than the moments 
approximations. 
 

Conclusions 
 
A simple and convenient method of generating 
normal random variables is provided.  Even 
simple scientific calculator can be used to 
generate normal random number from the 
uniform generator very quickly.  It can be 
implemented very easily by using a one line 
program. It is also observed that the standard 
normal distribution function can be 
approximated at least up to three decimal places 
using the simple approximations. 
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Table 1. The average K-S distances and the corresponding p-values for different methods based on 
10,000 replications.  The standard deviations are reported within brackets in each case below the 

average values. 
 

N  BM MB AR AD MM LM 
10 
 
 
 
 
20 
 
 
 
 
30 
 
 
 
 
40 
 
 
 
 
50 
 
 
 
 
100 

K-S 
 
   p 
 
 
K-S 
 
   p 
 
 
K-S 
 
   p 
 
 
K-S 
 
   p 
 
 
K-S 
 
   p 
 
 
K-S 
 
   P 

0.2587 
(0.0796) 
0.5127 
(0.2938) 
 
0.1851 
(0.0571) 
0.5178 
(0.2934) 
 
0.1532 
(0.0467) 
0.5094 
(0.2937) 
 
0.1331 
(0.0409) 
0.5111 
(0.2923 
 
0.1191 
(0.0370) 
0.5140 
(0.2931) 
 
0.0852 
(0.0257) 
0.5059 
(0.2914) 
 

0.2587 
(0.0796) 
0.5128 
(0.2938) 
 
0.1851 
(0.0571) 
0.5178 
(0.2934) 
 
0.1532 
(0.0467) 
0.5094 
(0.2937) 
 
0.1331 
(0.0488) 
0.5111 
(0.2923) 
 
0.1191 
(0.0370) 
0.5140 
(0.2931) 
 
0.0852 
(0.0257) 
0.5059 
(0.2914) 

0.2597 
(0.0809) 
0.5109 
(0.2970) 
 
0.1871 
(0.0575) 
0.5068 
(0.2934) 
 
0.1533 
(0.0466) 
0.5086 
(0.2923) 
 
0.1331 
(0.0410) 
0.5121 
(0.2926) 
 
0.1197 
(0.0364) 
0.5071 
(0.2924) 
 
0.0851 
(0.0262) 
0.5096 
(0.2932) 

0.2591 
(0.0804) 
0.5114 
(0.2955) 
 
0.1860 
(0.0578) 
0.5135 
(0.2957) 
 
0.1537 
(0.0477) 
0.5088 
(0.2953) 
 
0.1335 
(0.0412) 
0.5094 
(0.2945) 
 
0.1193 
(0.0368) 
0.5120 
(0.2923) 
 
0.0854 
(0.0257) 
0.5043 
(0.2895) 

0.2586 
(0.0794) 
0.5135 
(0.2930) 
 
0.1866 
(0.0571) 
0.5089 
(0.2927) 
 
0.1524 
(0.0465) 
0.5150 
(0.2930) 
 
0.1334 
(0.0410 
0.5097 
(0.2927) 
 
0.1199 
(0.0366) 
0.5058 
(0.2927) 
 
0.0851 
(0.0259) 
0.5082 
(0.2912) 

0.2587 
(0.0795) 
0.5132 
(0.2931) 
 
0.1867 
(0.0572) 
0.5085 
(0.2928) 
 
0.1525 
(0.0465) 
0.5145 
(0.2930) 
 
0.1334 
(0.0410) 
0.5092 
(0.2928) 
 
0.1200 
(0.0366) 
0.5053 
(0.2927) 
 
0.0852 
(0.0259) 
0.5077 
(0.2912) 
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Table 2. The exact value of ( )zφ  and the two approximate values are reported. 
 

Z L-Moment Exact Moment 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.5 
4.0 

 

0.49984 
0.53981 
0.57935 
0.61808 
0.65564 
0.69168 
0.72594 
0.75818 
0.78822 
0.81593 
0.84125 
0.86416 
0.88469 
0.90292 
0.91893 
0.93288 
0.94490 
0.95517 
0.96385 
0.97112 
0.97714 
0.98209 
0.98610 
0.98933 
0.99189 
0.99390 
0.99547 
0.99667 
0.99759 
0.99827 
0.99878 
0.99983 
0.99998 

 

0.50000 
0.53983 
0.57926 
0.61791 
0.65541 
0.69145 
0.72572 
0.75800 
0.78810 
0.81588 
0.84127 
0.86424 
0.88482 
0.90308 
0.91911 
0.93305 
0.94505 
0.95528 
0.96392 
0.97114 
0.97711 
0.98200 
0.98597 
0.98916 
0.99170 
0.99370 
0.99526 
0.99647 
0.99739 
0.99809 
0.99861 
0.99976 
0.99997 

 

0.50014 
0.54006 
0.57955 
0.61824 
0.65574 
0.69174 
0.72595 
0.75815 
0.78814 
0.81582 
0.84112 
0.86400 
0.88452 
0.90273 
0.91875 
0.93269 
0.94472 
0.95500 
0.96369 
0.97097 
0.97701 
0.98197 
0.98600 
0.98924 
0.99181 
0.99384 
0.99542 
0.99663 
0.99755 
0.99825 
0.99876 
0.99982 
0.99998 
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JMASM23: Cluster Analysis In Epidemiological Data (Matlab) 
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Matlab functions for testing the existence of time, space and time-space clusters of disease occurrences are 
presented. The classical scan test, the Ederer, Myers and Mantel’s test, the Ohno, Aoki and Aoki’s test, and 
the Knox’s test are considered. 
 
Key words: Time cluster, space cluster, time-space cluster, epidemiology, Monte Carlo. 
 
 

Introduction 
 
The concept of groups or clusters of disease 
occurrences is enough well-known and intuitive. 
A cluster is defined as an unusual, real or 
perceived group of health events that are grouped 
in the time and/or in the space. Many triumphs in 
the control of infectious diseases have been the 
result of the epidemiological study of clusters of 
cases, for instance, the epidemic of cholera in 
London in the 1850s and the investigation of 
cases of pneumonia in Philadelphia in 1976 
(legionary disease). The investigation of clusters 
of non-infectious diseases also has remarkable 
examples: dermatitis in people who use rings 
made with contaminated gold and vaginal 
carcinomas in women whose mothers who 
consumed diethylstilbestrol (see CDC, 1990). 

The investigation of perceived clusters of 
health events requires the knowledge of some 
statistical instruments for determining if the 
observed group is real, taking into account the 
circumstances under study (the data type, the 
availability of comparison data, etc.). In this 
article, the aim is to describe some of the 
statistical techniques used to investigate clusters 
of health events and to provide Matlab routines 
that implement these techniques. 

 
 

Andrés Alonso is a Juan de La Cierva 
Researcher at the Department of Statistics. His 
areas of research interest are statistical 
computing, resampling methods and 
biostatistics. E-mail: andres.alonso@uc3m.es. 
 

Detection of Time Clusters 
A time cluster is defined as a non-

uniform distribution of the cases in the time 
interval for a given population under study. The 
objectives of these studies are: 

1. To identify secular tendencies of the 
frequency of diseases in the populations. 

2. To identify cyclical fluctuations in the 
occurrence of a disease. 

3. To identify local epidemics of a disease. 
Attention is focused on the methods related to the 
detection of local epidemics. 
 
Scan test  

The scan test is used to determine if the 
cases that appear in a geographic area are 
significantly near in time. The test statistics are 
the maximum number of events that happen in a 
time interval of fixed size t. This value is obtained 
by scanning in all the intervals of length t in the 
period under study. The critical values for this 
test are provided in the tables calculated by Naus 
(1965, 1966) and Wallenstein (1980).  

It is assumed that T is the complete 
observational interval and t is the duration time of 
one epidemic. Let be r = t/T, N the number of 
cases that happened in time T, and p = Pr(n, N, r) 
is the probability that a maximum number of 
cases in any interval of length t exceeds or is 
equal to n. This probability is calculated under the 
hypothesis that the N events are uniformly 
distributed in the interval T. The problem consists 
of estimating p. Wallenstein (1980) proposed the 
following algorithm: If the observed interval is a 
multiple of 12, 24, 36, 48 or 60 months, and if the 
duration of the epidemic is a multiple from 2 to 4 
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or 6 months, many quotients r=t/T can be 
reduced to the fraction 1/L with L = 4, 6, 8, 12, 15 
or the 24. If N is greater than 10 and smaller than 
100, then tables in Wallenstein (1980) give the 
critical values of the distribution of n. 
 
 

 

Example 1: The following table shows the 
number of cases of trisomia and spontaneous 
abortion in the city of New York between 
July/1975 and June/1977 (see Bailar et al., 1970). 
 
 
 

 

 
function p = ProbabilityOfScanTest(n, N, t, T, B) 
 
% Inputs: 
% ------- 
% n : Maximum number of cases observed in t periods. 
% N : Number of cases observed in T periods. 
% t : Epidemic duration time. 
% T : Total observation time. 
% B : Number of replications. 
%  
% Output: 
% ------- 
% p : Probability of having a value bigger or equal to n. 
 
% Cases are B independents replicas of a uniform distribution  
% of N cases in T periods. 
Cases = zeros(T, B); 
for b = 1:B 
   X = rand(N, 1); 
   for ii = 1:N 
      for tt = 1:T 
         if ((tt-1)/T < X(ii, 1) & X(ii, 1) < tt/T) 
            Cases(tt, b) = Cases(tt, b) + 1; 
         end 
      end 
   end 
end 
 
% Calculating the scan statistics using the B generates replicas 
% stored in variable Cases. 
ScanStatistics = zeros(B, 1); 
for b = 1:B 
   for tt = 1:T-t+1 
      if (ScanStatistics(b, 1) < sum(Cases(tt:tt+t-1, b))) 
         ScanStatistics(b, 1) = sum(Cases(tt:tt+t-1, b)); 
      end 
   end 
end 
 
% Estimating the probability of having a scan statistics bigger  
% or equal to the observed value, n. 
p = sum(ScanStatistics >= n)/B; 
 

Figure 1. Matlab Function p 
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Month / Year Cases 

07/1975 – 12/1975 0, 4, 1, 2, 1, 3 
01/1976 – 06/1976 1, 3, 2, 2, 3, 4 
07/1976 – 12/1976 1, 1, 1, 2, 4, 7 
01/1976 – 06/1976 7, 2, 2, 6, 1, 2 

  
 
Therefore, N = 62, T = 24 months and the 
epidemic duration is fixed to t=2 months. Then 
n=14 and Pr(14,62,1/12) can be calculated. The 
Matlab function in Figure 1 obtain the probability 
p = Pr(n, N, r) by a Monte Carlo simulation 
procedure. The results of the above function for 
the data in Example 1 is Pr(14,62,2,24)= 0.0113. 
It supports the conclusion of a time cluster. 
 
Test of Ederer, Myers and Mantel 
 The period under study is divided in k 
disjoints intervals. Under the null hypothesis of 
no grouping, the n cases will have to be 
distributed uniformly in the k intervals. The test 
statistics, m, is the maximum number of cases in 
an interval. Mantel et al. (1976) calculated tables 
for the expectation and variance of m under the 
null hypothesis of no group and for selected 
values of k and n. In the following table, the 
approximated estimators of E (m) and Var(m) are 
shown when the number of cases is greater than 
100 (see Mantel et al., 1976). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Number of 
intervals, k 

E(m) Var(m) 

2 n/2 + 0.3989* n ½ 0.09084* n 

3 n/3 + 0.4886* n ½ 0.07538* n 

4 n/4 + 0.5147* n ½ 0.06043* n 

5 n/5 + 0.5201* n ½ 0.04951* n 

 
 
Example 2: Assume that the number of children 
with congenital malformations born in the same 
year is as follows: 1st trimester: 100 cases, 2nd 
trimester: 50 cases, 3rd trimester: 50 cases and 
4th trimester: 70 cases. If k=4 and n=270, then 
one can use the estimators of the previous table: 
E(m)= 270/4+0.5147*√270 ≈ 75.95 and Var(m) 
=0.06043*270 ≈ 16.32. The following statistic is 
calculated,  
 

2 2( ( )) (100 75.95)
35.44

( ) 16.32

m E m

Var m
χ − −= = ≈ , 

 
and it may be concluded that it exists a time 
cluster. 
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 The Matlab function in Figure 2 obtains 
the estimators of E(m) and Var(m) by a Monte 
Carlo simulation procedure. The results of this 
function for the data in Example 2 is E(m) = 
76.07 and Var(m) = 17.52. 
 
Detection of Space Clusters 
 A space cluster is defined as a non-
uniform distribution of the cases in the area under 
study relative to the distribution of the population 
under study. The presence of clusters suggests a 
possible environmental etiology. The simplest 
analysis of space cluster is the comparison of the  
 

 
incidence or the prevalence of a particular disease 
in different geopolitical areas.  
 
Test of Ohno, Aoki and Aoki  
 The test proposed by Ohno et al. (1979) 
determines if the obtained geographic pattern is 
different from the expected geographic pattern 
under the assumption of a uniform random 
distribution of the cases in the area under study. 
The procedure is as follows: 
 

1. Define k > 2 disjoint categories of the 
incidence rates. 

 
function [E, V] = EdererMyersMantelTest(m, n, k, B) 
 
% Inputs: 
% ------- 
% m : Maximum number of cases observed in one interval. 
% n : Number of cases observed in the period under study. 
% k : Number of intervals. 
% B : Number of replications. 
%  
% Output: 
% ------- 
% E : Expected value of m. 
% V : Variance of m. 
 
% Cases are B independents replicas of a uniform distribution  
% of n cases in k intervals. 
Cases = zeros(k, B); 
for b = 1:B 
   X = rand(n, 1); 
   for ii = 1:n 
      for tt = 1:k 
         if ((tt-1)/k < X(ii, 1) & X(ii, 1) < tt/k) 
            Cases(tt, b) = Cases(tt, b) + 1; 
         end 
      end 
   end 
end 
 
% Calculating the maximum m using the B generated replicas 
% stored in variable Cases. 
mStatistics = max(Cases); 
 
% Estimating the mean and the variance of m. 
E = mean(mStatistics); 
V = var(mStatistics); 
 

Figure 2. Matlab function [E, V] 
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2. Identify the adjacent geographic areas in 
a map of the area under study.  

3. Count the number of concordant area 
pairs. 

4. Calculate the expected number of 
concordant adjacent pairs for each 
category: Let be N the number of areas 
and Ni the number of areas in the i-th 
category, then the number of concordant 
pairs in category i is Ni(Ni-1)/2.  Let A 
be the number of adjacent pairs of 
regions, then the expected number of 
adjacent pairs with the i-th category is 

 

( ) ( 1)
( 1)i i i

A
E C N N

N N
= −

−
. 

 
5. Calculate the expected number of 

concordant adjacent pairs: 
  

1
( ) ( )

k

ii
E C E C

=
=∑ . 

 

Finally a χ2 test statistics, 
2

2 ( ( ))

( )

C E C

E C
χ −= , is 

calculated.  
 
Example 3: The mortality rates of vesicle and 
esophagus cancer in Japan (1967-71) is 
categorized according to the following criterion: 
 
Category 1. Rate≥140 by 10000 inhabitants. 
Category 2. 120≤Rate≤139.9 by 10000 

inhabitants. 
Category 3. 80≤Rate≤119.9 by 10000 inhabitants. 
Category 4. 60≤Rate≤79.9 by 10000 inhabitants. 
Category 5. Rate≤60 by inhabitants. 
 

 

 

 

 

 

 

In 1970, Japan had N = 1,123 cities and towns, 
without counting the prefecture of Okinawa, with 
A=2840 adjacent pairs of regions. The number of 
regions by category was: N1 = 293, N2 = 78, N3 = 
256, N4 = 116 and N5 = 380. In the following 
table, the calculation required for Ohno, Aoki and 
Aoki’s test is presented. 

Concordant 
pairs 

Observed, 
Ci 

Expected, 
E(Ci) 

χ
2 

(1,1) 201 192.84 0.35 

(2,2) 17 13.54 0.89 

(3,3) 170 147.14 3.55 

(4,4) 25 30.07 0.85 

(5,5) 315 324.61 0.28 

Total 728 708.20 0.55 

 

 Finally, χ2=0.55 and it is concluded that 
evidence does not exist for the geographic 
association of the vesicle and esophagus cancer in 
men for these years in Japan. The following 
Matlab function obtain the value of Ohno, Aoki 
and Aoki’s test statistics given N, A, C and the Ni. 
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Detection of Space-Time Clusters 
 A space-time cluster is defined as a non-
uniform distribution of the cases in space and 
time, simultaneously. In general, the test of 
space-time cluster of health events needs a more 
a more sophisticated elaboration because one 
needs to prove that if the cases are associated in 
space they are also significantly near in the time, 
and vice versa (see, e.g., Kleinbaum et al., 
1982).  
 
Test of Knox 
 The test proposed by Knox (1964) is 
used to determine if there exists a significant 
interaction between the sites and the moments of 
appearance of the disease. It divides the 
dimensions in space-time into two parts, for 
which the critical distance in space, E, and the 
critical distance in time, T, must be defined. In a 
contingency table, each pair of cases is classified 
in one of the following categories: (i) near only  
 
 

 

 
in space, (ii) near only in time, (iii) near in 
space-time, and (iv) distant both in space and in 
time. The procedure is as follows: 
 

1. Let be n the number of cases. For each 
case, one knows its position in the space 
and in the time, then there are N = n(n-
1)/2 possible pairs of cases. 

2. Determine the distances in space, e, and 
in time, t, for each pair of cases. 

3. Classify the N pairs according to the 
following criterion: 
 

 (a) A pair is near in space if e<E. 
  
 (b) A pair is near in time if t<T. 
  
 (c) A pair is near in space-time if it 

fulfills (a) and (b), simultaneously. 
 
(d) When a pair satisfies neither (a) nor       
(b), then we say that it is not near nor in 
space nor in time. 

 
function OAAtest = OhnoAokiAokiTest(N, A, Ni, C) 
 
% Inputs: 
% ------- 
% N : Total number of regions. 
% A : Number of adjacent regions. 
% Ni : Number of regions in the ith category (k x 1 vector). 
% C : Observed number of concordant adjacent regions. 
%  
% Output: 
% ------- 
% OOAAtest : Ohno, Aoki and Aoki test statistics. 
 
% Numbers of categories. 
k = length(Ni); 
 
% Expected number of adjacent regions in the ith category. 
ECi = A*Ni.*(Ni-1)/(N*(N-1)); 
 
% Expected number of concordant adjacent regions. 
EC = sum(ECi); 
 
% Ohno, Aoki and Aoki test statistics. 
OAAtest = (C-EC)^2/EC; 
 

Figure 3. Matlab Function OAAtest 
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4. Construct the following table: 
 

 Space 

Time Near Non-Near Total 

Near X Nt - X Nt 

Non-Near Ne - X N - Nt - 
Ne+X 

N - Nt 

Total Ne N - Ne N 

 
where Ne is the number of pairs near in 
the space, Nt the near ones in the time, 
and X the near pairs in space-time.  

 
5. The test statistic is the observed number 

of pairs near in space-time, X. In Knox 
(1964) it is assumed that X distributes as 
a Poisson, therefore,  

 

Pr( ) ,
!

i
N

i x

e
p X x

i

λλ−

=
= ≥ =∑  

 
 where λ=NeNt/N. 
 
 

 

Example 4: The following table shows the 
results of the method of Knox for 5 cases of 
meningococcal disease in a territory given in a 
period of one year, it takes like critical distance 
in space 500 meters and in time 5 days. 
 

 Space 

Time Near Non-Near Total 

Near X=4 0 Nt= 4 

Non-Near 1 5 6 

Total Ne= 5 5 N=10 

 
Therefore, λ=5*4/10 = 2 and Pr(X≥4) = 0.142. 
The Matlab function in Figure 4 obtains the value 
of above p-value given X, Ne, Nt and N. 
 
 
 
 
 
 
 
 

 

 

 
function pKtest = KnoxTest(X, Ne, Nt, N) 
 
% Inputs: 
% ------- 
% X : Number of pairs near in space-time. 
% Ns : Number of pairs near in space. 
% Nt : Number of pairs near in time. 
% N : Total number of pairs. 
%  
% Output: 
% ------- 
% pKtest : Pvalue of Knox test statistics. 
 
% Parameter of the Poisson distribution. 
lambda = Ne*Nt/N; 
 
% p-value of Knox test statistics. 
pKtest = 0; 
for i = X:N 
   pKtest = pKtest + exp(-lambda)*lambda^i/factorial(i); 
end 
 

Figure 4. Matlab Function pKtest 
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ERRATA 
Confidence Intervals On Subsets May Be Misleading 

 
Juliet Popper Shaffer 
University of California 

 
 This errata pertains to Shaffer (2004, 
“Confidence intervals on subsets may be 
misleading”, Journal of Modern Applied 
Statistical Methods, 3(2), 261-270). The section 
entitled “Conditioning when significant results 
in one direction only are noted” (p. 267-269) has 
some errors, and the associated Table 3 has an 
incorrect heading.  
 
 (a): The last sentence should be changed 
 to: If the true value is in the direction 
 that is reported, the values in Table 1 are 
 underestimates of the probabilities that 
 the reported intervals cover the true 
 values. Table 4 below gives the 
 probabilities in this case. 
 
  
 
 
 
 

(b): The second sentence should be 
 changed to: If the favored direction 
 happens to be the true one, the 
 confidence interval coverage will be 
 greater than the nominal .95 coverage, 
 changing from .97 at the origin (effect 
 size 0) to .95 as the effect size increases. 
  
(c): The correct heading of Table 3 is: 
 
 Table 3: Probability that the nominal .95 
 confidence interval covers the correct 
 value when the results are not 
 significant in the true direction, for a 
 two-sample z test (values in parentheses 
 are probabilities that the intervals are 
 reported; dividing the entries by these 
 probabilities gives the conditional 
 coverage of the intervals, given that they 
 are the only ones reported) 

 
Table 4: True conditional probability that the nominal .95 confidence interval based on the z test covers  the 
correct value, given rejection of the null hypothesis in the correct direction (values in parentheses are 
probabilities of rejection in the correct direction) 
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Statistical Pronouncements V 
 

 “I commenced a deliberate system of 
time-killing, which united some profit with a 
cheering-up of the heavy hours. As soon as I 
came on deck and took my place and regular 
walk, I began with repeating over to myself a 
string of matters which I had in my memory, in 
regular order. First, the multiplication table” – 
Richard Henry Dana (1841, Two years before 
the mast: A personal narrative of life at sea). 

 
“I had been to school most all the time 

and could spell and read and write just a little, 
and could say the multiplication table up to six 
times seven is thirty-five, and I don’t reckon I 
could ever get any further than that if I was to 
live forever. I don't take no stock in 
mathematics, anyway” – Mark Twain (Samuel 
L. Clemens) (1884, The adventures of 
Huckleberry Finn). 
 

“He said he was repeating the 
multiplication table over and over to steady his 
nerves and for pity’s sake not to interrupt him, 
because if he stopped for a moment he got 
frightened and forgot everything he ever knew, 
but the multiplication table kept all his facts 
firmly in their proper place!” – Lucy Maud 
Montgomery (1908, Anne of Green Gables). 
 
 “It is a capital mistake to theorize before 
one has data” – Arthur Conan Doyle (1891, “A 
scandal in Bohemia: The adventures of Sherlock 
Holmes”). 
 
 “Other things are not always equal” – 
Edward L. Thorndike (1922, The psychology of 
arithmetic, NY: MacMillian, p. 12). 
 
 “There is never a quantity which does 
not measure some quality, and never an existing 
quality that in non-quantitative. Even our halos 
vary in diameter” – William A. McCall (1922, 
How to measure in education, NY: Macmillian, 
p. 4). 
 
 “At least a half a dozen scales now exist 
by which it would have been possible to 

measure the quality of the Handwriting on the 
Wall” – William A. McCall (ibid). 
 
 “Poincaré confesses that he is a rather 
poor numerical calculator, and so am I” – 
Jacques Salomon Hadamard (1945, “An essay on 
the psychology of invention in the mathematical 
field”, Princeton: Princeton University Press, p. 
58). 
  
 “It is of utmost importance… that the 
third kind of error in statistical consulting be 
emphasized…the error committed by giving the 
right answer to the wrong problem” – A. W. 
Kimball (1957, Journal of the American 
Statistical Association, 52, p. 134). 
 
 “An incident from Pearson’s infancy 
which Julia Bell once related to me… She had 
asked him what was the first thing he could 
remember… ‘Well,’ he said,… ‘I was sitting in 
a high chair and I was sucking my thumb. 
Someone told me to stop sucking it and said that 
unless I did so the thumb would wither away. I 
put my two thumbs together and looked at them 
for a long time. ‘They look alike to me’ I said to 
myself, ‘I can’t see that the thumb I suck is any 
smaller than the other. I wonder if she could be 
lying to me’ ” – Helen M. Walker (1958, The 
contributions of Karl Pearson, Journal of the 
American Statistical Association, 53, p. 13) 
 
 “Pearson was a prodigious and 
compulsive worker. I remember asking him once 
how he had time to write so much and compute 
so much… he replied… ‘I never answer a 
telephone or attend a committee meeting’ ” – 
Samuel A. Stouffer (1958, Karl Pearson – An 
appreciation on the 100th anniversary of his 
birth, ibid, p. 23) 
 
 “We have become accustomed to-day to 
a standard of published mathematical proof 
which can hide rather than reveal the actual 
process by which discoveries are made” – B. L. 
Welch (1958, ibid, p. 786) 
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 “Scientists are rarely given ladies and 
cups of tea to experiment with” – N. T. 
Gridgeman (1959, Book Review, Journal of the 
American Statistical Association, 54, p. 778). 
 
 “There is often great temptation to 
assume… two independent runs… will 
inevitably be in ‘reasonable agreement,’ and 
hence that there is no need of repeating the 
measurement process. This is one of the most 
hazardous assumptions which can be made in 
any field of science” – Samuel Stanley Wilks 
(1961, Some aspects of quantification, 
Quantification, (Harry Woolf, Ed.), 
Indianapolis: Bobbs-Merrill, p. 6-7). 
 
 “It is a genius that leaps ahead of the 
facts, leaving the rather different talent of the 
experimentalist and the instrumentalist to catch 
up” – Thomas S. Kuhn (1961, Measurement in 
modern physical science, ibid, p. 42). 
 
 “The American Statistical Association 
is, I am told, the second oldest learned society 
[in America], the American Philosophical 
Society being the oldest. This news usually 
shocks our colleagues in economics, whose 
American Economic Association was founded 
forty-six years later; in science, whose American 
Association for the Advancement of Science 
came along nine years later; in modern 
languages, forty-four years later; in physics, 
sixty years later; in chemistry, thirty-seven years 
later, and so forth. Statistics is somehow still 
regarded by some as a new and youthful subject, 
one which is by now perhaps beyond hope of 
ever maturing” – W. Allen Wallis (1966, 
Economic statistics and economic policy, 
Journal of the American Statistical Association, 
61, p. 2) 
 
 “Neither statisticians nor philosophers 
build bombs, automate production, cure cancer, 
meet payrolls, or carry precincts” – W. Allen 
Wallis (ibid, p. 2-3) 
 
 “The complaint that statistics is never 
the star of the show is not unlike the complaint 
that a lineman on a football team rarely scores 
any points. One who is not temperamentally 

suited to being a lineman ought not to take up 
statistics.” – W. Allen Wallis (1966, ibid, p. 3) 
 
 “The Wilcoxon rank-sum test…show[s] 
only slight losses in both large and small sample 
efficiency relative to the t-test in the normal 
case, while in many non-normal cases, 
efficiency exceeds 100%” – Duane Meeter 
(1967, Book Review, Journal of the American 
Statistical Association, 62, p. 1505) 
 

“If your experiment needs statistics, you 
ought to have done a better experiment” – Ernest 
Rutherford (1871-1937, cited in N. T. J. Bailey, 
1967, The mathematical approach to biology 
and medicine, NY: Wiley). 
 
 “I fear that the first act of most social 
scientists upon seeing a contingency table is to 
compute a chi-square for it” – Frederick 
Mosteller (1968, Association and estimation in 
contingency tables, Journal of the American 
Statistical Association, 63, p. 1). 
 
 “Any sensible analysis would reject this 
theory - even a Bayesian t-test using an 
informationless prior” – Irwin D. J. Bross (1969, 
Applications of probability: Science vs. 
pseudoscience, Journal of the American 
Statistical Association, 64, p. 52) 
 
 “The acid test of a good scientist is how 
he behaves when a favorite theory is refuted by 
incontrovertible facts” – Irwin D. J. Bross (ibid, 
p. 52). 
 
 “All of us are unable to see any virtue in 
criticisms of our work but in this dimension of 
personality Fisher undoubtedly excelled” – 
Oscar Kempthorne (1970, Book Review, 
Journal of the American Statistical Association, 
65, p. 456.)  
 

“During my 18 years,” Mantle said, “I 
came to bat almost 10,000 times. I struck out 
about 1,700 times and walked maybe 1,800 
times. You figure a ballplayer will average about 
500 at bats a season. That means I played seven 
years without ever hitting a ball” – Mickey 
Mantle (1970, San Francisco Chronicle). 



FREE trials available at:
programmersparadise.com/intel

“The Intel Fortran Compiler 7.0 was first-rate, and Intel Visual Fortran
8.0 is even better. Intel has made a giant leap forward in combining
the best features of Compaq Visual Fortran and Intel Fortran. This
compiler… continues to be a ‘must-have’ tool for any Twenty-First
Century Fortran migration or software development project.”

—Dr. Robert R. Trippi 
Professor Computational Finance 
University of California, San Diego

To order or request additional information call:
800-423-9990

Email: intel@programmers.com

Two Years in the Making...

Compatibility
• Plugs into Microsoft Visual Studio* .NET
• Microsoft PowerStation4 language and library support
• Strong compatibility with Compaq* Visual Fortran

Support
1 year of free product upgrades and Intel Premier Support

Visual Fortran Timeline

1997 DEC releases

Digital Visual Fortran 5.0

1998 Compaq acquires DEC

and releases DVF 6.0

1999 Compaq ships CVF 6.1

2001 Compaq ships CVF 6.6

2001 Intel acquires CVF 

engineering team

2003 Intel releases 

Intel Visual Fortran 8.0

Intel Visual Fortran 8.0

• CVF front-end + 

Intel back-end

• Better performance

• OpenMP Support

• Real*16

Intel® Visual Fortran 8.0 
The next generation of Visual Fortran is here!
Intel Visual Fortran 8.0 was developed jointly 
by Intel and the former DEC/Compaq Fortran 
engineering team.  

Now
Available!

Performance
Outstanding performance on Intel architecture including Intel®

Pentium® 4, Intel® Xeon™ and Intel Itanium® 2 processors,
as well as support for Hyper-Threading Technology.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NCSS 
329 North 1000 East 
Kaysville, Utah 84037 

Announcing NCSS 2004 
Seventeen New Procedures 

NCSS 2004 is a new edition of our popular statistical NCSS package that adds seventeen new procedures. 
 

Meta-Analysis 
Procedures for combining studies 
measuring paired proportions, means, 
independent proportions, and hazard 
ratios are available. Plots include the 
forest plot, radial plot, and L’Abbe plot. 
Both fixed and random effects models 
are available for combining the results. 
 

Curve Fitting 
This procedure combines several of our 
curve fitting programs into one module. 
It adds many new models such as 
Michaelis-Menten. It analyzes curves 
from several groups. It compares fitted 
models across groups using computer-
intensive randomization tests. It 
computes bootstrap confidence intervals. 
 

Tolerance Intervals 
This procedure calculates one and two 
sided tolerance intervals using both 
distribution-free (nonparametric) 
methods and normal distribution 
(parametric) methods. Tolerance 
intervals are bounds between which a 
given percentage of a population falls. 
 

Comparative Histogram 
This procedure displays a comparative 
histogram created by interspersing or 
overlaying the individual histograms of 
two or more groups or variables. This 
allows the direct comparison of the 
distributions of several groups. 
 

Random Number Generator 
Matsumoto’s Mersenne Twister random 
number generator (cycle length > 
10**6000) has been implemented. 
 

Binary Diagnostic Tests 
Four new procedures provide the 
specialized analysis necessary for 
diagnostic testing with binary outcome 
data. These provide appropriate specificity 
and sensitivity output. Four experimental 
designs can be analyzed including 
independent or paired groups, comparison 
with a gold standard, and cluster 
randomized. 
 
ROC Curves 
This procedure generates both binormal 
and empirical (nonparametric) ROC 
curves. It computes comparative measures 
such as the whole, and partial, area under 
the ROC curve. It provides statistical tests 
comparing the AUC’s and partial AUC’s 
for paired and independent sample designs.  
 

Hybrid (Feedback) Model 
This new edition of our hybrid appraisal 
model fitting program includes several new 
optimization methods for calibrating 
parameters including a new genetic 
algorithm. Model specification is easier. 
Binary variables are automatically 
generated from class variables. 
 

New Procedures 
Two Independent Proportions 
Two Correlated Proportions 
One-Sample Binary Diagnostic Tests 
Two-Sample Binary Diagnostic Tests 
Paired-Sample Binary Diagnostic Tests 
Cluster Sample Binary Diagnostic Tests 
Meta-Analysis of Proportions 
Meta-Analysis of Correlated Proportions 
Meta-Analysis of Means 
Meta-Analysis of Hazard Ratios 
Curve Fitting 
Tolerance Intervals 
Comparative Histograms 
ROC Curves 
Elapsed Time Calculator 
T-Test from Means and SD’s 
Hybrid Appraisal (Feedback) Model 

Documentation 
The printed, 330-page manual, called 
NCSS User’s Guide V, is available for 
$29.95. An electronic (pdf) version of 
the manual is included on the distribution 
CD and in the Help system. 
 

Two Proportions 
Several new exact and asymptotic 
techniques were added for hypothesis 
testing (null, noninferiority, equivalence) 
and calculating confidence intervals for 
the difference, ratio, and odds ratio. 
Designs may be independent or paired. 
Methods include: Farrington & Manning, 
Gart & Nam, Conditional & 
Unconditional Exact, Wilson’s Score, 
Miettinen & Nurminen, and Chen. 
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Statistical Innovations Products 
Through a special arrangement with 
Statistical Innovations (S.I.), NCSS 
customers will receive $100 discounts on: 
  Latent GOLD - latent class modeling 
  SI-CHAID -  segmentation trees  
  GOLDMineR -  ordinal regression 

For demos and other info visit: 
www.statisticalinnovations.com 



 Please rush me the following products: 
Qty 
___ NCSS 2004 CD upgrade from NCSS 2001, $149.95 .................. $_____ 

___ NCSS 2004 User’s Guide V, $29.95............................................. $_____ 

___ NCSS 2004 CD, upgrade from earlier versions, $249.95........... $_____ 

___ NCSS 2004 Deluxe (CD and Printed Manuals), $599.95........... $_____ 

___ PASS 2002 Deluxe, $499.95 ......................................................... $_____ 

___ Latent Gold® from S.I., $995 - $100 NCSS Discount = $895..... $_____ 

___ GoldMineR® from S.I., $695 - $100 NCSS Discount = $595 ..... $_____ 

___ CHAID® Plus from S.I., $695 - $100 NCSS Discount = $595.... $_____ 

Approximate shipping--depends on which manuals are ordered (U.S: $10 
ground, $18 2-day, or $33 overnight) (Canada $24) (All other countries 
$10) (Add $5 U.S. or $40 International for any S.I. product) ........ $_____ 

 Total.......... $_____ 

TO PLACE YOUR ORDER 
CALL: (800) 898-6109 FAX: (801) 546-3907 

ONLINE: www.ncss.com 
MAIL: NCSS, 329 North 1000 East, Kaysville, UT 84037 

My Payment Option: 
___ Check enclosed 
___ Please charge my: __VISA   __ MasterCard ___Amex 
___ Purchase order attached___________________________  

Card Number ______________________________________Exp ________ 

Signature______________________________________________________ 

Telephone: 
(        ) ____________________________________________________ 

Email: 
____________________________________________________________ 

Ship to: 
NAME ________________________________________________________ 

ADDRESS ______________________________________________________ 

ADDRESS_________________________________________________________________________ 

ADDRESS_________________________________________________________________________ 

CITY _____________________________________________ STATE _________________________ 

ZIP/POSTAL CODE _________________________________COUNTRY ______________________ 

Analysis of Variance / T-Tests 
Analysis of Covariance 
Analysis of Variance 
Barlett Variance Test 
Crossover Design Analysis 
Factorial Design Analysis 
Friedman Test 
Geiser-Greenhouse Correction 
General Linear Models 
Mann-Whitney Test 
MANOVA 
Multiple Comparison Tests 
One-Way ANOVA 
Paired T-Tests 
Power Calculations 
Repeated Measures ANOVA 
T-Tests – One or Two Groups 
T-Tests – From Means & SD’s 
Wilcoxon Test 
 
Time Series Analysis 
ARIMA / Box - Jenkins 
Decomposition 
Exponential Smoothing 
Harmonic Analysis 
Holt - Winters 
Seasonal Analysis 
Spectral Analysis 
Trend Analysis 
 
*New Edition in 2004 
 

Regression / Correlation 
All-Possible Search 
Canonical Correlation 
Correlation Matrices 
Cox Regression 
Kendall’s Tau Correlation 
Linear Regression 
Logistic Regression 
Multiple Regression 
Nonlinear Regression 
PC Regression 
Poisson Regression 
Response-Surface 
Ridge Regression 
Robust Regression 
Stepwise Regression 
Spearman Correlation 
Variable Selection 
 
Quality Control 
Xbar-R Chart  
C, P, NP, U Charts 
Capability Analysis 
Cusum, EWMA Chart 
Individuals Chart 
Moving Average Chart 
Pareto Chart 
R & R Studies 
 

 

Plots / Graphs 
Bar Charts 
Box Plots 
Contour Plot 
Dot Plots 
Error Bar Charts 
Histograms 
Histograms: Combined* 
Percentile Plots 
Pie Charts 
Probability Plots 
ROC Curves* 
Scatter Plots 
Scatter Plot Matrix 
Surface Plots 
Violin Plots 
 
Experimental Designs 
Balanced Inc. Block 
Box-Behnken 
Central Composite 
D-Optimal Designs 
Fractional Factorial 
Latin Squares 
Placket-Burman 
Response Surface 
Screening 
Taguchi 
 

Survival / Reliability  
Accelerated Life Tests 
Cox Regression 
Cumulative Incidence 
Exponential Fitting 
Extreme-Value Fitting 
Hazard Rates 
Kaplan-Meier Curves 
Life-Table Analysis 
Lognormal Fitting 
Log-Rank Tests 
Probit Analysis 
Proportional-Hazards  
Reliability Analysis 
Survival Distributions 
Time Calculator* 
Weibull Analysis 

 
Multivariate Analysis 
Cluster Analysis 
Correspondence Analysis 
Discriminant Analysis 
Factor Analysis 
Hotelling’s T-Squared 
Item Analysis 
Item Response Analysis 
Loglinear Models 
MANOVA 
Multi-Way Tables 
Multidimensional Scaling 
Principal Components 

 

Curve Fitting  
Bootstrap C.I.’s* 
Built-In Models 
Group Fitting and Testing* 
Model Searching 
Nonlinear Regression 
Randomization Tests* 
Ratio of Polynomials 
User-Specified Models 

 
Miscellaneous 
Area Under Curve 
Bootstrapping 
Chi-Square Test 
Confidence Limits 
Cross Tabulation 
Data Screening 
Fisher’s Exact Test 
Frequency Distributions 
Mantel-Haenszel Test 
Nonparametric Tests 
Normality Tests 
Probability Calculator 
Proportion Tests 
Randomization Tests 
Tables of Means, Etc. 
Trimmed Means 
Univariate Statistics 

 

Statistical and Graphics Procedures Available in NCSS 2004 
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Meta-Analysis* 
Independent Proportions* 
Correlated Proportions* 
Hazard Ratios* 
Means* 
 
Binary Diagnostic Tests* 
One Sample* 
Two Samples* 
Paired Samples* 
Clustered Samples* 
 
Proportions 
Tolerance Intervals* 
Two Independent* 
Two Correlated* 
Exact Tests* 
Exact Confidence Intervals* 
Farrington-Manning* 
Fisher Exact Test 
Gart-Nam* Method 
McNemar Test 
Miettinen-Nurminen* 
Wilson’s Score* Method 
Equivalence Tests* 
Noninferiority Tests* 
 
Mass Appraisal 
Comparables Reports 
Hybrid (Feedback) Model* 
Nonlinear Regression 
Sales Ratios 



Analysis of Variance
Factorial AOV
Fixed Effects AOV
Geisser-Greenhouse
MANOVA*
Multiple Comparisons*
One-Way AOV
Planned Comparisons
Randomized Block AOV
New Repeated Measures AOV*
Regression / Correlation
Correlations (one or two)
Cox Regression*
Logistic Regression
Multiple Regression
Poisson Regression*
Intraclass Correlation
Linear Regression

Proportions
Chi-Square Test
Confidence Interval
Equivalence of McNemar*
Equivalence of Proportions
Fisher's Exact Test
Group Sequential Proportions
Matched Case-Control
McNemar Test
Odds Ratio Estimator
One-Stage Designs*
Proportions – 1 or 2
Two Stage Designs (Simon’s)
Three-Stage Designs*
Miscellaneous Tests
Exponential Means – 1 or 2*
ROC Curves – 1 or 2*
Variances – 1 or 2

T Tests
Cluster Randomization
Confidence Intervals
Equivalence T Tests
Hotelling’s T-Squared*
Group Sequential T Tests
Mann-Whitney Test
One-Sample T-Tests
Paired T-Tests
Standard Deviation Estimator
Two-Sample T-Tests
Wilcoxon Test
Survival Analysis
Cox Regression*
Logrank Survival -Simple
Logrank Survival - Advanced*
Group Sequential - Survival
Post-Marketing Surveillance
ROC Curves – 1 or 2*

Group Sequential Tests
Alpha Spending Functions
Lan-DeMets Approach
Means
Proportions
Survival Curves
Equivalence
Means
Proportions
Correlated Proportions*
Miscellaneous Features
Automatic Graphics
Finite Population Corrections
Solves for any parameter
Text Summary
Unequal N's

*New in PASS 2002

NCSS Statistical Software • 329 North 1000 East • Kaysville, Utah  84037
Internet (download free demo version): http://www.ncss.com • Email: sales@ncss.com

Toll Free: (800) 898-6109 • Tel: (801) 546-0445 • Fax: (801) 546-3907

PASS comes with two manuals that contain
tutorials, examples, annotated output,
references, formulas, verification, and
complete instructions on each procedure.
And, if you cannot find an answer in the
manual, our free technical support staff
(which includes a PhD statistician) is
available.

System Requirements
PASS runs on Windows 95/98/ME/NT/
2000/XP with at least 32 megs of RAM and
30 megs of hard disk space.

PASS sells for as little as $449.95.

Power vs N1 by Alpha with M1=20.90 M2=17.80
S1=3.67 S2=3.01 N2=N1 2-Sided T Test
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PASS performs power analysis and
calculates sample sizes. Use it before
you begin a study to calculate an
appropriate sample size (it meets the
requirements of government agencies
that want technical justification of the
sample size you have used). Use it after
a study to determine if your sample size
was large enough. PASS calculates the
sample sizes necessary to perform all of
the statistical tests listed below.

A power analysis usually involves
several “what if” questions. PASS lets
you solve for power, sample size, effect
size, and alpha level. It automatically
creates appropriate tables and charts of
the results.
PASS is accurate. It has been
extensively verified using books and
reference articles. Proof of the
accuracy of each procedure is included
in the extensive documentation.

PASS is a standalone system. Although
it is integrated with NCSS, you do not
have to own NCSS to run it. You can use
it with any statistical software you want.

PASS Beats the Competition!
No other program calculates sample
sizes and power for as many different
statistical procedures as does PASS.
Specifying your input is easy, especially
with the online help and manual.

PASS automatically displays charts and
graphs along with numeric tables and
text summaries in a portable format that
is cut and paste compatible with all word
processors so you can easily include the
results in your proposal.

Choose PASS. It's more comprehensive,
easier-to-use, accurate, and less
expensive than any other sample size
program on the market.

Trial Copy Available
You can try out PASS by downloading it
from our website. This trial copy is
good for 30 days. We are sure you will
agree that it is the easiest and most
comprehensive power analysis and
sample size program available.

PASS 2002
Power Analysis and Sample Size Software from NCSS



PASS calculates sample sizes for...

PASS 2002 adds power analysis and sample size to your statistical toolbox

WHAT’S NEW IN PASS 2002?
Thirteen new procedures have been added
to PASS as well as a new home-base
window and a new Guide Me facility.

MANY NEW PROCEDURES
The new procedures include a new multi-
factor repeated measures program that
includes multivariate tests, Cox
proportional hazards regression, Poisson
regression, MANOVA, equivalence
testing when proportions are correlated,
multiple comparisons, ROC curves, and
Hotelling’s T-squared.

TEXT STATEMENTS
The text output translates the numeric
output into easy-to-understand
sentences. These statements may be
transferred directly into your grant
proposals and reports.

GRAPHICS
The creation of charts and graphs is
easy in PASS. These charts are easily
transferred into other programs such
as MS PowerPoint and MS Word.

NEW USER’S GUIDE II
A new, 250-page manual describes each new
procedure in detail. Each chapter contains
explanations, formulas, examples, and
accuracy verification.

The complete manual is stored in PDF
format on the CD so that you can read and
printout your own copy.
GUIDE ME
The new Guide Me facility makes it easy for
first time users to enter parameter values.
The program literally steps you through those
options that are necessary for the sample size
calculation.
NEW HOME BASE
A new home base window has been added just
for PASS users. This window helps you
select the appropriate program module.
COX REGRESSION
A new Cox regression procedure has been
added to perform power analysis and sample
size calculation for this important statistical
technique.
REPEATED MEASURES
A new repeated-measures analysis module
has been added that lets you analyze designs
with up to three grouping factors and up to
three repeated factors. The analysis includes
both the univariate F test and three common
multivariate tests including Wilks Lambda.
RECENT REVIEW
In a recent review, 17 of 19 reviewers
selected PASS as the program they would
recommend to their colleagues.

Please rush me my own personal license of PASS 2002.
Qty
___ PASS 2002 Deluxe  (CD and User's Guide): $499.95..............$ _____

___ PASS 2002 CD (electronic documentation): $449.95..........$ _____

___ PASS 2002 5-User Pack (CD & 5 licenses): $1495.00........$ _____

___ PASS 2002 25-User Pack (CD & 25 licenses): $3995.00....$ _____

___ PASS 2002 User's Guide II (printed manual): $30.00.........$ _____

___ PASS 2002 Upgrade CD for PASS 2000 users: $149.95 .......$ _____

Typical Shipping & Handling: USA: $9 regular, $22 2-day, $33
overnight. Canada: $19 Mail. Europe: $50 Fedex.......................$ _____
Total: ...................................................................................$ _____

My Payment Options:
___ Check enclosed
___ Please charge my: __VISA __MasterCard __Amex
___ Purchase order enclosed

Card Number
_______________________________________________Expires_______

Signature____________________________________________________
Please provide daytime phone:

(       )_______________________________________________________

Ship my PASS 2002 to:

NAME

COMPANY

ADDRESS

CITY/STATE/ZIP

COUNTRY (IF OTHER THAN U.S.)

FOR FASTEST DELIVERY, ORDER ONLINE AT
WWW.NCSS.COM

Email your order to sales@ncss.com
Fax your order to (801) 546-3907

NCSS, 329 North 1000 East, Kaysville, UT 84037
(800) 898-6109 or (801) 546-0445





Introducing GGUM2004 
Item Response Theory Models for Unfolding

The new GGUM2004 software system
estimates parameters in a family of item
response theory (IRT) models that unfold
polytomous responses to questionnaire
items.  These models assume that persons
and items can be jointly represented as
locations on a latent unidimensional
continuum.  A single-peaked,
nonmonotonic response function is the key
feature that distinguishes unfolding IRT
models from traditional, "cumulative" IRT
models.  This response function suggests

that a higher item score is more likely to the extent that an individual is located close to a given
item on the underlying continuum.  Such single-peaked functions are appropriate in many
situations including attitude measurement with Likert or Thurstone scales, and preference
measurement with stimulus rating scales.  This family of models can also be used to determine
the locations of respondents in particular developmental processes that occur in stages.
 
The GGUM2004 system estimates item parameters using marginal maximum likelihood, and
person parameters are estimated using an expected a posteriori (EAP) technique.  The program
allows for up to 100 items with 2-10 response categories per item, and up to 2000 respondents. 
GGUM2004 is compatible with computers running updated versions of Windows 98 SE,
Windows 2000, and Windows XP.  The software is accompanied by a detailed technical
reference manual and a new Windows user's guide.  GGUM2004 is free and can be downloaded
from:
 

http://www.education.umd.edu/EDMS/tutorials

GGUM2004 improves upon its predecessor (GGUM2000) in several important ways:
- It has a user-friendly graphical interface for running commands and 

               displaying output.
- It offers real-time graphics that characterize the performance of a given model.
- It provides new item fit indices with desirable statistical characteristics.
- It allows for missing item responses assuming the data are missing at random.
- It allows the number of response categories to vary across items.
- It estimates model parameters more quickly.

Start putting the power of unfolding IRT models to work in your attitude and preference
measurement endeavors.  Download your free copy of GGUM2004 today!



 JOIN DIVISION 5 OF APA! 
 
 The Division of Evaluation, Measurement, and Statistics of the American Psychological 
Association draws together individuals whose professional activities and/or interests include 
assessment, evaluation, measurement, and statistics.  The disciplinary affiliation of division 
membership reaches well beyond psychology, includes both members and non-members of 
APA, and welcomes graduate students. 
 
 Benefits of membership include: 
$  subscription to Psychological Methods or Psychological Assessment (student members, 

who pay a reduced fee, do not automatically receive a journal, but may do so for an 
additional $18) 

$  The Score – the division’s quarterly newsletter 
$  Division’s Listservs, which provide an opportunity for substantive discussions as well as 

the dissemination of important information (e.g., job openings, grant information, 
workshops) 

 
 Cost of membership: $38 (APA membership not required); student membership is only $8 
 
 For further information, please contact the Division’s Membership Chair, Yossef Ben-Porath 
(ybenpora@kent.edu) or check out the Division’s website: 
 
  http://www.apa.org/divisions/div5/ 
______________________________________________________________________________ 
 

ARE YOU INTERESTED IN AN ORGANIZATION DEVOTED TO 
EDUCATIONAL AND BEHAVIORAL STATISTICS? 

 
Become a member of the Special Interest Group - Educational Statisticians of the 

American Educational Research Association (SIG-ES of AERA)! 
 

The mission of SIG-ES is to increase the interaction among educational researchers interested 
in the theory, applications, and teaching of statistics in the social sciences. 

 
Each Spring, as part of the overall AERA annual meeting, there are seven sessions sponsored 

by SIG-ES devoted to educational statistics and statistics education. 
We also publish a twice-yearly electronic newsletter. 

 
Past issues of the SIG-ES newsletter and other information regarding SIG-ES can be found at 

http://orme.uark.edu/edstatsig.htm 
 

To join SIG-ES you must be a member of AERA. Dues are $5.00 per year. 
 

For more information, contact Joan Garfield, President of the SIG-ES, at jbg@umn.edu. 
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Instructions For Authors 
 
 Follow these guidelines when submitting a manuscript: 
 
 1. JMASM uses a modified American Psychological Association style guideline. 
 2. Submissions are accepted via e-mail only. Send them to the Editorial Assistant at 
ea@edstat.coe.wayne.edu. Provide name, affiliation, address, e-mail address, and 30 word biographical 
statements for all authors in the body of the email message. 
 3. There should be no material identifying authorship except on the title page. A statement should be 
included in the body of the e-mail that, where applicable, indicating proper human subjects protocols were 
followed, including informed consent. A statement should be included in the body of the e-mail indicating the 
manuscript is not under consideration at another journal. 
 4. Provide the manuscript as an external e-mail attachment in MS Word for the PC format only. 
(Wordperfect and .rtf formats may be acceptable - please inquire.) Please note that Tex (in its various 
versions), Exp, and Adobe .pdf formats are designed to produce the final presentation of text. They are not 
amenable to the editing process, and are NOT acceptable for manuscript submission. 
 5. The text maximum is 20 pages double spaced, not including tables, figures, graphs, and references. Use  
11 point Times Roman font. 
 6. Create tables without boxes or vertical lines. Place tables, figures, and graphs “in-line”, not at the end of 
the manuscript. Figures may be in .jpg, .tif, .png, and other formats readable by Adobe Illustrator or 
Photoshop. 
 7. The manuscript should contain an Abstract with a 50 word maximum, following by a list of key words 
or phrases. Major headings are Introduction, Methodology, Results, Conclusion, and References. Center 
headings. Subheadings are left justified; capitalize only the first letter of each word. Sub-subheadings are left-
justified, indent optional. 
 8. Do not use underlining in the manuscript. Do not use bold, except for (a) matrices, or (b) emphasis 
within a table, figure, or graph. Do not number sections. Number all formulas, tables, figures, and graphs, but 
do not use italics, bold, or underline. Do not number references. Do not use footnotes or endnotes. 
 9. In the References section, do not put quotation marks around titles of articles or books. Capitalize only 
the first letter of books. Italicize journal or book titles, and volume numbers. Use “&” instead of “and” in 
multiple author listings. 
 10. Suggestions for style: Instead of “I drew a sample of 40” write “A sample of 40 was selected”. Use 
“although” instead of “while”, unless the meaning is “at the same time”. Use “because” instead of “since”, 
unless the meaning is “after”. Instead of “Smith (1990) notes” write “Smith (1990) noted”. Do not strike 
spacebar twice after a period. 
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 Print subscriptions including postage for professionals are US $95 per year; for graduate students are US 
$47.50 per year; and for libraries, universities, and corporations are US $195 per year. Subscribers outside of 
the US and Canada pay a US $10 surcharge for additional postage. Online access is currently free at 
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  STATISTICIANS 
 

HAVE YOU VISITED THE 
 

Mathematics Genealogy Project? 
 

The Mathematics Genealogy Project is an 
ongoing research project tracing the intellectual 
history of all the mathematical arts and sciences 
through an individual’s Ph.D. advisor and Ph.D. 
students.  Currently we have over 80,000 
records in our database.  We welcome and 
encourage all statisticians to join us in this 
endeavor.  

 
 

Please visit our web site 
 

http://genealogy.math.ndsu.nodak.edu 
 

The information which we collect is the following: 
The full name of the individual, the school where he/she earned a Ph.D., the 
year of the degree, the title of the dissertation, and, MOST 
IMPORTANTLY, the full name of the advisor(s). E.g., Fuller, Wayne 
Arthur; Iowa State University; 1959; A Non-Static Model of the Beef and 
Pork Economy; Shepherd, Geoffrey Seddon 

 
For additions or corrections for one or two people a link is available on the 
site.  For contributions of large sets of names, e.g., all graduates of a given 
university, it is better to send the data in a text file or an MS Word file or an 
MS Excel file, etc. Send such information to: 
 

harry.coonce@ndsu.nodak.edu 
The genealogy project is a not-for-profit endeavor supported by donations from individuals and sales of 
posters and t-shirts.  If you would like to help this cause please send your tax-deductible contribution to: 
Mathematics Genealogy Project, 300 Minard Hall, P. O. Box 5075, Fargo, North Dakota 58105-5075E 
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