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modern methods such as those described by 
Wilcox (1990, 2012) or an ordinal alternative 
(Cliff, 1993, 1996). The method described 
herein combines the frequency and quantitative 
information into a single test. 

A common simple research context is 
one in which a population can be divided into g 
subpopulations, each with known relative 
frequency or theoretical probability π i. Some 
members of the subpopulations then fall into a 
certain class, and the research question is 
whether members of the class come 
disproportionately from different sub-
populations. A simple example is the hoary 
beads-of-different-colors-in-a-bag from which a 
random sample of beads is drawn and various 
questions about the contents of the bag can be 
investigated. Empirical examples might include 
investigating whether individuals with a certain 
disease come disproportionately from different 
city precincts, ethnicities, age groups, etc., each 
of whose population sizes are known; whether 
students taking high school advanced placement 
exams tend to come differentially from different 
schools, genders, etc.; whether psychotics tend 
to come from certain neighborhoods; whether 
the number of germinating plants tend to come 
from certain seed stocks, or netted fish tend to 
come from certain stocked batches or 
subspecies; whether defaulting mortgages tend 
to come from certain banks. Alternatively, there 
could be a model that determines the π. 

Experimental contexts can also occur. 
Suppose three different inoculation regimens are 
employed, each on a large group. At a later time, 
incidences of the disease are recorded and the 
number that comes from each treatment is 
compared to its expected frequency based on the 
original group sizes. In all these cases it is 
assumed that there is an a priori probability that 
a random member of the observed class will 
come from subpopulation i. The observed 
number fi that comes from i can be compared to 
nπ i , where n is the total number observed to 
fall in the class and elementary significance tests 
are applied to the results. 

This article elaborates on such methods 
to cases where there is also an expected effect on 
an associated quantitative variable, specifically, 
for data such as: numbers written on the beads-
in-a-bag; a measure of severity of disease; scores 

of students on an exam; the measured sizes of 
plants or fish; amounts or dates of loan defaults. 
The groups could compared quantitatively using 
some form of location comparison, such as, 
analysis of variance, t-test, modern more robust 
methods (Wilcox, 1990, 2012) or ordinal 
comparisons (Cliff, 1993, 1996). 

Can the quantitative and qualitative 
information in testing a random model be 
combined? The traditional way this might be 
accomplished is to divide the quantitative 
variable into categories to form a cross-
classification and then calculate expected cell 
frequencies or fit a loglinear model, etc. The 
qualitative variable could also be coded in some 
rational way and treated in parallel with the 
quantitative one via the general linear model. 
Here, combining quantitative and qualitative 
data more directly is suggested. 
 

New Test Description 
There are two beads-in-a-bag models to which 
the method can be applied. In the first, there is a 
large sack containing red and white beads. The 
supplier indicates that some beads, an equal 
number of red and white, have numbers written 
on them, and that the means of the red-bead 
numbers and white-bead numbers are the same. 
A sample of beads is taken, discarding those that 
do not have numbers, resulting in n numbered 
beads, some red and some white. The goal is to 
test the supplier’s assurance of equal frequencies 
and equal means. A priori probabilities, π r and 
π w of 0.50, state that a numbered bead is white 
or red and the further hypothesis is that the 
means are the same for both red and white. In 
the general case, the a priori probabilities could 
be different, and/or there could be more than two 
colors of beads. 

The second bead model uses two bags of 
beads, one red and one white. By hypothesis, 
equal proportions from red and white are 
numbered and the means of the numbers from 
red and white are equal. In this model, the plan 
is to sample sw from the white bag and sr from 
the red bag, once again discarding any 
unnumbered beads, and to determine how many 
of each are numbered and what the numbers are: 
if red and white beads are equally likely to be 
numbered, the probability that a numbered bead 
is white is sw/(sw + sr). The objective is to test 
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the combined hypothesis that the probabilities 
are as assumed and that the means are equal and 
the method generalizes to more than two colors. 

The natural way to test either of the 
models is to calculate Σ jxij , the sum of the 
scores xij by the jth member of subpopulation i 
who are in the class, that is, are a numbered 
bead, and compare it to a random expectation. 
Here, the obvious candidate is nπ i m, where m 
is the overall mean of X, n is the number falling 
in the class (numbered beads in the examples), 
and π i is the a priori probability that the 
member came from subpopulation i. The 
difference, Σ jxij – nπ im, is a random variable 
that can be expected to be approximately normal 
under a wide variety of circumstances. 

In order to assess whether the deviation 
could be consistent with a random model, it is 
essential to know the standard error of this 
difference. Its sampling variance, di

2, is           
E[( Σ j(xij) –π im)]2. To determine its form, first 
consider the expectation at a fixed cell frequency 
fi and make use of Σ jxij =  fi mi where mi is the 
mean of the xij in i. The expected value of di

2 at a 
given fi is 
 

E(di
2) = E[fi

2mi
2 – 2fi minπ i + (nπ im)2], 

 
and, because mi is the mean of fi cases, 
 

E(fi
2mi

2] = fi
2 μ 2 + fi σ x

2. 
 

Next, take the expectation across the 
possible sample values of fi; where μ 2 and σ x

2 

are constants, and fi is a binomial in π i and n. 
Thus, because the expected value of a squared 
random variable is again the sum of its squared 
mean and its variance, 
 

E[fi
2] = (nπ i)

2 + n(π i – π i
2). 

 
Putting this back into di

2 and collecting terms 
yields: 
 

E(di
2)= n μ 2(π i – π i

2)+ nπ i σ x
2. 

 
This is exactly what one would expect: that the 
expected squared deviation under the null 
hypothesis is the sum of a term reflecting the 
expected deviation of the frequency from 

expectation and one reflecting the expected 
deviation of the subgroup mean from the overall 
mean. Under the null hypothesis, the two 
deviations are independent; their terms are 
therefore additive. 

Under broad conditions, that is, when n
π i is not too close to either n or zero and X is 
not far from normal with homogeneous 
variances across groups, the deviations Σ xij – n
π i μ  are approximately normal with the given 
variance, in this case the obvious test is to 
compute the ratio of the observed difference to 
di. In the application that this method was 
developed to solve, X was the first n integers so 
that μ  and σ 2 were known parameters – in 
which case the ratio can be taken as a standard 
normal deviate. 

However, in most applications m and s2 
are estimates from the sample, the latter being a 
within-cells estimate. As was noted, d2 has two 
components, one identical to the denominator of 
the Chi-square test and one derived from the 
variance. When the latter is a sample estimate, 
the ratio is no longer a normal deviate, but tends 
to resemble a t-ratio to some degree. (Note that 
the unbiased estimate of μ 2 is m2 − s2/n.) 
Consequently, a slightly conservative approach 
is to interpret the ratio as a t with n – k df , k 
being the number of groups, although the 
expectation is that, in most contexts, the null 
sampling distribution may be very close to 
normal due to the influence of the first term in 
d2. The method can be adapted to situations 
where nπ i is close to the extremes, offering 
some special advantages over simply comparing 
frequencies under those circumstances. 
 
Example 

Table 1 contains artificial data that is 
used to illustrate the procedure. The data are 
analogous to what might be found if two groups 
of animals are given different cancer treatments. 
After a time the occurrence and size of lesions 
are determined, so xij is the size of the lesion in 
animal j from group i; originally, there were s1 = 
15 animals in treatment 1 and 10 in treatment 2, 
so the a priori probabilities that a given lesioned 
animal is in a given group are π 1 = 0.6 and π 2 
= 0.4, analogously to the second bead example. 
The expectation is that lesions will be more 
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common and larger in Group 1. Thirteen animals 
are found to have lesions in Group 1 and three in 
Group 2, so n = 16. The sizes of the lesions in 
each group are given in the upper part of the 
table along with the statistics for each group. 

The lower part of the Table shows the 
components of di

2 and the t’s for each group, 
which are found to be significant at the α = 0.05 
level, one-tailed. A SAS macro was written to 
perform the analysis (by Professor Du Feng), but 
it is easily carried out in small samples with the 
aid of a pocket calculator. An analysis based on 
the rank-order version of the data gave highly 
similar results. 
 
Power Considerations 

It would seem natural to expect that 
including quantitative information would 
increase power over the simple frequency 
analysis, but one may wonder about the 
circumstances under which this might actually 
be true. Note that di

2 has the appearance of 
combining expected frequency deviations and 
subgroup mean deviations, by adding these two 
components fimi − nπ im can be made into a 
form: 
 

fimi – nπ i = [fimi – fim] + [fim – nπ im]. 
 
After squaring the second bracketed term, call it 
a2, and comparing it to the frequency part of di

2, 
their ratio would give exactly the same result as 
would be obtained in computing the ith  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

component of the Chi-square for testing 
observed frequencies; thus, the frequency 
component of this test is similar to the 
traditional test. 

The mean difference component 
resembles a component of the F-test on mean 
differences, but is not identical. Dividing      
fi

2(mi – m)2 by fis2 would give a component of F, 
but the corresponding term in di

2, nπ i, is the 
expected frequency, not fi, of the observed group 
size itself, thus, these terms are similar, but are 
not the same. 

However, the general circumstances 
under which using the combined test would be 
more powerful than simply using the frequencies 
can still be investigated. If b is defined as       
fi[mi – μ ] and e2 as the variance part of E(d i

2), 
then the ratio from the combined test is (a + 
b)2/(c2 + e2). The new ratio will be greater than 
the frequency ratio when 
 

(a + b)2/(c2 + e2) > a2/c2, 
 
and, collecting some terms, this will be true 
when 

(2ab + b2)/e2 > a2/c2. 
 
This relation indicates that the new procedure is 
more likely to detect effects than simply testing 
the frequencies when both the mean and 
frequency effects are in the same direction as 
well as when the mean effect is relatively large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Artificial Animal Data to Illustrate the Combined Frequency and Quantitative Test 
 

Group Data Statistics 

1 
13.1, 2.5,9.2, 6.2, 15.0, 12.1, 10.4, 

17.4, 15.1, 6.0, 16.0, 6.1, 11.2 
=11.55 

2 3.1, 9.3, 8.6 
= 7.00 

m = 10.69 
s2 = 16.86 

Group 
Analysis 

xij n im di
2 t-ratio 

1 150.1 102.66 578.06 1.973 

2 21.0 68.44 531.75 2.057 
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Another consequence of examining the 
ratio in this way is seeing that its two aspects are 
implicitly weighted by the relative magnitudes 
of variance and squared mean. The other factors, 
π i – π i

2 and π i, are similar in magnitude, their 
ratio being between 0.5 and 1.0. When the data 
consist of the first n positive integers, the ratio 
of squared mean to variance approaches 3.0 as n 
increases, indicating that frequency effects will 
always be emphasized relative to mean effects in 
such data. 

The difference in influence can be even 
greater with some psychological variables whose 
mean and variance are set by convention. Many 
scholastic aptitude tests are scaled to have a 
mean about 500 and variance about 10,000, 
giving a ratio of about 25.0; the IQ scale is even 
more extreme, giving a ratio of squared mean to 
variance of more than 40.0. In such 
circumstances, the mean part of the proposed 
ratio has little effect because the proposed ratio 
approaches the traditional one for frequencies as 
μ 2/σ 2 increases. 

In some research contexts, X has a well-
established and empirically meaningful zero 
point. However, in others, such as the SAT and 
IQ scales, it merely represents a convenient 
reference. Where the origin of the scale is 
arbitrary, the user may feel that it is justifiable to 
give more nearly equal a priori weights to μ 2 

and σ 2. However, it seems desirable that the 
lowest possible Σ xij value should be zero, 
occurring when fi = 0. Thus, subtracting a 
constant to make the lowest observed score 
slightly positive seems to be the most that can be 
done to equate influences. However, if X is 
quasi-normal with lowest standardized value of 
around −3.5 or −3.0, the ratio is still 9.0 to 12.0. 
Thus, making the analysis ordinal by converting 
the observed variable to the first n integers may 
be the most that can be done in equating 
influences of mean and variance. 
 
Exact Version 

When nπ i is smaller than about five, 
the normality of the distribution of differences is 
likely to break down, making the assumed 
boundaries for an acceptance region unrealistic. 
In that circumstance, the researcher can 
construct cutoff values for the sum that 

correspond nearly exactly to a given rejection 
probability. These probabilities are now defined 
under a randomization hypothesis rather than on 
the basis of parameter estimates. 

A given set of n xij values, that is, from 
all groups in the sample, defines 2n possible 
values for Σ jxij; of these, a certain fraction, 
corresponding to the desired rejection level, give 
the smallest (largest) values for the sum. These 
can be enumerated; if the obtained sum falls 
within this set, the null hypothesis is rejected. 
This enumeration process may improve power in 
such cases by defining a finer-grained rejection 
region than the corresponding test that is based 
only on the frequencies or only on the means. 

The method is suggested by the beads-
in-a-bag models. Consider an obtained sum for 
Group i and ask: What is the probability of 
obtaining a sum this small (large) or smaller 
(larger) when drawing n times with probability 
π i? To illustrate with the example, the sum for 
Group 2 is 21.0, n is 16 and π 2 is 0.40. 

There are 216 = 65,336 possible 
outcomes of randomly drawing a sum. Which 
are less than 21.0 and what are their respective 
probabilities? Of these outcomes, one has a sum 
of 0.0, that with f2 = 0. This will happen with 
binomial probability 2.82×10-4. There are 16 
draws with f2 = 1, each with probability 1.88×
10-4, and all have sums less than 21.0. There are 
120 with f2 = 2, all with probability 1.25×10-4, 
but only 55 of them have sums less than 21.0. 
When f2 = 3, there are only 23 that are less than 
21.0, each having probability 8.35×10-5. No 
combination of four has a sum below that limit. 

Summing the probabilities of the 
instances that have sums less than 21.0 it is 
found that, under randomization, 0.000282 + 16
×  0.000188 + 55×  0.000125 + 23×  0.0000835 
= 0.012192 is the probability of obtaining a sum 
of 21.0 or less for Group 2, which is just short of 
the 0.01 significance level. By contrast, if only 
the frequencies are considered, the 
corresponding binomial probability of f2 = 3 or 
fewer is 0.0652. Also, the t-test in Table 1 
yielded a significance level of about 0.04, less 
extreme than the probability obtained by 
enumeration. 
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Applications 
Applied contexts having the 

characteristics that are appropriate to the method 
seem likely to be fairly common. Consider a 
state infectious disease-monitoring agency that 
observes an outbreak of a disease such as 
meningitis, and tabulates the locations, by 
district, of the disease. It might hope to identify 
the origin of the outbreak by tabulating 
frequency by district and comparing them to 
expectations based on district sizes. Here, n is 
the total number of meningitis cases and the π i 
are defined by the relative sizes of the 
populations of the different districts. If the 
agency records the days since diagnosis of each 
case and uses it as the quantitative variable in 
the present method, an easier identification of 
the outbreak’s focus may be possible. 

Consider also a bank-regulating agency 
such as the Federal Deposit Insurance 
Corporation that is observing a group of banks 
to assess the riskiness of their policies. It knows 
the number of mortgages issued by the banks 
and records the defaults that occur for each, n 
being the total number of mortgages that are in 
default and the pi are defined by the number of 
mortgages issued by each bank. Using either the 
days since default or the amount of the default as 
well as the frequency of default might well give 
a more sensitive measure of the banks’ statuses 
than frequency alone. 

In psychology, suppose individuals are 
given training in problem-solving. After 
training, they and a control group are given a 
problem to solve under a time-limit. Some 
individuals are successful and some not, n being 
successful, and the time taken to success is 
recorded. If there are st individuals in the trained 
group and sc in the control, π t = st/(st + sc), and 
similarly for π c, represent the a priori 
probabilities that a success comes from the 
respective groups. Here, in order for the time 
variable to operate in the appropriate direction, it 
is best recorded as time remaining before the 
cut-off signal in order that small means and 
small frequencies are expected to go together. 

In a study of differences in criminal 
recidivism, released convicts who have been 
under different prison regimens or treatments or 
who belong to different natural groups can be 
followed for a period. The frequency of re-

incarceration can be combined with the length of 
sentence and analyzed in the proposed way. The 
method could also be applied to studies of the 
effects of educational treatments. 

Many other potential applications exist; 
the key to the relevance of the method is the 
expectation that frequency and some quantitative 
variable will act in the same direction. It has 
been noted that treating the quantitative variable 
as a rank order may have some advantages. 

It has been assumed that the qualitative 
variable consists of a single dimension of 
classification, but it seems in principle that this 
limitation is not necessary. The classification 
could have two or more ways as in a factorial or 
nested design and the relevant quantities could 
be computed for various effects. Another 
possible complication is dealing with more than 
one quantitative variable. Could the variables be 
combined by forming an optimally weighted 
composite of the observed variables? That 
optimization might be complicated by the 
necessity of keeping the composite positive. 
Investigation of such a possibility is beyond the 
scope of the present article. 
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Consider three random variables, Y , 1X  and 2X , having some unknown trivariate distribution and let 2

jh  

(j = 1, 2) be some measure of the strength of association between Y  and jX . When 2
jh  is taken to be 

Pearson’s correlation numerous methods for testing 2 2
1 2:oH h h=  have been proposed. However, 

Pearson’s correlation is not robust and the methods for testing 0H  are not level robust in general. This 

article examines methods for testing 0H  based on a robust fit. The first approach assumes a linear model 

and the second approach uses a nonparametric regression estimator that provides a flexible way of dealing 
with curvature. The focus is on the Theil-Sen estimator and Cleveland’s LOESS smoother. It is found that 
a basic percentile bootstrap method avoids Type I errors that exceed the nominal level. However, 
situations are identified where this approach results in Type I error probabilities well below the nominal 
level. Adjustments are suggested for dealing with this problem. 
 
Key words: Explanatory power, Theil-Sen estimator, nonparametric regression, bootstrap methods, kernel 

density estimators. 
 
 

Introduction 
Consider three random variables, Y , 1X  and 

2X  having some unknown trivariate distribution 
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and let 2

jh  be some measure of association 

between Y  and jX  (j=1, 2). This article 

considers the problem of testing 
 

2 2
0 1 2:H h h=                     (1.1) 

 
when 2

jh  is a robust version of explanatory 

power, which is estimated via the Theil (1950) 
and Sen (1968) regression estimator or the 
robust version of Cleveland’s (1979) smoother 
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(LOESS). For the special case where 2
jh  is 

Pearson’s correlation, r , numerous methods for 

testing 0 1 2:H r r= , as well as 2 2
0 1 2:H r r= , 

have been proposed by many authors (Hittner, 
May & Silver, 2003; Hotelling, 1940; Olkin, 
1967; Dunn & Clark, 1971; Meng, Rosenthal & 
Rubin, 1992; Steiger, 1980; Wilcox & Tian, 
2008; Wilcox, 2009; Williams, 1959; Zou, 
2007). A general concern, however, is that r  – 
the usual estimate of r  – is not robust, roughly 
meaning that even a single outlier can result in a 
large value for r  when there is little or no 
association among the bulk of the points. 
Similarly, a strong association among the bulk 
of the points can be masked by one or more 
outliers (Wilcox, 2005). Thus, r  is not robust in 
the general sense as summarized by Huber 
(1981) and as illustrated by Wilcox (2005, p. 
385). 

Another concern is curvature. 
Experience with smoothers indicates that 
approximating the regression line with the usual 
parametric models can be unsatisfactory, which 
in turn raises concerns about how to measure the 
overall strength of association. A relatively 
simple strategy is to approximate the regression 
line with some type of nonparametric regression 
estimator or smoother (e.g., Efromovich, 1999; 
Eubank, 1999; Fan & Gijbels, 1996; Fox, 2001; 
Green & Silverman, 1993; Gyöfri, et al., 2002; 
Härdle, 1990; Hastie & Tibshirani, 1990) that 
can be used to estimate a robust measure of the 
strength of the association; this is the approach 
employed herein. 

It is noted that there is a vast literature 
on identifying and ordering the importance of 
predictor variables; see for example Lafferty and 
Wasserman (2008) and the references they cite. 
It seems that none of these methods are based on 
a robust measure of association. Moreover, the 
precision of the resulting ordering is typically 
unclear. Thus, an additional goal of this research 
is to consider a formal hypothesis testing 
approach for determining which of two 
predictors has a stronger association with the 
outcome variable of interest, in contrast to 
merely estimating which has the stronger 
association. 
 

Background 
Basic results and methods used to 

measure and estimate the strength of an 
association are first reviewed. Consider the 
situation where the conditional mean of Y , 
given X , is assumed to be 0 1Y Xb b= +  and 

ordinary least squares is used to estimate the 
unknown slope, 1b , and intercept, 0b . Let 

0 1Ŷ b b X= + , where 0b  and 1b  are the least 

squares estimates of 0b  and 1b , respectively, 

based on the random sample 
1 1( , ), ,( , ).n nX Y X Y  It is well known (and 

readily verified) that 
 

2
2

2

ˆˆ ( )
,

ˆ ( )
Y

r
Y

s
s

=                       (2.1) 

 

where 2 ˆˆ ( )Ys  is the usual sample variance based 

on 0 1
ˆ ,i iY b b X= +  1, ,i n=  . Slightly 

extending an approach to measuring the strength 
of an association used by Doksum and Samarov 
(1995), there is a simple and seemingly natural 

robust generalization of 2r . First, replace Ŷ  
with Y , where Y  is any fit to the data, which 
might be obtained via a robust regression 
estimator (using a linear model) or some 
smoother that deals with curvature in a 

reasonably flexible manner. Next, let 2( )Yt  be 
some robust measure of variation associated 
with the marginal distribution of Y . It is 

assumed that 2( )Yt  has been chosen so that if 

there is no variation, 2( )Yt  = 0. A general 
approach to measuring the strength of the 
association between Y  and X  is then 
 

2
2

2

( )
( )
Y
Y

th
t

=                          (2.2) 

 
which Doksum and Samarov (1995) call 

explanatory power. To make 2h  practical, there 
are the issues of choosing t  and some method 
for computing Y . First consider t . There are 
many robust alternatives to the usual variance 
(Wilcox, 2005). Lax (1985) compared the 
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efficiency of many scale estimators and 
concluded that two so-called A-estimators are 
best, one of which corresponds to what 
Shoemaker and Hettmansperger (1982) term the 
percentage bend midvariance. The other A-
estimator found to perform well by Lax 
corresponds to what Shoemaker and 
Hettmansperger call the biweight midvariance. 

Bickel and Lehmann (1976) argue that if 
both X  and Y  have symmetric distributions 
about zero, and if | |X  is stochastically larger 

than | |Y , then it should be the case that a 
measure of scale should be larger for X  than it 
is for Y . Bickel and Lehmann define a measure 
of scale that satisfies this property to be a 
measure of dispersion. Shoemaker and 
Hettmansperger show that the percentage bend 
midvariance is a measure of dispersion but the 
biweight midvariance is not. A possible reason 
for preferring the biweight midvariance is that it 
has the highest possible breakdown point, 
namely .5. Here the focus is on the percentage 
bend midvariance, but this is not to suggest that 
all other measures of scale be eliminated from 
consideration. 

Recently, Randal (2008) expanded on 
Lax’s study and concluded that the two A-
estimators recommended by Lax perform 
relatively well. However, Randal’s study did not 
include Rocke’s (1996) TBS (translated 
biweight S) estimator, and the tau measure of 
scale introduced by Yohai and Zamar (1988). As 
a partial check on the relative merits of these 
estimators, simulations based on 5,000 
replications were used to estimate the standard 
error of the logarithm of these estimators when 

20n =  for the same distributions used by Lax 
and Randal. (For this study the tau estimator was 
computed as described by Marrona & Zamar, 
2002.) For a standard normal distribution, the 
results were 0.402, 0.388 and 0.530 for the 
percentage bend midvariance, tau and TBS, 
respectively.  

For a 1-wild distribution (generate data 
from a normal distribution and multiply one 
value by 10), the results were 0.398, 0.420 and 
0.516. For a slash distribution ( /Z U , where Z  
has a standard normal distribution and U  a 
uniform distribution), the results were 0.744, 
0.631 and 0.670. No single estimator dominates. 

Although the focus here is on the percentage 
bend midvariance, it seems that the tau measure 
of scale deserves serious consideration based on 
these limited results. 

For a random sample 1, , nY Y , the 

percentage bend midvariance is computed as 
follows. Let f  be the value of (1 ) .5nb- +  
rounded down to the nearest integer. The 
parameter b  determines the finite breakdown 
point of the percentage bend midvariance, 
meaning the proportion of points that must be 
altered to make the estimate arbitrarily large. 
Roughly, b  reflects the proportion of outliers 
that can be tolerated. Here b  = 0.2 is used, 
which is motivated in part by the desire to obtain 
good efficiency under normality. Let 

| |i iW Y M= - , 1, ,i n=  , and let 

(1) ( )nW W£ £  be the iW  values written in 

ascending order. Let 
 

( ),ˆ fWbw =  

 
be the fth largest of the iW  values, let M  be the 

usual sample median based on 1, , nY Y  and let 

 

ˆ
i

i
Y M

U
bw

-
=  

 
where 1ia =  if | | 1iU < ; otherwise 0ia = . 

The estimated percentage bend midvariance is 
 

2 2

2

2

( )ˆ
ˆ

( )

i

i

n U

a

bw
z

Y
=

å

å
,              (2.3) 

 
where ( ) max[ 1,min(1, )]x xY = - . 

Henceforth, it is assumed that 2t  is the 

percentage bend midvariance and that 2h  is 
estimated with 
 

2
2

2

ˆ ( )
ˆ .

ˆ ( )
Y
Y

th
t

=                        (2.4) 
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There remains the problem of choosing a 
method for computing Y . First consider the 
situation where 
 

0 1 ,Y Xb b e= + +               (2.5) 

 
where X  and e  are independent random 
variables. If 0b  and 1b  are estimates of 0b  and 

1b , respectively, 0 1iY b b X e= + +  

( )1, ,i n=  can be used to compute 2ˆ ( )Yt  , 

which in turn can be used to compute 2ĥ . 
Wilcox (in press b) considered several robust 
regression estimates of 0b  and 1b  with the goal 

of estimating 2h  with 2ĥ . Based on mean 
squared error and bias, it was found that the 
Theil-Sen estimate of 0b  and 1b  performs 

relatively well, thus it is used here. 
Consider all pairs of points for which 

the two predictor values differ. The Theil-Sen 
estimator computes the slope for all such pairs 
of points and the estimate of 1b , for example 

1tsb , is taken to be the median of all these 

slopes. The intercept is taken to be 

0 1ts y ts xb M b M= - , where yM  is the usual 

median of 1, , nY Y . The breakdown point of 

this estimator is approximately 0.29, where 
roughly, the breakdown point of an estimator is 
the proportion of points that must be altered to 
make it arbitrarily large or small. Moreover, the 
Theil-Sen estimator has excellent efficiency 
compared to many other robust estimators that 
have been proposed. 

Next consider the more general case 
 

( )Y m X e= +                  (2.6) 
 
where ( )m X  is some unknown function of X  
and e  is some random variable that is 
independent of X . Wilcox (in press b) 
considered various nonparametric regression 

estimators with the goal of estimating 2h . In 
terms of mean squared error and bias, a so-called 
running interval smoother (Wilcox, 2005), as 
well as a method based on a cubic B-spline 

(Hastie & Tibshirani, 1990) were found to be 
relatively unsatisfactory. Bootstrap bagging 
combined with these estimators was considered, 
but was found to perform poorly. No method 
dominated, but a rough guideline is that , when a 
linear model holds , the Theil-Sen estimator is a 
good choice, otherwise use Cleveland’s (1979) 
LOESS. A nonparametric estimator derived by 
Wood (2004) was found to perform relatively 
well when a linear model holds, but the Theil-
Sen estimator seems preferable. Finally, when 
there is curvature LOESS was generally more 
satisfactory. 

To briefly outline Cleveland’s method, 
consider the random sample 1 1( , ), ,( , )n nX Y X Y . 

For any x , let 
 

| |i iX xd = - . 

 
Put the id  values in ascending order and retain 

the nk  pairs of points that have the smallest id  

values, where k  is some number between 0 and 
1 and is called the span. Let 
 

| |i
i

m

x X
Q

d
-

= , 

 
where md is the maximum of the retained id  

values. If 0 1iQ£ < , set 

 
3 3(1 )i iw Q= - , 

 
otherwise 0iw = . Let ( )m X  be the estimate of 

Y  given X x=  and use weighted least squares 
to estimate ( )m X  using iw  as weights. Both R 

and S-PLUS provide access to a function, called 
lowess, that performs a robust version proposed 
by Cleveland, and the R version was used in the 
simulations reported here using the default value 

.75k = . Cleveland’s robust method in effect 
gives little or no weight to extreme Y  values. 
(An outline of these additional computations 
also can be found in Härdle, 1990, p. 192.) 
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Methodology 
Testing (1.1) when (2.5) Is True 

Consider the case where (2.5) is true and 
2h  is estimated via the Theil-Sen estimator. The 

initial strategy considered for testing (1.1) was a 
basic percentile bootstrap method (Efron & 
Tibshirani, 1993). Let 1 2( , , )i i iX X Y , 1, ,i n=  , 

be a random sample. A bootstrap sample is 
obtained by resampling with replacement n  
vectors from this random sample yielding, for 

example, * * *
1 2( , , )i i iX X Y . Let 2

jh  be the estimate 

of 2
jh  based on this bootstrap sample. Repeat 

this process B  times yielding 2
jbh , 1, ,b B=  . 

Let 

1
bP I

B
= å  

 

where the indicator function 1bI =  if 2 2
1 2b bh h>  , 

otherwise 0bI = . A (generalized) p-value is 

(Liu & Sing, 1997) is then: 
 

2min( ,1 ).p P P= -  
 

Let 12r  be Pearson’s correlation 

between 1X  and 2X . Initial simulations revealed 

that when testing at the .05a =  level, the basic 
percentile bootstrap method described performs 
reasonably well when 12r  = 0. However, as 12r  

increases, the estimate of the actual Type I error 
probability decreased. For 12r  = 0.7 the 

estimates were less than 0.01. 
The first attempt at reducing this 

problem was to use a bootstrap estimate of the 

squared standard error of 2 2
1 2h h- , say, 2¡̂ , and 

then use the test statistic 2 2
1 2

ˆ( ) /h h- ¡ . 

However, in simulations with B = 100, Type I 
errors were found to be relatively sensitive to the 
distributions generating the data; increasing B to 
400 reduced this problem somewhat but did not 
eliminate it, thus this approach was abandoned. 

Consider the case 12r  = 0 and let 
2 2
1 2ˆ ˆD h h= - . It was found that Type I error 

control is improved if, rather than a single 

bootstrap sample, two independent bootstrap 
samples are used. That is, take a bootstrap 
sample from 1( , )i iX Y  and compute a bootstrap 

estimate of 2
1h , for example, 2

1h , take a new, 

independent bootstrap sample from 2( , )i iX Y  

yielding 2
2h   and let 2 2

1 2D h h= -  . Repeating this 

process B times yields 1, , BD D , which can be 

used to estimate ( 0)P P D= <  in the manner 
already described. This in turn yields the 
generalized p value. Once again control over the 
probability of a Type I error was found to be 
unsatisfactory. However, it was found that 
control over the Type I error probability was 
improved if, instead of estimating 

( 0)P P D= <  with the bootstrap samples in the 
usual way, a kernel density estimate is used; this 
strategy was based on results from Racine and 
MacKinnon (2007). 

Generally, kernel density estimates of 
the distribution of D  take the form 
 

1(̂ ) ( )i
d D

f d K
nh l

-
= å , 

 
where K  is some probability density function 
and l  is a constant to be determined called the 
span or smoothing parameter. Given h  and a 
choice for K , which is assumed to be defined 
over some known interval ( , )u , an estimate of 

( 0)P D <  is 
 


0

1

1
( 0) .

n i
i

t D
P D K dt

nh l=

æ ö- ÷ç ÷< = ò ç ÷ç ÷çè ø
å  

 
The focus here is on the Epanechnikov kernel 

where, for | | 5t < , 
 

23 1( ) 1
54 5

K t t
æ ö÷ç ÷ç ÷ç ÷çè ø

= - , 

 
otherwise ( ) 0K t = . 

Following Silverman (1986, pp. 47-48), 
the span is taken to be 
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1/5
1.06 A
n

l = , 

where 
 

min( , / 1.34)A s IQR=  
 
and s  is the standard deviation, and IQR is the 
interquartile range. 

From Silverman (1986), one possible 
way of improving on the basic kernel density 
estimator, is to use an adaptive method. Let 
( )if X be an initial estimate of ( )if X . Here, 

( )if X  is based on the so-called expected 

frequency curve (Wilcox, 2005, pp. 48-49). Let 
 

1log( ) log( ( ))ig f X
n

= å  

and 
( / ) ai if X gw -=  

 
where a  is a sensitivity parameter satisfying 
0 1a£ £ . Based on comments by Silverman 
(1986), if α = 0.5 is used, then the adaptive 
kernel estimate of the probability density 
function f  is taken to be 
 

1 1(̂ ) { ( )}.i if t K t Xl w- -= -  

 
Henceforth, it is assumed that the adaptive 
method described is used to estimate P(D<0) 

based on * *
1 , , BD D , and the corresponding p-

value is denoted by p . 
There remains the problem of dealing 

with the general case 12 0r ¹ . If it is assumed 

that there is normality and 12r  is known, then 

simulations can be used to determine adjp  so 

that for some choice for a , ( )adjP p p a£ = . In 

particular, imagine that simulations with N 
replications are performed resulting in the p-
values, 1, , Np p . Arranging these N values in 

ascending order yielding (1) ( )Np p£ £  and 

letting C Na=  round to the nearest integer 
results in the adjusted p-value ( )adj Cp p= . 

 

A simple approach when dealing with 

12r  unknown is to replace 12r  with 12r  in such a 

simulation. Execution time was found to be 
reasonably low, but to reduce it further, the 
following approach was considered when 

.05a = . The value of adjp  was determined with 

n = 20 for 12r  = 0, 0.2, 0.5 and 0.8. When 12r  is 

known, it was found that adjp  is given 

approximately by 0.352| adjp |+0.049. But when 

.05a =  the actual level can exceed 0.075 due to 
situations where | 12r | exceeds | 12r | resulting in 

over adjusting the critical p-value. In this 
situation, the additional concern is that 12r  is not 

robust, and there is the issue of how to adjust the 
critical p-value when n > 20. 

To deal with the lack of robustness 
associated with Pearson’s correlation, 12r  was 

replaced by Kendall’s tau, resulting in 12kr . The 

population analog of 12kr  is denoted by 12kr . 

Next, a 0.95 confidence interval for 12kr  was 

computed using a basic percentile bootstrap 
method (Wilcox, 2005, p. 403), which has low 
execution time, even when the sample size is 
large. If this interval contains zero, let p  = 0.05, 

Otherwise, let 12.352 | | .049kp r= + . Rejecting 

(1) when the p-value is less than or equal to p  
will be called method BTS. 

This approximation depends on the 
sample size, n, but a convenient feature is that it 
was found to change slowly as n gets large. In 
particular, it continues to perform well when n = 
100. For n = 200 this is no longer the case, but 
with 100n ³  the adjustment makes little 
difference. So the suggestion is to use method 
BTS when 100n £ , otherwise reject if the p-
value is less than or equal to a . 
 
Testing (1.1) when (2.6) Is True 

Consider now the more general case 
where the regression line is given by (2.6). 
Method BTS can be extended in an obvious 
way. In particular, again the strategy is to use 

independent bootstrap samples to estimate 2
1h  

and 2
2h  and the adaptive kernel density 
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estimation method for computing a p-value is 
used. However, now the actual level of the test is 
more sensitive to 12r  and for the case .05a = , a 

modification of p  is required. As was the case 
when (2.5) is assumed, simulations indicate that 
if (1.1) is rejected when the p-value is less than 
or equal to a , the actual level will be less than 
or equal to a ; avoiding actual Type I error 
probabilities substantially less than the nominal 
level is more difficult in this case. Based on 
preliminary simulations, under normality, when 
testing at the .05a =  level, the following 
approach performed best among the methods 
considered. Let 
 


12.25 | | .05 (100 ) / 10000kp r n= + + - , 

 
max(.05, )p p=  , and reject (1.1) if p p£  . For 

n>200, p  is taken to be 0.05 and this will be 
called method SM. Note that in contrast to 
method BTS, a confidence interval for 12kr  is 

not used. 
 

Results 
Simulations were used as a partial check on the 
actual level of methods SM and BTS when 
testing at the 0.05 level. Values for 1X  and 2X  

were generated from a bivariate distribution for 
which the marginal distributions belong to the 
family of g-and-h distributions, which contains 
the standard normal as a special case. The R 
function rmul was used, in conjunction with the 
function ghdist, which are part of the library of 
R functions described in Wilcox (2005). 

The R function rmul generates data from 
an m-variate distribution having a population 
correlation matrix R  by first forming the 
Cholesky decomposition ¢ =UU R , where U  is 
the matrix of factor loadings of the principal 
components of the square-root method of 
factoring a correlation matrix, and ¢U is the 
transpose of U . Next, an n m´  matrix of data, 
X , for which the marginal distributions are 
independent, is generated, then XU  produces an 
n m´  matrix of data that has population 
correlation matrix R . 

To elaborate, let Z  be a standard 
normal distribution. For 0g > , let 

2exp( ) 1
exp( / 2)

gZ
X hZ

h
-= , 

 
and for 0g = , let 
 

2exp( / 2)X hZ= , 
 
in which case X  has a g-and-h distribution 
where g and h are parameters that determine the 
first four moments. When g = h = 0, X  has a 
standard normal distribution. With g = 0 this 
distribution is symmetric and it becomes 
increasingly skewed as g gets large. As h gets 
large, the g-and-h distribution becomes more 
heavy-tailed. Table 1 shows the skewness ( 1k ) 

and kurtosis ( 2k ) for each distribution 

considered in the simulations used herein. They 
correspond to a standard normal (g = h = 0), a 
symmetric heavy-tailed distribution (h = 0.2, g = 
0.0), an asymmetric distribution with relatively 
light tails (g = 0.2, h = 0) and an asymmetric 
distribution with relatively heavy tails (g = h = 
0.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulations were run with 12r  = 0 and 

0.7, where e  has the same distribution as 1X  

and 2X . Additional simulations were run where 

1X  is normal but 2X  has one of the non-normal 

g-and-h distributions previously described. 
Table 2 shows the estimated probability 

of a Type I error based on 1,000 replications 
when using method BTS, n = 50 and 

1 2Y X X e= + + . The columns headed by 

1 2X X  indicate that 1X  and 2X  have 

Table 1: Some Properties of the 
g-and-h Distribution 

 

g h 1k  2k

0.0 0.0 0.00 3.0 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 
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identical distributions, while 1 (0,1)X N  

means that 1X  has a standard normal 

distribution and 2X  has the g-and-h distribution 

indicated. Table 3 shows the results when using 
method SM when 1 2Y X X e= + +  and 

2 2
1 2Y X X e= + +  with n = 60. As is evident, 

method BTS performs reasonably well in terms 
of avoiding a Type I error well above the 
nominal level, at least for the situations 
considered. A deficiency of the method is that 
the estimates drop below 0.025 in some 
situations. Method SM also performs reasonably 
well, but the actual level drops well below the 
nominal level in some situations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Estimated Type I Error Rates, n=50, 
Method BTS, a =0.05 

 

   1 2X X  1 (0,1)X N  

g h 12r  â  â  

0.0 0.0 0.0 0.039 - 

- - 0.7 0.048 - 

0.0 0.2 0.0 0.026 0.054 

- - 0.7 0.023 0.059 

0.2 0.0 0.0 0.041 0.027 

- - 0.7 0.063 0.048 

0.2 0.2 0.0 0.064 0.056 

- - 0.7 0.044 0.071 

 

Table 3: Estimated Type I Error Rates, n=60, a =0.05, Method SM 
 

   1 2X X  1 2X X  1 (0,1)X N  1 (0,1)X N  

g h 12r  1 2Y X X e= + + 2 2
1 2Y X X e= + + 1 2Y X X e= + +  2 2

1 2Y X X e= + +

0.0 0.0 

0.0 0.036 0.026 - - 

0.5 0.020 0.034 - - 

0.7 0.008 0.014 - - 

0.0 0.2 

0.0 0.036 0.012 0.048 0.049 

0.5 0.014 0.020 0.022 0.054 

0.7 0.008 0.012 0.014 0.021 

0.2 0.0 

0.0 0.032 0.024 0.036 0.022 

0.5 0.014 0.024 0.023 0.036 

0.7 0.014 0.016 0.008 0.022 

0.2 0.2 

0.0 0.026 0.014 0.040 0.024 

0.5 0.004 0.016 0.026 0.042 

0.7 0.008 0.008 0.010 0.023 
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Power 
There is the issue of how much power is 

sacrificed if method SM is used rather than BTS 
when the regression line is straight. Table 4 
shows the probability of rejecting when 

1Y X e= + . As is evident, both methods have 

fairly high power for this special case and BTS 
can offer a substantial gain in power when the 
regression line is straight. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An Illustration 

In an unpublished study by Doi, a 
general goal was to identify good predictors of 
reading ability in children. Two of the predictors 
were a measure of letter naming speed and the 
speed at which lowercase letters could be 
identified. The outcome of interest was a 
measure of reading comprehension. A 
scatterplot of the data and the LOESS estimate 
of the regression strongly suggests that there is 
curvature, and a test of the hypothesis that the 
regression line is straight (using the method in 
Wilcox, 2005, section 11.5.1) is rejected at the 
0.05 level; thus method SM is used and it rejects 
at the 0.05 level. The estimated explanatory 
power for the plot in the left panel is 0.444, and 
in the right panel it is 0.171. These results 
suggest that naming speed has a stronger 
association with comprehension. 

If the apparent curvature is ignored, 
BTS also rejects at the 0.05 level, but now the 
estimated explanatory is 0.351 for the left panel 
and 0.142 for the right. That is, the estimated 

difference in explanatory power is substantially 
smaller compared to using a smoother. If instead 
Pearson correlations are compared using the 
method in Zou (2007), the 0.95 confidence 
interval for the difference is (−0.490, 0.024). 
Therefore,  fail to reject at the 0.05 level. 
 

Conclusion 
In summary, numerous methods for comparing 
two predictors were considered based on a 
robust measure of the strength of the association. 
Two methods were found that perform 
reasonably well in simulations, one of which is 
based on a smoother and so provides a flexible 
approach to curvature. All indications are that 
Type I errors that exceed the nominal level are 
avoided using a basic percentile bootstrap 
method; however, there is a practical problem 
that the actual level can drop well below the 
nominal level, particularly when the sample size 
is small. Adjustments were suggested that 
substantially reduce this problem among the 
situations considered. The adjustment used by 
method BTS performed reasonably well in 
simulations, but when using method SM, 
situations occurred where the actual level drops 
well below the nominal level even with n = 60. 
In principle, if there are p predictors and the goal 
is to compare subsets of k predictors, a strategy 
similar to those used here could be used, but it 
remains to be determined whether reasonable 
control over the probability of a Type I error can 
be achieved. 

Regarding the use of a bootstrap 
method, Hall and Wilson (1991) argue in favor 
of using a pivotal test statistic, which is not done 
here. When working with means, more recent 
results, summarized in Wilcox (2005), also 
support the conclusion that a pivotal test statistic 
be used. When working with robust estimators, 
however, there are general situations where a 
percentile bootstrap method has a substantial 
advantage. In addition, when using a percentile 
bootstrap method, there is no need to 
approximate the null distribution of some test 
statistic (Liu & Singh, 1997). Roughly, the 
percentile bootstrap method is based on 
determining how deeply the null value is nested 
within the sampling distribution of some 
estimator. Finally, R functions for applying the 
methods considered are available from the 

Table 4: Power Comparisons, 
n=60, a =0.05, 1Y X e= +  

 

g h 12r  BTS SM 

0.0 0.0 0.0 0.960 0.833 
- - 0.5 0.861 0.659 

0.0 0.2 0.0 0.930 0.668 
- - 0.5 0.777 0.467 

0.2 0.0 0.0 0.968 0.807 
- - 0.5 0.836 0.710 

0.2 0.2 0.0 0.942 0.672 
- - 0.5 0.772 0.460 
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author; download the file Rallfun-v17 from 
www-rcf.usc.edu~rwilcox. The function 
sm2strv7 performs method SM, and the function 
ts2str performs methods BTS. 
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Monte Carlo simulations are used extensively to study the performance of statistical tests and control 
charts. Researchers have used various numbers of replications, but rarely provide justification for their 
choice. Currently, no empirically-based recommendations regarding the required number of replications 
exist. Twenty-two studies were re-analyzed to determine empirically-based recommendations. 
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Introduction 
Monte   Carlo   simulation   has   become    an  
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important and popular research tool used by 
quantitative researchers in a variety of 
disciplines (Fan, Felsővályi, Sivo & Keenan, 
2002). The Monte Carlo method provides 
approximate solutions to a variety of 
mathematical problems by performing statistical 
sampling experiments via computer. Monte 
Carlo simulation offers researchers an 
alternative to the theoretical approach; this is 
important because many situations exist in 
which implementing a theoretical approach is 
difficult – and finding an exact solution is even 
more difficult. In addition, computing power has 
become increasingly less expensive and 
computers are more widely available than ever 
before. 

An important question to address when 
conducting a Monte Carlo simulation study is 
how many replications are needed to obtain 
accurate results. With advanced computers, 
researchers are able to run in excess of 10,000 
replications in their studies (see, for example, 
Kaplan, 1983; Klockars & Hancock, 1992; 
Gamage & Weerahandi, 1998; Alyounes, 1999). 
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According to Brooks (2002), simulations may 
produce inaccurate estimates if an insufficient 
number of replications are used. Hutchinson and 
Bandalos (1997) also criticized: 
 

With too few replications, idiosyncratic 
results based on a particular sample are 
more likely to arise. Unfortunately for 
simulation researchers there are no 
definitive guidelines for selecting the 
appropriate number of replications. The 
specific number will depend on the type 
of phenomenon being studied, the extent 
to which the steps of the simulation can 
be automated, as well as available 
computer resources. (p. 238) 

 
The choice of the number of replications 

used in simulation studies appear to be made 
solely by the judgment of the researchers; this is 
surmised due to the many simulation studies that 
have been conducted without any justification 
provided for the number of replications used 
(see, for example, Fellner, 1990; Neubauer, 
1997; Khoo & Quah, 2002; Khoo & Quah, 
2003; Khoo, 2003; Khoo, 2004). Currently, 
however, no empirically-based 
recommendations for general guidelines 
regarding the required number of replications a 
researcher should use in order to achieve 
accurate results exist. The obtained results from 
a Monte Carlo study might be invalid if too few 
replications were used, whereas time and 
resources may have been wasted if more 
replications were used than were necessary. In 
addition, with the same amount of time and 
resources but fewer replications, more 
conditions could be investigated. 

The purpose of this synthesis was to: (1) 
provide information regarding the minimum 
number of replications required to reproduce a 
reported statistic, within a specified degree of 
accuracy, in 22 published Monte Carlo studies 
from a variety of areas, and (2) provide general 
recommendations regarding the minimum 
number of replications needed for future 
simulation studies. 
 

Methodology 
An extensive review of the literature was 
conducted in various fields of study, identifying 

research that used Monte Carlo simulations to 
estimate characteristics of interest (e.g., Type I 
error rates, power and average run length). 
Through four dissertations, 22 studies were 
selected such that each provided sufficient 
information regarding methodology to replicate. 

Each study was re-analyzed using the 
same number of replications as in the original 
study to produce results that were considered the 
standard to be met by the re-analyses using a 
different number of replications. Using a 
decreasing (or increasing) number of 
replications, the simulations were repeated until 
the minimum number of replications was found 
that produced stable results. 

For example, if the original study used 
10,000 replications, the process started with 
10,000 replications to reproduce the original 
results and identify the standard to be met, and 
then the study was re-done with the number of 
replications cut in half to 5,000. If the results 
were reproduced, the replications were cut to 
2,500; conversely, if the results were not 
reproduced the replications were increased to 
7,500. This iterative process, either reducing the 
number of replications by cutting in half the 
number of replications used in the previous step, 
or increasing the number of replications used by 
splitting the difference between the last two 
numbers of replications used (e.g., 5,000 and 
10,000), continued until stable results were 
obtained. After the simulations were completed, 
recommendations were put forth for the 
minimum number of replications necessary to 
estimate a particular parameter within a defined 
degree of accuracy. 

In order to define a specified degree of 
accuracy, an error band was created by 
adding/subtracting some percentage to/from 
each statistic of interest. Bradley (1978) 
presented two intervals to examine the 
robustness of hypothesis testing by examining 
Type I error rate, α. These two intervals were 
described as a fairly stringent error band, α ± 
0.1 α, and a fairly liberal error band, α ± 0.4 α. 
If α = 0.05, these error bands become ± 0.005 
and ± 0.02 respectively. Bradley’s criteria were 
used in these dissertations. 
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Dissertation I: ANOVA Simulation Studies 
(Preecha, 2004) 

This study replicated 5 simulation 
studies related to ANOVA. The studies 
included: 
 
(1)  Brown and Forsythe (1974) examined the 

small sample behavior of various statistics 
testing the equality of several means. They 
used 10,000 replications and examined both 
Type I error rate and power. No justification 
was provided for the number of replications 
used or for how the accuracy of results was 
determined. The four statistics compared 
were the: 

 
(a) ANOVA F-statistic; 
(b) Modified F-statistic; 
(c) Welch and James statistic (Welch, 

1947); and the 
(d) Welch and James statistic (Welch, 

1951). 
 
(2)  Alyounes (1999) compared the Type I error 

rate and power for the Kruskal-Wallis test 
and the Welch test to the F-test, followed by 
four post hoc procedures. They used 21,000 
replications but provided no justification for 
that number. Bradley’s stringent criterion 
and Robey and Barcikowski’s intermediate 
criterion were used to examine the 
robustness of the tests compared. The 
parametric and nonparametric omnibus tests 
and the post hoc comparisons used were the: 

 
(a) ANOVA F-test; 
(b) Welch test; 
(c) Kruskal Wallis test; 
(d) Tukey-Kramer test; 
(e) Games-Howell test; 
(f) Joint ranking (Improved Dunn) test; and 
(g) Separate ranking test. 

 
(3)  Gamage and Weerahandi (1998) examined 

the size performance of four tests in a one-
way ANOVA. They compared the Type I 
error rate and power of the Generalized F-
test to the classical F-test, the F-test using 
weighted least squares to adjust for 
heteroscedasticity, the Brown-Forsythe test, 
and the Welch test using 20,000 replications. 

No justification was provided for the 
number of replications used or for how the 
accuracy of results was determined. The 
statistics compared were the: 

 
(a) Generalized F-test; 
(b) ANOVA F-test; 
(c) F-test using weighted-least squares; 
(d) Brown-Forsythe test; and the 
(e) Welch test. 

 
(4)  Kim (1997) examined three robust tests for 

ANOVA using weighted likelihood 
estimation, comparing Type I error rate and 
power with 5,000 replications. No 
justification was provided for the number of 
replications used or for how the accuracy of 
results was determined. The statistics 
compared were the: 

 
(a) Basu-Sarkar-Basu test; 
(b) Modified Welch Test with weighted 

likelihood estimators; and the 
(c) Modified Brown-Forsythe test using 

weighted likelihood estimators. 
 
(5)  Kaplan (1984) examined the comparative 

effects of violations of homogeneity of 
variance on two tests when the underlying 
populations were normal, but sample sizes 
were unequal. She compared Type I error 
rate and power using 20,000 replications. 
She provided no justification for the number 
of replications used, but used the estimated 
standard error when examining a single 
proportion and the estimated standard error 
of the difference between two proportions 
when comparing two independent 
proportions. The tests compared were the: 

 
(a) χ2-approximation of the Kruskal-Wallis 

statistic; and the 
(b) Incomplete Beta approximation of the 

Kruskal-Wallis statistic. 
 
Dissertation I: Results and Discussion 

Each of the five studies investigated 
Type I error rates and power. Using ± 0.005 for 
Type I error (Bradley’s fairly stringent criterion) 
and ± 0.02 for power (Bradley’s fairly liberal 
criterion), the minimum number of replications 
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were found that produced stable results. Table 1 
displays the number of replications used in the 
original study along with the recommended 
minimum number of replications needed to 
produce similar results. In each situation, it 
appears that fewer replications could have been 
used to predict power and in all but one 
situation, fewer replications could have been 
used to estimate Type I error. In that one 
situation a larger number of replications was 
required to get a stable estimate of the Type I 
error rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dissertation II: Multiple Comparison Simulation 
Studies (Ussawarujikulchai, 2004) 

The second dissertation replicated 5 
simulation studies related to multiple 
comparison tests after a significant ANOVA was 
found. The studies included: 
 
(1) Seaman, Levin and Serlin (1991) examined 

the Type I error rate of several multiple 
comparison procedures using 5,000 
replications to compare 5 treatment groups 
with sample sizes of n = 10. Three groups 
had means set equal to 0 and the other 
groups had means set to 0.8560. The 
procedures compared were: 

 

(a) Standard Bonferroni; 
(b) Tukey test; 
(c) Holm test; 
(d) Fisher LSD test; 
(e) Hayter-Fisher Modified LSD test; 
(f) REGWQ test; 
(g) Newman-Kuels test; 
(h) Duncan test; 
(i) Shaffer test; 
(j) Protected Shaffer test; and  
(k) Ramsey’s Model-Testing approach. 

 
(2) Klockars and Hancock (1992) examined the 

power of five multiple comparison 
procedures against the standard Bonferroni 
procedure when applied to complete sets of 
orthogonal contrasts. They used 20,000 
replications with both k = 4 and k = 5 
treatment groups partitioned into k−1 
orthogonal contrasts. The procedures they 
compared were: 

 
(a) Holm test; 
(b) Hochberg test; 
(c) Hommel test; 
(d) Protected Shaffer test; 
(e) Modified Stagewise Protected test; and 
(f) Standard Bonferroni procedure. 

 
(3) Hsiung and Olejnik (1994) examined the 

Type I error rate of several multiple 
comparison procedures for all pairwise 
contrasts when population variances differed 
in both balanced and unbalanced one-factor 
designs. They used 10,000 replications for 
each of k = 4 and k = 6 treatment groups. 
The multiple comparison procedures they 
compared were: 

 
(a) Games-Howell test; 
(b) Dunnett T3 test; 
(c) Dunnett C test; 
(d) Holland-Copenhaver test; 
(e) Shaffer test; and  
(f) Protected Shaffer test. 

 
(4) Morikawa, Terao and Iwasaki (1996) 

examined the Type I error rate and power of 
several multiple comparison procedures for 
pairwise comparisons. They used 1,000 
replications with each of k = 3 and k = 4 

Table 1: Number of Replications Used By the 
Original Study Along With the Recommended 

Minimum Number of Replications Required To 
Produce Stable Results 

 

 Original Replications Recommended 

Study 
Replications 

Used 
Type I Error Power 

1 10,000 5,000 − 
10,000 

5,000 

2 21,000 10,500 5,250 

3 20,000 7,500 5,000 

4 5,000 7,500 2,500 

5 20,000 5,000 5,000 
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treatment groups and sample sizes of 10, 20 
and 50 to examine both any-pair power and 
all-pairs power. The procedures they 
compared were: 

 
(a) Tukey test; 
(b) Standard Bonferroni test; 
(c) Holm test; 
(d) Shaffer test; 
(e) Hommel test; 
(f) Hochberg test; and the 
(g) Rom test. 

 
(5) Ramsey (2002) examined the power of five 

pairwise multiple comparison procedures 
using 10,000 replications with 4 treatment 
groups and a sample size of 16. Both any-
pair power and all-pairs power were 
examined for three different mean 
configurations-maximum range, equally 
spaced, and minimum range. The procedures 
compared were: 

 
(a) Tukey test; 
(b) Hayter-Fisher Modified LSD test; 
(c) Shaffer-Welsch test; 
(d) Shaffer test; and the 
(e) Holland-Copenhaver test. 

 
Dissertation II: Results and Discussion 

Each of these five studies investigated 
either Type I error rate, power, or both. Using ± 
0.005 for Type I error (Bradley’s fairly stringent 
criterion) and ± 0.02 for power (Bradley’s fairly 
liberal criterion), the minimum number of 
replications were found that produced stable 
results. Table 2 displays the number of 
replications used by the original study along 
with the recommended minimum number of 
replications needed to produce stable results. It 
appears that fewer replications could have been 
used to predict power in studies 2 and 5, while 
too few replications were used in study 4. To 
predict Type I error, it appears that study 3 could 
have used fewer replications, whereas study 4 
again could have used more replications. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dissertation III: Regression Simulation Studies 
(Supawan, 2004) 

The third dissertation replicated 6 
simulation studies related to multiple linear 
regression. The studies included: 
 
(1) Griffiths and Surekha (1986) examined the 

Type I error rate and power of three tests for 
heteroscedasticity. They used 5,000 
replications, but provided no justification for 
that choice. The tests they compared were: 

 
(a) Szroeter Test; 
(b) Breusch-Pagan Test; and 
(c) Goldfeld-Quandt Test. 

 
(2) Pfaffenberger and Dielman (1991) examined 

the Type I error rate and power of the 
Filliben test for normality of regression 
residuals using 6 different statistics. They 
used 5,000 replications, justifying this 
choice by their desire to control the 
maximum standard deviation of the rejection 
percentage to be < 1.0%. The six statistics 
they examined were: 

 
(a) Means and the z-transformed residuals; 
(b) Medians and the z-transformed 

residuals; 
(c) Means and standardized residuals; 
(d) Medians and standardized residuals; 

Table 2: Number of Replications Used By the 
Original Study Along With the Recommended 

Minimum Number of Replications Required To 
Produce Stable Results 

 

 Original Replications Recommended 

Study
Replications 

Used 
Type I Error Power 

1 5,000 5,000 --- 

2 20,000 --- 3,750 

3 10,000 5,000 --- 

4 1,000 8,000 4,000 

5 10,000 --- 3,750 
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(e) Means and studentized deleted 
residuals; and  

(f) Medians and studentized deleted 
residuals. 

 
(3) Godfrey (1978) examined the power of the 

χ2(1) heteroscedasticity test for two 
multiplicative models, Uniform (1,31) and 
Lognormal (3, 1) using 1,000 replications, 
but providing no justification for this choice. 

 
(4) Flack and Chang (1987) examined the 

effects of sample size and the number of 
noise variables on the frequency of selecting 
noise variables by using R2 selection. They 
used 50 replications, justifying the choice by 
their belief that it was sufficient to give 
reliable results. 

 
(5) Hurvich and Tsai (1990) examined the effect 

of Akaike’s Information Criterion (AIC) for 
model selection on the coverage rates of 
confidence regions of linear regression. 
They used 500 replications with no 
justification provided for their choice. 

 
(6) Olejnik, Mills and Keselman (2000) 

examined the accuracy of using stepwise 
regression compared with Wherry’s R2

adjusted 
and Mallow’s Cp to select the model in all 
possible regressions by considering the 
effect of sample size, the number of noise 
variables and the correlation between 
authentic variables. They used 1,000 
replications, but provided no justification for 
their choice. 

 
Dissertation III: Results and Discussion 

Studies 1-3 investigated either Type I 
error rate, power, or both. Using ± 0.005 for 
Type I error (Bradley’s fairly stringent criterion) 
and ± 0.02 for power (Bradley’s fairly liberal 
criterion), the minimum number of replications 
were found that produced stable results. Table 3 
displays the number of replications used by the 
original study along with the recommended 
minimum number of replications needed. In all 
but two situations, it appears that fewer 
replications could have been used to predict 
Type I error and power, with only Study #1 

needing substantially more replications than 
were used to get a stable prediction for power. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Studies 4-6 investigated the proportion 
of variables selected to be included in the 
multiple linear regression model. Using ± 0.005 
for the proportion of variables selected 
(Bradley’s fairly stringent criterion), the 
minimum number of replications were found 
that produced stable results. Table 4 displays the 
number of replications used by the original study 
along with the recommended minimum number 
of replications needed. In each instance, it 
appears that more replications than were used in 
the original studies were required to obtain 
stable results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Number of Replications Used By the 
Original Study Along With the Recommended 

Minimum Number of Replications Required To 
Produce Stable Results 

 

 Original Replications Recommended 

Study
Replications 

Used 
Type I Error Power 

1 5,000 4,600 7,000 

2 5,000 4,200 1,300 

3 1,000 --- 1,250 

 

Table 4: Number of Replications Used By the 
Original Study Along With the Recommended 
Minimum Number of Replications Required To 

Produce Stable Results 
 

 Original Replications Recommended 

Study
Replications 

Used 
Proportion of Variables 

Selected 

4 50 1,900 

5 500 2,000 

6 1,000 1,900 
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Dissertation IV: Quality Control Simulation 
Studies (Kim, 2005) 

The fourth dissertation replicated 6 
simulation studies examining the average run 
length, ARL, of various statistical process 
control charts. The studies included: 
 
(1) Khoo (2004) examined the ARL property of 

the Shewhart chart using individual 
observations for 18 different shifts of size δ. 
They used 10,000 replications with no 
justification provided.  

 
(2) Fellner (1990) examined the ARL property 

of the cumulative sum or CUSUM chart 
using individual observations for 6 different 
shifts of size δ. A two-sided CUSUM 
control chart using decision values H = 2, 3, 
4, 5, 6 and reference value K = 0.5 was 
studied. A total of 30 different scenarios 
were simulated using 10,000 replications 
with no justification provided.  

 
(3) Neubauer (1997) examined the ARL 

property of the exponentially weighted 
moving average (EWMA) chart using 
individual observations for 31 different 
shifts of size δ. The EWMA control chart 
studied used a weighting constant λ = 0.2 
and width of the control limits L = 2.86; 
10,000 replications were used with no 
justification provided. 

 
(4) Khoo and Quah (2003) examined the ARL 

property of the Hotelling χ2 chart using 
individual observation vectors for 18 
different shifts of size δ. Only the bivariate 
case was considered for shifts of size δ. 
They used 10,000 replications, but provided 
no justification. 

 
(5) Khoo and Quah (2002) examined the ARL 

property of two multivariate CUSUM or 
MCUSUM charts using individual 
observation vectors for 11 different shifts of 
size δ. The MC1 control chart studied used p 
= 2, 3, and 10 variables with reference value 
k = 0.5 and the MC2 control chart studied 
used p = 2, 3, and 10 variables with 
reference values k = 2.5, 3.5, and 10.5. A 
total of 33 different scenarios were 

simulated for each MCUSUM chart. They 
used 10,000 replications, but provided no 
justification. 

 
(6) Khoo (2003) examined the ARL property of 

the multivariate EWMA or MEWMA chart 
using individual observation vectors for 6 
different shifts of size δ. The MEWMA 
control chart studied used p = 2, 4, and 10 
variables and weighting constants λ = 0.05, 
0.10, and 0.20. A total of 54 different 
scenarios were simulated. They used 10,000 
replications, but provided no justification. 

 
Dissertation IV: Results and Discussion 

Statistical control charts are based on 
the same principles as hypothesis testing. A 
process is said to be out-of-control if the test of 
hypotheses is rejected and in-control when it is 
not rejected, thus, control charts have Type I 
error rates and power. However, they are 
typically measured through a different metric, 
the average run length (ARL). When the process 
has not changed or shifted, type I error rates can 
be determined through an in-control ARL. 
However, when the process has shifted, power 
can be measured through an out-of-control ARL. 

A modified error band, incorporating 
ARL (e.g. ARL ± 0.1ARL), was used by Chang 
& Gan (2004) to examine the robustness of the 
Shewhart control chart with respect to both ARL 
and SDRL (standard deviation of run length). 
Chakraborti & van de Wiel (2005) stated this 
10% error band might be too wide to detect 
practical departures of the simulated results from 
the target value. They used a 2% error band, 
ARL ± 0.02ARL, to examine the robustness of a 
non-parametric control chart with respect to its 
ARL. The 2% error band was used in 
Dissertation IV. 

Table 5 displays the number of 
replications used by the original study along 
with the recommended ranges for the minimum 
number of replications needed to produce stable 
results for various size shifts within the process. 
Each process shift is recorded in standard 
deviations. It appears that fewer replications 
could have been used to predict ARL in each 
study, particularly when the shift in the process 
is large. 
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Conclusion 
Monte Carlo simulations have been used 
extensively in studying the performance of 
various statistical tests and control charts. 
Researchers have used a wide range (50-21,000 
in the 22 studies replicated herein) of 
replications in their studies, but seldom provided 
justifications for the number of replications they 
used. Currently, there are no empirically based 
recommendations regarding the required number 
of replications to ensure accurate results. 

Through 4 dissertations, 22 studies from 
various fields were re-analyzed to provide 
empirically based recommendations for future 
simulation studies. In many cases, fewer 
replications than were used in the original 
studies were needed to produce stable estimates 
of the results. In all but two of the situations in 
which more replications than what was used 
originally were needed, the original studies 
began with 1,000 or fewer replications. In 
general, for most of the studies replicated and 
most of the statistics calculated, the minimum 
recommended number of replications was  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
always less than 10,000 and in many cases was 
less than 5,000. In several situations investigated 
in these dissertations, 5,000 replications were 
not sufficient, but seldom were more than 7,500 
replications needed. It appears to be the case, 
generally, that 7,500 to 8,000 replications are 
sufficient to produce stable results, and in a 
number of situations, depending upon what 
characteristic is being estimated, 5,000 
replications may be enough. 
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Pseudo-random number generators can bias Monte Carlo simulations of the standard normal probability 
distribution function with initial seeds selection. Five generator designs were initial-seeded with values 
from 10000HEX to 1FFFFHEX, estimates of the mean were calculated for each seed, the distribution of 
mean estimates was determined for each generator and simulation histories were graphed for selected 
seeds. 
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Introduction 
It is possible, using a vetted pseudo-random 
number generator and a specific initial seed, to 
produce number sequences that may have very 
nonrandom-like characteristics; however, 
restarting the algorithm with a new seed will 
produce an excellent number sequence. Park and 
Miller (1988) asserted that coding errors in the 
algorithm might be responsible, although, in a 
vetted generator, coding errors are unlikely. (See 
Fishman (1995) for descriptions of other 
possible reasons for this phenomenon.) 
 
Pseudo-Random Number Generator Design 

Lehmer (1951) suggested a simple 
computer algorithm to generate a random 
number sequence whose period is limited only 
by the arithmetic registers of the digital 
computer and the parameters selected. This 
linear recurrence (congruential) generator is the 
basic and most widely used class of random 
number generators. Linear recurrence 
(congruential) generators are of the form 
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where 0 < A1, A2, . . ., Ax< M; A, B and M are 
integers, and X is the order of the generator (the 
number of non-zero As). The most widely used 
first-order, X = 1, form of the linear congruential 
generator is the multiplicative (linear) 
congruential generator: 
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where 0 < A < M; A and M are integers and B = 
0. 

After the terminology and symbols of 
L’Ecuyer (1993), the following short notation 
defines random number generators: 
 

( )1,2,3...n 0XXX M,  A ,  B,  Z ,    

 
where XXX is the abbreviation of the type of 
generator (e.g., MCG = Multiplicative 
Congruential Generator; MRG = Multiple 
Recursive Generator; and MWC = Multiply-
With-Carry multiplicative congruential 
generator), M is the modulus, A is the array of 
multipliers or coefficients, B is the increment, 
and Z0 is the initial seed. 
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MCG (231, 65539, 0, 1), also known as 
RANDU, is an example of a generator whose 
number sequences are recognized as poorly 
randomized and whose period is relatively short 
at 229 (Park & Miller, 1988): 
 

31

i i 1

31

0

Z  65539 *  Z mod 2

for 1 i 2 1 and Z  the initial seed

−=

≤ ≤ −
 

(1.3) 
 
The set, S, of all numbers, period, p = 229, can be 
generated using an initial seed, Z0 = 1 (or any 
other value, 0 < Z0≤ 231-1). An initial seed (Z0) 
determines the first number in the set S where 
values will be drawn, and each subsequent value 
is determined by recursively evaluating equation 
1.3. 

MCG (231-1, 16807, 0, 1), also known as 
Minimum Standard (Park & Miller, 1988), used 
in RANGEN (Sawilowsky & Blair, 1987; 
Fahoome & Sawilowsky, 2001) is included as an 
example of a generator whose number sequences 
are generally recognized as good for a 231-1 
period generator. Park and Miller considered this 
an example of a good minimum standard 
generator and it has endured decades of study 
and testing: 
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(1.4) 
 
where Zi is the current value, Zi-1 is the prior 
value. When i = 0, Z0 is the initial seed, the 
generator has been generally accepted as a good 
random number generator and has been used in 
numerous Monte Carlo studies. The set, S, of all 
numbers, period, p = 231-1, can be generated 
using an initial seed, Z0 = 1 (or any other value, 
0 < Z0≤ 231-1). An initial seed, Z0, determines 
the first number in the set, S, where values will 
be drawn, and each subsequent value is 
determined by recursively evaluating equation 
1.4. 

MCG (231-1, 630360016, 0, 1) is also 
reported to be a good MCG (Entacher, 1998): 
 

 

( )31

i i 1

31

0

Z  630360016 *  Z mod 2 1

for 1 i 2 1 and Z  the initial seed

−= −

≤ ≤ −  

(1.5)

 

 
The set, S, of all numbers, period, p = 231-1, can 
be generated using an initial seed, Z0 = 1 (or any 
other value, 0 < Z0≤ 231-1). An initial seed, Z0, 
determines the first number in the set, S, where 
values will be drawn, and each subsequent value 
is determined by recursively evaluating equation 
1.5. 

L’Ecuyer (1993) reported testing several 
higher-order linear congruential generators or 
multiple recursive generators having the form 
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where 0 < A1, A2, .  .  ., Ax< M; A and M are 
integers and X is the generator’s order. 

One of L’Ecuyer’s best performing 
multiple recursive generators is MRG (231-1, 
[2001982722, 1412284257, 1155380217, 
1668339922], 0, 1), also known as LECUYER, 
a 4th-order multiple recursive generator whose 
output sequence is reported to be good: 
 

( )
i i 1 i 2

31
i 3 i 4

31
0,1,2, x 1

Z (2001982722 * Z 1412284257 * Z

1155380217 * Z 1668339922 * Z ) mod 2 1

for 1 i 2 and Z are the initial seeds

− −

− −

… −

= + +

+ −

≤ ≤

 

(1.7) 
 
The set, S, of all numbers, period, p ≅ 2158, can 
be generated using an initial seed, Z0 = 1 (or any 
other value, 0 < Z0≤ 231-1). An initial seed, Z0, 
determines the first number in the set, S, where 
values will be drawn, and each subsequent value 
is determined by recursively evaluating Equation 
1.7. 

Marsaglia (1994b) proposed a variation 
of the multiplicative congruential generator 
called multiply-with-carry of the form 
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( )i 1 i 4 2 i 3 3 i 2 4 i 1

31
0,1,2,3

Z A Z A Z A Z A Z C mod M

for 0 i 2 1 and Z are initial seeds

− − − −= + + + +

≤ < −
(1.8) 

 
where 0 < A1, A2, A3, A4< M; A and M are 
integers (Gentle, 2003).Marsaglia’s design 
generates a 64-bit sum of four products and a 
carry; these 64 bits are separated into two 32-bit 
words. The upper 32-bits become the new carry, 
C, the lower 32-bits (modulo M) is the new Zi 
and each subsequent value is determined by 
recursively evaluating equation 1.8. 

MWC (232, [211111111111, 1492, 
1776, 5115], C, 1) (Marsaglia, 1994a), is 
implemented in a subroutine library known as 
MOTHER. (The version considered here is due 
Miller, 1995, adapted and updated to Fortran 90 
by Blair, 1999, in a subroutine library called 
BFRA. It is an implementation of Lüescher’s, 
1994, algorithm and James’, 1994, Fortran 77 
coding of the “Luxury” generator.) It is included 
as an example of a popular form of the multiply-
with-carry, random number generators: 
 

i i 1 i 2

32

i 3 i 4

31

0,1,2,3

Z (211111111111* Z 1492 * Z

1776 * Z 5115 * Z  C) mod 2

for 0 i 2 1 and Z are initial seeds

− −

− −

= + +

+ +

≤ < −

 

(1.9) 
 
The set, S, of all numbers, period, p = 2158, can 
be generated using an initial seed, Z0 = 1 (or any 
other value, 0 < Z0≤ 231-1). An initial seed, Z0, 
determines the first number in the set, S, where 
values will be drawn, and each subsequent value 
is determined by recursively evaluating equation 
1.9. 
 
Pseudo-Random Number Sequences 

L’Ecuyer and Hellekalek (1997) 
suggested a mental-model of a huge roulette 
wheel to visualize the sequence of unscaled 
numbers from a generator such as RANGEN 
(equation 1.4) where the sequenced numbers 
appear once, in the range of 1 to 231−1. The 
order of the number sequence is determined by 
the RANGEN algorithm based on the previous 
number (seed). Spinning the roulette wheel 
would afford the researcher a random starting 

point (initial seed) in the number sequence; 
however, because the number sequence is 
calculated based on the previous number, the 
sequence is truly deterministic in nature; it only 
has the appearance of randomness. 

These number sequences can be easily 
scaled to the unit interval, U[0,1], by dividing 
each number by P, the Period of the generator. 
RANGEN’s period = 231−1. Resetting the 
algorithm to the same initial seed reproduces the 
identical random number-sequence. Individual 
numbers from these sequences are used as 
indices that determine the locations on a 
probability density function or in the data table 
where samples should be drawn. 

It should be noted that, due to their 
deterministic nature, different initial seeds could 
generate overlapping number sequences. For 
example, a hypothetical random number 
generator using an initial seed S0 calculated the 
following number sequence where S0 = N0: 
 
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9, N10 . . . Nn 
 
If a different initial seed, S0 = N3, is used, the 
following number sequence would be calculated: 
 

N3, N4, N5, N6, N7, N8, N9, N10 . . . Nn 
 
These number sequences clearly overlap 
beginning at N3; however, the Monte Carlo 
simulations reported herein were not adjusted 
for possible overlapping number sequences. 
 

Methodology 
The purpose of this study was to determine the 
bias introduced into Monte Carlo simulation 
studies resulting from initial seed selection. The 
random number sequences of five random 
number generators were analyzed. Each random 
number generator was seeded with bit-patterns 
sequenced from an initial value of 10000Hex 
(65,536) to a final value of 1FFFFHex (131,071).  

The process was as follows: Use each 
random number generator’s scaled number 
sequence from the unit interval (U[0,1], Seed0 = 
S0). Select a sample, S, of sample size, N = 10, 
from the standard normal probability density 
function. Calculate the sample mean, XS = 1/N Σ 
S, of these values. Continue sampling for T trials 
and calculate the overall mean, XT = 1/T Σ XS, of 
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T trials. For the standard normal probability 
density function, with a large number of trials, 
T, it is expected that the sample statistic, XT, 
will converge on the population parameter mean, 
μ=0, and the population standard deviation, σ=1. 
 

Results 
The population mean and standard deviation 
were estimated for each 1000HEX (65,536) ≤ 
Initial Seed ≤ 1FFFFHEX (131,071) using five 
random number generators at Trials = 1,000, 
10,000, 100,000 and 1,000,000 (Table 1.1). With 
the exception of MOTHER, the average mean 
estimate Z score = 0.000 and average standard 
deviation estimate = 1.000. The distribution of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mean estimate Z scores for each random number 
generator at each trial is normal-like, mean = 0, 
and standard deviation = 1.00 with minimum Z 
scores of -5.07 to -3.34 and maximum Z scores 
of 3.09 to 4.59 (Table 1.2). 
 
RANGEN Pseudo-Random Number Generator 

RANGEN’s mean estimate distributions 
at Trials = 1,000, 10,000, 100,000 and 1,000,000 
are typical of the five random number generators 
studied (Figures 1.1, 1.2, 1.3, 1.4). Each graph 
shows the normalized SPSS histogram of all 
mean estimates from Monte Carlo simulations 
using each initial seed with the standard normal 
distribution superimposed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.1: Mean and Standard Deviation Estimates for Each Random Number Generator of Monte Carlo Simulations 
of the Standard Normal Probability Density Function Using All Initial Seeds from 10000Hex (65,536) through 

1FFFFHex (131,072); Sample Size = 10, Trials = 1,000, 10,000, 100,000 and 1,000,000 
 

Trials 1,000 10,000 100,000 1,000,000 

RNG Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

RANGEN 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 

ENTACHER 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 

LECUYER 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 

MOTHER -0.001 1.000 -0.005 1.000 -0.008 1.000 -0.005 1.000 

RANDU 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 

 
 

Table 1.2: The Maximum and Maximum Mean Estimates For Each Random Number Generator of Monte Carlo 
Simulations of the Standard Normal Probability Density Function Using All Initial Seeds from 10000Hex (65,536) 

through 1FFFFHex (131,072); Sample Size = 10, Trials = 1,000, 10,000, 100,000, and 1,000,000 
 

Trials 1,000 10,000 100,000 1,000,000 

RNG Min Max Min Max Min Max Min Max 

RANGEN -3.83 4.04 -4.46 4.18 -4.31 4.12 -3.34 3.09 

ENTACHER -4.35 4.05 -4.08 4.41 -4.14 4.15 -4.34 4.35 

LECUYER -4.01 4.01 -4.51 4.23 -4.13 4.32 -4.00 4.07 

MOTHER -4.02 4.10 -4.51 4.42 -5.07 4.58 -4.32 4.59 

RANDU -3.86 4.18 -4.21 4.04 -3.76 3.79 -3.86 3.84 
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Figure 1.1: RANGEN Random Number Generator 
A Normalized SPSS Histogram Graph of Monte Carlo Simulations of Mean Estimates of the Standard 
Normal Probability Density Function Using All Initial Seeds from 10000Hex (65,536) through 
1FFFFHex (131,072);Sample Size = 10, Trials = 1,000 
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Figure 1.2: RANGEN Random Number Generator 
A Normalized SPSS Histogram Graph of Monte Carlo Simulations of Mean Estimates of the 
Standard Normal Probability Density Function Using All Initial Seeds from 10000Hex (65,536) 
through 1FFFFHex (131,072); Sample Size = 10, Trials = 10,000 
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Figure 1.3: RANGEN Random Number Generator 
A Normalized SPSS Histogram Graph of Monte Carlo Simulations of Mean Estimates of the Standard 
Normal Probability Density Function Using All Initial Seeds from 10000Hex (65,536) through 1FFFFHex 
(131,072); Sample Size = 10, Trials = 100,000 
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Figure 1.4: RANGEN Random Number Generator 
A Normalized SPSS Histogram Graph of Monte Carlo Simulations of Mean Estimates of the Standard 
Normal Probability Density Function Using All Initial Seeds from 10000Hex (65,536) through 1FFFFHex 
(131,072); Sample Size = 10, Trials = 1,000,000 
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RANGEN Monte Carlo Simulation (MCS) 
History Graphs 

For RANGEN’s distribution of mean 
estimates at Trial = 1,000,000, fifteen initial 
seeds were chosen, five from each extreme (the 
worst) and five from the center (the best). The 
mean estimates’ initial seeds were used to 
capture the cumulative (running) average at 
10,000-trial intervals of a Monte Carlo 
simulation of the standard normal probability 
distribution function. These data were 
normalized and graphed, (Figure 1.5), as a 
graphical history of the Monte Carlo 
simulation’s mean estimate at 10,000-trial 
intervals. RANGEN’s cumulative mean-
estimates undulated wildly ±15 standard 
deviations for the first 100,000 trials and then 
converged on their respective region of the mean 
estimate distribution. 

Individual RANGEN MCS history 
graphs for the two worst initial seeds (Table 
1.3), 106675 and 72114, and closest to the true 
mean, 117656, were isolated. The RANGEN 
MCS history graph (Figure 1.6) for initial seed, 
Si= 106675, demonstrated an immediate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
negative departure from zero of −6 standard 
deviations at trials = 20,000; a recovery to -2 
standard deviations at trials = 100,000; a sharp 
drop to -5 standard deviations at trials = 
140,000; another recovery attempt at trials = 
190,000; and a final convergence on -3 standard 
deviations. Individual 10,000-trial intervals, 
designated as ♦ on the graph, demonstrated 
wildly fluctuating mean estimates of ±15 
standard deviations throughout the simulation 
run. 

The RANGEN MCS history graph 
(Figure 1.7) for initial seed, Si = 117656, 
demonstrated an initial negative departure from 
zero, -9 standard deviations, at trials = 10,000; a 
recovery, -0.5 standard deviations, at trials = 
80,000; and a final convergence on 0.0 standard 
deviations. Individual 10,000-trial intervals, 
designated as ♦ on the graph, demonstrated some 
wildly fluctuating mean estimates of ±15 
standard deviations throughout the simulation 
run. 

The RANGEN MCS history graph 
(Figure 1.8) for initial seed, Si = 72114, 
demonstrated an initial negative departure from 

Table 1.3: RANGEN Random Number Generator 
SPSS Extreme Values Table of Normalized Mean Estimates from Monte Carlo Simulations of the Standard Normal 
Probability Density Function Using All Initial Seeds, Si = 10000Hex through 1FFFFHex at Trials = 1,000, 10,000, 
100,000, and 1,000,000 

 

Trials 1,000 10,000 100,000 1,000,000 

Deviation Seed z-Score Seed z-Score Seed z-Score Seed z-Score 

Above 

66184 4.04 93552 4.18 92157 4.12 72114 3.09 

114634 3.80 68018 3.95 91955 4.11 70120 3.08 

87579 3.80 90064 3.84 91223 3.94 115292 3.04 

98710 3.73 85895 3.73 117600 3.94 118753 3.04 

118038 3.73 73471 3.73 116943 3.88 95913 3.03 

Below 

108848 -3.65 96630 -4.04 82111 -3.92 76920 -3.31 

79125 -3.69 114546 -4.14 121739 -4.16 68326 -3.31 

73787 -3.73 101156 -4.18 113374 -4.16 79462 -3.32 

87518 -3.74 105875 -4.34 65647 -4.17 77341 -3.32 

102745 -3.83 125434 -4.46 105966 -4.31 106675 -3.34 
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zero, -13 standard deviations at trials = 10,000; a 
recovery, +9 standard deviations, at trials = 
50,000; a sharp drop, +2 standard deviations, at 
trials = 100,000; and a final convergence on +3 
standard deviations. Individual 10,000-trial 
intervals, designated as ♦ on the graph, 
demonstrated wildly fluctuating mean estimates 
of ±15 standard deviations throughout the 
simulation run. 
 
MOTHER Pseudo-Random Number Generator 

For MOTHER’s distribution of mean 
estimates at Trial = 1,000,000, fifteen initial 
seeds were chosen, five from each extreme, the 
worst, and five from the center, the best. The 
mean estimates’ initial seeds were used to 
capture the cumulative (running) average at 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10,000-trial intervals of a Monte Carlo 
simulation of the Standard Normal probability 
distribution function. These data were 
normalized and graphed, (Figure 2.1), as 
graphical history of the Monte Carlo 
simulation’s mean-estimate at 10,000-trial 
intervals. MOTHER’s cumulative mean 
estimates undulated wildly ±15 standard 
deviations for the first 100,000 trials and then 
converged on their respective region of the mean 
estimate distribution. 

Individual MOTHER MCS history 
graphs for the two worst initial seeds, 83815 and 
112145, and closest to the true mean, 126281, 
were isolated. The MOTHER MCS history 
graph (Figure 2.2) for initial seed, Si = 83815, 
demonstrated      an      immediate      negative  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5: RANGEN Random Number Generator 
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Each line in the graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal 
probability density function. Fifteen initial seeds (five each: high, middle and low mean estimates) are shown at 10k 
intervals, total trials = 1,000,000. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 1,000,000 
trials with the standard normal probability density function superimposed. Down arrows correlate the -3σ, 0, and +3σ 
points of the standard normal probability density function to the horizontal cumulative averages and their deviations from 
the mean. 
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Figure 1.6: RANGEN Random Number Generator 

RANGEN: 
MCS History of Initial Seed 1A0B3Hex (106675Dec)
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal 
probability density function. Initial seed, 106675, is the worst mean estimate below the mean. Each ♦ is the 
average mean estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean 
estimates at 1,000,000 trials with the standard normal probability density function superimposed. Up arrow 
correlates the location of initial seed, 106675, on the standard normal probability density function. 

 
 

Figure 1.7 RANGEN Random Number Generator 

RANGEN: 
MCS History of Initial Seed 1CB98Hex (117656Dec)

-15

-9

-3

3

9

15

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Trials - 10k Intervaks

S
td

 D
e
v
ia

ti
o
n
s
 F

ro
m

 M
e
a
n

MCS Mean Estimates at 10k Intervals Cumulative Average MCS Mean-Estimates

4321-0-1-2-3-4

6000

5000

4000

3000

2000

1000

0

 
This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 117656, is the best mean estimate. Each ♦ is the average mean estimate of its 10k-
trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 1,000,000 trials with the 
standard normal probability density function superimposed. Up arrow correlates the location of initial seed, 
117656, on the standard normal probability density function. 
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departure from zero, -6 standard deviations, at 
trials = 10,000; a recovery to -3 standard 
deviations at trials = 50,000; and a final gradual 
convergence on -4 standard deviations. 
Individual 10,000-trial intervals, designated as ♦ 
on the graph, demonstrated wildly fluctuating 
mean estimates of ±15 standard deviations 
throughout the simulation run. 

The MOTHER MCS history graph 
(Figure 2.3) for initial seed, Si = 126281, 
demonstrated an initial negative departure from 
zero, -15 standard deviations, at trials = 10,000 
and a final convergence on 0.0 standard 
deviations. Individual 10,000-trial intervals, 
designated as ♦ on the graph, demonstrated some 
wildly fluctuating mean estimates of ±15 
standard deviations throughout the simulation 
run. 

The MOTHER MCS history graph 
(Figure 2.4) for initial seed, Si = 112145, 
demonstrated an initial departure from zero, 15 
standard deviations, at trials = 10,000 and a final 
convergence on +4 standard deviations. 

deviations.Individual 10,000-trial intervals, 
designated as ♦ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Individual 10,000-trial intervals, designated as ♦ 
on the graph, demonstrated wildly fluctuating 
mean estimates of ±15 standard deviations 
throughout the simulation run. 
 
ENTACHER Pseudo-Random Number 
Generator 

For ENTACHER’s distribution of mean 
estimates at Trial = 1,000,000, fifteen initial 
seeds were chosen, five from each extreme (the 
worst) and five from the center (the best). The 
mean estimates’ initial seeds were used to 
capture the cumulative (running) average at 
10,000-trial intervals of a Monte Carlo 
simulation of the Standard Normal probability 
distribution function. These data were 
normalized and graphed, (Figure 3.1), as 
graphical history of the Monte Carlo 
simulation’s mean-estimate at 10,000-trial 
intervals. ENTACHER’s cumulative mean 
estimates undulated wildly (±15 standard 
deviations) for the first 100,000 trials and then 
converged on their respective region of the mean 
estimate distribution. 

Figure 1.8: RANGEN Random Number Generator 
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This Graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 72114, is the worst mean estimate above the mean. Each ♦ is the average mean 
estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Up arrow correlates the 
location of initial seed, 72114, on the standard normal probability density function. 
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Figure 2.1: MOTHER Random Number Generator 
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Each line in the graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal 
probability density function. Fifteen initial seeds (five each: high, middle and low mean estimates) are shown at 
10k intervals, total trials = 1,000,000. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Down arrows correlate the 
3σ, 0, and +3σ points of the standard normal probability density function to the horizontal cumulative averages 
and their deviations from the mean. 

 

Figure 2.2: MOTHER Random Number Generator 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 83815, is the worst mean estimate below the mean. Each ♦ is the average mean 
estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Up arrow correlates the 
location of initial seed, 83815, on the standard normal probability density function. 



PSEUDO-RANDOM NUMBER INITIAL SEED BIAS IN MONTE CARLO SIMULATIONS 

40 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: MOTHER Random Number Generator 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 126281, is the best mean estimate. Each ♦ is the average mean estimate of its 10k-
trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 1,000,000 trials with the 
standard normal probability density function superimposed. Up arrow correlates the location of initial seed, 
126281, on the standard normal probability density function. 

 
Figure 2.4 MOTHER Random Number Generator 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 112145, is the worst mean estimate above the mean. Each ♦ is the average mean 
estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Up arrow correlates the 
location of initial seed, 112145, on the standard normal probability density function. 



HILL & SAWILOWSKY 
 

41 
 

Individual ENTACHER MCS history 
graphs for the two worst initial seeds, 82315 and 
73489, and closest to the true mean, 120803, 
were isolated. The ENTACHER MCS history 
graph (Figure 3.2) for initial seed, Si = 82315, 
demonstrated an immediate departure from zero, 
-15 standard deviations, at trials = 10,000; a 
recovery to -2 standard deviations at trials = 
30,000; and a final convergence on -4 standard 
deviations. Individual 10,000-trial intervals, 
designated as ♦ on the graph, demonstrated 
wildly fluctuating mean estimates of ±15 
standard deviations throughout the simulation 
run. 

The ENTACHER MCS history graph 
(Figure 3.3) for initial seed, Si = 120803, 
demonstrated an immediate departure from zero, 
+8 standard deviations, at trials = 10,000; a 
recovery to +0.5 standard deviations at trials =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

30,000; a sharp jump to +5 standard deviations 
at trials = 80,000; and a final convergence on 0.0 
standard deviations. Individual 10,000-trial 
intervals, designated as ♦ on the graph, 
demonstrated wildly fluctuating mean estimates 
of ±15 standard deviations throughout the 
simulation run. 

The ENTACHER MCS history graph 
(Figure 3.4) for initial seed, Si = 73489, 
demonstrated an initial departure from zero, +15 
standard deviations, at trials = 10,000; a 
recovery, +4 standard deviations, at trials = 
200,000; and a final convergence on +4 standard 
deviations. Individual 10,000-trial intervals, 
designated as ♦ on the graph, demonstrated 
wildly fluctuating mean estimates of ±15 
standard deviations throughout the simulation 
run. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: ENTACHER Random Number Generator 
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Each line in the graph follows the cumulative mean estimate of a Monte Carlo Simulation of the standard normal 
probability density function. Fifteen initial seeds (five each: high, middle and low mean estimates) are shown at 
10k intervals, total trials = 1,000,000. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Down arrows correlate the 
3σ, 0, and +3σ points of the standard normal probability density function to the horizontal cumulative averages 
and their deviations from the mean. 
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Figure 3.2: ENTACHER Random Number Generator 

ENTACHER: 
MCS History of Initial Seed 1418DHex (82315Dec) 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 82315, is the worst mean estimate below the mean. Each ♦ is the average mean 
estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Up arrow correlates the 
location of initial seed, 82315, on the standard normal probability density function. 

 
Figure 3.3: ENTACHER Random Number Generator 

ENTACHER: 
MCS History of Initial Seed 1D7E3Hex (120803Dec) 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 120803, is the best mean estimate. Each ♦ is the average mean estimate of its 10k-
trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 1,000,000 trials with the 
standard normal probability density function superimposed. Up arrow correlates the location of initial seed, 
120803, on the standard normal probability density function. 
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LECUYER Pseudo-Random Number Generator 

For LECUYER’s distribution of mean 
estimates at Trial = 1,000,000, fifteen initial 
seeds were chosen, five from each extreme (the 
worst) and five from the center (the best). The 
mean estimates’ initial seeds were used to 
capture the cumulative (running) average at 
10,000-trial intervals of a Monte Carlo 
simulation of the Standard Normal probability 
distribution function. These data were 
normalized and graphed, (Figure 4.1), as 
graphical history of the Monte Carlo 
simulation’s mean estimate at 10,000-trial 
intervals. LECUYER’s cumulative mean-
estimates undulated wildly (±15 standard 
deviations) for the first 100,000 trials and then 
converged on their respective region of the mean 
estimate distribution. 

Individual LECUYER MCS history 
graphs for the two worst initial seeds, 92765 and 
102702, and closest to the True Mean, 105488, 
were isolated. The LECUYER MCS history 
graph (Figure 4.2) for initial seed, Si = 92765, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

demonstrated an immediate departure from zero, 
-15 standard deviations, at trials = 10,000; a 
recovery to -3 standard deviations at trials = 
170,000; and a final convergence on -4 standard 
deviations. Individual 10,000-trial intervals, 
designated as ♦ on the graph, demonstrated 
wildly fluctuating mean estimates of ±15 
standard deviations throughout the simulation 
run. 

The LECUYER MCS history graph 
(Figure 4.3) for initial seed, Si = 105488, 
demonstrated an initial departure from zero, -1 
standard deviations, at trials = 10,000; a spike to 
+6 standard deviations, at trials = 30,000; and a 
final convergence on 0.0 standard deviations. 
Individual 10,000-trial intervals, designated as ♦ 
on the graph, demonstrated some wildly 
fluctuating mean estimates of ±15 standard 
deviations throughout the simulation run. 

The LECUYER MCS history graph 
(Figure 4.4) for initial seed, Si = 102702, 
demonstrated an initial departure from zero, +2 
standard deviations, at trials = 10,000; a spike to 

Figure 3.4: ENTACHER Random Number Generator 

ENTACHER: 
MCS History of Initial Seed 11F11Hex (73489Dec) 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 73489, is the worst mean estimate above the mean. Each ♦ is the average mean 
estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Up arrow correlates the 
location of initial seed, 73489, on the standard normal probability density function. 
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+11 standard deviations at trials = 20,000; a 
sharp drop to +2 standard deviations, at trials = 
30,000; and a final convergence on +4 standard 
deviations. Individual 10,000-trial intervals, 
designated as ♦ on the graph, demonstrated 
wildly fluctuating mean estimates of ±15 
standard deviations throughout the simulation 
run. 
 
RANDU Pseudo-Random Number Generator 

For RANDU’s distribution of mean 
estimates at Trial = 1,000,000, fifteen initial 
seeds were chosen, five from each extreme, the 
worst, and five from the center, the best. The 
mean estimates’ initial seeds were used to 
capture the cumulative (running) average at 
10,000-trial intervals of a Monte Carlo 
simulation of the Standard Normal probability 
distribution function. These data were 
normalized and graphed, (Figure 5.1), as 
graphical history of the Monte Carlo 
simulation’s mean estimate at 10,000-trial  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

intervals. RANDU’s cumulative mean estimates 
undulated wildly (±15 standard deviations) for 
the first 100,000 trials and then converged on 
their respective region of the mean estimate 
distribution. 

Individual RANDU MCS history graphs 
for the two worst initial seeds, 128395 and 
93665, and closest to the True Mean, 81514, 
were isolated. The RANDU MCS history graph 
(Figure 5.2) for initial seed, Si = 128395, 
demonstrated an immediate departure from zero, 
-15 standard deviations and a gradual 
convergence on -4 standard deviations. 
Individual 10,000-trial intervals, designated as ♦ 
on the graph, demonstrated wildly fluctuating 
mean estimates of ±15 standard deviations 
throughout the simulation run. 

The RANDU MCS history graph 
(Figure 5.3) for initial seed, Si = 81514, 
demonstrated an initial departure from zero, +12 
standard deviations, at trials = 10,000; a 
recovery, 0.5 standard deviations, at trials =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 LECUYER Random Number Generator 
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Each line in the graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal 
probability density function. Fifteen initial seeds (five each: high, middle and low mean estimates) are shown at 
10k intervals, total trials = 1,000,000. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Down arrows correlate the 
3σ, 0, and +3σ points of the standard normal probability density function to the horizontal cumulative averages 
and their deviations from the mean. 
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Figure 4.2: LECUYER Random Number Generator 

LECUYER: 
MCS History of Initial Seed 16A5DHex (92765Dec) 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 92765, is the worst mean estimate below the mean. Each ♦ is the average mean 
estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Up arrow correlates the 
location of initial seed, 92765, on the standard normal probability density function. 

 
Figure 4.3: LECUYER Random Number Generator 

LECUYER: 
MCS History of Initial Seed 19C10Hex (105488Dec) 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 105488, is the best mean estimate. Each ♦ is the average mean estimate of its 10k-
trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 1,000,000 trials with the 
standard normal probability density function superimposed. Up arrow correlates the location of initial seed, 
105488, on the standard normal probability density function. 
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50,000; and a final convergence on 0.0 standard 
deviations. Individual 10,000-trial intervals, 
designated as ♦ on the graph, demonstrated some 
wildly fluctuating mean estimates of ±15 
standard deviations but many were ±15 standard 
deviations throughout the simulation run. 

The RANDU MCS history graph 
(Figure 5.4) for initial seed, Si = 93665, 
demonstrated an initial negative departure from 
zero, -13 standard deviations, at trials = 10,000; 
a recovery, +9 standard deviations, at trials = 
50,000; a sharp drop, +2 standard deviations, at 
trials = 100,000; and a final convergence on +3 
standard deviations. Individual 10,000-trial 
intervals, designated as ♦ on the graph, 
demonstrated wildly fluctuating mean estimates 
of ±15 standard deviations throughout the 
simulation run. 
 

Conclusion 
Monte Carlo simulations of the standard normal 
probability density function using all initial seed 
between 10000Hex (65,536) through 1FFFFHex 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(131,071) did not always yield accurate 
estimates of the True Mean, µ = 0. It was 
observed that the distribution of all mean 
estimates by Monte Carlo simulation is normal-
like where about 67% of the mean estimates are 
within ± 1σ and about 95% of the mean 
estimates are within ± 2σ. Conversely, about 5% 
of the mean estimates exceed 2σ, and the 
maximum mean estimates were ±5σ. 

Most researchers have recognized that 
Monte Carlo simulations should be run using 
several initial seeds and this study supported that 
practice. Most researchers have also recognized 
that Monte Carlo simulations should be run for 
Trials = 1,000,000 or more. This study 
demonstrated that most mean estimates 
converged on their final value by trial = 500,000 
and did not change very much with additional 
trials. Each random number generator exhibited 
similarly distributed mean estimates. 

Good and bad initial seed numbers were 
not identified, but it was shown that errors of 2σ 
or more could occur in Monte Carlo simulations  

Figure 4.4: LECUYER Random Number Generator 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 102702, is the worst mean estimate above the mean. Each ♦ is the average mean 
estimate of its 10k trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Up arrow correlates the 
location of initial seed, 102702, on the standard normal probability density function. 
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Figure 5.1: RANDU Random Number Generator 
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Each line in the graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal 
probability density function. Fifteen initial seeds (five each: high, middle and low mean estimates) are shown at 
10k intervals, total trials = 1,000,000. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Down arrows correlate the 
3σ, 0, and +3σ points of the standard normal probability density function to the horizontal cumulative averages 
and their deviations from the mean. 

 

Figure 5.2: RANDU Random Number Generator 

RANDU: 
MCS History of Initial Seed 1F58DHex (128395Dec) 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 128395, is the worst mean estimate below the mean. Each ♦ is the average mean 
estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 
1,000,000 trials with the standard normal probability density function superimposed. Up arrow correlates the 
location of initial seed, 128395, on the standard normal probability density function. 
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Figure 5.3 RANDU Random Number Generator 

RANDU: 
MCS History of Initial Seed 13E6AHex (81514Dec) 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal probability 
density function. Initial seed, 81514, is the best mean estimate. Each ♦ is the average mean estimate of its 10k-
trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean estimates at 1,000,000 trials with the 
standard normal probability density function superimposed. Up arrow correlates the location of initial seed, 
81514, on the standard normal probability density function. 

 
Figure 5.4: RANDU Random Number Generator 

RANDU: 
MCS History of Initial Seed 16DD7Hex (93655Dec) 
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This graph follows the cumulative mean estimate of a Monte Carlo simulation of the standard normal 
probability density function. Initial seed, 93655, is the worst mean estimate above the mean. Each ♦ is the 
average mean estimate of its 10k-trial interval. Inset graph is the distribution of all 65,536 initial seeds’ mean 
estimates at 1,000,000 trials with the standard normal probability density function superimposed. Up arrow 
correlates the location of initial seed, 93655, on the standard normal probability density function. 
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based on initial seed selection. This study did 
not intend to identify a list of bad initial seeds 
that introduced significant error in Monte Carlo 
simulations of the standard normal probability 
density function, and then, assume they would 
also introduce significant error in other 
distributions or data sets; additional study is 
required to make this assumption. 

Because the mean estimates randomly 
fluctuated throughout the simulation, any 
strategy that runs the simulation for T trials, 
discards these samples, and starts sampling at 
Trials = T+1, will repeat the ±15 standard 
deviation fluctuations and gain nothing. In this 
study, every Monte Carlo simulation of the 
standard normal probability density function 
exhibited this phenomenon: randomly 
fluctuating mean estimates until the average of 
all the simulations stabilized. It is well known 
that averaging multiple samples will decrease 
the effects of random variations, thus, as 
samples accumulate, the average mean estimate 
stabilizes. However, discarding samples or 
resetting the average = 0 will also discard the 
accumulated diminishing effect of random 
variations and the mean estimates will wildly 
fluctuate, again. 

The overall mean estimate of Monte 
Carlo simulations of the standard normal 
probability density function using all initial seed 
between 10000Hex (65,536) through 1FFFFHex 
(131,071) was 0.0 at Trial = 1,000, 0.0 at Trial = 
10,000, 0.0 at Trial = 100,000, and 0.0 at Trial = 
1,000,000 for RANGEN, ENTACHER, 
LECUYER and RANDU pseudo-random 
number generators. The standard deviation 
estimates were 1.00 at all trials for each of these 
pseudo-random number generators. 
 
Questions For Additional Research 

Did these findings suggest relatively 
short simulation runs, trials = 1,000 or less, 
using tens of thousands initial seeds would yield 
more accurate mean estimates than typical 
Monte Carlo long simulation runs, trials = 
500,000 or more, using a few initial seeds? 

The total number of samples drawn 
from the population need not be increased. For 
example, typical Monte Carlo simulations 
requiring 100,000,000 samples (10 seeds, 
sample size 10, and 1,000,000 trials) cannot 

guarantee an accurate mean-estimate. However, 
Monte Carlo simulations of 10,000 seeds, 
sample size 10, and 1,000 trials also require 
100,000,000 samples and may yield estimates 
the mean with greater accurately. 

This study has shown that good pseudo-
random number generators like RANGEN, 
ENTACHER, LECUYER and MOTHER 
yielded accurate mean estimates by Monte Carlo 
simulation of the standard normal probability 
density function when tens of thousands initial 
seeds were used with short simulation runs of 
trials = 1,000. It was also shown that a bad 
pseudo-random number generator, such as 
RANDU, could yield accurate mean estimates, 
which is contrary to its reported poor 
performance in Monte Carlo simulations. 

This study raised many unanswered 
questions: Are these findings limited to Monte 
Carlo simulation of the standard normal 
probability density function, or will other data 
distributions exhibit similar findings? Will other 
pseudo-random number generators exhibit 
similar findings? Will Monte Carlo simulation 
runs of 10 ≤ Trials ≤ 1,000 using tens of 
thousands initial seeds continue to yield accurate 
mean estimates of the standard normal 
probability density function? 
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The estimation of the population mean in mail surveys is investigated in the context of sampling on two 
occasions where the population mean of the auxiliary variable is available in the presence of non-response 
only for the current occasion in two occasion successive sampling. The behavior of the proposed 
estimator is compared with the estimator for the same situation but in the absence of non-response. An 
empirical illustration demonstrates the performance of the proposed estimator. 
 
Key words: Variance, study variable, auxiliary variable, non-response, successive sampling. 
 
 

Introduction 
A very important problem for many countries is 
the management and conservation of food 
resources. However, it commonly occurs that the 
classical theory of sampling cannot be directly 
applied in situations calling for quantification of 
environmental resources. If a population is 
subject to change, a survey carried out on a 
single occasion cannot of itself give any 
information of the nature or rate of such change 
(Miranda, 2007, p. 385). 

The problem of sampling on two 
successive occasions was first considered by 
Jessen (1942) and has also been discussed by 
Patterson (1950), Narain (1953), Eckler (1955), 
Adhvaryu (1978), Sen (1979), Gorden (1983) 
and Arnab and Okafor (1992). In addition to the 
information from previous research, Singh, et al. 
(1991), Artes and Garcia (2001), Singh and 
Singh (2001), Garcia and Artes (2002), Singh 
(2003)  and  Singh  and  Vishwakarma  (2007),  
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used auxiliary information on current occasion 
for estimating the current population mean in 
two-occasion successive sampling. 

It is common experience in sample 
surveys that a proportion of people among those 
invited to participate in a non-compulsory 
interview survey, or other study, choose not to 
take part or are unobtainable for other reasons. 
Non-response covers all causes of non-
participation including, direct refusals, people 
who are away temporarily on holiday and non-
contacts for other reasons. Those who are found 
to be outside the scope of the survey are 
classified as ineligible and excluded altogether. 
Ineligibles include people who had died or 
moved to an area outside the survey area, 
businesses that had closed down and changed 
addresses. 

Hansen and Hurwitz (1946) were the 
first to suggest a technique of handling non-
response in mail surveys. Cochran (1977), 
Okafor and Lee (2000) extended the Hansen and 
Hurwitz technique to the case when along with 
the information on character under study, 
information is also available on an auxiliary 
character. More recently Choudhary, et al. 
(2004), Okafor (2005) and Singh and Priyanka 
(2007) used the Hansen and Hurwitz technique 
for estimating the population mean on current 
occasion in the context of sampling on two 
occasions. This article investigates successive 
sampling theory in the presence of non-response 
and examines the efficiency over the estimate 
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defined for the same situation with complete 
response. 
 
Building an Estimator 

Suppose that the two samples are of size 
n  on both occasions and simple random 
sampling and the size of the population N  is 
used which is sufficiently large for the 
correlation factor to be ignored. 

Let ( )NUUUU ,...,, 21=  represent the 

total population of N  identifiable units that 
have been sampled over two occasions. Let 

( )yx  be the character under study on the first 
(second) occasions respectively. It is deduced 
that information on an auxiliary variable x  is 
available on both the occasions with known 
population mean. A simple random sample 
without replacement of n  units is taken on the 
first occasion.  

On the second occasion, a simple 
random sample without replacement of λnm =  
units is retained while an independent sample of 

mnμnu −==  units is selected so that the 

sample size on both the occasions is the same, n  
units. It is assumed that there is non-response at 
the second (current) occasion, so that the 
population can be divided into two classes, those 
who will respond at the first attempt and those 
who will not: let the sizes of these two classes be 

1N  and 2N  respectively. Assume that in the 
matched (unmatched) portion of the sample on 
two occasions ( )11 um  units respond and 

( )22 um  units do not. Let ( )
22 hh um  units denote 

the size of the sub-sample drawn from the non-
response class from the matched (unmatched) 
portion of the sample on the two occasions for 
collecting information through personal 
interview. 

This study considers the same situation 
as outlined in Singh and Kumar (2010), where 
the information on the auxiliary variable is 
completely available for all the second phase 
sample of size n  units while, out of n  sample 
units on the current occasion, some units refused 
to respond on the study variable y . Hansen and 
Hurwitz (1946) technique to sub sampling from 

( )22 um  non-respondents of size ( )
22 hh um  units 

selected at random and is enumerated by direct 
interview, such that, by ( )kmmh 22

=  

( ) 1;22
>= kkuuh , one will obtain the estimate 
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Using ( )

22
22 um yy , an unbiased 

estimator *y  of the population mean Y  of the 

study variable y  on the current occasion will be 

constructed. For these ( )
22 hh um  units selected 

from ( )22 um  non-respondent units one can also 
obtain the estimate 
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and using this estimate results in the unbiased 
estimate *x  on the current occasion. 

Further, an estimator is constructed 
when there is non-response only on the second 
occasion as: 
 

( ) ( )* *
1 2m m n m m nt y x x x xλ λ= + − + − , 

(2.1) 
 
where 1λ  and 2λ  are suitably chosen constants, 
 

m

ymym
y hmm

m
21 21*

+
=  

 
is the Hansen and Hurwitz (1946) estimator for 

the population mean Y  for matched portion of 
the sample on second occasion; 
 

m

xmxm
x hmm

m
21 21*

+
=  

 
is the Hansen and Hurwitz (1946) estimator for 

the population mean X  for matched portion of 
the sample on second occasion; 
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=
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n

i
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is the estimate of the population mean X  of the 
sample; 
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i
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is the estimate of the population mean X  on 
second occasion for the matched portion of the 
sample; 
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is the estimate of the population mean 1X  on 
second occasion for the matched portion of the 
sample; 
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i
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is the sub-sample mean of variable x  based on 

2hm  units on the second occasion; 
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1
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i
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is the estimate of the population mean 1Y  on 
second occasion for the matched portion of the 
sample; and 
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=
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h

m

i
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is the sub-sample of variable y  based on 

2hm  

units on the second occasion. 
The variance of mt  (if fpc is ignored) to 

the first degree of approximation is given by 
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(2.2) 
 
where 

NNW 22 = ; 
 

( )xy SSρβ = ; 

 
( ))2()2()2()2( xy SSρβ = ; 

 
( ) ( )

22 22 hh mmuuk == ; 

 
and ρ  and )2(ρ  are the correlation coefficient 

between the variables ( y  and x ) and  

( )2(y  and )2(x ); 
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i
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denotes the population mean square of the 
variable y ; 
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denotes the population mean square of the 
variable x ; 
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denotes the population mean square pertaining 
to the non-response class of the variable y ; 
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denotes the population mean square pertaining 
to the non-response class of the variable x . 

Differentiating the variance of mt , that 

is, ( )mtVar  at (2.2) with respect to 1λ  and 2λ , 

and equating to zero, results in the optimum 
values of 1λ  and 2λ  as 
 

( ) )2()2()2()2(1 βSSρλ xy ==  

and 
 

( ){ } ( ){ }
( )

2 (2) (2) (2)

(2)

y x y xS S S Sλ ρ ρ

β β

= −

= −
. 

 
Substituting the optimum values of 1λ  and 2λ  in 
(2.1), results in the optimum estimate of the 
estimator mt  as 

 

( ) ( )nmmmmm xxβxxβyt −−−−= *
)2(

*)0( , 

(2.3) 
 
with variance (ignoring fpc), the result is 
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(2.4) 
 

In practice )2(β  and β  are usually 

unknown, it lacks the practical utility of the 

optimum estimator )0(
mt , thus it is advisable to 

replace )2(β  and β  by their consistent estimates 

*
)2(β̂  and *β̂  respectively in (2.3) to calculate an 

estimate of the population mean Y  based on 
matched portion on second occasion as 
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It can be shown to the first degree of 
approximation that 
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(2.6) 
 

where ( ))0(
mtVar  is given by (2.4) (Singh & 

Kumar, 2008). 
Hence, an estimate of the population 

mean Y  of the study variable y  is constructed 
in the presence of non-response on the current 
occasion by combining the two independent 
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estimates *
uy  and )0(

m̂t  with α  an unknown 

constant as 
 

( ) )0(*
21

ˆ1 mu tαyαT −+= ,           (2.7) 

where 
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The variance of *
uy , the Hansen and Hurwitz 

(1946) estimator is 
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(2.8) 
 
The variance of 21T  at (2.7) to the first degree of 
approximation is given by 
 

( ) ( ) ( ) ( ))0(2*2
21

ˆ1 mu tVarαyVarαTVar −+= . 

(2.9) 
 
Because, the variance of 21T  in equation (2.9) is 

a function of unknown constant α , it is 
minimized with respect to α  and subsequently 
the optimum value of α  is obtained as 
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(2.10) 
 
Using the optimum value of α  from (2.10) in 

(2.9), results in the optimum variance of 21T  as 
 

( ) ( ) ( )
( ) ( ))0(*

)0(*

21 ˆ

ˆ

mu

mu
opt tVaryVar

tVaryVar
TVar

+
= . 

(2.11) 

Further, substituting the values from (2.4) and 
(2.8) in (2.11), the optimum variance of 21T  is 
simplified as 
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(2.12) 

where 
 

( )( ) 2
)2(

2
)2(2 11 ySρkWA −−= . 

 
To determine the optimum value of q  

so that population mean Y  of study variable y  
may be estimated with maximum precision, 
minimize ( )optTVar 21  in (2.12) with respect to 

q  and the optimum value of q  is obtained as 
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The real value of 0q  exists if 

 

( ) ( ) ( ){ }2 4 2 2 2 2

2 (2) (2)1 1 2 0.y y yS W k A S Sρ ρ ρ− + − + − − ≥  
 
For certain situations, there might be two values 
of 0q  satisfying the above condition, hence 

when selecting a value of 0q , it should be 

remembered that the existence of 0q  depends on 

the limit 10 0 ≤≤ q ; all other values of 0q  are 

inadmissible. In the case where both the values 
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of 0q  are admissible, choose the minimum as 

0q . 

Further, substituting the value of 

0q from (2.13) in (2.12), 
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(2.14) 

 
where ( ) *21 optTVar  is the optimum variance of 

21T  with respect to both α  and q . 
 
Efficiency Comparison 

To determine the effect of non-response 
in successive sampling, calculate the percent 
relative loss in efficiency of 21T  with respect to 
the estimator under the same circumstances but 
in absence of non-response. The estimator is 
defined as 
 

( ) ldu tφyφT −+= 1*
21 ; 

where 
 


=

=
u

i
iu uyy

1

 ; ( )mnmld xxβyt −+= ˆ , 

 

( )( ) ( )
==

−






 −−=

m

i
mi

m

i
mimi xxyyxxβ

1

2

1

ˆ  

 
and φ  is an unknown constant to be determined 

under certain criterion. Because *
21T  is an 

unbiased estimator of Y  and is based on two 
independent samples the covariance terms 
vanishes, therefore following the procedure of 
Sukhatme, et al. (1984), the optimum variance 

of *
21T  can be obtained as 
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To select the optimum value of 1q , it is 

important to remember that 10 1 ≤≤ q , 

however, if both values of 1q  are admissible, 

then the least of two values of 1q  should be 
chosen. Thus, the percentage loss in precision of 

*
21T  with respect to 21T  both at optimality 

condition is given by 
 

( ) ( )
( ) 100

*

**

21

*
2121 ×

−
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TVar
TVarTVar
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(3.2) 
 

Results 
Table 1 shows the percentage loss in precision 
observed wherever the optimum value of q  
exists when non-response is taken into account 
at current occasion. For fixed values of ρ , )2(ρ , 

( )1−k  and 2W , for )2(yy SS < , the loss in 

precision decreases with the increase in the 

value of yS ; for )2(yy SS > , the loss in 

precision shows negative values with the 
decrease in the value of )2(yS ; and for 

)2(yy SS = , the loss in precision remains 

constant. For fixed values of yS , )2(yS , ( )1−k  

and 2W , the loss in precision shows negative 

values for )2(ρρ <  with the decrease in the 

value of ρ  and for )2(ρρ > , the loss in 

precision decreases with increase in the value of 

)2(ρ  while it remains constant for )2(ρρ = . 

Table 2 shows that, for the increased values of 

2W , the percentage loss in precision increases 
and it decreases with the decreases in the value 
of ( )1−k . 
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A tangible idea regarding obtaining cost 
saving through mail surveys in the context of 
successive sampling on two occasions for 
different assumed values of ρ , )2(ρ , yS , )2(yS , 

2W  and k  is shown in Tables 3 and 4. Also, let 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

500=N  and 50=n  and 401 =cc , 2c 45,=  

where 0c  is the cost per unit for mailing a 

questionnaire (Rs. 1.00), 1c  is the cost per unit 
of processing the results from the first attempt 
respondents (Rs. 4.00), 2c  is the cost per unit 

Table 1: Percentage Loss in Precision of *
21T  over 21T  

for Different Values of ρ , )2(ρ , yS  and )2(yS
 

 

( ) 8.0,11,2.0,8.0 2)2( ==−== Wkρρ  

)2(yy SS <  
L  

)2(yy SS >  
L  

)2(yy SS =  
L  

yS  )2(yS  yS  )2(yS  yS  )2(yS  

0.2 0.8 90.59 0.8 0.7 * 0.8 0.8 22.07 

0.3 0.8 80.43 0.8 0.6 * 0.8 0.8 22.07 

0.4 0.8 68.44 0.8 0.5 * 0.8 0.8 22.07 

( ) 8.0,4.0,7.0,5.01 )2(2 ====− yy SSWk  

)2(ρρ <  
L  

)2(ρρ >  
L  

)2(ρρ =  
L  

ρ  
)2(ρ  ρ  

)2(ρ  ρ  
)2(ρ  

0.7 0.8 * 0.7 0.3 39.01 0.8 0.8 16.67 

0.6 0.8 * 0.7 0.4 37.04 0.8 0.8 16.67 

0.5 0.8 * 0.7 0.5 33.94 0.8 0.8 16.67 

 
 

Table 2: Percentage Loss in Precision of *
21T  over 21T  

for Different Values of 2W  and ( )1−k  
 

,8.0=ρ ,2.0)2( =ρ  

( ) ,5.01 =−k 7.0,2.0 )2( == yy SS  

,4.0,8.0 )2( == ρρ ,3.02 =W  

8.0,3.0 )2( == yy SS  

2W  L  ( )1−k  L  

0.3 19.32 1.5 65.95 

0.4 37.83 1.0 54.38 

0.5 49.40 0.5 30.03 
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for collecting data through personal interview 
(Rs. 45.00). Denote C = total cost incurred in 
collecting the data by personal interview from 
the whole sample, that is, when there is no non-
response. Assuming that the cost incurred on 
data collection for the matched and unmatched 
portion of the sample are same and also cost 
incurred on data collection on both the occasions 
is same, the cost function in this case is given 
by: 

22ncC = .                      (3.3) 
 
Setting the values of n  and 2c  in (3.3), the total 
cost work out to be Rs. 4500.00. 

Further, let 1n  denote number of units 

which respond at the first attempt and 2n  denote 
number of units which do not respond. The cost 
function for the case when there is non-response 
on both occasions is given by 
 

( ){ }kncncncC 221101 2 ++= . 

 
The expected cost is given by 
 

( ) ( ){ } *
1 0 0 1 1 2 2 12E C n c cW c W k C= + + = , 

 
where 
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From Table 3 it is noted that for fixed 

values of ρ , )2(ρ , ( )1−k  and 2W , for the case 

)2(yy SS < , the cost savings increases with 

decreases in the value of yS . For the case 

)2(yy SS > , the cost savings decreases with the 

decreases in the value of )2(yS , and for the case 

)2(yy SS = , it remains constant. Further, for the 

fixed values of ( )1−k , 2W , yS  and )2(yS , for 

the case )2(ρρ < , the cost savings decreases 

with the decreases in the value of ρ  and for the 

case )2(ρρ > , it also decreases with the increase 

in the value of )2(ρ  but it remains constant for 

the case )2(ρρ = . It is to be observed from 

Table 4 that increases in the values of 2W  and 

decreases in the value of ( )1−k , the cost 
savings increase respectively. 
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An improved ratio-cum-product type estimator of the finite population mean is proposed using known 
information on the coefficient of variation of an auxiliary variate and correlation coefficient between a 
study variate and an auxiliary variate. Realistic conditions are obtained under which the proposed 
estimator is more efficient than the simple mean estimator, usual ratio and product estimators and 
estimators proposed by Singh and Diwivedi (1981), Pandey and Dubey (1988), Upadhaya and Singh 
(1999), and Singh, et al., (2004). An empirical study supports theoretical findings. 
 
Key words: Study variate, auxiliary variate, population mean, correlation coefficient, coefficient of 

variation. 
 
 

Introduction 
Auxiliary information is frequently used at the 
estimation stage in order to improve the 
efficiency of the estimator(s) of the parameter(s) 
of a variate under study; ratio, product and 
regression methods of estimation are examples. 
When the correlation between study variate and 
the auxiliary variate is positive (high), the ratio 
method of estimation is used for estimating the 
population mean. Conversely, if the correlation 
is negative, the product method of estimation is 
preferred. 

Consider a finite population 
),...,,( 21 NUUUU =  of N units. Let y i  and x i  

be the values of the study variate y and auxiliary 
variate x respectively on the ith unit iU  

(i=1,2,3,---,N). For estimating the population 

mean, 
=

=
N

i
iy

N
Y

1

1
, of the study variate y , a 
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simple random sample of size n is drawn using 
the simple random sampling without 
replacement (SRSWOR) technique from U. 

When the population mean 
=

=
N

i
ix

N
X

1

1
, of 

the auxiliary variate x is known, the classical 
ratio and product estimators of Y are 
respectively defined by the ratio estimator 
 








=
∧

x
XyY1                       (1.1) 

 
and the product estimator 
 







=

∧

X
xyY2                       (1.2) 

 

where 
=

=
n

i
i nyy

1

/  and 
=

=
n

i
i nxx

1

/  are the 

sample means of y and x respectively based on n 
observations. 

When the population mean X  and 
coefficient of variation ( xC ) of auxiliary variate 

x are known, Sisodia and Dwivedi (1981) 

suggested using a ratio type estimator for Y  as 
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3
ˆ .x

x

X CY y
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 +=  + 
                   (1.3) 

 
Using the same of information, Pandey and 
Dubey (1988) suggested a product type 

estimator for Y  as 
 









+
+

=
x

x

CX
CxyY4

ˆ                     (1.4) 

 

Further, when the population mean X  of x and 
the correlation coefficient ( ρ ) between y and x 
are known, Singh and Tailor (2003) suggested 

ratio and product type estimators for Y  
respectively as 
 









+
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ρ
ρ
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ˆ                      (1.5) 

and 
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Kadilar and Singi (2006) suggested a ratio-type 

and a product type estimator for Y , using 
coefficient of variation xC  and correlation 

coefficient ( ρ ) ,as 
 









+
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ρ
ρ

x

x
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CXyY7

ˆ                   (1.7) 

 
This study proposes a ratio-cum-product 

estimator utilizing the knowledge on X , xC  

and ρ  and its properties are examined. 
 
Proposed Ratio-Cum-Product Estimator 

Motivated by Singh and Tailor (2005), 
the proposed ratio-cum-product estimator for Y  
is 
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where α  is a suitably chosen scalar. It should be 

noted that α  = 1, BŶ  reduces to the estimator 

7Ŷ  suggested by Kadilar and Cingi (2006) and 

for the α  = 0 product version of the 7Ŷ . Thus, 

these two estimators are particular cases of the 

proposed estimator BŶ . To obtain the bias and 

MSE of BŶ , )1( 0eYy +=  and )1( 1eXx +=  

such that 0)()( 10 == eEeE  and 
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Expressing (2.1) in terms of sei
'  results in 

 
1

0 3 1 3 1
ˆ (1 ) (1 ) (1 )(1 ) ,BY Y e e eα λ α λ− = + + + − + 

(2.2) 
 
where 
 

)(3 ρλ += xx CXCX . 
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To the first degree of approximation, the 

bias and mean squared error of BŶ  respectively 
are 
 

( ) [ ])2(
1

)ˆ( 3
2

3 KKCY
n

fYB xB −+−= λαλ , 

(2.3) 
and 
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α λ α λ
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−
+ − − +  

(2.4) 
 

Thus, with )2/( 3λα −= KK , the estimator BŶ  

is almost unbiased. It is also observed from (2.3) 

that the bias of BŶ  is negligible for large sample. 

The mean squared error of BŶ  in (2.4) is 
minimized for 
 

3
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3

( )
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λ
+= =                (2.5) 

 
Substitution of (2.5) in (2.1) yields the 
asymptotically optimum estimator (AOE) for 
Y as 
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and placing (2.5) in (2.3) and (2.4), results in the 

bias and variance of )(ˆ opt
BY  respectively as 
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(2.7) 
and 
 

( ) )1(
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B S

n
fYMSE .     (2.8) 

It is clear that mean squared error of 
)(ˆ opt

BY  is the same as that of the approximate 
variance of the usual linear regression estimator 

)(ˆ xXyylr −+= β , where β̂  is the sample 
regression coefficient of y on x. 
 
Efficiency Comparisons 

Under simple random sampling without 
replacement (SRSWOR), the variance of sample 
mean y  is 
 

22)1(
)( yCY

n
fyV −=              (3.1) 

 

and the mean squared error of iŶ  (i=1 to 8) to 

the first degree of approximation are 
respectively given by: 
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From (2.4) and (3.1), it is observed that 

BŶ  is more efficient than the usual unbiased 

estimator y  if: 
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A comparison of (2.4) and (3.2) shows 

that BŶ  is more efficient than the usual ratio 

estimator 1Ŷ  if: 
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From (2.4) and (3.3) it is clear that BŶ  

would be more efficient than 2Ŷ  if: 
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    (3.11) 
 

Comparing (2.4) and (3.4), it is observed 

that BŶ  is more efficient than the Sisodia and 

Dwivedi (1981) estimator 3Ŷ  if 
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Comparing (2.4) and (3.5), it is observed 

that BŶ  is more efficient than the Pandey and 

Dubey (1988) estimator 4Ŷ  if 
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Comparing (2.4) and (3.6), conditions 

under which suggested estimator BŶ  is more 
efficient than the Singh and Tailor (2003) ratio 

type estimator 5Ŷ  when 
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Similarly conditions under which 

suggested estimator BŶ  is more efficient than 
the Singh and Tailor (2005) product type 

estimator 6Ŷ  when 

 

3 2 3 2

3 3

3 2 3 2

3 3

( ) 2

2 2

2 ( )

2 2

Keither

Kor

λ λ λ λα
λ λ

λ λ λ λα
λ λ

 − + +< <  
  


 + + − < <    

 

      (3.15) 
 

Comparing (2.4) and (3.8), it is observed 

that BŶ  is more efficient than the Kadilar and 

Cingi (2006) ratio type estimator 7Ŷ , if 

 

3

3
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         (3.16) 

 
Empirical Study 

To analyze the performance of the 
proposed estimator compared to other 
estimators, three natural population data sets 
were considered. The description of the 
populations is given by Annexure. 
 
Population I (Sukhatme & Sukhatme, 1970, p. 
256): 
 

y: Number of villages in the circles 
x: A circle consisting more than five villages 

Y  =3.360 

X  = 0.1236 
ρ  = 0.766 
Cy = 0.60400 
Cx= 2.19012 

 
Population II (Cochran, 1977): 
 

y: The number of persons per block 
x: The number of rooms per block 

Y =101.1 

X =58.80 
ρ =0.6500 

yC =0.14450 

xC =0.1281 

 
Population III (Kadilar & Singi, 2003): 
 

y: Level of apple production 
x: number of apple trees 

Y = 625.37 

X =13.93 
ρ =.865 

yC =1.866 

xC =1.653, 

 
Results 

Table 4.1 shows a significant gain in efficiency 

by using proposed estimator )ˆ(ˆ )(opt
BB YY  over 

the unbiased estimator Ŷ , the usual ratio 

estimator 1Ŷ , the product estimator 2Ŷ , the 

Sisodiya and Dwivedi (1981) estimator 3Ŷ , the 

Pandey and Dubey (1988) estimator 4Ŷ , the 

Singh and Tailor. (2003) estimators 5Ŷ  and 6Ŷ , 

and the Kadilar and Singi (2006 ) estimator 7Ŷ .  

Table 4.2 illustrates the wide range of 

α  in which a suggested estimator BŶ  or )(ˆ opt
BY  

is more efficient then all estimators considered 
in this study; it shows that even if the scalar α  
deviates from its optimum value ( optα ), the 

suggested estimator )(ˆ opt
bY  will yield better 

estimates than Ŷ , 1Ŷ , 2Ŷ , 3Ŷ , 4Ŷ , 5Ŷ , 6Ŷ  and 

7Ŷ . Therefore, the suggested estimator )(ˆ opt
BY  is 

recommended for use in practice. 
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Table4.1: Percent Relative Efficiencies of Ŷ , 1Ŷ  , 2Ŷ  , 3Ŷ , 4Ŷ , 5Ŷ , 6Ŷ , 7Ŷ  and BŶ  or )(ˆ opt
BY  

With Respect To Ŷ
 

Estimators Ŷ  
1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  6Ŷ  7Ŷ  )(ˆ opt

BY  

Population I 100.00 11.64 5.08 134.99 74.95 207.47 49.37 224.25 241.99 

Population II 100.00 157.87 34.03 158.09 34.10 158.99 34.38 165.29 173.16 

Population III 100.00 396.49 30.15 388.92 33.37 395.67 31.86 396.97 397.18 

 

Table 4.2: Range of α in Which BŶ  is Better than Ŷ , 1Ŷ , 2Ŷ , 3Ŷ , 4Ŷ , 5Ŷ , 6Ŷ , 7Ŷ  
  Population 

  I II III 

Range of α in 
which 

 

BŶ  or )(ˆ opt
BY  

 
is Better Than 

Ŷ  (0.5, 1.31) (0.5, 1.30) (0.5,1.51) 

1Ŷ  (-0.413,0.165) (0.638, 0.883) (0.924 , 0.946) 

2Ŷ  (-0.096, 0.22) (-0.037,1.56) (-0.017, 1.89) 

3Ŷ  (0.041, 0.082) (0.639, 0.883) (0.895, 0.975) 

4Ŷ  (0.027, 0.096) (-0.036,1.56) (0.034,1.84) 

5Ŷ  (0.052, 0.057) (0.512, 0.879) (0.918, 0.964) 

6Ŷ  (0.016, 0.087) (-0.032,1.24) (0.010, 1.88) 

7Ŷ  (0.5, 0.809) (0.5, 0.796) (0.5, 0.013) 

Optimum Value of α ( 0α ) (0.0617) (0.7612) (0.9350) 



Journal of Modern Applied Statistical Methods   Copyright © 2011 JMASM, Inc. 
May 2011, Vol. 10, No. 1, 67-76                                                                                                                               1538 – 9472/11/$95.00 

67 
 

Matched-Pair Studies with Misclassified Ordinal Data 
 

Tze-San Lee 
Western Illinois University 

Macomb, IL USA 
 

 
The problem of matched-pair studies with misclassified ordinal data is considered. Misclassification is 
assumed to occur only between the adjacent columns/rows. Bias-adjusted generalized odds ratio and a test 
for marginal homogeneity are presented to account for misclassification bias. Data from lambing records 
of 227 Merino ewes are used to illustrate how to calculate these bias-adjusted estimators and – because 
validation data are not available – a sensitivity analysis is conducted. 
 
Key words: Matched-pair, misclassification, ordinal scale. 
 
 

Introduction 
Matched-pair studies with ordered categorical 
variables have received much attention in the 
literature (see Agresti, 1983, 1984; Clayton, 
1974; McCullagh, 1977; Stuart, 1953, 1955). A 
few published studies investigated matched-pair 
with misclassified data (Greenland, 1982, 1989; 
Greenland & Kleinbaum, 1983; Lee, 2010); 
however, these studies consider only 2 × 2 
contingency tables with misclassified data. To 
date, matched-pair studies with misclassified 
data have not been investigated when the 
number of exposure categories is greater than 
two. A matched-pair misclassification problem 
is considered here with an exposure variable that 
has K (≥ 3) ordered levels. The generalized odds 
ratio is used for measuring the association in 
contingency tables with misclassified ordinal 
data and a test for marginal homogeneity 
proposed by Stuart (1955) is modified to manage 
the misclassified data. 
 

Methodology 
Consider a 1:1 matched-pair study where X 
represents the case and Y represents the control 
population and the same exposure variable with 
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K (≥ 3) ordered levels is used. Assume that a K 
× K contingency table is realized with the 
following frequency counts: 
 

, 1,...,[ ]ij i j KA n ==                   (1) 

 
where { ijn } are assumed to follow a 

multinomial distribution with parameters n (= 


ji

ijn
,

) and the cell probability { ijp > 0}. A 

naïve estimator ( ijp̂ ) for ijp  is given by 

 
ˆ /ij ijp n n= .                     (2) 

 
Generalized Odds Ratio 

As a measure for the association 
between X and Y, a generalized odds ratio 
(GOR), ζ , is defined by Agresti (1980) as: 
 

1

1 1
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2 1

K K
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i j iC

K i
D
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p
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ζ

−

= = +
−

= =
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,               (3) 

 
where Cp  (or Dp ) denotes the probability of a 

randomly selected matched-pair in which a case 
has a higher (or lower) level of exposure than 
his/her matched control. A naïve estimator, 

denoted by ζ̂ , for (3) is obtained by replacing 
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the unknown parameters ijp , i, j = 1, …, K by 

the sample estimator ijp̂  shown in (2). Note that 

this naïve estimator of equation 3 could have 
substantial bias if the observed data in (1) are 
misclassified. Due to the faster convergence of 

)ˆln(ζ , a natural logarithm of ζ̂ , to normality, 
is preferred to find a large sample Wald’s   
100(1 – p)% confidence interval: 
 

2
/ 2

2
/ 2

ˆ ˆˆ[ exp( (ln( ))),

ˆ ˆˆexp( (ln( )))]

z

z

α

α

ζ σ ζ

ζ σ ζ

⋅ −

⋅
         (4a) 

 
for ζ , where 2/αz  is the (α/2)th upper-tail 

percentile of the standard normal distribution. 

The asymptotic variance of )ˆln(ζ  is given by 
Agresti (1980) as 
 

)ˆˆ())ˆ(ln(ˆ 1112 −−− += DC ppnζσ ,      (4b) 

 
where Cp̂  (or Dp̂ ) is obtained by substituting 

equation 2 for ijp  in Cp  (or Dp ). 

 
A Test for Marginal Homogeneity 

A global test for marginal homogeneity 
was proposed by Stuart (1955). A drawback of 
this global test is its failure to account for an 
ordinal nature in the categorical level of the 
exposure variable. Assume that the ordinal 
nature of the exposure variable is quantified by a 
variable U taking the score values uk (u1 < u2 < 
… < uK ) at the kth level. Thus, the score test for 
the significance of the β coefficient in a linear 
trend model 100 : ββ =H , where 

ii up 00 βα +=+  and jj up 11 βα +=+  is 

defined by 
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where ijp̂  is defined by equation 2, 

jiijij ppP ˆˆˆ += , and ui = i – 1, i = 1, …, K. By a 

large sample theory (5) is distributed as a Chi-
square distribution with 1 degree of freedom 
(Breslow, 1982). 
 
Misclassification Probability 

Suppose that the observed K × K 
contingency table shown in (1) were 
misclassified with respect to both X and Y. Let 
X* and Y* be the classified surrogate variables 
for X and Y, respectively. Furthermore, assume 
that only adjacent rows in X* or adjacent 
columns in Y* are misclassified. For Z = X, Y, 
the misclassification probabilities (MPs) for the 
row or column variable are defined as follows: 
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1 ;

r ; ,= = − = =

= −

*
Z j k

Z j k Z j k

ψ Z j Z j Z k

ψ ψ
 

(6b) 
 
where  and vice versa. Note 
that, due to symmetry, [ ; 1] [ 1; ].+ +=Z k j Z k j φ ψ  If 

 
T

KKKKK ppppppp ],...,,...,,...,,,...,[ 1221111= , 
(7a) 

 
and 
 

11 1 21 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ,..., , ,..., ,..., ,..., ] ,T
K K K KKp p p p p p p=  

(7b) 
 
then the expected value of a naïve estimator for 
equation 2 is given by 
 

WppE =)ˆ(                          (8) 
 
where the misclassification matrix W is a K2 × 
K2 matrix defined, respectively, by 
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=
11 12 0 0 … ⋯21 22 23 0 0 ⋯00⋮⋮⋮0

320⋮⋮⋮0
33430⋮⋮0

3444540⋮0
⋯⋯⋯⋮⋮⋮

 

 
(9) 

where 
 = [ ] , , , , = 1,2, … , ; 11[11] = [1;1] − [1;1], 

[11] = [ ;1] − [1; ], 22[11] = [2;1] − [1;1] − [2;1], [11] = [ −1;1] − [1; −1] − [2; −1] − ⋯ − [ −1; −1],  = 3, … , − 1; , +1[11] = [ ; −1], = 1, … , − 1;   
+1,[11] = [ −1; ], = 2, … , , 0 ℎ ; 

12 = [ [2;1], [3;1], … , [ ;1]]; 

21 = [1;1], [2;1], … , [ −1;1] ; + , +[22] = [1;1], = 1, … , − 1 ; 2 ,2[22] = [2 ;2 −1] − [2 −1;2 ] − [2 −1;2 ],[22] = [ − ; − ] − [ − ; − ] − [ − ; ] − [ − ; − ], = + 2, , … , 2 − 1, ……, ,[ ] = [ − ; ],  = ( − 1) + 1, … , 2 − 1,  

,[ ] = [ −1; ( −1)+1 − [1; ( −1)+1 − [ −1; ],   =  ( − 1) + 1, … , 2 − 1, 2, 2[ ] = [ −1; 2] − [ −1; 2]. 
 

 
Note that W is a block tri-diagonal matrix. 
 
Bias-Adjusted Cell Proportion 

Using equation 8, a bias-adjusted cell 
proportion (BACP) estimator for p is given by 
 

, 
(10a) 

 
where p̂  is defined by (2) and V is defined by 
 

2,...,1,

1 ][ KjiijvVW =
− =≡ .          (10b) 

 

The appendix shows how to calculate its inverse 
V of the misclassification matrix W for K = 3, 
which was used to analyze the data for Table 1. 
When K = 3, then for i, j = 1, 2, 3 
 

)ˆˆˆ( ,26,,13,

3

1
jikijiki

k
ijikij pvpvpvp ++++

=

++=
, 

(11) 
 
where { ijv }, i, j = 1, 2, …, 9 are given 

respectively by equation A5 in the appendix 
with 
 

( ) [ ] [ ] [ ]

[ ] [ ] [ ]( )
[ ] [ ]

11 1;1 2;1 3;1

2;1 1;1 3;1

[2;1]1;1 3;1

det 1 2 3 2

                5

               4 (1 2 )

= − − −

+ +

+ −

Y Y Y

Y Y Y

YY Y

W φ φ ψ

φ φ ψ

φ ψ φ

, 

(12) 
 

( ) ( )
( )

[ ] [ ] [ ] [ ] [ ]
11 22 33 23 32

[ ] [ ] [ ] [ ] [ ]
12 21 33 31 23

[ ] [ ] [ ] [ ] [ ]
13 21 32 31 22

det

              

             ( ),i 1,2

= −

− −

+ − =

i i i i i
i

i i i i i

i i i i i

Δ δ δ δ δ δ

δ δ δ δ δ

δ δ δ δ δ

, 

(13 & 14) 
 

Where { }[ ]i
jkδ , i = 1, 2 are given, respectively, by 

equations A5 and A6 in the appendix. 
A set of MPs is said to be feasible if the 

values of all three determinants, )det( 11W , 

)det( 1Δ  and )det( 2Δ , from (12), (13) and (14), 
are nonzero for the given set of equation 6. 
Furthermore, a set of MPs is said to be 
admissible if - for all feasible [ ; ]Z i jϕ  and [ ; ]Z j iψ  

- where Z = X, Y, the constraint of the sum of 
total probability { ijp }, i , j = 1, 2, 3, that is, 

1
3

1

3

1

=
= =i j

ijp , is satisfied where 10 << ijp . 

 
Bias-Adjusted Generalized Odds Ratio 

By substituting (11) into (3), a bias-
adjusted generalized odds ratio (BAGOR) is 
thus defined by 
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=

==
++
++

≡=
3

1,

**

3

1,

*

323121

231312

ˆ

ˆ

ji
ijij

ji
ijij

D

C

pv

pv

ppp
ppp

p
p







ζ , 

(15a) 
 

where { ijp̂ } are given by (2), { *
ijv } and { **

ijv } 

are given respectively for j = 1, 2, 3, by 
 

*
1 2 3 6

*
2 2, 3 3, 3 6, 3

*
3 2, 6 3, 6 6, 6

,

,

,

j j j j

j j j j

j j j j

v v v v

v v v v

v v v v
+ + +

+ + +

= + +

= + +

= + +

       (15b) 

 
and 

**
1 4 7 8

**
2 4, 3 7, 3 8, 3

**
3 4, 6 7, 6 8, 6

,

,

,

j j j j

j j j j

j j j j

v v v v

v v v v

v v v v
+ + +

+ + +

= + +

= + +

= + +

        (15c) 

 
and { ijv } are given by equation A7 in the 

appendix. Using the delta method (Goodman & 
Kruskal, 1972), the asymptotic variance of 

)ln(ζ


 is given by 
 2 ln =∑ ∗∗ ∑ ∗ −∑ ∗ ∑ ∗∗3, =13, =13, =13, =1 ( ∑ ∗∗3, =1 )2 ,

 
(15d) 

 

where { *
ijv } and { **

ijv } are given, respectively, 

by equations 15(b-c). A large sample Wald’s 
100(1- α)% confidence interval is given by 
 [ exp (− 2 √ 2(ln ), exp (− 2 √ 2(ln ),

 
(15e) 

where 
 

ijij pp 


== |))(ln())(ln( 22 ζσζσ . 

 
 
 
 

Bias-Adjusted Test for Marginal Homogeneity 
Substituting equation (11) into (5) 

for ijp̂ , a bias-adjusted test for marginal 

homogeneity (BATMH) is given by 
 




−

= +=

−

= +=

−

−−⋅
=

1

1 1

2

1

1 1

2

)(

)])(([

K

j

K

ji
ijij

K

j

K

ji
ijijji

zzP

zzppn
S 




, 

(16) 
 
where { ijp } are given by equation (11), and 

iii ppP ++ += 
. 

 
Results 

Table 1 shows the first and second lambing 
records of a flock of 227 Merino ewes from 
1952-1953 (Tallis, 1962). If the data in Table 1 
are not misclassified, then the naïve GOR can be 
calculated as 1.22 (95% CI: 1.12–1.32) using 
equations 3 and 4. This implies that a significant 
association exists between the number of 
lambing records in 1952 and 1953. Also, the test 

value of equation 5 is obtained as Ŝ  = 70.0 with 
p < 0.0001 which indicates that the marginal 
distribution of the lambing records in 1952 is 
significantly different from that of 1953. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Cross-Classification of Ewes 
According to Number of Lambs Born in 

Consecutive Years 
 

Number 
of Lambs 

(1953) 

Number of Lambs 
(1952) Total 

0 1 2 

0 58 52 1 111 

1 26 58 3 87 

2 8 12 9 29 

Total 92 122 13 227 
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Suppose that errors are present in the 
classification of the lambing records in Table 1; 
in that case, the bias-adjusting method would be 
applied. In order to use the formula of equation 
11, the true MPs must be calculated. In order to 
accomplish this task, it is necessary to know the 
true cell counts; Through the use of theory of 
counterfactuals it is intuitively clear that the 
issue of getting a true table is simply a 
counterfactual of the observed [misclassified] 
table which is thought the factual one (Lewis, 
1973). Hence, the above idea may be applied to 
obtain the hypothetically true cell counts by 
reshuffling the number of misclassified subjects 
in the observed table.  

Because the row/column marginal totals 
in case-control studies have to be kept as being 
fixed, four out of nine cells can be chosen as free 
parameters to construct the true (counterfactual) 
table.  By noting that there are two cells (1,3) 
and (2,3) with small observed counts, these two 
cells and two other cells (2,1) and (3,2) are 
selected as free parameters to construct ten true 
tables (column 2, Table 2). With 1 in the (1,3)  
cell to be kept unchanged, the assumed number 
of under- or over-misclassified subjects starts 
with the (2,3) cell and then increases one by one 
up to seven in that cell, while the assumed 
number of under- or over-misclassified subjects 
the other two cells (2,1) and (3,2) are chosen  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

discreetly we ended up with eight true cell count 
tables (#1 to #8, column 2 of Table 2); True cell 
counts in #9 and #10 of Table 2 are similarly 
constructed.  

With the true cell counts as given, it is a 
matter of straightforward calculation to obtain 
true MPs; the MPs are calculated as the ratio of 
difference between true and observed marginal 
totals divided by their sum. These corresponding 
MPs were calculated (column 3, Table 2): the 
details are similar to that of Lee (2009a, 2010) 
and are hence omitted here. In order to check the 
feasibility of the MPs, three determinants 
(equations 12-14), )det( 11W , )det( 1Δ  and 

)det( 2Δ , were calculated. After examining their 
values, they are all feasible because all the 
determinant values are positive (columns 2-4, 
Table 3). 
Although all MPs are feasible, it is interesting to 
note that only five out of ten (#1 to #5) are 
admissible because (1) they are positive real 
numbers between 0 and 1, and (2) they satisfy 
the constraint on the total probability sum: 

1
3

1

3

1

=
= =i j

ijp  (column 5, Table 3). As a result, 

BAGORs and BATMHs were calculated for 
models #1 to #5 (columns 2 and 3, Table 4).  
number of under- or over-misclassified subjects  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Ten Assumed True Cell Counts and their Corresponding MPs for Table 1 
 

# 11 12 13 21, 22 23 31 32 33( , , ; , , ; , , )n n n n n n n n n  ( )[1] [1] [1] [2] [2] [2] [3] [3] [3], , ; , , ; , , *X X X X X X X X Xa b d a b d a b d  

1 (57,53,1;27,57,3;8,12,9) (0.8,3,0;6,2,0;0,0,0) 

2 (57,53,1;27,56,4;8,13,8) (0.8,3,0;6,4,50;0,1,30) 

3 (56,54,1;27,55,5;9,13,7) (9,6,0;6,7,80;30,10,60) 

4 (55,55,1;28,53,6;9,14,6) (10,9,0;10,10,110;30,30,10) 

5 (54,56,1;29,51,7;9,15,5) (20,10,0;20,20,130;30,40,140) 

6 (48,62,1;30,49,8;14,11,4) (50,30,0;20,20,150;140,10,190) 

7 (45,65,1;31,47,9;16,10,3) (60,40,0;30,30,170;170,30,250) 

8 (49,61,1;25,52,10;18,9,2) (40,30,0;7,20,180;190,50,320) 

9 (55,54,2;24,60,3;13,8,8) (10,6,170;10,4,0;120,70,30) 

10 (55,54,2;22,61,4;15,7,7) (10,6,170;30,6,50;150,90,60) 
*All entries inside the parenthesis defined by equations A1 and A2 in the appendix need to multiply by 10-3. 
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The value of BAGOR/BATMH was not 
computed if the corresponding BACPs were 
inadmissible. 

Table 4 shows that admissible BACPs 
the BAGOR (ς = 2.08) is biased further away 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from the value of the null hypothesis than the 
classical estimator ( 22.1ˆ =ς ), but the 

BATMHs ( S


= 12.0 is biased toward the null 

value than the classical estimator ( Ŝ = 70.0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Feasibility and Admissibility of MPs and/or BACP in Table 2 
 

# )det( 11W  )det( 1Δ  )det( 2Δ  ),,,,,,,,( 333231232221131211 ppppppppp 
 

1 0.99 0.96 0.96 (0.260, 0.0008, 0.004, 0.11, 0.26, 0.22, 0.03, 0.05, 0.04) 

2 0.99 0.82 0.74 (0.26, 0.007, 0.005, 0.11, 0.26, 0.22, 0.03, 0.05, 0.03) 

3 0.96 0.69 0.54 (0.27, 0.02, 0.008, 0.11, 0.26, 0.21, 0.03, 0.04, 0.03) 

4 0.95 0.58 0.39 (0.27, 0.04, 0.02, 0.11, 0.26, 0.22, 0.02, 0.04, 0.03) 

5 0.93 0.49 0.28 (0.27, 0.07, 0.04, 0.11, 0.26, 0.22, 0.02, 0.03, 0.02) 

6 0.82 0.38 0.15 (0.32, 0.13, 0.06, 0.10, 0.25, 0.21, 0.02, -0.01, 0.02) 

7 0.77 0.32 0.08 (0.34, 0.22, 0.14, 0.09, 0.22, 0.21, 0.01, -0.04, 0.006) 

8 0.84 0.36 0.05 (0.37, 0.59, 0.54, 0.10, 0.11, 0.20, 0.008, -0.06, -0.002) 

9 0.64 0.60 0.34 (0.32, -0.09, 0.02, 0.10, 0.28, 0.19, 0.01, -0.008, 0.04) 

10 0.64 0.48 0.21 (0.34, -0.11, 0.006, 0.10, 0.28, 0.19, -0.003, -0.04, 0.03) 

 
 

Table 4: Estimated BAGORs with 95% Confidence Interval (CI) and BATMHs 
with p-value for Table 3 

 

# ζ


 (95% CI) ( − )  

1 0.74 (0.26 – 2.12) 0.49 (0.31) 

2 1.17 (0.66 – 2.08) 2.05 (0.02) 

3 1.34 (0.72 – 2.48) 4.05 (< 0.0001) 

4 1.60 (0.86 – 3.00) 6.80 (< 0.0001) 

5 2.08 (1.06 – 4.07) 12.0 (< 0.0001) 

6-10 -* -* 

*MPs are not admissible; thus values of 
˘ ˘

/ Sζ  are not calculated.  
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Conclusion 
A new method is presented here to study the 
misclassification problem associated with 
matched-pair case-control studies for the 
polytomous exposure variable. Based on results 
from this study, the following conclusions are 
put forth: 
 
1. Determining whether there are classification 

errors in the collected data is a difficult 
issue. Strictly, this requires the principal 
investigator using personal expertise to 
exercise subjective judgment on the 
collected data. However, from the sensitivity 
analysis of this data set of lambing records, 
the method presented herein can vindicate 
itself empirically. Note that this example 
indicates that, at most, one record in the 
(1,3) cell can be under- or over-
misclassified. It is impossible to have more 
than one record misclassified in that cell due 
to the occurrence of inadmissible MPs.  

 
2. This method does not require non-

differential misclassification as an 
assumption. In fact, differential 
misclassification is inclined to be the norm 
rather than exception in practical 
applications. Indeed, the example provided 
shows that, even if both the column and the 
row marginal totals misclassify, just the 
same number of records to their 
corresponding MPs are not the same because 
they have different marginal totals for the 
column and row respectively.  

 
3. The direction of the bias is not the same for 

two measures of association - it depends on 
which measure is used.  

 
4. The close-form formula for this method are 

derived only for K = 3. For K = 4, 5, 6 it is 
workable to obtain the closed-form formula 
by hand. For much bigger values of K, it is a 
formidable task to work out all the details by 
hand. Fortunately, there is an alternative 
way to bypass the necessity of getting 
closed-form formula. Taking a closer look at 
two criteria for MA: feasibility and 
admissibility, it is found that feasibility is 
not essential, but admissibility is critical, 

meaning that it is not necessary to pay much 
attention to feasibility, the main focus is 
only on admissibility. Hence, instead of 
getting closed-form formula, equation 10 
can be solved numerically for BACP and the 
admissibility of MP checked by examining 
whether all components of BACP are 
positive real numbers between 0 and 1.  

 
5. The confidence interval given by equations 

4 or 15(e) is large sample asymptotic. If the 
sample sizes are small, an exact confidence 
interval should instead be used (Lui, 2002). 

 
Although the traditional naïve estimator 

can be viewed as a special case of bias-adjusted 
estimator when all misclassification probabilities 
are zero, a huge difference exists between these 
two estimators. Note that a bias-adjusted 
generalized odds ratio as shown in equation (11) 
uses both the concordant and discordant data in 
the observed table, while the naïve estimator 
shown in (3) uses only the discordant data. As a 
result, a bias-adjusted generalized odds ratio will 
be more efficient than the naïve one.  

Finally, a limitation of this study is that 
the results presented do not apply to a situation 
in which more than two adjacent columns/rows 
are misclassified in the contingency table. 
Clearly, the question remains open regarding 
how to adjust the naïve estimator for the 
misclassification bias if the assumption of only 
two adjacent columns/rows being misclassified 
is not satisfied. 
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Appendix 
For j = 1, 2, 3, let [ ] = [1; ], [ ] = [2; ], [ ] =[2; ], [ ] = [3; ],  

(A1) 

Where   Z Y if Z X= = , and vice versa. 
Because of the symmetry in matched-pair 
studies, it is reasonable to assume that 
 [1] = [1], [2] = [1] = [1], [2] =[2] = [2] = [2], [3] = [3] =[2] , [3] = [1], [3] = [3].  

(A2) 
 
For K = 3, the matrix W in equation 9 was given 
by 
















=×

3332

232221

1211

99

0

0

WW
WWW

WW
W ,          (A3) 

 
where 
 

11 = 1 − 2 [1] [1] 0[1] 1 − 3 [1] [1]0 [1] 1 − 2 [1] ,

 
 12 = [1], [2], [3] , 13 = 31 =[0], 21 = [ [1], [1], [1]]; 

 
 

22 = 1 − 3 [2] [2] 0[2] 1 − 4 [2] [2]0 [2] 1 − 3 [2] ,
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23 = [1], [2], [3] =[ [3], [3], [3]] , 32 =[1], [2], [3] =[ [2], [2], [2]];  
 

33 = 1 − 2 [3] [3] 0[3] 1 − 3 [3] [3]0 [3] 1 − 2 [3] ,

 
 
where diag[d11, d22, d33] denotes a 3 × 3 diagonal 
matrix. 

Solving the matrix equation of 

999999 ××× =⋅ IVW , where V9×9 was given by 

equation 10(b) and I9×9 was a 9 × 9 identity 
matrix, results in 

1
31 2 32 21

1
21 1 11 23 31 21

1
11 11 3 3 12 21

1
32 2 32 11

1
22 1 11 3 3 23 32

1
12 11 12 22

1
33 2 1

1
23 1 11 23 33

1
13 11 12 23

,

( ),

( ),

,

( ),

,

,

,

.

V W W
V W W V W
V W I W V
V W W
V W I W V
V W W V
V
V W W V
V W W V

−

−

−
×

−

−
×

−

−

−

−

= Δ

= −Δ +

= −

= −Δ

= Δ −

= −

= Δ Δ

= −Δ

= −

     (A4) 

 
where 1Δ  and 2Δ  were defined, respectively, by 
 

122122111 WWWW −=Δ , 
and 

2311323312 WWWW −Δ=Δ . 

 

If [1]{ }ijδ  and { }[2]
ijδ  denote the (i, j)th 

entry of Δ1 and Δ2., then 
 11[1] = 1 − 2 [1] − 3 [2] + 5 [1] [2] +[2] [1], 

 
 12[1] = [2](1 − 2 [1]) + [1](1 − 4 [2]),

 

13[1] = [1] [2],  
 21[1] = [1] 1 − 3 [2] + [2](1 − 3 [1]),

 
 22[1] = [1] [2] + 1 − 3 [1] − 4 [2] +11 [1] [2] + [1] [2],  

(A5) 
 23[1] = [1] 1 − 4 [2] + [2](1 − 2 [1]); 
 31[1] = [1] [2], 
 32[1] = [1] 1 − 4 [2] + [2](1 − 2 [1]),
 33[1] = [1] [2] + 1 − 2 [1] − 3 [2] +5 [1] [2]; 
 11[2] = 1 − 2 [3] 11[1] + [3] 12[1] −[2] [3](1 − 2 [1]), 
 12[2] = [3] 11[1] + 1 − 3 [3] 12[1] +[3] 13[1] − [1], 
 13[2] = [3] 12[1] + (1 − 2 [3]) 13[1], 
 21[2] = 1 − 2 [3] 21[1] + [3] 22[1] − [1], 
 22[2] = [3] 21[1] + 1 − 3 [3] 22[1] +[3] 23[1] − [2] [3](1 − 3 [1]),  

(A.6) 
 23[2] = [3] 22[1] + 1 − 2 [3] 23[1] − [1];

 31[2] = 1 − 2 [3] 31[1] + [3] 32[1], 
 32[2] = [3] 31[1] + 1 − 3 [3] 32[1] +[3] 33[1] − [1], 
 33[2] = [3] 32[1] + 1 − 2 [3] 33[1] −[2] [3](1 − 2 [1]).  
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The nine equations in A4 were solved 
by grouping them into three sets. First, the first 
three equations were solved together in A4 
letting the entries for V31, V21, and V11 be 
denoted, respectively, by {aij}, {sij}, and {xij}, 
namely, ][31 ijaV = , ][21 ijsV = , and 

11 [ ].ijV x=  Next the second set of three 

equations in A4 were solved for V32, V22, and 
V12; the entries of these matrices are given, 
respectively, by ][32 ijbV = , ][22 ijtV =  and 

][12 ijyV = . Finally, after solving equations A4 

for V33, V23, and V13, the entries of these 
matrices are given, respectively, by ][33 ijcV = , 

][23 ijuV =  and ][13 ijzV = . 

Putting together the above result, the 
inverse of the misclassification matrix W was 
thus obtained as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A.7) 
 
 
where the closed-form solutions for all the 
entries { ijv } can be found in the appendix of 

Lee (2009b). 
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A Robust Root Mean Square Standardized Effect Size 
in One-Way Fixed-Effects ANOVA 

 
Guili Zhang James Algina 
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A robust Root Mean Square Standardized Effect Size (RMSSER) was developed to address the 
unsatisfactory performance of the Root Mean Square Standardized Effect Size. The coverage 
performances of the confidence intervals (CI) for RMSSER were investigated. The coverage probabilities 
of the non-central F distribution-based CI for RMSSER were adequate. 
 
Key words: Confidence interval, effect size, root mean square standardized effect size, non-central F 

distribution-based confidence interval, percentile bootstrap, coverage probability, robust root 
mean square standardized effect size. 

 
 

Introduction 
Using an effect size (ES) in addition to or in 
place of a hypothesis test has been 
enthusiastically advocated by many statistical 
methodologists because ESs are regarded as 
more appropriate and more informative (Cohen, 
1965, 1994; Cumming & Finch, 2005; Finch, et 
al., 2002; Hays, 1963; Meehl, 1967; Nickerson, 
2000; Steiger, 2004; Steiger & Fouladi, 1997; 
Zhang, 2009; Zhang & Algina, 2008). Reporting 
an ES has become mandatory or strongly 
recommended in some editorial policies in the 
last two decades (Murphy, 1997; Thompson, 
1994). The Publication Manual of the American 
Psychological Association (2001) stated that it is 
almost always necessary to include some index 
of ES or strength of relationship in the results 
section of a research report. 
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The APA Task Force on Statistical 

Inference (Wilkinson and the Task Force on 
Statistical Inference, 1999) not only supports the 
use of ESs but also requires researchers to 
provide confidence intervals (CI) for all 
principal outcomes. A CI for an ES is 
recommended as a superior replacement for 
significance testing because it is argued that CI 
contains all the information found in the 
significance tests and vital information not 
provided by the significance tests about the 
magnitude of effects and precision of estimates 
(Cohen, 1994; Steiger & Fouladi, 1997; 
Wilkinson, et al., 1999; Cumming & Finch, 
2001, 2005; Zhang, 2009). 

The increased interests in ES and CI 
have motivated explorations of their usefulness 
and effectiveness within recent years (Algina & 
Keselman, 2003a, 2003b; Bird, 2002; Cumming 
& Fitch, 2001; Zhang & Algina, 2008). In the 
two group case, it has been reported that - in 
both the independent and dependent samples 
cases - CIs for Cohen’s δ , arguably the most 
widely accepted ES index for a pairwise contrast 
on means, may be misleading due to poor 
coverage probability when data are nonnormal 
and can grossly misrepresent the degree to 
which two distributions differ (Algina & 
Keselman, 2003b; Algina, et al., 2006; Algina, 
et al., 2005a; Kelly, 2005; Wilcox & Keselman, 
2003). However, research has shown that the CIs 
for Rδ , a robust version of δ  based on trimmed 
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means and Winsorized variances, have better 
coverage probability than do CIs for Cohen’s δ  
under data nonnormality (Algina & Keselman, 
2003b). 

In the more than two group case, Zhang 
and Algina (2008) investigated the coverage 
performance of the noncentral F distribution-
based CI and the percentile bootstrap CI for one 
of the most commonly used generalized effect 
size indices, the Root Mean Square Standardized 
Effect Size (RMSSE), proposed by Steiger and 
Fouladi (1997), denoted by 
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in a one-way, fixed-effects, between-subjects 
ANOVA. Both CIs were implemented for all 
combinations of the following five factors: (1) 
five population distributions including the 
normal distribution and four additional cases 
from the family of the g and h distributions that 
are nonnormal (Hoaglin, 1983, Martinez & 
Iglewicz, 1984); (2) two numbers of levels for 
treatment groups: J = 3 and J = 6; (3) three cell 
sample sizes in each treatment; (4) six values of 
population RMSSEs; and (5) two mean 
configurations, the equally spaced mean 
configuration and the one extreme mean 
configuration. Each condition was replicated 
2,500 times and the number of bootstrap 
replications in the bootstrap procedure was 
1,000. Zhang and Algina found that both the 
noncentral F distribution-based CI and the 
percentile bootstrap CI for RMSSE yielded 
inadequate coverage probabilities under data 
nonnormality. 

According to arguments in Wilcox and 
Keselman (2003) about the robustness of δ  in 

the two-group case, it is not surprising that *f  
is not an entirely adequate measure of group 

separation because *f  is formulated with least-
square parameters which are affected by skewed 
data, long tails and/or outlying values. It is 
therefore imperative to develop a robust version 
of the RMSSE to ensure the appropriate and 
effective use of the ES in ANOVA. 

Methodology 
The unsatisfactory coverage performance of the 

CIs for *f  reported by Zhang and Algina 

(2008) is understandable: This is because the 
problems that trouble Cohen’s δ  and its CI are 

very likely to also haunt *f  and its CI, as *f  is 

a generalized δ  and is formulated with the 
nonrobust least-square means and variances. It is 
well known that when the distribution of the 
data is not normal, the least-square means and 
standard deviations can work poorly because 
they are affected by the skewness of the data and 

by the outliers in the data; consequently *f  may 
be misleading as a measure of population 

separation. Therefore, a robust version of *f  

that is parallel to Rδ , the robust effect size in the 

two-group case, is strongly desired. The 
purposes of the study are: 
 

a. To develop a robust RMSSE, *
Rf ,  

b. To develop a noncentral F distribution-

based CI for *
Rf , and 

c. To investigate the performance of the 
noncental F distribution-based and 

percentile bootstrap CI for *
Rf . 

 

Note that *f  and *
Rf  are two different 

parameters based on different measures of 
location and variability and, unless the data are 

normally distributed, *f  and *
Rf  will not be 

equal. The parameter *f  is used to characterize 
the amount of difference among the population 

means, while *
Rf  represents the amount of 

difference among the population trimmed 
means. 
 
Robust Root Mean Square Standardized Effect 
Size and Its Confidence Interval 

To overcome the weaknesses in *f , a 
robust version of the generalized effect size was 
developed, the Robust Root Mean Square 
Standardized Effect Size (RMSSER), denoted by 

*
Rf  in this study. The value of *

Rf  is defined by 

using robust parameters (20% trimmed means 
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and Winsorized variances) as opposed to the 
least-square parameters (means and variances). 
Trimmed means are used because it has been 
shown that the impact of outliers on trimmed 
means can be much less disturbing than on the 
usual means (Wilcox, 2005). The Winsorized 
variance is used because the sample Winsorized 
variance is used in hypothesis testing based on 
trimmed means. Both the trimmed mean and the 
Winsorized variance are robust parameters as 
judged by the criteria of qualitative robustness, 
quantitative robustness and infinitesimal 
robustness (Wilcox, 2005, Section 2.1 describes 
these criteria). 

In a balanced one-way between-subjects 

ANOVA design, *
Rf  is defined as 
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where Tjμ  is the trimmed mean for the jth level, 

Tμ  is the grand mean based on the trimmed 

means, and 2
Wσ  is the within-level Winsorized 

variance, which is assumed to be constant across 
levels. The quantity 0.642 is the square root of 
the population Winsorized variance for a 
standard normal distribution, therefore, 
including 0.642 in the definition of the robust 

effect ensures that *
Rf  = *f  when the data are 

drawn from normal distributions with equal 
variances. 

An estimate of *
Rf  can be attained from 

sample statistics by applying the following 
formula: 
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where TjY  is the trimmed sample mean for the jth 

level, TY  is the sample grand trimmed mean, 

and 2
WpS  is the sample pooled within-level 

Winsorized variance. 

The quantity 2
WpS  is obtained by using 
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A CI for *
Rf  can be constructed based on the 

noncentral F distribution. Consider a one-way, 
between-subjects, fixed-effects ANOVA with 

jn  observations in the jth group and J groups. 

The robust F statistic is calculated by using 
(Yuen, 1974) 
 

RB
R
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MSF
MS

= ,                      (4) 

 
where RBMS  and RWMS  are the robust mean 

square between and robust mean square within 
respectively, and are calculated by using: 
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and 
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where WijY  is the ith Winsorized score in group j, 

and WjY  is the Winsorized mean for group j. The 

robust F statistic has robust noncentrality 
parameter 
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where 2
Wσ  is an adjusted version of the 

population Winsorized variance: 
 

2 2
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The lower limit of the 95% CI for Rλ  is 

the robust noncentrality parameter for the 
noncentral F distribution in which the calculated 
robust F statistic is the 0.975 quantile. The upper 
limit of the 95% confidence interval for Rλ  is 
the robust noncentrality parameter for the 
noncentral F distribution in which the calculated 
robust F statistic is the 0.025 quantile of the 
distribution. 

In a balanced one-factor between-

subject design with equal ns, *
Rf  can be written 

as a function of Rλ : 
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To find a (1 − α )% (95% in this study) CI for 

*
Rf , the noncentral F distribution was first used 

to find a 95% CI for Rλ . After the CI on Rλ  is 
found, equation 9 is applied to transform the 
endpoints of the CI for Rλ  to obtain the 

endpoints for the CI for *
Rf . 

Although the noncentral F distribution 

can be used to obtain a CI for *
Rf , because this 

CI construction method is based on the 
assumption that the data are drawn from a 
normal distribution, when the data are 
nonnormal the coverage probability for this 
interval may be poor and the percentile bootstrap 
CI may have better coverage probability (Algina 
& Keselman, 2003b; Efron & Tibshirani, 1993). 
Therefore, the performances of the percentile 
bootstrap method for the construction of CIs for 

*
Rf  were examined and compared to the 

noncentral F distribution-based method in terms 
of the probability coverage and interval width. 
 
Coverage Performance of the Confidence 
Interval for Robust Root Mean Square 
Standardized Effect Size 

To investigate the coverage performance 

of the CIs for *
Rf , the noncentral F distribution-

based and the percentile bootstrap CIs were 
implemented for all combinations of the 
following five factors: (1) five population 
distributions including the normal distribution 
and four additional cases from the family of the 
g and h distributions that are nonnormal 
(Hoaglin, 1983, Martinez & Iglewicz, 1984); (2) 
two numbers of levels for treatment groups: J = 
3 and J = 6; (3) three cell sample sizes in each 
treatment; (4) six values of population RMSSER; 
(5) two mean configurations, the equally spaced 
mean configuration and the one extreme mean 
configuration. The nominal confidence level for 
all intervals investigated was 0.95 and each 
condition was replicated 2,500 times. The 
number of bootstrap replications in the bootstrap 
procedure was 1,000. 
 
Conditions 

Data for all five distributions were 
generated from the g and h distributions: (1) 

0g h= = , the standard normal distribution 

( 1 2 0γ γ= = ), where 1 1γ β=  and is the 

skewness, and 2 2γ β=  and is the kurtosis, (2) 

.76g =  and .098h = − , a distribution with the 
skewness and kurtosis of an exponential 
distribution ( 1 2γ = , 2 6γ = ), (3) 0g =  and 

.225h =  ( 1 0γ =  and 2 154.84γ = ), (4) 

.225g h= =  ( 1 4.90γ =  and 2 4673.80γ = ), 

and (5) 0g = and .109h =  1( 0=γ  and 

2 6)=γ , a distribution with the skewness and 

kurtosis of a double exponential distribution. 
The four nonnormal distributions cover 

a wide range of nonnormality including 
distributions that are strongly nonnormal. Such a 
selection of distributions allows the researcher to 
investigate the performances of the CIs under a 
wide range of the data conditions. The goal is to 
find which procedure or procedures are likely to 
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work well over a wide range of distributions 
because it is impossible for any one of the 
simulations to include every possible 
distribution that might be encountered in real 
data or to anticipate what types of distributions 
are realistic in all of social and behavioral 
science fields. The inclusion of the normal 
distribution provides a reference for judgments 
on the CIs’ performance under data that deviate 
from normality. 

The numbers of treatment groups 
investigated were 3 and 6 (J = 3 and J = 6), and 
sample sizes in each treatment included were 

20jn =  to 50 in steps of 15. In other words, the 

treatment groups have equal sample size and the 
sample sizes investigated were 20, 35 and 50. 
The number of treatment groups equal to 3 and 6 
was selected because this covers the likely range 
encountered in most research in the social and 
behavioral sciences. Sample sizes ranging from 
20 to 50 are fairly typical of sample sizes used in 
social science research, although clearly do not 
cover sample sizes found in very small or very 
large studies. 

The treatment group means followed 
two mean configurations: the equally spaced 
mean configuration and the one extreme mean 
configuration. A mean configuration is a 
specification of the arrangement of the treatment 
groups means. Denoting the smallest and the 
largest means by μmin and μmax, if the means 
other than μmin and μmax are equally spaced 
between these two extremes, the configuration is 
referred to as an equally spaced configuration 
(Cohen, 1969). If one of the means is equal to 
μmin and the rest of the means are all equal to 
μmax, or, if one of the means is equal to μmax and 
the rest of the means are equal to μmin, then the 
configuration is called a one extreme mean 
configuration. Mean configurations are an 
artifice adopted because the actual configuration 
of means in social science research is quite 
variable. Nevertheless, the selected 
configurations cover a range of possibilities and 
will allow determination of whether results tend 
to generalize over configurations. 

Six values of *
Rf  were investigated: 0, 

0.1, 0.25, 0.40, 0.55 and 0.70. Defining 
 

max min
max

μ μδ
σ
−=                (10) 

 
as Cohen’s effect size for the largest and 
smallest means, under the equally spaced mean 

configurations, these population *
Rf  values 

approximately correspond to maxδ of 0, 0.2, 0.5, 

0.8, 1.10 and 1.40, respectively. Under the one 
extreme mean configuration, these population 

*
Rf  values roughly correspond to maxδ  of 0, 

0.173, 0.433, 0.693, 0.952, and 1.212. Therefore, 

a *
Rf  of 0 indicates no effect, .1 a small effect, 

0.25 a medium effect, 0.40 a large effect, and 
0.55 and 0.70 very large effects. 

The nominal confidence level for all 
intervals investigated was .95 and each condition 
was replicated 2,500 times, assuring sufficient 
precision for an adequate initial investigation 
into the sampling behaviors of the CIs. The 
number of bootstrap replications in the bootstrap 
procedure was 1,000. 
 
Analyses Conducted 

The study was designed to investigate 
the robustness of the noncentral F distribution-
based CIs and the percentile bootstrap CIs for 

*
Rf  to sampling from nonnormal distributions. 

Coverage probabilities for the noncentral F 

distribution-based and bootstrap CIs for *
Rf  

were estimated. Additionally, the average width 
of the noncentral F distribution-based and 

bootstrap CIs for *
Rf  were compared. 

Variables conforming to a g and h 
distributions are transformations of a standard 
normal distribution. When g and h are both 
nonzero, 
 

( ) 2exp 1
exp
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gZ hZY
g

−  
=  

 
         (11) 

 
where Z is a standard normal variable, and Y is 
the g and h distributed variable. When g is zero, 
 

2
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2
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Standard normal variables (Zij) were 
generated by using RANNOR function in SAS 
(SAS, 1999). Then the Zij were converted to the 
desired g and h distributed random variable by 
using Equations 11 and 12. To create scores 

corresponding to the selected values of *
Rf , it is 

necessary to linearly transform the g and h 
distributed variables. Data were generated for 
three samples and six samples in each 
replication of each condition by the following 
steps: First, for the first sample 1n  scores were 

generated from the appropriate distribution. 
Secondly, 2n  scores from the same distribution 

were generated and a constant was added to each 
score. Thirdly, 3n  scores from the same 

distribution were generated and a constant was 
added to each score and so forth until Jn  scores 

from the same distribution were generated and a 
constant was added to each score. The constants 
were chosen such that the population RMSSER, 

*
Rf  would equal the following values: 0, 0.1, 

0.25, 0.40, 0.55, and 0.70. 
For the equally spaced mean 

configuration, the Y variables were obtained by 
using 
 

( ) ( )
*12

1
1 .642

W
ij ij RY X j f

J J
σ= + −

+
, 

j = 1, . . . , J.                                  (13) 
 
For the configuration with one extreme mean, 

ij ijY X=  for groups 1j = , . . . , 1J − . For 

group J the transformation was 
 

*

.642
W
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To find a (1 α− )% (95% in the current study) 

confidence interval for *
Rf , the noncentral F 

distribution is first used to obtain a 95% 
confidence interval on Rλ , the robust 
noncentrality parameter of the F distribution. 
Once the CI for Rλ  is found, the endpoints of 

the CI for Rλ  are transformed to endpoints for 

*
Rf  by applying Equation 9. Notice the CI for 
*

Rf  constructed by the noncentral F distribution-

based method will result in coverage probability 

of 0.975 when * 0Rf =  because the probability 

noncoverage from the lower side of the 
distribution will be 0 instead of 0.025. 

To apply the percentile bootstrap 
method, the following steps are completed 1,000 
times within each replication of a condition. 
 
1. A sample of size jn  is randomly selected 

with replacement from the scores for the 
group j, 1j = , . . . , J. These J samples are 
combined to form a bootstrap sample. 

2. The parameter *2
Rf  is estimated by using 
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3. The 1,000 *2
Rf  estimates are ranked from 

low to high. The lower limit of the CI for 
*2

Rf  is determined by finding the 26th 

estimate in the rank order [i.e., the (0.025 x 
1,000+1) th estimate]; and the 975th estimate 

is the upper limit of the CI for *2
Rf  (i.e. the 

(0.975 x 1,000)th estimate]. 

4. The lower limit of the CI for *
Rf  is equal to 

the square root of the lower limit of the CI 

for *2
Rf  if the latter lower limit is larger than 

zero and is zero otherwise. The upper limit 

of the CI for *
Rf  is equal to the square root 

of the upper limit of the CI for *2
Rf . 

 
Results 

The estimated coverage probabilities of the 

noncentral F distribution-based CIs for *
Rf are 

reported in Tables 1-4. The average widths of 
the noncentral F distribution-based CIs 

for *
Rf are shown in Tables 5-8. 

 



ZHANG & ALGINA 
 

83 
 

Estimated Coverage Probabilities of Confidence 

Intervals for *
Rf  

In Tables 1 to 4, the estimated coverage 
probabilities of the noncentral F distribution-

based and bootstrap CIs for *
Rf  are presented 

with estimates outside the [.94, .96] interval 
bolded, and estimates outside of the interval 
[.925, .975] bolded and underlined. 

The pattern of results for the noncentral 
F distribution-based CI for *

Rf  looks strikingly 

similar across Tables 1 to 4. First, when 
sampling from a normal distribution, the 
coverage probability of the noncentral F 
distribution-based CIs should be 0.975 when 

*
Rf = 0, and the results in Tables 1 to 4 are 

consistent with the theory. When *
Rf  > 0, the 

coverage probability of the noncentral F 
distribution-based CI is expected to be 0.95 
under normality and the results presented in 
Tables 1-4 are consistent with this expectation. 

Second, considering the results in all 
four tables, coverage probability for the 

noncentral F distribution-based CI for *
Rf  tends 

to be appreciably better than for the bootstrap CI 
both when sampling from normal and 
nonnormal distributions. When sampling from 
the normal distribution, when J = 3 the coverage 
probability for the noncentral F distribution-
based CI is outside the [.925, .975] interval in 
only 1 case out of a total of 36, while the 
bootstrap CI has a total of 20 cases outside this 
interval. Under normality, when J = 6, the 
noncentral F distribution-based CI coverage 
probabilities are outside [.925, .975] in 2 out of 
36 cases, while the bootstrap CI coverage 
probabilities are outside this interval in 6 out of 
36 cases.  

For the nonnormal distributions, the 

noncentral F distribution-based CI for *
Rf  has 

noticeably fewer coverage probabilities that are 
outside the criterion intervals than does the 
bootstrap CI under each of the four distribution 
conditions. The number of cases that are outside 
the [.925, .975] criterion interval, out of a total 
of 72 cases under each nonnormal distribution 
for the noncentral F distribution-based and 

bootstrap CIs for *
Rf , are: 7 versus 31 for the g 

= 0 and h = 0.109 distribution; 7 versus 40 for 
the g = 0 and h = 0.225 distribution; 20 versus 
38 for the g = 0.760 and h = −0.098 distribution; 
and 6 versus 41 for the g = 0.225 and h = 0.225 
distribution. 

Third, the performance of the noncentral 
F distribution-based CI under the four 
nonnormal distributions reveals some common 
characteristics across Table 1 to Table 4. When 

*
Rf = 0, roughly 50% of the coverage 

probabilities tend to be outside [.925, .975]. Of 
the coverage probabilities that are inside the 
interval, most are for J = 3 when the data are 
sampled from either the g = 0 and h = 0.225 
distribution or the g = 0.225 and h = 0.225 
distribution. 

The coverage probabilities of the 

noncentral F distribution-based CI for *
Rf  are all 

inside either [.925, .975] or both intervals when 
*

Rf  is 0.10, 0.25 or 0.40. The coverage 

probabilities of noncentral F distribution-based 

CI for *
Rf  are also all inside either the [.925, 

.975] interval or both intervals when *
Rf  is 0.55 

except when n = 35 and the data are sampled 
from the g = 0.760 and h = −0.098 distribution 
with the means following the equally spaced 

mean configuration. Even when *
Rf = 0.70, the 

coverage probabilities still tend to be inside the 
[.925, .975] interval. The exceptions occur 
mostly for the g = 0.760 and h = −0.098 
distribution in combination with the equally 
spaced mean configuration. Other exceptions 
involve the g = 0 and h = 0.225 distribution 
when n = 35, J = 6, and the g = 0.225 and h = 
0.225 distribution when n = 35 with the group 
means following the equally spaced mean 
configuration. 

Overall, under all data distributions, the 
coverage probabilities of the noncentral F 

distribution-based CI for *
Rf  are adequate by the 

[.925, .975] criterion except for some cases of 
*

Rf = 0 and a few cases when *
Rf = 0.70. 

When *
Rf = 0 the probability coverage of the 

noncentral F distribution-based CI for *
Rf  tends 

to exceed 0.975, and when *
Rf = 0.70 the 



ROBUST RMSSE 

84 
 

probability coverage of the noncentral F 

distribution-based CI for *
Rf  tends to go below 

0.925. It is observed that, excluding * 0Rf = , the 

coverage performance of the noncentral F 

distribution-based CIs for *
Rf  becomes less 

satisfactory when *
Rf  gets larger. 

The results of the bootstrap CIs for *
Rf  

are also presented in Tables 1 to 4. When 

sampling from normal distributions, when *
Rf = 

0 and J = 3, the coverage probabilities of the 

bootstrap CI for *
Rf  are all above 0.975, but 

when *
Rf = 0 and J = 6 they are outside the [.94, 

.96] interval only when n = 20. Under 

normality, when *
Rf = 0.10 or 0.25, the coverage 

probabilities of the bootstrap CI for *
Rf  are all 

outside the [.925, .975] criterion interval when J 
= 3, but all inside the [.94, .96] interval when J = 

6 except when *
Rf = 0.10 and n = 20. When 

*
Rf ≥  0.40, coverage probabilities tend to be 

inside [.925, .975] for both levels of J, except 

when *
Rf  = 0.40 and n = 20 for J = 3, when *

Rf  

= 0.70, n = 20 for J = 6 and the equally spaced 

mean configuration, and when *
Rf  = 0.55, n = 

20 for J = 6 and the one extreme configuration. 
Under the four nonnormal distributions, 

when *
Rf = 0, the coverage probability of the 

bootstrap CI for *
Rf  tends to be outside the 

[.925, .975] criterion interval when J = 3. 
Roughly 50% are inside [.925, .975] when J = 6, 
mostly associated with larger sample sizes. 

When *
Rf = 0.10 or 0.25, the coverage 

probability of bootstrap CI for *
Rf  tends to be 

outside the [.925, .975] criterion interval when J 
= 3, and inside the [.925, .975] criterion interval 
when J = 6 except when sample size is small for 
some data distributions. For example, for the g = 
0 and h = 0.109 distribution, when J = 6 and 

*
Rf = 0.10 or 0.25, the coverage probabilities of 

the bootstrap CI are all within [.925, .975] 
except when n = 35 and the mean configuration 
is the one extreme mean configuration. For the 
other three nonnormal distributions, the 

coverage probabilities are outside the [.925, 
.975] interval mostly when n = 20 and J = 3. 

The coverage probability tends to be 
inside either the [.925, .975] interval or both 

intervals in most conditions when *
Rf  ≥  0.40, 

except when n = 20 and a few cases when n = 
35. The inadequate coverage probabilities under 
n = 35 mostly occur in the conditions with J = 6. 
Overall, the performance of the coverage 

probability of the bootstrap CI for *
Rf  is much 

less adequate than is the performance of the 

noncentral F distribution-based CIs for *
Rf . 

Typically the coverage probability of the 
bootstrap CI is too high. 
 

Average Widths of Confidence Intervals for *
Rf  

The average widths of the noncentral F 

distribution-based and bootstrap CIs for *
Rf  

under J = 3 and the equally spaced mean 
configuration are presented in Table 5. It is 
observed that, generally, the average widths of 

the noncentral F distribution-based CIs for *
Rf  

are shorter than those of the bootstrap CIs for 
*

Rf . The difference between the widths of the 

two kinds of CIs has a tendency to become 
smaller when sample size gets larger. For both 
the noncentral F distribution-based and the 

bootstrap CIs for *
Rf , the average width of the 

CIs gets narrower as the sample size increases 

and as the population effect size *
Rf  decreases.  

Across distributions, there is only a very 
trivial difference in the width of the noncentral F 

distribution-based CIs for *
Rf . Similar to the 

pattern in the widths of the bootstrap CIs for *f  

observed and reported by Zhang and Algina 

(2008), the widths of the bootstrap CIs for *
Rf  

fluctuate very little across data distribution 
conditions. 

Presented in Table 6, the average widths 
of the noncentral F distribution-based and 

bootstrap CIs for *
Rf  under J = 3 and the one 

extreme mean configuration shows little 
difference from those from the widths for the 
equally spaced mean configuration in Table 5. 
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This suggests that the type of mean 
configuration does not affect the precision of 

estimation for *
Rf . 

Table 7 shows the average widths of the 
noncentral F distribution-based and bootstrap 

CIs for *
Rf  under J = 6 and the equally spaced 

mean configuration. It is fairly apparent that, 
when J increases from 3 to 6, the intervals 
become narrower. This is observed for all 
combinations of conditions. It is also observed 
that, generally, the average widths of the 

noncentral F distribution-based CIs for *
Rf  are 

shorter than those of the bootstrap CIs for *
Rf . 

This difference is consistent across all 
combinations of conditions. Furthermore, for 
both the noncentral F distribution-based and the 

bootstrap CIs for *
Rf , the average width of the 

CIs gets narrower as the sample size increases 

and the population effect size *
Rf  decreases. 

Across distributions, there is very little 
difference in the widths of the noncentral F 
distribution-based CIs, and the widths of the 

bootstrap CIs for *
Rf  also remain quite constant 

across data distribution conditions. 
The average widths of the noncentral F 

distribution-based and bootstrap CIs for *
Rf  

under J = 6 and the one extreme mean 
configuration are presented in Table 8. Again 
there is little difference between these widths 
and the widths in the equally spaced mean 
configuration in Table 7, in terms of values as 
well as patterns observed. This suggests that the 
type of mean configuration does not strongly 

affect the estimation accuracy for *
Rf . 

 
Conclusion 

Confidence intervals for effect size have been 
strongly advocated by statistical methodologists 
to be used as a useful supplement to and maybe 
even a superior replacement for the traditional 
hypothesis testing. Despite the increasing need 
for using CIs, much remains to be known about 
the robustness of the CIs in order to ensure their 
proper usage. Investigation and evaluation of the 
performance of the CIs and their robustness 
under various conditions are urgently needed. 

In the two-group case, it has been reported that 
in both the independent samples and dependent 
samples case CIs for Cohen’s δ  may be 
misleading because of poor coverage probability 
when data are nonnormal (Algina & Keselman, 
2003b; Algina, et al., 2005a, Algina, et al., 2006; 
Kelly, 2005). A second problem with using 
Cohen’s δ  is that, although it is intended as a 
measure of group separation, it is not always an 
adequate measure of group separation due to the 
fact δ  can be dramatically affected by outliers 
and long-tailed distributions (Keselman & 
Wilcox, 2003). Algina, et al. (2005b) 
recommended a robust version of Cohen’s δ  
defined by 
 

2 1.642 t t
R

W

μ μδ
σ

 −=  
 

. 

 
Algina and Keselman (2003b) and Algina, et al. 
(2005b) reported that CIs for Rδ  have better 

coverage probability than do CIs for Cohen’s δ , 
and that the actual coverage probability is closer 
to the nominal coverage probability for CIs 
constructed by using the percentile bootstrap 
than for the CIs constructed by using the 
noncentral t distribution-based method. 

In the more than two group cases, Zhang 
and Algina (2008) examined the coverage 
performance of the CIs for the Root Mean 

Square Standardized Effect (RMSSE, *f ) 
proposed by Steiger and Fouladi (1997), which 
is one of the generalized ES measures in 
ANOVA. The findings of their study indicated 

that the coverage probabilities of the CIs for *f  

were not adequate under data nonnormality. This 

is not surprising because *f  is formulated with 
least-square parameters which are affected by 
skewed data, long tails and/or outlying values. 

This study proposed a robust version of 
*f , *

Rf , by substituting robust estimators, i.e., 

trimmed means and Winsorized variances, for 
the least-square values. The coverage 
performances of the noncentral F distribution-

based and the percentile bootstrap CIs for *
Rf  

were examined in this investigation.  
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Table 1: Estimated Coverage Probabilities for Nominal 95% Noncentral F Distribution-Based 

(NCF) and Percentile Bootstrap (Boot) CIs for *
Rf : J = 3, Equally Spaced Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .973 .994 .968 .993 .977 .994 .975 .992 .975 .994 

35 .968 .990 .977 .993 .972 .990 .979 .993 .974 .996 

50 .972 .993 .976 .994 .974 .992 .977 .992 .974 .990 

.10 

20 .943 .991 .951 .994 .948 .993 .953 .990 .955 .993 

35 .957 .987 .951 .989 .954 .988 .949 .988 .954 .990 

50 .943 .983 .956 .988 .954 .988 .958 .988 .952 .989 

.25 

20 .942 .981 .952 .993 .947 .989 .961 .988 .943 .988 

35 .945 .981 .950 .982 .946 .981 .954 .984 .952 .986 

50 .953 .978 .940 .981 .951 .987 .950 .978 .945 .982 

.40 

20 .942 .976 .951 .988 .945 .990 .940 .980 .939 .991 

35 .954 .970 .934 .964 .944 .969 .949 .974 .954 .978 

50 .950 .961 .943 .962 .935 .960 .939 .961 .949 .968 

.55 

20 .943 .973 .939 .978 .937 .979 .932 .972 .938 .977 

35 .944 .968 .946 .963 .940 .969 .924 .960 .940 .966 

50 .947 .960 .934 .952 .940 .959 .929 .963 .929 .958 

.70 

20 .945 .968 .940 .972 .938 .977 .916 .973 .936 .980 

35 .935 .958 .944 .964 .935 .965 .923 .969 .924 .964 

50 .942 .962 .944 .967 .928 .967 .923 .968 .935 .963 

Note: Bold values are estimates outside the interval [ ].94,.96  and bold underlined values are 

outside the interval [ ].925,.975 . 
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Table 2: Estimated Coverage Probabilities for Nominal 95% Noncentral F Distribution-Based 

(NCF) and Percentile Bootstrap (Boot) CIs for *
Rf : J = 3, One Extreme Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .973 .994 .972 .992 .974 .996 .983 .996 .972 .992 

35 .981 .993 .979 .993 .975 .991 .980 .991 .969 .991 

50 .974 .991 .976 .994 .973 .991 .980 .995 .970 .993 

.10 

20 .952 .990 .944 .991 .946 .991 .951 .990 .953 .994 

35 .949 .986 .948 .990 .944 .990 .938 .986 .944 .987 

50 .945 .987 .949 .986 .948 .990 .958 .986 .956 .987 

.25 

20 .946 .982 .945 .985 .952 .987 .954 .991 .954 .990 

35 .952 .984 .942 .982 .950 .986 .948 .981 .947 .986 

50 .938 .976 .953 .981 .951 .982 .950 .984 .949 .983 

.40 

20 .949 .980 .943 .984 .942 .988 .938 .984 .942 .992 

35 .943 .966 .949 .972 .946 .976 .948 .972 .948 .973 

50 .952 .962 .950 .964 .952 .970 .946 .965 .945 .966 

.55 

20 .952 .975 .943 .975 .941 .980 .940 .981 .943 .984 

35 .943 .958 .947 .966 .938 .963 .936 .968 .943 .970 

50 .942 .961 .931 .953 .943 .962 .935 .964 .934 .958 

.70 

20 .944 .970 .937 .976 .931 .972 .930 .982 .936 .982 

35 .941 .960 .938 .964 .932 .965 .924 .966 .934 .966 

50 .939 .957 .940 .962 .938 .966 .932 .965 .935 .967 

Note: Bold values are estimates outside the interval [ ].94,.96  and bold underlined values are 

outside the interval [ ].925,.975 . 
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Table 3: Estimated Coverage Probabilities for Nominal 95% Noncentral F Distribution-Based 

(NCF) and Percentile Bootstrap (Boot) CIs for *
Rf : J = 6, Equally Spaced Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .976 .978 .977 .982 .976 .986 .980 .983 .978 .986 

35 .972 .969 .969 .972 .969 .974 .979 .977 .977 .974 

50 .974 .966 .972 .965 .975 .974 .979 .970 .975 .972 

.10 

20 .950 .977 .950 .974 .948 .979 .947 .980 .944 .982 

35 .948 .963 .952 .969 .950 .970 .951 .974 .951 .972 

50 .948 .962 .952 .965 .954 .971 .944 .967 .947 .966 

.25 

20 .945 .966 .947 .975 .938 .983 .952 .982 .943 .983 

35 .943 .960 .947 .970 .948 .981 .942 .969 .950 .978 

50 .950 .962 .940 .961 .944 .970 .944 .970 .944 .969 

.40 

20 .947 .972 .943 .980 .948 .990 .938 .981 .935 .989 

35 .946 .968 .946 .971 .945 .978 .938 .972 .942 .976 

50 .954 .968 .944 .966 .942 .971 .936 .969 .944 .970 

.55 

20 .949 .974 .939 .980 .936 .986 .926 .985 .936 .989 

35 .955 .971 .947 .973 .942 .973 .915 .969 .934 .982 

50 .946 .962 .943 .967 .948 .973 .927 .969 .928 .967 

.70 

20 .949 .980 .938 .984 .930 .983 .902 .984 .939 .988 

35 .943 .967 .934 .970 .921 .968 .907 .972 .921 .971 

50 .941 .962 .944 .972 .933 .968 .914 .970 .928 .966 

Note: Bold values are estimates outside the interval [ ].94,.96  and bold underlined values are 

outside the interval [ ].925,.975 . 
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Table 4: Estimated Coverage Probabilities for Nominal 95% Noncentral F Distribution-Based 

(NCF) and Percentile Bootstrap (Boot) CIs for *
Rf : J = 6, One Extreme Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .972 .976 .979 .981 .977 .983 .974 .984 .977 .989 

35 .974 .969 .971 .968 .976 .976 .975 .972 .978 .976 

50 .978 .973 .976 .970 .977 .974 .982 .976 .971 .965 

.10 

20 .962 .976 .945 .975 .953 .982 .943 .978 .954 .981 

35 .954 .971 .955 .970 .955 .969 .945 .962 .948 .975 

50 .948 .960 .948 .965 .951 .964 .954 .971 .956 .972 

.25 

20 .951 .974 .937 .974 .954 .987 .949 .978 .951 .988 

35 .952 .967 .950 .976 .945 .974 .955 .973 .951 .974 

50 .953 .965 .946 .961 .943 .970 .948 .970 .951 .973 

.40 

20 .945 .972 .950 .984 .945 .983 .952 .983 .938 .988 

35 .939 .958 .944 .969 .942 .977 .952 .979 .938 .972 

50 .941 .956 .945 .968 .936 .971 .951 .975 .945 .975 

.55 

20 .944 .976 .943 .982 .936 .987 .942 .989 .938 .988 

35 .949 .970 .940 .973 .934 .970 .937 .981 .935 .970 

50 .950 .963 .939 .961 .932 .967 .927 .968 .931 .966 

.70 

20 .935 .972 .938 .982 .929 .985 .925 .992 .928 .987 

35 .946 .970 .936 .972 .917 .964 .920 .973 .926 .969 

50 .946 .966 .932 .961 .930 .972 .908 .961 .930 .968 

Note: Bold values are estimates outside the interval [ ].94,.96  and bold underlined values are 

outside the interval [ ].925,.975 . 
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Table 5: Average Widths of Noncentral F Distribution-Based (NCF) and Percentile Bootstrap 

(Boot) CIs for *
Rf : J=3, Equally Spaced Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .491 .618 .494 .611 .488 .596 .490 .601 .487 .595 

35 .366 .437 .361 .430 .365 .428 .364 .425 .368 .428 

50 .301 .354 .304 .354 .306 .353 .305 .351 .304 .352 

.10 

20 .512 .637 .509 .625 .515 .618 .514 .625 .515 .617 

35 .397 .461 .390 .453 .395 .450 .396 .453 .386 .444 

50 .332 .375 .334 .378 .332 .374 .335 .376 .332 .374 

.25 

20 .609 .725 .607 .714 .601 .701 .615 .725 .604 .703 

35 .487 .550 .485 .540 .480 .533 .485 .540 .481 .533 

50 .423 .466 .421 .464 .421 .462 .421 .463 .421 .461 

.40 

20 .702 .828 .702 .823 .692 .813 .698 .840 .699 .818 

35 .545 .613 .543 .611 .543 .613 .544 .623 .542 .613 

50 .454 .499 .454 .501 .454 .506 .454 .511 .453 .505 

.55 

20 .760 .899 .758 .905 .755 .906 .755 .937 .756 .914 

35 .562 .625 .562 .634 .561 .641 .562 .662 .561 .647 

50 .463 .501 .463 .508 .463 .513 .463 .532 .463 .518 

.70 

20 .794 .947 .791 .961 .789 .980 .793 1.026 .789 .987 

35 .579 .644 .578 .655 .577 .668 .579 .698 .578 .679 

50 .479 .517 .478 .526 .477 .536 .478 .565 .478 .545 

Note: Results are based on 2,500 replications. 
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Table 6: Average Widths Of Noncentral F Distribution-Based (NCF) and Percentile Bootstrap 

(Boot) CIs for *
Rf : J=3, One Extreme Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .487 .616 .497 .613 .489 .598 .484 .596 .494 .598 

35 .366 .436 .364 .432 .367 .430 .363 .425 .370 .430 

50 .304 .357 .309 .357 .305 .352 .305 .350 .303 .351 

.10 

20 .518 .638 .517 .631 .515 .620 .510 .619 .510 .613 

35 .391 .457 .390 .452 .390 .450 .391 .450 .392 .450 

50 .334 .381 .333 .378 .334 .376 .333 .373 .337 .378 

.25 

20 .611 .726 .607 .715 .608 .709 .606 .715 .598 .696 

35 .485 .546 .486 .543 .484 .539 .485 .542 .485 .538 

50 .420 .464 .422 .464 .421 .461 .422 .462 .423 .461 

.40 

20 .705 .834 .696 .815 .697 .813 .700 .833 .695 .813 

35 .544 .612 .544 .611 .543 .614 .544 .614 .542 .610 

50 .454 .501 .454 .501 .454 .503 .454 .503 .454 .503 

.55 

20 .760 .899 .756 .901 .756 .912 .759 .926 .755 .910 

35 .562 .627 .561 .635 .561 .642 .563 .652 .561 .642 

50 .463 .501 .463 .508 .463 .513 .463 .520 .462 .514 

.70 

20 .793 .942 .791 .956 .790 .979 .792 1.006 .789 .982 

35 .580 .646 .578 .652 .579 .671 .580 .692 .578 .670 

50 .478 .518 .478 .526 .478 .539 .478 .557 .478 .540 

Note: Results are based on 2,500 replications. 
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Table 7: Average Widths of Noncentral F Distribution-Based (NCF) and Percentile Bootstrap 

(Boot) CIs for *
Rf : J = 6, Equally Spaced Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .352 .487 .356 .484 .345 .474 .345 .480 .348 .475 

35 .259 .351 .261 .350 .262 .348 .256 .346 .260 .346 

50 .218 .289 .219 .289 .216 .286 .215 .286 .219 .287 

.10 

20 .372 .499 .379 .501 .375 .493 .374 .499 .373 .491 

35 .294 .370 .290 .367 .294 .368 .290 .367 .290 .364 

50 .253 .310 .252 .308 .251 .307 .251 .306 .249 .305 

.25 

20 .464 .559 .460 .554 .459 .551 .463 .561 .457 .550 

35 .363 .406 .362 .404 .361 .405 .360 .406 .360 .405 

50 .302 .326 .301 .326 .301 .326 .301 .328 .301 .326 

.40 

20 .506 .577 .505 .582 .503 .590 .503 .598 .502 .591 

35 .361 .389 .362 .392 .361 .396 .361 .405 .361 .398 

50 .293 .309 .293 .311 .293 .314 .293 .321 .293 .315 

.55 

20 .506 .572 .506 .583 .506 .600 .506 .619 .507 .610 

35 .363 .392 .363 .399 .363 .405 .364 .422 .363 .411 

50 .299 .318 .299 .323 .299 .328 .299 .340 .298 .331 

.70 

20 .517 .590 .516 .605 .516 .629 .517 .666 .516 .641 

35 .377 .412 .376 .421 .376 .433 .377 .461 .376 .442 

50 .311 .336 .311 .342 .310 .350 .311 .372 .310 .356 

Note: Results are based on 2,500 replications. 
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Table 8: Average Widths of Noncentral F Distribution-Based (NCF) and Percentile Bootstrap 

(Boot) CIs for *
Rf : J = 6, One Extreme Mean Configuration 

 

*
Rf  n 

Normal 
.000

.109

g
h

=
=

 
.000

.225

g
h

=
=

 
.760

.098

g
h

=
= −

 
.225

.225

g
h

=
=

 

NCF Boot NCF Boot NCF Boot NCF Boot NCF Boot 

.00 

20 .353 .488 .348 .482 .350 .477 .349 .484 .346 .476 

35 .259 .350 .260 .349 .260 .347 .258 .348 .259 .346 

50 .219 .290 .215 .287 .218 .288 .215 .286 .217 .287 

.10 

20 .381 .504 .377 .499 .375 .492 .377 .502 .379 .494 

35 .295 .372 .294 .369 .292 .365 .292 .367 .293 .366 

50 .251 .308 .252 .308 .251 .306 .252 .307 .251 .306 

.25 

20 .463 .558 .459 .553 .460 .552 .462 .558 .461 .553 

35 .362 .406 .361 .404 .361 .405 .363 .401 .361 .403 

50 .302 .325 .301 .325 .301 .326 .303 .321 .302 .325 

.40 

20 .505 .576 .505 .582 .505 .589 .506 .583 .504 .589 

35 .361 .388 .362 .393 .362 .398 .361 .389 .361 .395 

50 .293 .308 .293 .311 .293 .315 .293 .312 .293 .312 

.55 

20 .506 .570 .505 .584 .506 .599 .506 .600 .506 .603 

35 .363 .393 .363 .399 .363 .405 .363 .411 .363 .407 

50 .299 .317 .299 .321 .299 .327 .299 .335 .298 .328 

.70 

20 .518 .591 .517 .607 .516 .634 .517 .643 .516 .640 

35 .376 .410 .376 .423 .376 .433 .376 .452 .376 .440 

50 .311 .334 .310 .341 .310 .349 .311 .368 .310 .353 

Note: Results are based on 2,500 replications. 
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Comparisons were made to the CIs for *
Rf  

constructed by using the noncentral F 
distribution-based and the bootstrap methods in 
terms of the probability coverage and interval 
width. 

The robustness of the CIs for *
Rf  was 

investigated in a one-way, fixed-effects, 
between-subjects ANOVA. The study conditions 
incorporated five population distributions 
including the normal distribution and four 
additional cases from the family of the g and h 
distributions that are nonnormal; two number of 
levels for the number of treatment groups: J = 3 
and J = 6; three cell sample sizes in each 
treatment (n = 20, 35 and 50); six values of 
population RMSSER (0.00, 0.10, 0.25, 0.40, 0.55 
and 0.70); and two mean configurations: the 
equally spaced mean configuration and the one 
extreme mean configuration. The nominal 
confidence level for all intervals investigated 
was 0.95 and each condition was replicated 
2,500 times. The number of bootstrap 
replications in the bootstrap procedure was 
1,000. 

The results indicated that the coverage 
probabilities of the noncentral F distribution-

based CIs for *
Rf  introduced in this study, which 

was formulated with robust trimmed means and 
Winsorized variances, were generally adequate, 
that is, generally either within our lenient 
criterion of robustness [.925, .975], or both the 
lenient criterion of robustness and the strict 
criterion interval [.94, .96]. There were only a 
few cases in which the noncentral F distribution-

based CIs for *
Rf  broke down. These include 

some cases of *
Rf  = 0, and when *

Rf  = .70 for 

small sample sizes under nonnormal data 
distributions, especially under the .760g = , 

.098h = −  distribution. 

For the bootstrap CIs for *
Rf , the 

probability coverage were not adequate when J 

= 3 and * .25Rf ≤ or when J = 6 and sample size 

was small, especially when sample size was 20. 
In particular, when J = 3, over half of the 
estimated coverage probabilities were outside of 
the [.925, .975] interval. These probability 

coverages mostly occurred when *
Rf  ≤  .25. 

When J = 6, the bootstrap CIs were mostly 
inside the [.925, .975] criterion interval under 
normality. However, under all other data 
distribution conditions, they were outside of the 
interval when sample size was small: most cases 
for n = 20 as well as some cases for n = 35. 

For both the noncentral F distribution-

based and the bootstrap CIs for *
Rf , the mean 

configuration did not appear to alter the pattern 
of the probability coverage performance. 
However, sample sizes seem to be slightly 
positively related to probability coverage. The 
widths of the noncentral F distribution-based 

CIs for *
Rf  were shorter than those of the 

bootstrap CIs under the same condition. 
Therefore, not only does the noncentral F 

distribution-based CI for *
Rf  have better 

coverage probability than the bootstrap CIs for 
*

Rf , they are also narrower than those of the 

bootstrap CI. Both the widths of the noncentral 

F distribution-based and bootstrap CIs for *
Rf  

remained relatively unchanged across data 
distributions. In other words, the widths of the 

bootstrap CIs for *
Rf  fluctuated very little across 

data distribution conditions. 
For both the noncentral F distribution-

based and the bootstrap CIs for *
Rf , as the 

number of levels of J increases, the width of the 
estimated CIs becomes narrower. For both the 
noncentral F distribution-based and the 

bootstrap CIs for *
Rf , under the same condition, 

the average width of the CIs becomes narrower 
as the sample size increases and the population 

effect size *
Rf  decreases. 

In summary, both the noncentral F 

distribution-based and the bootstrap CIs for *f , 

which are based on the usual least-square 
estimators, yielded inadequate coverage 
probabilities. Thus, an important task to help 

researchers who want to set a CI around *f  is 
developing a better interval than the noncentral 
F distribution-based or percentile bootstrap CI. 

The noncentral F distribution-based CIs for *
Rf , 

which was proposed in the current study and 
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was formulated with the robust parameters 
including the trimmed means and Winsorized 
variances, yielded fairly adequate coverage 
probabilities and better coverage probability 
than the percentile bootstrap CI. Accordingly, 

researchers who want to set a CI for *
Rf can use 

the CI constructed by using the noncentral F 
distribution and will enjoy the additional benefit 
of using a robust measure of effect size, that is, a 
measure that is not likely to be strongly affected 
by outlying data points. 
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Sample Size Considerations for Multiple Comparison Procedures in ANOVA 
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Adequate sample sizes for omnibus ANOVA tests do not necessarily provide sufficient statistical power 
for post hoc multiple comparisons typically performed following a significant omnibus F test. Results 
reported support a comparison-of-most-interest approach for sample size determination in ANOVA based 
on effect sizes for multiple comparisons. 
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Introduction 
The determination of an appropriate sample size 
is an often difficult, but critically important, 
element in the research design process. One of 
the chief functions of experimental design is to 
ensure that a study has adequate statistical power 
to detect meaningful differences, if indeed they 
exist (e.g., Hopkins & Hopkins, 1979). There is 
a very good reason why researchers should 
worry about statistical power a priori: If 
researchers are going to invest time and money 
in carrying out a study, then they would want to 
have a reasonable chance, perhaps 70% or 80%, 
to find a statistically significant difference 
between groups if it does exist in the population. 
Thus, a priori power, the probability of rejecting 
a null hypothesis that is indeed false, will inform 
researchers about how many subjects per group 
will be needed for adequate power (Light, 
Singer & Willett, 1990). 

Among the most important matters 
impacting  the  choice  of  sample  size  is  the 
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particular statistical analysis that will be used to 
analyze data. For example, when a t test is used, 
the researcher commonly estimates an expected, 
standardized group mean difference effect size 
(such as Cohen’s d) in order to determine an 
appropriate sample size. Sample sizes in analysis 
of variance (ANOVA) are often based on an 
effect size that represents an overall 
standardized difference in the means (such as 
Cohen’s f), but these recommended sample sizes 
provide statistical power only for the omnibus 
null hypothesis (overall ANOVA) that no group 
means differ. Adequate sample size for the 
omnibus test does not necessarily provide 
sufficient statistical power for the post hoc 
multiple comparisons typically performed 
following a statistically significant (exploratory) 
omnibus test and in many cases the multiple 
comparisons are of most interest to a researcher. 

The purpose of this study was to 
determine whether the knowledge that multiple 
comparison procedures will be used following a 
statistically significant omnibus ANOVA can be 
helpful in choosing a sample size for a given 
study. In particular, results using the Tukey HSD 
post hoc multiple comparison procedure (MCP) 
were examined to determine whether specific 
recommendations can be made about sample 
sizes when the Tukey MCP is used and three 
groups are compared. This evidence was used to 
reach conclusions about whether such an 
approach to sample size selection has merit. 
Note that this is a presentation of a new 
approach to sample size selection – specifically, 
a new way to think about effect sizes – for 
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exploratory ANOVA where post hoc 
comparisons are relevant. Other approaches are 
both more appropriate and more powerful when 
planned comparisons are made in a confirmatory 
analysis. 
 
Theoretical Framework 

Several factors play a role in sample size 
determination, including that after the statistical 
method and the directionality of the statistical 
alternative hypotheses have been decided, 
sample size, level of significance, effect size and 
statistical power are all functionally related. 
Other issues also impact statistical power, such 
as the reliability of measurements, unequal 
group sizes and unequal group variances. 
However, little consideration has been given to 
the role of post hoc multiple comparison tests in 
choosing adequate sample sizes. 

In order to maintain reasonable 
experiment-wise Type I error rates when group 
means are compared, researchers often use 
ANOVA followed by an appropriate MCP. The 
overall ANOVA is tested using an omnibus test 
at a predetermined level of significance (e.g., 
0.05). The post hoc tests that follow a 
statistically significant omnibus test are then 
often performed at an adjusted level of 
significance, based on the number of 
comparisons to be made. 

For example, when comparing four 
groups, six pairwise group mean comparisons 
possible. If the researcher wishes to perform all 
six pairwise comparisons, the per comparison 
(i.e., per test) level of significance would be 
adjusted so that the entire set of follow-up tests 
does not exceed the experiment-wise alpha (e.g., 
if experiment-wise alpha is 0.05, the adjusted 
per comparison alpha might be 0.05/6 = 0.0083, 
using a Bonferroni approach). Each MCP 
performs this adjustment differently, resulting in 
different performance for each in terms of Type 
I error and statistical power (e.g., Carmer & 
Swanson, 1973; Einot & Gabriel, 1975; 
Toothaker, 1991). 

Several methods exist for determining 
sample size for ANOVA. Most common are 
statistical power approaches based on Cohen’s 
(1988) f effect size, which represents the 
standardized variability of the group means 
about the grand mean (Stevens, 2007). This 

method (and other similar methods) concentrates 
on the statistical power of the omnibus test in 
ANOVA. Others, Hinkle, Wiersma and Jurs 
(2003) and Levin (1975), for example, have 
recommended approaches based on how large 
the sample must be to detect a predetermined 
mean difference effect size between any two 
groups, or two extreme groups. Although 
Levin’s approach is designed for use with the 
Scheffé multiple comparison procedure, Hinkle, 
et al. base their method on Cohen’s d effect size 
for comparison between the two groups with the 
largest (most extreme) mean differences, and 
therefore do not consider the adjustments to 
alpha for multiple comparison procedures. Pan 
and Dayton (2005) provided sample size 
requirements for patterns of ordered means, but 
focused on an information criteria approach to 
pair-wise comparison procedures. 
 
Comparison-of-Most-Interest 

When determining sample sizes for a 
factorial ANOVA, researchers may choose the 
sample size that provides sufficient statistical 
power for all sources of variation (e.g., main 
effects and interactions). Alternatively, 
researchers may determine which effect is most 
important to them and select a sample size based 
on the expected effect size for that particular 
source of variation. For example, researchers 
may have most interest in the interaction effect 
or a particular main effect. Depending on the 
structure of the cell means, these effect sizes can 
vary and therefore result in different required 
sample sizes for the various main effects and 
interaction effects. 

The approach presented in this study is 
based loosely on this effect-of-most-interest 
approach from factorial ANOVA as applied to 
one-way ANOVA: That is, beyond determining 
the sample size required for an omnibus test in 
one-way ANOVA, the new approach also 
determines the sample sizes required for the 
follow-up tests from a given set of population 
means.  

For example, in a 3-group study the 
researcher may be able to estimate that a large 
effect exists between a control group and two 
types of treatment, but may expect a much 
smaller difference between two types of 
treatment. The comparison-of-most-interest may 
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be the difference between the treatments and the 
control; however, the much smaller difference 
between the two treatments may be the most 
interesting. The researcher would use this 
information to determine an appropriate sample 
size for the study by selecting a sample size 
large enough for the smaller effect size between 
the types of treatment. This differs from an a 
priori set of planned comparisons in that the 
researcher may have a special interest in 
particular comparisons, but not have specific 
alternative research hypotheses to predict the 
direction of the mean differences. The procedure 
studied here is an adaptation of the Hinkle, et al. 
(2003) approach that looks at meaningful effect 
sizes between any groups rather than the Hinkle, 
et al. difference between only the two most 
extreme groups. 

Even in an exploratory ANOVA, it is 
rarely satisfactory knowing only that a 
difference exists in the means (as given by the 
omnibus test); researchers typically also want to 
know between which groups the differences 
exist. Without consideration of the multiple 
comparison procedures during the sample size 
analysis, it is possible to find a statistically 
significant omnibus test with no pairwise group 
differences determined to be statistically 
significant in post hoc tests. Although other 
potential reasons for such a result exist, it may 
sometimes be an issue of statistical power. 
 
An Example of the Problem 

Suppose a researcher is analyzing the 
mean differences for three groups, where the 
means for groups 1 and 2 are both 0.0, but the 
third group mean is 0.8. This represents a 
relatively large pairwise difference between 
group 3 and both groups 1 and 2. Using the 
Cohen (1988) effect size, f, for ANOVA, this 
might be characterized as a relatively large 
effect: Cohen’s large effect size is f = 0.40 and 
in this example f = 0.38. Cohen’s sample size 
analysis, as implemented by the SPSS 
SamplePower program, indicates that 24 cases 
per group are required to achieve statistical 
power of 0.80 for the omnibus test in such a 
situation. 

When performing a Monte Carlo 
analysis for this condition using the MC4G 
program (Brooks, 2008), approximately 80.8% 

of 100,000 samples resulted in statistically 
significant omnibus F statistics for the ANOVA 
among the three groups. However, the number 
of correct statistically significant Tukey HSD 
comparisons between groups 1 and 3 and 
between groups 2 and 3 (with a sample size of 
24 in each group), was approximately 64.7%. At 
the adjusted alpha used by the Tukey HSD 
procedure, approximately 1.9% of the 
comparisons between groups 1 and 2 were 
statistically significant (and therefore Type I 
errors because both group 1 and 2 had the same 
mean). 

These illustrative power analysis results 
imply that a number of samples from among the 
100,000 had statistically significant omnibus F 
statistics while, at most, one of the non-null 
Tukey post hoc comparisons was statistically 
significant. The MC4G program reported that 
approximately 78.9% of samples had at least one 
significant Tukey comparison following a 
significant omnibus test. However, because only 
64.7% of each non-null comparison were 
statistically significant, and because the group 1 
versus group 2 comparison was significant as a 
Type I error in about 1.9% of the samples, this 
implies that - in many of those samples - only 
one of the two large, non-null comparisons was 
statistically significant.  

From another perspective, in order to 
reach statistical power of 0.80 for the two non-
null Tukey comparisons (i.e., group 1 vs. group 
3 and group 2 vs. group 3), 32 cases are needed 
per group, for a total sample size of 96 
(compared to 24 per group based solely on the 
omnibus test). With a total sample size of 96 the 
omnibus F test, however, had a power rate of 
approximately 0.91. 
 

Methodology 
An existing Monte Carlo program was modified 
so that it can ascertain appropriate sample sizes 
for pairwise comparisons calculated using the 
Tukey multiple comparison procedure. The 
MC4G: Monte Carlo Analyses for up to 4 
Groups program was originally developed by 
one of the authors to perform Monte Carlo 
analyses for t tests and ANOVA in a Windows 
environment (Brooks, 2008). The current 
version of the program (MC4G version v2008) 
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was upgraded to include the sample size 
analyses required for this study. 

The MC4G program was compiled in 
Delphi 2007. The program uses the L’Ecuyer 
(1988) uniform pseudorandom number 
generator. Specifically, the FORTRAN code of 
Press, et al. (1992), was translated into Delphi 
Pascal. The L’Ecuyer generator was chosen due 
to its large period and because combined 
generators are recommended for use with the 
Box-Muller method for generating random 
normal deviates (Park & Miller, 1988), as is the 
case in MC4G.  The computer algorithm for the 
Box-Muller method used in MC4G was adapted 
for Delphi Pascal from the standard Pascal code 
provided by Press, et al. (1989). Simulated 
samples were chosen randomly to test program 
function by comparison with results provided by 
SPSS. 
 
Monte Carlo Design 

In all simulations, normally distributed 
standardized data were generated to fit the given 
conditions for each simulation; that is, all 
variances were set to 1.0, while group means 
varied between 0.0 and 0.8, depending on the 
given effect size. A minimum of 10,000 
replications were performed for the final sample 
size analysis in each condition. Specifically, a 
default value of 20,000 was used with the 
MC4G sample size analysis, which guaranteed 
that the final results would be based on at least 
10,000 iterations (i.e., simulated samples). 
Samples sizes for all three groups were restricted 
to be equal. Some of the Monte Carlo 
simulations were run multiple times with 
different seeds to verify that the results were not 
an artifact of a poor seed choice. 

Conditions included varying 
standardized mean differences among groups for 
a three-group ANOVA. In particular, groups 
varied such that all possible non-redundant 
patterns of pairwise mean differences were 
varied across groups from 0.0 to 0.8. The 
minimum non-null standardized mean difference 
between groups of 0.2 was chosen because of 
the very large sample sizes required for smaller 
effects; the maximum of 0.8 was chosen because 
of the very small sample sizes required when the 
mean differences are larger. 

For example, whether the three group 
means were set at 0.2, 0.4 and 0.6 or at 0.3, 0.5 
and 0.7, the pattern for both resulting 
standardized mean difference effect sizes (all 
standard deviations were 1.0) would be 0.2, 0.2 
and 0.4, respectively. The mean differences - as 
effect sizes - are the key to the sample size 
analyses, not the absolute sizes of the means. 
Therefore, each pattern of mean differences was 
only included once. The result was 16 non-
redundant comparison patterns that fit the mean 
difference conditions described (see Table 1). 
 

Results 
Three primary findings of interest were observed 
from this study. First, when the pattern of means 
resulted in a pattern where two of the three 
means are equal – and different from the third – 
there was a consistent pattern of sample sizes 
required for the comparison relative to the 
sample size required for the omnibus test. 
Second, when the pattern of means resulted in 
two of the three mean differences being equal – 
and different from the third – there was a 
consistent pattern of sample sizes required for 
the comparison relative to the sample size 
required for the omnibus test. Third, no matter 
what the pattern of means, a given absolute 
standardized mean difference effect size 
consistently required the same sample size to 
achieve the power desired. 
 
Two Equal Means 

In situations where two groups had the 
same mean and a third group mean differed, the 
non-null multiple comparisons required larger 
sample sizes than the omnibus ANOVA. For 
example, the condition where the pattern of 
standardized means was 0.0, 0.0 and 0.5 
(therefore a pattern of mean differences of 0.0, 
0.5 and 0.5) resulted in per group sample sizes 
of roughly 81 cases to achieve power of 0.80 for 
the two multiple comparisons with a 
standardized mean difference of 0.5 (see Table 
2). This was compared to the 60 cases per group 
needed to achieve statistical power of 0.80 for 
the omnibus test. 

All patterns with two similar means, 
regardless of the magnitude of the mean 
differences, resulted in a relative efficiency of 
sample sizes (omnibus per group sample size  
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divided by multiple comparison per group 
sample size) of approximately 0.70. Stated 
another way, in all cases where two groups had 
the same mean while a third group differed, the 
multiple comparisons required approximately 
1.4 times more cases than the omnibus test did 
in order to achieve power of 0.80. For example, 
in the condition where the pattern of means was 
0.0, 0.0 and 0.5, the multiple comparisons 
required 1.35 times more cases than did the 
overall test. For 0.0, 0.0 and 0.8, the multiple 
comparisons resulted in 1.38 times more cases. 
Complete relative efficiency results from the 
studied conditions can be reviewed in Table 2. 
 
Two Equal Mean Differences 

In conditions where two of the three 
mean differences were the same and the third 
mean difference was twice as large, the two 
smaller mean comparisons required a much 
larger sample size than the overall test, while the 
third comparison required roughly the same 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sample size as the omnibus test. For example, in 
the case where the pattern of means was 0.0, 0.3 
and 0.6 (therefore a pattern of mean differences 
of 0.3, 0.3 and 0.6, respectively), the smaller 
mean comparisons required approximately 228 
cases per group, while the third mean 
comparison required 57 cases per group. These 
values were compared to the omnibus test 
sample size of 55 cases per group for a power 
rate of 0.80. 

Like the two similar means pattern 
described above, the relative efficiencies of the 
two similar mean differences pattern were 
consistent across results. In all cases where two 
mean differences were the same, the multiple 
comparison tests required approximately 4.2 
times more cases than the omnibus test. For the 
third, different comparison, approximately 1.1 
times more cases were needed. For example, in 
the 0.0, 0.4, 0.8 condition, the two equal 
multiple comparison tests (i.e., group 1 vs. group 
2 and group 2 vs. group 3) required  

Table 1: Patterns of Means Studied 

Analysis 
Group 1 

Mean 
Group 2 

Mean 
Group 3 

Mean 
Comparison 

Patterna 
Cohen f 

Effect Size 
Cohen 
Total N 

Cohen 
N Per Group

1 0.0 0.0 0.2 0.0, 0.2, 0.2 0.0943 1089 363 

2 0.0 0.0 0.3 0.0, 0.3, 0.3 0.1414 486 162 

3 0.0 0.0 0.4 0.0, 0.4, 0.4 0.1886 276 92 

4 0.0 0.0 0.5 0.0, 0.5, 0.5 0.2357 177 59 

5 0.0 0.0 0.6 0.0, 0.6, 0.6 0.2828 126 42 

6 0.0 0.0 0.7 0.0, 0.7, 0.7 0.3300 93 31 

7 0.0 0.0 0.8 0.0, 0.8, 0.8 0.3771 72 24 

8 0.0 0.2 0.4 0.2, 0.2, 0.4 0.1633 366 122 

9 0.0 0.2 0.5 0.2, 0.3, 0.5 0.2055 234 78 

10 0.0 0.2 0.6 0.2, 0.4, 0.6 0.2494 159 53 

11 0.0 0.2 0.7 0.2, 0.5, 0.7 0.2944 117 39 

12 0.0 0.2 0.8 0.2, 0.6, 0.8 0.3399 87 29 

13 0.0 0.3 0.6 0.3, 0.3, 0.6 0.2449 165 55 

14 0.0 0.3 0.7 0.3, 0.4, 0.7 0.2867 123 41 

15 0.0 0.3 0.8 0.3, 0.5, 0.8 0.3300 93 31 

16 0.0 0.4 0.8 0.4, 0.4, 0.8 0.3266 96 32 
aComparison pattern indicates the standardized mean difference between Group 1 vs. Group 2, Group 2 vs. 
Group 3, and Group 1 vs. Group 3, respectively 
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Table 2: Sample Size Results for the Tukey HSD Multiple Comparison Procedure 
for the Primary Monte Carlo Design at Statistical Power of 0.80 

Group 1 
Mean 

Group 2 
Mean 

Group 3 
Mean 

Comparison 
Tested 

Total Sample 
Size 

Sample Size per 
Group 

Relative 
Efficiencya 

0 0 0.2 

Omnibus 1080 360  

G1 v G2 * *  

G2 v G3 1521 507 1.41 

G3 v G1 1524 508 1.41 

0 0 0.3 

Omnibus 483 161  

G1 v G2 * *  

G2 v G3 678 226 1.40 

G3 v G1 681 227 1.41 

0 0 0.4 

Omnibus 276 92  

G1 v G2 * *  

G2 v G3 375 125 1.36 

G3 v G1 381 127 1.38 

0 0 0.5 

Omnibus 180 60  

G1 v G2 * *  

G2 v G3 243 81 1.35 

G3 v G1 246 82 1.37 

0 0 0.6 

Omnibus 123 41  

G1 v G2 * *  

G2 v G3 171 57 1.39 

G3 v G1 174 58 1.41 

0 0 0.7 

Omnibus 93 31  

G1 v G2 * *  

G2 v G3 126 42 1.35 

G3 v G1 126 42 1.35 

0 0 0.8 

Omnibus 72 24  

G1 v G2 * *  

G2 v G3 99 33 1.38 

G3 v G1 99 33 1.38 

Notes: * indicates that the Null Hypothesis was true for the given comparison, thus no sample size 
analysis was performed; aRelative efficiency is calculated as the total sample size for the particular 
comparison divided by the total sample size for the omnibus test for the condition 
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Table 2 (continued): Sample Size Results for the Tukey HSD Multiple Comparison Procedure 
for the Primary Monte Carlo Design at Statistical Power of 0.80 

Group 1 
Mean 

Group 2 
Mean 

Group 3 
Mean 

Comparison 
Tested 

Total Sample 
Size 

Sample Size per 
Group 

Relative 
Efficiencya 

0 0.2 0.4 

Omnibus 366 122  

G1 v G2 1524 508 4.16 

G2 v G3 1527 509 4.17 

G3 v G1 378 126 1.03 

0 0.2 0.5 

Omnibus 231 77  

G1 v G2 1524 508 6.60 

G2 v G3 690 230 2.99 

G3 v G1 246 82 1.06 

0 0.2 0.6 

Omnibus 156 52  

G1 v G2 1527 509 9.79 

G2 v G3 384 128 2.46 

G3 v G1 171 57 1.10 

0 0.2 0.7 

Omnibus 114 38  

G1 v G2 1515 505 13.29 

G2 v G3 246 82 2.16 

G3 v G1 126 42 1.11 

0 0.2 0.8 

Omnibus 87 29  

G1 v G2 1527 509 17.55 

G2 v G3 171 57 1.97 

G3 v G1 99 33 1.14 

0 0.3 0.6 

Omnibus 165 55  

G1 v G2 684 228 4.15 

G2 v G3 684 228 4.15 

G3 v G1 171 57 1.04 

0 0.3 0.7 

Omnibus 120 40  

G1 v G2 675 225 5.63 

G2 v G3 384 128 3.20 

G3 v G1 126 42 1.05 

Notes: * indicates that the Null Hypothesis was true for the given comparison, thus no sample size 
analysis was performed; aRelative efficiency is calculated as the total sample size for the particular 
comparison divided by the total sample size for the omnibus test for the condition 



MCP SAMPLE SIZES 

104 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
approximately 4.10 times more cases than the 
omnibus test (i.e., 127 vs. 31), while the third 
different mean comparison (i.e., group 1 vs. 
group 3) required just 33 cases, for a relative 
efficiency of 1.06. Very much the same results 
occurred for the (0.0, 0.2, and 0.4) and (0.0, 0.3, 
and 0.6) conditions of two similar mean 
differences (see Table 2). 
 
Absolute Mean Difference Effect Sizes 

There were also consistent required 
sample sizes for absolute standardized group 
mean difference effect sizes regardless of the 
pattern of means, that is, regardless of the 
pattern of means across the three groups, the 
same sample size was required for any given 
absolute mean difference (see Table 3). For 
example, when examining the specific results for 
a comparison-of-most-interest absolute 
standardized mean difference of 0.3, no matter 
whether the pattern of means was (0.0, 0.0, 0.3) 
or (0.0, 0.3, 0.6) or (0.0, 0.3, 0.8), results 
indicated that a total sample size of 
approximately 681 cases (227 per group) was 
required to achieve a statistical power rate of 
0.80 for the comparison with a standardized 
mean difference effect size of 0.3. Thus, when 
researchers have a comparison-of-most-interest 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
expected to be approximately 0.3, regardless of 
the expected effect sizes for the other possible 
comparisons, they would choose a total sample 
size of approximately 681 cases. Alternatively, 
if there are multiple comparisons-of-interest, 
then researchers in this example would choose 
0.3 as the smallest among the set of most 
interesting comparisons and therefore choose 
sample sizes based on that smallest comparison-
of-interest. 
 

Conclusion 
Perhaps even more important than the sample 
size tables produced for this study is the notion 
that when a researcher is considering sample 
size, it may not be sufficient to set sample size 
for the omnibus test being performed. Clearly, 
researchers should consider post hoc multiple 
comparisons in the same way they consider 
different sources of effects in factorial ANOVA: 
that is, the most important effects under study 
must be considered a priori so that adequate 
sample sizes may be obtained for the tests of 
those effects. With group comparison 
procedures such as ANOVA, these comparisons-
of-most-interest are very frequently performed 
using post hoc comparison procedures. 
 

Table 2 (continued): Sample Size Results for the Tukey HSD Multiple Comparison Procedure 
for the Primary Monte Carlo Design at Statistical Power of 0.80 

Group 1 
Mean 

Group 2 
Mean 

Group 3 
Mean 

Comparison 
Tested 

Total Sample 
Size 

Sample Size per 
Group 

Relative 
Efficiencya 

0 0.3 0.8 

Omnibus 93 31  

G1 v G2 678 226 7.29 

G2 v G3 246 82 2.65 

G3 v G1 99 33 1.06 

0 0.4 0.8 

Omnibus 93 31  

G1 v G2 381 127 4.10 

G2 v G3 378 126 4.06 

G3 v G1 99 33 1.06 

Notes: * indicates that the Null Hypothesis was true for the given comparison, thus no sample size 
analysis was performed; aRelative efficiency is calculated as the total sample size for the particular 
comparison divided by the total sample size for the omnibus test for the condition 
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These results clearly show that adequate 
statistical power for the omnibus ANOVA F test 
does not guarantee adequate statistical power for 
given pairwise MCPs performed post hoc. This 
condition may result in overall statistical 
significance for the omnibus F test, but no 
pairwise comparisons showing statistical 
significance. Although this will occur at times 
because the omnibus test is reflecting that a non-
pairwise comparison is significant (e.g., one 
group compared to an average of two other 
groups in an experimental study where one 
control group is compared to an average of two 
experimental treatment groups), it will happen 
sometimes because there is not enough power 
for the adjusted-alpha MCP being performed by 
the researcher. In the end, researchers must 
determine whether they wish to have sufficient 
power for the overall test or for the often-more-
informative post hoc pairwise comparisons. The 
comparison-of-most-interest approach to sample 
size selection may be useful for the latter 
situation. 

Results of this study suggest that it may 
be inappropriate to select a sample size for 
ANOVA based only on the omnibus test. 
Clearly the expected pattern among the means 
has an impact on the usually important post hoc 
pairwise multiple comparisons. This may be 
analogous to situations involving other statistical 
methods, such as principal components analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and MANOVA, where the pattern of 
correlations has an important impact on the 
power of the analyses, and therefore also sample 
size determination. Additionally, it is clear that 
the absolute size of the given comparison is also 
important. Both of these findings could be useful 
to researchers as they plan studies that will use 
ANOVA. 
 
Sample Size Recommendations 

Based on the results generated, certain 
specific recommendations can be made 
concerning sample sizes that researchers should 
use with ANOVA with three groups. It should 
be remembered that these results were limited to 
Tukey HSD comparisons performed using 
statistical power of 0.80. In particular, these 
recommendations follow from the three cases 
identified in the results. 
 
Case 1: Two Equal Means 

A researcher may be using two control 
groups and a single treatment group; 
alternatively, the researcher might expect two 
treatment groups each to be equally different 
from the single control group. In such cases, the 
researcher should determine the sample size 
required for the omnibus ANOVA test and then 
multiply that sample size by 1.4 to obtain the 
sample size required for the Tukey comparisons 
between the differing groups. For example, in a 

Table 3: Sample Sizes Required for Statistical Power of .80 for the Tukey HSD Multiple 
Comparison Procedure Given Specific Absolute Standardized Mean Differences 

(regardless of the pattern of group means) 

Standardized Mean 
Difference Effect Size 

Total Sample Size Per Group Sample Size 

0.2 1521 507 

0.3 681 227 

0.4 381 127 

0.5 246 82 

0.6 171 57 

0.7 126 42 

0.8 99 33 
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case where a single treatment group is expected 
to differ from two control groups by 0.6 (i.e., 
means of 0.6, 0.0 and 0.0 for the three groups, 
respectively), the researcher would determine 
that approximately 123 total cases are needed for 
the omnibus test to have statistical power of 
0.80. If the researcher wants statistical power of 
0.80 for the post hoc multiple comparisons, 
however, approximately (123 * 1.4) or 173 cases 
are needed. 
 
Case 2: Two Equal Mean Differences 

A researcher may expect one treatment 
to have twice the effect of the second treatment 
when each is compared to the third group (e.g., a 
control group). In such cases, the researcher 
should calculate the sample size required for the 
omnibus test and then multiply that sample size 
by 4.1 to obtain the sample size required for the 
Tukey comparisons between the differing 
groups. For example, in a case where the 
expected pattern of means across groups is 0.0, 
0.3 and 0.6, the researcher would determine that 
approximately 165 total cases are needed for the 
omnibus test to have statistical power of 0.80. If 
the researcher wants statistical power close to 
0.80 for the post hoc multiple comparisons, 
however, approximately (165 * 4.1) or 677 cases 
are needed. 
 
Case 3: Absolute Mean Difference Effect Sizes 

A researcher may expect that a certain 
pair of groups will differ by a given amount – no 
matter how they each differ from the third 
group. For example, a researcher may consider 
the comparison between group 1 and group 2 to 
be the most important and expect them to differ 
by a standardized mean difference of 0.5. In 
such a case, how much group 1 or group 2 
differs from group 3 is irrelevant. Table 3 shows 
that 246 total cases are needed for the specific 
Tukey comparison between group 1 and group 
2, given the expected mean difference of 0.5. In 
such a case, the sample size required for the 
omnibus test is also irrelevant, because in all 
cases the recommended sample sizes for the 
Tukey comparisons are larger than those 
required for the omnibus ANOVA test. 

If however, the researcher expects a 
pattern of means that does not fit into Case 1 or 
Case 2 above, the absolute size of the expected 

mean differences can be used with Table 3. For 
example, if the means for group 1, group 2, and 
group 3 are expected to be 0.0, 0.3 and 0.8, 
respectively, then (a) 681 total cases are needed 
for the Tukey comparison between groups 1 and 
2, where the standardized mean difference is 
expected to be 0.3, (b) a total sample size of 99 
is needed for the expected standardized 
difference of 0.8 between group 1 and group 3, 
and (c) 246 total cases are needed for the Tukey 
comparison between group 2 and group 3. If all 
three comparisons are considered equally 
important, the researcher would choose 681 total 
cases in order to have statistical power of at least 
0.80 for all comparisons. However, if the 
comparison-of-most-interest is the group 2 
versus group 3 comparison, then the 246 total 
cases may be the sample size selected. 
 
Pilot Studies and Monte Carlo Analyses 

The results show that the sample size 
required for the omnibus F statistic to reach a 
given level of statistical power is frequently not 
sufficient for the non-null multiple comparisons 
to achieve the same power. In fact, it could be 
argued that using sample sizes chosen based on 
Cohen’s f are inappropriate even when the study 
is completely exploratory and the researcher has 
absolutely no research hypothesis concerning the 
mean differences. When the work is completely 
exploratory, it may be even more critical to have 
enough statistical power to find non-null 
multiple comparisons, rather than simply finding 
that there is a difference among means 
somewhere. 

An expected pattern of means might be 
available in relevant literature. However, when 
the relevant literature provides few clues about 
such effect sizes, another way to determine 
sample sizes for a multiple group comparison 
study might be to conduct a pilot study using a 
sampling strategy very similar to what will be 
used in the final study. That is, one cannot 
necessarily expect pilot study samples chosen 
conveniently to produce results similar to those 
obtained from representative random samples 
from a given population. A well-done pilot study 
sample, however, might provide clues to the 
pattern of means, the pattern of mean 
differences, or the absolute sizes of the mean 
differences the researcher might expect in the 
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population, thereby helping to determine what 
sample sizes might be necessary to have 
sufficient power for the post hoc comparisons. 
These standardized mean difference effect sizes 
could then be used in a Monte Carlo analysis, 
much as was performed for this study, to 
determine the necessary sample sizes for the 
post hoc MCPs. Because the results presented 
here are limited to only a few specific conditions 
with statistical power of 0.80, the use of Monte 
Carlo analyses for other circumstances may be 
critical because sample size tables do not exist 
for most multiple comparison procedures. 

Finally, it is important to note that with 
enough evidence or knowledge about the groups, 
exploratory ANOVA may not be a good choice, 
that is, there may be times there exists enough 
information to estimate a group mean difference 
without being able to predict a directional 
difference between those means. In such cases, 
the comparison-of-most-interest approach may 
be useful. However, when enough information is 
available to make such a prediction, statistical 
power would be gained by using directional tests 
and planned contrasts in the analyses described 
herein. 
 
Future Research 

A variety of questions, both 
philosophical and practical, exist that might be 
posed for future research based on the results 
presented. A few suggestions are: 
 
Other Procedures Designed to Control Alpha-
Inflation when Multiple Tests are Performed 

Although several ad hoc analyses 
suggested that these results might hold also for 
Tukey comparisons at other statistical power 
levels, this would need to be confirmed by 
further study. Similarly, some analyses 
performed for Bonferroni revealed the same 
three cases of results reported here, but would 
need to be examined with further study. Future 
research might also investigate whether similar 
results occur for other multiple comparison 
procedures (e.g., Fisher LSD, Scheffé, Dunnett). 
Similarly, additional research should investigate 
the impact of unequal sample sizes and unequal 
variances across groups on the total sample sizes 
required to achieve target levels of statistical 
power for specialized MCPs (e.g., Games-

Howell). Further, how this comparison-of-most-
interest approach works within factorial 
ANOVA, as follow-up to statistically significant 
main effects, may also be worth investigating. 

In light of other approaches that control 
the increase in Type I errors that occur when 
multiple null hypothesis tests are performed, it 
may be argued that perhaps MCPs should be 
abandoned altogether. For example, researchers 
could explore the effect on sample size when the 
Holm (1979) procedure is used (Green & 
Salkind, 2005; Lubrook, 1998) or when the 
Benjamini and Hochberg (1995) False 
Discovery Rate approach is used (Thissen, 
Steinberg & Kuang, 2002; Williams, Jones & 
Tukey, 1999), or perhaps no adjustment to alpha 
should be made for multiple comparison 
procedures, as is often the case when the 
statistical significance of regression coefficients 
is examined following a statistically significant 
regression model – this too, would impact 
sample size requirements. 
 
Cross Validation 

There are very different ways to think 
about how to determine required sample sizes 
for research; perhaps statistical power analyses 
are not the best way to determine sample size at 
all. Future research could investigate whether 
some adaptation of the cross-validity approaches 
recommended for multiple regression (e.g., 
Algina & Keselman, 2000; Brooks & 
Barcikowski, 1996; Park & Dudycha, 1974; 
Stevens, 2007) would be more useful for 
researchers in group comparison studies. The 
basic idea behind the cross-validation 
approaches is that researchers would be more 
likely to find results, especially effect sizes, that 
will replicate if sample sizes are large enough 
for cross-validation. 
 
A Priori Contrasts and t Tests 

Future researchers could compare these 
results to multiple individual t tests or other 
planned comparisons performed as a priori 
contrasts when using either an adjusted or 
unadjusted alpha. It may be that MCP sample 
sizes are functionally related to t test sample 
sizes using a relative efficiency approach similar 
to that done in this study. Future researchers 
might investigate whether the results change if 
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only a subset of more important pairwise 
comparisons are performed (e.g., simple or 
repeated contrasts), instead of all possible 
pairwise comparisons. Similar analyses might 
also be performed for common non-pairwise 
comparisons, such as Helmert or polynomial 
contrasts. 
 
Relative Efficiency 

Although no function emerged for some 
mean difference patterns in the three-group 
analyses, there may be a less obvious function at 
work. One could study how well relative 
efficiency works with larger numbers of groups, 
with effect sizes larger or smaller than those 
investigated here, and with different statistical 
power targets than 0.80. A similar study with 
four or more groups would involve many more 
possible mean difference patterns, but could help 
to provide answers to some of these questions. 
Such a study would also verify whether such 
results occur with more than three groups. 
Finally, the present study can be modified to 
include non-normal data and different sample 
sizes in each group. 
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Using the Canadian Workplace and Employee Survey (WES), three variance estimation methods for 
weighting large datasets with complex sampling designs are compared: simple final weighting, standard 
bootstrapping and mean bootstrapping. Using a logit analysis, it is shown - depending on which weighting 
method is used - different predictor variables are significant. The potential lack of independence inherent 
in a multi-stage cluster sample design, as in the WES, results in a downward bias in the variance when 
conducting statistical inference (using the simple final weight), which in turn results in increased Type I 
errors. Bootstrap methods can account for the survey’s design and adjust the variance so that it is 
inference appropriate and corrected for downward bias. The WES provides mean, as opposed to standard, 
bootstrap weights with the data; thus, a further adjustment to account for the reduced variation inherent 
when information is grouped is required. Failure to use mean bootstrap weights appropriately leads to 
biased standard errors and inappropriate inference. 
 
Key words: Bootstrap, variance estimation, complex sampling design. 
 
 

Introduction 
Choosing the appropriate variance estimation 
method when weighting large datasets with 
complex sampling designs has important 
implications for researchers. Using the Canadian 
Workplace and Employee Survey (WES), three 
variance estimation methods for weighting large 
datasets with complex sampling designs are 
compared: simple final weight, standard boot- 
strapping and mean bootstrapping. This study 
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uses a logit analysis to show that, depending on 
which weighting method was used, different 
predictor variables are significant. Failure to use 
the mean bootstrap weights appropriately can 
lead to both biased standard errors and 
inappropriate inference. 
 
Survey Instrument 

A national workplace survey, the WES, 
conducted over a five year period from 1999-
2003 by Statistics Canada was used in this 
study. Stratified sampling was used for WES 
and up to twenty four employees were surveyed 
within each workplace, depending on the 
establishment’s size. In-person interviewers 
collected the workplace survey data and 
telephone interviews were conducted with the 
employees. The WES is unique in that 
employers and employees are linked at the micro 
data level and employees are selected from 
within sampled workplaces (Statistics Canada, 
2003). The number of employers included in the 
sample was 6,322 in 1999, 6,068 in 2000, 6,207 
in 2001, 5,818 in 2002 and 6,565 in 2003. The 
number of employees in the sample was 23,540 
in 1999, 20,167 in 2000, 20,352 in 2001, 16,813 
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in 2002 and 20,834 in 2003 (with a survey 
response rate of 95% for locations and 83% of 
workers in 1999). Employers are followed for 
five years and employees are followed for two 
years. 

The WES uses a multi-stage cluster 
design to select a sample of respondents. This 
results in respondents being sampled from the 
same cluster implying that they are not 
necessarily independent. This potential lack of 
independence results in a downward bias in the 
variance when conducting statistical inference 
(using the simple final weight). Downward bias 
results in an increase of Type I errors, rejecting 
the null when it is true. Bootstrap methods can 
account for the survey’s design and adjust the 
variance so that it is inference appropriate and 
corrected for the downward bias. The WES 
provides mean bootstrap weights with the data, 
as opposed to standard bootstrap weights; thus, a 
further adjustment to account for the reduced 
variation inherent when information that is 
grouped is required. 

The results presented in this article are 
from a study conducted by Mann & Latham 
(2008), which examined the predictors of the 
receipt of a performance appraisal. The variables 
that were significant predictors differed 
depending on which variance estimation method 
was used. 
 
Variables 

Five organization-level predictor 
variables were included in the analysis: size 
(operationalized as the number of employees), 
industry (service = 1, manufacturing = 0), for-
profit (for-profit = 1, not-for-profit = 0), 
unionized (yes=1, no=0) and an in-house HR 
department (yes=1, no=0). 

Several job-level predictor variables 
were also included in the analysis: hourly wage, 
four dummy variables representing whether the 
job is full-time or part-time and permanent or 
temporary (full-time/permanent, full-
time/temporary, part-time/permanent, part-
time/temporary), dummy variables representing 
occupation (professional, manager, 
technical/trades, marketing, clerical and 
production) and a dichotomous variable 
measuring the use of a computer in the job 
(yes=1, no=0). 

Individual-level variables were also 
included in the analysis: age, gender (1=female, 
0=male), recent immigrant (within the last 5 
years) (1=yes, 0=no), and disability (1=yes, 
0=no). One dependent variable was used, the 
receipt of a performance appraisal (1=yes, 
0=no). To reduce common method bias, the 
organization variables were drawn from the 
employer survey, while the job- and individual-
level variables, as well as the dependent 
variables were drawn from the employee survey. 
 

Methodology 
Descriptive statistics and correlations were 
presented in the Mann & Latham (2008) study 
but, because they are not relevant to this study, 
they are not discussed. The stepwise logit 
regression that was conducted (with the 
organization-level variables included in the first 
step, and the job-level and individual-level 
variables added in the next two steps) is of 
particular interest to this study. Three different 
regressions were conducted using different types 
of variance estimation methods: simple final 
weighting, standard bootstrapping and mean 
bootstrapping. The choice of method has 
important implications for the inference of the 
significance of the predictor variables. 
 
Mean Bootstrap Comparison 

Bootstrap weights are used to make use 
of complex survey design information and to 
calculate reliable design-based variance 
estimates. Generally, Statistics Canada uses a 
multistage, stratified, randomly selected cluster 
sample or complex design to draw a 
representative sample of respondents. Within the 
WES, workplaces from business locations 
operating in Canada are selected from relatively 
homogeneous strata (industry, region and size 
groupings). In addition, employers must have 
paid employees; exceptions are locations in the 
Yukon, Nunavut, the Northwest Territories, 
agricultural operations, private households, 
religious organizations or public administration. 
This results in respondents not necessarily being 
independent – respondents in the same cluster 
may share similar economic characteristics as a 
group relative to the population as a whole. This 
is a disadvantage of cluster sampling and results 
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in less efficient estimates (Satin & Shastry, 
1993). 

To enable researchers to correct for this 
downward bias in the variance, Statistics Canada 
has included bootstrap weights with the WES. 
Bootstrap techniques have been used to generate 
a set of 5,000 bootstrap weights, which give a 
more reasonable estimate of variance than 
estimation that does not account for the complex 
design of the survey. Statistics Canada generates 
bootstrap weights by randomly drawing samples 
with replacement from each stratum of primary 
sampling units. The size of each sample drawn is 
equal to the sample size of the data set. Using 
the same clustering and sample design the 
weights are assigned to each unit in the selected 
random draws; selected units receive a positive 
bootstrap weight and units not selected receive a 
weight of zero. 

For WES this sampling is replicated 
5,000 times to generate a set of bootstrap 
weights large enough to be consistent and allow 
for the calculation of average bootstrap weights. 
Further, for the WES data, the bootstrap weights 
that have been provided are average bootstrap 
weights. In other words, a set of 100 (B) average 
bootstrap weights have been calculated over 
groups of 50 (C) from the original set of 5,000 
bootstrap weights. Average bootstrap weights 
were calculated to preserve the confidentiality of 
workplace’s responses. Using the WES mean 
bootstrap weights requires a further adjustment 
to account for the reduced variation inherent 
when using grouped information. The variance 
estimator used to calculate the design-based 
variance estimate with mean bootstrap weights 
is: 
 

( ) ( ) ( )( ) −=
b

bB B
Cv

2*
.

* ˆˆˆ θθθ  

where 

( ) ( ) ( )
* *
.

1ˆ ˆ .b
b

Bθ θ=  (1) 

 
Each bth average bootstrap sample set of weights 
is equal to the means of C bootstrap weights. In 

this specification, the term ( )
*ˆ
bθ  is obtained using 

the bth mean bootstrap weight variable (Buckley 
& Chowhan, 2005). 

The analysis herein used Stata 9, and 
specifically, the survey suite of commands to 
estimate the results. The advantage of these 
commands is that the final weight (used to 
generate the point estimates or parameters), the 
bootstrap weights (used to generate the standard 
errors), and the variance estimation method 
(balanced repeated replication) can all be 
specified using the svyset command. When each 
piece of analysis is run the adjustment for the 
mean bootstrap is made by using the 
fay(.85857864376269) option. This adjustment 
comes from the Fay’s variance estimator, where 
K could be set equal to 
 

1
1K

C
= − , 

 
which is a transformation of equation 1, given 
that the Fay’s variance estimator is as follows 
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The use of this adjustment re-introduces the 
variability that had been removed when the 
average bootstrap weights were generated. 
 

Results 
Descriptive statistics are presented in Table 1 
and the predictors of the receipt of a 
performance appraisal are presented in Table 2. 
For a discussion on the predictors of the receipt 
of a performance paper, see the Mann & Latham 
(2008) paper; this study is only concerned with 
the variance estimation method used to produce 
the results. 

Comparing the three variance estimation 
methods in Table 2 different predictor variables 
were significant depending on which method 
was used. The results under column 3 should be 
used as they present the findings from the 
analysis using the mean bootstrapping method 
and produce the most accurate, unbiased 
standard errors. Due to this finding, this article 
adds a significant methodological contribution to  
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our field by comparing these different weighting 
methods. 

Although the coefficients are the same 
for all three methods presented in Table 2, which 
predictors are significant differs depends on 
which method is presented. Three related 
approaches are shown: column (1) shows 
significance levels when only the final weight is 
used to generate the standard errors, column (2) 
illustrates how the standard errors are downward 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bias when the mean bootstrap weights are not 
accounted for, and column (3) presents the 
reliable standard errors from the correct use of 
mean bootstrap weights and the appropriate 
adjustments. 

It is important to note that column 2’s 
standard errors are generally the lowest, 
followed by columns 1 and 3. Column 3 
presents the reliable design-based variance  

 

Table 1: Means and Standard Deviations 
 

 n Mean SD 

Organization-Level Variables 
Industry 20834 .67 .47 

In-house HR Dept 20362 .39 .49 

Number of Employees 20362 414.23 1085.35 

For-Profit 20362 .80 .40 

Unionized 20834 .26 .44 

Job-Level Variables 

Wage 20619 20.60 12.75 

Full-time/perm 20619 .59 .49 

Full-time/temp 20619 .02 .13 

Part-time/perm 20619 .34 .47 

Part-time/temp 20619 .05 .22 

Use Computer 20834 .65 .48 

Occupation 

Professional 20834 .16 .37 

Manager 20834 .13 .33 

Technical/Trade 20834 .41 .49 

Marketing 20834 .08 .27 

Clerical 20834 .15 .35 

Production 20834 .07 .25 

Individual-Level Variables 

Gender 20834 .53 .50 

Age 20834 40.24 11.52 

Recent Immigrant 20834 .03 .15 

Disability 20834 .09 .29 

Dependent Variables 

Receipt of PA 20834 .60 .49 
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estimates. In column 3, the explanatory variables 
(in-house HR department, unionization, hourly 
wage, being full-time/permanent, being part-
time/permanent, the use of a computer and 
professional occupation) are statistically 
significant at the 95% level. Compared to 
column 1 the significance of professional 
occupation as a predictor is more accurate and, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
without the appropriate variance estimation the 
conclusions drawn from the inference, would 
have been inaccurate. Further, when no 
adjustments are made for the WES provided 
mean bootstrap weights (column 2) all variances 
are underestimated by a factor of C resulting in 
output that leads to inappropriate inference for 
all variables. All predictors are significant using 

Table 2: LOGIT Results: Predictors of the Receipt of a Performance Appraisal* 
 

Variables Coeff. 

Column 1: 
Weighting Method 

Column 2: 
Bootstrapping Method 

Column 3: 
Mean Bootstrapping 

Method 

Std. Error Sig. Std. Error Sig. Std. Error Sig. 

Org Variables 

In House HR Dept .53 .0713 p<.001 .0147 p<.001 .0140 p<.001 

Number of Employees .00 .0000  .0000 p<.001 .0000  

Unionized -.25 .0797 p<.05 .0148 p<.001 .1048 p<.05 

Service Industry .12 .0787  .0134 p<.001 .0949  

For-Profit -.10 .0994  .0182 p<.001 .1284  

Job Variables 

Wage .01 .0037 p<.05 .0006 p<.001 .0041 p<.05 

Full-time/Permanent .66 .1711 p<.001 .0217 p<.001 .1538 p<.001 

Full-time/Temporary .06 .2562  .0351 p<.10 .2480  

Part-time/Permanent .61 .1721 p<.001 .0241 p<.001 .1705 p<.001 

Use Computer .64 .0820 p<.001 .0127 p<.001 .0901 p<.001 

Professional .41 .2084 p<.05 .0323 p<.001 .2282 p<.10 

Manager .09 .2124  .0295 p<.05 .2084  

Technical/Trades .14 .1853  .0259 p<.001 .1828  

Marketing -.16 .2433  .0290 p<.001 .2053  

Clerical -.08 .2027  .0295 p<.05 .2085  

Individual Variables 

Gender (Female) .07 .0761  .0113 p<.001 .0797  

Age .01 .0190  .0033 p<.10 .0236  

Age2 .00 .0002  .0000 p<.001 .0003  

Recent Immigrant .27 .2549  .0299 p<.001 .2114  

Disability -.11 .1138  .0154 p<.001 .1089  

Constant -1.07 .4593 p<.05 .0761 p<.001 .5378 p<.05 

R2 .06       

*N=20,834; Reference Groups: Part-time/Temporary and Production 
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this method, when only those predictors 
significant in column 3 should be interpreted as 
such. Thus, failing to use bootstrap weights and 
the mean bootstrap weights appropriately lead to 
biased standard errors and inappropriate 
inference. 
 

Conclusion 
The results of this study portend a significant 
methodological contribution with respect to 
choosing the appropriate variance estimation 
method when using a large dataset, such as the 
WES. Although the beta coefficients are the 
same for all three methods, which predictors are 
significant differs depending on the method 
used. When presenting findings from a large 
dataset and a complex sampling design, the 
variance estimation method that was used should 
be acknowledged. Readers should be aware that 
different results can be presented depending on 
the method selected. This suggests that 
researchers should be cautious when choosing a 
weighting method and be aware of the biased 
standard errors that are produced when the 
inappropriate method is used. This study showed 
the practical implication of choosing an 
appropriate, unbiased weighting method when 
analyzing a large dataset with complex sampling 
design. 
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Double Acceptance Sampling Plans Based on Truncated Life Tests for 
Marshall-Olkin Extended Lomax Distribution 

 
G. Srinivasa Rao 
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Dilla, Ethiopia 

 
 
Double Acceptance Sampling Plans (DASP) is developed for a truncated life test when the lifetime of an 
item follows the Marshall-Olkin extended Lomax distribution. Probability of Acceptance (PA) is 
calculated for different consumer’s confidence levels fixing the producer’s risk at 0.05. Probability of 
acceptance and producer’s risk are illustrated with examples. 
 
Key words: Marshall-Olkin extended Lomax distribution, double acceptance sampling plan, probability 

of acceptance, consumer’s risk, producer’s risk, truncated life test. 
 
 

Introduction 
The main goal of competitive enterprises in a 
global business market is how to maintain and 
improve the quality of their products. A high 
quality product has the high probability of 
acceptance. Two important tools for ensuring 
quality are statistical quality control and 
acceptance sampling (AS). Acceptance sampling 
plans are concerned with accepting or rejecting a 
submitted large sized lot of products on the basis 
of the quality of the products inspected in a 
small sample taken from the lot. 

A single acceptance sampling plan 
(SASP) is a specified plan that establishes the 
minimum sample size to be used for testing. In 
most acceptance sampling plans for a truncated 
life test, the major issue is to determine the 
sample size from a lot under consideration. It is 
implicitly assumed in the usual sampling plan 
that only a single item is put in a tester. On the 
basis of information obtained from this first 
sample a lot is either accepted or rejected. If a  
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good lot is rejected on the basis of this 
information, its probability is called the type-1 
error (producer’s risk) and it is denoted by α . 
The probability of accepting a bad lot is known 
as the type-2 error (consumer’s risk) and it is 
denoted as β . If the product is electronic 
components or has failure mechanisms a random 
sample of the lot is tested and the entire lot is 
accepted if no more than c (acceptance sampling 
number) failures occur during the experiment 
time. Recently, Aslam (2007) proposed the 
double acceptance sampling plan based on a 
truncated life test when the lifetime of an item 
follows the Rayleigh distribution. 

Single acceptance sampling plans based 
on truncated life tests for a variety of 
distributions are discussed by Epstein (1954), 
Sobel and Tischendrof (1959), Goode and Kao 
(1961), Gupta and Groll (1961), Gupta (1962), 
Kantam and Rosaiah (1998), Kantam, et al. 
(2001), Baklizi (2003), Baklizi and El Masri 
(2004), Rosaiah and Kantam (2005), Rosaiah, et 
al. (2006, 2007, 2007), Tsai and Wu (2006), 
Balakrishnan, et al. (2007), Aslam and Kantam 
(2008) and Rao, et al. (2008, 2009). 

This article proposes a double 
acceptance sampling plan (DASP) based on 
truncated life tests when the lifetime of a 
product follows the Marshall-Olkin extended 
Lomax distribution with known shape parameter 
as introduced by Ghitany, et al. (2007) and to 
determine the probability of acceptance (PA). 
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The probability density function (pdf) and 
cumulative distribution function (cdf) of the 
Marshall-Olkin extended Lomax distribution are 
given by 
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respectively, where σ  is a scale parameter, θ  is 
a shape parameter and ν  is an index parameter. 
The mean of this distribution is given by μ  = 

1.570796σ  when 2, 2ν θ= = . Rao, et al. 
(2008, 2009) studied single acceptance sampling 
plans based on the Marshall-Olkin extended 
Lomax distribution. 
 
The Double Acceptance Sampling Plan (DASP) 
for Life Tests 

DASP is used to minimize the 
producer’s risk because it provides another 
opportunity for acceptance of the product. In 
DASP a sample of size 1n items is taken from a 

lot which is called the sample first; this sample 
first is then put on tests. Let 1c and 2c be the 

acceptance number for sample first and the 
sample second respectively. The experiment is 
terminated if no more than 1c failures occur 

during the experiment time ( 0t ), i.e., the lot is 

accepted or rejected on the basis of sample first 
if more than 2c  failures occur or if time of 

experiment ends (whichever is earlier). If 
th

1( 1)c +  failures occur in sample first, then all 

possibilities for sample second are given as 
shown in Table 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let μ represent the true average life of a 

product and 0μ  denote the specified life of an 

item, under the assumption that the lifetime of 
an item follows the Marshall-Olkin extended 
Lomax distribution. A product is considered 
good and accepted for consumer use if the 
sample information supports the hypothesis 

0 0:H μ μ≥ ; if the sample does not support this 

hypothesis, the lot of product is rejected. In 
acceptance sampling schemes, this hypothesis is 
tested based on the number of failures from a 
sample in a pre-fixed time: If the number of 
failures exceeds the action limit c the lot is 
rejected. The lot will be only be accepted if there 
is enough evidence that 0μ μ≥ at a certain level 

of consumer risk, otherwise the lot will be 
rejected. 

When determining the parameters of a 
proposed sampling plan the consumer’s risk is 
used, and often, the consumer’s risk is expressed 
by the consumer’s confidence level. If the 

confidence level is p∗ , then the consumer’s risk 

will be 1 pβ ∗= − . In this study the consumer’s 

risk was fixed not to exceed 1 p∗−  and it 
satisfied the inequality: 
 

      

(1 ) 1
0

c n i n ip p p
ii

∗  −− ≤ −  
 =

         (2.1) 

 
where p is the probability that an item fails 
before the termination time. 

Table 1: Possibilities for Sample Second Failure 
Based on Sample First Failure 

Sample First Sample Second 

th
1( 1)c +  failures 

occur in sample 1 

less than th
2( 1)c −  must 

be occurred in this 
sample 2 for acceptance 

th
1( 2)c +  failures 

occur in sample 1 

less than th
2( 2)c −  must 

be occurred in this 
sample 2 for acceptance 

th
1( )c n+  failures 

occur in sample 1 

less than th
2( )c n−  must 

be occurred in this 
sample for acceptance 
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Consider a life testing experiment 
having the measurements: number of items from 
sample first put on test ( 1n ), acceptance number 

for sample first ( 1c = 0), number of items from 

sample second put on test ( 2n ) and accept the 

lots if no more than two failures occur in sample 
second ( 2c = 2).  

In this life experiment if no failure 
occurs when sample first of 1n  items is put on 

test the lot is accepted. If the true - but unknown 
- life of the product deviates from the specified 
life of the product it should result in a 
considerable change in the probability of 
acceptance of the lot based on the sampling plan. 
Hence, the probability of acceptance (PA) can 
be regarded as a function of the deviation of a 
specified average from the true average. This 
function is called the operating characteristic 
(OC) function of the sampling plan. The PA for 
sample first using the Marshall-Olkin extended 
Lomax distribution with 2, 2ν θ= = is shown in 

Table 2. The probability of acceptance for 1( )L p  

and 2( )L p for the sampling plan 1 1
0

( , , )
tn c

σ
 

and 2 2
0

( , , )
tn c

σ
 is calculated using equations 
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and 
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respectively, where 
 

0
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is given in (1.2). 

The probability of acceptance for DASP 
can be obtained by using (2.2) and (2.3) as: 
 

P(A)=P(no failures occur in sample1)

          +P(1failureoccurs in samples 1and 0,

                and 1failure occurs in sample 2)

          +P(2failures occur in sample 1,

                and 0failures occur in sample 2).

 

 
The values of probability of acceptance 

for DASP are determined at p∗  = 0.75, 0.90, 

0.95, 0.99 and 0t σ  = 0.628, 0.942, 1.257, 

1.571, 2.356, 3.142, 3.927, 4.712 with 
2, 2ν θ= =  and are shown in Table 3. It is 

important to note that in sample first and sample 
second, p is function of the cdf of the Marshall-
Olkin extended Lomax distribution. These 
choices are consistent with Gupta and Groll 
(1961), Gupta (1962), Kantam, et al. (2001), 
Baklizi and EI Masri (2004), Balakrishnan, et al. 
(2007) and Rao, et al. (2008). 
 

Results 
Suppose that the lifetime of a product follows 
the Marshall-Olkin extended Lomax distribution 
with 2, 2ν θ= =  and an experimenter wants to 
establish that the true unknown mean life is at 
least 1,000 hours with confidence 0.75. The 
acceptance numbers for this experiment would 
be 1c = 0 and 2c = 2 with sample sizes 1n = 6 and 

2n = 8. The lot will be accepted if no failure is 

observed in a sample of 6during 628 hours. The 
probability of acceptance for this single 
sampling from Table 2 is 0.1558. The PA for the 
same measurements using double acceptance 
sampling from Table 3 is 0.29276. In the DASP 
scheme as 0/σ σ  increases PA also increases.  

For the above sampling plan, PA is 
0.97289 when the ratio of unknown average life 
to specified average life is 12. As the time of 
experiment increases, the probability of 
acceptance for the double acceptance sampling 
plan decreases. From Table 3, it is clear that 
when the time of experiment is 4,712 hours, the 
PA for ratio 0/σ σ  =2 is 0.04906. For this same 

experiment time, as 0/σ σ  increases, PA also 

increases. It is important to note that the double 
acceptance sampling scheme minimizes the  
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Table 2: Operating Characteristics Values for Sample First for the Sampling Plan 1 1
0

( , , )
tn c

σ
 

when 1 0c =  Marshall-Olkin Extended Lomax Distribution with 2, 2ν θ= =  

p∗  1n  0/t σ  0/σ σ  

2 4 6 8 10 12 

0.75 

6 0.628 0.15576 0.39119 0.53422 0.62466 0.68622 0.73062 

4 0.942 0.15968 0.39271 0.53488 0.62500 0.68641 0.73074 

4 1.257 0.08995 0.28921 0.43485 0.53462 0.60556 0.65817 

3 1.571 0.10891 0.31489 0.45928 0.55663 0.62527 0.67589 

3 2.356 0.04222 0.18266 0.31496 0.41760 0.49594 0.55670 

2 3.142 0.06907 0.22806 0.36256 0.46285 0.53784 0.59527 

2 3.927 0.04180 0.16475 0.28637 0.38514 0.46289 0.52449 

2 4.712 0.02660 0.12125 0.22812 0.32193 0.39946 0.46292 

0.90 

8 0.628 0.08381 0.28610 0.43348 0.53398 0.60527 0.65804 

6 0.942 0.06381 0.24610 0.39119 0.49411 0.56869 0.62466 

5 1.257 0.04926 0.21209 0.35312 0.45715 0.53420 0.59282 

4 1.571 0.05201 0.21423 0.35435 0.45789 0.53467 0.59315 

3 2.356 0.04222 0.18266 0.31496 0.41760 0.49594 0.55670 

3 3.142 0.01815 0.10891 0.21831 0.31489 0.39444 0.45928 

3 3.927 0.00855 0.06687 0.15325 0.23902 0.31493 0.37985 

3 4.712 0.00434 0.04222 0.10896 0.18266 0.25247 0.31496 

0.95 

9 0.628 0.06147 0.24467 0.39047 0.49371 0.56845 0.62451 

7 0.942 0.04034 0.19482 0.33455 0.43933 0.51763 0.57755 

5 1.257 0.04926 0.21209 0.35312 0.45715 0.53420 0.59282 

5 1.571 0.02484 0.14575 0.27339 0.37666 0.45720 0.52054 

4 2.356 0.01470 0.10364 0.21430 0.31214 0.39256 0.45796 

3 3.142 0.01815 0.10891 0.21831 0.31489 0.39444 0.45928 

3 3.927 0.00855 0.06687 0.15325 0.23902 0.31493 0.37985 

3 4.712 0.00434 0.04222 0.10896 0.18266 0.25247 0.31496 

0.99 

12 0.628 0.02426 0.15303 0.28540 0.39020 0.47089 0.53381 

9 0.942 0.01612 0.12208 0.24467 0.34732 0.42886 0.49371 

7 1.257 0.01477 0.11406 0.23286 0.33426 0.41570 0.48094 

6 1.571 0.01186 0.09916 0.21093 0.30984 0.39096 0.45682 

5 2.356 0.00512 0.05880 0.14580 0.23331 0.31072 0.37673 

4 3.142 0.00477 0.05201 0.13145 0.21423 0.28927 0.35435 

4 3.927 0.00175 0.02714 0.08201 0.14833 0.21427 0.27509 

4 4.712 0.00071 0.01470 0.05204 0.10364 0.15957 0.21430 
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Table 3: Operating Characteristics Values for the Double Sampling Plan 2 2
0

( , , )
tn c

σ
 

when 1 0c =  and 2 2c =  Marshall-Olkin Extended Lomax Distribution with 2, 2ν θ= =  

p∗  1n  2n  0/t σ  0/σ σ  

2 4 6 8 10 12 

0.75 

6 8 0.628 0.29276 0.50105 0.86425 0.92779 0.95741 0.97289 

4 6 0.942 0.28692 0.49834 0.85658 0.92304 0.95436 0.97084 

4 5 1.257 0.18319 0.38854 0.79087 0.88279 0.92856 0.95349 

3 5 1.571 0.17606 0.39214 0.76899 0.86779 0.91832 0.94632 

3 4 2.356 0.07833 0.24442 0.63350 0.77292 0.85228 0.89938 

2 4 3.142 0.09425 0.27216 0.61281 0.75306 0.83604 0.88665 

2 3 3.927 0.08244 0.22838 0.59443 0.73854 0.82510 0.87845 

2 3 4.712 0.04906 0.16496 0.49061 0.65090 0.75619 0.82513 

0.90 

8 10 0.628 0.14865 0.36654 0.76759 0.86826 0.91912 0.94708 

6 8 0.942 0.10420 0.31013 0.70705 0.82753 0.89150 0.92779 

5 6 1.257 0.09101 0.28114 0.68727 0.81386 0.88208 0.92116 

4 6 1.571 0.07686 0.26266 0.63949 0.77821 0.85639 0.90249 

3 5 2.356 0.05706 0.21770 0.56209 0.71656 0.81006 0.86785 

3 4 3.142 0.02910 0.14104 0.46313 0.63339 0.74510 0.81789 

3 4 3.927 0.01211 0.08352 0.32825 0.50281 0.63346 0.72651 

3 4 4.712 0.00560 0.05094 0.22930 0.39104 0.52766 0.63350 

0.95 

9 12 0.628 0.09469 0.30286 0.69561 0.81978 0.88620 0.92407 

7 9 0.942 0.06148 0.24378 0.62870 0.77176 0.85233 0.89979 

5 7 1.257 0.07461 0.26273 0.64649 0.78411 0.86090 0.90588 

5 6 1.571 0.04055 0.18977 0.56103 0.71960 0.81391 0.87145 

4 5 2.356 0.02212 0.13247 0.45228 0.62671 0.74100 0.81528 

3 5 3.142 0.02157 0.12425 0.38835 0.56197 0.68478 0.76899 

3 4 3.927 0.01211 0.08352 0.32825 0.50281 0.63346 0.72651 

3 4 4.712 0.00560 0.05094 0.22930 0.39104 0.52766 0.63350 

0.99 

12 16 0.628 0.03081 0.18223 0.52412 0.69017 0.79171 0.85476 

9 11 0.942 0.02141 0.15000 0.48085 0.65448 0.76426 0.83390 

7 9 1.257 0.01890 0.13770 0.45168 0.62824 0.74308 0.81729 

6 8 1.571 0.01449 0.11744 0.40429 0.58423 0.70674 0.78834 

5 6 2.356 0.00648 0.07208 0.30745 0.48783 0.62337 0.71970 

4 6 3.142 0.00516 0.05738 0.23006 0.39485 0.53317 0.63949 

4 5 3.927 0.00200 0.03154 0.16512 0.31441 0.45222 0.56520 

4 5 4.712 0.00077 0.01645 0.09793 0.21434 0.33887 0.45228 
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producer’s risk, but this scheme also exerts 
pressure on the producer to improve the quality 
level of the product. At 4,712 hours, 0/σ σ =12, 

p∗ =0.75 and the PA is 0.82513. The producer’s 
risk for the sample first and double sampling are 

placed for p∗ =0.75 in Table 4. For 0/σ σ  = 2 

(the unknown average life is twice that of the 
specified average life), the producer’s risk when 
time of experiment is 628 hours and 4,712 hours 
are 0.70724 and 0.95094 respectively. Thus, the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

producer’s risk decreases as the quality level of  

the product increases with p∗ =0.75. (See Table 
4 and Figure 1.) 
 

Conclusion 
This study established the acceptance sampling 
plans for various values of 0/σ σ  and an 

experiment time assuming a life test follows the 
Marshall-Olkin extended Lomax distribution. 
This distribution provides a high probability for  

0/ 6σ σ > .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 4: Producer’s Risk with Respect to Time of Experiment for Double Sampling ( p∗ =0.75) 

0/σ σ  2 4 6 8 10 12 

1 2 1 2 0( 0, 2, 6, 8, / 0.628)c c n n t σ= = = = = 0.70724 0.49895 0.13575 0.07221 0.04259 0.02711

1 2 1 2 0( 0, 2, 2, 3, / 4.712)c c n n t σ= = = = = 0.95094 0.83504 0.50939 0.34910 0.24381 0.17487

 
 

Figure1: OC Curve with p∗ =0.95, 0t =628 and p∗ =0.99, 0t =4712 for Single and Double  

Acceptance Sampling Plans (SSP & DSP). 
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The Overall F-tests for Seasonal Unit Roots under Nonstationary Alternatives: 
Some Theoretical Results and a Monte Carlo Investigation 

 
Ghassen El Montasser 

Manouba University, 
École Superieure de Commerce de Tunis, Tunisia 

 
 
In many empirical studies concerning seasonal time series, it has been shown that the whole set of unit 
roots associated with seasonal random walks are not present. This article focuses on the overall F-tests for 
seasonal unit roots under some nonstationary alternatives different from the seasonal random walk. The 
asymptotic theory of these tests is established for these cases using a new approach based on circulant 
matrix concepts. The simulation results joined to this theoretic analysis showed that the overall F-tests, as 
well as their augmented versions, maintained high power against the nonstationary alternatives. 
 
Key words: Kunst test, nonstationary alternatives, Brownian motion, Monte Carlo Simulation. 
 
 

Introduction 
The stochastic nature of seasonality appears to 
be gaining ground in empirical studies. Several 
aspects related to seasonal unit root tests are 
treated in the literature. In this respect, the 
power of these tests against nonstationary 
alternatives is an important issue that recently 
acquired some concern. To the best of our 
knowledge, Ghysels, Lee and Noh (1994) are the 
first authors who studied this question. Using a 
Monte Carlo study, they showed that, against a 
nonseasonal random walk, the power of the tests 
of Dickey, Hasza and Fuller (1984) is much 
lower than that of the tests introduced by 
Hylleberg, Engle, Granger and Yoo (1990). 

Ghysels, et al. (1994) suggested that 
“the Dickey et al. test may not separate unit 
roots at each frequency” (p. 432). The restriction 
behind the Dickey, et al. procedure is that all 
unit roots (conventional and seasonal roots) are 
inseparably present with equal modulus; thus, it 
is clear that the conventional random walk does 
not fulfil this requirement. However, Rodrigues 
and Osborn (1999) showed that if this restriction 
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holds, the power of the Dickey, et al. tests would 
have a proper superiority in finite samples as 
opposed to that of the tests of Hylleberg, et al. 
(1990). Taylor (2003) analyzed the large sample 
behaviour of the seasonal unit root tests of 
Dickey, et al. when the data generating process 
(DGP) is a conventional random walk, that is, 
when the series only admits a zero frequency 
unit root. In such a case (and as shown by 
Taylor, 2003), the Dickey, et al. statistics have 
nondegenerate limiting distributions. These 
results theoretically explain the empirical 
findings of Ghysels, Lee and Noh (1994). 
Furthermore, Taylor (2005) showed that 
asymptotically the statistics of the Dickey, et al. 
augmented test will also do not diverge. 

In a similar context, del Barrio Castro 
(2006) generalized the results of Taylor (2003) 
to a set of nonstationary alternatives which 
include the non seasonal random walk. He found 
that the Dickey, et al. statistics did not have 
standard limiting distributions and did not 
diverge. Based on the same methodology, del 
Barrio Castro (2007) established the limit theory 
of the Fisher and Student statistics originally 
developed by the Hylleberg, Engle, Granger and 
Yoo (1990) procedure. In that case, del Barrio 
Castro derived the effect that can have one unit 
root asymptotically on the others at different 
frequencies. Following the terminology of 
Busetti and Taylor (2003), this situation may be 
said to have “unattended unit roots” (p. 33). 
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However, del Barrio Castro (2007), in a large 
sample analysis, did not directly consider the 
effects of nonstationary alternatives on the 
overall F-type statistic of seasonal integration 
which is complementarily specified for the 
Hylleberg, Engle, Granger and Yoo (1990) 
procedure by Ghysels, Lee and Noh (1994). This 
article adopts the seasonal integration definition 
of Ghysels and Osborn (2001, p. 43). 

In a recent article, Osborn and 
Rodrigues (2002) developed an appealing 
approach for deriving asymptotic results for test 
statistics in seasonal models with unit roots. 
Such an approach is based on the use of 
circulant matrices which could, in seasonal 
context, retrieve the limit theory of the involved 
statistics as well as conveniently traducing the 
dynamics of time series and its evolution across 
different seasons. In a similar vein, Haldrup, 
Montanes and Sanso (2005) have used this 
approach to show the effects of outliers on the 
limit theory of seasonal unit root tests. 

This article focuses on the large sample 
properties of the overall F-tests of the seasonal 
integration when the observed series is 
generated from nonstationary alternatives treated 
by del Barrio Castro (2006). This task is 
accomplished using the circulant matrix-based 
approach of Osborn and Rodrigues (2002). 
 
The Kunst Test 

The Kunst test for quarterly time series 
is based on the following regression 
 

,... 433114 ttttt yyyy εδαα ++++=Δ −−−  

,,...,1 Tt =                           (1) 
 
which is an F-type test of the form 
 

),ˆˆ/()ˆˆˆˆ)(4( ''
0

'
0

*
ˆ,ˆ,...,ˆ 31

εεεεεεδαα −−= TF     (2) 

 
where 0ε̂  and 1̂ε  are vectors of residuals 

estimated under the null 
0...: 310 ==== δααH  and alternative 

hypotheses of the test. Assuming that, without 
any loss of generality, the initial values required 
by (1) are null. It should be noted that Kunst did 
not divide the numerator of the statistic (2) by 4 

(the number of restrictions), as was done in this 
research to perform a conventional Fisher test. 
 
The Hylleberg, Engle, Granger and Yoo 
(HEGY) Test 

The basic regression for the HEGY test, 
without any augmentation and with no 
deterministic terms, is: 
 

,1342331221114 tttttt yyyyy εππππ ++++=Δ −−−−

,,...,1 Tt =                        (3) 
 
where 

,)1( 32
1 tt yLLLy +++=  

 

,)1( 32
2 tt yLLLy −+−−=            (4) 

 

,)1( 2
3 tt yLy −−=  

 
with L  as the lag operator. 

Ghysels, Lee and Noh (1994) extended 
the HEGY approach with a joint test statistic 

1234F  for the null hypothesis, 

0: 43210 ==== ππππH , implying all unit 

roots in data are observed at quarterly frequency. 

0H  is an overall hypothesis for seasonal 

integration SI (1) in accordance with the 
notation of Ghysels and Osborn (2001). Note 
that: 
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It may be deduced from (5) that the 

regressors of the Kunst test are non-singular 
linear transformations of those of the HEGY 
test. Consequently, the F-type statistics, 1234F  

and 4/*
ˆ,ˆ,...,ˆ 31 δααF , will have the same limit 

theory. Given that the two statistics are 
asymptotically related, the analysis is confined 
to that of Kunst in the sequel. 



EL MONTASSER 
 

125 
 

It can be observed that slight differences 
exist between the critical values of both 
statistics. In general, such critical values are 
tabulated assuming that the DGP of ty  is: 

 

.4 ttt eyy += −                    (A.0) 

 
In this article it is assumed that the DGP of ty  is 

drawn from one of the following stochastic 
processes: 

,1 ttt eyy += −                     (A.1) 

 

,1 ttt eyy +−= −                   (A.2) 

 

,2 ttt eyy += −                     (A.3) 

 

,2 ttt eyy +−= −                   (A.4) 

or 

.321 ttttt eyyyy +−−−= −−−       (A.5) 

 
Using the double subscript notation, the 
following annual vectors can be defined: 
 

,)',,,( 4321 nnnnn yyyyY =  

and 
,)',,,( 4321 nnnnn eeeeE =  

 
where it is assumed that Nn ,...,1=  and in T  

observations there are N years, thus, .4NT =  
To keep matters tractable, suppose that 

.)0,0,0,0()',,,( '
403020100 == yyyyY  

The error processes in the alternatives 
(A.1)-(A.5) follow a stationary AR(p) 
 

( )φ =sn snL e v , 

 

where i
p

i
isn zez 

=

−=
1

1)( φϕ and s = 1, ...,4. 

The roots of 0)( =zϕ  all lie outside the 

unit circle .1=z  As for the error sequence 

{ }snv , it depicts an innovation process with 

constant conditional variance 2σ  (see Spanos, 

2003, p. 443). Similar to what has been 
conjectured by del Barrio Castro (2007) 
regarding the error structure in the nonstationary 
alternatives described above, suppose that the 
vector nE  has the following dynamics: 
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j
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∞
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where ,)',,,( 4321 nnnnn vvvvv =  and the 

sequence of 44 ×  matrices are defined as: 
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for ,....2,1=j , with 
 

j

j
j zz 

∞

=

−=
1

1)( γγ  

 

being the inverse of ).(zϕ  Finally, )1(*Γ  is 
defined as: 

.)1(
0

** 
∞

=

Γ=Γ
j

j  

 
del Barrio Castro (2006) used the vector of 
moving average representation to express the 
alternatives (A.i), i =1, ..., 5, in a vector of 
quarters representations where the observations 
of each year are stacked in the above defined 
vectors nY  et nE , let 

 

,)()1( 10 n
ii

n EBYB Θ+Θ=−  ,5,...,2,1=i  

(6) 
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where B is the annual backward operator. The 

44 ×  matrices i
0Θ  and i

1Θ  (corresponding to 

the alternatives A.1-A.5) are defined as follows: 
for (A.1) 
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for (A.3) 
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for (A.4) 
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and for (A.5) 
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The following result was established by 

del Barrio Castro (2007) 
 

),(
1

][ rBY
N idrN →

σ
  

),()1()( * rBCrB ii Γ=   
ii

iC 10 Θ+Θ= ,  

,5,...,2,1=i                       (8) 
 
where the symbol d→  denotes the convergence 

of probability measures, )(rBi  is a 14 ×  vector 

Brownian motion process with variance matrix 
''**2 )1()1( iii CC ΓΓ=Ω σ  and )(rB  is a 

vector Brownian motion with variance matrix 

4
2 Iσ . The subscript i  corresponds to the 

alternative (A.i), i = 1, ..., 5. 
Note that the rank of iC , ,5,...,1=i is 

the number of (seasonal) unit roots implied by 
the process (A.i), i = 1, ..., 5. In order to 
determine the number of cointegration relations 
between the quarters corresponding to every 
process (A.i), i = 1, ..., 5, it is necessary to 
subtract from the periodicity of the quarterly 
data, that is 4, the rank of the matrix iC , 

5,...,1=i . Equation (8) may be rewritten more 
precisely by identifying the stochastic processes 

,5,..2,1),( =irBi  on the grounds that there is 

always cointegration among the quarters of the 
time series (see del Barrio Castro, 2007, p.915). 
Limit Theory of the Kunst Test Under 
Nonstationary Alternatives 
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The following lemma can be directly 
deduced from the preceding result of del Castro 
Barrio (2007) and lemma A.1 of Osborn and 
Rodrigues (2002). 
 
Lemma 

Supposing that the DGP of ty  in (1) is 

given by the alternatives (A.1)-(A.5) and also 
that the vector ,),,...,( 41 nee nn ∀  satisfies 

assumption 1 of Phillips (1986, p.313), then 
under the null of the Kunst test is ∞→T  
 
(a)  
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− σ
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(e)  

),()(
4

''1

0

'
2

1

1 rdBMHMrByT ikid

T

t
tkt  →

=
−

− σ
ε

  
 

,4,...,1=k  ,5,...,2,1=i  
 
where 

)',,,( 4321 nnnnn εεεεε =  

 
and 

*
i iM C .= Γ                         (1) 

 
The matrix ,kH  ,4,3,2,1=k  is a 

particular permutation matrix order 4 which 
produces the following elementary operations: 
let a matrix K  have 4 lines, the operation 

KH1  moves the last row of K  to the top row 

of KH1  and the other rows move down one 

place. More generally, KH i  shifts the final ith 

rows to the top of the matrix while the remaining 
rows correspondingly move down; note that 

44 IH =  (see Golub & Van Loan, 1996, p. 109-

112, for details). The OLS estimator α̂  of the 

vector '
321 ),,,( δαααα =  defined in Equation 

(1) satisfies under the null of Kunst test the 
asymptotic results represented by the following 
theorem. 
 
Theorem 

If that the DGP of ty  in (1) is given by 

one of the alternatives (A.1) - (A.5), then: 
 
(a)  

,)ˆ(
4

1 fFT
d

−→− αα
 

 
(matrices for F and f are shown in Figure 1); 

 
(b) The Student statistic 

i
tα̂  corresponding to 

the ith component of vector α̂  satisfies the 
following result: 

 

2/11

1

ˆ
))((

)(

ii

i
d F

fFt
i −

−

→α ; 

and 
 
(c) The F-type statistic of Kunst test verifies: 
 

fFfF d
1'*

ˆ,ˆ,...,ˆ 31

−→δαα . 

 
 



F-TESTS FOR SEASONAL UNIT ROOTS UNDER NON-STATIONARY ALTERNATIVES 

128 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proof 

Before showing the proof of result (a) of 
the theorem, consider the properties of the 
matrix F: the elements of the main diagonal of F 
are all equal and the elements of F along each 
diagonal line parallel to the principal diagonal 
are equal, thus, F is a Toeplitz matrix. Toeplitz 
matrices belong to the larger class of 
persymmetric matrices. A square matrix B of 
order n is persymmetric if it is symmetric about 
the northeast-southwest diagonal, that is, 

1,1 +−+−= injnij bb  for all i  and .j  Moreover, 

from the properties of the matrices ,kH  

,4,3,2,1=k  it can be shown that the matrix F is 
also symmetric. Equation (1) can be written in 
matrix form: 
 

,εα += XY                         (9) 
where 
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In addition, εαα '1' )(ˆ XXX −=− , 
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Also: 
T

X
T

XXT εαα
'

1
2

'

)(
4

1
)ˆ(

4
−=−  and, due to 

parts (c), (d) and (e) of the preceding lemma and 
the fact that ,44 IH =  the result of the theorem 
holds. 
The asymptotic distributions of Student statistics 
corresponding to the parameters of Equation 1 
can be deduced from result (a) of the theorem. 
To prove result (c), the F-type statistic of Kunst 
can be written as follows: 

,ˆ])[(ˆ '12'*
ˆ,ˆ,...,ˆ 31

ααδαα XXSF −=  where 2S  is 

the OLS estimator of the residual variance in 
Equation (1). The (Toeplitz) circulant matrix F 
and its inverse are symmetric, consequently 
result (c) holds and the theorem is proved. 

Empirical quantiles of the Kunst test for 
the processes (A.1)-(A.5) were generated and 
associated with nominal levels 90%, 95% and 
99%. The sample size considered is 4,000 (1,000 
years) with 20,000 replications; it has been 
shown that these empirical quantiles tend to be 
infinite (these results are not presented, but are 
available upon request). Consequently, it is 
possible to predict that in 100% of cases the null 
hypothesis will be rejected for the processes 
(A.1)-(A.5) for nominal levels of 5% and 1%. 
Table 1 shows the rejection frequencies for a 
sample size of 100 (25 years) and 20,000 
replications. All simulations were conducted 
using the software Matlab. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition, augmented regression (1) 
corresponding to the Kunst test was carried out 
by lagged values of the independent variable, 
thus, this regression becomes 
 

,...
1

4433114 tit

p

i
tttt yyyyy εδαα +Δ++++=Δ −

=
−−− 

.,...,1 Tt =                       (10) 
 

Table 2 reports the power of the 
augmented Kunst test against the nonstationary 
alternatives (A.1) - (A.5). Results in Table 2 
show that perfect power is maintained across all 
the alternatives (A.1) - (A.5) even if the number 
of lagged terms of the dependent variable 
increases. At this level, a slight exception to this 
general finding was detected for the alternative 
(A.5) and for p = 4 or p = 6. Particularly, and for 
this alternative, the exception is much clearer for 
p = 6 and the nominal level 1%. In fact, the test 
power decreases and reaches a value of 
approximately 66%. 
 

Conclusion 
A large amount of literature on testing for 
seasonal unit roots has appeared during the last 
two decades. However, the majority of 
econometricians treating this topic have bent 
over backwards to give the limit theory of the 
tests for unit roots at the zero, Nyquist and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Empirical Rejection Frequencies of Kunst Test under Nonstationary Alternatives 
 

Kunst Test 

Processes 

(A.0) (A.1) (A.2) (A.3) (A.4) (A.5) 

*
ˆ,ˆ,...,ˆ 31 δααF  

Nominal Size 
5% 

0.095 1 1 1 1 1 

*
ˆ,ˆ,...,ˆ 31 δααF  

Nominal Size 
1% 

0.0158 1 1 1 1 1 

Number of replications: 20,000; Sample size 4N = 100 observations 
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harmonic seasonal frequencies by considering 
either an additional determinist component or a 
modified hypothesis set concerning the error 
terms which appear in the regression models 
associated with such tests. Seldom have works 
concerning this topic studied the power of 
seasonal unit roots against nonstationary 
alternatives. Ghysels, et al. (1994) studied this 
problem and, in a simulation study, they 
hypothesized that the DHF test may not separate 
unit roots at each frequency. Having enriched 
this analysis by a large sample investigation, 
Taylor (2003) found that the DHF statistics did 
not diverge to minus infinity when the DGP of 
the series is a conventional random walk. del 
Barrio Castro (2006, 2007) considered an 
extended set of nonstationary alternatives and 
studied their asymptotic effects on the DHF and 
HEGY statistics. 

This article extended the problem 
treated by Taylor (2003) and del Castro Barrio 
(2007) to the overall F-type tests for seasonal 
integration. It has been realized that the most 
renowned tests, that is, those of HEGY (1990) 
and Kunst (1997), are asymptotically related. 
For this reason, this research focused on 
asymptotic effects of the nonstationary 
alternatives, (A.1) - (A.5) on Kunst F-type test. 
To reach this goal, I had the circulant-matrix-
based approach introduced by Osborn and 
Rodrigues (2002) was chosen. Moreover, in a 
simulation study, it was found that the Kunst F- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
type statistic maintained high power when the 
totality of unit roots implied by the filter 

)1( 4L−  were not present. In addition, these 

high-power properties are preserved when the 
regression model of the test was augmented with 
lagged dependent variables. The approach 
adopted in this article can be applied to cases 
other than the quarterly one. To this aim, it is 
enough to write the adequate matrices iC  

defined from Equation (5) following the data 
observation frequency. 
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Fisher’s Exact Test for Misclassified Data 
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Fisher’s exact test is adapted to handle the misclassified data arising from comparing two binomial 
populations. The bias-adjusted odds ratio is proposed to account for misclassification errors. Its expected 
power depends in a nonlinear way on the true sensitivity and specificity of the classification method. The 
data taken from the no conviction rate of criminality for two types of twin populations was used to 
illustrate how to calculate true sensitivity and specificity and the expected power of the adjusted odds 
ratio. 
 
Key words: Fisher’s exact test, misclassification, power function, odds ratio, sensitivity, specificity. 
 
 

Introduction 
Fisher’s (1946) exact test is used when the 
sample size is less than five. However, the issue 
on how to adapt Fisher’s exact test if the data are 
misclassified has not been addressed. It is the 
aim of this article to adapt Fisher’s exact test to 
account for misclassification errors. 
 

Methodology 
Consider two independent binomial random 
variables X and Y with parameters ( Xn , Xp ) 

and ( Yn , Yp ), respectively, where both Xn  and 

Yn  are less than 5. A classical problem is to find 

an exact test for the null hypothesis H0: Xp  = 

Yp  against an alternative hypothesis H1: Xp  > 

Yp , or equivalently, H0: γ = 1 against H1: γ > 1, 
where γ is the odds ratio defined by (Fleiss, 
Levin & Paik, 2003) 
 

XY

YX

qp
qp

=γ ,                          (1) 
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Let the number of successes be x and y, 

respectively, among Xn  and Yn  subjects. 
Assume that among x and y successes there were 
possible misclassified cases. Before showing 
how to adapt Fisher’s exact test to deal with 
misclassified data, a depiction of Fisher’s exact 
test is provided. 

By conditioning that x + y = z is fixed, 
the [conditional] distribution of X = x is given 
by the extended (or non-central) hypergeometric 
distribution under the alternative hypothesis 
(Gart, 1971; Harkness, 1965; Levin, 1984) 
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where x = ),0max( Ynz − , …, ),min( Xnz , or 
the [conditional] distribution of Y = y is given 
by 
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where ),0max( Xnzy −= , …, ),min( Ynz . In 
practical applications, equation 2 is used if x < y; 
otherwise, equation 3 is used. Note that 
equations 2 and 3 were first introduced by Fisher 
(1935). Equation 2 (or 3) can be used to devise 
significance tests or confidence intervals on any 
value of γ. 

If x > y, then the p-value of Fisher’s 
exact test H0: γ = 1 against H1: γ > 1 is given by 
 


=

===−
z

yk
zkYvaluep )1;|Pr( γ ,     (4) 

 
where )1;|Pr( == γzkY  is given by equation 
3 which yields an ordinary hypergeometric 
distribution as follows: 
 

1

0 1

X Y

X Y

n n
z y y

Pr(Y y | z; ) ,
n n

z
y , ,...z,

  
  −  = γ = =

+ 
 
 

=

, 

(5) 
 
on which the Fisher-Irwing exact test is based. 

For small frequencies, the critical value 
of Y has been provided by choosing yc for one-
sided alternatives ( YX pp > ) such that 
 

αγ ≤===≤ 
=

cy

y
c zyYzyY

0

)1;|Pr()|Pr(  

and 
 

α>+≤ )|1Pr( zyY c .                (6) 

 
For nominal levels of significance α = 0.05, 
0.025, 0.01, 0.005, xc has been tabulated for 

25≤≤ XY nn  (Bennett & Hsu, 1960). For two-

sided alternatives ( YX pp ≠ ), the tabular exact 
probabilities are doubled accordingly. 

If x > y, the (conditional) power function 
of the exact test is then given by 
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,            (7) 

 
where 

),0max(1 Xnzz −=  
and 

),max(2 Ynzz = . 
 
Note that )|( zγβ  of equation 7 is a rational 
function in γ, that is, a ratio of two polynomial 
functions in γ. 

If x > y, the expected power of the exact 
test is given by 
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(8) 

 
where )Pr( zZ = representing the distribution of 
Z is given by 
 

X Y

U
x Yn z i n iz i i

X X Y Y
i L

n n
Pr( Z z ) p q p q ,

z i i
− + −−

=

   
= =    −   


(9) 

 
where ),0max( XnzL −= , ),min( YnzU =  
and the summation in z is over all significance 
pairs of points on the diagonals, z = x + y, in the 
(x, y) sample space at level of significance 
equals to α at most (Bennett & Hsu, 1960; 
Casagrange, Pike & Smith, 1978a). To facilitate 
a calculation of the expected power of equation 
7 a FORTRAN program was written by 
Casagrange, Pike and Smith (1978b). If 

YX nn = , Conlon & Thomas (1993) presented 
an algorithm which was feasible for very large 
sample sizes. 
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If classification errors exist on the 
number of successes for both X and Y, the 
question becomes how to test the hypotheses 
previously postulated. Let E* be the surrogate 
classification variable for E and let Zϕ  and Zψ , 
Z = X, Y, be the sensitivity and specificity for 
classifying the status of the outcome among 
samples from the case and the control 
populations, respectively, that is, for Z = X or Y, 
 

)1|1Pr( * === EEZϕ , 
and 

( 0 0)*
Z Pr E | E .ψ = = =            (10) 

 
It is known that, for the unknown Xp  and Yp , 
the following maximum likelihood estimators 
are no longer unbiased: 
 

XX nxp /ˆ =  and YY nyp /ˆ = ,       (11) 
 
assume that ),(~ˆ ZZZ pnBinomialp  for Z = 
X, Y. The crude odds ratio (COR) defined by 
 

XY

YX

qp
qp
ˆˆ

ˆˆ
ˆ =γ ,                     (12) 

 
as a point estimator for the true odds ratio γ of 
equation 1 can have substantial bias (Kleinbaum, 
et al., 1982). 

To account for the misclassification 
bias, the bias-adjusted [point] estimators for the 
prevalence of success/failure Zp  and Zq  are 
given by (Lee, 2009) 
 

ZZZZ qp Δ−= /)ˆ(ψ  
and 

ZZZZ pq Δ−= /)ˆ(ϕ ,             (13) 
 
where ZZ pq ˆ1ˆ −= , Z = X, Y, and ZΔ  is given 
by 

1−+≡Δ ZZZ ψϕ .                (14) 
 
Conditioned on that Zϕ  and Zψ  are given, it is 
easily shown that equation 13 is an unbiased 
estimator for Zp  and Zq , respectively. The 

bias-adjusted estimators Zp  and Zq  (equation 

13) are said to be plausible if Zp  and Zq  lie 

between 0 and 1. In order for Zp  and Zq  to be 
plausible, the following constraints are imposed: 
for Z = X, Y, 
 

ZZ p̂>ϕ , ZZ q̂>ψ  and 0>ΔZ .     (15) 
 
A set of Zϕ  and Zψ  is said to be feasible if 
equation 15 holds. Furthermore, a set of feasible 

Zϕ  and Zψ  is said to be admissible if for these 

feasible Zϕ  and Zψ , Zp  and Zq  are plausible. 
The bias-adjusted odds ratio (BAOR) 

for γ which accounts for misclassification bias is 
then given by 
 

X Y

Y X

X X Y Y

X X Y Y

p q
p q

ˆ ˆ( q )( p )
ˆ ˆ( p )( q )

⋅γ =
⋅

ψ − φ −=
φ − ψ −

,         (16) 

 
and its asymptotic variance is given by 
 


Δ

=
=

Y

XZ ZZZ
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qp
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2)(

)ˆvar(
))var(ln(γ ,     (17) 

 
where )ˆvar( Zp  is given by 
 

1 1Z Z Z Z Z Z
Z

Z

( p )( q )ˆvar( p )
n

Δ + − ψ Δ + − φ= . 

(18) 
 
Using equations 16-17 to find a 100%×(1 – α) 
confidence interval (LCL, UCL) for the true γ 
(equation 1), where LCL and UCL are 
abbreviations denoting for lower and upper 
confidence limit, respectively, and 0 < α < 1 as 
follows: 
 
(LCL, UCL): =  

)))var(ln()exp(ln(
2

1
γγ α ×−z .     (19) 

 
Note that Fisher’s exact test, which accounts for 
misclassification errors, is exactly the same as 
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that shown previously, that is, the p-value for the 
significance test of H0: γ = 1 against H1: γ > 1 
does not depend upon the sensitivity and 
specificity of the classification method at all. 
But the conditional power of equation 7 or the 
expected power of equation 8 at γ = γ depends 
on the sensitivity and specificity of the 
classification method for both populations. 
 

Results 
The Lange’s data on criminality among twin 
brothers/sisters of criminals (Fisher, 1946) was 
used for analysis. Table 1 shows the numbers of 
twin brothers/sisters of criminals who have been 
convicted, separately for dizygotic (= X) (but 
like-sexed) and monozygotic twins (= Y). 
Because YX pp ˆ13/315/13ˆ =>= , the phrase 
not convicted is taken as success. Inspection of 
Table 1 shows x = 13, y = 3, 15=Xn , and 

13=Yn . The COR of equation 12 was obtained 

as 7.21ˆ =γ  with p = 0.001 by using the SAS 
software with a specification to Fisher’s exact 
test (Stokes, Davis & Koch, 2000). As a result, 
the null hypothesis is rejected. This means that 
the deviation from proportionality in Table 1 is 
significant to provide evidence that criminality 
is more frequent among monozygotic twins of 
criminals than among dizygotic twins of 
criminals (Finney, 1948). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Suppose that classification error exists 
in the observed data shown in Table 1. Because 

validation data was not available and because it 
was not possible to know what true classification 
is, all possible re-arrangements of Table 1 were 
considered and then each re-arranged table was 
treated as if it were a true table. Thus, it was 
possible to calculate true sensitivity and 
specificity for both of the two populations. For 
the population of dizygotic twins, there are a 
total of 13 possible truly classified tables. 
Hence, in theory, there are a total of 13 possible 
pairs of true sensitivities and specificities for this 
targeted population. However, after checking the 
feasibility constraints (equations 14-15), only 
four pairs of sensitivity and specificity were 
feasible (Table 2). Similarly, five out of a total 
of eleven possible pairs of sensitivity and 
specificity were feasible for the population of 
monozygotic twins (Table 2). 

Because it was not possible to know 
which pair was the true sensitivity and 
specificity for either one of the two populations 
of twins, it was necessary to calculate the 
BAOR, γ  (equation 16), for all 20 (= 4×5) 
possible combinations of feasible pairs of 
sensitivity and specificity for the two targeted 
populations of twins. The calculation was 
organized as follows. One pair of feasible 
sensitivity and specificity was fixed from the 
population of dizygotic twins and then combined 
with all five pairs of feasible sensitivity and 
specificity for the population of monozygotic 
twins in order to calculate γ  (equation 16). This 
procedure was then repeated by changing only 
the pair from the population of dizygotic twins 
until all four feasible pairs were used (Table 3). 
As shown in Table 3, only three BAORs from 
the 2nd to the 4th entries were found to be 
significant for cases i-ii, whereas none of the 
BAORs were significant for cases iii-iv. If the 
COR is credible, then this implies that to under-
misclassify two or three pairs of dizygotic twins 
in the convicted category is implausible. If only 
one pair of dizygotic twins is over-misclassified 
(comparing case i with the correctly classified 
pair of dizygotic twins in Table 2), the COR (

7.21ˆ =γ ) over-estimated the true γ because the 
BAORs were 17.2 and 19.5 when one pair of 
monozygotic twins was under- and over-
misclassified in the convicted category, while 
under-estimated the true γ because the BAOR  

Table 1: Lange’s Data on Criminality among Twin 
Brothers/Sisters of Criminals 

 
Dizygotic 

(= X) 
Monozygotic 

(= Y) 
Row 
Total 

Not 
convicted 
(Success) 

13 3 16 

Convicted 
(Failure) 

2 10 12 

Column 
Total 

15 13 28 
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was 24.0 when two pairs of monozygotic twins 
was over-misclassified in the convicted 
category. Similarly, If only one pair of dizygotic 
twins is under-misclassified (case ii), the COR 
under-estimates the true γ because the BAORs 
were given by 22.2, 25.1, and 31.0 
corresponding to when one pair was either 
under- or over-misclassified or two pairs of 
monozygotic twins were over-misclassified, 
respectively. 

To calculate the expected power for 
either γ̂  (equation 12) or γ  (equation 16), the 
crude/bias-adjusted point estimator is substituted 
for ip  and iq , namely, the COR or BAOR for γ 

in equation 8; thus the expected power of 
equation 8 (Table 4) were obtained. Note that 
the results shown in the first row of Table 4 
correspond to the COR because the COR can be 
viewed as a special case of the BAOR with 
perfect classification, that is, both sensitivity and 
specificity equal to one. If 15=Xn , 13=Yn , 

and x = 13, then 6=cy  from the table of 

critical values for y (Finney, 1948; p. 154); this 
is used in determining all possible z-values in 
equation 8.  

The results of the expected power for 
the COR and six admissible BAORs are given in 
Table 4. It is not surprising to see that the COR 
has the highest expected power (= 0.45) because 
both the sensitivity and specificity equals one, 
whereas the expected power of the six BAORs 
varies. It seems that the expected power of the 
BAOR depends on the values of the sensitivity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and specificity: the higher the specificity across 
the board, the larger the expected power. Indeed, 
the expected power is higher for 

)8.0,96.0(),( =XX ψϕ  than for 

)6667.0,963.0(),( =XX ψϕ , that is, 0.40, 0.36, 
and 0.29 compared to 0.33, 0.29, and 0.23, 
respectively (see Table 4). Also, the larger 
expected power 0.40 (or 0.33) corresponds to the 
highest specificity ( 9524.0=Yψ ) for the 
monozygotic population. In terms of the type of 
misclassification the highest power corresponds 
to that exactly one pair of twins is under-
misclassified in the category of convicted for 
both populations. 
 

Conclusion 
Fisher’s exact test was adapted to handle a 
scenario where data are misclassified. The bias-
adjusted odds ratio was proposed to account for 
the misclassification errors. Because a validation 
sample is not available, all possible pairs of true 
sensitivity and specificity were calculated from 
the observed data by assuming that a true table is 
known. Although the p-value is not affected by 
the true sensitivity and specificity of the 
classification method, the expected power of 
Fisher’s exact test depends on these in a 
nonlinear way. The data regarding whether the 
no-conviction rate are the same between the 
dizygotic and monozygotic twins of 
brothers/sisters was used to illustrate how to 
calculate true sensitivity and specificity, the 
bias-adjusted odds ratio and their expected 
power accordingly. 

Table 2: Pairs of Feasible Sensitivity and Specificity for Two Types of Twins under the Assumption 
that True Classifications Are Known 

Dizygotic 
[ 867.0ˆ =Xp , 133.0ˆ =Xq ] 

Monozygotic 
[ 23.0ˆ =Yp , 77.0ˆ =Yq ] 

Convicted 
Xϕ  Xψ  

Convicted 
Yϕ  Yψ  

No Yes No Yes 

14 1 0.963 0.667 1 12 0.5 0.909 

12 3 0.960 0.800 2 11 0.8 0.952 

11 4 0.917 0.667 4 9 0.857 0.947 

10 5 0.870 0.571 5 8 0.75 0.889 

    6 7 0.667 0.824 
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Table 3: The Point Estimate, Standard Error of Logarithm of Adjusted Odds Ratio and 95% CI for 
20 Possible Combinations of True Sensitivity and Specificity of Two Twin Populations 

),( YY ψϕ  γ  )).(ln(. γes  LCL UCL 

(i) )667.0,963.0(),( =XX ψϕ  

(0.5, 0.909) 10.7 1.66 0.41 278.4 
(0.8, 0.952) 17.2 1.37 1.18 251.1 

(0.857, 0.947) 19.5 1.37 1.34 283.8 
(0.75, 0.889) 24.0 1.61 1.02 567.7 

(0.667, 0.824) 44.5 2.65 0.25 7993.5 

(ii) )8.0,96.0(),( =XX ψϕ  

(0.5, 0.909) 13.8 1.66 0.53 357.0 
(0.8, 0.952) 22.2 1.36 1.53 321.7 

(0.857, 0.947) 25.1 1.36 1.74 363.6 
(0.75, 0.889) 31.0 1.61 1.32 727.9 

(0.667, 0.824) 57.3 2.65 0.32 10271.6 

(iii) )667.0,917.0(),( =XX ψϕ  

(0.5, 0.909) 20.5 2.30 0.23 1869.6 
(0.8, 0.952) 33.2 2.10 0.54 2020.8 

(0.857, 0.947) 37.5 2.10 0.62 2284.9 
(0.75, 0.889) 46.3 2.27 0.55 3921.5 

(0.667, 0.824) 85.6 3.09 0.20 36497.9 

(iv) )571.0,87.0(),( =XX ψϕ  

(0.5, 0.909) 291.0 30.5 3.0×10-24 2.7×1028 
(0.8, 0.952) 469.8 30.5 5.1×10-24 4.3×1028 

(0.8571, 0.947) 531.6 30.5 5.8×10-24 4.9×1028 
(0.75, 0.889) 656.0 30.5 7.0×10-24 6.1×1028 

(0.667, 0.824) 1213.6 30.6 1.1×10-23 1.3×1029 
 
 

Table 4: The Expected Power of the Crude/Adjusted Odds Ratio 

),( XX ψϕ  ),( YY ψϕ  Xp  Yp  γ )|( zγβ  

(1.0, 1.0) (1.0, 1.0) 0.87 0.23 21.7 0.45 
(0.963, 0.667) (0.8, 0.952) 0.85 0.24 17.2 0.33 
(0.963, 0.667) (0.857, 0.947) 0.85 0.22 19.5 0.29 
(0.963, 0.667) (0.75, 0.889) 0.85 0.19 24.0 0.23 

(0.96, 0.8) (0.8, 0.952) 0.88 0.24 22.2 0.40 
(0.96, 0.8) (0.857, 0.947) 0.88 0.22 25.1 0.36 
(0.96, 0.8) (0.75, 0.889) 0.88 0.19 31.0 0.29 
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Although widely used to assist in evaluating the prediction quality of linear and logistic regression 
models, residual diagnostic techniques are not well developed for regression analyses where the outcome 
is treated as ordinal. The purpose of this article is to review methods of model diagnosis that may be 
useful in investigating model assumptions and in identifying unusual cases for PO and PPO models, and 
provide a corresponding application of these diagnostic methods to the prediction of proficiency in early 
literacy for children drawn from the kindergarten cohort of the Early Childhood Longitudinal Study 
(ECLS-K; NCES, 2000). 
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Introduction 
Although widely used to assist in evaluating the 
prediction quality of linear and logistic 
regression models, residual diagnostic 
techniques are not well developed for regression 
analyses where the outcome is treated as ordinal. 
For ordinal regression models, Hosmer and 
Lemeshow (2000) suggested recombining 
outcomes according to the ordinal structure of 
the data and applying residual strategies 
developed for binary logistic models, such as 
outlined in Pregibon (1981). This approach is 
useful in the investigation of the assumption of 
proportionality as well as for examination of 
unusual or extreme values via residual 
diagnostics and this article presents guidelines 
for proportional odds (PO) and non- or partial-
proportional odds (PPO) models. 
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Residual analyses provide rich 

opportunities for researchers to examine model 
fit and misfit, and require going beyond the 
results obtained through a direct application of a 
statistical model, the interpretation of parameter 
estimates or the summary statistics obtained 
from that model. Studies of residuals are 
becoming an important analytic process in many 
research situations, for example, when high-
performing or low-performing students or 
schools are selected for intensive investigation. 
Despite their importance, however, results are 
often presented in the research literature with 
little emphasis on or reference to the model 
residuals; readers are thus not always provided 
with a clear understanding of study findings. In 
the education field, it becomes particularly 
important to be able to reliably identify children 
(or schools, or teachers, or program participants, 
etc.) whose response or outcome may not be 
adequately represented by a particular derived 
model, because if such unusual cases can be 
discerned, attention may be directed to improve 
desired outcomes. 

Extensive outlines of useful residual 
analyses and diagnostic measures have been 
provided for logistic (Pregibon, 1981) and linear 
(Fox, 1991) regression models. In addition, 
Bender and Benner (2000) suggested some 
graphical strategies that can be used to examine 
the feasibility of the proportional odds 
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assumption. However, analysis of residuals for 
PO and PPO models in ordinal logistic 
regression is not well established; thus, this 
study was designed to build on the collection of 
strategies available through logistic and linear 
approaches. Specifically, these include: Pearson 
residuals, Deviance residuals, Pregibon 
leverages, DFBeta’s and the use of index plots 
and other graphical strategies to examine and 
isolate unusual cases within the logistic 
framework. The use of Mahalanobis’ distance, 
leverages, SDResiduals, Cook’s D and other 
statistics from the ordinary least-squares 
framework, when applied to ordinal data are also 
investigated. 

This study contributes to the empirical 
literature on detection of extreme or unusual 
cases, investigation of statistical assumptions 
and validation of ordinal regression models by: 
reviewing methods of model diagnosis that may 
be useful in investigating model assumptions, 
identifying unusual cases for PO and PPO 
models and providing a corresponding 
application of these diagnostic methods to the 
prediction of proficiency in early literacy for 
children drawn from the kindergarten cohort of 
the Early Childhood Longitudinal Study (ECLS-
K; NCES, 2000). The primary focus is on how 
outlying or influential cases in ordinal logistic 
regression models can be reliably detected and 
on how these strategies can be applied to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

proportional and/or partial proportional odds 
models. 
 
Background 

One of the most commonly used models 
for the analysis of ordinal data comes from the 
class of logistic models: the PO model. Consider 
a simple binary model; in a binary logistic 
model, the data represent two possible ordinal 
outcomes, success or failure, typically coded 0 
for failure and 1 for success. For a K-level 
ordinal outcome, several different 
conceptualizations of success can be derived. 
Table 1 shows the  ECLS-K ordinal outcome 
variable description and the data indicating the 
proportion of kindergarten children, drawn from 
a national random sample of kindergarteners 
followed through the third-grade, attaining 
mastery of five hierarchical early-literacy skills 
at the end of the kindergarten year. In this 
example, K=6, and the outcome values are 
scored as 0, 1, 2, 3, 4 and 5, to represent the 
highest level of proficiency attained on the 
ECLS-K literacy mastery test (0 = no mastery at 
any level; 5 = mastered all 5 levels). For these 
data, 26.9% of the children were not able to 
achieve beyond level 1 at the end of the 
kindergarten year and only 12.8% of these 
children mastered literacy skills beyond level 3, 
most students scored in levels 2 and 3 (60.3%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Proficiency Categories and Frequencies (Proportions) for the Study Sample, ECLS-K 
Measures for Early Literacy and N = 2687 Public School Children, End of Kindergarten Year 

 

Proficiency 
Category 

Description Frequency 

0 Did not pass level 1 295 (11.0%) 

1 Can identify upper/lowercase letters 427 (15.9%) 

2 Can associate letters with sounds at the beginnings of words 618 (23.0%) 

3 Can associate letters with sounds at the ends of words 1003 (37.3%) 

4 Can recognize sight words 233 (8.7%) 

5 Can read words in context 111 (4.1%) 
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A particular series of questions are of 
interest when analyzing ordinal outcome data; 
these involve predicting the likelihood that an 
observation is at or beyond each specific 
outcome level given a collection of explanatory 
variables. For the ECLS-K data, this involves 
estimating the probability that a child with 
particular background characteristics or a given 
set of explanatory variables is at or beyond level 
0 (which would always be 1.0); then estimating 
the probability of that same child being at or 
beyond level 1, at or beyond level 2, etc., until 
reaching the probability of the child being at or 
beyond the last, or Kth, outcome category. This 
series of probabilities are referred to as 
cumulative probabilities. 

The analysis that mimics this method of 
dichotomizing the outcome, in which the 
successive dichotomizations are used to form 
cumulative splits to the data, is referred to as the 
proportional or cumulative odds model (PO) 
(Agresti, 2000, 2007; Armstrong & Sloan, 1989; 
Long, 1997; Long & Freese, 2006; McCullagh, 
1980; McCullagh & Nelder, 1989; O’Connell, 
2006; Powers & Xie, 2000). The model is 
defined as: 
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In this logistic model, the prediction represents 
the expected logit for being in category j or 
above, conditional on the collection of 
predictors, and Yj

’ represents the odds of being 
in higher proficiency categories. These predicted 
logits can be transformed to odds and then to 
estimated probability: 
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The intercept, αj, represents the threshold, or 
cutpoint, for each particular split to the data. 
Each person thus has K-1 predicted values, 
representing their estimated likelihood of 

scoring in category j or beyond, given their 
explanatory data. Note that in the PO model the 
effect of each predictor remains the same across 
each of these K-1 prediction models: This means 
that for each predictor, its effect on the 
probability of being at or beyond any category is 
assumed to remain constant within the model; 
thus, the slope estimate provides a summary of 
each independent variable’s relationship to the 
outcome across all cutpoints. In this model, b1, 
for example, remains the same for all of the 
splits, although αj may change. This restriction 
is referred to as the assumption of proportional 
odds. 

A model that relaxes the assumption of 
proportional odds is referred to as a partial-
proportional odds (PPO) or non-proportional 
odds model. This model is given by: 
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In this expression, all of the effects of the 
explanatory variables are allowed to vary across 
each of the cutpoints. If some of the effects are 
found to be stable, they can be held constant as 
in the PO model. Thus, partial-proportional odds 
refers to the case that at least one of the slopes 
for an explanatory variable varies across splits. 

Due to its simplicity and natural 
correspondence to ordinary logistic regression, 
the proportional odds model is the most widely 
used ordinal regression model. Tests for the 
assumption of proportional odds can be very 
liberal (Peterson & Harrell, 1990), however, and 
are strongly affected by sample size and the 
number of covariate patterns - which will always 
be large if continuous covariates are used 
(Allison, 1999; Brant, 1990; Clogg & Shihadeh, 
1994). Researchers have argued that if the 
assumption of proportional odds is rejected, 
good practice would dictate that the 
corresponding underlying binary models be fit 
and compared with the PO results to check for 
discrepancies or deviations from the general 
pattern suggested by the PO model (e.g., 
Allison, 1999; Bender & Grouven, 1998; Brant, 
1990; Clogg & Shihadeh, 1994; Long, 1997; 
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O’Connell, 2000, 2006). This strategy of 
considering the PO model as a collection of 
underlying binary models is an approach that has 
been found useful not only in qualifying the 
nature of the proportionality assumption, but 
also in assessing univariate proportionality, 
linearity in the logit, and the distribution of 
residuals from the PO model (O’Connell, Liu, 
Zhao & Goldstein, 2004). 
 

Methdology 
Sample 

The data were drawn from the public-
use data base Early Childhood Longitudinal 
Study-Kindergarten Cohort (ECLS-K) (NCES, 
2000). The outcome variable of interest was 
proficiency in early reading, assessed at the end 
of the kindergarten year. Actual data were used 
rather than simulated data, because this could 
help create a realistic context for conducting 
residual analyses. 

The final sample included n = 2687 
public school children sampled from within 198 
public schools across the U.S. The sample 
contained first-time kindergarten children only, 
who remained in the same school between 
kindergarten and first-grade. Analyses 
intentionally ignored school-level effects in 
order to focus on residual diagnostics for single-
level models (only public schools were selected 
for this study). Analyses were conducted for the 
full sample as well as for 10 different randomly 
selected subsamples of 10% each to facilitate 
use of casewise statistics and plots. 

Residual analyses are often very 
intensive, thus, for demonstration purposes, two 
of the smaller subsets were selected to highlight 
interesting patterns and residual statistics within 
each data set. No attempt was made to draw 
inference to the overall sample or population; 
rather focus was placed on demonstration of 
diagnostic procedures and strategies for ordinal 
data. 

The proficiency outcomes were obtained 
from the third-grade release of the ECLS-K data 
base (prior to that, researchers used a series of 
dichotomous variables to derive the ordinal 
proficiency scores). Proficiency is defined as 
mastery of a cluster of 4 items representing each 
of the domains outlined in Table 1. The domains 
are hierarchically structured and theoretically 

assumed to follow the Guttman scale (NCES, 
2000). Mastery is recognized as students passing 
3 out of the 4 items representing each domain. 

The selection of explanatory variables 
was theoretically driven and supported through 
prior research on factors affecting early 
childhood literacy. These included: gender (male 
= 1), minority status (minority = 1), whether the 
child attended half-day kindergarten (yes = 1), 
number of family risks (0 to 4), frequency with 
which parents read books to child (0 to 3), 
family socio-economic status (continuous), and 
assessment age (continuous). The data presented 
were from the end of the Kindergarten year. 
Tables 2a, 2b and 2c present descriptive 
statistics for the full-sample and the two sub-
samples, respectively. 
 
Data and Models 

The data were used to inspect the 
residuals from the PO model and test the 
assumptions of equal slopes. Residuals from an 
OLS regression of the same data as well as from 
the five corresponding cumulative binary 
logistic regression models (splits) underlying the 
proportional odds assumption (i.e., level 0 
versus beyond level 0; levels 0 and 1 combined 
versus beyond level 1; levels 0, 1, and 2 
combined versus beyond, etc.) were examined. 
Logistic regression diagnostics were 
investigated for each cumulative split to the 
data; these procedures were repeated for two of 
the 10% subsamples (referred to as Samples I 
and II). The study began by investigating the 
plausibility of the PO assumption in the full- and 
sub-samples. A PPO model was then fit where 
the effect of minority was allowed to vary across 
thresholds. 

The SAS (V. 9.1.3), SPSS (V. 15.0) and 
Stata (V. 9.0) software packages were used for 
data analyses and graphing. The options for 
residual diagnostics in logistic regression models 
were also compared among these packages. SAS 
PROC LOGISTIC procedure was used for 
binary logistic models and ordinal logistic 
models. SPSS was used for descriptive statistics, 
casewise residual diagnostics in OLS and 
ordinal regression, index plotting and some 
scatterplots. Stata was used for residual 
diagnostics. 
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Table 2a: Descriptive Statistics at the End of Kindergarten, n = 2,687 (Full-Sample) 
 Reading Proficiency Level 

 
0 

n = 295 
11.0% 

1 
n = 427 
15.9% 

2 
n = 618 
23.0% 

3 
n = 1,003 

37.3% 

4 
n = 233 
8.7% 

5 
n = 111 
4.1% 

Total n = 2,687 
100% 

% Male 55% 57% 47% 50% 43% 42% 50% 

% Minority 82.03% 51.05% 47.73% 33.40% 38.20% 32.43% 45.22% 

Risknum 
Mean 
(sd) 

1.48 
(1.07) 

.76 
(.90) 

.60 
(.82) 

.44 
(.72) 

.33 
(.62) 

.23 
(.53) 

.62 
(.87) 

Wksesl 
Mean 
(sd) 

−0.7080 
(0.64) 

−0.2678 
(0.67)  

−0.1017 
(0.72) 

0.1278 
(0.71) 

0.2679 
(0.72) 

0.68 
(0.75) 

−0.0446 
(0.77) 

% Halfday 58.98% 47.07% 48.87% 49.55% 41.20% 54.05% 49.50% 

% Readbk2 66.10% 74.47% 77.83% 84.85% 87.98% 98.20% 80.35% 

r2_kage 
Mean 
(sd) 

75.18 
(4.15) 

75.64 
(4.69) 

75.58 
(4.47) 

75.23 
(4.37) 

75.12 
(4.43) 

75.34 
(4.20) 

75.37 
(4.42) 

 
Table 2b: Descriptive Statistics at the End of Kindergarten, n = 244 (Sample I) 

 Reading Proficiency Level 

 
0 

n = 26 
10.7% 

1 
n = 32 
13.1% 

2 
n = 54 
22.1% 

3 
n = 108 
44.3% 

4 
n = 16 
6.6% 

5 
n = 8 
3.3% 

Total n = 244 
100% 

% Male 46% 66% 59% 53% 38% 38% 54% 

% Minority 73.08% 50.00% 55.56% 33.33% 37.50% 37.50% 45.08% 

Risknum 
Mean 
(sd) 

1.38 
(1.13) 

0.75 
(0.92) 

0.69 
(1.01) 

0.50 
(0.76) 

0.25 
(0.77) 

0.25 
(0.46) 

0.64 
(0.92) 

Wksesl 
Mean 
(sd) 

−0.8108 
(0.55) 

−0.2256 
(0.69) 

0.0057 
(0.70) 

0.1073 
(0.76) 

0.1019 
(0.71) 

0.2250 
(0.56) 

−0.0532 
(0.76) 

% Halfday 69.23% 46.88% 42.59% 49.07% 56.25% 50.00% 50.00% 

% Readbk2 69.23% 71.88% 77.78% 81.48% 93.75% 87.50% 79.10% 

r2_kage 
Mean 
(sd) 

75.74 
(4.53) 

75.44 
(3.24) 

75.81 
(4.93) 

74.57 
(4.30) 

74.44 
(3.94) 

77.95 
(4.64) 

75.18 
(4.37) 
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Results 
Interpretation of Proportional Odds for Full-
Sample (n=2678) 

The model including all seven predictors 
identified in Tables 2a, 2b, and 2c is referred to 
the full model. Table 3a provides a results 
summary for the fitted PO model with seven 
explanatory variables for the full-sample. The 
results were obtained using SAS with the 
descending option (see O’Connell (2006) for 
details on fitting ordinal regression models). The 
score test yielded χ2

32 = 131.53 (p < 0.0001), 
indicating that the proportional odds 
assumptions for the full-model was not upheld. 
This suggested that the effect of one or more of 
the explanatory variables was likely to differ 
across separate binary models fit to the 
cumulative cutpoints. The Cox & Snell R2= 

0.210, Nagelkerke R2= 0.219, and the likelihood 
ratio R2

L = 0.074 all suggested that the 
relationship between the response variable, 
proficiency and the seven predictors is small. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, the model fit statistic χ2

7 = 633.55 (p < 
0.0001), indicated that the full model provided a 
better fit than the null model with no 
independent variables in predicting cumulative 
probability for proficiency. 

Because the proficiency was measured 
through six categories with outcomes as 0, 1, 2, 
3, 4 or 5, with the descending option in SAS, α5 

corresponds to the intercept for the cumulative 
logit model for Y ≥ 5, α4 corresponds to the 
intercept for the cumulative logit model for Y ≥ 
4, and so on. The effects of the seven 
independent variables can be interpreted as how 
variables contribute to the log of the odds of 
being at or beyond a particular category. In 
terms of odds ratios, boys were less likely than 
girls to be at or beyond a particular category 
(OR=0.73). Being in a minority category 
(OR=0.649), the presence of any family risk 
factor (OR=0.649) and attending half-day 
kindergarten rather than full-day kindergarten 
(OR=0.695) all had significant negative 
coefficients in the model and corresponding  

Table 2c: Descriptive Statistics at the End of Kindergarten, n = 278 (Sample II) 
 Reading Proficiency Level 

 
0 

n = 23 
8.3% 

1 
n = 47 
16.9% 

2 
n = 65 
23.4% 

3 
n = 102 
36.7% 

4 
n = 27 
9.7% 

5 
n = 14 
5.0% 

Total n = 278 
100% 

% Male 57% 68% 58% 46% 56% 29% 54% 

% Minority 86.96% 44.68% 44.62% 25.49% 33.33% 42.86% 39.93% 

Risknum 
Mean 
(sd) 

1.39 
(1.12) 

0.66 
(0.87) 

0.41 
(0.66) 

0.45 
(0.78) 

0.19 
(0.40) 

0.07 
(0.27) 

0.51 
(0.81) 

Wksesl 
Mean 
(sd) 

−0.8191 
(0.50) 

−0.2296 
(0.53) 

0.0534 
(0.66) 

0.1488 
(0.70) 

0.2315 
(0.75) 

0.9864 
(0.81) 

0.0327 
(0.75) 

% Halfday 56.52% 51.06% 55.38% 50.00% 40.74% 42.86% 50.72% 

% Readbk2 65.22% 78.72% 78.46% 85.29% 85.19% 100.00% 81.65% 

r2_kage 
Mean 
(sd) 

74.62 
(3.84) 

75.12 
(4.92) 

75.20 
(4.16) 

75.81 
(4.07) 

74.94 
(4.83) 

75.20 
(3.77) 

75.34 
(4.27) 
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OR’s were significantly less than 1.0. These 
characteristics were associated with a child 
being in lower proficiency categories rather than 
in higher categories. Conversely, increasing 
frequency of parents reading to their children 
(OR=1.422) and family SES (OR=2.183) had 
positive  effects  on  children  being  in  higher 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
proficiency categories. The slopes for both 
variables were positive and significantly 
different from zero in the model; child’s 
assessment age was not associated with 
proficiency in this model because the slope was 
almost 0 and the OR is close to 1.0. 
 

Table 3a: Proportional Odds Model and OLS Regression Model for Full-Sample Data, 
n = 2687 Public School Children (Y > cat.j) 

Variable 

Proportional Odds Model 

OR 

OLS Model 

b (se(b)) b (se(b)) 

α5 -2.88 (0.62)   

α4 -1.59 (0.61)   

α3 0.58 (0.61)   

α2 1.74 (0.61)   

α1 3.02 (0.61)  2.64 (0.38) 

Genderδ −0.31 (0.07)** 0.730 −0.21 (0.04)** 

Minority −0.43 (0.08)** 0.649 −0.26 (0.05)** 

RiskNum −0.36 (0.05)** 0.695 −0.23 (0.03)** 

Halfday −0.48 (0.07)** 0.619 −0.27 (0.04)** 

Readbk2 0.35 (0.09)** 1.422 0.22 (0.06)** 

Wksesl 0.78 (0.06)** 2.183 0.48 (0.03)** 

R2_kage −0.001 (0.01) 0.999 0 (0.01) 

R2
 R2

L = .074  R2 = .218 

Cox & Snell R2 .210   

Nagelkerke R2 .219   

Somer’s D .386   

Model Fita χ2
7 = 633.55 (p < 0.0001)  F(7, 2679) = 106.76** 

Deviance 7869.82 (df = 13398) 0.5874c  

Pearson X2 13032.47 (df = 13398) 0.9727c  

Score Testb χ2
32 = 131.53 (p < 0.0001)   

Notes: δgender: male=1; aLikelihood ratio test; bFor the proportional odds assumption; 
cValue/df; *Significant at p < 0.05; ** p < 0.01 
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Interpretation of Proportional Odds Models for 
Sub-samples I and II 

Table 3b shows the results summary for 
the fitted PO model for sub-samples I (n = 244) 
and II (n = 278): both results were similar to that 
of the full-sample. An α = 0.05 was used to 
assess the hypothesis of proportionality. The 
score test for sub-sample I, χ2

28= 46.67 (p = 
0.0148), and the score test for sub-sample II 
χ2

28= 44.41 (p = 0.0253), were both statistically 
significant, indicating that the proportional odds 
assumptions for both sub-models were violated.  

The model fit statistic for sub-sample I, 
χ2

7 = 38.61 (p < 0.0001), and the model fit 
statistic for sub-sample II, χ2

7 = 71.67 (p < 
0.0001) indicated that the models with seven 
predictors provided a better fit than the null 
model with no independent variables. The Odds 
Ratios (OR) for the seven explanatory variables 
for sub-sample I and II looked similar, and were 
also similar to those of the proportional odds 
model for the full-sample. However, in the PO 
model for sub-sample I, it was noticeable that 
the effects of gender, minority and frequency of 
being read to by parents were not statistically 
significant; and the p value of the slopes of 
number of family risks and attendance at half-
day kindergarten were slightly larger than the 
0.05 level. In the CO model for sub-sample II, 
the effects of minority, half-day kindergarten 
and having parents read to their children were 
not significant. 
 
Assumption of Proportional Odds 

Table 4a shows the results of five 
separate binary logistic regression analyses for 
the full sample, where the data were 
dichotomized according to the cumulative 
probability pattern described earlier for the 
proportional odds model. Each logistic 
regression model estimates the probability of 
being at or beyond proficiency level j. In the 
data set, the grouping of categories coded 1 
corresponded to children who were at or beyond 
each proficiency category and 0 was coded for 
children below each successive category. The 
model χ2 for each separate logistic model was 
statistically significant, indicating that each 
model fit well compared to its corresponding 
null model. The Hosmer-Lemeshow tests were 

all not statistically significant, indicating that 
observed and predicted probabilities were 
consistent. 

Examining the patterns of slopes and 
ORs for each explanatory variable across these 
five logistic regression models, it was found that 
the effects of gender, after adjusting for the other 
predictors directionally and on average, were 
similar across the five separate logistic 
regressions. This was also true for family risk, 
family SES, half-day kindergarten, being read to 
by parents and the child’s assessment age. 
However, the effect of minority did appear to 
present a dissimilar pattern across the five 
separate logistic regressions. The direction of the 
effect of minority changed between the first 
three regressions and the last two. For the other 
explanatory variables, the direction and average 
magnitude of the slopes and the ORs from the 
logistic models were similar to those of the PO 
model.  

Because the proportional odds 
assumption for the full-sample ordinal model 
was violated, separate score tests unadjusted for 
the presence of other covariates in the 
cumulative odds model were examined for each 
of the explanatory variables, in order to 
illuminate where non-proportionality might lie. 
The univariate score tests for the assumption of 
proportional odds were upheld for gender and 
child’s assessment age. However, the univariate 
score tests were violated for minority, family 
risk, family SES, being read to by parents and 
half-day kindergarten at the 0.05 level of 
significance. The p-values for these unadjusted 
tests are presented in the final column of Table 
4a; it should be noted that these score tests are 
simply descriptive, given their univariate nature. 

Table 4b presents the results of five 
separate binary logistic regression analysis for 
sub-sample I, n = 244. The univariate score tests 
for the assumption of proportional odds were 
upheld for separate PO models for all the 
variables, except for the continuous variable of 
family SES (wksesl). The p values for these 
unadjusted tests are presented in the final 
column of Table 4b. However, minority as well 
as gender, half-day kindergarten attendance and 
frequency of being read to by parents all 
exhibited inconsistencies in the directional 
patterns across the binary splits. 
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Table 4c shows the results of five 
separate binary logistic regression analysis for 
sub-sample II, n = 278. Based on α =0.05, the 
univariate score tests for the assumption of 
proportional odds were upheld for separate PO 
models for these variables: gender, attending 
half-day kindergarten (halfday), having parents  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
read to their children (readbk2) and child’s 
assessment age (r2_kage). However, the score 
tests for the assumptions of proportional odds 
were violated for these three variables: being in 
a minority category (minority), number of 
family risks (risknum) and family SES (wksesl). 
The p-values for these unadjusted tests were 
presented in the final column of Table 4c. 

Table 3b: Subsamples I (n = 244) and II (n = 278): Proportional Odds Models (Y > cat.j) 

Variable 
Sample I Sample II 

b (se(b)) OR b (se(b)) OR 

α5 −1.78 (2.11)  −5.68 (2.00)  

α4 −0.60 (2.09)  −4.41 (1.99)  

α3 1.96 (2.09)  −2.35 (1.97)  

α2 3.08 (2.10)  −1.14 (1.97)  

α1 4.16 (2.11)  0.40 (1.98)  

Genderδ −0.29 (0.24) 0.750 −0.45 (0.22)* 0.638 

Minority −0.40 (0.28) 0.670 −0.38 (0.24) 0.681 

RiskNum −0.29 (0.15) a 0.752 −0.31 (0.16) * 0.733 

Halfday −0.45 (0.25) a 0.638 −0.33 (0.21) 0.716 

Readbk2 0.27 (0.30) 1.312 0.24 (0.29) 1.266 

Wksesl 0.58 (0.20) ** 1.793 0.94 (0.18) ** 2.552 

R2_kage −0.02 (0.03) 0.983 0.04 (0.03) 1.039 

R2
L 0.053  0.081  

Cox & Snell R2 0.146  0.227  

Nagelkerke R2 0.154  0.237  

Somer’s D 0.322  0.393  

Model Fitb χ2
7 38.61 (p < 0.0001)  71.67 (p < 0.0001)  

Deviance 688.63 (df = 1208) 0.5701d 813.11 (df = 1378) 0.5901d 

Pearson X2 1190.51 (df = 1208) 0.9855d 1221.86 (df = 1378) 0.8867d 

Score Testc χ2
28 46.67 (p = 0.0148)  44.41 (p = 0.0253)  

Notes: δgender: male=1; ap = 0.06 for risknum; p = 0.07 for halfday; bLikelihood ratio test; cFor 
the proportional odds assumption; dValue/df; *Significant at p < 0.05; ** p < 0.01 
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Table 4a: Associated Cumulative Binary Models for the CO Analysis (Descending) for the Full-sample, 
Where CUMSPj Compares Y < cat. j to Y > cat. j, n = 2687 

 

Variable 

CUMSP1 
b 

(se(b)) 
OR 

CUMSP2 
b 

(se(b)) 
OR 

CUMSP3 
b 

(se(b)) 
OR 

CUMSP4 
b 

(se(b)) 
OR 

CUMSP5 
b 

(se(b)) 
OR 

Score Testb 
P value 

Constant 
2.53 

(1.22) 
1.88 

(0.82) 
1.10 

(0.72) 
−1.77 
(1.04) 

−5.84 
(1.86) 

 

Genderδ 
−0.33 
(0.14) 
0.72* 

−0.44 
(0.10) 
0.64** 

−0.23 
(0.08) 
0.80** 

−0.40 
(0.12) 
0.67** 

−0.41 
(0.20) 
0.67* 

0.10 

Minority 
−1.21 
(0.18) 
0.30** 

−0.49 
(0.10) 
0.61** 

−0.47 
(0.09) 
0.62** 

0.11 
(0.13) 
1.12 

0.17 
(0.23) 
1.18 

0.001 

Risknum 
−0.50 
(.08) 

0.61** 

−0.33 
(0.06) 
0.72** 

−0.23 
(0.06) 

(0.79)** 

−0.35 
(0.11) 
0.70** 

−0.32 
(0.21) 
0.73 

0.001 

Wksesl 
0.94 

(0.13) 
2.57** 

0.83 
(0.09) 
2.29** 

0.73 
(0.07) 
2.08** 

0.79 
(0.09) 
2.19** 

1.12 
(0.14) 
3.08** 

0.001 

Halfday 
−0.85 
(0.14) 
0.43** 

−0.42 
(0.10) 
0.65** 

−0.37 
(0.09) 
0.69** 

−0.42 
(0.12) 
0.65** 

−0.12 
(0.20) 
0.89 

0.004 

Readbk2 
0.19 

(0.15) 
1.21 

0.25 
(0.11) 
1.28* 

0.37 
(0.11) 
1.45** 

0.60 
(0.21) 
1.83** 

2.00 
(0.72) 
7.40** 

0.043 

r2_kage 
0.19 

(0.15) 
1.02 

0.00 
(0.01) 
1.00 

−0.01 
(0.01) 
0.99 

0.00 
(0.01) 
1.00 

0.01 
(0.02) 
1.01 

0.47 

R2
L 0.237 0.134 0.105 0.088 0.134  

NaglekerkeR2 0.30 0.21 0.18 0.12 0.16  

Model χ2
7 441.26** 418.37** 389.97** 180.89** 124.18**  

H-La χ2
8 5.80 8.07 7.94 3.81 13.09  

Notes: δ gender: male=1; *Significant at p < 0.05; p < 0.01; aHosmer-Lemeshow test; bScore test for 
each IV, unadjusted (no other covariates in the model) 
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Table 4b: Associated Cumulative Binary Models for the CO Analysis (Descending) for Sub-sample I, 
Where CUMSPj Compares Y < cat. j to Y > cat. j, n = 244 

 

Variable 

CUMSP1 
b 

(se(b)) 
OR 

CUMSP2 
b 

(se(b)) 
OR 

CUMSP3 
b 

(se(b)) 
OR 

CUMSP4 
b 

(se(b)) 
OR 

CUMSP5 
b 

(se(b)) 
OR 

Score Testb 
P value 

Constant 
3.43 

(4.29) 
2.52 

(.2.84) 
4.26 

(2.45) 
−4.46 
(4.05) 

−15.79 
(6.68) 

 

Genderδ 
0.37 

(0.48) 
1.45 

−0.22 
(0.33) 
0.80 

−0.40 
(0.28) 
0.67 

−0.71 
(0.46) 
0.49 

−0.69 
(0.78) 
0.50 

0.38 

Minority 
−0.61 
(0.58) 
0.54 

−0.23 
(0.38) 
0.79 

−0.65 
(0.31) 
0.52* 

0.18 
(0.50) 
1.20 

0.27 
(0.84) 
1.31 

0.36 

Risknum 
−0.24 
(0.26) 
0.78 

−0.16 
(0.19) 
0.85 

−0.22 
(0.18) 
(0.80) 

−0.76 
(0.42) 
0.47 

−.71 
(0.71) 
0.49 

0.47 

Wksesl 
1.74 

(0.53) 
5.71** 

1.09 
(0.32) 
2.98** 

0.38 
(0.23) 
1.47 

0.13 
(0.36) 
1.24 

0.55 
(0.59) 
1.73 

0.01 

Halfday 
−1.66 
(0.54) 
0.19** 

−0.74 
(0.34) 
0.48* 

−0.30 
(0.28) 
0.74 

0.11 
(0.46) 
1.11 

0.01 
(0.77) 
1.01 

0.26 

Readbk2 
−0.11 
(0.59) 
0.89 

0.18 
(0.40) 
1.19 

0.23 
(0.35) 
1.26 

0.78 
(0.78) 
2.18 

0.07 
(1.14) 
1.07 

0.90 

r2_kage 
0.01 

(0.06) 
1.01 

−0.01 
(0.04) 
0.99 

−0.05 
(0.01) 
0.96 

0.03 
(0.05) 
1.03 

0.17 
(0.08) 
1.18 

0.13 

R2
L 0.265 0.127 0.082 0.072 0.104  

NaglekerkeR2 0.33 0.19 0.14 0.10 0.12  

Model χ2
7 43.83** 33.89** 27.73** 11.34 7.29  

H-La χ2
8 14.31 14.59 11.25 8.89 4.14  

Notes: δ gender: male=1; *Significant at p < 0.05; aHosmer-Lemeshow test; bScore test for each IV, 
unadjusted (no other covariates in the model) 
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Table 4c: Associated Cumulative Binary Models for the CO Analysis (Descending) 
for Sub-Sample II, Where CUMSPj Compares Y < cat. j to Y > cat. j, n = 278 

 

Variable 

CUMSP1 
b 

(se(b)) 
OR 

CUMSP2 
b 

(se(b)) 
OR 

CUMSP3 
b 

(se(b)) 
OR 

CUMSP4 
b 

(se(b)) 
OR 

CUMSP5 
b 

(se(b)) 
OR 

Score Testb 
P value 

Constant −4.16 
(4.50) 

−2.03 
(2.79) 

−2.09 
(2.26) 

−0.66 
(3.20) 

−13.56 
(284.9) 

 

Genderδ 
−0.02 
(0.53) 
0.98 

−0.63 
(0.32) 
0.53 

−0.62 
(0.26) 
0.54 

−0.26 
(0.36) 
0.77 

−0.97 
(0.67) 
0.38 

0.33 

Minority 
−1.41 
(0.71) 
0.24 

−0.42 
(0.34) 
0.66 

−0.71 
(0.29) 
0.49* 

0.42 
(0.39) 
1.53 

0.81 
(0.64) 
2.24 

0.00 

Risknum 
−0.14 
(0.29) 
0.87 

−0.23 
(0.21) 
0.80 

−0.08 
(0.20) 
(0.93) 

−1.00 
(0.44) 
0.37* 

−1.65 
(1.10) 
0.19 

0.04 

Wksesl 
2.60 

(0.73) 
13.43** 

1.24 
(0.32) 
3.44** 

0.71 
(0.21) 
2.04** 

0.82 
(0.25) 
2.23** 

1.59 
(0.42) 
4.91** 

0.00 

Halfday 
−0.49 
(0.54) 
0.61 

−0.23 
(0.31) 
0.98* 

−0.37 
(0.26) 
0.69 

−0.53 
(0.36) 
0.59 

−.47 
(0.62) 
0.62 

0.93 

Readbk2 
0.17 

(0.57) 
1.19 

−0.02 
(0.38) 
0.98 

0.25 
(0.35) 
1.28 

0.32 
(0.58) 
1.38 

11.60 
(284.8) 
1000.00 

0.65 

R2_Kage 
0.12 

(0.06) 
1.13 

0.05 
(0.04) 
1.06 

0.04 
(0.03) 
1.04 

−0.01 
(0.04) 
1.00 

−0.01 
(0.08) 
1.00 

0.77 

R2
L 0.351 0.163 0.112 0.121 0.297  

NaglekerkeR2 0.42 0.25 0.19 0.17 0.34  

Model χ2
7 55.70** 51.25** 43.08** 28.11** 32.94**  

H-La χ2
8 4.17 5.07 6.99 2.63 2.22  

Notes: δ gender: male=1; *Significant at p < 0.05; aHosmer-Lemeshow test; bScore test for each IV, 
unadjusted (no other covariates in the model) 



O’CONNELL & LIU 
 

151 
 

For comparison, Table 4d presents the 
p-values for univariate score tests of 
proportionality for each explanatory variable 
analyzed separately in a single variable model 
for the full-sample and for sub-samples I and II 
provided for SPSS, SAS and Stata. SPSS 
performs an approximation to the score test in 
their PLUM procedure (Nichols, 2004), so 
analysts should be aware of the possibility for 
discrepancies and differences in results between 
software packages.  

Given the large sample size, α = 0.01 
was used to evaluate the assumption of 
proportionality for these univariate tests for the 
full-sample. Consistent results were found 
across the three software packages for all 
explanatory variables except the frequency with 
which parents read books to children, for which 
p = 0.006 (SPSS), p = 0.0426 (SAS) and p = 
0.078 (Stata). However, for the two smaller sub-
samples, and using α = 0.05, it was found that 
the results of these univariate score tests (using 
SAS) varied across the sub-samples and were 
also inconsistent with the full-sample results. 
For example, the p-values of the score test for 
the minority variable was 0.3562 in the model 
for sub-sample I and 0.0031 for sub-sample II; 
the hypothesis of proportionality was rejected 
for the minority variable within the full sample 
(p < 0.0001). In addition, the effect of attending  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

half-day kindergarten was found to deviate from 
proportionality in the full sample, but this 
assumption was upheld in both of the smaller 
samples. 
 
Results of the Partial Proportional Odds (PPO) 
Model 

The discrepancy of results of the score 
tests between the full-sample and sub-sample 
analyses and across statistical packages presents 
a disheartening situation for the analyst 
attempting to assess the plausibility of the 
proportional odds model through score tests 
alone. These results support the view that 
investigation of proportional odds may be more 
reasonably investigated through visual 
examination of the variable effects and odds 
ratios of the binary models underlying the 
ordinal progression of the outcome data. 
Consequently, it was decided to fit a PPO model 
that relaxes the assumption of proportionality for 
the minority variable because this effect changed 
direction across cutpoints in all three analyses 
(full-sample, I and II). Results using SAS PROC 
GENMOD are shown in Table 4e for the full-
sample data. 

The outcome being modeled in this PPO 
analysis was the probability that a child was at 
or beyond category j, with the effect of minority 
being allowed to vary across the K−1 = 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4d: Score tests for Proportion Odds for each IV in the Model: Single Variable Models for the Full 
Sample and for Subsamples I and II. 

IV 
Full Sample, 
p-value SPSS 

Full Sample, 
p-value SAS 

Full Sample, 
p-value Stata 

Sample I 
p-value SAS 

Sample II 
p-value SAS 

Genderδ 0.101 0.1013 0.102 0.3792 0.3313 

Minority 0.000 < 0.0001 0.000 0.3562 0.0031 

Risknum 0.000 < 0.0001 0.000 0.4698 0.0440 

Halfday 0.004 0.0041 0.005 0.2643 0.8821 

Readbk2 0.006 0.0426 0.078 0.8969 0.6471 

Wksesl 0.000 < 0.0001 0.000 0.0119 0.0004 

R2_Kage 0.467 0.4700 0.445 0.1263 0.7706 

Notes: δgender: male=1 
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Table 4e: Partial Proportional Odds (PPO) Model for Full-sample, SAS (Descending) 
(Y≥cat. j), N = 2687 

 

Variable b (se(b)) OR 

Intercept -3.56 (0.63)** 0.03 

Gender (0) 0.34 (0.07)** 1.40 

Minority (0) 0.06 (0.21)  

Risknum -0.33 (0.05)** 0.72 

Wksesl 0.83 (0.06)** 2.29 

Halfday (0) 0.44 (0.07)** 1.55 

Readbk2 -0.34 (0.09)** 0.71 

R2_Kage 0.00 (0.00) 1.00 

Split 1 5.46 (0.18)** 6.69 

Split 2 4.42 (0.17)** 2.36 

Split 3 3.26 (0.17)** 0.74 

Split 4 1.39 (0.15)** 0.11 

Split 5 0.00 (0.00)** 0.03 

Split 1* Minority (0) 1.23 (0.26)**  

Split 2* Minority (0) 0.42 (0.22)  

Split 3* Minority (0) 0.35 (0.21)  

Split 4* Minority (0) -0.15 (0.18)  

Split 5* Minority (0) 0.00 (0.00) (see score test below)  

*p < 0.05; **p < 0.01; Gender: female = 0; Minority: no = 0; Halfday: no = 0 
 
 

Score Statistics for Type 3 GEE Analysis 
 

Variable Chi-Square p 

Gender χ2
1 =  22.54 < 0.0001 

Minority χ2
1 = 22.69 < 0.0001 

Risknum χ2
1 = 43.08 < 0.0001 

Wksesl χ2
1 = 158.61 < 0.0001 

Halfday χ2
1 = 35.83 < 0.0001 

Readbk2 χ2
1 = 14.38 0.0001 

R2_kage χ2
1 = 0.00 0.9734 

Split χ2
4 = 2132.14 < 0.0001 

Split *Minority χ2
4 = 60.86 < 0.0001 
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cutpoints while holding the other variable effects 
constant. Overall, only one intercept parameter 
was estimated (for the log-odds of a value being 
at or beyond proficiency level 5), but different 
estimates for each split were obtained which 
were used to modify the intercept value; and the 
split by minority interaction terms were used to 
determine how much the effect of minority 
changed across splits. In this analysis, the coding 
of categorical variables was internal to 
GENMOD; effects are shown in Table 4e for the 
lower value of the coded variables (for example, 
the effect for gender, I = 0.34, was the change in 
slope for females; this was the opposite of the 
slope in the PO model, where I = −0.31 for the 
change in slope for males). 

According to these results, the split by 
minority interaction terms were statistically 
significant for the first logit comparison 
(corresponding to P(Y ge 1)) and the last 
(corresponding to P(Y ge 5)), but not for the 
other splits. These results suggested that reliable 
differences existed in the effect of minority 
across the outcome levels of the ordinal model. 

Overall, when coding was taken into 
consideration for the effect of minority, the 
predicted logits were similar to those obtained 
from the separate binary regressions shown in 
Table 4a for the full-sample. Additionally, the 
slope effects for the remaining variables, which 
were held proportional in the analysis, reflected 
the values obtained through the PO analysis in 
Table 3a (after accounting for coding reversals). 
Thus, using the separate binary models to 
investigate the presence and impact of extreme 
or unusual scores made sense for both the PO 
and PPO model, as these binary models reflect 
what was expected in the data for each of the 
separate splits. 
 
Residuals in Ordinal Logistic Regression 

SAS, SPSS and Stata do not provide 
residual diagnostics for ordinal models. Hosmer 
and Lemeshow (2000) suggested considering 
each of the underlying models separately and 
applying residual methods for these binary 
logistic models in order to identify unusual or 
extreme observations. This approach mirrors the 
aptness of model investigations for the 
proportional odds assumption presented 
previously. 

Consider the residuals for these 
underlying cumulative binary models and in 
addition the OLS strategies that were used for 
preliminary analyses to examine whether that 
approach could assist in identifying unusual 
cases. Under the OLS framework, there are 
several commonly used measures to identify 
unusual cases. Mahalanobis’ distance is the 
distance for each case to the centroid of 
remaining cases (multivariate outliers). 
Leverages are the diagonal elements of the hat 
matrix in OLS; they are a transformation of 
Mahalanobis distance. Leverages flag cases are 
considered extreme in the X or explanatory 
variable space, where two or three times the 
average leverage can be considered large.  

However, cases with large leverage 
values may or may not be influential; that is, an 
observation may be unusual in terms of being 
outside an acceptable range relative to the other 
X values, but it may not affect the shape or 
direction of the regression function. Cook’s D 
assesses how influential each case is to the fit of 
the overall model. This measure considers what 
happens to the model when each case is 
removed, one at a time, from the overall model. 
A large Cook’s D value is determined in relation 
to values obtained from all the other cases. 
Generally Cook’s D statistics are plotted to 
identify any large jumps in the measures. 
Finally, when assessing outliers on Y, the 
outcome variable, a common statistic is the 
studentized deleted residual, or SDRESID. For 
SDRESID the change in residuals was examined 
when each case is removed, one at a time, from 
the model. 

Adjustments to the OLS statistics are 
required for logistic regression. Logistic models 
predict the probability that Y = 1 for a 
dichotomous dependent variable. The residuals 
obtained through a logistic regression are 
heteroscedastic (variance = πi(1 − πi)). 
Techniques similar to those used in OLS models 
have been developed for logistic regression in 
order to detect unusual or influential 
observations (Pregibon, 1981). The Pearson 
residual, deviance residual and Pregibon 
leverages are three main types of residual 
statistics commonly used for logistic regression 
diagnostics; however, many choices are 
available.  Table 5 presents the types of residual 
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diagnostics for logistic regression that are 
available in the three statistical software 
packages discussed here: SPSS, SAS and Stata. 
The corresponding mathematical form for each 
type of residual is also included in the table. 

The Pearson residual is the standardized 
difference between the observed and fitted 
values. Pearson residuals, ri are components of 
the summary χ2. SAS labels these residual 
components as reschi; SPSS labels it as zresid 
(normalized residuals); Stata provides residuals 
(Pearson residuals) and rstandard (standardized 
Pearson residuals). Pearson residuals can be 
computed using: 
 

( )
ˆ

ˆ ˆ1
i i i

i
i i i

y nr
n

− π=
π − π

                     (3) 

 
Where yi is the observed number of success; ni is 
the number of observations with explanatory 
variable xi; iπ̂  is estimated probability at xi. 

When the number of observations is 1, that is, ni 
= 1 (assuming a Bernoulli rather than binomial 
model), the Pearson residuals can be simplified 
as: 
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Deviance residuals capture the 

difference between the maxima of the observed 
and fitted log likelihood functions. Devi are 
components of the summary model deviance, D 
=−2LL. SAS labels this as resdev; SPSS labels it 
as dev; and Stata labels it as deviance. Deviance 
residuals are defined as: 
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Also when ni = 1, the formula can be simplified 
as: 
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Large values of ri or di suggest that the 
model does not fit that case well. The ri and devi 
are components of alternate tests for same null 
hypothesis tested based on the Chi-square 
distribution; that is, does the model fit as well as 
a saturated model of the data (i.e., one that 
perfectly reproduces the original data). Under 
the null hypothesis, the individual components 
are approximately normally distributed and it is 
expected that the summary value/df will be less 
than 1.0. However, neither the summary Pearson 
residual statistic nor the summary deviance 
residual statistic follows a Chi-square 
distribution when continuous explanatory 
variables are included in the model. Thus, the 
summary statistics are not appropriately used in 
that situation. When the data are sparse (i.e., 
with continuous IVs), this Chi-square 
distributional assumption is not upheld. 

Pregibon leverages (hat) are the 
diagonal elements of the hat matrix in logistic 
regression. They are used to measure the relative 
influence of an observation on the model fit. 
SAS labels these as h; SPSS labels them as 
lever; and Stata labels them as hat. Pregibon hats 
tend to be small when the estimated probability 
of observations is outside of the 0.1 to 0.9 
interval, because most extreme cases may also 
have small leverages (Hosmer & Lemeshow, 
2000). Therefore, Pregibon hats may not provide 
a good assessment of influential cases when the 
estimated probability of an observation is too 
small or too large. Pregibon leverages are 
defined as: 
 

( )
( ) ( )

11/ 2 1/2H=W X X’WX X’W
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−

= −
,      (7) 

 
where W is the diagonal weight matrix; and hii is 
the leverage or diagonal element of the hat  
matrix, H. 

It is also often more informative to 
consider how each case affects fit of the overall 
model. There are several approaches in logistic 
regression to measure the change in Chi-square 
fit, deviance fit, and in the estimated parameters 
when a single observation is removed from the 
model. These measures are similar to Cook’s D 
in ordinary least-squares regression. SPSS 
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provides a measure which is an analog of 
Cook’s D, and labels it Cook; SPSS only 
provides change in estimated parameters and 
labels it as dfbeta. SAS and Stata provide all 
three options. SAS labels the standardized 
difference in estimated parameters dfbetas, 
which is different from SPSS. SAS also provides 
two measures of the change in the confidence 
interval for the regression estimates when an  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

observation is deleted, and labels them C and 
CBAR. SAS labels the change in Chi-square fit 
as difchisq and change in deviance fit as dfdev. 
Stata labels the standardized change in 
regression coefficient as dbeta, the change in 
Chi-square fit as dx2, and the change in 
deviance fit as ddeviance. Descriptions of 
several of these statistics in SPSS, SAS and 
Stata are listed in Table 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Residual Diagnostics of Logistic Regression in SPSS, SAS and Stata 
 

Types Of Residuals Mathematical Formula SPSS SAS Stata 
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The Hosmer-Lemeshow test does not yield a 
residual measure, but it does inform about the fit 
of a model, particularly when continuous 
explanatory variables are included. The H-L test 
attempts to compensate for the presence of 
continuous variables and resulting sparseness of 
the data by aggregating across deciles of risk, 
which are formed by collapsing over 
observations with similar covariate patterns. 
However, this same strategy of aggregating by 
covariate pattern for residual diagnostic 
purposes may mask influential or poorly fit 
cases; therefore, researchers tend to rely on 
visual assessment rather than specific concrete 
measures or approaches, for identification of 
unusual cases. In addition, given the lack of 
informative distributional theory regarding many 
of the residual statistics discussed above, it may 
be more valuable to apply graphical strategies 
for observing and identifying unusual or 
influential cases within logistic and ordinal 
models. 

Many of these graphical approaches 
mirror what is available through OLS. For 
ordinary least squares regression, a graph of the 
observed dependent variable, y, versus the 
predicted dependent variable, y-hat, can be 
plotted. Observed and predicted outcomes in 
logistic regression are dichotomous; thus 
modifications are required – usually the 
resulting graphs are done at a casewise level. For 
logistic regression, index plots are enormously 
useful. Index plots display each residual 
diagnostic for a case against the case number. 
The resulting output can be unwieldy for 
samples with many observations and when 
multiple residual statistics are investigated; but 
visually, extreme or unusual cases can be readily 
detected. 

As a minimum, Hosmer and Lemeshow 
(2000) recommended plotting the change in Chi-
square fit versus the predicted probability (p-hat) 
of the dependent variable; change in deviance fit 
versus p-hat; and change in regression estimates 
versus p-hat. They pointed out that using the 
summary change statistic rather than the 
individual component values (ri or di, above) for 
each case visually emphasized the poorly fit 
cases. Because not all statistics are available in 
each statistical package, choices among possible 

graphs or plots have to be made depending on 
the options available. 
 
Residual Diagnostics Results 

With large data sets, the amount of 
output involved in graphical displays for 
diagnostic statistics can become unworkable 
very quickly. Thus, two smaller data sets are 
employed to demonstrate the use and 
interpretation of regression diagnostic statistics. 
OLS regression of the ordinal outcome was used 
on the collection of explanatory variables as an 
initial strategy to identification of unusual or 
poorly fit cases for both Samples I and II. A 
series of logistic regression models were then 
run for Samples I and II corresponding to the 
cumulative splits; residual statistics obtained 
from these five logistic models were used to 
identify unusual cases. Next, the use of index 
plots to visually display the residual statistics for 
a collection of diagnostic values derived from 
the logistic splits for Sample I (one sample was 
selected for demonstration of the index plots) 
was demonstrated. After reviewing the residual 
strategies and identifying the poorly fit cases, 
those cases identified as unusual by inspecting 
the original data were explored along with 
characteristics of the children in order to better 
understand who is potentially being poorly fit by 
the model. 
 
Ordinal Residual Diagnostics for Sample I 

Table 6a presents casewise statistics 
based on unusual cases identified through an 
OLS scatterplot of observed versus predicted 
values, OLS casewise diagnostics, and 
additional cases identified through the five 
sequential (cumulative) logistic models and 
corresponding index plots for Sample I (n = 
244). Figure 1 displays the OLS scatterplot of 
observed versus predicted values: several 
potentially unusual cases or outliers were 
observed in proficiency level 0, 3 and 5. From 
the scatterplot, nine cases were identified as 
unusual or poorly fit. The absolute values of the 
studentized deleted residuals (SDRESID) of 
these cases were mostly larger than or close to 2. 
For case number 1698 (ID = 0731010C) its 
Mahalanobis Distance was 39.23, which is very 
large, and the corresponding leverage value and 
Cook’s D for this case are also the largest among 
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those cases identified as outliers. This child was 
predicted to be in proficiency level 0.28 (via 
OLS), yet had actually scored in proficiency 
level 3. Visually, this case can be clearly 
identified as an outlier in Figure 1 for 
proficiency level 3. 

Table 6a shows statistics for two 
additional  cases  identified  through  the  OLS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

residual diagnostics options as having 
standardized deleted residuals (ZRESID) larger 
than our setting of 2.5 (2.5 was used instead of 
the default value of 3.0 to maintain consistency 
with the values used in the logistic regression 
procedure). Both children were in proficiency 
level 5 but were predicted to be in levels 2.16 
and 2.15 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6a: Casewise Diagnostics for OLS Model Sample I 
 

From Residual Diagnostics 
Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal 
Cook’s 

D 

2103 0936002C 5 2.16 2.84 2.60 .02 4.86 .02 

3414 3113018C 5 2.15 2.85 2.62 .03 7.71 .03 

 
From Scatterplot 

Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal 
Cook’s 

D 

351 0204016C 0 2.30 -2.30 -2.12 .04 10.87 .03 

665 0303004C 0 2.23 -2.23 -2.02 .02 4.81 .01 

946 0388016C 0 2.21 -2.21 -1.99 .02 3.83 .01 

1059 0443015C 0 2.58 -2.58 -2.35 .02 4.36 .02 

1571 0665018C 0 2.68 -2.68 -2.44 .02 3.77 .01 

1698 0731010C 3 0.28 2.72 2.69 .16 39.23 .17 

2343 1049011C 0 2.17 -2.17 -1.97 .02 4.82 .01 

2889 1271005C 0 2.04 -2.04 -1.85 .03 6.48 .01 

2952 1275024C 0 2.78 -2.78 -2.53 .02 4.20 .02 

 
Additional from Logistic Diagnostics and Plots 

Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal 
Cook’s 

D 

1917 0833003C 2 3.06 -1.06 -0.96 .02 4.15 .00 

3392 3105020C 4 1.89 2.11 1.96 .06 15.23 .03 

3114 3002012C 2 2.90 -0.90 -0.81 .02 5.39 .00 

1384 0609022C 3 1.70 1.30 1.21 .08 18.84 .02 

3078 2115003C 5 2.88 2.12 1.92 .02 3.88 .01 
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For comparison, the summary statistics 
of Table 6a include OLS for cases that were 
identified through the binary logistic models as 
being potential outliers: five additional cases 
were detected. The OLS statistics for these 
cases, however, do not indicate that these cases 
are unusual, with the exception of one large 
Mahalanobis’ distance value of 18.84 for Case 
No. 1384 (ID = 0609022C). 

Table 6b presents casewise diagnostics 
for the five cumulative binary logistic regression 
models (splits) for Sample I. Four cases (Case 
No. 1059, 1571, 1698 and 2952) were flagged as 
outliers for the first cumulative split based on 
SRESID greater than 2.5 (set greater than the 2.0 
default setting); one (Case No. 1698) was 
flagged as an outlier for the second cumulative 
split; no cases were identified in the analysis for 
the third cumulative split; two (Case No. 1917, 
and 3414) were flagged as outliers for the fourth 
cumulative split; and three (Case No. 2103, 
3392, and 3414) were flagged as outliers for the 
fifth cumulative split. 
 
Ordinal Residual Diagnostics for Sample II 

Table 7a presents casewise statistics 
based on unusual cases identified through an 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OLS scatterplot of observed versus predicted 
values, OLS casewise diagnostics, and 
additional cases identified through the five 
sequential (cumulative) logistic models and 
corresponding index plots for Sample II (n = 
278). Figure 2 displays the OLS scatterplot of 
observed versus predicted values; eleven 
potentially unusual cases or outliers can be 
observed in proficiency level 0, 4 and 5. 
Referring to Table 7a, only one of these eleven 
cases had a fairly large OLS Mahalanobis’ 
distance of 11.85; this child scored in 
proficiency level 4 but was predicted into level 
1.95. The statistics for the other 10 cases 
identified did not seem unusual. The absolute 
values of the studentized deleted residuals 
(SDRESID) of these cases were slightly larger 
than or close to 2. 

After running the OLS regression to 
request residual diagnostics, no additional 
unusual observations were identified. Only one 
case, Case 5, had already been identified through 
the review of the scatterplot; this case had a 
ZRESID value greater than 2.5. 

Table 7b presents casewise diagnostics 
for the five cumulative binary logistic regression 
models (splits) for Sample II. One case (Case 
No. 19) was flagged as an outlier for the first  

Figure 1: OLS Observed Versus Predicted Values for Sample I, n = 244 Public School Children 
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Table 6b: Casewise Diagnostics for Cumulative Splits, Sample I, n = 244 
 

 CUMSP1: P(Y ge 1)   CUMSP2: P(Y ge 2) 

Case 1059 1571 1698 2952  Case 1698 

CUMSP4 0** 0** 1** 0**  CUMSP5 1** 

Resid -0.959 -0.990 0.993 -0.978  Resid 0.973 

SResid -2.546 -3.044 3.197 -2.770  SResid 2.746 

Dev -2.525 -3.037 3.155 -2.756  Dev 2.689 

ZResid -4.823 -9.980 11.997 -6.607  ZResid 6.014 

DFB0 -0.401 -0.009 2.442 -0.706  DFB0 0.932 

DFB1 0.101 -0.137 -0.165 0.098  DFB1 -0.057 

DFB2 0.119 0.168 -0.270 0.185  DFB2 -0.113 

DFB3 -0.064 0.017 -0.055 0.025  DFB3 -0.017 

DFB4 0.002 0.258 0.026 0.241  DFB4 0.002 

DFB5 -0.008 -0.061 -0.060 -0.037  DFB5 -0.040 

DFB6 -0.204 -0.104 -0.970 -0.021  DFB6 -0.369 

DFB7 0.003 -0.004 -0.034 0.004  DFB7 -0.012 

 

 CUMSP4: P(Y ge 4)   CUMSP5: P(Y ge 5) 

Case 1917 3414 Case 2103 3392 3414 

CUMSP1 1** 1** CUMSP2 1** 1** 1** 

Resid 0.982 0.954 Resid 0.961 0.966 0.985 

SResid 2.883 2.521 SResid 2.595 2.628 2.943 

Dev 2.844 2.480 Dev 2.552 2.596 2.907 

ZResid 7.493 4.547 ZResid 4.996 5.296 8.204 

DFB0 0.671 0.594 DFB0 -0.018 3.052 2.649 

DFB1 -0.073 0.091 DFB1 -0.215 -0.207 0.331 

DFB2 -0.280 -0.081 DFB2 0.396 -0.353 -0.244 

DFB3 0.456 -0.066 DFB3 0.305 -0.043 -0.173 

DFB4 -0.145 0.115 DFB4 0.369 -0.388 0.313 

DFB5 0.136 -0.540 DFB5 0.146 0.183 -1.050 

DFB6 -0.043 -0.065 DFB6 0.101 -0.114 -0.229 

DFB7 -0.009 -0.001 DFB7 -0.004 -0.034 -0.022 

a S = Selected, U = Unselected cases, ** = Misclassified cases; b Cases with studentized residuals 
greater than 2.500 are listed; For CUMSP3: P(Y ge 3), the casewise plot is not produced because no 
outliers were found 
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Figure 2: OLS Observed Versus Predicted Values for Sample II, n = 278 Public School Children 

Scatterplot
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Table 7a: Casewise Diagnostics for OLS Model Sample II 
 

From Scatterplot 
Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal Cook’s D 

5 0023019C 5 2.25 2.75 2.56 .02 6.18 .02 

23 0110005C 5 2.66 2.34 2.17 .02 6.82 .02 

44 0285024C 0 2.06 -2.06 -1.91 .03 7.55 .01 

53 0345011C 5 2.50 2.50 2.32 .02 5.45 .02 

58 0377007C 5 2.80 2.20 2.03 .01 3.91 .01 

93 0601011C 5 2.94 2.06 1.90 .01 4.10 .01 

118 0729001C 4 1.55 2.45 2.27 .02 6.90 .02 

142 0841003C 4 1.98 2.01 1.87 .03 8.08 .01 

153 0890014C 0 2.29 -2.29 -2.11 .01 3.93 .01 

155 0935007C 4 1.95 2.05 1.91 .04 11.85 .02 

226 1273010C 4 1.87 2.13 1.97 .02 6.08 .01 
 

From Residual Diagnostics: None 
 

Additional from Logistic Diagnostics and Plots 
Case 
No. 

Child ID ProfrdK2 Predicted Residual SDRESID Lever Mahal Cook’s D 

19 0057012C 0 1.94 -1.94 -1.79 .03 7.66 .01 
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cumulative split; this case was overpredicted – 
that is, the observation was in level 0 but 
predicted to be at or beyond level 1. Case No. 
118 was flagged as an outlier for the fourth 
cumulative split, and was underpredicted (i.e., 
child scored in a higher category but was 
predicted into a category below 4). The third 
outlier identified was Case No. 5 at the fifth 
cumulative split; this child was also 
underpredicted. For comparison purposes, the 
OLS statistics for the one new case, Case No. 
19, is included in the bottom section of Table 7a. 
No additional unusual values were determined 
from the index plots for Sample II (demonstrated 
below for Sample I). 
 
Index Plots 

Using the separate binary logistic 
models to mimic the data patterns of an ordinal 
model yields five different regressions for a K = 
6 level ordinal outcome variable. Plotting each  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model’s residuals or diagnostic summary values 
against the case number can enhance the search 
for extreme or unusual values; however, there 
will necessarily be multiple plots for each binary 
split. 

Figure 3 contains a display of index 
plots for 8 residual measures: normalized 
residual, residual, deviance residual, logit 
residual, Cook’s analog, leverages, difference in 
deviance statistic and difference in the Pearson 
Chi-square statistic. These displays contain the 
value of the residual statistic on the vertical axis, 
and the case number horizontally. Strong peaks 
indicate extreme value in the residual score. In 
the first plot, it is easy to detect unusual scores, 
as noted in the Figure.  The three marked cases 
were previously identified in the residual 
analyses for Sample I. 

Figure 4 contains two of the plots 
recommended by Hosmer and Lemeshow 
(2000), namely, the change in Chi-square and 

Table 7b: Casewise Diagnostics for Cumulative Splits, Sample II Public School Children, n = 278 
 

 CUMSP1: P(Y ge 1)   CUMSP4: P(Y ge 4)   CUMSP5: P(Y ge 5) 

Case 19  Case 118 Case 5 

CUMSP1 0**  CUMSP4 1** CUMSP5 1** 

Resid -0.977  Resid 0.957 Resid 0.983 

SResid -2.776  SResid 2.532 SResid 2.880 

Dev -2.750  Dev 2.507 Dev 2.862 

ZResid -6.547  ZResid 4.706 ZResid 7.690 

DFB0 -0.984  DFB0 0.119 DFB0 1.714 

DFB1 -0.129  DFB1 0.052 DFB1 -0.112 

DFB2 0.370  DFB2 0.046 DFB2 -0.174 

DFB3 -0.052  DFB3 0.113 DFB3 -0.071 

DFB4 -0.127  DFB4 -0.055 DFB4 0.245 

DFB5 0.275  DFB5 -0.249 DFB5 0.188 

DFB6 -0.247  DFB6 -0.031 DFB6 -0.238 

DFB7 0.006  DFB7 0.000 DFB7 -0.021 

Notes: a S = Selected, U = Unselected cases, ** = Misclassified cases; b Cases with studentized residuals greater 
than 2.500 are listed; For CUMSP2: P(Y ge 2) and CUMSP3: P(Y ge 3) the casewise plots are not produced 
because no outliers were found 
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deviance fit statistics against p-hat. These graphs 
are a compilation of two curves, one 
representing Y = 1 (the downward curve, so that 
outliers are in the top left corner), and one 
representing Y = 0 (the upward curve, so 
outliers are in the top right corner). As illustrated 
in the first graph in Figure 4, previously 
identified cases are again indicated through  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

these index plots. The plots of change in the 
regression coefficients versus p-hat are not 
shown (with seven predictors and the intercept, 
there are eight graphs for each of the five 
logistic regression splits). Figures 5 through 12 
provide the same plots as above for the 
remaining four logistic regression splits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Index Plots for Diagnostic Statistics, Split 1 for Sample I 
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Figure 3 (continued): Index Plots for Diagnostic Statistics, Split 1 for Sample I 
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Figure 4: Change in Chi-Square and Deviance Fit against P-hat (Split 1), Sample I 
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Figure 5: Index Plots for Diagnostic Statistics, Split 2 for Sample I 
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Figure 6: Change in Chi-Square and Deviance Fit against P-hat, Split 2, Sample I 
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Figure 7: Index Plots for Diagnostic Statistics, Split 3 for Sample I 
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Figure 8: Change in Pearson and Deviance Fit against P-hat, Sample I, Split 3 
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Figure 9: Index Plots for Diagnostic Statistics, Sample I Split 4 
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Figure 10: Change in Chi-Square and Deviance Fit, Sample I Split 4 
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Figure 11: Index Plots for Diagnostic Statistics, Sample I Split 5 
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Figure 12: Change in Chi-Square and Deviance Fit, Sample I Split 5 
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Reviewing plots for residual analyses 
can be informative, but to match extreme or 
unusual observations in a plot to the original 
data can be time-consuming. In identifying the 
outliers in plots, SPSS does not label the cases 
directly; the analyst must use a two-step 
procedure (isolating the extreme value and 
matching that back to the original case). 
However, Stata has an option of adding labels to 
the points using the mlabel command. Figure 13 
displays the plots of change in Pearson Chi-
square against p-hat for five cumulative splits 
for Sample I using Stata. This option can 
facilitate easy identification of unusual cases 
from the plots. 
 
Characteristics of Children Misfit by the Model 

Investigation of the characteristics of the 
children who were identified as unusual, in 
terms of not being well represented by the model 
through at least one of the strategies employed, 
can ultimately help with understanding who the 
model is not providing a good fit for and why, 
and thus lead to development of better models 
that demonstrate stronger knowledge of the 
outcome for all persons. Tables 8 and 9 contain 
the values of the explanatory variables of 
interest for the collection of cases identified as 
unusual through the diagnostics applied to 
Sample I and Sample II, respectively. To 
summarize, for both samples, most identified 
children were female with SES below the 
standardized average of 0. 

In general, the model tended to under-
predict proficiency for some children who have 
theoretically assumed strikes against them, such 
as low SES or a large number of family risk 
characteristics. These cases tended to perform as 
well as or - in many cases - better than their 
peers. For example, child ID 0936002C (Case 
No. 2103) in sub-sample I is a female minority 
student who does not speak English at home and 
who attended half-day kindergarten rather than 
full-day kindergarten: this child’s parents read to 
her at least three times per week and her actual 
reading proficiency level is 5. The logistic 
models predicted her to be in a lower category, 
as did the OLS model (level 2). Thus, some high 
achieving children do not have their reading 
proficiency adequately captured by the current 
model or current set of predictors. 

Conversely, some children who have 
perceived theoretical benefits in their favor, such 
as higher SES or no family risk characteristics, 
performed less well than the model predicts. For 
example, child ID 1275024C (Case No. 2952) in 
sub-sample I is a female non-minority student 
without any family risk factor, who attends full-
day kindergarten, had parents read to her at least 
three times per week, and speaks English at 
home: this student’s actual reading proficiency 
level is 0, but she is predicted to be in level 3. 
 

Conclusion 
Although poor predictions are inevitable in any 
modeling situation, the concern is that the 
typically limited range of the dependent variable 
for ordinal (or logistic) regression models may 
lead to more systematic under- or over-
predictions relative to what might be expected 
with a continuous outcome. Identification of 
unusual cases or cases that are poorly fit by a 
particular model is only the first step in a 
residual analysis. After the cases are identified, 
the process turns towards understanding what 
characteristics of the collection of identified 
cases are associated with their corresponding 
under- or over-prediction from the model. This 
study has only examined the collection of data 
for the variables included in the models; it could 
be that a variable external to the model would 
better explain why some children are so strongly 
under- or over-predicted by the model. 

For the proportional odds and partial-
proportional odds model, the analysis of 
residuals was split into two components, given 
that residual analyses for ordinal regression 
analyses are not directly available. These were 
the OLS analysis of the ordinal outcome (treated 
as interval/continuous) and the analysis of 
residuals from the separate binary regression 
models forming the progression of the 
cumulative logit model. The latter approach has 
been advocated by many researchers (Hosmer & 
Lemeshow; 2000; Harrell, 2001; Long & Freese, 
2006), but it remains unclear how well these 
cases may be fit by a specific ordinal model. 
That particular model was only approximated in 
the approach taken herein. Other work has 
investigated quality of goodness-of-fit tests for 
ordinal and multinomial data (Fagerland, 
Hosmer & Bofin, 2008; Pulkstenis & Robinson,  
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Figure13: Change in Pearson versus P-hat using Stata, Sample I, 5 Cumulative Splits 
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2004). However, this study focused specifically 
on data diagnostics for ordinal outcomes, which 
constitutes a preliminary but necessary step in 
the determination of model fit. 

This article reviewed proportional odds 
model and partial proportional odds model and 
the use of some valuable strategies were 
demonstrated for identifying influential or 
unusual cases after fitting ordinal regression 
models. In particular, OLS strategies for 
preliminary residual detection were applied, 
followed by application of logistic regression 
diagnostics approaches for each cumulative 
binary model in the cumulative odds ordinal 
series. Results of these methods confirm that 
investigation of casewise fit to the proportional 
odds model can be very intensive.  

OLS strategies can be a good first step 
in the diagnostic process, but does it not capture 
some extreme or influential cases. Differences 
across statistical packages in terms of 
availability of options for residual diagnostics 
can limit the kinds of analyses a researcher has 
available, thus choice of statistical package 
should be made with full understanding of the 
procedures and statistics available. Further, it 
was demonstrated that index and change plots 
can yield important information about who is not 
being fit well by these model and these plots can 
augment findings from other residual strategies. 

Overall, it may be concluded that 
reliance on one method or approach to 
understanding residuals from an ordinal 
regression model can be very misleading to the 
researcher. Results from this study clearly make 
a case for the need to consider multiple 
strategies in determining quality of model fit – 
not just overall, but for individuals as well. 
Further studies and extensions to this research 
should consider the residuals obtained from the 
PO model based on predicted category (i.e., 
classification accuracy). In addition, it would be 
worthwhile to pursue the use of Monte Carlo 
techniques to examine residuals and to control 
over the nature of departure from the assumption 
of proportional odds or other model 
characteristics; for example, one question not 
answered in the current study is the degree to 
which outliers or extreme values affects the 
determination of the assumption of proportional 
odds. 

Substantively, it may be reasonable to 
consider separate models for cases that are not 
well-represented by a general population-type 
ordinal regression model. From a policy 
perspective, findings suggest that individual 
student performance or proficiency can be easily 
misunderstood, and in the current climate of 
accountability, the repercussions from such a 
situation can have great impact. The approaches 
and strategies presented here could be used to 
effectively argue for support for intervention 
programs, including gifted-education programs, 
or to support improved funding for special 
education or second-language acquisition 
programs. Only through residual diagnostics 
would the children who are left far behind, or 
who score far beyond their peers, be readily 
identified. 
 
Proposed Diagnostic Guidelines for Ordinal 
Regression Models 
 
1. Residuals from both OLS and Binary 

Logistic Models provide a good first look at 
the potential for influential or unusual cases 
from an ordinal model. 

 
2. OLS does not capture all the unique unusual 

values; neither do the corresponding binary 
logistic analyses. Thus, researchers need to 
be aware of the potential to miss important 
misfit cases and counteract this possibility 
by viewing/plotting as many different 
diagnostic statistics as possible, particularly 
for the binary models corresponding to a 
given ordinal approach (e.g.,  proportional 
odds) 

 
3. Graphical strategies, while extensive and 

often time-consuming, can tell the 
researcher more about their data than a 
single summary statistic. 

 
4. Researchers should make a commitment 

early on to include residual diagnostics in all 
their presented or published papers. It is 
easy to mislead oneself, one’s audience, and 
various research stakeholders when residual 
diagnostic strategies are ignored. 
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Factors Influencing the Mixture Index of Model Fit in Contingency Tables 
Showing Independence 

 
Xuemei Pan C. Mitchell Dayton 

IBM Global Business Services, 
Springfield, VA USA 

University of Maryland, 
College Park, MD USA 

 
 
Several competing computational techniques for dealing with sampling zeros were evaluated when 

estimating the two-point mixture model index, *π , in contingency tables under an independence 
assumption. Also, the performance of the estimate and associated standard errors were studied under 
various combinations of conditions. 
 
Key words: Mixture index, contingency tables, sampling zeros, standard error, Monte Carlo simulation. 
 
 

Introduction 
Traditional methods for evaluating models for 
contingency table data based on Chi-square 
statistics or quantities derived from such 
statistics are not attractive in many applied 
research settings. According to Rudas (1998), 
“First, when the model is not true, a comparison 
of the data to what could only be expected if it 
were is of very little meaning; second, the actual 
distribution of the statistic may be very different 
from the reference distribution if some of the 
underlying assumptions are violated” (page 15). 
In addition, conventional methods are sensitive 
to sample size; often a model is rejected when 
fitted to a large data set even though the model 
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may represent a reasonable summary of the data 
for practical purposes. 

In contrast to Chi-squared tests of fit 
methods, which rely heavily on size of the table, 
sample size and actual true probabilities (Rudas, 
1998), the RCL mixture index of fit proposed by 
Rudas, Clogg and Lindsay (1994), provides a 
novel way of representing goodness-of-fit for 
contingency tables. In contrast to classical 
significance tests, this index has an intuitive 
rationale and it does not assume a simple model 
that describes the entire population; the RCL 
index is also not sensitive to sample size like 
Chi-square-related quantities. Specifically, two 
components (subgroups) are assumed in the 
population. One of size 1−π , where some 
specified model H holds true, describes the 
fraction of the population that is consistent with 
model H (e.g., independence); the other 
component of size π , is completely unrestricted 
and represents the part of the population that is 
outside of model H. RCL also introduced an 
expectation-maximization (EM) algorithm to 

obtain maximum likelihood estimates of *π  and 
derived a way to construct a lower-bound 

confidence-interval estimate of π̂ ∗ . As 

summarized by Dayton (2003), π̂ ∗  possesses 
the following properties: 
 

1. π̂ ∗  is always located on the 0, 1 interval;  
 

2. π̂ ∗  is unique;  
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3. π̂ ∗  is invariant when frequencies in a 
contingency table are increased or decreased 
by a multiplicative constant. 

 
Properties and applications of the 

mixture index of fit are further explored in 
Clogg, Rudas and Xi (1995), Xi (1996), and 
Clogg, Rudas and Matthews (1997). The two-

point mixture index, *π , can be applied when 
models are fitted to virtually any contingency 
table. For example, it has been applied in 
differential item functioning (Rudas & Zwick, 
1997), latent class analysis (Dayton, 1999), 
regression models with normal and uniform 
error structures (Rudas, 1999) and logistic 
regression analysis (Verdes & Rudas, 2002). 

Issues concerning *π  require further 
examination exist because they have not been 
studied in RCL or in other related research. In 
particular: 
 

1. π̂ ∗  is positively biased in finite samples; 

that is, even if H holds so that, in theory, π ∗  

= 0, π̂ ∗  will have expectation greater than 
zero for finite samples.  

2. Sampling 0’s can greatly affect estimation 
so it is useful to study the effect of using 
flattening constants or redefining the model 
by regarding sampling zeros as structural 
zeros.  

3. Although the estimated lower confidence 

bound of π̂ ∗  introduced by RCL gives 
inferential information that is independent of 

bias, it tends to be problematic when π ∗  is 
close to zero or sample size is small; thus a 
parametric simulation seems to be necessary 

to examine this measure of precision for π̂ ∗ . 
(As an aside, SAS code written for this 
study makes these analyses more accessible 
to researchers in various disciplines.) 

 
Mixture Index of Fit 

Suppose H represents a hypothesized 
probabilistic model for a frequency table and P 
is the true distribution for the cell proportions in 
the table. The two-point mixture model is 
defined as: 
 

P = (1- πψπ +Φ)                    (1) 
 
where Φ  is the probability distribution implied 
by H, and ψ  is an arbitrary, unspecified 
probability distribution. The mixture parameter, 
π , defined on the 0, 1 interval, represents the 
proportion of the population that cannot be 
described by H. Note that π  is not unique and 
that the representation of P in equation (1) is 
correct for any model for any frequency table. 

The index of fit, *π , however, is defined as the 
smallest value of π  for which equation (1) 
holds; that is: 
 

{ }HP ∈+−== φπψφπππ ,)1(|inf*  
 
(Rudas and Zwick, 1997). Consequently, as 

shown by RCL, *π  is unique and represents the 
minimum proportion of cases that must be 
excluded from the frequency table in order for P 
to be fitted exactly by the model. 
 
EM Algorithm and Interval Estimation 

The procedure to estimate π̂ ∗  is as 
follows: 
 
1. Set the initial estimate, π̂ ∗  to zero;  
2. Obtain maximum likelihood estimates of the 

parameters in the components of the two-
point mixture using an expectation-
maximization (EM) algorithm as above, and,  

3. Successively increase π̂ ∗  by some small 
increment with re-estimation of the 
parameters at each step (e.g., .01 is been 
used the example below). 

 
The value of the likelihood ratio Chi-square fit 
statistic, G2, converges to zero (e.g., less than a 
convergence criterion set to <10-5) and the step 
at which this first occurs provides the final 

estimate of the fit index, π̂ ∗ . (Dayton, 2003; 
RCL). In addition, RCL implemented this 
approach in their FORTRAN program, Mixit, as 
described in detail by Xi (1994). As shown by 
RCL, an appropriate lower confidence 95% 

bound, ˆLπ , is given by the value of π̂  that is 

associated with a G2 fit statistic equal to 2.71 
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(i.e., the 90th percentage point of the one-degree-
of-freedom Chi-square distribution). 
 
Sampling Zeros 

According to RCL, the effect of 

sampling zeros on π̂ ∗  will depend on the 
structure of the data as well as the suitability of 

model H for the data. In general, π̂ ∗  will tend to 
be overestimated by a fraction that is directly 
related to the smaller of the observed row 
marginal proportion and the observed column 
marginal proportion pertinent to the cell with a 
sampling zero. Rudas and Zwick (1997) 
replaced zero frequencies with small positive 
flattening values in data from a study by Zwick, 
Thayer and Wingersky (1994) to investigate the 

sampling zero effect on the performance of π ∗ . 
Although they concluded that increasing the 
flattening value resulted in reducing 

overestimation for estimates of π ∗ , the effects 
were very small. 

Structural zeros, also called logical 
zeros (Knoke and Burke, 1980), arise when it is 
logically impossible to observe positive cell 
counts for particular combinations of row and 
column variables. To demonstrate structural 
zeros, a typical example of the logical 
impossibility of observing male obstetrical 
patients was presented by Fienberg (1980). In 
practice, researchers could evaluate the variation 

in π ∗  by setting cells with no frequency to 
structural zeros. 

 
Methodology 

Research Design 
The following aspects of the simulation 

were implemented: 
 
1. Sizes of two-way contingency tables were 

selected: 2× 2, 2× 3, 2× 4, 2× 6, 3× 3, 4× 4 
and 6× 6. These table sizes were chosen 
because they provided a reasonable range of 
contingency table sizes in real data settings 
and are typical of what is found in practice. 

2. Marginal distribution: evenly distributed, 
slightly dispersed and extremely dispersed 
distribution for each different table size. 
(Row and column total proportions for the 
various sized tables are shown in Figure 1.) 
These marginal distributions were chosen 

because they represented a reasonable range 
of different values, and the extreme 
marginal values were used to ensure zero 
cell frequencies in the observed tables. 

3. Sample size for simulated contingency table: 
5, 10, 20 and 30 per cell were chosen 
because they entailed a practical variety of 
sample sizes and were large enough to 
demonstrate a sample size effect on the 
mixture index of fit. 

4. Techniques for zeros cells: (A) treating as 
sampling zeros, (B) replacing with small 
flattening constants (0.1, 0.5 and 1 were 
used to represent extremely small, 
moderately small and small flattening 
constants range), and (C) redefining model 
H by regarding the sampling zeros as 
structural zeros.  

5. In each of the above scenarios, a 95% lower 
confidence limit based on empirically 

simulated π̂ ∗ s was calculated and compared 
with the lower limit estimate presented by 
RCL. 

 
For each table size, sample size and 

marginal distribution, 1,000 frequency tables 
were randomly generated based on the specified 
cumulative distribution. For example, for a 2× 2 
table with sample size of 10 per cell and 
marginal distribution {P1+=. 9, P2+=. 1, P+1=. 9, 
P+2=. 1}, the theoretical cumulative distribution 
is {0.81, 0.90, 0.99, 1}.  

To generate each of the 1,000 simulated 
data tables, SAS code (SAS Institute, 2005) was 
used to generate 40 uniform random numbers on 
the 0, 1 and to locate them into appropriate 
cumulative categories (e. g., numbers less than 
or equal to 0.81 were placed in cell 1, 0.81; 
numbers between 0.81 and 0.90 in cell 2; 
numbers between 0.90 and 0.99 in cell 3 and the 

remainder in cell 4.) The value of π̂ ∗  and 

associated 95% lower bound ˆLπ  following RCL 

was obtained for each generated data table; thus 

for each scenario, 1,000 π̂ ∗  values and 1,000, 

95% lower bound ˆLπ  values were generated 

using RCL methods. This was repeated for each 
of the 96 scenarios. Also for each scenario, four 
techniques for sampling zeros cells were 
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compared: treating zero cells as sampling zeros, 
replacing with different small flattening constant 
(i.e., 0.1, 0.5 and 1), and redefining model H by 
regarding a sampling zero as a structural zero. 

The mean of the 1,000 π̂ ∗  values for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
each scenario was calculated and served as the 
final parameter estimate; the mean of the 1,000 
ˆLπ  values was also computed to be the estimate 

95% ˆLπ  using the RCL method. Because the 

empirical distribution of π̂ ∗  is notably skewed 

Figure 1: Row and Column Total Proportions for the Various Sized Tables 
 

2× 2 Table 
 

{P1+=. 5, P2+=. 5, P+1=. 5, P+2=. 5}, 
{P1+=. 9, P2+=. 1, P+1=. 9, P+2=. 1}, 
{P1+=. 5, P2+=. 5, P+1=. 9, P+2=. 1}. 

 
2× 3 Table 

 

{P1+=. 5, P2+=. 5, P+1=. 8, P+2=. 1, P+3=. 1}, 
{P1+=. 5, P2+=. 5, P+1=. 33, P+2=. 33, P+3=. 33}, 

{P1+=. 9, P2+=. 1, P+1=. 8, P+2=. 1, P+3=. 1}, 
{P1+=. 9, P2+=. 1, P+1=. 33, P+2=. 33, P+3=. 33}. 

 
2× 4 Table 

 

{P1+=. 5, P2+=. 5, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25}, 
{P1+=. 5, P2+=. 5, P+1=. 4 P+2=. 4, P+3=. 1, P+4=. 1}, 

{P1+=. 9, P2+=. 1, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25}, 
{P1+=. 9, P2+=. 1, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1}. 

 
2× 6 Table 

 

{P1+=. 5, P2+=. 5, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, P+6=. 167}, 
{P1+=. 5, P2+=. 5, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}, 

{P1+=. 9, P2+=. 1, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, P+6=. 167}, 
{P1+=. 9, P2+=. 1, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}. 

 
3× 3 Table 

 

{P1+=. 4, P2+=. 4, P3+=. 2, P+1=. 4, P+2=. 4, P+3=. 2}, 
{P1+=. 33, P2+=. 33, P3+=. 33, P+1=. 33, P+2=. 33, P+3=. 33}, 

{P1+=. 33, P2+=. 33, P3+=. 33, P+1=. 4, P+2=. 4, P+3=. 2}. 
 

4× 4 Table 
 

{P1+=. 25, P2+=. 25, P3+=. 25, P4+=. 25, P+1=. 25, P+2=. 25, P+3=. 25, P+4=. 25}, 
{P1+=. 4, P2+=. 4, P3+=. 1, P4+=. 1, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1}, 

{P1+=. 25, P2+=. 25, P3+=. 25, P4+=. 25, P+1=. 4, P+2=. 4, P+3=. 1, P+4=. 1}. 
 

6× 6 Table 
 

{P1+=. 167, P2+=. 167, P3+=. 167, P4+=. 167, P5+=. 167, P6+=. 167, P+1=. 167, P+2=. 167, P+3=. 167, P+4=. 167, P+5=. 167, 
P+6=. 167}, 

{P1+=. 3, P2+=. 3, P3+=. 1, P4+=. 1, P5+=. 1, P6+=. 1, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}, 
{P1+=. 167, P2+=. 167, P3+=. 167, P4+=. 167, P5+=. 167, P6+=. 167, P+1=. 3, P+2=. 3, P+3=. 1, P+4=. 1, P+5=. 1, P+6=. 1}. 
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for the generated sets of 1,000 π̂ ∗  values, the 
regular normal assumption cannot be used to 
compute the standard error and confidence 

interval for π̂ ∗ . Instead, 50th π̂ ∗  value among 
the 1,000 values (i.e., 5th percentage point) was 
adopted and treated as true 95% lower bound 
based on empirical simulations. 

Typically, π̂ ∗  will tend to be 
overestimated by a fraction that is directly 
related to the smaller of the observed row 
marginal proportion and the observed column 
marginal proportion related to the cell with a 
sampling zero (RCL). As noted above, in 
practice, researchers could test the π ∗  variation 
by setting some to-be-ignored cells to structural 
zeros and resolve. This study focused this issue 
on any frequency tables with only one structural 
zero and the procedure using EM based 

methodology to obtain π̂ ∗ . The two-point 
mixture using an expectation-maximization 
(EM) algorithm proposed by RCL could still be 
applied to structural zero conditions with minor 
modification as follows: 
 
1. Obtain π̂ ∗  treating zero cell as sampling 

zero utilized the same procedure in EM 
Algorithm and Interval Estimation; in this 
step the entire row or column with which 
smaller of observed row marginal proportion 
and the observed column marginal 
proportion would result in zero in the first 
component, Φ , which is defined as the 
probability distribution designated by H. 

 

2. Pull the proportion back from the second 
component,ψ , an unspecified probability 
distribution outside of model H for the entire 
row or column with zeros in component Φ  
at step 1. 

 

3. Temporally cross out the other column or 
row that contains the zero cell but has not 
been forced zero at step 1. 

 

4. Apply the same EM based procedure in the 
remaining contingency table while fixing all 
cell proportions in component 1, Φ  and 
component 2, ψ  except the row or column 
has frequency pulled back in step 2. 

 

5. After iterations converge to a preset 

criterion,, subtract original π̂ ∗  at step 1 with 
the sum of the proportion pulled back in Φ  
from step 4 and the final value is the 

estimate of π̂ ∗  using structural zero 
technique. 

 
For the other sampling zero techniques, 
procedures are same as sampling zeros, simply 
replace the zero cell with different small 
flattening constant (0.1, 0.5 and 1) and recall 

associated π̂ ∗  based on the EM based 
procedures in EM Algorithm and Interval 
Estimation. 
 
Simulation Details 

The simulation code was written in 
SAS/IML version 9.1 (SAS Institute, 2005). The 
EM algorithm was used to calculate the mixture 
index of fit. Each simulation consisted of 1,000 
replications with convergence criterion set to 10-

5. Data were randomly generated according to 
cumulative proportion resulting from the 
different combination scenarios. 

The method proceeded in the following 
manner:  
 
1. A sample contingency table was randomly 

generated based on cumulative proportion 
resulting from different factor combinations. 
(table size, sample size and marginal 
distribution). 

 

2. An EM algorithm based method for mixture 
index of fit (RCL) was implemented. π̂ ∗  

and 95% lower bound ˆLπ  were generated 

and saved in a matrix. 
 

3. Replicate steps 1 and 2 1,000 times, 

therefore 1,000 π̂ ∗  and ˆLπ  were obtained 

and exported into an external file. 
Additionally, if any of the 1,000 generated 
contingency tables contained zero cell(s), 
they were replaced with different small 
flattening constants 0.1, 0.5 and 1, 
respectively, when evaluating the 

performance of π̂ ∗  using flattening 
constants techniques. 
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The only difference between the 
structural zero and other sampling zero 
technique procedure is in the above-mentioned 
step 1. If the frequency tables generated by 
UNIFORM contained 1 or less than 1 frequency 
zero, it would proceed to step 2 otherwise it 
would regenerate the table until it met the 
requirement. 
 

Results 
Parameter Estimates and Bias 

For the conditions studied, π̂ ∗  was 
significantly (p < 0.05) positively, biased from 
its expected value of zero by an amount ranging 
from 0.02298 (2× 2 table, slightly dispersed row 
and column marginals with sample size equals to 
30 per cell) to 0.4086 (6× 6 table, evenly 
dispersed row and column marginals with 
sample size equal to 5 per cell). As shown in 
Figures 2 and 3, for 2× 2, 2× 3, 2× 4, 2× 6 

tables, as table size increases, π̂ ∗  consistently 
increased (with only two exceptions) for 
constant sample size (5, 10, 20 and 30 per cell) 
and marginal distribution (evenly, slightly and 
extremely dispersed).  

The same conclusion applies to 
symmetric tables: 2× 2, 3× 3, 4× 4, 6× 6. In 
particular, for sample sizes 5, 10, 20 and 30 per 

cell in evenly dispersed tables, π̂ ∗  increased on 
average from 0.1252 to 0.4086; 0.096 to 0.3031; 
0.0775 to 0.2242 and 0.0668 to 0.1867 for 2× 2 
to 6× 6 tables, respectively. For sample sizes 5, 
10, 20 and 30 per cell in extremely dispersed 

tables, π̂ ∗  increases on average from 0.0598 to 
0.03629; 0.0568 to 0.2593; 0.0476 to 0.1942 and 
0.0396 to 0.1626 for a 2× 2 table to a 6× 6 table, 
respectively.  

Moreover, with few exceptions, for each 
frequency table, as sample size increases, the 

bias in π̂ ∗  significantly decreased (p < 0.05,). 

For each size contingency table, π̂ ∗  is, on 
average, smallest for extremely dispersed row 
and column marginal distributions, and largest 
on average for evenly distributed row and 
column tables. The only exception is the 2× 2 
table where a slightly dispersed table contains 

slightly smaller π̂ ∗  values on average than an 
extremely dispersed frequency table; this is in 

part due to a convergence problem (using less 
than 0.001 instead of otherwise 0.00001). 

For all two-way tables, replacing zero 
with larger flattening values results in smaller 

average values of π̂ ∗ . For all extremely 
dispersed and most slightly dispersed (4 out of 6 
scenarios) row and column marginal 
distributions with small sample size (5 per cell) 
and small table size (2× 2, 2× 3, 2× 4, 3× 3) 

tables, the value of π̂ ∗  was smaller using 
structural zeros compared to using sampling 
zeros or any other replacement with positive 
flattening constants. Note that the techniques of 
replacing zero cell with flattening constants 
includes virtually any number of simulated zero 
cells for each table while the structural zero 
technique used in this study can only 
accommodate one zero cell per frequency table. 
Because the number of zero counts and patterns 
are somewhat different among these techniques, 
especially when encountering small sample sizes 
such as 5 per cell and 10 per cell, it might 
influence the comparison results between 
structural zero and using sampling zero or any 
other replacing with small positive flattening 
constants techniques. 
 
Lower Bound Comparisons of RCL and True 
Estimates 

The 95% lower bound estimate for π̂ ∗  
using the RCL method is generally close to the 
so-called true estimate based on empirical 
simulations. When, under some circumstances, 
the RCL method underestimates the lower 
bound value, the magnitude of underestimation 
is relatively small and the difference from the 
true estimate decreases as the sample size 
increases. 

Similar to parameter estimators for π̂ ∗ , 
the true (empirical) 95% lower bound estimates 

of π̂ ∗  consistently increased as table size 
increased within constant sample size per cell 
and constant marginal distribution (Figures 6 
and 7). There are exceptions for 2× 3 and 2× 4 
extremely dispersed tables with sample size 5 
for which estimates remain nearly unchanged 
over conditions. Also in general for each 
frequency table, as sample size increases the 
95% lower bound decreases. 
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Figure 2: π̂ ∗  for Evenly Distributed Marginals 

 
 
 

Figure 3: π̂ ∗  for Extremely Distributed Marginals 
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Figure 4: π̂ ∗  Comparison in {P1+=.9, P2+=.1, P+1=.8, P+2=.1, P+3=.1} 

 
 
 

Figure 5: π̂ ∗  Comparison in {P1+=.9, P2+=.1, P+1=.4, P+2=.4, P+3=.1, P+4=.1} 
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Figure 6: Empirical Simulation Based ˆ Lπ  with Evenly Distributed Marginals 

 
 

Figure 7: Empirical Simulation Based ˆ Lπ  with Extremely Distributed Marginals 
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As shown in Figures 8 and 9, for each 
size of contingency table, the lower bound 

estimate of π̂ ∗  is generally smallest for 
extremely dispersed row and column marginal 
distributions, followed by slightly dispersed row 
and column marginal distributions; while largest  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for evenly distributed row and column tables. 
Different techniques for dealing with sampling 
zeros seem to have no effect on the lower bound 
estimate of π̂ ∗  for either the RCL method or the 
true lower bound estimate based on empirical 
simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: ˆLπ  Comparison between the RCL Method and Empirical Simulation Method 
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As shown in Figures 8 and 9, for each 
size of contingency table, the lower bound 

estimate of π̂ ∗  is generally smallest for 
extremely dispersed row and column marginal 
distributions, followed by slightly dispersed row 
and column marginal distributions; while largest 
for evenly distributed row and column tables. 
Different techniques for dealing with sampling 
zeros seem to have no effect on the lower bound 

estimate of π̂ ∗  for either the RCL method or the 
true lower bound estimate based on empirical 
simulations. 
 
Confidence Interval and Standard Errors 

Figures 10 and 11 show that, given the 
same table size, extremely dispersed row and 
column marginal distributions consistently 
provide narrower confidence intervals 

( )ˆ ˆLπ π∗ −  than evenly dispersed row and 

column tables using both the RCL method and 
empirical true estimates. Also, when sample size  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
increases, confidence intervals become narrower 
for each table size and shrink approximately to 
the same confidence intervals for different 
marginal distribution for the same table size 
using both estimation methods. It is apparent 
that the RCL method underestimates the lower 

bound of π̂ ∗  in many cases and, thus, leads to a 
higher standard error compared with empirical 
true lower bound estimates. 
 
Example 1: Fatal Crashes by Speed Limit 

Table 1 presents fatal crashes by speed 
limit and land use in the United States in 2004 
from Traffic Safety Facts 2004, a compilation of 
Motor Vehicle Crash Data from the Fatality 
Analysis Reporting System and the General 
Estimates System. There are three categories in 
the land use variable (rural, urban and 
unknown), and six categories in the speed limit 
variable (30 mph or less, 35 or 40 mph, 45 or 50 
mph, 55mph, 60 mph or higher and no statutory 
limit). This data table was used to compare the 
conclusion using traditional Chi-square and  

Figure 9: ˆLπ  Comparison between the RCL Method and Empirical Simulation Method (continued) 
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related model fit methods and the mixture index 
of fit introduced by RCL. More specifically, 
compare different sampling zero techniques 

impact on π̂ ∗  because there is one zero cell in 
the contingency table. 

The value of the Pearson Chi-Square 
statistic is 7200.090, and the likelihood ratio, G2 
statistic is 7600.54 both with degrees of freedom 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
equal to 10 (P < 0.01). Thus, an independence 
model is not tenable based on these Chi-squared 
tests of fit. As displayed in Table 3, the mixture 

index of fit π̂ ∗  is 0.294, indicating that about 
29.4% of the total of 37,295 cases (or, 10,965 
cases) must be removed in order to attain perfect 
model fit. The mixture index of fit provides an 
interpretation consistent with traditional Chi- 

Figure 10: Confidence Interval of π̂ ∗  Following Empirical Simulation Method 

 



MIXTURE INDEX OF MODEL FIT IN CONTINGENCY TABLES WITH INDEPENDENCE 

188 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Confidence Interval of π̂ ∗  (continued) 

 

Table 1: Fatal Crashes by Speed Limit and Land Use 

Speed Limit 

Land Use 

Rural Urban Unknown 

30 mph or less 944 2929 27 

35 or 40 mph 1951 4463 41 

45 or 50 mph 3496 3559 46 

55 mph 9646 2121 91 

60 mph or higher 5484 2347 27 

No statutory limit 92 31 0 

Source: USDOT Traffic Safety Facts 2004 (Fatality Analysis Reporting 
System). Note: Omit 958 cases for the Unknown Speed Limit category. 
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Square analyses. Furthermore, π̂ ∗  only 
decreases to 0.293 when replacing sample zero 
with the flattening constant 0.1 and further 
reduces to 0.291 when replacing with 0.5 and 1 
as well as using the structural zero method. The 

amount of change in π̂ ∗ , as well as its 95% 
lower bound using different sampling zero 
techniques, is extremely small in this example. 
This occurs due to the very small percentage 
(0.62%) of unknown land. In fact, it would not 
substantially effect π̂ ∗  even if the entire column 
were zeros. 
 
Example 2: Eye Color and Hair Color 

Table 2 presents a cross-classification of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

eye color and hair color table (Snee, 1974), a 4 
×  4 table with total sample size of 592. 

RCL utilized these data to study the 
properties of the mixture index of fit. In this 
study, these data were used to compare the 
differences in estimates that result from using 
sampling zeros and structural zeros. The 16 cells 
were set to zero one-by-one and the results are 
shown in Table 4. The percentage differences 
between use of sampling zero and structural zero 
techniques range from 11.1% to 40.0%, Note 
that 6 of these differences are statistically 
significant (p < 0.05) using conventional z tests 

for proportions. The largest reductions in π̂ ∗  
using structural zero occurs when black hair and 
hazel eye color is set to zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Cross-classification of Eye Color and Hair Color 

Eye Color 
Hair Color 

Black Brunette Red Blonde 
Brown 68 119 26 7 
Blue 20 84 17 94 
Hazel 15 54 14 10 
Green 5 29 14 16 

Source: Snee (1974), Diaconis & Efron (1985). 

Table 3: Fit Statistics for Fatal Crashes by Speed Limit and Land Use 
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Recommendations 
Among all the sampling zero techniques 
compared in terms of parameter bias, replacing 
zeros with larger flattening constants such as 1 
and the structural zero technique appear to 

perform better in the sense that, on average, π̂ ∗  
is smaller. Between these two techniques, the 
structural zero technique is generally 
recommended for extremely and slightly 
dispersed row and column marginal distributions 
tables with small sample sizes and small table 
sizes while in other cases replacing with larger 
flattening constant (i.e., 1) is preferred. 

Based on the current findings, RCL 
standard error estimates were comparatively 
conservative. In general, it is preferable in 
practice to use variance estimates that tend to be 
conservative (i.e., larger) rather than liberal (i.e., 
smaller). However, it would be valuable to 

investigate the standard error of π̂ ∗  using re-
sampling methods to provide better guidance for 
users. 
 
Implications for Future Research 
 
1. Evenly distributed, slightly and extremely 

dispersed marginal distributions for each 
different size of tables were manipulated in 
the current study. It would be valuable to 
investigate more diversified marginal 
distribution in future studies. 

2. As noted, the limitation of structural zero 
technique with number of zero cells might 
affect the results when compared with other 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sampling zero techniques. It would be of 
interest to investigate structural zero 
technique applied in two-point mixture 
model index in contingency tables with 
more than one zero when the independence 
assumption holds. 

3. In order to attain reasonable execution times 
for the simulation, in this study, an 
increment of .01 was adopted to 
successively increase π̂ ∗  when estimating 

π̂ ∗  using an EM algorithm. For very small 

true values of *π , it would be necessary to 
use a value of .001 or even .0001 in order to 
obtain a more detailed picture, especially for 

the lower bound of π̂ ∗ .  
4. In a future study, it would be beneficial to 

investigate the standard error of π̂ ∗  using 
other re-sampling methods (e.g., jackknife) 
and compare with RCL to provide a more 
concrete guide. 

5. The larger value of flattening constants (e.g., 
1) might affect the original data structural 
when sample size of a contingency table is 
small (e.g., 5 per cell) and thus the results 
could be slightly influenced. Alternative 
ways to define the flattening constants such 
as a percentage to total sample size is of 
interest in future study. 

6. Finally, it would be valuable to evaluate the 

performance of *π  under conditions where 
the independence assumption does not hold. 

 
 

Table 4: π̂ ∗  Comparison of Sampling Zero and Structure Zero using Eye Color Data 
(Each cell manipulated to be zero in turn.) 
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Inference in Simple Regression for the Intercept 
Utilizing Prior Information on the Slope 

 
Ayman Baklizi Adil E. Yousif 
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Shrinkage type estimators are developed for the intercept parameter of a simple linear regression model 
and the case when it is suspected a priori that the slope parameter is equal to some specific value is 
considered. Three different estimators of the intercept parameters are examined. The relative 
performances of the estimators are investigated based on a simulation study of the biases and mean 
squared errors. The associated bootstrap confidence intervals are also studied and their performance is 
evaluated. 
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Introduction 
Consider the simple linear regression model 
 

,10 iii xy εββ ++= ni ,,1=  
 
where the error terms iε  are independent and 

identically distributed as ( )2,0 σN . The aim is 

to estimate the intercept parameter 0β  when 

prior information that the slope parameter, 1β , 

is equal to some specific value, 0
1β  is uncertain. 

In the absence of any prior information, the 
maximum likelihood (equivalent, least squares) 
estimator of the regression parameters are given 
by 
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If the slope parameter is known and is equal to 

0
1β , then the estimator of the intercept 

parameter 0β  is xy 0
10

ˆ ββ −=′ . The additional 

uncertain prior information about the slope 
parameter is utilized with a view to produce 
improved estimators. Khan and Saleh (1997) 
developed the preliminary test estimator and 
certain types of shrinkage estimators that utilize 
a so-called distrust factor and adopted this 
approach to estimate the slope parameters of two 
suspected parallel regression models. Bhoj and 
Ahsanullah (1993, 1994) considered estimating 
the conditional mean for simple regression 
model, and Khan and Saleh (1997) discussed the 
problem of shrinkage preliminary test estimation 
for the multivariate Student-t regression model. 
 
The Estimators 

The idea of preliminary test estimation 
is based on utilizing the result of a preliminary 
test in choosing between two alternative 
estimators. In the case considered herein, the 
two estimators are the unrestricted estimator 

xy 10
ˆˆ ββ −=  and the restricted estimator 

xy 0
10

ˆ ββ −=′ . The preliminary test is for the 
hypothesis: 
 

0
110 : ββ =H  vs. 0

111 : ββ ≠H . 
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The null hypothesis is rejected for large values 
T  where 
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The preliminary test estimator PTE is defined as 
 

( ) ( )2,202,200
ˆˆˆ

−− ≤′+>= nn
PT tTItTI αα βββ  

 
where I(A) denotes an indicator function of the 
set A. The PTE is a convex combination of 

xy 10
ˆˆ ββ −=  and xy 0

10
ˆ ββ −=′  and depends 

on the random coefficient ( )2,2 −≤ ntTI α  whose 

value is 1 when the null hypothesis is not 
rejected and is 0 otherwise. Thus, the PTE is an 

extreme compromise between 0β̂  and 0β̂ ′ . 

Moreover, the PTE does not allow a smooth 
transition between the two extremes. A possible 
remedy for this is to use an estimator with a 
continuous weight function. This function could 
be the P-value of the preliminary test.  

The use of the P-value as a continuous 
weight function in preliminary test estimation 
was utilized by Baklizi (2004) and Baklizi and 
Abu-Dayyeh, W. (2003). If 

( )2,2Pr −>=−= ntTvaluePv α , then a 

shrinkage estimator can be found as follows: 
 

( )PV
0 0 0

ˆ ˆ ˆ1 v v .′β = − β + β  

 
Another possibility is given by Khan and Saleh 
(1997) who suggested the estimator 
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where *c is the value that minimizes the mean 

squared error of SH
0β̂ . This value is given by 
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and does not depend on the significance level of 
the preliminary test. 
 
The Confidence Intervals 

Bootstrap intervals are computer 
intensive methods based on re-sampling with 
replacement from original data. Bootstrapping 
regression models can be constructed and run in 
several ways. The procedure adopted in this 
study was to resample with replacement from 
the pairs ( ) .,,1,, niyx ii =  Several bootstrap 

based intervals are discussed in the literature.; 
the most common are the bootstrap-t interval, 
the percentile interval and the bias corrected and 
accelerated (BCa) interval. 

Let 0
~β  be an estimator of 0β  and let 

*
0

~β  be the estimator calculated from the 

bootstrap sample. Let *
αz  be the α  quantile of 

the bootstrap distribution of 
*

0
*
0

* ˆ/)
~~

( ηββ −=Z , where *η̂  is the 

estimated standard deviation of 0
~β  calculated 

from the bootstrap sample. The bootstrap-t 
interval for 0β  is given by 

( )ηβηβ αα ˆ
~

 , ˆ
~ *

20
*

210 zz −− −  where *
αz  is 

determined by simulation.  
When a variance estimate of the 

estimator under consideration is unavailable or 
difficult to obtain, a modification of the 
bootstrap-t interval is needed. Such a 
modification is based on using a further 
bootstrap sample from the original bootstrap 
sample to estimate the variance or the standard 

deviation ( )*
0

* ~βsd  of *
0

~β . The modified 

bootstrap-t interval is thus given by; 
 

( ) ( )( )*
0

**
20

*
0
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210
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~~ βεβββ αα sdsdz −− −  
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The percentile interval may be described 

as follows, let *
0

~β  be an estimate of the 

intercept parameter calculated from the 
bootstrap sample. Here the bootstrap distribution 

of *
0

~β  is simulated by re-sampling repeatedly 

from the regression model based on the original 

data and calculating Bii ,,1,
~*

0 =β  where B is 

the number of bootstrap samples. If Ĥ  is the 

cumulative distribution function of *
0

~β , then the 

α−1  interval is given by 
 

1 1ˆ ˆH  ,   H 1 .
2 2

− − α α    −        
 

 
The bias corrected and accelerated 

interval is also calculated using the percentiles 

of the bootstrap distribution of 0
~β . The 

percentiles depend on two numbers, â  and 0ẑ , 

called the acceleration and the bias correction. 
The interval (BCa) is given by 
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( ).Φ  is the standard normal cumulative 

distribution function, αz  is the α  quantile of 

the standard normal distribution. The values of 
â  and 0ẑ  are calculated as follows: 
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where ( )i0
~β  is the intercept estimator using the 

original data excluding the ith pair and 
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The value of 0ẑ  is given by 
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Methodology 

Simulation Study 
A simulation study was designed to 

evaluate the performance of the shrinkage 
estimators in terms of their biases and mean 
squared errors. Results for the preliminary test 
estimator are included for comparison purposes 
and the performance of the bootstrap intervals 
associated with the shrinkage estimators is also 
studied. The simulations used the sample sizes 

=n 15, 30 and 45. The slope parameter true 

value was chosen to be =1β 0, 1, 2, 3 and 4, the 
true value of the intercept parameter was set at 

00 =β , and the guess value of the slope is set 

equal to zero in all cases. The predictor values 
are generated from the uniform distribution 
while the error terms are generated from 

( )2,0 σN  with =2σ 1 or 4.  
For each combination of the simulation 

indices 1,000 pairs of ( )yx,  values were 
generated and the estimators were calculated. 
The level of the preliminary test is set to 

05.0=α . The biases and mean squared errors 
are calculated as: 
 

( ) ( )
=

−=
1000

1
000

~

1000

1~

i
ibias βββ  

and 

( ) ( )
=

−=
1000

1

2

000

~

1000

1~

i
iMSE βββ , 

 
where 0β  is the true value of the intercept 

parameter and 0
~β  is the shrinkage estimator 

under consideration. 
The performance of the intervals is 

evaluated in terms of their coverage probabilities 
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(CP) and expected lengths (EL), which are 
calculated as follows: For the confidence 
interval CI , 
 

( )( )
=

∈=
1000

1
0 ,

1000

1

i
UBLBICP β  

and 

( )
=

−=
1000

11000

1

i
LBUBEL  

 
where LB  and UB  are the lower and upper 
bounds of the confidence interval. The nominal 
coverage probability of each interval is taken as 

%95.0 . The bootstrap calculations used 500 
replications, and the second stage used 25 
replications to estimate the variances of the 
estimators. 
 

Results 
The results for biases are shown in Table 1. It 

appears that PV
0β̂  has the least bias among the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

shrinkage estimators. The bias of all estimators 
increases as the initial guess moves further from 
the true value to a certain point and then 
decreases again, and the biases of all estimators 
decreases as the sample size increases. Results 
for the MSE performance are shown in Table 2; 

it appears that PV
0β̂  also has the best overall 

performance among the shrinkage estimators. 
For the confidence intervals, it appears that 

intervals based on PV
0β̂  perform better than 

intervals based on SH
0β̂  in terms of the 

attainment of coverage probabilities (see Table 
3). Results indicate that the BCa intervals and t-
int intervals perform better than the PRC 

intervals among intervals based on PV
0β̂ . 

Regarding interval widths, it appears that the t-
int intervals are the shortest followed closely by 
the BCa intervals (see Table 4). The PRC 
intervals are very wide compared to the other 

intervals based on PV
0β̂ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Biases of the Estimators 
0

1β  0β̂  PT
0β̂  SH

0β̂  PV
0β̂  

15=n , 1=σ  
0.0 -0.010 -0.002 -0.007 -0.009 
1.0 -0.008 0.314 0.255 0.066 
2.0 0.002 0.316 0.354 0.065 
3.0 0.012 0.179 0.375 0.042 

15=n , 2=σ  
0.0 -0.008 -0.004 -0.021 -0.013 
1.0 0.007 0.374 0.318 0.100 
2.0 0.065 0.661 0.555 0.204 
3.0 -0.009 0.715 0.639 0.142 

30=n , 1=σ  
0.0 -0.007 0.000 0.004 -0.003 
1.0 -0.002 0.230 0.221 0.047 
2.0 0.003 0.093 0.258 0.020 
3.0 -0.004 0.001 0.252 -0.002 

30=n , 2=σ  
0.0 0.010 -0.004 -0.001 0.007 
1.0 -0.019 0.311 0.278 0.062 
2.0 -0.007 0.445 0.435 0.089 
3.0 0.010 0.369 0.512 0.079 
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Table 2: MSEs of the Estimators 
0

1β  0β̂  PT
0β̂  SH

0β̂  PV
0β̂  

15=n , 1=σ  
0.0 0.297 0.127 0.154 0.224 
1.0 0.296 0.371 0.273 0.281 
2.0 0.316 0.695 0.425 0.355 
3.0 0.290 0.627 0.438 0.322 

15=n , 2=σ  
0.0 1.169 0.485 0.606 0.872 
1.0 1.200 0.789 0.801 0.979 
2.0 1.238 1.467 1.154 1.164 
3.0 1.194 2.211 1.406 1.267 

30=n , 1=σ  
0.0 0.138 0.063 0.073 0.105 
1.0 0.142 0.259 0.165 0.152 
2.0 0.139 0.269 0.207 0.153 
3.0 0.143 0.153 0.208 0.145 

30=n , 2=σ  
0.0 0.564 0.250 0.300 0.434 
1.0 0.566 0.529 0.441 0.504 
2.0 0.580 1.049 0.662 0.620 
3.0 0.546 1.239 0.786 0.621 

 
Table 3: Coverage Probabilities of the Intervals 

0
1β  

SH
0β̂  PV

0β̂  

t-int BCa PRC t-int BCa PRC 
15=n , 1=σ  

0.0 0.744 0.963 0.925 0.922 0.937 0.950 
1.0 0.709 0.910 0.856 0.904 0.931 0.876 
2.0 0.787 0.842 0.866 0.876 0.925 0.890 
3.0 0.855 0.854 0.913 0.910 0.946 0.935 

15=n , 2=σ  
0.0 0.744 0.957 0.927 0.928 0.941 0.946 
1.0 0.705 0.936 0.900 0.910 0.929 0.920 
2.0 0.705 0.905 0.862 0.909 0.932 0.885 
3.0 0.757 0.875 0.853 0.881 0.919 0.878 

30=n , 1=σ  
0.0 0.761 0.969 0.933 0.944 0.955 0.944 
1.0 0.764 0.892 0.869 0.918 0.949 0.883 
2.0 0.863 0.855 0.926 0.925 0.960 0.951 
3.0 0.859 0.841 0.922 0.923 0.956 0.928 

30=n , 2=σ  
0.0 0.733 0.970 0.928 0.937 0.955 0.946 
1.0 0.718 0.945 0.893 0.929 0.946 0.903 
2.0 0.756 0.874 0.861 0.904 0.933 0.867 
3.0 0.838 0.877 0.901 0.916 0.957 0.920 
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Conclusion 

In conclusion, it is recommended that PV
0β̂  and 

the associated t- interval be employed for 
inference about the intercept parameter when 
there uncertain prior information exists 
regarding the slope. 
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Evaluating educational programs is a core component of assessment. One challenge occurs because 
participants often enter into programs with diverse skills and backgrounds. The regression-discontinuity 
design has been used to evaluate programs amongst a diverse group, but noncompliance is a limitation. A 
simulation analysis illustrates the impact of noncompliance. 
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Introduction 
Evaluating the effectiveness of educational 
programs can pose a challenge for researchers. 
One reason is because it is very difficult to 
isolate a program effect versus the effect 
attributed to differences between students who 
participate in such programs. Most evaluative 
studies compare different and diverse groups of 
students with respect to how well they perform 
by relying on observational versus experimental 
data. In order to estimate an actual program 
effect versus estimating differences between 
program participants, many studies have 
incorporated the regression-discontinuity design 
(Thistlethwaite & Campbell, 1960). The 
regression-discontinuity design allows for 
making causal inferences about program effects 
as the design has properties similar to a random 
experiment (Leake & Lesik, 2007; Lesik, 2006; 
Luyten, 2006; Moss & Yeaton, 2006). 

The regression-discontinuity design has 
become a popular statistical tool for program 
evaluation because when a prescribed pre-
treatment assignment measure is available, the 
regression-discontinuity design   can emulate a  
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random experiment (Pettersson-Lidbom, 2003). 
Because the design resembles a random 
experiment, it can be used to estimate a program 
effect versus simply describing differences 
between different groups of individuals (Lesik, 
2007). 

Although the regression-discontinuity 
can be used to evaluate educational programs, 
the design has some major limitations that can 
make it difficult to apply in practice. One 
limitation of the design is that it assumes that the 
functional form of the model is specified 
correctly (Schumacker & Mount, 2007). Given 
the correct model specification, the regression-
discontinuity design can provide an unbiased 
estimate of the program effect (Shadish, Cook & 
Campbell, 2002). However, if the functional 
form of the model is not known - and therefore 
not specified correctly - then any inferences 
made using a regression-discontinuity analysis 
may be biased and unreliable (Schumacker & 
Mount, 2007; Shadish, et al., 2002). 

Another limitation is that the regression-
discontinuity design requires approximately 
three times as many participants to achieve 
adequate power compared to a true random 
experiment (Cappelleri, Darlington & Trochim, 
1994). Thus, a large sample is needed in order to 
have sufficient power to detect an effect if such 
an effect were to exist (Cappelleri, et al., 1994; 
Shadish, et al., 2002). Considering these two 
limitations together, it can be challenging for 
researchers in less-than-perfect situations to use 
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the regression-discontinuity design. However, 
one of the more serious limitations of the 
regression-discontinuity design is the issue of 
noncompliance. Noncompliance occurs if some 
of the participants do not adhere to their 
treatment assignment based on the score they 
received on the pre-treatment assignment 
measure. 

The purpose of this study is to provide a 
simulation analysis using the regression-
discontinuity design to address the issue of non-
compliance within the framework of ordinary 
least squares regression. Using Monte Carlo 
techniques to simulate a regression-discontinuity 
analysis with different sample and effect sizes 
along with various degrees of noncompliance, 
this paper illustrates how noncompliance can 
bias the estimate of the treatment effect. A set of 
guidelines is developed that researchers can use 
to determine if the degree of noncompliance is 
severely biasing the estimate of the treatment 
parameter. 
 
Theoretical Background 

Many researchers have used the 
regression-discontinuity design to evaluate the 
effectiveness of educational programs (Jacob & 
Lefgren, 2002; Leake & Lesik, 2007; Lesik, 
2006; Moss & Yeaton, 2006; Ross & Lacey, 
1983). One of the core requirements for using 
the regression-discontinuity design is that a pre-
treatment assignment measure with a defined 
cutoff score is used as the sole mechanism for 
assigning participants to either the treatment 
group or the control group. When given such a 
pre-treatment assignment measure, those 
individuals who score just below and just above 
a defined cutoff score will be similar to what a 
true random assignment would generate 
(Shadish, et al., 2002; Thistlethwaite & 
Campbell, 1960; Trochim, 1984; 
vanDerKlaauw, 2002). 

If such an assignment measure is used, 
then an unbiased estimate of the program effect 
can be found by interpreting the estimated 

parameter β̂1( ) at the cutoff score that is 

associated with the dichotomous treatment 
variable (TREATMENT) in a baseline 
regression-discontinuity equation (Lesik, 2008; 
Shadish, et al., 2002). A baseline regression-

discontinuity equation requires that the 
assignment variable (ASSIGNMENT) and 
treatment indicator variable (TREATMENT) be 
included in a regression model as is illustrated in 
equation (1). 
 
Y = β0 + β1TREATMENT + β2ASSIGNMENT + ε (1) 

 
Although the baseline regression-

discontinuity design involves a very simple 
model (there are only two predictor variables 
represented in the model), there are some major 
limitations of the regression-discontinuity 
design. One such limitation is that the design 
requires the correct model specification between 
the assignment and outcome measure (Shadish, 
et al., 2002). Another limitation is that a larger 
sample size is needed for the regression-
discontinuity design as compared to a true 
random experiment (Cappelleri, et al., 1994). 
Furthermore, it is expected that participants will 
adhere to their assignment, and not enter the 
treatment group if they were assigned to the 
control group or vice-versa. 

The regression-discontinuity design 
requires that the regression model under 
consideration has the correct functional form 
with respect to the relationship between the 
assignment variable and the outcome measure of 
interest. For example, if the relationship between 
the assignment and outcome variables is linear, 
then the baseline regression-discontinuity model 
as given in equation (1) would suffice because 
this equation describes a linear relationship. 
However, if there is a non-linear relationship 
between the assignment and outcome variables, 
then using equation (1) would generate a biased 
estimate of the treatment effect (Shadish, et al., 
2002; Thistlethwaite & Campbell, 1960; 
Trochim, 1984). Thus, if a non-linear 
relationship represents the true functional form 
of the model, then higher order terms and their 
respective interactions would need to be added 
to the baseline regression-discontinuity model 
(Lesik, 2008; Schumacker & Mount, 2007; 
Shadish, et al., 2002; Trochim, 1984). Equation 
(2) is a regression-discontinuity model that 
includes higher-order terms and interactions in 
addition to the baseline regression-discontinuity 
model. 
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Many studies that have used the 

regression-discontinuity design have either 
employed exploratory techniques to empirically 
estimate the functional relationship between the 
assignment and outcome variables (Jacob & 
Lefgren, 2002; Lesik, 2006), or have added 
higher-order polynomial terms of the assignment 
variable along with possible interaction terms 
and then tested to determine if such terms are 
significant (Lesik, 2008; Moss & Yeaton, 2006). 
One concern with including higher-order terms 
and interactions in a regression-discontinuity 
design is that it can difficult to estimate the 
correct functional form by visualization. 
Furthermore, adding extra terms to the 
regression-discontinuity model reduces the 
power of the design (Cappelleri & Trochim, 
1994). Similarly, with the sample size 
limitations of the regression-discontinuity 
design, researchers often have to extrapolate 
more observations above and below the cutoff 
score in order to obtain a sufficiently large 
sample and then try to model the functional form 
appropriately (Lesik, 2006; Moss & Yeaton, 
2006; Shadish, et al., 2002). 

Clearly, a trade-off exists between the 
number of observations collected around the 
cutoff score and the functional form 
specification of the regression-discontinuity 
model. Collecting too few observations around 
the cutoff score would require including more 
observations that are further away from the 
cutoff score, thus making it more difficult to 
describe the appropriate functional form. 
Collecting a small number of observations that 
lie only within a very narrow range around the 
cutoff score may not provide enough power to 
detect a reasonably sized effect. 

Although the functional form and 
sample size limitations of the regression-
discontinuity design can be difficult to address 
in practice, one of the most serious limitations of 

the design occurs when participants do not 
adhere to their assignment that is based only on 
the score received on the assignment measure. 
Typically, in order to address such non-
compliance, researchers have modeled selection 
effects by using the probability of actually 
participating in the treatment program as an 
instrumental variable for the program 
assignment (Lesik, 2006).  

The technique of instrumental variable 
estimation measures the effect of the treatment 
rather than just the assignment to the treatment 
group (Angrist & Krueger, 1991; Jacob & 
Lefgren, 2002). However, most research using 
instrumental variables estimation has the first 
stage probability of actually participating in the 
program described by a linear probability model 
(Lesik, 2006; 2007), and this introduces some of 
the limitations of the linear probability model, 
such as probabilities greater than one or less 
than zero (Wooldridge, 2003). Nonlinear first-
stage instrumental variables estimation tends not 
to be used in practice because their behavior is 
generally not well known (Wooldridge, 2002).  
Another concern with using instrumental 
variables estimation is that this technique on in 
its own relies on some very strong assumptions 
which can be difficult to assess in practice 
(Wooldridge, 2002, 2003). 

A simpler strategy to assess the effect of 
non-compliance in a regression-discontinuity 
analysis is to determine how much of an effect 
keeping those observations that did not comply 
with their assignment in the model. A basic 
sensitivity analysis can be used to determine if 
the estimate of the treatment effect is different 
when including and excluding non-compliers in 
the model (Leake & Lesik, 2007). However, 
there remains the need to establish some general 
guidelines that can be used to assess whether the 
amount of non-compliance could be introducing 
bias in the estimate of the treatment effect if 
these observations are included in the analysis, 
as well as to determine what happens to the 
estimate of the treatment effect when non-
compliers are removed from the analysis. 

 
Methodology 

In order to address the impact of non-
compliance on the estimate of the treatment 
effect as obtained through a regression-
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discontinuity design, the results of a simulation 
analysis are presented within the framework of 
an ordinary least squares regression. The 
simulation analysis was executed using Version 
10 of STATA® (STATA Corporation, 2007). 
 
Simulation Analysis 

A simulation analysis was performed to 
investigate how participant noncompliance can 
impact the estimate of the treatment effect in a 
regression-discontinuity design within the 
framework of ordinary least squares regression. 
The challenge with running a simulation 
analysis for a regression-discontinuity design 
revolves around simulating realistic regression-
discontinuity data. Figure 1 illustrates a 
hypothetical regression-discontinuity design 
(Shadish, et al., 2002). A perfect regression-
discontinuity indicates 100% compliance. 

Perfect compliance is when those 
participants who were assigned to the treatment 
group actually did participate in the treatment, 
and those who were assigned to the control 
group did not participate in the treatment at all.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notice that the discontinuity in Figure 1 
represents a simulated treatment effect of −0.50 
at the cutoff score of 0. 

In order to generate realistic regression-
discontinuity data, a random component was 
introduced (see Figure 2). Figure 2 shows the 
scatter plot along with the lines of best fit and a 
lowess smoother estimating the relationship 
between the assignment variable and the 
outcome variable. The random component was 
fixed at one-half of the effect size to ensure that 
a linear model would be appropriate. 

Appendix 1 contains an example of how 
Stata code can be written to simulate the 
regression-discontinuity data presented in Figure 
2. This Stata code randomly generates 50 
observations on the interval −1, 1( ) , which 

centers about the cutoff score of 0. Observations 
that are greater than or equal to zero are assigned 
the value 0 to represent that they are assigned to 
the control group, whereas all other observations 
that fall below the cutoff score of 0 are assigned 
to the treatment program and given the value 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Simulated Regression-Discontinuity Data with an Effect Size of −0.50 
At the Centered Cutoff Score of 0 
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This example illustrates a random 
component that is generated between −0.25 and 
0.25 from the original data: In other words, each 
observation is randomly assigned to be within 
±0.25 of its original value. The simulated 
treatment effect of 0.50 is generated for those 
observations that are assigned to the treatment 
group so around the cutoff score of 0, the 
treatment effect remains at 0.50. The choice of 
considering a small interval around the cutoff 
score and of having the random component 
equal to half of the effect size was introduced to 
generate what realistic regression-discontinuity 
data would look like and to ensure a linear 
model specification is appropriate. 

In order to generate non-compliers, a 
random number on the interval 0,1)  was 

generated and, for each observation, this random 
number was compared to the given percent of 
non-compliance. If the observation was designed 
as a crossover because the random number was  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
less than the given percentage of non-non-
compliance, then the treatment indicator was 
changed for these observations. 
 

Results 
A series of Monte Carlo simulations were run to 
investigate the impact of sample size, non-
compliance and the effect size on the estimate of 
the treatment effect when non-compliers were 
kept in the analysis, when there was perfect 
compliance, and when non-compliers were 
deleted from the analysis. A total of 10,000 
simulations were run for each of the different 
combinations of effect sizes, sample sizes, and 
percentages of non-compliance. Table 2 shows 
the estimate of the treatment effect and standard 
error for including non-compliers in the analysis, 
with perfect compliance and for deleting non-
compliers from the analysis. 

The results of the simulation analysis 
indicate that for any sample size, any effect size 
and any degree of non-compliance, keeping non-

Figure 2: Regression-Discontinuity Data with Added Random Component of 0.25 
and a −0.5 Discontinuity at the Centered Cutoff Score of 0 
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compliers in the analysis will generate a biased 
estimate of the treatment effect. Also interesting 
is that larger sample sizes show greater bias as 
compared to smaller samples even for the same 
percent of non-compliance. In addition, as the 
degree of non-compliance increases, the 
estimate of the treatment effect becomes more 
biased. Furthermore, for any degree of non-
compliance less than 10%, running the 
regression-discontinuity analysis without the 
non-compliers generates similar estimates of the 
treatment effect than was found assuming 
perfect compliance. This is consistent with Judd 
and Kenny (1981) and Trochim (1984), who 
suggest that excluding no more than 5% of the 
non-compliers should provide reasonable 
estimates of the treatment effect. 

This simulation analysis illustrates that - 
if non-compliance is random - then excluding no 
more than 10% of the observations provides a 
reasonable estimate of the treatment effect. It is 
also interesting to note that analyses with greater 
effect sizes show a similar bias compared to 
smaller effect sizes. For example, for a sample 
of 500 with an effect size of 0.500, if 10% of the 
observations are non-compliers and if they are 
kept in the analysis, then the estimated effect 
size becomes 0.193, a reduction of 
approximately 60%. For a sample of 500 with an 
effect size of 2.000, if 10% of the observations 
are non-compliers and they are kept in the 
analysis, then the estimated effect size becomes 
0.775, again a reduction of approximately 60%. 
Similarly for a sample size of 20 with 1% of the 
non-compliers kept in the analysis, then the 
estimated effect size becomes 0.458 for an effect 
size of 0.500, a reduction of approximately 8%, 
and for a sample of size 20 with 1% of the non-
compliers kept in the analysis, then the 
estimated effect size becomes 1.834 for an effect 
size of 2.000, again a reduction of approximately 
8%. 
 

Conclusion 
Although this study contributes to the literature 
by providing some guidelines for dealing with 
the noncompliance limitation of the regression-
discontinuity design, this study did not address 
other issues such as attrition or numerous other 
threats to validity that are inherent with virtually 
every type of analyses (Shadish, et al., 2002). 

Furthermore, because the range of data collected 
around the cutoff score was fixed to only include 
those observations within one point of the 
centered cutoff score of 0 the issue of correct 
functional form for this study was not relevant. 
However, as is often the case in practice, more 
observations need to be collected around a 
greater range of the cutoff score, and thus 
functional form specification becomes more of a 
concern. In this simulation, the functional form 
was forced to be approximately linear in order to 
avoid trying to model functional form and non-
compliance together. 

Results of the simulation analysis 
suggest that if non-compliance is essentially a 
random phenomenon, then removing the non-
compliers from the analysis does not appear to 
bias the estimate of the treatment effect if the 
percentage of non-compliers is relatively small, 
such as less than 10%. However, if non-
compliance is not random, then this may not be 
the case. For example, if only those participants 
who were on one side of the cutoff score chose 
not to comply with their assignment, then 
deleting them from the analysis will likely 
produce a biased estimate of the treatment 
effect. In cases where non-compliance is not 
random, instrumental variables estimation may 
be a better strategy to use, even given the 
relatively strong assumptions of instrumental 
variables estimation. 
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Appendix 1: Example of Stata Code 
for Simulation Analysis 

 
program rdgen, rclass 
version 10.1 
drop _all 
 set obs 50 
 generate x = -1 + (1-(-1))*uniform() 
 generate treat = 1 
 replace treat = 0 if x > = 0 
 generate y = x + 2 
 replace y = (y - 0.05) if treat == 0 
 generate z = -0.25 + (0.25-(-

0.25))*uniform() 
 generate crossover = 0 
 generate w = uniform() 
 generate treatcr = treat  
 replace treatcr = treat + 1 if w < 0.05 
 replace crossover = 1 if w < 0.05 
 replace treatcr = 0 if treatcr == 2 
 replace y = z+y  
 regress y treatcr x 
 return scalar B1cr = _b[treatcr] 
 return scalar seB1cr = _se[treatcr] 
 regress y treat x 
 return scalar B1 = _b[treat] 
 return scalar seB1 = _se[treat] 
 drop if crossover == 1 
 regress y treat x 
 return scalar B1nocr = _b[treat] 
 return scalar seB1nocr = _se[treat] 
end 
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Table 2: Estimate of the Treatment Effect and Standard Error (in [ ]) for Simulated Regression-Discontinuity Data Including Non-Compliers (NC), 
with Perfect Compliance and Without Non-Compliers for Various Percentages of Non-Compliance (% NC) 

 

% 
NC 

Sample 
Size 

With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 

Effect 
Size 

0.500 1.000 1.500 2.000 

1% 

20 
0.458 

[0.135] 
0.500 

[0.137] 
0.500 

[0.138] 
0.917 

[0.270] 
1.003 

[0.273] 
1.002 

[0.275] 
1.371 

[0.405] 
1.498 

[0.410] 
1.498 

[0.412] 
1.834 

[0.541] 
1.997 

[0.548] 
1.996 

[0.551] 

30 
0.453 

[0.108] 
0.500 

[0.110] 
0.500 

[0.110] 
0.901 

[0.216] 
0.996 

[0.219] 
0.996 

[0.220] 
1.363 

[0.324] 
1.504 

[0.329] 
1.504 

[0.330] 
1.807 

[0.432] 
1.995 

[0.439] 
1.995 

[0.441] 

40 
0.449 

[0.093] 
0.501 

[0.094] 
0.500 

[0.094] 
0.900 

[0.186] 
1.001 

[0.187] 
1.001 

[0.188] 
1.353 

[0.278] 
1.503 

[0.281] 
1.503 

[0.283] 
1.800 

[0.371] 
2.001 

[0.375] 
2.001 

[0.377] 

50 
0.450 

[0.083] 
0.501 

[0.084] 
0.501 

[0.084] 
0.894 

[0.165] 
0.998 

[0.167] 
0.998 

[0.168] 
1.346 

[0.248] 
1.500 

[0.250] 
1.499 

[0.251] 
1.796 

[0.330] 
2.003 

[0.333] 
2.002 

[0.335] 

100 
0.443 

[0.058] 
0.500 

[0.058] 
0.500 

[0.059] 
0.885 

[0.116] 
0.997 

[0.117] 
0.997 

[0.117] 
1.328 

[0.174] 
1.499 

[0.175] 
1.499 

[0.176] 
1.775 

[0.231] 
2.002 

[0.233] 
2.003 

[0.234] 

200 
0.441 

[0.041] 
0.501 

[0.041] 
0.500 

[0.041] 
0.879 

[0.082] 
1.000 

[0.082] 
0.999 

[0.082] 
1.323 

[0.122] 
1.500 

[0.123] 
1.501 

[0.124] 
1.765 

[0.163] 
2.001 

[0.164] 
2.001 

[0.165] 

300 
0.440 

[0.033] 
0.500 

[0.033] 
0.500 

[0.034] 
0.880 

[0.066] 
1.000 

[0.067] 
1.000 

[0.067] 
1.321 

[0.100] 
1.502 

[0.100] 
1.502 

[0.101] 
1.760 

[0.133] 
1.998 

[0.134] 
1.998 

[0.134] 

500 
0.439 

[0.026] 
0.500 

[0.026] 
0.500 

[0.026] 
0.880 

[0.051] 
1.000 

[0.052] 
1.000 

[0.052] 
1.317 

[0.077] 
1.501 

[0.078] 
1.501 

[0.078] 
1.756 

[0.103] 
2.000 

[0.104] 
2.000 

[0.104] 

5% 

20 
0.327 

[0.127] 
0.496 

[0.137] 
0.496 

[0.143] 
0.658 

[0.255] 
1.002 

[0.274] 
1.004 

[0.282] 
0.988 

[0.382] 
1.498 

[0.411] 
1.499 

[0.423] 
1.335 

[0.511] 
2.010 

[0.548] 
2.010 

[0.564] 

30 
0.315 

[0.102] 
0.501 

[0.109] 
0.500 

[0.113] 
0.633 

[0.204] 
1.002 

[0.219] 
1.002 

[0.226] 
0.948 

[0.305] 
1.502 

[0.328] 
1.502 

[0.338] 
1.273 

[0.407] 
2.007 

[0.436] 
2.008 

[0.449] 

40 
0.310 

[0.087] 
0.500 

[0.094] 
0.500 

[0.097] 
0.617 

[0.175] 
1.002 

[0.187] 
1.002 

[0.193] 
0.931 

[0.262] 
1.502 

[0.281] 
1.501 

[0.289] 
1.235 

[0.350] 
1.998 

[0.375] 
1.999 

[0.386] 

50 
0.304 

[0.079] 
0.500 

[0.084] 
0.501 

[0.086] 
0.608 

[0.156] 
1.002 

[0.167] 
1.002 

[0.172] 
0.911 

[0.233] 
1.498 

[0.250] 
1.498 

[0.257] 
1.216 

[0.311] 
2.001 

[0.334] 
2.001 

[0.343] 

100 
0.295 

[0.054] 
0.500 

[0.058] 
0.500 

[0.060] 
0.588 

[0.109] 
1.000 

[0.117] 
1.000 

[0.120] 
0.887 

[0.163] 
1.501 

[0.175] 
1.502 

[0.180] 
1.184 

[0.218] 
2.003 

[0.233] 
2.003 

[0.240] 

200 
0.291 

[0.038] 
0.500 

[0.041] 
0.500 

[0.042] 
0.580 

[0.077] 
0.990 

[0.082] 
0.999 

[0.084] 
0.876 

[0.115] 
1.500 

[0.123] 
1.500 

[0.126] 
1.164 

[0.153] 
1.999 

[0.164] 
1.999 

[0.169] 

300 
0.290 

[0.031] 
0.500 

[0.033] 
0.500 

[0.034] 
0.580 

[0.062] 
1.000 

[0.067] 
1.000 

[0.069] 
0.868 

[0.094] 
1.499 

[0.100] 
1.499 

[0.103] 
1.158 

[0.125] 
2.001 

[0.134] 
2.002 

[0.137] 

500 
0.288 

[0.024] 
0.500 

[0.026] 
0.500 

[0.027] 
0.577 

[0.048] 
1.000 

[0.052] 
1.000 

[0.053] 
0.865 

[0.072] 
1.500 

[0.078] 
1.500 

[0.080] 
1.152 

[0.096] 
1.999 

[0.104] 
1.999 

[0.106] 
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Table 2 (continued): Estimate of the Treatment Effect and Standard Error (in [ ]) for Simulated Regression-Discontinuity Data 
Including Non-Compliers (NC), with Perfect Compliance and Without Non-Compliers for Various Percentages of Non-Compliance 

(% NC) 

% 
NC 

Sample 
Size 

With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 
With 
NC 

Perfect 
Without 

NC 

Effect 
Size 

0.500 1.000 1.500 2.000 

10% 

20 
0.229 

[0.119] 
0.502 

[0.137] 
0.503 

[0.146] 
0.450 

[0.236] 
1.000 

[0.274] 
1.001 

[0.292] 
0.671 

[0.354] 
1.504 

[0.410] 
1.503 

[0.436] 
0.903 

[0.474] 
2.002 

[0.548] 
2.005 

[0.584] 

30 
0.214 

[0.094] 
0.500 

[0.110] 
0.500 

[0.116] 
0.429 

[0.189] 
1.002 

[0.218] 
1.001 

[0.232] 
0.645 

[0.283] 
1.505 

[0.328] 
1.504 

[0.348] 
0.853 

[0.376] 
1.999 

[0.437] 
2.001 

[0.464] 

40 
0.206 

[0.081] 
0.500 

[0.094] 
0.500 

[0.099] 
0.416 

[0.161] 
1.002 

[0.187] 
1.002 

[0.198] 
0.619 

[0.242] 
1.495 

[0.281] 
1.497 

[0.297] 
0.830 

[0.323] 
1.995 

[0.375] 
1.998 

[0.397] 

50 
0.205 

[0.072] 
0.500 

[0.083] 
0.500 

[0.088] 
0.405 

[0.143] 
0.996 

[0.167] 
0.997 

[0.177] 
0.610 

[0.215] 
1.496 

[0.251] 
1.496 

[0.265] 
0.817 

[0.287] 
1.999 

[0.333] 
2.000 

[0.353] 

100 
0.197 

[0.050] 
0.500 

[0.058] 
0.501 

[0.062] 
0.395 

[0.100] 
1.002 

[0.117] 
1.002 

[0.123] 
0.595 

[0.150] 
1.502 

[0.175] 
1.503 

[0.185] 
0.791 

[0.200] 
2.002 

[0.233] 
2.002 

[0.246] 

200 
0.195 

[0.035] 
0.500 

[0.041] 
0.500 

[0.043] 
0.388 

[0.070] 
1.000 

[0.082] 
1.000 

[0.087] 
0.582 

[0.105] 
1.498 

[0.123] 
1.498 

[0.130] 
0.781 

[0.141] 
2.001 

[0.164] 
2.001 

[0.173] 

300 
0.194 

[0.029] 
0.500 

[0.033] 
0.500 

[0.035] 
0.389 

[0.057] 
1.000 

[0.067] 
1.000 

[0.071] 
0.582 

[0.086] 
1.498 

[0.100] 
1.498 

[0.106] 
0.773 

[0.114] 
1.998 

[0.134] 
1.998 

[0.141] 

500 
0.193 

[0.022] 
0.500 

[0.026] 
0.500 

[0.027] 
0.387 

[0.044] 
1.000 

[0.052] 
1.000 

[0.055] 
0.579 

[0.066] 
1.499 

[0.078] 
1.499 

[0.082] 
0.775 

[0.088] 
2.000 

[0.103] 
2.001 

[0.109] 
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Vladivostok, Russia 

 
 
The problem of qualitative information processing in questionnaires is considered and a solution for this 
problem is offered. The computer technology developed by the authors to automate the offered decision is 
described. 
 
Key words: Open question, typology consumers, qualitative information processing technology. 
 
 

Introduction 
Questionnaire survey methods are becoming 
more widespread. This is facilitated in part by 
the development of democratic processes and a 
market economy in Russia and other countries. 
Moreover, institutions of power have shown 
increased interest in establishing public feedback 
using the Internet. 

Most researchers use simple methods for 
questionnaire data collection and processing. 
However, qualitative and poorly structured 
information processing techniques are common. 
Martyshenko and Kustov have been engaged in 
questionnaire data processing computer 
technology development for more than six years. 
In their previous work (Martyshenko & Kustov, 
2007) they envisaged a computer technology for 
open questionnaire processing. The technology 
is based on a type-design practice. 

Researchers have achieved considerable 
results in qualitative information processing 
technology. Some new elements of the 
technology are considered here. Qualitative 
information processing efficiency has been 
improved  through  the introduction  of a  new 
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block, namely, knowledge base represented by 
three types of dictionaries. 
 
Qualitative Information Processing 

Consider a general scheme of qualitative 
information processing technology (see Figure 
1). Source data is considered to be represented in 
an object-marker schedule, regardless of the 
collection technique used. Besides common 
properties with only one meaning of a marker 
under investigation, it is assumed that combined 
properties can be included into the object-
marker table. A combined marker appears when 
a respondent can choose several answers for the 
same question. For example, a respondent may 
mention several cities when asked: What large 
cities have you visited within the last three 
years? Thus, a combined marker consists of at 
least more than one simple answer. To identify a 
combined marker it is necessary to introduce a 
single divider symbol because a simple answer 
may consist of several words or even an entire 
sentence. 

Typification, which allows for the 
quantitative processing, is a practice used for the 
shift from non-structured data representation to 
structured representation. A typification 
operation is a substitution of a source simple 
statement (in the form of text) by a generalizing 
statement (in the form of text) with similar or 
close meaning. The typification operation is 
performed with the assistance of a tabulated 
marker meaning list, that is, one of the columns 
in the table contains all the unique meanings of 
the source marker. 
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Although a combined marker is subject to a 
typification operation, all simple statements in a 
complex or combined statement are included 
into the marker meaning list. A marker meaning 
list table has an automatic filter and contains a 
column in which meaning frequency is 
calculated; a typification operation is used for 
marker meaning list table data rather than 
object-marker table data. In a typification 
operation, simple situations are processed first. 
For example, different spellings of the same 
word or word order. The best (or correct) form 
of the statement is selected from among several 
similar statements and is then copied into marker 
meaning list table cells containing similar 
statements. By substituting some unique 
statements for those existing in the meaning list 
the number of lines in the marker meaning list 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
table are reduced. After several substitutions 
have been made, a compression operation can be 
reasonably used to recalculate the marker 
meaning list table. Gradually, using this process, 
the marker meaning list table shrinks to become 
more demonstrative. 

After simple situations have been 
processed, more complex statements are 
considered. A group of low-frequency 
statements related to the same topic should be 
found in a marker meaning list table. For this 
group of simple statements a researcher can 
select a generalizing statement or, if no 
statement can be found, a new generalizing 
statement may be introduced to render the 
general meaning or topic of a group of simple 
statements. For example, in response to the 
question, what else do you like to do during a 

Figure 1: Qualitative Data Processing Computer Technology Scheme 
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vacation at the seaside besides sunbathing and 
swimming?, respondents mentioned raising 
children, raising grandchildren, playing with 
children and/or teaching children to swim. 
However, these statements did not account for a 
high percentage of response (less than 0.1%), 
thus, the generalizing statement taking care of 
children found in the marker meaning list table 
was substituted. in general, this substitution 
preserved the meaning of the original 
statements. 

However, it is important not to lose 
information, particularly when a repeated 
questionnaire survey is used, for this reason, 
similar statements for the generalizing ones 
using a specification in parenthesis are 
substituted. Specification or nuance is indicated 
in brackets. For example, in the above case the 
original meanings were substituted for: 
 
• taking care of children (raising 

grandchildren), 
• taking care of children (raising children), 
• taking care of children (playing with 

grandchildren),and 
• taking care of children (teaching children to 

swim). 
 

The nature of the response, which helps 
to determine the respondent’s (consumer’s) 
personality, is more important than the word-by-
word content of the answer. An initial marker 
meaning list table can contain several thousand 
meanings, but after processing (typification 
operation) the table normally has up to three 
hundred meanings, including specifications. 
Creation of the table is the final stage in 
typification (level one). Even if automated, the 
process is time-consuming and requires the 
skills and concentration of a researcher. After 
each session the results are stored and the next 
session starts from the point where the previous 
session was stopped. 

If a newly designed marker contains two 
or more meanings it is subject to analysis and 
requires additional processing (level two). At 
this stage the specification is excluded and 
another column, called a subclass, is placed in 
the marker meaning list table with the number of 
unique statements reduced to 30 or 50. 

Thirty to fifty variants of meaning is a 
large number for analysis on a nominal scale. 
Therefore, upon formation of an acceptable list 
of clearly different meaning variants, a 
researcher must group the answers in order to 
consider them properties of separate classes, 
types or topics depending on the informative 
meaning of the markers and tasks set developed 
for the typification operation. In our example 
determination of personality type would suit 
better. Combining simple statements into classes 
is a third level of typification practice. A 
researcher will introduce the name for each class 
in accordance with the nature of the statements 
to be combined. In practice, grouping results 
achieved by different researchers are very 
similar. Any differences may be explained by 
the transitory nature of some statements, which 
can be attributed to several classes and different 
researchers can give different names to each 
class. 

Thus, as a result of open question data 
processing the following output is obtained: 
 
• Three new representations of marker 

(property) included into the source data 
table, which can be subject to subsequent 
processing for obtaining informative 
conclusions; 

• A marker meaning list table which can be 
used for a repeated questionnaire survey or 
typification practice with any other 
questionnaires developed for the process 
investigation; and 

• Knowledge base in the form of three 
dictionaries: a substitution dictionary, a key 
word dictionary and a redundant information 
dictionary. 

 
Dictionaries 

It should be noted that, as a result of a 
typification operation with combined markers, 
other combined markers are formed. Special 
processing techniques have been developed for 
analysis of the latter. The efficiency of 
qualitative data processing computer technology 
can be increased by knowledge base creation 
and use. Computer technologies allowing for 
knowledge base use belong to an expert system 
class. The main distinctive feature of an expert 
system is that it is capable of correct forecasting. 



INCREASING QUALITATIVE INFORMATION PROCESSING EFFICIENCY 

210 
 

By giving various hints to a user during 
operation, specialized software can save much 
time. User hints are generated by special 
dictionaries, which are formed during 
typification operations. These dictionaries store 
user experiences gained through solving 
qualitative marker typification tasks. Consider 
the structure and functions of these dictionaries. 
 
Substitution Dictionary 

A substitution dictionary is formed 
automatically when simple statements are 
substituted for by other simple statements. The 
substitution dictionary is supplemented when a 
user works with a typification program; the 
dictionary stores all substitutions made by the 
user. All dictionaries are stored in a single 
Access data base and  new  questionnaire  data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

requires new a typification operation. This 
means that a user must choose analogues for the 
new data. Situations processed by users at 
previous stages prove to repeat in most cases for 
the repeated data collection. By activating the 
substitution dictionary the user can acquire hints 
for substitution operations; this leaves only 
situations that have not been recorded before to 
be processed.  

Dictionary support does not require an 
excess of time, but the dictionary should be 
reviewed occasionally because, over time, 
irrelevant variants of substitution collect. Any 
irrelevant records which accumulate in the 
dictionary should be deleted because excessive 
volume of the dictionary can reduce software 
operation speed. An example of a substitution 
dictionary is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Substitution Dictionary Example 
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Key Word Dictionary 
Next consider the functions of a key 

word dictionary. This dictionary is very useful 
for phrases containing many words. With long 
phrases the search for proper synonyms in the 
marker meaning list table can be difficult due to 
the large number of meanings in the beginning 
of operation. Because exact matching is a rare 
occasion, EXCEL filters are often used to 
identify shorter lists containing certain 
combinations of phrase elements (see Figure 3). 
Such phrases are termed key words, although 
phrase elements can be conditional key words 
only. The list shown in Figure 3 contains 
phrases identified by the key word exc. In the 
reduced list the phrase, organize tours to 
preserved areas, can be substituted for the 
phrase, develop a preserved area excursion tour. 
The substitution does not alter the meaning of 
the phrase.  

Dictionary operation is based on the 
extended filter principle, and a key word 
dictionary includes high-frequency phrases from 
a marker meaning list table. These phases are  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

provided with a list of key words for a similar 
phrase search. Users can perform these 
operations with the help of commands in a 
special dialog window titled show key word 
dictionaries (see Figure 4), which represents all 
functions for key word dictionary creation, 
supplement and review. Figures 5 and 6 show 
dialog windows used for supplementing key 
word dictionaries. 

The difference between the dictionary 
and the extended filter operation is that the 
dictionary stores key words previously used for 
a synonym search. The dictionary can be created 
and supplemented by user only and is intended 
for future operations facilitation. Once the 
dictionary contains enough data it can be used as 
a database. When the dictionary is activated 
before a typification program is started an 
additional column is formed in the marker 
meaning list table, this is called a substitutions 
from key word dictionary. This column offers 
phrase substitutions from a key word dictionary 
that contains phrases chosen by maximum match 
between source phrase key words and key word 
dictionary phrases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Example of the EXCEL User Filter Application 
for a Typification Operation 
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Redundant Information Dictionary 

The third dictionary in the database is 
the redundant information dictionary. Unlike the 
two previously mentioned dictionaries 
developed for each qualitative marker, the 
redundant information dictionary works with all 
the qualitative markers and also with different 
questionnaires. This dictionary is used at 
qualitative text information processing level one 
and it helps to delete or edit any statements 
containing redundant and/or irrelevant 
information. 

For example, the dictionary can be used 
to exclude such phrases as I think that, in 

myopinion, etc. The dictionary also includes 
words 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with typical generalizations, for instance, isl or 
isl. in data can be substituted with island. The 
redundant information dictionary has proven to 
be very useful for long phrase and sentence 
processing. Using the dictionary the marker 
meaning list table used in the first stage of 
operation can be reduced considerably. 
 

Conclusion 
The above technology has been tested for over a 
dozen different questionnaires and has received 
approval for use. Some practical results of 
qualitative marker processing can be found in 
the works of Martyshenko, Martyshenko, and 
Starkov (2007) and in Martyshenko (2008). 

Figure 4: Toolbox for Operating a Key Word Dictionary 
 

 

 
Figure 5: New Phrase Input for a Key Word Dictionary 
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An exact test for the equality of two intraclass correlation coefficients under unequal family sizes based 
on two independent multi-normal samples is proposed. This exact test consistently and reliably produced 
results superior to those of the Likelihood Ratio Test (LRT) and the large sample Z-test proposed by 
Young and Bhandary (1998). The test generally performed better in terms of power (for higher intraclass 
correlation values) for various combinations of intraclass correlation coefficient values and the exact test 
remained closer to the significance level under the null hypothesis compared to the other two tests. For 
small sample situations, sizes of the LRT and large-sample Z-tests are drastically higher than alpha-level, 
but the size of the exact test is close to the alpha-level. The proposed exact test is computationally simple 
and can be used for both small and large sample situations. 
 
Key words: Likelihood ratio test, Z-test, F-test, intraclass correlation coefficient. 
 
 

Introduction 
The intraclass correlation coefficient ρ  is 
widely used to measure the degree of intrafamily 
resemblance with respect to characteristics such 
as blood pressure, cholesterol, weight, height, 
stature, lung capacity, etc. Several authors have 
studied statistical inference concerning ρ  based 
on single multinormal samples (Scheffe, 1959; 
Rao, 1973; Rosner, et al., 1977, 1979; Donner & 
Bull, 1983; Srivastava, 1984; Konishi, 1985; 
Gokhale & SenGupta, 1986; SenGupta, 1988; 
Velu & Rao, 1990). 

Donner and Bull (1983) discussed the 
likelihood ratio test (LRT) for testing the 
equality of two intraclass correlation coefficients 
based on two independent multinormal samples 
under equal family sizes. Konishi and Gupta 
(1987) proposed a modified LRT and derived its 
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asymptotic null distribution; they also discussed 
another test procedure based on a modification 
of Fisher’s Z-transformation following Konishi 
(1985). Huang and Sinha (1993) considered an 
optimum invariant test for the equality of 
intraclass correlation coefficients under equal 
family sizes for more than two intraclass 
correlation coefficients based on independent 
samples from several multinormal distributions. 
For unequal family sizes, Young and Bhandary 
(1998) proposed a LRT, a large sample Z-test 
and a large sample Z*-test for the equality of two 
intraclass correlation coefficients based on two 
independent multinormal samples. 

For several populations and unequal 
family sizes, Bhandary and Alam (2000) 
proposed a LRT and a large sample ANOVA 
test for the equality of several intraclass 
correlation coefficients based on several 
independent multinormal samples. Donner and 
Zou (2002) proposed an asymptotic test for the 
equality of dependent intraclass correlation 
coefficients under unequal family sizes. 
Bhandary and Fujiwara (2006) proposed an F-
max test for several populations and under 
unequal family sizes. None of these studies, 
however, derived an exact test under unequal 
family sizes. It is an important practical problem 
to consider an exact test for the equality of 
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intraclass correlation coefficients under unequal 
family sizes. 

This article proposes an exact test for 
the equality of two intraclass correlation 
coefficients based on two independent 
multinormal samples under fixed but unequal 
family sizes. Developing an exact test for the 
equality of intraclass correlation coefficients 
under unequal family sizes would allow, for 
example, the determination of whether blood 
pressure, cholesterol, lung capacity, etc., among 
families in Native American or Caucasian races 
differ from the same among families in Asian 
races. 
 
Tests of 210 : ρρ =H  versus 211 : ρρ ≠H : 

Likelihood Ratio Test 
Let ),...,,( 21

   ~

′=
iipiii xxxX  be a 1xpi  

vector of observations from thi  family; 
.,...,2,1 ki =  The structure of mean vector and 

the covariance matrix for the familial data is 
given by the following (Rao, 1973): 
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the intraclass correlation coefficient, is the 
coefficient of correlation among the members of 
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where Q  is an orthogonal matrix. Under the 
orthogonal transformation (2.2), it can be 

observed that kiNu iipi i
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The transformation used on the data from 

 ~
x  to 

 ~
u  is independent of ρ  and can be accomplished 

using Helmert’s orthogonal transformation. 
Srivastava (1984) describes estimators 

of ρ  and 2σ  under unequal family sizes which 
are good substitutes for the maximum likelihood 
estimator and are given by the following: 
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and 
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Next, consider the two sample problem 

with k1 and k2 families from each population. 
Let ),...,,( 21

   ~

′=
iipiii xxxx  be a 1xpi  vector of 

observations from ith family; 1,...,1 ki =  and 
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Using orthogonal transformation, the 
data vector can be transformed from 
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ix  to 
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and 
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jμ and *

2 jΣ  are the same as *
1

~   
iμ  and *

1iΣ  

respectively except that 1μ  is replaced by 2μ  

, 2
1σ  is replaced by 2

2σ , 1ρ  is replaced by 2ρ  

and iη is replaced by { }1
21 ( 1)j j jq qξ ρ−= + − . 

The transformations used on the data from 
 ~

x  to 

 ~
u  and 

 ~
y  to 

 ~
v  are independent of 1ρ  and 2ρ ; 

note it is assumed that 22
2

2
1 σσσ == . 

Under the above setup, Young and 
Bhandary (1998) derived likelihood ratio test 
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statistic for testing 210 : ρρ =H  vs. 

211 : ρρ ≠H  which is given by the following: 
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where, Λ  = likelihood ratio test statistic, 
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It is known from asymptotic theory that 
Λ− log2  has an asymptotic Chi-square 

distribution with 1 degree of freedom. Here (2.7) 
is not exact −2(loglikelihood ratio) because 
Srivastava’s (1984) estimator of parameters was 
substituted instead of exact likelihood estimator 
(which are not closed form in this situation). 
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However, Srivastava’s (1984) estimators are 
strongly consistent and hence the asymptotic 
behavior of (2.7) may not be accurately as Chi-
square distribution. It is a close approximation to 
the Chi-square distribution. 

Young and Bhandary (1998) also 
proposed large sample Z-test as follows: 
 

21

21

11

ˆˆ

kk
S

Z
+

−
=

ρρ
                     (2.8) 

 
where, 1ρ̂  = estimator of 1ρ  from the first 

sample using Srivastava (1984), 2ρ̂  = estimator 

of 2ρ  from the second sample using Srivastava 

(1984) and 2S  = pooled estimator of variance 
under 0H  using the formula given by Srivastava 

and Katapa (1986) as follows: 
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where, k  = number of families in the sample, 
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and 11 −−= ii pa . 

It is clear that under 0H , the test 

statistic Z given by (2.8) has an asymptotic 
N(0,1) distribution. The statistic Z in (2.8) under 

0H  may not be exactly N(0,1) asymptotically, 

but it is a close approximation for large sample 
situation. A rough sketch of proof is as follows: 
 
i. 1 1ˆ ˆ~ ( , ( ) / )N V kρ ρ ρ  asymptotically 

under 0H  by Srivastava and Katapa 

(1986), where ˆ( )V ρ is given by (2.9). (*) 

ii. Similarly, 2 2ˆ ˆ~ ( , ( ) / )N V kρ ρ ρ  

asymptotically under 0H  by Srivastava 

and Katapa (1986), where ˆ( )V ρ is given by 
(2.9). (**) 

 
iii. The approximate asymptotic distribution of 

Z is obtained in (2.8) as N(0,1) using (*) 

and (**), where 2S  is ˆ( )V ρ  with its 

estimate given by (2.9) where ρ  is 

replaced by ρ̂  under 0H . 

 
Young and Bhandary (1998) showed 

through simulation that the likelihood ratio test 
given by (2.7) consistently produced results 
superior to those of the large sample Z-test given 
by (2.8). It can be observed that likelihood ratio 
test given by (2.7) is computationally complex 
and is also used asymptotically, that is, when 
family sizes are large (at least 30). However, a 
researcher may have a situation in which only a 
small sample is available; thus, an exact F-test is 
proposed which is computationally simple and 
can be used for both small sample and large 
sample situations. 
 
Proposed Exact Test 

The new exact test is described as 
follows: 
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(2.10) 
 
It can be shown using (2.6) that 
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(2.11) 
 
and if the following replacements are made, 

iru by jsv , 1k by 2k , r by s, ip  by  jq  and 1ρ  
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by 2ρ , in (2.11) expression another Chi-square 

distribution results with 
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where, 2
nχ  denotes a Chi-square distribution 

with n degrees of freedom (d.f.). 
Hence, under 0H , the exact distribution 

of the F-test statistic given by (2.10) is an F-
distribution with degrees of freedom 
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(2.11) and (2.12)). Hence, the critical region (or 
rejection region) for testing 210 : ρρ =H  vs. 

211 : ρρ ≠H  can be written as follows: 
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where F is the test statistic given by (2.10) and 

baF ,;γ  is the upper γ100 % point of an F-

distribution with degrees of freedom a and b 
respectively. 

The exact power function of the F-test 
given by (2.10) can be derived as follows: 
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F-distribution with degrees of freedom 
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ip  and 

=

−
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jq  respectively (using 

(2.11) and (2.12)) under 1H . 
It can be observed that the test statistic F 

given by (2.10) is very simple to compute and 
that the distribution of F is exact and hence can 
be used for both small sample and large sample 
situations. 
 
Simulation Study 

Multivariate normal random vectors 
were generated using the R program in order to 
evaluate the power of the F statistic as compared 
to the LRT statistic and Z-statistic. Five, 15 and 
30 vectors of family data were created for each 
of the two populations. The family size 
distribution was truncated to maintain the family 
size at a minimum of 2 and a maximum of 15 
siblings. Previous research in simulating family 
sizes (Rosner, et al., 1977; Srivastava & Keen, 
1988) determined the parameter setting for 
FORTRAN IMSL negative binomial subroutine 
with a mean = 2.86 and a success probability = 
0.483. In this study, the mean was set to equal 
2.86 and theta equals 41.2552. All parameters 
were set the same for each population, except 
the values of 1ρ  and 2ρ  which took on all 
combinations possible over the range of values 
from 0.1 to 0.9 at increments of 0.1. 

The R program produced estimates of 

1ρ  and 2ρ  along with the F statistic, the LRT 
statistic and the Z- statistic 3,000 times for each 
particular combination of population parameters 
( 1ρ  and 2ρ ). The frequency of rejection for 

each test statistic at α =0.05 was noted and the 
proportion of rejections are reported in Table 1 
for various combinations of 1ρ  and 2ρ . Table 2 
shows the size comparison for the LRT statistic, 
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the F statistic and the Z statistic for various 
combinations of 1ρ  and 2ρ . Figures 1-4 present 
power estimates as well as size estimates for the 
three tests. 

This study found that the exact F-test 
showed consistently better results for higher 1ρ  

and  2ρ   values   in   power  as  well  as  in  size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

compared to the LRT test and large sample Z-
test. For the small sample situation, the LRT test 
and large sample Z-test have sizes drastically 
higher than alpha-level whereas the exact F test 
is close to the alpha-level. Based on these 
results, the F test is strongly recommended for 
use in practice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Rejection Proportions for α = 0.05 
 

rho1 rho2 

K = 5 K = 15 K = 30 

LRT F Z LRT F Z LRT F Z 

0.1 0.2 0.1947 0.0673 0.0123 0.1377 0.0600 0.0233 0.0910 0.0780 0.0447

0.1 0.4 0.1660 0.0857 0.0607 0.2477 0.2103 0.1647 0.5423 0.4330 0.3633

0.1 0.6 0.3873 0.2520 0.1413 0.7470 0.6923 0.5497 0.9723 0.9557 0.8717

0.1 0.8 0.7067 0.7500 0.4257 0.9870 0.9943 0.9237 1.0000 1.0000 0.9987

0.3 0.2 0.1930 0.0597 0.0383 0.0807 0.0700 0.0470 0.0953 0.0817 0.0650

0.3 0.4 0.1347 0.0540 0.0493 0.0813 0.0783 0.0557 0.0997 0.1073 0.0667

0.3 0.6 0.1803 0.1570 0.1467 0.3477 0.3630 0.2593 0.6667 0.6633 0.4803

0.3 0.8 0.5410 0.5917 0.2763 0.8870 0.9147 0.7397 0.9990 1.0000 0.9600

0.5 0.2 0.2093 0.1303 0.0977 0.3013 0.2847 0.2180 0.5863 0.5310 0.4213

0.5 0.4 0.1113 0.0607 0.0723 0.0740 0.0880 0.0680 0.1033 0.1163 0.1010

0.5 0.6 0.1013 0.0663 0.1190 0.0737 0.0843 0.0877 0.1367 0.1663 0.1037

0.5 0.8 0.3403 0.3997 0.2493 0.6977 0.7747 0.4183 0.9327 0.9603 0.7173

0.7 0.2 0.3910 0.3757 0.2557 0.8183 0.8247 0.6033 0.9867 0.9873 0.9080

0.7 0.4 0.2647 0.2740 0.1717 0.5623 0.6080 0.3400 0.7983 0.8413 0.5783

0.7 0.6 0.0877 0.0730 0.1320 0.1080 0.1303 0.1070 0.1813 0.2227 0.1327

0.7 0.8 0.1107 0.1143 0.1523 0.1827 0.2610 0.1623 0.3373 0.4393 0.2277

0.9 0.2 0.8723 0.9390 0.5140 0.9963 1.0000 0.9667 1.0000 1.0000 1.0000

0.9 0.4 0.8527 0.9317 0.4453 0.9967 0.9993 0.8607 1.0000 1.0000 0.9983

0.9 0.6 0.4703 0.5330 0.2457 0.9710 0.9897 0.6973 0.9983 1.0000 0.9277

0.9 0.8 0.1680 0.1930 0.1797 0.3827 0.5087 0.2173 0.7263 0.8420 0.4337
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Table 2: Checking the Alpha Level (α = 0.05) 
 

rho1 rho0 

K = 5 K = 15 K = 30 

LRT F Z LRT F Z LRT F Z 

0.1 0.1 0.1913 0.0490 0.0120 0.0943 0.0480 0.0157 0.0770 0.0497 0.0153

0.2 0.2 0.2443 0.0543 0.0273 0.0757 0.0500 0.0220 0.0477 0.0490 0.0220

0.3 0.3 0.1300 0.0467 0.0317 0.0497 0.0480 0.0383 0.0387 0.0503 0.0330

0.4 0.4 0.1497 0.0503 0.0523 0.0403 0.0513 0.0457 0.0410 0.0470 0.0410

0.5 0.5 0.1093 0.0550 0.0617 0.0420 0.0540 0.0540 0.0363 0.0487 0.0433

0.6 0.6 0.0930 0.0520 0.0943 0.0367 0.0457 0.0633 0.0393 0.0540 0.0547

0.7 0.7 0.0547 0.0470 0.1413 0.0363 0.0573 0.0760 0.0337 0.0473 0.0540

0.8 0.8 0.0610 0.0537 0.1500 0.0290 0.0457 0.0827 0.0307 0.0533 0.0663

0.9 0.9 0.0597 0.0480 0.1987 0.0230 0.0430 0.0853 0.0327 0.0557 0.0623

 
 
 

Figure 1: Alpha Level (k = 5, alpha = 0.05) 
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Figure 2: Alpha Level (k = 15, alpha = 0.05) 
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Figure 3: Power (rho1 = 0.9, k = 15, alpha = 0.05) 
power
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Example with Real Life Data 

The main goal of this study is to find a 
better and easier way to compute the proposed 
exact F-test compared to the test given by 
Young and Bhandary (1998), the aim is not to 

find a test in situations such as 2 2
1 2σ σ=  and 

1 2ρ ρ≠  or 2 2
1 2σ σ≠  and 1 2ρ ρ=  or for non-

normal data, etc. For this reason, the same 
example - values of pattern intensity on soles of 
feet in fourteen families - as used by Young and 
Bhandary (1998) is employed for this example. 
In this example two tests using real life data 
collected from Srivastava and Katapa (1986) are 
compared. First the data is randomly split into 
two samples as shown in Table 3. 

First, the data is transformed by 
multiplying each observation vector by 
Helmert’s orthogonal matrix Q, where 
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This results in transformed vectors 

   ~   ~
ji vandu  

respectively for 1,...,2,1 ki =  and 2,...,2,1 kj = ; 

here, 71 =k  and 72 =k . 
Srivastava’s formula given by (2.3) is 

used to compute intraclass correlation 
coefficients. The computed values of intraclass 
correlation coefficients are 8708.0ˆ1 =ρ , 

8544.0ˆ 2 =ρ and ρ̂  =0.85847. The computed 
values of the LRT and F statistics are obtained  

Figure 4: Power (rho1 = 0.3, k = 30, alpha = 0.05) 
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from formula (2.7) and (2.10) respectively are as 
follows: LRT statistic = 1.73374 and F statistic 
= 2.15690. Based on these results, the null 
hypothesis would not be rejected by either test at 
1%, 5% or 10% levels. Intuitively, the test 
should not be rejected because the data is from 
one population and split into two samples. 
Considering the power and level of the two tests 
suggested in the simulation the proposed exact F 
test is recommended for use in practice. 
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The General Piecewise Growth Mixture Model (GPGMM), without losing generality to other fields of 
study, can answer six crucial research questions regarding children’s word recognition development. 
Using child word recognition data as an example, this study demonstrates the flexibility and versatility of 
the GPGMM in investigating growth trajectories that are potentially phasic and heterogeneous. The 
strengths and limitations of the GPGMM and lessons learned from this hands-on experience are 
discussed. 
 
Key words: Structural equation model, piecewise regression, growth and change, growth mixture model, 

latent class analysis, population heterogeneity, word recognition, reading development, 
trajectories, literacy development. 

 
 

Introduction 
People learn and develop in different ways in 
different phases. A rich body of literature has 
documented the complexities in human 
development, among which the best known is 
probably Piaget’s phasic theory about children’s 
cognitive development. However, in statistical 
modeling, such complexities are often disguised 
by a primitive assumption about homogeneity 
and linearity of data. The purpose of this study 
is, in the context of children’s reading 
development, to demonstrate the application of 
the General Piecewise Growth Mixture Model 
(GPGMM). GPGMM is a versatile modeling 
strategy that allows for the investigation of 
trajectories that are heterogeneous and phasic. 
GPGMM marries the general growth mixture 
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model (GGMM) articulated by Muthén (2004) 
with piecewise regression (Li, Duncan, Duncan, 
& Hops, 2001; McGee & Carleton, 1970; 
Muthén & Muthén, 1998-2007). 
 
Overview of Two Reading Development 
Theories 

The debate over the developmental 
pathways of children’s literacy achievement has 
not been resolved. Two major competing 
theories exist: the deficit and the lag models. 
The deficit model suggests that children who 
have a superior start in precursor linguistic and 
cognitive skills will improve their reading skills 
at a faster rate than those with a slower start 
(e.g., Bast & Reitsma, 1998; Francis, et al., 
1996). The increasing difference in reading 
performance among poor, average and advanced 
readers observed in early development is 
believed to be a result of initial skill sets that 
never develop sufficiently in those who turn out 
to be poor readers.  

An alternative view, the lag model, 
suggests that children with a poorer start in their 
cognitive skills will display a faster growth in 
their later development, whereas those with a 
superior start will display a slower growth 
(Leppänen, et al., 2004; Phillips, et al., 2002).  
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Protagonists of this view believe that children 
who differ in reading ability vary only in the rate 
at which cognitive skills develop so that lagging 
children will eventually catch up with their 
peers, and that the gap in the early development 
will eventually disappear. 

Empirical evidence has not consistently 
confirmed either the deficit or lag model. Bast 
and Reitsma (1998) provided support for the 
deficit model based on the findings that the rank 
ordering of the six waves of word recognition 
scores remained stable and that the differences 
in the score increased from grade one to grade 
three. They concluded that differences in reading 
achievement of the 280 Dutch children were 
cumulative. In a longitudinal study, Francis, et 
al. (1996) studied the trajectories of 403 non-
disabled and disabled children in Connecticut 
from grade one to grade nine using the Rasch-
scaled composite score of the Word 
Identification, Word Attack and Passage 
Comprehension subtests (Woodcock-Johnson 
Psychoeducational Test Battery; Woodcock & 
Johnson, 1977). They used quadratic trajectories 
to model the non-linear growth pattern displayed 
in the data. The results showed that the disabled 
readers were unable to develop adequate reading 
skills and their problems persisted into 
adolescence. They concluded that a deficit 
model best characterized the enlarging gap and 
an intervention at an early age is essential in 
order to reduce the impact of early deficit. 

Other studies, however, have reported 
that initially poor readers improved faster, and 
the early gap decreased over time (e.g., 
Anrnoutse, et al., 2001; Aunola, et al., 2002; 
Jordan, Kaplan & Hanich, 2002; Scarborough & 
Parker, 2003). For example, assuming linearity 
from grade two to grade eight, Scarborough and 
Parker (2003) reported decreasing gaps of 57 
non-disabled and disabled children in both WJ-
Word Identification and WJ-Passage 
Comprehension. 

In a longitudinal study of 198 English 
readers in Canada from grade one to grade six, 
Parrila, et al. (2005) studied the development of 
word identification, word attack and passage 
comprehension separately. For each outcome 
measure, they fitted a latent growth quadratic 
curve using growth mixture modeling and found 
that children with lower starting performance 

reduced the distance between themselves and 
children who had higher initial performance. 
Aarnoutse, et al. (2001) also failed to find the 
fan-spread pattern in reading comprehension, 
vocabulary, spelling or word decoding 
efficiency. Their results suggested that the 
initially low performers tended to show greater 
gains than did medium or high performers. 
Similarly, Aunola, et al. (2002) found a decrease 
in individual differences in a reading skill score 
(a composite of four different reading tasks) of 
Finnish children. Scarborough and Parker (2003) 
also reported that the difference between good 
and poor readers in their US sample were 
smaller in grade eight than grade two in a 
composite reading score made of word reading, 
decoding and passage comprehension. 

Existing evidence has not provided 
conclusive support for either the deficit or the 
lag models, or for the relationship between early 
performance and subsequent growth rate. The 
incongruence in the empirical findings is 
palpable if careful attention is paid to the 
diversified and piecemeal approach to the 
research design and data analysis (Parrila, et al., 
2005). 

As is evident from this brief review, the 
research designs varied in the length and phase 
of the studied time interval (i.e., earlier or later 
development in the grade school), the statistical 
analyses (e.g., ANOVA, regression or latent 
growth model), measures used to represent 
reading ability, the population of children whose 
growth trajectories were compared (e.g., 
normative or children with learning difficulties), 
the hypothesized pattern of growth trajectory 
(e.g., linear or quadratic), outcome measure 
(e.g., word recognition or reading 
comprehension) and sample size, as well as the 
terminologies and their operational definitions. 
Parrila, et al. (2005) concluded that reading 
development could follow multiple pathways, 
only some of which are captured by the existing 
conceptualizations. Thus, researchers could 
benefit from a more integral and comprehensive 
data analytical framework that is capable of 
modeling the complex, intricate, and diversified 
developmental nature of children’s reading 
development. 
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Methodology 
Data 

The data consists of 1,853 elementary 
school children from the North Vancouver 
school district in British Columbia. These 
children were measured every year in the fall 
starting from kindergarten to grade six. The 
dependent variable, word recognition, had a 
maximum score of 57, which was measured by 
naming 15 alphabet letters and followed by the 
reading subtest of the Wide Range Achievement 
Test-3 (WRAT-3; Wilkinson, 1995), which has 
a list of 42 words ordered by difficulty. The 
measurement of word recognition remained the 
same across the seven waves of data collection; 
hence, measurement invariance that warranted 
temporal score comparability across grades was  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

assumed. For demonstrative purposes, only the 
data of the 526 children who had all seven 
waves of data were included. Outliers were 
retained because this study aimed to model these 
cases through distinct latent classes so that – 
within each class – the distribution of reading 
performance was assumed to be normal. 

Table 1 displays the mean (M), standard 
deviation (SD) and skewness of the seven waves 
of the data. Figure 1 displays the boxplots for 
the seven waves of word recognition scores. It 
can be observed that the distributions of the 
seven word recognition measures are, for the 
most part, symmetric. The overall performance 
in word recognition improved across time, with 
faster growth in the period between kindergarten 
and grade two, and relatively slower growth in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Descriptive Statistics of the Word Recognition Scores 

 K G1 G2 G3 G4 G5 G6 

Mean 11.60 23.86 31.55 35.63 37.62 40.27 41.89 

SD 5.14 4.85 4.52 4.99 4.39 4.71 4.20 

Skewness -0.21 0.38 0.22 0.32 0.15 0.07 -0.14 

 
Figure 1: Boxplots for the Word Recognition Scores from Kindergarten to Grade Six 
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the period between grade three and grade six. 
Figure 2 shows the individual trajectories. The 
overall pattern of the trajectories was consistent 
with those revealed in the boxplots and the 
literature, which showed a nonlinear trend 
(Francis, et al., 1996; Parrila, et al., 2005). 

Given the observed non-linearity, it 
would seem inappropriate to impose a linear 
trajectory to the observed data as portrayed by 
the thick single straight line in Figure 2. Most 
previous studies fitted a quadratic curve to 
model this non-linear pattern as portrayed by the 
thick curve line in Figure 2, where the early 
development is assumed to improve with a faster 
growth, followed by a relatively slower growth, 
and then reach a peak with a possibility to 
decline near the end. Although a quadratic 
function is fairly accessible and widely used by 
applied researchers, it may be inappropriate for 
literacy development of school-age children, 
because it may portray a decline at the end of the 
developmental course, whereas reading 
development, at worst, is expected to plateau 
rather than decline, if not continue to grow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Also, the meaning of a quadratic parameter is 
often hard to interpret conceptually for 
phenomena studied in the social and behavioral 
sciences, such as word recognition. 

Another possibility for modeling the 
developmental pattern observed in Figure 2 is to 
fit a piecewise linear trajectory (Khoo, 1997; Li, 
et al., 2001; McGee & Carleton, 1970; 
Raudenbush & Bryk, 2002) as shown by the two 
thick segments connected at grade two in Figure 
2. A piecewise trajectory allows different linear 
growth rates to be fitted to different 
developmental phases that are empirically 
observed or theoretically hypothesized. 

Notice that despite the overall trend 
observed in Figure 2, a great deal of variation 
exists in individual’s developmental pattern as 
demonstrated by the differences in the starting 
performance, the speed of learning over time 
and the ending performance at grade six. 
Imposing a homogeneous trajectory to these 
heterogeneous learning patterns may overlook 
the complexities and diversity of children’s 
reading development. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Observed vs. Modeled Trajectories (Single Linear, Quadratic and 2-piece 
Linear) of Word Recognition Scores from Kindergarten to Grade Six 

 



GPGMM WORD RECOGNITION 

230 
 

General Piecewise Growth Mixture Model 
(GPGMM): What Can It Do? 

The GPGMM, at its foundation, is a 
structural equation model, a latent variable 
approach for investigating growth and change 
(Meredith & Tisak, 1990; Muthén, 2001; 
Muthén, 2008). GPGMM is a relatively new and 
fairly complex modeling framework for studying 
growth and change (Muthén, 2004). It combines 
the growth mixture model (GMM) that models 
population growth heterogeneity with the 
piecewise regression that models phasic growth 
rates. 

The “mixture” of growth mixture 
modeling refers to the finite mixture modeling 
element; that is, modeling with categorical latent 
variables that represent subpopulations (classes) 
where population membership is unknown but is 
inferred from the data (McLachlan & Peel, 
2000). The “piecewise” of the piecewise 
regression refers to the growth rates in different  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

developmental phases as reflected via the 
continuous latent growth factors. The GPGMM 
is an extension of the piecewise GMM by 
adding the covariates and the developmental 
outcome variable (Muthén, 2004). The 
combination of continuous and categorical latent 
variables of the GPGMM provides a very 
flexible analytical framework for investigating 
subpopulations showing distinct and phasic 
developmental patterns. 

GMM has gained increased popularity 
in studying children’s reading development. 
Statisticians and methodologists have proposed 
growth mixture models other than the GPGMM 
demonstrated in this paper that are of great 
theoretical and practical significance. Examples 
of these developments include Muthén, et al. 
(2003) and Boscardin, et al. (2008). The 
GPGMM specified for this demonstration is 
depicted graphically in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: GPGMM for Word Recognition Development 



WU, ZUMBO & SIEGEL 
 

231 
 

GPGMM attends to individual 
differences in developmental changes by 
allowing the growth factor to vary across 
individuals, resulting in individual varying 
trajectories over time. This individual 
heterogeneity in trajectories, in a conventional 
linear form, is captured by two continuous 
growth factors (a.k.a., random effects); one is a 
latent variable representing individual 
differences in the initial performance (i.e., 
intercept), and the other representing the 
individual differences in the growth rate (i.e., 
slope). Growth factors are created by 
summarizing the growth patterns observed in the 
repeated measures of the same individuals over 
time. The categorical latent variable C in Figure 
3 models the population heterogeneity in the 
growth factors. 

GPGMM can answer six crucial 
questions pertaining to children’s reading 
developmental complexities. These research 
questions, shown in two sequential sets, are: 
 
Set A: 
A1. Are there distinct phases where children 

differ in their speed of learning? 
A2. Are there unknown subpopulations (latent 

classes) that differ in their growth pattern? 
A3. How are the starting performance and 

growth rates related? 
 
Set B: 
B1. What are the characteristics of the latent 

classes? 
B2. For each class, what explains children’s 

starting performance and growth rates? 
B3. Do the latent classes differ in the reading 

developmental outcome? 
 
Note that although these questions were posed 
and answered herein as two sequential sets (A1-
A3 and B1-B3), the experience with the 
modeling procedures of the GPGMM in this 
study was non-linear; it required a recursive 
process of model specification, model selection, 
and meaning checking as would be the case with 
any other complex modeling. Nonetheless, two 
general modeling stages can be distinguished for 
a GPGMM. The first stage was the 
unconditional piecewise GMM (i.e., without the 
covariates and the proximal developmental 

outcome variable), that answered questions A1, 
A2 and A3. The major modeling task of this 
stage was to choose the optimal growth 
trajectories and number of classes. The second 
stage entailed the full GPGMM by incorporating 
the covariates and the developmental outcome 
variable (i.e., reading comprehension measured 
at the last time point) into the unconditional 
piecewise GMM. The conditional piecewise 
GMM further answered questions B1, B2, and 
B3. The major modeling task of this stage was to 
understand the characteristic of the classes and 
explain class-specific variations in the growth 
factors and the developmental outcome variable. 
 
Model Estimation and Fit 

The following briefly describes the 
model estimation method and fit statistics used 
for this demonstration. As asserted at the outset, 
the focus of this article is to provide a 
conceptual account and modeling demonstration 
of the GPGMM instead of technical details. 
General model specification can be found in 
Technical Appendix 8 of Mplus (Muthén, 1998-
2004) and Mplus User’s Guide (Muthén & 
Muthén, 1998-2007). The technical details can 
be found in Muthén and Shedden (1999) and 
Muthén and Asparouhov (2008).  To foster a 
wider use of the GPGMM, the Mplus syntax for 
the final model can be found in the Appendix. 

In Mplus, three estimators are available 
for a GMM: (1) maximum likelihood parameter 
estimates with conventional standard errors 
(ML), (2) maximum likelihood parameter 
estimates with standard errors approximated by 
first-order derivatives (MLF), and (3) maximum 
likelihood parameter estimates with robust 
standard errors (MLR). The major difference 
among these estimators lies in the approach for 
approximating the Fisher information matrix.  

The MLR is designed to be robust 
against non-normality and misspecification of 
the likelihood. Simulation studies have 
suggested that MLR standard errors perform 
slightly better than those of ML, and the 
standard errors of ML perform better than those 
of MLF (for details see Technical Appendix 8 of 
Mplus; Muthén & Muthén, 1998-2007). In this 
application, the GPGMM parameters were 
estimated in Mplus 5.21 with the default MLR 
estimation, since it is designed to model the 
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potential population non-normality due to the 
potentially unknown subpopulations. We also 
adopted the default number of 15 numerical 
integration points (Muthén & Muthén, 1998-
2007), because increasing the integration points 
can substantially increase the time for estimating 
a complex model like the GPGMM. 

When a mixture model is specified, 
Mplus uses random starts to guard against local 
maxima. The default starting values are 
automatically generated values that are used to 
create randomly perturbed sets of starting values 
for all parameters in the model except variances 
and covariances. Throughout the analyses, the 
number of initial stage random starts were, as a 
principle, first set to 1,000, and the final stage 
starts were set to 20 (e.g., the syntax reads 
STARTS = 1,000 20). If the log-likelihood 
values were not replicated as reported in the 
final 20 solutions, the number of the initial 
random starts was increased until the log-
likelihood was replicated at least twice. For all 
analyses, the initial stage iterations are set to 200 
and the maximum number of iterations for the 
EM algorithm was set to 3,000. 

To speed up the estimation, Mplus 
allows user-specified starting values. In this 
application, four strategies were considered for 
specifying the starting values. The first and 
simplest strategy was to specify some or all of 
the starting values to zeros; this would 
significantly reduce the computing time. The 
second strategy was to use descriptive statistics 
obtained from the given data or reported in the 
literature (e.g., the mean of the WRAT-3 at the 
kindergarten year as the starting value of the 
intercept growth factor. The third strategy was to 
estimate a multi-class model with the variances 
and covariances of the growth factors fixed at 
zero. The estimates of the growth factor means 
from this analysis were then used as the starting 
values in the analysis where the growth factor 
variances and covariances were freely estimated. 
The fourth strategy was to use the estimates 
from a simpler model as the starting values for a 
more complex model. For example, the 
estimated means of the growth factors from the 
1-class model were used for the 2-class model or 
the growth factor means estimated from the 
unconditional piecewise GMM were used as the 
starting values for the conditional piecewise 

GMM. These methods for specifying starting 
values were used interchangeably and in concert 
to help the model estimation. 

In the demonstration, the quality of a 
GMM model was assessed by several fit 
statistics and two alternative likelihood ratio 
tests (LRT). The conventional test of model fit 
based on the Chi-square likelihood ratio, 
comparing a compact model (K-1 classes) with 
an augmented model (K classes), does not 
function properly because it does not have the 
usual large-sample chi-square distribution. Two 
alternative likelihood-based tests have been 
developed to overcome this problem and have 
shown promise. 

The first is the Lo, Mendell, and Rubin 
(2001) likelihood ratio test (LMR LRT; Lo, 
Mendell & Rubin, 2001; Nylund, Asparouhov, 
& Muthén, 2007). Assuming within class 
normality, this test proposes an approximation to 
the conventional distribution of likelihood ratio 
test and provides a p-value for testing K-1 
classes against K class. A low p-value indicates 
that a K−1 class model has to be rejected in 
favor of a model with at least K classes. The 
second was the bootstrapped parametric 
likelihood ratio test (BLRT, described in 
McLachlan & Peel, 2000). As opposed to 
assuming that twice the difference between the 
two negative log-likelihoods follows a known 
distribution, the BLRT bootstraps samples to 
estimate the difference distribution based on the 
given data. The interpretation of the BLRT p-
value is similar to that of the LMR LRT. Both 
LMR LRT and BLRT are available in Mplus in 
the Technical Output 11 and 14 respectively. 

Another type of commonly used fit 
indices is the information criterion: Akaike 
Information Criteria (AIC), Bayesian 
Information Criteria (BIC), and Sample-Size 
Adjusted BIC (SBIC). These fit indices are 
scaled so that a small value corresponds to a 
better model with a large log-likelihood value 
and not too many parameters. The SBIC was 
found to give superior performance in a 
simulation study for latent class models in Yang 
(2006), and the BIC was found to give superior 
performance for mixture models including the 
GMM (Nylund, et al., 2007). Note that these 
indices do not address how well the model fit to 
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the data, but are relative fit measures comparing 
competing models. 

When classification is a major modeling 
concern as with a GMM, the classifying quality 
is often assessed. Entropy assesses the degree to 
which the latent classes are clearly 
distinguishable by the data and the model. It is 
scaled to have a maximum value of 1 with a 
high value indicating a better classification 
quality. Entropy is calculated based on 
individual’s estimated posterior probabilities of 
being in each of the K classes (analogous to 
factor scores in a factor analysis). 

Consider each individual is classified 
into one of the K classes by the highest 
estimated posterior probability (i.e., most likely 
classes), entropy value will approach one if 
individuals’ probabilities in the K classes 
approach one or zero, whereas the entropy value 
decreases if individuals’ posterior probabilities 
of being in the K classes depart from zero or one 
(see Technical Appendix 8 for the calculation of 
Entropy (Muthén, 1998-2007; Clark & Muthén, 
2009). In other words, Entropy reflects how 
much noise there is in the classification, hence, 
can be understood as an index for classification 
reliability. 

There is not yet consensus upon the 
level of satisfactory entropy. Clark and Muthén 
(2009), in studying the effect of entropy on 
relating the latent classes to covariates, 
arbitrarily used the value of 0.8 as an indication 
of high entropy; thus, this is the minimum value 
that was used 0.8 for being considered as 
reliable class classification. All the 
aforementioned fit indices and LRTs were 
reported and examined in concert to choose an 
optimal number of classes. 
 
Unconditional Piecewise GMM–Class 
Enumeration 

The main modeling task of the 
unconditional model was to select the optimal 
growth trajectories and number of classes; recent 
simulation studies of mixture models have 
suggested that this unconditional model is the 
more reliable method for determining the 
number of classes is to run the class enumeration 
without the covariates. Class enumeration with 
covariates (i.e., the conditional model) could 
lead to poor decisions regarding the number of 

classes, particularly when the entropy value is 
lower than 0.80. In some cases, researchers may 
not want the covariates to influence the 
determination of the class membership because 
the inclusion of covariates may potentially 
change the estimates of class distribution and 
growth factor means. For determining the 
number of classes using fit indices, recent 
simulation studies suggested that BIC performed 
best among the information criteria and BLRT 
was proved to be a consistent indicator for 
deciding on the number of classes (Chen & 
Kwok, 2009; Nylund-Gibson, 2009; Nylund, et 
al., 2007). 

Following the suggestion of these 
current developments, the demonstration of the 
unconditional piecewise GMM herein was 
geared to optimize the number of classes while 
choosing a better-fitting growth function. If the 
fit indices point to inconsistent suggestions on 
the number of classes, BIC and BLRT will be 
used as the determinant rules. In addition, the 
first set of questions A1 through A3 were also 
addressed at this stage. Note that although the 
substantive research questions (A1- A3) were 
posed as distinct and sequential, the actual 
modeling was executed simultaneously in one 
single unconditional piecewise GMM. Also note 
that the variances and covariances structure of 
the growth factors was specified to the same 
across classes throughout class enumerations. 
This is because – when the class-specific 
variances are allowed – the likelihood function 
becomes unbound, and because when class-
specific covariances between the growth factors 
are allowed, class separation and interpretation 
can be comprised. 
 
Question A1: Are there distinct phases where 
children differ in their speed of learning? 

A visual inspection of the observed data 
displayed in Figures 1 and 2 suggested that a 2-
piece linear model summarizes the growth trend 
better than single linear and quadratic models. 
Figure 3 displays three latent continuous growth 
factors: (1) the intercept I representing the 
starting performance, (2) S1 representing the 
first growth rate, and (3) S2 representing the 
second growth rate. Two growth rate factors 
(i.e., two slopes), in contrast to the traditional 
one single linear growth rate, were specified to 
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more aptly portray the two-phase growth pattern 
observed in the data. The two growth rates S1 
and S2 depict the non-linear trend by assuming 
that, within each phase, the growth trajectory 
was linear. The three growth factors are 
indicated by part or all of the seven repeated 
word recognition scores from kindergarten to 
grade six as shown by the arrows going from the 
three growth factors in ovals to the seven word 
recognition scores in rectangles. Note that, at 
most, a 2-piece linear model was used because 
each piece requires a minimum of three waves 
of data, therefore a 3-piece model was not 
feasible with the study data which has 7 waves; 
a 3-piece model would require a minimum of 9 
waves. 

To specify the phasic trajectory, the 
loadings (i.e., time scores) of the seven measures 
must be fixed on the three growth factors using 
the coding scheme often seen in piecewise 
regression (See Table 2). For the starting 
performance, the loadings of the intercepts were 
all fixed at 1. In this demonstration, assuming a 
grade-2 transition, the loadings of the first 
growth phase from kindergarten to grade two 
were fixed at 0, 1, and 2, with an increment of 
one indicating a constant linear increase across 
each grade.  

In the second phase, the first growth 
phase loading remained at 2 showing no 
incremental change to indicate no growth effect 
in the second phase. The loadings of the second 
growth phase were fixed at 1, 2, 3 and 4 from 
grade three to grade six with an increment of one 
indicating a constant linear increase across each 
grade. The loadings for S2 were all fixed at zero  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

with no increment indicating no growth effect in 
the first phase; note that the coding in Table 2 
assumed a transition point at the end of grade 
two. The transition point should be justified by 
multiple sources of information, including the 
existing literature, the observed growth trend, 
the statistical model fit, and the interpretability 
of the results. 
 
Results for Question A1 

First explored was which GMM – single 
linear, 2-piece linear, or quadratic – fit better by 
comparing the fit indices. Table 3 shows that the 
2-piece models yielded better fit indices than the 
quadratic models, which in turn fit better than 
the single linear models irrespective of the 
number of classes. This indicates that fitting a 2-
phase model not only captured the observed 
non-linearity better than a model merely 
ignoring the non-linearity but also did better 
than the commonly used quadratic model. (The 
default specification for estimation can be found 
in Chapter 13 of the Mplus User’s Guide.) 

The transition point dissecting the two 
phases was specified at the end of grade two; 
this decision was made for three reasons. First, 
the observed pattern shown in Figures 1 and 2 
indicated that the transition point occurred at 
either grade two or grade three. Second, Speece, 
et al. (2003) studied children from kindergarten 
to grade three and detected a non-linearity; this 
suggests that a turning point before grade three 
was necessary. Also, Francis, et al. (1996) 
argued that reading difficulty could not be 
defined at grade one or grade two because 
identifying reading difficulty often over- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Codes for 2-piece Linear Growth Model with Seven Wave of Data 
 

 First Phase Second Phase 

 K G1 G2 G3 G4 G5 G6 

I 1 1 1 1 1 1 1 

S1 0 1 2 2 2 2 2 

S2 0 0 0 1 2 3 4 
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identifies children who have not had adequate 
educational exposure to reading and under-
identifies children who demonstrate deficits in 
cognitive/linguistic skills. Third, the 2-piece 
grade-3 transition model yielded negative 
estimates of growth factor variances, which was 
undefined and counterintuitive, even with 
numerous trials of changing the starting values 
and increasing the number of starting sets up to 
1,000 (although the log-likelihood values were 
replicated). This problem suggested the 
possibility of an incorrect model. The grade-2 
transition models did not show these problems. 
 
Question A2: Are there unknown subpopulations 
(latent classes) that differ in their growth 
pattern? 

Different learners may display different 
learning patterns in their reading development. 
When different groups of learners are 
empirically observed or theoretically 
hypothesized, a statistical model must be able to 
aptly attend to this heterogeneity. Modeling 
population heterogeneity in growth trajectory is 
often carried out by a GMM. 

GMM is the bedrock of a fully 
developed GPGMM. GMM relaxes the single 
population assumption to allow for differences 
in growth factors across unobserved 
subpopulations (Kreuter & Muthén, 2007; 
Muthén, 2004). This flexibility in identifying 
unobserved subpopulations of people (a.k.a., 
classes), who are distinct in the developmental 
pathways, is the cornerstone of the GMM model. 
The unobserved class membership is modeled 
by a latent categorical variable where 
individuals’ developmental pathways are 
relatively similar within each class, yet distinct 
from one another across classes. As opposed to 
assuming that individuals vary around a single 
mean growth trajectory, GMM allows separate 
mean growth trajectories for each class. 
Individuals in each class are allowed to vary 
around the class mean of the growth factors. The 
variable C in Figure 3 represents such a 
categorical latent trajectory class. 
 
Results for Question A2 

Table 3 compares the results of the 2-
piece grade-2 transition models with the number 
of classes ranging from two to six (rows in 

bold). The 4-class model was supported by the 
BIC, the 5-class model was supported by the 
SBIC, LMR, LRT and BLRT, and the 6-class 
model was supported by the AIC. With the 
exception of the 6-class model, all models 
yielded high entropy values of greater than 0.8. 
The fit indices point to fairly inconsistent 
suggestions about the optimal number of classes 
to extract. The 6-class model was first 
eliminated from further consideration because it 
yielded an entropy value lower than 0.80 and 
because it was suggested only by AIC, which 
has been shown to be poorer criterion for 
choosing the correct number of classes (Nylund-
Gibson, 2009). 

The 4- and 5-class models were each 
supported by the determinant rule, BIC and 
BLRT, respectively. To compare the similarities 
and differences between the 4- and 5-class 
models, their growth factor means were 
tabulated and graphed on the first and second 
panel separately (see Figure 4). Figure 4 shows 
that the C3 class of the 4-class model branched 
into two classes of C3a and C3b resulting in 5 
classes in total. The 4- and 5-class models were 
not entirely distinct models; how elaborate the 
class classification was their main difference. 
This phenomenon is also common in factor 
analyses where a model with a greater number 
of factors is often a more elaborate version of a 
model with a fewer number of factors. 

For demonstrative purposes, it was 
necessary to select a model with which the 
conditional piecewise GMM could be 
demonstrated. In the trial runs of the conditional 
piecewise GMM, the 5-class model experienced 
a problem of non-identification and the problem 
that the log-likelihood could not be replicated – 
even with the number of starts increased to 
10,000 and the assistance of user-specified 
starting values. For these reasons, the 5-class 
model was eliminated from further 
consideration. 

The 4-class model, which still revealed a 
rich substantive story, was chosen because it 
yielded the smallest value of BIC, which has 
been shown to be superior in choosing the 
correct number of classes for GMMs. For real 
research contexts, choosing the number of 
classes to extract is not a simple technical task: a 
researcher must consider multiple factors such 
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as the research purpose, statistical fit and the 
substantive and practical gains that different 
numbers of classes may bring about. 
 
Question A3: How are the starting performance 
and growth rates related? 

As discussed in the literature review, 
there has been a great deal of theoretical and 
practical interest in whether children with a 
better start will continue to learn faster and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

whether children who learn faster at an early age 
will continue to improve at a faster rate. The 
field of children’s reading development has not 
settled the debate over how earlier reading 
performance is related to the later development. 
In a GMM, these questions are answered by 
estimating the covariances among the growth 
factors, I, S1, and S2. These relationships are 
indicated by the curved arrows among the 
growth factor I, S1, and S2 in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Fit Indices for Single Linear, 2-piece Linear and Quadratic Unconditional Models with 2-6 Classes 
 

  df L AIC BIC SBIC LMR LRT BLRT Entropy 

Single 
Linear 

2-class 15 -10915.215 21856.430 21911.879 21870.613 p=0.169 p=1.000 0.729 

3-class 18 -10996.744 22029.488 22106.399 22049.262 P=0.151 p=0.030 0.489 

4-class 21 -10904.422 21846.844 21927.884 21867.573 P=0.118 p=0.500 0.668 

5-class 25 -10903.928 21851.855 21945.692 21875.858 P=0.365 p=0.800 0.709 

2-piece 
Linear 

2-class 20 -10015.847 20071.695 20157.001 20093.516 p= 0.349 p< 0.001 0.811 

3-class 24 -9960.502 19969.004 20071.372 19995.189 p< 0.001 p< 0.001 0.931 

4-class 28 -9946.927 19949.854 20069.282 19980.403 p= 0.065 p< 0.001 0.880 

5-class 32 -9936.602 19937.204 20073.693 19972.117 p= 0.043 p= 0.040 0.850 

6-class 36 -9930.838 19933.675 20087.226 19972.953 p= 0.692 p= 0.140 0.777 

Quadratic 

2-class 20 -10227.122 20484.243 20548.223 20500.609 p=0.047 p=1.000 0.682 

3-class 24 -10200.583 20439.166 20520.206 20459.895 p=0.005 p=0.600 0.568 

4-class 28 -10249.835 20543.670 20637.507 20567.673 p=0.099 p<0.001 0.818 

5-class 32 -10211.386 20474.773 20585.671 20503.140 p<0.016 p<0.001 0.823 
 

Notes: df: the number of free parameters of a specified model (when no parameters were fixing to zeros); L: log-
likelihood; AIC: Akaike information criterion; BIC: Bayesian information criterion; SBIC: Sample size adjusted 
BIC; LRT: Lo-Mendell-Rubin adjusted likelihood ratio test; BLRT: bootstrapped parametric likelihood ratio test. 
The fit indices for the 2-piece models are in bold. The model with the lowest AIC, BIC, or SBIC is underlined. The 
model with K classes is underlined if the p-value of the LMR LRT or BLRT for the K+1 model was greater than 
0.05. When the variance of a growth factor was estimated to be negative, the estimation proceeded with fixing it to 
zero. 
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Figure 4: Comparison among the 4- and 5-Class Unconditional and 4-Class Conditional Models 
 

 
 

Notes: I denotes the initial performance at the kindergarten year, S1 denotes the growth rate in the first 
phase, S2 denotes growth rate in the second phase, E denotes the ending performance at grade six, and 
% denotes the proportions for the latent classes. 
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Results for Question A3 
By default, Mplus outputs estimate the 

covariances of growth factors. For interpretation 
ease, however, the growth factor correlations 
were reported by requesting the standardized 
command in the output. Recall that, for 
estimation reasons, the covariance structure was 
fixed to be the same across classes, that is, class-
specific correlations among the growth factors 
were not allowed. 

Based on the 4-class unconditional 
piecewise model, results show that the initial 
performance was not significantly correlated 
with the first growth rate (r = −0.06, p = 0.762), 
nor was it significantly correlated with the 
second growth rate (r = −0.345, p = 0.053). 
However, the two growth rates were 
significantly and negatively correlated (r = 
−0.599, p = 0.001). 

These findings suggest that word 
recognition performance at the beginning of the 
kindergarten year, as measured by WRAT-3, 
was not a good indicator of children’s later 
speed of learning. However, the speed of 
learning in the first phase may be associated 
with children’s development in the second 
phase. This suggests that early identification of 
advanced or disadvantaged children should not 
rely solely on children’s starting performance. 
Rather, early identification of advanced or 
disadvantaged children should also look into 
children’s early speed of learning. If a single 
linear trajectory had been modeled, the 
relationship between two growth rates would 
have been overlooked. 
 
Conditional Piecewise GMM with an Auxiliary 
Developmental Outcome Variable 

The conditional piecewise GMM is the 
full version of GPGMM. It incorporates the 
covariates and an auxiliary developmental 
outcome variable into the unconditional 
piecewise GMM. In this demonstration, five 
covariates were included. Three were 
cognitive/linguistic variables that were measured 
prior to the first assessment of word recognition 
in the kindergarten year and were standardized 
scores of verbal working memory, phonological 
awareness, and word retrieval time. The other 
two were demographic background variables: 
gender (boy = 0; girl = 1, 50.2%) and first 

language reported in the fall of kindergarten year 
(English = 0, ESL = 1, 15%). 

Covariates can have direct and indirect 
effects on the growth factors. As shown in 
Figure 3, direct covariate effects explain the 
growth factor variations, as indicated by the 
arrow going from the covariates to the growth 
factors I, S1, and S2. Covariates can also have 
an indirect effect on the growth factors via their 
effects on the latent class as indicated by the 
arrow going from the covariates to the latent 
class C and then to the growth factors (see 
Figure 3). The developmental reading outcome 
variable used in this demonstration was the 
Stanford Diagnostic Reading Test (SDRT; 
Karlesen, Madden, & Gardener, 1966) measured 
at grade six. This developmental outcome 
variable served as an auxiliary dependent 
variable for checking the latent class validity, 
and was standardized for ease of interpretation. 

Estimates of class distribution and 
growth factors means will change as a result of 
incorporating covariates information and how 
their effects are specified. Misspecification of 
the direct and/or indirect effects can lead to 
untrustworthy estimates. Because the correct 
population model is unknown and “all models 
are wrong, the practical question is how wrong 
they have to be to not be useful” (Box & Draper, 
1987, p. 74), it is recommended that researchers 
experiment with various models. The choice of 
which model to select must rely heavily on the 
researchers’ discretion borne on the model 
results (e.g., whether a model terminated 
normally) as well as their substantive 
knowledge, and common sense (e.g., checking 
the tenability of the direction and size of the 
covariate effects). 

In this demonstration, all direct and 
indirect effects were first allowed on the growth 
factors for all classes. This model was not 
identified and the best log-likelihood value was 
not replicated after numerous trials of starting 
values and the number of starting values sets = 
10,000. Based on the estimated posterior 
probabilities, this model distributed two very 
small classes (≈1% and ≈5%; size ≈ 5 and 26), 
leading to some difficulties in estimating the 
direct effects on the growth factors (e.g., empty 
cells in the joint distribution of the model 
variables). For these reasons, the direct covariate 
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effects of the two small classes were fixed to 
zeros. This model terminated normally, the log-
likelihood values were replicated 3 times with 
STARTS = 1000 20 (the other 17 differed with 
their next best values only in the third decimal 
place). In addition, this model estimated 92 
parameters with log-likelihood value = 
−9693.008. The information criteria of AIC = 
19570.016, BIC = 19962.424, SBIC = 
19670.392 all (except entropy = 0.768) 
suggested that this conditional model was a 
better fitting model than the unconditional 
model (compare the fit indices of the 2-piece 4-
class unconditional model in Table 3). 

Note that various models that allowed 
partial direct effects for the two smaller classes 
were also examined. Although the log-likelihood 
values of some of these models were replicated, 
their the BIC values were all greater than that of 
the model finally selected and their growth 
trajectories were harder to recognize and 
interpret, for these reasons they were not chosen 
and reported. 

The bottom panel of Figure 4 shows the 
trajectories and estimated growth factor means 
of the selected conditional model. Two overall 
observations are pointed out here. First, a 
noticeable parameter shift was observed when 
being compared to the unconditional model. The 
cross-class differences in the growth trajectories 
diminished a great deal as a result of 
incorporating the covariates information. 
Second, it was observed that there was little 
difference in the estimates of the second growth 
rates (which only differed in the first decimal 
place). This result may be a true reflection of the 
small differences in the speed of recognizing 
new words among the subpopulations.  

The potential ceiling effect of WRAT-3 
on the lack of variation in the second growth rate 
should be considered, however. This instrument 
lists 42 words for recognition ordered in 
difficulty and was not originally designed for 
children. WRAT-3 is known to have a strong 
ceiling effect (Strauss, Sherman & Spreen, 2006, 
p. 388). The difficulty level elevates quickly as 
the words approach the end the list leading to 
few or no successes in word recognition. This 
ceiling effect may explain the small class 
differences in the second growth rates for the 
present child sample. 

The results for specific classes (see the 
bottom table and graph in Figure 4) indicated 
that, on average, children in the first class 
recognized 14.31 words in the kindergarten year, 
learned 8.69 words per year in the first phase, 
and 2.65 words per year in the second phase 
with an ending performance (E) of 42.29 words. 
This class was referred to the normative class 
because it consisted of 38.33%, the largest 
proportion, of the sample, and because its 
growth trajectory was relatively more typical 
than those of the other classes. 

Children in the second class (33.60%) 
initially recognized 3.05 fewer words on 
WRAT-3 than did the normative class. 
However, their first phase growth rate was 3.77 
words faster than the normative class leading to 
a projection that this class would surpass the 
normative class at grade one and they would 
manage to stay ahead of the normative class 
thereafter despite the slightly slower second 
growth rate. This class was referred to as the 
advanced class. 

Children in the third class (6.58%) 
initially recognized 4.59 fewer words on 
WRAT-3 than did the normative class, but were 
slowly catching up with the normative class with 
0.70 words per year in the first phase and 0.22 
words per year in the second phase. This class 
was referred to as the catch-up class.  

The fourth class (21.49%) began with 
the lowest performance; initially recognizing 
5.99 words fewer on WRAT-3 than did the 
normative class. Although this class appeared to 
catch up with the normative class with 1.55 
words per year in the first phase, they slowed to 
a rate of 0.15 words per year slower than the 
normative class in the second phase. In grade 
six, they recognized 3.50 fewer words than did 
the normative class and 6.21 fewer words than 
did the advanced class. This class was referred 
to as the disadvantaged class. 
 
Question B1: What are the characteristics of the 
latent classes? 

Similar to factors in a factor analysis, 
the latent trajectory classes do not have inherent 
meanings (Bauer & Curran, 2003; Kreuter & 
Muthén, 2007; Muthén, 2003; Muthén, 2004). 
To understand the characteristics of the latent 
classes, the categorical latent class variable C is 
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regressed on to the covariates. Covariates play 
important roles in the GPGMM – they can aid in 
checking the interpretability and trustworthiness 
of the selected model. If classes are not 
statistically different with respect to the 
covariates, which theoretically or logically 
should characterize the classes, then there is 
weak support for the selected model. In Figure 
3, the class characteristics regression is shown 
by the arrow going from the covariates to the 
latent trajectory class C. Recall that class 
characterization by covariates can have indirect 
effects on the growth factors. 

Characterization of the latent classes by 
the set of covariates involves a multinomial 
logistic regression (or a binary logistic 
regression for the 2-class case). Coefficients of 
the covariates in a multinomial logistic 
regression are linear in the logit form; the 
increase in the log odds of being in a particular 
class versus the reference class. The reference 
class is normally the class with the largest size 
or the class or that is better recognized by the 
researchers. The exponent of the slope 
coefficient, Exp (slope), is the odds ratio for 
being in one particular class versus the reference 
class. For example, when comparing ESL 
(coded as 1) to non-ESL children (coded as 0); a 
slope = 1 implies that the odds of being in one 
particular class versus the reference class is Exp 
(1) = 2.72 times higher for ESL children than 
non-ESL children. 
 
Results for Question B1 

To understand the characteristics of the 
classes, the results of the multinomial logistic 
regression were reported and interpreted using 
the normative class as the reference class. The 
normative class was used because of its 
estimated largest proportion and better-known 
growth pattern. Table 4 reports the slope 
coefficients (i.e., partial regression coefficient) 
for the five covariates and their corresponding 
standard errors and odds ratios. Bear in mind 
that the interpretation of the odds was based on 
per one unit change in the covariate. Because the 
ESL and gender variables were both coded as 0 
and 1, their odds reflected the gender and first 
language differences, and because the 
cognitive/linguistic variables were all 

standardized, their odds reflected per SD 
change. 

Relative to the normative class, the odds 
of membership in the advanced class were 
significantly increased by being boys. The odds 
of being in the advanced class versus the 
normative class were 2.667 (1/odds= 1/0.375) 
times higher for boys than girls. Relative to the 
normative class, the odds of membership in the 
catch-up class were significantly increased by 
word retrieval time. The odds of being in the 
catch-up class versus in the normative class were 
4.289 times higher per SD increase in word 
retrieval time. Relative to the normative class, 
the odds of membership in the disadvantaged 
class were significantly increased by being a 
boy, being non-ESL, having poorer phonological 
awareness and longer retrieval time. The odds of 
being in the disadvantaged class versus the 
normative class were 3.106 (1/0.322) times 
higher for boys than girls, 3.497 (1/0.286) times 
higher for non-ESL students than ESL students, 
2.165 (1/0.462) times higher per SD decrease in 
phonological awareness, and 1.725 times higher 
per SD increase in word retrieval time. 
 
Question B2: For each class, what explains 
children’s starting performance and growth 
rates? 

In a GPGMM, the growth factors’ 
variations can also be explained by the same set 
of covariates. This relationship is analogous to a 
multiple regression where each of the 
continuous dependent variables, I, S1 and S2, is 
regressed onto the covariates. This relationship 
models the direct effects of the covariates on the 
growth factors as indicated by the arrows going 
from the covariates directly to the growth 
factors. As aforementioned, in the final model 
only direct effects were allowed on the two 
classes with larger class proportion, that is, the 
normative and advanced classes. Note that the 
indirect effect of covariates on the growth 
factors via the latent classes, as demonstrated in 
B2, is reflected by allowing class-varying 
regression coefficients of the covariates on the 
growth factors. Thus, the class-varying residual 
variances were also allowed. 
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Results for Question B2 

Results for the class-specific multiple 
regressions are shown in Table 5. The first row 
for each covariate reports the estimates of the 
slope coefficient (partial regression coefficient) 
and their standard errors were placed underneath 
in italic face. Significant slope estimates at α= 
0.05 level were highlighted in bold. For 
example, phonological awareness had a 
significant effect on all growth factors, except 
for the second growth rate of the normative 
class. Differential covariate effects in terms of 
size and direction were found across classes. For 
example, the initial growth factor I, gender and 
verbal working memory had significant effects 
only for the normative class, and word retrieval 
time had an effect only for the advanced class. 
Useful substantive information is revealed by 
comparing differential covariate effects across 
classes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question B3: Do the latent classes differ in the 
reading developmental outcome? 

The GPGMM incorporates an auxiliary 
outcome variable that can either be proximal or 
distal. Note that this outcome variable is an 
auxiliary variable; it is not modeled as an 
observed dependent variable, nor was it part of 
the model. Its major role in a GPGMM is to 
assist in checking the validity of the latent 
classes by comparing and testing equalities in 
the class means of this variable (Masyn, 2009; 
Petras & Masyn, 2009). Because it is an 
auxiliary variable, the outcome variable is 
represented in Figure 3 as a dashed square to 
show that it not an actually modeled outcome 
variable. This part of the modeling is shown by 
the arrow going from the latent class variable to 
the reading comprehension outcome. Cross-class 
equality in the means of the reading 
comprehension was tested using the posterior  

Table 4: Indirect Covariate Effects: Multinomial Logistic Regression for Classes Characterization 
 

 A vs. N C vs. N D vs. N 

Gender (Girl) 
-0.981 
0.303 
0.375 

0.060 
0.810 
1.062 

-1.134 
0.314 
0.322 

ESL (Yes) 
0.633 
0.389 
1.833 

-0.442 
0.842 
0.643 

-1.252 
0.633 
0.286 

Verbal Working Memory 
0.183 
0.204 
1.201 

-0.133 
0.585 
0.875 

-0.083 
0.229 
0.920 

Phonological Awareness 
-0.120 
0.187 
0.887 

-0.909 
0.502 
0.403 

-0.773 
0.175 
0.462 

Word Retrieval Time 
-0.077 
0.245 
0.926 

1.456 
0.374 
4.289 

0.545 
0.231 
1.725 

 

Notes: A: advanced class; N: normative class; D: disadvantaged class; C: catch-up class. Values in 
the first row of each covariate were the estimates of the slope coefficient, of which the standard 
errors were placed underneath in italic face, and the corresponding odds ratios were underlined. 
Significant slope coefficients at the 0.05 level were highlighted in bold face. 



GPGMM WORD RECOGNITION 

242 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
probability-based multiple imputations method. 
Since the class means of the reading 
comprehension were not part of the models, 
Mplus needed to estimate means and their 
asymptotic variances/covariance using the 
pseudo-class draw technique (Wong, Brown & 
Bandeen-Roche, 2005). First, individuals’ 
posterior class probabilities (conditional on the 
model and the observed data) were computed. 
Next, using this posterior distribution, L pseudo 
draws were generated for the latent class 
variable C for individuals – L denotes the 
number of pseudo draws. Class-specific sample 
means of the outcome variable then were 
obtained by taking the average of the L pseudo 
draws (see Mplus technical note at 
http://www.statmodel.com/download/MeanTest
1.pdf). 

As recommended in Wong, et al. (2005), 
the Mplus default number of pseudo draws of 20 
was adopted. Equality in the class means were 
tested using Wald’s Chi-square with degree of 
freedom = K−1 for the omnibus test and 1 
degree of freedom for the pairwise tests; a 
statistically and theoretically/ practically  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
significant and meaningful mean difference 
should be detected for supporting the validity of 
the latent class variable. This validity check is 
analogous to the criterion validity in the 
traditional psychometrics literature. 
 
Results for Question B3 

The last two rows of Table 6 show the 
class means in the reading comprehension and 
their corresponding standard errors. First, note 
that the order of the size of the estimated class 
means were as expected (i.e., Advanced > 
Normative > Catch-up > Disadvantaged). The 
omnibus Wald χ2(3) = 80.094, p < 0.001. The 
Chi-square values for the paired tests were 
shown on the upper diagonal of the class matrix 
in Table 6, and their corresponding p-values 
were shown underneath in italic face. Significant 
mean differences, highlighted in bold, were 
found in four of the six paired tests. Mean 
differences between all non-neighboring classes 
were all found to be significant (e.g., the 
difference between the advanced and 
disadvantaged classes). Mean differences 
between two of the neighboring classes were 
found to be non-significant (differences between 

Table 5: Direct Covariate Effects: Class-specific Multiple Regression of Growth Factors 
 

 Normative Advanced 

 I S1 S2 I S1 S2 

Gender (Girl) 
0.565 
0.224 

-0.009 
0.483 

-0.098 
0.197 

0.713 
0.867 

-0.611 
0.493 

-0.011 
0.161 

ESL (Yes) 
0.190 
0.272 

0.971 
0.449 

-0.377 
0.237 

-0.550 
1.125 

-0.813 
0.566 

0.290 
0.219 

Verbal working memory 
-0.258 
0.132 

0.282 
0.226 

-0.107 
0.115 

-0.676 
0.451 

0.148 
0.148 

0.130 
0.094 

Phonological awareness 
0.482 
0.120 

0.553 
0.234 

-0.147 
0.084 

4.167 
0.455 

-1.345 
0.281 

-0.300 
0.083 

Word retrieval time 
-0.240 
0.234 

-0.183 
0.245 

0.146 
0.141 

-1.714 
0.495 

0.692 
0.289 

0.119 
0.114 

 

Notes: Values in the first row of each covariate were the estimates of the slope coefficient, of which 
the standard errors were placed underneath in italic face. Significant slope coefficients at the 0.05 
level were highlighted in bold face. 
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the advanced and the normative classes and 
between the catch-up and disadvantaged 
classes). Judging by the order and size of the 
class mean estimates and the pattern of the 
significance tests, the results provided adequate 
criterion validity evidence for the latent 
trajectory class variable. 
 

Conclusion 
People learn and develop in different ways at 
different times. These developmental 
complexities and diversities are often 
overlooked or modeling tools are incapable of 
revealing them. This study demonstrated, with 
children’s word recognition development, that 
by taking into account the phasic learning speed 
and population heterogeneity, the GPGMM is 
able to point up evidence for both the deficit and 
lagging theoretical models reported in literature 
depending on which classes and developmental 
phases are being compared. 

The advantages of the GPGMM, 
however, come with a price. To find the optimal 
model that is both statistically adequate and 
theoretically interpretable, the GPGMM requires 
fairly sophisticated modeling techniques that 
involve iterative and intricate trials of parameter 
specifications. For a complex model like the 
GPGMM, the parameter estimates can change 
remarkably in size and direction from one start 
set to another. Users are reminded to increase  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the number of iterations and starting sets when 
necessary so as to ensure that the log-likelihood 
of the selected model is replicated. Also, due to 
the model complexity, the time taken for the 
estimation to terminate can be much longer than 
what is needed for simpler models. This is 
particularly the case when the random start sets 
are increased to a large number or when the 
bootstrapped likelihood ratio test is requested. It 
is suggested that, wherever possible, the 
GPGMM be run on a spare but fast computer. 

To date there is no single agreed-upon 
best practice for choosing the optimal 
conditional model. The general statistical 
problem of choosing the optimal conditional 
model in latent class models shares a conceptual 
core in common with indeterminacy problems in 
factor analysis – note that there are several 
indeterminacies in factor analysis; for example, 
indeterminacy of common factors, and an 
indeterminacy in factor rotation. There may be 
something to be gained by noting this 
commonality between latent class and factor 
analysis. At this point, it is advisable that the 
unconditional model be used for class 
enumeration – i.e., for deciding the number of 
classes. Like the indeterminacy problem of 
factor rotation, estimates of class distribution 
and the growth factors of the conditional model 
may shift from those of the unconditional model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Wald’s Chi-square Tests of Class Equality in the Means of the Reading 
Development Outcome 

 A N C D 

A  
0.049 
0.826 

17.688 
<0.001 

72.170 
<0.001 

N   
16.377 
<0.001 

60.159 
<0.001 

C    
0.161 
0.688 

M 
SE 

0.273 
0.066 

0.250 
0.076 

-0.605 
0.196 

-0.694 
0.092 

 

Notes: A: advanced class; N: normative class; D: disadvantaged class; C: catch-
up class. The Chi-square values for the paired tests were shown on the upper 
diagonal of the class matrix; the corresponding p-values were shown underneath 
in italic face. Significant p-values were highlighted in bold. The class means and 
their corresponding standard errors were shown in the last two rows. 
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depending on how the direct and indirect effects 
are specified. Recent work by Nylund-Gibson 
(2009) suggests that first the indirect effects be 
added to the unconditional model followed by 
the direct effects. The parameter shift then is 
examined throughout the steps. Implicitly, this 
suggestion was used along with verifying the 
substantive interpretability, as a rough guide for 
checking and selecting a conditional model. 

An intuitive, yet less than ideal solution, 
is to fix the growth factor parameters of the 
conditional model to those estimated by the 
unconditional model. By doing so, the covariate 
effects can be investigated without shifting the 
growth factor parameter estimates. This method 
could be problematic because it treats the fixed 
parameters as if they were true population values 
and ignore the sampling errors. Moreover, using 
the estimates of the unconditional model for the 
conditional model may be considered as 
cheating because both models are based on the 
same sample set. Hence, this strategy is not 
recommended if the purpose of the GPGMM is 
of an exploratory nature as demonstrated in this 
study. It may be more justified if the purpose is 
to cross-validate, that is, to verify growth 
trajectories suggested by other samples from the 
same population. 

Traditionally, questions B1, B2, and B3, 
as addressed by the conditional model, are often 
answered by saving the likely class membership 
or the posterior probabilities for each individual 
in a new data file and running separate analyses. 
This method could also be problematic because 
the class membership or the posterior 
probabilities are treated as being observed, but 
they are, in fact, model estimates with errors. 
Recent studies have shown that these traditional 
approaches may yield incorrect parameter 
estimates and standard errors leading to 
incorrect conclusions about significance testing 
(Clark & Muthén, 2009; Masyn, 2009; Petras & 
Masyn, 2009). Answering these questions using 
a single GPGMM circumvents this problem, 
especially when the entropy is high (Clark & 
Muthén, 2009). 

A trade-off between the number of 
classes extracted and the amount of variance of 
the growth factors (or residual variance after 
adding the covariates) was noticed. This 
phenomenon makes sense conceptually and 

statistically because the mechanism behind the 
GMM is to extract K classes where people are 
relatively similar within each class, yet distinct 
from one another across classes.  

In a highly hypothetical situation where 
K is equal to the sample size, there will be no 
within-class variation in the growth factors. The 
4- and 5- class conditional models encountered 
scenarios where the variances and/or residual 
variances of the growth factors being estimated 
were negative and received warning messages 
such as non–positive definite latent variable 
covariance matrix. Fixing the negative residual 
variances to zero may solve these problems, 
however, these problems may be indicative of 
class over-extraction or misspecification of the 
covariate effects – this is conceptually similar to 
a Heywood case in factor analysis. 

The balance between number of classes 
and the within-class variances/residual variances 
often dictates the number of classes one is able 
to interpret, especially for the conditional model. 
The maximum number of interpretable classes is 
often bounded by how much variance the growth 
factors are estimated to have and whether the 
variance is sufficient for the conditional model. 
Using the study data, difficulty in identifying the 
5-class conditional model was experienced, 
although it is preferred for more richness in the 
substantive information. 

With a full GPGMM, a large number of 
parameters are simultaneously estimated and the 
number of parameter estimates increases rapidly 
in multiples as the number of classes and 
covariates increase. The large set of the 
parameters is deemed to be the best solution for 
the data simply because it yields the least -2 log-
likelihood value. The maximum likelihood 
algorithm cannot tell whether or not the 
parameter estimates, in term of size and 
direction, make sense for a real and specific 
research context. Valid interpretations of the 
GPGMM results rely heavily on the users’ 
methodological and substantive knowledge of 
the study. This demonstration showed that the 
speed of learning new words slowed down in the 
second phase for all classes; however, it would 
be inappropriate to conclude that children learn 
fewer words annually after grade two than 
before grade two without some special caution. 
As mentioned, this finding may result from the 
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low floor effect but strong ceiling effect of the 
WRAT-3. As stated by Muthén (2003) and 
stressed throughout this article, a quality 
GPGMM should be guided not only by the 
statistical information, but also by the 
substantive interpretability of the results. 
GPGMM, in essence, is merely an analytical 
tool. Substantive expertise throughout the 
process of model specification, selection, and 
verification is the key to the success of a 
GPGMM. 
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Appendix:  
Mplus Syntax for the Final GPGMM 

Conditional Model 
 
TITLE: GPGMM WORD RECOGNITION 
 
DATA: 

FILE IS wrat526.dat; 
FORMAT IS 418F22.0; 

 
VARIABLE: 

NAMES ARE K G1 G2 G3 G4 G5 G6 
Gender FirstLanguage 
WorkingMemory PhonoAwareness 
RetrievalTime ReadingComprehension; 
CLASSES = C(4); 
MISSING = K G1 G2 G3 G4 G5 G6 
ReadingComprehension (9999); 
AUXILIARY= (e)ReadingComprehension; 
USEVAR = K G1 G2 G3 G4 G5 G6 Gender 
FirstLanguage 
WorkingMemory PhonoAwareness 
RetrievalTime ReadingComprehension; 

ANALYSIS: 
TYPE = MIXTURE; 
STARTS = 1000 20; 
STITERATIONS = 100; 
MITERATIONS = 2000; 

 
MODEL: 

%OVERALL% 
I S1 | K@0 G1@1 G2@2 G3@2 G4@2 
G5@2 G6@2 ; 
I S2 | K@0 G1@0 G2@0 G3@1 G4@2 
G5@3 G6@4 ; 
C#1 C#2 C#3 on Gender*0 FirstLanguage*0 
WorkingMemory*0 PhonoAwareness*0 
RetrievalTime*0; 
I ON Gender*0 FirstLanguage*0 
WorkingMemory*0 PhonoAwareness*0 
RetrievalTime*0; 
S1 ON Gender*0 FirstLanguage*0 
WorkingMemory*0 PhonoAwareness*0 
RetrievalTime*0; 
S2 ON Gender*0 FirstLanguage*0 
WorkingMemory*0 PhonoAwareness*0 
RetrievalTime*0; 
 
%C#1% 
K@0 G1 G2 G3 G4 G5 G6 
I S1 S2@0; 
[I*14.326 S1*8.665 S2*2.612; 
I with S1 @0; 
I          ON 
Gender*0.597 
FirstLanguage*0.175 
WorkingMemory*-0.221 
PhonoAwareness *0.470 
RetrievalTime*-0.185; 
S1         ON 
Gender* -0.007 
FirstLanguage* 0.907 
WorkingMemory*0.300 
PhonoAwareness *0.500 
RetrievalTime*-0.162; 
S2         ON 
Gender*-0.074 
FirstLanguage*-0.375 
WorkingMemory*-0.081 
PhonoAwareness*-0.141 
RetrievalTime*0.183; 
 
%C#2% 
K@0 G1 G2 G3@0 G4 G5 G6 ; 
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I S1 S2@0; 
[I*8.436 S1*10.289 S2*2.911]; 
I with S1 @0; 
I          ON 
Gender@0 
FirstLanguage@0 
WorkingMemory@0 
PhonoAwareness@0 
RetrievalTime@0; 
S1         ON 
Gender@0 
FirstLanguage@0 
WorkingMemory@0 
PhonoAwareness@0 
RetrievalTime@0; 
S2         ON 
Gender@0 
FirstLanguage@0 
WorkingMemory@0 
PhonoAwareness@0 
RetrievalTime@0; 
 
%C#3% 
K* G1 G2 G3 G4 G5 G6; 
I S1 S2@0; 
[I*11.329 S1*11.352 S2*2.156]; 
I with S1@0; 
 
I          ON 
Gender*0.338 
FirstLanguage* 0.177 
WorkingMemory*-0.745 
PhonoAwareness*4.112 
RetrievalTime*-1.645; 
S1         ON 
Gender*-0.524 
FirstLanguage*-0.914 
WorkingMemory*0.146 
PhonoAwareness*-1.250 
RetrievalTime*0.659; 
S2         ON 
Gender*0.025 
FirstLanguage*0.215 
WorkingMemory*0.141 
PhonoAwareness*-0.304 
RetrievalTime*0.055; 
 
 
 
 
 

%C#4% 
K G1 G2 G3 G4 G5 G6@0; 
I S1@0 S2; 
[I*8.386 S1*10.041 S2*2.513]; 

I WITH S2@0; 
I          ON 
Gender@0 
FirstLanguage@0 
WorkingMemory @00 
PhonoAwareness@0 
RetrievalTime@0; 
S1         ON 
Gender@0 
FirstLanguage@0 
WorkingMemory@0 
PhonoAwareness@0 
RetrievalTime@0; 
S2         ON 
Gender@0 
FirstLanguage@0 
WorkingMemory @0 
PhonoAwareness@0 
RetrievalTime@0; 
 

OUTPUT: 
TECH1 TECH4; 
!STANDARDIZED; 
SAVEDATA:File is final.sav; 
SAVE = FSCORES; 
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Using Finite Mixture Modeling to Deal with Systematic Measurement Error: 
A Case Study 
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Conventional methods and analyses view measurement error as random. A scenario is presented where a 
variable was measured with systematic error. Mixture models with systematic parameter constraints were 
used to test hypotheses in the context of general linear models; this accommodated the heterogeneity 
arising due to systematic measurement error. 
 
Key words: Finite mixture models, systematic measurement error, general linear model. 
 
 

Introduction 
In the social and behavioral sciences variables 
are frequently measured with error. A common 
approach is to treat measurement error as 
inherently unpredictable chance fluctuations, as 
opposed to something that can be caused by any 
factor that systematically affects measurement of 
a variable across the sample. This may be 
because systematic errors are – in general – 
difficult to detect, and because the estimation of 
the magnitude of such errors in practice is 
complex. 
 
Overview of Finite Mixture Models 

Finite mixture modeling is an analytical 
paradigm used to analyze data sampled from a 
heterogeneous   population   with   a   different 
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probability density function (PDF) for each 
component population. While population 
heterogeneity could arise from multiple 
unrelated probability distributions (e.g., Cauchy 
and Student’s t distributions), the more typical 
viewpoint is to assume that data come from a 
composite (i.e., mixture) of two or more 
distributions from the same parametric family, 
with the stipulation that parameters are 
permitted to differ across the unobserved 
components (see Titterington, Smith & Makov, 
1985). In the general case, for data in x, a finite 
mixture of K densities can be formulated as 
 

1

( | , ) ( | )
K

k k k
k

f fπ
=

=x π θ x θ ,          (1) 

 
where π contains mixing parameters kπ  (k = 

1,…,K) reflecting prior probabilities of sampling 
from the kth mixture component (class), 

( | )k kf x θ  represents the PDF for class k, and 

kθ  is a parameter vector for class k. In addition, 

kπ  values are restricted to be nonnegative and 

sum to 1 over all K classes. The likelihood for 
the general mixture in (1) can be written as: 
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For finite mixtures, model parameter 
estimation is typically carried out by 
maximizing the logarithm of the likelihood 
function in (2) via the iterative expectation-
maximization (EM) algorithm (Baum, Petrie, 
Soules & Weiss, 1970; Dempster, Laird & 
Rubin, 1977; Little & Rubin, 2002; McLachlan 
& Krishnan, 1997). In the current work, 
however, EM was not used in estimating 
parameters for the models of interest; instead, 
the natural logarithm of the likelihood in (2) was 
maximized directly using the Newton-Raphson 
algorithm (see Thisted, 1988). 

This procedure uses a second-order 
Taylor series expansion of the gradient (first 
partial derivatives of the log-likelihood function) 

around the current estimate ( )wθ  to produce the 

next estimate ( 1)w+θ . At each iteration the 
Newton-Raphson optimization scheme requires 
both first and second partial derivatives of the 
log-likelihood function with respect to the 
parameters, which can be computationally 
demanding. This challenge notwithstanding, 
Newton-Raphson and its many variants remain 
popular choices due to the algorithm’s quick 
convergence near the solution, and the fact that 
standard errors of the estimated parameters can 
be computed directly at convergence. 
 
Mixture Models with Functionally Related 
Parameters 

Applications of mixture models in the 
natural and biological sciences typically involve 
the blending of different natural groupings, such 
as visually similar species (e.g., crabs from the 
Bay of Naples; Pearson, 1894) or within-species 
age clusters (e.g., fish; Summerfelt & Hall, 
1987). Within the social and behavioral 
sciences, subgroups often result from differential 
responses to stimuli or treatments. This includes 
invoking different problem-solving strategies 
(e.g., in spatial rotation tasks; Mislevy & 
Verhelst, 1990), different responses to test 
speededness (Bolt, Cohen & Wollack, 2002), or 
different responses to individual test items (i.e., 
differential item functioning; Samuelsen, 2008). 
Ding (2008) recommended regression mixture 
models as useful tools for modeling population 
heterogeneity, thus improving the accuracy of 
the regression function as evidenced by the 

much lower error variance within each class or 
component population. 

In the above examples there are 
typically no functional relations per se between 
the parameters governing distributions of the 
component populations, other than perhaps that 
one population should be higher on average than 
another (e.g., an older population of fish should 
be longer). In other cases, however, there might 
be a very specific relation between component 
populations’ parameters. Oja, Koiranen and 
Rantakallio (1991), for example, examined birth 
weight data from Northern Finland for two 
cohorts: one from 1966 and one from 1985-
1986. For the latter cohort the gestational age 
could be determined more accurately by 
reference to ultrasound measurements; for the 
earlier cohort, however, the gestational age 
could only be assumed based on each mother’s 
self-report regarding her last menstrual period.  

An examination of the data yielded an 
unexpected difference between the cohorts; 
specifically, the mean birth weight for the later 
cohort was higher than the earlier cohort, while 
its birth weight of (apparently) pre-term 
newborns was lower than those from the earlier 
cohort. To explain this difference, Oja, et al. 
(1991) hypothesized more frequent systematic 
measurement error in gestational assessment for 
the earlier cohort. As a result they modeled the 
two cohorts as being comprised of three 
subgroups: (1) newborns whose mothers 
correctly knew their last menstrual period, (2) 
newborns whose mothers mistakenly thought 
their last period was earlier, and (3) newborns 
whose mothers mistakenly thought their last 
period was later. The researchers successfully 
modeled both cohorts using these three classes, 
where relations among those classes’ 
distributional parameters were constrained as a 
function of three gestational ages (i.e., correct 
age, 4 weeks earlier and 4 weeks later). 

This last example demonstrates that, 
given specific knowledge or hypotheses about 
the origins of different classes, parameters may 
be functionally related across those classes. This 
study illustrates the case of such hypothesized 
relations across classes in the context of a 
systematic measurement problem as it relates to 
the accuracy of general linear model analyses. 
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Using Mixture Models to Accommodate 
Systematic Measurement Error 

This study was inspired by a systematic 
measurement problem encountered when 
exploring and analyzing existing data for 
National Survey of Child and Adolescent Well-
being (U.S. Department of Health and Human 
Services, Administration for Children, Youth 
and Families, 2003). Longitudinal data were 
collected from children who were subject to 
child abuse or neglect and included a wide 
variety of physiological and psychological 
variables.  

One key variable in the investigations of 
these data was head circumference for children 
up to 4 years old. Although members of the 
original research team had been instructed to 
measure head circumference in centimeters, an 
inspection of the data as shown in Figure 1 
suggested that some of the researchers might 
have actually taken the measurements in inches 
(where 1 inch = 2.54 centimeters). 
[Unfortunately, the principal researchers were 
unable to contact individual field researchers to 
confirm our suspicions.] For example, the 
sample mean for the overall distribution was 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

38.99, which was inconsistent with prior 
published head circumference values for 
children in this age range (in either inches or 
centimeters).  

Likewise, as is clear from Figure 1, the 
estimated standard deviation (12.29) was much 
larger than one would expect had only one set of 
units been employed. Thus, the apparently 
compromised first and second moments could 
not be used directly for even basic general linear 
model statistical analyses, such as a t-test or 
simple linear regression. 

Fortunately, mixture modeling is a 
promising approach to accommodate systematic 
errors of this type. To this end, three studies 
were conducted using the problematic head 
circumference measure in the context of finite 
mixtures: a univariate analysis, a group means 
comparison and a simple regression. In each 
case competing models were constructed to 
analyze head circumference for a sample of 
2,028 children. As noted, the Newton-Raphson 
algorithm was used and implemented using R to 
estimate all models (see Appendix for technical 
details; R code is available upon request from 
the first author). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Histogram of Head Circumference 
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Methodology 
Univariate Analysis Model 1: 1-Class Model 

Based on the physiological literature 
(e.g., Fok, et al., 2003; World Health 
Organization, 2007), head circumference 
measurements were considered to approximate a 
normal distribution. A one-class model was used 
as a baseline with which to compare the results 
of other models. The PDF for each observation 
may be written as: 
 

2
2

22

1 ( )
( ; , ) exp .

22
i

i
xf x μμ σ

σπσ
 −= − 
 

 

 
Assuming there were N independent 
observations, the log-likelihood was: 
 

2 2

1
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LL L f xμ σ μ σ
=

= = . 

 
The two parameters to be estimated in this 
model were the distribution mean μ  and 

variance 2σ . 
 
Univariate Analysis Model 2: 2-Class Mixture 
Model without Constraints 

The second model was a composite of 
PDFs assuming that measurements of head 
circumference arose from two distributions 
distinguished by which units (centimeters and 
inches): 
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The corresponding log-likelihood function for 
the mixture was formulated as: 
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N
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=
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(3) 
 
Five parameters were estimated in this model: 

two means centμ and inchμ , two variances 2
centσ  

and 2
inchσ , and the class mixing proportion 

parameter inchπ . 

 
Univariate Analysis Model 3: 2-Class Mixture 
Model with Means Constrained 

This model was identical to Model 2, 
with the exception that the means were 
constrained based on the fixed ratio of inch to 
centimeter ( 2.54cent inchμ μ= ). Given this 

constraint, only four parameters were estimated 

in this model: inchμ , 2
centσ , 2

inchσ , and inchπ . 

 
Univariate Analysis Model 4: 2-Class Mixture 
Model with Variance Constrained 

The fourth model hypothesized that the 
variances of two populations followed a fixed 
ratio of 6.45. This value came directly from the 
variance property 
 

2

( ) (2.54 )

2.54 ( )

6.45 ( )

Var cent Var inch
Var inch

Var inch

=

=
=

. 

 
Similar to the mean-constrained Model 3, the 
variance-constrained model also had four 
unknown parameters to be estimated: centμ , 

inchμ , 2
inchσ , and inchπ . 

 
Univariate Analysis Model 5: 2-Class Mixture 
with Both Means and Variances Constrained 

The final model assumed that the means 
and variances of the two distributions differed 
by a function of 2.54. With the additional 
equality constraints placed on the means and 
variances ( 2.54cent inchμ μ=  and 

2 26.45cent inchσ σ= ), only three unknown 
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parameters needed to be estimated: inchμ , 2
inchσ , 

and inchπ . 

Model fit indices and corresponding 
parameter estimates for the univariate study are 
summarized in Tables 1 and 2, respectively. 
Three commonly used information criteria were 
determined for each analysis in this study. The 
Akaike’s Information Criterion (AIC; Akaike, 
1987) is based on the log-likelihood (LL) of the 
hypothesized model and the number of 
parameters (p), as follows: 
 

AIC 2 2LL p= − + . 
 
An alternative to the AIC, the Bayesian 
information criterion (BIC; Schwarz, 1978), is 
obtained by modifying the penalty term based on 
sample size (N) as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BIC 2 ln( )LL p N= − + . 
 

In the context of finite mixture 
modeling, BIC has been recommended for its 
consistency (Haughton, 1988; Leroux, 1992), 
meaning that it tends to select the correct model 
more frequently as sample size increases. Sclove 
(1987) suggested a further sample size 
adjustment for BIC (S-BIC) where N is replaced 
by ( 2) / 24′ = +N N , and Yang (2006) 
advocated this index, citing better performance 
when the model has either a large number of 
parameters or a small sample size. In this study, 
all three information criteria were used to 
compare both non-nested and nested models; 
when models being compared were nested, Chi-
square difference (likelihood ratio) tests were 
also conducted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Model Fit Indices from Univariate Analyses 
Model # Parameters lnL AIC BIC S-BIC 

1. 1 Class 2 -7964.97 15933.94 15945.17 15938.82 

2. 2-Class Mixture 5 -6501.70 13013.40 13041.47 13025.59 
3. 2-Class Mixture Mean 

Constrained 
4 -6504.55 13017.10 13039.56 13026.85 

4. 2-Class Mixture 
Variance Constrained 

4 -6561.07 13130.14 13152.60 13139.89 

5. 2-Class Mixture Both 
Constrained 

3 -6563.38 13132.76 13149.60 13140.07 

 
 

Table 2: Maximum Likelihood Estimates from Univariate Analyses 

Model ˆcentμ  2ˆcentσ  ˆ inchμ  2ˆ inchσ  ˆinchπ  

1. 1 Class 38.99 150.98 –  – – 

2. 2-Class Mixture 45.66 14.93 18.25 5.67 0.24 

3. 2-Class Mixture Mean 
Constrained 

45.73 15.01 18.00 5.63 0.24 

4. 2-Class Mixture Variance 
Constrained 

45.53 19.67 18.15 3.05 0.24 

5. 2-Class Mixture Both 
Constrained 

45.72 19.74 18.00 3.06 0.24 
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As shown in Table 1, compared with 
Model 1 (which assumed population 
homogeneity), all other 2-class mixture models 
provided much better fit to the data; this is 
indicated by the larger (i.e., less negative) log-
likelihood and the smaller fit indices (AIC, BIC 
and S-BIC). This finding provided initial 
support for the hypothesis that a systematic 
measurement error problem was present. Also 
noteworthy is the estimated mixing parameter 
(0.24), suggesting that roughly one-fourth of the 
subjects were improperly measured using inches 
rather than centimeters; this value was consistent 
across subsequent analyses as well. 

Comparing the fit indices of the four 
mixture models, the unconstrained and mean-
constrained models provided the best fit 
(BIC2=13041.47, BIC3=13039.54), whereas the 
last two models involving variance constraints 
did not fit as well. Looking at the two models 
without variance constraints shows that the 
estimated variances for the two classes did not 
follow the expected ratio of 6.45; this could be 
due to the different magnitudes of random 
measurement error caused by their different 
precisions of measurement. 

Relatively speaking, measurement in 
centimeter units is more precise than that in 
inches; the latter thus introduces more random 
measurement error. Regarding the means, Table 
1 shows the BIC favored the mean-constrained 
model (while the AIC and S-BIC were very 
close); Table 2 shows that the estimates from the 
mean-constrained and unconstrained models 
differed only at the decimal level. For these 
reasons, the functional relation of the two means 
was used in subsequent studies. 
 
Group Means Comparison 

The second study was a group means 
comparison that examined whether there was a 
gender difference in head circumference. Due to 
the apparent unit mixture problem, a typical t-
test comparing males and females could not be 
used; similarly, because cases’ membership into 
a centimeter or inch group was latent, separate 
male-female comparisons could not be directly 
conducted within each unit group. Thus, with the 
inch/centimeter mean constraint in place, the 
values of the log-likelihood were compared 
under two multi-sample mixture models: one 

assuming a common mean for both genders and 
one estimating a separate mean for males (M) 
and females (F). 

In the model assuming a gender 
difference, there were four normal PDFs 
crossing units and gender: 
 

1. 2( ; , )FemaleInchi FemaleInchf x μ σ  for females in 

inches with mixing proportion FemaleInchπ ; 

2. 2( ;2.54 , )i FemaleInch FemaleCentf x μ σ for females 

in centimeters with proportion of 
1− FemaleInchπ ; 

3. 2( ; , )MaleInchi MaleInchf x μ σ  for males in inches 

with proportion of MaleInchπ ; and 

4. 2( ;2.54 , )MaleCenti MaleInchf x μ σ  for males in 

centimeters with proportion of 1− MaleInchπ . 

 
It should be noted that a different mixing 
proportion was allowed for males and females 
( FemaleInchπ  and MaleInchπ ), reflecting the 

possibility that researchers’ erroneous use of 
inches rather than centimeters could have been 
related in some way to child gender. Overall, the 
log-likelihood for this model, which contained 8 
parameters (4 per gender), could be written as: 
 

2 2

2 2

ln ( , , , ,

                , , , ).

FemaleInch FemaleInch FemaleCent FemaleInch

MaleInch MaleInch MaleCent MaleInch

LL L μ σ σ π
μ σ σ π

=

 
The second multi-sample mixture 

model, which assumed no gender difference in 
head circumference, included only one common 
mean for both gender groups to be determined. 
Thus, its log-likelihood, which contains 7 
parameters, could be written as 
 

2 2

2 2

ln ( , , ,

              , , , ).

common FemaleInch FemaleCent

FemaleInch MaleInch MaleCent MaleInch

LL L μ σ σ
π σ σ π

=

 
 

Using the same estimation process 
previously described, model fit indices and 
estimated parameters for the mean comparison 
analysis are presented respectively in Tables 3 
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and 4. These results show that all model fit 
indices supported the model specifying a gender 
difference in head circumference over that 
which assumed gender equality 
(BIC1=13036.50, BIC2=13057.74). Additionally, 
because the second model assuming no gender 
difference was nested within the first model, a 
Chi-square difference test was used to compare 
the fit of the two models.  

The observed Chi-square difference 

statistic ( 2
1 28.86dfχ = = , p < 0.001) indicated 

the first model with gender difference was 
statistically significantly better than the 
constrained model. Therefore, it was inferred 
that male and female children who experienced 
abuse or neglect did have different head 
circumferences, with males being larger (18.21 
inches vs. 17.82 inches). It is worth noting that if 
a traditional t-test had been used directly with 
the original unit-compromised variable, a non-
significant test result would have been obtained  
( ( 2026) 1.706dft = = − , .088p = ); thus, the 
model would have failed to detect any difference 
between males and females. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regression Analysis 
The third study investigated if age in 

months was a useful predictor of head 
circumference by applying systematically 
constrained mixture regression models to these 
two variables. After the first baseline model, 
four regression mixture models were 
investigated, assuming different regression 
functions for the two unknown groups with 
different measurement units. 
 
Model 1: Simple Regression of Head 
Circumference (y) on Age (x) 

The simple bivariate regression model 
could be specified as i i iy x eα β= + + , where 

α  is the population intercept and β  is the 

population slope. The residual ie  was assumed 

to be normally distributed, making the PDF for 
an individual observation 
 

2
2

22

1 ( )
( , ; , , ) exp .

22
i i

i i e
ee

y xf x y α βα β σ
σπσ

 − −= − 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Model Fit Indices from Mean Comparison Analyses 

Model # Parameters lnL AIC BIC S-BIC 

Assuming Gender 
Difference 

8 -6487.79 12991.58 13036.50 13011.08 

Assuming Gender 
Equality 

7 -6502.22 13018.44 13057.74 13035.50 

 
 

Table 4: Maximum Likelihood Estimates from Mean Comparison Analyses 

Model ˆFemaleInchμ  2ˆFemaleInchσ 2ˆFemaleCentσ ˆFemaleInchπ ˆMaleInchμ 2ˆMaleInchσ  2ˆMaleCentσ  ˆMaleInchπ

Assuming Gender 
Difference 

17.82 4.91 14.67 0.246 18.21 7.85 13.64 0.244 

Assuming Gender 
Equality 

18.02 4.93 14.96 0.246 18.02 7.47 14.18 0.243 
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The log-likelihood for the full sample was thus 
 

2

1

ln [ln( ( , ; , , ))]
N

i i e
i

LL L f x y α β σ
=

= = . 

 
As indicated by the log-likelihood function, 3 
parameters needed to be determined. 
 
Model 2: Mixture Regression Models without 
Any Constraints 

In this model, all of the regression 
coefficients, residual variances, and class 
proportions were free to be estimated. Its 
equation could be expressed as 

ik k k i iy x eα β= + +  for each kth class, with 

1, 2k =  representing the inch and centimeter 
classes; thus, the two unit groups each had their 
own regression coefficients to be determined. 
Because each observation could be sampled 
from either of the two unit classes, there were 
two class-specific PDFs for an individual: 
 

2
_ _

2

22
__

( , ; , , )

1 ( )
exp

22

i inch i i inch inch e inch

i inch inch i

e inche inch

f f x y

y x

α β σ

α β
σπσ

=

 − − = − 
  

 
and 
 

2
_ _

2

22
__

( , ; , , )

1 ( )
exp .

22

i cent i i cent cent e cent

i cent cent i

e cente cent

f f x y

y x

α β σ

α β
σπσ

=

 − − = − 
  

 
The corresponding log-likelihood was 
 

_ _
1

ln

[ln( (1 ) )];
N

inch i inch inch i cent
i

LL L

f fπ π
=

=

= + −
 

 
in this case 7 parameters needed to be estimated. 
 
Model 3: Mixture Regression Model with Slope 
Constraint 

Given that the slope represents the 
degree of expected change in head 

circumference per unit increase in age, the 
suspected unit problem would lead to the 
relation: 2.54cent inchβ β= . Using this relation as 

a constraint, the PDF for centimeter group was 
 

2
_ _

2

22
__

( , ; , , )

1 ( 2.54 )
exp .

22

i cent i i cent inch e cent

i cent inch i

e cente cent

f f x y

y x

α β σ

α β
σπσ

=

 − − = − 
  

 
The resulting log-likelihood was 
 

2
_ _

2
1 _ _

ln( ( , , )
ln ,

(1 ) ( , , ))

N
inch i inch inch inch e inch

i inch i cent cent inch e cent

f
LL L

f

π α β σ

π α β σ=

 
= =  

+ −  


 
with 6 unknown parameters to estimate. 
 
Model 4: Mixture Regression Model with 
Intercept Constraint 

Based on the population relation for the 
intercept k y k xα μ β μ= − , and assuming 

comparable ages for the two classes, it was not 
unreasonable to expect the familiar functional 
relation between the two classes’ intercept terms 

2.54cent inchα α= . After this replacement, the 

PDF for the centimeter group was 
 

2

_ _

2

22
__

( , ; , , )

1 ( 2.54 )
exp .

22

i cent i i inch cent e cent

i inch cent i

e cente cent

f f x y

y x

α β σ

α β
σπσ

=

− −
= −

  
 
  

 
The resulting log-likelihood is 
 

2

_ _

2
1 _ _

ln( ( , , )
ln ,

(1 ) ( , , ))

N
inch i inch inch inch e inch

i inch i cent inch cent e cent

f
LL L

f

π α β σ

π α β σ=

= =
+ −

 
 
  


 
with 6 parameters to be estimated. 
 
Model 5: Mixture Regression Model with 
Constraints on Both Intercepts and Slopes 

Based on the rationales provided for 
Models 3 and 4, both relations 2.54cent inchβ β=  

and 2.54cent inchα α=  were applied in this 
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model. From these constraints, the PDF for the 
centimeter group was specified as 
 

2

_ _

2

22
__

( , ; , , )

1 ( 2.54 2.54 )
exp .

22

i cent i i inch inch e cent

i inch inch i

e cente cent

f f x y

y x

α β σ

α β
σπσ

=

− −
= −

 
 
 

 
The corresponding log-likelihood function was 
 

2

_ _

2
1 _ _

ln( ( , , )
ln ,

(1 ) ( , , ))

N
inch i inch inch inch e inch

i inch i cent inch inch e cent

f
LL L

f

π α β σ

π α β σ=

= =
+ −

 
 
  


 

with 5 parameters to be estimated in total. 
 

Results 
All estimated results and corresponding model 
fit indices are summarized in Tables 5 and 6, 
respectively. Table 5 shows that the mixture 
models (Models 2 - 5) were similar in fit and 
were strongly favored over the simple regression 
model (Model 1). Among the four mixture 
models, the choice depended on the information 
criterion measure used; specifically, while all 
mixture models were fairly close in information 
criteria values, the AIC and S-BIC favored the 
model with only the slope constrained (Model 3) 
while the BIC favored the model with intercept 
and slope constraints (Model 5). 

A comparison of these two models using 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Chi-square difference test yielded a 

statistically significant difference ( 2
1=dfχ  = 6.08, 

p < 0.01), thus favoring the model without the 
intercept constraint. A potential reason for this 
constraint’s failure is that it rests upon the 
assumption that the mean age for the inch and 
centimeter classes is the same (i.e., that a 
researcher’s mistaken decision to use inches was 
unrelated to the child’s age); however, the 
estimated mean age for the two classes (based 
on a posterior probability-based group 
assignment) was 16.77 months for the inch class 
and 15.65 for the centimeter class. This mean 
difference notwithstanding, the slope and 
intercept parameter estimates for all regression 
mixture models, constrained or unconstrained, 
are practically close in value. Thus, to assess the 
linear relation between age in months and head 
circumference, the slope would lead to an 
estimate roughly one-fifth (0.20) of a centimeter 
increase in head circumference for each one 
month increase in age. 

These results are corroborated by the 
plot in Figure 2, where circles represent 
bivariate age/head circumference observations. 
It may be observed that the solid simple 
regression line does not capture the relation 
between the two variables, while the two dashed 
regression lines generated from the mixture 
model provided a much better approximation to 
the plotted observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Model Fit Indices from Regression Analyses 

Model # Parameters lnL AIC BIC S-BIC 

1. Simple Regression 3 -7942.91 15908.66 15899.13  15899.13 

2. 2-Class Regression Mixture No 
Constraint 

7  -5918.70 11851.40 11890.70  11868.46 

3. 2-Class Regression Mixture 
Constrained Slope 

6  -5918.90 11849.80 11883.49  11864.43 

4. 2-Class Regression Mixture 
Constrained Intercept 

6  -5920.70 11853.40 11887.09  11868.03 

5. 2-Class Regression Mixture 
Constrained Intercept and Slope 

5  -5921.94 11853.88 11881.95  11866.07 
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Conclusion 
Based on the series of analyses examined in this 
study, mixture modeling appears to be an 
effective tool for investigating data consisting of 
variables with systematic measurement error. 
Systematic measurement errors have the 
potential to render data virtually useless: the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
implementation of mixture models thus has the 
potential to salvage information regarding the 
key population relations in the data thereby 
avoiding the otherwise tremendous waste of 
time and expense associated with gathering such 
problematic data. 

Table 6: Maximum Likelihood Estimates from Regression Analyses 

Model ˆinchα  închβ  
2
_ˆe inchσ ˆinchπ  ˆcentα  ˆ

centβ  
2
_ˆe centσ

1. Simple Regression 36.70 0.14  147.73 – – – – 

2. 2-Class Regression Mixture No 
Constraint 

17.04 0.08  5.88  0.25  42.34  0.22  6.83  

3. 2-Class Regression Mixture  
Constrained Slope 

16.95 0.08  5.89  0.25  42.35  0.20  6.83  

4. 2-Class Regression Mixture  
Constrained Intercept 

16.69 0.09  5.92  0.25  42.39  0.21  6.83  

5. 2-Class Regression Mixture 
Constrained Intercept and Slope 

16.69 0.08  5.93  0.25  42.39  0.20  6.84  

 
 

Figure 2: Simple Regression Line (Solid) vs. Unconstrained Mixture Regression Lines (Dashed) 
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The studies presented may be viewed as 
a tip of the analytical iceberg. Although the only 
analyses demonstrated regarded mean 
comparisons and simple regression, extensions 
exist for the multivariate general(ized) linear 
model, as well as for latent variable models 
(e.g., structural equation models). The key to the 
implementation of such models is to have a 
specific hypothesis about the nature of the 
systematic measurement error and then translate 
that hypothesis into model constraints. It is 
hoped that the current case study has provided a 
useful illustration of the accommodation and 
adjustment for such measurement errors thereby 
bringing meaning to otherwise compromised 
data. 
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Appendix 
The Newton-Raphson is a general optimization 
strategy based on a quadratic Taylor series 
expansion of the gradient (first partial 
derivatives of the log-likelihood function with 
respect to model parameters). To fashion the 
Newton-Raphson update, this quadratic function 
is maximized with respect to θ  in order to 
generate the next iterate. Setting the gradient 
expression equal to zero and solving for θ  
provides the update 
 

1 1( ) ( )w w w w+ −= −θ θ H θ g θ  
 
where H is the Hessian, the matrix of partial 
second derivatives of the log-likelihood with 
respect to the parameter vector, and g is the 
gradient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recall the log-likelihood function from 
Equation (3): 
 

2
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1 _

(1 ) ( , )
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The gradient is defined as 
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with elements defined as shown in Appendix 
Figures. After elements of the gradient have 
been computed analytically, subsequent 
elements of the Hessian matrix can be obtained 
numerically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix Figures: Elements of Gradient 
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Appendix Figures: Elements of Gradient (continued) 
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A Bayesian approach in threshold moving average model for time series with two regimes is provided. 
The posterior distribution of the delay and threshold parameters are used to examine and investigate the 
intrinsic characteristics of this nonlinear time series model. The proposed approach is applied to both 
simulated data and a real data set obtained from a chemical system. 
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Introduction 
One class of nonlinear time series models is the 
threshold time series models which are 
extensively reported in literature. Among these, 
Tong and Lim (1980) introduced threshold 
autoregressive (TAR) models with statistical 
inference and applications. Bayesian inference 
for threshold autoregressive models have been 
investigated by different authors.  

Geweke and Terui (1991) derived an 
exact posterior distribution of the delay and 
threshold parameters. Cathy, et al. (1995) used 
Monte Carlo Markov chain (MCMC) methods to 
implement a Bayesian inference on TAR 
models, and Broemeling and Cook (1992) 
performed a Bayesian analysis on TAR models. 
However, most of the literature emphasizes the 
threshold autoregressive models. Wang, et al. 
(1984) introduced the threshold autoregressive 
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moving average (TARMA) models and 
considered the estimation of the model 
parameters. De Gooijer (1998) studied various 
problems associated with the identification, 
estimation and testing of threshold moving 
average models. Ling and Tong (2005) 
considered a quasi-likelihood ratio test for the 
threshold in moving average models. Amendola, 
et al. (2009) discussed the stochastic structure of 
the self-exiting TARMA model; they specified 
sufficient conditions for weak stationarity and 
showed that the self-exiting TARMA model 
belongs to the class of the random coefficients 
autoregressive models. Smadi (1997) used the 
Bayesian approach for exploration of the joint 
posterior distribution for TARMA models using 
MCMC methods: he assumed noninformative 
priors, fixing the delay parameter d. In addition, 
he used a modified Gibbs sampling scheme, 
which is a hybrid strategy of Gibbs sampler, 
random walk Metropolis, and importance 
sampling. Safadi and Morettin (2000) 
considered a Bayesian analysis for threshold 
autoregressive moving average models and a 
hierarchical prior to perform Bayesian analysis 
using a rearranged procedure with MCMC 
methods. 

The objective of this study is to provide 
a Bayesian approach in a threshold moving 
average model for time series with two regimes. 
The posterior distribution of the delay and the 
threshold parameters are used to examine and 
investigate the characteristics which are intrinsic 
to this nonlinear time series model. The 
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proposed approach is applied to both simulated 
data and a real data set obtained from a chemical 
system. 
 

Methodology 
The Threshold Models 

Let { }1, ≥tYt  be a time series, the 

threshold autoregressive moving average models 
with two regimes. Wang, et al. (1984) 
symbolized TARMA(2,(p1, q1),(p2, q2.)), given 
by: 
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the model coefficients of the two ARMA 
subsystems, r is called the threshold parameter 
and d is the delay parameter; assume the 
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t σ . 

A special case of equation (1), is the 
threshold autoregressive model TAR(2;p1,p2): 
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Another special case of equation (1) is the 
threshold Moving Average model TMA(2;q1,q2): 
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Posteriors Distribution 

The approximate posterior distribution 
of the delay and threshold parameters (d, r) for 
threshold moving average models (3) is based on 
using estimated residuals instead of the true 

innovations. Broemeling and Shaarawy (1986) 
implemented the estimated innovations for 
Bayesian analysis of ARMA models. Smadi 
(1997) and Safadi and Morettin (2000) have 
used this estimated innovation approach to 
explore the posterior distributions of the 
threshold autoregressive moving average 
models. 

Defining ),( rd=φ , and the set 

),...,,( )()(
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)(
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j
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jj
j j

B θθθ= , and under the 

normality assumption, that is, 

),0( .. 2)(
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j
t NdiiZ σ , a prior )(φπ  could be any 

form as long as 
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Conditional on φ , independent priors on jB  and 

jσ  of standard Jeffreys prior can be expressed 

as: 
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21)|2,1,,( −== σσφσπ jB jjc . It is 

also assumed that 0... )1(
1

)1(
1

)1(
0 1

==== −− qZZZ  
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==== −− qZZZ . Conditioning 

on ),( rd=φ , estimates of the innovations 
)2()1(  and tt ZZ  can be obtained using least 

squares estimates. In this case, the following 
model is obtained: 
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Derivation of the approximate posterior 

of the delay and the threshold parameters of the 
threshold moving average model is similar to the 
threshold autoregressive model (2) reported by 
Geweke and Terui (1993). After estimating the 
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innovations and using the model (3), conditional 
on ),( rd=φ , let 1W  be a vector consisting of 

1N  ordered observations on }{ tY  such that 

rY dt ≤− , and let 2W  be a vector consisting of 

2N  ordered observations on }{ tY  such that 

rY dt >− . Let jX  be a jj qN ×  matrix of 

lagged variables on the estimated innovations 
{ }tZ


 corresponding to )2,1( =jW j . Then, the 

approximate posterior density of 
),,,( 2211 σσ BB  conditional on d and r is the 

product of two posterior densities, that is: 
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The posterior distribution of φ  can be derived 
by integrating this expression with respect to 

),,,( 2211 σσ BB . The problem is to integrate the 
following expression with respect to σ: 
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Integrating over σ1 and σ2 on the right 

hand side of equation (7), it is possible to obtain: 
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multiplying equation (8) by )(φπ  and 
integrating Bj, for j = 1, 2 out results in the 
posterior distribution of φ  (Geweke & Terui, 
1993): 
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Results 

The characteristics of the posterior distribution 
of ),( rd=φ  were investigated for simulated 
data and a real data set obtained from a chemical 
system. As a set of possible values of the 
threshold parameter r, the order statistics 

)](,...,1,[ )( NqiY i ≤=  of observations was 
used. 
 
Simulation Examples 

Simulation results were based on both 
one realization and 100 realizations. The 
TMA(2;1,1) model was considered, where 

1 ,1 ,4.0 ,4.0 2
2

2
1

)2()1( ===−= σσθθ , d = 
1,and r = 0. A one realization was generated 
with series length of 50. As a set of possible 
values of the threshold parameter r, [r0, rL] was 
chosen as large as possible and the delay 
parameter d was selected as d = 1, 2, 3, 4 and 5. 
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Simulation results demonstrated that the 
posterior mass was concentrated at d=1, 2 and 3. 
Summary results of the joint posterior 
distribution of ),( rd=φ  are presented in Table 
1. The marginal posterior distribution of d = 1, 
2, 3 have probabilities of 0.5566, 0.2500 and 
0.1800 respectively. The posterior probability 
concentrates predominantly on few points, 
namely (d, r) = (1, 0.0036) and (1, 0.0350) with 
respective probabilities of 0.05582 and 0.06987. 

Simulation results based on 100 
realizations with series length of 100 were 
analyzed. For each realization, ),( rd=φ  was 
estimated based on modal value of the posterior 
distribution. The results yield relative 
frequencies of 87%, 7%, and 6% for d = 1, 2, 
and 3 respectively. The marginal posterior of r is 
shown in Figure 1; as expected, the model value 
is concentrated around the true threshold value r 
= 0. 
 
Real Data Example 

Series A, which consists of 197 
observations and represents the concentration of 
a chemical process, was considered (Box & 
Jenkins, 1976). The differenced time series was 
considered. Fitting MA(1) model yields 
 

ttt ZZX +−= −169.0                (15) 

 
Smadi (1997) used the MCMC technique for 
exploration of the posterior distribution of the 
threshold parameter r. The methodology 
proposed herein is applied to the differenced 
series in order to examine the posterior 
distribution of the threshold and the delay 
parameter ),( rd=φ . The number of threshold 
points is reduced from 196 to 22 points because 
some differences have the same values. Values 
of [−0.4, 0.4] were assigned for [r0, rL]. For the 
delay parameter d, the set d = 1, 2, 3, 4 and 5 
were selected. It was found that the posterior 
mass was concentrated at d = 1, 2 and 3.  

Summary results of the joint posterior 
distribution of ),( rd=φ  are presented in Table 
2. It can be seen that the marginal posterior 
distribution of d = 1, 2, 3 have probabilities of 
0.8344, 0.13163 and 0.03398, respectively. 
Also, the posterior probability concentrates on 

(d, r) = (1, 0.0) with probability of 0.17; this 
corresponds to the largest mode of the posterior 
density. Conditioning on (d, r) = (1, 0.0), the 
fitted TMA(2;1,1) model is 
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Conclusion 
From the proposed methodology and numerical 
results it can be concluded that the threshold 
moving average models are tractable from a 
Bayesian point of view. The nonlinearity 
threshold-type for moving average models can 
be detected by examining the marginal posterior 
distribution of the threshold parameter. 
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Table 1: Summary of Joint Posterior Densities of (r, d) 

(r, d) 
Integrated 
Density 

(r, d) 
Integrated 
Density 

(r, d) 
Integrated 
Density 

(-1.1832, 1) 0.02234 (-1.1832, 2) 0.00345 (-1.1832, 3) 0.01233 

(-1.0101, 1) 0.02278 (-1.0101, 2) 0.00263 (-1.0101, 3) 0.00771 

(-0.8562, 1) 0.02282 (-0.8562, 2) 0.00223 (-0.8562, 3) 0.00513 

(-0.7346, 1) 0.01532 (-0.7346, 2) 0.00192 (-0.7346, 3) 0.00510 

(-0.6573, 1) 0.01058 (-0.6573, 2) 0.00181 (-0.6573, 3) 0.00321 

(-0.6326, 1) 0.00839 (-0.6326, 2) 0.00181 (-0.6326, 3) 0.00321 

(-0.5574, 1) 0.00777 (-0.5574, 2) 0.00163 (-0.5574, 3) 0.00462 

(-0.5478, 1) 0.00752 (-0.5478, 2) 0.00171 (-0.5478, 3) 0.00303 

(-0.5237, 1) 0.00287 (-0.5237, 2) 0.00172 (-0.5237, 3) 0.00281 

(-0.4982, 1) 0.00255 (-0.4982, 2) 0.00148 (-0.4982, 3) 0.00196 

(-0.4631, 1) 0.00195 (-0.4631, 2) 0.00166 (-0.4631, 3) 0.00400 

(-0.4336, 1) 0.00170 (-0.4336, 2) 0.00187 (-0.4336, 3) 0.00272 

(-0.3709, 1) 0.00164 (-0.3709, 2) 0.00197 (-0.3709, 3) 0.00193 

(-0.2798, 1) 0.00154 (-0.2798, 2) 0.00218 (-0.2798, 3) 0.00259 

(-0.1939, 1) 0.00159 (-0.1939, 2) 0.00298 (-0.1939, 3) 0.00199 

(-0.1918, 1) 0.00143 (-0.1918, 2) 0.00326 (-0.1918, 3) 0.00289 

(-0.1837, 1) 0.00205 (-0.1837, 2) 0.00556 (-0.1837, 3) 0.00211 

(-0.1450, 1) 0.00173 (-0.1450, 2) 0.00760 (-0.1450, 3) 0.00170 

(-0.1430, 1) 0.00161 (-0.1430, 2) 0.00568 (-0.1430, 3) 0.00128 

(-0.1151, 1) 0.00423 (-0.1151, 2) 0.00220 (-0.1151, 3) 0.01389 

(-0.0884, 1) 0.00351 (-0.0884, 2) 0.00175 (-0.0884, 3) 0.02066 

(-0.0560, 1) 0.00514 (-0.0560, 2) 0.00176 (-0.0560, 3) 0.01154 

(-0.0124, 1) 0.00380 (-0.0124, 2) 0.00214 (-0.0124, 3) 0.01050 

(0.0000, 1) 0.00296 (0.0000, 2) 0.00284 (0.0000, 3) 0.00881 

(0.0036, 1) 0.05584 (0.0036, 2) 0.00492 (0.0036, 3) 0.00569 

(0.0350, 1) 0.06987 (0.0350, 2) 0.00677 (0.0350, 3) 0.00355 

(0.0879, 1) 0.03947 (0.0879, 2) 0.00821 (0.0879, 3) 0.00258 

(0.1222, 1) 0.03186 (0.1222, 2) 0.01139 (0.1222, 3) 0.00189 

(0.2192, 1) 0.02311 (0.2192, 2) 0.01434 (0.2192, 3) 0.00215 

(0.2223, 1) 0.01459 (0.2223, 2) 0.00523 (0.2223, 3) 0.00155 

(0.2748, 1) 0.01459 (0.2748, 2) 0.00523 (0.2748, 3) 0.00155 

(0.3154, 1) 0.01221 (0.3154, 2) 0.00334 (0.3154, 3) 0.00129 

(0.4112, 1) 0.01151 (0.4112, 2) 0.00458 (0.4112, 3) 0.00129 

(0.4434, 1) 0.01184 (0.4434, 2) 0.00738 (0.4434, 3) 0.00115 

(0.4484, 1) 0.00883 (0.4484, 2) 0.01028 (0.4484, 3) 0.00105 

(0.4677, 1) 0.00626 (0.4677, 2) 0.01178 (0.4677, 3) 0.00102 

(0.5505, 1) 0.01574 (0.5505, 2) 0.01142 (0.5505, 3) 0.00159 

(0.5662, 1) 0.02498 (0.5662, 2) 0.02024 (0.5662, 3) 0.00177 

(0.7154, 1) 0.01499 (0.7154, 2) 0.03736 (0.7154, 3) 0.00173 

(0.8502, 1) 0.02341 (0.8502, 2) 0.0229 (0.8502, 3) 0.00286 

(1.1930, 1) 0.01985 (1.1930, 2) 0.00789 (1.1930, 3) 0.01769 
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Figure 1: Marginal Posterior Density of r 
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Table 2: Summary of Joint Posterior Densities of (d, r) for Chemical Data 

(d, r) Integrated 
Density 

(d, r) Integrated 
Density 

(d, r) Integrated 
Density 

(1, -0.4) 0.03665 (2, -0.4) 0.01669 (2, -0.4) 0.00088 
(1, -0.3) 0.15757 (2, -0.3) 0.01319 (2, -0.3) 0.00061 
(1, -0.2) 0.15757 (2, -0.2) 0.01319 (2, -0.2) 0.00061 
(1, -0.1) 0.09583 (2, -0.1) 0.00858 (2, -0.1) 0.00031 
(1, 0.0) 0.17483 (2, 0.0) 0.01402 (2, 0.0) 0.00030 
(1, 0.1) 0.04738 (2, 0.1) 0.02424 (2, 0.1) 0.00026 
(1, 0.2) 0.03386 (2, 0.2) 0.02145 (2, 0.2) 0.00064 
(1, 0.3) 0.03344 (2, 0.3) 0.01352 (2, 0.3) 0.00304 
(1, 0.4) 0.09726 (2, 0.4) 0.00675 (2, 0.4) 0.02733 



Journal of Modern Applied Statistical Methods   Copyright © 2011 JMASM, Inc. 
May 2011, Vol. 10, No. 1, 268-276                                                                                                                           1538 – 9472/11/$95.00 

268 
 

Bayesian Regression Analysis with Examples in S-PLUS and R 
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An extended version of normal theory Bayesian regression models, including extreme-value, logistic and 
normal regression models is examined. Methods proposed are illustrated numerically; the regression 
coefficient of pH on electrical conductivity (EC) of soil data is analyzed using both S-PLUS and R 
software. 
 
Key words: Bayesian regression, extreme-value model, S-PLUS, R. 
 
 

Introduction 
In statistics, regression analysis includes many 
techniques for modeling and analyzing several 
variables, when the focus is on the relationship 
between a dependent variable and one or more 
independent variables. In practice, many 
situations involve a heterogeneous population 
and it is important to consider the relationship of 
response variable y on concomitant variable x 
which is explicitly recognized. 

One method to examine the relationship 
of a concomitant variable (or regressor variable) 
to a response variable y is through a regression 
model in which y has a distribution that depends 
upon the regressor variables. This involves 
specifying a model for the distribution of y given 
x, where ),...,,( 21 pxxxx =  is a p×1  vector of 

the regressor variables for an individual. 
Let the distribution of y given x be 
 

1
( | , , ) ,

− =  
 

y xf y x f ββ σ
σ σ

     )1.1(  

 
where  β   is  a   1×p    vector   of   regression  
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Coefficients, T
p ),...,,( 21 ββββ =  

and ββ xxyE =],|[ . The alternative form of 
(1.1) is 
 

zxy σβ +=                 )2.1(  
where 

σ
βxyz −=  

 
has the standardized distribution with density 
function f(z). The family of models for which 
f(z) has a standard normal distribution is 
common in statistical literature (Searle, 1971; 
Rao, 1973; Seber, 1977; Draper & Smith, 1981; 
Weisberg, 1985 ) but models in which z has 
other distributions belonging to location-scale 
family (1.2) are also important. For example, 
extreme value regression models are employed 
in applications ranging from accelerated life 
testing (Lawless, 2003; Zelen, 1959) to the 
analysis of survival data on patients suffering 
from chronic diseases (Prentice, 1973; Feigl & 
Zelen, 1965; Krall, et al., 1975). 

Furthermore, if data is contaminated 
with outliers, then the normal distribution can be 
replaced with Student’s t distribution (with small 
degrees of freedom) to have a better fit (e.g., 
Lange, et al., 1989). Model (1.2) has the ability 
to accommodate linear as well as non-linear 
models for the various functional forms of βx . 
None of the above authors present a Bayesian 
approach. Box and Tiao (1973) and Gelman, et 
al. (1995) discuss this approach of regression 
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analysis to deal with normal linear as well as 
non-linear non-normal models. Zellener (1971) 
describes Bayesian inference in reference to 
econometrics, but the discussion is mainly 
confined to normal linear models. The general 
framework used for casual inference is presented 
in Rubin (1974b, 1978a). Bayesian approaches 
to analyzing regression residuals appear in 
Zellener (1976), Chaloner and Brant (1988) and 
Chaloner (1991). 
 
Joint inference for β and logσ  with Non-
informative Prior p(β, logσ) 
 Suppose ),( ii xy for ni ,,2,1 =  is 

assumed to be a random sample from location-
scale family of models in (1.1) and likelihood is 
 

∏
=

n

i
ii xyf

1

),,|( σβ  

 
This implies that  
 

σσβ log)(log)log,(
1

nzfl
n

i
i −=
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(2.1) 
where 

σ
βii

i
xy

z
−

= . 

 
Consider the non-informative prior 
 

1)log,( =σβp                  (2.2) 
 
The joint posterior density of β and logσ given 

data vector ),...,,( 21 n
T yyyy = is 

 

∏
=

n

i
ii pxyfyxp

1

)log,()log,,|(),|log,( σβσβασβ

(2.3) 
 

where T
nxxxx ),...,,( 21= is a pn ×  matrix of 

covariates (or regressors) corresponding to 
response vector y. Now joint inference for β and 
logσ can be made from posterior (2.3). 

 Posterior mode T)log,(
∧∧
σβ  of 

),|log,( yxp σβ  serves as a point estimate of 

β and logσ. Its calculations require partial 
derivatives of log posterior 
 

l ( , log ) l( , log ) log p( ,log )

l( , log )

∗ β σ = β σ + β σ
= β σ

 

(2.4) 
 

Defining partial derivatives as 
ββ ∂

∂=
∗

∗ ll , a 

vector of )1( ×p  partial derivatives, 

φφ ∂
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∗
∗ ll , a scalar and σφ log=  
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These derivatives can be defined more explicitly 
as: 

ββ ll =∗

 
 

φφ ll =∗

 
 

βφβφ ll =∗

 
 

φβφβ ll =∗

 
 

ββββ ll =∗  and 

 

φφφφ ll =∗ . 
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Consequently, score vector ),( φβU  and 

Hessian matrix ),( φβH  are a 1)1( ×+p  
vector 
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therefore, making use of Newton-Raphson 
iteration scheme, results in posterior mode 

vector T),(
∧∧
φβ  as 
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(2.5) 

where 
∧∧

= σφ log . 
 
The asymptotic posterior covariance matrix of 
(2.3) can be obtained as 
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= β ϕ
 

 
More clearly, posterior density  
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(2.6) 
 
where ),( baNr  is the r-variate normal 
distribution with mean vector a and a covariance 
vector b. This is a first order approximation of 
the posterior density (e.g., Berger, 1985). An 

equivalent version of this approximation is the 
Chi-square approximation, i.e., 
 

2
1),(),(2),( +

∧∧
∗∗ ≈



 −−= pllW χφβφβφβ . 

 
A more accurate approximation, Laplace’s 
approximation (Tierney & Kadane, 1986; Reid, 
1988) can be also used, i.e., 
 

( ))(1),(
2

1
exp|),(|)2(

),|,(

12

1

2

1
−

∧∧∧∧+
−

+



−

≅

nOWI

yxp
p

φβφβπ

φβ

(2.7) 
 
Any of the approximations can be used both for 
hypothesis testing and construction of credible 
regions. 
 
The Marginal Inference for β and φ (φ = logσ) 
 The marginal densities for β and φ are 
 

p( | x, y) p( , | x, y)d .β = β ϕ ϕ  

(3.1) 
 
Similarly, marginal posterior of φ can be 
obtained by 

p( | x, y) p( , | x, y)d .ϕ = β ϕ β  

(3.2) 
 
 Bayesian analysis is to be based on these 
two posteriors. For the normal model, 

),|( yxp β  and ),|( yxp φ  can be obtained in 
closed form (e.g., Zellener, 1971). However, for 
non-normal members of location-scale family, 
these marginals can be obtained through 
numerical integration only (e.g. Naylor & Smith, 
1982). The alternative approach is to deal with 
asymptotic theory approach (e.g., Tierney, Kass 
& Kadane, 1989a; Leonard, et al., 1989). 
Normal and Laplace’s approximations can be 
written directly for posterior densities 

),|( yxp β  and ),|( yxp φ  as under: 
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a) Normal Approximation: 
Marginal posterior density of β can be 

approximated by normal distribution, i.e., 

),(),|( 1
11
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≅ INyxp p ββ )3.3(  

where 
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β is the posterior mode and 1
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pp ×  matrix defined as 
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= σφ log  and  suffixes 1 and 2 to I stand 
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∧
β  and 
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φ , respectively. This approximation 

is equivalent to the Chi square approximation 
defined as: 
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Corresponding approximations for 

),|( yxp φ can be written as:  
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This is equivalent to the Chi square 
approximation, i.e., 
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b) Laplace’s Approximation: 
 Laplace’s approximation can also be 
used to approximate marginal density of β , 
i.e., 
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where )(βφ
∧

 is the posterior mode of φ for a 

fixedβ. 
 Corresponding approximation for 

),|( yxp φ  can also be written as 
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where )(φβ
∧

 is the posterior mode of β for a 

fixedφ. 
 

Bayesian Regression Analysis of the Extreme-
Value Model 

Let y be the response vector and xi be 
the vector for the ith observation. Assume that 
 

fxyz
T
ii

i ~
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for some f (extreme value distribution). 
Consequently, in terms of general notation 
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likelihood is given by: 
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where iz  is defined in (4.1). 

Taking partial derivatives with respect 
to μ and σ results in 
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Following the standard approach of Box 

and Tiao (1973) and Gelman, et al. (1995), 
assuming the prior 
 

)()(),( σβσβ ppp ≅             (4.3) 
 
where )(βp  and )(σp  are priors for β  and 

.σ  Using Bayes theorem obtain the posterior 
density )|,( yp σβ  is obtained as 
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The log-posterior is given by 
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obtained by maximizing (4.5) with respect to β 
and σ. The score vector of the log posterior is 
given by 
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and the Hessian matrix of log posterior is 
 












=

∗∗

∗∗

σσσβ

βσββσβ
ll

ll
H ),( . 

 

Posterior mode ),(
∧∧
σβ  can be obtained from 

iteration scheme 
 












−








=















∗

∗
−

∧

∧

σ

βσβ
σ
β

σ

β
l

l
H ),( 00

1

0

0 . 

(4.6) 
 
Consequently, the modal variance Σ can be 
obtained as 
 

),(),( 11
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Using the normal approximation, a bivariate 
normal approximation of ),|,( yxp σβ  can be 
directly written as: 
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Similarly, a Bayesian analog of likelihood ratio 
criterion can be written as: 
 

2
1)],(),([2),( +
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∗∗ ≈−−= pllW χσμσμσβ  

(4.8) 
 
Using Laplace’s approximation, ),|,( yxp σβ  
can be written as: 
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The marginal Bayesian inference about 
β and σ is based on the marginal posterior 
densities of these parameters. Marginal posterior 
for β can be obtained after integrating out 

),|,( yxp σβ  with respect to σ, 
 

= σσββ dyxpyxp ),|,(),|( . 

(4.10) 
 
Similarly, the marginal posterior of σ can be 
obtained by: 
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(4.11) 
 

The normal approximation for marginal 
posterior ),|( yxp β  can be written as: 
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The Bayesian analog of likelihood ratio criterion 
can also be defined as a test criterion as: 
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Laplace’s approximation of marginal posterior 
density ),|( yxp β  can be given by: 
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Similarly, ),|( yxp σ  can be approximated and 
results corresponding to normal and Laplace’s 
approximation can be written as 
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or equivalently, 
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Numerical Illustrations 

Numerical illustrations are implemented 
in S-PLUS software for Bayesian regression 
analysis. These illustrations are show the 
strength of Bayesian methods in practical 
situations. Soil samples were collected from rice 
growing areas as well as fruit orchids of 
Kashmir valley and were analyzed for some 
relevant parameters. In our work, we studied pH 
and E.C in the soil of Kashmir valley. The 
functions survReg and cendnsorReg were used 
for Bayesian analysis of various regression 
models with non-informative prior. S-PLUS has 
a function censorReg for regression analysis; 
this has a very substantial overlap with survReg 
but is more general in that it allows truncation as 
well as censoring (Venables & Ripley, 2002). 
The usage of survReg and censorReg are: 
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survReg(formula, data, dist) 
 

censorReg(formula, data, dist) 
 
where 
• formula: a formula expression as for other 

regression models;  
• data: optional data frame in which to 

interpret the variable occurring in the 
formula; and 

• dist: assumed distribution for y variable. 
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Table 1: A Summary of Derivatives of Log-Likelihoods 
 

Derivatives 
Distributions 
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Table 2: A Summary of Prior Densities for Location Parameter β 
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identity )( pp ×  matrix and c is the normalizing constant. 
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Table 3: Regression Coefficient of pH on EC for Various Models 
 

Regression Model 

∧
β  (Intercept) Posterior Std. 

0

∧
β  1

∧
β  0

∧
β  1

∧
β  

Extreme-Value 6.71 2.32 0.0447 0.2881 

Logistic 6.29 2.41 0.0365 0.2332 

Normal 6.33 2.00 0.0335 0.1890 

 
 

Table 4: Approximate Normal Posterior Quantiles for Regression Coefficient of Various Models 
 

Model Posterior 
Posterior Quantile 

0.025 0.25 0.50 0.75 0.95 0.975 

Extreme-Value Normal 6.63 6.68 6.72 6.75 6.79 6.80 

Logistic Normal 6.16 6.20 6.23 6.25 6.29 6.30 

Normal Normal 6.26 6.31 6.33 6.35 6.39 6.40 
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Estimating Internal Consistency Using Bayesian Methods 
 

Miguel A. Padilla Guili Zhang 
Old Dominion University East Carolina University 

 
 
Bayesian internal consistency and its Bayesian credible interval (BCI) are developed and Bayesian 
internal consistency and its percentile and normal theory based BCIs were investigated in a simulation 
study. Results indicate that the Bayesian internal consistency is relatively unbiased under all investigated 
conditions and the percentile based BCIs yielded better coverage performance. 
 
Key words: Bayesian internal consistency, coefficient alpha, confidence interval, Bayesian confidence 

interval, coverage probability. 
 
 

Introduction 
Psychological constructs are the building blocks 
of psychological/behavioral research. Indeed, 
one can easily argue that constructs are the 
foundation of these two sciences. A typical way 
of measuring a construct is through a 
questionnaire containing items that are purported 
to indirectly measure the construct of interest; 
thus, it becomes important that the items be 
consistent or reliable so that the questionnaire 
itself is consistent or reliable. Although there are 
several methods of measuring or estimating the 
reliability of a questionnaire, by far the most 
commonly used is coefficient alpha. 

Coefficient alpha has remained popular 
since its introduction in Cronbach’s (1951) 
article based on the work of Guttman and others 
in the 1940s (Guttman, 1945). Coefficient alpha 
is a measure of internal consistency for a group 
of items (i.e., questions) that are related in that 
they measure the same psychological/behavioral 
construct (Cortina, 1993). There are three main 
reasons for coefficient alpha’s popularity. First, 
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coefficient alpha is computationally simple. The 
only required quantities for its computation are 
the number of items, variance for each item and 
the total joint variance for all the items; 
quantities that can easily be extracted from the 
item covariance matrix. Second, coefficient 
alpha can be computed for continuous or binary 
data: this is a significant advantage when 
working with right/wrong, true/false, etc. items. 
Third, it only requires one test administration: 
Most other forms of reliability require at least 
two test administrations, which come at a cost of 
time and resources. For these reasons coefficient 
alpha’s power to assess the psychometric 
property of the reliability of a measurement 
instrument is widely used and it has remained 
relatively unchanged for over 60 years. 

The advent of Bayesian methodology 
has brought about exciting and innovating ways 
of thinking about statistics and analyzing data. 
Bayesian methods have several advantages over 
traditional statistics, sometimes referred as 
frequentist statistics (Gelman, 2004; Lee, 2004), 
but two advantages stand out. First, researchers 
can now incorporate prior knowledge or beliefs 
about a parameter by specifying a prior 
distribution for the parameter in the model; thus, 
the analysis is now composed of data and prior 
knowledge and/or beliefs. By contrast, 
traditional or frequentist analyses are composed 
only of data. Through this combination of data 
and prior knowledge, more can be learned about 
the phenomenon under study and knowledge 
about the phenomenon can be updated 
accordingly. Second, Bayesian methods provide 
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credible intervals (BCIs), the Bayesian analog to 
confidence intervals (CIs). However, credible 
intervals have a different interpretation from 
confidence intervals. A confidence interval 
allows one to make statements, such as “we are 
95% confident that the interval captures” the 
true population parameter. By contrast, a BCI 
allows one to say that “we are 95% confident 
that the true population parameter lies between 
the bands of the credible interval,” a simpler and 
more powerful statement. This is, in fact, the 
interpretation most researchers would like to 
make with confidence intervals. 

A Bayesian coefficient alpha retains the 
simplicity and power of the original coefficient 
alpha, but it also has the advantages of Bayesian 
methodology. By incorporating prior internal 
consistency information into the current 
estimation of coefficient alpha, more can be 
learned about the internal consistency of a 
measurement instrument and knowledge about 
the instrument can be updated accordingly. 
Additionally, credible intervals are generated for 
the Bayesian coefficient alpha. The bootstrap is 
the common method for generating confidence 
intervals for coefficient alpha; however, the 
bootstrap confidence interval has the same 
interpretation as the confidence interval from 
traditional statistical methods. With credible 
intervals direct statements can be made about 
where the true population coefficient alpha lies, 
which is a clear advantage over the standard 
confidence interval. 
 
Prior Research on Coefficient Alpha CIs 

As with all statistics, coefficient alpha is 
a population parameter and must be estimated 
from samples; thus, it is subject to sampling 
error that contributes to the variability around 
the true population parameter. Due to this, 
current statistical thinking and practice point to 
the need for providing confidence intervals to 
supplement point estimates and statistical tests 
(Duhachek, Coughlan & Iacobucci, 2005; 
Duhachek & lacobucci, 2004; Iacobucci & 
Duhachek, 2003; Maydeu-Olivares, Coffman & 
Hartmann, 2007). Many professional 
publications are beginning to require authors to 
provide CIs in addition to point estimates, 
standard errors and test statistics. For example, 
the American Psychological Association Task 

Force on Statistical Inference (Wilkinson, 1999) 
emphasizes the obligation of researchers to 
provide CIs for all principal outcomes; however, 
generating CIs for coefficient alpha has 
remained somewhat elusive and rarely 
implemented in practice. 

Confidence intervals for coefficient 
alpha were first introduced by Kristof (1963) 
and Feldt (1965). These CIs assume that items 
are normally distributed and strictly parallel 
(Allen & Yen, 1979; Crocker & Algina, 1986), 
which implies that the item covariance matrix is 

compound symmetric; i.e., ( )2
1 I i jσ σ+ =  

where σ1 are the item variances, and σ2 are the 
item covariances, and I(.) is the indicator 
function. These confidence intervals, however, 
do not perform well when items are not strictly 
parallel (Barchard & Hakstian, 1997). Given that 
the strictly parallel assumption is unreasonable 
in applied research and that these CIs do not 
perform well when this assumption is violated 
may be the reason why coefficient alpha CIs are 
rarely implemented in applied research 
(Duhachek & lacobucci, 2004). 

An improvement to the CIs proposed by 
Kristof (1963) and Feldt (1965) was introduced 
by van Zyl, Neudecker and Nel (2000) who 
showed that the standard method of estimating 
coefficient alpha is a maximum likelihood 
estimator (MLE) and derived its corresponding 
CIs. Although the coefficient alpha MLE 
assumes that items are normally distributed, a 
major advantage is that it does not require the 
compound symmetry assumption of the item 
covariance matrix. In a simulation study, 
Duhacket and Iacobucci (2004) compared the 
performance of the coefficient alpha CIs for the 
method proposed by Feldt (1965) and the MLE 
proposed by van Zyl, et al. (2000) under a non-
parallel measurement model. Their results 
indicate that the MLE method consistently 
outperformed the competing methods across all 
simulation conditions, but because the MLE 
method assumes that items are normally 
distributed, when the assumption is violated, the 
results can be untrustworthy. 

Normally distributed items are not a 
completely realistic assumption in 
psychological/behavioral research. Most items in 
measurement instruments are dichotomous 
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(yes/no, true/false, etc.) or Likert-type items 
with several ordinal items: for these item types, 
normality is an unrealistic assumption. From this 
perspective, Yuan and Bentler (2002) extended 
the results of the coefficient alpha MLE to a 
wider range of distributions, pointing out that it 
is robust to some violations of normality. 
However, they point out that it is difficult to 
verify conditions to which the coefficient alpha 
MLE is robust to item non-normality. Thus, if 
the conditions cannot be verified theoretically 
then they are even more difficult to verify in 
applied work. 

Yuan and Bentler (2003) built on this by 
introducing what Maydeu-Olivares and 
colleagues (2007) call asymptotically 
distribution-free (ADF) CIs for coefficient 
alpha. In this study the authors compared the 
ADF, MLE, and bootstrap coefficient alpha CIs 
estimated from the Hopkins Symptom Checklist 
(HSCL; Derogatis, Lipman, Rickels, Uhlenhuth 
& Covi, 1974). The results of Yuan and Bentler 
suggest that the ADF CIs are between the MLE 
and bootstrap methods in terms of their 
accuracy. However, they point out that the ADF 
CIs cannot describe the tail behavior of 
coefficient alpha of the HSCL due to the small 
sample (n = 419); they suggest that with a larger 
sample size the ADF CIs could better describe 
the distribution of coefficient alpha. 

Maydeu-Olivares, et al. (2007) extended 
the work by Yuan, et al. (2003) by simplifying 
the computation of ADF CIs and investigating 
its performance under several simulation 
conditions. Of particular interest was the 
comparison of the ADF CIs to the MLE CIs 
under various conditions of skewness and 
kurtosis. In general, they concluded that - with 
approximately normal items - the MLE CIs 
perform well even with a sample size as small as 
50. However, once the items begin to deviate 
from normality, the ADF CIs begin to 
outperform the MLE CIs. In particular, the ADF 
CIs outperform MLE CIs with as little a sample 
size of 100. When the sample size gets larger 
than 100 the ADF CIs perform well regardless 
of the skewness and kurtosis investigated by the 
researchers. 

Recent research has thus been fruitful in 
investigating the properties of coefficient alpha 
CIs; however, these CIs are based on traditional 

frequentist statistics. As such, they have the 
traditional interpretation of CIs and cannot be 
updated with prior information. The primary 
purpose of this study is to develop a Bayesian 
internal consistency estimate and to evaluate its 
performances by investigating some of its 
properties through simulation. 
 
Coefficient Alpha 

Consider a measurement instrument 
containing p items, y1, y2, …, yp, that indirectly 
measure a single dimension, attribute, or 
construct. A useful and common computation in 
the psychological/behavioral sciences is the 
composite Y = y1 + y2+ …+ yp. This composite is 
placed in statistical models such as ANOVA and 
regression when conducting research using the 
corresponding attribute as a variable. Therefore, 
it is important to know the reliability of the 
composite and hence the construct being 
measured. 

A popular way to estimate the 
composite reliability is through coefficient 
alpha. Coefficient alpha for the population is 
defined as 
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and covariances. For a sample of size n, 
population parameters are replaced by sample 
estimates to obtain a coefficient alpha estimate 
as 
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Note that coefficient alpha is being subscripted 
with c to distinguish it from the other forms that 
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will shortly be introduced. Recall that Zyl, et al. 
(2000) showed that ˆcα is the MLE for cα . 

Coefficient alpha has three interesting 
properties implied from the classical true score 
model (Allen & Yen, 1979; Crocker & Algina, 
1986). First, when all items have equal true 
scores that relate equally to the observed scores 
along with equal measurement error variance, 
the items are said to be parallel. In this case the 
covariance matrix for the items has a compound 

symmetric structure; i.e., ( )2
1 I i jσ σ+ = . 

Second, when the measurement error variances 
are not equal, the items are said to be tau-
equivalent. In both of these conditions 
coefficient alpha is equal to the reliability of a 
measurement instrument. Lastly, when the true 
scores do not relate equally to the observed 
scores and measurement error variances are not 
equal, the items are congeneric. This last 
condition is the more general and in this case 
coefficient alpha underestimates the reliability of 
a measurement instrument. It is from these three 
conditions that the conclusion ˆc xxα ρ ′≤  is 

made, where xxρ ′  is the reliability coefficient of 

a measurement instrument. 
 
Bayesian Internal Consistency 

The cornerstone of Bayesian 
methodology is Bayes’ theorem. Through 
Bayes’ theorem all unknown parameters are 
considered random variables. Due to this, prior 
distributions must be initially defined, which is a 
way for researchers to express prior beliefs or 
available information before data are involved in 
the statistical analysis. Using the observed data y 
and prior distribution p(θ), a posterior 
distribution π(θ|y) of the parameters θ can be 
constructed. The posterior distribution can be 
fully expressed through Bayes’ theorem as 
 

( ) ( ) ( )
( ) ( )

( ) ( )|
| |

|

L p
L p

L p d
π

Θ

= ∝


θ y θ
θ y θ y θ

θ y θ θ
(3) 

 
where L(θ | y) is the data likelihood function and 

( ) ( )|L p d
Θ y θ θ θ  

 

is a normalizing constant. One can directly see 
that the posterior is composed of both actual 
data and prior beliefs or knowledge about the 
parameter. After the posterior π(θ|y) is 
constructed it can be summarized by the mean 
and SD (or SE) along with other summarizing 
quantities. For example, the mean and variance 
can be computed as 
 

( ) ( )| |E dπ
Θ

= θ y θ θ y θ          (4) 

and 
 

( ) ( ) ( )2
var | | |E dθ π

Θ
= −  y θ θ y θ y θ , 

(5) 
 

where the ( )var |SD θ= y  is also the SE for 

( )|E θ y . At times, the median (or 50th 

percentile) computed as 
 

( ) ( ) 1
| |

2
P m P m≤ = ≥ ≥θ y θ y       (6) 

 
is of interest as it is less influenced by extreme 
values. 

For the Bayesian coefficient alpha 
(Balpha), first start with the multivariate normal 
distribution. The posterior of a multivariate 
normal can be described by 
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( ) ( ) ( )
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On the far right of (6), note that the prior for the 
mean is directly dependent on the prior 
covariance, in addition, this indicates that a 
different prior is specified for the covariance 
matrix and mean vector. By choosing the 
following conjugate priors for both the 
covariance matrix 
 

( )1
0~ ,W d−Σ Λ                    (8) 

 
and mean vector 
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Anderson (1984) and Schafer (1997) showed 
that the posterior distribution for the covariance 
matrix and mean vector is 
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where W–1() denotes an inverted Wishart 
distribution and d0, Λ, μ0, and n0 are 
hyperparameters chosen by the analyst, and y  
and S are the mean vector and covariance matrix 
estimated from the data. Thus, the posterior of 
the multivariate normal is described by two 
distributions which jointly are called the normal-
inverse Wishart distribution. Note that a prior 
needs be specified for μ and Σ. If no prior is 
available a generic noninformative prior such as 

( ) 1p ∝θ  can be used. In this case the posterior 

is completely defined by the data. This 
parameterization fully describes the posterior 
and it can now be directly computed. 

The coefficient alpha posterior can be 
difficult to obtain directly. However, by 
simulating 1, 2, ...,t T=  values from (9) and 

(10) as ( ) |tΣ y  and ( )( ) ( )| ,μ Σt t y , the 

estimation of the coefficient alpha posterior 
distribution can be obtained as 
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where ( )t
iiσ and ( )t

ijσ  are elements of ( ) |tΣ y . A 

Bayesian coefficient alpha (Balpha) can then 
obtained as 
 

( )|b cEα α= y .                 (13) 

 
An alternative Bayesian coefficient alpha 
(BalphaM) can be obtained through 
 

( ) ( ), ,| | 1 / 2c b m c b mP Pα α α α≤ = ≥ ≥y y . 

 
Bayesian credible intervals can then obtained by 
the lower α/2 and upper 1–α/2 percentiles of the 
sample, where α is the type I error rate. One can 
also obtain a normal theory based credible 
interval as /2b Z SDαα ± . Other summary 

measures can also be computed as indicated 
above. 
 

Methodology 
Simulation 

A 4 × 3 × 6 Monte Carlo simulation 
design was utilized to investigate the properties 
of Bayesian coefficient alphas. First, the number 
of items was investigated: 5, 10, 15 and 20 and it 
was found that coefficient alpha increases as a 
function of the number of items, however, it is 
constrained to one. Although it is possible for 
tests and/or surveys to have more than 20 items, 
going beyond 20 items reaches a point of 
diminishing returns in terms of investigating 
coefficient alpha. 

Second, the mean item correlation ( )r  

was investigated: 0.173, 0.223, and 0.314. The 
mean item correlation is defined as 
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                         (14) 

 
These mean items correlations were investigated 
because they generate coefficient alphas that 
range from 0.50 to 0.90, a sufficient range to 
investigate the properties of the Balpha. 

Third, sample size was also explored: 
50, 100, 150, 200, 250 and 300. As is the case 
for the number of items, going beyond a sample 
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size of 200 reaches a point of diminishing 
returns in terms of investigating coefficient 
alpha (Duhachek & lacobucci, 2004); however, 
these are sample sizes typically found in 
psychological/behavioral research. Table 1 
presents coefficient alpha as a function of mean 
item correlation and number of items and shows 
a reasonable range of coefficient alpha that may 
be found in psychological/behavioral research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multivariate normal data were generated 
with mean vector zero and correlation matrix R 
of dimensions defined by the number of items in 
the simulation. R was chosen to have 
homogenous off-diagonal elements that 
generated the corresponding mean item 
correlation. 

For each condition of the simulation 
study 1,000 replications were obtained. In each 
replication, Balpha was computed along with the 
SE and 95% BCIs. Relative bias for Balpha was 
computed as: 
 

ˆ
ˆ b

b
α αα

α
−= .                      (15) 

 
The average of the estimated SE was computed 
as 
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where B is the number of replications. Lastly, 
two forms of BCI intervals were computed. The 

first BCI was obtained by the lower α/2 and 
upper 1–α/2 percentiles of the sample. The 

second BCI was obtained as ( )/2
ˆ ˆb bZ SEαα α± . 

The coverage probability of the 95% BCIs were 
computed as the proportion of times the BCI 
contains the population parameter cα . 

Coverage can be judged by forming 
confidence intervals around the coverage. 
Coverage should not fall approximately two 
standard errors (SEs) outside the nominal 
coverage probabilities (p) (Burton, Altman, 
Royston & Holder, 2006). The standard error is 
defined as 
 

( ) ( )1p p
SE p

B
−

=                  (17) 

 
where B is the number of simulations in the 
study. For the current study, .95p = with 

( ) .006892SE p =  and the CI is [ ].936,  .964 . 

Thus, coverage that falls outside this CI is 
considered unacceptable. 

For this study, Balpha and 
corresponding 95% BCIs were estimated from a 
total of 1,000 simulations from the posterior 
distribution. In addition, the prior for Balpha 
was set to be noninformative. A noninformative 
prior essentially lets the data essentially speak 
for themselves. 
 

Results 
Relative bias for Balpha and corresponding 
standard errors are reported in Table 2. First, 
Balpha and BalphaM always tend to slightly 
underestimate the population coefficient alpha; 
however, both Balpha and BalphaM are 
relatively unbiased under all investigated 
conditions. Second, Balpha and BalphaM 
estimates get closer to the population coefficient 
alpha as sample size increases. Third, Balpha 
and BalphaM estimates get closer to the 
population coefficient alpha as the number of 
items increases. In addition, Balpha and 
BalphaM estimates get better as the mean item 
correlation increases. Lastly, BalphaM is 
consistently closer to the population coefficient 
than Balpha although the difference is nominal. 

Table 1: Population Coefficient Alpha for 
Items by Mean Item Correlations 

 

Items 
Mean Item Correlations 

.1667 .2208 .3103 

5 .5001 .5862 .6923 

10 .6667 .7392 .8182 

15 .7500 .8095 .8709 

20 .8000 .8500 .9000 
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In terms of the standard error (SE), a 
few things should be pointed out. First, the SEs 
are smaller as the mean item correlation 
increases. Second, standard errors improve as 
sample size increases as should be expected. For 
samples sizes from 100 to 300, the SE difference 
is nominal when the number of items is between  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 and 10. When the number of items is between 
15 and 20, the SE difference is nominal 
regardless of the sample size. Third, the SEs 
improve as the mean item correlation increase 
although the difference can be considered 
nominal; in most of these conditions, increasing 
the number of posterior samples should improve 
the estimation of the SEs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Balpha and BlaphaM Relative Bias with Standard Errors* 
 

Number of 
Items 

Sample Size 
Mean Item Correlation 

.1667 .2208 .3103 

5 

50 

100 

150 

200 

250 

300 

-.0639, -.0458 (.1189) 

-.0384, -.0278 (.0835) 

-.0278, -.0205 (.0673) 

-.0198, -.0145 (.0577) 

-.0121, -.0079 (.0510) 

-.0167, -.0133 (.0467) 

-.0592, -.0434 (.1034) 

-.0304, -.0226 (.0699) 

-.0191, -.0141 (.0557) 

-.0128, -.0092 (.0477) 

-.0104, -.0074 (.0424) 

-.0103, -.0078 (.0387) 

-.0437, -.0328 (.0792) 

-.0173, -.0124 (.0518) 

-.0098, -.0066 (.0412) 

-.0109, -.0085 (.0357) 

-.0055, -.0037 (.0314) 

-.0070, -.0012 (.0285) 

10 

50 

100 

150 

200 

250 

300 

-.0537, -.0421 (.0860) 

-.0250, -.0203 (.0546) 

-.0100, -.0071 (.0426) 

-.0145, -.0122 (.0370) 

-.0073, -.0055 (.0324) 

-.0075, -.0061 (.0295) 

-.0325, -.0243 (.0666) 

-.0137, -.0103 (.0423) 

-.0090, -.0068 (.0335) 

-.0074, -.0059 (.0287) 

-.0075, -.0063 (.0256) 

-.0054, -.0044 (.0231) 

-.0228, -.0176 (.0468) 

-.0084, -.0062 (.0295) 

-.0062, -.0049 (.0235) 

-.0040, -.0030 (.0199) 

-.0034, -.0026 (.0177) 

-.0027, -.0020 (.0161) 

15 

50 

100 

150 

200 

250 

300 

-.0328, -.0245 (.0672) 

-.0136, -.0105 (.0410) 

-.0083, -.0064 (.0321) 

-.0082, -.0068 (.0275) 

-.0089, -.0078 (.0245) 

-.0048, -.0039 (.0219) 

-.0252, -.0192 (.0516) 

-.0104, -.0082 (.0314) 

-.0068, -.0055 (.0246) 

-.0056, -.0046 (.0209) 

-.0033, -.0025 (.0184) 

-.0037, -.0031 (.0167) 

-.0152, -.0115 (.0348) 

-.0052, -.0038 (.0211) 

-.0042, -.0034 (.0167) 

-.0036, -.0030 (.0142) 

-.0023, -.0018 (.0125) 

-.0017, -.0013 (.0113) 

20 

50 

100 

150 

200 

250 

300 

-.0276, -.0205 (.0580) 

-.0100, -.0076 (.0335) 

-.0065, -.0050 (.0260) 

-.0047, -.0036 (.0219) 

-.0050, -.0042 (.0194) 

-.0040, -.0033 (.0175) 

-.0213, -.0162 (.0440) 

-.0090, -.0073 (.0254) 

-.0041, -.0030 (.0194) 

-.0039, -.0032 (.0165) 

-.0028, -.0022 (.0145) 

-.0024, -.0019 (.0132) 

-.0129, -.0097 (.0292) 

-.0049, -.0037 (.0168) 

-.0033, -.0026 (.0130) 

-.0027, -.0022 (.0110) 

-.0013, -.0009 (.0096) 

-.0014, -.0011 (.0088) 

*Note: The first number is Balpha followed by BalphaM. Numbers in parentheses are standard errors. 



ESTIMATING INTERNAL CONSISTENCY USING BAYESIAN METHODS 

284 
 

The Bayesian credible intervals are 
displayed in Table 3 and are more interesting. In 
general, most of the credible intervals fall within 
the acceptable range of [.936, .964] based on 
1,000 replications. In addition, the percentile 
based BCIs are consistently closer to 0.95 than 
the normal theory based BCIs. With 5 items, 
only two BCIs were not within the acceptable 
range. When the number of items shifts to 10, 
seven BCIs were not within the acceptable 
range, but most of the unacceptable BCIs are 
normal theory based. 

As the number of items increases, more 
BCIs begin to fall outside the acceptable range, 
but once again, most of the unacceptable BCIs 
are normal theory based. However, the 
unacceptable BCIs occur when the numbers of 
items are between15 to 20 and are paired with 
the smaller sample sizes. Specifically, when the 
numbers of items are 15, unacceptable BCIs 
occur at a sample size of 50. Also, when the 
numbers of items are 20, unacceptable BCIs 
occur at sample sizes of 50 to 100. In both cases, 
more normal theory BCIs become unacceptable 
as the item mean correlation increases. 
However, the percentile based BCIs tend to 
remain more stable and closer to 0.95. 
 

Conclusion 
The building blocks of psychological/behavioral 
research are psychological constructs, which are 
typically indirectly measured through items on 
questionnaires. It is crucial to have items that are 
consistent or reliable in order for research results 
to be trustworthy and useful. A popular method 
for estimating a form of reliability is internal 
consistency via coefficient alpha (Cronbach, 
1951; Guttman, 1945). However, coefficient 
alpha has remained unchanged for over 60 years. 
Many professional publications are encouraging 
and/or mandating researchers to supplement 
their parameter estimates with CIs. Although CIs 
for coefficient alpha have recently enjoyed 
fruitful research (Barchard & Hakstian, 1997; 
Duhachek & lacobucci, 2004; Feldt, 1965; 
Kristof, 1963; Maydeu-Olivares, et al., 2007; 
van Zyl, et al., 2000; Yuan & Bentler, 2002; 
Yuan, et al., 2003), they are rarely implemented 
in applied research. In addition, all current 
coefficient alpha CIs are frequentist based and, 
as such, they have the traditional, less desirable 

CI interpretation and cannot use prior 
information to stabilize inferences or update 
information. 

This study developed a Bayesian 
coefficient alpha (Balpha or BalphaM) and its 
corresponding BCIs. The results from the Monte 
Carlo investigations indicate that Balpha and 
BalphaM are relatively unbiased under all 
investigated conditions of the simulation. 
However, Balpha and BalphaM have the added 
advantage of having the BCIs, which have the 
interpretation researchers really want to make 
with CIs. Again, BCIs allow one to make the 
following simpler and more powerful statement: 
results show 95% confidence that the true 
population parameter lies between the bands of 
the credible interval. 

In terms of coverage, the percentile 
based BCIs performed better than the normal 
theory based BCIs. In particular, the normal 
theory BCIs begin to perform poorly when the 
mean item correlation is .3101r = , and the 
condition worsens as the number of items 
increases. However, increasing the sample size 
offsets these conditions. In fact, having a sample 
size of 250 or more appears to provide 
protection against this breakdown of the normal 
theory BCIs. Conversely, the percentile based 
BCIs remain more consistent, but begin to 
become unacceptable with the smaller sample 
sizes and when the number of items is between 
15 and 20. However, they remain acceptable as 
long as the sample size is at least 100. Thus, 
percentile based BCIs are recommended over 
the normal theory BCIs. 

In general, this suggests that as the 
number of items increases a larger sample size is 
required to provide stable inferences. This is not 
a surprising result. In traditional frequentist 
statistics, this would be the only option. 
However, in Bayesian methodology there are 
two potential additional options to stabilize 
inferences. First, the number of posterior 
samples can be increased. This would increase 
the precession of the estimates. Second, a prior 
can be specified, which will stabilize inferences 
that, in turn, will provide better coverage. 

It should be noted that the purpose of 
this study was to demonstrate how a Bayesian 
internal consistency can be estimated under the 
basic assumptions made of reliability (Allen &  
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Yen, 1979; Crocker & Algina, 1986), thus, study 
provides a springboard from where future 
research on Bayesian coefficient alpha can be 
conducted. However, like any simulation study, 
this research is limited by the type and number 
of conditions investigated. In this study, only 
homogenous items were investigated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Additionally, items were continuous and 
normally distributed. Further research is 
required to investigate the robustness of a 
Bayesian coefficient alpha to violations of the 
basic reliability assumptions and to establish its 
properties under binary or ordinal items. 

Table 3: Balpha and BalpahM Bayesian Credible Interval Coverage 
 

Number of 
Items 

Sample Size 
Mean Item Correlation 

.1667 .2208 .3103 

5 

50 

100 

150 

200 

250 

300 

.974, .963 

.949, .953 

.944, .956 

.947, .955 

.938, .948 

.845, .949 

.945, .951 

.959, .958 

.952, .960 

.946, .953 

.944, .948 

.959, .960 

.949, .968 

.942, .950 

.951, .953 

.942, .949 

.950, .954 

.948, .948 

10 

50 

100 

150 

200 

250 

300 

.961, .971 

.949, .961 

.951, .951 

.937, .942 

.951, .958 

.949, .953 

.952, .968 

.961, .965 

.960, .961 

.953, .958 

.945, .951 

.947, .954 

.966, .980 

.968, .976 

.954, .959 

.959, .963 

.963, .965 

.947, .949 

15 

50 

100 

150 

200 

250 

300 

.979, .992 

.968, .969 

.955, .955 

.954, .966 

.941, .944 

.957, .957 

.977, .988 

.969, .970 

.958, .964 

.963, .964 

.946, .956 

.945, .948 

.970, .981 

.962, .969 

.965, .966 

.941, .947 

.952, .959 

.955, .953 

20 

50 

100 

150 

200 

250 

300 

.978, .991 

.967, .967 

.960, .966 

.953, .963 

.950, .953 

.964, .968 

.979, .997 

.958, .967 

.962, .958 

.955, .960 

.960, .964 

.953, .958 

.984, .989 

.973, .974 

.962, .968 

.957, .968 

.962, .960 

.955, .968 

*Note: The first number is the percentile BCIs followed by the normal theory based BCIs. Unacceptable 
coverage is bolded; acceptable coverage is within [.936, .964]. 
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As noted by Duhachek and Iacobucci 
(2004) and Maydeu-Olivares, et al. (2007), 
reporting only a point estimate of coefficient 
alpha is no longer sufficient. With inferential 
techniques reporting the SE and CIs provide 
more information as to the size and stability of 
the point estimate; in this case the point estimate 
is coefficient alpha. Within this context, a 
Bayesian internal consistency estimate may 
provide an attractive alternative to current 
coefficient alpha CIs because it provides 
researchers with BCIs that can be interpreted in 
a way researchers want and can make use of 
prior information to stabilize inferences. 
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The need for multiple respondents per organization in organizational survey research is supported. 
Leadership teams’ ratings of their implementations of market orientation are examined, along with 
learning orientation, entrepreneurial management, and organizational flexibility. Sixty diverse 
organizations, including not-for-profit organizations in education and healthcare as well as manufacturing 
and service businesses, were included. The major finding was the large rating variance within the 
leadership teams of each organization. The results are enlightening and have definite implications for 
improved design of survey research on organizations. 
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Introduction 
The archetype 21st century organization 
accumulates knowledge throughout its 
management and teams (Fisher, 1998). Because 
the challenges, opportunities and problems 
facing today’s organizations are complex (many 
interdependent variables), complicated (shades 
of gray instead of black and white) and require 
integration of various functions (e.g., marketing, 
finance, operations), it is difficult for a single 
leader or even a small group to manage an 
organization effectively. The concerted and 
integrated efforts of executives, managers and 
empowered goal-oriented teams are required for 
optimal  performance  (Özaralli, 2003).  Many 
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well-run organizations have recognized the need 
for management diversity, with a myriad of 
different orientations within their management, 
for better decision-making (Roberson & Park, 
2004). Peter Drucker stated that a different 
executive “sees a different reality and  is 
concerned with a different problem” and the 
executive team “uses conflict of opinion as 
a…tool to make sure all major aspects of an 
important matter are looked at carefully” in the 
course of making a decision (Drucker, 1967, p. 
155). 

By virtue of society becoming more 
diverse, organizations are also becoming more 
diverse in race, gender and ethnicity (Cox, 1991) 
and in education and other background variables 
(Pitcher & Smith, 2001). Most often, the 
diversity cited is demographic and includes race, 
age and religion among others. Business 
professionals are also familiar with functional 
diversity which recognizes that accounting, 
marketing and operations managers tend to have 
different orientations and agendas (Hambrick & 
Mason, 1984).  

Psychographic diversity (personality 
traits and lifestyles) is also important. A good 
example of this is the learning, decision-making 
and communication styles demonstrated by the 
Myers-Briggs Type Indicator (MBTI) (Leonard 
& Straus, 1997). Kilduff, Angelmar and Mehra 
(2000) demonstrate that these observable 
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sources of diversity are surrogates for cognitive 
diversity, something that is more difficult to 
measure. Rahe (2009) emphasized that the 
global platform for today’s business decision-
making makes it even more difficult due to the 
influences of local environments. The term 
interpretative ambiguity describes a leadership 
team whose individuals perceive reality (e.g., 
performance measures such as market 
orientation) in different ways because of their 
cognitive diversity. The resulting heterogeneity 
may be an impediment to successful marketing 
strategy implementation (Mengue & Auh, 2005). 
A development of greater leadership diversity 
may lead to more innovative decision-making, 
but a more diverse group of managers can also 
impede group congruence and unification for 
attaining strategic objectives. 

Industrial (or business to business) 
marketing research commonly uses a single 
respondent per organization, also known as a 
key informant, in survey research on 
organizations. Researchers should encourage 
organizations to have only the most highly 
qualified informants respond to organizational 
surveys (R. J. Vandenberg, personal 
communication, June 28, 2010). Researchers 
target a particular position (e.g., CEO, 
Purchasing Director) that reflects the purpose of 
a research study and the need for specific 
information. Practical constraints on executives’ 
time also suggest that using a single key 
informant may reduce the organization’s cost of 
responding to surveys. 

Traditional research methods typically 
use a single respondent or key informant to 
represent the entire organization in multi-
organization studies. Using multiple respondents 
for such research is rare. A review of the 
Journal of Marketing, Journal of Marketing 
Research and Journal of Marketing Theory and 
Practice in recent years found no studies 
involving more than ten organizations that used 
multiple respondents per organization. 

It is hoped that an especially informed 
person, the key informant, would be able to 
judge and report fully the issues affecting an 
organization. However, organizations choose the 
key informants who respond to survey research. 
A researcher does not have direct control of the 
qualifications of the respondent. For those who 

have conducted research at the organizational 
level, there is a sense that a single respondent, 
whether a highly qualified key informant or not, 
may not be sufficiently representative of an 
organization. Members of an organization’s top 
management team would be qualified 
informants, yet the degree of concurrence among 
the top management team is an empirical 
question. 

Numerous authors in the management 
and marketing literature have called for using 
multiple, as opposed to single, respondents per 
organization (Dawes, 2000; Gray, Matear, 
Boshoff & Matheson, 1998; Tsai, 2002). 
Multiple respondents per organization may 
allow for an average measurement of the 
leadership team’s response, but even more 
importantly, insights into the team’s variation on 
specific topics. Prior organizational survey 
research has not identified what effects may be 
masked or distorted by using only one 
respondent per organization. For example, how 
do several leaders in different functions within a 
single organization perceive a specific product’s 
capabilities or an organizational issue? 

The purpose of this study is to describe 
effects that may be discovered when multiple 
respondents per organization are used in survey 
research on organizations. More specifically, the 
focus is on how perceptions of selected strategic 
management constructs vary within and among 
organizations. The study shows what 
information may be gained by having more than 
one informant per organization. 
 

Methodology 
Organizations and Participants 

This study employed a snowball 
sampling technique, which consisted of 
soliciting the members of several organizations, 
contacting members of personal networks and 
targeting particular firms to build sectors and 
industries. The resulting non-probabilistic, 
convenience sample consisted of 696 usable 
individual responses within sixty organizations. 
Of these sixty, 37 organizations were in the 
business sector and 23 were not-for-profits. An 
effort was made to represent a variety of 
industries: banking (11), education (13), 
healthcare (10), manufacturing (10), real estate 
(6), retail (3) and all other services (7). Eighteen 
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organizations employed 500 or more employees, 
and forty-two employed fewer than 500. For 
each participating organization, a request was 
made for twenty of their top management team 
members to complete and return the survey. The 
participating managers were volunteers from 
their organizations. 
 
Measurements 

The measures of interest in such survey 
projects often are perceptually based. This 
research project specifically used measures of 
organizational market orientation, 
entrepreneurial management, organizational 
flexibility and learning orientation. These 
constructs have been major research topics for 
over a decade. They have been variously 
conceptualized with other variables and 
organizational performance as researchers 
attempt to develop better prescriptive models for 
executives (Frank, Kessler & Fink, 2010; 
Mokhtar & Yusoff, 2009). 

Market orientation (MKT), as described 
by Jaworski and Kohli (1993) has three 
components: generation of market intelligence, 
sharing of this knowledge throughout the firm 
and a marketing response mechanism. Narver 
and Slater's (1990) work defined MKT as having 
three tenets: customer orientation, competitive 
orientation and inter-functional coordination. 

Learning orientation (LRN), as 
popularized by Senge (1990), denotes that not 
only do individuals have and use the ability to 
do both adaptive (incremental) and generative 
(paradigm shift) learning, but also to keep an 
open mind to different perspectives and have a 
commitment to learning (Baker & Sinkula, 
1999). When correctly practiced, the norm 
becomes collaborative learning. In their studies 
of company rejuvenation, Stopford and Baden-
Fuller (1990) established that the development 
of a learning organization required flexibility 
and internal communication to achieve an 
effective market orientation. Slater and Narver 
stated that “a market orientation is inherently a 
learning orientation” (1995, p. 67). 

Entrepreneurial management style and 
corporate entrepreneurship (ENT) are terms used 
to define an organization that acts 
entrepreneurially (Covin & Miles, 1999). ENT is 
an organizational process that encourages and 

practices innovation, risk-taking and a proactive 
orientation toward customers, competition and 
opportunities (Miller & Friesen, 1982); thus, 
there is a relationship between the dimensions of 
ENT and the marketing activities of the 
organization. Hence, the organization: (a) is 
proactive in obtaining intelligence on customers 
and competitors, (b) is innovative by 
reconfiguring its resources to formulate a 
strategic response, and (c) implements the 
response, which, because it is different, entails 
some degree of risk and uncertainty. 

Organizational flexibility (ORG) is 
defined as the degree in which an organization is 
adaptable in administrative relations and the 
authority vested in situational expertise. 
Khandwalla (1977) used the term organic to 
define such attributes. The management theorist 
Mary Parker Follett, in the 1920s, emphasized 
the need to match an organic structure to what is 
now considered an entrepreneurial management 
style (Graham, 1995). 

Each of these organizational 
characteristics (MKT, LRN, ENT and ORG) has 
been found to be positively related to 
organizational performance (Zahra & Covin, 
1995; Baker & Sinkula, 1999; Ellinger, Ellinger, 
Yang & Howton, 2002; Barrett, Balloun & 
Weinstein, 2004). However, these four 
characteristics and their relationship with 
organizational performance have not been 
analyzed in a single model. This study 
incorporated these organizational characteristics 
in a single model. Furthermore, in studying these 
four critical success variables and their 
relationships to organizational performance, the 
study addressed two noteworthy gaps in the 
literature: 
 
1. Incorporating a multiple response 

methodology to assess the varying 
leadership team members’ perspectives of 
how organizations are perceived on each of 
these four variables and organizational 
performance; and 

 
2. Broadening the research base from the for-

profit manufacturing sector to also include 
service industries and the non-profit sector. 

 



ONE IS NOT ENOUGH 

290 
 

This broader perspective recognizes the 21st 
century leadership team’s diversity and the 
economic realities of our society. 

Market orientation (MKT) was 
measured using the twenty-question construct 
developed by Kohli, Jaworski & Kumar (1993). 
Learning orientation (LRN) was measured using 
Yim-Teo’s (2002) ten-question scale. 
Entrepreneurial management style (ENT) was 
measured using Covin & Slevin’s (1989) nine-
question construct for innovativeness, proactive 
approach to customers and competition, and 
risk-taking. Organizational flexibility (ORG) 
was measured using a seven-question 
Khandwalla (1977) instrument. For consistency, 
a seven point Likert scale was used for all 
questions. The resulting construct measures 
were the averages of the item ratings in each 
scale. 

Given the difficulties in obtaining 
correct financial information that is of similar 
nature and time period among respondents, as 
well as the outright refusal by many 
organizations to release such information, a 
subjective measure of organizational 
performance is often more practical and useful 
than apparently objective financial information 
when the latter is available (Naman & Slevin, 
1993; Sanberg & Hofer, 1987), and because 
financial measures would not be comparable or 
necessarily applicable across the diverse 
organizations included in a study. Due to these 
difficulties, a qualitative-based, two-question 
rating instrument developed by Jaworski & 
Kohli (1993) was used. This scale (PERF) 
assesses (a) how well the organization did this 
year versus last year, and (b) how well it did 
versus leading competitors or similar 
organizations (for businesses and non-profits, 
respectively). These two judgmental questions 
result in a subjective rating of financial 
performance. 
 

Results 
Data Screening 

An average of twelve managers per 
organization participated. The harmonic mean 
was 9.38 respondents per organization, and the 
range was from four to 31 respondents per 
organization. The data were screened for 
normality, outliers and non-response bias. 

Twenty questionnaires out of 716 received were 
discarded due to excessive missing responses. 
The possibility of non-response bias was tested 
by a within organization chronological quartile 
comparison of returned questionnaires: 
Armstrong & Overton (1977) stated that late 
respondents (versus early respondents) are 
considered more similar to non-respondents. A 
set of ANOVA tests were conducted among 
quartile means on selected variables; these tests 
revealed no significant differences among earlier 
and later respondents. 
 
Scale Reliability and Correlations among Scales 

All of the Cronbach (1951) alphas 
exceed Nunnally’s (1978) minimum criterion of 
0.70 for reliability and all are significantly 
greater than zero at beyond the 0.001 level 
(Feldt, Woodruff & Salih, 1987). Table 1 
contains the coefficient alpha reliabilities and 
the correlations among the scales within and 
among organizations. Based on related work 
(Barrett, et al., 2004) one-tailed tests for positive 
correlation were appropriate. The reliabilities 
and correlations all are significant at or well 
beyond the 0.05 level. This was expected as both 
theory and practice support the needed 
integration and interdependency among these 
constructs. These results support the use of all 
the scales and their constituent items in 
subsequent analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample size for correlations of scale 
means was considered to be 60. Correlations 
below the diagonal are within organizations. The 

Table 1: Pearson Correlations among Scalesa 
 

Rating 
Scale 

MKT LRN ENT ORG PERF

MKT 0.92 0.78 0.65 0.47 0.62 

LRN 0.45 0.91 0.64 0.54 0.54 

ENT 0.47 0.29 0.90 0.37 0.46 

ORG 0.26 0.20 0.42 0.82 0.21 

PERF 0.49 0.33 0.33 0.30 0.82 

Note: a Correlations above the diagonal are 
among the scale means of organizations
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coefficient alpha reliabilities are shown on the 
diagonal. Sample sizes within organizations or 
on the diagonal were 696. All of the correlations 
and the coefficient alpha reliabilities were 
significant at or beyond the 0.01 level, with the 
exception of the correlation between PERF and 
ORG for the organization mean scores, which 
was significant at the 0.05 level. With two 
exceptions, the correlations among institutional 
means were greater than the correlations within 
organizations. 
 
Partitioning Sources of Variance in Scale Items 

An important first question is how scale 
item responses are related to differences among 
organizations, scales and respondents. Here the 
central question is on what percent of variance 
in item responses is attributable to respondent 
related effects versus organizational differences. 
For this purpose, the responses to the 48 items 
constituted the dependent variable. The 
independent variables for this analysis include: 
organizations, the five scales and respondents 
within organizations. 

The sample of organizations is best 
considered a random effect in the analysis of 
variance (ANOVA) sense. If the study were to 
be repeated, an entirely new collection of 
similarly diversely selected organizations would 
be generated. Respondents (participating 
managers) are necessarily nested within their 
own organizations. The chosen rating scales are 
fixed in the sense that only in the results that 
apply to these specific rating scales are of 
interest. Items are nested within their respective 
scales. Each item within a scale provides a 
replication of what that scale measures for each 
respondent. The results reported in Table 1 
support the use of scale items also as replicates 
across all the scales in the study. The overall 
analysis can be conducted using an ANOVA 
model including organizations, participants 
within those organizations, the rating scales and 
the scale items as replicates. Table 2 shows the 
means for each scale within the 60 participating 
organizations. 
 
Analysis of Item Data with Multiple 
Respondents per Organization 

The item data underlying the summary 
of Table 2 were analyzed by ANOVA. Table 3 

displays the expected means squares, the 
observed mean squares and the significance test 
for each possible effect. The method of moments 
was used to estimate the variance components 
for each of the estimable effects. The percent of 
variance due to each effect in the intra-class 
correlation or omega squared sense also is 
shown in Table 3. 

About 7% of the variance in item ratings 
is accounted for by organizational differences or 
the organization by scale interaction. 
Approximately 30% of the variance is due to 
differences among respondents within 
organizations or the respondent by scale 
interaction effect. The within organization 
variance due to respondent effects is likely 
underestimated because of the nature of cluster 
sampling of the organizations (R. J. Vandenberg, 
personal communication, June 28, 2010). 
 
Analysis of Item Data with One Respondent per 
Organization 

To illustrate what will happen when 
there is only one respondent per organization, 
the first respondent in each organization (by 
identification number in the file) was selected. 
The identification numbers were assigned by 
sequence of return of the surveys over the entire 
study. The identification numbers were assigned 
for convenience of coding, and do not have an a 
priori systematic relationship to the unknown 
expertise of the respondent. Data screening 
analyses supported the conclusion that response 
order was unrelated to scale means. The 
ANOVA with one respondent per organization 
was computed for these sixty respondents. The 
ANOVA shown in Table 4 assumed 
organizations as a random effect and scales as a 
fixed effect. Items within scales were replicates. 
Table 4 displays the expected means squares, the 
observed mean squares and the significance test 
for each possible effect. The method of moments 
was used to estimate the variance components 
for each of the estimable effects. The percent of 
variance accounted for by each effect also is 
shown in Table 4. 

According to Table 4, 29% of the 
variance in item responses is attributable to 
differences among organizations or organization 
by scale interaction. The variance due to 
respondents or the respondent by scale 
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Table 2: Mean Scale Ratings by Organizations 

Organization 
Number 

Number of 
Respondents 

Rating Scale 

MKT LRN ENT ORG PERF Row Meana 

1 15 3.37 3.33 3.25 3.86 4.83 3.73 
2 4 5.99 5.13 3.22 5.68 6.38 5.28 
3 10 4.72 4.47 3.75 4.46 4.85 4.45 
4 12 4.22 4.17 3.63 3.52 4.46 4.00 
5 14 4.48 4.59 4.45 4.31 5.75 4.72 
6 16 5.22 5.17 4.84 4.89 5.84 5.19 
7 6 4.18 4.63 4.30 4.60 4.42 4.42 
8 12 5.43 4.75 4.00 4.72 6.00 4.98 
9 11 5.20 4.97 5.15 4.17 4.82 4.86 

10 10 4.63 4.21 3.98 4.07 5.50 4.48 
11 17 5.11 4.75 4.48 3.70 5.79 4.76 
12 11 4.78 4.77 4.26 3.88 5.18 4.57 
13 18 5.46 5.07 5.56 4.84 5.47 5.28 
14 14 5.81 4.76 4.32 3.69 6.75 5.07 
15 31 4.57 4.24 3.80 4.32 4.68 4.32 
16 9 4.03 4.20 4.14 4.05 4.11 4.11 
17 14 3.66 3.54 2.77 3.07 4.75 3.56 
18 14 4.25 4.64 2.74 3.82 4.54 4.00 
19 5 4.80 4.76 4.47 3.42 6.00 4.69 
20 16 4.78 4.17 4.13 4.28 5.09 4.49 
21 13 4.60 4.52 4.22 4.12 4.31 4.35 
22 11 3.91 3.20 3.16 3.74 3.59 3.52 
23 9 4.48 4.63 3.77 4.30 4.50 4.34 
24 4 4.16 4.25 3.47 3.80 3.50 3.84 
25 13 5.37 4.62 4.43 4.63 4.73 4.75 
26 17 3.52 3.89 2.82 3.44 5.56 3.85 
27 21 4.57 4.23 3.56 3.90 4.10 4.07 
28 12 4.16 3.98 3.37 4.02 4.88 4.08 
29 22 5.23 4.60 4.65 2.90 5.55 4.58 
30 8 5.35 5.29 5.13 5.41 5.44 5.32 
31 14 3.87 3.77 3.25 4.01 3.93 3.77 
32 9 3.41 3.49 3.70 3.46 4.61 3.73 
33 10 3.78 4.28 4.13 3.91 4.00 4.02 
34 5 3.87 4.42 4.16 3.49 4.60 4.11 
35 4 5.01 4.78 5.83 4.08 6.13 5.16 
36 15 4.53 4.07 4.38 4.15 5.10 4.45 
37 9 4.97 4.20 4.74 3.33 5.67 4.58 
38 13 3.74 3.58 3.97 3.22 3.77 3.66 
39 12 3.35 3.62 3.26 3.81 4.83 3.77 
40 7 5.28 4.89 5.13 3.89 6.21 5.08 
41 15 4.87 4.92 4.10 4.65 6.17 4.94 
42 9 5.39 4.26 4.27 4.34 5.78 4.81 
43 15 4.19 4.34 3.19 3.82 4.90 4.09 
44 15 5.50 4.75 4.79 4.66 5.50 5.04 
45 7 5.04 4.53 3.35 3.21 4.71 4.17 
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Table 2: Mean Scale Ratings by Organizations (continued) 

Organization 
Number 

Number of 
Respondents 

Rating Scale 

MKT LRN ENT ORG PERF Row Meana 

46 6 3.19 3.67 3.04 3.74 5.25 3.78 
47 9 3.52 3.68 2.95 2.92 4.22 3.46 
48 15 4.77 4.17 3.72 3.97 4.23 4.17 
49 16 5.19 5.10 3.94 4.39 5.22 4.77 
50 5 5.29 4.82 4.27 3.71 5.80 4.78 
51 4 4.40 4.22 4.17 5.18 4.50 4.50 
52 18 4.57 4.48 4.73 3.98 5.11 4.57 
53 13 5.13 4.8 4.21 4.22 5.42 4.76 
54 9 5.29 4.57 4.62 4.35 5.06 4.77 
55 6 4.09 4.53 4.46 3.90 4.92 4.38 
56 5 4.62 4.28 3.42 4.34 4.30 4.19 
57 10 5.02 3.97 4.07 3.27 5.90 4.45 
58 8 4.34 4.33 3.86 3.89 5.44 4.37 
59 13 4.99 4.86 5.03 4.51 5.73 5.02 

60 11 4.62 5.31 4.12 4.13 5.18 4.67 

Column 
Meansa 11.6 4.60 4.40 4.04 4.04 5.06 4.43 

Note: aUnweighted means 

Table 3: ANOVA with Multiple Respondents per Organization 

Source dfa EMSb OMSc Fd Variance 
Percentagee 

Organization (A) 59 S+cdsB+bcdsA 74.42 3.37*** 3.65 

Respondent (B(A)) 635 S+cdsB 22.09 14.36*** 16.63 

Scale (C ) 4 S+dsBC+bdsAC+abdsC 520.28 35.14*** 2.94 

AC 236 S+dsBC+bdsAC 14.81 3.02*** 3.45 

BC(A) 2540 S+dsBC 4.91 3.19*** 13.62 

S 29751 S 1.54  59.72 

Total (Adjusted) 33225  2.63   
*** p < 0.001; Notes: aDegrees of freedom for the effect; bExpected mean squares; cObserved mean squares; dF 
ratio; ePercent of variance accounted for by each effect by the sample moment method 
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interaction is not estimable when there is one 
respondent per organization. By definition, with 
only one respondent per organization, there is no 
way to separate respondent effects from 
organization effects. 
 
Analysis of Item Data by the Mean of 
Respondents within Organizations 

In lieu of other evidence, it would be 
expected that the average of a management 
team’s judgments would be more accurate than 
those of a single respondent. That is, it is 
important to strive to simulate the judgments of 
a fully qualified or key informant. Therefore, the 
ANOVA with the average of the item responses 
within each organization was repeated. The 
ANOVA shown in Table 5 again assumed 
organizations as a random effect and scales as a 
fixed effect, and items within scales were 
replicates. Table 5 displays the expected means 
squares, the observed mean squares, the 
significance test and the percent of variance 
accounted for by each effect. 

According to Table 5, 11% of the 
variance in item responses is attributable to 
differences among organizations or organization 
by scale interaction. Again, by definition, with 
only one respondent per organization, 
respondent effects cannot be separated from 
organization effects. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Partitioning Sources of Variance in Perceived 
Organizational Performance 

An applied researcher should be 
concerned about how much difference the 
research design would make in modeling a 
dependent variable. That is, will using a single 
respondent or multiple respondents make a 
difference in the percent of variance attributed to 
different effects? For this purpose, the 
performance rating (PERF) scale was the 
dependent variable. The independent variables 
for this analysis included industry groups, 
organization size, organizations within industry 
group and size classifications and respondents 
within organizations.  

Seven categories of industries were 
included in this study. A concerted effort was 
made to have a variety of business and nonprofit 
sectors represented: banking (11), education 
(13), healthcare (10), manufacturing (10), real 
estate (6), retail (3) and all other services (7). 
Regarding the sizes of firms included in the 
study: 18 employed 500 or more employees and 
42 employed less than 500. Almost all of the 
participating organizations were from five 
southeastern states: North Carolina, Tennessee, 
South Carolina, Georgia and Florida. 

Table 6 shows the results when the 
ANOVA includes industry, size, organization 
and respondent effects. By this analysis method, 
the statistically significant effects are differences 
among organizations within industry by size 
subgroups and respondent differences within 

Table 4: Example ANOVA with One Respondent per Organization 

Source dfa EMSb OMSc Fd Variance 
Percentagee 

Organization (A) 59 S+bsA 12.80 8.17*** 10.28 

Scale (B) 4 S+sAB+asB 37.73 6.73*** 2.45 

AB 236 S+sAB 5.61 3.58*** 18.49 

S(AB) 2580 S 1.57  68.78 

Total (Adjusted) 2879  2.37   
*** p < 0.001; Notes: aDegrees of freedom for the effect; bExpected mean squares; cObserved mean squares; dF 
ratio; ePercentages of variance accounted for by each effect were computed by the sample moment method 
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organizations. The observed mean squares were 
decomposed according to their expected mean 
squares. After such decomposition, organization 
differences within subgroups, respondent 
differences within organizations, and 
unreliability of the dependent variable accounted 
respectively for about 3.5%, 59% and 37% of 
the total variance. The industry, size and 
industry by size effects accounted for no or very 
small components of total variance in the intra-
class correlation or omega squared sense. 

The same data were re-analyzed while 
ignoring the possible effects of organizations, 
respondents and unreliability of the dependent 
variable because this is the more common 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

analysis method used in practice (results are 
shown in Table 7). The industry and industry by 
size effects are now statistically significant. By 
this analysis, the industry and industry by size 
effects are statistically significant, and they 
account for about 3% of the variance each, 
however, about 93% of the variance is 
attributable to the residual variance. Using the 
common analysis shown in Table 7, a researcher 
would not discover the most important sources 
of variance in this study; namely the 
organization differences, respondent differences 
within organizations, and variance due to 
unreliability of the dependent variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Example ANOVA with Organization Mean Responses 

Source dfa EMSb OMSc Fd Variance 
Percentagee 

Organization (A) 59 S+bsA 6.66 18.05*** 5.99 

Scale (B) 4 S+sAB+asB 55.71 38.11*** 4.30 

AB 236 S+sAB 1.46 3.96*** 5.19 

S(AB) 2580 S .37  84.52 

Total (Adjusted) 2879  2.37   
*** p < 0.001; Notes: aDegrees of freedom for the effect; bExpected mean squares; cObserved mean squares; 
dF ratio; ePercent of variance accounted for by each effect by the sample moment method 
 
 

Table 6: ANOVA with Organizations and Respondents Hierarchically Nested 

Source dfa EMSb OMSc Fd 
Variance 

Percentagee 

Industry 6 S+sD+dsC+bcdsA 13.87 1.24 0.00 

Size 1 S+sD+dsC+acdsB 0.00 0.00 0.00 

Industry by Size 6 S+sD+dsC+cdsAB 5.64 0.51 0.00 

Organizations within 
Industry by Size 

46 S+sD+dsC 11.15 4.99*** 3.50 

Respondents within 
Organizations 

636 S+sD 2.24 4.23*** 59.44 

Residual 687 S 0.53  37.06 
*** p < 0.001; Notes: aDegrees of freedom for the effect; bExpected mean squares; cObserved mean 
squares; dF ratio; ePercent of variance accounted for by each effect by the sample moment method 
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Conclusion 
Item Mean Differences 

When multiple respondents are included 
in research on organizations the differences 
among them can be detected and evaluated for 
their magnitude. The effects on item means due 
to the respondents or due to their interactions 
with the rating scales accounted for several 
times as much variance as effects associated 
with organizational differences or the interaction 
of organizations and scales. By contrast, when 
only one respondent was used per organization, 
it appeared that 28% of the variance was due to 
effects related to organizational differences or 
the interaction between scales and organizations. 
However, the apparent organizational 
differences and organization by scale differences 
estimated in Table 4 are confounded with 
respondent-related effects. 
 
Perceived Performance Effects 

Analogous results were obtained when 
ratings of organizational performance were 
modeled from industry classification and 
organization size. Again quite large effects are 
due to differences among respondents within 
organizations. Ignoring such possible individual 
differences among respondents makes little 
sense. These results support the conclusion that 
using only one respondent per organization in 
survey studies on organizational differences 
often will not detect nor appropriately estimate 
the size of effects of interest. It is time to move 
beyond survey studies using only one 
respondent per organization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Limitations 

Only a small set of rating scales was 
used in this study, thus it is not certain that 
similar effects would emerge in other specific 
applications. However, as demonstrated, the 
variance among the multiple respondents’ scale 
ratings within the organizations in this study was 
greater than the variance among the 
organizations’ scale ratings for all five rating 
scales. In addition, the most important sources of 
variation in the dependent variable cannot be 
detected, and were not detected by one of the 
most common analytical methods used in such 
studies. 

Estimating the magnitude of variance 
due to various effects in ANOVA often is 
ambiguous. Here a decomposition method was 
used that assumed a fully balanced design; yet 
that is not true in these data, and is it not likely 
to ever be true in real world surveys on 
organizations. As noted earlier, methods 
employed in this study probably understated the 
variance due to respondents within 
organizations. That likely downward bias in 
estimates of the within-organization variance re-
emphasizes the point that individual differences 
within top management teams should be overtly 
assessed. 
 
Individual Differences among Top Executives 

Organizational leaders and scholars 
should be concerned because almost all of the 
practical and academic research utilizes a single 
respondent, a key informant, in survey research 
involving many organizations. This variation 

Table 7: ANOVA with Organization Mean Responses Only 

Source dfa EMSb OMSc Fd 
Variance 

Percentagee 

Industry 6 S+bsA 13.87 8.26*** 3.43 

Size 1 S+asB 0.00 0.00 0.00 

Industry by Size 6 S+sAB 5.64 3.36** 3.18 

Residual 1369 S 1.68  93.39 
**p < 0.01; *** p  < 0.001; Notes: aDegrees of freedom for the effect; bExpected mean squares; cObserved 
mean squares; dF ratio; ePercent of variance accounted for by each effect by the sample moment method 
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among the respondents seems less an indicator 
of different perspectives on the right way to 
solve a problem and more the question of a 
common recognition of reality. As has often 
been asked: Is everyone reading from the same 
page or even from the same book? The fable of 
six blind men describing the elephant also comes 
to mind. There are also anecdotal examples of 
senior corporate management who share neither 
the strategic plan (it’s confidential) nor the 
ongoing operating results with their team 
members (the world is on a need-to-know basis). 
There are many organizations that do not have a 
proper information system in place to provide 
their managers the information needed for 
innovative decision-making. Regardless, the 
present method of using a single respondent in 
organizational research carries a large risk of 
providing misleading findings for decision-
makers and researchers. 

The diversity within leadership teams 
should be used to leverage individuals’ 
perspectives to better understand what problems 
and opportunities exist and the possibilities to 
solve the former and make the most of the latter. 
Organizations need to leverage these same 
perspectives as a competitive advantage to 
conceptualize possible strategic alternatives and 
possible implementation tactics. While 
management may disagree on the proper 
objective and strategy, the leadership team 
should have some consistency and consensus as 
to the reality of actions taken and the results. 

One immediate implication is that 
information is not being shared; this new reality 
in survey research data collection methodologies 
and in management practices needs to be 
recognized and corrected. The result will be 
better research studies and enhanced 
organizational decisions. 
 

Recommendations 
First, as researchers of organizations, multiple 
respondents must be incorporated into survey 
methodology. This will increase the difficulties 
and costs of obtaining participating 
organizations and it also begs the question of 
how many respondents within an organization. 
More may be better, but there is a trade-off 
between difficulties/costs of obtaining 
participants and feasible results of research 

projects. Based on this study, requesting 
multiple respondents within each organization is 
a reasonable request. The appropriate number of 
respondents per organizations cannot be 
estimated with confidence over all possible 
applications, but at a minimum, the number of 
respondents requested should be sufficient to 
ensure detection of individual differences within 
executive teams and to detect salient differences 
among organizations. 

Second, it must be recognized that our 
own organizations, business or non-profit, can 
display the same vulnerabilities as those 
surveyed. As previously mentioned, the 21st 
century organization needs to share the strategic 
analysis and plan within the leadership team. 
The organization requires an information system 
that provides team members access to pertinent 
information needed in understanding the realities 
of the internal and external environments. There 
is also a need to recognize that information is 
unique among the factors of production: It gains 
value through additional perspectives as it is 
shared for a common good or purpose. 

No longer will the traditional business 
measures (revenues, profits, and market share) 
suffice. The challenge is selecting the right 
metrics to accurately capture business 
performance. Intuit, the manufacturer of Turbo 
Tax software, Enterprise Rent-a-Car, and GE 
now focus on a single item to gauge satisfaction 
based on customer’s likelihood to recommend 
the product (Darlin, 2005). More typically, 
leading organizations now use marketing 
dashboards to understand their critical evaluative 
points (Clark, Abela & Ambler, 2006). A 
dashboard of the most vital metrics aids 
executives in managing their businesses. Farris, 
Bendle, Pfeifer & Reibstein stated “…no one 
metric is going to give a full picture. It is only 
when you can use multiple viewpoints that you 
are likely to obtain anything approaching a full 
picture” (2006, p. 334). 

Zeithaml, et al. (2006), explain that even 
when batteries of items are used, the dashboard 
approach may yield inaccurate results because it 
largely reports past (rearview mirrors) or present 
(dashboard) data. They propose the need to 
develop headlight or forward-looking customer 
metrics such as customer lifetime value and 
customer equity to increase customer value. 
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Rearview mirrors, dashboards, and headlights 
may be viewed as the latest version of 
management information systems. Proper 
design, buy-in, use, and updating information 
systems allow the leadership team to have a 
shared reality. We believe that multiple 
respondent research can remedy some of the 
barriers to understanding marketing performance 
and answer the basic question once popularized 
by Ed Koch, former mayor of New York City 
“…how are we doing?” 
 
Further Research 

Additional research should go much 
further with the question of variation among 
respondents within an organization. Business 
and academic researchers need to be aware of 
this phenomenon. Expanded research using 
multiple respondents is required, but there is 
also a need to take the process several steps 
further. For example, future research using 
multiple respondents within an organization 
might segment the respondents by organizational 
variables such as function (e.g., marketing, 
finance), level (e.g., manager, director, vice-
president), and years with the organization. In 
addition, research could also include 
demographic variables (e.g., race, gender, age) 
and psychographic variables (e.g., individualism 
vs. collectivism).  

The sample size of organizations needs 
to be larger for in-depth statistical analyses to 
better seek and understand the nature of the 
respondent effects. The combinations of 
respondent and organizational variables are 
complex. The needed research to resolve these 
questions will be challenging. Hopefully, this 
innovative research on multiple respondents will 
aid in better understanding the subtle causes of 
business variation and inspire other researchers 
to pursue this stream of study. Hence, the 
performance objective is to accurately gauge the 
collective wisdom of management teams rather 
than relying solely on a single informed (or 
potentially uninformed) individual per 
organization. 
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Parameter estimates used in control charting, the sample mean and variance, are based on maximum 
likelihood estimation (MLE). Unfortunately, MLEs are not robust to contaminated data and can lead to 
improper conclusions regarding parameter values. This article proposes a more robust estimation 
technique; the minimized integrated square error estimator (L2E). 
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Introduction 
Process monitoring using control charts is the 
most common method used in statistical process 
control (SPC). In the literature two phases of 
control charting are distinguished: Phase I and 
Phase II control charting. Phase I control 
charting consists of two stages: Stage 1, the 
retrospective stage, and Stage 2, the prospective 
stage (Koning & Does, 2000). During Phase I, 
the appropriate control charting methods must 
be determined, and the appropriate process 
parameters estimated (Jones, 2002). 

The techniques associated with Phase I 
include analyzing sample data using gauge 
repeatability and reliability (GR&R) studies to 
investigate measuring system accuracy and 
variability, using capability indices to determine 
if a process is capable of producing within 
specification, using histograms and probability 
plots to verify distributional assumptions, using 
outlier detection tools (Ramsey & Ramsey, 
2007) to detect and remedy special causes of 
variation in the process, and obtaining reliable 
estimates of the process parameters 
(Montgomery, 1997). Thus, part of Phase I can 
 
 
 
John N. Dyer is an Associate Professor of 
Information Systems in the College of Business 
Administration, with research streams in 
statistics, information systems, and finance. 
Email him at: jdyer@georgiasouthern.edu. 

 
be considered a data editing process wherein 
outlying or contaminated data are removed from 
the sample to enable estimation of the 
appropriate process parameters. 

Phase II control charting is the actual 
use of the desired control chart to monitor and 
control a process in regards to changes in the 
process parameters (Woodall, 2000), 
distributional changes, and the randomness of 
the process. The construction of a Phase II 
control chart is based on the parameter estimates 
obtained in Phase I. Common Phase II control 
charts include the following (applied to either 
individual process observations or subgroups): 
the Shewhart-type, the exponential weighted 
moving average (EWMA), and the cumulative 
sum (CUSUM), among others (Dyer, Adams & 
Conerly, 2003). 

It is crucial that the data collected in 
Phase I are good data, meaning, free from 
outliers (contaminated data) and representative 
of typical process data with no special causes of 
variability. Contaminated data can lead to 
unreliable parameter estimates which, in turn, 
lead to improper conclusions regarding 
distribution assumptions, process capability and 
control chart design. The use of most control 
charts requires the estimation of the mean, µ, 
and standard deviation, σ (or a function thereof), 
of the in-control (IC) process. A process is said 
to be IC when only common cause variation is 
present, otherwise it is considered out-of-control 
(OC). 
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The estimates used for the true process 
mean, µ, and standard deviation, σ, are typically 
sample statistics, specifically, the sample mean, 
x , and the sample standard deviation, s, 
obtained from the good data. The sample 
statistics used in Phase I control charting are 
based on the principle of maximum likelihood 
estimation, that is, the sample mean and sample 
variance are maximum likelihood estimates 
(MLEs) of µ and σ2, respectively.  

Some of the practical deficiencies of 
MLEs are their lack of resistance to outliers and 
their general non-robustness with respect to 
model misspecification (Rudemo, 1982). For 
example, consider the following 5 data values: 4, 
5, 6, 7 and 100, and estimates based on MLEs 
(the sample mean and standard deviation). The 
sample mean and variance of all five data values 
are 24.4 and 1,781, respectively. If the data 
value of 100 is identified as an outlier and 
removed, then the new MLEs for the mean and 
variance are 5.5 and 1.69, respectively. 
Although the magnitude of the outlier is 
absurdly large, it is obvious that the MLEs 
cannot resist the influence of the large value. 
The values of the new MLEs are dramatically 
different, but they are more representative of the 
true nature of the data values. Recall, one 
emphasis of Phase I control charting is to 
identity and remove outliers, hence providing 
reliable estimates of the true process parameters. 
It should also be noted that, although MLEs are 
nonresistant to outliers, they are typically 
preferred because of their constructive nature as 
well as their asymptotic optimality properties. 

To overcome the deficiencies of MLEs 
and better enable the practitioner to obtain 
reliable parameter estimates, this article 
proposes the use of a specific nonparametric 
density estimation technique using a form of the 
integrated square error (ISE) estimator, also 
called L2E. Scott (2001) provides the theoretical 
construct of the L2E and the interested reader is 
encouraged to review the article. 

In this study, the L2E technique is 
shown to provide parameter estimates that are 
robust to contaminated data and to be 
constructive in nature. For example, considering 
the full data set previously discussed, the L2E 
estimates of the mean and variance (obtained 
through a simply executed Excel spreadsheet 

algorithm) are 5.5 and 2.25, respectively. Notice 
how the L2E estimates are robust to the 
inclusion of the outlier. 

Although Scott (2001) introduced the 
L2E as an estimator of process parameters, 
evidences the estimator’s robustness to outliers 
in large data sets, and shows its constructive 
nature, this research explores the properties of 
the L2E as an alternative estimator to MLE 
across a broad range of sample sizes and a broad 
range of data contamination affecting the mean 
alone, the variance alone, and the mean and 
variance together. This study also compares the 
absolute difference between MLE and L2E over 
the range of sample sizes and contaminations 
(mean, variance, and mean-variance), and shows 
that the L2E estimates are as good as MLE 
estimates in almost all cases. Additionally, the 
relative efficiency of MLE versus L2E estimates 
is compared across all cases and it is shown that 
the L2E estimates are more robust in most cases 
than MLE estimates. 

The literature related to Phase I control 
charting for univariate processes is limited. 
Readers are referred to Chou & Champ (1995), 
Koning & Does (2000), Newton & Champ 
(1997), Sullivan & Woodall (1996), and 
Woodall (2000). Surprisingly, the focus of the 
majority of the literature is devoted to methods 
for multivariate Phase I SPC (Alt & Smith, 
1988; Sullivan & Woodall, 1994; Sullivan, 
Barrett & Woodall, 1995; Woodall, 2000). 
 
Overview of the Phase I Environment 

During Phase I, process data are 
collected and analyzed to enable Phase II control 
charting. After the data are collected, the SPC 
method can be considered as the combination of 
Phase I and Phase II applications. The general 
SPC method can be thought of in terms of four 
design steps. The first three steps occur in the 
Phase I environment and step 4 occurs in the 
Phase II environment. 
 
Step 1: 

Identify the desired control chart (for 
monitoring individual observations or subgroup 
data), the required parameters, and the desired 
IC average run length (ARL). The IC ARL is the 
average number of samples taken until an IC 
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process indicates a statistic outside of the control 
limits. 
 
Step 2: 

Determine the subgroup size, n, and the 
number of subgroups, m, which will be used to 
estimate the parameters of the IC process. 
Obtain a reference sample of m subgroups of 
size n ≥ 1 observations. 
 
Step 3: 

Ensure that the reference sample is 
representative of the IC process, simultaneously 
estimating the required control chart parameters 
using a robust technique, such as, L2E 
(recommended herein) or an iteratively robust 
technique like MLE. 
 
Step 4: 

Apply the desired control chart to an 
ongoing process, monitoring, controlling and 
adjusting the process as it evolves. 
 

In Step 1, the typical choice of control 
chart is related to the desire for quick detection 
of extreme changes in process parameters versus 
eventual detection of minor changes in process 
parameters (Dyer, Adams & Conerly, 2003; Lin 
& Adams, 1996). The Shewhart-type control 
charts are commonly used for the former, and 
the EWMA and CUSUM control charts are used 
for the latter. The choice of the IC ARL in Step 
1 involves practical and economic 
considerations, depending largely on the costs 
associated with false alarms versus concealment 
of true process changes (Dyer, Adams & 
Conerly, 2003). 

In Step 2, the subgroup size (n) is a 
function of the sampling frequency, the process 
output rate, and practical considerations and 
limitations regarding time and costs. Marsaglie, 
Maclaren & Bray (1964) provide a discussion of 
the selection of an appropriate subgroup size (n) 
and sampling frequency to design control charts. 
The choice of the number of subgroups (m) is 
most likely an economic consideration (Jones, 
2002). If contaminated data exist in the 
reference sample, the parameter estimates 
obtained can be adversely affected if MLEs are 
used to obtain parameter estimates (L2E to a 
lesser degree). Small reference samples tend to 

magnify the adverse effects of estimation. A 
widely accepted heuristic is that m = 30 
subgroups from a process will provide 
reasonable estimates (Jones, 2002); Quesenberry 
(1993) suggests at least m = 100 subgroups of 
size n = 5 to estimate the parameters for the 
Shewhart-type control chart. Jones, Champ & 
Rigdon (2001) showed that an m much greater 
than 100, up to m = 400, is often required when 
designing an EWMA control chart. 

In Step 3, the reference sample obtained 
in Step 2 is analyzed in order to estimate the 
unknown parameters and to determine the state 
of the process (IC versus OC). This is also the 
stage when distributional and randomness 
assumptions are verified, as well as when 
GR&R and capability studies are conducted. 
Concerning parameter estimation, if MLEs are 
used, the resulting values are the estimates used 
to construct an initial control chart with limits 
set according to the desired IC ARL in Step 1. In 
Stage 2, the control charts are used for 
prospective monitoring of the reference sample 
to determine departures from the estimated 
parameters. The control charts are primarily 
used to detect contaminated data or nonrandom 
process output, that is, data resulting from 
special cause variation. 

Step 3 is often an iterative process, 
wherein contaminated data are identified (to the 
degree possible) and removed using a control 
chart based on the initial parameter estimates 
(MLEs). Any contaminated data identified are 
investigated and removed, new MLEs are 
obtained, a new control chart is constructed 
using the MLE values and more contaminated 
data are removed. 

The process of parameter estimation and 
control chart removal of contaminated data 
continues until sufficient experience has been 
accumulated so that the IC parameters are 
effectively considered to be known through 
estimation. It should also be noted that if a large 
degree of contaminated data exist in the 
reference sample (as a percent of the sample 
size), or the magnitude of contaminated data is 
large (measured in terms of shifts in the process 
mean or variability), then the initial control 
limits may be inflated to a point where the 
contaminated data are hidden and unidentifiable. 
If this is the case, the Phase II parameter 
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estimates will be unreliable. If L2E estimates are 
used instead, it will be shown that the iterative 
process in Step 3 might be minimized by 
providing a more robust set of parameter 
estimates in the first iteration, which will lead to 
a more robust set of control limits, thus enabling 
more efficient detection and removal of 
contaminated data. 
 

Methodology 
The L2E Estimation Technique 

The L2E estimation criterion for the 
two-parameter normal density technique 
requires the minimization of the L2E function 
with respect to the parameters µ and σ. (See 
Scott (2001) for the derivation of the general 
L2E criterion and specification of the two-
parameter normal density.) Suppose a sample of 
size n ≥ 1 is drawn from a normal distribution 
with mean, µ, and standard deviation, σ. Let the 
n sample data be represented by x1, x2,…, xn, 
and let the univariate normal density be denoted 
by φ(x|µ, σ). The minimization of the normal 
L2E function (equation 1) with respect to µ and 

σ produces the L2E estimates, ,μ  σ
∧ ∧

, that is, the 
estimation criterion is shown as: 
 

( )
n

i
μ,σ i=1

1 2
L2E μ ,σ =arg - |μ,σ .min

n2σ π
x

∧ ∧   
      

φ

(1) 
 

Observe that the L2E minimizes a 
function of the sum of the densities; however, 
the MLE can be shown to maximize a function 
of the product of the densities. For values of x 
extremely distant from µ, the density value 
approaches zero. As a result, the L2E utilizes 
only the largest portion of the data that matches 
the model (good data), that is, x values located 
within a reasonable distance of µ ± 3σ. In effect, 
the L2E criterion ignores contaminated data, 
hence generally providing more robust 
parameter estimates. Because MLE must 
account for all the data, the fits often blur the 
distinction between good data and contaminated 
data (Scott, 2001). In cases wherein there are no 
contaminated data, the L2E and MLE estimates 
are nearly equal. It can be shown through 
consistency theory that, for a large sample of 

uncontaminated data, MLE is a very good 
estimator (Mood, Graybill & Boes, 1970); other 
estimators, such as the L2E may be just as good, 
but not better. In this study the L2E is shown to 
be just as good when the reference sample is 
uncontaminated and better in almost all 
simulated cases when contamination exists. 
 

Results 
Comparison with MLEs 

Unfortunately there are few example 
data sets that cover the range of samples sizes 
and contamination types and levels described 
herein. Montgomery (1997) provides some of 
the most referenced data sets in SPC research, 
but unfortunately none of these have sufficient 
examples required to cover the 96 cases of 
sample sizes and contamination types and levels 
described in this article. Simulation results are 
therefore used to investigate the behavior of the 
L2E estimates across a broad range of sample 
sizes as well as types and levels of data 
contamination. In lieu of borrowing an example 
data set, the simulation results are used to reveal 
the behavior of the L2E estimates over a broad 
range of cases and an example application is 
provided to assist the user in applying the L2E 
technique. 

Regarding the simulation results, Tables 
1a and 1b reveal average L2E and MLE 
estimates for µ and σ2 (σ2 reported as σ) based 
on averaging 10,000 simulations of n = 100 
normal pseudo-random variables representing 
differing levels and degrees of good versus 
contaminated data. (A complete description of 
the simulation design is provided in the 
Appendix.) The good data (IC process) are 
random variables representing a normal (µ = 0, 
σ = 1) process, N(0, 1). The contaminated data 
are drawn from a normal process with 
parameters that vary from the IC process. Levels 
of contamination refer to the number of 
contaminated data values (cn) in a sample of 
size n = 100 and degrees of contamination refer 
to whether the contaminated data has 
experienced a mean shift alone, a shift in the 
standard deviation alone, or a shift in both the 
mean and standard deviation. Contamination 
levels in Tables 1a and 1b correspond to n = 5, 
15, 25 and 45. Degrees of contamination 
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correspond to the following shifts (for cn = 5, 
15, 25 and 45): 
 
• Mean shifts (alone) of µ = 0.5, 1.0, 2.0, and 

3.0 (16 cases) 
• Standard deviation shifts (alone) of σ = 1.5, 

2.0, 2.5, 3.0 (16 cases) 
• Simultaneous mean and standard deviation 

shifts representing combinations of all mean 
and standard deviation shifts alone (64 
cases). 

 
Tables 1a and 1b display simulation 

results providing 96 comparisons for average 
L2E versus MLE estimates of µ and σ. For the 
IC process data (n = 100 random variables 
generated from a N(0, 1) process, the resulting 

simulation based estimates are 
∧
μ (L2E) = 

0.0006, 
∧
μ (MLE) = 0.0007, 

∧
σ (L2E) = 0.9988, 

and 
∧
σ (MLE) = 1.0015. In Tables 1a and 1b the 

estimates of µ and µ are shown as 
∧
μ (L2E), 

∧
μ (MLE), 

∧
σ (L2E) and 

∧
σ (MLE). For all mean 

shifts and standard deviation shifts alone, the 
mathematical expectation and standard deviation 
(based on the levels and degrees of 
contamination) match the simulated MLE 
results. 

In deriving the expected value, let Xn be 
the mixture of two normally distributed samples 
of size n, where Xn-cn is the uncontaminated 
distribution with E(Xn-cn) = µn-cn, and Xcn is the 
contaminated distribution with E(Xcn) = µcn 
(recall, cn is the number of contaminated data 
values in the combined sample of size n). In this 
case, the E(Xn) is the weighted average 
expectation of each distribution of data, where 
the weights are the sample sizes from each 
distribution relative to the total sample size. 
Thus, 
 

( ) ( ) ( )n n cn cn
n cn cnE E EX X Xn n−

−= + . 

 
In the case where the uncontaminated data 
distribution has E(Xn-cn) = 0, 

the ( ) ( )n cn
cnE EX Xn

= . For example, for 

Xcn~N(3, 1) where n = 100 and cn = 45, the 
45

( ) (3) 1.35
100

nE X = = . This value matches 

the simulated value given by 
∧
μ  (MLE) in Table 

1b. 

All simulated values for 
∧
μ (MLE) (for 

both mean and standard deviation shifts alone) 
match the mathematical expectations. This is 

expected given that 
∧
μ (MLE) is location 

invariant to distributional changes due to shifts 
in either the mean or standard deviation. The 
same can be observed for the standard deviation 

estimates, σ
∧

(MLE), where 
 

( ) ( ) ( )n n nc nc
n cn cnVar VarX X Xn n

σ −
−= +  

 

when ( ) 0nE X =  and ( )n ncVar X − = 1. All 

simulated values for σ
∧

(MLE) (for standard 

deviation shifts alone) match ( )nXσ . This is 

expected because σ
∧

(MLE) is scale invariant to 
distributional changes due to shifts in the mean 
alone or the standard deviation alone. For cases 
where the mixed distribution has experienced 
both a mean shift and a standard deviation shift, 

σ
∧

(MLE) is not scale invariant; hence, the 
variance is not the weighted average of mixed 
variance components. 
 
Simulation Result Comparison with MLEs 

The simulation results reveal that in all 
cases 

{abs(
∧
μ (L2E) – µ) ≤ abs(

∧
μ (MLE) – µ)}, 

 
and in 95% of cases 

{abs(σ
∧

(L2E) – σ) ≤ abs(σ
∧

(MLE) – σ)}. 
 
That is, the L2E estimates in almost all cases are 
as good (and often much better) as the MLE 
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estimates. This attests to the contention that the 
L2E estimators are as robust, or more robust, 
than MLE estimators. 

Observe in Tables 1a and 1b that 
∧
μ (L2E) is robust for most shifts in µcn, for all 

.45
cn
n

≤ , and more robust than 
∧
μ (MLE) in all 

cases. The relative efficiency measures in Tables 
2a and 2b indicate that the worst cases are those 

with large
cn
n

, for µcn ≥ 2. When µn-cn = 0, the 

relative efficiency for either mean estimator is 

defined as REµ = 1- abs(
∧
μ ) where 

∧
μ  is the 

estimate of µn-cn and is the mean of the IC 
process. Table 3 displays the percent frequency 
distribution of relative efficiency measures for 
all cases simulated. Notice that, for mean shifts 

alone, 57% of 
∧
μ (L2E) have REµ > 0.80 versus 

44% of 
∧
μ (MLE).  
For shifts in the mean and standard 

deviation (simultaneously), the frequency of 

REµ > 0.80 is 81% for 
∧
μ (L2E) and only 43% for 

∧
μ (MLE). It appears that 

∧
μ (L2E) is most robust 

when both a mean and standard deviation shift 
has occurred. 

The relative efficiency for a standard 
deviation estimate is defined as 
 

REσ = 
( )

1 n cn

n cn

abs σ σ
σ

−

−

 
−  
  

−
, 

 

where σ
∧

 is the estimate of σn-cn, the standard 
deviation of the IC process. Because σn-cn= 1 in 

all simulation cases, REσ =1-abs(σ
∧

-1). Again, 

observe in Tables 1a and 1b that σ
∧

(L2E) is 

robust for most shifts in σcn, for all .45
cn
n

≤ , 

and particularly when µn-cn < 1. Notice also that 

σ
∧

(L2E) is more robust than σ
∧

(MLE) in 95% 

of all cases. It appears that σ
∧

(MLE) is less 

robust when all of µn-cn, σn-cn, and 
cn
n

 are large. 

The relative efficiency measures in Tables 2a 
and 2b also indicates that these are the worst 

cases for σ
∧

(L2E). Note in Table 3 that, for 

standard deviation shifts alone, 87% of σ
∧

(L2E) 

have REσ > 0.80 versus 50% of σ
∧

(MLE). For 
shifts in both the mean and standard deviation 
(simultaneously), the frequency of REσ > 0.80 is 

69% for σ
∧

(L2E) and only 31% forσ
∧

(MLE). It 

appears that σ
∧

(L2E) is more robust when only 
a shift in the standard deviation has occurred. 
 
L2E Application Example 

As noted, one advantage of using MLE 
is its constructive nature. In other words, it is 
simple to average a collection of data values or 
calculate the standard deviation. The L2E 
estimates are also constructive in nature, but 
require optimization techniques. Specifically, 
the L2E function given by equation 1 must be 
formulated and minimized subject to constraints. 
This can be readily accomplished in a 
spreadsheet environment with little or no 
knowledge of programming or minimization 
techniques. The authors suggest using Microsoft 
Excel and the spreadsheet add-in Solver. The 
data can be displayed in the spreadsheet, the 
L2E function can be formulated using the data 
and functions of the data as input, and the Solver 
function can be invoked to provide the L2E 
estimates via Solver’s built-in optimization 
algorithm.  

The data can represent individual 
observations or subgroup averages. If individual 
observations are used, then the resulting L2E 
estimates are those for process µ and σ. If 
subgroup averages are used, the resulting L2E 

estimates are those for µ and nσ  (standard 
error of the mean, SE). In the latter case, 

multiplying the estimate of SE by n  yields the 
estimate for σ. For practitioners familiar with 
optimization, the L2E estimation problem can be  
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viewed in the instructional form given by 
objective: minimize 
 

n

i
i=1

1 2
L2E = - |μ ,σ

n2σ π
xφ

∧ ∧

∧
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by changing the valuesμ,  σ
∧ ∧

 subject to 

constraints: σ
∧

> 0. 
Figure 1 displays the author’s 

spreadsheet in functional form, before using 

Table 1a: L2E and MLE Estimates of µ and σ 

CSS 
µ 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 

σ 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

5 

∧
μ  (L2E) 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00 0.04 0.02 0.01 0.01 0.00 

∧
μ  (MLE) 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.05 0.05 

σ
∧

 (L2E) 1.00 1.01 1.02 1.02 0.99 1.01 1.01 1.02 1.02 1.01 1.01 1.02 1.02 1.02 

σ
∧

 (MLE) 1.03 1.07 1.12 1.17 1.00 1.03 1.07 1.12 1.18 1.02 1.05 1.09 1.14 1.19 

15 

∧
μ  (L2E) 0.00 0.00 0.00 0.00 0.07 0.04 0.02 0.01 0.01 0.13 0.07 0.04 0.03 0.02 

∧
μ  (MLE) 0.00 0.00 0.00 0.00 0.08 0.08 0.08 0.08 0.08 0.15 0.15 0.15 0.15 0.15 

σ
∧

 (L2E) 1.04 1.07 1.08 1.09 1.00 1.05 1.07 1.09 1.09 1.05 1.07 1.08 1.09 1.10 

σ
∧

 (MLE) 1.08 1.20 1.33 1.47 1.01 1.10 1.21 1.34 1.48 1.06 1.14 1.25 1.37 1.51 

25 

∧
μ  (L2E) 0.00 0.00 0.00 0.00 0.12 0.07 0.04 0.03 0.02 0.23 0.14 0.08 0.05 0.03 

∧
μ  (MLE) 0.00 0.00 0.00 0.00 0.12 0.12 0.12 0.12 0.12 0.25 0.25 0.25 0.25 0.25 

σ
∧

 (L2E) 1.08 1.13 1.17 1.19 1.01 1.09 1.14 1.17 1.19 1.08 1.13 1.16 1.18 1.19 

σ
∧

 (MLE) 1.14 1.31 1.51 1.72 1.02 1.16 1.33 1.52 1.73 1.09 1.22 1.38 1.57 1.77 

45 

∧
μ  (L2E) 0.00 0.00 0.00 0.00 0.23 0.15 0.10 0.07 0.05 0.44 0.30 0.21 0.15 0.11 

∧
μ  (MLE) 0.00 0.00 0.00 0.00 0.22 0.22 0.22 0.22 0.22 0.45 0.45 0.45 0.45 0.45 

σ
∧

 (L2E) 1.16 1.16 1.39 1.47 1.01 1.19 1.31 1.40 1.48 1.12 1.26 1.36 1.43 1.49 

σ
∧

 (MLE) 1.24 1.53 1.82 2.13 1.02 1.26 1.54 1.84 2.14 1.11 1.34 1.60 1.89 2.19 
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Solver to minimize the L2E function. The data 
values 4, 5, 6, 7, 100 are input into column B, 
cells B11 to B15. The MLE sample mean and 
standard deviation, from the MLE variance, 
(24.4, 42.7) are calculated and displayed in 
column A, cells A5 and A6, respectively, using 
the built-in Excel function formulas shown in 
Figure 2. Figure 2 displays the same spreadsheet 
in formula/function view, allowing replication of 
cell formulas by the practitioner. Figure 1, 
column A, cells A11 to A15, contain the 
calculated normal probability density function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Npdf) values resulting from the built-in Excel 
function shown in Figure 2. Because the Npdf 
function requires input values for the mean and 
standard deviation, the MLE estimates are 
initially used, and these values are temporarily 
input into the L2E estimate cells, column B, 
cells B5 and B6. Cells B5 and B6 will 
eventually be overwritten and contain the L2E 
estimates, as provided by Solver. Figure 1, cell 
A2, displays the L2E function value that is to be 
minimized, and Figure 2 displays the formula 
given by equation 1 as a function of both the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1b: L2E and MLE Estimates of µ and σ 

CSS 
µ 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 

σ 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

5 

∧
μ  (L2E) 0.04 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.01 

∧
μ  (MLE) 0.10 0.10 0.10 0.10 0.10 0.15 0.15 0.15 0.15 0.15 

σ
∧

 (L2E) 1.04 1.02 1.02 1.02 1.02 1.04 1.03 1.03 1.02 1.02 

σ
∧

 (MLE) 1.09 1.12 1.15 1.20 1.25 1.19 1.22 1.25 1.29 1.34 

15 

∧
μ  (L2E) 0.16 0.10 0.07 0.04 0.03 0.09 0.08 0.07 0.05 0.03 

∧
μ  (MLE) 0.30 0.30 0.30 0.30 0.30 0.45 0.45 0.45 0.45 0.45 

σ
∧

 (L2E) 1.16 1.12 1.10 1.10 1.10 1.18 1.15 1.12 1.11 1.11 

σ
∧

 (MLE) 1.23 1.30 1.39 1.51 1.63 1.47 1.53 1.61 1.71 1.82 

25 

∧
μ  (L2E) 0.34 0.22 0.14 0.09 0.06 0.28 0.20 0.15 0.11 0.07 

∧
μ  (MLE) 0.50 0.50 0.50 0.50 0.50 0.75 0.75 0.75 0.75 0.75 

σ
∧

 (L2E) 1.30 1.24 1.21 1.21 1.21 1.46 1.33 1.26 1.24 1.23 

σ
∧

 (MLE) 1.32 1.43 1.57 1.74 1.92 1.64 1.73 1.85 1.99 2.16 

45 

∧
μ  (L2E) 0.86 0.61 0.42 0.30 0.21 1.24 0.95 0.66 0.44 0.31 

∧
μ  (MLE) 0.90 0.90 0.90 0.90 0.90 1.35 1.35 1.35 1.35 1.35 

σ
∧

 (L2E) 1.52 1.54 1.54 1.55 1.57 2.09 2.01 1.87 1.75 1.69 

σ
∧

 (MLE) 1.41 1.59 1.82 2.08 2.35 1.80 1.95 2.14 2.36 2.61 
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sample size (n) in cell B8 and the summed Npdf 
values. Prior to invoking the Solver function, the 
L2E function value (shown in Figure 1) is 
calculated using the MLE mean and standard 
deviation, but referencing the cells for the L2E 
mean and standard deviation. Figure 3 displays 
the Solver dialogue box referencing (1) the 
minimized L2E value cell (A2) as the target cell 
to minimize, (2) the cells to be changed to 
produce the minimum L2E value (B5 and B6), 
and (3) the constraint requiring the standard  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deviation to be non-negative. Selecting the Solve 
button invokes Solver to produce the L2E 
estimates of µ and σ whose values will 
overwrite the MLE values temporarily stored in 
cells B5 and B6. After solving for the L2E 
estimates, the actual value of the minimized L2E 
function is of no practical use and can be 
discarded. The L2E estimates of the mean and 
standard deviation (based on this example) are 
5.5 and 1.5, respectively. 
 

Table 2a: Relative Efficiency of L2E and MLE Estimates of µ and σ 
 

CSS 
µ 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 

σ 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

5 

∧
μ  (L2E) 1.00 1.00 1.00 1.00 0.98 0.99 0.99 1.00 1.00 0.96 0.98 0.99 0.99 1.00

∧
μ  (MLE) 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.97 0.95 0.95 0.95 0.95 0.95

σ
∧

 (L2E) 1.00 0.99 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.98 0.98 0.98

σ
∧

 (MLE) 0.97 0.93 0.88 0.83 1.00 0.97 0.93 0.88 0.82 0.98 0.95 0.91 0.86 0.81

15 

∧
μ  (L2E) 1.00 1.00 1.00 1.00 0.93 0.96 0.98 0.99 0.99 0.87 0.93 0.96 0.97 0.98

∧
μ  (MLE) 1.00 1.00 1.00 1.00 0.92 0.92 0.92 0.92 0.92 0.85 0.85 0.85 0.85 0.85

σ
∧

 (L2E) 0.96 0.93 0.92 0.91 1.00 0.95 0.93 0.91 0.91 0.95 0.93 0.92 0.91 0.90

σ
∧

 (MLE) 0.92 0.80 0.67 0.53 0.99 0.90 0.79 0.66 0.52 0.94 0.86 0.75 0.63 0.49

25 

∧
μ  (L2E) 1.00 1.00 1.00 1.00 0.88 0.93 0.96 0.97 0.98 0.77 0.86 0.92 0.95 0.97

∧
μ  (MLE) 1.00 1.00 1.00 1.00 0.88 0.88 0.88 0.88 0.88 0.75 0.75 0.75 0.75 0.75

σ
∧

 (L2E) 0.92 0.87 0.83 0.81 0.99 0.91 0.86 0.83 0.81 0.92 0.87 0.84 0.82 0.81

σ
∧

 (MLE) 0.86 0.69 0.49 0.28 0.98 0.84 0.67 0.48 0.27 0.91 0.78 0.62 0.43 0.23

45 

∧
μ  (L2E) 1.00 1.00 1.00 1.00 0.77 0.85 0.90 0.93 0.95 0.56 0.70 0.79 0.85 0.89

∧
μ  (MLE) 1.00 1.00 1.00 1.00 0.78 0.78 0.78 0.78 0.78 0.55 0.55 0.55 0.55 0.55

σ
∧

 (L2E) 0.84 0.84 0.61 0.53 0.99 0.81 0.69 0.60 0.52 0.88 0.74 0.64 0.57 0.51

σ
∧

 (MLE) 0.76 0.76 0.18 -0.13 0.98 0.74 0.46 0.16 -0.14 0.89 0.66 0.40 0.11 -0.19
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Table 2b: Relative Efficiency of L2E and MLE Estimates of µ and σ 

CSS 
µ 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 

σ 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 

5 

∧
μ  (L2E) 0.96 0.97 0.98 0.99 0.99 0.98 0.98 0.98 0.99 0.99 

∧
μ  (MLE) 0.90 0.90 0.90 0.90 0.90 0.85 0.85 0.85 0.85 0.85 

σ
∧

 (L2E) 0.96 0.98 0.98 0.98 0.98 0.96 0.97 0.97 0.98 0.98 

σ
∧

 (MLE) 0.91 0.88 0.85 0.80 0.75 0.81 0.78 0.75 0.71 0.66 

15 

∧
μ  (L2E) 0.84 0.90 0.93 0.96 0.97 0.91 0.92 0.93 0.95 0.97 

∧
μ  (MLE) 0.70 0.70 0.70 0.70 0.70 0.55 0.55 0.55 0.55 0.55 

σ
∧

 (L2E) 0.84 0.88 0.90 0.90 0.90 0.82 0.85 0.88 0.89 0.89 

σ
∧

 (MLE) 0.77 0.70 0.61 0.49 0.37 0.53 0.47 0.39 0.29 0.18 

25 

∧
μ  (L2E) 0.66 0.78 0.86 0.91 0.94 0.72 0.80 0.85 0.89 0.93 

∧
μ  (MLE) 0.50 0.50 0.50 0.50 0.50 0.25 0.25 0.25 0.25 0.25 

σ
∧

 (L2E) 0.70 0.76 0.79 0.79 0.79 0.54 0.67 0.74 0.76 0.77 

σ
∧

 (MLE) 0.68 0.57 0.43 0.26 0.08 0.36 0.27 0.15 0.01 -0.16 

45 

∧
μ  (L2E) 0.14 0.39 0.58 0.70 0.79 -0.24 0.05 0.34 0.56 0.69 

∧
μ  (MLE) 0.10 0.10 0.10 0.10 0.10 -0.35 -0.35 -0.35 -0.35 -0.35 

σ
∧

 (L2E) 0.48 0.46 0.46 0.45 0.43 -0.09 -0.01 0.13 0.25 0.31 

σ
∧

 (MLE) 0.59 0.41 0.18 -0.08 -0.35 0.20 0.05 -0.14 -0.36 -0.61 

 
Table 3: Percent Frequency of L2E and MLE Estimates of µ and σ within a Range of Relative Efficiency 

Range of Relative 
Efficiency 

µ Shifts Alone σ Shifts Alone µ and σ Shifts 
∧
μ (L2E) 

∧
μ (MLE) σ

∧
(L2E) σ

∧
(MLE)

∧
μ (L2E)

∧
μ (MLE) σ

∧
(L2E) σ

∧
(MLE)

0.90 1.00 38% 19% 56% 19% 67% 19% 47% 17% 

0.80 0.90 19% 25% 31% 31% 14% 25% 23% 14% 

0.70 0.80 19% 13% 6% 13% 6% 13% 9% 20% 

0.60 0.70 6% 6% 6% 19% 5% 6% 13% 19% 

0.50 0.60 6% 13% 0% 13% 3% 13% 5% 19% 

<0.50 12% 18% 0% 6% 5% 24% 3% 11% 
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Conclusion 
The importance of Phase I control charting was 
discussed, particularly the estimation of 
appropriate parameters to enable Phase II 
control charting. The general SPC method was 
shown to be a collection of steps that include 
both Phase I and Phase II control charting. For 
the Phase I environment, the minimized 
integrated square error estimator, L2E, was 
introduced as a robust parameter estimation 
technique and suggested as an alternative to 
MLEs. 

Regarding managerial implications, the 
L2E estimation technique was described and 
shown to be easily constructed and applied in a 
spreadsheet environment. It was also shown to 
be a robust alternative to MLE estimation and 
just as simple to apply. The study also provided 
insights to the importance of clean data when 
constructing control charts based off of the 
Phase I processes and how the L2E estimator 
can facilitate robust parameter estimation 
required in SPC applications. 

A simulation study revealed that the 
L2E estimates of µ and σ for a normal 
distribution are as good, and in most cases 
better, than MLE estimates when the reference 
sample is contaminated by shifts in the mean, 
the variance, or both the mean and variance. 
Tables based on the simulation results compare 
the absolute and relative performance of both the 
L2E and MLE estimators. Finally, an example 
was provided to enable an SPC practitioner, with 
little or no knowledge of programming or 
optimization, to readily apply the L2E 
technique. 

Although this article discussed the 
application of L2E estimators in the SPC 
environment (assuming a univariate normal 
distribution), the technique can also be adapted 
to enable robust parameter estimation when 
discrete (Poisson) or multivariate processes are 
to be monitored and controlled. Additionally, the 
L2E is only one of several nonparametric 
density estimators that can be considered in the 
Phase I environment. Other estimators that 
might be of research interest include M-
Estimators and estimators based on Hellinger’s 
distance criterion. 
 
 

Figure 1: Functional Form Excel Spreadsheet 
(Prior to using Solver function) 

 
 
 
 

Figure 2: Formula/Function View Excel Spreadsheet 

 
 
 
 

Figure 3: Solver Dialogue Box Referencing the 
Minimized L2E Value Cell 
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Appendix: Simulation Description 
The simulation program was designed and 
compiled using Microsoft Visual Basic 6.0, 
executed in Microsoft Excel 2000 using normal 
random variates generated and imported from 



EFFICIENCY OF MINIMIZED INTEGRATED SQUARE ERROR ESTIMATOR (L2E) 

312 
 

Microsoft FORTRAN PowerStation for 
Windows, Version 4.0, FORTRAN 90. Each 
simulation was conducted according to steps 
provided below. A series of 100 N(0, 1) random 
variates was generated by FORTRAN MSIMSL 
subroutine RNNOA.  

Routine RNNOA generates 
pseudorandom numbers from a standard normal 
(Gaussian) distribution using an 
acceptance/rejection technique due to 
(Kinderman & Ramage, 1976). In this method, 
the normal density is represented as a mixture of 
densities over which a variety of 
acceptance/rejection methods due to (Marsaglia, 
1964), (Marsaglia & Bray, 1964), and 
(Marsaglia, Maclaren & Bray, 1964) are applied. 
The final parameter estimates for each of the 96 
cases were based on 10,000 simulations, which 
provided a maximum margin of error of 0.02 in 
estimation of the MLE means, with 95% 
confidence. These variates were the simulated 
observations, Xi’s, for each of the cases 
investigated. 
 
Step 1: 

a. For estimation of the mean (the 16 cases 
of a mean shift only), a shift in the mean 
was induced in the simulated 
observations affecting cn of the n = 100 
variates. The values of cn = 5, 15, 25 
and 45 (levels of contamination), and 
the magnitudes of shifts were µcn = 1.50, 
2.00, 2.50 and 3.00 (degrees of 
contamination). Every combination of 
cn and σcn produced the 16 cases. 

 
b. For estimation of the standard deviation 

(the 16 cases of a standard deviation 
shift only), a shift in the standard 
deviation was induced in the simulated 
observations affecting cn of the n = 100 
variates. Again, the values of cn = 5, 15, 
25 and 45, and the magnitudes of shifts 
were σcn = 1.50, 1.00, 2.00 and 3.00. 
Every combination of cn and µcn 
produced the 16 cases. 

 
 
 
 
 

c. For estimation of the mean and standard 
deviation (the 64 cases of both a mean 
and standard deviation shift), a shift in 
each parameter was induced in the 
simulated observations affecting cn of 
the n = 100 variates. Again, the values 
of cn = 5, 15, 25 and 45, and the 
magnitudes of shifts were µcn = 1.50, 
2.00, 2.50, 3.00 and σcn = 1.50, 1.00, 
2.00 and 3.00. Every combination of cn, 
µcn, and σcn produced the 64 cases. 

 
Step 2: 

The individual L2E and MLE estimates of µ 
and σ (10,000 for each estimate, per case) 
were calculated using the procedures 
described in the article. 

 
Step 3: 

The average L2E and MLE estimates of µ 
and σ for each case was obtained by 
averaging over the 10,000 individual 
estimates for each estimator. 
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A maximum likelihood solution is obtained for the simple linear structural relation model where the 
underlying incidental distribution and one error variance are assumed known. Expressions for the 
asymptotic standard errors of the maximum likelihood estimates are obtained and these are verified using 
a simulation study. 
 
Key words: Maximum likelihood estimates, linear structural relation, errors-in-variables model, 

asymptotic standard errors, simulation. 
 
 

Introduction 
A biochemical assay is a procedure used to 
measure an unknown quantity ( )η  of a specified 

substance (analyte) present in a biological 
material, such as blood, obtained in the form of a 
test specimen. Biochemists are often faced with 
the problem of assessing the comparative 
performance of a new assay method with a well 
established reference assay method (method 
comparison study). An important aspect of this 
assessment is an examination of the degree of 
agreement between the results produced. 
Inaccuracy is unavoidable due to the 
complexities surrounding the measurement 
process. The so-called true value of the quantity 
of analyte can never be known in any absolute 
sense as the result of the test sample’s 
composition. For example, non-analyte 
components present in a biological material can 
either enhance or inhibit the response of the 
analyte. These lead to what is referred to as 
interference biases (Strike, 1981). Different 
models and statistical methods have been 
employed  as  well  as  criticized  in  assessing 
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method comparison studies (Bland & Altman, 
1986; Stockl, Dewitte, & Thienpont, 1998; 
Linnet, 1999). This article proposes a method 
comparison study for the linear structural 
relation of an errors-in-variables model which 
takes into account the presence of random errors 
in assays and in the recalibration effect, as well 
as interference effects in the biological test 
material. The model is complicated, but in 
simplified form is given by the simple errors-in-
variables model as: 
 

= +
= +
= + ,

X U

Y V

V U

δ
ε

α β
                       (1) 

 
where α  and β  are constants defining a linear 
structural relation between the unobserved 
variables U  and V . The latter are known 
functions of the unknown quantity of analyte of 
interest, that is ( )U f η=  and ( )V g η= , δ  and 

ε  are the errors associated with the reference 

( )X  and new ( )Y  assay methods respectively. 

It is assumed that δ  and ε  are normally and 

independently distributed ( )20,N δσ  and 

( )20,N εσ  respectively, and are independent of 

.U  The random variable U  is normally 
distributed with mean μ  and variance 2σ , that 
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is ( )2,N μ σ . Thus, ( ) ( )1 1, , ... ,  ,  n nx y x y  are 

n  independent observations of a bivariate 
normal variable ( ),X Y , 

( )2 2 2 2 2, , , ,N δ εμ α βμ σ σ β σ σ ρ+ + + , where 

( ) ( )}{
1
22 2 2 2 2 2

ε δρ βσ β σ σ σ σ
−

= + + . 
Birch (1964) and Barnett (1967) have 

obtained maximum likelihood solutions to 

model (1) for the cases where one ( )2
δσ  and 

both error variances ( )22 , εδ σσ  are known. Note 

that in both cases the likelihood function has 
never been provided; this is provided in this 
article. The strengths and weaknesses of the 
reference method should be well-known to the 
analysts from their own direct experience and 
from nationally organized quality control 
schemes (Strike, 1981): thus, the distribution of 
U  in the population under study should be 
known from extensive data for the reference 
method when this is used on the same 
population. 

Under these conditions a maximum 
likelihood solution for the linear structural 
relation of the simple errors-in-variables model 
(1) with three parameters known, namely μ , 2σ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and 2
δσ , is considered herein. The information 

matrix for this case will be derived and, upon 
inverting this, expressions for the asymptotic 
standard errors of the derived maximum 
likelihood estimates will be obtained. These 
derived expressions will be verified by a 
simulation study. The effect, if any, of the 
knowledge of μ  and 2σ  on the estimates, in 
particular the estimate of the slope of the linear 
structural relation, will be examined and will be 
compared with the derived maximum likelihood 
solution where only 2

δσ  is known. 

 
The Problem 

Assuming knowledge of μ , 2σ , and 
2
δσ  the structural errors-in-variables model (1) 

has three unknown parameters and a set of 
minimal sufficient statistics of dimension five 
and as such the model is expected to be 
identifiable. For a given set of real observations 

( )YXX ,= , the likelihood function for all real 

α , β , and 02 ≥εσ , where the set of unknown 

parameters is ( )2, , εα β σΨ = . The likelihood 

function is a continuous function; it tends to zero 
as   | |β    or   εσ    become   infinite   and   is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Formulas (2), (3) and (4) 
Formula 2: 

( )
( )

( )
( ) ( ) ( ) ( )

( ) ( )

22 2 2 2 2 2

22 2 2

2 2 2 2 2 2 22 2

2
1

2

Ψ = ×
 + + 

   + − − + − − −   −    ×  
  + +     + + + − −      

 2

constant,  

exp.   

n

n n

xx
i i

yy

l X

X nS Y X

n S Y

δ ε δ ε

ε

δ ε δ ε
δ

σ β σ σ σ σ

β σ σ μ βσ α βμ μ

σ β σ σ σ σ σ σ α βμ

 

Formula 3: 
2 2

2 2
ˆˆ X

Y δ

δ

σ μσα β
σ σ

 +
= −  + 

 

 

Formula 4: 

( )2 22
3 2

2 4 2 4

ˆ ˆˆˆ ˆ ˆ 0yyxy xyxx
SS SS ε εε

δ δ δ δ

λ σ λσσβ β β
σ σ σ σ

−   + + − − =  
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differentiable everywhere (see formula (2) in 
Figure 1). By partially differentiating the log-
likelihood function with respect to the three 
unknown parameters and equating to zero, three 
equations are obtained which can be rearranged 
to give formulas (3) and (4) (also shown in 
Figure 1). 
 

2 22
2

2

ˆ ˆˆ 2
ˆ xyxx

yy

SS
S δ

ε

β β σβσ
λ λλ

= + − − ,     (5) 

 
where    xyyyxx SSS ,,  are the sample statistics 

and 
( )2 2

2
δσ σ

λ
σ
+

= . 

The monotonicity of the likelihood 
function (2), and the fact that the likelihood 
tends to zero as 2

εσ  tends to ±∞, implies that 

there is only one value for 2ˆεσ  for which the 

likelihood function is a maximum. Therefore, 
the log-likelihood is maximized either when 

2ˆ 0εσ >  or when 2ˆ 0εσ = ; these cases are 

considered next, but the case 2ˆ 0εσ =  is not a 

practical case in a method comparison study. 
 
Case 1: 2ˆ 0εσ >  

In this case the maximum likelihood 
estimates of α , β  and 2

εσ  are given by the 

solutions of likelihood equations (3) – (5). By 
substituting for 2ˆεσ  in (4), the following cubic 

equation for β̂  is obtained 
 

2
3 2 2 2 31 1

1 1
2 2

ˆ ˆ ˆ3 2 0b b
b b

b b
β λ β λ β λ

 
− + + − = 

 
, 

(6) 
 
which factorizes to 
 

( ) 2 2 1
1 1

2

ˆ ˆ ˆ2 0b
b b

b
β λ β λ β λ

 
− − + = 

 
,      (7) 

 

where 1b  and 2b  are the two sample regression 

coefficients, that is 1
xy

xx

S
b

S
=  and 2

xy

yy

S
b

S
= . The 

cubic equation (6) yields one real root 
 

1
ˆ bβ λ= ,                          (8) 

 
and two complex roots 
 

( )
1
2

21
1

2

ˆ 1b
b r

b
β λ

 
 = ± −    

,              (9) 

 
where r  is the sample correlation coefficient 

( )
1
2

1 2b b . Substituting the real root for β̂  in (5) 

yields the following equation 
2

2 2
1ˆ 1yy xx

xx

S b S
S

δ
ε

λσσ
 

= − + 
 

.          (10) 

 
Case 2: 2ˆ 0εσ =  

Placing 2ˆ 0εσ =  in cubic equation (4) 

leads to 
 

2
2 2

ˆ ˆ ˆ 0xy yyS S

δ δ

λ
β β β

σ σ
 

+ − = 
 

:        (11) 

 

this implies that either ˆ 0β =  or 
 

2
2 2

ˆ ˆ 0xy yyS S

δ δ

λ
β β

σ σ
   

+ − =   
   

.          (12) 

 

The case ˆ 0β =  is excluded because, at this 
point, the likelihood function is undefined. 
Equation (12) factorizes to yield two real roots 
 

( ) }
1

2 2 2
2

1ˆ 4
2 xy xy yyS S Sδ

δ

β λσ
σ

 
= − ± + 

  
, 

(13) 
 
where the one with same sign as xyS  is the 

maximum likelihood estimator of β . 
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Maximum Likelihood Solution 
The complete maximum likelihood 

solution of the linear structural errors-in-
variables model for μ , 2σ , and 2

δσ  known is as 

follows. If 
 
1.  

( )2 2 22

21xy
yy

xx xx

S
S

S S
δ δσ σ σ

σ

 + > + 
   

then 

( )2 2

2
ˆ xy

xx

S

S
δσ σ

β
σ
+

= , 

 
2 2

2 2
ˆˆ X

Y δ

δ

σ μσα β
σ σ

 +
= −  + 

 , 

and 

( )2 2 22
2

2ˆ 1xy
yy

xx xx

S
S

S S
δ δ

ε

σ σ σ
σ

σ

 + = − + 
 

; 

 
otherwise 
 
2.  

( ) ( )  +  = − ± +    

2 2 2
2

2 2

41ˆ ,
2

yy

xy xy

S
S S

δ δ

δ

σ σ σ
β

σ σ

(14) 
2 2

2 2
ˆˆ X

Y δ

δ

σ μσα β
σ σ

 +
= −  + 

, 

and 
2ˆ 0εσ = . 

 
Because the sample statistics xyS , xxS , and yyS  

converge in probability to 2βσ , ( )2 2
δσ σ+  and 

( )2 2 2
εβ σ σ+  respectively, the derived 

maximum likelihood estimates (14) are 

consistent estimates of α , β  and 2
εσ . If 2

δσ  is 

set equal to zero ( )02 =δσ  so that the errors-in-

variables model (1) reduces to the simple linear 
regression model, the derived results are in 

agreement with the established results applicable 
to the latter model (that is, ˆOLSα  and ˆ

OLSβ ). 

It is also noted that further knowledge of 
the specific values of μ  and 2σ  are relevant to 

the estimation of the scale parameter α . This is 
in contrast to all other solutions obtained where 
μ  and 2σ  were unknown, that is, in all previous 

solutions with μ  and 2σ  unknown, 

( )ˆˆ , ˆfα β μ= (Birch, 1964 & Barnett, 1967), 

while with μ  and 2σ  known, 

( )2 2ˆˆ , , ,f δα β μ σ σ=  where f  denotes a function. 

It is worth noting that the derived 
solution can lead to the maximum likelihood 
solution when only 2

δσ  is known, and when μ  

and 2σ  are substituted by their corresponding 
estimates. This establishes the compatibility of 
the derived solution with the maximum 
likelihood solution where only one error 
variance is known. 

Note that condition (1) of (14) forces the 
estimate for 2

εσ  to be positive, that is, the first 

expression for β̂  applies if the likelihood does 
not reach its maximum in a boundary point 
owing to a positivity constraint of 2

εσ . Because 

the probability of this to be true tends to one as 
the number of observations increases, it follows 

that β̂  is asymptotically equivalent to 
 

( )2 2

2
ˆ xy

A
xx

S

S

δσ σ
β

σ
+

= .                  (15) 

 
Hence, the maximum likelihood estimates of 

β and ˆ
Aβ  have the same limiting distribution 

and their asymptotic standard errors are 
identical. 
 
Asymptotic Variances 

Expressions for the asymptotic 
variances of the maximum likelihood estimates 

of ( )2, , εψ α β σ=  can be obtained directly from 

the inverse information matrix, ( ) 1
I ψ

−
 
  . The 

information matrix is derived by calculating the 
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expected values of the second order derivatives 
of the log-likelihood function. 
 

( )

( )

( ) ( ) ( )

( ) ( )

=

 
 + +
 
 +
 + + +
 
 + + 
 
 

2 2 2 2

2 2 2 2
2 2 2 2 2

22 2 2 2 2 2

0

0
2

I

n
M

T T

T T

δ δ

δ δ
δ δ

δ δ δ

ψ

σ σ μ σ σ

βσ σ σ σ
μ σ σ μ σ σ

βσ σ σ σ σ σ

(16) 
 
where 
 

( )2 2 2 2 2 2T δ ε δ εσ β σ σ σ σ= + +  

and 

( ) ( )
( )

 + + =  
+ +  

22 2 2 2 2 24

2 4 2 2 2 2

2
.

2
M

T

δ ε δ

δ ε ε δ

σ β σ σ σ σσ

σ σ σ β σ
 

 
The inverse of this ( )3 3×  asymptotic 

covariance matrix of the maximum likelihood 

estimates α̂ , β̂  and 2ˆεσ  is: 

 

( )

( ) ( )

( )

( ) ( ) ( )

−
  = 

 
 + −
 + +
 
 

− − 
+ 

 
 − + + + 

1

2 24
2

2 2 2 2

2 2

4 2 2

2 2 2 2

22 2 2 2 2 2

2

21

2 2 2

I

T

n

MT

δ

δ δ

δ

δ

δ δ

δ δ δ

ψ

βμσ σσμ μ
σ σ σ σ

βσ σμ
σ σ σ

βμσ σ βσ σ
σ σ σ σ σ σ

(17) 
 

From (17), the asymptotic variances of β̂ , α̂  

and 2ˆεσ  are obtained as: 

 

( ) ( ) }{ 2 2 2 2 2 2
4

1ˆvar
n δ ε δ εβ σ β σ σ σ σ
σ

= + + , 

(18) 
 

( ) ( ) ( )
4

2
2 2

ˆˆvar var
δ

σα μ β
σ σ

  = + 
+ 

,   (19) 

 
and 

( )
( ) ( )2

22 2

2 ˆvar ˆ varMT
ε

δ

σ β
σ σ

 
 =  

+ 

.    (20) 

 
A comparison of the above expressions (18 and 

19) with the asymptotic variances of β̂  and α̂ , 

where only 2
δσ  is known, shows that the further 

knowledge of 2σ  leads to smaller variances for 
the maximum likelihood estimates. 
 

Methodology 
Simulation Study 

A simulation study was carried out 
using R statistical software to investigate the 
effect of sample size on the accuracy of the 
derived maximum likelihood estimates of α , β  

and 2
εσ  (14) and their corresponding asymptotic 

variances (18 – 20). Taking into account 
examples of data used for method comparison 
studies and the fact that, depending on the type 
of analyte considered, the sample size of a 
method comparison study will vary from a 
minimum of 17 to more than 500 (Bland & 
Altman, 1986; Stockl, Dewitte & Thienpont, 
1998; Linnet, 1999), this simulation study 
considered sample sizes ranging from a 
minimum of 20 to a maximum of 1,000. This 
was also done in order to assess the effect of a 
sample size on the accuracy of the derived 
estimates. Ten thousand simulations have been 
considered in this study and particular attention 
was given to the estimates of α  and β  because 
the values of these can allow for the estimation 
of possible constant and proportional 
interference biases in a biological test material. 
In all cases considered an interference bias of 
10% was allowed so that 0 10.α =  and 

1 10.β = . 
Because there is a tendency for 

practitioners to use methods with which they are 
more familiar, such as the ordinary least square 
(OLS) estimation for the simple linear 
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regression model (Westgard & Hunt, 1973), the 
simulation study also compared the OLS 
estimates with the derived MLEs (14). The 
accuracy of these estimates is based on the mean 
squared error (MSE) criterion; some of the 
obtained results are presented in Tables 1 – 3 
below. 
 

Results 
The results are in agreement with what was 
expected, namely: 
 
1. Increasing the sample size leads to a 

decrease in the bias of the maximum 
likelihood estimates and - as expected in 
such cases - the mean squared error reduces 
to the variance of the estimate. 

 
2. The mean squared errors of the maximum 

likelihood estimates are less than the mean 
squared errors of the least squares estimates 
irrespectively of the sample size. It is clear 
that the OLS are inappropriate to use in a 
method comparison study where errors are 
assumed in both assays. 

 
3. The accuracy of the maximum 

likelihood estimates particularly for β̂  and 

α̂  can be achieved with samples as small as 
20. 

 
4. The expressions for the asymptotic 

variances have been verified for samples 
greater than 100 with biases less than 
0.0001. 

 
Conclusion 

Under the assumption that the parameters 
specifying the underlying incidental distribution 

( )2,μ σ , the maximum likelihood estimates of 

the unknown parameters α , β  and 2
εσ  are 

obtained: these are consistent, asymptotically 
normal and efficient. The asymptotic variances 
of the estimates were obtained by the inversion 
of the information matrix. It has been shown that 
the asymptotically equivalent estimator of the 
slope is a function of 2σ  and 2

δσ  thus utilizing 

the known information about the variances. The 
derived solution is in agreement with the case 

where only 2
δσ  is known. In the latter case the 

asymptotically equivalent estimator of the slope 
is a function of the known variance 2

δσ  

(Ketellapper, 1983). A simulation study verified 
the accuracy of the maximum likelihood 
estimates with samples as small as 20. This 
study also verified the accuracy of the 
asymptotic variances with biases less than 
0.0001. 
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Table 1: MLEs and OLS Estimates and Their Corresponding Mean Squared Errors; Simulated Variances {.} and 
Derived Asymptotic Variances of the MLEs [.] ( 3μ = , 0 45.σ = , 0 4.δσ = , 0 6.εσ = ) 

Parameter 
Sample Size 

( )n  

Estimate MSE 
MLE 
{var} 
[var] 

OLS MLE OLS 

β  

20 
1.1017 

{0.2381} 
[0.2069]

0.6201 0.2381 0.3095 

40 
1.0956 

{0.1106} 
[0.1035]

0.6122 0.1107 0.2727 

100 
1.0999 

{0.0435} 
[0.0414]

0.6144 0.0435 0.2493 

500 
1.0989 

{0.0086} 
[0.0083]

0.6139 0.0086 0.2390 

1,000 
1.1009 

{0.0042} 
[0.0041]

0.6150 0.0042 0.2366 

α  

20 
0.0965 

{2.1723} 
[1.8857]

1.5414 2.1723 2.8173 

40 
0.1127 

{1.0052} 
[0.9429]

1.5627 1.0054 2.4631 

100 
0.0997 

{0.3958} 
[0.3771]

1.5562 0.3958 2.2472 

500 
0.1036 

{0.0778} 
[0.0754]

1.5587 0.0778 2.1526 

1,000 
0.0975 

{0.0380} 
[0.0377]

1.5551 0.0382 2.1297 

2
εσ  

20 
0.2937 

{0.0272} 
[0.0299]

- 0.0325 - 

40 
0.3279 

{0.0147} 
[0.0150]

- 0.0156 - 

100 
0.3464 

{0.0061} 
[0.0060]

- 0.0063 - 

500 
0.3575 

{0.0012} 
[0.0012]

- 0.0012 - 

1,000 
0.3587 

{0.0006} 
[0.0006]

- 0.0006 - 
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Table 2: MLEs and OLS Estimates and their Corresponding Mean Squared Errors; Simulated Variances {.} and 
Derived Asymptotic Variances of the MLEs [.] ( 3μ = , 0 35.σ = , 0 4.δσ = , 0 6.εσ = ) 

Parameter 
Sample Size 

( )n  

Estimate MSE 
MLE 
{var} 
[var] 

OLS MLE OLS 

β  

20 
1.0890 

{0.4603} 
[0.4179]

0.4792 0.4605 0.4799 

40 
1.1017 

{0.2274} 
[0.2089]

0.4782 0.2274 0.4299 

100 
1.0958 

{0.0844} 
[0.0836]

0.4752 0.0844 0.4063 

500 
1.0992 

{0.0168} 
[0.0167]

0.4766 0.0168 0.3918 

1,000 
1.1013 

{0.0083} 
[0.0084]

0.4776 0.0083 0.3890 

α  

20 
0.1318 

{4.1787} 
[3.7831]

1.9609 4.1797 4.3437 

40 
0.0950 

{2.0645} 
[1.8916]

1.9656 2.0645 3.8840 

100 
0.1124 

{0.7643} 
[0.7566]

1.9743 0.7645 3.6603 

500 
0.1026 

{0.1517} 
[0.1513]

1.9701 0.1517 3.5267 

1,000 
0.0961 

{0.0749} 
[0.0757]

1.9674 0.0749 3.5017 

2
εσ  

20 
0.2880 

{0.0268} 
[0.0294]

- 0.0323 - 

40 
0.3236 

{0.0147} 
[0.0147]

- 0.0164 - 

100 
0.3451 

{0.0059} 
[0.0059]

- 0.0061 - 

500 
0.3570 

{0.0012} 
[0.0012]

- 0.0012 - 

1,000 
0.3581 

{0.0006} 
[0.0006]

- 0.0006 - 



MICHAELOUDIS 
 

321 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: MLEs and OLS Estimates and their Corresponding Mean Squared Errors; Simulated Variances {.} and 
Derived Asymptotic Variances of the MLEs [.] ( 3μ = , 0 4.σ = , 0 4.δσ = , 0 6.εσ = ) 

Parameter 
Sample Size 

( )n  

Estimate MSE 
MLE 
{var} 
[var] 

OLS MLE OLS 

β  

20 
1.0850 

{0.3085} 
[0.2855]

0.5473 0.3087 0.3878 

40 
1.1003 

{0.1511} 
[0.1428]

0.5505 0.1511 0.3401 

100 
1.0999 

{0.0591} 
[0.0571]

0.5500 0.0591 0.3173 

500 
1.0997 

{0.0112} 
[0.0114]

0.5499 0.0112 0.3055 

1,000 
1.0996 

{0.0059} 
[0.0057]

0.5498 0.0059 0.3042 

α  

20 
0.1443 

{2.7914} 
[2.5923]

1.7575 2.7934 3.5080 

40 
0.0982 

{1.3767} 
[1.2962]

1.7477 1.3767 3.0720 

100 
0.0999 

{0.5366} 
[0.5185]

1.7497 0.5366 2.8593 

500 
0.1011 

{0.1023} 
[0.1037]

1.7507 0.1023 2.7511 

1,000 
0.1014 

{0.0532} 
[0.0518]

1.7509 0.0532 2.7390 

2
εσ  

20 
0.2948 

{0.0265} 
[0.0297]

- 0.0559 - 

40 
0.3233 

{0.0146} 
[0.0149]

- 0.0155 - 

100 
0.3468 

{0.0061} 
[0.0059]

- 0.0062 - 

500 
0.3571 

{0.0011} 
[0.0011]

- 0.0012 - 

1,000 
0.3589 

{0.0006} 
[0.0006]

- 0.0006 - 
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Extension of Grizzle’s Classic Crossover Design 
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The crossover design compares treatments A and B over two periods using sequences AB and BA (the 
AB|BA design) and is the classic design most often illustrated and critiqued in textbooks. Other crossover 
designs have been used but their use is relatively rare and not always well understood. This article 
introduces alternatives to a randomized two-treatment, two-period crossover study design. One strategy, 
which is to extend the classic AB|BA by adding a third period to repeat one of the two treatments, has 
several attractive advantages; an added treatment period may not imply a large additional cost but will 
allow carryover effects to be estimated and compared with the within-subject variability. Careful choice 
of treatment sequences will enable the first two trial periods to constitute a conventional two-period 
crossover trial if the third treatment period leads to excessive subject drop-outs. Four alternative designs 
that address the first-order carryover effect are presented. These designs have more statistical power than 
the classic design and allow the treatment effects to be estimated, even in the presence of a carryover 
effect. 
 
Key words: Crossover design, Grizzle, carryover effect. 
 
 

Introduction 
A crossover study is a longitudinal study in 
which subjects receive a sequence of different 
treatments; these designs are common in many 
scientific disciplines. In AB|BA crossover 
studies, subjects are randomly assigned to 
receive either treatment A in the first treatment 
period followed by treatment B in the second 
period or treatment B in the first period followed 
by treatment A in the second period. The 
crossover study allows for a within-subject 
comparison between treatments because each 
subject serves as his or her own control, the 
inter-patient variability is removed from the 
comparison between treatments and it can 
provide unbiased estimates for the differences 
between treatments. However, frequent 
misapplications of the design in clinical trials 
and even more frequent misanalysis of the data  
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have nearly doomed the crossover trial in 
clinical research (Freeman, 1989; Senn, 1994; 
Senn, 1996). 

The most damning characteristic of a 
crossover study is the potential of a carryover 
effect of one treatment to the next period. To 
address this issue, researchers typically include 
washout periods in their study designs. These 
washout periods are thought to be of sufficient 
length to negate any lingering effect of one 
treatment into the next period. Unfortunately, 
what a sufficiently long washout period might be 
remains unclear. In this article, and in most of 
the literature on crossover designs, the 
persistence of a carryover effect is assumed to 
last for only a single period (a first-order 
carryover effect) and it is also assumed that the 
carryover effect is different for different 
treatments. If a carryover effect is suspected in 
any crossover trial, then a term for this effect 
must be included in the model and accounted for 
in the subsequent analysis. This article 
introduces three simple alternatives to Grizzle’s 
classic AB|BA crossover design. These designs 
have more statistical power than the AB|BA 
design and allow unbiased treatment effects to 
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be estimated, even when a simple-order 
carryover effect is specified. 
 
The Traditional Crossover Model with 
Continuous Data 

The traditional design model assumes 
that each treatment has a simple first-order 
carryover effect that does not interact with the 
direct effect of the treatment in the subsequent 
period and that subject effects are either fixed or 
random. Although a variety of models are 
considered in the literature, virtually all of the 
work in crossover designs has the following 
traditional statistical model which assumes the 
following for the response of patient yij. 

If yijk denotes the observed response of 
subject j (j = 1, …, n) in period i (i = 1, …, p), 
then 
 

yij = µ + πi + τd(i,j) + λd(i-1,j) + βj + εij. 
 
where πi is the effect of period i; τd(i,j) is the 
direct effect of treatment D, λd(i-1,j) is the simple 
first-order carryover effect of treatment D and 
d(i,j) is the treatment allocated to patient j in 
period i, λd(0,j) = 0 for all j. It is assumed that all 
these effects are fixed effects. βj is the effect of 
patient j and εij is the error term. The random 
subject effect, βj, and the experimental error, εij, 
are assumed to be mutually independently 
distributed as N (0, σ2

β) and N(0, σ2
ε). 

 
The Classic AB|BA 

The crossover design that compares 
treatments A and B over two periods using 
sequences AB and BA (the AB|BA design) is 
the classic design and is most often illustrated 
and critiqued in textbooks (Grizzle, 1965). Other 
crossover designs have been utilized but their 
use is relatively rare and is not always well 
understood. For example, when more than two 
treatments are to be compared, an extensive use 
of each subject may be desirable when the 
number of periods can be extended. 

The primary purpose of an AB|BA 
crossover trail is to estimate the treatment 
contrast τA- τB (see Table 1). The period effects 
π1 and π2, the first-order carryover effects λA and 
λB, and µ are typically regarded as nuisance 
parameters that should be eliminated from any 
estimate. In sequence AB, the contrast c1, y11 – 

y21, has the expected value of E[c1] = E[y11 – y21] 
= (π1 - π2) + (τA - τB) - λA, while in sequence 
BA, the contrast c2, y21 – y22, has the expected 
value of E[c2] = E [y21 – y22] = (π1 - π2) - (τA - 
τB) - λB.  

The difference between contrasts c1 and 
c2 may be expressed is 2(τA - τB) - (λA - λB). It is 
then possible to generate a hypothesis by 
forming the differences in the two contrasts 
between responses for the two periods. That 
difference for the respective patients may be 
expressed by HCROS:{2(τA - τB) - (λA - λB) = 0}. 
HCROS is a combined null hypothesis tested by 
the difference (or crossover) test of equality of 
both the treatment effects and carryover effects 
of A and B {τA = τB, λA = λB}. The treatment 
effect and carryover effect are said to be aliased. 
The rejection of HCROS is interpreted as 
demonstrating that the direct and/or carryover 
effects of A and B are different in the sense of a 
prevailing larger response for one treatment than 
the other across the two periods. 

In sequence AB, the contrast c3 ,y11 + 
y21, has the expected value of E[c3]= E[y11 + y21] 
= 2μ + (π1 + π2 ) + (τA + τB) + λA, and in 
sequence BA, the contrast c4 , y21 + y22, has the 
expected value of E[c4] = E[y21 + y22] = 2μ + (π1 
+ π2 ) + (τA + τB) + λB. The difference between 
c3 and c4 differ by λA - λB, and is a measure of 
the net carryover effect.  

The hypothesis, HSEQ: λA = λB, has been 
proposed for use when deciding whether the 
rejection of the hypothesis HCROS is due mainly 
to differences between the direct treatment 
effects τA = τB or between the carryover effects 
λA = λB. A non-significant HSEQ supports the 
contention that there is a difference between τA 
and τB as the primary contradiction of HCROS. 
Alternatively, a significant HSEQ is interpreted as 
indicating that the differences between λA and 
λB may account for the contradiction of HCROS. 
When assessing the SEQ hypothesis, the type II 
error (falsely failing to reject the null hypothesis 
of no first-order carryover effect) is of some 
concern.  

To reduce the probability of making a 
type II error, the recommendation has been to 
use larger than the usual α, such as 25%. In 
bioequivalence studies, the commonly used 
significance level in a bioequivalence study for  
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SEQ is 25% (Chen & Tsong, 2007). This 
recommendation may be followed for any 
analyses. 

A third hypothesis compares the two 
sequences with respect to the responses for the 
first period only. The prevailing strategy is to 
use this test if a significant carryover effect is 
identified. This test procedure is referred to as 
PAR. When data from the second period are 
ignored, an AB/BA crossover design has the 
same structure as a PARallel group trial. PAR 
addresses the hypothesis of equality of direct 
treatment effects of A and B in the presence of 
unequal carryover effects (Freeman, 1986; 
Willan & Pater, 1986). An unbiased estimator of 
the treatment effect can be found by means of a 
t-test applied to the measurements obtained in 
the first period only; however, unfortunately, 
when using data from the first period only, 
advantages of the crossover design are negated. 
 
Balaam’s Design 

To solve the first-order crossover 
problem inherent in the traditional AB|BA 
design, an extension of the Grizzle design is 
needed. One alternative involves the use of 
additional treatment sequences in the two 
periods. For example, AA|AB|BA|BB (Balaam, 
1968)   could   be   utilized.   This   design   is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
universally optimal for estimating treatment 
effects regardless of whether baseline 
observations are available, and it is far more 
efficient than the classic AB|BA (Laska, 
Meisner & Kushner, 1983). However, in the 
absence of any carryover effect, this design is 
inefficient because many of the subjects will 
contribute little - if any - information to the 
estimate of treatment differences in the AA and 
BB sequences. 

The schematic for this design is shown 
in Table 2. In sequence AB, the contrast, c1 = 
(y11 - y12), has an expected value of E[c1] = E[y11 
– y12] = (π1 - π2) + (τA - τB) - λA, in sequence 
BA, the contrast c2 = (y21 - y22), has expected 
value of E[c2] = E[y21 – y22] = (π1 - π2) - (τA - τB) 
- λB, in sequence AA, the contrast c3 has an 
expected value of E[c3] = E[y31 – y32] = (π1 - π2) 
- λA, and in sequence BB, the contrast c4 has an 
expected value of E[c4] = E[y41 – y42] = (π1 - π2) 
- λB. A linear combination of c1 - c2 - c3 + c4 
yields an unbiased estimate of the treatment 
differences. 

To derive an unbiased estimate of 
carryover effects, c5 is defined in sequence AB 
as y11 + y21. The expected value of c5 is then 
E[c5] = E[y11 + y21] = 2µ + (π1 + π2) + (τA + τB) 
+ λA. In sequence BA, c6 is defined as y21 + y22  

Table 1: Design AB|BA 
 

AB|BA Design 
Period 1 
(k = 1) 

Period 2 
(k = 2) 

Sequence AB (i = 1) μ + π1 + τA µ + π2 + τB + λA 

Sequence BA (i = 2) µ + π1 + τB µ + π2 + τA + λB 

Table 1 Notes: 
Sequence AB (i = 1): E(yAB,1) = μAB,1 = μ + π1 + τA, E(yAB,2) = μAB,2 = μ + π2 + τB + λA 
Sequence BA (i = 2): E(yBA,1) = μBA,1 = μ + π1 + τB, E(yAB,2) = μBA,2 = μ + π2 + τA + λB 

In sequence AB, the contrast c1 has the expected value of E[c1]=E[y11 – y21]=(π1 - π2) + (τA - τB) - λA 

In sequence BA, the contrast c2 has the expected value of E[c2]=E[y21 – y22]=(π1 - π2) - (τA - τB) - λB 

In sequence AB, the contrast c3 has the expected value of E[c3]=E[y11 + y21] = 
2μ+(π1+π2)+(τA+τB)+λA 

In sequence BA, the contrast c4 has the expected value of E[c4]=E[y21 + y22] = 
2μ+(π1+π2)+(τA+τB)+λB 
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and has the expected value of E[c6] = E[y21 + 
y22] = 2µ + (π1 + π2) + (τA + τB) + λB. A linear 
combination of [½(c5 - c6 - c3 + c4)] yields an 
unbiased estimate of carryover effects (λA - λB). 
 
Two-Treatment, Three-Period Crossover Design 

The second design strategy is to extend 
the AB|BA design by adding a third period and 
repeating one of the two treatments: This has 
several attractive advantages. For example, in 
clinical studies major costs are associated with 
planning and patient recruitment rather than 
routine follow-up, thus, an added period may not 
imply a large additional cost. The added 
treatment period will allow carryover effects to 
be estimated and compared with the within-
subject variability. Finally, a careful selection of 
the treatment sequences to be used will insure 
that the first two trial periods constitute a 
conventional two-period crossover trial if the 
third treatment period leads to excessive subject 
drop-outs. 

In three period crossover trial with two 
treatments, six possible treatment sequences can 
result when two treatments are applied in three 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
periods. Two of these sequences, AAB and BBA 
can be omitted because they do not enable 
carryover effects from A and B to be examined 
in the same subject and the first two periods do 
not constitute a conventional two-period 
crossover design.  

The four remaining sequences ABB, 
BAA, ABA and BAB may be used in pairs to 
form two-treatment sequence three-period 
designs, three-treatment sequence three-period 
designs and one four-treatment sequence three-
period design. Of the two-treatment sequence, 
three-period, the ABB|BAA is known to be the 
universally optimal design within the class of 
three periods (Cheng & Wu, 1980; Laska & 
Meisner, 1985; Hedayat & Stufken, 2003). In 
these designs half the subjects are randomly 
assigned to each sequence. 

Two additional efficient two-treatment, 
three-period designs are the AAB|ABA and 
ABA|ABB designs. Another efficient two-
treatment, three-period design is the ABB| 
BAA|ABA|BAB (Ebbutt, 1984). This set of 
designs with equal number of subjects per 
sequence is able to estimate all parameters in the 

Table 2: Balaam’s Design (AB|BA|AA|BB) 
 

AB|BA Design 
Period 1 
(k = 1) 

Period 2 
(k = 2) 

Sequence AB (i = 1) μ + π1 + τA µ + π2 + τB + λA 

Sequence BA (i = 2) µ + π1 + τB µ + π2 + τA + λB 

Sequence AA (i = 3) μ + π1 + τA µ + π2 + τA + λA 

Sequence BB (i = 4) μ + π1 + τB µ + π2 + τB + λB 
 

Table 2 Notes: 
Sequence AB (i = 1): E(yAB,1) = μAB,1 = μ + π1 + τA, E(yAB,2) = μAB,2 = μ + π2 + τB + λA 
Sequence BA (i = 2): E(yBA,1) = μBA,1 = μ + π1 + τB, E(yAB,2) = μBA,2 = μ + π2 + τA + λB 

Sequence AA (i = 3): E(yBA,1) = μAA,1 = μ + π1 + τA, E(yAB,2) = μBA,2 = μ + π2 + τA + λA 

Sequence BB (i = 4): E (yBA,1) = μBA,1 = μ + π1 + τB, E (yAB,2) = μBA,2 = μ + π2 + τB + λB 

In sequence AB, the contrast c1 has the expected value of E[c1] = E[y11 – y21]=(π1 - π2) + (τA - τB) - λA 

In sequence BA, the contrast c2 has the expected value of E[c2] = E[y21 – y22]=(π1 - π2) - (τA - τB) - λB 

In sequence AA, the contrast c3 has the expected value of E[c3] = E[y31 – y32]=(π1 - π2) - λA 
In sequence BB, the contrast c4 has the expected value of E[c4] = E[y41 – y42]=(π1 - π2) - λB 

In sequence AB, the contrast c5 has the expected value of E[c5] = E[y11 + y21]=2µ+(π1 + π2)+(τA + τB)+λA 

In sequence BA, the contrast c6 has the expected value of E[c6] = E[y21 + y22]=2µ+(π1 + π2)+(τA + τB)+λB 
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traditional model and provide a good estimate of 
the treatment contrast (Ebbutt, 1984; Heydat & 
Stufken, 2003, Liang & Carriere, 2010). 

A balanced model for the two-treatment 
three-period crossover trial, ABB| BAA, is 
shown in Table 3. In sequence ABB, the 
contrast, c1 = (2y11 - y21 - y31), has the 
expectation ¼{(2π1 - π2 - π3) + 2(τA - τB) - λA - 
λB}. In sequence BAA, the contrast c2 = (2y21 - 
y22 – y32) has the expectation ¼{(2π1 - π2 - π3) + 
2(τB - τA) - λA - λB}. The difference between 
contrast c1 and c2 forms an unbiased estimator of 
τA - τB. It appears that the central problem of the 
AB|BA has been solved by simply extending the 
design by one period. An unbiased estimator of 
any carryover effect, λA - λB may also be 
constructed. Consider c3 = (y11 - 2y21 + y31) and 
c4 = (y21 - 2y22 + y23). The expected value of E 
[c3] is ⅓ {(π1 - 2π2 + π3) + (τA - τB) - 2λA + λB} 
and the expected value of E [c4] is ⅓ {(π1 - 2π2 + 
π3) + (τB - τA) - 2λB + λA}. The difference  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

between c3 and c4 forms an unbiased estimate of 
λA - λB. 

A second model for a two-treatment 
three-period crossover trial, ABA| BAB, is 
shown in Table 4. In sequence ABA, the 
expected value of E [c1] = E [½ (2y11 - y21 - y31)] 
= ½{(2π1 - π2 - π3) + (τA - τB) - λA - λB}. In 
sequence BAB, the expected value of E [c2] = E 
[½ (2y12 - y22 - y32)] = ½{(2π1 - π2 - π3) - (τA - 
τB) - λA - λB}. The difference between the means 
of the two contrasts c1 and c2 forms an unbiased 
estimator of τA - τB. In testing for carryover 
effect, let c3 = y11 + 2y21 + y31 in sequence ABA 
and the expected value of E [c3] = E [(y11 + 2y21 
+ y31)] = {4µ + (π1 + 2π2 + π3) + 2(τA + τB) + 
2λA + λB}. In sequence BAB, define c4 = y21 + 
2y22 + y23 with the expected value of E [c4] = E 
[(y21 + y22 - 2y23)] = {4µ + (π1 + 2π2 + π3) + 2(τA 

+ τB) + 2λB + λA}. The difference between c3 
and c4 then forms an unbiased estimate of λA - 
λB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: ABB|BAA Design 
 

Sequence 
Period 1 
(k = 1) 

Period 2 
(k = 2) 

Period 3 
(k = 3) 

ABB (i = 1) µ + π1 + τA µ + π2 + τB + λA µ + π3 + τB + λB 

BAA (i = 2) µ + π1 + τB µ + π2 + τA + λB µ + π3 + τA + λA 

 

Table 3 Notes: 
ABB (i = 1): E(yABB,1) = μ + π1 + τA, E(yABB,2) = μ + π2 + τB + λA, E(yABB,3) = μ + π3 + τB + λB 
BAA (i = 2): E(yBAA,1) = μ + π1 + τB, E(yBAA,2) = μ + π2 + τA + λB, E(yBAA,3) = μ + π3 + τA + λA 

In sequence ABB, the expected value of E[c1]=E[¼(2y11 - y21 - y31)]=¼{(2π1 - π2 - π3)+2(τA - τB) - λA - 
λB} 

In sequence BAA, the expected value of E[c2]=E[¼ (2y21 - y22 - y32)]=¼{(2π1 - π2 - π3) + 2(τB - τA) - λA 
- λB} 

In sequence ABB, the expected value of E[c3]=E[⅓ (y11 - 2y21 + y31)]=⅓{(π1 - 2π2 + π3) + (τA - τB) - 2λA 
+ λB} 

In sequence BAA, the expected value of E[c4]=E[⅓ (y21 - 2y22 + y23)]=⅓{(π1 - 2π2 + π3) + (τB - τA) - 2λB 
+ λA} 
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Discussion 
Advantages of a crossover trial are that each 
subject is used as their own control, optimal two 
treatment three-period crossover designs are 
statistically efficient and these designs require 
fewer subjects for the same number of 
observations than do non-crossover designs. 
This latter advantage is an important aspect, 
particularly in situations where the experimental 
subjects are scarce and are expensive to recruit 
and maintain in the study. Another advantage of 
crossover designs is that, by a defining a specific 
choice of treatment sequences, it is possible to 
estimate important treatment contrasts even 
when assuming a carryover effect in the overall 
model. 

The major concern in a crossover design 
is the presence of carryover effects. In any given 
period, an observation from a subject is affected 
not only by the direct effect of a treatment in the 
period in which it is applied, but possibly by the 
effect of a treatment applied in the preceding 
period. In a clinical study, particularly a drug 
study, one way to avoid the impact of a 
carryover effect is to insert a rest period between 
two successive periods with the hope that the 
carryover effect would wash out during this 
period. This is the most common method of 
handling effects of drug studies. The insertion of 
rest periods effectively increases the interval 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
between the observed periods and may help in 
overcoming the carryover effect if the carryover 
effect is not expected to persist, however, 
inserting rest periods may not be feasible. The 
insertion of a rest period between each pair of 
successive periods increases the total duration of 
the experiment and there is no guarantee that the 
wash out period is sufficiently long enough to 
eliminate any carryover effect. An alternative is 
to design the experiment in such a manner that 
the difference in treatment effects may be 
estimated after adjusting for the presence of 
possible carryover effects. 

Despite some of the problems associated 
with the use of a crossover design its advantages 
are attractive. Although crossover designs have 
been in use for several decades, issues relating to 
the finding optimal crossover designs have been 
addressed only in about the last 30 years. There 
has been a continuous effort in the general area 
of optimal crossover designs, often assuming 
different underlying models. The uniform 
consistency has been the inclusion of carryover 
effect. These models, in turn, may be regarded 
as an approximation to the real world 
relationship between the response and the effects 
included in the model. A caution worth noting: 
Any crossover design under an assumed model 
might not be the optimal if the model is 
incorrectly specified. 

Table 4: ABA|BAB 
 

Sequence 
Period 1 
(k = 1) 

Period 2 
(k = 2) 

Period 3 
(k = 3) 

ABA (i = 1) µ + π1 + τA µ + π2 + τB + λA µ + π3 + τA + λB 

BAB (i = 2) µ + π1 + τB µ + π2 + τA + λB µ + π3 + τB + λA 

 

Table 4 Notes: 
ABA (i = 1): E(yABB,1) = μ + π1 + τA, E(yABA,2) = μ + π2 + τB + λA, E(yABA,3) = μ + π3 + τA + λB 
BAB (i = 2): E(yBAB,1) = μ + π1 + τB, E(yBAB,2) = μ + π2 + π3 + λB, E(yBAB,3) = μ + π3 + τB + λA 

In sequence ABA, E[c1] = E[½ (2y11 - y21 - y31)] = ½{(2π1 - π2 - π3) + (τA - τB) - λA - λB } 
In sequence BAB, E[c2] = E[½ (2y21 - y22 - y32)] = ½{(2π1 - π2 - π3) - (τA - τB) - λA - λB} 
In sequence ABA, E[c3] = E[(y11 + 2y21 + y31)] = {4µ + (π1 + 2π2 + π3) + 2(τA + τB) + 2λA + λB} 
In sequence BAB, E[c4] = E[(y21 + 2y22 + y32)] = {4µ + (π1 + 2π2 + π3) + 2(τA + τB) + 2λB + λA} 
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Conclusion 
Although there are crossover models that specify 
higher order carryover effects, the two-treatment 
three-period designs described herein maintain 
their optimality characteristics. To address the 
potential of first-order carryover effect, the 
classic AB|BA crossover design could be 
extended to a three-period design using one of 
the designs outlined. In effect, the added 
treatment period permits any carryover effects to 
be estimated and compared with the within-
subject variability. A careful selection of the 
treatment sequences would reduce to a classic 
two-treatment, two-period conventional 
crossover trial if the third treatment period leads 
to excessive subject drop-outs. 

The statistical properties of two-
treatment, three-period designs is well known 
but seldom used. When the traditional statistical 
model is acknowledged as being reasonable, 
these designs provide a framework to estimate 
treatment effects even in the presence of a 
carryover effect and effectively provide a way to 
address the impasse imposed by the classic 
AB|BA design. 
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A methodology is formulated to analyze tumor recurrence data when its incidence rate is restricted due to 
medication. Analytic results are derived to make a probabilistic early warning of tumor recurrence free 
period of length τ; that is, the chance for a safe period of lengthτ is estimated. The captured data are 
length biased. Expressions are developed to extract and relate to counterparts of the non-length biased 
data. Three data sets are considered as illustrations: (1) patients who are given a placebo, (2) patients who 
are given the medicine pyridoxine and (3) patients who are given the medicine thiotepa. 
 
Key words: Targeted versus captured recurrence trend, order statistics, survival function. 
 
 

Introduction 
Cancer is the second major cause of death after 
cardiovascular deaths in USA. Tumor, an 
abnormal growing of cells in the brain, is an 
important category in the cancer group and 
remains mysterious to medical researchers. 
Whether a tumor is a benign or malignant type, 
its recurrence time must be speculated for an 
efficient treatment and an early warning of its 
recurrence time is crucial. The early warning 
provides a basis for the decision of whether to 
continue the same medicine or change to another 
medicine. The medical community relies heavily 
on an answer to the question: what do the data 
suggest? The statistical community is obligated 
to devise an appropriate statistical methodology 
to analyze a patient’s data to make a 
probabilistic early warning regarding whether a 
time period of length τ will be tumor recurrence 
free. 
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The current literature does not contain 

information to answer these questions. To 
compensate for the gaps in this area, this study 
was undertaken to introduce a new statistical 
methodology to fulfill the need for making an 
early probabilistic warning of tumor recurrence 
during a tumor free period of length τ. 

Let T > 0 represent a random time in 
which a tumor (malignant or benign) reoccurs in 
a patient. Given the collected data on his/her 
recurrence times, could a future period of length 
τ be tumor recurrence free? Suppose that the 
uncertainty in T is governed by non-observable 
incidence parameters θ < β, where θ and β 
portray the tumor recurrence rate and its 
restriction level respectively. A restriction on the 
incidence rate exists due to the effect of the 
given medication. Let ν > 0 be the threshold 
time parameter connecting T, θ and β. To 
capture their intricacies, consider the probability 
density function: 
 

1
arg ( , , ) ( 1) / ( ) ;

;0

t eted
tumorf t t

t

β β
θ θββ θ ν φ φ ν

θ
ν θ β

−
= − + −

> < <
     (1) 

 
for T > ν > 0 in terms of θ and β. The expected 
and variance time of the probability pattern in 
(1) are, respectively, 
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A recurrence is missed if the 
observation period is too short; a longer 
observation period increases the chance of 
recording another tumor recurrence. This 
concept is length biased sampling (see Zelen & 
Feinlieb, 1969 for details on length bias 
phenomenon). The length bias alters the 
statistical assessment of the recurrence trend. A 
caution is necessary regarding how the length-
biased data are analyzed and interpreted. When 
the equal random sampling is replaced by 
proportional length biased sampling, the length-
biased version of the model in (1) is appropriate 
for the recurrent tumor times as follows: 
 

arg

arg

1

( , , )

( , , )

( , , )

( 1)
;

[ ]( )
( 2)

;0

captured
tumor

t eted
tumor
t eted
tumor

f t

tf t
t

t

t

t

t

β
θ

β
θ

β θ ν

β θ ν
μ β θ ν

β φ
θ

φ ν φ νβ
θ

ν θ β

−

=

=

−
=

+ + −
−

> < <
(4) 

 

where argt eted
tumorμ  denotes the actual average tumor 

recurrence time. The probability density 
functions in (1) and (4) are interrelated and their 
relations are used to forecast tumor recurrence in 

this study by employing a methodology to 
analyze tumor recurrence data when its rate is 
restricted due to medication. Using the analytic 
results, an early warning of the next tumor 
recurrence free period of length τ is made. 
Various pertinent information in the length-
biased data are extracted and compared to their 
counterparts under non-biased data. 
 

Results 
To identify whether a tumor recurrence free 
period of length τ exists at the earliest time 
possible, understanding its patterns is 
prerequisite. Since the last major tumor 
recurrence, the probability that a next recurrence 
will happen within a selected time τ > 0 is 
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The actual chance for tumor recurrence 
occurs within τ  units of time and requires an 
adjustment of the captured chance for tumor 
recurrence time. This is revealed in the 
relationship shown in (5); the adjustment is 
 

int

( ) ( 1)( )
( ) .

1 ( 1)( )

captured
tumor

ended
tumor

F
F

β τ ντ ν
θ φτ ν β τ ν

θ φ

−− + −
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In an instantaneous time (that is,τ ν→ ), no 
adjustment is necessary, but after some time has 
elapsed, a finite amount of adjustment is 
necessary. Both a location shift and a scale 
change are warranted. The location and scale 
shifts are 

( 1)( )
β τ ν
θ φ

−−  

and 
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1 ( 1)( )
β τ ν
θ φ

−+ −  

respectively. 
The captured survival chance without a 

tumor recurrence, that is 
 

( ) Pr [ ]captured
tumor capturedS tτ τ= > )  

 
with the length-biased data is 
 

1 ( 1)( )
β τ ν
θ φ

−+ −  

 
times the actual survival chance, which is 
 

int
int( ) Pr [ ]ended

tumor endedS tτ τ= >  

 
in a non-length biased data collection scenario 
without a tumor recurrence before that selected 
timeτ . That is, 
 

int ( ) [ ] ( )
( )( )
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tumo tumorS Sθφτ τ

θφ β θ τ ν
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The cofactor 

[ ]
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θφ
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is the impact amount due to sampling bias. The 
captured survivability chance without a tumor 
recurrence before that selected time τ  is an 
over-estimate. The mean and variance time of 
the captured tumor recurrence patterns are 
expressed in terms of the actual average time 

int endedμ  between two tumor recurrences. They 

are 
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if int2 ended
tumorφ μ> .                     (8) 

 
Expression (7) suggests a relation 

between the actual average tumor recurrence 

time int ended
tumorμ  and the captured average tumor 

recurrence time captured
tumorμ . Equivalently, 
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tumor captured
tumor

φμμ
φ μ
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The actual average tumor recurrence time is not 
linear with the captured recurrence time. 
Interestingly, according to expression (8), the 
captured variance of the recurrence times widens 
if the actual average tumor recurrence time is 
greater. Equivalently, 
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meaning that the actual tumor occurrence time 
variance increases proportionally with the 
captured variance. 

Based on this, the incidence parameters 
of the tumor recurrence probability pattern in (4) 
are estimable with (1) 1 2min( , ,... )nt t t t= , 

2,captured
tumors  and (1)

captured
tumort t−  denoting the 

captured threshold recurrence time, sample 
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variance and mean of the tumor recurrence times 
respectively. The moment estimates are 
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tumor tumor

t t s t t
s t t

φ =
− + −

− −
(10) 

 
and 
 

2
(1)

2, 2
(1)

3[ ]ˆ {2 }
2( )

captured
tumor

captured captured
tumor tumor

t t
s t t

β θ
−

= +
− −

      (11) 
 

Thus, with estimates for (9), (10) and 
(11), the survival probability in (6) is estimable. 

When ˆ1 ( )captured
tumorS τ−  is significantly large, it 

suggests that early warning is necessary to 
speculate whether the tumor recurrence is likely 
to happen within the selected time τ. In addition, 
the factor 
 

2
(1)

2, 2
(1)

3[ ]
Re {1 }

2( )

captured
tumor

captured captured
tumor tumor

t t
striction

s t t
−

= +
− −

  (12) 
 
signifies the restriction level on tumor 
recurrence due to medication. 

Often the likelihood of noticing a quick 
tumor recurrence if it occurs repeatedly is of 
interest. This can be accomplished using the 
order statistics concept (see David, 2005 for 
details regarding order statistics definitions and 
tools). Suppose that tumor reoccurrence takes 
place n times for a patient and let the order 
statistics be 
 

(1) (2) ( )... nT T Tν ≤ < < < < ∞ ; 

 
then 

arg
(1)Pr [ ] [1 ( )]t eted nT Fτ τ> = −  

describes the chance of surviving a period of 
length τ without a tumor recurrence. 
Interestingly, it is observed that 
 

arg
(1)

1
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Pr [ ]

[( ) ]

( 2)
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( 2)

t eted

n

n captured

T

T
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βφ ν
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(13) 
 
The factor 

( 2)
[ ]

( 2)

βφ ν
θ

βφ ν τ ν
θ

+ −

+ − + −
,              (14) 

β 
in (13) with a single incidence (that is, n = 1), 
signifies the over-estimated proportion of the 
chance of having a minimal safe period τ . This 
proportion of over-estimate diminishes as the 
patient experiences more recurrences (that is, as 
n increases). 
 
Examples 

To illustrate results, tumor data from 
Andrews and Herzberg (1990) were selected, 
these data show placebo, pyridoxine drug and 
thiotepa drug groups. The mean and variance of 
tumor recurrence times are calculated for each 
patient along with the captured survivability for 
each patient using (5) and the cofactor using (6). 
(See Tables 1A, 2A and 3A.) For example, the 
patient with ID# 13 in the placebo group has 
0.71 captured chance of survivability without 
tumor recurrence in 12 months and the actual 
survivability chance is 0.03 times the captured 
chance of surviving without tumor recurrence. 

Using expressions (9) through (11), the 
incidence parameters are estimated and are 
displayed in Tables 1B, 2B and 3B. For 

example, the parameter estimates φ̂ ,   

ν̂  and the restriction gap (.) in 

(.)θ β<  on the incidence rate for patient #13 in 
the placebo group are 0.53, 2.14 and 3 
respectively; patient #15 is an anomaly. Results 
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presented in in Tables 1B, 2B and 3B also show 
the chance of a patient having a safe period 
without any tumor recurrence for the next twelve 
months is calculated using (13), and estimates 
for how much the over-estimation might have 
been in the length biased data are calculated 
using (14). 

The restriction level in (12), location 
shift 
 

( 1)( )
β τ ν
θ φ

−−  

 
and scale shift 
 

1 ( 1)( )
β τ ν
θ φ

−+ −  

 
due to length-biased sampling are calculated and 
displayed in Tables 1 B through 3 B. For 
example, patient #13 had 4.58, 19.2 and 20.2 as 
his/her restriction level for the incidence 
parameters, location and scale shifts due to 
length-biased sampling. Patient # 13 is in the 
placebo group and has 0.03 chance of having a 
safe next twelve months without any tumor 
recurrence. If the length biased captured data are 
used for this patient, the chance of having safe 
next twelve months without any tumor 
recurrence would have been over estimated by 
an amount 0.09. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 1, 2 and 3 illustrate the pattern 
of actual survival chance in terms of the data 
captured for placebo, pyridoxine drug and 
thiotepa drug groups. Note that one outlier case 
(patient #15) is present in the placebo group. In 
addition, it is notable that the trend for the 
pyridoxine group is a reversed direction 
compared to the other two groups; patients in the 
pyridoxine drug group display an upward curve 
while the placebo group and the thiotepa drug 
group have downward curves. 
 

Conclusion 
If other predictor variables are available, a 
logistic regression can be built for patients. In 
addition, the more and less important predictors 
can be identified based on the estimate of 
survivability without a tumor recurrence in the 
next 12 months. 
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Table 1A: Recurrence Times (in Months) of Tumor Placebo Patients 

ID 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
(1)t t  2

ts  Captured Survivability 
in 12 Months 

Cofactor

13 3 13 7       3 7.7 25 0.71 0.03 

15 7 3 6 8      3 6 4.67 0.03 0.15 

16 3 12 10       3 8.33 22.3 0.65 0.05 

24 28 2        2 15 338 0.98 0.003 

34 16 3 4 5 6 5 6   3 6.42 18.95 0.66 0.04 

44 3 12 31 5 2     3 10.6 145.3 0.96 0.005 

48 2 6 4 1 4 4 12 16 15 1 7,2 34.44 0.81 0.02 
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Table 1B: Parameter Estimates of Tumor Placebo Patients 

ID φ̂  (.)θ β<  ν̂  
Restriction 

Level 
Location 

Shift 
Scale 
Shift 

Actual 
Chance of 

Safe 12 
Months 

Overestimated 
Proportion in the Chance 
of Safe 12 Months in the 

Length Biased Data 

13 0.53 (2.140 3 4.58 19.2 20.2 0.03 0.09 

15 84.46 (39.38) 3 3.02 4.09 5.09 0.02 0.95 

16 0.84 (2.23) 3 3.46 13.11 14.11 0.04 0.14 

24 0.03 (2.00) 2 Infinity 270.69 271.69 0.003 0.004 

34 0.58 (2.18) 3 8.73 18.16 19.16 0.03 0.11 

44 0.06 (2.00) 3 85.69 154.9 155.9 0.006 0.008 

48 0.29 (2.07) 1 3.64 40.3 41.35 0.02 0.03 

 
Table 2A: Recurrence Times (in Months) of Tumor Patients Treated with Pyridoxine Drug 

ID 1st 2nd 3rd 4th 5th 6th 7th 8th 9th
(1)t t  2

ts  Captured Survivability in 12 
Months 

Cofactor

51 3 1        1 2 2 0.007 0.06 

64 3 7 12 4 8     3 6.8 12.7 0.46 0.07 

67 3 4 5 4 3 9 6 2 3 2 4.33 4.5 0.08 0.10 

70 2 4 4 6 7 4 9 3 3 2 4,67 5 0.10 0.10 

 
Table 2B: Parameter Estimates of Tumor Patients Treated with Pyridoxine Drug 

ID φ̂  (.)θ β<  (1)t  Restriction 
Level 

Location 
Shift 

Scale 
Shift 

Actual Chance 
of Safe 12 

Months 

Overestimated Proportion 
in the Chance of Safe 12 

Months in the Length 
Biased Data 

51 6 8 1 Infinity 12.83 13.83 0.0006 0.52 

64 1.52 2.52 3 3.67 9.03 10.03 0.05 0.25 

67 5.87 5.27 2 3.55 7.29 8.29 0.01 0.55 

70 5.38 4.81 2 3.31 7.08 8.08 0.01 0.52 

 
Table 3A: Recurrence Times (in Months) of Tumor Patients Treated with Thiotepa Drug 

ID 1st 2nd 3rd 4th (1)t  t  2
ts  Captured Survivability in 

12 Months 
Cofactor 

89 18 0   0 13.3 40.5 0.97 0.003 

104 24 2 3 11 2 10 103.3 0.94 0.007 
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Table 3B: Parameter Estimates of Tumor Patients Treated with Thiotepa Drug 

ID φ̂  (.)θ β<  (1)t Restriction 
Level 

Location 
Shift 

Scale 
Shift 

Actual Chance 
of Safe 12 

Months 

Overestimated 
Proportion in the Chance 
of Safe 12 Months in the 

Length Biased Data 

89 0.04 2.00 0 infinity 288 289 0.003 0.003 

104 0.09 2.01 2 8.78 105.5 106.5 0.008 0.01 

 
Figure 1: Actual Survival Chance in Terms of Captured Survival Chance for Placebo Group 

 

 

 
Figure 2: Actual Survival Chance in Terms of Captured Survival Chance for Pyridoxine Drug Group 
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Figure 3: Actual Survival Chance in Terms of Captured Survival Chance for Thiotepa Drug Group 
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Logistic Regression Models for Higher Order Transition Probabilities 
of Markov Chain for Analyzing the Occurrences of Daily Rainfall Data 
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Logistic regression models for transition probabilities of higher order Markov models are developed for 
the sequence of chain dependent repeated observations. To identify the significance of these models and 
their parameters a test procedure for a likelihood ratio criterion is developed. A method of model 
selection is suggested on the basis of AIC and BIC procedures. The proposed models and test procedures 
are applied to analyze the occurrences of daily rainfall data for selected stations in Bangladesh. Based on 
results from these models, the transition probabilities of first order Markov model for temperature and 
humidity provided the most suitable option to model forecasts for daily rainfall occurrences for five 
selected stations in Bangladesh. 
 
Key words: Logistic regression, transition probabilities, Markov chain, ML estimation, LR test, AIC, 

BIC, daily rainfall occurrences data. 
 
 

Introduction 
A Markov chain model is constructed for 
describing transition probabilities for time or 
chain dependent process under change or 
random process. A logistic regression model is 
used as probabilistic model for analyzing 
covariate dependent binary data. The logistic 
regression model may define covariate 
dependent transition probabilities of a Markov 
chain. Muenz and Rubinstein (1985) made an 
attempt to develop covariate dependent first 
order transition probabilities for Markov chain 
models. In their model two-health states, distress 
and no distress, recorded as binary responses 1  
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and 0 respectively were incorporated; they 
showed that healthy patients feel less distress 
than others at the time of biopsy as time 
proceeds. 

To identify the pattern of daily rainfall 
occurrences Gabriel and Neumann (1962) 
developed a Markov chain model for Tel Aviv 
data. They showed that dry and wet spells follow 
a geometric distribution. For the same data, 
Green (1964) fitted the probability models better 
than that of Gabriel and Neumann’s models 
assuming that dry and wet spells follow an 
exponential distribution. Parthasarathy and Dhar 
(1974) identified the negative trend for south 
Asian daily rainfall occurrences using regional 
rainfall over India for the period 1901 to 1960. 
Similar studies analyzing daily rainfall data have 
been conducted by Islam (1980), Stern (1980a), 
Stern (1980b), Stern, et al. (1982), Stern and 
Coe (1984), Sinha and Paul (1992), Sinha and 
Islam (1994), Shimizu and Kayano (1994), 
Sinha, et al. (2006), Sinha, et al. (2009) and 
others. However, these did not develop covariate 
dependent probability models for analyzing the 
patterns of daily rainfall occurrences. To identify 
the patterns and forecasting models for the 
occurrence or non-occurrence of rainfall, 
different types of covariate dependent transition 
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probabilities of Markov chain models need to be 
developed for logistic regression. 
 
Transition Probabilities of Markov Chain for 
Logistic Regression Models 

To develop logistic regression models 
for higher order transition probabilities (t. p.) of 
Markov chains, consider the chain dependent 
repeated observations x1, x2, ..., xn at time t (t = 
1, 2, ...., T), Xn(t). Here the assumption that 
observations occurring depend on different 
covariates, Zn(t) is made. The first order 
transition count, njk(t) denotes the number of 
individuals in state j at time t-1 and in state k at 
t. If the second order transition count, nijk(t) 
denotes the number of individuals in state i at 
time t-2, in state j at t-1 and in state k at t, then 
the first and second order transition probabilities 
of the Markov chain are denoted by pjk(t) and 
pijk(t) respectively, for all i, j, k = 1, 2, ..., m and 
t = 1, 2, ..., T.  

For stationarity, these probabilities are 
denoted by pjk and pijk, respectively. Similarly, 
higher order stationary or non-stationary 
transition probabilities of Markov chain pij...krl or 
pij....krl(t), respectively, may be defined for 
transition count nij...krl or nij...krl(t). The term pij...krl 
or pij....krl(t) indicates the transition probability of 
state l at time t, given the state r at time t-1, ...., 
the state j at time t-s+1 and state i at time t-s, 
where t = s, s+1, ..., T, and for all i, j, ..., k, r, l = 
0, 1. The ML estimate (Anderson & Goodman, 
1957; Muenz & Rubinstein, 1985; Sinha, et al., 
2006; Sinha, et al., 2009) of higher order 
stationary or non-stationary transition 
probabilities for the transition probability 
matrices are 
 

)1t(n

)t(n
  

n

n
  p̂

ij...k

ij....kl

ij...k.

...kl ij
....kl ij −

==  

 
where 


=

=
m

1l
ij...klij....k. n  n . 

 
To develop the covariate dependent two-

state transition probabilities of the Markov 
chain, consider the parameters p01 and p11 for 
first order, and p001, p101, p011 and p111 for a 
second order Markov chain. Here p01, p11, p001 , 

p101 , p011 and p111 specify the transition 
probabilities of 0 → 1, 1 → 1, 0 → 0 → 1, 1 → 
0 → 1, 0 → 1 → 1 and 1 → 1 → 1th transitions 
respectively. Similarly, 2r parameters may be 
defined for rth order two-state transition 
probabilities of the Markov chain. To formulate 
such a Markov chain, the following assumptions 
are made: (i) each observation of chain 
dependent process depends on different 
covariates; (ii) observations of the chain 
dependent process follow a logistic form; (iii) 
the counts nj(0) and njk(1) are non-random; and 
(iv) each row of transition in the probability 
matrix is independent. 

To estimate the covariate dependent 
transition probabilities for the Markov chain, 
consider logistic regression models for first, 
second and higher order transition probabilities 
(Muenze & Rubinstein, 1985) which are defined 
as 
 

 ,  
 + 1

  =  ij...kr1P
t)), (q exp(z

t)), (q exp(z

ij....krl

ij...kr1
   (2.1) 

 
where 
 

,(q,t)  .. 1 .. 1 ( .. 1) ( ... 1) ( )1

n
Z Zij kr ij kr h ij kr h ij kr q t rh

α β= +  −=
 
for all i, j, ..., k, r = 0, 1,   h = 1, 2, ..., n ,  q = 1, 
2, ..., Q,  t = 1, 2, ..., where T and r are the order 
of the Markov chain. Here, Zh ij . q t r( ) ( ). kr1 −  is 

the hth covariate for i → j → ..... → k →r→ 
l(=1)th state for (t-r)th day of qth year, βh(ij .... k1) is 
the parameter of hth covariate for i → j → ..... → 
k → r → l(=1)th state and αij ... r1 is the intercept 
term. Further for saturated model the term Zij 

....kr1(q,t) for (2.1) can be defined as 
 
 (q,t).. 1

             .. 1 ( .. 1) ( ... 1) ( )1

            ( .. 1) ( ... 1) ( ) ( ... 1) ( )( ) 1

            + higher order interaction effect

Zij kr
n

Zij kr h ij kr h ij kr q t rh
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where βh(ij ... kr1) is the main effect for 
Z h ij . q t r( ) ( ). kr1 −

th covariate and βhg(ij ... kr1) is the 

interaction effect for the Z h ij . q t r( ) ( ). kr1 −  and 

Zg ij . q t r( ) ( ). kr1 −
th covariates. 

 
Estimation of Parameters for Covariate 
Dependent Transition Probabilities of Markov 
Chain Model 

To identify the effect of different 
covariates for the changes of transition 
probabilities of Markov chain model the 
parameters of the models 2.1 and 2.2 are to be 
estimated. To estimate the parameters for 
transition probabilities of Markov chain model, 
Anderson and Goodman (1957), Muenz and 
Rubinstein (1985), Sinha, et al. (2006) and 
Sinha, et al. (2009) suggested the ML estimation 
method. Thus the method of MLE is used to 
estimate the parameters of model 2.1. The log 
likelihood function (Formula 2.3) is shown in 
Figure 1. To obtain the estimated value of 
parameters by ML estimation method under 
Newton-Raphson iteration procedure, the 
information matrix and information vector are 
denoted by I and U respectively, where I-1 is the 
variance covariance matrix with respect to 
parameters. Similarly, the parameters of model 
(2.2) may be estimated. 
 
Test of Hypothesis 

To test the significance of the 
parameters and models for logistic regression 
models for transition probabilities of a Markov 
chain, Wald (1943) suggested test statistic W as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

consistent and asymptotically equivalent to the 
likelihood ratio test under the null hypothesis. 
This test statistic provides a significant result for 
the iterative nature of maximum likelihood 
estimate than that of likelihood ratio test. 
However, Rao (1965), Hauck and Donner 
(1977) and Jennings (1986) found that the test 
statistic W is less powerful compared to 
likelihood ratio test. Furthermore, for a large 
sample Hosmer and Lemeshow (1989) 
recommended the likelihood ratio test as 
opposed to Wald’s test, because often it fails to 
reject the co-efficient when it is significant. Due 
to these, the likelihood ratio test procedure is 
employed to test the significance of parameters 
and models for 2.1 and 2.2. 
 
Likelihood Ratio Test 

To identify the significance of the 
covariate dependent transition probabilities of 
Markov chain models and their parameters; 
consider hypotheses 1 and 2 for model 2.1, and 3 
and 4 for model 2.2. 
 
Hypotheses 1, Model 2.1: 
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Figure 1: Log Likelihood Function for the ML Estimation Method (Formula 2.3) 
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n ij r... )0 (q, t  and nij r... )1 (q, t  are the transition counts for the , ,.., , ( 0)thi j r l =  state and , ,.., , ( 1)thi j r l =  state 

respectively for the tth day of the qth year, where q = 1, 2, ...,Q and t = 1,2, ..., T 
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Hypotheses 2, Model 2.1: 

0 p(ij...r1): = 0 H β  and 0 ij...r1: = 0 H α  

 
vs. 

 

1 p(ij...r1): 0 H β ≠  and 1 ij...r1:  0 H α ≠  

 
Hypotheses 3, Model 2.2: 

0 1(ij...r1) 2(ij...r1) h(ij...r1) (  ... r1): = =...= = =...= 0 hg ij
h g

H β β β β
<

 
vs. 

 

1 1(ij...r1) 2(ij...r1) h(ij...r1) (  ...r1): = =...= = =... 0hg ij
h g

H β β β β
<

≠

 
Hypotheses 4, Model 2.2: 

0 (ij...r1)

p<k

: = 0pkH β

 
 

vs. 
 

1: 0 (  ... r1)

p<k

H pk ijβ ≠ , 

 
where h = 1, 2, ..., p, p+1, ..., n,  g = 1, 2, ..., k, 
k+1, ..., n,  βh ij .( .. r1)  is the parameter of the 

thh  covariates for i, j, ..., r, l(=1) transition and 

βhg ij .( .. r1)  is the interaction effect between thh  

and thg  covariates. The likelihood ratio test 

statistic (-2logλij ... r1) is asymptotically 
distributed as χ2

ij....r1 (Kendall & Stuart, 1973) 
with h, 1, (h+(h(h-1)/2) + number of higher 
order interaction effect) and 1 degree of freedom 
for the null hypotheses 1, 2, 3 and 4 
respectively, where λij ... r1 is the likelihood ratio 
for i, j, .., r, l(=1)th (for all i, j, ..., r, s = 0, 1) 
transitions of the Markov chain. For the overall 
transition probabilities of the Markov chain this 
test statistic is defined as 
 

2 2
ij .. r1 ... r1ij

χ χ=                 (2.4) 

 

for all i, j, ...., r = 0, 1   with   2rh, 2r, (h+(h(h-
1)/2) + number of higher order interaction 
effect)  and 2r  degrees of freedom for null 
hypotheses 1, 2, 3 and 4 respectively, where r is 
the order of the Markov chain. 
 
Methods of Model Selection 

To identify the best model among the 
significant models, several authors including 
McCullagh & Nelder (1983) and Agresti (1984) 
suggested various model selection procedures 
and they also identified some limitations and 
drawbacks. For example, these selection 
procedures sometimes provide almost equal 
emphasis for several possible models; often 
procedures do not provide the best model among 
the models sufficiently for a true alternative 
hypothesis. For overcoming these problems, 
Akaike’s Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) 
procedures are employed for the selection of 
appropriate covariate dependent transition 
probabilities for the Markov model (Sakamoto, 
1991; Shimizu, 1993). 

Akaike (1972b) developed AIC by the 
utilization of a likelihood ratio criterion under 
the extension form of maximum likelihood. 
Akaike (1970) defined AIC on the basis of final 
prediction error (FPE) as the mean square 
prediction error of a predictor to identify the 
autoregressive model. Schwarz (1978) 
developed BIC as a more consistent and optimal 
procedure than the AIC. Sakamoto (1991) used a 
minimum of AIC (MAICE) and a minimum of 
BIC (MBICE) to identify the optimal 
explanatory variable for the model. For covariate 
dependent transition probabilities of Markov 
chain models, to develop a model selection 
procedure, the MAICE and MBICE are 
employed by utilizing the likelihood function 
and the ML estimate of parameters. For a large 
n, Bayes estimators are asymptotically 
equivalent to ML estimators (Kendall & Stuart, 
1973) and the procedures are defined as 
 

AIC(i)  < AIC(i+1) < … < AIC(i+s),    (3.1) 
 
and 
 

BIC(i)  < BIC(i+1) < … < BIC(i+s),     (3.2) 
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where i = 1, 2, …, ∝ , s = 0, 1, 2, …, ∝, (i+s)  
indicate the number of models, AIC = - 
2(maximum log likelihood) + 2(number of 
estimable parameters in the model) and BIC = -
2(maximum log likelihood) + 2(number of 
estimable parameters in the model)×log n. The 
terms AIC(i) and BIC(i) indicate the best model 
among models AIC(i+1), …, AIC(i+s) and 
BIC(i+1), …, BIC(i+s) respectively. 
 
Data 

To identify the utility of the proposed 
models, the daily rainfall occurrence data during 
the rainy season for the period 1964-1990 for 
five selected stations, namely Chittagong, 
Mymensingh, Rajshahi, Faridpur and Satkhira of 
Bangladesh, were utilized. These data are 
collected by the Department of Meteorology, 
Government of People’s Republic of 
Bangladesh. The period between the months of 
April and October is considered as the rainy 
season. The major agricultural crops (Aus and 
Aman rice) under the traditional system of this 
country, Bangladesh, are produced during this 
period and depend greatly on the occurrences of 
rainfall due to the shortage of sufficient 
irrigation facilities. 
 
Logistic Regression Models for Transition 
Probabilities of Markov Chain for the 
Occurrence of Rainfall 

A comprehensive idea regarding the 
probability of rainfall is essential in view of 
economic implications for crop production. The 
probabilities for the occurrences of rainfall are 
used in agricultural planning purposes, such as 
land-use, choice of crops and cropping system. 
Several researchers (Virmani, 1975; 1982; Dale, 
et al., 1981; Davy, et al., 1976) analyzed the 
occurrences of rainfall to identify the 
determinant of rainfall occurrences. They found 
that the occurrences of rainfall depend mainly on 
different climatic factors, such as temperature 
and humidity. Further, Shimizu (1993) 
developed a bivariate mixed lognormal 
distribution for assessing the probability of 
rainfall by using the Automated Meteorological 
Data Acquisition System (AMeDAS) data set of 
Japan. 

In order to develop covariate dependent 
transition probabilities of a Markov chain model 

for assessing and analyzing the occurrences of 
rainfall for the five selected areas of Bangladesh, 
consider probability models 2.1 and 2.2. The 
climatic variables temperature and humidity 
(Virmani, 1975, 1982) are employed to perform 
these models. For these variables, the term 
Zij....kr1(q,t) for model 2.1 may be defined as: 
 

( , ) =1( ... 1)

 +  X1(ij .. kr1) 1(ij .. kr1) 1(ij .. kr1) ( )

Z q tij kr

q t rα β −
, 

(5.1) 
 

Z (q, t) =2(ij...kr1)

α  + β  X2(ij .. kr1) 2(ij .. kr1) 2(ij .. kr1)q(t r)−
, 

(5.2) 
 

( , ) =
3( ... 1)

           + X
3(ij .. kr1) 1(ij .. kr1) 1(ij .. kr1) ( )

           + X
2(ij .. kr1) 2(ij .. kr1) ( )

Z q t
ij kr

q t r

q t r

α β

β

−

−

, 

(5.3) 
 

( , ) =4( ... 1)

                   + X4(ij .. kr1) 1(ij .. kr1) 1(ij .. kr1) ( )

                   + X  2(ij .. kr1) 2(ij .. kr1) ( )

                   + 12(ij..kr1) 1( .. 1) ( ) 2( .. 1) (

Z q tij kr

q t r

q t r

X Xij kr q t r ij kr q

α β

β

β

−

−

− ,)t r−
(5.4) 

 
for all i, j, .., k, r = 0, 1 , q = 1, 2, .., Q,  t = 1, 2, 
…, T and r is the order of Markov model. Here i, 
j, …, k, r represent the transitions of the Markov 
model and q and t indicate the number of year 
and the number of days in the year respectively. 
The term (q, t) represents the tth day of the qth 
year. The variables X ij . q t r1( ( ). kr1) −  and 

X ij . q t r2( ( ). kr1) −  indicate the maximum 

temperature and average humidity respectively 
of the (t-r)th day for the qth year for (i, j, .., k, r, 
1)th transitions. The terms β1(ij..kr1) and β2(ij..kr1) 
indicate the effects of temperature and humidity 
respectively, β12(ij..kr1) indicates the interaction 
effect between temperature and humidity on the 
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occurrences of rainfall and the terms 1 and 0 
indicate wet and dry days respectively. 

To test the significance of probability 
models 5.1-5.4 and their estimated parameters, 
the likelihood ratio test statistic is utilized. For 
performing this test statistic, the following four 
null hypotheses are considered. 
 
a. For models (5.1) and (5.2):  
 

H0: β1(j1) = 0 and  
H0: β1(ij1) = 0 

vs. 
H1: β1(j1) ≠ 0 and  

H1: β1(ij1) ≠ 0. 
 
b. For model (5.3):  
 

H0: β1(j1) = β2(j1) = 0 and  
H0: β1(ij1) = β2(ij1) = 0 

vs. 
H1: β1(j1) = β2(j1) ≠ 0 and  

H1: β1(ij1) = β2(ij1) ≠ 0. 
 
c. For model (5.4):  
 

H0: β1(j1) = β2(j1) = β12(j1) = 0 and  
H0: β1(ij1) = β2(ij1) = β12(ij1) = 0 

vs. 
H1: β1(j1) = β2(j1) = β12(j1) ≠ 0 and  
H1: β1(ij1) = β2(ij1) = β12(ij1) ≠ 0. 

 
d. For models (5.1-5.4): 
 

H0: αj1 = 0 and 
H0: αij1 = 0 

vs. 
H1: αj1 ≠ 0 and 

H1: αij1 ≠ 0. 
 
e. For models (5.3) and (5.4) respectively: 
 

H0: βm(j1) = 0 and 
H0: βm(ij1) = 0 

vs. 
H1: βm(j1) ≠ 0 and 

H1: βm(ij1) ≠ 0, 
 

where m = 1, 2. 
 
 

f. For model (5.3): 
 

H0: β12(j1) = 0 and 
H0: β12(ij1) = 0 

vs. 
H1: β12(j1) ≠ 0 and 

H1: β12(ij1) ≠ 0. 
 

To test the significance of transition 
probabilities for the occurrences of rainfall for 
first and second order Markov models 5.1-5.4, 
the values of χ2 under the LR criterion for null 
hypotheses (a), (b) and (c) are identified. 
Further, to test the significance of parameters for 
transition probabilities of first and second order 
Markov models (5.1-5.4), the values of χ2 under 
LR criterion for null hypotheses (d), (e) and (f) 
are also identified (the values of χ2 for these null 
hypotheses are not shown herein, however). But 
based on these χ2-values, the significance of 
parameters and models are identified. To test the 
null hypothesis by the χ2 statistic, it is always 
observed that the value of χ2 increases as sample 
size increases. For overcoming this problem, 
although it is small, consider a p-value up to 
0.001 as the cut-off point. 
 

Results 
Significance of Estimated Parameters and 
Models 

To estimate the parameters of models 
5.1-5.4, consider the ML estimation method 
under the Newton-Raphson iteration procedure. 
To identify the order of the transition 
probabilities of a Markov chain for daily rainfall 
occurrences Sinha (1997) and Sinha, et al. 
(2009) showed that the Chittagong and Faridpur 
stations follow first order and the Mymensingh, 
Rajshahi and Satkhira stations follow second 
order transition probabilities of a Markov chain. 
To estimate the parameters of these models, 
consider t = 214, Q = 27 and r = 1 for the 
Chittagong and Faridpur stations and r = 1 and 2 
for the remaining three stations. For transition 
probabilities of daily rainfall occurrences for 
first order Markov models 5.1-5.4 for the five 
selected stations and second order Markov 
models 5.1-5.4 for the Mymensingh, Rajshahi 
and Satkhira stations of Bangladesh, the 
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estimated values of parameters and their 
significance are shown in Table 1. 

For the first order Markov models, the 
effect of temperature for model 5.1 and the 
effect of humidity for model 5.2 on the 
occurrences of transition probabilities (t.p.) of 
rainfall are found to be positive for the five 
selected stations (see Table 1). The exception to 
this result occurs for transition type Wet/Wet for 
model 5.1 for all selected stations and for model 
5.2 for the Chittagong and Rajshahi stations. 

The effect of humidity and temperature 
for model 5.3, and the effect of humidity and the 
interaction term between temperature and 
humidity for model 5.4 are also positive on the 
occurrences of t.p. of rainfall for all the selected 
stations. The exceptions to this result occur for 
transition type Wet/Wet for the Rajshahi, 
Faridpur and Satkhira stations and for all 
transitions of Chittagong station for temperature 
for model 5.3. Such an exceptional result is also 
observed for transition type Wet/Wet for the 
Chittagong station for humidity and for 
transition types Wet/Dry for the Chittagong 
station and Wet/Wet for the Satkhira station for 
the interaction term for model 5.4. 

The positive effect of temperature and 
humidity and their interaction effect for the 
occurrences of rainfall transitions indicate that 
the probability of the occurrence of rainfall 
increases with increases of these variables for 
two consecutive days. The result for model 5.4 
implies that the effect of temperature and 
humidity and their interaction effect on the 
occurrences of rainfall are inversely related. 

The effect of temperature and of 
humidity on the occurrences of rainfall for 
different types of transition probabilities of first 
order Markov models 5.1-5.4 are significant (p-
value < 0.001) for the five selected stations. To 
assess the probability of rainfall occurrences for 
first order Markov models, the results of χij

2 
indicate that all transitions for model 5.1 are 
significant at the Chittagong, Rajshahi and 
Satkhira stations, for model 5.2 are significant at 
the Chittagong and Mymensingh stations, and 
for models 5.3 and 5.4 are significant at all 
selected stations. For the overall transition 
probability of rainfall occurrences, the χ2 value 
indicates that the first order Markov models 5.1-
5.4 are significant for all selected stations. 

For second order Markov models, 
results show in Table 1 indicate that the effect of 
temperature for model 5.1 and the effect of 
humidity for model 5.2 are positive on the 
occurrences of transition probabilities of rainfall 
for the Mymensingh, Rajshahi and Satkhira 
stations. This result is an exception for transition 
type Wet/Dry/Wet for the Mymensingh and 
Rajshahi stations and Wet/Wet/Wet for the 
Satkhira station for model 5.1. Further, the effect 
of temperature and humidity for model 5.3, and 
the effect of humidity and interaction term 
(temperature and humidity) for model 5.4 are 
observed to be positive on the occurrences of t.p. 
of rainfall for these three stations. However, for 
the Rajshahi station is an exception for transition 
types Wet/Dry/Wet and Wet/Wet/Dry for 
temperature for model 5.3. This exceptional 
result is also found for model 5.4 for transition 
type Wet/Dry/Dry at the Satkhira station for the 
interaction term and for transition types 
Wet/Dry/Wet, Wet/Wet/Dry and Wet/Wet/Wet 
at Rajshahi, and Wet/Wet/Wet at Satkhira for 
humidity. This positive effect of temperature, 
humidity and their interaction effect for the 
occurrences of rainfall transitions imply that the 
probability of rainfall increases with increases of 
these variables for three consecutive days. 

For different types of second order 
transition probabilities of Markov models, Table 
1 shows that the effect of temperature for model 
5.1, the effect of humidity for model 5.2, the 
effect of temperature and humidity for model 
5.3, and the effect of temperature and humidity 
and their interaction effect for model 5.4 are 
nonsignificant (p-value < 0.001) on the 
occurrences of rainfall for the maximum number 
of transitions for the Mymensingh, Rajshahi and 
Satkhira stations.  

Further, to assess the probability of 
rainfall occurrences for second order Markov 
models, the results of χ2

ijk indicate that all 
transitions for models 5.3-5.4 are significant for 
these stations. The exceptions to this result occur 
for transition types Wet/Dry/Wet and 
Wet/Wet/Dry for the Mymensingh station and 
Wet/Dry/Wet and Wet/Wet/Wet for the Rajshahi 
station for model 5.3, and transition type 
Wet/Dry/Wet for the Mymensingh station for 
model 5.4. However, for overall transition 
probability of rainfall occurrences, the values of  
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Table 1: Estimated Parameters for Logistic Regression for Transition Probabilities of First and Second Order Markov 
Models 5.1-5.4 and their Significance for Five Selected Areas of Bangladesh 

 

Station 
Name 

Transition 
Type 

Model 5.2 
α1(j1)          β1(j1) 

Model 5.2 
α2(j1)            β2(j1) 

Model 5.3 
α3(j1)          β1(j1)          β2(j1) 

Model 5.4 
α4(ij1)         β1(ij1)          β2(ij1)       β12(ij1) 

Chittagong 

0 → 1 
 

1 → 1 
 

-1.66321
*
    0.02460

*
 

(0.20331)   (0.00649) 

8.55298
*
   -0.24899

*
 

(0.74237)   (0.02383) 

-15.80485
*
  0.18630

*
 

(0.93470)   (0.01155) 

-17.11358
*
 -0.21235

*
 

(0.83400)   (0.00995) 

-13.87005
*
  -0.05096

*
  0.18216

*
 

(1.2856) (0.01173)  (0.01161) 

-10.07113  - 0.07826
*
   0.15733

*
 

(1.07783)   (0.01855)   (0.00924) 

-34.61039
*
  0.61502  0.44442

*
 -0.00842 

(8.95026) (0.28473) (0.11991) (0.00360) 

25.11332  -1.22477
*
 - 0.24801  0.01323

*
 

(7.91970) (0.25361) (0.08778) (0.00282) 

Mymeningh 

0 → 1 
 

1 → 1 
 

-1.80030
*
    0.02794

*
 

(0.10932)  (0.00360) 

0.85874
*
    -0.00711 

(0.15992)  (0.00540) 

-4.91382
*
    0.05003

*
 

(0.33400)   (0.00421) 

-7.71641
*
    0.09883

*
 

(0.57352)  (0.00678) 

-5.91503
*
   0.02303

*
   0.05448

*
 

(0.41529)   (0.00405)   (0.00466) 

-7.30683
*
   0.00455

*
    0.09249

*
 

(0.61389)    (0.00551)  (0.00674) 

- 4.21334
*
 -0.04123   0.03434

*
 0.00077

*
 

(0.47261) (0.01928) (0.00586) (0.00024) 

0.08709
*
 -0.26779

*
 0.00564    0.00321

*
 

(1.15585) (0.04208) (0.01344) (0.00049) 

0→0→1 
 

1→0→1 
 

0→1→1 
 

1→1→1 
 

-2.27199
*
    0.03130

*
 

(0.13929)  (0.00455) 
-0.11962   -0.00206 
(0.23879)  (0.00797) 
0.34499    0.00071 

(0.22895)  (0.00753) 

0.70411
*
    0.00401 

(0.19879)  (0.00680) 

-3.00491
*
    0.02145

*
 

(0.24970)  (0.00321) 
-2.31835     0.02603 
(0.79070)  (0.00957) 

-2.04344
*
    0.02968 

(0.65770)  (0.00805) 
-1.30477    0.02447 
(0.67893)  (0.00782) 

-3.48158
*
   0.02376

*
  0.01915

*
 

(0.30151)  (0.00473)  (0.00365) 
-2.43567     0.00243   0.02661 

(0.88411)  (0.00818)  (0.00977) 
-2.11570     0.00195    0.02987 
(0.72134)  (0.00774)  (0.00813) 
-1.56163     0.00643    0.02534 
(0.73602)  (0.00682)  (0.00792) 

- 3.15954
*
 -0.01040   0.01471    0.00045 

(0.31601) (0.01664) (0.00435) (0.00022) 

-1.09384  -0.02267    0.01102
*
 0.00028 

(2.88316) (0.09513) (0.03384) (0.00112) 
-0.57187  -0.02340    0.01103    0.00031 
(0.96734) (0.03652) (0.01183) (0.00045) 
-0.51836  -0.04736    0.01326    0.00063 
(1.28677) (0.04874) (0.01487) (0.00057) 

Rajshahi 

0 → 1 
 

1 → 1 
 

-2.61113
*
  0.05089

*
 

(0.12574) (0.00392) 

1.43630
*
  -0.03344

*
 

(0.26954) (0.00860) 

-9.73000
*
   0.11039

*
 

(0.47914)   (0.00591) 

-12.59192
*
 -0.15132 

(0.78959)   (0.00917) 

-10.82544
*
 0.03616

*
  0.11045

*
 

(0.54733)  (0.00539)  (0.01958) 

-9.44802
*
 -0.03370     0.12696

*
 

(0.82519)  (0.00971)  (0.00274) 

-5.35333
*
 -0.19978

*
 0.03782

*
  0.00307

*
 

(0.59776) (0.02632) (0.00838) (0.00035) 

0.07798   -0.50250
*
 0.00351    0.00586

*
 

(0.60304) (0.03493) (0.00770) (0.00013) 

0→0→1 
 

1→0→1 
 

0→1→1 
 

1→1→1 
 

-2.91907
*
  0.05491

*
 

(0.14711) (0.00457) 
-0.13410   -0.01329 
(0.34177) (0.01076) 
0.01713   0.00408 

(0.29250) (0.00120) 
0.31405    0.00934 

(0.29781) (0.00974) 

-5.11202
*
   0.05136

*
 

(0.33424)  (0.00436) 

-2.97782
*
   0.02952 

(0.88895)  (0.01073) 

-3.04452
*
  0.03864 

(0.75410) (0.00908) 
-0.90133   0.01694 
(0.64385) (0.00726) 

-5.80392
*
   0.04121

*
  0.04480

*
 

(0.39331)  (0.00521) (0.00478) 
-2.50378    -0.01697   0.030175 
(0.91911)  (0.01123) (0.01055) 

-2.96257
*
  -0.00344   0.03896

*
 

(0.78487)  (0.00964) (0.00909) 
-1.04218     0.00606   0.01647 
(0.69783)  (0.01003) (0.00743) 

- 4.10119
*
 -0.04681   0.01762  0.00130

*
 

(0.41056) (0.01853) (0.00647) (0.00027) 
-0.36481   -0.14755  -0.01027    0.00176 
(1.27667) (0.05058) (0.01720) (0.00067) 

0.24531  -0.15739
*
 -0.00762   0.00210

*
 

(0.93122) (0.03921) (0.01285) (0.00016) 

1.15412  -0.12338
*
 -0.01350   0.00163

*
 

(0.81518) (0.04037) (0.00971) (0.00048) 

Faridpur 

0 → 1 
 

1 → 1 
 

-1.49605*  0.02027* 
(0.13717)  (0.00433) 
1.21035* -0.02112 

(0.23697) (0.00771) 

-7.23936*  0.08018 
(0.45168)  (0.00554) 
-12.9266*  0.15741* 
(0.76910) (0.00897) 

-7.58175*    0.00712   0.08165* 
(0.55765)    (0.0064)  (0.00578) 
-0.74976*   -0.15087* 0.07049* 

(0.28198)    (0.01329) (0.00490) 

-1.94471* -0.34008*  0.00022   0.00465* 
(0.20908) (0.02180) (0.00492) (0.00031) 
0.07996   -0.45381* 0.00639    0.00529* 
(0.26813) (0.02845) (0.00515) (0.00038) 

Satkhira 

0 → 1 
 

1 → 1 
 

-2.99935*  0.05913* 
(0.15545)  (0.00471) 
4.06126*  -0.10761* 
(0.56772) (0.01774) 

-7.26723*  0.08084 
(0.40541)  (0.00510) 
-11.13848* 0.14027* 
(0.66308)  (0.00789) 

-7.63173*  0.01052      0.08114* 
(0.48543)  (0.00698)  (0.00164) 
-9.66700* -0.01306*   0.12768* 
(0.83070)  (0.01140)  (0.00790) 

-6.16671* -0.04065   0.06227*  0.00066 
(0.71258) (0.02520) (0.01010) (0.00035) 
-13.75171* 0.11648   0.17769* -0.00159 
(4.44781) (0.13820) (0.05397) (0.00534) 

0→0→1 
 

1→0→1 
 

0→1→1 
 

1→1→1 
 

-3.26893*  0.05882* 
(0.17891) (0.00540) 
-1.22253   0.02539 
(0.51918) (0.01589) 
0.13733     0.00460 
(0.43185) (0.00135) 
1.44444* -0.01870 

(0.46885) (0.00476) 

-4.47600*     0.04262 
(0.27989) (0.00369) 
-3.32119*    0.03614 
(0.80828) (0.00994) 
-2.13771*    0.03007 
(0.71428) (0.00881) 
-3.85287*    0.05447 
(0.82413) (0.00952) 

-4.64660*   0.01328    0.03926* 
(0.30980)  (0.00677) (0.00419) 
-5.25520*   0.04439   0.04233* 
(1.21875)  (0.02007) (0.01051) 
-2.46701     0.00832   0.03080* 
(0.91527)  (0.01394) (0.00901) 
-4.38068*   0.01034   0.05688* 
(1.09066)  (0.01396) (0.01007) 

- 4.92094* 0.02978   0.04603* -0.00031 
(0.42540) (0.01857) (0.00689) (0.00028) 
-2.45716   -0.04177   0.00693    0.00109 
(4.97238) (0.15117) (0.06278) (0.00193) 
-0.53421   -0.07461   0.00277    0.00116 
(1.12239) (0.04103) (0.01571) (0.00058) 
4.64829   -0.25704  -0.04568    0.00304 
(5.81100) (0.18482) (0.06665) (0.00213) 

Notes: The figure in parentheses indicates the standard deviation of estimated parameters. The transitions 0→1 and 1→1 
indicates the transition of the type dry to wet and wet to wet respectively. The transitions 0→0→1, 1→0→1, 0→1→1 and 
1→1→1 indicate the transition of the type dry to dry to wet, wet to dry to wet, dry to wet to wet and wet to wet to wet 
respectively. *p < 0.001. 
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Table 2: Values of AIC and BIC for First and Second Order Transition Probabilities of Markov Models 5.1-5.4 
for Five Selected Stations of Bangladesh 

 

Station Name 
Test 

Criteria 
Order of Markov 

Models 
Transition 

Types 
Model 

5.1 
Model 

5.2 
Model 

5.3 
Model 

5.4 

Chittagong 
AIC First Order 

0→1 
1→1 

3496.83 
3286.95 

3085.17 
2979.59 

3067.95 
2936.83 

3064.85 
2916.97 

BIC First Order 
0→1 
1→1 

3498.67 
3289.56 

3087.01 
2982.20 

3070.71 
2940.74 

3068.53 
2922.19 

Mymensingh 

AIC 

First Order 
0→1 
1→1 

3700.92 
3205.04 

3511.57 
2998.41 

3477.76 
2984.48 

3464.93 
2957.16 

Second Order 

0→0→1 

1→0→1 
0→1→1 

1→1→1 

2326.60 
1178.27 
1157.12 
2027.04 

2321.67 
1172.80 
1161.34 
2017.16 

2295.10 
1173.51 
1154.29 
2018.28 

2291.80 
1175.33 
1146.28 
2018.41 

BIC 

First Order 
0→1 
1→1 

3702.78 
3210.70 

3513.43 
3000.85 

3480.55 
2988.14 

3468.65 
2962.04 

Second Order 

0→0→1 

1→0→1 
0→1→1 

1→1→1 

2327.94 
1179.45 
1158.52 
2029.16 

2323.01 
1173.98 
1162.74 
2019.28 

2297.11 
1175.28 
1156.45 
2021.46 

2294.48 
1177.69 
1149.08 
2022.65 

Rajshahi 

AIC 

First Order 
0→1 
1→1 

3728.45 
2839.46 

3229.80 
2529.84 

3176.66 
2528.50 

3114.17 
2384.42 

Second Order 

0→0→1 

1→0→1 
0→1→1 

1→1→1 

2539.36 
1114.18 
1173.59 
1661.40 

2498.56 
1107.21 
1152.07 
1656.43 

2419.86 
1106.97 
1153.94 
1658.07 

2399.60 
1102.27 
1140.69 
1643.82 

BIC 

First Order 
0→1       
1→1 

3730.31 
2841.66 

3231.66 
2531.96 

3179.45 
2531.80 

3117.89 
2388.82 

Second Order 

0→0→1 

1→0→1 
0→1→1 

1→1→1 

2540.82 
1115.16 
1174.89 
1663.22 

2500.02 
1108.19 
1153.37 
1658.25 

2422.05 
1108.44 
1155.89 
1660.80 

2402.52 
1104.23 
1143.29 
1647.46 

Faridpur 
AIC First Order 

0→1 
1→1 

3838.85 
3365.90 

3493.74 
3147.79 

3494.47 
3115.20 

3322.31 
2944.74 

BIC First Order 
0→1 
1→1 

3840.79 
3368.34 

3495.68 
3150.23 

3497.38 
3118.86 

3326.19 
2949.62 

Satkhira 

AIC 

First Order 
0→1 
1→1 

3449.47 
2829.18 

3044.67 
2525.72 

3044.27 
2508.95 

3044.16 
2510.00 

Second Order 

0→0→1 

1→0→1 
0→1→1 

1→1→1 

2312.46 
1027.00 
1051.62 
1796.37 

2214.23 
1016.03 
1039.12 
1764.78 

2212.15 
1011.64 
1038.84 
1766.25 

2213.98 
1013.33 
1037.48 
1768.22 

BIC 

First Order 
0→1 
1→1 

3451.23 
2831.52 

3046.43 
2528.06 

3046.91 
2512.46 

3047.68 
2514.67 

Second 
Order 

0→0→1 

1→0→1 
0→1→1 

1→1→1 

2313.78 
1027.96 
1052.90 
1798.41 

2215.55 
1016.99 
1040.40 
1766.82 

2214.13 
1013.08 
1040.76 
1766.29 

2216.62 
1015.25 
1040.04 
1772.30 

Notes: For Table 2.7 the transitions 0→1 and 1→1 indicates the transition of the type dry to wet and wet to wet 
respectively. The transitions 0→0→1, 1→0→1, 0→1→1 and 1→1→1 indicate the transition of the type dry to dry to wet, 
wet to dry to wet, dry to wet to wet and wet to wet to wet respectively. 
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χ2 indicate that the second order Markov models 
5.1-5.4 are significant for all the selected 
stations. 
 
Probability Model for Forecasting Rainfall 

To select a forecasting model among the 
models for the occurrences of rainfall, AIC and 
BIC criteria were utilized. The values of AIC 
and BIC for covariate dependent transition 
probabilities of Markov models 5.1-5.4 for the 
occurrences of rainfall are shown in Table 2. 

Table 2 indicates that the values of AIC 
and BIC are minimum for different types of 
transition probabilities of rainfall occurrences 
for first order Markov model 5.4 for all the 
selected stations. However, the effect of 
temperature and humidity for this model are not 
sufficiently effective Table 2.1 in explaining all 
the transition probabilities of rainfall 
occurrences for all stations. Therefore, results 
lack strong grounds to select this model as an 
appropriate forecasting model for daily rainfall 
occurrences.  

To identify this model, consider next 
minimum value to the values of model 5.4 for 
these criteria. Table 2 shows that the values of 
AIC and BIC for all transition probabilities of 
first order Markov model 5.3 are the next 
minimum values to the values of model 5.4; 
therefore, the transition probabilities of first 
order Markov model 5.3 may be considered an 
appropriate forecasting model for daily rainfall 
occurrences for all selected stations. Although 
the effect of temperature for transition Wet/Wet 
for the Rajshahi station and Wet/Dry for the 
Faridpur and Satkhira stations is non-effective, 
overall transitions this effect are significant. 

For second order transition probabilities 
of the Markov model, Table 2 shows that the 
values of AIC and BIC for models 5.3 and 5.4 
for Mymensingh and Satkhira stations are 
approximately equal and these values are 
observed minimum compared to values of 
models 5.1 and 5.2. For the Rajshahi station 
these values are observed minimum for model 
5.4 compared to models 5.1, 5.2 and 5.3. 
However, the effect of temperature and humidity 
for model 5.4 is not significant (Table 1) for 
maximum number of transitions. Therefore, this 
model is not selected as an appropriate 
forecasting model for daily rainfall occurrences 

for the Rajshahi station. To select this model, 
consider next minimum values of these criteria 
rather than values of model 5.4. Table 2 
indicates that the values of AIC and BIC for 
model 5.3 provide next minimum values 
compared to the values of model 5.4. Therefore, 
the transition probabilities of second order 
Markov model 5.3 may be selected for 
forecasting the occurrences of rainfall for the 
Mymensingh, Rajshahi and Satkhira stations. 
However, Table 1 shows that the effect of 
temperature and humidity for the transition 
probabilities of rainfall for first order Markov 
model 5.3 are significantly effective and for 
second order Markov model 5.3, but these 
effects are not sufficiently effective. Based on 
this logical view, it may be concluded that the 
transition probabilities of first order Markov 
model 5.3 make it an adequate choice for 
forecasting the occurrences of rainfall than that 
of second order Markov model 5.3 for all the 
selected stations of Bangladesh. 
 

Conclusion 
Logistic regression models for higher order 
transition probabilities of Markov chains for the 
sequence of chain dependent repeated 
observations have been developed. An 
assumption is made that the sequence of 
repeated observations can be explained by 
certain covariates. These models are developed 
as an extension of the model proposed by Muenz 
and Rubinstein (1985). To identify the 
significance of covariate dependence in 
transition probabilities for higher order Markov 
models and also to identify the significance of 
parameters of these models, a test procedure 
under likelihood ratio criterion has been 
developed. Further, a method of model selection 
procedure is suggested in this study employing 
AIC and BIC procedures (Sakamoto; 1991). 

The proposed models and test 
procedures have been used to analyze the 
occurrences of daily rainfall data for selected 
stations in Bangladesh. To apply these models, 
two climatic variables - temperature and 
humidity - were considered. These applications 
reveal that the proposed models and test 
procedures can be useful to identify the 
forecasting models for daily rainfall 
occurrences. From the results of these models 
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and test procedures, the effects of temperature 
and humidity on the occurrences of rainfall can 
be summarized for first order the Markov model 
5.3 that provides statistically significant results. 

From the analysis of models 5.1-5.4, 
positive results were observed for the effect of 
temperature for model 5.1 and the effect of 
humidity for model 5.2 on the occurrences of 
rainfall for maximum number of first and second 
order rainfall transitions of Markov models for 
all the selected stations. The effects of 
temperature and humidity for first and second 
order Markov models 5.3 on the occurrences of 
rainfall show similar results. 

The first and second order Markov 
models 5.4 also provide positive effects for the 
humidity and interaction term (temperature and 
humidity) on the occurrences of rainfall for 
maximum number of rainfall transitions for all 
selected stations. These positive effects indicate 
that the probability of rainfall is positively 
associated with temperature and humidity. The 
effect of temperature and the effect of humidity 
on the occurrences of rainfall for first order 
Markov models 5.1 and 5.2 respectively, and the 
effect of these covariates for model 5.3 are 
observed to be significant for the maximum 
number of transitions for all selected stations. It 
is also demonstrated that the method of model 
selection procedure provides sufficient evidence 
that the first order Markov model 5.3 is the most 
suitable among the models investigated as the 
forecasting model for daily rainfall occurrences 
for the five selected stations of Bangladesh. 
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Given that n voters report only the first r (1 ≤ r < m) ranks of their linear preference rankings over m 
alternatives, the likelihood of implementing Borda outcome is investigated. The information contained in 
the first r ranks is aggregated through a Borda-like method, namely the r-Borda rule. Monte-Carlo 
simulations are run to detect changes in the likelihood of r-Borda winner(s) to coincide with the original 
Borda winner(s) as a function of m, n and r. The voters’ preferences are generated through the Impartial 
Anonymous and Neutral Culture Model, where both the names of the alternatives and voters are 
immaterial. It is observed that, for a given r, the likelihood of choosing the Borda winner decreases down 
to zero independent of n as m increases within the computed range of parameter values, 1 ≤ m, n ≤ 30. For 
n = 30, this likelihood is given as an approximating function of r and m through least square fit method. 
 
Key words: Borda rule, r-Borda rule, impartial anonymous, neutral culture. 
 
 

Introduction 
A voting rule solves the collective decision 
problem where voters must jointly choose one 
among a number of possible candidates 
(alternatives) on the basis of reported ordinal 
preferences. The choice of a voting rule has been 
a major ethical question since the political 
philosophy of the Enlightenment. When only 
two alternatives are at stake, the ordinary 
majority voting is unambiguously regarded as 
the best method. For three and more alternatives, 
plurality voting at which each voter is asked to 
report exactly one alternative at her/his ballot 
and the alternative voted the most wins, has been 
historically the most popular voting rule. The 
two celebrated critiques of plurality voting, 
Borda (1781) and Condorcet (1785) noted that 
plurality voting may elect a poor candidate, 
namely, one that would lose in a simple pair-
wise majority comparison to every other 
candidate, or one ‘disliked’ by the strict majority 
of voters. 
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Borda and Condorcet are individually 

devised different rules to replace plurality 
voting. Borda introduced a scoring method; the 
Borda rule that assigns points to each candidate, 
increasing linearly with a candidate’s ranking in 
a voter’s opinion, and elects the alternative with 
the highest total score. Condorcet provided the 
voting principle which states that if a candidate 
defeats every other candidate in simple majority 
rule, then that candidate should be the winner in 
the election. These two approaches have 
generated most of the modern scholarly research 
in social choice literature.  

As discussed by Niemi and Riker 
(1976), Fishburn (1984), Nurmi (1987) and Amy 
(2000), no voting rule is perfect in aggregating 
individual preferences into social decisions in a 
manner compatible with the fulfillment of a 
variety of positive and normative criteria. 
However, some procedures are clearly superior 
to others in satisfying these criteria. Saari (1987, 
1989, 1990, 2001) show that the Borda rule is 
less susceptible than other positional scoring 
rules to some unsettling possibilities and 
paradoxes. Some of the theoretical and 
probabilistic results concerning the Borda rule 
are summarized in Brams and Fishburn (2002) 
and Pattanaik (2002). However, among its 
shortcomings, its vulnerability to strategic 
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manipulations and the practical difficulties of 
implementing it remain as the most criticized 
properties of the Borda rule. There are many 
studies theoretically and/or probabilistically 
considering the former issue. This article focuses 
on the latter which has not been studied in detail. 

The implementation criterion is 
concerned with the complexity of information 
that a voting procedure requires voters to reveal 
concerning their preferences regarding the 
alternatives. Unlike non-ranked single-stage 
voting procedures (such as plurality voting, 
negative plurality voting and approval voting) 
and non-ranked multistage voting procedures 
(such as plurality with a run-off and plurality 
with successive elimination), the Borda rule is a 
ranked procedure. Asking the voters to provide 
their complete preference rankings over the set 
of all available alternatives is a difficult-to-fulfill 
requirement due to the associated complications 
both on the side of voters as well as 
administrators to collect the information. 

This study investigates the likelihood of 
implementing Borda outcome when voters are 
asked to rank only a specified number of 
alternatives. The situations where n voters are 
required to report only the first r (1 ≤ r < m) 
ranks of their linear (i.e., full or total) 
preferences over m alternatives are considered. It 
is assumed that the partial individual preferences 
are aggregated through a Borda-like method, 
namely the r-Borda rule. The r-Borda rule 
assigns strictly positive points to each alternative 
appearing in the first r-ranks of a voter’s total 
preference, linearly increasing with its rank, and 
assigns zero points to those that are not among 
the top r-ranks in the voter’s decision. The 
alternative(s) that receive(s) the highest score 
aggregated over the electorate’s preferences is 
(are) chosen as the r-Borda winner(s). 

In this study, Monte Carlo simulations 
are run to ascertain the information content of 
only the first r ranks of the electorate’s 
preferences from the perspective of 
implementing the (original) Borda outcome. The 
way the r-Borda rule aggregates the voters’ 
preferences is different than the aggregation 
methods implemented by well-known single- 
and multi-stage non-ranked procedures which 
permit truncated ballots. In other words, the 
present study does not aim to detect the 

likelihood of any of these rules to choose the 
Borda outcome. 

The Borda-like aggregation of partially 
stated individual preferences is a popular 
method for sports and contests in real life. The 
Most Valuable Player of the National Basketball 
Association in the United States, the Eurovision 
Song Contest, The People’s Remix Music 
Competition and the Formula 1 Car Race are 
well-known examples such cases. These contests 
require voters to rank a specified number of 
candidates. Each stated candidate is given a 
score depending on its rank in the preference 
ordering of a voter, and the candidate that 
receives the highhest total score over the 
electorate is elected as the winner. The number 
of candidates to be ranked and the scores to be 
assigned to the ranks differs from one contest to 
another.  

Given that the Borda rule can choose 
more than one alternative as winners, in this 
study, two types of probabilities are computed 
for triples of m, n and r as the likelihood of 
choosing the Borda winner with partial 
individual preferences. The first type refers to 
the likelihood of the r-Borda rule choosing 
exactly the set of Borda winners. The second 
type of probability considers the likelihood of r-
Borda winners to be included in the set of Borda 
winners. The changes in these values as a 
function of m, n and r are investigated by 
considering all possible values of these 
parameters in an appropriate range. 

For Monte Carlo simulations, the voters’ 
preferences are generated via the Impartial 
Anonymous and Neutral Culture Model (IANC). 
As introduced by Eğecioğlu and Giritligil 
(2011), IANC treats voters’ preferences through 
a class of preference profiles, namely root 
profiles, where the names of both voters and 
alternatives are immaterial. 
 
Contribution and Relation to Literature 

To our knowledge, this study is the first 
attempt in the literature to analyze the extent of 
difficulty in implementing Borda outcome when 
voters are asked to rank only a specified number 
of alternatives and where the underlying model 
is as structurally general as is possible. The 
contribution of this computational work and its 
relation to literature can be discussed based on 
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two grounds: aggregation of truncated 
preferences and sampling voters’ preferences. 
 
Aggregation of Truncated Preferences 

A positional scoring rule assigns a score 
vector s = (s1, s2, …, sm) with s1  ≥ s2 ≥ … ≥ sm 
and s1 > sm to a preference ranking over a set of 
m alternatives, and chooses the alternative(s) 
with the highest total score aggregated over the 
rankings of all voters. The Borda rule is defined 
by the scoring vector s(Bm) = (m, m−1,…, 1). 
That is, si = m + 1- i for all i, and the difference 
in scores si-sj is proportional to j−i for all i and j. 
This article considers the situation where voters 
are asked to state only the first r ranks of their 
linear preferences over m alternatives and 
investigates the importance of the information 
revealed in the first r ranks of the electorate’s 
preferences from the perspective of 
implementing the Borda outcome. This partial 
information is aggregated through r-Borda rule 
Br which assigns alternative i the score        
si(Br) = r + 1−i if i ≤ r, and si(Br) = 0 otherwise. 

It should be noted that the r-Borda rule 
aggregates the partial preferences unlike 
constant scoring rules. A constant scoring rule 
asks each voter to indicate a given (and 
constant) number of alternatives. Each indicated 
alternative receives one point whereas all others 
get zero, and the alternative with the most votes 
is elected. Hence, for m ≥ 3, the scoring vector 
imposed by the r-Borda rule is not the same as 
the one assigned by a constant scoring procedure 
unless r = 1 implying the scoring vector           
(1, 0, …, 0) which identifies the most popular 
constant scoring rule, namely the plurality rule. 
The probability of constant scoring voting rules 
to select the Borda outcome has been studied by 
Gehrlein (1981), Gehrlein and Lepelley (2000) 
and Vandercruyssen (1999). Gehrlein and 
Fishburn (1980) and Gehrlein, et al. (1982) 
provide the propensity of pairs of score vectors 
for a set A of alternatives and a non-empty 
proper subset of A to yield the same ranking 
over the subset for an arbitrary profile of linear 
orders on A. 

The method adopted in this paper to 
aggregate truncated preferences is also different 
than the procedures that permit truncated ballots. 
Among these, approval voting has been widely 
considered in theoretical and practical grounds. 

Brams and Fishburn (2002) provide a summary 
of the theoretical debate between approval 
voting and the Borda rule. Approval voting 
requires each voter to indicate the alternatives 
that she/he approves. Each approved alternative 
by a voter receives one point and the 
alternative(s) with the highest point summed 
over all voters’ preferences is (are) chosen as the 
winner(s). Note that, in approval voting, the 
number of alternatives to be indicated or ranked 
by the electorate is not given and thus, is not 
homogeneous across voters. 

Another rule which permits voters to 
submit truncated preference rankings is 
majoritarian compromise since it needs at most 
the first half of the voters’ rankings over the 
entire set of alternatives. Introduced by Sertel 
(1987), majoritarian compromise selects the 
candidate(s) that has (have) the support of the 
majority in the best degree possible. Clearly, 
both approval voting and majoritarian 
compromise aggregate the truncated preferences 
in a different fashion than the r-Borda rule 
adopted herein.  

Consider a social planner who believes 
that Borda rule is the ‘best’ voting rule to 
aggregate individual preferences into a social 
choice. Due to the complications about requiring 
voters to state their total preference orderings, 
the planner can ask the electorate to report the 
first r (1 ≤ r < m) ranks of their linear preference 
rankings instead of asking them to state only 
their first-best choices in the hope of increasing 
the probability of choosing the Borda winner. In 
such a case, it seems natural to aggregate the 
reported partial rankings via a Borda-like 
procedure for the sake of preserving some 
consistency in the aggregation method. 
 
Sampling Voters’ Preferences 

An immense literature has been devoted 
to analyze the outcomes of various social choice 
rules through the use of computer simulations 
employing probability models to generate 
voters’ preferences. The most commonly used 
probability models in the literature are Impartial 
Culture (IC) and Impartial Anonymous Culture 
(IAC) conditions. Introduced by Guilbaud 
(1952), IC is a multinomial equiprobable 
preference profiles model which assumes that 
each voter selects her/his preference according 
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to a uniform probability distribution. IAC, which 
was first introduced by Fishburn and Gehrlein 
(1978), also relies on an equiprobability 
assumption, but without taking the identity of 
the voters into account. Details about these 
assumptions and their use in the literature are 
presented in Berg and Lepelly (1994) and 
Gehrlein (1997). 

In this paper, voters’ preferences are 
sampled through IANC which is also an 
equiprobability assumption, however, neglecting 
the names of both alternatives and voters. IANC 
treats each ‘root profile’ (profile from which all 
preference profiles can be generated through 
renaming the alternatives and voters) equally 
probable. Because the number of root profiles is 
small relative to the number of profiles that can 
be generated for m alternatives and n voters, 
IANC enables the researchers to obtain accurate 
probabilities even for large parameter values. 
Based on Eğecioğlu and Giritligil (2011), it is 
known that the probabilities computed using the 
IAC and IANC models coincide only in the 
vanishingly small likelihood of m! and n being 
relatively prime. 

In the social choice theory literature, 
anonymity and neutrality are among the most 
important ethical axioms which a voting rule is 
expected to fulfill. Anonymity requires all voters 
to be treated equally whereas neutrality calls for 
equal treatment of alternatives. A large group of 
voting rules including all scoring rules and pair-
wise majority relation rules fulfill these two 
axioms. The outcomes of anonymous and 
neutral voting rules are invariant under group 
symmetries of voter and alternative names. 
Among the probability models used for 
sampling voters’ preferences, IC assumes no set 
of symmetries whereas IAC takes into account 
only the symmetry of voter names. On the other 
hand, IANC takes into account the symmetries 
of both voters’ and alternatives’ names. This 
paper is the first study in the literature that 
adopts IANC to sample electorate’s preferences. 

Through the preference sampling 
method developed by Falmagne and 
Regenwetter (1996), Regenwetter and Grofman 
(1998) analyzed seven three-candidate elections 
conducted under approval voting and 
constructed a distribution of preference rankings 
from subset choice data to compare the results 

with potential winners of the Borda and 
Condorcet rules. Based on the method of 
generalized spectral analysis introduced by 
Lawson et al. (2006), Brams et al. (2006) 
compare the results of The Public Choice 
Society presidential elections in 2006, which 
was run through approval voting, with the 
possible outcomes that would have been 
obtained if plurality, Condorcet, Borda or a 
single transferable vote had been adopted.  

Both Regenwetter and Grofman (1998) 
and Brams, et al. (2006) start with partial 
information on voter preferences and assign 
probabilities to each alternative to be the Borda 
winner, and based on these probabilities, check 
whether the possible Borda winner(s) 
coincide(s) with the actually elected 
alternative(s). The present study, on the other 
hand, generates the full orderings of the 
electorate over the set of alternatives and then 
considers the first r ranks of the preference 
profiles. The approaches of the former studies 
and the present one are clearly different from 
each other methodologically.  

 
Preliminaries: Preference Profiles and the Borda 
rule 

A preference on a set A means any 
function p: A → 2A which assigns to every         
a ∈ A a subset (lower contour set) p(A) ⊆ A 
such that, at all a, b ∈ A: 
 
(1) b ∈ p(a) or a ∈ p(b): completeness; 
(2) p(b) ⊂ p(a) whenever b ∈ p(a): transitivity 
(3) b ∈ p(a) and a ∈ p(b) only if a = b:      

anti-symmetry. 
 

Such a preference clearly corresponds to a linear 
(or total) order on A. 

p(A) denotes the set of all preferences on 
A, any positive integer n means [n] = {1, 2,. ,n}, 
and a preference profile for a society of n voters 
on a set A means any family                          
Pm,n = (pi)i∈[n] ∈ p(A)[n] of preferences pi on A 
indexed by voters i ∈ [n]. Let card(pi(a)) be the 
cardinality of the lower counter set of a ∈ A for  
the voter i ∈ [n]. Note that the cardinality of the 
lower counter set of the top- and bottom- ranked 
alternatives are m and 1, respectively. 
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The Borda score of a ∈ A for i∈[n] is 
defined as, 

a
iB  = card(pi(a)), 

 
and the set of Borda winners at each               
Pm,n ∈ p(A)[n] is determined by setting 
 

B(Pm,n) = 
Aa∈

maxarg
[ ]

Σ
∈ ni

a
iB . 

 
Thus, the Borda rule chooses the candidates who 
maximize the total Borda score aggregated over 
the set of all n voters. 

Let r
nmP ,  denote the portion of a 

preference profile Pm,n where only the first r 
ranks of the voters’ preferences can be observed. 

Viewing the profile Pm,n as a m × n matrix, r
nmP ,  

corresponds to the r × n submatrix of Pm,n. Note 
that, if r = m or r = m − 1, B(Pm,n) is detectable. 
However, if r < m −1, the observable preference 

r
ip of voter i corresponds to a partial strict 

ordering on A, which is transitive and anti-

symmetric, however incomplete. Let r
iA ⊆  A 

be the set of alternatives appearing at r
ip . 

Let card( r
ip (a)) be the cardinality of 

the observable lower counter set of a ∈ r
iA  for 

i∈[n]. Note that 1 ≤ card( r
ip (a)) ≤  r. The 

Borda score of a ∈ A for i∈[n] is redefined as: 
a
iB  = card( r

ip (a)), if a ∈ r
iA , and 0 otherwise, 

and the set of r-Borda winners at any r
nmP ,  

is 

given by: 

B( r
nmP , ) = 

Aa∈
maxarg

[ ]
Σ
∈ ni

a
iB . 

 
In other words, if an alternative is 

among the first r-ranks in voter i’s ranking, then 
its associated r-Borda score is equal to the 

cardinality of its lower counter set in r
ip . If it is 

not among the top r-ranked alternatives, it 
receives a score of zero. The r-Borda rule 
chooses the alternative(s) with the highest r-

Borda score aggregated over r
nmP ,  

as winner(s). 

From this point on, B( r
nmP , ) and B(Pm,n) will be 

denoted by Br and B, respectively, for                
1 ≤  r ≤  m.  
 
Root Profiles and IANC 

Let Ω (m, n) denote the set of all 
preference profiles that can be generated for m 
alternatives and n voters. As shown in Eğecioğlu 
and Giritligil (2011), a product permutation 
group on the names of alternatives and of voters 
‘acts’ on Ω (m, n), and splits it into a disjoint 
union of subsets called orbits, that is: 
 

Ω (m, n) = 1θ + 2θ + ··· + ωθ  

 
where each iθ  is an anonymous and neutral 

equivalence class (ANEC). All preference 
profiles within an ANEC can be generated from 
each other through re-labeling the alternatives 
and/or the voters. That is, all preference profiles 
in any ANEC are ‘equalivalent’ in the sense that 
any anonymous and neutral voting rule (such as 
the Borda rule) yields the same outcome (under 
different names) for all of these profiles. 

A root profile is any preference profile 
that represents an ANEC. That is, all other 
preference profiles within the same equivalence 
class can be generated from this root profile via 
permuting the names of the m alternatives and of 
the n voters. The collection of all root profiles 
for m alternatives and n voters is denoted by               
R = R (m, n), and each element of this set 
represents an ANEC in Ω (m, n). 

 Consider a case with two alternatives, a 
and b, and three voters labeled v1, v2 and v3 
linearly ranking these alternatives. Note that, in 
this example, there are 2! preference rankings 
over alternatives (a being strictly preferred to b 
and b strictly preferred to a). Below are the   
(2!)3 = 8 possible preference profiles that can be 
generated:  

 

P1: 
v1 v2 v3 
a a a 
b b b 

 

P2: 
v1 v2 v3 
a a b 
b b a 
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P3: 
v1 v2 v3 
a b a 
b a b 

 

P4: 
v1 v2 v3 
b a a 
a b b 

 

P5: 
v1 v2 v3 
b b a 
a a b 

 

P6: 
v1 v2 v3 
b a b 
a b a 

 

P7: 
v1 v2 v3 
a b b 
b a a 

 

P8: 
v1 v2 v3 
b b b 
a a a 

 

 
If the group of permutations on the 

names of the voters acts on the above set of 
preference profiles, it partitions it into four 
anonymous equivalence classes (AECs):  

1AEC  = { 1P }, 2AEC = { 2P , 3P , 4P }, 

3AEC  = { 5P , 6P , 7P }, 4AEC  = { 8P }. 

Note that there are two possible 
permutations on the names of the alternatives: 
one is the identity permutation which leaves the 
names of the alternatives intact and the other is 
the permutation which re-labels a as b and b as 
a. If this group of permutations act on the set of 
AECs, two ANECs are obtained:  

1ANEC = { 1AEC , 4AEC }, 

2ANEC  = { 2AEC , 3AEC }. 

The root representing 1ANEC  shows a 
preference structure at which all voters have the 
same preference ranking and the root 
representing 2ANEC  exhibits a structure where 
one of the preference rankings is adopted by two 
voters and the other is adopted by one voter. 

IANC uses root profiles to represent 
voters’ preferences through an application of the 
Dixon-Wilf algorithm which enables the root 
profiles to be generated from the uniform 
distribution for m alternatives and n voters. That 
is, each root profile is generated uniformly with 
probability 1/card(R(m, n)). The formula for 
card(R(m, n)) and the details of the application 
of the Dixon-Wilf algorithm are given by 
Eğecioğlu and Giritligil (2011). 

 

Likelihood Measures: Types of Likelihood 
Two types of probabilities are 

considered to measure the likelihood of 
implementing the Borda outcome with truncated 
preference orderings.  
 
1. Pr1 = Pr1(m, n, r) refers to the likelihood 
of choosing the entire set of Borda winners 
when only the first r rows of a preference 

profile, r
nmP , , are considered. In other words, 

Pr1 is the probability that Br = B.  
 

For a given preference profile Pm,n,, consider the 
random variable:  

f1(
r

nmP , ) = 1, if Br = B and 

0, otherwise. 
 
Given the distribution of profiles to be generated 
for given m, n and r, the approximate Pr1 is 
computed through Monte Carlo integration 
based on the law of large numbers. The law of 
large numbers implies that the average of a 
random sample from a large population is likely 
to be close to the mean of the whole population. 
That is, Pr1 is defined through the random 
variables f1 : 
 

Pr1 = 
)),((

1

nmRcard 1

m ,n

r
m ,n

P R( m ,n )
f ( P ).

∈
  

 
2. Pr2 = Pr2(m, n, r) is the likelihood that 
an r-Borda winner is among the Borda winners. 
Thus, it is the likelihood of an element of Br to 
be also an element of B. For a given Pm,n , 
consider the random variable: 
 

f2(
r

nmP , ) = 
)(

)(

r

r

Bcard
BBcard ∩

 

(Note that if f1(
r

nmP , ) = 1, then Br = B, and 

consequently, f2(
r

nmP , ) = 1. ) 

 
Then, through the above explanation on 
approximation,  
 

Pr2 = 
)),((

1

nmRcard 2

m ,n

r
m,n

P R( m,n )
f ( P ).

∈
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Below given some examples regarding the 

calculations of f1(
r

nmP , ) and f2(
r

nmP , ): 

 
Example 1 
 

a a b c d 

b b d d a 

c c c b b 

d d a a c 
 
Note that B = {b}. For r = 1, B1 = {a}. Since 

{a} ≠ {b},  f1(
1

5,4P ) = 0. Also f2(
1

5,4P ) = 0 

because {a} ∩ {b}= ∅. For r = 2, B2 = {a}. So, 
f1(

2
5,4P ) = 0 and f2(

2
5,4P ) = 0. 

 
Example 2 
 

a a b b c 

b c c c a 

c b a d b 

d d d a d 
 
For the above profile, B= {b, c} and B1 = {a, b}, 

so f1(
1

5,4P ) = 0. Since {b, c} ∩ {a, b} = {b}, 

f2(
1

5,4P ) = 1/2. For r = 2, B2 = {a, b, c}, so the 

profile yields f1(
2
5,4P ) = 0 and f2(

2
5,4P ) = 2/3 

(since {b, c} ∩ {a, b, c}={b, c}). 
 

The tools provided by Eğecioğlu and 
Giritligil (2011) allow for the generation of roots 
profiles from R(m,n) with probability 
1/card(R(m, n)). The actual probability can then 
be approximated as follows: generate a large 
number of root profiles from R(m, n) with 
uniform probability 1/card(R(m, n)), where each 
selection is independent of the others. If S(m, n) 
denote the set of these generated profiles, then 
the law of large numbers implies that 
 

Pr1 = 
)),((

1

nmScard 
∈ ),(

,1

,

)(
nmSP

r
nm

nm

Pf        (1)
 

 

Similarly, 
 

Pr2 = 
)),((

1

nmScard 
∈ ),(

,2

,

)(
nmSP

r
nm

nm

Pf       (2) 

 
Note that for (1) and (2) to result in a valid 
Monte Carlo algorithm for the computation of 
Pr1 and Pr2 respectively, it is essential that each 
Pm,n in S(m,n) be drawn from the uniform 
probability on R(m, n). 

 
Monte Carlo Experiments 

At the heart of the Monte Carlo 
experiments of this study is the Mathematica 
program GenerateRoot[m, n] (the Mathematica 
notebook containing this function can be 
accessed online for experimentation: see 
Eğecioğlu, 2004). The program GenerateRoot 
[m, n] takes two integers m and n as input 
parameters and generates a root profile in a 
matrix form m ×  n as output. The preference 
profile generated each time by GenerateRoot    
[m, n] is guaranteed to be distributed over the 
R(m, n) roots uniformly. To be able to estimate 
the probabilities Pr1 and Pr2 through the 
formulations (1) and (2) by using the law of 
large numbers, the preference profiles generated 
must be uniform over the set of roots R(m, n): 
GenerateRoot[m, n] does exactly that. 

The design of the Monte Carlo 
experiments is as follows. One thousand root 
profiles are generated for each value of the 
parameters m, n under consideration. Thus, 
card(S(m, n)) = 1,000. The ranges 1 ≤  m ≤  30 
and 1 ≤  n ≤  30 for most of the Monte Carlo 
experiments carried out. The basic steps 
followed for the computation of Pr1 and Pr2 in 
the symbolic algebra package Mathematica are: 
 
1. Generate the values of m and n themselves, 

1 ≤  m, n ≤ 30 iteratively by means of two 
nested loops. 

2. For the given values of m and n, invoke the 
function GenerateRoot[m, n], which 
generates a preference profile Pm,n from the 
uniform distribution on the set of root 
profiles R(m, n). 

3. Compute the set of Borda winners B for the 
profile Pm,n returned. 

 



BORDA-WINNER CHOICE WITH PARTIAL ELECTORATE PREFERENCE RANKINGS 
 

356 
 

4. For every value of r in the range 1 ≤  r < m, 
detect the set of r_Borda winners Br by 
considering only the first r rows of the 
profile Pm,n. 

5. For given m, n and r, compute the random 
variables f1 and f2 using the sets B and Br 
detected. 

 
Steps 2 through 5 are executed card(S(m, n)) 
times. The approximations to Pr1 and Pr2 for 
given m, n and r are calculated afterwards by 
dividing the sum of the computed values of f1 
and f2 in Step 5 by card(S(m, n)). 
 
Experimental Results on Pr1 Type Probabilities 

The computed Pr1 type probabilities are 
shown in Table 1 for 1 ≤ m ≤ 30, n = 30 and 
1 ≤ r ≤ m. The rows are indexed by m and the 
columns are indexed by r. For instance, when   
m = 5, Pr[B1=B] = 0.51, Pr[B2=B] = 0.671 and 
Pr[B3=B] = 0.818 for r = 1, r = 2 and r = 3, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

respectively. 
Figure 1 is a three-dimensional plot of 

the computed Pr1 type probabilities. Pr1 appears 
to be independent of n especially as the value of 
n increases. A close observation shows that for n 
fixed at 30, Pr1 approaches to zero as m gets 
large for a fixed r, and the behavior is roughly as 
(1+r)  / m. A least-squares fit model was carried 
out for 1 ≤  m ≤  30, by considering the family 
of functions of the form  

f(m, r) = c(1+ r)/ m      
where c is a constant. The best approximating 
function in the least-squares sense was found to 
be 

Pr1 ~ f(m, r) = r/m + 1.4/m              (3) 
 

Figure 2 is a three-dimensional plot of 
the values of the approximating function (3). 
Comparing Figure 2 with the plot of the actual 
probabilities shown in Figure 1, (3) is observed 
to be a fine approximation of Pr1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: For 1 ≤  m ≤  30, n = 30 and 1 ≤  r ≤  m, the Probability that the set of r-Borda Winners is Equal to 
the Set of Actual Borda Winners 

1.
1. 1.
0.799 1. 1.
0.595 0.8 1. 1.
0.51 0.671 0.818 1. 1.
0.444 0.582 0.704 0.832 1. 1.
0.363 0.521 0.622 0.738 0.843 1. 1.
0.344 0.478 0.579 0.691 0.775 0.873 1. 1.
0.274 0.404 0.512 0.603 0.7 0.79 0.878 1. 1.
0.259 0.38 0.471 0.576 0.664 0.741 0.823 0.909 1. 1.
0.226 0.362 0.459 0.548 0.629 0.695 0.774 0.838 0.91 1. 1.
0.202 0.308 0.386 0.489 0.558 0.629 0.701 0.772 0.849 0.904 1. 1.
0.198 0.312 0.387 0.461 0.531 0.598 0.661 0.721 0.786 0.845 0.925 1. 1.
0.208 0.296 0.358 0.44 0.512 0.581 0.632 0.689 0.769 0.824 0.885 0.93 1. 1.
0.184 0.269 0.352 0.413 0.476 0.546 0.606 0.671 0.734 0.782 0.821 0.867 0.922 1. 1.
0.16 0.245 0.338 0.387 0.437 0.498 0.572 0.626 0.701 0.737 0.794 0.861 0.903 0.954 1.
0.175 0.259 0.33 0.387 0.443 0.498 0.551 0.599 0.643 0.691 0.752 0.805 0.851 0.893 0.946
0.131 0.224 0.286 0.334 0.394 0.449 0.504 0.559 0.617 0.671 0.716 0.762 0.822 0.866 0.901
0.133 0.209 0.271 0.332 0.389 0.449 0.51 0.551 0.607 0.655 0.709 0.754 0.791 0.837 0.878
0.117 0.204 0.259 0.326 0.388 0.436 0.475 0.513 0.556 0.613 0.648 0.7 0.748 0.785 0.832
0.124 0.198 0.259 0.309 0.365 0.416 0.456 0.5 0.543 0.596 0.631 0.662 0.714 0.754 0.801
0.116 0.188 0.247 0.298 0.332 0.378 0.435 0.471 0.508 0.562 0.604 0.655 0.691 0.73 0.77
0.089 0.17 0.222 0.269 0.319 0.361 0.39 0.448 0.495 0.532 0.573 0.611 0.657 0.709 0.753
0.096 0.181 0.211 0.251 0.302 0.341 0.387 0.437 0.48 0.517 0.554 0.601 0.644 0.688 0.733
0.107 0.17 0.216 0.263 0.302 0.329 0.38 0.422 0.459 0.506 0.549 0.596 0.635 0.669 0.704
0.079 0.138 0.183 0.22 0.271 0.305 0.346 0.38 0.423 0.454 0.497 0.543 0.573 0.602 0.635
0.086 0.159 0.203 0.248 0.283 0.312 0.353 0.383 0.419 0.455 0.497 0.534 0.566 0.598 0.63
0.078 0.141 0.186 0.232 0.274 0.299 0.337 0.369 0.402 0.438 0.465 0.509 0.543 0.574 0.609
0.076 0.145 0.182 0.229 0.27 0.303 0.339 0.383 0.416 0.444 0.468 0.507 0.54 0.583 0.603
0.07 0.124 0.173 0.214 0.246 0.291 0.319 0.34 0.374 0.418 0.451 0.491 0.518 0.547 0.572  
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Figure 2: Approximating Function of the Probability that r-Borda Winners are Identical to Actual Borda Winners 
 

Figure 1: The Probability that r-Borda Winners are Identical to the Actual Borda Winners 
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To summarize, for large values of n, the 
likelihood of choosing all Borda winners by 
considering only the first r rows of a preference 
profile is independent of n and increases as the 
ratio r/m increases. It is impossible, however, to 
guarantee the exact Borda outcome unless r is 
set to be equal to m-1 or m. 
 
Experimental Results on Pr2 Type Probabilities 

Table 2 shows the computed Pr2 type 
probabilities for 1 ≤  m ≤  30, n = 30 and           
1 ≤  r ≤  m. Again, the rows are indexed by m 
and the columns are indexed by r. Figure 3 is a 
three-dimensional plot of the computed Pr2 type 
probabilities. 

It is observed that, as in the case of the 
Pr1 type probabilities, for n fixed at 30, Pr2 
approaches to zero as m gets large for a fixed r 
and the behavior is roughly as (1 + r )/ m. The  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

properties of the analytic approximations can be 
employed to surmise that 
 

Pr2 ~ f(m, r) = r/m + 2.1/m              (4) 
 
The plot of this function is given in Figure 4. 

Comparing Figure 4 with the plot of the 
actual probabilities shown in Figure 3, (4) is 
observed to be a fine approximation of Pr2.  

The results show that, for large values of 
n, the likelihood that an r-Borda winner is one of 
the actual Borda winners is independent of n and 
increases as the r/m ratio increases. Results from 
this study show that, for r = m − 2, Pr2 
approaches to 1 as m increases. Given this 
computational data, it can also be conjectured 
that, for any fixed k, Pr2 approaches to 1 for       
r = m − k, however, the rate of convergence 
decreases for larger k. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: For 1 ≤   m ≤  30, n = 30 and 1 ≤  r ≤ m, the Probability that the Set r-Borda Winners to be a Subset 
of the Set of Actual Borda Winners 

1.
1. 1.
0.844 1. 1.
0.685 0.87 1. 1.
0.607 0.759 0.895 1. 1.
0.537 0.663 0.788 0.907 1. 1.
0.474 0.618 0.706 0.827 0.919 1. 1.
0.429 0.545 0.643 0.754 0.837 0.928 1. 1.
0.371 0.475 0.582 0.666 0.761 0.849 0.936 1. 1.
0.352 0.444 0.533 0.63 0.715 0.796 0.877 0.954 1. 1.
0.313 0.428 0.519 0.602 0.681 0.754 0.827 0.893 0.96 1. 1.
0.285 0.362 0.44 0.54 0.604 0.678 0.749 0.82 0.893 0.954 1. 1.
0.278 0.372 0.445 0.512 0.579 0.647 0.712 0.774 0.84 0.906 0.971 1. 1.
0.278 0.36 0.422 0.489 0.563 0.626 0.678 0.743 0.812 0.871 0.932 0.971 1. 1.
0.252 0.318 0.395 0.462 0.522 0.592 0.655 0.716 0.773 0.82 0.863 0.913 0.967 1. 1.
0.225 0.301 0.386 0.437 0.483 0.541 0.616 0.676 0.74 0.784 0.839 0.904 0.944 0.982 1.
0.239 0.301 0.37 0.418 0.476 0.529 0.582 0.631 0.681 0.73 0.785 0.842 0.891 0.931 0.976
0.187 0.264 0.328 0.371 0.428 0.483 0.535 0.586 0.644 0.698 0.745 0.794 0.854 0.898 0.928
0.196 0.257 0.309 0.365 0.423 0.48 0.542 0.584 0.635 0.684 0.736 0.779 0.822 0.875 0.909
0.18 0.247 0.299 0.36 0.42 0.469 0.506 0.547 0.588 0.639 0.679 0.728 0.776 0.819 0.862
0.192 0.25 0.303 0.355 0.406 0.446 0.485 0.529 0.576 0.627 0.669 0.699 0.75 0.797 0.839
0.173 0.231 0.281 0.323 0.36 0.409 0.465 0.503 0.541 0.591 0.634 0.683 0.724 0.766 0.807
0.151 0.211 0.259 0.302 0.347 0.385 0.423 0.475 0.522 0.558 0.601 0.645 0.687 0.745 0.782
0.154 0.222 0.252 0.291 0.334 0.371 0.424 0.47 0.51 0.551 0.593 0.635 0.681 0.719 0.765
0.154 0.212 0.247 0.293 0.325 0.354 0.4 0.446 0.48 0.531 0.573 0.617 0.66 0.692 0.728
0.127 0.172 0.213 0.256 0.301 0.333 0.377 0.409 0.447 0.486 0.53 0.576 0.604 0.64 0.673
0.135 0.195 0.233 0.271 0.305 0.338 0.38 0.408 0.45 0.484 0.523 0.557 0.593 0.623 0.656
0.129 0.179 0.22 0.261 0.295 0.32 0.362 0.393 0.423 0.459 0.49 0.534 0.57 0.602 0.631
0.132 0.184 0.219 0.259 0.298 0.335 0.371 0.411 0.443 0.472 0.499 0.539 0.579 0.616 0.638
0.127 0.168 0.207 0.251 0.279 0.322 0.349 0.368 0.406 0.448 0.481 0.52 0.549 0.576 0.603  
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Figure 3: Probability that an r-Borda Winner is a Borda Winner 
 

 
 

Figure 4: Approximating Function of the Probability that an r-Borda Winner is a Borda Winner 
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Conclusion 
The Borda rule is one of the most studied voting 
procedures in the social choice theory literature. 
However, despite its well-known superiorities 
concerning the fulfillment of important positive 
and normative it is very difficult to be 
implemented in practice since it requires voters 
to rank all the alternatives at stake. 

 This computational study investigates 
the likelihood of implementing Borda outcome 
when n voters are asked to report only the first r 
(1 ≤ r < m) ranks of their linear preferences over 
m alternatives. The truncated individual 
preferences are aggregated through a Borda-like 
method called the r-Borda rule.  

The voters’ preferences are sampled via 
IANC model which is an equiprobability 
assumption neglecting the names of both 
alternatives and voters. 

The results of the Monte Carlo 
simulations indicate that, for large values of n, 
the likelihood of choosing exactly the set of 
Borda winners by considering only the first r 
ranks of voter preference orderings is 
independent of n, and approaches to zero as m 
gets large for a fixed r. Through the least square 
fit method, it is shown that, for any m, it is 
impossible to guarantee the exact Borda 
outcome with partial rankings over the 
alternatives.  

It is observed that the likelihood that an 
r-Borda winner to be among the Borda winners 
is also independent of n and approaches to zero 
as  m  gets  large  for a fixed  r. Our results show 
that for r = m − k, k being fixed, this probability 
approaches to one as m increases.  

Some immediate directions exist for 
further research on this topic. First, although the 
r-Borda rule, as an equal-distance scoring 
method, is an intuitive way of aggregating the 
truncated preferences, computational studies can 
be designed to compare the success of assigning 
different score vectors to the reported ranks from 
the perspective of implementing the Borda 
outcome. Second, given truncated preferences of 
voters, the likelihood of implementing other 
well-known ranked rules can be investigated. 
However, especially in the case of pair-wise 
majority rules (such as the Condorcet rule), it 
should be noted that the methods used for 
aggregating truncated preferences are not as 

straightforward or intuitive as in the case of 
scoring methods. Hence, a similar study for such 
rules calls for theoretical and computational 
research. 
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This Monte Carlo study shows that the separate-variances Welch t test has inflated Type I error rates at 
very small sample sizes, especially when sample sizes are very small in one group and larger in the 
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Introduction 
It is well known that violations of the 
homogeneity of variance assumption can 
severely diminish the confidence we have in the 
statistically significant results of our statistical 
tests—in particular, the pooled-variance 
independent t test. For example, the independent 
t test is relatively robust to violations of the 
homogeneity of variance assumption when 
sample sizes are equal, or perhaps even just 
relatively equal. Stevens (1999) indicated that 
“unequal variances will distort the Type I error 
rate appreciably only if the group sizes are 
sharply unequal (largest/smallest > 1.5)” (p. 9). 
But when the sample sizes are not relatively 
close, Type I error rates can be affected 
dramatically (Author, et al., 2004). As 
Mickelson and Ayers (2001) stated, “this implies 
a real risk of claiming to have generated a new 
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understanding, ostensibly corroborated by a 
statistical significance test, when in actuality the 
‘finding’ is nothing more than an artifact of 
violating an assumption of the test” (p. 3). 

Just as it is well known that the actual 
Type I error probability rate of the pooled-
variance t test, or Student t test, is raised or 
depressed by unequal variances combined with 
unequal sample sizes, it is also fairly well known 
that the separate-variances version of the t test, 
often called the Welch t test, usually eliminates 
these effects (Hinkle, Wiersma & Jurs, 2003). 
That is, the Welch t test maintains the nominal 
Type I error rate (i.e., level of significance or α) 
no matter how unequal the variances. Because 
power differences between the tests are 
relatively small when assumptions are met, and 
because the Welch t test maintains the nominal α 
even under violations of the homogeneity of 
variances assumption, some researchers have 
recommended abandoning both the Student t test 
and the commonly used preliminary tests of 
variances (e.g., Levene’s test of equality of 
variances) in favor of Welch t tests with no 
preliminary variance tests. For example, 
Zimmerman (2004a) suggested that “when 
sample sizes are unequal, it appears that the 
most efficient strategy is to perform the Welch t 
test or a related separate-variances test 
unconditionally, without regard to the variability 
of sample values” (p. 180). 

Interestingly results reported – but not 
interpreted – by Zimmerman (2004a), Gibbons 
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and Chakraborti (1991), and Penfield (1994) 
suggested a problem with Type I error rates for 
the Welch t test even when variances are equal. 
The Welch t test appears to exhibit inflated Type 
I error rates when sample sizes are very small 
and the homogeneity assumption is met (i.e., 
both groups have the same variance). For 
example, Zimmerman found that with n1 = 5 and 
n2 = 25, actual Welch t test Type I error rates 
were approximately 0.058 in the equal variance 
condition; as the standard deviation ratio 
increased from 1.0 to 2.5, however, Type I error 
rates decreased toward 0.05. Gibbons and 
Chakraborti calculated a similar result with 
equal variances when n1 = 4 and n2 = 16: an 
actual Type I error rate of 0.0582. Curiously, 
Penfield reported a too-conservative actual Type 
I error rate for the Welch t test with n1 = 5 and n2 
= 15. 

Unfortunately, because none of these 
studies sought to examine this problem 
specifically, they did not include sufficient sets 
of conditions to confirm whether such results 
represented systematic bias or were simply 
artifacts of Monte Carlo sampling error (e.g., 
result of a particular random number generator 
seed or a particular random number generation 
process). For example, Zimmerman (2004a) 
only used conditions where the sample size 
combinations were (50, 10), (40, 20), (25, 5), 
and (20, 10). Penfield (1994) used combinations 
of (5, 5), (10, 10), (20, 20), (5, 15), and (10, 20). 
Gibbons and Chakraborti (1991) only used 
sample size combinations of (10, 10) and (4, 16). 
However, when taken together, these studies 
suggest that it may be fruitful to examine the 
matter further. Therefore, the purpose of this 
study is to investigate the Type I error rate 
behavior of the Welch t test under very small 
sample size conditions. 

It is commonly understood that the Type 
I error rates of the Student t test and the Welch t 
test differ in respect to how these tests fare when 
both sample sizes and population variances are 
unequal across groups. These conditions alter 
both Type I error rates and power (Author, et al., 
2004); that is, when the larger group has the 
smaller variance, the actual Type I error rate of 
the Student t test is inflated – or higher than the 
nominal Type I error rate. In other words, 
researchers would make more Type I errors than 

they expect to make using their given level of 
significance. Recall that when Type I error is set 
to 0.05, a researcher expects to make Type I 
errors at a rate of 5%; when assumptions are 
violated and the actual Type I error rate becomes 
inflated, however, the expected number of actual 
Type I errors is higher than 5% over a 
hypothetically large number of samples.  

For example, if a researcher conducts 
(hypothetically) 100 statistical tests where the 
null hypothesis is true and statistical 
assumptions are met, 5 of those 100 tests would 
be wrongly rejected using an actual Type I error 
rate roughly equal to nominal α = 0.05; but if the 
homogeneity of variance assumption is not met 
and the actual Type I error rate becomes inflated 
to 0.14, then roughly 14 of the 100 null 
hypotheses would be wrongly rejected, not 5 as 
expected when α = 0.05. Conversely, when the 
larger group has the larger variance, the Type I 
error rate of the Student t test is conservative 
(i.e., lower than nominal α) and the null 
hypothesis is rejected less often than it should be 
(e.g., 2% of the time), which in turn reduces 
statistical power. 

Much research has confirmed that these 
problematic properties of the Student t test can 
be eliminated by using the Welch t test (e.g., 
Gibbons & Chakraborti, 1991; Glass, Peckham 
& Sanders, 1974; Zimmerman, 2004a). 
Numerous studies have found that the Welch t 
method maintains Type I probabilities close to 
the nominal significance level and also 
eliminates spurious increases or decreases of 
Type II error rates and power (Zimmerman, 
2004b). Although several studies have 
investigated unequal samples and unequal 
variances, no studies could be found that 
examined the impact of small sample sizes on 
such results. That is, Monte Carlo studies have 
included sample size as a variable (e.g., Gibbons 
and Chakraborti, 1991; Zimmerman, 2004a), but 
none could be found that systematically studied 
the effects of sample size itself on Type I error. 

Gibbons and Chakraborti (1991) 
compared the Mann-Whitney U test, the Student 
t test, and the Welch t test. They used a total 
sample size of 20 for the two groups, sometimes 
equal (i.e., n1 = n2 = 10) and sometimes with n1 
= 4 and n2 = 16. Because their focus was on 
violations of assumptions, they paid little 
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attention to the inflated Type I error rates of the 
Welch t test for the equal variance but unequal 
groups condition, where "the largest difference 
of the average of the three runs was 0.0596 - 
0.0500 = 0.0096 for the two-tailed [Welch t] 
test" (p. 261). This is the summary of their 
results wherein actual Type I error for the equal 
variance but unequal sample size conditions 
were consistently beyond Bradley's (1978) fairly 
stringent criterion of α ± 0.1α (i.e., 0.045 to 
0.055). In the end, Gibbons and Chakraborti 
recommended that “if the populations can be 
assumed normal with equal variances, use 
Student’s t test for any sample sizes” (p. 266), 
but “if the populations can be assumed normal 
but the variances cannot be assumed equal, use 
the alternate t test for any sample sizes” (p. 266). 
Gibbons and Chakraborti recommended the 
Mann-Whitney test for non-normal data and 
when either (or both) sample size is less than 30. 

Also for example, Zimmerman (2004a) 
compared the unconditional Student t test (i.e., 
no preliminary test of equality of variances), the 
unconditional Welch t test, and the Conditional t 
test (i.e., Levene’s test followed by the 
appropriate t test). Zimmerman reported – but 
did not comment on – the condition where n1 = 
25, n2 = 5, and σ1 /σ2 = 1.0, in which actual Type 
I error was 0.058 for the Welch t test but a more 
accurate 0.051 for the Student t test. Because 
Gibbons and Chakraborti (1991) used on 5,000 
replications per condition, their results may have 
been subject to Monte Carlo sampling error 
issues (e.g., a poor seed choice, a particularly 
odd set of 5,000 randomly drawn samples). 
However, Zimmerman's (2004a) results were 
based on 50,000 replications, thus producing 
results less likely to be due to Monte Carlo 
sampling error issues. Further, among the equal 
variance conditions in both studies, only these 
results with very small n in one group were 
outside the fairly stringent range (i.e., 0.045 to 
0.055). 
 
Small Sample Sizes in Research 

Although very small sample sizes are 
rare when t tests are used in actual research, 
several meta-analyses have been reported to 
suggest that researchers sometimes, in practice, 
do use very small sample sizes. For example, 
Reid, Kenaley and Colvin (2004) completed a 

meta-analysis of 39 small-group interventions in 
social work. They found that 15 of these 39 
studies (i.e., 38%) had a total sample size of 20 
or less; only 10 had total sample sizes over 50. 
Similarly, Shadish and Baldwin (2005) 
performed a meta-analysis of marital therapy 
interventions and found 14 of 30 studies had 
total sample sizes of 20 or less, while only 2 had 
total sample sizes over 50. Unfortunately, these 
studies did not report individual sample sizes, so 
whether group sizes were equal is unknown 
without further investigation. 
 

Methodology 
A Monte Carlo data generation and analysis 
program, called MC4G: Monte Carlo Analyses 
for up to 4 Groups (Author, 2005), was used to 
simulate data to obtain the appropriate Type I 
error rates. The rejection rates of both the 
Student t test and the Welch t test will be 
recorded for various combinations of sample 
sizes, especially with very small sample size in 
one group. That is, the specific conditions for 
the study were: (a) both Group 1 and Group 2 
means remained constant at 0.0, (b) Group 1 
sample size varied from 3 to 150 by 1, (c) Group 
2 sample size varied from 3 to 30 by 1, (d) 
Group 1 standard deviation remained constant at 
1.0, and (e) Group 2 standard deviation varied 
from 1.0 to 4.0 by 0.5. 

For the primary research question, only 
the 3,738 conditions were analyzed where Group 
1 sample sizes were larger than Group 2 sample 
sizes and both standard deviations were 1.0; 
however, some other conditions were analyzed 
for specific reasons. All data were generated to 
follow a univariate normal distribution. There 
were 100,000 replications performed for each 
condition in order to minimize the impact of 
Monte Carlo sampling problems. For each 
sample generated, appropriate standard error 
estimates and degrees of freedom were used to 
calculate both the Student t test (Hinkle et al., 
2003, p. 240), the Welch t test (Hinkle et al., 
2003, p. 252), and a Conditional t test (either the 
Student t test or the Welch t test was calculated 
appropriately depending on the results of 
Levene’s test of equality of variances). Nominal 
level of significance was set at α = 0.05 for each 
test performed. 
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The MC4G program was developed 
(Brooks, 2005) to perform Monte Carlo analyses 
for t tests and ANOVA in a Windows 
environment. The MC4G program was written 
in Delphi Pascal and is available for download 
from the author’s web site (see references). The 
program was used to create normally distributed 
data that met the conditions for the study. For 
these robustness analyses, the number of 
incorrect rejections of the null hypothesis (i.e., 
Type I error rate) was stored and reported by the 
program. 

The MC4G program uses the L’Ecuyer 
(1988) uniform pseudorandom number 
generator. Specifically, the FORTRAN code of 
Press, Teukolsky, Vetterling, and Flannery 
(1992), was translated into Delphi Pascal. The 
L’Ecuyer generator was chosen because of its 
large period and because combined generators 
are recommended for use with the Box-Muller 
method for generating random normal deviates, 
as will be the case in this study (Park & Miller, 
1988). The computer algorithm for the Box-
Muller method used in this study was adapted 
for Delphi Pascal from the standard Pascal code 
provided by Press, Flannery, Teukolsky and 
Vetterling (1989). Extended precision floating 
point variables were used, providing the 
maximum possible range of significant digits. 
Simulated samples were chosen randomly to test 
program function by comparison with results 
provided by SPSS. 
 

Results 
First, the Type I error rates of the Student t test 
are investigated across the full range of sample 
size conditions. These results confirmed that 
Type I error rates for the Student t test are robust 
to variation of all sample sizes tested. 
Specifically, every one of the 3,738 sample size 
conditions under equal variances (i.e., both 
group standard deviations are 1.0) was between 
0.0446 and 0.0560, just beyond the most 
stringent criterion recommended by Bradley 
(1978). One would not expect Type I error rates 
of exactly 5% due to the sampling error inherent 
to the Monte Carlo process. Therefore, Bradley 
recommended a stringent criterion of α ± 0.1α to 
be used for robustness studies; that is, results 
within 10% of α are considered close enough to 
α for the statistical test to be considered robust 

to the conditions being investigated. These 
results are shown graphically in Figure 1. 

A similar examination of the Welch t 
test was performed and an issue with robustness 
for these results was identified (see Figure 2). In 
particular, the actual Type I error rates across the 
3,738 conditions (100,000 samples per 
condition) ranged from 0.0424 to 0.0793. 
Clearly, some of the Type I error rates for the 
Welch t test fell outside Bradley’s (1978) 
stringent criterion range. Further comparison 
showed that 99% of all Student t test Type I 
error rates were less than 0.0536, but only 88% 
of the Welch t test Type I error rates were below 
0.0551, at the top end of Bradley’s range. Also, 
there were only 10 extreme Student t test Type I 
error rates beyond 0.0542 but there were 340 
extreme Welch t test Type I error rates beyond 
0.0569. 

In order to investigate further the 
inflated Type I error rates for the Welch t test, an 
attempt was made to identify the patterns in 
Figure 2. Observe clear patterns among the 
scatter that represent Group 2 sample sizes. For 
example, at the top of the chart, there is a clear 
pattern of circles, representing a Group 2 sample 
size of n2 = 3. Because a sample size of n2 = 3 is 
not practical, we examined further the n2 = 5 
condition (while still not terribly practical, it is 
more reasonable than n2 = 3 and has been 
studied by several authors cited above). Table 1 
shows these results for a subset of the data (only 
where n1 < 45, but no important differences 
existed beyond n1 = 45). Figure 3 displays these 
data for equal variances, Figure 4 illustrates the 
data where variances were unequal (Group 1 SD 
= 1.0 and Group 2 SD = 2.0), Figure 5 shows the 
data where variances were unequal (Group 1 SD 
= 1.0 and Group 2 SD = 4.0). 

The Welch t test clearly has inflated 
Type I error rates when sample sizes are small 
and unequal; however, note in Figure 3 that the 
inflation does not emerge until the sample size 
ratio increases beyond 2:1 (specifically, where 
n1 = 13 and n2 = 5). Although the inflation is not 
dangerously high, as is the case with the Student 
t test when both sample size and variances are 
unequal (e.g., where n1 = 44, n2 = 5, σ1 = 1.0, 
and σ2 = 4.0, as shown in Figure 5), it does exist. 
Interestingly, Figures 4 and 5 show that the 
Welch t test does indeed maintain nominal Type 
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I error rates when variances are unequal, but 
Figure 3 shows that when variances are equal 
the Type I error rates are biased upward. Further 
investigation beyond the conditions where n2 = 5 
suggested that the problem is limited to very 
small sample sizes. Figure 6 shows that, 
although there is a clear, upward bias of Type I 
error beyond a smaller group size of n = 10, 
those rates do fall well within Bradley’s (1978) 
stringent criterion range. Figure 6 also shows 
that the average inflation of Type I error reduces 
dramatically as the smaller group size increases. 
Further note in Figure 6 that the t test 
conditional on the result of Levene’s test does 
not help the matter, because its Type I error rates 
are inflated even beyond the Welch t test once n2 
> 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
Results suggest that the Welch t test is indeed 
inflated, according to Bradley's (1978) fairly 
stringent criterion, when sample sizes are 
unequal – even when assumptions for the t test 
are met in the population. The inflation rate 
seems to be dependent more on the size of the 
smaller group than on the total sample size, but 
sample size ratio does seem to play a small 
role(i.e., with roughly equal sample sizes there 
was no apparent inflation). Although the Welch t 
test Type I error inflation exposed here is not 
dangerously high, it is high enough to be 
considered more than trivial, particularly with 
the smallest smaller group sample sizes 
examined. Specifically, Type I error rates are 
inflated beyond Bradley’s stringent criterion  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Type I Error Rates for the Student t test when Homogeneity of Variance Assumption 
Is Met in the Population 
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Figure 2: Type I Error Rates for the Welch t test when Homogeneity of Variance Assumption 
Is Met in the Population 

Table 1: Type I error rates of Student t test, Welch t test, and the Conditional t test at α = 0.05  
Where n2 = 5, n1 < 45, n1 > n2, and Both Population Standard Deviations are 1.0 

 

n1 Student t Welch t Conditional t 

6.0 0.0523 0.0487 0.0514 

7.0 0.0507 0.0479 0.0499 

8.0 0.0495 0.0490 0.0499 

9.0 0.0513 0.0504 0.0519 

10.0 0.0493 0.0516 0.0505 
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Table 1 (continued): Type I error rates of Student t test, Welch t test, and the Conditional t test at α = 0.05  
Where n2 = 5, n1 < 45, n1 > n2, and Both Population Standard Deviations are 1.0 

 

n1 Student t Welch t Conditional t 

11.0 0.0474 0.0490 0.0488 

12.0 0.0492 0.0512 0.0518 

13.0 0.0505 0.0545 0.0523 

14.0 0.0536 0.0571 0.0557 

15.0 0.0498 0.0567 0.0525 

16.0 0.0519 0.0578 0.0556 

17.0 0.0514 0.0560 0.0542 

18.0 0.0508 0.0551 0.0551 

19.0 0.0505 0.0565 0.0541 

20.0 0.0525 0.0554 0.0554 

21.0 0.0499 0.0578 0.0549 

22.0 0.0493 0.0567 0.0532 

23.0 0.0507 0.0578 0.0558 

24.0 0.0501 0.0582 0.0553 

25.0 0.0493 0.0588 0.0551 

26.0 0.0527 0.0586 0.0586 

27.0 0.0494 0.0590 0.0556 

28.0 0.0507 0.0564 0.0554 

29.0 0.0501 0.0553 0.0558 

30.0 0.0512 0.0577 0.0569 

31.0 0.0480 0.0578 0.0542 

32.0 0.0503 0.0562 0.0561 

33.0 0.0532 0.0578 0.0589 

34.0 0.0490 0.0606 0.0573 

35.0 0.0481 0.0578 0.0547 

36.0 0.0485 0.0560 0.0549 

37.0 0.0503 0.0550 0.0567 

38.0 0.0490 0.0593 0.0567 

39.0 0.0498 0.0578 0.0567 

40.0 0.0490 0.0588 0.0560 

41.0 0.0518 0.0576 0.0565 

42.0 0.0485 0.0571 0.0558 

43.0 0.0507 0.0583 0.0573 

44.0 0.0501 0.0607 0.0578 
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Figure 3: Graphical Display of Results Where n2 = 5 Across All n1 > 5 
and Both Standard Deviations were 1.0 

 
 

Figure 4: Graphical Display of Results where n2 = 5 Across All n1 > 5, 
Group 1 Standard Deviation was 1.0, and Group 2 Standard Deviation was 2.0 
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Figure 5: Graphical Display of Results where n2 = 5 Across All n1 > 5, 
Group 1 Standard Deviation was 1.0, and Group 2 Standard Deviation was 4.0 

 
 

Figure 6: Average Type I Error Rates where Both Standard Deviations are 1.0 
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when the smaller sample size is less than n = 6. 
We also found that the inflation problem 
becomes relatively benign once the smaller 
sample size is greater than n = 10; that is, the 
average actual Type I error rates for the Student 
t test and the Welch t test differ by no more than 
0.002 when smaller n > 10. Finally, we 
confirmed that the Student t test did not exhibit 
any noticeable problems with Type I error when 
assumptions are met, no matter the sample size 
combinations. 

There have been a number of studies to 
ascertain the best statistical test to use for two-
group comparison studies under violations of 
assumptions. Such studies have often also 
showed that there is not a dramatic difference in 
statistical power between the Student t test and 
Welch t test under many conditions. 
Consequently, these results have led some 
scholars (e.g., Zimmerman, 2004a) to 
recommend using the Welch t test 
unconditionally, so as to minimize the impact of 
violations of assumptions on Type I error rates. 
Unfortunately, because it appears that the Welch 
t test may have unexpected problems when one 
group is very small, this recommendation may 
lead to problems in studies with very small 
sample sizes. Indeed, supplemental analyses 
performed here suggested that the Welch t test 
may be conservative for very small, equal 
sample sizes (less than 7 in each group) even 
when variances are equal. 

Because the Conditional t test did not 
help the situation, there is no easy solution to the 
problem. That is, because one does not know 
whether the homogeneity of variance 
assumption has been violated, one cannot know 
which t test to choose with small sample sizes. 
More specifically, if one knew that the 
populations had unequal variances, one could 
choose to use the Welch t test with little concern 
for type I error, even with small sample sizes; 
conversely, if one knew that variances were 
equal, one could use the Student t test. However, 
the commonly recommended Conditional t test 
using Levene’s test also appears to lead to 
inflated type I error rates with very small sample 
sizes in one group and with larger sample sizes 
in the other—even when variances are equal. 

The most obvious recommendation, for 
a variety of reasons both statistical and 

otherwise, is for researchers to use more than 10 
participants per group when comparing means. 
In situations where there is no choice, based on 
Gibbons and Chakraborti’s (1991) results, it 
appears that researchers should use the Mann-
Whitney U test when sample sizes are very 
small to maintain nominal Type I error rates; 
their results do not hint at any inflation of Type I 
error rates at small sample sizes. However, 
future research must verify this 
recommendation. Further investigation into type 
I error rates should include examinations of 
Analysis of Variance and its alternatives (e.g., 
Brown-Forsythe, Welch, and Kruskal-Wallis). 
There is no reason to expect terribly different 
results when viewed from an ANOVA 
perspective; such similarities between the Type I 
error rate properties of the t test and ANOVA 
have been confirmed in the literature (e.g., 
Glass, Peckham, & Sanders, 1974). Finally, 
these results relied on the assumption of 
normality being met; future researchers may 
want to investigate the problem by violating the 
normality assumption. Based on work by 
Gibbons and Chakraborti, and others, there is 
reason to suspect that the nonparametric tests 
should be uniformly adopted as the tests of 
choice when the sample size of at least one 
group is very small. 
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A Robust One-Sided Variability Control Chart 
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A new control charting technique to monitor the variability of any distribution is proposed. The 
simulation study shows that the new method outperforms all the existing methods in controlling the Type 
I error rates and it also has good power performance for all distributions considered in the study. 
 
Key words: Edgeworth expansion, Type I error rate, power performance. 
 
 

Introduction 
A major objective of statistical quality control is 
to quickly detect any sustained shift of central 
tendency and variability of a process. The 
control chart, proposed by Shewhart (1931), is 
an on-line process-monitoring technique widely 
used for this purpose. The Shewhart chart 
contains three lines: the center line, which 
represents the average value of the quality 
characteristic, and two control limit lines, the 
UCL (Upper Control Limit) and LCL (Lower 
Control Limit). These lines are chosen in such a 
way that, if the process is in control, nearly all 
the sample points will fall between the lines. If a 
sample point plots between the two control 
limits, the process is assumed to be in control. If 
any point plots above UCL or below LCL, then 
it is reasonable to suspect that the process is out 
of control. In this case, investigations and 
corrective actions are required to find and to 
eliminate the assignable cause responsible for 
this behavior. 
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Much work has been done to develop 

and improve control charts that are able to detect 
small and large shifts in the process mean. 
However, less work has been done to control the 
process variability. One of the most widely used 
methods to control variability of a process is the 
Shewhart R-chart. The UCL and LCL for the 
standard three-sigma chart are as follows: 
 

3
2

ˆ3 3R
RUCL R R d
d

σ= + = + , 

and 

3
2

ˆ3 3R
RLCL R R d
d

σ= − = − , 

 
with a Center line R= , where 
 

m
RRRR m+++= ...21 , 

 
and iR  is the range (difference between the 

largest and the smallest observation) of the thi  

preliminary sample; 2d  and 3d  are the mean 

and the standard deviation of 
σ
RW = , 

respectively. Tables of 2d  and 3d  are available 

for various sample sizes (Montgomery, 1996). 
The Shewhart R-charts are constructed under the 
assumption that the underlying process is 
normally distributed. 

An alternative to the R-chart is the S-
chart. Rather than using range as a measure of 
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variability, the S-chart uses the standard 
deviation. The UCL and the LCL of an S-chart 
are formulated as follows: 
 

2
4

4

3 1
sUCL s c
c

= + − , 

and 
 

2
4

4

3 1
sLCL s c
c

= − − , 

 
with a Center line s  where 
 


=

=
m

i
is

m
s

1

1
, is  

 

is the sample standard deviation of the thi  

preliminary sample, 4c  is a constant such that 

the statistic s  is an unbiased estimator of σ4c . 
Tables of 4c  for various sample sizes are 
available in many statistical quality control 
books (Montgomery, 1996). Similar to the R-
chart, all 4c  tables are constructed under the 
assumption of normal process. 

Another alternative charting technique  
recommended by many practitioners, is the 
Shewhart S2-chart. In the construction of a S2-

chart, the fact that 
2

2)1(

σ
Sn −

 has 2
)1( −nχ  

distribution under normality is used. The control 
limits for this chart are: 
 

2
2

, 1
21 n

sUCL
n αχ

−
=

−
, 

 
with 2Center line s= and 
 

2
2

1 ( ), 1
21 n

sLCL
n αχ

− −
=

−
 

 

where 2

1,
2

−nαχ  and 2

1),
2

(1 −− nαχ  denote the upper 

and lower 
2

α
 percentage points of the Chi-

square distribution with 1−n  degrees of 

freedom, and 2s  is the average sample 
variances of m preliminary samples. 

In many situations the underlying 
distribution of the process might not be normal. 
For example, the distributions of measurements 
from chemical processes and cutting tool wear 
processes are often skewed. Burr (1967) and 
Chan, Hapuarachchi and Macpherson (1988) 
have examined the effect of non-normality on R-
charts. They found that, for skewed populations, 
Type I risk probabilities grow larger as the 
skewness of the distribution increases. The 
problem is in the “discrepancy between the 
variability pattern of the asymmetric distribution 
and the normality assumed in placing control 
limits on Shewhart R-chart.” (Bai & Choi, 1995, 
p. 120). The impact of non-normality on the S-
chart and S2-chart is also expected. 

To remedy the non-normal problem, Bai 
and Choi (1995) proposed a heuristic method for 
controlling variability of the skewed 
distributions based on the Weighted Variance 
(WV) method. Their chart is an R chart with 3-
sigma control limits: 
 

3

2

ˆ1 3 2 X U
dUCL R P V R
d

′ 
= + = ′ 

,

 
and 

3

2

ˆ1 3 2(1 )X L
dLCL R P V R
d

′ 
= − − = ′ 

, 

 
where 

( )
nm

XX
P

m

i

n

j
ij

X ⋅

−
=


= =1 1ˆ
δ

 

 
with 





<
≥

=
00

01
)(

xfor
xfor

xδ , 

 
n is the sample size and m is the number of 

preliminary samples. Therefore, XP̂  is the 
proportion of observations from pre-run stage 
that are less than or equal to the estimated 

process mean. Bai and Choi (1995) used XP̂  as 
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an estimator of the measure of the degree of 
skewness of the process. They claimed that, if 
the underlying distribution is symmetric, 
then 5.0=XP . If the population is positively or 

negatively skewed then XP  becomes greater 
than 0.5 or less than 0.5, respectively. The 
constants 2d ′  and 3d ′  are the mean and the 

standard deviation of 
σ
RW =  for the given 

skewed population. 
Bai and Choi investigated five different 

families of distributions: Weibull, lognormal and 
three different forms of distributions from Burr’s 
family. For each of the five families, they 
selected the proper parameter values, such that 

XP  is equal to a fixed quantity. For each value 

of XP  considered, they computed 2d ′  and 3d ′  

via numerical integration for each distribution. 
They found that the values of 2d ′  and 3d ′  are 

similar across the distributions for each 
given XP , so they took the average of those 2d ′  

and 3d ′  as constants to construct tables for LV  

and UV  for selected values of n and XP . 

Although Bai and Choi only considered 
five families of distributions in the computation 
of 2d ′  and 3d ′ , they used the results to apply to 

all skewed distributions. Due to the limited 
choices of the skewed distributions, one may 
suspect that any distribution other than those 
considered, even with the same skewness but 
different kurtosis, may produce different 
constants 2d ′  and 3d ′ . Furthermore, Chan and 

Cui (2003) raised the question of using XP  as a 
measure of the degree of skewness in the WV 
method. They indicated that many skewed 
distributions may have a XP  value of 0.5, which 
leads to an incorrect control charting procedure. 

To correct the skewness problem 
produced by WV method, Chan and Cui (2003) 
proposed the Skewness Correction (SC) method 
to construct R-control charts for skewed process 
distributions. The two control limits for SC R-
chart are: 

*
* *3
4 4*

2

1 (3 )
dUCL R d D R
d

 
= + + = 

 
 

and 
*

* *3
4 3*

2

1 ( 3 )
dLCL R d D R
d

+
 

= + − + = 
 

 

 

where chart constants *
2d  and *

3d , as 2d  and 3d  

in Shewhart control charts for the normal 
distribution, are defined as the mean and 

standard deviation of the relative range 
σ
R

, 

 





<
≥

=+

00

0

afor
afora

a , 

 

)(2.01

)(
3

4

2
3

3
*
4 Rk

Rk
d

+
= , 

 
where )(3 Rk  is the coefficient of skewness of 

the sample range R. The values of *
2d , *

3d  and 
*
4d  can be obtained directly through numerical 

integration if the process distribution and sample 
size are specified. 

In Chan and Cui’s (2003) research, a 
collection of Weibull, lognormal, and four forms 
of distributions from the Burr’s family are 
considered as representatives of all skewed 

distributions. The values of *
2d , *

3d  and *
4d  are 

computed for selected values of 3k , the 

skewness of the distribution, in each family of 
distributions. Due to the similar values of the six 

*
2d , *

3d  and *
4d  across the distributions for each 

given 3k , Chan and Cui took the averages of 

these *
2d , *

3d  and *
4d  as constants for all the 

skewed distribution with a given 3k  to construct 

tables of *
4D  and *

3D  for various sample sizes. 

Skewness of the distribution 3k  is estimated by 

the sample skewness 
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Although the authors introduced the 

skewness correction to resolve the problem 
with XP , the other potential problem is still 
unsolved. The tables are constructed based on 
three families with coefficient of skewness 
ranging from 4−  to 4. It would be problematic 
for the practitioner to determine the control 
limits if the estimated coefficient of skewness is 
outside of this range. For example, the Weibull 
distribution with unit scale parameter and 0.5 
shape parameter has 62.63 =k . 

In a real life situation, it is more 
important to detect upper sustained shift than the 
lower shift in the process variability because the 
goal of statistical process control is to reduce the 
variability in the process as much as possible, 
the upper limit becomes more critical. As noted, 
it is common that the data has a non-normal 
underlying distribution; hence, the goal of this 
study is to develop an upper control chart for 
controlling the variability of the process that will 
work for any non-normal distribution, including 
both skewed and symmetric distributions. 
 

Methodology 
Long and Sa (2005) proposed a method that uses 
Edgeworth expansions to perform a hypothesis 
test for the variance for non-normally distributed 
populations. Their test controls type I error rates 
well and has power performance comparable to 
tests that have been developed in the past. The 
proposed control chart is an adaptation of their 
test. 

Edgeworth expansion is an 
approximation to the distribution of the estimate 

θ̂  of the unknown quantity 0θ . If )ˆ( 0θθ −n  is 

asymptotically normally distributed with mean 
zero and variance 2σ , then the distribution 

function of )ˆ( 0θθ −n  may be expanded as a 

power series in n  (Hall, 1992): 
 

0

j1

2 2
1 j

ˆn ( )
P x

(x) n p (x) (x) ... n p (x) (x) ...,
− −

 θ − θ ≤ = σ  

Φ + ϕ + + ϕ +
 

where 22

1 2

)2()(
x

ex
−−

= πφ  is the standard 

normal density function and 
∞−

=Φ
x

duux )()( φ  

is the standard normal distribution function. The 
functions )(xp j  are polynomials with 

coefficients depending on cumulants of 0-ˆ θθ . 

Hall (1992) provided the Edgeworth 
expansion for the sample variance 
 

2 2
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where nτ  is the standard deviation of the 

estimator 2S . 

The variable 2S  admits the inversion of 
Edgeworth expansion as follows: 
 

12 2 2
2

1 2

1

2

n (S ) x 1
P x n B B

6

(x) (n ).                      

−

−

  − σ − ≤ + + =  τ   

Φ + ο
 
Long and Sa (2005) adapted the inversion 
formula of the Edgeworth Expansion to test 

2
0

2
0 : σσ =H  versus 2

0
2: σσ >aH . An 

intuitive decision rule is to reject 0H  if 
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where αz  is the upper α  percentage point of 

the standard normal distribution and 
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They first estimated 1B  and 2B  by 
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where ,, 43 κκ  and 6κ  are the third, fourth and 

sixth sample cumulants, respectively. They then 
investigated six different forms of Z and found 
that 
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nnS
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yields the best results for controlling the type I 
error rates as well as satisfying power 
performance; their final decision rule is to reject 

0H  if: 
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The decision rule (3) of Long and Sa 

(2005) can be used in the construction of the 
upper-sided control chart for variability with 

some modifications. Population variance 2
0σ  

can be estimated in the preliminary stage by the 

sample variance 2~S . 1B̂  and 2B̂  can also be 
calculated based on the preliminary samples. 

The upper control limit can then be set 
as: 
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In the control charting stage, a sample is 

selected and 
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where 2
)(iS and )(,4 iκ  are  variance and fourth 

cumulant of the thi  sample, is calculated. An 
out-of- control signal occurs when: 
 

UCLZ >6 .                        (6) 
 

The proposed Variability Control Chart 
can be constructed as follows: 
 
1. Based on process requirements, select a 

significance level α  and find the 
corresponding critical point αz ; 

 
2. Assuming the process is under statistical 

control, select m  preliminary samples of 
size n  to calculate all the process quantities 

( 21643
2 ˆ,ˆ,,,,

~ BBS κκκ ). Two methods are 

employed to calculate these quantities. The 
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first is called the combined sample method, 
which merges all m  samples in the 
preliminary run as one sample with nm ⋅  
observations to compute the process 
quantities. The second is the not combined 
sample method in which all the process 
quantities are equal to the averages of the 
m  corresponding preliminary sample 
values. 

 
3. Calculate UCL  using (4); 
 
4. Start the quality control stage. Select 

samples of size n  periodically. After the thi  
sample is selected, calculate the sample 

variance 2
)(iS  and sample cumulant )(,4 iκ ; 

 
5. Plug them into (5) to get the sample point 

Z6 for this sample; 
 
6. Plot the sample point Z6 on the chart and 

draw the conclusion about this sample (in-
control or out-of-control); 

 
7. If the process is in-control, then go back to 

step 4 to select next sample; otherwise 
quality control team should investigate and 
possibly remove the assignable causes. 

 
Simulation Study 

In order to compare different control 
charts for variability of a process, a simulation 
study to investigate the type I error rates and 
power performance is performed. The methods 
compared include the Shewhart R-chart, S-chart, 
S2-chart, WV R-chart, SC R-chart and the 
proposed control charts. 
 
Distributions Examined 

A large collection of distributions with a 
wide range of skewness and kurtosis are 
investigated via a simulation study. Distributions 
considered are separated into two groups: 
skewed and symmetric. 

The skewed family includes eight 
Weibull distributions with scale parameter 

1=λ  and shape parameter k  from 0.5 to 3.5; 
exponential with 1=λ ; Gamma with scale 
parameter 1=β  and shape parameters 

=α 0.15, 1.2 and 4.0; Chi-square with ν  
degrees of freedom ( =ν 1 to 24); lognormal 

with 0=μ  and 12 =σ ; and the Barnes2 
distribution which is a polynomial function of 
the standard normal distribution (Fleishman, 
1978). For comparison purposes, the standard 
normal distribution is also studied and reported. 

The symmetric distributions considered 
include: Student’s T ( =ν 5, 6, 8, 16, 32, 40), 
JTB ( ),,1,0 τασμ ==  with various α  and τ  
(Johnson, Tietjen & Beckman, 1980) and special 
designed distributions Barnes1 and Barnes3 with 
respective kurtosis 6.89 and 1049 (Fleishman, 
1978). All the distributions in this group are 
symmetric with the exception of Barnes3 with a 
coefficient of skewness of 3.00, which is 
negligible in comparison to its kurtosis of 1049. 

Random number generators from the 
Fortran 90 IMSL library are used to generate 
normal, Weibull, exponential, lognormal, Chi-
square, Gamma and Student’s T variates. In 
addition, the Barnes1, Barnes2, Barnes3 and 
JTB random variates were created with Fortran 
90 program subroutines using IMSL library’s 
random number generators for standard normal, 
gamma and uniform distributions in various 
parts of the program. 
 
Simulation Description 

The simulation study includes two parts: 
(1). Process is in-control (type I error rate 
comparisons) and (2). Process is shifted (the 
power study). In both studies, the process 
parameters are assumed unknown and therefore 
need to be estimated. The number of samples 
used in the preliminary run is 30=m ; a 
relatively small sample size of 10 and a 
moderate sample size of 25 are used in the 
study. The steps of the simulation take place in 
two parts: steps 1 – 4 are preliminary runs and 
steps 5 – 9 are the quality control stages. 
 
Preliminary Runs (assumes the process is in-
control): 
 
1. Set up the nominal level 0027.0=α  

(which corresponds to the frequently used 
Average Run Length, ARL, = 370) and 
select the parent distribution; 
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2. Generate 30 samples of size n from the 
parent distribution; 

 
3. Calculate the necessary quantities used in 

different methods: 

,,, 2SSR 213
ˆ,ˆ,,ˆ BBkPX 643

2 ,,,
~ κκκS ; 

both the combined sample method and not 
combined sample method are used to 
calculate the process quantities for the 
proposed methods. 

 
4. Calculate the appropriate upper control limit 

for each of the control methods; the control 
limits of the Shewhart R-chart, S-chart, S2-
chart, WV R-chart and SC R-chart are 
adjusted to meet the purpose of the 
comparisons. In order to achieve the desired 
nominal level of 0027.0=α  for a one-
sided control chart, 78215.2=αz  is used to 

construct the appropriate upper control 
limits for all the methods. 

 
The Quality Control Stage: Steps (5) – (9) 
 
5. Generate 1,000 samples of size n  from the 

same parent distribution and calculate the 
statistic to be plotted for each of the control 
methods (sample range R  for the Shewhart, 
WV and SC R-charts, sample standard 
deviation S  for S-chart, sample variance for 
S2-char, and Z6 for the proposed method); 

 
6. Compare the statistic with the corresponding 

control limits and tabulate the number of 
out-of-control signals; 

 
7. Calculate type I error rate for each method 

by finding the proportion of out-of-control 
signals in the 1000 samples; 

 
8. Repeat steps (2) – (7) 4,000 times; 
 
9. Calculate the average of 4,000 type I error 

rates. 
 

In the power study each generated 

variate is multiplied by a pre-determined k , 
where 6,5,4,3,2,1=k ; thus, a new set of 
observations is created with variance k times 

larger than the variance of the original 
distribution. Steps (5) – (9) are then repeated for 
each value of k to investigate the power of each 
charting technique. The corresponding ARL can 
be calculated for an in-control or an out-of-
control process by inverting the average type I 
error rate or power from step (9). 
 

Results 
The Study of Type I Error Rates 

Tables 1 through 4 provide comparisons 
of type I error rates for skewed and symmetric 
distributions with sample sizes 10=n  and 

25=n . The first and the second columns are 
the type I error rates of the proposed method Z6 
using the combined sample and the not 
combined sample methods in the calculations of 
the process quantities. Three critical points αz , 

2
,1 αα −+ ntz

 and α,1−nt  are used in construction 

of the upper control limits for the proposed 
method with sample size 10=n ; results shown  
are the first, second and third numbers in the 
respective column. 
 
Skewed Distributions 

Table 1 shows that all traditional control 
charts (the Shewhart R-chart, S-chart and S2-
chart) fail to maintain the type I error rates under 
nominal level 0027.0=α  when the parent 
distribution is skewed. In general, the larger the 
degree of skewness, the bigger the type I error 

rate. For example, considering a 2
)24(χ  

distribution with skewness 0.58, the type I error 
rates of the three traditional charts are 0.0235, 
0.0224 and 0.00566 with corresponding ARLs 
42.55, 44.64 and 176.68 for the Shewhart R-
chart, S-chart and S2-chart respectively. Those 
rates change to 0.124, 0.132 and 0.0624 with 
respective ARLs 8.06, 7.58 and 16.03 when the 

parent distribution is 2
)1(χ , with a more severe 

skewness of 2.83. 
Among the three traditional charts, the 

S2-chart tends to outperform the other two, 
however, it still consistently yields inflated type 
I error rates which result in very short ARLs. It 
usually performs reasonably well for 
distributions with low skewness. The best cases  



A ROBUST ONE-SIDED VARIABILITY CONTROL CHART 

380 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Skewed Distributions, Comparisons of Type I Error Rates when 10=n  
 

Distribution 
Combined 

Sample 
Not 

Combined
R-chart S-chart S2-chart WV-chart SC-chart (skewness) 

(kurtosis) 

Normal (0,1) 3.97E-03 1.09E-02 

1.45E-02 1.24E-02 1.86E-03 1.24E-02 6.40E-03 (0.00) 1.23E-03 9.36E-03 

(0.00) 3.58E-04 9.77E-03 

Exponential (1) 5.82E-03 4.71E-02 

8.71E-02 9.26E-02 4.10E-02 1.15E-02 7.58E-03 (2.00) 2.73E-03 5.00E-02 

(6.00) 1.31E-03 5.39E-02 

Lognormal (0,1) 5.80E-03 4.19E-02 

1.37E-01 1.44E-01 7.61E-02 2.52E-02 2.33E-02 (6.18) 2.85E-03 4.23E-02 

(110.93) 1.48E-03 4.38E-02 

Weibull (0.5) 5.83E-03 4.10E-02 

1.66E-01 1.75E-01 8.74E-02 3.11E-02 3.07E-02 (6.62) 2.82E-03 4.28E-02 

(84.72) 1.48E-03 4.48E-02 

Weibull (0.75) 5.50E-03 4.64E-02 

1.27E-01 1.35E-01 6.62E-02 1.18E-02 1.30E-02 (3.12) 2.69E-03 4.85E-02 

(16.0) 1.38E-03 5.10E-02 

Weibull (0.85) 5.70E-03 4.70E-02 

1.10E-01 1.17E-01 5.56E-02 1.14E-02 1.02E-02 (2.56) 2.76E-03 4.95E-02 

(10.35) 1.41E-03 5.26E-02 

Weibull (1) 5.82E-03 4.71E-02 

8.71E-02 9.26E-02 4.10E-02 1.15E-02 7.58E-03 (2.00) 2.73E-03 5.00E-02 

(6.00) 1.31E-03 5.39E-02 

Weibull (1.2) 5.70E-03 4.56E-02 

6.24E-02 6.61E-02 2.59E-02 1.06E-02 5.52E-03 (1.52) 2.53E-03 4.89E-02 

(3.24) 1.14E-03 5.34E-02 

Weibull (1.5) 5.10E-03 4.13E-02 

3.73E-02 3.91E-02 1.22E-02 8.87E-03 3.90E-03 (1.07) 2.05E-03 4.48E-02 

(1.39) 8.18E-04 4.97E-02 

Weibull (2.0) 4.08E-03 2.85E-02 

1.71E-02 1.77E-02 3.65E-03 7.41E-03 2.70E-03 (0.63) 1.41E-03 3.12E-02 

(0.25) 4.66E-04 3.57E-02 

Weibull (3.5) 3.36E-03 1.07E-02 

6.53E-03 7.07E-03 6.93E-04 5.43E-03 2.10E-03 (0.03) 9.14E-04 9.33E-03 

(-0.29) 2.13E-04 1.00E-02 

Barnes 2 7.25E-03 4.86E-02 

7.41E-02 7.82E-02 2.95E-02 4.77E-03 3.90E-03 (1.75) 3.39E-03 5.19E-02 

(3.75) 1.63E-03 5.69E-02 
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Table 1 (Continued): Skewed Distributions, Comparisons of Type I Error Rates when 10=n  
 

Distribution 
Combined 

Sample 
Not 

Combined
R-chart S-chart S2-chart WV-chart SC-chart (skewness) 

(kurtosis) 

Chi (1) 6.31E-03 5.13E-02 

1.24E-01 1.32E-01 6.24E-02 7.89E-03 1.06E-02 (2.83) 3.13E-03 5.48E-02 

(12.0) 1.64E-03 5.84E-02 

Chi (2) 5.82E-03 4.71E-02 

8.71E-02 9.26E-02 4.10E-02 1.15E-02 7.58E-03 (2.00) 2.73E-03 5.00E-02 

(6.00) 1.31E-03 5.39E-02 

Chi (3) 5.72E-03 4.46E-02 

6.86E-02 7.28E-02 3.05E-02 1.27E-02 6.74E-03 (1.63) 2.60E-03 4.75E-02 

(4.00) 1.19E-03 5.10E-02 

Chi (4) 5.44E-03 4.30E-02 

5.83E-02 6.14E-02 2.43E-02 1.32E-02 6.54E-03 (1.41) 2.42E-03 4.56E-02 

(3.00) 1.07E-03 4.91E-02 

Chi (8) 4.87E-03 3.81E-02 

3.93E-02 4.03E-02 1.37E-02 1.30E-02 6.03E-03 (1.00) 1.99E-03 4.12E-02 

(1.50) 8.23E-04 4.51E-02 

Chi (10) 4.67E-03 3.48E-02 

3.49E-02 3.53E-02 1.14E-02 1.32E-02 6.10E-03 (0.89) 1.88E-03 3.76E-02 

(1.20) 7.45E-04 4.15E-02 

Chi (12) 4.52E-03 3.37E-02 

3.16E-02 3.16E-02 9.71E-03 1.29E-02 5.95E-03 (0.82) 1.77E-03 3.64E-02 

(1.00) 6.77E-04 4.05E-02 

Chi (16) 4.45E-03 2.62E-02 

2.82E-02 2.75E-02 7.89E-03 1.35E-02 6.08E-03 (0.71) 1.71E-03 2.76E-02 

(0.75) 6.39E-04 3.01E-02 

Chi (24) 4.22E-03 2.51E-02 

2.35E-02 2.24E-02 5.66E-03 1.30E-02 5.71E-03 (0.58) 1.54E-03 2.64E-02 

(0.50) 5.42E-04 2.95E-02 

Gamma (0.15) 6.00E-03 4.54E-02 

1.85E-01 1.97E-01 9.43E-02 2.91E-02 2.82E-02 (5.16) 2.99E-03 4.71E-02 

(40.0) 1.61E-03 4.90E-02 

Gamma (1.2) 6.07E-03 5.12E-02 

7.89E-02 8.38E-02 3.65E-02 1.23E-02 7.27E-03 (1.83) 2.87E-03 5.46E-02 

(5.00) 1.34E-03 5.88E-02 

Gamma (4.0) 4.95E-03 3.97E-02 

3.91E-02 3.99E-02 1.36E-02 1.29E-02 6.02E-03 (1.00) 2.07E-03 4.22E-02 

(1.50) 8.29E-04 4.58E-02 
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Table 2: Skewed Distributions, Comparisons of Type I Error Rates when 25=n  
 

Distribution 
(skewness) 
(kurtosis) 

Combined 
Sample 

Not  
Combined

R-chart S-chart S2-chart WV-chart 

Normal (0,1) (0.00) 
(0.00) 

3.41E-03 3.50E-03 1.83E-02 1.64E-02 1.82E-03 1.70E-02 

Exponential (1) 
(2.00) 
(6.00) 

2.59E-03 3.03E-03 1.09E-01 1.19E-01 5.32E-02 8.16E-03 

Lognormal (0,1) 
(6.18) 

(110.93) 
1.72E-03 2.51E-03 1.68E-01 1.85E-01 1.05E-01 2.49E-02 

Weibull (0.5) 
(6.62) 

(84.72) 
1.97E-03 2.98E-03 1.97E-01 2.20E-01 1.24E-01 2.84E-02 

Weibull (0.75) 
(0.12) 
(1.23) 

1.67E-03 2.22E-03 1.53E-01 1.71E-01 9.10E-02 9.19E-03 

Weibull (0.85) 
(2.56) 

(10.35) 
2.02E-03 2.51E-03 1.35E-01 1.49E-01 7.49E-02 8.71E-03 

Weibull (1) 
(2.00) 
(6.00) 

2.59E-03 3.03E-03 1.09E-01 1.19E-01 5.32E-02 8.16E-03 

Weibull (1.2) 
(1.52) 
(3.24) 

3.18E-03 3.61E-03 8.06E-02 8.47E-02 3.16E-02 8.08E-03 

Weibull (1.5) 
(1.07) 
(1.39) 

3.50E-03 3.88E-03 4.98E-02 5.03E-02 1.35E-02 8.91E-03 

Weibull (2.0) 
(0.63) 
(0.25) 

3.20E-03 3.45E-03 2.27E-02 2.30E-02 3.54E-03 9.28E-03 

Weibull (3.5) 
(0.03) 
(-0.29) 

2.72E-03 2.77E-03 6.67E-03 9.91E-03 7.08E-04 6.08E-03 

Chi (1) 
(2.83) 
(12.0) 

2.10E-03 2.60E-03 1.46E-01 1.65E-01 8.38E-02 5.01E-03 

Chi (2) 
(2.00) 
(6.00) 

2.59E-03 3.03E-03 1.09E-01 1.19E-01 5.32E-02 8.16E-03 

Chi (3) 
(1.63) 
(4.00) 

2.78E-03 3.24E-03 8.80E-02 9.35E-02 3.77E-02 9.73E-03 

Chi (4) 
(1.41) 
(3.00) 

2.84E-03 3.31E-03 7.58E-02 7.88E-02 2.92E-02 1.17E-02 

Chi (8) 
(1.00) 
(1.50) 

2.90E-03 3.26E-03 5.17E-02 5.15E-02 1.51E-02 1.47E-02 

Chi (10) 
(0.89) 
(1.20) 

2.92E-03 3.27E-03 4.61E-02 4.49E-02 1.22E-02 1.56E-02 

Chi (12) 
(0.82) 
(1.00) 

3.03E-03 3.32E-03 4.24E-02 4.12E-02 1.06E-02 1.63E-02 

Chi (16) 
(0.71) 
(0.75) 

3.03E-03 3.28E-03 3.71E-02 3.56E-02 8.25E-03 1.69E-02 

Chi (24) 
(0.58) 
(0.50) 

3.16E-03 3.43E-03 3.14E-02 2.95E-02 5.79E-03 1.70E-02 

Gamma (0.15) 
(5.16) 
(40.0) 

1.52E-03 2.26E-03 2.04E-01 2.36E-01 1.30E-01 1.77E-02 

Gamma (1.2) 
(1.83) 
(5.00) 

2.56E-03 3.06E-03 9.83E-02 1.06E-01 4.51E-02 8.31E-03 

Gamma (4.0) 
(1.00) 
(1.50) 

2.97E-03 3.38E-03 5.19E-02 5.15E-02 1.51E-02 1.46E-02 

Barnes 2 
(1.75) 
(3.75) 

4.09E-03 4.73E-03 8.85E-02 9.66E-02 3.55E-02 2.08E-03 
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Table 3: Symmetric Distributions, Comparisons of Type I Error Rates when 10=n  
 

Distribution 
Combined 

Sample 
Not 

Combined 
R-chart S-chart S2-chart WV-chart SC-chart (skewness) 

(kurtosis) 

Normal (0,1) 3.97E-03 1.09E-02 

1.45E-02 1.24E-02 1.86E-03 1.24E-02 6.40E-03 (0.00) 1.23E-03 9.36E-03 

(0.00) 3.58E-04 9.77E-03 

JTB (2.0, 1.0) 4.58E-03 1.50E-02 

6.60E-02 6.30E-02 2.39E-02 5.77E-02 4.23E-02 (0.00) 1.89E-03 1.39E-02 

(3.00) 7.78E-04 1.46E-02 

JTB (0.75, 0.5) 5.69E-03 1.37E-02 

3.93E-02 3.62E-02 9.57E-03 3.33E-02 2.21E-02 (0.00) 2.22E-03 1.10E-02 

(1.20) 8.52E-04 1.06E-02 

JTB (4.0, 1.0) 4.33E-03 1.43E-02 

3.31E-02 2.78E-02 7.42E-03 2.95E-02 1.88E-02 (0.00) 1.59E-03 1.31E-02 

(0.78) 5.71E-04 1.35E-02 

JTB (1.0, 0.5) 5.08E-03 1.30E-02 

2.71E-02 2.41E-02 5.18E-03 2.34E-02 1.40E-02 (0.00) 1.83E-03 1.07E-02 

(0.60) 6.38E-04 1.09E-02 

JTB (1.25, 0.5) 4.47E-03 1.30E-02 

1.94E-02 1.68E-02 3.03E-03 1.67E-02 9.29E-03 (0.00) 1.52E-03 1.13E-02 

(0.24) 4.69E-04 1.17E-02 

JTB (1.35, 0.5) 4.19E-03 1.12E-02 

1.69E-02 1.45E-02 2.44E-03 1.46E-02 7.86E-03 (0.00) 1.38E-03 9.34E-03 

(0.13) 4.11E-04 9.76E-03 

JTB (1.5, 0.5) 4.00E-03 1.18E-02 

1.45E-02 1.24E-02 1.88E-03 1.25E-02 6.44E-03 (0.00) 1.26E-03 1.01E-02 

(0.00) 3.70E-04 1.05E-02 

JTB (2.0, 0.5) 3.22E-03 1.26E-02 

8.52E-03 7.47E-03 8.68E-04 7.08E-03 3.27E-03 (0.00) 9.07E-04 1.18E-02 

(-0.30) 2.43E-04 1.29E-02 

JTB (4.0, 0.5) 1.65E-03 1.22E-02 

1.55E-03 2.00E-03 1.02E-04 1.20E-03 3.71E-04 (0.00) 3.43E-04 1.28E-02 

(-0.75) 6.33E-05 1.52E-02 

JTB (9.0, 0.5) 8.09E-04 1.86E-02 

6.28E-05 4.81E-04 9.75E-06 4.28E-05 5.75E-06 (0.00) 1.28E-04 2.27E-02 

(-1.00) 1.33E-05 2.92E-02 
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Table 3 (continued): Symmetric Distributions, Comparisons of Type I Error Rates when 10=n  
 

Distribution 

Combined 
Sample 

Not  
Combined 

R-chart S-chart S2-chart WV-chart SC-chart (skewness) 

(kurtosis) 

Barnes 3 2.04E-03 1.73E-02 

1.10E-01 9.09E-02 6.07E-02 1.06E-01 7.76E-02 (3.00) 8.02E-04 1.71E-02 

(1049) 3.41E-04 1.77E-02 

Barnes 1 3.97E-03 1.09E-02 

1.45E-02 1.24E-02 1.86E-03 1.24E-02 6.40E-03 (0.00) 1.23E-03 9.36E-03 

(6.89) 3.58E-04 9.77E-03 

Student (5) 3.27E-03 1.66E-02 

6.24E-02 5.61E-02 2.52E-02 5.76E-02 4.17E-02 (0.00) 1.27E-03 1.58E-02 

(6.00) 5.04E-04 1.66E-02 

Student (6) 3.41E-03 1.43E-02 

5.31E-02 4.67E-02 1.90E-02 4.87E-02 3.44E-02 (0.00) 1.31E-03 1.35E-02 

(3.00) 5.15E-04 1.40E-02 

Student (8) 3.79E-03 1.44E-02 

4.23E-02 3.63E-02 1.27E-02 3.84E-02 2.62E-02 (0.00) 1.41E-03 1.35E-02 

(1.50) 5.15E-04 1.39E-02 

Student (16) 4.09E-03 1.32E-02 

2.68E-02 2.22E-02 5.48E-03 2.38E-02 1.46E-02 (0.00) 1.42E-03 1.22E-02 

(0.50) 4.80E-04 1.27E-02 

Student (25) 4.20E-03 1.15E-02 

2.22E-02 1.83E-02 3.86E-03 1.94E-02 1.13E-02 (0.00) 1.41E-03 9.63E-03 

(0.29) 4.68E-04 9.64E-03 

Student (32) 4.01E-03 9.66E-03 

1.97E-02 1.64E-02 3.21E-03 1.72E-02 9.79E-03 (0.00) 1.35E-03 7.51E-03 

(0.21) 4.24E-04 7.32E-03 

Student (40) 4.08E-03 1.26E-02 

1.89E-02 1.57E-02 2.93E-03 1.65E-02 9.18E-03 (0.00) 1.34E-03 1.09E-02 

(0.17) 4.14E-04 1.11E-02 
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Table 4: Symmetric Distributions, Comparisons of Type I Error Rates when 25=n  
 

Distribution 
(skewness) 
(kurtosis) 

Combined 
Sample 

Not 
Combined 

R-chart S-chart S2-chart WV-chart 

Normal (0,1) 
(0.00) 
(0.00) 

3.41E-03 3.50E-03 1.83E-02 1.64E-02 1.82E-03 1.70E-02 

JTB (2.0, 1.0) 
(0.00) 
(3.00) 

2.31E-03 2.51E-03 8.16E-02 7.97E-02 2.84E-02 7.63E-02 

JTB (0.75, 0.5) 
(0.00) 
(1.20) 

4.42E-03 4.57E-03 4.41E-02 4.45E-02 9.86E-03 4.03E-02 

JTB (4.0, 1.0) 
(0.00) 
(0.78) 

3.26E-03 3.38E-03 4.47E-02 3.55E-02 7.69E-03 4.24E-02 

JTB (1.0, 0.5) 
(0.00) 
(0.60) 

4.36E-03 4.48E-03 3.18E-02 3.05E-02 5.21E-03 2.97E-02 

JTB (1.25, 0.5) 
(0.00) 
(0.24) 

3.81E-03 3.96E-03 2.36E-02 2.16E-02 2.86E-03 2.20E-02 

JTB (1.35, 0.5) 
(0.00) 
(0.13) 

3.72E-03 3.83E-03 2.15E-02 1.97E-02 2.39E-03 2.00E-02 

JTB (1.5, 0.5) 
(0.00) 
(0.00) 

3.36E-03 3.46E-03 1.80E-02 1.63E-02 1.77E-03 1.68E-02 

JTB (2.0, 0.5) 
(0.00) 
(-0.30) 

2.42E-03 2.50E-03 1.11E-02 9.94E-03 7.17E-04 1.02E-02 

JTB (4.0, 0.5) 
(0.00) 
(-0.75) 

9.33E-04 9.70E-04 2.29E-03 3.03E-03 8.20E-05 2.02E-03 

JTB (9.0, 0.5) 
(0.00) 
(-1.00) 

3.23E-04 3.33E-04 1.01E-04 8.21E-04 8.25E-06 8.53E-05 

Barnes 3 
(3.00) 
(1.49) 

6.14E-04 9.31E-04 1.91E-01 1.47E-01 9.66E-02 1.88E-01 

Barnes 1 
(0.00) 
(6.89) 

3.41E-03 3.50E-03 1.83E-02 1.64E-02 1.82E-03 1.70E-02 

Student (5) 
(0.00) 
(6.00) 

1.30E-03 1.42E-03 9.00E-02 7.69E-02 3.36E-02 8.69E-02 

Student (6) 
(0.00) 
(3.00) 

1.64E-03 1.75E-03 7.67E-02 6.35E-02 2.45E-02 7.39E-02 

Student (8) 
(0.00) 
(1.50) 

2.32E-03 2.46E-03 6.11E-02 4.82E-02 1.50E-02 5.86E-02 

Student (16) 
(0.00) 
(0.50) 

3.16E-03 3.29E-03 3.76E-02 2.88E-02 5.56E-03 3.56E-02 

Student (25) 
(0.00) 
(0.29) 

3.28E-03 3.43E-03 2.95E-02 2.32E-02 3.64E-03 2.78E-02 

Student (32) 
(0.00) 
(0.21) 

3.42E-03 3.50E-03 2.72E-02 2.17E-02 3.17E-03 2.56E-02 

Student (40) 
(0.00) 
(0.17) 

3.35E-03 3.44E-03 2.50E-02 2.04E-02 2.75E-03 2.35E-02 
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other than the standard normal distribution 
produced by S2-chart are for the Weibull(2.0) 
with skewness 0.63 and Weibull(3.5) with 
skewness 0.03 which result respective type I 
error rates 0.00365 and 0.000693 equivalent to 
ARLs 273.97 and 1443. However, when 

skewness increases, such as 2
)8(χ  with skewness 

of 1.00, the performance goes down 
dramatically with type I error rate 0.0137 and 
ARL = 72.99. 

The WV R-chart is also unable to 
maintain the type I error rate for skewed 
distributions; although it works well for a few 
distributions, in general it produces false alarms 
too often. The SC R-chart has better 
performances among the existing variability 
control charts. It shows a degree of robustness 
when the coefficient of skewness is small, but if 
the skewness becomes somewhat severe, it fails 
to keep the type I error rates close to the nominal 
level. For example, the SC R-chart produces 
type I error rates of 0.0233 and 0.0307 with 
corresponding ARL of 42.92 and 32.57 for the 
standard lognormal with skewness = 6.18 and 
Weibull (0.5) with skewness = 6.62. 

For the proposed method, results show 
that the combined sample method, which merges 
all the samples in the preliminary runs as one 
large sample to compute the process quantities, 
consistently outperforms all the other methods 
with very few exceptions. The worst case is for 
the Barnes2 distribution with skewness 1.75. It 
produces the highest type I error rate of 0.0075 
with a corresponding ARL 137.93 when αz  is 

used as the critical point. However, it drops to 

0.00339 with ARL 294.99 when 
2

,1 αα −+ ntz
 is 

used. When α,1−nt  is used as a critical point, the 

proposed method becomes too conservative, 
which is not recommended because it will 
become more difficult to detect shifts if present. 

When a larger sample size 25=n  is 
used in the simulation study (see Table 2), the 
performances of the Shewhart R-chart, S-chart, 
S2-chart and WV R-chart do not change much. 
Type I errors rates for these charts are still 
inflated for distributions with high degrees of 
skewness such as the standard lognormal and 

Weibull with shape = 0.5, etc. Conversely, the 
proposed method with combined sample 
produces type I error rates close to the nominal 
level even with αz  as the critical point. The 

highest type I error rate produced by the 
proposed method is 0.00409 (ARL = 244.5) for 
the Barnes2 distribution. 

Table 1 shows that the proposed method 
with combined sample can also be used for the 
standard normal distribution. The type I error 
rates produced are smaller than those of all the 
charts except the S2-chart, even though it is not 
designed for the normal distribution. This nice 
performance adds another desirable property to 
the proposed method. 

Note that the SC R-chart is not used in 
the simulation study with sample size 25=n  
because Chan and Cui (2003) do not provide 
constants for calculations of the control limits 
for any sample size larger than 10. It is 
extremely difficult for the practitioners to 
implement this control chart if the situation 
requires collecting a sample size larger than 10. 
 
Symmetric Distributions 

Table 3 provides type I error rate 
comparisons for the symmetric distributions 
with sample size 10. The proposed method is the 
only one that holds the type I error rates almost 
all the time. Although some of the type I error 
rates for the proposed method are a little higher 
than 0.0027, they are all within an acceptable 
range. The worst case found in the study is for 
the JTB distribution ( =α 0.75, =τ 0.5) with 
kurtosis 1.2 using αz  as a critical point 

producing the lowest ARL = 175.75 with type I 
error rate 0.0057. However, once the critical 

point is changed to 
2

,1 αα −+ ntz
, the ARL 

increases to 454.55 with type I error = 0.0022. 
Again when the critical point α,1−nt  is used, the 

proposed method becomes unnecessarily 
conservative. 

The two traditional methods, Shewhart 
R-chart and S-chart, are not robust at all, but the 
S2-chart performs surprisingly well when the 
kurtosis of the distribution is either very close to 
zero or negative. However, the good 
performance soon disappears once the 
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distribution has a kurtosis larger than 0.5. It is 
expected that WV and SC methods will not 
perform very well, because they only try to 
correct the skewness of the distribution, not the 
kurtosis. 

It can be observed that the type I error 
rates for all the existing charts are strongly 
affected by the kurtosis of the distributions. The 
type I error rate increases when the kurtosis 
increases. When Barnes3 with kurtosis 1049 is 
the parent distribution, all the other charting 
techniques fail. The type I error rates for 
Shewhart R-chart, S-chart, S2-chart, WV R-chart 
and SC R-chart are 0.11, 0.091, 0.0607, 0.106 
and 0.0776 with corresponding ARL 9.09, 11, 
16.47, 9.43 and 13.04, respectively. 

Table 4 provides type I error rate 
comparisons for the symmetric distributions 
with sample size 25. Similar results to those 
shown in Table 3 are observed in this table. The 
proposed method is the only one with robust 
performance. The highest type I error rate is 
0.00442 with ARL = 226.24 for JTB ( =α 0.75, 

=τ 0.5) with kurtosis = 1.2. All other methods 
are not able to maintain type I error rates for 
distributions with kurtosis greater than 0.78. 
When the coefficient of kurtosis is in negative 
values, the type I error rates are generally much 
lower than the desired nominal level; this is 
observed in all the methods studied except in R-
chart which generally fails in nearly all cases. 
 
Power Study 

The primary goal of the power study is 
to find the control charts with improved type I 
error rates and power performance comparable 
to other charts. It is reasonable to expect that 
more conservative charts might produce lower 
power than other charts because it is more 
difficult to detect an out-of-control state with 
these charts. 

The results of the power study for 
skewed distributions are presented in Table 5 for 

sample size 10 with αz  and 
2

,1 αα −+ ntz
 as 

critical points; results for symmetric 
distributions are reported in Table 6 for sample 
size 10. A power study was also conducted for 
cases with sample size 25. For complete 

simulation results, please see Borysov and Sa 
(2010). 

The following similarities in the power 
performances of all the control charting methods 
are observed: As sample size increases from 10 

to 25, power increases; as k in 2σk  increases, 
the power increases; as the skewness of the 
skewed distribution increases, the power tends to 
decrease; and as kurtosis of the symmetric 
distributions increases, the power also tends to 
decrease. 

It can be observed that the power 
performance of the proposed method is 
relatively good and is similar to other charts. In 
the cases of highly skewed distributions with 
large kurtosis (e.g., standard lognormal with 
skewness 6.18 and kurtosis 110, Weibull (0.5) 
with skewness 6.62 and kurtosis 84.72, Gamma 
(0.15) with skewness 5.16 and kurtosis 40), the 
power of the proposed method tends to be lower 
than those of other charts. However, recall that 
the proposed chart is the only one able to control 
the type I error rates for those distributions. 
When the shift in process variability increases 

the proposed scheme with 
2

,1 αα −+ ntz
 becomes 

compatible to the WV and SC control charts. 
Although the three Shewhart charts 

generally have higher power than the proposed 
control chart, it must be restated that power 
performance of the control chart is useless if it 
cannot preserve an appropriate type I error rate. 
Frequent false alarms can create more damage 
than quick shift detections can benefit. If sample 
size 25 is used, the proposed method has better 
power performance than the WV R-chart for 
almost all the distributions considered, even for 
small shifts of the variability. 
 
Simulation Study Summary 

The proposed Variability Control Chart 
which plots Z6 against UCL  with combined 
sample should be used with decision rule (6) in 
order to achieve controllable type I error rates as 
well as to detect shifts in variability. It can be 
implemented for a process with any form of the 
underlying distribution consisting of skewed and 
and/or symmetric distributions including normal. 
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Table 5: Power Comparison Study for Skewed Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Normal (0,1) 
(0.00) 

k=1 

3.97E-03
1.24E-02 1.86E-03 1.24E-02 6.40E-03 1.24E-02 

(0.00) 1.23E-03 

Exponential (1) 
(2.00) 5.82E-03 

8.71E-02 9.26E-02 4.10E-02 1.15E-02 7.58E-03 
(6.00) 2.73E-03 

Lognormal (0,1) 
(6.18) 5.80E-03 

1.37E-01 1.44E-01 7.61E-02 2.52E-02 2.33E-02 
(110) 2.85E-03 

Weibull (0.5) 
(6.62) 5.83E-03 

1.66E-01 1.75E-01 8.74E-02 3.11E-02 3.07E-02 
(84.72) 2.82E-03 

Weibull (0.85) 
(0.12) 5.50E-03 

1.27E-01 1.35E-01 6.62E-02 1.18E-02 1.30E-02 
(1.23) 2.69E-03 

Weibull (0.75) 
(2.56) 5.70E-03 

1.10E-01 1.17E-01 5.56E-02 1.14E-02 1.02E-02 
(10.35) 2.76E-03 

Weibull (1) 
(2.00) 5.82E-03 

8.71E-02 9.26E-02 4.10E-02 1.15E-02 7.58E-03 
(6.00) 2.73E-03 

Weibull (1.2) 
(1.52) 5.70E-03 

6.24E-02 6.61E-02 2.59E-02 1.06E-02 5.52E-03 
(3.24) 2.53E-03 

Weibull (1.5) 
(1.07) 5.10E-03 

3.73E-02 3.91E-02 1.22E-02 8.87E-03 3.90E-03 
(1.39) 2.05E-03 

Weibull (2.0) 
(0.63) 4.08E-03 

1.71E-02 1.77E-02 3.65E-03 7.41E-03 2.70E-03 
(0.25) 1.41E-03 

Weibull (3.5) 
(0.03) 3.36E-03 

6.53E-03 7.07E-03 6.93E-04 5.43E-03 2.10E-03 
(-0.29) 9.14E-04 

Barnes2 
(1.75) 7.25E-03 

7.41E-02 7.82E-02 2.95E-02 4.77E-03 3.90E-03 
(3.75) 3.39E-03 

Normal(0,1) 
(0.00) 

k=2 

1.66E-01
2.54E-01 2.95E-01 1.46E-01 2.37E-01 1.78E-01 

(0.00) 1.01E-01 

Exponential (1) 
(2.00) 6.02E-02 

2.94E-01 3.25E-01 1.97E-01 7.20E-02 5.44E-02 
(6.00) 3.53E-02 

Lognormal (0,1) 
(6.18) 2.54E-02 

2.78E-01 2.98E-01 1.75E-01 6.53E-02 6.12E-02 
(110) 1.41E-02 

Weibull (0.5) 
(6.62) 2.16E-02 

2.89E-01 3.07E-01 1.76E-01 7.48E-02 7.38E-02 
(84.72) 1.18E-02 

Weibull (0.85) 
(0.12) 3.69E-02 

3.01E-01 3.26E-01 1.99E-01 5.08E-02 5.48E-02 
(1.23) 2.10E-02 

Weibull (0.75) 
(2.56) 4.56E-02 

2.99E-01 3.27E-01 2.00E-01 5.74E-02 5.35E-02 
(10.35) 2.64E-02 

Weibull (1) 
(2.00) 6.02E-02 

2.94E-01 3.25E-01 1.97E-01 7.20E-02 5.44E-02 
(6.00) 3.53E-02 

Weibull (1.2) 
(1.52) 8.02E-02 

2.84E-01 3.20E-01 1.88E-01 8.99E-02 5.90E-02 
(3.24) 4.74E-02 

Weibull (1.5) 
(1.07) 1.09E-01 

2.69E-01 3.09E-01 1.73E-01 1.14E-01 7.05E-02 
(1.39) 6.45E-02 

Weibull (2.0) 
(0.63) 1.48E-01 

2.51E-01 2.96E-01 1.51E-01 1.58E-01 9.67E-02 
(0.25) 8.89E-02 

Weibull (3.5) 
(0.03) 1.97E-01 

2.45E-01 2.90E-01 1.35E-01 2.28E-01 1.62E-01 
(-0.29) 1.23E-01 

Barnes2 
(1.75) 8.32E-02 

3.01E-01 3.35E-01 2.00E-01 5.57E-02 5.13E-02 
(3.75) 5.13E-02 

 



BORYSOV & SA 
 

389 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5 (continued): Power Comparison Study for Skewed Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Chi (1) 
(2.83) 

k=1 

6.31E-03
1.24E-01 1.32E-01 6.24E-02 7.89E-03 1.06E-02 

(12.0) 3.13E-03 

Chi (2) 
(2.00) 5.82E-03 

8.71E-02 9.26E-02 4.10E-02 1.15E-02 7.58E-03 
(6.00) 2.73E-03 

Chi (3) 
(1.63) 5.72E-03 

6.86E-02 7.28E-02 3.05E-02 1.27E-02 6.74E-03 
(4.00) 2.60E-03 

Chi (4) 
(1.41) 5.44E-03 

5.83E-02 6.14E-02 2.43E-02 1.32E-02 6.54E-03 
(3.00) 2.42E-03 

Chi (8) 
(1.00) 4.87E-03 

3.93E-02 4.03E-02 1.37E-02 1.30E-02 6.03E-03 
(1.50) 1.99E-03 

Chi (10) 
(0.89) 4.67E-03 

3.49E-02 3.53E-02 1.14E-02 1.32E-02 6.10E-03 
(1.20) 1.88E-03 

Chi (12) 
(0.82) 4.52E-03 

3.16E-02 3.16E-02 9.71E-03 1.29E-02 5.95E-03 
(1.00) 1.77E-03 

Chi (16) 
(0.71) 4.45E-03 

2.82E-02 2.75E-02 7.89E-03 1.35E-02 6.08E-03 
(0.75) 1.71E-03 

Chi (24) 
(0.58) 4.22E-03 

2.35E-02 2.24E-02 5.66E-03 1.30E-02 5.71E-03 
(0.50) 1.54E-03 

Gamma (0.15) 
(5.16) 6.00E-03 

1.85E-01 1.97E-01 9.43E-02 2.91E-02 2.82E-02 
(40.0) 2.99E-03 

Gamma (1.2) 
(1.83) 6.07E-03 

7.89E-02 8.38E-02 3.65E-02 1.23E-02 7.27E-03 
(5.00) 2.87E-03 

Gamma (4.0) 
(1.00) 4.95E-03 

3.91E-02 3.99E-02 1.36E-02 1.29E-02 6.02E-03 
(1.50) 2.07E-03 

Chi (1) 
(2.83) 

k=2 

4.35E-02
3.09E-01 3.35E-01 2.05E-01 4.31E-02 5.37E-02 

(12.0) 2.55E-02 

Chi (2) 
(2.00) 6.02E-02 

2.94E-01 3.25E-01 1.97E-01 7.20E-02 5.44E-02 
(6.00) 3.53E-02 

Chi (3) 
(1.63) 7.21E-02 

2.84E-01 3.18E-01 1.89E-01 9.10E-02 5.90E-02 
(4.00) 4.24E-02 

Chi (4) 
(1.41) 8.05E-02 

2.79E-01 3.14E-01 1.84E-01 1.04E-01 6.44E-02 
(3.00) 4.72E-02 

Chi (8) 
(1.00) 1.02E-01 

2.67E-01 3.05E-01 1.70E-01 1.33E-01 8.13E-02 
(1.50) 6.01E-02 

Chi (10) 
(0.89) 1.09E-01 

2.64E-01 3.02E-01 1.66E-01 1.43E-01 8.88E-02 
(1.20) 6.73E-02 

Chi (12) 
(0.82) 1.15E-01 

2.61E-01 3.00E-01 1.63E-01 1.51E-01 9.40E-02 
(1.00) 7.28E-02 

Chi (16) 
(0.71) 1.24E-01 

2.60E-01 2.99E-01 1.60E-01 1.66E-01 1.04E-01 
(0.75) 6.42E-02 

Chi (24) 
(0.58) 1.32E-01 

2.56E-01 2.95E-01 1.54E-01 1.80E-01 1.15E-01 
(0.50) 7.81E-02 

Gamma (0.15) 
(5.16) 2.42E-02 

3.15E-01 3.34E-01 1.96E-01 8.04E-02 7.84E-02 
(40.0) 1.34E-02 

Gamma (1.2) 
(1.83) 6.66E-02 

2.90E-01 3.23E-01 1.95E-01 8.15E-02 5.72E-02 
(5.00) 3.94E-02 

Gamma (4.0) 
(1.00) 1.03E-01 

2.66E-01 3.04E-01 1.70E-01 1.32E-01 8.13E-02 
(1.50) 6.05E-02 
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Table 5 (continued): Power Comparison Study for Skewed Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Normal (0,1) 
(0.00) 

k=3 

4.36E-01
5.49E-01 6.17E-01 4.38E-01 5.28E-01 4.54E-01 

(0.00) 3.29E-01 

Exponential (1) 
(2.00) 1.53E-01 

4.72E-01 5.17E-01 3.63E-01 1.59E-01 1.29E-01 
(6.00) 9.96E-02 

Lognormal (0,1) 
(6.18) 5.36E-02 

3.91E-01 4.19E-01 2.65E-01 1.08E-01 1.02E-01 
(110) 3.19E-02 

Weibull (0.5) 
(6.62) 4.13E-02 

3.78E-01 4.00E-01 2.48E-01 1.16E-01 1.14E-01 
(84.72) 2.42E-02 

Weibull (0.85) 
(0.12) 8.54E-02 

4.37E-01 4.72E-01 3.20E-01 1.01E-01 1.07E-01 
(1.23) 5.28E-02 

Weibull (0.75) 
(2.56) 1.10E-01 

4.53E-01 4.92E-01 3.40E-01 1.20E-01 1.14E-01 
(10.35) 7.00E-02 

Weibull (1) 
(2.00) 1.53E-01 

4.72E-01 5.17E-01 3.63E-01 1.59E-01 1.29E-01 
(6.00) 9.96E-02 

Weibull (1.2) 
(1.52) 2.12E-01 

4.93E-01 5.44E-01 3.85E-01 2.14E-01 1.56E-01 
(3.24) 1.43E-01 

Weibull (1.5) 
(1.07) 2.96E-01 

5.17E-01 5.74E-01 4.07E-01 2.91E-01 2.09E-01 
(1.39) 2.08E-01 

Weibull (2.0) 
(0.63) 4.03E-01 

5.44E-01 6.07E-01 4.29E-01 4.12E-01 3.10E-01 
(0.25) 2.99E-01 

Weibull (3.5) 
(0.03) 4.93E-01 

5.65E-01 6.30E-01 4.47E-01 5.45E-01 4.63E-01 
(-0.29) 3.88E-01 

Barnes 2 
(1.75) 2.02E-01 

4.94E-01 5.40E-01 3.87E-01 1.46E-01 1.39E-01 
(3.75) 1.40E-01 

Normal (0,1) 
(0.00) 

k=4 

6.35E-01
7.38E-01 7.97E-01 6.61E-01 7.21E-01 6.60E-01 

(0.00) 5.30E-01 

Exponential (1) 
(2.00) 2.52E-01 

6.03E-01 6.50E-01 5.00E-01 2.51E-01 2.11E-01 
(6.00) 1.77E-01 

Lognormal (0,1) 
(6.18) 8.59E-02 

4.80E-01 5.13E-01 3.43E-01 1.49E-01 1.41E-01 
(110) 5.37E-02 

Weibull (0.5) 
(6.62) 6.24E-02 

4.44E-01 4.70E-01 3.07E-01 1.53E-01 1.51E-01 
(84.72) 3.82E-02 

Weibull (0.85) 
(0.12) 1.40E-01 

5.38E-01 5.76E-01 4.21E-01 1.53E-01 1.62E-01 
(1.23) 9.13E-02 

Weibull (0.75) 
(2.56) 1.83E-01 

5.67E-01 6.09E-01 4.56E-01 1.86E-01 1.78E-01 
(10.35) 1.23E-01 

Weibull (1) 
(2.00) 2.52E-01 

6.03E-01 6.50E-01 5.00E-01 2.51E-01 2.11E-01 
(6.00) 1.77E-01 

Weibull (1.2) 
(1.52) 3.47E-01 

6.44E-01 6.94E-01 5.46E-01 3.41E-01 2.67E-01 
(3.24) 2.54E-01 

Weibull (1.5) 
(1.07) 4.70E-01 

6.90E-01 7.42E-01 5.97E-01 4.62E-01 3.64E-01 
(1.39) 3.63E-01 

Weibull (2.0) 
(0.63) 6.04E-01 

7.36E-01 7.87E-01 6.47E-01 6.20E-01 5.18E-01 
(0.25) 4.96E-01 

Weibull (3.5) 
(0.03) 6.91E-01 

7.60E-01 8.12E-01 6.80E-01 7.45E-01 6.80E-01 
(-0.29) 5.96E-01 

Barnes 2 
(1.75) 3.19E-01 

6.28E-01 6.74E-01 5.33E-01 2.46E-01 2.39E-01 
(3.75) 2.37E-01 
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Table 5 (continued): Power Comparison Study for Skewed Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Chi (1) 
(2.83) 

k=3 

9.98E-02
4.49E-01 4.85E-01 3.35E-01 9.30E-02 1.11E-01 

(12.0) 6.36E-02 

Chi (2) 
(2.00) 1.53E-01 

4.72E-01 5.17E-01 3.63E-01 1.59E-01 1.29E-01 
(6.00) 9.96E-02 

Chi (3) 
(1.63) 1.90E-01 

4.84E-01 5.33E-01 3.76E-01 2.08E-01 1.49E-01 
(4.00) 1.27E-01 

Chi (4) 
(1.41) 2.18E-01 

4.94E-01 5.47E-01 3.85E-01 2.42E-01 1.68E-01 
(3.00) 1.47E-01 

Chi (8) 
(1.00) 2.86E-01 

5.14E-01 5.73E-01 4.04E-01 3.20E-01 2.26E-01 
(1.50) 1.98E-01 

Chi (10) 
(0.89) 3.07E-01 

5.19E-01 5.79E-01 4.08E-01 3.46E-01 2.49E-01 
(1.20) 2.15E-01 

Chi (12) 
(0.82) 3.21E-01 

5.22E-01 5.83E-01 4.11E-01 3.65E-01 2.66E-01 
(1.00) 2.26E-01 

Chi (16) 
(0.71) 3.44E-01 

5.29E-01 5.91E-01 4.17E-01 3.97E-01 2.94E-01 
(0.75) 2.46E-01 

Chi (24) 
(0.58) 3.66E-01 

5.33E-01 5.96E-01 4.19E-01 4.29E-01 3.26E-01 
(0.50) 2.65E-01 

Gamma (0.15) 
(5.16) 4.69E-02 

4.00E-01 4.21E-01 2.73E-01 1.29E-01 1.26E-01 
(40.0) 2.77E-02 

Gamma (1.2) 
(1.83) 1.72E-01 

4.79E-01 5.26E-01 3.71E-01 1.82E-01 1.39E-01 
(5.00) 1.14E-01 

Gamma (4.0) 
(1.00) 2.88E-01 

5.13E-01 5.72E-01 4.03E-01 3.19E-01 2.27E-01 
(1.50) 2.00E-01 

Chi (1) 
(2.83) 

k=4 

1.61E-01
5.52E-01 5.90E-01 4.40E-01 1.47E-01 1.71E-01 

(12.0) 1.08E-01 

Chi (2) 
(2.00) 2.52E-01 

6.03E-01 6.50E-01 5.00E-01 2.51E-01 2.11E-01 
(6.00) 1.77E-01 

Chi (3) 
(1.63) 3.15E-01 

6.31E-01 6.81E-01 5.30E-01 3.27E-01 2.50E-01 
(4.00) 2.27E-01 

Chi (4) 
(1.41) 3.60E-01 

6.51E-01 7.03E-01 5.53E-01 3.80E-01 2.86E-01 
(3.00) 2.64E-01 

Chi (8) 
(1.00) 4.61E-01 

6.89E-01 7.44E-01 5.96E-01 4.94E-01 3.84E-01 
(1.50) 3.52E-01 

Chi (10) 
(0.89) 4.89E-01 

6.98E-01 7.53E-01 6.06E-01 5.29E-01 4.19E-01 
(1.20) 3.78E-01 

Chi (12) 
(0.82) 5.07E-01 

7.03E-01 7.59E-01 6.13E-01 5.53E-01 4.43E-01 
(1.00) 3.96E-01 

Chi (16) 
(0.71) 5.35E-01 

7.12E-01 7.69E-01 6.24E-01 5.90E-01 4.82E-01 
(0.75) 4.23E-01 

Chi (24) 
(0.58) 5.62E-01 

7.19E-01 7.76E-01 6.33E-01 6.25E-01 5.24E-01 
(0.50) 4.50E-01 

Gamma (0.15) 
(5.16) 7.02E-02 

4.60E-01 4.83E-01 3.32E-01 1.71E-01 1.68E-01 
(40.0) 4.34E-02 

Gamma (1.2) 
(1.83) 2.83E-01 

6.17E-01 6.66E-01 5.16E-01 2.87E-01 2.30E-01 
(5.00) 2.02E-01 

Gamma (4.0) 
(1.00) 4.63E-01 

6.88E-01 7.43E-01 5.95E-01 4.94E-01 3.84E-01 
(1.50) 3.54E-01 
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Table 5 (continued): Power Comparison Study for Skewed Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Normal (0,1) 
(0.00) 

k=5 

7.61E-01
8.44E-01 8.88E-01 7.95E-01 8.33E-01 7.88E-01 

(0.00) 6.71E-01 

Exponential (1) 
(2.00) 3.46E-01 

6.97E-01 7.41E-01 6.05E-01 3.38E-01 2.92E-01 
(6.00) 2.54E-01 

Lognormal (0,1) 
(6.18) 1.20E-01 

5.52E-01 5.87E-01 4.10E-01 1.89E-01 1.79E-01 
(110) 7.75E-02 

Weibull (0.5) 
(6.62) 8.36E-02 

4.97E-01 5.25E-01 3.56E-01 1.87E-01 1.85E-01 
(84.72) 5.29E-02 

Weibull (0.85) 
(0.12) 1.94E-01 

6.15E-01 6.54E-01 5.02E-01 2.04E-01 2.15E-01 
(1.23) 1.32E-01 

Weibull (0.75) 
(2.56) 2.53E-01 

6.51E-01 6.93E-01 5.48E-01 2.50E-01 2.41E-01 
(10.35) 1.78E-01 

Weibull (1) 
(2.00) 3.46E-01 

6.97E-01 7.41E-01 6.05E-01 3.38E-01 2.92E-01 
(6.00) 2.54E-01 

Weibull (1.2) 
(1.52) 4.64E-01 

7.47E-01 7.90E-01 6.64E-01 4.55E-01 3.73E-01 
(3.24) 3.58E-01 

Weibull (1.5) 
(1.07) 6.05E-01 

7.99E-01 8.40E-01 7.27E-01 5.99E-01 5.02E-01 
(1.39) 4.94E-01 

Weibull (2.0) 
(0.63) 7.36E-01 

8.45E-01 8.81E-01 7.83E-01 7.56E-01 6.73E-01 
(0.25) 6.39E-01 

Weibull (3.5) 
(0.03) 8.06E-01 

8.63E-01 8.99E-01 8.14E-01 8.53E-01 8.09E-01 
(-0.29) 7.29E-01 

Barnes 2 
(1.75) 4.21E-01 

7.20E-01 7.62E-01 6.40E-01 3.41E-01 3.35E-01 
(3.75) 3.26E-01 

Normal (0,1) 
(0.00) 

k=6 

8.38E-01
9.04E-01 9.35E-01 8.73E-01 8.96E-01 8.65E-01 

(0.00) 7.64E-01 

Exponential (1) 
(2.00) 4.28E-01 

7.65E-01 8.04E-01 6.84E-01 4.16E-01 3.67E-01 
(6.00) 3.26E-01 

Lognormal (0,1) 
(6.18) 1.54E-01 

6.10E-01 6.46E-01 4.67E-01 2.26E-01 2.16E-01 
(110) 1.02E-01 

Weibull (0.5) 
(6.62) 1.04E-01 

5.40E-01 5.69E-01 3.99E-01 2.18E-01 2.15E-01 
(84.72) 6.77E-02 

Weibull (0.85) 
(0.12) 2.47E-01 

6.74E-01 7.12E-01 5.68E-01 2.52E-01 2.64E-01 
(1.23) 1.73E-01 

Weibull (0.75) 
(2.56) 3.19E-01 

7.15E-01 7.54E-01 6.20E-01 3.10E-01 3.01E-01 
(10.35) 2.32E-01 

Weibull (1) 
(2.00) 4.28E-01 

7.65E-01 8.04E-01 6.84E-01 4.16E-01 3.67E-01 
(6.00) 3.26E-01 

Weibull (1.2) 
(1.52) 5.60E-01 

8.16E-01 8.53E-01 7.49E-01 5.50E-01 4.67E-01 
(3.24) 4.49E-01 

Weibull (1.5) 
(1.07) 7.02E-01 

8.67E-01 8.97E-01 8.12E-01 7.01E-01 6.13E-01 
(1.39) 5.98E-01 

Weibull (2.0) 
(0.63) 8.19E-01 

9.05E-01 9.30E-01 8.64E-01 8.41E-01 7.78E-01 
(0.25) 7.38E-01 

Weibull (3.5) 
(0.03) 8.73E-01 

9.19E-01 9.43E-01 8.88E-01 9.12E-01 8.82E-01 
(-0.29) 8.13E-01 

Barnes 2 
(1.75) 5.05E-01 

7.84E-01 8.21E-01 7.17E-01 4.25E-01 4.20E-01 
(3.75) 4.05E-01 
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Table 5 (continued): Power Comparison Study for Skewed Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Chi (1) 
(2.83) 

k=5 

2.21E-01
6.28E-01 6.66E-01 5.23E-01 2.00E-01 2.29E-01 

(12.0) 1.54E-01 

Chi (2) 
(2.00) 3.46E-01 

6.97E-01 7.41E-01 6.05E-01 3.38E-01 2.92E-01 
(6.00) 2.54E-01 

Chi (3) 
(1.63) 4.27E-01 

7.33E-01 7.78E-01 6.47E-01 4.35E-01 3.48E-01 
(4.00) 3.24E-01 

Chi (4) 
(1.41) 4.83E-01 

7.58E-01 8.02E-01 6.76E-01 5.00E-01 3.97E-01 
(3.00) 3.74E-01 

Chi (8) 
(1.00) 5.96E-01 

8.00E-01 8.44E-01 7.28E-01 6.31E-01 5.21E-01 
(1.50) 4.84E-01 

Chi (10) 
(0.89) 6.26E-01 

8.09E-01 8.52E-01 7.40E-01 6.66E-01 5.62E-01 
(1.20) 5.15E-01 

Chi (12) 
(0.82) 6.45E-01 

8.14E-01 8.58E-01 7.48E-01 6.90E-01 5.89E-01 
(1.00) 5.35E-01 

Chi (16) 
(0.71) 6.71E-01 

8.22E-01 8.65E-01 7.60E-01 7.23E-01 6.29E-01 
(0.75) 5.64E-01 

Chi (24) 
(0.58) 6.96E-01 

8.29E-01 8.72E-01 7.69E-01 7.55E-01 6.71E-01 
(0.50) 5.93E-01 

Gamma (0.15) 
(5.16) 9.29E-02 

5.07E-01 5.30E-01 3.80E-01 2.09E-01 2.05E-01 
(40.0) 5.93E-02 

Gamma (1.2) 
(1.83) 3.86E-01 

7.15E-01 7.59E-01 6.26E-01 3.84E-01 3.19E-01 
(5.00) 2.89E-01 

Gamma (4.0) 
(1.00) 5.99E-01 

7.99E-01 8.43E-01 7.28E-01 6.30E-01 5.22E-01 
(1.50) 4.87E-01 

Chi (1) 
(2.83) 

k=6 

2.77E-01
6.86E-01 7.23E-01 5.90E-01 2.51E-01 2.83E-01 

(12.0) 1.99E-01 

Chi (2) 
(2.00) 4.28E-01 

7.65E-01 8.04E-01 6.84E-01 4.16E-01 3.67E-01 
(6.00) 3.26E-01 

Chi (3) 
(1.63) 5.22E-01 

8.04E-01 8.42E-01 7.32E-01 5.27E-01 4.37E-01 
(4.00) 4.11E-01 

Chi (4) 
(1.41) 5.82E-01 

8.29E-01 8.65E-01 7.63E-01 5.98E-01 4.95E-01 
(3.00) 4.69E-01 

Chi (8) 
(1.00) 6.96E-01 

8.68E-01 9.01E-01 8.16E-01 7.30E-01 6.31E-01 
(1.50) 5.89E-01 

Chi (10) 
(0.89) 7.24E-01 

8.76E-01 9.08E-01 8.27E-01 7.62E-01 6.71E-01 
(1.20) 6.20E-01 

Chi (12) 
(0.82) 7.41E-01 

8.80E-01 9.13E-01 8.34E-01 7.83E-01 6.98E-01 
(1.00) 6.40E-01 

Chi (16) 
(0.71) 7.63E-01 

8.87E-01 9.19E-01 8.44E-01 8.11E-01 7.35E-01 
(0.75) 6.68E-01 

Chi (24) 
(0.58) 7.85E-01 

8.92E-01 9.24E-01 8.53E-01 8.38E-01 7.72E-01 
(0.50) 6.95E-01 

Gamma (0.15) 
(5.16) 1.15E-01 

5.44E-01 5.67E-01 4.19E-01 2.42E-01 2.37E-01 
(40.0) 7.52E-02 

Gamma (1.2) 
(1.83) 4.75E-01 

7.85E-01 8.23E-01 7.08E-01 4.69E-01 4.00E-01 
(5.00) 3.68E-01 

Gamma (4.0) 
(1.00) 6.99E-01 

8.67E-01 9.01E-01 8.15E-01 7.30E-01 6.32E-01 
(1.50) 5.92E-01 
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Table 6: Power Comparison Study for Symmetric Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Barnes 3 
(3.00) 

k=1 

2.04E-03
1.10E-01 9.09E-02 6.07E-02 1.06E-01 7.76E-02 

(1049) 8.02E-04 

Barnes 1 
(0.00) 3.97E-03 

1.45E-02 1.24E-02 1.86E-03 1.24E-02 6.40E-03 
(6.89) 1.23E-03 

JTB (2.0, 1.0) 
(0.00) 4.58E-03 

6.60E-02 6.30E-02 2.39E-02 5.77E-02 4.23E-02 
(3.00) 1.89E-03 

JTB (0.75, 0.5) 
(0.00) 5.69E-03 

3.93E-02 3.62E-02 9.57E-03 3.33E-02 2.21E-02 
(1.20) 2.22E-03 

JTB (4.0, 1.0) 
(0.00) 4.33E-03 

3.31E-02 2.78E-02 7.42E-03 2.95E-02 1.88E-02 
(0.78) 1.59E-03 

JTB (1.0, 0.5) 
(0.00) 5.08E-03 

2.71E-02 2.41E-02 5.18E-03 2.34E-02 1.40E-02 
(0.60) 1.83E-03 

JTB (1.25, 0.5) 
(0.00) 4.47E-03 

1.94E-02 1.68E-02 3.03E-03 1.67E-02 9.29E-03 
(0.24) 1.52E-03 

JTB (1.35, 0.5) 
(0.00) 4.19E-03 

1.69E-02 1.45E-02 2.44E-03 1.46E-02 7.86E-03 
(0.13) 1.38E-03 

JTB (1.5, 0.5) 
(0.00) 4.00E-03 

1.45E-02 1.24E-02 1.88E-03 1.25E-02 6.44E-03 
(0.00) 1.26E-03 

JTB (2.0, 0.5) 
(0.00) 3.22E-03 

8.52E-03 7.47E-03 8.68E-04 7.08E-03 3.27E-03 
(-0.30) 9.07E-04 

JTB (4.0, 0.5) 
(0.00) 1.65E-03 

1.55E-03 2.00E-03 1.02E-04 1.20E-03 3.71E-04 
(-0.75) 3.43E-04 

JTB (9.0, 0.5) 
(0.00) 8.09E-04 

6.28E-05 4.81E-04 9.75E-06 4.28E-05 5.75E-06 
(-1.00) 1.28E-04 

Barnes 3 
(3.00) 

k=2 

9.49E-03
1.80E-01 1.76E-01 1.19E-01 1.76E-01 1.35E-01 

(1049) 4.20E-03 

Barnes 1 
(0.00) 1.66E-01 

2.54E-01 2.95E-01 1.46E-01 2.37E-01 1.78E-01 
(6.89) 1.01E-01 

JTB (2.0, 1.0) 
(0.00) 7.00E-02 

2.90E-01 3.20E-01 1.87E-01 2.68E-01 2.22E-01 
(3.00) 3.93E-02 

JTB (0.75, 0.5) 
(0.00) 1.14E-01 

2.85E-01 3.20E-01 1.78E-01 2.62E-01 2.15E-01 
(1.20) 6.86E-02 

JTB (4.0, 1.0) 
(0.00) 1.18E-01 

2.68E-01 3.03E-01 1.63E-01 2.52E-01 1.98E-01 
(0.78) 6.85E-02 

JTB (1.0, 0.5) 
(0.00) 1.36E-01 

2.73E-01 3.10E-01 1.64E-01 2.54E-01 2.00E-01 
(0.60) 8.27E-02 

JTB (1.25, 0.5) 
(0.00) 1.52E-01 

2.61E-01 3.00E-01 1.53E-01 2.44E-01 1.87E-01 
(0.24) 9.25E-02 

JTB (1.35, 0.5) 
(0.00) 1.57E-01 

2.57E-01 2.96E-01 1.49E-01 2.40E-01 1.82E-01 
(0.13) 9.54E-02 

JTB (1.5, 0.5) 
(0.00) 1.66E-01 

2.54E-01 2.95E-01 1.45E-01 2.38E-01 1.78E-01 
(0.00) 1.01E-01 

JTB (2.0, 0.5) 
(0.00) 1.87E-01 

2.40E-01 2.85E-01 1.33E-01 2.22E-01 1.62E-01 
(-0.30) 1.14E-01 

JTB (4.0, 0.5) 
(0.00) 2.34E-01 

2.09E-01 2.67E-01 1.09E-01 1.89E-01 1.24E-01 
(-0.75) 1.44E-01 

JTB (9.0, 0.5) 
(0.00) 2.80E-01 

1.72E-01 2.54E-01 9.03E-02 1.50E-01 8.22E-02 
(-1.00) 1.76E-01 
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Table 6 (continued): Power Comparison Study for Symmetric Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Student (5) 
(0.00) 

k=1 

3.27E-03 
6.24E-02 5.61E-02 2.52E-02 5.76E-02 4.17E-02 

(6.00) 1.27E-03 

Student (6) 
(0.00) 3.41E-03 

5.31E-02 4.67E-02 1.90E-02 4.87E-02 3.44E-02 
(3.00) 1.31E-03 

Student (8) 
(0.00) 3.79E-03 

4.23E-02 3.63E-02 1.27E-02 3.84E-02 2.62E-02 
(1.50) 1.41E-03 

Student (16) 
(0.00) 4.09E-03 

2.68E-02 2.22E-02 5.48E-03 2.38E-02 1.46E-02 
(0.50) 1.42E-03 

Student (25) 
(0.00) 4.20E-03 

2.22E-02 1.83E-02 3.86E-03 1.94E-02 1.13E-02 
(0.29) 1.41E-03 

Student (32) 
(0.00) 4.01E-03 

1.97E-02 1.64E-02 3.21E-03 1.72E-02 9.79E-03 
(0.21) 1.35E-03 

Student (40) 
(0.00) 4.08E-03 

1.89E-02 1.57E-02 2.93E-03 1.65E-02 9.18E-03 
(0.17) 1.34E-03 

Student (5) 
(0.00) 

k=2 

6.15E-02 
2.69E-01 2.98E-01 1.69E-01 2.54E-01 2.00E-01 

(6.00) 3.24E-02 

Student (6) 
(0.00) 7.43E-02 

2.67E-01 2.97E-01 1.66E-01 2.51E-01 1.97E-01 
(3.00) 4.02E-02 

Student (8) 
(0.00) 9.47E-02 

2.66E-01 3.00E-01 1.64E-01 2.50E-01 1.96E-01 
(1.50) 5.30E-02 

Student (16) 
(0.00) 1.30E-01 

2.61E-01 2.99E-01 1.56E-01 2.45E-01 1.89E-01 
(0.50) 7.59E-02 

Student (25) 
(0.00) 1.44E-01 

2.60E-01 2.98E-01 1.53E-01 2.43E-01 1.86E-01 
(0.29) 8.55E-02 

Student (32) 
(0.00) 1.47E-01 

2.56E-01 2.95E-01 1.50E-01 2.39E-01 1.82E-01 
(0.21) 8.77E-02 

Student (40) 
(0.00) 1.52E-01 

2.57E-01 2.96E-01 1.50E-01 2.41E-01 1.83E-01 
(0.17) 9.15E-02 

Student (5) 
(0.00) 

k=3 

1.88E-01 
4.81E-01 5.45E-01 3.73E-01 4.62E-01 3.86E-01 

(6.00) 1.17E-01 

Student (6) 
(0.00) 2.24E-01 

4.91E-01 5.57E-01 3.86E-01 4.72E-01 3.97E-01 
(3.00) 1.45E-01 

Student (8) 
(0.00) 2.77E-01 

5.08E-01 5.77E-01 4.03E-01 4.88E-01 4.16E-01 
(1.50) 1.87E-01 

Student (16) 
(0.00) 3.60E-01 

5.29E-01 5.98E-01 4.23E-01 5.10E-01 4.38E-01 
(0.50) 2.58E-01 

Student (25) 
(0.00) 3.90E-01 

5.37E-01 6.06E-01 4.29E-01 5.18E-01 4.45E-01 
(0.29) 2.86E-01 

Student (32) 
(0.00) 3.97E-01 

5.37E-01 6.06E-01 4.29E-01 5.17E-01 4.44E-01 
(0.21) 2.93E-01 

Student (40) 
(0.00) 4.07E-01 

5.41E-01 6.10E-01 4.32E-01 5.22E-01 4.48E-01 
(0.17) 3.03E-01 
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Table 6 (continued): Power Comparison Study for Symmetric Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Barnes 3 
(3.00) 

k=3 

3.00E-02
2.41E-01 3.62E-01 1.91E-01 2.33E-01 1.78E-01 

(1049) 1.32E-02 

Barnes 1 
(0.00) 4.36E-01 

5.49E-01 6.17E-01 4.38E-01 5.28E-01 4.54E-01 
(6.89) 3.29E-01 

JTB (2.0, 1.0) 
(0.00) 1.91E-01 

4.93E-01 5.47E-01 3.88E-01 4.66E-01 4.10E-01 
(3.00) 1.24E-01 

JTB (0.75, 0.5) 
(0.00) 2.95E-01 

5.23E-01 5.82E-01 4.18E-01 4.97E-01 4.40E-01 
(1.20) 2.09E-01 

JTB (4.0, 1.0) 
(0.00) 3.28E-01 

5.22E-01 5.90E-01 4.17E-01 5.02E-01 4.34E-01 
(0.78) 2.31E-01 

JTB (1.0, 0.5) 
(0.00) 3.55E-01 

5.34E-01 5.97E-01 4.27E-01 5.13E-01 4.47E-01 
(0.60) 2.59E-01 

JTB (1.25, 0.5) 
(0.00) 3.99E-01 

5.41E-01 6.06E-01 4.31E-01 5.21E-01 4.49E-01 
(0.24) 2.97E-01 

JTB (1.35, 0.5) 
(0.00) 4.13E-01 

5.42E-01 6.09E-01 4.32E-01 5.22E-01 4.50E-01 
(0.13) 3.09E-01 

JTB (1.5, 0.5) 
(0.00) 4.36E-01 

5.49E-01 6.17E-01 4.37E-01 5.30E-01 4.54E-01 
(0.00) 3.30E-01 

JTB (2.0, 0.5) 
(0.00) 4.88E-01 

5.60E-01 6.29E-01 4.44E-01 5.39E-01 4.59E-01 
(-0.30) 3.78E-01 

JTB (4.0, 0.5) 
(0.00) 5.92E-01 

5.90E-01 6.57E-01 4.59E-01 5.66E-01 4.72E-01 
(-0.75) 4.84E-01 

JTB (9.0, 0.5) 
(0.00) 6.69E-01 

6.24E-01 6.78E-01 4.72E-01 5.96E-01 4.89E-01 
(-1.00) 5.70E-01 

Barnes 3 
(3.00) 

k=4 

7.68E-02
3.92E-01 6.06E-01 3.16E-01 3.67E-01 2.52E-01 

(1049) 3.47E-02 

Barnes 1 
(0.00) 6.35E-01 

7.38E-01 7.97E-01 6.61E-01 7.21E-01 6.60E-01 
(6.89) 5.30E-01 

JTB (2.0, 1.0) 
(0.00) 3.20E-01 

6.37E-01 6.97E-01 5.51E-01 6.12E-01 5.57E-01 
(3.00) 2.25E-01 

JTB (0.75, 0.5) 
(0.00) 4.59E-01 

6.83E-01 7.42E-01 6.03E-01 6.60E-01 6.09E-01 
(1.20) 3.54E-01 

JTB (4.0, 1.0) 
(0.00) 5.15E-01 

6.97E-01 7.64E-01 6.21E-01 6.80E-01 6.18E-01 
(0.78) 4.02E-01 

JTB (1.0, 0.5) 
(0.00) 5.38E-01 

7.06E-01 7.67E-01 6.29E-01 6.88E-01 6.31E-01 
(0.60) 4.30E-01 

JTB (1.25, 0.5) 
(0.00) 5.92E-01 

7.23E-01 7.83E-01 6.45E-01 7.06E-01 6.46E-01 
(0.24) 4.86E-01 

JTB (1.35, 0.5) 
(0.00) 6.09E-01 

7.28E-01 7.88E-01 6.50E-01 7.12E-01 6.51E-01 
(0.13) 5.03E-01 

JTB (1.5, 0.5) 
(0.00) 6.35E-01 

7.38E-01 7.97E-01 6.61E-01 7.23E-01 6.60E-01 
(0.00) 5.30E-01 

JTB (2.0, 0.5) 
(0.00) 6.91E-01 

7.60E-01 8.15E-01 6.80E-01 7.43E-01 6.80E-01 
(-0.30) 5.93E-01 

JTB (4.0, 0.5) 
(0.00) 7.86E-01 

8.07E-01 8.47E-01 7.19E-01 7.92E-01 7.27E-01 
(-0.75) 7.07E-01 

JTB (9.0, 0.5) 
(0.00) 8.41E-01 

8.46E-01 8.67E-01 7.46E-01 8.31E-01 7.70E-01 
(-1.00) 7.80E-01 
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Table 6 (continued): Power Comparison Study for Symmetric Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Student (5) 
(0.00) 

k=4 

3.29E-01 
6.40E-01 7.13E-01 5.51E-01 6.22E-01 5.44E-01 

(6.00) 2.28E-01 

Student (6) 
(0.00) 3.82E-01 

6.57E-01 7.29E-01 5.73E-01 6.39E-01 5.63E-01 
(3.00) 2.74E-01 

Student (8) 
(0.00) 4.53E-01 

6.81E-01 7.51E-01 6.02E-01 6.63E-01 5.95E-01 
(1.50) 3.40E-01 

Student (16) 
(0.00) 5.54E-01 

7.11E-01 7.76E-01 6.35E-01 6.94E-01 6.31E-01 
(0.50) 4.41E-01 

Student (25) 
(0.00) 5.87E-01 

7.22E-01 7.85E-01 6.45E-01 7.06E-01 6.43E-01 
(0.29) 4.76E-01 

Student (32) 
(0.00) 5.95E-01 

7.23E-01 7.86E-01 6.47E-01 7.07E-01 6.44E-01 
(0.21) 4.86E-01 

Student (40) 
(0.00) 6.06E-01 

7.27E-01 7.89E-01 6.51E-01 7.12E-01 6.49E-01 
(0.17) 4.98E-01 

Student (5) 
(0.00) 

k=5 

4.54E-01 
7.50E-01 8.17E-01 6.83E-01 7.34E-01 6.62E-01 

(6.00) 3.37E-01 

Student (6) 
(0.00) 5.15E-01 

7.68E-01 8.31E-01 7.07E-01 7.53E-01 6.85E-01 
(3.00) 3.96E-01 

Student (8) 
(0.00) 5.90E-01 

7.91E-01 8.50E-01 7.37E-01 7.77E-01 7.19E-01 
(1.50) 4.74E-01 

Student (16) 
(0.00) 6.89E-01 

8.20E-01 8.71E-01 7.70E-01 8.08E-01 7.58E-01 
(0.50) 5.83E-01 

Student (25) 
(0.00) 7.18E-01 

8.30E-01 8.78E-01 7.80E-01 8.18E-01 7.70E-01 
(0.29) 6.19E-01 

Student (32) 
(0.00) 7.26E-01 

8.32E-01 8.79E-01 7.82E-01 8.20E-01 7.73E-01 
(0.21) 6.28E-01 

Student (40) 
(0.00) 7.36E-01 

8.35E-01 8.81E-01 7.86E-01 8.24E-01 7.77E-01 
(0.17) 6.40E-01 

Student (5) 
(0.00) 

k=6 

5.57E-01 
8.24E-01 8.80E-01 7.75E-01 8.11E-01 7.48E-01 

(6.00) 4.35E-01 

Student (6) 
(0.00) 6.19E-01 

8.40E-01 8.92E-01 7.97E-01 8.28E-01 7.71E-01 
(3.00) 5.00E-01 

Student (8) 
(0.00) 6.90E-01 

8.60E-01 9.07E-01 8.23E-01 8.50E-01 8.04E-01 
(1.50) 5.80E-01 

Student (16) 
(0.00) 7.79E-01 

8.85E-01 9.23E-01 8.52E-01 8.76E-01 8.39E-01 
(0.50) 6.86E-01 

Student (25) 
(0.00) 8.04E-01 

8.93E-01 9.27E-01 8.61E-01 8.84E-01 8.49E-01 
(0.29) 7.18E-01 

Student (32) 
(0.00) 8.11E-01 

8.94E-01 9.28E-01 8.63E-01 8.86E-01 8.52E-01 
(0.21) 7.28E-01 

Student (40) 
(0.00) 8.18E-01 

8.97E-01 9.30E-01 8.65E-01 8.89E-01 8.55E-01 
(0.17) 7.38E-01 

 



A ROBUST ONE-SIDED VARIABILITY CONTROL CHART 

398 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6 (continued): Power Comparison Study for Symmetric Distributions ( 10=n ) 
 

Distribution 
(skewness) 
(kurtosis) 

k 
Combined 

Sample 
R-chart S-chart S2-chart WV-chart SC-chart 

Barnes 3 
(3.00) 

k=5 

1.53E-01
5.89E-01 7.79E-01 4.59E-01 5.53E-01 3.69E-01 

(1049) 7.54E-02 

Barnes 1 
(0.00) 7.61E-01 

8.44E-01 8.88E-01 7.95E-01 8.33E-01 7.88E-01 
(6.89) 6.71E-01 

JTB (2.0, 1.0) 
(0.00) 4.34E-01 

7.36E-01 7.93E-01 6.69E-01 7.14E-01 6.65E-01 
(3.00) 3.24E-01 

JTB (0.75, 0.5) 
(0.00) 5.85E-01 

7.84E-01 8.34E-01 7.27E-01 7.65E-01 7.24E-01 
(1.20) 4.76E-01 

JTB (4.0, 1.0) 
(0.00) 6.52E-01 

8.06E-01 8.60E-01 7.55E-01 7.93E-01 7.43E-01 
(0.78) 5.41E-01 

JTB (1.0, 0.5) 
(0.00) 6.68E-01 

8.11E-01 8.60E-01 7.58E-01 7.97E-01 7.52E-01 
(0.60) 5.65E-01 

JTB (1.25, 0.5) 
(0.00) 7.21E-01 

8.29E-01 8.75E-01 7.79E-01 8.17E-01 7.71E-01 
(0.24) 6.25E-01 

JTB (1.35, 0.5) 
(0.00) 7.37E-01 

8.35E-01 8.80E-01 7.84E-01 8.23E-01 7.78E-01 
(0.13) 6.44E-01 

JTB (1.5, 0.5) 
(0.00) 7.60E-01 

8.45E-01 8.88E-01 7.95E-01 8.34E-01 7.88E-01 
(0.00) 6.71E-01 

JTB (2.0, 0.5) 
(0.00) 8.09E-01 

8.66E-01 9.03E-01 8.16E-01 8.55E-01 8.11E-01 
(-0.30) 7.30E-01 

JTB (4.0, 0.5) 
(0.00) 8.80E-01 

9.05E-01 9.27E-01 8.53E-01 8.96E-01 8.58E-01 
(-0.75) 8.25E-01 

JTB (9.0, 0.5) 
(0.00) 9.15E-01 

9.31E-01 9.40E-01 8.76E-01 9.23E-01 8.92E-01 
(-1.00) 8.76E-01 

Barnes 3 
(3.00) 

k=6 

2.46E-01
7.49E-01 8.76E-01 5.85E-01 7.16E-01 4.87E-01 

(1049) 1.35E-01 

Barnes 1 
(0.00) 8.38E-01 

9.04E-01 9.35E-01 8.73E-01 8.96E-01 8.65E-01 
(6.89) 7.64E-01 

JTB (2.0, 1.0) 
(0.00) 5.29E-01 

8.04E-01 8.54E-01 7.53E-01 7.85E-01 7.42E-01 
(3.00) 4.12E-01 

JTB (0.75, 0.5) 
(0.00) 6.79E-01 

8.49E-01 8.90E-01 8.08E-01 8.34E-01 8.01E-01 
(1.20) 5.74E-01 

JTB (4.0, 1.0) 
(0.00) 7.47E-01 

8.72E-01 9.14E-01 8.38E-01 8.62E-01 8.24E-01 
(0.78) 6.46E-01 

JTB (1.0, 0.5) 
(0.00) 7.58E-01 

8.74E-01 9.12E-01 8.39E-01 8.64E-01 8.30E-01 
(0.60) 6.64E-01 

JTB (1.25, 0.5) 
(0.00) 8.05E-01 

8.91E-01 9.25E-01 8.58E-01 8.82E-01 8.49E-01 
(0.24) 7.23E-01 

JTB (1.35, 0.5) 
(0.00) 8.19E-01 

8.96E-01 9.29E-01 8.64E-01 8.88E-01 8.55E-01 
(0.13) 7.40E-01 

JTB (1.5, 0.5) 
(0.00) 8.38E-01 

9.04E-01 9.34E-01 8.73E-01 8.97E-01 8.65E-01 
(0.00) 7.64E-01 

JTB (2.0, 0.5) 
(0.00) 8.76E-01 

9.22E-01 9.46E-01 8.91E-01 9.15E-01 8.86E-01 
(-0.30) 8.16E-01 

JTB (4.0, 0.5) 
(0.00) 9.28E-01 

9.50E-01 9.62E-01 9.20E-01 9.45E-01 9.23E-01 
(-0.75) 8.89E-01 

JTB (9.0, 0.5) 
(0.00) 9.51E-01 

9.65E-01 9.70E-01 9.35E-01 9.61E-01 9.45E-01 
(-1.00) 9.24E-01 

 



BORYSOV & SA 
 

399 
 

Because the method involves higher 
sample cumulants 6κ  it is recommended to use 

a sample size of at least 10; the simulation study  

shows that critical point 
2

,1 αα −+ ntz
 is 

preferable when sample size 10 is used. 
 
An Example 

Suppose a chemical manufacturer wants 
to monitor the viscosity of a particular chemical 
from the production line and that it is important 
to detect disturbances which could result in 
increasing the variability of the process. The 
random measurements of the viscosity are 
selected until subgroups are obtained, and 

corresponding sample variances 2
)(iS , )(,4 iκ  and 

Z6 are calculated and presented in Table 7. 
Necessary process parameters are 

estimated from the preliminary run stage which 
contains 30 samples sized 10 each. The 

estimated process variance 398.7
~2 =S , process 

skewness *
3k = 1.74 (positively skewed 

distribution), and process cumulants are 
654.333 =κ , 667.2324 =κ  and 

75.95986 =κ . Because the proposed method 

recommends using a combined sample, all 
quantities are obtained from one large sample, n 
= 300, by merging the 30 size 10 samples 
together. Equation (4) is then used to obtain the 
upper limit of the control chart with critical 
point αz  
 

1 2
2

1 2

z 1ˆ ˆUCL z n B B 6.049.
6

−
α

α
 −= + + = 
 

 

 
The new method is used to construct the 

control chart for the variability of this positively 
skewed distribution. Each sample point is the 
test statistic Z6 of the sample where 
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~
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κ
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and 2
)(iS  and )(,4 iκ  are variance and the fourth 

cumulant of the thi  sample; 2~S  is estimated 
process variance calculated from the preliminary 
stage process. (See Figure 1). It can be observed 
that the process is under statistical control during 
the period of time when the 40 samples were 
collected, that is, all points are under the Upper 
Control Limit of 6.049. 

If the traditional one-sided R-chart, S-
chart, S2-chart as well as WV and SC charts are 
also constructed, then one can observe that - in 
all charts except the SC-chart - at least one 
sample point, point 18, is above the Upper 
Control Limit, which gives a false out-of-control 
signal. 
 

Conclusion 
This study proposed a new charting scheme for 
the variability of a process. This technique is an 
adaptation of Long and Sa’s (2005) testing 
procedure and is designed to control the 
variability of a process without any assumption 
regarding the form of the underlying 
distribution. 

The Monte Carlo simulation study of 
type I error rates indicates that the proposed 
method is robust for all distributions studied. It 
can achieve significant improvement over the 
Shewhart R-chart, the S-chart and the S2-chart, 
as well as the WV R-chart and the SC R-chart 
when the distribution is highly skewed and/or 
has large kurtosis. It can maintain the type I 
error rates close to the nominal level 

0027.0=α  and shows reasonably good power. 
In a real life situation, control charts are 

constructed even when there is no information 
about the form of the distribution of the quality 
characteristic. The method presented herein 
works well for all distributions studied, which 
includes the normal distribution. 

If sample size is small, then the average 
of αz and 1, −ntα  as the critical point is 

recommended to produce a small number of 
false alarms and detect shifts reasonably well. 
Because the proposed method involves higher 
moments, a sample size of at least 10 is 
recommended. 
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Table 7: Example Data ( 10=n ) 
 

Sample Data S2 4κ  Z6 

1 0.1753 0.1993 2.8990 2.6626 2.4803 3.9687 6.6066 1.7451 5.7174 2.3713 4.3754 0.0000 -0.8679

2 1.8987 9.5414 0.4717 3.7043 2.3586 9.9265 5.6399 0.8266 2.2084 1.0139 12.1981 0.0000 1.3730 

3 6.7533 0.2629 4.2325 4.3115 3.1053 1.9042 4.7606 1.2661 8.1081 4.5336 5.7830 0.0000 -0.4647

4 1.3454 2.3209 2.8454 0.7297 2.0158 1.9803 1.0899 5.5295 0.2362 1.0541 2.2310 18.2422 -1.2115

5 1.2494 3.7607 0.7006 5.5135 1.6933 1.4810 3.3468 1.9125 2.0569 1.8984 2.0655 6.2677 -1.4055

6 4.9890 0.9675 11.7036 2.4818 4.8241 1.2914 1.6978 3.6436 4.6315 4.3729 9.5299 392.0086 0.3254 

7 6.1313 6.3210 1.1931 1.6164 1.2826 6.4058 2.6711 0.4085 5.4223 4.6664 5.8097 0.0000 -0.4570

8 0.2906 1.7878 0.7905 1.1382 7.7531 0.2521 0.3012 2.1627 2.2058 0.6501 5.0435 179.6856 -0.3803

9 6.2531 6.0388 1.6128 2.8829 3.6935 0.7531 2.0489 4.8375 1.7980 2.1992 3.6892 0.0000 -1.0645

10 3.6747 2.2271 2.6493 4.3548 9.9896 2.9346 0.6846 2.2333 4.4169 2.1832 6.4037 217.7216 -0.1638

11 0.0888 1.1911 5.3541 2.9182 1.2550 8.7974 2.1795 2.0307 1.4277 2.0003 6.4750 138.9135 -0.1755

12 3.4825 2.3265 5.2447 0.7256 5.1806 1.6558 3.5688 2.8752 2.0482 0.5028 2.7078 0.0000 -1.3456

13 5.4607 0.7457 3.3457 9.8583 3.3429 2.9802 2.7684 0.1488 8.5222 5.5548 9.7128 0.0000 0.6611 

14 0.6061 1.9028 4.7777 1.7799 0.6848 9.3894 1.4367 3.1679 5.5664 4.1000 7.4303 87.0290 0.0055 

15 0.6069 0.2926 1.5002 0.9540 2.3739 3.5945 1.8038 1.7982 5.6449 0.2206 2.8074 15.3712 -1.1409

16 4.9356 2.4603 3.6291 4.4440 1.2951 2.3350 1.7887 1.5324 0.7752 1.0778 2.0949 0.0000 -1.5212

17 1.6166 0.6310 4.9091 3.8633 0.5929 2.9032 0.6788 0.8536 3.9993 1.5527 2.6392 0.0000 -1.3653

18 1.8073 4.3716 0.7548 4.0216 1.9322 17.5866 7.5443 1.2864 1.6462 1.7298 26.0279 4037.2395 1.6522 

19 0.7649 3.4767 0.3363 3.7036 8.2392 3.9891 0.8094 4.0438 3.6515 2.9723 5.2400 51.3835 -0.4910

20 0.2054 14.2214 5.3427 2.4460 4.6481 5.7322 2.2885 4.3794 4.2059 0.8869 15.2693 1103.0417 0.9704 

21 7.6503 1.8991 1.9254 0.8912 1.6838 2.3336 0.6366 6.2804 2.7257 0.2412 5.9172 38.7200 -0.3605

22 9.8933 7.5309 3.2807 1.5821 0.4120 3.3600 0.6842 0.2074 0.1167 1.4909 11.1675 135.4547 0.8177 

23 0.9872 2.0582 0.3003 1.1105 1.9264 1.9017 0.1944 0.3366 1.5401 2.6845 0.7320 0.0000 -1.9116

24 2.8916 11.2486 0.7761 0.6566 1.2512 3.0792 4.1080 1.8494 0.6488 2.3294 9.9941 652.4974 0.3328 

25 0.5455 2.9088 2.0852 2.5598 6.5651 0.8456 3.5727 2.9086 5.2798 2.2881 3.3818 5.6749 -1.0979

26 1.9177 2.7938 1.3091 7.1956 4.6303 1.6167 1.2484 0.5885 1.9009 1.5335 3.9685 48.8875 -0.7445

27 0.3927 2.2825 1.5281 1.3541 1.9966 0.3233 1.1659 4.0624 0.6790 0.5122 1.3077 4.0065 -1.6038

28 2.1452 2.2046 2.3803 3.4120 1.8255 3.1891 3.2583 1.5925 2.4079 0.7436 0.6824 0.0000 -1.9258

29 0.3452 1.1206 1.5241 2.0653 1.5242 1.7115 0.8049 3.7092 4.2871 1.6163 1.5126 1.5460 -1.6379

30 0.4881 7.1682 4.6524 0.4335 2.2388 0.8668 0.8453 4.9536 0.7459 0.3920 5.9185 1.4050 -0.4228
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Table 7 (continued): Example Data ( 10=n ) 
 

Sample Data S2 4κ  Z6 

31 1.1352 3.7820 6.0729 2.0385 0.6038 4.9635 3.7010 2.3934 2.7716 1.0346 3.1780 0.0000 -1.2109

32 5.3424 1.4407 2.3453 1.5825 5.1191 3.9414 5.9906 2.5694 1.4657 1.6535 3.2021 0.0000 -1.2040

33 5.5480 2.2404 2.3234 3.5577 0.1689 6.1042 1.2915 3.8142 6.3927 1.6449 4.6073 0.0000 -0.8015

34 3.0710 0.6454 1.1600 2.5251 0.7999 3.8018 2.1754 0.6235 6.6516 2.0064 3.4462 29.9413 -0.9175

35 5.7266 2.5197 0.5746 4.0094 1.8757 3.1076 1.5696 2.2175 1.1754 1.2167 2.3779 7.1928 -1.3236

36 0.4678 3.0494 5.3371 2.9850 0.5926 0.8862 0.7395 4.7288 0.4933 0.7294 3.5218 0.0000 -1.1124

37 1.6734 12.9557 0.7857 0.8905 1.7642 0.7138 0.9902 2.1479 2.7973 2.4034 13.4796 1625.8027 0.6029 

38 1.8289 2.9504 3.4233 0.5749 1.2637 4.2572 0.2638 1.0693 2.8841 1.8386 1.7003 0.0000 -1.6343

39 1.9636 4.6574 0.7779 1.2897 1.1516 2.1388 1.4726 4.9557 2.1783 4.4767 2.4909 0.0000 -1.4078

40 3.4110 2.8170 1.3172 3.2577 3.4979 1.7006 1.5000 1.0208 1.3976 1.4541 0.9690 0.0000 -1.8437

 
 
 
 
 

Figure 1 Example of the Proposed One-Sided Control Chart Method 
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