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INVITED DEBATE 
The Not-So-Quiet Revolution: Cautionary Comments on the Rejection of 

Hypothesis Testing in Favor of a “Causal” Modeling Alternative 
 
 
 
 
 
 
 
 
 
 
 
 
 

Daniel H. Robinson Joel R. Levin 
University of Texas University of Arizona 

 
 
Rodgers (2010) recently applauded a revolution involving the increased use of statistical modeling 
techniques. It is argued that such use may have a downside, citing empirical evidence in educational 
psychology that modeling techniques are often applied in cross-sectional, correlational studies to produce 
unjustified causal conclusions and prescriptive statements. 
 
Key words: Modeling, hypothesis testing, SEM, HLM, causation. 
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Introduction 
Over the years, we have found that Joseph 
Rodgers (e.g., Rodgers, Cleveland, van den 
Oord, & Rowe, 2000; Rodgers & Nicewander, 
1988) has something academically interesting, 
meaty, and instructive to say. Against that 
backdrop, Rodgers’ most recent essay, 
provocatively titled “The epistemology of 
mathematical and statistical modeling: A quiet 
methodological revolution” (Rogers, 2010) 
merits close examination and extensive 
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commentary. Rodgers appeared to have missed 
the mark in two critical respects; both reflected 
in the subtitle “A quiet methodological 
revolution,” because as will become apparent in 
the following discussion, the revolution is 
neither quiet nor methodological. 
 
The Null Hypothesis Hullabaloo 

Rodgers is correct in stating that serious 
concerns about null hypothesis significance 
testing (NHST) have been mounting over the 
past several decades. Yet, as is well represented 
in Harlow, Mulaik, & Steiger’s (1997) 
impressive volume, NHST criticisms have 
hardly been expressed quietly, but rather with 
full sound and fury. Moreover, in making his 
case, Rodgers provided a one-sided view of the 
controversy. Although several sources that indict 
NHST were cited, short shrift was given to 
approaches that have defended reasonable and 
proper applications of statistical hypothesis 
testing, including, among others, deciding 
whether a “believed-random” process is truly 
random (e.g., Abelson, 1997), “intelligent 
hypothesis testing” (Levin, 1998a), “equivalence 
testing” (e.g., Serlin & Lapsley, 1993), and 
hypothesis testing supplemented by effect-size 
estimation and/or confidence-interval 
construction (Steiger, 2004).  

In addition, numerous authors have 
defended the use of NHST when mindfully 
applied (e.g., Frick, 1996; Hagen, 1997; 
Robinson & Levin, 1997; Wainer & Robinson, 
2003). Rodgers cited social-sciences statistical 
sage Jacob Cohen (1994) as one who dismissed 
NHST practices in his 1994 seminal article, 
“The Earth is Round (p < .05).” Yet, in the same 
article, one could easily interpret Cohen’s (p. 
1001) comment about the “nonexistence of 
magical alternatives to NHST” as conceding that 
for whatever “good” NHST does, there are no 
adequate substitutes. 

Rodgers (p. 2) described the 
fundamental difference between the Fisherian 
and Neyman-Pearson approaches, with the latter 
“emphasiz[ing] the importance of the individual 
decision.” However, he characterized NHST as a 
hybrid and condemned it. Just because a 
technique is often misused is not a sufficient 
reason to abandon it. For example, it is argued 
below that in educational psychology we have 

observed frequent misapplication of the 
Rodgers’ favored causal modeling techniques. In 
recognizing that misapplication, however, our 
goal is not to deter researchers from adopting 
modeling techniques, but rather to encourage 
researchers to apply such techniques 
appropriately and to interpret wisely the results 
that they pump out. (Back in the Neanderthal 
age of computers, “grind out” would have been a 
much more fitting description.) 

As researchers who have spent most of 
our careers conducting randomized experiments, 
we have sought to apply NHST judiciously, 
typically adopting or adapting Neyman-Pearson 
a priori Type I, Type II error, effect-size, and 
sample-size specification principles. 
Accordingly, we have found that in experiments 
conducted with rationally (or better, optimally) 
determined sample sizes - that is, sample sizes 
associated with enough statistical power to 
detect nontrivial differences but with not too 
much power to detect trivial differences (see, for 
example, Levin, 1998b; and Walster & Cleary, 
1970) - NHST provides useful information 
concerning whether one has an experimental 
effect worth pursuing. In this context, pursuing 
means that obtaining a statistically significant 
effect is followed by a sufficient number of 
independent replications until the researcher has 
confidence that the initially observed effect is a 
statistically reliable one (see, for example, Levin 
& Robinson, 2003). 

In that sense as well, we have regarded 
NHST primarily as a screening device, similar in 
function to what Sir Ronald had in mind (e.g., 
Fisher, 1935). Much of the hullabaloo about 
NHST is caused by too many researchers 
focusing on the results of a single study rather 
than on a series of studies that are part of a 
program of research (Levin & Robinson, 2000). 
Fisher was never satisfied with an effect 
identified in a single study, even if it had a p 
value of less than 0.05! Instead, he believed that 
a treatment was only worth writing home about 
when it had consistently appeared in numerous 
experiments. As is implied in the following 
section, whatever purported advantages 
modeling techniques have over NHST also 
vanish unless researchers test a priori models in 
multiple experiments.  

Rodgers (p. 3) also condemned the 
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NHST jurisprudence model while aptly referring 
to Tukey’s (1977) “confirmatory data analysis” 
strategy as being judicial (or quasi-judicial) in 
nature. Yet, Rodgers mischaracterized Tukey’s 
exploratory data analysis strategy insofar as the 
detective nature of that hypothesis-generating 
approach clearly is not jurisprudence. It is this 
detective role that one emphasizes when using 
NHST simply as a research-based screening 
process to determine whether posited effects 
exist. To us, convincing a jury of one’s peers 
that a prescription for practice should be based 
on a single research study is rarely, if ever, 
justified. 

Rodgers’ (p. 9) assertion that a 
fundamental problem with NHST is one of 
testing valueless nil null hypotheses has been 
advanced by many critics. As researchers who 
endeavor to use intelligent forms of hypothesis 
testing with experimental data, we regard the 
problem of nil nulls not as a statistical issue but 
as a methodological one. Specifically, it makes 
little or no conceptual sense to apply NHST 
when comparing an instructional treatment with 
a “closet” (Levin, 1994, p. 233) control group 
(i.e., a condition in which participants sit in a 
dark room and do nothing), just as it is inane to 
compute p-values for reliability correlations 
(see, for example, Thompson, 1996). 
Educational psychology is filled with such 
examples of comparing new innovations with 
ridiculous straw-person control conditions that 
no sane researcher would ever consider using. A 
more appropriate formulation of a nil null is 
when an investigator wishes to compare a newly 
developed and previously untested experimental 
treatment with the best treatment that is 
currently available. 

According to Rodgers, “the [1999 task 
force assembled by the American Psychological 
Association] concluded that NHST was broken 
in [a] certain respect” (p. 3). Task-force member 
Wainer and the present first author (Wainer & 
Robinson, 2003) provided a different view of the 
task force’s brief consideration of the 
recommendation to issue an outright ban on 
NHST. As we have argued previously (e.g., 
Levin & Robinson, 1999) and in our preceding 
discussion, adopting such an extreme stance 
would be akin to calling for a ban on hammers 
because hammerers were hammering their 

fingers instead of nails (for additional 
discussion, see Levin & Robinson, 2003). Even 
the outspoken NHST critic Rozeboom (1997) 
acknowledged via another “tools” analogy that 
“the sharpest of scalpels can only create a mess 
if misdirected by the hand that drives it,” (p. 
335). Fortunately, in the case of the most recent 
(6th) edition of the APA Publication Manual 
(American Psychological Association, 2010), 
the hypothesis-testing baby was not thrown out 
with the bath water. 
 
“Causal” Modeling Techniques 

Contemporary modeling techniques, 
including structural equations modeling (SEM) 
and hierarchical linear modeling (HLM), among 
others, which emerge from a 
theoretical/conceptual framework, are 
statistical/data-analytic and not methodological 
in nature. So, whence Rodgers’ 
“methodological” revolution? Even he noted on 
p. 8 that “SEM has been built into a powerful 
analytic method and is a prototype of the first 
approach [a model-comparison framework] to 
postrevolutionary modeling” (p. 8). 

That a statistical modeling tail often 
wags the methodological dog may have 
contributed to what we consider a major misuse 
of causal modeling: researchers attempting to 
squeeze causality out of observational or 
correlational data. Because of the unfortunate 
“causal” nomenclature, we fear that many 
researchers may be deluded into believing that 
the statistical control that such techniques 
provide for correlational (non-experimental) 
data is on a par with the genuine experimental 
control of randomized experiments (Levin & 
O’Donnell, 2000, p. 211). This in turn results in 
causal-model appliers issuing causal conclusions 
that they mistakenly believe are scientifically 
valid. As Cliff (1983) previously noted, “Literal 
acceptance of the results of fitting ‘causal’ 
models to correlational data can lead to 
conclusions that are of questionable value” (p. 
115). 

In addition, because causal-model 
researchers’ conclusions typically flow from 
revised data-driven models rather than from a 
priori theory-based model specifications, in the 
absence of independent validations those causal 
conclusions present even more cause for 



ROBINSON & LEVIN 
 

335 
 

concern. As with our previous hammers vs. 
hammerers distinction, Rodgers is well aware of 
researchers’ potential shoddy application of 
causal modeling techniques. Yet, he could have 
sent a stronger cautionary message to the 
relatively uninitiated model builder than his 
innocuous pronouncement that “the success of 
SEM depends on the extent to which it is applied 
in many research settings” (p. 8). 

To illustrate what we mean by 
prescriptive statements appearing in articles that 
include statistical modeling techniques, we offer 
very recent examples that appeared in a 
reputable educational psychology research 
journal. To avoid redundancy, we offer only two 
such unjustified causal excerpts here, from 
numerous ones that we have encountered in 
multiple teaching-and-learning research journals 
that we have recently read or reviewed (see 
Robinson, Levin, Thomas, Pituch, & Vaughn, 
2007, and the following section). 
 
Ciani, Middleton, Summers and Sheldon 
(2010)’s Study 

The following summary appeared in 
Ciani et al.’s study abstract: 
 

Multilevel modeling was used to test 
student perceptions of three contextual 
buffers: classroom community, teacher’s 
autonomy support, and a mastery 
classroom goal structure…Results 
provide practitioners with tools for 
counteracting potential negative 
implications of emphasizing 
performance in the classroom. (p. 88) 

 
There was one predictor variable; one outcome 
variable, a three-item scale that measured 
students’ motivation to learn; and three 
moderator variables, a three-item scale that 
measured student perceptions of classroom 
community, a four-item scale that measured 
student perceptions of instructor autonomy 
support, and a three-item scale that measured 
student perceptions of the extent to which their 
teacher emphasizes developing competence in 
the classroom. All measures were collected at a 
single point in time and HLM was used to 
analyze the data. Here are a couple causal 
conclusions from the discussion section: 

However, it appears that comparing 
students’ achievement publicly, or using 
the work of the highest achieving 
students as an example for everyone, 
may not be so pernicious a practice 
when students in the classroom perceive 
a sense of community among their 
fellow classmates. 

 
[O]ur findings demonstrate that if 
students feel respected by the teacher, 
such that their preferences and ways of 
doing things are acknowledged and 
accommodated as much as possible, 
then a strong performance orientation on 
the part of the teacher is not harmful. 
Autonomy support enables students to 
internalize what they are doing, so that 
they view their activity as important 
even if it is not enjoyable, or if it creates 
stress and pressure. Thus, it appears that 
emphasizing competition between 
students is not necessarily undermining 
of student mastery goals, if the teacher 
can communicate and promote the 
performance structure in a non-
controlling way. These findings are 
reassuring, showing that performance 
orientations are not necessarily 
corrosive – certainly an important 
message, given the performance 
necessities that all students face. (p. 95) 

 
As with most of these articles based on 
correlational data and yet that offer prescriptive 
recommendations, certain limitations of the 
research are explicitly acknowledged by the 
authors: 
 

The most significant limitation to the 
current study is that all data reported are 
correlational. 
 
Gathering data at one point in time also 
creates a limitation regarding the causal 
relationships among the variables in this 
study. (p. 96) 

 
These limitations aside (or ignored?), the authors 
proceeded to offer the following prescriptive: 
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Our findings, along with other goal 
theorists (e.g., Urdan & Midgley, 2003), 
suggest that given current prevailing 
attitudes and policy it may be more 
fruitful to emphasize adaptive 
instructional practices in the classroom, 
as opposed to trying to reduce 
maladaptive practices. (p. 97) 

 
Thus, the authors made recommendations for 
practice (“prescriptive statements”) in the 
absence of convincing evidence that such 
practices are clearly causally related to student 
outcomes. 
 
Chen, Wu, Kee, Lin & Shui’s  (2009) Study 

Chen et al. used SEM to analyze 
relations among fear of failure, achievement 
goals, and self-handicapping. Causal relations 
among the variables are implied in the 
Discussion section: 
 

This finding shows fear of failure as a 
distal determinant of self-handicapping 
and achievement goals (MAv and PAv) 
as proximal determinants of self-
handicapping, demonstrating the 
motivational process of self-
handicapping. (p. 302) 

 
The authors revealed the perceived magical 
quality of SEM allowing researchers to coax 
causality from correlational data:  
 
Since SEM analysis examines many 
variables’ relationships simultaneously, we 
rely on its results as the basis for our 
conclusions and discussion. (p. 303)  
 
The Limitations section is predictable: 
 

Although we used the SEM approach to 
estimate the proposed model, the data in 
the study are cross-sectional in nature 
and causal relations cannot be drawn. 
The longitudinal approach is preferred 
in order to ascertain the causal pattern 
and to further clarify the chronic effects 
of mastery-avoidance and performance-
approach goals on achievement-related 
outcomes. (p. 304) 

In contrast, what follows are the grand 
prescriptives that appeared in the Implications 
and Conclusions: 
 

We believe that the integrative model 
can help educators develop effective 
interventions to reduce students’ self-
handicapping, especially since we found 
that the mid-level achievement goals 
(MAv and PAv) mediate the 
relationships between fear of failure and 
self-handicapping… it is suggested that 
teachers use multiple indices to offer 
more opportunities for students to attain 
success. In addition, teachers should 
encourage students to embrace a 
multiple goals perspective in which 
doing one’s best and outperforming 
others are not in conflict with each 
other. (p. 304) 

 
Rodgers (2010, p. 8) previously proffered caveat 
aside, in both of the just-presented examples, 
cross-sectional (one time point), correlational 
(no variables were manipulated) data were 
tossed into a statistical modeling analysis and 
what popped out were causal conclusions. 
 
Correlational Data and Causal Conclusions 

Over the past few years, we have 
examined empirical articles published in widely 
read teaching- and-learning research journals 
and have found that: 
 
1. In one journal survey (Hsieh et al., 2005), 

the proportion of articles based on 
intervention and experimental (random 
assignment) methodology had decreased 
from 47% in 1983 to 23% in 2004.  

 
2. In another journal survey (Robinson et al., 

2007), the proportion of articles based on 
intervention methods had decreased from 
45% in 1994 to 33% in 2004. Meanwhile, 
the proportion of nonintervention articles 
that contained prescriptive statements 
increased from 34% in 1994 to 43% in 2004. 
The proportion of nonintervention (non-
experimental and correlational) articles that 
included prescriptive statements (in the form 
of causally implied implications for 
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educational practice) increased from 33% in 
1994 to 45% in 2004. 

 
3. In a follow-up to the just-described 

Robinson et al. (2007) survey (Shaw, Walls, 
Dacy, Levin & Robinson, 2010), although 
only 19 nonintervention studies in 1994 
included prescriptive statements, these 
statements were repeated in 30 subsequent 
articles that had cited the original 19. 

 
For the present article, we examined the 

first two issues of the 1999 volume of the APA-
published journal, the Journal of Educational 
Psychology, and again for the 2009 volume. We 
looked specifically at the comparative 
proportions of articles based on correlational 
methods and those that involved interventions 
(either randomized experimental or 
nonrandomized but researcher manipulated), as 
well as the proportion of correlational methods 
articles in which prescriptive statements were 
offered. The results are summarized in Table 1. 

Although roughly half of the articles 
appearing in only one of the five journals that 
were part of Robinson et al.’s (2007) study were 
surveyed, the findings support the reported 
trends. Intervention studies (both randomized 
and nonrandomized) are becoming increasingly 
rare and instead researchers are basing their 
recommendations for practice on weaker 
evidence. Moreover, it appears that statistical 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and nonrandomized) are becoming increasingly 
rare and instead researchers are nonrandomized) 
modeling techniques are becoming more popular  
- having increased from only 3% of the 
correlational research articles in 1999 to 40% in 
2009 - which may in turn contribute to the 
concomitant 10-year increase in prescriptive 
statements appearing in such articles. 

Thus, we have witnessed widespread 
application of SEM, HLM, and other 
sophisticated statistical procedures in 
correlational data contexts, where causality is 
sought but the critical conditions needed to 
attribute causality are missing (e.g., Marley & 
Levin, 2011; Robinson, 2010). Rodgers states 
that “researchers who are scientists…should be 
focusing on building a model…embedded within 
well-developed theory” (p. 4-5). Here we agree 
with former Institute for Educational Science 
Director Grover Whitehurst who argued that - at 
least in the field of education - we have enough 
theory development studies and need more 
studies that address practical “what works” 
questions.  

It is our fear that a research approach 
where the question, “Does the data fit my 
model?” is far more dangerous than the 
question, “Is there anything here worth 
pursuing?” As we have seen, an affirmative 
answer to the former question seems to entitle a 
researcher to form a model that indicates a 
causal relationship between, say, students’ self-
efficacy and their achievement. The researcher 
then develops a self-efficacy scale that measures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Summary of Selected Results of Surveyed Articles Appearing in the Journal of Educational 
Psychology (1999 and 2009) Based on Either Correlational or Intervention Methods 

 

1999 2009 

Type of Study Type of Study 

Correlational Intervention Correlational Intervention 

Number of Articles 18 (60%) 12 (40%) 23 (66%) 12 (34%) 

Prescriptive Statements 9 (50%) ------a 13 (57%) ------a 

Statistical Modeling 1 (3%) 0 (0%) 14 (40%) 2 (6%) 

Prescriptive Statements 1 ------a 7 (50%) ------a 

Note: This table includes preliminary data from a larger study recently completed by Reinhart, Haring, 
Levin, Patall, and Robinson (2011). a Not assessed in the present survey 
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students’ self-perceptions and also measures 
achievement. The data may fit the model but in 
the absence of convincing longitudinal data, 
ruling out alternative explanations, and 
independent replications based on the previous 
nice-fitting model, this practice may lead to 
dangerous causal conclusions. For the just-
presented self-efficacy example, it is just as 
likely that high achievers feel better about their 
effectiveness as learners rather than the other 
way around. Apparently, many researchers 
believe that it is entirely appropriate to apply 
such modeling techniques and to interpret the 
results as support for prescriptive statements 
founded on causality. 
 
Conclusions About Revolutions 

To summarize, Rodgers (2010) has 
written a cogent essay on the vices of statistical 
hypothesis testing and the virtues of statistical 
modeling. We believe, however, that his essay 
painted a somewhat distorted (and potentially 
misleading) portrait about those statistical “arts.” 
In particular, we take issue with two aspects of 
Rodgers’ so-called “quiet methodological 
revolution.” For one aspect (rejecting statistical 
hypothesis testing), we argue that the picture is 
neither as bleak nor as open and shut as Rodgers  
portrayed. As supporting evidence, witness the 
sustained presence of hypothesis testing, along 
with its more intelligent additions and 
adaptations, in various academic-research 
disciplines - including the research-and-
publication “bible” of both our very own field of 
psychology and virtually all social-sciences 
domains, the most recent edition of the APA 
Publication Manual (American Psychological 
Association, 2010).  

For the other aspect of Rodgers’ essay 
that merits critical commentary (accepting 
modeling techniques), we argue that causal 
modeling and other related multivariate and 
multilevel data-analysis tools frequently cause 
their users to think - in accord with Rodgers’ 
seductive subtitle - that the procedures are 
methodological randomization-compensating 
panaceas rather than techniques that do the best 
they can to provide some degree of statistical 
control in a “multiply confounded variable” 
world. The unfortunate consequence of that 
methodological understanding, then, is that 

when combined with researcher misapplication 
of such modern modeling artillery, instead of 
being on target with their data analyses and 
research conclusions, weapons are backfiring 
and researchers are ending up (whether 
knowingly or not) with a considerable amount of 
egg on their faces. 
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Statistical and Mathematical Modeling versus NHST? 
There’s No Competition! 

 
 
 
 
 
 
 
 
 
 
 
 

Joseph Lee Rodgers 
University of Oklahoma 

 
 
Some of Robinson & Levin’s critique of Rodgers (2010) is cogent, helpful, and insightful – although 
limiting. Recent methodology has advanced through the development of structural equation modeling, 
multi-level modeling, missing data methods, hierarchical linear modeling, categorical data analysis, as 
well as the development of many dedicated and specific behavioral models. These methodological 
approaches are based on a revised epistemological system, and have emerged naturally, without the need 
for task forces, or even much self-conscious discussion. The original goal was neither to develop nor 
promote a modeling revolution. That has occurred; I documented its development and its status. Two 
organizing principles are presented that show how both perspectives can be reconciled and 
accommodated. A program of research that could not have occurred within the standard NHST 
epistemology, without a modeling perspective, is discussed. An historical and cross-disciplinary analogy 
suggests their view is similar to Galileo’s world view, whereas some branches of social and behavioral 
science may be ready for something closer to a Newtonian perspective. 
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Introduction 
Null Hypothesis Significance Testing (NHST) 
has, for many years, been the primary 
organizational and epistemological system by 
which we understand statistical practice in 
behavioral sciences. NHST has been frequently 
criticized, and in the late 1990s the criticism was 
sufficient to create substantial contention, 
explicit calls for NHST to be outlawed or 
abandoned, the appointment of an American 
Psychological Association task force to judge its 
status and to evaluate proper statistical practice, 
and a great deal of discussion and 
argumentation, both informally and in published 
articles. Before and during this same period, a 
different epistemological system, what I referred 
to in Rodgers (2010) as a modeling revolution 
was in development. With little discussion (and 
most of what would have naturally occurred has 
been largely drowned out by the clamor over 
NHST), mathematical and statistical modeling 
have become the set of organizing principles that 
has the potential to completely replace NHST as 
the primary epistemological system. And 
modeling should replace NHST, for several 
reasons. 

The first is because it is a more natural 
way for researchers to frame, think about, and 
conduct research, whereas NHST was a creation 
of and for statisticians. Second, modeling has 
more flexibility to support the maturation of 
both statistical and methodological practice 
within psychology and other behavioral 
sciences. Third, modeling includes NHST as a 
special case, and so NHST has not been replaced 
or even very much revised as a set of procedure. 

Robinson and Levin presented position 
statements that, in my career, I have taught to 
my students, and have applied in my research. 
These principles emerged from a strong and 
coherent philosophical background, including 
caution against over-interpretation of 
correlations, which emerged from John Stuart 
Mills’ (1843) inductive canons of scientific 
inquiry. Another principle is to use 
randomization if possible, which emerged from 
Fisher’s (1935) answer to the problem that Mill 
left open -- how can researchers equate groups, 
on average, before a manipulation? Yet another 
is to emphasize the importance of replication; 
this underappreciated practice serves the purpose 

of correcting the bad luck that can befall a 
researcher in “gaming with the devil” (see Box, 
1978, p. 144), and is another of Fisher‘s edicts 
that helped create the philosophical basis of 
social/behavioral science methodology. 

I could (almost) leave this reply 
hanging, and emphasize how correct and well-
founded are many of the positions stated in their 
critique. If so, though, I would necessarily 
conclude with some comments about how none 
of these principles has any import in evaluating 
either the status of NHST, or the development of 
statistical/mathematical modeling, or as criticism 
of my article, because these principles stand firm 
in relation to either NHST or statistical/ 
mathematical modeling. However, if I left my 
reply here, that would obfuscate my initial 
intent, which I believe has been 
mischaracterized. 

Two basic principles (and some 
potential quibbles with the language, to follow) 
are paramount, and within those principles their 
criticisms and my position statements will be 
simultaneously accommodated. The first 
principle is that NHST is the type of statistical 
paradigm that naturally applies to a rather 
immature science, whereas statistical modeling 
naturally fits a more mature, or at least maturing, 
science. The second principle is that NHST is 
subsumed within the modeling perspective. The 
two paradigms need not compete, as Robinson 
and Levin implied. Accept the modeling 
perspective, and it can be sharpened to the 
special case of the NHST perspective at any 
time; insist that NHST is the one, only, and 
proper epistemological position, and the full 
range and power of structural equation modeling 
(SEM), multi-level modeling (MLM), and 
dozens of specialty models are relegated to 
virtual impotence. 
 
Statistical Modeling Reflects and Supports the 
Maturation of Social/Behavioral Sciences 

The development of statistical and 
mathematical modeling as an epistemological 
system didn’t occur through high-level mandate 
or management; it has been a natural and 
emergent methodological feature of the maturing 
of psychology (and has parallels within 
education, economics, sociology, and other 
social/behavioral sciences). In this sense, it is a 
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mischaracterization to claim that I “condemn” 
NHST or that I “perceive vices of statistical 
hypothesis testing.” Most of my article was not 
prescriptive, despite their suggestions to the 
contrary; the part that is prescriptive has little to 
do with liking or condemning NHST. Rather, I 
described a developmental process that is well 
advanced, though relatively unexamined in 
historical perspective. As science has advanced, 
stronger statements are possible, ones that even 
in some cases move toward legitimate causal 
attribution. Nowhere in that previous sentence is 
there encouragement to assert unjustified 
causality. Further, to suggest that such 
unjustified claims occur – even to illustrate with 
specific examples – does no damage to the 
position that our science is maturing in that 
direction. Nor is science necessarily advanced 
by successful causal claims; sometimes, rather, 
it advances by identifying past mis-attributions, 
a process which Robinson and Levin support 
and appreciate. Ironically, though, certain 
versions of that process would not likely emerge 
from an NHST perspective. I described an 
example from my own research program. 

For many years, nearly an entire 
community of research psychologists has 
ignored a certain type of selection bias, resulting 
in the kind of mis-attributed causal process that 
Robinson & Levin (and I) decry. Scarr and 
McCartney (1983) made a stark statement 
concerning this design flaw, which is inherent in 
literally hundreds (perhaps thousands) of 
previous published papers: “passive genotype-
environment effects arise in biologically related 
families and render all of the research literature 
on parent-child socialization uninterpretable” (p. 
427). Using a quasi-experimental design that 
takes advantage of siblings to partially control 
for selection bias, along with a powerful sibling 
dataset, my colleagues and I have published a 
series of articles during the past decade that have 
separated and quantified the difference between 
certain types of inherent selection bias and the 
remaining correlational links, within which the 
causal attributions are logically expected to 
exist. 

I review several of these studies based 
on the sibling design and on the children-of-
siblings design. (Besides these, other quasi-
experimental design innovations exist that also 

can also be used to separate family-based 
selection bias from parental and family 
influence; see D’Onofrio, 2003, for description 
of the children-of-twins design and Rodgers, et 
al, 2008, for description of the mother-daughter-
aunt-niece design). Rodgers, et al. (2000) 
showed how selection bias has improperly 
influenced the interpretation of birth order-
intelligence links; at least most (perhaps all) of 
what has appeared to be birth order effects on 
intelligence in past research has actually been 
between-family differences in parental education 
and IQ, among others (see Rodgers, 2001 for 
further explanation of this logic, Wichman, et 
al., 2006, for a modeling demonstration of this 
phenomenon, and Wichman, et al., 2007, for 
further elaboration). D’Onofrio, et al. (2008) 
showed how the link between smoking during 
pregnancy and child conduct problems is at least 
partially caused by the kind of women who 
smoke during pregnancy, thus challenging much 
of the direct causal attribution. 

D’Onofrio, et al. (2009) used a similar 
design to investigate the relationship between 
family income and child conduct problems, with 
similar conclusions. Mendle, et al. (2009) 
applied this type of sibling control to study the 
link between father absence and age at first 
intercourse, and found that much of the apparent 
direct link between father absence and age at 
first intercourse has likely been caused by shared 
genetic factors in the background. Harden, et al. 
(2009) studied whether population density has a 
direct  influence on antisocial behavior during 
adolescence, or whether the apparent link is due 
to selection bias; the latter was more strongly 
supported. Finally, Jaffee, et al. (2011) showed 
how placement of infants and young children in 
day care as an influence on both achievement 
and behavioral problem scores in childhood is 
almost completely attributable to the type of 
women who put their children in day care, 
leaving very little remaining variance to attribute 
to the direct influence of the day care experience 
in and of itself on these child outcomes. 

For the purposes of this reply, these 
findings make a strong statement about both 
modeling and NHST. Each result above 
depended on strong design logic combined with 
a statistical modeling exercise. Further, each 
study contained within it a number of NHST 
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results, but the organizational principles 
emerged from a research perspective that 
required longitudinal and within-family data, 
strong research designs, powerful measurement 
tools, and sophisticated statistical models. They 
would not have likely emerged from an NHST 
epistemology. Nor are the conclusions that 
emerge from this type of work necessarily 
causal; indeed, most of the conclusions above 
challenge previous causal attributions. 

In the tradition of Cook and Campbell 
(1979) and Shadish, et al. (2002), the 
researchers’ goal, whether in quasi-experimental 
or experiment research, is to address as many 
threats as possible to internal validity, the 
validity of causal attribution, and to admit freely 
and to self-evaluate in the face of those that 
remain. Robinson and Levin admitted to this 
maturational challenge: “Our field of 
educational psychology is filled with such 
examples of comparing new innovations with 
ridiculous strawperson control conditions that no 
sane researcher would ever consider using.” So 
are psychology, sociology, etc., of course. And 
so the proper and defensible approach is exactly 
where they stated it should be, using an 
appropriate set of methodological tools to draw 
cautious but legitimate conclusions, and to avoid 
wasting time asking superficial and uninteresting 
questions. Hopefully, those methodological tools 
expand to accommodate improvements, 
maturation, in the science that they support. 
Statistical modeling is an example of such 
expansion. 
 
Statistical Modeling Subsumes NHST 

There exists a way to view both NHST 
and statistical modeling that accommodates both 
Rodgers (2010) and Robinson and Levin's 
critique. That accommodation was stated in my 
original article, but here I shall present this 
argument in different words. Robinson and 
Levin presumed I was prescriptively criticizing 
NHST; that I favor modeling and oppose NHST: 
“Rodgers (2010) has written a cogent essay on 
what he perceives as the vices of statistical 
hypothesis testing and the virtues of statistical 
modeling.” First, my article was intended to be 
more of an historical account than a desideratum 
about what should be. Second, I was a strong 
opponent of outlawing, abandoning, or 

otherwise providing any type of institutional 
control over NHST (or any other methodology). 
I have used the NHST paradigm often, in most 
of my published research. I have also used 
modeling approaches, when they appeared to be 
useful and appropriate. 

Many of my publications incorporated 
both, which leads to my third comment: I do 
become prescriptive when I describe in detail 
how the statistical modeling strategy subsumes 
NHST, because I’m convinced of the value of 
both approaches. Hence, the crux of my reply: 
NHST is a proper paradigm, but it is a special 
case of a broader and thus more flexible 
paradigm. I do not agree there are two 
competing approaches. One is broader and one 
is a special case. The modeling approach uses 
NHST as a fundamental part of the modeling 
framework. As Rodgers (2010) explained: 
 

As the two models ... are evaluated, no 
chance-level null hypothesis is posited, 
nor is an alternative constructed, at least 
not in the sense that those concepts are 
usually treated. However, traditional 
statistical concepts are used in this 
comparison, such as a test statistic (e.g., 
Chi-square values), a sampling 
distribution (the theoretical chi-square), 
and an alpha level (to tune the trade-off 
between fit and parsimony). Further, the 
NHST perspective is embedded within 
this statistical evaluation in the sense 
that there is a null hypothesis built into 
the model comparison (i.e., whether the 
population parameters ... are equal to 
one another). (p. 7) 

 
NHST is a tool, as a way to answer a certain 
question. I’ve never understood why researchers 
would be satisfied with the conclusion to reject 
Ho or fail to reject Ho, unless the research 
question was simple enough to warrant such a 
conclusion. It seems to me that when the 
research questions become more complex, 
modeling has the potential to provide more 
complex answers, and to move scientific 
epistemology forward substantially further than 
what can be obtained via NHST. 
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Minor Issues 
There are some mischaracterizations in 

their critique that require a response (though the 
majority are accounted for by the two principles 
in the previous sections). They suggested that 
“he then goes on to discuss NHST as a hybrid 
and condemns it;” I did not, though I cited  
Gigerenzer (1993), who did. They implied that I 
supported a ban on NHST, when I actually 
opposed such a ban. They claimed that “Rodgers 
also condemns the NHST ‘jurisprudence 
model,” whereas in fact I teach and promote this 
way of thinking of NHST. They suggested that 
“Rodgers mischaracterizes Tukey’s ‘exploratory 
data analysis’ strategy insofar as the detective 
nature of that hypothesis-generating approach 
clearly is not jurisprudence,” but I did not link 
the detective and jurisprudence components – 
after describing the role of jurisprudence within 
research, I stated “The researcher is also a 
detective” (p. 3, italics added for emphasis). 
They failed to make the connection that my 
section titled “Criticism and Adjustment of 
NHST” was historical; their first sentence in 
their section “The Null Hypothesis Hullabaloo” 
recognized historical goals, but the remainder of 
that section was not about the “hullabaloo,” but 
rather about their perception that I promulgated 
it, although I did not.  Finally, they suggested 
that “he gives short shrift to approaches that 
have defended reasonable and proper 
applications of statistical hypothesis testing,” 
and cited four articles that would have provided 
more balance. In fact, I discussed three of those 
articles. 

NHST is a worthy, valuable, and useful 
tool. It helps researchers to answer a certain 
question, framed in a certain way. However, its 
weaknesses are well-known, and often discussed 
(see Wainer, 1999, for a balanced and interesting 
account, among dozens of others). Further, as 
the field of behavioral science matures, it should 
not stand as the epistemological basis of 
research methodology within the field of 
psychological science, because modeling is 
more useful, flexible, and better supports the 
future of behavioral science research. 

This methodological practice should not 
be banned or outlawed for two reasons. First, 
such practice should not be managed at the 
institutional level (any more than the workers’ 

union should decide to ban hammers or electric 
saws). Second, NHST has served its value in 
thousands of scientific settings. It has also been 
misused, and Robinson and Levin provided 
support for its proper and legitimate use, in this 
and other published articles. 

Regarding “the ‘revolution’ about which 
Rodgers writes is neither quiet nor 
methodological,” they were correct, as I 
originally asserted. The NHST hullabaloo was 
anything but quiet. But the modeling revolution 
was so quiet that apparently many didn’t notice, 
and now aren’t sure that it occurred. Robinson 
and Levin contend that the revolution was not 
methodological, that the issues are entirely 
statistical. SEM contains both a structural and a 
measurement model. Multi-level modeling 
accounts for clustering, which is often caused by 
sampling processes. Multilevel modeling also 
cannot be separated from the design issues that 
generated the different levels. Analytic 
procedures that handle missing data require 
specification of the generating processes – 
sampling, measurement, etc. – that produced the 
missing values. In other words, modern 
statistical models account for design, sampling, 
and measurement, as well as the formal 
statistical properties of statistical models. As one 
example, MacCallum and Tucker (1991) could 
not have developed their conceptualization 
separating sampling and model error if they had 
used an NHST epistemology. 

It is perhaps not surprising that those 
whose way of thinking about the advancement 
of behavioral science is embedded in the NHST 
tradition would not recognize the modeling 
revolution as bringing about the expansion of 
statistical practice to include many other features 
of the methodological arena. But such 
broadening is one among many features of 
statistical/mathematical modeling that make the 
use of SEM, MLM, missing data approaches, 
and other modeling methods exciting and useful. 
To expand their analogy, there are new dangers 
created in using models, and their misuse cannot 
be supported (Cliff, 1983). The danger is 
analogous to learning how to use electric saws, 
when hand saws used to be the state-of-the-art. 
We can either decry electric saws, or teach their 
proper and safe use. One of premier psychology 
quantitative journals is called Psychological 
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Methods, and publishes articles on design, 
sampling, measurement, and statistics, as well as 
how these different areas overlap and inform one 
another. 
 

Conclusion 
Consider an analogy from the history of science 
to illustrate the points made in my response. The 
analogy draws on two popular science books, 
Sobel (2000) and Gleick (2003). The late 16th 
and early 17th century occupied a remarkable 
period of scientific ascendancy in the field of 
astronomy. In 1543, Copernicus offered the 
insightful (yet heretical) view that the earth 
revolved around the sun, rather than vice versa. 
Galileo was born shortly after, and as Sobel 
noted, “All his [Galilio’s] observations lent 
credence to the unpopular sun-centered universe 
of Nicolas Copernicus, which had been 
introduced over half a century previously, but 
foundered on lack of evidence” (p. 7). The 
observations to which Sobel referred were of 
course obtained with Galilio‘s new invention, 
the telescope, through which he observed the 
moons of Jupiter, the face of earth’s moon, and 
the sunspots moving across the face of the sun. 
Such observations were, in modern language, 
exploratory evidence in support of a previously 
proposed theory. 

Although probabilistic reasoning was 
still in its infancy (and was being developed by 
Fermat and Pascal in France during the same 
historical epoch), the epistemological basis of 
scientific inquiry in astronomy during that 
period was similar to that in psychology during 
the 20th century. The NHST paradigm that 
Robinson & Levin vigorously defended was 
similar to the one used by Galileo and others 
during the period of time in which they were 
collecting information (using telescopes and 
otherwise). Ultimately, such information of 
course inductively coheres into theoretical 
propositions. Galileo offered multiple sources of 
astronomical evidence for a heliocentric view of 
the solar system, including the movement of 
sunspots, the eclipses of the moons of Jupiter, 
and the tides on earth. Each might be viewed as 
a separate astronomical significance test of the 
null hypothesis that the earth was at the center of 
the universe, a hypothesis that we have 
ultimately rejected. But astronomy quickly 

moved on beyond the question of whether the 
Copernican system could be rejected or not. 

Kepler, in 1609 and 1619, published his 
three laws of planetary motion, and Newton 
(who was born in 1642, the year that Galilio 
died), published in 1687 his Principia, stating 
formal mathematical models of motion and the 
universal law of gravity. These “laws” stepped 
up to a new epistemological level, using 
previous observations as the basis for 
mathematical models that were designed to 
subsume many previous disparate and separate 
astronomical observations. (The development of 
the double-helix model of DNA is another 
example in a different discipline in which 
disparate observations were brought together 
inductively using mathematical modeling.) 

To bring these historical references to 
the current discussion, Robinson and Levin 
wrote: “we agree that - in the field of education - 
we have enough theory development studies and 
need more studies that address practical ‘what 
works‘ questions.” Fair enough. They argued 
that in many domains of our immature science 
more knowledge is needed, that more 
educational and psychological telescopes need to 
be brought to bear on current problems. Nothing 
in my own teaching, thinking, or research 
practice holds anything but praise and agreement 
for such a position. Indeed, two of my primary 
courses over the past 30+ years of teaching have 
been Exploratory Data Analysis and 
Quantitative Methods in Evaluation Research, 
where students learn to engage exactly this kind 
of goal, to address practical "what works" 
questions. 

Then, they stated, “It is our fear that a 
research approach where the question ‘Does the 
data fit my model?’ is far more dangerous than 
the question ‘Is there anything here worth 
pursuing?’” Again, fair enough. Without 
knowledge, both scientists and those who 
consume the science (policymakers, the public, 
etc.) can be led to the modern equivalent of the 
geocentric universe, and there is indeed danger 
in promulgating positions both pro and con in 
the absence of adequate knowledge, or even 
with substantial knowledge when that 
knowledge is at odds with societal expectations 
(just ask Galilio!). But does such lurking danger 
excuse statisticians and methodologists from 
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developing proper tools, perspectives, and whole 
epistemological systems to support the 
development and evaluation of such models? 

My answer, strongly implied throughout 
the original article, is indeed not. Both the 
NHST epistemology they promoted for 
relatively immature science, and the one that 
they view as dangerous, the modeling approach, 
should exist side-by-side within the arena of 
quantitative methods in both education and 
psychology. I promoted the development of the 
latter, not erasing the former. The former can 
only be criticized when it purports to serve the 
function of the latter. What is dangerous is 
asking NHST to provide methodological support 
beyond that for which it was designed. NHST 
can answer the question, “Is the null hypothesis 
plausible, or not?” It was not designed to answer 
the question, “Which of these two competing 
mathematical models is preferable in the way 
that it handles the trade-off between fit and 
parsimony?” In areas of behavioral science that 
are ready for more strongly confirmatory 
research – including the development of 
mathematical and statistical models that contain 
both causal and explanatory components (which 
are, of course, not entirely the same thing) – 
NHST is naturally expanded into the broader 
modeling epistemology. That expansion was the 
subject of my article. The earlier view of NHST 
as providing epistemological support for 
important but often separate and disparate 
individual findings is the topic of Robinson and 
Levin’s criticism. Both stand effectively before 
criticism. 
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Comments on Rodgers (2010a, 2010b) and Robinson and Levin (2010) are presented. Rodgers (2010a) 
initially reported on a growing trend towards more mathematical and statistical modeling; and a move 
away from null hypothesis significance testing (NHST). He defended and clarified those views in his 
sequel. Robinson and Levin argued against the perspective espoused by Rodgers and called for more 
research using experimentally manipulated interventions and less emphasis on correlational research and 
ill-founded prescriptive statements. In this response, the goal of science and major scientific approaches 
are discussed as well as their strengths and shortcomings. Consideration is given to how their recent 
articles intersect or differ on these points. A summary and suggestions are provided regarding how to 
move forward with scientific inferences. 
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Introduction 
The Focus of Science 

The study and practice of science is 
complex and encompasses various approaches 
and  methods.  Central  to  all of  science  is  the 
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search for basic principles from which 
phenomena can be explained and predicted. 
How are the underlying tenets - the golden 
nuggets of truth - in a scientific field discovered 
and illuminated? That is one of the main 
questions of this commentary. 

Herbert Simon (1969), a Nobel Laureate 
in economics and a noted cognitive 
psychologist, believed that whereas human 
behavior is inherently simple, the complexity of 
the environment in which the behavior occurs 
can prevent or obscure human understanding of 
the basic processes. Thus, Simon (1969) viewed 
the main focus of science as finding the 
simplicity in the complexity of life. 
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Four decades later, Michio Kaku (2009), 
a theoretical physicist and an advocate of 
making science understandable, reached a 
conclusion that was not far afield from Simon. 
Kaku made a comparison with the basic rules of 
chess and the actual enactment of a multitude of 
different possible chess games, elaborating that 
“the rules of nature may also be finite and 
simple, but the applications of those rules may 
be inexhaustible. Our goal is to find the rules.” 
(p. 302). Kaku elucidated that the development 
and testing of basic principles in science 
“reveals the ultimate simplicity and harmony of 
nature at the fundamental level” (pp. 302-302), 
and that testing in science is most often indirect. 
As a result, it may be more productive to have 
multiple and varied ways to approach research 
and inferences in order to arrive at the most 
salient, underlying, and often latent, truths. 

Consistent with the perspective that 
scientific understanding is not always directly 
observable, George Lakoff and Rafael Núñez 
(2000) emphasized the importance of concepts 
and analogies in what they call “the 
metaphorizing capacity” (p. 54) for 
understanding and applying quantitative 
methods beyond simple arithmetic and counting. 
These researchers realized the value of 
considering how a phenomenon is similar to, 
and different from, other related quantifiable 
observations. In a comparable view, Brian 
Hayes (2011) wrote that by breaking down 
stimuli into small segments and noticing points 
of contrast and similarity the most salient 
aspects are revealed. He summarized this 
process by stating that “the aim is to explore the 
kinds of patterns that appear frequently in our 
environment, in the hope of identifying and 
understanding some characteristic themes or 
features” (p. 422). 

Another perspective was offered by Paul 
Rozin (2009) who discussed how published and 
funded research has tended, perhaps mistakenly, 
to involve results engendered through 
hypothesis-testing, controlled experiments and 
building causal evidence. In contrast, Rozin 
recommended descriptive or other kinds of 
studies that may have more external validity in 
varied, real-world settings. Rozin ventured that, 
“Elegance and clarity are criteria for publication, 
but there should be a trade-off with novelty and 

engagement” (2009, p. 437); and further that “a 
really interesting study with a flaw may be more 
valuable than a flawless but uninteresting study” 
(p. 438). 

Stefan Hoffmann (2011) suggested that 
scientific curiosity is fed by having a great deal 
of background knowledge about a phenomenon, 
and then noticing anomalies, developing 
intuitions and finding connections. It is at the 
intersection of novelty, uncertainty and 
understanding that brings about scientific 
curiosity and discovery. Toby Huff (2011) 
concurred, speaking of how engaging curiosity 
and overarching synthesis lead to scientific 
discovery. 

Culling together the perceptions of these 
and other astute thinkers, what appear to be 
integral for scientific discovery are the inquiring, 
understanding, seeking, describing, comparing 
and testing of credible and innovative ideas and 
relationships that may initially be difficult to 
discern; and the potential to assess the import 
and generalizability of findings with rigorous 
methodological procedures. I would argue that 
the methods espoused by Robinson and Levin, 
and Rodgers incorporate much of these elements 
of scientific discovery, albeit with differing 
approaches. 
 

Approaches to Scientific Research 
A reasonable question to ask is how scientific 
research should be approached. To accomplish 
scientific development and discovery, Simonton 
(2003) argued that it is important to see 
connections among diverse situations and 
processes, as well as to have an experimental, 
problem solving approach. Cronbach (1957) 
spoke to this seeming duality when discussing 
the two disciplines of psychology that involved 
either a correlational or an experimental focus. 
Each of these researchers is featuring two 
valuable, although often divergent, aspects of 
innovative science: naturalistic flexibility and 
rigorous control. This apparent dichotomy can 
also be viewed as striving for broad, 
generalizable external validity, versus strict and 
controlled internal validity; objectives endorsed 
in varying degrees by the Rodgers, and 
Robinson and Levin articles, respectively. 
Although there are probably as many approaches 
to scientific investigation as there are 
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researchers, two major methods - null hypothesis 
significance testing and (correlational) statistical 
modeling - are the main focus of this 
commentary. 
 
Null Hypothesis Significance Testing 

The traditional approach to research, 
null hypothesis significance testing (NHST), is 
supported by Robinson and Levin, and 
minimized but recognized by Rogers. Briefly, 
NHST centers on an attempt to reject a null 
hypothesis of no notable import (e.g., two means 
are equal, a correlation is zero) and thereby 
attempting to build evidence for an alternate 
hypothesis that claims a significant difference or 
relationship. A noted benefit of NHST is that 
researchers can clearly specify null and alternate 
hypotheses and can calculate the probability of 
obtaining sample results as extreme or more so 
than are achieved in a relevant and randomly 
collected sample. Thus, if the probability, or p-
value, is less than a designated level (e.g., 0.05), 
researchers can conclude that there is very little 
chance of obtaining the sample results found if 
the null hypothesis is true in the larger 
population from which the sample was drawn. 
This is particularly helpful if a decision is 
needed as to whether a specific treatment or 
intervention should be pursued as a viable 
option, after conducting a rigorous experiment 
that had adequate power to detect a significant 
finding and involved satisfactory design (e.g., 
random selection and assignment) to rule out 
possible rival hypotheses or confounds. 

Devlin (1998) agreed, pointing out how 
probability theory is useful when it is necessary 
to make crucial decisions about whether to 
endorse a particular treatment or intervention. 
NHST would be helpful in this regard when 
there is a need to come to a decision about 
rejecting a null hypothesis with a specified 
probability. Others also attested to the benefits 
of NHST. Mulaik, Raju and Harshman (1997) 
stated that “as long as we have a conception of 
how variation in results may be due to chance 
and regard it as applicable to our experience; we 
will have a need for significance tests in some 
form or another” (p. 81). Chow (1996) and 
Cortina and Dunlap (1997), among others, also 
applauded the advantage of using NHST to rule 
out a chance finding in research. 

Nonetheless, NHST has been 
extensively discussed and debated by Robinson 
and Levin, as well as Rodgers, and in numerous 
other forums (e.g., Balluerka, Gómez & 
Hidalgo, 2005; Denis, 2003; Harlow, Mulaik & 
Steiger, 1997; Kline, 2004; Nickerson, 2000). 
The better part of criticism regarding NHST 
appears to center on the exclusive focus of the p-
value from a statistical test, and the 
accompanying dichotomizing decision to reject 
or retain the null hypothesis. Cumming (2012) 
has spoken at length on the volubility of p-
values and the practice of NHST. Rice and 
Trafimow (2010) would likely agree with 
Cumming in arguing for less concern over Type 
I errors (i.e., rejecting a null hypothesis when the 
null hypothesis should not be rejected), and 
more attention to Type II errors, which refer to 
the failure to reject a null hypothesis when the 
alternate, scientific hypothesis may actually 
have more merit. 

Noteworthy is that most, if not all, of the 
proponents and critics of NHST would also 
promote the use of additional substantiation over 
and above, or instead of, evidence of a 
significant p-value. Robinson and Levin 
advocated for correct applications of statistical 
hypothesis testing that involve randomized 
experiments, attention to Types I and II errors, 
effect sizes and sample size considerations, as 
well as the use of confidence intervals. Rodgers 
in turn played down hypothesis testing in favor 
of what he claimed is a broader, more 
subsuming and organic modeling approach that 
has emerged in an almost imperceptible 
methodological revolution. Before discussing 
the statistical modeling endorsed by Rogers and 
eschewed by Robinson and Levin, it is 
worthwhile to mention the merits of 
complementary procedures to help corroborate 
research findings. 
 
Supplementing NHST 

Any acknowledged advantages of 
NHST notwithstanding, current guidelines and 
research call for additional evidence when 
making scientific inferences. The recent 6th 
edition of the American Psychological 
Association (APA: 2010) publication manual 
“stresses that NHST is but a starting point and 
that additional reporting elements such as effect 
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sizes, confidence intervals, and extensive 
description are needed...” (p. 33); this viewpoint 
is consistent with that from Robinson and Levin 
as well as Rodgers and others. 

Seven years before the APA guidelines, 
Denis (2003) presented a balanced overview of 
NHST and several possible alternatives. Denis 
suggested that the use of model testing among 
two or more reasonable alternatives, using good-
enough hypotheses, calculating effect sizes and 
confidence intervals, and providing graphical 
displays of the findings are all effective and 
viable alternatives or supplements to NHST. 
Neither Rogers nor Robinson and Levin would 
be likely to take issue with much of this 
suggestion. 

Others call for establishing or 
replicating a finding before it is accepted. 
Sawilowsky (2003) cautioned that effect sizes 
should not be widely published if they are not 
statistically significant. Filkin (1997) stated that 
“science seeks to separate fact from fiction by 
finding evidence” (p. 16); and that “for an idea 
or theory to be accepted as scientifically proven, 
it has to be tested in such a way that it can be 
tested over and over again and the result must 
always confirm the theory” (p. 20). Carl Sagan 
(1997) would have agreed with the need for 
replication; he wrote that the only way to find 
answers to “deep and difficult questions … [is] 
by real, repeatable, verifiable observations” (p. 
63). Robinson and Levin aptly encouraged 
conducting “independent replications” to verify 
whether a significant finding is reliable, a 
practice also backed by Rodgers. 

Consistent with replication, Wilson 
(1998) affirmed that “scientific evidence is 
accretionary, built from blocks of evidence 
joined artfully by the blueprints and mortar of 
theory … as evidence piles upon evidence and 
theories interlock more firmly, certain bodies of 
knowledge do gain universal acceptance” (p. 
64). Wilson further highlighted the need for 
“improving the piecemeal approach science has 
taken to its material properties” (p. 66). Here, 
Wilson argued for a multivariate approach, as 
well as more attention to strong theory to ground 
scientific research. In this issue of the Journal of 
Modern Applied Statistical Methods, the value 
of theory was touted by Rodgers as well as 
Robinson and Levin; however, the usefulness of 

multivariate methodology was championed by 
the former but discouraged by the latter 
researchers. 

It is also of interest that discussion about 
the need to augment NHST is not limited to the 
topic of abstract methodology, but rather 
intersects with the content and substance of 
practice and research. In a recent issue of the 
journal Psychotherapy, Thompson-Brenner 
(2011) introduced a special section on the role of 
significance testing in clinical trials. The set of 
articles illuminated considerations for providing 
the most accurate information on how best to 
create effective interventions in clinical practice. 
In the leading article, Krause (2011a), discussed 
the limitations of significance testing with 
randomized clinical trials (RCTs) and called for 
the inclusion of whole outcome distributions 
from participants in an RCT. Similar to what 
Cumming (2012) and others promote, Krause 
(2011a, 2011b) maintained that the significance 
test and p-value, alone, are not very informative 
about how to proceed with clinical treatments. 
Gottdiener (2011) responded by advocating the 
use of effect sizes and confidence intervals when 
presenting RCT results and asked researchers to 
supplement these data with information from 
case studies that can more specifically delineate 
treatment effectiveness and failure.  

It is noteworthy that Gottdiener - as 
Wilson (1998) did earlier - also encouraged the 
study of multiple outcomes, arguing that 
multivariate data are more apt to provide bases 
for reliable and valid conclusions regarding 
treatment success or failure. Wise (2011) 
provided a compelling discussion on the need 
for evidence of clinically significant change and 
the use of a reliable change index, which is 
similar to a pre-post-intervention z-score for 
participants in an RCT. Here, the convergence 
and divergence of these proposals with respect 
to views put forth by Rogers, and Robinson and 
Levin, are not as clear-cut, except, again, that 
the former would favor multivariate approaches 
more readily than the latter researchers. 

To round out this discourse on 
significance testing and its supplements, it is of 
note that Hagen (1997, 1998), a strong 
proponent of NHST, also recognized that effect 
sizes and confidence intervals are meaningful to 
report. Further, Hagen - who was reportedly 
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“struck by the beauty, elegance, and usefulness 
of NHST” - went on to acknowledge that “other 
methods of inference may be equally elegant and 
even more useful depending on the question 
being asked” (1998, p. 803). Similarly, whereas 
Burnham and Anderson (2002) admitted that 
“for classic experiments (control-treatment, with 
randomization and replication) we generally 
support the traditional approaches (e.g., analysis 
of variance)” (p. viii), largely based on NHST; 
they more strongly endorsed a modeling 
perspective. Rozin (2009) would probably agree, 
stating that hypothesis testing may be more 
appropriate in fields where there is more 
knowledge and background. Otherwise, Rozin 
recommended assessing the nature of the 
phenomenon and its “generality outside of the 
laboratory and across cultures” (2009, p. 436), a 
practice that may be more easily accomplished 
with modeling. In this regard, it is useful to 
consider an alternative to NHST, namely, 
statistical and mathematical modeling. 
 
Statistical and Mathematical Modeling 

Rodgers (2010a) argued persuasively for 
adopting statistical and mathematical modeling, 
which he claims subsumes the predominant 
standard of NHST. Rodgers convincingly 
expressed the benefits and extent of statistical 
modeling, including such procedures as 
“structural equation modeling, multi-level 
modeling, missing data methods, hierarchical 
linear modeling, categorical data analysis, as 
well as the development of many dedicated and 
specific behavioral models.” Rodgers further 
decried the emphasis in NHST on the rejection 
of a null hypothesis, a practice that, in 
opposition to Rodgers, was embraced by 
Robinson and Levin. However, these latter 
researchers clarify that they view NHST mainly 
as a screening device (Robinson & Levin, 2010) 
to illuminate findings worthy of further study, 
and thus would not be expected to place undue 
attention on the null hypothesis. Still, as 
Rodgers pointed out, statistical modeling places 
the focus on a well-constructed model, as 
opposed to a null hypothesis, and entails a 
“powerful epistemological system” of “building 
and evaluating statistical and scientific models.” 
Rodgers (2010a) further advocated that 
methodological curriculum should be revised to 

incorporate a modeling approach, with NHST 
playing an “an important though not expansive 
role” (p. 1). 

Others would agree with the call for 
wider use of model testing. Burnham and 
Anderson (2002) discussed a multi-model 
approach to understanding and approximating a 
complex process. Their information-theoretic 
approach includes comparing a scientific model 
that has a strong theoretical basis to several 
reasonable alternative models, while also taking 
into account parameter estimation, uncertainty 
and parsimony. In this way, a model or reduced 
set of models can be retained as the “best 
approximating model” (p. 2). Their approach 
represents a balance between over-fitting that 
would be neither replicable nor externally valid, 
and under-fitting which would be limiting and 
lack internal validity. It may seem paradoxical 
that Robinson and Levin would most likely also 
go along with the practice of testing multiple 
models, whereas it could easily be expected that 
Rodgers would approve of Burnham and 
Anderson’s recommended multi-model testing 
methodology. 

In a similar endorsement, Filkin (1997) 
described how Stephen Hawking, a renowned 
physicist, used a method called “sum over 
histories” to select the most likely approaches or 
models to understand a specific phenomenon 
and then to eliminate them one by one until 
arriving at the most probable solution (p. 272). 
Likewise, Maxwell and Delaney (2004) 
presented a convincing and integrative approach 
to science by proposing the examination of 
multiple models within a given study, ideally 
with research based on an experimental design. 
To varying degrees, Robinson and Levin, as well 
as Rodgers, would support this emphasis on 
assessing several viable and relevant models, 
particularly within the context of rigorous, 
controlled research. 

Congruent with Rodgers’ (2010a) focus 
on statistical modeling that recognizes the role 
of significance testing, Granaas (1998) claimed 
that “model fitting combines the NHST ability to 
falsify hypotheses with the parameter estimation 
characteristic of confidence intervals” and could 
still recognize that “effect size estimation is 
central” (p. 800). In an in-depth and convincing 
collection of model-based methods, Little, 
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Bovaird and Card (2007) offered a well-
articulated treatise on the benefits of statistical 
modeling, particularly when taking into account 
various conditions (e.g., mediation, missing 
data, moderation, multilevel data, multiple time 
points). I back each of these efforts, which 
would - at least in part - be supported by 
Robinson and Levin as to the value of NHST, 
considering relevant provisos. I would go further 
to state that statistical modeling may be more 
effective than NHST in allowing and even 
encouraging researchers to be more motivated to 
study, analyze and integrate their findings into 
encompassing and coherent streams of research. 
This position would most assuredly be endorsed 
by Rodgers. 

The capabilities aside, it cannot go 
unnoticed that Robinson and Levin, as well as 
numerous other researchers (e.g., Baumrind, 
1983; Cliff, 1983; Freedman, 1987a, 1987b; 
Ragosa, 1987) spelled out the possible hazards 
of statistical modeling, particularly when 
making unjustifiable causal claims from 
information that does not stem from longitudinal 
data or experimental design with adequate 
controls. Moreover, Kratochwill and Levin 
(2010), as well as Robinson and Levin, 
emphasized the importance of randomization, as 
well as replication and manipulation of the 
independent variable in order to achieve 
experimental control and build causal evidence. 
These authors argued that even single-case 
intervention designs can be made more rigorous 
and allow stronger conclusions, particularly by 
randomizing the assignment, timing and/or 
replication of interventions. 
 
Shared Variance 

Despite the various approaches to 
conducting scientific research, and the 
apparently contended methods of NHST and 
model testing, the articles in this issue by 
Rodgers, and Robinson and Levin could be said 
to agree on a number of practices and 
perspectives, including the merits of 
randomization and replication, and the cautions 
against over-interpreting correlations or using 
causal language when it is not justified. A 
careful reading of the viewpoints put forth by 
these authors, who admittedly come from 

differing epistemological vantages; concur on 
the importance of each of the following: 
 
• Conducting exploratory / preliminary 

research that reveals worthwhile avenues to 
pursue;  

• A strong theoretical framework; 
• The use of randomization; 
• Addressing threats to the validity of 

research; 
• Emphasizing effect sizes and reasonable 

sample-size considerations; 
• Being cautious to not over-interpret 

correlations; 
• Avoiding causal language when not 

justified; 
• Only making meaningful and justified 

conclusions; 
• Encouraging replication; 
• Noting the historical importance and 

development of NHST; 
• Recognizing the value of NHST as part of a 

larger research process; 
• Acknowledging the value of both NHST and 

statistical modeling; 
• Realizing that both NHST and statistical 

modeling can be misused; 
• Not disavowing a statistical procedure just 

because it is sometimes misused; and 
• Accruing ongoing knowledge about 

scientific findings that address relevant 
problems. 

 
By any yardstick, it would be difficult to deny 
significant overlap and agreement in the 
scientific values of Robinson, Levin, and 
Rodgers. 

Just as it would not be accurate to posit 
hypothesis testing as the exclusive focus on a 
dichotomous decision between a null hypothesis 
and a generic alternative hypothesis, there may 
not be the need for a sharp contrast between the 
approaches presented by Rogers, and Robinson 
and Levin. Unlike Schmidt and Hunter (1997) 
who claimed that “statistical significance 
testing…never makes a positive contribution” 
(p. 37), or even McGrath (1998) who ventured 
that “it is very appropriate to praise the 
brilliance of NHST, but having done so, perhaps 
it is time to bury it” (p. 797), a more inclusive 
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approach to science would allow for much of 
what was advocated by Robinson and Levin as 
well as Rodgers. 

Rodgers (2010a) and Robinson and 
Levin, among others (e.g., APA, 2010; 
Wilkinson, et al, 1999), supported a broad and 
accurate approach that incorporates rigorous 
considerations (e.g., effect sizes, confidence 
intervals), alongside either NHST or statistical 
modeling. Hagen (1998), consistent with 
Robinson and Levin, and Rodgers, raised 
another issue by contending that “absence of 
evidence does not equal evidence of absence” 
(p. 803). By this Hagen clarified that research 
that fails to reject a null hypothesis cannot claim 
that the null hypothesis is true, a point that is 
sometimes mistakenly made with proponents of 
both NHST and modeling. In this regard, 
researchers conducting NHST cannot assert 
finding proof for the null hypothesis when it 
fails to be rejected. Similarly, those carrying out 
statistical modeling cannot overstate the benefit 
of a model in which the proposed model was not 
found to be significantly different from the 
pattern of variation and covariation in the data. 
Rogers, Robinson and Levin would undoubtedly 
agree that reasonable alternatives, confounds 
and considerations need ample deliberation, 
regardless of scientific approach. 
 
Significant Differences or Type I Errors? 

Given the recognized points of 
convergence, it is informative to at least mention 
that in this issue, Robinson and Levin, and 
Rodgers set forth differing or detracting points 
of view, as evinced in the following: 

Robinson and Levin believed that 
Rodgers presents “a one-sided view of the 
controversy,” and argue that they “have seen 
frequent misapplication of Rodgers’ favored 
causal modeling techniques.” Robinson and 
Levin further argued against a statistical 
modeling approach, based largely on the 
possible misuses associated with such an 
approach, for example, making unwarranted 
causal conclusions and overly prescriptive 
statements when using cross-sectional and 
correlational data. It is likely that most 
researchers, including Rodgers, would agree 
with their encouragement to use hypothesis 
testing wisely and to supplement with effect 

sizes and confidence intervals. Similarly, 
Rodgers and other researchers are apt to endorse 
their concern with ascribing causality when the 
research design did not include the necessary 
controls (e.g., randomization, manipulation, 
temporal ordering, isolation of effect, 
repetition). 

Whereas Rodgers’ (2010b) claim that 
statistical modeling could serve as a larger 
framework that subsumes NHST could be 
acknowledged, some of the writing may be too 
dismissive. For example, Rodgers charged that 
NHST does not have status and involves 
immature and simple science, compared with an 
epistemological system such as mathematical 
and statistical modeling. It may be more 
accurate to state that NHST can focus on more 
specific research questions, particularly in areas 
in which there is sufficient background 
knowledge to make informed and relevant 
hypotheses (see Rozin, 2009 for more discussion 
on this point). 

Robinson and Levin occasionally made 
statements that may be overstated or inaccurate, 
such as using the qualifier “causal” numerous 
times when referring to modeling procedures or 
advocates, even when the term “causal” was not 
necessarily appropriate or endorsed by what was 
being described. This misattribution of causal 
language is evident in the title of their article, 
when referring to “Rodgers’ favored causal 
modeling techniques,” when speaking about 
“causal modeling techniques” and “unfortunate 
‘causal’ nomenclature, “as well as “causal-
model researchers,” among other instances. 
Robinson and Levin also provided what they 
claimed as examples of “unjustified ‘causal’ 
excerpts” that are said to have overstated the use 
of causal language, when the research they 
describe does not explicitly appear to have done 
so and where, in some cases, the researchers 
have cautioned against making causal 
conclusions. For example, in an article that is 
critiqued, researchers claimed that “the data in 
the study are cross-sectional in nature and causal 
relations cannot be drawn” (Chen, et al, 2009, p. 
304) although Robinson and Levin dismissed the 
stated limitation as “predictable.” 

Rodgers could also offer more 
elaboration and careful language when 
describing relevant examples that would favor 
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modeling research, such as when stating how 
“selection bias has improperly influenced the 
interpretation of birth order-intelligence links,” 
on illustrating a “type of sibling control,” and on 
how “findings make a strong statement about 
both modeling and NHST.” When describing 
each of these examples, there did not appear to 
be enough information provided to come to the 
conclusions that Rodgers set forth. Additionally, 
it would be preferred to use the word “parents” 
instead of “women” when discussing problems 
that are “almost completely attributable to the 
type of women who put their children in day 
care.” 

Regarding the use of language, 
Robinson and Levin occasionally used glib or 
dismissive terms when describing “the perceived 
magical quality of SEM allowing researchers to 
coax causality from correlational data,” or 
referring to “grand prescriptives” in published 
conclusions. Moreover, these authors chided that 
cross-sectional and correlational data are “tossed 
into a statistical modeling analysis and what 
‘popped out’ were causal conclusions”, and 
allude to Rodgers’ “seductive subtitle” that 
could purportedly “cause” researchers to see 
modeling as “methodological randomization 
compensating panaceas.” 

Another point worth noting is that 
Robinson and Levin, as well as Rodgers, 
expressed concern about the nature of the 
articles cited and, conversely, omitted from their 
respective manuscripts, when almost half of the 
citations in each manuscript involve one or more 
of the corresponding authors (i.e., 11 of 24 
references are self-citations in Rodgers; and 14 
of 33 references in Robinson & Levin similarly 
involve one or both of the authors). Whereas it is 
not unusual to cite relevant articles with which 
one is familiar, there may be some degree of 
selection bias in what is referenced in both 
manuscripts. 

Are these points indicative of significant 
differences between Rodgers, and Robinson and 
Levin, or possibly just Type I errors in some 
cases? The reader may best decide. 
 
Reconciling Different Approaches to Scientific 
Inference 

Is it possible to come to agreement on 
how to approach scientific research? As Simon 

(1969) and Kaku (2009) expounded, whereas the 
world around us appears complex and 
unknowable, the role of scientists is to use 
whatever means are available to see through to 
the essence or set of truths in a field. These 
efforts will most likely involve thoughtful 
theoretical frameworks alongside sophisticated 
quantitative analysis to uncover what is not 
easily distinguished on the surface, positions that 
many scientists, including Rodgers, Robinson 
and Levin would endorse. Without specifying a 
precise approach, Devlin, a mathematician, 
writes that “where the real world is concerned, 
we have to go out and collect data. We enter the 
world of statistics” (1998, p. 156). Lakoff & 
Núñez (2000) affirmed that “mathematics is a 
magnificent example of the beauty, richness, 
complexity, diversity, and importance of human 
ideas” (p. 379), and Galton (1889) eloquently 
spoke of the wonder of statistics when used 
judiciously, stating: 
 

Some people hate the very name of 
statistics, but I find them full of beauty 
and interest. Whenever they are not 
brutalised, but delicately handled by the 
higher methods, and are warily 
interpreted, their power of dealing with 
complicated phenomena is 
extraordinary. They are the only tools by 
which an opening can be cut through the 
formidable thicket of difficulties that 
bars the path of those who pursue … 
Science. (p. 62-63) 

 
Advocates of both NHST and statistical 
modeling would most likely agree with Galton 
on the overriding splendor of quantitative 
methods when used responsibly, regardless of 
the particular approach to scientific research. 

Hayes (2011) maintained that scientists 
may fare well when using statistical, 
probabilistic models. He argued that, in contrast 
to using a strictly deductive process and seeking 
deterministic principals, it is preferable to 
actively engage with the data by “forming and 
evaluating hypotheses, building conceptual 
models, and applying iterative procedures to 
refine the models or replace them when 
necessary” (p. 421). This description aptly 
depicts what Rodgers advocated with statistical 
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modeling, and incorporates what Robinson and 
Levin encourage with testing hypotheses with 
randomized experiments “followed by a 
sufficient number of independent replications 
until the researcher has confidence that the 
initially observed effect is a statistically reliable 
one.” 

When considering the overall value of 
hypothesis testing and modeling, Rodgers 
(2010b) acclaimed that “NHST is a worthy, 
valuable, and useful tool” and “is still a proper 
paradigm, but it is a special case of a broader 
and thus more flexible paradigm.” Hagen (1998) 
also acknowledged, along with Granaas (1998), 
that statistical modeling may well have 
advantages over NHST, although knowledge 
and use of modeling may not be as widely 
available as NHST, a position endorsed by 
Rodgers, as well. Certainly, the longer history of 
NHST as adopted in classrooms and research 
labs, has found its way into books and scholarly 
articles in larger volume than that of statistical 
and mathematical modeling procedures. It could 
only facilitate the progression of scientific 
knowledge to encourage more attention to well-
tempered modeling to complement the pervasive 
availability and use of significance testing. 

Ultimately, creative science depends on 
the ability to conduct specifically-focused, 
controlled studies that involve randomization 
and allow for causal inference. At the same time, 
there is a need for more broad-based and 
overarching statistical modeling that allows 
more flexible hypothesizing, analyzing and 
synthesizing of relationships among multiple 
relevant variables. There need not be an artificial 
dichotomy between these approaches to 
scientific research. Indeed, Rodgers (2010b) 
recognized that hypothesis testing and modeling 
“can be reconciled and accommodated” (p. 340). 

As long as researchers keep in mind 
what can and cannot be claimed on the basis of 
their particular studies, the adoption of multiple 
approaches can only enhance and further the 
realm of science. A new journal is now 
available, the Journal of Causal Inference, 
edited by Judea Pearl and others, to encourage a 
rigorous multidisciplinary exchange of ideas 
regarding causation in scientific research. It is 
hypothesized that ongoing and open dialogue 
among foremost scientific researchers will help 

clarify the value of maintaining controlled and 
specific NHST, as well as revolutionary and 
overarching statistical modeling. 
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Introduction 
Selecting a sample size is one of the most 
important decisions to be made when planning 
an empirical study. Often the choice is based on 
the minimum necessary sample size to obtain 
reliable results from the statistical procedures to 
be conducted. For many procedures (e.g., t-test, 
F-test) an exact minimum can be found which 
will allow relationships in the population (if they 
exist) to be detected with high probability. The 
issue of sample size for exploratory factor 
analysis (EFA) is not as straightforward, 
however, because an exact minimum cannot 
easily be found analytically and because the 
procedure’s use involves a greater degree of 
subjectivity. 

Although factor analysis has been used 
in a vast array of scientific fields, it is most 
frequently used as a tool to investigate the 
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structure of scores obtained via psychometric 
measures. Such research seeks to identify and 
possibly measure a small number of 
unobservable traits that are hypothesized to 
explain a large portion of the covariation among 
observed variables. The statistical problem for 
EFA is the estimation of communalities and - 
perhaps more importantly - factor loadings. If 
the results of a factor analysis are to be useful 
beyond a particular study, then the estimated 
loadings must be reasonable approximations of 
true population loadings. Thus, reliable 
guidelines for selecting a sample size that is 
likely to produce a factor solution which closely 
matches a population factor structure would be a 
boon to researchers planning factor analytic 
studies. 

Until recently, most of the published 
sample size recommendations were simplified 
rules based on experts’ experience. Several of 
the most frequently cited guidelines are absolute 
numbers. Gorsuch (1983) and Kline (1994) 
suggested sampling at least 100 subjects. 
Comrey and Lee (1992) provided the following 
scale of sample size adequacy: 50 – very poor, 
100 – poor, 200 – fair, 300 – good, 500 – very 
good, and 1,000 or more – excellent. Authors 
have also proposed minimum ratios of sample 
size to the number of variables (n:p). Cattell 
(1978) suggested three to six subjects per 
variable, Gorsuch (1983) suggested this ratio be 
at least five and both Everitt (1975) and 
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Nunnally (1978) recommended sampling at least 
ten times as many subjects as variables. 

MacCallum, Widaman, Zhang, and 
Hong (1999) demonstrated mathematically and 
empirically that sample size requirements are 
contingent upon two aspects of the factor 
structure. Specifically, they showed that both 
mathematical overdetermination (the extent to 
which the common factors are sufficiently 
represented by an adequate number of variables) 
and the size of communalities have a 
considerable effect on the agreement between 
sample and population factor loadings. In a 
Monte Carlo study they showed that 
communality had an estimated effect size ( ) 
nearly three times greater than sample size and 
overdetermination had an effect nearly as large 
as sample size. Mundfrom, Shaw and Ke (2005) 
subsequently provided sample size 
recommendations for 180 population conditions 
on the basis of a Monte Carlo study that varied 
the number of factors, the ratio of variables to 
factors (an important aspect of 
overdetermination) and communalities. 

In practice, data are often measured on 
ordinal or nominal scales, particularly in the 
social sciences (Hip & Bollen, 2006; Lee & 
Song, 2003; Schoenberg & Arminger, 1989). 
Exploratory factor analysis is often applied to 
ordinal or dichotomous data to examine their 
relationship with underlying factors (Baños & 
Franklin, 2002; Mundfrom, Bradley, & 
Whiteside, 1994; Tomás-Sábado & Gómez-
Benito, 2005). Many authors have suggested 
other approaches for this situation (Bartholomew 
& Knott, 1999; Bock & Aitkin, 1981; Muthén, 
1978), however, a traditional factor analysis can 
be useful as long as a meaningful and 
interpretable set of factors can be identified, 
regardless of the measurement level of the input 
data. Johnson and Wichern (2002) refer to this 
as the WOW criterion: “If, while scrutinizing the 
factor analysis, the investigator can shout ‘Wow, 
I understand these factors,’ the application is 
deemed successful” (p. 524). 

Darlington (1997) described this use of 
factor analysis as heuristic rather than absolute. 
It is understood that any factor solution is only 
one among many that are possible. If the 
retained factor structure can be cross-validated 

or together with other evidence supports a 
broader theory, then the analysis is successful. 
Mulaik (1989) discussed how this approach fits 
with theory development throughout science: 
 

Theoretical physics, for example, is 
continuously occupied with differing 
speculations designed to synthesize the 
same sets of diverse experimental data. 
All of these differing theoretical 
speculations may yield models that fit 
equally well the data already at hand, 
but in time some or all of these 
speculative models may be eliminated 
from further consideration by their 
inconsistency with new data obtained to 
test certain predictions derived from 
them. (p. 54) 

 
For a factor solution to be replicable across 
studies it must represent a structure that truly 
exists in the population. 

The primary purpose of this study was 
to provide sample size recommendations for 
researchers who are planning factor analytic 
studies that will involve dichotomous variables. 
It was also of interest to compare the results of 
this study to requirements for continuous data 
(Mundfrom, et al., 2005). From a 
methodological standpoint, the extent to which 
these results differ from those found by 
Mundfrom, et al. (2005) lends insight into the 
effect that scale of measurement has on this 
statistical procedure. Because the case of 
dichotomous data is the most extreme departure 
from continuity, these recommendations 
represent an upper bound for minimum 
necessary sample size. Therefore, these 
recommendations were also intended to serve as 
conservative guidelines for EFA of ordinal data. 
 

Methodology 
Monte Carlo simulation was used for this study. 
Population data were generated using the SAS 
System v9.1.3 (SAS Institute Inc., 2007). One-
hundred matrices of dichotomous data, each 
conceptually representing a unique population of 
100,000 observations on p variables, were 
generated for each condition determined by four 
manipulated variables: the number of common 
factors (m), the variable-to-factor ratio (p:m), the 

2ω̂
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variable communalities and the dichotomization 
threshold. Populations were randomly generated 
using the following two-stage process. 

In the first stage, the procedure 
described by Tucker, Koopman, and Linn (1969) 
was used to randomly generate population 
correlation matrices with specified factor 
structures. A total of 180 factor structures were 
investigated by crossing the number of factors (1 
≤ m ≤ 6), the variable-to-factor ratio (3 ≤ p:m ≤ 
12), and the variable communalities. Three 
levels of variable communalities were examined: 
high, in which communalities were randomly 
assigned values of 0.6, 0.7 or 0.8; wide, in which 
they could have values from 0.2 to 0.8 in 
increments of 0.1; and low, in which they could 
have values of 0.2, 0.3, or 0.4 (Tucker, 
Koopman & Linn, 1969). Ten correlation 
matrices were generated for each factor 
structure. 

In the second stage, ten matrices of 
binary data were generated from each population 
correlation matrix (R). Each data matrix 
consisted of 100,000 rows of values on p 
dichotomous variables. First, a matrix X was 
created by taking the product of the Cholesky 
root of R and a matrix of multivariate-normal 
deviates. Elements of each column of X were 
then dichotomized according to three conditions. 
In the first condition, all variables were 
dichotomized to have a 50/50 split. This 
condition results in the smallest amount of 
information loss due to dichotomization (Cohen, 
1983) and can be considered the best case. In the 
second condition, all variables were 
dichotomized to have an 80/20 split. This 
condition was used in simulation studies by 
Parry and McArdle (1991) and Weng and Cheng 
(2005), and is similar to the 84/16 split used by 
Bernstein and Teng (1989) which they likened to 
item distributions found in symptom description 
scales such as in the MMPI or a difficult ability 
test. In the remaining condition, half of the 
variables were dichotomized using an 80/20 split 
and half using a 50/50 split. 

Because differences in item means limit 
the maximum possible value of the product-
moment correlation it was important to 
investigate the resulting effect on factor loading 
estimates. As a result, one-hundred population 
data matrices (hereafter referred to as 

populations) were generated for each 
combination of communality level, number of 
factors, variable-to-factor ratio and 
dichotomization threshold. 

Each population was factor analyzed 
using maximum likelihood estimation and 
varimax rotation. One-hundred simple random 
samples of a specific size were then selected 
from each population. If a sample correlation 
matrix was non-positive-definite, another was 
generated and used instead. Each sample was 
factor analyzed and the rotated factor loadings 
were compared to those in the population using 
a coefficient of congruence. 

Sample sizes were chosen by first 
starting with a sample size that was too small 
based on the recommendations of Mundfrom, et 
al. (2005). Sample sizes were then increased 
systematically according to the following 
algorithm: 
 
• while 30<n  , it was increased by 1; 
• while 30 100≤ <n , it was increased by 5; 
• while 100 300≤ <n , it was increased by 

10; 
• while 300 500≤ <n , it was increased by 

20; 
• while 500 1,000≤ <n , it was increased 

by 50; 
• while 1,000≥n , it was increased by 200. 

 
This system of increments is nearly identical to 
that used by Mundfrom, et al. (2005). The 
procedure was stopped when the sample and 
population correlation matrices met criteria 
based on a coefficient of congruence. These 
criteria are defined below. The procedure was 
also stopped if a sample size greater than 5,000 
was necessary. 

In summary, a 3 × 6 × 10 × 3 factorial 
design was implemented, corresponding to the 
experimental variables communality level, 
number of factors, variable-to-factor ratio, and 
dichotomization threshold, resulting in a total of 
540 population conditions. One-hundred 
populations were randomly generated for each 
population condition and 100 samples were 
taken from each population for every sample 
size considered. Thus, a total of 10,000 samples 
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were taken for each population condition and 
sample size combination. 
Coefficient of Congruence 

A coefficient of congruence was 
calculated to assess the degree of 
correspondence between the sample and 
population solutions (MacCallum, et al., 1999; 
Tucker, et al., 1969). The coefficient for the kth 
factor was calculated using the formula: 
 

( ) ( )

( )( ) ( )( )
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2 2

1 1
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= =

φ =


 

p
jk s jk tj

k p p
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where ( )jk tλ  is the true population factor loading 

for variable j on factor k, and ( )jk sλ  is the 

corresponding sample loading. To assess the 
degree of congruence for a given solution, the 
mean value of k φ  across the m factors was 

computed and denoted K. For any solution with 
m factors there were m! possible arrangements 
of the factors and therefore m! possible values of 
K. The maximum value of K was used for each 
solution, thus representing the sample solution 
that was most similar to the targeted population 
solution. 

For each population, 100 samples were 
taken and factor analyzed, resulting in 100 
values of K. The fifth percentile of these 
coefficients, denoted K95, was used to represent 
the lower bound of a 95% confidence interval 
for a particular population. Subsequently, 100 
values of K95 were obtained for each population 
condition, corresponding to the 100 generated 
populations. 

MacCallum, et al. (1999) provided the 
following guidelines for interpreting values of 
the coefficient of congruence: 0.98 to 1.00 = 
excellent, 0.92 to 0.98 = good, 0.82 to 0.92 = 
borderline, 0.68 to 0.82 = poor, and below 0.68 
= terrible. Because the purpose of this study was 
to determine minimum recommended sample 
sizes, only those that provided good and 
excellent levels of agreement were retained. For 
a given population condition and sample size, 
the proportions of K95s that were greater than 
0.92 and 0.98 were respectively denoted P92 and 
P98. 

For a particular condition, a sample size 
was determined to meet the good criterion if 
either of the following occurred (Mundfrom, et 
al., 2005): 
 
• The P92 from three successive sample sizes 

was at least 0.95. 
• The P92 from two successive sample sizes 

was at least 0.95, the P92 from the next 
sample size was less than 0.95 and the P92 
from the next two successive sample sizes 
was at least 0.95. 

 
The same system was used to select a sample 
size to meet the excellent criterion. Thus, for 
every population condition, two sample sizes 
were chosen as recommendable according to the 
two criteria. 
 

Results 
Minimum necessary sample sizes were 
identified using a Monte Carlo simulation that 
manipulated four population characteristics. 
Factor structures were determined by crossing 
three levels of communality (high, wide and 
low), six numbers of factors (1 to 6), and ten 
variable-to-factor ratios (3 to 12). The three 
variable distributions considered were 50/50, 
80/20 and a third distribution, hereafter referred 
to as mix, for which half the variables had a 
50/50 split and half had an 80/20 split. The 
minimum necessary sample sizes for each of the 
540 population conditions and two agreement 
criteria are presented in Tables 1, 2, and 3 for 
the high, wide and low levels of communality 
respectively. 

A few cautions should be observed 
when interpreting these results. First, the 
methodology employed did not consider sample 
sizes beyond 5,000, so this was an artificial 
ceiling in this study. Secondly, frequent 
computational errors occurred for conditions 
when the p:m ratio was three: all results for these 
conditions should be interpreted cautiously. In 
addition, the three conditions involving one-
factor models with p:m = 3 could not be run by 
SAS PROC FACTOR with maximum likelihood 
estimation. Thirdly, the observed results for the 
mix condition were unstable for models with 
four to six factors. This instability may be an  
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Table 1: Minimum Sample Size for Two Agreement Criteria - High Level of Communality 

p:m 
Excellent (0.98) Criterion Good (0.92) Criterion 

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 
50/50 Variable Distribution 

3 . 1,200 3,000 5,000 5,000 5,000 . 400 1,400 3,800 5,000 5,000

4 120 270 750 1,600 5,000 5,000 40 90 380 800 3,600 5,000

5 80 280 460 1,800 5,000 5,000 35 85 180 550 2,600 5,000

6 75 250 500 650 1,800 2,600 28 85 200 250 650 700 

7 70 250 340 750 1,000 1,200 26 85 120 360 340 400 

8 60 270 260 500 1,800 1,000 23 100 90 170 340 460 

9 55 320 200 400 1,200 1,400 22 95 65 150 300 700 

10 65 260 200 290 480 1,400 25 75 70 110 140 420 

11 55 200 220 440 380 800 22 85 75 150 130 250 

12 50 160 250 400 550 900 20 60 100 150 170 280 

80/20 Variable Distribution 

3 . 2,000 5,000 5,000 5,000 5,000 . 420 5,000 5,000 5,000 5,000

4 230 750 1,600 5,000 5,000 5,000 75 320 900 3,200 3,800 5,000

5 170 900 1,200 2,400 4,400 5,000 65 340 400 900 1,400 4,600

6 150 360 800 2,400 3,800 5,000 55 120 250 500 1,400 2,000

7 130 340 1,200 1,600 3,200 2,200 55 120 420 950 1,200 1,600

8 120 270 650 1,600 2,000 2,000 50 110 230 300 650 900 

9 120 240 700 800 1,600 1,800 50 75 190 420 500 650 

10 100 320 400 600 950 1,400 45 100 180 200 360 380 

11 100 240 440 800 1,400 1,000 45 75 150 290 460 380 

12 95 400 700 1,200 850 1,400 45 120 180 320 250 460 

Half 50/50 and Half 80/20 

3 . 5,000 2,200 5,000 5,000 5,000 . 4,200 800 5,000 5,000 5,000

4 180 2,000 5,000 5,000 5,000 5,000 55 600 4,000 5,000 5,000 5,000

5 130 480 1,400 2,400 5,000 5,000 40 300 550 1,400 1,400 5,000

6 120 480 1,000 3,200 4,200 5,000 45 190 380 2,200 1,800 3,400

7 95 480 950 1,400 1,600 3,200 40 160 320 460 600 850 

8 95 260 500 2,600 1,800 3,000 40 85 180 1,200 600 1,200

9 85 200 340 600 1,200 3,200 35 65 140 240 360 650 

10 85 180 340 480 1,800 3,800 35 60 120 160 550 1,200

11 75 140 320 380 1,800 3,600 27 50 100 140 900 750 

12 80 190 240 440 650 1,800 30 55 80 150 220 550 
Note: F1 denotes one-factor models, F2 two-factor models, etc. 
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Table 2: Minimum Sample Size for Two Agreement Criteria - Wide Level of Communality 

p:m 
Excellent (0.98) Criterion Good (0.92) Criterion 

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 
50/50 Variable Distribution 

3 . 4,000 5,000 5,000 5,000 5,000 . 1,800 5,000 5,000 5,000 5,000

4 700 1,400 5,000 5,000 5,000 5,000 200 480 2,400 5,000 5,000 5,000

5 320 1,400 5,000 5,000 5,000 5,000 95 480 1,400 5,000 5,000 4,600

6 250 950 1,600 2,800 4,000 3,600 75 380 550 1,000 2,200 1,400

7 280 360 1,000 1,600 5,000 5,000 90 180 360 550 1,600 1,600

8 150 460 600 1,400 3,600 3,800 50 190 210 380 1,800 1,400

9 210 650 600 1,800 1,200 2,200 65 170 230 460 420 850 

10 150 420 600 1,600 1,400 1,600 55 150 220 550 420 550 

11 140 320 700 1,200 1,600 1,600 45 110 210 320 460 550 

12 170 440 500 700 950 1,600 55 140 170 180 320 550 

80/20 Variable Distribution 

3 . 5,000 5,000 5,000 5,000 5,000 . 5,000 5,000 5,000 5,000 5,000

4 650 5,000 5,000 5,000 5,000 5,000 180 2,000 5,000 5,000 5,000 5,000

5 500 2,000 3,800 5,000 5,000 5,000 160 850 1,400 5,000 5,000 5,000

6 440 1,200 2,000 5,000 5,000 5,000 140 460 500 3,000 5,000 5,000

7 340 1,800 1,800 2,800 4,400 5,000 110 550 600 800 1,600 3,200

8 340 950 1,200 3,000 2,800 4,400 110 270 420 700 1,400 1,600

9 320 550 1,000 1,400 2,600 5,000 100 230 300 550 750 2,000

10 240 550 1,000 1,600 2,200 3,600 85 200 360 550 750 1,400

11 220 400 850 1,200 1,600 2,200 75 130 270 360 480 650 

12 210 420 650 950 1,600 1,800 70 140 180 320 460 600 

Half 50/50 and Half 80/20 

3 . 4,200 5,000 5,000 5,000 5,000 . 2,200 4,200 5,000 5,000 5,000

4 600 1,800 5,000 5,000 5,000 5,000 200 1,200 5,000 5,000 5,000 5,000

5 290 900 5,000 5,000 5,000 5,000 90 460 3,800 5,000 5,000 5,000

6 300 750 3,600 5,000 5,000 5,000 85 300 1,400 1,200 1,800 5,000

7 210 700 900 5,000 5,000 5,000 70 200 420 2,000 2,800 2,200

8 210 850 1,600 5,000 2,800 5,000 70 300 360 1,200 1,200 2,400

9 210 1,200 650 2,600 2,600 3,000 70 380 220 900 1,200 1,600

10 180 750 800 1,200 1,400 3,000 55 260 250 460 550 850 

11 190 500 750 1,600 2,000 5,000 65 180 280 420 600 1,600

12 280 700 1,000 1,200 3,600 3,600 85 240 240 340 1,200 1,400
Note: F1 denotes one-factor models, F2 two-factor models, etc. 
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Table 3: Minimum Sample Size for Two Agreement Criteria - Low Level of Communality 

p:m 
Excellent (0.98) Criterion Good (0.92) Criterion 

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 
50/50 Variable Distribution 

3 . 5,000 5,000 5,000 5,000 5,000 . 5,000 5,000 5,000 5,000 5,000

4 950 3,000 5,000 5,000 5,000 5,000 280 1,200 2,000 5,000 5,000 5,000

5 900 5,000 3,800 5,000 5,000 5,000 270 1,800 1,600 5,000 5,000 5,000

6 650 2,600 3,600 5,000 5,000 5,000 200 1,200 1,400 3,600 5,000 5,000

7 460 2,400 1,600 3,000 5,000 5,000 140 750 600 1,200 5,000 2,800

8 400 950 2,200 5,000 5,000 5,000 120 340 700 1,800 5,000 5,000

9 380 1,400 2,600 2,800 5,000 3,400 120 480 900 1,000 1,600 1,400

10 380 600 1,800 2,200 3,200 4,200 110 180 750 1,000 1,200 1,600

11 340 850 1,400 1,800 5,000 3,200 95 260 400 500 5,000 1,200

12 290 1,000 1,600 2,000 5,000 5,000 85 320 700 700 2,400 2,600

80/20 Variable Distribution 

3 . 5,000 5,000 5,000 5,000 5,000 . 5,000 5,000 5,000 5,000 5,000

4 1,800 5,000 5,000 5,000 5,000 5,000 550 2,600 3,800 5,000 5,000 5,000

5 2,000 5,000 5,000 5,000 5,000 5,000 550 2,600 5,000 5,000 5,000 5,000

6 1,200 2,200 5,000 5,000 5,000 5,000 320 750 2,600 5,000 5,000 5,000

7 800 2,600 2,800 5,000 5,000 5,000 230 650 1,200 2,000 2,800 5,000

8 700 1,800 5,000 5,000 5,000 5,000 200 480 5,000 5,000 3,000 5,000

9 700 1,600 3,400 4,400 4,600 5,000 200 600 1,000 1,800 2,000 4,600

10 600 1,800 3,400 2,400 5,000 5,000 180 650 1,200 800 2,400 2,600

11 550 1,400 2,800 2,800 4,400 5,000 160 420 650 950 1,600 3,200

12 550 1,000 1,200 2,400 4,400 4,400 160 360 1,000 850 1,600 1,600

Half 50/50 and Half 80/20 

3 . 5,000 5,000 5,000 5,000 5,000 . 5,000 5,000 5,000 5,000 5,000

4 2,000 5,000 5,000 5,000 5,000 5,000 600 5,000 3,000 5,000 5,000 5,000

5 950 5,000 5,000 5,000 5,000 5,000 260 2,600 5,000 5,000 5,000 5,000

6 700 1,800 5,000 5,000 5,000 5,000 220 700 5,000 5,000 5,000 5,000

7 550 1,800 5,000 5,000 5,000 5,000 170 500 5,000 3,000 3,800 2,800

8 550 1,600 2,600 5,000 5,000 5,000 170 600 1,200 1,600 2,600 2,800

9 420 1,400 2,400 5,000 5,000 5,000 130 460 950 2,000 2,800 3,800

10 460 1,200 5,000 2,400 5,000 5,000 140 400 1,800 850 4,400 2,000

11 400 1,000 2,800 2,600 4,000 5,000 120 260 1,000 950 1,600 2,800

12 360 2,800 1,800 4,000 2,800 5,000 110 700 650 2,600 950 1,800
Note: F1 denotes one-factor models, F2 two-factor models, etc. 
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artifact of the methodology used to generate the 
data. 

Overall, the sample sizes needed to 
analyze dichotomous data are higher than those 
needed for continuous data as presented by 
Mundfrom, et al. (2005). For many models with 
high communalities, three or fewer factors, and 
high p:m ratios, sample sizes below 100 are 
likely to achieve good agreement. Conversely, 
sample sizes in the thousands are necessary to 
meet that criterion for most cases when all 
variables have low communalities or the factors 
are weakly determined. 

Some relationships are apparent from 
Tables 1 and 2. For a given distribution, level of 
communality and number of factors, the 
necessary sample size tends to decrease sharply 
as the p:m ratio increases until some elbow after 
which changes in sample size are very small. 
This elbow tends to occur at p:m ratios between 
seven and ten. For a fixed p:m ratio, the 
minimum sample size tends to increase as the 
number of factors increases. These relations 
mimic those reported by Mundfrom, et al. 
(2005) for continuous data, but with more 
extreme patterns. 

Among the three dichotomization 
conditions, the 50/50 distribution generally 
requires the lowest sample size. No 
generalizations are evident as to which of the 
80/20 and mix conditions require a lower sample 
size. The disparity between continuous and 
binary conditions is smallest for the most well-
defined factor structures, especially those with 
high p:m ratios. Differences among the binary 
distribution conditions tend to be small relative 
to their differences from the continuous data 
requirements. 
 

Conclusion 
One purpose of this study was to provide sample 
size recommendations to be used by researchers 
planning studies involving factor analysis of 
dichotomous data; these are provided in Tables 
1, 2 and 3. Although the requirements for 
analyzing binary data are uniformly higher than 
those for continuous data across varied aspects 
of factor model design, they are still reasonable 
for well-defined factor models. A sample size of 
100, which Gorsuch (1983) called the absolute 
minimum and Comrey and Lee (1992) labeled as 

poor, is enough to achieve a good level of 
agreement for models having one or two factors, 
as well as for three-factor models with at least 
24 variables when communalities are high and 
variables have a symmetric distribution. When 
the p:m ratio is high, a sample size of 300 results 
in good agreement for many models in the wide 
communality condition and all three examined 
variable distribution conditions. This sample 
size is also enough to achieve excellent loading 
agreement for small models (one or two factors) 
when variables have high communalities. 

The necessary sample size to achieve 
good agreement between sample and population 
loadings is grossly inflated for poorly-defined 
factor models. When communalities are all in 
the low range, sample sizes in the thousands are 
necessary for most of the examined conditions. 
The same is true for most models having four or 
more factors and p:m ratios of five or lower. 

Another goal of this study was to 
investigate how dichotomization affects the 
necessary sample size for EFA. Cohen (1983) 
showed that when two continuous variables with 
a joint correlation of r are dichotomized at their 
means, the correlation between the resulting 
variables is attenuated to a value of .637r. One 
effect of the reduced correlations is that the 
communalities estimates are concordantly 
reduced. As described by Schiel and Shaw 
(1992), 36% of the information is lost when a 
perfectly reliable continuous variable is 
dichotomized at the mean. Hence, the 
communalities are deterministically reduced and 
additional error is present in the correlation 
estimates themselves. 

MacCallum, et al. (1999) illustrated the 
role that sampling error has in the formula for 
the sample factor model. In the presence of 
sampling error the unique factors will neither 
have zero correlations with each other nor with 
the common factors. The terms that are affected 
by this error are weighted by the size of the 
unique factor loadings, which are inversely 
related to communalities. 

In summary, dichotomization results in 
increased sampling error in correlation estimates 
and attenuated correlation coefficients, which in 
turn results in decreased communalities. The 
latter outcome produces larger unique variances 
which places more weight on the lack of fit 
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terms in the sample factor model. Thus, there is 
more sampling error and more weight placed on 
its detrimental effects. 

Dichotomization has the greatest 
deleterious impact on necessary sample size 
when communalities are low, the ratio of 
variables to factors is low or the number of 
factors is high. The direct and interaction effects 
of communality follow directly from the 
previous argument. The other two characteristics 
affect the overdetermination of common factors. 
Although the variable-to-factor ratio is not the 
sole basis of overdetermination, it is an 
important aspect of it. Many authors have 
suggested the importance of having a high p:m 
ratio (Comrey & Lee, 1992; Tucker, Koopman, 
and Linn, 1969). 

Mundfrom, et al. (2005) demonstrated 
that the p:m ratio both has a strong direct 
relationship with sample size for a fixed m as 
well as a moderating effect on the relationships 
between sample size, communality, and the 
number of factors. Moreover, the results of the 
present study show that the ratio also moderates 
the effects of dichotomization and variable 
distribution. At high p:m ratios, the sample size 
requirements between the 50/50, 80/20, and mix 
distributions are fairly similar and in some cases 
(high communalities, one or two factors) are not 
that discrepant from those for continuous data. 
On the contrary, when the ratio is low and the 
common factors have a low degree of 
overdetermination, then other changes to the 
factor model have dramatic consequences on the 
necessary sample size. 

Unless extremely large samples are 
tenable, some general strategies are 
recommended when binary data will be factor 
analyzed. Using variables with high 
communalities substantially reduces sample size 
requirements. However, this aspect of the study 
may be the most difficult to control in practice, 
especially in survey development. A more 
manageable design aspect is the p:m ratio. 
Having at least eight variables per factor is 
advised, and a ratio of ten or more should be 
preferred. This practical step may ameliorate 
unexpected problems of skewed variables and 
occasional low communalities. 

Results of this study provide direct 
guidelines to applied researchers who are 

selecting a sample size for research that will 
involve exploratory factor analysis of 
dichotomous data. It is also intended for these 
results to serve as conservative guidelines for 
research involving ordinal data. Although the 
use of dichotomous measures does necessitate 
larger samples, if many high-quality indicators 
are used to measure a small number of factors, 
then applied researchers can be confident that a 
small to moderate sample size will be adequate 
to produce a reliable factor solution. 
 

References 
Baños, J. H., & Franklin, L. M. (2002). 

Factor structure of the mini-mental state 
examination in adult psychiatric inpatients. 
Psychological Assessment, 14(4), 397-400. 

Bartholomew, D. J., & Knott, M. 
(1999). Latent Variable Models and Factor 
Analysis. London: Arnold.  

Bock, R. & Aitkin, M. (1981). Marginal 
maximum likelihood estimation of item 
parameters: Application of an EM algorithm. 
Psychometrika, 46, 443-459. 

Browne, M. (1968). A comparison of 
factor analytic techniques. Psychometrika, 33, 
267-334. 

Cattell, R. (1978). The Scientific Use Of 
Factor Analysis. New York: Plenum. 

Cohen, J. (1983). The cost of 
dichotomization. Applied Psychological 
Measurement, 7(3), 249-253.  

Comrey, A., & Lee, H. (1992). A first 
course in factor analysis. Hillsdale, NJ: 
Erlbaum. 

Darlington, R. (1997). Factor Analysis. 
Retrieved June 2, 2008, from http:// 
www.psych.cornell.edu/darlington/factor.htm. 

Everitt, B. (1975). Multivariate analysis: 
The need for data, and other problems. British 
Journal of Psychiatry, 126, 237-240. 

Gorsuch, R. L. (1983). Factor Analysis 
(2nd Ed.). Hillsdale, NJ: Erlbaum. 

Gorsuch, R. L. (1997). Exploratory 
factor analysis: its role in item analysis. Journal 
of Personality Assessment, 68(3), 532-560. 

Hip, J., & Bollen, K. (2006). Model Fit 
in Structural Equation Models with Censored, 
Ordinal, and Dichotomous Variables: Testing 
Vanishing Tetrads. Sociological Methodology, 
33, 267-305. 



DICHOTOMOUS FACTOR ANALYSIS 

368 
 

Johnson, R., & Wichern, D. (2002). 
Applied Multivariate Statistical Analysis (5th 
Ed.). Upper Saddle River, NJ: Prentice Hall. 

Kline, P. (1994). An Easy Guide To 
Factor Analysis. New York: Routledge. 

Lee, S., & Song, X. (2003). Bayesian 
analysis of structural equation models with 
dichotomous variables. Statistics in Medicine, 
22(19), 3073-3088.  

MacCallum, R., Widaman, K., Zhang, 
S., & Hong, S. (1999). Sample size in factor 
analysis. Psychological Methods, 4(1), 84-99. 

Mulaik, S. (1989). Blurring the 
distinctions between component analysis and 
common factor analysis. Multivariate 
Behavioral Research, 25(1), 53-59. 

Mundfrom, D., Bradley, R., & 
Whiteside, L. (1993). A factor analytic study of 
the infant/toddler and early childhood versions 
of the HOME Inventory. Educational and 
Psychological Measurement, 53, 479-489. 

Mundfrom, D., Shaw, D., & Ke, T. 
(2005). Minimum sample size recommendations 
for conducting factor analyses. International 
Journal of Testing, 5(2), 159-168. 

Muthén, B. (1978). Contributions to 
factor analysis of dichotomous variables. 
Psychometrika, 43, 551-560. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nunnally, J. (1978). Psychometric 
Theory (2nd Ed.). New York : McGraw-Hill. 

Parry, C., & McArdle, J. (1991). An 
applied comparison of methods for least-squares 
factor analysis of dichotomous variables. 
Applied Psychological Measurement, 15(1), 35-
46. 

Schiel, J., & Shaw, D. (1992). 
Information retention as a function of the 
number of intervals and the reliability of 
continuous variables. Applied Measurement in 
Education, 5(3), 213-223. 

Schoenberg, R., & Arminger, G. (1989). 
Latent variable models of dichotomous data. 
Multivariate Behavioral Research, 18(1), 164-
182. 

Tomás-Sábado, J., & Gómez-Benito, J. 
(2005). Construction and Validation of the 
Death Anxiety Inventory (DAI). European 
Journal of Psychological Assessment, 21(2), 
108-114.  

Tucker, R., Koopman, R., & Linn, R. 
(1969). Evaluation of factor analytic research 
procedures by means of simulated correlation 
matrices. Psychometrika, 34(4), 421-459. 

Weng, L., & Cheng, C. (2005). Parallel 
analysis with unidimensional binary data. 
Educational and Psychological Measurement, 
65(5), 697-716. 



Journal of Modern Applied Statistical Methods   Copyright © 2010 JMASM, Inc. 
November 2010, Vol. 9, No. 2, 369-378                                                                                                                   1538 – 9472/10/$95.00 

369 
 

Generalized Variances Ratio Test for Comparing k Covariance Matrices from 
Dependent Normal Populations 

 
Marcelo Angelo Cirillo Daniel Furtado Ferreira Thelma Sáfadi 

Federal University of Lavras, 
Lavras Brazil 

Eric Batista Ferreira 
Federal University of Alfenas, 

Brazil 
 

 
New tests based on the ratio of generalized variances are presented to compare covariance matrices from 
dependent normal populations. Monte Carlo simulation concluded that the tests considered controlled the 
Type I error, providing empirical probabilities that were consistent with the nominal level stipulated. 
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Introduction 
Most statistical techniques assume that samples 
must be independent; however, practical 
situations where the samples come from 
dependent populations cannot be ignored. For 
example, a typical situation is a bioequivalence 
assay, the objective of which is to verify if a new 
drug presents effectiveness similar to a brand-
name drug. Thus, both drugs are applied to the 
same sample units, which are classified in two 
distinct groups and differentiated by the 
receiving order. The responses of such 
experiments are correlated and associated to a 
specific correlation structure. 

A naturally appearing hypothesis in this 
type of experiment regards the equality of 
covariance matrices between a new drug and a 
brand-name   drug  (Wang,  et  al.,   1999).   The 
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Bartlett test mentioned by O’Brien (1992) could 
not be used in this case, because its construction 
assumes independence of the samples. Due to 
the restriction of the current tests, the main goal 
of this study is to propose multivariate tests to 
verify the equality of covariance matrices 
considering dependence among multivariate 
observations along populations. 

Another motivation justifying the need 
for a general test for the equality of covariance 
matrices of correlated data in time or space are 
the suppositions of analysis of variance and the 
Hotelling T2 test. It is required that the data 
submitted to multivariate analysis of variance 
have p-variate normal residues, with null mean 
vector and constant covariance matrices. To 
check the assumption of constant covariances 
for k populations or treatments, a more general 
test is required. As noted, such tests do not exist 
or have limited properties for dependence 
structure situations. 

Finney (1938) studied this problem 
considering the univariate case (p = 1) and two 
populations (k = 2) under a known correlation 
coefficient between the same variable in both 
populations. Pitman (1939) and Morgan (1939) 
proposed a likelihood ratio test for the case of k 
= 2 populations, however with an unknown 
correlation matrix. Since that time, many authors 
have explored these results, all have considered 
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only the univariate case (p = 1), although with 
different numbers of populations. 

Roy and Potthoff (1958) concentrated 
on the bidimensional case, that is, k = 2 and p ≥ 
2 variables. However, they did not succeed in 
test construction. Jiang, et al. (1999) evidenced 
that the test considered by Roy and Potthoff 
(1958) presented deficiencies in the imposed 
presuppositions. Smith and Kshirsagar (1985) 
presented a likelihood ratio test to compare 
covariance matrices, coming from two 
dependent normal populations. However, the 
authors had not obtained the analytical 
expression of the maximum likelihood estimator 
under the null hypothesis. Due to some 
numerical problems in the maximization of the 
likelihood functions, the authors surrounded the 
problem using initial values such that the 
estimate of the covariance matrix was positive 
definite. 

In a more general situation, represented 
by a number of populations k ≥ 2 and by a 
number of variables p ≥ 2, Krishnaiah (1975) 
considered a test to compare two or more 
covariance matrices coming from dependent 
normal populations. This test was formalized 
under the assumption that the diagonals of the 
covariance matrices were equal; however, the 
main criticism to this test was that any 
restriction or assumption was made for the 
dependence structure between those matrices. 

Jiang, et al. (1999) used Monte Carlo 
simulation to evaluate some tests based on a 
likelihood ratio used in the comparison of 
covariance matrices of dependent normal 
populations. The differentiation between each 
test was made under different corrections in the 
degrees of freedom as proposed by several 
authors. It was such that - for each correction - 
new statistics had arisen. Results were restricted 
to the bidimensional case, and the extension of 
these tests for p dimensions became 
impracticable in the face of the numerical 
problem in the likelihood maximization. 
Because finding a general test based upon the 
likelihood ratio to compare k dependent 
population covariances is a difficult task, the 
bootstrap method can be used (Manly, 1997). 
Bootstrapping is typically used to round 
problems for which an analytical solution is not 
straightforward. Due to the dependency between 

populations, Hall, et al., (1995) recommend the 
use of implicit resample in bootstrap, which 
must be done in blocks. This article proposes 
multivariate tests for comparing covariance 
matrices from k dependent multivariate normal 
populations, as well as studying their power and 
type I error probability. 
 

Methodology 
The multivariate tests considered in this article 
have been constructed considering the 
multivariate observation represented by the 
vector of random variables , where each 

component  is composed of p-

dimensional vectors of random variables 

, j = 1..., k, where k refers to 

the total number of populations and p to the 
number of variables. The vector  is then a pk-
dimensional random variable from a multivariate 

normal distribution, , whose 

parameters are defined as: 
 

                            (1a) 
and 

                  (1b) 
 
The off diagonal elements indicate non-null 
covariances between populations because 
independence was not assumed. Each element in 
the diagonal of Σ represents the covariance 
matrix of the jth population. The hypothesis of 
interest is: H0: Σ11 = Σ22 = ... = Σkk versus H1: At 
least one covariance matrix Σjj differs from the 
others. 

Statistics of the proposed tests were 
specified by the function of the ratio of 
generalized variances, as follows: 
 
 

X
t t

1 kX ,..., X
 

t
j j1 jpX (X ,...,X )=


X


( )pkN ,μ Σ


1

2

pk 1

k

×

μ 
 
μ μ =  
 
 μ 








11 1k

pk pk

k1 kk

×

Σ Σ 
 Σ =  
 Σ Σ 


  





CIRILLO, FERREIRA, SÁFADI & FERREIRA 
 

371 
 

( )
( )
( )
( )

jj
j

1(b)
jj

j

jj
j

2(b)
jj

j

max S
λ ;

min S

max Trace S
λ

min Trace S

=

  
=

  

             (2) 

 
where Sjj are estimators of the sum of squares 
and products matrices. Each test was 
differentiated by the criterion used in the 
composition of the ratio, namely determinant or 
trace. Estimators of the sum of squares and 
products matrices of the jth population (j=1, 2, ..., 
k) were only considered after the imposition of 
H0 through the bootstrap method (Figure 1). 

After defining the test statistics, the 
multivariate samples considering equicorrelation 
structure were generated in order to evaluate the 
performance of the new tests. Thus, specifying 
the matrix Σ, proceeded as follows. A global 
(population) correlation matrix Rb, where each 
block element in the diagonal represents a 
correlation structure referring to the jth 
population (the area delimited by hatched lines) 
is given by: 
 

=
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The global covariance matrix is obtained 
from the following relation: 
 

1 1
2 2*

bΣ = V R V ,                   (4) 

 

where 
1
2V  is a diagonal matrix of the population 

standard deviations which are all equal to 1, 
without loss of generality. 

After defining, samples were generated 
using the Monte Carlo method; an algorithm was 
developed using R software version 2.6.2 
assuming multivariate normal distribution 

. The algorithm first evaluated the 

Type I error rates of the related tests when 
applied to samples simulated under the null 
hypothesis H0. Power was not measured at this 
stage because all diagonal block elements of Σ* 
were considered equal. 

Power rates were evaluated for those 
tests applied to samples simulated under the 
alternative hypothesis. The global population 
covariance matrix should be defined in such a 
way that each population matrix (diagonal 
blocks) would have to obey the heterogeneity 
settled in an intended value δ. In both situations, 
under null and alternative hypotheses, those 
matrices were evaluated in situations of low and 
high correlation, originated from structures 
represented by parametric values ρ fixed in 0.2 
and 0.8. 

Under H1, the gΣ  matrix was defined 

as: 
1 1
2 2

g bΣ = V R V                      (5) 

where 
 
V =

diag  
    2p 2p 2p 2p 2p

2 2 2 k k11...1 d d d ... d ... d
  (6) 

 
Each block (6) was p-dimensional and 
 

p
j

(j -1)× (δ -1)
d = 1+

k -1
                  (7) 

 
for j = 1, 2, …, k, and δ = 2, 4, 8, 16. 

After defining the covariance matrix 
parameters * (δ=1) and g (δ>1), multivariate 
sample observations used in the evaluation of 
the considered tests were simulated. The N 
vector set generated formed the matrix of sample 
data: 

*
pkN (0, )Σ
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t

1

t

N

X

X=

X

 
 
 
  






,                          (8) 

 
where X

 l  is a pk×1 vector and N is the sample 

size. 
The construction the matrix was carried 

through using the vector of observations coming 
from the joint distribution of the k populations, 
generated according to the multivariate normal 
distribution, 
 

X =FZ +μ    
 (ℓ = 1, 2, ..., N), 

 
where F is the Cholesky factor (Bock, 1975) of 

the population covariance matrix gΣ  or *Σ ; and 

Z
 is a kp × 1 vector of independent standard 

normal variables, generated by the inversion of 
the distribution function of the standard 
univariate normal in a random point U, 
U~U[0,1]. 

After obtaining the multivariate normal 
samples, the vector of sample means of kp 
variables was estimated by 

( )tt t t
1 2 kX X , X , , X= 

   
, where (j = 1, ..., k). The 

deviations of the vector of means were then 
computed in order to allow no influence of 
possible different averages between the k 
populations on the estimators of the covariance 
matrices. Thus, the inference was made 
considering the matrix of deviations Xd, defined 
as: 

t
dX X 1X= −

 
,                      (9) 

 
where 1


 is a vector N×1. The sum of squares 

and products matrix was estimated by 
 

( )t

d dS X QX= ,                 (10) 

 
where the projection matrix is given by 
 

                      (11) 

where 1


 is a vector of 1’s (N × 1) and I (N × N) 
is an identity matrix. 

Given the random sample Xd, 1,000 
resamples were drawn. In each resample a new 
bootstrap sample Xdb, was obtained, of which 
the matrix of sum of squares and products was 

estimated and named *
bS , (b = 1, ..., 1,000). The 

elements of the diagonal blocks  *
b( jj)Ŝ  (j = 1, 2, 

..., k) of dimensionality (p × p) represent the 
estimators of the population sum of squares and 
products matrices, used to determine the 
statistics based on the generalized variances 
ratio. In each resample, values λ1(b) and λ2(b) 
were computed and compared with λ1 and λ2, 
obtained in the original sample of the Monte 
Carlo simulation. The critical region for the 
considered tests was constructed on the 
empirical distribution of the values of the 
statistics λ1(b) and λ2(b). 

The critical stage of this procedure was 
setting the null hypothesis of equality of the 
population covariance matrices, surrounding all 
restrictions of the numerical methods of 
likelihood function maximization. The bootstrap 
method (Figure 1) considers as randomization 
unit the multivariate sample unit (SU) of each 
population considering p variables, thus 
characterizing H0, which was set considering the 
dependence between the variables of all k-
populations. 

For each situation designed by the 
combination of the number of variables (p = 2, 
3, 8), number of populations (k = 2, 8, 12), 
sample size (N = 20, 50, 100) and nominal 
values 1% and 5%, the empirical probabilities 
were computing by the times that the values of 
the statistics λ1(b) and λ2(b) were greater than or 
equal to the values λ1 e λ2 respectively. These 
values were obtained in the original sample in 
relation to the total number of bootstrap. The 
empirical type I error rates and power had been 
computed considering the proportion of times 
that H0 was rejected by the nominal levels of 1% 
and considered 5% under H0 and H1, 
respectively. 
 
 
 
 

t11
Q = I - ,

n
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Results 
Probabilities of Type I Error 

Using a 95% confidence interval for the 
adopted nominal level, it can be inferred that the 
test was conservative if the value of the 
probability was less than the inferior limit. 
However, probability values contained between 
the interval limits demonstrated that the tests had 
provided effective control of type I error rates, 
that is, they have exact size. Table 2 contains the 
empirical Type I error rates, where was used the 
generalized variances obtained from the ratio of 
determinants. 

Results in Table 2 show that the test 
based on the ratio of determinants submitted to 
low covariances (ρ = 0.20) controlled the Type I 
error with probabilities equal to or less than the 
nominal level set at 5% in almost all the 
evaluated situations. The exception occurred 
when the test was submitted to a high number of 
populations and had a small sample (N = 20). 
Increasing the value of the global correlation for  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ρ = 0.80 implied greater averages in the 
covariances and it was verified that the test was 
conservative in general. Results in Table 3 show 
the probabilities of the test considering the ratio 
of total variances (trace) evaluated with the same 
situations as that of the previous test. 

In general, when using the ratio of total 
variances statistic, conservative results were 
obtained for those samples submitted with low 
global correlation (ρ = 0.20). In the high 
correlation cases (ρ = 0.80), the results of the 
test remain conservative, despite using 
determinant or trace. 

Comparing the results of the generalized 
variances ratio tests presented in this article with 
the likelihood ratio tests considered by Bartlett 
(1937), Box (1949) and Krishnaiah (1975), it 
can be affirmed that the likelihood ratio tests are 
not adequate to compare dependent multivariate 
populations. Such affirmation is based on the 
fact that these tests have been compared with 
results presented by Jiang, et al. (1999) who  

Figure 1: Bootstrap Process Used to Estimate the Matrices of Sum of Squares and 
Products Coming from Dependent Multivariate Normal Populations 
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used Monte Carlo simulations to verify that, in 
general, the likelihood ratio tests did not control 
type I error when N = 10, 15, 20, 25, 50, 75 and 
100 under several correlation structures. 
However, asymptotic tests considered by the 
authors did control type I error for samples 
greater than 50 (N > 50) with probabilities close 
to the nominal level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the tests evaluated herein, it was 
observed that, for samples sizes smaller than 50 
(N < 50), the tests were conservative under 
correlation ρ = 0.80. It is noteworthy that results 
obtained by other authors were related to 
bivariate populations only. This limitation was 
due to the maximization of the likelihood 
functions problem. Thus, for larger numbers of 

Table 2: Type I Error Rates for the Situations of Low and High Correlation, 
Evaluated In the Combinations of Number of Populations (k), Number of 

Variables (p) Considering the Test Defined by the Determinant Ratio 
 

 k = 2 k = 8 k = 12 

 p = 2 p = 3 p = 8 p = 2 p = 3 p = 8 

N ρ = 0.20 

20 0.039 0.04 0.029* 0.045 0.016* 0.036* 

50 0.045 0.040 0.038 0.039 0.043 0.037 

100 0.037 0.039 0.047 0.046 0.050 0.048 

N ρ = 0.80 

20 0.016* 0.015* 0.011* 0.011* 0.014* 0.018* 

50 0.006* 0.014* 0.004* 0.005* 0.036* 0.039 

100 0.004* 0.020* 0.006* 0.006* 0.052 0.036* 
*empirical probabilities under the lower limit of the 95% confidence interval 
(0.037; 0.065) 
 

 
Table 3: Type I Error Rates for the Situations of Low and High Correlation 
Evaluated In the Combinations of Number of Populations (k), Number of 

Variables (p) Considering the Test Defined By the Ratio of Traces 
 

 k = 2 k = 8 k = 12 

 p = 2 p = 3 p = 8 p = 2 p = 3 p = 8 

N ρ = 0.20 

20 0.042 0.044 0.032* 0.037* 0.031* 0.035* 

50 0.039 0.035* 0.032* 0.046* 0.030 0.031* 

100 0.040 0.036* 0.031* 0.037 0.034* 0.043 

N ρ = 0.80 

20 0.000* 0.000* 0.000* 0.001* 0.006* 0.001* 

50 0.000* 0.000* 0.000* 0.001* 0.000* 0.001* 

100 0.000* 0.000* 0.000* 0.001* 0.002* 0.000* 
*empirical probabilities under the lower limit of the 95% confidence interval 
(0.037; 0.065) 
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populations and variables no results exist in the 
literature, regarding means of the likelihood 
theory that could be compared with the results of 
this present work. Results shown in Table 4 
were obtained under the same configurations 
previously evaluated, but with the nominal level 
set to 1%. However, k = 8 populations on p = 12 
variables were evaluated in particular, because 
this represents an extreme case and because 
cases considering k > 2 could not be found in the 
literature. 

Similarly, by estimating a 95% 
confidence interval for this nominal level it can 
be verified whether or not the test was 
conservative. It was observed that the results for 
a 1% level of significance had the same pattern 
as results at the 5% level. Due to the similarity 
in results of the type I error rates, it is expected 
that the power function would be similar and 
coherent for both nominal levels 1% and 5%. It 
is worth noting that this similarity to the pattern 
of type I error rates between 1% and 5% also 
was observed in other configurations evaluated 
in k variables and p populations, thus, not all 
results are shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Power of the Multivariate Tests for Comparing 
Covariance Matrices of k Dependent Normal 
Populations 

Power results corresponded to the 
empirical probabilities, which were obtained 
under the same configurations evaluated in the 
control of type I error rate discussed previously 
using the bootstrap method (see Figure 1). 
Results shown in Table 5 consider low global 
correlation (ρ = 0.20). 

Analyzing the results in Table 5, it is 
observed that by increasing the degree of 
heterogeneity (δ) in all evaluated situations the 
power of the test suffers incrementally. 
However, for sample sizes N = 50 and greater, 
cases of δ = 8 were similar to situations where δ 
= 16. This suggests that - for any degree of 
heterogeneity (δ > 8) between covariance 
matrices - the considered test was powerful 
when the population covariances had relatively 
low correlation. 

An interesting result can be observed in 
power evaluation as the number of populations 
(k) rises. The power of the test presents few 
oscillations under a degree of heterogeneity (δ)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Probabilities of Type I Error Considering the Generalized Variance Given 
By the Ratio of Determinants and the Ratio of Traces In the Two Evaluated Global 

Correlations with Nominal Significance Level 1%, k = 8 and p = 12 
 

 Ratio of Determinants 

N ρ = 0.20 ρ = 0.80 

20 0.0116 0.0033* 

50 0.0050 0.0066 

100 0.0150 0.0133 

 Ratio of Traces 

N ρ = 0.20 ρ = 0.80 

20 0.0100 0.0000* 

50 0.0016* 0.0000* 

100 0.0083 0.0000* 
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greater than 8 and sample sizes greater than 50, 
but does not hold for the case where a high 
number of variables are considered (p = 12). 
Regarding performance, when the number of 
variables (p) increases for a settled number of 
populations (k) and when bivariate populations 
(k = 2) are considered, the test becomes more 
sensitive, thus decreasing its power. Under low 
heterogeneity (δ), the test showed discrepant 
results for small samples (N = 20). Clearly, for a 
great number of variables (p = 8), the reduction 
of power was even more drastic. With respect to 
k = 8 populations, the number of variables 
caused less reduction of power, considering a 
maximum degree of heterogeneity of this study 
(δ = 16). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regarding the effect of increasing the 
sample size (N), the power for cases with small 
samples was small, what agrees with empirical  
Type I error rate probabilities (Table 2). In such 
situations the test was revealed to be 
conservative. Note such deficiency of power, 
caused by the conservative property of the test 
(Table 2), does not invalidate it. Tests 
comparing k dependent population covariance 
matrices for many populations do not exist in the 
literature. Results shown in Table 6 emphasize 
the performance of the generalized variances test 
as represented by the determinants ratio under a 
global correlation (ρ = 0.8) and considering the 
same situations evaluated previously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Power Empirical Values for the Bootstrap Generalized Likelihood Ratio 
Test for Different Sample Sizes (n), Numbers of Populations (k), Variables (p), 

Degrees of Heterogeneity (δ) Under Low Global Correlation (ρ = 0.20) 
 

 k = 2 k = 2 k = 2 k = 8 k = 8 k = 8 
N p = 2 p = 3 p = 8 p = 2 p = 3 p = 12 

δ = 2 

20 0.150 0.080 0.050 0.090 0.090 0.070 

50 0.370 0.230 0.220 0.200 0.180 0.080 

100 0.610 0.650 0.470 0.430 0.270 0.120 

δ = 4 

20 0.490 0.320 0.120 0.300 0.180 0.100 

50 0.900 0.790 0.820 0.820 0.550 0.190 

100 0.970 0.980 0.950 0.980 0.930 0.520 

δ = 8 

20 0.810 0.600 0.150 0.710 0.430 0.090 

50 0.970 1.000 0.950 0.980 0.910 0.470 

100 0.980 1.000 0.950 0.980 1.000 0.900 

δ = 16 

20 0.95 0.890 0.220 0.950 0.760 0.180 

50 0.98 1.000 0.950 0.980 1.000 0.730 

100 0.980 1.000 0.950 0.980 1.000 0.990 
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Comparing results in Tables 5 and 6, 
observe that an increment of the degree of 
heterogeneity (δ) yields an increment of the 
power values. However, this increment was 
small, since for N = 20,50 and degree of 
heterogeneity δ = 4, the test remains not so 
powerful. 

In a general manner, the number of 
populations (k) is related to a reduction of 
power, retaining the same highlighted properties 
of when the population covariance matrices 
presented, in average, low correlation (Table 5). 
However, in comparison to results shown in 
Table 6, it is suggested that increasing the global 
correlation yields an even greater reduction in 
power. Therefore, it may be concluded that 
increasing the number of populations (k) where 
population covariances present high correlations 
results in a great loss of power. In turn, when the 
number of variables (p) is increased with a set 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
number of populations (k), the test retained the 
same properties. The increment of the global 
correlation from ρ = 0.20 for ρ = 0.80 also did 
not affect the power of the test when the number 
of variables (p) was increased for a set number 
of populations (k). 

Regarding the sample size, results 
shown in Table 6 agree with previous results. It 
is advisable to use the considered test to deal 
with small samples when comparing bivariate 
populations (k = 2) with a degree of 
heterogeneity greater than 8. Such a test can be 
used for other cases; however, exploratory 
studies of the populations must be done. 
 

Conclusion 
Generalized variances tests controlled type I 
error according to a set nominal level. Tests 
based on the ratio of traces, in general, provided 
more conservative results. The simulation results 
clearly demonstrated that the procedure based on 
the determinant could more effectively control 

Table 6: Power Values for the Bootstrap Generalized Likelihood Ratio Test for 
Different Sample Sizes (n), Numbers of Populations (k), Variables (p), Degrees of 

Heterogeneity (δ) Under Low Global Correlation (ρ = 0.80) 
 

 k = 2 k = 2 k = 2 k = 8 k = 8 k = 8 
N p = 2 p = 3 p = 8 p = 2 p = 3 p = 12 

δ = 2 

20 0.110 0.080 0.030 0.020 0.020 0.050 

50 0.380 0.230 0.100 0.180 0.030 0.060 

100 0.730 0.590 0.330 0.410 0.110 0.100 

δ = 4 

20 0.500 0.370 0.070 0.170 0.040 0.070 

50 0.930 0.780 0.720 0.760 0.200 0.220 

100 0.980 0.950 0.700 0.990 0.500 0.580 

δ = 8 

20 0.890 0.600 0.090 0.580 0.090 0.110 

50 0.990 0.980 0.950 0.960 0.450 0.480 

100 0.990 0.980 0.980 1.000 0.900 0.930 

δ = 16 

20 1.000 0.870 0.210 0.920 0.180 0.200 

50 1.000 1.000 0.950 1.000 0.800 0.840 

100 1.000 1.000 0.980 1.000 0.980 0.990 
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the type I error rate to α, particularly when the 
off-diagonal elements of Rj, the correlation 
matrix corresponding to Σj, are small. Power of 
the generalized variances tests was reduced by 
increasing the number of variables and 
populations in both global correlations 
evaluated. 
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A primary objective of a phase II trial is to determine future development is warranted for a new 
treatment based on whether it has sufficient activity against a specified type of tumor. Limitations exist in 
the commonly-used hypothesis setting and the standard test procedure for a phase II trial. This study 
reformats the hypothesis setting to mirror the clinical decision process in practice. Under the proposed 
hypothesis setting, the critical points and the minimum required sample size for a desired power of 
finding a superior treatment at a given α -level are presented. An example is provided to illustrate how 
the power of finding a superior treatment by accounting for a secondary endpoint may be improved 
without inflating the given Type I error. 
 
Key words: Phase II trial, Type I error, power, union-intersection test, sample size, equivalence. 
 
 

Introduction 
One of the primary objectives in a phase II trial 
for a new anti-cancer treatment is to make a 
preliminary determination on whether the 
treatment has sufficient activity or benefits 
against a specified type of tumor to warrant its 
further development. Based on subjective 
knowledge, researchers commonly choose two 
response rates in advance p0  and p1  (where 

0 10 1< < <p p ) for the uninteresting and 
desirable levels, respectively. Test hypotheses: 
H p p0 0: ≤  versus H p pa : ≥ 1  (Simon, 1989; 
Lin, Allred & Andrews, 2008; Lu, Jin & 
Lamborn, 2005) are considered using p1  to 
determine the minimum required sample size for 
a desired power 1− β  of rejecting H p p0 0: ≤  

at a nominal α -level when p p= 1 . This 
hypothesis setting can cause clinicians to 
misinterpret their findings that rejecting the null 
hypothesis H p p0 0: ≤  is equivalent to 
supporting the alternative hypothesis 
H p pa : ≥ 1  and vice versa (Storer, 1992). 
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Despite employing a large sample size 

to meet a desired power, the probability of 
excluding a potentially interesting treatment 
from further consideration can still be large. To 
illustrate the above points, for example, consider 
testing H p0 0 30: .≤  versus H pa : .≥ 050  at 
the 0.05 level. When using the common sample 
size calculation formula for a desired 90% 
power of rejecting H p0 0 30: .≤  for p = 0.50 at 
the 0.05-level, the minimum required sample 
size is determined to be 49 patients. 

Suppose that ( x = ) 20 patients respond 
among these ( n = ) 49 patients (i.e., the sample 
proportion response p = 20/49 = 0.408). Using 

these data, the p-value for testing H p0 0 30: .≤  
is 0.049 (on the basis of normal approximation) 
and thereby, H0  is rejected at the 0.05 level. 

Note that because p = 20/49 (= 0.41) is less 
than 0.50, there is no evidence that the 
underlying response rate p is larger than 0.50. 
Conversely, there is statistically significant 
evidence, given p = 20/49, to indicate that the 
underlying response rate p is less than the 
desirable level 0.50 at the 10% level for testing  
 

H p0 050: .≥  
versus 

H pa : .< 050 . 
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Furthermore, when a treatment has the response 
rate p = 0.35 (which is larger than the 
uninteresting level p = 0.30) and is of potential 
interest, it can be shown that the probability of 
terminating this treatment for further 
consideration by not rejecting H p0 0 30: .≤  is 
approximately 80%.  

The above concerns and criticisms are 
partially due to the fact that the complement of 
{ | }p p p≤ 0 is not the set { | }p p p≥ 1  and there 
is no explicit instruction about what should be 
done when the underlying response rate p  falls 

in the borderline region { | }p p p p0 1< < . This 
motivates the recent development of a design 
with three outcomes, including an outcome 
allowable to account for other factors, including 
toxicity, cost or convenience, when making a 
decision (Storer, 1992; Sargent, Chan & 
Goldberg, 2001; Hong & Wang, 2007). One 
intuitive and logical justification of this practice 
is that - if the response rate of a new treatment 
was not much different from that of the standard 
treatment - it would be reasonable to recommend 
the new treatment for further study if the new 
treatment was less toxic, cheaper and/or easier to 
administer.  

Treating both H p p p0 0:{ | }≤  and 

H p p pa :{ | }≥ 1  as two separate competing null 
hypotheses, Storer (1992) proposed a three-
outcome design to accommodate the situation in 
which one might reject neither H0  nor Ha  and 
he suggested sample size calculation based on 
P X r Hu( | )≥ ≤0 α , P X r Hl a( | )≤ ≤ β , and 

P( rejecting H pi m| )  ≤ γ  for i = 0, a , where 

ru  and rl  are minimum and the maximum 
critical points satisfying the above probability 
constrains and where p p pm ≈ +( ) /0 1 2 .  

On the basis of Simon’s setting (1989) 
and the normal approximation for the binomial 
distribution, Sargent, Chan & Goldberg (2001) 
proposed a three-outcome test procedure with an 
inconclusive region in which neither H0  nor 

Ha were rejected and they discussed sample size 

calculation for given errors of α  and β , and 
the minimum probabilities of concluding 
correctly. Hong & Wang (2007) further 
extended sample size calculation to 

accommodate a two-sample randomized 
comparative trial. In fact, the design suggested 
by Sargent, Chan & Goldberg (2001) can be 
expressed in terms of Storer’s setting (1989) by 
treating H0  and Ha  as two competing null 
hypotheses in the following:  

 
(1) testing H p p0 0: ≤  (versus p p> 0 ) at α -

level, and rejecting H0  when X ru≥  where

ru is the minimum point satisfying 

P X r p pu( | )≥ = ≤0 α ;  

(2) testing H p pa : ≥ 1  (versus p p< 1 ) at β -

level, and rejecting Ha  when X rl≤ , 

where rl  is the maximum point satisfying 

P X r p pl( | )≤ = ≤0 β .  
 
The inconclusive region then simply 
corresponds to the set of sample points 
{ }r X rl u< < . Based on the normal 
approximation, it can be shown that the 
inconclusive region consists of  
 

{X| np Z np p1 1 11− −β ( ) -0.5 

< X < 

0 0 01np Z np ( p )α+ − + 0.5}, 

 
where Zα is the upper 100(α )th percentile of the 

standard normal distribution. Note that this 
inconclusive region is a function of errors α , 

,β  and the sample size, which are all operating 
parameters of the statistical test procedure rather 
than the biological characteristics of patient 
response to treatments. Various choices of α , 
β , or the sample size can lead to obtain 
different inconclusive regions despite that the 
underlying p1  and p0  are fixed. This is not 
appealing because the inconclusive region 
should represent the values falling in the 
borderline between the uninteresting and 
desirable levels and should be related to the 
biological aspects. Furthermore, it is possible 
that both H p p0 0: ≤  and H p pa : ≥ 1  may be 
rejected in the design proposed by Sargent, Chan 
& Goldberg (2001); in this case, the above 
inconclusive region will no longer exist. This 
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can occur even when the sample size is 
moderate and both α  and β  errors are 
controlled.  

To clarify this point, consider the above 
example of testing H p0 0 30: .≤  versus 

H pa : .≥ 050 . Given ( x = ) 20 patients with 
response among ( n = ) 49 patients, 
H p0 0 30: .≤  can be rejected at α = 0.05 level 

and H pa : .≥ 050  would be rejected at β  = 

0.10 level. When choosing α = 0.05 and β = 

0.10, by definition ru  < rl  in this case and the 
inconclusive region does not exist. There is no 
discussion on what action to take when both 
H p p0 0: ≤  and H p pa : ≥ 1  are rejected in the 
three-outcome design as proposed previously 
(Storer, 1992; Sargent, et al., 2001; Hong & 
Wang, 2007). 

When determining in practice whether a 
new treatment warrants further study at the end 
of a phase II trial the decision is almost always 
based on multiple risk/benefit considerations 
rather than the testing result of a single primary 
endpoint, especially when no clear decision can 
be derived from the testing result. In other 
words, unless the response rate of the new 
treatment can be shown to be different from that 
of the standard treatment by a magnitude of 
clinical importance, relevant factors are 
incorporated into the determination of whether 
the new treatment should be studied further. 
Thus, it is desirable to design a test procedure 
that can mirror the clinical decision process in 
reality.  

To avoid distracting readers’ attention 
from the main focus of this article, discussion is 
restricted to a single-stage design. Under the 
proposed setting, the critical points and the 
minimum required sample size for a desired 
power of finding a superior treatment in a 
variety of situations are presented. Furthermore, 
using an idea suggested by Lin, Allred and 
Andrews (2008) and Lu, Jin and Lamborn 
(2005), an example is included to illustrate how 
the power of detecting a superior treatment may 
be improved by considering a secondary 
endpoint without inflating the given Type I 
error. Finally, another alternative procedure is 
considered and its difference, advantage, and 

disadvantage are noted and compared with the 
proposed procedure. 
 
Notation and Hypothesis Testing 

Consider a phase II trial in which a 
random sample of size n patients is taken from a 
studied population and assigned to receive a new 
treatment under study. Suppose that x out of n 
patients are obtained with objective (or primary) 
response. Let p0  denote the objective response 
rate determined from the historical data for the 
standard treatment. Let δ  denote the level of 
difference such that, if the objective response 
rate p is larger than p pu = +0 δ , the new 
treatment is regarded as superior to the standard 
treatment and hence is warranted for further 
study. 

Similarly, if the objective response rate 
p is less than p pl = −0 δ , the new treatment is 
regarded as inferior to the standard treatment 
and is terminated from further investigation. 
Recall that in the standard setting, statistical 
significance against H p p0 0: ≤  does not 
provide information on how large the difference 
p - p0  is between the new and standard 
treatments. By contrast, statistical significance 
evidence to support that p p> +0 δ  (i.e., the 
new treatment is larger than the standard 
treatment by a magnitude δ  of clinical 
significance) will provide better evidence. 
Conversely, when statistically significant 
evidence exists that the new treatment is inferior 
to the standard treatment (i.e., p p< −0 δ ), the 
new treatment may be excluded from further 
consideration for ethical reasons. This 
occurrence will not be known unless the data 
against the hypothesis p p≥ −0 δ  is examined. 
Thus, despite the fact that the main interest in a 
phase II trial is to find a potentially promising 
treatment, the critical region may also include 
the sample points to test the hypothesis 
p p≥ −0 δ . However, the calculation of sample 

size required for power of detecting a given 
p p( )< −0 δ  is of no practical interest. Defining 

p pl = −0 δ  and p pu = +0 δ , therefore, the 
hypotheses considered in testing are: 
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H p p pl u0: ≤ ≤  
versus                                                               (1) 

H p pa u: >  or p pl< . 
 
H p p pl u0: ≤ ≤  will be rejected at the α -level 

if x xu≥ ( )α1  or x xl≤ ( )α2 , where 

α α α= +1 2 , xu ( )α1  is the minimum point 
such that 
 

1

1

11
u

u u

n x n x
u ux x ( )

P( X x ( )| p )
n

p ( p ) ,
x

−
=

≥ =

 
− ≤ 

 
 α

α

α
     (2) 

 
and xl ( )α2  is the maximum point such that 
 

2

2

20
1l

l l

x ( ) x n x
l lx

P( X x ( )| p )
n

p ( p ) .
x

−
=

≤ =

 
− ≤ 

 
 α

α

α
        (3) 

 
Note that the hypothesis setting (1) is 

simply a switch between the null and alternative 
hypotheses when testing equivalence (Dunnett & 
Gent, 1997; Westlake, 1979; Liu & Weng, 1995; 
Liu & Chow, 1992; Hauck & Anderson, 1984; 
Lui, 1997a, 1997b; Lui & Cumberland, 2001a, 
2001b). Note also that the above test procedure 
for (1) is a union-intersection test (Casella & 
Berger, 1990). When making an error in 
recommending an ineffective or harmful 
treatment for phase III trial is considered more 
serious than making an error of missing a 
potentially interesting treatment, an investigator 
may wish to choose α α1 2≤ . 

For a given true value p ∈{p| p pu> }, 
the power is equal to 
 

1 2

2 1l u

( n, p, , , )
P( X x ( )| p ) P( X x ( )| p ).

=
≤ + ≥

Φ α α δ
α α

 

(4) 
Thus, given p, α1 , α2 , and δ , a trial-and-error 
procedure can be applied to determine the 
critical points: xl ( )α2  and xu ( )α1 , as well as 
the minimum required sample size n for a 
desired power 1− β  based on (4) such that 

1 2 1( n, p, , , )Φ α α δ β≥ − .            (5) 

 
Sample Size Determination and Critical Points 

Programs were written in SAS (1990) to 
find the minimum required sample size n 
satisfying equation (5). For illustration purposes, 
δ = 2.5% was arbitrarily chosen for the 
following discussion. Table 1 summarizes the 
critical points xu ( )α1 , xl ( )α2 , and the 
minimum required sample size n for 
α α1 2 010= = .  calculated from 

Φ( , , , )n p α α β1 2 1≥ −  (5) for a desired power 

1− =β 0.80, 0.90 in testing 
 

H p p pl u0: ≤ ≤  
versus 

H p pa u: >  or p pl< , 
 
where p pl = −0 δ , p pu = +0 δ , δ = 2.5%;

p0 = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75; and 

p p p= + +0 0015 0 20. , . .  
For example, consider testing 
 

H p0 0 325 0 375: . .≤ ≤  (i.e., p0 = 0.35) 
versus 

H pa : .> 0 375  or p < 0 325.  
 
at levels of α α1 2 010= = . . If the desired 

power for rejecting H0  when the underlying 
objective response rate p equals 0.50 is 80%, for 
example, based on equation (5), 77 patients 
would be required. Furthermore, Table 1 shows 

that if ( )1 35ux ( )α =  or more patients are 

obtained with an objective response out of the 
77 patients, then the new treatment would be 
recommended for further study.  

On the other hand, if 19 or less patients 
are obtained with objective responses, the new 
treatment would be terminated from further 
consideration. Finally, if the number of patients 
with objective responses falls between 20 and 
34, other factors would be considered to 
determine whether the experimental treatment 
warrants further study. Table 2 summarizes the 
corresponding critical points xl ( )α2 , xu ( )α1  
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and the minimum required sample size n for α1

= 0.05 and α2 =0.15 in the same configurations 
as those considered in Table 1. 
 

Discussion 
Multiple factors are almost always accounted for 
at the end of a phase II trial to determine 
whether a new treatment warrants further study 
unless there is a clear cut decision in the testing 
results. The test procedure proposed herein has 
the advantage of resembling the actual clinical 
decision process more closely than the standard 
test procedure. By contrast, in Simon’s setting, 
the determination of a new treatment for further 
study may completely depend on the testing 
result of a single primary point, but this may not 
be the case in practice. Furthermore, in the 
three-outcome design, the inconclusive region 
depends on the operating characteristics, such as 
errors α , β , and the sample size, of a test 
procedure. Thus, the inconclusive region can 
change or may not even exist for different given 
values of these parameters even when the 
underlying objective response rate is fixed. For 
this reason the inconclusive region is defined 
here in terms of biological equivalence. Based 
on the proposed hypothesis setting (1), it is 
possible to control both the errors of 
recommending a non-superior treatment and of 
terminating a non-inferior treatment to be less 
than a given error-level. 

When there is no statistical evidence 
against the hypothesis H p p pl u0: [ , ]∈  based 
on the primary endpoint, a reasonable and 
appealing action can be to consider a secondary 
endpoint to improve power. For example, in 
traditional phase II trials, the total response (TR) 
rate, the sum of the complete response (CR) rate 
and the partial response (PR) rate, is often used 
as the objective (or primary) response rate p. 
Because CR is generally rare for many tumors, 
even a small increase in the number of CRs can 
be important in evaluation of the efficacy of a 
treatment. Thus, clinicians will welcome a 
decision rule that accepts a new treatment for 
further study based on an improved CR rate 
even when the treatment does not achieve the 
desirable objective response rate of TR (Lin, 
Allred & Andrews, 2008; Lu, Jin & Lamborn, 
2005).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The critical points xl ( )α2 , xu ( )α1 and 
the minimum required sample size n calculated 
from Φ( , , , )n p α α β1 2 1≥ −  in equation (5) for 

a desired power 1− =β 0.80, 0.90 in testing 

H p p pl u0: ≤ ≤  versus H p pa u: >  or p pl<  

where p pl = −0 δ , p pu = +0 δ , δ = 2.5%; 

p0 = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75; 

p = p0 015+ . , p0 0 20+ . ; 1 0 10.α =  and α2 = 

0.10. 
 

p0 p n xl ( )α2  xu ( )α1  

1− =β 0.80 

0.15 
0.30 51 2 13 

0.35 31 1 9 

0.25 
0.40 68 10 24 

0.45 36 4 14 

0.35 
0.50 77 19 35 

0.55 41 9 20 

0.45 
0.60 77 26 43 

0.65 37 11 22 

0.55 
0.70 73 32 48 

0.75 36 14 25 

0.65 
0.80 59 31 45 

0.85 30 14 24 

0.75 
0.90 39 24 34 

0.95 16 8 15 

1− =β 0.90 

0.15 
0.30 79 5 19 

0.35 45 2 12 

0.25 
0.40 94 15 32 

0.45 52 7 19 

0.35 
0.50 109 28 48 

0.55 53 12 25 

0.45 
0.60 105 37 57 

0.65 54 17 31 

0.55 
0.70 101 46 65 

0.75 50 21 34 

0.65 
0.80 83 45 62 

0.85 41 21 32 

0.75 
0.90 61 39 52 

0.95 22 12 20 
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When studying the efficacy of a 
treatment for brain tumors the TR rate can be 
small as well. In this case, the objective response 
can be stabilization disease (SD) progression for 
six months after post-treatment initiation, while 
the secondary endpoint can be either CR or PR. 
For both of the above examples, a critical region 
may be found based on the objective and 
secondary responses such that if the objective 
response rate cannot be used to decide whether a 
new treatment warrants further study, an 
opportunity may still exist to justify the 
acceptance of the new treatment based on its 
secondary response rate subject to the originally 
given α1  error. To illustrate this point, consider 
the example for patients with glioblastomas. On 
the basis of the standard for the North American 
Brain Tumor Consortium (NABTC), interest lies 
in determining whether the objective response 
rate of SD increases from p0 = 0.15 to p= 0.35 
(Lu, Jin & Lamborn, 2005). Thus, testing 
 

H p0 0125 0175: . .≤ ≤  (with δ = 2.5%) 
versus 

H pa : .> 0175 or p < 0125.  
 
is considered. From equation (5), the minimum 
required number of patients is determined to be 
31 patients for a desired power of 80% when p = 
0.35 at ( α1 = α2 = ) 0.10-level and the 

corresponding critical points xl ( )α2  and 

xu ( )α1  are 1 and 9, respectively (Table 1).  
When no evidence exists to claim the 

experimental treatment to be superior (i.e., 
p > 0175. ) to the standard treatment based on 

the objective response rate of SD, for example, 
the experimental treatment may be still 
determined to warrant further study. This could 
occur if the secondary response rate, pS , that 
the tumor shrinkage is sufficient to be regarded 
as either CR or PR for a 6-month interval is 
larger than 0.05.  

Let xs  denote the number of patients 
with the secondary response among 31 patients. 
While keeping the above critical point xu ( )α1  
for the objective response of SD, SAS programs 
are written to search for the secondary endpoint 

Table 2: The critical points xl ( )α2 , xu ( )α1 and 
the minimum required sample size n calculated 
from Φ( , , , )n p α α β1 2 1≥ −  in equation (5) for a 

desired power 1− =β 0.80, 0.90 in testing

H p p pl u0: ≤ ≤  versus H p pa u: >  or p pl< , 

where p pl = −0 δ , p pu = +0 δ , δ = 2.5%;

p0 = 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75; p =
p0 015+ . , p0 0 20+ . ; 1 0 05.α =  and α2 =0.15. 

 

p0  p n xl ( )α2  xu ( )α1  

1− =β 0.80 

0.15 
0.30 73 5 19 

0.35 41 2 12 

0.25 
0.40 92 16 33 

0.45 48 7 19 

0.35 
0.50 102 27 47 

0.55 50 12 25 

0.45 
0.60 103 38 58 

0.65 53 18 32 

0.55 
0.70 95 44 63 

0.75 48 21 34 

0.65 
0.80 81 45 62 

0.85 41 21 33 

0.75 
0.90 56 36 49 

0.95 26 15 24 

1− =β 0.90 

0.15 
0.30 102 8 25 

0.35 55 3 15 

0.25 
0.40 121 21 42 

0.45 66 10 25 

0.35 
0.50 136 38 61 

0.55 71 18 34 

0.45 
0.60 140 52 77 

0.65 72 25 42 

0.55 
0.70 129 61 84 

0.75 64 28 44 

0.65 
0.80 110 62 83 

0.85 53 28 42 

0.75 
0.90 78 51 67 

0.95 32 20 29 
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for the critical point xCS , which is the minimum 

point xS  such that the probability P X( ≥ 9 or

X x p ps S u S≥ = =| . , . )0175 0 05 ≤ 010. . The 

critical point, xCS , is 5 if an observation ( x xS, ) 
= (8, 6) is obtained. Although the number (x = 8) 
of patients with the objective response of SD is 
not ≥  9, the experimental treatment may be 
recommended for further development because 
the number of ( xS = 6) patients with the 
secondary response is above the critical point (
xCS =5). In fact, the joint power for given values 

p and pS  based on the trinomial distribution can 
also be calculated: 
 

9 5

31

9 5

31
1

1

s S

( i j ori }i j

i j ( i j )
S S

P( X  or X | p, p )
!      

i ! j !( n i j )!
      p ( p p ) ( p )

+ ≥ ≥

− −

≥ ≥ =

− −
× − −

     (6) 

 
where the indicator function, 1{ }condition , equals 1 

if the condition in braces is true, and equals 0 
otherwise.  

For example, when p = 0 35.  and pS = 
0.20, the joint power obtained from (6) ≈ 0.88, 
which is larger than the original desired actual 
power P X p( | . )≥ =9 0 35 ≈ 0.81 exclusively 
based on the objective response by 
approximately 7%. Note that because the 
binomial distribution is discrete, the true Type I 
error P X pu( | . )≥ =9 0175  based on the 
objective response is actually equal to 0.079, 
which is less than the nominal (α1 = 0.10) level. 
This is the reason why the critical region can be 
expanded from { }X ≥ 9  to {X ≥ 9 or X S ≥ 5}  
to increase power without the necessity of 
inflating the given α1  error. Conaway & Petroni 
(1995) proposed methods for designing group 
sequential phase II trials with two binary 
endpoints.  

Conaway & Petroni (1995) also focused 
discussion on the situation in which a new 
treatment is recommended for further study 
when the new treatment has both a high 
response and lower toxicity. By contrast, 
consider the situation in which the new 

treatment is recommended for further study if 
the new treatment has either a high objective 
response rate or a high secondary response rate. 
Thus, Conaway & Petroni’s results cannot be 
applicable to the situations discussed here. 

It may be shown that  
 

P X x p( | )≥ (=
n
X

p p
X x

n x n x





 −

=
− ( )1 ) ≤α *  

 

if and only if the 100(1-α * )% lower confidence 
limit (LCL) (one-sided), given by 
x x n x F

n x x
/( ( ) )

( ), , *+ − +
− +

1
2 1 2 α , falls above the 

underlying response rate p, where F
n x x2 1 2( ), , *− + α  

is the upper 100(α * )th percentile of the central 
F-distribution with degrees of freedom 
2 1( )n x− +  and 2x , respectively (Casella & 
Berger, 1990; Lui, 2004). Similarly, it can be 

shown that P X x p( | )≤ ≤α *  if and only if the 

100(1- α * )% upper confidence limit (UCL) 
(one-sided), given by 
 

2 1 2

2 1 2

1

1

*

*

( x ), ( n x ),

( x ), ( n x ),

{( x )F }

{( n x ) ( x )F }
+ − α

+ − α

+

− + +
 

 
falls below p. Thus, the hypothesis setting and 
test procedure defined in (1-3) is equivalent to 
the decision procedure defined as follows: when 

the UCL with α α* = 2  falls below p pl ( )= −0 δ , 
the new treatment is terminated; when the LCL 

with α α* = 1  falls above p pu ( )= +0 δ , the new 
treatment warrants further consideration; when 
neither of the above conditions hold relevant 
factors are accounted for in the final decision. 
Compared with hypothesis testing, the use of 
confidence intervals to present the testing results 
may shed light on the magnitude of the 
difference between the two treatments under 
comparison. 

Rather than excluding a new treatment 
from further consideration when it is shown to 
be inferior (i.e., p p< −0 δ ) to the standard 
treatment in the procedure proposed, an 
alternative procedure can be considered by 
including a new treatment into further 
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consideration only when it is shown to be non-
inferior to the latter (i.e., p p> −0 δ ). That is, the 
following design may be employed: (1) for the 

LCL with a given α α* = 1  falling below p0 −δ , 
the new treatment is excluded from further 

consideration; (2) for the LCL with α α* = 1  

falling into [ p0 −δ , p0 +δ ], accounting for 
other factors; and (3) for the LCL falling above 

0p ,+ δ  the new treatment is recommended for 

further study. To avoid missing a potentially 
useful treatment when a new treatment for a 
specified type of cancer is hard to find, the 
hypothesis setting and test procedure (1-3) 
described herein may be employed to terminate 
a new treatment only when it is shown to be 
inferior to the standard treatment. To alleviate 
the concern of including an inferior treatment for 
phase III trials, a large value for α2  may be 
chosen (e.g., 0.15) in (3); on the other hand, 
when new experimental treatments are easier to 
find, the alternative decision procedure, 
including only those treatments shown to be 
non-inferior to the standard treatment for further 
consideration, can be of potential use. 

In summary, limitations in the 
commonly-used hypothesis setting and the 
recently proposed three-outcome design have 
been described. The hypothesis testing has been 
reformatted and a test procedure proposed to 
more closely resemble the clinical decision 
process. The minimum required sample size for 
a desired power of finding a superior treatment 
at a given α -level has been presented and the 
corresponding critical points in a variety of 
situations provided. Discussion and an example 
were used to illustrate how power may be 
improved by accounting for the secondary 
endpoint without inflating the given Type I error 
in the proposed test procedure. Also included 
was a discussion on an alternative procedure and 
for which situations in which this procedure can 
be of use. The findings and the discussion 
should be helpful for clinicians when exploring a 
new treatment in a phase II trial. 
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Effect of Measurement Errors on the Separate and Combined Ratio 
and Product Estimators in Stratified Random Sampling 

 
Housila P. Singh Namrata Karpe 

Vikram University, 
Ujjain India 

 
 

Separate and combined ratio, product and difference estimators are introduced for population mean Yμ  of 
a study variable Y using auxiliary variable X in stratified sampling when the observations are 
contaminated with measurement errors. The bias and mean squared error of the proposed estimators have 
been derived under large sample approximation and their properties are analyzed. Generalized versions of 
these estimators are given along with their properties. 
 
Key words: Auxiliary variate, bias, mean squared error, measurement error, study variate. 
 
 

Introduction 
Statistical procedures for the analysis of data 
presume that observations are correct 
measurements for the characteristics being 
studied. When applied to a real world data set, it 
is assumed it is possible to take measurements 
without error on the theoretical construct of the 
variables. This is untenable in many applied 
situations when observation errors are a rule 
rather than an exception. 

Hence, an auxiliary variable is 
commonly used in survey sampling to improve 
the precision of estimates. When auxiliary 
variable information is available researchers are 
able to utilize it in methods of estimation to 
obtain the most efficient estimator. Examples are 
ratio, product and regression estimation 
methods. Using auxiliary information at the 
estimation stage, a large number of estimation 
procedures for approximating the population 
mean Yμ  of a study variable Y have been 
proposed and their properties studied based on 
data originating under various kinds of sampling 
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schemes and under the supposition that 
observations have been recorded without error. 
Such an assumption may not be tenable in actual 
practice and data may contain observational or 
measurement errors due to various reasons 
(Cochran, 1968; Sukhatme, 1984).  

Chandhok and Han (1990) have studied 
the properties of a ratio estimator under two 
sampling schemes; simple random sampling 
without replacement and the Mizuno scheme 
when measurement errors are present. Shalabh 
(1997) studied the properties of the classical 
ratio estimator in simple random sampling when 
the data on both the characteristics Y (study 
variable) and X (auxiliary variable) are subject to 
measurement errors. Manisha and Singh (2001), 
Maneesha and Singh (2002) and Singh and 
Karpe (2008a) have also considered the problem 
of estimating the population mean using 
auxiliary information in the presence of 
measurement errors. Later Singh and Karpe 
(2008b, 2009a, 2009c) studied the effect of 
measurement errors on the classes of estimators 
proposed for population variance and coefficient 
of variation. This article discusses the properties 
of separate and combined ratio and product 
estimators in stratified random sampling when 
the data are subject to measurement errors on 
both the characteristics Y and X. 
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Suggested Estimators 
Separate Ratio Estimator in Stratified Random 
Sampling in the Presence of Measurement 
Errors 

Consider a finite population 
( )Nu,...,u,uU 21=  of size N and let Y and X 

respectively be the study and auxiliary variables 
associated with each unit ( )N,...,,ju j 21==  

of the population. Let the population of size N 
be stratified into L strata with the hth stratum 
containing hN  units, where L,...,,h 21=  such 

that NN
L

h
h =

=1

. A simple random sample size 

hn  is drawn without replacement from the hth 

stratum such that nn
L

h
h =

=1

. Let ( )hihi x,y  be 

the observed pair values instead of true pair 
values ( )hihi X,Y  of two characteristics (Y, X) on 
ith unit of the hth stratum, where hN,...,,i 21=  

and L,...,,h 21= . In addition, let: 
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be the samples means and population means of 

(Y, X) respectively, where 
N
NW h

h =  is the 

stratum weight. Let the observational or 
measurement errors be 
 

hihihi Yyu −=      (2.1) 

and 

hihihi Xxv −=      (2.2) 

 
which are stochastic in nature and are 

uncorrelated with mean zero and variances 2
Uhσ  

and 2
Vhσ  respectively. Further let hρ  be the 

population correlation coefficient between Y and 
X in the hth stratum. 

For simplicity in exposition, assume that 
s'uhi  and s'vhi  are uncorrelated although 

( )hihi X,Y  are correlated; such a specification 

can be relaxed at the cost of some algebraic 
complexity. It is also assumed that the finite 
population correction terms ( )hf−1  and 

( )f−1  can be ignored where 
h

h
h N

nf =  and 

N
n

f = . 

To estimate the population mean Yμ , 
the traditional unbiased estimator (i.e., stratified 
sample mean) sty  is used, but it does not utilize 

the sample information on auxiliary 
characteristic X. Assuming that Xhμ  is known 

and is different from zero, this method yields a 
separate ratio estimator of the population mean 

Yμ : 
L

Xh
RS h h

h 1 h

t W y .
x=

μ=               (2.3) 

 
To obtain the bias and mean squared error of 

RSt : ( )
hyYhhy δμ += 1 , and ( )

hxXhhx δμ += 1 , 

such that 
 

( ) ( ) 0==
hh xy EE δδ  
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Yhh
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Yh
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h

Yh
y n

C
n
CE

h θσ
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2

2

22
2 1 =
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Xh
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h

Xh
x n

C
n

CE
h θσ

σδ
2

2

22
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( ) XhYhh
h

xy CC
n

E
hh

ρδδ 1= , 

where 

Yh

Yh
YhC

μ
σ

= , 

Xh

Xh
XhC

μ
σ

= , 

22

2

YhUh

Uh
Yh σσ

σθ
+

= , 

and 

. 

 
Expressing (2.3) in terms of  as 
 

( )( ) 1

1

11 −

=

++= hh xyYh

L

h
hRS Wt δδμ      (2.4) 

 

Assuming 1<
hxδ , the right hand side of (2.4) 

is expanded as 
 

( ) h h

h

h

h h h h

h h h h

2
L

x x

RS h Yh y 3
h 1 x

L y x y x

h Yh 2 2 3
h 1 x y x x

1
t W 1

...

1
W

...

=

=

 − δ + δ
 = μ + δ
 −δ + 

+ δ − δ − δ δ  = μ  
+δ + δ δ − −δ +  




 

 
Neglecting terms of having power greater 
than two, results in 
 

h h h h

h h h

L y x y x

RS h Yh 2 2
h 1 x y x

1
t W

=

+ δ − δ − δ δ  = μ  
+δ + δ δ  

 , 

 

h h h h

h h h

L y x y x

RS Y h Yh 2 2
h 1 x y x

t W
=

δ − δ − δ δ  = μ + μ  
+δ + δ δ  

 , 

 

( ) h h h h

h h h

L y x y x

RS Y h Yh 2 2
h 1 x y x

t W
=

δ − δ − δ δ  − μ = μ  
+δ + δ δ  

 , 

(2.5) 

Taking the expectation of both sides of (2.5) 
results in the bias of RSt  to the first degree of 

approximation, 
 

( ) ( )hXh
Xhh

Xh
Yh

L

h
hRS K

n
CWtB θ
θ
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=

=

1
2

1

   (2.6) 

 
where 









=

Xh

Yh
hh C

CK ρ . 

 
Squaring both sides of (2.5), neglecting terms of 

 having power greater than two and then 
taking the expectation of both sides gives the 
mean squared error of RSt  to the first degree of 

approximation as 
 

( )

( )
RS

2 2 2L
2 Yh Yh Xh
h h Xh

h 1 h Yh Xh

MSE t

C C
W 1 2K

n=

=

   μ + − θ   θ θ   


 

(2.7) 
 
The variance of sty  is: 
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Yhh

YhYh
L

h
hst n

CWyVar
θ

μ 22

1

2
=

=            (2.8) 

 
and, from (2.7) and (2.8), 
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RS st

2 2L
2 Yh Xh
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MSE t Var y

C
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which is less than zero if 
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( )

( )

2 2L
2 Yh Xh
h h Xh

h 1 h Xh

h Xh

h
Xh

h
Xh

C
W 1 2K 0

n

or if  1 2K 0

1
or if  K

2

1
or if  K

2

=

 μ − θ <  θ 

− θ <

<
θ

>
θ



   (2.9) 

 
Thus, the proposed separate ratio estimator RSt  

is more efficient than the usual unbiased 
estimator sty  if condition (2.9) holds. 

If the observations on both the variables 
X and Y are recorded without error, then the 
MSE of RSt  at (2.7) reduces to: 

 

( ) ( )[ ]hXhYh
h

Yh
L

h
htRS KCC

n
WtMSE 2122

2

1

2 −+







=

=

μ

(2.10) 
 
Expression (2.10) can be obtained from (2.7) by 
setting 1== YhXh θθ . From (2.7) and (2.10): 

 

( ) ( )RS RS t

2L
2 2 2Yh Yh Xh
h Yh Xh

h 1 h Yh Xh

MSE t MSE t

1 1
W C C

n=

− =

      μ − θ − θ+      θ θ      


(2.11) 
 
which is always positive. Thus, it follows from 
(2.11) that the presence of measurement errors 
associated with both variables are accountable 
for increasing the mean squared error of the 
separate ratio-estimator RSt . 

 
Separate Product Estimator in Stratified Random 
Sampling in the presence of Measurement Errors 

Next, define the product estimators in 
stratified random sampling in the presence of 
measurement errors of the population mean Yμ  
as 


=

=
L

h Xh

h
hhPS

xyWt
1 μ

              (2.12) 

Express (2.12) in terms of  as 
 

( )( )
hh xyYh

L

h
hPS Wt δδμ ++=

=

11
1

   (2.13) 

 

Assuming that 1<
hxδ , the right hand side of 

(2.13) is expanded as 
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hhhh xyxyYh

L

h
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1
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or 
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hhhh xyxyYh

L

h
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=1

, 

(2.14) 
 
and taking the expectation of both sides of (2.14) 
results in the bias of PSt  to the first degree of 

approximation, 
 

( ) hXhYh

L

h
hPS KCWtB 2

1

μ
=

=          (2.15) 

 
Squaring both sides of (2.14) and neglecting 
terms of  having power greater than two and 
taking expectations of both sides, provides the 
mean squared error of PSt  to the first degree of 

approximation as 
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From (2.16) and (2.8) 
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which is less than zero if 
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( )

( )
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h h Xh

h 1 h Xh

h Xh
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C
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n

or if 1 2K 0

1
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2
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< −
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     (2.17) 

 
Thus, the proposed separate product estimator 

PSt  is more efficient than the usual unbiased 

estimator sty  if condition (2.17) holds. 

If the observations on both the variables 
X and Y are recorded without error, then the 
MSE of the separate product estimator PSt  is 

given by 
 

( ) ( )[ ]hXhYh
h

Yh
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h
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n
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2
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=

=

μ

(2.18) 
 
Expression (2.18) can be obtained from (2.16) 
by setting 1== YhXh θθ . From (2.16) and 

(2.18): 
 

( ) ( )PS PS t

2L
2 2 2Yh Yh Xh
h Yh Xh

h 1 h Yh Xh

MSE t MSE t

1 1
W C C .

n=

− =

      μ − θ − θ+      θ θ      


(2.19) 
 
which is always positive. Thus, it follows from 
(2.19) that the presence of measurement errors 
associated with both variables are accountable 
for increasing the mean squared error of the 
separate product-estimator PSt . 

 
Separate Difference Estimator in Stratified 
Random Sampling in the presence of 
Measurement Errors 

A separate difference estimator is 
defined in stratified random sampling in the 
presence of measurement errors for population 
mean Yμ , as 

( ){ }
=

−+=
L

h
hXhhhhdS xdyWt

1

μ      (2.20) 

where sdh '  are suitably chosen constants. 

It can be observed that the estimator dSt  

is an unbiased estimator for the population mean 

Yμ , and the variance of dSt  is given by 
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h h h2

dS h
h 1 h h
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Thus, 
 

( )

( )

2 2 2L
2 2h Yh Xh
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h Yh Xh
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W
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 σ σ= + − σ β θ θ 
 σ σ= + − β θ θ θ 




 (2.22) 

 
which is minimized for 
 

XhYXhhd θβ=                  (2.23) 

 

where 
2
Xh

YXh
YXh σ

σβ =  is the population regression 

coefficient of Y on X in the hth stratum. Thus, the 
resulting (minimum) variance of dSt  is given by 
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22

1−=
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(2.24) 
 
When data are recorded without error for the 
variables X and Y, the variance of dSt  at (2.22) 

reduces to: 
 

( ) ( ){ }YXhhXhhYh
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From (2.22) and (2.25): 
 

( ) ( )dS dS t
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2 2h Yh Xh
Yh h

h 1 h Yh Xh

Var t Var t

W 1 1
d 0.
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− =
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(2.26) 
 
Observe from (2.26) that the presence of 
measurement error in both the variables X an Y 
inflates the variance of dSt . The expression 

(2.25) is minimized for: 
 

YXhhd β=                     (2.27) 

 
and the resulting (minimum) variance of dSt  in 

the absence of measurement errors is given by 
 

( ) ( )22
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2

1 hYh
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h
tdS n

WtVar.min ρσ −=
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From (2.24) and (2.28): 
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2 2L
2h Yh Yh
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h 1 h Yh

min .Var t min .Var t

W 1
1

n=
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(2.29) 
 

It is observed from (2.29) that the difference [
( ) ( )tdSdS tVar.mintVar.min − ], is always 

positive. Thus, the presence of measurement 
errors in both variables X and Y inflates the 
variance of dSt  at optimum condition, which 

disturbs the optimal properties of the difference 
estimator dSt . 

 
A Separate Class of Estimators in Stratified 
Random Sampling in the Presence of 
Measurement Errors 

Whatever the sample chosen, let 
( )hh x,y  assume values in a bounded, closed 

subset, hP , of the two-dimensional real space 

containing the point ( )XhYh ,μμ . Following an 

approach similar to that adopted by Srivatava 
(1971, 1980) for defining a class of estimators of 
the population Yhμ , consider the class of 

estimators of the population Yμ , defined by 
 

( )hh

L

h
hhS x,ytWt 

=

=
1

,           (2.30) 

 
where ( )hhh x,yt  is a function of ( )hh x,y  

 
( ) YhXhYhh ,t μμμ =              (2.31) 

 

( ) ( )
( )

( )
h h

h Yh Xh
h1 Yh Xh

h y ,x

Yh Xh

t ,
t ,

y

,

1

∂ μ μ
 μ μ =

∂

= μ μ
=

 

 
such that it satisfies the following conditions: 
 

i. The function ( )hhh x,yt  is continuous and 

bounded in hP ; and 

ii. The first, second and third order partial 
derivatives of ( )hhh x,yt  exist and are 

continuous and bounded in hP . 

 



EFFECT OF MEASUREMENT ERRORS ON PRODUCT ESTIMATORS 

394 
 

Expanding the function ( )hhh x,yt  about the 

point ( ) ( )XhYhhh ,x,y μμ=  in a third-order 

partial derivative, results in 
 

( ) ( )
( ) ( )

( ) ( )
( )( ) ( )

( ) ( )
( ) ( )

( )( ) ( )
( ) ( )

S

Yh h Yh h1 Yh Xh

h Xh h2 Yh Xh

2

h Yh h11 Yh Xh

h Yh h Xh h12 Yh Xh

2L
h Xh h22 Yh Xh

h
3h 1 * *

h Yh h111 h h

2 * *
h Yh h Xh h122 h h

2 *
h Yh h Xh h112 h

t

y t ,

x t ,

y t ,
1

2 y x t ,
2

x t ,W

y t y , x

3 y x t y , x1

6 3 y x t y , x

=

=

μ + − μ μ μ

+ − μ μ μ

 − μ μ μ
  + + − μ − μ μ μ 
 

+ − μ μ μ  

− μ

+ − μ − μ
+

+ − μ − μ



( )
( ) ( )

*
h

3 * *
h Xh h222 h hx t y , x

 
 
 
 
 
 
 
 
 
        

  
  
  
+ − μ    

(2.32) 
 

where ( ){ }YhhYh
*
h yy μθμ −+= , 

( ){ }XhhXh
*
h xx μθμ −+= , 10 << θ  and θ  

may depend on ( )*
h

*
h x,y , and ( )*

h
*
hhijk x,yt  

denotes the third order partial derivative of 

( )*
h

*
hh x,yt  with respect to ( )hh x,y  at the point 

( )hh x,y = ( )*
h

*
h x,y . 

Taking the expectation of (2.32) the bias 
of the estimator St  up to the terms of the order 

1−n is obtained 
 

( ) ( ) ( )
( ) ( )

L
h h22 Yh Xh

S h
h 1 h h h12 Yh Xh

Var x t ,1
B t W ,

2 2Cov y , x t ,=

μ μ +  =  
μ μ  


 
or 

( ) ( )

( )
( )

( )

2
Xh2L

h22 Yh Xhh
XhS

h 1 h
YXh h12 Yh Xh

2 2L
h22 Yh Xhh Yh

h 1 h Xh YXh h12 Yh Xh

t ,W1
B t

2 n
2 t ,

t ,W1
.

2 n 2 t ,

=

=

 σ μ μ θ=  
 + σ μ μ 

μ μ σ  =  θ + β μ μ  




(2.33) 

 

Up to the terms of order 1−n , the MSE of St  is : 

 

( )
( )

( ) ( )
( ) ( )

( )

( )

( )

( ){ }

h
L

2 2
S h h h 2 Yh Xh

h 1

h h h12 Yh Xh

2 2
2Yh Xh2L
h 2 Yh Xhh

Yh Xh
h 1 h

YXh h 2 Yh Xh

2 2
Yh Xh2L h 2 Yh Xh

h
Yh Xh

h 1 h
h2 Yh Xh YXh Xh

Var y
1

MSE t W Var x t ,
2

2Cov y , x t ,

t ,W

n
2 t ,

t ,W

n
t , 2

=

=

=

 
 

= + μ μ 
 + μ μ 

 σ σ+ μ μ θ θ=  
 + σ μ μ 
 σ σ+ μ μ θ θ=  
 μ μ + β θ 







(2.34) 
 
The MSE( St ) is minimized for 

 

( ) YXh
h12 Yh Xh Xh2

Xh

YXh Xh

t ,
 σμ μ = − θ σ 

= −β θ
    (2.35) 

 
Thus, the resulting minimum MSE of St  is 

given by 

( ) ( )
=

−=
L

h
YhXhh

Yhh

Yhh
S n

WtMSE.min
1

2
22

1 θθρ
θ
σ

 

(2.36) 
 
Theorem 2.1 

Based on the previous discussion, the 
following theorem is put forth. To the first 
degree of approximation, 
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( ) ( )
=

−≥
L

h
YhXhh

Yhh

Yhh
S n

WtMSE
1

2
22

1 θθρ
θ
σ

, 

 
with equality holding if 
 

( ) =XhYhh ,t μμ12 XhYXhθβ− . 

 
Note the lower bound of the MSEs of the 
separate class of estimators St  at (2.30) in the 

variance of the optimum separate difference 
estimator (OSDE) 
 

( ){ }hYhhh

L

h
hSd xdyWt −+= 

=
μ0

1
0  

 
with 

XhYXhhd θβ=0 , 

 
which shows that the estimators belonging to the 
class of separate estimators St  at (2.30) are 

asymptotically no more efficient than the 
optimum difference estimator (ODE) Sdt 0 . 

Any parametric function ( )hhh x,yt  

satisfying conditions (i) and (ii) can define an 

Yhμ . The class of such estimators is very large. 

For example, the following estimators: 
 

h

h

Yh
L

h
hhS x

yWt
α

μ








=

=1
1 , 

 





















−=

=

h

Yh

h
L

h
hhS

xyWt
α

μ
2

1
2 , 

 

( ){ }XhhhXh

Xh
L

h
hhS x

yWt
μαμ

μ
−+

=
=1

3 , 

 

{ ( )}Xhhh

L

h
hhS xyWt μα −+=

=1
4 , 

 
are particular members of a proposed class of 
estimator where hα  is a suitably chosen 

constant. The optimum value of constant hα  in 

41toj,tSj = , which minimizes the mean 

squared error of the resulting estimator are 
obtained from (2.36). 

It follows from (2.7). (2.8), (2.16) and 
(2.34) that the proposed separate class of 
estimators St  is more efficient than: 

 
i. the usual unbiased estimator sty  if 

{ }
( )

{ }

YXh Xh

h2 Yh Xh

YXh Xh

min . 0,

t .

max. 0,

−β θ

< μ μ <

−β θ

              (2.37) 

 
ii. the separate ratio estimator RSy  if 

( ){ }
( )
( ){ }

h h YXh Xh

h 2 Yh Xh

h h YXh Xh

min . R , R 2

t .

max . R , R 2

− − β θ

< μ μ <

− − β θ

   (2.38) 

 
iii. the separate product estimator PSy  if 

( ){ }
( )
( ){ }

h h YXh Xh

h2 Yh Xh

h h YXh Xh

min . R , R 2

t .

max . R , R 2

− + β θ

< μ μ <

− + β θ

   (2.39) 

 
A Combined Ratio Estimator in Stratified 
Random Sampling in the Presence of 
Measurement Errors 

For the estimation of population mean, 

Yμ , the following combined ratio estimator is 
defined in the presence of measurement errors: 
 

st

X
stRC x

yt μ
=                  (2.40) 

 
To the first degree of approximation, the bias 
and mean squared error of the combined ratio 
estimator RCt  are respectively given by 
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( ) ( )

( )

2 22L
Xh Vhh h Xh Yh

RC Y 2
h 1 h X X Y

2 2 2L
h Xh YXh Xh

Y 2
h 1 h X Xh X Y

2 2L
h Xh YXh

Y 2
h 1 h X Xh X

2 2L
h Xh

YXh Xh
h 1X h Xh

W
B t

n

W

n

W R

n

W1
R

n

=

=

=

=

 σ + σ ρ σ σ
 = μ −

μ μ μ  
 σ β σ= μ − μ θ μ μ 

 σ β= μ − μ θ μ 
  σ= −β θ μ θ 








(2.41) 

and 
 

( )

( )

RC

2 2 2L
h Yh Xh

YXh Xh
h 1 h Yh Xh

MSE t

W
R R 2

n=

=

  σ σ+ − β θ  θ θ  


(2.42) 
 
From (2.8) and (2.42): 
 

( ) ( )

( )

st RC

2 2L
h Xh

YXh Xh
h 1 h Xh

Var y MSE t

W
R R 2 ,

n=

− =

 σ− − β θ θ 


 

 
which is positive if 
 

2

1

1

2
2

2

1

2

>













=

=

L

h
Xh

h

h

Xh

Xh
YXh

L

h h

h

n
W

R

n
W

σ

θ
σβ

            (2.43) 

 
When the data are recorded without error then 
the expression (2.42) reduces to: 
 

( ) ( )[ ]YXhXhYh

L

h h

h
tRC RR

n
WtMSE βσσ 222

1

2

−+= 
=

 

(2.44) 
 
From (2.42) and (2.44): 
 

( ) ( )RC RC t

2L
2 2 2h Yh Xh
Yh Xh

h 1 h Yh Xh

MSE y MSE t

W 1 1
R

n=

− =

    − θ − θσ + σ    θ θ    


 

(2.45) 
 
which is always positive. It follows that the 
presence of measurement errors in both the 
variables X and Y inflates the MSE( RCt ). 

 
A Combined Product Estimator in Stratified 
Random Sampling in the Presence of 
Measurement Errors 

The following combined product 
estimator is defined for the population mean Yμ  
in the presence of measurement errors as: 
 

st
PC st

X

x
t y .=

μ
                   (2.46) 

 
The exact bias and mean squared error to the 
first degree of approximation of the combined 
ratio estimator PCt  are respectively given by 
 

( ) 
=









=

L

h X

XhYXh

h

h
YPC n

W
tB

1

22

μ
σβμ      (2.47) 

and 
 

( ) ( )











+








+= 

=
XhYXh

Xh

Xh

Yh

Yh
L

h h

h
PC RR

n
WtMSE θβ

θ
σ

θ
σ

2
22

1

2

(2.48) 
 
From (2.8) and (2.48): 
 

( ) ( )

( )

st PC

2 2L
h Xh

YXh Xh
h 1 h Xh

Var y MSE t

W
R R 2

n=

− =

 σ− + β θ θ 


  (2.49) 

 
which is positive if 
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2

1

1

2
2

2

1

2

−<













=

=

L

h
Xh

h

h

Xh

Xh
YXh

L

h h

h

n
WR

n
W

σ

θ
σβ

        (2.50) 

 
Assuming that the observations for X and Y be 
recorded without error, then expression (2.48) 
reduces to: 
 

( ) ( )[ ]YXhXhYh

L

h h

h
tPC RR

n
WtMSE βσσ 222

1

2

++= 
=

 

(2.51) 
 
which can be obtained from (2.48) by setting 

1== XhYh θθ . From (2.48) and (2.51): 

 
( ) ( )PC PC t

2L
2 2 2h Yh Xh
Yh Xh

h 1 h Yh Xh

MSE t MSE t

W 1 1
R

n=

− =

    − θ − θσ + σ    θ θ    
  

(2.52) 
 
which is always positive. Expression (2.52) is 
the same as that obtained in (2.45). Thus, the 
presence of measurement errors in both 
variables X and Y are responsible for increasing 
the MSE of the combined product estimator PCt . 
 
A Combined Difference Estimator in Stratified 
Random Sampling in the presence of 
Measurement Errors 

A combined difference estimator in 
stratified random sampling is defined in the 
presence of measurement errors for a population 
mean, Yμ , as 
 

( )stXstdC xdyt −+= μ            (2.53) 

 
where d  is a suitably chosen constant. It can be 
seen that the combined difference estimator dCt  

is unbiased. The variance of dCt  is given by 

 

( )
( ) ( ) ( )
dC

2
st st st st

2 2 2L
2h Yh Xh

YXh
h 1 h Yh Xh

2 2 2 2L L
2h Yh h Xh

h 1 h 1h Yh h Xh

2L
2h

YXh Xh
h 1 h

Var t

Var y d x 2dCov y , x

W
d 2d

n

W W
d

n n

W
   2d

n

=

= =

=

=

= + −

  σ σ= + − σ  θ θ  
   σ σ= +   θ θ   

− β σ



 



(2.54) 

 
which is minimized for 
 





=

=









=

L

h Xh

Xh

h

h

XhYXh

L

h h

h

n
W
n

W

d

1

22

2

1

2

θ
σ

σβ
              (2.55) 

 
Thus, the resulting minimum variance of dCt  is 

given by 
 

( )





=

=

=

















−







=

L

h Xh

Xh

h

h

XhYXh

L

h h

h

L

h Yh

Yh

h

h
dC

n
W
n

W

n
WtVar.min

1

22

2

2

1

2

1

22

θ
σ

σβ

θ
σ

(2.56) 
 
Assume the data associated with variables X and 
Y are recorded without error; in such a case, the 
expressions (2.54) reduce to: 
 

( )





=

=

=

















−







=

L

h Xh

Xh

h

h

XhYXh

L

h h

h

L

h Yh

Yh

h

h
dC

n
W
n

W

n
WtVar.min

1

22

2

2

1

2

1

22

θ
σ

σβ

θ
σ

(2.57) 
From (2.54) and (2.57): 
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( ) ( )dC dC t

2 2L L
2 2 2h Yh h Xh
Yh Xh

h 1 h 1h Yh h Xh

Var t Var t

W 1 W 1
d

n n= =

− =

   − θ − θσ + σ   θ θ   
 

(2.58) 
 
which is always positive. It follows from (2.56) 
that the presence of measurement errors in both 
variables X and Y enhances the variance of dCt  

regardless of the value of d. 
The ( )dCtVar  at (2.57) is minimized for 

 





=

==
L

h
Xh

h

h

XhYXh

L

h h

h

n
W

n
W

d

1

2
2

2

1

2

σ

σβ
                (2.59) 

 
Combining (2.59) with (2.57) results in the 
minimum value of ( )styVar  as 

 

( )





=

=

=










−=
L

h
Xh

h

h

XhYXh

L

h h

h

L

h
Yh

h

h
tdC

n
W

n
W

n
WtVar.min

1

2
2

2

2

1

2

1

2
2

σ

σβ
σ

(2.60) 
 
From (2.56) and (2.58): 
 

( ) ( )dC dC t

2L
2h Yh
Yh

h 1 h Yh

2L
2h Xh

2 Xh2L
h 1 h Xh2h

YXh Xh 2 2 2L L
h 1 h 2h h Xh

Xh
h 1 h 1h h Xh

min.Var t min .Var t

W 1

n

W 1
nW

n W W
n n

=

=

=

= =

− =

 − θσ  θ 
 − θσ  θ   + β σ 

    σ   σ   θ     






 
(2.61) 

 
It can be observed from (2.61) that the 
difference ( ) ( )[ ]ttdCdC tVar.mintVar.min −  is 

always positive. Thus the presence of 
measurement error in both variables X and Y 

inflates the variance of dCt  at their optimum 

conditions, which disturbs the optimal properties 
of the difference estimator dCt . 

 
A Combined Class of Estimators in Stratified 
Random Sampling in the presence of 
Measurement Errors 

Following the same procedure as 
adopted by Srivastava (1971, 1980) a class of 
combined estimators of the population mean Yμ  
in the presence of measurement errors is 
suggested, such as 
 

( )ststC x,ytt = ,                 (2.62) 

 
where ( )stst x,yt  is a function of ( )stst x,y  such 

that 
( ) YXY ,t μμμ =                (2.63) 

 

( ) ( )
( )

11
1 =

∂
∂

=
XY ,st

XY
XY y

,t,t
μμ

μμμμ , 

 
and satisfies the same conditions as given in 2.4 
for St . 

Expanding the function ( )stst x,yt  about 

the point ( )stst x,y = ( )XY ,μμ  in a third-order 

Taylor’s series results in 
 

( ) ( )
( ) ( )

( ) ( )
( )( ) ( )

( ) ( )
( ) ( )

( )( ) ( )
( ) ( ) ( )

( )

C

st Y 1 Y X

st X 2 Y X

2

st Y 11 Y X

st Y st X 12 Y X

2

st X 22 Y X
Y

2 * *
st Y 111 st st

2 * *
st Y st X 122 st st

2 * *
st Y st X 112 st st

3 *
st X 222 st

t

y t ,

x t ,

y t ,
1

2 y x t ,
2

x t ,

y t y , x

3 y x t y , x1

6 3 y x t y , x

x t y , x

=

− μ μ μ

+ − μ μ μ

 − μ μ μ
  + + − μ − μ μ μ 
 

+ − μ μ μ  μ +
− μ

+ − μ − μ
+

+ − μ − μ

+ − μ ( )*
st

 
 
 
 
 
 
 
 
 
        

  
  
  
    

 

 
or 
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( )
( ) ( )

( ) ( )
( ) ( )

( )( ) ( )
( ) ( )

( ) ( )
( )( ) ( )
( ) ( ) ( )

( )

C Y

st Y 1 Y X
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2

st Y 11 Y X
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2

st X 22 Y X

3 * *
st Y 111 st st

2 * *
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t

y t ,
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1

2 y x t ,
2

x t ,

y t y , x

3 y x t y , x1

6 3 y x t y , x

x t y , x

− μ =

− μ μ μ

+ − μ μ μ

 − μ μ μ
  + + − μ − μ μ μ 
 

+ − μ μ μ  

− μ

+ − μ − μ
+

+ − μ − μ

+ − μ ( )*
st

 
 
 
 
 
 
 
 
 
        

  
  
  
    

(2.64)

 

 

where ( ){ }YstY
*
st yy μξμ −+= , 

( ){ }XstX
*
st xx μξμ −+= , and 10 << ξ . Also, 

ξ  may depend on ( )*
st

*
st x,y  and ( )*

st
*
stijk x,yt  

denotes the third order partial derivative of 
( )stst x,yt  with respect to ( )stst x,y  at the point 

( )stst x,y = ( )*
st

*
st x,y . 

Taking the expectation of (2.64) 
provides the bias of the estimator Ct  up to the 

terms of the order 1−n , 
 

( ) ( ) ( )
( ) ( )

st 22 Y X

C

st st 12 Y X

Var x t ,1
B t ,

2 2Cov y , x t ,

μ μ  =  
+ μ μ  
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W
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n
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 σ μ μ θ=  
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 σ μ μ θ =
 
+ β σ μ μ 
 







 

(2.65) 
 

Squaring both sides of (2.64) and neglecting 
terms ( ) ( )XstYst xandy μμ −−  having power 

greater than two results in 
 

( )
( ) ( )

( ) ( )
( ) ( )

2 2
st Y 1 Y X

2 2
C Y st X 2 Y X

st st 12 Y X

y t ,

t x t ,

2Cov y , x t ,

 − μ μ μ
 
 − μ = + − μ μ μ
 
+ μ μ  

 

 
Noting that ( )XY ,t μμ1 =1 and taking the 
expectation of both sides of the above 
expression, provides the mean squared error of 
the class of combined estimators Ct  as 

 

( ) ( ) ( ) ( )
( ) ( )

st st 22 Y X
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st st 2 Y X

Var y Var x t ,
MSE t ,
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(2.66) 

 
which is minimized for 
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Thus the resulting minimum MSE of Ct  is given 

by 
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     (2.68) 

 
Theorem 2.2 

Based on the above, the following 
theorem is put forth. To the first degree of 
approximation, 
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with equality holding if 
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Note that the lower bound of the MSE of the 
combined class of estimators Ct  at (2.62) is the 

variance of the optimum combined difference 
estimator (OCDE) 
 

( )stXstCd xdyt −+= μ00         (2.69) 

with 
2L

2h
YXh Xh

h 1 h
0 2 2L

h Xh

h 1 h Xh

W

n
d ,

W

n

=

=

β σ
=

 σ
 θ 




 

 
which demonstrates that the estimators belonging 
to the class of combined estimators Ct  at (2.62) 

are asymptotically no more efficient than the 
optimum difference estimator (ODE) Cdt 0  at 

(2.69). 

Any parametric function ( )stst x,yt  

satisfying the regularity conditions as described 
for tC, can define a Yμ . The class of such 
estimators is very large. For example, the 
following estimators: 
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{ ( )}XststC xyt μψ −+=4 , 

 
are particular members of the proposed class of 
estimator, where ψ  is a suitably chosen 

constant. The optimum value of constant ψ  in 

41toj,t jC =  which minimizes the mean 

squared error of the resulting estimator are 
obtained from (2.68). 

It follows from (2.42), (2.8), (2.48) and 
(2.66) that the proposed separate class of 
estimators Ct  is more efficient than: 

 
i. the usual unbiased estimator sty  if 
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        (2.70) 

 
ii. the combined ratio estimator CSy  if 
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iii. the combined product estimator PCy  if 
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Theoretical Comparisons 

From (2.7) (or (2.36)) and (2.42) (or 
(2.68)): 
 

( ) ( )

( ) ( )

RS S RC

2 2L
2 2h Xh

YXh Xh h YXh Xh
h 1 h Xh
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R R
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which is positive if 
 

( ) ( )22
XhYXhhXhYXh RR θβθβ −>−      (3.1) 

 

It follows that RSt  will be more efficient than 

RCt  if and only if ( )XhYXhθβ  is nearer to hR  

than to R.  
From (2.16) and (2.48): 
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which is positive if 
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Thus, the separate product estimator PCt  is more 

efficient than the combined product estimator 

PCt  if the inequality (3.2) holds. 

From (2.24) and (2.56): 
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Observe the expression (3.3) is always 

positive. Thus, unless the term ( )XhYXhθβ  is the 

same from stratum to stratum, the separate 
difference estimator dSt  (or the separate class of 

the estimators St ) at its optimum condition, that 

is, OSDE ( ){ }hYhhh

L

h
hSd xdyWt −+= 

=
μ0

1
0  

with XhYXhhd θβ=0 ) is more efficient than the 

combined difference estimator dCt  (or the 

combined class of the estimators Ct ) at optimum 

(i.e., the OCDE ( )stXstCd xdyt −+= μ00  with 
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Two longitudinal regression models, one parametric and one nonparametric, are developed to reduce 
selection bias when analyzing longitudinal health data with high mortality rates. The parametric mixed 
model is a two-step linear regression approach, whereas the nonparametric mixed-effects regression 
model uses a retransformation method to handle random errors across time. 
 
Key words: Longitudinal data, mortality rates, nonrandom dropouts, selection bias. 
 
 

Introduction 
Analyzing large-scale longitudinal health data 
poses special challenges to statisticians, 
demographers and other quantitative 
methodologists. Most longitudinal surveys 
collect random and unbiased samples at 
baseline. Among older persons, however, a 
considerable proportion of the baseline 
respondents will not survive to the ensuing 
phases of investigation. As a result, longitudinal  
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health outcomes are based on several follow-up 
samples selected by values of the dependent 
health variable because physically frailer, 
functionally disabled and environmentally 
disadvantaged persons are more likely to die. 
Thus, follow-up data of a longitudinal health 
survey on these populations often bear little 
resemblance to the initial sample, making 
dropouts non-ignorable. Consequently, currently 
existing longitudinal regression models, such as 
the random-effects linear regression model, can 
be highly sensitive to untestable assumptions 
and inestimable parameters (Hedeker & 
Gibbons, 2006; Hogan, Roy, & Korkontzelou 
2004; Little & Rubin, 2003; Schafer & Graham, 
2002). 

There is abundant literature devoted to 
modeling non-ignorable longitudinal missing 
data in biostatistics (Demirtas, 2004; Hedeker & 
Gibbons, 2006; Hogan, Roy & Korkontzelou, 
2004; Little, 1995; Little & Rubin, 2003; 
Robins, Rotnitzky & Zhao, 1995; Yao, Wei & 
Hogan, 1998). The primary focus of this 
literature, however, is dropout in clinical trials. 
Here the missingness is primarily due to reasons 
other than death and is closely related to 
outcomes being measured (Schafer & Graham, 
2002). In large-scale longitudinal health data for 
older persons, high death rates are usually the 
primary reason for dropouts in follow-up waves; 
in a strict sense, this cannot be simply viewed as 
missing because the deceased no longer 
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possesses any values or characteristics to 
estimate (Hogan, Roy & Korkontzelou, 2004; 
Pauler, McCoy &Moinpour, 2003). On the other 
hand, although assumptions on measurability of 
the deceased’s health outcomes are 
imperceptible and inappropriate, the influence of 
high mortality on the distribution of survivors’ 
health data cannot be ignored. When creating a 
longitudinal model with high death rates, 
researchers should establish the statistical 
structure needed to account for the potential lack 
of independence that often exists among those 
who have been selected from the survival of the 
fittest process. 

Some researchers have proposed the use 
of joint modeling, originally developed by 
Heckman (1979), for longitudinal and survival 
data that link the health outcomes by means of a 
common selection factor (Egleston, Scharfstein, 
Freeman & West, 2006; Fu, Winship & Mare, 
2004; Kurland & Heagerty, 2005; Leigh, Ward 
& Fries, 1993; Pauler, McCoy & Moinpour, 
2003; Ratcliffe, Guo & Ten Have, 2004). Given 
specification of the selection factor, the two 
responses, survival and longitudinal health 
outcomes, are thought to be conditionally 
independent, hence more efficient and less-
biased parameter estimates can be obtained from 
this type of statistical modeling. However, the 
two-step parametric joint modeling has been 
criticized because of its considerable 
dependence on distributional assumptions for the 
non-ignorable missing data that are impossible 
to verify (Demirtas, 2004; Hedeker & Gibbons, 
2006; Hogan, Roy & Korkontzelou, 2004; Little 
& Rubin, 2003; Winship & Mare, 1992). Due to 
the unique characteristics involved in health 
transitions among older persons, the restrictive 
assumptions of this method on the parametric 
disturbance function can be readily violated, 
thereby degrading the quality of parameter 
estimates and model-based prediction. 

This research develops two longitudinal 
regression models to account for the selection 
bias from high mortality rates, one parametric 
and one nonparametric. The parametric model is 
a two-step statistical technique developed as a 
joint model combining longitudinal and survival 
data. By contrast, the nonparametric longitudinal 
model uses a retransformation approach, taking 
into account the missing data mechanism by 

assuming a skewed distribution of disturbances. 
Empirical examples are employed to illustrate 
the new methods developed herein and to 
discuss the merits and weaknesses in each of the 
two-step estimators. 
 
Impact of Selection Bias from Mortality 

For a baseline sample of I individuals 
and J  follow-up time points, for convenience of 
analysis, a disability severity score, Yit, is 
defined to indicate health status for individual i 
(i = 1, 2, …., I) at time t (t = 0, 1, …., J). It is 
then assumed that a hypothetical disability 
severity score exists instantaneously before 
dying for those who have been deceased 
between time (t - 1) and time t (t = 1, …., J). It is 
further assumed that the hypothetical disability 

severity score for the deceased, denoted by d
itY , 

is greater than or equal to a constant Ct, and the 

disability severity scores among survivors, s
itY , 

are all smaller than this constant. 
Heckman’s (1979) perspective serves to 

exhibit the impact of selection bias from 
mortality. Beginning with two longitudinal 
random-effects linear regression models, the 
complete model that includes all members of the 
baseline sample and a truncated model that 
consists of survivors only, given by 
 

1 1 1 1 1   Y X Z′ ′= β + γ + ε                (1a) 

 

2 2 2 2 2 ,Y Y C X Z′ ′< = β + γ + ε         (1b) 

 
where Y represents the (n × 1) vector of 
observed outcome data within the framework of 
a block design (n = I × [J + 1]). The matrix X is 
an (n × p) matrix for p − 1 independent variables 
and Z is a (n × r) design matrix for the random 
effects. The matrices β and γ are parameters for 
X and Z respectively. The random effects are 
assumed to be normally distributed with mean 0 
and variance matrix G. The joint distribution of 
ε1 ε2 is assumed to be a singular distribution with 
covariance matrix σ12. While the residual term ε1 
is assumed to be normally distributed with mean 

0 and variance matrix 2
1σ , it is implausible to 

assume that ε2 be normally distributed with zero 
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expectation, because the error term in (1b) may 
not be independent of the covariates. 

Because Yd is not observable, a 
dichotomous factor δit is defined to indicate the 
survival status for individual i between time (t – 
1) and time t (t = 1, 2, …, J) and is used as a 
proxy for C, such that 
 

( )

( ) ( )

it

it

it

it

δ 0 if individual i dies between 

        time (t-1) and t Y

δ 1 if individual i survives from

        time t-1  and time t Y

t

t

C
.

C

=
 ≥
 =
 <

 

 
Specifically, the disability severity score 

is viewed at time t as a joint distribution of two 
sequential events: the likelihood of survival 
between time (t - 1) and time t (St; t = 1,2, …., J) 
and the conditional density function on the 
disability severity score (Yt) among those who 
have survived to t. Given the aforementioned 
assumptions, the expected disability severity 
score for individual i at time t can be estimated 
by the following equation 
 

( )

( ) ( )

2 2

2 2 2 2

1
2 2 1 1 1 1

E 1

1 .

it i i it

i i
it i

i i t i i

Y X ,Z ,

X Z
Pr X

E C X Z

δ = =

′ ′β + γ  δ =  ′ ′+ ε ε < − β + γ    
(2) 

 
As demonstrated by (2), the conditional mean of 
the disturbance in the survivors sample is a 
function of X1i and Z1i. The estimation of 
equation (2) without considering this correlation 
will lead to inconsistent parameter estimates and 
prediction biases. Therefore, modeling 
longitudinal processes of this disability severity 
score can be much beyond what a conventional 
single-equation linear regression can handle. 
Next, two refined longitudinal models are 
developed for reducing the selection bias in the 
analysis of longitudinal health data for older 
persons, one parametric and one nonparametric. 
 
Parametric Joint Model 

The parametric joint mixed model 
begins by constructing a selection model using 

survival rates as the dependent variable. 
Specifically, a Probit survival model is 
developed using the rationale of Heckman’s 
(1979) two-step perspective to estimate the 
proportion surviving between time (t – 1) and 
time t (t =1, 2, …., J). Some empirical studies 
with joint modeling of longitudinal and survival 
data have used other statistical functions to 
estimate survival rates such as the Cox 
proportional hazard rate model and logistic 
regression (Egleston, Scharfstein, Freeman & 
West, 2006; Kurland & Heagerty, 2005; Leigh, 
Ward & Fries 1993; Pauler, McCoy & 
Moinpour, 2003; Ratcliffe, Guo & Ten Have, 
2004). The Probit function is used here for 
convenience of illustration assuming survival 
probabilities are normally distributed. 
Specification of other functions would lead to 
the same results (Greene, 2003; Kalbfleisch & 
Prentice, 2002). 

For individual i at time (t – 1), the 
probability of his or her survival to time t is 
given by 
 

( ) ( ) ( )( )1 11

t 1, 2, 3,..., J

it it p pi t i tPr Y X Z− −′ ′δ = = Φ β + γ

=
  (3) 

 
where Φ(.) represents the cumulative normal 
distribution function (Probit). From this 
equation, estimated survival rates can be 
obtained for each individual at J – 1 observation 
intervals. The estimates of Φ(X′β + Z′γ) are 
then saved for each individual at each follow-up 
time point as an unbiased estimate of the 
survival rate. 

Given the assumption that the 
hypothetical disability severity score for those 
who have been deceased between time (t – 1) 
and time t (t = 1, 2, …, J), the distribution of  
survivors’ disability severity scores at time t is 
truncated on the right. Accordingly, the inverse 
Mills ratio for individual i at time t can be given 
by 
 

( ) ( )( )
( ) ( )( ) ( )1 1

it

1 1

φ
  if 1 Y C

Φ

p pi t i t
it

p pi t i t

X Z
,

X Z
− −

− −

′ ′β + γ
λ = − δ = <

′ ′β + γ
 

(4a) 
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( ) ( )( )
( ) ( )( ) ( )1 1

it

1 1

φ
  if 0 Y C

1 Φ

p pi t i t
it

p pi t i t

X Z
,

X Z
− −

− −

′ ′β + γ
λ = δ = ≥

′ ′− β + γ
 

(4b) 
 
where φ(.) represents the standard normal 
density function. Values of λ’s at time 0 (first 
wave) are all zero because no selection bias is 
present from deaths at the outset of the 
longitudinal investigation. As defined, the 
inverse Mills ratio for the deceased is the hazard 
rate of surviving between two adjacent time 
points; for those who have survived, it 
represents the risk of not surviving within an 
observational interval (Greene, 2003). 

With the vector λ created, a 
conditionally unbiased truncated random-effects 
model is developed on the disability severity 
score at J time points, given by 
 

( )
22 3 2 3 31 ,e vY Y X Z′ ′ ′δ = = β + γ + σ λ + ε      (5) 

 
where σev is a vector of covariance between ε1 
and v, the latent error vector from (3), specified 
in the estimation process as a vector of the 
regression coefficients of λ, with elements 
assumed to be normally distributed. Because the 
survival rate and the disability severity score are 
inversely correlated, elements in σev – with the 
exception of the first – are expected to take 
negative signs. With λ included in the estimation 
process, the error term ε3 is assumed to have 

mean 0 and variance 2
3σ , and to be uncorrelated 

with X2, Z2, and λ. When all assumptions on 
error distributions are satisfied, equation (5) 
generates unbiased and consistent parameter 
estimates because observations are presumably 
conditionally independent of each other.  

Note that in equation (5), the inclusion 
of λ and σ accounts for the covariance between 
two error terms, ε1 and v, thereby indicating that 
the joint distribution of two sequential equations, 
represented by equation (2), is empirically 
embedded in (5). 
 
Nonparametric Joint Random-Effects Model 

The traditional two-step linear 
regression estimator and the joint longitudinal 
models depend on several strong assumptions 

regarding error distributional functions. When 
the assumption of multivariate normality for ε 
cannot be satisfied, as is often the case in health 
transitions (Liu, 2000; Manning, Duan & 
Rogers, 1987), Equation (5) cannot derive 
correct estimates for the underlying disability 
severity score. In these circumstances, Duan’s 
(1983) and Liu’s (2000) retransformation 
methods are extended into the context of 
repeated measures, assuming a nonparametric 
distribution of disturbances. One of the 
advantages of this approach is that researchers 
do not need to specify a parametric selection 
model to consider the missing data mechanisms. 
Rather, the selection bias is handled indirectly 
through estimating a smearing effect in the 
estimation process (Duan, 1983; Liu, 2000). 

The log transformed nonzero value of 
the underlying disability severity score is used to 
address the possible non-linearity of its 
distribution among those with any disability. For 
this reason, a two-step procedure is proposed 
with the first equation meant to estimate the 
likelihood of having a nonzero disability score. 
The two-stage nonparametric mixed model is 
given by 
 

( ) ( )2 4 2 4Pr Y 0 X Z′ ′> = Φ β + γ        (6a) 

 

( ) ( )2 5 2 5 50 ,log Y Y X Z′ ′> = β + γ + ε ξ  

(6b) 
 
where ξ serves as a nonparametric adjustment 
factor for selection bias from high mortality. The 
expected disability severity score at various 
points in time can be expressed by the following 
joint distribution: 
 

( ) ( ) ( )2 4 2 4 2 5 2 51 ˆ ˆ ˆˆ ˆ ˆE Y S X Z exp X Z .′ ′ ′ ′= = Φ β + γ β + γ ξ

(7) 
 
As previously indicated, the distribution of the 
error term in health transition data is often 
skewed without following an identifiable pattern 
(Duan, 1983; Liu, 2000; Manning, Duan & 
Rogers, 1987). However, empirical data can be 
used to estimate values of ξ when the error 
distributional function is uncertain. First, 
assuming X to have full rank: 
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( ) ( )
( )

2 5 2 5 5

2 5 2 5 5 5

0E Y Y E log X Z

log X Z dF( ).

′ ′> = β + γ + ε  
′ ′= β + γ + ε ε  

 

(8) 
 
When the error distributional function F is 
unknown, this cumulative density function, F, is 

replaced by its empirical estimate jF̂  at time-

point t; this is referred to as the smearing 
estimate and is given by 
 

( ) ( ) ( )

( )

( ) ( )

2 5 2 5 5 5

2 5 2 5 5
1

1
2 5 2 5 5

1

0

1

,

j

t

tj

t t t t t n t

n

it it it
it

n

t t t it
i

ˆ ˆE Y Y E log X Z dF

ˆlog X Z
n

ˆ ˆ ˆlog X Z n exp

=

−

=

 ′ ′> = β + γ + ε ε 

′ ′= β + γ + ε

′ ′= β + γ ε







 

(9) 
 
where nt is the number of observations at time t 

with nonzero disability severity scores and 5β̂  

and 5γ̂  can be estimated by employing the 

maximum likelihood procedure without 
specifying a disturbance distributional function 
(Liu, 2000). When the sample size for a 
longitudinal study is large enough to derive a 
reliable expected value of errors, such a 
smearing estimate for the retransformation in 
log-linear equations is consistent, robust and 
efficient (Duan, 1983; Liu, 2000; Manning, 
Duan & Rogers, 1987). 

The estimate of ξ at time t can be 
calculated by the equation 
 

( ) ( )2 5 2 5
1

0
.

tn

it it it it
i

t
t

ˆ ˆexp log Y Y X Z

n
=

 ′ ′> − β + γ 
ξ =


 

(10) 
 

As presented, the nonparametric 
random-effects model does not depend on the 
specification of a given selection process; rather, 
it estimates an unknown error distribution by the 
empirical cumulative density function of the 
estimated regression residuals, and then takes 
the desired expectation with respect to the 
expected error distribution. If skeptical whether 

observations are conditionally independent, 
researchers might use the inverse Mills ratio as a 
covariate to account for the potential clustering 
among survivors thereby deriving more reliable 
parameter estimates. The complete dependence 
of this nonparametric approach on empirical 
data is obvious: If the longitudinal attrition due 
to reasons other than death is not random 
making the missingness non-ignorable, then the 
model-based predicted values of the disability 
severity score can be still severely biased. 
 

Methodology 
Illustrations 

Data used for empirical demonstrations 
are from the Survey of Asset and Health 
Dynamics among the Oldest Old (AHEAD), a 
nationally representative investigation of older 
Americans. This survey, conducted by Institute 
of Social Research (ISR), University of 
Michigan, is funded by National Institute on 
Aging as a supplement to the Health and 
Retirement Study (HRS). At present, the survey 
consists of six waves of investigation; the Wave 
I survey was conducted between October 1993 
and April 1994. Specifically, a sample of 
individuals aged 70 or older (born in 1923 or 
earlier) was identified throughout the HRS 
screening of an area probability sample of 
households in the nation. This procedure 
identified 9,473 households and 11,965 
individuals in the target area range. AHEAD 
obtains detailed information on a number of 
domains, including demographics, health status, 
health care use, housing structure, disability, 
retirement plans and health and life insurance. 
Survival information throughout the six waves 
has been obtained by a link to the data of 
National Death Index (NDI). The present 
research uses data of all six waves: 1993, 1995, 
1998, 2000, 2002 and 2004. 

Disability severity, standing for an 
individual’s health status in this study, is 
measured by a score of activities of daily living 
(ADL), instrumental activities of daily living 
(IADL), and other types of functional limitations 
(Liu, Engel, Kang & Cowan, 2005). A score of 
one is given to an individual who has any 
difficulty with a specific physical or social 
activity and the number of items for which 
difficulties are reported is then summed. As a 
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result, the score ranges from 0 (functional 
independence) to 15 (maximum disability). 
When predicting the survival rate (for the 
parametric joint model) or the probability of 
having any functional limitation (for the 
nonparametric joint model), such covariates as: 
veterans status (1 = veteran, 0 = non-veteran), 
age, gender (1 = female), education (years in 
school), ethnicity (1 = white, 0 = others), marital 
status (1 = currently married, 0 = other), 
smoking cigarettes and drinking alcohol, the 
number of serious health conditions, and self-
rated health (5 scales: 1 = poor, 5 = excellent) 
are considered. The first four of these covariates 
(veteran status, age, gender and education) are 
used as the control variables in estimating the 
random-effects models and are rescaled to be 
centered about their means for analytic 
convenience. Specification of different sets of 
covariates at two different estimation stages 
helps reduce the occurrence of collinearity 
(Winship & Mare, 1992). 

Three sets of the predicted number of 
functional limitations are compared at six time 
points; these are derived, respectively, from the 
conventional single-equation random-effects 
model, the parametric two-step joint model, and 
the nonparametric joint model. This provides the 
basis for examining how well each of these three 
random-effects longitudinal models fits the 
observed data for the following two reasons. 
First, if longitudinal dropouts due to reasons 
other than death are missing at random (MAR), 
the trajectory of the observed mean number of 
functional limitations is approximately unbiased. 
Here, the accurate description of empirical data 
serves as a criterion for the quality of a statistical 
model. Second, even if dropouts due to other 
reasons are missing not at random (MNAR), 
useful theoretical implications can be obtained 
by deviations of model-based predicted values 
from the empirical data. 

The SAS PROC MIXED procedure with 
repeated measures is used to compute both fixed 
and random effects and to derive the predicted 
number of functional limitations at each time 
point (Littell, Milliken, Stroup, Wolfinger & 
Schabenberger 2006). Because intervals between 
two adjacent time points are unequally spaced in 
the AHEAD longitudinal data the 
REPEATED/TYPE = SP option was used in 

executing the SAS PROC.MIXED procedure to 
represent the autoregressive error structure of 
the data (Littell, et al., 2006). For analytic 
simplicity without loss of generality, between-
individuals random effects are not further 
specified with the presence of a specific residual 
variance/covariance structure. Statistically, a 
combination of both error types is often found to 
fit the data about the same as does a model of 
either type (Hedeker & Gibbons, 2006). Hence, 
in the estimation process the variable time is 
treated as a series of dichotomous variables with 
the last time point, time 5 (time = 0, 1, 2, 3, 4, 
and 5), used as the reference. 
 

Results 
Table 1 presents the results of three random-
effects models, the conventional, the parametric 
two-step and the nonparametric two-stage. In 
terms of the fixed effects, the intercept suggests 
the population estimate of the dependent 
variable at time 5 (year 2004); this time point is 
used as the reference in specification of five 
time dichotomous variables and all other 
covariates are centered about their sample 
means. The combined regression coefficients of 
the five time variables demonstrate an inverse-U 
shaped nonlinear function for the trajectory of 
transitions in the number of functional 
limitations, revealing the strong impact of the 
survival-of-the-fittest selection process among 
older Americans.  

Of the control variables, veterans, older 
persons and women are expected to have a 
higher number of functional limitations than do 
their non-veteran, younger and male 
counterparts, other variable being equal. All 
regression coefficients, except those of veteran 
status, are statistically significant. The 
regression coefficient of lambda, the inverse 
Mills ratio, estimated for the parametric second-
step random-effects model is sizable (-4.8184), 
statistically significant and takes a negative sign 
as expected. This suggests the importance of 
accounting for clustering effects when analyzing 
the longitudinal health data of older persons. 

All estimates of the random effects are 
statistically significant. The SP variance/ 
covariance structure covers a relatively small but 
statistically significant portion of total variance 
for the conventional and the parametric two-step 
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random-effects longitudinal models. The relative 
size of this variance component increases 
considerably for the nonparametric random-
effects model in which the dependent variable is 
the natural logarithm of the number of functional 
limitations among those with any functional 
limitation. The values of ξ’s at the six time 
points, the adjustment factors in the means for 
the retransformation in the nonparametric 
random-effects model (not presented in Table 1) 
are, respectively, 1.3678 at time 0, 1.2448 at 
time 1, 1.1371 at time 2, 1.1491 at time 3, 
1.1408 at time 4, and 1.2616 at time 5, all are 
statistically significant. The model Chi-square 
for each mixed model, reported in the last row of 
the table, is calculated as the difference in the 
value of -2 × (log likelihood) between the model 
with covariates and the model without any 
covariates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 shows four sets of mean numbers of 
functional limitations in older Americans at six 
time points - 1993, 1995, 1998, 2000, 2002 and 
2004 - derived from observed data and the three 
types of longitudinal random-effects models, 
respectively. Compared to the observed data, the 
conventional single-equation linear random-
effects model systematically overestimates the 
number of functional limitations at every time 
point except the baseline and this overestimation 
increases as the survey progresses. The 
parametric two-step longitudinal joint model 
somewhat reduces such overestimation, but the 
adjustment appears very limited and deviations 
from the observed data are still considerable and 
systematic. By contrast, the nonparametric 
longitudinal joint model derives the closest set 
of the estimates to describe transitions in the 
number of functional limitations in older 
Americans. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Results of Three Random-Effects Models on Number of Functional Limitations in 
Older Americans: AHEAD Longitudinal Survey (n = 8,443) 

Explanatory Variables and 
Other Statistics 

Conventional 
Mixed Model 

Parametric 
2-Step Modela 

Nonparametric  
2-Step Modelb 

Fixed Effects: 

Intercept 5.5045** 5.3967** 1.4515** 

Time 0 (1993) -3.0158** -2.9079** -0.4582** 

Time 1 (1995) -0.2583** -0.1320 0.0028 

Time 2 (1998) 0.8780** 0.9613** 0.2348** 

Time 3 (2000) 0.9984** 1.0416** 0.2287** 

Time 4 (2002) 1.2367** 1.2575** 0.2569** 

Veteran status 0.1613 0.1023 0.0292 

Age 0.1742** 0.1320** 0.0274** 

Female 0.7360** 0.8773** 0.0849** 

Education -0.1665 -0.1519** -0.0269** 

Lambda (λ)  -4.8184**  

Random Effects: 

Spatial power (POW) 0.5651** 0.5295** 0.4571** 

Residual 12.3156** 11.5321** 0.4939** 

Model Chi-Square 13367.1** 16715.9** 6100.3** 

*0.01 < P < 0.05; **P < 0.01; a Results of the second-step mixed model; b Results of the second-
step mixed model for those with at least one functional limitation, with the dependent variable 
being the natural logarithm of the number of functional limitations 



REDUCING SELECTION BIAS IN HIGH MORTALITY RATE LONGITUDINAL DATA 

410 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 illustrates deviations in the 
predicted number of functional limitations 
derived from the three types of mixed models. 
Panel A compares the observed curve with the 
predicted values derived from the conventional 
single-equation random-effects model and 
shows distinct and systematic separations 
between the two growth curves. At each time 
point following the baseline survey, the 
predicted number of functional limitations 
obtained from the conventional single-equation 
random-effects model is considerably higher 
than the corresponding observed number. The 
predicted growth curve in Panel B, derived from 
the parametric longitudinal joint model, displays 
mitigated separation from the observed curve; 
however, the deviations remain sizable and 
systematic thereby reflecting the restriction of 
using parametric approach to correct for 
selection bias. In Panel C, the two curves almost 
coincide, demonstrating the accurate description 
of the empirical data by applying the 
nonparametric longitudinal joint modeling, 
which builds upon observed pattern of health 
transitions rather than impose strong 
assumptions on error distributions. 
 

Conclusion 
Non-ignorable missing data are important issues 
in longitudinal data analysis. Despite an 
abundant literature on this subject, none of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
currently existing statistical models has the 
capacity to handle all types of non-ignorable 
dropouts (Hogan, Roy & Korkontzelou, 2004). 
Most models of this type are created for the 
analysis of longitudinal missing data in clinical 
experimental studies where repeated measures 
are often narrowly spaced and mortality is 
almost nonexistent. With respect to large-scale 
longitudinal data of older persons, currently 
available models are not specifically developed 
to reflect the unique influence of high mortality 
on estimating and predicting health outcomes at 
older ages. Because those who have been 
deceased between assessment periods no longer 
exist, various assumptions on the measurability 
of health status for dropouts are not plausible 
and meaningful. 

When mortality rates are high, the direct 
application of conventional random-effects 
linear models on longitudinal health data can be 
associated with serious selection bias. As 
previously noted, mechanisms leading to biases 
on parameter estimates have been well 
documented (Egleston, Scharfstein, Freeman & 
West, 2006; Hogan, Roy & Korkontzelou, 2004; 
Kurland, & Heagerty, 2005; Leigh, Ward & 
Fries, 1993; Liu, 2000; Manning, Duan & 
Rogers, 1987; Pauler, McCoy & Moinpour, 
2003; Ratcliffe, Guo & Ten Have, 2004). This 
study introduced two refined random-effects 
joint models and sought to substantially reduce  

Table 2: Predicted Number of Functional Limitations in Older Americans Derived 
From Three Random-Effects Models (n = 8,443) 

 

Time Point 
Observed and Predicted Number of Functional Limitations 

Observed Conventional Parametric Nonparametric 

1993 2.4887 2.4996 2.4759 2.6918 

1995 5.1514 5.2571 5.2518 5.1184 

1998 6.1378 6.3934 6.3451 6.1197 

2000 6.1602 6.5138 6.4254 6.1598 

2002 6.3348 6.7521 6.6413 6.3056 

2004 4.9608 5.5154 5.3838 4.9088 

Note: All predicted values derived from the three mixed models are statistically 
significant relative to value zero. 
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Figure 1: Transitions in Functional Limitations in Older Americans: 
Growth Curves Derived from Three Approaches 
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bias incurred from changes in the distribution of 
health outcome data at multiple time points. The 
parametric longitudinal model is an extension of 
Heckman’s (1979) traditional two-step estimator 
which, like other parametric joint models, is 
based on several restrictive assumptions on the 
joint modeling and error distributional functions. 
Researchers have questioned and discussed the 
validity and reliability of this type of two-step 
estimator. Much of the literature about this 
estimator focuses on the ill effects of violations 
against assumptions regarding λ, X and the error 
distributions (Demirtas, 2004; Fu, Winship & 
Mare, 2004; Hedeker & Gibbons, 2006; Hogan, 
Roy & Korkontzelou, 2004; Little & Rubin 
2003; Manning, Duan & Rogers, 1987; Winship 
& Mare, 1992). 

This study shows that - as an extended 
case of the Heckman’s perspective - the 
parametric two-step random-effects joint model 
has the capacity to reduce some of the deviations 
from the observed data; however, the degree of 
this adjustment is limited and deviations remain 
considerable and systematic. The limited effects 
of this approach are further evidenced by the 
similarity between the growth curve derived 
from this two-step estimator and the curve from 
the single-equation random-effects model (see 
Table 1 and Figure 1). In view of the difficulty 
in verifying assumptions on parametric 
distributional functions at multiple time points, 
the use of a nonparametric approach seems a 
more promising way of modeling longitudinal 
health data for older persons. 

In reality, it is not possible to verify or 
contradict whether missingness is random by 
examination of the observed data (Demirtas, 
2004; Little & Rubin, 2002). However, if non-
death dropouts are missing at random, the 
selection bias from high mortality rates can be 
identified by examining the model fitness with 
observed health transition data. In many 
empirical applications in which mortality is low, 
the true cause of the missingness is often 
thought to be an unmeasured variable that is 
only moderately correlated with the response, 
not the response itself. Failure to account for the 
cause seems to introduce only minor bias 
(Schafer & Graham, 2002). If this phenomenon 
can be viewed as a general rule, the agreement 
of the model-based longitudinal trajectory with 

the observed curve can be used to measure the 
sensitivity of predicted health scores in older 
persons. The nonparametric longitudinal joint 
model presented herein is created particularly to 
correct for the selection bias from high mortality 
rates when the observed data are trustworthy and 
the non-death longitudinal dropouts are missing 
at random and thereby ignorable. This 
nonparametric regression model has the added 
advantage that the selection information 
(survival in the present study) does not need to 
be accounted for directly in the estimation 
process. 

Because the nonparametric approach 
presented is meant to correct for the selection 
bias using empirical adjustments, its application 
must be based on researchers’ confidence that 
biases from ignoring missing data from other 
causes are minor (Little, 1995). Therefore, its 
practicality is limited within the circumstances 
that non-response due to mortality is the only 
source of non-ignorable dropouts.  

If non-death dropouts are missing not at 
random (MNAR), which is thought to be 
exceptional by some researchers (Schafer & 
Graham, 2002), investigators need to compare 
results generated from various statistical models 
handling non-ignorable dropouts, such as 
selection, semi-parametric, pattern-mixture 
models (Demirtas, 2004; Hedeker & Gibbons, 
2006; Hogan, Roy & Korkontzelou, 2004; Little, 
1995; Pauler, McCoy & Moinpour, 2003; 
Robins, Rotnitzky & Zhao, 1995), and the 
present nonparametric joint approach. However, 
the effects of dropouts from different reasons on 
the longitudinal selection bias should be dealt 
with separately before a unified statistical model 
handling multi-cause dropouts can be eventually 
developed (Demirtas, 2004; Hedeker & 
Gibbons, 2006; Hogan, Roy & Korkontzelou, 
2004). For example, dropouts due to mortality, 
sickness, migration or difficulty in answering 
sensitive questions may each involve a unique 
missing data mechanism. To fulfill this task, 
researchers must collect as much information as 
possible about various reasons for dropouts and 
incorporate this information into model 
development (Little, 1995). 
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Use of Two Variables Having Common Mean to Improve the Bar-Lev, 
Bobovitch and Boukai Randomized Response Model 
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A new method to improve the randomized response model due to Bar-Lev, Bobovitch and Boukai (2004) 
is suggested. It has been observed that if two sensitive (or non sensitive) variables exist that are related to 
the main study sensitive variable, then those variables could be used to construct ratio type adjustments to 
the usual estimator of the population mean of a sensitive variable due to Bar-Lev, Bobovitch and Boukai 
(2004).The relative efficiency of the proposed estimators is studied with respect to the Bar-Lev, 
Bobovitch and Boukai (2004) models under different situations. 
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Introduction 
The problem of estimating the population total 
of a sensitive quantitative variable is well known 
in survey sampling. Warner (1965) was the first 
to suggest a method to estimate the proportion of 
sensitive characters (e.g., induced abortions, 
drugs used) via use of a randomization device 
such as a deck of cards or a spinner such that 
respondents’ privacy would be protected (Tracy 
and Mangat (1996) presented a rich description 
of the literature). Mangat and Singh (1990) 
proposed a two-stage randomized response 
model. Leysieffer and Warner (1976) and Lanke 
(1975, 1976) studied different randomized 
response procedures at equal levels of protection 
of the respondents; later Nayak (1994), 
Bhargava (1996), Zou (1997), Bhargava and 
Singh (2001, 2002) and Moors (1997) found that 
the Mangat and Singh (1990) and Warner (1965) 
models remain equally efficient at equivalent 
protection; however, this result is not true for all 
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randomized response models (Bhargava, 1996; 
Bhargava & Singh, 2002). Singh (2003) shows 
that the Mangat (1994) model remains more 
efficient than the Warner (1965) model at equal 
protection: note that the Mangat (1994) model is 
a special case of the Kuk (1990) model, which is 
further improved and studied by Gjestvang and 
Singh (2006). A two stage model developed by 
Mangat and Singh (1990) was studied by both 
Kim and Elam (2005) and Kim and Warde 
(2005). Eichorn and Hayre (1983) suggested a 
multiplicative model to collect information on 
sensitive quantitative variables such as, income, 
tax evasion or amounts of drugs used; this model 
was further studied by Arnab (1995, 1996). 
According to Eichorn and Hayre (1983), each 
respondent in the sample is requested to report a 
scrambled response ii SYZ = , where iY  is the 

real value of the sensitive quantitative variable, 
and S  is the scrambling variable whose 
distribution is assumed to be known. Thus, 

( ) θ=SER  and ( ) 2γ=SVR  are assumed to be 
known and positive, therefore, an estimator of 

the population mean 1
i

i
Y N Y−

∈Ω

=   under 

simple random with replacement (SRSWR) 
sampling is given by: 

1

1 n
i

EH
i

Zy
n θ=

=                       (1.1) 
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with variance 
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where 
222 θγγ =C , NYY =   

and 
YC yy σ= . 

 
In a randomized response model 

recently developed by Bar-Lev, Bobovitch and 
Boukai (2004) (hereafter referred to as the BBB 
model), the distribution of the responses is given 
by: 

i
i

i

Y S   with probability  (1-p )
Z

Y     with probability  p


= 


 (1.3) 

 
Thus, each respondent is requested to rotate a 
spinner unobserved by the interviewer, if the 
spinner stops in the shaded area, the respondent 
is requested to report the real response on the 
sensitive variable, iY ; if the spinner stops in the 

non-shaded area, the respondent is requested to 
report the scrambled response, SYi , where S  is 

any scrambling variable with a known 

distribution. Assume that ( ) θ=SE  and 

( ) 2γ=SV  are known. Let p  be the proportion  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the shaded area of the spinner and ( )p−1  be 
the non-shaded area of the spinner as shown in 
Figure 1. 

An unbiased estimator of population 
mean Y  is given by: 
 


=+−

=
n

i
iZ

ppn
y

1
BBB })1{(

1

θ
    (1.4) 

 
with variance under SRSWR sampling given by: 
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2
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θ γ
.  (1.6) 

 
Notations 

Let XXX ii == 21  be two auxiliary 
sensitive variables that have a common mean 
(Tripathi & Chaubey, 1992), and let iY  be the 
sensitive variable under study whose mean is to 
be estimated. Consider a simple random sample 
of n  respondents selected with replacement 
(SRSWR), where each respondent selected in 
the sample is requested to rotate three spinners 
(see Figure 2). 

The first spinner is used to collect 
scrambled response iZ  on the real study variable 

iY  with the distribution of responses as: 
 

( )1
i

i
i

with probability pY
Z

with prob ability pY S


=  −
  (2.1) 

 
where the value of p  is assumed to be known. 
The second spinner is used to collect scrambled 
response iZ1  on the first auxiliary sensitive 

variable iX1  with the distribution of responses 
as: 
 

( )
11

1
11 1 1

i
i

i

with probability pX
Z

with probability pS X


=  −
 (2.2) 

 
 

Figure 1: BBB Randomized Response Device 
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where the value of 1p  is assumed to be known. 
The third spinner is used to collect scrambled 
response iZ2  on the second auxiliary sensitive 

variable 2iX  with the distribution of responses 

as: 
 

( )
22

2
22 2 1

i
i

i

with probability pX
Z

with probability pS X


=  −
 (2.3) 

 
where the value of 2p  is assumed to be known. 

Assume that the sample means of the 
scrambled responses obtained from the 
respondents in the sample iZ , iZ1  and iZ2  are 
given by: 
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Figure 2: Three Spinners 
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Proposed Ratio-Type Estimator 

A ratio estimator is defined as: 
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Note that: 
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thus, the ratio estimator (3.1) can be written in 
terms of ∈, δ  and η  as: 
 

( ) ( )
( )

( )( )( )
[ ]

1

2

2

1
1

1

1 1 1

1 1

1

Ratio

X
y Y

X

Y

Y ....

Y ....

δ
η

δ η

δ δ η η

δ η η δ η δη

∗

−

+
= + ∈

+

= + ∈ + +

 = + ∈ + + ∈ − + + 
 = + ∈ + − + + ∈ − ∈ − + 

(3.2)
  

From this, the following theorems result. 
 
Theorem 3.1 

The bias in the proposed ratio estimator 
*
Ratioy  is given by 
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Theorem 3.1: Proof 

Taking the expected value on both sides 
of (3.2) results in: 
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Thus the bias in the proposed ratio estimator 

*
Ratioy  is given by: 
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Thus, Theorem 3.1 is proved. 
 
Theorem 3.2 

The mean squared error of the proposed 

ratio estimator *
Ratioy  is given by 
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Theorem 3.2: Proof 

The mean squared error of the ratio 

estimator *
Ratioy  is given by 
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thus proving Theorem 3.2. 
 
Efficiency of the Proposed Ratio Estimator 

The proposed ratio estimator *
Ratioy  will 

be more efficient than the BBB model if 
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(3.1.2) 
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In order to see the magnitude of the proposed 

ratio estimator *
Ratioy  with respect to the BBB 

model the percent relative efficiency is 
computed as: 
 

%100
)yMSE(

)(
),(RE

*
Ratio

BBB*
RatioBBB ×= yVyy  

(3.1.3) 
 
The relative efficiency of the ratio estimator 
depends on a few parameters such as P , 1P , 2P , 

yC , 
1xC , 

2xC , γC , 
1γC , 

2γC , θ , 1θ  and 2θ . 

The percent relative efficiency (RE) is free from 
the sample size n  and main parameter of 
interest Y . Fortran programs were developed in 
order to find the values of the parameters yC , 

1xC , 
2xC , γC , 

1γC , 
2γC , 

1yxρ , 
2yxρ , 

21xxρ , 

θ , 1θ  and 2θ  by holding P , 1P , and 2P  equal 
to 0.7 such that the percent RE remains greater 
than 200%. (Detailed results are shown in Table 
3.1 in the Appendix.)  

Values of yC , 
1xC , 

2xC , γC , 
1γC , 

and 
2γC  were changed between 0.1 and 0.5 

with a step of 0.2, and the values θ , 1θ  and 2θ  
were changed between 0 and 1 with a step of 
0.5. It was observed that selecting larger values 
for θ , 1θ  and 2θ  may lead to inefficient results, 
thus the choice of these values is critical when 
using the proposed ratio method in practice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The values of 
2yxρ  and 

21xxρ were 

changed between 0.1 and 0.9 with a step of 0.2, 
and 

1yxρ  was changed between –0.9 to +0.9 

with a step of 0.2. The average percent relative 
efficiency was 289.9% with a standard deviation 
of 77.4, median of 270.0%, minimum of 200.9% 
and maximum of 499.8% (see Table 3.2). It was 
observed that 724 cases exist in which the RE of 
the proposed ratio estimator remained between 
200.9% and 499.8%. 
 
Proposed Power Transformation Type Estimator 

By following the repeated substitution 
method developed by Garcia and Cebrian 
(1996), consider a new power transformation 

ratio type estimator *
Powery  as: 
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where α  is a suitably chosen real constant. For 
example if 0=α  then the proposed power 

transformation ratio type estimator *
Powery  

reduces to the BBB estimator BBBy . If 1=α  

then the proposed power transformation ratio 

type estimator *
Powery  reduces to the ratio 

estimator *
Ratioy . 

Note that the proposed transformation 

type estimator *
Powery  in terms of ∈, δ  and η  

can be written as: 
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{step 4 assumes that 1....2 <+−+− δηδηδ } 

 

Table 3.2: Descriptive Statistics of 
the Percent Relative Efficiency 

Mean 289.9 
Standard Error 2.9 

Median 270.0 
Standard Deviation 77.4 
Sample Variance 5994.6 

Kurtosis -0.1 
Skewness 0.9 

Range 298.9 
Minimum 200.9 
Maximum 499.8 

Count 724 



IMPROVING THE BAR-LEV, BOBOVITCH & BOUKAI RANDOM RESPONSE MODELS 

420 
 

 

( ) ( )

( )
( )

( )

2

2 2

2 2

1
1

1

1

Y
...

Y
...

Y
...

α δ η αδ
αδη

α δ η α δ
αδη α δ η

α δ η α δ
αδη α δ α η

 + − +
= + ∈  

− + 
 + ∈ + − +

=  
− + ∈ −∈ +  
 + ∈ + − +

=  
− + ∈ − ∈ + 

       (4.2) 

 
This leads to two additional theorems. 
 
Theorem 4.1 

The bias in the proposed power 

transformation ratio type estimator *
Powery  is 

given by: 
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Theorem 4.1: Proof 

Taking expected value on both sides of 
(4.2), and using 

( ) ( )* *
Power PowerB y E y Y= −  

 
results in 
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Theorem 4.2 

The minimum mean squared error of the 
proposed power transformation ratio type 

estimator *
Powery  is given by formula (4.4) as 

shown below. 
 
Theorem 4.2: Proof 

By the definition of mean squared error, 
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(4.5) 
 
Differentiating (4.5) with respect to α  and 
setting it equal to zero the optimum value of α  
as shown in Formula 4.6, results in the minimum 

MSE of ∗
Powery  as given by (4.4). 

Based on these, it is clear that the 

proposed ∗
Powery  estimator remains more 

efficient than BBBy  for any choice of parameters 
in the proposed spinners or the design based 
parameters. 
 

Methodology 
Relative Efficiency of the Power Transformation 
Type Estimator with Respect to the BBB Model 

In order to determine the magnitude of 
the proposed power transformation type 

estimator *
Powery  with respect to the BBB 

model the percent RE was computed as: 
 

%100
)yMSE(

)(
),(RE

*
Power

BBB*
PowerBBB ×=

yV
yy  

(4.1.1) 
 
Again the RE of the power transformation 
estimator depends on parameters such as P , 1P , 

2P , yC , 
1xC , 

2xC , γC , 
1γC , 

2γC , θ , 1θ  and 

2θ ; the percent RE is free from the sample size 

n  and main parameter of interest Y . 
FORTRAN programs were developed in order 
to determine the values of the parameters yC , 

1xC , 
2xC , γC , 

1γC , 
2γC , 

1yxρ , 
2yxρ , 

21xxρ , 

θ , 1θ  and 2θ  by holding P , 1P , and 2P  equal 
to 0.7 such that the percent RE remains higher 
than 200% (see Table 4.1 in the Appendix for 
results). 

The values of yC , 
1xC , 

2xC , γC , 

1
C ,γ  and 

2γC  were changed between 0.1 and 

0.5 with a step of 0.2, and the values of θ , 1θ  

and 2θ  were changed between 0 and 1 with a 
step of 0.5. It was observed that larger values of 
θ , 1θ  and 2θ  may lead to slightly less efficient 
results, thus the choice of these values is critical 
when using the proposed power method in 
practice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The values of 

2yxρ  and 
21xxρ were changed 

between 0.1 and 0.9 with a step of 0.2, and 
1yxρ   

Table 4.2: Descriptive Statistics of the 
Percent Relative Efficiency 

Mean 233.05 
Standard Error 7.33 

Median 215.47 
Standard Deviation 47.53 
Sample Variance 2258.76 

Kurtosis 4.65 
Skewness 2.34 

Range 178.60 
Minimum 200.61 
Maximum 379.21 

Count 42 
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was changed between 0.1 to +0.9 with a step of 
0.2. The average percent relative efficiency was 
233.5% with a standard deviation of 47.53, a 
median of 215.47%, minimum of 200.16% and 
maximum of 379.21% (see Table 4.2). It was 
observed that 42 cases exist where the RE of the 
proposed ratio estimator remained between 
200.16% and 379.21%. As shown in Table 4.1, 
the optimum values of α  remained between –
1.56 and +1.56 with a mean equal to zero, 
standard deviation of 0.93 and mode of 0.49. 
 
 

Conclusion 
In this study new ratio and power transformation 
type estimators were proposed and compared to 
the recently described BBB randomized 
response model. It was observed that the overall 
magnitude of the relative efficiency of the ratio 
estimator - unlike the repeated substitution 
method due to Garcia and Cebrian (1996) - was 
better than that of the power transformation 
estimator in the case of scrambled responses. 
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Appendix 
Table 3.1: Relative efficiency of the proposed ratio estimator with respect to the BBB model for 

different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.5 0.5 0.3 -0.9 0.7 0.7 0.0 0.0 0.0 222.54 
0.1 0.1 0.1 0.5 0.5 0.5 -0.9 0.5 0.7 0.0 0.0 0.0 366.67 
0.1 0.1 0.1 0.5 0.5 0.5 -0.9 0.7 0.5 0.0 0.0 0.0 366.67 
0.1 0.1 0.1 0.5 0.5 0.5 -0.7 0.7 0.7 0.0 0.0 0.0 366.67 
0.3 0.3 0.3 0.5 0.5 0.3 -0.9 0.7 0.7 0.0 0.0 0.0 222.54 
0.3 0.3 0.3 0.5 0.5 0.5 -0.9 0.5 0.7 0.0 0.0 0.0 366.67 
0.3 0.3 0.3 0.5 0.5 0.5 -0.9 0.7 0.5 0.0 0.0 0.0 366.67 
0.3 0.3 0.3 0.5 0.5 0.5 -0.7 0.7 0.7 0.0 0.0 0.0 366.67 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.7 0.7 0.0 0.0 0.0 222.54 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.5 0.7 0.0 0.0 0.0 366.67 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.7 0.5 0.0 0.0 0.0 366.67 
0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.7 0.7 0.0 0.0 0.0 366.67 
0.1 0.1 0.1 0.3 0.3 0.1 -0.9 0.7 0.7 0.5 0.5 0.5 201.28 
0.1 0.1 0.1 0.3 0.3 0.3 -0.9 0.3 0.7 0.5 0.5 0.5 452.41 
0.1 0.1 0.1 0.3 0.3 0.3 -0.9 0.5 0.5 0.5 0.5 0.5 452.41 
0.1 0.1 0.1 0.3 0.3 0.3 -0.9 0.7 0.3 0.5 0.5 0.5 452.41 
0.1 0.1 0.1 0.3 0.3 0.3 -0.7 0.5 0.7 0.5 0.5 0.5 452.41 
0.1 0.1 0.1 0.3 0.3 0.3 -0.7 0.7 0.5 0.5 0.5 0.5 452.41 
0.1 0.1 0.1 0.3 0.3 0.3 -0.5 0.7 0.7 0.5 0.5 0.5 452.41 
0.1 0.1 0.1 0.3 0.3 0.5 -0.9 0.3 0.7 0.5 0.5 0.5 392.90 
0.1 0.1 0.1 0.3 0.3 0.5 -0.9 0.5 0.5 0.5 0.5 0.5 392.90 
0.1 0.1 0.1 0.3 0.3 0.5 -0.9 0.7 0.3 0.5 0.5 0.5 392.90 
0.1 0.1 0.1 0.3 0.3 0.5 -0.5 0.5 0.7 0.5 0.5 0.5 284.07 
0.1 0.1 0.1 0.3 0.3 0.5 -0.5 0.7 0.5 0.5 0.5 0.5 284.07 
0.1 0.1 0.1 0.3 0.3 0.5 -0.1 0.7 0.7 0.5 0.5 0.5 222.45 
0.1 0.1 0.1 0.3 0.5 0.1 -0.9 0.5 0.7 0.5 0.5 0.5 200.89 
0.1 0.1 0.1 0.3 0.5 0.1 -0.9 0.7 0.7 0.5 0.5 0.5 249.82 
0.1 0.1 0.1 0.3 0.5 0.3 -0.9 0.1 0.5 0.5 0.5 0.5 222.45 
0.1 0.1 0.1 0.3 0.5 0.3 -0.9 0.5 0.3 0.5 0.5 0.5 284.07 
0.1 0.1 0.1 0.3 0.5 0.3 -0.7 0.1 0.7 0.5 0.5 0.5 222.45 
0.1 0.1 0.1 0.3 0.5 0.3 -0.7 0.5 0.5 0.5 0.5 0.5 284.07 
0.1 0.1 0.1 0.3 0.5 0.3 -0.5 0.5 0.7 0.5 0.5 0.5 284.07 
0.1 0.1 0.1 0.3 0.5 0.5 -0.9 0.5 0.3 0.5 0.5 0.5 259.40 
0.1 0.1 0.1 0.3 0.5 0.5 -0.7 0.1 0.7 0.5 0.5 0.5 448.46 
0.1 0.1 0.1 0.3 0.5 0.5 -0.7 0.7 0.3 0.5 0.5 0.5 259.40 
0.1 0.1 0.1 0.3 0.5 0.5 -0.5 0.3 0.7 0.5 0.5 0.5 448.46 
0.1 0.1 0.1 0.3 0.5 0.5 -0.3 0.5 0.7 0.5 0.5 0.5 448.46 
0.1 0.1 0.1 0.3 0.5 0.5 -0.1 0.7 0.7 0.5 0.5 0.5 448.46 
0.1 0.1 0.1 0.5 0.1 0.3 -0.9 0.7 0.3 0.5 0.5 0.5 218.24 
0.1 0.1 0.1 0.5 0.1 0.3 -0.9 0.7 0.5 0.5 0.5 0.5 244.11 
0.1 0.1 0.1 0.5 0.1 0.3 -0.9 0.7 0.7 0.5 0.5 0.5 276.92 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.5 0.1 0.3 -0.7 0.7 0.5 0.5 0.5 0.5 203.84 
0.1 0.1 0.1 0.5 0.1 0.3 -0.7 0.7 0.7 0.5 0.5 0.5 226.23 
0.1 0.1 0.1 0.5 0.1 0.5 -0.9 0.7 0.1 0.5 0.5 0.5 234.56 
0.1 0.1 0.1 0.5 0.1 0.5 -0.9 0.7 0.3 0.5 0.5 0.5 289.51 
0.1 0.1 0.1 0.5 0.1 0.5 -0.9 0.7 0.5 0.5 0.5 0.5 378.06 
0.1 0.1 0.1 0.5 0.1 0.5 -0.7 0.7 0.3 0.5 0.5 0.5 234.56 
0.1 0.1 0.1 0.5 0.1 0.5 -0.7 0.7 0.5 0.5 0.5 0.5 289.51 
0.1 0.1 0.1 0.5 0.1 0.5 -0.7 0.7 0.7 0.5 0.5 0.5 378.06 
0.1 0.1 0.1 0.5 0.1 0.5 -0.5 0.7 0.5 0.5 0.5 0.5 234.56 
0.1 0.1 0.1 0.5 0.1 0.5 -0.5 0.7 0.7 0.5 0.5 0.5 289.51 
0.1 0.1 0.1 0.5 0.1 0.5 -0.3 0.7 0.7 0.5 0.5 0.5 234.56 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.1 0.5 0.5 0.5 0.5 203.84 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.1 0.7 0.5 0.5 0.5 226.23 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.3 0.3 0.5 0.5 0.5 218.24 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.3 0.5 0.5 0.5 0.5 244.11 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.3 0.7 0.5 0.5 0.5 276.92 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.5 0.1 0.5 0.5 0.5 234.83 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.5 0.3 0.5 0.5 0.5 265.04 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.5 0.5 0.5 0.5 0.5 304.18 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.5 0.7 0.5 0.5 0.5 356.89 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.7 0.1 0.5 0.5 0.5 289.91 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.7 0.3 0.5 0.5 0.5 337.40 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.7 0.5 0.5 0.5 0.5 403.49 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.7 0.5 0.5 0.5 0.5 203.84 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.7 0.7 0.5 0.5 0.5 226.23 
0.1 0.1 0.1 0.5 0.3 0.3 -0.9 0.1 0.5 0.5 0.5 0.5 239.24 
0.1 0.1 0.1 0.5 0.3 0.3 -0.9 0.1 0.7 0.5 0.5 0.5 367.17 
0.1 0.1 0.1 0.5 0.3 0.3 -0.9 0.3 0.1 0.5 0.5 0.5 214.34 
0.1 0.1 0.1 0.5 0.3 0.3 -0.9 0.3 0.3 0.5 0.5 0.5 311.62 
0.1 0.1 0.1 0.5 0.3 0.3 -0.9 0.5 0.1 0.5 0.5 0.5 446.81 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.3 0.5 0.5 0.5 0.5 239.24 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.3 0.7 0.5 0.5 0.5 367.17 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.5 0.1 0.5 0.5 0.5 214.34 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.5 0.3 0.5 0.5 0.5 311.62 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.7 0.1 0.5 0.5 0.5 446.81 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.5 0.5 0.5 0.5 0.5 239.24 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.5 0.7 0.5 0.5 0.5 367.17 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.7 0.1 0.5 0.5 0.5 214.34 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.7 0.3 0.5 0.5 0.5 311.62 
0.1 0.1 0.1 0.5 0.3 0.3 -0.3 0.7 0.5 0.5 0.5 0.5 239.24 
0.1 0.1 0.1 0.5 0.3 0.3 -0.3 0.7 0.7 0.5 0.5 0.5 367.17 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.5 0.3 0.5 -0.9 0.1 0.7 0.5 0.5 0.5 282.69 
0.1 0.1 0.1 0.5 0.3 0.5 -0.9 0.3 0.3 0.5 0.5 0.5 230.06 
0.1 0.1 0.1 0.5 0.3 0.5 -0.9 0.5 0.1 0.5 0.5 0.5 366.52 
0.1 0.1 0.1 0.5 0.3 0.5 -0.7 0.3 0.5 0.5 0.5 0.5 230.06 
0.1 0.1 0.1 0.5 0.3 0.5 -0.7 0.5 0.3 0.5 0.5 0.5 366.52 
0.1 0.1 0.1 0.5 0.3 0.5 -0.5 0.3 0.7 0.5 0.5 0.5 230.06 
0.1 0.1 0.1 0.5 0.3 0.5 -0.5 0.5 0.5 0.5 0.5 0.5 366.52 
0.1 0.1 0.1 0.5 0.3 0.5 -0.5 0.7 0.1 0.5 0.5 0.5 282.69 
0.1 0.1 0.1 0.5 0.3 0.5 -0.3 0.5 0.7 0.5 0.5 0.5 366.52 
0.1 0.1 0.1 0.5 0.3 0.5 -0.3 0.7 0.3 0.5 0.5 0.5 282.69 
0.1 0.1 0.1 0.5 0.3 0.5 -0.1 0.7 0.5 0.5 0.5 0.5 282.69 
0.1 0.1 0.1 0.5 0.3 0.5 0.1 0.7 0.7 0.5 0.5 0.5 282.69 
0.1 0.1 0.1 0.5 0.5 0.1 -0.9 0.1 0.1 0.5 0.5 0.5 289.51 
0.1 0.1 0.1 0.5 0.5 0.1 -0.9 0.1 0.3 0.5 0.5 0.5 378.06 
0.1 0.1 0.1 0.5 0.5 0.1 -0.9 0.3 0.1 0.5 0.5 0.5 378.06 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.3 0.7 0.5 0.5 0.5 234.56 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.5 0.5 0.5 0.5 0.5 234.56 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.5 0.7 0.5 0.5 0.5 289.51 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.7 0.3 0.5 0.5 0.5 234.56 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.7 0.5 0.5 0.5 0.5 289.51 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.7 0.7 0.5 0.5 0.5 378.06 
0.1 0.1 0.1 0.5 0.5 0.3 -0.9 0.1 0.1 0.5 0.5 0.5 230.06 
0.1 0.1 0.1 0.5 0.5 0.3 -0.7 0.1 0.5 0.5 0.5 0.5 282.69 
0.1 0.1 0.1 0.5 0.5 0.3 -0.7 0.3 0.3 0.5 0.5 0.5 282.69 
0.1 0.1 0.1 0.5 0.5 0.3 -0.7 0.5 0.1 0.5 0.5 0.5 282.69 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.3 0.7 0.5 0.5 0.5 366.52 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.5 0.5 0.5 0.5 0.5 366.52 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.7 0.3 0.5 0.5 0.5 366.52 
0.1 0.1 0.1 0.5 0.5 0.3 -0.3 0.5 0.7 0.5 0.5 0.5 230.06 
0.1 0.1 0.1 0.5 0.5 0.3 -0.3 0.7 0.5 0.5 0.5 0.5 230.06 
0.1 0.1 0.1 0.5 0.5 0.5 -0.9 0.1 0.3 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.9 0.3 0.1 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.7 0.1 0.5 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.7 0.3 0.3 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.7 0.5 0.1 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.5 0.1 0.7 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.5 0.3 0.5 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.5 0.5 0.3 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.5 0.7 0.1 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.3 0.3 0.7 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.3 0.5 0.5 0.5 0.5 0.5 269.97 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.5 0.5 0.5 -0.3 0.7 0.3 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.1 0.5 0.7 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 -0.1 0.7 0.5 0.5 0.5 0.5 269.97 
0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.7 0.7 0.5 0.5 0.5 269.97 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.3 0.7 0.5 0.5 0.5 276.81 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.5 0.5 0.5 0.5 0.5 276.81 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.7 0.3 0.5 0.5 0.5 276.81 
0.3 0.3 0.3 0.3 0.3 0.3 -0.7 0.5 0.7 0.5 0.5 0.5 276.81 
0.3 0.3 0.3 0.3 0.3 0.3 -0.7 0.7 0.5 0.5 0.5 0.5 276.81 
0.3 0.3 0.3 0.3 0.3 0.3 -0.5 0.7 0.7 0.5 0.5 0.5 276.81 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.3 0.7 0.5 0.5 0.5 249.71 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.5 0.5 0.5 0.5 0.5 249.71 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.7 0.3 0.5 0.5 0.5 249.71 
0.3 0.3 0.3 0.3 0.3 0.5 -0.7 0.5 0.7 0.5 0.5 0.5 464.50 
0.3 0.3 0.3 0.3 0.3 0.5 -0.7 0.7 0.5 0.5 0.5 0.5 464.50 
0.3 0.3 0.3 0.3 0.3 0.5 -0.5 0.5 0.7 0.5 0.5 0.5 202.82 
0.3 0.3 0.3 0.3 0.3 0.5 -0.5 0.7 0.5 0.5 0.5 0.5 202.82 
0.3 0.3 0.3 0.3 0.3 0.5 -0.3 0.7 0.7 0.5 0.5 0.5 324.81 
0.3 0.3 0.3 0.3 0.5 0.3 -0.9 0.3 0.5 0.5 0.5 0.5 324.81 
0.3 0.3 0.3 0.3 0.5 0.3 -0.9 0.5 0.3 0.5 0.5 0.5 202.82 
0.3 0.3 0.3 0.3 0.5 0.3 -0.9 0.7 0.3 0.5 0.5 0.5 464.50 
0.3 0.3 0.3 0.3 0.5 0.3 -0.7 0.3 0.7 0.5 0.5 0.5 324.81 
0.3 0.3 0.3 0.3 0.5 0.3 -0.7 0.5 0.5 0.5 0.5 0.5 202.82 
0.3 0.3 0.3 0.3 0.5 0.3 -0.7 0.7 0.5 0.5 0.5 0.5 464.50 
0.3 0.3 0.3 0.3 0.5 0.3 -0.5 0.5 0.7 0.5 0.5 0.5 202.82 
0.3 0.3 0.3 0.3 0.5 0.3 -0.5 0.7 0.7 0.5 0.5 0.5 464.50 
0.3 0.3 0.3 0.3 0.5 0.5 -0.9 0.3 0.5 0.5 0.5 0.5 447.19 
0.3 0.3 0.3 0.3 0.5 0.5 -0.7 0.1 0.7 0.5 0.5 0.5 264.60 
0.3 0.3 0.3 0.3 0.5 0.5 -0.7 0.5 0.5 0.5 0.5 0.5 447.19 
0.3 0.3 0.3 0.3 0.5 0.5 -0.5 0.3 0.7 0.5 0.5 0.5 264.60 
0.3 0.3 0.3 0.3 0.5 0.5 -0.5 0.7 0.5 0.5 0.5 0.5 447.19 
0.3 0.3 0.3 0.3 0.5 0.5 -0.3 0.5 0.7 0.5 0.5 0.5 264.60 
0.3 0.3 0.3 0.3 0.5 0.5 -0.1 0.7 0.7 0.5 0.5 0.5 264.60 
0.3 0.3 0.3 0.5 0.1 0.3 -0.9 0.7 0.5 0.5 0.5 0.5 209.86 
0.3 0.3 0.3 0.5 0.1 0.3 -0.9 0.7 0.7 0.5 0.5 0.5 232.88 
0.3 0.3 0.3 0.5 0.1 0.5 -0.9 0.7 0.1 0.5 0.5 0.5 201.43 
0.3 0.3 0.3 0.5 0.1 0.5 -0.9 0.7 0.3 0.5 0.5 0.5 239.27 
0.3 0.3 0.3 0.5 0.1 0.5 -0.9 0.7 0.5 0.5 0.5 0.5 294.63 
0.3 0.3 0.3 0.5 0.1 0.5 -0.9 0.7 0.7 0.5 0.5 0.5 383.32 
0.3 0.3 0.3 0.5 0.1 0.5 -0.7 0.7 0.3 0.5 0.5 0.5 201.43 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.3 0.3 0.3 0.5 0.1 0.5 -0.7 0.7 0.5 0.5 0.5 0.5 239.27 
0.3 0.3 0.3 0.5 0.1 0.5 -0.7 0.7 0.7 0.5 0.5 0.5 294.63 
0.3 0.3 0.3 0.5 0.1 0.5 -0.5 0.7 0.5 0.5 0.5 0.5 201.43 
0.3 0.3 0.3 0.5 0.1 0.5 -0.5 0.7 0.7 0.5 0.5 0.5 239.27 
0.3 0.3 0.3 0.5 0.1 0.5 -0.3 0.7 0.7 0.5 0.5 0.5 201.43 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.3 0.5 0.5 0.5 0.5 209.86 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.3 0.7 0.5 0.5 0.5 232.88 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.5 0.1 0.5 0.5 0.5 203.16 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.5 0.3 0.5 0.5 0.5 224.67 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.5 0.5 0.5 0.5 0.5 251.26 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.5 0.7 0.5 0.5 0.5 285.00 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.7 0.1 0.5 0.5 0.5 241.72 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.7 0.3 0.5 0.5 0.5 272.79 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.7 0.5 0.5 0.5 0.5 313.03 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.7 0.7 0.5 0.5 0.5 367.18 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.1 0.5 0.5 0.5 0.5 205.55 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.1 0.7 0.5 0.5 0.5 289.74 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.3 0.3 0.5 0.5 0.5 254.94 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.3 0.5 0.5 0.5 0.5 398.56 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.5 0.1 0.5 0.5 0.5 335.55 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.3 0.5 0.5 0.5 0.5 205.55 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.3 0.7 0.5 0.5 0.5 289.74 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.5 0.3 0.5 0.5 0.5 254.94 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.5 0.5 0.5 0.5 0.5 398.56 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.7 0.1 0.5 0.5 0.5 335.55 
0.3 0.3 0.3 0.5 0.3 0.3 -0.5 0.5 0.5 0.5 0.5 0.5 205.55 
0.3 0.3 0.3 0.5 0.3 0.3 -0.5 0.5 0.7 0.5 0.5 0.5 289.74 
0.3 0.3 0.3 0.5 0.3 0.3 -0.5 0.7 0.3 0.5 0.5 0.5 254.94 
0.3 0.3 0.3 0.5 0.3 0.3 -0.5 0.7 0.5 0.5 0.5 0.5 398.56 
0.3 0.3 0.3 0.5 0.3 0.3 -0.3 0.7 0.5 0.5 0.5 0.5 205.55 
0.3 0.3 0.3 0.5 0.3 0.3 -0.3 0.7 0.7 0.5 0.5 0.5 289.74 
0.3 0.3 0.3 0.5 0.3 0.5 -0.9 0.1 0.7 0.5 0.5 0.5 233.70 
0.3 0.3 0.3 0.5 0.3 0.5 -0.9 0.3 0.5 0.5 0.5 0.5 369.21 
0.3 0.3 0.3 0.5 0.3 0.5 -0.9 0.5 0.1 0.5 0.5 0.5 286.22 
0.3 0.3 0.3 0.5 0.3 0.5 -0.7 0.3 0.7 0.5 0.5 0.5 369.21 
0.3 0.3 0.3 0.5 0.3 0.5 -0.7 0.5 0.3 0.5 0.5 0.5 286.22 
0.3 0.3 0.3 0.5 0.3 0.5 -0.5 0.5 0.5 0.5 0.5 0.5 286.22 
0.3 0.3 0.3 0.5 0.3 0.5 -0.5 0.7 0.1 0.5 0.5 0.5 233.70 
0.3 0.3 0.3 0.5 0.3 0.5 -0.3 0.5 0.7 0.5 0.5 0.5 286.22 
0.3 0.3 0.3 0.5 0.3 0.5 -0.3 0.7 0.3 0.5 0.5 0.5 233.70 

 



ODUMADE & SINGH 
 

429 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.3 0.3 0.3 0.5 0.3 0.5 -0.1 0.7 0.5 0.5 0.5 0.5 233.70 
0.3 0.3 0.3 0.5 0.3 0.5 0.1 0.7 0.7 0.5 0.5 0.5 233.70 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.1 0.1 0.5 0.5 0.5 239.27 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.1 0.3 0.5 0.5 0.5 294.63 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.1 0.5 0.5 0.5 0.5 383.32 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.3 0.1 0.5 0.5 0.5 294.63 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.3 0.3 0.5 0.5 0.5 383.32 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.5 0.1 0.5 0.5 0.5 383.32 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.3 0.7 0.5 0.5 0.5 201.43 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.5 0.5 0.5 0.5 0.5 201.43 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.5 0.7 0.5 0.5 0.5 239.27 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.7 0.3 0.5 0.5 0.5 201.43 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.7 0.5 0.5 0.5 0.5 239.27 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.7 0.7 0.5 0.5 0.5 294.63 
0.3 0.3 0.3 0.5 0.5 0.3 -0.9 0.1 0.3 0.5 0.5 0.5 369.21 
0.3 0.3 0.3 0.5 0.5 0.3 -0.9 0.3 0.1 0.5 0.5 0.5 369.21 
0.3 0.3 0.3 0.5 0.5 0.3 -0.7 0.1 0.5 0.5 0.5 0.5 233.70 
0.3 0.3 0.3 0.5 0.5 0.3 -0.7 0.3 0.3 0.5 0.5 0.5 233.70 
0.3 0.3 0.3 0.5 0.5 0.3 -0.7 0.5 0.1 0.5 0.5 0.5 233.70 
0.3 0.3 0.3 0.5 0.5 0.3 -0.5 0.3 0.7 0.5 0.5 0.5 286.22 
0.3 0.3 0.3 0.5 0.5 0.3 -0.5 0.5 0.5 0.5 0.5 0.5 286.22 
0.3 0.3 0.3 0.5 0.5 0.3 -0.5 0.7 0.3 0.5 0.5 0.5 286.22 
0.3 0.3 0.3 0.5 0.5 0.3 -0.3 0.7 0.7 0.5 0.5 0.5 369.21 
0.3 0.3 0.3 0.5 0.5 0.5 -0.9 0.1 0.3 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.9 0.3 0.1 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.7 0.1 0.5 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.7 0.3 0.3 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.7 0.5 0.1 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.5 0.1 0.7 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.5 0.3 0.5 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.5 0.5 0.3 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.5 0.7 0.1 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.3 0.3 0.7 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.3 0.5 0.5 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.3 0.7 0.3 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.1 0.5 0.7 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 -0.1 0.7 0.5 0.5 0.5 0.5 223.29 
0.3 0.3 0.3 0.5 0.5 0.5 0.1 0.7 0.7 0.5 0.5 0.5 223.29 
0.5 0.5 0.5 0.3 0.3 0.3 -0.9 0.5 0.7 0.5 0.5 0.5 285.02 
0.5 0.5 0.5 0.3 0.3 0.3 -0.9 0.7 0.5 0.5 0.5 0.5 285.02 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.5 0.5 0.5 0.3 0.3 0.3 -0.7 0.7 0.7 0.5 0.5 0.5 285.02 
0.5 0.5 0.5 0.3 0.3 0.5 -0.9 0.5 0.7 0.5 0.5 0.5 431.57 
0.5 0.5 0.5 0.3 0.3 0.5 -0.9 0.7 0.5 0.5 0.5 0.5 431.57 
0.5 0.5 0.5 0.3 0.3 0.5 -0.7 0.5 0.7 0.5 0.5 0.5 206.61 
0.5 0.5 0.5 0.3 0.3 0.5 -0.7 0.7 0.5 0.5 0.5 0.5 206.61 
0.5 0.5 0.5 0.3 0.3 0.5 -0.5 0.7 0.7 0.5 0.5 0.5 316.64 
0.5 0.5 0.5 0.3 0.5 0.3 -0.9 0.1 0.7 0.5 0.5 0.5 250.05 
0.5 0.5 0.5 0.3 0.5 0.3 -0.9 0.5 0.5 0.5 0.5 0.5 316.64 
0.5 0.5 0.5 0.3 0.5 0.3 -0.9 0.7 0.3 0.5 0.5 0.5 206.61 
0.5 0.5 0.5 0.3 0.5 0.3 -0.7 0.5 0.7 0.5 0.5 0.5 316.64 
0.5 0.5 0.5 0.3 0.5 0.3 -0.7 0.7 0.5 0.5 0.5 0.5 206.61 
0.5 0.5 0.5 0.3 0.5 0.3 -0.5 0.7 0.7 0.5 0.5 0.5 206.61 
0.5 0.5 0.5 0.3 0.5 0.5 -0.9 0.1 0.7 0.5 0.5 0.5 445.03 
0.5 0.5 0.5 0.3 0.5 0.5 -0.9 0.7 0.3 0.5 0.5 0.5 274.07 
0.5 0.5 0.5 0.3 0.5 0.5 -0.7 0.3 0.7 0.5 0.5 0.5 445.03 
0.5 0.5 0.5 0.3 0.5 0.5 -0.5 0.5 0.7 0.5 0.5 0.5 445.03 
0.5 0.5 0.5 0.3 0.5 0.5 -0.3 0.7 0.7 0.5 0.5 0.5 445.03 
0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.7 0.5 0.5 0.5 0.5 209.77 
0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.7 0.7 0.5 0.5 0.5 248.42 
0.5 0.5 0.5 0.5 0.1 0.5 -0.7 0.7 0.7 0.5 0.5 0.5 209.77 
0.5 0.5 0.5 0.5 0.3 0.1 -0.9 0.5 0.7 0.5 0.5 0.5 208.15 
0.5 0.5 0.5 0.5 0.3 0.1 -0.9 0.7 0.3 0.5 0.5 0.5 201.92 
0.5 0.5 0.5 0.5 0.3 0.1 -0.9 0.7 0.5 0.5 0.5 0.5 221.85 
0.5 0.5 0.5 0.5 0.3 0.1 -0.9 0.7 0.7 0.5 0.5 0.5 246.15 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.1 0.7 0.5 0.5 0.5 208.96 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.3 0.5 0.5 0.5 0.5 256.69 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.3 0.7 0.5 0.5 0.5 390.50 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.5 0.1 0.5 0.5 0.5 230.38 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.5 0.3 0.5 0.5 0.5 332.69 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.7 0.1 0.5 0.5 0.5 472.62 
0.5 0.5 0.5 0.5 0.3 0.3 -0.7 0.3 0.7 0.5 0.5 0.5 208.96 
0.5 0.5 0.5 0.5 0.3 0.3 -0.7 0.5 0.5 0.5 0.5 0.5 256.69 
0.5 0.5 0.5 0.5 0.3 0.3 -0.7 0.5 0.7 0.5 0.5 0.5 390.50 
0.5 0.5 0.5 0.5 0.3 0.3 -0.7 0.7 0.1 0.5 0.5 0.5 230.38 
0.5 0.5 0.5 0.5 0.3 0.3 -0.7 0.7 0.3 0.5 0.5 0.5 332.69 
0.5 0.5 0.5 0.5 0.3 0.3 -0.5 0.5 0.7 0.5 0.5 0.5 208.96 
0.5 0.5 0.5 0.5 0.3 0.3 -0.5 0.7 0.5 0.5 0.5 0.5 256.69 
0.5 0.5 0.5 0.5 0.3 0.3 -0.5 0.7 0.7 0.5 0.5 0.5 390.50 
0.5 0.5 0.5 0.5 0.3 0.3 -0.3 0.7 0.7 0.5 0.5 0.5 208.96 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.3 0.5 0.5 0.5 0.5 240.66 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.5 0.1 0.5 0.5 0.5 204.21 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.5 0.3 0.5 0.5 0.5 374.24 
0.5 0.5 0.5 0.5 0.3 0.5 -0.7 0.3 0.7 0.5 0.5 0.5 240.66 
0.5 0.5 0.5 0.5 0.3 0.5 -0.7 0.5 0.3 0.5 0.5 0.5 204.21 
0.5 0.5 0.5 0.5 0.3 0.5 -0.7 0.5 0.5 0.5 0.5 0.5 374.24 
0.5 0.5 0.5 0.5 0.3 0.5 -0.7 0.7 0.1 0.5 0.5 0.5 292.94 
0.5 0.5 0.5 0.5 0.3 0.5 -0.5 0.5 0.5 0.5 0.5 0.5 204.21 
0.5 0.5 0.5 0.5 0.3 0.5 -0.5 0.5 0.7 0.5 0.5 0.5 374.24 
0.5 0.5 0.5 0.5 0.3 0.5 -0.5 0.7 0.3 0.5 0.5 0.5 292.94 
0.5 0.5 0.5 0.5 0.3 0.5 -0.3 0.5 0.7 0.5 0.5 0.5 204.21 
0.5 0.5 0.5 0.5 0.3 0.5 -0.3 0.7 0.5 0.5 0.5 0.5 292.94 
0.5 0.5 0.5 0.5 0.3 0.5 -0.1 0.7 0.7 0.5 0.5 0.5 292.94 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.1 0.3 0.5 0.5 0.5 209.77 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.1 0.5 0.5 0.5 0.5 248.42 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.1 0.7 0.5 0.5 0.5 304.52 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.3 0.1 0.5 0.5 0.5 209.77 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.3 0.3 0.5 0.5 0.5 248.42 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.3 0.5 0.5 0.5 0.5 304.52 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.3 0.7 0.5 0.5 0.5 393.35 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.5 0.1 0.5 0.5 0.5 248.42 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.5 0.3 0.5 0.5 0.5 304.52 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.5 0.5 0.5 0.5 0.5 393.35 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.7 0.1 0.5 0.5 0.5 304.52 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.7 0.3 0.5 0.5 0.5 393.35 
0.5 0.5 0.5 0.5 0.5 0.1 -0.7 0.7 0.7 0.5 0.5 0.5 209.77 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.1 0.3 0.5 0.5 0.5 240.66 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.3 0.1 0.5 0.5 0.5 240.66 
0.5 0.5 0.5 0.5 0.5 0.3 -0.7 0.1 0.7 0.5 0.5 0.5 292.94 
0.5 0.5 0.5 0.5 0.5 0.3 -0.7 0.3 0.5 0.5 0.5 0.5 292.94 
0.5 0.5 0.5 0.5 0.5 0.3 -0.7 0.5 0.3 0.5 0.5 0.5 292.94 
0.5 0.5 0.5 0.5 0.5 0.3 -0.7 0.7 0.1 0.5 0.5 0.5 292.94 
0.5 0.5 0.5 0.5 0.5 0.3 -0.5 0.3 0.7 0.5 0.5 0.5 204.21 
0.5 0.5 0.5 0.5 0.5 0.3 -0.5 0.5 0.5 0.5 0.5 0.5 204.21 
0.5 0.5 0.5 0.5 0.5 0.3 -0.5 0.5 0.7 0.5 0.5 0.5 374.24 
0.5 0.5 0.5 0.5 0.5 0.3 -0.5 0.7 0.3 0.5 0.5 0.5 204.21 
0.5 0.5 0.5 0.5 0.5 0.3 -0.5 0.7 0.5 0.5 0.5 0.5 374.24 
0.5 0.5 0.5 0.5 0.5 0.3 -0.3 0.7 0.7 0.5 0.5 0.5 240.66 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.1 0.5 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.3 0.3 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.5 0.1 0.5 0.5 0.5 456.61 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.1 0.7 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.3 0.5 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.5 0.3 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.7 0.1 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.3 0.7 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.7 0.3 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.3 0.5 0.7 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.3 0.7 0.5 0.5 0.5 0.5 456.61 
0.5 0.5 0.5 0.5 0.5 0.5 -0.1 0.7 0.7 0.5 0.5 0.5 456.61 
0.1 0.1 0.1 0.1 0.1 0.1 -0.9 0.1 0.7 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.9 0.3 0.5 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.9 0.5 0.3 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.9 0.7 0.1 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.7 0.3 0.7 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.7 0.5 0.5 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.7 0.7 0.3 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.5 0.5 0.7 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.5 0.7 0.5 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.1 0.1 0.1 -0.3 0.7 0.7 1.0 1.0 1.0 255.99 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.1 0.7 1.0 1.0 1.0 205.76 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.3 0.1 1.0 1.0 1.0 205.76 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.3 0.3 1.0 1.0 1.0 225.67 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.3 0.5 1.0 1.0 1.0 249.85 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.3 0.7 1.0 1.0 1.0 279.84 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.5 0.1 1.0 1.0 1.0 279.84 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.5 0.3 1.0 1.0 1.0 318.00 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.5 0.5 1.0 1.0 1.0 368.22 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.5 0.7 1.0 1.0 1.0 437.27 
0.1 0.1 0.1 0.3 0.1 0.1 -0.9 0.7 0.1 1.0 1.0 1.0 437.27 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.3 0.7 1.0 1.0 1.0 205.76 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.5 0.1 1.0 1.0 1.0 205.76 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.5 0.3 1.0 1.0 1.0 225.67 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.5 0.5 1.0 1.0 1.0 249.85 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.5 0.7 1.0 1.0 1.0 279.84 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.7 0.1 1.0 1.0 1.0 279.84 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.7 0.3 1.0 1.0 1.0 318.00 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.7 0.5 1.0 1.0 1.0 368.22 
0.1 0.1 0.1 0.3 0.1 0.1 -0.7 0.7 0.7 1.0 1.0 1.0 437.27 
0.1 0.1 0.1 0.3 0.1 0.1 -0.5 0.5 0.7 1.0 1.0 1.0 205.76 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.3 0.1 0.1 -0.5 0.7 0.1 1.0 1.0 1.0 205.76 
0.1 0.1 0.1 0.3 0.1 0.1 -0.5 0.7 0.3 1.0 1.0 1.0 225.67 
0.1 0.1 0.1 0.3 0.1 0.1 -0.5 0.7 0.5 1.0 1.0 1.0 249.85 
0.1 0.1 0.1 0.3 0.1 0.1 -0.5 0.7 0.7 1.0 1.0 1.0 279.84 
0.1 0.1 0.1 0.3 0.1 0.1 -0.3 0.7 0.7 1.0 1.0 1.0 205.76 
0.1 0.1 0.1 0.3 0.1 0.3 -0.9 0.5 0.3 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.1 0.3 -0.9 0.5 0.5 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.1 0.3 -0.7 0.5 0.5 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.1 0.3 -0.7 0.5 0.7 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.1 0.3 -0.7 0.7 0.1 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.1 0.3 -0.5 0.5 0.7 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.1 0.3 -0.5 0.7 0.1 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.1 0.3 -0.5 0.7 0.3 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.1 0.3 -0.3 0.7 0.3 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.1 0.3 -0.3 0.7 0.5 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.1 0.3 -0.1 0.7 0.5 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.1 0.3 -0.1 0.7 0.7 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.1 0.3 0.1 0.7 0.7 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.1 0.5 -0.9 0.7 0.5 1.0 1.0 1.0 202.54 
0.1 0.1 0.1 0.3 0.1 0.5 -0.9 0.7 0.7 1.0 1.0 1.0 358.04 
0.1 0.1 0.1 0.3 0.1 0.5 -0.7 0.7 0.7 1.0 1.0 1.0 245.12 
0.1 0.1 0.1 0.3 0.3 0.1 -0.9 0.1 0.1 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.3 0.1 -0.7 0.1 0.5 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.3 0.1 -0.7 0.1 0.7 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.3 0.1 -0.7 0.3 0.3 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.3 0.1 -0.7 0.3 0.5 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.3 0.1 -0.7 0.5 0.1 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.3 0.1 -0.7 0.5 0.3 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.3 0.1 -0.7 0.7 0.1 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.3 0.1 -0.5 0.5 0.7 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.3 0.1 -0.5 0.7 0.5 1.0 1.0 1.0 248.26 
0.1 0.1 0.1 0.3 0.3 0.1 -0.5 0.7 0.7 1.0 1.0 1.0 364.76 
0.1 0.1 0.1 0.3 0.3 0.3 -0.9 0.1 0.3 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.9 0.3 0.1 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.7 0.1 0.5 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.7 0.3 0.3 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.7 0.5 0.1 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.5 0.1 0.7 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.5 0.3 0.5 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.5 0.5 0.3 1.0 1.0 1.0 203.60 
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Appendix 
Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx  
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.3 0.3 0.3 -0.5 0.7 0.1 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.3 0.3 0.7 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.3 0.5 0.5 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.3 0.7 0.3 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.1 0.5 0.7 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 -0.1 0.7 0.5 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.3 0.1 0.7 0.7 1.0 1.0 1.0 203.60 
0.1 0.1 0.1 0.3 0.3 0.5 -0.9 0.1 0.7 1.0 1.0 1.0 243.59 
0.1 0.1 0.1 0.3 0.3 0.5 -0.9 0.3 0.5 1.0 1.0 1.0 243.59 
0.1 0.1 0.1 0.3 0.3 0.5 -0.9 0.5 0.3 1.0 1.0 1.0 243.59 
0.1 0.1 0.1 0.3 0.3 0.5 -0.9 0.7 0.1 1.0 1.0 1.0 243.59 
0.1 0.1 0.1 0.3 0.3 0.5 -0.3 0.5 0.7 1.0 1.0 1.0 354.77 
0.1 0.1 0.1 0.3 0.3 0.5 -0.3 0.7 0.5 1.0 1.0 1.0 354.77 
0.1 0.1 0.1 0.3 0.3 0.5 0.1 0.7 0.7 1.0 1.0 1.0 243.59 
0.1 0.1 0.1 0.3 0.5 0.1 -0.9 0.1 0.5 1.0 1.0 1.0 273.92 
0.1 0.1 0.1 0.3 0.5 0.1 -0.9 0.3 0.3 1.0 1.0 1.0 221.81 
0.1 0.1 0.1 0.3 0.5 0.1 -0.9 0.3 0.5 1.0 1.0 1.0 422.99 
0.1 0.1 0.1 0.3 0.5 0.1 -0.9 0.5 0.3 1.0 1.0 1.0 310.38 
0.1 0.1 0.1 0.3 0.5 0.1 -0.9 0.7 0.1 1.0 1.0 1.0 245.12 
0.1 0.1 0.1 0.3 0.5 0.1 -0.7 0.7 0.7 1.0 1.0 1.0 245.12 
0.1 0.1 0.1 0.3 0.5 0.3 -0.9 0.3 0.3 1.0 1.0 1.0 354.77 
0.1 0.1 0.1 0.3 0.5 0.3 -0.7 0.3 0.5 1.0 1.0 1.0 354.77 
0.1 0.1 0.1 0.3 0.5 0.3 -0.5 0.3 0.7 1.0 1.0 1.0 354.77 
0.1 0.1 0.1 0.3 0.5 0.5 -0.9 0.5 0.3 1.0 1.0 1.0 303.12 
0.1 0.1 0.1 0.3 0.5 0.5 -0.7 0.7 0.3 1.0 1.0 1.0 303.12 
0.1 0.1 0.1 0.5 0.1 0.1 -0.9 0.5 0.7 1.0 1.0 1.0 201.69 
0.1 0.1 0.1 0.5 0.1 0.1 -0.9 0.7 0.1 1.0 1.0 1.0 215.39 
0.1 0.1 0.1 0.5 0.1 0.1 -0.9 0.7 0.3 1.0 1.0 1.0 222.96 
0.1 0.1 0.1 0.5 0.1 0.1 -0.9 0.7 0.5 1.0 1.0 1.0 231.08 
0.1 0.1 0.1 0.5 0.1 0.1 -0.9 0.7 0.7 1.0 1.0 1.0 239.82 
0.1 0.1 0.1 0.5 0.1 0.1 -0.7 0.7 0.7 1.0 1.0 1.0 201.69 
0.1 0.1 0.1 0.5 0.1 0.3 -0.9 0.5 0.1 1.0 1.0 1.0 222.49 
0.1 0.1 0.1 0.5 0.1 0.3 -0.9 0.5 0.3 1.0 1.0 1.0 248.65 
0.1 0.1 0.1 0.5 0.1 0.3 -0.9 0.5 0.5 1.0 1.0 1.0 281.79 
0.1 0.1 0.1 0.5 0.1 0.3 -0.9 0.5 0.7 1.0 1.0 1.0 325.11 
0.1 0.1 0.1 0.5 0.1 0.3 -0.9 0.7 0.1 1.0 1.0 1.0 469.47 
0.1 0.1 0.1 0.5 0.1 0.3 -0.7 0.5 0.3 1.0 1.0 1.0 207.91 
0.1 0.1 0.1 0.5 0.1 0.3 -0.7 0.5 0.5 1.0 1.0 1.0 230.58 
0.1 0.1 0.1 0.5 0.1 0.3 -0.7 0.5 0.7 1.0 1.0 1.0 258.80 
0.1 0.1 0.1 0.5 0.1 0.3 -0.7 0.7 0.1 1.0 1.0 1.0 342.67 
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Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC yC  1Cx  2Cx  
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.5 0.1 0.3 -0.7 0.7 0.3 1.0 1.0 1.0 408.94 
0.1 0.1 0.1 0.5 0.1 0.3 -0.5 0.5 0.7 1.0 1.0 1.0 214.95 
0.1 0.1 0.1 0.5 0.1 0.3 -0.5 0.7 0.1 1.0 1.0 1.0 269.80 
0.1 0.1 0.1 0.5 0.1 0.3 -0.5 0.7 0.3 1.0 1.0 1.0 309.26 
0.1 0.1 0.1 0.5 0.1 0.3 -0.5 0.7 0.5 1.0 1.0 1.0 362.24 
0.1 0.1 0.1 0.5 0.1 0.3 -0.5 0.7 0.7 1.0 1.0 1.0 437.12 
0.1 0.1 0.1 0.5 0.1 0.3 -0.3 0.7 0.1 1.0 1.0 1.0 222.49 
0.1 0.1 0.1 0.5 0.1 0.3 -0.3 0.7 0.3 1.0 1.0 1.0 248.65 
0.1 0.1 0.1 0.5 0.1 0.3 -0.3 0.7 0.5 1.0 1.0 1.0 281.79 
0.1 0.1 0.1 0.5 0.1 0.3 -0.3 0.7 0.7 1.0 1.0 1.0 325.11 
0.1 0.1 0.1 0.5 0.1 0.3 -0.1 0.7 0.3 1.0 1.0 1.0 207.91 
0.1 0.1 0.1 0.5 0.1 0.3 -0.1 0.7 0.5 1.0 1.0 1.0 230.58 
0.1 0.1 0.1 0.5 0.1 0.3 -0.1 0.7 0.7 1.0 1.0 1.0 258.80 
0.1 0.1 0.1 0.5 0.1 0.3 0.1 0.7 0.7 1.0 1.0 1.0 214.95 
0.1 0.1 0.1 0.5 0.1 0.5 -0.9 0.5 0.7 1.0 1.0 1.0 229.58 
0.1 0.1 0.1 0.5 0.1 0.5 -0.9 0.7 0.1 1.0 1.0 1.0 359.78 
0.1 0.1 0.1 0.5 0.1 0.5 -0.7 0.7 0.1 1.0 1.0 1.0 280.29 
0.1 0.1 0.1 0.5 0.1 0.5 -0.7 0.7 0.3 1.0 1.0 1.0 359.78 
0.1 0.1 0.1 0.5 0.1 0.5 -0.5 0.7 0.1 1.0 1.0 1.0 229.58 
0.1 0.1 0.1 0.5 0.1 0.5 -0.5 0.7 0.3 1.0 1.0 1.0 280.29 
0.1 0.1 0.1 0.5 0.1 0.5 -0.5 0.7 0.5 1.0 1.0 1.0 359.78 
0.1 0.1 0.1 0.5 0.1 0.5 -0.3 0.7 0.3 1.0 1.0 1.0 229.58 
0.1 0.1 0.1 0.5 0.1 0.5 -0.3 0.7 0.5 1.0 1.0 1.0 280.29 
0.1 0.1 0.1 0.5 0.1 0.5 -0.3 0.7 0.7 1.0 1.0 1.0 359.78 
0.1 0.1 0.1 0.5 0.1 0.5 -0.1 0.7 0.5 1.0 1.0 1.0 229.58 
0.1 0.1 0.1 0.5 0.1 0.5 -0.1 0.7 0.7 1.0 1.0 1.0 280.29 
0.1 0.1 0.1 0.5 0.1 0.5 0.1 0.7 0.7 1.0 1.0 1.0 229.58 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.1 0.1 1.0 1.0 1.0 342.67 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.1 0.3 1.0 1.0 1.0 408.94 
0.1 0.1 0.1 0.5 0.3 0.1 -0.9 0.3 0.1 1.0 1.0 1.0 469.47 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.1 0.3 1.0 1.0 1.0 207.91 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.1 0.5 1.0 1.0 1.0 230.58 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.1 0.7 1.0 1.0 1.0 258.80 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.3 0.1 1.0 1.0 1.0 222.49 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.3 0.3 1.0 1.0 1.0 248.65 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.3 0.5 1.0 1.0 1.0 281.79 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.3 0.7 1.0 1.0 1.0 325.11 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.5 0.1 1.0 1.0 1.0 269.80 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.5 0.3 1.0 1.0 1.0 309.26 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.5 0.5 1.0 1.0 1.0 362.24 
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Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx  
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.5 0.7 1.0 1.0 1.0 437.12 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.7 0.1 1.0 1.0 1.0 342.67 
0.1 0.1 0.1 0.5 0.3 0.1 -0.7 0.7 0.3 1.0 1.0 1.0 408.94 
0.1 0.1 0.1 0.5 0.3 0.1 -0.5 0.5 0.7 1.0 1.0 1.0 214.95 
0.1 0.1 0.1 0.5 0.3 0.1 -0.5 0.7 0.3 1.0 1.0 1.0 207.91 
0.1 0.1 0.1 0.5 0.3 0.1 -0.5 0.7 0.5 1.0 1.0 1.0 230.58 
0.1 0.1 0.1 0.5 0.3 0.1 -0.5 0.7 0.7 1.0 1.0 1.0 258.80 
0.1 0.1 0.1 0.5 0.3 0.3 -0.9 0.1 0.1 1.0 1.0 1.0 207.50 
0.1 0.1 0.1 0.5 0.3 0.3 -0.9 0.1 0.3 1.0 1.0 1.0 294.07 
0.1 0.1 0.1 0.5 0.3 0.3 -0.9 0.3 0.1 1.0 1.0 1.0 407.37 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.1 0.5 1.0 1.0 1.0 230.08 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.1 0.7 1.0 1.0 1.0 341.57 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.3 0.1 1.0 1.0 1.0 207.50 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.3 0.3 1.0 1.0 1.0 294.07 
0.1 0.1 0.1 0.5 0.3 0.3 -0.7 0.5 0.1 1.0 1.0 1.0 407.37 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.3 0.5 1.0 1.0 1.0 230.08 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.3 0.7 1.0 1.0 1.0 341.57 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.5 0.1 1.0 1.0 1.0 207.50 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.5 0.3 1.0 1.0 1.0 294.07 
0.1 0.1 0.1 0.5 0.3 0.3 -0.5 0.7 0.1 1.0 1.0 1.0 407.37 
0.1 0.1 0.1 0.5 0.3 0.3 -0.3 0.5 0.5 1.0 1.0 1.0 230.08 
0.1 0.1 0.1 0.5 0.3 0.3 -0.3 0.5 0.7 1.0 1.0 1.0 341.57 
0.1 0.1 0.1 0.5 0.3 0.3 -0.3 0.7 0.1 1.0 1.0 1.0 207.50 
0.1 0.1 0.1 0.5 0.3 0.3 -0.3 0.7 0.3 1.0 1.0 1.0 294.07 
0.1 0.1 0.1 0.5 0.3 0.3 -0.1 0.7 0.5 1.0 1.0 1.0 230.08 
0.1 0.1 0.1 0.5 0.3 0.3 -0.1 0.7 0.7 1.0 1.0 1.0 341.57 
0.1 0.1 0.1 0.5 0.3 0.5 -0.9 0.1 0.7 1.0 1.0 1.0 358.56 
0.1 0.1 0.1 0.5 0.3 0.5 -0.9 0.3 0.3 1.0 1.0 1.0 279.55 
0.1 0.1 0.1 0.5 0.3 0.5 -0.9 0.5 0.1 1.0 1.0 1.0 499.80 
0.1 0.1 0.1 0.5 0.3 0.5 -0.7 0.3 0.5 1.0 1.0 1.0 279.55 
0.1 0.1 0.1 0.5 0.3 0.5 -0.7 0.5 0.1 1.0 1.0 1.0 229.08 
0.1 0.1 0.1 0.5 0.3 0.5 -0.7 0.5 0.3 1.0 1.0 1.0 499.80 
0.1 0.1 0.1 0.5 0.3 0.5 -0.5 0.3 0.7 1.0 1.0 1.0 279.55 
0.1 0.1 0.1 0.5 0.3 0.5 -0.5 0.5 0.3 1.0 1.0 1.0 229.08 
0.1 0.1 0.1 0.5 0.3 0.5 -0.5 0.5 0.5 1.0 1.0 1.0 499.80 
0.1 0.1 0.1 0.5 0.3 0.5 -0.5 0.7 0.1 1.0 1.0 1.0 358.56 
0.1 0.1 0.1 0.5 0.3 0.5 -0.3 0.5 0.5 1.0 1.0 1.0 229.08 
0.1 0.1 0.1 0.5 0.3 0.5 -0.3 0.5 0.7 1.0 1.0 1.0 499.80 
0.1 0.1 0.1 0.5 0.3 0.5 -0.3 0.7 0.3 1.0 1.0 1.0 358.56 
0.1 0.1 0.1 0.5 0.3 0.5 -0.1 0.5 0.7 1.0 1.0 1.0 229.08 
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Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.1 0.1 0.1 0.5 0.3 0.5 -0.1 0.7 0.5 1.0 1.0 1.0 358.56 
0.1 0.1 0.1 0.5 0.3 0.5 0.1 0.7 0.7 1.0 1.0 1.0 358.56 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.1 0.5 1.0 1.0 1.0 229.58 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.1 0.7 1.0 1.0 1.0 280.29 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.3 0.3 1.0 1.0 1.0 229.58 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.3 0.5 1.0 1.0 1.0 280.29 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.3 0.7 1.0 1.0 1.0 359.78 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.5 0.1 1.0 1.0 1.0 229.58 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.5 0.3 1.0 1.0 1.0 280.29 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.5 0.5 1.0 1.0 1.0 359.78 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.7 0.1 1.0 1.0 1.0 280.29 
0.1 0.1 0.1 0.5 0.5 0.1 -0.7 0.7 0.3 1.0 1.0 1.0 359.78 
0.1 0.1 0.1 0.5 0.5 0.3 -0.9 0.1 0.1 1.0 1.0 1.0 279.55 
0.1 0.1 0.1 0.5 0.5 0.3 -0.7 0.1 0.5 1.0 1.0 1.0 358.56 
0.1 0.1 0.1 0.5 0.5 0.3 -0.7 0.3 0.3 1.0 1.0 1.0 358.56 
0.1 0.1 0.1 0.5 0.5 0.3 -0.7 0.5 0.1 1.0 1.0 1.0 358.56 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.1 0.7 1.0 1.0 1.0 229.08 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.3 0.5 1.0 1.0 1.0 229.08 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.3 0.7 1.0 1.0 1.0 499.80 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.5 0.3 1.0 1.0 1.0 229.08 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.5 0.5 1.0 1.0 1.0 499.80 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.7 0.1 1.0 1.0 1.0 229.08 
0.1 0.1 0.1 0.5 0.5 0.3 -0.5 0.7 0.3 1.0 1.0 1.0 499.80 
0.1 0.1 0.1 0.5 0.5 0.3 -0.3 0.5 0.7 1.0 1.0 1.0 279.55 
0.1 0.1 0.1 0.5 0.5 0.3 -0.3 0.7 0.5 1.0 1.0 1.0 279.55 
0.1 0.1 0.1 0.5 0.5 0.5 -0.9 0.1 0.3 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.9 0.3 0.1 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.7 0.1 0.5 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.7 0.3 0.3 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.7 0.5 0.1 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.5 0.1 0.7 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.5 0.3 0.5 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.5 0.5 0.3 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.5 0.7 0.1 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.3 0.3 0.7 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.3 0.5 0.5 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.3 0.7 0.3 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.1 0.5 0.7 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 -0.1 0.7 0.5 1.0 1.0 1.0 228.09 
0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.7 0.7 1.0 1.0 1.0 228.09 
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Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.3 0.3 0.3 0.3 0.1 0.3 -0.9 0.7 0.7 1.0 1.0 1.0 220.64 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.3 0.7 1.0 1.0 1.0 220.64 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.5 0.5 1.0 1.0 1.0 220.64 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.5 0.7 1.0 1.0 1.0 283.48 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.7 0.3 1.0 1.0 1.0 220.64 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.7 0.5 1.0 1.0 1.0 283.48 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.7 0.7 1.0 1.0 1.0 396.38 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.1 0.7 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.3 0.5 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.5 0.3 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.7 0.1 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.7 0.3 0.7 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.7 0.5 0.5 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.7 0.7 0.3 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.5 0.5 0.7 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.5 0.7 0.5 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.3 -0.3 0.7 0.7 1.0 1.0 1.0 228.40 
0.3 0.3 0.3 0.3 0.3 0.5 -0.7 0.5 0.7 1.0 1.0 1.0 326.22 
0.3 0.3 0.3 0.3 0.3 0.5 -0.7 0.7 0.5 1.0 1.0 1.0 326.22 
0.3 0.3 0.3 0.3 0.3 0.5 -0.3 0.7 0.7 1.0 1.0 1.0 245.69 
0.3 0.3 0.3 0.3 0.5 0.1 -0.9 0.7 0.7 1.0 1.0 1.0 204.33 
0.3 0.3 0.3 0.3 0.5 0.3 -0.9 0.1 0.7 1.0 1.0 1.0 485.29 
0.3 0.3 0.3 0.3 0.5 0.3 -0.9 0.3 0.5 1.0 1.0 1.0 245.69 
0.3 0.3 0.3 0.3 0.5 0.3 -0.9 0.7 0.3 1.0 1.0 1.0 326.22 
0.3 0.3 0.3 0.3 0.5 0.3 -0.7 0.3 0.7 1.0 1.0 1.0 245.69 
0.3 0.3 0.3 0.3 0.5 0.3 -0.7 0.7 0.5 1.0 1.0 1.0 326.22 
0.3 0.3 0.3 0.3 0.5 0.3 -0.5 0.7 0.7 1.0 1.0 1.0 326.22 
0.3 0.3 0.3 0.3 0.5 0.5 -0.9 0.1 0.7 1.0 1.0 1.0 323.40 
0.3 0.3 0.3 0.3 0.5 0.5 -0.9 0.7 0.3 1.0 1.0 1.0 209.78 
0.3 0.3 0.3 0.3 0.5 0.5 -0.7 0.3 0.7 1.0 1.0 1.0 323.40 
0.3 0.3 0.3 0.3 0.5 0.5 -0.5 0.5 0.7 1.0 1.0 1.0 323.40 
0.3 0.3 0.3 0.3 0.5 0.5 -0.3 0.7 0.7 1.0 1.0 1.0 323.40 
0.3 0.3 0.3 0.5 0.1 0.3 -0.9 0.7 0.1 1.0 1.0 1.0 211.04 
0.3 0.3 0.3 0.5 0.1 0.3 -0.9 0.7 0.3 1.0 1.0 1.0 231.73 
0.3 0.3 0.3 0.5 0.1 0.3 -0.9 0.7 0.5 1.0 1.0 1.0 256.90 
0.3 0.3 0.3 0.5 0.1 0.3 -0.9 0.7 0.7 1.0 1.0 1.0 288.22 
0.3 0.3 0.3 0.5 0.1 0.3 -0.7 0.7 0.5 1.0 1.0 1.0 217.52 
0.3 0.3 0.3 0.5 0.1 0.3 -0.7 0.7 0.7 1.0 1.0 1.0 239.55 
0.3 0.3 0.3 0.5 0.1 0.3 -0.5 0.7 0.7 1.0 1.0 1.0 204.95 
0.3 0.3 0.3 0.5 0.1 0.5 -0.9 0.7 0.3 1.0 1.0 1.0 210.54 
0.3 0.3 0.3 0.5 0.1 0.5 -0.9 0.7 0.5 1.0 1.0 1.0 247.23 
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Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.3 0.3 0.3 0.5 0.1 0.5 -0.9 0.7 0.7 1.0 1.0 1.0 299.41 
0.3 0.3 0.3 0.5 0.1 0.5 -0.7 0.7 0.5 1.0 1.0 1.0 210.54 
0.3 0.3 0.3 0.5 0.1 0.5 -0.7 0.7 0.7 1.0 1.0 1.0 247.23 
0.3 0.3 0.3 0.5 0.1 0.5 -0.5 0.7 0.7 1.0 1.0 1.0 210.54 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.1 0.5 1.0 1.0 1.0 217.52 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.1 0.7 1.0 1.0 1.0 239.55 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.3 0.1 1.0 1.0 1.0 211.04 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.3 0.3 1.0 1.0 1.0 231.73 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.3 0.5 1.0 1.0 1.0 256.90 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.3 0.7 1.0 1.0 1.0 288.22 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.5 0.1 1.0 1.0 1.0 247.92 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.5 0.3 1.0 1.0 1.0 276.96 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.5 0.5 1.0 1.0 1.0 313.71 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.5 0.7 1.0 1.0 1.0 361.70 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.7 0.1 1.0 1.0 1.0 300.42 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.7 0.3 1.0 1.0 1.0 344.15 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.7 0.5 1.0 1.0 1.0 402.77 
0.3 0.3 0.3 0.5 0.3 0.1 -0.9 0.7 0.7 1.0 1.0 1.0 485.46 
0.3 0.3 0.3 0.5 0.3 0.1 -0.7 0.5 0.7 1.0 1.0 1.0 204.95 
0.3 0.3 0.3 0.5 0.3 0.1 -0.7 0.7 0.5 1.0 1.0 1.0 217.52 
0.3 0.3 0.3 0.5 0.3 0.1 -0.7 0.7 0.7 1.0 1.0 1.0 239.55 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.1 0.5 1.0 1.0 1.0 213.97 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.1 0.7 1.0 1.0 1.0 293.71 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.3 0.3 1.0 1.0 1.0 261.26 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.3 0.5 1.0 1.0 1.0 390.79 
0.3 0.3 0.3 0.5 0.3 0.3 -0.9 0.5 0.1 1.0 1.0 1.0 335.36 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.3 0.5 1.0 1.0 1.0 213.97 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.3 0.7 1.0 1.0 1.0 293.71 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.5 0.3 1.0 1.0 1.0 261.26 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.5 0.5 1.0 1.0 1.0 390.79 
0.3 0.3 0.3 0.5 0.3 0.3 -0.7 0.7 0.1 1.0 1.0 1.0 335.36 
0.3 0.3 0.3 0.5 0.3 0.3 -0.5 0.5 0.5 1.0 1.0 1.0 213.97 
0.3 0.3 0.3 0.5 0.3 0.3 -0.5 0.5 0.7 1.0 1.0 1.0 293.71 
0.3 0.3 0.3 0.5 0.3 0.3 -0.5 0.7 0.3 1.0 1.0 1.0 261.26 
0.3 0.3 0.3 0.5 0.3 0.3 -0.5 0.7 0.5 1.0 1.0 1.0 390.79 
0.3 0.3 0.3 0.5 0.3 0.3 -0.3 0.7 0.5 1.0 1.0 1.0 213.97 
0.3 0.3 0.3 0.5 0.3 0.3 -0.3 0.7 0.7 1.0 1.0 1.0 293.71 
0.3 0.3 0.3 0.5 0.3 0.5 -0.9 0.3 0.5 1.0 1.0 1.0 242.67 
0.3 0.3 0.3 0.5 0.3 0.5 -0.9 0.3 0.7 1.0 1.0 1.0 498.42 
0.3 0.3 0.3 0.5 0.3 0.5 -0.9 0.5 0.1 1.0 1.0 1.0 207.22 
0.3 0.3 0.3 0.5 0.3 0.5 -0.9 0.5 0.3 1.0 1.0 1.0 368.84 
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Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.3 0.3 0.3 0.5 0.3 0.5 -0.7 0.3 0.7 1.0 1.0 1.0 242.67 
0.3 0.3 0.3 0.5 0.3 0.5 -0.7 0.5 0.3 1.0 1.0 1.0 207.22 
0.3 0.3 0.3 0.5 0.3 0.5 -0.7 0.5 0.5 1.0 1.0 1.0 368.84 
0.3 0.3 0.3 0.5 0.3 0.5 -0.7 0.7 0.1 1.0 1.0 1.0 292.74 
0.3 0.3 0.3 0.5 0.3 0.5 -0.5 0.5 0.5 1.0 1.0 1.0 207.22 
0.3 0.3 0.3 0.5 0.3 0.5 -0.5 0.5 0.7 1.0 1.0 1.0 368.84 
0.3 0.3 0.3 0.5 0.3 0.5 -0.5 0.7 0.3 1.0 1.0 1.0 292.74 
0.3 0.3 0.3 0.5 0.3 0.5 -0.3 0.5 0.7 1.0 1.0 1.0 207.22 
0.3 0.3 0.3 0.5 0.3 0.5 -0.3 0.7 0.5 1.0 1.0 1.0 292.74 
0.3 0.3 0.3 0.5 0.3 0.5 -0.1 0.7 0.7 1.0 1.0 1.0 292.74 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.1 0.1 1.0 1.0 1.0 210.54 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.1 0.3 1.0 1.0 1.0 247.23 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.1 0.5 1.0 1.0 1.0 299.41 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.1 0.7 1.0 1.0 1.0 379.50 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.3 0.1 1.0 1.0 1.0 247.23 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.3 0.3 1.0 1.0 1.0 299.41 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.3 0.5 1.0 1.0 1.0 379.50 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.5 0.1 1.0 1.0 1.0 299.41 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.5 0.3 1.0 1.0 1.0 379.50 
0.3 0.3 0.3 0.5 0.5 0.1 -0.9 0.7 0.1 1.0 1.0 1.0 379.50 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.5 0.7 1.0 1.0 1.0 210.54 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.7 0.5 1.0 1.0 1.0 210.54 
0.3 0.3 0.3 0.5 0.5 0.1 -0.7 0.7 0.7 1.0 1.0 1.0 247.23 
0.3 0.3 0.3 0.5 0.5 0.3 -0.9 0.1 0.3 1.0 1.0 1.0 242.67 
0.3 0.3 0.3 0.5 0.5 0.3 -0.9 0.1 0.5 1.0 1.0 1.0 498.42 
0.3 0.3 0.3 0.5 0.5 0.3 -0.9 0.3 0.1 1.0 1.0 1.0 242.67 
0.3 0.3 0.3 0.5 0.5 0.3 -0.9 0.3 0.3 1.0 1.0 1.0 498.42 
0.3 0.3 0.3 0.5 0.5 0.3 -0.9 0.5 0.1 1.0 1.0 1.0 498.42 
0.3 0.3 0.3 0.5 0.5 0.3 -0.7 0.1 0.7 1.0 1.0 1.0 292.74 
0.3 0.3 0.3 0.5 0.5 0.3 -0.7 0.3 0.5 1.0 1.0 1.0 292.74 
0.3 0.3 0.3 0.5 0.5 0.3 -0.7 0.5 0.3 1.0 1.0 1.0 292.74 
0.3 0.3 0.3 0.5 0.5 0.3 -0.7 0.7 0.1 1.0 1.0 1.0 292.74 
0.3 0.3 0.3 0.5 0.5 0.3 -0.5 0.3 0.7 1.0 1.0 1.0 207.22 
0.3 0.3 0.3 0.5 0.5 0.3 -0.5 0.5 0.5 1.0 1.0 1.0 207.22 
0.3 0.3 0.3 0.5 0.5 0.3 -0.5 0.5 0.7 1.0 1.0 1.0 368.84 
0.3 0.3 0.3 0.5 0.5 0.3 -0.5 0.7 0.3 1.0 1.0 1.0 207.22 
0.3 0.3 0.3 0.5 0.5 0.3 -0.5 0.7 0.5 1.0 1.0 1.0 368.84 
0.3 0.3 0.3 0.5 0.5 0.3 -0.3 0.7 0.7 1.0 1.0 1.0 242.67 
0.3 0.3 0.3 0.5 0.5 0.5 -0.9 0.1 0.5 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.9 0.3 0.3 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.9 0.5 0.1 1.0 1.0 1.0 280.25 
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Table 3.1 (continued): Relative efficiency of the proposed ratio estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  RE 

0.3 0.3 0.3 0.5 0.5 0.5 -0.7 0.1 0.7 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.7 0.3 0.5 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.7 0.5 0.3 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.7 0.7 0.1 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.5 0.3 0.7 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.5 0.5 0.5 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.5 0.7 0.3 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.3 0.5 0.7 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.3 0.7 0.5 1.0 1.0 1.0 280.25 
0.3 0.3 0.3 0.5 0.5 0.5 -0.1 0.7 0.7 1.0 1.0 1.0 280.25 
0.5 0.5 0.5 0.3 0.5 0.3 -0.9 0.7 0.7 1.0 1.0 1.0 211.38 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.5 0.7 1.0 1.0 1.0 243.36 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.7 0.3 1.0 1.0 1.0 224.31 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.7 0.5 1.0 1.0 1.0 293.18 
0.5 0.5 0.5 0.5 0.3 0.3 -0.9 0.7 0.7 1.0 1.0 1.0 423.08 
0.5 0.5 0.5 0.5 0.3 0.3 -0.7 0.7 0.7 1.0 1.0 1.0 243.36 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.5 0.7 1.0 1.0 1.0 265.96 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.7 0.3 1.0 1.0 1.0 230.32 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.7 0.5 1.0 1.0 1.0 385.15 
0.5 0.5 0.5 0.5 0.3 0.5 -0.7 0.7 0.5 1.0 1.0 1.0 230.32 
0.5 0.5 0.5 0.5 0.3 0.5 -0.7 0.7 0.7 1.0 1.0 1.0 385.15 
0.5 0.5 0.5 0.5 0.3 0.5 -0.5 0.7 0.7 1.0 1.0 1.0 230.32 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.1 0.7 1.0 1.0 1.0 203.10 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.3 0.5 1.0 1.0 1.0 203.10 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.3 0.7 1.0 1.0 1.0 314.65 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.5 0.3 1.0 1.0 1.0 203.10 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.5 0.5 1.0 1.0 1.0 314.65 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.7 0.1 1.0 1.0 1.0 203.10 
0.5 0.5 0.5 0.5 0.5 0.3 -0.9 0.7 0.3 1.0 1.0 1.0 314.65 
0.5 0.5 0.5 0.5 0.5 0.3 -0.7 0.5 0.7 1.0 1.0 1.0 230.32 
0.5 0.5 0.5 0.5 0.5 0.3 -0.7 0.7 0.5 1.0 1.0 1.0 230.32 
0.5 0.5 0.5 0.5 0.5 0.3 -0.7 0.7 0.7 1.0 1.0 1.0 385.15 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.3 0.7 1.0 1.0 1.0 423.08 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.5 0.5 1.0 1.0 1.0 423.08 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.7 0.3 1.0 1.0 1.0 423.08 
0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.5 0.7 1.0 1.0 1.0 423.08 
0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.7 0.5 1.0 1.0 1.0 423.08 
0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.7 0.7 1.0 1.0 1.0 423.08 
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Appendix 
Table 4.1: Relative efficiency of the proposed power transformation estimator with respect to the BBB 

model for different choice of parameters with 7.021 === PPP  

γC  
1γC  

2γC  yC  1Cx  2Cx
1yxρ

2yxρ
21xxρ θ  1θ  2θ  optα  RE 

0.1 0.1 0.1 0.5 0.3 0.5 0.1 0.7 0.7 0.5 0.5 0.5 1.00 221.88 
0.1 0.1 0.1 0.5 0.5 0.3 0.7 0.1 0.7 0.5 0.5 0.5 -1.00 221.88 
0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.7 0.7 0.5 0.5 0.5 1.04 215.47 
0.1 0.1 0.1 0.5 0.5 0.5 0.7 0.1 0.7 0.5 0.5 0.5 -1.04 215.47 
0.1 0.1 0.1 0.1 0.3 0.5 0.1 0.7 0.7 1.0 1.0 1.0 0.23 234.49 
0.1 0.1 0.1 0.1 0.5 0.3 0.7 0.1 0.7 1.0 1.0 1.0 -0.23 234.49 
0.1 0.1 0.1 0.3 0.1 0.3 0.1 0.7 0.5 1.0 1.0 1.0 0.79 202.37 
0.1 0.1 0.1 0.3 0.1 0.3 0.1 0.7 0.7 1.0 1.0 1.0 0.93 250.17 
0.1 0.1 0.1 0.3 0.1 0.5 0.1 0.7 0.5 1.0 1.0 1.0 0.47 206.00 
0.1 0.1 0.1 0.3 0.1 0.5 0.1 0.7 0.7 1.0 1.0 1.0 0.52 230.87 
0.1 0.1 0.1 0.3 0.1 0.5 0.3 0.7 0.7 1.0 1.0 1.0 0.49 200.86 
0.1 0.1 0.1 0.3 0.3 0.1 0.7 0.1 0.5 1.0 1.0 1.0 -0.79 202.37 
0.1 0.1 0.1 0.3 0.3 0.1 0.7 0.1 0.7 1.0 1.0 1.0 -0.93 250.17 
0.1 0.1 0.1 0.3 0.3 0.3 0.1 0.7 0.7 1.0 1.0 1.0 0.89 206.79 
0.1 0.1 0.1 0.3 0.3 0.3 0.7 0.1 0.7 1.0 1.0 1.0 -0.89 206.79 
0.1 0.1 0.1 0.3 0.3 0.5 0.1 0.7 0.5 1.0 1.0 1.0 0.49 200.61 
0.1 0.1 0.1 0.3 0.3 0.5 0.1 0.7 0.7 1.0 1.0 1.0 0.70 358.60 
0.1 0.1 0.1 0.3 0.5 0.1 0.7 0.1 0.5 1.0 1.0 1.0 -0.47 206.00 
0.1 0.1 0.1 0.3 0.5 0.1 0.7 0.1 0.7 1.0 1.0 1.0 -0.52 230.87 
0.1 0.1 0.1 0.3 0.5 0.1 0.7 0.3 0.7 1.0 1.0 1.0 -0.49 200.86 
0.1 0.1 0.1 0.3 0.5 0.3 0.7 0.1 0.5 1.0 1.0 1.0 -0.49 200.61 
0.1 0.1 0.1 0.3 0.5 0.3 0.7 0.1 0.7 1.0 1.0 1.0 -0.70 358.60 
0.1 0.1 0.1 0.3 0.5 0.5 0.1 0.7 0.7 1.0 1.0 1.0 0.57 222.91 
0.1 0.1 0.1 0.3 0.5 0.5 0.7 0.1 0.7 1.0 1.0 1.0 -0.57 222.91 
0.1 0.1 0.1 0.5 0.1 0.3 0.1 0.7 0.5 1.0 1.0 1.0 1.31 206.82 
0.1 0.1 0.1 0.5 0.1 0.3 0.1 0.7 0.7 1.0 1.0 1.0 1.56 258.32 
0.1 0.1 0.1 0.5 0.1 0.5 0.1 0.7 0.5 1.0 1.0 1.0 0.78 210.69 
0.1 0.1 0.1 0.5 0.1 0.5 0.1 0.7 0.7 1.0 1.0 1.0 0.86 237.40 
0.1 0.1 0.1 0.5 0.1 0.5 0.3 0.7 0.7 1.0 1.0 1.0 0.81 205.21 
0.1 0.1 0.1 0.5 0.3 0.1 0.7 0.1 0.5 1.0 1.0 1.0 -1.31 206.82 
0.1 0.1 0.1 0.5 0.3 0.1 0.7 0.1 0.7 1.0 1.0 1.0 -1.56 258.32 
0.1 0.1 0.1 0.5 0.3 0.3 0.1 0.7 0.7 1.0 1.0 1.0 1.49 211.54 
0.1 0.1 0.1 0.5 0.3 0.3 0.7 0.1 0.7 1.0 1.0 1.0 -1.49 211.54 
0.1 0.1 0.1 0.5 0.3 0.5 0.1 0.7 0.5 1.0 1.0 1.0 0.81 204.94 
0.1 0.1 0.1 0.5 0.3 0.5 0.1 0.7 0.7 1.0 1.0 1.0 1.17 379.21 
0.1 0.1 0.1 0.5 0.5 0.1 0.7 0.1 0.5 1.0 1.0 1.0 -0.78 210.69 
0.1 0.1 0.1 0.5 0.5 0.1 0.7 0.1 0.7 1.0 1.0 1.0 -0.86 237.40 
0.1 0.1 0.1 0.5 0.5 0.1 0.7 0.3 0.7 1.0 1.0 1.0 -0.81 205.21 
0.1 0.1 0.1 0.5 0.5 0.3 0.7 0.1 0.5 1.0 1.0 1.0 -0.81 204.94 
0.1 0.1 0.1 0.5 0.5 0.3 0.7 0.1 0.7 1.0 1.0 1.0 -1.17 379.21 
0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.7 0.7 1.0 1.0 1.0 0.95 228.82 
0.1 0.1 0.1 0.5 0.5 0.5 0.7 0.1 0.7 1.0 1.0 1.0 -0.95 228.82 
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A flexible approach for testing association in two-way contingency tables is presented. It is simple, does 
not assume a specific form for the association and is applicable to tables with nominal-by-nominal, 
nominal-by-ordinal, and ordinal-by-ordinal classifications. 
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Introduction 
In many social and medical studies a crucial 
question is whether the categorical variables 
forming a contingency table are independent. 
Suppose that a sample of N observations is 
classified with respect to two categorical 
variables, one with r levels and the other with c 
levels. Using the notation in Table 1 for this 
two-dimensional table, ijn  denotes the observed 

frequency for cell (i, j), and .in  and jn.  denote 

the row and column totals, respectively. Also, 

ijP  is estimated by ˆ = ij
ij

n
P

N
. 
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Log-linear models are a general 
approach for the analysis of contingency tables. 
The major advantages of log-linear models are 
that they provide a systematic approach to the 
analysis of complex multidimensional tables and 
estimate the magnitude of effects of interest; 
consequently, they identify the relative 
importance of different effects (Agresti, 2002). 
Let ijm  denote the expected frequencies in a 

two-way contingency table with nominal row 
and column classifications. In addition, let x and 
y represent the row and column variables, 
respectively. In the standard system of 
hierarchical log-linear models, there are two 
possible models. The saturated model 
 

log( )  x y xy
ij i j ijm λ λ λ λ= + + +           (1) 

 

Table 1: Notation for a Two-Way Contingency Table 

Row 
Variable

Column Variable 
Total 

1  j  c 

1 
n11 
p11 

… n1j 
p1j 

… n1c 
p1c 

n1. 
p1. 

i 
ni1 
pi1 

… nij 
pij 

… nic 
pic 

ni. 
pi. 

r 
nr1 
pr1 

… nrj 
prj 

… nrc 
prc 

nr. 
pr. 

Total 
n.1 
p.1 

… n.j 
p.j 

… n.c 
p.c 

N 
1 
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has rc parameters and zero degree of freedom 
(d.f.). Hence, this model describes the data 
perfectly, however, it is not useful because it 
does not provide data reduction. The model only 
serves as a baseline for comparison with the 
independence model. 

The independence model 
 

log( ) x y
ij i jm λ λ λ= + +            (2) 

 
has 1cr −+  parameters and )1c)(1r( −−  d.f. 
for testing lack of fit. Thus, the hypothesis of 
independence can be tested by comparing the 
saturated and independence models. The 
deviation from independence can be measured 
by the likelihood ratio statistic (LR) 


= =











=

r

1i

c

1j ij

ij
ijI m̂

n
logn2D  

 
where ij i . . jm̂ n n / N=  is the estimation of the 

expected frequency in the ith category of the row 
and the jth category of the column variable under 
the hypothesis of independence ( 0H ). If 0H  is 

true, DI has an asymptotic Chi-square 
distribution with (r-1)(c-1) degrees of freedom. 

The log-linear method presented has a 
number of limitations. First, it often has low 
power to detect departures from independence, 
especially when the dimension of the table 
increases (Davis, 1991). Second, it treats all 
classifications as nominal; therefore if the order 
of categories changes for a variable in any way, 
the fit remains the same (Agresti, 2002). Instead, 
if the row and column variables are both ordinal 
with known scores, the Linear-by-Linear 
association model can be used. On the other 
hand, when scoring is used only for one of the 
row or column variables, the row-effect or 
column-effect association model can be used 
(Agresti, 1984). 

In practice it may not be possible to 
choose obvious scores for both the row and 
column categories. One alternative is 
Goodman’s RC model, in which the row and 
column scores are treated as parameters to be 
estimated (Goodman, 1969). Although the RC 
model can be used if the two variables are 
nominal, which does not impose any restriction 

on the type of the variables, calculation of the 
conditional test of independence is complicated 
and the distribution of the test statistic is not 
Chi-square (Agresti, 2002). In all of these 
models the researcher needs to specify the 
functional form for the association and, if the 
association form is chosen incorrectly, then the 
power of the model will decrease. 

It should be noted that, some methods 
used for testing interaction in two-way ANOVA 
can also be applied to two-way contingency 
tables for testing association (Alin & Kurt, 
2006). For example, Davis (1991) tested 
association in two-way contingency tables based 
on Tukey’s model (Tukey, 1949). Also 
Christensen (1990) tested interaction in log-
linear and logit models for categorical data with 
the logit version of Mandel’s models (Mandel, 
1961). Milliken and Graybill (1970) established 
a two-stage fitting procedure using Tukey’s 
model (Tukey, 1949). Recently, Kharati and 
Sadooghi (2007) have proposed a new method 
for testing interaction in two-way ANOVA.  

In this study, the same method used by 
Kharati and Sadooghi (2007) will be applied for 
testing association in two-way contingency 
tables. It is a flexible approach for testing 
independence that does not assume a special 
form for the association model. The method was 
applied to detect association in tables with 
nominal-by-nominal and nominal-by-ordinal 
data.  
 

Methodology 
Row Effect Model 

If either the row or the column variable 
(but not both of them) is ordinal, then a row-
effect or column-effect model can be fitted 
(Agresti, 1984; Agresti, 2002). The row effects 
model has the form 
 

x y
ij i j i jlog(m ) v .= λ + λ + λ + μ         (4) 

 
This model is appropriate for two-way tables 
with ordered columns, using scores 

c21 v...vv <<< . Because the rows are 

unordered, the model treats them as parameters 
and denotes them by iμ . The iμ ’s are called the 
row effects. This model has r-1 more parameters 
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than the independence model, which is a special 
case where r21 ... μ==μ=μ . 

The LR test of independence requires 
maximum likelihood (ML) estimates ijm̂  of 

expected cell frequencies under model (4). Let 

RD  denote the LR goodness of fit statistic for 

model (4) and let ID  denote the classical test of 
independence given by (2). A (r-1) (c-2) degrees 
of freedom test of r210 ...:H μ==μ=μ  can 

then be based on the LR statistic 

RIRI DDD −= . 

We used the same method proposed by 
Kharati and Sadooghi (2007) for testing 
association in two-way contingency tables. 
Assume a cr ×  contingency table and 
simultaneously 4≥r (so the method excludes 
only 22 × , 23×  and 33×  tables). Divide the 
table according to the rows, into two sub-tables. 
The sub-tables are two contingency tables with 

cr ×1  and cr ×2  dimensions in which 

rrr =+ 21 . In the absence of any association in 
each sub-table, then the independence model 
 

y
j

x
iijmlog λ+λ+λ=                    (5) 

 
can fit both datasets well. Let 1ID  and 2ID  
denote the deviances for the two sub-tables, 
respectively. In generalized linear models if the 
response variables are normally distributed then 
D has a Chi-square distribution exactly. 
However, for responses with a Poisson 
distribution, the sampling distribution of D may 
have an approximate Chi-square distribution 
(Dobson, 2002). Therefore, under the 
independence log-linear model, 1ID  and 2ID  
are independent and have approximate Chi-
square distributions with df1= ( )( )111 −− cr  and 

df2= ( )( )112 −− cr  degrees of freedom, 
respectively. A new statistic for testing 
independence in two-way contingency tables is 
now defined. 

If I1
1

1

D
t

df
=  and I2

2
2

D
t

df
= , then the new 

variable 
2

* 1 2

1

Max(t , t )
F

Min(t , t )
=  has the F distribution 

with d.f. = (df1, df2) where 1 2t t>  or d.f. = (df2, 

df1) where 2 1t t> . In the presence of any 

association, the F* statistic tends to be large, 
thus, the hypothesis of no association if 

( )*
1 2F F df ,dfα>  is rejected when 1 2t t>  or 

( )*
2 1F F df ,dfα>  where 2 1t t> . 

However, in this approach the most 
important question is how a table can be split 
into two separate tables. In some cases, based on 
a priori information, there may be a natural 
division of the table. In the absence of a-priori 
information, drawing a profile plot is suggested. 
Based on such a profile plot those lines which 
are parallel or have the same pattern will be put 
in the same group and the remaining in the other 
group. Additional details are provided in the 
examples and readers are also referred to Kharati 
and Sadooghi (2007) for more information. 
 
Simulation Study 

The programming for the Monte Carlo 
simulation was written in SAS version 9.1. The 
RANTBL function was used for generating and 
simulating contingency tables in SAS (Fan, 
Felsovalyi, Sivo & Keenan, 2002). Contingency 
table data may result from one of several 
possible sampling models. The test of 
independence discussed in this study is based on 
sampling in which a single random sample of 
size N is classified with respect to two 
characteristics simultaneously (Dobson, 2002). 
In the resulting contingency table, both sets of 
marginal total frequencies are random variables. 
The empirical power of each test was 
determined by simulating contingency tables 
under the dependence structure, and computing 
the proportion of times the independence 
hypothesis was rejected at a given significance 
level α . Under the dependence structure, ijP  is 

estimated by ˆ = ij
ij

n
P

N
 (Table 1). 
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For each studied situation, 5,000 
contingency tables were generated in which cell 
frequencies were drawn under the dependent 
structure. The influence of the total sample size 
(N) on the statistical properties of all tests was 
also evaluated. The choice of the proper total 
sample size for simulation depends on 
dimensions of the table. The power of the RID  

and F statistics for testing independence in two-
way contingency tables (nominal-by-ordinal) 
were investigated and compared. In order to find 
the maximum F in each simulated table, all 
combinations of rows and columns to classify 
each table into two subtables were considered. 
The power of the ID  and F statistics for testing 
independence in two-way contingency tables 
(nominal-by- nominal) were also computed and 
compared. 
 
Example 1: The Location of Prehistoric Artifact 

This example is based on the data 
provided in Simonoff (2003). As a result of 
archaeological excavations in Ruby Valley, 
Nevada, various prehistoric artifacts were 
discovered. Archaeologists were interested in 
the relationship between the type of artifacts 
found and the distance to permanent water, 
because the type of artifact discovered describes 
the type of site used by prehistoric hunters 
(Table 2). It was presumed that some tools were 
more difficult to move place to place and would 
thus be more likely to be discovered near 
permanent water. The following table is based 
on a subset of the artifacts discovered in Nevada 
(Simonoff, 2003). 

In this example the row variable is 
nominal and the column variable is ordinal. 
Using the row-effect model (4), =RD 14.85, 

=ID 16.26 and RIRI DDD −= =1.40. With 

respect to the asymptotic Chi-square 

distribution, 2
3χ =7.815, there is no evidence of 

departure from independence. A similar result 
was obtained based on the F statistic. In the 
profile plot for these data (shown in Figure 1), 
the lines corresponding to rows 2, 4 are parallel. 
Thus, these rows were placed in the first sub-
table and the remaining rows in the second sub-
table. In this situation, F (3, 3) = 14.94 and P = 

.002 which is significant at the nominal level of 
0.05. The result of our simulation showed that 
the F statistic is considerably more powerful 
than the row-effect model. The power of the F 
and DI|R are 0.43 and 0.15 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Frequencies for Artifact Type and Distance 
from Permanent Water 

 

Artifact 
Type 

Distance from Permanent Water 

Immediate 
Vicinity 

Within 
0.25 

Miles 

0.25-
0.50 

Miles 

0.50-
1 

Miles 

Drills 2 10 4 2 

Pots 3 8 4 6 

Grinding 
Stones 

13 5 3 9 

Point 
Fragments

20 36 19 20 

Figure 1: Profile Plot of Data in Example 1 
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Example 2.1: Malignant Melanoma 
For the data in Table 3 the question of 

interest is whether there is any association 
between tumor type and site. These data are 
from a cross-sectional study of patients with a 
form of skin cancer called malignant melanoma 
(Dobson, 2002). For a sample of N=400 patients 
the site of the tumor and its histological type 
were recorded. 

In testing the null hypothesis that tumor 
type and tumor site are independent, DI = 51.79  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and P < .001, which indicate that the association 
between type and site of tumor is highly 
significant. A similar result was obtained based 
on the proposed F statistic. In the profile plot for 
these data in Figure 2, the lines corresponding to 
rows 3 and 4 are nearly parallel which suggests 
that these rows can be placed in the one sub-
table and the remaining rows in the other sub-
table. The F statistic value for this division is 
statistically significant, F (2, 2) = 43.41, p = .02. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Frequencies for Tumor Type and Site 
 

Tumor Type 
Site 

Head and Neck Trunk Extremities 

Hutchinson’s Melanotic Freckle 22 2 10 

Superficial Spreading Melanoma 16 54 115 

Nodular 19 33 73 

Indeterminate 11 17 28 

 
 

Figure 2: Profile Plot of Data in Malignant Melanoma Example 2.1 
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Example 2.2: Malignant Melanoma 
Next, substitute the frequencies 2, 16, 

115, 73 and 28 in the cells (1, 2), (2, 1), (2, 3), 
(3, 3) and (4, 3) by 18, 45, 60, 38 and 20, 
respectively. In this situation, the null hypothesis 
is tested again. The new results, based on the 
likelihood ratio statistic, show that there is no 
significant association between tumor site and 
tumor type, DI = 11.80, P = .067. However, a 
different result was obtained based on the F 
statistic at the α=0.05 level. In the profile plot 
for these data (Figure 3), the lines corresponding 
to rows 3, 4 are nearly parallel and close to each 
other. Therefore, these rows were placed in one 
table and the remaining rows in another table. 
The value of the F statistic for this division is 
highly significant, F (2, 2) = 108.42, p < .01. 
 
Simulation Results 
The results of the simulations showed that the 
power of the F and LR statistics in Malignant 
Melanoma Example 2.1 are 0.653 and 1,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

respectively, and in Malignant Melanoma 
Example 2.2 are 0.425 and 0.736, respectively. 

This study also evaluated the influence 
of the total sample size (N) on the statistical 
properties for the above two examples. Table 4 
shows the results of the estimation of power of 
the proposed F statistic and row-effect model 
(DI|R) based on 5,000 simulated tables for the 
nominal-by-ordinal association model in 
Example 1. Table 5 shows these results for the 
proposed F statistic and the likelihood ratio 
statistic (DI) based on 5,000 simulated tables for 
the nominal-by-nominal association model in 
Examples 2.1 and 2.2. 

Table 4 shows that, for N ≤ 800, 
especially when N ≤ 500, the estimated power 
for the F statistic is considerably higher 
compared to the row-effect model ( I RD ). 

However for N > 900 the power of the row-
effect model is dramatically higher than the F 
statistic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Profile Plot of Data in Malignant Melanoma 2.2 Example 
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Regarding Example 2.1, Table 5 shows 
that, for all N, the likelihood ratio statistic is 
considerably more powerful compared with the 
F statistic. When N increases, the power of the F 
statistic steadily increases, but the power of the 
likelihood ratio statistic converges to 1 for N > 
400. Conversely, in Example 2.2, although the 
power of the likelihood ratio statistic is higher 
than the power of the F statistic, the rate of 
power increase is lower compared to Example 
2.1. 
 

Conclusion 
A new statistic is proposed for testing 
independence in two-way contingency tables by 
dividing a table into two sub-tables. This method 
has been constructed based on the independence 
model so there is no need to specify any 
functional form for the association terms. 
Therefore, it could be applicable to any type of 
contingency tables, including nominal-by-
nominal, nominal-by-ordinal and ordinal-by-
ordinal. 

The idea of partitioning contingency 
tables was first introduced by Kullback, et al. 
(1962) and Lancaster (1951). They showed that 
the overall Chi-square statistic for a contingency 
table can always be partitioned into as many 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
components as the table’s degrees of freedom. 
The Chi-square value of each component 
corresponds to a particular 2×2 table arising 
from the original table, and each component is 
independent of the others. Consequently a 
detailed examination of departures from 
independence can be made, thus enabling 
identification of those categories responsible for 
a significant overall Chi-square value. However, 
in this article the same technique was used for 
partitioning contingency tables that was applied 
to two-way ANOVA by Kharati and Sadooghi 
(2007). In the present work, this method was 
used for analyzing nominal-by-nominal and 
nominal-by-ordinal data. 

Table 4: Nominal-by-Ordinal Association: 
Estimation of Power for the F Statistic and 

the Row-Effect Model (DI|R) Based on 5,000 
Simulations in Example 1 

 

N F DI|R 

200 0.440 0.172 

300 0.488 0.242 

400 0.514 0.311 

500 0.553 0.372 

600 0.575 0.442 

700 0.576 0.499 

800 0.606 0.564 

900 0.617 0.616 

1,000 0.620 0.671 

2,000 0.731 0.937 

Table 5: Nominal-by-Nominal 
Association: Estimation of Power and for 
the F Statistic and the Likelihood Ratio 

Statistics (DI) Based on 5,000 Simulations 
 

Example 2.1 

N F DI

200 0.532 0.976 
300 0.602 0.999 
400 0.641 1.000 
500 0.669 1.000 
600 0.697 1.000 
700 0.716 1.000 
800 0.736 1.000 
900 0.759 1.000 

1,000 0.769 1.000 
2,000 0.872 1.000 

   

Example 2.2 

N F DI

200 0.343 0.474 
300 0.387 0.649 
400 0.455 0.806 
500 0.490 0.903 
600 0.525 0.947 
700 0.564 0.979 
800 0.583 0.988 
900 0.610 0.996 

1,000 0.629 0.998 
2,000 0.772 1.000 
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It is notable that in a two-way ANOVA 
data are assumed to be normally distributed and 
the proposed F for testing interaction has an 
exact F distribution which leads to a two-sided 
test for equality of variances. In this study the 
response variable had Poisson distribution, so 
the proposed one-sided test has an asymptotic F 
distribution. Profile plots were also used as a 
preliminary tool to divide one table into two 
separate tables, which was the first step before 
applying the proposed method. However, there 
are other graphical methods such as 
corresponding analysis (Blasius & Greenarce, 
2006), mosaic (Friendly, 1998) and z-plot 
(Choulakian & Allard, 1998), all of which can 
be helpful to visualizing and screening 
contingency tables before conducting any formal 
statistical analysis. 

The power of the F statistic was 
compared with DI and RID . In Example 1, in 

which the row and column were nominal and 
ordinal respectively, it was believed that the 
row-effect model would be the best method for 
testing the association between row and column. 
Surprisingly, the proposed F statistic worked 
much better than expected. The results showed 
that while RID  could not find any association 

between rows and columns; the proposed F was 
strongly significant. In this case the power 
simulation showed that the F statistic is more 
powerful than RID  (0.43 vs. 0.15). Also the 

simulation results in Table 4 showed that for N ≤ 
500 the power of the F statistic was considerably 
higher than RID . In this example, the results of 

the proposed F demonstrated that, despite the 
simplicity of its computations, it is more 
powerful than the row-effect model. These 
findings may encourage researchers to use the 
proposed F statistic for testing association in 
contingency tables. 

In the Malignant Melanoma Example 
2.1 when the row and column were nominal and 
there was a significant association between 
them, the simulation results showed that the DI 
statistic was more powerful than F. In contrast, 
in the Malignant Melanoma Example 2.2, 
although DI could not find any association 
between row and column, the proposed F was 

strongly significant. However, simulation 
showed that DI was more powerful than F (0.76 
vs. 0.44). In this case it should be noted that 
although the F statistic was often less powerful 
than the DI, it was able to detect some special 
types of departures from the null hypothesis 
which could not be detected by DI. 

In conclusion, it is suggested that the F 
statistic serves as an alternative method for 
testing association in two-way contingency 
tables, in particular, if one variable is in ordinal 
scale. It is easy to use because it does not need 
any functional form for the association term. It is 
simple to compute and has good power. In 
addition to simplicity and flexibility, this test 
could be helpful in detecting the part of a table 
which contributes the association between row 
and column. It seems that, in some cases, this 
method enables us to detect an association in 
contingency tables that cannot be found by a 
row-effect model or likelihood ratio statistics. 
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The concept of Neighbor Balanced Block (NBB) designs is defined for the experimental situation where 
the treatments are combinations of levels of two factors and only one of the factors exhibits a neighbor 
effect. Methods of constructing complete NBB designs for two factors in a plot that is strongly neighbor 
balanced for one factor are obtained. These designs are variance balanced for estimating the direct effects 
of contrasts pertaining to combinations of levels of both the factors. An incomplete NBB design for two 
factors is also presented and is found to be partially variance balanced with three associate classes. 
 
Key words: Circular design, neighbor balanced, strongly neighbor balanced, variance balanced, partially 

variance balanced. 
 
 

Introduction 
In many agricultural experiments, the response 
from a given plot is affected by treatments 
applied to neighboring plots provided the plots 
are adjacent with no gaps. For example, when 
treatments are varieties, neighbor effects may be 
caused due to differences in height or date of 
germination, especially on small plots. 
Treatments such as fertilizer, irrigation, or 
pesticide may spread to adjacent plots causing 
neighbor effects. In order to avoid the bias in  
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comparing the effects of treatments in such a 
situation, it is important to ensure that no 
treatment is unduly disadvantaged by its 
neighbor. Neighbor Balanced Designs, wherein 
the allocation of treatments is such that every 
treatment occurs equally often with every other 
treatment as neighbors, are used for these 
situations. These designs permit the estimation 
of direct and neighbor effects of treatments. 

Azais, et al. (1993) developed a series of 
circular neighbor balanced block (NBB) designs 
for single factor experiments. A NBB design for 
a single factor with border plots is circular if the 
treatment in the left border is the same as the 
treatment in the right-end inner plot and the 
treatment in the right border is the same as the 
treatment in the left-end inner plot. Tomar, et al. 
(2005) also obtained some incomplete NBB 
designs for single factor experiments.  

In certain experimental situations, the 
treatments are the combination of levels of two 
factors and only one of the factors exhibits 
neighbor effects. For example, agroforestry 
experiments consist of tree and crop 
combination in a plot and, because trees are 
much taller than the crop, it is suspected that the 
tree species of one plot may affect the response 
from the neighboring plots. The effect of the 
crop species in neighboring plots is assumed to 
be negligible. Under this situation, it is therefore 
desirable that designs allowing the estimation of 
direct effects of treatment combinations free of 
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neighbor effects are developed. Langton (1990) 
advocated the use of both NBBs and guard areas 
in agroforestry experiments. Monod and Bailey 
(1993) presented two factor designs balanced for 
the neighbor effect of one factor.  

NBB designs are defined for the 
experimental situation where the treatments are 
the combinations of levels of two factors and 
only one of the factors exhibits a neighbor effect 
in a block design with no gaps or guard areas 
between the plots. Some methods of 
constructing these designs balanced for the 
effects of one factor in the adjacent neighboring 
plots are presented. 
 
Model 

Let F1 and F2 be two factors in an 
experiment with f1 and f2 levels, respectively. 
The f1 levels are represented as (1, 2, ...) and the 
f2 levels as (a, b, ...). Consider an inner plot i (i = 
1, 2, …, k) in the block θ(i) [ = 1, 2, …, b] of a 
block design with a left neighbor plot i−1 and a 
right neighbor plot i+1. Let φ(i) and ϕ(i) denote 
the levels of F1 and F2, respectively, on i. The 
general fixed effects model (Monod and Bailey, 
1993) for Yi, the response from plot i considered 
is 
 

i)1i()1i()i(),i()i(i eY +ρ+δ+τ+β+μ= +φ−φϕφθ  
(1) 

 
where μ is the general mean, βθ(i) is the effect of 
block θ(i) to which plot i belongs, )i(),i( ϕφτ  is 

the direct effect of the treatment combination 
φ(i)ϕ(i), )1i( −φδ  is the left neighbor effect of φ(i-

1), )1i( +φρ  is the right neighbor effect of φ(i+1) 

and ei is a random error term assumed to be 
identically and independently distributed with 
mean zero and constant variance. 
 
Definitions 

The following definitions for a block 
design with two factors in a plot and with 
neighbor effects for one factor (for example, F1) 
from adjacent neighboring plots are provided. 

Definition 1: circular block design. A 
block containing plots with treatment 
combinations and border plots is said to be left 
circular if the level of F1 on the left border is the 

same as the level of F1 on the right end inner 
plot. It is right circular if the level of F1 on the 
right border is the same as the level of F1 on the 
left end inner plot. A circular block is a left as 
well as right circular. A design with all circular 
blocks is called a circular block design. Note 
that the observations are not recorded from the 
border plots; these plots are taken only to have 
the neighbor effects of factor F1. 

Definition 2: strongly neighbor 
balanced. A circular block design with two 
factors F1 and F2 is called strongly neighbor 
balanced for factor F1 if every combination of 
the two factors has each of the levels of factor F1 
as a right as well as a left neighbor a constant 
number of times, for example, 1μ′ . 

Definition 3: neighbor balanced. A 
circular block design with two factors F1 and F2 

is neighbor balanced for factor F1 if every 
combination of the two factors has levels of 
factor F1 (except the level appearing in the 
combination) appearing 1μ ′′  times as a right and 
as a left neighbor. 

Definition 4: variance balanced. A block 
design for two factors with left and right 
neighbor effects of factor F1 is said to be 
variance balanced if the contrasts in the direct 
effects of f1 × f2 combinations are estimated with 
the same variance, for example, V. 

Definition 5: partially variance 
balanced. A block design for two factors with 
neighbor effects is partially variance balanced 
following some association scheme if the 
contrasts pertaining to the f1 × f2 combinations 
from F1 and F2 factors are estimated with 
different variances, depending upon the order of 
association scheme. 
 

Methodology 
Complete NBB Designs for Two Factors: 
Method 1 

Let f1 be a prime number with its 
primitive root as x and f2 = f1 − s, s = 1, 2, …, f1 
− 2. Obtain a basic array of f2 columns each of 
size f1 from the following initial sequence for 
values of i = 1, 2, ..., f2: 
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f1 

xi 

xi+1 

. 

. 

. 
2−+ 1fix  

 
Develop the columns of this array cyclically, 
mod f1 to obtain f1 sets of f2 columns each. 
Allocate f2 symbols denoted by a, b, … to each 
of the sets in such a way that symbol a occurs 
with all entries of column 1 in each set, b with 
all entries of column 2 of each set and so on. 
Considering the rows as blocks and making the 
blocks circular by adding appropriate border 
plots results in a complete block design for f1f2 

treatment combinations with f1 blocks each of 
size f1f2 which is strongly neighbor balanced for 
factor F1. It is observed that each of the f1f2 
combinations of factor F1 and F2 has each level 
of factor F1 as left and right neighbor once, that 
is, 1μ′  = 1, and the design is complete in the 
sense that all the f1f2 combinations appear in a 
block. The designs obtained are variance 
balanced for estimating the direct effects of 
contrasts in f1f2 treatment combinations as the 
corresponding information matrix (Cτ) is: 
 

JIC
2

1
1

f
f −=τ ,                       (2) 

 
where I is an identity matrix of order f1f2 and J is 
the matrix of all unities. 
 
Example 1 

Let f1 = 5 be the number of level of first 
factor F1 represented by 1, 2, 3, 4, 5. Further let 
s = 3 resulting in f2 = f1 – s = 2 level of second 
factor denoted by a, b. If the rows represent the 
blocks and 5 × 2 (= 10) treatment combinations 
in rows the block contents, then the following 
arrangement forms a circular complete block 
design for 10 treatment combinations in five 
blocks each of size 10 strongly neighbor 
balanced for five levels of F1: 
 

 
 
 
 
 
 
 
 
 
 
 
It may be observed from the above that all the 
10 combinations of factor F1 and F1 are balanced 
for factor F1 as each combination has each of the 
levels of factor F1 as left and right neighbor 
exactly once. 
 
Example 2 

If f1 = 5 and s = 2, then f2 = 3 and the 
design for 15 treatment combinations is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 presents a list of designs consisting of 
the variance of contrast between different 
treatments combinations (V) along with other 
parameters for number of level of first factor 
(F1) ≤ 13. 
 
Complete NBB Designs for Two Factors: 
Method 2 

Let f1 be an even number and f2 = 2. 
Obtain a square array L of order f1 by 
developing the following initial sequence mod f1 
(replacing 0 by f1): 
 

1 1 1
2 2

+1 1
f f1     f      2     f -1...       

 
 

4 5a 5b 1a 1b 2a 2b 3a 3b 4a 4b 5 

3 2a 4b 3a 5b 4a 1b 5a 2b 1a 3b 2 

2 4a 3b 5a 4b 1a 5b 2a 1b 3a 2b 4 

5 3a 1b 4a 2b 5a 3b 1a 4b 2a 5b 3 

1 1a 2b 2a 3b 3a 4b 4a 5b 5a 1b 1 
 

4 5a 5b 5c 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c 5

2 2a 4b 3c 3a 5b 4c 4a 1b 5c 5a 2b 1c 1a 3b 2c 2

5 4a 3b 1c 5a 4b 2c 1a 5b 3c 2a 1b 4c 3a 2b 5c 4

1 3a 1b 2c 4a 2b 3c 5a 3b 4c 1a 4b 5c 2a 5b 1c 3

3 1a 2b 4c 2a 3b 5c 3a 4b 1c 4a 5b 2c 5a 1b 3c 1
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Juxtapose the mirror image L′  of L to the right 
hand side of L to obtain an arrangement of f1 
rows and 2f1 columns, and allocate the first level 
of F2 to all the units of L and second level to all 
the units of L′ . Considering the rows as blocks 
and making the blocks circular results in a 
complete NBB design with block size 2f1 which 
is strongly neighbor balanced for factor F1. Each 
of the 2f1 combinations of factor F1 and F2 have 
each level of factor F1 as left and right neighbor 
exactly once, that is, 1μ′ =1 and the design is also 
variance balanced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In general, for any even number of 
levels of F2 (f2 = 2n), the squares may be 
juxtaposed in the following manner: 
 

L L′  L L′  … 

 
Allocating the first level of F2 to each unit in L, 
second level to units in L′ , third level to units in 
L again and so on, a complete NBB design in f1 
blocks of size 2f1n balanced for factor F1 is 
obtained. The designs obtained are also variance 
balanced for estimating the direct effects of 

Table 1: Parameters and Variance of Strongly Complete NBB Designs for Two Factors 
 

f1 s f2 k = f1f2 b = f1 1μ′  V 

5 
1 
2 
3 

4 
3 
2 

20 
15 
10 

5 
1 
1 
1 

0.40 
0.40 
0.40 

7 

1 
2 
3 
4 
5 

6 
5 
4 
3 
2 

42 
35 
28 
21 
14 

7 

1 
1 
1 
1 
1 

0.29 
0.29 
0.29 
0.29 
0.29 

11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
9 
8 
7 
6 
5 
4 
3 
2 

110 
99 
88 
77 
66 
55 
44 
33 
22 

11 

1 
1 
1 
1 
1 
1 
1 
1 
1 

0.18 
0.18 
0.18 
0.18 
0.18 
0.18 
0.18 
0.18 
0.18 

13 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 

156 
143 
130 
117 
104 
91 
78 
65 
52 
39 
26 

13 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
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contrasts in 2f1n treatment combinations as the 
corresponding information matrix (Cτ) is of the 
following form: 
 

Cτ = f1 I − 
n2

1
J.                       (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 3 
Let f1 = 6 and f2 = 2. Figure 1 shows a 

circular complete NBB block design for 6 × 2 (= 
12) combinations in six blocks of size 12 
balanced for six levels of F1. For f2 = 4, the 
design obtained for 6 × 4 (= 24) combinations in 
six blocks of size 24 strongly balanced for six 
levels of F1 is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Circular Complete NBB Block Design for 6 × 2 (= 12) 
Combinations 

 L L′   

1 1a 6a 2a 5a 3a 4a 4b 3b 5b 2b 6b 1b 1 

2 2a 1a 3a 6a 4a 5a 5b 4b 6b 3b 1b 2b 2 

3 3a 2a 4a 1a 5a 6a 6b 5b 1b 4b 2b 3b 3 

4 4a 3a 5a 2a 6a 1a 1b 6b 2b 5b 3b 4b 4 

5 5a 4a 6a 3a 1a 2a 2 1b 3b 6b 4b 5b 5 

6 6a 5a 1a 4a 2a 3a 3 2b 4b 1b 5b 6b 6 

 
Figure 2: Block design for 6 × 4 (= 24) combinations in six blocks 

of size 24 

1 1a 6a 2a 5a 3a 4a 4b 3b 5b 2b 6b 1b 

2 2a 1a 3a 6a 4a 5a 5b 4b 6b 3b 1b 2b 

3 3a 2a 4a 1a 5a 6a 6b 5b 1b 4b 2b 3b 

4 4a 3a 5a 2a 6a 1a 1b 6b 2b 5b 3b 4b 

5 5a 4a 6a 3a 1a 2a 2b 1b 3b 6b 4b 5b 

6 6a 5a 1a 4a 2a 3a 3b 2b 4b 1b 5b 6b 
 L L′  

 

1c 6c 2c 5c 3c 4c 4d 3d 5d 2d 6d 1d 1 

2c 1c 3c 6c 4c 5c 5d 4d 6d 3d 1d 2d 2 

3c 2c 4c 1c 5c 6c 6d 5d 1d 4d 2d 3d 3 

4c 3c 5c 2c 6c 1c 1d 6d 2d 5d 3d 4d 4 

5c 4c 6c 3c 1c 2c 2d 1d 3d 6d 4d 5d 5 

6c 5c 1c 4c 2c 3c 3d 2d 4d 1d 5d 6d 6 
L L′   
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Incomplete NBB Designs for Two Factors 
Let f1 be a prime or prime power and be 

denoted by 1,2,…. Develop f1 - 1 mutually 
orthogonal Latin squares (MOLS) of order f1. 
Juxtapose these MOLS so that we obtain an 
arrangement of f1 symbols in f1(f1 - 1) rows and 
f1 columns. Delete the last q columns (q =0, 1, 2, 
…, f1 - 4) and consider rows as blocks along 
with border plots, to make the blocks circular. 
To all the units in lth column (l = 1, …, f1 - q) of 
this arrangement attach the f2 (f2 = a, b, …) 
levels of F2, i.e. a to column 1, b to column 2 
and so on. Considering the rows as blocks and 
making the blocks circular results in an 
incomplete NBB design in f1(f1 - 1) blocks of 
size f1 - q each and 1μ ′′  = 1 balanced for factor 
F1. The design is incomplete because all the 
combinations are not appearing in a block. For q 
= 0, the design has all the levels of F1 and F2 
appearing in all the blocks. The design obtained 
is combinatorially neighbor balanced but in the 
terms of variance, the design is partially 
balanced with three associate class association 
scheme. 
 
Example 4 

For f1= f2 = 5 i.e. q = 0, NBB design in 
25 combinations is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After randomization the design may have the 
following layout: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Association Scheme 

Two treatment combinations φϕ and φ'ϕ' 
are said to be first associates if φ = φ′ i.e. the 
combinations with same F1 level and different F2 
level are first associates. Two treatment 
combinations φϕ and φ'ϕ' are said to be second 
associate if ϕ = ϕ' i.e. the combinations with 
same F2 level and different F1 level are second 
associates, and remaining are third associates. 

For the Example 4, the arrangement of 
25 treatment combinations arising from 5 levels 
of the first factor and 5 levels of second factor 
are shown in Figure 3. For the given association 
scheme v = f1f2, number of first associates = f2 – 
1, number of second associates = f1 – 1 and 
number of third associates = f1f2 – f1 – f2 + 1. The 
two treatment combinations that are first and 
second associates do not appear together in the 
design whereas the third associates appear once 
in the design. The above association scheme 

5 1a 2b 3c 4d 5e 1
1 2a 3b 4c 5d 1e 2
2 3a 4b 5c 1d 2e 3
3 4a 5b 1c 2d 3e 4
4 5a 1b 2c 3d 4e 5
4 1a 3b 5c 2d 4e 1
5 2a 4b 1c 3d 5e 2
1 3a 5b 2c 4d 1e 3
2 4a 1b 3c 5d 2e 4
3 5a 2b 4c 1d 3e 5
3 1a 4b 2c 5d 3e 1
4 2a 5b 3c 1d 4e 2
5 3a 1b 4c 2d 5e 3
1 4a 2b 5c 3d 1e 4
2 5a 3b 1c 4d 2e 5
2 1a 5b 4c 3d 2e 1
3 2a 1b 5c 4d 3e 2
4 3a 2b 1c 5d 4e 3
5 4a 3b 2c 1d 5e 4
1 5a 4b 3c 2d 1e 5

2 3c 4d 5e 1a 2b 3 
2 3b 4c 5d 1e 2a 3 
4 5c 1d 2e 3a 4b 5 
1 2d 3e 4a 5b 1c 2 
4 5a 1b 2c 3d 4e 5 
3 5c 2d 4e 1a 3b 5 
1 3d 5e 2a 4b 1c 3 
3 5b 2c 4d 1e 3a 5 
2 4a 1b 3c 5d 2e 4 
2 4c 1d 3e 5a 2b 4 
5 3e 1a 4b 2c 5d 3 
2 5b 3c 1d 4e 2a 5 
1 4c 2d 5e 3a 1b 4 
5 3d 1e 4a 2b 5c 3 
5 3b 1c 4d 2e 5a 3 
2 1a 5b 4c 3d 2e 1 
1 5c 4d 3e 2a 1b 5 
1 5d 4e 3a 2b 1c 5 
1 5e 4a 3b 2c 1d 5 
1 5a 4b 3c 2d 1e 5 
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may be also called a rectangular association 
scheme. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The information matrix for estimating twenty 
five combinations of the above design obtained 
using SAS (PROC IML) is shown in (4). The 
matrix has three distinct off -diagonal elements 
due to the three class association scheme. The 
design obtained by Monod (1992) becomes a 
special case of this for q = 0. 
 
Example 5 

For f1= 5, q = 1 and f2 = 4, that is, a 
NBB design in f1f2 = 20 combinations is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Variances of all estimated elementary contrasts 
pertaining to direct effects of various treatment 
combinations that are mutually first associate 
(V1), second associates (V2) and third associate 
(V3) were computed using a SAS program 
developed in IML. A list of designs consisting 
of these variances along with other parameters is 
shown in Table 2 for a practical range of 
parameter values, that is, for the number of level 
of first factor (F1) and second factor (F2) ≤ 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: 25 Treatment Combinations Arising 
From 5 Levels of the First Factor and 5 Levels 

of the Second Factor 
 

 

4 1a 2b 3c 4d 1 
5 2a 3b 4c 5d 2 
1 3a 4b 5c 1d 3 
2 4a 5b 1c 2d 4 
3 5a 1b 2c 3d 5 
2 1a 3b 5c 2d 1 
3 2a 4b 1c 3d 2 
4 3a 5b 2c 4d 3 
5 4a 1b 3c 5d 4 
1 5a 2b 4c 1d 5 
5 1a 4b 2c 5d 1 
1 2a 5b 3c 1d 2 
2 3a 1b 4c 2d 3 
3 4a 2b 5c 3d 4 
4 5a 3b 1c 4d 5 
3 1a 5b 4c 3d 1 
4 2a 1b 5c 4d 2 
5 3a 2b 1c 5d 3 
1 4a 3b 2c 1d 4 
2 5a 4b 3c 2d 5 
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Table 2: Parameters and Variances of Incomplete NBB Designs for Two Factors 

f1 f2 k = f2 b 1μ ′′  V1 V2 V3 V  

5 5 5 20 1 6.40 6.13 6.53 6.44 

5 4 4 20 1 6.00 5.37 5.87 5.79 

7 7 7 42 1 10.29 10.17 10.46 10.40 

7 6 6 42 1 10.00 9.81 10.14 10.10 

7 5 5 42 1 9.60 9.23 9.63 9.56 

7 4 4 42 1 9.00 8.13 8.62 8.55 

8 8 8 56 1 12.25 12.17 12.42 12.40 

8 7 7 56 1 12.00 11.87 12.16 12.10 

8 6 6 56 1 11.67 11.44 11.78 11.70 

8 5 5 56 1 11.20 10.77 11.17 11.10 

8 4 4 56 1 10.50 9.50 10.00 9.94 

9 9 9 72 1 15.97 15.95 15.94 15.90 

9 8 8 72 1 14.00 13.91 14.16 14.10 

9 7 7 72 1 13.71 13.57 13.85 13.80 

9 6 6 72 1 13.33 13.08 13.42 13.40 

9 5 5 72 1 12.80 12.32 12.72 12.70 

9 4 4 72 1 12.00 10.87 11.37 11.30 

11 11 11 110 1 18.18 17.98 18.17 18.20 

11 10 10 110 1 17.89 17.47 17.99 17.90 

11 9 9 110 1 17.72 17.58 17.75 17.70 

11 8 8 110 1 17.44 17.19 17.45 17.40 

11 7 7 110 1 17.07 16.72 17.04 17.00 

11 6 6 110 1 16.51 16.07 16.49 16.40 

11 5 5 110 1 15.84 15.06 15.57 15.50 

11 4 4 110 1 14.23 13.33 13.73 13.70 

13 13 13 156 1 22.15 22.13 22.17 22.20 

13 12 12 156 1 22.00 22.00 22.17 22.10 

13 11 11 156 1 21.82 21.77 21.95 21.90 

13 10 10 156 1 21.60 21.53 21.73 21.70 

13 9 9 156 1 21.33 21.24 21.46 21.40 

13 8 8 156 1 21.00 20.86 21.12 21.10 

13 7 7 156 1 20.57 20.35 20.64 20.60 

13 6 6 156 1 20.00 19.64 19.97 19.90 

13 5 5 156 1 19.20 18.51 18.91 18.90 

13 4 4 156 1 18.00 16.37 16.87 16.80 
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Adjusted Confidence Interval for the Population Median 
of the Exponential Distribution 
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The median confidence interval is useful for one parameter families, such as the exponential distribution, 
and it may not need to be adjusted if censored observations are present. In this article, two estimators for 
the median of the exponential distribution, MD, are considered and compared based on the sample median 
and the maximum likelihood method. The first estimator is the sample median, MD1, and the second 
estimator is the maximum likelihood estimator of the median, MDMLE. Both estimators are used to 
propose a modified confidence interval for the population median of the exponential distribution, MD. 
Monte Carlo simulations were conducted to evaluate the performance of the proposed confidence 
intervals with respect to coverage probability, average width and standard error. A numerical example 
using a real data set is employed to illustrate the use of the modified confidence intervals; results are 
shown. 
 
Key words: Exponential distribution, maximum likelihood estimator, sample median, confidence interval, 
coverage probability, average width. 
 
 

Introduction 
In most situations, researchers are interested in 
the estimate of the median of the population 
from which the sample data was drawn. Point 
estimates, such as the sample median, are of 
limited value because it is not possible to attach 
statements regarding the amount of confidence 
in their estimation of an unknown parameter. Of 
great value is an interval estimate, an estimate 
about which a researcher can make statements of 
confidence called the confidence interval 
(Daniel, 1990). A confidence interval provides 
much more information about the population 
value of the quantity of interest than does a point 
estimate (Smithson, 2001). Furthermore, the 
confidence intervals provide a way to report an 
estimate of a population parameter along with 
some information about the estimates precision. 
Although different settings lead to different 
formulas for computing confidence intervals, the  
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basic interpretation is always the same. A two-
sided confidence interval is the probability that a 
given parameter lies between a certain lower 
bound and upper bound (Kececioglu, 2002). 
According to Lewis (1996, page 216), 
confidence intervals are important because they 
are “the primary means by which the precision 
of a point estimator can be determined” and 
provide “lower and upper confidence limits to 
indicate how tightly the sampling distribution is 
compressed around the true value of the 
estimated quantity”. The median confidence 
interval is useful for one parameter families, 
such as the exponential distribution, and it may 
not need to be adjusted if censored observations 
are present (Patel, et al., 1976). 

The objective of this study is to modify 
the confidence interval for the population 
median of the exponential distribution, MD, 
based on two methods; the first method is based 
on the sample median, MD1, while the second 
method is based on the maximum likelihood 
estimator of the median, MDMLE. It is assumed 
that the underlying random sample 

nXXX ,...,, 21  comes from an exponential 

distribution. The performance of the proposed 
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modified confidence intervals is evaluated and 
compared using a Monte Carlo simulation to 
calculate the estimated coverage probability, the 
average width and the standard error; the use of 
these newly proposed methods is illustrated by a 
numerical example. 

 
The Exponential Distribution 

The exponential distribution is one of 
the most important and widely used continuous 
probability distributions in statistical practice. It 
possesses several important statistical properties, 
and yet exhibits great mathematical tractability 
(Balakrishnan & Basu , 1996). It is the most 
frequently used distribution in such fields as 
queuing theory, reliability theory and reliability 
engineering where in this case it is provide 
models which are used to study many industrial 
phenomena such as time between machine 
breakdowns, length of queues or waiting time 
problems, at repair or processing facilities and 
the reliability of electronic systems, for example 
how long it takes for a bank teller to serve a 
customer (Maguire, et al., 1952; Betteley, et al., 
1994 ; Montgomery, 2005). The exponential 
distribution also plays an important part in life 
testing problems; it would be an adequate choice 
for a situation where the failure rate appears to 
be more or less constant (Sinha & Bhattacharjee, 
2004). The exponential distribution may be 
viewed as a continuous counterpart of the 
geometric distribution, which describes the 
number of Bernoulli trials necessary for a 
discrete process to change state. In contrast, the 
exponential distribution describes the time for a 
continuous process to change state (Trivedi, 
2001). Furthermore, the exponential distribution 
is related to Poisson in much the same way as 
the geometric is to binomial, where in a Poisson 
process the time between events has an 
exponential distribution (Betteley, et al., 1994). 
The exponential distribution is also the only 
continuous distribution having what is called the 
memoryless property, that is, the future lifetime 
of an individual has the same distribution no 
matter how it is at present. 

The random variable X has an 
exponential distribution with the rate parameter 
λ , that is, ( )λ1~ ExpX  , if and only if the 
density of it can be written as follows: 

xf (x; ) e ,  x 0−λλ = λ ≥ , λ > 0           (1) 
 
The parameter λ ¸ represents the mean number 
of events per unit time (e.g., the rate of arrivals 
or the rate of failure). The exponential 
distribution is supported on the interval [0, ∞). 
The mean (expected value) of an exponentially 
distributed random variable X with rate 
parameter λ is given by: 
 

λ
μ 1

)( == XE                      (2) 

 
In light of the examples given above, this 
makes sense: if a person receives phone calls at 
an average rate of 2 per hour, then they can 
expect to wait one-half hour for every call. Also, 
note that approximately 63% of the possible 
values lie below the mean for any exponential 
distribution (Betteley, et al., 1994). 

The median of an exponentially 
distributed random variable X with rate 
parameter λ is given by: 
 

λλ
69315.0)2(ln ==MD              (3) 

 
The maximum likelihood estimator (MLE) for 
the rate parameter λ, given an independent and 
identically distributed random sample of size n, 

nXXX ,...,, 21 , drawn from the exponential 

distribution, ( )λ1Exp , is given by: 
 

n

i
i 1

n 1ˆ
XX

=

λ = =


.                   (4) 

 
While this estimate is the most likely 
reconstruction of the true parameter λ, it is only 
an estimate, and as such, the more data points 
available the better the estimate will be. Also, 
the MLEs are consistent estimators of their 
parameters and are asymptotically efficient 
(Casella & Berger, 2002). 
 
The Used Estimators 

The sample mean, X , and the 
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sample median, 1MD , which are used in this 
study for constructing the proposed 
modified confidence intervals for the 
exponential distribution median, MD, are 
now introduced.  
 

The Sample Mean, X  
The sample mean is the most well 

known example of a measure of location, or 
average. It is defined for a set of values as the 
sum of values divided by the number of values 

and is denoted by X . The sample mean for a 
random sample of size n observations 

nXXX ,...,, 21  can be defined as follows: 

 

n

X
X

n

i
i

== 1                           (5) 

 

The main advantages of the sample mean, X , 
are: it is easy to compute, easy to understood 
and takes all values into account. Its main 
disadvantages are: it is influenced by outliers, 
can be considered unrepresentative of data 
where outliers occur because many values may 
be well away from it and it requires all values in 
order to calculate its value (Betteley, et al., 
1994; Francis, 1995). 
 
The Sample Median, MD1 

The sample median is perhaps the best 
known of the resistant location estimators. It is 
insensitive to behavior in the tails of the 
distribution. The sample median is defined for a 
set of values as the middle value when the 
values are arranged in order of magnitude and it 
is denoted herein by 1MD . The sample median 
for a random sample of size n observations 

nXXX ,...,, 21  can be defined as follows: 

 










+=






 +














 +

evenisnif
XX

oddisnifX

MD nn

n

2

1
22

2

1

1  

(6) 
 

The main advantages of the sample 
median, MD1, is that, it is easy to determine, 
requires only the middle values to calculate, can 
be used when a distribution is skewed - as in the 
case of the exponential distribution, is not 
affected by outliers and has a maximal 50% 
breakdown point. The main disadvantages of the 
sample median, MD1, are that it is difficult to 
handle in mathematical equations, it does not 
use all available values and it can be misleading 
in a distribution with a long tail because it 
discards so much information. The sample 
median, though, is considered as an alternative 
average to the sample mean (Betteley, et al., 
1994; Francis, 1995). However, the sample 
median, MD1, has become as a good general 
purpose estimator and is generally considered as 

an alternative average to the sample mean, X . 
 
Estimating the Exponential Distribution Median:  

Two techniques are now introduced for 
finding estimates, the method of sample median 
and the method of maximum likelihood which is 
the most widely used.  
 
The Method of Sample Median 

Given a random sample of size n 
observations, nXXX ,...,, 21 , the estimator of 

the exponential population median, MD,  based 
on the method of sample median, MD1, is 
denoted by MDMD1. Now, from equation (3): 
 

1 ln(2)
MD ln(2)

MD
=  λ =

λ
         (8) 

 
Thus, if the exponential population median MD 
in (8) is estimated by the sample median MD1, 
results in the following approximation: 
 

1

)2ln(ˆ
MD

=λ .                           (9) 

 
Therefore, equating the results in (4) and (9) and 
solving, the following approximation is 
obtained: 
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)2ln(

)2ln(ˆ 1

11

1

MDnX
MDX

n n

i
in

i
i

≅≅


=
=

=

λ  

(10) 
 
The Maximum Likelihood Estimator of the 
Median 

Given a random sample of size n 
observations, nXXX ,...,, 21 , the estimator of 

the exponential population median based on the 
maximum likelihood method is denoted herein 
by MDMLE and can be defined as follows: 
 

)2ln()2ln(
ˆ
1 1

n

X
MD

n

i
i

MLE


== =

λ
   (11a) 

 
where 

n

i
i 1

n 1ˆ
XX

=

λ = =


.                (11b) 

 
Comparing the Two Estimators of the 
Exponential Distribution Median 

It is known that the maximum likelihood 
estimators are asymptotically unbiased and 
efficient. Concretely, the estimator MDMLE is 

unbiased and 
2

2 )2(ln
)(

λn
MDVar MLE = . 

Moreover, the sample median estimator, MD1, is 
asymptotically normal distributed with 
asymptotic variance 

)(4

1
)(

21
MDnf

MDVarA = , where (.)f  is 

the corresponding density and MD is the 
theoretical median (Vann deer Vaart, 1998). 
Asymptotically unbiased means that the 
average value over many random samples 
for the two estimators MD1 or MDMLE is the 
exponential distribution median, MD. To 
compare the two estimators MD1 and MDMLE in 
terms of how far they are from the exponential 
distribution median (MD) on the average for 
many random samples, it is necessary to 
compare their root mean square error, RMSE, 
given as follows: 


=

−=
r

i
MDiMD

r
RMSE

1

2)(
1

         (12) 

 
where rMDMDMD ,...,, 21  are the values of the 
estimators MD1 and MDMLE for r replications and 
MD is the value of the exponential distribution 
true median. 
 
The Confidence Interval for the Exponential 
Distribution Median 

Next, the confidence interval for the 
median of the exponential distribution, MD, is 
derived by modifying the confidence interval for 
the mean of the exponential distribution, μ . Let 

nXXX ,...,, 21  be a random sample of size n 

from the exponential distribution with parameter 
λ , that is, ( )λ1~ ExpX , then the exact two 

sided )%1(100 α−  confidence interval for the 

exponential distribution mean, μ , is given by 
(Trivedi, 2001): 
 

α
χλ

μ
χ αα

−=


<=<


−

== 1)
212

(
2

)21,2(

1
2

)2,2(

1

n

n

i
i

n

n

i
i XX

P  

(13) 
 

where the 2
),( pvχ  is the pth percentile of a Chi-

square distribution with v degrees of freedom. 

The 2χ -value can be read off from the 2χ -table 
for the distribution (for example, see Kinney, 
1997, page 506). Now, from equation (3) the 
exponential distribution median, MD, is given as 
follows: 
 

1 MD 1
MD ln(2) ln(2)

ln(2)
= = μ  = = μ

λ λ
 

(14) 
 
The MDMLE Confidence Interval 

This confidence interval is obtained by 
substituting the result from (14) into equation 
(13); this gives the exact )%1(100 α−  
confidence interval for the exponential 
distribution median, MD, as follows: 
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n n

i i
i 1 i 1

2 2
(2n , 2) (2n ,1 2)

n n

i i
i 1 i 1

2 2
(2n , 2) (2n ,1 2)

2 X 2 X
MD 1

P( )
ln(2)

2ln(2) X 2ln(2) X
P( MD )

1

= =

α −α

= =

α −α

< = <
χ λ χ

= < <
χ χ

= − α

 

 

(15) 
 
The MDMLE confidence interval is exact. It is 

based on the fact that 
=

λ
n

1i
iX2 follows a 

2
)2( nχ  distribution. The coverage probability 

must be exactly 95%. 
 
The MDMD1 Confidence Interval 

This confidence interval is obtained by 
substituting the result from (10) into equation 
(13) to give the exact )%1(100 α−  confidence 
interval for the exponential distribution median, 
MD, as follows: 
 

1 1
2 2
(2n , 2) (2n ,1 2)

1 1
2 2
(2n , 2) (2n ,1 2)

2(n MD ln(2)) 2(n MD ln(2))MD
P( )

ln(2)

2n MD 2n MD
P( MD )

1

α −α

α −α

< <
χ χ

= < <
χ χ

= − α
(16) 

 
The MD1 confidence interval is not 

exact. Its expression in (16) is based on equation 
(10) which is only an approximation of the 
statistics In order to see that, the performance of 
the MD1 confidence interval is studied by 
calculating the coverage probability, the average 
width and the standard error using Monte-Carlo 
simulations. Actual, approximate and exact 
confidence intervals based on the sample median 
MD1 can be also constructed using standard 
methods. 
 
 
 

The Monte Carlo Simulation Study 
A Monte Carlo simulation was designed 

to compare and study the behavior of the two 
estimators MD1 and MDMLE and investigate the 
behavior of the proposed approximate 
confidence intervals for the exponential 
distribution median, MD. FORTRAN programs 
were used to generate the data from the 
exponential distribution and run the simulations 
and to make the necessary tables. Results are 
from the exponential distribution with parameter 
λ  which was set to 1 and 0.5, to increase 
skewness. The more the repetition, the more 
accurate are simulated results, therefore 10,000 
random samples of sizes n = 10, 15, 20, 30, 40, 
50 and 100 were generated. 

Table (1) shows the simulated results for 
the root mean square error, RMSE, and the 
average of MD1’s and MDMLE’s (AVG) to 
illustrate that both estimators are approximately 
unbiased for the true median of the exponential 
distribution, MD. The simulated results for the 
coverage probability ( P̂ ), average width (AW) 
and standard error (SE) of the exact confidence 
interval for the exponential mean, μ , and the 
two proposed approximate confidence intervals 
for the exponential distribution median, MD, are 
shown in tables (2-4). The criteria used to 
evaluate the exact and proposed approximate 
confidence intervals is the value of the coverage 
probability ( P̂ ) and average width (AW); a good 
method should have an observed coverage 
probability ( P̂ ) near to the nominal coverage 
probability and a small scaled average width 
(AW).  

The simulation results in Table 1 show 
that the maximum likelihood estimator of the 
median, MDMLE, is a much better estimator for 
the population median of the exponential 
distribution, MD, than the sample median, MD1. 
While both estimators are approximately 
unbiased, the root mean square error, RMSE, for 
the sample median, MD1, is larger than that of 
the maximum likelihood estimator of the 
median, MDMLE. It should be noted that the 
accuracy of the maximum likelihood estimator 
of the median, MDMLE, increases as the sample 
size, n, increases which clearly provides a very 
good estimator, even considering that the 
discrepancy of these two estimators is very small 
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-that is, these two estimators asymptotically 
coincide.  

As shown in Tables 2-4, the simulation 
results show that the coverage probability ( P̂ ) 
for the confidence interval of the mean and the 
approximate confidence interval of the median 
based on the MLE method for the exponential 
distribution are the same and very close to the 
nominal confidence coefficient. 

The approximate confidence interval of 
the median based on the sample median method 
for the exponential distribution provides the 
lower coverage probability ( P̂ ) and gives the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

lowest width among the three methods. The 
average widths (AW) for the two proposed 
confidence interval methods are approximately 
the same for moderate and large sample sizes. 
However, the estimated average width (AW) for 
the sample median method is the shortest among 
all considered methods, but it has poor coverage 
probability. Furthermore, as sample sizes 
increases, the performance of the proposed 
confidence interval based on the MLE method 
improves, but is still much lower than the 
nominal confidence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The Root Mean Square Error and Average of the Two Estimators for the 
Exponential Distribution Median 

Sample 
Size (n) 

1=λ  (True Median = 0.69315) 

RMSE(MD1) AVG(MD1) RMSE(MDMLE) AVG(MDMLE) 

10 0.31575 0.74851 0.22369 0.69487 

15 0.26754 0.72676 0.18040 0.69332 

20 0.22459 0.72003 0.15715 0.69394 

30 0.18276 0.71180 0.12808 0.69335 

40 0.15907 0.70649 0.11106 0.69342 

50 0.14108 0.70459 0.09887 0.69439 

100 0.10005 0.69894 0.06961 0.69265 

Sample 
Size (n) 

5.0=λ  (True Median = 1.38629) 

RMSE(MD1) AVG(MD1) RMSE(MDMLE) AVG(MDMLE) 

10 0.63150 1.49703 0.44739 1.38973 

15 0.53509 1.45352 0.36080 1.38663 

20 0.44918 1.44005 0.31430 1.38788 

30 0.36553 1.42359 0.25615 1.38671 

40 0.31814 1.41299 0.22211 1.38684 

50 0.28215 1.40917 0.19773 1.38877 

100 0.20010 1.39788 0.13922 1.38530 
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Table 2: Coverage Probabilities, Average Width and Standard Error for the Confidence Interval 
of the Mean of the Exponential Distribution 

n 

95.01 =−α  

1=λ  5.0=λ  

P̂  AW SE P̂  AW SE 

10 94.55 1.504 0.484 94.55 3.007 0.968 

15 94.84 1.148 0.299 94.84 2.297 0.598 

20 94.51 0.964 0.218 94.51 1.928 0.437 

30 94.58 0.762 0.141 94.58 1.524 0.282 

40 94.94 0.650 0.104 94.94 1.299 0.208 

50 94.79 0.576 0.082 94.79 1.153 0.164 

100 95.02 0.399 0.040 95.02 0.798 0.080 
 

Table 3: Coverage Probabilities, Average Width and Standard Error for the Confidence Interval 
of the Median of the Exponential Distribution with 1=λ  

n 

95.01 =−α  

Confidence Interval Method 

MDMLE Method MDMD1 Method 

P̂  AW SE P̂  AW SE 

10 94.55 1.123 0.336 85.11 1.042 0.466 

15 94.84 0.834 0.207 82.76 0.796 0.305 

20 94.51 0.693 0.151 83.92 0.668 0.215 

30 94.58 0.542 0.098 83.41 0.528 0.139 

40 94.94 0.459 0.072 83.00 0.450 0.103 

50 94.79 0.405 0.057 83.28 0.400 0.081 

100 95.02 0.279 0.028 82.95 0.277 0.040 
 

Table 4: Coverage Probabilities, Average Width and Standard Error for the Confidence Interval 
of the Median of the Exponential Distribution with 5.0=λ  

n 

95.01 =−α  

Confidence Interval Method 

MDMLE Method MDMD1 Method 

P̂  AW SE P̂  AW SE 

10 94.55 2.246 0.671 85.11 2.085 0.933 

15 94.84 1.669 0.414 82.76 1.592 0.609 

20 94.51 1.387 0.303 83.92 1.337 0.430 

30 94.58 1.085 0.195 83.41 1.056 0.277 

40 94.94 0.918 0.144 83.00 0.901 0.206 

50 94.79 0.811 0.114 83.28 0.799 0.162 

100 95.02 0.558 0.056 82.95 0.553 0.080 
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Numerical Example 
This example is taken from Wilk, et al. 

(1962); the data set represents the lifetimes (in 
weeks) of 34 transistors in an accelerated life 
test. The transistors were tested and the test 
continued until all of them failed. The lifetimes 
for the 34 transistors (in weeks) were recorded 
as follows: 
 
3, 4, 5, 6, 6, 7, 8, 8, 9, 
9, 9, 10, 10, 11, 11, 11, 13, 13, 

13, 13, 13, 17, 17, 19, 19, 25, 29, 
33, 42, 42, 52, 52, 52, 52   
 
The sample mean 912.18=X  weeks, the 
exponential median MD1 = 13 weeks, the 
exponential median MD2 = 13.108 weeks and the 
skewness is 1.265695, which is highly skewed 
distribution. Furthermore, 

053.005287.0
912.18

11ˆ ≅===
X

λ  and - 

using the approximation derived earlier - results 

in 053.005332.0
13

69315.0)2ln(ˆ
1

≅===
MD

λ  

which indicates that the two values are very 
close and therefore the approximation is good. 
Based on Kibria (2006), the above data set are 
assumed   to   come   from    an    exponential 
distribution with mean 21=μ weeks; using the 
Kolmogorov-Smirnov test, the K-S statistic = 
0.1603 and the p-value = 0.3125, it indicates that 
the sample data are from an exponential 
distribution with mean 21=μ weeks, and 
therefore (from equation (3)) has a median MD 
= 14.556 weeks. The resulting 95% confidence 
interval and the corresponding confidence width  
 
 

  
 
 
 
 
 
 
 
 

for the exact confidence interval for the 
exponential mean and the two proposed methods 
for the exponential median are calculated and 
given in table (5). 

From table (5), it is observed that the 
exact confidence interval for the exponential 
mean, as expected, covered the hypothesized 
true population mean of 21=μ weeks and also 
the proposed confidence intervals for the 
exponential median, MD, covered the 
hypothesized true population median MD = 
14.556 weeks. However, the proposed 
confidence interval for the exponential median, 
MD, based on the sample median, MD1, 
provided the shortest confidence interval width. 
 

Conclusion 
The median - one of the most important and 
popular measures for location - has many good 
features. The median confidence interval is 
useful for one parameter families, such as the 
exponential distribution, and it may not need to 
be adjusted if censored observations are present. 
The maximum likelihood estimation is a popular 
statistical method used to make inferences about 
parameters of the underlying probability 
distribution from a given data set. This study 
proposed an approximate confidence interval for 
the median of the exponential distribution, MD, 
based on two estimators, the sample median, 
MD1, and the maximum likelihood estimator of 
the median, MDMLE. 

The results of this study show that using 
a maximum likelihood estimator, MLE, for the 
population median of the exponential 
distribution, MD, is better alternative to the 
classical estimator based on the sample median, 
MD1. As shown by the study results, the 
maximum likelihood estimator of the median, 
MDMLE, provides a good estimation for the 
population median of the exponential 
distribution, MD, and the proposed confidence 
interval based on this estimator had a good 
coverage probabilities compared to the sample 
median method. However, it produced slightly 
wider estimated width. It appears that the sample 
size, n, has significant effect on the two 
proposed confidence interval methods. 
Moreover, both of the proposed methods are 
computationally simpler. If scientists and 

Table 5: The 95% Confidence Intervals for the 
Lifetimes Data 

Confidence 
Interval Method 

95% Confidence 
Interval 

Width 

Exact for Mean (13.874 , 27.308) 13.434 

MDMLE  (9.617 , 18.929) 9.312 

MDMD1 (9.537 , 18.772) 9.235 
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researchers are conservative about the smaller 
width, they might consider confidence interval 
based on sample median method as a possible 
interval estimator for the population median of 
the exponential distribution, MD. Finally, the 
results obtained from the simulation study 
coincided with that of the numerical example. 
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Nonlinear Trigonometric Transformation Time Series Modeling 
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The nonlinear trigonometric transformation and augmented nonlinear trigonometric transformation with a 
polynomial of order two was examined. The two models were tested and compared using daily mean 
temperatures for 6 major towns in Nigeria with different rates of missing values. The results were used to 
determine the consistency and efficiency of the models formulated. 
 
Key words: Nonlinear time series, polynomial, consistency, efficiency, missing value, model and 

forecasting. 
 
 

Introduction 
Time series analysis is an important technique 
used in many disciplines, including physics, 
engineering, finance, economics, meteorology, 
biology, medicine, hydrology, oceanography and 
geomorphology (Terasvirta & Anderson, 1992). 
This technique is primarily used to infer 
properties of a system by the analysis of a 
measured time record (data) (Priestley, 1988); 
this is accomplished by fitting a representative 
model to the data with an aim of discovering the 
underlying structure as closely as possible. 

Traditional time series analysis is based 
on assumptions of linearity and stationarity. 
However, time series analysis (Box & Jenkins, 
1970; Brock & Potter, 1993) has nonlinear 
features such as cycles, asymmetries, bursts, 
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jumps, chaos, thresholds and heteroscedasticity, 
and mixtures of these must also be taken into 
account. Thus, a problem arises regarding a 
suitable definition of a nonlinear model because 
not every time series analysis is purely linear: 
the nonlinear class clearly encompasses a large 
number of possible choices. For these reasons, 
non-linear time series analysis is a rapidly 
developing area and there have been major 
developments in model building and forecasting 
(De Gooijer & Kumar, 1992). 

The growing interest in studying 
nonlinear and non-stationary time series models 
in many practical problems stems from the 
inherently non-linear nature of many phenomena 
in physics, engineering, meteorology, medicine, 
hydrology, oceanography, economics and 
finance, that is, many real world problems do 
not satisfy the assumptions of linearity and/or 
stationarity (Bates & Watts, 1988; DeGooijer & 
Kumar, 1992; Sugihara & May, 1990). 
Therefore, for many real time series data, 
nonlinear models are more appropriate than 
linear models for accurately describing the 
dynamic of the series and making multi-step-
ahead forecast (Tsay, 1986; Barnett, Powell & 
Tauchen, 1991; Olowofeso, 2006). For example, 
financial markets and trends are influenced by 
climatic factors like daily temperature, amount 
of rainfall and intensity of sun, these are areas 
where a need exists to explain behaviors that are 
far from being even approximately linear. 
Nonlinear models would be more appropriate for 
forecasting and accurately describing returns and 
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volatility. Thus, the need for the further 
development of the theory and applications for 
nonlinear models is essential, and, because there 
are an enormous number of nonlinear models 
available for modeling and forecasting economic 
time series, research should help provide 
guidance for choosing the best model for a 
particular application (Robinson, 1983). 
 

Methodology 
The model proposed by Gallant (1981) called 
the Augmented Nonlinear Parametric Time 
Series Model (ANPTSM) was used in this study 
and a second model was formulated based on the 
Least Square Method Modified Nonlinear 
Trigonometric Transformation Time Series 
Model (MNTTTSM). 
 
Data 

Data used in this study were daily mean 
of temperatures from 1987 to 1996 for Ikeja, 
Ibadan, Ilorin, Minna and Zaria. The data were 
collected from the Meteorological Centre-
Oshodi Lagos. 
 
Model Formulation 

Consider the format shown in Table 1. 
In this model, up to 9 years were considered and 
the model is formulated based on the data as 
shown in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assumption and Notation for the Models 
Let: 

Xt,i,k = value of occurrence for day t of Month i 
in the year k; 

Xt,k = mean occurrence for day t of year k; 
X*

i,k = mean occurrence for month i of year k; 
X*y

K = overall yearly mean for the sampled 
month; 

X*m
i = overall monthly mean for the sampled 

year; 
t = the position of the day from the first day of 

the Month. 1 ≤ t ≤ 31; 
ti = the sum of days in month i for 1 ≤ i ≤ 12; 
tik = the sum of days from the initial sampled 

month of initial sampled year to month i 
of year k; 

ti* = the sum of days from the initial sampled 
month to month I; 

k = the position of a particular year from an 
initial sample year for −∞ ≤ k ≤ ∞; 

n = the number of sampled years; 
m = the number of sampled months; and 
X* = Grand Mean occurrence for k year(s) 

examined. 
The first model was reviewed based on 

the assumption that the sum of the occurrences 
were presented monthly, where ith month 
represents the month i for 1 ≤ i ≤ 12 which is to 
be modeled using the number of days in each 
month (see Table 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Model Formulation for a Particular Year 

t/i 1 2 3 4 5 6 7 8 9 10 11 12 Σxi/12 

1 x1,1,k x1,2,k x1,3,k x1,4,k x1,5,k x1,6,k x1,7,k x1,8,k x1,9,k x1,10,k x1,11,k x1,12,k X 1 

2 x2,1,k x2,2,k x2,3,k x2,4,k x2,5,k x2,6,k x2,7,k x2,8,k x2,9,k x2,10,k x2,11,k x2,12,k X 2 

t xt,1,k xt,2,k xt,3,k xt,4,k xt,5,k xt,6,k xt,7,k xt,8,k xt,9,k xt,10,k xt,11,k xt,12,k X t 

 *
1,k x*

2,k x*
3,k x*

4,k x*
5,k x*

6,k x*
7,k x*

8,k x*
9,k x*

10,k x*
11,k x*

12,k Σ x*
i,k/12 

 
Table 2: Model Data Formulation 

t/ik 1 2 3 … ik Σxi/ik 

1 x1,1,1 x1,2,1 x1,3,1 … x1,i,k X 1,k 

2 x2,1,1 x2,2,1 x2,3,1 … x2,i,k X 2,k 

t xt,1,1 xt,2,1 xt,3,1 … xt,i,k X t,k 

 x*
1,k x*

2,k x*
3,k … x*

i,k Σx*
i,k/ik= X 
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Augmented Nonlinear Parametric Time Series 
Model (ANPTSM) 

Trigonometric (sine and cosine) 
transformation augmented with polynomial of 
order two was applied to formulate the model 
across the year, that is, the monthly mean 
sample and the least square methods were used 
for estimating the model’s parameters as 
follows. Let the equation be of the form 
 

( ) ( )2
t,i,k 1 2 ik 3 ik iX a a tSin t a t Cos t

1  i 12

= + + + ε
≤ ≤

 

(3.0) 
 
The expected value of Xt,i,k is X*

i,k then the 
equation can be reformed as below to estimate 
the parameters; a1, a2 and a3 using Least Square 
Method. 
 

( ) ( )* 2
i,k 1 2 i ik 3 i ik iX a a t Sin t a t Cos t

1  i 12

= + + + ε
≤ ≤

 

(3.1) 
 

( ) ( )( )* 2
i i,k 1 2 i ik 3 i ikX a a t Sin t a t Cos t∴ε = − + +

 
(3.2) 

Let Σεi
2 = S 

 

( ) ( )( )* 2 2
i,k 1 2 i ik 3 i ikS (X a a t Sin t a t Cos t )= Σ − + +  

(3.3) 
 
Differentiating 3.3 with respect to a1, a2, a3, a3, 
as 

0
1

→
∂
∂
a
S

 

 
 
 
 
 
 
 
 
 
 
results in 
 

( ) ( )* 2
i,k 1 2 i ik 3 i ikX ma a t Sin t   a t Cos tΣ = + Σ + Σ  

(3.4) 
 
where m is the number of the monthly sample 
mean examined. Similarly, as 
 

0
2

→
∂
∂
a
S

 

then 
 

( ) ( )* 2 2
i ik i,k 1 i ik 2 i ik

3
3 i ik ik

t Sin t X a t Sin t a t Sin (t )

                            a t Sin(t )Cos(t )

Σ = Σ + Σ

+ Σ
 

(3.5) 
and as 

0
3

→
∂
∂
a
S

 

then 
 

( ) ( )
( ) ( )

( )

2 * 2
1i ik i,k  i ik

3
2 i ik ik

4 2
3 i ik

t Cos t X a t Cos t

                             a t Sin t Cos t

                              a t Cos t

Σ = Σ

+ Σ

+ Σ

 

(3.6) 
 
Simultaneously solving equations 3.4, 3.5 and 
3.6 using Cramer’s Rule results in equations 3.7-
3.10. 
 
 
 
 
 
 

Table 3: Months and Sums of Occurrences Modeled 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan   

i 1 2 3 4 5 6 7 8 9 10 11 12 13 … ik 

t 31 281/4 31 30 31 30 31 31 30 31 30 31 31 … ti 

ti 31 591/4 901/4 1201/4 1511/4 1811/4 2121/4 2431/4 2731/4 3041/4 3341/4 3651/4 3961/4 … t 
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Therefore, from equations 3.7, 3.8, 3.9 and 3.10, 
the following result: 
 

a1 = 

0

1

Δ
Δ

                           (3.11) 

 

a2 = 

0

2

Δ
Δ

                           (3.12) 

 

a3 = 

0

3

Δ
Δ

                           (3.13) 

 
Next, substituting 3.11, 3.12 and 3.13 into 3.1 
gives: 
 

* 231 2
i,k ik ik

0 0 0

X tSin(t ) t Cos(t ).
Λ ΔΔ Δ= + +

Δ Δ Δ
 

(3.14) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because X*

i,k is the expected value of Xt,i,k, 
equation 3.14 can  be rewritten as 
 

231 2
t,i,k ik ik

0 0 0

X tSin(t ) t Cos(t ).
Λ ΔΔ Δ= + +

Δ Δ Δ
 

(3.15) 
 
Models 3.14 and 3.15 would only be visible 
provided there is an occurrence within a month 
of any sampled year. 
 
Modified Nonlinear Trigonometric 
Transformation Time Series Model 
(MNTTTSM) 

In a situation where a whole month of 
data is missing, the above model may be 
difficult to apply and a different model would be 
needed. The model for such occurrence is 
formulated as follows. If the data in 3.2 are 
reformed such that the monthly means are those 
shown in Table 4. Consider: 
 

( )*
i,k i iX  a bsin t *= + + ε         (3.16) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 4 2 3 2
0 i ik i ik i ik ik

4 2 2 3
i ik i ik i ik i ik i ik ik

2 3 2 2 2
i ik i ik i ik i i i ik

m{ t Sin t t Cos t ( t Sin t Cos t ) }

t Sin t { t Sin t t Cos t t Cos t t Sin t Cos t }

t Cos t { t Sin t t Sin t Cos t t Cos t t Sin t }

Δ = Σ Σ − Σ

−Σ Σ Σ − Σ Σ

+Σ Σ Σ − Σ Σ

       (3.7) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

* 2 2 4 2 3 2
1 i,k i ik i ik i ik ik

* 4 2 2 * 3
i ik i ik i,k ik i ik i,k i ik ik

2 * 3 2 * 2 2
i ik i ik i,k i ik ik i ik i,k i ik

X { t Sin t t Cos t ( t Sin t Cos t ) }

t Sin t { t Sin t X t Cos t t Cos t X t Sin t Cos t }

t Cos t { t Sin t  X t Sin t Cos t t Cos t  X t Sin t }

Δ = Σ Σ Σ − Σ

−Σ Σ Σ − Σ Σ

+Σ Σ Σ − Σ Σ

(3.8) 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* 4 2 2 * 3
2 i ik i,k i ik i ik i,k i ik ik

* 4 2 2 3
i,k i ik i ik i ik i ik ik

2 2 * 2 *
i ik i ik i ik i,k i ik i ik i,k

m{ t Sin t X t Cos t ( t Cos t X t Sin t Cos t }

X { t Sin t t Cos t t Cos t t Sin t Cos t }

t Cos t { t Sin t t Cos t X t Cos t t Sin t X }

Δ = Σ Σ − Σ Σ

−Σ Σ Σ − Σ Σ

+Σ Σ Σ − Σ Σ

  (3.9) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 2 * 3 *
3 i ik i ik i,k i ik i i ik i,k

2 * 2 *
i ik i ik i ik i,k i ik i ik i,k

* 3 2 2 2
i,k i ik i ik ik i ik i ik

m{ t Sin t t Cos t X ( t Sin t Cos t t Sin t X }

t Sin t { t Sin t t Cos t X t Cos t t Sin t X }

X { t Sin t t Sin t Cos t t Cos t t Sin t

Δ = Σ Σ − Σ Σ

−Σ Σ Σ − Σ Σ

+Σ Σ Σ − Σ Σ

  (3.10) 
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where 

i

1
1 i 12 ,  1 t 365

4
≤ ≤ ≤ ≤  

 
If the expected value of X*

i,k is X*m
i, then 

equation 3.16 can take the form 
 

( )*m
i  i iX a b sin t *= + + ε        (3.17) 

where 

i

1
1 i 12 ,  1 t * 365

4
≤ ≤ ≤ ≤  

 
An ordinary least square method was used in 
estimating the parameters a and b. If Sm = εi

2
 = Σ 

(X*m
i  -(a+bsin(ti

*))2, then differentiating with 
respect to a and b 
 

( )( )*m *m
i i

S
2 X a bsin t

a

∂ = − Σ − +
∂

 

as 

0→
∂

∂
a

Sm  

 

( )*m *
i i ð X 12a b sin t Σ = + Σ        (3.18) 

 
Also, 
 

( ) ( )( )( )* *m *m
i i  i

S
2 (sin t X a bsin t

b

∂ = − Σ − +
∂

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

as 

0→
∂

∂
b

Sm  

 

( ) ( ) ( )*m * 2 *
i i i isin t *  X a sin t b sin t Σ = Σ + Σ

(3.19) 
 
Using Cramer’s Rule to solve equations 3.18 
and 3.19 simultaneously, results in: 
 

( )22 * *
4 i i

*m 2 * * *m *
5 i i i i i

* *m *m *
6 i i i i

12 Sin (t ) Sin(t )

X Sin (t ) Sin(t )X Sin(t )

12 Sin(t )X X Sin(t )

Δ = Σ − Σ

Δ = Σ Σ − Σ Σ

Δ = Σ − Σ Σ
 
where parameters 
 

( )
*m 2 * * *m *

5 i i i i i
 22 * *

4 i i

X Sin (t ) Sin(t )X Sin(t )
a 

12 Sin (t ) Sin(t )  

Δ Σ Σ − Σ Σ= =
Δ Σ − Σ

(3.20) 
 
and 
 

( )
* *m *m *

6 i i i i
22 * *

4 i i

12 Sin(t )X X Sin(t )
b

12 Sin (t ) Sin(t )

Δ Σ − Σ Σ= =
Δ Σ − Σ

 

(3.21) 
 
Therefore, the model for monthly occurrence is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Modified Nonlinear Trigonometric Transformation Time Series Model Data 

t/i 1 2 3 4 5 6 7 8 9 10 11 12 Σxi/12 

1 X*
1,1 X*

2,1 X*
3,1 X*

4,1 X*
5,1 X*

6,1 X*
7,1 X*

8,1 X*
9,1 X*

10,1 X*
11,1 X*

12,1 X*y
1 

2 X*
1,2 X*

2,2 X*
3,2 X*

4,2 X*
5,2 X*

6,2 X*
7,2 X*

8,2 X*
9,2 X*

10,2 X*
11,2 X*

12,2 X*y
2 

k X*
1,k X*

2,k X*
3,k X*

4,k X*
5,k X*

6,k X*
7,k X*

8,k X*
9,k X*

10,k X*
11,k X*

12,k X*y
k 

 x*m
1 x*m

2 x*m
3 x*m

4 x*m
5 x*m

6 x*m
7 x*m

8 x*m
9 x*m

10 x*m
11 x*m Σx*m

,i = X*12 
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* *5 6

4 4

( )m
i iX Sin tΔ Δ= +

Δ Δ
         (3.22) 

 
Because X*m

i is an expected value for X*
i,k then 

equation 3.22 can be rewritten as 
 

)( *

4

6

4

5
,

*
iki tSinX

Δ
Δ

+
Δ
Δ

=        (3.23) 

 
Similarly, along the sampled year X*y

K = c + d 
Sin(λk) for -∞ ≤ k ≤ +∞, 15≤ λ≤ 75. The λ must 
be chosen such that Σ εi = 0, Σεi

2 is as small as 
possible. 

If Sy = εi
2

 = Σ (X*y
K -(c+dsin(λk))2 then 

 

y *y
K

S
2 (X  (c dsin( k))

c

∂
= − Σ − + λ

∂
 

as 

0→
∂

∂
c

S y
 

 
*y

K ð X  nc d sin( k) Σ = + Σ λ       (3.24) 

 
Also, 
 

y *y
K

S
2 (sin( k) X (c dsin( k)))

d

∂
= − Σ λ − + λ

∂
 

 
as 

0→
∂
∂

d
S y

 

 
*y 2

K ð sin( k) X  c sin( k) d sin ( k) Σ λ = Σ λ + Σ λ
 

(3.25) 
 
Solving equations 3.24 and 3.25 simultaneously 
using Cramer’s Rule results in 
 

2 2
7

*y 2 *y
8 k k

*y *y
9 k k

n Sin ( k) ( Sin( k))

X Sin ( k) Sin( k)X Sin( k)

n Sin( k)X X Sin( k)

Δ = Σ λ − Σ λ

Δ = Σ Σ λ − Σ λ Σ λ

Δ = Σ λ − Σ Σ λ
 
 

 
Where the parameters 
 

*y 2 *y
8 k k

2 2
7

X Sin ( k) Sin( k)X Sin( k)
c

n Sin ( k) ( Sin( k))

Δ Σ Σ λ − Σ λ Σ λ= =
Δ Σ λ − Σ λ

 

(3.26) 
and 
 

*y *y
9 k k

2 2
7

n Sin( k)X X Sin( k)
d

n Sin ( k) ( Sin( k))

Δ Σ λ − Σ Σ λ= =
Δ Σ λ − Σ λ

 

(3.27) 
 

*y 8 9
k

7 7

X Sin( k)
Δ Δ∴ = + λ
Δ Δ

         (3.28) 

 
The method of placing expected 

occurrences in a contingency table of a Chi-
square was applied using equations 3.23 and 
3.28 to obtain the model to find the daily 
occurrences for a particular month of a particular 
year. Therefore, the model for expected daily 
occurrences is 
 

k
y

k
y

i
m

kit X
XXnX

*

**

,,

))((

Σ
=             (3.29) 

 
Substituting 3.23 and 3.28 into 3.29, results in 
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Δ
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Δ
Δ

+
Δ
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Δ
Δ

+
Δ
Δ

=
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)()(

7

9

7

8

7

9

7

8*

4

6

4

5

,,

kSin

kSintSinn
X

i

kit

λ

λ

(3.30) 
 

Results 
Model Analysis and Discussion 

The data on the daily mean temperature 
for Ikeja, Ibadan, Ilorin, Minna and Zaria 
collected from the Meteorological Centre-
Oshodi Lagos were used. The parameters of the 
models were estimated and the fitted models for 
each zone are shown in Table 5 for Ikeja, 
Ibadan, Ilorin and Minna for ANPTSM. Data for 
the daily mean temperature was used to estimate 
the parameters. The fitted model for Zaria could  
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not be formulated due to the fact that many 
months of data were missing. 

Table 6 shows the fitted models for 
Ikeja, Ibadan,Ilorin, Minna and Zaria for 
MNTTTSM using the daily mean temperature 
data to estimate their parameters. The fitted 
model for Zaria was formulated because 
MNTTTSM has the strength of addressing the 
problem of missing values. Thus, although many 
months’ data were missing from Zaria’s daily 
mean temperature, MNTTTSM parameters 
could  still  be  estimated.  This  is  one  of  the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
advantages of MNTTTSM over ANPTSM. 

Table 7 shows that the results of the 
Pearson Product Moment Correlation 
coefficients and Spearman Brown’s rank Order 
Correlation coefficients for Ikeja, Ibadan, Ilorin 
and Minna are highly and positively correlated, 
indicating a strong relationship between the 
actual data and estimated data for the daily mean 
temperature. In Zaria the correlation coefficient 
for MNTTTSM is positive but low which may 
indicate a weak relationship between the actual 
and estimated daily mean temperatures. 

Table 5: The Fitted Models for ANPTSM 
Zones Augmented Nonlinear Parametric Time Series Model (ANPTSM) 

IKEJA ( ) ( )226.88642582 0.047971536tSin 0.000143793 Cost t tik ik+ −  

IBADAN ( ) 2

ik ik
26.36612286 0.054847742tSin 0.0000344912t Cost t+ −  

ILORIN ( ) ( )tt ikCos2

ik
000833551.04tSin0.0481158726.2476883 t −+  

MINNA ( ) ( )ttt ikik CostSin 2
00073.0062853.072428.25 −+  

ZARIA − 

 
Table 6: The Fitted Models for MNTTTSM 

Zones Modified Nonlinear Trigonometric Transformation Time Series Model (MNTTTSM) 

IKEJA 


=

+

++
10

1

*

)601311.088996.26(

)6013116.088996.26)(420072.187226.26(10

K

i

kSin

kSinSint  

IBADAN 


=

+

++
10

1

*

)901311.036761.26(

)9013535.036761.26)(591834.136749.26(10

K

i

kSin

kSinSint  

ILORIN 


=

+

++
10

1

*

)45409024.040106.26(

)45409024.040106.26)(816182.145708.26(10

K

i

kSin

kSinSint  

MINNA 


=

+

++
10

1

*

)90112148.067047.27(

)90112148.067047.27)(508736.256143.27(10

K

i

kSin

kSinSint  

ZARIA 


=

+

++
10

1

*

)90222282.000445.25(

)90222282.000445.25)(210108.198532.24(10

K

i

kSin

kSinSint  
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Apart from Ibadan, in which the 
correlation coefficient in ANPTSM is greater 
than MNTTTSM and Ikeja which has equal 
correlation coefficients, all other Zones, the 
correlation coefficient in MNTTTSM is greater 
than ANPTSM. This indicates that MNTTTSM 
shows a stronger relationship between the actual 
and estimated values than does ANPTSM. 
Although the relationship between actual and 
estimated values of MNTTTSM in Zaria is weak 
but positive, that of ANPTSM could not be 
estimated due to the large number of missing 
values in the data. Also, all of the correlations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

are significant at the 0.01 level (2-tailed). 
As shown in Table 8, the mean of the 

actual and estimated values for each zones of all 
models are almost equal; differences are due to 
approximation (truncation error) during 
calculation. Also, the mean of the actual and 
estimated values of MNTTTSM are closer than 
those of ANPTSM, which implies that 
MNTTTSM estimates better than ANPTSM. It 
was also discovered from results in Table 8 that 
the more missing values in the data, the weaker 
the ANPTSM is in estimating, while in 
MNTTTSM, the model maintains its precision. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Correlation Coefficients 

Zones Types 
ANPTSM MNTTTSM 

Coefficients Sig. Coefficients Sig. 

IKEJA 
Pearson’s r 0.607 .000 0.607 .000 

Spearman’s Rho 0.620 .000 0.620 .000 

IBADAN 
Pearson’s r 0.594 .000 0.575 .000 

Spearman’s Rho 0.622 .000 0.584 .000 

ILORIN 
Pearson’s r 0.503 .000 0.589 .000 

Spearman’s Rho 0.560 .000 0.612 .000 

MINNA 
Pearson’s r 0.596 .000 0.676 .000 

Spearman’s Rho 0.656 .000 0.686 .000 

ZARIA 
Pearson’s r - - 0.419 .000 

Spearman’s Rho - - 0.445 .000 
 
 

Table 8: Comparison of ANPTSM and MNTTSM Means 

Zones N 
ANPTSM MNTTTSM 

Actual Estimated Actual Estimated 

IKEJA 3,660 26.9077 26.8759 26.9077 26.8759 

IBADAN 3,601 26.3749 26.3756 26.3749 26.3791 

ILORIN 3,580 26.4558 26.2443 26.4558 26.4593 

MINNA 3,362 27.5489 26.3611 27.5489 27.5559 

ZARIA 3,588 - - 25.0514 25.0172 
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Table 9 shows that the standard 
deviations for MNTTTSM are less than those of 
ANPTSM which indicates that MNTTTSM is 
better in estimating and forecasting than 
ANPTSM. Similarly, apart from the standard 
error of ANPTSM and MNTTTSM of Ikeja, 
which are equal, it may be observed that the 
standard errors for MNTTTSM were also 
smaller than those of ANPTSM, which indicates 
that MNTTTSM is better in estimating and 
forecasting than ANPTSM for time series data 
with missing values. 

Table 10 shows that at Ikeja, there is a 
95% chance that the differences between the 
actual and estimated daily mean temperature 
would lie between -0.00749 and 0.07119 in 
ANPTSM and -0.00748 and 0.07118 in 
MNTTTSM. Similarly, at Ibadan; -0.0462 and 
0.04473 in ANPTSM and -0.0496 and 0.04114 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in MNTTTSM, at Ilorin; 0.1505 and 0.2723 in 
ANPTSM and -0.0592 and 0.05218 in 
MNTTTSM, at Minna; 1.1155 and 1.2601 in 
model I and -0.0689 and 0.05482 in MNTTTSM 
while in Zaria is between -0.0546 and 0.12310. 

It was also discovered that the range of 
the confidence interval for MNTTTSM is less 
than that of ANPTSM for Ikeja and Ibadan. In 
Ilorin and Minna, the lower confidence intervals 
of differences for ANPTSM are positive which 
indicates a 95% chance that the differences 
between their actual and estimated daily 
temperature (actual – estimate) are positive 
while those of MNTTTSM are not. This implies 
that the estimated daily temperatures for 
ANPTSM at Ilorin and Minna were under-
estimated. Hence MNTTTSM is better in 
estimating and forecasting than ANPTSM when 
there are missing values in the time series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9: Comparison of ANPTSM and MNTTSM’S Standard Deviation and 
Standard Error of Differences 

Zones 
ANPTSM MNTTTSM 

Std. Dev. 
Std. Error of 

the Mean 
Std. Dev. 

Std. Error of 
the Mean 

IKEJA 1.2138 0.02006 1.2137 0.02006 

IBADAN 1.3913 0.02319 1.3882 0.02313 

ILORIN 1.8585 0.03106 1.6996 0.02841 

MINNA 2.1381 0.03688 1.8293 0.03155 

ZARIA - - 2.7152 0.04533 

 
 

Table 10: Comparison of ANPTSM and MNTTTSM’s 95 % Confidence Interval of 
the Difference 

Zones 
ANPTSM MNTTTSM 

Lower Upper Lower Upper 

IKEJA -0.00749 0.07119 -0.00748 0.07118 

IBADAN -0.0462 0.04473 -0.0496 0.04114 

ILORIN 0.1505 0.2723 -0.0592 0.05218 

MINNA 1.1155 1.2601 -0.0689 0.05482 

ZARIA - - -0.0546 0.12310 
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Conclusion 
The two models tested in this study were the 
Augmented Nonlinear Parametric Time Series 
Model (ANPTSM) and the Modified Nonlinear 
Trigonometric Transformation Time Series 
Model (MNTTTSM). Both models were tested 
using daily mean temperatures at Ikeja, Ibadan, 
Ilorin, Minna and Zaria, and the results were 
analyzed. It was discovered that ANPTSM could 
be used in forecasting provided the data is 
having few missing values. However 
MNTTTSM estimates forecasts better than 
ANPTSM in estimating missing values and 
forecasting. Based on results of this study, 
MNTTTSM is more efficient in estimating 
missing values and forecasts better than 
ANPTSM. 

The beauty of a good model developed 
for nonlinear time series modeling is the ability 
to forecast better, the new method MNTTTTSM 
is therefore recommended for numerical 
solutions for a nonlinear model with missing 
values due to its higher capacity to address 
missing values. It was also noted that the 
mathematical derivative of MNTTTSM is 
simpler than ANPTSM which did not forecast 
better. Further research could be conducted by 
placing a condition in which data having a year 
or more of missing values is taken into 
consideration. 
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Incidence and Prevalence for A Triply Censored Data 
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The model introduced for the natural history of a progressive disease has four disease states which are 
expressed as a joint distribution of three survival random variables. Covariates are included in the model 
using Cox’s proportional hazards model with necessary assumptions needed. Effects of the covariates are 
estimated and tested. Formulas for incidence in the preclinical, clinical and death states are obtained, and 
prevalence formulas are obtained for the preclinical and clinical states. Estimates of the sojourn times in 
the preclinical and clinical states are obtained. 
 
Key words: Progressive disease model, prevalence, incidence, trivariate hazard function, censored data, 

proportional hazards model, sojourn times, chronic habitué. 
 
 

Introduction 
Louis, et al. (1978) introduced a natural history 
model for a progressive disease in a set of three 
articles: Albert, Gertman and Louis (1978), 
Albert, Gertman, Louis and Liu(1978) and 
Louis, Albert and Heghinian (1978). This model 
was extended by Kittani (1995a). Clayton (1978) 
also developed a model for association for the 
bivariate case and Oakes (1982) made inferences 
about the association parameter in Clayton’s 
model. Clayton and Cuzick (1985) introduced 
the bivariate survival function for two failure 
times and made inferences about the association 
parameter, γ. Kittani (1995a, 1996, 1997, 1997-
1998) considered the model for the bivariate 
case – that is, a case with two failure times (X, 
T) – by including covariates and by using Cox’s 
proportional hazards model. 

The motivation for this research lies in 
the fact that it is necessary to identify a three 
dimensional survival function for three failure 
times (X, Y, D) with four disease states (disease 
free state, preclinical state, clinical state and 
death state). In the model, X is the age upon 
entering the preclinical state (tumor onset or first 
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heart attack), T is the age when entering the 
clinical state (symptoms first appear or second 
heart attack) and D is the age upon entering the 
death state (dying of cancer or acute myocardial 
infarction). Kittani (2010) considered estimating 
the parameters using nonparametric approach for 
a triply censored data. 
 
Background and Assumptions 

As in the Louis, et al. (1978) model, it is 
assumed that fXYZ(x,y,z,a) is continuous – that is, 
X = Y = Z = ∞ is not allowed – and Y and Z are 
termed the sojourn times in the preclinical and 
clinical states respectively. The model proposed 
by Louis, et al. (1978) makes the assumption of 
no cohort effect, meaning that the distribution of 
the random variables (X, Y, Z) is independent of 
the age distribution A, or 
 

fXYZA(x, y, z, a) = fXYZ(x, y, z) × fA(a) 
 
and 

fXYA(x, y, a) = fXY(x, y) × fA(a) 
 
where fXYZ(x, y, z) is the joint pdf of (X, Y, Z) , 
fXY(x,y) is the joint pdf of X, Y and fA(a) is the 
pdf of A( the age distribution of the subject 
population). In addition, a subject is a chronic 
habitué of the PCS if, for that subject, X < ∞, Y 
= ∞, for example, subject never leaves PCS. 
According to the model, there will be no chronic 
habitués of the PCS or CS because, if a subject 
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lives long enough, then he/she will progress to 
the next state eventually (Louis et al., 1978). 

The X, Y and Z axes are partitioned into 
I, J and K intervals according to Chiang, et al. 
(1989) and Hollford (1976); they assumed 
constant baseline hazards in each subinterval, 
λ1i(x) = μ1i, x ε Ii, λ2j (y) = μ2j , y ε Ij and λ3k (z) 
= μ3k , z ε Ik in the ith, jth and kth intervals 
respectively. The hazard functions for the nth 
individual whose (X, Y, Z) values fall in the 
cube IixIjxIk are modeled by assuming Cox’s 
(1972) proportional hazards model and holds for 
each X, Y and Z in each respective Ii, Ij and Ik 
interval. 

Assuming α, β and η (regression 
parameters) for the covariate ω (p-dimensional) 
are constant (the same) for all intervals to be 
estimated. The hazard functions λ1, λ2 and λ3 in 
the Ith, Jth and Kth intervals for nth individual 
whose observed (X, Y, Z) value is (Xn, Yn, Zn) 
will be defined as 
 

'
n(x ) e , x I

1i n 1i n i
(a , a ], (y )

i i 1 2 j n

'
ne ,

2 j

α ω
λ = μ ∈

= λ+

β ω
= μ
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y I (b , b ], (z )

n j j j 1 3k n

'
ne , z I

3k n k
(c ,c ].

k k 1

∈ = λ+

η ω
= μ ∈
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Where μ1i, μ2j and μ3k are baseline hazard 
functions associated with X, Y and Z 
respectively. Assuming α, β and η are constant 
(the same) regression parameters for the 
covariate ω for all intervals and to be estimated 
along with the association parameter γ. 

The joint survival function for the three 
non-negative random variables (X, Y, Z) given 
by Kittani (1995b) is: 
 

γγγγ
1

-
)()()( ]2[z),F(x, 321 −++= ΛΛΛ zyx eeey . 

(2.1) 
 
Where γ > 0, x > 0, y> 0, z > 0, and Λ1, Λ2, Λ3 
are the cumulative hazard functions associated 
with X, Y and Z respectively. For example, to 
compute Λ1i(x), which is the cumulative hazard 
function for the nth individual whose x value falls 
in the ith interval (assuming a constant hazard 
over each interval) is as follows: 
 

kx
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(2.2) 
 
where Λ2j(yn) and Λ3k(zn) are defined in a similar 
way. Thus, the joint density function (X, Y, Z) is 
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(2.3) 
 
where γ > 0, x > 0, y > 0, z > 0, and λ1, λ2 and λ3 
are base line hazard functions associated with X, 
Y and Z respectively as 
 

31 2 (z)(x) (y)U e e e 2.γΛγΛ γΛ= + + −  
 
Kittani (1996) derived the likelihood function 
for the uncensored and censored cases in order 
to estimate the regression parameters by 
maximizing the likelihood function, that is, the 
nth individual that generates data vector wn, and 
L(wn) is the likelihood function contribution for 
the nth individual as: 
 

.1 2 N

N
L(w ,w ,...,w ) L(w )nn 1

= ∏
=
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This likelihood function is maximized with 
respect to the unknown parameter vector; θ = (γ, 
α, β, η, μ1, μ2, μ3) with dimension (3p + I + J+ 
K+1 ) where p is the number of covariates. 

To apply the Kittani (1995b) formula in 
the likelihood function it is first modeled for (X, 
Y, Z), then the transformations X = X, T = X + 
Y and D = X + Y + Z are performed to obtain 
the joint density function g(x, t, d) of (X, T, D) 
as: 
 

.

g(x,t,d) f(x,t-x,d-t)
(γ 1)(γ 2)λ (x)λ (t x)λ (d t)1 2 3

=
= + + − −  

 

Λ (x) Λ (t x)1 2 γΛ (x) γΛ (t x)γ 1 2[e eΛ (d t )3e 1(- 3)γΛ (d t) γ3e 2]

+ −  −   + + −    
 −− + − 

 

(2.4) 
 
Preclinical, Clinical and Death Incidence 

According to Louis, et al. (1978) under 
the assumption of no cohort effect, that is, (X, Y, 
Z) is independent of A, assuming 

(a)f)(I XPC =a , then preclinical incidence 

among those aged A is defined in terms of this 
model as: 
 

1iΛ (a)
PC X 1i

I 'α ωI (a) f (a) μ  e e ,
i 1

a Ii

−= = 
=

∈
  (3.1) 

 
where fX is the marginal density of X. In order to 
define the overall preclinical incidence, IPC in 
terms of this model, the distribution of A must 
be defined. It is assumed throughout this article 
that if A is uniformly distributed over an interval 
I as 

f (a) 1 / Id ,A i
a Ii

=

∈
                (3.2) 

 

where I is the number of intervals on the x-axis 
and di is the length of interval i, then the overall 
preclinical incidence in terms of this model is 
 

0

.

.

I f (x). f (x)dxPC X A

I - Λ (x)'1 α 1iμ e .e dx1iI di 1 Ii i
I -Λ (a ) - Λ (a )1 1i i 1i i 1e e

I di 1 i

∞
= 

ω=  
=

 += −   =  

 

(3.3) 
 
Similarly, if there is no cohort effect, then the 
clinical incidence among those aged A is defined 
in terms of this model as 
 

' '
1i 2j

1(- 2)
γ[Λ (x) Λ (a x)](α β ) γ

a
I (a) f (a) f(x,a-x)dx CL T

0
a

(γ 1)μ μ1i 2j
0

  e e U dx
−+ −+ ω

= = 

= +  

 

Where 1
)()( 21 −

−Λ
+Λ=

xa
exeU ji γγ  and fT is 

the marginal density of T = X + Y. This integral 
cannot be obtained in a closed form and should 
be evaluated numerically. The overall clinical 
incidence in terms of this model is 
 

I f (t) f (t)dtCL T A
0

t
f(x,t x)dx f (t)dtA0 0

tJ 1 f(x,t x)dx dt
Jdj 1 J 0j j

∞
= 

∞ 
 = −  
 

 
  
 = −    =   

 

 

(3.5) 
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where J is the number of intervals on the y-axis, 
dj is the length of interval j and 
 
f(x,t x)

γ(Λ (x) Λ (a x))' '(α β ) 1i 2j(γ 1) μ μ e e1i 2j
1

(- 2)γΛ (a x)γ(Λ (x) γ2j1ie e 1

− =

+ −+ ω+

−−
+ −

 
 
 
 
      
  

 
The above integral cannot be obtained in a 
closed form and should be evaluated 
numerically. Equations (3.1) – (3.5) are similar 
to those given by Kittani (1997). 

Similarly, if there is no cohort effect, 
then death incidence among those aged A is 
defined in terms of this model as 
 

 
a

0
dt

t

0
dxt)-a,x-tx,(f(a)Df(a)DII  













==  

(3.6) 
 
This integral cannot be obtained in closed form 
and should be evaluated numerically. The 
overall death incidence in terms of this model is 
 

a

0

a

0
k

I f (t) f (t)dtDI D A
0

t
f(x,t x ,a-t)dx f (t)dt daA

0 0

tK 1 f(x,t x ,a-t)dx dt
Kdk 1 I 0k

∞
= 

∞   
  = −     
  
  = −    =   





 

(3.7) 
 
where K is the number of intervals on the z-axis 
and dk is the length of interval. 
 
Preclinical and Clinical Prevalence 

According to Louis, et al. (1978) under 
the assumption of no cohort effect, (X, Y, Z) is 
independent of A, and the assumption of no 

chronic habitués of the PCS, then preclinical 
prevalence among those aged a is 
 
 

a
Φ (a) f (x,y)dy  dx,PC XY

0 a x

∞ 
 =   − 

 

(4.1) 
 
then preclinical prevalence among those aged a 
is defined in terms of this model as 
 

( )2j1i

1(- 1)γΛ (a-x)γΛ (x) γ

Φ (a)PC
a γ Λ (x)'α 1iμ e e1i
0

  e e 1 dx.
−

=

ω


+ −

(4.2) 

 
The integral cannot be obtained in a closed form 
and should be evaluated numerically. 

The overall preclinical prevalence 
according to Louis, et al. (1978) is 
 

Φ Φ (a ) f (a ) d aP C P C A0

∞
= 

         (4.3) 

 
and, under the assumption of no cohort effect 
and no chronic habitué s of the PCS, the overall 
preclinical prevalence is defined in terms of this 
model as 
 

( ) ]'
2j1i 1i

i

i

1a (- 1)γΛ (a-x)γΛ (x) γΛ (x)α γ
1i

J 0

Φ Φ (a)f (a)da
PC PC A

0

M 1
Φ (a)da

PCMdi 1 Ji i
M

i 1

1
Md

   μ e e e e 1 dx da
−

ω

∞
= 

=  
=

= 
=

 
 
  
 




 
+ −  

 
 

(4.4) 

 
The integral cannot be obtained in a closed form 
and should be evaluated numerically. Thus, the 
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clinical prevalence among those aged a in terms 
of this model is 
 

CS

a
Φ (a) f (x,y,z)dz dy dxX0 a x d-a

∞ ∞
=   

−
 

(4.5) 
 
where f(x, y, z) is given by 
 

1 32
1 2 3

3)[ (x) (y) (z)]
( 1)( 2) (x) (y) (z)e U

y
1(-

f(x, ,z)
−γ Λ +Λ +Λ γγ + γ + λ λ λ=

(4.6) 
where 
 

2 j 3k1i
(y) (z)(x)

U [e e e 2].
γ Λ γ Λγ Λ= + + −  

 
Therefore the overall clinical prevalence in 
terms of this model is 
 

Φ Φ (a) f (a)daCS CS A
0

a
f (x,y,z)dz dy dxXYZ0 0 a x d-a

aK 1 f (x,y,z)dz dy dx daXYZKdk 1 I 0 a x d-ak k

∞
= 

∞ ∞ ∞
=    

−
 ∞ ∞   =       = −   

(4.7) 
 
where f(x,y,z) is given by equation (4.6); the 
integral cannot be obtained in a closed form and 
should be evaluated numerically. 
 
Estimation of the Sojourn Times in the 
Preclinical and Clinical States 

Louis, et al. (1978) defined the mean 
duration of a disease in the preclinical state as 
 

.

Φ (a)daPC0E(Y| X )
I (a)daPC0

∞


< ∞ = ∞


      (5.1) 

 

However, according to this model, no cohort 
effect and no chronic habitué s of the PCS are 
assumed, thus, the quantity E[Y|X < ∞] will be 
E(Y) because P[X < ∞] is 1. Therefore, 
substituting for IPC(a) and ΦPC(a) in the above 
formula results in 
 
E (Y)

1
(- 1)a γ Λ (x)'N γα 1 iμ e e U da1ij 1 I 0j

Λ (a ) Λ (a )M 1i i 1 i i 1e e
i 1

=

−
ω  

=

+−
=

 
 
 
  
 
 
  
 

(5.2) 
 
This integral cannot be obtained in a closed form 
and should be evaluated numerically. 

Defining the mean duration of the 
disease in the clinical state as 
 


∞


∞

=∞<

0

da(a)
CS

I

da(a)

0
CS

Φ

)Y|E(Z              (5.3) 

 
and, assuming no cohort effect and no chronic 
habitué s of the CS, the quantity E[Z| Y < ∞ ] 
will be E(Z), because P[Y < ∞] is 1. Thus, 
substituting for ICS(a) and ΦCS(a) in the above 
formula results in 
 

E( Z )

a
f (x,y,z)dz dy dx da
XYZ

0 0 a x d-a
1

(- 2)γ(Λ (x) Λ (a x))' 'a (α β ) 1i 2j γ(γ 1)μ μ e e U dx da
1i 2j

0 0

=

∞ ∞ ∞
   

−

−+ −∞ + ω+ 

      
   

      
 
 
 
 
 

(5.4) 
 
where f(x, y, z) is given by equation (4.6). The 
integrals cannot be obtained in a closed form 
and should be evaluated numerically. 
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Asymptotic Distributions of the Epidemiological 
Measures 

In order to make inferences about the 
epidemiological measures obtained, it is 
necessary to find their distributions; the Delta 
Method (Bishop, et al., 1975) is applied to 
determine means and variances. The parameter 
vector to be estimated is θ = (γ, α, β, η, μ1, μ2, 
μ3) with dimension (3p + M+ N+ K+1 ) where p 
is the number of covariates, dim( μ1) = M, dim( 
μ2 ) = N, dim( μ3) = K and dim( α ) = dim( β ) = 
dim( η ) = p. Because θ̂  is the MLE for θ and, 

from the properties of the MLE’s, θ̂  is 

approximately normal with mean θ and the 
covariance matrix I-1[ θ ] is the inverted 
covariance matrix of θ obtained from 
maximizing the log likelihood function for the 
censored case. 

If g( θ̂ ) is any function of θ̂ , the 

approximate distribution of g( θ̂ ) may be found 

by applying the Delta Method as 
 

'ˆ N [ [ ] .-1g ( ) g ( )
g ( ) g ( ) , ] [ I( )]

∂ θ ∂ θ
θ ≈ θ θ

∂ θ ∂ θ
 
 
 

(6.1) 
where 
 

1 2 υ

g ( θ) g ( θ) g ( θ) g ( θ), ,... , ,
θ θ θ θ

dim( θ) υ 3p M N K 1

 ∂ ∂ ∂ ∂= ∂ ∂ ∂ ∂ 
= = + + + +

 

 

and the estimated variance of g( θ̂ ) is 

 

θθθ
θθ

θ
θ

ˆ
'1- ]

) (g
[)]I([]

) (g
[ =








∂

∂
∂

∂
. 

 
As an example, the formulas for the 

derivatives of the preclinical incidence are 
derived as follows. The estimate of preclinical 
incidence among those aged a 
 

M ' (a)
1i(a) (a) e e , a I

1i i
i 1

g I  PCθ

Λα ω= = μ ∈
=

(6.2) 

ˆ

ˆM ' (a)ˆ 1iˆ ˆ(a) (a) e e , a I
1i i

i 1
g I  PCθ

Λα ω= = μ ∈
=

(6.3)
 

where 
 

r 1 r i

i 1 'ˆˆ ˆ ˆ(a) (a a ) (a a ) e
1i 1r 1i

r 1
+

−  αωΛ = μ − +μ − 
 = 

 

 
Differentiating g with respect to θ, results in 
 

,0
θ) (gθ) (gθ) (g

2

=
∂

∂=
∂

∂=
∂

∂

rm μβγ
     (6.4) 

 
and 
 

m

M ' (a)
1iz e e (1 (a)) , a I

1i 1i i
i 1

g  
−Λ∂ α ω= μ − Λ ∈

∂α =
(6.5) 

 

1s

s

s 1 s

M (a)' '
1se e [1 (a a )e ], s i,a I

1s i
s 1

'M (a)2 1ie e (a a ), s i, a I
1i i

i 1
0 , s i, a I

i

g

 

  

  

+

∂ =
∂μ

−Λ α ω α ω−μ − = ∈
 =
 −Λ α ω− μ − < ∈
 =
 > ∈



(6.6) 
 
To test the effect of the covariates on morbidity 
and mortality (getting into the PCS, CS and DS): 

 
H0 : α = 0 vs. H1 : α ≠ 0, 

H0 : β = 0 vs. H1 : β ≠ 0,  

and 

H0 : η = 0 vs. H1 : η ≠ 0.             (6.7) 

 
then the standard errors of the estimates are 
obtained from I-1[ θ ] which is the inverted 
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Hessian matrix obtained by numerical 
integration from special software, such as IMSL 
routines. From the properties of the MLE 

estimates, under H0: θi = 0, iθˆ  is approximately 

normal with mean zero and standard error 
SE(θi). The test statistic 
 

 ) SE( i

i
i

Z
θ

θ
θ = .                    (6.8) 

 
is used to test the previous hypotheses and 
confidence intervals for θi can be obtained. 

The estimate of the overall preclinical 
incidence 
 

1i
1i i 1

g ( θ) IPC
M - (a )1 - (a )ie e

M di 1 i

+

=

Λ Λ= −   =  
(6.9) 

is 
 

ˆ ˆ

ˆ ˆ

g( θ ) IPC
M -Λ (a ) -Λ (a )1 1i i 1i i 1e e

M di 1 i

=

 
+ = −

 =  
(6.10) 

 
Differentiating g with respect to θ, results in 
 

,0
θ) (gθ) (gθ) (g

2

=
∂

∂=
∂

∂=
∂

∂

rm μβγ
 

(6.11) 
and 
 

m
(a )

1i i 1(a )eM ' 1i i 1z e
(a )i 1 1i i(a )e

1i i

g

1
M di

∂
∂α

−Λ +Λ +α ω  = 
−Λ =  − Λ 

(6.12) 
 

i 1

1i 1i

1s

M ' (a )1 1ie e s i,a I
iMi 1

'M 1
e , s i, a I

iMi 1
0 , s i, a I

i

i 1 i

    

g - (a ) - (a )e e    

 

+

+

−Λ αω = ∈
 =


∂  Λ Λαω = − < ∈  ∂μ   =
 > ∈



(6.13) 
 
The covariance matrix for IPC is 
 

'1- ]
) (g

[)]I([]
) (g

[
θ

θθ
θ

θ
∂

∂
∂

∂
 

 
where I-1[ θ ] the inverted covariance matrix of θ 
obtained from maximizing the log likelihood 
function for the censored case. 
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A Comparison between Unbiased Ridge and Least Squares Regression Methods 
Using Simulation Technique 

 
Mowafaq M. Al-Kassab Omar Q. Qwaider 

Al-al Bayt University, 
Mafraq, Jordan 

 
 

The parameters of the multiple linear regression are estimated using least squares ( LSB̂ ) and unbiased 

ridge regression methods ( ( )JKIB ,ˆ ). Data was created for fourteen independent variables with four 
different values of correlation between these variables using Monte Carlo techniques. The above methods 
were compared using the mean squares error criterion. Results show that the unbiased ridge method is 
preferable to the least squares method. 
 
Key words: Least squares, prior information, unbiased ridge estimation, mean squares error. 
 
 

Introduction 
Consider the linear regression model: 
 

UBXY += **
                 (1.1) 

 

where 
*X  is a ))1(( +× pn  matrix of predictor 

variables of full rank, 
*Y  is a )1( ×n  response 

vector, B  is a )1)1(( ×+p  vector of parameters 

and U  is a )1( ×n  vector of errors with 

0)( =UE  and IUCov 2)( σ= . When 
multicollinearity exists, the least squares 

estimate ( ) 1*T * *T *

LSB̂ X X X Y
−

=  is unstable, 

and many different methods have been proposed 
to control multicollinearity (Hoerl & Kennard, 
1970). 
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An alternative to the linear regression method is 
the unbiased ridge estimate 
 

( ) ( ) ( )KJYXKIXXJKIB T
P

T ++=
−

**
1

**,ˆ  
 
where 
 

P

B
J

P

i
ils

== 1

ˆ

 

and 
 

( ) ( ) ( )
.

ˆˆ
ˆ

12

2

−−−−
=

XXtrJBJB

PK
TT

σ
σ

 

 
The unbiased ridge estimate regression, 

( )JKIB ,ˆ , has advantages and disadvantages. It 
is effective in practice but it is a complicated 

function of K , thus it is necessary to use rather 
complicated equations when employing some 
popular methods such as the Crouse, Jin and 

Hanumare (1995) criterion to select K  
(Swindel, 1976). 
 
The General Multiple Linear Regression Model 

The general multiple linear regression 
model is 
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* * * *
i 0 1 i1 2 i2 p ip iY B B X B X ... B X U= + + + + +  

i 1,2,...,n=                       (2.1) 
 

where PBBBB ,.....,,, 210  are the regression 

coefficients and ),0(~ 2σNUi  is the random 

error associated with the observations. In matrix 
notation model (2-1) can be written as 
 
 
 
 
 
 
 
 
 

UBXY += **
, 

 

where 
*Y  is a )1( ×n  column vector of 

observations on the dependent variable, *X  is 
a )1)1(( ×+p  matrix resulting from n  

observations on P  explanatory variables 
**

2
*
1 ,.....,, pXXX  where the first column of 1’s 

represent the intercept term, that is, 1*
0 =X , 

and ),0(~ 2σNU  is )1( ×n  column vector 
of errors. 

Assumptions of the standardized model 
are: 

1. 0)( =UE  

2. IUUEUVar T 2)()( σ==  

3. Rank ( X *) = P where np <  
 
The ordinary least squares estimators are given 

by ( ) 1*T * *T *
LSB̂ X X X Y .

−
=  

 
Properties of Ordinary Least Squares Estimators 
 
1. Unbiasedness: 

An estimator, B


, is said to be unbiased 

estimator of B  if the expected value of B


 

equals B , that is, ( ) BBE LS =ˆ . (Casella & 

Berger, 2002) 
 
2. Variance: 

( ) ( ) 1
**2ˆ

−
= XXBVar T

LS σ
 

 
3. Mean squared error: 
 

( ) ( ) ( )

( ) ( ) ( )

( )

P P 2

i i
i 1 i 1

P 12 T
LS i

i 1

P
2

LS
i 1 i

ˆ ˆ ˆMSE B Var B Bias(B )

ˆ ˆMSE B Var B tr X X

1ˆMSE B

= =

−

=

=

= +

 = = σ

= σ

 



 
(2.2) 

 
Unbiased Ridge Estimator 

Ridge regression, which was proposed 
by Horel and Kennard (1970), suggests the use 

of KXX T + , where K  is a diagonal matrix 

rather than XX T
, so that the resulting 

estimators of B  are known as the ridge 
regression estimators and are given by: 
 

YXKXXB TT 1)(ˆ −+=           (3.1) 
 
Horel and Kennard (1970) suggested two forms 

for K . First, if pK kI , 0 k 1 = < < . 

Substituting this in equation (3.1), results in 
 

T 1 T
pB̂(k) (X X kI ) X Y−= +      (3.2) 

 

and, using eigenvalues and eigenvectors, )(ˆ kB  
can be expressed as 
 

p
1 T T

j j j
j 1

B̂(k) ( k) V V X Y.−

=

= +    (3.3) 

 
Second, if i iK diag(k ), k 0 i 1,2,...., p  = > = , 

then 
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=

−+=
p

j

TT
jjjj YXVVkkB

1

1)()(ˆ      (3.4) 

 
Swindle (1976) illustrated a technique 

for combining prior information with ridge 
regression that extended Hoerl and Kennard’s 
model as follows: 
 

)()(),( 1 kJYXkIXXJkIB TT ++= −
 

(3.5) 
 
with J  being a fixed vector of prior estimate of 
B . Swindle showed that there exists a value k 
which gives a smaller MSE than the least 
squares estimator for any fixed prior 
information, J . 

Definition (1): A prior mean J  is said 
to be good if the difference 

ˆ ˆMSE(B(K)) MSE(B(kI, J))−  is positive for 

all positive values k  when both )(ˆ kB  and 

),(ˆ JkIB  are computed by using the same 

value of k  (Pliskin, 1987). 
Remark: The restriction 0>k  is made 

because, if 0=k  then 
 

YXXXJkIBkBB TT
LS

1)(),(ˆ)(ˆˆ −===  

 
for all J , thereby implying that all three 
estimators have the same risk. In this study, it 
was found that the vector of prior information 
J  depends on the arithmetic mean of the least 
squares estimators multiplying by a vector 
whose elements are ones, that is 
 

1
1

ˆ

×
=



















=


p

p

i
iLS

I
p

B
J                (3.6) 

 
 
 
 
Unbiasedness of Ridge Estimators: Theorem (1) 

Consider the standard linear regression 
model (2.1), where U  is normally distributed 

),0( 2 IN σ , and the least square estimator, B̂  is 

normally distributed ))(,( 12 −XXBN Tσ . The 

prior information J  is independent of LSB̂ , 

and J  is normally distributed ),( VBN . Also 

assume that V  has full rank covariance matrix 
and that the convex estimator is 

JCIBCJCB LS )(ˆ),( −+= , where I is the 

PP×  identity matrix and C is a PP×  matrix. 
The optimal C in terms of minimum MSE is 
then 

2 T 1 1C V( (X X) V)− −= σ +           (3.7) 
 

Corollary (1): Suppose B̂  is an 
estimator of B  with mean B  and covariance 
matrix  , and J  is prior information with 

mean B  and covariance matrix V . Further 

assume that if J  is uncorrelated with B̂ , and 

V  and   are of full rank, then the convex 

estimator ),( JCB  has a minimum MSE of 
optimal value 
 

 −+= 1)(VVC               (3.8) 

 
Theorem (2): Unbiased Ridge Estimate of B  
(Crouse, et al., 1995) 

Let LSB̂  have a distribution with mean 

B  and covariance 
2 T 1(X X)−σ , denoted by 

))(,( 12 −XXBN Tσ , as in the linear model. 

Similarly, let J  be distributed 
2

N(B, ( )I)
k

σ
 for 

k 0,>  and define LS
ˆB(C,J) CB (I C)J= + − ; 

then, for the optimal value C  in terms of 
minimum MSE 

T 1 TˆB(C,J) B(kI,J) (X X kI) (X Y KJ)−= = + + , 

and ),( JCB  is an unbiased estimate of B . 
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Proof: Assuming that 
2

J ~ N(B, ( )I)
k

σ
 

and, from corollary (1), B̂  has a distribution 
with mean B  and covariance 

2 T 1(X X)−= σ , that is, B̂ ~ N(B, ) , it is 

found that J  is distributed with mean B  and 

covariance 

2

V ( )I
k

σ
=  denoted by 

J ~ N(B, V) . Substituting this into equation 
(3.8) results in 
 

( )
12 2

12 T

1

T 1

1T 1

Ĉ X X I
k k

I I
(X X) I

k k

k(X X) I

−
−

−
−

−−

σ σ
= σ +

= +

= +

 
 
 

  
    

  

 

 

Substituting JCIBCJCB )(ˆ),( −+= , results 
in 

( ) ( )( ) ( )

( )( )

11 1T T T

11T

B C,J k X X I X X X Y

I k X X I J                 

−− −

−−

= +

+ − + 
 
 

 
and 

( ) ( )( )
( )( )

1T T

11T

B C, J X X kI X Y

I k X X I J                  +

−

−−

= +

− + 
 
 

. 

 

Multiplying ( ) 1T 1K(X X) I
−− +  by 

T T 1X X(X X)−
, 

results in 
 

( )( )
( ) ( )( )( )

( )( )
( )( )

1T T

11 1T T T

1T T

1T T

B(C, J) X X kI X Y

I X X X X k X X I J

X X kI X Y

I X X (X X) kI J

    

   

−

−− −

−

−

= + +

− +

= +

+ − +

 

Adding and subtracting kI  to XX T , 
 

( )
( )( )( )

( )
( )( )

1T T

1T T

1T T

1T

X X kI X Y
B(C, J)

I X X kI kI X X kI J

X X kI X Y

I k X X kI I J

−

−

−

−

+ +
=

− + − +

+ +
=

+ + −

 
 
  
 
 
 
  
 

 
Simplifying the above results in: 
 

T 1 T

ˆB(C,J) B(kI,J)

(X X kI) (X Y kJ)−

=

= + +
  (3.9) 

 
Swindle (1976) did not propose a 

method for estimating the parameter k , 
however, Crouse, et al. (1995) proposed a 
procedure to estimate k, as follows: 
 

2

T 2 T 1

T 2 T 1

2

T

P
,

ˆ ˆ(B J) (B J) tr(X X)
ˆ ˆ ˆk if (B J) (B J) tr(X X) 0

P
, o.w.

ˆ ˆ(B J) (B J)

   

−

−

 σ
 − − −σ= − − −σ >
 σ
 − −

(3.10) 
 

If 2σ  is unknown, then 2σ  can be estimated by 
an unbiased estimator, 
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2

T 2 T 1

T 2 T 1

2

T

Ps
,

ˆ ˆ(B J) (B J) s tr(X X)
ˆ ˆ ˆk if (B J) (B J) tr(X X) 0

Ps
, o.w.

ˆ ˆ(B J) (B J)

   

−

−


 − − −= − − −σ >


 − −

(3.11) 
 
Properties of the Unbiased Ridge Estimators 
 
1. Unbiasedness: 
 

( )( )ˆE B kI, J B=  

 
2. Variance: 

( )( )
( )

2 i
i 2

i i

ˆVar B kI, J
k

= σ
+


  

 
3. Mean Square’s Error: 
 

( )( )

( )
( )

( )

2P P P
2 i

i i2 2
i 1 i 1 i 1i i i i

ˆMSE B kI, J

I
k B J

k k= = =

=

− + σ
+ +

 
 
 

   

 
(3.12) 

 
 

Methodology 
Model Description and Monte Carlo Simulation 

This research used a Monte Carlo study 
to examine the properties of least squares and 
unbiased ridge methods. The properties were 
then compared in the sense of the MSE, which 
was evaluated using equations (2.2) and (3.12) 
respectively. Thirty observations (n=30) were 
generated for each of fourteen (p=14) 
explanatory variables; the explanatory variables 
were generated using the device: 
 

* 2 1 2 * *
ij ij i15

* *
ij ij

X (1 ) Z Z ( j 1,2,...,m i 1,2,...,30)

X Z ( j m 1,m 2,...,14 i 1,2,...,30)

  . 

  . 

 = − α + α = =


= = + + =

 

 

Where ijZ  are independent standard normal 

pseudo-random numbers, i15Z  is the ith element 

of the column vector of random error 15Z , α  is 

specified so that the correlation between any two 

explanatory variables is given by 
2α . The n 

observations for the dependent variable Y  are 
determined by: 
 

i 1 i1 2 i2 14 i14 iY X X ..... X U

i 1, 2,....,30

= λ + λ + + λ +

=
 

 

where iU  are independent normal 
2(0, )σ  

pseudo-numbers evaluated by: i i15 15U Z Z= − , 

and Y  is standardized using unit length scale. 
 
 

Results 
The primary purpose of this research was to 
compare the MSE of the considered estimators, 
thus, the MSE for all estimators was evaluated. 
In addition, the efficiency of each estimator was 
evaluated. Thirteen experiments using Monte 
Carlo methods were conducted. The results of 
each experiment consist of five tables. The 
tables display the MSE of each estimator under 
one of five levels of correlation between 
explanatory variables. One set of experimental 
results is presented and consists of tables 
displaying the MSE of the least square and 
unbiased ridge methods for the desired 
correlation coefficients. 
 
 

Conclusion 
As shown in Tables 1-5, based on the thirteen 
experiments, it is concluded that the unbiased 
ridge method is preferable to the least square 
method because it results in smaller MSE 
values. 
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Table 1: Correlation Coefficient 
2α = 0.35 

MSE Using 
Unbiased Ridge

MSE Using 
Least Squares 

Correlation 
Between 

0.122822 25.4000 X1,X2 

0.0039352 23.1838 X1-X3 

0.0368124 30.7029 X1-X4 

0.144270 36.5401 X1-X5 

0.0714341 28.5695 X1-X6 

0.0241636 25.3975 X1-X7 

0.128423 36.4954 X1-X8 

0.0045159 46.5005 X1-X9 

0.0355173 1.57386 X1-X10 

0.0231471 27.4589 X1-X11 

0.0382758 38.3113 X1-X12 

0.0080928 39.3052 X1-X13 

0.0331327 46.2861 X1-X14 
 

Table 2: Correlation Coefficient 
2α = 0.51 

MSE Using 
Unbiased Ridge 

MSE Using 
Least Squares 

Correlation 
Between 

0.0444524 26.2279 X1,X2 

0.0111884 24.3146 X1-X3 

0.0029957 33.2860 X1-X4 

0.006178 45.0645 X1-X5 

0.0064171 33.4187 X1-X6 

0.0451311 29.1076 X1-X7 

0.0554930 44.4291 X1-X8 

0.0508783 61.7260 X1-X9 

0.0113255 29.6791 X1-X10 

0.0075011 33.2142 X1-X11 

0.0162912 47.9239 X1-X12 

0.0027323 49.6498 X1-X13 

0.0129765 68.5781 X1-X14 
 

Table 3: Correlation Coefficient 
2α = 0.67 

MSE Using 
Unbiased Ridge 

MSE Using 
Least Squares 

Correlation 
Between 

0.0295791 28.3239 X1,X2 

0.0084244 26.6763 X1-X3 

0.0066016 38.7922 X1-X4 

0.015094 61.6469 X1-X5 

0.0242642 42.9897 X1-X6 

0.0174133 37.0921 X1-X7 

0.0087105 59.5534 X1-X8 

0.0000733 91.8063 X1-X9 

0.0059245 38.3784 X1-X10 

0.0023228 44.8721 X1-X11 

0.0110501 66.4587 X1-X12 

0.0075445 69.5876 X1-X13 

0.0031203 113.142 X1-X14 
 

Table 4: Correlation Coefficient 
2α = 0.84 

MSE Using 
Unbiased Ridge 

MSE Using 
Least Squares 

Correlation 
Between 

0.0079587 35.6903 X1,X2 

0.0061240 34.3758 X1-X3 

0.0004140 57.3043 X1-X4 

0.042486 115.0238 X1-X5 

0.0159949 74.0384 X1-X6 

0.0030147 64.4310 X1-X7 

0.0007958 107.380 X1-X8 

0.0025083 189.863 X1-X9 

0.0057765 68.1341 X1-X10 

0.0018858 83.3222 X1-X11 

0.0037824 125.433 X1-X12 

0.0039350 132.940 X1-X13 

0.0037324 259.746 X1-X14 
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Table 5: Correlation Coefficient 
2α = 0.99 

MSE Using 
Unbiased Ridge 

MSE Using 
Least Squares 

Correlation 
Between 

0.0064327 253.630 X1,X2 

0.0011331 250.785 X1-X3 

0.0098181 606.225 X1-X4 

0.026003 1645.7712 X1-X5 

0.0078642 974.1748 X1-X6 

0.0048502 900.5158 X1-X7 

0.0158666 1461.07 X1-X8 

0.0170372 3049.69 X1-X9 

0.0026540 976.803 X1-X10 

0.0011670 1218.541 X1-X11 

0.0043619 1787.02 X1-X12 

0.0040964 1908.30 X1-X13 

0.0038209 4586.19 X1-X14 
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Robust ridge methods based on M, S, MM and GM estimators are examined in the presence of 
multicollinearity and outliers. GMWalker, using the LS estimator as the initial estimator is used. S and MM 
estimators are also used as initial estimators with the aim of evaluating the two alternatives as biased 
robust methods. 
 
Key words: Multicollinearity, ridge regression, outlier, robust estimation, robust ridge methods. 
 
 

Introduction 
One of the main problems in regression 
estimation methods is multicollinearity. 
Multicollinearity is the term used to describe 
cases in which the regressors are correlated 
among themselves. The ridge regression model 
has been advocated in the literature as an 
alternative to LS estimation for the 
multicollinearity problem; in this method, which 
was proposed by Hoerl & Kennard (1970a, b), 
ridge estimators are used instead of LS 
estimators. 

Another common problem in regression 
estimation methods is that of non-normal errors. 
The term simply means that the error 
distributions have fatter tails than the normal 
distribution. These fat-tailed distributions are 
more prone than the normal distribution to 
produce outliers, or extreme observations in the 
data. When outliers exist in the data, the use of 
robust estimators reduces their effects. 
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In the case of where both 

multicollinearity and outliers exist, the use of 
robust ridge regression is suggested. Robust 
ridge regression analysis has attracted the 
attention of some researchers in the literature. 
Holland (1973) gave the formulas for and 
derivation of ridge regression methods when 
weights are associated with each observation, 
and proposed the combination of ridge 
regression with robust regression methods. 
Askin & Montgomery (1980) presented a 
method based on augmented data sets for 
combining biased and robust regression 
techniques. Their estimates were constrained 
robust estimates, using an appropriately chosen 
ridge, Stein shrinkage or principal components 
constraint. Walker (1984) modified Askin and 
Montgomery’s approach to allow the use of GM 
estimators instead of M estimators (Simpson & 
Montgomery, 1996). Silvapulle (1991) proposed 
a new class of ridge type M estimators obtained 
by using M estimators instead of LS estimators. 
In addition, he suggested a procedure for 
choosing the optimal value of the biasing 
parameter (k) adaptively. 

Arslan & Billor (1996) proposed two 
alternative ridge type GM estimators to handle 
simultaneously multicollinearity and the 
existence of outliers. To reduce the effect of 
outliers, they computed robust estimates for k, 
and used these estimates to obtain robust ridge 
estimates for the regression coefficients. 
Another robust ridge regression estimator was 
suggested by Pfaffenberger & Dielman (1990). 
This estimator combines properties of the LAV 
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(Least Absolute Value) estimator and the ridge 
estimator, and is called RLAV (Ridge Least 
Absolute Value) estimator. Simpson & 
Montgomery (1996) proposed a biased-robust 
estimator that uses a multistage GM estimator 
with fully iterated ridge regression to control 
both influence and collinearity in the regression 
data set. Simpson & Montgomery (1998a) also 
evaluated existing and proposed robust methods 
relative to their performance on a 
comprehensive group of datasets with and 
without outliers. In addition, Simpson & 
Montgomery (1998b) developed and evaluated 
new robust regression procedures and compared 
their performance to the best alternatives 
currently available, in terms of efficiency, 
breakdown, and bounded influence. They 
offered the better performing alternatives as 
possible methods for use in a robust regression 
scenario.  

Wisnowski, Simpson & Montgomery 
(2002) introduced a robust regression estimator 
that performs well regardless of the quantity and 
configuration of outliers. They show that the 
best available estimators are vulnerable when 
the outliers are extreme in the regressor space 
(high leverage). Their proposed compound 
estimator modified recently published methods 
with an improved initial estimate and measure of 
leverage. 

In this study, robust ridge regression 
methods based on M, S, MM and GM estimators 
are examined in the presence of both outliers 
and multicollinearity. The computation of GM 
estimates requires two stages of parameter 
estimation, an initial estimate that provides a 
good starting point and a secondary estimate 
with iterations to a final estimate. LS is used as 
the initial estimator of GM in the study. In 
addition, S and MM estimators are used as initial 
estimators, with the aim of evaluating two 
alternatives as biased robust methods, as they 
are the top two robust estimation methods and 
are also highly efficient and effective against 
most types of outlier configurations. The 
performance of the robust ridge estimators is 
examined by using mean square error (MSE) on 
a hospital manpower dataset (Myers, 1990). 
 
 
 

Methodology 
Ridge Regression 

Consider the linear model 
 

εXβy += ,                      (2.1) 
 
where y is a vector of n response values, X is an 
n× p  matrix of rank p, β  is a vector such that 

E( ) 0=ε , and 2Var( ) σ= nε I . All variables in 

this model are corrected for their means and 
scaled to unit length, so that XX'  is in 
correlation form. 

If the columns of X are multicollinear, 
then the least-squares estimator of β , namely 

yXX)X(β 1 ′′= −ˆ , is an unreliable estimator due 
to the large variances associated with its 
elements. The most popular of the methods that 
can be used to cope with multicollinearity is 
ridge regression. This method, developed by 
Hoerl & Kennard (1970a, b), is based on adding 
a positive constant k to the diagonal element of 

XX' . This leads to a biased estimator Rβ  of β , 

called the ridge estimator and given by: 
 

1ˆ ( )k −′ ′= +R nβ X X I X y             (2.2) 

 
When both outliers and multicollinearity occur 
in a dataset, it would seem beneficial to combine 
methods designed to deal with these problems 
individually. Thus, robust ridge estimators will 
be resistant to multicollinearity problems and 
will be less affected by outliers. 
 
Robust Ridge Regression 

The following formula is used to 
compute robust ridge estimates: 
 

* 1ˆ ˆ( )RobustRidge Robustk −′ ′= +β X X I X Xβ , 

(2.3) 
 

where ˆ
Robustβ  denotes the coefficient estimates 

from the robust estimators. Many methods of 
selecting appropriate k* values have been 
proposed in the literature. In this study, the 
method proposed by Hoerl, Kennard & Baldwin 
(HKB) (1975), based on LS estimators, has been 
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used for the selection of the k* value, building on 
robust estimators: 
 

2
* ˆ.

ˆ ˆ
Robust

Robust Robust

pk σ
=

′β β
,               (2.4) 

 

Where p is the number of regressors, and 2ˆ Robustσ  

is the robust scale estimator. 
 
Robust Estimations 

The most popular of all robust 
estimation techniques is M estimation, proposed 
by Huber (1964). The M estimator minimizes 
the objective function 
 

n

i 1

ˆ
min iy

ρ
s=

 ′− β
 
 
 

 ix
β

. 

 
Differentiating the objective function with 
respect to the coefficients β , defining ′ψ = ρ , 
and setting the partial derivates to 0, the system 
of equations can be written 
 

n

i 1

ˆ
min . 0iy

s
ψ

=

 ′− β
  =
 
 

 i
i

x
x

β
, 

 
where s is a robust estimate of scale. 

GM estimators are a natural extension of 
M estimators (Walker, 1984). GM estimation is 
multistage estimation with two desirable 
properties, efficiency and bounded influence. 
These estimators bound the influence of the 
observations both in the x and y direction by 
using weight functions. The GM estimators are 
solutions to the normal equations 
 

1

ˆ
0

n
i

i
i i

y
s

π ψ
π=

 ′− β
  =
 
 

 i
i

x
x , 

 
where the iπ  denote the weights. This estimator 

was developed by Schweppe (Simpson & 
Montgomery, 1998a). 

In the literature, several GM estimation 
approaches are suggested using various 
combinations of GM components (objective 

function, initial estimate, scale estimate, π -
weight function, etc.). The GM estimation 
approach of Walker (1984) is one of the 
approaches. The GM approach of Walker uses 
the Schweppe objective function that 
downweights outliers with high leverage points 
only if the corresponding residual is large. It is 
recommended to use the LS as the initial 
estimator and a non-iterated MAD as the 
estimate of scale. Convergence to the final 
estimate is obtained by using iteratively 
reweighted LS (Wisnowski, Montgomery & 
Simpson, 2001). 

In this study, Walker’s (1984) GM 
method and two alternative GM estimation 
approaches have been used. In the first 
approach, the Schweppe function, Huber’s Ψ , 
min(1,c|DFFITS|-1) and S estimation are used 
instead of LS for the objective function, leverage 
function, π -weight function, initial and scale 
estimation, respectively. Final parameter 
estimates are found by iteratively reweighted 
LS. 

S estimators developed by Rousseeuw & 
Yohai (1984) are based on the minimization of 
the dispersion of the residuals. The S estimator 
is given by 
 

1ˆ
min ( ( ),..., ( ))ns e e

β
β β , 

 
and the scale estimator is 
 

1
ˆ ˆˆ ( ( ),..., ( ))ns e eσ β β= . 

 
The dispersion function 1( ( ),..., ( ))ns e eβ β  is 

found as the solution to 
1

1 n
i

i

e
n s

ρ
=

 
 
 

 =K, where 

K is a constant and (.)ρ  is the residual function. 
Rousseeuw & Yohai (1984) suggest using the 
following function: 
 

2 4 6

2 4

2

        
2 2 6( )

                            
6

x x x x c
c cx

c x c
ρ


− + ≤= 

 >

. 
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The 50% breakdown point of the S estimators is 
achieved by taking c=1.548 and K=0.1995 
(Rousseeuw & Leroy, 1987). 

In the second GM approach considered, 
the objective, leverage and π -weight functions 
are calculated as in the first GM approach, and 
the MM estimator is used for the initial and scale 
estimation. The MM estimator is a high 
breakdown and high efficiency estimator with 
three stages. The initial estimate is a high 
breakdown estimate using an S estimate. The 
second stage computes an M estimate of the 
scale of the errors from the initial S estimate 
residuals. 

The last step is an M estimate of the 
regression parameters using a redescending ψ  
function that assigns a weight of 0.0 to 
abnormally large residuals (Wisnowski, 
Montgomery & Simpson, 2001). Because MM 
estimation combines high breakdown value 
estimation and M estimation, it has both a high 
breakdown property and a higher statistical 
efficiency than S estimation (Chen, 2002). 
Although MM estimation does not theoretically 
bound the possible influence, it performs very 
well in some high leverage outlier situations 
(Simpson & Montgomery, 1998). 
 
MSE Criterion for Robust Ridge Estimators 

To illustrate the performance of robust 
ridge estimators, the MSE criterion proposed by 
Silvapulle (1991) is used for M estimation and 
that of Arslan & Billor (1996) for GM 
estimation. The MSE of the robust ridge 
estimators based on the M and GM estimators is 
as follows: 
 

*

2*
* 2

*
1 1

ˆ( ( ))

( )

Robust

n n
i

i i ii
i i i

MSE k

kk
k

α
λ λ Ω

λ
−

= =

=

 
+ +  + 

 

α

, 

 

Robust ii
1

ˆ( )
p

i
MSE Ω

=

α = , 

 
where Ω  is a (pxp) ˆcov( )Robustα  matrix, and iλ  

are the eigenvalues of ′X X . Any estimator α̂  

of α  has a corresponding estimator ( )ˆ ˆβ = Pα , 

such that ˆˆ( ) ( )MSE MSEα = β , where ˆ( )MSE β

refers to the total MSE, { }ˆ ˆ( ) ( )E ′β − β β − β  

(Silvapulle, 1991; Arslan & Billor, 1996). 
 

Results 
A hospital manpower dataset taken from Myers 
(1990) was examined as an example to compare 
the performance of the considered estimators. 
This example contains five regressors and one 
response variable. Because the data have been 
standardized, the model does not include the 
intercept term, thus, the XX′  matrix is in the 
form of a correlation matrix: 
 

′X X

1.000 0.907 0.999 0.936 0.671

0.907 1.000 0.907 0.910 0.447

0.999 0.907 1.000 0.933 0.671 .

0.936 0.910 0.933 1.000 0.463

0.671 0.447 0.671 0.623 1.000

 
 
 
 =
 
 
  

 

 
The matrix XX′  has eigenvalues =1λ 4.197, 

=2λ 0.667, =3λ 0.095, 4λ = 0.041, 5λ =
0.0001. It is observed that the regressors are 
moderately to highly correlated. Moreover,

1 5( / ) (4.1971/ 0.0001) 83942λ λ = = , which 

implies the existence of multicollinearity in the 
dataset. 
In addition, in Figure 1, 

6 7 8 10 12 15 16 17, , , , , ,  and x x x x x x x x  are flagged as 

outliers or leverage points, and the points 

6 6 7 7( , ), ( , ),y x y x  8 8 10 10( , ), ( , ),y x y x

12 12 15 15( , ), ( , ),y x y x  16 16 17 17( , ) and ( , )y x y x
are regression outliers. The points 

8 8 10 10( , ), ( , ),y x y x  12 12 15 15( , ), ( , ),y x y x

16 16 17 17( , ) and ( , )y x y x are called bad leverage 

points. Regression outliers for which x values 
are not leverage points are called outliers in the y 
direction. In Figure 1, the points 

6 6 7 7( , ), ( , )y x y x  are outliers in the y direction 

as well. 
In the presence of outliers in the data, 

the use of robust methods provides more stable 
parameter estimates. With this aim, initial robust 
regression estimates have first been calculated to  
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obtain robust ridge estimates in the presence of 
both multicollinearity and outliers; these 
estimates are given in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in Table 1, the 1β̂  value of the 

M estimator is found to have a negative sign. 

This value is inconsistent with the 1β̂  values  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
obtained from the S and MM estimators. In the 
presence of multicollinearity in a dataset, the 
signs of parameters can be found to be different 

from expectations. The sign of the 1β̂  value can 

be said to occur inversely due to the potential 
effects of multicollinearity. In addition, the 
magnitudes of the parameter values for the M 
estimator are fairly different from those of the S 
and MM estimators. It is thought that the S and 
MM estimates are better than the M estimates 
because the scale estimates of S and MM are 
more efficient than the M estimates. 

Second, biasing parameters (k*) have 
been found by using the estimates in Table 1. 
Robust ridge estimates via the biasing 
parameters are calculated and shown in Table 2. 

In Table 2, the sign of 1β̂  value of the M 

estimate is the same as that of the other robust 
ridge estimates. The effect of multicollinearity 

on the sign of the 1β̂  value is removed by using 

ridge regression. The magnitudes of the 
parameter estimates are coherent with each 
other, except ridge regression estimates based on 
M estimates. 

Figure 1: Robust Residuals versus Distances for Hospital Manpower Data 

 

Table 1: Initial Robust Parameter Estimates 

ˆ
Robustβ  M S MM 

1β̂  -0.2159 0.4036 0.5948 

2β̂  0.1782 0.6739 0.6543 

3β̂  1.1891 0.3053 0.1099 

4β̂  -0.0759 -0.3054 -0.2582 

5β̂  -0.1281 -0.0909 -0.0853 

σ̂  0.0264 0.0199 0.0199 



RIDGE REGRESSION BASED ON SOME ROBUST ESTIMATORS 

500 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Table 2, it is observed that the 
result of MSE based on M estimation is the 
worst among other robust methods. The worst 
value of the scale estimates in Table 1 belongs to 
the M estimates; thus, the results of Table 1 are 
consistent with those of Table 2. The result of 
MSE for GMWalker is the second worst value. GM 
estimators were developed to overcome the 
deficiency of M estimators; Table 2 shows that 
the MSE value of GM is better than that of M. It 
has been noted that GM estimation is multistage, 
while the initial estimates of GMWalker are based 
on LS. The method of LS is not robust in the 
presence of outliers in the data. For this reason, 
the MSE of GMS and GMMM, proposed in the 
study as alternatives to GMWalker, are less than 
that of GMWalker. The MSEs of the GMS and 
GMMM estimates are significantly less than the 
MSEs of the other robust ridge estimates. 
Furthermore, the results of MSEs for robust 
ridge estimates based on MM are less than those 
of the S estimates. 
 

Conclusion 
In this study, in the presence of both 
multicollinearity and outliers in a dataset, a 
biasing parameter k* is calculated using the 
ˆ

Robustβ  and ˆ Robustσ  values obtained from several 

robust methods (M, S, MM, GMWalker, GMS and 
GMMM),    robust   ridge   estimates    are   then 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
obtained. The performance of the robust 
estimators is affected by the percentage of data 
that are outliers, the location of the outliers in 
the x and y directions and their magnitudes. For 
this reason, the performance of the estimators 
considered must be interpreted in terms of these 
components. 

The performance of ridge estimators 
based on M, S, MM, GMWalker, GMS and GMMM 
estimation methods have been considered for the 
dataset in terms of the MSE criterion. For this 
dataset, the result of MSE from robust ridge 
regression based on M estimation is the worst 
among all robust techniques. Because the data 
includes outliers in both the x and y directions, 
the M estimators cannot bound the outliers in the 
x direction. In this situation, GM estimators, 
which bound the effects of outliers in both the x 
and y directions, are expected to have better 
performance than M estimators. Thus, under 
these circumstances, it has been shown that the 
ridge GM estimators would be preferred. 

However, the result of MSE for 
GMWalker is the second worst value. There are 
several outliers in the x-direction in the data and 
a few of them are extreme. On the other hand, 
the GMWalker method uses LS estimates, which 
are not robust, as initial estimates. In this 
situation, it is expected that the MM and S 
estimators should have better performance in 

Table 2: Robust Ridge Parameter Estimates 

ˆ
Robust Ridgeβ  M S MM GMStandard GMS GMMM 

1β̂  0.4621 0.3329 0.3343 0.3927 0.3600 0.3426 

2β̂  0.1755 0.6663 0.6472 0.4351 0.4913 0.5117 

3β̂  0.5239 0.3540 0.3444 0.4162 0.3874 0.3683 

4β̂  -0.0857 -0.2801 -0.2299 -0.1491 -0.1408 -0.1263 

5β̂  -0.1325 -0.0842 -0.0776 -0.0738 -0.0678 -0.0681 

k* 0.0032 0.0024 0.0023 0.0055 0.0030 0.0031 

MSE 0.0398 0.0249 0.0242 0.0314 0.0209 0.0200 
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terms of MSE, because MM and S estimators are 
high breakdown estimators. 

GMS and GMMM estimates combine the 
properties of high breakdown, efficiency and 
robustness against outliers in the x and y 
directions. Consequently, the MSE of the GMS 
and GMMM estimates are somewhat smaller than 
that of the GMWalker ridge estimates. According 
to this result, it can be said that using robust 
estimation methods as an initial estimator for 
GM give more efficient and high breakdown 
estimates when the dataset contains outliers in 
the x and y directions. As the result, the 
performance of robust ridge regression estimates 
based on GMS and GMMM estimators met 
expectations in terms of the MSE criterion in 
this dataset. 
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The maximum likelihood estimator (MLE) is commonly used to estimate the parameters of logistic 
regression models due to its efficiency under a parametric model. However, evidence has shown the MLE 
has an unduly effect on the parameter estimates in the presence of outliers. Robust methods are put 
forward to rectify this problem. This article examines the performance of the MLE and four existing 
robust estimators under different outlier patterns, which are investigated by real data sets and Monte Carlo 
simulation. 
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Introduction 
Logistic regression models are widely used in 
the field of medical and behavioral sciences. 
These models are used to describe the effect of 
explanatory variables on a binary response 
variable. The logistic regression model assumes 
independent Bernoulli distributed response 
variables with the probability of a positive 
response modeled as  
 

( ) ( )βT
iii xFxXYP === 1  

 
where F is the logistic distribution function, 

p
ix ℜ∈  are vectors of explanatory variables 

and pℜ∈β  is unknown. Such models are 
usually estimated by the maximum likelihood 
estimator (MLE) due to its efficiency under a  
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parametric model. Unfortunately, the MLE is 
very sensitive to outlying observations. 

Pregibon (1981) stated that the 
estimated parameters in logistic regression may 
be severely affected by outliers; hence, several 
robust alternatives which are much less affected 
by outliers are proposed in the literature (for 
example, Pregibon, 1981; Copas, 1988; Kunsch, 
et al., 1989; Carroll & Pederson, 1993; Bianco & 
Yohai, 1996; Croux & Haesbroeck, 2003). The 
goal of this article is to demonstrate a formal 
comparison between the MLE and several robust 
methods for logistic regression through a 
simulation study and real data examples. 
 
Background 

The logistic regression model assumes 
an independent Bernoulli response variable Y
which takes values 1(for success) or 0 (for 
failure). Let ( )pxxX ,...,,1 1=  be a vector of 

independent explanatory variables. Given a 
binary variable Y  and a 1×p  vector X of 
covariates, the logistic regression model is of the 
form: 
 

( ) ( ) ( )
( )1

1

1

T
iT

i i T
i

exp x
P Y X x F x ,

exp x

i ,...,n

β
= = = β =

+ β

=

 

(1) 
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where ),...,,( 10 p
T ββββ =  is a vector of 

parameters and F  is assumed to be a 
continuous and increasing distribution function. 
For estimating the β  parameters, the maximum 
likelihood estimator (MLE) is classically used 
and is defined by an objective function 
 

( )
=

=
n

i
iiMLE xYl

1

;,maxargˆ ββ
β

            (2) 

 
where the log-likelihood contributions are 
 

( ) ( ) ( ) ( )[ ]βββ T
ii

T
iiii xFYxFYxYl −−+= 1ln1ln;,

(3) 

 
which gives an asymptotically efficient 
procedure for estimating β . Alternatively, the 
MLE may be obtained by minimizing the 
deviance, 
 

( )=
=

n

i
iMLE Dminargˆ

1
ββ

β
                (4) 

where 
 

( )[ ] ( ) ( )[ ]{ }βββ T
ii

T
iii xPYxPYD −−−−= 1ln1ln)( . 

 
Differentiating (2) with respect to β  results in 
the likelihood score equation 
 

[ ] 0)(
1

= −
=

i

n

i
xT

ixFiY β .           (5) 

 
These equations are solved iteratively by 

using either the Newton-Raphson or Fisher 
Scoring method. It is important to point out that 
the MLE in logistic regression does not exist 
when the data has no overlap. The estimator can 
only be estimated if the data has overlap where 
the two parts of data given by the values of the 

dependent variable, { }1== ii YxX  and 

{ }0== ii YxX  are not separated in the space of 

explanatory variables (Albert & Anderson, 
1984). The MLE is asymptotically normal and is 
an efficient estimator, nonetheless, it is 
extremely sensitive to outliers and hence is said 
to not be robust. For this reason, several robust 

alternatives of the MLE have been created to 
remedy this problem. 
 
Outliers in Logistic Regression 

It is important to distinguish between 
the different cases of outlying observations in 
logistic regression. In a binary logistic model, 
outliers can occur in the Y-space, the X-space or 
in both spaces. For binary data, all the y’s are 0 
or 1, hence an error in the y direction can only 
occur as a transposition 0→1 or 1→0 (Copas, 
1988). This type of outlier is also known as 
residual outlier or misclassification-type error. 
An observation which is extreme in the design 
space X is called a leverage outlier or leverage 
point: a leverage point can be considered good 
or bad.  

A good leverage point occurs when 

1=Y  with a large value of ( )ixYP 1=  or when 

0=Y  with small value of ( )ixYP 1= , and 

vice versa for a bad leverage point. Victoria-
Feser (2002) showed that the MLE can be 
influenced by extreme values in the design 
space, and the case of misclassification errors 
has been studied by Pregibon (1982) and Copas 
(1988). Croux, et al. (2002) found that the most 
dangerous outliers, termed bad leverage points, 
are misclassified observations which are at the 
same time outlying in the design space of x 
variables. 
 
Robust Estimators in Logistic Regression 

In general, two alternative approaches to 
making MLE more robust in logistic regression 
exist. The first is based on weighting the 
likelihood score function in (5), the so-called 
Mallows-class (Mallows, 1975; Hampel, et al., 
1986, §6.3). Two types of estimators fall in this 
category: the Mallows-type and Schweppe-type 
estimators. The former were introduced by 
Kunsch, et al. (1989) where the weights depend 
on the response as well as the covariates. 
Mallows-type estimators were also suggested by 
Kunsch, et al. (1989) but were analyzed more 
deeply by Carroll and Pederson (1993). This 
type of estimator downweights in terms of the 
relative position in the design space (leverage) 
and often uses Mahalanobis distance. 
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A general robust estimate for the logistic 
model (1) is given by the solution in β  of 
(Carroll and Pederson, 1993) 
 

( ) ( ){ } 0
1

= −−
=

n

i
i

T
iiii xcxFYxw ββ ,      (6) 

 
with iw  being the weights which may depend on 

ix , iy , or both and ( )β,ixc  is a correction 

function defined to ensure consistency. If 1≡iw  

and ( ) 0, =βixc , then (6) gives the usual 

logistic regression estimate. If ( )βT
iii xxww ,=  

and ( ) 0, =βixc , then the weights depend only 

on the design, and the estimator is called 
Mallows class. The estimator thus represents a 
weighted maximum likelihood estimator. 
Stefanski (1985) suggested downweighting via 
robust Mahalanobis distance for the covariate 

vector, x . If ( )i
T
iii Yxxww ,, β= , then the 

estimator is in the Schweppe class (Kunsch, et 
al., 1989) where the weights depend on the 
response as well as the covariates. This 
estimator is also known as the conditionally 
unbiased bounded influence function (CUBIF) 
estimator. 

The second robust approach is proposed 
by Pregibon (1982) who worked directly with 
the objective function in (4). He replaced the 
deviance function in (4) with a robust estimator 
defined by 
 

( )[ ]=
=

n

i
i

T
ii y,xDminarg

1
βλβ

β
,          (7) 

 
where λ  is a strictly increasing Huber’s type 
function. This estimator was designed to give 
less weight to observations poorly accounted for 
by the model, however, this estimator did not 
downweight influential observations in the 
design space and was not consistent. Bianco and 
Yohai (1996) improved this method which was 
consistent and more robust than Pregibon’s 
estimator by defining 
 

( ) ( )( )
( )( )1 1

T T
n ii i

Ti
i

D x , y G F x
arg min

G F x
.

=β

β + β
β = ρ

+ − β

         
(8) 

 
The ρ  chosen by Bianco and Yohai 

(1996) is a bounded, differentiable and a 
nondecreasing function defined by 
 

( )2 2 if

2 otherwise

x x k x k
( x )

k

− ≤
ρ =





         (9) 

 
where k is a positive number, 

( ) −= x duuxG 0 ln)( ψ  and )(')( xx ρψ =  but 

stressed that other choices of ρ  are possible. 
Croux and Haesbroeck (2003) extended the 
Bianco and Yohai estimator (BY) by including 
weights to the BY estimator to reduce the 
influence of outlying observations in the 
covariate space. This weighted BY (WBY) 
estimator, also called the Croux and Haesbroeck 
(CH) estimator, can be defined as: 
 

( )
( ) ( )( )

( )( )1 1

T T
n ii i

i Ti
i

D x , y G F x
arg min w x

G F x=β

β =

β + β
ρ

+ − β

         
(10) 

 
where the weights ( )ixw , in order to be a 

decreasing function of robust Mahalanobis 
distances, are distances computed using the 
Minimum Covariance Determinant (MCD) 
estimator (see Rousseeuw & Leroy, 1987) taken 
as: 

( )




 ≤

=
else0

if1 2
975.0,

2
pi

i

RD
xw

χ
.       (11) 

 
This WBY estimator remains consistent because 
the weighting is only used on the x-variables. 
Unfortunately, the above weighting procedure 
also reduces the weight of the good leverage 
points, which is not necessary and may lead to a 
loss of efficiency. 
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Methodology 
Simulation Study 

A simulation study was carried out to 
compare the robustness of the estimators 
discussed. These estimators are: the MLE and 
the four robust estimators for logistic regression, 
the Mallows-type estimator (MALLOWS) with 
weights depending on a robust Mahalanobis 
distance (Carroll & Pederson, 1993) and the 
conditionally unbiased bounded influence 
(CUBIF) estimator (Kunsch, et al., 1989), both 
of which are computed by standard available 
routines in the Robust package of S-Plus, the 
Bianco & Yohai (BY) estimator (1996) with 
choice of objective function and implementation 
(Croux & Haesbroeck, 2003) and the weighted 
Bianco-Yohai (WBY) estimator, both S-plus 
programs available at www.econ.kuleuven.be/ 
public/NDBAE06/programs/. 

Following the simulation study carried 
out by Croux and Haesbroeck (2003), a logistic 
regression model is generated with two 
independent normally distributed covariates. The 
error terms iε  are drawn from a logistic 

distribution defined as: 
 

( )022110 ≥+++= εβββ xxIy . 

 
The true parameter values are ( )2,2,0=β  with 
sample size 200=n ; a large sample size is 
chosen to avoid separation problems. 

The simulation study is reported under a 
variety of situations. Initially, data without 
contamination, having two explanatory variables 
independently and normally distributed with 
zero mean and unit variance is considered. Next, 
to examine the robust properties of all, the data 
is contaminated in three different ways, similar 
to the idea proposed by Victoria-Feser (2002). 
First, proportions (a certain percentage) are 
taken of the responses y  chosen randomly and 
changed from either 0 to 1 or 1 to 0; this 
constitutes the misclassification-type error. For 
each contaminated case, 1%, 3%, 5%, 7% and 
10% of the original data set are contaminated. 
Second, the same proportions are taken to 
contaminate both covariates and replace them by 
the value of 2 for moderate leverage points. The 
same process is then repeated and replaces the 

value by 6 for extreme leverage points. Finally, 
the same proportions are considered and the 
generated data are contaminated with both types 
of outliers simultaneously which constitutes bad 
leverage points. 

To further investigate leverage points, 
following the idea suggested by Bondell (2005), 
the proportions of the explanatory variables 1x  

and 2x  were taken simultaneously and their 
values were replaced with 7...,,1=x  gradually 
from moderate to extreme covariates in the 
design space with 1=Y . The proportions of the 
observations with bad leverage points were then 
contaminated by replacing the explanatory 
variables with values 7...,,1=x  gradually with 
response variable 0=Y . 

The five methods were then applied to 
these data under different situations already 
mentioned. In each simulation run included 
1,000 replications. The performances of the five 
methods are evaluated based on the bias and the 
mean squared error (MSE). The bias for each 
parameter and the mean squared error are 
respectively defined as: 
 

ββ −=
=

1000

1

ˆ
1000

1

i
iBias  

and 
 









 −=
=

21000

1

ˆ
1000

1

i
iMSE ββ  

 

where ⋅  indicates the Euclidean norm (Croux 

& Haesbroeck, 2003). 
 

Results 
The bias and the MSE of the five estimates are 
shown in Tables 1-5. A good estimator is one 
that has bias and MSE which are relatively small 
or close to zero. It can be observed that, in clean 
data with zero percentage of outliers, the biases 
and MSEs of all five estimators are fairly close 
to each other. 

Table 1 shows data with misclassified 
errors. The bias and MSE of the MLE estimates 
were immediately affected by 1% misclassified-
type error. The results suggest that the MLE 
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becomes biased with 1% contamination, CUBIF 
with 3% contamination and BY with 7% 
contamination. The MALLOWS and WBY 
exhibit good robust estimators with the latter 
being the best method. 

It can be observed from Table 2 that 
there is not much difference between the 
classical and the robust methods when 
contaminating data with extreme leverage points 
(replacing x by 6 and Y = 1). Similar results 
were obtained for moderate leverage points 
(replacing x by 2 and Y = 1); these results are not  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

shown due to space limitations. 
It is interesting to observe the results of 

Table 3 in the situation where 5% of the data 
was contaminated with leverage points by 
gradually increasing the distance of x . Similar 
conclusions to those from Table 2 can be made 
where the biases and MSEs for all methods are 
relatively small. Hence, it can be concluded that 
leverage points do not have much effect on the 
data because this type of contamination is 
considered as good leverage points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Bias and MSE of All Methods for Data with Various Percentages of Misclassified Errors 
 

 
 
 
 

Table 2: Bias and MSE of All Methods for Data with Various Percentages of Extreme Leverage Points 
 

 
 
 
 

Table 3: Bias and MSE of All Methods for Data with 5% Leverage Points for Various Distances 
 

 

% of
misc error bias MSE bias MSE bias MSE bias MSE bias MSE

0 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
1 1.4570 2.1918 0.1400 0.3073 0.5148 0.4482 0.1344 0.3765 0.1745 0.3842
3 2.4648 6.1013 0.3484 0.2098 1.1933 1.4598 0.2542 0.1716 0.0565 0.1120
5 2.7288 7.4773 0.4309 0.6467 1.6603 2.8031 0.7688 1.3257 0.0703 0.3217
7 2.8247 8.0053 0.4354 0.5614 2.0318 4.1658 2.8258 8.0112 0.3752 0.5560
10 2.8838 8.5320 0.7716 0.8849 2.4287 5.9337 2.8771 8.3148 0.0515 0.3961

WBYMLE MALLOWS CUBIF BY

% of
lev pt bias MSE bias MSE bias MSE bias MSE bias MSE

0 0.0840 0.2616 0.0817 0.2588 0.0833 0.2605 0.0845 0.2812 0.0875 0.2908
1 0.8072 0.8122 0.8115 0.8188 0.8122 0.8219 0.8138 0.8356 0.8198 0.8513
3 0.8035 0.8096 0.8083 0.8183 0.8060 0.8143 0.8121 0.8416 0.8118 0.8506
5 0.7910 0.7903 0.7954 0.7979 0.7911 0.7922 0.8019 0.7867 0.7867 0.8101
7 0.8089 0.8392 0.8124 0.8452 0.8111 0.8442 0.8150 0.8601 0.8109 0.8632

10 0.8162 0.8421 0.8216 0.8519 0.8186 0.8458 0.8454 0.9045 0.8463 0.9096

MLE MALLOWS CUBIF BY WBY

distance bias MSE bias MSE bias MSE bias MSE bias MSE
clean 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
x=1 0.4882 0.4206 0.4909 0.423 0.4894 0.4233 0.5019 0.4601 0.4990 0.4758
x=2 0.5037 0.4219 0.5060 0.4255 0.5050 0.4243 0.5027 0.4366 0.4963 0.4434
x=3 0.5479 0.4861 0.5527 0.4923 0.5528 0.4929 0.5319 0.4824 0.5342 0.4887
x=4 0.5175 0.4495 0.5220 0.4549 0.5195 0.4518 0.5154 0.4639 0.5211 0.4732
x=5 0.4987 0.4156 0.5022 0.4183 0.5010 0.4178 0.4853 0.4191 0.4848 0.4275
x=6 0.4873 0.4059 0.4894 0.4087 0.4885 0.4093 0.4776 0.4119 0.4768 0.4160
x=7 0.4612 0.3972 0.4635 0.4004 0.4633 0.4009 0.4279 0.3925 0.4249 0.4103

WBYMLE MALLOWS CUBIF BY
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The presence of moderate and extreme 
bad leverage points changes the picture 
dramatically. It can be observed from Tables 4 
and 5 that for both cases, the CUBIF estimator 
can only withstand up to 3% contamination. The 
BY estimator can tolerate up to 3% 
contamination when 2=x , and 5% 
contamination when 6=x . The WBY estimator 
is better than the MALLOWS for the moderate 
bad leverage points. In this situation, the WBY 
and the MALLOWS can only withstand up to 
3% and 1% contamination, respectively. 
Nevertheless, with data having extreme bad 
leverage points, the performances of the WBY 
and MALLOWS are equally good: both 
estimators are able to withstand up to 10% 
contamination. 

Finally the results shown in Table 6 are 
discussed in the context of the situation where 
the data has 5% bad leverage points and is at 
various distances of the explanatory variables. 
By gradually increasing the distance of x  and 
when 0=Y , the MLE is biased for all x; the bias 
worsens as x increases for MLE, but bias is 
consistent with the CUBIF estimators. By 
contrast, the bias of the MALLOWS estimator is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

small for 6=x  and 7=x . The BY estimator 
performs best when the bad leverage points are 
located at 5=x  and 6=x . Conversely, the 
biases and MSEs of the WBY estimates are 
consistently the smallest among other estimators 
for 7,,2 =x . The results shown in Table 6 
reveal that the WBY performs much better 
compared to the other estimators. 
 
Numerical Examples 

Two real data sets are considered to 
illustrate the behavior of the various robust 
estimates discussed. Results of the estimated 
coefficients, as well as their standard errors, are 
presented for the original and the modified data. 
The modified data refer to the original data with 
deleted outlier observation(s). A good estimator 
is one that has parameter estimates reasonably 
close to the MLE estimates of the modified data 
(clean data). Kordzakhia, et al. (2001) suggested 
another criterion for evaluating various 
estimators. They proposed comparing the 
various estimates using a goodness-of-fit 
discrepancy, the Chi-square statistic based on 

the arcsin transformation 2
arcχ  defined as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Bias and MSE of All Methods for Data with Moderate Bad Leverage Points (Replacing x by 2 and Y=0) 
 

 
 
 

Table 5: Bias and MSE of All Methods for Data with Extreme Bad Leverage Points (Replacing x by 6 and Y=0) 
 

 

% of
bad lev pt bias MSE bias MSE bias MSE bias MSE bias MSE

0 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
1 0.6339 0.5457 0.4976 0.3976 0.4249 0.3403 0.1222 0.2839 0.0072 0.3100
3 1.4107 2.0720 1.2084 1.5427 1.0922 1.2793 0.5695 0.5144 0.1954 0.3150
5 1.8501 2.0720 1.6461 2.7746 1.5235 2.3883 1.0211 1.1926 0.3895 0.4337
7 2.1888 4.8457 2.0127 4.1041 1.9247 3.7592 1.6166 2.7169 0.6992 0.7607

10 2.3917 5.7686 2.2550 5.1330 2.2226 4.9893 2.1789 4.8230 1.0665 1.3894

WBYMLE MALLOWS CUBIF BY

% of
bad lev pt bias MSE bias MSE bias MSE bias MSE bias MSE

0 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
1 1.4570 2.1918 0.1400 0.3073 0.5148 0.4482 0.1344 0.3765 0.1745 0.3842
3 2.4648 6.1013 0.3484 0.2098 1.1933 1.4598 0.2542 0.1716 0.0565 0.1120
5 2.7288 7.4773 0.4309 0.6467 1.6603 2.8031 0.7688 1.3257 0.0703 0.3217
7 2.8247 8.0053 0.4354 0.5614 2.0318 4.1658 2.8258 8.0112 0.3752 0.5560

10 2.8838 8.5320 0.7716 0.8849 2.4287 5.9337 2.8771 8.3148 0.0515 0.3961

WBYMLE MALLOWS CUBIF BY
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[ ]2
1

2 4 −=
=

n

i
iiarc arcsinyarcsin πχ , 

 

where iπ  represents the fitted probabilities for 

ni ...,,2,1= . The lower 2
arcχ , the better the 

goodness-of-fit. 
 
Example: Leukemia Data 

The Leukemia Data (Cook & Weisberg, 
1982) was analyzed by Carroll and Pederson 
(1993), among others. The data set consists of 
measurements on 33 leukemia patients. The 
response variable is 1 if the patient survived 
more than 52 weeks and 0 otherwise. Two 
covariates are present in the model: white blood 
cell count (WBC) and AG status, which is the 
presence or absence of certain morphologic 
characteristic in the white cells. Cook and 
Weisberg (1982) considered these data to 
illustrate the identification of influential 
observation and they detected one observation 
(#15), corresponding to a patient with WBC = 
100,000 who survived for a long period of time 
to be influential when the MLE was used. The 
plot in Figure 1 suggests that the observation 
looks like a bad leverage point. 

Table 7 exemplifies the estimated 
parameters and estimated standard errors for the 
various procedures including MLE32. The 
MLE32 refers to the MLE estimates for the 
clean data after deleting observation (#15). A 
good estimator is one that has parameter 
estimates fairly close to the MLE32. It can be 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
observed from Table 7 that the MALLOWS and 
WBY estimates are reasonably close to the 
MLE32 estimates. However, the Mallows Chi-
square statistic is larger than the WBY, hence, 
the WBY is the best estimator for Leukemia 

Data because it gives the smallest 2
arcχ  value 

and their estimates are closer to the MLE32. 
WBY is followed by the MALLOWS, BY and 
CUBIF estimators. 
 
Example: Vaso-Constriction Data 

The Vaso-constriction data is a well-
known dataset referred to as skin data. It was 
introduced by Finney (1947) and was studied by 
Pregibon (1982) to illustrate the impact of 
potential influential observations in logistic 
regression. The binary outcomes (presence or 
absence of vaso-constriction of the skin of the 
digits after air inspiration) are explained by two 
explanatory variables: 1x  the volume of air 

inspired, and 2x the inspiration rate (both in 
logarithms). The literature, which extensively 
uses this dataset, often reports observations (#4) 
and (#18) as outliers. As shown in Figure 2, a 
plot of the data based on the maximum 
likelihood fit shows that the two observations 
(#4 and #18) look more like misclassified errors 
rather than outlying observations. 

Table 8 presents the estimated 
parameters, estimated standard errors and 
goodness-of-fit measures for the various 
procedures including MLE37 after removing the 
two influential observations. Several interesting 
points appear from Table 8. It is notable that the  

Table 6: Bias and MSE of All Methods for Data with Bad Leverage Points 
at 5% Contamination for Various Distances 

 

 

distance bias MSE bias MSE bias MSE bias MSE bias MSE
clean 0.0909 0.2781 0.0871 0.2774 0.0898 0.2782 0.1074 0.3089 0.1088 0.3204
x=1 1.2243 1.5730 1.2404 1.6134 1.2344 1.5975 1.0517 1.2093 1.0817 1.2803
x=2 1.8718 3.5497 1.7615 3.1523 1.6518 2.7846 1.1034 1.3547 0.4069 0.7711
x=3 2.2447 5.0795 1.8442 3.4507 1.6346 2.7267 0.9045 1.0110 0.1705 0.3836
x=4 2.4888 6.2345 1.6528 2.8113 1.6403 2.746 0.7273 0.7795 0.1515 0.3691
x=5 2.6367 6.9921 1.1466 1.4881 1.6387 2.7385 0.5689 0.6169 0.1243 0.3584
x=6 2.7193 7.4377 0.4851 0.5108 1.6465 2.7669 0.5183 0.8591 0.1290 0.3492
x=7 2.7635 7.6605 0.2009 0.1815 1.6542 2.7695 1.2914 3.2433 0.1693 0.2076

WBYMLE MALLOWS CUBIF BY
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CUBIF and MALLOWS yield results reasonably 
close to the MLE. The results also show that the 
BY and WBY estimates have been strongly 
affected when the two influential observations 
are removed from the dataset. It may be 
observed that the parameter estimates and the 
standard errors of both estimates become large 
because, without the two observations, the 
remaining data set is in a situation of quasi-
complete separation (Albert & Anderson, 1984), 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with little overlap between observations 0=iy  

and 1=iy . Thus, the model is nearly 
undetermined. For this reason, the BY and WBY 
downweight these observations and have large 
increases of coefficients and standard errors. The 
parameter estimates and the standard errors of 
both estimators are considerably close to the 
MLE37 estimates. However, the BY has the 

smallest 2
arcχ  value, therefore, the BY estimator 

gives the best result for this data set. 

Figure 1: Scatter Plot of Leukemia Data 

 
 
 

Table 7: Leukemia Data: Estimated Parameters, Standard Errors and Goodness-of-Fit Measures 

 

wbc

ag

0 20000 40000 60000 80000 100000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y=0
y=1

Estimation Intercept WBC AG
Method Est. s.e. Est. s.e. Est. s.e.
MLE -1.3073 0.2931 -0.3177 1.454 2.2611 2.2003 52.16
MLE32 0.2119 7.0996 -2.3545 6.9497 2.5581 4.9143 32.52
MALLOWS 0.1710 6.7568 -2.2535 6.7818 2.524 4.6589 42.46
CUBIF -0.6763 1.7135 -0.9110 3.4500 2.2495 1.1712 46.73
BY 0.1595 5.0511 -1.7740 5.7623 1.9276 3.3011 44.05
WBY 0.1891 6.8884 -2.1927 6.7853 2.4003 4.6923 39.47

2
arcχ
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Conclusion 
The goal of this study was to compare the 
performance of the MLE and four robust 
estimators for the logistic model under both 
clean and contaminated data sets. The findings 
signify that the MLE can be biased in the 
presence of misclassified error and bad leverage 
points, whereas some robust estimators are 
better than others depending on the type of 
contamination. When the contamination data are 
leverage points, the simulation results indicate 
that all parameter estimates are not dramatically 
affected, because they have consistently small 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bias. Overall, the WBY estimator is preferred 
because it is more robust than other estimators 
tested in this study for any type of contamination 
in the data. This estimator is followed by the 
BY, MALLOWS and CUBIF. However, further 
investigation is needed to compare these robust 
estimators through an extensive simulation study 
involving different parameter values, sample 
sizes and parameter size. Further studies are also 
needed to investigate more suitable robust 
methods to cater outlying observations in 
logistic regression. Most robust methods 
unfortunately rely on simple downweighting of 

Figure 2: Scatter Plot of Vaso Data 

 
 
 

Table 8: Vaso Data: Estimated Parameters, Standard Errors and Goodness-of-Fit Measures 
 

 

Volume

R
at

e

1 2 3

1
2

3

y=0
y=1

Estimation Intercept Log(Volume) Log(Rate)
Method Est. s.e. Est. s.e. Est. s.e.
MLE -2.9239 1.2877 5.2205 1.8579 4.6312 1.7889 48.39
MLE37 -24.5812 14.0211 39.5498 23.2463 31.9352 17.7595 12.34
MALLOWS -2.9207 1.2908 5.1673 1.8470 4.5967 1.7886 48.41
CUBIF -2.8776 1.2707 5.1661 1.8364 4.5646 1.7644 48.47
BY -6.8667 10.0507 10.7523 15.3086 9.381 12.7798 40.87
WBY -6.8465 10.0672 10.7504 15.3346 9.3785 12.8014 40.91

2
arcχ
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distant observations in the design space 
regardless of whether or not they are 
misspecified, whether they are good or bad 
leverage points and what influence they have on 
the model. 
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General class chain ratio type estimators for estimating the population mean of a study variable are 
examined in the presence of non-response under a double sampling scheme using a factor-type estimator 
(FTE). Properties of the suggested estimators are studied and compared to those of existing estimators. 
An empirical study is carried out to demonstrate the performance of the suggested estimators; empirical 
results support the theoretical study. 
 
Key words: Double sampling, factor-type estimator, chain ratio estimator, non-response. 
 
 

Introduction 
Over the last five decades one of the major 
developments in sample surveys is the use of an 
auxiliary variable x , correlated with the study 
variable y  in order to obtain estimates of the 
population total or mean of the study variable. 
Various estimation procedures in sample surveys 
require advance knowledge of some auxiliary 
variable ix , which is then used to increase the 
precision of estimates. When the population 
mean X  is not known, it can be estimated from 
a preliminary large sample on which only the 
auxiliary characteristic x  is observed. The value 
of X  in the estimator is then replaced by its 
estimate, and a smaller second-phase sample of 
the variable of interest (study variable) y  is 
taken. This technique, known as double 
sampling or two-phase sampling, is particularly 
appropriate if the ix  values are easily accessible 
and are much less expensive to collect than the 
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iy  values (Sitter, 1997; Hidiroglou & Sarndal, 
1998). Neyman (1938) was the first to describe 
the concept of double sampling in connection 
with collecting information on strata sizes is a 
stratified sampling (Singh & Espejo, 2007). 

In some practical situations it is 
observed that, when conducting a sample 
survey, complete information for all the units 
selected in the sample is not obtained due to the 
occurrence of non-response. Hansen and 
Hurwitz (1946) considered the problem of non-
response while estimating the population mean 
by taking a sub-sample from the non-response 
group with the help of an unbiased estimator; 
they suggested combining the information 
available from response and non-response 
groups. Further, rectification in the estimation 
procedure for the population mean in the 
presence of non-response using auxiliary 
variable was proposed by Cochran(1977), Rao 
(1986, 1987), Khare and Srivastava (1993, 1995, 
1997), Okator and Lee (2000), Tabasum and 
Khan (2004, 2006), and Singh and Kumar 
(2008a, 2008b, 2008c, 2009a, 2009b) using the 
Hansen and Hurwitz (1946) technique. This 
article develops a one parameter family of chain 
ratio type estimators with two auxiliary variables 
in the presence of non-response. The proposed 
family is based on factor type estimators (FTE) 
developed by Singh and Shukla (1987) and 
Singh, et al. (1994) and empirical studies 
support the results. 



KUMAR, SINGH & BHOUGAL 
 

513 
 

The Proposed Strategy 
Consider a finite population 

( )NU,...,U,UU 21=  of size N . Let y  be the 

study variable, 1x  be the main auxiliary variable 
with an unknown mean that is highly correlated 
with main character y , and 2x  be an additional 
auxiliary variable with known mean that is less 
correlated with y  than is 1x . A large first phase 

sample of size n′  from the finite population U  
is selected by simple random sampling without 
replacement (SRSWOR). A smaller second 
phase sample of size n  is selected from n′  by 
SRSWOR. Non-response occurs in the second 
phase sample of size n  in which 1n  units 

respond and 2n  units do not. From the 2n  non-
respondents, by SRSWOR a sample of size 

12 >= k;knr  units is selected where k  is the 
inverse sampling rate at the second phase sample 
of size n  with all r  units responding. Thus, 
( )rn +1  are the responding units on the study 

variable y , consequently the estimator for the 

population mean Y  of the study variable y  
using a sub-sampling scheme envisaged by 
Hansen and Hurwitz (1946) is defined as 
 

r
* ywywy 2211 += ,                      (1) 

 
where 

nnw 11 = , nnw 22 = , 
=

=
1

1
11

n

i
i nyy  

and 


=

=
r

i
ir ryy

1
2 . 

 

It is known that the estimator *y  is an unbiased 

estimator of the population mean Y  of the study 
variable y  and has a variance as given by 
 

( ) 2
2

2
1 )(y

*
y

* SθSθyVar += ,             (2) 

 
where 







 −=

Nn
θ

11
1 , 

( )
n
kW

θ* 12 −
= , NNW 22 = , 

and 2
yS  and 2

2 )(yS  are the population mean 

square of the variable y  for the entire 
population and for the non-responding group of 
the population. Similarly, for estimating the 
population mean iX  of the auxiliary variable 

( )21,i;xi = , the unbiased estimator *
ix  is given 

by 

)r(i)(i
*
i xwxwx 2211 += ,              (3) 

 
where )(ix 1  and )r(ix 2  are the sample means of 

the auxiliary variable ( )21,i;xi =  based on 1n  
and r  units respectively. 

The variance of *
ix  is given by 

 

( ) 2
2

2
1 )(x

*
x

*
i ii

SθSθxVar += ,             (4) 

 

where 2
ixS  and 2

2 )(xi
S  are the population mean 

square of ( )21,i;xi =  for the entire population 
and the non-responding group of the population. 
 
The Proposed Class of Strategy 

Using an unknown constant 0>t  and 
two auxiliary variables 1x  and 2x , a general 

class of chain ratio type of strategy [ ])t(y,D *
F  is 

defined for estimating the population mean Y  of 
the study variable y  in the presence of non-
response as follows: 
 

( ) ( ){ }
( ){ }
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In order to identify some of the 
members of the proposed strategy and compare 
their efficiencies, certain classical strategies are 
put forth: 
 

(i) [ ] ( )013 ,gyy;y,D **
R

*
R =                             (6) 

 
by Khare and Srivastava (1993), Okafor and 
Lee (2000)  and Tabasum and Khan (2004) 
 

(ii) [ ] ( )013 ,gyy;y,D **
P

*
P −=                          (7) 

 
by Khare and Srivastava (1993) 
 

(iii) [ ] ( ) ( )1001 23 ,g,gyy;y,D **
C

*
C = .               (8) 

 
Some Strategies of the Class 

For 1=t  and 4 respectively, 
 

(i) ( )[ ] [ ]*
C

*
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(ii) ( )[ ] [ ]*
R

*
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Further, for 2=t  and 3, 
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where ( ) ,nNnh 1−−=  and ( )2*
Fy  is a chain type 

estimator in D  in which 1X  is estimated 

through the product estimator utilizing 2X  

where non-response on auxiliary variable 1x  and 

( )3*
Fy  is a chain type estimator in D  in which 

1X  is estimated utilizing a dual to ratio 
estimator with non-response on auxiliary 
variable 1x . 
 
Properties of the Proposed Strategy 

To obtain the bias and mean square error 
(MSE) of the proposed general class of strategy 

[ ])t(y,D *
F , under the large sample 

approximation, 
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1N  and ( )12 NNN −=  are the sizes of the 
responding and non-responding units from the 
finite population N . 

Expressing the proposed estimator 

( )ty*
F  in terms of s'ε , 

 

( )

( ) ( )
( )

( ) ( ){ }( )
( ) ( ){ }( )

1

1 1 1 2

0 1
1 2 2 2

1 1 1
1

1 1 1

*
F

' '

'

y t

t t
Y .

t t

−

−

=

 + ε λ + − λ − ε
 + ε
 + ε λ + − λ − ε 

(13) 
 

It is assumed that ( ) 122 <'εtλ , because 

( )
CBθA

Ctλ
++

=2 , for any choice of t , 

( ) 12 <tλ . Thus, if 12 <'ε , ( ) 122 <'εtλ  is a 

valid assumption, expanding the right hand side 
of (13) and neglecting the terms involving 
powers of s'ε  greater than two results in 
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(14) 
 
where ( ) ( ) ( )tλtλtλ 21 −= . 

Taking expectations of both sides of 

(14), results in the bias of ( )ty*
F  to the first 

degree of approximation, as 
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Squaring both sides of (14) and neglecting terms 
of s'ε  involving power greater than two, 
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(16) 
 
Taking expectations of both sides of (16), gives 

the mean square error of ( )ty*
F  to the first 

degree of approximation as 
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Corollary 

Letting ( ) ( ) 11 2 =−= tλ,tλ  for 1=t  in 

(15) and (17), the bias and MSE of *
Cy , 

respectively given by 
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and 
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To obtain the bias and MSE of *
Ry , assume that 

( ) ( ) 02 == tλtλ  for 4=t , in (15) and (17), 
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(20) 
and 
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The ( )( )tyMSE *
F  is minimized, when 
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Thus, substituting (22) in (17), results in the 

optimum mean square error of ( )ty*
F , as 
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Efficiency Comparisons 

From (2), (19), (21) and (23), 
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(26) 
 
It is explicit from the equations (24)-(26) that 

the proposed class of estimator ( )ty*
F  is more 

efficient than: 

(i) The usual unbiased estimator *y ;  

(ii) The estimator *
Cy  when 1

2
<yxK ; and  

(iii) The estimator *
Ry , the ratio type estimator 

proposed by Khare and Srivastava (1993), 
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Tabasum and Khan (2004) and Okafor and 
Lee (2000). 

 
Thus, it may be concluded that the general chain 

ratio type class of proposed strategy ( )[ ]ty,D *
F  is 

more efficient than the usual unbiased estimator 
*y , the estimator *

Cy  and the ratio type 

estimator *
Ry . 

 
Empirical Study 

To examine the effectiveness of the 
suggested class of chain ratio types, data sets 
studied by Khare and Sinha (2007) are 
considered. The data, from the Department of 
Paediatrics, Banaras Hindu University during 
1983-1984, is the physical growth of an upper 
socio economic group of 95 school age children 
of Varanasi under ICMR study. The first 25% 
(i.e., 24 children) have been considered as non-
responding units. The descriptions of the 
variates are given below: 
 
Population I: 

y :  Height (in cm.) of the children, 

1x :  Skull circumference (cm) of the 
children, 

2x :  Chest circumference (cm) of the 
children. 

 
For this population: 
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Population II: 

y :  Weight (kg) of the children, 

1x : Chest circumference (cm) of the 
children, 

2x : Mid-arm circumference (cm) of the 
children. 

 
For this population, 
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The percent relative efficiencies (PREs) of the 

estimators *
Ry  and *

Cy  have been computed 

along with the proposed estimator ( )ty*
F  at its 

optimum with respect to the usual unbiased 

estimator *y  for two data sets for different 

values of k ; results are displayed in Table 1. 
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Because promotions are critical factors highly related to product sales of consumer packaged goods 
(CPG) companies, predictors concerning sales forecast of CPG products must take promotions into 
consideration. Decomposition regression incorporating contextual factors offers a method for exploiting 
both reliability of statistical forecasting and flexibility of judgmental forecasting employing domain 
knowledge. However, it suffers from collinearity causing poor performance in variable identification and 
parameter estimation with traditional ordinary least square (OLS). Empirical research evidence shows that 
- in the case of collinearity - in variable identification, parameter estimation, and out of sample 
forecasting, genetic algorithms (GA) as an estimator outperform OLS consistently and significantly based 
on a log-linear regression model concerning weekly sales forecasting of CPG products from a 
manufacturer in both busy and off seasons. 
 
Key words: Sales forecasting, genetic algorithm, ordinary least square, collinearity, variance influence 

factor. 
 
 

Introduction 
Due to competition promotion has increasingly 
become a key factor of marketing in consumer 
packaged goods (CPG) industries because sales 
are highly related to promotion activities. To 
properly forecast unit sales of products for a 
particular company in the CPG industry, 
forecasters must take this contextual factor into 
account. Forecasts generated with most 
statistical models are consistent, but are usually 
devoid of the flexibility and comprehensiveness 
of contextual information. The lack of 
contextual information is exploited with 
judgmental forecasting, thus predictors and users 
of the forecasts are often tormented with the  
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issue of inconsistency due to bias. These issues 
are clearly pointed out by Sanders and Ritzman 
(1992), Armstrong and Collopy (1998), Webby, 
et al. (2001) and De Gooijer and Hyndman 
(2006) among many others. 

Regression is a natural choice to connect 
both methods (Edmunson, 1990; Bunn & 
Wright, 1991; Armstrong, et al., 2005; 
Nikolopoulos, et al., 2006), because regression 
is able to incorporate critical contextual factors 
into the model and produces consistent results. 
In regression modeling, the classical ordinary 
least square (OLS) still is one of the most widely 
used estimators to identify significant factors 
and estimate parameters in linear regression 
(Draper & Smith, 1998; Rawlings, et al., 1998). 
However, it suffers from limitations posed by 
issues of outliers (Cook, 1977; Rawlings, et al., 
1998; Meloun & Militky, 2001), sample size 
(Belsley, et al., 1980; Belsley, 1982; Yu, 2000) 
and multi-collinearity. 

Multi-collinearity is the condition of one 
predictor variable which can be expressed as the 
exact or near linear combination of other 
predictor variables (Gunst & Mason, 1977) in 
case of small size sample, regression models 
with highly correlated independent variables, 
and groups of dummy variables or sporadic 
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variables. As noted by Smith and Campbell 
(1980) it is ultimately caused by too little 
variation in predictor variables in the dataset 
which induce inflated variance of variable 
coefficients. Moreover, it usually causes many 
problems such as truly critical variables to 
become insignificant (Hendry, 2000) and 
incorrect parameter estimation in both sign and 
magnitude (Slinker, 1985), these problems will 
usually lead analysis and inference, as well as 
forecasting of the regression model to be out of 
track. 

To address the issue of collinearity, an 
alternative parameter estimator called genetic 
algorithm (GA) is proposed; GA is an option to 
alleviate collinearity problems and obtain 
desired results with efficiency. This study begins 
with a log-linear regression model incorporating 
price and a group of non-price promotion related 
dummy variables (Kumar & Pereira, 1997; 
Heerde, et al., 2002a, 2002b). The model’s 
effect parameters are assessed and decomposed 
with GA incorporating a fitness function of 
mean absolute percentage error (MAPE), which 
- without the square operation of errors. James 
and Stein (1961) exhibited an estimator which, 
under squared error loss, dominates the least 
squares estimator and, coupled with a realistic 
constraint on coefficient of variables, it is 
believed will - to some extent - avoid the issue 
of inflated influence of outliers and problems 
caused by collinearity in OLS. 

This article proposes GA as an adequate 
alternative model estimator in regression 
modeling, particularly in situations of serious 
collinearity, through a comparative study of 
OLS and GA in in-sample parameters estimation 
and out-of-sample forecasting, respectively, with 
an empirical study on weekly unit sales 
forecasting of CPG products from a name brand 
manufacturer. 
 

Methodology 
Formulation of a Regression Model 

Equation (1) of the multiplicative 
regression model is motivated by Wittink et al.’s 
analytical models in a series of articles 
(Foekens, et al., 1999; Heerde, et al., 2002a, 
2002b). Regression modeling uses a stepwise 
method called backward elimination (Draper & 
Smith, 1998), starting from the model 

incorporating all critical factors considered, then 
removes insignificant variables one by one 
iteratively. The model can be formulated as 
 

( )
1

it itl it

n
D

it it it i l it
l

S P / P
θ ελ μ

=

= ∏


 , Qt ∈∀     (1) 

 
where, 
 
i denotes an item number, i = 1, 2, 3, …, I; 
t denotes specific number of period referenced; 
1 ≤ t ≤ T, T is the total number of normal 

periods; 
I is the total number of items involved; 
Q denotes the set of referenced periods; 

itS is the total unit sales of the item i in period t 
under a retailer, for weekly sales, t actually 
represents a certain week in the referenced 
periods; 

itλ denotes the normal unit sales (base sale) of 

the item i in period t without any promotion 
under a retailer; 

iP


 is the list price of item i; 

itP  is the discount price of item i during period t 
under a retailer; 

itθ  denotes the coefficient of price elasticity of 

item i during period t under a retailer; 
D  denotes an indicator parameter(or dummy 

variable) of non-price promotion mix; 
Dl it is the l-th component of a vector of n 

indicator parameters of non-price promotion 
mix (D1 it , D2 it , …, Dn it ) of item i in period 
t. D l it = 1 denotes a promotion mix of type l 
arises, the default value of D l it = 0; 

itlμ  denotes the non-price promotion effect 

parameter (multiplier) of corresponding non-
price promotion mix ( itlD ) of item i during 

normal period t under a retailer; and 

itε  denotes the residual error. 

 
Taking the natural logarithm in both sides of (1) 
results in the following: 
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(2) 
 
A nonlinear model such as (1) is transformed to 
a linear regression model (Carroll & Ruppert, 
1988; Franses & McAleer, 1998), which is the 
underlying model to conduct model fitting and 
model checking in this study. 
 
Model Fitting: Parameter Estimation with GA 

The genetic algorithm (GA) is proposed 
as a regression estimator to identify critical 
variables and estimate coefficients of variables 
as opposed to the widely employed least square 
type of estimators in situations of small sample 
size or a model mainly composed of dummy 
variables and sporadic variables. 
 
Features of the Genetic Algorithm (GA) 

GA simulates Darwin’s biological 
evolution by selecting encoded individuals 
(solutions) in the population with higher fitness 
(via a fitness function) through stochastic 
crossover and mutation to generate a population 
of individuals (reproduction) more fitted to the 
environment (better solutions) from generation 
to generation (Holland, 1992; Goldberg, 1987, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1989). In estimating parameters of complicated 
multivariate nonlinear models, GA is generally 
considered to be better than other alternatives 
such as nonlinear least square and maximum 
likelihood estimation due to its parallel search 
capability (Schaffer, et al., 1989; Eiben & 
Michalewicz, 1999), even based on a small size 
dataset it is capable of deriving satisfying 
results.  

The initial population is randomly 
created in the encoded form of a binary matrix, 
there exist m rows, each row of binary string in 
the matrix is an individual (solution) which 
encompasses β chromosomes, each chromosome 
represents a parameter and is composed of γ 
genes, each gene is represented by a binary code 
(See Figure 1). Each individual is evaluated by 
the fitness function as shown in Equation (3), in 
each generation, the best α% (1 ≦ α ≦ 6) of the 
population are kept as elites to the next 
generation, the remaining population is created 
by randomly selected pairs of individuals 
conducting a one-point crossover within each 
chromosome of such pairs to reproduce 
offspring, forming a random recombination of 
individuals’ ingredients of genes, to search for a 
new solution space and possibly a better 
solution. After this, a one-bit mutation is 
performed with a view to creating new pieces of  
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Figure 1: The Composition of Population Generated Randomly in GA 
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gene originally not possessed by members of the 
population through randomly selected genes 
within each individual; this occasional random 
change in genes could open the door to new 
possibilities of better solutions. Afterwards, each 
encoded individual in the population is decoded 
back to a string of real numbers of parameters 
and each individual is evaluated by the fitness 
function, this iterative process repeats until a 
termination condition is met. 

Parameters such as crossover probability 
(Pc) and mutation probability (Pm) of GA are 
designed to vary with the number of generations 
processed or others, such as moving average 
percent of improvement (MAPI) in fitness 
function value within certain number of 
generations, to keep proper diversity of the 
population while retaining the convergence 
capability, to circumvent getting stuck too early 
at local solutions in its search process (Liu, et al, 
2003; Pham & Karaboga, 1997). 

Based on (2), the fitness function of GA 
may be formulated as 
 

 (3) 

 

where the term itit SS ~
lnln −  is the absolute 

value of difference between the natural 
logarithm of the actual sales volume (ln itS ) of 

the ith item and natural logarithm of the 

estimated sales volume (ln itS~ ) of the same item 

in period t. T denotes the number of normal 
periods. The objective of GA is to find a 
solution with the minimal MAPEi. The smallest 
MAPEi found is updated once a smaller one is 
found in the solution search process. After 
model fitting, every effect parameter in (2) is 
derived in real value. 
 
Model Checking 

A regression diagnostics focused on 
normality and independence is performed to 
determine if critical assumptions of linear 
regression are violated, based on Equation (2). If 
these assumptions are severely violated, 

particularly if collinearity arises among predictor 
variables, bias may be a serious issue in model 
fitting or in model specification. 

The normality test is conducted through 
a one-sample Kolmogorov-Smirnov test 
(Lilliefors, 1967) and a Q-Q plot (Berilant, et al., 
2005). An independence test in this study 
consists of two parts, namely, a multi-
collinearity test and an autocorrelation test. The 
former is performed via variance inflation factor 
(VIF), whereas the latter is performed via 
Durbin-Watson (D-W) test (Savin & White, 
1977; Draper & Smith, 1998). VIF is one of the 
most popular measures used to detect 
collinearity in the literature (Belsley, et al., 
1980; Belsley, 1982; Stine, 1995), which can be 
derived via regression of one predictor variable 
to all other predictors and can be formulated as 
 

VIFj =1 / (1 – R2
j).   j = n + 2.            (4) 

 
where n denotes the number of types of non-
price promotion mixes and R2

j is the coefficient 
of determination from regression of the jth 
predictor variable on the other predictor 
variables. As described in Theil (1971) and Berk 
(1977), estimated effect parameters can be 
directly proportional to VIFj as the following 
equation: 
 

)        (5) 

where jβ̂ denotes the jth effect parameters in 

equation (2), )ˆ(2
js β , 2σ , and jV 2 is the 

variance of jβ̂ .and variance of regression 

errors, as well as the variance of the jth predictor 
variable, respectively. T denotes the number of 
periods in the training period and can be 
perceived as sample size. 

The D-W test focuses on testing whether 
any autocorrelation exists among the following 
series of regression error terms in equation (2) :

11,...,, ititi εεε − . The statistic can be formulated 

as 

          (6) 

In general, as the serial correlation increases, d 
decreases. 
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The Re-composition of Variable Coefficients 
Estimated 

The cycle length of CPG industry is 
about 52 weeks long, thus, let t’ = t + 52, 
denoting the corresponding week to be 
forecasted in a new year. A naïve sales 
forecasting method considering cycle length to 
forecast unit sales of item i of period t’ in a new 
year (see Williams, 1987), based on sales data of 
week t in the referenced year, would be 
 

(7) 
 
where iη  denotes the average normal sale of 

item i across referenced periods, itπ  denotes the 

seasonal index of item i in period t, and Z 
denotes the set of periods to be forecasted. All 
parameters in equation (7) are derived either 
with GA or OLS. Let e1it’ denote the price effect 
multiplier of item i in forecasting period t’ and 
e2 it’ denote the effect multiplier of a non-price 
promotion mix. In each group of indicator 
parameters one condition at most will arise in 
each period, resulting in 

,
   (8) 

 
In its re-composed form, equation (8) 

can be used to forecast weekly unit sales. 
Parameters estimated through GA or OLS - 
based on observations in the training periods - 
can be recombined as in equation (8) to respond 
to expected promotional campaigns in the 
forecasting horizon (as specified in the 
promotion proposals) to perform out of sample 

forecasting with '
ˆln itS being transformed back 

to '
ˆ

itS in the following empirical study.  

 
Empirical Study: Background 

This study focuses on the forecast of 
weekly sales volume for several series of CPG 
products, manufactured by Company F, under 
retailer B. Company F is a leading manufacturer 
specialized in dehumidifier and deodorizer 

products in Taiwan, and retailer B is an 
international outlet of DIY products. A sales 
data set of 10 items from 2007 and the first 4 
months in 2008, aggregated from retailer B’s 
outlets, coupled with price promotion, non-price 
promotion, and promotion proposals, are used to 
conduct the empirical study. The details of price 
rate and type of non-price promotion mix of 
these items are displayed in Tables 1a and 1 b. 
Each effect parameter is set to be constrained 
within a specific range in GA which was 
implemented in Matlab 6.5, for example, the 
price elasticity coefficient is set to be in the 
range of [-8, 0], while effect parameters of non-
price promotion mixes are set to be between 1 
and 5. However, the coefficients of predictor 
variables in OLS regression are estimated 
without any constraint in the statistical package 
SPSS 13. 
 
Empirical Study: Experimental Design 

In order to take both the busy season 
and off season into account and to have a proper 
assessment of the performance of both 
estimators, the forecasting horizon is designed to 
consist of two periods of equal duration, the first 
period includes the first 6 weeks of 2008 (one of 
the major busy seasons in that year) and the 
second period starts from the 11th week and ends 
at the16th week of 2008 (one of the off seasons 
in that same year). The 10 product items 
manufactured by a name brand company of CPG 
products in Taiwan, in retailer B’s outlets are the 
forecasting target in the empirical research. 
To properly evaluate the performance of 
parameter estimation via GA and OLS as well as 
that of out-of-sample forecasting based on 
parameters derived from GA and OLS, 
respectively, particularly the consistency of 
performance, model fitting and checking is 
conducted with GA first and then with OLS 
consecutively, all based on the dataset of the 
entire year of 2007 as the first training period; 
this is a small period, thus, the training dataset in 
this period can be denoted as a small sample. 
The dataset for 2007 combined with the first 10 
weeks of 2008 is the second training period is 
longer than the first, thus, the training dataset in 
forecast weekly unit sales of items of concern in 
the forecasting horizon. 
 

1
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Table 1a: Summary of Promotion Proposals for Year 2007 of Company F’s Products under Retailer B 

Item Product Type 

2007 Promotion Sessions, Content Denoted as ( iit PP


/ , Dl)* 

12/29- 
2/28 

3/29- 
4/24 

4/26- 
6/12 

6/14- 
8/07 

8/09- 
9/11 

9/13- 
11/13 

11/15- 
12/15 

10/01- 
12/31 

1 Deodorizer 
1, 
D4 

1, 
D1 

1, 
D1 

89/99, 
D3 

1, 
D2 

85/99, 
D6 

1, 
D1 

79.5/99, 
D7 

2 Deodorizer 
59/65, 

D5 
1, 
D1 

1, 
D1 

59/65, 
D3 

1, 
D1 

1, 
D1 

59/65, 
D6 

49.5/65, 
D7 

3 Deodorizer 
1, 
D4 

1, 
D1 

1, 
D1 

119/138, 
D2 

119/138, 
D2 

1, 
D1 

1, 
D1 

99.5/138, 
D7 

4 Dehumidifier 
75/89, 

D5 
75/89, 

D3 
75/89, 

D2 
75/89, 

D2 
75/89, 

D2 
75/89, 

D3 
1, 
D1 

75/89, 
D7 

5 Dehumidifier 
89/95, 

D5 
1, 
D1 

1, 
D1 

1, 
D1 

89/95, 
D2 

89/95, 
D3 

89/95, 
D6 

89/95, 
D7 

6 Cleaner 
90/109, 

D5 
90/109, 

D1 
90/109, 

D1 
90/109, 

D2 
89/109, 

D2 
1, 
D6 

90/109, 
D6 

1, 
D6 

7 Cleaner 
85/89, 

D5 
1, 
D1 

85/89, 
D3 

85/89, 
D3 

85/89, 
D3 

1, 
D6 

1, 
D2 

1, 
D6 

8 Cleaner 
195/219, 

D5 
1, 
D1 

195/219, 
D5 

1, 
D1 

195/219, 
D3 

195/219, 
D6 

195/218. 
D6 

189/219, 
D7 

9 Insect Pest 
79/99, 

D5 
79/99, 

D1 
70/99, 

D1 
70/99, 

D1 
1, 
D1 

1, 
D1 

79/99, 
D6 

1, 
D1 

10 Insect Pest 
52/65, 

D4 
1, 
D1 

52/65, 
D1 

52/65, 
D3 

52/65, 
D1 

49/65, 
D6 

49/65, 
D6 

44.5/65, 
D7 

*Details of Dl, l = 1, 2, 3, 4, 5, 6, 7, can be checked in the Formulation of a Regression Model description 
 

Table 1b: Summary of Promotion Proposals for Year 2008 of  
Company F’s Products under Retailer B 

Item Product Type 

2008 Promotion Sessions, 

Content Denoted as ( iit PP


/ , 

Dl) 
12/27- 
2/12 

2/14- 
4/1 

1 Deodorizer 
85/99, 

D4 
1, 
D1 

2 Deodorizer 
55/65, 

D5 
1, 
D1 

3 Deodorizer 
1, 
D4 

1, 
D1 

4 Dehumidifier 
1, 
D5 

1, 
D1 

5 Dehumidifier 
75/95, 

D5 
1, 
D1 

6 Cleaner 
89/109, 

D5 
1, 
D1 

7 Cleaner 
85/89, 

D5 
1, 
D1 

8 Cleaner 
169/219, 

D5 
1, 
D1 

9 Insect Pest 
1, 
D5 

1, 
D1 

10 Insect Pest 
52/65, 

D4 
1, 
D1 
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this period can be denoted as a large sample. 
Parameters derived from either estimator based 
both small sample and large sample are used to  
 

Results 
Results of Model Fitting 

The details of model fitting results are 
shown in Figure 4 and Tables A1-A4 in the 
Appendix. Tables A1-A2 are concerned with 
parameters estimated with GA on small sample 
and large sample, respectively, while Tables A3-
A4 are concerned with parameters estimated 
with OLS on these two samples respectively. 
Most parameters derived from GA are consistent 
with expectations, such as, the effect parameters 
of μ1 to μ3 increase from 2.182 to 2.287 in busy-
season periods and increase from 2.277 to 2.796 
in off-season periods. This may be explained by 
more effort being made and more expenditure 
for promotions therein; μ5 is larger than μ4 
because non-price promotion type 5 employs 
direct mail in addition to all aspects included in 
type 4, μ7 is larger than μ6 for the same reason. 
Effect parameters estimated by OLS also are 
roughly consistent with expectations; their 
magnitudes are much smaller than expected, 
however. For example, many are smaller than 1 
which indicates a negative effect in promotion 
and seems unreasonable based on experience 
(see Tables A3-A4). 

Nearly every intercept (normal sales) is 
inflated to the extent that it exceeds the unit 
sales of an item in a certain period and becomes 
difficult to explain based on daily life 
experience. However, the issue of difficult 
explanation for parameters derived (Mandel, 
2007) is very common in least square type of 
estimators, including weighted least square and 
partial least square, in addition to OLS. Often 
critical variables are deleted from the model by 
OLS, for example, 3 variables are removed for 
item 8 based on small sample, price elasticity of 
item 5 is discarded in both samples, and in items 
3 and 6 price elasticity coefficients are deleted in 
the model by OLS. These phenomena can lead 
to a dilemma of incapability to take advantage of 
certain domain knowledge or contextual 
information. Moreover, the price elasticity 
coefficients of item 2 from OLS in the large 
sample are positive (see Table A4) - a 

phenomenon which goes against common sense, 
but the underlying reasons are now investigated. 
 
A Comparative Analysis of Results in Model 
Checking via VIF and T-W Tests 

The normality test, consisting of the 
one-sample Kolmogorov-Smirnov test and Q-Q 
plot, in which both GA and OLS passed the test 
with data from both small and large samples 
without difficulty. The independence test 
measures of VIF and the results of D-W tests, 
however, showed complex but interesting 
consequences in two training periods of different 
length via GA and OLS and warranted further 
investigation. As shown in Tables 2 and 3 the 
number displayed in each cell of these tables is 
the average VIF of a specific effect parameter of 
a certain item. The number in the cell in the right 
hand side column in the table is the mean of the 
average VIF for each item concerned. 

Note that the mean of the average VIF 
in the first training period is much larger than 
that of the second training period, even though 
not every mean of the average VIFs in the first 
training period is necessarily bigger than its 
counterpart in the second training period. Some 
outliers arising in the first training period 
considerably increase the relevant measure. 
However, as Smith and Campbell (1980) note, 
although VIF can identify the source of 
inadequate parameter estimation, it cannot 
measure the amount of imprecision. 

Because the main difference of the two 
training datasets is the sample size, one is 47 (5 
cases are discarded as outliers in mixed periods 
which include two different kinds of promotions 
in a single week), whereas the other one is 56 (6 
cases are discarded). The large sample seems to 
enable the predictor variables to have more 
changes in values within the dataset to alleviate 
the collinearity issue arising in the small sample 
based model. For example, as shown in Tables 
2-3, the mean of average VIF reduces from 
6.196 to 3.286 and the standard deviation 
reduces from 7.662 to 1.242 as the sample size 
increases from 47 to 56. 
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As a result, the problem of deletion of 
critical predictor variables in model fitting with 
OLS seems to have been improved. For 
example, from item 2 to item 10, the number of 
discarded predictors decreases row by row with 
the exception of the item 9 row in both tables. In 
addition, the quality of parameter estimation 
conducted by OLS also seems to improve 
particularly for items with mean VIF greater 
than 10 (Craney & Surles, 2002), such as items 1 
and 10 in the small sample, reduced to around 3 
or less based on large sample (see Tables A3-A4 
in the Appendix). 

The much more serious issue of deleting 
predictor variables and the downgrade of 
parameter estimation quality owing to sample 
size change did not occur in model fitting with 
GA (see Tables A1-A2 in the Appendix), 
however. Compared with OLS, GA shows better 
and more consistent behavior in model fitting. 
The problems caused by the occurrence of 
collinearity among predictor variables of models 
based on a smaller dataset did not affect GA to a 
great degree in its parameter estimation. The 
reason may be attributed to the flexibility GA 
has in dealing with the dataset to comply with its 
purposes through the formulation of a fitness  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
function and the constraint of variable 
coefficients. 

A comparative analysis was conducted 
as shown in Table 4 in which a D-W test was 
performed to check if any serious problem of 
serial correlation arising in the error terms of 
model fitting occurred. Roughly speaking, no 
big change concerning the condition of 
autocorrelation among sequential series of errors 
created in model fitting with GA based on 
different size of samples was observed. The 
number of cases rejected in the D-W test is 3 in 
the small sample, while in the large sample the 
number increases to 4. There exists an obvious 
change in the results of model fitting with OLS 
in this regard, the number of null hypotheses, 
H0, rejected in the small sample is 6 out of 10, 
for large sample the number of rejected test 
cases reduces to 3. Apparently, for the small 
sample the condition of autocorrelation of 
regression errors created by OLS is more serious 
than that based on the large sample. However, 
regression errors created by GA did not show 
same kind of change between the small sample 
and large sample. 
 
 
 

Table 2: The Results of Average VIF of Each Predictor Variable for Each Item Based on Small Sample 

Item 

Average VIF 

Price 
Elasticity 

θ 

Pro-Mix 
μ1 

Pro-Mix 
μ2 

Pro-Mix 
μ3 

Pro-Mix 
μ4 

Pro-Mix 
μ5 

Pro-Mix 
μ6 

Pro-Mix 
μ7 

Mean 

1 1.523 20.139 15.038 19.374 -- 23.929 28.459 19.104 18.224 

2 1.293 2.357 2.230 2.275 2.265 -- 3.785 3.708 2.559 

3 1.072 1.160 1.143 2.134 2.922 -- -- 1.046 1.580 

4 1.345 2.801 -- 2.382 3.111 -- 2.868 4.636 2.857 

5 7.902 2.547 1.290 7.737 -- 7.664 1.257 -- 4.733 

6 1.376 1.483 1.900 1.605 -- 1.605 1.312 1.436 1.531 

7 1.265 3.993 4.992 -- -- 6.996 3.724 -- 4.194 

8 1.410 1.521 1.655 -- -- 1.958 1.673 -- 1.643 

9 1.191 2.099 1.972 -- 2.278 -- 2.278 -- 1.964 

10 1.229 40.567 21.733 27.930 -- 21.486 23.077 -- 22.670 



GA-BASED SALES FORECASTING MODEL INCORPORATING PROMOTION FACTORS 

528 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: The Results of Average VIF of Each Item 

Item 

Average VIF 

Price 
Elasticity 

θ 

Pro-Mix 
μ1 

Pro-Mix 
μ2 

Pro-Mix 
μ3 

Pro-Mix 
μ4 

Pro-Mix 
μ5 

Pro-Mix 
μ6 

Pro-Mix 
μ7 

Mean 

1 1.337 4.413 2.896 2.544 -- 3.775 4.863 3.091 3.274 

2 1.269 1.907 1.923 2.038 1.685 -- 3.692 3/211 2.086 

3 1.326 7.514 8.089 6.148 6.295 -- -- 1.882 5.209 

4 1.322 2.906 -- 2.694 2.969 -- 3.362 5.597 3.142 

5 8.327 2.005 1.349 8.273 1.956 8.208 1.313 -- 4.490 

6 1.305 3.007 2.913 2.646 2.913 2.646 5.488 2.434 2.919 

7 1.271 5.149 6.260 -- -- 7.917 4.522 -- 5.024 

8 1.396 1.538 1.796 -- -- 1.690 1.882 -- 1.660 

9 1.203 2.369 2.253 -- 2.151 -- 2.635 -- 2.122 

10 1.217 3.456 3.076 3.836 -- 2.927 2.820 3.197 2.933 

 
 

Table 4: Results of the Durbin Watson Test for GA and OLS Respectively in Two Data Samples 
 

Item 

Durbin-Watson Test 

GA OLS 
Small Sample Large Sample Small Sample Large Sample 

d 
Test 

Result 
d 

Test 
Result 

d 
Test 

Result 
d 

Test 
Result 

1 1.048 Inconclusive 1.030 Reject H0 1.888 Reject H0 1.085 Reject H0 

2 1.579 Inconclusive 1.282 Inconclusive 1.888 Reject H0 1.576 Inconclusive

3 0.922 Reject H0 0.797 Reject H0 1.026 Reject H0 1.097 Reject H0 

4 1.544 Inconclusive 1.106 Reject H0 1.625 Reject H0 1.225 Inconclusive

5 1.799 Reject H0 1.616 Inconclusive 1.591 Reject H0 1.350 Inconclusive

6 1.247 Inconclusive 1.117 Inconclusive 1.333 Inconclusive 1.223 Inconclusive

7 1.375 Inconclusive 1.744 Reject H0 1.349 Inconclusive 1.689 Reject H0 

8 1.385 Inconclusive 1.367 Inconclusive 1.517 Inconclusive 1.429 Inconclusive

9 1.664 Reject H0 1.460 Inconclusive 1.910 Reject H0 1.910 Inconclusive

10 1.237 Inconclusive 1.286 Inconclusive 1.489 Inconclusive 1.508 Inconclusive
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Table 5: Comparison of the Accuracy of Forecasting Based on Parameters Derived from GA and OLS 

Item 

MAPEs 

Busy Season Off Season 

GA OLS GA OLS 

1 14.17% 22.09% 17.58% 26.53% 

2 8.10% 8.10% 16.91% 20.94% 

3 22.21% 22.38% 20.48% 20.68% 

4 24.93% 24.93% 25.63% 26.89% 

5 11.40% 46.67% 44.72% 47.58% 

6 23.00% 54.86% 26.85% 37.33% 

7 19.67% 20.05% 15.04% 43.75% 

8 22.42% 7.81% 10.03% 17.21% 

9 33.60% 33.60% 14.60% 14.50% 

10 28.33% 50.17% 24.07% 27.14% 

AVG 20.78% 29.07% 21.59% 28.26% 

 

Figure 2: Comparative Forecasting Performance Based on Parameters Generated 
with GA and OLS on Small Sample 
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Predictor Variable for Each Item Based on Large 
Sample 

The model, estimated with two different 
methods based on two different sized samples is 
shown in Table 5. The superiority of the 
forecasting performance of GA over that of its 
counterpart is obvious: for forecasts in the busy 
season with parameters estimated from a small 
sample, except 4 cases, in which 3 cases are ties, 
only in one case did forecasting based on effect 
parameters derived from GA lose its ground to 
forecasting based on parameters generated with 
OLS. For forecasts in the off season the margin 
widens, 9 out of 10 items with parameters 
estimated via GA have an edge over those 
assessed by OLS, in terms of MAPE, in both 
seasons (see Table 5).  

In addition, a paired-samples t test was 
conducted between MAPEs of forecasting based 
on parameters derived from GA and OLS on 
small samples t = −1.629 at the α = 0.10 
significance level (1-tailed) and the critical value 
is 1.383. Thus, the null hypothesis that, on 
average, the MAPE of OLS is smaller than or 
equal to that of GA is rejected and the 
alternative hypothesis that, on average, the 
MAPE of OLS is greater than that of GA is 
supported. The same paired sample t test results 
in a t = −2.459, rejects H0 and supports that, on 
average, the MAPE of OLS is greater than that 
of GA for a large sample at the 0.90 confidence 
level. 

To further evaluate the effect of 
collinearity among predictor variables on the 
forecasting performance in either the busy or off 
season, two figures illustrate how and to what 
extent MAPE forecasting based on parameters 
derived from GA and OLS responds to the 
measure of VIF. For forecasting based on 
parameters derived from a small sample, on 
average, both GA and OLS show insignificant 
results between the MAPE of forecasts and the 
average VIF, 0.271 and 0.316, respectively, in 
the Pearson correlation test (2-tailed) with α = 
0.05 level (see Figure 2 and Table 6). 
Conversely, using the same test, forecasting GA 
A paired t test (1-tailed) was performed, with α 
= 0.05, between parameters estimated with GA 
on the small sample and large sample,  

the t value = −0.547 is greater than the 
critical value of −1.895, so it does not reject the 

H0 that, on average, parameters estimated with 
GA based on small sample are less than or equal 
to parameters estimated with GA based on large 
sample. Conversely, a paired t test, with the 
same α=0.05 between parameters estimated with 
OLS on the small and large sample results in t = 
7.551, which is much greater than the critical 
value 1.895, thus it may be concluded at 95% 
confidence that, on average, parameters 
estimated with OLS on a small sample are 
greater than that for a large sample. Based on the 
above information, model parameters estimated 
with GA appear more stable than parameters and 
OLS based on parameters generated from large 
sample shows a significant result; the correlation 
coefficients are 0.618 and 0.649, respectively, 
(see Figure 3 and Table 6). 

No significant difference exists between 
the performance of forecasting based on 
parameters derived on large or small sample of 
data for either GA or OLS. In sum, collinearity 
makes regression modeling with OLS more 
sensitive to a change in sample size so that the 
correlation between VIF and MAPE becomes 
less obvious in a small sample. Becuase low VIF 
is a necessary condition for good forecasting 
performance (Williams, 1987), a change from 
small to large sample does not create a 
significant difference in forecasting performance 
in terms of MAPE regardless of whether GA or 
OLS is used as estimator of model parameters. 
 

Conclusion 
If a regression model is based on a limited size 
sample or if the variation of values in the dataset 
pertain to a specific critical variable that is too 
small, then the issue of collinearity will arise and 
make the model very sensitive to the sample size 
change and may negatively and seriously affect 
proper variable identification and variable 
coefficient assessment. Under such a situation, 
any analysis, inference or forecast based on the 
parameters of the model can be questionable. An 
alternative estimator, the genetic algorithm 
(GA), can - with proper formulation in fitness 
function and realistic constraints regarding 
coefficients of critical variables - have better and 
more consistent performance in both critical 
variable identification and variable coefficient 
estimation,  
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Figure 3: Comparative Forecasting Performance Based on Parameters Generated 
with GA and OLS on Large Sample 

 
 

Table 6: Pearson Correlation Test Between VIF and MAPE 

Estimator 
Small Sample Large Sample 

Pearson 
Correlation 

Significance 
(2 tailed) 0.05 

Pearson 
Correlation 

Significance 
(2 tailed) 0.05 

GA 0.271 0.448 0.618 0.057 

OLS 0.316 0.373 0.649 0.042 
 
 

Figure 4: Typical Convergence Process of GA in this Study Compared to Generic GA 
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which can be verified via a series of measures, 
charts and model checking tests. 

Empirical results support the points 
presented in this article via weekly unit sales 
forecasting based on a log-linear regression 
model of 10 CPG products from a name brand 
manufacturer in Taiwan in both a busy and an 
off season. More in-depth and wider 
investigations will be of great help to generalize 
points made in this article and to increase the 
amount of supporting data for use of the GA. 
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Appendix 
 

Table A1: Parameters Estimated via GA on Small Sample 

Item MAPE 
Price 

Elas. θ 
Normal 
Sales λ 

Pro- 
Mix μ1 

Pro- 
Mix μ2 

Pro- 
Mix μ3 

Pro- 
Mix μ4 

Pro- 
Mix μ5 

Pro- 
Mix μ6 

Pro- 
Mix μ7 

1 0.124 -0.002 50.074 1.857 2.878 3.235 2.456 -- 2.393 2.815 

2 0.121 -0.0006 55.81 1.935 2.876 3.672 3.000 -- 2.795 3.619 

3 0.101 -0.273 110.62 2.190 -- 2.193 -- 4.163 -- 2.340 

4 0.107 -0.498 55.73 2.369 3.227 3.800 2.889 -- 3.266 4.070 

5 0.136 -0.488 200.00 2.750 2.300 1.614 -- 3.436 1.969 3.951 

6 0.121 -2.113 180.50 2.050 -- 1.632 -- 3.259 -- 1.781 

7 0.126 -2.749 79.09 1.808 -- 2.698 3.132 -- 2.720 2.834 

8 0.092 -0.398 73.982 2.514 2.442 -- -- 3.595 2.242 -- 

9 0.131 -8.768 91.265 1.709 1.911 -- 2.614 2.951 1.854 -- 

10 0.236 -4.185 22.223 2.640 2.125 2.653 -- 2.879 2.255 2.915 

Mean 0.129 -1.947 91.929 2.182 2.537 2.687 2.818 3.381 2.437 3.041 

 
 

Table A2: Parameters Estimated via GA on Large Sample 

Item MAPE 
Price 

Elas. θ 
Normal 
Sales λ 

Pro- 
Mix μ1 

Pro- 
Mix μ2 

Pro- 
Mix μ3 

Pro- 
Mix μ4 

Pro- 
Mix μ5 

Pro- 
Mix μ6 

Pro- 
Mix μ7 

1 0.140 -0.048 42.83 2.171 3.362 3.764 2.872 -- -- 3.257 

2 0.121 -0.094 58.54 2.033 2.648 3.450 2.897 -- 2.610 3.380 

3 0.128 -1.078 78.035 2.845 -- 2.875 -- 3.170 -- 2.665 

4 0.130 -0.681 51.906 2.503 3.974 2.650 2.711 -- 3.505 3.858 

5 0.146 -0.100 199.68 2.414 2.304 1.728 -- 3.680 2.938 1.559 

6 0.126 -0.020 174.62 2.120 -- 2.264 -- 4.50 -- 2.459 

7 0.131 -2.765 87.99 1.625 -- 3.809 2.967 -- 2.436 1.083 

8 0.097 -0.357 78.152 2.354 2.330 -- -- 3.549 2.138 -- 

9 0.134 -7.110 74.700 2.236 2.520 -- 3.408 -- 2.443 -- 

10 0.237 -5.632 23.904 2.468 1.654 1.825 -- 2.263 1.582 2.238 

Mean 0.139 -1.789 87.036 2.277 2.685 2.796 2.971 3.432 2.522 2.562 
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Appendix (continued) 
 

Table A3: Parameters Estimated via OLS on Small Sample 

Item MAPE 
Price 

Elas. θ 
Normal 
Sales λ 

Pro- 
Mix μ1 

Pro- 
Mix μ2 

Pro- 
Mix μ3 

Pro- 
Mix μ4 

Pro- 
Mix μ5 

Pro- 
Mix μ6 

Pro- 
Mix μ7 

1 0.109 -0.098 430.30 0.214 0.3336 0.744 0.298 -- -- 1.341 

2 0.109 0.049 108 1 1.47 1.848 1.538 -- 1.877 1.986 

3 0.103 -- 237 1 0.718 1.109 1.73 -- -- 1.47 

4 0.110 -0.61 132.44 1 -- 1.545 1.241 -- 1.367 1.543 

5 0.129 -- 309.00 1.836 1.433 1.230 -- 2.487 1.959 -- 

6 0.099 -- 375.00 -- 1.370 1.182 -- 2.457 1.321 1.333 

7 0.129 -2.350 141.00 -- 1.865 -- -- 0.852 1.617 -- 

8 0.127 -0.210 188.00 -- 1.000 -- -- -- -- -- 

9 0.133 -7.695 160.00 -- 1.140 -- 1.844 -- 1.166 -- 

10 0.236 -6.54 61.00 -- 0.600 0.687 -- 1.041 0.617 0.804 

Mean 0.128 -1.945 214.174 1.010 1.103 1.192 1.330 1.709 1.418 1.413 

 
 

Table A4: Parameters Estimated via OLS on Large Sample 

Item MAPE 
Price 

Elas. θ 
Normal 
Sales λ 

Pro- 
Mix μ1 

Pro- 
Mix μ2 

Pro- 
Mix μ3 

Pro- 
Mix μ4 

Pro- 
Mix μ5 

Pro- 
Mix μ6 

Pro- 
Mix μ7 

1 0.144 -0.098 121.80 0.768 1.178 1.329 1.103 -- -- 1.169 

2 0.116 -2.187 194.46 0.575 0.788 0.997 0.875 -- -- 1.040 

3 0.137 -2.908 265 0.852 0.642 0.725 -- -- -- 0.480 

4 0.142 -0.61 181.00 0.709 -- 1.131 1.024 -- -- 1.129 

5 0.145 -- 578.77 0.84 0.765 0.656 0.983 1.328 -- -- 

6 0.133 -0.69 495.00 0.757 0.912 0.787 1.514 1.637 -- 0.888 

7 0.159 -2.48 223.87 0.63 1.174 -- -- 0.530 -- -- 

8 0.102 -0.233 175.75 1.077 1.068 -- -- 1.706 -- -- 

9 0.138 -6.900 192.82 0.858 0.978 -- 1.406 -- -- -- 

10 0.241 -4.065 51.310 1.197 0.943 1.170 -- 1.630 -- 1.350 

Mean 0.146 -2.241 247.978 0.826 0.939 0.971 1.151 1.366 -- 1.009 
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Portfolio optimization is an important research field in financial decision making. The chief character 
within optimization problems is the uncertainty of future returns. Probabilistic methods are used 
alongside optimization techniques. Markowitz (1952, 1959) introduced the concept of risk into the 
problem and used a mean-variance model to identify risk with the volatility (variance) of the random 
objective. The mean-risk optimization paradigm has since been expanded extensively both theoretically 
and computationally. A single stage and two stage stochastic programming model with recourse are 
presented for risk averse investors with the objective of minimizing the maximum downside semi-
deviation. The models employ the here-and-now approach, where a decision-maker makes a decision 
before observing the actual outcome for a stochastic parameter. The optimal portfolios from the two 
models are compared with the incorporation of the deviation measure. The models are applied to the 
optimal selection of stocks listed in Bursa Malaysia and the return of the optimal portfolio is compared 
between the two stochastic models. Results show that the two stage model outperforms the single stage 
model for the optimal and in-sample analysis. 
 
Key words: Portfolio optimization, maximum semi-deviation measure, downside risk, stochastic linear 

programming. 
 
 

Introduction 
Portfolio optimization is an important research 
field in financial decision making. The most 
important character within optimization 
problems is the uncertainty of future returns. To 
handle such problems, probabilistic methods are 
utilized alongside optimization techniques. 
Stochastic programming is the approach 
employed in this study to deal with uncertainty. 
Stochastic programming is a branch of 
mathematical programming where the 
parameters are random, the objective of which is  
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to find the optimum solution to problems with 
uncertain data. This approach can 
simultaneously deal with both the management 
of portfolio risk and the identification of the 
optimal portfolio. Stochastic programming 
models explicitly consider uncertainty in the 
model parameters and they provide optimal 
decisions which are hedged against such 
uncertainty. 

In the deterministic framework, a typical 
mathematical programming problem could be 
stated as 
 

,
x

i

min f(x)

s.t g (x) 0, i 1,...m≤ =
    (1.1) 

 

where x  is from nR  or nZ . Uncertainty, 
which is usually described by a random element, 

)(ωξ , where ω  is a random outcome from a 
space Ω , leads to situation where one has to 
deal with ξ(ω))f(x,  and ξ(ω))(x,gi , as 
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opposed to just f(x)  and (x)gi . Traditionally, 

the probability distribution of ξ  is assumed to 
be known (or can be estimated) and is 
unaffected by the decision vector x . The 
problem becomes decision making under 
uncertainty where decision vector x  must be 
chosen before the outcome from the distribution 
of )(ωξ  can be observed. 

Markowitz (1952, 1959) incorporated 
the concept of risk into the problem and 
introduced the mean-risk approach, which 
identifies risk with the volatility (variance) of 
the random objective. Since 1952, the mean-risk 
optimization paradigm has been extensively 
developed both theoretically and 
computationally. Konno and Yamazaki (1991) 
proposed mean absolute deviation (MAD) from 
the mean as the risk measure to estimate the 
nonlinear variance-covariance of the stocks in 
the mean-variance (MV) model. It transforms 
the portfolio selection problem from a quadratic 
programming problem into a linear problem. 
The popularity of downside risk among 
investors is growing and mean-return-downside 
risk portfolio selection models seem to oppress 
the familiar mean-variance approach.  

The reason mean-variance models are 
successful is because they separate return 
fluctuations into downside risk and upside 
potential. This is relevant for asymmetrical 
return distributions, for which the mean-variance 
model punishes the upside potential in the same 
fashion as the downside risk. Thus, Markowitz 
(1959) proposed downside risk measures, such 
as semi variance, to replace variance as the risk 
measure. Subsequently, downside risk models 
for portfolio selection have grown in popularity 
(Sortino & Forsey, 1996). 

Young (1998) introduced another linear 
programming model to maximize the minimum 
return or minimize the maximum loss (minimax) 
over time periods and he applied it to stock 
indices of eight countries from January 1991 
until December 1995. The analysis showed that 
the model performs similarly with the classical 
mean-variance model. In addition, Young 
argued that - when data is log-normally 
distributed or skewed - the minimax formulation 
might be a more appropriate method compared 
to the classical mean-variance formulation, 

which is optimal for normally distributed data. 
Ogryczak (2000) also considered the minimax 
model but analyzed it with the maximum semi 
deviation. 

Dantzig (1955) and Beale (1955) 
independently suggested an approach to 
stochastic programming termed stochastic 
programming with recourse; recourse is the 
ability to take corrective action after a random 
event has taken place. Their innovation was to 
amend the problem to allow a decision maker 
the opportunity to make corrective actions after 
a random event has taken place. In the first 
stage, a decision maker makes a here and now 
decision. In the second stage the decision maker 
sees a realization of the stochastic elements of 
the problem but is allowed to make further 
decisions to avoid the constraints of the problem 
becoming infeasible. 

Stochastic programming is becoming 
more popular in finance as computing power 
increases and there have been numerous 
applications of stochastic programming 
methodology to real life problems over the last 
two decades. The applicability of stochastic 
programs to financial planning problems was 
first recognized by Crane (1971). More recently 
Worzel, et al. (1994) and Zenios, et al. (1998) 
have developed multistage stochastic programs 
with recourse to address portfolio management 
problems with fixed-income securities under 
uncertainty in interest rates. Their models 
integrate stochastic programming for the 
selection of portfolios using Monte Carlo 
simulation models of the term structure of 
interest rates. 

Hiller and Eckstein (1994), Zenios 
(1995) and Consiglo and Zenios (2001) also 
applied stochastic programs to fixed-income 
portfolio management problems. Chang, et al. 
(2002) modeled a portfolio selection problem 
with transaction costs as a two-stage stochastic 
programming problem and evaluated the model 
using historical data obtained from the Taiwan 
Stock Exchange; their results show that the 
model outperforms the market and the MV and 
MAD models. 

In this article, a single stage and two 
stage stochastic programming model are 
developed with recourse for portfolio selection. 
The objective is to minimize the maximum 
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downside deviation measure of portfolio returns 
from the expected return. The so-called here-
and-now approach is utilized: a decision-maker 
makes a decision (now) before observing the 
actual outcome for the stochastic parameter. The 
portfolio optimization problem considered 
follows the original Markowitz (1959) 
formulation and is based on a single period 
model of investment. At the beginning of a 
period, an investor allocates capital among 
various securities assuming that each security is 
represented by a variable; this is equivalent to 
assigning a nonnegative weight to each variable. 
During the investment period, a security 
generates a random rate of return. The change of 
invested capital observed at the end of the period 
is measured by the weighted average of the 
individual rates of return. 

The objective of this study is to compare 
the optimal portfolio selected using two different 
stochastic programming models. The optimal 
portfolios are compared between the single stage 
and two stage models with the incorporation of 
deviation measure. This method is applied to the 
optimal selection of stocks listed in Bursa 
Malaysia and the return of the optimal portfolio 
from the two models is compared. 
 

Methodology 
Consider a set of securities n}1,2,...,i:{iI ==  
for an investment; at the end of a certain holding 
period the assets generate returns, 

.=    T
1 2 nr (r ,r ,...,r )  The returns are unknown at 

the beginning of the holding period, that is at the 
time of the portfolio selection, and are treated as 
random variables; their mean value is denoted 

by, . T
1 2 nr = E(r)=(r ,r ,...,r )  At the beginning of 

a holding period an investor wishes to apportion 
his budget to these assets by deciding on a 

specific allocation T
n21 )x,...,x,(x=x  such 

that 0xi ≥  (i.e., short sales are not allowed) 

and 
∈

=
Ii

i 1x  (budget constraint). In this article, 

boldface characters are used to denote vectors, 
and the symbol ~ denotes random variables. 

The uncertain return of a portfolio at the 

end of a holding period is =R~ rxrx, T ~)~(R = . 
This is a random variable with a distribution 

function F, that is, F( x, ) P{R(x,r ) }.μ = ≤ μ  
It is assumed that F does not depend on the 
portfolio composition x. The expected return of 
the portfolio is 
 

)~,(R)]~,(R[]R~[ R rxrx === ΕΕ . 
 

Suppose the uncertain returns of the 
assets, r~ , are represented by a finite set of 
discrete scenarios }S,...,2,1ω:ω{ ==Ω , 
whereby the returns under a particular scenario 

Ω∈ω  take the values 
Tr )r,...,r,r( nω2ω1ωω =  with associated 

probability 0pω > , 
∈

=
Ωω

ω 1p . The mean 

return of the assets is 
∈

=
Ωω

ωωp rr . The 

portfolio return under a particular realization of 
asset return ωr  is denoted by ),(RR ωω rx= . 

The expected portfolio return is expressed as: 
 

ω Ω

R (x, r )

x, r )]

(x, r ).

ω

ω

∈

=
=

=  ω ω

R
 E[R(

p R
 

 
Let )],(RM[ ωrx  be the minimum of 

the portfolio return. The maximum (downside) 
semideviation measure is defined as 
 

(x) [ (x, r )]

[E[ (x, r )] x, r
ω

ω ω

κ =
=

MM R
R  - Min [R( )]

  (2.1) 

 
Maximum downside deviation risk 

)],(R[MM ωrx  is a very pessimistic risk 

measure related to the worst case analysis. It 
does not take into account any distribution of 
outcomes other than the worst one. 
 
Properties of the )]~,(R[MM rx  Measures 

Artzner, et al. (1999) introduced the 
axiomatic approach to construction of risk 
measures. This approach has since been 
repeatedly employed by many authors for the 
development of other types of risk measures 
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tailored to specific preferences and applications 
(see Rockafellar, et al., 2002, 2004; Acerbi, 
2002; Ruszcynski & Shapiro, 2004). 
 
Proposition 1: )]~,(R[MM rx  measure is a 
deviation measure. 
 
Proof: 
1. Subadditivity:  

)κ(X)κ(X)Xκ(X 2121 +≤+ . 
 

2[ (x, r) (x, r)]

max{ (x, r) (x, r)]

[ (x, r) (x, r)]}

max{( (x, r)] (x, r) )

( [ (x, r)] (x, r)}

max{ (x, r)]

+
= +

− +
= −

+ −
≤

 
 
 
 
 


1
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2. Positive Homogeneity: 

0 0 0 0MM [ ] max( E[ ] ) .= − =  
 

0

MM[ ( R( x,r )]
           max{ E[ R( x,r )] R( x,r )}
     max{ E[R( x,r )] R( x,r )}

   MM[R( x,r )], for all

λ
= λ − λ
=λ −
= λ λ >


 
 



 

 
3. Translation invariance: 

,)X()(X ακακ −=+  for all real 

constants α . 
 
MM[( R( x,r ) ]
            max{ E([R( x,r ) ] [ R( x,r ) ])}

max{ E[R( x,r )] R( x,r ) }
max{ E[R( x,r )] R( x,r )}
MM[( R( x,r )]

+ α
= + α − + α
= + α − −α
= −
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4. Convexity:  
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Single Stage Stochastic Programming Portfolio 
Optimization Model with MM Deviation 
Measure 

The portfolio selection optimization 
model is formulated as a single stage stochastic 
programming model as follows. 
 
Definition 1: S_MM 

The stochastic portfolio optimization 
problem where the difference between the 
expected portfolio return and the maximum of 
minimum portfolio returns is minimized and 
constraining the expected portfolio return is: 
 

x X
(x, r ) x, r

ω
Minimize  max  [R R( )]ω ω∈ ∈Ω

−  

(2.2a) 
 
Subject to:

 

 

ω i ωi
i I

R( x,r ) x r    ω Ω
∈

= ∀ ∈    (2.2b) 

 

ω ω
ω Ω

R( x,r ) p R( x,r )ω
∈

=       (2.2c) 

 

R ( x,r ) αω ≥                   (2.2d) 

 

i
i I

x 1
∈

=                       (2.2e) 

 

i i iL x U      i I≤ ≤ ∀ ∈           (2.2f) 
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Model S_MM minimizes the maximum 
semi deviation of portfolio returns from the 
expected portfolio return at the end of the 
investment horizon. Equation (2.2b) defines the 
total portfolio return under each scenario ω . 
Equation (2.2c) defines the expected return of 
the portfolio at the end of the horizon, while 
equation (2.2d) constrains the expected return by 
the target return .α  Equation (2.2e) insures that 
the total weights of all investments sum to one, 
that is, budget constraints ensuring full 
investment of available budget. Finally equation 
(2.2f) insures that the weights on assets 
purchased are nonnegative, disallowing short 
sales and placing upper bounds on the weights. 
Solving the parametric programs (2.2) for 
different values of the expected portfolio return 
α  yields the MM-efficient frontier. 
 
Linear Programming Formulation for S_MM 

Models S_MM have a non linear 
objective function and a set of linear constraints, 
thus the models are non linear stochastic 
programming. However, the models can be 
transformed to linear models as follows. 

For every scenario Ω∈ω , let an 
auxiliary variable, 
 

)],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

=    (2.3) 

 
subject to  
 

ω
max [R( x,r ) R(x,r )] for  ,ω ω∈Ω

η ≥ − ∀ω∈Ω  

 
then, 

ηω     )],(R[MM =rx               (2.4) 

 
subject to 
 

ω
max [R( x,r )-R(x,r )] for .ω ω∈Ω

η ≥ ∀ω∈Ω  

 
Substituting (2.4) in the portfolio optimization 
models (2.2) results in the following stochastic 
linear programming model: 
 

Minimize η ,                    (2.5a) 
subject to: 

ω i ωi
i I

R( x,r ) x r
∈

=              (2.5b) 

ω ω
ω Ω

R( x,r ) p R( x,r )ω
∈

=     (2.5c) 

 

R ( x,r ) αω ≥                   (2.5d) 

 

ωR( x,r ) R( x,r )ω − ≤ η          (2.5e) 

 

i
i I

x 1
∈

=                         (2.5f) 

 

i i iL x U    i I≤ ≤ ∀ ∈              (2.5g) 

 
Theorem 1 

If *x  is an optimal solution to (2.2), 

then ),( ** ηx  is an optimal solution to (2.5), 

where )],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

= . 

Conversely, if ),x( ** η  where 

)],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

=  is an optimal 

solution to (2.5), then *x  is an optimal solution 
to (2.2). 
 
Proof: 

If *x  is an optimal solution to (2.2), 

then ),( ** ηx  is a feasible solution to (2.5), 

where )],R(  -  ),(R[ max  **
ω

ωωΩ
η rxrx

∈
= . If 

),( ** ηx  is not an optimal solution to (2.5), 

then a feasible solution ),( ηx  exists to (2.5) 

where )],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

=  such 

that *ηη ≤ . 

If ηωω
Ω

 )] ,R(  -  ),(R[ max
ω

≤
∈

rxrx , 

then 
 

* *

(x, r ) x, r

(x , r ) x , r

*

ω

ω

max [R -R( )]

                       max [R -R( )] 

ω ω∈Ω

ω ω∈Ω

≤ η < η

<
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which contradicts that *x  is an optimal solution 
to (2.2). 

However, if ),( ** ηx  is an optimal 
solution to (2.5), where 

)],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

=  then *x  is 

an optimal solution to (2.2). Otherwise, a 
feasible solution x  to (2.2) exists such that 
 

* *(x, r ) x, r (x , r ) x , rω ω ω ω∈Ω ∈Ω
<

ω ω
max [R -R( )] max [R -R( )]

 

Denoting )],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

= , 

leads to 
 

)],R(  -  ),(R[ max  
ω

ωωΩ
η rxrx

∈
=  

 
* *(x , r ) x , rω ω∈Ω

<

<η
ω

*

max [R -R( )]
 

 

which contradicts that ),( ** ηx  is an optimal 
solution to (2.5). 
 
Two Stage Stochastic Programming Model with 
Recourse 

A dynamic model where not only the 
uncertainty of the returns is included in the 
model but future changes, recourse, to the initial 
compositions are allowed is now introduced. 
The portfolio optimization is formulated by 
assuming an investor can make corrective action 
after the realization of random values by 
changing the composition of the optimal 
portfolio. This can be accomplished by 
formulating the single period stochastic linear 
programming models with the mean absolute 
negative deviation measure as a two-stage 
stochastic programming problem with recourse. 
The two-stage stochastic programming problem 
allows a recourse decision to be made after 
uncertainty of the returns is realized. 

Consider the case when the investor is 
interested in a first stage decision x  which 
hedges against the risk of the second-stage 
action. At the beginning of the investment 
period, the investor selects the initial 

composition of the portfolio, x . The first stage 
decision, x , is made when there is a known 
distribution of future returns. At the end of the 
planning horizon, after a particular scenario of 
return is realized, the investor rebalances the 
composition by either purchasing or selling 
selected stocks. In addition to the initial - or first 
stage - decision variables x , let a set of second 
stage variables, ωi,y  represent the composition 

of stock i after rebalancing is done, that is, 

ωi,iωi,    Pxy +=  or ωi,iωi,  -   Qxy = , where 

ωi,P  and ωi,Q  are the quantity purchased and 

sold respectively and ωi,y is selected after the 

uncertainty of returns is realized. 
 
Linear Representation of MM 

Before formulating the two stage 
stochastic programming models to minimize the 
second stage risk measure to address the 
portfolio optimization problem, the mean 
absolute negative deviation and maximum 
downside deviation of portfolio returns are 
formulated from the expected return in terms of 
the second stage variables y . 
 

)],(R),(R[max
)],(R[MM)),(R( Let

ωωωωΞω

ωωωωκ
ryry

ryry
−=

=

∈  
(2.6) 

 
For every scenario Ω∈ω , if the auxiliary 
variable is 
 

)],(R),(R[max , ωωωωΩω
η ryry −=

∈
  (2.7) 

 
subject to 
 

ω
 max [R( y ,r )-R(y ,r )] for  ω ω ω ω∈Ω

η ≥ ∀ω∈Ω

(2.8) 
then 

ηω     )],(R[MM =rx               (2.9) 

 
subject to 
 

ω
max [R( y ,r )-R(y ,r )] for  .ω ω ω ω∈Ω

η ≥ ∀ω∈Ω  
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Two Stage Stochastic Linear Programming 
Formulation of 2S_MM 

The two stage stochastic linear 
programming model is formulated for the 
portfolio optimization problem that hedges 
against second stage MM as follows. 
 
Definition 2: 2S_MM 

The stochastic portfolio optimization 
problem where the downside maximum semi-
deviation of portfolio returns from the expected 
return is minimized and the expected portfolio 
return is constrained is: 
 

Minimize η                   (2.10a) 
 

i
i I

x 1
∈

=                    (2.10b) 

 

ωi
i I

y 1  ω Ω
∈

= ∀ ∈           (2.10c) 

 

R( x,r ) R( y ,r )  α  ω Ωω ω ω+ ≥ ∀ ∈  

(2.10d) 
 

i i iL x U     i I≤ ≤ ∀ ∈            (2.10e) 

 

ωi ωi ωiL y U     i I, ω Ω≤ ≤ ∀ ∈ ∀ ∈  

(2.10f) 
 

R( y ,r )     ω Ωω ω ≥ η ∀ ∈        (2.10g) 

 
Model (2.10) minimizes the maximum downside 
semi deviation of the portfolio return from the 
expected portfolio return of the second stage 
variable, y , at the end of the investment period. 
Equation (2.10b) insures that the total weights of 
all investments in the first stage sum to one, and 
equation (2.10c) insures that the total weights of 
all investments in the second stage under each 
scenario, ω , sum to one - that is, budget 
constraints ensuring full investment of available 
budget. Equation (2.10d) constrains the expected 
return by the target return, α , while equations 
(2.10e) and (2.10f) insure that the weights on 
assets purchased are nonnegative, disallowing 
short sales and placing an upper bound on the 

weights in the first stage and second stage 
respectively. Finally, equations (2.10g) and 
(2.10h) define the mean absolute negative 
deviation of portfolio returns from the expected 
portfolio return in the second stage and the 
auxiliary variables for the linear representation 
of the deviation measure. 
 
Numerical Analysis 

Models developed herein were tested on 
ten common stocks listed on the main board of 
Bursa Malaysia. These stocks were randomly 
selected from a set of stocks that were listed on 
December 1989 and were still in the list in May 
2004; closing prices were obtained from 
Investors Digest.  At first, sixty companies were 
selected at random, ten stocks were then selected 
and the criterion used to select the ten stocks in 
the analysis is as follows: 
 
i. Those companies which do not have a 

complete closing monthly price during the 
analysis period were excluded. 

 
ii. Because the portfolios were examined on 

the basis of historical data, those with 
negative average returns over the analysis 
period were excluded. 

 
Empirical distributions computed from 

past returns were used as equiprobable 
scenarios. Observations of returns over SN  

overlapping periods of length tΔ  are considered 
as the SN  possible outcomes (or scenarios) of 

future returns and a probability of 
sN

1  is 

assigned to each of them. Assume T historical 
prices, T1,2,...,t,Pt =  of the stocks under 

consideration. For each point of time, the 
realized return vector over the previous period of 
1 month is computed, which will be further 
considered as one of the SN scenarios for future 

returns on the assets. Thus, for example, a 
scenario isr  for the return on asset i  is obtained 

as: 

i i
is

i

P(t 1) P(t)r .
P(t)

+ −=                  (3.1) 
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For each stock, 100 scenarios of the overlapping 
periods of length 1 month were obtained, that is, 

SN . 

To evaluate the performance of the two 
models, the portfolio returns resulting from 
applying the two stochastic optimization models 
were examined. A comparison is made between 
the S_MM and 2S_MM models by analyzing the 
optimal portfolio returns in-sample portfolio 
returns and out-of-sample portfolio returns over 
a 60-month period from June 1998 to May 2004. 
At each month, the historical data from the 
previous 100 monthly observations is used to 
solve the resulting optimization models and 
record the return of the optimal portfolio. The 
in-sample realized portfolio return is then 
calculated. The clock is advanced one month 
and the out-of-sample realized return of the 
portfolio is determined from the actual return of 
the assets. The same procedure is repeated for 
the next period and the average returns are 
computed for in-sample and out-of-sample 
realized portfolio return. The minimum monthly 
required return α is equal to one in the analysis 
for both the S_MM and 2S_MM models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
Comparison of Optimal Portfolio Returns 
between S_MM and 2S_MM 

Figure 1 presents the graphs of optimal 
portfolio returns resulting from solving the two 
models; S_MM and 2S_MM. The optimal 
portfolio returns of the two models exhibit a 
similar pattern: a decreasing trend is observed in 
the optimal returns for both models. However, as 
illustrated in Figure 1, the optimal portfolio 
returns from the two stage stochastic 
programming with recourse model (2S_MM) are 
higher than the optimal portfolio returns from 
the single stage stochastic programming model 
(S_MM) in all testing periods. This shows that 
an investor can make a better decision regarding 
the selection of stocks in a portfolio when taking 
into consideration both making decision facing 
the uncertainty and the ability of making 
corrective actions when the uncertain returns are 
realized compared to considering only making 
decisions facing the uncertainty alone. 
 
Comparison of Average In-Sample Portfolio 
returns between S_MM and 2S_MM 

The average realized returns were used  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Comparison of Optimal Portfolio Returns S_MM and 2S_MM Models 
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to compare in-sample portfolio returns between 
the S_MM model and 2S_MM model; results 
are presented in Figure 2. An increasing trend is 
observed in the months from December 1999 
until April 2000, and then a decreasing trend is 
noted until June 2001. From June 2001 until 
May 2004 both averages show an increasing 
trend. The average in-sample portfolio returns of 
2S_MM are higher than the average in-sample 
portfolio returns in all testing periods. 
 
Comparison of Out-Of-Sample Portfolio Returns 
between S_MM and 2S_MM Models 

In a real-life environment, model 
comparison is usually accomplished by means of 
ex-post analysis. Several approaches can be used 
to compare models. One of the most commonly 
applied methods is based on the representation 
of the ex-post returns of selected portfolios over 
a given period and on comparing them against a 
required level of return. The comparison of out-
of-sample portfolio returns between the single 
stage stochastic programming model S_MM and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the two stage stochastic programming with 
recourse model 2S_MM is also accomplished 
using the average return. The results of the out-
of-sample analysis are presented in Figure 3. 

Throughout the testing periods, the 
average returns from the two models show 
similar patterns. An increasing trend is observed 
in the months from December 1999 until 
December 2000, and then a decreasing trend is 
observed until June 2001. Starting from June 
2001, both averages show an increasing trend. 
The average out-of-sample of the two-stage 
model 2S_MM is higher than those of single 
stage model S_MM. The models have been 
applied directly to the original historical data 
treated as future returns scenarios, thus 
loosening the trend information. Possible 
application of forecasting procedures prior to the 
portfolio optimization models considered may 
be an interesting direction for future research. 
For references on scenario generation see 
Carino, et al., (1998). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Comparison of Average In-Sample Portfolio Return between S_MM 
and 2S_MM Models 

 

Average In-Sample Portfolio Return : S_MM and 2S_MM

0.95

1

1.05

1.1

1.15

Jun-99 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03

Time Period

A
ve

ra
g

e
 P

o
rt

fo
li

o
 R

e
tu

rn

S_MM
2S_MM



KAMIL, MUSTAFA & IBRAHIM 
 

545 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Conclusion 

A portfolio selection of stocks with maximum 
downside semi deviation measure is modeled as 
single stage and two stage stochastic 
programming models in this article. The single 
stage model and the two stage model incorporate 
uncertainty and at the same consider rebalancing 
the portfolio composition at the end of 
investment period. The comparison of the 
optimal portfolio returns, the in-sample portfolio 
returns and the out-of-sample portfolio returns 
show that the performance of the two stage 
model is better than that of the single stage 
model. Historical data was used for scenarios of 
future returns. Future research should generate 
scenarios of future asset returns using an 
appropriate scenario generation method before 
applying models developed in this article. 
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On Bayesian Shrinkage Setup for Item Failure Data 
Under a Family of Life Testing Distribution 
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S. N. Medical College, Agra, U. P., India 
 

 
Properties of the Bayes shrinkage estimator for the parameter are studied of a family of probability 
density function when item failure data are available. The symmetric and asymmetric loss functions are 
considered for two different prior distributions. In addition, the Bayes estimates of reliability function and 
hazard rate are obtained and their properties are studied. 
 
Key words: Bayes shrinkage estimator; squared error loss function (SELF); LINEX loss function (LLF); 

reliability function; hazard rate. 
 
 

Introduction 
The probability density function (pdf) of a 
random variable x  with parameter θ  and two 
known positive constants w  and v  for the 
proposed family of life testing distribution is 
given as 
 

w v 1 v

w

v x x
f (x; θ, w, v)   exp ;

Γw θ θ

−   
= −   

   
 

x 0, θ 0, w, v 0.> > >              (1.1) 
 
For the different values of w  and v , the 
distributions are given as: 
 
 
 
 
 
 
 
 
 
 
 
The use of SELF in the Bayes estimation may 
not be appropriate when positive and negative  
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errors have different consequences. To 
overcome this difficulty, an asymmetric loss 
function (LLF) was proposed by Varian (1975) 
and its invariant form for any parameter θ  is 
given by (see Singh, et al., 2007) 
 

0a  ; 1Δ aeΔ) ( L Δ a ≠−−=  
and 

( ) .θ θθ̂Δ −=                     (1.2) 
 

where θ̂  is any estimate of the parameter θ . The 
sign and magnitude of a''  represents the 
direction and degree of asymmetry respectively. 
The positive (negative) value of a''  is used 
when overestimation is more (less) serious than 

underestimation. For small value of a , LLF is 

not far from SELF. 
In many situations, the experimenter has 

some prior information about parameter in the 
form of a point guess value. Thompson (1968), 
Pandey and Singh (1977), Prakash and Singh 
(2006), Prakash and Singh (2008, 09) and others 
have suggested shrinkage estimators utilizing the 
point guess value of the parameter and have 
shown that they performed better when the guess 
value is in the vicinity of the true value. The 
shrinkage procedure has been applied in 
numerous problems, including mean survival 
time in epidemiological studies, forecasting of 
the money supply, estimating mortality rates and 
improving estimation in sample surveys. 

w  v  Distribution 

1 1 Exponential 

 1 Two parameter Gamma 

+ve Integer 1 Erlang 

1  Two parameter Weibull 

1 2 Rayleigh 

3/2 2 Maxwell 
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The shrinkage estimator of the parameter θ  

when a prior point guess value 0θ  is available, 

is given by 
 

. θ k)(1θ̂k S 0 −+=               (1.3) 

 
Here 0,1] [k ∈  is the shrinkage factor and the 
experimenter according to his belief in the guess 
value specifies the values of the shrinkage 
factor. 
 
In the item censored situations where n  items 
are put to test without replacement and the test 

terminates as soon as the thr item fails n).(r ≤
Let r21 x,...,x,x  be the observed failure items 
for the first r  components, then the likelihood 
function of r  failure items ( )r21 x,...,x,xx =  is 
 

( )  , 
θ

T
exp

θ

1
 xh θ) ;x( L r 

r w 





−=     (1.4) 

 

where  v
)r  ( 

r

1i

 v
i r  x)r   n  (   x  T −+= 

=
 and the 

function ) x (h   is independent with the 

parameter  θ . The statistic r T  is sufficient for 

θ  and the UMVU estimator is r w T U rr = . 

The risk of r U  under the SELF and LLF are 
obtained as 

( )
r

θ 
 UR

2 

r) S ( =  

and 

( ) . 1
r

a
1e UR

r 
a 

r) L ( −





 −=

−
−  

 
Here the suffixes S  and L  respectively show 
the risk taken under the SELF and LLF. 
 
The inverted Gamma distribution with 
parameters α  and β  have been considered as 

the conjugate prior density for the parameter θ  
with pdf is 
 

0β , α 0,θ;  
θ

β
exp

θ

1
 

Γα

β
   ) θ ( g 

1  αα 

1 >>





−






=

+

 

(1.5) 
having the prior mean is 
 

 1α ;
1α

β
 >

−
 

 
and the prior variance is 
 

2α ;
2)(α1)(α

β
2 

2

>
−−

. 

 
For the situation where life researchers have no 
prior information about the parameter θ , the 
uniform, quasi or improper prior may be used. 
This study considered a class of quasi prior 
defined as 
 

. 0d , p 0,θ ;  
θ

d p
  exp

θ

1
    ) θ (g

d 2 >>





 −=  

(1.6) 
 

If 0d =  then a diffuse prior results, and if 
0p 1,d ==  then a non–informative prior 

results. For a set of values of d and p,  that 

satisfies the equality ( ) ( ) 1  d d p 1d Γ −=−  makes 

) θ (g 2  an proper prior. The prior mean and 
prior variance are given as   
 

2d ; 
) d p (

) 2d ( Γ
2d

≥−
−  

and 
 

( ) 3.d ;  2)(d 3)Γ(dd) (p 
d) (p

3)(d Γ 1d
4  d 2

>−−−− −
−

 

 
Some Bayes estimators and Bayes Shrinkage 
estimators are suggested for the parameter θ  
when other parameters are known. The 
properties of these estimators are studied in 
terms of relative efficiencies empirically and by 
numerical example. The Bayes estimator of 
reliability function and hazard rate are obtained 
and their properties are studied. 
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Methodology 
Bayes Shrinkage Estimators and their Properties 

The posterior density ) θ ( Z 1  for the 

parameter θ  corresponding to prior ) θ (g 1  is 
obtained as 
 

( ) ( )
0.θ  ; 

θ

e
  

α)  (r w Γ 

β r U 
   θ) (Z

1  α  r w

θ  β r U  α  r w 
r

1 

r

>
+

+= ++

+−+

 

(2.1) 
 
which is an inverted Gamma distribution with 
parameters ( )α r w +  and ( )β r Ur + . The Bayes 

estimator of θ  under SELF is obtained as 
 

( ) ( ) ,   β  r U   θEθ̂ r1 p 1 +== ϕ           (2.2) 

 

where ( ) 1 
1  1αr w    −−+=ϕ  and suffix p  

indicates, the expectation is considered under the 
posterior density. 

To utilize the prior information about 
the parameter θ  in the form of a point guess 
value 0 θ , the values of prior parameter β  are 

chosen (Shirke & Nalawade, 2003) such as 
 

( ) . θ r)   (1  βθ  θ̂  E 0 1 1 01 ϕϕ −==       (2.3) 

 
Using (2.3) in (2.2), the shrinkage estimator 
takes the form (1.3) and is named the Bayes 
shrinkage estimator: 
 

( ) . r λ  ;  θ λ1  Uλ   θ 1 1 0 1 r1 1 ϕ=−+=      (2.4) 

 
The Bayes estimator θ  under the LLF is 
obtained by simplifying the given equality 
 

( )β  r U   θ̂ 
θ

1
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θ
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(2.5) 
 
Similarly, the Bayes shrinkage estimator under 
the LLF is 
 

( ) , θ  λ1   Uλ   θ 0 2 r2 2 −+=       (2.6) 

 
where 

,r λ 2 2 ϕ= . 
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The risks under the SELF and LLF of these 
estimators are obtained as 
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Similarly, the Bayes risks of these estimators are 
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The relative efficiency of i θ  with respect to rU  
under the SELF and LLF loss criterions are 
defined as 
 

( ) ( )
( )  
θ  R

 U R
 U,θ  RE

i ) S ( 

r ) S ( 
r i ) S ( =  

and 

( ) ( )
( ) 2. 1, i ; 
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The expressions of relative efficiencies are the 
functions of r, a,  v, δ  and α.  For the selected 

values of 10; (02) 40r = 1.00, 0.50, 0.25, a =  

1.50;  1.50; 1.00,   v =  (0.25) 0.50 0.40,δ =
1.60 1.50,  and 15 10, 07,  05, 03, ,50.1α = . 

The relative efficiencies have been calculated 
and are presented in Tables 1–4 for selected 
parametric values. 

The positive values of a''  are 
considered because overestimation in mean life 
is more serious than underestimation. To guard 
against the large risk, the large values of a''  
may be ignored and the smaller values of 

) 2 ( a ≤  are considered (see Singh, et al., 
2007). 
 

Results 

Tables 1 and 2 show that the estimator 1 θ  is 

more efficient than the UMVU estimator r  U  
under the SELF and LLF for all selected 
parametric set of values when 06r ≤ . For large 

08,r ≥  the effective interval decreases with 

large 10 α ≥ . The efficiency attains maximum at 
the point 1.00δ =  (except 1.50α =  when the 
loss criterion is LLF) and the efficiency 

decreases as r  increases for all considered 
values of δ .  

In addition, under LLF loss criterion the 
efficiency increases with a''  increases for all 
considered values of δ  for small 06,r ≤  and 

for large r  in the interval 1.00δ ≤ . The 

estimator 2 θ  performs uniformly well with 

respect to r  U  for all considered values of the 
parametric space when r  is small and in the 
interval 1.25δ0.50 ≤≤  when 06r ≥  (under 
the SELF–criterion).  

In addition, the effective interval 
decreases as r  or α  increases (Table 3). The 
increasing trend in efficiency is also observed 
when a''  increases in the interval 

[ ]0.75,1.25δ∈  for other fixed parametric 
values. 

The estimator 2 θ  performs uniformly 

well with respect to r  U  under LLF loss 
criterion for all considered values of the 
parameter space (Table 4). The increasing trend 
in efficiency is observed when a''  increases for 
all δ when r  is small and in the range 1.25δ ≤  
when 08r ≥ .  

Using Tables 3 and 4, it may be 
concluded that the efficiency reaches its 
maximum at the point 1.00δ = . The efficiency 
decreases as r increases for all considered 
values of parametric space.  

Further, as v  increases, the gain in 
efficiency is recorded only in close vicinity of 
the guess value and true value of the parameter 
but the effective interval becomes smaller for 
both the Bayes shrinkage estimators. 

 
Remark 

Note that the posterior density with respect to 
the quasi prior ) θ ( g 2  is 
 

( ) ( )
.  

θ

e
 

1)d  (r w Γ 

d p  r U 
   θ) ( Z

d)    (r w 

θ  d p    r U  1d  r w 
r

2 

r

+

+−−+

−+
+=  

 
The only changes in the posterior (2.1) are 
replacement α  and β  by 1d −  and d p   
respectively. Hence, all the results are valid by 
substitution of these two. 
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Table 1: Relative Efficiency for the Bayes Shrinkage Estimator 1θ  

with Respect to rU  Under the SELF 

r  δ  

α  

1.50 3.00 5.00 7.00 10.00 15.00 

04 

0.40 1.2378 1.6544 1.6393 1.4741 1.2741 1.0864 

0.50 1.2462 1.8000 2.0000 1.9231 1.7423 1.5283 

0.75 1.2607 2.1176 3.2000 4.0000 4.6621 4.9846 

1.00 1.2656 2.2500 4.0000 6.2500 10.562 20.250 

1.25 1.2607 2.1176 3.2000 4.0000 4.6621 4.9846 

1.50 1.2462 1.8000 2.0000 1.9231 1.7423 1.5283 

1.60 1.2378 1.6544 1.6393 1.4741 1.2741 1.0864 

 

06 

0.40 1.1563 1.4337 1.4172 1.2658 1.0866 1.0708 

0.50 1.1615 1.5238 1.6667 1.6000 1.4286 1.2121 

0.75 1.1706 1.7067 2.3810 2.9091 3.3898 3.6530 

1.00 1.1736 1.7778 2.7778 4.0000 6.2500 11.111 

1.25 1.1706 1.7067 2.3810 2.9091 3.3898 3.6530 

1.50 1.1615 1.5238 1.6667 1.6000 1.4286 1.2121 

1.60 1.1563 1.4337 1.4172 1.2658 1.0866 1.0708 

 

10 

0.40 1.1163 1.3242 1.3081 1.1689 1.0721 0.7701 

0.50 1.1202 1.3889 1.5000 1.4412 1.2788 1.0614 

0.75 1.1267 1.5152 2.0000 2.3902 2.7656 2.9877 

1.00 1.1289 1.5625 2.2500 3.0625 4.5156 7.5625 

1.25 1.1267 1.5152 2.0000 2.3902 2.7656 2.9877 

1.50 1.1202 1.3889 1.5000 1.4412 1.2788 1.0614 

1.60 1.1163 1.3242 1.3081 1.1689 1.0721 0.7701 

 

15 

0.40 1.0927 1.2587 1.2437 1.1150 1.0219 0.7150 

0.50 1.0957 1.3091 1.4000 1.3474 1.1934 0.9763 

0.75 1.1008 1.4049 1.7818 2.0898 2.3967 2.5888 

1.00 1.1025 1.4400 1.9600 2.5600 3.6100 5.7600 

1.25 1.1008 1.4049 1.7818 2.0898 2.3967 2.5888 

1.50 1.0957 1.3091 1.4000 1.3474 1.1934 0.9763 

1.60 1.0927 1.2587 1.2437 1.1150 1.0219 0.7150 
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Table 2: Relative Efficiency for the Bayes Shrinkage Estimator 1θ   

with respect to rU  under the LLF 

04 r =  α  

a  δ  1.50 3.00 5.00 7.00 10.00 15.00 

0.25 

0.40 1.2666 1.7672 1.7814 1.6073 1.3911 1.1874 

0.50 1.2715 1.9093 2.1609 2.0867 1.8925 1.6607 

0.75 1.2770 2.2010 3.3852 4.2651 4.9906 5.3386 

1.00 1.2729 2.2882 4.1003 6.4364 10.923 21.021 

1.25 1.2594 2.1145 3.2063 4.0280 4.7259 5.0860 

1.50 1.2307 1.7608 1.9872 1.9241 1.7524 1.5412 

1.60 1.2257 1.6068 1.6256 1.4709 1.2763 1.0894 

 

0.50 

0.40 1.2997 1.9024 1.9552 1.7709 1.5347 1.3115 

0.50 1.3007 2.0404 2.3580 2.2880 2.0777 1.8240 

0.75 1.2968 2.3032 3.6144 4.5947 5.4006 5.7815 

1.00 1.2835 2.3423 4.2400 6.6931 11.414 22.060 

1.25 1.2613 2.1256 3.2413 4.0963 4.8409 5.2460 

1.50 1.2311 1.7640 1.9921 1.9437 1.7805 1.5706 

1.60 1.2310 1.6108 1.6262 1.4818 1.2912 1.1036 

 

1.00 

0.40 1.3830 2.2709 2.4450 2.2347 1.9422 1.6636 

0.50 1.3757 2.3977 2.9135 2.8603 2.6054 2.2894 

0.75 1.3510 2.5174 4.2662 5.5404 6.5833 7.0633 

1.00 1.3182 2.5891 4.6862 7.5059 12.955 25.292 

1.25 1.2782 2.2041 3.4259 4.3950 5.2801 5.8092 

1.50 1.2321 1.7870 2.0697 2.0563 1.9090 1.6956 

1.60 1.2323 1.6214 1.6820 1.5583 1.3718 1.1766 

 

1.50 

0.40 1.5036 2.8418 3.2760 3.0281 2.6406 2.2668 

0.50 1.4861 2.8655 3.8543 3.8407 3.5120 3.0895 

0.75 1.4372 2.9731 5.3708 7.1652 8.6319 9.2915 

1.00 1.3822 3.0604 5.5108 9.0029 15.782 31.192 

1.25 1.3225 2.4017 3.8550 5.0453 6.1813 6.9176 

1.50 1.2594 1.9032 2.2881 2.3249 2.1938 1.9654 

1.60 1.2335 1.7157 1.8501 1.7503 1.5608 1.3455 
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Table 3: Relative Efficiency for the Bayes Shrinkage Estimator 2θ   

with Respect to rU  Under the SELF 

04 r =  α  

a  δ  1.50 3.00 5.00 7.00 10.00 15.00 

0.25 

0.40 1.6932 1.6299 1.4640 1.3237 1.1778 1.0374 

0.50 1.9175 1.9995 1.9156 1.7925 1.6368 1.4674 

0.75 2.4770 3.2597 4.0396 4.5231 4.8735 5.0000 

1.00 2.7438 4.1266 6.4079 9.1891 14.298 25.314 

1.25 2.4770 3.2597 4.0396 4.5231 4.8735 5.0000 

1.50 1.9175 1.9995 1.9156 1.7925 1.6368 1.4674 

1.60 1.6932 1.6299 1.4640 1.3237 1.1778 1.0374 

 

0.50 

0.40 1.6944 1.6199 1.4540 1.3161 1.1730 1.0348 

0.50 1.9341 1.9981 1.9079 1.7850 1.6312 1.4642 

0.75 2.5485 3.3188 4.0782 4.5455 4.8817 4.9998 

1.00 2.8504 4.2566 6.5691 9.3816 14.537 25.631 

1.25 2.5485 3.3188 4.0782 4.5455 4.8817 4.9998 

1.50 1.9341 1.9981 1.9079 1.7850 1.6312 1.4642 

1.60 1.6944 1.6199 1.4540 1.3161 1.1730 1.0348 

 

1.00 

0.40 1.6917 1.5990 1.4342 1.3013 1.1636 1.0298 

0.50 1.9611 1.9928 1.8922 1.7701 1.6203 1.4578 

0.75 2.6919 3.4349 4.1529 4.5883 4.8971 4.9992 

1.00 3.0737 4.5267 6.9016 9.7765 15.026 26.276 

1.25 2.6919 3.4349 4.1529 4.5883 4.8971 4.9992 

1.50 1.9611 1.9928 1.8922 1.7701 1.6203 1.4578 

1.60 1.6917 1.5990 1.4342 1.3013 1.1636 1.0298 

 

1.50 

0.40 1.6830 1.5770 1.4147 1.2868 1.1544 1.0249 

0.50 1.9806 1.9846 1.8760 1.7554 1.6096 1.4516 

0.75 2.8351 3.5477 4.2240 4.6284 4.9113 4.9983 

1.00 3.3113 4.8108 7.2479 10.185 15.528 26.934 

1.25 2.8351 3.5477 4.2240 4.6284 4.9113 4.9983 

1.50 1.9806 1.9846 1.8760 1.7554 1.6096 1.4516 

1.60 1.6830 1.5770 1.4147 1.2868 1.1544 1.0249 
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Table 4: Relative Efficiency for the Bayes Shrinkage Estimator 2θ  
with respect to rU  under the LLF 

04 r =  α  

a  δ  1.50 3.00 5.00 7.00 10.00 15.00 

0.25 

0.40 1.8240 1.7718 1.5965 1.4448 1.2866 1.1344 

0.50 2.0515 2.1615 2.0788 1.9469 1.7782 1.5948 

0.75 2.5926 3.4508 4.3086 4.8389 5.2200 5.3538 

1.00 2.7988 4.2316 6.6005 9.4934 14.815 26.304 

1.25 2.4751 3.2671 4.0691 4.5772 4.9570 5.1097 

1.50 1.8947 1.9878 1.9172 1.8010 1.6490 1.4802 

1.60 1.6636 1.6171 1.4613 1.3250 1.1808 1.0401 

 

0.50 

0.40 1.9892 1.9353 1.7475 1.5846 1.4144 1.2504 

0.50 2.2395 2.3606 2.2710 2.1283 1.9461 1.7481 

0.75 2.8215 3.7598 4.6905 5.2598 5.6626 5.7964 

1.00 2.9917 4.5192 7.0418 10.119 15.778 27.986 

1.25 2.5656 3.3663 4.1820 4.7057 5.1063 5.2799 

1.50 1.9049 1.9946 1.9310 1.8208 1.6731 1.5056 

1.60 1.6644 1.6175 1.4633 1.3322 1.1910 1.0510 

 

1.00 

0.40 2.4607 2.4012 2.1776 1.9825 1.7780 1.5802 

0.50 2.7745 2.9280 2.8197 2.6462 2.4254 2.1857 

0.75 3.4681 4.6392 5.7837 6.4691 6.9391 7.0775 

1.00 3.5344 5.3440 8.3263 11.959 18.629 32.999 

1.25 2.8427 3.7029 4.5902 5.1748 5.6420 5.8720 

1.50 1.9870 2.0828 2.0351 1.9345 1.7908 1.6201 

1.60 1.6975 1.6564 1.5234 1.3986 1.2587 1.1151 

 

1.50 

0.40 3.2712 3.2019 2.9164 2.6657 2.4019 2.1455 

0.50 3.6926 3.9030 3.7633 3.5375 3.2503 2.9387 

0.75 4.4534 6.1474 7.6678 8.5593 9.1522 9.3049 

1.00 4.5695 6.7637 10.564 15.186 23.661 41.896 

1.25 3.3496 4.3562 5.4076 6.1173 6.7074 7.0303 

1.50 2.2055 2.3275 2.3004 2.2058 2.0581 1.8726 

1.60 1.8476 1.8227 1.6995 1.5742 1.4268 1.2692 
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Example: Exponential Failure Model 
Two hundred electronic tubes were 

tested under the exponential failure model with 
the parameter θ 04=  and the test was 
terminated after the first six items failed. The 
failure times (in hours) were recorded as 
follows:  
 

83.5, 221, 356, 478, 535, 632 
 
The relative efficiencies and Bayes risks of the 
proposed estimators were obtained for 

; 10  8.50, 5.00,α = 50; 32, 20,β = 0.50a =
1.50 1.00,  and are presented in Table 5 for 

32β 8.50,α ==  and 50.0a = . 
It may be concluded that the relative 

efficiency attains maximum at point 0 θθ = for 

all considered values. Under the LLF criterion 
the gain in efficiency is larger than the SELF–
criterion when 1.25δ ≤ . Further, the Bayes 
risks are nominal when the loss criterion is LLF. 
The risks have the tendency to be smaller when 

0 θθ >  and attains minimum when 0 θθ =  and 

then increases. Further, both the risk and Bayes 
risk decreases (increases) when )(a'' α  increases 
under both loss criterions when other parametric 
values are fixed. 
 
The Bayes Estimator of Reliability Function and 
Hazard Rate 

The Reliability function (t) Ψ  at time 

0)( t >  is defined as 
 


∞

−−=Ψ
θ t

1  wS  
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dS S e   
Γ(w)

1
 (t) .       (3.1) 

 
Similarly, the Hazard rate at time 0)( t >  is 
given by 
 

. dS S e  
e θ

 tv
    (t)

1 

θ/ t

1  wS  

θ t w

1   v w

v

 v

−∞
−−

−













= ρ    (3.2) 

 
In particular, for the exponential distribution 

1)   v(w ==  the Reliability function and Hazard 
rate are given as 

( ) θt  exp  (t) Ψ −=  and θ1  (t)  =ρ .    (3.3) 
 
The Bayes estimator of the reliability function 
and hazard rates under the SELF, corresponding 

to the posterior density ) θ (  Z1  are obtained as 
 

( )1 1  , 0, G   Ψ J∞=  and ( ) ;   , 0, G   2 1 J∞=ρ  
(3.4) 
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Similarly, the Bayes estimate of the reliability 

function 2 Ψ , and the Hazard rate 2 ρ  under 

the LLF for the given posterior ) θ (  Z1  are 
obtained by solving the given equality 
 

( )( )( ) ( )1
1 

a 
(L) 

1 
1 

1 
1  , 0, G  e(t)Ψ   a exp   , 0, G −−− ∞=∞ JJJ  

 
and 
 

( )( )( ) ( )1
2 

a 
(L) 

1 
2 

1 
2  , 0, G  e(t)  a exp   , 0, G −−− ∞=∞ JJJ ρ  

(3.5) 
 

The close form of the Bayes estimators (t) Ψ  

and (t)  ρ  under the LLF are nonexistent, 
therefore, the risk and Bayes risks do not exist in 
the closed form. For convenience, consider 
Varian’s (1975) asymmetric loss function 
defined for any parameter θ  as 
 

( ) 1    Δ a  eΔ L Δ  a −′−=′ ′ . θθ̂  Δ  ; −=′  

Hence, the Bayes estimators (t) Ψ  and (t)  ρ  
under the LLF are given by 
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(3.6) 
 
The risk and Bayes risk of these Bayes 
estimators under the SELF and LLF do not exist 
in a closed form. However, the numerical 
findings of the risk and Bayes risk for these 
Bayes estimators under SELF and LLF 

,) Ψ (R i(S) ,) Ψ (R i(L) ,) Ψ (R i(BS) ,) Ψ (R i(BL)  

,)(R i(S) ρ ,)  (R i(L) ρ )  (R i(BS) ρ and ; )(R i(BL) ρ  

3 1,  i =  are obtained for a particular case when 

1wv == . 
 
Example: Risks and Bayes Risks 

Consider the above example with 
t 250h=  the Bayes estimates for the reliability 
function and hazard rate, risks and Bayes risks 
as obtained are presented in Table 6. 

The risk of the estimator 1Ψ  increases 

as β  increases when 8.50α ≥  under the LLF. 
A similar trend is observed for the risk and 
Bayes risk of 3Ψ  as β  increases when 

8.50α ≥  under the LLF.  

Further, the Bayes risk of 1Ψ  and 3Ψ  

increases when a'' increases under both loss 
criterions. The risk and Bayes risk decreases 
when α  increases (except 50.00β ≥ ) when 

other parametric values are fixed for 1Ψ  (LLF–

criterion) and 3Ψ  (SELF and LLF criterions). 

The risk and Bayes risk for the 

estimators 1 ρ  and 3 ρ  increases as β  

increases for all the considered values of α  
under the SELF and LLF (except 5.00α = ) 
when other parametric values are fixed. The risk 

and Bayes risk of 1 ρ  and 3 ρ  also increases 

(decreases) under both loss criterions when 
) α ( a''  increases. 
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Table 5: Risk and Bayes Risk of the Bayes Shrinkage Estimators 
 

0.50a    ::    32.00β    ::   8.50α   ::  04θ   ::  06 r =====  

δ  0.40 0.50 0.75 1.00 1.25 1.50 1.60 

0 θ  1.60 2.00 3.00 4.00 5.00 6.00 6.40 

( ) U,θ  RE r 1 (S)  1.1571 1.5140 3.1921 5.0625 3.1921 1.5140 1.1571 

( ) U,θ  RE r 1 (L)  1.3339 1.7305 3.5411 5.2767 3.1873 1.4909 1.1333 

( ) U,θ  RE r 2 (S)  1.0278 1.3889 3.4623 6.8918 3.4623 1.3889 1.0278 

( ) U,θ  RE r 2 (L)  1.1872 1.5902 3.8596 7.2137 3.4783 1.3748 1.0101 

( ) θ  R 1 (BS)  3.7507 3.1416 2.0511 1.5778 1.7219 2.4832 2.9606 

( ) θ  R 1 (BL)  0.0164 0.0130 0.0103 0.0098 0.0180 0.0336 0.0421 

( ) θ  R 2 (BS)  4.3068 3.5505 2.1963 1.6086 1.7875 2.7328 3.3256 

( ) θ  R 2 (BL)  0.0184 0.0141 0.0183 0.0100 0.0202 0.0398 0.0505 

 

Table 6: Risk and Bayes Risk of the Reliability Function and Hazard Rates 
 

2.003β   ::  50.8α   ::  250   t::  04θ   ::  06 r =====  

→ a  0.50 1.00 1.50 →a  0.50 1.00 1.50 

 Ψ1  0.0097 0.0097 0.0097  Ψ3  97.860 48.930 32.620 

( ) Ψ R 1(S)  16.000 16.000 16.000 ( ) Ψ R 3(S)  7.1480 9.0530 10.810 

( ) Ψ R 1(BS)  35.192 35.192 35.192 ( ) Ψ R 3(BS)  37.160 38.380 42.950 

( ) Ψ R 1(L)  1.1353 3.0183 5.0025 ( ) Ψ R 3(L)  1.1550 1.9160 3.8300 

( ) Ψ R 1(BL)  1.7744 4.1825 6.6077 ( ) Ψ R 3(BL)  1.9700 4.3600 6.7790 

→ a  0.50 1.00 1.50 →a  0.50 1.00 1.50 

 1ρ  0.0218 0.0218 0.0218  3ρ  53.270 26.704 17.849 

( )  R 1(S) ρ  13.941 13.941 13.941 ( )  R 3(S) ρ  6.7758 8.2750 9.9006 

( )  R 1(BS) ρ  33.257 33.257 33.257 ( )  R 3(BS) ρ  35.803 37.005 41.536 

( )  R 1(L) ρ  1.0214 2.7575 4.6040 ( )  R 3(L) ρ  1.1513 1.7864 3.6102 

( )  R 1(BL) ρ  1.7085 4.0468 6.4038 ( )  R 3(BL) ρ  1.9298 4.2714 6.6433 
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Empirical Characteristic Function Approach to Goodness of Fit Tests 
for the Logistic Distribution under SRS and RSS 
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The integral of the squares modulus of the difference between the empirical characteristic function and 
the characteristic function of the hypothesized distribution is used by Wong and Sim (2000) to test for 
goodness of fit. A weighted version of Wong and Sim (2000) under ranked set sampling, a sampling 
technique introduced by McIntyre (1952), is examined. Simulations that show the ranked set sampling 
counterpart of Wong and Sim (2000) is more powerful. 
 
Key words: Goodness of fit test, empirical distribution function, logistic distribution, ranked set sampling, 

simple random sampling. 
 
 

Introduction 
In any one-sample goodness of fit test problem 
where a random sample 1 2,  ,..., rX X X  from 

an unknown distribution function ( )F x  is given 
in order to test the hypothesis 

: ( ) ( )o oH F x F x=  for all x  against the 

hypothesis 1 : ( ) ( )oH F x F x≠ , where ( ) oF x  

is a known distribution function. Stephens 
(1974) provided a practical guide to goodness of 
fit tests using statistics based on the empirical 
distribution function (EDF). Green and Hegazy 
(1976) studied modified forms of the 
Kolmogorov-Smirnov ,D  Cramer-von Mises 

2W  and the Anderson-Darling 2A  goodness of 
fit tests. Stephens (1979) gave goodness of fit  
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tests for the logistic distribution. A 
comprehensive survey for goodness of fit tests 
can be found in the book of D’Agostino and 
Stephens (1986). 

Gurtler and Henze (2000) used another 
approach to test for goodness of fit for the 
Cauchy distribution. They built their test based 
on the weighted distance between the empirical 
characteristic function of the sample and the 
characteristic function of the null distribution, 
that is, they considered the test statistic of the 
form: 
 

2
  

2 2 2 2
, 1 1

( )  ( ) ,    ( ) ,    0,

2 1 2
4 ,

( ) (1 ) 2

t t
r

r r

j jj j

T

r t e w t dt w t e

r
r y y y

∞ − −

−∞

= =

=

= Φ − = >

+
= − +

+ − + + +



 

κ

κ κ

κ

κ κ
κ κ κ

(1) 
 

where ˆˆ( ) / ,j jy x α β= −  and 

 

1

1
( ) exp( )

r

r j
j

t Ity
r =

Φ =   

 
is the empirical characteristic function of the 
sample. The function ( )w t  is a weight function 

and ˆˆ ,  α β  are the Maximum Likelihood 
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Estimators (MLE) of  and ,α β  the location and 
the scale parameters of the Cauchy distribution. 
Wong and Sim (2000) studied the test statistic  
when ( ) 1,w t ≡  for different distributions. 
Matsui and Takemura (2005) also considered the 
problem of Gurtler and Henze (2000) but used a 
different research design. For more information 
about the application of the empirical 
characteristic function to goodness of fit test see 
Feuerverger and Mureika (1977), Meintnis 
(2004), Epps (2005) and Towhidi & Salmanpour 
(2007). 

In various situations, visual ordering of 
sample units (with respect to the variable of 
interest) is less expensive against its 
quantification. For statistical populations with 
such a property, McIntyre (1952) was the first to 
employ the visual ranking of sampling units in 
order to select a sample that is more informative 
than a simple random sample. Later, his 
sampling technique was known as Ranked Set 
Sampling (RSS). Without any theoretical 
developments, he showed that the RSS is more 
efficient and cost effective method than the 
Simple Random Sampling (SRS) technique. An 
RSS sample can be obtained as follows: 
 
1. Select m  random samples from the 

population of interest each of size .m  

2. From the thi  sample detect, using a visual 

inspection, the thi  order statistic and choose 
it for actual quantification, say, ,iY  

1,..., .i m=   
3. RSS is the set of the order statistics 

1,..., .mY Y  

4. The technique could be repeated r times to 
obtain additional observations.  

 
Takahasi and Wakimoto (1968) developed the 
theoretical framework for RSS. 

Visual ranking is accomplished based on 
an experimenter’s experience. Hence, two 
factors affect the efficiency of an RSS: the set 
size and the ranking errors. The larger the set 
size, the larger the efficiency of the RSS; 
however, the larger the set size, visual ranking is 
more difficult and the ranking error is larger (Al-
Saleh & Al-Omari, 2002). For this, several 
authors have modified MacIntyre’s RSS scheme 

to reduce the error in ranking and to make visual 
ranking easier for an experimenter. Samawi, et 
al. (1996) investigated Extreme Ranked Set 
Sample (ERSS), i.e. they quantified the smallest 
and the largest order statistics. Muttlak (1997) 
introduced Median Ranked Set Sampling 
(MRSS) which consists of quantifying only the 
median in each set. Bhoj (1997) proposed a 
modification to the RSS and called it new 
ranked set sampling (NRSS). Al-Odat and Al-
Saleh (2001) introduced the concept of varied 
set size RSS, which is called later by moving 
extremes ranked set sampling (MERSS). For 
more details about these developments see Chen 
(2000). 

Stockes and Sager (1988) were the first 
who proposed a Kolmogorov-Smirnov goodness 
of fit test based on the empirical distribution 
function of an RSS. In addition, they derived the 
null distribution of their proposed test. Al-Subh, 
et al. (2008) studied the Chi-square test for 
goodness of fit test under the RSS technique and 
its modifications. Their simulation showed that 
the Chi-square test for the null logistic 
distribution is more powerful than its 
counterpart under SRS technique. This article 
examines the power of the test given in equation 
(1) when sample is selected using one of the 
modifications of the RSS, specifically, the 

modification that chooses only the thi  order 
statistic for quantification. 
 
Problem Formalization 

It can be noted that testing the 
hypotheses: 
 

1

: ( ) ( ),     

vs.

: ( ) ( )

o o

o

H F x F x x

H F x F x

= ∀

≠
 

 
is equivalent to testing the hypothesis 
 

*

*
1

: ( ) ( ),    

vs.

: ( ) ( )

o i io

i io

H G y G y y

H G y G y

= ∀

≠
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for some ,i  where ( ),  ( )i ioG y G y  are the 

cdf’s of the thi  order statistics of random 
samples of size 2 1m −  chosen from 

( ) and ( )oF x F x , respectively. The rationale 

behind choosing an odd set size - rather than an 
even one - is to simplify the comparison with the 
median RSS, because an even set size produces 
two middle values. Moreover, quantifying the 
two middle sample units is more expensive than 
quantifying one sampling unit. If ( )f y  and 

( )of y  are the corresponding pdf’s of 
( ) and ( )oF x F x , respectively, then according 

to Arnold, et al. (1992), ( ) and  ( )i ioG y G y  

have the following representations: 
 

2 1
(2 1)2 1

( ) [ ( )] [1 ( )]
m

j m j
i

j i

m
G y F y F y

j

−
− −

=

− 
= − 

 
  

 
and 
 

2 1
(2 1)2 1

( ) [ ( )] [1 ( )] ,
m

j m j
io o o

j i

m
G y F y F y

j

−
− −

=

− 
= − 

 
  

 
respectively. The corresponding pdf’s are 
 

( )
1 2 1

( )

(2 1)!
( ) (1 ( )) ( )

( 1)! 2 1 !

i

i m i

g y
m F y F y f y

i m i
− − −

=
− −

− − −
 
and 
 

( )
1 2 1

( )

(2 1)!
( ) (1 ( )) ( ),

( 1)! 2 1 !

io

i m i
o o o

g y
m F y F y f y

i m i
− − −

=
− −

− − −
 
respectively. It can be shown that 

0( )= ( )i iG y G y  if and only if ( ) ( )oF x F x= , 

which means this statistical testing problem is 
invariant. 

If ranked set sampling is employed to 

collect the data using the thi  order statistic, then 
the resulting data is used to build a test based on 
the empirical characteristic function of these 

data as described in equation (1). The empirical 
characteristic function and the population 
characteristic function that should be used, 
respectively, are: 
 

1

1
( ) exp( ),

r

ri j
j

t ItY
r =

Φ =   

and 

( ) exp( ) ( ).i iot Ity dG y
∞

−∞
Φ =   

 
Hence, a ranked set sample counterpart of the 
test  is given by 
 

2
* ( ) ( ) ( ) ,i ri iT r t t w t dt

∞

−∞
= Φ − Φ      (2) 

 
where ( )w t  is a suitable weight function. Using 
complex integration, it may be shown that: 
 

2 1( ) (1 ,  1 ).m t Beta I t I t−Φ = − −κ κ  

 

The test rejects *
oH  for large values of *.iT  

Attention is restricted to the case when 
( )/ -1( ) (1 ) ,x

oF x e θ σ− −= + that is, for the logistic 

distribution. Even for logistic distribution, the 

test *
iT  has no closed form as in the Cauchy 

case; for this, a simulation study is conducted to 

study the power of the test *
iT  and its 

counterpart .T  The two tests will be compared 
in terms of power based on samples of the same 

size. The power of the *
iT  test can be calculated 

according to the equation 
 

Power of * *( ) ( ),i H iT H P T d= > α      (3) 

 
where H  is a cdf under the alternative 

hypothesis *
1 .H  Here dα  is the 100α  

percentage point of the distribution of *
iT  under 

oH . The efficiency of the test statistic *
iT  

relative to T  is calculated as a ratio of powers: 
 

*
* power of 

( ,  ) ,
power of 

i
i

Teff T T
T

=  
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thus, *
iT  is more powerful than T  if 

*( ,  ) 1.ieff T T >  

 
Algorithms for Power and Percentage Point 

The following two algorithms 
approximate the power and the percentage of the 

tests T  and *.iT  

 
Percentage Point Algorithm: 
 

1. Simulate 1,..., rY Y  from ( ).ioG y  

2. Find *
iT  according to equation (2). 

3. Repeat steps (1)-(2) to obtain 
* *
1 10,000 ,...,  .i iT T  

4. Approximate ,dα  the percentage point of 
*.iT  

 
Power Algorithm: 
 
1. Simulate 1,..., rY Y  from ,H  a distribution 

under *
1 .H  

2. Find *
iT  according to equation (2). 

3. Repeat the steps (1)-(2) to obtain 
* *
1 10,000 ,...,  .i iT T  

4. Approximate the power of *
iT  as: 

 

Power of 
10,000

* *

1

1
( ) ( ),

10,000i it
t

T H I T dα
=

= >  

 
where (.)I  stands for indicator function. 

 
Results 

To compare tests T  and *,iT  a Monte Carlo 

simulation study was conducted to approximate 
the power of each test based on 10,000 iterations 
according to the algorithms shown. Due to 
symmetry the first and the last order statistics 
produced the same power; therefore, simulation 
results for the largest order statistic are not 
presented. The powers of the two tests were 
compared for samples sizes 10,  20,  30r = , set 

sizes 1,  2,  3,  4m =  and alternative 

distributions Normal = N(0. 1), Laplace = L(0, 
1), Lognormal = LN(0, 1), Cauchy = C(0, 1), 
StudentT = S(5), Uniform = U(0, 1), Beta (0, 1), 
ChiSquare (5) and Gamma (2, 1). In addition, 
the following weight functions were used in the 
simulation study: 
 

1( ) Real Part of  Beta(1 ,1 ),w t tI tIκ κ= − −  

2 ( ) exp( ),w t tκ= −  
2

3 ( ) exp( ),w t tκ= −  
2

4 ( ) cos( ) e ,tw t t κ−=  

and 
2 1

5 ( ) ( ) .w t t −= +κ  

 
Simulation results are presented in Tables (1)-
(5). 

Simulation results for the uniform 
distribution show that the powers of all test 
statistics equal one, for this reason these powers 
are not reported in Tables (1)-(5). The 
simulation also shows that the efficiencies are 
equal to one for the non-symmetric alternatives: 
Lognormal = LN(0, 1), ChiSquare (5), Gamma 
(2, 1) and Beta (0, 1), thus, these are not 
presented in the tables. 
 

Conclusion 
Based on data in the tables, the following 

conclusions regarding *
iT  are put forth: 

 
1. The efficiencies are greater than one for all 

alternatives, weight functions and all values 
of ,    and m r κ , thus indicating that the test 

*
1T  is more powerful than the test .T  

2. It is noted that, for each alternative, the 
efficiency is increasing in .m  

3. No clear pattern is observed in the efficiency 
values and the weight function, but for 

1.5 and  4,mκ = =  the efficiency has the 
highest values.  

4. The worst value of the efficiency occurs 
when (0,  1)  and  50.H N r= =  

 
This article considered a counterpart goodness 
of fit test based on the empirical characteristic 
function under ranked set sampling. The null 
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distribution and the power of the new test have 
no closed forms; therefore they have been 
obtained using simulation. The simulation 
results show that the ranked set sampling 
counterpart is more powerful than the empirical  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

characteristic function based on a simple random 
sample. In addition, it also possible to improve 
the power of the test statistic (1) (see 
introduction) under different ranked set 
sampling schemes, however, this discussion is 
avoided due to space limitations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Values of *( ,  )ieff T T  Using 1( )w t  for 10,  20,  30,  50r = , 1,  2,  3,  4m = and 0.05=α  
 

 r = 10, 1( ) Real Part of  Beta(1 ,1 )w t tI tIκ κ= − −  

 0.5κ =  1κ =  1.5κ =  

H\m 1 2 3 4 1 2 3 4 1 2 3 4 

(0,  1)N  1 1.31 2.13 3.25 1 1.77 4.2 6.94 1 4.25 12.26 23.52

(0,  1)L  1 1.16 1.38 1.67 1 1.60 2.82 3.76 1 3.33 6.89 10 

(0,  1)C  1 1.52 2.89 4.14 1 1.85 3.4 5.12 1 1.51 2.71 3.729

(5)S  1 1.23 1.7 2.20 1 1.48 2.73 4.02 1 2.63 6.21 10.04

 r = 20 
(0,  1)N  1 1.43 2.05 2.45 1 1.45 2.26 2.62 1 2.42 4.6 5.53 

(0,  1)L  1 1.15 1.35 1.56 1 1.47 2.25 2.79 1 2.27 4.35 5.94 

(0,  1)C  1 1.79 3.66 5.36 1 2.06 3.83 5.47 1 1.69 3.25 4.12 

(5)S  1 1.22 1.69 2.22 1 1.45 2.31 3.13 1 1.92 4.45 6.14 

 r = 30 
(0,  1)N  1 1.25 1.51 1.57 1 1.26 1.49 1.53 1 1.52 1.91 1.97 

(0,  1)L  1 1.12 1.29 1.42 1 2.32 3.01 3.75 1 2.3 3.93 5.25 

(0,  1)C  1 2.07 3.77 5.48 1 1.35 2.56 3.42 1 1.77 2.98 3.67 

(5)S  1 1.18 1.63 1.89 1 1.32 1.82 2.33 1 1.69 2.98 3.8 

 r = 50 
(0,  1)N  1 1.06 1.09 1.09 1 1.05 1.06 1.06 1 1.08 1.09 1.09 

(0,  1)L  1 1.05 1.12 1.21 1 1.16 1.35 1.52 1 1.44 2.06 2.37 

(0,  1)C  1 1.57 2.81 3.53 1 2.08 3.36 3.83 1 1.73 2.53 2.74 

(5)S  1 1.18 1.38 1.5 1 1.13 1.39 1.51 1 1.26 1.73 1.9 
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Table 2: Values of *( ,  )ieff T T  Using 2 ( )w t  for 10,  20,  30,  50r = , 1,  2,  3,  4m =  and 0.05=α  
 

 r = 10, 2 ( ) exp( )w t tκ= −  

 0.5κ =  1κ =  1.5κ =  

H\m 1 2 3 4 1 2 3 4 1 2 3 4 

(0,  1)N  1 1.31 1.91 2.82 1 1.35 2.4 3.88 1 1.57 3 4.82 

(0,  1)L  1 1.13 1.22 1.38 1 1.15 1.61 1.87 1 1.49 2.11 2.69 

(0,  1)C  1 1.67 2.44 3.56 1 1.76 3.34 4.85 1 1.53 3.13 4.43 

(5)S  1 1.25 1.55 2.06 1 1.29 1.91 2.6 1 1.47 2.11 3.35 

 r = 20 
(0,  1)N  1 1.38 2.07 2.57 1 1.44 2.11 2.48 1 1.5 2.28 2.68 

(0,  1)L  1 1.12 1.28 1.45 1 1.16 1.5 1.7 1 1.26 1.68 2.06 

(0,  1)C  1 1.63 2.7 4.04 1 2.08 3.7 5.51 1 1.92 3.63 5.24 

(5)S  1 1.3 1.68 2.2 1 1.3 1.79 2.37 1 1.39 2 2.64 

 r = 30 
(0,  1)N  1 1.28 1.64 1.78 1 1.26 1.49 1.55 1 1.28 1.51 1.55 

(0,  1)L  1 1.11 1.15 1.28 1 1.21 1.38 1.55 1 1.19 1.55 1.8 

(0,  1)C  1 1.54 2.73 3.99 1 1.86 3.58 4.77 1 1.78 3.37 4.41 

(5)S  1 1.17 1.57 1.9 1 1.22 1.64 1.94 1 1.29 1.77 2.15 

 r = 50 
(0,  1)N  1 1.11 1.16 1.16 1 1.07 1.09 1.09 1 1.05 1.07 1.07 

(0,  1)L  1 1.06 1.1 1.17 1 1.08 1.15 1.25 1 1.13 1.26 1.37 

(0,  1)C  1 1.5 2.65 3.53 1 1.77 2.97 3.55 1 1.85 2.92 3.36 

(5)S  1 1.21 1.43 1.6 1 1.13 1.34 1.47 1 1.18 1.37 1.5 
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Table 3: Values of *( ,  )ieff T T  Using 3( )w t  for 10,  20,  30,  50r =  , 1,  2,  3,  4m =  and 0.05=α  
 

 r = 10, 
2

3
tw e κ−=  

 0.5κ =  1κ =  1.5κ =  

H\m 1 2 3 4 1 2 3 4 1 2 3 4 

(0,  1)N  1 1.35 2.33 3.66 1 1.46 3.43 5.6 1 1.59 5.21 9.18 

(0,  1)L  1 1.48 2 2.46 1 1.88 2.98 3.85 1 2.45 4.48 6.17 

(0,  1)C  1 1.78 3.37 5.53 1 1.97 3.91 5.88 1 1.82 3.29 4.79 

(5)S  1 1.15 1.8 2.45 1 1.37 2.55 3.97 1 1.6 3.67 6.5 

 r = 20 
(0,  1)N  1 1.45 2 2.33 1 1.41 2.27 2.63 1 1.41 2.46 2.86 

(0,  1)L  1 1.12 1.44 1.72 1 1.36 1.99 2.39 1 1.47 2.54 3.14 

(0,  1)C  1 1.91 3.85 6.03 1 2.17 4.71 6.72 1 2.35 3.79 5.87 

(5)S  1 1.29 1.73 2.3 1 1.34 2.13 2.9 1 1.51 2.68 3.7 

 r = 30 
(0,  1)N  1 1.19 1.4 1.45 1 1.24 1.45 1.48 1 1.34 1.6 1.64 

(0,  1)L  1 1.12 1.33 1.52 1 1.19 1.73 2 1 1.56 2.27 2.81 

(0,  1)C  1 1.99 3.95 5.35 1 2.26 4.26 5.78 1 2.84 4.48 5.76 

(5)S  1 1.22 1.59 1.95 1 1.27 1.8 2.19 1 1.25 2 2.51 

 r = 50 
(0,  1)N  1 1.06 1.07 1.07 1 1.04 1.05 1.05 1 1.05 1.06 1.06 

(0,  1)L  1 1.08 1.15 1.24 1 1.12 1.34 1.52 1 1.13 1.51 1.76 

(0,  1)C  1 2.04 3.29 4.12 1 2.32 3.86 4.52 1 2.22 3.47 3.94 

(5)S  1 1.15 1.35 1.45 1 1.12 1.37 1.48 1 1.17 1.49 1.62 
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Table 4: Values of *( ,  )ieff T T  Using 4 ( )w t  for 10,  20,  30,  50r = , 1,  2,  3,  4m =  and 0.05=α  
 

 r = 10, ( ) 2

4 cos tw t | ( t )| e−κ=  

 0.5κ =  1κ =  1.5κ =  

H\m 1 2 3 4 1 2 3 4 1 2 3 4 

(0,  1)N  1 2.15 4.99 8.55 1 2.92 8.08 15.10 1 5.61 15.6 31.60

(0,  1)L  1 1.95 3.54 4.56 1 3.35 6.40 9.25 1 3.41 7 11 

(0,  1)C  1 1.95 3.51 5.02 1 1.84 3.26 4.82 1 1.61 3.01 4.09 

(5)S  1 1.63 3.21 4.96 1 2.14 5.52 8.86 1 2.17 5.38 8.76 

 r = 20 
(0,  1)N  1 1.45 2.36 2.78 1 1.75 3.06 3.6 1 1.97 3.95 4.83 

(0,  1)L  1 1.39 2.08 2.61 1 1.64 2.71 3.73 1 2.04 3.87 5.37 

(0,  1)C  1 2.37 4.51 6.53 1 2.28 4.22 5.93 1 1.95 3.51 4.76 

(5)S  1 1.54 2.37 3.18 1 1.57 3.02 4.35 1 2.13 3.90 5.60 

 r = 30 
(0,  1)N  1 1.27 1.49 1.53 1 1.24 1.55 1.59 1 1.36 1.77 1.81 

(0,  1)L  1 1.33 1.76 2.17 1 1.39 2.23 2.71 1 1.87 3.23 3.98 

(0,  1)C  1 2.59 4.83 6.2 1 2.1 4.17 5.43 1 1.89 3.41 4.33 

(5)S  1 1.33 1.9 2.28 1 1.45 2.36 3.03 1 1.71 2.69 3.48 

 r = 50 
(0,  1)N  1 1.04 1.05 1.05 1 1.06 1.07 1.07 1 1.05 1.06 1.06 

(0,  1)L  1 1.19 1.41 1.6 1 1.27 1.7 1.94 1 1.38 2.04 2.38 

(0,  1)C  1 2.33 3.98 4.54 1 2.03 3.3 3.7 1 2.03 3.14 3.44 

(5)S  1 1.2 1.46 1.59 1 1.24 1.57 1.71 1 1.24 1.62 1.83 
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Introduction 
A parametric location-scale model for a random 
variable y on (-∞ ,∞) is distributed with pdf of 
the form 
 

1 yp( y; , ) f , y− μ μ σ = − ∞ < < ∞ σ σ   
(1.1) 

 
where )( ∞<<−∞ μμ  is a location parameter 

and 0>σ  is a scale parameter (not necessarily 
mean and standard deviation). This family can 
also be written as 
 

zy σμ +=                      (1.2) 
 

where 
σ

μ−= yz is the standardized variate 

with density f(z), David (1981). A few important 
models, namely, normal, logistic and extreme 
value are some important members of the 
location-scale family. 
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Bogdanoff and Pierce (1973) analyzed 

an extreme value model treating non informative 
priors for location and scale parameters. 
Stavrakakis and Drakopoulos (1995) and 
Galanis, et al. (2002) deal with an extreme value 
model with Bayesian statistics. Sinha (1986) and 
Khan (1997) also cite several references for non-
normal f(z). 
 
Bayesian Analysis when Both Parameters μ and 
σ  Are Unknown 

Suppose that n observations 

),,,( 21 n
T yyyy =  can be regarded as a 

random sample from a location-scale family of 
models in (1.2), but both σμ and  are 
unknown; in terms of general notation 

),( σμθ =T , the likelihood function is given by 
 

∏
=

=
n

i
iypyp

1

),|(),|( σμσμ  

 
The log-likelihood is defined as 
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or equivalently 


=

=
n

i
ill

1

),( σμ                  (2.1) 

 

where σlog)(log −= ii zfl  and 
σ

μ−
= i

i
y

z . 

Following the standard approach of Box 
and Tiao (1973), assume that a priori μ and σ  
are approximately independent, so that 
 

)()(),( σμσμ ppp ≅               (2.2) 
 
where p(μ) and p(σ) are priors for μ and σ, 
respectively. Using Bayes theorem, the posterior 
density of )|,( yp σμ  is given by 
 

∏
=

n

i
i ppypyp

1

)()(),|()|,( σμσμασμ  

or 

)()()()|,(
1

1 σμσασμ ppzfyp
n

i
i 






∏
=

−  

(2.3) 
 
The joint posterior density of μ and σ  is 
assumed to contain all information required in 
the statistical analysis (e.g., Box & Tiao, 1973), 
therefore, the main job remains to study the 
different features of ).|,( yp σμ The posterior 
mode can be obtained by maximizing (2.3) with 
respect to μ and σ . To formalize this, define 
 

)|,(log),( ypl σμσμ =∗  
thus, 
 

l ( , ) l( , ) log p( ) log p( ).∗ μ σ = μ σ + μ + σ  
(2.4) 

 
The maximization of )|,( yp σμ  is equivalent 

to maximizing ),( σμ∗l  with respect to ),( σμ . 
To apply the Newton-Raphson technique, partial 

derivatives of ),( σμ∗l  are needed and some 
notations must be defined for simplification 
purposes. For example 
 
 

2 2

2 2

2 2
 

l l l ll , l , l , l ,

l ll , and l .

μ σ μσ σμ

μμ σσ
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∂μ ∂σ
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+=∗ , μσμσ ll =∗ , σμσμ ll =∗ , 
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where )()( xDfxf =′  and 

[ ] ),()( 2 xfDxf =′′ D  stands for differential 
operator. Consequently, the score vector of log-
posterior 
 

TllU ),(),( ∗∗= σμσμ  

 
and Hessian matrix of log-posterior, that is, 
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μσμμσμ
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thus, the posterior mode ),(
∧∧
σμ  can be obtained 

from iteration scheme 
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Consequently, the modal variance Σ can be 
obtained as 

),(),( 11
∧∧

−
∧∧

− −= σμσμ HI . 
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For drawing an inference about μ and σ  
simultaneously, the joint posterior p( , | y )μ σ is 
used. It is preferable to use approximations to 
this posterior as given below: 
 
Normal Approximations 

A bivariate normal approximation of 
)|,( yp σμ , is 

 







≅

∧∧
−

∧∧
),(,),()|,( 1

2 σμσμσμ INyp T  

(2.6) 
 
Similarly, the Bayesian analog of likelihood 
ratio criterion is 
 

2
2)],(),([2 χσμσμ ≈−−

∧∧
∗∗ ll         (2.7) 

 
where the symbol ≈  means approximately 
distributed as. Defining =),( σμW

)],(),([2
∧∧

∗∗ −− σμσμ ll  using ),( σμW  as a 
test criterion in hypothesis testing and 
construction of the credible region (confidence 
interval in non-Bayesian terminology).  
 
Laplace’s Approximation 

Laplace’s approximation of )|,( yp σμ  
can also be written as 
 

1
1 22

p( , | y )

( ) | I( , )| exp[ l ( , ) l ( , )]
∧ ∧ ∧ ∧

− ∗ ∗

μ σ ≅

π μ σ μ σ − μ σ
 

(2.8) 
 
The Marginal Inference 

The marginal Bayesian inference about 
μ and σ  is based on marginal posterior densities 
of these parameters. The marginal posterior for 
μ can be obtained after integrating out 

)|,( yp σμ  with respect to σ, that is, 
 


∞

=
0

)|,()|( σσμμ dypyp  

 
Similarly, marginal posterior of σ  can be 
obtained as 

p( | y ) p( , | y )d .
∞

−∞
σ = μ σ μ  

 
For normal likelihood )|,( yp σμ  and 

non-informative prior ,
1

),(
σ

ασμp  it can be 

shown that )|( yp σ  is the inverted χ-
distribution (Box & Tiao, 1973; Zellener, 1971). 
But if either assumption of normality is extended 
to other members of location scale family or the 
prior is changed then closed form expressions 
cannot be obtained and approximations must be 
relied upon (Khan, 1997). In practice, the Gauss-
Hermite quadrature (Naylor & Smith, 1982) can 
be used to find accurate approximations of 

)|( yp μ  and )|( yp σ , however, following 
simple approximations is recommended. 
 
Normal Approximation 

The normal approximation of marginal 
posterior )|( yp μ  is: 

),()|( 1
111
−

∧
= INyp μμ             (3.1) 

 
In addition, the Bayesian analog of likelihood 
ratio criterion can also be defined as a test 
criterion based on (3.1) as 
 

2
111 )()( χμμμμ ≈−−

∧∧
IT          (3.2) 

 
Laplace’s Approximation 

The marginal posterior density 
)|( yp μ  can alternatively be approximated by 

 

1

2

2

p( | y )

| I( , )| exp[ l ( , ( )) l ( , )]
| I( , ( ))|

∧ ∧
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∗ ∗
∧

μ ≅

 μ σ  μ σ μ − μ σ
 π μ σ μ 

(3.3) 
 
Similarly, )|( yp σ  can be approximated and 
results corresponding to normal and Laplace’s 
approximation can be written as 
 

),()|( 1
221
−

∧
= INyp σσ              (3.4) 
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or equivalently, 
 

2
122 )()( χσσσσ ≈−−

∧∧
IT         (3.5) 

 

1

2

2

p( | y )

| I( , )| exp[ l ( ( ), ) l ( , )]
| I( ( ), )|

∧ ∧
∧ ∧ ∧

∗ ∗
∧

σ ≅
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 π μ σ σ 

(3.6) 
 
Bayesian Analysis of Logistic Distribution 

The pdf of the logistic distribution is 
given by 
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The likelihood function is given by 
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And the log-likelihood is defined as 
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where 
σ

μ−
= i

i
yz . 

 
Taking partial derivatives with respect to μ and 
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Following the standard approach of Box and 
Tiao (1973), Gelman, et al. (1995), it is assumed 
that the prior μ and σ  are approximately 
independent so that 
 

)()(),( σμσμ ppp ≅             (4.2) 
 
where )()( σμ pp  and )(σp  are priors for μ  

and σ . Using Bayes theorem, the posterior 
density )|,( yp σμ  is 
 

∏
=

n

i
i ppypyp

1

)()(),|()|,( σμσμασμ  

(4.3) 
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and the log-posterior is given by 
 

1

n

i
i

log p( , | y )

log p( y | , ) log p( ) log p( )
=

μ σ =

μ σ + μ + σ∏  

(4.4a) 
or 
 

)(log)(log),(),( σμσμσμ ppll ++=∗  
(4.4b) 

 

For a prior 1)()(),( =≅ σμσμ ppp , μμ ll =∗ , 

σσ ll =∗ , μσμσ ll =∗ , σμσμ ll =∗ , μμμμ ll =∗  and 

σσσσ ll =∗ . The posterior mode is obtained by 

maximizing (4.4) with respect to μ and σ. The 
score vector of the log posterior is given by 
 

TllU ),(),( ∗∗= σμσμ  

 
and the Hessian matrix of the log posterior is 
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consequently, the modal variance Σ can be 
obtained as 

),(),( 11
∧∧

−

∧
∧

− −= σμσμ HI . 
 
For drawing inferences about μ and σ  
simultaneously, the joint posterior (7.3) is used. 

Using normal approximation, a bivariate 
normal approximation of (7.3) can be written as 
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Similarly, a Bayesian analog of likelihood ratio 
criterion is 
 

2
2),(),(2 χσμσμ ≈



 −−

∧∧
∗∗ ll  

 
Using Laplace’s approximation, )|,( yp σμ  
can be written as 
 

1
1 22

p( , | y )

( ) | I( , )| exp[ l ( , ) l ( , )]
∧ ∧ ∧ ∧

− ∗ ∗

μ σ ≅

π μ σ μ σ − μ σ
 

 
The marginal Bayesian inferences about 

μ and σ  are based on the marginal posterior 
densities of these parameters, and the marginal 
posterior for μ can be obtained after integrating 
out )|,( yp σμ  with respect to σ, that is 
 


∞

=
0

)|,()|( σσμμ dypyp  

 
Similarly, the marginal posterior of σ  can be 
obtained as 
 


∞

∞−
= μσμσ dypyp )|,()|( , 

 
thus, normal approximation of the marginal 
posterior )|( yp μ  is 
 

),()|( 1
111
−

∧
= INyp μμ . 

 
The Bayesian analog of likelihood ratio criterion 
can also be defined as a test criterion as 
 

2
111 )()( χμμμμ ≈−−

∧∧
IT  

 
and Laplace’s approximation of marginal 
posterior density )|( yp μ  can be given by 
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1

2

2

p( | y )

| I( , )| exp[ l ( , ( )) l ( , )]
| I( , ( ))|
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∗ ∗
∧

μ ≅

 μ σ  μ σ μ − μ σ
 π μ σ μ 
 
Similarly, )|( yp σ  can be approximated with 
results corresponding to normal and Laplace’s 
approximation can be written as 
 

),()|( 1
221
−

∧
= INyp σσ  

 
or equivalently, 
 

2
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σ ≅

 μ σ  μ σ σ − μ σ
 π μ σ σ 
 
 
Numerical and Graphical Illustrations 

Numerical and graphical illustrations are 
implemented using both S-PLUS and R software 
for Logistic distribution. These illustrations are 
intended for the purpose of showing the strength 
of Bayesian methods in practical situations. The 
posterior mode and standard errors of 
parameters μ  and σ  of logistic distribution are 
presented in Table 4. A graphical display for 
comparing the posterior of μ  using the Normal 
and Laplace approximations are shown in 
Figures 1 to 3 and a comparison for the posterior 
of σ  is displayed in Figures 4 to 6. The graph 
shows that the two approximations are in close 
agreement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: A Summary of Derivatives of Log Likelihoods 
Distributions 

Derivatives Normal Extreme-Value Logistic 
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Table 2: A Summary of Prior Densities for Location Parameter μ 
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Density 
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Table 4: Posterior Mode and Posterior Standard Error of Parameters of Logistic Distribution 
with Different Priors 

Prior 
Posterior 

Mode 
μ 

Posterior 
Standard Error 

μ 

Posterior 
Mode 
σ 

Posterior 
Standard Error 

σ 

1 168.63355 2.679672 58.65997 1.320980 

1/sigma 168.62814 2.678635 58.63024 1.319912 

1/(mu*sigma) 168.58558 2.678692 58.62837 1.319845 

1/(mu*sigma)^2 168.53766 2.677714 58.59681 1.318714 

 
 
 
 

Figures 1-3: Comparing Normal and Laplace's Approximation for μ of Logistic 
Distribution for Various Priors in S-PLUS and R 

 
Figure 1: Comparison between Normal and Laplace Approximations 
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Figure 2: Comparison between Normal and Laplace Approximations 

 
 
 
 

Figure 3: Comparison between Normal and Laplace Approximations 
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Figures 4-6: Comparing Normal and Laplace’s Approximation for σ of Logistic Distribution for 
Various Priors in S-PLUS and R 

 
Figure 4: Comparison between Normal and Laplace Approximations 

 
 
 

Figure 5: Comparison between Normal and Laplace Approximation 
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ANN Forecasting Models for ISE National-100 Index 
 

Ozer Ozdemir Atilla Aslanargun Senay Asma 
Anadolu University,  

Eskisehir, Turkey 
 

 
Prediction of the outputs of real world systems with accuracy and high speed is crucial in financial 
analysis due to its effects on worldwide economics. Because the inputs of the financial systems are time-
varying functions, the development of algorithms and methods for modeling such systems cannot be 
neglected. The most appropriate forecasting model for the ISE national-100 index was investigated. Box-
Jenkins autoregressive integrated moving average (ARIMA) and artificial neural networks (ANN) are 
considered by using several evaluations. Results showed that the ANN model with linear architecture 
better fits the candidate data. 
 
Key words: ISE stock market, time series modeling, artificial neural network, forecasting. 
 
 

Introduction 
Statistical modeling via artificial neural 
networks (ANN) has recently been widely used 
for time series forecasting for economy, 
hydrology, electricity, tourism, etc. Many 
studies in the literature support that ANN time 
series models show better results than Box-
Jenkins (BJ) models (Aslanargun, 2007; Ansuj, 
et al., 1996; Chin & Arthur, 1996; Hill, et al., 
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1996; Kohzadi, et al., 1996; Maier & Dandy, 
1996). 

In this article, ANN forecasting models 
are used to study an economical forecasting 
problem, the case selected is from the Turkey 
Istanbul Stock Market. The performance of the 
determined model is demonstrated by comparing 
the models via mean square error. The aim of 
this study is to construct ANN forecasting 
models for the Istanbul Stock Exchange (ISE) 
national-100 index which has effects on much 
economic behavior. The time series taken at 
hand is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Due to the nonlinear structure of the 
corresponding time series, ANN is the 
appropriate tool for accurate modeling. The 

Figure 1: The Fluctuation of Time Series 
in ISE Stock Market 

Plot of variable: ENDEKS

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216
Case Numbers

0

5000

10000

15000

20000

25000

30000

E
N

DE
K

S

0

5000

10000

15000

20000

25000

30000

 



ANN FORECASTING MODELS FOR ISE NATIONAL-100 INDEX 

580 
 

designer has to decide about the number of 
inputs and outputs, the activation functions, the 
algorithm for obtaining the weights of the net, 
the number of hidden layers and the number of 
neurons inside the hidden layers. Because all 
combinations of choices result in different ANN 
models the analysis becomes complicated, 
therefore, simulation of the various types of 
neural nets is crucial. Hence, to address such 
decisions in this study, the intelligent problem 
solver (IPS) module of the STATISTICA 7.0 
was used.  The corresponding program allows a 
researcher to construct one million ANN models 
at a time and select the best of them; thus, 
100,000 ANN models were run to obtain the 
appropriate one for ISE Stock Market. 
Additionally, standard ARIMA models were 
also constructed. 
 

Methodology 
Over all the forecasting methods, the artificial 
neural network (ANN) is the most popular 
method. For different tasks such as 
classification, clustering, regression, etc. 
(Bishop, 1995) different types of neural 
networks are available, such as feed forward, 
radial basis function (RBF), Kohonen self-
organizing and Bayesian. Training of the neural 
network is accomplished based on a specific cost 
function as sum of the square errors. Different 
types of available algorithms for training the 
network and include, among others, back 
propagation, conjugate gradient, quasi-Newton 
and steepest-descent. The weights of the 
network, also called parameters of the model, 
can be found by taking the derivative of the cost 
function subject to network parameters and 
updating those parameters until those which 
minimize the cost function are identified. 
 
Network Overview 

The following five networks are 
indicated as the best potential networks for the 
data in this study (Bishop, 1995; Haykin, 1999). 
 
Linear 

Linear networks have only two layers: 
an input and an output layer. This type of 
network is best trained using a Pseudo-Inverse 
technique. 
 

Multi Layer Percepteron (MLP) 
MLP networks are constructed of 

multiple layers of computational units. Each 
neuron in one layer is directly connected to the 
neurons of the subsequent hidden layer. The 
frequently used activation function is the 
sigmoid function. Multi-layer networks use a 
variety of learning techniques, the most popular 
being back-propagation. 
 
Radial Basis Function (RBF) 

The RBF network consists of an input 
layer, a hidden layer of radial units and an 
output layer of linear units. Typically, the radial 
layer has exponential activation functions and 
the output layer has linear activation functions. 
 
Generalized Regression Neural Networks 
(GRNN) 

The GRNN network is a type of 
Bayesian network. GRNN has exactly four 
layers: input, a layer of radial centers, a layer of 
regression units, and output. This network must 
be trained by a clustering algorithm. 
 

Results 
ANN and ARIMA Forecasting Model Analysis 

ARIMA models are analyzed by the 
Time Series module of STATISTICA 7.0, and 
ANN models are obtained by using the IPS 
module. First, stationary of variance is 
considered for analyzing the time series aspect 
of ARIMA models. Because this time series is 
not stationary, natural log transformation for this 
time series is applied. Moreover, different 
transformations are applied due to the trend 
effect. Later, the ARIMA ( )( )12

0,1,1 0,1,0  model 

was found to be the best because it has the less 
mean square error (MSE) compared to the 
alternatives: the summary of this model, which 
is significant, is shown in Table 1. 
 
 
 
 
 
 
 
 
 

Table 1: Summary of ARIMA ( )( )12
0,1,1 0,1,0  Model 

Transformations: ln(x),D(1),D(1) 
Model:(0,1,1)(0,1,0) MS Residual= 0,02903 

Parameter 
Par. 

Value 
P Lower Upper 

( )1q  0.890715 0.00 0.819855 0.961575 
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Forecasted values calculated for the period 
between January 2005 and June 2005 by using 
ARIMA ( )( )12

0,1,1 0,1,0  model are shown in Table 

2 along with observed values of this period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The MSE is calculated by using forecasted and 
observed values in Table 2 as follows: 
 

( )
6

2

1

1
ˆ 14217239.31

6 i i
i

MSE y y
=

= − = .   (1) 

 
After calculating the MSE for the 

ARIMA model, the design of the ANN time 
series is prepared. The time series is in month 
periods, hence 12 inputs are taken and regarded 
for the months of a year and one output neuron 
is taken as the design of the neural net. The 
values of the first input neuron called 1X  is 
taken for the period January 1988 – December 
2003, the second input neuron is one month 
delayed and so its period runs from February 
1988 – January 2004. The remaining input 
neurons are constructed in similarly. The output 
neuron, Y , is the values of the period from 
January 1989 – December 2004. 

Statistical modeling using ANN is 
analyzed by IPS. IPS provides the opportunity to 
conduct various experiments through different 
combinations of algorithms and designs. In this 
research study, the IPS was ordered to choose 
the 5 best models among 1,000 various neural 
nets. The minimum input number was 1 and the 
maximum input number was specified as 12. 

The models obtained from the IPS and their 
performance measures are shown in Tables 3 
and 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Generalized Regression neural 
network (GRNN), Multilayer Percepteron 
(MLP), Radial Basis Neural Network (RBF) and 
Linear neural networks performed well and 
produced the best results among all the predicted 
ANN time series models. In order to obtain a 
more accurate forecasting model, each model 
was used to calculate the forecast values by 
running the net again for the remaining test data 
and the MSE was calculated for each model 
respectively; results are shown in Table 5. 

As apparent in Table 4, the ANN 
forecasting model consisting of linear neural net 
performs the forecasting with less error. It is 
concluded that, for fluctuation in the ISE stock 
market, the usage of Linear Neural Net Time 
Series provides more accurate results than the 
other variations of the ANN time series models. 
The weights (parameters) of this Linear 2:2-1:1 
Neural Network are shown in Table 6. 

Table 2: Forecasting Values for ARIMA
( )( )12
0,1,1 0,1,0  Model 

Period Month-Year 

Forecasting 
Values 

( )ŷ  

Observed 
Values 

( )y  

205 January-2005 25946.05 27330.35 

206 February-2005 26958.43 28396.17 

207 March-2005 28010.31 25557.76 

208 April-2005 29103.24 23591.64 

209 May-2005 30238.82 25236.48 

210 June-2005 31418.70 26957.32 

Table 3: Summary of 5 Best Models for 
Forecasting 

Profile Train Error 

Linear 2:2-1:1 0.045627 

MLP s3 3:9-1-1:1 0.050194 

GRNN 5:5-92-2-1:1 0.000030 

GRNN 7:7-92-2-1:1 0.000026 

RBF s6 12:72-16-1:1 0.000027 

Table 4: Summary of 5 Best Models for Forecasting 
(continued) 

Profile Test Error 
Training/ 
Members 

Linear 2:2-1:1 0.058281 PI 

MLP s3 3:9-1-1:1 0.077745 
BP100, CG20, 

CG11b 
GRNN 5:5-92-2-1:1 0.000043 SS 

GRNN 7:7-92-2-1:1 0.000041 SS 

RBF s6 12:72-16-1:1 0.000037 KM, KN, PI 
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For modeling, monthly index values 
have been taken from final quotations of the 
Istanbul Stock Exchange National-100 index 
between January 1988 and December 2004. 
Forecasting was done for a period between 
January 2005 and June 2005. The best models 
were determined by using the Box-Jenkins 
method and artificial neural networks for a time 
series which consisted of Istanbul Stock 
Exchange National-100 index values. 
Forecasting values for considered models of 
both methods are provided in Table 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MSE values of the models considered in Table 7 
are given in Table 8. 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7 shows that MSE value which belongs to 
the Linear 2:2-1:1 model is smaller than the 
MSE value of the ARIMA ( )( )12

0,1,1 0,1,0  model 

which was found using BJ method. 
 

Conclusion 
This study presented ANN forecasting models 
that can be used as tools for predicting 
unexpected booms in the economy. The 
corresponding analyses were conducted by using 
IPS because it gives an opportunity to compare 
various types of ANN models together. 
Experimental studies were performed across 
1,000 neural nets and the best 5 ANN models 
based on mean square error were evaluated. 
Additionally, ARIMA models were considered 
in order to evaluate the effectiveness of the 
presented ANN models. Finally, it was 
expressed that an ANN model conducted with 
linear architecture had better forecasting 
performance compared to the ARIMA model. 
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Table 5: Mean Square Errors of the Best 5 Models 

Model MSE 

Linear 2:2-1:1 3468672 

MLP s3 3:9-1-1:1 14388771 

GRNN 5:5-92-2-1:1 4124962 

GRNN 7:7-92-2-1:1 4021692 

RBF s6 12:72-16-1:1 15886195 
 
 

Table 6: Weights of the Linear 2:2-1:1 Neural 
Network 

 2.1 
Thresh -0,002914 

1.1 0,147587 
1.2 0,762368 

 

Table 7: Forecasting Values for ANN and ARIMA 

Period Month-Year 
Forecasting 

Values 
(ANN) 

Forecasting 
Values 
(B.J.) 

205 January-2005 24837.82 25946.05 

206 
February-

2005 
27235.23 26958.43 

207 March-2005 25504.51 28010.31 

208 April-2005 27133.13 29103.24 

209 May-2005 26053.71 30238.82 

210 June-2005 27154.03 31418.70 

Table 8: Mean Square Errors for  
ANN and ARIMA 

Model MSE 

Linear 2:2-1:1 3468672 

ARIMA ( )( )12
0,1,1 0,1,0  14217239 
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Markov Chain Analysis and Student Academic Progress: 
An Empirical Comparative Study 

 
Shafiqah Alawadhi Mokhtar Konsowa 

Kuwait University 
 

 
An application of Markov Chain Analysis of student flow at Kuwait University is presented based on a 
random sample of 1,100 students from the academic years 1996-1997 to 2004-2005. Results were 
obtained for each college and in total which allows for a comparative study. The students’ mean 
lifetimes in different levels of study in the colleges as well as the percentage of dropping out of the 
system are estimated. 
 
Key words: Absorbing Markov chains, transition probabilities; absorbing state. 
 
 

Introduction 
The realization of the importance of education 
has increased among the public in Kuwait, and 
as a result, the traditional formal education has 
changed in recent years. To compete in the 
world market, nations are giving priority to 
higher education for the purpose of preparing 
students t o  b e  capable to bear the 
responsibility. Higher educational institutions in 
the state of Kuwait have encountered 
challenges in recent years. The economic and 
social needs associated with higher educational 
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institutions have a t t r a c t e d  t h e  attention of 
many segments of the Kuwaiti public to 
observe the performance of these 
organizations with renewed and increased 
interest. The financial burden on the 
government to support higher educational 
institutions in Kuwait increases the 
responsibility of the institutions to maintain 
their efficiency. Kuwait University (KU) 
consists of 13 colleges which follow a regular 
semester system, with the exceptions of the 
Medical Sciences and Law colleges, which 
follow an annual system. Each semester 
consists of approximately 16 weeks and each 
year includes two semesters:  Fall (September - 
January) and Spring (February - June). KU 
also offers a summer semester that is not 
compulsory; however, about 65% of students 
take summer courses. A typical student takes 
about 4 years to complete the required credit 
hours; students of Engineering and the Medical 
S ciences colleges are exceptions and they take 
slightly longer to complete the credit hours. The 
required numbers of credit hours to graduate 
from the different colleges are: 
 
1. Allied Health, Social Sciences, Science and 

Business Administration: 126 to 130 
credit hours. 

2. Arts and Education: 132 credit hours. 
3. Sharia & Islamic Studies: 142 credit hours. 
4. Engineering and Petroleum: 144 credit 

hours. 
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5. Medical Sciences (Pharmacy - 5 yrs; 
Dentistry - 6 yrs; Medicine - 7 yrs; annual 
system). 

6. Law (4 yrs; annual system). 
 

The regular registered credit hours per 
semester are between 12 and 19 but it is not 
allowed to be less than 12 credits, however, in 
summer semester it ranges between 3 and 9 
credit hours. Depending on the completed 
credit hours the students are classified into 8 
levels: 
 
1. F: Freshman, a student who successfully 

completed less than 31 credit hours.  
2. So: Sophomore, a student who 

successfully completed between 31 and 60 
credit hours. 

3. J: Junior, a student who successfully 
completed between 61 and 90 credit 
hours. 

4. Se: Senior, a student who successfully 
completed more than 90 credit hours. 

5. NR: Not registered, perhaps to take care 
of personal problems, but eventually will 
return to the system 

6. G: Graduated from KU. 
7. D: Dropped out or academically dismissed 

from KU.  
8. T: Transferred to another college in KU. 
 

The outcomes (graduates) of KU are 
considerably less than the incomes (freshmen). 
This is more visible in the scientific colleges. 
The attrition occurs from KU and in 
particular from scientific colleges at a 
significant percentage. It a l s o  happens that 
the transfer from scientific colleges to art 
colleges also occurs at a high percentage. 

A high proportion of students may 
stay longer in their course of study for several 
reasons, especially in t he  freshman and senior 
stages. As such, it is necessary to study the 
average time that a student spends in each 
level, as well as the probability that a student 
who has been admitted will graduate or 
withdraw from each college specifically and 
generally from KU. A comparative study was 
conducted between the different colleges and 
between KU and each of these colleges in 

order to determine which college is closest to 
the normal average time. Finally the factors 
that cause a  s t u d e n t  t o  s p e n d  
0 increasing numbers of semesters in each 
level of study were investigated. 

Markov analysis is used to investigate 
the flow process of students in KU. It has been 
employed in several flow processes (see 
Wainwright, 2007; Nichols, 2008; Al-Awadhi & 
Konsowa, 2007; Bessent & Bessent, 1980; 
Kolesat, 1970; Kwak, et al., 1985; Merddith, 
1976; McNamara, 1974). Al-Awadhi and 
Konsowa (2007) studied student flow in the 
College of Science at KU. Bessent and Bessent 
(1980) studied the progression process of 
doctoral students in a university department to 
avoid undesirable future dissertation overload 
for supervising professors. Kwak, et al. (1985) 
were interested in forecasting student enrollment 
variations for an academic institution. Bessent 
and Bessent (1980) proposed an enrollment 
retention model using a Markov process to 
analyze enrollment rates for overlooked 
segments of the student population as well as the 
retention rate for specifying degree programs, 
rather than just the retention rates for aggregate 
incoming freshman. Reynolds and Porath (2008) 
studied absorbing Markov chains to model the 
academic progress of students attending the 
University of Wisconsin-Eau Claire over a 
specific time period. 
 

Methodology 
A random sample of 1,100 students was selected 
from the office of the Deanship of Admission 
and Registration. The data pertains to a period of 
9 years from the academic years 1996-1997 to 
2004-2005. Stratified random sampling was 
used for the sample collection. The sample size 
for each college was determined in proportion to 
the total number of students in each college and 
the sample from each college was divided into 8 
groups proportionally to the number of students 
in each level defined as: freshmen, sophomore, 
junior, senior, non-register, graduate, drop out 
and transfer. Each of these groups was 
subdivided proportionally according to the 
departments in the college. Finally a random 
sample of each of the sub-groups was selected 
from each college. 
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The Conceptual Framework: Markov Chains 
Some background concerning the 

Markov chains is presented, for additional detail; 
see Kwak, et al. (1985) or Resnick (1994). 
Consider a finite discrete time homogeneous 
stochastic process with index set ℤ = {0, 1, 
2,...}; that is, a sequence {Xn: n ∈ ℤ } of 
random variables. As usual the subscript n in Xn 
stands for the time and Xn denotes the state of 
the process at time n. If Xn ∈ S, then S is called 
the state space of the stochastic process. The 
stochastic processes considered here satisfy the 
Markov property. Given the present state, the 
future of the process is independent of the past. 
That is, for i, j, , ..., 1 ∈ S, 
 
P (Xn+1 = j |X0= x0, ..., Xn−1= xn−1, Xn= i) 
 

= P (Xn+1 = j |Xn = i) = Pij  
 

A stochastic process with this property 
is called a homogenous Markov chain. The 
quantity Pij stands for the probability of moving 
from state i to state j in just one transition and all 
these quantities define the matrix of one-step 
transition probabilities P: 
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where the finite set Ik = {1, 2, ..., k} is the 
state space of the Markov chain. The entries 
Pij of the matrix P must satisfy: (1) Pij ≥ 0, 

(2) Σj Pij = 1,i, j ∈ Ik. The recurrent state i is 
called t h e  absorbing state if Pii = 1. The 
transient matrix P in its canonical form is 

,
|

0|








=

QR
Ip  where I is the identity matrix 

corresponding to the absorbing states, 0 is 
zero matrix, Q is the restriction of P to the 
transient states and R = (Pkl: k is a transient 
state and l is an absorbing state. The 

fundamental matrix N is defined to be (I − 
Q)

−1
 where it is known that the matrix (I - Q) 

is invertible. Let Nij be the ijth entry of N, 
then Nij is the mean number of visits to state 
j having started at state i. If Mi refers to the 
mean absorption time starting at state i, then 

;
∈

=
Qj

iji NM that is M = N ξ, where ξ is a 

vector all of its components are 1’s. Another 
quantity of interest is the probability Uij that 
the chain starting in a transient i will end up in 
the absorbing state j. If U stands for the 
matrix with entries Uij, then U = N R. 
 

Data Analysis and Transition Probabilities 
The frequency table of the university 

as a whole is compared with the frequency 
table of the university excluding the data of 
the Medical Sciences colleges. Because the 
study time for the Medical Sciences colleges 
is much longer than other colleges, it was 
thought that this may affect the analysis and 
the results may not be accurate. However, it 
was found that when analyzing the data with 
and without these colleges, the results are 
very close to each other (due to shortage of 
space, the comparison analysis is not shown 
here). This is most likely due to the sample 
size of the medical sciences colleges, which 
is small (about 45 cases) compared with the 
samples of other colleges.  
 

Results 
The data from each college was studied and 
the corresponding analysis is conducted. 
Table 1 displays a (7x7) frequency matrix 
for KU from which the transition 
probabilities are estimated. The matrix 
which represents the transition probabilities 
of remaining in or progressing to another 
state is referred as P in its canonical form 
and is presented in Table 2. The table shows 
that states G and O are considered to be 
absorbing states while the other states are 
transient states. Note that the transfer state is 
considered here as a transient state because 
the transfer is defined as transferred to 
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another college within KU, however when 
each college is analyzed separately the 
transfer state is considered as an absorbing 
state.  

Note in Table 2 the probability that a 
freshman student remains in the state itself 
is 0.62 and the probability of progressing to 
sophomore is 0.33. For a sophomore 
student, the probability of progressing to the 
junior state is 0.41. The probability that a 
senior student remains in the same state is 
high (0.73). This may be attributed to the 
fact that the normal lifetime for some 
colleges such as the College of Engineering 
is more than 4 years and also the fact that 
the courses at the senior levels are tougher 
than those of the other levels. The 
probability of remaining a not registered 
student for another semester is 0.25 and to 
move to junior level is 0.22 while moving to 
other transient states varies between 0.12 
and 0.16. 

Proceeding as described, the diagonal 
elements of the matrix N represent the average 
life times that correspond to the transient 
states of the Markov chain. They are obtained 
for the levels F, So, J, Se, and NR a n d  a r e  
found to be 2.752, 2.333, 2.041, 3.709, and 
1.446 respectively. The average life time for a 
student at each level does not exceed 2.752, 
which is normal except for t h e  senior level, 
which is found to be 3.7 semesters. This may 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
be attributed to two reasons: (1) many 
students repeat courses to raise their GPA, and 
(2) Medical Sciences and Engineering 
students require more than 4 years to 
graduate so their senior states would be longer 
than the other colleges. 

Vectors M are calculated and represent 
the average number of semesters needed to 
reach an absorbing state (graduate or dropout) 
starting at any given level. The components of 
M are: 10.181, 7.977, 5.829, 3.773 and 7.525 
corresponding to the states F, So, J, Se and 
NR respectively. The probabilities of 
graduating or dropping out starting at a given 
level are displayed in Table 3 as matrix U. 

The probabilities of graduating for 
freshmen, sophomore, junior, senior and non 
register levels are 0.86, 0.92, 0.95, 0.98 and 
0.82 respectively. It is observed that the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Frequency Transition Data 

 F So J Se N R G O 

F 1,425 754 0 0 61 0 45 

So 0 900 672 0 34 0 21 

J 0 0 591 577 26 1 10 

Se 0 0 0 1,260 7 456 11 

N R 20 21 29 16 33 0 11 

G 0 0 0 0 0 457 0 

O 0 0 0 0 0 0 100 

Table 2: Transition Probability Matrix P 
 

P = 

 G  O F So J Se N R 
G 
O 

1 0
0 1 

0 0 0 0 0 
0 0 0 0 0 

F 
So 
J 

Se 
N R 

0 0.02
0 0.013 
0 0.009 

0.263 0.006 
0 0.085

0.624 0.330 0 0 0.026 
0 0.553 0.413 0 0.021 
0 0 0.490 0.479 0.022 
0 0 0 0.727 0.004 

0.153 0.162 0.223 0.123 0.254 
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probability of progressing to graduation 
increases as a student moves to advanced 
levels and,  a s  s u c h ,  decreases for dropping 
out. 
 
Data from Different Colleges 

The data from each college was 
analyzed separately. The transition probability 
matrix and the fundamental matrix were 
obtained from the corresponding frequency 
tables. The columns in Table 4 represent the 
diagonal elements of the probability transition 
matrices of the corresponding colleges and these 
diagonal elements provide the probability that a 
student remains in the same state. It is noted that  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the probabilities to remain in the same state are 
generally close to 0.50. 

The columns of Table 5 represent the 
diagonal elements of N matrices of the 
corresponding colleges. As noted, the diagonal 
elements of matrix N represent the average 
times a student spends in a level of study. For 
many levels, a student spends approximately 2 
to 3 semesters in each state before passing to a 
higher level of study except for senior level, 
where they may remain more than 3 semesters 
for some colleges. A freshman student spends 
on average about 2.5 semesters, except those in 
the c ollege of Science where about 3.9 
semesters are required to make a transition. 
As the student advances to the senior level, 
the mean time increases with longest mean 
time in the colleges of Medical S ciences. 

The M vectors for the university 
colleges represent the average times required 
to reach an absorbing state (graduate G, drop 
out D, transfer T) starting at a transient state 
(see Table 6). To reach an absorbing state in 
many colleges a freshman student takes more 
than 8 semesters, whereas a senior student 
takes commonly more than 3 semesters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Probability Matrix U 
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179.0

025.0

821.0

975.0
048.0952.0

082.0918.0
138.0862.0

NR
Se
J
So

OG
F

U  

Table 4: Probabilities to Remain in the Transient States of Each College 
 

Arts Soc Law Bus Edn Shar Sci Eng Med Allied

F 0.56 0.59 0.61 0.55 0.55 0.53 0.71 0.59 0.50 0.60 

So 0.56 0.55 0.63 0.48 0.51 0.42 0.51 0.56 0.36 0.56 

J 0.50 0.52 0.56 0.46 0.44 0.43 0.47 0.49 0.54 0.44 

Se 0.66 0.65 0.61 0.63 0.74 0.65 0.73 0.78 0.90 0.71 

N R 0.16 0.43 0.43 0.15 0.18 0.17 0.31 0.29 0.33 0.00 
 
 

Table 5: Average Lifetimes of Students in Each Transient State 
 Arts Soc Law Bus Edn Shar Sci Eng Med Allied

F 2.3 2.5 2.6 2.3 2.3 2.2 3.9 2.5 2.0 2.3 

So 2.4 2.3 2.7 2.1 2.1 1.8 2.2 2.4 1.6 2.3 

J 2.1 2.2 2.4 1.9 1.8 1.9 1.9 2.1 2.2 1.9 

Se 2.9 2.9 2.6 2.8 3.9 3.0 3.8 4.6 10.4 3.5 

N R 1.3 1.8 1.8 1.3 1.3 1.3 1.7 1.5 1.6 1.1 
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On average, students in the colleges of 
Medical Sciences, Science and Engineering 
spend more time in the system to reach an 
absorbing state. This is due to the facts that the 
courses in these colleges are difficult and also 
because the number of credits for the 
colleges of Engineering and Medical Sciences is 
large compared to other colleges. In addition, it 
could be due to the repetition of the courses 
by the students i n  acquiring better GPAs, as 
in the case of the college of Science. A student 
with a low GPA finds it difficult to pass the 
core courses offered in the college. Thus 
many students repeat these courses to 
improve their GPA. At the senior level, a 
student from the college of Medical Sciences 
spends  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

comparatively more time in practical classes 
(almost 5 years a r e  needed to qualify them 
for professional careers). 

At this stage, the U-matrices for the 10 
colleges are calculated. The entry uij of a U 
matrix represents the probability of 
absorption at state j having started at state i. 
For the purpose of comparison, the entries of 
U-matrices are classified into three matrices 
corresponding to the three absorbing states: 
graduate, drop out, and transfer. ( See Tables 
7, 8 and 9.) For example, the first column of 
Table 7 stands for the probability of 
graduation of an arts’ student enrolled in the 
respective levels F, So, J, Se and NR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Average Time Needed to Reach an Absorbing State 
 Arts Soc Law Bus Edn Shar Sci Eng Med Allied

F 7.66 9.45 10.37 8.08 9.46 7.69 8.20 10.1 15.30 8.15 

So 7.10 7.32 7.94 6.53 7.77 6.49 5.70 8.70 13.60 6.73 

J 5.07 5.15 5.20 4.74 5.73 5.03 5.43 6.70 12.60 5.44 

Se 3.04 2.88 2.72 2.83 3.87 3.24 3.77 4.70 10.43 3.46 

N R 5.91 6.31 5.71 6.72 8.48 5.48 7.61 6.80 15.90 6.27 
 
 

Table 7: Probabilities of Reaching the Graduate State G for the 10 Colleges at KU 
 Arts Soc Law Bus Edn Shar Sci Eng Med Allied

F 0.60 0.91 0.98 0.80 0.91 0.77 0.37 0.77 0.93 0.69 

So 0.79 0.95 1.00 0.91 0.99 0.89 0.49 0.88 0.95 0.81 

J 0.85 0.98 1.00 0.95 1.00 0.96 0.78 0.94 1.00 0.99 

Se 0.90 1.00 1.00 0.98 1.00 0.96 0.94 0.99 1.00 1.00 

N R 0.72 0.98 1.00 0.81 0.97 0.85 0.45 0.62 0.94 0.95 
 
 

Table 8: Probabilities of Reaching the Drop -out State O for the 10 Colleges at KU 
 Arts Soc Law Bus Edn Shar Sci Eng Med Allied

F 0.19 0.05 0.02 0.07 0.01 0.08 0.26 0.20 0.07 0.11 

So 0.18 0.05 0 0.03 0 0.04 0.17 0.10 0.05 0.05 

J 0.15 0.02 0 0.03 0 0.04 0.09 0.04 0 0 

Se 0.09 0 0 0.02 0 0.04 0.03 0.01 0 0 

N R 0.26 0.02 0 0.04 0 0.12 0.29 0.37 0.06 0.01 
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Table 7 shows that a student at a junior 
state attains the absorbing state G with an 
average probability above 0.94. The 
probability of graduation increases as the 
student moves to the senior level. For the 
colleges of Law, Social Science, Education, 
Allied Health and Medical S ciences, i t  is  
assumed that the senior students strive hard 
to graduate from KU. 

The probability of reaching the 
graduating state from t h e  freshman level is 
comparatively low for the college of Science 
(0.37); this may be due to the d i f f i cu l t  
courses in the college of Science and also to 
the fact that most of the students admitted to 
the college of Science have the lowest high 
school grades and a r e  usually competitive 
students. Also, it is noted that the probability 
of graduation of students in the NR state is 
very low for the college of Science, thus, it is 
estimated that only 45% of the students who 
are non-registered will re-enter the system and 
complete their course of study. 

The chances of dropping out of the 
system from the first levels of the colleges of 
Science and Arts are comparatively high. This 
may be due to probations. KU regulations do 
not allow a  student to continue her/his study 
when she/he reaches 4 probations. Similarly, 
the probability that a student drops out after 
reaching the non registered state is 
considerably high for Arts, Sciences and 
Engineering students. 

The percentage of students 
transferring from Science to other colleges is 
relatively high for freshman, sophomore, non 
register and junior states. Similarly the 
percentage of students transferring from the 
freshman and sophomore states in the Allied 
 

 
 
 
 
 
 
 
 
 
 
Sciences College is high compared to the other 
states. The probability of transferring is zero 
for students from t h e  Law and Medical 
Sciences colleges and this can be attributed 
to the fact that once a student is enrolled in 
these annual systems, she/he cannot transfer to 
other colleges where all the credits she/he 
passed cannot be transferred to other semester 
system colleges. 

If the transient states freshman, 
sophomore, junior, senior, non registered are 
respectively assigned the numbers 4, 5, 6, 7 
and 8, then the mean number of semesters the 
chain remains in each of them after it is 
entered (including the entering step) are 
calculated by 

,8,7,6,5,4;
1

1
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0
=
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(see Table 10). It is noted that Ei (ri) refers to 
the mean continuous stay in state i once it is 
entered, whereas, Nii stands for the mean 
number of visits to state i regardless of any 
departures from i. The slight differences 
between the entries of Tables 5 and 10 are 
explained by the small transition probabilities 
to the state NR in the transition matrix of 
Table 2. 

The mean number of changes of a 
state in an absorbing chain can be calculated 
by setting Pii = 0 for every transient state in 
the transition matrix P and then dividing 

each row by its row sum to obtain P∗. The ith 

component of the new vector M∗ gives the 
mean number of changes of the state i for the 
original process. The ith component in the two 

vectors M and M∗ may differ slightly if the 
repetitions of the states on the path from i to 
absorption is rare; otherwise, the two vectors 

Table 9: Probability of Reaching the Transfer State T for the 10 Colleges at KU 
 Arts Soc Law Bus Edn Shar Sci Eng Med Allied

F 0.21 0.05 0 0.13 0.08 0.15 0.34 0.03 0 0.19 

So 0.04 0 0 0.07 0.01 0.06 0.34 0.02 0 0.15 

J 0 0 0 0.02 0 0 0.14 0.02 0 0 

Se 0 0 0 0 0 0 0.03 0 0 0 

N R 0.02 0 0 0.15 0.02 0.01 0.27 0.01 0 0.04 
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may differ significantly. From the matrix P∗ of 

the different colleges, the vectors M∗ = N∗ξ 
are calculated and are shown in Table 11. 

As noted, the significant differences 
between some of the components of M and 

M∗ are interpreted by repeating courses and 
staying longer in some levels. The small 
values corresponding to the freshmen and 
sophomore levels in the college of Science 
depicts the occurrence of dropping out and 
transferring in these two levels. 
 
Comparison between Scientific and Art 
Colleges 

To compare the scientific and arts 
colleges, the colleges were divided into 2 
groups: (1) Scientific colleges: Science, 
Engineering and Allied Health, and (2) Art 
colleges: Arts, Social Sciences and Sharia & 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Islamic Studies. The College of Medical 
S cience which has a lengthier course schedule, 
t h e  C ollege of Law which is a professional 
course and t h e  C olleges of Education and 
Business administration which have a mixture 
of science and art students have all been 
excluded from the groupings. Mean lifetimes in 
each state for t h e  scientific and art colleges 
are shown in Table 12. It is clear that the 
lifetimes of students in scientific colleges are 
longer than that of art colleges, especially at the 
senior levels. The vector M  as represented in 
Table 13 gives the average time spent by a 
student in the system before reaching one of 
the absorbing states. It is clear that the 
scientific student needs more time to reach 
one of the observing states (G, O, T). This 
may be due to the difficulty of the study in 
their colleges compared to art colleges. Going 
through the details of these absorbing states, U 
matrices are calculated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 10: Average Number of Semesters the Chain Remains in Transient States 
 Arts Soc Law Bus Edn Shar Sci Eng Med Allied

E4(r4) 2.28 2.47 2.59 2.24 2.24 2.14 3.52 2.41 2.00 2.5 

E5(r5) 2.28 2.22 2.73 1.93 2.05 1.73 2.04 2.25 1.6 2.3 

E6(r6) 2.02 2.12 2.32 1.83 1.79 1.77 1.87 1.98 2.17 1.81 

E7(r7) 2.96 2.88 2.57 2.71 3.87 2.83 3.77 4.6 10.38 3.45 

E8(r8) 1.19 1.75 1.75 1.18 1.2 1.2 1.44 1.4 1.5 1 
 

Table 11: M∗ Vectors: Average Number of State-Changes Before Absorption 
 Arts Soc Law Bus Edn Shar Sci Eng Med Allied

F 3.29 3.95 4.1 3.79 3.84 3.73 2.98 3.8 3.9 3.38 

So 3.02 3.09 3.16 3.08 3.05 3.17 2.40 3.1 3.0 2.76 

J 2.09 2.09 2.15 2.13 2.04 2.27 2.04 2.15 2.00 2.13 

Se 1.03 1.00 1.07 1.06 1.00 1.22 1.00 1.10 1.00 1.00 

N R 2.96 2.79 2.61 3.55 3.77 2.91 3.29 2.8 4.5 3.00 

Table 12: Mean Lifetime in Each State for 
Scientific and Art Colleges 

 Science Art 

F 
So 
 J 
Se 
N R 

3.20 
2.25 
1.99 
4.20 
1.53 

2.31 
2.22 
2.09 
2.98 
1.36 

 

Table 13: Average Time Required Reaching 
One of the Absorbing States 

 Science Art 

F 
So 
 J 
Se 

N R

8.8 
6.9 
6.0 
4.3 
7.1 

8.1 
7.0 
5.1 
3.1 
5.9 

 



MARKOV CHAIN ANALYSIS AND STUDENT ACADEMIC PROGRESS 

592 
 

The U matrices display the 
probabilities of reaching the absorbing states 
G, O and T are as follows 
 

Sci

Art

G O T

F 0.554 0.221 0.225

So 0.680 0.130 1.190
U ;

J 0.879 0.055 0.066

Se 0.972 0.015 0.013

NR 0.589 0.294 0117

G O T

F 0.701 0.137 0.162

So 0.849 0.120 0.032
U

J 0.901 0.098 0.001

Se 0.937 0.062 0.000

NR 0.803 0.185 0012

 
 
 
 

=  
 
 
 
 


=


 
 
 
 
 
 
 
 

 

 
It is clear that - except for the senior 

state - the probability of graduation is higher 
for the art students than for the scientific 
students. The students in the NR state show a 
tendency to drop out rather than to transfer 
and the probabilities are higher in both cases 
for the Science students than for the Art 
students. 
 
Graduation Process 

An interesting use of the conditional 
probability for absorbing Markov chains is the 
following:  Assume that for an absorbing 
chain, we start in a non-absorbing state and 
computing all the probabilities relative to the 
hypothesis that the process ends in a given 
absorbing state, for example, s1. Then i t  i s  
p o s s i b l e  t o  obtain a new absorbing chain 
with a single absorbing state s1. The non-
absorbing states will be as before, except that 
we have new transition probabilities. 
Computing these probabilities is as follows:   
Let A be the event that the chain is absorbed in 
the state s1. If si is a non-absorbing state then 
the transition probabilities of the new process 
are 
 

i 1 j i 1 j
i 1 j

i

j ij

i

p (A | X s )p (X s )
p (X s | A)

p (A)

p (A)p
,

p (A)

= =
= =

=
 

 
where )(Ap j  is the occurrence probability of 

the event A starting at state sj and pij is the 
one step transition probability from state si to 
state sj . Using traditional notation, the 

equation above can be written as ,ˆ
1

1

i

ijj
ij u

pu
p =

where ijp̂  stands for the elements of the new 

transition matrix. The canonical form of the 

new transition matrix P̂  is 







=

QR
IP

ˆˆ
0̂ˆ

ˆ .  

The elements of submatrix R̂ for a 

transient state is  are given by 
1

1
1ˆ

i

i
i u

pp = . 

That is .ˆ
1

1








=

i

i

u
pR  If 0U  is the diagonal 

matrix with diagonal elements su j '1  for the 

non-absorbing states ss j ' , then 1
0 0Q̂ U QU−= , 

from which 0
1

0
ˆ UQUQ nn −= . As such 

=+++= ...ˆˆˆ 2QQIN  ,)( 0
1

00
0

1
0 NUUUQU

n

n −
∞

=

− =
and ηNM ˆˆ =  (Kemeny & Snell, 1970). Using 
the original transition matrix in its canonical 

form in Table 2, the matrix N = (I − Q)
−1  can  

be  computed .  Also, the first column of the 
U -Matrix (Table 3) constitutes the diagonal 
elements of the diagonal matrix U0. In which 

case, the matrix 0
1

0
ˆ NUUN −=  would be: 

 



























=

423.1695.3592.1961.0511.0

016.0692.3018.0011.0006.0

066.0692.3015.2044.0024.0

120.0688.3996.1204.2043.0

210.0693.3971.1121.2508.2

ˆ

NR
Se
J
So
F

NRSeJSoF

N  
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From which the vector M̂ that 
determines the average number of semesters 
required for graduation starting from the 
different levels of study becomes 
 























=

182.8

744.3

842.5

052.8

503.10

ˆ

NR
Se
J
So
F

M  

 
Conclusion 

The lifetimes of a student in  different levels 
varies depending on the colleges. A freshman 
student remains a freshman for an average of 
2 to 3 semesters except in t h e  C ollege of 
Science where it is about 4 semesters. For the 
second state, sophomore, the life times in 
different colleges again varies from about 2 to 3 
semesters. Junior students spend less time, 
less than 2 semesters for several colleges. At 
senior levels where the courses are 
comparatively more difficult, the life times 
vary significantly.  

For students in the colleges of Medical 
Sciences, Engineering, Education and Science, 
the life times are comparatively high. The 
most common reasons for the lengthy life 
times are:  
 
1) Most of the students take preliminary non-

credit courses in English, Mathematics and 
Chemistry (these courses are compulsory if 
a student did not pass the university 
aptitude test once she/he is enrolled in 
scientific colleges). After a student 
registers in these intensive courses, 
s h e /he is not allowed to register in the 
same semester more than 3 credit hours.  

 
2 )  The regular credit hours a student should 

be registered for should be between 15 
and 19 credit hours but the actual average 
registered credit hours for a student in KU 
is calculated to be about 13 credit hours. 
This low registered number of credit hours 
delays the student graduation and prolongs 
the time of the study.  

3 )  The minimum GPA for graduation is 2.00 
and many students cannot achieve this 
GPA to graduate so they repeat some 
courses with a  grade less than C to 
increase their overall GPA.  

 
4 )  Being a Non Register s t u d e n t  for some 

semesters delays graduation. 
 
5) Each college has its own rules and bylaws 

for transferring, such as taking certain 
courses and requiring a certain GPA. 
When a student is not satisfied or no t  
interested in the college she/he is admitted 
to, she/he may decide to transfer to another 
college and, as such, her/his case should 
meet the bylaws of that college. This 
increases the time period of the study. 

 
The overall analysis of the results 

can be summarized as follows. Three states: 
graduation, dropping out, and transferring are 
classified in this analysis as absorbing states. 
Among the freshman students in the colleges of 
Arts, Sharia (Islamic studies), Business 
Administration, Engineering, Allied Health 
and Science, the graduation percentages range 
between 60% and 80%, while that of Social 
Sciences, Law, Education, and Medical 
Sciences range between 90% and 98%. For 
KU as a whole, the graduation percentage is 
about 77%. Similarly the probability of 
graduation of a student at the sophomore level 
ranges between 0.49 and 1 while the overall 
percentile is 86.6% for KU. Thus, an increased 
probability of graduation is observed as the 
student moves to the higher levels. For 
students who are in t h e  junior and senior 
states, the probabilities of graduation are 0.95 
and 0.98, respectively. The most remarkable 
point is that, for the sophomore, junior and 
senior students of the Law College, the 
probability of graduation is 1 which ensures 
that once the student reaches the sophomore 
state, he/she is certain of completing 
successfully her/his course of study. 

Considering the students in the 
nonregistered state in Table 7, the overall 
graduation percentage is only 83%, and the 
colleges percentages vary between 45% (for 
t h e  Science College) to 100% (for Law 
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C ollege). It was found that the rate for the 
dropout state is very small. This is obvious 
when the graduation rate is high in each state. 
Thus, even though the students spend more 
time in the system, above 85% of them will 
reach graduation. 

Comparing between colleges on the 
basis of the student lifetime was also 
investigated. For t h e  C olleges of Sharia & 
Islamic study, Education and Allied health, 
students in the states of freshmen, sophomore 
and junior have approximately 2 semesters as 
their lifetimes which increase to 
approximately 3 semesters at the senior states. 
Students who belong to the colleges of Law, 
Arts, Social Sciences and Business 
Administration have lifetimes of about 3 
semesters. For the College of Medical 
Sciences, the freshmen and junior students 
have normal lifetimes like other colleges of 
about 2 semesters and are decreasing in 
sophomore level, whereas the senior students 
have much longer period. In the Engineering 
College a student spends about 4.6 semesters 
in the senior state. For the college of Science, 
the mean lifetime varies from 2 to 4 semesters 
in the different stages of the study. 

In comparing the mean lifetimes in the 
system for science and art colleges, it was 
found that a student in the scientific colleges 
stays on average 3.2 semesters in the freshmen 
state while in the arts colleges a student stays 
on average only 2.3 semesters. This lengthy 
lifetime in the scientific colleges was observed 
for each of the states. This implies that the 
average time that a student spends in the 
system is more than that in the art colleges 
(see Tables 2 and 3). This result is expected 
and agreeable because the core courses of the 
scientific colleges are more difficult than those 
of the art colleges. 

It was also found that a freshmen 
student in the scientific colleges stays on 
average about 8.8 semesters before reaching 
an absorbing state.  Whereas in t he  art 
colleges a freshmen student stays on average 
about 8.1 semesters. This confirms the above 
inference. Comparing the probabilities of 
attaining the stable absorbing states, it was 
found that the students of scientific colleges 
have less probability of graduating than the 

students in the art colleges. As such, the 
probability of dropping out is higher for the 
scientific students than for the art students. 

To avoid such situations, KU should 
consider necessary actions t o  r e d u c e  drop 
out from t h e  scientific colleges. Options may 
include raising the minimum high school 
grades for university admission or giving a 
counseling course for students at the time of 
admission to help students reduce strain in their 
studies. The average number of registered 
credit hours for a student in each semester 
should be between 15 and 19. At the same 
time students must avoid the conflict in exams 
schedule as well as the timing problem between 
lectures offered at different campus locations. 
Sections must be opened according to the 
number of students in each level. Levels 
should not be classified according to the 
number of credits but according to the kind of 
courses. 
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In manufacturing processes various machines are used to produce the same product. Based on the age, 
make, etc., of the machines the output may not always follow the same distribution. An attempt is made 
to introduce Bayesian techniques for a two machine problem. Two cases are presented in this article. 
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Introduction 
Stochastic models can be better understood 
through the application of parametric, Bayesian 
and interval estimations. In this article, Bayesian 
Analysis of two machines producing the same 
component is attempted. If the first machine 
follows a distribution 1D  and the second 

machine follows distribution 2D , and 1λ  and 

2λ  are the proportions of production for the two 
machines, then the total production equals

121 =+ λλ . 
In the final lot, a mixture of components 

from both the machines pooled together will 
have a distribution given by a linear combination 
of the two distributions as D = 2211 DD λλ + . 
 
Case I 
Assumptions: 
1. The two machines produce components 

where the rate of production is not i.i.d. 
 

2. The total lot collected has an observable 
distribution with an unknown parameter. 

 
3. The number of components observed at 

sampled points in time is a discrete NB 
(N.p) distribution.  
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4. The log normal prior distribution of p is 

given by 
2)((

2

1

2

1 β
α

πβ

−− Logp

e
p  

and is denoted by 2( , ).Λ α β  
 

If the number of components produced 
at sampled points of time ( nttt ,......., 21 ) is (

),......., 21 nccc  then D follows a negative 

binomial distribution given by 
 

xN
x qp

N
Nx

p 







−

−+
=

1

1
 

where 
x = 0, 1, 2, 3…, 

and 
p + q = 1.                         (1.1) 

 
Based on (1.1) the likelihood function of 

the number of components is given by 
 

L(p/ ),......., 21 nccc  = XnN
n

i

i qp
N

Nx
∏

=








−

−+

1 1

1
, 

 
where 

X =
=

n

i
ix

1

                       (1.2) 

 
for L to be the maximum likelihood estimator 
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0=
∂

∂
p

LLog
. 

 
Hence, 

Λ
p  = −

+ )( XN

N
, 

where 

n

x
X

n

i
i

=
=

= 1 . 

 
The sum of independent variables with a 

negative binomial distribution follows a negative 
binomial distribution (nN.p) with a probability 
mass function 
 

( )
1

1

1 2 3

nN X

f x, p p( X x )

x nN
           p q

nN
x , , ,...

= =

+ − 
=  − 

=

 

(1.3) 
 
where 

E(X) = 
p

   p)-nN(1
              (1.4a) 

and 

Var (X) = 
2p

   p)-nN(1
              (1.4b) 

 

For large values of n, E(
Λ
p ) = p variance tends 

to 0, hence, the MVUE of p is 
Λ
p . 

 
Posterior Distribution 

If the prior density of p is a log normal 
distribution given by 
 

),/( βατ p  = 
2)((

2

1

2

1 β
α

πβ

−− Logp

e
p

, 

(2.1) 
 

where α  is real, 0β , and 0 < x < ∞  with 

mean 
2

2βα +  denoted by ),( 2βαΛ , the 

marginal pdf of X is 
 

2

1

0

1
1

2

0

1

2

X

Logp(( )

f ( x ) f ( x, p ) ( p / , )dp

f ( x.p ) e dp
p

−α−
β

= τ α β

=
β π




 

(2.2) 
 
Therefore, the posterior distribution of p given 
by 

constant gNormalisin

Prior  *function  Likelihood
 

 
is 

( )1 2 1

0

n
f ( x, p ) ( p / , )dpq p / c ,c ,...,c
f ( x, p ) ( p / , )dp

τ α β=
τ α β

 

(2.3) 
 
Case II 

The numbers of components produced at 
discrete points of time in a given interval are 
observed if autoregressive processes of order n 
are considered. The initial observations 
preceding the sampled data must be determined 
first, which may not be possible in practical 
cases. If a first order AR model defined by 

iii gcXX += −1  is considered where c  is the 

parameter to be estimated, i = 1, 2, 3…, and ig  

is the Gaussian noise, i.i.d. of normal variates 

with N(0, 2σ ) and stationary for c  <1, then the 
backward shift operator defined by B 1−= ii XX  

results in 1)1( −−= cBX i ig .The product of n 

observations has a multivariate normal 
distribution with mean zero and variance matrix. 
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then 
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2σ

2 21 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1

( c ) ....
 ....

.....
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− −
 
 
 
 
 
 
 

= 2σ D, 

 
which is the covariance matrix of Y=PX which 
has a multivariate normal dist with zero mean. 

Because X=∏
=

n

i
iX

1

 the joint pdf of its 

components is 
 

2 2
1 12

2

1 1
1

22

n
n

i in
i

exp( ( c )X ( X X ) .
( ) −

=

− −
σσ π   
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In theory, all moments of some probability distributions do not necessarily exist. In the other words, they 
may be infinite or undefined. One of these distributions is the F-distribution whose mean and variance 
have not been defined for the second degree of freedom less than 3 and 5, respectively. In some cases, a 
large statistical population having an F-distribution may exist and the aim is to obtain its mean and 
variance which are an estimation of the non-existent mean and variance of F-distribution. This article 
considers a large sample F-distribution to estimate its non-existent mean and variance using Simul8 
simulation software. 
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Introduction 
In practice, it is often necessary to calculate 
some properties of a statistical population. For 
this purpose, a random sample is taken from the 
population, its properties are calculated and 
these properties are developed to a population. A 
subset of individuals is selected from within a 
population to yield some knowledge about the 
whole population by sampling. The developed 
properties are approximate and are typically 
expressed as a confidence interval. Conversely, 
researchers may seek to calculate some 
properties of a random sample with the aim of 
estimating these properties to a population. In 
this case, the considered properties are 
calculated for the whole population once and 
then are used for drawn random samples. The 
most important statistical properties of a 
population and random sample are the mean and  
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variance which are calculated from the 
probability distribution function of a population. 
If it is not possible to obtain these properties 
using a probability distribution function, all 
individuals of the population should be 
examined and used to obtain the considered 
properties. Although this work is easy for small 
and finite populations, it is not possible for 
infinite populations and a fairly large random 
sample is needed for approximate calculations. 
 

F-distribution 
Probabilistic behavior of some random 

variables can be defined as a mathematical 
function of the value of the considered random 
variable which is called the probability 
distribution function. The most important 
probability distribution functions considered in 
this article are the Normal, Chi-square, and F 
distributions. 

Equation (1) shows the Normal 
distribution function (Walpole & Myers, 1993) 
which includes two parameters R∈μ  and 

+∈ Rσ . Equations (2) and (3) express its mean 
and variance, respectively. The values of the 
Normal random variable, which belong to a real 
numbers set, have a specific mean and variance. 
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2

N 2

1 (n )
f (n) EXP( );

22
n

− μ= −
σσ π

−∞ < < +∞
        (1) 

 
μ=)(NE                          (2) 

 
2)( σ=NVar                        (3) 

 
In the case of 0=μ  and 1=σ , the Normal 
distribution is called the Standard Normal 
distribution and its probability distribution 
function will be according to Equation (4): 
 

2

Z

1 z
f (z) EXP( );

22
z

= −
π

−∞ < < +∞
             (4) 

 
The Chi-square distribution (Walpole & 

Myers, 1993) has a parameter 0>ν  which is 
called degree of freedom. Equations (5) to (7) 
display its probability distribution function, 
mean and variance, respectively. The values of a 
Chi-square random variable which belong to a 
positive real numbers set also have a specific 
mean and variance. 
 

2

/2 1 x/2
/2

1
f (x) x e ;

2 ( / 2)

x 0

ν − −
νχ

=
Γ ν

>
       (5) 

 

νχ =)( 2E                             (6) 
 

νχ 2)( 2 =Var                           (7) 
 

The F-distribution (Walpole & Myers, 
1993) has two parameters 01 >ν  and 02 >ν  
which are called the first and second degree of 
freedom. Its probability distribution function, 
mean and variance are illustrated by Equations 
(8) to (10), respectively. The values of an F 
random variable belong to a positive real 
numbers set. 
 

1 1

1 2

/2 ( /2 1)1 2 1

( )/22 1
F

1 2 2
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[ ]( ) w

2
f (w) (1 ) ;

( ) ( )
2 2
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− ν +ν

ν + ν νΓ
ν ν= +ν ν νΓ Γ

>
(8) 

 

2

2

2

E(F) ;
2

2
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ν −

ν >
                     (9) 

 
2

2 1 2
2

1 2 2

2

2 ( 2)
Var(F) ;

( 2) ( 4)

4

ν ν + ν −=
ν ν − ν −

ν >
    (10) 

 
As shown, the F-distribution’s mean and 

variance have not been defined for the second 
degree of freedom less than 3 and 5, 
respectively. While confronting these 
circumstances, the approximate mean and 
variance of population can be obtained using a 
fairly large random sample and simulation. The 
Simul8 software is used in this research to 
conduct simulations. Because the F-distribution 
has not been defined in this software, simulation 
is performed using the relation between F and 
the Normal distribution. Equation (11) shows 
that the Chi-square distribution with ν  degrees 
of freedom is the distribution of a sum of the 
squares of ν  independent Standard Normal 
random variables (Walpole & Myers, 1993): 
 

2 2
i

i 1

Z N(0,1);

X Z X ( )
ν

=

≈

=  ≈ χ ν
       (11) 

 
Also, the F-distribution with 1ν  and 2ν  

degrees of freedom arises from the ratio of two 
independent Chi-Square random variables that 
have been divided on their degrees of freedom 
according to Equation (12) (Walpole & Myers, 
1993): 
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X /

≈ χ ν

≈ χ ν
ν=  ≈ ν ν
ν

   (12) 

 
  

Simulation by the Simul8 software 
In practice, many problems have 

probabilistic behavior. One of the most common 
cases is a queuing problem in which customer 
arrival rate, service time, and the like are not 
exact. Queuing theory can be used to solve these 
types of problems. Sometimes, a complex 
combination of several queues in exact and/or 
probabilistic manners with limitations, 
calculations and different conditions are 
observed. Examination of such a complex 
problem by queuing theory is possible 
theoretically, but nearly impossible practically. 
Hence, computer and simulation sciences are 
needed for calculations. Using simulation 
science, a complex system can be run virtually 
and its behavior can be forecasted and examined 
within a reasonable time. The Simul8 software 
used in this research has a user-friendly 
graphical aspect and includes the following 
elements (Simul8 Software, Version 2000): 
 
1) Object. An object is like a customer that 

moves in a special path to get some services 
in service centers or work stations and waits 
in queues until the conditions for service in 
the next service center are ready. This object 
may exist in a queue at first or may enter the 
system through an enter point after the 
system begins running. The object can have 
a label. A label is a variable that stores a 
property of an object. 

2) Enter point. New objects come into the 
system through these points. The object’s 
entry time probability distribution and 
values of its labels can be nominated. 

3) Work station. In this element, the considered 
object gets service. Service time that can be 
probabilistic, number of servers, capacity 
and resources can be assigned. Also, 
calculations on the model’s variables and 
object’s labels can be done in this element. 

4) Queue. Objects of the model wait in queues 
until the conditions to enter the next work 
station are ready. For example, if the 
element after the queue is a work station and 
it needs a resource to work, the object waits 
in the queue until that resource is ready. The 
queue capacity can be infinite or bounded. 

5) Resource. This element is a variable that 
obtains the conditions and number of 
services. The value of each resource can be 
assigned at first or can be assigned in 
running time. After the service, the resource 
value can change to itself or another 
resource. 

6) Exit point. Objects of the model go out of 
the model from an exit point, for example, 
the customers that have finished their 
service. 

7) Information store. This element is a variable 
that stores properties of the model. 

 
Proposed Model 

The objective of this article is to obtain 
the mean of an F-distribution with 301 1 ≤≤ν  

and 32 <ν  and also the variance of an F-

distribution with 301 1 ≤≤ν  and 52 <ν . For 
this purpose, a random sample of size 500 is 
drawn from a statistical population having an F-
distribution. In order to achieve more accurate 
results, the proposed model is run 100 times and 
the average of the obtained means and variances 
are recorded as final results. It should be noted 
that the proposed model generates Standard 
Normal random numbers at first and converts 
them to Chi-square random numbers. 
Afterwards, Chi-square random numbers are 
converted to F random numbers for calculations. 
In the proposed model, queues, work stations, 
resources and information stores are displayed 
with Q, W, R and I, respectively. As shown in 
Figure 1, the proposed model includes three 
parts. The first and second parts of the model 
generate the first and second Chi-square random 
numbers, respectively. Because the performance 
of both parts is similar, only the first part is 
described. 

In the first part, there is one object in Q1 
at first. This object enters W2 while running the 
model. The service time of W2 is exactly equal 
to zero. In the other words, W2 is a virtual work  
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station. In W2, a Standard Normal random 
number is assigned to the object’s label. 
Afterwards, the object can enter W1 or Q2. In 
the proposed model, entrance priority belongs to 
W1, which is also a virtual work station. W1 
uses one unit of R1 and then changes it to R2. 
When R1 finishes, the object cannot go to W1 
from W2 and should inevitably enter Q2. In W1, 
the value of the object’s label is squared and 
added to I1 and it then returns to Q1. The loop 
Q1-W2-W1 is repeated R1 times and a Chi-
square random number with R1 degrees of 
freedom is generated and stored in I1. The object 
waits after entering Q2 until the conditions to 
enter W3 are ready. W3 requires R6 and changes 
it to R7 after using. The initial value of R6 is 
zero but after running the model, a value is 
assigned to it by the third part; R6 is an 
intermediate between the first and third parts. 
W3 which is a virtual work station changes the 
value of R1, that is now equal to zero, to its 
initial value and also changes the value of R2 
and the object’s label to zero. In the other words,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the first part of model returns to its initial 
condition. 

In the third part, there is only one object 
in Q5 at first, the object then enters W8 which is 
the only real work station of the model and has 
an exact service time. Because the first and 
second parts of the model have service times 
equal to zero they generate Chi-square random 
numbers I1 with R1 degrees of freedom and I2 
with R3 degrees of freedom, respectively, when 
the object is in W8. Afterwards, the object enters 
W7 which is a virtual work station. In W7, an F 
random number is generated by the ratio of I1 
and I2 which have been divided on their degrees 
of freedom (R1 and R3). The generated value 
and its square are respectively added to I3 and I4 
to obtain the sum and sum of squares of values 
of the F random variable, and then W7 uses one 
unit of R5 and R8 and changes them to R6 and 
R9, in that order. Thus, W7 lets the first and 
second parts of the model generate new Chi-
square random numbers. Calculation of sum and 
sum of squares of values of the F random 

Figure 1: Simulated Model by the Simul8 Software 
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variable is repeated R5 times (which is equal to 
R8 times) in the loop Q5-W8-W7. R5 is 
considered equal to 500 in the proposed model. 
After finishing R5 and R8, the object enters W9 
from W8. In W9, the values of the sample mean 
(I5) and sample variance (I6) are calculated 
using I3 and I4, which are respectively the sum 
and sum of squares of values of F random 
variable, according to Equations (13) and (14): 

n
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n
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== 1                            (13) 
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Conclusion 

By setting resources R1 and R3 equal to the first 
and second degree of freedom of an F-
distribution respectively, mean and variance of a 
random sample of size 500 (I5 & I6) are 
calculated. To obtain more accurate results, the 
proposed model is run 100 times and the average 
of obtained means and variances are recorded. 
Table 1 shows the obtained results. 
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Table 1: Calculated Mean and Variance for the F-distribution 
Variance Mean F Distribution 

V2=4 V2=3 V2=2 V2=1 V2=2 V2=1 V1 

41.65 3793.61 108031.28 8.52E+11 10.05 11130.21 1 
1174.13 991.75 541607.53 1.38E+13 13.75 33169.64 2 

34.18 686.37 458742.85 2.38E+13 14.30 37594.24 3 
45.92 3717.85 112955.47 1.54E+12 10.74 15012.24 4 
74.23 1994.39 334859.40 7.69E+12 12.81 26761.31 5 

355.42 5092.49 337649.74 4.51E+12 13.13 23044.24 6 
163.34 1215.85 165931.92 2.36E+12 11.22 18210.40 7 
155.83 2340.31 397856.63 4.96E+12 13.79 23826.42 8 
144.57 3087.51 135107.50 3.29E+12 11.67 22405.18 9 
388.49 6534.82 220879.02 9.19E+12 12.90 30296.88 10 
251.6 1082.33 120507.71 8.05E+12 11.62 29119.63 11 

126.27 2494.88 142528.84 6.61E+12 11.65 28509.47 12 
192.06 1814.47 130915.62 5.29E+12 11.60 25922.59 13 
93.11 3946.75 172780.09 1.07E+13 12.34 28315.80 14 

463.65 1641.08 368276.62 3.33E+12 13.58 21680.74 15 
76.08 1627.26 146747.04 6.59E+12 11.80 27846.46 16 

248.91 2068.54 337102.72 8.41E+12 13.02 27757.44 17 
113.93 634.55 122134.97 4.68E+12 11.32 25305.75 18 
171.95 1357.71 338522.99 6.81E+12 13.02 29520.33 19 
251.87 1434.49 218104.74 5.05E+12 12.30 24484.70 20 
121.14 2027.46 245563.95 3.61E+12 12.92 23815.50 21 
121.76 1567 220336.07 3.81E+12 12.26 24091.21 22 
150.74 1133.46 295272.78 4.21E+12 13.19 24122.25 23 
189.02 1061.62 359914.76 3.98E+12 13.47 24058.93 24 
287.59 2112.89 191010.65 3.37E+12 12.01 22481.36 25 
157.14 2368.16 196676.92 5.59E+12 12.07 25595.00 26 
122.85 2136.64 319466.56 5.77E+12 13.25 27161.81 27 
245.72 1710.13 230289.00 5.92E+12 12.42 26124.24 28 
213.54 940.05 237958.74 6.83E+12 12.99 26067.87 29 
167.76 2165.15 370863.43 5.27E+12 13.58 26485.85 30 
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