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Limiting follow-up hypotheses to be tested can reduce problems relating to the control of Type I and 
Type II errors in multivariate analysis of variance (MANOVA). Such limitations can also improve the 
interpretability of results. The importance of sample size, shape of population distribution, within-group 
correlations and heterogeneity of variances are demonstrated. The protected greatest characteristic root 
(GCR) procedure is shown to work well for small, group size, N (≤ 10). The unprotected GCR is shown to 
work well for larger N. 
 
Key words: Any-pair power, discriminant functions, MANOVA, pair-wise test. 
 
 

Introduction 
Testing for the significance of differences in 
means of k groups on p variables can be 
accomplished with multivariate analysis of 
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variance (MANOVA). The full, null hypothesis 
is 

H0: μ1 = μ2 … = μk, 
 
where μi (i = 1, …, k) is the vector of population 
means for group i on the p variables. The 
hypothesis degrees of freedom is dfh = k – 1. In 
the general case, the parameter, s = min (p, dfh). 
In MANOVA a variety of test statistics for the 
null hypothesis are possible. Taking p x p 
matrices, H and E, of the sum-of-products for 
hypotheses and error respectively as 
 

1

( )( ) '
=

= − −H X X X X
k

i i i
i

n , 

(1) 
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and 

1 1

( )( ) '
ink

ij ij
i j= =

= − − j jE X X X X , 

(2) 
 
where Xij is the jth of ni observation vectors in 

group i, Xi  is the mean vector for the ith group 

and X is the grand mean vector. The s, nonzero 

eigenvalues of HE−1  can be designated as λ1, 
…, λs in order from largest to smallest. 
Equivalently, the s, nonzero eigenvalues (also 

called characteristic roots) of H(H + E)-1  can 

be designated as θ1, … θw in order from largest 
to smallest. Each corresponding member of the 
respective sets of eigenvalues can be related by 
θ = λ/(1 + λ). 
 
Multivariate Test Procedures 

The four, most common MANOVA test 
statistics are: 

1. The Pillai-Bartlett trace, V = 
i=1

s

  θi; 

 

2. Wilks’ likelihood ratio, W = 
i=1

s

C (1 – θi); 

 

3. The Hotelling-Lawley trace, T = i
1

s

i=

λ ; and 

 
4. Roy’s greatest characteristic root (GCR),    

R = θ1. 
 
Computer packages such as SPSS and SAS 
typically provide approximate and sometimes 
exact p values for each of these four test 
statistics. 
 
Routines for Testing 

In each of the following routines s is 
defined as shown above and dfE = Σ(Ni − 1). 
One method of evaluating V for a group of k 
means is with an F test (Pillai, 1955; Seber, 
1984, p. 564) defined by 
 

cV
F

b(s - V)
= , 

 
where c = dfE – p + s, and b = max(p, k − 1). To 
test at level α requires critical value, CV = F1−α 

(sb, sc). This method is designated here as VPB. 
Two, more accurate F tests for V are 

available (Muller, 1998). Method 1 is 
 

F = 
df2

df1

 
V

d -  V
,                   (4) 

 
where df1 = p(k − 1), 
 

df2 = 
[p(k -1) + 2]dfE (dfE + k - 1- p)

dfE (k + p) + (k + 1)(k - 2)
, 

 
and 

d = 
p(k -1) + df2

df2 + k -1
. 

 
To test at level α requires CV = F1−α (df1, df2). 
This method is designated here as VM1. 

For Method 2 (Muller, 1988) the F test 
is 

F = 
df2

df1

V

s -  V
,                   (5) 

where 
 

E E E

E E E

1 s(df +s-p)(df +k+1)(df +k-2)
2

s(df +k-1) df (df +k-1-p)
K

 
= − 

 
 
df1 = p(k − 1)K, c = dfE – p + s, and df2 = scK. 
To test at level α requires CV = F1−α (df1, df2). 
This method is designated here as VM2. 

One method of evaluating W for a group 
of k mean vectors is with an F test (Rao, 1951; 
Seber, 1984, p. 41) defined by 
 

F = 
1- U

U
 
df2

df1

,                     (6) 

where 
2 2

2 2

p (k-1) -4
,

p +(k-1) -5
t =  
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( )Edf –  –  2
 

2

p k
f

+
=  

 
p(k-1)-2

2
g = , 

 
df1 = p(k − 1), 

 
df2 = ft − g, 

and 
U = W1/t. 

 
To test at level α requires CV = F1−α (df1, df2). 
This method is designated here as WLR. It can 
be shown that (6) provides an exact F test for p 
= 1, 2 or k = 2, 3 (Seber, 1984, pp. 40-41). 

One method of evaluating T for a group 
of k mean vectors is with an F test (McKeon, 
1974; Seber, 1984, p. 39) defined by 
 

T

c
F =                             (7) 

where 

E E

E E

(df +k-p-2)(df -1)

(df -p-3)(df -p)
B = , 

 
a+2

4
B-1

b = + , 

and 

E

a(b-2)

b(df -p-1)
c = . 

 
To test at level α requires CV = F1−α (a, b). This 
method is designated here as THL. 

Routines for computing p values for 
Roy’s R are either quite complex or rather crude. 
The versions used by statistical packages are not 
very accurate. For example, SAS prints a 
footnote on output warning that the 
corresponding F ratio for R is an upper bound. 
Consequently, the p value is a lower bound. 
Therefore, a p value of .04 would only tell the 
user that the exact p value is no less than .04. It 
would be more helpful to know that the exact p 
value was no greater than some value. Tables of 
critical values for R are available (Harris, 2001, 
pp. 518-531; Sever, 1984, pp. 593-598). 

Routines described by Harris (2001) were used 
to determine p values and critical values in the 
present study; the method is designated here as 
GCR. 

Pairwise testing on a discriminant 
function can be performed as described by 
Harris (2001, p. 222). The F test for the 
difference between a given pair of means on the 
discriminant function is compared to a critical 
value, FCRIT. The value of FCRIT is found from 
dfE(θCRIT)/(1 – θCRIT) where θCRIT is the critical 
value for R. 
 
Noncentrality 

In the non-null case, the p x p matrix Φ 
can be defined as 
 

1

( – )( – )’,
k

i
i

n
=

Φ = i iμ μ μ μ          (8) 

 
where μ is the grand mean vector of the 
population. 

Take the p x p matrix Γ as 
 

1,−Γ = ΦΣ  
 
where Σ is the population covariance matrix. 
The p eigenvalues of Γ are γ1, …, γp. The 
noncentrality parameter, δ2, is 
 

2

1
.

p
ii=

δ = γ                     (10) 

 
Populations vary along a continuum from a 
concentrated structure where γ1 is the only 
nonzero eigenvalue of Γ to a diffuse structure 
where s eigenvalues of Γ are nonzero. When the 
usual MANOVA assumptions are satisfied the 
most powerful tests of the four listed above for 
evaluating a concentrated structure would be R. 
For the diffuse structure the most powerful of 
the four tests would be V (Olson, 1974). 
 
Robustness 

Investigations of various testing 
procedures have shown marked differences in 
robustness (Olson, 1974). All test procedures in 
MANOVA have reduced control of Type I and 
Type II errors in the presence assumption 
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failure. The most extreme problems occur for R 
and the least for V. 
 
Follow-Up Tests 

Roy’s R has been found to be more 
useful than V, W, or T for finding specific 
differences between groups (Bird & Hadzi-
Pavlovic, 1983). In order to improve the 
robustness and interpretability of significant 
group differences, Bird and Hadzi-Pavlovic, 
(1983) proposed limiting the testing of group 
contrasts in two ways. First, they proposed the 
examination of group differences on single 
dependent variables, sums of dependent 
variables, differences between dependent 
variables, or combinations of these. That is, 
complex weightings of dependent variables used 
to form discriminant functions were avoided. 

The second restriction was a limitation 
of the contrasts on group means to be tested. A 
moderate restriction on contrasts allows only 
one subset of means to be compared to another 
subset. With k = 4 there would be only 25 
possible contrasts (6 pairwise, 3 pairs versus 
another pair, 12 pairs versus a single & 4 triples 
versus a single). With p = 2 dependent variables 
there would be four variables for testing (2 
dependent variables, one sum, & one 
difference). That would allow only 100 contrasts 
to be tested. For p = 6 the total number of 
contrasts to be tested would be 9,100. 

A strong restriction on the permissible 
contrasts for k = 4 would allow the 25 contrasts 
about the 4 groups to be applied only to each 
dependent variable. With p = 2, there would be 
only 50 tests performed. With p = 6 there would 
be 150. Bird and Hadzi-Pavlovic, (1983) 
reported considerable improvement in Type I 
error control under assumption failure with both 
moderate and strong restrictions. A univariate, 
Bonferroni- Scheffé (B-S) approach was also 
considered by testing contrasts on each 
dependent variable using the Scheffé (1953) 
procedure at level α/p. They also suggest the 
possibility of a so-called protected R test in 
which R is applied to testing contrasts only after 
a significant overall test such as V. 

In an attempt to increase power, 
Sheehan-Holt (1998) considered a partially 
restricted condition. Sheehan-Holt placed no 
restriction on the variable thus allowing the 

testing of group contrasts on any discriminant 
function. For k = 4, the 25 contrasts would be 
tested on the first discriminant function. If the 
first discriminant function were limited to 
pairwise testing there would be only six tests of 
group differences on the discriminant function 
for k = 4. 
 
A Monte Carlo Study 

The present restriction on group 
contrasts to be tested is limited to pairwise 
testing. For k = 4, the six contrasts constitute 
fewer group contrasts than any considered by 
Bird and Hadzi-Pavlovic, (1983) or Sheehan-
Holt (1998). However, the present investigation 
applies those group contrasts to all significant 
discriminant functions.  

Seven procedures were used to test the 
full null hypothesis: VPB, VM1, VM2, THL, 
WLR, GCR, and the Bonferroni-Scheffé (B-S). 
The first five procedures follow a significant 
overall test with pairwise testing based on R. 
These five methods are examples of a protected 
R test. The GCR procedure also applies pairwise 
testing as an unprotected R test. 

Conditions investigated included k = 4, 
common group sizes N of 10, 15 and 20, and p = 
4. The population covariance matrix was varied 
to produce either uncorrelated variates (Σ = Ι) or 
Σ with all variables correlated by a common 
correlation ρ of either 0.71 or −0.2. For non-null 
conditions δ2 was varied over a range of several 
values to produce power values in the 
neighborhood of 0.50. 
 
Covariance Heterogeneity 

Following Bird and Hadzi-Pavlovic 
(1983) and Olson (1974), heterogeneity was 
introduced by multiplying all variates in Group 1 
by a constant chosen to produce a value of the 
coefficient of variation, C, (Box, 1954). If the 
variances in Group 1 are all initially set at σ2 = 1 
and a value d is the multiplicative value, C2 can 
be calculated as 
 

2 2 2 2
4

1

1
( ) ,

k

i
i

C
k =

= − σ σ
σ

          (11) 

 
where σi

2 = d for i = 1 and 1 for i ≠ 1, and 
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σ 2 =
σ i

2

i=1

k


k

. 

 
Bird and Hadzi-Pavlovic (1983) used C 

= 0.4 as moderate covariance heterogeneity and 
C = 0.8 as substantial covariance heterogeneity. 
Thus, C2 values would be .16 for moderate and 
0.64 for substantial covariance heterogeneity. 
However, Olson (1974) investigated values as 
high as C2 = 2.4. The present investigation 
examined values as high as C2 = 2.0. Olson’s 
(1974) results seem to suggest that error rates 
approach an upper limit for very high values of 
C2. 
 
Nonnormality 

Previous studies have given little 
consideration to failure of the normality 
assumption. Some degree of kurtosis has been 
investigated showing relative little effect. 
However, the degree of kurtosis is not clear. For 
example, the fourth moment calibration was not 
reported. 

Micceri (1989) reported many 
distributions that were clearly nonnormal. 
However, the data sets reported by Micceri are 
not as extreme as those used in many studies 
evaluating statistical robustness. Among skewed 
distributions, Micceri identified the most 
extreme distributions as being typified by the 
exponential distribution with standardized third 

and fourth moments as ( β1  = 2.0, β2 = 9.0). 
Among symmetric, platykurtic distributions 
Micceri represented the shape as typical of the 

uniform distribution ( β1  = 0.0, β2 = 1.8). 
Among symmetric, leptokurtic distributions 
Micceri identified the shape as double 

exponential ( β1  = 0.0, β2 = 6.0). 
To investigate the effects of distribution 

shape, four shapes were considered: the normal, 
uniform, exponential, and double exponential. 
The three nonnormal shapes represent the most 
extreme conditions reported by Micceri (1989). 
The uniform distribution was easily produced 
directly from the generated random numbers. 
The double exponential was approximated as a t 
distribution with df = 6. This t distribution has 
the same third and fourth moments as the double 

exponential distribution. The exponential 
distribution was approximated by Johnson’s 
(1949) SB method as described by Tadikamalla 

(1980) with β1  = 2.0 and β2 = 9. 
Each simulated experiment was 

replicated 10,000 times. Significant differences 
in Type I error rates can be identified as 
deviating from an expected interval about the 
nominal rejection rates. For rejection rates 
between 0.0 and 1.0 the standard error (SE) 
depends on the value of the rate. If x is the 
proportion of replications exceeding a critical 
value, the SE is [x(1 – x)/10000]1/2. For x = 0.5 
the SE would be a maximum and have a value, 
SE = .000025  = 0.005 so a 50% rejection rate 
would be included in a 2SE interval from 0.49 to 
0.51 in approximately 95% of the simulations. 
An x of 0.05 would have SE = .00000475  = 
0.002179 and a 2SE interval from 0.045641 to 
0.054358. Thus rates even as small as 5% will 
usually be estimated to differ from the correct 
value by no more than about 0.0044. 

Even after Type I error rates are 
identified as significantly different from nominal 
levels and not due to chance, an additional 
question arises. How much deviation from the 
nominal level is acceptable to a given 
researcher? Bradley (1978) has suggested that a 
real error rate that differs from the intended 
nominal rate, α, by no more than 0.1α is 
negligibly non-robust. Thus, a rate of α = 0.05 
should not exceed 0.055 to be negligibly non-
robust. Bradley (1978) also suggested that rates 
above 1.5 α (0.075 for α = 0.05), should never 
be accepted as robust. All researchers must 
make their own decisions but an upper limit of 
0.075 for the 0.05-level test seems a useful 
guideline. 

Power rates require a different approach. 
To compare power rate for two statistical 
procedures requires that they have the same, or 
in some sense equivalent, control of Type I 
errors. If one procedure has true Type I error 
rates that never exceed the nominal level and a 
second procedure has true Type I error rates that 
never exceed one half the nominal level then 
both are limiting the Type I error rate to no more 
than the nominal level: Power rates can be 
expected to be higher for the first procedure but 
that may not always be the case. 
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Any uniformly, higher power rate for 
one of two such procedures justifies identifying 
it as more powerful. Higher power rates in 
specific conditions may guide a researcher to 
select a procedure based on conditions of the 
investigation. If power rates are uniformly 
higher but small then other factors such as ease 
of application may be considered. Einot and 
Gabriel (1975) used such an argument in the 
univariate case to support a slightly less 
powerful procedure. Power advantages less than 
0.1 might be ignored, but advantages above 0.2 
might be designated as substantial and override 
other considerations. Again, all researchers must 
make their own decisions. 

McNemar’s (1947) test of correlated 
proportions was used to test the significance of 
the difference between proportions as power 
rates in the non-null conditions. For greater 
efficiency the procedures were placed in order 
with consecutive procedures tested for power 
differences. The order is VPB, VM1, VM2, 
THL, WLR, GCR, and B-S. 
 

Results 
Type I Error Rates 

Table 1 presents the Type I error rates 
for seven procedures with k = 4, equal N of 10, 
three values of ρ, four population distributions, 
and C2 = 1.6. The overall maximum error rates 
are in bold print. Those are also the maximum 
error rates for the same conditions when C2 has 
values 0.0, 0.8, and 1.2. Clearly, with C2 values 
as high as 1.6, the error rates are well above the 
Bradley upper limit of 0.075. None of the 
procedures is robust by this criterion for that 
value of C2. 

The maximum error rates in Table 1 all 
occur for populations with an exponential 
distribution. This suggests that differences in 
skewness are more important than differences in 
kurtosis. Only differences in kurtosis were 
investigated in the previous studies (Bird & 
Hadzi-Pavlovic, 1983; Olson, 1974; Sheehan-
Holt, 1998). 

Table 2 presents summaries for N values 
of 10, 15 and 20 including the maximum rates 
for the results shown in Table 1. In every case 
the maximum error rate was found for the 
exponential population but could be for any one 
of the three values of ρ. 

As shown in Table 2 (a) with N = 10, 
the C2 = 0.0 condition shows all seven 
procedures to have a maximum Type I error rate 
below the nominal 0.05 level even when the 
maximum is taken over three values of ρ and 
four population distributions. When C2 rises to 
0.8, only VPB, the original testing formula for 
the V statistic is below the nominal level. 
However, VM1 and VM2 have maximum rates 
almost identical to the nominal level. Also, 
THL, WLR, and GCR satisfy the 0.075 limit to 
robustness. The Bonferroni-Scheffé is not robust 
for C2 ≥ 0.8. 

If the C2 = 0.64 definition of substantial 
covariance heterogeneity is accepted as 
suggested by Bird and Hadzi-Pavlovic (1983), 
the VPB combination of testing V and pairwise 
testing with R is robust for that condition. The 
same conclusion is probably justified for VM1 
and VM2. 

In all parts of Table 2 the Bonferroni-
Scheffé, B-S, procedure has a simple, almost 
linear relationship between error rates and C2. 
The greater the covariance heterogeneity the 
higher is the Type I error rate. The situation is 
quite different for the other six, multivariate 
procedures. Table 2 (b) presents results for N = 
15. Even for C2 = 2.0 the first five procedures 
have no more than negligible non-robustness 
(i.e. ≤ 0.055). GCR does exceed that limit but 
only for the most extreme case and is always 
robust (i.e. ≤ 0.075). 

Table 2 (c) presents results for N = 20. 
All six multivariate procedures are conservative 
(i.e. rates ≤ 0.05). Even GCR is conservative and 
the protection of another procedure may not be 
needed. The greater control of Type I errors for 
all multivariate procedures as shown in Table 
2(c) suggests that protected tests are not needed 
for sample sizes this large. The maximum Type I 
error rate for GCR is 0.0369 occurs for C2 = 0.8. 
 
Power Rates 

For N = 10 the five protected procedures 
(VPB, VM1, VM2, THL, WLR) provide varying 
control of Type I errors for C2 vales from 0.0 to 
about 0.8. The B-S procedure provides poor 
control in the same conditions of C2. However, 
B-S represents a useful alternative provided it 
can be equated in Type I error control. Repeated 
testing  of  these  six  procedures  (VPB,  VM1, 
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VM2, THL, WLR, B-S) showed that each would 
limit the Type I error rate to a maximum .05 in 
the conditions of Table 2(a) provided they were 
applied at the nominal rates of 0.0115, 0.0093, 
0.0095, 0.0016, 0.0036 and 0.0024, respectively. 

Any-pair power is defined as the 
probability of detecting one or more true 
differences between pairs of population means. 
Table 3 presents the any-pair power rates for the 
six procedures applied to the first discriminant 
function   for    data    from   four    population  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
distributions, k = 4, N = 10 and a diffuse 
noncentrality structure. 

The most powerful procedure in all 
conditions is VM1 testing V with Muller’s 
Method 1. McNemar’s test showed each 
procedure to be significantly different from the 
one to the right provided the difference was at 
least 0.0006 or more. However, many 
differences are quite small. The power 
advantage of VM1 over the other protected R 
procedures can be seen in Table 3 to be modest. 
The power advantage of VM1 over VPB and  

Table 1: Type I Error Rates for Seven Pairwise Testing Procedures for k = 4, N = 10, α = .05, C2 = 1.6 and a 
True, Full-Null Hypothesis 

 

ρ Population VPB VM1 VM2 THL WLR GCR B-S 

0.00 

Normal .0240 .0242 .0241 .0256 .0253 .0262 .1046 

Uniform .0327 .0333 .0333 .0347 .0340 .0348 .1193 

Exponential .0788 .0814 .0810 .0893 .0875 .0921 .1827 

Double 
Exponential 

.0206 .0208 .0207 .0225 .0219 .0229 .0786 

0.71 

Normal .0279 .0284 .0284 .0300 .0296 .0311 .0844 

Uniform .0329 .0335 .0335 .0346 .0345 .0349 .0864 

Exponential .0792 .0814 .0814 .0904 .0886 .0927 .1142 

Double 
Exponential 

.0236 .0238 .0237 .0253 .0248 .0256 .0745 

−0.20 

Normal .0254 .0261 .0261 .0281 .0272 .0283 .1086 

Uniform .0295 .0297 .0297 .0309 .0304 .0313 .1199 

Exponential .0823 .0855 .0852 .0943 .0914 .0977 .1664 

Double 
Exponential 

.0198 .0203 .0203 .0220 .0215 .0228 .0892 

Notes: C2 = measure of variance heterogeneity, ρ = correlation, VPB = V tested by Pillai, (1955) formula, VM1 
= V tested by Muller (1988) Method 1, VM2 = V tested by Muller (1988) Method 2, THL = T tested by 
McKeon, (1974), WLR = W tested by Rao, (1951), GCR = R tested by Harris, (2001), B-S = Bonferroni-
Scheffé. Pairwise testing of first six procedures done by ρ (see Harris, 2001, p. 222); Maximum value for each 
column in bold. 
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VM2 is always less than 0.01. The power 
advantage of VN1 over WLR is always less than 
0.06. The greatest power advantage of VM1 
over any protected R procedure is over THL but 
is always less than 0.15. 

The power advantage of VM1 over B-S 
can be quite large. For normal populations the 
maximum is 0.4744 (= 0.6712 − 0.1968). For the 
other distributions the maximum power 
advantages are 0.4750 (= 0.6559 − 0.1809) for 
uniform distributions, 0.4453 (= 0.7514 − 
0.3061) for exponential distributions, and 0.4652  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(= 0.7062 − 0.2410) for double exponential 
distributions. 

The maximum power advantages of 
VM1 over B-S for diffuse noncentrality 
structures and C2 = 0 (i.e. homogeneous 
covariances) are shown in Table 4(a) for each of 
the four population distributions and three 
values of ρ. The power advantages vary from 
0.4453 to 0.8896. 

The same conditions reported in Table 3 
were investigated for a diffuse noncentrality 
structure but C2 = 1.6. The maximum power 
advantages of VM1 over B-S for a diffuse  

Table 2: Maximum Over Three ρ values, and Four Populations for Type I Error Rates for Seven 
Pairwise Testing Procedures for k = 4, α = .05, C2 = measure of variance heterogeneity,  

and a True, Full-Null Hypothesis 
 

C2 VPB VM1 VM2 THL WLR GCR B-S 

(a) N = 10 

0.0 .0175 .0186 .0185 .0232 .0210 .0301 .0277 

0.8 .0473 .0508 .0505 .0639 .0588 .0735 .1008 

1.2 .0669 .0706 .0702 .0850 .0799 .0916 .1573 

1.6 .0823 .0855 .0852 .0943 .0914 .0977 .1827 

(b) N = 15 

0.0 .0172 .0179 .0178 .0208 .0196 .0265 .0241 

0.8 .0421 .0425 .0425 .0467 .0452 .0507 .0936 

1.2 .0509 .0511 .0510 .0542 .0532 .0565 .1427 

1.6 .0524 .0525 .0525 .0533 .0531 .0537 .1736 

2.0 .0534 .0534 .0534 .0534 .0534 .0535 .2053 

(c) N = 20 

0.0 .0201 .0208 .0207 .0228 .0216 .0292 .0237 

0.8 .0328 .0334 .0333 .0349 .0342 .0369 .0930 

1.2 .0325 .0327 .0327 .0332 .0331 .0336 .1285 

1.6 .0322 .0322 .0322 .0323 .0323 .0323 .1533 

2.0 .0297 .0297 .0297 .0297 .0297 .0297 .1882 

Notes: VPB = V tested by Pillai, (1955) formula, VM1 = V tested by Muller (1988) Method 1, VM2 = 
V tested by Muller (1988) Method 2, THL = T tested by McKeon, (1974), WLR = W tested by Rao, 
(1951), GCR = R tested by Harris, (2001), B-S = Bonferroni-Scheffé; Maximum value for each 
column in bold. 
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noncentrality structures are shown in Table 4(b) 
for each of the four population distributions and 
three values of ρ. The power advantages vary for 
0.2238 to 0.7288. 

The same conditions reported in Table 3 
and Table 4(a) were investigated for a 
concentrated noncentrality structure where 
group differences existed only along a single 
dimension. The maximum power advantages of 
VM1 over B-S for a concentrated noncentrality 
structures are shown in Table 4(c) for each of 
the four population distributions and three 
values of ρ. The power advantages vary from 
−0.1454  to  0.5335.  Of course, the  negative 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
advantage means that B-S has a power 
advantage over VM1 as high as 0.1454. This 
occurs only for ρ = 0.71 but for all four 
population distributions. 

The same conditions reported in Table 
4(b) were investigated for a concentrated 
noncentrality structure where group differences 
existed only along a single dimension. The 
maximum power advantages of VM1 over B-S 
for concentrated noncentrality structures are 
shown in Table 4(d) for each of the four 
population distributions and three values of ρ. 
The power advantages vary for −0.4019 to 
0.4827. Again the negative advantage means  

Table 3: Any-Pair Power of Five Procedures on the First Discriminant Function and B-S for N = 
10, α = .05, Four Distributions, A Diffuse Non-centrality Structure and Four Non-centrality Values 

and C2 = 0.0 
 

Population δ2 VPB VM1 VM2 THL WLR B-S 

Normal 

30.0 .6679 .6712 .6694 .5478 .6366 .1968 

24.3 .5233 .5303 .5260 .3909 .4797 .1277 

19.2 .3760 .3829 .3775 .2425 .3275 .0733 

14.7 .2537 .2610 .2558 .1436 .2072 .0453 

Uniform 

30.0 .6526 .6559 .6542 .5275 .6172 .1809 

24.3 .4983 .5038 .5008 .3678 .4558 .1150 

19.2 .3536 .3603 .3560 .2271 .3073 .0672 

14.7 .2277 .2354 .2308 .1256 .1886 .0388 

Exponential 

30.0 .7479 .7514 .7486 .6434 .7214 .3061 

24.3 .6000 .6048 .6026 .4697 .5588 .1907 

19.2 .4580 .4637 .4602 .3143 .4054 .1169 

14.7 .3117 .3196 .3151 .1820 .2612 .0575 

Double 
Exponential 

30.0 .7028 .7062 .7044 .5970 .6767 .2410 

24.3 .5592 .5650 .5615 .4249 .5141 .1561 

19.2 .4072 .4145 .4093 .2704 .3594 .0874 

14.7 .2728 .2788 .2755 .1627 .2314 .0503 

Notes: VPB = V tested by Pillai, (1955) formula, VM1 = V tested by Muller (1988) Method 1, 
VM2 = V tested by Muller (1988) Method 2, THL = T tested by McKeon, (1974), WLR = W tested 
by Rao, (1951), GCR = R tested by Harris, (2001), B-S = Bonferroni-Scheffé; Maximum value for 
each row in bold. 
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that B-S has a power advantage over VM1 as 
high as 0.4019. This occurs only for ρ = 0.71 
and for all four population distributions. 

As shown in Table 2(b), all six 
multivariate procedures, VPB, VM1, VM2, 
THL, WLR, and GCR, showed good control of 
Type I errors for N = 15. In the most extreme 
conditions each of these procedures has a Type I 
error rate slightly above the nominal level. Even 
GCR, with no additional multivariate test, had a 
maximum rate of only 0.0565. Although that 
exceeds Bradley’s negligible nonrobustness 
limit of 0.055, it might be adequate for some 
researchers. The rates at which each of the seven 
procedures must be performed to limit the actual 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Type I error rate to the nominal 0.05 level are 
0.044, 0.044, 0.044, 0.044, 0.044, 0.044, 0.0005 
respectively for VPB, VM1, VM2, THL, WLR, 
GCR, and B-S. 

Table 5 presents the power advantages 
of GCR over B-S for N = 15 just as did Table 4 
for the power advantage of VM1 over B-S. In 
Table 5, the greater power for B-S over GCR for 
ρ = 0.71 with concentrated noncentrality 
structures occurs only for the heterogeneous 
covariance condition. 

The power advantage of GCR over B-S 
for ρ = 0.0 in Table 5(d) is less than 0.1 for all 
populations and becomes slightly negative for 
exponential distributions. 

Table 4: Any-Pair Power Advantage of VM1 Over B-S for k = 4, N = 10, a = .05, 
and C2 = 0.0 or 1.6 

 

 ρ 

Population 0.0 0.71 −0.2 

(a) Diffuse Noncentrality Structure with C2 = 0 

Normal .4744 .8748 .6418 

Uniform .4750 .8854 .6501 

Exponential .4453 .8696 .5997 

Double Exponential .4652 .8708 .6245 

(b) Diffuse Noncentrality Structure with C2 = 1.6 

Normal .2975 .7288 .6217 

Uniform .3809 .7311 .6258 

Exponential .2238 .6543 .5781 

Double Exponential. .2920 .7259 .5974 

(c) Concentrated Noncentrality Structure with C2 = 0 

Normal. .5133 -.1454 .8724 

Uniform .5335 -.1327 .8873 

Exponential .4579 -.1043 .8505 

Double Exponential .4780 -.1155 .8561 

(d) Concentrated Noncentrality Structure with C2 = 1.6 

Normal .0487 -.3668 .4170 

Uniform .0484 -.4019 .4827 

Exponential .3826 -.1549 .3070 

Double Exponential .0553 -.3369 .4756 
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Table 6 presents the power advantages 
of GCR over B-S for N = 20. The conservative 
Type I error rejection rate GCR implies that the 
procedure must be applied at a lenient rate of 
0.099 to limit the rate to 0.05. In contrast B-S 
must be applied at a rate of 0.0008. The power 
advantages of GCR over B-S in Table6 are 
similar to those of Table 5. 
 

Conclusion 
The present investigation extends the previous 
work of Bird and Hadzi-Pavlovic (1983) and 
Sheehan-Holt (1998) on follow-up tests for 
MANOVA to pairwise testing on the 
discriminant functions. As shown in Tables 1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and 2, Type I error rates can be quite high 
depending upon ρ (the correlation between 
dependent variables), the population 
distribution, sample size N, and especially the 
covariance heterogeneity, C2. 

For samples of size, N = 10, and only 
moderate covariance heterogeneity (i.e. C2 = 
0.8), Three protected tests, VPR, VM1, and 
VM2, provide good control of Type I errors 
even for realistic nonnormality. Even for slightly 
higher covariance heterogeneity (i.e. C2 = 1.2), 
these three protected R procedures are below 
Bradley’s (1978) 1.5 α limit for robustness. 

Power comparisons in the present 
investigation used adjusted alpha levels so that  

Table 5: Any-Pair Power Advantage of GCR Over B-S for k = 4, N = 15, α = .05, 
and C2 = 0.0 or 2.0 

 

 ρ 

Population 0.0 0.71 −0.2 

(a) Diffuse Noncentrality Structure with C2 = 0.0 

Normal .6516 .8984 .7528 

Uniform .6511 .8975 .7744 

Exponential .6030 .9049 .7346 

Double Exponential .6243 .9041 .7354 

(b) Diffuse Noncentrality Structure with C2 = 2.0 

Normal .4737 .8081 .5719 

Uniform .5399 .8219 .6010 

Exponential .3207 .7342 .4180 

Double Exponential. .4110 .8002 .5380 

(c) Concentrated Noncentrality Structure with C2 = 0.0 

Normal. .7970 .3290 .9241 

Uniform .8205 .3448 .9288 

Exponential .8159 .3556 .9187 

Double Exponential .7827 .3264 .9284 

(d) Concentrated Noncentrality Structure with C2 = 2.0 

Normal .0607 -.3958 .5498 

Uniform .0618 -.4434 .5415 

Exponential -.0304 -.1979 .3274 

Double Exponential .0584 -.3700 .5469 
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power could be compared when all methods 
provided the same control of Type I errors. 
Table 3 shows a clear advantage in power over 
all procedures for homogeneous covariance and 
diffuses noncentrality condition for VM1. 
However, the power advantage over VPB and 
VM2 is only modest. The power advantage of 
VM1 over the Bonferroni-Scheffé (B-S) is 
shown in Tables 3 and 4 to be as high as 0.8854 
but can be as low as −0.1454. On balance, the 
protected multivariate approach of VM1 is 
clearly superior to the univariate approach of B-
S. 

As shown in Table 2(b), a minimum 
sample size of about 15 is sufficient for GCR to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
provide adequate control of Type I errors even 
without the addition of the alternative protection 
of an additional multivariate test. Table 5 shows 
the power advantage of GCR over B-S to range 
from 0.9049 to −0.3958. As was true for Table 4 
results, the power advantage of B-S is almost 
exclusively in conditions where ρ = 0.71. A 
univariate-based follow-up is most powerful 
when dependent variables are highly, positively 
correlated. 

Table 6 provides power advantages for 
GCR over B-S for N = 20. These rates range 
from 0.94 to −0.2174 and are similar to those in 
Table 5. Although B-S can be powerful even 
when applied at a reduced alpha level to control  

Table 6: Any-Pair Power Advantage of GCR Over B-S for k = 4, N = 20, α = 0.05 
and C2 = .0, 0.8 or 2.0 

 

 ρ 

Population 0.0 0.71 −0.2 

(a) Diffuse Noncentrality Structure with C2 = 0.0 

Normal .7159 .9364 .8048 

Uniform .7226 .9400 .8217 

Exponential .6883 .9343 .7683 

Double Exponential .7072 .9396 .7856 

(b) Diffuse Noncentrality Structure with C2 = 2.0 

Normal .5582 .8397 .6291 

Uniform .5946 .8569 .6584 

Exponential .4314 .7616 .5010 

Double Exponential. .5059 .8214 .6094 

(c) Concentrated Noncentrality Structure with C2 = 0.0 

Normal. .8386 .4161 .9649 

Uniform .8349 .4313 .9674 

Exponential .8159 .4446 .9517 

Double Exponential .8258 .4099 .9590 

(d) Concentrated Noncentrality Structure with C2 = 0.8 

Normal .3355 -.2174 .7411 

Uniform .333 -.2292 .7420 

Exponential .2579 -.0916 .6048 

Double Exponential .3461 -.1822 .7541 
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Type I errors, it would still not be practical in 
those conditions. Continually applying a test at 
different alpha levels is tedious and requires a 
large table of appropriate alpha levels. 

Discriminant functions are more 
difficult to interpret than are simple 
combinations of dependent variables. However, 
MANOVA may profitably be considered not 
just as combined dependent variables but rather 
a blending of several ANOVAs and factor 
analysis. A discriminant function can be 
considered an approximation to a latent variable. 
The correlation between each dependent variable 
and the discriminant function could be used to 
identify the latent variable just as is done in 
factor analysis using factor loadings. 

If a new statistical package is being 
developed, it might be desirable to replace the 
traditional VPB with VM1. However, the 
existing VPB reported by many statistical 
packages such as SAS and SPSS should provide 
adequate results in a protected R test for small N. 

Numerous additional conditions could 
be considered. Various patterns of correlations 
might have an effect. More powerful methods of 
pairwise testing then the Scheffé could be 
considered if one is willing to consider only 
pairwise testing. The higher rejection rates of 
such powerful pairwise tests are also likely to 
produce even higher Type I error rates. More 
extreme nonnormality than is considered there 
can be investigated. 
 
Example 

Baumann, Seifert-Kessell, and Jones 
(1992) report comparing three strategies for 
teaching reading comprehension to fourth-
graders. One strategy was Think-Aloud (TA). A 
second strategy was Direct Reading Activity 
(DRA). The third was Direct Reading and 
Thinking Activity (DRTA). The two dependent 
variables were Error Detection Task (Y1) and 
Degrees of Reading Power (Y2). There were 21 
students in each of the three groups. The means 
and standard deviations were: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Analysis in SAS produces: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dividing each eigenvector element by the square 
root of the sum of squared values for the 
eigenvector, convert each subjects’ dependent 
variable scores to a score on the first 
discriminant function. 
 
 

DRA 
Y1 Y2 

M = 6.6818 M = 42.0455 
SD = 2.7669 SD = 6.6151 

DRTA 
Y1 Y2 

M = 6.2273 M = 46.6364 
SD = 2.0915 SD = 7.6441 

TA 
Y1 Y2 

M = 7.7727 M = 43.4545 
SD = 3.9271 SD = 7.8603 

 Eigenvalues 
 λ θ 

Root 1 .165844 .142252 

Root 2 .019988 .019596 

 Eigenvectors 
 Y1 Y2 

Root 1 -.038037 .017307 

Root 2 .027758 .008466 

s = 2, m = −0.5, n = 30

 

Statistic Value P-Value 

Wilks’ Lambda 0.84093942 0.0286 

Pillai’s Trace 0.16184815 0.0284 

Hotelling-
Lawley Trace 

0.18583147 0.0290 

Roy’s Greatest 
Root 

0.16584380 0.0321 
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Group 3 (DRTA) is significantly higher 
than Group 1 (TA) on the first discriminant 
function at α = 0.05. The average, within-group 
correlation between Y1 and DF1 is −0.50. The 
average, within-group correlation between Y2 
and DF1 is 0.54. The two, dependent variables 
have about the same size relationship to DF1, 
however, Y1 is inversely related whereas Y2 is 
directly related to DF1. Y1 was measuring the 
number of errors to be detected so it is 
negatively related to Y2, reading power. DF1 is a 
composite measure of error detection and 
reading power. 

The three groups failed to differ 
significantly on either dependent variable even 
at α = 0.10. A significant B-S would require 
group differences on at least one dependent 
variable to be significant at the 0.025 level. 
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DF1 = 0.414159Y2 − 0.910204Y1 

 

Group 1 2 3    

N 21 21 21 MSE = 9.0893 

Mean 10.9223 11.3317 13.6468 Value SS F 

Contrast 1 -1 0 1 2.7245 77.9405 8.58* 

Contrast 2 -1 1 0 0.4094 1.7599 0.19 

Contrast 3 0 -1 1 2.3151 56.2767 6.19 

       

 s n m θ.95 dfE(θ.95)/(1 – θ.95) CV 

 2 30 −0.5 0.1287 30(0.1287)/(0.8713) = 6.73 
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The performance of the pseudo-median based procedure is examined in terms of controlling Type I error 
for a two independent groups test. The procedure is a modification of the one-sample Wilcoxon statistic 
using the pseudo-median of differences between group values as the central measure of location. The 
proposed procedure was shown to have good control of Type I error rates under the study conditions 
regardless of distribution type. 
 
Key words: Mann-Whitney-Wilcoxon, pseudo-median, t-test, type I error. 
 
 

Introduction 
Testing the equality of central tendency 
parameters between two independent samples by 
controlling Type I error is a common statistical 
problem. If an underlying distribution is 
normally distributed with equal population 
variances, the most suitable test statistic to use is 
the Student’s t-test. Student’s t, however, is 
sensitive to non-normal data and heterogeneity 
of variances. Under these situations, Welch’s 
approximate test (Welch, 1938) usually offers 
the best practical solution, but this statistic does 
not adequately control Type I error probabilities 
under non-normal distributions. 

To surmount the problem of non-
normality, researchers typically seek 
nonparametric test alternatives, such as the 
Mann-Whitney-Wilcoxon, which is believed to 
be effective against violations of normality. 
Although ranking methods are often useful when 
samples are obtained from heavy-tailed 
distributions, they are influenced by unequal 
variances 
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similar to parametric tests (Pratt, 1964; 
Zimmerman & Zumbo, 1992). Further, 
nonparametric methods are more appropriate for 
non-normal symmetric data. Many attempts 
have been made to deal with asymmetric 
distributions. In this study, a method to handle 
the problem of asymmetric data, as well as 
heterogeneity of variances, is suggested. The 
method is known as the pseudo-median 
procedure, where the pseudo-median of 
differences between group values are employed 
as the central measure of location with the one-
sample nonparametric Wilcoxon procedure in a 
two group setting. The pseudo-median of a 
distribution F is defined to be the median of the 
distribution (Z1 + Z2)/2, where Z1 and Z2 are all 
possible differences between two observations 
from each group. Z1 and Z2 are independent and 
have the same distribution as F (Hoyland, 1965; 
Hollander & Wolfe, 1999). 

The pseudo-median is a location 
parameter. The estimation of this parameter is 
accomplished using the Hodges-Lehmann 
estimator. According to Hollander and Wolfe 

(1999), the Hodges-Lehmann estimator ( )θ̂  is a 

consistent estimator of the pseudo-median, 
which in general may differ from the median. 
However, when F is symmetric, the median and 
pseudo-median coincide. The pseudo-median is 
selected as the central measure of location 
because it is convenient and the asymptotic 
properties of the pseudo-median are the same as 
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median. In this study, the performance of the 
pseudo-medians procedure in terms of Type I 
error was measured via Monte Carlo simulation. 
Because the sampling distribution of this 
pseudo-median procedure is intractable, the 
bootstrap method was used to arrive at the 
significant values. 
 

Methodology 
This study addresses both symmetric and 
asymmetric distribution and the methods applied 
to the two types of distributions are very 

different. Let ( )
11 11 12 1,  , ..., nX X X X=  and 

( )
22 21 22 2,  , ..., nX X X X=  be samples from 

distributions 1F  and 2F  respectively. The 
pseudo-median is defined as: 
 

( ) ( )' '1 2 1 2

ˆ Median
2

Median
2

′ ′+ 
=  

 
 − + −
 =   
 

ij i j

i j i j

D D
d

X X X X    (1) 

 
where 'i i≠  and 'j j≠ . When 1F  and 2F  are 

symmetric, d  can be defined as the difference 
between the centers of symmetry. Hence, the 
hypothesis is given as: 
 

0

1

: 0

: 0.

=

≠
versus

H d

H d
                            (2) 

 
Let 1 2-ij i jD X X= , 11,2,...,i n= , 

21,2,...,j n=  and 1 2N n n= . The statistic is a 
one-sample Wilcoxon statistic based on the 

ijND ’s. Let ijR  denote the rank of ijD . The 

indicator function and the statistic are expressed 
as: 

0,         0

0.5,      0

1,         0

 <


= =
 >

ij

ij ij

ij

D
e D

D
                     (3) 

and 

1 2

1

.
= =

=
n n

ij ij
i j

W R e                        (4) 

 
The modification of the Wilcoxon 

procedure is performed by adding the pseudo-
median value to the second sample to form a 

new sample, 2
ˆX d+ . The aligned difference, 

based on the location-aligned samples, becomes:  
 

( )1 2
ˆ ˆˆ .= − + = −ij i j ijD X X d D d          (5) 

 

Let ˆ
ijR  denote the rank of ˆ

ijD . The indicator 

function and the aligned statistic are expressed 
as: 

ˆ0,         0

ˆˆ 0.5,      0

ˆ1,         0

 <
= =


>

ij

ij ij

ij

D

e D

D

                     (6) 

and 
1 2

1

ˆ ˆ ˆ .
= =

=
n n

ij ij
i j

W R e                       (7) 

 
Because the second sample was 

realigned with the estimate d, it is necessary to 
find the pseudo sampling distribution for the 
estimate W. Use of a bootstrap procedure is 
proposed in order to construct the hypothesis 
test. Separately bootstrap ni observations from 

1X  group and nj observations from 2
ˆX d+  

group to obtain bootstrap samples, *
1X  and *

2X . 
The bootstrap difference becomes 

* * *
1 2ij i jD X X= −  where *

ijR  denotes the rank of 
*
ijD . The indicator function and the bootstrap 

statistic can be defined as: 
 

*

* *

*

0,         0

0.5,      0

1,         0

 <
= =
 >

ij

ij ij

ij

D

e D

D

                      (8) 

and 
1 2

* * *

1

.
= =

=
n n

ij ij
i j

W R e                         (9) 
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The steps to obtain the p value using the 
bootstrap method for symmetric distribution are 
as follows: 
 
1. Calculate W  from 1X  and 2X . 
 
2. Calculate d̂  from 1X  and 2X . 
 
3. Add d̂  to 2X  to form a new sample, 

2
ˆX d+ . 

 
4. Calculate Ŵ  from 1X  and the new sample 

in step 3. 
 
5. Generate bootstrap samples by randomly 

sampling with replacement in  observations 

from the 1X  group, and jn  observations 

from the new sample in step 3 yielding *
1X  

and 
2

*X . 

 
6. Calculate *W  from the bootstrap samples, 

*
1X  and 

2

*X . 

 

7. Find ( )* ˆW W− . 

 
8. Repeat Steps 5 - 7 B  times. 
 

9. Compare the value of ( )* ˆW W−  with 

( )( )0|W E W H− . 

 

Let ( ) ( )( )*
0

ˆ |U W W W E W H= − > −  and 

( ) ( )( )*
0

ˆ |L W W W E W H= − < − . 

 

10. Calculate the p value as ( )2
min # ,# .× L U

B
 

 
For asymmetric distributions, the 

difference between the centers of symmetry 
between the two groups cannot be assumed to be 
zero; therefore, to ensure the setting for the null 
condition, a constant a  must be determined and 
added to the members of the second sample. The 
value of a  is obtained via simulation. For 

example, let 1X  and 2X  be two skewed 
distributions where the standard deviations need 
not be the same. Let ( )1 11 12,Y Y Y=  and 

( )2 21 22,Y Y Y=  represent the new generated 

samples of size two, which have the same 
distribution with 1X  and 2X , respectively. 

Compute ia  as follows:  
 

( ) ( )11 21 12 22

2

 − + − 
=  

 
i

Y Y Y Y
a median      (10) 

 
Repeat the process of generating new samples of 
size two 9,999 times and repeat the computation 
of ia  to obtain 1 2 10,000, ,...,a a a . Therefore, the 

median of 1 2 10,000, ,...,a a a  is the value of a . 

For asymmetric distributions, the steps 
to obtain the p value using a bootstrap method 
are the same except for one small alteration in 
step 1. In this step, a constant a  is introduced to 
the members of the second sample (X2) to form 
a new sample, 2X new . Steps 2-10 proceed as 

noted, with the one difference that 2X  has 

become 2X new .  
To study the robustness of this 

procedure, four variables were manipulated to 
create conditions known to highlight the 
strengths and weaknesses of the test for the 
equality of location parameters. The variables 
are (1) types of distributions, (2) degree of 
variance inequality, (3) balanced/unbalanced 
sample sizes, and (4) pairings of unequal group 
variance and sample sizes. In this study, 
empirical Type 1 error rates were collected and 
later compared under various study conditions.  

The number of groups and sample sizes 
were fixed. This study covered only the two 
groups case with total sample size of 40N = . 
This value was later divided into two groups 
forming the balanced and unbalanced design. 
For the balanced design, the value is equally 
divided into 1 2 20n n= = , and for the 
unbalanced design the groups were divided into 

1 15n =  and 2 25n = . To investigate the 
distribution types, this study focused on (1) 
heavy tailed symmetric non-normal distribution, 
and (2) heavy tailed asymmetric distribution. 
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The normal distribution was used as the basis for 
comparison. The symmetric non-normal 
distribution was generated from a g-and-h 
distribution (Hoaglin, 1985); specifically, g = 0 
and h = 0.225 with skewness ( )1γ  = 0 and 

kurtosis ( )2γ  = 154.84 was chosen for 

investigation. The Chi-square with three degrees 
of freedom ( 1 1.63γ =  and 2 4γ =  ) was selected 
to represent the asymmetric distribution.  

The pseudo-random normal variates 
were generated using the SAS generator 
RANDGEN function (SAS Institute, 1999); this 
involved the (RANDGEN(Y, ‘NORMAL’)) 
function to generate normal variates with means 
equals to zero and standard deviation equals to 
one. To generate data from the g-and-h 
distribution, standard unit normal variables 

( )ijZ  were converted to the h random variates 

via 
2

exp .
2

 
=   

 

ij
ij ij

hZ
Y Z                   (11) 

 
For the Chi-square distribution, data were 
generated using the (RANDGEN(Y, 
‘CHISQUARE’, 3)) function. 

Apart from the types of distribution, two 
other manipulated variables were the degrees of 
variance inequality and pairings of variances and 
group sizes. The nature of pairings of variances 
and sample sizes affect Type I error rates 
(Keselman, et al., 1998; Keselman, Othman, 
Wilcox & Fradette, 2004; Othman, et al., 2004). 
The variances were manipulated in the following 
manner: In the case of equal variances, both 
group variances were set at 1; for the unequal 
case, the variances were set at 1 and 36.  

For positive pairings, the group with the 
largest number of observations was paired with 
the group having largest variance, and the group 
with the smallest number of observations was 
paired with the group having smallest variance. 
For the negative pairings, the group with largest 
number of observations was paired with the 
group having the smallest variance, and the 
group with smallest number of observations was 
paired with the group having the largest 
variance. This condition was included in the 
investigation because the direction 

(positive/negative) of the pairings has been 
shown to exert some effect on the results. 
Positive pairings typically produce conservative 
results and negative pairings tend to produce 
liberal results (Keselman, Wilcox, Othman & 
Fradette, 2002; Cribbie & Keselman, 2003; 
Othman, et al., 2004; Syed Yahaya, Othman & 
Keselman, 2004, 2006). Therefore, both positive 
and negative pairings were evaluated.  

The operating characteristics of the 
procedures investigated in this study could be 
described as extreme because they substantially 
depart from homogeneity and normality. These 
conditions were used because it is reasonable to 
assume that, if a procedure works under the most 
extreme conditions, it will probably also work 
under most conditions likely to be encountered 
by researchers.  

The simulation program was written in 
SAS/IML (SAS Institute, 1999). For each 
condition examined, 5,000 data sets were 
generated and within each data set, 599 
bootstrap samples were obtained. The level of 
significance was set at α = 0.05. 
 

Results 
To evaluate whether the test is robust 
(insensitive to assumption violations) under each 
particular condition, the Bradley criterion of 
robustness (Bradley, 1978) was employed. 
According to this criterion, for the five percent 
nominal level used in this study, a test is 
considered robust if its empirical Type I error 
rate is within [0.025, 0.075]. Correspondingly, a 
test is considered to be non-robust if, for a 
particular condition, its Type I error rate is not 
contained in this criterion. This criterion was 
chosen because it provides a reasonable standard 
for judging robustness. The empirical Type I 
error rates for the pseudo-median procedure 
(PM), t-test and Mann-Whitney-Wilcoxon 
(MWW) across all distributions are displayed in 
Table 1. 

With respect to the procedures, results 
show that all Type I error rates for the pseudo-
median procedure are robust under Bradley’s 
liberal criterion and are very close to the 
nominal level (0.05) regardless of distribution or 
conditions. The disparity between Type I error 
rates from balanced and unbalanced designs is 
minuscule and the rates are consistent across the 
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investigated conditions. The t-test also produces 
robust Type I error rates for all distributions and 
conditions, however, for the Chi square 
distribution, the Type I error rates inflate to a 
level above 0.065 when the variances are 
unequal and worsen under negative pairing. For 
the Mann-Whitney-Wilcoxon test, half of the 
Type I error rates are above the robustness 
criterion under unequal variances, especially 
negative pairing. The Type I error rates for 
MWW under the Chi-square distribution are too 
liberal and not robust except under the 
homogeneous variance condition.  

In terms of distributional shapes, the 
Chi-square distribution produced better 
empirical Type I error rates compared to the g-
and-h distribution in most conditions for the 
pseudo-median procedure. Higher values of 
Type I error rates from Chi-square distribution 
are apparent for the t-test and Mann-Whitney-
Wilcoxon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

With respect to variance equality and inequality, 
results show a contradiction between symmetric 
and asymmetric distributions for both the 
pseudo-median and the t-test. For the g = 0, h = 
0.225 distributions, homogeneous variances 
produced greater Type I error rates compared to 
heterogeneous variances. For the Chi-square 
distribution, homogeneous variances produced 
smaller Type I error rates compared to 
heterogeneous variances. However, no specific 
pattern could be identified for the Mann-
Whitney-Wilcoxon test.  

With respect to the pairings of group 
sizes and variances, results show that the g-and-
h distribution produced liberal (> 0.05) Type I 
error rates for the pseudo-median procedure and 
conservative (< 0.05) results for the t-test. The 
Chi-square distribution for the pseudo-median 
procedure produced conservative Type I error 
rates for the positive pairing, and liberal results 
for the negative pairing. The t-test produced 
liberal results for both pairings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table1: Empirical Type I Error Rates of Pseudo-Medians Procedure, t-test 
and Mann-Whitney- Wilcoxon* 

 

Method Distribution 

Group Sizes 

(20, 20) (15, 25) 

Variance 
(1:1) 

Variance 
(1:36) 

Variance 
(1:36) 

+ve pairing 

Variance 
(36:1) 

-ve pairing 

PM 
Normal 

g=0, h=0.225 
χ 2

3  

0.0552 
0.0588 
0.0454 

0.049 
0.0544 
0.0504 

0.0486 
0.0518 
0.0476 

0.0492 
0.0532 
0.055 

t-test 
Normal 

g=0, h=0.225 
χ 2

3  

0.054 
0.0522 
0.052 

0.052 
0.0458 
0.0696 

0.0492 
0.0448 
0.0654 

0.0514 
0.044 

0.0736 

MWW 
Normal 

g=0, h=0.225 
χ 2

3  

0.0516 
0.0516 
0.052 

0.0912 
0.0854 
0.2428 

0.0458 
0.0436 
0.1812 

0.1142 
0.108 

0.2398 

 

*Bolded entries indicate Type I error rates of the test exceeding the 0.075 criterion. 
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Conclusion 
The purpose of this study was to investigate how 
well the pseudo-medians procedure responded to 
the violations of assumptions compared to the 
traditional t-test and Mann-Whitney-Wilcoxon 
method. The procedure was tested the heavy-
tailed distributions, namely the g = 0 and h = 
0.225 and the Chi-square with three degrees of 
freedom. Results show that the Type I error rates 
for the pseudo-median procedure and the t-test 
are robust under Bradley’s criterion of 
robustness and close to the nominal value. The 
nature of the sample sizes - balanced or 
unbalanced - did not show much difference in 
the procedure’s ability to control Type I error 
rates.  

The pseudo-median procedure 
performed better than t-test, especially for a 
skewed distribution with unbalanced design and 
heterogeneous variances. This procedure also 
outperforms the popular Mann-Whitney-
Wilcoxon method in most conditions. The 
pseudo-median procedure was observed to have 
good control of Type I error rates, regardless of 
distributions under the study conditions. The 
pseudo-median procedure can thus be 
recommended as an alternative for testing the 
differences between two groups, particularly 
when assumptions of normality and variance 
homogeneity are not met. 
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The estimation of population mean in systematic sampling is explored. Properties of a ratio and product 
estimator that have been suggested in systematic sampling are investigated, along with the properties of 
double sampling. Following Swain (1964), the cost aspect is also discussed. 
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Introduction 
Systematic sampling is one of the simplest 
sampling procedures adopted in practice and is 
operationally more convenient than simple 
random sampling. Apart from the simplicity of 
its concept and execution, systematic sampling 
is likely to be more precise than simple random 
sampling and even more precise than stratified 
sampling under certain specific conditions. In 
sample surveys it is common to use of auxiliary 
information to increase the precision of 
estimates of population parameters. The ratio 
method of estimation is a good example in this 
context; the ratio method of estimation is 
consistent, biased and gives more reliable 
estimates than those based on simple averages 
(Cochran, 1963). 

If an auxiliary variate x  positively 
(high) correlated with the study variate y  is 
obtained for  each  unit  in  the  sample  and the 
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population mean X  of the auxiliary variate x  is 
known, the classical ratio estimator for the 

population mean Y  of the study variate y  is 
defined by 

x
XyyR =                          (1.1) 

 
where y and x  are the sample means of the 

study variate y  and the auxiliary variate x  

respectively, that is, the simple averages of y  

and x  based on the sample. 
If the auxiliary variate x  is negatively 

(high) correlated with the study variate then the 
classical product estimator for population mean 

Y  of the study variate y  is defined by 

,P
xy y
X

=                         (1.2) 

 
which was first developed by Robson (1957) and 
later rediscovered by Murthy (1964). 

Bahl and Tuteja (1991) suggested 
modified ratio and product estimators for 

estimating the population mean Y  respectively 
as 









+
−=

xX
xXyy expRe                (1.3) 

and 









+
−=

Xx
XxyyPe exp .             (1.4) 
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Under simple random sampling without 
replacement (SRSWOR), the variances of 

Re,, yyy PR  and Pey  to the first degree of 

approximation are given, respectively, by 
 

( )R random

2 2 2
y x xy x y

Var y

1 1
S R S 2R S S

n N

=

   − + − ρ    
            

 

(1.5) 
 

( )P random

2 2 2
y x xy x y

Var y

1 1
S R S 2R S S

n N

=

   − + + ρ    
             

 

(1.6) 
 

( )

( )

Re random

2 2 2
y x xy x y

Var y

1 1
S 1 4 R S S S

n N

=

   − + − ρ    
              

(1.7) 
and 
 

( )

( )

Pe random

2 2 2
y x xy x y

Var y

1 1
S 1 4 R S S S

n N

=

   − + + ρ    
              

(1.8) 
 
where 

( ) ( )
=

−
−

=
N

i
iy Yy

N
S

1

22

1

1
 

and 

( ) ( )
=

−
−

=
N

i
ix Xx

N
S

1

22

1

1
 

 
are population mean squares of the study variate 
y  and the auxiliary variate x  respectively, xyρ

is the correlation coefficient between x  and y

and 
X
YR = . 

Under the SRSWOR sampling scheme 
 

( ) 211
yS

Nn
yVar 






 −= .           (1.9) 

Hasel (1942) and Griffth (1945-46) 
found systematic sampling to be efficient and 
convenient in sampling from certain natural 
populations like forest areas for estimating the 
volume of timber. In the case of estimating the 
volume of timber the leaf area or the girth of the 
tree may be taken as the auxiliary variable 
(Swain, 1964). 

The properties of the ratio estimator Ry  
under systematic sampling have been discussed 
by Swain (1964) and Shukla (1971) presented 
the properties of product estimator Py . This 
article discusses the properties of the modified 
ratio and product estimators Rey and Pey  in 

systematic sampling in the cases of single and 
double sampling and comparisons are made. 
 
Modified Estimators in Systematic Sampling: 
Single Sampling 

Suppose N  units in the population are 
numbered from 1 to N  in some order. To select 
a sample of n units, if a unit at random is taken 

from the first k  units and every thk  subsequent 
unit, then nkN = . This sampling method is 
similar to that of selecting a cluster at random 
out of k  clusters (each cluster containing n  

units), made such that thi  cluster contains 
serially numbered units

( )knikikii 1...,,2,, −+++ . After sampling of 
n  units, observe both the study variate y  and 

auxiliary variate x . Let ijij xandy  denote the 

observations regarding the variate y  and variate 
x  respectively on the unit bearing the serial 

number ( )kji 1−+  in the population

( )njki ...,,2,1;...,,2,1 == . If the thi  sampling 

unit is taken at random from the first k  units, 
then syy  and syx  are defined as: 

 


=

==
n

j
ijisy y

n
yy

1
.

1
, 

and 


=

==
n

j
ijisy x

n
xx

1
.

1
. 
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Suggested Estimator 

Assuming the population mean X  of 
the auxiliary variate x  is known, Swain (1964) 
suggested the ratio estimator of population mean 

Y of the study variate y  based on the 
systematic samples as 
 

sy
syRsy x

Xyy =                      (2.1) 

 
and Shukla (1971) proposed the product 
estimator based on systematic samples as 
 

X
x

yy sy
syPsy = .                   2.2) 

 
The variances of syy  and syx  are given 

approximately by 
 

( ) ( ){ }11
1

2

−+





 −= n

n
S

N
NyVar y

y
sy ρ  

(2.3) 
 

where 2
yS  is the population mean square for the  

variate y  and yρ  is the intra-class correlation 

between the units of a cluster corresponding to 
the y  variate and is given by 
 

( )( )
( )

ij ij

y 2

ij

E y Y y Y

E y Y

′− −
ρ =

−
 

( ) ( )( ) ( )
k n

ij ij 2
i 1 j j 1 y

1 kn
y Y y Y

kn n 1 kn 1 S
′

′= ≠ =

= − −
− −

   
   
   

 
 

(2.4) 
 
and 

( ) ( ){ }11
1 2

−+





 −= n

n
S

N
NxVar x

x
sy ρ  

(2.5) 
 

where 2
xS  and xρ  bear the same meanings as for 

the study variate sy' . 

For large N , the variances of Rsyy and 

Psyy  to the first degree of approximation are 

respectively given by 
 

( )

( ) ( )

( ){ } ( ){ }{ }

2 2 2
Rsy y x xy x y

2 2 2
y y x x

xy x y y x

1
Var y S R S 2R S S

n
1

n 1 S R n 1 S
n

2R S S 1 n 1 1 n 1 1 ,

 = + − ρ 

+ ρ − + ρ −

− ρ + ρ − + ρ − − 

                
 

(2.6) 
and 
 

( )

( ) ( )

( ){ } ( ){ }{ }

2 2 2
Psy y x xy x y

2 2 2
y y x x

xy x y y x

1
Var y S R S 2R S S

n
1

n 1 S R n 1 S
n

2R S S 1 n 1 1 n 1 1 ,

 = + + ρ 

+ ρ − + ρ −

+ ρ + ρ − + ρ − − 

                 
 

(2.7) 
 
Assuming the intraclass correlation to be the 
same for both the variates y and x , for example,

ρρρ == xy , then the ( )RsyyVar
 

and

( )PsyyVar  respectively reduce to 

 

( )
( )

( ) ( ){ }

2 2 2

Rsy y x xy x y

2 2 2

y x xy x y

R random

1
Var y S R S 2R S S

n

n 1
S R S 2R S S

n

Var y 1 n 1

= + − ρ

ρ −
+ + − ρ

= + ρ −

  

        

(2.8) 
and 
 

( )
( )

( ) ( ){ }

2 2 2

Psy y x xy x y

2 2 2

y x xy x y

P random

1
Var y S R S 2R S S

n

n 1
S R S 2R S S

n

Var y 1 n 1

= + + ρ

ρ −
+ + + ρ

= + ρ −

  

        

(2.9) 
 

Following Bahl and Tuteja (1991), the 
following modified ratio and product estimators 

for population mean Y   are defined respectively 
as 
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










+
−

=
sy

sy
sysy xX

xX
yy expRe         (2.10) 

and 

sy
Pesy sy

sy

x X
y y exp .

x X

 −
=   + 

       (2.11) 

 
To obtain the biases and variances of the 

estimators syyRe  and Pesyy , ( )01 eYysy += ,

( )11 eXxsy += , is written such that

( ) ( ) 010 == eEeE  and 

 

( )
( )

( ){ }

( )
( )

( ){ }

( )
( )

( ){ } ( ){ }

2

0

sy

2

2

y

y

2

1

sy

2

2

x

x

0 1

sy sy

xy x y

y x

E e

Var y

Y

CN 1
1 n 1 ,

N n

E e

Var x

X

N 1 C
1 n 1 ,

N n

E e e

Cov x , y

XY

C CN 1
1 n 1 1 n 1

N n

=

=

−
= + − ρ

=

=

−
= + − ρ

=

=

ρ−
= + − ρ + − ρ






        





  

      






         

     

     

     

     

     

     

(2.12) 
 

where YSC yy =  and XSC xx =  are the 

population coefficients of variation of y  and x  
respectively. 
 

( ) ( )

( )

( )

( )

1
Re sy 0

1

1

1 1
0

1 22
1 1 1 1

0

2
1 1 1

0 2
21

1 1

e
y Y 1 e exp

2 e

e e
Y 1 e exp 1

2 2

e e e e
Y 1 e 1 1 1 ...

2 2 8 2

e e e
1 1 ...

2 2 8
Y 1 e

e 3
1 e e ... ...

8 8

Y 1

−

− −

  = + − +  
   = + − +  

   
    = + − + + + −    

     
  

− − + −  
  = +

   + − + − −    

= +

 

( ) 21
0 1

21 0 1
0 1

e 3
e 1 e ...

2 8

e e e 3
Y 1 e e ...

2 2 8

 − + −  
 = + − − + −  

 
or 
 

( ) 



 −+−≅−

28

3

2
102

1
1

0Re

eeeeeYYy sy . 

(2.13) 
 
Taking the expectations of both sides in (2.13) 
and using the results given by (2.12) the bias of 
the ratio estimator syyRe  to the first degree of 

approximation is obtained as 
 

( )

( ){ }

( ){ } ( ){ }

( ){ }
( ){ } ( ){ }

( ){ } ( ){ }
( ){ }

Re sy

2

x x

xy x y y x

2
x

x

y x

2

yx

x

x

B y

3
C 1 n 1

N 1 8
Y

nN 1
C C 1 n 1 1 n 1

2

3 1 n 1N 1 C
Y

nN 8 4c 1 n 1 1 n 1

1 n 1N 1 C
Y 1 n 1 3 4c

nN 8 1 n 1

=

+ ρ −
−

=

− ρ + ρ − + ρ −

+ ρ −−
=

− + ρ − + ρ −

+ ρ −−
= + ρ − −

+ ρ −

 
  
  

   
 

              
              

   

  

   
  

   

 
(2.14) 
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where xyxy CCc ρ= . 

Squaring both sides of (2.13) and 
neglecting terms of se'  having power greater 
than two results in 
 

( ) 







−+=− 10

2
12

0
22

Re 4
eeeeYYy sy  

(2.15) 
 
Taking the expectations of both sides in (2.15) 
and using the results given by (2.12) provides 
the variance of the modified ratio estimator 

syyRe  as 

 

( )
( ){ }

( ){ }

( ){ } ( ){ }

Re sy

2

y

2

2 x

x

xy x y y x

Var y

1 n 1 Cy

N 1 C
Y 1 n 1

nN 4

C C 1 n 1 1 n 1

+ ρ −

−
= + + ρ −

−ρ + ρ − + ρ −

 
 
  

      
  

 
 
For large N , the above expression reduces to 
 

( )
( ){ }

( ){ }
( ){ } ( ){ }

Re sy

2
y

2 2
y 2 x

x

xy x y y x

Var y

1 n 1 Sy

S S
1 n 1 R

n 4

R S S 1 n 1 1 n 1

 + ρ −
 
 

= + + ρ − 
 
 − ρ + ρ − + ρ − 

 
(2.16) 

 
and in the case where ρρρ == xy , it reduces 

to 
 

( )
( ){ }

Re sy

2 2 2
x xy x y

Var y

1 1
S R S R S S 1 n 1 .yn 4

=

 + − ρ + ρ −  
     

 

(2.17) 
 
From (1.7) and (2.17): 

( ) ( ) ( ){ }11ReRe −+= nyVaryVar randomsy ρ . 

(2.18) 
 

The efficiency of the modified ratio 
method of estimation using systematic samples 
with respect to modified ratio method of 
estimation using sample random sampling is 
 

( )
( ) ( ){ }11

1

Re

Re

−+
=

nyVar
yVar

sy

random

ρ
.    (2.19) 

 
As expected, the ratio method of estimation with 
systematic samples will be more efficient if 

0<ρ . The minimum value that ρ  can take is 









−
−

1

1

n
, when the reduction in variance is 

100%. 
Further expressing (2.11) in terms of 

se' : 
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( )

( ) ( )

( )

1

1 1
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1 22
1 1 1 1

0

2
1 1 1

0 1
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0 1
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2 2 8 2

e e e
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2 2 8
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2 8

e e e 1
Y 1 e e ...
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−
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   = + +  
   

    = + + + + + +    
     

  = + + − + + − + −    
 = + + − −  

 = + + + − + 

 

 
or 

( ) 



 −++≅− 2

1
101

0 8

1

22
eeeeeYYyPesy . 

(2.20) 
 

Taking the expectations of both sides of 
(2.20) and using the results given by (2.12) 
provides the bias of the product estimator Pesyy  

to the first degree of approximation as 
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( )
( ){ } ( ){ }

( ){ }

( ){ } ( ){ }
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xy x y y x
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x x

y2

x x

x

B y

4 C C 1 n 1 1 n 1N 1 Y

nN 8 C 1 n 1

1 n 1N 1 Y
C 1 n 1 4 c 1

nN 8 1 n 1

=

ρ + ρ − + ρ −−
=

− + ρ −

+ ρ −−
= + ρ − −

+ ρ −
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    

       
     

   

  

 
(2.21) 

 
Squaring both sides of (2.19) and neglecting 
terms of se'  having power greater than two 
results in: 

( ) 



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


++=− 10

2
12

0
22

4
eeeeYYyPesy . 

(2.22) 
 
Taking the expectations of both sides in (2.22) 
and using the results given by (2.12) provides 
the variance of the modified product estimator 

Pesyy  as: 
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( ){ } ( ){ }
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y y

2

2 x

x

xy x y y x

Var y

1 n 1 C
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 
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 
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For large N , this expression reduces to 
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Pesy
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y y

2 2
y 2 x

x

xy x y y x

Var y
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S S
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 
 
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 
 + ρ + ρ − + ρ − 

(2.23) 
 

In the casewhere ρρρ == xy , the 

expression (2.23) reduces to 
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y x xy

Var y
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Y [C C ] 1 n 1 S

n 4
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Var y
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(2.24) 
 
From (1.8) and (2.24): 
 

( ) ( ) ( ){ }11 −+= nyVaryVar randomPePesy ρ . 

  (2.25) 
 

The efficiency of the modified product 
method of estimation using systematic samples 
with respect to modified product method of 
estimation using sample random sampling is 
 

( )
( ) ( ){ }11

1

−+
=

nyVar
yVar

Pesy

randomPe

ρ
    (2.26) 

 
which is greater than unity if: 
 

( ) ( )

( )
( )

( )

Pe Pesyrandom
Var y Var y ,

1
1,

1 n 1

i.e., if 1 1 n 1 ,

i.e., if 0 n 1 ,

i.e., if 0.

>

>
+ ρ −

> + ρ −

> ρ −
ρ <

  

  
  

    (2.27) 

 
Thus, the modified product method of 

estimation using systematic samples will be 
more efficient than the modified product method 
of estimation with simple random samples if 

0<ρ . The minimum value that ρ  can take is 









−
−

1

1

n
 and, in this case, ( ) 0=PesyyVar , 

that is, the reduction in variance of Pesyy  is 

100%. 
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Comparison of Modified Ratio syyRe  and 

Product Pesyy  Estimators with Usual Unbiased 

Estimator syy , Ratio Estimator Rsyy  and 

Product Estimator Psyy  

For large N , the variance of syy  in 

(2.3) reduces to 
 

( ) ( ){ }11
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−+= n
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S
yVar y

y
sy ρ .     (2.28) 

 
From (2.16) and (2.28) 
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where
x

y
xy S

S
ρβ =  is the population regression 

coefficient of y  on x and
R

c β= . 

From (2.6) and (2.16) 
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which is negative if: 
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Thus, from (2.29) and (2.30) it follows that the 
modified ratio estimator syyRe  is more efficient 

than usual unbiased estimator syy  and Swain’s 

(1964) estimator Rsyy  if: 
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i.e., if 
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when the intraclass correlation coefficients for 
both the variates are same (i.e. ρρρ == xy ),  

then condition (2.31) reduces to: 
 

y

x
xy

y

x

C
C

C
C

4

3

4

1 << ρ .          (2.32) 

 
From (2.7), (2.23) and (2.28) 
 

( ) ( )

( ){ } ( ){ }
( ){ }

Pesy sy

2 2 2
yx y

x
x

Var y Var y

1 n 1R S S 1
1 n 1 c

n 4 1 n 1

− =

 + ρ −   + ρ − +    + ρ −   
     

 
(2.33) 

and 
 

( ) ( )

( ){ } ( ){ }
( ){ }

Pesy Psy

2 2 2
yx y

x
x

Var y Var y

1 n 1R S S 3
1 n 1 c

n 4 1 n 1

− =

 + ρ −   + ρ − − −    + ρ −   
     

(2.34)

 
 

It follows from (2.33) and (2.34) 
respectively that the proposed modified product 
estimator Pesyy  is more efficient than 

 
(i) usual unbiased estimator syy  if 
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(ii) Shukla’s (1971) product estimator Psyy  if  
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Thus, from (2.35) and (2.36) it follows that the 
proposed modified product estimator Pesyy  is 

more efficient than usual unbiased estimator syy  

and Shukla’s (1971) estimator Psyy  if 
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(2.37) 
 
i.e., if 
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In the case where ρρρ == xy , the condition 

(2.38) reduces to: 
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Modified Estimators in Systematic Sampling: 
Two-Phase (or Double) Sampling 

If the population mean X  of the 
auxiliary variable x  is not known before start of 
the survey, then it may be more efficient to 
conduct the sampling in two-phase (or double) 
sampling by taking a large preliminary sample to 

estimate the population mean X . This method 
is a powerful and cost effective (economical) 
procedure and, therefore, has role to play in 
survey sampling (Hidiroglou & Sarndal, 1998; 
Hidiroglou, 2001). 
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In the present situation the population is 
divided into k  clusters of n  units each 
according to the previous rule and λ  clusters  
( λ  being less than k ) and selected to observe 
only the auxiliary variate x , while another 
cluster is selected to observe both y and x
variates (Swain, 1964).  If x  is the mean of the 

sx'  from the selected λ  clusters, then 
 

1 1

1
,

n

ij
i j

x x
n

λ

λ = =

′ =                   (3.1) 

 

such that ( ) XxE =′ , that is, x ′ is an unbiased 

estimator of the population mean X .Swain 
(1964) suggested the double sampling ratio 
estimator with systematic samples as 
 


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The double sampling version of product 
estimator Psyy  in (2.29) is defined by 
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Case I 

For large N , ρρρ == xy  and, if the 

first set of λ  clusters and the second cluster are 
chosen randomly and independently, the 

variances of the double sampling ratio ( ))(d
Rsyy  

and product ( ))(d
Psyy  based on systematic samples 

to the first degree of approximation are 
respectively given by 
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Case II 

For large N , ρρρ == xy  and if the 

second cluster is chosen randomly from the first 
set of selected clusters, the variances of the 
double sampling ratio and product estimators 
based on systematic sampling are respectively 
given by 
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and 
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(3.7) 
 

Following Bahl and Tuteja (1991) and 
Singh and Vishwakarma (2007) a modified 
double sampling ratio estimator based on 
systematic sampling is proposed a 
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and the modified double sampling product 
estimator based on systematic sampling 
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
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Case I 

For large N , ρρρ == xy  and if the 

first set of λ  clusters and the second cluster is 
chosen randomly and independently, the 
variances of the modified double sampling ratio 
and product estimators based on systematic 
samples to the first degree of approximation are 
respectively given by 
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Case II 

If the second cluster is selected 
randomly from the first set of selected clusters, 
then the variances of the double sampling ratio 

)(
Re

d
syy  and product )(d

Pesyy  estimators to the first 

degree of approximation are respectively given 
by 
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For large N and ρρ =y , the variance 

of usual unbiased estimator syy  is given by 
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Efficiency Comparisons 

From (3.4), (3.5), (3.10), (3.11) and 
(3.14) in Case I it can be shown that the 

proposed estimator )(
Re

d
syy  is more efficient than 

 
(a) the usual unbiased estimator syy  if 
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(b) Swain’s (1964) estimator )(d
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and that )(d
Pesyy  is better than 

 
(a) the usual unbiased estimator syy  if 
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(b) the product estimator )(d
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Combining {(3.15) and (3.16)} and 
{(3.17) and (3.18)} shows that the proposed 
estimator syyRe  is more efficient than syy  and 

)(d
Rsyy  if 
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and the proposed modified product estimator 
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From (3.6), (3.7), (3.12), (3.13) and (3.14) in 
case II it can be established that the proposed 

estimator )(
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d
syy  is better than 

 
(a) the usual unbiased estimator syy  if 
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(b) the ratio estimator )(d
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and )(d
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(a) the usual unbiased estimator syy  if 
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(b) the product estimator )(d
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Combining (3.21) and (3.22) shows that 

the proposed estimator )(
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d
syy  is more efficient 

than syy  and )(d
Rsyy  if 
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a condition which is usually met in practice. 
Further from (3.23) and (3.24) it follows that the 

proposed estimator )(d
Pesyy  is better than syy  and 
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Cost Aspect 

Following Swain (1964), let the cost 
function be of the form 
 

( )nccncnc*C λλ 1010 +=+=     (3.25) 

 
where: 

*C = total cost, 

0c = cost for observing a pair of ( )xy,  on a 

sampling unit, and 

1c = cost for observing x  on any unit of λ  
clusters. 
 

From (3.10), (3.11), (3.12) and (3.13), 
note that all the four variance formulae are of the 
form: 
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The optimum values of n  and λ  can be 
obtained by minimizing the variance function 
for a given cost. The value of λ  which 
minimizes the variance function can be obtained 
by the equation 
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where 
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Differentiating (3.27) with respect to λ  and 
equating to zero results in 
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which gives 
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Substituting (3.28) in (3.25) results in 
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and substitution of (2.28) and (3.29) in (3.26) 
yields the minimum variance 
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Comparison of Several Tests for Combining Several Independent Tests 
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Several tests for combining p-values from independent tests have been considered to address a particular 
common testing problem. A simulation study shows that Fisher’s (1932) Inverse Chi-square test is 
optimal based on a power comparison of several different tests. 
 
Key words: Omnibus test, omnibus hypothesis, p-value, Kolmogorov-Smirnov test, Tippett’s test, 

Wilkinson’s test, Inverse Chi-square test, Inverse normal test, Logit test. 
 
 

Introduction 
Tests for statistical significance of combined 
results were possibly the first statistical 
procedures developed for quantitative research 
synthesis. Combined test procedures were 
developed to combine the results of significance 
tests from different research studies. 

Combining data from similar studies, as 
opposed to data derived from a single study, is 
important in Statistics. This study is a review of 
so-called omnibus statistical methods for testing 
the statistical significance of combined results. 
The procedures are called omnibus or non-
parametric because they do not depend on the 
form of the underlying data, but only on the 
exact significance levels commonly called p-
values. A key point is that observed p-values 
derived from continuous test statistics have a 
uniform distribution under the null hypothesis 
regardless of the test statistics or distribution 
from which they arise. The non-parametric 
nature of combined significance tests gives great 
flexibility in applications. Such tests can be used 
to combine any independent tests of hypotheses, 
even though the individual tests examine 
somewhat different hypotheses. For example, 
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combined significance tests may be used to 
summarize the results of 10 studies each of 
which examined the effect of a treatment on a 
different outcome variable. Such a procedure 
would test whether the treatment produced a 
superior outcome on any of the dimensions 
investigated. These procedures can also be used 
in research synthesis to combine the results of 
studies that test the same conceptual hypothesis 
by different methods. 

Many statistical tests are available for 
testing the significance for combining results. 
This study examines the most widely used tests. 
Nine different tests were compared, these are: 
Kolmogorov-Smirnov, Tippett’s, Wilkinson’s 
(for r = 2, 3, 4, 5), Inverse Chi-square, Inverse 
normal and Logit test. The objective of this 
study was to perform a comprehensive 
comparison of the performance of these tests 
based on their powers. A simulation study was 
conducted and the powers of the tests were 
compared. It was found that Fisher’s (1932) 
Inverse Chi-square test was optimal based on the 
power comparison of the different tests. 
 
p-Value Calculation: Normal Distribution 

Let 1 2, ,..., nX X X  be a random sample 

from 2( , )N μ σ . Let X  be the sample mean 
and let u be the observed value of the sample 
mean. Let (.)Φ  be the distribution function of 
the standard normal distribution. 
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p-Value Calculation: Exponential Distribution 

Let 1 2, ,..., nX X X  be a random sample 

from EXP( μ ). Let X  be their sample mean. 
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The likelihood ratio test is given by: 
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where, Ω  is the parameter space. For large n,  
 

0

0
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( 2 ln 2 ln( ) / )
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p value P observed H
P observed H
P observedχ
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Omnibus Hypotheses and Omnibus Tests 

Suppose n independent investigators 
have set about testing the validity of some null 
hypothesis: 
 

0 :H  The population mean is 0 ( )specifiedμ  

versus 

1 :H  The population mean 0μ μ<  

 
Each investigator will select a random sample 
from the population under focus, collect the 
relevant data, apply the appropriate test, and 
then report the p-value. The sample size could 
vary from investigator to investigator. The 
information provided by the investigators can be 
summarized as follows: 
 
 
 
 
 
 
 
 
 
 
The objective is to determine if the null 
hypothesis is universally true. If the null 
hypothesis is true overall then, theoretically, 

1 2, ,... np p p should be a random sample of size n 

from a uniform distribution over (0, 1). In order 
to test the merit of the hypothesis overall, a test 
statistic must be built that is a function of the 
data 1 2, ,... np p p . A multitude of tests have been 

proposed in this connection, but before 
presenting a plethora of tests, the above problem 
must be generalized. 

Investigator Sample Size p-Value 

1 1n  1p  

2 2n  2p  

… … … 

n nn  np  
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Assume m independent investigators, 
each investigating a hypothesis testing problem 
where 0iH  is the null hypothesis proposed by 

investigator i, and 1iH  is the alternative i = 1, 2, 

…, m. Each investigator collects data, tests 
his/her hypothesis and reports a p-value. This 
scenario can be summarized as follows: 
 
 
 
 
 
 
 
 
 
 

Postulating that the omnibus hypothesis, 

0 :H  0iH  is true for all i, versus the alternative 

1 :H  at least one 1iH  is true, the data to decide 

in this issue are 1 2, ,... .mp p p  Theoretically, 

each ip  has a uniform distribution over (0, 1) if 

0iH  is true. If the omnibus null hypothesis is 

true, 1 2, ,... mp p p  are independently, identically 

uniformly distributed over (0, 1). Now replace 
both the omnibus null and alternate hypotheses 
with the following equivalent hypotheses: 
 

0 1 2: , ,... mH p p p  is a random sample 

from a uniform distribution over (0, 1), 
versus 

1 1 2: , ,...  mH p p p  is a random sample 

from a distribution which is not a 
uniform distribution over (0, 1). 

 
Several tests have been developed to test the 
validity of the above modified hypotheses. 
 
Test 1: Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov (KS) test was 
originally proposed in the 1930’s by 
Kolmogorov (1933) and Smirnov (1939). The 
KS test is only appropriate for testing data 
against a continuous distribution. The KS test 
statistic is defined as follows: 

0 1

ˆ ( ) ,
p

D Sup F p p
< <

= −  

 

where F̂  is the empirical distribution function 
of the data 1 2, ,... mp p p . The exact distribution 

of D  under 0H  has been worked out and a 

table of critical values is available. 
 
Test 2: Tippett’s Test 

The first test of the significance of 
combined results was proposed by Tippett 
(1931), who noted that, if 1 2, ,... mp p p  are 

independent p-values from continuous test 
statistics, then each has a uniform distribution 
under 0H . The test procedure is as follows: 

Reject 0H  if 1/
(1) 1 (1 ) ,mp α< − −  where (1)p  = 

minimum of 1 2, ,... mp p p . The p-value of the 

test is = (1)1 (1 )mp− − . 

 
Test 3: Wilkinson’s Test 

Wilkinson (1951) provided a 
generalization of Tippett’s procedure that uses 
not just the smallest but the rth smallest p-value, 

( )rp , as a test statistic, where 

(1) (2) ( )... mp p p≤ ≤ ≤  are the ordered p-values 

(order statistics) obtained from 1 2, ,... mp p p . 

The test procedure is given as follows: Reject 

0H  if ( ) ,r rp p α< , where ,rp α  is a critical value 

for ( )rp , or use a critical number ,rm α  of p-

values that are smaller than a fixed level α . 
Wilkinson described his procedure in terms of 
the number of significant p-values, that is, those 
that are smaller than α . He provided tables of 
the probability of obtaining m or more 
significant results at the α = 0.05 and α = 0.01 
levels (that is, m or more p-values less than 0.05 
or 0.01) for m < 25. Nomographs extending 
Wilkinson’s tables to m = 100 for α  = 0.05 and 
to m = 500 for α  = 0.01 are given in Sakoda, 
Cohen and Beall (1954). Because ( )rp  has a 

beta distribution with parameters r and n-r+1, 
tables of the incomplete beta function can be 
used to obtain critical values of ( )rp  directly. 

Investigator 
Null 

Hypothesis 
Alternative 
Hypothesis 

p-value 

1 01H  11H  1p  

2 02H  12H  2p  

… … … … 

m 0mH  1mH  mp  
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Test 4: The Inverse Chi-Square Test 
One of the most widely used 

combination procedures is from Fisher (1932). 
Given m independent studies and p-values 

1 2, ,... mp p p , Fisher’s procedure uses the 

product 1 2... mp p p to combine p-values. He used 

a connection between the uniform distribution 
and the Chi-square distribution – namely, that if 
u has a uniform distribution, then 2ln u−  has a 
Chi-square distribution with 2 degrees of 
freedom. Consequently, when 0iH  is true, 

2 ln ip−  has a Chi-square distribution with 2 

degrees of freedom, therefore, 

1 2
1

2 ln( ... ) 2 ln
m

n i
i

p p p p
=

− = −  also has a Chi-

square distribution with 2m degrees of freedom. 
Due to this fact, no special tables are needed for 
the Fisher method. The test procedure becomes, 

reject 0H  if 
1

2 ln ,
m

i
i

T p c
=

= − ≥  where the 

critical value c is obtained from the upper tail of 
the chi-square distribution with 2m degrees of 
freedom. 
 
Test 5: The Inverse Normal Test 

Another procedure for combining p-
values is the inverse normal method proposed 
independently by Stouffer, et al. (1949) and by 
Liptak (1958). This procedure involves 
transforming each p-value to the corresponding 
normal score and then averaging. More 
specifically, defining iZ  by ( )i ip Z= Φ , 

where ( )xΦ  is the standard normal cumulative 

distribution function. When 0H  is true, the 

statistic  
 

1 2

1 1 1
1 2

...

( ) ( ) ... ( )

m

m

Z Z ZZ
m

p p p
m

− − −

+ + +=

Φ + Φ + + Φ=
 

 
has the standard normal distribution. Thus, 0H  

is rejected whenever Z  exceeds the appropriate 
critical value of the standard normal distribution. 

Test 6: The Logit Test 
The method of combining m 

independent p-values, 1 2, ,... mp p p , suggested 

by George (1977) and investigated by 
Mudholkar and George (1979) transforms each 

p-value into a logit, ln( )
1

p
p−

, and then 

combine the logits via the statistic 
 

1

1

ln ... ln
1 1

m

m

ppL
p p

= + +
− −

. 

 
The exact distribution of L is not simple, but 
when 0H  is true, Mudholkar and George (1979) 

showed that the distribution of L (except for a 
constant) can be closely approximated by 
Student’s t-distribution with 5m+4 degrees of 
freedom. Therefore, the test procedure is reject 

0H  if * (0.3)(5 4)

(5 2)

mL L c
m m

+= >
+

 where the 

critical value c is obtained from the t-distribution 
with 5m+4 degrees of freedom. (Note that the 

term 0.3 is more accurately given by 
2

3

π
.) For 

large values of m, * 0.55
.L L

m
 
 
 

  

 
Methodology 

Monte Carlo Simulation 
A Monte Carlo simulation study was 

conducted to compare the performance of the 
omnibus test statistics described on the basis of 
estimated powers when the underlying data 
distributions are normal and exponential. The 
sample sizes used were 10 and100. The omnibus 
hypotheses are: 
 

0

1

: 5

: 5

H
versus

H

μ

μ

=

≠
 

 
The maintenance of significance levels was 
checked for each of the nine tests (for Test 3, r = 
2, 3, 4, 5 were used), under each sample size and 
population mean, and for two distributions: 
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normal and exponential. Empirical error rates for 
each case were estimated by first simulating 
10,000 different samples with specified sample 
size and population mean ( 0μ ) from a 

population with a specified distribution.  
The test of interest was performed on 

each sample and it was determined if the null 
hypothesis was rejected at the 5% significance 
level. The empirical error rates for that test were 
then computed as the proportion of times the 
null hypothesis was rejected at each significance 
level. A test was considered acceptable at the 
5% significance level if the error rates were 
between 0.044 and 0.056. The range represents a 
99% confidence interval for the stated 
significance level. 
 

Results 
Tables 1-4 display the estimated powers of each 
test statistic investigated at the 0.05significance 
level; Figures 1-4 show the power curves. 
 

Conclusion 
Of the nine test statistics considered, the Inverse 
Chi-square test gives the highest power in 
almost every simulation, regardless of the 
number of populations, sample size or parameter 
values. The second highest power observed was 
with the Inverse Normal test. The minimum p 
test almost always gave the lowest power. In 
general, the Inverse Chi-Square proved superior 
by performing consistently in simulations for a 
wide range of cases. 
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Table 1: Normal Distribution n = 10, nrep = 10,000, α = 0.05 
 

µ KS P(1) P(2) P(3) P(4) P(5) INV-CHI INV-NORM LOGIT 

4.0 0.9712 0.8352 0.9467 0.9705 0.9730 0.9709 0.9926 0.9901 0.9827 

4.1 0.9171 0.7380 0.8915 0.9241 0.9286 0.9259 0.9735 0.9657 0.9441 

4.2 0.8108 0.6101 0.7879 0.8354 0.8443 0.8328 0.9225 0.9025 0.8556 

4.3 0.6635 0.4830 0.6530 0.6973 0.7105 0.6910 0.8096 0.7796 0.7009 

4.4 0.4901 0.3691 0.4919 0.5300 0.5412 0.5190 0.6511 0.6060 0.5119 

4.5 0.3308 0.2643 0.3514 0.3738 0.3705 0.3607 0.4632 0.4254 0.3351 

4.6 0.2051 0.1830 0.2253 0.2384 0.2351 0.2226 0.2982 0.2658 0.1891 

4.7 0.1275 0.1158 0.1315 0.1418 0.1395 0.1296 0.1614 0.1488 0.1000 

4.8 0.0817 0.0816 0.0853 0.0845 0.0844 0.0852 0.0946 0.0871 0.0658 

4.9 0.0622 0.0578 0.0568 0.0589 0.0595 0.0552 0.0601 0.0586 0.0492 

5.0 0.0529 0.0501 0.0509 0.0505 0.0517 0.0525 0.0492 0.0483 0.0472 

5.1 0.0610 0.0576 0.0575 0.0580 0.0587 0.0573 0.0629 0.0595 0.0533 

5.2 0.0835 0.0785 0.0822 0.0839 0.0856 0.0821 0.0913 0.0848 0.0622 

5.3 0.1168 0.1194 0.1399 0.1410 0.1360 0.1263 0.1667 0.1460 0.0999 

5.4 0.1975 0.1750 0.2214 0.2306 0.2301 0.2168 0.2887 0.2618 0.1860 

5.5 0.3328 0.2599 0.3433 0.3743 0.3767 0.3598 0.4649 0.4187 0.3308 

5.6 0.4853 0.3651 0.4985 0.5387 0.5352 0.5186 0.6506 0.6089 0.5176 

5.7 0.6747 0.4825 0.6502 0.7005 0.7130 0.6946 0.8148 0.7789 0.7044 

5.8 0.8079 0.6088 0.7831 0.8307 0.8363 0.8272 0.9166 0.8963 0.8484 

5.9 0.9159 0.7273 0.8864 0.9264 0.9261 0.9197 0.9726 0.9631 0.9404 

6.0 0.9688 0.8351 0.9518 0.9733 0.9746 0.9707 0.9935 0.9918 0.9832 
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Table 2: Normal Distribution n = 100, nrep = 10,000, α = 0.05 
 

µ KS P(1) P(2) P(3) P(4) P(5) INV-CHI INV-NORM LOGIT 

4.0 1.0000 0.9947 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4.1 1.0000 0.9713 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4.2 1.0000 0.8992 0.9969 0.9995 0.9998 1.0000 1.0000 1.0000 1.0000 

4.3 1.0000 0.7659 0.9681 0.9936 0.9983 0.9995 1.0000 1.0000 1.0000 

4.4 0.9995 0.5823 0.8658 0.9480 0.9782 0.9888 1.0000 0.9999 0.9997 

4.5 0.9811 0.4042 0.6596 0.7916 0.8662 0.9098 0.9978 0.9934 0.9876 

4.6 0.7915 0.2547 0.4307 0.5320 0.6075 0.6601 0.9298 0.8763 0.8212 

4.7 0.4084 0.1572 0.2358 0.2899 0.3263 0.3569 0.6109 0.5204 0.4148 

4.8 0.1627 0.0980 0.1179 0.1351 0.1495 0.1519 0.2440 0.2052 0.1353 

4.9 0.0834 0.0633 0.0687 0.0705 0.0683 0.0699 0.0795 0.0729 0.0522 

5.0 0.0765 0.0475 0.0477 0.0466 0.0508 0.0539 0.0524 0.0511 0.0498 

5.1 0.0864 0.0658 0.0668 0.0684 0.0684 0.0717 0.0848 0.0765 0.0545 

5.2 0.1587 0.0997 0.1178 0.1314 0.1456 0.1548 0.2423 0.2063 0.1364 

5.3 0.4102 0.1619 0.2367 0.2925 0.3360 0.3651 0.6093 0.5189 0.4105 

5.4 0.8004 0.2626 0.4307 0.5503 0.6245 0.6747 0.9314 0.8825 0.8274 

5.5 0.9805 0.4072 0.6626 0.7906 0.8600 0.8998 0.9975 0.9931 0.9872 

5.6 0.9997 0.5881 0.8672 0.9507 0.9768 0.9875 1.0000 1.0000 0.9999 

5.7 1.0000 0.7548 0.9661 0.9945 0.9991 0.9996 1.0000 1.0000 1.0000 

5.8 1.0000 0.8929 0.9957 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 

5.9 1.0000 0.9674 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

6.0 1.0000 0.9940 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Figure 1: Normal Distribution n = 10, nrep = 10,000, α = 0.05 
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Figure 2: Normal Distribution n = 100, nrep = 10,000, α = 0.05 
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Table 3: Exponential Distribution n = 10, nrep = 10,000, α = 0.05 
 

µ KS P(1) P(2) P(3) P(4) P(5) INV-CHI INV-NORM LOGIT 

4.0 0.8962 0.6269 0.8249 0.8834 0.9039 0.8990 0.9560 0.9503 0.9141 

4.1 0.7830 0.5042 0.7091 0.7804 0.7964 0.7944 0.8823 0.8701 0.8064 

4.2 0.6375 0.3978 0.5681 0.6391 0.6609 0.6545 0.7619 0.7394 0.6505 

4.3 0.4689 0.3033 0.4425 0.4964 0.5089 0.5020 0.6033 0.5731 0.4712 

4.4 0.3293 0.2340 0.3229 0.3611 0.3698 0.3545 0.4451 0.4164 0.3164 

4.5 0.2167 0.1786 0.2253 0.2452 0.2496 0.2384 0.3017 0.2814 0.1962 

4.6 0.1366 0.1222 0.1479 0.1556 0.1548 0.1486 0.1811 0.1712 0.1133 

4.7 0.0940 0.0897 0.1039 0.1053 0.1014 0.1006 0.1185 0.1103 0.0742 

4.8 0.0716 0.0670 0.0686 0.0722 0.0685 0.0686 0.0743 0.0711 0.0577 

4.9 0.0636 0.0518 0.0578 0.0561 0.0558 0.0517 0.0553 0.0553 0.0510 

5.0 0.0572 0.0481 0.0524 0.0546 0.0526 0.0526 0.0557 0.0554 0.0511 

5.1 0.0599 0.0552 0.0589 0.0564 0.0536 0.0554 0.0562 0.0536 0.0493 

5.2 0.0713 0.0651 0.0669 0.0683 0.0774 0.0682 0.0749 0.0695 0.0581 

5.3 0.0904 0.0884 0.0953 0.0999 0.0953 0.0926 0.1123 0.1048 0.0746 

5.4 0.1275 0.1289 0.1474 0.1496 0.1422 0.1382 0.1748 0.1532 0.1086 

5.5 0.1754 0.1734 0.2067 0.2141 0.2069 0.1946 0.2586 0.2286 0.1647 

5.6 0.2369 0.2236 0.2801 0.2966 0.2804 0.2650 0.3588 0.3097 0.2339 

5.7 0.3293 0.2902 0.3807 0.3971 0.3825 0.3596 0.4907 0.4345 0.3528 

5.8 0.4445 0.3738 0.4886 0.5048 0.5007 0.4770 0.6202 0.5643 0.4774 

5.9 0.5556 0.4670 0.5907 0.6278 0.6209 0.5966 0.7407 0.6935 0.6100 

6.0 0.6666 0.5468 0.6933 0.7277 0.7274 0.6898 0.8314 0.7867 0.7243 
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Table 4: Exponential Distribution n = 100, nrep = 10,000, α = 0.05 
 

µ KS P(1) P(2) P(3) P(4) P(5) INV-CHI INV-NORM LOGIT 

4.0 1.0000 0.8712 0.9963 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 

4.1 1.0000 0.7470 0.9732 0.9968 0.9991 0.9998 1.0000 1.0000 1.0000 

4.2 1.0000 0.6055 0.9049 0.9717 0.9895 0.9962 1.0000 1.0000 1.0000 

4.3 0.9992 0.4563 0.7605 0.8903 0.9437 0.9691 1.0000 0.9999 0.9996 

4.4 0.9808 0.3351 0.5863 0.7254 0.8072 0.8605 0.9979 0.9938 0.9866 

4.5 0.8378 0.2387 0.3969 0.5073 0.5945 0.6458 0.9436 0.9056 0.8500 

4.6 0.5128 0.1590 0.2455 0.3097 0.3630 0.4033 0.7017 0.6235 0.5127 

4.7 0.2440 0.1077 0.1451 0.1740 0.1910 0.2106 0.3639 0.3086 0.2167 

4.8 0.1166 0.0728 0.0876 0.0952 0.1012 0.1078 0.1483 0.1276 0.0835 

4.9 0.0846 0.0565 0.0608 0.0578 0.0613 0.0613 0.0736 0.0725 0.0558 

5.0 0.0804 0.0487 0.0495 0.0475 0.0503 0.0527 0.0519 0.0506 0.0485 

5.1 0.0796 0.0534 0.0551 0.0619 0.0598 0.0624 0.0670 0.0649 0.0483 

5.2 0.1134 0.0820 0.0890 0.0908 0.0971 0.1043 0.1468 0.1276 0.0820 

5.3 0.2106 0.1198 0.1539 0.1738 0.1972 0.2111 0.3360 0.2789 0.1877 

5.4 0.4033 0.1845 0.2568 0.3201 0.3585 0.3834 0.6240 0.5311 0.4205 

5.5 0.6834 0.2675 0.4090 0.5053 0.5665 0.6185 0.8805 0.7972 0.7174 

5.6 0.9024 0.3724 0.5874 0.7071 0.7770 0.8231 0.9815 0.9551 0.9275 

5.7 0.9852 0.5028 0.7528 0.8647 0.9114 0.9397 0.9986 0.9956 0.9913 

5.8 0.9984 0.6325 0.8851 0.9519 0.9769 0.9869 1.0000 0.9998 0.9995 

5.9 0.9999 0.7602 0.9566 0.9879 0.9954 0.9985 1.0000 1.0000 1.0000 

6.0 1.0000 0.8643 0.9867 0.9981 0.9994 1.0000 1.0000 1.0000 1.0000 
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Figure 3: Exponential Distribution n = 10, nrep = 10,000, α = 0.05 
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Figure 4: Exponential Distribution n = 10, nrep = 10,000, α = 0.05 
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The development and application of a permutation test for compound symmetry is described. In a 
simulation study the permutation test appears to be a level-α test and is robust to non-normality. However, 
it exhibits poor power, particularly for small samples. 
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Introduction 
Determining the underlying covariance or 
correlation structure of a data set can be 
challenging. The classical parametric method of 
testing for some hypothesized covariance 
structure involves using a likelihood ratio 
statistic that converges in distribution to a Chi-
square random variable (Wilks, 1946). One 
common covariance structure, in which all of the 
variances are equal and all of the covariances are 
equal, is compound symmetry. One of the 
requirements of the likelihood ratio test (LRT) 
for compound symmetry is that the data be 
sampled from a multivariate normal population. 
Because the LRT is not robust to departures 
from normality (Huynh & Mandeville, 1979; 
Keselman, et al., 1980)a nonparametric test for 
compound symmetry would be very useful. In 
particular, permutation tests (PTs) have minimal 
to no distributional  
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assumptions, do not require random samples and 
allow any combination of sample size and 
number of variables:  
 
Existing Tests for Compound Symmetry 

Wilks (1946) was the first to develop a 
test for compound symmetry. This is a test of 

0H : CS=Σ Σ , where 
 

( )2 1 ;CS p p p′ = σ − ρ + ρ Σ I 1 1          (1) 

 
σ2 is the common variance; ρ is the common 
pairwise correlation; Ip is the p×p identity 
matrix; and 1p is a p×1 unit vector. The classical 
approach to testing for compound symmetry 
involves the use of a LRT. Let xi, i=1, …, n be 
p-component vectors distributed according to 
Np(μ, Σ). The LRT criterion for this test is given 
by 
 

( ) ( ) ( )( )

2

2
12

ˆ
,

1 1 1

n

np ps r p r−
λ =

 − + −  

Σ
 

 
where Σ̂  is the maximum likelihood estimator 
(MLE) of Σ under aH : CS≠Σ Σ  and s and r are 
the MLEs of σ and ρ, respectively, under H0. 

Wilks (1946) determined the exact 
distribution of λ2/n for p = 2 and 3; however, the 
derivation of the exact distribution for larger 
values of p is too complex to be of practical use. 
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Therefore, the asymptotic distribution is most 
commonly used. Specifically, 2logλ nn−  is 
asymptotically distributed as a Chi-square 
random variable with 1

2 ( 1) 2p p + −  degrees of 

freedom. As with other LRTs, this is a good 
approximation when n is considerably larger 
than p, but is poor when n is close to p. 
Therefore, the corrected LRT (CLRT) derived 
by Box (1950) is preferred. Box showed that 

2( 1) log nn C λ− −  is asymptotically distributed 
as a Chi-square random variable with 
1
2 ( 1) 2p p + −  degrees of freedom where 

 

( ) ( )
( )( )( )

2

2

1 2 3
1 .

6 1 1 4

p p p
C

n p p p
+ −

= −
− − + −

 

 
The LRT for compound symmetry is 

actually just an extension of an earlier test of 
2σ=Σ I  developed by Mauchly (1940). 

Consequently, the LRT for compound symmetry 
suffers from the same limitations as Mauchly’s 
test. Specifically, it is not a level-α  test (Boik, 
1975; Cornell, et al., 1992), is not robust to non-
normality (Huynh & Mandeville, 1979; 
Keselman, et al., 1980), and requires n p> . The 
CLRT alleviates the problems with the type I 
error rate (except when n is close to p). It is not, 
however, robust to non-normality, and also 
requires n p> . 

Wilks’ (1946) work was subsequently 
extended. Lee, Krishnaiah and Chang (1976) 
determined that the Chi-square approximation 
for the distribution of the likelihood ratio 
statistic for compound symmetry is adequate for 
so-called practical purposes, and Votaw (1948) 
developed a test for compound symmetry in 
subsets of variates. Still other authors have 
explored similar tests for the structure of 
correlation rather than covariance matrices 
(Aitkin, 1969; Aitkin, Nelson & Reinfurt, 1968).  

Tests for compound symmetry based on 
spatial signs and ranks have been developed 
more recently. Marden (1999) introduced one 
such rank-based test utilizing the differences 
between the estimated variances and covariances 
under the alternative hypothesis and the 
estimated variances and covariances under the 
null hypothesis. Two subsequent studies 

extended this work. The first used a permutation 
testing procedure where the usual LRT statistic 
was computed for the spatial ranks (Gao & 
Marden, 2001). In the second, a Hotelling 2T -
type statistic was derived and shown to converge 
in distribution to a Chi-square random variable 
(Marden & Gao, 2002). The latter article also 
presents a similar test based on spatial signs. 
Marden & Gao performed a small simulation 
study ( 100n =  & 3p = ) for these tests and 
found both the rank and sign tests to be level-α 
tests when simulating data from spherically 
symmetric distributions. 

Other authors have considered tests for 
sphericity based on spatial signs and ranks 
(Hallin & Paindaveine, 2006; Sirkiä, Taskinen, 
Oja & Tyler, 2009). These tests can also be used 
to test for compound symmetry by first applying 
an appropriate data transformation. All of these 
rank and sign tests are superior to the LRT for 
compound symmetry in that they broaden the 
family of distributions to which a test for 
compound symmetry can be applied. They are 
also applicable in cases in which n p≤ . 
Unfortunately, these tests still have 
distributional assumptions: they require that data 
be sampled from a multivariate elliptical 
distribution. 
 

Methodology 
When the assumptions of parametric procedures 
are violated, PTs have been used as alternatives. 
Specifically, PTs reduce or eliminate 
distributional assumptions (Fisher, 1936; Good, 
2005) and allow the use of nearly any test 
statistic; they are also valid for any combination 
of n and p. As with any statistical procedure, 
however, PTs have limitations. The greatest of 
which is that they can be computationally 
intensive even for moderate sample sizes. With 
continued advances in technology, PTs have 
become more feasible for larger sample sizes; 
however, there still exists a limit at which the 
computing time required to examine all possible 
permutations of the data is prohibitive. In such 
cases, a random sample of permutations may be 
selected to compute an approximate p-value 
(Dwass, 1957). These tests are commonly 
known as Monte Carlo PTs (MCPT). 
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Given the benefits of PTs and the 
limitations of LRTs for testing for the structure 
of a covariance matrix, it is the purpose of this 
research to develop a PT for compound 
symmetry. Before describing this test, note that 
covariance matrices are invariant to changes in 
location. Therefore, it was assumed throughout 
this study that the variable means are equal. If 
the variable means are unequal, the raw data can 
be easily centered by calculating xi − µ or i −x x  
depending on whether μ is assumed known or 
unknown, respectively. 
 
Proposed PT Test for Compound Symmetry 

Let xi, i=1,…,n be identically 
distributed, p-variate vectors of observations on 
each of n subjects. The objective is to test 

0H : CS=Σ Σ  where Σ is the covariance matrix 

of the distribution of xi, and CSΣ  has the 
compound symmetry structure given in (1). 
Good (2005) argues that the observations within 
each vector are exchangeable if either (i) the 
observations are independent, or (ii) they are 
normally distributed with equal covariances. The 
first of these conditions is a special case of 
compound symmetry, called sphericity, in which 
the variances are all equal and the covariances 
are all zero. In this case, the PT makes no 
distributional assumptions. The second set of 
conditions requires multivariate normality with 
equal covariances. Under the null hypothesis, 
the covariances are assumed equal and it appears 
from the simulation results presented herein that 
a weaker distributional assumption may be 
sufficient for practical purposes. Specifically, it 
appears that equivalent marginal distributions 
will suffice. 

Because covariance matrices are 
symmetric, one possible test statistic can be 
computed by summing the absolute differences 
between the elements on or above the diagonal 
of the covariance matrix obtained from the 
observed data and the elements on or above the 
diagonal of the hypothesized covariance matrix 
estimated from the observed data. In matrix 
notation: 
 

1
2 ( 1)p pD +
′= 1 ( )ˆvec ,obs CS−Σ Σ  

 

where obsΣ  is the covariance matrix obtained 
from the observed data;  
 

( )2ˆ 1CS p p ps r r ′ = − + Σ I 1 1 ; 

 
vec(M) is a vector of the elements on or above 

the diagonal of M; and 2s  and r  are the means 
of the sample variances and correlations, 
respectively. This test statistic is computed for 
each possible permutation of the data and the 
proportion of test statistic values greater than or 
equal to the one obtained from the original data 
is the p-value. Note that D can also be used to 
test for a specific common variance and/or 
correlation by substituting the specified value 

for 2s  and/or r , respectively, rather than 
estimating these values as described previously. 
 

Results 
Type I Error 

One-thousand simulations were run 
using R version 2.10.1 (R, 2009) for various 
combinations of n (=5, 10, 25, 50, 100) and p 
(=3, 5, 10, 20). Due to the extremely large 
number of permutations required to carry out the 
PTs for any reasonable values of n and p, 
MCPTs were used in the simulations. For each 
simulation, a p-variate data set was generated 
and the MCPT, CLRT and sign test for 
sphericity (SIGN) were performed. The sign test 
for sphericity is available in the SpatialNP 
package for R (Sirkiä, Nordhausen & Oja, 
2009). 

One-thousand random permutations of 
the centered data were sampled for each MCPT. 
In practice, a much larger sample of 
permutations would be used for individual tests 
(usually 10,000 permutations); however, for a 
simulation study of this size, such a large 
number proved to be prohibitive. Therefore, 
1,000 permutations were sampled for each 
MCPT based on the suggestions of Jöckel 
(1986) and Manly (1997). For the CLRT and 
SIGN test, the asymptotic Chi-square 
distributions were used to determine 
approximate 5% critical values. 

Four different multivariate distributions 
(normal, uniform, double exponential and two-
parameter exponential) were investigated. For 
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the multivariate normal distribution, data were 
generated in R using the mvrnorm function 
within the MASS add-on package (Venables & 
Ripley, 2002). For the multivariate uniform 
distribution data were generated using a 
procedure described in Falk (1999), and for the 
multivariate double exponential and two-
parameter exponential distributions a procedure 
described in Vale and Maurelli (1983) was used. 

The simulated type I error rates for the 
tests of compound symmetry are displayed in 
Figure 1. Simulations were run for n = 5, 10, 15, 
25, 50, 100, 3p = , 2σ 9= , and ρ 0.6= . For 
normally distributed data, the three tests are 
comparable with respect to the simulated type I 
error rates, with the CLRT and SIGN test 
appearing to be slightly conservative, 
particularly for small samples. The MCPT 
appears to be fairly robust to non-normality, 
especially when the underlying distribution is 
symmetric (normal, uniform, double 
exponential); however, in the case of the two-
parameter exponential data, the MCPT appears 
to be too liberal with respect to the simulated 
type I error rates, especially for small samples. 
The CLRT appears to be too conservative for 
uniform data and much too liberal for double 
exponential and two-parameter exponential data, 
in the latter case achieving a simulated type I 
error rate as high as 0.352 for 100n = .  

These results are consistent with those 
of Huynh and Mandeville (1979) who performed 
a simulation study of Mauchly’s (1940) test of 
sphericity and found that for light-tailed 
distributions the LRTs were conservative and for 
heavy-tailed distributions, the type I error rates 
exceeded the nominal rate. The SIGN test 
performs very well with respect to the simulated 
type I error rates for double exponential data; 
however, the simulated type I error rates are 
extremely high for uniform (as high as 1.000 for 

50n = ) and two-parameter exponential data (as 
high as 0.604 for 100n = ). This is undoubtedly 
due to the assumption of the SIGN test that the 
data be sampled from a multivariate elliptical 
distribution. 

One disadvantage of the LRTs is that 
they do not exist when p n≥ ; due to this, type I 
error rates tend to inflate as p approaches n. 
Figure 2 displays the simulated type I error rates 

for 25n = , 3,5,10, 20p = , 2σ 9= , and ρ 0.6= . 
From these results it is clear that the CLRT is 
not a level-α test, even for normally distributed 
data, when p is close to n; and the SIGN test 
suffers from the same problems as in Figure 1 
for non-elliptical data. Consequently, the MCPT 
is the best choice, with respect to the simulated 
type I error rates of the three tests for uniform 
and two-parameter exponential data, even 
though the MCPT is too liberal in the latter case. 
 
Power 

The power of the tests of compound 
symmetry to detect heteroscedasticity and serial 
correlation was studied. The MCPT, SIGN test 
and CLRT were all conducted for various 
combinations of n, p and distribution; however, 
because the SIGN test is not a level-α  test for 
uniform and two-parameter exponential data and 
the CLRT is not a level-α test for double 
exponential and two-parameter exponential data 
the power results for these cases are largely 
excluded in the following discussion, but are 
presented in Figures 3 and 4 for completeness. 

Figure 3 shows the simulated power of 
the test of compound symmetry versus 
heteroscedasticity. Specifically, multivariate 
data were generated from distributions with 
covariance matrices having diagonal elements 
given by 1, 1+d/(p-1), 1+2d/(p-1), …, 1+d and 
zero off diagonal elements, where d represents 
the difference between the first and last (or 
smallest and largest) diagonal elements. Figure 3 
displays the power results for n = 5, 10, 25, 50, 

3p = , 4d =  and ρ 0= . 
For normally distributed data the power 

of the CLRT is greater than that for the MCPT 
and SIGN test in most cases, but the MCPT 
performs fairly well, achieving a power of 0.983 
when 50n = . The true benefit of the MCPT is 
observed in the non-normal cases. For uniformly 
distributed data; the simulated power of the 
MCPT is greater than or equal to that of the 
CLRT except for 25n =  (0.941 for the MCPT 
and 0.943 for the CLRT). For double 
exponential data the simulated powers of the 
MCPT and SIGN test are very close with the 
MCPT slightly more powerful for small samples 
( 5,10, 25n = ) and the SIGN test slightly more 
powerful for large samples ( 50n = ). For two-  
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Figure 1: Simulated Type I Error Rates for the Test of Compound Symmetry ( 23, σ 9, ρ 0.6p = = = ) 
 

a. Normal 

 
b. Uniform 

 
* The type I error rates for this test are greater than 0.2 for all simulated values of n. 

Note: The horizontal lines correspond to 0.05 1.96 (0.05)(0.95) /1000±  

*
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Figure 1 (continued): Simulated Type I Error Rates for the Test of Compound Symmetry ( 23, σ 9, ρ 0.6p = = = ) 
 

c. Double Exponential 

 
d. Two-Parameter Exponential 

 
Note: The horizontal lines correspond to 0.05 1.96 (0.05)(0.95) /1000±  
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Figure 2: Simulated Type I Error Rates for the Test of Compound Symmetry ( 225, σ 9, ρ 0.6n = = = ) 
 

a. Normal 

 
b. Uniform 

 
* The type I error rates for this test are greater than 0.2 for all simulated values of n. 

Note: The horizontal lines correspond to 0.05 1.96 (0.05)(0.95) /1000±  

*
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Figure 2 (continued): Simulated Type I Error Rates for the Test of Compound Symmetry ( 225, σ 9, ρ 0.6n = = = ) 
 

c. Double Exponential 

 
d. Two-Parameter Exponential 

 
Note: The horizontal lines correspond to 0.05 1.96 (0.05)(0.95) /1000±  
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Figure 3: Simulated Power for the Test of Compound Symmetry vs. Heteroscedasticity ( =3, ρ 0, 4p d= = )* 
 

a. Normal 

 
 

b. Uniform 

 
*These are not level-α tests. 
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Figure 3 (continued): Simulated Power for the Test of Compound Symmetry vs. Heteroscedasticity ( =3, ρ 0, 4p d= = )* 
 

c. Double Exponential 

 
d. Two-Parameter Exponential 

 
*These are not level-α tests. 
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Figure 4: Simulated Power for Test of Compound Symmetry vs. Serial Correlation ( 25, 1, 0.6p = σ = ρ = )* 
 

a. Normal 

 
b. Uniform 

 
*These are not level-α tests. 
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Figure 4 (continued): Simulated Power for Test of Compound Symmetry vs. Serial Correlation ( 25, 1, 0.6p = σ = ρ = )* 
 

c. Double Exponential 

 
d. Two-Parameter Exponential 

 
*These are not level-α tests. 
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parameter exponential data, even though the 
MCPT is slightly liberal, it is the best choice of 
the three tests given that the CLRT and SIGN 
test have simulated type I error rates that are 
much too high; however the MCPT in this case 
is not very powerful, only achieving a simulated 
power of 0.624 for 50n = . 

Figure 4 displays the simulated power of 
the test of compound symmetry versus the serial 
correlation structure given by 
 

2 1

22

2

1 2 3

1

1

1

1

p

p

SC

p p p

−

−

− − −

 ρ ρ ρ
 ρ ρ ρσ  =
 − ρ
 
ρ ρ ρ  

Σ




    


 

 
where ( )2 2σ 1 ρ−  is the common variance of 

the p variables and ρ  is the correlation between 
successive observations of the variables. Figure 
4 displays the power results for n = 10, 25, 50, 
75, 5p = , 2 1σ = , and ρ 0.6= . 

Figure 4 is very similar to Figure 3 for 
the CLRT and SIGN test, but the MCPT appears 
to be less powerful at detecting serial correlation 
than heteroscedasticity. However, it is difficult 
to make direct comparisons between these two 
situations because the degree to which the 
simulated alternatives depart from compound 
symmetry cannot be quantified. 
 
Application 

Consider a data set reported in Monks, 
et al. (2004). In this study, 15 Centre d’Etude du 
Polymorphisme Humain (CEPH) families were 
selected and the expression for 23,499 genes 
was measured in lymphoblastoid cell lines; of 
these, 762 genes were found to be expressed and 
heritable. Three of the genes (NM_001081, 
NM_002125, and V00522) are known to have a 
linkage to the same location on chromosome 6; 
consequently, interest lies in determining 
whether there is a compound symmetry 
covariance structure with respect to these three 
genes. Among the 15 families included in the 
CEPH study there were 47 grandparents. These 
grandparents were the oldest generation included 
in the study; therefore, it is assumed that no 

genetic material is shared among them. Only the 
47 grandparents were included in the analysis. 

It is common in genetic studies to 
standardize gene expression data; therefore, the 
covariance and correlation matrices are 
equivalent. The sample covariance matrix 
among these three genes is estimated to be 
 

1 0.823 0.896
ˆ 0.823 1 0.824

0.896 0.824 1

 
 =  
  

Σ , 

 
and the hypothesis to be tested is 0H : CS=Σ Σ  

vs. aH : CS≠Σ Σ . In all, ( )47 363! 3.74 10≈ ×  

permutations of the raw data are possible. 
Consequently, a random sample of 10,000 
permutations was selected for the MCPT. The p-
values for the three tests are 0.9904 for the 
MCPT, 0.3042 for the CLRT and 0.0664 for the 
SIGN test. In each case, the null hypothesis 
would not be rejected at the 0.05 level, but the 
three p-values are very different. According to 
the Shapiro-Wilk test of multivariate normality, 
there is evidence that these data are not from a 
multivariate normal population ( 0.00016p = ), 
violating the assumptions of the CLRT. Given 
that the structure of Σ̂  does not deviate much 
from compound symmetry, it may also be 
speculated that the data may not have a 
multivariate elliptical distribution which could 
explain the unusually low p-value for the SIGN 
test. 
 

Conclusion 
With somewhat recent advances in technology 
permutation tests are becoming more feasible 
and – consequently – more common; this article 
proposed such a test for the compound 
symmetry covariance structure. Our simulation 
study indicates that the MCPT is robust to non-
normality (more so when the data are 
symmetrically distributed), an issue with the 
CLRT, but is generally not as powerful as the 
CLRT when the data are normally distributed. 
The MCPT is also an improvement over the 
SIGN test in that the MCPT appears to be robust 
to non-elliptical distributions (again, more so 
when the data are symmetrically distributed).  
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One additional – and probably more 
common situation – that was not considered 
herein is the case of data sets in which the 
variables are not all equally distributed. Because 
the PT requires either independent observations 
or normally distributed observations with equal 
covariances for exchangeability, it is suspected 
that the PT would not perform well in this case, 
at least for extreme differences in distribution.  

This article presented only the PT for 
the compound symmetry structure. According to 
Good (2005) this particular test requires 
multivariate normality and equal covariances for 
the exchangeability of the data. Evidence 
presented shows that this test is robust to 
departures from normality, but the situation of 
unequal covariances has not been addressed. A 
data transformation such that a PT for the 
structure of any covariance matrix can be 
achieved by applying the PT for compound 
symmetry to the transformed data is currently 
under development.   

Another issue with the CLRT is that it 
does not exist for cases in which p n≥ . 
Although the PT exists in these cases, evidence 
exists to show that it is not a level-α  test. 
Consequently, alternative test statistics are being 
considered that will alleviate this problem. 
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A robust variance estimator for a regression model with spatially correlated errors is proposed using the 
estimated empirical covariogram. Simulations studies show unbiasedness and robustness for the OLS but 
not for the GLS estimates. The new robust variance estimation method is applied to hospital quality data. 
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Introduction 
In observational studies, an objective of interest 
is to compare the mean response of exposed and 
unexposed units. Commonly, the effect of an 
exposure or treatment on an outcome is 
evaluated via conventional linear regression 
models that assume independence of errors. For 
geographical data, observations and 
corresponding errors may be spatially correlated 
rather than independent. One unbiased estimator 
of an exposure effect in a linear regression 
model is the ordinary least squares estimator 
(OLS). This estimator is known to be the best 
linear unbiased estimator (BLUE) when the 
errors are independent with a constant variance. 
However, when errors are correlated, this 
estimator may be inefficient. Furthermore, its 
standard variance estimator may be biased. To 
improve precision for correlated data, methods 
that take into account the correlation structure, 
such as maximum likelihood (ML) estimation 
and generalized least squares (GLS) are of 
interest for evaluating an exposure effect. 
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A number of researchers have studied 

regression models with serially or spatially 
correlated errors. For example, Lee & Lund 
(2004) provided expressions for the OLS 
variances for autocorrelated errors and proposed 
confidence intervals based on their derived 
variance. The empirical coverage probabilities 
of their confidence intervals were close to the 
95%target value when the sample size was large 
(at least 500). Athough Lee & Lund studied the 
variance for time series autocorrelation 
structures, their results require extension to 
regression models where errors are correlated in 
a space. 

Basu & Reinsel (1994) compared the 
OLS and GLS estimators when errors follow a 
spatial unilateral first-order autoregressive 
moving average model; they found that the 
difference between variances of the two 
estimators were small unless the spatial 
correlation was close to 1. They investigated 
autocorrelation models; however, regression 
model errors could follow other spatial 
structures, such as a spatial Gaussian or spatial 
exponential model. Mardia and Marshall (1984) 
developed ML estimators for regression 
parameters in the spatial context assuming the 
errors follow a spatial Gaussian distribution. 

A limitation of previous methods of 
inference for spatial data is that they rely on a 
correct specification of the covariance structure. 
When the covariance matrix is unknown, 
methods for variance estimation that are robust 
to covariance model misspecification are of 
interest. In the context of longitudinal data, a 
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well-known robust method to improve variance 
estimators for correlated data is the sandwich 
variance estimator (Diggle, et al., 2003). 
However, this estimator is not suitable for 
spatially correlated data that involve a single 
multivariate observation as opposed to multiple 
independent vectors. Furthermore, previous 
researches have given little attention to 
properties of estimators of the variance of effect 
estimates for spatially correlated errors. 

This article develops estimators for 
mean differences along with robust variance 
estimators in a regression model with spatially 
correlated errors. A new robust (sandwich) 
variance estimator for exposure effects is 
proposed using the empirical variogram for 
spatially correlated errors. Although this 
approach may be applied to the maximum 
likelihood estimate, the focus here is on the 
methods of ordinary and generalized least 
squares. The appeal of the latter is that is has 
computational advantages over ML estimation 
and retains equivalent asymptotic efficiency 
(Charnes, et al., 1976).  

The OLS and GLS estimators, along 
with the proposed versus standard variance 
estimators, are assessed via simulation studies. 
Simulation data were generated under either a 
spatial Gaussian or spatial exponential model, 
both of which are commonly used to analyze 
spatial data. As an applied example, data is 
analyzed to assess the effect of urban versus 
rural locations on the number of full-time 
equivalents (FTE) for registered nurses. 
Previous researchers investigating this question 
(Rosenblatt, et al., 2006; Jiang, et al., 2006) did 
not consider the spatial pattern of hospitals in 
assessing the difference in mean FTE. 
Therefore, the proposed methods are applied to 
consider the difference in mean FTE between 
urban and rural hospitals taking into account 
spatial correlations among hospitals. The data 
analyzed are from two databases: hospital 
financial reports from the Office of Statewide 
Health Planning and Development, and HCUP 
State Inpatient Databases (SID). 
 

Methodology 
Assume a linear regression model, standard 
(OLS and GLS) approaches for estimations of 
regression parameters and that the outcomes 

(Y(s)) and covariates (X(s)) at location s are 
linearly related. Also, the errors, e(s), for this 
linear regression model are allowed to be 
correlated, where s is an index for a spatial 
location. This model is as follows: 
 

Y(s) = X(s)b + e(s);  e(s) ~ N(0; S),      (1) 

 

where S represents the variance-covariance 

matrix for the error vector. The argument, (s), 
will be dropped for ease of notation.  

For correlated errors, two common 

estimators of regression parameters (b) are the 

ordinary least squares (OLS) and the generalized 
least squares (GLS) estimators. The OLS 
estimator of regression parameters is  
 

-1
olsβ̂ =(X'X) X'Y ;                     (2) 

 
and the corresponding naïve variance estimator 

for olsβ̂  is 

 
2 -1

ols
ˆ ˆVar(β )=σ (X'X) ,                 (3) 

 
where 2σ̂  is the sample variance of residuals. 
Another estimator of regression parameters is 
the GLS estimator, 
 

-1 -1 -1
glsβ̂ =(X'W X) X'W Y ,              (4) 

 
where W is the working matrix and it is equal to 
the estimated covariance matrix. The 
corresponding naïve variance estimator is 
 

-1 -1
gls

ˆVar(β )=(X'W X) .               (5) 

 
Both the OLS and the GLS point 

estimators are unbiased, but the variance of the 
GLS estimator is smaller than that of the OLS 
estimator (Bloomfield & Watson, 1975) when 
W-1 is equal to the true covariance matrix. In the 
conventional, so-called naïve or model-based, 
approach, the covariance structure for the OLS 
variance estimator is assumed to follow the 
independence model whereas that for the GLS 
variance estimator is assumed to be proportional 
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to the working weight matrix W. In the context 
of longitudinal data, Liang & Zeger (1986) 

showed that the point estimator for b via 

generalized estimating equations (GEE) is 
consistent even if the correlation matrix is 
misspecified. However, when the assumed 
covariance structure is different from the true 
covariance model, the naïve variance estimator 
is inconsistent. 
 
Robust Variance Estimator 

The model-based variance estimators 
described above may be inadequate when the 
spatial covariance structure is unknown with the 
possibility of being misspecified. In the case of 
longitudinal data, where there are multiple 
measurements for each subject, a robust 
(sandwich) variance estimator is available 
(Diggle, et al., 2003). The robust variance 
estimator for the generalized least squares 

estimator glsβ̂  is 

 
-1 -1 -1 -1 -1 -1

gls
ˆ ˆVar(β )=(X'W X) X'W VW X(X'W X) , 

(6) 
 

where V̂  is a block-diagonal matrix with non-

zero block 0V̂  which may be estimated via 

restricted maximum likelihood estimation 
(REML). Letting Yhij denote the jth measurement 
on the ith unit in the hth group, the sample mean 
for the measurement j in group h is 
 

hm

hj hij h
i=1h

1
μ̂ = Y ,h=1,...,g;i=1,...,m ;j=1,...,n

m  , 

(7) 
 
and the REML estimator is 

 

( )( )
hmg g

0 h hi h hi h
h=1 h=1 i=1

ˆ ˆ ˆV = m -g Y -μ Y -μ '
 
 
 
  , 

(8) 
 
where hi hi1 hinY =(Y ,...,Y )'  and 

h h1 hnˆ ˆ ˆμ =(μ ,...,μ )'.  For this estimator, no 

assumption exists regarding the structure of 
means and covariance matrix. 

In the case of longitudinal data where 
there are independent realizations of the 
correlated responses, sample estimates of the 
variance and covariance parameters are 
generally used to obtain the empirical estimate 
of V. For spatial data, there is only one 
(multivariate) observation and the above robust 
estimator would not be a good estimator. For 
this case, an empirical covariogram is used in 
place of the empirical variance-covariance 
matrix used for longitudinal data. 
 
Variogram 

Assume the spatial process to be 
second-order stationary and isotropic, where 
stationarity means that absolute coordinates are 
unimportant and isotropic means that the spatial 
correlations are the same in different directions 
(i.e., north-south versus west-east). For a spatial 

process Y(s): s Î DÌ R2, one common tool to 

measure spatial correlations is the 
semivariogram for geostatistical data. The 
semivariogram ( i j i jγ*(s , s ) γ(s -s )=γ(h)≡ ) is 

defined as a function of the distance (h) of two 
locations i j(s , s ) , 

 

i i

1
γ(h)= Var[Y(s )-Y(s +h)]

2
.          (9) 

 
If the spatial process (Y(s)) is second-order 
stationary, the semivariogram can be expressed 
in terms of the covariance function, C(h) , and 
 

γ(h)=C(0)-C(h) .                   (10) 
 
There are two important components for a 
semivariogram: the sill and the spatial range. 
The sill is defined as the asymptote of the 
variogram function, and the range is the distance 
at which the sill is reached. 

Two commonly used variogram models 
are the spatial Gaussian and the spatial 
exponential models. Their covariance functions 
are as follows: 
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1. Gaussian model:
2 2

gC (h)=σ exp{-(h/α) }
, and 

 

2. Exponential model:
2

xC (h)=σ exp{-(h/α)} , 
 

where a and s2 represent the spatial range and 

the sill, respectively, and h is the distance 
between two locations. The semivariograms for 
these two models are shown in Figure 1. As the 
distance increases, the semivariogram increases. 

The parameters q º (a, s2) for a variogram 

model ( γ(h,θ) ) may be estimated by iteratively 
reweighted least squares (IWLS) to minimize 
the following expression, 
 

2ˆ|N(h)|(γ(h)-γ(h,θ)) ,             (11) 

 
where N(h) is the number of distinct pairs of 
locations at distance h and γ̂(h)  is an estimate of 
the semivariogram. 

To avoid a parametric assumption 
regarding the spatial model, the moment-based 
empirical semivariogram could be used to 
estimate the semivariogram. The empirical 
(Matheron) semivariogram ( γ̂ ) for two observed 

measurements ( i jY(s ),Y(s ) ) with distance h 

between two different locations ( i js ,s ) is 

 

2
i j

N(h)

1
γ̂(h)= (Y(s )-Y(s ))

2|N(h)| ,       (12) 

 
where |N(h)| is the number of  measurement 
pairs with distance h. The corresponding 
empirical covariogram estimator for the 
covariance function, C(h) is as follows 
 

i j
N(h)

1
Ĉ(h)= (Y(s )-Y)(Y(s )-Y)

|N(h)|
 , 

(13) 
 
where Y  is the average of all Y(s). In this study, 
the empirical covariogram estimator is used to 
estimate the variance-covariance matrix. 
 
 
 

Simulation Study 
Data Generation  

Using a 10x10 grid, two different 
covariance structures for the errors in Model 1 
were studied: spatial Gaussian and spatial 
exponential. In general, the sill for a covariance 
structure varies from 0.01 to over 100. 
Therefore, the sill for both covariance structures 
was set to 9 in this study. The spatial ranges 
were set to 2, 5 or 10 in order to compare weak, 
modified and strong correlations between 
locations on a 10x10 grid. A binary covariate 
(X, with values 0 and 1) was generated from the 
binomial distribution with probability of X = 1 
equal to 0.5 and the outcome (Y) was generated 
from the linear model  
 

Y = 2X + e,                       (14) 

 
that is, the outcome was linearly related with the 
binary covariate with slope 2. 
 
Estimator of the Exposure/Treatment  

Two point estimators for the 
exposure/treatment effect were studied, namely, 
OLS (ordinary least squares) and GLS 
(generalized least squares) estimators. In 
addition, the working matrix of the GLS 
estimator was estimated based on either 
independence (OLS residuals), spatial Gaussian 
or spatial exponential. 
 
Variance Estimator of the Treatment Effect  

The naïve variance estimators as well as 
the sandwich variance estimators were 
evaluated. For the sandwich variance estimator, 
the variance-covariance matrix could be the 

spatial Gaussian ( )gĈ , spatial exponential ( )xĈ  

or the spatial empirical covariance structure 

( )Ĉ .  The variance estimators for the OLS point 

estimator are as follows: independence, 
2 -1σ̂ (X'X) ; empirical, -1 -1ˆ(X'X) X'CX(X'X) ; 

Gaussian, -1 -1
g

ˆ(X'X) X'C X(X'X) ; and 

Exponential: -1 -1
x

ˆ(X'X) X'C X(X'X) . 
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Figure 1: Semivariogram Models 
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Where Ĉ , gĈ  and xĈ  represent the spatial 

empirical covariance, the estimated spatial 
Gaussian covariance and the estimated spatial 
exponential covariance matrices. The variance 
estimators for the GLS point estimator are naïve, 

-1 -1(X'W X) , and empirical, 
-1 -1 -1 -1 -1 -1ˆ(X'W X) X'W CW X(X'W X) , where W-1 

would be either the spatial Gaussian or the 
spatial exponential covariance matrix, and Ĉ  is 
the empirical covariance matrix. 

The bias and MSE of the OLS and GLS 
point estimators of the regression coefficient 
were computed. The bias and MSE for 1,000 
replications are obtained as 
 

Bias = i

1 ˆ(β -2)
1000 ,                (15) 

 

MSE = 2
i

1 ˆ(β -2)
1000 .              (16) 

 
In addition, the relative bias for each estimator   

(θ̂ , that is, β̂  or ˆV̂(β) ) was calculated. This 
relative bias is defined as 
 

RB =
ˆ-θ θ
θ

.                           (17) 

 
Results 

Spatial Gaussian Errors Data: OLS  
The bias of the ordinary least squares 

estimator (OLS) and its corresponding variance 
estimator, in the case where the errors are 
spatially correlated over a 10 * 10 grid, are 
shown in Table 1. When the covariance matrix 
for errors is spatial Gaussian distributed, the bias 
of the OLS estimator is smaller (closer to 0.01) 
for all examined spatial ranges. The 
corresponding MSE decreases as the spatial 
range increases. Among the four variance 
estimators, the estimator using the independence 
covariance structure has the largest difference 
from the true variance for each spatial range. As 
the strength of spatial correlation (that is, the 
range) increases, the bias of the independence 
variance estimator increases. Both the empirical 
and the Gaussian variance estimators 
underestimate the variance. In addition, the 

empirical estimated variance is closer to the true 
value than the two estimators based on incorrect 
covariance models (independence and 
exponential) and has similar bias to the estimator 
using the correct covariance model (Gaussian), 
over varying range values. 
 
Spatial Gaussian Errors Data: GLS 

Working weight matrices for the GLS 
estimator based on the Gaussian and the 
exponential spatial covariance models were 
considered. The results for the Gaussian and 
exponential working matrices are shown in 
Table 2. For the Gaussian working matrix, the 
bias of the estimated effect is small for the each 
strength of the spatial correlations. The bias for 
the Gaussian working matrix is reduced at least 
80% from the OLS estimators. The bias of the 
naïve estimated variance is smaller than that of 
the empirical estimator when the true working 
matrix (Gaussian model) was fit. However, as 
the spatial correlation increases, the relative bias 
of the naïve and empirical variance become 
more similar. When the exponential working 
matrix is used for the spatial Gaussian errors 
data, the biases of the GLS estimated effect are 
also small, and the bias is reduced at least 46.4% 
from the OLS estimators. In this case, the naïve 
and empirical variance estimators both have 
large biases which are similar in magnitude. 
 
Spatial Exponential Errors Data: OLS 

A second simulation involved the 
generation of spatial exponential errors. The bias 
and MSE for the ordinary least squares 
estimators (OLS) and its corresponding variance 
estimators are shown in Table3. The bias of the 
estimated effect is smaller than 0.005 for all 
examined spatial ranges. The independence 
estimator overestimates the variance of the 
effect for all examined spatial ranges and the 
spatial empirical estimator slightly 
underestimates the variance. The spatial 
empirical estimated variance is closer to the true 
value than the other estimated variances. The 
exponential variance estimator for the OLS 
estimator, though it uses the correct covariance 
model, underestimates the variance for all 
examined spatial ranges. The Gaussian variance 
estimator overestimates the variance when the 
spatial range is larger than 5. 
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Spatial Exponential Errors Data: GLS  
For the spatial exponential errors data, 

two working weight matrices for the generalized 
least squares (GLS) estimator are considered: 
the spatial Gaussian and the spatial exponential 
covariance models. The results for the GLS 
effect estimators are shown in Table 4. For both 
Gaussian and exponential working matrices, the 
biases of estimated effects are smaller than 1% 
for all examined spatial ranges. When data are 
spatial exponential correlated across a study 
space (spatial range at 10), the biases of the GLS 
effect estimators are smaller than that of the 
OLS estimator. The bias reduction is 37.1% for 
a strongly spatial correlation. For the spatial 
exponential   errors   data,   the   relative   bias 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

decreases as the spatial range increases. When 
the spatial correlation (spatial range) increases, 
the MSE decreases. 

For simulated data with exponential 
errors, the naïve (based on the correct working 
covariance matrix) and empirical variance 
estimates have positive biases for all examined 
spatial ranges. The bias of the naïve estimated 
variance is smaller than that of the empirical 
estimated variance. For all examined spatial 
correlations, the MSE of the GLS with incorrect 
(Gaussian) working matrix is larger than 
corresponding MSE of the GLS with correct 
(exponential) working matrix for the spatial 
exponential errors data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: OLS-Bias and Variance Estimator for Spatial Gaussian Errors for 1,000 Replications 

Range 
OLS-
Bias 

MSE 
  Variance   

TRUE Indep* Em* 
Gau* 

(correct) 
Ex* 

2 0.0069 0.339 0.354 0.334 0.343 0.346 0.342 

5 0.0108 0.136 0.146 0.222 0.146 0.132 0.142 

10 0.0103 0.033 0.033 0.096 0.031 0.030 0.060 
*indep: independent; Em: empirical; Gau: Gaussian; Ex: exponential 

 
Table 2: GLS Bias and Variance Estimator for Spatial Gaussian Errors for 1,000 Replications 

Range 

Gaussian Working Matrix (Correct) 

GLS-Bias RB* MSE 
Variance 

True(sim)* Naïve Em* 

2 0.00138 -80.00% 0.0091 0.0091 0.0256 4.4886 

5 0.00004 -99.60% 0.0020 0.0019 0.0019 0.9598 

10 0.00089 -91.40% 0.0004 0.0004 0.0007 0.0333 
 

Range 

Exponential Working Matrix (Incorrect) 

GLS-Bias RB* MSE 
Variance 

True(sim)* Naïve Em* 

2 -0.0037 -46.40% 0.0238 0.0238 0.0928 0.0982 

5 0.0005 -95.40% 0.0014 0.0014 0.0565 0.0314 

10 0.0003 -97.10% 0.0008 0.0008 0.0403 0.0121 
*RB: relative bias; True(sim): simulated variance; Em: empirical 



OU & ALBERT 
 

469 
 

Example 
Background  

A common cause of adult 
hospitalization is pneumonia. Several 
pneumonia inpatient management measures are 
provided by the Centers for Medicare & 
Medicaid Service. Among these quality 
measures, a blood culture prior to first antibiotic 
administration is recommended (Waterer & 
Wunderink, 2001; Metersky, et al., 2004). For 
care services in the hospitals, nurse staffing 
plays an important role. Kovner, et al. (2000, 
2002) found that lower nurse staffing levels 
resulted    in    significantly    higher    rates  of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pneumonia. Rosenblatt, et al. (2006) and Jiang, 
et al. (2006) showed that the full-time equivalent 
(FTE) for registered nurses were significantly 
different between rural and urban community 
health centers in the US. However, although 
these studies assumed the hospital outcomes to 
be independent, they did not take into account 
possible spatial correlations among hospitals. 
 
Data Source and Sample  

This research is interested in examining 
the association between the FTEs for registered 
nurses and hospital location (urban versus rural). 
In general, one FTE represents 2,080 work hours  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: OLS-Bias and Variance Estimator for Spatial Exponential Errors for 1,000 Replications 

Range OLS-Bias MSE 

Variance 

TRUE Indep* Em* Gau* 
Ex* 

(correct) 

2 0.0026 0.277 0.307 0.317 0.302 0.301 0.300 

5 0.0041 0.171 0.185 0.223 0.185 0.187 0.177 

10 0.0035 0.099 0.106 0.143 0.106 0.110 0.104 
*indep: independent; Em: empirical; Gau: Gaussian; Ex: exponential 

 
Table 4: GLS Bias and Variance Estimator for Spatial Exponential Errors for 1,000 Replications 

Range 

Gaussian Working Matrix (Incorrect) 

Bias RB* MSE 
Variance 

True(sim)* Naïve Em* 

2 -0.0037 42.30% 0.135 0.135 0.147 0.187 

5 -0.0042 2.40% 0.056 0.056 0.061 0.091 

10 -0.0032 -8.60% 0.029 0.029 0.030 0.050 
 

Range 

Exponential Working Matrix (Correct) 

Bias RB* MSE 
Variance 

True(sim)* Naïve Em* 

2 -0.0033 26.90% 0.130 0.130 0.146 0.187 

5 -0.0031 -24.40% 0.054 0.054 0.066 0.092 

10 -0.0022 -37.10% 0.027 0.027 0.034 0.050 
*RB: relative bias; True(sim): simulated variance; Em: empirical 



ROBUST INFERENCE FOR REGRESSION WITH SPATIALLY CORRELATED ERRORS 

470 
 

within a year to a fulltime worker. Here, the 
outcome of interested was FTEs for registered 
nurse per occupied bed. Data for this outcome, 
available in hospitals financial reports, was 
provided by the Office for Statewide Health 
Planning and Development (OSHPD). The 
binary predictor, hospital location (urban/rural), 
was taken from the Healthcare Cost and 
Utilization Project (HCUP) California State 
Inpatient Database (SID); this predictor was 
denoted as location. In addition, the report for 
pneumonia quality measures of inpatient 
management was provided by the Centers for 
Medicare & Medicaid Service. Data was merged 
from these three sources restricting the sample to 
hospitals in the State of California in 2004. The 
resulting dataset included 186 hospitals that 
reported: the above pneumonia quality measure, 
the number of registered nurse FTEs per 
occupied bed and hospital location. 

The spatial correlation for each model 
variable was assessed via the test by Diblasi & 
Bowman (2001). The semivariograms of the 
response (FTE) and predictor (location) with 
their corresponding p-value of the spatial 
correlation test are shown in Figure 2. Both 
variables were spatially correlated across 
hospitals in California in 2004. 
 
OLS Result 

The effect of hospital location on the 
number of FTEs for registered nurses was 
estimated using the ordinary least squares 
(OLS). OLS estimates, the independence 
variance estimate,and three spatial variance 
estimates (empirical, spatial Gaussian, 
exponential structure) are shown in Table 5, 
along with standardized effect estimates 
(estimated effect divided by the square root of 
the estimated variance). The OLS estimated 
mean difference for FTE between urban and 
rural hospitals was 0.3018. The independence 
and spatial empirical variance estimates were 
close and both were less than 0.1. These two 
variance estimators both provided standardized 
effect estimates greater than 3.9. The spatial 
Gaussian and exponential variance estimates 
were larger, and their respective standardized 
estimates of 2.2 and 1.99, smaller than the other 
two estimates. Thus, all methods indicated an  

effect of the hospital locations on FTE with 
higher mean FTEs at the urban hospitals. The 
standardized effects based on the spatial 
Gaussian and spatial exponential estimated 
variances suggested marginal evidences; by 
contrast, the standardized effects based on 
independence and the empirical estimated 
indicated strong evidences of a location effect. 
The conclusions, based on California hospitals, 
are substantially the same as previous study 
results for United States health centers. 

The semivariograms of OLS residuals 
are shown in Figure 3. The line in the left figure 
is the fitted spatial Gaussian structure with 
estimated spatial range and sill equal to 0.43 and 
0.08. The line in the right figure is to the fitted 
spatial exponential structure with estimated 
range and sill equal to 0.50 and 0.11. Both 
theoretical semivariogram models (i.e., Gaussian 
and exponential) were close to empirical 
semivariogram when the distance was smaller 
than 2. However, these two models were far 
from empirical semivariogram when the distance 
was larger than 2. 
 
GLS Result 

For comparison, GLS estimators were 
considered under the same models as examined 
for the OLS estimators. Thus, estimated spatial 
Gaussian and exponential structures were used 
as the working weight matrices for GLS 
estimators. The results for the point and variance 
estimates are shown in Table 6. Compared to the 
OLS estimated effects, the two GLS estimated 
effects were larger. For each working weight 
matrix, both the naïve and the empirical variance 
estimates were less than 0.01. The empirical 
variance estimate was smaller than the naïve 
estimated variance for both the Gaussian and 
exponential working matrices. All three GLS 
standardized effect estimates were greater than 
3.5 and one of them was as high as 3.73. All 
GLS standardized effect estimates indicated 
strong evidences of an effect of location on FTE, 
with a higher mean FTE at urban hospitals. 
Thus, the conclusion based on the GLS 
estimators with either a spatial Gaussian or 
exponential working matrices, agree with that 
given above for the OLS estimators. 
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Figure 2: Semivariograms of Response and Predictor 
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Conclusion 
This article addresses the problem of estimating 
exposure (or treatment) effect in a regression 
models with spatially correlated errors. 
Considering both OLS and GLS estimators, a 
new robust variance estimator was presented 
based on the estimated semivariogram. In order 
to evaluate the OLS and GLS estimators or their 
corresponding variance estimators under spatial 
correlated errors, simulation studies were 
conducted. Two  different  spatial  correlation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

models were considered: spatial Gaussian and 
spatial exponential. 

For spatial Gaussian and exponential 
simulated data, neither the OLS nor GLS 
estimators showed evidence of bias. When the 
spatial range increased, the true variance 
decreased. For the OLS estimator, the bias of the 
naïve (independence) estimated variance was 
smallest at spatial range 2 among three spatial 
ranges. The empirical estimated variance for the 
OLS estimator was closer to the true value than 
the other three estimated variances. For the GLS 
estimator, the naïve estimated variance was 
closer to the simulated variance than the 
empirical estimated variance. However, when 
the GLS estimator used an incorrect working 
matrix, the naïve estimated variance would be 
far from the simulated variance (e.g., GLS with 
an exponential working matrix for spatial 
Gaussian errors data). In addition, even when the 
correct working matrix is used, the estimated 
variance of the GLS estimate sometimes varied 
substantially from the true (simulation) value. 
Therefore, estimating exposure effects via 
ordinary least squares (OLS) with the empirical 
variance estimator is recommended when the 
data exhibit spatial patterns. 

The effect of hospital locations on FTE 
where both variables exhibited spatial patterns 
(based on their empirical semivariogram and 
spatial correlation test) across California in 2004 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: OLS Effect Estimate, Variance Estimates and Standardized Effect Estimates 
(STD)* 

 

 
Effect 

Variance 

 Indep** Empirical Gaussian Exponential 

Estimate 0.3018 0.0059 0.0044 0.0184 0.0231 

STD  3.9291 4.5498 2.2249 1.9857 

*STD: the effect estimate divided by the square root of the variance estimate;  
**Indep: independence covariance structure 

Table 6: GLS Effect Estimator 
and Its Estimated Variance (STD)* 

 

 
Working Matrix 

Gaussian Exponential 

Estimated 
Effect 

0.3255 0.3396 

Naïve 
Variance 

0.0081(3.62) 0.0089(3.60) 

Empirical 
Variance 

0.0076(3.73) 0.0085(3.68) 

*Standardized effect estimates are in parentheses 
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Figure 3: Semivariograms of OLS Residuals 
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was examined. The linear relationship between 
hospital location (urban/rural) and full-time-
equivalents (FTE) for registered nurse adjusted 
by the number of occupied beds was assessed 
via the OLS and the GLS estimators. From the 
semivariogram of the OLS errors, the OLS 
errors exhibited a spatial pattern. Therefore, the 
OLS estimated effect with corresponding 
empirical variance was preferred. Based on 
OLS, the estimated difference between urban 
and rural hospitals was 0.3 FTE. The empirical 
estimated variance for the OLS estimator was 
around 0.004 and the ratio of estimated effect to 
the square root of empirical variance was 4.55. 
This result, corroborating the previous findings, 
suggests that there is a significant difference in 
FTE for urban versus rural hospitals. 

The robust approach proposed could be 
used with the maximum likelihood estimates, 
though results are expected to be similar to GLS. 
A limitation of this study is that it assumed the 
spatial field to be stationary. For a non-
stationary field, semivariogram models are not 
valid as the semivariogram is not defined for 
non-stationary correlation structures. Another 
limitation is that the outcome was assumed to be 
continuous and normally distributed. For a 
categorical or other non-normally distributed 
outcome, the linear regression would not be 
suitable. It will be necessary to use the logistic 
regression or to do a Box-Cox transformation for 
such outcomes. In addition, for some extreme 
values, the Cressie-Hawkins robust estimator 
could be considered for the estimation of the 
semivariogram (Cressie & Hawkins, 1980) 
instead of the Matheron estimator. The empirical 
covariogram used is a biased estimator of the 
covariance function; therefore, the problem of 
the biased estimator of the covariogram will 
need to be solved in the future. 
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Probabilistic Inferences for the Sample Pearson Product Moment Correlation 
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Fisher’s correlation transformation is commonly used to draw inferences regarding the reliability of tests 
comprised of dichotomous or polytomous items. It is illustrated theoretically and empirically that 
omitting test length and difficulty results in inflated Type I error. An empirically unbiased correction is 
introduced within the transformation that is applicable under any test conditions. 
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equivalency. 
 
 

Introduction 
It has been well-established that the sample 
correlation coefficient, r, is a biased estimator of 
the population correlation coefficient, ρ , for 
normal populations, and this bias can be as much 
as 0.05 in absolute value under realistic research 
conditions (Zimmerman, Zumbo & Williams, 
2003). This difference may not be vital if the 
research question is to simply ascertain whether 
a non-zero correlation exists. However, if the 
focus is on a precise estimate of the magnitude 
of a non-zero correlation in test and 
measurement procedures, then this discrepancy 
may be of concern. The Pearson product 
moment correlation is still commonly used as an 
index of reliability, exampled with parallel test 
forms (Coleman, 2001), test-retest conditions 
(Robinson-Kuropius, 2005), and inter-rater 
consistency (Lebreton, 2007). In such cases, 
calculations use a total score comprised of 
dichotomous or polytomous items (Kline, 2005). 
With increasing frequency, practitioners 
working in these contexts recognize sample 
estimates are insufficient and, therefore, are 
 
 
 
Jeffrey Harring is an Associate Professor in the 
Department of Measurement, Statistics and 
Evaluation. Email him at: harring@umd.edu. 
John Wasko is a Colonel in the U.S. Army. 
Email him at: john.wasko@us.army.mil. 
 
 

 
correctly utilizing the Fisher transformation to 
provide accompanying probabilistic inferences 
(Fouladi, 2002).  

The motivation for this study centers on 
the failure of Fisher’s transformation to 
incorporate either test length or test difficulty 
into confidence interval calculations. Without 
correction, test statistics and confidence 
intervals from utilizing the Fisher transformation 
become increasingly imprecise ultimately 
resulting in inflated Type I error. To date, 
research has neither demonstrated the 
inefficiencies of utilizing this method, nor 
further advocated a test statistic inclusive of test 
properties upon which to draw more accurate 
inferences about the population. In this article, 
an empirical demonstration of systemic errors 
between the empirical distribution and the Fisher 
transformation is presented which can be traced 
to test properties of length and difficulty. Based 
on the results, a correction factor inclusive of 
test properties is introduced and examined using 
a Monte Carlo simulation study to explore the 
performance of the corrected statistic to the 
existing Fisher transformation.  
 

Methodology 
Pearson Correlation 

The Pearson’s correlation coefficient is 
a measure of the strength of the linear relation 
between two continuous variables and is defined 
as 
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where x and y are vectors of scores of size 
n, ( , )Cov x y  represents the population 

covariance and  and σ σx y are population 

standard deviations. Invariably researchers 
report a point estimate for reliability using the 
form 
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where sxy, sx and sy are sample statistics 
corresponding to the population quantities in (1). 
For test-retest reliability let, 
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represent the total scores of n respondents 
administered the same test on different 
occasions. For parallel forms, let 
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represent the total scores of n respondents 
administered different tests on different 
occasions. By letting A and B represent two 
raters scoring the same test for n respondents 
would constitute inter-rater reliability. Particular 
to test-retest and parallel forms, it is assumed 
that no learning has occurred as a result of the 
first exam or in the interim prior to 
administration of the second exam. 
 
Central Limit Theorem Application 

The Pearson’s correlation coefficient 
assumes total scores to be normally distributed; 
this is made possible by the central limit 
theorem (CLT) (see Hogg & Craig, 1995 for a 
full description). Reviewing its application, if 

1 2, ,.... Ji i i  represent the scores for a test of J 

items, independent and identically distributed 
from any distribution, then their sum 

2 2
1 2 0.... ~ ( , )Ji i i T N J Jμ σ+ + + =  

 
is approximately normal for sufficiently large 
values of J. Although sufficiently large is not a 
quantifiable number, this requirement is 
important given the need for a bivariate normal 
distribution upon which correlation inferences 
are predicated (Quereshi, 1971). A rule of thumb 
of J exceeding 30 items has been suggested. Not 
to be overlooked are the other requirements for 
use of the CLT. First is the requirement of 
independence. Conditional independence is 
assumed, where the likelihood a respondent 
answers an item correctly or incorrectly is 
independent of their response to any other test 
item. Second is the concept of identically 
distributed, where the collection of J items 
should all be dichotomously scored, [0,1]i = , or 

polytomously scored [0,1,...., ]i R= . 
Even if the total score is well 

approximated by a normal distribution, the total 
score random variable is still discrete. In such 
cases, when making probabilistic inferences 
with a continuous distribution with discrete data, 
a continuity correction is often applied (Devore, 
2000). Recall that Pearson’s correlation is 
designed for continuous random variable pairs 
that follow a bivariate normal distribution. 
Without a sufficient number of J items, the total 
score distributions depart from univariate 
normality.  

This condition is further exacerbated in 
extremely easy or difficult shorter tests resulting 
in highly skewed total scores; although this 
becomes less of an issue as test length increases, 
test difficulty affects the rate of asymptotic 
convergence to a normal distribution. Further, 
the total score variable is not continuous, it is 
discrete. With all statistics, when underpinning 
assumptions are violated, the accuracy of the 
results becomes increasingly questionable. Such 
inaccuracies are often commensurate with 
inflated Type I error rates. It is within this 
framework that the need for an item-type 
correction encompassing test length and 
difficulty and a continuity correction may be 
advocated. 
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Fisher Transformation 
With 

 

1 1 2 2( , ),( , ),....,( , ) ~ ( , ),n nx y x y x y N μ Σ   
 
following a bivariate normal distribution, define 
a random variable Z as 
 

1 1
ln

2 1

rZ
r

+ =  − 
, 

 
approximated by the following normal 
distribution characterized by its mean and 
variance 
 

1 1 1
~ ln ,  

2 1 3
Z N

n
ρ
ρ

  +
  − −  
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Being normally distributed, these relations can 
be used in the traditional construction of 
confidence intervals and hypothesis tests. The 
transformation of the r random variable is called 
the Fisher transformation; the immediate 
discussion centers on confidence intervals, 
presentation of appropriate hypothesis tests are 
provided later.  

A 2-sided (1 )%α−  confidence interval 

for the true correlation, ρ , is obtained via the 
following steps: 
 
1. Determine the (1 )%α−  confidence interval 

for Z such that  
 

( )(1 )% ,L UCI Z Zα− =  

where 

( )11
23

LZ Z
n

α−= + Φ
−  

and 

( )11
1 .23

UZ Z
n

α−= + Φ −
−  

 
2. Create a (1 )%α−  confidence interval for ρ  

by transforming these Z confidence limits 
back onto the correlation scale 
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ZZCI
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α
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Empirical Demonstration of Theoretical 
Findings 

To illustrate the need to account for the 
number of test items for asymptotic convergence 
to a normal distribution, two empirical 
experiments are conducted. Conditions for the 
first simulation are a test length of J = 25 items, 
a population correlation of ρ  = 0.8, 
administered to n = 100 respondents, where each 
item is an independent dichotomous response 
with a p-value of 0.60.  

Conditions for the second simulation are 
J = 35, ρ = 0.7, n = 100, and a p-value of 0.70. 
For each simulation, responses for J items for 
respondent i (i = 1, 2, …, n) were created 
according to a particular p-value representing a 
test. A second set of responses, representing a 
second test, were created such that each item 
was correlated with its first test equivalent 
according to a particular ρ . The item scores 
were totaled for each test for each respondent, 
resulting in a paired set of total scores of length 
n. A correlation estimate was calculated and 
retained for this set of total scores and, using the 
Fisher transform, two-sided 90% and 95% 
confidence intervals were calculated. Knowing 
the true ρ , each interval was evaluated to 
determine if it encompassed the true value, 
successes were noted. This was repeated for 
10,000 trials for each experimental condition, 
the percentage of these successes estimates the 
coverage probability. Success percentages below 
the (1 )%α−  specification indicates an inflated 
Type I error (the probability of rejecting a 
correct null hypothesis).  

For each simulation, every sample 
correlation value was transformed to a Z random 
variable. A histogram of the sampling 
distribution is overlaid with the Fisher 
transform. Sampling distributions for 3rd and 4th 
moment statistics are provided on each plot 
including coverage probabilities. 

Clearly, a snapshot exploring just two 
experimental    conditions    does    not    provide  
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Figure 1: Empirical Z-Scaled Histogram with Fisher Transform Overlay 
10,000 trials, 0.8ρ = , n =100, test length J = 25, p-value = 0.6 
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Figure 2: Empirical Z-Scaled Histogram with Fisher Transform Overlay 

10,000 trials, 0.7ρ = , n =100, test length J = 35, p-value = 0.7 
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irrefutable evidence; but results highlight areas 
requiring further exploration. 
 
1. The transformation of the sample correlation 

remains well characterized by a normal 
distribution. 

 
2. There was inflated Type I error in both 

cases, albeit to different degrees. From these 
two simulations, it is difficult to tell if the 
results are due exclusively to sampling error, 
the coarseness of measurement, or a more 
systemic problem commensurate with the 
CLT requirements previously noted. 
Operating under the assumption the results 
are indicative of a systemic problem, then: 
 
a. It would appear that higher levels of 

skewness and negative kurtosis in the 
sampling distribution comparatively 
increased the Type I error. A negative 
kurtosis is indicative of a platykurtic 
distribution with larger tails. This 
finding is commensurate with the 
requirement for a sufficient number of J 
items under the CLT to subscribe to a 
normal distribution. Accordingly, 
insufficient numbers of J items are more 
likely to demonstrate skewness and 
kurtotic properties in the sampling 
distribution.  
 

b. In the case of very small negative 
kurtosis and skewness, there remains a 
slight inflation in Type I error. Again, 
assuming this is a systemic condition 
above and beyond sampling error, this 
would coincide with need for a 
continuity correction. 
 

c. There is not enough information, 
however, demonstrating systemic 
coverage probability error to suggest a 
parametric form for a correction or 
adjustment which would result in a more 
accurate test statistic. 

 
To better evaluate the viability of 

systemic inflated Type I errors, as well as to 
explore a functional parametric form as a 
remedy, a broader, multi-factor simulation study 

was carried out. Retaining the finding that the Z 
transform of the sample correlation is reasonably 
represented by a normal distribution, the 
estimate of the μ  parameter is retained. If these 
occurrences prove to be systemic, they can be 
mitigated by developing a correction to the σ  
parameter specified as part of the Fisher 
transformation. 
 
Study Design 

This multi-factor empirical study was 
designed to jointly assesses the performance of 
the Fisher transformation and explore a viable 
parametric form for a correction. As a result of 
the theoretical analysis, it was expected that the 
sampling statistic would be consistently 
negatively biased. Such a bias corresponds to an 
increased Type I error rate, thus substantiating 
the need for a continuity correction. Further, it 
was additionally expected that the bias would be 
exacerbated by some function of J items as J 
decreased; this would substantiate the need for 
an item-type correction. Subsequent steps in 
developing a correction would only be necessary 
if these expectations are observed. 

Using the same factors previously noted, 
a wide-ranging series of experimental conditions 
for each factor was used. Table 1 displays the 
conditions under which independent 
dichotomous responses were generated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Simulation Study Experimental Conditions 
and Corresponding Levels 

Conditions Levels 

n = number of respondents 
in the sample 

4 levels 
(25, 50, 100, 200) 

J = number of items on the 
test 

4 levels 
(10, 20, 40, 60) 

p = probability of getting 
the item correct 

3 levels 
(0.50, 0.65, 0.80) 

ρ  = correlation between 
two tests 

3 levels 
(0.60, 0.75, 0.90) 
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The result is 4 4 3 3 144× × × =  different 
experimental conditions using the same 
simulation process previously described. Again, 
10,000 trials were conducted per condition. 

As opposed to assessing probability 
coverage and overall sampling distribution 
characteristics, the differences between the 
sampling distribution and the Fisher 
transformation at various percentiles were 
investigated. This change was adopted for two 
reasons. First, the hypothesis that the Fisher 
transformation is inaccurate necessitates 
anchoring the empirical sampling distribution as 
the correct distribution. Second, assessment of 
differences at various percentiles under various 
treatment conditions facilitates development of a 
functional form for a correction. These 
percentiles are analogous to the most common 
Type I error controls in confidence interval 
construction and hypothesis testing, both 1-sided 
and 2-sided. To evaluate the distributional 
differences, for each set of 10,000 trials, sample 
correlation values were numerically ordered 
where 

10000321

1000021

...

,...,

rrrr
rrrri

≤≤≤
=

 

 
and the following values were retained 
 

( ) ( ) ( ) ( )100 9900 250 9750 500 9500 1000 9000, , , , , , ,r r r r r r r r  

 
These are the empirical analogs to Type 

I error values, α , of 0.01, 0.025, 0.05, and 0.10 
respectively. For each treatment condition, 
knowing ρ  and n, corresponding r interval 
bounds from the Fisher transformation process 
were calculated corresponding to the particular 
α. Error was computed as 
 

,% ,empirical FisherError r r α= −  

 
A plot of the error for all treatment conditions is 
provided in Figure 3. The pattern of errors, with 
(1 )α−  yielding positive errors and α  negative 
errors indicates an underestimation of variance 
at smaller test lengths. Recognition of a pattern 
also provides sufficient empirical evidence of a 
systemic problem beyond sampling error. 

Although this plot shows a pattern, it is does not 
provide definitive relationships purely as a 
function of test length, failing to address test 
difficulty. 

Basic statistic textbooks indicate that 
binomial distributions approximate well to a 
normal distribution as its expected value, np, 
exceeds some heuristic value. Using that 
principle, consider the expected total score or 
total correct as the independent variable. The 
expected total score is a function encompassing 
both test length, J, and test difficulty, p-value. 
For dichotomous tests, 
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For polytomous scored items, each item must 
follow the same scale, r = 0, 1, 2, …, R. 
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A reduced number of treatment conditions using 
the expected total score as the independent 
variable are displayed in the error plot in Figure 
4. Evidently, there is distinctive pattern as the 
expected total score decreases. This pattern is 
similar across all treatment conditions. Figure 5 
shows another set of treatment conditions 
illustrating similar findings. 

Dotted lines in Figure 5 indicate bias as 
a result of failure to implement a continuity 
correction. This correction remains constant 
regardless of the E(To) value. Additionally, there 
is a systemic increase in error as the expected 
total number of correct items decreases. This 
decaying relationship asymptotes to the 
continuity correction value as E(To) increases. 
These empirical results reinforce the theoretical 
findings noted when data deviate from required 
conditions in applying the CLT. Because these 
graphs are presented as a separate set of  
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Figure 3: Error versus Test Length across All Treatment Conditions 
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Figure 4: Error versus Expected Total Score across a Reduced Number of 
Experimental Conditions 
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Figure 5: Error versus Expected Total Score Indicating Parametric Corrections 
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snapshots, there is a third relation observed 
which cannot be easily illustrated. Although 
each plot consistently exhibits a decaying 
relationship as E(To) increased, the amount and 
rate of decay differed conditioned upon the p-
value or test difficulty treatment conditions. 
Higher p-values exhibited greater errors at lower 
E(To) values and took slightly longer to 
converge to the continuity correction. These 
findings are consistent with previous CLT 
discussions. 
 
Proposed Correction 

Though illustrating the need for a 
correction when applying Fisher’s 
transformation inclusive of test properties is 
informative, its value is only realized with a 
corresponding remedy. Thus, the distributional 
properties of the Fisher transformation with 
independence of its first two moments are 
maintained. The item-type correction and 
continuity correction are independent 
corrections and can be treated as such in a 
specified solution. The impact of the p-value on 
the rate of change only affects the item-type 
correction. Accordingly, Fisher’s transform is 
retained as 

 
1 1

ln
2 1

rZ
r

+ =  − 
 

 
but, as opposed to utilizing the form 

1

3
Z n

σ =
−

, a corrected form is derived as  
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where a, b, and c are undetermined constants. 
The a term is associated with the p-value’s 
effect on the amount and rate of decay 
associated with E(To). The b term is associated 
with the general rate of decay as the item-type or 
E(To) correction. The c term is associated with 

the continuity correction. Note that the overall 
correction 
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is commensurate with the error plots previously 
presented. More specifically, the term  
 

( )
( )

ln ( ) 1

ln ( )
o
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bE T
bE T
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represents the decaying relation associated with 
E(To). Because these relations change as a 
function of the p-value, the following is 
introduced within the logarithm 
 

2

1

1 ( .5)a pval+ −
 

 
Figure 8 displays the correction factor shown for 
differing p-values. 

Although the effect on the rate of decay 
is symmetrical around 0.50, the overall 
correction is not due to the effect of the p-value 
in the E(To) calculation. Figure 9 illustrates this 
lack of symmetry for 3 different tests lengths 
under a range of average p-values. 

Other parametric representations may 
also be available for the correction. This choice 
appeared reasonable and parsimonious based on 
the observations of the errors between the 
empirical distributions and an uncorrected Fisher 
transform. Values for these constants were 
determined via an iterative process minimizing 
the total squared error across all treatment 
conditions of the form. 
 

( )
4 4 3 4 8 2

,%,, *,
1 1 1 1 1

empirical ijkl n Fisher ijkl n
n l k j i

Total Error r r
= = = = =

= −
(3) 

 
where i corresponds to the values of α, j 
represents the test length, k denotes the p-values  
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Figure 8: Z Standard Deviation Correction versus Number of Correct Items for Various p-values 
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Figure 9: Z Standard Deviation Correction versus p-values for Various Test Lengths 
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for each test item, l represents the true 
correlation between items on each test, and n 
denotes the number of examinees. An 
evolutionary solver add-in to Excel from 
Frontline systems was utilized searching within 
a range of acceptable values. This particular 
solver is well suited to handle this nonlinear, 
mixed integer optimization problem. The 
resulting minimized error solution takes the 
form of 
 

*

2

2

1
ln * 2.25 ( ) 1

1 40( .5) 1
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   
+   + −      +     −    + −  

(4) 
 

Results 
Correct Assessment 

Although the strategy in advocating a 
parametric correction is valid, it suffers from 
two flaws. First, the constants selected were 
optimized based on a set of 144 treatment 
conditions. As a means of cross-validation, this 
correction should be assessed under a different 
set of treatment conditions. Second, and more 
importantly, is the aspect of coverage 
probability. Reduced distributional errors 
resulting from an adjusted standard deviation in 
the Z transform does not necessarily correspond 
to a definitive improvement in coverage 
probability. 

By utilizing aspects of both previous 
simulations, both flaws are addressed and a 
more thorough assessment of the proposed 
correction is provided. Using the same factors, 
consider next a broader series of treatments for 
each factor. Independent dichotomous responses 
were generated under the following conditions 
enumerated in Table 2. 

The result is 5 4 4 3 240× × × =  different 
treatment conditions using the same process. 
Using both the Fisher transform and the 
proposed correction, two-sided 90%, 95%, and 
99% confidence intervals were calculated from 
the sample correlation value used in this study. 
Knowing the true ρ  for each trial an assessment 

was made as to whether this value was within 
the Fisher and the corrected interval, noting 
successes. This was repeated for 10,000 trials for 
each simulation resulting in an estimate of the 
coverage probability. Success percentages below 
the (1 )%α−  specification indicate an inflated 
Type I error. 

As formal statistical assessments of 
these coverage probabilities, performance in 
terms of bias and mean square error across all 
conditions was considered. Bias is defined as 

)ˆ(),ˆ( θθθθ −= EBias , where θ  is the 
specified confidence interval, 99%, 95% or 90%, 

and θ̂  represents the proportion of intervals 
containing the true population correlation value 
separately for the Fisher transformation and the 
proposed correction.  

Mean square error (MSE) is determined 

by: 2)ˆ( BiasVMSE += θ  where )ˆ(θV  is the 
variance of the estimates determined across the 
set of the treatment conditions. 

Graphical summaries in Figures 10a, 
10b, and 10c are presented as boxplots of 
coverage probability results from the conditions 
over each of the 3 test related parameters 
associated in calculating the proposed formula: 
sample size of respondents (n), expected number 
of items correct (E(To)), and an average test p-
value, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Simulation Study Experimental Conditions 
and Corresponding Levels 

Conditions Levels 

n = number of respondents 
in the sample 

5 levels 
(25, 50, 100, 200, 400) 

J = number of items on 
the test 

4 levels 
(10, 20, 40, 80) 

p = probability of getting 
the item correct 

3 levels 
(0.50, 0.60, 0.70, 0.80) 

ρ = correlation between 
two tests 

3 levels 
(0.65, 0.75, 0.85) 
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Summary results are shown in Table 3, 
with bias and mean squared error values 
provided across all conditions. The results 
showed improvement over the uncorrected 
Fisher transformation with 10 times less bias and 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a total reduction of error exceeding 500% across 
all conditions. These improvements are also 
consistent with each of the 28 cross-classified 
results, outperforming the Fisher transform with 
smaller bias and mean square error. 
 

Figure 10a: Side-by-Side Boxplots of Coverage Probability Error Comparison 
at α = 0.01 Over Expected Correct Items across All Conditions 

-3

-2

-1

0

1

E
rr

or
 (%

)

5 6 7 8 10 12 14 16 20 24 28 32 40 48 56 64

E(Items Correct)

Fisher Correction

 
 
 

Figure 10b: Side-by-Side Boxplots of Coverage Probability Error Comparison 
at α = 0.05 over average p-value across All Conditions 
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Table 3: Bias and MSE for Fisher’s Transformation and the Proposed Correction for All 
Experimental Conditions 

 

Description 
Fisher Transformation Proposed Model 

Bias MSE Bias MSE 

Overall -0.936 2.285 -0.095 0.443 

By Sample Size 

25 -0.887 2.168 -0.060 0.447 

50 -0.929 2.267 -0.089 0.451 

100 -0.937 2.261 -0.098 0.435 

200 -0.965 2.422 -0.120 0.469 

400 -0.960 2.348 -0.107 0.422 

By p-value 

0.50 -0.658 1.206 -0.214 0.432 

0.60 -0.739 1.403 -0.223 0.379 

0.70 -0.916 2.060 -0.051 0.352 

0.80 -1.431 4.494 0.109 0.614 

By Alpha 

0.01 -0.423 0.396 -0.096 0.061 

0.05 -1.105 2.471 -0.195 0.427 

0.10 -1.279 3.999 0.007 0.844 

By 0( )E T  

5 -1.535 3.605 -0.574 1.123 

6 -1.730 4.358 -0.587 1.012 

7 -2.116 6.464 -0.082 0.905 

8 -3.115 13.403 0.667 1.714 

10 -0.703 1.018 -0.276 0.495 

12 -0.779 0.963 -0.285 0.327 

14 -0.915 1.332 -0.110 0.323 

16 -1.612 3.766 -0.151 0.530 

20 -0.294 0.148 -0.066 0.060 

24 -0.314 0.228 -0.052 0.110 

28 -0.420 0.353 -0.030 0.129 

32 -0.696 0.702 -0.087 0.154 

40 -0.098 0.077 0.060 0.072 

48 -0.133 0.086 0.033 0.083 

56 -0.214 0.164 0.006 0.091 

64 -0.300 0.164 0.006 0.091 
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Though the proposed correction is 
empirically unbiased, it cannot be theoretically 
demonstrated as an unbiased estimator. Given 
the variety of treatment conditions examined, a 
theoretical proof becomes difficult without many 
simplifying assumptions. Some additional 
comments regarding a theoretical assessment 
include:  
 
1. Although the need for correction based on 

the expected total number of items correct 
and the average p-value of the testing 
instrument has been theoretically and 
empirically demonstrated, a proper 
parametric form to implement such 
correction into probability coverage is not 
clear. As noted previously, there are other 
parametric forms which may be considered. 
Also, recall that the assumption of normality 
upon transform is still operating, which 
becomes more tenuous in low number of test 
items and extreme p-values. Other 
distributional forms can be considered upon 
which one would make probabilistic 
inferences. Finally, regarding parametric 
forms and distributions, this discussion is 
predicated that there exists a common 
distribution characterized by respondents 
and test conditions which results in an 
unbiased, consistent estimator controlling 
Type I error. 

 
2. Due to confidence the Fisher transformation 

is incomplete without inclusion of summary 
test information in its calculations, the 
empirical distribution of the sample 
correlation values were treated as the true 
distribution. This was also necessary to 
assess systemic errors in the development of 
a functional parametric form for a 
correction. This reference empirical 
distribution has sampling error, which has 
been minimized given the large number of 
trials. 

 
3. Estimates via a complex evolutionary search 

method were obtained from the Frontline 
Premium Solver add-in for the Excel Solver. 
Determining a so-called best set of 
parameter estimates for a complex nonlinear 
optimization required parameter constraints 

and other considerations in order to achieve 
convergence.  

 
Based on these findings, when reporting sample 
Pearson product moment correlations for 
dichotomous and polytomously scored items, the 
adjustment in (4) is recommended; it is well 
characterized by a normal distribution. These 
corrections provide robust results due to 
violations in the application of the central limit 
theorem. It further provides a researcher 
inclusion of summary test information into any 
inferential statistics. Unfortunately, because of 
the transformation process, simple reporting of 
the standard error is uninformative. As such, 
presented below are two examples which should 
be used as the proper mechanism for reporting 
sample correlation properties. 
 
Applications: Parallel Test Forms 

Forms A and B of a particular test are 
each administered to 70 respondents from the 
same population. Each test consists of 25 items 
and both test are polytomously scored on a scale 
of [0, 1, …, 4]. The average score for form A 
was 41 and 45 for form B. The sample 
correlation was r = 0.82, and it is desired to 
report a 95% confidence interval for the 
population correlation. Z is computed with 
accompanying standard deviation: 
 

1 1 1 1 .82
ln ln 1.157

2 1 2 1 .82

rZ
r

+ +   = = =   − −     
 

1 1
.1222

3 70 3
z n

σ = = =
− −

 

 
Next, the proposed correction is 

determined, which takes the form 
 

2

2

1
ln 2.25 10.75 1
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and 
41 45

.5* 0.43,
100 100

pval  = + = 
 

 

 
therefore the estimate for the standard deviation 
of the transformation becomes: 
 

* 0.1222*1.016 0.1242.Zσ = =  
 
Because Z follows a normal distribution, a 
traditional 95% confidence interval for Z can be 
computed as follows 
 

( )* 11 1
ln .1242* 22 1

1.157 .1242( 1.96) .9136

L
rZ
r

α−+ = + Φ − 
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which can be back transformed into intervals for 
the population correlation 
 

**

* *

(1 )%

exp(2 ) 1exp(2 ) 1
    ,

exp(2 ) 1 exp(2 ) 1

exp(2*.9136) 1 exp(2*1.40) 1
    ,

exp(2*.9136) 1 exp(2*1.40) 1

    (0.723, 0.886).
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ZZ
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α ρ− =

 −−=  + + 
 − −=  + + 

=

 

 
The uncorrected confidence interval is 
(1 )% (0.725, 0.885)CI forα ρ− = . The 
reporting should include both the sample 
correlation estimate and the corresponding 
interval values. 
 
Applications: Inter-rater Reliability 

Suppose two graders score an exam 
consisting of 20 dichotomous items 
administered to 125 respondents. The average 
score for each grader was 17 and the sample 
correlation was r = 0.77. Test the hypothesis the 
population correlation between the two graders 
exceeds the minimally desired reliability value 
of at least 0.70 at significance level of 0.05.  

Using a similar process to determine the 
standard deviation for the proposed correction, 
the Fisher transformation of the standard 
deviation is 

1 1
.0905

125 3 125 3
zσ = = =

− −
. 

 
The corrected standard deviation is 
 

2

2

1
ln 2.25 16.5 1
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.85
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Therefore, the estimate for the corrected 
standard deviation of the transformation 
becomes 

* .0905*1.08 .0978Zσ = =  
 
and Z* is determined via 
 

*

11 1 1
ln ln

2 1 2 1

.0978
1 1 .77 1 1 .70

ln ln
2 1 .77 2 1 .70

.0978
1.0203 .8673

1.564.
.0978

o

o

r
r

Z

ρ
ρ

 ++  −   − −   =

+ +   −   − −   =

−= =

 

 
Because  

*
,1

1.564 1.644
critZ Z α−≤

≤
 

 
the null hypothesis Ho is retained. It appears 
these graders do not meet the minimally 
acceptable inter-rater reliability. Corrective 
actions, such as additional grader training, 
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would be required in such cases. However, the 
hypothesis test without the correction results in  
 

*
,1

1.691 1.644.
critZ Z α−≥

≥
 

 
In contrast to the results using the correction, the 
null hypothesis would be incorrectly rejected. 
Multiple rater comparisons or multiple parallel 
forms may as well be addressed with this 
correction using a multiple comparison Type I 
error adjustment such as Bonferroni or Tukey.  

Because the proposed correction occurs 
within the Z transform (see Figures 8 and 9), it is 
difficult to interpret its impact in the original 
correlation scale. The width of a correlation 
confidence interval is not only a function of r, α, 
and n, but this study has demonstrated E(To) and 
the average p-value as well. To better 
understand the effects of this correction in the 
desired scale, the following 3D plots show the 
difference in CI widths between the Fisher 
transformation and this correction, where the 
proposed correction always result in larger 
widths in order to maintain an accurate Type I 
error control. In each plot, r was 0.75 and α was 
0.05. The range of test items used coincides with 
test section lengths of the major standardized 
educational exams such as the SAT, GRE, 
LSAT, and MCAT. 
 

Conclusion 
The Fisher transformation is remarkably 
efficient, yet was not designed with an intended 
use of summed dichotomous or polytomous 
data. This correction accounts for departures 
from asymptotic convergence under the central 
limit theorem due to test length and average item 
difficulty. Further, this correction can be easily 
applied, providing substantially more accurate 
results over the Fisher transformation. This 
study also illustrates the coarseness of 
dichotomous measures has no effect on the 
coverage probability results of the true 
population correlation as this is accounted for in 
the correction and results from application of the 
central limit theorem. 

For those positing a unidimensional 
construct, the use of Pearson correlation can be 
easily extended to allow for items which load 

differently on the latent dimension. By 
weighting each item and making an adjustment 
to the total score, an omnibus reliability measure 
based on total score can be obtained. 

Throughout the study, a homogeneous 
p-value for each test item was used. Because 
most tests are comprised of items with varying 
p-values, the performance of this correction was 
examined under a wide range of p-value 
distributions. This robust analysis explored 
extreme deviations from the simulation 
conditions, using a highly kurtotic uniform 
distribution and bi-modal distributions with 
different expected average p-values. The results 
for this analysis are present in Appendix A and 
reaffirm the use of this correction under any 
conditions.  

Though the proposed correction is easily 
implemented with demonstrated efficiency 
across a wide range of test conditions, a 
nonparametric alternative is also available. 
Nonparametric bootstrap methods remain a 
viable option for researchers desiring confidence 
interval estimates; whereas such options might 
also produce robust results, they require both 
sufficient data and custom coding. 
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Appendix 
As a means of robust analysis, the proposed 
correction was explored under 4 different sets of 
varied p-values. Empirical treatments remained 
unchanged for sample size, population 
correlation, and test length. However, instead of 
a homogeneous p-value for each item on a test 
of length J, the following were considered: 
 
a. p-value = 0.50 per test item to a bimodal 

distribution of the following form 
 

)8.6(.
2

)4.2(.
2

−+− UnifJUnifJ
 

 
per test. P-values were redrawn from this 
distribution for each trial. The average p-
value is 0.50. 

 
b. p-value = .60 per item to a distribution of 

the form  
)9.3(. −Unif  

 
per test, redrawn for each trial. The average 
p-value is 0.60. 

 
c. p-value = 0.70 per item to a distribution of 

the form  
 

)95.75(.
2

)65.45(.
2

−+− UnifJUnifJ
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per test, redrawn for each trial. The average 
p-value is 0.70. 

 
d. p-value = 0.80 per item to a distribution of 

the form 
 

)95.65(. −Unif  
 

per test, redrawn for each trial. The average 
p-value is 0.80. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collective results are presented in the Table 4. 
Similar to this validation study, in bias and mean 
square error, overall and across each of 
treatment conditions, the proposed correction 
outperformed the Fisher transformation. Further, 
the Type I error of the Fisher transformation is 
comparatively higher compared with a test of 
items with homogeneous p-values. This 
reaffirms the suitability of this correction under 
any conditions, regardless of the p-value 
distribution underpinning the test items. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Robust Analysis for Extreme p-values; Bias and MSE for Fisher’s Transformation and the 
Proposed Model across All Experimental Conditions 

Description 
Fisher Transformation Proposed Model 
Bias MSE Bias MSE 

Overall -1.100 3.081 -0.229 0.698 
By Sample Size 

25 -1.020 2.615 -0.169 0.574 
50 -1.143 3.231 -0.260 0.727 
100 -1.078 3.031 -0.204 0.694 
200 -1.097 3.156 -0.220 0.678 
400 -1.164 3.423 -0.291 0.837 

By P-value 
0.50 -0.929 2.125 -0.461 0.837 
0.60 -0.896 2.007 -0.341 0.636 
0.70 -1.086 3.005 -0.191 0.612 
0.80 -1.490 5.217 0.078 0.718 

By Alpha 
0.01 -0.522 0.578 -0.166 0.114 
0.05 -1.253 3.284 -0.318 0.721 
0.10 -1.526 5.395 -0.202 1.266 

By 0( )E T  

5 -2.116 6.560 -1.087 2.448 
6 -2.027 6.026 -0.760 1.669 
7 -2.495 9.539 -0.371 1.786 
8 -3.451 16.079 0.493 1.816 

10 -1.037 1.530 -0.591 0.659 
12 -1.001 1.667 -0.480 0.722 
14 -1.163 2.013 -0.331 0.490 
16 -1.620 3.918 -0.182 0.744 
20 -0.422 0.379 -0.174 0.216 
24 -0.427 0.310 -0.163 0.122 
28 -0.508 0.428 -0.098 0.133 
32 -0.683 0.769 -0.073 0.239 
40 -0.140 0.063 0.008 0.052 
48 -0.131 0.058 0.040 0.058 
56 -0.178 0.095 0.035 0.077 
64 -0.244 0.172 0.074 0.116 
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Estimation of Parameters of Johnson’s System of Distributions 
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Fitting distributions to data has a long history and many different procedures have been advocated. 
Although models like normal, log-normal and gamma lead to a wide variety of distribution shapes, they 
do not provide the degree of generality that is frequently desirable (Hahn & Shapiro, 1967). To formally 
represent a set of data by an empirical distribution, Johnson (1949) derived a system of curves with the 
flexibility to cover a wide variety of shapes. Methods available to estimate the parameters of the Johnson 
distribution are discussed, and a new approach to estimate the four parameters of the Johnson family is 
proposed. The estimate makes use of both the maximum likelihood procedure and least square theory. 
The new MLE-Least Square approach is compared with other two commonly used methods. A simulation 
study shows that the MLE-Least square approach provides better results for BS , US  and LS  families. 

 
Key words: Johnson distribution, unbouded, bounded, lognormal, estimation. 
 
 

Introduction 
Any data set with finite moments can be fitted 
by a member of the Johnson families such as 

,BS  US  or LS . The most commonly used 

methods to estimate the parameters of the 
Johnson distribution are the percentile approach 
(Shapiro, 1980) and Quantile method (Wheeler, 
1980). A new approach is proposed for the 
estimation of Johnson parameters and is 
compard to other methods. For additional 
reerences, see Drapper (1952), Hill (1976), Hahn 
and Shapiro (1967), George, et al (2009). 
 
The Johnson Translation System 

Given a continuous random variable X  
whose distribution is unknown and is to be 
approximated, Johnson proposed three 
normalizing transformations having the general  
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form:  







 −+

λ
ξδγ XfZ =                (2.1) 

 
where (.)f  denotes the transformation function, 

Z  is a standard normal random variable, γ  and 

δ  are shape parameters, λ  is a scale parameter 
and ξ  is a location parameter. Without loss of 

generality, it is assumed that 0>δ  and 0>λ . 
The first transformation proposed by Johnson 
defines the lognormal system of distributions 
denoted by LS : 
 

*

= ln , >

= ln( ), >

XZ X

X X

ξγ δ ξ
λ

γ δ ξ ξ

− +  
 

+ −
       (2.2) 

 

LS  curves cover the lognormal family. 

The bounded system of distributions BS  
is defined by 
 

λξξ
λξ

ξδγ +







−+

−+ <<,ln= X
X

XZ  

(2.3) 
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BS  curves cover bounded distributions. The 
distributions can be bounded on the lower end, 
the upper end or both ends. This family covers 
Gamma distributions, Beta distributions and 
many others. 

The unbounded system of distributions 

US  is defined by 

 
1/22

1

= ln 1 ,

      < <

   = sinh

X XZ

X
X

ξ ξγ δ
λ λ

ξγ δ
λ

−

  − −     + + +           
− ∞ ∞

− +  
 

 

(2.4) 
 
The US  curves are unbounded and cover the t  

and normal distributions, among others. Using 
the fact that, after the transformation in (2.1), Z  
follows standard normal distribution, the 
probability density function (pdf) of each of the 
family in the Johnson system can be derived. If 
X  follows the Johnson distribution and 

λ
ξ−XY =  then, for LS  family, the pdf is 

 

[ ]21 1
( ) = exp .ln( ) ,

22

          < < .

p y y
y

X

δ γ δ
π

ξ

 × × − + 
 

+∞
 

 
similarly, for the BS  family, the pdf is, 
 

2

( ) =

1 1
exp .ln( )

[ / (1 )] 2 12

p y

y
y y y

δ γ δ
π

   × × − +  − −   
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The pdf for the US  family is 

 

2
2

2
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1 1
exp .ln( 1) ,
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δ γ δ
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In general the pdf of X  is given by, 
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for all Hx ∈ , where 
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and 
 

2

( ) = ln( ) for the family

= ln( / (1 )) for the family

= ln[ 1] for the family.
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(2.6) 

 
The support H  of the distribution is: 
 

= [ , ) for the family

= [ , ] for the family

= ( , ) for the family.

L

B

U

H S
S
S

ξ
ξ ξ λ
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Parameter Estimation of the Johnson System: 
Percentile Matching 

Percentile matching involves estimating 
k  required parameters by matching k  selected 
quantiles of the standard normal distribution 
with corresponding quantile estimates of the 
target population. For given percentages 

}1:{ kjj ≤≤α , the corresponding quantiles 

}{
j

zα  and }{
j

xα  are    given    respectively    by 
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)(= 1
jj

z αα
−Φ  

and  

)(= 1
jj

Fx αα
−  

 
where (.)Φ  is the standard normal distribution 

function and F  is the target distribution 
function. Once the functional form (.)f  among 
systems given by equations 2.2-2.4 has been 
identified, the method of percentile matching 
attempts to solve the k  equations 
 

kj
x

fz j

j
≤≤

−
+ ),1

ˆ
(=

λ

ξ
δγ

α

α  

 
where 

j
xαˆ  is an estimator of the quantile 

j
xα  

based on sample data. 
Slifker and Shapiro (1980) introduced a 

selection rule, which is a function of four 
percentiles for selecting one of the three 
families, to give estimates of the Johnson 
parameters. The fit parameters for the 
transformation are calculated by solving the 
transformation equation for the chosen 
distribution type at the four selected percentiles. 
Choose any fixed value z  ( 1<<0 z ) of a 
standard normal variate; the four points z±  and 

z3±  determine three intervals of equal length. 
Determine the percentile ζP  corresponding to 

zzzz 3,,,3= −−ζ  respectively. For example, if 

0.5=z  then 69.15=100*0.6915=0.5P . Let 

zzzz xxxx 33 ,,, −−  be the percentiles of data 

values corresponding to the four selected 
percentiles of the normal distribution. The type 
of Johnson distribution chosen is based on the 
value of the discriminant d  calculated as 
follows.  

2
=

p
mnd  

where 

zz xxp −−= , zz xxm −3= , zz xxn 3= −− − . 

 
If the calculated discriminant d  is greater than 
1.001, then an unbounded distribution is chosen; 
if the value is less than 0.999, then a bounded 

distribution is chosen. A discriminant equal to or 
between the two values results in a lognormal 
fit. The fit parameters for the transformation are 
calculated by solving the transformation 
equation for the chosen distribution type at the 
four selected percentiles. The parameter 
estimates for the Johnson US  distribution are: 
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The parameter estimates for the BS  distribution 
are 
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The parameter estimates for the Johnson LS  
distribution are: 
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Parameter Estimation of the Johnson System: 
Quantile Estimators 

Wheeler (1980) proposed a method to 
estimate the parameters γ  and δ  in the Johnson 

family using five quantiles. Let nnpn )/
2

1
(= − , 

where n  is the sample size. Denote the quantile 
of the standard normal distribution 

corresponding to the cumulative probability np  

by nz . For example, if 100=n , then 

0.995=np , so that 2.5758=nz . Choose five 

quantiles px , kx , 0x , mx , nx  from data 

corresponding to standard normal quantiles 
1 1

= ,  ,  0,  ,
2 2n n n nz z z z z− − . The general 

form of the Johnson system can be written as 
 

)(ln= yfz δγ +  
 
where yyf =)(  for LS , 

1/22 )(1=)( yyyf ++ ; for US , 

)/(1=)( yyyf − ; and for BS  λξ )/(= −xy . 
Wheeler uses the fact that any quantity of the 
form  
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where δγω )/(= −ze , does not depend on ξ  or λ . 

The parameter estimates for the US  curves are: 
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For BS  curves the parameter estimates are: 
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For LS  curves, 
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To differentiate the three types of Johnson 
curves, the ratio 
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is used. It is less than 1 for Us , equal to 1 for 

LS  and greater than 1 for BS . 
 
Parameter Estimation of the Johnson System: 
Proposed MLE-Least Square Approach 

A new algorithm to estimate parameters 
of Johnson’s distribution is now proposed; this 
algorithm is named the MLE-Least Square 
Approach, because both maximum likelihood 
and least square approaches were employed to 
estimate the four parameters. Although the 
maximum likelihood equations for γ  and δ  
were derived by Storer (1987), there are no 
closed form solutions for ξ  and λ . The idea of 
combining both a maximum likelihood approach 

and least square theory makes the derivation of 
all four parameters more tractable analytically.  

The probability density functions of the 
members of the Johnson family are known. First 
consider the US  and BS  family of the Johnson 

system. Using the general form of Johnson 
densities (see equation 2.5), the likelihood 
function is: 
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and the log-likelihood is, 
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Setting the partial derivatives with respect to δ  
to zero, 
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λ
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λ
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δ
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which can be written as, 
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Setting the partial derivatives with respect to γ  
to zero,  
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which yields,  
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Using (3.3) in (3.2): 
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where g  is the mean and )(gvar  is the 

variance of the values of g  defined in (2.6). 
The partial derivatives of the log-

likelihood with respect to ξ  and λ  are not 
simple. Storer (1987) presents a lengthy strategy 
for obtaining the solutions of these parameters. 
In the maximum likelihood estimation method, 
Kamziah, et al. (1999) applied the Newton-
Raphson iteration to maximize the log likelihood 
of the Johnson distribution. They observed that, 
for some samples, the log likelihood function 
does not have a local maximum with respect to 
parameters ξ  and λ . This non-regularity of the 
likelihood function caused occasional non-
convergence of the Newton-Raphson iteration 
that was used to maximize the log-likelihood 
(Hosking, 1985) 

The least squares method is applied 
herein to estimate parameters ξ  and λ . From 

(2.1), )(= 1

δ
γλξ −+ − zfx  is obtained. For 

fixed values of γ  and δ , this equation may be 
considered as a linear equation with parameters 
ξ  and λ . 

The sum of squares of errors is, 
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δ
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To determine the value of ξ  and λ  that 

minimizes ),( λξS , the partial derivatives of 

),( λξS  with respect to ξ  and λ  are calculated 
and these partial derivatives are equated to zero. 
The following two equations, called normal 
equations, are then obtained: 
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Note that z  is a standard normal variate. The 
quantiles of x  and the corresponding quantiles 
of z  can be considered paired observations. If 
there are 100 or more x  values, the percentiles 1 
through 99 would be considered. If the number 
of data points of x  is k  where k  is less than 
100, 1−k  quantiles of x  and the corresponding 

1−k  quantiles of z  would be considered as 
paired observations. 

Solving the normal equations results in 
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(3.5) 
and 

)]([*=ˆ 1

δ
γλξ −− − zfmeanx      (3.6) 

 
where x  is the mean of x -quantiles and z  is 
the mean of z -quantiles used in the above 
equations. Starting with some initial values of ξ  

and λ , these initial values may be taken as the 
estimates obtained by any one of the previous 
methods. The estimates of γ  and δ  are then 
calculated using equations (3.2) and (3.3). After 
the estimates of γ  and δ  are obtained, 
equations (3.5) and (3.6) can be used to revise 
the ξ  and λ  estimates. Now these steps may be 
repeated, each time using the most recent 
estimates; the  Residual Sum of Squares(RSS) 
can be tracked and, after a few steps, the 
estimate with minimum RSS value selected. 

For the LS  family, consider the 
transformation in equation (2.2), so that there are 
only 3 parameters included. The probability 
density function can be given by, 
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The likelihood function is, 
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Setting the partial derivative of log-likelihood 
with respect to δ  to zero we get, 
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which can be written as, 
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Setting the partial derivative of log-likelihood 

with respect to *γ  to zero, 
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= .

x
n
g

γ δ ξ

δ

− −

−

            (3.9) 

 
Using (3.9) in (3.8) and solving for δ , results in 

2
2

2

*

ˆ =
[ ln( )]

[ln( )]

1
=

( )

n
x

x
n

var g

δ
ξ

ξ
−

− −   

(3.10) 
 

where )(ln=* ξ−xg . To estimate ξ , as 
before, use the method of least squares in the 
equation 

*
1= ( ).

zx f γξ
δ

− −+  

 
The sum of squares of errors is, 
 

2
*

1 ))((=)(
δ

γξξ −+− − zfxS  

To find the value of ξ  that minimizes )(ξS , 
obtain 

))((2=
*

1

δ
γξ

ξ
−−−− − zfx

d
dS

 

 
Setting this derivative equal to zero, results in: 
 

)]([=ˆ
*

1

δ
γξ −− − zfmeanx  

 
Here the same situation arises, the estimate of ξ  

depends on *γ  and δ  and vice versa; as in the 

case of the US  and BS  distributions. Thus, start 

with some initial value of ξ  to estimate *γ  and 

δ , then use these estimated values to estimate 
ξ . Repeat this procedure, keeping track of RSS, 
and choose the one with least RSS. 
 

Results 
Data of size 2,000 were simulated from the US , 

BS  and LS  distributions to compare different 
methods of estimation. Twenty samples of size 
2,000 were generated from each of the three 
specified models. The mean and the Mean 
Square Error (MSE) of the estimated values of 
the BS , US , and LS  families are shown in 

Tables 1, 2 and 3. It can be observed that the 
average of the estimates are close to the true 
values of the parameters and, in general, the 
MSE of the estimates are smaller in the 
proposed method than the other methods. 
 

Conclusion 
A new approach that makes use of both the 
maximum likelihood procedure and least square 
theory was proposed to estimate the four 
parameters of the Johnson family of 
distributions. The new MLE-Least Square 
approach is compared with two other commonly 
used methods. The simulation study shows that 
the MLE-Least square approach gives better 
results for the BS , US  and LS  families. The 

findings of this study should be useful for 
applied practitioners. 
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Table 1: Mean and (Mean Square Error-MSE) of Parameter Estimates for  
the Johnson BS  Family 

Sl. No. Parameter 
True 

Value 
Percentile 
Method 

Quantile 
Method 

MLE-Least 
Square Approach 

1 

γ  1 0.998(0.167) 1.063(0.409) 0.997(0.026) 

δ  1 1.001(0.059) 1.024(0.083) 0.997(0.026) 

ξ  10 10.047(0.085) 9.982(0.131) 9.93(0.08) 

λ  10 10.049(5.92) 10.402(14.37) 10.57(4.99) 

2 

γ  0.5 0.503(0.009) 0.503(0.0493) 0.494(0.007) 

δ  0.5 0.505(0.003) 0.519(0.023) 0.507(0.001) 

ξ  10 9.11(4.038) 9.97(0.077) 10.004(0.004) 

λ  10 10.005(0.285) 10.094(1.614) 9.868(2.056) 

3 

γ  1 1.032(0.065) 1.01(0.015) 1.016(0.017) 

δ  0.5 0.507(0.0039) 0.5006(0.0013) 0.509(0.002) 

ξ  10 9.698(.488) 10.001(0.001) 10.001(0.001) 

λ  10 10.355(4.63) 10.085(0.69) 9.86(0.70) 

4 

γ  0.5 0.558(0.287) 0.539(0.136) 0.561(0.165) 

δ  1 1.013(0.191) 1.024(0.108) 1.055(0.115) 

ξ  10 9.82(1.097) 9.94(0.55) 9.91(0.52) 

λ  10 10.31(15.4) 10.30(8.2) 9.83(0.50) 
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Table 2: Mean and (Mean Square Error-MSE) of Parameter Estimates 
for the Johnson US  Family 

Sl. No. Parameter 
True 

Value 
Percentile 
Method 

Quantile 
Method 

MLE-Least 
Square Approach 

1 

γ  0 0.04(0.32) 0.015(0.05) 0.015(0.05) 

δ  2 1.41(3.3) 2.08(0.34) 2.05(0.29) 

ξ  10 10.24(8.9) 10.1(1.5) 10.1(1.4) 

λ  10 12.3(99.9) 10.5(12.6) 10.3(10.1) 

2 

γ  0.5 0.82(2.9) 0.52(0.11) 0.51(0.09) 

δ  2 2.47(3.23) 2.08(0.45) 2.06(0.37) 

ξ  10 11.51(64.6) 10.06(2.79) 10.04(2.59) 

λ  10 12.07(56.5) 10.35(12.6) 10.25(11.22) 

3 

γ  0 -0.003(0.003) 0.005(0.002) 0.003(0.002) 

δ  1 1.033(0.006) 0.99(0.003) 0.99(0.002) 

ξ  10 10.03(.43) 10.05(0.25) 10.06(0.25) 

λ  10 10.45(1.43) 9.82(0.7) 9.75(0.73) 

4 

γ  0.5 0.514(0.009) 0.488(0.006) 0.487(0.007) 

δ  1 1.008(0.006) 0.999(0.006) 0.996(0.006) 

ξ  10 10.243(1.203) 9.95(0.9) 9.94(1.05) 

λ  10 10.06(0.96) 10.06(1.13) 10.02(1.43) 
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The generalized negative binomial distribution characterized by three parameters, has been used to fit 
data from various fields of study. The distribution can model data for which the variance is larger or 
smaller than the mean, however, it becomes truncated under certain conditions. This truncation error is 
investigated via a detailed error analysis that determines the parameter space when the model can be used 
in place of the truncated generalized negative binomial distribution. The fitting of a generalized negative 
binomial distribution to a data set of absenteeism among shift-workers in a steel industry is re-analyzed. 
 
Key words: Truncation error, dispersion, maximum likelihood estimates. 
 
 

Introduction 
A generalized negative binomial distribution 
(GNBD) was defined and studied by Jain and 
Consul (1971). The probability mass function of 
the GNBD is given by 
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(1.1) 
 
and zero otherwise, where 0 < θ < 1, m > 0 and 
β = 0 or 0 < β < 1/θ and k is the largest positive 
integer for which m + 1 + (β – 1)k > 0 when β < 
0 or 0 < β < 1. The GNBD in (1.1) reduces to 
the binomial distribution when β = 0 and m is an 
integer, and to the negative binomial distribution 
when β = 1. For the non-truncated GNBD, the 
mean and variance are 
 

/ (1 )mμ θ θβ= −  
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and 

2 3(1 ) / (1 )mσ θ θ θβ= − − .       (1.2) 
 
The moments in (1.2) exist when θβ < 1. 

Famoye and Consul (1993) defined and 
studied the truncated GNBD. The advantage of 
the truncated GNBD is that the distribution is 
defined for all values of β. However, the 
truncated GNBD is more difficult to estimate 
than the ordinary GNBD. The major difficulty is 
in finding suitable initial estimates for the model 
parameters. 

All the estimation methods suggested by 
Famoye and Consul (1993) involve iterative 
procedure like the Newton-Raphson method. 
Because no estimation technique can be done 
without iteration, it is difficult to determine an 
initial estimate for the iteration. One way to 
obtain an initial estimate is to use the moment 
estimate of the non-truncated GNBD as the 
initial estimate; however, the moment estimates 
of non-truncated GNBD may not provide 
satisfactory initial estimates. 

Famoye (1997) discussed parameter 
estimation for the GNBD. The asymptotic 
relative efficiencies of the estimators were 
compared. The method of first two moments and 
proportion of zeros (MOZE) has good efficiency 
when compared to the maximum likelihood 
estimates. From the simulation results, the 
MOZE method performed very well when both 
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bias and variance of the estimators were 
considered. 

Nelson (1975) noted that the GNBD as 
first defined by Jain and Consul (1971) is 
truncated on the right hand side when β < 0. 
Also, the distribution gets truncated when 0 < β 
< 1. Nelson (1975) remarking on GNBD stated 
that “A rigorous error analysis has not been 
performed, but it appears that for n > 3β− , the 

error resulting from having negative value of β 
should be tolerable for most applications” (p. 
136). The parameter n was replaced with m in 
(1.1), and to the best of our knowledge, no such 
error analysis has been conducted for the 
GNBD. One motivation for this study is to 
examine the error analysis for the GNBD when 
β < 0 and when 0 < β < 1. 

Due to the truncation described above, 
the sum of the probabilities in (1.1) may differ 
from unity. The difference between 1 and the 
sum of the probabilities (ΣPx) is the truncation 
error. The percentage truncation error is 
computed as 100(1 – ΣPx). Some illustrative 
examples for k ≤  3 are presented in Table 1. For 
two classes only, the truncation leads to only 
two probabilities P0 and P1, and the sum of the 
two probabilities could be very small or very 
large as shown in Table 1. As the values of θ 
decrease, the truncation error decreases. In 
general, the sum of the non-negative 
probabilities is much closer to 1 for small values 
of θ. As m increases, the value of k increases 
and, as the value of k increases, the truncation 
error decreases. 

Other parameter sets can be used to 
illustrate the same phenomena. When β < 1 
many of the cases shown in Table 1 satisfy the 
condition m > –3β, however, these values 
produce the sums of probabilities that are not 
close to 1. The statement that the error may be 
tolerable when m > –3β does not seem to hold; 
more conditions than this are required. This 
study seeks to determine these other conditions 
such that the error will be tolerable or negligible. 
For example, in row 7 for k = 1, the sum of the 
probabilities is more than 3 on the account that 
the P(X = 1) leads to 1 – θ being raised to a 
negative power (see Table 1). 
 
 

Review of the GNBD Dispersion Property 
The GNBD model in (1.1) is over-

dispersed (the variance is larger than the mean) 

when 2(2 1) /θ β β< − , under-dispersed (the 
variance is smaller than the mean) when 

2(2 1) /θ β β> −  and equi-dispersed (the 
variance is equal to the mean) when 

2(2 1) /θ β β= − . These conditions differ from 
those given by Jain and Consul (1971), which 
involve the square root of 1 – θ. When β ≥  1, it 
is known that θβ < 1 for the existence of the 
moments, therefore the condition for over-
dispersion is always satisfied; hence, the GNBD 
is over-dispersed when β ≥  1. The GNBD 
model is under-dispersed whenever β ≤  0.5. 
When 0.5 < β < 1, the GNBD is over-dispersed 

for all values of θ satisfying 20 (2 1)θ β β −< < −  

and under-dispersed for values of θ satisfying 
2(2 1) 1β β θ−− < < . These results for the GNBD 

model can be summarized as follows: 
 

• It is over-dispersed (i) when β ≥  1 and (ii) 

when 0.5 < β < 1 and 20 (2 1)θ β β −< < − . 
 
• It is under-dispersed (i) when β ≤  0.5 and 

(ii) when 0.5 < β < 1 and 
2(2 1) 1β β θ−− < < . 

 

• It is equi-dispersed when 2(2 1) .θ β β −= −  
 

• The GNBD dispersion is independent of 
the parameter m. 

 
Figure 1 shows the dispersion regions for the 
GNBD model: All points above the line 

2(2 1) /θ β β= −  represent the region where the 
GNBD model is over-dispersed, all points below 
the line represent the region where the model is 
under-dispersed, and all points on the line are 
where the GNBD model is equi-dispersed. 
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Table 1: Sum of Probabilities for Some GNBD Parameter Sets 
 

k 
Parameters Probabilities 

ΣPx θ β m P0 P1 P2 P3 

1 

.95 –2 4.0 0.0000 0.1900   0.1900 

.50 –2 4.0 0.0625 1.0000   1.0625 

.05 –2 4.0 0.8145 0.1900   1.0045 

.95 –.5 1.6 0.0083 1.1265   1.1348 

.50 –.5 1.6 0.3299 0.7464   1.0763 

.05 –.5 1.6 0.9212 0.0796   1.0008 

.95 –.1 0.5 0.2236 2.8662   3.0898 

.50 –.1 0.5 0.7071 0.3789   1.0860 

.05 –.1 0.5 0.9747 0.0258   1.0005 

.95 .1 0.5 0.2236 1.5744   1.7980 

.50 .1 0.5 0.7071 0.3299   1.0370 

.05 .1 0.5 0.9747 0.0255   1.0002 

2 

.95 –2 7.0 0.0000 0.0000 0.3159  0.3159 

.50 –2 7.0 0.0078 0.2188 0.8750  1.1016 

.05 –2 7.0 0.6983 0.2851 0.0166  1.0000 

.95 –.5 2.6 0.0004 0.0915 2.3332  2.4251 

.50 –.5 2.6 0.1649 0.6065 0.2573  1.0287 

.05 –.5 2.6 0.8751 0.1229 0.0020  1.0000 

.95 –.1 1.5 0.0112 0.4299 1.6533  2.0944 

.50 –.1 1.5 0.3535 0.5684 0.0914  1.0133 

.05 –.1 1.5 0.9259 0.0735 0.0006  1.0000 

.95 .4 0.5 0.2236 0.6409 0.5571  1.4156 

.50 .4 0.5 0.7071 0.2679 0.0305  1.0055 

.05 .4 0.5 0.9747 0.0251 0.0002  1.0000 

3 

.95 –.5 3.6 0.0000 0.0063 0.4307 0.8388 1.2758 

.50 –.5 3.6 0.0825 0.4199 0.4750 0.0154 0.9928 

.05 –.5 3.6 0.8314 0.1616 0.0070 0.0000 1.0000 

.95 –.1 2.5 0.0006 0.0358 0.5970 0.9419 1.5753 

.50 –.1 2.5 0.1768 0.4737 0.3300 0.0218 1.0023 

.05 –.1 2.5 0.8796 0.1163 0.0040 0.0000 0.9999 

.95 .6 0.5 0.2236 0.3520 0.3880 0.2269 1.1905 

.50 .6 0.5 0.7071 0.2332 0.0639 0.0066 1.0008 

.05 .6 0.5 0.9747 0.0249 0.0004 0.0000 1.0000 
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Error Analysis of the GNBD 

Re-writing the GNBD in (1.1), 
1
1(1 ) [ ( )] / !x m x x x

x iP m m x i xβθ θ β+ − −
== − Π + − . 

When β < 0 or 0 < β < 1, it is required that m + 
βx – x +1 ≥  0. If this condition is not satisfied, 
then Px is set to 0 as shown in (1.1). Thus, the 
largest x value can be obtained from 0 ≤  m + 1 
+ (β – 1)x   (1 – β)x ≤  m+1   x ≤  (m + 
1)/(1 – β) because 1 – β > 0. The largest x value, 
k, is given by the integer part of (m + 1)/(1 – β). 
Through computation, a detailed error analysis 
can be conducted on the GNBD model when β < 
0 and 0 < β < 1. This analysis considers the 
values of m and θ in the parameter space of the 
model and the values of β when the truncation 
occurs; the values of m > 0, 0 < θ < 1, β < 0 and 
0 < β < 1. Observe that θβ is always less than 1 
when truncation occurs. In the analysis, the 
values of ( )P X x=  are computed for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x = 0, 1, 2, …, k, where k is such that 

( 1) / (1 )k m β≤ + − , and where β < 0 or 0 < β 
< 1. In addition to these probabilities, the mean 
and variance of the truncated model are 
computed using the formulas * /x xxP Pμ = Σ Σ  

and 2 2 2
* */ ( )x xx P Pσ μ= Σ Σ − . After obtaining 

these values, percentage truncation errors in the 
sum of probabilities, the means and the 
variances are calculated using the formulas 
100(1 – xPΣ ), 100(1 – * /μ μ ), and 100(1 – 

2 2
* /σ σ ), respectively. 

In fitting the GNBD to an observed data 
set, the three parameters θ, β, and m must be 
estimated. In order to have at least 1 degree of 
freedom for the Chi-square goodness-of-fit test, 
at least five non-zero probability classes are 
needed. Thus, it is necessary that the smallest 
value of x be 4; therefore, in all analyses, the 
smallest x value is required to be 4. The 

Figure 1: Dispersion Region for the GNBD 
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percentage error of truncation will be said to be 
tolerable or negligible if it is below 0.5%; in 
other words, the difference between 1 and the 
sum of all non-negative probabilities is below 
0.005. This value was used by Consul and 
Shoukri (1985) in their error analysis for the 
generalized Poisson distribution. In view of this, 
the error analysis for k ≥  4 was conducted. 

The maximum truncation error for the 
different values of m, θ, and β are provided in 
Table 2. Because at least five non-zero 
probability classes are needed, the different 
errors for cases where x is at least 4 are 
examined. In the error analysis the values of θ = 
0.01(0.01)0.99, β = (–2.0)(0.01)(–0.01) and m = 
0.1(0.1)(15.0) are considered. 

Table 2 shows the ranges for the 
parameters that produce the maximum 
percentage error in the sum of the non-zero 
probabilities and specific parameter values at 
which the maximum truncation error occurs. The 
corresponding percentage errors in means and 
variances are also reported. For example, when 0 
< θ ≤  0.71, 0.01 ≤  β ≤  0.99 and 0.1 ≤  m ≤  
0.5, the maximum truncation error with at least 5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

non-zero probability classes is –0.4799. When 0 
< β < 1, the percentage error in the means and 
percentage error in variances decrease as m 
increases. As m values increase, the range of θ 
values decreases in order to have a maximum 
truncation error of less than 0.5%. As the 
number of non-zero probability classes 
increases, the truncation error decreases. 

When 0 < β < 1 and k ≥  4, the GNBD 
can be used in general when 0 < θ ≤  0.57 for 
any value of m > 0. If m < 1, the range of θ 
values increases to 0 < θ ≤  0.65. When β < 0 
and k ≥  4, the GNBD can be used in general 
when 0 < θ ≤  0.36 for m ≥  4. When –1 < β < 0 
and k ≥  4, the range of θ values increases to 0 < 
θ ≤  0.46 for 4 ≤  m ≤  10. 
 
Application to the Absenteeism Numbers among 
Shift-Workers 

Gupta and Ong (2004) defined a new 
generalization of the negative binomial 
distribution by mixing the mean of the Poisson 
distribution with that of a generalized gamma 
distribution. The probability mass function of 
their generalized negative binomial distribution,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Maximum Percentage Error and Corresponding Percentage Errors in Means and Variances 
(k = 5) 

 

Range of Parameter Values 
% Error (θ, β, m) 

Percentage Errors 

θ β m Means Variances 

[.01, .71] [.01, .99] [0.1, 0.5] –0.4799 (0.71, 0.63, 0.5) –3.2261 –13.8517 

[.01, .65] [.01, .99] [0.1, 1.0] –0.4761 (0.66, 0.53, 1.0) –1.8264 –8.1959 

[.01, .61] [.01, .99] [0.1, 2.0] –0.4547 (0.61, 0.32, 2.0) –0.9883 –4.8586 

[.01, .57] [.01, .99] [0.1, 5.0] –0.4536 (0.57, 0.01, 3.5) –0.6274 –3.4805 

[.01, .57] [.01, .99] [3.6, 5.0] –0.4440 (0.57, 0.01, 3.6) –0.5878 –3.1860 

[.01, .57] [.01, .99] [5.0, 15] –0.0947 (0.57, 0.01, 5.5) –0.1105 –0.8318 

[.01, .54] [–.99, –.01] [4.0, 5.0] –0.4656 (0.54, –0.3, 5.0) –0.4952 –3.0429 

[.01, .46] [–.99, –.01] [5.0, 10] 0.4329 (0.46, –0.99, 7.0) 0.4981 4.1317 

[.01, .39] [–2.0, –.01] [4.0, 10] 0.4397 (0.39, –1.66, 10) 0.4597 3.9250 

[.01, .36] [–2.0, –.01] [10, 15] 0.4543 (0.36,–2.0,11.6) 0.4400 3.5627 
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characterized by four parameters, is in terms of 
the confluent hypergeometric function of the 
second kind. This new distribution is fitted to a 
data set on absenteeism among shift-workers in 
a steel industry. The data comes from Arbous 
and Sichel (1954). Gupta and Ong (2004) also 
fitted the data to the GNBD in (1.1) and 
obtained the following maximum likelihood 

estimates (MLE): θ̂  = 0.00010775, β̂  = 

5978.5288 and m̂  = 29337.08391. They 
remarked that, because the parameter θ is small 
and both β and m are large, the fit by the GNBD 
corresponds to the fit by the generalized Poisson 
distribution. These large values of β and m and 
the small value of θ piqued our curiosity to re-
analyze the data. 

Famoye (1997) stated that the MOZE 
estimators are better than the moment estimators 
and they have good efficiency when compared 
to the MLE. In view of this, the moment 
estimates and the MOZE estimates of the GNBD 
in (1.1) were computed. The moment estimates 
of θ, β and m are respectively 0.9443, 0.9582, 
and 0.9058. The corresponding results for the 

MOZE method are θ  = 0.4590, β  = 1.5323 

and m  = 5.8071.  
Using the moment estimates as the 

initial for MLE and the Newton-Raphson 
method in SAS PROC NLMIXED, the ML 
estimates for the parameters did not reach 
acceptable convergence. After reaching 
convergence, the SAS warning that at least one 
of the gradients is more than 1.0e–3 (i.e. 0.001) 
was noted. In this analysis, two of the gradients 
were over 0.001 and the greater value is 0.0072. 
However, when the initial estimates are taken to 
be the MOZE estimates, there was proper 
convergence to the MLE (see Table 3). The 
maximum gradient was 1.141e–8. The MLEs in 
Table 3 are very far from the values given by 
Gupta and Ong (2004). Gupta and Ong did not 
report what they took as the initial estimates in 
finding the MLE. It appears the initial estimates 
might have caused their estimates to be too 
small or too large. 

Based on the MLE result for parameter 
β, the negative binomial distribution (NBD) 
should provide an adequate fit to the data. Table 
3 shows the fit by the GNBD and the NBD. 

Exact MLEs reported by Gupta and Ong (2004) 
for the NBD were not obtained in this study, 
however, estimates are not far from their results.  

Although Gupta and Ong (2004) found 
that their new GNBD provided an adequate fit to 
the data, the GNBD in (1.1) also provides an 

adequate fit. In this example, the MLEs of β ( β̂  
= 1.0824) is in the parameter region when the 
sum of the probabilities is 1. This parameter 
estimate for β is not significantly different from 
β = 1.0, for which the GNBD reduces to the 
NBD. The log-likelihood for both the GNBD 
and NBD are respectively equal to –793.91 and 
–794.00. This also shows that the NBD provides 
an adequate fit to the data. 
 

Conclusion 
When β < 0 or 0 < β < 1, the truncated GNBD 
can be used. However, due to estimation 
problems with the truncated GNBD, the non-
truncated GNBD should be considered if the 
truncation error is negligible. This study 
provides the region of the parameter space for 
which the truncation error is below 0.5%. It is 
important to ensure that the number of non-zero 
probability classes is at least five (that is, k ≥  4). 
By using the parameter region specified in Table 
2, it can be determined whether the estimated 
parameter values are in the region where the 
truncation error is negligible.  

Jain and Consul (1971) applied the non-
truncated GNBD to four data sets. The number 
of non-zero frequency classes and the parameter 
estimates given by Jain and Consul (1971) are 
provided in Table 4. In all data sets, the 
estimated values of β are between 0 and 1. For 
data sets 1, 2 and 3, the number of non-zero 
frequency classes is over 5 and the truncation 
error is expected to be negligible. In data set 4, 
there are exactly 5 non-zero frequency classes. 
However, in comparing the parameter estimates 
with the regions in Table 2, the maximum 
truncation error is –0.4547. Computed truncation 
errors for these data sets are: 0.0351%, 0.2616%, 
0.0053% and 0.0182% for data sets 1 through 4 
respectively. Thus, the truncation error is 
negligible for all data sets considered by Jain 
and Consul (1971). 
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Table 3: Absenteeism Numbers among Shift-Workers 
 

Count 
Observed 
Frequency 

NBD 
New GNB 

by GOa 
GNBD 
by JCb 

0 7 11.13 9.23 10.02 
1 16 15.74 16.18 15.70 
2 23 17.77 19.86 18.39 
3 20 18.36 21.06 19.20 
4 23 18.10 20.50 18.89 
5 24 17.32 18.78 17.94 
6 12 16.24 16.46 16.66 
7 13 15.01 14.02 15.22 
8 9 13.72 11.79 13.76 
9 9 12.43 9.95 12.33 

10 8 11.19 8.55 10.99 
11 10 10.01 7.54 9.74 
12 8 8.91 6.84 8.61 
13 7 7.90 6.33 7.58 
14 2 6.98 5.94 6.67 
15 12 6.14 5.61 5.85 
16 3 5.40 5.29 5.13 
17 5 4.73 4.97 4.49 
18 4 4.13 4.64 3.92 
19 2 3.61 4.28 3.43 
20 2 3.14 3.92 2.99 
21 5 2.73 3.55 2.61 
22 5 2.37 3.19 2.28 
23 2 2.06 2.84 1.99 
24 1 1.78 2.50 1.74 

25 – 48 16 11.10 14.13 11.87 

Total 248 248.00  248.00 

θ̂   0.8525 (0.0157)  0.7435 (0.3284) 

m̂   1.6792 (0.1775)  2.3580 (2.4079) 

β̂     1.0824 (0.3264) 

cChi-Square  15.97 8.27 13.27 

df  17 15 16 

p-value  0.5260 0.9125 0.6529 
aGupta and Ong (2004); bJain and Consul (1971); cAdjacent classes for Chi-square values were 
combined as in Gupta and Ong (2004) 
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Table 4: Parameter Estimates for Data Sets Analyzed by Jain and Consul (1971) 
 

Data Set 
Number of Non-Zero 

Frequency Classes 

Parameter Estimates 

θ  β  m  

1 
(in Table 1 of JCa) 

6 0.6013 0.8020 0.4006 

2 
(in Table 2 of JC) 

8 0.7806 0.8549 0.4886 

3 
(in Table 3 of JC) 

11 0.3531 0.0389 11.3188 

4 
(in Table 4 of JC) 

5 0.3171 0.5496 1.5884 

aJain and Consul (1971) 
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One commonly used model to analyze ordinal response data is the proportional odds (PO) model. 
However, if research interest is focused on a particular category and if an individual must pass through 
lower categories before achieving a higher level, the continuation ratio (CR) model is a more appropriate 
choice than the PO model. In addition, statistical software, such as Stata and SAS, may use different 
techniques to estimate the parameters. The CR model is used to illustrate the analysis of ordinal data in 
education using Stata and SAS and compares the results of fitting the CR model between these two 
packages. 
 
Key words: Continuation ratio models, proportional odds models, ordinal regression analysis, 

mathematics proficiency, Stata, SAS, comparison. 
 
 

Introduction 
Ordinal data are abundantly collected in 
educational research. For example, it is common 
for data on student’s SES to be ordered from low 
to high, responses to a survey item scaled from 
strongly disagree to strongly agree, children’s 
reading proficiency scored from level 0 to 5 or 
students’ educational proficiency levels in a 
state test ranging from fail to pass to proficient. 
One commonly used model to analyze ordinal 
data is the proportional odds (PO), or cumulative 
odds, model (Agresti, 1996, 2002, 2007; 
Armstrong & Sloan, 1989; Hilbe, 2009; Liu; 
2009; Long, 1997, Long & Freese, 2006; 
McCullagh, 1980; McCullagh & Nelder, 1989; 
 
 
 
Xing Liu is an Associate Professor of Research 
and Assessment in the Education Department. 
Email him at: liux@easternct.edu. Ann A. 
O’Connell is a Professor in the Program in 
Quantitative Research, Evaluation, and 
Measurement (QREM) in the School of 
Educational Policy and Leadership within the 
College of Education and Human Ecology. 
Email her at: aoconnell@ehe.osu.edu. Hari 
Koirala is a Professor in the Education 
Department. Email: koiralah@easternct.edu. 

 
O’Connell, 2000, 2006; O’Connell & Liu, 2011; 
Powers & Xie, 2000).  

The PO model is used to estimate the 
cumulative probability of being at or below a 
particular level of a response variable, or being 
beyond a particular level, which is the 
complementary direction. However, when 
research is focused on a particular category, 
rather than at or below that category, given that 
an individual has achieved a higher level, the 
continuation ratio (CR) model (Fienberg, 1980; 
Hardin & Hilbe, 2007; Long & Freese, 2006) is 
a more appropriate choice than the PO model. In 
particular, the CR model is more appealing than 
other models when analyzing educational 
attainment data (Allison, 1999). The CR model 
is very useful in analyzing data such as student 
academic proficiency levels that are measured 
annually or frequently using a mastery test as 
under the No Child Left Behind Act (NCLB). 

In a CR model, the ordinal categories 
represent successive stages, or proficiency 
levels, through which an individual can 
progress; for example, faculty ranks from 
assistant professor to associate professor to full 
professor, or educational attainment from high 
school diploma to Bachelor’s degree, Master’s 
degree and to doctorate degree. In both of these 
examples, individuals must pass through lower 
stages or levels in order to reach higher stages or 
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levels. A CR model estimates the odds of being 
in a certain category relative to being beyond 
that category. In terms of probability, this model 
estimates the probability of being in a category, 
given that an individual has been in that 
category or beyond. In addition, because these 
two conditional probabilities are 
complementary, the model estimates the 
conditional probability of being beyond a 
category given a person has attained that 
particular category. 

Although the PO model is commonly 
used, the CR model seems to be overlooked. In 
addition, not all general-purpose statistical 
software packages have developed procedures to 
directly estimate a CR model, and for those 
packages which are capable of conducting a CR 
analysis, they may use different 
parameterizations to estimate the model. 
However, no study has been conducted to 
identify these differences and clarify 
misunderstandings. 

Ignoring these differences may result in 
erroneous interpretations of results. Therefore, it 
is critical for researchers to understand this 
model and apply it correctly. To fill this gap, this 
study was conducted to demonstrate the use of 
the continuation ratio (CR) model to predict the 
mathematics proficiency of high school students 
using Stata and SAS, and to compare the results 
of fitting the continuation ratio model between 
these two packages. Ordinal regression analyses 
were based on the data from the Educational 
Longitudinal Study of 2002 (ELS:2002) in 
which the ordinal outcome of students’ 
mathematics proficiency was predicted from a 
set of students’ classroom activities, such as, 
reviewing work from the previous day in math 
class, listening to teachers’ lectures, copying 
notes from the board, using books besides 
textbooks, doing problem solving in class, using 
general and graphing calculators, using 
computers, explaining work orally and 
participating in student-led discussions. 
 
Theoretical Framework: General Logistic 
Regression Model and the Proportional Odds 
Model 

The binary logistic regression model 
predicts an outcome variable with two 
categories, with 1 = experiencing the event, and 

0 = not experiencing the event. This model 
estimates the log odds of the outcome, and thus 
the probability of success on a set of predictors. 
The logistic regression model has the following 
form: 
 

( )
( )

1 1 2 2 p p

ln(Y´)  logit [π(x)] 

π x
 ln

1 π x

α β X β X  β X

=

 
=   − 
= + + + …+

 

(1) 
 

An ordinal logistic regression model is a 
generalization of a binary logistic regression 
model when the outcome variable has more than 
two ordinal levels. It estimates the probability of 
being at or below a specific outcome level, 
conditional on a collection of explanatory 
variables. The ordinal logistic regression model 
can be expressed as a latent variable model 
(Agresti, 2002; Greene, 2003; Long, 1997, Long 
& Freese, 2006; Powers & Xie, 2000; 
Wooldridge & Jeffrey, 2001). Assuming a latent 
variable, Y* exists, Y* can be defined as a 
function of a set of predictor variables and a 
random error. Let Y* be divided by some cut 
points (thresholds): α1, α2, α3, …, αj, and α1 < α2 
< α3 … < αj. The values of the observed ordinal 
variable, Y, fall within the regions divided by 
these cut points (thresholds). For example, Y = 
0, if Y* ≤ α1. The observed mathematics 
proficiency level is the ordinal outcome, y, 
ranging from 0 to 5, is defined as follows: 
 

1

1 2

2 3

3 4

4 5

5

0 *

1 *

2 *
y

3 *

4 *

5 *

if y
if y
if y
if y
if y
if y

α
α α
α α
α α
α α
α

≤ 
 < ≤ 
 < ≤ =  < ≤ 
 < ≤
 

< ≤ ∞  

              (2) 

 
Therefore, the probability of a student 

achieving each proficiency level and the 
cumulative probabilities as can both be predicted 
by: P(Y≤j) = F (αj − xβ), where j = 1, 2, …, J−1. 
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Because different software packages 
utilize different parameterizations in estimating 
logit coefficients, the ordinal logistic regression 
model can be expressed in different forms (Liu, 
2009). In Stata, it is expressed in logit form as 
follows: 
 

( )
( )

( )

j

j

j

j 1 1 2 2 p p

ln(Y ´)  logit [π(x)] 

π x
 ln

1 π x

α β X β X  β X ,

=

 
=   − 

= + − − − …−

 

(3) 
 
where πj(x) = π(Y ≤ j|x1, x2, …, xp), which is the 
probability of being at or below category j, given 
a set of predictors; j = 1, 2, …,J−1. αj are the cut 
points, and β1, β2, …, βp are logit coefficients. 
To estimate the ln (odds) of being at or below 
the jth category, the PO model can be rewritten 
as: 
 

( )
( )

1 2 p

1 2 p

1 2 p

j 1 1 2 2 p p

logit [π(Y  j | x , x ,..., x )] 

π(Y  j | x , x ,..., x )
         ln

π Y >  j | x , x ,..., x

         α β X β X β X .

≤

 ≤
 =
 
 

= + − − −…−

 

(4) 
 
This is the form of the proportional odds (PO) 
model because it assumes that the logit 
coefficients of any predictor are identical across 
all comparisons; this equal logit slope 
assumption can be assessed by the Brant test 
(Brant, 1990). Similar to the binary logistic 
regression, the PO model estimates the logit, or 
the log of the odds of being at or below a 
particular category versus being beyond that 
category. Thus, this model predicts cumulative 
logits across J−1 response categories. Methods 
of model diagnostics for the ordinal logistic 
regression models are provided by O’Connell 
and Liu (2011).  

Just as Stata, the ordinal logit model is 
also based on the latent continuous outcome 
variable for SPSS PLUM, and it takes the same 
form. However, SAS uses a different ordinal 

logit model for estimating the parameters from 
Stata. For SAS PROC LOGISTIC (the 
ascending option), the ordinal logit model has 
the following form: 
 

( )

1 2 p

1 2 p

1 2 p

j 1 1 2 2 p p

logit [π(Y  j | x , x ,..., x )] 
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≤
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 
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(5) 
 
Using SAS with the descending option, the 
ordinal logit model can be expressed as: 
 

( )

1 2 p

1 2 p

1 2 p

j 1 1 2 2 p p
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≥
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(6) 
 
where, in both equations, αj are the intercepts, 
and β1, β2, βp are logit coefficients. 
 
Theoretical Framework: The Continuation Ratio 
Model 

As notes, statistical software packages, 
such as Stata, SAS and SPSS, use different 
techniques to estimate the parameters in the 
proportional odds (PO) models (Liu, 2009). This 
is also true for the continuation ratio (CR) 
model: they use different formulations, estimate 
parameters differently, and produce different 
output results. When estimating the conditional 
probability of being beyond a category, given 
that individual has attained that particular 
category (e,g., π(Y > j | Y ≥j |), the CR model 
can be expressed as (Allison, 1999; O’Connell, 
2006): 
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( )

1 2
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j 1 1 2 2 p p
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                 α β X β X β X ,
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(7) 
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where π(Y > j |x1,x2, …, xp) is the conditional 
probability of being beyond a category j, 
conditional on being in that category, given a set 
of predictors. j =1, 2, …, J−1 and where αj are 
the cut points and β1, β2, βp are logit 
coefficients. SAS follows this form in estimating 
the continuation ratio model with the PROC 
LOGISTIC command. Before the model is 
fitted, the data set must be restructured 
following a series of steps (Allison, 1999; 
O’Connell, 2006).  

First, separate sub-data set must be 
constructed with the binary outcome variable 
being beyond a category coded as 1 and 0 
otherwise. Individuals who have not advanced to 
a particular proficiency level are dropped at each 
stage. If the ordinal dependent variable has j 
categories, J−1 sub-data sets should be created, 
these data sets are then combined into one data 
set with a new binary outcome variable with 1 = 
beyond a particular category. Finally, the CR 
model is fitted using the SAS PROC 
LOGISTICS with the descending option.  

The CR models also estimates the odds 
of being in a particular category j relative to 
being beyond that category. In this situation, the 
CR model can be formulated as (Ananth & 
Kleinbaum, 1997; Armstrong & Sloan, 1989; 
Fienberg, 1980; Long & Freese, 2006): 
 

( )
( )

( )

1 2

1 2

j 1 1 2 2 p p

π Y j|x , x ,...
ln

π Y j|x , ,...

                α β X β X β X

p

p

x

x x

 =
 
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(8) 

 
where π(Y = j |x1,x2, …, xp) is the conditional 
probability of being in category j, conditional on 
being that category or beyond, given a set of 
predictors, and j =1, 2, …, J−1, αj are the cut 
points, and β1, β2 …βp are logit coefficients. 
Different from SAS, Stata follows this form to 
fit the CR model, which is known as the forward 
CR model (Bender & Bender, 2000). Another 
distinctive difference is that Stata does not 
require data restructuring before model fitting; 
this makes data analysis of the CR model much 
easier. The following analyses demonstrate how 
to fit a CR model using Stata; results of model 

fitting between Stata and SAS are also 
compared. 
 

Methodology 
Sample 

Data were from the Educational 
Longitudinal Study (ELS, 2002). The ELS:2002 
study was conducted by the National Center for 
Educational Statistics (NCES) and was designed 
to provide longitudinal data regarding the 
transitions of high school sophomores in 2002 to 
postsecondary school education and their future 
careers. In the 2002 base year of the study, more 
than 15,000 high school sophomores from a 
national sample of 752 public and private high 
schools participated in the study by taking 
cognitive tests and responding to surveys. 

The outcome variable of interest was 
students’ mathematics proficiency levels in high 
school, which was an ordinal categorical 
variable with five levels (1 = students can do 
simple arithmetical operations on whole 
numbers; 2 = students can do simple operations 
with decimals, fractions, powers and root; 3 = 
students can do simple problem solving; 4 = 
students can understand intermediate-level 
mathematical concepts and/or find multi-step 
solutions to word problems; and 5 = students can 
solve complex multiple-step word problems 
and/or understand advanced mathematical 
material) (Ingels, Pratt, Roger, Siegel & Stutts, 
2004, 2005). The five proficiency domains were 
hierarchically structured: mastery of higher 
proficiency level indicated mastery of all 
previous levels. Students had to pass through the 
first four levels of proficiency before achieving 
the final fifth level; those students who failed to 
pass through level 1 were assigned to level 0. 
Table 1 shows the frequency of the six 
mathematics proficiency levels. 
 
Data Analysis  

The continuation ratio model is first 
fitted with a single explanatory variable using 
the Stata ocratio command (Wolfe, 1998) with 
the link functions of logit and CLOG-LOG, a 
proportional odds (PO) model was fitted next, 
and finally, a full-model with all 11 explanatory 
variables was fitted. The eform option was used 
to estimate the odds ratios and corresponding 
standard errors and the confidence intervals. The 
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ologit command in Stata was used to fit the 
proportional odds models. The results from both 
the CR models and the PO models were 
compared and interpreted. For comparison, the 
same model was fitted using SAS (V. 9.1.3).  

Model fit statistics in the CR model, 
such as likelihood ratio test and Pseudo R2, were 
reported. Other fit statistics, such as Hosmer-
Lemeshow GoF test, and Pulkstenis-Robinson 
(2004) modification, are currently unavailable in 
the CR model. Following a suggestion by Hilbe 
(2009), the Stata AIC command was also used to 
compare model fit. 

The log likelihood ratio Chi-Square test 
with 1 degree of freedom, LR χ2

(1) = 38.90, p < 
0.001, indicated that the logit regression 
coefficient of the predictor, gender was 
statistically different from 0, therefore, the 
model with one predictor provides a better fit  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

than the null model with no independent 
variables in predicting conditional probabilities 
for mathematics proficiency level. The Pseudo 
R2=.0008, which is the likelihood ratio R2

L, 
suggested that the relationship between the 
response variable, mathematics proficiency and 
the predictor (gender) was small: the AIC 
statistic was 0.922. 
 

Results 
Continuation Ratio Model with a Single 
Explanatory Variable 

A continuation ratio model with a single 
predictor, gender, was fitted first. The Stata 
ocratio command with the logit function as 
default was used. Figure 1 displays the Stata 
output for the single predictor continuation ratio 
model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Proficiency Categories and Frequencies (Proportions) for the Study Sample, ELS 2002 
(N = 15,976) 

 

Proficiency Category Description Frequency 

0 Did not pass level 1 842 (5.27%) 

1 
Can do simple arithmetical operations on 

whole numbers 
3882 (24.30%) 

2 
Can do simple operations with decimals, 

fractions, powers, and root 
3422 (21.42%) 

3 Can do simple problem solving 4521 (28.30%) 

4 
Can understand intermediate-level 

mathematical concepts and/or find multi-
step solutions to word problems 

3196 (20.01%) 

5 
Can solve complex multiple-step word 
problems and/or understand advanced 

mathematical material 
113 (0.71%) 
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Figure 1: Stata Continuation Ratio Model with Logit Link: Single Predictor, Gender 
 

. ocratio Profmath BYGENDER, link (logit) 
 
Continuation-ratio logit Estimates                     Number of obs =   51353 
                                                       chi2(1)       =   38.90 
                                                       Prob > chi2   =  0.0000 
Log Likelihood =  -23683.4                             Pseudo R2     =  0.0008 
 
------------------------------------------------------------------------------ 
    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    BYGENDER |   .1416361   .0227235     6.23   0.000     .0970989    .1861732 
------------------------------------------------------------------------------ 
 _cut1   |  -2.790613   .0372137             (Ancillary parameters) 
 _cut2   |  -.9961043   .0219305 
 _cut3   |  -.7736138   .0238228 
 _cut4   |    .368887    .026111 
 _cut5   |   3.392331   .0966743 
------------------------------------------------------------------------------

 
 
 

. ocratio Profmath BYGENDER, link (logit) eform 
 
Continuation-ratio logit Estimates                     Number of obs =   51353 
                                                       chi2(1)       =   38.90 
                                                       Prob > chi2   =  0.0000 
Log Likelihood =  -23683.4                             Pseudo R2     =  0.0008 
 
------------------------------------------------------------------------------ 
    Profmath | Odds ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    BYGENDER |   1.152157    .026181     6.23   0.000     1.101969    1.204631 
------------------------------------------------------------------------------ 
 _cut1   |  -2.790613   .0372137             (Ancillary parameters) 
 _cut2   |  -.9961043   .0219305 
 _cut3   |  -.7736138   .0238228 
 _cut4   |    .368887    .026111 
 _cut5   |   3.392331   .0966743 
------------------------------------------------------------------------------ 
. aic 
AIC Statistic =   .9224153 
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The estimated logit regression 
coefficient, β = 0.1416, z = 6.23, p < 0.001, 
indicated that gender had a significant effect on 
mathematics proficiency. Substituting the value 
of the coefficient into the formula (8), logit 
[π(Y= j | Y ≥ j, gender)] = αj + (−β1X1), the logit 
[π(Y= j | Y ≥ j, gender)] = αj −0.1416 (gender), 
OR = e(-.1416) = 0.8680, was calculated indicating 
that male students were 0.8680 times the odds 
for female students of being in any category 
compared to being in higher categories, that is, 
female students were more likely than male 
students to drop out in a particular category, 
because males are coded as 1 and females are 
coded as 0.  

To estimate the conditional probability 
of being beyond a category of mathematics 
proficiency, which is the complement of the 
conditional probability of being at a category, 
the signs before the cutpoints and the estimated 
logits in the equation (8) are changed and the 
logit [π(Y>j | Y≥j, gender)] = −αj +0.1416 
(gender) calculated. Exponentiating 0.1416, 
results in the OR = 1.152, which indicated that 
male students were 1.152 times more likely to be 
beyond a particular mathematics proficiency 
level than female students. 

The CR model could also be fitted using 
the complementary log-log link (clog-log) with 
the cumulative option within the Stata ocratio 
command. The CR model with the 
complementary log-log link is actually the 
discrete-time proportional hazards model for the 
event history analysis or survival analysis 
(Allison, 1999; O’Connell, 2006). It estimates 
the hazard ratio (HR) rather than the odds ratio 
(OR) of being in a particular category relative to 
advancing to a higher category. Figure 2 
displays the Stata output for the clog-log 
continuation model. 

The log likelihood ratio Chi-Square test 
with 1 degree of freedom, LR χ2

(1) = 51.38, p < 
0.001, indicating that the full model with one 
predictor provides a better fit than the null 
model with no independent variables. The 
Pseudo R2=0.0011, suggested that the 
relationship between the response variable, 
mathematics proficiency, and the predictor, 
gender was small. The AIC statistic was 0.922 

The estimated clog-log coefficient, β = 
0.1257, z = 7.17, p < 0.001, indicating that 

gender had a significant effect on mathematics 
proficiency. Since Clog-log [π(Y=j | Y≥j, 
gender)] = log(−log(1−π)) = αj + (−β1X1), we 
calculated log(−log(1−π))  = αj −0.1257 
(gender). By exponentiating −0.1257, the hazard 
ratio, HR = e(-.1257) = 0.8819 was obtained, 
indicating that the hazard of being in a particular 
proficiency level rather than beyond for male 
students was 0.8819 times the hazard for female 
students, that is, the hazard for female students 
of stopping out in a particular category was 
1.134 times as great as that for male students.  
 
Proportional Odds Model with a Single 
Explanatory Variable 

Next, for comparison purposes, a 
proportional odds model analysis with the same 
single predictor, gender was conducted using the 
Stata ologit procedure. Figure 3 displays the 
Stata output for the one-predictor proportional 
odds model. 

LR χ2
(1) = 28.13, p < 0.001, indicating 

that the one-predictor PO model provided a 
better fit than the null model with no 
independent variables in predicting cumulative 
probabilities for mathematics proficiency level. 
The Pseudo R2 = 0.0006, which was as small as 
that in the continuation ratio model. 

The estimated logit regression 
coefficient, β = 0.1527, z = 5.30, p < 0.001. 
Because the PO model estimates the cumulative 
odds and cumulative probabilities of being at or 
below a particular category of the ordinal 
response outcome, logit [π(Y≤j | gender)] = 
αj −0.1527 (gender) was calculated. By 
exponentiating the logit, −0.1527, the odds ratio 
(OR), e(-.1527) = 0.8584 was obtained, indicating 
that the odds of being at or below a mathematics 
proficiency level were 0.8584 times as great for 
male students as they were for female students, 
thus, female students were more likely than male 
students to be at or below a particular 
proficiency level. 

The PO model can estimate J−1 
cumulative probabilities of being at or below a 
category of the ordinal response variable with j 
levels. When the ordinal response variable, 
mathematics proficiency, has six levels from 0 
to 5, the proportional odds model estimates five 
cumulative probabilities: P(Y ≤ 0), P(Y ≤ 1),  
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Figure 2: Stata Continuation Ratio Model with Clog-log Link: Single Predictor, Gender 
 
. ocratio Profmath BYGENDER, link (cloglog) cumulative 
 
Ordered cloglog Estimates                              Number of obs =   51353 
                                                       chi2(1)       =   51.38 
                                                       Prob > chi2   =  0.0000 
Log Likelihood = -23677.16                             Pseudo R2     =  0.0011 
 
------------------------------------------------------------------------------ 
    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    BYGENDER |   .1256615   .0175265     7.17   0.000     .0913103    .1600128 
------------------------------------------------------------------------------ 
 _cut1   |  -2.826367   .0356499             (Ancillary parameters) 
 _cut2   |  -.9834265    .022463 
 _cut3   |  -.2817271   .0217445 
 _cut4   |   .5087509   .0202158 
 _cut5   |   1.663668   .0274349 
------------------------------------------------------------------------------ 
 
. aic 
AIC Statistic =   .9221723 
 

 
 

. ocratio Profmath BYGENDER, link (cloglog) eform cumulative 
 
Ordered cloglog Estimates                              Number of obs =   51353 
                                                       chi2(1)       =   51.38 
                                                       Prob > chi2   =  0.0000 
Log Likelihood = -23677.16                             Pseudo R2     =  0.0011 
 
------------------------------------------------------------------------------ 
    Profmath | Haz. ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    BYGENDER |   1.133898   .0198732     7.17   0.000     1.095609    1.173526 
------------------------------------------------------------------------------ 
 _cut1   |  -2.826367   .0356499             (Ancillary parameters) 
 _cut2   |  -.9834265    .022463 
 _cut3   |  -.2817271   .0217445 
 _cut4   |   .5087509   .0202158 
 _cut5   |   1.663668   .0274349 
------------------------------------------------------------------------------ 
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P(Y ≤ 2), P(Y ≤ 3) and P(Y ≤ 4). The 
cumulative probabilities of being beyond a 
category can also be estimated because they are 
the complementary probabilities of the being at 
or below a particular category. 

Different from cumulative probabilities 
in the PO model, the logit CR model estimates 
conditional probabilities. In the gender-only CR 
model, it estimates conditional probabilities of 
being in category j, conditional on being at or 
beyond that category, that is, P (Y = j | Y ≥ j, 
gender). This CR model can also estimate the 
conditional probability of being beyond a 
category given that individual has achieved that 
particular category, because P (Y > j | Y ≥ j, 
gender) is the complementary form of P (Y = j | 
Y ≥ j, gender). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another difference between the CR 
model and the PO model is the change in sample 
size. In the gender-only PO model, the sample 
size was 15,325, however, the number of 
observations increased to 51,353 in the CR 
model due to different comparisons between 
proficiency levels, which included level 0 versus 
levels 1, 2, 3, 4 and 5; level 1 versus levels 2, 3, 
4 and 5; level 2 versus 3, 4 and 5; level 3 versus 
4 and 5; and level 4 versus level 5 (Table 2 
shows the comparisons between the six 
proficiency levels). Fitting the CR model using 
SAS required a restructured data set from the 
J−1concatenated sub-data sets from the 
comparisons between proficiency levels 
(Allison, 1999; O’Connell, 2006), though Stata 
can fit the CR model directly without the data 
restructuring procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Stata Proportional Odds Model: Single Predictor, Gender 
 

ologit Profmath BYGENDER 
 
Iteration 0:   log likelihood = -23702.845 
Iteration 1:   log likelihood = -23688.779 
Iteration 2:   log likelihood = -23688.778 
 
Ordered logistic regression                       Number of obs   =      15325
                                                  LR chi2(1)      =      28.13
                                                  Prob > chi2     =     0.0000
Log likelihood = -23688.778                       Pseudo R2       =     0.0006
 
------------------------------------------------------------------------------
    Profmath |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    BYGENDER |   .1527419   .0288057     5.30   0.000     .0962839       .2092
-------------+----------------------------------------------------------------
       /cut1 |  -2.785918   .0381689                     -2.860728   -2.711108
       /cut2 |  -.7893203   .0224898                     -.8333995   -.7452411
       /cut3 |   .1072826   .0214844                       .065174    .1493911
       /cut4 |   1.402499   .0246227                      1.354239    1.450758
       /cut5 |   4.981085    .095611                      4.793691    5.168479
------------------------------------------------------------------------------
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Continuation Ratio Model with 11 Explanatory 
Variables 

A CR model was fitted with 11 
explanatory variables; this was referred to as the 
full model. Table 3 displays the results for the 
fitting of the full model with all the predictors. 

The log likelihood ratio Chi-Square test, 
LR χ2

(11) = 3069.32, p < 0.001, indicating that 
the full model with 11 predictor provides a 
better fit than the null model with no 
independent variables in predicting conditional 
probability for mathematics proficiency. 
Although the likelihood ratio R2

L = 0.0777, was 
much larger than that of the gender-only model, 
it was still fairly small, suggesting that the 
relationship between the response variable, 
mathematics proficiency and 11 predictors, was 
small. AIC Goodness-of-fit statistics were used 
for model comparisons using the AIC command 
(Hilbe, 2009). Compared with the gender-only 
model (0.9224), the AIC statistic indicated that 
the full-model fit the data better (0.8483). 

Using the eform option, odds ratios 
could be obtained for all the predictors. Overall, 
these predictors, such as, being male students 
(gender), reviewing work from the previous day 
in math class (review), listening to teachers’ 
lectures (listen), doing problem solving in class 
(probsolv), using general calculators (usecalcu), 
using graphing calculators (usegraph), and 
explaining work orally (explain), were positively 
associated with the odds of being beyond a 
particular mathematics proficiency level. 
Copying notes from board in class (copynote), 
using books besides textbooks (usebooks), using 
computers (usecompu), and participating in 
student-lead discussions (participate) were less 
likely to advance to a higher proficiency level, 
that is, they were more likely to stop out in a 
particular proficiency level. 

In terms of odds ratios, male students 
had 1.359 times greater odds than female 
students to be beyond a given proficiency level 
(OR = 1.359), after controlling for the effects of 
other predictors in the full model. The odds of 
being beyond a particular proficiency level 
relative to being in that level were 1.166 times 
greater with one unit increase in the frequency 
of reviewing work from the previous day (OR = 
1.166). Similarly, listening to teachers’ lectures 
(OR = 1.192), doing problem solving in class 

(OR = 1.077), using general calculators (OR = 
1.179), using graphing calculators (OR = 1.173), 
and explaining work orally (OR =1.066) were 
more likely to be in a higher proficiency level. 
Conversely, for every one unit increase in 
copying notes from board in class, the odds of 
being beyond a particular category decreased by 
a factor of 0.96 (OR = 0.96). In other words, the 
more the students copied notes from board, the 
more likely they would stop out in a 
mathematics proficiency level. Similarly, the 
odds decreased by a factor of 0.785 (OR = 
0.785), for a unit increase in using textbooks 
besides the mathematics textbook, they 
decreased by a factor of 0.833 for a unit increase 
in using computers in math classes, and they 
decreased by a factor of 0.892 in participating in 
student-led discussions, holding the effects of 
the other variables constant. 

Table 3 also provides the results of the 
multiple regression (MR) analysis. Although the 
results of MR analysis looked similar to those 
estimated by the CR model, they were different 
in nature: the former estimates the linear effects 
the classroom practices on mathematics 
proficiency level, while the latter estimates the 
conditional probability of being in a proficiency 
level relative to being beyond, or its 
complement, the probability of advancing to a 
higher proficiency level rather than being in that 
particular level. The MR analysis could be used 
as a preliminary analysis before the CR model 
fitting. 
 
Comparison of Results of a Single Variable CR 
Logit Model Using Stata and SAS 

When fitting CR models with logit link, 
Stata and SAS use different procedures to 
restructure data, estimate parameters differently 
and produce different outputs. It is, therefore, 
important to understand how data sets are 
restructured and how to interpret these estimates. 
Before using the LOGISTIC procedure, SAS 
requires a process of data restructuring in order 
to estimate conditional probabilities of not 
advancing to a higher proficiency level. If there 
are j categories, J−1 sub-data sets are needed. 
Because the mathematics proficiency includes 
six levels, five sub-data sets are created. 
Corresponding to the category comparisons 
indicated in Table 2 (i.e., level 0 versus level 1  
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Table 2: Category Comparisons for the Continuation Odds Model with Six Mathematics 
Proficiency Levels (j = 0, 1, 2, …, 5). 

 

Proficiency 
Category 

Conditional Probability 
P(Y= j | Y≥j) 

Odds Ratio Probability Comparisons 

0 P(Y= 0 | Y≥ 0) Category 0 vs. all categories above 

1 P(Y= 1 | Y≥ 1) Category 1 vs. Categories 2 through 5 

2 P(Y= 2 | Y≥ 2) Category 2 vs. Categories 3 - 5 

3 P(Y= 3 | Y≥ 3) Category 3 vs. Categories 4 and 5 

4 P(Y= 4 | Y≥ 4) Category 4 vs. 5 

 
Table 3: Results of the Continuation Ratio Model and the OLS Regression Model (Full Model), n = 42,992 

 

Variable 
Continuation Ratio Model 

(logit) 
 OLS Model 

 b (se(b)) OR  

α1 −1.50 (0.08)  1.15 (0.06) 

α2 0.49 (0.08)   

α3 0.89 (0.08)   

α4 2.27 (0.08)   

α5 5.64 (0.13)   

Genderδ 0.31 (0.03) ** 1.36 0.21 (0.02) ** 

Review 0.15 (0.01) ** 1.17 0.12 (0.01) ** 

Listen 0.18 (0.01) ** 1.19 0.13 (0.01) ** 

Copynote −0.04 (0.01) ** 0.96 −0.02 (0.01) * 

Usebooks −0.24 (0.01) ** 0.79 −0.18 (0.01) ** 

Probsolv 0.07 (0.01) ** 1.08 0.05 (0.01) ** 

Usecalcu 0.16 (0.01)** 1.18 0.12 (0.01)** 

Usegraph 0.16 (0.01)** 1.17 0.11 (0.01)** 

Usecompu −0.18 (0.01)** 0.83 −0.14 (0.01)** 

Explain 0.06 (0.01)** 1.06 0.05 (0.01)** 

Participate −0.11 (0.01)** 0.89 −0.09 (0.01)** 

R2
 R2

L = 0.078  R2 = 0.221 

Model Fita χ2
11 = 3039.32 (p < 0.0001)  F(11, 12768) = 329.24** 

δ gender: male=1; a Likelihood ratio test; *Significant at p<0.05; ** p<0.01 
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and above; level 1 versus level 2, and above; 
level 2 versus 3, 4 and 5; level 3 versus 4 and 5; 
and level 4 versus level 5), observations for 
students who did not make to the given 
proficiency level were dropped out of the 
concatenated data sets. These sub-data sets were 
merged into one data set with each individual 
having as many observations as the number of 
proficiency levels to which she/her could 
advance. A new binary variable was created in 
each data set with being beyond a category 
coded as 1 and 0 otherwise (see O’Connell, 2006 
for details on data restructuring). Different from 
SAS, the Stata ocratio procedure does not 
require the above process because it restructures 
the data internally and produces the same sample 
size as that of the restructured data in SAS. 

Table 4 presents a comparison of the 
results of fitting the single-variable CR model 
with logit link using both Stata ocratio and SAS 
PROC LOGISTIC with the descending option. 
In Stata, the CR model estimates the odds of 
being a particular category versus beyond; while 
this model in SAS with the descending option 
estimates the odds of being beyond a given 
category relative to being in that category, which 
are the reciprocal. Using Stata and SAS 
descending, the estimated coefficients are the 
same in both magnitude and sign. Using the 
Stata CR model equation (8), logit [π(Y= j | Y ≥ 
j, gender)] = αj + (−β1X1), logit [π(Y= j | Y ≥ j, 
gender)] = αj - 0.1416 (gender) was calculated, 
and OR = e(-.1416) = 0.8680, indicating that male 
students were 0.8680 times the odds for female 
students of being in any category compared to 
being in higher categories. 

To estimate the conditional probability 
of being beyond a category of mathematics 
proficiency using Stata, it is necessary to negate 
the signs before the cutpoints and the estimated 
logits in the equation (8) to get the 
complementary probability of being in a 
category conditional on being beyond, i.e., logit 
[π(Y>j | Y≥j, gender)] = −αj + β1X1. 
Substituting the coefficient into the equation 
results in logit [π(Y>j | Y≥j, gender)] = −αj + 
0.1416 (gender). Exponentiating 0.1416, 
resulted in the OR of 1.152, which indicated that  
 

male students were 1.152 times more likely to be 
beyond a particular mathematics proficiency 
level than female students. Using equation (7) 
for the SAS CR logit model, it was found that 
logit [π(Y>j | Y≥j, gender)] = αj + 0.1416 
(gender). Exponentiating the logit coefficient 
0.1416 resulted in the same odds ratio, 1.152. 

The CR model using Stata also 
estimates the cutpoints based on different logit 
comparisons; these are useful to calculate the 
conditional probabilities. From the left to the 
right direction, five cutpoints were −2.791, 
−0.996, −0.774, 0.369, and 3.392. The results of 
the CR model using SAS descending as shown 
in Table 4 provide the estimated intercept, and 
dumcr0 through dumcr3, which are dummy 
coded variables for logit comparisons with the 
final comparison as the reference group. The 
intercept, −3.392, was the fifth cutpoint, α5 , 
because it was used to find the odds of being 
beyond the proficiency level 4 relative to being 
in that level. The first cutpoint = intercept + 
dumcr0 = −3.392 + 6.182 = 2.790. The second 
cutpoint = intercept + dumcr1 = −3.392 +4.388 
= 0.996. Using the same method resulted in the 
third, 0.773, and the fourth cutpoints, −0.369, 
respectively. Comparing the results of the 
cutpoints estimated by the CR model using Stata 
and SAS descending, it was found that they were 
the same in magnitude but had opposite signs. 
SAS does not provide direct estimates of these 
cutpoints, but they can be calculated from the 
estimated intercept and dummy variables. 

Although the omnibus likelihood ratio 
tests for the CR model using Stata and SAS 
indicated that the single-variable model had 
better fit than the null model, their degrees of 
freedom (df) were different because SAS 
estimated four extra parameters: an intercept and 
three dummy variables. Accordingly, the log 
likelihood R2

L = 0.254 estimated using SAS, was 
much larger than that using Stata, R2

L = .0008. 
Both CR models had the same sample size when 
SAS restructured the data (N = 51,353). Feature 
comparisons of fitting the CR model with the 
logit link are provided in Table 5. 
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Table 4: Results of the CR Logit Models with a Single Variable Using Stata and SAS: 
A Comparison, n = 51,353 (Restructured Data 

Model Estimates 
STATA 

SAS 
(Descending) 

P(Y= j | Y≥j) P(Y> j | Y≥j) 

Cutpoints (Stata)/ 
Intercept (SAS) 

α1 = −2.791 Intercept= −3.392 

α2 = −0.996 Dumcr0 = 6.182 

α3 = −0.774 Dumcr1 = 4.388 

α4 = 0.369 Dumcr2 = 4.165 

α5 = 3.392 Dumcr3 = 3.023 

BYGENDERδ 0.142 (0.023) ** 0.142 (0.023) ** 

LR R2
 R2

L = 0.0008 R2
L = 0.254 

Model Fita χ2
1 = 38.90 (p < 0.0001)** χ2

5 = 15040.557 (p < 0.0001)** 

δBYGENDER: male=1; aLikelihood ratio test; Results are incomparable due to data restructuring 
using SAS; *Significant at p<0.05; ** p<0.01 

 
Table 5: Feature Comparisons of the CR Model with Logit Link Using Stata and SAS 

 STATA SAS 

Model Specification 

Cutpoints/ thresholds √  

Intercept  √ 

Test hypotheses of logit coefficients √ √ 

Maximum Likelihood Estimates 

Odds Ratio √ √ 

z-statistic or Wald test for Parameter Estimate √  

Chi-square Statistic for Parameter Estimate  √ 

Confidence Interval for Parameter Estimate √  

Fit Statistics 

Log likelihood √ √ 

Goodness-of-fit Test √ √ 

Pseudo R-Square √ √ 

Association of Predicted Probabilities and Observed Responses  √ 
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Conclusion 
This article illustrated the use of continuation 
ratio models to estimate high school students’ 
mathematics proficiency from a set of predictors 
of classroom practices. Model fitting started 
from a single-variable CR with both logit and 
clog-log links and then progressed to a PO 
model, and finally a full CR logit model with 11 
predictor variables.  

Results from the CR models suggested 
that some classroom practices, such as reviewing 
work from the previous day in math class, 
listening to teachers’ lectures, doing problem 
solving in class, using general calculators, using 
graphing calculators and explaining work orally, 
had positive effects on the odds of being beyond 
a particular mathematics proficiency level 
relative to being in that level; while other 
classroom practices, such as, copying notes from 
board, using books besides textbooks, using 
computers in class and participating in student-
led discussions were associated with odds of 
stopping out in a particular proficiency level 
rather than advancing to a higher proficiency 
level.  

Comparing Stata and SAS, it was found 
that both packages used different formulations to 
estimate the CR model and the requirements for 
data restructuring were also different. Compared 
to SAS, Stata could estimate the CR model 
directly without data restructuring. Compared to 
Stata, SAS produced different model fit 
statistics, because it estimated more parameters 
in the CR model, such as dummy coding 
variables. The estimated logit coefficients were 
the same using both packages. However, 
regarding the CR cutpoints, SAS provided 
different results in the output from those 
estimated by Stata. Equivalent cutpoints in 
magnitude could be obtained after further 
calculations, but they were reversed in sign, 
because the conditional probabilities estimated 
by the CR model using Stata and SAS with the 
descending option were complementary. 

In educational research, the demand for 
ordinal response data analysis is increasing 
tremendously, it is therefore crucial for 
researchers to understand different statistical 
methods for analyzing ordinal response 
variables. Although comparisons have been 
made between statistical software packages, a 

preference of one package over the other is not 
suggested; this is left to researchers to choose. It 
is our hope that this article will help researchers 
become familiar with continuation ratio models 
and utilize them correctly in their research. 
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Introduction 
The Markov chain model is one of the most 
important and effective model classes for the 
assessment of probability for time dependent 
processes. A number of models have been 
proposed for analyzing repeated categorical and 
ordinal data. Muenz and Rubinstein (1985) 
employed a logistic regression model to analyze 
the transitional probabilities from one state to 
another. Azzalini (1994) introduced a Markov 
chain model that incorporated serial dependence 
and facilitated expression of covariate effects on 
marginal features. Raftery & Tavare (1994) 
suggested a Markov chain model of order higher 
than one that involves only one parameter for 
each extra lag variable: Heagerty and Zeger 
(2000) and Heagerty (2002) extended that work 
to a qth-order marginalized transition model 
(MTM). These models are based on binary data 
and do not address the more general issue of 
ordinal data that arises in many biomedical 
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studies. Islam and Chowdhury (2007) reviewed 
the first order model of Muenz and Rubinstem 
(1985) and developed a general procedure based 
on the Chapman-Kolmogorov equation for 
transition, reverse transition and repeated 
transition. Lee and Daniels (2007) extended 
Heagerty’s (2002) MTM to accommodate 
longitudinal ordinal data. Ching, Fung and Ng 
(2004) generalized the Raftery and Tavare 
(1994) model by allowing Q = {qij} to vary with 
different lags; they also developed an efficient 
method to estimate the model parameters. 
Ching, Ng and Fung (2007) extended their 2004 
results (Ching, Fung & Ng, 2004) and proposed 
a higher-order multivariate Markov model for 
multiple categorical data sequences.  

Azzalini’s (1994) Markov structure 
based regression model for ordinal data is 
extended here, and a second order model is 
proposed. Likelihood based inferences are 
possible because the model is fully specified so 
that resulting estimators are consistent and fully 
efficient. The proposed methods are applied to 
real data collected at successive time points from 
diabetic patients registered at Bangladesh 
Institute of Research and Rehabilitation in 
Diabetes, Endocrine and Metabolic disorders 
(BIRDEM) in Bangladesh. 
 
First Order Covariate Dependent Markov Model 

Consider a stationary process { }ijY  for 

individual i (i = 1, 2, …, n) at follow-up j (j = 1, 
2, …, n) representing past and present responses 
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where at time jt  the response 

jY k (k 0,1, 2)= = . If the transition models for 

which the conditional distribution of ijY  given 

the prior observations ij 1 ij rY ...Y− −  is considered 

the model of order r, then the first order Markov 
model can be expressed as:  
 

( ) ( )ij ij 1 ij i, j r i, j 1Pr Y Y Pr Y Y ,  ...,Y .− − −=  

 
For a three state Markov chain the 
corresponding transition probability matrix is 
given by 
 
















=

222120

121110

020100

ppp
ppp
ppp

P  

 
and the transition probabilities are: 
 

( )

( )

( )

0 it,0 it it 1

1 it ,1 it it 1

2 it,2 it it 1

P P P Y Y 0

P P P Y Y 1

P P P Y Y 2 .

=

−

−

= = =

= = =

= = =

 

 
Consider a vector of covariates for the ith 

person ij i1 ipX [1, X , ..., X ]′ =  and the 

corresponding vector of parameters 

k k0 k1 kp[ , ,..., ]′β = β β β . The transition 

probabilities can be expressed in terms of 
conditional probabilities (Hosmer & Lemeshow, 
1989) as follows: 
 

( )
j

j

ij i, j i, j 1 i, j 1

g X

m 1
g X

k 0

p P Y j Y j 1, X

e
,

e

− −

−

=

= = = −

=


 

 
where 

( )k

k0 k1 1 kp p

p(Y k / X)
g X In

p(Y 0 / X)

X ... X

 ==  = 
= β + β + + β

 

(1) 
 

Azzalini (1994) searched for a 
parameterization such that ( )tYE=θ , which is 

free from a parameter and that regulates serial 
dependence. The odds ratio Ψ  is a quantity that 
measures the dependence between successive 
observations. A technical reason in favor of this 
choice was provided by Fitzmaurice and Laird 
(1993) who stated that, when the association 
between observations is modeled using an odds 
ratio, the estimates of the mean are relatively 
insensitive to changes of the association 
parameter. Moreover, the range of feasible 
values for Ψ  is independent of the θ  value. 

The above three stated Markov models 
for non-stationary cases are parameterized as  
 

)1( 1011 −− −+= ttt PP θθθ              (2) 

and 
 

( )1012 1 −− −+= ttt PP θθθ              (3) 

 
where, P0 , P1 and P2 will vary with t and (t = 2, 
3, 4, 5, …, T). For t = 1, 

( ) ( )1 1 1Pr 1 .= = = θE Y Y and odds ratios: 

 

( )
( )00

11
1 1

1

PP
PP

−
−

=ψ                         (4) 

 

( )
( )00

22
2 1

1

PP
PP

−
−

=ψ                         (5) 

 
For a given value of β  the sequence of 

θ  can be determined by (1) and solving (1) and 
(3); (2) and (4) and after algebraic manipulation, 
results in, 
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( )( )
( )( )

( ) ( )
( ) ( )

t i

i t t 1

i t

;

i t t 1 t t 1

i t 1 t 1

, for 1

1 1

2 1 1 1
P ; 1,

1 1 2
j

2 1 1

−

− −

− −

θ ψ =
δ − + ψ − θ − θ
 ψ − − θ −= ψ ≠

− δ + ψ − θ + θ − θ θ+ ψ − θ − θ



(6) 
 
where 
 

( ) ( )
( ) ( )

2

t t 1 i2
i 2

t t 1 t t 1

1 1
2

−

− −

 θ − θ Ψ δ = + Ψ −  
− θ − θ + θ + θ  

and 
 

t 1

t t 1

t 1
y

t t 1 t t 1
t 1

t 1 t 1

1 ( 1)( )

2( 1)(1 )
P

1 ( 1)( 2 )
y

2( 1) (1 )

−

−

−

− −
−

− −

δ − + ψ − θ − θ 
 ψ − − θ =  − δ + ψ − θ + θ − θ θ +
 ψ − θ − θ 

 
for t > 1 and for t = 1, 1.= θ

ityp  

 
Second Order Covariate Dependent Markov 
Model 

A second order Markov model assumes 
that the current response variable is dependent 
on the history not only through the immediate 
previous response but also on the previous two 
responses, that is, 
 

( ) ( )2 1 1 2Pr , Pr , , ..., .− = − − −=it it ij it it it it nY Y Y Y Y Y Y
 

 
The transition probabilities for the three state 
second order Markov Chain can be written as: 
 

( )

( )

( )

0 ,0 1 2

1 ,1 1 2

2 ,2 1 2

Pr | 0, 0

Pr | 0, 1

Pr | 0, 2 .

− −

− −

− −

= = = =

= = = =

= = = =

it it it t

it it it t

it it it t

P p y y y

P p y y y

P p y y y

 

 

Let the parameterization of mean and odds ratio 
for second order can be extended as 
 

( )

,1 2 ,0 2

001 101 201 011 111
2

211 021 121 221

000 100 200 010 110
2

210 020 120 220

(1 )

1

− −

−

−

θ = θ + − θ

Ρ + Ρ + Ρ + Ρ + Ρ 
= θ +Ρ + Ρ + Ρ + Ρ 

Ρ + Ρ + Ρ + Ρ + Ρ 
+ − θ +Ρ + Ρ + Ρ + Ρ 

it it it it it

t

t

p p

(7) 
 

( )

,2 2 ,0 2

002 102 202 012 112
2

212 022 122 222

000 100 200 010 110
2

210 020 120 220

(1 )

1

− −

−

−

θ = θ + − θ

Ρ + Ρ + Ρ + Ρ + Ρ 
= θ +Ρ + Ρ + Ρ + Ρ 

Ρ + Ρ + Ρ + Ρ + Ρ 
+ − θ +Ρ + Ρ + Ρ + Ρ 

it it it it it

t

t

p p

(8) 
 

)1(

)1(
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1
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itit

Pp

Pp

−

−
=ψ                   (9) 

 

)1(|

)1(|

0,0,

2,2,
2

itit
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−
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and 
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2
y

2

2 2

2 2

1 1
P

2 1 1

1 1 2
                 

2 1 1

for 1,

−

−

−

− −

− −

δ − + Ψ − θ − θ
Ρ = =

Ψ − − θ

δ − + Ψ − θ + θ − θ θ
+

Ψ − θ − θ
Ψ ≠

i i t
j

i t

i i t t t

i t t

i

j

 
where 
 

( ) ( ) ( ) ( ){ }2 22
2 2 21 1 2− − −= + Ψ − θ −θ Ψ − θ −θ + θ +θi t t i t t t tδ  

 
and log 1λ=Ψi  and log 22 λ=Ψ . 

These relationships generate a process 
having the desired properties. Upon taking Pr(yt 
= 1) = θ1 and generating y2, …, yt via a non- 
homogeneous Markov chain with transition 
probabilities Pj, a sequence is obtained such that 
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E(yt) = θt for t = 1, 2, ..., t and the odds ratios for 
(yt-2, yt) are equal to ψ . 
 
Estimation 

The conditional likelihood function for a 
sample of n independent observations is: 
 

( ) ( )[ ] ( )[ ] ( )[ ][ ]∏
=

=
n

i

yyy iii xPxPxPL
1

210 210β  

(11) 
 
The log-likelihood function can be written as 
 

( )
( )
( )
( )

( )
( )( )

( )
( )

( )
( )

01

1
1

2

0

1
1

2

log 0

log 1

log 2

0
log

1 0

1
log

1 1

2
log

1 2

=

=

 
 

β = + 
 
+  
  Ρ =
   − Ρ =  
 

Ρ = = + − =
 
 Ρ =
+ − =  





n

t i
i

i

i

n

i
i

i

y P x

l y P x

y P x

y
y

y

y
y

P y

y
y

P y

 

(12) 
and 
 

( ) ( ) ( )

( ) ( )
( ) ( )( )

0 0 1 1 2 0
1

1 1 2 2

1 1 1 2 2log 1

=

=

= + +  

+ 
=  

− + +  





n

i i i
i

n i i

i i i

y g x y g x y g x

y g x y g x

y g x y g x

 

(13) 
 
where 

( )1210 =++ iii yyy ] 

and 
1

111log λψλψ e== ,  
 

2
221log λψλψ e== . 

 
In the case of repeated measures, 

because dependence between successive 

observations on the same individual must be 
taken into account, it is plausible that adjacent 
data are more strongly correlated than data that 
are separated by time and that different 
individuals behave independently on the log 
likelihood, this is given by: 
 

( ) ),(,
4

1

λβλβ 
=

=
T

tll  

 
where score vectors are: 
 


= = ∂

∂
=

∂
∂ T

t

n

i

itll
1 1 ββ

 

and 


= = ∂

∂
=

∂
∂ T

t

n

i

itll
1 1 λλ

 

 
and the variance of the estimate is approximated 
by 
 

( )
1

1

ˆ ˆ,

ˆ ˆ,

−

=

β =β λ = λ

                         

∂ ∂
∂β ∂ββ λ =
∂ ∂
∂λ ∂λ



T
t t

n

i t t

l l

V
l l

 

 
The quantity inside the square brackets 
approximates the Fisher Information for large n. 
Similarly, the model can be generalized to third, 
fourth and up to nth order. 
 

Methodology 
Test Procedure 

To test the null hypothesis that all slope 
coefficients are simultaneously equal to zero is 
the usual likelihood ratio statistic used and it 

follows the 2χ  distribution with degrees of 
freedom (df) equal to the number of explanatory 
variable(s). For an rth order Markov model the df 

for Chi square is ( )pmmr 1− , where m is the 
number of states. Therefore, to test the null 
hypothesis 0:0 =βH , the usual likelihood 

ratio test can be employed. 
 

( ) ( )[ ] ( )
2

10 lnln2 pmmrXLL
−

≈−− ββ  
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where the vectors ( )1−mmr  set a parameters 
for the rth order Markov model. 

For a first order Markov model with 
dichotomous transition outcomes and an 
independent variable, the likelihood ratio Chi 
square is 
 

( ) ( ) ( )1

2 2
0 63 3 1

2 ln ln
−

− β − β ≈χ ≈ χ   pp
L L  

 
where 
 

( ) ( )

( ) ( ){ }2 2
2

ln log ,

log 1 .
= −

−

β = β λ

= + − t t t

t

T

t y y
t

L l

y logit P P
 

 
Similarly, for a second order model with 

binary outcomes and p independent variables, 
the null hypothesis of the null parameter vector 
can be tested by using the test statistic: 
 

( ) ( ) ( )2

2 2
0 183 3 1

2 ln ln .
−

− β − β ≈ χ = χ   pp
L L  

 
The Wald test statistic for the null hypothesis 
Ho: βj = 0 can be written as the multivariate 
analogue of this test, which follows a Chi square 
distribution and is given by 
 

1

0 0

ˆˆ ˆ ˆW (β β ) Ι(β,o) (β β ) .
−′     = − −      i  

 
Data and Variables 

The proposed model is illustrated using 
Diabetes mellitus data. This data was collected 
by the Bangladesh Institute of Research and 
Rehabilitation in Diabetes, Endocrine and 
Metabolic disorders (BIRDEM). After 
registration, a patient visits the BIRDEM for 
regular check-ups and treatment. During 
registration each patient answers a detailed 
questionnaire and a comprehensive record sheet 
is maintained for each patient until death of the 
patient or loss of follow up over time. The 
patients experience impaired glucose tolerance 
(IGT) levels at that time of registration, so the 
number of follow-ups for each patient is not 
equal. For convenience of analysis 999 patients 
were randomly selected for this study that had 

four consecutive follow-up visits to BIRDEM. 
Consider a few selected variables such as, age 
(AGE), sex (SEX: coded as 0 = female, 1= 
male) and blood glucose level in each visit. 
Some clinical variables were not used in the 
study due to a high percentage of missing values 
over the four consecutive visits. In the record 
sheet, the age of first registration of the patient is 
logged. The age at different consecutive follow-
ups visits from date of registration of the 
patients was calculated using SPSS, thus making 
age a continuous variable that was used in the 
study directly to observe the time effect. 

The blood glucose level of each patient 
(two hours after 75 grams of glucose load) was 
assumed to be indicative of the patient’s diabetic 
health status and was therefore considered the 
dependent variable. Specifically, a person 
having blood glucose concentration level in 
venous plasma after 2 hours of 75 grams glucose 
load greater than or equal to 11.1 mmol/liter was 
considered a confirmed diabetic and coded as 2; 
a person with a blood glucose level between 4.4 
and 11.1 mmol/l was considered as border line 
diabetic and coded as 1; and a person with a 
blood glucose concentration level less than 4.4 
mmol/liter was considered a controlled diabetic 
and coded as 0. The response variable Yit of 
interest can be defined as: 
 

0,Controlled diabetic

      blood glucose level 4.4

1, Borderline diabetic

     4.4 blood glucose level 11.1

2,Confirmed diabetic

    blood glucose level 11.1


 <


=  ≤ <



≥

it

if

Y
if

if

 

 
where t = 1, 2, 3, 4. The response Yit to be 
generated by a ordinal Markov chain with values 
0, 1 and 2 and with transition probabilities pij = 

Pr ( )jYiY itit == −1  for j = 0, 1, 2 for the first 

order, and pijk= Pr ( )kyjyiy titit === −− 21 ,/  

for i, j, k = 0, 1, 2 for the second order. This 
study concentrates on modeling the mean value 

itθ  via a covariate, which can be obtained by 

using (1). 
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Results 
First Order Markov Model 

The dependence between successive 
observations ity  t = 1, 2, 3, 4 is measured by the 

odds ratio itΨ  which is defined in (4) and (5). A 

sequence of mean values of the process, such 
that, ( )itit yE=θ  for t = 1, 2, 3, 4 and odds ratio 

itΨ  for ( )( )itti yy 1−  could be obtained by taking 

( )1 11i iΡr y = = θ  and ( )2 22i iPr y = = θ , 

generating yi2, yi3, yi4 via a homogeneous 
Markov Chain with transition probabilities pt0, 
pt1 and pt2 obtained from (6). Because an 
objective is to determine the effects of covariates 
on the risk of confirmed and borderline 
diabetics, the marginal probabilities of 
confirmed and borderline diabetic for each given 
value of the covariates is the quantity of interest. 
The log-likelihood function for β  and λ  = 

log tΨ  for T = 4  time points can be described 
by (12) and also for repeated data. The model in 
(1) for the marginal probability of the event is 
fitted to the data. The parameters of the model 
were estimated using the maximum likelihood 
method of estimation and the Newton-Raphson 
iteration method. All the calculations were 
performed by programming in R. Table 1 
summarizes the results of fitting of the 1st order 
model. 

As shown in Table 1, the likelihood 
ratio test value, 6759.67, is highly significant, 
thus, it can be used to identify the effect of the 
covariates on the disease status of the patient. 
For model 0 → 1, age is a significant factor and 
has a positive association with the transition of 
the disease from controlled (0) to borderline (1); 
sex is not significant a factor although it has a 
positive association with the transition of 
disease, that is, female patients are less likely to 
transition from controlled to borderline diabetes 
compared to male patients. For model 0 →2, 
both covariates have a positive association with 
the transition of the disease from controlled to 
confirmed diabetes. The risk of transition from 
controlled (0) to confirmed (2) diabetes 
increases with the increase of age. Female 
patients are more likely to transition from 
borderline diabetes to confirmed diabetes 

compared to male patients, although the 
difference is not significant. 

Figure 1 illustrates the power 
comparison of the Wald test for testing the 
hypothesis 0:0 =iH β  versus alternative 

hypothesis 0:1 ≠iH β  for a first order model. 

Both graphs show that the power obtained from 
the 0 →2 model (controlled to confirmed) is 
higher than that of the 0 →1 (controlled to 
borderline) model for the parameters sex and 
age. 
 
Second Order Markov Model 

The dependence between successive 
observations Y it , t = 1, 2, 3, 4 is measured by 

the odds ratio itΨ  which is defined in (9) and 

(10). A sequence of mean values of the process, 
such that itθ = E ( )Yit  for t = 1, 2, 3, 4, and odds 

ratio itΨ  for ( )itti YY )2( −  could be obtained by 

taking ( )1 11it tPr Y θ= = =  and ( )2 22it tPr Y θ− = = . 

This will generate Y 3i ,     Y 4i  via a non-

homogeneous Markov Chain with transition 
probability 32 tt PandP  obtained in (11). The 

log-likelihood function for β  and λ  = log tΨ  
for T = 4 time points is described by (12). Model 
(13) for the marginal probability of the event 
was fitted to the data and the parameters of the 
Markov based second order model were 
estimated using the maximum likelihood and 
Newton Raphson Iteration methods; all 
calculations were performed with R. 

Table 2 summarizes the results of the 
fitted second order model and shows that the 
likelihood ratio for the overall model is 
6780349.580, which is significant and follows a 
Chi-square distribution with 5 df; thus, the null 
hypothesis may be rejected and significance for 
at least one of the covariates may be concluded. 
To reveal the significance of individual 
parameters, the Wald test was performed. For 
model 0 →1, age and sex show a positive 
association with the response variable. The risk 
of transition from controlled (0) to borderline (1) 
diabetes increases as age increases; both 
variables have a significant effect on the 
transition from controlled to borderline diabetes.  
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Table 1: Estimates and Associated Wald Test from First Order Markov Model 
 

Variable 
Estimated 

Coefficient 
Standard 

Error Wald 2χ  P-value Odds Ratio 

10 →  

Constant 0.3579 0.1906 3.5247 NA -- 

Sex 0.1944 0.01848 110.61 0.0000 1.21 

Age 0.1733 0.2079 0.69441 0.4046 1.19 

λ  -1.1965 0.00329 13204.62 0.0000 0.31 

20 →  

Constant 0.3662 0.22831 2.5731 NA -- 

Sex 0.1984 0.00651 927.688 0.0000 1.22 

Age 0.1013 0.12993 0.60825 0.4354 1.11 

λ  -2.1997 0.00145 22994.55 0.0000 0.11 

Likelihood Ratio = 6759.67; p-value = 0.000 
 
 
 

Figure 1: Power Curves for Covariates Sex and Age for First Order Markov Model 
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Table 2: Estimates and Associated Test from Second Order Markov Model 
 

Variable 
Estimated 

Coefficient 
Standard 

Error Wald 2χ  P-value Odds Ratio 

10 →  

Constant 0.3962 0.0498 63.31 NA -- 

Sex 0.4001 0.0187 456.71 0.0000 1.49 

Age 0.1864 0.0479 151194 0.0001 1.20 

λ  -0.9001 0.00007 1364683.0 0.0000 0.40 

20 →  

Constant 0.7127 0.0596 142.56 NA -- 

Sex 0.3695 0.0044 702.64 0.0000 1.44 

Age 0.0718 0.0394 3.3334 0.0067 1.07 

λ  -1.2001 0.0001 121102.9 0.0000 0.30 

Overall Chi square = 6780349.580; p-value = 0.0000 
 
 
 

Figure 2: Power Curves for Covariates Sex and Age for Second Order Markov Model 
 

-0.4 -0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Power of the Wald Test

Parameter values of the covariate sex 

P
ow

er
 fo

r s
ec

on
d 

or
de

r m
od

el
 

model01
model02

-0.2 -0.1 0.0 0.1 0.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Power of the Wald Test

Parameter values of the covariate age 

P
ow

er
 fo

r s
ec

on
d 

or
de

r m
od

el
 

model01
model02

 



HIGHER ORDER MARKOV BASED LOGISTIC MODEL FOR ORDINAL DATA 

536 
 

For model 0 →2, similar to 0 →1, age 
and sex show a positive association with the 
response variable and the association is 
significant with the subject’s transition both 
from controlled (0) to boarderline (1) and 
controlled (0) to confirmed (2) diabetes. The risk 
of transition in both cases increases with a unit 
increase in age level. Male patients are more 
likely to transition to borderline (1) and to 
confirmed (2) diabetes compared to female 
patients. Finally, it can be concluded that an 
increase in age increases the risk of transition of 
the disease to a higher stage. The value of 
likelihood ratio also has a noticeable increase 
when considering a higher order Markov model.  

Figure 2 shows the power curves of the 
Wald test for testing the hypothesis 0:0 =iH β  

against the alternative hypothesis 0:1 ≠iH β  

for a second order model. The charts illustrate 
that the power obtained from the 0 →2 model is 
higher than that of the 0 →1 model. 
 

Conclusion 
This study extended Azzalini’s (1994) model for 
ordinal data up to second order, which can then 
be generalized to any order in the same setting 
as Islam and Chowdhury (2007). The proposed 
model was applied to repeated measures of 
diabetes mellitus testing and it was observed that 
the variables age and sex show significant 
contributions to the diabetes status of a patient. 
Comparison of the estimates of first and second 
order and power curve are displayed for the 
Wald Chi square test, which shows a significant 
improvement in power for the 0 →2 transition 
model. Based on results of this study it is 
reasonable to conclude that, for analyzing the 
repeated measures data of diabetes mellitus, a 
higher order Markov model approach can be 
conveniently employed for any number of states 
and for any order with any number of covariates; 
this may prove valuable for health policy 
makers. Further research could be conducted 
using a continuous time Markov model for 
estimation and testing in other settings. 
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Appendix 

The derivatives 
β∂

∂l
 and 

λ∂
∂l  were computed 

using a chain rule, giving elements of score 
vectors of a first order model. The parameters β 
and λ were estimated by maximum likelihood 
method and using chain rule of differentiation. 
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Estimation and Hypothesis Testing in LAV Regression with Autocorrelated Errors: 
Is Correction for Autocorrelation Helpful? 
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Using the Prais-Winsten correction and adding a lagged variable provides improved estimates (smaller 
MSE) in least absolute value (LAV) regression when moderate to high levels of autocorrelation are 
present. When comparing empirical levels of significance for hypothesis tests, adding a lagged variable 
outperforms other approaches but has a relative high empirical level of significance. 
 
Key words: Monte Carlo simulation, serial correlation, Cochrane-Orcutt, Prais-Winsten, lagged variable. 
 
 

Introduction 
Least absolute value (LAV) regression is one 
technique often suggested for robust regression 
(see Dielman, 2005 for a review of LAV 
research). LAV estimates are less strongly 
affected by extreme observations compared to 
their least squares counterparts. The use of 
regression to model time-series data often results 
in the violation of the assumption of independent 
disturbances. The Prais-Winsten (PW) and 
Cochrane-Orcutt (CO) methods are two 
procedures used for correcting for 
autocorrelation in time-series regression models: 
Both methods transform the data using a 
differencing transformation to remove 
autocorrelation. LAV estimation applied to the 
transformed observations yields estimators that 
are asymptotically more efficient than LAV 
applied to the original data. The two methods are 
essentially equivalent except for the treatment of 
the first observation in the data set. The CO 
method omits the first observation; the PW 
method transforms and retains the observation. 
Asymptotically, no difference exists in the 
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efficiency of estimators produced by the two 
methods. In previous studies of small sample 
behavior, however, the PW procedure has been 
found to produce more efficient estimates; using 
the CO procedure results in estimators that can 
be much less efficient in small samples.  

Koenker and Bassett (1982) suggested 
the WALD, likelihood ratio (LR), and Lagrange 
multiplier (LM) tests for coefficient significance 
when using LAV estimation. Stangenhaus 
(1987), Dielman and Pfaffenberger (1990, 
1992), Dielman and Rose (1996), and Koenker 
(1987) have studied inference for regression 
using LAV estimation when disturbances are 
independent but not necessarily normal. 

Some research has considered LAV 
estimation when errors are not independent. 
Dielman and Rose (1994a, 1995b) examined the 
accuracy of estimation for model coefficients 
using LAV regression with autocorrelation 
correction, and Dielman and Rose (1994b) 
considered the accuracy of forecasts from LAV 
estimated regressions with autocorrelation 
correction. Dielman and Rose (1997) examined 
both estimation and inference in autocorrelated 
models.  

A simulation study was conducted to 
address questions of estimation and inference in 
the presence of serial correlation. The PW and 
CO corrections for autocorrelation are 
considered and compared to the performance of 
a model with a lagged dependent variable added. 
Estimation accuracy after correction for 
autocorrelation is compared using mean square 
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estimation error. The performance of hypothesis 
tests for the slope coefficient is assessed using 
observed significance levels, and alternative 
estimators of the scale parameter used in the test 
procedures are considered. In addition, 
performance in small samples is considered due 
to the practical importance of smaller sample 
sizes - particularly for applications in business 
and economics - and the inability to rely upon 
asymptotic results under such circumstances.  
 

Methodology 
A simple regression model is considered: 
 

yt = β0 + β1 xt + εt, 
with 

εt =ρεt-1 + ηt      
(1) 

 
for t = 1, 2, ..., T. In (1), yt and xt are the tth 
observations on the dependent and explanatory 
variables, respectively, and εt is a random 
disturbance for the tth observation and may be 
subject to autocorrelation. The ηt represents 
disturbance components that are assumed to be 
independent and identically distributed, although 
not necessarily normal. The parameters β0 and β1 
are unknown and must be estimated. The 
parameter ρ is the autocorrelation coefficient, 
with |ρ|<1. 
 

Using matrix notation, the model can be 
written as: 
 

εXβY +=                          (2) 
 
where 
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Two well-known procedures employed 
to correct for autocorrelation are the Prais-

Winsten (1954) and Cochrane-Orcutt (1949) 
procedures. Both transform the data using the 
autocorrelation coefficient, ρ, after which the 
transformed data are used in estimation. The 
procedures differ in their treatment of the first 
observation, (x1, y1). The PW transformation 
matrix is: 
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Pre-multiplying the model in (2) by MPW yields 
 

εMXβMYM PWPWPW +=          (5) 

or 

ηβXY ** +=                   (6) 
 
where Y* contains the transformed dependent 
variable values and X* is the matrix of 
transformed independent variable values, thus: 
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In (6), η is the vector of serially uncorrelated ηt 
errors. 

The CO transformation matrix is the 
(T−1) × 1 matrix obtained by removing the first 
row of the MPW transformation matrix. The use 
of the CO transformation means that (T−1) 
observations, rather than T, are used to estimate 
the model. In the CO transformation, the first 
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observation is omitted, whereas it is transformed 
and included in the estimation in the PW 
transformation. Asymptotically, the loss of this 
single observation is of minimal concern. 
However, for small samples, omitting the first 
observation may result in an estimator inferior to 
that obtained when the first observation is 
retained and transformed as shown in Maeshiro 
(1979), Park and Mitchell (1980) and Dielman 
and Pfaffenberger (1984) for least squares and in 
Dielman and Rose (1994a) for LAV. The two 
methods described are referred to as LAVPW 
and LAVCO when combined with LAV 
estimation. 

In practice, the value of ρ will be 
unknown. In this case it must be estimated from 
sample data. The estimator of ρ is as follows: 
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when PW correction is used, and 
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when CO correction is used, where tε̂  

represents LAV residuals from the uncorrected 
LAV regression. These are the estimators 
suggested by Park and Mitchell (1980) when 
using least squares estimation and are also 
typical of those that have been used in the LAV 
context. 

An alternative approach suggested by 
Mizon (1995) is to include a lagged dependent 
variable as an explanatory variable and view this 
as part of the data generating process (DGP). No 
other testing for autocorrelation or correction for 
autocorrelation would be used. The model 
suggested can be written 
 

yt = β0 + β1 xt + β2 yt-1 + ηt,             (11) 
for t = 2, ..., T (note that t = 1 is not used due to 
the inclusion of the lagged variable). In (11), yt 

and xt are the tth observations on the dependent 
and explanatory variables, respectively. The ηt 
represents disturbance components, which are 
assumed to be independent and identically 
distributed, although not necessarily normal. The 
parameters β0, β1 and β2 are unknown and must 
be estimated; however, in this application it is β1 
that is of interest. This method is referred to as 
LAVLAG. 

Referring to the model in (2), Bassett 
and Koenker (1978) showed that the LAV 
coefficient estimator has an asymptotic 
distribution that converges to 

))( ,N( -12 XXβ ′λ  where 
T

2λ
 is the asymptotic 

variance of the sample median for a sample of 
size T from the disturbance distribution. The 
scale parameter, λ, is defined as λ = 1/[2 f(m)], 
where f(m) is the probability density function 
(pdf) of the disturbance distribution evaluated at 
the median. These same results are obtained 
when X is replaced by X* for the model in (6) 
(Weiss, 1990). 

The test considered in this study is the 
basic test for slope coefficient significance, i.e., 
H0: β1 = 0.  

Three test statistics were examined: the 
WALD, the Likelihood Ratio (LR) and the 
Lagrange Multiplier (LM). The WALD, LR and 
LM statistics each have, asymptotically, a Chi-
square distribution with k2 degrees of freedom. 
(See Koenker and Bassett (1982) for further 
details on these test statistics.) The small sample 
properties of the test statistics are analytically 
intractable. Examination of the empirical level 
of significance of the test statistics in small 
samples was performed using a simulation. 

Both the WALD and LR test statistics 
require the estimation of the scale parameter λ, 
whereas the LM test statistic does not. One 
often-suggested estimator for λ can be computed 
as follows: 
 

2/
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where the e(.) are ordered residuals from the 
LAV-fitted model, and T ′ = T − r where r is the 
number of zero residuals. A value of α = 0.05 is 
typically suggested. This estimator is referred to 
as the SECI estimator. McKean and Schrader 
(1984) used Monte Carlo simulation to compare 
several methods of studentizing the sample 
median in which the SECI performed well and 
the value of α = 0.05 produced the best results. 

Sheather (1987) summarized the results 
of a Monte Carlo simulation to compare the 
SECI estimator and several other estimators for 
λ, including some that do not extend easily to 
the regression application. The conclusion was 
that the SECI estimator provides a good, quick 
point estimate of the standard error. Dielman 
and Pfaffenberger (1992) and Dielman and Rose 
(1996) also noted that this estimator performs 
reasonably well when used to compute the LR 
test statistic. 

In this study, four different options in 
constructing the estimator of λ were considered. 
as follows: 

1. SECI1: 1λ̂  uses z = 1.96 (the α = 0.05 value) 

and T′ = total number of observations (T). 
 

2. SECI2: 2λ̂  uses t0.025 with T degrees of 

freedom rather than the z value and T′ = 
total number of observations (T). 

 

3. SECI3: 3λ̂  uses z = 1.96 (the α = 0.05 

value) and T′ = T – r where r is the number 
of zero residuals. 

 

4. SECI4: 4λ̂  uses t0.025 with T – r degrees of 

freedom rather than the z value and T′  = T 
– r where r is the number of zero residuals. 

 
The notation W1, W2, W3 and W4 is 

used to indicate the WALD test using variance 
estimator 1, 2, 3 or 4, and L1, L2, L3 and L4 
indicate the LR test using variance estimator 1, 
2, 3 or 4. Most literature in this area 
recommends using the estimator SECI3. These 
options were considered in Dielman (2006) for 
models with independent errors and SECI1 and 
SECI2 were found to produce improved results 

over SECI3 in small samples. As noted, the LM 
test does not require the use of an estimate of λ. 

The model considered in this study is 
described in (1). The explanatory variable values 
were generated as follows: 
 
1. Autoregressive independent variable: xt = 

axt-1 + ut for t = 1, 2, ..., T with ut chosen 
from the N(0, 2) distribution. The values of 
a used were 0.0, 0.4 and 0.8 

 
2. Stochastic trend: xt = at+ ut for t = 1, 2, ..., T 

with the ut chosen from the N(0, 2) 
distribution. The values of a used were 0.4 
and 0.8. 

 
3. Linear time trend: xt = t for t = 1, 2, …., T 
 
 After being generated, the independent 
variable values are held fixed throughout the 
experiment. The disturbances, ηt, were chosen 
from one of the following disturbance 
distributions: 
 
1. Normal (0, 1); 

 
2. Laplace with mean 0 and variance 2; 
 
3. Contaminated normal with disturbances 

drawn from the standard normal distribution 
85% of the time, and a normal distribution 
with mean 0 and variance 25 the other 15% 
of the time; and 

 
4. Cauchy with median 0 and scale parameter 

1. 
 
Finally, after generating the ηt, the εt values are 

created as εt = ρεt-1 + ηt where 
2

0
0

1 ρ
ηε
−

=  and η0 

is an initial draw from the disturbance 
distribution. The values of ρ used were 0.0, 0.1, 
0.3, 0.5, 0.7 and 0.9. 

The disturbances were generated 
independently of the explanatory variables. All 
random numbers were generated using IMSL 
subroutines and the simulation was written in 
FORTRAN. 

The parameter β0 was set equal to zero 
(without loss of generality). To determine 
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empirical levels of significance, the parameter β1 
is set equal to zero, the test of H0: β1 = 0 is 
performed, and the number of rejections of the 
true hypothesis is recorded. 

The sample size used was T = 20. For 
each factor level combination in the 
experimental design, 10,000 Monte Carlo trials 
were used to evaluate estimates and assess levels 
of significance. (Each factor level combination 
is determined by the disturbance distribution, 
type of independent variable and the value of the 
autocorrelation coefficient for a total of 144 
factor level combinations). 
 

Results 
Estimation 

Table 1 shows mean square error (MSE) 
ratios for the estimates of the coefficient of the 
explanatory variable. The ratios are of the MSE 
of each estimation method to the MSE of the 
LAV estimator. MSE ratios less than one favor 
each of the estimator types over LAV; MSE 
ratios greater than one favor LAV. These are 
medians of the results over the four error 
distributions (Cauchy, Laplace, Contaminated 
Normal, Normal). Each of the six explanatory 
variable types is listed in a separate panel of the 
table. Panels A, B and C are for autoregressive 
explanatory variables with Lambda = 0.0, 0.4 
and 0.8 respectively. 

For example, in Panel A the explanatory 
variable is autoregressive with Lambda = 0.0 
(that is, a normally distributed explanatory 
variable). The MSE ratio of LAVPW to LAV 
when Rho = 0.0 is 1.01. Thus, LAV is favored 
over LAVPW (barely) in this instance. 
However, little is lost by performing the 
correction for autocorrelation. For the 
autoregressive independent variable, this is true 
in all cases when Rho = 0.0. Although LAV is 
never unfavorable, there is often little or no 
difference, so the option to always correct for 
autocorrelation results in little loss in estimator 
efficiency. When the explanatory variable is 
autoregressive, there is little difference in 
whether the LAVPW or LAVCO correction is 
used. The LAVLAG alternative results in a 
larger loss in efficiency when Rho is small, for 
example the MSE ratio of LAVLAG to LAV is 
1.05. As Rho increases, the relative efficiency of 
LAVLAG to LAV increases, but not as quickly 

as LAVPW or LAVCO when Lambda is 0.0 or 
0.4. However, when Rho is large and Lambda is 
0.8, the LAVLAG alternative results in greater 
efficiency than LAV and, in fact, greater 
efficiency than the other alternatives. 

When the independent variable follows 
a stochastic trend (Panels D and E) it is also true 
that little is lost by performing the correction for 
autocorrelation. In this case, however, LAVPW 
is slightly better than LAVCO. The LAVLAG 
alternative shows a larger loss in efficiency 
when Rho is small than in the autoregressive 
case. For example the MSE ratio of LAVLAG to 
LAV is 1.16 for Lambda = 0.4 and 1.07 for 
Lambda = 0.8. As Rho increases, the relative 
efficiency of LAVLAG to LAV increases faster 
than LAVPW and the LAVLAG alternative 
soon provides greater efficiency than LAV and 
greater efficiency than the other alternatives. 

The results for the fixed trend are 
similar to those for the stochastic trend, except 
that the LAVCO method fails miserably once 
Rho reaches 0.5. The LAVLAG MSE ratio is 1.2 
when Rho is zero, but this approach recovers 
quickly and is more efficient than any of the 
other approaches when Rho is 0.3 or greater. 
The primary conclusion from examination of 
MSEs is to avoid the LAVCO correction. A 
secondary conclusion is that LAVLAG 
compares favorably to LAVPW. 
 
Hypothesis Testing 

Empirical significance levels of the test 
for coefficient significance were examined. Due 
to the poor estimation performance of the 
LAVCO method, that procedure is eliminated 
from consideration. All tests were performed 
using a nominal level of 0.05, thus, it is 
desirable to have the resulting empirical level 
close to this value. As a result, for purposes of 
this analysis a test is considered well-behaved if 
the empirical level is 0.06 or less.  

Table 2 shows the number of times each 
method had an empirical significance level of 
0.06 or less. Tests with larger numbers in Table 
2 are viewed as more reliable because they do 
not overly reject true null hypotheses. The LR2, 
W2, LR1, LR3 and LM tests (in that order) had 
the highest total incidences of empirical levels 
that were at or below 0.06 over all the 
experimental design points. 
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Table 1: MSE Ratios for the Estimates of the Coefficient of the Explanatory Variable 
 

Panel A: Autoregressive with Lambda = 0.0 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.01 1.00 0.91 0.77 0.61 0.46 
LAVCO 1.00 0.98 0.90 0.76 0.60 0.46 

LAVLAG 1.05 1.04 0.99 0.86 0.70 0.51 
 

Panel B: Autoregressive with Lambda = 0.4 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.02 0.97 0.92 0.81 0.67 0.48 
LAVCO 1.01 0.99 0.91 0.81 0.66 0.48 

LAVLAG 1.05 1.02 0.92 0.82 0.68 0.50 
 

Panel C: Autoregressive with Lambda = 0.8 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.01 1.00 0.93 0.80 0.65 0.48 
LAVCO 1.01 1.00 0.92 0.81 0.66 0.48 

LAVLAG 1.07 1.01 0.87 0.71 0.53 0.37 
 

Panel D: Stochastic Trend with Lambda = 0.4 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.00 1.01 0.96 0.86 0.76 0.83 
LAVCO 1.05 1.04 1.01 0.92 0.79 0.84 

LAVLAG 1.16 1.07 0.90 0.70 0.51 0.35 
 

Panel E: Stochastic Trend with Lambda = 0.8 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.01 1.00 0.93 0.80 0.65 0.48 
LAVCO 1.01 1.00 0.92 0.81 0.66 0.48 

LAVLAG 1.07 1.01 0.87 0.71 0.53 0.37 
 

Panel F: Linear Trend 
 Rho 
 0.0 0.1 0.3 0.5 0.7 0.9 

LAVPW 1.01 1.01 0.99 0.94 0.88 0.88 
LAVCO 1.06 1.08 5.88 1351 1952 3455 

LAVLAG 1.20 1.10 0.92 0.73 0.56 0.45 
 

Notes: The ratios are of the MSE of each result to the MSE of the LAV estimator. MSE ratios 
less than one favor each of the estimator types over LAV; MSE ratios greater than one favor 
LAV. These are medians of the results over four error distributions. Each of the six 
explanatory variable types is listed in a separate panel of the table. 
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Considering estimation procedures, the 
LAVLAG procedure had the most instances 
overall, 668, at or below 0.06. Combinations of 
test and estimation procedure that have the 
largest number of empirical significance levels 
at or below 0.06 are (in order): LAVLAG/LR1, 
LAVLAG/LR3, LAVLAG/W1 and 
LAVLAG/LR2. Note that LAVPW does not 
perform particularly well. LAVPW is the 
autocorrelation correction procedure typically 
recommended in previous studies. Also, LR3 is 
the test used in many previous studies, but LR1 
or LR2 could be viewed as preferred in this 
study. This is consistent with the findings of 
Dielman (2006) in models without 
autocorrelation. 

Table 3 provides detail on specific 
empirical levels of significance for estimation 
method/test combinations for selected values of 
the autocorrelation coefficient, Rho (panels in 
the table correspond to Rho = 0.0, 0.1, 0.3, 0.5, 
0.7, 0.9). The values in the table represent the 
median percentage of rejections for estimation 
method/test combinations with median taken 
over the four error distributions and over the six 
explanatory variable types. In  the  first  panel of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the table, for example, empirical levels of 
significance for Rho = 0.0 are shown.  

The LAV method had empirical 
significance level of 0.06 or less for several of 
the tests: W2, LM, LR1, LR2, and LR3. The 
level for LAVPW was 0.06 or less for W2 and 
LR2. The LAVLAG method had level of 0.06 or 
less for W1, W3, LR1, LR2, LR3 and LR4.  

When autocorrelation is at a moderate 
level of 0.5, there are two combinations with 
empirical level of significance below 0.06: 
LAVLAG/LR1 and LAVLAG/LR3. All levels 
for LAV and LAVPW are above 0.06 and are 
similar for these two methods, even though 
LAVPW supposedly corrects for 
autocorrelation. 

When Rho is 0.9 (a high level of 
autocorrelation), there are no cases when the 
empirical level of significance is below 0.06. 
The closest values are 0.09 for LAVLAG/W1, 
LAVLAG/LR1 and LAVLAG/LR3. Note that 
the LAVPW method, one of the traditional 
corrections for autocorrelation, had very high 
empirical levels in a case when it might be 
expected to perform well. The levels are better 
than the uncorrected LAV, but still very high. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Number of Times Each Method Had Empirical Significance Level of 0.06 or Less 
 

Method 

Test 

Totals W1 W2 W3 W4 LM LR1 LR2 LR3 LR4 

LAV 21 85 17 9 67 56 84 46 24 409 

LAVPW 0 91 0 0 22 1 74 1 1 190 

LAVLAG 101 45 76 18 43 107 92 101 85 668 

Totals 122 221 93 27 132 164 250 148 110  
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Table 3: Empirical Levels of Significance (Proportion of Rejections) for Estimation Method/Test 
Combination for Selected Values of the Autocorrelation Coefficient, Rho 

 

Rho Method 

Test 

W1 W2 W3 W4 LM LR1 LR2 LR3 LR4 

0 

LAV 0.08 0.03 0.09 0.10 0.05 0.06 0.03 0.06 0.07 

LAVPW 0.10 0.05 0.12 0.13 0.08 0.10 0.06 0.10 0.11 

LAVLAG 0.05 0.07 0.06 0.08 0.12 0.05 0.05 0.05 0.06 
 

0.1 

LAV 0.09 0.04 0.10 0.12 0.07 0.07 0.04 0.08 0.09 

LAVPW 0.11 0.05 0.12 0.14 0.08 0.10 0.06 0.11 0.12 

LAVLAG 0.05 0.07 0.06 0.08 0.12 0.05 0.06 0.05 0.06 
 

0.3 

LAV 0.13 0.06 0.14 0.16 0.10 0.11 0.07 0.12 0.13 

LAVPW 0.14 0.06 0.15 0.17 0.09 0.12 0.08 0.13 0.14 

LAVLAG 0.06 0.07 0.06 0.08 0.13 0.05 0.06 0.06 0.07 
 

0.5 

LAV 0.17 0.10 0.19 0.21 0.15 0.17 0.12 0.17 0.19 

LAVPW 0.16 0.09 0.17 0.20 0.11 0.15 0.10 0.15 0.17 

LAVLAG 0.07 0.08 0.07 0.09 0.14 0.06 0.07 0.06 0.07 
 

0.7 

LAV 0.25 0.16 0.27 0.30 0.22 0.25 0.20 0.26 0.28 

LAVPW 0.19 0.11 0.20 0.23 0.13 0.18 0.13 0.19 0.20 

LAVLAG 0.08 0.09 0.08 0.10 0.15 0.07 0.08 0.08 0.09 
 

0.9 

LAV 0.35 0.26 0.37 0.40 0.32 0.37 0.31 0.38 0.40 

LAVPW 0.25 0.17 0.26 0.29 0.15 0.25 0.20 0.26 0.27 

LAVLAG 0.09 0.11 0.10 0.12 0.18 0.09 0.10 0.09 0.11 
 

Note: These are medians of the results over the four error distributions and over the six 
explanatory variable types. 
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Conclusion 
The following conclusions are derived from the 
simulation study. Regarding estimation: 
 
1. The LAVCO correction should be avoided 

due to possible extreme loss in efficiency. 
 
2. The option to always correct for 

autocorrelation using the LAVPW 
correction never results in much efficiency 
loss.  

 
3. Adding a lagged dependent variable rather 

than using the LAVPW correction is a 
viable option. The LAVLAG alternative 
typically results in a larger loss in efficiency 
than LAVPW when there is little 
autocorrelation, but an increase in efficiency 
when autocorrelation is more severe. 

 
For hypothesis testing, the LAVLAG 

method had empirical levels of significance that 
were acceptable more often than LAVPW so is 
preferred in this sense. Both LAVPW and 
LAVLAG provide better protection against type 
one errors than LAV. However, the empirical 
levels of both are still high in some cases.  

When estimating a regression with 
independent disturbances, Dielman and Rose 
(1995a, 2002) compared bootstrap tests to 
traditional tests in a LAV regression with 
independent errors and found that the bootstrap 
tests were generally competitive with LR tests 
that also perform well when disturbances are 
independent. It would be prudent to examine a 
bootstrap test in the context of autocorrelated 
errors as well; however, care must be taken in 
designing the bootstrap resampling process to 
preserve the autocorrelation structure. 
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A Comparison of Factor Rotation Methods for Dichotomous Data 
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Exploratory factor analysis (EFA) is frequently used in the social sciences and is a common component in 
many validity studies. A core aspect of EFA is the determination of which observed indicator variables 
are associated with which latent factors through the use of factor loadings. Loadings are initially extracted 
using an algorithm, such as maximum likelihood or weighted least squares, and then transformed - or 
rotated - to make them more interpretable. There are a number of rotational techniques available to the 
researcher making use of EFA. Prior work has discussed the advantages of a number of these criteria from 
a theoretical perspective, but few previous studies compare their performance across a broad range of 
conditions. This simulation study compared eight factor rotation criteria in terms of how well they were 
able to group dichotomous indicator variables correctly on the same factor, order the indicators by the 
magnitude of the factor loadings (identifying those indicators that were most strongly associated with the 
factors) and estimate the inter-factor correlations. Results reveal a mixed pattern of performance among 
the various rotations with the orthogonal Equamax consistently near the top in terms of correctly grouping 
and ordering indicator variables, and the orthogonal Facparsim performing well with more observed 
indicators. Advice regarding possible rotations to use for researchers conducting EFA with dichotomous 
indicators is provided. 
 
Key words: Factor rotation, dichotomous data, exploratory factor analysis, EFA. 
 
 

Introduction 
Exploratory Factor Analysis (EFA) of items on 
an instrument is a tool employed by 
psychometricians in the investigation of validity 
evidence for cognitive and affective measures 
(Zumbo, 2007; McDonald, 1999). In 
conjunction with subject matter expertise 
regarding the purpose of the instrument and its 
assumed structure, EFA can be used to identify 
the latent constructs underlying the observed 
items (McLeod, Swygert & Thissen, 2001). 
When items are found to group in conceptually 
meaningful ways based on content, instrument 
developers can conclude that the traits the scale 
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is intended to measure are actually being 
represented. Conversely, when individual items 
are found to load on multiple factors - or to 
group in ways that do not conform to their 
content or intent - developers may target them 
for revision or removal from the instrument 
(Sass & Schmitt, 2010). Given its role in validity 
assessment, psychometricians must have a full 
understanding regarding the performance of 
EFA in the context of item level data under a 
variety of conditions. The objective of this 
simulation study was to investigate one 
important aspect of the EFA analysis process: 
factor rotation. A variety of factor rotation 
methods were compared with respect to how 
well they recovered the underlying latent 
structure for a set of dichotomous indicators like 
those that might comprise a psychological or 
educational scale. (Readers interested in learning 
more about the basic factor analysis model are 
encouraged to read one of several excellent 
references including: Gorsuch, 1983; Thompson, 
2004; McLeod, Swygert & Thissen, 2001.) 
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Factor Analysis of Dichotomous Data 
The original EFA model was based on 

the presumption that observed indicators were 
continuous variables, calling into question its 
applicability for dichotomous data such as that 
from item responses (Gorsuch, 1983). Early 
analyses applying the standard linear EFA 
model to dichotomous item response data 
consistently identified a factor reflecting item 
difficulty, having nothing to do with substantive 
dimensions related to item content (Hattie, 1985; 
Guilford, 1941; Spearman, 1927). Furthermore, 
the use of linear factor analysis with 
dichotomous items was found to produce 
distorted factor loading estimates for very 
difficult and very easy items (Hattie, 1985). 

In response to these problems, 
McDonald introduced nonlinear factor analysis 
based on the normal ogive (McDonald, 1967; 
1962). In the case of dichotomous variables such 
as item responses, this factor model takes the 
form 
 

0 1 21{ 1| } ( ...  )j j j jmP U Nθ β β θ β θ β θ= = + + + +  

(1) 
 
where Uj is the response to item with a 1 
indicating correct, βj0 is the intercept for item j 
and βj1 is the factor loading for item j with latent 
trait m. Parameter estimation in this Normal 
Ogive Harmonic Analysis Robust Method 
(NOHARM) is conducted using unweighted 
least squares (ULS), allowing for analysis of 
large sets of items exhibiting high 
dimensionality (McDonald, 1981; 1967). This 
model was implemented in the NOHARM 
software package (Fraser & McDonald, 1988) 
and features both Varimax and Promax 
rotations. 

Bock and Aitkin (1981) developed an 
alternative model for the factor analysis of 
dichotomous item response data that takes the 
form: 
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where ( ) ( )i j j i jz a bιθ θ= − , ja  is the slope for 

item j, jb  is the threshold for item j, and jιθ  is 

the latent trait for subject i on item j. In this 
conceptualization of the model, aj corresponds 
to item discrimination and bj corresponds to item 
difficulty, in the context of item response theory. 
This full information factor model underlies the 
TESTFACT software (Bock, et al., 2003) and is 
estimated using marginal maximum likelihood 
(MML), in contrast to the ULS used with 
NOHARM. Researchers comparing these 
approaches have found that ULS tends to 
provide more accurate parameter estimation for 
a smaller number of items, although MML is 
generally more accurate for more items (Gosz & 
Walker, 2002). As with NOHARM, TESTFACT 
allows for either VARIMAX or PROMAX 
rotations. 

Christofferson (1975) also introduced a 
factor model for item response data based on the 
normal ogive model, as was McDonald’s 
approach. The Christofferson model is expressed 
as 

( )
2

2
1

1
2

i

t

i
z

P u e dt
π

∞
−

= =                (3) 

 
where zi is the threshold for item i. This model 
was expanded upon by Muthén (1978) and has 
been shown to be equivalent to McDonald’s 
model (McDonald, 1997). 

Another approach to factor analysis for 
dichotomous data, such as item responses, is 
based on robust weighted least squares (RWLS). 
Weighted least squares (WLS) estimation has 
been shown to perform poorly for categorical 
variables in the context of factor analysis with 
small to moderate sample sizes (Flora & Curran, 
2004). Muthén, du Toit and Spisic (1997) and 
Muthén (1993) extended the WLS approach in 
the form of RWLS, which does not require the 
inversion of the weight matrix used in the 
standard WLS approach, leading to very stable 
parameter estimation for samples as small as 100 
with dichotomous indicator variables (Flora & 
Curran, 2004). The RWLS approach can also be 
used in the context of EFA with the MPLus 
software package (Muthén & Muthén, 2007) as 
was done herein. 
 
Factor Rotation

 
The estimation of factor loadings in 

EFA typically occurs in two stages, the first of 
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which - factor extraction - involves the initial 
estimation of loadings based on the covariance 
matrix for the indicator variables. The second 
step in an EFA - factor rotation - involves the 
transformation of the initial factor loadings in 
order to make them more interpretable in terms 
of (ideally) clearly associating an indicator 
variable with a single factor (Gorsuch, 1983). 
Although a large number of rotation algorithms 
have been described in the literature, these 
criteria all have the common goal of reducing a 
complexity function, f(Λ), so that the loadings 
approximate a simple structure and are thus 
more interpretable in practice. 

The notion of simple structure has been 
discussed extensively in the factor analysis 
literature, and though there is a common sense 
as to its meaning, there is no agreement 
regarding exact details. Thurstone (1947) first 
described simple structure as occurring when 
each row in the factor loading matrix has at least 
one zero, where rows represent indicator 
variables and columns represent factors. He also 
included 4 other rules that were initially 
intended to yield over-determination and 
stability of the factor loading matrix, but which 
were subsequently used by other researchers to 
define simple structure for methods of rotation 
(Browne, 2001). Subsequent to Thurstone’s 
work, others varying definitions of simple 
structure have been provided. For example, 
Jennrich (2007) defined perfect simple structure 
as occurring when each indicator has only one 
nonzero factor loading and compared it to 
Thurstone simple structure in which there are a 
fair number of zeros in the factor loading matrix, 
but not as many as in perfect simple structure. 
Conversely, Browne (2001) defined the 
complexity of a factor pattern as the number of 
nonzero elements in the rows of the loading 
matrix. These many varying definitions of 
simple structure have led to the development of 
a number of rotational criteria with the 
overarching goal of obtaining the most 
interpretable solution possible for a set of data 
(Asparouhov & Muthén, 2009).  

Factor rotations are broadly classified as 
either: (1) orthogonal, in which the factors are 
constrained to be uncorrelated, or (2) oblique, in 
which this constraint is relaxed. Within each of 
these classes, several options are available. 

Browne (2001) provides an excellent discussion 
of a number of these rotational criteria along 
with a history of their development and 
concluded that, when the factor pattern in the 
population conformed to what is termed above 
as pure simple structure, most of the rotation 
methods reviewed produced acceptable 
solutions. However, when there was greater 
complexity in the factor pattern, the rotations did 
not all perform equally well and - in some cases 
- the majority of them produced unacceptable 
results (Browne, 2001). For this reason, he 
argued for the need of educated human judgment 
in the selection of the best factor rotation 
solution for a given problem. In a similar vein, 
Yates (1987) stated that some rotations are 
designed to find a perfect simple structure 
solution in all cases, even when this may not be 
appropriate for the data at hand.  

Several excellent discussions of these 
rotation criteria are available in the literature, 
including two recently published manuscripts 
which provide detailed descriptions for 
interested readers (Sass & Schmitt, 2010; 
Asparouhov & Muthén, 2009). The rotations 
included in this study are summarized in Table 
1. Many of these methods are readily available 
in common statistical software packages such as 
MPlus (Muthén & Muthén, 2007), which is 
featured in this study, as well as SAS and SPSS. 
Perhaps the most popular method in applied 
practice is the orthogonal Varimax rotation 
(Kaiser, 1958), which is a member of a larger 
group of criteria known collectively as the 
Orthomax family of rotations. The goal in 
Varimax rotation is to create simple structure by 
maximizing differences among loadings within 
factors across variables. Other notable Orthomax 
rotations include Quartimax, Equamax, 
Parsimax and Factor Parsimony. Promax is a 
two-stage oblique Procrustean rotation in which 
loadings are first obtained from the orthogonal 
Varimax rotation and then transformed based 
upon a target matrix of loadings raised to a 
particular power (typically the 4th power), after 
which a transformation matrix is obtained using 
least squares (Hendrickson & White, 1964). 
Other Procrustean rotations include Promaj 
(Trendafilov, 1994) and Promin (Lorenzo-Seva, 
1999). Another group of factor rotations is the 
Crawford-Ferguson  (CF)  family  (Crawford &  
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Table 1: Summary of Studied Rotation Methods* 
 

Rotation 
Criteria 

Definition Comments 

Varimax ( ) ( ) ( )
2

2 22 2 2

1 1

/
p p

ij ij
i i

f p pλ λ
= =

  
Λ = −  

   
   Spreads variance 

across factors 

Quartimin ( ) 2 2

1 1

p m m

ij il
i j l j

f λ λ
= = ≠

Λ =  

Designed to minimize 
complexity of loadings 

across indicator 
variables. 

Quartimax ( ) 4 2 2

1 1 1 1

p pm m m

ij ij il
i j i j l j

f λ λ λ
= = = = ≠

Λ = +   Spreads variance 
across indicators 

Equamax 
2 2 2 2

1 1 1 1

1
2 2

p p pm m m

ij il ij lj
i j l j i i l j

m m
p p

λ λ λ λ
= = ≠ = = ≠

 
− + 

 
   Combines Quartimax 

and Varimax criteria 

Parsimax ( ) 2 2 2 2

1 1 1 1

1 1
1

2 2

p p pm m m

ij il ij il
i j l j i i l j

m mf
p m p m

λ λ λ λ
= = ≠ = = ≠

  − −Λ = − +   + − + −   
   

Equal weight is given 
to factor and indicator 

complexity. 

Geomin ( ) ( )
1

2

1 1

p m m

ij
i j

f λ
= =

 
Λ = + ∈ 

 
 ∏  

Accommodates factor 
complexity while still 
providing interpretable 

solution. 

Promax 
Raise loadings from Varimax to some power (e.g., 4) and rotate the 

resulting matrix allowing for correlated factors. 

Based on Varimax 
rotation, but allows for 

correlated factors. 

Facparsim ( ) 2 2

1 1

p pm

ij il
i i l j

f λ λ
= = ≠

Λ =  
Minimizes loading 
complexity across 

factors. 

*p=Number of indicators, m=Number of factors, λ=Extracted factor loading 
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Ferguson, 1970). This criterion accounts for 
complexity across both the indicator variables 
and the factors. Members of the CF family differ 
in terms of a parameter, k, ranging between 0 
and 1, where larger values of k place greater 
weight on minimizing factor complexity, 
whereas lower values emphasize the 
minimization of indicator variable complexity 
(Crawford & Ferguson, 1970). Other rotations 
that have been discussed widely in the literature 
are oblique Quartimin (Carroll, 1957), which 
seeks to minimize complexity only within the 
indicator variables, and Geomin (Yates, 1987) 
which also was designed to minimize variable 
complexity, but which allows for more such 
complexity than does Quartimin. There are a 
number of other rotation criteria extant in the 
literature. However, given that the current study 
is focused on comparing methods that are 
available to practitioners in commonly available 
software, they will not be discussed here. The 
interested reader is invited to read Mulaik (2010) 
and Browne (2001) for excellent descriptions of 
these alternative methods of rotation. 
 
Prior Research on Factor Rotations 

As noted, a large number of rotational 
criteria are available to a researcher interested in 
using EFA. Some of these, such as Varimax and 
Promax, are well known and frequently used, 
while others may be less well known but offer 
statistical advantages over the more commonly 
used approaches (Asparouhov & Muthén, 2009). 
Despite the abundance of available rotational 
methods, a great deal of empirical research has 
not been conducted regarding which might be 
best in a given research context (Sass & Schmitt, 
2010). In addition, virtually none of the prior 
work examining the performance of these 
various rotation methods has been conducted 
with dichotomous indicator variables (the focus 
of this study). Therefore, earlier work using 
continuous indicators provides the only extant 
evidence regarding the comparative behavior of 
factor rotation methods, all of which can be 
applied to both EFA with continuous or 
dichotomous indicators. Thus, although they did 
not utilize dichotomous indicators, earlier 
studies provide researchers with some insights 
into what might be expected with regard to the 
performance of these rotation methods in 

general. Nevertheless, it is not clear to what 
extent earlier research with continuous 
indicators may be applicable. Therefore, this 
article builds upon this earlier research in an 
attempt to extend these results based on 
continuous variables to the case of dichotomous 
indicators. 

One recent Monte Carlo study (Sass & 
Schmitt, 2010) compared the ability of four 
rotational methods in terms of their abilities to 
reproduce the population factor loadings used to 
generate the data. This study involved 30 
standard normally distributed observed 
indicators with 2 factors, and 4 different types of 
factor structure including perfect simple, 
approximate simple, complex and general (a 
single common factor) structures; note that the 
variables used in this study were continuous and 
not categorical. Sass and Schmidt focused on the 
performance of these rotation methods for 
normally distributed indicator variables; 
however, their study is relevant to this research 
with dichotomous indicators in that it is one of 
the few to systematically compare multiple 
rotational criteria. Furthermore, several of the 
rotations considered by Sass and Schmidt are 
also included in this study. Therefore, although 
their results with continuous, normally 
distributed variables may not be directly 
applicable to situations involving dichotomous 
indicators, their study does provide some 
potential insights into the performance of the 
rotational criteria that may in turn inform this 
research. 

Sass and Schmidt generated a sample of 
300, with correlations between the factors (0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) and used four 
oblique single stage rotational criteria, including 
Quartimin, CF-Equamax, CF-Facparsim and 
Geomin. They found that in the perfect simple 
structure condition all of the methods performed 
equally well, echoing Browne (2001). In the 
more complex cases, however, CF-Equamax and 
CF-Facparsim demonstrated somewhat less bias 
in factor loading estimates than did the other 
rotations. These authors concluded that 
researchers must be careful not to think of a 
particular rotational solution as inherently right 
or wrong, given that model fit does not change 
based on rotation. Echoing Browne (2001), Sass 
and Schmitt argued that the selection of the best 
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rotation must be made by the researcher using 
informed judgment, and cannot be done 
deterministically based solely on statistical 
results. 

A similar finding was reported by 
Asparouhov & Muthén (2009), who stated that 
based on their own simulated comparisons of the 
Geomin and Quartimin rotation criteria with 
loading bias as the primary outcome variable, 
the researcher in the end is responsible for 
determining what constitutes a simple and 
interpretable solution. Consistent with Sass and 
Schmitt (2010), they found that for simple factor 
patterns the rotation criteria performed similarly, 
but for more complex patterns the results across 
rotational methods (and even for the same 
method using different settings) might differ 
substantially. As noted, although the previous 
simulation research comparing factor rotation 
performance was focused on continuous 
indicator variables, it remains relevant for this 
study in that it provides the only published 
evidence regarding the behavior of these rotation 
criteria, all of which can be used with 
dichotomous indicators.  

The goal of this simulation study was to 
extend upon this earlier work by comparing the 
performance of several methods of factor 
rotation with dichotomous, rather than normally 
distributed continuous, indicator variables, and 
by including several more rotation criteria, 
including the very popular Varimax and Promax 
methods as well as others that have been shown 
to be effective previously. Furthermore, the 
current study extends upon these earlier efforts 
by including a broader range of conditions with 
respect to number of indicator variables, sample 
sizes and number of factors. Finally, the focus of 
this study in terms of outcomes is different than 
that of the previously mentioned research. 
 

Methodology 
A Monte Carlo simulation study was conducted 
to compare the performance of several methods 
of factor rotation in four areas: (1) proportion of 
correctly grouped indicator variables, (2) 
proportion of incorrectly grouped indicator 
variables, (3) proportion of indicator variables 
correctly ordered based on their population 
factor loading values, and (4) for oblique 
rotations, bias in the estimates of inter-factor 

correlations. Outcome 1 was the proportion of 
all item pairs that should have been grouped 
together that actually were, and outcome 2 was 
the proportion of all item pairs that should have 
been kept separate that actually were. Outcome 
3 was the proportion of cases in which the item 
with the larger factor loading in the population 
also had the larger loading in the sample. 
Outcome 4 was the degree of accuracy of the 
inter-factor correlation estimate, which was 
calculated as ro−rp, where ro = sample estimate 
of inter-factor correlation between two factors 
and rp = population inter-factor correlation used 
in data simulation. In addition, the standardized 
bias of the correlation estimates was also 
calculated as the bias defined previously divided 
by the standard deviation of the correlation 
estimates.  

These outcomes were selected because 
they reflect issues that applied researchers might 
be interested in; that is, how accurately are the 
factors defined by appropriately grouped 
variables, how well ordered are the indicators in 
terms of the magnitude of their relationships to 
the factors and how well estimated are the 
correlations among the factors. Although all of 
these outcomes may be important in specific 
contexts, one could argue that the ability to 
accurately identify the factor structure by 
correctly grouping the items together may be the 
most crucial. Given that validity assessment is 
typically based on the extent to which the 
empirically identified factors reflect what would 
be expected for the constructs in question based 
on substantive content of the items, the accuracy 
of an EFA solution from a sample to reproduce 
the population factor structure would seem to be 
paramount. However, in certain circumstances 
each of these outcomes would be important to 
researchers using EFA. 

For each combination of the simulation 
conditions, 1,000 replications were generated 
using MPlus, version 5.1 (Muthén & Muthén, 
2007) and all study conditions were completely 
crossed with one another. Dichotomous 
indicators were generated in MPlus using 
threshold values of 0.25 and were held constant 
across the observed variables. The relationship 
between the threshold (τ) value and the 
probability (Pi) of a respondent endorsing a 
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dichotomous item is 
1

.
1iP

e−τ=
+

 The threshold 

value of 0.25 corresponds to a probability of 
endorsing an item of 0.56 and was selected 
because it has been used in other simulation 
research involving factor analysis of 
dichotomous data (French & Finch, 2006; 
Meade & Lautenschlager, 2004). 

For each replication, exploratory factor 
analysis with Robust Weighted Least Squares 
(WLSMV) extraction was conducted using the 
MPlus software because it has been supported 
for use with categorical data in prior research 
(e.g., Muthén & Muthén, 2007; Flora & Curran, 
2004). In conducting EFA with dichotomous 
data, MPlus first calculates the tetrachoric 
correlation matrix among the variables and then 
uses it to estimate the factor analysis parameters 
(factor loadings, inter-factor correlations). The 
commands to run the analysis requested the 
extraction of the correct number of factors (2 or 
4) for a given replication but because the 
analysis was EFA, individual indicators were not 
linked to specific factors as they would have 
been in a confirmatory factor analysis. For 
example, when the data generated were from a 2 
factor condition, the MPlus commands to run the 
EFA on the sample requested the extraction of 2 
factors, but the individual indicators were not 
linked to a given factor. 

Data were generated for either 2 or 4 
factors in the population, and for each factor 
there were either 6 or 12 observed indicator 
variables, leading to the following combinations: 
2 factors with 6 indicators each, 2 factors with 
12 indicators each, 4 factors with 6 indicators 
each and 4 factors with 12 indicators each. Four 
inter-factor correlation conditions were 
simulated: 0.1, 0.3, 0.5 and 0.7. All pairs of 
factors were correlated at the same level for a 
given combination of study conditions. For 
example, in the 4 factor, 6 indicator condition 
with r = 0.3, each pair of the 4 factors were 
generated with a correlation of 0.3. Four sample 
size conditions were simulated, 100, 200, 500 
and 1,000. Prior research studying the minimum 
sample size necessary for EFA to provide 
reliable results with continuous indicators has 
found that when communalities are relatively 
high (e.g., 0.5), and most of the factors have a 

large number of indicators population factor are 
recovered well with samples as small as 100 
subjects (MacCallum, et al., 1999). 

Conversely, MacCallum, et al. (1999), 
found that for low communalities and many 
factors, each of which has a small number 
indicators, samples of 500 or more are 
necessary. Preacher and MacCallum (2002) 
found that for sample sizes as low as 30, factor 
structure recovery was good (low root mean 
square error) provided that communalities were 
high (e.g., 0.8), the number of factors retained 
was 4 or fewer and the total number of 
indicators was 25 or more.  

Subsequently, other researchers 
investigating the impact of sample size on factor 
analysis have reported similar findings with 
regard to the need for larger samples with 
relatively poorly conditioned solutions (fewer 
indicators with low factor loadings, low 
communalities and many factors), and the 
positive performance with smaller samples 
(fewer than 50) when factors are well 
conditioned (de Winter, Dodou & Wieringa, 
2009; Gagné & Hancock, 2006; Mundfrom, 
Shaw & Ke, 2005). Of particular interest given 
the inclusion of non-simple structure conditions 
in the current research are the results of de 
Winter, et al., who found that in the presence of 
non-simple structure, EFA performs worse with 
relatively smaller samples in terms of factor 
structure recovery, particularly when factors are 
correlated at 0.5 or greater. Given these earlier 
studies, sample sizes selected for the current 
research range from what might be considered 
somewhat small (100) to very large (1,000). 

Finally, the data were generated with 4 
levels of factor structure complexity, reflecting 
different degrees to which individual indicators 
cross-loaded with a secondary factor. Table 2 
provides an example of these patterns for each 
level of structural complexity in the 2 factor 6 
indicator condition. For example, in complexity 
condition 1 each indicator has non-zero loadings 
for only one factor, whereas in the other 3 
conditions, each indicator has an additional non-
zero loading on one other factor with complexity 
conditions differing based upon the magnitude 
of these non-zero loadings. In the 4 factor 
conditions, each indicator variable had only 2 
non-zero loadings, one for its primary factor and  
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Table 2: Example Factor Loading Patterns Used In the Simulations 
 

Complexity Condition 1 Complexity Condition 2 

Indicator Factor 1 Factor 2 Indicator Factor 1 Factor 2 

Y1 0.8 0 Y1 0.8 0.1 

Y2 0.8 0 Y2 0.8 0.1 

Y3 0.6 0 Y3 0.6 0.1 

Y4 0.6 0 Y4 0.6 0.1 

Y5 0.4 0 Y5 0.4 0.1 

Y6 0.4 0 Y6 0.4 0.1 

Y7 0 0.8 Y7 0.1 0.8 

Y8 0 0.8 Y8 0.1 0.8 

Y9 0 0.6 Y9 0.1 0.6 

Y10 0 0.6 Y10 0.1 0.6 

Y11 0 0.4 Y11 0.1 0.4 

Y12 0 0.4 Y12 0.1 0.4 

Complexity Condition 3 Complexity Condition 4 

Indicator Factor 1 Factor 2 Indicator Factor 1 Factor 2 

Y1 0.8 0.2 Y1 0.8 0.3 

Y2 0.8 0.2 Y2 0.8 0.3 

Y3 0.6 0.2 Y3 0.6 0.3 

Y4 0.6 0.2 Y4 0.6 0.3 

Y5 0.4 0.2 Y5 0.4 0.3 

Y6 0.4 0.2 Y6 0.4 0.3 

Y7 0.2 0.8 Y7 0.3 0.8 

Y8 0.2 0.8 Y8 0.3 0.8 

Y9 0.2 0.6 Y9 0.3 0.6 

Y10 0.2 0.6 Y10 0.3 0.6 

Y11 0.2 0.4 Y11 0.3 0.4 

Y12 0.2 0.4 Y12 0.3 0.4 
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the other for a single secondary factor. For 
example, in complexity condition 2 with 4 
factors and 12 indicators for each, indicator 1 
had a loading of 0.8 for factor 1, a loading of 0.1 
for factor 2 and loadings of 0 for factors 3 and 4. 
On the other hand, indicator 48 had a loading of 
0.4 for factor 4, a loading of 0.1 for factor 3 and 
0 loadings for factors 1 and 2. The decision to 
allow indicators in the 4 factor conditions to 
cross load with only one other factor was made 
to avoid confounding the number of cross 
loadings with the number of factors, making it 
impossible to directly compare results in the 2 
and 4 factors cases. Similar factor loading 
patterns were used with the other factor and 
indicator combinations included in this study. 
Although a very large number of different such 
factor patterns could have been simulated using 
the number of factors and indicators included in 
this study, these patterns were selected because 
it was felt that they represented a range of non-
simple structure conditions, were few enough so 
as to keep the study manageable and allowed for 
investigation of the impact of progressively 
greater factor complexity.  

The methods of factor rotation included 
the study were Quartimin (oblique), Varimax 
(orthogonal), Quartimax (orthogonal), Equamax 
(orthogonal), Parsimax (oblique), Geomin 
(oblique), Promax (oblique) and Facparsim 
(oblique). The selection of these particular 
rotations was made based upon a combination of 
prior research results, popularity in use and 
availability in statistical software. Again, though 
prior research comparing performance of 
rotational criteria used continuous indicators, 
these are the only available studies examining 
this issue; therefore, it was determined that these 
earlier studies did provide some insights into 
which rotations should be used. Sass and 
Schmitt (2010) used only oblique rotations, 
including Quartimin, oblique CF-Equamax, CF-
Facparsim and Geomin, and found that Geomin 
and Quartimin performed slightly better in a 
pure simple structure condition (Complexity 
condition 1 in the current study), whereas 
oblique CF-Equamax and CF-Facparsim were 
somewhat better in the more complex cases. 
Asparouhov and Muthén (2009) compared 
Quartimin with Geomin using two values of the 
constant ε, 0.01 and 0.0001 and reported that 

Geomin with ε = 0.001 consistently produced 
the least bias in factor loading estimates. Based 
on these results, the current study included 
Geomin with ε = 0.001, Quartimin, and 
Facparsim. In addition, three orthogonal 
rotations (i.e., Varimax, Quartimax and 
Equamax) were included because heretofore 
their performance has not been investigated in 
such a study and they are very commonly used 
in practice. Similarly, Promax was included in 
the study because of its popularity and ubiquity 
in statistical software, and the fact that it was not 
included in the earlier work. For each included 
rotation criterion, except for Geomin as noted 
above, the default settings in MPlus were used in 
conducting the analyses in order to mimic what 
researchers are likely to do in practice.  

In addition to the Monte Carlo 
simulation, this study also included the use of 
EFA with item responses from a sample of 1,000 
examinees who took the Law School 
Admissions Test (LSAT). These data, which 
have been discussed previously in the literature, 
have been shown to contain 4 separate factors 
corresponding to the 4 reading passages 
contained in the exam (Stout, et al., 1996). For 
these data, EFA using the RWLS method of 
extraction was followed with each of the 
rotations included in the simulation study. Note 
that analysis was conducted on the raw binary 
data. 
 

Results 
Because an initial examination of the simulation 
outcomes revealed that the results for factors 1, 
2, 3 and 4 were similar in terms of the grouping 
of indicators and the ordering of indicators by 
factor loading magnitude, results are presented 
for the first factor only. Similarly, estimates of 
the inter-factor correlation between factors 1 and 
2 were similar to those for the other factor pairs 
(where applicable), thus, only the results for this 
correlation will be presented. 
 
Factor Grouping 

A repeated measures Analysis of 
Variance (ANOVA) was used to identify which 
of the manipulated conditions and their 
interactions were significantly associated with 
the proportion of item pairs correctly grouped 
together, which served as the dependent 
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variable. These conditions included type of 
rotation, number of observed indicators per 
factor, number of factors, factor complexity, 
sample size and inter-factor correlation. 
Assumptions of equality of variance and 
normality of errors were assessed using 
Levene’s test and QQ plots, respectively, and 
were found to have been met. The results of the 
ANOVA indicated that the highest order 
significant (α = 0.05)interaction was type of 
rotation by number of factors, number of 
indicators and factor complexity (η2 = 0.112). In 
addition, the interaction among type of rotation, 
inter-factor correlation and factor complexity 
was also significantly related to the proportion 
of indicators correctly grouped (η2 = 0.482), as 
was the main effect of sample size (η2 = 0.801). 
All other significant main effects and 
interactions were subsumed in one of these three 
terms and will therefore not be discussed. 

Table 3 shows the proportion of 
observed indicator variables correctly and 
incorrectly grouped by the number of factors, 
number of indicators per factor, factor 
complexity and method of rotation. An 
examination of these results reveals that across 
methods of rotation the proportion of variables 
correctly grouped declined as the factor structure 
became more complex, but the proportion 
incorrectly grouped together increased. (Note 
that the numbers for complexity conditions 
presented in subsequent tables correspond to the 
numbers in Table 2). This decrease in indicator 
grouping accuracy with increased structural 
complexity was less marked for the Quartimin 
(QMIN) rotation across the number of factors 
and number of indicators, and the Facparsim 
(FAC) when there were 12 indicators per factor, 
regardless of the number of factors. Indeed, 
when there were 12 indicators per factor the 
decline in grouping accuracy for QMIN was 
very small, 0.04 for 2 factors and 0.02 for 4 
factors. By contrast, QMIN also demonstrated a 
much higher rate of incorrectly grouping 
indicator variables together for more complex 
factor patterns, across numbers of factors and 
indicators. The other rotations generally 
demonstrated comparable levels of grouping 
accuracy across the conditions contained in 
Table 3. The only exceptions to this general 

result were for Varimax (VAR) and Parsimax 
(PAR) with 4 factors, both of which had 
somewhat larger declines in the proportion of 
correctly grouped indicators than the other 
approaches in the presence of 4 factors, and for 
Equamax (EQU), which consistently 
demonstrated among the lowest rates of 
incorrectly grouping indicators together, and 
comparable rates of correctly grouping 
indicators with one another. 

Table 4 presents the proportions of 
correctly and incorrectly grouped indicators by 
method of rotation, inter-factor correlation and 
factor complexity. As evident in Table 3, with 
increasing model complexity QMIN displayed a 
smaller decline in the proportion of correctly 
grouped indicators and a greater increase in the 
proportion of incorrectly indicators, than did the 
other rotation methods. Of particular interest is 
that two of the orthogonal rotations, VAR and 
EQU, did not show any greater diminution in the 
proportion of correctly grouped indicators than 
the oblique rotations as the inter-factor 
correlations increased, nor did they have greater 
increases in the proportion of incorrectly 
grouped items. By contrast, the orthogonal 
method QUA exhibited among the highest rates 
of incorrectly grouped indicators for the more 
complex factor patterns when the inter-factor 
correlation was 0.5 or 0.7. EQU and PAR 
consistently demonstrated among the lowest 
rates of incorrect indicator grouping, while being 
comparable to the other rotational methods 
(except QMIN) in terms of correctly grouped 
indicator variables.  

The impact of the factor pattern on 
correct indicator grouping was essentially the 
same regardless of the inter-factor correlation, 
with decreases in the proportion of correctly 
grouped item pairs and increases in the 
proportion of correctly grouped item pairs. For 
all methods of rotation, the proportion of 
correctly grouped indicator variables increased 
concomitantly with increases in sample size, 
whereas the proportion of incorrectly grouped 
indicators declined (see Table 5). 
 
Factor Loading Magnitudes 
 As with the proportion of correctly 
grouped items, repeated measures ANOVA was 
used to determine which of the study conditions  



W. HOLMES FINCH 
 

559 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Proportion of Variables Correctly | Incorrectly Grouped into Factors by Number of Factors (F), 
Number of Indicators per Factor (I) and Population Factor Complexity (C) 

 

F I C EQU* GEO PAR PRO QUA QMIN VAR FAC 

2 6 

1 .94|.10 .94|.11 .94|.10 .91|.10 .94|.11 .93|.14 .94|.10 .88|.10 

2 .91|.16 .90|.18 .91|.16 .87|.17 .90|.18 .91|.31 .91|.16 .79|.17 

3 .86|.27 .85|.31 .86|.28 .82|.29 .85|.33 .88|.57 .85|.27 .69|.26 

4 .78|.45 .77|.51 .77|.45 .74|.48 .78|.56 .87|.83 .75|.46 .66|.49 

2 12 

1 .97|.02 .97|.03 .97|.02 .95|.02 .97|.03 .96|.12 .97|.02 .99|.03 

2 .95|.04 .95|.05 .95|.04 .93|.05 .95|.05 .96|.32 .95|.04 .98|.06 

3 .89|.10 .88|.11 .89|.09 .86|.10 .89|.22 .92|.66 .88|.10 .98|.13 

4 .80|.24 .80|.28 .80|.21 .77|.23 .83|.48 .92|.96 .78|.22 .95|.29 

4 6 

1 .92|.13 .91|.14 .91|.13 .90|.14 .91|.14 .91|.21 .90|.13 .82|.15 

2 .90|.17 .89|.17 .89|.17 .87|.16 .89|.18 .90|.30 .88|.16 .73|.19 

3 .86|.25 .86|.26 .85|.25 .83|.24 .86|.27 .90|.43 .83|.25 .63|.26 

4 .82|.38 .82|.41 .79|.38 .82|.41 .85|.42 .90|.59 .73|.42 .51|.43 

4 12 

1 .96|.05 .95|.05 .95|.05 .95|.15 .95|.05 .95|.07 .95|.14 .99|.06 

2 .94|.06 .94|.07 .94|.06 .94|.19 .94|.06 .95|.13 .94|.18 .96|.08 

3 .89|.13 .92|.18 .88|.12 .92|.32 .90|.16 .94|.28 .93|.31 .95|.18 

4 .82|.22 .88|.31 .79|.20 .88|.45 .85|.28 .93|.41 .83|.45 .93|.31 
 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, QMIN = 
Quartimin, VAR = Varimax, FAC = Facparsim. 
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Table 4: Proportion of Variables Correctly | Incorrectly Grouped into Factors by Inter-Factor Correlations (r) 
and Population Factor Complexity (C) 

 

r C EQU* GEO PAR PRO QUA QMIN VAR FAC 

0.1 

1 .97|.04 .97|.04 .97|.04 .95|.08 .97|.04 .97|.04 .97|.07 .98|.03 

2 .96|.05 .95|.05 .95|.05 .94|.08 .95|.05 .95|.05 .95|.07 .95|.05 

3 .93|.10 .92|.11 .92|.10 .91|.13 .92|.10 .92|.11 .92|.12 .92|.11 

4 .85|.21 .84|.24 .84|.21 .83|.30 .84|.23 .91|.60 .85|.30 .80|.26 

0.3 

1 .96|.05 .96|.05 .96|.05 .95|.07 .96|.05 .96|.05 .96|.07 .96|.05 

2 .94|.07 .94|.08 .94|.08 .92|.10 .94|.08 .94|.08 .94|.09 .92|.08 

3 .91|.13 .90|.15 .90|.14 .88|.18 .89|.15 .93|.40 .89|.17 .86|.16 

4 .83|.26 .84|.31 .84|.26 .82|.36 .82|.30 .91|.68 .86|.36 .84|.37 

0.5 

1 .95|.08 .94|.08 .94|.08 .93|.10 .94|.08 .94|.08 .94|.09 .95|.08 

2 .94|.10 .93|11 .93|.10 .91|.13 .93|.11 .92|.22 .93|.12 .91|.10 

3 .88|.19 .87|.23 .87|.20 .85|.27 .87|.22 .93|.66 .87|.27 .86|.24 

4 .80|.34 .85|.41 .78|.33 .83|.42 .85|.55 .94|.73 .84|.41 .80|.48 

0.7 

1 .91|.14 .90|.16 .90|.15 .88|.17 .90|.16 .94|.38 .89|.16 .87|.16 

2 .87|.21 .87|.24 .87|.21 .84|.27 .87|23 .94|.75 .86|.26 .85|.24 

3 .82|.32 .85|.38 .81|.31 .82|.38 .85|.52 .92|.80 .83|.37 .79|.51 

4 .76|.49 .75|.55 .74|.43 .74|.49 .77|.69 .88|.82 .74|.48 .73|.50 
 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, QMIN = 
Quartimin, VAR = Varimax, FAC = Facparsim. 
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and their interactions were significantly related 
to the proportion of correctly ordered factor 
indicators based on their loading magnitudes in 
the sample. The highest order significant 
interaction was the rotation by inter-factor 
correlation by factor pattern (η2 = 0.201). In 
addition, the 2-way interactions of rotation by 
number of indicators per factor (η2 = 0.236) and 
rotation by number of factors (η2 = 0.275) were 
also statistically significant, as was the main 
effect of sample size (η2 = 0.858).  

For all of the rotations, results 
demonstrate (see Table 6) that the proportion of 
correctly ordered factor indicators by loading 
magnitude declines with increases in the inter-
factor correlation and with increased factor 
complexity (reflected through higher numbers 
for the factor complexity condition). In addition, 
the deleterious impact of greater factor 
complexity was more pronounced for larger 
values of the inter-factor correlation. For 
example, in the simple structure condition (C = 
1) with correlations of 0.1 and 0.3, the rotations 
performed similarly with respect to correct 
ordering of the factor indicators by loading 
magnitude, whereas for r = 0.5 FAC displayed a 
higher proportion of correctly ordered factor 
loadings, and for r = 0.7, FAC, QMIN and VAR 
all had somewhat higher proportions of correctly 
ordered loadings. On the other hand, for the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
greatest factor complexity (C = 4) VAR 
consistently had the highest proportion of 
correctly ordered loadings, with a variety of 
other rotations performing comparably for a 
given inter-factor correlation. For example, 
QMIN performed similarly to VAR in the most 
complex case for inter-factor correlations of 0.1, 
0.3 and 0.7, and FAC had similar values to VAR 
for proportion of correctly ordered loadings in 
the most complex case when r = 0.3. 

Results in Table 7 show that all of the 
rotations were more accurate in terms of 
correctly ordering indicators by the magnitude 
of factor loadings for 12 indicators, for 2 factors 
and for larger sample sizes. FAC was the 
rotation method whose performance was most 
strongly influenced by the number of indicators. 
For 6 indicators per factor, it performed the 
worst in terms of correctly ordering loadings, 
whereas for 12 indicators it performed the best. 
QMIN and VAR consistently produced among 
the most accurate ordering of loadings by 
magnitude across all of the conditions contained 
in Table 7. The performances of the other 
rotation methods were generally similar to one 
another, and somewhat worse than that of QMIN 
and VAR. 
 
Inter-Factor Correlation Bias 

A repeated measures ANOVA identified 
the 3-way interaction of rotation method by  

Table 5: Proportion of Variables Correctly | Incorrectly Grouped into Factors by Sample Size 
 

N EQU* GEO PAR PRO QUA QMIN VAR FAC 

100 .83|.31 .85|.33 .82|.30 .82|34 .84|.33 .88|.45 .84|.33 .84|.32 

200 .87|.21 .88|.24 .86|.21 .86|.25 .88|.24 .92|.40 .88|.24 .86|.23 

500 .92|.11 .92|.14 .91|.11 .90|.17 .93|.17 .95|.37 .92|.16 .89|.13 

1000 .94|.07 .94|.09 .94|.07 .93|.13 .94|.14 .97|.37 .94|.13 .94|.12 

 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, 
QMIN = Quartimin, VAR = Varimax, FAC = Facparsim. 
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Table 6: Proportion of Factor Loadings Correctly Ordered by Magnitude by Inter-Factor Correlations (r) 
and Population Factor Complexity (C) 

r C EQU* GEO PAR PRO QUA QMIN VAR FAC 

0.1 

1 .94 .94 .94 .93 .94 .94 .94 .96 

2 .93 .92 .93 .91 .93 .93 .93 .94 

3 .90 .89 .89 .88 .91 .93 .90 .92 

4 .83 .81 .81 .81 .81 .84 .84 .81 

0.3 

1 .93 .92 .93 .91 .92 .93 .93 .94 

2 .91 .90 .90 .89 .90 .91 .91 .91 

3 .87 .85 .85 .84 .85 .87 .87 .84 

4 .78 .76 .75 .77 .76 .81 .81 .82 

0.5 

1 .90 .89 .89 .88 .89 .90 .90 .95 

2 .89 .87 .88 .86 .87 .89 .90 .92 

3 .81 .79 .79 .79 .78 .84 .83 .81 

4 .73 .70 .68 .68 .73 .70 .77 .70 

0.7 

1 .83 .81 .81 .81 .80 .84 .85 .84 

2 .79 .75 .75 .77 .75 .82 .81 .80 

3 .72 .69 .67 .71 .70 .76 .76 .69 

4 .65 .63 .57 .65 .64 .70 .70 .64 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, QMIN = Quartimin, 
VAR = Varimax, FAC = Facparsim. 

 
Table 7: Proportion of Factor Loadings Correctly Ordered by Magnitude by Number of Indicators per 

Factor (I), Number of Factors (F), and Sample Size 

I EQU* GEO PAR PRO QUA QMIN VAR FAC 

6 .75 .72 .72 .74 .72 .76 .77 .66 

12 .93 .92 .91 .90 .92 .94 .93 .97 
 

F EQU GEO PAR PRO QUA QMIN VAR FAC 

2 .89 .86 .87 .86 .88 .91 .90 .86 

4 .78 .77 .76 .79 .76 .79 .80 .78 
 

N EQU GEO PAR PRO QUA QMIN VAR FAC 

100 .69 .67 .66 .67 .67 .71 .70 .68 

200 .80 .78 .77 .78 .78 .82 .82 .79 

500 .91 .89 .89 .90 .89 .94 .93 .90 

1000 .95 .94 .94 .94 .94 .96 .96 .92 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, QMIN = Quartimin, 
VAR = Varimax, FAC = Facparsim. 
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inter-factor correlation by factor complexity 
(η2 = 0.049) as the highest order significant 
term. In addition, the main effects of number of 
factors (η2 = 0.313), number of indicators per 
factor (η2 = 0.041), and sample size (η2 = 0.021) 
were also statistically significant. Table 8 
contains the mean raw bias and the standardized 
bias values across replications by the inter-factor 
correlation and the degree of model complexity. 
For r = 0.1, the sample correlation estimates 
displayed a positive bias across rotations, except 
for the simple structure condition (C = 1). In 
addition, as the degree of complexity increased, 
so did both raw and standardized bias, except for 
PRO. When r = 0.3, the negative bias in the 
simple structure condition was greater than for r 
= 0.1, and the positive bias for more complex 
models was lower, across rotation methods. For 
r = 0.5 and 0.7, bias was uniformly negative 
across levels of factor complexity, with greater 
negative bias associated with the largest 
population correlation. In addition, for r = 0.5 all 
rotation methods, except PAR, displayed greater 
negative bias for simple structure data (C = 1) or 
for the most complex structure (C = 4). In 
contrast, when r = 0.7, bias was generally higher 
for simple structure than for the next level of 
factor complexity (C = 2), after which bias 
increased concomitantly with increased model 
complexity. None of the rotation criteria 
consistently produced the least raw or 
standardized biased estimates. 

Table 9 shows that inter-factor 
correlation bias was more pronounced (and 
negative) when more indicators were present. In 
addition, the degree of bias for most of the 
rotation methods was slightly greater (and 
negative) for 4 factors as compared to 2, where 
the bias was positive. Finally, bias in the inter-
factor correlation estimates declined with 
increased sample size, and across all conditions 
PAR produced somewhat more negatively 
biased estimates than the other criteria. 
Otherwise, differences in estimation accuracy 
across the conditions were relatively minor. 
Analysis of LSAT Data 
 In order to demonstrate the relative 
performance of the rotation criteria on an actual, 
well studied data set, EFA was run on the LSAT 
data described in Stout, et al. (1996). Given that 
these authors, and others, reported the presence 

of 4 stable dimensions, 4 factors were extracted 
in this analysis, and each rotation was applied. 
Table 10 contains the factor loadings only for 
the primary factor for each item in order to save 
space. There were no cross-loaded items for any 
of the rotation criteria, defined as having 
multiple factors for which the loading values 
were great than 0.32 (Tabachnick & Fidell, 
2007). A perusal of these results demonstrates 
that across items and factors, the loading values 
for the 8 different rotations were very similar to 
one another. There is no discernible pattern of 
difference in loadings by rotation, suggesting 
that a researcher using any of these criteria 
would reach the same substantive conclusions 
regarding both how items grouped together, and 
the strength of relationships between items and 
factors. 

Table 11 includes the correlation 
estimates for the 4 factor solution of the LSAT 
data for each of the oblique rotations studied 
here, and their standard errors with the exception 
of PROMAX, for which standard errors are not 
calculated in MPlus. These results demonstrate a 
greater degree of variation across rotation 
criteria than was evident for the factor loadings. 
For example, PROMAX had much larger inter-
factor correlation estimates than the other 
methods for factor 1 with 3, 1 with 4 and 3 with 
4. By contrast, PARSIMAX had much lower 
correlation estimates than the other methods for 
factors 1 with 3, 1 with 4, 2 with 4 and 3 with 4. 
GEOMIN, QUARTIMIN and FACPARSIM had 
very similar inter-factor correlation estimates to 
one another for this sample. 
 

Conclusion 
This study extends previous research comparing 
rotations in EFA, which focused on continuous 
factor indicator variables by comparing the 
performance of 8 factor rotation criteria with 
dichotomous indicator variables using the 
WLSMV initial extraction method in MPlus 
across a variety of conditions. Among the 
rotations included were some that had 
previously been found to be promising in terms 
of accuracy of factor loading estimates such as 
Geomin and Facparsim, and others that had not 
been studied before but which are very 
commonly used in practice, including Varimax 
and Promax. The outcomes of interest included  
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Table 8: Inter-Correlation Bias (Standardized Bias) by Inter-Factor Correlations (r) and Population Factor 
Complexity (C) 

 

r C GEO* PAR PRO QMIN FAC 

0.1 

1 -0.04 (-0.43) -0.05 (-0.75) -0.02 (-0.23) -0.04 (-0.44) -0.03 (-0.33) 

2 0.08 (0.45) 0.05 (0.34) 0.12 (0.69) 0.08 (0.49) 0.09 (0.50) 

3 0.18 (0.65) 0.14 (0.55) 0.22 (0.84) 0.19 (0.73 0.19 (0.73) 

4 0.24 (0.73) 0.21 (0.73) 0.17 (0.52) 0.25 (0.80) 0.26 (0.79) 

0.3 

1 -0.12 (-0.84) -0.16 (-0.93) -0.10 (-0.71) -0.11 (-0.79) -0.11 (-0.78) 

2 -0.01 (-0.04) -0.07 (-0.38) 0.03 (0.13) -0.01 (-0.02) 0.01 (0.01) 

3 0.07 (0.22) 0.01 (0.05) 0.08 (0.30) 0.08 (0.27) 0.09 (0.29) 

4 0.09 (0.25) 0.07 (0.23) -0.02 (-0.07) 0.12 (0.35) 0.11 (0.32) 

0.5 

1 -0.21 (-0.95) -0.27 (-1.53) -0.18 (-0.94) -0.20 (-0.92) -0.21 (-0.92) 

2 -0.09 (-0.34) -0.17 (-0.77) -0.08 (-0.31) -0.09 (-0.32) -0.09 (-0.33) 

3 -0.08 (-0.22) -0.12 (-0.46) -0.14 (-0.43) -0.06 (-0.18) -0.08 (-0.19) 

4 -0.13 (-0.35) -0.09 (-0.29) -0.20 (-0.58) -0.19 (-0.60) -0.20 (-0.59) 

0.7 

1 -0.31 (-1.00) -0.37 (-1.65) -0.31 (-1.20) -0.30 (-1.07) -0.32 (-1.06) 

2 -0.26 (-0.78) -0.31 (-1.15) -0.32 (-1.00) -0.25 (-0.76) -0.27 (-0.79) 

3 -0.30 (-0.80) -0.28 (-0.80) -0.35 (-1.06) -0.36 (-1.06) -0.36 (-1.08) 

4 -0.38 (-0.99) -0.31 (-0.81) -0.33 (-1.05) -0.33 (-1.54) -0.36 (-1.44) 

 

*GEO = Geomin, PAR = Parsimax, PRO = Promax, QMIN = Quartimin, FAC = Facparsim. 
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the proportion of accurately grouped indicator 
variables, the proportion of indicators correctly 
ordered by the magnitude of their loading values 
and, for the oblique methods, the accuracy of 
inter-factor correlation estimates. It is hoped that 
this study builds upon earlier work by focusing 
on dichotomous indicators (i.e., items), by 
including outcomes that would be of interest to 
practitioners interested in using these methods to 
identify potential latent variables in existing 
measures and by expanding the range of 
conditions under which the rotations are 
examined, including the rotations themselves. 
 
Implications for Practice 

One implication of this study for 
researchers using EFA with categorical indicator 
variables is that when they know, or suspect, 
that the correlations among the factors will be 
upwards of 0.5, they should expect to have 
problems not only with appropriately grouping 
variables together, but also with accurately 
ordering variables in terms of the importance of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
their relationships with the factors. These 
problems are likely to be particularly acute if the 
factor pattern structure is very complex. It does 
seem however, that having a larger sample may 
ameliorate these problems to some extent, so 
that when it is likely the factors will be highly 
correlated and/or the factor pattern may be 
complex in nature, researchers should ideally try 
to obtain samples of 500 or more. These results 
are similar to those reported in de Winter, 
Dodou and Wieringa (2009) for continuous data. 

A second implication is that - for the 
oblique methods of rotation studied - there may 
be problems with accurately estimating inter-
factor correlations across conditions like those 
simulated here. When these correlations were 
greater than 0.3, all of the criteria produced 
underestimates of r, whereas for lower 
correlations r was overestimated for more 
complex factor patterns and underestimated for 
the less complex patterns. These correlation 
estimation  bias  results  are  similar  to  those  
 

Table 9: Inter-Correlation Bias by Magnitude by Number of Indicators Per Factor (I), Number of Factors (F), 
and Sample Size 

I GEO* PAR PRO QMIN FAC 

6 0.03 -0.03 0.02 0.04 0.06 

12 -0.13 -0.15 -0.15 -0.14 -0.13 

 

F GEO PAR PRO QMIN FAC 

2 0.17 0.10 0.16 0.11 0.12 

4 -0.16 -0.17 -0.17 -0.14 -0.15 

 

N GEO PAR PRO QMIN FAC 

100 -0.11 -0.12 -0.08 -0.10 -0.11 

200 -0.10 -0.12 -0.08 -0.09 -0.10 

500 -0.06 -0.09 -0.08 -0.06 -0.08 

1000 -0.03 -0.08 -0.08 -0.04 -0.06 
 

*GEO = Geomin, PAR = Parsimax, PRO = Promax, QMIN = Quartimin, FAC = Facparsim. 
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Table 10: Rotated Factor Loading Matrices for LSAT Data 
 

Item EQU* GEO PAR PRO QUA QMIN VAR FAC 

Factor 1 

1 0.35 0.33 0.33 0.33 0.34 0.33 0.35 0.32 

2 0.40 0.40 0.40 0.41 0.40 0.40 0.40 0.39 

3 0.43 .045 0.45 0.47 0.43 0.45 0.43 0.45 

4 0.36 0.39 0.38 0.40 0.36 0.38 0.36 0.38 

5 0.40 0.38 0.38 0.39 0.39 0.38 0.39 0.38 

6 0.51 0.53 0.52 0.55 0.51 0.53 0.51 0.53 

7 0.33 0.30 0.31 0.30 0.31 0.30 0.33 0.30 

Factor 2 

8 0.52 0.54 0.54 0.56 0.51 0.54 0.52 0.53 

9 0.38 0.40 0.40 0.41 0.37 0.39 0.38 0.39 

10 0.52 0.55 0.55 0.57 0.51 0.55 0.53 0.54 

11 0.28 0.27 0.28 0.28 0.27 0.27 0.28 0.27 

12 0.37 0.40 0.39 0.42 0.37 0.40 0.37 0.39 

13 0.38 0.37 0.37 0.39 0.38 0.38 0.37 0.38 

Factor 3 

14 0.54 0.55 0.54 0.58 0.54 0.56 0.54 0.55 

15 0.53 0.54 0.53 0.56 0.53 0.54 0.53 0.54 

16 0.44 0.46 0.45 0.48 0.44 0.46 0.44 0.46 

17 0.16 0.15 0.15 0.15 0.16 0.15 0.16 0.15 

18 0.48 0.48 0.45 0.49 0.49 0.49 0.47 0.49 

19 0.51 0.50 0.47 0.51 0.52 0.51 0.50 0.51 

Factor 4 

20 0.42 0.41 0.38 0.41 0.43 0.41 0.42 0.41 

21 0.56 0.56 0.53 0.57 0.57 0.57 0.55 0.56 

22 0.59 0.60 0.56 0.61 0.60 0.60 0.58 0.60 

23 0.47 0.48 0.45 0.49 0.48 0.48 0.47 0.48 

24 0.50 0.52 0.49 0.53 0.50 0.52 0.50 0.52 
 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QUA = Quartimax, 
QMIN = Quartimin, VAR = Varimax, FAC = Facparsim. 
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reported by Sass and Schmitt (2010) for the case 
of continuous indicators. 

A third implication for practitioners is 
that including more indicator variables 
(assuming that they are of good quality) will 
yield better solutions both in terms of correctly 
grouping the indicators and accurately ordering 
them in terms of their relationships to the 
factors. This result seems reasonable given that 
including more indicators for each factor 
provides a greater amount of information for the 
EFA extraction algorithm as well as for the 
rotations. The number of indicators was 
particularly important for the FAC technique, 
particularly in the case of a more complex factor 
pattern structures with more factors. Based on 
these results, researchers may consider using 
FAC when they have at least 12 indicators per 
factor, as it demonstrated better performance in 
terms of grouping the variables as well as 
ordering them, particularly in the 4 factor case. 
On the other hand, FAC would not appear to be 
optimal with fewer indicators per factor.  

A final implication of these results is 
that, in terms of both indicator grouping and 
ordering of importance in terms of factor 
relationships, researchers may generally find 
orthogonal and oblique rotations will produce  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
similar results. Indeed, one of the consistently 
best performers in this study was the orthogonal 
rotation EQU. This result is not completely 
surprising, as EQU was designed to spread 
loading variation more equally across factors 
than several of the other rotations studied here 
(Saunders, 1962) by combining the VAR and 
QUA criteria. Thus, although VAR seeks to 
maximize the variation of loadings for factors, 
and QUA seeks to simplify loadings for the 
observed variables, EQU combines these two 
goals. This is not to suggest that researchers 
should only use EQU as the rotation of choice 
for all problems. When factors are thought to be 
correlated, the choice of an orthogonal rotation 
may not be appropriate, regardless of how well it 
performs. However, when the inter-factor 
correlation is low and the primary goal of a 
study is to identify which indicators are 
associated with which factors, EQU would be a 
reasonable choice.   

When a researcher is interested in 
estimating inter-factor correlations, or they 
believe that these correlations may be fairly 
large (greater than 0.5), several of the oblique 
rotations studied here would appear to be 
appropriate. In particular, PAR and FAC (for 
situations with a larger number of indicator 

Table 11: Inter-Factor Correlation (Standard Error) Estimates for LSAT Data by Oblique Rotations 
 

Factor Pair GEO* PAR PRO QMIN FAC 

1 with 2 0.35 (0.05) 0.30 (0.04) 0.32 (NA) 0.34 (0.06) 0.34 (0.06) 

1 with 3 0.28 (0.05) 0.20 (0.04) 0.42 (NA) 0.28 (0.05) 0.29 (0.05) 

1 with 4 0.26 (0.05) 0.18 (0.04) 0.35 (NA) 0.26 (0.05) 0.26 (0.06) 

2 with 3 0.32 (0.05) 0.35 (0.04) 0.36 (NA) 0.33 (0.05) 0.31 (0.05) 

2 with 4 0.42 (0.05) 0.23 (0.04) 0.38 (NA) 0.42 (0.05) 0.42 (0.05) 

3 with 4 0.30 (0.04) 0.20 (0.03) 0.50 (NA) 0.32 (0.04) 0.33 (0.05) 
 

*EQU = Equamax, GEO = Geomin, PAR = Parsimax, PRO = Promax, QMIN = Quartimin, 
FAC = Facparsim. 
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variables) demonstrated consistently strong 
performance in terms of correctly grouping and 
ordering indicator variables. On the other hand, 
QMIN may not be reliable for researchers 
interested in finding the correct groupings of 
factor indicators, as it (or the equivalent methods 
of oblique Quartimax and Oblimin) appears to 
reduce dimensionality in the sample too much 
by grouping most of the variables into a single 
factor. As a consequence, researchers using 
QMIN may come to the conclusion that, based 
on the sample there are a smaller number of 
factors present than is actually true for the 
population. 
 
Limitations 

As with any research effort, limitations 
to this study that must be considered when 
interpreting the results. First, for all of the 
rotations the MPlus system defaults were used. 
This was a decision made for two reasons: (1) It 
was desired to mimic what might be most 
commonly done in practices, and (2) In many 
cases there are a very large number of 
alternative settings that could have been used for 
some of the rotations. Therefore, in order to 
keep the study to a manageable size and the 
interpretation of the results fairly 
straightforward, it was felt that only a limited 
number of options could be used. Nonetheless, 
in practice researchers can choose from a 
broader range of settings when using many of 
these rotational criteria. 

A second limitation relates to the 
conditions simulated, including the factor 
patterns used and the number of indicators. In 
both cases, the selections made for this study 
were designed to mimic what would be seen in 
practice. However, clearly many other factor 
patterns and numbers of indicators could have 
been included, which may well have provided 
different results. Future studies should focus on 
both of these issues in order to expand upon 
what was learned here. 

Finally, these results were based on 
dichotomous indicator variables, which may not 
translate directly to ordinal data, such as that 
commonly found in many psychological scales. 
It should be noted that because rotations focus 
on loadings rather than the raw data, it is not 
clear how important this issue might be. 

Nonetheless, future research should verify to 
what extent the nature of the categorical data has 
an impact on the performance of rotational 
criteria. 
 
Summary 

In the final analysis, the admonition 
offered by Browne (2001) for researchers to use 
their expert judgment in conjunction with 
statistical results is definitely supported by these 
results. It is clearly not possible to state that any 
single rotational criterion will fit all EFA 
problems adequately, although in practice 
researchers often appear to use favorites 
regardless of the context. However, these results 
do suggest that certain features of the data will 
support the use of one or more such methods 
studied here. Clearly the ubiquitous VAR and 
PRO rotations must be used with caution when 
at all, as often they do not produce optimal 
results in terms of accurately reflecting the 
underlying factor structure. With the increased 
availability of other rotations in software 
packages such as MPlus, researchers are no 
longer limited to a small number of available 
options, and can thus experiment with a broader 
array of tools than could be done previously. 
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Discriminant Analysis for Repeated Measures Data: 
Effects of Mean and Covariance Misspecification on 
Bias and Error in Discriminant Function Coefficients 

 
Tolulope T. Sajobi Lisa M. Lix Longhai Li William Laverty 

University of Saskatchewan, 
Saskatoon, Canada 

 
 
Discriminant analysis (DA) procedures based on parsimonious mean and/or covariance structures have 
been proposed for repeated measures (RM) data. Bias and means square error of discriminant function 
coefficients (DFCs) for DA procedures are investigated when the mean and/or covariance structures are 
correctly specified and misspecified. 
 
Key words: Multivariate, model misspecification, discriminant function coefficient, mean square error, 

bias. 
 
 

Introduction 
Linear discriminant analysis (DA) is a 
multivariate procedure, originally proposed by 
Fisher (1936), for predicting group membership 
(predictive discriminant analysis; PDA) and/or 
describing group separation (descriptive 
discriminant analysis; DDA) (Huberty & 
Olejnik, 2006) on multiple variables. The 
classical linear PDA procedure has been applied 
to repeated measures (RM) data (Feighner & 
Sverdlov, 2002; Levesque, Ducharme, Zarit, 
Lachance & Giroux, 2008), in which study 
participants are measured on a single variable at 
two or more occasions. Classical linear DA will 
not result in an efficient classification rule in 
multivariate  or  RM data  when  there  is a large 
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number of variables or measurement occasions 
relative to sample size. In recent years, a number 
of PDA procedures for RM data have been 
proposed (Marshall & Baron, 2000; Roy & 
Khatree, 2005a, 2005b, 2007; Tomasko, Helms 
& Snappin, 1999). 

Roy and Khattree (2005a, 2005b) 
developed DA procedures based on 
parsimonious mean and covariance structures for 
both univariate (measurements on one outcome 
variable) and multivariate (measurements on two 
or more outcome variables) RM data to address 
the issue of classification efficiency when 
sample size is small. For univariate RM data, 
they proposed procedures based on constant RM 
mean vectors and either a compound symmetric 
(CS) or first-order autoregressive (AR-1) 
covariance. Though these procedures can result 
in efficient classification rules in high-
dimensional data (Roy & Khatree, 2007), they 
may also result in inflated misclassification error 
rates (MERs) when the mean and/or covariance 
structure is/are incorrectly specified. 

Although these procedures were 
originally developed for PDA, the discriminant 
function coefficients (DFCs) produced can be 
used for DDA, that is, to quantify the relative 
importance of the measurement occasions for 
discriminating among groups (Thomas, 1992). 
In classical linear DA, it is known that bias and 
error variation of DFCs is influenced by a 
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variety of data characteristics, including degree 
and pattern of separation between groups (group 
mean vectors) and magnitude of correlation 
among the outcome variables (Williams & Titus, 
1998; Williams, Titus & Hines, 1991). However, 
to date, there has been little – if any – research, 
regarding the effects of misspecifying the mean 
and/or covariance structure on DDA procedures 
for RM data. Thus, the purpose of this study is 
to investigate the effects of RM mean and/or 
covariance misspecification on bias and error in 
DFCs of DDA procedures based on constant 
mean vectors and/or structured covariance 
matrices in univariate RM data. 
 
Estimation of DFCs in DA Procedures for RM 
Data 

Consider the case of g = 2 groups 
(which can be generalized to g > 2). In general, 
the number of uncorrelated DFC vectors is equal 
to g – 1. Let yij be the p × 1 random vector of 
observed measurements for the ith study 
participant (i = 1, ...,nj; N = n1 + n2) in the jth 
group (j = 1, 2). It is assumed that yij ~ Np(μj, 
Σj), where μj and Σj are the population mean 
vector and covariance for the jth group and are 

estimated by jμ̂ and jΣ̂ , respectively. The 

linear DFC vector is estimated by 
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For Fisher’s (1936) linear DA procedure, 
 

,
2

ˆ)1(ˆ)1(ˆ
21

2211

−+
−+−=

nn
nn ΣΣΣ            (2) 

and 

,jj yμ =ˆ                         (3) 

where 

j

n

i
ij

j n

j


== 1

y
y . 

 
These quantities are estimated using the least-
squares approach. 

Roy and Khatree (2005a) proposed a 
DA procedure based on constant RM mean 
vectors and CS covariance structure. With a CS 

structure, Σ has diagonal elements σ2 and off-
diagonal elements σ2ρ. For constant RM mean 
vectors, pjj c 1μ =ˆ , the maximum likelihood 

(ML) estimate of cj is 
 

p
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where p1 is a p ×  1 vector of ones, T is the 

transpose operator, and jy  is the sample mean 

vector for the jth group. The ML estimates of σ2 

and ρ can be obtained by simultaneously solving 
the following system of equations. 
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where a1 = tr(W1), a2 = tr(W2), b1 = tr(JW1), b2 
= tr(JW2), 

T
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and tr is the trace operator. The DFCs are 
estimated by substituting the ML estimates of Σ 
and jμ  in (1). 

Roy and Khattree (2005a) proposed a 
DA procedure based on constant RM mean 
vectors and AR-1 covariance structure. With an 
AR-1 structure, Σ has diagonal elements σ2, and 
off-diagonal elements σ2ρl, where l is the number 
of lags between measurement occasions. 
Estimates of cj, σ

2, and ρ are obtained by 
simultaneously solving 
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Details of these equations are provided in the 
Appendix. The estimates of the DFCs are 
obtained by substituting the ML estimates of Σ 
and μj in (1). 

For the DA procedure based on constant 
RM mean vectors and unstructured covariance, 
the ML estimate of μj is as shown in equation 3 
and Σ is estimated as 
 

N
j
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W
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where Wj is obtained from (7). 
 

Methodology 
The investigated procedures in the Monte Carlo 
study were: (a) DA procedure based on 
unstructured mean vectors and unstructured 
covariances (UN), (b) DA procedure based on 
constant mean vectors and unstructured 
covariances (STUN), (c) DA procedure based on 
constant mean vectors and CS covariances 
(STCS), and (d) DA based on constant mean 
vectors and AR-1 covariances (STAR). 

The following conditions were 
manipulated in the study: (a) number of repeated 
measurements (p), (b) total sample size (N), (c) 
group sizes, (d) pattern and magnitude of 
correlation among the repeated measurements, 
and (e) RM mean vector configuration. The 
number of groups (g = 2) and the population 
distribution (normal) were fixed. 

The number of RMs was set at p = 3, 5, 
7 and 9. Previous studies have considered values 
of p ranging from 3 to 10 (Roy & Khattree, 
2005a; 2005b; Williams & Titus, 1988). Total 
sample sizes of N = 60, 90 and 120 were 
investigated, giving an N/p ranging from 6.6 to 
40.0. 

Although previous simulation studies 
about DA procedures for RM data have 
primarily focused on equal group size conditions 
(Roy & Khattree, 2005a, 2005b), unequal group 
sizes have also been investigated for 
multivariate designs (Baron, 1991; He & Fung, 
2000). Based on the research of Baron (1991) 
and Lei and Koehly (2003), the unequal group 
sizes selected for this study were (n1, n2) = (24, 
36) for N = 60, (36, 54) for N = 90, and (48, 72) 
for N = 120. 

The standard error of DFCs is known to 
be influenced by the magnitude of correlation 
among the variables (Thomas & Zumbo, 1996). 
Six population correlation structures were 
investigated: (1) Q1: CS structure with 
parameter ρ = 0.3, (2) Q2: CS structure with ρ = 
0.7, (3) Q3: AR-1 structure with ρ = 0.3, (4) Q4: 
AR-1 structure with ρ = 0.7, (5) Q5: unstructured 
with average correlation amongst the off-
diagonal elements of 0.3, and (6) Q6: 
unstructured with average correlation amongst 
the off-diagonal elements of 0.7. 

Pseudorandom observation vectors yij 
were generated from a multivariate normal 
distribution with mean μj and correlation matrix 
Qmj = Qm (m = 1 ,…, 6). A vector of standard 
normal deviates, Cij, was transformed to a vector 
of multivariate observations via 

T .ij j ij= +y μ LC  The Cholesky decomposition 

was used to obtain L, an upper triangular matrix 
of dimension p satisfying the 
equality mjQLL =T  and then yij was multiplied 

by Vj, a diagonal matrix with elements σj to 
obtain multivariate observations with the desired 
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variances and covariances, such that 

.T
jmjjj VQVΣ =  For all investigated conditions 

2
1σ = 2

2σ =1 was selected. The RANNOR 
function in SAS (SAS Institute Inc., 2008) was 
used to generate the standard normal deviates. 

A variety of mean vector conditions 
have been investigated in previous research 
(Titus & Williams, 1988; Roy & Khattree, 
2005a). In this study, three configurations for μ1 

were selected for each value of p (see Table 1); 
for all conditions, μ2 was the null vector. 
Configuration I had constant means for all RM 
occasions in both groups. Configuration II had 
non-constant RM mean with a quadratic, cubic 
or polynomial pattern for the RM occasions in 
the first group and constant means in the second 
group. For configuration III, a monotonic 
decreasing linear pattern was specified for the 
means in the first group and the means in the 
second group were constant. 

Overall, 1,493 combinations of 
simulation conditions were investigated with 
5,000 replications for each combination. The 
study was conducted using SAS/IML software 
(SAS Institute Inc., 2008). 

Two measures of performance were 
used to evaluate the DFCs, namely: mean square 
error (MSE) and norm of the average bias 
(Crouxe & Dehon, 2001). The norm of the 
average bias  is 
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and the MSE is 
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where a is the population vector of DFCs, ||x|| is 
the norm of x and M is the number of 
replications (M = 5,000). Both measures take 
values on the interval [0, ∞ ) and the smaller the 
bias or error in the DFCs the better. To adjust for 
the confounding effect of degree of separation 
between the two group means on bias and error, 
the bias and MSE in the DFCs were 
standardized using the distance between the two 
group mean vectors. Therefore, 
 

|||| 21 μμ −
= bbst ,                     (14) 

and 

|||| 21 μμ −
= eest .                     (15) 

 
Results 

The average standardized MSE and bias values 
are summarized in Tables 2 - 5 for the four 
investigated values of p. As Table 2 shows for p 
= 3, when the observations in both groups are 
sampled from populations with constant mean 
vectors (configuration I), the MSE was smallest 
(and similar) for both the STCS and STAR DA 
procedures, and largest for the UN procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Configurations of μ1 Investigated in the Simulation Study 
 

p I II III 

3 (0.5, 0.5, 0.5) (0.5, 1, 0.5) (0.5, 0.25, 0) 

5 (0.5, 0.5, 0.5, 0.5, 0.5) (0.5, 1, 1.5, 1, 0.5) (1, 0.75, 0.5, 0.25, 0) 

7 (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) (0.5, 1, 1.5, 2, 1.5, 1, 0.5) (1.5, 1.25, 1, 0.75, 0.5, 0.25, 0) 

9 
(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 

0.5, 0.5) 
(0.5, 1, 1.5, 2, 2.5, 2, 1.5, 1, 

0.5) 
(2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 

0.25, 0) 

Note: μ2 was equal to the null vector for all conditions 
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When the data were sampled from a population 
with a non-constant mean configuration 
(configurations II or III), MSE and bias were 
smallest for either UN or STCS procedure and 
were substantially larger for STUN and STAR 
procedures. For example, under a CS covariance 
structure when ρ = 0.7 and p = 3, the UN and 
STAR procedures had the smallest and largest 
average MSE, respectively, when data were 
sampled from a population with mean 
configuration II, whereas the UN and STUN 
procedures had the smallest and largest MSE, 
respectively, when data were sampled from a 
population with mean configuration III. 

For DA procedures based on constant 
mean vectors STUN, STCS and STAR, the 
average MSE decreased as the correlation 
among the RMs increased when the mean and 
covariance structure were correctly specified. 
This finding was observed regardless of the 
number of RMs, however, when either the 
covariance or mean structure was misspecified, 
the average MSE increased as the correlation 
among the repeated measurements increased. 
For example, when p = 3 and under AR-1 
population covariance structure, the average 
MSE for UN procedure was 0.35 and 0.64 when 
ρ = 0.3 and ρ = 0.7, respectively, whereas the 
average MSE of STAR procedure were 0.07 and 
0.05 when ρ = 0.3 and ρ = 0.7, respectively, 
when data were sampled from a population with 
constant mean configuration (see Table 2). 

For DA procedures based on structured 
covariances, the average MSE and bias 
increased when the covariance structure was 
misspecified and the mean structures were 
correctly specified, regardless of the number of 
RMs. For example, under an AR-1 population 
covariance structure and when ρ = 0.3 and p = 3, 
the average MSE and bias of STCS procedure 
were 1.3 and 2.0 times the average MSE of 
STAR procedure, respectively, when the data 
were sampled from a population with mean 
configuration I. Similarly, the average MSE and 
bias of DA procedures based on structured 
covariances increased under a correctly specified 
population covariance but a misspecified mean 
structure. For example, when p = 3 and ρ = 0.3 
under an AR-1 population covariance structure, 
the average MSE and bias of the STAR 
procedure when the data were sampled from a 

population with mean configuration II were 6.4 
and 7.0 times the average MSE and bias of 
STAR procedure under a constant mean 
configuration, respectively. 

For the STUN procedure, the average 
bias increased when the mean and covariance 
structures were misspecified, but STCS 
procedure had the smallest MSE when the data 
were sampled from a population with a constant 
mean configuration, regardless of the number of 
RM. For example, when p = 7, under an 
unstructured population covariance structure and 
when ρ = 0.3 and p = 7, the average MSE and 
bias of STUN procedure were 0.70 and 2.75 
times the average MSE and bias of STCS 
procedures, respectively, when the data were 
sampled from a population with a constant mean 
configuration (see Table 4).  

Moreover, for each DA procedure, the 
average MSE and bias due to misspecification of 
the covariance structure increased as the 
magnitude of correlation and number of RMs 
increased. For example, when p = 5 and under a 
CS population covariance structure, the average 
MSEs of STAR procedure were 2.6 and 5.5 
times the average MSE of STCS procedure for ρ 
= 0.3 and ρ = 0.7, respectively, when data were 
sampled from a population with a constant mean 
configuration (see Table 3). The corresponding 
bias values for STAR procedure were 4.2 and 
10.7 times the bias of STCS procedure when ρ = 
0.3 and ρ = 0.7, respectively. Similarly, when p 
= 9, the average MSEs of STCS procedure were 
8,3 and 11.0 times the average MSE of STAR 
for ρ = 0.3 and ρ = 0.7, respectively, whereas the 
corresponding average bias values were 11.0 
times the average bias of STCS procedure when 
ρ = 0.3 and ρ = 0.7 (see Table 5). 

Finally, analyses revealed that the 
average MSE for each of the DA procedures 
decreased as the sample size increased. For 
example, the average MSEs of UN procedure 
were 7.82, 3.77, and 2.50 when N = 60, 90 and 
120 respectively. By contrast, the average bias 
for each DA procedure remained largely 
unchanged as the sample size increased, 
regardless of the mean configuration and 
number of RM. For example, the overall average 
bias of STAR procedure were 2.12, 2.10 and 
2.10 when N = 60, 90 and 120, respectively. 
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Table 2: Average standardized MSE and Bias by Covariance Structure, Magnitude of Correlation and 
Mean Configuration for p = 3 

Covariance 
Structure 

ρ  Mean 
Configuration 

MSE 

UN STUN STCS STAR 

CS 

0.3 
I 0.34 0.11 0.07 0.09 
II 0.31 0.45 0.38 0.52 
III 0.52 0.64 0.61 0.63 

0.7 
I 0.65 0.12 0.05 0.09 
II 0.65 1.89 1.81 2.38 
III 1.16 3.00 2.95 2.99 

AR(1) 

0.3 
I 0.35 0.14 0.09 0.07 
II 0.30 0.56 0.33 0.44 
III 0.48 0.43 0.41 0.41 

0.7 
I 0.64 0.13 0.08 0.05 
II 0.66 3.29 2.44 3.10 
III 1.01 1.11 1.06 1.06 

UN 

0.3 
I 0.38 0.13 0.08 0.16 
II 0.34 0.33 0.41 0.53 
III 0.61 1.20 1.25 1.31 

0.7 
I 0.67 0.12 0.05 0.12 
II 0.66 1.47 1.52 2.03 
III 1.29 4.34 4.41 4.48 

Covariance 
Structure 

ρ  Mean 
Configuration 

Bias 

UN STUN STCS STAR 

CS 

0.3 
I 0.08 0.08 0.07 0.15 
II 0.09 0.52 0.52 0.61 
III 0.13 0.98 0.98 0.98 

0.7 
I 0.06 0.05 0.05 0.21 
II 0.14 1.20 1.20 1.38 
III 0.25 2.27 2.27 2.29 

AR(1) 

0.3 
I 0.08 0.08 0.15 0.08 
II 0.09 0.59 0.47 0.56 
III 0.11 0.75 0.77 0.75 

0.7 
I 0.06 0.06 0.22 0.06 
II 0.16 1.61 1.40 1.58 
III 0.16 1.34 1.36 1.34 

UN 

0.3 
I 0.08 0.08 0.15 0.27 
II 0.10 0.42 0.54 0.60 
III 0.18 1.40 1.45 1.47 

0.7 
I 0.06 0.05 0.08 0.27 
II 0.13 1.05 1.10 1.27 
III 0.32 2.77 2.81 2.83 

Notes: See Table 1 for a description of the mean configurations; CS = compound symmetric; AR-1 = first-order 
autoregressive; UN = unstructured; ρ = correlation parameter; UN = unstructured mean and covariance; STUN = 
structured mean and unstructured covariance; STCS = structured mean and CS covariance; STAR = structured 
mean and AR-1 covariance. Numbers in bold correspond to bias and error values of DA procedures for which the 
mean and covariance structures are correctly specified. 
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Table 3: Average standardized MSE and Bias by Covariance Structure, Magnitude of Correlation and 
Mean Configuration for p = 5 

Covariance 
Structure 

ρ  Mean 
Configuration 

MSE 

UN STUN STCS STAR 

CS 

0.3 
I 0.56 0.14 0.05 0.13 
II 0.53 0.96 0.80 1.09 
III 0.63 1.21 1.13 1.16 

0.7 
I 1.10 0.16 0.02 0.11 
II 1.35 4.40 4.19 5.20 
III 1.80 6.06 5.95 6.00 

AR(1) 

0.3 
I 0.56 0.20 0.08 0.05 
II 0.46 0.76 0.37 0.48 
III 0.55 0.57 0.47 0.45 

0.7 
I 1.06 0.21 0.08 0.04 
II 0.96 2.42 1.51 2.01 
III 1.08 0.86 0.76 0.72 

UN 

0.3 
I 0.66 0.20  0.14 0.20 
II 0.64 2.26 1.33 1.67 
III 0.75 1.61 1.63 1.61 

0.7 
I 1.15 0.17 0.03 0.10 
II 1.40 4.81 4.44 5.35 
III 2.04 7.57 7.66 7.76 

Covariance 
Structure 

ρ  Mean 
Configuration 

Bias 

UN STUN STCS STAR 

CS 

0.3 
I 0.06 0.06 0.05 0.21 
II 0.09 0.60 0.60 0.69 
III 0.12 0.89 0.89 0.91 

0.7 
I 0.04 0.04 0.03 0.23 
II 0.18 1.39 1.39 1.54 
III 0.27 2.08 2.08 2.09 

AR(1) 

0.3 
I 0.09 0.09 0.14 0.07 
II 0.09 0.48 0.38 0.45 
III 0.10 0.55 0.56 0.55 

0.7 
I 0.05 0.05 0.22 0.04 
II 0.11 0.99 0.83 0.95 
III 0.10 0.72 0.74 0.72 

UN 

0.3 
I 0.08 0.08 0.31 0.35 
II 0.11 0.96 0.77 0.86 
III 0.15 1.03 1.08 1.07 

0.7 
I 0.04 0.03 0.07  0.22 
II 0.18 1.45 1.42 1.56 
III 0.30 2.33 2.36 2.37 

Notes: See Table 1 for a description of the mean configurations; CS = compound symmetric; AR-1 = first-order 
autoregressive; UN = unstructured; ρ = correlation parameter; UN = unstructured mean and covariance; STUN = 
structured mean and unstructured covariance; STCS = structured mean and CS covariance; STAR = structured 
mean and AR-1 covariance. Numbers in bold correspond to bias and error values of DA procedures for which the 
mean and covariance structures are correctly specified. 
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Table 4: Average standardized MSE and Bias by Covariance Structure, Magnitude of Correlation and 
Mean Configuration for p = 7 

Covariance 
Structure 

ρ  Mean 
Configuration 

MSE 

UN STUN STCS STAR 

CS 

0.3 
I 0.78 0.19 0.03 0.17 
II 0.90 1.67 1.37 1.77 
III 0.97 1.96 1.81 1.83 

0.7 
I 1.60 0.22 0.02 0.11 
II 2.72 7.68 7.31 8.56 
III 3.29 9.78 9.55 9.61 

AR(1) 

0.3 
I 0.84 0.31 0.08 0.04 
II 0.87 1.16 0.43 0.58 
III 0.83 0.87 0.59 0.58 

0.7 
I 1.56 0.31 0.08 0.03 
II 1.39 2.26 1.09 1.51 
III 1.42 0.96 0.70 0.70 

UN 

0.3 
I 1.23 0.33 0.23 0.45 
II 2.18 4.70 7.21 7.64 
III 2.54 15.77 11.50 11.56 

0.7 
I 1.73 0.24 0.03 0.15 
II 2.94 7.95 7.98 9.36 
III 4.40 14.93 15.59 15.84 

Covariance 
Structure 

ρ  Mean 
Configuration 

Bias 

UN STUN STCS STAR 

CS 

0.3 
I 0.06 0.06 0.04 0.27 
II 0.11 0.64 0.64 0.72 
III 0.15 0.86 0.86 0.87 

0.7 
I 0.04 0.03 0.02 0.23 
II 0.22 1.48 1.48 1.60 
III 0.31 2.00 2.00 2.00 

AR(1) 

0.3 
I 0.10 0.10 0.14 0.07 
II 0.10 0.44 0.34 0.41 
III 0.11 0.48 0.48 0.48 

0.7 
I 0.06 0.06 0.20 0.04 
II 0.09 0.72 0.57 0.67 
III 0.09 0.51 0.54 0.51 

UN 

0.3 
I 0.04 0.04 0.11 0.29 
II 0.24 1.51 1.55 1.68 
III 0.39 2.48 2.55 2.58 

0.7 
I 0.05 0.05 0.05 0.34 
II 0.14 0.85 0.85 0.94 
III 0.19 1.20 1.20 1.22 

Notes: See Table 1 for a description of the mean configurations; CS = compound symmetric; AR-1 = first-order 
autoregressive; UN = unstructured; ρ = correlation parameter; UN = unstructured mean and covariance; STUN = 
structured mean and unstructured covariance; STCS = structured mean and CS covariance; STAR = structured 
mean and AR-1 covariance. Numbers in bold correspond to bias and error values of DA procedures for which the 
mean and covariance structures are correctly specified. 
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Table 5: Average standardized MSE and Bias by Covariance Structure, Magnitude of Correlation and 
Mean Configuration for p = 9 

Covariance 
Structure 

ρ  Mean 
Configuration 

MSE 

UN STUN STCS STAR 

CS 

0.3 
I 1.33 0.31 0.03 0.25 
II 1.54 2.56 2.04 2.51 
III 1.64 2.88 2.53 2.59 

0.7 
I 2.18 0.29 0.01 0.11 
II 5.14 11.58 10.97 12.40 
III 6.12 14.07 13.66 13.72 

AR(1) 

0.3 
I 1.19 0.47 0.07 0.04 
II 0.98 1.41 0.51 0.75 
III 1.40 1.38 0.74 0.78 

0.7 
I 2.17 0.46 0.07 0.02 
II 2.05 2.51 0.86 1.22 
III 2.03 1.27 0.69 0.70 

UN 

0.3 
I 1.95 0.47 0.09 0.33 
II 4.73 10.85 12.28 12.84 
III 6.85 35.01 30.47 30.74 

0.7 
I 2.86 0.37 0.01 0.12 
II 8.52 24.32 23.45 25.40 
III 10.07 32.21 31.44 32.00 

Covariance 
Structure 

ρ  Mean 
Configuration 

Bias 

UN STUN STCS STAR 

CS 

0.3 
I 0.07 0.07 0.03 0.33 
II 0.13 0.66 0.66 0.74 
III 0.16 0.84 0.84 0.85 

0.7 
I 0.03 0.03 0.02 0.22 
II 0.29 1.54 1.54 1.64 
III 0.37 1.96 1.96 1.96 

AR(1) 

0.3 
I 0.12 0.12 0.13 0.07 
II 0.09 0.41 0.31 0.40 
III 0.13 0.44 0.44 0.47 

0.7 
I 0.07 0.07 0.19 0.03 
II 0.09 0.58 0.43 0.51 
III 0.10 0.41 0.43 0.41 

UN 

0.3 
I 0.08 0.07 0.22 0.41 
II 0.32 1.46 1.63 1.67 
III 0.43 2.40 2.26 2.27 

0.7 
I 0.04 0.03 0.06 0.23 
II 0.43 2.26 2.25 2.35 
III 0.56 2.98 2.97 2.99 

Notes: See Table 1 for a description of the mean configurations; CS = compound symmetric; AR-1 = first-order 
autoregressive; UN = unstructured; ρ = correlation parameter; UN = unstructured mean and covariance; STUN = 
structured mean and unstructured covariance; STCS = structured mean and CS covariance; STAR = structured 
mean and AR-1 covariance; Numbers in bold correspond to bias and error values of DA procedures for which the 
mean and covariance structures are correctly specified. 
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Conclusion 
This research investigated the effects of RM 
mean and/or covariance structure 
misspecification on bias and error in DFCs for 
DA procedures based on parsimonious mean 
and/or covariance structures. As expected, the 
bias and error in the DFCs of the investigated 
procedures increased when the RM mean and/or 
covariance structures were misspecified. The 
average bias and error variation due to 
misspecification of the RM mean structure was 
greater than the average bias and error variation 
due to RM covariance structure misspecification 
for all of the investigated procedures. Although 
DA procedures based on parsimonious RM 
mean and covariance structures had negligible 
bias when the mean and covariances are 
correctly specified, UN DA procedure had the 
smallest bias when the data were sampled from a 
population with non-constant mean 
configuration.  

Based on the study findings, adopting a 
DA procedure based on unstructured mean 
vectors and covariance matrices when the 
researcher has prior knowledge to suggest that 
the mean longitudinal profile for each group will 
change across the repeated measures occasions 
is recommended. If the mean longitudinal profile 
in each group is not expected to increase or 
decrease across the measurement occasions, then 
either the STCS or STAR procedure are 
recommended because they require estimation of 
the fewer number of parameters, although any of 
the procedures can be expected to perform well 
in terms of both bias and error variation.  

To reduce the effect of mean and/or 
covariance structure misspecification on bias 
and error in the DFCs, preliminary tests of 
model fit could be undertaken before adopting a 
DDA procedure for RM data. Graphical 
exploration of the data, likelihood ratio tests, or 
penalized log-likelihood measures like the 
Akaike information criterion have all been 
proposed to guide the specification of mean and 
covariance structures (Fitzmaurice, Laird & 
Ware, 2004) 
 
Study Limitations 

This research focused on normally 
distributed data. The impact of mean and/or 
covariance misspecification on bias and error in 

the DFCs when data are sampled from non-
normal distribution has not been investigated. 
Although mild departures from multivariate non-
normality are known to have little effect on 
classification accuracy of classical DA 
procedure (Ashikaga & Chang, 1981), 
classification accuracy can be severely affected 
under large departures (Lachenbruch, Sneeringer 
& Revo, 1973; Baron, 1991; McLachlan, 1992). 
Inferences about DFCs of the linear DA 
procedures may also be affected by the degree of 
departure from the assumption of multivariate 
normality (McLachlan, 1992).  

The DA procedures considered in this 
manuscript also focused only on complete data, 
an assumption which may not be satisfied in RM 
studies, which are often characterized by 
missing observations and unbalanced 
measurements occasions (Fairclough, et al., 
1998). In the simulation study, the RM variances 
were assumed to be constant across variables 
and groups. Linear DA procedures rest on the 
assumption of covariance homogeneity (Huberty 
& Olejnik, 2006). Departures from this 
assumption may result in reduced classification 
accuracy (Solberg, 1988). DFCs have been 
shown to be relatively robust to violation of this 
assumption when the data are normally 
distributed (Owen & Chmielewski, 1985), but it 
is not known if this robustness will continue to 
be evident when the covariance and/or mean 
vector is misspecified. 
 
Future Research 

A number of opportunities for future 
research exist in the development of DDA 
procedures for RM data. Although several 
studies have examined the effects of population 
distribution on classification accuracy, there is 
limited investigation of the effects of population 
distribution and other data characteristics on bias 
and error in DFCs. Existing studies in this area 
have only focused on the effects of sample size, 
number of outcome variables, and mean 
configuration on bias and variation in DFCs 
when data were sampled from normally 
distributed data (Williams & Titus, 1991; Owen 
& Chmielewski, 1985). This study investigated 
DA procedures based on constant mean vectors 
and/or structured covariances. However, the 
assumption of a constant repeated measures 
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group mean structure may not be tenable when 
the interest is in the assessment of the relative 
importance of measurement occasions that 
discriminate between groups. DA procedures 
based on non-constant mean vectors and CS or 
AR-1 covariance structures can be further 
investigated. These procedures which assume 
non-constant mean configurations and 
parsimonious structures will be useful for 
assessing the relative importance of information 
collected at each measurement occasions in 
univariate repeated measures studies. 
 
Summary 

Although the adoption of a DA 
procedure based on a parsimonious mean and/or 
covariance structure can reduce the number of 
parameters to estimate, which is beneficial when 
sample size is small (Roy & Khattree, 2005a), 
this study shows that bias and error variation in 
the DFCs can be large, particularly when there is 
misspecification of the RM mean structure. A 
researcher’s choice of a DA procedure for RM 
data is dependent, in part, on the trade-off 
between parsimony in parameter estimation and 
bias and/or error in the DFCs. 
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Appendix 
As described, more details about ML estimation 
of the coefficients of STAR procedure is 
provided here. In (8), 
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where Wu,k-1k is the (k-1,k)th element of Wu (u = 
0,…,6) and k = 1,…,p. 

In these equations,  
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Introduction 
Factor score estimates are computed when 
individual scores representing the factors of a 
model are interesting. This can be the case in 
personnel selection or in educational settings 
where individuals are to be compared with 
respect to their scores. Thus, although latent 
variables might be of interest in factor analysis 
and structural equation modeling, some 
applications are still based on the concrete 
scores of individuals; it is for this reason that 
factor score estimates are of interest for applied 
researchers. It should be noted that although 
factor score estimates are termed estimates, they 
are not estimates in the usual sense because 
there are no true values that may be 
approximated by the estimates (Schönemann & 
Steiger, 1976).  

The term factor score estimates denotes 
the aim to construct scores that represent the 
unknown factors in an optimal way. It follows 
from this reasoning that it is necessary to 
evaluate the quality of the factor score estimates 
(Gorsuch, 1983). There are two well-known  
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indices that allow for an evaluation of factor 
score indeterminacy: The multiple correlation ρ 
or the squared multiple correlation ρ² of the 
factor with the measured variables and the 
minimum correlation between two sets of factor 
score estimates of the same solution, 2ρ² − 1 
(Grice, 2001; Green, 1976; Guttman, 1955; 
Schönemann, 1971). Additional interesting 
possibilities for the evaluation of different factor 
score estimates with respect to their determinacy 
can be found in Krijnen (2006).  

Although the computation of factor 
score estimates is also possible for confirmatory 
factor analysis (CFA) and specific methods have 
been developed for this purpose (Beauducel & 
Rabe, 2009), most applications and discussions 
of factor score indeterminacy occur in the 
context of exploratory factor analysis. 
Beauducel and Rabe (2009) present a new type 
of factor score estimate representing specific 
aspects of a CFA model (e.g., parts of a loading 
matrix), whereas this present study investigates 
two different methods to calculate factor score 
indeterminacy. 

A difference between exploratory factor 
analysis and CFA is that in CFA the loadings of 
the variables and the correlations between 
factors can be specified according to theoretical 
assumptions. When the model assumptions are 
correct, fit indices would indicate that the model 
fits the data. However, small amounts of model-
misspecification do not lead to model rejection 
according to many general rules (Barrett, 2007; 
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Fan & Sivo, 2007; Beauducel & Wittmann, 
2005; Marsh, Hau & Wen, 2004; Hu & Bentler, 
1999). As a consequence, model parameters can 
be over- and/or under-estimated not only 
because of sampling error, but also because of a 
difference between the model parameters and 
the population parameters.  

There is a discussion on the size of 
difference between model and data that might be 
regarded as acceptable (Marsh, et al., 2004; 
Barrett, 2007), but a small difference between 
the covariance matrix implied by the model and 
the empirical covariance matrix is accepted by 
many researchers in structural equation 
modeling. A difference between model and data 
could also occur in exploratory factor analysis, 
but the only way to obtain model 
misspecification in this context is over- or 
under-extraction of factors. Nevertheless, this 
article focuses on factor score indeterminacy as 
it is calculated from CFA with correctly and 
misspecified model parameters, because 
indeterminacy has rarely been evaluated in this 
context. A simulation study was performed in 
order to investigate the effects of sampling error 
and model misspecification on factor score 
indeterminacy. 
 
The Calculation of ρ or ρ² 

It should be noted that there are two 
different ways to calculate indeterminacy, often 
referred to as ρ, the correlation between the 
variables and the factor (Grice, 2001). In order 
to present the calculation of ρ or ρ², the common 
factor model is described first. The common 
factor model assumes that the observations are 
generated by 
 

X = ΛF + E,                         (1) 
 
where X is the random vector of observations of 
order p, F the random vector with factor scores 
of order q, E the unobservable random error 
vector of order p, and Λ the factor pattern matrix 
of order p by q. The observations X, the factor 
scores F, and the error vectors E are assumed to 
have an expectation zero (ε[X] = 0, ε[F] = 0, 
ε[E] = 0). The covariance between the factor 
scores and the error scores is assumed to be zero 
(Cov[F, E] = 0). The standard deviation of F is 

one, the expectation of the covariance of the 
observed variables is Σ (ε[XX´] = Σ). The 
covariance matrix Σ can be decomposed by 
 

Σ = ΛΦΛ´ + Ψ2,                    (2) 
 
where Φ represents the q by q factor correlation 
matrix and Ψ2 the p by p covariance matrix 
between the observed variables X and the error 
scores E (Cov[X, E]= Ψ2) and Ψ2 also 
represents the covariance matrix of the error 
scores E (Cov[E, E]= Ψ2). Ψ2 is generally 
assumed to be a diagonal matrix and it will be 
assumed herein that it contains only positive 
values. In order to investigate CFA modelling as 
it often occurs in empirical research, it was, 
however, decided also to allow for some non-
diagonal elements of Ψ2. 

The factor score indeterminacy ρ, the 
multiple correlation of the variables with the 
factor can be described on the basis of 
Thurstone’s (1935) regression score estimate, 
which is the best linear factor score estimate 
(Krijnen, Wansbeek & Ten Berge, 1996). The 
covariances of the factors with the best linear 
factor score estimates are given by 
 

)Σdiag()diag( ΛΦ1−= ´´ FXFF
^

.    (3) 

 
It follows from equation 1 that it is possible to 
insert ΦΛ´ for FX´ into equation 3. Moreover, it 
is possible to standardize the covariances of the 
factors with the best linear factor score estimates 
in order to obtain the correlations. This yields 
 

´

´ ´

´

^
F F
ΦΛ Σ Φ

Φ

− − −

−

=

=

1 1 1/ 2

1 1/ 2

diag( )

diag( ΛΦ)diag( Λ Σ ΛΦ)

diag( Λ Σ ΛΦ)
 

(4) 
 
so that the diagonal elements in the left hand 
side of equation 4 contain the correlations of the 
best linear factor score estimates with the 
factors. Standardizing F is not necessary, 
because it has by definition a standard deviation 
of one. Because the best linear factor score 
estimate is the best linear combination of the 
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measured variables in order to estimate the 
factor, the correlations in equation 4 also 
represent the multiple correlations of the 
measured variables with the factors. 

When a factor model has a perfect fit, Σ, 
the expectation of the covariance matrix of 
observed variables, which is calculated as the 
covariance matrix reproduced from the model 
parameters, and S, the empirical covariance 
matrix of the observed variables, are equal. 
Nevertheless, in the context of CFA, small 
differences between S and Σ regularly occur. 
This is always the case when the Root Mean 
Square Residual (RMR) is greater than zero, 
because this index describes the difference 
between these two covariance matrices. When a 
relevant difference between S and Σ occurs, one 
has to choose between these two covariance 
matrices for the calculation of factor score 
indeterminacy. The choice is to calculate 
indeterminacy according to equation 4 or to use 
the empirical covariance matrix S as in 
 

21 /´´ ΛΦ)diag()diag( 1−= SFF
^

ΦΛ .    (5) 

 
The calculation of factor score 

indeterminacy by means of the sample 
covariance matrix S has been presented by 
Heermann (1963), Gorsuch (1983) and Grice 
(2001). The calculation of indeterminacy by 
means of the reproduced covariance matrix, 
which is based on the estimated population 
parameters of the model, is presented in Mulaik 
and McDonald (1978) and in McDonald (1981). 
Because both ways to calculate indeterminacy 
are referred to in the literature and no discussion 
of the possible differences is currently available, 
this study compares the two ways to calculate 
indeterminacy on the basis of a simulation study. 
The comparison of the coefficients of 
indeterminacy is especially relevant to CFA, 
where small amounts of model misspecification 
are sometimes accepted (Hu & Bentler, 1999). 
As in other studies (Grice, 2001), the results for 
the squared validity coefficients (ρ²) were 
presented in the following, because ρ² can be 
interpreted as the common variance between the 
factor and the corresponding factor score 
estimate. 

Methodology 
The aim of the simulation study was to compare 
the two above-mentioned coefficients of 
indeterminacy (equations 4 and 5) with respect 
to model misspecification and effects of 
sampling error. Therefore, the two versions of ρ² 
were first compared for the population CFA 
models and then for the corresponding CFA 
models based on samples derived from the 
population. 
 
Generation of Population CFA Models 

Population models based on 2, 4 and 8 
factors, moderate (0.40/0.60) and large 
(0.60/0.80) salient loadings, with orthogonal and 
oblique factors (with interfactor correlations of 
0.30) were investigated. The population models 
were chosen in order to represent CFA models 
as they are often found in applied research. This 
explains why 2-, 4- and 8-factor models were 
investigated, as well as the size of the loadings 
and the moderate size of the interfactor 
correlations for the oblique models. In order to 
perform CFA modeling like in empirical 
research, it is necessary to investigate not only 
correctly specified models but also models with 
small amounts of model-misspecification. A 
common type of model-misspecification is the 
omission of correlated residuals (correlated error 
terms of observed variables). This type of 
model-misspecification is interesting in the 
present context, because it could be expected to 
have an impact on the loading size and thereby 
on the coefficients of indeterminacy. 

In the first step, the parameters of the 
correctly specified population models including 
correlated residuals were fixed to their intended 
values, then the corresponding population 
covariance matrices were reproduced from the 
model parameters (according to equation 2). For 
simplicity, the size of the model parameters was 
chosen in a way that ensures that the reproduced 
covariance matrices were correlation matrices. 
Finally, the population covariance matrices were 
used for CFA modeling in order to estimate the 
misspecified model parameters. The CFA 
modeling was performed with Mplus 3.11 by 
means of maximum likelihood estimation. The 
salient loadings were freely estimated, the non-
salient loadings were fixed to zero, the variances 
of the factors were fixed to one and the 
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correlations of all residuals were fixed to zero in 
the misspecified models (the variance of the 
residuals was freely estimated). For the 
orthogonal models the correlations between the 
factors were fixed to zero, for the oblique 
models they were freely estimated. 

Table 1 contains the correctly specified 
and the misspecified population loadings for the 
0.40/0.60 (moderate loadings) condition and for 
the 0.60/0.80 (large loadings) condition for the 
orthogonal two-factor models based on the 
population covariance matrices including 
correlated residuals (the correlations between the 
residuals are presented at the bottom of Table 1). 

Table 2 contains the corresponding 
parameters for the oblique models. The 
misspecified models would be accepted 
according to conventional cut-off criteria for fit 
indices (e.g., Hu & Bentler, 1999). It was 
intended to generate small and generally 
accepted amounts of model-misspecification, so 
that even the misspecified models investigated 
here represent models as they might be 
published in empirical research. Nevertheless, 
the omission of the correlated residuals leads to 
small errors with respect to the loading size both 
in the orthogonal and in the oblique model (see 
Tables 1 and 2). The population parameters for 
the orthogonal and oblique four- and eight-factor 
models would be identical to the corresponding 
parameters presented in Table 1 and 2 so that 
they are not presented. 

Another type of model misspecification 
with an impact on the loading size and thereby 
on the coefficients of indeterminacy occurs 
when equality constraints are imposed on 
loadings that are unequal in the population. In 
order to base the results of the present 
simulation study on more than one type of 
model misspecification, misspecifications 
resulting from equality constraints on the 
loadings were also investigated. Again, the 
parameters of the correctly specified models 
were fixed in the first step and then the 
corresponding population covariance matrices 
were calculated from the model parameters. 
Finally, these population covariance matrices 
were used for CFA modeling with misspecified 
parameters. Again, the model parameters were 
chosen in a way to ensure that the reproduced 
covariance matrices were correlation matrices. 

The misspecified models were again estimated 
by means of maximum likelihood estimation. 

The variances of the factors were 
constrained to be one, the non-salient loadings 
were fixed to zero, the unconstrained salient 
loadings were freely estimated, and the 
covariance matrix of the error terms was 
constrained to be diagonal (there were no 
correlated residuals in these models, but the 
variances of the residuals were freely estimated). 
For the orthogonal models the correlations 
between the factors were fixed to zero, for the 
oblique models they were freely estimated. The 
misspecification for the two-factor model was 
introduced by means of equality constraints for 
each of the smaller loadings of the variables v1-
v4 on the first factor with each of the larger 
loadings v13-v16 on the second factor. For the 
four- and eight-factor models, similar equality 
constraints were imposed on the loadings of 
each pair of factors. 

Table 3 contains the correctly specified 
and the misspecified population loadings for the 
0.40/0.60 (moderate loadings) condition and for 
the 0.60/0.80 (large loadings) condition for the 
orthogonal two-factor models. The equality of 
loadings resulting from the equality constraints 
was not perfect in the completely standardized 
solutions (it was perfect in the unstandardized 
solutions). Not surprisingly, the fit of the 
correctly specified population models was 
perfect, but even the misspecified models fit the 
data very well (see Table 3). The misspecified 
population model would not be rejected 
according to conventional fit criteria (Hu & 
Bentler, 1999). The population loadings were 
the same for the four- and eight-factor models 
and are therefore not presented. 

The population loadings for the 
correctly specified and the misspecified oblique 
two-factor models are presented in Table 4. As 
before, the model misspecification was 
introduced by means of equality constraints on 
loadings that were not equal in the population 
(see Table 4). Again an evaluation of the model 
fit of the misspecified models would not lead to 
model rejection for conventional criteria (Hu & 
Bentler, 1999). 
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Table 1: Population Loadings for the Orthogonal Two-Factor Models 
(Completely Standardized Solution) 

 

 Moderate Loadings Large Loadings 

 
Without Model 

Misspecification a 
With Model 

Misspecification b 
Without Model 

Misspecification a 
With Model 

Misspecification c 

 F1 F2 F1 F2 F1 F2 F1 F2 

x1 .400 - .414 - .600 - .607 - 

x2 .400 - .414 - .600 - .607 - 

x3 .400 - .392 - .600 - .596 - 

x4 .400 - .392 - .600 - .596 - 

x5 .600 - .584 - .800 - .793 - 

x6 .600 - .584 - .800 - .793 - 

x7 .600 - .637 - .800 - .816 - 

x8 .600 - .637 - .800 - .816 - 

x9 - .400 - .414 - .600 - .607 

x10 - .400 - .414 - .600 - .607 

x11 - .400 - .392 - .600 - .596 

x12 - .400 - .392 - .600 - .596 

x13 - .600 - .584 - .800 - .793 

x14 - .600 - .584 - .800 - .793 

x15 - .600 - .637 - .800 - .816 

x16 - .600 - .637 - .800 - .816 

Correlated Residuals 

x1 with x2 .126  .000  .096  .000  

x7 with x8 .096  .000  .054  .000  

x9 with x10  .126  .000  .096  .000 

x15 with x16  .096  .000  .054  .000 

Notes: a The model fit for the population model without misspecification is perfect by definition: χ²(100) = 
0.00; b The χ²-test for the misspecified model with moderate loadings is non-significant even for the largest 
sample size used in the simulation study (N=750): χ²(104) = 50.93; Comparative Fit Index = 0.99; Root Mean 
Square Error of Approximation = 0.026; Standardized Root Mean Square Residual = 0.012. c The χ²-test for 
the misspecified model with large loadings is non-significant even for the largest sample size used in the 
simulation study (N=750): χ²(104)= 51.18; Comparative Fit Index = 0.99; Root Mean Square Error of 
Approximation = 0.026; Standardized Root Mean Square Residual = 0.012. 
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Table 2: Population Loadings for the Oblique Two-Factor Models 
(Completely Standardized Solution) 

 

 Moderate Loadings Large Loadings 

 
Without Model 

Misspecification a 
With Model 

Misspecification b 
Without Model 

Misspecification a 
With Model 

Misspecification c 

 F1 F2 F1 F2 F1 F2 F1 F2 

x1 .400 - .414 - .600 - .607 - 

x2 .400 - .414 - .600 - .607 - 

x3 .400 - .392 - .600 - .596 - 

x4 .400 - .392 - .600 - .596 - 

x5 .600 - .585 - .800 - .793 - 

x6 .600 - .585 - .800 - .793 - 

x7 .600 - .636 - .800 - .815 - 

x8 .600 - .636 - .800 - .815 - 

x9 - .400 - .414 - .600 - .607 

x10 - .400 - .414 - .600 - .607 

x11 - .400 - .392 - .600 - .596 

x12 - .400 - .392 - .600 - .596 

x13 - .600 - .585 - .800 - .793 

x14 - .600 - .585 - .800 - .793 

x15 - .600 - .636 - .800 - .815 

x16 - .600 - .636 - .800 - .815 

Interfactor-
Correlation 

.300 .289 .300 .297 

Correlated Residuals 

x1 with x2 .126  .000  .096  .000  

x7 with x8 .096  .000  .054  .000  

x9 with x10  .126  .000  .096  .000 

x15 with x16  .096  .000  .054  .000 

Notes: a The model fit for the population model without misspecification is perfect by definition: χ²(99) = 
0.00; b The χ²-test for the misspecified model with moderate loadings is non-significant even for the largest 
sample size used in the simulation study (N=750): χ²(103) = 51.40; Comparative Fit Index = 0.97; Root Mean 
Square Error of Approximation = 0.026; Standardized Root Mean Square Residual = 0.017. c The χ²-test for 
the misspecified model with large loadings is non-significant even for the largest sample size used in the 
simulation study (N=750): χ²(103)= 51.35; Comparative Fit Index = 0.99; Root Mean Square Error of 
Approximation = 0.026; Standardized Root Mean Square Residual = 0.012. 
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Table 3: Population Loadings for the Orthogonal Two-Factor Models 
(Completely Standardized Solution) 

 

 Moderate Loadings Large Loadings 

 
Without Model 

Misspecification a 
With Model 

Misspecification b 
Without Model 

Misspecification a 
With Model 

Misspecification c 

 F1 F2 F1 F2 F1 F2 F1 F2 

x1 .400 - .491 - .60 - .668 - 

x2 .400 - .491 - .60 - .668 - 

x3 .400 - .491 - .60 - .668 - 

x4 .400 - .491 - .60 - .668 - 

x5 .600 - .622 - .80 - .826 - 

x6 .600 - .622 - .80 - .826 - 

x7 .600 - .622 - .80 - .826 - 

x8 .600 - .622 - .80 - .826 - 

x9 - .400 - .384 - .60 - .569 

x10 - .400 - .384 - .60 - .569 

x11 - .400 - .384 - .60 - .569 

x12 - .400 - .384 - .60 - .569 

x13 - .600 - .535 - .80 - .765 

x14 - .600 - .535 - .80 - .765 

x15 - .600 - .535 - .80 - .765 

x16 - .600 - .535 - .80 - .765 

Notes: a The model fit for the population model without misspecification is perfect by definition: χ²(104) = 
0.00; b The χ²-test for the misspecified model without sampling error and moderate loadings is non-significant 
even for the largest sample size used in the simulation study (N=750): χ²(108) = 40.13; Comparative Fit 
Index = 1.00; Root Mean Square Error of Approximation = 0.000; Standardized Root Mean Square Residual 
= 0.051. c The χ²-test for the misspecified model without sampling error and large loadings is non-significant 
even for the largest sample size used in the simulation study (N=750): χ²(108) = 38.37; Comparative Fit 
Index = 1.00; Root Mean Square Error of Approximation = 0.000; Standardized Root Mean Square Residual 
= 0.085. The loadings resulting from an equality constraint are given in bold face. The values in brackets at 
the bottom of the Table are the differences between ρ² based on the unbiased loadings and the corresponding 
ρ² based on the biased loadings from the misspecified model. 
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Table 4: Population Loadings for the Oblique Two-Factor Models 
(Completely Standardized Solution) 

 

 Moderate Loadings Large Loadings 

 
Without Model 

Misspecification a 
With Model 

Misspecification b 
Without Model 

Misspecification a 
With Model 

Misspecification c 

 F1 F2 F1 F2 F1 F2 F1 F2 

x1 .400 - .491 - .60 - .668 - 

x2 .400 - .491 - .60 - .668 - 

x3 .400 - .491 - .60 - .668 - 

x4 .400 - .491 - .60 - .668 - 

x5 .600 - .620 - .80 - .825 - 

x6 .600 - .620 - .80 - .825 - 

x7 .600 - .620 - .80 - .825 - 

x8 .600 - .620 - .80 - .825 - 

x9 - .400 - .385 - .60 - .570 

x10 - .400 - .385 - .60 - .570 

x11 - .400 - .385 - .60 - .570 

x12 - .400 - .385 - .60 - .570 

x13 - .600 - .534 - .80 - .765 

x14 - .600 - .534 - .80 - .765 

x15 - .600 - .534 - .80 - .765 

x16 - .600 - .534 - .80 - .765 

Interfactor-
Correlation 

.300 .295 .300 .293 

Notes: a The model fit for the population model without misspecification is perfect by definition: χ²(103) = 
0.00; b The χ²-test for the misspecified model without sampling error and moderate loadings is non-significant 
even for the largest sample size used in the simulation study (N=750): χ²(107) = 41.53; Comparative Fit 
Index = 1.00; Root Mean Square Error of Approximation = .000; Standardized Root Mean Square Residual = 
0.050. c The χ²-test for the misspecified model without sampling error and large loadings is non-significant 
even for the largest sample size used in the simulation study (N=750): χ²(107) = 40.66; Comparative Fit 
Index = 1.00; Root Mean Square Error of Approximation = 0.000; Standardized Root Mean Square Residual 
= 0.084. The loadings resulting from an equality constraint are given in bold face. The values in brackets at 
the bottom of the Table are the differences between ρ² based on the unbiased loadings and the corresponding 
ρ² based on the biased loadings from the misspecified model. 
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Generation of Populations of Cases 
In order to generate populations of cases 

corresponding to the population correlation 
matrices implied by the correctly specified 
population models, four population data sets of 
variables each containing normally distributed, 
z-standardized random numbers for 375,000 
cases were computed and aggregated with SPSS 
Version 14.  

The first set of 375,000 cases was 
computed for the orthogonal models with 
correlated residuals and the second set was 
computed for the oblique models with correlated 
residuals. The third set was computed for the 
orthogonal models without correlated residuals 
and the fourth set for the oblique models without 
correlated residuals. In all population data sets, 
the random variables were orthogonalized by 
means of principal component analysis with 
subsequent Varimax-rotation before aggregation 
in order to exclude that even small sampling 
errors might affect the population parameters.  

Eight orthogonal variables were fixed as 
orthogonal population factor scores fi for the 
orthogonal models, 64 orthogonal variables were 
fixed as residual or error variances ej and 16 
variables were fixed as common variables ck 
representing the correlated residuals. From these 
orthogonal random variables eight correlated 
variables per factor were generated. The 
generation of the variables x1 and x2 for the 
orthogonal models with moderate factor 
loadings can be described by means of 
 

xj = .400.5 fi  + .600.5(.85ej + .15ck), 
for i = 1; j = 1, 2, k = 1.              (6) 

 
As observed from equation 6, variables x1 and x2 
share the common variable c1 and therefore have 
correlated residuals (the error term is in 
brackets). Moreover, the weights in equation 6 
correspond to the square-root of the (moderate) 
factor loadings presented in Table 1. Thus, the 
population loadings presented in Table 1 are the 
(squared) weights for the aggregation of the 
population factor scores in order to compute the 
population variables. The corresponding weights 
of the population residuals were computed from 
the communalities (h²) by means of w = (1 − 
h²)0.5; because each variable xj has only one non-
zero population loading on one factor fi, the 

weight for fi in equation 6 represents h, the 
square-root of the communality. Accordingly, 
the weight w for the residual in equation 6 was 
calculated as w = (1 – (0.400.5)2)0.5 = 0.600.5. The 
generation of the variables x3 and x4 without 
correlated residuals can be described by means 
of 

xj = 0.400.5 fi  + 0.600.5ej, 
for i = 1; j = 3, 4.                    (7) 

 
The equation for the generation of the variables 
x5 and x6 is 
 

xj = 0.600.5 fi  + 0.400.5ej, 
for i = 1; j = 5, 6;                    (8) 

 
and the equation for the variables x7 and x8 is 
 

xj = 0.600.5 fi  + 0.400.5(.85ej + .15ck), 
for i = 1; j = 7, 8, k = 2.            (9) 

 
Equations 6-9 describe the generation of the 
eight variables loading on the first factor (see 
Table 1). The equations for the remaining 
variables loading on factors 2-8 contain the same 
weights (and different subscripts) and are 
therefore not presented here. By this procedure 
64 variables with moderate loadings on eight 
factors were generated. The equations describing 
the generation of variables with large loadings 
on orthogonal factors and variables with 
correlated residuals are 
 

xj = 0.600.5 fi  + 0.400.5(0.85ej + 0.15ck), 
for i = 1; j = 1, 2, k = 1,           (10) 

 
xj = 0.600.5 fi  + 0.400.5ej, 

for i = 1; j = 3, 4,                 (11) 
 

xj = 0.800.5 fi  + 0.200.5ej, 
for i = 1; j = 5, 6,                 (12) 

and 
xj = 0.800.5 fi  + 0.200.5(0.85ej + 0.15ck), 

for i = 1; j = 7, 8, k = 2.         (13) 
 
For the oblique models correlated factor scores 
were computed by means of aggregation of 
orthogonal random variables. The computation 
of the eight oblique population factor scores oi 
from the z-standardized random variables zi and 



MISSPECIFICATION AND INDETERMINACY OF CONFIRMATORY FACTOR MODELS 

592 
 

a z-standardized common random variable v can 
be described as 
 

oi = 0.300.5 v + 0.700.5 zi,      for i = 1 to 8. 
(14) 

 
Eight oblique population factor scores 

were computed as a basis for the oblique two-, 
four- and eight-factor models. It follows from 
equation 14 that the interfactor-correlations were 
0.30 in the population, according to the weight 
of the common variable v (see Beauducel & 
Wittmann, 2005 for more details on the 
aggregation of random variables). The oblique 
factor scores oi were inserted instead of the 
orthogonal factor scores fi into equations 6-9 in 
order to generate the variables for the oblique 
factor models with moderate loadings and 
correlated residuals and in equations 10-13 in 
order to generate the variables for the oblique 
models with large loadings and correlated 
residuals.  

The two-factor models were based on o1 
and o2, the four-factor models on o1-o4, and the 
eight factor models on o1-o8. For the orthogonal 
models without correlated residuals, the 64 
variables were generated only on the basis of fi 
and ei, without the common terms ck, so that the 
equations for the models contained only the 
weights as in equations 7, 8, 11 and 12 (see 
Table 3, for the corresponding loadings). For the 
oblique models without correlated residuals the 
equations were based on the random variables oi 
and ei and they had also the same weights as 
equations 7, 8, 11 and 12 (see Table 4, for the 
corresponding loadings). 

Subsamples of variables were analyzed 
for the two- and four-factor models. The two-
factor models were based on the variables x1-x16 
(see Table 1), the four-factor models were based 
on the variables x1-x32 and the eight-factor 
models were based on the 64 variables. The two 
types of models and their corresponding 
misspecifications (omitted correlations between 
residuals, specification of equal loadings) were 
analyzed separately, in order to allow for a 
separate interpretation of the results.  

For the analysis of the correctly and 
misspecified models based on population data 
with correlated residuals, the results from the 
population data sets 1 and 2 were combined in 

order to allow for a combined analysis of 
orthogonal and oblique models. The conditions 
for this analysis were computation method of 
indeterminacy (according to equations 4 and 5), 
orthogonality (orthogonal versus oblique), 
number of factors (2, 4 and 8 factors), loading 
size (moderate versus large loadings), and 
number of cases or sample size (250, 500 and 
750 cases).  

For each of these 36 conditions 500 
samples were analyzed by means of CFA so that 
the first simulation study was based on 18,000 
samples. For each sample one CFA with correct 
model specification and one CFA with incorrect 
model specification was performed. For analysis 
of the correctly and misspecified models based 
on population data without correlated residuals, 
the population data sets 3 and 4 were combined 
in order to allow for a combined analysis of 
orthogonal and oblique models. The conditions 
(computation method, orthogonality, number of 
factors, loading size and number of cases) were 
exactly as in the analysis of the models with 
correlated residuals. 

For the correctly specified models, the 
difference between the population ρ² of the 
correctly specified models and the samples ρ² of 
the corresponding correctly specified models 
(same number of factors, same loading size, etc.) 
was calculated and averaged across factors.  

For the misspecified models, the 
difference between the population ρ² of the 
misspecified models and the samples ρ² of the 
corresponding misspecified models (same 
number of factors, same loading size, etc.) was 
calculated and averaged across factors. The ρ²-
differences were calculated for both computation 
methods (see equation 4 and 5) and entered into 
repeated measures ANOVA. 

In order to limit the results to those that 
are interesting in the present context, only main-
effects and interactions involving the factor 
Computation-method are reported. Due to the 
very large sample size (6,000 cases) all reported 
effects were significant at p < 0.001 and only 
effects with large effect sizes (partial η² > 0.20) 
are reported. The effect sizes of the within-
subjects effects were based on Greenhouse-
Geisser corrected univariate effects. 
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Results 
Table 5 contains the mean coefficients of 
indeterminacy for the different population 
models. The coefficients of indeterminacy were 
averaged for the factors with odd and even 
numbers, because the model misspecification 
based on equality constraints imposed on the 
loading pattern had different effects on factors 
with odd and even numbers. The coefficients of 
indeterminacy were different for the correctly 
and the misspecified population models (see 
Table 5). 

For the population models based on 
correlated residuals the coefficients of 
indeterminacy were larger for all misspecified 
models than for the correctly specified models. 
For these models, the effect of misspecification 
on ρ² was identical for factors with odd and even 
numbers. For the models without correlated 
residuals, the effects of model-misspecification 
on ρ² were different for factors with odd and 
even numbers: For factors with odd numbers ρ² 
was larger than in the correctly specified models 
and  for  factors  with  even  numbers  ρ²  was 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

smaller than in the correctly specified models. 
Overall, the population models show some 
variation of ρ², which might be regarded as a 
basis for an investigation of ρ² in the samples. 

The differences between the population 
ρ² and the corresponding samples ρ² for the 
models based on correlated residuals were 
entered into a repeated measures ANOVA with 
Computation method (two levels, based on 
equations 4 and 5), Misspecification (correctly 
specified versus misspecified) and Number of 
factors (three levels) as within-subjects factors 
and Number of cases (three levels), Loading-size 
(two levels), and Obliqueness (orthogonal versus 
oblique) as between subjects factors. 
Misspecification was considered as within-
subjects factor, because the same data sets were 
used for the correctly specified models and for 
the misspecified models. It was decided to 
consider Number of factors as within-subjects 
factor, because the four-factor models include 
the two factors of the two-factor models and the 
eight-factor models include the four factors of 
the four-factors  model.  A  large  main  effect 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Mean population ρ² for the Two Different Calculation Methods 
 

According To Equation 4 According To Equation 5 

Model Type Loading Size Specification Odd Factors Even Factors Odd Factors Even Factors 

With 
Correlated 
Residuals 

.40 

Correctly 
Specified 

.738 .738 .751 .751 

Misspecified .761 .761 .761 .761 

.60 

Correctly 
Specified 

.897 .897 .903 .903 

Misspecified .906 .906 .906 .906 

Without 
Correlated 
Residuals 

.40 

Correctly 
Specified 

.751 .751 .751 .751 

Misspecified .791 .697 .904 .623 

.60 

Correctly 
Specified 

.903 .903 .903 .903 

Misspecified .922 .883 1.011 .823 

Notes: The column odd factors contains the mean ρ² for the factors with odd numbers, the column even factors 
contains the mean ρ² for the factors with even numbers. 
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occurred for Computation method (η²= 0.94). 
The mean ρ²-difference was 0.081 (SD= 0.068) 
when based on equation 4 and 0.171 (SD= 
0.094) when based on equation 5. Thus, the 
mean difference between ρ² in the population 
and in the samples was about twice as large 
when it was based on equation 5. This indicates 
that the empirical covariance matrix (used in 
equation 5) introduces a substantial amount of 
sampling error into ρ².  

A large effect size occurred for the 
interaction between computation method and 
number of factors (η²= 0.94). This interaction is 
mainly due to a larger increase of the ρ²-
difference with number of factors when ρ² is 
computed according to equation 5 (see Figure 
1a). Another large effect size occurs for the 
interaction of computation method and number 
of cases (η²= 0.81). This interaction is mainly 
due to a larger increase of the ρ²-difference with 
Number of cases when ρ² is computed according 
to equation 5 (see Figure 1b). Moreover, a large 
three-way interaction computation method x  
number of factors x number of cases occurred  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(η²= 0.83). This three-way-interaction occurs 
because the size of the two-way interaction 
computation method x Number of factors is 
larger for the small samples (250 cases) than for 
the large samples (750 cases). In fact, the mean 
difference between the ρ²-differences for the two 
computation methods is only 0.018 for the two-
factor models based on 750 cases and it is 0.304 
for the eight-factor models based on 250 cases.  

Finally, the interaction of computation 
method with Obliqueness is of relevant size (η²= 
0.43). The difference between the computation 
methods is smaller for the orthogonal models 
than for the oblique models. Although there is a 
substantial main effect for misspecification (η²= 
0.47), the size of the interaction between 
computation method and misspecification is 
moderate (η²= 0.16) and the interaction is 
extremely small in terms of mean differences: 
The difference between the ρ²-differences for 
the two computation methods is 0.092 for the 
correctly specified models and it is 0.089 for the 
misspecified models; thus, misspecification had 
no relevant effect on the difference between the 
computation methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: ρ²-Differences for the Two Computation Methods Based on the Data Sets with Correlated Residuals: 
a) for 2-, 4-, and 8-factor models; b) for 250, 500, and 750 cases 

 

eq. 4

eq. 5

Δρ² 

Number of Factors 

eq. 4
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Δρ²
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The differences between the population 
ρ² and the corresponding samples ρ² based on 
the models without correlated residuals were 
entered into a repeated measures ANOVA with 
the same factors as the ρ²-differences for the 
models based on correlated residuals. Again, a 
large main effect occurred for computation 
method (η² = 0.97), indicating that the mean ρ²-
difference between population and sample ρ² 
was considerably smaller when ρ² was computed 
according to equation 4.  

The mean ρ²-difference was only 0.01 
(SD = 0.01) when ρ² was computed according to 
equation 4 and it was 0.14 (SD = 0.09) when ρ² 
was computed according to equation 5. A 
substantial interaction of computation method 
with number of factors occurred (η² = 0.97). An 
inspection of this interaction reveals that the 
computation methods had similar ρ²-differences 
for the two-factor models, but that the 
computation method based on equation 5 
yielded much larger ρ²-differences in the eight-
factor models (see Figure 2a). Another 
substantial interaction occurred for computation 
method and number of cases (η²= 0.77), 
indicating that the ρ²-differences increased more 
with decreasing sample size when ρ² was 
computed according to equation 5 (see Figure 
2b). 

The effect size of the three-way 
interaction Computation method x Number of 
factors x Number of cases was also substantial 
(η²= 0.83). This relation of Number of factors 
and Number of cases with the Computation 
method can be described by the following result: 
The mean ρ²-differences were rather similar for 
both Computation methods when based on the 
two-factor models with 750 cases (their 
difference was 0.033). The mean differences 
were, however, very different for the 
computation methods when based on the eight-
factor models with 250 cases (their difference 
was 0.333). The ρ²-differences based on 
equation 5 were larger than the ρ²-differences 
based on equation 4 when the size of the 
loadings was larger (Computation method x 
Loading-size; η² = 0.59). The ρ²-differences 
based on equation 5 were also larger than the ρ²-
differences based on equation 4 for orthogonal 

models than for oblique models (Computation 
method x Obliqueness; η² = 0.92). The effect of 
model misspecification on the ρ²-differences for 
the two methods was, however, moderate (η² = 
0.17). For the correctly specified models the 
difference between the computation methods 
was slightly larger (0.125) than for the 
misspecified models (0.122). 
 

Conclusion 
This study compared two calculation methods of 
the indeterminacy coefficient ρ² (or ρ) that 
allows for the evaluation of factor score 
estimates. Thereby it should be investigated 
which method should be preferred when a CFA 
model is slightly misspecified, as is often the 
case. Therefore, the two calculation methods for 
indeterminacy were compared in correctly and 
misspecified CFA models.  

Correctly specified and misspecified 
models based on data sets with correlated 
residuals as well as on data sets without 
correlated residuals were investigated. For the 
models based on data sets with correlated 
residuals, the correlated residuals were not 
specified in order to generate misspecified 
models in addition to the correctly specified 
models. For the models based on data sets 
without correlated residuals misspecified models 
were generated by means of equality constraints 
imposed on unequal loadings.  

Two computation methods for 
coefficients of indeterminacy were investigated: 
The first method is based on the correlations or 
covariances of the observed variables 
reproduced from the model (equation 4), the 
second method (equation 5) is based on the 
empirical correlations or covariances of the 
observed variables. Because both the 
computation of ρ² by means of the reproduced 
covariance matrix (McDonald, 1974; Mulaik & 
McDonald, 1978) and the computation of ρ² by 
means of the sample covariance matrix 
(Gorsuch, 1983; Grice, 2001; Heermann, 1963) 
have been proposed, an investigation of the 
differences between these methods was regarded 
as important. Moreover, in case of model 
misspecification, it is clear that the covariance 
matrix reproduced from the model (Σ) contains 
some error. The errors due to model  
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misspecification are not present in the empirical 
covariance matrix (S), so that the computation 
based on S might have been expected to work 
well for misspecified models. Therefore, the two 
computation methods were investigated both in 
correctly as well as in misspecified models. 
However, the model misspecifications were 
moderate in order to represent models that might 
be accepted according to conventional fit criteria 
(Hu & Bentler, 1999). The reason for the 
investigation of models with small amounts of 
misspecification was that this allows some 
insight into the effects of model misspecification 
on ρ² that might occur in empirical research with 
a given amount of accepted misfit. Sample size 
(250, 500, 750 cases), number of factors (2, 4, 8 
factors), obliqueness (orthogonal versus 
correlated factors), and size of salient loadings 
(0.40/0.60 versus 0.60/0.80) were manipulated 
in the simulation study. The main limitations of 
the present simulation study are that only two 
types of model misspecification were explored 
and that the effects of severe model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 misspecification were not investigated. 
Nevertheless, the results of the simulation study 
shed some light on the effects of sampling error 
on ρ² for different types of correctly and 
misspecified CFA models. 

The difference between ρ² computed 
from the population and the samples was 
substantially smaller when ρ² was computed 
according to equation 4 (as can be seen from the 
main effect of Computation method). This result 
can be interpreted as a larger effect of sampling 
error on ρ² when computed according to 
equation 5, as might be expected from using the 
sample covariance matrix S in equation 5 instead 
of the population covariance matrix Σ. 

The interpretation that the use of S for 
the computation of ρ² introduces some sampling 
error into the coefficient is also supported by the 
interaction of computation method with sample 
size, indicating that the difference between the 
population ρ² and the sample ρ² was larger for 
smaller sample sizes, especially when ρ² was 

Figure 2: ρ²-Differences for the Two Computation Methods Based on the Data Sets Without Correlated Residuals: 
a) for 2-, 4-, and 8-factor models; b) for 250, 500, and 750 cases 
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computed according to equation 5 (based on S). 
Even in the misspecified models, when Σ suffers 
from the misspecification, due to its being 
reproduced from the (misspecified) model 
parameters, the mean differences between the 
populations ρ² and the samples ρ² was smaller 
when ρ² was computed on the basis of Σ 
(equation 4).  

Although the model misspecifications 
used in the present study were not very large, it 
is still possible that advantages of using S for the 
computation of ρ² (equation 5) might occur for 
extreme amounts of model misspecification. On 
the other hand, it seems rather unlikely that 
severely misspecified models would generally 
be accepted according to fit indexes and it might 
be regarded as problematic to base the results of 
a simulation study on models that should not 
occur in empirical research. The results of the 
present study are therefore taken as support for a 
computation of ρ² by means of the reproduced 
correlation or covariance matrix (equation 4). 
Moreover, it was found for the population 
models that effects of misspecification can result 
in serious over-estimation of ρ², so that the 
validity of factor score predictors might be over-
estimated, just because the respective models 
were incorrectly specified.  

Nevertheless, the effect of sampling 
error and model misspecification on ρ² found in 
this study should not discourage researchers to 
report indeterminacy coefficients when factor 
score estimates are computed from CFA models. 
It is necessary to report indeterminacy 
coefficients – otherwise the validity of the factor 
score estimates remains unknown. Of course, 
indeterminacy coefficients might be even more 
biased than reported here when a model is more 
seriously misspecified; the case of extreme 
misspecification was not investigated in this 
study because factor score estimates should not 
at all be computed for seriously misspecified 
CFA models, thus the question of the validity of 
such scores is irrelevant. 
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Two mixture distribution fitting methods based on maximizing the likelihood using generalized lambda 
distributions are presented. The fitting algorithms are demonstrated on various data and the strengths and 
weakness of the algorithms which can influence their use under different mixture modeling situations are 
discussed. The procedures described are available in GLDEX package in R. 
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Introduction 
Mixture distribution modeling is a substantial 
area of interest among statisticians; many works 
regarding fitting mixtures have appeared in the 
literature. Böhning and Seidel (2003) discussed 
the general strategy used in confronting various 
problems associated with mixture distribution 
modeling. Although there are generic works, 
such as finding initial values to ensure better 
optimization of the mixture fitting scheme 
(Karlis & Xekalaki, 2003) and finding the 
optimal number of components of mixtures 
(Miloslavsky & van der Laan, 2003), no work 
has been presented on using mixtures of the 
generalized Lambda distributions to fit multi-
modal data. This is an important development 
because the use of generalized Lambda 
distributions has advantages over traditional 
distributions such as Normal, Weibull and 
Exponential in the sense that they have 
overwhelmingly rich shapes and can handle a 
wide range of different data sets (Freimer, et al., 
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1988; Karian & Dudewicz, 2000; Okur, 1988; 
Su, 2010a, 2010b, 2005, 2007a, 2007b). Fitting 
a mixture of generalized Lambda distributions 
can therefore be very beneficial because it is 
much more efficient to fit distributions to data 
using a smaller range of distributions rather than 
choosing and comparing across a wide range of 
different combination of distributions.  

Though generalized Lambda 
distributions are flexible their uses are not as 
widespread; this may be due to the fact that 
these distributions are only explicitly defined by 
quantiles, thus, extensive numerical methods are 
required to perform standard calculations, such 
as finding the probability under the curve. As 
computing power continues to grow, maximum 
likelihood estimations conducted numerically 
may become more popular. This article 
discusses two different ways of fitting mixtures 
using generalized Lambda distributions (GλDs). 

 
Methodology 

The Ramberg-Schmeiser (1974) (RS) GλD is an 
extension of Tukey’s Lambda distribution 
(Hastings, Mosteller, Tukey & Windsor 1947). It 
is defined by its inverse distribution function: 
 

3 4λ λ
1

1

2

u (1 u)
F (u) λ

λ
− − −

= +        (1) 
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In (1), 10 ≤≤ u , λ2 ≠ 0 and λ1 ,λ2, λ3, λ4 are 
respectively the location, inverse scale and shape 
parameters of the generalized Lambda 
distribution GλD(λ1 ,λ2, λ3, λ4). Karian, 
Dudewicz and MacDonald (1996) noted that 
GλD is defined if and only if: 
 

3 4

2
λ 1 λ 1

3 4

λ
0

λ u λ (1 u)− − ≥
+ −

 for [0,1]u ∈ . 

(2) 
 
Another distribution known as FKML GλD also 
exists (Freimer, Kollia, Mudholkar, & Lin, 
1988). The FKML GλD can be written as: 
 

3 4λ λ

1 3 4
1

2

u 1 (1 u) 1

λ λ
F (u) λ

λ
−

− − −
−

= +  

(3) 
 
Under (2), 10 ≤≤ u  and λ1 ,λ2, λ3, λ4 are 
consistent with the interpretations in RS GλD, 
namely λ1 ,λ2 are the location and inverse scale 
parameters and λ3, λ4 are the shape parameters.  

The fundamental motivation for the 
development of FKML GλD is that the 
distribution is proper over all λ3 and λ4 (Freimer 
Mudholkar, Kollia & Lin, 1988). The only 
restriction on FKML GλD is that λ2 > 0.  

The most commonly used technique in 
mixture distributional fitting is maximum 
likelihood estimation. This is usually achieved 
by using the EM algorithm for explicitly defined 
probability functions such as the Normal, 
Gamma and Exponential. In the case of 
implicitly defined distributions such as the 
GλDs, it is possible to use two ways of 
estimating the parameters of the mixtures, the 
maximum likelihood estimation using the EM 
algorithm and the partitioned maximum 
likelihood method which utilizes the complete 
data log likelihood. Both methods are discussed 
below. 
 
GλDs Fitting Mixture Algorithm 

The fitting of mixture of two GλDs is 
completed using the following algorithm: 

Step 1 
Divide the data into two parts. This can 

be done using a variety of clustering methods. 
Practical experience has shown that clustering 
methods such as Clara and Fanny described in 
Kaufman and Rousseeuw (1990) worked well in 
a wide range of situations. However, any 
clustering method that gives a reasonable 
classification can be used. This step provides a 
starting value for p in the mixture distribution 
equation pf1+(1−p)f2, which will be optimized 
later. The Clara clustering method appears to 
work well for a wide variety of empirical data 
and all fitting results in this article uses this 
clustering method.  

To maximize the partition log likelihood 
this is all that is required. In the case of 
maximizing the log likelihood using EM 
algorithm, each partition of the data set 
additionally contains the maximum and 
minimum values of the entire data set as well as 
1% (it is often worthwhile to explore different 
percentages to obtain better initial values for the 
maximum likelihood fitting scheme) of 
randomly selected data from the other group. 

For example, if data sets 1 and 2 both 
have 100 observations, data set 1 will contain 
102 observations, including 1 observation 
randomly selected from data set 2 and 1 
maximum value from data set 2 (if it was not 
selected already), assuming data set 1 already 
contains the minimum value of the original data 
set. This is to ensure that the partitioned data 
span the entire range of the data; a necessary 
step because the goal is to maximize the log 
likelihood for the mixture data 
 
Step 2 

For each part of the data, fit a statistical 
distribution using maximum likelihood 
estimation (Su 2007a, Su 2007b). 
 
Step 3 

After the distribution fits for both parts 
of the data are obtained, the final parameters are 
estimated by maximizing the appropriate 
formula in (4) (for partition maximum 
likelihood) or (5) (for the EM algorithm 
approach). The initial value of p comes from 
step 1 and the initial values for this stage of the 
optimization are from step 2. The maximization 
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is conducted numerically via the Nelder-Mead 
Simplex algorithm and only solutions that span 
the entire original data set are accepted. The 
formulae required in this maximization step are 
discussed below. 

Let X, Z be the complete data, with X~ 
f1(x,θ) if z = 0 and X ~ f2(x,θ) if z=1, Then, the 
complete data log likelihood is given by: 
 

( )c

n
1 i 2 i

i 1

l , p

log(f (x , )) log(f (x , ))
(1 z) z

log(p) log(1 p)=

θ =

+ +   
− +   −   

 1 2θ θ

(4) 
 
Using standard statistical calculations, the 
conditional expectation of lc(θ, p) given x is: 
 

n
1 i 2 i

i i
i 1

log(f (x , )) log(f (x , ))
T S

log(p) log(1 p)=

   
+   + + −   

 1 2θ θ
 

(5) 
and 
 

ii

1i12i2

2i2
i

TS1

)(p)θ,(xfp))(1θ,(xf

p))(1θ,(xf
S

=−
+−

−=
         (6) 

 
where f1 and f2 are GλD distributions fitted to 
each partition of the data set and θ1 and θ2 

representing the parameters associated with 
these distributions respectively. In the case of 
two RS GλDs mixture fits, for example, 
equation (4) becomes: 
 

1

3 4

2

3 4

n
2

λ 1 λ 1
i 1 3 i 4 i

n
2

δ 1 δ 1
j 1 3 i 4 i

λ
log(p) log

λ u λ (1 u )

δ
log(1 p) log ,

δ v δ (1 v )

− −
=

− −
=

  
+   + −  

  
+ − +   + −  




 

 
with n1 + n2 = n. Here the n1 and n2 are the 
number of observations in each partition of the 
data set and the δk for k = 1, 2, 3, 4 represents 
the parameters of the second GλD fit, similarly 
ui and vi represents the quantiles for each 
partition of the data set for the ith observation. 

All other combinations of different RS 
and FKML GλD fits for complete data log 
likelihood and maximum likelihood via EM 
algorithm can be found by substituting the 
required GλD into (4) or (5) and hence are not 
detailed herein. 
 
Step 4 

The parameters obtained in step 3 are 
then used to maximize (7). The results of this 
optimization process are the final parameters for 
the GλD mixture fits. This step was omitted in 
Su (2007a) but subsequent updates to the 
GLDEX package in R, by default, has added this 
optimization step for both partition and full 
maximum likelihood methods. 
 

n

1 i 2 i
i 1

log(p(f (x , )) (1-p)(f (x , )))
=

+ 1 2θ θ
 

(7) 
 
Step 5 

The final fitting result can be examined 
by plotting the result on the histogram with the 
fitted line, quantile plots as well as testing the 
goodness of fit using the Kolmogorov-Smirnov 
(KS) test. A two sample KS test is carried out by 
sampling 90% of the empirical data from the 
actual distributions and this is compared to equal 
number of data from the corresponding fitted 
distributions. This is repeated 1,000 times with 
the result of this test being the number of times 
the p-value exceeds 0.05 (or at a specified 
significance level) over 1,000 times. This will 
give the user an independent measure as to the 
adequacy of fits beyond a visual comparison. 

Although this study is focused on fitting 
two mixtures of GλD, fitting three or more 
mixtures of GλD is a straightforward extension. 
In the case of three mixtures, it is possible to 
divide the data into three partitions, apply 
maximum likelihood estimation to each partition 
to find the initial values and maximize the 
following partition maximum likelihood or EM 
maximum likelihood formulae to find the 
parameters of the mixture distribution. To 
achieve this, let X, Z again be the complete data 
and X~fj(x,θ) if zj = 1, with j = 0, 1, 2. The 
proportion of the data in fj are represented by pj. 
The complete data likelihood or partition 
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maximum likelihood is given in (8) and the 
conditional expectation of complete data log 
likelihood given x is given in (9). 
 

( )
n

c 0 0 i 0
i 1

1 1 i 1

2 2 i 2
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(9) 
 

Based on the parameters obtained in 
maximizing (8) or (9), the last step of the 
optimization is to maximize (10), this gives the 
final parameters of the mixture distribution fit. 
 

n

0 0 i 1 1 i
i 1

2 2 i

log(p (f (x , )) p (f (x , ))

p (f (x , )))
=

+ + 0 1

2

θ θ

θ (10)
 

 
The development of partition maximum 

likelihood method and maximum likelihood via 
EM algorithm is intended to cover two different 
types of modeling situations. The first situation 
is when two distributions are distinct and 
disjoint, in which partition maximum likelihood 
would be the method of choice. The second 
situation is where two distributions overlap with 
each other in which the full maximum likelihood 
would be more preferable. However, this does 
not preclude the use of either methods in any 
given situation and the choice of one method 
over the other could still be based on more 
objective measures such as KS test and QQ 
plots. 

The method presented here and in Su 
(2007a, Su 2007b) optimizes the maximum 

likelihood directly rather than use the usual 
method of differentiation. This is a much more 
efficient and reliable method of achieving the 
maximum likelihood rather than differentiating 
and solving a system of linear equations because 
in many cases, GλD may be undefined for 
certain parameter values, rendering the 
technique of differentiation useless. Hence, it is 
usually preferable to use a general purpose 
optimization scheme such as the Nelder-Simplex 
algorithm to fit GλDs. 
 

Results 
The effectiveness of using the algorithm 
described earlier to fit mixture of two and three 
generalized lambda distributions to a range of 
simulated and empirical data are now illustrated. 
The graphical displays of resulting fits are 
shown in Figures 1 and 2, and the numerical 
goodness of fit assessments are shown in Tables 
1 and 2. Partition maximum likelihood method 
and maximum likelihood method using the EM 
algorithm are abbreviated as PML and ML in the 
outputs respectively. 

In Figure 1, data set 1 is generated by 
70% of Normal (mean = 10, standard deviation 
= 3) and 30% of exponential distributions. Data 
set 4 is generated by 50% of double exponential 
and 50% of Normal (mean = 5, standard 
deviation = 2) distributions. Both data sets 1 and 
4 consist of 1,000 observations. Data sets 2, 3 
and 5 are various data collected from the internet 
by the author and consist of 72, 244 and 272 
observations, respectively. The data illustrated in 
Figure 2 is a relatively well known galaxy of 
white dwarf stars and consists of 7,140 
observations. Numerical summaries of these 
data are provided in Tables 1 and 2. 

The QQ plots in Figure 1 indicates that 
the algorithm using either partition or full 
maximum likelihood are convincing fits to the 
empirical data, this is supported by the high 
values indicated by the KS tests and in many 
cases, the theoretical moments of the fitted 
GλDs are quite close to the empirical data. In 
particular, Figure 1b demonstrates the type of 
distributional fits expected from using partition 
maximum likelihood methods; there is a 
tendency for the method to make a sharper split 
between the two data. This is reinforced in the 
comparison between Figure 1d and 1e, where a 
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more abrupt separation of the two data sets can 
be observed in 1e using the partition maximum 
likelihood method. It is, however, not always 
true that the partition maximum likelihood will 
result in a jagged distributional shape; as Figure 
1f shows, the resulting fit is smooth.  

Overall, both methods of fitting 
mixtures provide a good fit to a range of data 
and it is recommended to examine both methods 
in most cases. For example, it may be preferable 
(due to closer match of to the moments of data 
and better KS test results) to use partition 
maximum likelihood with user defined setting 
for data in Figure 2, but the maximum likelihood 
using EM algorithm is preferred for data set 4. 
Clearly, no one fitting method will work the best 
in every case, so the choice of different methods 
is important to allow users to cope with different 
data with different tools. Sensitivity analysis 
using different distributional fits may also be 
carried out, to examine the robustness of a 
particular strategy under different 
representations of a probability distribution. 

In many situations, the default setting of 
the GLDEX package works well. However, as 
known in mixture distribution modeling, the 
choice of initial values can have a large impact 
on the resulting fits. This is clearly demonstrated 
in Figure 2, where the default separation of the 
data into three parts using Clara classification 
scheme failed to give a very convincing fits as 
indicated in Figure 2a and 2b. The use of a user 
defined clustering regime in identifying the sub 
distributions (data < 100, data between 100 to 
300, data > 300) leads to superior fits as shown 
in Figure 2c and 2d and the partition maximum 
likelihood with user defined data split is 
remarkably close to the first four moments of the 
empirical data.  
 

Conclusion 
This article demonstrates an algorithm to fit 
mixtures using the GλD distribution family. An 
important advantage of using GλD distribution 
is the elimination of the type of distributions that 
need to be used to model multi modal data. A 
critical improvement needed for all fitting 
methods of GλD is the search of suitable initial 
values. Although a fairly robust approach is 
provided here and in Su (2010b, 2007a, 2007b), 
it may be possible to directly find a set of good 

initial values from empirical data to speed up the 
optimization process and to increase the 
prospect of reaching a global maximum. 
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Figure 1: Examples of Fitting Bimodal Data with a Mixture of Two Generalized Lambda Distributions  
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Table 1: Numerical Results Indicating Goodness of Fit In Terms of First Four Moments and Resample KS Tests 
for Figure 1 

 

 
Data 

1 
(a) 

Data 
2 

(b) 
Data 

3 
(c) 

Data 
4 

(d) (e) 
Data 

5 
(f) 

Mean 7.23 7.28 0.06 0.06 0.62 0.63 2.56 2.56 2.62 3.49 3.49 

Variance 26.89 26.76 0.00 0.00 0.39 0.39 10.01 10.07 9.87 1.30 1.30 

Skewness -0.17 -0.20 1.09 1.76 1.19 1.21 0.36 0.33 0.28 -0.42 -0.41 

Kurtosis 1.70 1.69 3.77 12.87 3.60 3.89 2.24 2.30 2054.78 1.50 2.11 

Number of 
times KS test p 

value > 0.05 
out of 1,000 

 912  949  948  985 833  943 

 
 
 

Figure 2: Examples of Fitting Trimodal Data with a Mixture of Three Generalized Lambda Distributions 
(This example illustrates how splitting data manually can improve the fit beyond the default settings.) 
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Table 2: Numerical Results Indicating Goodness of Fit In Terms of First Four Moments 
and Resample KS Tests for Figure 2 

 Data 
PML Using 

Clara 
Scheme 

ML Using 
Clara 

Scheme 

PML with 
Manual 
Setting 

ML with 
Manual 
Setting 

Mean 187.78 187.82 188.06 188.32 187.69 

Variance 4870.03 5110.28 5665.51 4868.24 4946.95 

Skewness -0.18 -0.09 -4.02 -0.20 2.29 

Kurtosis 3.85 7.32 NA 3.87 -1112094.77 

Number of times KS test 
p value > 0.05 
out of 1,000 

 850 769 938 317 
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Extreme ranked set sampling (ERSS) is considered to estimate the three parameters and population mean 
of the modified Weibull distribution (MWD). The maximum likelihood estimator (MLE) is investigated 
and compared to the corresponding one based on simple random sampling (SRS). It is found that, the 
MLE based on ERSS is more efficient than MLE using SRS for estimating the three parameters of the 
MWD. The ERSS estimator of the population mean of the MWD is also found to be more efficient than 
the SRS based on the same number of measured units. 
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Introduction 
The modified Weibull distribution (MWD) was 
suggested by Sarhan and Zaindin (2009). The 
probability density function (pdf) of the MWD is 
given by 
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γ γ
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and the corresponding distribution function (cdf) 
is 
 

( ) ( ); , , 1 exp , 0,F x x x xγα β γ α β= − − − >  

(2) 
 
where 0γ >  and ,α  0β ≥  such that  
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0α β+ > . The MWD have two shape 

parameters γ  and β , and a scale parameter α . 
The hazard function of the MWD is 
 

( ) 1; , ,h x xγα β γ α βγ −= + ,         (3) 

 
which increases for 1γ > , decreases for 1γ <  

and remains constant for 1γ = . Sarhan and 

Zaindin (2009) defined the kth moment, kμ , of 

the MWD random variable as 
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The moment generating function of the MWD is 
given by 
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Some special cases of the MWD 
distribution are the exponential distribution, 
Raleigh distribution, linear failure rate 
distribution and Weibull distribution. For 
additional details about the MWD see: Sarhan & 
Zaindin (2009) and Zaindin & Sarhan (2009). 
The maximum likelihood estimator of the three 
parameters and the population mean of the 
modified Weibull distribution is examined, and 
compared to their counterparts based on simple 
random sampling. The MLE of the parameters 
based on ERSS is considered for two cases: 
when the set size is even and odd. 
 
RSS and ERSS 

Ranked set sampling (RSS) was 
proposed by McIntyre (1952) to improve the 
estimation of the population mean. The 
following steps are employed to obtain an RSS 
of size m:  
 

Step 1: Randomly select 2m  units from the 
population; these units are randomly 
allocated into m sets, each of size m.  

 
Step2: The m units of each set are ranked either 

visually or by any inexpensive method 
with respect to the variable of interest.  

 
Step3: From the first set of m units, the smallest 

ranked unit is measured; from the 
second set of m units the second 
smallest ranked unit is measured. The 
process continued until the mth smallest 
unit (largest) is measured from the last 
set.  

 

Step 4: The procedure can be repeated n times if 
needed to increase the sample size to nm 
units. 

 
It should be noted that the error in ranking 
reduces the efficiency of the method. Extreme 
ranked set sampling was proposed by Samawi, 
et al. (1996) as a useful modification of RSS. It 
requires identifying the extreme units only, as 
opposed to all ranks as in the usual RSS. The 
method gives an unbiased estimate of the 
population mean in the case of symmetric 
distributions and it is more efficient than SRS. 

The extreme ranked set sampling 
(ERSS) method can be described as follows:  
 
Step 1: Select m random samples each of size m 

units from the target population. 
 
Step 2: Rank the units within each sample with 

respect to a variable of interest by visual 
inspection or any other inexpensive 
method.  

 
Step 3: For actual measurement, if the sample 

size m is even, from the first 
2

m
 sets 

select the lowest ranked unit of each set 

and from the other 
2

m
 sets select the 

largest ranked unit. If the sample size is 

odd, from the first 
1

2

m −
 sets select the 

lowest ranked unit, from the other 
1

2

m −
 sets select the largest ranked unit, 

and from the remaining set the median 
ranked unit is selected.  

 
Step 4: The procedure can be repeated n times if 

needed to increase the sample size to nm 
units. 

 
Let 1X , 2X  ... , mX  be a simple 

random sample from the probability density 
function ( )f x , with mean μ  and variance 2σ . 

Let 11X , 12X , ... , 1mX ; 21X , 22X , ... , 2mX ;…; 
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1mX , 2mX , ... , mmX  be m independent SRS 

each of size m. Let (1)iX , (2)iX , ... , ( )i mX  be 

the order statistics of the sample 1iX , 2iX , ... , 

imX  for ( )1,2,...,i m= . The pdf and cdf of the 

ith order statistics, ( )iX , respectively are 
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The mean and the variance of ( )iX  are given by 
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respectively (see David and Nagaraja, 2003). 
Takahasi and Wakimoto (1968) provided the 
mathematical properties of the RSS and gave the 
following identities 
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They showed that the efficiency of RSS with 
respect to SRS is 
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where ˆSRSμ  and ˆRSSμ  are unbiased estimators of 

the population mean μ  using SRS and RSS, 
respectively. 

When m is even, the ERSS estimator of 
the population mean is defined as 
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and when m is odd 
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where ( ) ,k i jX  denotes the kth ranked from the ith 

set at the jth cycle. 
Samawi, et al. (1996) showed that the 

sample mean using ERSS is more efficient than 
that of SRS when the distribution is symmetric. 
Samawi and Al-Sagheer (2001) investigated the 
ERSS method to estimate the distribution 
function and Muttlak (2001) considered 
regression estimation using extreme and median 
ranked set samples methods. Samawi and Saeid 
(2004) studied the stratified ERSS and the ratio 
estimator based on ERSS. Al-Omari, et al. 
(2008) considered ratio type estimator based on 
ERSS. For more about RSS and its 
modifications see: Arnold, et al. (2009); Al-
Omari & Jaber (2008); Bouza (2009); Shadid, et 
al. (2011); Al-Hadhrami & Al-Omari (2009); 
Islam, et al. (2009); Jemain & Al-Omari (2006); 
Sengupta & Mukhuti (2009). 
 
Maximum Likelihood Estimation of the MWD: 
When m is Even 

The maximum likelihood estimators 
(MLEs) of the three estimators ,α  β  and γ  
when m is even are investigated based on the 
likelihood function L using ERSS as 
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where / 2p m=  and h is a constant. The 

variable ( ) ,k i jX  denotes the kth ranked unit of the 

ith sample at the jth cycle. The log likelihood 
function of (8) is 
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where C is a constant. The first derivatives of 

*L  with respect to ,α  β  and γ , respectively 
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where 

( )1
1 ( ) , ( ) ,exp m i j m i jT x xγα β −= − −

 
and 

( )2 (1) , (1) ,exp i j i jT x xγα β= − − . 

 
The MLE of the parameters , ,α β  and 

γ  are the solution of equations (10), (11) and 
(12), respectively, when set them to zero. 
However, the solutions are not in closed forms, 
in order to obtain estimates for the parameters, 
the three equations may be solved numerically. 

Fisher information (FI) numbers 
describe the amount of information that a sample 
provides about the parameters. The FI is defined 
as 

2

2

log( )LI E
θ

 ∂= −  ∂ 
, 

 
where θ  is a parameter. The FI number from 
ERSS for estimating α , β  and γ  can be 
expressed as in equations, (13), (14) and (15), 
respectively as 
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Maximum Likelihood Estimation of the MWD: 
When m is Odd 

Based on ERSS, when m is odd, the 
likelihood function is 
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where ( 1) / 2q m= −  and K is a constant. The 
log likelihood function of (16) is 
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Taking the first derivative of *L  in (17) with 
respect to ,α β  and γ  results in 
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respectively, where 
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where 
 

( )1
1 ( ) , ( ) ,exp m i j m i jT x xγα β −= − − , 

 

( )2 (1) , (1) ,exp i j i jT x xγα β= − − , 

and 

[ ] [ ]( )3 ( 1)/2 , ( 1)/2 ,exp m i j m i jT x xγα β+ += − − . 

 
Methodology 

Simulation Study 
To investigate the properties of the 

MLEs of the three parameters of the MWD a 
simulation was conducted. The inverse 
transform method was used to generate samples 
from MWD (see Ros, 1997). The inverse 
transform algorithm can be described as: 

generate U  from the uniform (0, 1), initiate 1X  

and then find a new 1X  using 

( )1 1

1
ln 1X X Uγβ

α α
= − − − ; repeat until 

stability of 1X  is reached, which eventually 

represents a random number from MWD. The 
samples generated are then used to obtain the 
Fisher Information numbers, ERSSI  and SRSI , 

when using ERSS and SRS. The asymptotic 
relative efficiency (RP) is found as the ratio 

/ERSS SRSI I . 

 
Results 

For 3α = , 1.2β =  and 1.3γ = , the results are 
presented in Tables 1, 2 and 3, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Information Numbers and Asymptotic RP of the 
MLE of α  Based on ERSS with respect to SRS 

 

m ERSSI SRSI  Asymptotic RP 

3 0.3613 0.1854 1.9490 

4 0.6069 0.2392 2.5372 

5 0.7933 0.2849 2.7845 

6 0.9818 0.3478 2.8229 

7 1.3030 0.4057 3.2119 

 
Table (2): Information Numbers and Asymptotic RP of 

the MLE of β  Based on ERSS with respect to SRS 
 

m ERSSI SRSI  Asymptotic RP 

3 0.1401 0.0542 2.5849 

4 0.2894 0.1014 2.8554 

5 0.4627 0.1551 2.9832 

6 0.6335 0.1956 3.2382 

7 0.8606 0.2314 3.7191 

 
Table (3): Information Numbers and Asymptotic RP of 

the MLE of γ  based on ERSS with respect to SRS 
 

m ERSSI SRSI  Asymptotic RP 

3 0.6451 0.5348 1.2062 

4 1.1279 0.8684 1.2987 

5 1.2494 0.7336 1.7032 

6 1.7856 0.9847 1.8133 

7 1.9196 0.8459 2.2693 
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For 2.3α = , 1.3β =  and 1.6γ = , 
results are summarized in Tables 4, 5 and 6 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tables 1-3 show that: 
• The ERSS estimators dominate the 

estimators based on SRS.  
• The information numbers from ERSS are 

greater than those of SRS. 

• For odd and even sample sizes the Fisher 
information numbers are increasing when 
the sample size is increasing.  

• The asymptotic relative precision values are 
increasing when sample size increasing. 

 
Estimation of the Population Mean of the MWD 

The problem of estimating the 
population mean of the MWD is now considered 
and compared with the SRS estimator of the 

population mean 
1

ˆ /
m

SRS i
i

X mμ
=

= , which has 

variance 2 / mσ . The efficiency of 1ˆERSSμ  and 

2ˆERSSμ  respectively with respect to ˆSRSμ  are 

defined as 
 

( ) ( )
( )

ˆ
ˆ ˆ,

ˆ
SRS

ERSSi SRS
ERSSi

MSE
eff

MSE
μ

μ μ
μ

= , 1, 2i = . 

 
Simulation results are summarized in Tables 7-9 
for some values of the population parameters. 

From results shows in Tables 7-9, it may 
be concluded that the ERSS estimators are 
biased and more efficient than the SRS estimator 
for all cases considered in this study. However, 
as demonstrated by Samawi, et al. (1996) it is 
better to use ERSS with small sample size. Also 
note that the efficiency of the mean estimation 
depends on the values of ,α β , γ , as well as the 
sample size. 
 

Conclusion 
Maximum likelihood estimators for the three 
parameters of the modified Weibull distribution 
were studied based on extreme ranked set 
sampling. These MLEs are not in closed forms, 
so numerical method is used. Results show that 
the Fisher information numbers obtained from 
ERSS are greater than that from SRS. Also, it 
was shown that ERSS is more efficient than SRS 
in estimating the population mean and it has a 
small bias. However, the ERSS estimators 
dominate the corresponding estimators based on 
SRS for estimating the population mean of the 
MWD. 
 
 
 

Table (4): Information Numbers and Asymptotic RP of 
the MLE of α  Based on ERSS with respect to SRS 

 

m ERSSI  SRSI  Asymptotic RP 

3 0.2523 0.1201 2.1010 

4 0.3739 0.1563 2.3922 

5 0.5461 0.1987 2.7483 

6 0.6521 0.2254 2.8931 

7 0.8796 0.2695 3.2632 

 
Table (5): Information Numbers and Asymptotic RP of 

the MLE of β  Based on ERSS with respect to SRS 
 

m ERSSI  SRSI  Asymptotic RP 

3 0.1195 0.0481 2.4871 

4 0.1681 0.0595 2.8263 

5 0.2383 0.0766 3.1110 

6 0.2913 0.0814 3.5787 

7 0.3852 0.0919 4.1902 

 
Table (6): Information Numbers and Asymptotic RP of 

the MLE of γ  Based on ERSS with respect to SRS 
 

m ERSSI  SRSI  Asymptotic RP 

3 1.2459 0.7885 1.5801 

4 1.9567 1.0232 1.9123 

5 2.9202 1.3510 2.1615 

6 3.8283 1.5697 2.4388 

7 5.0158 1.7128 2.9284 
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Modeling Repairable System Failures with Interval Failure Data 
and Time Dependent Covariate 

 
Jayanthi Arasan Samira Ehsani 

University Putra Malaysia, 
Malaysia 

 
 
An application of a repairable system model for interval failure data with a time dependent covariate is 
examined. The performance of several models based on the NHPP when applied to real data on ball 
bearing failures is also explored. The best model for the data was selected based on results of the 
likelihood ratio test. The bootstrapping technique was applied to obtain the variance estimate for the 
estimated expected number of failures. Results demonstrate that the proposed model works well and is 
easy to implement, in addition the bootstrap variance estimate provides a simple substitute for the 
traditional estimate. 
 
Key words: Interval, repairable, NHPP, covariate, bootstrap. 
 
 

Introduction 
A repairable system is a system that can be 
restored back to functionality after a failure has 
occurred. The period where the system is unable 
to function is referred to as repair time and is 
assumed to be negligible. Grouped data, also 
known as interval failure data occurs when a 
component’s failure time falls within a certain 
interval  where  is the lower 
inspection time and  is the upper inspection 
time in the  interval. In reliability this 
phenomenon occurs when components are 
inspected periodically to carry out maintenance 
or repair actions. These types of data often arise 
in the medical field where patients are examined 
periodically, for example every 3 or 6 months, 
so the exact failure time is typically unknown. 

Many stochastic models have been 
developed to describe the failure rate of a non-
homogenous Poisson process (NHPP) such 
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as the power law model proposed by Crow 
(1974) and based on the ideas of Duanne (1964). 
Other popular models are the log linear proposed 
by Cox and Lewis (1966) and linear models 
discussed by Vesely (1977) and Atwood (1992). 
Lawless and Thiagarajah (1996) introduced an 
important repairable system model that 
incorporates both time trends and renewal 
behavior, known as a proportional intensity 
model. Guo, et al. (2006) proposed a 
proportional intensity model that is based on the 
powerlaw model. Guo, et al. (2007) also 
developed a new general repair model based on 
the expected cumulative number of failures to 
capture the repair history. Samira and Arasan 
(2009) extended the model to include a time 
dependent covariate and applied it to pipe 
failures in water networks. 

Other literature on repairable system 
models and recurrent events includes Brown 
(1975), Gasmi, et al. (2003), Kaminskiy and 
Krivtsov (1998), Kijima and Sumita (1986), 
Kijima (1989), Wang and Pham (1996) and 
Yanez, et al. (2002). Park, et al. (2008) 
presented an application of the log-linear and 
power law models for interval failure data in 
water distribution systems. 

More details regarding recurrent event 
models for grouped and interval failure data can 
also be found in Meeker and Escobar (1998), 
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Lawless and Zhan (1998) and Cook and Lawless 
(2007). 
 
The Model 

Most recurrent event data, such as in the 
case of repairable systems, usually has 
recurrence times that are not be independent. 
The most widely used models for recurrence 
data are those based on the non-homogenous 
Poisson process, mainly the power law and log-
linear models. This research extends the power 
law model to incorporate the analysis of grouped 
or interval failure data while accommodating the 
effect of covariates or other factors that may 
affect or contribute to system failure. Thus, the 
failure intensity or recurrence rate can be 
described as , where  is a 
time dependent covariate that may impact 
system failure. 

Thus, the proposed model takes into 
account both the effect of time and a time 
dependent covariate on the recurrence rate of a 
system. Because it is dealing with interval 
failure data - and there can be more than one 
failure in any time interval - the number of 
intervals is always less or equal to number of 
failures observed. 

Suppose  is the number of failures in 
the  interval and  is the value of covariate 
at time . The expected number of recurrences  
 

 

 
where . 

If the intervals are contiguous, the 
Poisson process log-likelihood for a series of  
time intervals is: 

 

 

(1) 
 
The first and second derivatives of the log-
likelihood function are as follows: 

 

 
The extended power law model allows 

interval failure data to be analyzed by 
incorporating the effect of time and covariates 
simultaneously. Occasionally, the effect of 
covariates are insignificant, thus, the reduced 
form of the model may prove to be a better fit 
for the data; this can be obtained by setting 

. Another useful NHPP model is the log 
linear model, which has the failure intensity 
function , where  and  are the 
parameters of the model. The log linear model 
can also be extended to accommodate interval or 
grouped failure data. Let  
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The log-likelihood function for a series of  
time intervals is: 
 

 

(2) 
 
The first and second derivatives of the log-
likelihood function are: 
 

 
Application with Real Data 

The real data used in this study consists 
of 25 time intervals to ball bearing failures in a 
conveyer belt in an automobile production. The 
failure occurrences are in intervals because the 
conveyer is only checked by the inspection team 
at certain times, referred to as inspection times 
(hours). There can be more than 1 failure in a 
certain time interval for which repair action is 
carried out. The time dependent covariate used 
is the number of maintenance actions taken 
throughout the study period. 

Graphical methods are often used in 
modeling repairable systems to check trends in 
the data which then enables a reasonable model 
selection. Figure 1 displays the plot of the 
cumulative number of failures,  versus 

operating hours, . Because data are failures 
within intervals, the graph was drawn using the 
upper interval point. The plot suggests that the 
use of a NHPP model might be appropriate 
because the failure rate appears to be 
inconsistent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 shows the value of the 
parameter estimates and their standard errors 
when the data is fitted to the extended power 
law, power law, log-linear and HPP models. The 
table also shows the log likelihood value for 
each model at the estimated parameters. In the 
case of the extended power law model, the 
parameter estimate  has a positive value; this 
implies that the maintenance action could not 
prevent the system from deteriorating with time. 
In addition, the estimate of  shows a reliability 
improvement, but overall this fails to improve 
the system. All of the models show evidence of 
increasing failure intensity over time. 

The extended power law model gives 
the highest log likelihood value, this implies that 
it fits the real data better than the other models. 
Figure 2 shows the estimates of the expected 
number of failures using the extended power 
law, power law, log linear and HPP models. The 
extended power law model shows the best fit for 
the real data, although the log linear appears to 
be a reasonable fit as well. The plot also shows 

Figure 1: Cumulative Number of Failures vs. Time 
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an obvious change in the slope towards the end 
on the process and certain data tend to form 
clusters, requiring further investigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypothesis Testing and Confidence Intervals 

If parameters  and  are significant 
then there is evidence of both maintenance effect 
and time trend within the model. The 
significance of the parameters  and  can be 
tested using likelihood ratio (LR) test. The idea 

of a LR test is to compare the maximized 
likelihood of two nested models, the full model 
and the reduced model. The reduced model is 
restricted by certain conditions in . 

Let  be the maximum likelihood 
estimator of the restricted model under  and 

 the maximum likelihood estimator of the full 
model. The maximized likelihood of the reduced 
model,  can never exceed the maximized 

likelihood of the full model, , because it is a 
subset of the full model. Thus, the ratio of the 
maximized likelihood of the reduced model to 
the full model is bounded between 0 and 1. A 
ratio close to 1 indicates that the reduced model 
is close to the full model whereas a ratio close to 
0 indicates that the two models are very different 
and the reduced model is unacceptable. The 
likelihood ratio statistic for testing  versus  
is the given by: 
 

              (3) 
 

For a large sample size,  is 
approximately , where  is the number of 

parameters in the full model minus the number 
of parameters in the reduced model. The test 
statistic for testing the significance of the 
parameter, , is 9.41, which is higher than 

, thus implying that the 
effect of  is significant at the 0.05 level. The 
test statistic for testing the significance of 
parameter , is 27.014, thus implying that the 
effect of  is also significant at the 0.05 level. 
Thus, it may be concluded that the extended 
power law model is the most suitable model for 
the data. 

Confidence intervals for the expected 
number of failures over interval , 

 can be obtained by using 
the log normal distribution. The variance of an 
estimator can be calculated using the Delta 
method. The Delta method uses the  order 
Taylor expansion to approximate the variance of 
a function of random variables. Thus, 
 

Table 1: Parameter Estimates 
for Various Models 

 

 
 

 
 
 
 

Figure 2: Real vs. Fitted for Several Models 
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Following this, the confidence interval for 

 is 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another way to obtain the variance of 
 is to use the bootstrap technique. 

Recently, alternative techniques requiring only 
minimal assumption have become popular. The 
bootstrapping technique was proposed by Efron 
(1993) and the procedure depends on how the 
bootstrap sampling is done. Efron (1993) 
showed that, in certain cases, the bootstrap 
estimate of variance or standard error can be 

used as an alternative for numerically estimating 
the traditional variance or standard error 
estimate. 

Several different methods for generating 
bootstrap samples exist, namely parametric and 
nonparametric sampling procedures. This study 
utilizes the parametric bootstrap sampling 
procedure where B bootstrap samples of size  
are generated from an assumed parametric 
distribution. The number of failures over interval 

 follows a Poisson distribution with mean 
. Thus, random samples can be generated 

from the Poisson distribution and bootstrap 

estimates of the mean,  can be calculated 
where  are estimates calculated 
from each of the bootstrap samples of size . 

The bootstrap estimate of the variance 
of  is 
 

 

 
where 

 

 
Following this, the confidence interval 

for  can be obtained in the similar way as 
 

 

 
Figure 4 shows the 95 % confidence interval for 
the expected cumulative number of failures 
using the bootstrap standard error estimate. This 
shows that the interval estimation using the 
bootstrap standard error estimate provides a 
good alternative and is slightly narrower than the 
traditional method. 
 

Conclusion 
This article proposed the use of the extended 
power law model for repairable systems with 
interval or grouped failure data and a time 
dependent covariate. The model reduces to the 
power law and HPP as a special case, thus it is 
convenient and useful. The model also allows 
incorporation and analysis of both time trend  

Figure 3: Confidence Interval for  
 

 



ARASAN & EHSANI 
 

623 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and covariate effects simultaneously. More 
research may be done by implementing the 
methods discussed herein to other repairable 
system models to determine if similar results are 
obtained. The use of other types of log-linear 
and linear models that can incorporate interval 
failure data with covariates should also be 
investigated. 

The parametric bootstrap computer 
based technique was also employed to obtain the 
variance estimate for the estimated expected 
number of failures Alternative computer 
intensive techniques are simpler to implement 
and - in many cases - provide better estimates 
than traditional methods. Bootstrapping 
techniques are useful particularly when 
traditional methods become unreliable and 
certain assumptions are not satisfied. The high 
capability of modern day computers makes these 
methods practical. 

Other parametric bootstrapping 
techniques and block jackknifing techniques for 
confidence interval estimation could also be 
explored. There may also be chances of applying 
other bootstrap confidence interval estimates 
such as percentile bootstrap, bootstrap-t and 
BCa. These intervals are usually known to be 
more reliable and give better coverage 
probabilities and, as noted by Arasan (2008), are 
more symmetrical. However, their use with 

repairable system data should be done with 
caution; some modifications are also likely 
necessary to avoid violating the basic 
assumptions. 
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Explicit Equations for ACF in Autoregressive Processes 
In the Presence of Heteroscedasticity Disturbances 
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The autocorrelation function, ACF, is an important guide to the properties of a time series. Explicit 
equations are derived for ACF in the presence of heteroscedasticity disturbances in pth order 
autoregressive, AR(p), processes. Two cases are presented: (1) when the disturbance term follows the 
general covariance matrix, Σ , and (2) when the diagonal elements of Σ  are not all identical but 

i, j 0 i jσ = ∀ ≠ . 
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Introduction 
When disturbance terms are identically 
distributed, it implies that they have the same 
variance for all observations: this is known as 
homoscedasticity. If they are not, it causes 
serious problems for estimates and must be 
corrected in order to obtain reliable estimates. A 
sequence, or a vector, of random variables is 
heteroscedastic if the random variables have 
different variances. Heteroscedastic means 
differing variance and is derived from the Greek 
hetero, meaning different, and skedasis, 
meaning dispersion. The word heteroscedasticity 
indicates a time-varying variance and is a 
deviation from the identically distributed 
assumption because the variances are not the 
same for each value. 

Heteroscedasticity occurs when 
observations are based on average data and in a 
number of random coefficient models. It has two 
forms, conditional and unconditional. 
Conditional heteroscedasticity identifies non-
constant volatility when future periods of high 
and low volatility cannot be identified. 
 Unconditional heteroscedasticity is 
when  future periods of  high  and  low volatility 
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can be identified. For example, periods of low 
and high volatility for the prices of stocks and 
bonds cannot be predicted over any period of 
time, and therefore would be described as 
conditional heteroscedasticity. By contrast, 
unconditional heteroscedasticity can be used 
discussing variables that have identifiable 
seasonal variability, such as electricity usage. 

The consequences of heteroscedasticity 
are problematic in general, and it is well known 
that the consequences of heteroscedasticity for 
ordinary least squares (OLS) estimation are very 
serious. Although parameter estimates remain 
unbiased, they are no longer efficient, meaning 
they are no longer best linear unbiased 
estimators (BLUE) among the class of all the 
linear unbiased estimators. The standard errors 
typically computed for the least squares 
estimators are no longer appropriate, hence, 
confidence intervals and hypothesis tests that 
use these standard errors are invalid. Because 
the estimated error’s variance-covariance is not 
efficient, it invalidates the t-statistic, sometimes 
making insignificant variables appear to be 
statistically significant. Heteroscedasticity 
causes the OLS estimates of the standard error to 
be biased, leading to unreliable hypothesis 
testing. The most serious implication of 
heteroscedasticity is a misleading inference 
when the standard tests are used such as t and F 
tests. 
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The disturbance term in time series data 
is modeled under an assumption of constant 
variance and the assumption of heteroscedastic 
disturbances has traditionally been considered in 
the context of cross-sectional data. With time 
series data the disturbance term is modeled with 
some kind of stochastic process, and most of the 
conventional stochastic processes assume 
homoscedasticity (Judge, et al., 1985). The 
econometrician Robert Engle won the 2003 
Nobel Memorial Prize for Economics for his 
studies on regression analysis in the presence of 
heteroscedasticity, which led to his formulation 
of the AutoRegressive Conditional 
Heteroscedasticity (ARCH) modeling technique. 
 
Background 

Heteroscedasticity is a problem often 
faced by statisticians and econometricians. A 
wealth of literature related to estimating and 
testing heteroscedasticity exists, see for 
example, Wallentin and Agren (2002), Kalirajan 
(1989), Evans and King (1988) and Farebrother 
(1987). 

Safi (2009) derived explicit equations 
for ACF in the presence of heteroscedasticity 
disturbances in first-order autoregressive, AR(1), 
process. He showed two cases: (1) when the 
disturbance follows the general covariance 
matrix, Σ , and (2) when the diagonal elements 
of Σ are not all identical but i, j 0 i jσ = ∀ ≠ , 

that is, ( )11 22 ttdiag , , ,Σ = σ σ σ . This article 

extends the Safi (2009) results for the general 
autoregressive, AR(p), process. 

Praetz (2008) discussed the effect of 
auto-correlated disturbances when they are not 
modeled on statistics used in drawing inferences 
in the multiple linear regression model. He 

derived biases for the F and 2R  statistics and 
evaluated them numerically. He discussed the 
reflections for empirical research on the causes, 
detection and treatment of autocorrelation. 

Bera, et al. (2005) investigated 
conditional and unconditional 
heteroscedasticities as well as normality in the 
market model. They showed that conditional 
heteroscedasticity is more widespread than 
unconditional heteroscedasticity, suggesting the 
necessity of model refinements that take 

conditional heteroscedasticity into account. They 
provided an alternative estimation of betas of 
individual securities and portfolios based on the 
autoregressive conditional heteroscedastic 
(ARCH) model introduced by Engle. The 
efficiency of the market model coefficients is 
markedly improved across all firms in the 
sample through the ARCH technique. Demos 
(2000) derived expressions for the 
autocovariance of the observed series and the 
squared errors as a function of the parameters, 
something which facilitates the comparison of 
the observed properties of the data with the 
theoretical properties of the models, and 
consequently may play an important part in 
model identification. 

Studies of many econometric time series 
models for financial markets reveal that it is 
unreasonable to assume that conditional variance 
of the disturbance term is constant as it for many 
stochastic processes. Two exceptions are the 
heteroscedastic stochastic processes proposed by 
Engle (1982) and Cragg (1982). Engle (1982), 
showed that, for many economic models, it is 
unreasonable to assume that the conditional 

forecast variance ( )t t 1var y | y −  is constant, and 

that is more realistic to assume that 

( )t t 1var y | y −  depends on t 1y − . 

Bumb, and Kelejian (1983) studied the 
auto-correlated and heteroscedastic disturbances 
in linear regression analysis. They discussed 
various procedures to test for the possibility that 
the disturbance terms of a linear regression 
model are auto-correlated in a first order process 
with a constant autoregressive coefficient. 
 
Autocorrelation Function (ACF) 

The autocorrelation function (ACF), is 
an important guide to the properties of a time 
series. It measures the correlation between 
observations at different distances apart. This 
behavior is a powerful tool to identify a 
preliminary time series model. The ACF 
provides a better understanding of correlation 
structure of the data and, within the Box Jenkins 
framework, a rough idea of the order of the 
components to be used in any autoregressive 
model. The estimate of ACF may suggest which 
of the many possible stationary time series 
models is a suitable candidate for representing 
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the dependence in the data, Brockwell and Davis 
(2002). The forms of the explicit equations 
depend on the autoregressive coefficients. 
 
General Heteroscedastic Autocorrelation 
Function (GHACF) 

Autoregressive processes are regressions 
on themselves. In other words, in autoregressive 
processes, the current value of the process tZ is 

expressed as a finite linear combination of the p 
most recent past values of itself plus an 
innovation term te  which incorporates 

everything new in the series at time t that is not 
explained by past values. Thus, for every t, it is 
assumed that te  is independent of t 1 t 2Z , Z ,− − . 

If the values of a process at equally spaced times 
t, t-1, t-2,…, denoted by t t 1 t 2Z , Z , Z ,− − , then 

t 1 t 1 2 t 2 p t p tZ Z Z Z e− − −= φ + φ + + φ +  is called 

a pth order autoregressive process, abbreviated 
AR(p). 

The pth order autoregressive model may 
be written in terms of backward shift operator B 
as: 
 

( ) ( )p
1 p t t t1 B B Z B Z e .− φ − − φ = φ =

 
(1) 

 
A special notation used to simplify the 

representation of lag values, with j
t t jB Z Z −= . 

tZ  is the time series under investigation and te  

is the white noise series normally distributed 

with mean zero and variance 2
eσ . For the 

general AR(p) process, ( )1
t tZ B e−= φ , results 

in 

( ) ( )( ) ( )1 2 pB 1 G B 1 G B 1 G Bφ = − − −  

 

where 1 1
1 pG , ,G− −  are the roots of ( )B 0φ = , 

and expanding ( )1 B−φ  in partial fractions 

yields 
 

( )
p

1 i
t t t

i 1 i

K
Z B e e .

1 G B
−

=

= φ =
−  

 

(See for example Box, et al., 1994.) Thus, if 

( ) ( )1B B−ψ = φ  is to be a convergent series for 

B 1≤ , then the weights 
p

j
j i i

i 1

K G
=

ψ =  must be 

absolutely summable so that the AR(p) will 

represent a stationary process, iG 1<  for 

i 1, 2, , p=  . Equivalently, the roots of 

( )B 0φ =  must lie outside the unit circle. From 

the relation ( ) ( )B B 1φ ψ =  it follows that the 

weights jψ  for the AR(p) process satisfy the 

difference equation: 
 

j 1 j 1 2 j 2 p j p , j 0− − −ψ = φ ψ + φ ψ + + φ ψ >  

(2) 
 
with 0 1ψ = and j 0ψ =  for j 0< , from which 

the weights jψ  can easily be computed 

recursively in terms of the iφ . 

The AR(p) autoregressive process 

( )1
t tZ B e−= φ  may be written as: 

 

t j t j
j 0

Z e , t 0, 1, 2, .
∞

−
=

= ψ = ± ±      (3) 

 
It is assumed that the disturbance term has mean 
zero, E (e) = 0, and the covariance matrix 

( )i jCov e ,e = Σ  where: 

 

11 12 1t

21 22 2t

t1 t2 tt

.

σ σ σ 
 σ σ σ Σ =
 
 σ σ σ 




   


             (4) 

 
Definition 1 

The covariance between tZ  and t kZ + , 

separated by k intervals of time (which under the 
stationary assumption must be the same for all t) 
is called the autocovariance function at lag k 
(ACVF) and is defined by 
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( ) ( )( )k t t k t t kCov Z ,Z E Z Z ,+ +γ = = − μ − μ  
(5) 

 
assuming that tZ  has zero mean. A nonzero 

mean can be introduced by replacing tZ  by 

tZ −μ  throughout the equations. 

 
Definition 2 

The autocorrelation function at lag k, 
that is the correlation between tZ  and t kZ + , is 

defined by 

k
k

0

γρ =
γ

                             (6) 

 

where 2
0 Zγ = σ  is the same at time t+k as at time 

t. 
 
Lemma 1 

Consider the general AR(p) process, 

t j t j
j 0

Z e
∞

−
=

= ψ , with E (et) = 0, and 

( )i jCov e ,e = Σ , where Σ  is given in (4). The 

autocovariance function at lag k is given by 
 

t k 1 t 1

k i j t i, t k j
j 0 i 0

.
− − −

− − −
= =

γ = ψ ψ σ              (7) 

 
Proof 

Using (3), 
 

t 1 t k 1

t t k i t i j t k j
i 0 j 0

t k 1 t 1

i j t i t k j
j 0 i 0

Z Z e e

e e .

− − −

− − − −
= =

− − −

− − −
= =

  = ψ ψ  
  

= ψ ψ

 

 
 

 
and using (5), the ACVF at lag k is 
 

( )

( )

k t t k

t k 1 t 1

i j t i t k j
j 0 i 0

t k 1 t 1

i j t i t k j
j 0 i 0

t k 1 t 1

i j t i t k j
j 0 i 0

E Z Z

E e e

E e e

.

−

− − −

− − −
= =

− − −

− − −
= =

− − −

− − −
= =

γ =

 
= ψ ψ 

 

= ψ ψ

= ψ ψ σ σ

 

 

 

 

 
Theorem 1: Deriving the GHACF at Lag k when 

i, j 0σ ≠  for all i j≠  In an AR(p) Process 

Consider the general AR(p) process 

t j t j
j 0

Z e
∞

−
=

= ψ , jψ  is given in (2), with E(et) = 

0, and ( )i jCov e ,e = Σ , where Σ  is given in 

(4), with i, j 0 i jσ ≠ ∀ ≠ , then the GHACF at 

lag k is given by: 
 

t k 1 t 1

j i t i, t j k
j 0 i 0

k t 1 t 1

j i t j, t i
j 0 i 0

.

− − −

− − −
= =

− −

− −
= =

ψ ψ σ
ρ =

ψ ψ σ

 


          (8) 

 
Proof 

Using (7), the ACVF at lag 0 is 
 

2

0 t , t 1 t , t 1 2 t , t 2 3 t , t 3 t 1 t ,1

2

1 t 1, t 1 t 1, t 1 1 2 t 1, t 2 1 t 1 t 1,1

2

2 t 2, t 2 1 t 2, t 1 2 t 2, t 2 2 t 1 t 2,1

t 1 1, t t 1 1 1, t 1 t 1 2 1, t 2 t 1 t 2 1,2 t

0

− − − −

− − − − − − −

− − − − − − −

− − − − − − −

ψ σ + ψ σ + ψ σ + ψ σ + + ψ σ +

ψ σ + ψ σ + ψ ψ σ + + ψ ψ σ +

ψ σ + ψ ψ σ + ψ σ + + ψ ψ σ +

ψ σ + ψ ψ σ + ψ ψ σ + + ψ ψ σ + ψ

γ =









 2

1 1,1.− σ
(9) 

 
Collecting terms, the ACVF at lag 0, that is, the 
variance of the process is: 
 

t 1 t 1

0 j i t j, t i
j 0 i 0

.
− −

− −
= =

γ = ψ ψ σ           (10) 
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Using (7), the ACVF at lag 1 is 
 

t , t 1 1 t , t 2 2 t , t 3 3 t , t 4 t 2 t ,1

2

1 t 1, t 1 1 t 1, t 2 1 2 t 1, t 3 1 t 2 t 1,1

2

2 t 2, t 1 2 1 t 2, t 2 2 t 2, t 3 2 t 2 t 2,1

t 1 1, t 1 t 1 1 1, t 2 t 1 2 1, t 3 t 1 t 2 1

1

− − − − −

− − − − − − − −

− − − − − − − −

− − − − − − − −

σ + ψ σ + ψ σ + ψ σ + + ψ σ +

ψ σ + ψ σ + ψ ψ σ + + ψ ψ σ +

ψ σ + ψ ψ σ + ψ σ + + ψ ψ σ +

ψ σ + ψ ψ σ + ψ ψ σ + + ψ ψ σ

γ =







 ,1.

(11) 
 
Collecting terms, the ACVF at lag 1 is 
 

t 2 t 1

1 j i t i,t j 1
j 0 i 0

− −

− − −
= =

γ = ψ ψ σ           (12) 

 
similarly, the ACVF at lag k is 
 

t k 1 t 1

k j i t i, t j k
j 0 i 0

.
− − −

− − −
= =

γ = ψ ψ σ          (13) 

 
Dividing (13) by (10), results in (8), which 
completes the proof. 
 
Corollary 1: GHACF at Lag k for an AR(1) 
Process 

Consider an AR(1) process 

t j t j
j 0

Z e
∞

−
=

= ψ , j j 1−ψ = φψ  with E (et) = 0, and 

( )i jCov e ,e = Σ , where Σ  is given in (4), with 

i, j 0 i jσ ≠ ∀ ≠ . The GHACF at lag k is given 

by 
t k 1 t 1

j i
t i, t j k

j 0 i 0
k t 1 t 1

j i
t j, t i

j 0 i 0

.

− − −
+

− − −
= =

− −
+

− −
= =

φ σ
ρ =

φ σ

 


         (14) 

 
Proof 

For an AR(1) process , because 

j j 1−ψ = φψ , it follows that j
jψ = φ , for j 0≥ . 

From equations (10) and (13),  

t 1 t 1
j i

0 t j,t i
j 0 i 0

− −
+

− −
= =

γ = φ σ  

and 
t k 1 t 1

j i
k t i,t j k

j 0 i 0

− − −
+

− − −
= =

γ = φ σ   

 
are obtained, thus completing the proof. 
 
Heteroscedastic Autocorrelation Function 
(HACF) 

Heteroscedasticity exists if the diagonal 
elements of Σ  in (4) are not all identical and the 
disturbance term is free from autocorrelation, 
meaning, the disturbances are pairwise 
uncorrelated. This assumption is likely to be 
realistic one when using cross-sectional data. In 
this case Σ  can be written as a diagonal matrix 
with the ith diagonal element given by iiσ . 

Assume E(et) = 0, and ( )i jCov e ,e = Σ , where 

( )11 22 ttdiag , , ,Σ = σ σ σ . Thus, 

 

11

22

tt

0 0

0 0
.

0 0

σ 
 σ Σ =
 
 σ 




   


            (15) 

 
Theorem 2: HACF, at Lag k when i, j 0σ =  for 

all i j≠ , i.e. ( )11 22 ttdiag , , ,Σ = σ σ σ  In an 

AR(p) Process 
Consider the general AR(p) process 

t j t j
j 0

Z e
∞

−
=

= ψ , jψ  as given in (2), with E (et) = 

0 and ( )i jCov e ,e = Σ , with i, j 0 i jσ = ∀ ≠ , 

that is, ( )11 22 ttdiag , , ,Σ = σ σ σ as given in 

(15). The HACF at lag k is then given by 
 

t 1

i i k t i, t i
i k

k t 1
2
i t i, t i

i 0

.

−

− − −
=

−

− −
=

ψ ψ σ
ρ =

ψ σ




                (16) 
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Proof 
Using (9) with i, j 0 i jσ = ∀ ≠ , the 

ACVF at lag 0 is 
 

2 2 2 2 2

0 t ,t 1 t 1,t 1 2 t 2,t 2 3 t 3,t 3 t 1 1,1

0

− − − − − − −ψ σ + ψ σ + ψ σ + ψ σ + + ψ σ

γ =


 

and the ACVF at lag 0, that is, the variance of 
the general AR(p) process is 
 

t 1
2

0 i t i, t i
i 0

.
−

− −
=

γ = ψ σ                   (17) 

 
Using (11) with i, j 0 i jσ = ∀ ≠ , the ACVF at 

lag 1 is 
 

1

1 t 1, t 1 2 1 t 2, t 2 t 1 t 2 1,1− − − − − −

γ =
ψ σ + ψ ψ σ + + ψ ψ σ

 

 
so that the ACVF at lag 1 is 
 

t 1

1 i i 1 t i, t i
i 1

.
−

− − −
=

γ = ψ ψ σ              (18) 

 
Similarly, the ACVF at lag k is 
 

t 1

k i i k t i, t i
i k

.
−

− − −
=

γ = ψ ψ σ               (19) 

 
Dividing (19) by (17), results in (16), which 
completes the proof. 
 
Corollary 2: HACF at Lag k for an AR(1) 
Process 

Consider an AR(1) process, 

t j t j
j 0

Z e
∞

−
=

= ψ , j j 1−ψ = φψ , with E (et) = 0, 

and ( )i jCov e ,e = Σ , with i, j 0 i jσ = ∀ ≠ , that 

is, ( )11 22 ttdiag , , ,Σ = σ σ σ as given in (15). 

Then the HACF at lag k is given by 
 

t 1
2i k

t i, t i
i k

k t 1
2i

t i, t i
i 0

.

−
−

− −
=

−

− −
=

φ σ
ρ =

φ σ




               (20) 

 
Proof 

For an AR(1) process , because 

j j 1−ψ = φψ , it follows that j
jψ = φ , for j 0≥ . 

From equations (17) and (19), 
t 1

2i
0 t i,t i

i 0

−

− −
=

γ = φ σ  and 
t 1

2i k
k t i,t i

i k

−
−

− −
=

γ = φ σ  are 

obtained and the proof is complete. 
 
Special Case 

Homoscedasticity exists if the diagonal 
elements of Σ  in (4) are all identical and the 
disturbance term, e, is free from autocorrelation, 
that is, ij 0 i jσ = ∀ ≠ . In this case, the 

disturbance term is a sequence of independent, 
identically distributed random variables. 
 
Corollary 3.3: ACF at Lag k for an AR(1) 
Process Using Theorem (3.2) 

Consider an AR(1) process, 

t j t j
j 0

Z e
∞

−
=

= ψ , j j 1−ψ = φψ , with E (et) = 0, 

i, j 0 i jσ = ∀ ≠ , and ( ) 2
tVar e t= σ ∀ . For an 

AR(1), j
jψ = φ  for j 0≥ , taking t → ∞  in 

equations (17) through (19), results in  
 

2
2 2i

0 2
i 0 1

∞

=

σγ = σ φ =
− φ , 

 
2

2 2i 1
1 2

i 1 1

∞
−

=

σγ = σ φ =φ
− φ , 

and 
2

2 2i k k
k 2

i k 1

∞
−

=

σγ = σ φ =φ
− φ , 

 
respectively. The ACF at lag k is then given by 

k
k , k 0ρ = φ ≥ , which is the well-known ACF 

for an AR(1) process. 
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Conclusion 
This study investigated an important statistical 
problem concerning the autocorrelation function 
(ACF) in the presence of heteroscedasticity 
disturbances in pth order autoregressive (AR(p)) 
processes. Explicit equations were derived for 
ACF when the disturbance follows the general 
covariance matrix, Σ , and when the diagonal 
elements of Σ  are not all identical but 

ij 0 i jσ = ∀ ≠ , i.e., ( )11 22 ttdiag , , ,Σ = σ σ σ . 

Future research is needed to extend the explicit 
equations derived in this article for ACF in the 
presence of heteroscedasticity disturbances in 
the general form of the moving average models 
with order q, MA(q). 
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Control Balanced Designs Involving Sequences of Treatments 
 

Cini Varghese Seema Jaggi 
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Designs involving sequences of treatments for test vs. control comparisons are suitable for research in 
which each experimental unit receives treatments over time in order to compare several test treatments to 
one (or more) control treatment(s). These designs can be advantageously used in screening experiments 
and bioequivalence trials. Three series of such designs are constructed in incomplete sequences wherein 
the first class of designs is variance balanced while the other two classes of designs are partially variance 
balanced for test versus test comparisons of both direct and residual effects of treatments. 
 
Key words: Change over designs, direct effects, residual effects, control balance, variance balance, partial 

balance, bioequivalence trials. 
 
 

Introduction 
Change over designs (COD) are designs in 
which each experimental unit receives one or 
more treatments, one at a time, in successive 
periods. These designs also known as repeated 
measurement designs, crossover trials and 
designs involving sequences of treatments; they 
have been widely used in several fields of 
research, notably in nutrition experiments with 
dairy cattle, clinical trials, educational/ learning 
experiments, long-term agricultural field 
experiments and bioequivalence trials. A COD is 
one of the most suitable designs for experiments 
with animals as experimental units (different 
treatments) are often applied to the same animal 
in different periods. The distinguishing feature 
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of such an experiment is that any treatment 
applied to a unit in a certain period influences 
the responses of the unit not only in the period 
of its application but also leaves residual effects 
in the succeeding periods. 

In some experimental situations 
involving treatment sequences, researchers are 
interested in comparing several new (test) 
treatments to one (or more) established (standard 
or control) treatment(s) rather than in all pair-
wise comparisons. That is, the researcher is 
interested in drawing inferences based on a 
subset of comparisons among treatments; special 
designs giving more importance to test versus 
control comparisons must be developed to meet 
requirements in these cases. Using such a design 
would allow a researcher to screen out best test 
treatments as compared to existing control 
treatment(s). This type of design is also useful in 
bioequivalence trials (such as veterinary 
medicinal trials) where a set of test formulations 
are to be compared to established reference 
formulations before sanctioning the marketing 
patent for a newly produced formulation. 

Usage of CODs for test versus control 
comparisons began with the introduction of 
control balanced CODs by Pigeon and 
Raghavarao (1987), who derived a set of 
necessary conditions for the existence of control 
balanced CODs (CODs balanced for test vs. 
control comparisons). They provided 
construction methods using existing balanced 
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CODs, pairwise balanced designs and also the 
method of differences. Majumdar (1988) 
obtained some optimal control balanced designs 
involving sequences of treatments when number 
of treatments is less than the number of periods 
and showed that the designs can be constructed 
from existing strongly balanced uniform 
circular/non-circular CODs in test treatments by 
changing some test treatment labels into control. 
Koch, et al. (1989) studied a two-period COD 
for the comparison of two active treatments and 
placebo. Hedayat and Zhao (1990) investigated 
two classes of efficient CODs for the purpose of 
comparing several test treatments to a control 
treatment when the number of periods is two.  

Ting (2002) constructed optimal designs 
for the estimation of control-test treatment 
contrasts in a COD set up. Aggarwal, et al. 
(2004) developed families of CODs for test 
versus control comparisons by juxtaposing 
Williams (1949) Latin square(s) by using block 
contents of various classes of balanced 
incomplete block designs and an orthogonal 
array of type 1 and strength 2. Aggarwal, et al. 
(2004) showed that these designs are optimal. 
Hedayat and Yang (2005) provided some 
construction methods for obtaining control 
balanced CODs. Most of these designs are 
balanced for carryover effects, but require a 
large number of experimental periods as well as 
subjects. Hedayat and Yang (2005) also 
characterized a class of designs that are optimal 
for comparing several test treatments with a 
control. Yang and Park (2007) obtained efficient 
CODs for comparing test treatments with a 
control treatment with three periods. Aggarwal 
and Jha (2009) suggested methods for 
constructing CODs to compare v test treatments 
with a control treatment when the number of 
periods is no larger than v+1.  

This study constructed a series of 
control balanced designs involving sequences of 
treatments in three periods that are variance 
balanced. Another class of partially balanced 
designs involving incomplete sequences based 
on mutually orthogonal Latin squares was also 
obtained. In addition, a third series of control 
balanced designs in incomplete sequences of 
two distinct sets of treatments was obtained to 
compare one set of test treatments with two 
control treatments. Some definitions are given 

below that would be used in the subsequent 
sections. 
 
Definitions 

The following designs relate to studies 
involving treatment sequences. 
 
Control Balanced Design 

A control balanced COD for t + c (= t 
test + c control) treatments in p periods and n 
experimental units for test versus control 
comparisons is said to be balanced in the 
presence of residual effects, if: 
 

(a) Each test treatment occurs ωt times and 
each control treatment occurs ωc times in 
each period; 

 
(b) Each test treatment is immediately 

preceded by every other test treatment 
equally often, for example, υtt′ (t≠t′); 

 
(c) Each control treatment is immediately 

preceded by every other control treatment 
equally often, for example, υcc′ (c≠c′); and 

 
(d) Each control treatment is immediately 

preceded by every test treatment and vice 
versa equally often, for example, υtc. 

 
It may be noted that when ωt = ωc and tt′υ  = υcc′ 

= υtc, these designs reduce to conventional 
CODs balanced for first order residual effects.  
 
Variance Balanced Design 

A control balanced COD for t + c (= t 
test + c control) treatments in p periods and n 
experimental units for test versus control 
comparisons is said to be variance balanced in 
the presence of residual effects, if all elementary 
contrasts pertaining to: 
 

(a) Direct (residual) effects among test 
treatments are estimated with the same 
variance, ttdV ′  ( tt rV ′ ) (t≠t′); and 

 
(b) Direct (residual) effects among test versus 

control treatment are estimated with the 
same variance, tcdV  ( tcrV ). 
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Partially Balanced Design 
A control balanced COD for t + c (= t 

test + c control) treatments in p periods and n 
experimental units for test versus control 
comparisons is said to be partially variance 
balanced with an underlying m-class association 
scheme in the presence of residual effects, if all 
elementary contrasts pertaining to: 
 

(a) Direct (residual) effects among test 
treatments that are ith associates to each 
other, are estimated with the same 
variance Vtt′id (Vtt′ir) (t≠t′ ; i = 1,2,…m); 
and 
 

(b) Direct (residual) effects of test and control 
treatment are estimated with the same 
variance Vtcd (Vtcr). 

 
Circular Association Scheme 

Let there be t test treatments arranged on 
the circumference of a circle. For a given 
treatment, the treatments that appear at ith 
positions on its either side are ith associates [i = 
1, 2, …, (t−1)/2 if t is odd, or t/2 if t is even]. For 
odd t , there are always two ith associates of each 
treatment for i = 1, 2, …, (t−1)/2, and for an 
even t there are two ith associates of every 
treatment for i = 1, 2, …,( t-1)/2 and one 
associate for i = t/2. The arrangement of 7 
treatments in a circular association scheme could 
be: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first, second and third associates of the 7 
treatments are: 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Experimental Design 1: Control Balanced 
Designs Involving Treatment Sequences in 
Three Periods 

Arrange all possible distinct pairs from t 

test treatments (2 t
2C  pairs) excluding the 

identical pairs in 2 t
2C  rows of size 2 each; 

repeat the 2 t
2C  pairs 3 times. In the first set, 

append a column containing all elements as 

control treatment (t+1), 2 t
2C  times as the first 

column; in the second set append a column of 

control treatment (t+1), 2 t
2C  times as the 

second column and in the third set append a 

column of control treatment (t+1), 2 t
2C  times 

as the third column. Juxtapose the three sets, 
side by side, so that the resulting arrangement 

has 3 columns and 6 t
2C  rows. Treating 

columns as periods and rows as experimental 
units, this arrangement yields a control balanced 
COD balanced for first residual effects for 
testing v treatments with a control in 3 periods 

and 6 t
2C  units. 

 
Example 1 

A control balanced three-period COD 
balanced for first residual effects for comparing 
3 test treatments (denoted by 1, 2, 3) with one 
control treatment (denoted by 0) in 18 
experimental units is: 

 

1 2 

3 

4 

5 

6 

7 

Treatment
First 

Associates
Second 

Associates 
Third 

Associates

1 2, 7 3, 6 4, 5 

2 1, 3 4, 7 5, 6 

3 2, 4 1, 5 6, 7 

4 3, 5 2, 6 1, 7 

5 4, 6 3, 7 1, 2 

6 5, 7 1, 4 2, 3 

7 6, 1 2, 5 3, 4 
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A program was developed using SAS software 
PROC IML for calculating the variance 
estimates of contrasts among test treatments and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the variances estimates of contrasts pertaining to 
test versus control treatments for direct and 
residual treatment effects. Table 1 shows a list of 
designs for comparing t (≤10) test treatments 
with c (=1) control treatment in p (≤10) periods, 
n (≤100) units, along with variances. 

Table 1 also shows that the designs are 
variance balanced. It also shows that estimate 
variances of the contrasts between test versus 
control treatment of direct effects is less than 
those of residual effects. Further, variances of 
the estimates of contrasts between test versus 
control treatment is less compared to those of 
test versus test treatments in the case of both 
direct and residual treatment effects. 
 
Experimental Design 2: Control Balanced 
Designs Involving Incomplete Treatment 
Sequences Using MOLS 

Append a complete set of (t−1) mutually 
orthogonal Latin squares (MOLS) for prime 
number t of treatment symbols (Fisher & Yates, 
1963) one after another. This arrangement has t 
columns and (t−1)×t rows. Delete the last 
column of the array resulting in (t−1) columns 
and (t−1)×t rows. Replace the first set of t 
elements in the first column, second set of t 
elements in the second column, …, (t−1)th set of 
t elements in the last column, by the control 
treatment (t+1). Treating columns as periods and 
rows as experimental units, the final 
arrangement results into a control balanced COD 
for t tests treatments and 1 control treatment in p 
(= t−1) periods and (t−1)×t units. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experimental 
Unit 

Period 

i ii iii 

i 0 1 2 

ii 0 1 3 

iii 0 2 1 

iv 0 2 3 

v 0 3 1 

vi 0 3 2 

vii 1 0 2 

viii 1 0 3 

ix 2 0 1 

x 2 0 3 

xi 3 0 1 

xii 3 0 2 

xiii 1 2 0 

xiv 1 3 0 

xv 2 1 0 

xvi 2 3 0 

xvii 3 1 0 

xviii 3 2 0 

 

Table 1: List of Control Balanced Designs Involving Treatment Sequences in Three Periods 
 

S. No. t p n σ -2 Vtt′d σ -2 Vtcd σ -2 Vtt′r σ -2 Vtcr 

1 3 3 18 0.2455 0.1860 0.4091 0.3239 

2 4 3 36 0.1741 0.1174 0.2813 0.1992 

3 5 3 60 0.1349 0.0852 0.2143 0.1420 

4 6 3 90 0.1101 0.0667 0.1731 0.1096 

 



CONTROL BALANCED DESIGNS INVOLVING SEQUENCES OF TREATMENTS 

636 
 

Example 2 
A control balanced COD for comparing 

5 test treatments (denoted by 1, 2, 3, 4, 5) with 
one control treatment (denoted by 0) in 4 periods 
and 20 units is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 shows a list of designs has been 
prepared for t test treatments and c (=1) control 
treatment, where t is a prime number less than 
15. As shown, the designs are partially variance 
balanced with an underlying varying circular 
association scheme for test versus test 
comparisons. Hence, average variance was 
computed for such comparisons for both the 

cases of direct (σ -2
tt dV ′ ) as well as residual    

(σ−2 
tt rV ′ ) effects. Variances of the estimates of 

contrasts between test versus control treatment 
of direct effects is less than those of residual 
effects (see Table 2). Variances of the estimates 
of contrasts between test versus control 
treatment is less compared to those of test versus 
test treatments in both cases of direct effects as 
well as residual treatment effects. 
 
Experimental Design 3: Control Balanced 
Designs Involving Incomplete Sequences of 
Two Distinct Sets of Treatments 

In the (t−1) columns and (t−1)×t rows 
arrangement previously obtained with the 
MOLS method, replace the first set of t elements 
in the first column by the first control and first 
set of the last column by the second control, 
second set of t elements in the second column by 
the first control and second set of last but one 
column by the second control and so on. Thus in 
each set of t rows, t treatments is replaced by the 
first control in a staircase descending fashion 
and t treatments are replaced by the second 
control in a staircase fashion circularly until 
each column is replaced by both controls. 
Treating   columns   as   periods  and  rows  as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experimental 
Unit 

Period 

i ii iii iv 

i 0 2 3 4 

ii 0 3 4 5 

iii 0 4 5 1 

iv 0 5 1 2 

v 0 1 2 3 

vi 1 0 5 2 

vii 2 0 1 3 

viii 3 0 2 4 

ix 4 0 3 5 

x 5 0 4 1 

xi 1 4 0 5 

xii 2 5 0 1 

xiii 3 1 0 2 

xiv 4 2 0 3 

xv 5 3 0 4 

xvi 1 5 4 0 

xvii 2 1 5 0 

xviii 3 2 1 0 

xix 4 3 2 0 

xx 5 4 3 0 
 

Table 2: List Control Balanced Designs Involving Incomplete Sequences of Two Distinct 
Sets of Treatments 

 

S. No. t p n σ -2 tt dV ′  σ -2 Vtcd σ -2 
tt rV ′  σ -2 Vtcr 

1 5 4 20 0.2122 0.1582 0.2954 0.2248 

2 7 6 42 0.0733 0.0610 0.0902 0.0754 

3 9 8 72 0.0375 0.0329 0.0434 0.0382 

4 11 10 110 0.0229 0.0206 0.0257 0.0232 

5 13 12 156 0.0155 0.0142 0.0170 0.0156 
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experimental units, the final arrangement results 
in a control balanced design involving sequences 
of treatments for t test treatments and 2 control 
treatments in p (= t−1) periods and (t−1)×t units. 
 
Example 3 

A control balanced design involving 
sequences of treatments for comparing 5 test 
treatments (denoted by 1, 2, 3, 4, 5) with 2 
control treatments (denoted by 01 and 02) in 4 
periods and 20 units is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 shows a list of designs prepared 
for comparing t test treatments with c (=2) 
control treatments, where t is a prime number 
less than 15. These designs are partially 
balanced based on varying circular association 
scheme for test versus test comparisons 
pertaining to direct as well as residual effects of 
treatments. Hence average variance was 
calculated for these comparisons in case of 

direct (σ−2
tt dV ′ ) as well as residual (σ−2 

tt rV ′ ) 

effects. 
Table 3 shows that the variances of 

estimates of contrasts between test versus 
control treatment of direct effects is less than 
those of residual effects. Also, that variances of 
estimates of the contrasts between test versus 
control treatment is less as compared to those of 
test versus test treatments in both the cases.  
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Experimental 
Unit 

Period 

i ii iii iv 

i 01 2 3 02 

ii 01 3 4 02 

iii 01 4 5 02 

iv 01 5 1 02 

v 01 1 2 02 

vi 1 01 02 2 

vii 2 01 02 3 

viii 3 01 02 4 

ix 4 01 02 5 

x 5 01 02 1 

xi 1 02 01 5 

xii 2 02 01 1 

xiii 3 02 01 2 

xiv 4 02 01 3 

xv 5 02 01 4 

xvi 02 5 4 01 

xvii 02 1 5 01 

xviii 02 2 1 01 

xix 02 3 2 01 

xx 02 4 3 01 
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Table 3: List of Control Balanced Designs Involving Incomplete Sequences of Two Distinct 
Sets of Treatments 

 

S. No. t p n σ -2 tt dV ′  σ -2 Vtcd σ -2 
tt rV ′  σ -2 Vtcr 

1 5 4 20 0.3204 0.2210 0.4663 0.3065 

2 7 6 42 0.0960 0.0719 0.1176 0.0887 

3 9 8 72 0.0446 0.0363 0.0516 0.0421 

4 11 10 110 0.0261 0.0222 0.0292 0.0249 

5 13 12 156 0.0171 0.0150 0.0188 0.0165 
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A control chart is a statistical device used for the study and control of a repetitive process. In 1931, 
Shewart suggested control charts based on 3 sigma limits. Today manufacturing companies around the 
world apply Six Sigma initiatives, with a result offewer product defects. Companies practicing Six Sigma 
initiatives are expected to produce 3.4 or less number of defects per million opportunities, a concept 
suggested by Motorola in 1980. If companies practicing Six Sigma initiatives use control limits suggested 
by Shewhart, then no points will fall outside the control limits due to the improvement in the quality of 
the process. ASix Sigma based control chart is constructed for the number of defects and average number 
of defects per unit. Tables are providedto aid engineers in decision making. 
 
Key words: Six Sigma quality level, control chart, process control, Six Sigma. 
 
 

Introduction 
The concept of Six Sigma was introduced in 
1980 by engineer M. Harry at Motorola. Harry 
analyzed variations in outcomes of the 
company’s internal procedures and realized that 
by measuring variations it was possible to 
improve the working of the system. The 
procedure was designed to improve overall 
performance. Companies practicing Six Sigma 
are expected to produce 3.4 or less number of 
defects per million opportunities. Radhakrishnan 
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and Sivakumaran (2008a, 2008b, 2008c, 2009a, 
2009b, 2010) used the concept of Six Sigma in 
the construction of sampling plans, such as 
single, double and repetitive group sampling 
plans indexed through Six Sigma Quality Levels 
(SSQLs) with the Poisson distribution as the 
base line distribution. Radhakrishnan (2009) 
suggested a single sampling plan indexed 
through SSQLs based on Intervened Random 
Effect Poisson Distribution and the Weighted 
Poisson Distribution as the base line 
distributions. Radhakrishnan and Balamurugan 
(2010) constructed Six Sigma based control 
charts for the number of defectives. The control 
charts originated by W. A. Shewhart (1931) 
were based on 3 sigma control limits; if these 
same charts are used for the products of 
companies adopting Six Sigma initiatives in 
their processes, then no points will fall outside 
the control limits due to the improvement in 
quality. Thus, a separate control chart is required 
to monitor the outcomes of the companies that 
adopt Six Sigma initiatives. 
 
Definitions 
• Upper specification limit (USL): The 

greatest amount specified by the producer 
for a process or product to have acceptable 
performance. 
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• Lower specification limit (LSL): The 
smallest amount specified by the producer 
for a process or product to have acceptable 
performance. 

 
• Tolerance level (TL): The difference 

between USL and LSL, TL = USL−LSL. 
 
• Process capability (Cp): The ratio of 

tolerance level to six times standard 
deviation of the process.  

 

6 6
l

p
T USL LSLc −= =
σ σ

 

 
• Subgroup size (N):The total number of 

samples. 
 
• Subgroup size (n): The choice of the sample 

size n and the frequency of sampling. 
 
• Quality control constants ( 6L σ & 6R σ ): The 

constants introduced in this article, 6L σ  and 

6R σ , determine the control limits based on 

Six Sigma initiatives for the number of 
defects and average number of defects per 
unit respectively. 

 
Conditions for Application 
1. Human involvement should be less in the 

manufacturing process; and 
 

2. The company adopts Six Sigma quality 
initiatives in its processes. 

 
Construction of Control Charts Based On Six 
Sigma Initiatives for the Number of Defects 

Fix the tolerance level (TL) and process 
capability (CP) to determine the process standard 
deviation ( 6σσ ). Apply the value of 6σσ  in the 

control limits 6 6c L σ σσ± , to find the control 

limits for the Six Sigma based control chart for 
the number of defects. The value of 6L σ = 4.831 

isobtained using 
 

6
1 1(z z ) 1 , 3.4 x 10ssp α α −≤ = − = , 

 

where z is a standard normal variate. For a 
specified TL and CP of the process, the values of 
σ (termed as 6σσ ) are calculated from 

6
L

p
Tc
σ

=  using a C program and are presented 

in Table 3 for various combinations of TL and 
CP. The control limits based on Six Sigma 
initiatives for the number of defects are: 
 

6 6 6

6 6 6

UCL   

Central Line CL

LCL  .

c L
c

c L

σ σ σ

σ σ σ

σ

σ

= +
=

= −

 

 
Example 1 

Consider an example from Mahajan 
(2005).Table 1 shows the numbers of missing 
rivets noted at aircraft final inspection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Missing Rivets Noted for Aircraft 
 

Airplane No. No. of Missing Rivets 

1 8 
2 16 
3 14 
4 19 
5 11 
6 15 
7 8 
8 11 
9 21 
10 12 
11 23 
12 16 
13 9 
14 25 
15 15 
16 9 
17 9 
18 14 
19 11 
20 9 
21 10 
22 22 
23 7 
24 28 
25 9 
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Where 
 

Number of defects in all samples

Total number of samples
c =  

 
and 

351
14.04.

25

c
c

N
= = =  

 
Three Sigma Control Limits for the Number of 
Defects 

The 3σ control limits suggested by 
Shewhart (1931) are: 
 

3

3

3

3

1 4 .0 4 3 1 4 .0 4  2 5.2 8

1 4 .0 4

3

1 4 .0 4 3 1 4 .0 4  2.8 0

U C L c c

C L c

L C L c c

σ

σ

σ

= +
= + =
= =

= −
= − =

 

 
Figure 1 shows that airplane number 24falls  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

above the upper control limit; therefore the 
process does not exhibit statistical control. 
 
Control Limits Based on Six Sigma Initiatives 
for the Number of Defects 

For a given TL = 21 (USL-LSL =28-7) 
& CP = 2.5, Table 3 shows that the value of 6σσ  

is 1.4. The control limits based on Six Sigma 
initiatives for the number of defects for a 
specified TL and 6L σ  are 64.831c σσ± with 

 

6 6 6

6

6 6 6

 L

14.04  (4.831 1.4) 20.8

 14.04

 L

14.04  (4.831 1.4)  7.3

UCL c

CL c
LCL c

σ σ σ

σ

σ σ σ

σ

σ

= +
= + × =
= =
= −
= − × =

 

 
Figure 1 shows that airplane numbers 9, 11, 14, 
22 and 24 are above the upper control limit and 
airplane number 23falls below the lower control 
limit; therefore the process does not exhibit 
statistical control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Process Comparison for 3σLimits and Control Limits Using Six Sigma Initiatives 
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Construction of Control Chart Based On Six 
Sigma Initiatives for Average Number Defects 
per Unit 

Fix the tolerance level (TL) and process 
capability (CP) to determine the process standard 
deviation ( 6σσ ). Apply the value of 6σσ in the 

control limits 6 6u R σ σσ± , to obtain the control 

limits for the control chart based on Six Sigma 
initiatives for average number of defects per 
unit. The value of 6R σ is obtained using 

 
6

1 1(z z ) 1 , 3.4 x 10ssp α α −≤ = − =  

 
where z is a standard normal variate. For a 
specified TL and CP of the process, the value of 

σ (termed as 6σσ ) is calculated from 
6

L
p

Tc
σ

=  

using a C program. Table 4 presents calculated 
6σ values for various combinations of TL and 
CP. Further, the value of 6R σ  is obtained using 

the procedure given above and presented in 
Table 5 for various sample sizes. The control 
limits based on six sigma initiatives for average 
number of defects per unit are 
 

6

6

6 6

6

6 6

Central Line,  CL

.

UCL u R

u
LCL u R

σ

σ

σ σ

σ

σ σ

σ

σ

= +

=
= −

 

 
Example 2 

Consider an example provided by 
Mahajan (2005). Table 2 shows the average 
number of outlet leaks per radiator for 10 lots (n) 
of 100 radiators (N) each. 

The mean number of defects per unit in 
the lot, based on all the n samples is given by 
 

1

.
1 1.23

0.123
10

n

i
i

u u
n =

= = =  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Three Sigma Control Limits for Average 
Number of Defects per Unit 

The 3σ control limits suggested by 
Shewhart (1931) are 
 

3

3

3

3 /

0.123 3 0.123 /100 0.228
0.123

3 /

0.123 3 0.123 /100 0.018

UCL u u n

CL u

LCL u u n

σ

σ

σ

= +

= + =
= =

= −

= − =

 

 
Figure 1 shows that the process is in control 
because all the samples lie within the control 
limits. 
 
Control Limits Based on Six Sigma Initiatives 
for Average Number of Defects per Unit 

For a given TL = 0.12 (USL-LSL =0.17-
0.05) and CP = 2.5, Table4 shows that the value 
of 6σσ  is 0.008. The control limits based on Six 

Sigma initiatives for the average number of 
defects per unit chart for a specified TL and 

6σσ  are 6 6u R σ σσ± with 

 

Table 2: Average Number of 
Outlet Leaks per Radiator 

Lot No. 
No. of 

Leaks (c) 
Leaks per 

Radiator (c/N) 

1 15 0.15 
2 17 0.17 
3 12 0.12 
4 16 0.16 
5 14 0.14 
6 5 0.05 
7 14 0.14 
8 11 0.11 
9 9 0.09 

10 10 0.10 

Total  1.23  
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6 6 6

6

6 6 6

0.123 (0.4831 0.008) 0.127

0.123

0.123-(0.4831 0.008) 0.12.

UCL u R

CL u
LCL u R

σ σ σ

σ

σ σ σ

σ

σ

= +
= + × =
= =
= −
= × =

 

 
Figure 2 illustrates that the process is out of 
control because only one airplane number lies 
inside the control limits; thus, the process does 
not exhibit statistical control. 
 

Conclusion 
This article provided a procedure to construct 
control charts based on Six Sigma initiatives for 
the number of defects and average number of 
defects per unit. Using examples, itwas found 
that the examined processeswere not in control 
even when Six Sigma initiatives were adopted. It 
is clear from the comparison that when the 
process is centered with reduced variation many 
points fall outside the control limits, thus 
indicating that the processes are not at expected 
levels; thus, a correction in the process is 
required   to   reduce   variations.   The   charts  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

suggested herein may be useful for companies 
practicing Six Sigma initiatives in their process. 
These charts can be used to replace existing 
Shewhart (1931) control charts implemented 
when companies first started implementing Six 
Sigma Initiatives. 
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Table 3: 6σσ  Values for Specified Cp and TLfor the 

Number of Defects 

Cp 

TL 

20 21 22 23 24 25 

1.0 3.3 3.5 3.7 3.8 4.0 4.2 

1.1 3.0 3.2 3.3 3.5 3.6 3.8 

1.2 2.8 3.0 3.1 3.2 3.3 3.5 

1.3 2.6 2.7 2.8 2.9 3.1 3.2 

1.4 2.4 2.5 2.6 2.7 2.9 3.0 

1.5 2.2 2.3 2.4 2.6 2.7 2.8 

1.6 2.1 2.2 2.3 2.4 2.5 2.6 

1.7 2.0 2.1 2.2 2.3 2.4 2.5 

1.8 1.9 1.9 2.0 2.1 2.2 2.3 

1.9 1.8 1.8 1.9 2.0 2.1 2.2 

2.0 1.7 1.8 1.8 1.9 2.0 2.1 

2.1 1.6 1.7 1.7 1.8 1.9 2.0 

2.2 1.5 1.6 1.7 1.7 1.8 1.9 

2.3 1.4 1.5 1.6 1.7 1.7 1.8 

2.4 1.4 1.5 1.5 1.6 1.7 1.7 

2.5 1.3 1.4 1.5 1.5 1.6 1.7 

 

Table 4: 6σσ  Values for Specified CP and TLfor the 

Average Number of Defects per Unit 

Cp 

TL 

0.10 0.11 0.12 0.13 0.14 0.15 

1.0 0.017 0.018 0.020 0.022 0.023 0.025 

1.1 0.015 0.017 0.018 0.020 0.021 0.023 

1.2 0.014 0.015 0.017 0.018 0.020 0.021 

1.3 0.013 0.014 0.015 0.017 0.018 0.019 

1.4 0.012 0.013 0.014 0.015 0.017 0.018 

1.5 0.011 0.012 0.013 0.014 0.016 0.017 

1.6 0.010 0.011 0.013 0.014 0.015 0.016 

1.7 0.010 0.011 0.012 0.013 0.014 0.015 

1.8 0.009 0.010 0.011 0.012 0.013 0.014 

1.9 0.009 0.010 0.010 0.011 0.012 0.013 

2.0 0.008 0.009 0.010 0.010 0.012 0.013 

2.1 0.008 0.009 0.010 0.010 0.011 0.012 

2.2 0.008 0.008 0.009 0.010 0.011 0.011 

2.3 0.007 0.008 0.009 0.009 0.010 0.011 

2.4 0.007 0.008 0.008 0.009 0.010 0.010 

2.5 0.007 0.007 0.008 0.009 0.009 0.010 

 

Table 5: 6R σ  Values for a Specified Subgroup Size (n) 

for Average Number of Defects per Unit 

Subgroup Size (n) 6R σ  

100 0.4831 

101 0.4807 

102 0.4783 

103 0.4760 

104 0.4737 

105 0.4715 

106 0.4692 

107 0.4670 

108 0.4649 

109 0.4627 

110 0.4606 
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Non-homogenous Poisson Process for Evaluating 
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Non-Homogenous Poisson Process (NHPP), also known as the Power Law process (PLP) or the Weibull 
Process, is used to evaluate the effectiveness of a given treatment for Stage I & II ductal breast cancer 
patients. The behavior of the shape parameter of the intensity function is examined to evaluate the 
response of a given treatment with respect to its effectiveness for a cancer subject. 
 
Key words: Statistical modeling, power law process, Weibull process, non-homogenous Poisson process, 

intensity function, cancer analysis. 
 
 

Introduction 
Breast cancer (malignant breast neoplasm) is 
cancer originating from breast tissue, most 
commonly from the inner lining of milk ducts or 
the lobules that supply the ducts with milk 
(Sariego, 2010). This study uses the Non-
Homogenous Poisson Process (NHPP), also 
known as the Power Law Process (PLP) or the 
Weibull Process, to evaluate the effectiveness of 
a given treatment for Stage I & II ductal breast 
cancer patients. The behavior of the shape 
parameter of the intensity function is examined 
to evaluate the response of a given treatment 
with respect to its effectiveness for the cancer 
subject. Data from the Surveillance 
Epidemiology and End Results (SEER) Program 
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is used to test the proposed model. This data is 
collected by the U.S. National Institutes of 
Health (NIH) (2010) and includes information 
on incidence, survival and prevalence from 
specific geographic areas representing 26% of 
the U.S. population; the NIH also compiles 
reports on several types of cancer and includes 
mortality rates in the SEER database. 
 
Historical Review 

Many authors have contributed to the 
literature on point processes. Billingsley (1961) 
proposed a statistical inference method for 
Markov processes. Duane (1964) suggested a 
learning curve approach to reliability 
monitoring. Cox and Lewis (1966) studied 
statistical inference problems in point processes 
and their applications. Cox and Isham (1980) 
discussed random collection of point processes, 
and Basawa and Parkasa Rao (1980) studied 
different stochastic processes with the 
applications. Dharmadhikari, et al. (1989) 
estimated the scale parameter of a power law 
process using power law counts. Bain and 
Enelhardt (1991) presented a statistical analysis 
of reliability and compared several life testing 
models. Kingman (1993) discussed methods of 
Poisson Sampling. Tsokos (1997) presented the 
parameter estimation of Power Law Process. 
Rigdon and Basu (2000) proposed several 
statistical methods for the reliability of 
repairable systems using a power law process. 
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Methodology 

The schematic diagram presented in Figure 1 
provides a picture of the database used in this 
study. A randomized data set was generated to 
reduce random errors by performing simple 
random sampling procedures. From a total 
578,134 cancer patients in the SEER database, 
500,000 breast cancer patients’ information was 
randomly selected. Out of these 500,000 breast 
cancer patients, 496,783 are female and 3,217 
are male. The female patients are categorized 
into three different racial groups: Caucasian, 
African-American and Asian (which includes 
others). Within these groups, there are 426,302 
Caucasian, 39,681 African-American, 29,015 
Asian and 1,785 unspecified patients. Within 
each patient group there are four types of breast 
cancer: ductal, medullary, lobular and other 
(unspecified). For each type of breast cancer, 
patients are further divided according to the 
American Joint Committee on Cancer (AJCC) 
Cancer Staging, such as, stage I, II, III, IV and 
others. Breast cancer, particularly the ductal 
form, is a common occurrence among Caucasian 
females; thus, this study focuses on ductal breast 
cancer among Caucasian females. 
 
Caucasian Ductal Cancer Patients in Stage I 

WD stage I stands for Caucasian ductal 
cancer patients in AJCC stage I. Similarly, WD 
stage II, III and IV stand for Caucasian ductal 
cancer patients in AJCC stages II, III and IV. 
WD patients in stage I were divided into two 
groups: (1) patients who are still living, and (2) 
patients who are deceased (see Figure 2). 
Deceased patients were grouped into (1) patients 
who are deceased due to breast cancer and, (2) 
patients who are deceased due to other reasons. 
For those patients who are deceased due to 
breast cancer, different treatment information is 
available. A NHPP was constructed with respect 
to WD stage I patients in order to compare the 
effects of the four different treatments.  
 
Caucasian Ductal Cancer Patients in Stage II 

Caucasian ductal patients in stage II 
were divided into two groups, patients who are 
still living and patients who are deceased (see 
Figure 3).   Deceased   patients   were   further  

divided into groups of patients who (1) are 
deceased due to breast cancer, and (2) patients 
who are deceased due to other reasons. For those 
patients who are deceased due to breast cancer, 
different treatment information is available. A 
NHPP was constructed with respect to WD stage 
II patients in order to compare the effects of the 
four different treatments. 

The most common stages to classify 
breast cancer patients are stages I and II. Thus, 
these are the stages considered herein using the 
NHPP to determine the effectiveness of the four 
different treatments (see Figures 2 and 3). 
 
Non-Homogeneous Poisson Process Analysis 

According to Tsokos (1997), the non-
homogeneous Poisson process (NHPP) is also 
known as the Power Law Process (PLP) or the 
Weibull process (WP), in addition, the NHPP is 
also considered a counting process. Let 

}0),({ ≥ttN  be a counting process with the 
following three properties: 
 

1. 0)( ≥tN . 
 

2. ( )N t  is an integer. 

 
3. If ,s t≤  then )()( tNsN ≤ .  

 
If ts  , then )()( sNtN −  is the 

number of events occurring during the interval 
],( ts . 

A Poisson process is a stochastic 
process in which events occur continuously and 
independently of one another. The Poisson 
process is a collection {N(t): t ≥ 0} of random 
variables, where N(t) is the number of events 
that have occurred up to time t (starting from 
time 0). The number of events between times a 
and b is given as N(b) − N(a) and has a Poisson 
distribution. Each realization of the process 
{N(t)} is a non-negative integer-valued step 
function that is non-decreasing.  

For NHPP, the rate parameter may 
change over time. In this case, the generalized  
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rate function is given as λ(t), thus, the expected 
number of events between time a and time b is: 
 

=
b

aba dtt .)(, λλ
                     (1) 

 
Therefore, the number of arrivals in the time 
interval (a, b], given as N(b) − N(a), follows a 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Poisson distribution with associated parameter λ, 
a, b as: 
 

a ,b k
a,be ( )

P[(N(b)) N(a)) k] , k 0,1,...
k!

−λ λ
− = = =

(2) 
 
A homogeneous Poisson process may be viewed 
as a special case when λ(t) = λ, a constant rate.  

Figure 1: Breast Cancer Data Tree Diagram 

(WD stage I stands for White Ductal cancer patients in AJCC Stage I) 
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Figure 2: Breast Cancer Data Diagram White Ductal Stage I Patients 
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Figure 3: Breast Cancer Data Diagram White Ductal Stage II Patients 
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The mean value function )(tλ  of the process is: 
 

t

0

1
t

0

(t) E(N(t))

v(s)ds

s
ds

t
.

β−

β

λ =

=

β   =    α α   

 =  α 



             (4) 

 
It is known that, if the parameter beta is greater 
than one in survival analysis, then the failure 
time increases; this indicates a decrease in 
survival rate. If beta is less than one in the 
survival analysis, then the failure time decreases, 
meaning the survival rate increases. If beta 
equals one then the failure time is constant and 
the NHPP will become a homogenous Poisson 
process (HPP) (Rigdon & Basu, 2010). 

The NHPP has the intensity function  
 

1
t

(t) ,  for 0, 0, t 0.
β−β   ν = α β   α α   

    

(3) 
 

The unbiased estimator of beta is (Bain 
& Enelhardt, 1991):  

 

U MLE

n
n

i 1 i

n 1ˆ
n

n 1
.

t
log

t=

− − γβ = ×β

− − γ=
 
 
 


                (5) 

 
where γ  is an indicator function. If 1=γ  the 
system will be failure time truncated, meaning 
the system is restricted by a number of tails and 
testing will stop when that number of tails is 
reached. If 0=γ  then the system will be time 
truncated, which means the system is restricted 
by a final failure time and will stop when that 
time is reached.  

The other parameter alpha can be 
calculated by equation 6, below.  
 

β

α
ˆ
1

ˆ

n

tn=

                            (6) 
 
This study belongs to the first case; that is, the 
time of cases has been fixed. Patients were 
divided into four groups according to their 
cancer stage and, within each stage, it is known 
what kind of treatment the patient received, 
including if the patient did not receive any 
radiation treatment at all. Therefore, within each 
stage patients are divided into four groups with 
respect to treatment they received, namely, 
without treatment, treatment 1, 2 or 3. Treatment 
1 refers to beam radiation, treatment 2 refers to 
radioactive implants and treatment 3 is a 
combination treatment. Few patients in the data 
source had treatments 2 or3, thus, those are the 
smallest groups. 
 

Results 
After calculating alpha and beta values for the 
NHPP for each treatment, results were compared 
and emerging patterns observed. Because the 
Caucasian race is the major population and 
ductal patients are the dominate type, this study 
focused on Caucasian ductal breast cancer 
patients. The estimation of the parameter is 
shown in Table 1. 

Figure 4 shows the pattern for the key 
parameter beta. For example, 11β  is 1.11 which 
means if a patient does not receive any 
treatment, the patient’s condition will likely 
become worse because this indicates tumor 
growth which will lead to the progression of 
cancer. It may lead the patient to move from 
stage I to stage II or higher. Examining 31β  and 

32β , it is possible to determine whether a patient 

who receives treatment 3 in stage I will have a 
better result than a patient who receives the 
same treatment as a patient in stage II. 

It was found that, for cases when beta 
are less than one, a decreased tumor size is 
indicated, meaning the treatment for breast 
cancer works. Results show that patients in early 
stages (for example, I and II) without treatment 
will experience increased tumor size and shorter 
time until death (see Table 1). Beam radiation  
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Figure 4: Evaluation Chain for NHPP 
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Table 1: Parameter Estimation for NHPP 

  Stage I Stage II 

Alpha 

Without Treatment 94.5112 113.8267 

With Treatment 1 56.17724 92.982 

With Treatment 2 76.03755 66.60 

With Treatment 3 33.8427 41.35 

Beta 

Without Treatment 1.110023 1.167756 

With Treatment 1 0.9943948 1.1195 

With Treatment 2 1.112772 1.076 

With Treatment 3 0.8635 0.929 
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(treatment 1) works for stage I but not for stage 
II. Radioactive implants (treatment 2) do not 
work well for either stage I or II. Treatment 3, a 
combination of the treatments, works well in 
stages I and II. (There is not enough data to 
conduct the NHPP for stages III and IV.) 
Intensity function plots are shown in Figures 5 - 
12. 

Figure 5 shows that, as the cumulative 
time of a patient increases, the intensity function 
also increases: this indicates, as expected, that 
tumor size is increasing and cancer is 
progressing. This result verifies the result 
obtained from parameter estimate 11β . Figure 6 
shows that, as the cumulative time of a patient 
increases, the intensity function also decreases; 
this indicates, as expected, that the cancer will 
decrease with treatment 1 for stage I ductal 
Caucasian patients. This result leads to the same 
result obtained from parameter estimate 12β . 

Figure 7 shows that, as the cumulative 
time of a patient increases, the intensity function 
also increases; this indicates, as expected, that 
the cancer progresses without treatment. This 
result verifies the result obtained from parameter 
estimate 13β . Figure 8 shows that, as the 

cumulative time of a patient increases, the 
intensity function decreases; this indicates that 
the cancer will improve with treatment 1 for 
stage 1 ductal Caucasian patients. This result 
leads to the same result obtained from the 
parameter estimate 14β . 

Following a similar method, Figures 9, 
10 and 11 show that, as the cumulative time of a 
patient increases, the intensity function also 
increases. This indicates that the cancer 
progresses without treatment or with treatment 1 
or 2 for stage II ductal Caucasian patients. This 
result leads to the same result obtained from the 
parameter estimates 21β , 22β  and 23β . 

Figure 12 shows that, as the cumulative 
time of a patient increases, the intensity function 
decreases, this indicates - as expected - that the 
cancer will improve with treatment 3 for stage II 
ductal Caucasian patients. This result attests to 
the estimation obtained from parameter estimate 

24β  (see Table 1). 
In summary, results indicate that, for 

Caucasian ductal breast cancer patients, it would 

be recommended to provide either a 
combination or a beam radiation treatment when 
they are in early stages I and II.  
 

Conclusion 
Based on breast cancer patients from the SEER 
database, adequate data exists to apply the 
NHPP analysis to Caucasian ductal cancer 
female patients in two early stages. Based on the 
results obtained from applying the proposed 
model, the following conclusions are put forth: 
 
• With no treatment, the intensity function in 

stage I and stage II increases exponentially, 
implying that the tumor size of the patients 
increases at the same rate. 

 
• With treatment 1 (beam radiation) in stage I 

the intensity function decreases, implying 
that the tumor size decreases. However, the 
same treatment in stage II shows the 
opposite result. 

 
• With treatment 2 (radioactive implants) the 

intensity function in stage I increases and 
similar behavior is observed for the same 
treatment in stage II, this implies that the 
tumor size of the patients increases at the 
same rate. 

 
• With treatment 3 (combination treatment) 

the intensity function in stages I and II 
decreases exponentially, this implies that the 
tumor size of the patients decreases at the 
same rate. 

 
The study reported here is part of a larger, 

ongoing study. We will continue to obtain data 
and, eventually to construct a NHPP for each 
stage and each tumor size available for all 
treatments and compare the results. With more 
data and a broader range of patients and cancer 
stages, it will be possible to make suggestions 
for the particular treatment that will be best for 
patients with a particular tumor size. NHPP may 
also be applied to Bayesian survival analysis to 
compare and improve results. 
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Figure 5: Stage I Breast Cancer Intensity Function 
without Treatment 

 
 
 

 
Figure 7: Stage I Breast Cancer Intensity Function 

with Treatment 2 
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Figure 6: Stage I Breast Cancer Intensity Function 
with Treatment 1 

 
 
 
 

Figure 8: Stage I Breast Cancer Intensity Function 
with Treatment 3 
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Figure 9: Stage II Breast Cancer Intensity Function 
without Treatment 
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Figure 11: Stage II Breast Cancer Intensity Function 
with Treatment 2 
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Figure 10: Stage II Breast Cancer Intensity Function 
with Treatment 1 
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Figure 12: Stage II Breast Cancer Intensity Function with 
Treatment 3 
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Parameter estimates for equity studies tested for stability are described. Bootstrap simulation can test 
whether parameter estimates remain stable given changes in the sample data; fractional polynomials can 
be used to access functional form specification; and variance inflation factors can be used to test for 
multicollinearity. 
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Introduction 
Significant progress has been made in gender 
and racial equality over the last several decades 
since the introduction of the Equal Pay Act of 
1963 and the Civil Rights Act of 1964 (Baker, 
Wendt, & Slonaker, 2002). However, many 
researchers believe that inequities continue to 
exist in higher education in the areas of hiring 
practices, salary, promotion and tenure (Perna, 
2005; Hampton, et al, 2000; Sampson & Moore, 
2008). Although many national studies continue 
to address gender and racial equity in academia, 
it is necessary and prudent to conduct studies 
within individualized institutions to address all 
of the variables within these institutions that 
could affect equity (McLaughlin & McLaughlin, 
2003). 
 
Gender and Race Equity 

Study after study has concluded that a 
society where men and women are treated 
equitably in higher education - or where the gap 
between white and minority professionals is 
being bridged - does not currently exist. 

Regarding the status of higher education 
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the National Center for Education Statistics 
(2009) reported that, in the fall of 2007, 55% of 
those tenured were male as compared to 41% 
females. Furthermore, four out of five faculty 
tenured during that same semester were 
reportedly white (Caucasian). Women in 
academia also fall significantly below their male 
counterparts in academic rank, salary and full-
time status (Jacob, 2004). Throughout the public 
sector internationally, the wage differential is 
significantly lower for women (Fransson & 
Thörnqvist, 2006; Kjeldal, Rindfleish, & 
Sheridan, 2005; Lips, 2003); women are also 
significantly underrepresented within 
government systems as well as in high-ranking 
business positions (Connell, 2006). 

Although there are a plethora of equity 
studies involving gender at the local and national 
level, few examine these issues considering 
race/ethnicity equity (Barbezat, 2002). This is 
due in part to the fact that there are not many 
minority faculty. For example, Barbezat (2002) 
found that no minority groups constitute more 
than 5% of faculty involved in teaching and 
research at the university/college level. Hearn 
(in Barbezat, 2002) concludes that trends in 
salary equity for minorities cannot be studied 
due to the low numbers of minorities in 
academia.  Compensation for minorities in 
academia, as compared to Caucasian faculty, has 
not been investigated in relationship to how 
being a male or female faculty of color affects 
outcomes. 
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The Study of Equity 
One of the most famous gender equity 

studies was the Massachusetts Institute of 
Technology (MIT, 1999). Gender issues were 
brought to the forefront due to international 
media attention. Of interest was the notion that 
despite diversity incentives at MIT, women 
faculty were not considered to be equal with 
their male counterparts (Bailyn, 2003). Bailyn 
pointed out that, although there have been many 
equity studies conducted within academia, there 
had not been any noticeable effect on the 
policies or practices at such universities. Fewer 
studies results quantified the experiences of race 
or ethnicity as compared with Caucasians in 
academia or the workforce, and when 
researchers did take race into account, they 
frequently lacked statistical power as the sample 
size is often too small to find a reasonably sized 
effect (Toutkoushian, 1998). 

Authors of several studies sought to 
explain the lack of advancement for women and 
minorities in academia and other disciplines. For 
example, Ash et al. (2004) conducted a cross-
sectional study of women in academic medicine 
and found that female physicians earned less in 
both academia and private practice, but also did 
not advance to higher ranks as compared to their 
male counterparts. Some of these differences 
were explained by other factors, such as the fact 
that women have significantly less productivity 
with publishing (Cooperstein, 2008; Friedman, 
2004) and that women’s careers are more 
affected by family responsibilities (Friedman, 
2004). Probert (2005) found that high rates of 
separation and divorce and family needs 
accounted for some of the disparity in academic 
rank. Peterson et al. (2004) concluded, on the 
basis of a self-reported questionnaire, that 
minorities in academic medicine are promoted at 
a slower rate and failed to attain more senior 
academic ranks as compared to their white 
counterparts. 

Equity in academia and the workforce 
continues to be a hotly debated topic. Multiple 
studies conclude that disparities exist for both 
women and minorities, particularly in terms of 
salary and senior positions, but many argued that 
these differences may in fact be due to 
unexplained factors (Green & Ferber, 2005; 
Ferber & Loeb, 2002). Others argued that such 

salary disparities were due to continued 
discrimination (Gibelman, 2003). Historically, 
salary equity studies were divided into two 
different types, (1) total wage gap studies that 
examine the differences in the average salary for 
different groups of employees, and (2) 
unexplained wage gap studies where employee 
characteristics are considered in order to try and 
account for these differences (Toutkoushian, 
1998). 

Green and Ferber (2005) attempted to 
introduce many variables that are often not 
included in equity studies in order to evaluate 
whether they help to explain the gap in earnings. 
Many researchers have argued that when 
comparing salary and other equity data, if there 
is a difference, it is assumed that the difference 
implies discrimination. However, such 
differences may in fact be due to unexplained 
variables that are not included in the study 
(O’Neill, 2003). Some of the variables that 
helped explain the reduction in salary for women 
have included controlling for factors such as 
experience, educational history, field of study 
and scholarly productivity (Toutkoushian, 1998, 
Creamer, 1998). 

McLaughlin and McLaughlin (2003) 
argued that scholarly productivity has been 
operationally defined by multiple methods in the 
history of equity studies. For example, 
researchers have examined the number of 
publications, the number of times a researcher’s 
work is cited, internal and external grant dollars 
received, and the quality of publications as 
markers to indicate scholarly productivity. These 
studies argue that, without measures of scholarly 
productivity, only the magnitude of the salary 
differences can be estimated, not which 
employees need a review of their salaries in 
order to correct the inequities. 

Additional variables studied in salary 
equity studies have included age (differences in 
pay disparity for younger faculty appears be less 
as compared to more senior faculty) 
(Toutkoushian, 1998), and seniority. Although 
McLaughlin and McLaughlin (2003) argued that 
rewarding seniority does not make sense and is 
probably not an appropriate variable to include 
because most faculty are rewarded for 
productivity as opposed to how many years they 
have been a faculty member. Another 
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controversial variable in the study of salary 
equity involved part-time status. Women 
engaged in significantly more hours in part-time 
work as compared with male faculty (Thornley, 
2007; Jacobs, 2003), although many researchers 
did not include part-time faculty or contingent 
faculty despite the fact that in academia there is 
a trend towards hiring these contingent faculty 
(Curtiss, 2005).  

Marital status and children (Jacobs & 
Winslow, 2004), as well as discipline specialty, 
have been extensively studied. Umbach (2006) 
argued that labor market conditions may affect 
salary; he argues that disciplines with a high 
concentration of women and heavy teaching 
loads were valued less in the academy and 
therefore more inequities existed. Gibelman 
(2003) expanded on this idea to include 
differential patterns of salaries associated with 
fields that are primarily female, e.g. nursing and 
social work, and concluded that gender is a 
better predictor of salary than any of the 
characteristics or variables that are typically 
studied within an equity analysis. 

Further, Becker & Toutkoushian (2003) 
noted that many studies include factors such as 
academic experience, seniority, academic 
attainment and - most controversial of all - 
academic rank. They argued that salary and rank 
go hand and hand; if a woman is not promoted 
despite the necessary qualifications, this leads to 
salary regression and qualifies as rank 
discrimination. Despite the importance of rank 
in salary equity, they reviewed a number of 
studies that did not include academic rank as a 
factor in predicting salaries. They also argued 
that because faculty tend not to be terminated 
when they are tenured, yet if a faculty member is 
not promoted, it does not appear to look like 
discrimination.  

Methods for studying equity remain an 
important topic because estimating wage gap 
differences based on gender and minority status 
have important and far-reaching consequences. 
Recent legislation such as the Lilly Ledbetter 
Fair Pay Act of 2009 and the Paycheck Fairness 
Act, brought equity discrimination to the 
forefront by allowing employees to file lawsuits 
for current and past equity discrimination in 
their place of employment (Deere, 2010). 
Furthermore, company officers fear that when 

inequities do exist, not only will they be at risk 
for litigation, but this also affects employee’s 
morale and work performance (Romanoff, 
Boehm & Benson, 1986).  

Given the vast body of research on 
equity studies, it is clear that many studies relied 
on statistical methods and techniques to make an 
inference to a larger population of interest. 
However, one limitation of most of the previous 
research was that many studies did not assess 
whether parameter estimates obtained for a 
gender or race salary inequity remain stable 
given small changes in the underlying data. This 
is an important consideration that often is 
ignored because methods and techniques are 
often not easily available to access model 
stability. Clearly, if small changes in the sample 
data produce parameter estimates that vary 
greatly, then any inferences would be suspect. 
Also, if a statistical model is considered, then 
the functional form of the model needs to be 
correct. Various functional forms can often give 
different and contradictory parameter estimates. 
Given that claims of discrimination are often 
based on the findings of such analyses, 
accessing the stability of any findings is crucial 
for making a valid inference. 

The purpose of this study is three-fold. 
First, a study on salary equity is described that 
uses the Blinder-Oaxaca decomposition to 
partition a wage difference as both a portion that 
can be explained as well as a portion that is left 
unexplained. Second, a series of simulation 
analyses is presented that can be used to assess 
the stability the parameter estimates that are 
found using the Blinder-Oaxaca decomposition. 
Third, fractional polynomial modeling is 
introduced as a way to determine the appropriate 
functional form of a regression model and 
variance inflation factors are calculated to assess 
model stability. 
 

Methodology 
The Blinder-Oaxaca decomposition (Blinder, 
1973; Oaxaca, 1973) is a fairly simple extension 
of multiple regression modeling that is often 
used to describe wage differences between two 
different groups. The basic idea behind the 
Blinder-Oaxaca decomposition is to partition the 
estimated effect of a binary predictor variable 
into two portions: one portion that represents the 
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explained difference between the two groups, 
and the other portion that describes the 
unexplained difference between the two groups. 
For example, a binary predictor variable could 
be used to describe gender (i.e., male is assigned 
the value of 0; female is assigned the value of 1). 
Many studies have used the Blinder-Oaxaca 
technique to decompose wage differences into 
explained and unexplained portions, and often 
the unexplained portion is used to infer 
discrimination (Neumark, 1988). 
 
Data 

A sample of n = 110 newly hired tenure-
track faculty were considered for this study. The 
sample represented all newly hired tenure-track 
faculty members who joined the institution 
during a four-year period between the years 
2004 and 2008. Variables considered for this 
study are described in detail below. 
 
Predictor Variables 
• Year of hire: This is a series of five separate 

binary variables that represent the beginning 
of the academic year of hire (YR04, YR05, 
YR06, YR07, YR08). For the YR04 
variable, if a faculty member was hired 
during the academic year 2004-2005, then 
they are assigned the value 1. If they were 
not hired during the 2004-2005 academic 
year, they are assigned the value 0. Similar 
assignments are made for the faculty hires 
for the years 2005-2006, 2006-2007, 2007-
2008 and 2008-2009. 
 

• Rank at hire: This is a series of three 
separate binary variables that represent the 
rank at hire (ASST, ASSOC, PROF). For 
the ASSOC variable, if a faculty member 
was hired as an Associate Professor, they are 
assigned the value 1. If they were not hired 
as an Associate Professor, they are assigned 
the value 0. Similar assignments were made 
for Assistant (ASST) and Full Professor 
(PROF).  

 
• Age at hire: This is a continuous predictor 

variable representing a new faculty 
member’s age in years at the time of hire. 

 

• School of hire: This is a series of five binary 
variables representing the new hire’s school 
(Arts and Sciences, Education, Business, 
Engineering and Technology, Other).  

 
• Female: This is a binary variable 

representing new faculty’s self-identified 
gender (Female = 0 if the new hire identifies 
as Male, and Female = 1 if the new hire 
identifies as Female).  

 
• Minority: This is a binary variable 

representing new faculty’s self-identified 
minority status (Minority = 0 if the new hire 
identifies as White/Caucasian, and Minority 
= 1 if the new hire identifies as Non-
White/Caucasian).  

 
Means and standard deviations for the 
continuous predictor variables are presented in 
Table 1, percentages for the binary control 
variables are presented in Table 2. 
 
Response Variable 
• Ln(Wages): This variable represents the 

natural logarithm of yearly wages (in 
dollars). As with many wage studies, the 
natural logarithm of the yearly wages was 
used in order to estimate a constant 
percentage effect (Wooldridge, 2002, 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Mean and Standard Deviation for 
Continuous Variables Yearly Wages and Age 

at Hire for Newly Hired Faculty (n = 111) 
 

Continuous 
Variable 

Mean 
Standard 
Deviation 

Yearly Wages 60127.52 11002.19 

Age at Hire 41.41 9.42 
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The results from the following generalized ln-
wage equation for the model that includes males 
and females pooled together are presented in 
Table 3. 
 
ln(wage) = β0 + β1YEAR + β2RANK + β3AGE
                 + β4SCHOOL + β5GENDER + ε

(1) 
 
Initial Blinder-Oaxaca Results 

Version 10 of STATA® was used to 
conduct the Blinder-Oaxaca decomposition 
technique to estimate the wage difference 
between males and females and to partition the 
wage difference into two components (Jann, 
2008). The explained component is determined 
based on observed characteristics, and the 
unexplained component is based on unobserved 
characteristics (Jann, 2008). The results from 
these analyses are summarized in Table 4. 

Notice in Table 4 that the mean of the 
ln(wages) for the generalized ln-wage equation 
is estimated to be approximately 11.02 for males 
and 10.95 for females. This suggests that there is 
a total wage difference of 0.069 as represented 
on the logarithmic scale. The exponentiated 
results from the last column in Table 4 (which 
express the estimate on the dollar scale) indicate 
that the (geometric) mean yearly wages for 
males is estimated to be approximately 
$61,160.46 as compared to approximately 
$57,057.39 for females. This indicates that there 
is an estimated total wage difference of 
approximately 7.19% between male and female 
new faculty hires. The decomposition portion of 
Table 4 suggests that if females were hired with 
the same characteristics as males (for example if 
females had the same year at hire, age at hire, 
rank at hire, and school of hire), then the total 
wage gap observed between males and females 
would be decreased by approximately 4.78%. 
This leaves a wage gap of approximately 2.30% 
that cannot be accounted for by the given 
observed characteristics between male and 
female new faculty hires. 
 
Model Instability 

Many different scenarios can generate 
different and often contradictory parameter 
estimates. Such differences can often be 
attributed to the model not being stable given 
changes in the underlying data, the functional 
form of the model being not being specified 
correctly, or some of the predictor variables 
being highly correlated with each other. Model 
instability can occur if small changes in the data 
generate vastly different parameter estimates 
(Royston & Sauerbrei, 2009). Also, if the 
functional form of the model is not specified 
correctly, then differences from different model 
specifications can also generate vastly different 
parameter estimates (Griffin, Montgomery & 
Rister, 1987; Royston & Sauerbrei, 2008, 2009). 
Furthermore, including predictor variables that 
are highly correlated with each other can also 
cause the estimated parameters to be unstable 
(Graham, 2003; Lesik, 2010). 
 
 
 

Table 2: Percentages of Binary Variables for 
Tenured and Tenure-Track New Faculty Hires 

 

Binary Variable Percentage 

Year of Hire 04 21.62 

Year of Hire 05 18.92 

Year of Hire 06 18.92 

Year of Hire 07 20.72 

Year of Hire 08 19.82 

Assistant 80.91 

Associate 15.45 

Full Professor 3.64 

Arts & Science 49.55 

Business 20.72 

Engineering & Technology 6.30 

Education 18.02 

Other 5.41 

Female 45.05 

Male 54.95 

Minority* 19.44 

White/Caucasian 80.56 
*Three observations did not self-report 
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Assessing Model Instability Due to Changes in 
the Data: Bootstrapping 

One of the more common techniques for 
assessing model instability due to small changes 
in the underlying data is to use bootstrap 
resampling (Sauerbrei & Schumacher, 1992). 
Bootstrap resampling entails drawing repeated 
samples (with replacement) from the sample of 
interest, estimating the parameter of interest, 
empirically estimating the distribution for the 
parameter of interest, and finally determining if 
the parameter of interest is significant in the 
model. 

A bootstrap simulation program was 
written for version 10 of STATA® (see 
Appendix). This program draws a bootstrap 
sample from the initial 110 new faculty hires 
and then conducts the Blinder-Oaxaca 
decomposition. Line 5 of the bootstrap program 
[generate nsamp = cond(sex, 49, 61)] ensures 
that the bootstrap sample was drawn to represent 
the underlying percentages of males and females 
at the institution (of the 110 new faculty hires, 
49 were females and 61 were males). The mean 
exponentiated percent unexplained difference 
for the simulation analysis run with 10,000 
replicates was 2.2260% with a standard 
deviation of 1.3173%. The distribution of the 
mean exponentiated unexplained difference is 
shown in Figure 1. It was also found that for all 
of the bootstrap resamples, 58.86% had 
significant unexplained differences (p < 0.10). 

Also calculated from the bootstrap 
simulation analysis were descriptive statistics of 
the unexplained differences being negative (this 
would indicate that males made less than 
females). Of the 10,000 simulation analyses, 
only 444 (only 4.44%) indicated that the 
unexplained percent difference was negative. Of 
these 444 bootstrap samples, only 13 were 
significant at the 10% level, thus suggesting that 
only 0.13% of the 10,000 bootstrap simulations 
showed that males made less than females 
(significant at the 10% level).  Given these 
results of the bootstrap simulation, it appears 
that the estimated unexplained percent 
difference stable, even given small changes in 
the underlying data set. 
 
 

Assessing Model Stability from Functional 
Form Misspecification: Fractional Polynomial 
Modeling 

Because the Blinder-Oaxaca 
decomposition used in this study is a simple 
extension of ordinary least squares regression, it 
relies on some basic model assumptions. One 
such assumption is that the functional form of 
the model is specified correctly with respect to 
the relationship between the continuous 
predictor variables and the response variable. 
Different functional forms can often yield 
different and even contradictory parameter 
estimates.  

The generalized ln(wage) model given 
in equation (1) is specified such that the 
continuous predictor variable which corresponds 
to the age at hire is linear. Fractional polynomial 
modeling was used to see if changes in the 
functional form of the generalized ln(wage) 
model would present different parameter 
estimates. Fractional polynomial modeling can 
be used to determine if a linear model is 
appropriate for virtually any type of regression 
modeling, even logistic regression (i.e. Hosmer 
& Lemeshow, 2000). 

The basic idea underlying fractional 
polynomial modeling is to include powers of 
continuous predictor variables to determine if 
this improves the fit of the model (Royston & 
Sauerbrei, 2008, 2009). Royston and Altman 
(1994) suggest that a restricted set of fractional 
polynomial powers is sufficient in transforming 
continuous predictor variables for better model 
fit.  

Given a single continuous predictor 
variable (as is the case with this study), the 
general form of a population linear regression 
model is: 

0 1 1y xβ β ε= + +  

 
Powers of the continuous variable, 

fk x1( ) can be included into the regression 
model as follows: 
 

y = β0 + β i ⋅ fk x1( )
i=1

k

 + ε  
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Table 3: Parameter Estimates, Standard Errors and 95% Confidence Intervals for the 
Predictor Variables of the Generalized ln(wage) Equation (1) for all New Full-Time Tenure-

Track Faculty Who were Hired During the Academic Years 2004-2008 (n = 110). 
 

Variable 
Parameter Estimate 

[Standard Error] 
95% Confidence Interval 

Year 04 
-0.1443*** 

[0.0180] 
-0.1801, -0.1085 

Year 05 
-0.0827*** 

[0.0187] 
-0.1198, -0.0457 

Year 06 
-0.0603** 
[0.0187] 

-0.0974, -0.0232 

Year 07 
-0.0335~ 
[0.0183] 

-0.0699, 0.0030 

Assistant 
-0.3403*** 

[0.0365] 
-0.4127, -0.2679 

Associate 
-0.0904* 
[0.0348] 

-0.1594, -0.0214 

Age at Hire 
0.0012 

[0.0008] 
-0.0003, 0.0027 

Arts & Sciences 
-0.0409 
[0.0255] 

-0.0915, 0.0098 

Business 
0.0727* 
[0.0299] 

0.0134, 0.1320 

Engineering & Technology 
0.0725* 
[0.0338] 

0.0053, 0.1397 

Education 
0.0030 

[0.0283] 
-0.0531, 0.0592 

Gender 
-0.0227~ 
[0.0121] 

-0.0468, 0.0013 

Constant 
11.3074*** 

[0.0599] 
11.1884, 11.4263 

R-squared 0.8900  

Adjusted R-Squared 0.8764  

Sample Size 110  

~ p < 0.10; * p < 0.05; ** p < 0.01; *** p < 0.001 
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where f1 x1( )=
x p  if p ≠ 0

ln x1( ) if p = 0

 
 
 

  
 and p is drawn 

from the restricted set of powers 

Table 4: Ln-Scale Parameter Estimates and Exponentiated Estimates (in Dollars), and Standard 
Errors for the Blinder-Oaxaca Decomposition for Initial Faculty Salaries Based on Gender 

 

Differential Category 
Ln-Scale Parameter 

Estimate 
[Standard Error] 

Exponentiated Parameter 
Estimate 

[Standard Error] 

Males 
11.0213*** 

[0.0220] 
61160.46*** 
[1348.526] 

Females 
10.9518*** 

[0.0224] 
57057.39*** 
[1275.899] 

Total Difference 
0.0694* 
[0.0314] 

1.0719* 
[0.0337] 

Decomposition 

Explained Difference 
0.0467 

[0.0298] 
1.0478 

[0.0312] 

Unexplained Difference 
0.0227* 
[0.0116] 

1.0230* 
[0.0118] 

~ p < 0.10; * p < 0.05; ** p < 0.01; *** p < 0.001 
 
 
 

Figure 1: Distribution of the Unexplained Wage Difference for the 
10,000 Bootstrap Samples Using the Blinder-Oaxaca Decomposition 
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−2,−1,− 0.5, 0, 0.5,1, 2, 3{ }. The powers of the 
continuous variable x1 can then be included in 
the model: 
 

fk x1( )=
x p  if pk ≠ pk −1

fk −1 x1( )⋅ ln x1( ) if pk = pk−1

 
 
 

  
, 

 
where k = 1, 2, 3,K . For example if k = 2, with 

powers 0.5 and 0.5, then f1 x1( )= x1
0.5  and 

( ) ( )0.5
2 1 1 1  lnf x x x= ⋅ . Therefore, 

y = β0 + β1x1
0.5 + β2x1

0.5 ⋅ ln x1( )+ε . For another 
example if it is supposed that k = 4 with powers 
-2, 2, 3 and 3, then f1 x1( )= x1

−2, f2 x1( )= x1
2, 

f3 x1( )= x 3, and 

( ) ( ) ( ) ( )3
4 1 3 1 1 1 1 ln  lnf x f x x x x= = ⋅ . Thus, 

 
y = β0 + β1x1

−2 + β2x1
2 + β3x1

3 + β4 x1
3 ⋅ ln x1( )+ε . 

 
Version 10 of STATA® was used to find the 
best fractional model that has a maximum of k = 
4 (STATA Corporation, 2005). The STATA 
routine fracpoly finds the best fractional 
polynomial models for each of the values. For 
example, the best model for k = 2 has the powers 
-2 and -2. The table also provides deviance 
statistics and p-values for comparing the 
improvement in fit for each successive pairs of 
models (Royston & Altman, 1994). The 
deviance statistic is calculated as follows: 
 

D = n 1− w + ln
2π
SSR

 
  

 
  

 

  
 

  
, 

 
where n is the sample size, w  is the mean of the 
normalized weights, and SSR is the residual sum 
of squares. Although somewhat conservative, 
these p-values indicate whether the fit of the 
model improved by including the predictor 
variable with the additional powers (see Table 
5). 

Based on the p-values presented in 
Table 5, no improvement is observed in model 
fit for including the predictor variable that 
represents the age at hire, as well as any 
fractional powers of the variable. Thus, the age 

at hire is not significant in predicting starting 
salaries for new faculty hires. 
 
Highly Correlated Predictor Variables: Variance 
Inflation Factors 

One common technique to determine if 
the predictor variables are highly correlated with 
each other is to calculate the variance inflation 
factor for each predictor variable in the 
generalized ln(wage) model. Variance inflation 
factors (VIF) for each predictor variable can be 
found by assigning each predictor variable as the 
response variable and running a regression 
analysis with all the other predictor variables. 
The VIF for each variable can then be calculated 
as follows: 
 

VIFj = 1

1− Rj
2 , 

 
where j = 1, 2, … p – 1, where p is the total 
number of beta parameters being estimated in 
the model (including the constant parameter), 
and Rj

2 is the coefficient of determination for the 

model in which variable x i is represented as the 
response and all the other variables are included 
as predictor variables (Lesik, 2010). None of the 
variance inflation factors were above 10, thus 
suggesting that the individual predictor variables 
do not appear to be highly correlated with each 
other (the minimum VIF was 1.143 and the 
maximum was 6.453). 
 

Conclusion 
Concern over methods related to estimating the 
wage gaps in equity studies prompted our 
interest in determining the stability of wage gap 
estimates that are found in equity studies. As 
employers and employees are increasingly 
sensitive to gender and race equity for salary, an 
increasing number of studies are being done in 
both the public and private sector internationally 
(Fransson & Thornqvist, 2006). Authors of 
many equity studies, as well as studies on related 
topics, note concern over the stability of the 
estimate of the wage gap between males and 
females; yet to date, these concerns have not 
been addressed (Graham, 2003; Griffin, et al., 
1987; Royston & Sauerbrei, 2008). 
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This study shows that the estimate of the 
wage gap between males and females remained 
stable given small changes in the underlying 
data as well as for various fractional powers of 
the continuous predictor variable that represents 
the age at hire. Also, none of the predictor 
variables were highly correlated with each other, 
thus there was no concern that highly correlated 
predictor variables could be influencing the 
estimated parameters. Given more powerful 
statistical software for bootstrap simulations and 
fractional polynomial analysis, as well as 
calculating variance inflation factors, these tools 
can be used to ensure that the estimates provided 
herein are not only accurate, but are stable given 
small changes in the data as well as the 
functional form of the regression model at hand. 

Although this study was conducted in 
order to address some of the concerns that can 
generate unstable parameter estimates, there are 
still some limitations to note. One limitation of 
the Blinder-Oaxaca decomposition is that it can 
only decompose a regression model based on 
only two groups. Even though two groups are 
adequate to quantify gender, the decomposition 
cannot be used to compare more than two 
groups, such as would be the case with various 
classifications of race. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Limitations to fractional polynomial 
modeling include loss of power and sensitivity 
to outliers (Royston & Sauerbrei, 2008). 
Furthermore, because fractional polynomial 
modeling can identify the powers of a 
continuous predictor variable that suggest the 
best model fit, including continuous predictor 
variables with such powers can greatly increase 
the complexity of a regression model, thus 
making interpretation more difficult. 
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Table 5: Results of Fractional Polynomial Model Comparisons for the Generalized ln(wage) Equation 
 

Age at Hire 
Degrees 

of 
Freedom 

Deviance 
Residual 
Standard 
Deviation 

Difference in 
Deviance 

p-value Powers 

Not in Model 0 -322.579 0.059468 2.300 0.987  

Linear 1 -324.516 0.059253 0.363 1.000 1 

k = 1 2 -324.663 0.059213 0.216 1.000 -2 

k = 2 4 -324.675 0.059521 0.203 0.996 -2 -2 

k = 3 6 -324.871 0.059783 0.008 0.997 0 0 0 

k = 4 8 -324.879 0.060102 --- --- -2 -2 -2 -2 
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Appendix: 
STATA program for bootstrap resampling.  
 
program BlinderSim, rclass 
version 10.1 
 drop _all  
 use "BlinderOaxaca.dta" 
 generate nsamp = cond(sex, 49, 61) 
 bsample nsamp, strata(sex) 
 oaxaca lnwage yr04 yr05 yr06 yr07 asst 
assoc ageathire as business engrtech educ, 
by(sex) pooled 
 matrix list e(b) 
 matrix list e(V) 
 matrix define C = e(b) 
 matrix define S = e(V) 
 local undiff = el(C,1,5) 
 local seundiff = sqrt(el(S,5,5)) 
 local zstat = `undiff'/`seundiff' 
 local pvalue = 2*normal(-abs(`zstat')) 
  if `pvalue' <= 0.10 { 
   local inmodel = 1 
   } 
   else { 
   local inmodel = 0 
   } 
 local expundiff = 100*(exp(`undiff')-1) 
 local checkval = 0 
  if `expundiff' < 0 { 
   local checkval = 1 
   } 
   else { 
   local checkval = 0 
   } 
 return scalar undiff = `undiff' 
 return scalar seundiff = `seundiff' 
 return scalar zstat = `zstat' 
 return scalar pvalue = `pvalue' 
 return scalar inmodel = `inmodel' 
 return scalar expundiff = `expundiff' 
 return scalar checkval = `checkval' 
end 
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A Sequential Monte Carlo Approach for Online Stock Market Prediction 
Using Hidden Markov Models 
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A sequential Monte Carlo (SMC) algorithm prediction approach is developed based on joint probability 
distribution in hidden Markov Models (HMM). SMC methods, a general class of Monte Carlo methods, 
are typically used for sampling from sequences of distributions and simple examples of these algorithms 
are found extensively throughout the tracking and signal processing literature. Recent developments 
indicate that these techniques have much more general applicability and can be applied very effectively to 
statistical inference problems. Due to the problem involved in estimating the parameter of HMM, the 
HMM is represented in a state space model and the sequential Monte Carlo (SMC) method is used. 
Predictions are made using the SMC method in HMM and the corresponding on-line algorithm is 
developed. Daily stock price data from the banking sector of the Nigerian Stock Exchange (NSE) (price 
index between the years 1 January 2005 to 31 December 2008) are analyzed; experimental results reveal 
that the method proposed is effective. 
 
Key words: Sequential Monte Carlo, hidden Markov model, state-space model, stock market. 
 
 

Introduction 
State space, or hidden Markov models (HMM), 
are convenient means to statistically model a 
process that varies over time. The state space 
model (Doucet& Johansen, 2008) of a hidden 
Markov model is represented by the following 
two equations: 
 
the state equation,  
 

)¦(~)(¦ 111 −−− = ttttt xxfxXX          (1) 

 
and the observation equation, 
 

)¦(~)(¦ ttttt xygxXY = .             (2) 
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The state variables tx  and observations 

ty  may be continuous-valued, discrete-valued 

or a combination of the two, )¦( 1−tt xxf , which 

indicates the probability density associated with 
moving from 1−tx  to tx , and )¦( tt xyg  are the 

state (transition) and observation densities. 
Practically, the x’s are the unseen true signals in 
signal processing (Liu & Chen 1995), the actual 
words in speech recognition (Rabiner 1989), the 
target features in a multitarget tracking problem 
(Avitzour 1995; Gordon, et al 1993; Gordon, et 
al 1995), the image characteristics in computer 
vision (Isard& Blake 1996), the gene indicator 
in a DNA sequence analysis (Churchill 1989), or 
the underlying volatility in an economical time 
series (Pitt &Shephard 1997). Hidden Markov 
Models represent the applications of dynamic 
state space model in DNA and protein sequence 
analysis (Krogh, et al 1994; Liu, et al 1997). 

Using the functions provided by C++ to 
expand an on-line algorithm for predicting a 
hidden Markov model, this articleutilizes 
Johansen (2009) SMCTC: Sequential Monte 
Carlo in C++. Further supports were derived 
from results on predicted and actual data of 



SEQUENTIAL MONTE CARLO APPROACH USING HIDDEN MARKOV MODELS 

670 
 

monthly national air passengers in America 
(Zhang, et al., 2007). Cheng, et al. (2003) 
applied SMC methodology to the problems of 
optimal filtering and smoothing in hidden 
Markov models and SMC have also stirred great 
interest in the engineering and statistical 
literature (see Doucet, et al., 2000, for a 
summary). SMC methods have been applied for 
resolving a marginal Maximum Likelihood 
problem (Johansen, 2008) and Gordon, et al. 
(1993) applied SMC to optimal filtering. Herein 
the SMC method is developed for prediction of 
state by estimating the probability t 1 t 1p(x y ).− −¦  

 
Hidden Markov Models (HMM) 

Initially introduced and studied as far 
back as 1957 and into the early 1970’s, HMM 
statistical methods have enjoyed more recent 
popularity.An HMM is a bivariate discrete-time 
process { } 0, ≥kkk YX  where { } 0≥kkX is a 

homogeneous Markov chain that is not directly 
observed, it can only be observed through 
{ } 0≥kkY  that produces the observation. { } 0≥kkY , 

which is a sequence of independent random 
variables such that the conditional distribution of 

kY  only depends on kX . The underlying Markov 

chain { } 0≥kkX  is called the state. In general, the 

random variables kX  and kY  can be of any 

dimension and of any domain, such as discrete, 
real or complex. K elements of kX  and kY  for 

Kk ,,2,1 = are collected to construct the 

vectors kX  and kY , respectively. Due to the 

Markov assumption, the probability of the 
current true state given the immediately previous 
one is conditionally independent of the other 
earlier states: 
 

k k 1 k 2 0 k k 1p(x x ,x , , x ) p(x x ).− − −=¦ ¦  

 
Similarly, the measurement at thekth time step is 
dependent only upon the current state, thus it is 
conditionally independent of all other states 
given the current state: 
 

k k k 1 0 k kp(y x ,x , , x ) p(y x ).− =¦ ¦  

 

Using these assumptions the probability 
distribution over all states of the HMM can be 
written simply as: 
 

0 k 1 k

K

1 1 1 k k 1 k k
k 2

p(x , , x , y , , y )

p(x )p(y x ) p(x x )p(y x )−
=

=

∏

 

    ¦ ¦ ¦
 

 
which is reflected graphically as: 
 

 
 
Given )¦( 11 −− kk yxp , )¦( kk yxp  can be found 

using the following prediction and update steps: 
 
Prediction 
 

 −−−−− = 11:1111:1 )¦()¦()¦( dxYXpXXpYXp kkkkkk

 
Update 
 

kkkkk

kkkk
kk dxYXpXYp

YXpXYp
YXp

)¦()¦(

)¦()¦(
)¦(

1:1

1:1
:1

−

−


=  

 
In this case numerical integration is used, which 
becomes computationally complex when the 
number of states of kx are large: one particular 

Monte Carlo based approach to solve this for the 
HMM is the Sequential Monte Carlo Method 
(SMC). 
 
Sequential Monte Carlo Methods (SMC) 

Since their pioneering contribution in 
1993 (Gordon, et al., 1993), SMC have become 
a well-known class of numerical methods for the 
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solution of optimal estimation problems in non-
linear non-Gaussian scenarios.The main idea of 
the SMC method is to represent the posterior 
density function )¦( 1:01:0 −− kk yxp  at time 1−k  

by samples and associated weights, 

{ }Niwx i
k

i
k ,,1, )(

1:0
)(

1:0 =−− and to compute 

estimates based on these samples and 
weights.As the number of samples becomes very 
large, this Monte Carlo characterization 
develops into an equivalent representation to the 
functional description of the posterior 
probability density function (Sanjeev, et al., 
2002). 

If { }Niwx i
k

i
k ,,1, )(

1:0
)(

1:0 =−− are samples 

and associated weights approximating the 
density function, then )¦( 1:01:0 −− kk yxp , 

{ }N

i
i
kx

1

)(
1:0 =−  is a set of particles with associated 

weights { }N

i
i
kw

1

)(
1:0 =−  with 1

)(

1:1

=
−=

 i

kNi
w , and the 

density function are approximated by: 
 

)()¦( )(
11

1

)(
11:01:0

i
kk

N

i

i
kkk xxwyxp −−

=
−−− −≈ δ  

 
where )(xδ signifies the Dirac delta role, ky  

becomes available when a new observation 
arrives, and the density function )¦( kk yxp  is 

obtained recursively in two stages: 
 

1. Drawing samples ),(~ 1−kk
i
k xxpx  

 
and 
 
2. Updating the weight with the principle of 

importance sampling. (For details on SMC, 
see Doucel, et al., 2000; Sanjeev, 2002). 

 
The particles are proliferated over time 

by Monte Carlo simulation to obtain new 
particles and weights (usually as new 
information are received), hence forming a 
series of PDF approximations over time. The 
reason that it works can be understood from the 
theory of (recursive) importance sampling. 
 

Methodology 
Procedural Functions 

Consider a particular algorithm for the 
SMC, known also as the Sampling Importance 
Resampling (SIR) (Gordon, 1993; Carpenter, et 
al., 1999; Johansen, 2009). The algorithm can be 
summarized as follows: The algorithm is 
initiated by setting 1=k , for which 

)()¦( 1 kkk xpxxp =−  is defined. 

 
Prediction for Step k: 

Draw N  samples from the distribution 

( ) i
i

kkk sxxp ∀= −−
)(
11¦  to form the particles 

{ } Ni
i

k
i

k ws :1
)()( ~,ˆ = . The weight is 


=

i

i
k

i
ki

k w
ww

)(

)(
)(

ˆ

ˆ~  

where )(ˆ i
kw  is calculated from the conditional 

PDF ( ))(ˆ¦ i
kkk sxyp = , given observation kY . 

 
Resample for Step k: 

Resample the random measure 

{ } Ni
i

k
i

k ws :1
)()( ~,ˆ =  obtained in the prediction 

procedure to obtain
Ni

i
k N

s
:1

)( 1
,

=







 which has 

uniform weights. 
 

The importance of the prediction step is 
clear by establishing the following results.Using 
a importance function )¦( kk yxq  satisfying the 

property 
 

( )ikkkkk Yxxqyxxq ,¦),¦( 11 −− = , 

 

{ } Ni
i

k
i

k ws :1
)()( ~,ˆ =  is the random measure for 

estimating )¦( kk yxp , where [ ]k
i

i sss ˆ,,ˆˆ )(
1 =  

is the trajectoryfor particle i  and where 

( ))()( ˆˆ~ i
kk

i
k sww =  is the normalized weights of 

particle i  at time k  which can be calculated 
recursively. 

Let ( ))()( ˆˆˆ i
kk

i
k sww = , according to the 

argument at the thk  step, the density function 
estimate for )¦( kk yxp  is 
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
=

−=
N

i

i
kk

i
kkk sxwyxp

1

)()( )ˆ(~)¦ˆ( δ . 

 
After the density function )¦(ˆ kk yxp  has been 

estimated, the observation prediction kŷ  with 

some samples with associated weights can be 
made. Accordingly, )¦ˆ( 1−kk yyp  are 

approximated by a new set of samples 

{ } Ni
i

kk wy :1
)(
1

1 ,ˆ =−  and the observation prediction 

equation is: 
 


=

−=
N

i

i
kk

i
kkk yywyyp

1

)()( )(~)¦ˆ(ˆ δ . 

 
Data Description 

The above method is applied to the data 
sets of daily stock prices in the banking sector of 
the Nigerian Stock Exchange for price indices 
between the years 1 January 2005 to 31 
December 2008 (see 
www.cashcraft.com/pricemovement.asp and 
Figure 1). Three hidden states are studied: bull,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

bear and even. These hiddenstates along with the 
observable sequences of large rise, small rise, no 
change, large drop and small drop were used to 
develop the hidden Markov model.The sequence 
of observation is obtained by subtracting the 
prior price from the current price, the percentage 
change then gives the classification of the 
sequence of observation, where tP  is the price 

of an asset at time t , and the daily price 
relative/log returnis calculated 
as 1/log −= ttt ppr . 

Stock prices regularly alter in stock 
markets as observed in the price index on 
Tuesday, 5 February 2006; it fell by more than 
100% (see Figure 2). No infallible system exists 
that indicates the precise movement of stock 
price. Instead, stock price is subjective to the 
influence of various factors, such as company 
fundamentals, external factors, and market 
behavior. These decide the state of the market 
which may be in bull or bear state. It grows 
along time through different market states, 
which are hidden states. The state of the market 
can be a Markovian process and is modeled in 
HMM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Daily Stock Prices in the Banking Sector of the Nigerian Stock Exchange 
(Price Index between the Years 1 January 2005 to 31 December 2008) 
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Results 
Using the functions provided by C++, this study 
develops an on-line algorithm of predicting 
hidden Markov model (Johansen, 2009). The on-
line prediction using SMC begins with states 
producing signals that follow the normal 
distribution.The numbers of hidden states in the 
Markov chain are defined as bull (state 1), even 
(state 2) and bear (state 3). Figure2 shows the 
predicted and actual daily stock prices and Table 
1 shows predicted representational prices of the 
NSE and predicted errors. 

The stock price is modeled in HMM and 
prediction is made based on available 
observations.Due to the strong statistical 
foundation of the HMM and SMC methods, the 
model can predict similar patterns proficiently 
(see Figure 2). Table 1 shows that the mean 
absolute percentage error (MAPE) is 0.068, 
hence, the predictive exactness is high. 
 

Conclusion 
An online sequential Monte Carlo method is 
used to predict ahidden Markov model. A C++ 
(Sequential Monte Carlo in C++) template class  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

library (Johansen, 2009) enabled the 
development of an online, sequential Monte 
Carlo for prediction. HMM and SMC method 
were introduced and the density function with a 
set of random samples with associated weights 
was approximated.Lastly, the data sets of daily 
stock prices in the banking sector of the 
Nigerian Stock Exchange were analyzed and 
experimental results revealed that the online 
algorithm is effective. 
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Table 1: Predicted Daily Stock Price in the Banking Sector of the NSE 

Actual Predicted R.E(%) MAPE(%) Actual Predicted R.E(%) 
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24.7 24.0614 2.585425  22.5 22.5232 -0.10311 
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Height-Diameter Relationship in Tree Modeling 
Using Simultaneous Equation Techniques in Correlated Normal Deviates 
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In other to study the complex simultaneous relationships existing in forest/tree growth modeling, six 
estimation methods of a simultaneous equation model are examined to determine how they cope with 
varying degrees of correlation between pairs of random deviates using average parameter estimates. A 
two-equation simultaneous system assumed covariance matrix was considered. The model was structured 
to have a mutual correlation between pairs of random deviates: a violation of the assumption of mutual 
independence between pairs of such random deviates. The correlation between the pairs of normal 
deviates were generated using three scenarios r  = 0.0, 0.3 and 0.5. The performances of estimators 
considered were examined at various sample sizes (N = 20, 25, 30) and correlation levels with 50 
replications for each. Using the average of parameter estimates criterion, 2 3SLIML were the best 
estimators followed by FIML and OLS for the three cases studied. Also, as sample size increases from 20 
to 25 to 30, 2-3SLIML performed best and was most consistent. 
 
Key words: Growth models, Monte Carlo, random deviates, mutual correlation, average of parameter 

estimates, simultaneous equation models. 
 
 

Introduction 
Growth models assist forest researchers and 
managers in many ways. Some important uses 
include the ability to predict future yields and to 
explore silvicultural options. Models provide an 
efficient way to prepare resource forecasts, but a 
more important role may be their ability to 
explore management options and silvicultural 
alternatives. For example, foresters may wish to 
know the long-term effect on both the forest and 
on future harvests, of a particular silvicultural 
decision, such as changing the cutting limits for 
harvesting. With a growth model, they can 
examine the likely outcomes; both with the 
intended and alternative cutting limits and can 
make their decision objectively. The process of 
developing  a  growth  model  may  also offer 
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interesting new insights into stand dynamics. 
Forest growth models are very useful to forest 
managers and forestry researchers in many 
respects. A forest growth model aims to describe 
the dynamics of the forest closely and precisely 
enough to meet the needs of the forester or 
forestry researcher (dynamics includes all the 
change processes throughout the forest or tree’s 
lifetime). The primary changes in the forestry 
field are related to the incorporation, growth and 
death of trees, a forest’s key asset.  

There are many forest growth models. 
Forest models the individual tree. The most 
common uses of these models for managers are 
to forecast timber production or, less often, other 
forestry products (cones, cork, etc.) and to 
simulate different forestry management 
alternatives with a view to decision-making. The 
models help to forecast what long-term effects a 
forestry management intervention is likely to 
have on both timber production and the future 
conditions of the actual forest, as well as the 
impact of interventions on other forest values. 
For forestry researchers, models are most useful 
as tools for researching forest dynamics. 
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Monte Carlo simulation is a method of 
analysis based on recreating a chance process 
(usually with a computer), running it many 
times, and directly observing the results. The 
term Monte Carlo method was coined by 
physicists working on nuclear weapons projects 
at the Los Alamos National Laboratory. Monte 
Carlo methods are extensively used in many 
fields such as operational research, nuclear 
physics and econometrics, where there are a 
variety and complexity of problems beyond the 
available resources of the theoretician (Adepoju, 
2009a, c). Many modern investigations have 
employed Monte Carlo Methods, notable 
examples include: Wagner (1958); Nagar 
(1960); Johnston (1972); Anderson & Sawa 
(1979); Basmann (1963); Cragg (1966); 
Anderson (1990); Metropolis (1987); Fomby, 
Hill & Johnson (1988); and Smith (1973).  

In Monte Carlo studies, data sets are 
generated with stochastic terms that are free of 
the problems of multicollinearity, non-spherical 
disturbances, measurement error and 
specification error. In the context of a 
simultaneous equation system, the design of 
Monte Carlo experiments requires the generation 
of orthogonal normal deviates or mutually 
independent sequences distributed as ( )1,0N . 
These normal deviates are then transformed to 
ensure that the disturbance terms are distributed 
as ( )Σ,0N , which are not serially correlated, 
where Σ  is the assumed variance-covariance 
matrix of the disturbances: However, in real life 
situations, the errors are not completely 
correlation free (Adepoju, 2009b; Johnston & 
DiNardo, 1984; Anderson & Sawa, 1973). This 
study examined the performance of estimators of 
a two-equation simultaneous model to varying 
degrees of correlation between pairs of normal 
deviates. 
 
General Study Framework 

Simultaneous equation models (SEM) 
are at the heart of a class of models in a data 
generation process that depends on more than 
one equation interacting together to produce 
observed data. Unlike a single-equation model, 
in which a dependent (y) variable is a function of 
independent (x) variables, other y variables are 
among the independent variables in each SEM 

equation. The y variables in the system are 
jointly (or simultaneously) determined by the 
equations in the system.  

The following two structural equations 
are assumed: 
 

12211112211 ttttt UXXYY +++= γγβ  
 
and 

2 12 1 12 1 32 3 2.t t t t tY Y X X Uβ γ γ= + + +  

 
These equations can be rewritten as: 
 

12211112211 ttttt UXXYY +++=− γγβ  
 
and 

12 1 2 12 1 32 3 2.t t t t tY Y X X Uβ γ γ= + + +  

 
These equations are exactly identified. 

The reduced form model is derived as 
 

UXY +Γ=β  

UXY 11 −− +Γ= ββ i.e VX +π  
 

where, Γ= −1βπ , and by extension, the 
following endogenous equations are obtained: 
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Monte Carlo Data Generation 

Monte Carlo simulation was used to 
examine the properties of different statistics 
computed from sample data. In other words, 
test-drive estimators were tested, to determine 
how different recipes perform under different 
circumstances. The procedure was as follows: In 
each case an artificial environment was created 
in which the values of important parameters and 
the nature of the chance process were specified; 
then the computer simulated the chance process 
repeatedly and displayed the results of the 
experiment. 

The main task was the generation of 
stochastic dependent (endogenous) variables 

( )TtiYit ,...,1;2,1 == , which are subsequently 

used in estimating the parameters of the model. 
To achieve this, the following assumptions were 
necessary: 
 
(i) Values of the predetermined variables 

1 ,tX  2 ,tX and ( )3 1,..., ;tX t T=  

 
(ii) Values of the parameters: β12, β21, γ11, γ12, 

γ32; and 
 
(iii) Values of elements Ω . 
 

The simulation of the error term 
( )TiU it ,...,2,1=  is the most complex step in 

generating stochastic dependent variables. To 
conduct the Monte Carlo experiment, first, the 
sample size N was specified as N= 20, 25, 30. 
After specifying the sample size, numerical 
values were arbitrarily assigned to each 
structural parameter as follows: 5.112 =β , 

8.121 =β , 5.111 =γ , 5.111 =γ  5.012 =γ , 

0.232 =γ  for all cases. The covariance matrix 

of the disturbances was specified arbitrarily as: 

11 12

21 22

Ω

5.0 2.5
.

2.5 3.0

σ σ
σ σ
 

=  
 
 

=  
 

 

 
The standard random number generator 

with values obtained from the uniform 
distribution with mean 0 and standard deviation 
1 (Kmenta, 1971) was used to generate the 
values of the exogenous variables, 

( )TtiX it ,...,1;3,2,1 == . 

 
Generation of Random Disturbance Term, U 

A 3-stage process was employed to 
generate random disturbance terms. In the first 
stage, independent series of normal deviates of 
required length (N = 20, 25, 30) were generated. 
At the second stage, these series were 
standardized to a normal distribution with mean 
zero and variance 1. Lastly, the random 
disturbance terms were generated assuming 
three degrees of correlation between pairs of 
random deviates: 
 
(i) Case I: no correlation between the 

random deviates ( 0
21 , =εεr ); 

 
(ii) Case II: 0.3 correlation level between 

the random deviates ( 3.0
21, =εεr ); and 

 
(iii) Case III: 0.5 correlation level between 

the random deviates ( 5.0
21, =εεr ). 

 
The samples sizes considered for each 

scenario were N = 20, 25 and 30. The pairs of 
random normal deviates based on these sample 
sizes were generated and each was replicated 50 
times. The deviates were then standardized and 
appropriately transformed to have a specific 
variance-covariance matrix Σ  assumed in the 
model. Numerical values were generated for 
exogenous variables of the model as described. 
Next, selected ( )tt 21 εε  were transformed to be 

distributed as ( )Σ,0N  where Σ  was 

( ) Ttt IUUCov ⊗Ω=′  and elements of Ω  were 
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decomposed by a non- singular matrix ρ  such 

that Ω.ρρ′ =  

Recall, UV 1−= β  
 

















=








∗∗

∗∗

2

1

12

21

2

1

t

t

t

t

U
U

V
V

βββ
βββ

 

 
According to Nagar (1960), M  independent 
terms of standard normal deviates of length N  
can be transformed into M  series of random 
normal variables with mean 0 and a 
predetermined covariance matrix. In this model, 

2=M , i.e. tU1 , tU2 , if the covariance matrix 

is  









=Ω

2221

1211

σσ
σσ

 

 
where ( ) 111var σ=U , ( ) 222var σ=U  and 

( ) 1221cov σ=UU , considering both upper and 
lower triangular matrices. If the upper triangular 
matrix is 

11 12
1

22

,
0

P
η η

η
 

=  
 

 

 
and the lower triangular matrix is 

 

11
2

21 22

0
,P

η
η η
 

=  
 

 

then 
 

11 12
1 1

21 22

.PP
σ σ

Ω
σ σ
 ′= =  
 

 

 
The pair of standard deviates can be transformed 
into a pair of random normal variables with 
mean Zn variance 11σ , 22σ  and covariance 12σ  
using 
 

















===









t

t
tt

t

t U
U
U

2

1

22

1211
1

2

1

0 ε
ε

η
ηη

εη  

 

to obtain a pair of random disturbances for the 
upper triangular matrix: 
 

1 11 1 12 2

11.707825128 1.4043
t t t

t

U η ε η ε
ε

= +
= +  

and 

2 22 2

21.732050808 .
t t

t

U η ε
ε

=
=

 

 
where 1,  2,  ...,  .t T=  Similarly, an alternative 
solution can be obtained for the lower triangular 
matrix: 

1 11 1

12.236067978
t t

t

U η ε
ε

′ ′=
=  

and 
 

2 12 1 22 2

1 21.118033989 1.322875656 .
t t t

t t

U η ε η ε
ε ε

′ ′ ′= +
= +

 

 
Generation of Endogenous Variables 

Assigning numerical values to the 
structural parameters provided all values 
required to generate the endogenous variables. 
Considering the upper and lower triangular 
matrix Ut1, Ut2 defined as 
 

1 1

2 2

1.707825128 1.443375673
,

0 1.732050808
t t

t t

U
U

ε
ε

    
=     
    

 
and the lower triangular matrix 1 2t tU U′ , ′  

defined as 
 

1 1

2 2

1.707825128 0
,

1.443375673 1.732050808
t t

t t

U
U

ε
ε

′    
=     ′     

 
then, solving Yt1 and Yt2 using upper triangular 
matrix results in: 
 

1 1 2

3 1

2

Y  = -1.411764706X -0.588235294X

        -2.117647059X -0.588235294U

         -0.88235294U

t t t

t t

t

 

and 
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2 1 2

3 1

2

Y  = -1.411764706X -0.588235294X

         -2.117647059X -0.88235294U

         -0.588235294U .

t t t

t t

t

 

 
Solving Yt1 and Yt2 using lower triangular 
matrix results in: 
 

1 1 2

3 1

2

Y  = -1.411764706X -0.588235294X

         -2.117647059X -0.588235294U

         -0.88235294U

t t t

t t

t

′
′

 

and 
 

2 1 2

3 1

2

Y  = -1.411764706X - 0.588235294X

          -2.117647059X -0.88235294U

          -0.588235294U .

t t t

t t

t

′
′

 

 
Results 

In theory, and as confirmed by Johnson (1991), 
when an equation is just identified, estimates of 
the parameter obtained by 2SLS, 3SLS and 
LIML should be identical. The results obtained 
in this study show that 2SLS, 3SLS and LIML 
estimators yielded virtually identical results, but 
the OLS, ILS and FIML yielded clearly different 
results from those estimators. Because 2SLS, 
3SLS and LIML have the same results; the 
estimators shall be denoted as 2-3SLIML. 

Analysis of results show that, in case I, 
2-3SLIML performed best; it had the closet 
values to the assumed values in most cases (22) 
followed by FIML (8 cases) and OLS (5 cases); 
ILS did not perform at all. Also, as the sample 
size increased from 20 to 25 to 30, the value of 
the estimates moved closer to the true estimates 
of the parameters in about 72% of the cases 
across the upper and lower triangular matrices. 
For Equation I, the estimates improve from the 
lower triangular matrices to the upper triangular 
matrices. 

Case II revealed that as the sample size 
increased, the estimates obtained by 2 3 SLIML 
were - in most cases - better than the remaining 
estimators, which did not show any clear pattern. 
For both P1 and P2 comparing cases I, II and III 
across the lower and upper triangular matrices, 
the performance of estimators under case I was 
better than those for case II and case III. 

Case III revealed that, as the sample size 
increased from 20 to 25 to 30, the value of the 
estimates moved closer to the true estimates of 
the parameters across the upper and lower 
triangular matrices. For Equation I, the estimates 
improve from the lower triangular matrices to 
the upper triangular matrices. 

As an illustration, for OLS over the 
three magnitudes of the correlation coefficient 
the estimates of β21 fell consistently for sample 
sizes N = 20, 25 and 30, that is, column wise 
comparison for the six estimates: 
 
 
 
 
 
 
 
 
 
 
 

A comparison of the three entries in 
each row shows that estimates rose and fell in 
CASE 2, and rose consistently in both CASE 1 
and CASE 3. Also, along the columns the 
estimates fell consistently at the three cases of 
the correlation coefficient at sample sizes N=20, 
25 and 30. 

The best OLS estimates for β21 ,γ 11 and 

γ 21 of Equation 1 respectively are: 0.92455 
(CASE 1), 0.9256 (CASE 1), 0.9286 (CASE 1) 
for β21, 0.0077 (CASE 2), 0.0487 (CASE 2), 
0.0323 (CASE 1), for γ 11v and 0.0065 (CASE 

2), 0.0594 (CASE 3), 0.0022 (CASE 3) for γ 21. 
Thus, entries 3 (r = 0.0), 0 (r = 0.3) and 0 (r = 
0.5) under β21, 1 (r = 0.0), 2 (r = 0.3), 0 (r = 0.5) 
under γ 11 and 0 (r = 0.0), 1 (r = 0.3), 2 (r = 0.5) 

under γ 21 (See Table 1). 
Similarly, for equation 2, the best OLS 

estimates for γ 12 are observed for case 1. 
Hence, 3(r = 0.0), 0 (r = 0.3) and 0 (r = 0.5). For 
β12 they are 0 (r = 0.0), 1 (r = 0.3; 1.0757) and 2 
(r = 0.5; 1.0944, 1.0914) and finally, 1 (r = 0.0; 
0.06858), 1 (r = 0.3; 0.0272) and 1 (r = 0.5; 
0.0955) for γ 32. This is repeated for the other 
three estimators. Results are displayed in Tables 

 N = 20 N = 25 N = 30 

Case 1 0.92455 0.9256 0.9286 

Case 2 0.9105 0.9098 0.9108 

Case 3 0.9024 0.9045 0.9052 
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1 and 2 for P1 and P2 respectively. Hence 
Tables 1 and 2 reflect the sensitivity of 
distribution of best estimates to varying 
correlation coefficients. 

Tables 3 and 4 are derived from Tables 
1 and 2. Each table contains the correlation-
based distribution of estimators which yielded 
best estimates of not less than 50 percent of the 
parameters for each equation. Tables 3 and 4 
show that CASE 2, where the error term has 0.3 
level of correlation, has the least proportion of 
best estimates and hence fewest so-called best 
estimators. The most frequent estimator in this 
interval is the ILS and 2-3SLS.  

As shown in Table 5 under P1, when 
error terms are not correlated (r = 0.0), OLS, 2-
3SLS and FIML are best for estimating equation 
1, OLS and ILS are good at CASE 2 (r = 0.3), 
and 2-3SLS is best at CASE 3 (r = 0.5). For 
equation 2, 2-3SLS is best at CASE 1, ILS is 
best at CASE 2 and FIML performed best at 
CASE 3. Under P2, the parameters of the first 
equation are poorly estimated at CASE 2 of the 
correlation coefficient (r = 0.3), ILS is best at 
CASE 1 followed by OLS at CASE 3. Results 
show that 2-3SLS performed equally well for 
this equation when the error term is positively 
correlated as in CASE 3. For equation 2, OLS 
and ILS are best at CASE 1, 2-3SLS is best at 
CASE 2 and FIML is best at CASE 3. There is a 
greater scope of estimating equation 2 at the 
three cases of correlation coefficient by several 
estimators. 

The scope of estimating the parameter 
of the first equation is more sensitive to the 
varying correlation between the error terms than 
for the equation 2 and this observation is more 
obvious for P2 than for P1. The ranking of the 
estimators as displayed in Tables 6 and 8 shows 
that the estimators rank differently depending on 
whether the upper (P1) or lower (P2) triangular 
matrices were used. The ranking also shows that, 
although ILS ranks highly as the best estimator 
for the error term with r = 0.0, OLS is best for 
the error term with r = 0.3 and FIML is best for 
the error term with r = 0.5. The estimator 
rankings shown in Table 10, in which P1 and P2 
are combined, is dominated in part by the 
ranking obtained under P2. In that table, ILS 
ranks high in case 1, 2-3SLS in case 2 and FIML 

ranks high in case 3 where the error terms are 
positively correlated. 
 

Conclusion 
The finite sampling property of estimators used 
in this work was the average of parameter 
estimate. Using the average of parameter 
estimates   criterion,   2 3SLIML   are  the  best  
estimators, followed by FIML and OLS, 
respectively, for the three cases studied. Also, as 
the sample size increased from 20 to 25 to 30, 2-
3SLIML continued to perform best (that is, 2-3 
SLIML is consistent); as the sample size 
increased, the estimates moved closer to the true 
parameter estimate in most cases. The result of 
this study will be used to determine the 
parameter estimation of simultaneous 
relationships of tree growth models with 
independent variables like Temperature, rainfall 
and relative humidity. 
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Table 1: Sensitivity of Estimators Using Average N= 20, 25, 30, R= 50 (P1) 
 

Estimators 

Equation 1 Equation 2 

β21=1.8 γ 11=1.5 γ 21=1.0 β12=1.5 γ 12=0.5 γ 32=2.0 

OLS 
C1 
C2 
C3 

3 
0 
0 

1 
2 
0 

0 
1 
2 

0 
1 
2 

3 
0 
0 

1 
1 
1 

ILS 
C1 

C2 
C3 

1 
1 
1 

0 
2 
1 

2 
1 
0 

1 
1 
1 

1 
2 
0 

2 
1 
0 

2-3SLS 
C1 
C2 

C3 

2 
1 
0 

2 
0 
1 

0 
0 
3 

2 
0 
1 

1 
0 
2 

2 
1 
0 

FIML 
C1 

C2 
C3 

1 
0 
2 

2 
1 
0 

1 
1 
1 

1 
0 
2 

1 
1 
1 

0 
2 
1 

 
 
 

Table 2: Performance of Estimators Using Average of Parameter Estimate N= 30, R= 50 (P2) 
 

Estimators 

Equation 1 Equation 2 

β21=1.8 γ 11=1.5 γ 21=1.0 β12=1.5 γ 12=0.5 γ 32=2.0 

OLS 
C1 
C2 
C3 

0 
0 
3 

2 
1 
0 

0 
1 
2 

3 
0 
0 

1 
1 
1 

0 
2 
1 

ILS 
C1 

C2 
C3 

1 
0 
2 

2 
0 
1 

2 
1 
0 

1 
0 
2 

2 
0 
1 

1 
2 
0 

2-3SLS 
C1 
C2 

C3 

0 
1 
2 

1 
1 
1 

0 
1 
2 

1 
2 
0 

1 
1 
1 

1 
1 
1 

FIML 
C1 

C2 
C3 

1 
0 
2 

0 
1 
2 

1 
1 
1 

1 
0 
2 

1 
1 
1 

0 
2 
1 
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Table 3: Correlation-Based Sample Size-Free Distribution of Best Estimators 
N = 20, 25, 30. R = 50, (P1) 

 

Level of Correlation Equation 1 Equation 2 

CASE 1 OLS/2-3SLS/FIML 2-3SLS/OLS/ILS 

CASE 2 - ILS 

CASE 3 2-3SLS FIML 

Source: Table 1 
 
 

 
Table 4: Correlation-Based Sample Size-Free Distribution of Best Estimators  

N = 20, 25, 30. R = 50, (P2) 
 

Level of Correlation Equation 1 Equation 2 

CASE 1 ILS OLS/ILS 

CASE 2 - 2-3SLS 

CASE 3 OLS/2-3SLS/FIML FIML 

Source: Table 2 
 
 

 
Table 5: Sample and Replication-Free Distribution of Best Estimates of P1 

 

Equation 1 Equation 2 

Case 1 Case 2 Case3 Case 1 Case 2 Case 3 

OLS(4) OLS(3) 2-3SLS(4) 2-3SLS(5) ILS(4) FIML(4) 

2-3SLS(4) ILS(3) FIML(3) OLS(4) FIML(3) OLS(3) 

FIML(4) FIML(2) OLS(2) ILS(4) OLS(2) 2-3SLS(3) 

ILS(3) 2-3SLS(1) ILS(2) FIML(2) 2-3SLS(1) ILS(1) 

 
 

 
Table 6: Rank of Estimators Using Level of Correlation (P1) for Eq1 and Eq2 

 

Case 1 Case 2 Case 3 

2-3 SLS(9) ILS(7) 2-3SLS(7) 

OLS(8) OLS(5) FIML(7) 

ILS(7) FIML(5) OLS(5) 

FIML(6) 2-3SLS(2) ILS(3) 

 



PERFORMANCE OF SIMULTANEOUS EQUATION MODELING TECHNIQUES 

684 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Sample and Replication-Free Distribution of Best Estimates of P2 
 

Equation 1 Equation 2 

Case 1 Case 2 Case3 Case 1 Case 2 Case 3 

ILS(5) 2-3SLS(3) OLS(5) OLS(4) 2-3SLS(4) FIML(5) 

OLS(2) OLS(2) 2-3SLS(5) ILS(4) OLS(3) ILS(3) 

FIML(2) FIML(2) FIML(5) 2-3SLS(3) FIML(3) OLS(2) 

2-3SLS(1) ILS(1) ILS(3) FIML(2) ILS(2) 2-3SLS(2) 

 
 

 
Table 8: Rank of Estimators Using Level of Correlation (P2) For Eq1 and Eq2 

 

Case 1 Case 2 Case 3 

ILS(9) 2-3SLS(7) FIML(10) 

OLS(6) OLS(5) OLS(7) 

2-3SLS(4) FIML(5) 2-3SLS(7) 

FIML(4) ILS(3) ILS(6) 

 
 

 
Table 9: Sample and Replication – Free Distribution of Best Estimates of P1 and P2 

 

Equation 1 Equation 2 

Case 1 Case 2 Case3 Case 1 Case 2 Case 3 

ILS(8) OLS(5) 2-3SLS(9) OLS(8) ILS(6) FIML(9) 

OLS(6) 1LS(4) FIML(8) ILS(8) FIML(6) OLS(5) 

FIML(6) 2-3SLS(4) OLS(7) 2-3SLS(8) OLS(5) 2-3SLS(5) 

2-3SLS(5) FIML(4) ILS(5) FIML(4) 2-3SLS(5) 1LS(4) 

 
 

 
Table 10: Rank of Estimators Using Level of Correlation (P1 and P2 Combined) 

 

Case 1 Case 2 Case 3 

ILS(16) OLS(10) FIML(17) 

OLS(14) ILS(10) 2-3SLS(14) 

2-3SLS(13) FIML(10) OLS(12) 

FIML(10) 2-3SLS(9) ILS(9) 
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Brief Report 
Higher Order C(t, p, s) Crossover Designs 

 
James F. Reed III 

Christiana Care Hospital System, 
Newark, Delaware 

 
 
A crossover study is a repeated measures design in which each subject is randomly assigned to a sequence 
of treatments, including at least two treatments. The most damning characteristic of a crossover study is 
the potential of a carryover effect of one treatment to the next period. To solve the first-order crossover 
problem characteristic in the classic AB|BA design, the design must be extended. One alternative uses 
additional treatment sequences in two periods; a second option is to add a third period and repeat one of 
the treatments. Assuming a traditional model that specifies a first-order carryover effect, this study 
investigates the following alternative crossover trial designs: (1) two-treatment two-period four-sequence 
design (Balaam, 1968) design, (2) two treatments-three period-four sequence design (Ebbutt, 1984), and 
(3) three treatment-two period-six sequence design (Koch, 1983). Each design has attractive properties 
and, when properly applied, allows both treatment and carryover effects to be estimated. 
 
Key words: Crossover design, Balaam’s crossover design, Ebbutt’s crossover design, Koch crossover 

design. 
 
 

Introduction 
The most damning characteristic of a crossover 
study is the potential for a carryover effect of 
one treatment to the next period. To manage 
this, researchers typically include washout 
periods in study designs. These washout periods 
are thought to be of sufficient length to negate 
any lingering effect of one treatment into the 
next period. In this article, and in most of the 
literature on crossover designs, the persistence 
of a carryover effect is assumed to (1) last for 
only a single period (a first-order carryover 
effect), and (2) a carryover effect is different for 
different treatments. If a carryover effect is 
suspected in any crossover trial, then a term for 
this effect must be included in the model and 
accounted for in subsequent analysis. 

This study assumes a traditional model 
that specifies a first-order carryover effect and 
outlines three higher-order crossover designs:  
 
 
James F. Reed III, Ph.D., is the Director, 
Clinical Business Intelligence Biostatistician, 
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ReedJF@ah.org. 

 
(1) a two-treatment two-period four-sequence 
design (Balaam, 1968), (2) a two treatments-
three period-four sequence design (Ebbutt, 
1984), and (3) a three treatment-two period-six 
sequence (Koch, 1983) design. Each design has 
appealing properties and - when properly 
applied - estimate both treatment and carryover 
effects. 
 
The Traditional Crossover Design Model with 
Continuous Data 

The traditional crossover design with t-
treatments, p-periods, and s-sequences, C(t, p, 
s), assumes that each treatment has a simple 
first-order carryover effect that does not interact 
with the direct effect of the treatment in the 
subsequent period, and that subject effects are 
either fixed or random. Though a variety of 
models are considered in the literature, virtually 
all work in crossover designs uses the same 
underlying statistical model. This model 
assumes the following for the response of patient 
yij: If yij denotes the observed response of 
subject j (j = 1, …, n) in period i (i = 1, …, p), 
then 
 

yij = µ + πi + τd(i,j) + λd(i-1,j) + βj + εij. 
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Where πi is the effect of period i, τd(i,j) is the 
direct effect of treatment D, λd(i-1,j) is the simple 
first-order carryover effect of treatment D, d(i, j) 
is the treatment allocated to patient j in period i, 
and λd(0,j) = 0 for all j. It is assumed that all 
effects are fixed effects. βj is the effect of patient 
j and εij is the error term. The random subject 
effect, βj, and the experimental error, εij, are 
assumed to be mutually independently 
distributed as N (0, σ2

β) and N (0, σ2
ε).  

The primary purpose of a crossover 
design comparing treatments A and B is to 
estimate the treatment contrast τA – τB. The 
period effects (π1 and π2), the first order 
carryover effects (λA and λB) and μ are typically 
regarded as nuisance parameters that are 
desirable to eliminate from any estimate. To 
solve the first-order crossover problem in the 
two-treatment two-period crossover design, one 
possible solution is to extend the design to four 
sequences. Balaam’s C(2, 2, 4) design (Balaam, 
1968), AA|AB|BA|BB, is generally accepted as 
optimal for estimating treatment effects and is 
also more efficient than the classic C(2, 2, 2) 
design (Laska, Meisner & Kushner, 1983). If the 
carryover effect is absent, this design is 
inefficient because many subjects likely will not 
contribute any information to the estimate of 
treatment differences in the two sequences AA 
and BB. Using Balaam’s design, unbiased 
estimates of the treatment differences and 
carryover effects are easily derived (see Table 
1). 

The second design strategy is to extend 
the classic design by adding a third period and 
repeating one of the two treatments. The 
treatment sequences will ensure that the first two 
trial periods constitute a conventional two-
period crossover trial if the third treatment 
period leads to excessive subject drop-outs. 
Ebbutt’s efficient C(2, 3, 4) design, the ABB| 
BAA|ABA|BAB (Ebbutt, 1984) illustrates this 
second strategy. This design, with equal number 
of subjects per sequence, is able to estimate all 
parameters in the traditional model and provide 
an unbiased estimate of the treatment contrast 
(Ebbutt, 1984; Heydat & Stufken, 2003; Liang 
& Carriere, 2010) (see Table 2). The expected 
values for each of the sequences are: E[c1] = E 
[(2y11 − y21 − y31)], E[c2] = E [(2y21 − y22 − y32)], 
E[c3] = E [(2y31 − y32 − y33)], and E[c4] = E 

[(2y41 − y42 − y43)]. The linear contrast of ½(c1 – 
c2 + c3 – c4) forms an unbiased estimate of τA − 
τB. In testing for carryover effect, let ci, i = 5, …, 
8 = E[y1i + y2i - y3i]. The contrast c5 – c6 + c7 – c8 
forms an unbiased estimate of λA − λB. 

Koch’s crossover design comparing two 
treatments A and B to a placebo P, uses six 
sequences AB, BA, AP, BP, PA, and PB (see 
Table 3). These six sequences enable the 
estimation of period effects, treatment effects 
and carryover effects from within-subject 
information. The four hypotheses of interest are: 
(1) τA − τB, (2) τA − τP, (3) τB − τP, and (4) λB – 
λA. The linear contrast (c5 – c6) forms an 
unbiased estimate of τA − τB; the linear contrast 
(c4 – c2) forms an unbiased estimate of τA − τP; 
the linear contrast (c1 – c3) forms an unbiased 
estimate of τB − τP; and the linear contrast (c2 – 
c1) forms an unbiased estimate of λB – λA. 

Koch’s C(3, 2, 6) design has six 
sequences, AB, BA, AC, CA, BC and CB (see 
Table 4). In this design, the hypotheses of 
interest are: (1) τA − τB, (2) τA − τC, (3) τB − τC, 
(4) λA – λB, (5) λA – λC, and (6) λB – λC. The 
linear contrast (c1 – c3) forms an unbiased 
estimate of τB − τC; the linear contrast (c2 – c5) 
forms an unbiased estimate of τA − τC; and the 
linear contrast (c4 – c6) forms an unbiased 
estimate of τB − τA. For the three carryover 
hypotheses the linear contrast (c1’ – c2’) forms an 
unbiased estimate of λA – λB; the linear contrast 
(c3’ – c4’) forms an unbiased estimate of λA – λC; 
and the linear contrast (c5’ – c6’) forms an 
unbiased estimate of λB – λC. 
 

Conclusion 
Optimal crossover designs are statistically 
efficient and require fewer subjects for the same 
number of observations than do non-crossover 
designs. Because variability is typically less 
within a subject than between different subjects, 
there is a corresponding increase in the precision 
of observations. The result: fewer subjects are 
required to detect a treatment difference. For 
example, if Nparallel is the total number of 
subjects required for a two-way parallel trial to 
detect a treatment effect (δ) with 5% 
significance and 80% power, the total number of 
subjects Ncrossover required for a 2 x 2 crossover 
trial to detect the same effect is approximately 
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Ncrossover = (1 − r)Nparallel/2, where r is a 
correlation coefficient among the repeated 
measurements of the primary endpoint. 
The major concern - and subject of countless 
discussions - in a crossover study is the presence 
of a carryover effect. The standard way to avoid 
the carryover effect is to include a rest period 
between successive periods, hoping that the 
carryover effect will wash out. The inclusion of 
a rest period between each pair of successive 
periods increases the total duration of the 
experiment and there is no guarantee that any 
carryover effect will be eliminated. 

To address the potential of first-order 
carryover effects, the classic AB|BA crossover 
design could easily be extended to one of the 
designs outlined herein. In effect, either the 
added sequence(s) or added treatment period 
permits direct estimates of treatment effect and 
examination of any carryover effects. 
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Table 1: Balaam’s Design (AB|BA|AA|BB) 
 

AB|BA Design Period 1 (k = 1) Period 2 (k = 2) 

Sequence AB (i = 1) μ + π1 + τA µ + π2 + τB + λA 

Sequence BA (i = 2) µ + π1 + τB µ + π2 + τA + λB 

Sequence AA (i = 3) μ + π1 + τA µ + π2 + τA + λA 

Sequence BB (i = 4) μ + π1 + τB µ + π2 + τB + λB 

 

Table 1 Notes: 
 

Sequence AB (i = 1): E(yAB,1) = μAB,1 = μ + π1 + τA, E(yAB,2) = μAB,2 = μ + π2 + τB + λA 
Sequence BA (i = 2): E(yBA,1) = μBA,1 = μ + π1 + τB, E(yAB,2) = μBA,2 = μ + π2 + τA + λB 
Sequence AA (i = 3): E(yBA,1) = μAA,1 = μ + π1 + τA, E(yAB,2) = μBA,2 = μ + π2 + τA + λA 
Sequence BB (i = 4): E(yBA,1) = μBA,1 = μ + π1 + τB, E(yAB,2) = μBA,2 = μ + π2 + τB + λB 
 

In sequence AB, contrast c1 has expected value: E [c1] = E[y11 – y21] = (π1 – π2) + (τA – τB) – λA 
In sequence BA, contrast c2 has expected value: E [c2] = E[y21 – y22] = (π1 – π2) – (τA – τB) – λB 
In sequence AA, contrast c3 has expected value: E [c3] = E[y31 – y32] = (π1 – π2) – λA 
In sequence BB, contrast c4 has expected value: E [c4] = E[y41 – y42] = (π1 – π2) – λB 
 

In sequence AB, contrast c5 has expected value: E [c5] = E[y11 + y21] = 2µ + (π1 + π2) + (τA + τB) + λA 
In sequence BA, contrast c6 has expected value: E [c6] = E[y21 + y22] = 2µ + (π1 + π2) + (τA + τB) + λB 
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Table 2: Ebbutt AAB|BAA|ABA|BAB Design 
 

AB|BA Design Period 1 (k = 1) Period 2 (k = 2) Period 3 (k = 3) 

ABB (i = 1) µ + π1 + τA µ + π2 + τB + λA µ + π3 + τB + λB 

BAA (i=2) µ + π1 + τB µ + π2 + τA + λB µ + π3 + τA + λA 

ABA (i = 3) µ + π1 + τA µ + π2 + τB + λA µ + π3 + τA + λB 

BAB (i = 4) µ + π1 + τB µ + π2 + τA + λB µ + π3 + τB + λA 

 
Table 2 Notes: 
 

ABB (i = 1): E(yABB,1) = μ + π1 + τA, E(yABB,2) = μ + π2 + τA + λB, E(yABB,3) = μ + π3 + τA + λB 
BAA (i = 2): E(yBAB,1) = µ + π1 + τB, E(yBAB,2) = µ + π2 + τA + λB, E(yBAB,2) = µ + π3 + τA + λA 
ABA (i = 3): E(yABA,1) = μ + π1 + τA, E(yABA,2) = μ + π2 + τA + λA, E(yABA,3) = μ + π3 + τA + λB 
BAB (i = 4): E(yAAB,1) = μ + π1 + τB, E(yAAB,2) = μ + π2 + τA + λB , E(yAAB,3) = μ + π3 + τB + λA 
 
In sequence ABB, the expected value E[c1]=E[(2y11 − y21 − y31)]={(2π1 − π2 − π3) + 2(τA − τB) − λA − λB} 
In sequence BAA, the expected value E[c2]=E[(2y21 − y22 − y32)]={(2π1 − π2 − π3) + 2(τA − τB) − λA − λB} 
In sequence ABA, the expected value E[c3]=E[(2y31 − y32 − y33)]={(2π1 − π2 − π3) + (τA − τB) − λA − λB } 
In sequence BAB, the expected value E[c4]=E[(2y41 − y42 − y43)]={(2π1 − π2 − π3) − (τA − τB) − λA − λB} 
 
In sequence ABB, the expected value E[c5]=E[(y11 + y21 - y31)]={2µ + (π1 + π2 - π3) + τA + (λA − λB)} 
In sequence BAA, the expected value E[c6]=E[(y21 + y22 − y32)]={2µ + (π1 + π2 - π3) + τB - (λA − λB)} 
In sequence ABA, the expected value E[c7]=E[(y31 + y32 − y33)]={2µ + (π1 + π2 - π3) + τB + (λA − λB)} 
In sequence BAB, the expected value E[c8]=E[(y41 + y42 − y43)]={2µ + (π1 + π2 - π3) + τA – (λA − λB)} 
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Table 3: Koch Design (Treatments A, B and Placebo P) 
 

Sequence Period 1 (k = 1) Period 2 (k = 2) 

AB (i = 1) µ + π1 + τA µ + π2 + τB + λA 

BA (i = 2) µ + π1 + τB µ + π2 + τA + λB 

AP (i = 3) µ + π1 + τA µ + π2 + τP + λA 

BP (i = 4) µ + π1 + τB µ + π2 + τP + λB 

PA (i = 5) µ + π1 + τP µ + π2 + τA + λP 

PB (i = 6) µ + π1 + τP µ + π2 + τB + λP 

 
Table 3 Notes: 

 
Sequence AB (i = 1): E (yAB,1) = µ + π1 + τA, E (yAB,1) = µ + π2 + τB + λA 
Sequence BA (i = 2): E (yAB,1) = µ + π1 + τB, E (yAB,1) = µ + π2 + τA + λB 
Sequence AP (i = 3): E (yAB,1) = µ + π1 + τA, E (yAB,1) = µ + π2 + τP + λA 
Sequence BP (i = 4): E (yAB,1) = µ + π1 + τB, E (yAB,1) = µ + π2 + τP + λB 
Sequence PA (i = 5): E (yAB,1) = µ + π1 + τP, E (yAB,1) = µ + π2 + τA + λP 
Sequence PB (i = 6): E (yAB,1) = µ + π1 + τP, E (yAB,1) = µ + π2 + τB + λP 
 
In sequence AB, contrast c1 has expected value: E[c1] = E[(y11 – y12)] = (π1 – π2) + (τA – τB) – λA 
In sequence BA, contrast c2 has expected value: E[c2] = E[(y21 − y22)] = (π1 – π2) – (τA – τB) – λB 
In sequence AP, contrast c3 has expected value: E[c3] = E[(y31 – y32)] = (π1 – π2) + (τA – τP) – λA 
In sequence BP, contrast c4 has expected value: E[c4] = E[(y41 – y42)] = (π1 – π2) + (τB – τP) – λB 
In sequence PA, contrast c4 has expected value: E[c5] = E[(y51 – y52)] = (π1 – π2) – (τA – τP) – λP 
In sequence PB, contrast c6 has expected value: E[c6] = E[(y61 – y62)] = (π1 – π2) – (τB – τP) – λP 
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Table 4: Koch Design (Three Treatments, Two Periods) 
 

Sequence Period 1 (k = 1) Period 2 (k = 2) 

AB (i = 1) µ + π1 + τA µ + π2 + τB + λA 

BA (i = 2) µ + π1 + τB µ + π2 + τA + λB 

AC (i = 3) µ + π1 + τA µ + π2 + τC + λA 

CA (i = 4) µ + π1 + τC µ + π2 + τA + λC 

BC (i = 5) µ + π1 + τB µ + π2 + τC + λB 

CB (i = 6) µ + π1 + τC µ + π2 + τB + λC 

 
Table 4 Notes: 
 

Sequence AB (i = 1): E(yAB,1) = µ + π1 + τA, E(yAB,2) = µ + π2 + τB + λA 
Sequence BA (i = 2): E(yAB,1) = µ + π1 + τB, E(yAB,2) = µ + π2 + τA + λB 
Sequence AC (i = 3): E(yAB,1) = µ + π1 + τA, E(yAB,2) = µ + π2 + τC + λA 
Sequence CA (i = 4): E(yAB,1) = µ + π1 + τC, E(yAB,2) = µ + π2 + τA + λC 
Sequence BC (i = 5): E(yAB,1) = µ + π1 + τB, E(yAB,2) = µ + π2 + τC + λB 
Sequence CB (i = 6): E(yAB,1) = µ + π1 + τC, E(yAB,2) = µ + π2 + τB + λC 
 
In sequence AB, contrast c1 has expected value: E[c1] = E[(y11 – y12)] = (π1 – π2) + (τA – τB) – λA 
In sequence BA, contrast c2 has expected value: E[c2] = E[(y21 – y21)] = (π1 – π2) – (τA – τB) – λB  
In sequence AC, contrast c3 has expected value: E[c3] = E[(y31 – y21)] = (π1 – π2) + (τA – τC) – λA  
In sequence CA, contrast c4 has expected value: E[c4] = E[(y41 – y21)] = (π1 – π2) – (τA – τC) – λC  
In sequence BC, contrast c5 has expected value: E[c5] = E[(y51 – y21)] = (π1 – π2) + (τB – τC) – λB 
In sequence CB, contrast c6 has expected value: E[c6] = E[(y61 – y21)] = (π1 – π2) – (τB – τC) – λC 
 
In sequence AB, contrast c1’ has expected value: E[c1’] = E[(y11 + y12)] = 2µ + (π1 + π2) + (τA + τB) + λA  
In sequence BA, contrast c2’ has expected value: E[c2’] = E[(y21 + y22)] = 2µ + (π1 + π2) + (τA + τB) + λB  
In sequence AC, contrast c3’ has expected value: E[c3’] = E[(y31 + y32)] = 2µ + (π1 + π2) + (τA + τC) + λA  
In sequence CA, contrast c4’ has expected value: E[c4’] = E[(y41 + y42)] = 2µ + (π1 + π2) + (τA + τC) + λC  
In sequence BC, contrast c5’ has expected value: E[c5’] = E[(y51 + y52)] = 2µ + (π1 + π2) + (τB + τC) + λB 
In sequence CB, contrast c6’ has expected value: E[c6’] = E[(y61 + y62)] = 2µ + (π1 + π2) + (τB + τC) + λC 
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A new method based on density estimation is proposed for medians of two independent samples. The test 
controls the probability of Type I error and is at least as powerful as methods widely used in statistical 
practice. The method can be implemented using existing libraries in R. 
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Introduction 
Let 1 nX , X , … , X2  be iid having cdf F and pdf 

f with F(η) = 1/2 so that η is the population 
median. Suppose f is continuous at η with f(η) > 
0. Denote the sample median by H. It is known 
that H is asymptotically normal with mean η and 
variance 1/4nf2(η). Estimating the asymptotic 
standard error of the sample median requires an 
estimate of the population density at the median. 
Besides being a challenging problem, density 
estimation was difficult to apply in practice prior 
to the computer revolution; due to this, several 
alternative methods for estimating the standard 
error of the sample median have been developed 
(Maritz & Jarrett, 1978; McKean & Schrader, 
1984; Price & Bonett, 2001; Sheather & Maritz, 
1983; Sheather, 1986).  

Comparing medians based on two 
independent samples is a well-studied problem 
(see Wilcox & Charlin, 1986; Wilcox, 2005; 
Wilcox, 2006; Wilcox, 2010 also has a good 
discussion). The methods fall into two main 
categories. The first uses the bootstrap (Efron, 
1979), and the second assumes the sample 
median or some other estimator of the  
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population median is approximately normal and 
uses one of several methods for estimating the 
standard error of the sample median. Virtually 
all methods are very conservative, particularly 
for heavy-tailed populations. 

A new two-sample test is proposed for 
comparing medians. When population shapes 
can be assumed to be the same, a pooled test 
statistic, analogous to a pooled two-sample 
Student’s t statistic for comparing means, is 
derived. Computer-intensive Monte Carlo 
simulations in R (R Development Core Team, 
2009) are used to study the properties of the test 
and compare it to other methods. The method 
offers several additional benefits to practitioners: 
(1) a parameter that controls the trade-off 
between making the test conservative and liberal 
with a suitable value of the parameter producing 
a test with a nominal significance level; (2) the 
test is easy to implement in R using the 
QUANTREG (Koenker, 2009) library. 
 

Methodology 
Two-Sample Test Statistic for Difference in 
Medians 

Let 1 nX , X , … , X2  and 

1 mY , Y , … , Y2  be two independent random 

samples of sizes n and m from populations with 
densities fx, fy that are continuous at the medians 
ηx, ηy with fx(ηx) > 0, fy(ηy) > 0, respectively. 
Denote sample medians by Hx, Hy. The test 
hypotheses are: 
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where Δ is a specified difference in medians, 
and is often 0. 
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Assuming the normal approximation 

holds when the standard error of the difference 
in medians is estimated, then under the null 
hypothesis, the V statistic is: 
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where f Hˆ ( )x x  and f Hˆ ( )y y  are respective 

population density estimates at the median. 
Further, if it is assumed that the two 

populations have the same shape, possibly with 
a difference in location, then fx(ηx) = fy(ηy), and 
the density estimates can be pooled to obtain a 
pooled test statistic: 
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is the pooled estimate of the population density 
at the median. 
 
Simulations 

The software R was used to simulate the 
power of the pooled test statistic (1). Two cases 
were considered: (i) population shapes are 
assumed to be known, and (ii) population shapes 
are unknown. The assumption of known 
population shapes is analogous to the 
assumption of known population variances in 
the z-test for comparing the means of two 
normal populations since the variance 
determines the shape of the normal distribution. 
The goal was to see how the test would perform 
for samples of moderate size from symmetric 
heavy-tailed populations. Parent populations 
investigated were Cauchy, Laplace and 
Student’s t distributions with 2 and 3 degrees of 
freedom. In all settings, the parent populations 
were of the same shape, shifted under the 
alternative, and a two-sided test H0: ηx = ηy 
versus H1: ηx ≠ ηy was performed. 
 
Adaptive Kernel Density Estimation 

When population shapes are unknown, 

fx(ηx) and fy(ηy) are estimated with f Hˆ ( )x x  and 

f Hˆ ( )y y , respectively, using adaptive kernel 

density estimation (AKDE). 

Let 1 nX , X , … , X d
2 ∈  be a sample 

from unknown density f. The AKDE is a three 
step procedure: 

1. Find a pilot estimate f (X)
 that satisfies 

if (X ) 0> , 1, 2, , n.…i=   

 
2. Define local bandwidth factors 

-γλ 
i i={f(X)/g}  where g  is the geometric 

mean of the if (X )  and 0 γ 1≤ ≤  is the 

sensitivity parameter.  
3. The adaptive kernel estimate is defined by 
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ˆ λ λ
n

-1 -d -d -1 -1
i i i

i=1

f(X)= n h K{h (X-X )}  

 
where K(.)  is a kernel function and h  is the 
bandwidth.  

 
The AKDE method varies the 

bandwidth among data points and is better suited 
for heavy-tailed populations than ordinary KDE 
(Silverman, 1998, pp. 100-110). Intuitively, the 
AKDE is based on the idea that for heavy-tailed 
populations a larger bandwidth is needed for 
data points in the tails of the distribution (i.e., 
for outliers). In R, function AKJ in library 
QUANTREG implements AKDE. Obtaining the 
pilot estimate requires the use of another density 
estimation method, such as ordinary KDE. The 
general view in the literature is that AKDE is 
fairly robust to the method used for the pilot 
estimate (Silverman, 1998) and that the choice 
of the sensitivity parameter γ  is more critical. 
When using AKDE with Gaussian kernel, if the 
parent population has tails close to normal then 
γ 5< .  should be used, however, if the parent 

population is heavy-tailed then γ 5> .  should be 

used. Thus, γ 5= .  is a good choice and has 
been shown to reduce bias (Abramson, 1982). 
 

Results 
Case 1: Known Population Shapes 

Figure 1 shows the power curves for the 
pooled test when population shapes are assumed 
to be known at the 5% level of significance. 
Each point on the curves is based on 10,000 
simulated samples. The Type I error rate is 
controlled very well. 
 
Case 2: Unknown Population Shapes 

Figure 2 shows the power curves for the 
pooled test when population shapes are 
unknown at the 5% level of significance and 
using AKDE with γ 5= . . Each point on the 
curves is based on 10,000 simulated samples. 
The Type I error rate is controlled very well. 
 
Comparisons with Other Methods 

The test was compared to the following 
methods: (i) Student’s t-test; (ii) Mann-Whitney-
Wilcoxon (MWW) rank sum test; (iii) bootstrap 

(Efron & Tibshirani, 1993. p. 221); and (iv) 
permutation test. Figure 3 shows the receiver 
operating characteristic (ROC) curves for a 
balanced design with n = m = 30. The parent 
populations were of the same shape in each case 
and the difference in population medians was set 
to 1. For the bootstrap and the permutation test, 
the difference in medians was used as the metric. 
Each point on the curves is based on 10,000 
simulated samples. 
 

Conclusion 
Tests for comparing medians tend to be very 
conservative. The proposed test is able to control 
the probability of Type I error. It is as powerful 
as the permutation test and the bootstrap and is 
more powerful than the MWW test for heavy-
tailed populations. The more heavy-tailed the 
parent population, the greater the power 
advantage of the proposed test over the MWW 
test; when the parent population is light-tailed, 
the MWW test is more powerful than the 
proposed test. 

A key precept of the method is that 
AKDE provides a better estimate of the 
population density at the median, especially for 
heavy-tailed populations, than ordinary KDE. As 
expected, using ordinary KDE makes the test 
very conservative where the Type I error rate 
can be as low as 0.02 at the 5% significance 
level.  

These experiments show that the 
sensitivity parameter γ  in AKDE controls the 
trade-off between making the test conservative 
and liberal, with a suitable value of γ  producing 
a test with a nominal significance level. The 
Type I error rate of the test can be increased 
(decreased) by increasing (decreasing) γ .  

The asymptotic distribution of the 
sample median has been known for over 50 
years (Chu, 1955; Chu & Hotelling, 1955), but it 
is only now with the improvement in computing 
power that this theory can be practically 
employed to derive useful statistical 
methodology, illustrating the interplay between 
theory, methodology and computation in the 21st 
century. 
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Figure 1: Power Curves for Known Population Shapes (10,000 Simulated Samples) 
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Figure 2: Power Curves for Unknown Population Shapes 
(10,000 Simulated Samples, AKDE with γ 5= . ) 
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Figure 3: ROC Curves. Balanced Design with n = m = 30 (10,000 Simulated Samples) 
 

(The curves for the permutation test coincide closely with the curves for the proposed test 
and have been omitted for clarity.) 
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Two statistics are considered to test the population correlation for non-normally distributed bivariate data. 
A simulation study shows that both statistics control type I error rates well for left-tailed tests and have 
reasonable power performance. 
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Introduction 
Bivariate data are data in which two variables 
are measured on an individual. If the variables 
are quantitative, a researcher may be interested 
in describing the relationship between them. One 
measure used to describe the strength of linear 
relation between two quantitative variables is the 
linear correlation coefficient, denoted by ρ. 

The true relationship between two 
variables of interest is always unknown. 
Different estimators have been proposed for ρ 
and two of them are used frequently: (1) the 
Spearman Rank Order Correlation, which is 
used for ordinal data, and (2) the Pearson 
Product Moment Correlation, which is applied to 
interval and ratio data. The maximum likelihood 
estimator of ρ is the Pearson product-moment  
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correlation coefficient. When the data is not 
bivariate normal and the sample size exceeds 10, 
the nonparametric Spearman rank correlation is 
useful. Little work has been done for cases when 
the distribution of the data is unknown and the 
sample size is relatively small. 

The most popular ρ estimator is the 
Pearson Product Moment Correlation 
Coefficient, r, which is a biased point estimator 
for ρ, however, the bias is small when n (sample 
size) is large. Given two variables Y1 and Y2, the 
statistic is: 
 

( ) ( )

( ) ( )

1 1 2 2
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where ),( 21 ii YY  is the ith observation of the 

bivariate data (Y11, Y12),…,(Yn1 ,Yn2), 1Y  is the 

sample mean of Y1 and 2Y  is the sample mean of 
Y2. 

Researchers have done intensive work 
on the distribution of r when the population is 
bivariate normal (Fisher, 1915; Stuart & Ord, 
1994). It has been found that, when n = 2, the 
distribution of r can be regarded as an extreme 
case of a U-shaped distribution, for n = 3 the 
density is still U-shaped, but if n = 4 the 
distribution is uniform when ρ = 0 and J-shaped 
otherwise. For n > 4 the density function is 
unimodal and has increased skew as | ρ | 
increases, this follows from the fact that the 
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mode moves with ρ and r. For any ρ, the 
distribution of r slowly tends to normality as n 
 ∞ (Stuart & Ord, 1994). 

When the population is bivariate normal 
and has equal variance, a test statistic 
 

*

2

2

1
r

r nt
r

−=
−

                         (1) 

 

can be derived to test H0: ρ = 0. Under H0, 
*
rt  

follows the Student’s t-distribution with (n−2) 
degrees of freedom, denoted t(n-2). Disadvantages 
of this test include the need for a relatively large 
sample or bivariate normal data and the ability 
to test only for ρ = 0. 

When the population is not bivariate 
normal and the sample size exceeds 10, a non-
parametric statistic, the Spearman Rank 
Correlation Coefficient (Spearman), is typically 
used to measure the association between two 
variables when no transformation for the data 
can be found to approximate a bivariate normal 
distribution. Spearman, denoted by rs, is then 
defined as the ordinary Pearson product-moment 
correlation coefficient based on data ranking: 
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where (Ri1, Ri2) are the ranks of ),( 21 ii YY  

respectively; and 1R  is the mean of the ranks of 

Ri1, i = 1,2,… n, and 2R  is the mean of the ranks 
of Ri2 , i = 1,2,… n. 

Spearman can also be used to test the 
association between the two variables with the 
null hypothesis, H0, stating: there is no 
association between Y1 and Y2. When sample 
size n, exceeds 10, the test statistic: 
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1

s
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r nt
r
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−
,                          (2) 

 

can be used. *
rst  is approximately a t-distribution 

with n−2 degrees of freedom under H0. This is a 
nonparametric test and thus may result in lower 

power performance. Again this test can only be 
used for testing whether an association exists. 
The purpose of this study is to test H0: ρ = ρ0, 
where ρ0 can be values other than zero, for 
bivariate non-normal data. Fisher’s Z-
transformation and a saddlepoint transformation 
are investigated and tested. 
 

Methodology 
Two statistics for testing the correlation 
coefficient of bivariate non-normal populations 
are investigated: (1) Fisher’s z-transformation, 
denoted Fr , and (2) the saddlepoint 
approximation, denoted rL. These methods are 
used on bivariate non-normal data sets with 
small sample sizes. The goal is to determine if 
either of the two methods is appropriate for 
hypothesis testing about the population 
correlation coefficient, specifically for bivariate 
non-normal data sets with a small sample size. 
 
Fisher’s Z-Transformation 

The sampling distribution of r is 
complicated when ρ ≠ 0 even when the 
population is bivariate normal. Fisher (1921) 
derived an approximation procedure based on a 

transformation of r, 
1 1

' log
2 1

rz
r

+=
−

 and it tends 

to normality much faster than r. After 
standardizing, the statistic for Fisher’s classical 
transformation is given by: 
 

( )
1 1 1 1

log log 3.
2 1 2 1 2 1F

rr n
r n

ρ ρ
ρ

 + += − − −  − − − 
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Saddlepoint Approximation 

Saddlepoint approximations were 
introduced by Daniels (1954). However, 
computations of these approximations only 
recently became feasible with the availability of 
inexpensive computing power. In practice, 
statistical inference often involves test statistics 
with normal distributions, which are valid as 
sample sizes increase. For small sample size 
problems, these distributions tend to provide 
inaccurate results. Saddlepoint methods offer 
approximations that are accurate to a higher 
order than first-order approximations and their 
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accuracy holds for extremely small sample sizes 
(Huzurbazar, 1999). Saddlepoint approximations 
also provide good estimates to very small tail 
probabilities or to the density in the tails of the 
distributions. 

Jensen (1995) transforms the Pearson 
correlation coefficient using Laplace 
transformations to derive a function of r that can 
be normalized and he claims that Lr  is normally 
distributed to a high accuracy. Assuming a 
bivariate normal data set with correlation ρ, the 
saddlepoint approximation, denoted rL, provided 
by Jensen (1995) is: 
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and sgn(.) is the sign of ( )r ρ− . 

 
Proposed Test 

A new test is required to investigate the 
hypothesis 0 0H : ρ ρ=  versus three possible 

alternative hypotheses, a 0H :ρ ρ≠ , a 0H :ρ > ρ  

and a 0H :ρ < ρ , when a data set is bivariate non-

normal and sample size is relatively small to 
moderate. Although both the Fisher and 
saddlepoint transformations are derived for 
bivariate normal data, little work has been done 
to investigate if they can also be used for non-
normal bivariate data; thus, the two 
approximations, Fr  in (3) and Lr  in (4), are used 
as the test statistics for the hypothesis 

0 0H : ρ ρ= . Note that 0ρ  should be used in both 

equations whenever ρ  is present. The decision 
rule to reject the null hypothesis for the two-
tailed, upper-tailed and lower-tailed tests is | Fr | 

> zα/2 or | Lr | > zα/2, Fr , Lr > zα , and Fr , Lr < -zα,, 
respectively. 
 
Simulation Study: Generating Bivariate Non-
Normal Data 

Fleishman (1978) derived a method for 
generating univariate non-normal random 
variables. Fleishman’s method is based on the 
variable Y defined as 
 

32 dZcZbZaY +++=           (5) 
 
where Z is a standard normal random variable, 
and a, b, c and d are constants chosen in such a 
way that Y has the desired coefficients of 
skewness and kurtosis, γ1 and γ2, respectively. 

Fleishman showed that a = − c and the 
constants b, c and d are determined by 
simultaneously solving the following three 
equations: 
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Using these equations, a non-normal random 
variable Y can be obtained by generating a 
standard normal variable Z and using the 
equation (5). 

Vale and Maurelli (1983) proposed 
generating multivariate non-normal random 
variables with a specified correlation structure 
based on Fleishman’s method. For bivariate non-
normal random data, (Y1, Y2) with desired 
coefficients of skewness and kurtosis, (γ 11 and γ 

21 ) for Y1 and (γ 12 and γ 22) for Y2 , solutions to 
the system of equations (6) given in Fleishman’s 
method must be found. Let Z1, Z2 be two 
standard normal correlated variables. Y1 and Y2 
can be calculated with the following equations: 
 

2 3
1 1 1 1 1 1 1 1

2 3
2 2 2 2 2 2 2 2

,Y a b Z c Z d Z
Y a b Z c Z d Z

= + + +

= + + +
          (7) 
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Vale and Maurelli (1983) found that the 
correlation coefficient between Y1 and Y2 is: 
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(8) 
 
For a desired correlation,

21 , yyρ , the intermediate 

correlation,
21 ,ZZρ , can be determined by solving 

the above cubic equation. The bivariate non-
normal random variate (Y1, Y2) can then be 
obtained by first generating a set of bivariate 
standard normal random variate with correlation 

21 ,ZZρ , and then using equation (7). 

 
Simulation Description 

Different values of skewness and 
kurtosis were chosen for the simulation study in 
order to reflect different population 
distributions. Four values of skewness, −3, −1, 
1, 3 and three values of kurtosis, 3, 7, 25 were 
used, resulting in 78 possible pairs of 
populations. A relatively small sample size of 10 
and a moderate sample size of 20 were used in 
the study and the test statistics rL and rF were 
investigated for type I error rates with left-tailed, 
right-tailed and two-tailed tests with the nominal 
levels of 0.01 and 0.05 for each sample.  

Comparisons in the simulation study use 
rL and rF against three critical values, zα, t(n-2, α), 

and (zα+t(n-2, α))/2, to draw conclusions. Four 0ρ  

values 0, 0.5, 0.7 and 0.9 were evaluated as the 
hypothesized values for 0 0H : ρ ρ= . 

When 0ρ 0= , the *
rt  in (1) and *

rst in (2) are also 

included in the study for comparison purposes. 
The simulation study has two parts: the type I 
error rate comparisons and the power study. The 
steps of the simulation are: 
 
Data Generation: Steps (1) – (5) 
1) Input the five population parameters: 

skewness and kurtosis for each of the two 
populations and the desired population 
correlation;  

 

2) Solve the system of equations (6) to 
calculate coefficients a, b, c and d for the 
two populations; 

 
3) Solve 

21zzρ  by equation (8);  

 
4) Generate n bivariate standard normal 

variables (Z1, Z2 ) with correlation 
21zzρ ; 

 
5) Apply the transformation in (7) to obtain the 

non-normal sample data Y1 and Y2; 
 
Evaluation: Steps (6) – (8) 
6) Evaluate rL and rF and compare to critical 

values zα, t(n-2, α), and (zα+t(n-2, α))/2; if 0ρ 0= , 
*
rt  and *

rst are evaluated and compared to t(n-

2) critical value; 
 
7) Repeat steps (4) – (6) 99,999 times; 
 
8) Calculate type I error rate for each method 

by finding the proportion of rejection in the 
100,000 samples. 

 
In the power study, an extra parameter 

aρ  (which is different from 0ρ ) is input in step 

(1) and used to generate the data as the true 
population correlation, however, all test statistics 
in step (6) are evaluated under 0ρ . All other 

steps in the power study are identical to the type 
I error rate study. All the simulations were run 
with Fortran 77 for Windows on a Toshiba 
Satellite-A105 Laptop Computer. 
 

Results 
Type I Error Rate Comparison 

Tables 1-4 provide comparisons of type 
I error rates with sample size 10=n . The set of 
population parameters for skewness and kurtosis 
are in the first column with the first population’s 
parameters in the first row and the second in the 
second row. Comparisons were made between 
the tests for saddlepoint and Fisher’s 
transformation, given in the table as the two 
adjacent numbers within a given correlation 
column, rL and rF , respectively. Three critical 
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points 2,nt α− , 2,

2
nz tα α−+

 and αz  were used for 

the two proposed methods. The results are the 
first, second and third numbers in the respective 
column. Pearson and Spearman are evaluated 
with a critical value 2,nt α−  for ρ = 0 only, and the 

type I error rates are reported in the first column 
with Pearson first and Spearman underneath. 

Due to similar results in the study, only 
12 pairs of populations and the small sample 
size n = 10 are reported in the tables. Also, 
although all the tests are done with levels of 
significance 0.05 and 0.01, both levels are 
reported here only for the left-tailed tests. (For 
complete simulation results, please contact the 
first author.) 
 
Left-Tailed Type I Error Rates 

Left-tailed type I error rates are given in 
Tables 1 and 2. Table 1 uses a significance level 
of 0.05 and Table 2 uses a significance level of 
0.01. It can be observed that only slight 
differences in type I error rates are present 
between the results for the saddlepoint and 
Fisher’s transformations. This same result was 
observed throughout the simulation study.  

Results using the t critical value achieve 
very good type I error rates for all of the 
distributions. The z critical value results in a few 
slightly inflated type I error rates and only by the 
saddlepoint approximation. The worst case 
found in the study, produced by the saddlepoint 
approximation, is for the pair populations with 
the same (skewness, kurtosis) = (3, 25) under ρ 
= 0.9 using αz  as the critical point. The type I 

error rate for this case is 0.0688. However, after 

the critical point was changed to
2

,1 αα −+ ntz
, the 

type I error rate decreased to 0.0564 and it 
further decreased to 0.0458 when 2,nt α−  is used. 

The Fisher’s transformation, by contrast, 
controls the type I error rates properly for nearly 
all cases considered. 

For the important case when ρ = 0, 
results show that both the rL and rF statistics 
control type I error rates using any of the three 
critical values at the 0.05 significance level. 
When the significance level is lowered to 0.01, 

some of the type I error rates using the z critical 
value are slightly inflated but within acceptable 
range. Surprisingly, Pearson controls the type I 
error rates better than the Spearman method. It 
performed very well for the 0.05 significance 
level; however, those involving a population 
with larger kurtosis are slightly inflated when 
the significance level is lowered to 0.01. 
Spearman has some slightly inflated type I error 
rates at both significance levels. Overall, it is 
fair to say that essentially all cases studied 
produced controlled type I error rates for the 
left-tailed test. 
 
Right-Tailed & Two-Tailed Type I Error Rates 

Right-tailed type I error rates are shown 
in Tables 3 with significance level of 0.05. 
(Although the 0.01 level of significance is also 
studied, the table is omitted due to the similar 
results.) With the right-tailed test, most type I 
error rates are inflated, the only values that stand 
out are for tests where the t critical values were 
used and both the skewness and kurtosis were 
relatively small. A great result is found for the t 
critical values when ρ = 0, type I error rates are 
controlled for both the rL and rF. As opposed to 
the left-tailed test, the Spearman t-test works 
better than the Pearson; however, results are still 
not as good as the corresponding results by rL 
and rF. 

Overall, both Saddlepoint and Fisher’s 
statistics are better candidates for testing 

aH :ρ > 0 . The t critical value produces more 

stable results then the z critical value, although 
the two statistics can also be used for other 0ρ  

values if the populations have small kurtosis 
with t critical points, in general the two statistics 
are not recommended for a right-tailed test.  

Two-tailed type I error rates are shown 
in Table 4. As expected, the results of the two-
tailed tests are more controlled than that of the 
right-tailed test. However, because the methods 
essentially failed for the right-tailed tests, they 
are not recommended to be used to perform a 
two-tailed test. 
Power Results 

Table 5 summarizes the results of the 
power study for left-tailed tests with 

oH : ρ 0.7=  versus various aρ values such that 
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aρ  < 0.7. Five different aρ  values and two 

levels of significance were investigated, but only 
three aρ  and α = 0.05 results are reported here. 

Power results for both methods show reasonable 
rate of convergence to probability 1. As 
expected, the z critical values have higher power 
than the other two tests. (For complete 
simulation results, please contact the first 
author.) 
 

Conclusion 
This study proposed and examined two statistics, 
the saddlepoint transformation, rL, and Fisher’s 
transformation, rF, for testing a correlation 
which may or may not be zero for any bivariate 
non-normal population. The simulation study 
indicates that the two statistics perform 
similarly. They both have very good robust 
performance for all the distributions studied 
when testing a left-tailed test; they maintain the 
type I error rates close to the nominal level and 
show reasonably good power. 

The two statistics are not recommended 
for testing a right-tailed test or a two-tailed test 
unless the practitioner knows for certain that the 
populations have both small skewness and 
kurtosis. In these cases, the two test statistics 
with a t critical point can properly control the 
type I error rates. 

The two statistics can also be used for 
testing Ho: ρ = 0 versus any of the three possible 
alternative hypotheses. They control type I error 
rates better than the existing Pearson and 
Spearman t-tests. Because the two statistics are 
derived based on bivariate normal population, a 
sample size of at least 10 is recommended. 
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Table 1: Type I Error Rates for Left-Tailed Test, 0.05 Level of Significance 
 

Skewness Kurtosis 

RHO = 0 RHO = 0.5 RHO = 0.7 RHO = 0.9 
Pearson 

Spearman 
rL rF rL rF rL rF rL rF 

3 25 0.0416 0.0284 0.0281 0.021 0.0179 0.0323 0.0263 0.0458 0.0356
3 25 0.0522 0.0348 0.0339 0.029 0.0248 0.0421 0.0344 0.0564 0.0447
   0.0424 0.0408 0.0395 0.0334 0.0537 0.0444 0.0688 0.055 

-3 25 0.0428 0.0292 0.0289 0.0218 0.0188 0.0325 0.0261 0.0445 0.0342
-3 25 0.0538 0.0357 0.0348 0.0298 0.0255 0.0429 0.0348 0.0553 0.0433
   0.0436 0.042 0.0397 0.0337 0.0549 0.0451 0.0674 0.054 

-1 7 0.0475 0.0302 0.0298 0.0285 0.0256 0.0289 0.0241 0.0311 0.0235
-1 7 0.0516 0.0381 0.037 0.0368 0.0324 0.0369 0.0307 0.0395 0.0302
   0.0483 0.0463 0.0462 0.0409 0.0469 0.0387 0.0502 0.0383

1 7 0.0483 0.0316 0.0312 0.0283 0.0252 0.0292 0.0245 0.0316 0.0235
1 7 0.0521 0.0396 0.0385 0.036 0.0318 0.0374 0.0312 0.0403 0.0307
   0.0491 0.0473 0.0453 0.0399 0.0475 0.0392 0.0515 0.0392

1 3 0.0463 0.0286 0.0281 0.0309 0.0277 0.0321 0.0268 0.0354 0.0276
1 3 0.0514 0.0374 0.0362 0.0398 0.0351 0.0411 0.034 0.0448 0.0345
   0.0473 0.0454 0.0501 0.0444 0.0527 0.0434 0.0555 0.0434

-1 3 0.0461 0.0286 0.028 0.0313 0.0278 0.0326 0.0271 0.0349 0.0264
-1 3 0.0517 0.0371 0.0358 0.0399 0.0355 0.0411 0.0346 0.0438 0.0338
   0.047 0.0449 0.0505 0.0444 0.0517 0.0433 0.055 0.0426

-3 25 0.0441 0.0278 0.0272 0.0228 0.0198 0.0189 0.0153 0.002 0.0013
-1 3 0.0519 0.0357 0.0346 0.0304 0.0264 0.025 0.0203 0.0029 0.0019
   0.045 0.0431 0.0392 0.0343 0.0328 0.0266 0.0043 0.0028

3 25 0.0446 0.0284 0.0279 0.0226 0.0201 0.0199 0.0163 0.0019 0.0012
1 3 0.0512 0.0359 0.0349 0.0293 0.0259 0.026 0.0212 0.0027 0.0018
   0.0455 0.0436 0.0382 0.0329 0.0341 0.0274 0.0043 0.0026

3 25 0.0464 0.0307 0.0302 0.0221 0.0194 0.0217 0.0175 0.0112 0.0079
1 7 0.0521 0.0383 0.0371 0.029 0.0253 0.0288 0.023 0.0151 0.0109
   0.0472 0.0454 0.0375 0.0325 0.0377 0.0306 0.0207 0.0146

-3 25 0.0474 0.0317 0.0312 0.0213 0.0187 0.0219 0.0178 0.0115 0.0081
-1 7 0.0527 0.0389 0.0379 0.028 0.0244 0.0288 0.0235 0.0158 0.011 
   0.0482 0.0464 0.0366 0.0318 0.0375 0.0303 0.0212 0.0151

-1 3 0.0482 0.0311 0.0304 0.0293 0.0263 0.0296 0.0244 0.0254 0.019 
-1 7 0.0521 0.0389 0.0379 0.0374 0.0331 0.0373 0.0313 0.0333 0.0247
   0.0489 0.0473 0.0471 0.0415 0.0469 0.0392 0.0422 0.0321

1 3 0.0473 0.0301 0.0294 0.0299 0.0267 0.0298 0.025 0.0258 0.0194
1 7 0.0522 0.038 0.0366 0.038 0.0338 0.0379 0.0315 0.0331 0.0251
   0.0481 0.0461 0.0482 0.0424 0.0475 0.0396 0.0419 0.0321
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Table 2: Type I Error Rates for Left-Tailed Test, 0.01 Level of Significance 
 

Skewness Kurtosis 

RHO = 0 RHO = 0.5 RHO = 0.7 RHO = 0.9 
Pearson 

Spearman 
rL rF rL rF rL rF rL rF 

3 25 0.0113 0.0039 0.0049 0.0008 0.0011 0.0009 0.001 0.0021 0.0019
3 25 0.0118 0.0069 0.0079 0.0021 0.0023 0.0028 0.0027 0.0063 0.0049
   0.0115 0.0123 0.0049 0.0047 0.0077 0.0067 0.0142 0.011 

-3 25 0.0114 0.0033 0.0043 0.0006 0.0008 0.001 0.001 0.0023 0.002 
-3 25 0.0119 0.0063 0.0073 0.0019 0.002 0.0028 0.0026 0.0061 0.0047
   0.0117 0.0124 0.0051 0.0049 0.008 0.0068 0.0149 0.0113

-1 7 0.0105 0.0023 0.0033 0.0016 0.002 0.0016 0.0017 0.0017 0.0016
-1 7 0.0117 0.0052 0.0063 0.0037 0.004 0.0036 0.0035 0.004 0.0032
   0.0108 0.0118 0.009 0.0088 0.0086 0.0074 0.0097 0.0073

1 7 0.0105 0.0022 0.0032 0.0015 0.0019 0.0015 0.0017 0.0017 0.0015
1 7 0.0112 0.0051 0.0059 0.004 0.0042 0.0039 0.0038 0.0041 0.0033
   0.0108 0.0118 0.0086 0.0084 0.0088 0.0077 0.0091 0.0069

1 3 0.009 0.0017 0.0024 0.0019 0.0023 0.0018 0.002 0.002 0.0018
1 3 0.0116 0.0041 0.0048 0.0044 0.0047 0.0044 0.0043 0.0046 0.0038
   0.0094 0.0102 0.0099 0.0096 0.0102 0.0089 0.011 0.0083

-1 3 0.0084 0.0016 0.0023 0.0017 0.0021 0.0019 0.0021 0.0023 0.002 
-1 3 0.0115 0.0039 0.0047 0.0042 0.0046 0.0046 0.0044 0.0055 0.0045
   0.0087 0.0097 0.0096 0.0094 0.0101 0.0089 0.0123 0.0097

-3 25 0.0087 0.0015 0.0024 0.0012 0.0014 0.0006 0.0007 5E-05 5E-05 
-1 3 0.0123 0.0039 0.0049 0.0026 0.0029 0.0019 0.0018 0.0001 0.0001
   0.009 0.0097 0.0065 0.0063 0.0048 0.0041 0.0004 0.0003

3 25 0.0085 0.0019 0.0026 0.0009 0.0011 0.0007 0.0008 6E-05 5E-05 
1 3 0.0121 0.0041 0.0049 0.0025 0.0025 0.0018 0.0017 0.0002 0.0002
   0.0088 0.0095 0.0056 0.0054 0.0045 0.004 0.0003 0.0002

3 25 0.0111 0.0028 0.0038 0.0009 0.0012 0.0008 0.0009 0.0003 0.0002
1 7 0.0114 0.0058 0.0068 0.0023 0.0025 0.0022 0.0021 0.0009 0.0006
   0.0116 0.0125 0.0059 0.0057 0.0057 0.005 0.0024 0.0018

-3 25 0.0109 0.0029 0.0036 0.0011 0.0014 0.0008 0.0009 0.0003 0.0003
-1 7 0.0114 0.0058 0.0068 0.0029 0.0031 0.0022 0.0021 0.0009 0.0007
   0.0112 0.012 0.0063 0.0061 0.0055 0.0048 0.0024 0.0017

-1 3 0.0096 0.002 0.0029 0.0017 0.002 0.0016 0.0018 0.0015 0.0013
-1 7 0.0119 0.0047 0.0055 0.0039 0.0042 0.0042 0.004 0.0036 0.0029
   0.0099 0.0107 0.0086 0.0084 0.0091 0.008 0.0077 0.006 

1 3 0.0094 0.0019 0.0027 0.0017 0.0021 0.0016 0.0017 0.0011 0.001 
1 7 0.0117 0.0043 0.0052 0.0038 0.0041 0.0039 0.0037 0.0026 0.0021
   0.0097 0.0105 0.009 0.0088 0.0089 0.0078 0.007 0.0054
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Table 3: Type I Error Rates for Right-Tailed Test, 0.05 Level of Significance 
 

Skewness Kurtosis 

RHO = 0 RHO = 0.5 RHO = 0.7 RHO = 0.9 

Pearson 
Spearman 

rL rF rL rF rL rF rL rF 

3 25 0.0635 0.0479 0.0474 0.1168 0.1171 0.1419 0.142 0.1671 0.1666
3 25 0.0511 0.0555 0.0544 0.1308 0.1303 0.1579 0.1571 0.1835 0.1822
   0.0642 0.0626 0.1458 0.1447 0.1746 0.1733 0.2006 0.1985

-3 25 0.0654 0.05 0.0494 0.1179 0.1181 0.1431 0.1432 0.1664 0.1661
-3 25 0.0524 0.0573 0.0564 0.132 0.1316 0.1578 0.1571 0.1826 0.1816
   0.0662 0.0645 0.1465 0.1454 0.1742 0.1729 0.1998 0.198 

-1 7 0.0528 0.0362 0.0357 0.0508 0.051 0.0587 0.0588 0.0674 0.0672
-1 7 0.0532 0.0441 0.0429 0.0616 0.0612 0.0699 0.0694 0.0799 0.0787
   0.0538 0.0517 0.0737 0.0728 0.0828 0.0817 0.0936 0.092 

1 7 0.0533 0.0356 0.0348 0.0511 0.0514 0.0598 0.0599 0.0683 0.0681
1 7 0.0512 0.0442 0.043 0.0614 0.0611 0.0707 0.0702 0.0804 0.0795
   0.0542 0.0523 0.0737 0.0728 0.0827 0.0816 0.0937 0.0922

1 3 0.0539 0.0353 0.0347 0.0431 0.0433 0.0461 0.0462 0.0497 0.0495
1 3 0.0532 0.0442 0.0428 0.0525 0.0522 0.0566 0.0563 0.0601 0.0591
   0.055 0.0528 0.064 0.0633 0.0685 0.0676 0.0725 0.0708

-1 3 0.0535 0.0357 0.035 0.0424 0.0424 0.0469 0.047 0.0495 0.0492
-1 3 0.0529 0.0443 0.0431 0.0525 0.0523 0.0569 0.0565 0.0604 0.0598
   0.0544 0.0524 0.0635 0.0625 0.0694 0.0684 0.0728 0.0714

-3 25 0.0569 0.0394 0.0389 0.0666 0.0668 0.0774 0.0775 0.0943 0.0937
-1 3 0.0526 0.0475 0.0465 0.0783 0.078 0.0915 0.0909 0.1151 0.1136
   0.0578 0.0559 0.0921 0.091 0.1078 0.1065 0.139 0.136 

3 25 0.0582 0.0401 0.0396 0.0666 0.0668 0.0796 0.0797 0.0968 0.0964
1 3 0.0524 0.0494 0.048 0.0794 0.079 0.0931 0.0926 0.1168 0.115 
   0.0591 0.0573 0.0937 0.0927 0.1096 0.1082 0.1412 0.1383

3 25 0.0576 0.0404 0.0399 0.0781 0.0784 0.0925 0.0926 0.1068 0.1063
1 7 0.0533 0.0486 0.0474 0.0906 0.0902 0.1061 0.1055 0.124 0.1226
   0.0585 0.0567 0.1044 0.1032 0.122 0.1207 0.1431 0.1412

-3 25 0.0585 0.0409 0.0403 0.0773 0.0776 0.0925 0.0926 0.1081 0.1078
-1 7 0.0532 0.0491 0.048 0.0897 0.0893 0.1065 0.1059 0.1256 0.1243
   0.0591 0.0575 0.1042 0.103 0.1234 0.122 0.1444 0.1423

-1 3 0.0523 0.0344 0.0337 0.0464 0.0467 0.051 0.0511 0.0561 0.0558
-1 7 0.0523 0.043 0.0418 0.0565 0.0562 0.0618 0.0613 0.0677 0.0667
   0.0533 0.051 0.0681 0.0674 0.0743 0.0731 0.0812 0.0797

1 3 0.0521 0.0349 0.0345 0.0466 0.0467 0.0507 0.0507 0.0562 0.0558
1 7 0.0516 0.0431 0.0419 0.0571 0.0568 0.0607 0.0602 0.0669 0.0661
   0.0529 0.051 0.0686 0.0677 0.0732 0.0721 0.0798 0.0781
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Table 4: Type I Error Rates for Two-Tailed Test, 0.05 Level of Significance 
 

Skewness Kurtosis 

RHO = 0 RHO = 0.5 RHO = 0.7 RHO = 0.9 

Pearson 
Spearman 

rL rF rL rF rL rF rL rF 

3 25 0.0648 0.0376 0.0395 0.0757 0.0789 0.0974 0.0997 0.1223 0.1222 
3 25 0.0532 0.0499 0.0508 0.0946 0.0961 0.122 0.1218 0.152 0.1484 
   0.0659 0.0658 0.1193 0.1184 0.1525 0.1486 0.1879 0.1793 

-3 25 0.064 0.0368 0.0389 0.0773 0.0806 0.0998 0.1022 0.1235 0.1232 
-3 25 0.0535 0.0494 0.0504 0.0976 0.0989 0.1251 0.1249 0.1523 0.1481 
   0.0652 0.065 0.1224 0.1217 0.1561 0.1525 0.1863 0.1782 

-1 7 0.0543 0.0253 0.0274 0.0306 0.032 0.0352 0.036 0.0425 0.0416 
-1 7 0.0539 0.0378 0.0389 0.045 0.0452 0.051 0.0506 0.0592 0.0564 
   0.0554 0.0554 0.0646 0.0629 0.0729 0.0701 0.0823 0.0766 

1 7 0.0534 0.0254 0.0272 0.0314 0.033 0.0369 0.0377 0.0418 0.0414 
1 7 0.0544 0.0376 0.0387 0.045 0.0457 0.0526 0.0519 0.0599 0.0569 
   0.0545 0.0544 0.0651 0.0638 0.0741 0.071 0.0822 0.0763 

1 3 0.0513 0.0233 0.025 0.0268 0.0281 0.0301 0.03 0.0324 0.031 
1 3 0.054 0.0353 0.0363 0.0407 0.0406 0.0443 0.0429 0.0477 0.0443 
   0.0526 0.0524 0.0601 0.0582 0.0637 0.0604 0.0691 0.0626 

-1 3 0.0524 0.0238 0.0256 0.0273 0.0285 0.029 0.0291 0.032 0.031 
-1 3 0.0555 0.0361 0.037 0.0401 0.0401 0.0436 0.0422 0.0472 0.0439 
   0.0537 0.0536 0.06 0.058 0.0643 0.0606 0.0687 0.0619 

-3 25 0.0547 0.0265 0.0284 0.0379 0.04 0.0432 0.0448 0.037 0.0397 
-1 3 0.0556 0.0388 0.0398 0.0535 0.0545 0.061 0.0613 0.0546 0.0565 
   0.0557 0.0556 0.0743 0.0734 0.0836 0.0819 0.0788 0.0788 

3 25 0.0541 0.0259 0.0279 0.0374 0.0395 0.0429 0.0446 0.0388 0.0415 
1 3 0.0552 0.0384 0.0393 0.0533 0.0539 0.0608 0.0606 0.0571 0.0584 
   0.0553 0.0551 0.074 0.0734 0.0837 0.0821 0.0805 0.0805 

3 25 0.0571 0.0293 0.0311 0.0451 0.0473 0.055 0.057 0.0559 0.0579 
1 7 0.0545 0.0415 0.0426 0.0612 0.0622 0.0739 0.0742 0.0752 0.0754 
   0.0581 0.058 0.0827 0.0818 0.098 0.0958 0.1 0.0978 

-3 25 0.0566 0.0302 0.0321 0.0448 0.0474 0.055 0.057 0.0551 0.0572 
-1 7 0.0543 0.0425 0.0435 0.0618 0.0627 0.0742 0.0743 0.0747 0.0747 
   0.0578 0.0577 0.0833 0.0826 0.0978 0.0956 0.0989 0.0967 

-1 3 0.0516 0.0235 0.0251 0.0275 0.0289 0.0298 0.0301 0.0317 0.0311 
-1 7 0.0536 0.0353 0.0365 0.0413 0.0413 0.0438 0.043 0.0463 0.0444 
   0.0528 0.0527 0.0606 0.0589 0.0642 0.0612 0.0676 0.0626 

1 3 0.0518 0.0234 0.0254 0.0282 0.0293 0.031 0.0317 0.0316 0.0311 
1 7 0.0556 0.0358 0.037 0.042 0.0422 0.0454 0.0444 0.0465 0.0443 
   0.0529 0.0529 0.0612 0.0597 0.0663 0.0629 0.0674 0.0621 
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Table 5: Power Results for Left-Tail Test when ρ = 0.7, 0.05 Level of Significance 
 

Skewness Kurtosis 

RHO = 0.7 RHO = 0.5 RHO = 0.3 RHO = 0.1 

rL rF rL rF rL rF rL rF 

3 25 0.0323 0.0263 0.1658 0.1442 0.3906 0.3583 0.648 0.6175 
3 25 0.0421 0.0344 0.1964 0.1734 0.4354 0.4012 0.6858 0.658 
  0.0537 0.0444 0.2300 0.2033 0.4781 0.4445 0.7195 0.6934 

-3 25 0.0325 0.0261 0.1633 0.1429 0.3891 0.3565 0.6489 0.6194 
-3 25 0.0429 0.0348 0.1948 0.1705 0.4338 0.4000 0.6875 0.6583 
  0.0549 0.0451 0.2283 0.2021 0.4756 0.4420 0.7212 0.6951 

-1 7 0.0289 0.0241 0.1612 0.1424 0.3909 0.3577 0.639 0.6059 
-1 7 0.0369 0.0307 0.1919 0.1685 0.4374 0.4023 0.6809 0.6495 
  0.0469 0.0387 0.2257 0.1986 0.4824 0.4466 0.7195 0.6891 

1 7 0.0292 0.0245 0.161 0.1409 0.391 0.3587 0.6357 0.6046 
1 7 0.0374 0.0312 0.1917 0.1682 0.4366 0.4021 0.6784 0.6460 
  0.0475 0.0392 0.2245 0.1983 0.4821 0.4460 0.7179 0.6865 

1 3 0.0321 0.0268 0.1696 0.1494 0.3985 0.3669 0.6369 0.6059 
1 3 0.0411 0.034 0.1998 0.1767 0.443 0.4086 0.6776 0.6469 
  0.0527 0.0434 0.2335 0.2069 0.488 0.452 0.7166 0.6859 

-1 3 0.0326 0.0271 0.1706 0.1501 0.3986 0.3667 0.6393 0.6078 
-1 3 0.0411 0.0346 0.2013 0.1777 0.4428 0.4089 0.6803 0.6492 
  0.0517 0.0433 0.2344 0.2081 0.4881 0.4522 0.7184 0.6879 

-3 25 0.0189 0.0153 0.1476 0.1285 0.3818 0.3503 0.6333 0.6034 
-1 3 0.0250 0.0203 0.1759 0.1542 0.4253 0.3925 0.6744 0.6434 
  0.0328 0.0266 0.2066 0.1819 0.4689 0.4346 0.7112 0.6828 

3 25 0.0199 0.0163 0.1461 0.1270 0.3800 0.349 0.6366 0.6065 
1 3 0.0260 0.0212 0.1746 0.1522 0.4239 0.3905 0.6778 0.6468 
  0.0341 0.0274 0.206 0.181 0.4671 0.4327 0.7147 0.6859 

3 25 0.0217 0.0175 0.1471 0.1275 0.3773 0.3457 0.6382 0.6062 
1 7 0.0288 0.023 0.1768 0.154 0.4222 0.388 0.6793 0.6481 
  0.0377 0.0306 0.2087 0.183 0.4672 0.4316 0.7169 0.6879 

-3 25 0.0219 0.0178 0.1479 0.1286 0.3798 0.3478 0.6397 0.6078 
-1 7 0.0288 0.0235 0.1778 0.155 0.4243 0.3905 0.6795 0.6497 
  0.0375 0.0303 0.2094 0.1843 0.4694 0.4341 0.7171 0.6876 

-1 3 0.0296 0.0244 0.1642 0.1444 0.3955 0.363 0.6361 0.6045 
-1 7 0.0373 0.0313 0.1942 0.1711 0.4399 0.4062 0.6771 0.6463 
  0.0469 0.0392 0.2268 0.2008 0.4851 0.4491 0.7167 0.6849 

1 3 0.0298 0.025 0.1659 0.1458 0.3942 0.3621 0.6356 0.6032 
1 7 0.0379 0.0315 0.1964 0.1731 0.4385 0.4053 0.6768 0.6458 
  0.0475 0.0396 0.2289 0.2031 0.4835 0.4482 0.7159 0.6856 
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Identifying Outliers in Fuzzy Time Series 
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Time series analysis is often associated with the discovery of patterns and prediction of features. 
Forecasting accuracy can be improved by removing identified outliers in the data set using the Cook’s 
distance and Studentized residual test. In this paper a modified fuzzy time series method is proposed 
based on transition probability vector membership function. It is experimentally shown that the proposed 
method minimizes the average forecasting error compared with other known existing methods. 
 
Key words: Membership functions, fuzzy sets, fuzzy logical relations, outliers, Cook’s distance, average 

forecasting error. 
 
 

Introduction 
Time series analysis plays a vital role in most 
actuarial related problems. Fuzzy time series is a 
scientific method that can be applied to time 
series data and in forecasting future events. 
Commonly actuarial issues are mainly related to 
the concept of uncertainty, each observation of a 
fuzzy time series is assumed to be a fuzzy 
variable along with an associated membership 
function. The accuracy of fuzzy time series 
plays a significant role in forecasting. 
Conventional methods that deal with forecasting 
problems show their inefficiency when solving 
problems related to linguistic values. 

Several approaches in the literature have 
been developed to identify outliers in time series 
analysis. Fox (1972) introduced the concept of 
outliers in time series analysis and discussed 
different types of time series outliers. Tsaur 
(1986) used an iterative fashion to detect 
multiple outliers.  
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A complete survey and discussion 

regarding outlier detection can be found in 
Barnett and Lewis, (1984). The Studentized 
residual analysis method and Cook’s distance 
can be used to detect outliers in time series. 
According to Barnett and Lewis (1984), the 
identified outliers can be either accommodated 
or removed. Chang and Tiao (1988) discussed 
estimation of time series parameters in the 
presence of outliers. 

Song and Chissom (1993) introduced 
definitions of fuzzy time series and its modeling 
by using fuzzy relational equations and 
approximate reasoning by Zadeh (1965). Song 
and Chissom (1993) outlined modeling 
procedures and implemented time-invariant and 
time-variant models to forecast enrollments at 
the University of Alabama. Sullivan and 
Woodall (1994) reviewed the first-order time-
variant fuzzy time series model and the first-
order time-invariant fuzzy time series model 
presented. Chen (1996) developed a basic or 
simplified method for time series forecasting 
using arithmetic operations rather than 
complicated max-min composition operations. 
Sullivan and Woodall (1999) have discussed 
three methods for estimating Markov transition 
matrices when observed state probabilities are 
not all either zeros or ones and a simulation-
based comparison of the performance of the 
estimators. Huarng (2001) worked on finding 
the effective lengths of intervals to improve 
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forecasting accuracy. Chen (2002) developed a 
fuzzy time series using arithmetic operations.  

Song (2003) has proposed the sample 
autocorrelation functions of fuzzy time series 
and used in model selection. The main idea is to 
select a number of different data sets from each 
fuzzy set and calculate the sample auto 
correlation function for each data set. Chung and 
Hsu (2004) proposed a higher order fuzzy time 
series applied for Taiwan future exchange. Lee 
et al., (2004) have presented an improved 
method to forecast university enrollments based 
on the fuzzy time series. The method proposed 
not only defines the supports of the fuzzy 
numbers that represent the linguistic values of 
the linguistic variable more appropriately, but 
also makes the RMSE smaller Sah et al., (2005) 
presented the method for forecasting given high 
accuracy and comparing existing methods. Tsaur 
et al., (2005) have proposed fuzzy relation 
matrix affecting the forecasting performance and 
proposed an arithmetic procedure for deriving 
fuzzy relation matrix method using Fuzzy 
relation analysis in fuzzy time series. Fuzzy 
relation is a crucial connector in presenting 
fuzzy time series model. Also the concept of 
entropy is applied to measure the degrees of 
fuzziness when a time invariant matrix is 
derived. Singh (2007) proposed a method for 
fuzzy time series forecasting using a simple time 
variant method. Hao-Tien Liu (2007) has 
proposed improved time-variant fuzzy time 
series method. The proposed method takes into 
consideration of Window base, length of 
interval, degrees of membership values, and 
existence of outliers. The improved method 
provides decision makers with more precise 
forecasted values.  
 
Fuzzy Time Series 

Song and Chissom (1993) proposed a 
procedure for solving fuzzy time series models 
described as follows: Let Ube the universe of 
discourse, 
 

min 1 max 2[ , ],U V V V V= − +  

 
where }...,{ 21 nuuuU =  is the given historical 
data, the minimum data is Vmin, the maximum 

data is Vmax and V1,V2 are two real numbers. A 
fuzzy set Ai of U is defined by 

nnAiAiAii uufuufuufA /)(....../)(/)( 2211 +++=
 
where fA is the membership function of fuzzy set 
Ai. Let ...)2  ,1  ,0( ),( =ttY be a subset of R. If Y 
(t) is the universe of interest defined by the 

fuzzy set ( ), 1,   2,...i t iμ =  then F(t) is called a 

fuzzy time series of Y(t). If there exists a fuzzy 
relationship ( , 1),R t t −  such that 

),1,(*)1()( −−− ttRtFtF  where the symbol * is 
an operator, then F(t) is said to be induced by 
F(t−1) the relationship can be denoted by 

)()1( tFtF →− . Suppose )1( −tF  by Ai 
and F (t) by Aj fuzzy logical relationship can be 
defined by ii AA →  where Ai and Aj are called, 
respectively, the left hand side and right hand 
side of the fuzzy logical relationship. 
 
Detection of Outliers 

Outlier defines an observation that is 
numerically distant from the rest of the data, or 
is any observation in a set of data that is 
inconsistent with the remainder of the 
observations in the data set. The outlier is 
inconsistent in the sense that it is not indicative 
of possible future behavior of the data sets. 
Cook’s Distance (Di) defines how much an 
observation affects a change in a parameter 
estimate of least square regression analysis: 
 

( )
2

2 .
* 1

i ii
i

ii

e hD
p MSE h

 
=  

 − 
 

 
To interpret Di, compare it to the F-distribution 
with (p, n−p) degrees of freedom to determine 
the corresponding percentile; if the percentile 
value is greater than 50%, then the observation 
has a major influence on the fitted values and 
should be examined. Thus, if Di>F(0.5, p, n−p) 
then consider influence. 

The Studentized residual analysis 
methods can assist in determining whether 
outliers exist in historical data. The Studentized 
test can be employed to examine the outliers as 
follows: If there are n historical data x1, x2,…,xn 
a square matrixR can be defined as, 
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=

 

 
The Studentized residual can be defined by the 
Studentized Residual Test: 

j

i

S
e

, 

where 

( )ˆ 1 .j iiS i rσ= −  

 
Here, Sj is the estimated variance of the residual, 
ei specifies the residual of the ith datum, ( )iσ̂  is 

the estimated value of the standard deviation σ  
without the ith observation, and ri is the ith 
diagonal element in matrix R. The data is 
considered to be an outlier where the absolute 
residual values having Studentized residuals are 
greater than 2.0. 
 
Discrete Time Markov Chain 

A Markov chain is a discrete random 
process with the property that the next state 
depends only on the current state; the past states 
have no influence on the future.  

A Markov chain X is said to be time-
homogenous if the conditional probability 

[ ] Sji,,PiX|jXP ijn1n ∈===+
 is independent of 

n, and S is the countable state space. The 
probabilities of Pij are called the transition 
probabilities for the Markov chain X. It is 
customary to arrange the Pij or P(i,j) = Pij into a 
square array and to call the resulting matrix 
P=(Pij) the transition probability matrix of the 
Markov chain X; for any i, j∈S, Pij≥0, and 

1P
Ej

ij =
∈

 for any m∈N, 

[ ] Sji,,PiX|jXP m
ijnmn ∈===+

. Here
)(m

ijP  

denotes the probability that the process goes 
from state i to state j in m transitions. The 

transition probabilities ijP  can be exhibited as a 

square matrix 
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03020100

ij

PPPP
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PP  

 
which is called the transition probability matrix 
of the chain. If the number of states is finite, for 
example n, then there will be n rows and n 
columns in the matrix P; otherwise the matrix 
will be infinite.As it is known, 0≥ijP , and 

1.P
0j

ij =
∞

=
 for every ,...2,1,0, =ji  

 
Modified Method of Forecasting 

This article aims to provide better 
forecasting accuracy using fuzzy time series 
with forecasts using only historical data. The 
step by step forecasting procedure is as follows: 
 
1. First identify outliers from the historical data 

using Cook’s distance and the Studentized 
residual test. 

 
2. After identifying the outlier, compute the 

appropriate length of interval l using the 
distribution based method by Chen (2002). 

 
3. Compute the number of intervals m as 

follows: 
 

( ) ( )
l

VVVV
m 1min2max −−+

=  

where Vmax is the maximum value of the 
historical data, V2 is the positive integer, 
Vmin is the minimum value of the historical 
data, V1 is the positive integer and l  is the 
appropriate length of interval.  

 
4. Let U be the universe of discourse, 

[ ]2max1min VV,VVU +−=  and partition 
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into m equal length intervals 

 }.u ... u ,u,{u m321  

 
5. Fuzzify the variations of the historical data 

and determine the fuzzy logical 
relationships. 

 
6. If Ai is the fuzzified value of current year n 

and Aj is the fuzzified value of next year 
n+1, then fuzzy logical relation is denoted 
by Ai→ Aj. 

 
7. Define Fuzzy sets Ai on universe of 

discourse U, then determined how many 
linguistic variables to be fuzzy sets. 

 
8. Define the linguistic terms of Ai represented 

by the fuzzy sets are as follows: 
 

A1 ={u1/0.667,u2/0.337,u3/0, . . . ,um/0} 
 

A2 ={u1/0.25,u2/0.5,u3/0.25, . . . ,u m/0} 
 

A3={u1/0,u2/0.25,u3/0.50, . . . , 0,um/0} 
… 

Am ={u1/0, . . . , um-1/0.333, um/.0.667 } 
 
9.  Fuzzify the historical data are as follows: 

If the value belongs to u1, then fuzzified  
membership into 0.667/A1+0.333/A2+0/A3 

denoted by A1.If the value belongs  
to ui,i=2,3,…,n-1, then the fuzzified 
membership values into 0.25/Ai-1 + 0.5/Ai + 
0/Ai+1 denoted by Ai. If the value belongs to 
un then the fuzzified membership values 
0/An-2+0.333/An-1+0.667/An denoted by An. 

 
10. Identify the fuzzy logical relationship of first 

order fuzzy time series is as follows: 
Aj-1 → Aj. 

 
11. Determine the fuzzy logical 

relationship
i

T
ii AAR ×= −1

, i = 1,2,…,n 

and obtain the transition probability matrix 

is 
n

1i
im RP

=

= . 

 
12. Calculate the forecast outputs using 

transitions state probability membership 

function as mPPP t1t ×′=′+ , where, 1tP +′  is 

the current year historical data is obtained 
from previous year vector probability 
membership tP′  and probability matrix mP . 

 
13. Obtain the average forecasting error using 

actual and forecasted values: 
 

%100
)(

 ×
−

=
valueactual

valueactualvalueforcasted
errorForcast

 
 
Numerical Example 

The proposed approach isdescribed with 
actual data corresponding to the number of 
accidentsoccurring in India. The original data set 
is shown in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Identifying Outliers Using Cook’s 
Distance and Studentized Residual Test 

 

Year
Number 

of 
Accidents

CooksDistance 
Student 
Residual

1985 20700 0.001 -0.168 
1986 21550 0.008 -0.415 
1987 23400 0.000 0.026 
1988 24670 0.000 0.067 
1989 27000 0.020 0.837 
1990 28260 0.019 0.870 
1991 29340 0.014 0.777 
1992 26030 0.115 -2.597 
1993 28010 0.067 -1.890 
1994 32040 0.000 0.142 
1995 34890 0.037 1.292 
1996 37120 0.097 2.126 
1997 37370 0.048 1.345 
1998 38500 0.051 1.290 
1999 38640 0.010 0.524 
2000 39140 0.000 0.037 
2001 40560 0.002 0.182 
2002 40750 0.016 -0.528 
2003 40670 0.040 -1.504 
2004 42990 0.035 -0.667 
2005 43920 0.070 -0.882 
2006 46090 0.006 -0.085 
2007 47920 0.135 0.371 
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Table.1 shows an unusual residual value 
(−2.597) in 1992, which has a Studentized 
absolute value residual greater than 2.0. 
Studentized residuals measure how many 
standard deviations each observed value deviates 
from a model fitted using all of the data except 
that observation.In this case, there is one 
Studentized residual greater than 2.0, but none 
greater than 3.0. The step by step procedure is as 
follows: 
 
1. First, the appropriate length of interval l is 

computed using distribution based length 
procedure to obtain an interval length of      
l  = 2000. 

 
2. The calculated number of intervals, 

2000

2000048000
m

−=  = 14. 

 
3. Define the universe of discourse or universal 

set, U = [20000, 48000], and partition U into 
14 equal length of intervals, ui, i=1, 2,…, 14, 
u1 =[20000, 22000), u2 =[22000, 24000),     
u3 =[24000, 26000),..., u13 =[44000, 46000), 
and u14= [46000, 48000]. 

 
4. It is assumed that the linguistic variable of 

the historical data can take fuzzy values are 
as follows: A1 (very big decrease), A2 (big 
decrease), A13 (big increase) and A14 (very 
big increase). Then, for the given intervals 
ui, i = 1, 2….14, each ui belongs to a 
particular Aj, j=1,2,…,14 and is expressed 
by the real value within the range [0,1]. The 
complete sets of relationship are shown in 
Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. The fuzzy relationships are combined into 
fuzzy logical relations starting from 
identical left-hand sides. Then Ri,i=1, 2…22 
is calculated as a sum of logical 
relationships in each group. Here, the 
relation matrix Ri is converted into a 
transition probability matrix Pm is shown in 
Figure 1. 

 
6. Table 3 illustrates the defuzzified forecast 

outputs using transition state probability 
membership function. The outputs are 
multiplied with corresponding mid values of 
the fuzzy interval over the period of years 
and its overall summation leads the 
predicted values. For example, year 2004 is 
forecasted using fuzzified values of 2003 
.The midpoints of the intervals u1,u2 ,..., u14 
are multiplied into corresponding 
defuzzified probability values and its overall 
summation. The actual and predicted value 
of number of accidents in India is shown in 
Figure 2. 

 
7. Finally, the average forecasting error is 

obtained using actual and forecasted values, 
when compared with the other existing 
methods. The result is shown in Table 3. 

 
Conclusion 

This article is mainly focused on improving the 
forecasting accuracy by removing the identified 
outlier in the data set. This proposed method 
first predicts the fuzzy time series using 
transition probability vector membership 
functions, then, the average forecasting error is 
calculated based on after removing the outliers 
in the data. The experimental results show that 
the average forecasting error is 2.86% for the 
historical data. After removing the outlier, the 
method produces 2.60% of average forecasting 
error. Thereby, the proposed method improves 
average forecasting accuracy by approximately 
9%.The results indicate that the proposed 
method is more appropriate compared to other 
existing methods. It is supported by numerical 
and graphical representations. 
 
 
 
 

A1→ A1 A1 → A2 A2→ A3 

A3 → A4 A4 → A5 A5 → A5 

A5 → A4 A4 → A5 A5 → A7 

A7→ A8 A8 → A9 A9 → A9 

A9→ A10 A10 → A10 A10 → A10 

A10→ A11 A11 → A11 A11 → A11 

A11 → A12 A12 → A12 A12 → A14 

A14 → A14 A13 → A14 A14 → A14 
A13 → A14   
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Figure 1: Transition Probability Matrix from Relation Matrix 
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0.670.330.000.000.000.000.000.000.000.000.000.000.000.00

0.470.310.150.080.000.000.000.000.000.000.000.000.000.00

0.190.200.290.250.070.000.000.000.000.000.000.000.000.00

0.060.100.250.340.200.050.000.000.000.000.000.000.000.00

0.000.020.140.320.340.160.020.000.000.000.000.000.000.00

0.000.000.030.190.380.310.090.000.000.000.000.000.000.00

0.000.000.000.050.250.400.250.050.000.000.000.000.000.00

0.000.000.000.000.080.330.420.170.000.000.000.000.000.00

0.000.000.000.000.000.060.190.190.190.250.130.000.000.00

0.000.000.000.000.000.000.070.140.250.360.180.000.000.00

0.000.000.000.000.000.000.040.080.210.380.250.040.000.00

0.000.000.000.000.000.000.000.000.060.250.380.250.060.00

0.000.000.000.000.000.000.000.000.000.040.180.280.280.22

0.000.000.000.000.000.000.000.000.000.000.040.180.390.39

 

Table 3: Forecasting Number of Accidents from 1985-2007 
 

Year Actual 
Fuzzy Output Vectors 

Predicted 
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 

1985 20700                

1986 21550 0.33 0.35 0.22 0.09 0.01 0 0 0 0 0 0 0 0 0 23202 

1987 23400 0.33 0.35 0.22 0.09 0.01 0 0 0 0 0 0 0 0 0 23202 

1988 24670 0.20 0.26 0.25 0.19 0.08 0.02 0 0 0 0 0 0 0 0 24488 

1989 27000 0.05 0.10 0.21 0.29 0.23 0.08 0.02 0.01 0 0 0 0 0 0 26858 

1990 28260 0 0.02 0.08 0.26 0.34 0.18 0.08 0.04 0 0 0 0 0 0 28952 

1991 29340 0 0 0.01 0.18 0.33 0.22 0.14 0.09 0.02 0 0 0 0 0 30280 

1993 28010 0 0 0.01 0.18 0.33 0.22 0.14 0.09 0.02 0 0 0 0 0 30280 

1994 32040 0 0 0.01 0.18 0.33 0.22 0.14 0.09 0.02 0 0 0 0 0 30280 

1995 34890 0 0 0 0.03 0.06 0.05 0.14 0.32 0.28 0.10 0.01 0 0 0 34958 

1996 37120 0 0 0 0 0 0 0.07 0.25 0.36 0.24 0.07 0.01 0 0 37042 

1997 37370 0 0 0 0 0 0 0.01 0.12 0.30 0.34 0.19 0.05 0.01 0 38477 

1998 38500 0 0 0 0 0 0 0.01 0.12 0.30 0.34 0.19 0.05 0.01 0 38477 

1999 38640 0 0 0 0 0 0 0 0.03 0.17 0.32 0.29 0.14 0.04 0.02 39996 

2000 39140 0 0 0 0 0 0 0 0.03 0.17 0.32 0.29 0.14 0.04 0.02 39996 

2001 40560 0 0 0 0 0 0 0 0.03 0.17 0.32 0.29 0.14 0.04 0.02 39996 

2002 40750 0 0 0 0 0 0 0 0.01 0.06 0.21 0.31 0.23 0.11 0.08 41656 

2003 40670 0 0 0 0 0 0 0 0.01 0.06 0.21 0.31 0.23 0.11 0.08 41656 

2004 42990 0 0 0 0 0 0 0 0.01 0.06 0.21 0.31 0.23 0.11 0.08 41656 

2005 43920 0 0 0 0 0 0 0 0 0.01 0.09 0.23 0.24 0.20 0.23 43441 

2006 46090 0 0 0 0 0 0 0 0 0.01 0.09 0.23 0.24 0.20 0.23 43441 

2007 47920 0 0 0 0 0 0 0 0 0 0 0.02 0.05 0.32 0.60 46001 
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Identification of Optimal Autoregressive Integrated Moving Average Model 
on Temperature Data 
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Autoregressive Integrated Moving Average (ARIMA) processes of various orders are presented to 
identify an optimal model from a class of models. Parameters of the models are estimated using an 
Ordinary Least Square (OLS) approach. ARIMA (p, d, q) is formulated for maximum daily temperature 
data in Ondo and Zaira from January 1995 to November 2005. The choice of ARIMA models of orders p 
and q is intended to retain persistence in a natural process. To determine the performance of models, 
Normalized Bayesian Information Criterion is adopted. The ARIMA (1, 1, 1) is adequate for modeling 
maximum daily temperature in Ondo and Zaira; model parameters are estimated and redundant variables 
are removed. Causality and the invertibility behavior of some optimal models are also presented. 
 
Key words: Autoregressive Integrated Moving Average, optimal, causality, invertibility, redundancy. 
 
 

Introduction 
A time series of T successive observations   is 
regarded as a sample from an infinite population 
of a time-series that could have been generated 
by the stochastic process under study. A 
powerful way to extract useful information on 
the underlying process - solely on the basis of 
the past behavior of the time series itself - is the 
univariate Box-Jenkins approach. Although 
originally developed for forecasting purposes 
(Box & Jenkins, 1976; Nelson, 1976), Box-
Jenkins models are useful tools for describing 
the time dependent structure of stationary and 
non-stationary time series. Box-Jenkins models 
for stationary time series, or ARIMA models, 
have been applied in many areas of research, for 
example in tree-ring chronologies (Meko, 1981), 
in the evolution of the unemployment rate 
(Dobre & Alexandru, 2008), and in the analysis 
of UK Pounds/US Dollar exchange rate (Shittu 
and Yaya, 2009). 
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Models are initialized using observed 

data. As proposed by Lorenz (1963), long range 
forecasts - those made at a range of two weeks 
or more - are impossible to definitively predict 
the state of the atmosphere owing to the chaotic 
nature of the mechanism involved. Forecast 
models are used to determine future conditions. 
However, in real life research and practice, 
patterns of data are unclear and individual 
observations involve considerable error; thus, it 
is necessary to not only uncover the hidden 
patterns in the data but also to forecast. The 
ARIMA methodology (Box & Jenkins, 1976) 
provides a method to accomplish these tasks. 

Considering estimates of times series 
model parameters, Pham-Dinh (1978) computed 
the exact log likelihood of a time series model 
and also proposed and justified an asymptotic 
approximation of the model. Bobba, et al (2006) 
formulated a stochastic model simulating trends 
in hydrological and meteorological variables: 
Their choice of ARIMA model of orders p and q 
was intended to retain any persistence in the 
natural processes and they claimed that an 
ARIMA (1, 0, 1) model was adequate for 
modeling three variables of temperature, 
precipitation and stream flow on a seasonal basis 
in the North East Pond River Watershed. Ojo 
(2009) compared subsets of autoregressive 
integrated moving average models to full 
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autoregressive integrated moving average 
models. The parameters of these models were 
estimated and the statistical properties of the 
derived estimates were investigated. In his 
study, he showed that subset autoregressive 
integrated moving average models performed 
better than full autoregressive integrated moving 
average models. Makinde (2011) investigated 
the behavioural pattern of invertibility parameter 

 of the ARIMA (p, d, q) model for various p 
and d. He showed that behaviour of  depends 
on the order of autoregressive part (p), the order 
of integrated part (d), positive and negative 
values of moving average parameter ( ). 
Similarly, Fasoranbaku & Makinde (2011) 
investigated causality parameter of ARMA 
model. From their findings, It is deduced that the 
behaviour of causality parameter  depends on 
positive and negative values of autoregressive 
parameter  and moving average parameter . 

In this study, we shall evaluate 
parameters of ARIMA(p,d,q) for various values 
of p and d using an ordinary least squares (OLS) 
method and Crammer’s rule; identify optimal 
model in a class of ARIMA models for 
temperature profile of two cities in Nigeria and 
check for redundant variables in the models 
using a t-test. 
 
Stationarity and Test of Stationarity 

A process is said to be strictly stationary 
if, for any value of 1 2, ,..., ,nj  j   j  the joint 

distribution of  1 2( , , ,..., )+ + +t t t t jy  y  y   y  depends 

only on the interval separating the dates 

( )1 2, ,..., ,nj  j   j   and not on the date (t) itself. If a 

process is strictly stationary with finite second 
moments, then it must be covariance stationary 
(Hamilton, 1994). 

In short, if a time series is stationary, its 
mean, variance, and autocovariance (at various 
lags) remain the same regardless of the point at 
which they are measured; that is, they are time 
invariant. There are several tests of stationarity; 
which include: (1) graphical analysis, (2) a 
correlogram, and (3) unit root test, e.t.c. For a 
stationary time series, a correlogram tapers 
quickly; whereas for non-stationary time series it 
dies off gradually. If autocorrelations start high 
and decline slowly, then the series is 

nonstationary and should be differenced. 
Similarly, an ARIMA process is said to be 
stationary if spikes decay to zero after a few 
lags. In this study, correlogram use was adopted 
to test for stationarity of temperature data. 
 
Test for Model Adequacy 

To test the adequacy of the model, the 
Ljung-Box (1978) statistic will be used; this is a 
statistical test for determining whether any of a 
group of autocorrelations of a time series is 
different from zero. As opposed to testing 
randomness at each distinct lag, it tests the 
overall randomness based on a number of lags, 
and is therefore a portmanteau test. The Ljung-
Box Statistic is: 
 

1

( ) ( 2)ˆ .
ˆ

=

= +
−

h
k

k

rQ r n n
n k

 

 
Specification of ARIMA in Terms of A Lag 
Operator 

When the models are specified in terms 
of the lag operator L, the AR (p) model is given 
by 

( )
1

1 ,
=

 
= − φ = φ 
 


p

i
t i t t

i

ε L y L y  

where 

( )
1

1 ,
=

φ = − φ
p

i
i

i

L L  

 
and the MA(q) model is given by 
 

( )
1

1 ,
=

 
= + = 
 


p

i
t i t t

i

y θ L ε θ L ε  

where 

( )
1

1 .
=

= +
p

i
i

i

θ L θ L  

 
ARIMA (p,0, q) is 
 

1 1

1 1
= =

   
− φ = +   

   
 

p p
i i

i t i t
i i

L y θ L ε      (1) 
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or more concisely: 
 

( ) ( ) ,φ =t tL y θ L ε  

 

which implies ( ) ,=t ty ψ L ε  where  

 

( ) ( )
( )

2
1 2

2
1 2

1
.

1

=
φ

+ + +…+
=

− φ − φ −…− φ

p
p

p
p

θ L
ψ L   

L

θ L θ L  θ L
L L  L

     (2) 

 
The ARIMA process is stationary if 

This occurs if the series ( )ψ Z  converges for 

every Z with 1≤Z . Because ( )ψ Z  is a 

rational function, the series converges for every 

Z with 1≤Z  if the complex zeros of ( )Zφ  lie 

outside the unit circle. If a process is stationary, 

then because ( )t ty ,L= ψ ε  and the expected 

values of tε  are all 0, the expected value of ty  

is also 0. 
 
Causality of Some ARIMA Processes 

Some ARIMA processes of various 
orders are shown in causal form to provide a 
useful way of generating a random sequence. 
That is, a linear process ty , as a linear 

combination of white noise variates tε . For an 

ARIMA (1, 0, 1) process, 

1 1− −= + φ + +t t t ty c y ε θε  implies that 

( ) ( )1 1

11 1 ( )
− −

−= − φ + − φ +t t ty L c L ε θε   which 

gives 

( )
1

1

( )
1

,
∞

−
−

=

= + + φ + φ
− φ  i i

t t t i
i

cy ε θ ε   

where 1,2,= …i    with ( ) ( )1
= =

− φt
cE y μ ; 

this holds only if 1.φ ≠  
For an ARIMA (1, 0, 2) process, 

1 1 1 2 2− − −= + φ + + +t t t t ty c y ε θ ε θ ε  which gives 

( )
1 2

1 2
1

,( )
1

∞
− −

−
=

= + + φ + φ + φ
− φ  i i i

t t t i
i

cy ε θ θ ε  

( ) 01
,

∞

−
=

= +
− φ t i t i

i

cy ψ ε                 (3) 

 
where 0 1,=ψ  1 = φ +ψ θ  and 

1 2
1 2 ,− −= φ + φ + φj j j

jψ θ θ 2,3, 4,...=j  ; this is 

valid if 1.φ ≠  
Fasoranbaku & Makinde (2011) has shown that 
the causality parameter  is skewed to the 
right and sinusoidal for positive and 
negative values of  respectively.  Absolute 
value of causality parameter  of ARIMA 
(1, 0, q) increases as the value of q increases 
for positive values of . The behavioural 
pattern of the causality parameters for  
and  is well studied in Fasoranbaku & 
Makinde (2011). 
 
Representation ARIMA Models in Inverted 
Form 

An ARIMA (p, d, q) process is said to 
be invertible if the series converges in mean to 

 as . This happens when  lie 
outside the unit circle. An ARIMA (p, d, q) 
process is invertible if the absolute value of the 
parameters of ARIMA (p, d, q) model satisfy 

 for . 
 
ARIMA (1, 0, 1) 
 

1 1,− −= + φ + +t t t ty c y ε θε              (4) 

( ) ( ) 1

1

,1 ( )
1

∞
−

−
=

= − + + − + φ
+  i i i

t t t i
i

c
ε y θ θ y

θ
 

( )
1 1

1

( 1) [ ]
1

,
∞

+ −
−

=

= + − φ + +
+  i i i

t t i t
i

cy θ θ y  ε
θ

 

 

( ) 11
,

∞

−
=

= + +
+ t i t i t

i

cy π y  ε
θ

             (5) 

 

where 1 1( 1) , 1, 2,3,+ − = − φ + = … 
i i i

iπ  θ θ  i ; 

this holds if 1.≠ −θ   
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ARIMA (1, 1, 1) 
 

 

 
 

 
 
ARIMA (2, 0, 1) 
 

1 1 2 2 1,− − −= + φ + φ + +t t t t ty c y y ε θε           (8) 

 

( ) ( )1 1

1 1
1

2

1 2
2

1

( 1) [

( 1) ]
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∞
+ −
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
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c
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y θ θ
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( ) 11
,

∞

−
=

= + +
+ t i t i t

i

cy π y  ε
θ

          (9) 

where 1 1= φ +π θ  and  

 
1 1 1 2

1 2( 1) [ ( 1) ]+ − + −= − + φ + − φj j j j j
iπ  θ θ θ , 

 
2,3, 4,...=j  ; this holds if 1.≠ −θ  

Makinde (2011) has shown that invertibility 
parameter  of ARIMA (p, d, 1) for various 
integer values of d are sinusoidal, the 
absolute value of the invertibility parameter, 

 increases as d increases for positive 
values of  and the lower the integer value 
of d, the faster  converges to zero. The 
behavioural pattern of the invertibility 
parameter is well discussed in Makinde (2011). 
 
Evaluation of ARIMA (p, d, q)  
ARIMA(1, 0, 0) 
 

1−= + φ +t t ty c y ε                     (10) 

 

If c = 0, then 2
1 1

1 1

0,− −
= =

− φ = 
T T

t t t
t t

y y y which 

implies that 

11

2
11

ˆ .
−=

−=

φ = 


T
t tt

T
tt

y y

y
                      (11) 

 
If c ≠ 0, equation (8) gives 
 

1
1 1

2
1 1 1

1 1 1

−
= =

− − −
= = =

   
       =    φ 
   
   

 
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T T

t t
t t

T T T

t t t t
t t t

n y y
c

y y y y
 

 
Using Crammer’s rule to solve for c and φ  
results in 
 

1 2  and  ̂ˆ
∇ ∇= φ =
∇ ∇

c                    (12) 

where 
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2
1 1

1 1

 ,− −
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T T
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2 1 1
1 1 1
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ARIMA (1, 1, 0) 
 

1Δ Δ −= + +t t ty c yφ ε              (13) 

 
when 0,=c  1Δ Δ −= +t t ty yφ ε  which gives  

1 1 2( )− − −− = − +t t t t ty y y yφ ε  
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When 0,≠c  equation (11) gives 
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Δ Δ

Δ Δ Δ Δ

−
= =

− − −
= = =

   
       =     
   
   

 

  

T T

t t
t t

T T T

t t t t
t t t

n y y
c

y y y y
φ

 

 
Using Crammer’s rule, results in 
 

1 2  and  ˆˆ
∇ ∇= =
∇ ∇

c φ                (15) 

where 
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ARIMA (2, 0, 0) 
 

1 1 2 2− −= + + +t t t ty c y yφ φ ε           (16) 

 
If 0,=c then 
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If 0,≠c  then 
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Using Crammer’s rule, 1 2
1,   

∇ ∇= =
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c φ  and 
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ARIMA (2, 1, 0) 
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ARIMA (P, 0, 0) 
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where A is ×p p  matrix and Ψ  is a column 

matrix, that is ( )'
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The expression for each parameter 

, 1, 2, , = …i i pφ  can thus be determined using 

Crammer’s rule or the Gauss-Schidel method. 
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Given 0,≠c ,=A BΨ  where 
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When, 0=c  (see Formula 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the estimate of parameters in 
ARIMA (p, 0, 0) and (p, 1, 0), it is deduced that 
every term −t jy  in ARIMA (p, 0, 0) is replaced 

by 1− − −−t j t jy y  in ARIMA (p, 1, 0). Also, Ψ  is 

a p  column matrix for 0,=c and Ψ  is a 

( )1+p  column matrix for 0.≠c  

 
Results 

Daily temperature data for the maximum daily 
temperature of Ondo, Nigeria and Zaira, Nigeria 
from January 1995 to November 2005 are used 
in this study. Stationarity of a series is 
determined by the use of a correlogram for 
describing both autocorrelation and partial 
autocorrelation functions for the series. The 
series is non-stationary, it is therefore 
differenced once (i.e., 1=d ) to ensure 
stationarity. Figures 1 and 2 show the 
correlograms for the series after differencing 
each once (stationary at 1=d ). Also, the 
residual terms (white noise process or 
innovation series (Bobba, et al., 2006)) are 
independently and identically distributed 
because the autocorrelation function at various 
lags hover around zero (see Figure 1) (Gujarati, 
2004). Similarly, Figures 3a and 3b show that 
residuals are normally distributed, thus, 

2~  (0,  ).t iid Nε σ  
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Figure 1: Correlogram after Difference for Ondo, Nigeria 

 
 
 
 

Figure 2: Correlogram after Difference for Zaira, Nigeria 
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Figure 3(a): Histogram of Residuals for Ondo, Nigeria 
 

 
 
 

Figure 3(b): Histogram of Residuals for Zaira, Nigeria 
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Table 1: Various ARIMA Model Fits with Normalized BIC Values 
 

Model 
Selection 
Criteria 

Normalized BIC Values for Model Fit 

ARIMA 
(0,1,0) 

ARIMA 
(0,1,1) 

ARIMA 
(1,1,0) 

ARIMA 
(1,1,1) 

ARIMA 
(1,1,2) 

ARIMA 
(2,1,0) 

ARIMA 
(2,1,1) 

ARIMA 
(2,1,2) 

Ondo 1.354 0.917 1.144 0.915 0.917 1.049 0.917 0.918 

Zaira 0.62 0.558 0.578 0.515 0.518 0.556 0.518 0.52 

 
 
 

Table 2: Adequacy Test Results of the Model 
 

Model Statistics 

City 
Number of 
Predictors 

Model Fit Statistics: 
Stationary R-Squared 

Ljung-Box Q(18) Number of 
Outliers Statistics DF Sig. 

Ondo 0 0.105 28.999 16 .024 0 

Zaira 0 0.105 28.999 16 .024 0 

 
 
 

Table 3: Parameter Estimates 
 

   Ondo, Nigeria Zaira, Nigeria 

   Estimate SE t Sig. Estimate SE t Sig. 

Maximum 
Temperature 

Constant 0 0.005 0.052 0.959 0.00001 0.008 0.055 0.956

AR Φ 0.087 0.02 4.391 0 0.55 0.028 19.724 0 

Difference 1 
   

1 
   

MA θ 0.833 0.011 75.779 0 0.836 0.018 45.597 0 
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Using a normalized BIC as the model 
selection criterion (that is, to test for goodness of 
fit) for various values of p and q (see Table 1), 
ARIMA (1, 1, 1) has the least normalized BIC 
value, which equals 0.915 for Ondo and 0.515 
for Zaira. Hence, the ARIMA (1, 1, 1) is 
considered the best model for the maximum 
daily temperature data. for both Ondo and Zaira.  
To test for the adequacy of the model, the 
Ljung-Box Statistic is used to test the 
randomness of residuals. The p-values of the 
Ljung-Box Statistic at various lags (in ACF and 
PACF) are less than 0.05; this shows that the 
data are random. The Ljung-Box Statistic for the 
model is 28.999 with a p-value = 0.024, this 
establishes that the model is adequate (see Table 
2). 

Table 3 presents the estimates of 
parameters of the ARIMA(1, 1, 1) model for 
Ondo and Zaira. The model for Ondo is: 
 

1 10.00001 0.087 0 3 ..8 6− −= + + +t t t ty y ε ε  

 
that is,  0.00001=c , 0.550,=φ  and 

0.836=θ  (see Table 5). Also, in testing for 
significance of the parameter estimates, Table 3 
shows the t-statistics for the parameter estimates 
of the model. It is shown that a c with 0.052=t  
and a p-value = 0.959 is not significantly 
different from zero; thus, c is redundant. 

To improve the model result, c was 
removed because it is redundant. This removal 
had no effect on the estimates of other 
parameters or on the Ljung-Box value of the 
model; rather it results in a smaller normalized 
BIC value (=0.912). Hence, the optimal model 
for maximum temperature of Ondo is: 
 

1 1.0.087 0.833− −= + +t t t ty y ε ε  

 
The invertibility behavior of the optimal model 

for Ondo, Nigeria is 
0

, 
∞

−
=

=t i t i
i

yε π  because c is 

redundant, where 
 
 

( )
( ) 1 2

1,                                                     0

1.920 ,                                       1

1 0.920(0.833 0.833 ) ,  2, 3, 4, − −

 == − =


 − + = …  

i

i i i

i
i

i

π

 
The model for Zaira is 

 

1 10.00001 0.550 0 3 ,.8 6− −= + + +t t t ty y ε ε  

 
that is, 0.00001,=c  0.550,=φ  and 

0.836=θ  (see Table 3). Also, in testing for 
significance of the estimates of parameters, 
results show that a c with 0.055=t  and a p-
value = 0.956 is not significantly different from 
zero (see Table 3). Hence, c is redundant. 

To improve the model result, c was 
removed; this had no effect on the estimates of 
other parameters or on the Ljung-Box value of 
the model, instead, it results in a smaller 
normalized BIC value (=0.512). Hence, the 
optimal model for the maximum temperature of 
Ondo is: 

 

1 1.0.550 0.836− −= + +t t t ty y ε ε  

 
The invertibility behavior of the optimal model 

for Zaira is 
0

, 
∞

−
=

=t i t i
i

yε π  because c is 

redundant, where 

( )
( ) 1 2

1,                                                     0

2.386 ,                                       1 

1 1.386(0.836 0.836 ) ,  2, 3, 4, − −

 == − =


 − + = …  

i

i i i

i
i

i

π

 
Conclusion 

Autoregressive Integrated Moving Average 
(ARIMA) processes of various orders are 
presented with the goal of identifying an optimal 
model from a class of models. ARIMA (p, d, q) 
model is formulated for daily maximum 
temperature data of Ondo, Nigeria and Zaira, 
Nigeria from 1995 to 2005. A normalized 
Bayesian Information Criteria (BIC) is used to 
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measure performance of the models. ARIMA (1, 
1, 1) is optimal and adequate for modeling the 
daily maximum temperatures because it has the 
least normalized BIC, parameters of the model 
are estimated and the redundant variable is 
removed. The behavioral pattern of the optimal 
model for each of the cities is reported. 
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LQ-Moments for Regional Flood Frequency Analysis: 
A Case Study for the North-Bank Region of the Brahmaputra River, India 

 
Abhijit Bhuyan Munindra Borah 

Tezpur University, 
Napaam, India 

 
 
The LQ-moment proposed by Mudholkar, et al. (1998) is used for regional flood frequency analysis of the 
North-Bank region of the river Brahmaputra, India. Five probability distributions are used for the LQ-
moment: generalized extreme value (GEV), generalized logistic (GLO) and generalized Pareto (GPA), 
lognormal (LN3) and Pearson Type III (PE3). The same regional frequency analysis procedure proposed 
by Hosking (1990) for the L-moment is used for the LQ-moment. Based on the LQ-moment ratio diagram 

and dist
iZ -statistic criteria, the PE3 distribution is identified as the robust distribution for the study area. 

For estimation of floods of various return periods for both gauged and ungauged catchments of the study 
area, regional flood frequency relationships are developed using the LQ-moment based PE3 distribution. 
 
Key words: Regional flood frequency analysis, PE3 distribution, LQ-moment ratio diagram. 
 
 

Introduction 
Hosking (1990) introduced the concept of L-
moment parameter estimation methods for 
regional frequency analysis. The performance of 
a particular model depends on the accuracy of 
the estimation of the parameters. Many 
parameter estimation methods are described in 
statistical literature. The unbiased estimation of 
parameters depends mainly on the parameter 
estimation method used and the data availability. 
Regional frequency analysis overcomes the 
difficulties arising from at-site frequency 
analysis. In many countries, the L-moments 
procedure for regional flood frequency analysis 
has been used and various researches are 
ongoing. In India, L-moments based regional 
flood frequency analysis was conducted by 
Paradia, et al. (1998) and Kumar et al. (1999, 
2003 and 2005) to develop a flood frequency  
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relationship for both gauged and ungauged 
catchments for different regions. Additionally, 
some recent application of regional flood 
frequency analysis include: Atiem and 
Harmancioglu (2006), Modarres (2007), Saf 
(2008) and Hussain, et al. (2008). 

Kumar, et.al. (2005) used L-moments to 
develop a regional flood frequency relationship 
for both gauged and ungauged catchments of the 
North Brahmaputra region of India. Mudholkar, 
et al. (1998) introduced the concept of LQ-
moment analogs of L-moments of Hosking 
(1990). LQ-moments are linear functions of the 
medians, trimeans, or Gastwirth’s location 
estimators of the distributions of certain order 
statistics and reduce to weighted averages for 
certain population quantiles. LQ-moments are 
often easier to evaluate and estimate than L-
moments and, in general, behave similarly to the 
L-moments when the latter exist. (Modhulkar, et 
al., 1998). Modhulkar, et al. (1998) used an LQ-
moment in the context of generalized extreme 
value distribution for flood frequency analysis of 
the river Blackstote and Feather. Zin Wan, et al. 
(2008) used LQ-moments to determine the best 
fitting probability distribution for annual 
maximum rainfall in Peninsular Malaysia. 

Various studies have found that LQ-
moments are widely used to study at-site flood 
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frequency analysis and at-site rainfall frequency 
analysis in different countries of the world. But 
in the case of flood frequency analysis, data 
availability is difficult for estimating floods for 
desired return periods. Therefore, this study uses 
regional frequency analysis as an alternative to 
at-site frequency analysis based on LQ-
moments. The linear quantile estimator as a 
sample quantile estimator and trimean functional 
as quick estimator are also used in this study of 
regional flood frequency analysis. 

Five probability distributions that are 
generally used for regional flood frequency 
analysis by using L-moments are used in this 
study: generalized extreme value (GEV), 
generalized Pareto (GPA), generalized normal 
(GNO), generalized logistic (GLO) and Pearson 
Type III (PE3). This study employs the LQ-
moment as a parameter estimation method for 
regional flood frequency analysis of nine sites in 
the North-Bank region of the Brahmaputra River 
in India. The same procedure for regional 
frequency analysis for L-moments proposed by 
Hosking (1990) is used for LQ-moment. The 
relationship between LQ-skewness and LQ-
kurtosis has been developed for each of the 
probability distributions used for this study. 
 
LQ-Moments 

Let nXXX ,...,, 21  be a sample from a 

continuous distribution function )(⋅XF  with 

quantile function )()( 1 uFuQ XX
−= . If 

nnnn XXX ::2:1 .... ≤≤≤  denote the order 

statistics, then the rth LQ-moments rζ  of X  
proposed by Mudholkar, et al. (1998) are given 
by 
 

1
1
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where 0 1 / 2,  0 1 / 2pα≤ ≤ ≤ ≤ , and 
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The linear combination ατ ,p  is a quick 

measure of the location of the sampling 
distribution of order statistic rkrX :− . With 

appropriate combinations of α  and p , 

estimators for )(, ⋅ατ p  can be found which are 

functions of commonly used estimators such as 
median, trimean and Gastwirth. This study 
considers the trimean-based estimator, defined 
as: 
 

: : :
/ 4 / 2 / 4.

1 1 3

4 2 4r k r r k r r k rX X XQ Q Q
− − −

+ +     
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     

 
The first four LQ-moments of the 

random variable X  are given by: 
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The LQ-CV, LQ-skewness and LQ-kurtosis are 
defined by 
 

12 /ςςη = , 233 /ζζη =  

and 

4 4 2/ .η ζ ζ=  

 

If (.)(.) 1−= XX FQ  is the quantile function of the 
random variable X then the quick location 
measure (2) defined by Modhulkar, et al. (1998) 
is 
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where )(1
: α−

− rkrB  denotes the corresponding α th 

quantile of a beta random variable with 
parameters kr −  and 1+k . 
 
Sample Estimates of LQ-Moments 

Modhular, et al. (1998) defines sample 
estimates of LQ-moments as follows. Let 

nnnn XXX ::2:1 ... ≤≤≤  denote the sample 

order statistics then the quantile estimator of 
)(uQX  is given by 

 

[ ]: [ ] 1:
ˆ ( ) (1 ) ,X n u n n u nQ u X Xε ε′ ′ += − +  

 
where ][ unun ′−′=ε  and 1+=′ nn . Thus for 
samples of size n, the rth sample LQ-moment is 
given by 
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where )(ˆ :, rkrp X −ατ , the quick estimator of the 

location for the distribution of rkrX :−  in a 

random sample of size r . 
The first four sample LQ-moments are 

given by 
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where, the quick estimator )(ˆ :, rkrp X −ατ  of the 

location of the order statistic rkrX :−  is given by 
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1
:0 1 / 2,  0 1 / 2, ( )r k rp Bα α−

−≤ ≤ ≤ ≤ , is the 

α th quantile of beta random variable with 

parameters kr −  and 1+k , and (.)ˆ
XQ  denotes 

the linear interpolation estimator shown above. 
 
Probability Distributions and Parameters Based 
on Trimean Function: Generalized Extreme 
Value Distribution (Modhulkar, et al., 1998) 

The probability distribution function 
(PDF) for the generalized extreme value 
distribution is defined as: 
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Its quantile function is given by 
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The shape parameter k  can be estimated with 
good accuracy by using the approximation 
equation 
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The estimates of the parameters ξ  and α  are 
then given by: 
 

1 0 0 0[ (1 / 4) / 4 (1 / 2) / 2 (3 / 4) / 4]Q Q Qξ ς α= − + +
 
and 
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Probability Distributions and Parameters Based 
on Trimean Function: Generalized Pareto 
Distribution 

The PDF of the generalized Pareto 
distribution is: 
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α α

−
 − = −     

 

 
Its quantile function is given by 
 

)()( 0 uQuQ αξ +=  

where 
 

0 ( ) [1 (1 ) ] / , 0

log(1 ),   0.

kQ u u k k
u k

= − − ≠
= − − =

 

 
The shape parameter k  can be estimated with 
good accuracy by using the approximation 
equation 
 

2
3 3

3 4
3 3

0.9998 3.4965 1.4681

     0.6243 0.1535

k η η
η η

= − +

− +
 

 
The estimates of the parameters ξ  and α  are 
then given by 
 

]4/)4/3(2/)2/1(4/)4/1([ 0001 QQQ ++−= αςξ  

 

0 0
2

0 0

2 (0.707) 2 (0.293)
8 / .

(0.866) (0.134)

Q Q
Q Q

α ς
− 

=  + − 
 

 
 
 

Probability Distributions and Parameters Based 
on Trimean Function: Generalized Logistic 
Distributions 

The PDF of the generalized logistic 
distribution is given by Rao and Hamed (2000) 
as 
 

21 1
1

1
( ) 1 1 1 .

k kx xf x k kξ ξ
α α α

−
−  

   − −    = − + −               
 
Its quantile function is given by 
 

)()( 0 uQuQ αξ +=  

where 
 

0 ( ) [1 {(1 ) / } ] / , 0

log{(1 ) / }, 0.

kQ u u u k k
u u k

= − − ≠
= − − =

 

 
The shape parameter k  can be estimated with 
good accuracy by using the approximation 
equation 
 

3 5
3 3 31.3328 0.0286 0.0166 .k η η η= − − +  

 
The estimates of the parameters ξ  and α  are 
then given by 
 

]4/)4/3(2/)2/1(4/)4/1([ 0001 QQQ ++−= αςξ  

 
and 

0 0
2

0 0

2 (0.707) 2 (0.293)
8 / .

(0.866) (0.134)

Q Q
Q Q

α ς
− 

=  + − 
 

 
Probability Distributions and Parameters Based 
on Trimean Function: Generalized Lognormal 
Distribution 

The PDF of the generalized lognormal 
distribution is 
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21 1
log{1 ( ) / } [ log{1 ( ) / )]

2

( )

exp

2
  .

k x k x
k

f x

ξ α ξ α

α π

− − − − − − −

=

 
Its cumulative distribution function is 
 





 −−Φ=

σ
μς }){log(

)(
xxF  

 
where )(⋅Φ  is the cumulative distribution 
function of the standard normal distribution, and 
its quantile function is given by 
 

)()exp()( 0 uQuQ μς +=  

where 

)](exp[)( 1
0 uuQ −Φ= σ  

 

and (.)1−Φ  has a standard normal distribution 

with mean zero and unit variance. The σ  can be 
approximated by the 
 

2 3
3 3 3

4 5
3 3

2.3284 0.0002 0.1220

      0.0009 0.0332 .

σ η η η
η η

= − +

+ −
 

 
Estimates of the parameters ς  and )exp(μ  are 
then given by 
 

1 0 0 0

1 1 3
exp( )[ / 4 / 2 / 4]

4 2 4
Q Q Q

ς

ς μ

=
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0 0
2
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Q Q
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− 

=  + − 
 

 
The parameters α,k  and ξ  can be obtained 
from the relation given below after determining 
the parameter values μς ,  and σ  for the 
standard cumulative lognormal distribution. The 
relations between the parameter are 

,k σ= − eμα σ=  and .eμξ ς= +  
 

Probability Distributions and Parameters Based 
on Trimean Function: Pearson Type III 
Distribution (PE3) 

The PDF of the Pearson Type III 
distribution is given by 
 

1 ( ) /( )
( ) .

( )

xx ef x
β ξ β

β
ξ
α βΓ

− − −−=  

 
The cumulative distribution function is given as 
 

1 ( ) /1
( ) ( ) ,
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x
xF x x e dxβ ξ β

β
ξ

ξ
α βΓ
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and the quantile function can be given as 
 

)()( 0 uQuQ αξ +=  

where 
 

3

1
0

1 1
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9 9
Q u uβ

β β
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The location ( μ ), scale (σ ) and shape ( k ) can 

be represented in terms of α , β  and ξ  as: 

2

4

k
=β , kσα

2

1=  and 2 / .kξ μ σ= −  

The regression equation developed for 
estimating the shape parameter k  in terms of 
LQ-skewness ( 3η ) is now given as 

 
2 3 4

3 3 3 36.9839 0.0001 6.6634 0.0035 ,k η η η η= + − −
 
and the estimates of the parameters ξ  and α  
are then given by 
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and 
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Relationship between LQ-Skewness and LQ-
Kurtosis based on Trimean Functionals 

The relationship between 3η  and 4η  are 

developed for the probability distribution used in 
this study are given as follows: 
 

2
4 3 3

3 4 5
3 3 3

6 7
3 3

0.1080 0.1130 0.8178

          0.0314 0.0103 0.0015

          0.0069 0.0037

GEVη η η
η η η
η η

= + +

− − −

+ −
 

 
2

4 3

4 6
3 3

0.1585 0.8190

          0.0117 0.0045

GLOη η
η η

= +

− −
 

 
2

4 3 3

3 4 5
3 3 3

6 7
3 3

0.0019 0.2228 0.8606

          0.0618 0.0590 0.0501

          0.0059 0.0160

GPAη η η
η η η
η η

= − + +

− − +

+ −
 

 
3 2 3

4 3 3

4 5 6
3 3 3

0.1201 0.7934 0.0001

          0.0064 0.0005 0.0059

LNη η η
η η η

= + −

− + −  

 
3 2

4 3 3

3 4
3 3

0.1227 0.0007 0.4179

          0.0019 0.5133

PEη η η
η η

= − +

+ −
 

 
Methodology 

Study Area and Data Availability 
Regional flood frequency analysis is 

carried out for North Bank region of the 
Brahmaputra River of India. The Brahmaputra 
River basin extends over an area of 580,000 km2 
and lies in Tibet, Bhutan, India and Bangladesh. 
The drainage area of the basin lying in India is 
194,413 km2, which forms nearly 5.9% of the 
total geographical area of the country. The mean 
annual rainfall over the basin (excluding Tibet 
and Bhutan) is approximately 2,300 mm. Annual 
maximum peak flood data for nine stream flow 
gauging sites lying in the North Bank region of 
the Brahmaputra River and varying between 11-
36 years in record length were used in this study. 
 
Steps in Regional Flood Frequency Analysis 

The steps involved in the regional flood 
frequency analysis by L-moments proposed by 
Hosking and Wallis (1997) are: 

1. Screening of the data; 
 
2. Formation of homogeneous region; 
 
3. Selection of appropriate distribution; 
 
4. Estimation of parameters of the probability 

distribution; and 
 
5. Development of regional flood frequency 

relationship for gauged and ungauged 
catchments of the region. 

 
This procedure has been applied for LQ-moment 
for the study area described. 
 
Data Screening 

Hosking and Wallis (1997) proposed a 
discordancy measure (Di) based on L-moments, 
to recognize sites that are grossly discordant 
with the group as a whole. The discordancy 
measure (Di) for the LQ-moment is defined as if 
there are N sites in the group. Let 

)(
4

)(
3

)([ iii
iu ηηη= ]T be a vector 

containing the sample LQ-moment ratios 3,ηη  

and 4η for site i, and T denote transposition of a 
vector or matrix. Let 
 


=

−=
N

i
iuNu

1

1 , 

 
be the (unweighted) group average. The matrix 
of sums of squares and cross product is then 
defined as: 
 

1

( )( ) ,
N

T
i i

i
S u u u u

=

= − −  

 
and the discordancy measure for site i  is 
defined as: 
 

11
( ) ( ).

3
T

i i iD N u u S u u−= − −  

 
Site i is declared to be discordant if Di is greater 
than the critical value of the discordancy statistic 
Di given in a tabular form for the L-moment by 
Hosking and Wallis (1997). Based on such 
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discordancy measures for LQ-moment, no 
discordance site was found for this study region. 
The discordancy measure, site names, sample 
sizes and LQ-moments are shown in Table 1. 
 
Regional Homogeneity 

The procedure proposed by Hosking and 
Wallis (1997) for L-moments, with required 
modification for an LQ-moment was used to test 
for regional homogeneity. The regional average 
LQ-CV, LQ-skewness and LQ-kurtosis, 
weighted proportional to the sites’ record length 
were calculated and, similar to the regional  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

average mean considered as 1 in the L-moment 
method, the regional average first LQ-moment 
ratio is also considered as 1. For this the LQ-
moments and the parameters of the Kappa 
distribution based on the Trimean function have 
been developed and fit the developed Kappa 
distribution to the regional average LQ-moment 
ratios for 500 simulations. The values of 
heterogeneity measure computed by carrying out 
500 simulations using the Kappa distribution 
based on the data for the 9 sites are provided in 
Table 2. Based on the heterogeneity measure the 
9 site study area was found to be homogeneous. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: North Brahmaputra Region Site Information, Sample Statistics and Discordancy Measures 

Site 
No. 

Site Name 
Sample 

Size 
Catchment 
Area (km2) 1ζ


 LQ-CV 

LQ-
Skewness 

LQ-
Kurtosis iD  

1 Monas 17 30,100 5965.56 0.1739 0.1437 0.1008 0.25 

2 Nonai 11 148 91.32 0.2159 0.1580 0.2021 0.14 

3 Borolia 15 310 194.22 0.2540 -0.0345 0.1656 0.88 

4 Dhansin 21 530 1275.50 0.1715 0.2039 0.3430 1.74 

5 Pachnoi 22 198 196.82 0.2930 0.2915 0.1767 2.06 

6 Jiabharali 36 11,000 4015.77 0.2607 0.0856 0.0412 0.54 

7 Subansiri 27 25,886 8498.75 0.1777 0.2060 0.1198 0.36 

8 Beki 13 1,331 748.60 0.2957 -0.0512 0.1490 1.26 

9 Sankush 12 9,799 1865.99 0.1418 0.0703 -0.0942 1.76 

 
Table 2: Heterogeneity Measure Based on LQ-Moment 

Site No. Heterogeneity Measures Values 

1 

Heterogeneity Measure H(1) 
(a) Observed standard deviation of group LQ-CV 
(b) Simulated mean of standard deviation of group LQ-CV 
(c) Simulated standard deviation of standard deviation of group LQ-CV 
(d) Standardized test value H(1) 

 
0.0522 
0.0457 
0.0108 
0.6000 

2 

Heterogeneity Measure H(2) 
(a) Observed average of LQ-CV/LQ-Skewness distance 
(b) Simulated mean of average LQ-CV/LQ-Skewness distance 
(c) Simulated standard deviation of average LQ-CV/LQ-Skewness distance 
(d) Standardized test value H(2) 

 
0.1015 
0.1363 
0.0327 
-1.0600 

3 

Heterogeneity Measure H(3) 
(a) Observed average of LQ-Skewness/LQ-Kurtosis distance 
(b) Simulated mean of average LQ-Skewness/LQ-Kurtosis distance 
(c) Simulated standard deviation of average LQ-Skewness/LQ-Kurtosis distance 
(d) Standardized test value H(3) 

 
0.1331 
0.1953 
0.0403 
-1.5400 
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Goodness-of-Fit Measure: dist
iZ  Statistic 

Criteria 

The same dist
iZ -statistic criteria for the 

L-moment proposed by Hosking and Wallis 
(1997) was used as the goodness-of-fit measure 
for the LQ-moment to select the best fit 

distribution for the study region. The dist
iZ  

statistic for the various three parameter 
distributions is shown in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It may be observed from Table 3 that dist
iZ -

statistic values of all the five distributions are 
less than the critical value 1.64. Further, the 

dist
iZ -statistic is found to be the lowest for PE3 

distribution than all other distribution used for 

this study. Thus, the dist
iZ -statistic criteria for 

the LQ-moment identifies the PE3 distribution 
as the best fitting distribution for the study 
region. 
 
Goodness-of-Fit Measure: LQ-Moment Ratio 
Diagram 

The LQ-moment ratio diagram is 
another goodness-of-fit measure for identifying 
the best fitting distribution for the study region. 
The relationships, given above between 3η  and 

4η  for the five distributions are used to draw the 
theoretical curves in the LQ-moment ratio 
diagram. It can be observed from the LQ-
moment ratio diagram (see Figure 1) that the 
regional values of LQ-skewness ( 1332.03 =η ) 

and LQ-kurtosis ( 1324.04 =η ) lie closest to 

PE3 distribution, thus the dist
iZ -statistic criteria 

as well as the LQ-moment ratio diagram show 
that the PE3 distribution is the best fitting 
distribution for the study region. 
 
Parameters and Quantile Estimates for the 
Region 

The regional parameters and quantiles 
for the various distributions are given in Tables 
4 and 5 respectively. 
 
Regional Flood Frequency Relationship Based 
on LQ-Moments: Gauged Catchments 

The regional flood frequency 
relationship for gauged catchments was 
developed, by using the identified best fitting 
distribution for the study area. The PE3 
distribution was identified as the best fitting 
distribution for the study region in LQ-moment; 
thus, the relationship was developed using the 
PE3 distribution. The cumulative density 
function of the three parameter PE3 distribution 
as parameterized by Hosking and Wallis (1997) 

is: If γσβγα
2

1
,/4 2 == , and 

γσμξ /2−= , where μ , σ  and γ  are its 
location, scale and shape parameters, 
respectively, then 
 

( ) ( , ) / ( ),   if  0
xF x G ξα α γ

β
Γ−= >  

and 
 

( ) 1 , / ( ),  if  0.
xf x G ξα α γ

β
Γ −= − < 

 
 

 
When, 0=γ , it becomes a normal distribution 

with μ  and σ . In each case this distribution 
has no explicit analytical inverse form. Floods of 
various return periods T may be computed by 

multiplying 1ζ


 (the first LQ-moment) of a 
catchment by the corresponding values of 
growth factors of the PE3 distribution. 
 
 
 

Table 3: dist
iZ  Statistic for Various 

Distributions for the Study Area 

Distribution dist
iZ -statistic 

GEV 0.77 

LN3 0.71 

GLO 1.38 

GPA -0.87 

PE3 0.64 
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Figure 1: LQ-Moments Ratio Diagram for the North-Bank Region of the Brahmaputra River 
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Table 4: Regional Parameters for Various Distributions Based on LQ-Moments 

Distribution Distribution Parameters 

GEV ξ =0.857 α =0.353 k =0.035 

GLO ξ =0.987 α =0.244 k =-0.178 

GPA ξ =0.519 α =0.808 k =0.559 

LN3 ξ =0.738 α =0.259 k =0.310 

PE3 ξ =1.049 α =0.212 k =0.915 

 
Table 5: Regional Quantile Estimation Based on LQ-Moments 

Distribution 
Return Periods (years) 

2 5 10 25 50 100 200 500 1000 

GEV 0.986 1.373 1.621 1.925 2.145 2.357 2.563 2.828 3.023 

GLO 0.987 1.371 1.643 2.030 2.357 2.722 3.133 3.758 4.303 

GPA 0.983 1.377 1.565 1.725 1.802 1.854 1.890 1.920 1.934 

LN3 0.738 0.930 1.012 1.088 1.132 1.167 1.198 1.231 1.253 

PE3 1.017 1.212 1.333 1.478 1.580 1.678 1.773 1.894 1.984 
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Regional Flood Frequency Relationship Based 
on LQ-Moments: Ungauged Catchments 

In this case a relationship between the 

1ζ


 (the first LQ-moments) of gauged 
catchments in the region and their physiographic 
catchment characteristics is developed and is 
used to estimate first LQ-moments for an 
ungauged site. The relationship developed for 
the region in log domain using least squares 
approach based on the data of the study area is 
given as: 

719.0
1 )(*317.4 A=ζ


             (3) 
 
where, A is the catchment area, in square 

kilometers (km2) and is the 1ζ


 first LQ-
moments in meters per second (m3/s). For 
equation (1), the correlation coefficient is 

947.0=r . By coupling the regional flood 
frequency relationship for gauged catchment and 
the relationship between first LQ-moments and 
catchment area given by equation (1), the 
regional flood frequency relationship for 
ungauged catchments is obtained as: 
 

719.0ACQ TT =                    (4) 
 
where, TQ  is the flood estimate in m3/s for 

return period T , A is the catchment area in km2 
and TC  is a regional coefficient. In Table 7 

values of TC  are given for different return 

periods T  for the study area. 
 

Conclusion 
The following conclusions can be drawn from 
the regional flood frequency analysis of the 
study area using LQ-moments: 
 
 
 
 
 
 
 
 
 
 
 
 

1. In the initial screening step of the data the 
discordancy measure is used, the 
discordancy measure (Table 1) shows that 
data for the nine gauging sites of the study 
area are suitable for using regional flood 
frequency analysis.  
 

2. For testing homogeneity of the region, the 
LQ-moment based heterogeneity measure 
was used, the LQ-moment based 
heterogeneity measure shows that the region 
is homogeneous.  
 

3. The regional flood frequency analysis was 
performed using various frequency 
distributions: GLO, GEV, LN3, PE3 and 
GPA and KAP. The LQ-moment ratio 

diagram and dist
iZ -statistic criteria (see 

Table 2) were used to identify best fitting 
distribution PE3 for the region.  
 

4. The regional flood frequency relationship 
for gauged and ungauged catchments was 
developed for the region. The regional 
quantile estimates with different return 
periods T for the PE3, LN3, GPA, GLO and 
GEV distributions were calculated. To 
estimate floods of various return periods T 
for gauged catchments of the study area, the 
first LQ-moment of the catchment may be 
multiplied by corresponding values of the 
growth factors, computed using the PE3 
distribution; however, more accurate results 
for ungauged sites can be obtained if more 
physiographic characteristics other than 
catchments area are available. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: Values of Regional Coefficient TC  

Return Periods (years) 

2 5 10 25 50 100 200 500 1000 

PE3 Growth Factors 

4.390 5.232 5.755 6.381 6.821 7.244 7.654 8.176 8.565 

 



LQ-MOMENTS FOR REGIONAL FLOOD FREQUENCY ANALYSIS 

740 
 

References 
Atiem, I. A., & Harmancioglu, N. B. 

(2006). Assessment of regional floods using L-
moments approach: the case of the River Nile. 
Water Resources Management, 20, 723-747. 

Hosking, J. R. M. (1990). L-moments: 
Analysis and estimation of distributions using 
linear combinations of order statistics. Journal 
of the Royal Statistical Society, Series B, 52(2), 
105-124. 

Hosking, J. R. M., & Wallis, J. R. 
(1997). Regional frequency analysis: An 
approach based on L-moments. New York, NY: 
Cambridge University Press. 

Hussain, Z, & Pasha, G. R. (2008). 
Regional flood frequency analysis of the seven 
sites of Punjab, Pakistan, using L-moments. 
Water Resources Management, doi: 
10.1007/s11269-008-9360-7. 

Kumar, R., Singh, R. D.,& Seth, S. M. 
(1999). Regional flood formulas for seven 
subzones of zone 3 of India. Journal of 
Hydrologic Engineering, 4(3), 240-244. 

Kumar, R., Chatterjee, C., Kumar, S., & 
Lohani, A. K. (2003). Development of regional 
flood frequency relationship using L-moments 
for Middle Ganga Plains Subzone 1(f) of India. 
Water Resources Management, 17, 243-257. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kumar, R., & Chatterjee, C. (2005). 
Regional flood frequency analysis using L-
moments for North Brahmaputra Region of 
India. Journal of Hydrologic Engineering, 4(3), 
240-244. 

Mudholkar, G. S., & Hutson, A. D. 
(1998). LQ-moments: Analogs of L-moments. 
Journal of Statistical Planning and Inference, 
71, 191-208. 

Paradia, B. P., Kachroo, R. K., & 
Shrestha, D. B. (1998). Regional flood 
frequency analysis of Mahi-Sabarmati Basin 
(Subzone 3-a) using index flood procedure with 
L-moments, Water Resources Management, 12, 
1-12. 

Rao, A. R., & Hamed, H. K. (2000). 
Flood frequency analysis. Boca Raton, FL: CRC 
Press. 

Saf, B. (2008). Regional Flood 
frequency analysis using L-moments for the 
West Mediterranean region of Turkey. Water 
Resources Management, doi 10.1007/s11269-
008-9287-z.  

Zin Wan, Z. W., Jemain, A. A., & 
Ibrahim, K. (2008). The best fitting distribution 
of annual maximum rainfall in Peninsular 
Malaysia based on methods of L-moment and 
LQ-moment. Theories of Applied Climatology, 
doi 10.1007/s00704-008-0044-2. 
 



Journal of Modern Applied Statistical Methods   Copyright © 2011 JMASM, Inc. 
November 2011, Vol. 10, No. 2, 741-750                                                                                                                 1538 – 9472/11/$95.00 

741 
 

JMASM Algorithms and Code 
JMASM31: MANOVA Procedure for Power Calculations (SPSS) 

 
Alan Taylor 

Macquarie University 
Sydney, Australia 

 
 
D’Amico, Neilands & Zambarano (2001) showed how the SPSS MANOVA procedure can be used to 
conduct power calculations for research designs. This article demonstrates a simple way of entering data 
required for power calculations into SPSS and provides examples that supplement those given by 
D’Amico, Neilands & Zambarano. 
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Introduction 
Most researchers acknowledge the importance of 
conducting power calculations prior to 
embarking on research projects to ensure that 
there is a good chance that effects regarded as 
theoretically or practically important will be 
determined statistically significant. Despite this 
acknowledgement, many studies are under-
powered. Over the years, a number of writers 
have called on researchers to consider the power 
of their research designs and have attempted to 
facilitate power calculations. Cohen (1992), for 
example, followed up his book on power (1988) 
by providing a primer aimed at facilitating 
power calculation and sample size estimation in 
the behavioral sciences. Others have provided 
software for the same purpose; Gpower, for 
example, is a free program which allows the 
calculation of power and sample size in a variety 
of designs intended to “address the weaknesses 
of existing power analysis tools” (Erdfelder, 
Faul & Buchner, 1992, p. 1). In the same spirit, 
D’Amico, Neilands & Zambarano (2001), noted 
that the MANOVA procedure in SPSS (now 
called IBM SPSS Statistics, but referred to as 
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SPSS in the remainder of this article) can be 
used to calculate power in repeated measures 
and multivariate designs, which may not be 
readily accommodated by dedicated power 
programs. Their suggestion was particularly 
valuable because SPSS is a package that is 
accessible to many researchers. 

D’Amico, Neilands & Zambarano’s 
(2001) method takes advantage of the fact that 
the SPSS MANOVA procedure can both write 
and read datasets that are in a matrix form. This 
format allows a user to easily experiment with 
different numbers of cases, means, standard 
deviations and correlations between dependent 
and independent variables. In their examples, the 
authors read the data into SPSS in a matrix 
format and then read the matrix into MANOVA 
for the power calculation. This article suggests a 
minor extension to D’Amico, Neilands & 
Zambarano’s procedure based on MANOVA’s 
ability to write, as well as read, data in matrix 
format, a suggestion which facilitates power 
calculations with this method. Further examples 
of the use of the procedure to illustrate its 
usefulness in a number of design contexts are 
also provided; these examples supplement those 
given by D’Amico, Neilands & Zambarano 
(2001), which included ANCOVA, MANOVA 
and a repeated measures ANOVA. 
 
A Summary of the Procedure 
 
1. Set up a dummy dataset in SPSS that is 

similar to the one for which power estimates 
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are to be obtained. The means and standard 
deviations can be drawn from previous 
research or may be guesswork. It may be 
easiest to use standardized measures so that 
effects (e.g., differences between group 
means) can be specified in terms of standard 
deviations. 

 
2. Run the MANOVA procedure in order to 

save the data in matrix form. 
 
3. Alter the values (the number of cases, 

differences between means, correlations) 
and run the MANOVA procedure to conduct 
the power calculations. Continue altering the 
relevant values (usually the number of 
cases) and re-running the MANOVA 
analysis to observe what values are 
necessary to obtain an acceptable level of 
power. 

 
Detailed Examples 

Example 1: Pre-Post Design with Two Groups 
Consider a pre/post design with two 

groups, treatment and control. The dependent 
variable is anxiety, measured on a 10-point 
scale. The goal is to determine whether anxiety 
decreases more for the treatment group than for 
the control group. In other words, if there is a 
significant interaction between group and time. 
From previous research or from guesswork it is 
hypothesized that the mean score for each group 
(to which participants are randomly assigned 
from a waiting list of people who have come to 
an anxiety clinic) at pre-test will be about 6 and 
that the control group score will decline 
somewhat without treatment to around 5.5, but 
that the effect of treatment will be strong so the 
post-test mean for the treatment group will be 
approximately 4. The standard deviation of this 
anxiety measure is known to be about 1.5. With 
such changes – 2 versus 0.5 – a researcher 
would want to have good chance of finding the 
interaction significant at alpha 0.05. A dummy 
dataset, such as that shown in Figure 1, is first 
created in SPSS; the variable names were 
entered in the Variable View and the numbers 
were entered in the Data View. 

Note that there are only two 
observations per case for this dummy dataset 
and that the required means are obtained by 

 
 
 
 
 
 
 
 
 
 
 
 
having one case in each group one unit lower 
than the mean, and the other case one unit higher 
than the mean. The following MANOVA 
commands are now run: 
 

manova pre post by group(0,1)/ 
wsfactor=time(2)/ 
matrix=out(*)/ 
design. 

 
The MANOVA procedure can only be run using 
syntax. The matrix subcommand asks for the 
data to be saved in matrix format (see Figure 2). 

The data are now in a form that allows 
the various values to be altered to simulate the 
data that might be obtained. In the present case, 
the goal is to determine if having 10 cases per 
group provides enough power, thus, the N in the 
top row is increased to 20 and the Ns for each 
group to 10. It is also necessary to change the 
standard deviation to 1.5 at each time point and 
to reduce the correlation between pre and post 
scores to a more realistic value, such as 0.5. The 
altered dataset is shown in Figure 3. 
 
The following new set of MANOVA commands 
are run to obtain the power values:  
 

manova pre post by group(0,1)/ 
wsfactor=time(2)/ 
matrix=in(*)/ 
power=f(.05) exact/ 
design. 

 
This syntax reads the matrix dataset and requests 
a power analysis with an alpha of 0.05. The 
relevant section of the MANOVA output (see 
Table 1), indicates that the power for the 
interaction is too low to be acceptable. 

Figure 1: Dummy Data Entered into an SPSS 
Dataset 
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Figure 2: Example 1 Dummy Data in Figure 1 Shown in Matrix Format 
 

 
 
 
 

Figure 3: Matrix Form of the Example 1 Dummy Dataset with Altered Ns and Standard Deviations 
 

 
 
 
 

Table 1: SPSS MANOVA Output Showing the Results of the Power Calculation 
for Example 1 Dummy Dataset 

 

 Observed Power at the .0500 Level 
                          
 Source of Variation   Noncentrality   Power 
 
 TIME                   13.889         0.941 
 GROUP BY TIME           5.000         0.562  
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The number of subjects can be increased and the 
analysis repeated until an acceptable value is 
obtained. In this case, if the group size is 
doubled the power for detecting the interaction 
is 0.869, which is much more acceptable. In fact, 
15 per group, which gives a power of 0.753, 
may be considered sufficient. Note that, in 
repeated measures analyses, changes in the 
correlation between measures may have a 
dramatic effect on power. For example, if the 
correlation between the pre- and post-test 
measures in this example was a still-realistic 0.7 
as opposed to 0.5, the power with only 10 cases 
per group is 0.779 rather than 0.562. 

If no information is available regarding 
the values to expect, the standard deviation can 
be set to 1 (as for a standard score), and 
differences between the means specified in 
terms of the standard deviation. Consider a 
simple example in which two groups are to be 
compared. With a standard deviation of 1, if one 
group had a mean of zero and the other a mean 
of 0.5 in the dummy dataset this would represent 
a moderate effect size in terms of Cohen’s 
(1992) classification. 

Another strategy that can be adopted 
when there is uncertainty about the magnitude of 
differences is to perform a series of analyses 
with various combinations of N and effect sizes 
(and correlations in a repeated measures design). 
If the power is reasonable over a range of 
approximate realistic combinations of values, 
then the research has a good chance of obtaining 
a significant result. If not, it may be considered 
that the research is not worth doing with the 
number of subjects available. 
 
Example 2: Oneway ANOVA with Contrasts 
and Unknown Means and Standard Deviation 

This example has three groups of 
subjects, a control group (group = 1) and two 
treatment groups (2 and 3). In this case expected 
means and standard deviations are unknown, so 
the standard deviation is set equal to one, the 
mean of the control group to zero and the means 
of groups 2 and 3 to 0.5 and 0.8 respectively. 
The difference between the means of groups 1 
and 2 is therefore (0.5 – 0) = 0.5, and Cohen’s d 
= 0.5/1 = 0.5, which Cohen (1992) terms a 
medium effect size. The difference between the 

control group and group 3 is 0.8, and d = 0.8, a 
large effect size.  

Again, a dummy dataset with the 
necessary structure is entered into SPSS using, 
in this case, arbitrary numbers for the dependent 
variable (see Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The MANOVA commands to create the matrix 
version of the dataset (see Figure 5) are: 
 

manova score by group(1,3)/ 
matrix=out(*)/ 
design. 

 
The standard deviation of 0.7071 is replaced 
with 1 and the means are given the values noted 
above. It is assumed that 60 subjects can be 
recruited, 20 in each group. The revised matrix 
dataset is shown in Figure 6. 

It is assumed that there is no interest in 
the overall ANOVA result, but rather in two a 
priori contrasts: group 2 versus group 1, and 
group 3 versus group 1. MANOVA can give the 
power for each of the contrasts with the 
commands: 
 

manova score by group(1,3)/ 
contrast(group)=simple(1)/ 
matrix=in(*)/ 
power=f(.025) exact/ 
design=group(1) group(2). 

 
The simple (1) option asks for the required 
contrasts and, in the design statement, group (1) 
represents the group 2 versus group 1 contrast 
and group (2) represents the group 3 versus 

Figure 4: Dummy Dataset for Example 2 
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group 1 contrast. To hold the overall Type I 
error at 0.05, alpha is set at 0.025 for the two 
contrasts. The relevant output, (see Table 2) 
indicates that the power for the first contrast is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

very low, 0.24, but that for the second is 0.59. At 
this stage more cases could be added to 
determine how many more cases would be 
needed to achieve an acceptable level of power. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Matrix Form of the Data for Example 2 
 

 

 
Figure 6: Matrix Format of the Dataset for Example 2 with Amended Values of N, 

Means and Standard Deviations 
 

 

 
Table 3: MANOVA output showing the results of the power calculation for Example 2 

 

Observed Power at the .0250 Level 
                         Noncen- 
 Source of Variation     trality   Power 
 
 GROUP(1)                  2.500    .244 
 GROUP(2)                  6.400    .592  
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Example 3: Correlation 
Assume that a researcher seeks to assess 

the correlation between measures of anger and 
narcissism, which is expected to be very low. It 
is desirable to have a good chance (power at 
least 0.80) of obtaining a significant result if the 
correlation in the population is 0.30 or higher. 
The dummy dataset (see Figure 7) is created and 
then the following commands are used to 
produce a matrix version of the data (see Figure 
8): 

manova anger with narciss/ 
matrix=out(*)/ 
design. 

 
The correlation is replaced with 0.30, and 30 
subjects are used at first (the values of the means 
and standard deviations are immaterial in this  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

case). The revised version of the dataset is 
shown in Figure 9 and relevant output is shown 
in Table 4. The value of 0.362 is unacceptably 
low; thus, further experimentation was 
conducted to show that 85 subjects are needed to 
achieve a power of 0.80. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Matrix Form of the Data for Example 3 
 

 
 

Figure 9: Amended Matrix Dataset for Example 3 
 

 

 
Table 4: MANOVA output showing the results of the power calculation for Example 3 

 

Observed Power at the .0500 Level 
                         Noncen- 
 Source of Variation     trality   Power 
 
 Regression                2.769    .362  

Figure 7: Dummy Dataset for Example 3 
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Example 4: Using an Existing Dataset 
It is often not sensible to calculate the 

power for an existing dataset (if the effects are 
significant, the power will be viewed as 
adequate; if the effects are not significant, the 
power may be considered too low). However, it 
can be sensible to ask, for an effect which was 
not significant: How many more cases would be 
needed to have a good chance of finding a 
significant effect if the population characteristics 
are the same as those of my sample? 

This example uses a partly synthetic 
dataset called glmdemo.sav (available for 
download   from:   http://www.psy.mq.edu.au/ 
psystat/download.htm). Suppose a multivariate 
analysis with three variables, test1 to test3, as 
the dependent variables and group (with four 
categories) as the grouping variable has been 
conducted. The results for the 99 cases in the 
dataset are shown in Table 5. 

The MANOVA commands to produce 
the matrix version of the data are: 

 
manova test1 to test3 by group(1,4)/ 
matrix=out(*) 

 
The matrix version of the dataset is shown in 
Figure 10. 

The following commands can be used to 
calculate the observed power: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

manova test1 to test3 by group(1,4)/ 
matrix=in(*)/ 
power=f(.05) exact. 

 
The power for the Wilks’ Lambda statistic is 
0.62; now, determine what improvement would 
result if five cases were added to each group for 
an addition of 20 more subjects overall. The 
subject numbers could be added manually, but 
the following commands will complete the task 
and will make it easier to add more in the future: 
 

do if (rowtype_ eq "N" and 
sysmis(group)). 
compute test1=test1 + 20. 
compute test2=test2 + 20. 
compute test3=test3 + 20. 
else if (rowtype_ eq "N" and 
~sysmis(group)). 
compute test1=test1 + 5. 
compute test2=test2 + 5. 
compute test3=test3 + 5. 
end if. 
execute. 

 
When the MANOVA commands are run again, 
the resulting power is 0.72. If the above syntax 
is  used with the addition of another five subjects 
to each group – 139 subjects overall – the power 
is found to be exactly 0.80. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: MANOVA results of a multivariate analysis of the glmdemo dataset used in Example 4 
 

EFFECT .. GROUP 
 Multivariate Tests of Significance (S = 3, M = -1/2, N = 45 1/2) 
 
 Test Name         Value   Approx. F  Hypoth. DF   Error DF   Sig. of F 
 
 Pillais          .14202    1.57358       9.00     285.00       .123 
 Hotellings       .15739    1.60308       9.00     275.00       .114 
 Wilks            .86122    1.59333       9.00     226.49       .118 
 Roys             .11361 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 EFFECT .. GROUP (Cont.) 
 Univariate F-tests with (3,95) D. F. 
 
 Variable  Hypoth. SS  Error SS  Hypoth. MS   Error MS   F      Sig. of F 
 
 TEST1       2.04393   59.70197    .68131     .62844    1.08412     .360 
 TEST2       5.62424   57.69468   1.87475     .60731    3.08695     .031 
 TEST3       2.08582   69.51679    .69527     .73176     .95014     .420  
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Example 5: Multiple Regression 
This analysis regresses a dependent 

variable y on x1 and x2 (numeric variables), and 
x3 (dichotomous variable). A dummy dataset is 
created as usual using arbitrary numbers, but 
with one exception: with the dichotomous 
variable, x3, it is a good idea to insert zeroes and 
ones (e.g., female = 0, male = 1) in the same 
proportion as they would be expected to occur in 
the sample. Because the mean and standard 
deviation of a proportion are linked, this will 
help avoid the need to change one or both after 
creating the matrix dataset. In this example, a 
50/50 distribution is assumed. The initial dataset 
is shown in Figure 11. 

The MANOVA commands used to 
produce the matrix version of the data are: 
 

manova y with x1 x2 x3/ 
matrix=out(*). 

 
Figure 12 shows the initial matrix version of the 
dataset. 

Assume, based on past research or 
theory, that x1 is moderately (0.5) correlated 
with y, but x2 and x3 are only weakly correlated 
with y (both 0.3). Furthermore assume that x1 
and x2 are highly correlated (0.6), but neither is 
correlated with x3 (0.1) and that 50 subjects can 
be obtained for the research. The amended 
dataset is shown in Figure 13. The MANOVA 
commands below provide the output shown in 
Table 6: 
 

manova y with x1 x2 x3/ 
matrix=in(*)/ 
power=f(.05). 

 
There is ample power (0.97) for the overall 
regression, but the power for each independent 
variable is also of interest. The results show the 
power for an alpha of 0.05; a different alpha, 
e.g., 0.05/3 = 0.0167, may be used for the 
predictors. The MANOVA command is run 
again, with power = f(0.0167), to obtain the 
results shown in Table 7 (only part of the output 
is shown). 

The power for x1 remains adequate, but 
a bigger sample would be needed to achieve 
acceptable values for x2 and x3. A sample of 

100 gives a value of 0.70 for x3; x2 is a lost 
cause due to its correlation with x1. 
 

Conclusion 
As D’Amico, Neilands, & Zambarano (2001) 
noted, the SPSS MANOVA procedure provides 
a way of conducting power and sample size 
calculations for multivariate and repeated 
measures designs that may be impossible or 
difficult with dedicated power and sample size 
software. This article illustrated a simple method 
of creating the matrix dataset, which is at the 
core of procedure described by D’Amico, 
Neilands, & Zambarano, and provided additional 
examples of the method to supplement their 
work.  

Comprehensive power and sample size 
software, such as NCSS PASS (Hintz, 2012), is 
available and programs such as Mplus (Muthén 
& Muthén, 1998-2010) offer sophisticated 
simulation facilities for models that are outside 
the scope of those that can be handled by the 
methods described herein. The variety of designs 
for which power can be calculated using the 
SPSS MANOVA procedure, together with the 
ubiquity of the package, make it a valuable 
contribution to facilitating the routine 
calculation of power during research design. 
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Figure 10: Matrix Version of the glmdemo Dataset Used in Example 4 
 

 
 

Figure 11: Dummy Dataset Used in Example 5 
 

 
 

Figure 12: Initial Matrix Form of the Dataset Used in Example 5 
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Figure 13: Amended Version of the Matrix Dataset used in Example 5 
 

 

 
Table 6: MANOVA output for Example 5 

 

 Observed Power at the .0500 Level 
                         Noncen- 
 Source of Variation     trality   Power 
 
 Regression               20.986    .970 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 Regression analysis for WITHIN CELLS error term 
 --- Individual Univariate .9500 confidence intervals 
 --- two-tailed observed power taken at .0500 level 
 Dependent variable .. Y 
 
 COVARIATE            B        Beta   Std. Err.     t-Value   Sig. of t 
 
 X1              .48418      .00000        .153       3.166        .003 
 X2             -.01582     -.11076        .153       -.103        .918 
 X3              .86472     6.05305        .420       2.059        .045 
 
 COVARIATE   Lower -95%  CL- Upper     Noncent.       Power 
 
 X1                .176        .792      10.025       .873 
 X2               -.324        .292        .011       .051 
 X3                .019       1.710       4.240       .522  

 
Table 7: Output Obtained for the Amended Matrix Dataset Used in Example 5 

 

 two-tailed observed power taken at .0167 level 
 
 COVARIATE   Lower -95%  CL- Upper     Noncent.      Power
 X1              .176        .792      10.025        .750 
 X2             -.324        .292        .011        .017 
 X3              .019       1.710       4.240        .345  
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