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INVITED ARTICLE 
Analysis of MultiFactor Experimental Designs 

 
 

 
 

Phillip Good 
Information Research 

Huntington Beach, CA. 
 

 
In the one-factor case, Good and Lunneborg (2006) showed that the permutation test is superior to the 
analysis of variance. In the multi-factor case, simulations reveal the reverse is true. The analysis of 
variance is remarkably robust against departures from normality including instances in which data is 
drawn from mixtures of normal distributions or from Weibull distributions. The traditional permutation 
test based on all rearrangements of the data labels is not exact and is more powerful that the analysis of 
variance only for 2xC designs or when there is only a single significant effect. Permutation tests restricted 
to synchronized permutations are exact, but lack power.  
 
Key words: analysis of variance, permutation tests, synchronized permutations, exact tests, robust tests, 
two-way experimental designs. 
 
 

Introduction 
Tests of hypotheses in a multifactor analysis of 
variance (ANOVA) are not independent of one 
another and may not be most powerful. These 
tests are derived in two steps: First, the between-
cell sum of squares is resolved into orthogonal 
components. Next, to obtain p- values, the 
orthogonal components are divided by the  
 
 
 
Phillip Good is a statistical consultant. He 
authored numerous books that include 
Introduction to Statistics via Resampling 
Methods and R/S-PLUS and Common Errors in 
Statistics (and How to Avoid Them). Email: 
drgood@statcourse.com. 

 
within-cell sum of squares. As they share a 
common denominator, the test statistics of main 
effects and interactions are not independent of 
one another. On the plus side, Jagers (1980) 
showed that if the residual errors in the linear 
model are independent and identically 
distributed, then the distribution of the resultant 
ratios is closely approximated by an F-
distribution even if the residual errors are not 
normally distributed. As a result, ANOVA p-
values are almost exact. 

But are ANOVA tests the most 
powerful? In the one-way design (the one-factor 
case), Good and Lunneborg (2005) found that 
tests whose p-values are based on the 
permutation distribution of the F-statistic rather 
than the F-distribution are both exact and more 
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powerful than the analysis of variance when 
samples are taken from non-normal 
distributions. For example, when the data in a 
four-sample, one-factor comparison are drawn 
from mixtures of normal distributions, 50% N(δ, 
1) and 50% N(1+δ, 1), in an unbalanced design 
with 2, 3, 3, and 4 observations per cell, the 
permutation test was more powerful at the 10% 
level, a power of 86% against a shift in means of 
two units compared to 65% for the analysis of 
variance. 

Unfortunately, the permutation test for 
interaction in a two-factor experimental design 
based on the set of all possible rearrangements 
among the cells is not exact. The residual errors 
are not exchangeable, nor are the p-values of 
such permutation tests for main effects and 
interactions independent of one another. Here is 
why: 

Suppose the observations satisfy a linear 
model, Xijm = μ + si + rj + (sr)ij + εijm where the 
residual errors {εijm} are independent and 
identically distributed. To test the hypothesis of 
no interaction, first eliminate row and column 
effects by subtracting the row and column means 
from the original observations. That is, set  
 

 

 

where by adding the grand mean , ensure the 

overall sum will be zero. Recall that  
 

 

 
or, in terms of the original linear model, that 
  

 

 
However, this means that two residuals in the 
same row such as X’ i11 and X’ i23 will be 
correlated while residuals taken from different 
rows and columns will not be. Thus, the 
residuals are not exchangeable, a necessary 
requirement for tests based on a permutation 
distribution to be exact and independent of one 
another (see, for example, Good, 2002). 

An alternative approach, first advanced 
by Salmaso and later published by Pesarin 
(2001) and Good (2002), is to restrict the 

permutation set to synchronized permutations in 
which, for example, an exchange between rows 
in one column is duplicated by exchanges 
between the same rows in all the other columns 
so as to preserve the exchangeability of the 
residuals.  

The purpose of this article is to compare 
the power of ANOVA tests with those of 
permutation tests (synchronized and 
unsynchronized) when applied to two-factor 
experimental designs. 
 

Methodology 
Observations were drawn from one of the 
following three distributions: 
1. Normal. 
2. Weibull, because such distributions arise in 

reliability and survival analysis and cannot 
be readily transformed to normal 
distributions. A shape parameter of 1.5 was 
specified. 

3. Contaminated normal, both because such 
mixtures of distributions are common in 
practice and because they cannot be readily 
transformed to normal distributions. In line 
with findings in an earlier article in this 
series, Good and Lunneborg (2006), we 
focused on the worst case distribution, a 
mixture of 70% N(0, 1) and 30% N(2, 2) 
observations. 
Designs with the following effects were 

studied:  
 

a) 

+δ   0 

+δ   0 

b) 

+δ   0 

0 +δ 

c) 

+δ  0  …  -δ  

+δ  0  …  - δ 

d) 

+δ  0 … 0 -δ 

-δ   0 … 0 +δ 
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e) 

0  +δ  0 

0  +δ  0 

0  +δ  0 

f) 

0 +δ  0 

0  0   0 

+δ  0   0 

g) 

+δ  0   0 

0 +δ  0 

0 0  +δ 

h) 

0  +δ  0  0  -δ 

0 +δ  0  0 –δ 

0 +δ  0  0 –δ 

0 +δ  0  0 –δ 

i) 

1  δ  1  1  δ 

1   δ  1  1 δ 

1   δ  1  1 δ 

1  δ  1  1  δ 

 
To compare the results of the three 

methodologies, 1,000 data sets were generated at 
random for each design and each alternative (δ 
=0, 1, or 2). p-values for the permutation tests 
were obtained by Monte Carlo means using a 
minimum of 400 random (synchronized or 
unsynchronized) permutations per data set. The 
alpha level was set at 10%. (The exception being 
the 2x2 designs with 3 observations per cell 
where the highly discrete nature of the 
synchronized permutation distribution forced 
adoption of an 11.2% level.) 

The simulations were programmed in R. 
Test results for the analysis of variance were 
derived using the anres() function. R code for 
the permutation tests and the data generators is 
posted at: http://statcourse.com/AnovPower.txt. 

Results 
Summary 

In line with Jager’s (1980) theoretical 
results, the analysis of variance (ANOV) applied 
to RxC experimental designs was found to yield 
almost exact tests even when data are drawn 
from mixtures of normal populations or from a 
Weibull distribution. This result holds whether 
the design is balanced or unbalanced. Of course, 
because the ANOVA tests for main effects and 
interaction share a common denominator - the 
within sum of squares - the resultant p-values 
are positively correlated. Thus a real non-zero 
main effect may be obscured by the presence of 
a spuriously significant interaction. 

Although tests based on synchronized 
permutations are both exact and independent of 
one another, there are so few synchronized 
permutations with small samples that these tests 
lack power. For example, in a 2x2 design with 3 
observations per cell, there are only 9 distinct 
values of each of the test statistics. 

Fortunately, tests based on the entire set 
of permutations, unsynchronized as well as 
synchronized, prove to be almost exact. 
Moreover, these permutation tests for main 
effects and interaction are negatively correlated. 
The result is an increase in power if only one 
effect is present, but a loss in power if there are 
multiple effects. These permutation tests are 
more powerful than ANOVA tests when the data 
are drawn from mixtures of normal populations 
or from a Weibull distribution. They are as 
powerful, even with data drawn from normal 
distributions, with samples of n ≥ 5 per cell. 
 
2xK Design 

In a 2x2 design with 3 observations per 
cell, restricting the permutation distribution to 
synchronized permutations means there are only 
9 distinct values of each of the test statistics. The 
resultant tests lack power as do the tests based 
on synchronized permutations for 2x5 designs 
with as many as five observations per cell. For 
example, in a 2x4 design with four observations 
per cell, the synchronized permutation test had a 
power of 53% against a shift of two units when 
the data were drawn from a contaminated 
normal, while the power of the equivalent 
ANOVA test was 61%. As a result of these 
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negative findings, synchronized permutation 
tests were eliminated from further consideration. 

In a balanced 2x2 design with 5 
observations per cell, the powers of the ANOVA 
test and the traditional permutation test against a 
normal are equivalent. Against a contaminated 
normal or Weibull alternative, the permutation 
test is fractionally better. With only 3 
observations per cell and a Weibull alternative 
with a doubling of scale, the permutation test is 
again fractionally superior.  

In an unbalanced 2x2 design with 5 
observations in each cell of the first column, and 
3 observations in each cell of the second 
column, against a normal with a column effect 
of one unit (design a), ANOVA is markedly 
inferior with a power of 60% versus a power of 
70% for the permutation test. Against a Weibull 
alternative with a doubling of the scale factor, 
the power of the ANOVA is 56%, while that of 
the permutation test is 71%. Noteworthy in this 
latter instance is that although there is no 
interaction term in design a, spurious interaction 
was recorded 18% of the time by the analysis of 
variance and 13% by permutation methods. 

In a 2x5 design of form c with 3 
observations per cell, the permutation test is 
several percentage points more powerful than 
ANOVA against both normal and contaminated 
normal alternatives. 
 
3x3 Designs 

When row, column, and interactions are 
all present as in design f, ANOVA is more 
powerful than the permutation test by several 
percentage points for all effects against both 
normal and contaminated normal alternatives. 
(See Table 1a, b.) 

 
 

Table1a: Normal Alternative δ = 1, 3 
Observations Per Cell, Design f 

 
Row-Column Interaction 

ANOVA Permutation 
187  139 
178  138 
344  316 

 
 

Table 1b: Contaminated Normal Alternative 
δ = 2, 3 Observations Per Cell, Design f 

 
Row-Column Interaction 

ANOVA Permutation 
150  114 
169  137 
336  318 

 
However, when a pure column effect 

(design e) or a pure interaction (design g) exists, 
the permutation test is superior to the analysis of 
variance by several percentage points. See, for 
example, Table 2. 
 

Table 2: Contaminated Normal Alternative 
δ = 2, 3 Observations Per Cell, Design g 

 
Row-Column Interaction 

ANOVA Permutation 
115   70 
108   70 
461  529 

 
4x5 Designs 

The power against balanced designs of 
type h with four observations per cell of 
permutation and ANOVA tests are equivalent 
when the data is drawn from a normal 
distribution. The power of the permutation test is 
fractionally superior when the data is drawn 
from a mixed-normal distribution. Likewise, 
with a design of type i, the permutation test is 
several percentage points superior when the data 
is drawn from a Weibull distribution and the 
design is balanced. Synchronized permutations 
fared worst of all, their power being several 
percentage points below that provided by the 
analysis of variance. 

When the design is unbalanced as in 
 

4 4 4 4 4 
4 4 4 4 4 
2 3 4 5 3 
2 3 4 5 3 

 
the analysis of variance has the advantage in 
power over the permutation tests by several 
percentage points. 
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Discussion 
Apart from 2xC designs, there appears to be 
little advantage to performing alternatives to the 
standard analysis of variance. The permutation 
tests are more powerful if only a single effect is 
present, but how often can this be guaranteed? 
Even with 2xC designs, the results reported here 
will be of little practical value until and unless 
permutation methods are incorporated in 
standard commercial packages. Wheeler 
suggests in a personal communication that if a 
package possesses a macro-language, a vector 
permutation command and an ANOVA routine, 
a permutation test for the multi-factor design can 
be readily assembled as follows: 
 
1. Use the ANOVA command applied to the 

original data set to generate the sums of 
squares used in the denominators of the tests 
of the various effects. 

2. Set up a loop and perform the following 
steps repeatedly: 

a. Rearrange the data. 
b. Use the ANOVA command applied to 

the rearranged data set to generate the 
sums of squares used in the 
denominators of the tests of the 
various effects. 

c. Compare these sums with the sums for 
the original data set. 

3. Record the p-values as the percentage of 
rearrangements in which the new sum 
equaled or exceeded the value of the 
original. 
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REGULAR ARTICLES 
Examples of Computing Power for Zero-Inflated and Overdispersed Count Data 

 
Suzanne R. Doyle 

University of Washington 
 

 
Examples of zero-inflated Poisson and negative binomial regression models were used to demonstrate 
conditional power estimation, utilizing the method of an expanded data set derived from probability 
weights based on assumed regression parameter values.  SAS code is provided to calculate power for 
models with a binary or continuous covariate associated with zero-inflation. 
 
Key words: Conditional power, Wald statistic, zero-inflation, over-dispersion, Poisson, negative 
binomial. 
 
 

Introduction 
Lyles, Lin and Williamson (2007) presented a 
simple method for estimating conditional power 
(i.e., power given a pre-specified covariate 
design matrix) for nominal, count or ordinal 
outcomes based on a given sample size. Their 
method requires fitting a regression model to an 
expanded data set using weights that represent 
response probabilities, given assumed values of 
covariate regression parameters. It has the 
flexibility to handle multiple binary or 
continuous covariates, requires only standard 
software and does not involve complex 
mathematical calculations. To estimate power, 
the variance-covariance matrix of the fitted 
model is used to derive a non-central chi square 
approximation to the distribution of the Wald 
statistic. This method can also be used to 
approximate power for the likelihood ratio test. 

Lyles, et al. (2007) illustrated the 
method for a variety of outcome types and 
covariate patterns, and generated simulated data 
to demonstrate its accuracy. In addition to the 
proportional odds model and logistic regression, 
they included standard Poisson regression with 
one continuous covariate and negative binomial 
regression with one binary covariate. Both the  
 
 
 
Suzanne R. Doyle is a Biostatistician in the 
Alcohol and Drug Abuse Institute. Email: 
srdoyle@u.washington.edu. 

 
Poisson and negative binomial regression 
models provide a common framework for the 
analysis of non-negative count data. If the model 
mean and variance values are the same (equi-
dispersion), the one-parameter Poisson 
distribution can be appropriately used to model 
such count data. However, when the sample 
variance exceeds the sample mean (over-
dispersion), the negative binomial distribution 
provides an alternative by using a second 
parameter for adjusting the variance 
independently of the mean. 

Over-dispersion of count data can also 
occur when there is an excess proportion of 
zeros relative to what would be expected with 
the standard Poisson distribution. In this case, 
generalizations of the Poisson model, known as 
zero-inflated Poisson (ZIP) and ZIP( τ ) 
(Lambert, 1992), are more appropriate when 
there is an excess proportion of zeros and equi-
dispersion of the non-zero count data is present. 
These models provide a mixture of regression 
models: a logistic portion that accounts for the 
probability of a count of zero and a Poisson 
portion contributing to the frequency of positive 
counts. The ZIP model permits different 
covariates and coefficient values between the 
logistic and Poisson portions of the model. 
Alternatively, the ZIP( τ ) model is suitable 
when covariates are the same and the logistic 
parameters are functionally related to the 
Poisson parameters. 
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With the ZIP and ZIP( τ ) models, the 
non-zero counts are assumed to demonstrate 
equi-dispersion. However, if there is zero-
inflation and non-zero counts are over-dispersed 
in relation to the Poisson distribution, parameter 
estimates will be biased and an alternative 
distribution, such as the zero-inflated negative 
binomial regression models, ZINB or ZINB( τ ), 
are more appropriate (Greene, 1994). Similar to 
the zero-inflated Poisson models, ZINB allows 
for different covariates and ZINB( τ ) permits 
the same covariates between the logistic portion 
for zero counts and the negative binomial 
distribution for non-zero counts. 

In this study, the use of an expanded 
data set and the method of calculating 
conditional power as presented by Lyles, et al. 
(2007) is extended to include the ZIP, ZIP( τ ), 
ZINB and ZINB( τ ) models. Examples allow for 
the use of a binary or a normally-distributed 
continuous covariate associated with the zero-
inflation. Simulations were conducted to assess 
the accuracy of calculated power estimates and 
example SAS software programs (SAS Institute, 
2004) are provided. 
 

Methodology 
Model and Hypothesis Testing 

Following directly from Lyles, et al. 
(2007), the response variable Y for non-
continuous count data has J possible values (y1, 
y2, … , yJ), a design matrix X, and a regression 
model in the form of 
 

log( iλ ) = i′β x                      (1) 
 
with an assumed Poisson distribution or negative 
binomial distribution, where i indexes 
independent subjects (i = 1, ... , N), ix  is a (1 x 

q) vector of covariates, and β  is a (1 x q) vector 
of regression coefficients. Under the Poisson or 
negative binomial regression model, the 
probabilities can be specified for j = 1, … , J by 
 

ijw  = Pr ( |i i ijyY = =X x ), jy  = 0, 1, … , ∞  

(2) 
 
Interest is in testing the hypothesis 0 0:H =Hβ h
versus 0:AH ≠Hβ h , where H is an (h x q) 

matrix of full row rank and h0 an (h x 1) 
constant vector. The Wald test statistic is  

W = 
1

00
ˆˆ ˆˆ ( )( ) [ var( ) ]

−
′ ′ −− HβHβ H β H hh    (3) 

 
where β̂ contains unrestricted maximum 

likelihood estimates of β . Under H0, (3) is 
asymptotically distributed as central chi square 

with h degrees of freedom ( 2
hχ ). 

For power calculations, under HA, the 
Wald test statistic is asymptotically distributed 

as non-central 2
,( )h ηχ , where the non-centrality 

parameter η  is defined as 
 

η = 
1

00
ˆˆ ( ).( ) [ var( ) ]

−
−′ ′− HβHβ H β H hh   (4) 

 
Creating an Expanded Data Set and Computing 
Conditional Power 

To estimate the conditional power given 
assumed values of N, X andβ , an expanded data 
set is first created by selecting a value of J for 
the number of possible values of Y with non-
negligible probability for any specific xi, such 
that 

1 1
Pr( | ) 1

J J
i i iij i

j j
yw Y

= =
= = = ≈  X x      (5) 

 
for all i. The sum in (5) should be checked for 
each unique value of xi. A reasonable threshold 
for the sum (e.g., > 0.9999) is suggested for 
sufficient accuracy (Lyles et al., 2007). Second, 
for each value of i = 1, ... , N, a data matrix with 
J rows is created with the weights ijw  in (2) 

being computed with the assumed values of β . 
This data matrix with J rows is stacked N times 
vertically from i = 1, ... , N to form an expanded 
data set with NJ records. The resulting expanded 
data set can be based on the same number of J 
records for each value of i. However, J can vary 
with i, as long as the condition in (5) is satisfied. 

When the expanded data set is correctly 
created maximum likelihood estimate β̂  from 
maximizing the weighted log-likelihood should 
equal the assumed value of β , and the matrix 

ˆˆ ( )var β will accurately reflect variability under 
the specific model allowing for power 
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calculations based on the Wald test of (3). For 
more detailed information and examples 
concerning model and hypothesis testing and 
creating an expanded data set with this method, 
see Lyles, et al. (2007). 

Subsequent to fitting the model to the 
expanded data set, the non-centrality parameter 
η  in (4) is derived. Power is then calculated as 
 

Pr 22
( ) ,1( )h hx η −α≥ χ                      (6) 

 

where 2
,1hx −α denotes the 100(1 - α ) percentile 

of the central 2χ distribution with h degrees of 
freedom. For testing a single regression 

coefficient, 2 2ˆ kkη = β σ , where ˆ kσ is the 

associated estimated standard error, with h = 1. 
 
Zero-Inflated Poisson and Negative Binomial 
Models 

Following Lambert (1992) for the zero-
inflated Poisson (ZIP) regression model and 
Greene (1994) for the zero-inflated negative 
binomial (ZINB) regression model, the response 

iY  is given by 

0iY   with probability iπ , 
 

iY  Poisson( iλ ) for the ZIP model 
or  

iY NegBin( iλ ) for the ZINB model, 
 
with probability 1 i−π , i = 1, ... , n for both 
models. For these models, the probability of zero 
counts is given by 
 

Pr ( 0iY = ) = (1 ) .ii i e−λ+ −π π         (7) 
 
The probability of non-zero counts for the ZIP 
model is 

Pr ( |i i ijyY = =X x ) = (1 )
!

,
ji i

i
j

ye
y

−λ λ− π   (8) 

and for the ZINB model is 
 

Pr ( |i i ijyY = =X x ) = 

1/1

1

( ) 1
(1 )

1 1( ) !
.

j
j i

i
i ij

yy

y

κ−

−

Γ + κκ λ− π
+κ +κΓ λ λκ

   
   
   

    (9) 

 
for jy  = 1, ... , ∞ , where Γ  is the gamma 

function. In contrast to the Poisson model with 
only one parameter, the negative binomial model 
has two parameters: λ  (the mean, or shape 
parameter) and a scale parameter, κ , both of 
which are non-negative for zero-inflated models, 
and not necessarily an integer. Both iπ  of the 

logistic model and iλ of the Poisson model or 
negative binomial model depend on covariates 
through canonical link of the generalized linear 
model 

logit( iπ ) = iz′γ  
and 

log( iλ ) = ix′β                     (10) 
 
with 0 1( , ,..., )rγ = γ γ γ  and 0 1( , ,..., )pβ = β β β . 

Because the covariates that influence iπ  and iλ  
are not necessarily the same, two different sets 
of covariate vectors, 1(1, ,..., )i i irz z z=  and 

1(1, ,..., )i i ipx x x= , are allowed in the model. 

Interpretation of the γ  and β  parameters is the 
same as the interpretation of the parameters from 
standard logistic and Poisson or negative 
binomial models, respectively. 

If the same covariates influence iπ  and 

iλ , and if iπ  can be written as a scalar multiple 

of iλ , such that 
 

logit( iπ ) = ix′−τβ  
and 

log( iλ ) = ix′β                     (11) 
 
then the ZIP and ZINB models described in (10) 
are called ZIP( τ ) or ZINB( τ ) models with an 
unknown scalar shape parameter τ  (Lambert, 
1992). When 0τ >  zero inflation is less likely, 
and as 0τ →  zero inflation increases. Note that 
the number of parameters in the ZIP( τ ) and 
ZINB( τ ) models is reduced, providing a more 
parsimonious model than the ZIP and ZINB 
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models, and it may therefore be advantageous to 
use this model when appropriate. 

With the ZIP and ZIP( τ ) models, the 
weights for the expanded data set are calculated 
as 
 

ijw  = Pr ( |i i ijyY = =X x ) =  

( ) (1
!

)
ji i

i ii
j

yeI y
y

−λ λ+ −π π             (12) 

 
and for the ZINB and ZINB( τ ) models, the 
weights for the expanded data set are 
 

ijw  = Pr ( |i i ijyY = =X x ) = 

1/1

1

( ) 1
( ) ( ) (1

1 1( )
)

!

j
j i

i ii
j i i

yy
I y

y

κ−

−

Γ + κκ λ+ −π π
+κ +κΓ λ λκ

   
   
   

(13) 
 
with jy  = 0, 1, ... , ∞ , and where ( )iI y  is an 

indicator function taking a value of 1 if the 
observed response is zero ( 0)iy = and a value of 

0 if the observed response is positive ( 0)iy > . 

 
Simulating the Negative Binomial Distribution 

In simulating the negative binomial 
distribution, Lyles, et al. (2007) generated 
independent geometric random variates, under 
the constraint of only integer values for1/ κ . In 
contrast, the negative binomial distribution in 
this study was simulated according to the 
framework provided by Lord (2006). This 
algorithm is based on the fact that the negative 
binomial distribution can be characterized as a 
Poisson-gamma mixture model (Cameron & 
Trivedi, 2006), it is consistent with the linear 
modeling approach used with this method of 
power calculation and also allows for non-
integer values of 1/ κ . To calculate an outcome 
variable that is distributed as negative binomial, 
the following steps are taken: 
 

1. Generate a mean value ( iλ ) for 
observation i from a fixed sample 
population mean, iλ  = exp( )ix′β  

2. Generate a value ( iφ ) from a gamma 

distribution with the mean equal to 1 and 
the parameter 1/δ = κ , ( ,1/ )i = Γ δ δφ  

3. Calculate the mean ( iθ ) for observation i, 

i i i= ×φθ λ  

4. Generate a discrete value ( iy ) for 

observation i from a Poisson distribution 
with a mean iθ , Poisson( )iiy θ . 

5. Repeat steps 1 through 4 N times, where 
N is the number of observations or sample 
size. 

 
Examples 

Several examples are presented to 
illustrate the conditional power calculations of 
the ZIP, ZIP( τ ), ZINB and ZINB( τ ) models 
with a binary or continuous covariate related to 
the logistic portion accounting for the zero-
inflation. Models were selected to demonstrate 
the effects of increased zero-inflation and over-
dispersion on power estimates. Each model was 
fit by utilizing a weighted form of the general 
log-likelihood feature in SAS PROC NLMIXED 
(SAS Institute, 2004). Simulations under each 
model and the assumed joint covariate 
distributions were conducted to assess the 
accuracy of the power calculations. In situations 
where a reasonable solution could not be 
obtained with the generated data, the simulation 
data set was excluded from consideration and 
data generation was continued until 1,000 usable 
data sets were obtained for each model. A non-
viable solution was generally due to non-
convergence or extremely large standard errors.  

In particular, the ZIP( τ ) and ZINB( τ ) 
models were the most problematic due to 
obtaining extremely large standard errors and 
parameter estimates of τ . In some situations it 
was obvious that a poor solution resulted, but in 
other instances it was not as clear that an 
unsatisfactory solution occurred. To avoid 
arbitrary decisions on which simulations to 
exclude, all data sets resulting in a value of τ  
outside of the boundaries of a 99% confidence 
interval (based on assumed regression parameter 
values) were deleted. A similar decision rule 
was used for the ZIP and ZINB models, 
eliminating data sets with values of iγ , as 
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defined in (10) beyond their 99% confidence 
boundaries. The selection decision to discard 
data sets from consideration did not depend on 
the values of the regression parameter of interest 
to be statistically tested. 

Simulation values presented are the 
average regression coefficient and the average 
standard error (calculated as the square root of 
the average error variance) out of the 1,000 
generated data sets for the parameter estimates 
of each model. Simulation-based power was 
calculated as the proportion of Wald tests found 
statistically significant at .05α =  out of 1,000 
randomly generated data sets under each specific 
model considered. Appendices A through D 
provide SAS programming code to evaluate a 
large sample simulation for distributional 
characteristics, to construct an expanded data set 
and to calculate power for models with a binary 
covariate or a normally-distributed continuous 
covariate related to the zero-inflation. 

To calculate the expanded data set, it 
was first necessary to choose the initial value of 
J for each value of xi. This was done by 
generating a large simulated data set (N = 
100,000 for each binary or continuous covariate 
in the model) based on the same parameter 
values of the model. To ensure that a reasonable 
threshold for the sum (e.g., > 0.9999) of the 
weights in (12) and (13) would be obtained, the 
initial value of J was increased in one unit 
integer increments until the maximum likelihood 
estimates for the parameters from maximizing 
the weighted log-likelihood equaled the assumed 
parameter values of the regression model. The 
large simulated data set also provided 
approximations to the population distributional 
characteristics of each model (mean, variance, 
and frequencies of each value of the outcome 
variable yi) and estimates of the percents of zero-
inflation. 
 
ZIP( τ ), ZIP, ZINB( τ ) and ZINB Models with a 
Binary Variable for Zero Inflation 

Model A-τ and Model B-τ, where τ = 2 
and 1, are ZIP( τ ) and ZIP models, respectively.  
Model A-τ is defined as 
 
logit( iπ ) = 0 1x− τ−τβ β  and log( iλ ) = 0 1x+β β  

(14) 

where 0β = 0.6931, 1β  = -0.3567, τ  = 2 and 1, 

and x is a binary variable with an equal number 
of cases coded 0 and 1. The regression 
coefficients were based on the rate ratio. That is, 
for the binary covariate x, from the rates of the 
two groups ( 1 2=λ  and 2 1.4=λ ), the regression 

coefficients are 10 log=β λ  and 

2 11 log( ) log( )= −β λ λ . With this model, interest 

is in testing 0 1: 0H =β versus 1: 0AH ≠β . 

Model B-τ is defined as 
 

logit( iπ ) = 0 1z+γ γ   

and 
log( iλ ) = 0 1 2z x+ +β β β             (15) 

 
where 0β = 0.6931, 1β  = -0.3567, 2β  = -0.3567, 

0 0= −τγ β , 1 1= −τγ β , τ  = 2 and 1, and x and z 
are binary covariates with an equal number of 
cases coded 0 and 1. In this particular example 
the regression coefficients for the logistic 
portion of the model ( 0γ  and 1γ ) are both a 

constant multiple of τ , although this is not a 
necessary requirement for the ZIP model. With 
this model, interest is in assessing 0 2: 0H =β
versus 2: 0AH ≠β . 

The ZINB( τ ) and ZINB models 
consisted of the same parameter estimates as the 
ZIP( τ ) and ZIP models (Model A-τ and Model 
B-τ described above), but included two values of 
an extra scale parameter, 0.75κ =  and 

1.50.κ =  Sample sizes were based on obtaining 
conditional power estimates of approximately 
.95 for the regression coefficient tested, with τ = 
2 for the ZIP and ZIP( τ ) models, and for τ = 2 
and 0.75κ =  for the ZINB and ZINB( τ ) 
models. SAS code to evaluate a large sample 
simulation for distributional characteristics, to 
construct an expanded data set and to calculate 
power, for models with a binary covariate 
related to the zero-inflation are presented in 
Appendices A and B, for the Poisson and 
negative binomial regression models, 
respectively. 
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Results 
ZIP( τ ) Models 

The results of the ZIP( τ ) models 
presented at the top of Table 1 indicate that with 
a sample size of N = 212, when τ  = 2, there is 
approximately .95 power and 27.0% zero-
inflation for testing 1: 0AH ≠β . As τ  decreases 

and therefore zero-inflation increases, the 
calculated power is reduced to 0.81 for 
approximately 37.5% estimated zero-inflation. 
In most cases, the simulated parameter and 
power estimates match the calculated values, 
except for a slight tendency for the simulated 
data to result in inflated average parameter 
estimates for the standard error τσ . 

The outcomes for the ZIP models 
presented at the bottom of Table 1 show that 
with a sample size of N = 488, when τ  = 2, 
there is approximately .95 power and 27.0% 
zero-inflation for testing 2: 0AH ≠β . Again, as 

τ  decreases, the calculated power is reduced to 
approximately .90 and 37.5% estimated zero-
inflation. 
 
ZINB( τ ) Models With A Binary Covariate 
Associated With The Zero-Inflation 

The results of the ZINB( τ ) models with 
a binary covariate associated with the zero-
inflation, presented at the top of Table 2, 
indicate that with a sample size of N = 464, 
when 0.75κ =  and τ  = 2, there is 
approximately .95 power and 27.0% zero-
inflation for testing 1: 0AH ≠β . As τ  decreases 

to 1, the calculated power is reduced to 
approximately .80 and 37.5% estimated zero-
inflation. When over-dispersion of the non-zero 
counts increases ( 1.50κ = ), power is reduced to 
approximately .80 when τ  = 2, and .59 when τ  
= 1. 

In most cases, the simulated (Sim.) 
values and power estimates closely match the 
calculated (Cal.) parameters, except for a slight 
tendency for the simulated data to result in an 
inflated average standard error ( τσ ) associated 

with parameter estimates for τ , and slightly 
lower than expected values for the scale or over-
dispersion parameter κ . 

The results of the ZINB models 
presented at the bottom of Table 2 indicate that 
with a sample size of N = 928, when 0.75κ =  
and τ  = 2, there is approximately .95 power and 
27.0% zero-inflation for testing 2: 0AH ≠β . 

Again, as τ  decreases ( τ  = 1), the calculated 
power is reduced to approximately .90 with 
37.5% estimated zero-inflation. Also, when 
over-dispersion of the non-zero counts increases 
( 1.50κ = ), power is reduced to approximately 
.85 when τ  = 2, and .77 when τ  = 1. There is 
also the slight tendency of the simulated data to 
result in average inflated standard errors (

0γσ
and 

1γσ ) for the parameter estimates of the 

logistic portion of the model involving zero-
inflation ( 0γ  and 1γ ), and in decreased values 

for the scale or over-dispersion parameter κ than 
would be expected. 
 
ZIP( τ ), ZIP, ZINB( τ ) and ZINB Models with a 
Continuous Variable for Zero-Inflation 

Model C-τ and Model D-τ, where τ = 2 
and 1, are ZIP( τ ) and ZIP models, respectively.  
Model C-τ is defined as 
 
logit( iπ ) = 0 1z− τ−τβ β  and log( iλ ) = 0 1z+β β  

(16) 
 
where 0β = 0.5000, 1β  = -0.1500, τ  = 2 and 1, 

and z is a continuous variable distributed as 
N(0,1). These are the same parameter estimates 
of 0β and 1β used by Lyles, et al. (2007) with 

their example of standard Poisson regression 
with one continuous covariate. With this ZIP( τ ) 
model, interest is in assessing 0 1: 0H =β  versus 

1: 0AH ≠β . Model D-τ is defined as 

 
logit( iπ ) = 0 1z+γ γ  and log( iλ ) = 0 1 2z x+ +β β β  

(17) 
 
where 0β = 0.5000, 1β  = -0.1500, 2β  = -0.3000, 

0 0= −τγ β , 1 1= −τγ β , τ  = 2 and 1, x is a binary 

variable with an equal number of cases coded 0 
and 1, and z is a continuous variable distributed  
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Table 1: Parameter Estimates with a Binary Covariate for Zero-Inflation and Poisson Regression 

 ZIP( τ ) Models (N = 212) 
 Model A-2 Model A-1 
 Calculated Simulated Calculated Simulated 

τ  2.0000 2.0622 1.0000 1.0390 

τσ  0.6169 0.7034 0.4286 0.4792 

β0  0.6931 0.6962 0.6931 0.6944 

βσ
0
 0.0891 0.0894 0.0990 0.0995 

β1  -0.3567 -0.3565 -0.3567 -0.3535 

βσ
1
 0.0989 0.1005 0.1256 0.1284 

β1Power .9502 .9450 .8106 .8080 

Estimated Zero-Inflation 
x = 0 20.24% 33.70% 
x = 1 33.79% 41.59% 
Total 27.02% 37.65% 

 ZIP Models (N = 488) 
 Model B-2 Model B-1 
 Calculated Simulated Calculated Simulated 

γ0  -1.3863 -1.4075 -0.6931 -0.7109 

γσ
0
 0.2670 0.2828 0.1966 0.2020 

γ1  0.7134 0.7140 0.3567 0.3462 

γσ
1
 0.3707 0.3948 0.3023 0.3179 

β0  0.6931 0.6923 0.6931 0.6893 

βσ
0
 0.0789 0.0793 0.0865 0.0871 

β1  -0.3567 -0.3551 -0.3567 -0.3654 

βσ
1
 0.1237 0.1246 0.1331 0.1348 

β2  -0.3567 -0.3608 -0.3567 -0.3554 

βσ
2
 0.0991 0.0995 0.1105 0.1110 

β2 Power .9494 .9540 .8976 .8980 

Estimated Zero-Inflation 
z = 0 20.08% 33.41% 
z = 1 33.71% 41.58% 
Total 26.90% 37.49% 
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Table 2: Parameter Estimates with a Binary Covariate for Zero-Inflation 
and Negative Binomial Regression 

 ZINB( τ ) Models (N = 464) 
 Model A-2 Model A-1 
 κ = 0.75 κ = 1.50 κ = 0.75 κ = 1.50 
 Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. 

τ  2.0000 2.0357 2.0000 1.9844 1.0000 0.9932 1.0000 1.0301 

τσ  1.1833 1.7476 1.8512 2.5505 0.7365 0.9743 1.1022 1.8936 

β0  0.6931 0.6997 0.6931 0.7429 0.6932 0.7081 0.6932 0.7246 

βσ
0
 0.1394 0.1390 0.2089 0.1944 0.1507 0.1525 0.2192 0.2184 

β1  -0.3567 -0.3546 -0.3567 -0.3696 -0.3567 -0.3624 -0.3567 -0.3755 

βσ
1
 0.0991 0.1015 0.1282 0.1334 0.1266 0.1319 0.1636 0.1690 

κ  0.7500 0.7257 1.5000 1.3386 0.7500 0.7203 1.5000 1.4175 
κσ  0.2545 0.2625 0.5440 0.5055 0.2635 0.2792 0.5405 0.5746 

β1Power .9494 .9520 .7946 .8182 .8044 .8120 .5872 .6030 

Estimated Zero-Inflation 
x = 0 20.24% 20.14% 33.42% 33.43% 
x = 1 33.48% 34.06% 41.54% 41.90% 
Total 26.86% 27.10% 37.48% 37.66% 

 ZINB Models (N = 928) 
 Model A-2 Model A-1 
 κ = 0.75 κ = 1.50 κ = 0.75 κ = 1.50 
 Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. 

γ0  -1.3864 -1.4394 -1.3858 -1.3223 -0.6931 -0.7373 -0.6930 -0.6546 

γσ
0
 0.4858 0.9712 0.7643 1.1975 0.3241 0.4062 0.5034 0.6438 

γ1  0.7134 0.7361 0.7128 0.6702 0.3568 0.3714 -0.3566 0.3405 

γσ
1
 0.3703 0.7984 0.4691 0.8262 0.2702 0.3187 0.3102 0.3877 

β0  0.6931 0.6940 0.6932 0.7235 0.6932 0.6960 0.6932 0.7210 

βσ
0
 0.1199 0.1212 0.1773 0.1745 0.1307 0.1328 0.1931 0.1919 

β1  -0.3567 -0.3566 -0.3567 -0.3678 -0.3566 -0.3635 -0.3567 -0.3624 

βσ
1
 0.1250 0.1249 0.1501 0.1482 0.1347 0.1344 0.1618 0.1596 

β2  -0.3567 -0.3584 -0.3567 -0.3545 -0.3567 -0.3584 -0.3567 -0.3538 

βσ
2
 0.0992 0.0991 0.1198 0.1193 0.1096 0.1092 0.1318 0.1308 

κ  0.7500 0.7380 1.4999 1.4080 0.7500 0.7417 1.4999 1.4173 
κσ  0.2216 0.2333 0.4897 0.4968 0.2508 0.2611 0.5321 0.5606 

β2 Power .9491 .9379 .8455 .8460 .9023 .9050 .7723 .7730 

Estimated Zero-Inflation 
z = 0 20.22% 20.14% 33.51% 33.36% 
z = 1 33.74% 33.82% 41.70% 41.73% 
Total 26.98% 27.00% 37.60% 37.54% 

Note: Cal. indicates calculated values, and Sim. indicates simulated values.
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Table 3: Parameter Estimates with a Continuous Covariate for Zero-Inflation 
and Poisson Regression 

 ZIP( τ ) Models (N = 302) 
 Model C-2 Model C-1 
 Calculated Simulated Calculated Simulated 

τ  2.0000 2.0411 1.0000 1.0566 

τσ  0.5460 0.6017 0.3848 0.4254 

β0  0.5000 0.5004 0.5000 0.4963 

βσ
0
 0.0625 0.0628 0.0685 0.0688 

β1  -0.1500 -0.1501 -0.1500 -0.1519 

βσ
1
 0.0416 0.0421 0.0525 0.0529 

β1Power .9501 .9500 .8152 .8120 

Estimated Zero-Inflation 
Total 27.39% 37.99% 

 ZIP Models (N = 694) 
 Model D-2 Model D-1 
 Calculated Simulated Calculated Simulated 

γ0  -1.0000 -1.0154 -0.5000 -0.5060 

γσ
0
 0.1521 0.1581 0.1253 0.1283 

γ1  0.3000 0.3057 0.1500 0.1492 

γσ
1
 0.1513 0.1563 0.1241 0.1271 

β0  0.5000 0.4979 0.5000 0.4953 

βσ
0
 0.0610 0.0613 0.0662 0.0667 

β1  -0.1500 -0.1517 -0.1500 -0.1496 

βσ
1
 0.0493 0.0494 0.0532 0.0536 

β2  -0.3000 -0.2992 -0.3000 -0.2987 

βσ
2
 0.0832 0.0834 0.0925 0.0930 

β2 Power .9501 .9510 .9003 .9010 

Estimated Zero-Inflation 
Total 27.32% 37.83% 
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Table 4: Parameter Estimates with a Continuous Covariate for Zero-Inflation 
and Negative Binomial Regression 

 ZINB( τ ) Models (N = 648) 
 Model C-2 Model C-1 
 κ = 0.75 κ = 1.50 κ = 0.75 κ = 1.50 
 Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. 

τ  2.0000 1.9793 2.0000 2.0477 1.0000 1.0284 1.0000 1.0499 

τσ  1.0565 1.3623 1.6377 2.3039 0.6816 0.9086 1.0280 1.7596 

β0  0.5000 0.5179 0.5000 0.5217 0.5000 0.5111 0.5000 0.5185 

βσ
0
 0.0991 0.0984 0.1475 0.1460 0.1040 0.1059 0.1509 0.1571 

β1  -0.1500 -0.1537 -0.1500 -0.1527 -0.1500 -0.1504 -0.1500 -0.1562 

βσ
1
 0.0416 0.0429 0.0533 0.0556 0.0530 0.0541 0.0680 0.0712 

κ  0.7500 0.7390 1.5000 1.4247 0.7500 0.7297 1.5000 1.4372 
κσ  0.2224 0.2335 0.4733 0.4763 0.2331 0.2436 0.4832 0.5209 

β1Power .9501 .9470 .8035 .8110 .8079 .8130 .5972 .5980 

Estimated Zero-Inflation 
Total 27.27% 27.46% 37.67% 37.90% 

 ZINB Models (N = 1324) 
 Model D-2 Model D-1 
 κ = 0.75 κ = 1.50 κ = 0.75 κ = 1.50 
 Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. 

γ0  -1.0000 -1.0242 -1.0001 -0.9989 -0.5000 -0.5025 -0.5001 -0.5026 

γσ
0
 0.3105 0.3867 0.4902 0.5990 0.2386 0.2635 0.3751 0.4525 

γ1  0.3000 0.3066 0.3001 0.3136 0.1500 0.1554 0.1500 0.1554 

γσ
1
 0.1466 0.1757 0.1794 0.2260 0.1118 0.1197 0.1282 0.1528 

β0  0.5000 0.5024 0.5000 0.5176 0.5000 0.5034 0.5000 0.5090 

βσ
0
 0.0967 0.0964 0.1442 0.1402 0.1049 0.1062 0.1570 0.1581 

β1  -0.1500 -0.1516 -0.1500 -0.1485 -0.1500 -0.1497 -0.1500 -0.1524 

βσ
1
 0.0512 0.0508 0.0620 0.0615 0.0555 0.0555 0.0672 0.0670 

β2  -0.3000 -0.3050 -0.3000 -0.3020 -0.3000 -0.3012 -0.3000 -0.2988 

βσ
2
 0.0832 0.0831 0.1005 0.1001 0.0918 0.0917 0.1104 0.1101 

κ  0.7500 0.7370 1.5000 1.4476 0.7500 0.7392 1.5001 1.4665 
κσ  0.1868 0.1900 0.4101 0.4042 0.2032 0.2129 0.4479 0.4739 

β2 Power .9501 .9530 .8473 .8420 .9046 .8980 .7756 .7710 

Estimated Zero-Inflation 
Total 27.32% 27.37% 37.82% 37.79% 

Note: Cal. indicates calculated values, and Sim. indicates simulated values. 
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as N(0,1). With this ZIP model, interest is in 
testing 0 2: 0H =β  versus 2: 0AH ≠β . 

The ZINB( τ ) and ZINB models 
consisted of the same parameter estimates as the 
ZIP( τ ) and ZIP models (Model C-τ and Model 
D-τ), but included an extra scale parameter, 

0.75κ =  and 1.50κ = . SAS programming code 
to evaluate a large sample simulation for 
distributional characteristics, to construct an 
expanded data set, and to calculate power, for 
models with a continuous covariate related to the 
zero-inflation are presented in Appendices C and 
D, for the Poisson and negative binomial 
regression models, respectively. 

The results of the ZIP( τ ) and ZIP 
models with a continuous covariate for zero- 
inflation are presented in Table 3. As before, 
when τ  decreases, based on the same sample 
size and value of the regression coefficient 
tested, the calculated power is reduced, and there 
is also a slight tendency for the simulated data to 
result in inflated average parameter estimates for 
the standard error ( τσ ) with the ZIP( τ ) models, 
and with inflated average parameter estimates of 
the standard errors for the logistic portion 
involving zero-inflation (

0γσ and 
1γσ ) with the 

ZIP models. 
The results of the ZINB( τ ) and ZINB 

models with a continuous covariate for zero-
inflation are presented in Table 4. Similar to the 
results previously presented, based on the same 
sample size and value of the regression 
coefficient tested, when τ decreases and/or when 
overdispersion of the non-zero counts increases, 
the calculated power is reduced There is a slight 
tendency for simulated data to result in inflated 
average standard errors ( τσ ) for the parameter 

estimates of τ with the ZINB( τ ) models, and 
with inflated average standard errors (

0γσ and 

1γσ ) for the logistic portion involving zero-

inflation ( 0γ  and 1γ ) with the ZINB models. 

 
Conclusion 

Examples of ZIP, ZIP( τ ), ZINB and ZINB( τ ) 
models were used to extend the method of 
estimating conditional power presented by 
Lyles, et al. (2007) to zero-inflated count data. 
Utilizing the variance-covariance matrix of the 

model fitted to an expanded data set, power was 
estimated for the Wald statistic. Although not 
presented here, this method can also be used to 
approximate power based on the likelihood ratio 
test. Overall, with the same sample size and 
parameter value of the estimate of interest to be 
tested with the Wald test statistic, results 
indicated a decrease in power as the percent of 
zero-inflation and/or over-dispersion increased. 
This trend was particularly more noticeable for 
the ZIP( τ ) and ZINB( τ ) models. Calculated 
power estimates indicate if the percent of zero-
inflation or over-dispersion is underestimated, a 
loss of assumed power in the statistical test will 
result. 

To estimate power for zero-inflated 
count data it is necessary to select a value of τ 
for the ZIP( τ ) and ZINB( τ ) models or values 
of the regression coefficients associated with the 
logistic portion in the ZIP and ZINB models 
(i.e., 0γ and 1γ ) to produce the correct assumed 

proportion of zero-inflation. But in practice, 
these parameter values may be unknown or 
difficult to estimate. Generating a large 
simulated data set iteratively until the expected 
percent of zero-inflation occurs can aid the 
researcher in obtaining approximations to the 
population distributional characteristics of 
model and estimation of the parameter values 
associated with zero-inflation can be improved. 
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Appendix A: 
SAS Code with a Binary Covariate for Zero-

Inflation and Poisson Regression 
 
Step 1: Evaluate a large sample simulation for 
distributional characteristics. 
 
ZIP( τ ) 
data ziptau1; seed = 12345;     
lambda1 = 2; lambda2 = 1.4; tau = 2;   
n = 100000;   
beta0 = log(lambda1);  
beta1 = log(lambda2) - log(lambda1);   
do x = 0 to 1; do i = 1 to n;   
lambda = exp(beta0 + beta1*x);   
prob_0 = exp(-tau*beta0 - tau*beta1*x)/  
(1 + exp(-tau*beta0 - tau*beta1*x));  
zero_inflate = ranbin(seed,1,prob_0);  
if zero_inflate = 1 then y = 0;  
else y = ranpoi(seed,lambda);  
if zero_inflate = 0 then yPoisson = y;   
else yPoisson = .;   
output; end; end;   
proc sort; by x;  
proc freq; tables y zero_inflate; by x; run;  
proc freq; tables zero_inflate; run;   
proc means mean var n; var y yPoisson;  
by x; run;   
 
ZIP 
data zip1; seed = 12345;  
lambda1 = 2; lambda2 = 1.4; tau = 2;  
n = 100000;  
beta0 = log(lambda1);  
beta1 = log(lambda2) - log(lambda1);  
beta2 = beta1;  
gamma0 = -tau*beta0;  
gamma1 = -tau*beta1;  
do x = 0 to 1; do z = 0 to 1; do i = 1 to n;  
lambda = exp(beta0 + beta1*z + beta2*x);   
prob_0 = exp(gamma0 + gamma1*z)/  
(1 + exp(gamma0 + gamma1*z));  
zero_inflate = ranbin(seed,1,prob_0);  

if zero_inflate = 1 then y=0;  
else y = ranpoi(seed,lambda);   
if zero_inflate = 0 then yPoisson = y;  
else yPoisson=.;   
output; end; end; end;  
proc sort; by x z;   
proc freq; tables y zero_inflate; by x z; run; 
proc means mean var n; var y yPoisson;  
by x z; run;  
proc sort; by z; 
proc freq; tables zero_inflate; by z; run;   
proc freq; tables zero_inflate; run; 
 
Step 2: Construct an expanded data set to 
approximate conditional power. 
 
ZIP( τ ) 
data ziptau2;   
lambda1 = 2; lambda2 = 1.4; tau = 2;   
totaln = 212; numgroups = 2;  
n = totaln/numgroups;   
increment = 10;  
beta0 = log(lambda1);   
beta1 = log(lambda2) - log(lambda1); 
do x = 0 to 1;   
if x = 0 then j = 13; if x = 1 then j = 9;  
do i = 1 to n;  
lambda = exp(beta0 + beta1*x);  
prob_0 = exp(-tau*beta0 - tau*beta1*x)/  
(1 + exp(-tau*beta0 - tau*beta1*x));  
do y = 0 to j + increment;   
if y = 0 then w = prob_0 + (1-prob_0) *(exp(-
lambda)*lambda**y)/gamma(y + 1);  
if y > 0 then w = (1-prob_0)*(exp 
(-lambda)*lambda**y)/gamma(y + 1);  
output; end; end; end;  
proc nlmixed tech=dbldog cov;  
parameters t=3 b0=0 b1=0;  
p0 = exp(-t*b0 - t*b1*x)/(1 + exp(-t*b0 -
t*b1*x)); mu = exp(b0 + b1*x); 
if y = 0 then do;  
ll = (log(p0 + (1 - p0)*exp(-mu))); end;  
if y > 0 then do;  
ll = (log(1 - p0) + y*log(mu) - lgamma(y + 1) -
mu); end; loglike = w*ll;  
model y ~ general(loglike); run; 
 
ZIP 
data zip2;  
lambda1 = 2; lambda2 = 1.4; tau = 2;  
totaln = 488; numgroups = 4;  
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n = totaln/numgroups;   
increment = 10; 
beta0 = log(lambda1);  
beta1 = log(lambda2) - log(lambda1);  
beta2 = beta1;  
gamma0 = -tau*beta0;  
gamma1 = -tau*beta1;   
do x = 0 to 1; do z =0 to 1;  
if x = 0 and z = 0 then j = 13;   
if x = 0 and z = 1 then j = 9;  
if x = 1 and z = 0 then j = 8;  
if x = 1 and z = 1 then j = 7;  
do I = 1 to n;  
lambda = exp(beta0 + beta1*z + beta2*x);  
prob_0 = exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z));  
do y = 0 to j + increment ;  
if y = 0 then w = prob_0 + (1-prob_0)*  
(exp(-lambda)*lambda**y)/gamma(y + 1); 
if y > 0 then w = (1-prob_0)*(exp(-lambda) 
*lambda**y)/gamma(y + 1);  
output; end; end; end; end;  
proc nlmixed tech=dbldog cov;  
parameters g0=0 g1=0 b0=0 b1=0 b2=0;  
p0 = exp(g0 + g1*z)/(1 + exp(g0 + g1*z));  
mu = exp(b0 + b1*z + b2*x);  
if y = 0 then do;  
ll = (log(p0 + (1 - p0)*exp(-mu))); end;  
if y > 0 then do;  
ll = (log(1 - p0) + y*log(mu) - lgamma(y + 1) - 
mu); end; loglike = w*ll;  
model y ~ general(loglike); run; 
 
Step 3: Calculate power. 
 
data power; estimate = -0.3567; standerr = 
0.0989;  
eta = (estimate**2)/(standerr**2); critvalue = 
cinv(.95,1);  
power = 1-probchi(critvalue,1,eta); proc print; 
var eta power; run; 

 
Appendix B: 

SAS Programming Code with a Binary 
Covariate for Zero-Inflation and Negative 

Binomial Regression 
Step 1: Evaluate a large sample simulation for 
distributional characteristics. 
 
ZINB( τ ) 
data zinbtau1; seed = 12345;  

lambda1 = 2; lambda2 = 1.4; tau = 2;  
n = 100000;  
beta0 = log(lambda1);  
beta1 = log(lambda2) - log(lambda1);  
kappa = .75; delta = 1/kappa;   
do x = 0 to 1; do i = 1 to n;  
lambda = exp(beta0 + beta1*x);  
phi = 1/delta*rangam(seed,delta);   
theta = lambda*phi;  
prob_0 = exp(-tau*beta0 - tau*beta1*x)/  
(1 + exp(-tau*beta0 - tau*beta1*x));   
zero_inflate = ranbin(seed,1,prob_0);  
if zero_inflate = 1 then y = 0;  
else y = ranpoi(seed,theta);  
if zero_inflate = 0 then yPoisson = y;  
else yPoisson = .; output; end; end;  
proc sort; by x;  
proc freq; tables y zero_inflate; by x; run;  
proc freq; tables zero_inflate; run;   
proc means mean var max; var y yPoisson; 
by x; run;  
proc means mean var n; var y yPoisson; run; 
 
ZINB 
data zinb1; seed = 12345; 
lambda1 = 2; lambda2 = 1.4; tau = 2; 
n = 100000; kappa = .75; delta = 1/kappa; 
beta0 = log(lambda1); 
beta1 = log(lambda2) - log(lambda1); 
beta2 = beta1; 
gamma0 = -tau*beta0; 
gamma1 = -tau*beta1; 
do x = 0 to 1; do z = 0 to 1; do i = 1 to n; 
lambda = exp(beta0 + beta1*z + beta2*x); 
phi = 1/delta*rangam(seed,delta); 
theta = lambda*phi; 
prob_0 =exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z)); 
zero_inflate = ranbin(seed,1,prob_0); 
if zero_inflate = 1 then y = 0; 
else y = ranpoi(seed, theta); 
if zero_inflate = 0 then yPoisson = y;  
else yPoisson = .; output; end; end; end; 
proc sort; by x z; 
proc freq; tables y zero_inflate; by x z; run; 
proc means mean var max n;  
var y yPoisson; by x z; run; 
proc sort; by z; 
proc freq; tables y zero_inflate; by z; run; 
proc freq; tables y zero_inflate; run; 
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Step 2: Construct an expanded data set to 
approximate conditional power. 
 
ZINB( τ ) 
data zinbtau2; 
lambda1 = 2; lambda2 = 1.4; tau = 2; 
totaln = 464; numgroups = 2; kappa = .75; 
n = totaln/numgroups; increment = 8; 
beta0 = log(lambda1); 
beta1 = log(lambda2) - log(lambda1); 
do x = 0 to 1; 
if x = 0 then j = 29; if x = 1 then j = 20; 
do i = 1 to n; 
lambda = exp(beta0 + beta1*x); 
prob_0 = exp(-tau*beta0 - tau*beta1*x)/ 
(1 + exp(-tau*beta0 - tau*beta1*x)); 
do y = 0 to j + increment; 
if y = 0 then w = prob_0 + (1-prob_0) *  
gamma(kappa**-1 + y)/ 
(gamma(kappa**-1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
if y > 0 then w = (1-prob_0)* gamma(kappa**-1 
+ y)/(gamma(kappa**-1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
output; end; end; end; 
proc nlmixed tech=dbldog cov; 
parameters t=3 b0=0 b1=0 k=1; 
p0 = exp(-t*b0 - t*b1*x)/(1 + exp(-t*b0 
- t*b1*x)); mu = exp(b0 + b1*x); 
if y = 0 then do; 
ll = p0 + (1-p0)*exp(-(y+(1/k))* log(1+k*mu)); 
end; 
if y > 0 then do; 
ll = (1-p0)*exp(lgamma(y+(1/k)) - lgamma(y+1) 
- lgamma(1/k) + y*log(k*mu) - (y + (1/k)) * 
log(1 + k*mu)); end; 
loglike = w * log(ll); 
model y ~ general(loglike); run; 
 
ZINB 
data zinb2; 
lambda1 = 2; lambda2 = 1.4; tau = 2; 
totaln = 928; numgroups=4; kappa = .75; 
n = totaln/numgroups; increment = 5; 
beta0 = log(lambda1); 
beta1 = log(lambda2) - log(lambda1); 
beta2 = beta1; 
gamma0 = -tau*beta0; 
gamma1 = -tau*beta1; 

do x = 0 to 1; do z = 0 to 1; 
if x = 0 and z = 0 then j = 29; 
if x = 0 and z = 1 then j = 20; 
if x = 1 and z = 0 then j = 21; 
if x = 1 and z = 1 then j = 14; 
do i = 1 to n; 
lambda = exp(beta0 + beta1*z + beta2*x); 
prob_0 = exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z)); 
do y = 0 to j + increment; 
if y = 0 then w = prob_0 + (1-prob_0) * 
gamma(kappa**-1 + y)/(gamma(kappa**-
1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
if y > 0 then w = (1-prob_0)* gamma(kappa**-1 
+ y)/(gamma(kappa**-1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
output; end; end; end; end; 
proc nlmixed tech=dbldog cov; 
parameters g0=0 g1=0 b0=0 b1=0 b2=0 k=1; 
p0 = exp(g0 + g1*z) / (1 + exp(g0 
+ g1*z)); mu = exp(b0 + b1*z + b2*x); 
if y = 0 then do; 
ll = p0 + (1-p0)*exp(-(y+(1/k))* log(1+k*mu)); 
end; 
if y > 0 then do; 
ll = (1-p0)*exp(lgamma(y+(1/k)) - lgamma(y+1) 
- lgamma(1/k) + y*log(k*mu) - (y + (1/k)) * 
log(1 + k*mu)); end; 
loglike = w * log(ll); 
model y ~ general(loglike); run; 
 
Step 3: Calculate power. 
 
data power; estimate = -0.3567; standerr = 
0.0991; 
eta = (estimate**2)/(standerr**2); critvalue = 
cinv(.95,1);  
power = 1 - probchi(critvalue,1,eta); proc print; 
var eta power; run; 

 
Appendix C: 

SAS Code with a Continuous Covariate for 
Zero-Inflation and Poisson Regression 

 
Step 1: Evaluate a large sample simulation for 
distributional characteristics. 
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ZIP( τ ) 
data ziptau3; seed = 12345;   
tau = 2; n = 100000;  
beta0 = .50; beta1 = -.15;   
do i = 1 to n;  
z = rannor(seed);  
lambda = exp(beta0 + beta1*z);  
prob_0 = exp(-tau*beta0 - tau*beta1*z)/  
(1 + exp(-tau*beta0 - tau*beta1*z));  
zero_inflate = ranbin(seed,1,prob_0);  
if zero_inflate = 1 then y = 0;   
else y = ranpoi(seed, lambda);   
if zero_inflate = 0 then yPoisson=y;  
else yPoisson = .;  
output; end;  
proc freq; tables y zero_inflate; run;  
proc means mean var n; var y yPoisson; run; 
 
ZIP 
data zip3; seed = 12345;   
tau = 2; n = 100000;   
beta0 = .50; beta1 = -.15;   
beta2 = 2 * beta1;  
gamma0 = -tau*beta0;  
gamma1 = -tau*beta1;  
do x = 0 to 1; do i = 1 to n;   
z = rannor(seed);    
lambda = exp(beta0 + beta1*z + beta2*x);  
prob_0 = exp(gamma0 + gamma1*z)/  
(1 + exp(gamma0 + gamma1*z));  
zero_inflate = ranbin(seed,1,prob_0);  
if zero_inflate = 1 then y = 0;   
else y = ranpoi(seed, lambda);   
if zero_inflate = 0 then yPoisson=y;  
else yPoisson = .;   
output; end; end;  
proc freq; tables y zero_inflate; run; 
proc sort; by x; 
proc freq; tables y; by x; run; 
proc means mean var n; var y yPoisson;  
by x; run; 
 
Step 2: Construct an expanded data set to 
approximate conditional power. 
 
ZIP( τ ) 
data ziptau4;  
tau = 2; n = 302; j = 11;  
beta0 = .50; beta1 = -.15;  
increment = 10;  
do i = 1 to n; 

z = probit((i - 0.375)/( n + 0.25));   
lambda = exp(beta0 + beta1*z);   
prob_0 = exp(-tau*beta0 - tau*beta1*z)/  
(1 + exp(-tau*beta0 - tau*beta1*z));   
do y = 0 to j + increment;    
if y = 0 then w = prob_0 + (1-prob_0) *(exp(-
lambda)*lambda**y)/gamma(y+1);  
if y > 0 then w = (1-prob_0)*(exp  
(-lambda)*lambda**y)/gamma(y+1);  
output; end; end;  
proc nlmixed tech=dbldog cov;  
parameters t=3 b0=0 b1=0;   
p0 = exp(-t*b0 - t*b1*z)/(1 + exp(-t*b0  
- t*b1*z)); mu = exp(b0 + b1*z);  
if y = 0 then do;   
ll = (log(p0 + (1-p0)*exp(-mu))); end;  
if y > 0 then do;  
ll = (log(1-p0) + y*log(mu) - lgamma(y+1) - 
mu); end; loglike = w * ll;   
model y ~ general(loglike); run; 
 
ZIP 
data zip4;  
tau = 2; totaln = 694; numgroups=2; 
n = totaln/numgroups; increment = 10;  
beta0 = .50; beta1 = -.15;  
beta2 = 2* beta1;  
gamma0 = -tau*beta0;  
gamma1 = -tau*beta1;  
do x = 0 to 1;  
if x = 0 then j = 11; if x = 1 then j = 9;  
do i = 1 to n;  
z = probit((i -0.375)/(n + 0.25));   
lambda = exp(beta0 + beta1*z + beta2*x); 
prob_0 = exp(gamma0 + gamma1*z)/  
(1 + exp(gamma0 + gamma1*z));  
do y = 0 to j + increment ;  
if y = 0 then w = prob_0 + (1-prob_0) *(exp(-
lambda)*lambda**y)/gamma(y+1);  
if y > 0 then w = (1-prob_0)*(exp 
(-lambda)*lambda**y)/gamma(y+1);   
output; end; end; end;   
proc nlmixed tech=dbldog cov;   
parameters g0=0 g1=0 b0=0 b1=0 b2=0;  
p0 = exp(g0 + g1*z)/(1 + exp(g0 + g1*z)); 
mu = exp(b0 + b1*z + b2*x);  
if y = 0 then do;  
ll = (log(p0 + (1-p0)*exp(-mu))); end;  
if y > 0 then do;  
ll = (log(1-p0) + y*log(mu) - lgamma(y+1)- 
mu); end; loglike = w * ll;   
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model y ~ general(loglike); run; 
Step 3: Calculate power. 
 
data power; estimate = -0.1500; standerr = 
0.0416;  
eta = (estimate**2)/(standerr**2); 
critvalue=cinv(.95,1);  
power=1-probchi(critvalue,1,eta); proc print; var 
eta power; run; 
 

Appendix D: 
SAS Programming Code with a Continuous 
Covariate for Zero-Inflation and Negative 

Binomial Regression 
Step 1: Evaluate a large sample simulation for 
distributional characteristics. 
 
ZINB( τ ) 
data zinbtau3; seed = 12345; 
tau = 2; n = 100000; 
beta0 = .50; beta1 = -.15; 
kappa = .75; delta = 1/kappa; 
do i = 1 to n; 
z = rannor(seed); 
lambda = exp(beta0 + beta1*z); 
phi = 1/delta*rangam(seed,delta); 
theta = lambda*phi; 
prob_0 = exp(-tau*beta0 - tau*beta1*z)/ 
(1 + exp(-tau*beta0 - tau*beta1*z)); 
zero_inflate = ranbin(seed,1,prob_0); 
if zero_inflate = 1 then y = 0; 
else y = ranpoi(seed,theta); 
if zero_inflate=0 then yPoisson=y;    
else yPoisson=.; output; end; 
proc freq; tables y zero_inflate; run; 
proc means mean var max n; var y yPoisson; 
run; 
 
ZINB 
data zinb3; seed = 12345; 
tau = 2; n = 100000; 
beta0 = .50; beta1 = -.15; 
beta2 = 2 * beta1; 
gamma0 = -tau*beta0; 
gamma1 = -tau*beta1; 
kappa = .75; delta = 1/kappa; 
do x = 0 to 1; 
do i = 1 to n; 
z = rannor(seed); 
lambda = exp(beta0 + beta1*z + beta2*x); 
phi = 1/delta*rangam(seed,delta); 

theta = lambda*phi; 
prob_0 = exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z)); 
zero_inflate = ranbin(seed,1,prob_0); 
if zero_inflate = 1 then y = 0; 
else y = ranpoi(seed,theta); 
if zero_inflate=0 then yPoisson=y;   
else yPoisson=.; output; end; end; 
proc sort; by x; 
proc freq; tables y zero_inflate; by x; run; 
proc freq; tables y zero_inflate; run; 
proc means mean var max n; var y yPoisson; by 
x; run; 
proc means mean var n; var y yPoisson; run; 
 
Step 2: Construct an expanded data set to 
approximate conditional power. 
 
ZINB( τ ) 
data zinbtau4; 
tau = 2; n = 648; 
beta0 = .5; beta1 = -.15; 
kappa = .75; j = 23; increment = 7; 
do i = 1 to n; 
z = probit((i - 0.375)/( n + 0.25)); 
lambda = exp(beta0 + beta1*z); 
prob_0 = exp(-tau*beta0 - tau*beta1*z)/ 
(1 + exp(-tau*beta0 - tau*beta1*z)); 
do y = 0 to j + increment; 
if y = 0 then w = prob_0 + (1-prob_0) * 
gamma(kappa**-1 + y)/(gamma(kappa**-
1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
if y > 0 then w = (1-prob_0)*  
gamma(kappa**-1 + y)/(gamma(kappa**-1) 
*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
output; end; end; 
proc nlmixed tech=dbldog cov; 
parameters t=3 b0=0 b1=0 k=1; 
p0 = exp(-t*b0 - t*b1*z)/(1 + exp(-t*b0 
- t*b1*z)); mu = exp(b0 + b1*z); 
if y = 0 then do; 
ll = p0 + (1-p0)*exp(-(y+(1/k))* log(1+k*mu)); 
end; 
if y > 0 then do; 
ll = (1-p0)*exp(lgamma(y+(1/k)) - lgamma(y+1) 
- lgamma(1/k) + y*log(k*mu)- (y + (1/k)) * 
log(1 + k*mu)); end;  
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loglike = w * log(ll); 
model y ~ general(loglike); run; 
 
ZINB 
data zinb4; 
totaln = 1324; numgroups = 2; 
n = totaln/numgroups; tau = 2; 
beta0 = .5; beta1 = -.15; beta2 = 2*beta1; 
gamma0 = -tau*beta0; gamma1 = -tau*beta1; 
kappa = .75; increment = 5; 
do x = 0 to 1; 
if x = 0 then j = 23; if x = 1 then j = 19; 
do i = 1 to n; 
z = probit((i - 0.375)/( n + 0.25)); 
lambda = exp(beta0 + beta1*z + beta2*x); 
prob_0 = exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z)); 
do y = 0 to j + increment; 
if y = 0 then w = prob_0 + (1-prob_0) * 
gamma(kappa**-1 + y)/ 
(gamma(kappa**-1) *gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
if y > 0 then w = (1-prob_0)* gamma(kappa**-1 
+ y)/(gamma(kappa**-1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
output; end; end; end; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

proc nlmixed tech=dbldog cov; 
parameters g0=0 g1=0 b0=0 b1=0 b2=0; 
p0 = exp(g0 + g1*z)/(1 + exp(g0 + g1*z)); 
mu = exp(b0 + b1*z + b2*x); 
if y = 0 then do; 
ll = p0 + (1-p0)*exp(-(y+(1/k))* log(1+k*mu)); 
end; 
if y > 0 then do; 
ll = (1-p0)*exp(lgamma(y+(1/k)) - lgamma(y+1) 
- lgamma(1/k) + y*log(k*mu)- (y + (1/k)) * 
log(1 + k*mu)); end;  
loglike = w * log(ll); 
model y ~ general(loglike); run; 
 
Step 3: Calculate power. 
 
data power; estimate = -0.1500; standerr = 
0.0416;  
eta = (estimate**2)/(standerr**2); 
critvalue=cinv(.95,1);  
power=1-probchi(critvalue,1,eta); proc print; var 
eta power; run; 
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Ordinary Least Squares (OLS), Poisson, Negative Binomial, and Quasi-Poisson Regression methods were 
assessed for testing the statistical significance of a trend by performing 10,000 simulations. The Poisson 
method should be used when data follow a Poisson distribution. The other methods should be used when 
data follow a normal distribution. 
 
Key words: Monte Carlo, simulation, Ordinary least squares regression, Poisson regression, negative 
binomial regression, Quasi-Poisson regression. 
 
 

Introduction 
In the analysis of trend data, the key question is 
whether the trend reflects a true change or, 
alternatively, random variation. Statistical 
methods can be used to assess the probability 
that a trend has occurred due to chance. One 
approach is to use regression techniques to 
calculate the slope of the line that best fits the 
trend. If the slope of the line is significantly 
different from the flat line slope of zero, the 
trend is assumed to be non-random. 

Disease and mortality rates generally 
change exponentially over time and are therefore 
linear in terms of the natural logarithm of the 
rate. Consequently, methods based on the slope 
of a straight line can be used to examine the 
natural logarithm of rates over time. The slope 
of the line that best fits the trend of the 
logarithm of the rates can also be used to 
calculate the estimated annual percent change  
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(EAPC). This is explained in more detail on the 
National Cancer Institute internet web page 
under the Surveillance, Epidemiology and End 
Results program (SEER) (http://seer.cancer.gov/ 
seerstat/WebHelp/Trend_Algorithms.htm). 

Several commonly used methods for 
assessing the statistical significance of trends 
exist. These methods differ in the assumptions 
made about the distribution of the data and in the 
way the slope is calculated. The Poisson 
regression method assumes the numerator and 
denominator data for the rates follow a Poisson 
distribution and the variances are assumed to be 
equal to the means. The dependent variable is 
the natural logarithm of the numerators with the 
natural logarithm of the denominators used as an 
offset (Dunteman & Ho, 2006). This method has 
been used by Liu et al to analyze trends in stroke 
deaths in Japan (Liu, Ikeda & Yamori, 2006); by 
Botha et al to analyze trends in breast cancer 
deaths in Europe (Botha, et al., 2001) and by 
Lieb et al to analyze HIV/AIDS diagnosis trends 
in Florida (Lieb, et al., 2007). 

The Quasi-Poisson and Negative 
Binomial regression methods are similar to the 
Poisson regression method but these methods do 
not assume the variances are equal to the means. 
For more information on the Quasi-Poisson and 
Negative Binomial  methods see Wolfram 
Mathworld (http://mathworld.wolfram.com/ 
NegativeBinomialDistribution.html) and The R 
Stats Package  (http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/family.html). 
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The ordinary least squares (OLS) 
regression method assumes the numerators and 
denominators follow a Gaussian or Normal 
distribution and the dependent variable is the 
natural logarithm of the rates. This method is 
recommended by the National Cancer Institute 
and has been used by Olson, et al. to analyze 
trends in incidence of Primary Central Nervous 
System Non-Hodgkin Lymphoma in the U.S. 
(Olson, et al., 2002). 

When these methods are applied to 
randomly generated data, the probability of 
observing a statistically significant result should 
be close to the alpha level selected for the test. 
This is usually 0.05. The performance of these 
methods can be assessed by repeatedly applying 
them to randomly generated data and calculating 
the proportion of trials that result in statistical 
significance. If the tests are performing well in 
situations where the null hypothesis is true and 
there is no trend, this proportion should be close 
to the alpha level. This is generally known as a 
Monte Carlo experiment. 

Monte Carlo experiments can also be 
used to assess the performance of these methods 
when there is a trend and the null hypothesis of 
no trend is false. Ideally, a method that performs 
well would detect a trend, when the null 
hypothesis of no trend is true, in about 5% of the 
tests; and when the null hypothesis of no trend is 
false, the ideal method would detect a significant 
trend in a relatively high proportion of the tests, 
compared to the other methods. In this analysis, 
Monte Carlo experiments were used to evaluate 
and compare the four methods discussed above. 
The objective is to provide a better 
understanding regarding the choice of the 
appropriate method for a given situation. 
 

Methodology 
R software (The R Project for Statistical 
Computing available at: http://www.r-
project.org/) was used to randomly generate 10 
sets of numerators and denominators. These 
were then used to calculate simulated rates. 
Random data were generated based on means 
and standard deviations from four different sets 
of numerators and denominators taken from 
actual statistics for the period 1996 through 2005 
(Florida Community Health Assessment 
Resource Tool Kit (CHARTS) at: 

http://www.floridacharts.com/charts/chart.aspx). 
The four data sets used were: 
 

1) Injury mortality data for Florida;  
2) Infant mortality (death before age 1) data 

for Florida; 
3) Infant low birth weight (birth weight < 

2500 grams) data for a Florida county; and 
4) Infant mortality data for a Florida County. 

 
The means and standard deviations for the 
numerators and denominators in these 4 data sets 
are given in table 1. 

The data were generated to follow either 
a Normal (Gaussian) or a Poisson distribution. 
The 4 methods described in the Introduction 
were applied to the data sets and the results were 
compared. These methods were used to derive 
the equation that best fit the trend. The equation 
slope coefficient and the standard deviation of 
the slope coefficient were used to test for a 
statistically significant trend. The glm 
(generalized linear model) function in R was 
used to generate the equations. 

This process was repeated 10,000 times 
and the proportion of trials that indicated 
statistical significance was compared for the 4 
methods. In general, when statistical tests are 
applied to random data, where the null 
hypothesis is true, statistical significance will be 
observed in a proportion close to the alpha level 
of the test. This follows because the alpha level 
is defined as the probability of rejecting the null 
hypothesis when the null hypothesis is true. 
With trend data, the null hypothesis asserts there 
is no underlying trend and any observed trend is 
due to random variation. The four methods were 
compared in terms of their ability to accept the 
null hypothesis when the null hypothesis of no 
trend is true. 

The four methods were also assessed for 
their ability to reject the null hypothesis of no 
trend when it is false. In this process the random 
data were generated as described above and then 
each succeeding simulated year of cases was 
increased by 1%. The formula for this simulated 
increase was (1.01)(n-1), where n is the year 
numbers 1 through 10. These data were 
generated  for  10,000  simulated 10 year periods  
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and, as described above, the four methods were 
used to test for significant trends. 
 

Results 
The tables below give the results of the Monte 
Carlo trials. In the simulations where the null 
hypothesis of no trend was true, the statistical 
tests using OLS, Quasipoisson and Negative 
Binomial regression methods performed well 
when the data were normally distributed and 
also when the data followed a Poisson 
distribution.  

As expected, with an alpha level of 0.05, 
approximately 2.5% of the trials reached 
statistically high significance and approximately 
2.5% reached statistically low significance 
(Tables 2 through 5). In contrast, the Poisson 
regression method performed well only when 
the numerators and denominators followed the 
Poisson distribution. In simulations where the 
data followed a Normal distribution, and the null 
hypothesis of no trend was true, the Poisson 
regression method indicated statistical 
significance in far more than 5% of the 
simulations (Tables 2 through 5). The results for 
the Poisson method were better for the smaller 
data sets. 

For example, in the test data set with the 
largest numerators and denominators (Table 2) 
the Poisson method indicated a significant trend 
in almost 90% (45.57% significantly low plus 
44.24% significantly high) of the simulations 
where the null hypothesis of no trend was true, 
while the other 3 methods indicated a significant 
trend in a proportion close to the alpha level of 
5%. The Poisson method performed better as the 
size of the numerators and denominators in the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
test data sets became smaller. For the data set 
with the smallest numerators and denominators 
(Table 5) the Poisson method indicated 
significance in 8.24% of the simulations where 
the null hypothesis was true, which is much 
closer to the desired alpha level of 5%. 

In the results for the simulations where 
the null hypothesis of no trend was false (Tables 
2 through 5), three of the four methods 
performed about equally, when the data were 
normally distributed. In contrast, the Poisson 
regression method detected the trend in larger 
proportions of the trails. For example, in Table 2 
for the simulations with the normally distributed 
data, where the null hypothesis was false, the 
Poisson method detected a significant trend in 
68.66% of the simulations. The other 3 methods 
all detected a significant trend in about 8% of 
the simulations. 

Based on these data, it appears the 
Poisson method is more likely to detect a trend 
when the null hypothesis of no trend is false, 
but, as shown in tables 2 through 5, the Poisson 
method is also more likely to detect a trend 
when the null hypothesis of no trend is true. In 
short, with normally distributed data, the 
Poisson method is more likely to detect a trend 
when a trend is present and also when a trend is 
not present. 

When the data followed a Poisson 
distribution, and the null hypothesis of no trend 
was false, the Poisson method was more likely 
to detect a significant tend compared to the other 
3 methods. For example, in Table 3, in the 
simulations where the null hypothesis is false, 
the Poisson method detected a trend in 94.04% 
of the Poisson simulations, while the other 3 

Table 1: Means and Standard Deviations from Four Different Sets of Numerators and Denominators 
Taken From Florida Community Health Statistics 1996-2005 

 

 

Means and Standard Deviations Used to Generate Simulated Data Sets 

Numerator Numerator Denominator Denominator
Data Set Mean Stand. Dev. Mean Stand. Dev.

Florida Injury Mortality 10,293.00           1,311.00             16,275,762.00      1,119,822.00       
Florida Infant Mortality 1,483.00             87.80                  205,609.00           11,707.00            
Florida single county LBW 274.10                27.12                  2,983.60               117.04                 
Florida single county infant mortality 27.50                  5.82                    2,983.60               117.04                 
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methods detected a significant trend in about 
86% of the Poisson simulations.  In contrast to 
the simulations of normally distributed data, the 
Poisson method was not more likely to detect a 
trend, when the null hypothesis of no trend was 
true, when the simulated data followed a Poisson 
distribution. In summary, the Poisson method 
performed as well as the other 3 methods when 
the data followed a Poisson distribution, and the 
null hypothesis of no trend was true. And the 
Poisson method was more likely to detect a 
trend when the null hypothesis of no trend was 
false and the simulated data followed a Poisson 
distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
These results indicate the Poisson regression 
method, for testing the statistical significance of 
rate trends, performs well only when the 
numerator and denominator data follow a 
Poisson distribution. The Ordinary Least 
Squares, Quasi-Poisson and Negative Binomial 
regression methods were more robust and 
performed well when the data were either 
Normally distributed or when they followed a 
Poisson distribution.  When the simulation data 
followed a Poisson distribution and the null 
hypothesis of no trend was false, the Poisson 
regression method detected the trend more often 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Results of 10,000 Simulations of Florida Injury Mortality Rate Trends by Statistical Method and 
Distribution* Characteristics  

 

Test Percent Percent Percent
Data Null Hypothesis: Significantly Not Significantly

Method Distribution No Trend** Low Significant High

OLS Regression Normal TRUE 2.25% 95.20% 2.55%
Poisson Regression Normal TRUE 45.57% 10.19% 44.24%
Negative Binomial Normal TRUE 2.29% 95.11% 2.60%
Quasipoisson Normal TRUE 2.28% 95.17% 2.55%

OLS Regression Poisson TRUE 2.25% 95.27% 2.48%
Poisson Regression Poisson TRUE 2.33% 95.19% 2.48%
Negative Binomial Poisson TRUE 2.26% 95.26% 2.48%
Quasipoisson Poisson TRUE 2.27% 95.25% 2.48%

OLS Regression Normal FALSE 0.53% 91.60% 7.87%
Poisson Regression Normal FALSE 22.89% 8.45% 68.66%
Negative Binomial Normal FALSE 0.49% 91.71% 7.80%
Quasipoisson Normal FALSE 0.52% 91.73% 7.75%

OLS Regression Poisson FALSE 0.00% 0.00% 100.00%
Poisson Regression Poisson FALSE 0.00% 0.00% 100.00%
Negative Binomial Poisson FALSE 0.00% 0.00% 100.00%
Quasipoisson Poisson FALSE 0.00% 0.00% 100.00%

* Simulated 10 years of Florida injury mortaltiy rates with randomly generated numerators
at mean 10,293 and denominators at mean 16,275,762.  For the random normal data,
the standard deviations were 1,311 for the numerators and 1,119,822 for the denominators.  
For the random Poisson data, the standard deviations were the square roots of the means.

** Where Null Hypothesis of no trend = FALSE, average trend = 0.01 increase per year
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Table 3: Results of 10,000 Simulations of Florida Infant Mortality Rate Trends by Statistical 
Method and Distribution* Characteristics 

 

Test Percent Percent Percent
Data Null Hypothesis: Significantly Not Significantly

Method Distribution No Trend** Low Significant High

OLS Regression Normal TRUE 2.51% 94.88% 2.61%
Poisson Regression Normal TRUE 26.23% 46.62% 27.15%
Negative Binomial Normal TRUE 2.51% 94.88% 2.61%
Quasipoisson Normal TRUE 2.47% 94.89% 2.64%

OLS Regression Poisson TRUE 2.44% 94.92% 2.64%
Poisson Regression Poisson TRUE 2.26% 95.23% 2.51%
Negative Binomial Poisson TRUE 2.42% 94.93% 2.65%
Quasipoisson Poisson TRUE 2.43% 94.93% 2.64%

OLS Regression Normal FALSE 0.11% 83.87% 16.02%
Poisson Regression Normal FALSE 3.91% 26.50% 69.59%
Negative Binomial Normal FALSE 0.11% 83.87% 16.02%
Quasipoisson Normal FALSE 0.10% 83.98% 15.92%

OLS Regression Poisson FALSE 0.00% 14.48% 85.52%
Poisson Regression Poisson FALSE 0.00% 5.96% 94.04%
Negative Binomial Poisson FALSE 0.00% 14.44% 85.56%
Quasipoisson Poisson FALSE 0.00% 14.50% 85.50%

* Simulated 10 years of Florida infant death rates with randomly generated numerators
at mean 1,483 and denominators at mean 204,609.  For the random normal data, 
the standard deviations were 87.8 for the numerators and 11,707 for the denominators.  
For the random Poisson data, the standard deviations were the square roots of the means

** Where Null Hypothesis of no trend = FALSE, average trend = 0.01 increase per year

Table 4: Results of 10,000 Simulations of Low Birth Weight Rate Trends for a Florida County 
by Statistical Method and Distribution* Characteristics  

 

Test Percent Percent Percent
Data Null Hypothesis: Significantly Not Significantly

Method Distribution No Trend** Low Significant High

OLS Regression Normal TRUE 2.76% 95.09% 2.15%
Poisson Regression Normal TRUE 13.76% 73.39% 12.85%
Negative Binomial Normal TRUE 2.82% 95.01% 2.17%
Quasipoisson Normal TRUE 2.85% 94.95% 2.20%

OLS Regression Poisson TRUE 2.53% 95.02% 2.45%
Poisson Regression Poisson TRUE 2.92% 94.27% 2.81%
Negative Binomial Poisson TRUE 2.53% 95.02% 2.45%
Quasipoisson Poisson TRUE 2.53% 94.99% 2.48%

OLS Regression Normal FALSE 0.38% 88.83% 10.79%
Poisson Regression Normal FALSE 2.86% 57.22% 39.92%
Negative Binomial Normal FALSE 0.35% 88.68% 10.97%
Quasipoisson Normal FALSE 0.35% 88.74% 10.91%

OLS Regression Poisson FALSE 0.10% 75.72% 24.18%
Poisson Regression Poisson FALSE 0.05% 66.03% 33.92%
Negative Binomial Poisson FALSE 0.10% 75.71% 24.19%
Quasipoisson Poisson FALSE 0.11% 75.74% 24.15%

* Simulated 10 years of one Florida county low birth weight rates with randomly generated numerators
at mean 274.1 and denominators at mean 2983.6.  For the random normal data,
the standard deviations were 27.12 for the numerators and 117.04 for the denominators.  
For the random Poisson data, the standard deviations were the square roots of the means.

** Where Null Hypothesis of no trend = FALSE, average trend = 0.01 increase per year
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than the other three methods. When the test data 
followed a Poisson distribution and the null 
hypothesis of no trend was true, the Poisson 
regression method performed as well as the 
other three methods. However, in the 
simulations where the null hypothesis of no 
trend was true and the data followed a normal 
distribution, the Poisson regression method was 
far too likely to result in statistical significance, 
while the other three methods resulted in 
statistical significance in proportions close to the 
alpha level of 0.05. In summary, the Poisson 
method performed as well or better than the 
other methods when the simulated data followed 
a Poisson distribution but did not perform as 
well as the other methods when the simulated 
data followed a normal distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One of the defining characteristics of the 
Poisson distribution is the mean is equal to the 
variance. In situations where the variance 
exceeds the mean (this is referred to as over-
dispersion), Poisson regression will tend to 
underestimate the variance and thereby increase 
the probability that random results are deemed 
statistically significant. 

Based on the results of this analysis, one 
recommendation is data should be examined to 
assess whether it follows a Poisson distribution, 
and the Poisson regression method should be 
used only when this condition is met. In 
practical terms, when using the Poisson 
regression method, the mean should be 
approximately equal to the variance. When this 
is not the case, it would probably be better to use  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Results of 10,000 Simulations of Infant Mortality Trends for a Florida County by 
Statistical Method and Distribution* Characteristics  

 

Test Percent Percent Percent
Data Null Hypothesis: Significantly Not Significantly

Method Distribution No Trend** Low Significant High

OLS Regression Normal TRUE 2.53% 95.17% 2.30%
Poisson Regression Normal TRUE 3.93% 91.76% 4.31%
Negative Binomial Normal TRUE 2.63% 95.05% 2.32%
Quasipoisson Normal TRUE 2.55% 95.14% 2.31%

OLS Regression Poisson TRUE 2.54% 95.31% 2.15%
Poisson Regression Poisson TRUE 2.67% 95.16% 2.17%
Negative Binomial Poisson TRUE 2.53% 95.34% 2.13%
Quasipoisson Poisson TRUE 2.57% 95.36% 2.07%

OLS Regression Normal FALSE 1.02% 93.54% 5.44%
Poisson Regression Normal FALSE 1.63% 88.25% 10.12%
Negative Binomial Normal FALSE 0.97% 93.60% 5.43%
Quasipoisson Normal FALSE 0.94% 93.69% 5.37%

OLS Regression Poisson FALSE 1.00% 93.39% 5.61%
Poisson Regression Poisson FALSE 0.88% 92.19% 6.93%
Negative Binomial Poisson FALSE 0.98% 93.45% 5.57%
Quasipoisson Poisson FALSE 0.92% 93.57% 5.51%

* Simulated 10 years of one Florida county infant mortaltiy rates with randomly generated numerators
at mean 27.5 and denominators at mean 2983.6.  For the random normal data,
the standard deviations were 5.82 for the numerators and 117.04 for the denominators.  
For the random Poisson data, the standard deviations were the square roots of the means.

** Where Null Hypothesis of no trend = FALSE, average trend = 0.01 increase per year
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the OLS, Quasi-Poisson, or Negative Binomial, 
regression methods or a nonparametric method 

This analysis addressed only trends with 
10 discrete points and the test data were 
generated with characteristics specific to Florida 
infant death, Low birth weight and injury 
mortality data.  Using more or less points and 
data with different distribution characteristics 
could, and probably would, lead to different 
results   and     conclusions.    The    results    and 
conclusions from this analysis apply only to 
Florida low birth weight, infant death and injury 
mortality data or data that are very similar. A 
general conclusion might be that different 
methods perform differently depending at least 
in part on the characteristics of the data to which 
they are applied. Further research is needed to 
reach a better understanding of the strengths and 
weaknesses of these methods in various 
situations. 
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Heteroscedastic consistent covariance matrix (HCCM) estimators provide ways for testing hypotheses 
about regression coefficients under heteroscedasticity. Recent studies have found that methods combining 
the HCCM-based test statistic with the wild bootstrap consistently perform better than non-bootstrap 
HCCM-based methods (Davidson & Flachaire, 2008; Flachaire, 2005; Godfrey, 2006). This finding is 
more closely examined by considering a broader range of situations which were not included in any of the 
previous studies. In addition, the latest version of HCCM, HC5 (Cribari-Neto, et al., 2007), is evaluated. 
 
Key words: Heteroscedasticity, level robust methods, bootstrap. 
 
 

Introduction 
Consider the standard simple linear regression 
model 

i 0 1 i1 iY = X ,i=1, ..., n,β + β + ε          (1) 

where β  and β  are unknown parameters and εi 
is the error term. When testing the hypothesis, 

0 1H : β 0=                          (2) 

the following assumptions are typically made: 
 

1. E(ε ) = 0. 
2. Var(ε ) = σ2 (Homoscedasticity). 
3. ε ’s are independent of X. 
4. ε ’s are independent and identically 

distributed (i.i.d). 
 
This article is concerned with testing (2) when 
assumption 2 is violated. 

Let β =	 (β , β ) be the least squares 
estimate of β	 = 	 (β , β ). When there is 
homoscedasticity (i.e., assumption 2 holds), an 
estimate of the squared standard error of β is 
Var(β) = 	σ (X’X) , where σ =	 (Y	 −	Xβ)’(Y	 − 	Xβ)/(n	 − 	2) is the usual estimate of 
the assumed common variance; X is the design 
matrix containing an n × 1 unit vector in the first 
column and X ’s in the second column. 
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However, when heteroscedasticity 

occurs, the squared standard error based on such 
an estimator is no longer accurate (White, 1980). 
The result is that the usual test of (2) is not 
asymptotically correct. Specifically, using the 
classic t-test when assumptions are violated can 
result in poor control over the probability of a 
Type I error. One possible remedy is to test the 
assumption that the error term is homoscedastic 
before proceeding with the t-test. However, it is 
unclear when the power of such a test is 
adequate to detect heteroscedasticity. 

One alternative is to use a robust method 
that performs reasonably well under 
homoscedasticity and at the same time is robust 
to heteroscedasticity and non-normality. Many 
methods have been proposed for dealing with 
heteroscedasticity. For example, a variance 
stabilizing transformation may be applied to 
the dependent variable (Weisberg, 1980) or a 
weighted regression with each observation 
weighted by the inverse of the standard 
deviation of the error term may be performed 
(Greene, 2003). 

Although these methods provide 
efficient and unbiased estimates of the 
coefficients and standard error, they assume that 
heteroscedasticity has a known form. When 
heteroscedasticity is of an unknown form, the 
best approach to date, when testing (2), is to use 
a test statistic (e.g., quasi-t test) based on a 
heteroscedastic consistent covariance matrix 
(HCCM) estimator. Several versions of HCCM 
have been developed that provide a consistent 
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and an unbiased estimate of the variance of 
coefficients even under heteroscedasticity 
(White, 1980; MacKinnon & White, 1985). 

Among all the HCCM estimators, HC4 
was found to perform fairly well with small 
samples (Long & Ervin, 2000; Cribari-Neto, 
2004). Recently, Cribari-Neto, et al. (2007) 
introduced a new version of HCCM (HC5) 
arguing that HC5 is better than HC4, particularly 
at handling high leverage points in X. However, 
in their simulations, they only focused on 
models with ε ∼ N(0, 1). Moreover, only a 
limited number of distributions of X and patterns 
of heteroscedasticity were considered. In this 
study, the performances of HC5-based and HC4-
based quasi-t statistics were compared by 
looking at a broader range of situations. 

Methods combining an HCCM-based 
test statistic with the wild bootstrap method 
perform considerably better than non-bootstrap 
asymptotic approaches (Davidson & Flachaire, 
2008; Flachaire, 2005). In a recent study, 
Godfrey (2006) compared several non-bootstrap 
and wild bootstrap HCCM-based methods for 
testing multiple coefficients (H :	β =	. . . =	β = 0). It was found that when testing at the α 

= 0.05 level, the wild bootstrap methods 
generally provided better control over the 
probability of a Type I error than the non-
bootstrap asymptotic methods. However, in the 
studies mentioned, the wild bootstrap and non-
bootstrap methods were evaluated in a limited 
set of simulation scenarios. 

In Godfrey’s study, data were drawn 
from a data set in Greene (2003) and only two 
heteroscedastic conditions were considered. 
Here, more extensive simulations were 
performed to investigate the performance of the 
various bootstrap and non-bootstrap HCCM-
based methods. More patterns of 
heteroscedasticity were considered, as well as 
more types of distributions for both X and ε. 
Small sample performance of one non-bootstrap 
and two wild bootstrap versions of HC5-based 
and HC4-based quasi-t methods were evaluated. 

Finally, two variations of the wild 
bootstrap method were compared when 
generating bootstrap samples. One approach 
makes use of the lattice distribution. Another 
approach makes use of a standardized 

continuous uniform distribution: Uniform(-1, 1). 
The former approach has been widely 
considered (Liu, 1988; Davidson & Flachaire, 
2000; Godfrey, 2006) and was found to work 
well in various multiple regression situations. Of 
interest is how these two approaches compare 
when testing (2) in simple regression models. 
Situations were identified where wild bootstrap 
methods were unsatisfactory. 

 
Methodology 

HC5-Based Quasi-T Test (HC5-T) 
The HC5 quasi-t statistic is based on the 

standard error estimator HC5, which is given by V = X′X X′diag ( ) ( )α X X′X ,    

(3) 
where r , i = 1, ..., n are the usual residuals, X is 
the design matrix, 

maxii
i

maxii
n n

ii iii 1 i 1

khh
α min{ ,max 4,   }

h h

nkhnh
min{ ,max 4,   }

h h

− −

= =

  =  
  

  =  
   

  (4) 

and 

( ) 1'
ii i ih x X X x

−
= ′                 (5) 

where x  is the ith row of X, h =max{h , . . . , h }	and k is set at 0.7 as 
suggested by Cribari-Neto, et al. (2007, 2008). 
The motivation behind HC5 is that when high 
leverage observations are present in X, the 
standard error of the coefficients are often 
underestimated. HC5 attempts to correct such a 
bias by taking into account the maximal 
leverage. 

For testing (2), the quasi-t test statistic 
is,  

1 22T=  0ˆ / V−β                          (6) 

where V is the 2nd entry along the diagonal of V. Reject (2) if |T| ≥ t α/  where t α/  is the 
1−α/2 quantile of the Student’s t-distribution 
with n − 2 degrees of freedom. 
 
HC4-Based Quasi-T Test (HC4-T) 

The HC4 quasi-t statistics is similar to 
HC5-T, except the standard error is estimated 
using HC4, which is given by 
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=  
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where 

1

min{4, }  min{4, }ii ii
i n

iii

h nh
hh

δ −

=

= =


       (8) 

 
HC5-Based Wild Bootstrap Quasi-T Test 
(HC5WB-D and HC5WB-C) 

The test statistic for testing (2) is 
computed using the following steps: 

 
1. Compute the HC5 quasi-t test statistics (T) 

given by (6). 
2. Construct a bootstrap sample Y∗ = β +	β X +	a r , i = 1, ..., n, where a  is 

typically generated in one of two ways. 
The first generates a  from a two-point 
(lattice) distribution: 

i

1,    with probability 0.5  
a

1,      with probability 0.5 

−
= 


 

 
The other method uses 

i ia 12(U  0.5)= −  

where U  is generated from a uniform 
distribution on the unit interval. We 
denote the method based on the first 
approach HC5WB-D and the method 
based on the latter approach HC5WB-C. 

 
3. Compute the quasi-t test statistics (T∗) 

based on this bootstrap sample, yielding 
*

* 1

*
22

ˆ  0
T  

V

β −=


                      (9) 

4. Repeat Steps 2 - 3 B times yielding T∗ , b 
= 1, ..., B. In the current study, B = 599. 

5. Finally, a p-value is computed: 
*
b#{T T }

B
p

≥
=                    (10) 

6. Reject H 	if ≤ α. 
HC4-Based Wild Bootstrap Quasi-T Test 
(HC4WB-D and HC4WB-C) 

The procedure for testing (2) is the same 
as that of HC5WB-D and HC5W-C except that 
HC4 is used to estimate the standard error. 

Simulation Design 
Data are generated from the model: 

( )i i 1 i iY X β  τ X ε= +              (11) 

where  is a function of X  used to model 

heteroscedasticity. Data are generated from a g-
and-h distribution. Let Z be a random variable 
generated from a standard normal distribution, 

( ) 2exp gZ 1 
X exp(hZ / 2)

g

− 
=  
 

      (12) 

has a g-and-h distribution. When g = 0, this last 
equation is taken to be X = Zexp	(hZ 2⁄ ). 
When g = 0 and h = 0, X has a standard normal 
distribution. Skewness and heavy-tailedness of 
the g-and-h distributions are determined by the 
values of g and h, respectively. As the value of g 
increases, the distribution becomes more 
skewed. As the value of h increases, the 
distribution becomes more heavy-tailed. Four 
types of distributions are considered for X: 
standard normal (g = 0, h = 0), asymmetric light-
tailed (g = 0.5, h = 0), symmetric heavy-tailed (g 
= 0, h = 0.5) and asymmetric heavy-tailed (g = 
0.5, h = 0.5). The error term (ε ) is also 
randomly generated based on one of these four 
g-and-h distributions. When g-and-h 
distributions are asymmetric (g = 0.5), the mean 
is not zero. Therefore, ε ’s generated from these 
distributions are re-centered to have a mean of 
zero. 

Five choices for τ(X ) are considered: 

( )iτ X 1= , ( )i iτ X | X |= , ( )iτ X =  

i

2
1 ,

X 1
+

+
 and ( )i iτ X X 1 .= +  These 

functions are denoted as variance patterns (VP), 
VP1, VP2, VP3, VP4 and VP5, respectively. 

Homoscedasticity is represented by ( )iτ X 1.=  

( )i iMoreover, τ X | X |,=  ( )iτ X =

i

2
1

X 1
+

+
, and ( )i iτ X X 1 = + represent a 

particular pattern of variability in Y  based upon 
the value of X . All possible pairs of X  and ε  
distributions are considered, resulting in a total 
of 16 sets of distributions. All five variance 
patterns are used for each set of distributions. 
Hence, a total of 80 simulated conditions are 
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considered. The estimated probability of a Type 
I error is based on 1,000 replications with a 
sample size of n = 20 and when testing at α = 
0.05 and α = 0.01. According to Robey and 
Barcikowski (1992), 1,000 replications are 
sufficient from a power point of view. If the 
hypothesis that the actual Type I error rate is 
0.05 is tested, and power should be 0.9 when 
testing at the 0.05 level and the true α value 
differs from 0.05 by 0.025, then 976 replications 
are required. The actual Type I error probability 
is estimated with α, the proportion of p-values 
less than or equal to 0.05 and 0.01. 
 

Results 
First, when testing at both α = 0.05 and α = 0.01, 
the performances of HC5-T and HC4-T are 
extremely similar in terms of control over the 
probability of a Type I error (See Tables 1 and 
2). When testing at α = 0.05, the average Type I 
error rate was 0.038 (SD = 0.022) for HC5-T 
and 0.040 (SD = 0.022) for HC4-T. When 
testing at α = 0.01, the average Type I error rate 
was 0.015 (SD = 0.013) for HC5-T and 0.016 
(SD = 0.013) for HC4-T. 

Theoretically, when leverage points are 
likely to occur (i.e. when X is generated from a 
distribution with h = 0.5), HC5-T should 
perform better than HC4-T; however, as shown 
in Table 1, this is not the case. On the other 
hand, when leverage points are relatively 
unlikely (i.e., when X is generated from a 
distribution with h = 0), HC5-T and HC4-T 
should yield the same outcomes. As indicated by 
the results of this study, when X is normally 
distributed (g = 0 and h = 0), the actual Type I 
error rates resulting from the two methods are 
identical. However, when X has a skewed light-
tailed distribution (g = 0.5 and h = 0), HC5-T 
and HC4-T do not always yield the same results. 
Focus was placed on a few situations where 
HC4-T is unsatisfactory, and we considered the 
extent it improves as the sample size increases. 
We considered sample sizes of 30, 50 and 100. 
As shown in Table 3, control over the 
probability of a Type I error does not improve 
markedly with increased sample sizes. 

Second, with respect to the non-
bootstrap and bootstrap methods, results suggest 
that the bootstrap methods are not necessarily 
superior to the non-bootstrap ones. As shown in 

Figures 1 and 4, when testing at α = 0.05, under 
VP 1 and 4, the bootstrap methods outperform 
the non-bootstrap methods. Specifically, the 
non-bootstrap methods tended to be too 
conservative under those conditions. 
Nonetheless, under VP 3 and 5 (see Figures 3 
and 5), the non-bootstrap methods, in general, 
performed better than the bootstrap methods. In 
particular, the actual Type I error rates yielded 
by the bootstrap methods in those situations 
tended to be noticeably higher than the nominal 
level. In one situation, the actual Type I error 
rate was as high as 0.196. When testing at α = 
0.01, HC5WB-C and HC4WB-C offered the 
best performance in general; however, situations 
were found where non-bootstrap methods 
outperform bootstrap methods. 

Finally, regarding the use of the 
continuous uniform distribution versus the 
lattice distribution for generating bootstrap 
samples, results suggest that the former has 
slight practical advantages. When testing at α = 
0.05, the average Type I error rates yielded by 
the two approaches are 0.059 for HC5WB-C and 
HC4WB-C and 0.060 for HC5WB-D and 
HC4WBD. When testing at α = 0.01, the 
average Type I error rates are 0.015 for 
HC5WB-C and HC4WB-C and 0.021 for 
HC5WB-D and HC4WB-D. Overall, the actual 
Type I error rates yielded by HC5WB-C and 
HC4WB-C appear to deviate from the nominal 
level in fewer cases. 
 

Conclusion 
This study expanded on extant simulations by 
considering ranges of non-normality and 
heteroscedasticity that had not been considered 
previously. The performance of the latest 
HCCM estimator (HC5) was also closely 
considered. The non-bootstrap HC5-based and 
HC4-based quasi-t methods (HC5-T and HC4-T) 
were compared, as well as their wild bootstrap 
counterparts (HC5WB-D, HC5WB-C, HC4WB-
D and HC4WB-C). Furthermore, two wild 
bootstrap sampling schemes were evaluated - 
one based on the lattice distribution; the other 
based on the continuous standardized uniform 
distribution. 

As opposed to the findings of Cribari-
Neto, et al. (2007), results here suggest that HC5 
does not offer striking advantages over HC4. 
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Both HC5-T and HC4-T perform similarly 
across all the situations considered. In many 
cases, HC5-T appears more conservative than 
HC4-T. One concern is that, for the situations at 
hand, setting k = 0.7 when calculating HC5 may 
not be ideal; thus, whether changing the value of 
k might improve the performance of HC5-T was 
examined. As suggested by Cribari-Neto, et al., 
values of k between 0.6 and 0.8 generally 
yielded desirable results, for this reason k = 0.6 
and k = 0.8 were considered. However, as 
indicated in Tables 4 and 5, regardless of the 
value of k, no noticeable difference was 
identified between the methods. 

Moreover, contrary to both Davidson 
and Flachaire (2008) and Godfrey’s (2006) 
findings, when testing the hypothesis H :	β = 0 
in a simple regression model, the wild bootstrap 
methods (HC5WB-D, HC5WB-C, HC4WB-D 
and HC4WB-C) do not always outperform the 
non-bootstrap methods (HC5-T and HC4-T). By 
considering a wider range of situations, specific 
circumstances where the non-bootstrap methods 
outperform the wild bootstrap methods are able 
to be identified and vice versa. In particular, the 
non-bootstrap and wild bootstrap approaches are 
each sensitive to different patterns of 
heteroscedasticity. 

For example, the wild bootstrap 
methods generally performed better than the 
non-bootstrap methods under VP 1 and 4 
whereas the non-bootstrap methods generally 
performed better than the wild bootstrap 
methods under VP 3 and 5. Situations also exist 
(1988), Davidson and Flachaire (2008) and 
Godfrey (2006). The actual Type I error rates 
resulting from the methods HC5WB-C and 
HC4WB-C were generally less variable 
compared to those resulting from HC5WB-D 
and HC4WB-D. In many cases, the 
performances between the two approaches are 
similar, but in certain situations such as in VP3, 
HC5WB-C and HC4WB-C notably 
outperformed HC5WB-D and HC4WB-D. 
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Table 1: Actual Type I Error Rates when Testing at α = 0.05 
X e 

VC HC5WB-C HC5WB-D HC5-T HC4WB-C HC4WB-D HC4-T 
g h g h 

0 0 0 0 

1 0.051 0.036 0.030 0.050 0.035 0.030 
2 0.077 0.059 0.068 0.075 0.061 0.068 
3 0.052 0.036 0.048 0.053 0.038 0.048 
4 0.058 0.040 0.038 0.055 0.042 0.038 
5 0.085 0.064 0.072 0.086 0.065 0.072 

0 0 0 0.5 

1 0.048 0.044 0.022 0.052 0.046 0.022 
2 0.053 0.048 0.032 0.055 0.050 0.032 
3 0.055 0.054 0.036 0.054 0.051 0.036 
4 0.058 0.046 0.022 0.053 0.046 0.022 
5 0.053 0.054 0.036 0.055 0.051 0.036 

0 0 0.5 0 

1 0.059 0.047 0.041 0.055 0.045 0.041 
2 0.066 0.063 0.046 0.063 0.059 0.046 
3 0.058 0.050 0.054 0.058 0.047 0.054 
4 0.065 0.054 0.038 0.066 0.056 0.038 
5 0.093 0.074 0.072 0.091 0.070 0.072 

0 0 0.5 0.5 

1 0.036 0.028 0.017 0.036 0.030 0.017 
2 0.044 0.037 0.024 0.045 0.040 0.024 
3 0.057 0.053 0.036 0.054 0.056 0.036 
4 0.048 0.045 0.018 0.051 0.046 0.018 
5 0.157 0.152 0.118 0.165 0.154 0.118 

0 0.5 0 0 

1 0.053 0.049 0.028 0.060 0.050 0.033 
2 0.059 0.050 0.043 0.063 0.056 0.049 
3 0.051 0.055 0.039 0.056 0.053 0.043 
4 0.048 0.035 0.018 0.042 0.030 0.020 
5 0.060 0.051 0.045 0.059 0.050 0.052 

0 0.5 0 0.5 

1 0.044 0.042 0.008 0.045 0.041 0.009 
2 0.055 0.063 0.024 0.050 0.063 0.028 
3 0.043 0.054 0.023 0.042 0.048 0.027 
4 0.036 0.038 0.007 0.032 0.035 0.008 
5 0.043 0.068 0.029 0.044 0.067 0.031 

0 0.5 0.5 0 

1 0.058 0.044 0.031 0.051 0.048 0.033 
2 0.070 0.054 0.053 0.067 0.058 0.056 
3 0.054 0.052 0.047 0.056 0.051 0.050 
4 0.050 0.041 0.023 0.050 0.039 0.024 
5 0.055 0.052 0.041 0.056 0.055 0.045 

0 0.5 0.5 0.5 

1 0.039 0.043 0.013 0.042 0.037 0.013 
2 0.048 0.055 0.026 0.043 0.053 0.030 
3 0.049 0.062 0.030 0.045 0.063 0.037 
4 0.023 0.042 0.006 0.024 0.046 0.006 
5 0.071 0.090 0.045 0.078 0.086 0.054 

0.5 0 0 0 

1 0.067 0.061 0.049 0.068 0.055 0.050 
2 0.070 0.057 0.055 0.068 0.057 0.060 
3 0.061 0.064 0.057 0.064 0.064 0.058 
4 0.061 0.048 0.038 0.066 0.047 0.038 
5 0.075 0.095 0.066 0.083 0.088 0.069 
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Table 1: Actual Type I Error Rates when Testing at α = 0.05 (continued) 
X e 

VC HC5WB-C HC5WB-D HC5-T HC4WB-C HC4WB-D HC4-T 
g h g h 

0.5 0 0 0.5 

1 0.052 0.047 0.023 0.056 0.045 0.023 
2 0.056 0.059 0.029 0.053 0.055 0.031 
3 0.057 0.071 0.034 0.056 0.071 0.035 
4 0.041 0.036 0.020 0.043 0.041 0.020 
5 0.065 0.089 0.037 0.067 0.092 0.038 

0.5 0 0.5 0 

1 0.053 0.048 0.040 0.058 0.049 0.041 
2 0.073 0.055 0.072 0.081 0.064 0.073 
3 0.078 0.073 0.062 0.072 0.074 0.064 
4 0.046 0.038 0.027 0.040 0.040 0.027 
5 0.107 0.113 0.087 0.108 0.111 0.087 

0.5 0 0.5 0.5 

1 0.044 0.044 0.019 0.046 0.047 0.019 
2 0.065 0.062 0.050 0.068 0.065 0.051 
3 0.059 0.081 0.055 0.070 0.083 0.055 
4 0.048 0.046 0.019 0.046 0.048 0.019 
5 0.168 0.190 0.120 0.168 0.196 0.124 

0.5 0.5 0 0 

1 0.080 0.056 0.034 0.076 0.056 0.041 
2 0.062 0.065 0.040 0.064 0.067 0.047 
3 0.064 0.080 0.047 0.063 0.072 0.051 
4 0.050 0.042 0.017 0.047 0.038 0.019 
5 0.069 0.089 0.044 0.073 0.092 0.057 

0.5 0.5 0 0.5 

1 0.035 0.048 0.013 0.035 0.044 0.013 
2 0.038 0.057 0.017 0.036 0.059 0.018 
3 0.042 0.077 0.028 0.041 0.079 0.034 
4 0.036 0.036 0.007 0.028 0.033 0.008 
5 0.082 0.122 0.053 0.080 0.118 0.058 

0.5 0.5 0.5 0 

1 0.058 0.041 0.026 0.058 0.040 0.029 
2 0.061 0.057 0.043 0.061 0.055 0.054 
3 0.048 0.062 0.036 0.050 0.066 0.043 
4 0.045 0.038 0.016 0.049 0.035 0.016 
5 0.059 0.083 0.035 0.057 0.078 0.041 

0.5 0.5 0.5 0.5 

1 0.036 0.039 0.010 0.038 0.041 0.012 
2 0.057 0.057 0.021 0.055 0.059 0.031 
3 0.062 0.094 0.046 0.063 0.094 0.050 
4 0.030 0.041 0.007 0.036 0.036 0.008 
5 0.084 0.116 0.058 0.086 0.117 0.065 

Max 0.168 0.190 0.120 0.168 0.196 0.124 

Min 0.023 0.028 0.006 0.024 0.030 0.006 

Average 0.059 0.060 0.038 0.059 0.060 0.040 

SD 0.022 0.026 0.022 0.023 0.027 0.022 
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Table 2: Actual Type I Error Rates when Testing at α = 0.01 
X e 

VC HC5WB-C HC5WB-D HC5-T HC4WB-C HC4WB-D HC4-T 
g h g h 

0 0 0 0 

1 0.016 0.005 0.013 0.017 0.011 0.013 
2 0.016 0.009 0.016 0.014 0.009 0.016 
3 0.018 0.010 0.017 0.017 0.009 0.017 
4 0.016 0.010 0.008 0.017 0.011 0.008 
5 0.024 0.018 0.024 0.025 0.021 0.024 

0 0 0 0.5 

1 0.013 0.010 0.008 0.012 0.007 0.008 
2 0.013 0.018 0.010 0.013 0.015 0.010 
3 0.014 0.025 0.012 0.011 0.019 0.012 
4 0.006 0.004 0.001 0.008 0.005 0.001 
5 0.013 0.024 0.009 0.013 0.019 0.009 

0 0 0.5 0 

1 0.016 0.016 0.010 0.019 0.016 0.010 
2 0.022 0.011 0.023 0.021 0.011 0.023 
3 0.021 0.010 0.020 0.017 0.008 0.020 
4 0.012 0.011 0.011 0.013 0.010 0.011 
5 0.026 0.019 0.025 0.026 0.018 0.025 

0 0 0.5 0.5 

1 0.006 0.009 0.004 0.007 0.009 0.004 
2 0.015 0.010 0.010 0.013 0.010 0.010 
3 0.014 0.012 0.014 0.015 0.010 0.014 
4 0.008 0.010 0.001 0.006 0.008 0.001 
5 0.060 0.063 0.047 0.054 0.071 0.047 

0 0.5 0 0 

1 0.011 0.010 0.006 0.010 0.010 0.006 
2 0.010 0.007 0.015 0.013 0.008 0.018 
3 0.012 0.017 0.014 0.016 0.014 0.015 
4 0.005 0.002 0.003 0.006 0.004 0.004 
5 0.017 0.022 0.021 0.018 0.030 0.023 

0 0.5 0 0.5 

1 0.005 0.013 0.004 0.004 0.009 0.004 
2 0.005 0.019 0.009 0.008 0.022 0.011 
3 0.006 0.028 0.006 0.006 0.028 0.007 
4 0.007 0.007 0.004 0.006 0.006 0.004 
5 0.009 0.021 0.009 0.007 0.020 0.012 

0 0.5 0.5 0 

1 0.009 0.005 0.009 0.012 0.007 0.010 
2 0.016 0.020 0.020 0.018 0.016 0.023 
3 0.014 0.022 0.023 0.017 0.022 0.024 
4 0.005 0.007 0.006 0.006 0.006 0.006 
5 0.009 0.016 0.013 0.008 0.015 0.015 

0 0.5 0.5 0.5 

1 0 0.011 0 0.001 0.006 0 
2 0.009 0.018 0.010 0.007 0.016 0.012 
3 0.016 0.027 0.020 0.011 0.026 0.024 
4 0.004 0.012 0.001 0.004 0.011 0.001 
5 0.015 0.036 0.021 0.018 0.033 0.024 

0.5 0 0 0 

1 0.011 0.008 0.009 0.007 0.007 0.010 
2 0.019 0.021 0.023 0.021 0.021 0.027 
3 0.024 0.027 0.028 0.025 0.023 0.029 
4 0.015 0.008 0.009 0.012 0.009 0.009 
5 0.023 0.028 0.030 0.021 0.029 0.030 
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where all the methods fail: in summary, no 
single method dominates and no one method is 
always satisfactory. 

Finally, it is interesting to note that for 
the special case of simple regression, using the 
continuous standardized uniform distribution for 
generating wild bootstrap samples (as in 
HC5WB-C and HC4WB-C ) may have practical 
advantage over using the lattice distribution (as 
in HC5WB-D and HC4WB-D) advocated by Liu  
 
 
 
 
 
 
 
 
 

Table 2: Actual Type I Error Rates when Testing at α = 0.01 (continued) 
X e 

VC HC5WB-C HC5WB-D HC5-T HC4WB-C HC4WB-D HC4-T 
g h g h 

0.5 0 0 0.5 

1 0.008 0.007 0.005 0.007 0.004 0.005 
2 0.015 0.027 0.013 0.012 0.024 0.013 
3 0.013 0.031 0.009 0.014 0.030 0.009 
4 0.010 0.011 0.006 0.013 0.012 0.006 
5 0.021 0.057 0.015 0.023 0.057 0.015 

0.5 0 0.5 0 

1 0.010 0.007 0.005 0.010 0.010 0.005 
2 0.017 0.011 0.022 0.017 0.008 0.023 
3 0.026 0.034 0.040 0.029 0.031 0.040 
4 0.005 0.009 0.005 0.003 0.005 0.005 
5 0.028 0.049 0.030 0.023 0.05 0.031 

0.5 0 0.5 0.5 

1 0.010 0.011 0.004 0.008 0.011 0.004 
2 0.026 0.028 0.019 0.028 0.029 0.020 
3 0.032 0.039 0.032 0.033 0.041 0.034 
4 0.008 0.014 0.005 0.010 0.013 0.005 
5 0.078 0.114 0.072 0.076 0.111 0.079 

0.5 0.5 0 0 

1 0.008 0.005 0.011 0.011 0.005 0.012 
2 0.019 0.016 0.022 0.021 0.020 0.025 
3 0.007 0.036 0.013 0.006 0.037 0.013 
4 0.004 0.006 0.003 0.005 0.004 0.003 
5 0.012 0.034 0.014 0.012 0.032 0.021 

0.5 0.5 0 0.5 

1 0.004 0.011 0.002 0.006 0.011 0.002 
2 0.009 0.031 0.008 0.010 0.029 0.013 
3 0.006 0.029 0.008 0.008 0.027 0.010 
4 0.004 0.005 0 0.007 0.004 0.001 
5 0.074 0.114 0.075 0.081 0.116 0.076 

0.5 0.5 0.5 0 

1 0.003 0.003 0.006 0.005 0.004 0.006 
2 0.012 0.016 0.021 0.015 0.015 0.026 
3 0.015 0.027 0.022 0.016 0.030 0.026 
4 0.004 0.003 0 0.001 0.006 0 
5 0.017 0.036 0.020 0.014 0.038 0.024 

0.5 0.5 0.5 0.5 

1 0.010 0.011 0.004 0.010 0.014 0.004 
2 0.010 0.023 0.015 0.012 0.020 0.017 
3 0.014 0.045 0.021 0.013 0.047 0.029 
4 0.008 0.014 0.002 0.005 0.011 0.004 
5 0.025 0.059 0.024 0.027 0.060 0.031 

Max 0.078 0.114 0.075 0.081 0.116 0.079 

Min 0 0.002 0 0.001 0.004 0 

Average 0.015 0.021 0.015 0.015 0.021 0.016 

SD 0.013 0.020 0.013 0.013 0.020 0.014 



NG & WILCOX 
 

393 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Actual Type I Error Rates when Testing at α = 0.05 with Sample Sizes 
30, 50 and 100 for HC4-T 

X e 
VP n = 30 n = 50 n = 100 

g h g h 

0 0.5 0 0.5 1 0.022 0.021 0.018 

0.5 0.5 0.5 0.5 1 0.012 0.019 0.020 

0 0.5 0 0.5 4 0.014 0.007 0.011 

0 0.5 0.5 0.5 4 0.011 0.009 0.023 

0 0 0.5 0.5 5 0.118 0.123 0.143 

0.5 0 0.5 0 5 0.093 0.070 0.078 

0.5 0 0.5 0.5 5 0.190 0.181 0.174 
 

Figure 1: Actual Type I Error Rates for VP1 when Testing at α = 0.05 

 
The solid horizontal line indicates α = 0.05, the dashed lines indicate the upper and 

lower confidence limits for α, (0.037, 0.065). 
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Figure 2: Actual Type I Error Rates Under VP2 

 

Figure 3: Actual Type I Error Rates Under VP3 

 

Figure 4: Actual Type I error rates under VP4 

 

Figure 5: Actual Type I error rates under VP5 
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Table 4: Actual Type I Error Rates when Testing at α = 0.05, k = 0.6 for HC5-T 
X e 

VP HC5-T HC4-T 
g h g h 

0 0.5 0.5 0.5 4 0.013 0.013 

0.5 0.5 0 0.5 4 0.015 0.015 

0 0 0.5 0.5 5 0.106 0.106 

0.5 0 0.5 0.5 5 0.135 0.136 
 
 

Table 5: Actual Type I Error Rates when Testing at α = 0.05, k = 0.8 for HC5-T 
X e 

VP HC5-T HC4-T 
g h g h 

0 0.5 0.5 0.5 4 0.005 0.006 

0.5 0.5 0 0.5 4 0.007 0.007 

0 0 0.5 0.5 5 0.106 0.106 

0.5 0 0.5 0.5 5 0.128 0.131 
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Least Error Sample Distribution Function 
 

Vassili F. Pastushenko 
Johannes Kepler University of Linz, Austria 

 
 
The empirical distribution function (ecdf) is unbiased in the usual sense, but shows certain order bias. 
Pyke suggested discrete ecdf using expectations of order statistics. Piecewise constant optimal ecdf saves 
200%/N of sample size N. Results are compared with linear interpolation for U(0, 1), which require up to 
sixfold shorter samples at the same accuracy. 
 
Key words: Unbiased, order statistics, approximation, optimal. 
 
 

Introduction 
Natural sciences search for regularities in the 
chaos of real world events at different levels of 
complexity. As a rule, the regularities become 
apparent after statistical analysis of noisy data. 
This defines the fundamental role of statistical 
science, which collects causally connected facts 
for subsequent quantitative analysis. There are 
two kinds of probabilistic interface between 
statistical analysis and empirical observations. In 
differential form this corresponds to histograms, 
and in integral form to the so-called sample 
distribution function or empirical distribution 
function (edf or ecdf in Matlab notation), c.f. 
Pugachev (1984), Feller (1971), Press, et al. 
(1992), Abramowitz & Stegun (1970), Cramér 
(1971), Gibbons & Chakraborti (2003). If 
histogram bins contain sufficiently big numbers 
of points, the usual concept of ecdf is more or 
less satisfactory. The focus of this paper is on 
short samples, where a histogram approach is 
not possible and an optimal integral approach is 
welcome. Consider i.i.d. sample X with N 
elements, numbered according to their 
appearance on the x-axis 
 

X= [X1, X2,…,XN],                  (1) 
 

X1 ≤X2 ≤…≤ XN.                    (2) 
 
 
 
 
Email Vassili F. Pastushenko at 
vassili.pastushenko@jku.at. 
 

 
Sorted X-values are sometimes denoted X(n), but 
here parentheses are omitted. Parent d.f. F(x) is 
connected with corresponding p.d.f. f(x)  
 


∞−

=
x

dxxfxF )()(                     (3) 

 
F(x) is defined for the whole range of possible 
sample values between extreme x-values X0 and 
XN+1 (denoted similarly to X for formal 
convenience): 
 

X0 =inf(x), XN+1= sup(x)           (4) 
 
Due to the fact that f(x) ≥ 0, F(x) is non-
decreasing. Therefore the exact random values 
of F(X), usually unknown in practical ecdf 
applications, are ordered according to positions 
of X elements at x-axis, 
 

F1 ≤ F2 ≤…≤ FN.                  (5) 
 
where F1 = F(X1), F2 = F(X2), …, FN = F(XN). 
For this reason values (5) are called order 
statistics, Gibbons & Chakraborti (2003). In 
literature ecdf is frequently denoted as Fn(x) 
meaning that a sample consists of n elements. 
Here the notations are different. As defined in 
(5), Fn = F(Xn), n = 1:N (colon is a convenient 
notation of MathWorks, meaning arithmetic 
progression between delimited expressions, here 
with an increment 1, more generally start : 
increment : finish). Usually ecdf is denoted F*(x, 
X), where x is the independent variable, 
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sometimes called parameter, taking any value of 
the principally possible X-values 
 

)(
1

),(
1

* n

N

n
XxH

N
XxF 

=

−=           (6) 

 
H(t) is Heaviside unit step function, H = 1 for 
t≥0, otherwise H=0. Function (6) as a piecewise 
constant approximation of F(x) takes N+1 values 
(levels) equal to (0:N)/N in N+1 x-intervals 
between and outside of N sample values. F* is 
continuous from the right, although Pugachev 
(1984) suggested that the continuity from the left 
would be more reasonable. A centrally 
symmetrical version could be a compromise (H 
= 0.5 at t = 0). Middle points between adjacent 
F* levels are 
 

m = (n-0.5)/N,  n = 1:N               (7) 
 
For convenience, an example of F* is shown for 
N = 3, Figure 1 A. Expected Fn-values (En, c.f. 
next section), shown by circles, are different 
from m. 

Eq. (6) is constructed as an arithmetic 
mean of N ecdf, each corresponding to a 1-point 
sample, 


=

=
N

n
nXxF

N
XxF

1
** ),(

1
),(           (8) 

 
This shows that E[F*(x, X)] = F(x) for any N, 
where E[…] denotes the mathematical 
expectation, because this expectation 
corresponds to F* for an infinitely long sample. 
In other words, for any fixed-in-advance x-value 
F*(x, X) represents an unbiased estimation of 
F(x). The name empirical reflects the similarity 
between F*(x, X), which gives the proportion of 
sample elements r satisfying r ≤ x, and F(x) = 
Prob(r≤x), r being a single random number. 
However, this similarity contains an arbitrary 
assumption. Indeed, differentiation of (8) with 
respect to x gives empirical p.d. f. f*(x, X), Feller 
(1971) 

*
1

1
( ) ( ),

N

n
n

f x x X
N

δ
=

= −             (9) 

 
δ(x) being the Dirac delta. As can be seen from 
this expression, ecdf (8) attributes probability 

measure 1/N to each sample element. As a 
result, any sample is represented as a set of 
measure 1, whereas in reality it represents a set 
of measure zero, which is obvious for the main 
class of continuous distributions, and 
discontinuous distributions can be considered as 
a limit of continuous ones. This contradiction is 
especially strongly expressed in eq.(6), where 
measure 1 is attributed to every single-point 
sample on the right-hand side, which should 
mean that every sample element is a 
deterministic, not a stochastic item. 

As indicated by Pyke (1959), a more 
reasonable approach should consider a sample as 
a set of measure zero, which delimits N+1 
nonzero-measure intervals on the x-axis. This is 
consistent with the point of view that the 
sampling procedure represents mapping of N 
random values of parent F(x) to the x-axis. A 
single random F-value is uniformly distributed 
in (0, 1), i.e., F∈U(0, 1) . Each of the F-values 
mapped into the sample values is selected 
independently. However, these values finally 
appear on the F-axis as an ordered sequence, so 
that the neighbouring elements of the sequence 
are no longer independent. Order statistics F1, 
…, FN have their own distributions. Therefore, 
an optimal ecdf must use this information. 
Probability densities for random u ∈  U(0,1), u = 
Fn, are c.f. Gibbons & Chakraborti (2003), 
Durbin (1973), Pyke (1959): 
 

)!()!1(

!
)1()( 1

, nNn
Nuuuf nNn

nN −−
−= −− , 

n = 1:N.                         (10) 
 
The first two moments of these distributions, or 
expected values and variances of Fn, denoted En 
and Vn respectively, are (c.f. Gibbons & 
Chakraborti (2003)): 
 

1

,

0

[ ] ( ) , n 1:N
1n n N n

nE E F xf x dx
N

= = = =
+   (11) 

and 
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As a research tool, F* is expected to optimally 
reproduce parent F(x). However, there are some 
discrepancies with predictions of order statistics 
(11-12). It follows from (6) that E[F*(Xn, X) ] = 
E[n/N] = n/N, n=1:N, whereas the correct 
expectation (11) is different , Pyke (1959). This 
discrepancy means a certain order bias. 

Pyke (1959) considered order statistics 
Fn as zero-measure delimiters of probability 
intervals, created by the sample. He also 
considered statistic nnN FEC −=+  instead of 

the usual statistic, nN FNnD −=+ / , n = 1:N. 

This was interpreted by Brunk (1962), Durbin 
(1968) and Durbin and Knott (1972) as a 
discrete modification of ecdf. In particular, 
Brunk mentions Pyke’s (1959) suggestion that 
the plotted points (Fn, n/(N+1)) in the Cartesian 
plane replace the empirical distribution function. 
In fact, as Hyndman and Fan (1996) mentioned, 
similar suggestions were made much earlier by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Weibull (1939) and Gumbel (1939). These 
suggestions were partly considered for 
applications using ecdf values only at x = X, 
such as two-sided Kolmogorov-Smirnov test, 
Durbin (1968). However, any generalization for 
arbitrary x-values was not presented, although 
Hyndman and Fan (1996) discuss similar ideas 
concerning distribution quantiles. 

To find an alternative for ecdf, an 
optimality criterion must be selected. Because 
the aim of ecdf is to approximate F(x), the main 
criterion is the approximation accuracy. 
Additionally convenience or simplicity may be 
discussed, but these aspects are almost the same 
within the class of piecewise constant 
approximations which are considered here. 

The approximation accuracy needs a 
definition of distance between two compared 
distribution functions. The distance between two 
distributions, e.g. between exact F(x) and its 
empirical approximation, is frequently 

Figure 1: Different Ecdf-Versions for a Sample with 3 Elements 
Expectations of order statistics are shown by circles. A: F*(x, X); B: P(x, X); C: C(x, X); 
D: S(x, X). Note that the numbers of jumps are different, A: N; B: N+1; C: N+2; D: N+2. 
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characterized by the biggest (supremum) 
absolute value of their difference. Another 
possible measure could be an average absolute 
value of the difference. A more commonly used 
statistical measure is mean squared deviation, 
calculated either as a sum in discrete approaches 
or as an integral in continual approaches. For 
discrete applications, which only need ecdf 
values for the sample elements, Pyke’s approach 
already gives an optimal solution in the sense of 
minimal rms deviation. Indeed, if it is desirable 
to replace a random Fn by a single number with 
minimal rms error, this number is En. 

However, some applications need an 
extension of Pyke’s discrete function to the 
whole range of possible x-values. Interpolation 
based on known knots (Xn, En) is one option. 
Linear interpolation, which was probably meant 
by Brunk’s suggestion to plot (Xn, En), may 
work well numerically in some cases, such as 
uniform parent distribution, however, it is badly 
suited for unlimited distributions and it is 
difficult to obtain general, distribution-
independent results. This article focuses on 
nearest interpolation, for which two versions are 
possible depending on the choice of an 
independent variable. A more attractive version 
corresponds to independent F. In this way, 
interpolating from known knots (En, Xn) to 
arbitrary (C, x), ecdf C(x, X) (Figure 1C) with 
expected En (circles) in the centres of 
corresponding probability intervals may be 
obtained. Table 1 lists the various notations used 
throughout this article. 
 

Methodology 
A family of sample distribution functions. An 
ecdf-like function P(x, X) can be constructed 
using (Xn, En): 


=

−
+

=
N

n
nXxH

N
XxP

1

)(
1

1
),( .      (13) 

This function exactly corresponds to Pyke’s 
suggestion at x = X.  Nevertheless, P(x, X) is not 
very useful for arbitrary x-values, because it 
corresponds to a one-directional near 
interpolation, extending the optimal values only 
to the right. This is illustrated by Figure 1, B (En 
are shown by circles). 

Vectors E = [E1, …, En], and X = [X1 , 
…, Xn], n=1:N, can be complimented by 
extremal values of Fn and x in order to enable 
interpolation in the entire range of x- and F-
values. This leads to extended vectors E and X, 
each of size N+2: 
 

E = [0, E, 1]                       (14) 
 

X=[X0, X, XN+1]                   (15) 
 
Two versions of the nearest interpolation are 
possible. In MathWorks syntax: 
 

C= interp(X , E, x,’nearest’), X0 ≤ x  ≤ XN+1 
(16) 

and 
 

x = interp(E, X, C,’nearest’), 0 ≤ C ≤ 1. 
(17) 

 
Version (17) is more attractive for two reasons. 
First, E has known boundaries 0 and 1, whereas 
X0 and/or XN+1 can be either unknown or 
infinite. Second, eq. (16) is less convenient for 
analysis because it involves middle points 
mxn=(Xn+Xn-1)/2, n=1:N+1, where any exact 
calculation of E[F(mxn)] and E[F(mxn)

2] for an 
unknown F(x) is not possible. As follows from 
(17), 

C(x,X) = 
+

=

−
+

1

0

(
1

1 N

n
n xHw

N
Xn)    (18) 

 
Weight coefficients wn are equal to 1 except for 
n = 0 and n = N + 1, where wn = 0.5. Thus eq. 
(18) attributes probability measure of 0.5/(N+1) 
to x-values below X1 and above XN respectively, 
formally to extremal x-values X0 and XN+1, and 
measure of 1/(Ν+1)  to every sample element. 
Altogether, measure of N/(N+1) < 1 is now 
attributed to the very sample. Incomplete 
measure does not lead to any difficulty, because 
sample estimations based on (18) should be 
considered as conditional ones, and therefore the 
result should be normalized by condition 
probability N/(N+1). Thus, estimation of 
expected value of some function t(x) results in a 
traditional answer, mean(t(X)): 
 
 



LEAST ERROR SAMPLE DISTRIBUTION FUNCTION 

400 
 


=

+

−

=+ N

n
n

X

X

Xt
N

dx
dx

XxCdxt
N

N N

1

0

0

)(
1),( 

)(
1

1

 

(19) 
 
Because extremal x-values acquire a probability 
measure,  the  first  and  last  summands  can  be 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

simplified in (18), which results in an equivalent 
of C in the entire x-range: 
 

C(x,X) = 






 −+
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N

n
nXxH

N 1

)(
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X0 < x < XN+1.                    (20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Notations 
[A, B, …] Concatenation of A, B, …, a set consisting of A, B, … 

C(x, X) 
Centred ecdf, E-values are in the centres of corresponding 
probability intervals 

d 
Defect of levels, sum of their squared deviations from the 
optimal (natural) levels 

D(α) Total expected squared Deviation of s(x, X, α) from F(x) 

D*, DC, DS, … 
Total expected squared deviations for F*(x, X), C(x, X), S(x, 
X), … 

E = n/(N+1) n = 1:N vector of expected order statistics. 
En nth element of E 

E = [0, E1, …, EN, 1] Vector E extended by extremal E-values 
E[<abc>] Mathematical expectation of an expression <abc> 

F(x) Parent d.f. 
f(x) p.d.f., f = dF/dx 

F*(x, X) Presently accepted ecdf 
f*(x) Empirical p.d.f., f* =  dF*(x)/dx 

fN,n(u) p.d.f. of n-th order statistic u ∈U(0,1),  n = 1:N 

gz 
Gain, relative total squared deviation (in units of total deviation 
for F*), gz = Dz/D* ,  z = C,S,… 

H(t) 
Heaviside unit step, H=1 if t ≥ 0, otherwise H = 0. In Matlab: H 
= t >= 0 

M = mean(X) Average of sample elements 
N Sample size (length of i.i.d. sample) 

P(x, X) NF*(x, X)/(N+1) Pyke function 
s(x, X, α) Family of ecdf with parameter α, 0 ≤ α < 0.5 

sn Levels of s(x, X, α), n = 1:N+1 
S(x, X) Optimal member of s-family, minimizing D(α) 

u Uniform random variable, 0 ≤ u ≤ 1 
U(0, 1) Standard uniform distribution, F(u) = u, 0 ≤ u ≤ 1 

X = [X1, X2, …, XN] i.i.d. sample with parent d.f. F(x) 
X = [X0, X1, X2, …, XN, XN+1] Extended sample X by adding extremal x-values, size(X)= N+2 

x A number ∈( set of possible X-values) 
α, β Parameters of ecdf family s(x, X, α, β)
δ(x) Dirac delta
δxX Kronecker symbol. In Matlab: δxX = any(x == X) 
Δ  The deviation of an ecdf from the parent d.f. 

Φ(x, X) Hybrid of S and P for both continual and discrete applications
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An example of C(x, X) is shown in Figure 1,C. 
Note that eq. (20) follows from eq. (13) by 
adding 0.5/(N+1),  and C(x, X) has expected 
values En in the middle of the corresponding 
probability intervals. Therefore if the centrally 
symmetric unit step H(t) is accepted, C(Xn, X)  
automatically gives expected value En. 

Functions P(x, X) and C(x, X) represent 
linear transformations of F*, therefore F*, P and 
C could be considered as members of two-
parametric ecdf family s: 
 

),( ),,( * XxFXxs βαα +=          (21) 
 
Thus, α = 0, β = 1 leads to s = F*(x, X); 
α = 0, β = N/(N+1) gives s = P(x ,X) and α = 
0.5/(N+1), β = N/(N+1) gives s = C(x, X). 
Levels of P(x, X) are not symmetrical with 
respect to probability centre 0.5, i.e. not 
invariant in transformation levels 1-levels. 
Therefore, although P(x, X) has expected values 
at x = X, it cannot be considered as a real 
alternative to F*. Excluding P(x, X) from the s-
family, the number of parameters may be 
reduced by setting β = 1−2α , which enables the 
automorphism levels  1-levels. This leads to 
one-parametric s-family 
 

),()21(),,( * XxFXxs ααα −+= , 

0 ≤ α < 0.5.                      (22) 
 
Levels sn of s(x, X, α) follow from the levels of 
F*: 

Nnsn /)1)(21( −−+= αα , n=1:N+1, 

(23) 
 
where α = 0 corresponds to F*(x, X), and α = 
0.5/(N+1) to C(x, X). Consider the properties of 
s(x, X, α) in terms of order statistics and squared 
deviation of s(x, X, α) from F(x). 
 
Mean Values of F(x) Between Adjacent Xn and 
Natural Levels 

As noted above, the mapping of F(x) to 
sample X leads to certain order statistics 
predictions (11-12), therefore, 
 

E[Fn
2]=En

2+Vn =
2N

1)E(n 
  n

+
+

; n=1:N    (24) 

In order to see how the levels sn (23) agree with 
these predictions, different ecdf versions must be 
compared with F(x) within intervals (Xn-1, Xn) 
numbered by n=1:N+1. Consider the integrals: 
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2
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and 
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n

n

X
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X
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−= = − ; 

n=1:N+1                       (26) 
 
Integrals (25-26) represent another kind of order 
statistics. Natural levels Sn can be found from a 
comparison of their mathematical expectations, 
that is, from E[Is,n] = E[IF,n], where 
 

;
2

  ][ , +
=

N
EIE n
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and  

1
  ][ , +
=

N
sIE n

ns ; n= 1:N+1.        (28) 

 
Equality of (27) and (28) leads to natural levels: 
 

;
2

 n +
=

N
nS  n = 1:N+1.           (29) 

 
The levels follow if the right hand sides of (25 
and 26) are equated and divided by Fn-Fn-1. The 
mathematical expectations found lead to levels 
of C(x, X): 
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n = 1:N+1                        (30) 
 
Comparing the levels of F*, given by (n-1)/N, 
and Cn (30) with natural levels Sn (29), n = 
1:N+1, both are smaller than Sn below 0.5 and 
bigger than Sn above 0.5. If the ratio of 
differences between these levels is constructed 
and the natural ones, this ratio (for nonzero 
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values) appears to be greater than 2 at any N 
(zeros happen at the median level 0.5 for even 
N): 

NNnNn
NnNn 2

2
)2/()1/()5.0(

)2/(/)1( +=
+−+−

+−−
  (31) 

 
Thus, the detailed comparison leads to a 
conclusion: both levels of F*(x, X) and of C(x, 
X) show certain order bias, because in average 
these levels do not match the expected behaviour 
of integrals of F between order statistics Fn. 
They are insufficiently big below the sample 
median, and too big above it. 

The defect d of s(x, X, α) is introduced 
as a sum of squared deviations of sn from natural 
levels (29), 

1
2

1

( ) .
N

n nd s S
+
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The defect of F* is 
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and the defect of C is 
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In agreement with eq. (31), the ratio of these 
defects is: 

2* )
1

1(4
Nd

d
C

+=                   (35) 

 
Two conclusions can be made. First, although 
near interpolation seems to be attractive in the 
sense that in puts expected values En exactly in 
the middle between C- levels, it is still not yet 
optimal S(x, X), based on natural levels (29): 
 

S(x, X) = s(x, X, 1/(Ν+2)).           (36) 
 
Thus, the optimum should occur at: 
 

1
  .

2N
α =

+
                          (37) 

Ecdf S(x, X) formally ascribes to every element 
of the extended sample X probability measure of 
1/(N+2): 
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2
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n
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Ecdf S(x, X) has zero defect d by definition. 
Similar to C(x, X), the expression for S may be 
simplified as: 
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n
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X0<x<XN+1.                       (39) 
 
An illustration of S(x, X) for N = 3 is given by 
Figure 1, D. 
 

Results 
Function S(x, X) Minimizes the Expected Total 
Error of F(x) Approximation. 

It can be shown that S(x, X) minimizes 
the error of F(x) approximation by calculating 
total squared deviation D of s(x, X, α) from F(x) 
and finding an optimal α as argmin(D(α)), 
getting in this way again α = 1/(N+2) as the 
optimal value. Total expected approximation 
error, or expected squared deviation is 
 

]f(x)))X,s(x,-)(F([  )(
1

0

2 dxxED
NX

X


+

= αα   (40) 

 
The optimality of S is confirmed by following 
theorem and proof. 
 
Theorem 

S(x, X) represents least error 
approximation of F(x) at the family s(x, X, α), 
because it minimizes the total squared 
approximation error (40). 
 
Proof 
Consider deviation Δ, 
 

Δ = F(x) - s(x, X, α)                  (41) 
 
as a random quantity at every fixed x due to 
randomness of X. Mathematical expectation of 
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Δ, taking into account eq. (22) and E[F*(x, X)] = 
F(x), is: 

E[Δ] = F(x) - (α+(1-2α)F(x)) = α (2F(x)-1). 
(42) 

 
The goal is to find D = E[Δ 2], therefore the 
variance, var(Δ), is needed. This can be found 
using the variance of F*(x, X), expressed as 
F(x)(1-F(x))/N, Gibbons and Chakraborti 
(2003). Because in (41) F(x) is a deterministic 
function, only the second term in (41) 
contributes to var(Δ): 
 

VΔ = var(Δ) = (1-2α)2F(x)(1-F(x))/N.  (43) 
 
Therefore, the expected squared deviation is: 
 

E[Δ 2 = VΔ + E[Δ]2 

= (1-2α)2 F(x)(1-F(x))/N + α2 (2F(x)-1)2 
(44) 

 
Substituting (44) into (40) leads to total expected 
squared deviation D 
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(45) 
 
Thus, D(α) is quadratic in α with minimum at 
α defined by (37), which proves the theorem. 

Now consider expected squared 
deviations for three different α-values leading to 
F*, C and S. For α = 0 eq. (45) yields known 
result for F*, 

1

*

0

(1 ) 1
(0) .

6

F FD D dF
N N
−= = =   (46) 

 
For C(x, X), i.e. for α=0.5/(N+1): 

2

0.5 2 1
( ) ,

1 12( 1)C
ND D

N N
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and correspondingly, for S(x, X), 
 

1 1
( ) .

2 6( 2)SD D
N N

= =
+ +

         (48) 

 
Parabolic dependency of D(α), eq. (45) is 
illustrated in Figure 2 for several N-values. The 
values of D for three ecdf versions, F*, C and S 
(46- 48), are indicated by special markers. 
 
Linear Interpolation for Uniformly Distributed 
Data 

Compare the piecewise constant 
approximation in versions presented above with 
possibilities of different linear interpolations. In 
the case of a general parent d.f. F(x), it is 
difficult to get any analytical results. Therefore, 
F(x) is taken as standard uniform distribution, 
U(0, 1). However, this is more than a mere 
numerical example. Any known F(x) can be 
transformed to U(0, 1) by probability integral 
transformation u = F(x). Although in practice 
F(x) is mostly unknown, sometimes the 
transformation is possible, e.g. in fitting 
distribution parameters to X. Another 
meaningful aspect is - assuming that F(x) is 
known and transformed to standard uniform - 
the potentials of the linear interpolation become 
apparent. 

Both versions of interpolation, eq. (16) 
and (17) are now considered linear instead of 
nearest. Let Elin(x, X) be ecdf, defined as 
interpolation between Pyke points (Xn, En) 
according to (16) 
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n = 1:N+1, X(1:N) ∈ U(0, 1).         (49) 
 
Here X in the left hand side is usual sample, and 
X in the right hand side is the extended sample, 
X0 = E0 = 0, XN+1 = EN+1 = 1. 
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Eq. (49) is nonlinear with respect to random 
numbers X. Correspondingly, the expectation 
E[Elin(x, X)] deviates from x. Expected squared 
deviations E[(Elin(x, X)-x)2] were estimated 
numerically as an average over 105 X-samples at 
N = 5. Figure 3 compares the result with E(Δ2

*), 
E(Δ2

C) and E(Δ2
S).  The left figure shows these 

expectations for all four compared versions, and 
the right figure shows their integrals in (0, x), 
which give at x = 1 corresponding total errors D. 
The gains, shown on the top of the right figure, 
represent the relative total errors, i.e. DC/D*, 
DS/D* and Dlin/D* respectively. 

The total approximation error is notably 
smaller for linear interpolation, as reflected by 
gC (1.31), gS (1.4) and glin (1.68). As illustrated 
in Figure 3 (left), the total squared error is 
smaller for Elin than for C at any x, and it is 
smaller than that for F* almost everywhere, with 
exception of narrow intervals near x = 0 and x = 
1. In addition, Elin loses to S around x = 0.5, but 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
wins in wide intervals near x = 0 and x = 1. 

More interesting results follow if linear 
interpolation is made according to eq. (17). Now 
the interpolation target is x, i.e. ecdf-values are 
selected as an independent variable e. In this 
case the implicitly defined ecdf e(x, X) is given 
by: 

x(e, X) = Xn-1(1-λ)+ Xnλ; n = 1:N+1.    (50) 
 
Here, λ is the interpolation variable, 
 
λ=(e-En-1)(N+1), 10 ≤≤ λ  (En-1 ≤ e ≤ En).  (51) 
 
Note that an equation similar to (50) was used 
by Hyndman & Fan (1996), eq. (1), who applied 
linear interpolation for calculating distribution 
quantiles. Due to the linearity of eq. (50) with 
respect to random X-values, this equation 
represents an unbiased empirical estimation of 
parent  U(0, 1),  that is,    E[x(e, X)] = e,    which 

Figure 2: Total Squared Expected Error D(α) of the Family s(x, X, α) for Several N-values 
The cases of F*(x, X), C(x, X) and S(x, X) as members of s-family are shown by special 

symbols; note that min(D(α))-values (circles) linearly depend on optimal α-values. 
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immediately follows from E[X] = E. This is 
interesting, because it shows that F*(x, X) is not 
the only possible unbiased estimation of F(x). 
The squared error of xlin defined by (50) is: 
 

E[Δlin
2] = E[(x(e,X)-e)2]  

= E[((Xn-1 – En-1)(1-λ) +(Xn-En)λ)2]  
= Vn-1(1-λ)2+Vnλ2+2c(n,n+1)λ(1-λ), n = 1:N+1. 

(52) 
 
Here c = cov(X), a covariance matrix of 
extended sample X, and V=[0 V 0] is the 
variance (12), extended by the values V0 = VN+1 

= 0. As can be seen from eq. (52), expected 
squared approximation error in every interval En-

1 ≤ e ≤ En is given by parabola, connecting 
adjacent points (En, Vn). This is illustrated in 
Figure 4. The integral of (52) in (0, e) is now 
represented by piecewise cubic parabolas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The gain of linear interpolation is now 
the same as in Figure 3, that is, the linear gain is 
invariant with respect to the interpolation target. 
The value of the linear gain for N > 1 is well 
approximated by g = 1 + 6/(2N-1), which means 
about 300%/N savings on sample size in 
comparison with F*. This raises the question 
about how such gain correlates with the quality 
of predictions based on linear interpolation. 

Eq. (8) can be directly applied to linear 
interpolation, which gives unbiased estimation 
and therefore eq. (8) should be valid. Given M = 
mean(X), eq. (8) suggests to represent x(e, X) as 
x(e, M(X)): 
 

x = 2eM, e ≤ 0.5 
and 

x = 2(1-e) M + 2e-1, e > 0.5.         (53) 
 

 

Figure 3: Expected Squared Errors of Different Versions of ecdf for Samples from U(0, 1), N=5 
Left: E[Δ2]; right: integrals of left curves in (0, x), which define at x = 1 the total expected errors. 
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Because E[M] = 0.5 (uniform data), (53) is 
indeed an unbiased estimation of x = e, the 
expected squared deviation of x from e is given 
by 

var(x) = 4e2VM, e ≤ 0.5 
and 

var(x) = 4(1-e)2 VM,  e > 0.5.         (54) 
Where 

VM = 1/(12N)                     (55) 
 
VM is the variance of M. Integrating (54) over e 
in (0, 1), the total mean squared deviation DM is 
obtained as 

DM = 1/(36N).                     (56) 
 
This result seems to be extraordinary, because it 
means a gain of ecdf (53) equal to 6, that is, 6 
times shorter samples in comparison with F* at 
the same approximation error, and this happens 
at any N value! Is it possible to get some 
practical advantages out of such a precise 
approximation? 

One such possibility is suggested by 
distribution parameter fitting. Thus, unknown 
parameter(s) q can be found as 
argmin((mean(F(X, X, q))-0.5)2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This method works indeed, and it should be 
compared with others. However, fitting 
parameters is a special topic, which should be 
discussed separately. 

Optimal ecdf S is constructed to 
minimize expected total error for continual 
applications. Discrete applications only need 
ecdf values at x = X, and then P(x, X) should be 
used. How is it possible to combine P(x, X) and 
S(x, X) into a universal ecdf, valid both for 
continual and discrete applications? This can be 
done by redefining S at x = X, e.g. by 
introducing function Φ(x, X) = S(x), if x ≠ Xn, 
otherwise Φ(Xn, X) = En, n = 1:N. Such 
switching between P(X, X) and S(x, X) can be 
expressed as a formal mixture of both functions, 
using Kronecker symbol δxX: 
 

Φ(x,X) = δxX P(x,X) + (1- δxX) S(x,X), δxX = 1, 
if any(x==X), otherwise δxX  = 0.         (57) 

 
Function Φ(x, X) is discontinuous at x = X both 
from left and right, which is physically and 
functionally more reasonable, than in the case of 
F*(x, X), continuous from the right only. 

Figure 4: Expected Squared Error of the Linear Approximation (50), E[(x-e)2] and its Integral in (0, e) 
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Conclusion 
The least error piecewise constant 
approximation of F(x) was presented. The 
starting point was that ecdf ascribes total 
probability of 1 to the sample, whereas any finite 
sample represents a set of measure zero. An 
optimal approach should ascribe zero measure 
associated with the sample. However, due to its 
convenience, a piecewise constant formalism 
has been selected. As a result, a part of total 
probability, equal to N/(N+2), is still associated 
with the sample. However, the aim was roughly 
achieved, because this measure is now smaller 
than 1, and this enabled a higher accuracy. 

Optimal ecdf S(x, X) was built as a 
result of eliminating order bias of levels in ecdf 
F*(x, X), which is an unbiased estimation of F(x) 
for any fixed-in-advance x-value. Are ecdf 
versions C and S also unbiased? If it is forgotten 
for a moment that C and S are not designed for 
straightforward averaging over different 
samples, E[s(x, X, α)] could be calculated. As 
follows from (22), the s-family is biased at α > 
0, i.e. C and S are biased. This bias 
asymptotically disappears as N ∞. Is this bias 
important or not? What is more important for 
practical applications, improved accuracy of 
F(x) approximation, or formal bias which is in 
fact artificially created? 

This bias has no practical meaning. 
Versions C and S use all available sample 
elements by definition, and the way this is done 
is not reducible to simple averaging. In fact, the 
bias is created by violation of the procedures 
behind C and S. The correct comparison is not 
reduced to an averaging over several samples. 
Instead, all available samples should be fused 
into one long sample before C or S functions are 
found. As eq. (8) shows, in the case of F* the 
averaging over many samples gives the same 
result, as one combined sample. This enables 
formal ubiasedness, but the consequence thereof 
is increased approximation error. 

A correct comparison of DF*, DC and DS 
should always be done using the same sample or 
set of samples. If N∞, then F*, C and S all 
converge to the same F(x). The only difference 
is that DS is the smallest of the three at any N. 
For this reason, if N is not very large, S(x, X) 
should always be preferred in practice as the 
best piece-wise constant approximation of F(x). 

The smallest possible error of empirical 
estimation of F(x) is desirable, regardless of 
whether the error is due to the variance or due to 
inexact mathematical expectation. An optimal 
method should minimize the total error, and 
exactly this is done by Φ(x, X) both for discrete 
and continual applications. Physically, S has a 
smaller approximation error, because it takes 
into account additional information, contained in 
the order statistics F(X), whereas F* neglects this 
information. As a result, ecdf F* has order bias 
and an unnecessarily big approximation error. 

The optimal ecdf Φ(x, X), presented 
here, is based on the most popular optimality 
criterion in statistics, i.e. least squared deviation. 
Final decision about its superiority depends on 
the quality of statistical predictions produced by 
different ecdf versions. 
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Application of the Truncated Skew Laplace Probability Distribution in 
Maintenance System 

 
Gokarna R. Aryal Chris P. Tsokos 
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A random variable X is said to have the skew-Laplace probability distribution if its pdf is given by

)()(2)( xGxgxf λ= , where g (.) and G (.), respectively, denote the pdf and the cdf of the Laplace 
distribution. When the skew Laplace distribution is truncated on the left at 0 it is called it the truncated 
skew Laplace (TSL) distribution. This article provides a comparison of TSL distribution with two-
parameter gamma model and the hypoexponential model, and an application of the subject model in 
maintenance system is studied. 
 
Key words: Probability Distribution; Truncation; Simulation; Reliability, Renewal Process. 
 
 

Introduction 
Very few real world phenomena studied 
statistically are symmetrical in nature, thus, the 
symmetric models would not be useful for 
studying every phenomenon. The normal model 
is, at times, a poor description of observed 
phenomena. Skewed models, which exhibit 
varying degrees of asymmetry, are a necessary 
component of the modeler’s tool kit. The term 
skew Laplace (SL) means a parametric class of 
probability distributions that extends the Laplace 
probability density function (pdf) by an 
additional shape parameter that regulates the 
degree of skewness, allowing for a continuous 
variation    from    Laplace    to    non-Laplace. 
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The skew Laplace distribution as a 

generalization of the Laplace law should be a 
natural choice in all practical situations in which 
some skewness is present. Several asymmetric 
forms of the skewed Laplace distribution have 
appeared in the literature with different 
formulations. Aryal et al. (2005b) studied 
extensively the mathematical properties of a 
skew Laplace distribution. This distribution was 
developed using the idea introduced by O’Hagan 
and studied by Azzalini (1985). A random 
variable X is said to have the skew symmetric 
distribution if its probability density function 
(pdf) is given by 
 

)()(2)( xGxgxf λ=             (1.1) 
 
where, -∞< x< ∞, -∞< λ< ∞, g(x) and G(x) are 
the corresponding pdf and the cumulative 
distribution function (cdf) of the symmetric 
distributions. 

The Laplace distribution has the pdf and 
cdf specified by 
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respectively, where ∞<<∞− x  and .0>ϕ  

Hence, the pdf )(xf  and the cdf )(xF  of the 
skew Laplace random variable is given, 
respectively, by 
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Aryal et al. (2005a) proposed a reliability model 
that can be derived from the skew Laplace 
distribution on truncating it at 0 on the left. This 
is called the truncated skew Laplace (TSL) 
probability distribution. The cdf of this 
reliability model for 0>λ  is given by 
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and the corresponding pdf is given by 
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It is immediate that the reliability function )(tR
and the hazard rate function )(th  of a TSL 
random variable is given, respectively, by 
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Also, note that the mean residual lifetime 
(MRLT) of a TSL random variable is given by 
 

22(1 ) exp
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2(1 ) exp

t

m t
t
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(1.10) 

 
This article provides a comparison of 

this reliability model with other competing 
models, namely, the two parameter gamma and 
hypoexponential distribution.  We also study an 
application of the TSL probability model in 
preventive maintenance and cost optimization. 
 
TSL vs. Gamma Distribution 

A random variable X is said to have a 
gamma probability distribution with parameters 
α  and β  denoted by ),( βαG  if it has a 
probability density function given by 
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(2.1) 
 
where (.)Γ  denotes the gamma function. The 

parameters α  and β  are the shape and scale 
parameters, respectively. The reliability and 
hazard functions are not available in closed form 
unless α  is an integer; however, they may be 
expressed in terms of the standard incomplete 
gamma function ),( zaΓ  defined by 
 

1
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In terms of ),( zaΓ  the reliability function for 
random variable Gamma is given by 
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If α  is an integer, then the reliability function is 
given by 
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The hazard rate function is given by 
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for any 0>α , however, if α  is an integer it 
becomes 
 

 −

=

−

Γ
=

1

0

1

!/)()(
),;( αα

α

βαβ
βα

k
k kt

tth .  (2.5) 

 
The shape parameter α  is of special 

interest, since whether α −1 is negative, zero or 
positive, corresponds to a decreasing failure rate 
(DFR), constant, or increasing failure rate (IFR), 
respectively. 

It is clear that the gamma model has 
more flexibility than the TSL model as the 
former can be used even if the data has DFR. In 
fact, the standard exponential distribution is 

)1,0(TSL  as well as )1,1(Gamma . However, if 

in the gamma model α >1, it has IFR which 
appears to be the same as that of the TSL model, 
but a careful study has shown a significance 
difference between these two models, this is the 
case for which real world data - where the TSL 
model gives a better fit than the competing 
gamma model - could be presented. 

According to Pal et al. (2006) the failure 
times (in hours) of pressure vessels constructed 
of fiber/epoxy composite materials wrapped 
around metal lines subjected to a certain 
constant pressure, studied by Keating et al. 
(1990), can be described using 

)300,45.1(Gamma  model. The subject data 
was studied using TSL model. It was observed 
that TSL (5939.8, 575.5) fits the subject data 
better than the gamma distribution The 
Kolmogorov-Smirnov goodness of fit indicated 
that, the D-statistic for Gamma (1.45, 300) and 
TSL (5939.8, 575.5) distribution are 

2502.0=GammaD  and 200.0=TSLD  
respectively. Since the smaller D-statistic, the 
better is the fit so it is concluded that the TSL 
model fits better than the gamma model. 

Figure 1 displays the P-P plot of the fits 
of the pressure vessels data assuming the TSL 
and the gamma models. It is clear that the TSL 
pdf is a better fit than the gamma model. Thus, 
the TSL is recommended for the pressure vessel 
data. Table 1 gives the reliability estimates using 
TSL and gamma models. It is observed that 
there is a significant difference in these 
estimates. 
 
TSL vs. Hypoexponential Probability 
Distribution 

Observing the probability structure of 
the truncated skew Laplace pdf it is of interest to 
seek an existing probability distribution, which 
can be written as a difference of two exponential 
functions. Since the hypoexponential 
distribution has this characteristic the TSL pdf 
will be compared with the hypoexponential pdf. 
Many natural phenomena can be divided into  
 



TRUNCATED SKEW LAPLACE PROBABILITY DISTRIBUTION APPLICATION 

 

412 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: P-P Plots of Vessel Data Using TSL and Gamma Distribution 
 

Table 1: Reliability Estimates of the Pressure Vessels Data 

t )(ˆ tRTSL  )(ˆ tRGAMMA  t )(ˆ tRTSL  )(ˆ tRGAMMA  

0.75 0.999 0.999 363 0.532 0.471 

1.70 0.997 0.999 458 0.451 0.365 

20.80 0.965 0.984 776 0.260 0.150 

28.50 0.952 0.976 828 0.237 0.129 

54.90 0.909 0.940 871 0.220 0.113 

126.0 0.803 0.826 970 0.185 0.085 

175.0 0.738 0.745 1278 0.108 0.034 

236.0 0.664 0.647 1311 0.102 0.030 

274.0 0.621 0.590 1661 0.056 0.010 

290.0 0.604 0.567 1787 0.045 0.007 
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sequential phases. If the time the process spent 
in each phase is independent and 
exponentiallydistributed, then it can be shown 
that overall time is hypoexponentially 
distributed. It has been empirically observed that 
service times for input-output operations in a 
computer system often possess this distribution 
(see Trivedi, 1982) and will have n  parameters 
one for each of its distinct phases. Interest then 
lies in a two-stage hypoexponential process, that 
is, if X is a random variable with parameters 1λ  

and )( 212 λλλ ≠  then its pdf is given by 

 

{ }1 2
1 2

2 1

( ) exp( ) exp( ) , 0f x x x xλ λ λ λ
λ λ

= − − − >
−

(3.1)
 

 
The notation ),( 21 λλHypo  denotes a 
hypoexponential random variable with 
parameters 1λ  and, 2λ  . The corresponding cdf 
is given by 
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The reliability function )(tR  of a 

),( 21 λλHypo  random variable is given by 
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The hazard rate function )(th  of a 

),( 21 λλHypo  random variable is given by 
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It is clear that )(th  is an increasing function of 

the parameter 2λ ; it increases from 0 to 

{ }.,min 21 λλ  Note that the mean residual life 

time (MRLT) at time t  for ),( 21 λλHypo  is 
given by 
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Hypo

t t
m t

t t
λ λ λ λ

λ λ λ λ λ λ
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(3.5) 
 

To compare the TSL and 
hypoexponential pdf in terms of reliability and 
mean residual life times, random samples of size 
50, 100 and 500 are  generated from a 
hypoexponential pdf with parameters 1λ =1 and 

20&10,5,22 =λ  for each sample size. 

Numerical iterative procedure, Newton-Raphson algorithm, is used to estimate the 
maximum likelihood estimates of 1λ  & 2λ .  To 

compare these results, the parameters ϕ  and λ
of a TSL distribution are estimated (See Table 
2). In addition the mean residual life times were 
computed for both the models at 2/ntt = . 

In Table 2, TSLM  and HYPOM  denote 

the MRLT of TSL and hypoexponential models 
respectively. Table 2 shows that if the sample 
size is large and the difference between the two 
parameters 1λ and 2λ is large both the TSL and 
hypoexponential model will produce the same 
result. However, for a small sample size and a 
small difference between 1λ and 2λ  a significant 
difference is observed between the two models. 
Figures 2-5 illustrate the plotted reliability 
graphs and provide the support for these 
findings. 
 

TSL Distribution and Preventive Maintenance 
In many situations, failure of a system 

or unit during actual operation can be very 
costly or in some cases dangerous if the system 
fails, thus, it may be better to repair or replace 
before it fails. However, it is not typically 
feasible to make frequent replacements of a 
system. Thus, developing a replacement policy 
that balances the cost of failures against the cost 
of planned replacement or maintenance is 
necessary. Suppose a unit that is to operate over 
a time 0 to time t, [0, t], is replaced upon failure 
(with failure probability distribution F). Assume 
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Table 2: Mean Residual Lifetimes (MRLT) of TSL and Hypoexponential  
Models Computed by Using (1.10) and (3.5) for Different Sample Sizes 

 

n  1λ  2λ  1̂λ  2λ̂  ϕ̂  λ̂  TSLM  HYPOM  

50 1 2 0.934 2.325 2.745 1.349 1.362 1.129 

50 1 5 0.975 5.133 2.779 1.097 1.108 1.029 

50 1 10 0.979 12.223 1.042 6.968 1.042 1.021 

50 1 20 0.940 26.742 1.069 15.349 1.069 1.063 

100 1 2 0.876 2.565 1.376 2.403 1.391 1.184 

100 1 5 0.903 6.835 1.178 6.216 1.179 1.108 

100 1 10 0.950 9.838 1.098 8.439 1.099 1.052 

100 1 20 1.029 26.322 0.892 0.242 0.982 0.971 

500 1 2 0.915 2.576 1.339 3.076 1.348 1.132 

500 1 5 0.961 6.489 1.088 3.453 1.093 1.042 

500 1 10 0.881 10.224 1.174 8.355 1.173 1.135 

500 1 20 1.016 27.411 0.988 14.044 0.988 0.983 

 

 
 

Figure 2: Reliability of TSL and Hypoexponential Distributions for n=50, λ1=1, λ2=2 
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Figure 3: Reliability of TSL and Hypoexponential Distributions for n=50, λ1=1, λ2=5 
 

Figure 4: Reliability of TSL and Hypoexponential Distributions for n=50, λ1=1, λ2=10 
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that the failures are easily detected and instantly 
replaced and that cost 1c  includes the cost 

resulting from planned replacement and cost 2c  
that includes all costs  invested resulting from 
failure then the expected cost during the period 
[0, t] is given by 

 
)),(())(()( 2211 tNEctNEctC +=      (4.1) 

 
where, ))(( 1 tNE  and ))(( 2 tNE  denote the 
expected number of planned replacement and 
the expected number of failures respectively. 
The goal is to determine the policy minimizing 

)(tC  for a finite time span or minimizing 

t
tC

t

)(
lim

∞→
for an infinite time span. Because the 

TSL probability distribution has an increasing 
failure rate it is expected that this model would 
be useful in a maintenance system. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Age Replacement Policy and TSL Probability 
Distribution 

Consider the so-called age replacement 
policy; in this policy an item is always replaced 
exactly at the time of failure, or at ∗t  time after 
installation, whichever occurs first. This age 
replacement policy for infinite time spans seems 
to have received the most attention in the 
literature. Morese (1958) showed how to 
determine the replacement interval minimizing 
cost per unit time, while Barlow and Proschen 
(1962) proved that if the failure distribution, F, 
is continuous then a minimum-cost age 
replacement exists for any infinite time span. 

In this article, the goal is to determine 
the optimal time ∗t  at which preventive 
replacement should be performed. The model 
should determine the time ∗t    that minimizes 
the total expected cost of preventive and failure 
maintenance per unit time. The total cost per 
cycle consists of the cost of preventive 
maintenance in addition to the cost of failure  
 

Figure 5: Reliability of TSL and Hypoexponential Distributions for n=50, λ1=1, λ2=20 
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maintenance. Hence, 
 

( ) ( ))(1)()( *
2

*
1

* tRctRctEC −+=    (4.1.1) 
 
where 1c and 2c denote the cost of preventive 
maintenance and failure maintenance 

respectively, and )( ∗tR  is the probability that 

the equipment survives until age ∗t . The 
expected cycle length consists of the length of a 
preventive cycle plus the expected length of a 
failure cycle. Thus, we have 
 

( )* * * *Expected Cycle Length = ( ) ( ) 1 ( )t R t M t R t+ −
(4.1.2) 
where 
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is the mean of the truncated distribution at time 

∗t . Hence, the expected cost per unit time is 
equal to: 

* *
1 2

* * * *
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     (4.1.3) 

 
Assume that a system has a time to failure 
distribution of the truncated skew Laplace pdf; 
the goal is to compute the optimal time ∗t  of 
preventive replacement. Because the reliability 
function of a TSL random variable is given by 
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Substituting and simplifying the expressions, the 
expected cost per unit time (ECU) is given by: 
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(4.1.4) 
 
Methodology 
In order to minimize a function )(tg  subject to 

bta ≤≤  the Golden Section Method, which 
employs the following steps to calculate the 
optimum value may be used.  
 
Step 1: 
Select an allowable final tolerance level δ  and 
assume the initial interval where the minimum 
lies is ],[],[ 11 baba = and let 
 

)(

))(1(

1111

1111

aba
aba

−+=
−−+=

αμ
αλ

 

 
Take 618.0=α , which is a positive root of 

012 =−+ cc , evaluate )( 1λg  and )( 1μg , and 

let 1=k . Go to Step 2. 
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Step 2: 
If δ≤− kk ab , stop because the optimal 

solution is 2/)(*
kk bat += , otherwise, if 

)()( kk gg μλ >  go to Step 3; or if

)()( kk gg μλ ≤ , go to Step 4. 

 
Step 3: 
Let kk aa =+1 , kk bb =+1 , kk μλ =+1  and 

)( 1111 ++++ −+= kkkk aba αμ . Evaluate 

)( 1+kg μ  and go to Step 5. 

 
Step 4: 
Let kk aa =+1 , kkb μ=+1 , kk λμ =+1  and 

))(1( 1111 ++++ −−+= kkkk aba αλ . Evaluate 

)( 1+kg λ  and go to Step 5. 

 
Step 5: 
Replace k  by 1+k  and go to Step 1. 
 
Example 
To implement this method to find the time ∗t  
subject to the condition that 11 =c  and 102 =c  
proceed as follows: 
 
Iteration 1: 
Consider ]10,0[],[ 11 =ba , where 618.0=α  so 

that .382.01 =−α  
 

82.3))(1( 1111 =−−+= aba αλ
18.6)( 1111 =−+= aba αμ , 

561.8)( 1 =λECU , and .570.8)( 1 =μECU  
 

Because )()( 11 μλ ECUECU <  the 
next interval where the optimal solution lies is 

]18.6,0[ . 
 
Iteration 2: 
[ ] [ ]

.561.8)(533.8)(

.82.336.2,18.6,0,

22

2222

==
===

μλ
μλ

ECUandECU
andba

 

 

Because )()( 22 μλ ECUECU <  the 
next interval where the optimal solution lies is
[ ]82.3,0 . 
 
Iteration 3: [ ] [ ]

.533.8)(516.8)(

36.2459.1,82.3,0

33

333,3

==

===

μλ

μλ

ECUandECU

andba
 

 
Because )()( 33 μλ ECUECU <  the 

next interval where the optimal solution lies is 
[ ]36.2,0 . 
 
Iteration 4: [ ] [ ]

.516.8)(613.8)(

459.1901.0,36.2,0

44

444,4

==

===

μλ

μλ

ECUandECU

andba

 
Because )()( 44 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]0.901,  2.36 . 
 
Iteration 5: 
[ ] [ ]

.517.8)(516.8)(

803.1459.1,36.2,901.0,

55

5555

==
===

μλ
μλ

ECUandECU
andba

 
Because )()( 55 μλ ECUECU <  the 

next interval where the optimal solution lies is 

[ ]0.901,  1.803 . 
 
Iteration 6: 
[ ] [ ]

.516.8)(528.8)(

459.1246.1,803.1,901.0,

66

6666

==
===

μλ
μλ

ECUandECU
andba

 
Because )()( 66 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]1.246,  1.803 . 
 
Iteration 7: 
[ ] [ ]

.514.8)(516.8)(

590.1459.1,803.1,246.1,

77

7777

==
===

μλ
μλ

ECUandECU
andba
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Because )()( 77 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]1.459,  1.803 . 
If the δ  level is fixed at 0.5, it can be 

concluded that the optimum value lies in the 

interval [ ]1.459,  1.803 and is given by 1.631. 

This numerical example was performed 
assuming that the failure data follows the 

)1,1(TSL  model and it has been observed that to 
optimize the cost, maintenance should be 
scheduled at 1.631 units of time. 
 
Block Replacement Policy and TSL Probability 
Distribution 

Consider the case of the Block-
Replacement Policy, or the constant interval 
policy. In this policy preventive maintenance is 
performed on the system after it has been 
operating a total of *t  units of time, regardless 
of the number of intervening failures. In the case 
where the system has failed prior to the time *t , 
minimal repairs are be performed. Assume that 
the minimal repair will not change the failure 
rate of the system and that preventive 
maintenance renews the system to its original 
new state. Thus, the goal is to find the time *t  
that minimizes the expected repair and 
preventive maintenance costs. The total 
expected cost per unit time for preventive 
replacement at time *t , denoted by ECU ( *t ) is 
given by 
 

*
* exp cos int (0, )
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ECU t
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The total expected cost in the interval 
*(0,  )t equals the cost of preventative 

maintenance plus the cost of failure 

maintenance, which is given by )( *
21 tMcc + , 

where M (t*) is the expected number of failures 
in the interval (0, t*). Thus, 
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It is known that the expected number of failures 
in the interval (0, t*) is the integral of the failure 
rate function, that is 
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Therefore, if the failure of the system follows 
the TSL distribution it may be observed that 
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Example 
To minimize the total expected cost subject to 
the conditions 11 =c  and 102 =c , the Golden 
Section Method (as described above)  is used to 
obtain the value of ∗t   
 
Iteration 1: 
[ ] [ ] 618.0,10,0, 11 == αba , 382.01 =−α ,  

 
82.3))(1( 1111 =−−+= aba αλ ,

18.6)( 1111 =−+= aba αμ , 
 

523.9)( 1 =λECU  and .697.9)( 1 =μECU  
 

Because )()( 11 μλ ECUECU <  the 
next interval where the optimal solution lies is 

[ ]0,  6.18 . 
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Iteration 2: 
[ ] [ ]18.6,02,2 =ba , 36.22 =λ , 82.32 =μ , 

30.9)( 2 =λECU , and .523.9)( 2 =μECU  

Because )()( 22 μλ ECUECU <  the 
next interval where the optimal solution lies is 

[ ]0,  3.82 . 
 
Iteration 3: 
[ ] [ ]82.3,03,3 =ba , 459.13 =λ , 36.23 =μ , 

124.9)( 3 =λECU  and .30.9)( 3 =μECU  

 
Because )()( 33 μλ ECUECU <  the 

next interval where the optimal solution lies is 

[ ]0,  2.36 . 
 
Iteration 4: 
[ ] [ ]36.2,04,4 =ba , 901.04 =λ , 459.14 =μ , 

102.9)( 4 =λECU  and .124.9)( 4 =μECU  
 

Because )()( 44 μλ ECUECU <  the 
next interval where the optimal solution lies is 

[ ]0,  1.459 . 
 
Iteration 5: 
[ ] [ ]459.1,05,5 =ba , 557.05 =λ , 5 0.901,μ =  

405.9)( 5 =λECU  and .124.9)( 5 =μECU  

 
Because )()( 55 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]0.557,  1.459 . 
 
Iteration 6: 
[ ] [ ]459.1,557.06,6 =ba , 9015.06 =λ , 

114.16 =μ , 102.9)( 6 =λECU , and 

.08.9)( 6 =μECU  

 
Because )()( 66 μλ ECUECU >  the 

next interval where the optimal solution lies is 

[ ]0.901,  1.459 . 
 

Iteration 7: 
[ ] [ ]459.1,901.07,7 =ba , 114.17 =λ , 

245.17 =μ , 08.9)( 7 =λECU , and 

.09.9)( 7 =μECU  

 
Because )()( 77 μλ ECUECU <  the 

next interval where the optimal solution lies is 

[ ]0.901,  1.245 . 

If the δ  level is fixed at 0.5 it can be 
concluded that the optimum value lies in the 

interval [ ]0.901,  1.245 and it is given by 1.07. 

As in the case of age replacement in this 
numerical example it was assumed that the 
failure data follows )1,1(TSL  model. Observe 
that, in order to optimize the cost, maintenance 
must be scheduled at every 1.07 units of time. 
 
Maintenance Over a Finite Time Span 

The problem concerning the preventive 
maintenance over a finite time span is of great 
importance in industry. It can be viewed in two 
different perspectives based on whether the total 
number of replacements (failure + planned) 
times are known or unknown. The first case is 
straightforward and has been addressed in the 
literature for a long time. Barlow et al. (1962) 

derived the expression for this case. Let ∗T  
represent the total time span, meaning 
minimization of the cost due to forced 
replacement or planned replacement until

∗= TT . Let ),( TTCn
∗  represent the expected 

cost in the time span 0 to *T , ],,0[ ∗T  
considering only the first n  replacements and 
following a policy of replacement at interval T. 
It is clear that considering the case when 

TT ≤*  is equivalent to zero planned 
replacements, that 
 

( )
* *

2*
1 *

2 1

( ), ,
( , )

( ) 1 ( ) ,

c F T if T T
C T T

c F T c F T if T T
 ≤=  + − ≥

(5.1) 
 

Thus, for ,...,3,2,1=n  =+ ),( *
1 TTCn  
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n
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0

*
2

0

**
2

*

(5.2) 
 

A statistical model may now be 
developed that can be used to predict the total 
cost of maintenance before an item is actually 
used. Let T equal the predetermined replacement 
time, and assume that an item is always replaced 
exactly at the time of failure T* or T hours after 
its installation, whichever occurs first. Let τ  
denotes the failure time then we have two cases 
to consider, 
 
Case 1: T < T* 

In this case the preventative 
maintenance (PM) interval is less than the finite 
planning horizon. For this case if the component 
fails after time, say,  )( Tfor <ττ  then the cost 
due to failure is incurred and the planning 

horizon is reduced to ].[ * τ−T  But if the 
component works  till the preventive 
replacement time T then the cost due to 
preventive maintenance is incurred and the 
planning horizon is reduced to [T*-T]. 

 
The total cost incurred in these two cases is 

[ ]
[ ] [ ]),()(1

)(),(),(

*
1

0

*
2

*

TTTCcTF

dfTTCcTTC
T

−+×−+

−+=  τττ
 

(5.3) 
where 1c  is the cost for preventive maintenance 

and )( 12 cc >  is the cost for failure maintenance. 
 
Case 2: T* < T 

In this case the PM interval is greater 
than the planning horizon so there is no 
preventive maintenance but there is a chance of 
failure maintenance. Hence the total cost 
incurred will be 

*

* *
2

0

( , ) ( , ) ( )
T

C T T c C T T f dτ τ τ = + −   (5.4) 

The interest here lies in finding the 
preventative maintenance time T that minimizes 
the cost of the system. Consider a numerical 
example to determine whether the minimum 
exists if the failure model is assumed to be TSL 
(1, 1). A random sample of size 100 was 
generated from TSL (1, 1) and a time T to 
perform preventive maintenance was fixed. The 
preventive maintenance cost c1 = 1 was set along 
with the failure replacement cost c2 = 1, 2 and 
10. The process was repeated several times and 
the total cost for first 40 failures was computed. 
All necessary calculations were performed using 
the statistical language R. In the table 3, iC , for 

10&,2,1=i  represents the total cost due to 
preventive maintenance cost c1=1 and the failure 
replacement cost 10&2,1,2 == iic . It can be 

observed from table 3 that the minimum  iC  

exists around at T = 1.1 units of time. A 
preliminary study of the application of the TSL 
distribution in such environment can be found in 
Aryal, et al. (2008). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 3: Expected Costs at Different 
Maintenance Times 

T C10 C2 C1 
1.00 340.55 88.95 57.50 
1.01 347.25 89.65 57.45 
1.02 336.95 87.75 56.60 
1.03 342.95 88.15 56.30 
1.04 339.15 87.15 55.65 
1.05 341.25 87.25 55.50 
1.06 334.40 86.40 55.40 
1.07 343.75 87.35 55.30 
1.08 332.15 84.95 54.05 
1.09 338.55 85.81 54.22 
1.10 318.48 82.67 53.19 
1.11 327.68 84.04 52.59 
1.12 344.76 86.48 54.19 
1.13 333.70 84.50 53.35 
1.14 340.40 85.20 53.30 
1.15 338.86 84.68 53.90 
1.16 331.28 82.90 53.86 
1.17 338.27 84.09 54.31 
1.18 335.24 83.05 53.52 
1.19 341.90 84.00 54.76 
1.20 363.90 87.50 56.95 
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Conclusion 
This study presented a comparison of the 
truncated skew Laplace probability distribution 
with the two parameter gamma probability 
distribution and hypoexponential probability 
distribution. A detailed procedure was also 
provided to apply the truncated skew Laplace 
probability distribution in the maintenance 
system. 
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On Some Discrete Distributions and their Applications with Real Life Data 
 

Shipra Banik B. M. Golam Kibria 
Independent University, 

Bangladesh 
Florida International University 

 
 
This article reviews some useful discrete models and compares their performance in terms of the high 
frequency of zeroes, which is observed in many discrete data (e.g., motor crash, earthquake, strike data, 
etc.). A simulation study is conducted to determine how commonly used discrete models (such as the 
binomial, Poisson, negative binomial, zero-inflated and zero-truncated models) behave if excess zeroes 
are present in the data. Results indicate that the negative binomial model and the ZIP model are better 
able to capture the effect of excess zeroes. Some real-life environmental data are used to illustrate the 
performance of the proposed models. 
 
Key words: Binomial Distribution; Poisson distribution; Negative Binomial; ZIP; ZINB. 
 
 

Introduction 
Statistical discrete processes – for example, the 
number of accidents per driver, the number of 
insects per leaf in an orchard, the number of 
thunderstorms per year, the number of 
earthquakes per year, the number of patients 
visit emergency room in a certain hospital per 
day - often occur in real life. To approximate (or 
fit) a process, statistical probabilistic 
distributions are often used. Thus, fitting a 
process has been drawn considerable attention in 
the literature of many fields, for example, 
engineering (Lord, et al., 2005), ecology 
(Warton, 2005), biological science (Lloyd-
Smith, 2007; Bliss & Fisher, 1953),  
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epidemiology (Bohning, 1998), entomology 
(Taylor, 1961), zoology (Fisher, 1941), 
bacteriology (Neyman, 1939). 

A broad range of probability models are 
commonly used in applied literature to fit 
discrete processes. These include: binomial 
model, Poisson model, negative binomial model, 
zero-inflated models and zero-truncated models. 
Binomial distribution models represent the total 
number of successes in a fixed number of 
repeated trials when only two outcomes are 
possible on each trial. Poisson distributions 
approximate rare-event processes (e.g., accident 
occurrences, failures in manufacturing or 
processing, etc.). An important restriction of the 
Poisson distribution is that its mean and variance 
are equal. 

In reality, discrete processes often 
exhibit a large variance and a small mean and 
thus, display over-dispersion with a variance-to-
mean value greater than 1 (Bliss & Fisher, 1953; 
Warton, 2005; Ross & Preece, 1985; White & 
Bennetts, 1996). Therefore, in real life, the 
Poisson assumption is often violated. A negative 
binomial distribution may be used for modeling 
purposes because it uses an additional parameter 
to describe the variance of a variable. Hence, the 
negative binomial distribution is considered as 
the first alternative to the Poisson distribution 
when the process is over-dispersed. 

However, in many situations (e.g., road 
crash data), the chance of observing zero is 
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greater than expected. Reasons may include 
failing to observe an event during the 
observational period and an inability to ever 
experience an event. Some researchers (Warton, 
2005; Shankar, et al., 2003; Kibria, 2006) have 
applied zero-inflated models to model this type 
of process (known as a dual-states process: one 
zero-count state and one other normal-count 
state). These models generally capture apparent 
excess zeroes that commonly arise in some 
discrete processes, such as road crash data, and 
improve statistical fit when compared to the 
Poisson and the negative binomial model. The 
reason is that data obtained from a dual-state 
process often suffer from over-dispersion 
because the number of zeroes is inflated by the 
zero-count state. A zero-inflated model 
(introduced by Rider, 1961) is defined by 
 





>
=−

==
0Xif);X(P

0Xif1
)kX(P

iμθ
θ

 

 
where θ is the proportion of non-zero values of 
X and P(X;μi) is a zero-truncated probability 
model fitted to normal-count states. To address 
phenomena with zero-inflated counting 
processes, the zero-inflated Poisson (ZIP) model 
and the zero-inflated negative binomial (ZINB) 
model have been developed. A ZIP model is a 
mix of a distribution that is degenerate at zero 
and a variant of the Poisson model. Conversely, 
the ZINB model is a mix of zero and a variant of 
negative binomial model.  

Opposite situations from the zero-
inflated models are also encountered; this article 
examines processes that have no zeroes: the 
zero-truncated models. If the Poisson or the 
negative binomial model is used with these 
processes, the procedure tries to fit the model by 
including probabilities for zero values. More 
accurate models that do not include zero values 
should be able to be produced. If the value of 
zero cannot be observed in any random 
experiment, then these models may be used. 
Two cases are considered: (1) the zero-truncated 
Poisson model, and (2) the zero-truncated 
negative binomial model. 

Given a range of possible models, it is 
difficult to fit an appropriate discrete model. The 
main purpose of this article is to provide 

guidelines to fit a discrete process appropriately. 
First, a simulation study was conducted to 
determine the performance of the considered 
models when excess zeroes are present in a 
dataset. Second, the following real-life data (For 
details, see Table 4.1) were analyzed, the 
numbers of: 
 

1. Road accidents per month in the Dhaka 
district, 

2. People visiting the Dhaka medical hospital 
(BMSSU) per day, 

3. Earthquakes in Bangladesh per year, and 
4. Strikes (hartals) per month in Dhaka. 

 
Statistical Distribution: The Binomial 
Distribution 

If X~B(n, p), then the probability mass 
function (pmf) of X is defined by 
 

knk
C )p1(pn)p,n;kX(P

K

−−== , 

k = 0, 1, 2, …, n.                  (2.1) 
 
where n is the total number of trials and p is the 
probability of success of each trial. The moment 
generating function (mgf) of (2.1) is 
 

( ) ( ) ,t n
XM t p qe= +  

 
thus, E(X), V(X) and skewness (Sk) of (2.1) are 
np, npq and ]npq/)p21[( 2−  respectively. 
 
Statistical Distribution: The Poisson Distribution 

In (2.1) if n→∞ and p→0, then X 
follows the Poisson distribution with parameter 
λ(>0) (denoted X~P(λ)). The pmf is defined as 
 

!k
e);kX(P

kλλ
λ−

== , k = 0, 1, 2, …   (2.2) 

 
where λ denotes expected number of 
occurrences. The mgf of (2.2) is 
 

( 1)( ) ,
te

XM t eλ −=  

 
thus, E(X) and V(X) of (2.2) are the same, which 
is λ and Sk is equal to 1/λ. 
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Statistical Distribution: The Negative Binomial 
Distribution 

If X~NB(k,p), then the pmf of X is given 
by 
 

( )( )
( ; , ) ,

!
                     0, 0, 0,  1,  2,...

X k Xk XP X k p p q
X k

p k X

− +Γ +=
Γ

> > =
 

(2.3) 
 
where p is the chance of success in a single trial 
and k are the number of failures of repeated 
identical trials. If k→∞, then X~P(λ), where λ = 
kp. The mgf of (2.3) is 
 

( ) ( ) ,t k
XM t q pe −= −  

 
thus, E(X), V(X) and Sk of (2.3) are kp, kpq and 

]kpq/)p21[( 2+ respectively. 
 
Statistical Distribution: The Zero-Inflated 
Poisson (ZIP) Distribution 

If X~ZIP(θ, λ) with parameters θ and λ, 
then the pmf is defined by 
 







>
−

=−
=

− 0Xif
e1

);X(P
0Xif1

),;X(P
λ

λθ

θ
λθ         (2.4) 

 
where P(X; λ) is defined in (2.2) and θ is the 
proportion of non-zero values of X. The mgf of 
(2.4) is 

( ) (1 ) ( 1),
1
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X

eM t e
e
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λ

λ
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−= − + −
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thus, E(X), V(X) and Sk of (2.4) are 
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respectively. 

Statistical Distribution: Zero-Inflated Negative 
Binomial (ZINB) Distribution 

If X~ZINB(θ, k, p), then the pmf  of X is 
defined by 
 

1 0

( ; , , ) ( ; , )
0

1 k

if X
P X k p P X k p if X

q

θ
θ

θ −

− =
= > −

 

(2.5) 
 
where P(X; k, p) is defined in (2.3) and θ is the 
proportion of non-zero values of X. The mgf of 
(2.5) is 
 

( ) (1 ) [( ) 1],
1

t k
X kM t q pe

q
θθ −

−= − + − −
−

 

 
thus, E(X), V(X) and Sk of (2.5) are 
 

kq1
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−−
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respectively. As k→∞, ZINB (θ, k, p) ~ZIP(θ, 
λ), where λ= kp. 
 
Statistical Distribution: Zero-Truncated Poisson 
(ZTP) Distribution 

If X~ZTP(λ), then the pmf of X is given 
by 

( )
( | 0)

( 0)

( ; )
                           

1 ( 0)

( ; )
                           

(1 )

P X xP X x X
P X

P X
P X

P X
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>
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for x = 1, 2, 3, …, where P(X; λ) is defined in 
(2.2). The mgf of this distribution is 
 

( ) ( 1),
1

te
X

eM t e
e

λ
λ

λ

−

−= −
−

 

 
thus, E(X) and V(X) are 1)e1( −−− λλ  and Sk is 

11 )e1()1(3)3)(e1( −−−− −−+−++− λλ λλλ . 
 
Statistical Distribution: Zero-Truncated 
Negative Binomial (ZTNB) Distribution 

If X~ZTNB(k, p), then the pmf of X is 
given by 
 

kq1
)p,k;X(P

)0X(P1
)p,k;X(P)0X|xX(P −−

=
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for x = 1, 2, 3, …, where P(X; k, p) is defined in 
(2.3). The mgf of this distribution is 
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respectively. 
 
Parameter Estimation 

To estimate the parameters of the 
considered models, the most common methods 
are the method of moment estimation (MME) 
(Pearson, 1894) and the maximum likelihood 
estimation (MLE) method (Fisher, 1922). The 
latter method has been used extensively since in 
the early 1900s, due to its properties of being 
consistent, asymptotically normal and having 
minimum variances for large samples. 

The Moment Estimation Method (MME) 
Consider the kth moments of a random 

variable X. By notation, 
 


=

=
n

1i

k
i

k n
X

M = E(Xk), k = 1, 2, 3, …,  

thus, 
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The Maximum Likelihood Estimation Method 
(MLE) 

Find the log-likelihood function for a 
given distribution and take a partial derivative of 
this function with respect to each parameter and 
set it equal to 0; solve it to find the parameters 
estimate. 
 
Binomial Distribution: Moment Estimator of p 

Based on (2.1), it is known that E(X) = 
np, therefore, M1 = np. Simplification results in: 
 

ˆ ( ) 1( ) / / .p momB E X n M n= =  

 
Binomial Distribution: Maximum Likelihood 
Estimator of p 

The log-likelihood expression of (2.1) is 
 

LogL(X;n,p) =  

Constant + 
1 1

log log(1 );
n n

i i
i i

X p n X p
= =

+ − −   

 
differentiating the above expression with respect 
to p, the following equation is obtained 
 

1 1log ( ; , )
.

1
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i i
i i
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p p p
= =

−
∂ = −
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Simplifying results in: 

n/XB
n

1i
i)ml(p̂ 

=
=

.
 

 
Poisson Distribution: Moment Estimator of λ 

Based on (2.2), it is known that E(X) = 
λ, thus, 
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ˆ 1( )
.

mom
P Mλ =  

 
Poisson Distribution: Maximum Likelihood 
Estimator of λ 

The log-likelihood expression of (2.2) is 
 

LogL(X;λ) =  
= =

−+−
n

1i

n

1i
ii )!X(loglogXn λλ  

 
Differentiating the above expression with 
respect to λ, results in 
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=+−=
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∂
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1i
iX
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and, after simplification, 
 

1)ml(ˆ MP =λ  

thus 

1)ml(ˆ)mom(ˆ MPP == λλ . 

 
Negative Binomial Distribution: Moment 
Estimators of p and k 

Based on (2.3), it is known that E(X) = 
kp and V(X) = kpq, thus 
 

M1 = kp                           (2.6) 
and 

M2 – M1
2 = kpq                      (2.7) 

 

Solving (2.7) for q results in 
1

2
12

M
MM

q̂
−

= , and 

because it is known (based on 2.3) that q – p = 1, 
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Solving (2.6), results in 
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Negative Binomial Distribution: Maximum 
Likelihood Estimators of p and k 

The log-likelihood expression of (2.3) is 
 

LogL(X; k, p) = 
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Differentiating the above expression with 
respect to p and k, the following equations 
result: 

p1
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Solving (2.8), results in ( ) 1
ˆ/ .p mlNB M k=  It 

was observed that 
)ml(k̂

NB  does not exist in 

closed form, thus, 
)ml(k̂

NB was obtained by 

optimizing numerically (2.9) using the Newton-
Raphson optimization technique where p= p . 
 
ZIP Distribution: Moment Estimators of θ and λ 

It is known for (2.4) that 

E(X) = λ

θλ
−− e1

 

and 

V(X) = 





−
−+

− −− λλ

θλλθλ
e1

1
e1

, 

thus, 

M1 = λ

θλ
−− e1

,  
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Simplifying the above equations results in 
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ZIP Distribution: Maximum Likelihood 
Estimators of θ and λ 

The log-likelihood expression of (2.4) is 
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Differentiating the above expression with 
respect to θ and λ, results in 
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After the above equations are simplified for θ 
and λ, the following are obtained: 

n/)0X(IZIP
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where E(X) is the expected value of the non-zero 
occurrences of X (λ does not have a closed form 
solution, hence the Newton-Raphson algorithm 

was used to find λ̂  iteratively.) 
 
ZINB Distribution: Moment Estimators of θ, k, 
p 

Moment estimators of θ, k, p do not 
exist. 
 
ZINB Distribution: Maximum Likelihood 
Estimators of θ, k, p 

The log-likelihood expression of (2.5) is 
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Differentiating the above with respect to each of 
parameters, results in the following estimators 
for θ, k, and p: 
 

n/)0X(IZINB
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Other estimates andp̂ k̂  were found 
iteratively: k, p is given by 
 

1

ˆ ( ) ( ){1 (1 ) }k
p mlZINB E X kp

−−= − +  (2.10) 

 
thus, the solution of p̂  has the same properties 
as described above. Because the score equation 

for k̂  does not have a simple form, k was 
estimated numerically given the current estimate 
of p̂ from (2.10) (for details, see Warton, 2005). 
 
ZTP Distribution 

The estimated parameters 
)mom(ˆZTPλ and 

)ml(ˆZTPλ  are similar to )mom(ˆZIPλ  and 
)ml(ˆZIPλ , 

where the log-likelihood expression for this 
distribution is given by 
 
LogL(X; λ) =  
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. 
ZTNB Distribution 

The estimated parameters )ml(p̂ZTNB  

and 
)ml(k̂

ZTNB
 

are similar to )ml(p̂ZINB  and 

)ml(k̂
ZINB , where the log-likelihood expression 

for this distribution is given by 
 
LogL(X; k, p) =  
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Methods for Comparison of the Distributions: 
Goodness of Fit (GOF) Test 

The GOF test determines whether a 
hypothesized distribution can be used as a model 
for a particular population of interest. Common 
tests include the χ2, the Kolmogorov-Smirnov 
and the Anderson-Darling tests. The χ2 test can 
be applied for discrete models; other tests tend 
to be restricted to continuous models. The test 
procedure for the χ2 GOF is simple: divide a set 
of data into a number of bins and the number of 
points that fall into each bin is compared to the 
expected number of points for those bins (if the 
data are obtained from the hypothesized 
distribution). More formally, suppose: 
 
H0: Data follows the specified population 

distribution. 
H1: Data does not follow the specified 

population distribution. 
 
If the data is divided into bins, then the test 
statistic is: 


=

−
=

s

1i i

2
ii2

cal E
)EO(χ             (2.11) 

 
where Oi and Ei are the observed and expected 
frequencies for bin i. The null, Ho, is rejected if 

2
,df

2
cal αχχ > , where degrees of freedom (df) is 

calculated as (s−1− # of parameters estimated) 
and α is the significance level. 
 

Methodology 
Simulation Study 

Because the outcome of interest in many 
fields is discrete in nature and generally follows 
the binomial, Poisson or the negative binomial 
distribution. It is evident from the literature that 
these types of variables often contain a high 
proportion of zeroes. These zeroes may be due 
to either the presence of a population with only 
zero counts and/or over-dispersion. Hence, it 
may be stated that - to capture the effect of 

excess zeroes - it is necessary to investigate 
which model would best fit a discrete process. 
Thus, a series of simulation experiments was 
conducted to determine the effect of excess 
zeroes on selected models. These simulation 
studies reflect how commonly used discrete 
models behave if excess zeroes are present in a 
set of data. 
 
Simulation Experiment Design 

A sample, X = {X1, X2, …, Xn}, was 
obtained where data were generated from a 
Poisson model with: 

λ: 1.0, 1.5, 2.0 and 2.5; 
n: 10, 20, 30, 50, 100, 150, 200; and 
10%, 20%, 80% zeroes. 

Different data sets for different sample sizes and 
λs were generated to determine which model 
performs best if zeroes (10% to 80%) are present 
in a dataset. To select the possible best model, 
the Chi-square GOF statistic defined in (2.11) 
for all models were calculated. If the test was 
not statistically significant, then the data follows 
the specified (e.g., binomial, Poisson, or other) 
population distribution. Tables 3.1-3.8 show the 
GOF statistic values for all proposed 
distributions. Both small and large sample 
behaviors were investigated for all models, and 
all calculations were carried out using the 
programming code MATLAB (Version 7.0). 
 

Results 
Tables 3.1 to 3.8 show that the performance of 
the models depends on the sample size (n), λ 
and the percentage of zeroes included in the 
sample. It was observed that, as the percentage 
of zeroes increases in the sample, the proportion 
of over dispersion decreases and performance of 
the binomial and Poisson distributions decrease. 
For small sample sizes, most of the models fit 
well; for large sample sizes, however, both the 
binomial and Poisson performed poorly 
compared to others. For samples containing a 
moderate to high percentage of zeroes, the 
negative binomial performed best followed by 
ZIP and ZINB. Based on simulations, therefore, 
in the presence of excess zeroes the negative 
binomial model and the ZIP (moment estimator 
of parameters) model to approximate a real 
discrete process are recommended. 
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Table 3.1: Simulation Results for 10% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (1.87, 1.55) 4.86 1.53 0.71 - - 1.45 0.93 1.08 

1.5 (1.88, 1.61) 4.59 1.45 0.49 - - 0.80 0.61 0.48 

2.0 (2.11, 1.11) 6.99 3.24 3.94 - - 1.26 4.54 6.34 

2.5 (2.66, 2.00) 2.41 14.34 2.11 - - - 1.32 1.96 

20 

1.0 (1.29, 0.59) 3.14 1.03 3.56 - - 0.87 0.22 57.69* 

1.5 (1.55, 1.67) 50.39* 22.04* 6.80 6.57 6.74 6.95 6.00 4.35 

2.0 (1.89, 1.43) 8.03 2.07 0.64 - - 1.70 0.75 0.70 

2.5 (2.42, 2.47) 33.68* 15.00 4.53 4.53 4.43 4.68 5.15 6.19 

30 

1.0 (1.28, 0.71) 4.74 1.22 3.04 - - 0.85 0.95 111.05* 

1.5 (1.78, 1.45) 10.13 3.22 1.16 - - 1.67 1.55 1.03 

2.0 (2.11, 2.41) 8.48 31.46* 11.36 9.80 10.08 11.81 7.60 8.91 

2.5 (2.25, 2.66) 129.94* 51.96* 6.42 5.15 5.33 6.01 8.45 4.31 

50 

1.0 (1.50, 1.00) 21.9 6.37 5.58 - - 5.97 5.03 4.76 

1.5 (1.82, 1.25) 10.75 2.09 1.73 - - 6.93 2.28 4.78 

2.0 (2.33, 2.04) 57.09* 24.38* 6.99 - - 10.67 8.55 9.52 

2.5 (2.68, 2.21) 34.43* 26.04* 10.41 - - 50.46* 11.36 16.67 

100 

1.0 (1.24, 0.54) 13.33 4.32 15.87 - - 5.06 2.04 217.25* 

1.5 (1.67, 1.29) 32.99* 11.59 6.36 - - 2.50 2.63 7.72 

2.0 (1.93, 1.74) 73.11* 27.26* 4.50 - - 3.37 4.37 1.79 

2.5 (2.50, 3.27) 379.60* 159.59* 9.64 4.74 4.78 11.31 12.02 7.29 

150 

1.0 (1.21, 0.64) 27.15* 18.09* 28.80* - - 1.10 2.05 630.30* 

1.5 (1.68, 1.35) 33.19* 11.91 6.94 - - 1.51 1.83 9.04 

2.0 (2.50, 2.49) 108.42* 51.92* 5.80 - - 6.54 7.28 17.72* 

2.5 (2.05, 1.80) 54.72* 19.62* 2.98 - - 3.44 3.86 9.24 

200 

1.0 (1.31, 0.87) 33.01* 20.37* 25.95* - - 3.81 3.53 48.64* 

1.5 (1.76, 1.58) 281.53* 111.60* 11.22 - - 8.43 10.59 18.00* 

2.0 (2.16, 2.16) 98.78* 39.66* 0.52 - - 0.51 2.67 9.86 

2.5 (2.52, 2.49) 108.42* 51.92* 5.80 - - 6.54 7.28 17.72* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.2: Simulation Results for 20% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.75, 0.91) 2.44 0.87 0.54 0.56 0.54 0.67 1.49 19.74* 

1.5 (1.88, 1.61) 1.90 1.36 0.21 0.33 0.23 0.11 0.65 0.44 

2.0 (2.11, 1.11) 5.13 1.97 1.07 - - 2.51 2.08 1.78 

2.5 (2.40, 2.26) 4.46 52.17* 2.16 - - 5.88 1.24 2.33 

20 

1.0 (1.14, 0.74) 9.12 2.43 3.54 - - 5.78 5.42 83.15* 

1.5 (1.76, 1.69) 9.47 6.16 3.42 - - 4.59 5.00 3.93 

2.0 (2.05, 2.26) 43.37* 21.00* 6.54 6.17 6.30 6.01 7.87 7.19 

2.5 (2.25, 2.72) 22.62* 17.07* 7.25 6.46 6.41 5.08 7.77 7.53 

30 

1.0 (1.44, 1.11) 16.47 4.57 1.98 4.14 - - 4.42 1.94 

1.5 (1.51, 1.87) 15.05 6.69 2.80 3.36 3.13 3.70 3.85 3.97 

2.0 (1.71, 3.02) 183.02* 79.97* 10.86 2.53 2.23 3.38 17.55* 1.50 

2.5 (1.89, 1.87) 22.97* 14.24 6.21 - - 7.73 9.48 8.64 

50 

1.0 (1.07, 0.73) 8.91 1.90 3.01 - - 0.72 0.87 226.10* 

1.5 (1.27, 1.12) 9.23 2.64 0.84 - - 0.82 2.45 2.57 

2.0 (1.42, 1.58) 36.468 14.27 0.83 0.40 0.45 0.74 4.39 0.90 

2.5 (2.31, 4.26) 1.16e+003* 473.03* 25.04* 9.44 9.44 17.75* 29.23* 21.43* 

100 

1.0 (1.27, 1.11) 12.51 4.70 2.93 - - 5.07 8.63 6.35 

1.5 (1.54, 1.98) 111.79* 44.34* 1.81 1.08 1.13 1.68 8.20 3.94 

2.0 (1.90, 2.02) 49.98* 29.58* 10.09 9.46 9.43 7.80 13.15 12.44 

2.5 (2.21, 2.95) 129.95* 73.67* 17.07* 10.76 10.42 3.83 13.62 11.96 

150 

1.0 (1.15, 0.92) 26.42* 6.98 4.04 - - 0.79 3.19 15.99 

1.5 (1.38, 1.45) 521.78* 206.30* 13.68 11.50 11.97 13.60 37.08* 11.87 

2.0 (2.09, 2.85) 643.42* 284.48* 27.75* 9.65 8.65 4.70 31.70* 9.87 

2.5 (1.81, 2.35) 163.00* 77.96* 10.29 2.76 2.33 2.08 17.60* 2.32 

200 

1.0 (1.07, 0.80) 16.68 2.76 5.02 - - 0.60 2.64 931.68* 

1.5 (1.43, 1.39) 31.52* 12.61 2.07 - - 2.76 12.21 7.39 

2.0 (1.78, 2.20) 269.23* 119.66* 12.80 7.57 7.52 6.05 23.29* 12.43 

2.5 (2.09, 2.85) 643.42* 284.48* 27.75* 9.65 8.65 4.70 31.71* 9.87 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.3: Simulation Results for 30% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.87, 0.69) 2.84 0.45 0.44 - - 0.94 1.16 27.88* 

1.5 (1.12, 1.83) 3.96 2.01 0.55 0.55 0.44 0.91 1.43 0.67 

2.0 (2.10, 2.98) 5.61 14.43 3.24 1.23 1.09 1.51 0.49 0.36 

2.5 (2.30, 4.90) 18.52* 19.26* 6.62 3.92 4.02 1.51 3.76 2.96 

20 

1.0 (0.94, 0.71) 3.21 0.51 0.86 - - 0.15 0.39 92.09* 

1.5 (1.38, 1.78) 35.44* 15.61 4.36 3.13 3.13 2.60 9.45 2.50 

2.0 (1.70, 2.09) 20.71* 17.90* 11.35 10.73 10.68 8.74 13.98 11.83 

2.5 (1.65, 2.39) 17.36* 11.52 4.39 3.82 3.82 2.42 2.03 4.38 

30 

1.0 (1.0, 0.88) 7.18 1.64 0.16 - - 0.50 2.29 190.49* 

1.5 (1.0, 0.91) 7.71 2.04 0.18 - - 0.59 2.85 197.58* 

2.0 (2.03, 3.89) 32.69* 52.35* 21.40* 6.51 3.97 6.44 4.58 3.54 

2.5 (1.29, 2.21) 80.02* 33.24* 4.13 1.99 1.78 5.92 12.27 4.58 

50 

1.0 (0.84, 0.97) 6.60 3.12 1.70 1.69 1.67 1.23 5.90 3.52 

1.5 (1.48, 2.30) 283.18* 120.03* 13.83 5.50 5.26 2.89 29.87* 4.96 

2.0 (1.67, 2.09) 64.25* 35.99* 11.66 9.08 8.83 6.04 14.96 9.07 

2.5 (2.02, 3.32) 551.89* 241.91* 37.23* 8.70 7.04 1.51 104.44* 7.85 

100 

1.0 (0.92, 0.84) 12.54 3.18 0.59 - - 0.59 5.54 663.75* 

1.5 (1.23, 1.72) 156.60* 67.78* 9.01 1.21 0.95 1.41 34.08* 0.48 

2.0 (1.47, 2.04) 146.74* 69.81* 13.45 4.26 3.48 1.25 28.87* 1.80 

2.5 (1.92, 3.14) 2.62e+003* 1.06e+003* 51.79* 21.29* 20.20* 7.95 66.55* 20.26* 

150 

1.0 (0.93, 1.00) 37.20* 13.93 0.89 0.28 0.29 0.25 17.34* 11.65 

1.5 (1.27, 1.50) 46.01* 26.46* 10.28 8.17 8.05 4.44 27.61* 9.47 

2.0 (1.82, 2.79) 532.08* 273.65* 61.18* 26.09* 22.16* 4.35 64.56* 20.42* 

2.5 (1.44, 2.07) 281.77* 127.63* 22.52* 5.78 4.76 6.99 54.01* 2.57 

200 

1.0 (0.95, 0.99) 72.01* 27.23* 1.18 0.83 0.86 1.22 22.25* 16.74 

1.5 (1.15, 1.47) 88.14* 44.03* 10.55 4.57 4.41 2.79 44.02* 5.86 

2.0 (1.61, 2.49) 1.75e+003* 723.43* 48.01* 12.80 11.61 3.90 92.98* 10.08 

2.5 (1.82, 2.79) 532.08* 273.65* 61.18* 26.098* 22.16* 4.35 64.56* 20.42* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.4: Simulation Results for 40% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.66, 1.46) 2.26 1.87 0.96 0.53 0.58 0.17 1.86 0.66 

1.5 (1.20, 1.73) 4.03 3.02 1.38 1.31 1.28 0.67 2.61 1.46 

2.0 (1.40, 2.04) 17.73* 9.68 3.77 2.71 2.68 1.85 6.30 2.68 

2.5 (1.90, 3.21) 10.75 27.79* 6.48 3.99 3.90 2.16 3.84 4.04 

20 

1.0 (0.83, 0.97) 21.23* 8.40 3.17 2.69 2.79 2.85 9.66 2.70 

1.5 (0.84, 0.69) 8.90 2.35 1.63 - - 2.89 4.66 79.64* 

2.0 (1.07, 2.07) 42.96* 22.27* 8.79 3.94 3.62 1.38 24.15* 2.86 

2.5 (1.70, 3.58) 40.06* 26.74* 9.49 3.32 3.24 0.34 8.61 1.42 

30 

1.0 (0.76, 1.02) 75.62* 31.05* 6.16 3.57 3.64 5.07 28.62* 4.84 

1.5 (0.92, 1.27) 35.83* 15.13 2.78 0.62 0.62 0.95 14.79 0.71 

2.0 (1.41, 2.89) 267.73* 126.08* 47.17* 27.79* 28.18* 13.98 103.35* 35.84* 

2.5 (1.36, 2.30) 81.23* 39.25* 9.82 2.59 2.16 1.75 22.33* 1.91 

50 

1.0 (1.04, 1.57) 150.54* 63.48* 8.05 1.16 0.99 0.98 39.99* 0.59 

1.5 (1.17, 1.65) 70.74* 33.93* 9.43 4.40 3.46 1.46 26.17* 1.39 

2.0 (1.51, 2.50) 200.58* 95.75* 22.46* 8.65 7.25 2.60 38.05* 5.88 

2.5 (1.34, 2.36) 115.07* 62.35* 23.13* 8.98 7.79 4.56 50.28* 8.02 

100 

1.0 (0.87, 1.29) 232.718 99.50* 14.12 3.43 3.24 2.03 88.05* 3.19 

1.5 (1.06, 1.70) 303.13* 134.46* 35.92* 14.85 12.96 7.92 119.83* 10.78 

2.0 (1.26, 1.87) 144.32* 74.04* 21.62* 9.68 8.51 2.94 50.29* 6.50 

2.5 (1.51, 3.11) 1.78e+003* 742.21* 77.04* 11.73 8.38 4.45 181.85* 4.43 

150 

1.0 (0.79, 0.91) 33.33* 14.98 3.49 1.57 1.44 0.68 28.07* 1.4e+003* 

1.5 (1.03, 1.62) 795.95* 330.68* 27.73* 4.15 3.65 1.85 160.24* 3.04 

2.0 (1.60, 3.65) 2.18e+004* 8.6e+003* 221.00* 20.44* 15.72 9.98 623.30* 5.46 

2.5 (1.31, 2.38) 1.2e+003* 571.42* 81.64* 18.53* 14.69 12.03 232.37* 16.67 

200 

1.0 (0.75, 1.00) 206.88* 87.74* 11.31 2.48 2.36 2.94 91.17* 7.66 

1.5 (1.06, 1.55) 210.87* 103.49* 25.11* 6.13 4.77 0.47 95.82* 2.48 

2.0 (1.24, 2.04) 1.68e+003* 699.68* 62.48* 13.81 12.28 5.15 225.91* 10.27 

2.5 (1.60, 3.65) 2.18e+004* 8.69e+003* 221.00* 20.44* 15.72 9.98 623.30* 5.46 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.5: Simulation Results for 50% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.60, 0.48) 1.40 0.02 0.19 - - 0.13 0.16 17.86* 

1.5 (1.10, 2.10) 43.97* 19.56* 5.32 1.60 1.47 0.94 17.22* 1.33 

2.0 (1.00, 1.75) 27.08* 13.12 6.53 4.48 4.46 2.63 17.72* 4.57 

2.5 (0.62, 0.83) 8.88 4.02 2.78 2.54 2.54 2.08 6.72 62.37* 

20 

1.0 (0.66, 0.82) 10.80 4.24 0.93 0.29 0.32 0.28 5.81 241.12* 

1.5 (0.56, 0.79) 20.75* 8.55 2.43 0.77 0.80 0.81 11.44 0.66 

2.0 (0.85, 1.29) 59.76* 24.70* 4.43 0.95 0.99 1.61 24.03* 0.93 

2.5 (1.21, 2.50) 169.46* 74.33* 13.89 3.18 2.60 0.72 44.27* 3.36 

30 

1.0 (0.42, 0.55) 16.33 6.96 3.94 2.75 2.59 1.97 10.81 121.28* 

1.5 (0.85, 1.51) 74.89* 73.14* 14.97 3.17 2.85 2.90 78.40* 2.11 

2.0 (1.03, 2.24) 232.29* 113.74* 26.09* 9.27 8.85 3.24 106.43* 9.77 

2.5 (1.41, 3.10) 225.50* 107.76* 28.80* 9.25 7.93 2.21 60.34* 11.61 

50 

1.0 (0.64, 0.91) 89.04* 37.10* 6.18 0.95 0.89 1.01 42.96* 1.12 

1.5 (0.89, 1.61) 42.06* 22.55* 8.57 2.36 2.33 2.33 30.61* 1.65 

2.0 (0.92, 2.06) 1.09e+003* 448.56* 51.15* 5.58 4.49 4.26 371.95* 2.83 

2.5 (1.30, 2.75) 551.89* 241.91* 37.23* 8.70 7.04 1.51 104.44* 7.85 

100 

1.0 (0.57, 0.82) 107.32* 46.20* 14.72 4.27 3.34 2.21 66.71* 0.87 

1.5 (0.78, 1.17) 284.75* 118.19* 20.75* 3.50 3.12 5.04 124.37* 2.16 

2.0 (1.10, 2.27) 822.90* 358.46* 49.51* 10.05 8.64 0.52 204.08* 7.83 

2.5 (1.25, 2.68) 577.43* 281.76* 68.86* 15.87* 11.79 1.33 195.13* 15.77 

150 

1.0 (0.61, 0.83) 94.65* 44.15* 17.37* 8.16 6.78 3.50 68.03* 1.8e+003* 

1.5 (0.91, 1.55) 877.63* 371.87* 52.36* 11.54 9.98 3.97 305.59* 7.01 

2.0 (1.28, 2.68) 8.3e+003* 3.3e+003* 179.29* 38.23* 35.12* 8.73 758.37* 38.32* 

2.5 (1.16, 2.43) 1.6e+003* 713.45* 94.96* 12.30 8.31 1.29 386.70* 6.23 

200 

1.0 (0.65, 0.90) 116.46* 55.23* 16.14 4.99 4.20 1.02 85.16* 7.88 

1.5 (0.82, 1.30) 210.40* 104.89* 29.59* 6.11 5.12 0.14 147.99* 2.77 

2.0 (1.23, 2.95) 4.4e+004* 1.7e+004* 312.14* 13.44 10.50 8.88 2.4e+003* 5.87 

2.5 (1.28, 2.68) 8.3e+003* 3.3e+003* 179.29* 38.23* 35.12* 8.73 758.37* 38.32* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.6: Simulation Results for 60% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.44, 0.52) 3.33 1.14 0.45 0.29 0.36 0.33 1.73 31.31* 

1.5 (0.60, 0.93) 0.93 0.60 0.07 0.17 0.08 0.30 0.42 0.70 

2.0 (0.80, 1.73) 11.61 5.97 2.33 0.59 0.59 0.43 7.49 0.50 

2.5 (0.77, 1.69) 5.19 4.88 2.81 2.01 2.48 0.85 4.85 2.08 

20 

1.0 (0.35, 0.36) 2.66 0.61 0.09 0.06 0.09 0.13 0.91 36.26* 

1.5 (0.57, 0.81) 17.04* 7.31 2.20 0.56 0.50 0.29 10.51 0.13 

2.0 (0.95, 2.26) 522.66* 215.30* 25.74* 2.22 1.70 1.57 181.72* 0.61 

2.5 (1.36, 4.13) 102.70* 58.03* 20.07* 3.54 2.50 1.39 29.57* 4.79 

30 

1.0 (0.48, 0.56) 16.46 6.57 3.45 2.69 2.58 2.17 10.16 129.52* 

1.5 (0.79, 1.31) 70.10* 33.22* 14.84 8.04 7.31 3.93 50.71* 6.55 

2.0 (0.99, 1.98) 550.56* 116.98* 30.89* 9.87 8.45 2.89 98.09* 9.03 

2.5 (1.00, 2.59) 100.29* 464.03* 56.83* 7.57 6.21 2.37 407.44* 5.59 

50 

1.0 (0.37, 0.38) 8.58 2.31 0.53 0.44 0.52 0.52 3.41 104.71* 

1.5 (0.55, 1.30) 155.03* 66.52* 12.75 0.66 0.65 3.41 89.77* 2.93 

2.0 (0.91, 2.12) 370.66* 171.86* 44.30* 12.42 11.59 5.35 230.82* 12.37 

2.5 (1.12, 2.94) 4.8e+003* 1.95e+003* 118.24* 10.88 8.87 3.87 893.32* 5.71 

100 

1.0 (0.52, 0.87) 2.1e+003* 862.93* 59.97* 1.48 1.60 6.54 796.85* 4.73 

1.5 (0.57, 1.27) 1.7e+003* 729.47* 89.54* 4.64 3.85 7.12 1.01e+003* 3.43 

2.0 (0.82, 1.96) 4.2e+003* 1.75e+003* 121.95* 9.62 7.23 4.40 1.47e+003* 3.86 

2.5 (1.09, 2.79) 1.5e+003* 718.16* 136.83* 21.88* 18.27* 5.12 747.44* 14.69 

150 

1.0 (0.41, 0.50) 64.26* 25.91* 5.86 0.79 0.63 0.71 35.15* 2.02e+003* 

1.5 (0.68, 1.25) 426.14* 196.29* 58.20* 12.82 9.72 3.99 306.42* 7.49 

2.0 (1.07, 2.72) 9.1e+003* 3.87e+003* 298.17* 34.00* 27.98* 4.46 3.27e+003* 8.91 

2.5 (0.81, 1.69) 2.5e+003* 1.06e+003* 120.97* 8.71 5.49 3.67 1.05e+003* 5.61 

200 

1.0 (0.51, 0.87) 882.24* 369.87* 63.28* 4.00 2.63 3.03 482.26* 1.13 

1.5 (0.55. 0.93) 965.77* 409.93* 55.95* 6.49 5.24 2.93 498.47* 3.36 

2.0 (0.86, 1.74) 650.33* 329.36* 110.74* 30.81* 25.08* 5.69 573.57* 21.21* 

2.5 (1.07, 2.72) 9.1e+003* 3.87e+003* 298.17* 34.20* 27.98* 4.46 2.37e+003* 18.91* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.7: Simulation Results for 70% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.60, 1.15) 29.65* 13.37 5.27 1.86 1.71 0.83 22.54* 1.39 

1.5 (0.50, 0.72) 11.8 5.37 3.54 2.84 2.83 2.07 8.99 82.23* 

2.0 (0.90, 2.32) 10.40 8.74 4.82 1.22 1.18 0.11 7.89 1.36 

2.5 (0.80, 1.73) 4.99 6.31 3.49 1.88 2.47 0.71 4.64 51.86* 

20 

1.0 (0.36, 0.57) 1.80 0.85 0.21 0.13 0.07 0.42 0.82 1.68 

1.5 (0.27, 0.33) 4.68 1.65 0.60 0.22 0.24 0.20 2.22 52.16* 

2.0 (0.57, 1.25) 23.82* 13.34 7.45 3.91 4.25 1.51 23.59* 3.71 

2.5 (1.10, 3.98) 293.96* 133.96* 31.52* 6.20 6.52 0.91 149.41* 1.67 

30 

1.0 (0.39, 0.61) 39.03* 17.02* 5.44 0.83 0.62 0.29 25.18* 0.13 

1.5 (0.72, 2.06) 109.55* 54.26* 20.14* 5.12 5.25 0.85 101.27* 1.79 

2.0 (0.82, 2.29) 790.34* 335.52* 50.67* 7.50 6.50 1.20 490.86* 14.03 

2.5 (0.50, 0.74) 23.87* 11.81 5.61 2.66 2.38 1.22 19.68* 442.47* 

50 

1.0 (0.41, 0.78) 477.66* 198.32* 30.46* 1.24 0.87 0.91 267.62* 0.33 

1.5 (0.47, 0.92) 202.94* 88.76* 31.60* 8.81 7.51 3.60 157.73* 5.92 

2.0 (0.56, 1.14) 159.68* 71.58* 18.19 1.70 1.46 1.53 112.87* 0.87 

2.5 (0.87, 3.55) 1.29e+003* 542.57* 70.87* 6.72 7.13 8.29 675.26* 104.59* 

100 

1.0 (0.29, 0.39) 61.89* 26.49* 14.07 7.28 6.18 4.32 39.15* 486.00* 

1.5 (0.43, 0.77) 242.08* 110.12* 30.088 5.98 4.92 1.25 181.32* 2.70 

2.0 (0.71, 2.01) 1.1e+003* 4.62e+003* 290.16* 13.95 11.20 2.57 6.0e+003* 8.88 

2.5 (0.81, 2.12) 4.8e+003* 2.01e+003* 174.84* 23.30* 21.50* 5.88 2.3e+003* 29.29* 

150 

1.0 (0.40, 0.71) 311.81* 146.78* 46.22* 5.37 5.81 1.57 270.69* 1.45 

1.5 (0.49, 0.93) 396.50* 189.83* 60.48* 19.02* 17.47* 6.49 335.32* 13.90 

2.0 (0.73, 1.86) 7.0e+003* 2.92e+003* 327.54* 29.06* 21.54* 5.85 3.8e+003* 24.25* 

2.5 (0.57, 1.18) 749.89* 336.53* 89.94* 20.35* 16.90 4.70 589.06* 12.55 

200 

1.0 (0.29, 0.38) 75.97* 33.90* 11.71 1.88 1.36 0.40 50.56* 2.3e+003* 

1.5 (0.56, 1.34) 1.9e+004* 7.99e+003* 304.89* 13.25 11.95 2.23 8.0e+003* 6.22 

2.0 (0.73, 1.94) 4.6e+003* 1.98e+003* 227.50* 30.41* 27.78* 5.59 2.7e+003* 15.97 

2.5 (0.73, 1.86) 7.0e+003* 2.92e+003* 327.54* 29.06* 21.54* 5.85 3.8e+003* 24.35* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Table 3.8: Simulation Results for 80% Zero-Inflation 

n λ 
The Chi-Square GOF Statistic 

(Mean, Var) Bmom Bml Poisson NBmom NBml ZIPmom ZIPml ZINBml 

10 

1.0 (0.22, 0.44) 0 0.64 0.31 0.03 0.28 0.10 0.0032 0 

1.5 (0.50, 1.16) 3.17 3.24 2.05 0.51 0.67 0.07 2.91 31.48* 

2.0 (0.60, 1.82) 2.81 4.41 2.74 0.44 0.79 0.46 2.21 0.40 

2.5 (0.50, 1.16) 3.17 3.24 2.05 0.51 0.67 0.07 2.91 31.48* 

20 

1.0 (0.31, 0.67) 108.52* 46.91* 14.89 2.32 1.98 0.82 86.19* 1.54 

1.5 (0.40, 1.30) 1.80 2.65 1.54 0.56 0.39 8.46 1.17 64.35* 

2.0 (0.70, 2.32) 139.56* 64.29* 18.14* 2.61 2.33 0.16 134.54* 6.49 

2.5 (0.65, 2.55) 184.74* 81.78* 20.07* 2.28 3.38 0.94 173.58* 10.92 

30 

1.0 (0.11, 0.18) 24.48* 10.85 5.71 1.27 1.09 0.65 15.83 208.91* 

1.5 (0.34, 1.01) 53.98* 24.48* 8.24 0.46 0.47 3.31 41.92* 9.42 

2.0 (0.46, 1.29) 452.56* 189.90* 33.05* 2.09 1.79 0.32 337.42* 0.36 

2.5 (0.31, 0.57) 79.11* 35.05* 12.03 2.12 1.70 0.64 59.23* 0.94 

50 

1.0 (0.19, 0.29) 41.41* 18.28* 9.89 3.64 3.10 1.96 27.61* 328.00* 

1.5 (0.39, 1.05) 580.55* 247.89* 47.62* 4.17 3.73 0.27 481.91* 2.36 

2.0 (0.42, 0.82) 167.33* 76.05* 29.76* 9.56 8.86 3.91 144.92* 4.1e+003* 

2.5 (0.38, 0.85) 38.27* 20.88* 11.31 3.89 4.04 1.42 37.61* 2.45 

100 

1.0 (0.22, 0.36) 247.15 105.64 29.37* 1.74 1.19 0.93 147.52* 7.6e+003* 

1.5 (0.29, 0.56) 863.01* 362.55* 57.75* 1.83 1.08 0.27 513.18* 0.10 

2.0 (0.44, 1.30) 1.86e+004* 7.6e+003* 540.37* 12.36 10.00 2.66 1.2e+004* 11.11 

2.5 (0.54, 1.83) 1.59e+006* 6.2e+005* 7.1e+003* 9.56 7.22 2.52 6.2e+005* 1.50 

150 

1.0 (0.23, 0.41) 365.82* 160.49* 51.41* 5.92 4.22 1.42 256.57* 9.9e+003* 

1.5 (0.29, 0.55) 755.46* 331.02* 71.96* 4.16 2.68 0.42 543.71* 0.52 

2.0 (0.45, 1.12) 9.3e+003* 3.8e+003* 369.57* 20.28* 16.55 3.03 6.4e+003* 26.67* 

2.5 (0.48, 1.32) 1.7e+004* 7.2e+003* 530.55* 17.27* 13.11 2.32 1.1e+004* 17.63* 

200 

1.0 (0.22, 0.41) 1.46e+003* 611.40* 86.64* 3.60 3.36 1.53 776.13* 2.75 

1.5 (0.36, 0.84) 6.9e+003* 2.8e+003* 280.71* 9.29 6.20 0.34 4.5e+003* 7.44 

2.0 (0.42, 1.30) 4.1e+005* 1.6e+005* 4.4e+003* 12.41 8.16 4.40 2.1e+005* 1.73 

2.5 (0.45, 1.12) 9.3e+003* 3.8e+003* 369.57* 20.28* 16.55 3.03 6.4e+003* 26.57* 

Notes: 2
05.0,9χ  =16.91; *indicates significance (data do not follow the mentioned distribution) at α = 5%; - 

indicates over-dispersion; mom denotes moment estimator, and ml denotes MLE of model parameters. 
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Applications to Real Data Sets 
The selected processes were fitted using 

theoretical principles and by understanding the 
simulation outcomes. Theoretical explanations 
of a discrete process are reviewed as follows: 
Generally, a process with two outcomes (see 
Lord, et al., 2005, for details) follows a 
Bernoulli distribution. To be more specific, 
consider a random variable, which is NOA. Each 
time a vehicle enters any type of entity (a trial) 
on a given transportation network, it will either 
be involved in an accident or it will not. 

Thus, X~B(1,p), where p is the 
probability of an accident when a vehicle enters 
any transportation network. In general, if n 
vehicles are passing through the transportation 
network (n trials) they are considered records of 
NOA in n trials, thus, X~B(n,p). However, it was 
observed that the chance that a typical vehicle 
will cause an accident is very small out when 
considering the millions of vehicles that enter a 
transportation network (large number of n trials). 
Therefore, a B(n,p) model for X is approximated 
by a P(λ) model, where λ represents expected 
number of accidents. This approximation works 
well when λs are constant, but it is not 
reasonable to assume that λ across drivers and 
road segments are constant; in reality, this varies 
with each driver-vehicle combination. 
Considering NOA from different roads with 
different probabilities of accidents for drivers, 
the distribution of accidents have often been 
observed over-dispersed: if this occurs, P(λ) is 
unlikely to show a good fit. In these 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cases, the negative binomial model can improve 
statistical fit to the process. In the literature, it 
has been suggested that over-dispersed processes 
may also be characterized by excess zeroes 
(more zeroes than expected under the P(λ) 
process) and zero-inflated models can be a 
statistical solution to fit these types of processes. 
 
Traffic Accident Data 

The first data set analyzed was the 
number of accidents (NOA) causing death in the 
Dhaka district per month; NOA were counted 
for each of 64 months for the period of January 
2003 to April 2008 and the data are presented in 
Table 4.1.1 and in Figure 4.1.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1: Dataset Properties 

Type Time Period n Data Source 

The number of traffic accidents (NOA) 
in the Dhaka district per month 

Jan-2003 to 
April-2008 

64 
months 

The Daily Star 
Newspaper 

The number of peoples visiting 
(NOPV) Dhaka BMSSU per day 

April-2007 to 
July-2007 

74 days BMSSU, Dhaka. 

The number of earthquakes (NEQ) in 
Bangladesh per year 

1973 to 2008 
37 

years 
http://neic.usgs.gov/cgi-

bin/epic/epic.cgi  

The number of hartals (NOH) in the 
city of Dhaka per month 

Jan-1972 to 
Dec-2007 

432 
months 

Dasgupta (2001) and the 
Daily Star Newspaper 

Table 4.1.1: Probability 
Distribution of NOA 

NOA 
Observed 
Months 

0 0.12 
1 0.24 
2 0.17 

3 0.22 
4 0.17 
5 0.05 

6 0 
7 0.02 

Total 64 months 
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A total of 141 accidents occurred during the 
considered periods (see Figure 4.1.1) and the 
rate of accidents per month was 2.2 (see Table 
4.1.2). Figure 4.1.1 also shows that since 2004 
the rates have decreased. Main causes of road 
accidents identified according to Haque, 2003 
include: rapid increase in the number of 
vehicles, more paved roads leading to higher 
speeds, poor driving and road use knowledge, 
skill and awareness and poor traffic 
management. The observed and expected  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

frequencies with GOF statistic values are 
tabulated and shown in Table 4.1.2. The sample 
mean and variance indicate that the data shows 
over dispersion; about 16% of zeroes are present 
in the NOA data set. According to the GOF 
statistic, the binomial model fits poorly, whereas 
the Poisson and the negative binomial appear to 
fit. The excellent fits of different models are 
illustrated in Figure 4.1.2; based on the figure 
and the GOF statistic, the negative binomial 
model was shown to best fit NOA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.1: NOA by Year 
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Table 4.1.2: Observed and Fitted Frequencies of NOA 

NOA 0 1 2 3 4 5 6 7 Chi-Square 
GOF 

Statistic 
Observed 
Months 

10 16 10 14 10 3 0 1 

Bmom 6.8 18.2 20.3 12.7 4.8 1.0 0.1 0 150.93* 

Bml 4.5 14.6 20.1 15.3 7.0 1.9 0.2 0 63.08* 

Poisson 7.0 15.5 17.1 12.5 6.9 3.0 1.1 0.3 8.02 

NBmom 8.4 15.7 15.8 11.5 6.9 3.3 1.4 0.5 6.43 

NBml 8.5 15.7 15.8 11.4 6.6 3.3 1.4 0.6 6.39 

ZIPmom 9.7 13.6 15.8 12.3 7.1 3.3 1.3 0.4 6.01 

ZIPml 10.0 16.5 16.8 11.4 5.8 2.3 0.8 0.2 9.90 

ZINBml 10.0 16.8 13.5 9.4 6.0 3.6 2.0 1.1 8.11 

Mean = 2.2 and Variance = 2.6 
Parameter Estimates: )mom(p̂B = 0.27, )ml(p̂B = 0.31, 

)ml/mom(ˆPλ = 2.2, )mom(p̂NB =0.84, 

)ml(k̂
NB = 11.96, )mom(p̂NB = 0.83, 

)ml(k̂
NB = 11.09, )mom(p̂ZIP = 0.84,

)mom(ˆZIPλ = 2.32,

)ml(p̂ZIP = 0.84,
)ml(ˆZIPλ = 2.03, 

)ml(ˆZINBθ = 0.84, )ml(p̂ZINB = 0.53, 
)ml(k̂

ZINB =2.49 

Note: See footnotes, Table 3.1 
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Number of Patient Visits (NOPV) at Hospital 

The number of patient visits (NOPV) 
data were collected from the medical unit of the 
Dhaka BMSSU medical hospital for the period 
of 26 April 2007 to 23 July 2007, where the 
variable of interest is the total number of 
patients visit in BMSSU per day. The frequency 
distribution for NOPV is reported in Table 4.2.1, 
which shows that the patients visiting rate per 
day is 142.36; this equates to a rate of 14.23 per  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
working hour (see Table 4.2.2). Expected 
frequencies and GOF statistic values were 
tabulated and are shown in Table 4.2.2 and 
Figure 4.2.2 shows a bar chart of observed vs. 
expected frequencies. Tabulated results and the 
chart show that the negative binomial model and 
the ZTNB model (ZTNB model had the best fit) 
fit NOPV data well compared to other models. 
Based on this analysis, the ZTNB model is 
recommended to accurately fit NOPV per day. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.2: Distribution of NOA for Different Models 
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Table 4.2.1: Frequency 
Distribution of NOPV 

NOPV 
Observed 

Days 

51-83 1 

84-116 12 

117-149 32 

150-182 23 

183-215 6 

 

Figure 4.2.1: Trend to Visits in BMSSU per Day 
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Table 4.2.2: Observed and Fitted Frequencies of NOPV 

NOPV 51-83 84-116 117-149 150-182 183-215 
Chi-Square 

GOF Statistic Observed 
Days 

1 12 32 23 6 

Bmom 0 0.02 66.22 7.75 0 1.5e+013* 

Bml 0 0.02 66.22 7.75 0 1.5e+013* 

Poisson 0 1.33 55.69 16.94 0.02 1.46e+005* 

NBmom 0.92 14.17 32.27 20.58 5.28 0.7196 

NBml 1.08 14.56 31.54 20.35 5.55 0.8453 

ZIPmom 73.03 0 0 0 0 - 

ZIPml 0 1.33 55.69 16.94 0.02 1.46e+005* 

ZINBml 0 0 0 0 0 - 

ZTPml 0 1.33 55.69 16.94 0.02 1.46e+005 

ZTNBml 1.08 14.56 31.54 20.35 5.55 0.84 

Mean =142.36 and Variance =831.87 
Parameter estimates: )mom(p̂B = 0.65,

)ml(P̂
B = 0.65,

)ml/mom(ˆPλ = 140.78, )mom(p̂NB = 

0.16, 
)mom(k̂

NB = 26.82, )ml(p̂NB = 0.16,
)ml(k̂

NB = 26.82, )mom(p̂ZIP = 0.01,
)mom(ˆZIPλ = 

1.08e+004, )ml(p̂ZIP = 1.0,
)ml(ˆZIPλ = 0.14, 

)ml(ˆZINBθ = 1.0, )ml(p̂ZINB = 0.14, 

)ml(k̂
ZINB = 831.87, 

)ml(ˆZTPλ = 140.78, )ml(p̂ZTNB = 0.14 and 
)ml(k̂

ZTNB =831.87 

Note: See footnotes, Table 3.1 

Figure 4.2.2: Distribution of NOPV for Different Models 
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Earthquake Data 
The third variable of interest is the 

number of earthquakes (NEQ) that occurred in 
Bangladesh from 1973 to January 2008 (based 
on available data). This data set was extracted 
from the http://earthquake.usgs.gov site and is 
presented in Table 4.3.1. The number of 
earthquakes per year is presented in Figure 4.3.1 
and their magnitudes are displayed in Figure 
4.3.2. The frequency distribution of earthquakes 
in Bangladesh is shown in Table 4.3.1. Table 
4.3.2 shows a total of 127 earthquakes occurred 
in Bangladesh during the selected time period  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and that the average yearly earthquake rate is 
3.43. The observed frequencies, the expected 
frequencies and the GOF statistic values for 
NEQ data are reported in Table 4.3.2. Sample 
mean and variance equal 3.43 and 10.19 
respectively (shows over dispersion). It was 
found that the negative binomial model fits this 
data well (see Figure 4.3.3), whereas other 
models indicate lack of fit. Thus, based on this 
study, the distribution of NEQ follows the 
negative binomial distribution with a proportion 
of earthquakes equaling 0.29 per year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.1: Number of Earthquakes in Bangladesh per Year 
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Figure 4.3.2: Earthquake Magnitudes 
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Table 4.3.1: Frequency Distribution of NEQ 

NEQ 0 1 2 3 4 5 6 7 or More 

Number of Years 7 6 7 1 0 4 2 9 
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Table 4.2.2: Observed and Fitted Frequencies of NOPV 

NEQ Ob. Bmom Bml Poisson NBmom NBml ZIPml ZIPml ZINBml 

0 7 0.78 0.51 1.05 4.96 6.35 12.32 7.00 7.00 

1 6 3.58 2.65 3.73 6.26 6.20 0.60 3.22 0.0002 

2 7 7.45 6.27 6.57 5.68 5.27 1.62 5.60 0.0009 

3 1 9.31 8.88 7.73 4.78 4.26 2.89 6.48 0.0026 

4 0 7.75 8.38 6.82 3.80 3.35 3.86 5.62 0.0065 

5 4 4.52 5.54 4.81 2.92 2.59 4.12 3.90 0.0137 

6 2 1.88 2.61 2.83 2.18 1.98 3.67 2.26 0.0258 

7 4 0.56 0.88 1.42 1.60 1.50 2.80 1.12 0.0443 

8 3 0.11 0.20 0.62 1.16 1.13 1.86 0.48 0.0708 

9 1 0.01 0.03 0.24 0.83 0.85 1.10 0.18 0.1064 

10 0 0 0 0.08 0.59 0.63 0.59 0.06 0.1518 

11 1 0 0 0.02 0.41 0.47 0.28 0.02 0.2071 

GOF Statistic 1.9e+004* 7.7e+003* 97.72* 16.23 15.25 77.09* 83.67* 2.28e+005 

Mean =3.43 and Variance =10.19 
Parameter estimates: )mom(p̂B = 0.29, )ml(p̂B = 0.32, )ml/mom(ˆPλ = 3.52, )mom(p̂NB = 0.34,

)mom(k̂
NB = 1.86, 

)ml(p̂NB = 0.27, 
)ml(k̂

NB = 1.35, )mom(p̂ZIP = 0.65, )mom(ˆZIPλ = 5.33, )ml(p̂ZIP = 0.80, )ml(ZIPλ
 = 3.47, 

)ml(ˆZINBθ = 0.80, )ml(p̂ZINB = 0.25, 
)ml(k̂

ZINB = 10.19. 

Note: See footnotes, Table 3.1 

Figure 4.3.3: Distribution of NEQ for Different Models 
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Hartal (Strike) Data 
The fourth variable is the number of 

hartals (NOH) per month observed in Dhaka city 
from 1972 to 2007. Data from 1972 to 2000 was 
collected from Dasgupta (2001) and from 2001-
2007 was collected from the daily newspaper, 
the Daily Star. Historically, the hartal 
phenomenon has respectable roots in Ghandi’s 
civil disobedience against British colonialism 
(the word hartal, derived from Gujarati, is 
closing down shops or locking doors). In 
Bangladesh today, hartals are usually associated 
with the stoppage of vehicular traffic, closure of 
markets, shops, educational institutions and 
offices for a specific period of time to articulate 
agitation (Huq, 1992). When collecting monthly 
NOH data, care was taken to include all events 
that were consistent with the above definition of 
hartal (e.g., a hartal lasting 4 to 8 hours was 
treated as a half-day hartal, 9 to 12 hours as a 
full-day hartal; for longer hartals, each 12 hour 
period was treated as a full-day hartal). 
Historical patterns of hartals in Dhaka city, 
NOH with respect to time are plotted in Figure 
4.4.1, and the frequency distribution of NOH is 
shown in Table 4.4.1. Between 1972 and 2007,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

413 hartals were observed and the monthly 
hartal rate is 0.96 per month (see Table 4.4.2). 
Figure 4.4.1 shows the NOH for two periods: 
1972-1990 (post-independence) and 1991-2007 
(parliamentary democracy). It has been observed 
that the NOH have not decreased since the 
Independence in 1971. Although there were 
relatively few hartals in the early years 
following independence, the NOH began to rise 
sharply after 1981, with 101 hartals between 
1982 and 1990. Since 1991(during the 
parliamentary democracy), the NOH have 
continued to rise with 125 hartals occurring from 
1991-1996. Thus, the democratic periods (1991-
1996 and 2003-2007) have experienced by far 
the largest number of hartals. Lack of political 
stability was found to be the main cause for this 
higher frequency of hartals (for details, see 
Beyond Hartals, 2005, p. 11). From Table 4.4.1, 
it may be observed that the hartal data contains 
about 60% of zeroes. Table 4.4.2 indicates that 
NOH process displays over-dispersion with a 
variance to mean > 1. According to data in this 
study (Table 4.4.2), the negative binomial 
distribution to model NOH with 31% chance of 
hartal per month is recommended. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.1: Total Hartals in Dhaka City: 1972-2007 
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Table 4.4.1: Frequency 
Distribution of NOH 

NOH 
Number of 

Months 

0 257 

1 86 

2 41 

3 14 

4 9 

5 8 

6 10 

7 or More 7 
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Table 4.4.2: Observed and Fitted Frequencies of NOH 

NOH 0 1 2 3 4 5 6 7 8 9 Chi-Square 
GOF 

Statistic 
Observed 
Months 

257 86 41 14 9 8 10 3 2 2 

Bmom 179.76 165.54 67.75 16.17 2.48 0.25 0.01 0.008 0 0 1.8e+007* 

Bml 157.23 168.18 79.95 22.17 3.95 0.47 0.03 0.001 0 0 5.4e+006* 

Poisson 166.06 158.76 75.89 24.18 5.78 1.10 0.17 0.02 0 0 1.5e+004* 

NBmom 267.77 72.94 36.01 20.43 12.35 7.73 4.96 3.23 2.13 1.42 11.78 

NBml 259.92 78.32 38.61 21.50 12.66 7.70 4.78 3.01 1.91 1.23 10.79 

ZIPmom 296.82 24.80 34.51 32.01 22.27 12.39 5.75 2.28 0.79 0.24 194.87* 

ZIPml 257 127.66 38.34 7.67 1.15 0.13 0.01 0.00 0.00 0.00 7.3e+005* 

ZINBml 257.00 64.28 46.11 28.80 16.65 9.17 4.87 2.53 1.28 0.64 27.88* 

Mean =0.96 and Variance =3.35 
Parameter estimates:

)mom(P̂
B = 0.09, 

)ml(P̂
B = 0.10, 

)ml/mom(ˆPλ = 0.95, )mom(p̂NB = 0.28,
)mom(k̂

NB = 0.38,

)ml(p̂NB = 0.31, 
)ml(k̂

NB = 0.44, )mom(p̂ZIP = 0.31, 
)mom(ˆZIPλ = 2.78, )ml(p̂ZIP = 0.40, 

)ml(ˆZIPλ = 0.60,  

)ml(ˆZINBθ = 0.40, )ml(p̂ZINB = 0.56 and 
)ml(k̂

ZINB =2.26 

Note: See footnotes, Table 3.1 

Figure 4.4.2: Distribution of NOH for Different Models 
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Conclusion 
This study reviewed some discrete models and 
compared them by assuming different amounts 
of zeroes in a sample. The following models 
were considered: the binomial model, the 
Poisson model, the negative binomial model and 
the zero-inflated and truncated models. A 
simulation study was conducted to observe the 
effects of excess zeroes on selected models, 
where data was generated from the Poisson 
model. This simulation study indicated that both 
the negative binomial and the ZIP models were 
useful to model discrete data with excess zeroes 
in the sample.  Other models fit data containing 
excess zeroes poorly. Real-life examples were 
also used to illustrate the performance of the 
proposed models. All processes exhibited over-
dispersion characteristic and could be fit well by 
the negative binomial model, with the exception 
of number of patients per day visiting a medical 
hospital, this data was better fit by ZTNB. 
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Impact of Rank-Based Normalizing Transformations 
on the Accuracy of Test Scores 

 
Shira R. Solomon Shlomo S. Sawilowsky 
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The purpose of this article is to provide an empirical comparison of rank-based normalization methods for 
standardized test scores. A series of Monte Carlo simulations were performed to compare the Blom, 
Tukey, Van der Waerden and Rankit approximations in terms of achieving the T score’s specified mean 
and standard deviation and unit normal skewness and kurtosis. All four normalization methods were 
accurate on the mean but were variably inaccurate on the standard deviation. Overall, deviation from the 
target moments was pronounced for the even moments but slight for the odd moments. Rankit emerged as 
the most accurate method among all sample sizes and distributions, thus it should be the default selection 
for score normalization in the social and behavioral sciences. However, small samples and skewed 
distributions degrade the performance of all methods, and practitioners should take these conditions into 
account when making decisions based on standardized test scores. 
 
Key words: Normalization; normalizing transformations; T scores; test scoring; ranking methods; Rankit; Blom; 
Tukey; Van der Waerden; Monte Carlo. 
 
 

Introduction 
Standardization and normalization are two ways 
of defining the frame of reference for a 
distribution of test scores. Both types of score 
conversions, or transformations, mathematically 
modify raw score values (Osborne, 2002). The 
defining feature of standard scores is that they 
use standard deviations to describe scores’ 
distance from the mean, thereby creating equal 
units of measure within a given score 
distribution. Standard scores may be modified to 
change the scale’s number system (Angoff, 
1984), but unless distributions of standard scores 
are normalized, they will retain the shape of the 
original score distribution. Therefore, 
standardization may enable effective analysis of 
individual scores within a single test, but 
normalization is needed for meaningful 
comparisons between tests. 
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The Problem of Non-continuous Data in 
Educational and Psychological Testing 

Knowledge, intellectual ability, and 
personality are psychological objects that can 
only be measured indirectly, not by direct 
observation (Dunn-Rankin, 1983). The scales 
that describe them are hierarchical—they result 
in higher or lower scores—but these scores do 
not express exact quantities of test-takers’ 
proficiency or attitudes. Ordinal test items such 
as Likert scales result in raw scores that are 
meaningless without purposeful statistical 
interpretation (Nanna & Sawilowsky, 1998). 
Measures with unevenly spaced increments 
interfere with the interpretation of test scores 
against performance benchmarks, the 
longitudinal linking of test editions, and the 
equating of parallel forms of large-scale tests 
(Aiken, 1987). They also threaten the robustness 
and power of the parametric statistical 
procedures that are conventionally used to 
analyze standardized test scores (Friedman, 
1937; Sawilowsky & Blair, 1992). 

Statisticians have been transforming 
ordinal data into a continuous scale since Fisher 
and Yates tabled the normal deviates in 1938. 
Wimberly (1975) favored rank-based 
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transformations to other normalizing 
transformations such as those based on 
logarithms, exponents, or roots for their superior 
accuracy among random scores of different 
variables. Rank-based transformations not only 
attempt to equate the means and homogenize the 
variance of test score distributions, they also aim 
to create conformity in the third and fourth 
moments, skewness and kurtosis. Central 
tendency and variability have clear implications 
for test score distributions. 

The most prominent of the rank-based 
normalization procedures, based on their 
inclusion in widely used statistical software 
(e.g., SPSS, 2006) are those attributed to Van 
der Waerden, Blom, Bliss (the Rankit 
procedure), and Tukey. Van der Waerden’s 
formula (1952, 1953a, 1953b; Lehmann, 1975) 
was thought to improve on percentiles by 
computing quantiles (equal unit portions under 
the normal curve corresponding with the number 
of observations in a sample) not strictly on the 
basis of ranks, but according to the rank of a 
given score value relative to the sample size 
(Conover, 1980). Blom’s formula (1958) 
responds to the curvilinear relationship between 
a score’s rank in a sample and its normal 
deviate. Because “Blom conjectured that α 
always lies in the interval (0·33, 0·50),” 
explained Harter, “he suggested the use of α = 
3/8 as a compromise value” (1961, p.154). Bliss, 
Greenwood, and White (1956) credited Ipsen 
and Jerne (1944) with coining the term “rankit,” 
but Bliss is credited with developing the 
technique as it is now used. Bliss, et al. refined 
this approximation in their study of the effects of 
different insecticides and fungicides on the 
flavor of apples. Its design drew on Scheffé’s 
advancements in paired comparison research, 
which sought to account for magnitude and 
direction of preference, in addition to preference 
itself. Tukey may have proposed his formula, 
which he characterized as “simple and surely an 
adequate approximation to what is claimed to be 
optimum” (1962, p.22), as a refinement of 
Blom’s. 

These procedures have been explored to 
various degrees in the context of hypothesis 
testing, where the focus is necessarily on their 
properties   in   the   tails  of a distribution. In the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
context of standardized testing, however, the 
body of the distribution—that is, the 95% of the 
curve that lies between the tails—is the focus. 
Practitioners need to know how accurately each 
method normalizes non-theoretical score 
distributions. Solomon (2008) produced the first 
empirical comparison of the Van der Waerden, 
Blom, Tukey, and Rankit methods as they apply 
to standardized testing. This study sought to 
demonstrate their accuracy under a variety of 
sample size and distributional conditions. 

Blom, Tukey, Van der Waerden, and 
Rankit each contribute a formula that 
approximates a normal distribution, given a set 
of raw scores or non-normalized standard scores. 
However, the formulas themselves had not been 
systematically compared for their first four 
moments’ accuracy in terms of normally 
distributed data. Nor had they been compared in 
the harsher glare of non-normal distributions, 
which are prevalent in the fields of education 
and psychology (Micceri, 1989). Small samples 
are also common in real data and are known to 
have different statistical properties than large 
samples (Conover, 1980). In general, real data 
can be assumed to behave differently than data 
that is based on theoretical distributions, even if 
these are non-normal (Stigler, 1977). 

A series of Monte Carlo simulations 
drew samples of different sizes from eight 
unique, empirically established population 
distributions. These eight distributions, though 
extensive in their representation of real 
achievement and psychometric test scores, do 
not represent all possible distributions that could 
occur in educational and psychological testing or 
in social and behavioral science investigations 

Table 1: Chronology of Rank-Based Normalization 
Procedure Development 

Procedure Year Formula 

Van der Waerden 1952 r* / (n + 1) 

Blom 1954 (r - 3/8) / (n + 1/4) 

Rankit 1956 (r - 1/2) / n 

Tukey 1962 (r - 1/3) / (n + 1/3) 

*where r is the rank, ranging from 1 to n 
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more generally. Nor do the sample sizes 
represent every possible increment. However, 
both the sample size increments and the range of 
distributional types are assumed to be sufficient 
for the purpose of outlining the absolute and 
comparative accuracy of these normalizing 
transformations in real settings. Although the 
interpretation of results need not be restricted to 
educational and psychological data, similar 
distributional types may be most often found in 
these domains. 

For normally distributed variables, the 
standardization process begins with the Z score 
transformation, which produces a mean of 0 and 
a standard deviation of 1 (Walker & Lev, 1969; 
Mehrens & Lehmann, 1980; Hinkle, Wiersma, 
& Jurs, 2003). Z scores are produced by dividing 
the deviation score (the difference between raw 
scores and the mean of their distribution) by the 
standard deviation: Z = (X – μ) / σ . However, Z 
scores can be difficult to interpret due to 
decimals and negative numbers. Because 95% of 
the scores fall between -3 and +3, small changes 
in decimals may imply large changes in 
performance. Also, because half the scores are 
negative, it may appear to the uninitiated that 
half of the examinees obtained an extremely 
poor outcome. 
 
Linear versus Area Transformations 

Linear scaling remedies these problems 
by multiplying standard scores by a number 
large enough to render decimal places trivial, 
then adding a number large enough to eliminate 
negative numbers. Although standard scores 
may be assigned any mean and standard 
deviation through linear scaling, the T score 
scale (ST = 10Z + 50) has dominated the scoring 
systems of social and behavioral science tests for 
a century (Cronbach, 1976; Kline, 2000; 
McCall, 1939). In the case of a normally 
distributed variable, the resulting T-scaled 
standard scores would have a mean of 50 and a 
standard deviation of 10. In the context of 
standardized testing, however, T scores refer not 
to T-scaled standard scores but to T-scaled 
normal scores. In the T score formula, Z refers to 
a score’s location on a unit normal 
distribution—its normal deviate—not its place 
within the testing population. 

Scaling standard scores of achievement 
and psychometric tests has limited value. Most 
educational and psychological measurements are 
ordinal (Lester & Bishop, 2000), but standard 
scores can only be obtained for continuous data 
because they require computation of the mean. 
Furthermore, linear transformations retain the 
shape of the original distribution. If a variable’s 
original distribution is Gaussian, its transformed 
distribution will also be normal. If an observed 
distribution manifests substantial skew, 
excessive or too little kurtosis, or multimodality, 
these non-Gaussian features will be maintained 
in the transformed distribution. 

This is problematic for a wide range of 
practitioners because it is common practice for 
educators to compare or combine scores on 
separate tests and for testing companies to 
reference new versions of their tests to earlier 
versions. Standard scores such as Z will not 
suffice for these purposes because they do not 
account for differing score distributions between 
tests. Comparing scores from a symmetric 
distribution with those from a negatively skewed 
distribution, for example, will give more weight 
to the scores at the lower range of the skewed 
curve than to those at the lower range of the 
symmetric curve (Horst, 1931). Normalizing 
transformations are used to avoid biasing test 
score interpretation due to heteroscedastic and 
asymmetrical score distributions. 
 
Non-normality Observed 

According to Nunnally (1978), “test 
scores are seldom normally distributed” (p.160). 
Micceri (1989) demonstrated the extent of this 
phenomenon in the social and behavioral 
sciences by evaluating the distributional 
characteristics of 440 real data sets collected 
from the fields of education and psychology. 
Standardized scores from national, statewide, 
and districtwide test scores accounted for 40% 
of them. Sources included the Comprehensive 
Test of Basic Skills (CTBS), the California 
Achievement Tests, the Comprehensive 
Assessment Program, the Stanford Reading 
tests, the Scholastic Aptitude Tests (SATs), the 
College Board subject area tests, the American 
College Tests (ACTs), the Graduate Record 
Examinations (GREs), Florida Teacher 
Certification Examinations for adults, and 
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Florida State Assessment Program test scores for 
3rd, 5th, 8th, 10th, and 11th grades.  

Micceri summarized the tail weights, 
asymmetry, modality, and digit preferences for 
the ability measures, psychometric measures, 
criterion/mastery measures, and gain scores. 
Over the 440 data sets, Micceri found that only 
19 (4.3%) approximated the normal distribution. 
No achievement measure’s scores exhibited 
symmetry, smoothness, unimodality, or tail 
weights that were similar to the Gaussian 
distribution. Underscoring the conclusion that 
normality is virtually nonexistent in educational 
and psychological data, none of the 440 data sets 
passed the Kolmogorov-Smirnov test of 
normality at alpha = .01, including the 19 that 
were relatively symmetric with light tails. The 
data collected from this study highlight the 
prevalence of non-normality in real social and 
behavioral science data sets. 

Furthermore, it is unlikely that the 
central limit theorem will rehabilitate the 
demonstrated prevalence of non-normal data sets 
in applied settings. Although sample means may 
increasingly approximate the normal distribution 
as sample sizes increase (Student, 1908), it is 
wrong to assume that the original population of 
scores is normally distributed. According to 
Friedman (1937), “this is especially apt to be the 
case with social and economic data, where the 
normal distribution is likely to be the exception 
rather than the rule” (p.675). 

There has been considerable empirical 
evidence that raw and standardized test scores 
are non-normally distributed in the social and 
behavioral sciences. In addition to Micceri 
(1989), numerous authors have raised concerns 
regarding the assumption of normally distributed 
data (Pearson, 1895; Wilson & Hilferty, 1929; 
Allport, 1934; Simon, 1955; Tukey & 
McLaughlin, 1963; Andrews et al., 1972; 
Pearson & Please, 1975; Stigler, 1977; Bradley, 
1978; Tapia & Thompson, 1978; Tan, 1982; 
Sawilowsky & Blair, 1992). The prevalence of 
non-normal distributions in education, 
psychology, and related disciplines calls for a 
closer look at transformation procedures in the 
domain of achievement and psychometric test 
scoring. 
 

The Importance of T Scores for the 
Interpretation of Standardized Tests 

Standardized test scores are notoriously 
difficult to interpret (Chang, 2006; Kolen and 
Brennan, 2004; Micceri, 1990; Petersen, Kolen, 
and Hoover, 1989). Most test-takers, parents, 
and even many educators, would be at a loss to 
explain exactly what a score of 39, 73, or 428 
means in conventional terms, such as pass/fail, 
percentage of questions answered correctly, or 
performance relative to other test-takers. Despite 
the opaqueness of T scores relative to these 
conventional criteria, they have the advantage of 
being the most familiar normal score scale, thus 
facilitating score interpretation. Most normal 
score systems are assigned means and standard 
deviations that correspond with the T score. For 
example, the College Entrance Board’s 
Scholastic Aptitude Test (SAT) Verbal and 
Mathematical sections are scaled to a mean of 
500 and a standard deviation of 100. T scores 
fall between 20 and 80 and SAT scores fall 
between 200 and 800. The T score scale 
facilitates the interpretation of test scores from 
any number of different metrics, few of which 
would be familiar to a test taker, teacher, or 
administrator, and gives them a common 
framework. 

The importance of transforming normal 
scores to a scale that preserves a mean of 50 and 
a standard deviation of 10 calls for an empirical 
comparison of normalizing transformations. This 
study experimentally demonstrates the relative 
accuracy of the Blom, Tukey, Van der Waerden, 
and Rankit approximations for the purpose of 
normalizing test scores. It compares their 
accuracy in terms of achieving the T score’s 
specified mean and standard deviation and unit 
normal skewness and kurtosis, among small and 
large sample sizes in an array of real, non-
normal distributions. 
 

Methodology 
A Fortran program was written to compute 
normal scores using the four rank-based 
normalization formulas under investigation. 
Fortran was chosen for its large processing 
capacity and speed of execution. This is 
important for Monte Carlo simulations, which 
typically require from thousands to millions of 
iterations. 
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Normal scores were computed for each 
successive iteration of randomly sampled raw 
scores drawn from various real data sets. The 
resulting normal scores were then scaled to the 
T. The first four moments of the distribution 
were calculated from these T scores for each of 
the 14 sample sizes in each of the eight 
populations. Absolute values were computed by 
subtracting T score means from 50, standard 
deviations from 10, skewness values from 0, and 
kurtosis values from 3. These absolute values 
were sorted into like bins and ranked in order of 
proximity to the target moments. The values and 
ranks were averaged over the results from 
10,000 simulations and reported in complete 
tables (Solomon, 2008). Average root mean 
square (RMS) values and ranks were also 
computed and reported for the target moments. 
This paper summarizes the values and ranks for 
absolute deviation values and RMS, or 
magnitude of deviation. Together, deviation 
values and magnitude of deviation describe the 
accuracy and stability of the Blom, Tukey, Van 
der Waerden, and Rankit approximations in 
attaining the first four moments of the normal 
distribution. 
 
Sample Sizes and Iterations 

Simulations were conducted on samples 
of size n = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 
100, 200, 500, and 1,000 that were randomly 
selected from each of the eight Micceri (1989) 
data sets. Ten-thousand (10,000) iterations were 
performed to break any ties up to three decimal 
places. 
 
Achievement and Psychometric Distributions 

Micceri (1989) computed three indices 
of symmetry/asymmetry and two indices of tail 
weight for each of the 440 large data sets he 
examined (for 70% of which, n ≥ 1,000), 
grouped by data type: achievement/ability 
(accounting for 231 of the measures), 
psychometric (125), criterion/mastery (35), and 
gain scores (49). Eight distributions were 
identified based on symmetry, tail weight 
contamination, propensity scores, and modality. 
Sawilowsky, Blair, and Micceri (1990) 
translated these results into a Fortran subroutine 
using achievement and psychometric measures 

that best represented the distributional 
characteristics described by Micceri (1989). 

The following five distributions were 
drawn from achievement measures: Smooth 
Symmetric, Discrete Mass at Zero, Extreme 
Asymmetric – Growth, Digit Preference, and 
Multimodal Lumpy. Mass at Zero with Gap, 
Extreme Asymmetric – Decay, and Extreme 
Bimodal were drawn from psychometric 
measures. All eight achievement and 
psychometric distributions are nonnormal. These 
distributions are described in Table 2 and 
graphically depicted in Figure 1. 
 

Results 
The purpose of this study was to compare the 
accuracy of the Blom, Tukey, Van der Waerden, 
and Rankit approximations in attaining the target 
moments of the normal distribution. Tables 3, 4, 
and 5 present these results. Table 3 summarizes 
the major findings according to moment, sample 
size, and distribution. It presents values and 
simplified ranks for the accuracy of the four 
normalizing methods on the first measure, 
deviation from target moment. For example, the 
T score’s target standard deviation is 10. 
Therefore, two methods that produce a standard 
deviation of 9.8 or 10.2 would have the same 
absolute deviation value: 0.2. The highest 
ranked method for each condition is the most 
accurate, having the smallest absolute deviation 
value over 10,000 Monte Carlo repetitions. It is 
possible to assign ranks on the mean despite the 
accuracy of all four normalization methods 
because differences begin to appear at six 
decimal places. However, all numbers are 
rounded to the third decimal place in the tables. 

Table 3 shows that rank-based 
normalizing methods are less accurate on the 
standard deviation than on the mean, skewness, 
or kurtosis. Furthermore, the standard deviation 
has more immediate relevance to the 
interpretation of test scores than the higher 
moments. For these reasons, Tables 4 and 5 and 
Figures 2 and 3 restrict their focus to the 
methods’ performance on the standard deviation. 
Table 4 summarizes the methods’ proximity to 
the target standard deviation by distribution 
type. Table 5 reports proximity for all eight 
distributions. 
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Table 2: Basic Characteristics of Eight Non-normal Distributions 

 Achievement 

 Range Mean Median Variance Skewness Kurtosis

1. Smooth Symmetric 0 ≤ x ≤ 27 13.19 13.00 24.11 0.01 2.66 

2. Discrete Mass at Zero 0 ≤ x ≤ 27 12.92 13.00 19.54 -0.03 3.31 

3. Extreme Asymmetric 
– Growth 

4 ≤ x ≤ 30 24.50 27.00 33.52 -1.33 4.11 

4. Digit Preference 420 ≤ x ≤ 635 536.95 535.00 1416.77 -0.07 2.76 

5. Multimodal Lumpy 0 ≤ x ≤ 43 21.15 18.00 141.61 0.19 1.80 

 Psychometric 

 Range Mean Median Variance Skewness Kurtosis

6. Mass at Zero w/Gap 0 ≤ x ≤ 16 1.85 0 14.44 1.65 3.98 

7. Extreme Asymmetric 
– Decay 

10 ≤ x ≤ 30 13.67 11.00 33.06 1.64 4.52 

8. Extreme Bimodal 0 ≤ x ≤ 5 2.97 4.00 2.86 -0.80 1.30 

 

Figure 1: Appearance of Five Achievement and Three Psychometric Distributions 
(Sawilowsky & Fahoome, 2003) 

 

 

 

  

 

Distribution 6, Psychometric:  
Mass at Zero with Gap

Distribution 5, Achievement:  
Multimodal Lumpy 

Distribution 1, Achievement:  
Smooth Symmetric 

Distribution 2, Achievement:  
Discrete Mass at Zero 



NORMALIZING TRANSFORMATIONS AND SCORE ACCURACY 

454 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 (Continued): Appearance of Five Achievement and Three Psychometric Distributions 
(Sawilowsky & Fahoome, 2003) 

 

 

  

Distribution 8, Psychometric:  
Extreme Bimodal

Distribution 7, Psychometric:  
Extreme Asymmetric – Decay  

 

Distribution 4, Achievement:  
Digit Preference  

Distribution 3, Achievement:  
Extreme Asymmetric – Growth 

Table 3: Deviation from Target, Summarized by Moment, Sample Size and Distribution 

 Moment 

 Blom Tukey Van der W. Rankit 
 Rank Value Rank Value Rank Value Rank Value 

Mean 4 0.000 1 0.000 2 0.000 3 0.000 
Standard Dev 2 1.142 3 1.186 4 1.603 1 1.119 

Skewness 2 0.192 2 0.192 1 0.191 2 0.192 
Kurtosis 2 0.947 3 0.941 4 0.952 1 0.930 

 Sample Size 
 Blom Tukey Van der W. Rankit 
 Rank Value Rank Value Rank Value Rank Value 

5 ≤ 50 2 0.609 3 0.628 4 0.769 1 0.603 
100 ≤ 1000 2 0.435 3 0.423 4 0.447 1 0.416 

 Distribution 
 Blom Tukey Van der W. Rankit 
 Rank Value Rank Value Rank Value Rank Value 

Smooth Sym 2 0.393 3 0.411 4 0.531 1 0.391 
Discr Mass Zero 2 0.404 3 0.421 4 0.539 1 0.403 
Asym – Growth 2 0.453 3 0.470 4 0.583 1 0.452 
Digit Preference 2 0.390 3 0.408 4 0.527 1 0.370 

MM Lumpy 2 0.412 3 0.396 4 0.510 1 0.376 
MZ w/Gap 2 1.129 3 1.126 4 1.204 1 1.113 

Asym – Decay 2 0.726 3 0.739 4 0.835 1 0.725 
Extr Bimodal 2 0.655 3 0.669 4 0.765 1 0.654 
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Proximity to target includes deviation 
values, at the top of the Tables 4 and 5, and 
RMS values, at the bottom. RMS is an important 
second measure of accuracy because it indicates 
how consistently the methods perform. By 
standardizing the linear distance of each 
observed moment from its target, RMS denotes 
within-method magnitude of deviation. 
Respectively, the two accuracy measures, 
deviation value and magnitude of deviation, 
describe each method’s average distance from 
the target value and how much its performance 
varies over the course of 10,000 random events. 
 
Predictive Patterns of the Deviation Range 

Figure 2 plots the range of deviation 
values for each distribution against a power 
curve   among   small   samples.   Curve fitting is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

only possible for the deviation range on the 
second and fourth moments, standard deviation 
and kurtosis. The first and third moments, mean 
and skewness, either contain zeros, which make 
transformations impossible, or lack sufficient 
variability to make curve fitting worthwhile.  

To evaluate trends at larger sample 
sizes, the small-sample regression models are 
fitted a second time with the addition of four 
sample sizes: n = 100, n = 200, n = 500, and n = 
1000. To whatever extent predictive patterns are 
established when n ≤ 50, those regression slopes 
either improve in fit or continue to hold when 
sample sizes increase. Figure 3 shows that 
inclusion of larger sample sizes causes the 
Smooth Symmetric power curve to remain intact 
and the Digit Preference power curve to improve 
in fit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Proximity to Target Standard Deviation for Achievement and Psychometric Distributions 
 

 Deviation Value 

 Blom Tukey Van der Waerden Rankit 

 5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

Achievement 0.736 0.205 0.824 0.122 1.413 0.231 0.735 0.089 

Psychometric 2.263 1.382 2.332 1.390 2.802 1.455 2.260 1.374 

 Magnitude of Deviation (RMS) 

 Blom Tukey Van der Waerden Rankit 

 5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

Achievement 0.018 0.001 0.017 0.001 0.017 0.001 0.009 0.001 

Psychometric 0.542 0.096 0.540 0.096 0.536 0.096 0.497 0.088 
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Table 5: Proximity to Target Standard Deviation for Small and Large Samples 

 Deviation Value 

 Blom Tukey Van der Waerden Rankit 

 
5 ≤ 50 

100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

Smooth Sym 0.720 0.077 0.808 0.089 1.401 0.202 0.719 0.047 

Discr  MZ 0.736 0.082 0.823 0.094 1.414 0.208 0.734 0.073 

Asym – Gro 0.829 0.247 0.914 0.260 1.489 0.356 0.827 0.237 

Digit Pref 0.702 0.072 0.790 0.084 1.385 0.195 0.700 0.043 

MM Lumpy 0.696 0.547 0.785 0.085 1.378 0.196 0.695 0.044 

MZ w/Gap 3.651 2.804 3.711 2.815 4.117 2.896 3.647 2.795 

Asym – Dec 1.668 0.420 1.743 0.425 2.244 0.458 1.666 0.417 

Extr Bimod 1.469 0.921 1.543 0.931 2.045 1.011 1.467 0.912 

 Magnitude of Deviation (RMS) 

 Blom Tukey Van der Waerden Rankit 

 
5 ≤ 50 

100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

Smooth Sym 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 

Discr  MZ 0.015 0.000 0.015 0.000 0.014 0.000 0.003 0.000 

Asym – Gro 0.043 0.003 0.042 0.003 0.042 0.003 0.035 0.003 

Digit Pref 0.013 0.000 0.014 0.000 0.013 0.000 0.003 0.000 

MM Lumpy 0.013 0.000 0.013 0.000 0.013 0.000 0.002 0.000 

MZ w/Gap 1.081 0.225 1.077 0.225 1.069 0.225 0.993 0.226 

Asym – Dec 0.310 0.031 0.309 0.031 0.307 0.031 0.290 0.031 

Extr Bimod 0.236 0.031 0.235 0.031 0.232 0.031 0.208 0.007 
 

Figure 2: Power Curves Fitted to the Deviation Range of the Standard Deviation at 10 Small Sample Sizes 

 
Smooth Symmetric 

 
Multimodal Lumpy 
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Figure 3: Power Curves Fitted to the Deviation Range of the Standard Deviation with Inclusion of Four 
Large Sample Sizes 

 
Smooth Symmetric 

 
Digit Preference 

Figure 2 (Continued): Power Curves Fitted to the Deviation Range of the Standard Deviation at 10 Small 
Sample Sizes 

 
Discrete Mass at Zero 

 
Mass at Zero with Gap 

 
Extreme Asymmetric Growth 

 
Extreme Asymmetric Decay 

 
Digit Preference 

 
Extreme Bimodal 
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Conclusion 
Table 3 shows that Rankit outperforms the other 
methods across moments at small and large 
sample sizes and with all eight distributions. 
Blom and Tukey consistently place second and 
third, and Van der Waerden performs the worst. 
 
Mean, Skewness, and Kurtosis 

All four rank-based normalization 
methods attain the target value of 50 for the 
mean. Differences appear in the numerical 
results only after the third decimal place, and are 
therefore meaningless in terms of practical 
application. These differences are reflected in 
the deviation ranks in Table 3. The four 
methods’ average deviation from the target 
skewness value of the normal distribution is 
0.192 (Table 3). Normalization methods should 
not be selected on the basis of their deviation 
from target skewness values because the 
deviation quantities are small and the differences 
between them are negligible. 

Deviation values for kurtosis show 
greater deviation from target than those for 
skewness but less than those for standard 
deviation. The average deviation value for 
kurtosis across all sample sizes and distributions 
is 0.943 (Table 3). Moderate flatness or 
peakedness might reflect something about the 
test instrument or the population, but it is not 
clear how kurtosis could affect decisions made 
about test scores. 
 
Standard Deviation: Deviation from Target 
Standard Deviation. 

None of the Normalization methods 
attains the target standard deviation on either 
accuracy measure. Rankit is the most accurate 
method, averaging a distance of 1.119 from the 
target T score standard deviation of 10 (Table 3). 
This means that the practitioner who uses Rankit 
to normalize test scores without reference to 
sample size or distribution can expect to obtain 
an estimated standard deviation between 8.881 
and 11.119. If Z = 2, the T score would fall 
between 67.762 or 72.238, for a range of 4.476. 
Adding in the test instrument’s standard error 
compounds the problem. An instrument with a 
standard error of three (± 3) would expand the 
true score range by six points, to 10.476. 
Rounding to the nearest whole number, this 

means that the test-taker’s standardized test 
score falls somewhere between 65 and 75. Even 
a standard error half this size would lead to a 
true score range of 7.476. Thus, a standard 
deviation that is off target by 1.119 would 
combine with a standard error of ± 1.5 to 
increase the true score range by 249%, from a 
theorized range of three to an actual range of 
seven and a half. As the standard error increases, 
the estimated difference between the theorized 
and actual score range diminishes. At a standard 
error of three, Rankit produces a standard 
deviation that causes the true score range to be 
175% greater than the presumed score range. 

Van der Waerden is the least accurate 
method, averaging a distance of 1.603 from the 
target T score standard deviation (Table 3). 
Using Van der Waerden to normalize a test 
score (Z = 2) without reference to sample size or 
distribution produces a rounded true score range 
of 64 to 76 at a standard error of ± 3. At a 
standard error of ± 1.5, the test-taker’s T score 
would fall between 65 and 75, the same range 
that Rankit produced at twice the standard error. 
Van der Waerden’s inaccuracy on the standard 
deviation causes the true score range to increase 
over the expected score range by 207% at a 
standard error of ± 3 and 314% at a standard 
error of ± 1.5. 

As with Rankit, smaller standard errors 
correspond with greater relative inaccuracy of 
the true score range. The more reliable a test 
instrument is, the less precise are the T scores, 
regardless of the normalization method used. 
This is illustrated in Table 6, which presents the 
percentage increase to the true score range based 
on each method’s overall distance from the 
standard deviation across all sample sizes and 
distributions. 

The inaccuracy of the rank-based 
normalization methods on the standard deviation 
becomes more pronounced in the context of 
sample size and distribution type (Table 4). All 
four methods are more accurate among large 
samples and achievement distributions and less 
accurate among small samples and psychometric 
distributions. Rankit’s worst average deviation 
value, among psychometric distributions at 
small sample sizes, is 25 times higher than its 
best among achievement distributions at large 
sample sizes. 
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Van der Waerden’s worst deviation 
value — again, among psychometric 
distributions at small sample sizes — is 12 times 
higher than its best. Normalization performance 
is so heavily influenced by sample size and 
distribution type that Van der Waerden, which is 
the worst overall performer, produces much 
more accurate standard deviations under the best 
sample size and distributional conditions than 
Rankit does under the worst distributional 
conditions. Under these circumstances, Rankit’s 
worst deviation value is 10 times higher than 
Van der Waerden’s best deviation value. 

Table 5 illustrates this phenomenon 
even more starkly. The overall best method, 
Rankit, has its least accurate deviation value, 
3.647, among small samples of the psychometric 
distribution, Mass at Zero with Gap. Van der 
Waerden attains its most accurate deviation 
value, 0.195, among large samples of the Digit 
Preference achievement distribution. The best 
method’s worst deviation value on any 
distribution is 19 times higher than the worst 
method’s best value. This pattern holds 
independently for sample size and distribution. 
Van der Waerden’s best deviation values are 
superior to Rankit’s worst among small and 
large samples. Sample size exerts a strong 
enough influence to reverse the standing of the 
best- and worst-performing methods on every 
distribution. All four methods perform best with 
Digit Preference and Multimodal Lumpy and 
worst with Mass at Zero with Gap. 

Separately, the influence of sample size 
and distribution can make the worst 
normalization method outperform the best one. 
Together, their influence can distort the standard 
deviation enough to render the T score 
distribution, and the test results, meaningless. In 
the best case scenario, Rankit would be used 
among large samples of the Digit Preference 
distribution, where it is off target by 0.043 
(Table 5). With a Z score of 2 and a standard 
error of  ± 2, this leads to a true score range of 
4.172, only 4% greater than the expected score 
range.  In the worst case scenario, Van der 
Waerden could be used among small samples of 
the Mass at Zero with Gap distribution, where it 
is off target by 4.117. With the same Z score and 
standard error, this combination produces a true 
score range of 20.468, or 512% greater than the 
expected score range. Clearly, a true score range 
of 20 is psychometrically unacceptable.Telling a 
parent that her child scored somewhere between 
a 60 and an 80 is equally pointless. 
 
Magnitude of Deviation on the Standard 
Deviation 

Returning to the second accuracy 
measure, magnitude of deviation, Table 4 shows 
how consistently the methods perform on the 
standard deviation.1 Among achievement 
distributions, they exhibit virtually no variability 
with large samples (RMS = 0.001) and slight 
variability with small samples (average RMS = 
0.015). Among psychometric distributions, the 
pattern is the same but the magnitude of 
deviation is greater for both large and small 
samples (average RMS = 0.094 and 0.529, 
respectively). As expected, small samples and 
psychometric distributions aggravate the 
instability of each method’s performance and 
exacerbate the differences between them. 
Average magnitude of deviation for small 
samples is nearly six times greater than larger 
samples. Average magnitude of deviation for 
psychometric distributions is 39 times greater 
than achievement distributions. Table 5 provides 
RMS values for all eight distributions. It is 
notable that Extreme Asymmetric – Growth, 
which is highly skewed, presents the highest 
RMS value among achievement distributions, 
although it is still lower than the psychometric 
distributions. 

Table 6: Increase of True Score Range over Expected 
Score Range by Standard Error 

Standard 
Error 

% Increase 

Rankit Blom Tukey 
Van der 
Waerden 

± 0.5 548% 557% 574% 741% 

± 1.0 324% 328% 337% 421% 

± 1.5 249% 252% 258% 314% 

± 2.0 212% 214% 219% 260% 

± 2.5 190% 191% 195% 228% 

± 3.0 175% 176% 179% 207% 
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The Blom, Tukey, Van der Waerden, 
and Rankit approximations display considerable 
inaccuracy on the standard deviation, which has 
practical implications for test scoring and 
interpretation. Overestimation or 
underestimation of the standard deviation can 
bias comparisons of test-takers and tests. 
Therefore, practitioners should consider both 
sample size and distribution when selecting a 
normalizing procedure. 

Small samples and skewed distributions 
aggravate the inaccuracy of all ranking methods, 
and these conditions are common in 
achievement and psychometric test data. 
However, substantial differences between 
methods are found among large samples and 
relatively symmetrical distributions as well. 
Therefore, scores from large samples should be 
plotted to observe population variance, in 
addition to propensity scores, tail weight, 
modality, and symmetry. Practitioners including 
analysts, educators, and administrators should 
also be advised that most test scores are less 
accurate than they appear. Caution should be 
exercised when making decisions based on 
standardized test performance. 

This experiment demonstrates that 
Rankit is the most accurate method on the 
standard deviation when sample size and 
distribution are not taken into account; it is the 
most accurate method among both small and 
large samples; and it is the most accurate 
method among both achievement and 
psychometric distributions. Van der Waerden’s 
approximation consistently performs the worst 
across sample sizes and distributions. In most 
cases, Blom’s method comes in second place 
and Tukey’s, third. 

It would be useful to perform a more 
exhaustive empirical study of these ranking 
methods to better describe their patterns. It 
would also be of theoretical value to analyze the 
mathematical properties of their differences. 
More research can be done in both theoretical 
and applied domains. However, these results 
identify clear patterns that should guide the 
normalization of test scores in the social and 
behavioral sciences. 
 
 
 

Note 
1Curiously, the worst RMS values belong to 
Blom (Table 4), yet Blom achieves the second 
place deviation value on three out of four 
moments, among small and large samples and 
all eight distributions (Table 3). This suggests 
that Blom’s approximation may achieve some 
technical precision at the expense of stability. 
 

References 
Aiken, L. R. (1987). Formulas for 

equating ratings on different scales. Educational 
and Psychological Measurement, 47(1), 51-54. 

Allport, F. M. (1934). The J-curve 
hypothesis of conforming behavior. Journal of 
Social Psychology, 5, 141-183. 

Andrews, D. F., Bickel, P. J., Hampel, 
F. R., Huber, P. J., Rogers, W. H., & Tukey, J. 
W. (1972). Robust estimates of location survey 
and advances. Princeton, NJ: Princeton 
University Press. 

Angoff, W. H. (1984). Scales, norms, 
and equivalent scores. Princeton, NJ: 
Educational Testing Service. 

Bliss, C. I., Greenwood, M. L., & 
White, E. S. (1956). A Rankit analysis of paired 
comparisons for measuring the effect of sprays 
on flavor. Biometrics, 12(4), 381-403. Retrieved 
March 26, 2007 from JSTOR database. 

Blom, G. (1954). Transformation of the 
binomial, negative binomial, Poisson and χ2 
distributions. Biometrika, 41(3/4), 302-316. 

Blom, G. (1958). Statistical estimates 
and transformed beta-variables. NY: John 
Wiley & Sons.  

Bradley, J. V. (1978). Robustness? 
British Journal of Mathematical and Statistical 
Psychology, 31, 144-152. 

Chang, S. W. (2006). Methods in 
scaling the basic competence test. Educational 
and Psychological Measurement, 66, 907-929 

Conover, W. J. (1980). Practical 
nonparametric statistics. NY: John Wiley & 
Sons. 

Cronbach, L. J. (1976). Essentials of 
psychological testing (3rd Ed.). NY: Harper & 
Row. 

Dunn-Rankin, P. (1983). Scaling 
methods. Hillsdale: Lawrence Erlbaum 
Associates. 



SOLOMON & SAWILOWSKY 
 

461 
 

Fisher, R. A., & Yates, F. (1938). 
Statistical tables for biological, agricultural and 
medical research. Edinburgh: Oliver and Boyd. 

Friedman, M. (1937). The use of ranks 
to avoid the assumption of normality implicit in 
the analysis of variance. Journal of the 
American Statistical Association, 32(200), 675-
701. 

Gosset, W. S. (“Student”) (1908). The 
probable error of a mean. Biometrika, 6(1), 1-25. 

Harter, H. L. (1961). Expected values of 
normal order statistics. Biometrika, 48(1/2), 151-
165. Retrieved August 3, 2007 from JSTOR 
database. 

Horst, P. (1931). Obtaining comparable 
scores from distributions of dissimilar shape. 
Journal of the American Statistical Association, 
26(176), 455-460. Retrieved August 23, 2007 
from JSTOR database. 

Ipsen, J., & Jerne, N. (1944). Graphical 
evaluation of the distribution of small 
experimental series. Acta Pathologica, 
Microbiologica et Immunologica Scandinavica, 
21, 343-361. 

Kline, P. (2000). Handbook of 
psychological testing (2nd Ed.). London: 
Routledge. 

Kolen, M. J., & Brennan, R. L. (2004). 
Test equating, scaling, and linking: Methods and 
practices (2nd Ed.). NY: Springer 
Science+Business Media. 

Lehmann, E. L. (1975). 
Nonparametrics: Statistical methods based on 
ranks. San Francisco, CA: Holden-Day. 

Lester, P. E., & Bishop, L. K. (2000). 
Handbook of tests and measurement in 
education and the social sciences (2nd Ed.). 
Lanham, MD: Scarecrow Press. 

McCall, W. A. (1939). Measurement. 
NY: MacMillan. 

Mehrens, W. A., & Lehmann, I. J. 
(1980). Standardized tests in education (3rd Ed.). 
NY: Holt, Rinehart and Winston. 

Micceri, T. (1989). The unicorn, the 
normal curve, and other improbable creatures. 
Psychological Bulletin, 105(1), 156-166. 

Micceri, T. (1990). Proportions, pitfalls 
and pendulums. Educational and Psychological 
Measurement, 50(4), 769-74. 

 

Nanna, M. J., & Sawilowsky, S. S. 
(1998). Analysis of Likert scale data in disability 
and medical rehabilitation research. 
Psychological Methods, 3(1), 55-67. 

Nunnally, J. C. (1978). Psychometric 
theory. NY: McGraw-Hill. 

Osborne, J. W. (2002). Normalizing data 
transformations. ERIC Digest, ED470204. 
Available online: www.eric.ed.gov 

Pearson, K. (1895). Contributions to the 
mathematical theory of evolution: II. Skew 
variation in homogeneous material. 
Philosophical Transactions of the Royal Society, 
Series A, 186, 343-414.  

Pearson, E. S., & Please, N. W. (1975). 
Relation between the shape of a population 
distribution and the robustness of four simple 
test statistics. Biometrika, 62, 223-241. 

The Psychological Corporation. (1955). 
Methods of expressing test scores. Test Service 
Bulletin, 48, 7-10. 

Sawilowsky, S., Blair, R. C., & Micceri, 
T. (1990). A PC FORTRAN subroutine library 
of psychology and education data sets. 
Psychometrika, 55: 729. 

Sawilowsky, S., & Blair, R. C. (1992). 
A more realistic look at the robustness and Type 
II error properties of the t test to departures from 
population normality. Psychological Bulletin, 
111(2), 352-360. 

Sawilowsky, S., & Fahoome, G. (2003). 
Statistics through Monte Carlo simulation with 
Fortran. Oak Park: JMASM. 

Solomon, S. R. (2008). A comparison of 
ranking methods for normalizing scores. Ph.D. 
dissertation, Wayne State University, United 
States - Michigan. Retrieved February 27, 2009, 
from Dissertations & Theses @ Wayne State 
University database. (Publication No. AAT 
3303509). 

SPSS (2006). Statistical Package for the 
Social Sciences (SPSS) 15.0 for Windows. 
Author. 

Stigler, S. M. (1977). Do robust 
estimators work with real data? The Annals of 
Statistics, 5(6), 1055-1098. 

Tan, W. Y. (1982). Sampling 
distributions and robustness of t, F and variance-
ratio in two samples and ANOVA models with 
respect to departures from normality. 
Communications in Statistics, A11, 2485-2511. 



NORMALIZING TRANSFORMATIONS AND SCORE ACCURACY 

462 
 

Tapia, R. A., & Thompson, J. R. (1978). 
Nonparametric probability density estimation. 
Baltimore: Johns Hopkins University Press. 

Thorndike, R. L. (1982). Applied 
psychometrics. Boston, MA: Houghton Mifflin.  

Tukey, J. W. (1962). The future of data 
analysis. The Annals of Mathematical Statistics, 
33(1), 1-67. Retrieved August 3, 2007 from 
JSTOR database. 

Tukey, J. W., & McLaughlin, D. H. 
(1963). Less vulnerable confidence and 
significance procedures for location based on a 
single sample: Trimming/Winsorization. Indian 
Journal of Statistics, 25, 331-351. 

Van der Waerden, B. L. (1952/1953a). 
Order tests for the two-sample problem and their 
power. Proceedings Koninklijke Nederlandse 
Akademie van Wetenschappen (A), 55 
(Indagationes Mathematical 14), 453-458, & 56 
(Indagationes Mathematicae 15), 303-316. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Van der Waerden, B. L. (1953b). 
Testing a distribution function. Proceedings 
Koninklijke Nederlandse Akademie van 
Wetenschappen (A),56 (Indagationes 
Mathematicae 15), 201-207. 

Walker, H. M., & Lev, J. (1969). 
Elementary statistical methods (3rd Ed.). NY: 
Holt, Rinehart and Winston. 

Wilson, E. B., & Hilferty, M. M. (1929). 
Note on C. S. Peirce’s experimental discussion 
of the law of errors. Proceedings of the National 
Academy of Science, 15, 120-125. 

Wimberley, R. C. (1975). A program for 
the T-score normal standardizing transformation. 
Educational and Psychological Measurement, 
35, 693-695. 
 
 
 
 
 



Journal of Modern Applied Statistical Methods   Copyright © 2009 JMASM, Inc. 
November 2009, Vol. 8, No. 2, 463-468                                                                                                                   1538 – 9472/09/$95.00 

463 
 

Relationship between Internal Consistency and Goodness of Fit 
Maximum Likelihood Factor Analysis with Varimax Rotation 
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This study investigates how reliability (internal consistency) affects model-fitting in maximum likelihood 
exploratory factor analysis (EFA). This was accomplished through an examination of goodness of fit 
indices between the population and the sample matrices. Monte Carlo simulations were performed to 
create pseudo-populations with known parameters. Results indicated that the higher the internal 
consistency the worse the fit. It is postulated that the observations are similar to those from structural 
equation modeling where a good fit with low correlations can be observed and also the reverse with 
higher item correlations. 
 
Key words: Factor structure; Matrices; Scree plot; Parallel Analysis. 
 
 

Introduction 
The purpose of the study is to investigate how 
reliability (internal consistency) affects model-
fitting in maximum likelihood exploratory factor 
analysis (EFA). The study seeks to accomplish 
this through integrating and extending the work 
of Kanyongo (2006) on reliability and number of 
factors extracted and Fabringer, Wegener, 
MacCallum, Strahan’s (1999) work on model-
fitting and the number of factors extracted in 
exploratory factor analysis. 
 
Internal Consistency 

Henson (2001) noted that reliability is 
often a misunderstood measurement concept. 
There are several forms of reliability 
coefficients, but some of the most commonly 
used are internal consistency estimates. Internal 
consistency estimates relate to item 
homogeneity, or the degree to which the items  
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on a test jointly measure the same construct 
(Henson, 2001). Thus, in the classical test 
theory, reliability is concerned with score 
consistency. The classical conceptualization of 
score reliability relates the concept of score 
consistency to true scores. Allen and Yen (1979) 
defined a person’s true score as the theoretical 
average obtained from an infinite number of 
independent testings of the same person with the 
same test. 

Many authors conceptualize three 
sources of measurement error within the 
classical framework: content sampling of items, 
stability across time, and interrater error 
(Henson, 2001). Content sampling refers to the 
theoretical idea that the test is made up of a 
random sampling of all possible items that could 
be on the test. If that is the case, the items should 
be highly interrelated because they assess the 
same construct of interest. This item 
interrelationship is typically called internal 
consistency, which suggests that the items on a 
measure should correlate highly with each other 
if they truly represent appropriate content 
sampling (Henson, 2001). If the items are highly 
correlated, it is theoretically assumed that the 
construct of interest has been measured to some 
degree of consistency, that is, the scores are 
reliable. 

Internal consistency estimates are 
intended to apply to test items assumed to 
represent a single underlying construct, thus, the 
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use of these estimates with speeded tests is 
inappropriate due to the confounding of 
construct measurement with testing speed. 
Furthermore, for tests that consist of scales 
measuring different constructs, internal 
consistency should be assessed separately for 
each scale (Henson, 2001). 
 
Exploratory Factor Analysis (EFA) 

The primary purpose of EFA is to arrive 
at a more parsimonious conceptual 
understanding of a set of measured variables by 
determining the number and nature of common 
factors needed to account for the pattern of 
correlations among the measured variables 
(Fabringer, et al., 1999). EFA is based on the 
common factor model (Thurstone, 1947). The 
model postulates that each measured variable in 
a battery of measured variables is a linear 
function of one or more common factors and one 
unique factor. 

Fabringer, et al. (1999) defined common 
factors as unobservable latent variables that 
influence more than one measured variable in 
the battery and accounts for the correlations 
among the measured variables, and unique 
factors as latent variables that influence only one 
measured variable in a battery and do not 
account for correlations among measured 
variables. Unique factors are assumed to have 
two components; a specific component and an 
error of measurement component, the 
unreliability in the measured variable. The 
common factor model seeks to understand the 
structure of correlations among measured 
variables by estimating the pattern of relations 
between the common factor(s) and each of the 
measured variables (Fabringer, et al., 1999). 
 
Previous Work 

Kanyongo investigated the influence of 
internal consistency on the number of 
components extracted by various procedures in 
principal components analysis. Internal 
consistency reliability coefficients are not direct 
measures of reliability, but are theoretical 
estimates based on classical test theory. IC 
addresses reliability in terms of consistency of 
scores across a given set of items. In other 
words, it is a measure of the correlation between 
subsets of items within an instrument. 

The study employed the use of Monte 
Carlo simulations to generate scores at different 
levels of reliability. The number of components 
extracted by each of the four procedures, scree 
plot, Kaiser Rule, Horn’s parallel analysis 
procedure and modified Horn’s parallel analysis 
procedure was determined at each reliability 
level. In his study, Kanyongo (2006) found 
mixed results on the influence of reliability on 
the number of components extracted. However, 
generally, when component loading was high, an 
improvement in reliability resulted in 
improvement of the accuracy of the procedures 
especially for variable-to-component ratio of 
4:1. 

The Kaiser procedure showed the 
greatest improvement in performance although it 
still had the worst performance at any given 
reliability level. When the variable-to-
component ratio was 8:1, reliability did not 
impact the performance of the scree plot, Horn’s 
parallel analysis (HPA) or modified Horn’s 
parallel analysis (MHPA) since they were 100% 
accurate at all reliability levels. When 
component loading was low, it was not clear 
what the impact of reliability was on the 
performance of the procedures. 

The work of Fabringer, et al. (1999) 
involved an examination of the use of 
exploratory factor analysis (EFA) in 
psychological research. They noted that a clear 
conceptual distinction exists between principal 
factor analysis (PCA) and EFA. When the goal 
of the analysis is to identify latent constructs 
underlying measured variables, it is more 
sensible to use EFA than PCA. Also, in 
situations in which a researcher has relatively 
little theoretical or empirical basis to make 
strong assumptions about how many common 
factors exist or what specific measured variables 
these common factors are likely to influence, 
EFA is probably a more sensible approach than 
confirmatory factor analysis (CFA). 

Fabringer, et al. (1999) pointed that in 
EFA; sound selection of measured variables 
requires consideration of psychometric 
properties of measures. When EFA is conducted 
on measured variables with low communalities, 
substantial distortion in results occurs. One of 
the reasons why variables may have low 
communalities is low reliability. Variance due to 
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random error cannot be explained by common 
factors; and because of this, variables with low 
reliability will have low communality and 
should be avoided. 

Fabringer, et al. (1999) also noted that 
although there are several procedures that are 
available for model-fitting in EFA, the 
maximum likelihood (ML) method of factor 
extraction is becoming increasingly popular. ML 
is a procedure used to fit the common factor 
model to the data in EFA. ML allows for the 
computation of a wide range of indices of the 
goodness of fit of the model. ML also permits 
statistical significance testing of factor loadings 
and correlations among and the computation of 
confidence intervals for these parameters 
(Cudeck & O’Dell, 1994). Fabringer, et al. 
(1999) pointed out that the ML method has a 
more formal statistical foundation than the 
principal factors methods and thus provides 
more capabilities for statistical inference, such 
as significance testing and determination of 
confidence intervals. 

In their work, Frabinger, et al. (1999) 
further stated that, ideally, the preferred model 
should not just fit the data substantially better 
than simple models and as well as more complex 
models. The preferred model should fit the data 
reasonably well in an absolute sense. A statistic 
used for assessing the fit of a model in ML 
factor analysis solutions is called a goodness of 
fit index. 

There are several fit indices used in ML 
factor analysis and one of them is the likelihood 
ratio statistic (Lawley, 1940). If sample size is 
sufficiently large and the distributional 
assumptions underlying ML estimation are 
adequately satisfied, the likelihood ratio statistic 
approximately follows a Chi-square distribution 
if the specified number of factors is correct in 
the population (Fabringer, et al., 1999). They 
noted that, if this is not the case, a researcher 
should exercise caution in interpreting the 
results because a preferred model that fits the 
data poorly might do so and because the data do 
not correspond to assumptions of the common 
factor model.Alternatively, it might suggest the 
existence of numerous minor common factors. 
Fabringer, et al. also suggested that “with 
respect to selecting one of the major methods of 
fitting the common factor model in EFA (i.e., 

principal factors, iterated principal factors, 
maximum likelihood), all three are reasonable 
approaches with certain advantages and 
disadvantages. Nonetheless, the wide range of fit 
indexes available for ML EFA provides some 
basis for preferring this method” (p.283). Since 
ML EFA has potential to provide misleading 
results when assumptions of multivariate 
normality are severely violated, the 
recommendation is that the distribution of the 
measured variables should be examined prior to 
using the procedure. If non-normality is severe 
(skew>2; kurtosis>7), measured variables 
should be transformed to normalize their 
distributions (Curran, West & Finch, 1996). 

Fabringer, et al. (1999) noted that the 
root mean square error of approximation 
(RMSEA) fit index and the expected cross-
validation index (ECVI) provide a promising 
approach for assessing fit of a model in 
determining the number of factors in EFA. They 
recommended that “In ML factor analysis; we 
encourage the use of descriptive fit indices such 
as RMSEA and ECVI along with more 
traditional approaches such as the scree plot and 
parallel analysis” (p.283). Based on this 
recommendation, this study uses these fit indices 
along with the scree plot and parallel analysis to 
assess the accuracy of determining the number 
of factor at a given level of reliability. 
 
Research Question 

The main research question that this 
study intends to answer is: As the internal 
consistency of a set of items increases, does the 
fit of the data to the exploratory factor analysis 
improve? To answer this question, a Monte 
Carlo simulation study was conducted which 
involved the manipulation of component 
reliability (ρxx’) loading (aij), variable-to-
component ratio (p:m). The number of variables 
(p) was made constant at 24 to represent a 
moderately large data set. 
 

Methodology 
The underlying population correlation matrix 
was generated for each possible p, p:m and aij 
combination, and the factors upon which this 
population correlation matrix was based were 
independent of each other. RANCORR program 
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by Hong (1999) was used to generate the 
population matrix as follows. 

The component pattern matrix was 
specified with component loading of .80 and 
variable-to-component ratio of 8:1. After 
specifying the component pattern matrix and the 
program was executed, a population correlation 
matrix is produced. After the population 
correlation matrix was generated as described in 
the above section, the MNDG program (Brooks, 
2002) was then used to generate samples from 
the population correlation matrix. Three data 
sets for reliability of .60, .80, and 1.00, each 
consisting of 24 variables and 300 cases were 
generated. Based on the variable-to-component 
ratio of 8:1, each dataset had 3 factors built in. 
 
Analysis 

An exploratory factor analysis, 
maximum likelihood, varimax rotation and a 
three factor specification, was used for each of 
the three data sets; coefficient alpha = .6, .8, and 
1.0. Two goodness-of-fit indices were chosen 
for this analysis RMSEA and ECVI. RMSEA 
was chosen because it is based on the predicted 
versus observed covariances which is 
appropriate given that nested models are not 
being compared.  

Hu and Bentler (1999) suggested 
RMSEA <= .06 as the cutoff for a good model 
fit. RMSEA is a commonly utilized measure of 
fit, partly because it does not require comparison 
with a null model. ECVI was chosen because it 
is based on information theory; the discrepancy 
between models implied and observed 
covariance matrices: the lower the ECVI, the 
better the fit. Finally, the Chi-square and degrees 
of freedom are provided for each analysis. The 
data were also submitted to a PCA using the 
scree plot and parallel analysis to assess the 
accuracy of determining the number of common 
factors underlying the data sets. 
 

Results 
The results in Table 1 show that the two 
measures of goodness-of-fit used in this study 
(RMSEA) and (ECVI) both display the same 
pattern; the smaller the alpha, the better the 
model fit. The best fit was obtained for alpha of 
0.6, RMSEA (0.025) and ECVI (1.44). As alpha 
increased from 0.6 to 1.0, both indices 

increased; an indication that the model fit 
became poor. Based on Hu and Bentler’s (1999) 
recommendation that the cutoff for a good fit be 
RMSEA <= 0.06, results here show that only 
alpha of 0.6 had a good fit. The goodness-of-fit 
indices therefore suggest that the three-factor 
model is acceptable at alpha value of 0.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Along with goodness-of-fit-indices, the dataset 
with the best fit was submitted to principal 
components analysis through the scree plot and 
parallel analysis. Results of the scree plot 
analysis are displayed in Figure 1 while parallel 
analysis results are shown in Table 2. The scree 
plot shows a sharp drop between the third and 
fourth eigenvalues; an indication that there were 
three distinct factors in the data sets. These 
results confirm the three-factor model as the best 
model for these data. 

To interpret results of parallel analysis, 
real data eigenvalues must be larger than random 
data eigenvalues for them to be considered 
meaningful eigenvalues. Table 2 shows that the 
first three eigenvalues expected for random data 
(1.55, 1.46 and 1.39) fall below the observed 
eigenvalues for all the three values of alpha. 
However, the forth eigenvalue of the random 
data (1.34) is greater than the observed 
eigenvalues of all the three alpha values. Again, 
the results further confirm the three-factor model 
as the best model. 
 

Conclusion 
Results in this study were inconsistent with our 
original ideas of the pattern of goodness of fit 
and internal consistency. It was anticipated that 
high internal consistency would yield a better fit.  

Table 1: Goodness-of-Fit Indices 

Alpha 
Chi-Square 

(df) 
RMSEA ECVI 

.6 
247.153 

(207) 
.025 1.44 

.8 
436.535 

(207) 
.061 2.07 

1.0 
736.385 

(207) 
.092 3.07 
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However, the findings seem logical because 
based on one author’s experience with structural 
equation modeling, a perfect fit can exist when 
all variables in the model were completely 
uncorrelated if the variances are not constrained. 
Also, the lower the correlations stipulated in the 
model, the easier it is to find good fit. The 
stronger the correlations, the more power there 
is within structural equation modeling to detect 
an incorrect model. In essence, the higher the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
correlations, the more likely it is to incorrectly 
specify the model and observe a poor fit based 
on the indices. Second, if correlations are low, 
the researcher may lack the power to reject the 
model at hand. 
Also, results seem to confirm what other 
researchers have argued in the literature. For 
example, Cudeck and Hulen (2001) noted that if 
a group of items has been identified as one-
dimensional, the internal consistency of the 

Figure 1: Results of the Scree Plot 
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Table 2: Parallel Analysis Results 
 Eigenvalues 

  1 2 3 4 

Random Data  1.55 1.46 1.39 1.34 

Real Data 

.6 3.87 3.63 3.31 1.07 

.8 4.66 4.59 4.12 1.32 

1.0 5.84 5.58 5.38 .96 



INTERNAL CONSISTENCY AND GOODNESS OF FIT ML FACTOR ANALYSIS 

468 
 

collection of items need not be high for factor 
analysis to be able to identify homogenous sets 
of items in a measuring scale. Test reliability is a 
function of items. Therefore, if only a few items 
have been identified as homogeneous by factor 
analysis, their reliability may not be high. 

If ML with exploratory factor analysis 
including goodness-of-fit analyses are to be used 
more extensively in the future, a great deal of 
work must to be done to help researchers make 
good decisions. This assertion is supported by 
Fabringer, et al. (1999) who noted that, 
“although these guidelines for RMSEA are 
generally accepted, it is of course possible that 
subsequent research might suggest 
modifications” (p.280). 
 
Limitations of Current Research 

Since the study involved simulations, 
the major limitation of the study, like any other 
simulation study is that the results might not be 
generalizable to other situations. This is 
especially true considering the fact that the 
manipulation of the parameters for this study 
yielded strong internal validity thereby 
compromising external validity. However, 
despite this limitation, the importance of the 
findings cannot be neglected because they help 
inform researchers on the need to move away 
from relying entirely on internal consistency as a 
measure of dimensionality of data to an 
approach where other analyses are considered as 
well. This point was reiterated by Cudeck and 
Hulin (2001) who stated that a reliable test need 
not conform to a one-factor model and 
conversely items that fit a single common factor 
may have low reliability. 
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The power and type I error rates of eight indices for lag-one autocorrelation detection were assessed for 
interrupted time series experiments (ITSEs) with small numbers of data points. Performance of Huitema 
and McKean’s (2000) zHM statistic was modified and compared with the zHM, five information criteria and 
the Durbin-Watson statistic. 
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Introduction 
Educational research contains many examples of 
single-subject designs (Huitema, McKean, & 
McKnight, 1999). Single-subject designs, also 
known as interrupted time series experiments 
(ITSEs), are typically used to assess a 
treatment’s effect on special populations such as 
children with autism or developmental 
disabilities (Tawney & Gast, 1984). The design 
consists of repeated measures on an outcome for 
an individual during baseline and treatment 
conditions (A and B phases, respectively). Use 
of repeated measures on an individual is 
designed such that the subject acts as his/her 
own control; this also helps rule out the possible 
influence of potential threats to validity 
including history, practice, and maturation 
effects. 

With ITSE data, the pattern of scores 
over time is compared for the A (baseline) 
versus the B (treatment) phases. The comparison 
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can lead to inferences about the effect of 
introducing the treatment on the trend in the 
outcome scores. To describe the change in trend, 
the effect on the level of the scores and on the 
possible growth pattern must be assessed. 
Numerical descriptors of these trends are not 
well estimated given the number of repeated 
measures is as small as is commonly found in 
educational single-case design research (Busk & 
Marascuilo, 1988; Huitema, 1985). One of the 
sources of these estimation problems is related 
to the autocorrelated structure inherent in such 
designs (Huitema & McKean, 1991; White, 
1961; Kendall, 1954; Marriott & Pope, 1954). 

Several test statistics and indices 
recommended for identifying potential 
autocorrelation exist. Unfortunately these 
statistics are typically recommended only for 
datasets with a larger numbers of data points 
than are typically encountered with ITSEs. 
Huitema and McKean (2000) introduced a test 
statistic, zHM, to identify lag-one autocorrelation 
in small datasets. The Type I error rate of the 
zHM was within nominal levels and sufficient 
power was associated with this statistic. The 
current study introduces a modification of the 
zHM designed to enhance further its statistical 
power. This study assesses the Type I error rate 
and power of both versions of the zHM. The 
performance of the two zHM statistics is also 
compared with that of other test statistics and 
indices that are commonly used to identify 
autocorrelated residuals for models used to 
summarize trends for small ITSE datasets. 
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Autocorrelation 
One of the fundamental assumptions 

when using ordinary least squares estimation for 
multiple regression is that errors are 
independent. When the independence 
assumption does not hold, this leads to 
inaccurate tests of the partial regression 
coefficients (Huitema and McKean, 2000). For 
data consisting of repeated measures on an 
individual, it is likely that a model can explain 
some but not all of the autocorrelation. In 
addition, when the residuals in a regression 
model are autocorrelated the model must 
account for this to ensure accurate and precise 
estimation of parameters and standard errors. 
Thus, it is important to be able to detect 
autocorrelation so that the proper methods for 
estimating the regression model can be 
employed. 

This study is designed to focus solely on 
first-order (lag-one) autocorrelation. For a 
multiple regression model including k 
predictors, xi, of outcome y at time t using: 
 

tktkttt xxxy εββββ ++++= ...22110 .     (1) 

 
If there is a lag-one autocorrelation, ρ1, between 
residuals, then tε , the residual at time t, is 

related to 1−tε , the residual at time t−1 as 

follows: 

ttt a+= −11ερε                       (2) 

 
where 1ρ  is the autocorrelation between 
residuals separated by one time period. It is 
assumed that tε  and 1−tε  have the same 

variance, and at is assumed to follow a standard 
normal distribution. 
 
Estimating Lag-One Autocorrelation 

Several formulas are available for 
estimating the lag-one correlation coefficient, 

1ρ , for a time series consisting of N data points. 
The conventional estimator is calculated as 
follows: 
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where Y  is the simple average of the N values 
of y. Unfortunately, as evidenced by its common 
usage, the bias of 1r  is often ignored. The 
expected value of a lag-1 autocorrelation 
coefficient for a series consisting of N data 
points was analytically derived by Marriott and 
Pope (1954) to be: 
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It should be noted that the expression in 
Equation 2 only covers terms to order N−1 [thus, 

the term: )( 2−NO ]; there are additional terms 
for higher orders of the inverse of N. For large 
samples, these higher order terms tend towards 
zero. However, the ITSEs of interest in this 
study tend to involve short series where N is 
reasonably small and these higher order terms 
are thus not as negligible. Bias clearly exists in 
the estimation of the autocorrelation. 

Huitema and McKean (1991) listed four 
additional, fairly common estimators designed to 
reduce the bias observed in 1r . However, each of 
these is also highly biased for small data sets. 
Huitema and McKean (1991) suggested 
correcting for the bias in r1 by using 
 

N
rr 1
11 +=+                          (5) 

 
which, for smaller true values of ρ1 incorporates 
some of the noted bias evident in Equation 2. 
The authors showed that their modified 

estimator, +
1r , is unbiased when ρ1 equaled zero 

even for sample sizes as small as N = 6. 
Additionally, the authors found that the bias was 
lower for positive values of 1ρ  but higher for 
some negative values. 

When estimating the autocorrelation, it 
is also necessary to calculate the error variance 
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of the estimator because the estimator and its 
variance can be combined to produce a statistic 
that can be used to statistically test for the 
autocorrelation. Bartlett (1946) derived his 
variance formula for the variance of r1: 
 

Nr

2
12 1

1

ρσ −
= .                          (6) 

 
by ignoring terms of order N−2 or higher. This 
formula is commonly reduced to: 
 

Nr
1

ˆ 2
1

=σ                                (7) 

 
under the assumption of the null hypothesis that 
ρ1 = 0 (Huitema & McKean, 1991). Huitema 
and McKean (1991) asserted that the commonly 
used Bartlett variance approximation is not 
satisfactory for small sample sizes. Their 

simulation study indicated that 2
1

ˆ rσ  (see 

Equation 7) consistently overestimated the 
empirical variance. This overestimation 
performed quite badly for values of N of less 
than twenty with Bartlett’s variance 
approximation exceeding the empirical variance 
by 83% and 40% for N = 6 and N = 10, 
respectively. The authors explored the 
performance of Moran’s variance estimate: 
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which, under the null hypothesis (ρ1 = 0), gives 
precise error variance estimates. After looking at 
the performance of an autocorrelation test 

statistic using *2
1

ˆ rσ  as the error variance 

estimator, the authors concluded that *2
1

ˆ rσ  was 

not adequate for small sample sizes. In tests for 
positive values of autocorrelation, its results 
were too conservative except for large values of 
N. They recommended using: 
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(Marriot & Pope, 1954) as follows from 
Equation 4. Use of Equation 9 yielded values 
close to the empirical values of the variance of 
ρ1 estimates even for Ns as small as N = 6. 
 
Detecting Autocorrelation 

The main purpose of estimating the 
correlation coefficient and calculating its error 
variance is to detect the presence of 
autocorrelation in a data set. If data are known to 
be autocorrelated, then methods other than 
ordinary least squares should be used to more 
accurately estimate the regression coefficients 
and their standard errors. One of the more 
commonly used tests for autocorrelation in 
residuals is the Durbin-Watson test statistic: 
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where εt represents the residual at time t (see 
Equation 2). 

The procedure for carrying out this test 
can be confusing, thus the sequence of steps for 
testing the non-directional 0: 10 =ρH  is 

explained here. First both d and (4−d) should be 
compared with the upper bound ud . If both 

exceed this bound, then the null hypothesis is 
retained; otherwise, both d and (4−d) are 
compared with the lower bound, ld . If either 

falls below ld , then the null hypothesis is 

rejected and a non-zero lag one autocorrelation 
is inferred. If neither d nor (4−d) falls below ld , 

the test is inconclusive. The concept of an 
inconclusive region is unsettling and, although 
computer methods that provide exact p-values 
are now becoming available, most are slow or 
expensive (Huitema & McKean, 2000). 

It is in this context, that Huitema and 
McKean (2000) proposed an alternative test 
statistic that is simple to compute, 
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approximately normally distributed and does not 
have an inconclusive region. The test statistic 
was evaluated for its use to test residuals from 
ITSE models that have one to four phases. 
Huitema and McKean’s test statistic is defined 
as: 
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where P is the number of parameters in the time-
series regression model and N is the total 
number of observations in the time series. The 
authors found that 

N
Prr P +=+

1,1                        (13) 

 
provided an unbiased estimate of ρ1 and that the 
denominator of the test statistic (in Equation 12) 

approximates the empirical variance of +
Pr ,1  (see 

Equation 8). 
The zHM test statistic is a generalization 

of the test proposed in Huitema and McKean’s 
(1991) earlier work was designed for a single-
phase model of ITSE data. However, the authors 
failed to implement all of the suggestions from 
their previous study. Specifically, the authors 

did not use the corrected error variance, +2
1

ˆ rσ , 

(see Equation 9) that they had recommended. 

Instead they used *2
1

ˆ rσ  (see Equation 8). 

Because 1})]([1{ 2
1 ≤− rE , use of +2

1
ˆ rσ should 

lead to a smaller variance and thus a larger value 
of the test statistic and increased power over 

*2
1

ˆ rσ . 

 
Information Criteria 

As an alternative to using test statistics 
to detect autocorrelated residuals, it is also 
possible to estimate a model using ordinary least 
squares regression, estimate the same model 
assuming autocorrelated residuals, and then 
compare the fit of the two models. A post-hoc 

evaluation that compares the two models’ fit can 
be then be conducted using an information 
criterion such as Akaike’s Information Criterion 
(AIC): 
 

kLLogAIC 2)(2 +−=               (14) 
 
where L is the value of the likelihood function 
evaluated for the parameter estimates and k is 
the number of estimated parameters in a given 
model. The model with the smallest information 
criterion value is considered the best fitting 
model. 

As an alternative to the asymptotically 
efficient but inconsistent AIC, several more 
consistent model fit statistics have been 
proposed (Bozdogan, 1987; Hannon & Quinn, 
1979; Hurvich &Tsai, 1989; Schwarz, 1978). 
These include Swartz’s (1978) Bayesian 
criterion: 
 

kNLogLLogSBC )()(2 +−=       (15) 
 
where N is the number of observations, Hannon 
and Quinn’s (1979) information criterion 
 

))((2)(2 NLogkLogLLogHQIC +−= ;  (16) 
 
and Bozdogan’s (1987) consistent AIC 
 

kNLogLLogCAIC )1)(()(2 ++−= .  (17) 
 
In addition, Hurvich and Tsai (1989) developed 
a corrected AIC specifically for small sample 
sizes, which deals with AIC’s tendency to 
overfit models: 
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For each of these information criteria 
formulations, the smaller the value, the better the 
model fit. 

The AIC and SBC are supplied by 
default by most statistical software. For 
example, when using SAS’s PROC AUTOREG 
(SAS Institute Inc., 2003) to estimate an 
autoregressive model, the procedure also 
provides results under the assumption of no 
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autocorrelation in residuals (i.e., using ordinary 
least squares, OLS, estimation). The procedure 
automatically provides the AIC and SBC for the 
OLS and autoregressive models to enable a 
comparison of the fit of the two models. To date, 
no studies have been conducted to compare use 
of information criteria for identification of 
autocorrelated residuals for ITSE data with 
small sample sizes. 
 
Research Question 

This study is designed to introduce and 
evaluate use of the variance correction suggested 
by Huitema and McKean (1991) in a modified 
version of their test statistic, HMz . Specifically, 
the corrected test statistic being suggested and 
evaluated is: 
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Identification of lag-one autocorrelation (of 

residuals) was compared for the +
HMz  and HMz  

test statistics, the Durbin-Watson test statistic 
and the AIC, SBC, HQIC, CAIC, and AICC fit 
indices for conditions when 01 =ρ  and when 

01 ≠ρ . This study focused only on two-phase 
ITSE data. This design lies at the root of 
commonly used single-subject designs and 
provides an important starting point for this 
investigation. 
 

Methodology 
SAS code was used to generate data, estimate 
models, and summarize results (Fan, Felsovalyi, 
Keenan, & Sivo, 2001). Several design 
conditions were manipulated to assess their 
effect on the performance of the test statistics 
and fit indices. These conditions included the 
magnitude of the treatment’s effect on the level 
and linear growth, the degree of autocorrelation 
and the overall sample size of the ITSE data. 
 
Model and Assumptions 

The following two-phase, ITSE model 
(Huitema & McKean, 1991) was used to 
generate the data: 

ttAtttt dntdty εββββ ++−+++= )]1([3210

(20) 
 
where An  is the number of data points in the 

first phase (baseline phase A), td is the dummy 

variable coded with a zero for data points in the 
baseline phase and with a one for data points in 
the second phase, and tAt dnt )]1([ +−  is the 

centered interaction between time and treatment. 
The interaction term is centered in this way to 
provide a coefficient, β3, that represents the 
treatment’s effect on the slope (i.e., the 
difference in the linear growth between that 
predicted using the treatment phase data and that 
predicted using the baseline data). The 
coefficient, β2, represents the change in the 
intercept from the baseline to the treatment 
phase (specifically, the difference in the value of 
yt, when t = nA + 1, predicted using treatment 
versus baseline phase data). 

Thus, the β2 and β3 coefficients describe 
the effect of the treatment on the level and 
growth in y, respectively. The residuals (εt) were 
generated such that ttt a+= −11ερε  with 1ρ  

being the true lag-one autocorrelation between 
residuals separated by one time unit, and ta  was 

randomly and independently selected from a 
standard normal distribution. 

Because the focus in ITSE designs is on 
the effect of the intervention, the β2 and β3 
coefficients (see Equation 20) are of most 
interest. Thus, when generating the data in this 
simulation study, values of β0 (baseline data’s 
intercept) and of β1 (baseline data’s linear 
growth) were not manipulated but were fixed 
such that β0 was set to zero and β1 was set to a 
value of 0.2 in all scenarios. This modeled data 
with an intercept of zero (i.e., yt = 0 at t = 0) and 
a slight baseline trend. Values of 2β  and 3β , 

however, were varied to investigate their effect 
on detecting autocorrelation. Each parameter 
took on values 0, 0.2, and 0.4 in this fully 
crossed design. 

In order to evaluate how the model 
selection criteria performed over the range of 
possible values for ρ1, its value was varied to 
range from −0.8 up to 0.8 in increments of 0.2. 
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Finally, the number of data points, N, in the two 
phases for each scenario were varied to be 12, 
20, 30, 50, or 100 with the points being divided 
equally between the two phases so that nA = nB 
with values for each of: 6, 10, 15, 25, or 50. 

The simulation study thus entailed a 
fully crossed design consisting of three values of 

2β  crossed with three values of 3β , crossed 

with nine values of 1ρ , crossed with five values 
of N for a total of 405 combinations of 
conditions. One thousand datasets were 
generated for each of these 405 scenarios. 
 
Analyses 

After each dataset was generated, the 
regression model in Equation 20 was estimated 
using SAS’s PROC AUTOREG. This procedure 
estimates the model using both ordinary least 
squares (OLS) (assuming ρ1 = 0) and 
autoregressive methods (assuming ρ1 ≠ 0). The 
procedure provides values for the AIC and SBC 
for both models. HQIC, CAIC, and AICC were 
then calculated (see Equations 16, 17 and 18, 
respectively) using the log likelihood obtained 
from the AIC value. For each information 
criterion, a tally was kept describing when the 
autoregressive model’s information criterion 
was lower than that of the OLS model. PROC 
AUTOREG additionally provides the p-value for 
the Durbin-Watson test statistic. As with the 
AIC and SBC, a tally was kept of the proportion 
of trials for which this p-value led to a rejection 
of the null hypothesis that ρ1 = 0 (p < .05). 

The HMz  and +
HMz  were also calculated 

(see Equation 12 and 19, respectively) using the 
residuals from the OLS regression. The E(r1) in 
the denominator of Equation 19 was obtained by 
substituting +

Pr ,1
 for the unknown ρ1 in Equation 

6. Again, a tally was kept describing the 
proportion of trials for which the null hypothesis 
of no autocorrelation was rejected (p < .05). For 
conditions in which ρ1 ≠ 0, the tally by scenario 
for each of the eight model selection criteria 
provided the power to identify the correct 
model. For conditions in which ρ1 = 0, the tally 
provided the type I error rate. 
 
 
 

Results 
Type I Error Rates 

Table 1 contains Type I error rates by 
condition and criterion. Sample size appeared to 
have the strongest effect on type I error rates. 
The type I error rate was not greatly affected by 
the values of 2β  and 3β . Overall, the Type I 

error rates for HMz  and +
HMz  were the best of 

the eight criteria investigated. The rates were 
somewhat conservative for the smallest sample 
size conditions (N = 12) with values of 0.022 

and 0.035 for HMz  and +
HMz , respectively. The 

zHM maintained type I error rates at the nominal 
level across sample size conditions (with a 

maximum value of 0.051). The rates for +
HMz  

were slightly elevated (with values of 0.059) 
although the statistic performed much better 
than did the Durbin-Watson (DW) and the five 
information criteria (ICs) investigated. 

The Type I error rates of the five ICs 
(SBC, AIC, HQIC, CAIC and AICC) and for the 
DW statistic were generally inflated across the 
ρ1 = 0 conditions examined with the indices 
performing from worst to best as follows: AIC, 
HQIC, SBC, AICC, DW, CAIC. The Type I 
error rate inflation, however, decreased with 
increasing sample size. Only in the scenarios 
with the largest sample size (N = 100), were the 
CAIC and SBC’s Type I error rates acceptable if 
somewhat conservative. The CAIC’s Type I 
error rate performance was also acceptable 
(0.056) for conditions in which N was 50. 
 
Power 

Table 2 displays the power of the eight 
criteria used to evaluate the presence of lag-one 
autocorrelated residuals. In the presence of type 
I error inflation, the power of a criterion 
becomes somewhat moot. Thus, it should be 
kept in mind that the Type I error inflation noted 
for the DW and the five ICs. As would be 
expected, for all criteria the power was found to 
increase for larger sample sizes. Similarly, it was 
expected and found that as the magnitude of 1ρ  

increased so did the power to detect the ρ1 of the 

ICs and test statistics. The HMz  and +
HMz  

exhibited consistently better power levels than 
the SBC and DW for all positive values of ρ1.  
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Both of these test statistics had better power than 
all other indices when ρ1 ≥ 0.6. These results 
also supported the theoretical conclusion 

mentioned earlier that +
HMz  will always have 

more power than HMz . For negative values of 

ρ1, the ICs and DW statistic exhibited better 

power than the HMz  and +
HMz . And the ICs that 

performed worst in terms of type I error control 
performed best in terms of power. 

The power was also unaffected by the 
true values of 2β  and 3β . The power of HMz  

and +
HMz  was quite low (0.089 and 0.133, 

respectively) for the N = 12 conditions but the 
power levels become more comparable to those 
of the other criteria for larger N. However, only 

HMz  and +
HMz  had exhibited acceptable type I 

error rates. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
The results of the simulation study support use 

of the zHM and +
HMz for identification of lag-one 

autocorrelation in small ITSE datasets. Both 
statistics maintain nominal rates of type I error 

control although +
HMz ’s rates seemed slightly 

inflated in the larger sample size conditions. 
Concomitant with the type I error control were 
found somewhat lower empirical power levels. 
However the type I error inflation of the five ICs 
and the DW prohibit their use for detection of 
autocorrelation in the conditions examined here 
and especially with ITSE data consisting of a 
small number of data points. 

A type I error in the current context 
means that an autoregressive model will be 
estimated unnecessarily. While this should have 
minimal effect on the estimation of the β 
coefficients in Equation 20, it will likely affect 
the standard error (SE) estimates used to test the  

Table 1: Type I Error Rates (False Detection) of Lag-One Autocorrelation 
by Criterion and Condition 

Condition Information Criterion Test Statistics (p < .05) 

Parm* True Value SBC AIC HQIC CAIC AICC DW HMz  
+
HMz  

ρ1 0 0.185 0.304 0.264 0.129 0.168 0.146 0.043 0.053 

β2 

0.4 0.185 0.303 0.265 0.128 0.172 0.143 0.044 0.054 

0.2 0.185 0.303 0.262 0.129 0.167 0.145 0.043 0.053 

0 0.185 0.305 0.264 0.129 0.166 0.149 0.042 0.052 

β3 

0.4 0.188 0.305 0.266 0.131 0.172 0.147 0.044 0.055 

0.2 0.187 0.306 0.264 0.129 0.165 0.147 0.043 0.052 

0 0.180 0.300 0.262 0.127 0.168 0.143 0.042 0.051 

N 

12 0.424 0.490 0.523 0.316 0.131 0.173 0.022 0.035 

20 0.228 0.343 0.316 0.155 0.182 0.164 0.047 0.059 

30 0.146 0.272 0.221 0.092 0.183 0.149 0.047 0.059 

50 0.087 0.225 0.157 0.056 0.178 0.132 0.051 0.058 

100 0.038 0.190 0.103 0.024 0.167 0.110 0.049 0.052 

*Parm. = Parameter 
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statistical significance of these coefficients. The 
current evaluation could be extended further by 
comparing estimation of the OLS versus 
autoregressive model coefficients and their SEs 
for different levels of autocorrelation. This could 
help inform the current study’s type I error and 
power results by indicating the magnitude of the 
effect of incorrect modeling of autocorrelation. 
For example, if only a small degree of accuracy 
and precision is gained by modeling the 
autocorrelation for a certain value of 1ρ , then it 
may not matter that the model selection criteria 
has low power at that value. Similarly, if an 
insubstantial degree of accuracy and precision 
results from false identification of 
autocorrelation, then the type I error inflation  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
noted in this study might be of minimal 
importance. 

As with most simulation studies, results 
are limited by the conditions investigated: the 
values of the 2β  and 3β  coefficients (see 

Equation 20) do not seem to have much effect 
on identification of ρ1, but it should be 
investigated whether this is really the case or 
whether it just appears that way from the limited 
range of values of 2β  and 3β  that were chosen 

in this study. One of the main limitations of this 
study is that it considers only the two-phase 
ITSE data and only investigated first-order 
autocorrelation. Another important limitation is 
that performance was evaluated only for a small 
subset of possible data trends. All conditions 
included a slight positive linear trend in 

Table 2: Power to Detect Lag-One Autocorrelation by Criterion and Condition 

Condition Information Criterion Test Statistic (p < .05) 

Parm* True Value SBC AIC HQIC CAIC AICC DW HMz  
+
HMz  

ρ1 

0.8 0.614 0.672 0.661 0.569 0.585 0.574 0.689 0.699 

0.6 0.530 0.609 0.594 0.480 0.516 0.500 0.621 0.633 

0.4 0.380 0.494 0.462 0.320 0.392 0.370 0.476 0.492 

0.2 0.169 0.299 0.258 0.120 0.194 0.164 0.204 0.218 

-0.2 0.499 0.670 0.616 0.399 0.503 0.473 0.188 0.212 

-0.4 0.830 0.894 0.883 0.765 0.769 0.765 0.489 0.526 

-0.6 0.952 0.970 0.968 0.926 0.896 0.904 0.697 0.734 

-0.8 0.988 0.992 0.993 0.981 0.963 0.968 0.830 0.865 

2β  

0.4 0.622 0.702 0.679 0.571 0.603 0.591 0.526 0.549 

0.2 0.619 0.699 0.681 0.569 0.601 0.590 0.523 0.546 

0 0.619 0.699 0.678 0.570 0.602 0.588 0.523 0.546 

3β  

0.4 0.622 0.701 0.680 0.570 0.602 0.590 0.524 0.547 

0.2 0.620 0.700 0.680 0.570 0.603 0.590 0.524 0.548 

0 0.618 0.699 0.679 0.570 0.602 0.589 0.525 0.547 

N 

12 0.515 0.560 0.579 0.440 0.287 0.323 0.089 0.133 

20 0.461 0.544 0.524 0.404 0.424 0.415 0.377 0.412 

30 0.571 0.670 0.636 0.515 0.605 0.570 0.564 0.585 

50 0.717 0.812 0.775 0.678 0.788 0.754 0.732 0.743 

100 0.836 0.914 0.883 0.813 0.908 0.887 0.860 0.863 
*Parm. = Parameter 
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baseline. In addition, the only model 
misspecification assessed was whether the 
residuals were autocorrelated. 

Future research should investigate use of 

the zHM and +
HMz  for further misspecified 

models including when a true non-linear trend is 
ignored to mimic asymptotic trends resulting 
from ceiling or floor effects. The performance of 
these statistics could also be assessed for ITSEs 
with more than two phases (e.g., for ABAB 
designs) as investigated by Huitema and 
McKean (2000). This study also only 
investigated conditions in which the treatment 
and baseline phases had equal numbers of data 
points (nB = nA). Single-subject studies 
frequently entail unequal sample sizes per phase 
and the effect of uneven n should be 
investigated. 

Based on the results of this study, 
researchers interested in modeling linear growth 
in ITSE data with a small number of data points 

should use +
HMz  or zHM  to test for the presence 

of lag-one autocorrelation. Researchers are 
cautioned against using the Durbin-Watson test 
statistic and the various information criteria 
evaluated here including the AIC, HQIC, SBC, 
AICC, DW and the CAIC for two-phase ITSEs 
with Ns less than 50. 
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Estimating the Parameters of Rayleigh Cumulative Exposure Model 
in Simple Step-Stress Testing 
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Assumes the life distribution of a test unit for any stress follows a Rayleigh distribution with scale 
parameterθ , and that )(θLn  is a linear function of the stress level. Maximum likelihood estimators of 
the parameters under a cumulative exposure model are obtained. The approximate variance estimates 
obtained from the asymptotic normal distribution of the maximum likelihood estimators are used to 
construct confidence intervals for the model parameters. A simulation study was conducted to study the 
performance of the estimators. Simulation results showed that in terms of bias, mean squared error, 
attainment of the nominal confidence level, symmetry of lower and upper error rates and the expected 
interval width, the estimators are very accurate and have a high level of precision. 
 
Key words: Accelerated life test, Cumulative exposure model, Rayleigh distribution, Maximum 
likelihood estimation, Step-stress. 
 
 

Introduction 
The Rayleigh distribution arises in a variety of 
fields. This distribution is frequently employed 
by engineers and scientists as a model for data 
resulting from investigations involving wave 
propagation, radiation and related inquiries as 
well as in the analysis of target error data Cohen 
and Whitten (1988). Some types of electro 
vacuum devices age rapidly with time even 
though they may have no manufacturing defects, 
the Rayleigh distribution is quite appropriate for 
modeling the lifetime of such units as it 
possesses a linearly increasing hazard rate 
Johnson, Kotz and Balakrishnan (1994). Other 
applications and motivations for the Rayleigh 
distribution can be found in Cohen and Whitten 
(1988). 
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Accelerated life tests are used to quickly 

obtain information on the life distribution of 
products by testing them at higher than nominal 
levels of stress to induce early failures. Data are 
obtained at accelerated conditions and based on 
a regression type model, results are extrapolated 
to the design stress to estimate the life 
distribution; such overstress testing reduces time 
and cost. One method of applying stress to the 
test units is a step-stress scheme which allows 
the stress of a unit to be changed at specified 
times. Nelson (1980) described this important 
type of accelerated life test. In step-stress 
testing, a unit is placed on a test at an initial low 
stress, if it does not fail in a predetermined time, 
τ , stress is increased. If there is a single change 
of stress, the accelerated life test is called a 
simple step-stress test. 

The cumulative exposure model defined 
by Nelson (1990) for simple step-stress testing 
with low stress X1 and high stress X2 is: 
 





>+−
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=
ττ
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where )(tGi is the cumulative distribution 

function of the failure time at stress Xi, τ  is the 
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time to change stress and s  is the solution of 
)()( 21 sGG =τ . 

Most of the available literature on a 
step-stress accelerated life testing deals with the 
exponential exposure model. Khamis and 
Higgins (1996, 1998) proposed a new model 
known as KH model for step-stress accelerated 
life test as an alternative to the Weibull 
cumulative exposure model. 

Miller and Nelson (1983) obtained the 
optimum simple step-stress accelerated life test 
plans for the case where the test units have 
exponentially distributed lifetimes. Bai, Kim and 
Lee (1989) extended the results of Miller and 
Nelson (1983) to the case of censoring. Khamis 
and Higgins (1996) obtained the optimum 3-step 
step-stress using the exponential distribution. 
Alhadeed and Yang (2005) obtained the 
optimum design for the lognormal step-stress 
model. Al-Haj Ebrahem and Al Masri (2007(a)) 
obtained the optimum simple step-stress plans 
for the log-logistic cumulative exposure model, 
by minimizing the asymptotic variance of the 
maximum likelihood estimate of a given 100 P-
th percentile of the distribution at the design 
stress.  

Al-Haj Ebrahem and Al Masri (2007(b)) 
obtained the optimum simple step-stress plans 
for the log-logistic distribution under time 
censoring.  Xiong (1998) presented the 
inferences of parameters in the simple step-
stress model in accelerated life testing with type 
two censoring. Xiong and Milliken (2002) 
studied statistical models in step-stress 
accelerated life testing when stress change time 
are random and obtained the marginal life 
distribution for test units. Nonparametric 
approaches for step-stress testing have been 
proposed by Shaked and Singurwalla (1983) and 
Schmoyer (1991). For additional details, see 
Chung and Bai (1998) and Gouno (2001). This 
article considers point and interval estimation of 
Rayleigh cumulative exposure model 
parameters. 
 
Model and Assumptions 

The probability density function and the 
cumulative distribution function of the Rayleigh 
distribution are given respectively by: 
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The following assumptions are understood: 
 
1. Under any stress the lifetime of a test unit 

follows a Rayleigh distribution. 
2. Testing is conducted at stresses X1 and X2, 

where X1 < X2. 
3. The relationship between the parameter iθ  

and the stress Xi is given by 

ii XLn 10)( ββθ += , where 0β  and 1β  are 

unknown parameters to be determined from 
the test data. 

4. The lifetimes of test units are independent 
and identically distributed. 

5. All n units are initially placed on low stress 
X1 and run until time τ  when the stress is 
changed to high stress X2. At X2 testing 
continues until all remaining units fail. 

 
Verification that the Rayleigh cumulative 
exposure model for step-stress is given by: 
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If 2YT = , then the cumulative exposure model 
of T is given by: 
 

1

2

2

1

2

2

2

1 ,0
( )

1 ,

t

t

e t
G t

e t

θ

θτ τ
θ

θ

τ

τ

−

 
− − +  
 


 − < <
= 

 − < < ∞

    (4) 

 



RAYLEIGH MODEL PARAMETER ESTIMATION IN STEP-STRESS TESTING 

480 
 

Note that )(tG  is not a step-stress exponential 
cumulative exposure model. For simplicity, let 

2
1 ττ = , so that the cumulative exposure model 

of T is given by: 
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and the corresponding probability density 
function of T is given by: 
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Methodology 

Model Parameters Estimation 
Let jit , inj ...,,2,1= , 2,1=i  be the 

observed lifetime under low and high stress, 
where 1n  denotes the number of units failed at 

the low stress X1 and 2n denotes the number of 
units failed at the high stress X2. The Likelihood 
function is given by: 
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where 

0 1 1
1

Xe β βθ +=  and 0 1 2
2

Xe β βθ += . 

 
The log likelihood function is given by: 
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The maximum likelihood estimates 0β̂  and 1β̂  

for the model parameters 0β  and 1β  can be 

obtained by solving numerically the following 
two equations: 
 

0
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In order to construct confidence intervals for the 
model parameters, the asymptotic normality of 
the maximum likelihood estimates are used. It is 
known that: 
 

( )1
1010
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where 1ˆ −F  denotes the inverse of the observed 

Fisher information matrix F̂ . The observed 

Fisher information matrix F̂  is obtained by 
evaluating the second and mixed partial 
derivatives of ),,( 10 ββjitLnL  at the 

maximum likelihood estimates 0β̂  and 1β̂ , that 

is: 
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where 
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Thus, a )1( α− 100 % confidence interval for 

the model parameter lβ , 1,0=l  is given by: 

 

1 /2 1 /2
ˆ ˆ ˆ ˆ[ . ( ), . ( )]l l l lZ S E Z S Eα αβ β β β− −− +  

 

where )ˆ(. lES β  denotes the standard error of 

the maximum likelihood estimates lβ̂  which is 

the square root of the diagonal element of 1ˆ −F , 
and 2/1 α−Z  is the ( 2/1 α− ) percentile of the 

standard normal distribution. 
Note that an optimal test plan can be 

determined by minimizing with respect to the 
change time 1τ  the asymptotic variance at the 
design stress X0. Thus, the numerical search 

method was used to find the value of *
1τ  that 

minimizes TXFX )1(ˆ)1( 0
1

0
− , where 

TX )1( 0 denotes the transpose of the vector 

)1( 0X . Thus the optimum time to change 

stress under the Rayleigh cumulative exposure 

model is *
1

* ττ = . 

 
Example 

The data in Table 1 includes n = (n1+ n2) 
= 30 simulated observations from cumulative 
exposure model (5) defined above. The values 

used in this example are: =0β 2, =1β 4 , *
1τ = 

28.4. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The simulated data results show: 
1. The values of the maximum likelihood 

estimates are 0β̂ = 2.45473, 1β̂ = 4.10729. 

2. The inverse of the observed Fisher 
information matrix is 









−

−
=−

640747.0235227.0

235227.0119688.0ˆ 1F  

3. A 95% confidence interval for 0β  is 

[1.77665, 3.13281]. 
4. A 95% confidence interval for 1β  is 

[2.53838, 5.6762]. 
 
Simulation Study 

A simulation study was conducted to 
investigate the performance of the maximum 
likelihood estimates, and the performance of the 
confidence interval based on the asymptotic 
normality of the maximum likelihood estimates. 
The criteria used for the evaluation of the 
performance of the maximum likelihood 
estimates were the bias and the mean squared 
error (MSE). For the confidence interval with 
confidence coefficient )1( α−  the following 
were calculated: 
 

1. The expected width (W): the average 
width of the simulated intervals. 

2. Lower error rate (L): the fraction of 
intervals that fall entirely above the true 
parameter. 

Table 1: Simulated Data 
Stress Failure Times 

X1 = 0.2 

4.49977 
20.4499 
20.8349 
4.14598 
7.20451 
13.2136 
8.30107 

7.17595 
1.89708 
23.9302 

0.101846 
12.7104 
23.3564 
1.3215 

13.8035 
12.0347 
7.48286 
0.535875 
14.0179 
26.5207 

X2 = 1 

262.761 
152.777 
589.63 

575.368 
168.515 

645.625 
81.7587 
65.7081 
100.604 
281.587 
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3. Upper error rate (U): the fraction of 
intervals that fall entirely below the true 
parameters. 

4. Total error rate (T): the fraction of 
intervals that did not contain the true 
parameter value. 

 
The indices of the simulation study were: 

• n: total number of units placed on the 
test, n = 10, 40, 80, 100. 

• X1: low stress level, X1 = 0.1, 0.2, 0.3, 
0.5. 

• X2: high stress level, X2 = 0.9, 1.0, 1.2, 
1.3, 1.9. 

• For =0β 4, =1β 6, α = 0.05 and for 

each combination of n, X1 and X2 2,000 
samples were generated. 

 
Results 

Tables 2-5 show simulation results for parameter 

0β , while Tables 6-9 show simulation results 

for parameter 1β .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
Based on the simulation results the following 
conclusions are put forth. For the parameter 0β , 

the maximum likelihood estimate 0β̂  has small 

values of bias and mean squared error, also as 
the sample size increases the value of the bias 
and the mean squared error decreases. The 

confidence interval for 0β̂  had a small expected 

width value and the expected width decreases as 
the sample size increases. In terms of attainment 
of the coverage probability and the symmetry of 
lower and upper error rates, the intervals behave 
very well especially for large value of n. Also, 
from the results it appears that, for the same 
value of X2, as the value of X1 increases the 
values of expected width, bias and mean squared 
error also increase. Conversely, for the same 
value of X1, as the value of X2 increases the 
values of expected width, bias and mean squared 
error decrease. Thus, the recommendation is to 
use a small value of X1 and a large value of X2, 
and the same conclusions can be drawn for the 
parameter 1β . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Simulation Results of the Parameter 0β  when n = 10 

X2 X1 W L U T Bias MSE 

0.9 

0.1 2.1703 0.0440 0.0000 0.0440 0.2576 0.2089 
0.2 3.0980 0.0415 0.0000 0.0415 0.2607 0.4146 
0.3 4.1653 0.0505 0.0015 0.0520 0.3094 0.8260 
0.5 7.9925 0.0540 0.0040 0.0580 0.5476 3.1766 

1.0 

0.1 1.9623 0.0380 0.0005 0.0385 0.2499 0.1951 
0.2 3.0753 0.0390 0.0005 0.0395 0.2477 0.3675 
0.3 3.8550 0.0525 0.0025 0.0550 0.3097 0.7143 
0.5 6.0328 0.0435 0.0050 0.0485 0.4283 2.1923 

1.2 

0.1 1.9296 0.0430 0.0000 0.0430 0.2543 0.1796 
0.2 2.6484 0.0410 0.0010 0.0420 0.2520 0.2965 
0.3 3.3296 0.0520 0.0010 0.0530 0.3024 0.5133 
0.5 4.9964 0.0540 0.0025 0.0565 0.3945 1.3313 

1.3 

0.1 1.8004 0.0350 0.0005 0.0355 0.2496 0.1637 
0.2 2.4806 0.0435 0.0010 0.0445 0.2625 0.2787 
0.3 3.1185 0.0395 0.0030 0.0425 0.2600 0.4204 
0.5 4.6224 0.0445 0.0025 0.0470 0.3078 1.1109 

1.9 

0.1 1.6907 0.0460 0.0005 0.0465 0.2815 0.1631 
0.2 2.1678 0.0390 0.0010 0.0400 0.2471 0.1990 
0.3 2.5498 0.0325 0.0010 0.0335 0.2292 0.2569 
0.5 3.5230 0.0465 0.0015 0.0480 0.2602 0.5334 
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Table 3: Simulation Results of the Parameter 0β  when n = 40 

X2 X1 W L U T Bias MSE 

0.9 

0.1 0.9862 0.0375 0.0090 0.0465 0.0439 0.0563 
0.2 1.2743 0.0425 0.0125 0.0550 0.0447 0.1110 
0.3 1.7032 0.0415 0.0100 0.0515 0.0609 0.1921 
0.5 3.1698 0.0390 0.0155 0.0545 0.1073 0.6790 

1.0 

0.1 1.0098 0.0345 0.0105 0.0450 0.0491 0.0511 
0.2 1.2215 0.0460 0.0100 0.0560 0.0585 0.0969 
0.3 1.5599 0.0390 0.0125 0.0515 0.0621 0.1616 
0.5 2.6856 0.0355 0.0140 0.0495 0.0758 0.4816 

1.2 

0.1 0.9224 0.0360 0.0045 0.0405 0.0468 0.0450 
0.2 1.1081 0.0375 0.0105 0.0480 0.0368 0.0793 
0.3 1.3694 0.0350 0.0075 0.0425 0.0489 0.1197 
0.5 2.1300 0.0385 0.0175 0.0560 0.0587 0.3000 

1.3 

0.1 0.8921 0.0310 0.0100 0.0410 0.0360 0.0419 
0.2 1.0858 0.0325 0.0065 0.0390 0.0451 0.0686 
0.3 1.3059 0.0350 0.0135 0.0485 0.0508 0.1135 
0.5 1.9469 0.0360 0.0155 0.0515 0.0732 0.2551 

1.9 

0.1 0.8267 0.0290 0.0070 0.0360 0.0476 0.0328 
0.2 1.0231 0.0270 0.0060 0.0330 0.0411 0.0512 
0.3 1.1547 0.0360 0.0130 0.0490 0.0443 0.0767 
0.5 1.4178 0.0345 0.0110 0.0455 0.0602 0.1319 

 
 

Table 4: Simulation Results of the Parameter 0β  when n = 80 

X2 X1 W L U T Bias MSE 

0.9 

0.1 0.6529 0.0345 0.0210 0.0555 0.0100 0.0276 
0.2 0.8844 0.0345 0.0170 0.0515 0.0305 0.0504 
0.3 1.1884 0.0380 0.0145 0.0525 0.0313 0.0932 
0.5 2.2149 0.0405 0.0160 0.0565 0.0706 0.3394 

1.0 

0.1 0.6313 0.0295 0.0140 0.0435 0.0134 0.0234 
0.2 0.8338 0.0325 0.0105 0.0430 0.0314 0.0443 
0.3 1.0872 0.0355 0.0195 0.0550 0.0269 0.0809 
0.5 1.8748 0.0340 0.0145 0.0485 0.0577 0.2303 

1.2 

0.1 0.6049 0.0330 0.0160 0.0490 0.0133 0.0238 
0.2 0.7612 0.0400 0.0130 0.0530 0.0254 0.0379 
0.3 0.9534 0.0350 0.0180 0.0530 0.0278 0.0596 
0.5 1.4828 0.0335 0.0125 0.0460 0.0403 0.1381 

1.3 

0.1 0.5973 0.0250 0.0120 0.0370 0.0121 0.0220 
0.2 0.7351 0.0395 0.0180 0.0575 0.0274 0.0361 
0.3 0.9059 0.0320 0.0205 0.0525 0.0249 0.0560 
0.5 1.3628 0.0360 0.0210 0.0570 0.0324 0.1259 

1.9 

0.1 0.5604 0.0250 0.0120 0.0370 0.0174 0.0173 
0.2 0.6401 0.0380 0.0180 0.0560 0.0190 0.0281 
0.3 0.7435 0.0295 0.0165 0.0460 0.0161 0.0338 
0.5 0.9887 0.0310 0.0165 0.0475 0.0200 0.0631 
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Table 5: Simulation Results of the Parameter 0β  when n = 100 

X2 X1 W L U T Bias MSE 

0.9 

0.1 0.5793 0.0285 0.0150 0.0435 0.0140 0.0211 
0.2 0.7890 0.0320 0.0195 0.0515 0.0198 0.0414 
0.3 1.0585 0.0460 0.0170 0.0630 0.0309 0.0787 
0.5 1.9750 0.0290 0.0150 0.0440 0.0467 0.2473 

1.0 

0.1 0.5612 0.0295 0.0095 0.0390 0.0178 0.0193 
0.2 0.7432 0.0305 0.0160 0.0465 0.0201 0.0354 
0.3 0.9699 0.0335 0.0175 0.0510 0.0295 0.0621 
0.5 1.6748 0.0325 0.0205 0.0530 0.0284 0.1858 

1.2 

0.1 0.5354 0.0255 0.0125 0.0380 0.0141 0.0169 
0.2 0.6790 0.0355 0.0190 0.0545 0.0158 0.0313 
0.3 0.8494 0.0375 0.0150 0.0525 0.0192 0.0465 
0.5 1.3251 0.0325 0.0205 0.0530 0.0227 0.1167 

1.3 

0.1 0.5261 0.0260 0.0150 0.0410 0.0172 0.0171 
0.2 0.6556 0.0250 0.0200 0.0450 0.0154 0.0264 
0.3 0.8070 0.0355 0.0160 0.0515 0.0225 0.0420 
0.5 1.2151 0.0290 0.0220 0.0510 0.0164 0.0977 

1.9 

0.1 0.4892 0.0275 0.0170 0.0445 0.0151 0.0150 
0.2 0.5702 0.0280 0.0170 0.0450 0.0137 0.0205 
0.3 0.6626 0.0315 0.0195 0.0510 0.0167 0.0283 
0.5 0.8811 0.0330 0.0205 0.0535 0.0145 0.0518 

 
 

Table 6: Simulation Results of the Parameter 1β when n = 10 

X2 X1 W L U T Bias MSE 

0.9 

0.1 11.7520 0.0000 0.1050 0.1050 -1.1302 5.4630 
0.2 10.7495 0.0000 0.0920 0.0920 -0.9623 5.0870 
0.3 10.6093 0.0005 0.0835 0.0840 -0.8507 5.5120 
0.5 13.7981 0.0020 0.0765 0.0785 -0.9891 9.4010 

1.0 

0.1 9.5277 0.0000 0.1020 0.1020 -0.9831 4.4160 
0.2 10.6398 0.0005 0.0980 0.0985 -0.8012 4.0510 
0.3 9.6039 0.0005 0.0945 0.0950 -0.8252 4.5300 
0.5 9.9503 0.0025 0.0700 0.0725 -0.7903 6.2630 

1.2 

0.1 9.0816 0.0000 0.1130 0.1130 -0.8944 3.1220 
0.2 8.4417 0.0000 0.0945 0.0945 -0.7595 2.8450 
0.3 7.8835 0.0015 0.0985 0.1000 -0.7365 2.9810 
0.5 7.9438 0.0005 0.0795 0.0800 -0.6901 3.5090 

1.3 

0.1 7.6321 0.0000 0.0980 0.0980 -0.7888 2.5240 
0.2 7.5746 0.0005 0.1070 0.1075 -0.7344 2.5700 
0.3 7.1972 0.0000 0.0840 0.0840 -0.6107 2.2610 
0.5 7.2356 0.0000 0.0755 0.0755 -0.5331 2.8070 

1.9 

0.1 6.0578 0.0000 0.1165 0.1165 -0.6138 1.3170 
0.2 5.9001 0.0000 0.1085 0.1085 -0.5047 1.1770 
0.3 5.3165 0.0000 0.0920 0.0920 -0.4502 1.0890 
0.5 5.1264 0.0010 0.0880 0.0890 -0.3977 1.1430 
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Table 7: Simulation Results of the Parameter 1β  when n = 40 

X2 X1 W L U T Bias MSE 

0.9 

0.1 5.4639 0.0035 0.0860 0.0895 -0.4575 2.0540 
0.2 4.0934 0.0050 0.0585 0.0635 -0.2193 1.2430 
0.3 4.0963 0.0080 0.0590 0.0670 -0.2089 1.2220 
0.5 5.2896 0.0110 0.0435 0.0545 -0.2028 1.9090 

1.0 

0.1 5.6772 0.0030 0.0920 0.0950 -0.4462 1.8450 
0.2 3.8432 0.0045 0.0620 0.0665 -0.2485 1.0380 
0.3 3.6264 0.0045 0.0545 0.0590 -0.1817 0.9110 
0.5 4.3539 0.0120 0.0485 0.0605 -0.1580 1.2890 

1.2 

0.1 4.8035 0.0020 0.0875 0.0895 -0.4210 1.4880 
0.2 3.3155 0.0065 0.0595 0.0660 -0.1993 0.8150 
0.3 3.0358 0.0055 0.0600 0.0655 -0.1688 0.6660 
0.5 3.2786 0.0105 0.0505 0.0610 -0.1244 0.7370 

1.3 

0.1 4.4699 0.0020 0.0700 0.0720 -0.3210 1.1760 
0.2 3.2118 0.0030 0.0710 0.0740 -0.2396 0.7610 
0.3 2.8369 0.0060 0.0595 0.0655 -0.1685 0.5970 
0.5 2.9173 0.0105 0.0490 0.0595 -0.1386 0.5930 

1.9 

0.1 3.6709 0.0010 0.0745 0.0755 -0.2878 0.7030 
0.2 2.9251 0.0020 0.0625 0.0645 -0.1974 0.4530 
0.3 2.3678 0.0050 0.0745 0.0795 -0.1508 0.3530 
0.5 1.9082 0.0055 0.0580 0.0635 -0.1121 0.2710 

 
 

Table 8: Simulation Results of the Parameter 1β  when n = 80 

X2 X1 W L U T Bias MSE 

0.9 

0.1 3.3864 0.0045 0.0555 0.0600 -0.1634 0.8710 
0.2 2.8042 0.0110 0.0420 0.0530 -0.1308 0.5250 
0.3 2.8413 0.0140 0.0480 0.0620 -0.1052 0.5510 
0.5 3.6913 0.0115 0.0470 0.0585 -0.1321 0.9460 

1.0 

0.1 3.1606 0.0025 0.0580 0.0605 -0.1898 0.7530 
0.2 2.5651 0.0080 0.0480 0.0560 -0.1370 0.4590 
0.3 2.5175 0.0125 0.0450 0.0575 -0.0806 0.4390 
0.5 3.0276 0.0125 0.0415 0.0540 -0.1065 0.6020 

1.2 

0.1 2.8929 0.0080 0.0670 0.0750 -0.1713 0.6230 
0.2 2.2143 0.0090 0.0595 0.0685 -0.1175 0.3520 
0.3 2.0923 0.0110 0.0460 0.0570 -0.0861 0.2960 
0.5 2.2683 0.0115 0.0325 0.0440 -0.0689 0.3200 

1.3 

0.1 2.8233 0.0035 0.0675 0.0710 -0.1744 0.5990 
0.2 2.0904 0.0070 0.0550 0.0620 -0.1297 0.3180 
0.3 1.9392 0.0160 0.0475 0.0635 -0.0719 0.2680 
0.5 2.0396 0.0140 0.0520 0.0660 -0.0658 0.2840 

1.9 

0.1 2.3871 0.0030 0.0765 0.0795 -0.1722 0.4090 
0.2 1.6190 0.0065 0.0720 0.0785 -0.1069 0.2040 
0.3 1.4227 0.0085 0.0435 0.0520 -0.0585 0.1350 
0.5 1.3256 0.0120 0.0350 0.0470 -0.0468 0.1130 
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Estimating Model Complexity of Feed-Forward Neural Networks 
 

Douglas Landsittel 
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In a previous simulation study, the complexity of neural networks for limited cases of binary and 
normally-distributed variables based the null distribution of the likelihood ratio statistic and the 
corresponding chi-square distribution was characterized. This study expands on those results and presents 
a more general formulation for calculating degrees of freedom. 
 
Key words: Degrees of freedom, null distribution, chi-square distribution. 
 
 

Introduction 
Feed-forward neural networks are commonly 
utilized as a statistical tool for classification and 
prediction of high-dimensional and/or 
potentially highly non-linear data. Their 
popularity stems from an implicitly non-linear 
and flexible model structure, which does not 
require explicit specification of interactions or 
other non-linear terms, and can universally 
approximate any function (Ripley, 1996). In 
cases where epidemiologic data or the 
underlying theory of the specific problem 
suggest a complex association, but the exact 
nature of such associations is not well 
understood, neural networks represent a more 
flexible methodology for potentially modeling 
such associations. One significantly negative 
consequence of this implicit non-linearity and 
flexible model structure, however, is the 
resulting inability to quantify model complexity. 
The typical approach of counting model terms 
does not provide a rationale basis for quantifying 
the effective model dimension because the 
model parameters are inherently correlated to 
varying degrees. 
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Previous work has sought to quantify 

model degrees of freedom for other nonlinear or 
nonparametric models through use of the hat 
matrix. For scatterplot smoothers, local 
regression, and other nonparametric models, 
Hastie and Tibshirani (1990) and others directly 
calculated the trace of the hat matrix to estimate 
degrees of freedom. In cases where the hat 
matrix cannot be explicitly specified, such as 
more complex models or model selection 
procedures, Ye (1998) proposes the generalized 
degrees of freedom, which estimates the 
diagonal terms based on the sensitivity of fitted 
values to changes in observed response values. 
To address random effects, hierarchical models, 
and other regression methods, Hodges and 
Sargent (2001) extended degrees of freedom 
using a re-parameterization of the trace of the 
hat matrix and subsequent linear model theory. 

Other publications have specifically 
addressed the issue of model complexity for 
neural networks. For instance, Moody (1992) 
calculated the effective number of model 
parameters based on approximating the test set 
error as a function of the training set error plus 
model complexity. A number of other articles 
(Liu, 1995; Amari & Murata, 1993; Murata, 
Yoshizawa, & Amari, 1991) have presented 
theorems to quantify model complexity, but, 
without a framework for practically applying 
such methods, none have been utilized in 
practice. Others have taken a more 
computational approach (as summarized by 
Ripley, 1996; and Tetko, Villa, & Livingstone, 
1996) using methods such as cross-validation, 
eliminating variables based on small (absolute) 
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parameter values, or eliminating variables with a 
small effect on predicted values (i.e. sensitivity 
methods). Bayesian approaches have also been 
proposed (Ripley, 1996; Paige & Butler, 2001) 
for model selection with neural networks. 
Despite the noted advances, implementation of 
such methods has been limited by either 
computational issues, dependence on the 
specified test set, or lack of distributional theory. 
As a result, there are no established procedures 
for variable selection or determination of the 
optimal network structure (e.g. the number of 
hidden units) with neural networks. 

Previously, a simulation study was 
conducted to investigate the distribution of the 
likelihood ratio statistic with neural networks. In 
the present study, simulations are conducted to 
empirically describe the distribution of the 
likelihood ratio statistic under the null 
assumption of the intercept model (versus the 
alternative of at least one non-zero covariate 
parameter). All simulations are conducted with a 
single binary response; in contrast, the 
previously cited literature primarily focuses on 
continuous outcomes. In cases where the 
likelihood ratio can be adequately approximated 
by a chi-square distribution, the degrees of 
freedom can be used to quantify neural network 
model complexity under the null. Derivation of 
the test statistic null distribution is pursued 
through simulation approaches, rather than 
theoretical derivations, because of the 
complexity of the network response function and 
the lack of maximum likelihood or other 
globally optimal estimation. 

The two main objectives of this 
simulation study are to: (1) verify that the chi-
square distribution provides an adequate 
approximation to the empirical test statistic 
distribution in a limited number of simulated 
cases, and (2) quantify how the distribution, 
number of covariates and the number of hidden 
units affects model degrees of freedom. 
Adequacy of the chi-square approximation will 
be judged by how close the α -level based on 
the simulation distribution (i.e., the percent of 
the test statistic distribution greater than the 
corresponding chi-square quantile) is to various 
percentiles of the chi-square distribution. The 
variance, which should be approximately twice 

the mean under a chi-square distribution, is also 
displayed for each simulation condition. 
 

Methodology 
The Feed-Forward Neural Network Model 

This study focuses strictly on a single 
Bernoulli outcome, such as presence or absence 
of disease. All neural network models utilized a 
feed-forward structure (Ripley, 1996) with a 
single hidden layer so that 
 

0
1 1

ˆ ( { })
pH

k j jo ji ik
j i

y f v v f w w x
= =

= + +  ,   (1) 

 
where ŷ  is the predicted value for the kth 
observation with covariate values xk

1 2( , ,..., )k k pkx x x= . The function ( )f x  is the 

logistic function, 1
(1 )xe−+

, and each logistic 

function, 
1

{ }
p

jo ji ik
i

f w w x
=

+ , is referred to as 

the jth hidden unit. The response function of the 
neural network model can thus be viewed as a 
logistic of these hidden unit values. In terms of 
further terminology, the parameters 0 1, ,..., Hv v v  

are referred to as the connections between the 
hidden and output layer and each set of other 
parameters, 1 2, ,...,j j jpw w w , are referred to as 

the connections between the inputs and hidden 
units, where there are p covariate values specific 
each of the p hidden units. This described model 
structure often leads to categorization of neural 
networks as a black box technique. None of the 
parameter values directly correspond to any 
specific main effect or interaction. Further, the 
degree of non-linearity cannot be explicitly 
determined from the number of hidden units or 
any easily characterized aspect of the model. 

The optimal model coefficients were 
calculated via back-propagation (Rumelhart, et 
al., 1995) and the nnet routine in S-Plus 
(Venables & Ripley, 1997), which iteratively 
updates weights using a gradient descent-based 
algorithm. For a Bernoulli outcome, 
optimization is based on the minimization of the 
deviance (D), 
 



ESTIMATING MODEL COMPLEXITY OF FEED-FORWARD NEURAL NETWORKS 

490 
 

= −2∑ ( ) + (1 − ) (1 − )( )  (2) 
 
with a penalty term for the sum of the squared 
weights (referred to as weight decay). Weight 
decay, represented by λ in Equation 3, is 
commonly utilized to improve optimization and 
generalization of the resulting model by 
minimizing the penalized likelihood (PL) 
 = + ∑ +( )         (3) 
 
For this study, λ  = 0.01 was utilized in all 
simulations based on previous experience and 
recommendations by Ripley (1996) established 
on Bayesian arguments and the range of the 
logistic function. 
 
Quantifying Model Complexity through 
Simulations 

All simulations utilized a feed-forward 
neural network with one hidden layer and a 
single binary outcome with a varying number of 
predictor variables. All variables were randomly 
generated (via S-Plus), with the predictor 
variables being simulated independently of the 
binary outcome, as to generate results under the 
null hypothesis of no association. Separate sets 
of simulations were conducted for a variety of 
conditions, including binary versus continuous 
predictors, a varying number of predictor 
variables, and a varying number of hidden units. 
For each condition, 500 data sets were each 
simulated, each with 2,000 observations (to 
approximate asymptotic results). 

To quantify model complexity of the 
given neural network under the given set of 
conditions, the likelihood ratio statistic for 
model independence was calculated, which 
serves to quantify the model complexity under 
the null of no association between outcome and 
predictors. The simulations result in a 
distribution of likelihood ratios which should 
follow a chi-square distribution with the mean 
equal to the degrees of freedom. The mean of 
that distribution can then be used to quantify 
model complexity under the null. However, 
correspondence to a given chi-square 
distribution must be verified. In the absence of 
any current theoretical justification for the 
expected distribution, percentiles of the chi-

square distribution were compared to the 
corresponding α-levels of the simulated 
distribution (of likelihood ratios). Simulated α -

levels ( ( )S
qα ) were then defined as the 

percentage of simulated values greater than qth 
percentile of the corresponding chi-square 
distribution. For instance, the nominal α -level 
for the simulated distribution is given by 
 

( )( )2
0.05 0.05
s P LR LRα χ= ≥              (4) 

 
where LR represents the likelihood ratio. 
Simulated α -levels are then compared to the 
chi-square percentiles at significance levels of 
0.75, 0.50, 0.25, 0.10, and 0.05. Q-Q plots are 
also presented to quantify agreement with the 
appropriate chi-square distribution. 
 
Methods for Estimating Model Degrees of 
Freedom 

After verifying the expected 
correspondence to a chi-square distribution for a 
given set of conditions, a new method was 
utilized to estimate the degrees of freedom for 
other sets of conditions. Since these methods 
vary substantially for binary versus continuous 
predictors, the corresponding methods are first 
presented separately, after their respective 
simulation results, and then merged into a single 
approach. The actual methodology is presented 
within the results section since these methods 
are intuitively motivated by the simulation 
results, and are thus easier to understand within 
that context. 
 

Results 
Simulation Results for Binary Input Variables 

Results presented in Table 1 were 
generated using independently distributed binary 
inputs. All neural network models were fit using 
a weight decay of 0.01; for each result pertaining 
to binary inputs, the maximum number of terms, 
including all main effects and interactions, for k 
inputs equals 2k – 1. The number of model 
parameters for a model with h hidden units 
equals h(k + 1) + (h + 1). 
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Table 1: Likelihood Ratio Statistic for All Binary Inputs 

Inputs 
(Max # Terms) 

Hidden 
Units 

#Parameters 
Likelihood Ratio Simulated α-levels 

Mean Variance 0.75 0.50 0.25 0.10 0.05 

2 
(3) 

2 9 2.86 5.81 0.75 0.52 0.26 0.06 0.03 

5 21 3.04 5.73 0.74 0.50 0.26 0.09 0.04 

10 41 3.15 5.98 0.76 0.51 0.25 0.10 0.04 

3 
(7) 

2 11 7.04 15.90 0.75 0.49 0.22 0.09 0.04 

5 26 6.93 12.37 0.74 0.51 0.25 0.11 0.07 

10 51 7.24 13.97 0.75 0.50 0.26 0.10 0.06 

4 
(15) 

2 13 11.94 22.05 0.74 0.50 0.25 0.11 0.08 

5 31 14.87 28.99 0.76 0.50 0.26 0.09 0.06 

10 61 14.96 31.33 0.76 0.50 0.23 0.08 0.04 

5 
(31) 

2 15 18.36 31.03 0.75 0.50 0.26 0.13 0.08 

5 36 30.25 62.22 0.75 0.48 0.25 0.10 0.05 

10 71 31.82 69.57 0.74 0.50 0.22 0.09 0.06 

6 
(63) 

2 17 25.07 44.05 0.71 0.49 0.28 0.14 0.07 

5 41 50.63 108.5 0.76 0.51 0.23 0.09 0.04 

10 81 63.70 147.5 0.76 0.50 0.24 0.08 0.03 

7 
(127) 

2 19 30.92 57.98 0.74 0.50 0.26 0.10 0.05 

5 46 69.93 138.4 0.75 0.54 0.24 0.10 0.05 

10 91 117.3 245.6 0.75 0.50 0.25 0.10 0.05 

8 
(255) 

2 21 38.75 77.43 0.74 0.51 0.25 0.08 0.04 

5 51 88.95 161.2 0.73 0.49 0.27 0.13 0.06 

10 101 168.3 318.0 0.74 0.50 0.27 0.11 0.05 

9 
(511) 

2 23 45.76 110.9 0.79 0.51 0.20 0.06 0.02 

5 56 107.7 202.9 0.75 0.54 0.25 0.10 0.05 

10 111 214.4 394.9 0.74 0.50 0.24 0.11 0.06 

10 
(1023) 

2 25 51.76 117.9 0.77 0.51 0.22 0.07 0.03 

5 61 126.1 248.5 0.74 0.51 0.24 0.10 0.05 

10 121 257.5 546.5 0.75 0.48 0.25 0.10 0.05 

Mean Simulated α -levels 0.75 0.50 0.25 0.10 0.05 
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Table 1 shows the simulated distribution 
of the likelihood ratio test for independence is 
closely followed by a chi-square distribution. In 
a large percentage of the cases, all of the 
simulated α-levels were within 1-3% of the 
expected percentiles. No systematic differences 
were evident in the results. Figures 1a and 1b 
illustrate two examples where: (1) the simulated 
distribution varied a few percent from the 
expected percentiles (2 inputs and 2 hidden  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

units), and (2) the simulated distribution fell 
extremely close to the corresponding chi-square 
distribution (7 inputs and 10 hidden units). Both 
figures show noticeable variability at the upper 
end of the distribution; however, it should be 
noted that these few points are primarily within 
only the top 1% of the distribution, and thus 
have little effect on most of the resulting 
significance levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1a: Example Q-Q plot (with 2 Binary Inputs, 2 HUs and 0.01 WD) 
Illustrating Greater Variability from the Expected Chi-square Distribution 
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Figure 1b: Example Q-Q plot (with 7 Binary Inputs, 10 HUs and 0.01 WD) 
Illustrating a Close Correspondence with the Expected Chi-square Distribution 
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Table 2 shows additional simulation results for 
other cases (with at most 10 inputs) where the 
number of model parameters (p) is less than the 
maximum number of terms (m). Results again 
showed that the simulated α-levels were very 
close the expected percentiles. Q-Q plots for 
these cases (not shown here) resulted in similar 
findings as displayed in Figures 1a and 1b. No 
additional simulations are shown here for two, 
three or four inputs because these cases all 
corresponded to models where p > m, and will 
therefore produce a known degrees of freedom 
(3, 7, and 15 for 2, 3 and 4 inputs, respectively). 
Simulations were conducted, but not shown 
here, to verify that such results would hold for 4 
hidden units (since p was only slightly greater 
than m in the case of 3 hidden units); results 
verified the expected finding (of 15 degrees of 
freedom). Other combinations leading to a 
known degrees of freedom (with p > m) were 
also excluded from the table (including 5 inputs 
with 6-9 hidden units and 6 inputs with 8-9 
hidden units). 
 
Estimating Degrees of Freedom for Binary Input 
Variables 
The above results indicate that the model 
degrees of freedom for strictly binary inputs 
appear to intuitively depend on two factors: 

(1) the maximum number of possible main 
effects and interactions = (2k – 1), and 

(2)  the number of model parameters = h(k 
+ 1) + (h + 1). 

In cases where the number of model parameters 
is sufficient to fit all main effects and 
interactions, the degrees of freedom is equal to 
that maximum number of terms. For example, 
regardless of the number of hidden units, the 
degrees of freedom (df) are approximately 3.0 
for two binary inputs and approximately 7.0 for 
three binary inputs. For four binary inputs, two 
hidden units (and subsequently 13 parameters) 
are insufficient to fit all 15 terms and result in 
approximately 12 df. 

In such cases, where the number of 
model parameters is less than the maximum 
number of terms, the df is generally in between 
(or at least very close to) the number of model 
parameters (p) and the maximum number of 
terms (m). Exactly where the df falls depends on 
how close the number of model parameters is to 

the maximum number of terms. In general, the 
ratio of degrees of freedom by number of model 
parameters may be expressed as a function of m 
– p. To produce a linear relationship, it is more 
convenient (with binary inputs) to express df/p 
as a function of log2(m-p). The simulated 
degrees of freedom from Table 1 was used to 
derive a relationship, and Figure 2 shows a plot 
of the simulated data from Table 1 (with 2, 5 or 
10 hidden units) overlaid with the linear 
regression line 
 

( )20.6643 0.1429df log m pp = + × − .  (5) 

 
Figure 2 shows a general trend between the 
difference in m – p and the degrees of freedom 
(divided by the number of parameters), but also 
illustrates some variability between the 
simulated values and the subsequent estimates. 
To evaluate the significance of these 
discrepancies, the estimated df were compared to 
the simulated distribution of the likelihood ratio 
statistic (for model independence). Results are 
shown in Table 3. 

Results indicate that the estimated df 
usually approximates the simulated value within 
an absolute error of a few percent. For example, 
most of the conditions (11 of 16) result in a 5% 
significance level between 0.03 and 0.07; the 
largest discrepancy is an absolute difference of 
0.04 from the true 5% level. The 10% 
significance level corresponds to somewhat 
larger errors, with the estimated p-values as high 
as 0.17 and as low as 0.02. The 75th, 50th and 
25th percentiles showed similar findings with 
occasionally substantial discrepancies. 

The above rule for estimating the df, 
based on the previously fit linear regression of 
df/p as a function of log2(m – p), was also 
evaluated with respect to its adequacy to predict 
model complexity for new cases (with 3, 4, or 6-
9 hidden units). Figure 3 shows a plot of these 
additional simulated data overlaid with the linear 
same regression line df/p = 0.6643 + 
0.1429·log2(m – p). 

Figure 3 shows the trend between the 
difference in m – p and the df (divided by the 
number of parameters), but again illustrates 
variability between the simulated values and the  
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Table 2: Additional Simulated Likelihood Ratio Statistics with All Binary Inputs 

Inputs 
(Max # Terms) 

Hidden 
Units 

#Parameters 
Likelihood Ratio Simulated α-levels 

Mean Variance 0.75 0.50 0.25 0.10 0.05 

5 
(31) 

3 22 23.84 47.66 0.73 0.50 0.26 0.10 0.06 

4 29 28.69 54.80 0.74 0.50 0.26 0.12 0.06 

6 
(63) 

3 25 34.57 67.28 0.74 0.49 0.25 0.10 0.06 

4 33 42.81 96.51 0.77 0.51 0.24 0.08 0.03 

6 49 55.86 109.8 0.74 0.50 0.26 0.09 0.05 

7 57 59.60 110.0 0.77 0.49 0.26 0.11 0.05 

7 
(127) 

3 28 45.93 92.58 0.75 0.50 0.23 0.10 0.05 

4 37 58.06 111.6 0.75 0.50 0.24 0.10 0.05 

6 55 82.27 148.3 0.75 0.49 0.26 0.11 0.06 

7 64 92.84 175.6 0.74 0.51 0.27 0.10 0.05 

8 73 102.5 189.5 0.75 0.51 0.25 0.09 0.06 

9 82 111.7 224.0 0.76 0.51 0.24 0.10 0.06 

8 
(255) 

3 31 54.90 101.0 0.75 0.50 0.26 0.11 0.07 

4 41 73.02 148.2 0.75 0.52 0.23 0.08 0.04 

6 61 107.8 223.0 0.75 0.49 0.24 0.09 0.05 

7 71 124.8 258.3 0.76 0.50 0.25 0.10 0.03 

8 81 139.7 238.2 0.71 0.52 0.28 0.12 0.06 

9 91 155.0 268.0 0.73 0.52 0.24 0.13 0.08 

9 
(511) 

3 34 65.13 135.0 0.77 0.50 0.24 0.10 0.05 

4 45 87.02 179.6 0.76 0.51 0.25 0.09 0.04 

6 67 131.4 228.8 0.73 0.51 0.27 0.10 0.06 

7 78 152.3 286.6 0.74 0.50 0.25 0.10 0.06 

8 89 171.8 338.5 0.74 0.51 0.26 0.11 0.05 

9 100 194.7 303.6 0.72 0.50 0.27 0.14 0.08 

10 
(1023) 

3 37 75.5 163.5 0.76 0.51 0.25 0.08 0.03 

4 49 100.9 190.8 0.73 0.52 0.26 0.10 0.05 

6 73 152.7 297.1 0.77 0.50 0.24 0.10 0.05 

7 85 178.5 341.9 0.74 0.51 0.24 0.09 0.06 

8 97 204.8 430.0 0.77 0.51 0.24 0.08 0.04 

9 109 230.0 425.7 0.74 0.52 0.25 0.10 0.06 

Mean Simulated α -levels 0.75 0.51 0.25 0.10 0.05 
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Figure 2: Plot of the Degrees of Freedom for Binary Inputs (2, 5, and 10 Hidden Units) as a 
Function of the Difference between Maximum Number of Terms and Number of Parameters 
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Table 3: Comparison of Estimated to Simulated Degrees of Freedom with All Binary Inputs 

Max # of 
Terms 

(Inputs) 

# of 
Parameters 

Hidden 
Units 

Simulated 
df 

Estimated 
df 

Simulated α-levels using the Estimated df 

0.75 0.50 0.25 0.10 0.05 

15 
(4) 

13 2 11.94 10.49 0.66 0.41 0.19 0.07 0.05 

31 
(5) 

15 2 18.36 18.54 0.74 0.49 0.25 0.12 0.07 

63 
(6) 

17 2 25.07 24.71 0.73 0.51 0.30 0.15 0.08 

41 5 50.63 53.36 0.67 0.40 0.16 0.05 0.02 

127 
(7) 

19 2 30.92 30.96 0.74 0.50 0.26 0.10 0.05 

46 5 69.93 72.23 0.69 0.46 0.18 0.07 0.03 

91 10 117.3 127.7 0.50 0.25 0.09 0.02 0.01 

255 
(8) 

21 2 38.75 37.57 0.78 0.56 0.30 0.11 0.05 

51 5 88.95 89.80 0.71 0.47 0.25 0.11 0.06 

101 10 168.3 172.0 0.67 0.42 0.21 0.07 0.03 

511 
(9) 

23 2 45.76 44.63 0.82 0.56 0.24 0.08 0.03 

56 5 107.7 107.9 0.75 0.53 0.24 0.10 0.05 

111 10 214.4 210.8 0.80 0.57 0.30 0.15 0.08 

1023 
(10) 

25 2 51.76 52.21 0.76 0.49 0.21 0.07 0.03 

61 5 126.1 126.9 0.72 0.49 0.23 0.09 0.05 

121 10 257.5 250.2 0.84 0.61 0.36 0.17 0.09 

Mean Estimated α -levels 0.72 0.57 0.24 0.10 0.05 
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subsequent estimates. Further, results do not 
show any systematic difference from the 
previous set of findings (as graphed in Figure 2). 
To evaluate the significance of these 
discrepancies, the estimated df were compared to 
the simulated distribution of the likelihood ratio 
statistic (for model independence). Results are 
shown in Table 4. 

Results again indicate that the estimated 
degrees of freedom usually approximated the 
simulated value within an absolute error of a few 
percent. For example, most of the conditions (20 
of 30) resulted in a 5% significance level 
between 0.03 and 0.07; with two exceptions, the 
largest discrepancy is an absolute difference of 
0.04 from the true 5% level. The 10% 
significance level, however, again corresponds 
to somewhat larger errors, with the estimated p-
values being as high as 0.34 and as low as 0.04; 
most results (19 of 30), however, were between 
0.07 and 0.13. The 75th, 50th and 25th percentiles 
showed similar findings with occasionally 
higher discrepancies. 

The above results identify some 
complications and discrepancies that arise when 
using this method to estimate the model df for 
strictly binary inputs. First, the subsequent 
simulations show only a fair degree of 
correspondence between the predicted and 
simulated df. The majority of conditions led to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
percentiles within an absolute difference of a 
few percent, but other conditions led to more 
substantial discrepancies. Secondly, the 
established rules under this method led to some 
logical inconsistencies in the predicted df. For 
example, with 5 inputs, the predicted df for 3 
hidden units (24.58) is actually larger than that 
predicted for 4 hidden units (23.41). This 
apparent contradiction arises from the fact that 
the df are essentially predicted by scaling the 
number of parameters by a function of the 
difference between the maximum number of 
terms and the number of model parameters. 
While this approach has some intuitive appeal - 
and generally leads to an increase in the degrees 
of freedom as the number of hidden units 
increases (for a given number of input variables) 
- no guarantee exists that this pattern will hold 
universally. 

Due to this, some corrections are 
therefore needed for predicting the model df in 
these scenarios. To do so, when a decrease is 
observed with an increase in hidden units, it is 
possible to simply take the average of the 
previous result with the next number of hidden 
units. For example, for the case of 5 inputs with 
4 hidden units, the previous result (24.58 for 3 
hidden units) would be averaged with the next 
result (31 for 5 hidden units) to obtain 27.79, 
which is much closer to the simulated result of  

Figure 3: Plot of the Degrees of Freedom for Binary Inputs (3, 4, and 6-9 Hidden Units) as a 
Function of the Difference between Maximum Number of Terms and Number of Parameters 
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Table 4: Comparison of Estimated to Simulated Degrees of Freedom with Binary Inputs 

Max #of 
Terms 

(Inputs) 

# of 
Parameters 

(Hidden 
Untis) 

Simulated 
df 

Estimated 
df 

Simulated α-levels using the Estimated df 

0.75 0.50 0.25 0.10 0.05 

31 
(5) 

22 3 23.84 24.58 0.69 0.46 0.22 0.08 0.05 

29 4 28.69 23.41 0.91 0.77 0.55 0.34 0.21 

63 
(6) 

25 3 34.57 35.36 0.71 0.45 0.22 0.08 0.05 

33 4 42.81 45.06 0.69 0.42 0.17 0.05 0.02 

49 6 55.86 59.21 0.63 0.38 0.17 0.05 0.03 

57 7 59.60 58.92 0.79 0.52 0.28 0.13 0.06 

127 
(7) 

28 3 45.93 45.13 0.78 0.53 0.26 0.11 0.06 

37 4 58.06 58.90 0.73 0.47 0.22 0.09 0.04 

55 6 82.27 85.03 0.68 0.41 0.20 0.07 0.04 

64 7 92.84 97.18 0.63 0.38 0.17 0.05 0.02 

73 8 102.5 108.5 0.61 0.35 0.14 0.04 0.02 

82 9 111.7 118.8 0.59 0.33 0.12 0.04 0.02 

255 
(8) 

31 3 54.90 55.18 0.74 0.49 0.25 0.11 0.06 

41 4 73.02 72.59 0.76 0.54 0.24 0.09 0.05 

61 6 107.8 106.77 0.78 0.52 0.26 0.11 0.06 

71 7 124.8 123.50 0.78 0.53 0.28 0.11 0.04 

81 8 139.7 139.96 0.70 0.51 0.27 0.12 0.06 

91 9 155.0 156.13 0.71 0.50 0.23 0.11 0.07 

511 
(9) 

34 3 65.13 65.82 0.75 0.48 0.22 0.09 0.04 

45 4 87.02 86.89 0.76 0.51 0.26 0.09 0.04 

67 6 131.4 128.7 0.79 0.58 0.33 0.14 0.09 

78 7 152.3 149.4 0.79 0.57 0.31 0.14 0.08 

89 8 171.8 170.0 0.77 0.55 0.29 0.13 0.06 

100 9 194.7 190.5 0.78 0.58 0.34 0.20 0.12 

1023 
(10) 

37 3 75.5 77.16 0.72 0.46 0.21 0.06 0.02 

49 4 100.9 102.1 0.71 0.49 0.23 0.09 0.04 

73 6 152.7 151.7 0.78 0.53 0.26 0.11 0.06 

85 7 178.5 176.4 0.77 0.55 0.28 0.11 0.07 

97 8 204.8 201.0 0.82 0.59 0.31 0.12 0.07 

109 9 230.0 225.6 0.80 0.60 0.32 0.14 0.08 

Mean Estimated α -levels 0.74 0.50 0.25 0.11 0.06 
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28.69 (and provides better correspondence to the 
simulated distribution of likelihood ratios). The 
other example arises with 6 inputs and 7 hidden 
units, where the estimated value of 58.92 would 
be replaced by 61.11 (which is slightly further 
away from the simulated result of 59.6). 
 
Simulation Results for Continuous Input 
Variables 

Results shown in Table 5 were 
generated using independently distributed 
continuous inputs from a standard normal 
distribution. All neural network models were fit 
using a weight decay of 0.01. Table 5 shows that 
the simulated distribution of the likelihood ratio 
test for independence again closely followed a 
chi-square distribution. In a large percentage of 
the cases, all of the simulated α-levels were 
within a few percent of the expected percentiles. 
No systematic differences were evident in the 
results. Figures 4a and 4b show two examples 
where: (1) the simulated distribution varied a 
few percent from the expected percentiles (2 
inputs and 2 hidden units), and (2) the simulated 
distribution fell extremely close to the 
corresponding chi-square distribution (2 inputs 
and 10 hidden units). Both figures show 
noticeable variability in at least one extreme end 
of the distribution; however, these few points 
have little effect on the resulting significance 
levels that would be of practical interest. 

Table 6 shows additional results for 
other cases with 3 or 8 hidden units and up to 10 
inputs. Results again showed simulated α-levels 
very close to the expected percentiles. Q-Q plots 
(not shown here) showed similar findings as in 
Figures 4a and 4b. 
 
Estimating Degrees of Freedom for Continuous 
Input Variables 

As opposed to the case of binary inputs, 
the degrees of freedom (df) for continuous input 
variables do not have any specific limiting 
value. Therefore, it was assumed that the df 
would be a continuous (and probably linear) 
function of the number of hidden units. Further, 
it was assumed that the result would increase by 
some constant amount with an increase in the 
number of input variables. Using the results in 
Table 5, the relationship 

( )[ ]523 +−××= khdf  is obtained, which 
appears to hold well across those results (with 2, 
5, and 10 hidden units). Since the specific values 
from Table 5 were not used to derive this 
relationship (other than observing the general 
trend), subsequent results combine simulations 
from Tables 5 and 6 (i.e., 2-10 inputs and 2, 3, 5, 
8 and 10 hidden units). Figure 5 shows the 
relationship between the simulated and 
estimated df from the results in Tables 5 and 6. 
The plot illustrates a close correspondence 
between the simulated and estimated results, 
especially for smaller degrees of freedom. 

Results in Table 7 show somewhat 
greater variability in the df and subsequent 
significance levels. Only the 5% significance 
level showed no systematic error, with most of 
the simulations giving a result (for 5% 
significance) within 2% of the correct level (e.g., 
between 3% and 7%). The variability in 
significance levels can be attributed to either the 
difference between the simulated and estimated 
df and/or the variability from a chi-square 
distribution. In most cases, the estimated df was 
at least slightly higher than the simulated result. 
 
Simulation Results for both Binary and 
Continuous Input Variables 

Table 8 shows results for both binary 
and continuous input variables. For each of these 
simulations, the number of hidden units was 
kept constant at 2, the number of continuous 
inputs was specified as 2, 5, or 10, and the 
number of binary inputs was varied between 2 
and 10. The degrees of freedom (df) in 
parentheses in the first two columns of the table 
are the estimated values for model complexity 
(as described in the previous sections of this 
report). The additional df (column 5) gives the 
difference between the simulated df (when 
combining a given number of continuous and 
binary inputs) and the sum of estimated df 
(totaled from columns 1, 2 and 3). 

The results in Table 8 illustrate several 
key issues. First, the simulation results show 
substantially more variability than predicted by 
the chi-square distribution, which is most likely 
a consequence of sub-optimal results from the 
minimization (of the deviance) routine in S-Plus. 
Secondly, a definite trend exists between the  
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number of continuous and binary variables and 
the additional df gained (or lost) when 
combining a given number of (continuous and 
binary) input variables. 

At this point, the observed trends could 
be used to derive estimates of model complexity 
for the cases in Table 8 and for other cases with 
larger numbers of hidden units and other 
combinations of continuous and binary inputs 
(as done previously when separately considering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

continuous or binary inputs). However, the lack 
of correspondence with the chi-square 
distribution, and the subsequent need for 
improved model fitting (e.g., more global 
optimization procedures) would invalidate any 
subsequent findings. Therefore, modifications of 
the S-Plus procedures need to be pursued for 
these cases before any specific rules can be 
effectively formulated for the case of both 
continuous and binary inputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Likelihood Ratio Statistic for Model Independence with Continuous Inputs 

Inputs 
Hidden 
Units 

# 
Parameters 

Likelihood Ratio Simulated α-levels 

Mean Variance 0.75 0.50 0.25 0.10 0.05 

2 
2 9 10.8 25.0 0.74 0.51 0.25 0.08 0.03 
5 21 26.2 60.5 0.75 0.51 0.23 0.08 0.04 

10 41 49.8 99.4 0.75 0.50 0.25 0.09 0.05 

3 
2 11 16.6 33.6 0.74 0.51 0.26 0.10 0.04 
5 26 41.0 71.2 0.74 0.52 0.26 0.11 0.06 

10 51 82.5 171.2 0.76 0.50 0.24 0.10 0.05 

4 
2 13 22.2 40.0 0.77 0.53 0.25 0.09 0.04 
5 31 55.4 111.0 0.75 0.51 0.27 0.10 0.04 

10 61 115.3 216.9 0.75 0.49 0.26 0.11 0.06 

5 
2 15 27.7 57.9 0.77 0.51 0.25 0.07 0.03 
5 36 69.3 131.4 0.75 0.51 0.26 0.09 0.04 

10 71 144.8 293.4 0.75 0.50 0.24 0.10 0.05 

6 
2 17 33.4 65.4 0.76 0.54 0.27 0.08 0.04 
5 41 83.0 164.3 0.74 0.50 0.25 0.10 0.05 

10 81 176.7 341.1 0.74 0.53 0.24 0.09 0.05 

7 
2 19 38.7 100.1 0.77 0.51 0.21 0.07 0.02 
5 46 98.3 202.0 0.75 0.50 0.27 0.08 0.04 

10 91 205.2 375.8 0.75 0.51 0.25 0.11 0.05 

8 
2 21 44.8 101.1 0.78 0.52 0.23 0.08 0.04 
5 51 112.5 220.8 0.74 0.49 0.24 0.11 0.06 

10 101 239.0 476.9 0.75 0.51 0.25 0.10 0.04 

9 
2 23 49.9 142.2 0.79 0.53 0.19 0.05 0.02 
5 56 127.4 239.9 0.74 0.48 0.26 0.11 0.06 

10 111 269.0 487.6 0.73 0.50 0.27 0.11 0.05 

10 
2 25 54.6 166.1 0.80 0.49 0.19 0.05 0.03 
5 61 140.8 280.2 0.76 0.49 0.24 0.12 0.06 

10 121 299.5 546.4 0.75 0.51 0.26 0.10 0.04 

Mean Simulated α -levels 0.75 0.51 0.25 0.09 0.04 
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Table 6: Additional Simulated Likelihood Ratio Statistics with Continuous Inputs 

Inputs 
Hidden 
Units 

# 
Parameters 

Likelihood Ratio Simulated α-levels 

Mean Variance 0.75 0.50 0.25 0.10 0.05 

2 
3 13 15.9 35.4 0.76 0.51 0.23 0.08 0.04 

8 33 40.3 82.8 0.76 0.51 0.23 0.10 0.04 

3 
3 16 24.4 42.0 0.74 0.51 0.29 0.10 0.05 

8 41 65.9 135.7 0.73 0.49 0.25 0.11 0.06 

4 
3 19 32.9 60.6 0.73 0.53 0.27 0.10 0.05 

8 49 90.5 171.1 0.75 0.49 0.25 0.10 0.06 

5 
3 22 41.2 85.7 0.76 0.53 0.26 0.07 0.04 

8 57 115.2 200.1 0.73 0.51 0.26 0.11 0.06 

6 
3 25 48.9 84.4 0.73 0.51 0.29 0.13 0.05 

8 65 139.3 231.3 0.72 0.49 0.29 0.13 0.06 

7 
3 28 57.0 100.7 0.75 0.52 0.24 0.12 0.06 

8 73 160.9 299.5 0.73 0.49 0.27 0.11 0.06 

8 
3 31 64.9 140.9 0.75 0.50 0.25 0.10 0.04 

8 81 187.3 376.1 0.75 0.50 0.24 0.10 0.05 

9 
3 34 74.3 158.7 0.78 0.47 0.24 0.09 0.05 

8 89 211.4 421.9 0.75 0.50 0.25 0.11 0.05 

10 
3 37 81.4 171.6 0.76 0.50 0.22 0.09 0.06 

8 97 235.5 392.1 0.74 0.50 0.27 0.13 0.06 

Mean Simulated α -levels 0.75 0.50 0.25 0.10 0.05 
 

Figure 5: Plot of the Estimated by Simulated Degrees Of Freedom for 
Continuous Inputs and 2, 5 and 10 Hidden Units 
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Table 7: Estimated and Simulated Degrees of Freedom with Continuous Inputs 

Inputs 
Hidden 
Units 

# Parameters 
Simulated 

df 
Estimated 

df 
Simulated α-levels using the Estimated df 

0.75 0.50 0.25 0.10 0.05 

2 

2 9 10.8 10 0.79 0.58 0.32 0.11 0.05 
3 13 15.9 15 0.80 0.57 0.28 0.11 0.05 
5 21 26.2 25 0.80 0.58 0.28 0.11 0.06 
8 33 40.3 40 0.77 0.53 0.24 0.11 0.04 

10 41 49.8 50 0.75 0.49 0.25 0.08 0.05 

3 

2 11 16.6 16 0.77 0.55 0.30 0.13 0.06 
3 16 24.4 24 0.76 0.54 0.31 0.12 0.06 
5 26 41.0 40 0.77 0.57 0.30 0.13 0.07 
8 41 65.9 64 0.78 0.55 0.31 0.15 0.08 

10 51 82.5 80 0.81 0.58 0.30 0.14 0.07 

4 

2 13 22.2 22 0.77 0.54 0.26 0.10 0.04 
3 19 32.9 33 0.73 0.53 0.27 0.10 0.05 
5 31 55.4 55 0.76 0.52 0.28 0.10 0.05 
8 49 90.5 88 0.81 0.56 0.31 0.13 0.09 

10 61 115.3 110 0.85 0.62 0.39 0.20 0.11 

5 

2 15 27.7 28 0.76 0.49 0.24 0.07 0.03 
3 22 41.2 42 0.73 0.49 0.23 0.07 0.03 
5 36 69.3 70 0.73 0.49 0.25 0.09 0.04 
8 57 115.2 112 0.79 0.59 0.34 0.16 0.09 

10 71 144.8 140 0.83 0.62 0.34 0.16 0.09 

6 

2 17 33.4 34 0.73 0.50 0.24 0.07 0.03 
3 25 48.9 51 0.65 0.43 0.22 0.09 0.03 
5 41 83.0 85 0.68 0.44 0.20 0.07 0.03 
8 65 139.3 136 0.79 0.60 0.36 0.18 0.08 

10 81 176.7 170 0.84 0.67 0.36 0.17 0.10 

7 

2 19 38.7 40 0.72 0.45 0.17 0.05 0.01 
3 28 57.0 60 0.65 0.40 0.16 0.07 0.04 
5 46 98.3 100 0.71 0.46 0.23 0.06 0.03 
8 73 160.9 160 0.75 0.50 0.29 0.13 0.06 

10 91 205.2 200 0.83 0.61 0.34 0.17 0.08 

8 

2 21 44.8 46 0.74 0.47 0.19 0.06 0.03 
3 31 64.9 69 0.63 0.36 0.15 0.05 0.01 
5 51 112.5 115 0.69 0.43 0.19 0.08 0.04 
8 81 187.3 184 0.80 0.57 0.30 0.14 0.07 

10 101 239.0 230 0.86 0.67 0.39 0.19 0.09 

9 

2 23 49.9 52 0.73 0.45 0.14 0.03 0.01 
3 34 74.3 78 0.68 0.36 0.16 0.05 0.02 
5 56 127.4 130 0.69 0.41 0.21 0.09 0.04 
8 89 211.4 208 0.80 0.57 0.31 0.14 0.07 

10 111 269.0 260 0.84 0.65 0.41 0.20 0.11 

10 

2 25 54.6 58 0.70 0.37 0.11 0.03 0.01 
3 37 81.4 87 0.61 0.34 0.12 0.04 0.02 
5 61 140.8 145 0.68 0.40 0.17 0.07 0.04 
8 97 235.5 232 0.79 0.57 0.32 0.17 0.09 

10 121 299.5 290 0.86 0.66 0.40 0.19 0.10 

Mean Simulated α -levels 0.76 0.52 0.27 0.11 0.05 
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Categorical Input Variables 

Additional simulations were conducted 
for categorical variables. In theory, a categorical 
variable with 3 levels should produce fewer 
degrees of freedom than 2 binary inputs, since 
the 3 levels would be coded as 2 binary inputs, 
but would not have an interaction between the 2 
levels. Simulations (not shown here) provided 
evidence of this type of relationship, but 
simulation results differed substantially from the 
expected chi-square distribution. Therefore, as in  
the  cases  of  both  binary  and  continuous 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inputs, further work on these types of data are 
being delayed until a better optimization routine 
can be implemented with S-Plus or with another 
programming language. 
 

Conclusions 
One issue that was not addressed was the 
correlation of the input variables. All 
simulations were run with independently 
generated data. Comparing the current findings 
to previous analyses with some overlap 
(Landsittel, et al., 2003) indicates that the 

Table 8: Likelihood Ratios with Continuous and Binary Inputs and 2 Hidden Units 
Continuous 

Inputs 
(df) 

Binary 
Inputs 

df 
Mean 

Likelihood 
Ratio 

Additional 
df 

Simulated α-levels 

0.75 0.50 0.25 0.10 0.05 

2 
(10) 

2 3.0 19.7 6.7 0.73 0.52 0.27 0.10 0.05 
3 7.0 24.8 7.8 0.76 0.51 0.26 0.08 0.04 
4 10.5 31.0 10.5 0.75 0.54 0.24 0.08 0.03 
5 18.5 36.7 8.2 0.78 0.53 0.25 0.06 0.03 
6 24.7 42.4 7.7 0.78 0.54 0.22 0.06 0.02 
7 31.0 47.7 6.7 0.77 0.51 0.22 0.06 0.02 
8 37.6 54.0 6.8 0.78 0.49 0.22 0.07 0.02 
9 44.6 58.4 3.8 0.81 0.49 0.19 0.06 0.02 

10 52.2 64.1 1.9 0.80 0.47 0.18 0.04 0.02 

5 
(28) 

2 3.0 38.0 7.0 0.76 0.51 0.23 0.06 0.02 
3 7.0 43.6 8.6 0.79 0.53 0.20 0.05 0.02 
4 10.5 47.9 9.4 0.80 0.47 0.20 0.05 0.02 
5 18.5 52.9 6.4 0.80 0.50 0.18 0.06 0.02 
6 24.7 59.5 6.8 0.82 0.48 0.17 0.06 0.02 
7 31.0 64.3 5.3 0.84 0.44 0.18 0.04 0.02 
8 37.6 69.5 3.9 0.79 0.47 0.19 0.05 0.01 
9 44.6 73.6 1.0 0.80 0.46 0.19 0.05 0.02 

10 52.2 79.1 -1.1 0.82 0.45 0.17 0.04 0.01 

10 
(58) 

2 3.0 64.4 3.4 0.81 0.46 0.18 0.05 0.02 
3 7.0 69.4 4.4 0.82 0.47 0.18 0.04 0.01 
4 10.5 72.2 3.7 0.80 0.50 0.18 0.05 0.02 
5 18.5 78.1 1.5 0.78 0.47 0.19 0.06 0.03 
6 24.7 83.0 0.3 0.79 0.46 0.16 0.06 0.02 
7 31.0 89.1 0.1 0.78 0.48 0.17 0.04 0.02 
8 37.6 94.7 -1.1 0.78 0.46 0.17 0.05 0.01 
9 44.6 98.6 -4.0 0.79 0.46 0.20 0.05 0.01 

10 52.2 103.3 -6.9 0.79 0.45 0.15 0.04 0.01 

Mean Simulated α -levels 0.79 0.49 0.20 0.06 0.02 
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degrees of freedom (df) may be somewhat lower 
with moderately correlated data, which is 
somewhat intuitive since correlated variables, to 
some degree, add less information than 
independently distributed variables. Rather than 
consider this further complication, it was 
decided that all simulations should use 
independent data as a starting point, and the 
effects of correlation should be addressed 
separately in a future manuscript. 

Another limitation encountered here was 
the failure of the S-Plus routine to achieve 
acceptably optimal results in minimizing the 
deviance. Because the simulations with only 
binary, or only continuous inputs led to close 
correspondence with the chi-square distribution 
(which allows the use of the mean as the df), it 
would be expected that this would hold for 
models with both binary and continuous inputs. 
The failure to achieve this result is most likely a 
function of the (only locally optimal) routines. 
Future work will address this point through 
investigating other optimization routines (e.g., 
genetic algorithms), and incorporating those 
routines into the current approaches and 
methodology. 

To the best of our knowledge, these 
studies are the first to use df under the null as a 
measure of model complexity. Unlike 
generalized linear models or other standard 
regression methods, the model complexity may 
vary substantially for different data sets. In 
terms of the general applicability of this 
approach, the complexity under the null may 
provide a more appropriate penalty for 
subsequent use in model selection in many 
scenarios, as higher complexity may be desirable 
if the true underlying association is highly non-
linear. In contrast to a measure such as the 
generalized df, where the complexity tends to 
increase substantially when fit to data with some 
observed association, the complexity under the 
null only penalizing the model for incorrectly 
fitting non-linearity when none exists. Using an 
AIC-type statistic with generalized or effective 
df, for example, would highly penalize the 
neural network model for accurately fitting a 
highly non-linear association, and likely make it 
very difficult to select an adequately complex 
model. 

Despite these limitations, the results 
contribute significantly to our understanding of 
neural network model complexity by providing 
explicit equations to quantify complexity under 
a range of scenarios. Once improved methods 
are implemented to better optimize more 
complex models (where there was significant 
variability from the expected chi-square 
distribution), the derived equations for df can be 
tested across a much wider range of models. 
Assuming results hold for other scenarios (to be 
tested after achieving more global optimization), 
the estimated df can be implemented in practice 
for model selection via AIC or BIC statistics. 
Such approaches would serve as a favorable 
alternative to any of the ad-hoc approaches 
currently being utilized in practice. 
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Increased interest in computer automation of the general-to-specific methodology has resulted from 
research by Hoover and Perez (1999) and Krolzig and Hendry (2001). This article presents simulation 
results for a multiple search path algorithm that has better properties than those generated by a single 
search path. The most noticeable improvements occur when the data contain unit roots. 
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Introduction 
The general-to-specific methodology introduced 
by Davidson, et al. (1978) and discussed by 
Gilbert (1986) is now a well established part of 
the technical toolkit of applied econometricians. 
The idea of this approach is to begin with a 
deliberately over-parameterized model, examine 
its properties (particularly those of the residuals) 
to ensure that it is data congruent and then to 
progressively simplify the model to obtain a 
parsimonious specification. Arguably, the main 
advantage of this approach is that, provided the 
original over-parameterized model is data 
congruent, tests of restrictions are always 
conducted against a statistically well specified 
alternative model. This contrasts with the 
alternative specific-to-general approach in which 
the alternative model is frequently badly 
specified, thereby invalidating the testing 
procedure. 

A typical situation facing a modeler can 
be illustrated as follows. The modeler begins 
with a general model of the form which relates 
two variables of interest y and x which follow a 
dynamic relationship disturbed by a random 
error u: 
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y x y uβ β β+ − + −
= =

= + + +      (1) 

 
Economic theory suggests that an equilibrium 
relationship exists between the variables y and x. 
However, theory typically indicates little about 
the short-run dynamic relationship between the 
variables. Therefore, beginning with (1)1, 
exclusion restrictions for the right-hand side 
variables are tested and these are progressively 
eliminated until either the null 0 : 0iH β =  is 
rejected or the model begins to show signs of 
misspecification in the form of serial correlation 
in the residuals, heteroscedasticity, non-
normality etc. When a parsimonious 
specification is found then the model is often re-
written in a more convenient form such as the 
error-correction representation. 

One of the problems which arises with 
the general-to-specific methodology is the 
search path involved in moving from the general 
model (1) to a parsimonious specification is not 
unique. Typically, the general model contains a 
large number of highly co-linear variables. 
Exclusion of large numbers of variables at an 
early stage is a dangerous strategy since 
variables that may be insignificant in the most 
general model may become significant as other 
co-linear variables are excluded. Most advocates 
of this methodology therefore recommend 
proceeding gradually, eliminating a few 
variables at each stage of the specification 
search, until the final specification is obtained. 
However, the number of possible search paths 
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may become large even in a relatively small 
model. Suppose, for example, that the true 
model requires a total of n restrictions on the 
most general model. It follows that there are !n  
separate search paths which involve the 
elimination of one variable at each stage and 
which will succeed in getting from the general 
model to the final, correct specification. If the 
elimination of several variables at once is 
allowed then the number of search paths 
increases still further. 

Another problem arising within the 
general-to-specific methodology is that there is 
always the chance of making a Type II error 
during the process of the specification search 
and a variable which should be present in the 
final specification is eliminated at some stage. 
The result of this is typically that other variables, 
which ideally would have been excluded in the 
final specification, are retained as proxies for the 
missing variable. The resulting final 
specification is therefore over-parameterized. It 
is difficult to identify cases such as this from 
real world data where the investigator does not 
have the luxury of knowledge of the data 
generation process. However, it is 
straightforward to demonstrate this phenomenon 
using Monte Carlo analysis of artificial data sets. 

In the early years of general-to-specific 
analysis it was argued that the only solution to 
the problems discussed above was to rely on the 
skill and knowledge of the investigator. For 
example, Gilbert (1986) argued the following: 
 

How should the econometrician set 
about discovering congruent 
simplifications of the general 
representation of the DGP …. Scientific 
discovery is necessarily an innovative 
and imaginative process, and cannot be 
automated. (p.295) 

 
However, more recent research by Hoover and 
Perez (1999), Hendry and Krolzig (2001) and 
Krolzig and Hendry (2001) has suggested that 
automatic computer search algorithms can be 
effective in detecting a well specified 
econometric model using the now established 
‘general-to-specific’ methodology. This has 
been facilitated by the introduction of the PC-
GETS computer package which will 

automatically conduct a specification search to 
obtain the best data congruent model based on a 
given data set. 

The purpose of this paper is to 
investigate the properties of a simple automatic 
search algorithm in uncovering a correctly 
specified parsimonious model from an initially 
overparameterized model. The algorithm works 
by estimating multiple search paths and 
choosing the final specification which minimizes 
the Schwartz criterion. This is compared with a 
naïve search algorithm in which the least 
significant variable in the regression is 
successively eliminated until all remaining 
variables are significant at a pre-determined 
level. 
 

Methodology 
The main problem encountered in conducting 
multiple search paths is the number of possible 
search paths that might be legitimately 
investigated. For example, consider a model in 
which the final specification involves twelve 
exclusion restrictions relative to the original 
model (not an unusual situation when working 
with quarterly data). In this case there are 
12! 479,001,600=  possible search paths 
involving the progressive elimination of one 
variable at each stage. Therefore, even with the 
power of modern computing, consideration of 
every possible search path is simply not an 
option. However, the situation is not as 
impossible as it may first appear. Many search 
paths will eventually converge on the same final 
specification and the problem is simply to ensure 
that enough are tried so as to maximize the 
chance of obtaining the correct specification. 
The pseudo-code below sets out the algorithm 
used in this research to achieve this. 
 

FOR j = 1 to R, where R is a predetermined 
number of iterations. 

REPEAT UNTIL ˆ
i

ct tβ >  where ct  is a 

predetermined critical value for all 
1,..,i N=  where N is the number of 

variables included in the equation. 
 

Estimate equation. 
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FOR each variable in the model 

examine 
î

tβ . IF 
î

ct tβ <  AND 

0.5γ >  where γ  is a random drawing 
from a uniform distribution with the 
interval [ ]0,1  THEN eliminate 

associated variable and re-estimate 
equation. ELSE IF 0.5γ <  THEN 
retain variable. 

IF ˆ
i

ct tβ >  for all i then STOP and 

record the variables included in the 
equation as well as the value of the 
Schwartz criterion. Otherwise go back 
to previous step. 

FOR j = 1 to R, compare the value of the 
Schwartz criterion for each final specification 
and choose the specification with the lowest 
value 

 
The data generation process takes the 

form of the familiar partial adjustment model. 
This formulation is consistent with a cost 
minimization process in which agents minimize 
a quadratic cost function which includes costs of 
adjustment as well as costs of being away from 
equilibrium. The equation used to generate the 
data takes the form: 
 

10.5 0.25

:1,...,
t t t ty x y u

t T
−= + +

                (2) 

 
where : 1,...,tu t T=  are iid standard normal 
random variables. The x variable is generated in 
two alternative ways. In the first : 1,...,tx t T=  
are also iid standard normal random variables 
with ( )cov , 0t tx u = . In the second, 1t t tx x ε−= +  

where : 1,...,t t Tε =  are iid standard normal 

variables with ( )cov , 0t tx ε = . Thus in case 1 the 

relationship is one between stationary variables 
while, in case 2, it is between ( )1I  variables. 

Using (2) to generate the data and (1) as 
the starting point for a specification search, the 
search algorithm discussed above is applied as 
well as the naïve search algorithm of simply 
eliminating the least significant variable at each 
stage of the search process. Ten thousand 
specification searches2 are carried out using 

seeded pseudo-random numbers generated by 
the EViews regression package and the results of 
each search are classified according to the 
classification set out by Hoover and Perez 
(1999) as shown below: 
 
A: Final model = True Model 
B: True Model ⊂  Final Model and ˆ ˆFinal Trueσ σ<  

C: True Model ⊂  Final Model and ˆ ˆFinal Trueσ σ>  

D: True Model ⊄  Final Model and ˆ ˆFinal Trueσ σ<  

E: True Model ⊄  Final Model and ˆ ˆFinal Trueσ σ>  
 
Thus the final specification is classified as to 
whether it matches the true model (case A), 
contains all the variables included in the true 
model and has a lower standard error (case B), 
contains all the variables included in the true 
model but has a higher standard error (case C), 
omits at least one variable from the true model 
but has a lower standard error (case D) or omits 
at least one variable from the true model and has 
a higher standard error (case E). 
 

Results 
Table 1 presents the results for the multiple 
search path algorithm when the data are 
stationary. In all cases 100R = , that is 100 
different specification searches were carried out 
and the equation with the lowest Schwartz 
criterion3 was chosen. Examination of Table 1 
indicates that both the sample size and the 
choice of critical value used in the specification 
search are important factors. If the sample size is 
small 100T =  then 5%

c ct t=  performs better than 
1%

c ct t=  value in terms of identifying the true 
model more often (case A) and avoiding the 
elimination of variables that should be present in 
the true model (case E). However, as the sample 
size increases, this situation is reversed and in 
large samples with 500T =  then 1%

c ct t=  

performs much better than 5%
c ct t= . Note that 

case C is never observed in any of the 
simulations carried out. 

Does the multiple search path algorithm 
offer any gains over a naïve specification 
search? Examination of the results in Table 2 
suggests that this is the case. In all cases the 
multiple search path algorithm identifies the true 
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model more often. Moreover, as the sample size 
gets large, the frequency with which the multiple 
search path algorithm identifies the true model 
appears to be converging towards 100% with 

1%
c ct t= . This is not the case for the naïve 

algorithm in which, with the same specification, 
the true model was identified in only 67.6% of 
the simulations. 

Next, the effects of working with non-
stationary data was considered. Here the x 
variable is generated as a random walk series 
with the implication that the y variable also 
contains a unit root. However, the specification 
of an equilibrium relationship between the 
variables ensures that they are co-integrated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This means that it is still reasonable to conduct a 
specification search in levels of the series even 
though individually each series contains a unit 
root. The results for the multiple search path 
algorithm are given in Table 3. 

The results from Table 3 are very 
similar to those for non-stationary data shown in 
Table 1. The actual percentages differ slightly 
but the general pattern remains the same. If the 
sample size is small then 5%

c ct t=  performs 

better than 1%
c ct t= . However, as the sample size 

gets larger, this situation is reversed with case A 
converging towards 100% (when 1%

c ct t= ) as the 
sample size becomes large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Multiple Search Paths General-To-Specific 
( 10.5 0.25t t t ty x y u−= + + , x and u are independently generated iid processes) 

Classification 

T=100 T=200 T=500 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

A 52.4 48.2 76.4 83.3 80.9 93.0 

B 15.2 4.0 17.3 5.7 19.1 6.9 

C 0.0 0.0 0.0 0.0 0.0 0.0 

D 14.7 10.8 2.8 2.5 0.0 0.0 

E 17.7 37.0 3.5 8.5 0.0 0.0 

 
 
 

Table 2: Single Search Path General-To-Specific 
( 10.5 0.25t t t ty x y u−= + + , x and u are independently generated iid processes) 

Classification 

T=100 T=200 T=500 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

A 36.5 34.2 49.4 60.3 51.4 67.6 

B 18.5 3.3 27.5 6.0 29.4 7.1 

C 0.0 0.0 0.0 0.0 0.0 0.0 

D 24.3 17.4 12.2 14.9 9.6 12.9 

E 20.7 45.1 10.9 18.8 9.6 12.4 
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Finally, the multiple search path 
algorithm is contrasted with the naïve algorithm 
for the case of non-stationary data. The results 
for the naïve algorithm are shown in Table 4. 
These indicate that the naïve algorithm performs 
extremely badly when applied to non-stationary 
data. Case A is achieved in at best one quarter of 
the simulations, even with a large sample 

500T =  and irrespective of the critical value 
employed. This suggests that the real value of a 
multiple search path algorithm may lie in its 
application to the modeling of non-stationary 
series. Since this is very often the case with 
econometric model building, it suggests that the 
approach may have considerable practical value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
In this article the use of a multiple search path 
algorithm for the general-to-specific approach to 
econometric analysis has been investigated. It 
has been shown that this algorithm has 
significant advantages over a naïve approach to 
specification searches. Moreover the relative 
advantage of this approach increases when 
dealing with non-stationary data. Since non-
stationary data is the norm rather than the 
exception in econometric model building, it is 
arguable that a multiple search path approach 
offers real advantages to the applied 
econometrician. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Multiple Search Paths General-To-Specific 
( 10.5 0.25t t t ty x y u−= + + , x is a random walk process and u is a stationary iid process) 

Classification 

T=100 T=200 T=500 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

A 54.4 49.8 81.2 85.2 88.9 94.7 

B 10.1 2.7 11.5 4.4 11.1 5.2 

C 0.0 0.0 0.0 0.0 0.0 0.0 

D 19.8 14.7 4.7 4.7 0.0 0.1 

E 15.8 32.9 2.6 5.7 0.0 0.0 

 
 

Table 4: Single Search Path General-To-Specific 
( 10.5 0.25t t t ty x y u−= + + , x is a random walk process and u is a stationary iid process) 

Classification 

T=100 T=200 T=500 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

5% 
Nominal 

Size 

1% 
Nominal 

Size 

A 17.2 16.4 20.9 27.8 14.8 21.5 

B 16.7 2.3 29.8 3.9 33.3 7.5 

C 0.0 0.0 0.0 0.0 0.0 0.0 

D 39.3 32.3 25.5 32.4 26.6 36.9 

E 26.8 49.0 23.8 35.9 25.3 34.1 
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Notes 
1The lag length in equation (1) is set at 4 for 
illustrative purposes only. This is often the case 
when dealing with quarterly data but alternative 
lag lengths are frequently employed for data 
with different frequencies. 
2The specification searches were carried out 
using an EViews program which is available 
from the author on request. 
3In fact, examination of the results indicates that 
many different specification search paths 
converge on the true model. The problem is not 
one of picking a single search path which gives 
the correct result but rather one of avoiding 
rogue search paths which give the wrong result. 
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Closed Form Confidence Intervals for Small Sample Matched Proportions 
 

James F. Reed III 
Christiana Care Hospital System, 

Newark, Delaware 
 

 
The behavior of the Wald-z, Wald-c, Quesenberry-Hurst, Wald-m and Agresti-Min methods was 
investigated for matched proportions confidence intervals. It was concluded that given the widespread use 
of the repeated-measure design, pretest-posttest design, matched-pairs design, and cross-over design, the 
textbook Wald-z method should be abandoned in favor of the Agresti-Min alternative. 
 
Key words: Matched proportions, Wald-z, Wald-c, Quesenberry-Hurst, Wald-m, Agresti-Min. 
 
 

Introduction 
Matched-pairs data are common in clinical trials. 
Study designs that use paired data include the 
repeated-measure design, pretest-posttest, the 
matched-pairs design, and the cross-over design. 
When the response variable is dichotomous and 
when two dichotomous measurements are 
available, the data may be summarized as shown 
in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
For binary responses, McNemar's test is the 
most commonly applied significance test for 
comparing the two response distributions. For 
interval estimation of the difference of 
proportions, textbooks present the Wald large 
sample interval (Wald-z). Like the one 
proportion (Figure 1) and the difference between  
 
 
 
James F. Reed III, Ph.D., is a Senior 
Biostatistician. Email him at: 
JaReed@ChristianaCare.org. 
 

 
two independent binomial confidence intervals 
(Figure 2), the Wald-z interval for matched-pair 
proportions behaves rather poorly (Figure 3a). 
Two problems are generally encountered. First, 
the coverage probability cannot be achieved 
exactly and secondly, in many instances the 
Wald-z method does not yield sensible intervals. 

The purpose of this study was to 
investigate the coverage probability of 
alternative methods for computing confidence 
intervals to the typical textbook Wald-z or 
Wald-c (continuity correction). Those 
alternatives include a simple add four method 
proposed by Agresti and Min (AM) (2005), a 
method by Quesenberry and Hurst (QH) (1964), 
and a modified Wald (Wald-m) suggested by 
May and Johnson (1998). 
 

Methodology 
Notation and Computational Formula 

Let y = (a, b, c, d)T represent the 
observed frequencies for a sample from a 
multinomial distribution with underlying 
probabilities π = (πa, πb, πc, πd)

T. Let b be the 
number of subjects who respond favorably on 
the first occasion but unfavorably on the second 
and let c be the number who responds 
unfavorably on the first occasion but favorably 
on the second. Let a be the number of subjects 
who respond favorably on both occasions and let 
d be the number who respond unfavorably on 
both occasions; then a + d represents the number 
of concordant pairs and b + d represents the 
number of discordant pairs. 
 

Table 1: Paired Data Study Design Responses 
 Test II 

Test I Success Failure Total 

Success a b a+b 

Failure c d c+d 

Total a+c b+d n 
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The confidence interval computational 
methods based on the data structure given in 
Table 1 are as follows: 
 
Wald-z: 
 

( ) 2 2
2LB (b c) / n z [( b  c / n (b c) ) / n ) / n]α= − − + − −

 
 
and 
 

( ) 2 2
2UB (b c) / n+z [( b  c / n (b c) ) / n ) / n].α= − + − −  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wald-c: 
 

( ) 2 2
2

LB (b c) / n

z [( b  c / n (b c) ) / n ) / n]+1
        

n
α

= −

 + − − −  
  

 

and  
 

( ) 2 2
2

UB (b c) / n

z [( b  c / n (b c) ) / n ) / n] 1
       .

n
α

= −

 + − − + +  
  

 

Wald-m: 

Figure 1: Coverage Probabilities (n=50) for A Single Proportion Wald Confidence Interval Method 
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Figure 2: Coverage probabilities for the difference in nominal 95% Wald-z as a function of p1 when 
p2=0.3 with n1=n2=20 (Two Independent Proportions) 
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( ) ( )22 1/2
b c b c b cLB p –  p { p  p 1/ n – p –  p / n)χ  = − + + 

 

and 

( ) ( )22 1/2
b c b c b cUB p –  p { p  p 1/ n  –  p –  p / n)χ  = + + + 

 
with 

( )2 2χ  χ α,  1= . 

 
Quesenberry-Hurst (QH): 
 

( )
( ) ( )( ) ( ){ }

( )

b c

1/2
22 2 2

b c b c

2

n | p – p |
LB

χ n χ χ n p p – n p – p

χ n

=
  + − + +  
 + 
 

 
and 

( )
( ) ( )( ) ( ){ }

( )

b c

1/2
22 2 2

b c b c

2

n | p – p |
UB

χ n χ χ n p p – n p – p

χ n

=
  + + + +  
 + 
 

 
 
where 

( )2 2χ  χ α,  1= . 

 
Agresti-Min (AM): 
 

( )
( ) ( )

* * *

2* * * * * *

2

LB c b / n

         z b c c b / n / nα

= −

− + − − 
 

 

and 

( )
( ) ( )

* * *

2* * * * * *

2

UB c b / n

        z b c c b / n / nα

= −

− + − − 
 

 

with 
b* = b+1/2, c*= c+1/2, n*= n + 2. 

 
The joint probability mass function of (Yb,Yc) is 
expressed as a function of Δ [Δ = (πc - πb) – (πa – 
πc) = πb - πc] and is given by: f (b,c | Δ, πc) = Pr 
(Yb = b, Yc = c | Δ, πc ) = n!/[b!c!(n-b-c)!] ( πc + 
Δ)b  πc

c (1 - 2 πc  - Δ)n-b-c. Where, Δ and πc satisfy 
the following inequality: 
 

πc ∈ [0, (1−Δ)/2] if 0< πc < 1,  
and 

πc ∈ [−Δ, (1−Δ)/2] if −Δ <  πc < 0. 
 
Coverage probability (CP) is generally used to 
evaluate (1 – α) confidence intervals. The 
coverage probability function CP (Δ) for 
matched proportions for any Δ is defined as: 
 
CP (Δ) = [Σk [ΣbΣc IT(b,c |Δ,πc) f (b,c | Δ, πc)]}, 

 
where: 
 

IT (b, c | Δ, πc) = 1 if Δ∈ [Δl, Δu]; 0 otherwise. 
 

Results 
The 95% CP (Δ) for pc= 0.1, n=20 and pb= 
0.001, ..., 0.999 for the Wald-z, Wald-c, AM, 
Wald-m and Quesenberry-Hurst methods are 
shown in Figure 3. 

CP (Δ) probabilities are 0.9125, 0.9545, 
0.9401, 0.9435 and 0.0541 respectively. The 
95% CP (Δ) for pc= 0.25, n=30 and pb= 0.001, 
..., 0.999 for the Wald-z, Wald-c, AM Wald-m 
and Quesenberry-Hurst methods are shown in 
Figure 4. 

CP (Δ) probabilities are 0.9334, 0.9611, 
0.9425, 0.9484 and 0.9448 respectively. And, 
the CP (Δ) for pc= 0.40, n=40 and pb= 0.001, ..., 
0.999 for the Wald-z, Wald-c, AM Wald-m and 
Quesenberry-Hurst methods are shown in Figure 
5. CP (Δ) probabilities are 0.9390, 0.9607, 
0.9444, 0.9485 and 0.9451 respectively. 

The CP (Δ) plots in figures 3-5 
demonstrate that the Wald-z method is 
suboptimal over the range of p, the Wald-c and 
Wald-m methods are conservative and the 
Quesenberry-Hurst and Agresti-Min methods 
are slightly less than nominal. 
 

Conclusion 
A number of closed form methods for 
constructing confidence intervals for paired 
binary data were proposed. Newcombe (1998) 
conducted an empirical study to compare the CP 
(Δ) of ten confidence interval estimators for the 
difference between binomial proportions based 
on paired data. He concluded that the profile 
likelihood estimator and the score test based 
confidence interval proposed by Tango (1998) 
performed  well in large-sample situations.  May 
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Figure 3: 95% Coverage Probability for Matched Proportions 
pc=0.1, n=20 pb= 0.001, ..., 1–pc 

 

 

 

 

0.00 0.20 0.40 0.60 0.80

P

0.75

0.80

0.85

0.90

0.95

1.00

W
al

d
z

Wald-z

0.00 0.20 0.40 0.60 0.80

P

0.75

0.80

0.85

0.90

0.95

1.00

W
al

d
c

Wald-c

0.00 0.20 0.40 0.60 0.80

P

0.75

0.80

0.85

0.90

0.95

1.00

W
al

d
m

Wald-m



REED 
 

515 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 (continued): 95% Coverage Probability for Matched Proportions 
pc=0.1, n=20 pb= 0.001, ..., 1–pc 
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Figure 4: 95% Coverage Probability for Matched Proportions 
pc=0.25, n=30, pb= 0.001, …, 1–pc 
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Figure 4 (continued): 95% Coverage Probability for Matched Proportions 
pc=0.25, n=30, pb= 0.001, …, 1–pc 
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Figure 5: 95% Coverage Probability for Matched Proportions 
pc= 0.4, n=40 and pb= 0.001, ..., 1 – pc 
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Figure 5 (continued): 95% Coverage Probability for Matched Proportions 
pc= 0.4, n=40 and pb= 0.001, ..., 1 – pc 
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and Johnson (1998), Quesenberry and Hurst 
(1964) and Agresti and Min (2005) proposed 
closed form computationally friendly 
alternatives. 

This article focused on constructing 
confidence intervals using closed form methods 
for paired data under small-sample designs. In 
this setting, based on the results, either the 
Quesenberry-Hurst or Agresti-Min methods are 
recommended. Given the widespread use of the 
repeated-measure, pretest-posttest, the matched-
pairs, and the cross-over designs, the textbook 
Wald-z method should be abandoned in favor of 
either the closed form of Quesenberry-Hurst or 
Agresti-Min. 
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Figure 5 (continued): 95% Coverage Probability for Matched Proportions 
pc= 0.4, n=40 and pb= 0.001, ..., 1 – pc 
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Confidence Interval Estimation for Intraclass Correlation Coefficient 
Under Unequal Family Sizes 

 
Madhusudan Bhandary Koji Fujiwara 

Columbus State University North Dakota State University 
 

 
Confidence intervals (based on the 2χ -distribution and (Z) standard normal distribution) for the 
intraclass correlation coefficient under unequal family sizes based on a single multinormal sample have 

been proposed. It has been found that the confidence interval based on the 2χ -distribution consistently 
and reliably produces better results in terms of shorter average interval length than the confidence interval 
based on the standard normal distribution: especially for larger sample sizes for various intraclass 

correlation coefficient values. The coverage probability of the interval based on the 2χ -distribution is 
competitive with the coverage probability of the interval based on the standard normal distribution. An 
example with real data is presented. 
 

Key words: Z-distribution, 2χ -distribution, intraclass correlation coefficient, confidence interval. 
 
 

Introduction 
Suppose, it is required to estimate the correlation 
coefficient between blood pressures of children 
on the basis of measurements taken on p 
children in each of n families. The p 
measurements on a family provide p(p − 1) pairs 
of observations (x, y), x being the blood pressure 
of one child and y that of another. From the n 
families we generate a total of np(p − 1) pairs 
from which a typical correlation coefficient is 
computed. The correlation coefficient thus 
computed is called an intraclass correlation 
coefficient. Statistical inference concerning 
intraclass correlations is important because it 
provides information regarding blood pressure, 
cholesterol, etc. in a family within a particular 
race. 

The intraclass correlation coefficient ρ  
as a wide variety of uses for measuring the  
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degree of intrafamily resemblance with respect 
to characteristics such as blood pressure, 
cholesterol, weight, height, stature, lung 
capacity, etc. Several authors have studied 
statistical inference concerning ρ  based on 
single multinormal samples (Scheffe, 1959; Rao, 
1973; Rosner, et al., 1977, 1979; Donner & Bull, 
1983; Srivastava, 1984; Konishi, 1985; Gokhale 
& SenGupta, 1986; SenGupta, 1988; Velu & 
Rao, 1990). 

Donner and Bull (1983) discussed the 
likelihood ratio test for testing the equality of 
two intraclass correlation coefficients based on 
two independent multinormal samples under 
equal family sizes. Konishi and Gupta (1987) 
proposed a modified likelihood ratio test and 
derived its asymptotic null distribution. They 
also discussed another test procedure based on a 
modification of Fisher’s Z-transformation 
following Konishi (1985). Huang and Sinha 
(1993) considered an optimum invariant test for 
the equality of intraclass correlation coefficients 
under equal family sizes for more than two 
intraclass correlation coefficients based on 
independent samples from several multinormal 
distributions.  

For unequal family sizes, Young and 
Bhandary (1998) proposed Likelihood ratio test, 
large sample Z-test and large sample Z*-test for 
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the equality of two intraclass correlation 
coefficients based on two independent 
multinormal samples. For several populations 
and unequal family sizes, Bhandary and Alam 
(2000) proposed the Likelihood ratio and large 
sample ANOVA tests for the equality of several 
intraclass correlation coefficients based on 
several independent multinormal samples. 
Donner and Zou (2002) proposed asymptotic 
test for the equality of dependent intraclass 
correlation coefficients under unequal family 
sizes. 

None of the above authors, however, 
derived any confidence interval estimator for 
intraclass correlation coefficients under unequal 
family sizes. In this article, confidence interval 
estimators for intraclass correlation coefficients 
are considered based on a single multinormal 
sample under unequal family sizes, and 
conditional analyses - assuming family sizes are 
fixed - though unequal. 

It could be of interest to estimate the 
blood pressure or cholesterol or lung capacity 
for families in American races. Therefore, an 
interval estimator for the intraclass correlation 
coefficient under unequal family sizes must be 
developed. To address this need, this paper 
proposes two confidence interval estimators for 
the intraclass correlation coefficient under 
unequal family sizes, and these interval 
estimators are compared using simulation 
techniques. 
 

Methodology 
Proposed Confidence Intervals: Interval Based 
on the Standard Normal Distribution 

Consider a random sample of k families. 
Let 
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where Q  is an orthogonal matrix. Under the 
orthogonal transformation (2.2), it can be shown 

that kiNu iipi i
,...,1);,(~ *

   ~

*

   ~

=Σμ , where 
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above is independent of ρ . Helmert’s orthogonal 
transformation can also be used. 

Srivastava (1984) gave an estimator of 

ρ  and 2σ  under unequal family sizes which 
are good substitute for the maximum likelihood 
estimator and are given by the following: 
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and 11 −−= ii pa . 

Srivastava and Katapa (1986) derived 
the asymptotic distribution of ρ̂ ; they showed: 

that ρ̂  ~ N( ρ , kVar ) asymptotically, where 
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and 11 −−= ii pa . 

Under the above setup, it is observed 
(using Srivastava & Katapa, 1986) that: 
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asymptotically, where, Var is to be determined 
from (2.4) and ρ̂  is obtained from (2.3). 

Using the expression (2.5), it is found 
that the )%1(100 α−  confidence interval for ρ  
is 

k
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Interval Based on the 2χ Distribution 
It can be shown, by using the 

distribution of 
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where 2
nχ  denotes the Chi-square distribution 

with n degrees of freedom. Using (2.7), a
)%1(100 α−  confidence interval for ρ  can be 

found as follows: 
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where, 
=

−=
k

i
ipn

1

)1(  and 2
;nαχ  denotes the 

upper 100α % point of a Chi-square distribution 

with n degrees of freedom and 2σ̂  can be 
obtained from (2.3). 
 
Data Simulation 

Multivariate normal random vectors 
were generated using an R program in order to 
evaluate the average lengths and coverage 
probability of the intervals given by (2.6) and 
(2.8). Fifteen and 30 vectors of family data were 
created for the population. The family size 
distribution was truncated to maintain the family 
size at a minimum of two siblings and a 
maximum of 15 siblings. The previous research  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in simulating family sizes (Rosner, et al., 1977; 
and Srivastava & Keen, 1988) determined the 
parameter setting for FORTRAN IMSL negative 
binomial subroutine with a mean = 2.86 and a 
success probability = 0.483. 

Given this, the mean was set to equal 
2.86 and theta was set to equal 41.2552. All 
parameters were set the same except for the 
value of ρ  which took values from 0.1 to 0.9 at 
increments of 0.1.The R program produced 
3,000 estimates of ρ  along with the coverage 
probability and the confidence intervals given by 
the formulae (2.6) and (2.8) for each particular 
value of the population parameter ρ . The 
average length and coverage probability of each 
interval at α =0.01, 0.05 and 0.10 were noted. 
Results are shown in Table1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Coverage Probability and Length for the Confidence Interval 

rho k alpha 
Coverage Probability Length 
Z Chi-square Z Chi-square 

0.1 15 0.01  1.00000  0.99933  1.04368  1.06377  
0.2 15 0.01  0.98533  0.99733  1.12548  1.05273  
0.3 15 0.01  0.99233  0.99300  1.08944  0.90430  
0.4 15 0.01  0.98400  0.98167  1.09402  1.01612  
0.5 15 0.01  0.98333  0.95133  0.95383  0.75022  
0.1 15 0.05  0.92500  0.98800  0.94959  1.16835  
0.2 15 0.05  0.96433  0.97367  0.87928  0.81043  
0.3 15 0.05  0.97033  0.94933  0.83507  0.67550  
0.4 15 0.05  0.95800  0.92067  0.83382  0.73789  
0.2 15 0.10  0.95233  0.92067  0.71398  0.57282  
0.3 15 0.10  0.95433  0.91067  0.69647  0.55067  
0.4 15 0.10  0.95200  0.83500  0.65522  0.46074  
0.1 30 0.01  1.00000  0.99967  0.79989  0.73312  
0.2 30 0.01  0.99767  0.99667  0.82135  0.68646  
0.3 30 0.01  0.99533  0.98833  0.80516  0.63780  
0.4 30 0.01  0.99433  0.98167  0.76184  0.59005  
0.5 30 0.01  0.99400  0.96867  0.67756  0.49657  
0.6 30 0.01  0.99167  0.94500  0.57519  0.40045  
0.7 30 0.01  0.98967  0.91200  0.44465  0.27996  
0.1 30 0.05  0.96900  0.98567  0.64870  0.63591  
0.2 30 0.05  0.97867  0.97333  0.66055  0.59177  
0.3 30 0.05  0.98000  0.94533  0.61955  0.48249  
0.4 30 0.05  0.97600  0.91800  0.57706  0.43160  
0.1 30 0.10  0.96267  0.97633  0.53021  0.51577  
0.2 30 0.10  0.96100  0.93867  0.54511  0.46834  
0.3 30 0.10  0.96133  0.87933  0.51242  0.38011  
0.4 30 0.10  0.94400  0.86567  0.49921  0.39224  
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The interval based on the 2χ  
distribution given by (2.8) showed consistently 
better results in terms of shorter average interval 
length compared to the interval based on the 
standard normal distribution given by (2.6), 
especially for larger sample sizes for various 
intraclass correlation coefficient values. The 
average lengths and coverage probability of both 
intervals are presented in Table 1. The interval 

based on the 2χ distribution is recommended on 
the basis of shorter average interval length. The 
coverage probability of the interval based on the 

2χ distribution is competitive with the coverage 
probability of the interval based on the standard 
normal distribution. 
 
Real Data Example 

Two intervals using real life data 
collected from Srivastava and Katapa (1986) 
were compared. The real life data presented in 
Srivastava and Katapa (1986) is shown in Table 
2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The data is first transformed by 
multiplying each observation vector by 
Helmert’s orthogonal matrix Q, where 
 

1 1 1 1
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1 1
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which results in transformed vectors 

   ~
iu  for

ki ,...,2,1= , here, k = 14. Srivastava’s formula 
given by (2.3) is used to compute the intraclass 
correlation coefficient and variance. The 
computed values of the intraclass correlation 
coefficient and variance are 8118.0ˆ =ρ  and 

8578.8ˆ 2 =σ . Using formulae (2.6) and (2.8) to 
obtain the lengths of the 95%, 99% and 90% 
confidence intervals for the intraclass correlation 
coefficient results in the following: 
 
• Length of 90% confidence interval based on 

Z-distribution = 0.26519 
• Length of 90% confidence interval based on 

2χ - distribution = 0.16096 

• Length of 95% confidence interval based on 
Z-distribution = 0.31599 

• Length of 95% confidence interval based on 
2χ - distribution = 0.19644 

• Length of 99% confidence interval based on 
Z-distribution = 0.41528 

• Length of 99% confidence interval based on 
2χ - distribution = 0.27388 

 
It is observed that the length of the 95%, 

99% and 90% confidence intervals based on the 
2χ  distribution(using formula 2.8) is shorter 

than the length of the 95%, 99% and 90% 
confidence intervals respectively based on 
standard normal distribution (using formula 2.6). 
 
 
 

Table 2: Values of Pattern Intensity on Soles 
of Feet in Fourteen Families 

Sample Family # Mother Father Siblings 
A 12 2 4 2, 4 

A 10 5 4 4, 5, 4 

A 9 5 5 5, 6 

A 1 2 3 2, 2 
A 4 2 4 2, 2, 2, 2, 2 

A 5 6 7 6, 6 

A 8 3 7 
2, 4, 7, 4, 4, 

7, 8 
A 3 2 3 2, 2, 2 

A 6 4 3 4, 3, 3 

A 14 2 3 2, 2, 2 

A 7 4 3 
2, 2, 3, 6, 3, 

5, 4 

A 2 2 3 2, 3 

A 11 5 6 5, 3, 4, 4 

A 13 6 3 4, 3, 3, 3 
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Approximate Bayesian Confidence Intervals for 
The Mean of a Gaussian Distribution Versus Bayesian Models 

 
Vincent A. R. Camara 

University of South Florida 
 

 
This study obtained and compared confidence intervals for the mean of a Gaussian distribution. 
Considering the square error and the Higgins-Tsokos loss functions, approximate Bayesian 
confidence intervals for the mean of a normal population are derived. Using normal data and 
SAS software, the obtained approximate Bayesian confidence intervals were compared to a 
published Bayesian model. Whereas the published Bayesian method is sensitive to the choice of 
the hyper-parameters and does not always yield the best confidence intervals, it is shown that the 
proposed approximate Bayesian approach relies only on the observations and often performs 
better. 
 
Key words: Estimation; loss functions; confidence intervals, statistical analysis. 
 
 

Introduction 
A significant amount of research in Bayesian 
analysis and modeling has been published 
during the last twenty-five years. Bayesian 
analysis implies the exploitation of suitable prior 
information and the choice of a loss function in 
association with Bayes’ Theorem. It rests on the 
notion that a parameter within a model is not 
merely an unknown quantity, but behaves as a 
random variable that follows some distribution. 
In the area of life testing, it is realistic to assume 
that a life parameter is stochastically dynamic. 
This assertion is supported by the fact that the 
complexity of electronic and structural systems 
is likely to cause undetected component 
interactions resulting in an unpredictable 
fluctuation of the life parameter. 
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Although no specific analytical 

procedure exists which identifies the appropriate 
loss function to be used, the most commonly 
used is the square error loss function. One 
reason for selecting this loss function is due to 
its analytical tractability in Bayesian modeling 
and analysis. 

The square error loss function places a 
small weight on estimates near the parameter’s 
true value and proportionately more weight on 
extreme deviations from the true value. The 
square error loss is defined as follows: 
 

2

( , ) .SEL θ θ θ θ
Λ Λ = − 

 
 

 
This study considers a widely used and useful 
underlying model, the normal underlying model, 
which is characterized by 
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Employing the square error loss function along 
with a normal prior, Fogel (1991) obtained the 
following Bayesian confidence interval for the 
mean of the normal probability density function: 
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(3) 
 
where the mean and variance of the selected 
normal prior are respectively denoted by 1μ  and 

2.τ  
This study employs the square error and 

the Higgins-Tsokos loss functions to derive 
approximate Bayesian confidence intervals for 
the normal population mean. Obtained 
confidence bounds are then compared with their 
Bayesian counterparts corresponding to (3). 
 

Methodology 
Considering the normal density function (2), to 
derive approximate Bayesian confidence 
intervals for the mean of a normal distribution, 
results obtained on approximate Bayesian 
confidence intervals for the variance of a 
Gaussian distribution are used (Camara, 2003). 
The loss functions used are the square error loss 
function (1), and the Higgins-Tsokos loss 
function. 

The Higgins-Tsokos loss function places 
a heavy penalty on extreme over- or under-
estimation. That is, it places an exponential 
weight on extreme errors. The Higgins-Tsokos 
loss function is defined as follows: 
 

2 1( ) ( )
1 2

1 2

( , ) 1,
f f

HT
f e f eL

f f

θ θ θ θ

θ θ
Λ Λ

− − −Λ += −
+

 

 

1 2, 0.f f                           (4) 

 
The use of these loss functions (1) and (4), along 
with suitable approximations of the Pareto prior, 
led to the following approximate Bayesian 

confidence bounds for the variance of a normal 
population (Camara, 2003). For the square error 
loss function: 
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For the Higgins-Tsokos loss function: 
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.   (7) 

 
Using the above approximate Bayesian 
confidence intervals for a normal population 
variance (5) (6) along with 
 

2 2 2( ) ,E Xσ μ= −                  (8) 
 
the following approximate Bayesian confidence 
intervals for the mean of a normal population 
can easily be derived for a strictly positive mean. 

The approximate Bayesian confidence 
interval for the normal population mean 
corresponding to the square error loss is: 
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The approximate Bayesian confidence interval 
for the normal population mean corresponding 
to the Higgins-Tsokos loss function is: 
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With (9),(10), (11), (12) and  a change of 
variable, approximate Bayesian Confidence 
intervals are easily obtained when 0≤μ . 

 
Results 

To compare the Bayesian model (3) with the 
approximate Bayesian models (9 & 10), samples 
obtained from normally distributed populations 

(Examples 1, 2, 3, 4, 7) as well as approximately 
normal populations (Examples 5, 6) were 
considered. SAS software was employed to 
obtain the normal population parameters 
corresponding to each sample data set. For the 
Higgins-Tsokos loss function, f1 = 1 and f2 = 1 
were considered. 
 
Example 1 

Data Set: 24, 28, 22, 25, 24, 22, 29, 26, 
25, 28, 19, 29 (Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 25.083, 3.1176)N μ σ= = , 

25.08333x = , 2 9.719696s = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1a: Approximate Bayesian 
Confidence Intervals for the Population 

Mean Corresponding Data Set 1 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
25.0683-
25.1311 

25.0730-
25.1158 

90 
25.0661-
25.1437 

25.0683-
25.1311 

95 
25.0650-
25.1543 

25.0661-
25.1437 

99 
25.0641-
25.1734 

25.0643-
25.1660 

Table 1b: Bayesian Confidence Intervals for the 
Population Mean Corresponding Data Set 1 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
13.8971-
15.6097 

23.9353-
26.2300 

90 
13.6496-
15.8572 

23.6037-
26.5617 

95 
13.4422-
16.0646 

23.3258-
26.8395 

99 
13.0275-
16.4793 

22.7701-
27.3953 
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Example 2 
Data Set: 13, 11, 9, 12, 8, 10, 5, 10, 9, 

12, 13 (Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 10.182, 2.4008)N μ σ= = , 

10.181812x = , 2 5.763636s = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3 

Data Set: 16, 14, 11, 19, 14, 17, 13, 16, 
17, 18, 19, 12 (Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 15.5, 2.6799)N μ σ= = , 

15.5x = , 2 7.181818s = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 4 

Data Set: 27, 31, 25, 33, 21, 35, 30, 26, 
25, 31, 33, 30, 28 (Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 28.846, 3.9549)N μ σ= = , 

28.846153x = , 2 15.641025s = . 
 
 
 
 
 

Table 2a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 2 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
10.1575-
10.2565 

10.1652-
10.2330 

90 
10.1538-
10.2756 

10.1575-
10.2565 

95 
10.1520-
10.2914 

10.1538-
10.2756 

99 
10.1506-
10.3194 

10.1506-
10.3194 

 

Table 2b: Bayesian Confidence Intervals for the 
Population Mean Corresponding to Data Set 2 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 6.6182-8.1193 9.3349-11.1832 

90 6.4013-8.3363 9.0678-11.4503 

95 6.2195-8.5180 8.8440-11.6741 

99 5.8560-8.8816 8.3964-12.1217 
 

Table 3a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 3 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
15.4820-
15.5570 

15.4877-
15.5388 

90 
15.4794-
15.5721 

15.4820-
15.5570 

95 
15.4781-
15.5847 

15.4794-
15.5721 

99 
15.4770-
15.6075 

15.4773-
15.5986 

 

Table 3b: Bayesian Confidence Intervals for the 
Population Mean Corresponding to Data Set 3 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
9.6623-
11.2287 

14.5692-
16.5438 

90 
9.4359-
11.4551 

14.2839-
16.8292 

95 
9.2462-
11.6448 

14.0447-
17.0683 

99 
8,8668-
12.0242 

13.5665-
17.5465 
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Example 5 

Data Set: 52, 33, 42, 44, 41, 50, 44, 51, 
45, 38,37,40,44, 50, 43 (McClave & Sincich, p. 
301). 
 
Normal population distribution obtained with 
SAS: 
 

( 43.6, 5.4746)N μ σ= = , 

43.6x = , 2 29.971428s = . 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 6 

Data Set: 52, 43, 47, 56, 62, 53, 61, 50, 
56, 52, 53, 60, 50, 48, 60, 5543 (McClave & 
Sincich, p. 301). 
 
Normal population distribution obtained with 
SAS: 
 

( 53.625, 5.4145)N μ σ= =  

53.625x = , 2 29.316666s = . 
 
 
 

Table 4a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 4 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
28.8270-
28.9087 

28.8330-
28.8884 

90 
28.8242-
28.9256 

28.8270-
28.9087 

95 
28.8228-
28.9400 

28.8242-
28.9256 

99 
28.8217-
28.9663 

28.8220-
28.9560 

 

Table 4b: Bayesian Confidence Intervals for 
the Population Mean Corresponding to Data 

Set 4 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
13.2394-
15.1312 

27.4048-
30.1961 

90 
12.9659-
15.4047 

27.0014-
30.5995 

95 
12.7369-
15.6337 

26.6634-
30.9375 

99 
12.2787-
16.0919 

25.9873-
31.6135 

 

Table 5a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 5 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
43.5794-
43.6703 

43.5858-
43.6169 

90 
43.5764-
43.6902 

43.5794-
43.6703 

95 
43.5749-
43.7074 

43.5764-
43.6902 

99 
43.5738-
43.7395 

43.5741-
43.7268 

 

Table 5b: Bayesian Confidence Intervals for 
the Population Mean Corresponding to Data 

Set 5 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
14.8305-
16.9204 

41.4441-
45.0272 

90 
14.5285-
17.2225 

40.9263-
45.5450 

95 
14.2754-
17.4756 

40.4924-
45.9789 

99 
13.7692-
17.9817 

39.6246-
46.8467 
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Example 7 

Data Set: 50, 65, 100, 45, 111, 32, 45, 
28, 60, 66, 114, 134, 150, 120, 77, 108, 112, 
113, 80, 77, 69, 91, 116, 122, 37, 51, 53, 131, 
49, 69, 66, 46, 131, 103, 84, 78 (SAS Data). 
 
Normal population distribution obtained with 
SAS: 
 

( 82.861, 33.226)N μ σ= =  

82.8611x = , 2 1103.951587s =  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All seven Examples show that the 
proposed approximate Bayesian confidence 
intervals contain the population mean. The 
Bayesian model, however, does not always 
contain the population mean. 
 

Conclusion 
In this study, approximate Bayesian confidence 
intervals for the mean of a normal population 
under two different loss functions were derived 
and compared with a published Bayesian model 
(Fogel, 1991). The loss functions employed 
were the square error and the Higgins-Tsokos 

Table 6a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 6 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
53.6098-
53.6779 

53.6145-
53.6602 

90 
53.6076-
53.6932 

53.6098-
53.6779 

95 
53.6065-
53.7064 

53.6076-
53.6932 

99 
53.6056-
53.7315 

53.6058-
53.7216 

 

Table 6b: Bayesian Confidence Intervals for 
the Population Mean Corresponding to Data 

Set 6 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
19.1978-
21.2568 

51.3930-
54.8269 

90 
18.9002-
21.5544 

50.8967-
55.3232 

95 
18.6508-
21.8038 

50.4808-
55.7391 

99 
18.1521-
22.3024 

49.6492-
56.5707 

 

Table 7a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 7 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
82.7072-
83.4808 

82.7539-
83.2572 

90 
82.6856-
83.6884 

82.7072-
83.4808 

95 
82.6751-
83.8815 

82.6856-
83.6884 

99 
82.6669-
84.2823 

82.6690-
83.7173 

 

Table 7b: Bayesian Confidence Intervals for 
the Population Mean Corresponding to Data 

Set 7 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
3.2940- 
5.8132 

63.0810-
75.4828 

90 
2.9299-
6.17740 

61.2886-
77.2752 

95 
2.6248- 
6.4824 

59.7868-
78.7770 

99 
2.0147- 
7.0926 

56.7833-
81.7806 
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loss functions. The following conclusions are 
based on results obtained: 
1. The Bayesian model (3) used to construct 

confidence intervals for the mean of a 
normal population does not always yield the 
best coverage accuracy. Each of the 
obtained approximate Bayesian confidence 
intervals contains the population mean and 
performs better than its Bayesian 
counterparts. 

2. Bayesian models are generally sensitive to 
the choice of hyper-parameters. Some values 
arbitrarily assigned to the hyper-parameters 
may lead to a very poor estimation of the 
parameter(s) under study. In this study some 
values assigned to the hyper-parameters led 

 
 

References 
Bhattacharya, S. K. (1967) Bayesian 

approach to life testing and reliability 
estimation. Journal of the American Statistical 
Association, 62, 48-62. 

Britney, R. R., & Winkler, R. L. (1968). 
Bayesian III point estimation under various loss 
functions. Proceedings of the Business and 
Economic Statistics Section, American 
Statistical Association, 356-364. 

Camara, V. A. R. (2002). Approximate 
Bayesian confidence intervals for the variance 
of a Gaussian distribution. Proceedings of the 
American Statistical Association, Statistical 
Computing Section. NY: American Statistical 
Association. 

Camara, V. A. R. (2003). Approximate 
Bayesian confidence intervals for the variance of 
a Gaussian Distribution. Journal of Modern 
Applied Statistical Methods, 2(2), 350-358. 

Camara, V. A. R., & Tsokos, C. P. 
(1996). Effect of loss functions on Bayesian 
reliability analysis. Proceedings of the 
International Conference on Nonlinear Problems 
in Aviation and Aerospace, 75-90. 

Camara, V. A. R., & Tsokos, C. P. 
(1998). Bayesian reliability modeling with 
applications. NY: UMI Publishing Company. 

Camara, V. A. R., & Tsokos, C. P. 
(1999). Bayesian estimate of a parameter and 
choice of the loss function. Nonlinear Studies 
Journal, VOL 6 No 1 pp. 55-64 

 

to confidence intervals that do not contain 
the normal population mean. 

3. Contrary to the Bayesian model (3), which 
uses the Z-table, both the approach 
employed in this study and our approximate 
Bayesian models rely only on observations. 

4. With the proposed approach, approximate 
Bayesian confidence intervals for a normal 
population mean are easily obtained for any 
level of significance.. 

5. The approximate Bayesian approach under 
the popular square error loss function does 
not always yield the best approximate 
Bayesian results: The Higgins-Tsokos loss 
function performs better in the examples 
presented. 

 
 

Camara, V. A. R., & Tsokos, C. P. 
(2001). Sensitivity Behavior of Bayesian 
Reliability Analysis for different Loss 
Functions, International Journal of Applied 
Mathematics, VOL 6 pp . 35-38.  

Camara, V. A. R., & Tsokos, C. P. 
(1998). The effect of loss functions on empirical 
Bayes reliability analysis. Journal of 
Engineering Problems, VOL 4 pp 539-560 

Canfield, R. V. (1970). A Bayesian 
approach to reliability estimation using a loss 
function, IEEE Trans. Reliability, R-19(1), 13-
16. 

Drake, A. W. (1966). Bayesian statistics 
for the reliability engineer. Proceedings from the 
Annual Symposium on Reliability, 315-320.  

Fogel, M. (1991) Bayesian Confidence 
Interval. The Statistics Problem Solver, 502-505. 
Research& Education Association. 

Harris, B. (1976). A survey of statistical 
methods in system reliability using Bernoulli 
sampling of components. In Proceedings of the 
conference on the theory and applications of 
Reliability with emphasis on Bayesian and 
Nonparametric Methods. NY: Academic Press. 

Higgins, J. J., & Tsokos, C. P. (1976). 
Comparison of Bayes estimates of failure 
intensity for fitted priors of life data. In 
Proceedings of the Conference on the Theory an 
Applications of Reliability with Emphasis on 
Bayesian and Nonparametric Methods. NY: 
Academic Press. 



CAMARA 
 

533 
 

Higgins, J. J., & Tsokos, C. P. (1976). 
On the behavior of some quantities used in 
Bayesian reliability demonstration tests, IEEE 
Trans. Reliability, R-25(4), 261-264. 

Higgins, J. J., & Tsokos, C. P. (1980). A 
study of the effect of the loss function on Bayes 
estimates of failure intensity, MTBF, and 
reliability. Applied Mathematics and 
Computation, 6, 145-166. 

Mann, P. S. (1998). Introductory 
statistics (3rd Ed.).John Wiley & Sons, Inc, New 
York. 

McClave, J. T., & Sincich, T. A. (1997). 
First course in statistics, (6th Ed.). NY: Prentice 
Hall. 

Schafer, R. E., et al. (1970). Bayesian 
reliability demonstration, phase I: data for the a 
priori distribution. Rome Air Development 
Center, Griffis AFBNY RADC-TR-69-389.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Schafer, R. E., et al. (1971). Bayesian 
reliability, phase II: Development of a priori 
distribution. Rome Air Development Center, 
Griffis AFR, NY RADC-YR-71-209. 

Schafer, R. E., et al. (1973). Bayesian 
reliability demonstration phase III: 
Development of test plans. Rome Air 
development Center, Griffs AFB, NY RADC-
TR-73-39.  

Shafer, R. E., & Feduccia, A. J. (1972). 
Prior distribution fitted to observed reliability 
data. IEEE Trans. Reliability, R-21(3), 148-154 

Tsokos, C. P., & Shimi, S. (Eds). 
(1976). Proceedings of the Conference on the 
theory and applications of reliability with 
emphasis on Bayesian and nonparametric 
methods, Methods, Vols. I, II. NY: Academic 
Press. 
 
 
 



Journal of Modern Applied Statistical Methods   Copyright © 2009 JMASM, Inc. 
November 2009, Vol. 8, No. 2, 534-546                                                                                                                    1538 – 9472/09/$95.00 

534 
 

On Type-II Progressively Hybrid Censoring 
 

Debasis Kundu Avijit Joarder Hare Krishna 
Indian Institute of Technology, 

Kanpur, India 
Reserve Bank of India, 

Mumbai, India 
C.C.S. University, 

Meerut, India 
 

 
The progressive Type-II censoring scheme has become quite popular. A drawback of a progressive 
censoring scheme is that the length of the experiment can be very large if the items are highly reliable. 
Recently, Kundu and Joarder (2006) introduced the Type-II progressively hybrid censored scheme and 
analyzed the data assuming that the lifetimes of the items are exponentially distributed. This article 
presents the analysis of Type-II progressively hybrid censored data when the lifetime distributions of the 
items follow Weibull distributions. Maximum likelihood estimators and approximate maximum 
likelihood estimators are developed for estimating the unknown parameters. Asymptotic confidence 
intervals based on maximum likelihood estimators and approximate maximum likelihood estimators are 
proposed. Different methods are compared using Monte Carlo simulations and one real data set is 
analyzed. 
 
Key words: Maximum likelihood estimators; approximate maximum likelihood estimators; Type-I 
censoring; Type-II censoring; Monte Carlo simulation. 
 
 

Introduction 
The Type-II progressive censoring scheme has 
become very popular. It can be described as 
follows: consider  units in a study and 
suppose  is fixed before the experiment, 

in addition,  other integers,  are also 

fixed so that  At the time 

of the first failure, for example,  of the 

remaining units are randomly removed. 
Similarly, at the time of the second failure, for 
example,  of the remaining units are 

randomly removed and so on. Finally, at the 
time of the  failure,  the remaining 
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 units are removed. Extensive work has been 

conducted on this particular scheme during the 
last ten years; see Balakrishnan and Aggarwala 
(2000) and Balakrishnan (2007). 

Unfortunately the major problem with 
the Type-II progressive censoring scheme is that 
the time length of the experiment can be very 
large. Due to this problem, Kundu and Joarder 
(2006) introduced a new censoring scheme 
named Type-II Progressively Hybrid Censoring, 
which ensures that the length of the experiment 
cannot exceed a pre-specified time point . 
The detailed description and advantages of the 
Type-II progressively hybrid censoring is 
presented in Kundu and Joarder (2006) (see also 
Childs, Chandrasekar & Balakrishnan, 2007); in 
both publications the authors assumed the 
lifetime distributions of the items to be 
exponential. 

Because the exponential distribution has 
limitations, this article considers the Type-II 
progressively hybrid censored lifetime data, 
when the lifetime follows a two-parameter 
Weibull distribution. Maximum likelihood 
estimators (MLEs) of the unknown parameters 
are provided and it was observed that the MLEs 
cannot be obtained in explicit forms. MLEs can 

n
m n<

m 1,.., mR R

1 ... .mR R m n+ + + =

1: : 1,m nY R

2: : 2,m nY R

m th− : : ,m m nY

mR

T
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be obtained by solving a non-linear equation and 
a simple iterative scheme is proposed to solve 
the non-linear equation. Approximate maximum 
likelihood estimators (AMLEs), which have 
explicit expressions are also suggested. It is not 
possible to compute the exact distributions of the 
MLEs, so the asymptotic distribution is used to 
construct confidence intervals. Monte Carlo 
simulations are used to compare different 
methods and one data analysis is performed for 
illustrative purposes. 
 
Type-II Progressively Hybrid Censoring Scheme 
Models 

If it is assumed that the lifetime random 
variable  has a Weibull distribution with 
shape and scale parameters  and  
respectively, then the probability density 
function (PDF) of  is 

 

( )
1

; , ; 0,
y

Y
yf y e y

α
α

λαα γ
λ λ

 − − 
  = > 

 
    (1) 

 

where  are the natural parameter 

space. If the random variable has the density 
function (1), then  has the extreme 
value distribution with the PDF 
 
 

( ) 1
; , ; ,

xx e

Xf x e x

μ
σμ

σμ σ
σ

− − −  
 = − ∝< <∝   (2) 

 

 

where ln , 1μ λ σ α= = . The density function 
as described by (2) is known as the density 
function of an extreme value distribution with 
location and scale parameters  and  
respectively. Models (1) and (2) are equivalent 
models in the sense that the procedure developed 
under one model can be easily used for the other 
model. Although, they are equivalent models, 
(2) can be the easier with which to work 
compared to model (1), because in model (2) the 
two parameters  and  appear as location 

and scale parameters. For  and  
model (2) is known as the standard extreme 
value distribution and has the following PDF 
 

( ) ( );0,1 ; .
zz e

Zf z e z−= − ∝< <∝        (3) 
 

Type-II Progressively Hybrid Censoring Scheme 
Data 

Under the Type-II progressively hybrid 
censoring scheme, it is assumed that  identical 
items are put on a test and the lifetime 
distributions of the  items are denoted by 

 The integer  is pre-fixed, 

 are  pre-fixed integers satisfying 

, and  is a pre-fixed 

time point. At the time of the first failure 
 of the remaining units are randomly 

removed. Similarly, at the time of the second 
failure  of the remaining units are 

removed and so on. If the  failure  

occurs before time , the experiment stops at 
time point . If, however, the -th failure 

does not occur before time point  and only  
failures occur before  (where ), 

then at time  all remaining  units are 

removed and the experiment terminates. Note 

that  The two cases 

are denoted as Case I and Case II respectively 
and this is called the censoring scheme as the 
Type-II progressively hybrid censoring scheme 
(Kundu and Joarder, 2006). 

In the presence of the Type-II 
progressively hybrid censoring scheme, one of 
the following is observed 
 

Case I: 
 if            (4) 

or 
 

Case II: 
 if .  (5) 

 

For Case II, although 1: :J m nY +  is not observed, 
but  means that the  

failure took place before  and no failure took 
place between  and  (i.e., 

) are not observed. 

The conventional Type-I progressive 
censoring scheme needs the pre-specification of 

 and also  (see Cohen 1963, 

1966 for details). The choices of  are not 

Y
α λ

Y

0, 0α λ> >
Y

lnX Y=

μ σ

μ σ
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trivial. For the conventional Type-II progressive 
censoring scheme the experimental time is 
unbounded. In the proposed censoring scheme 
the choice of  depends on how much 
maximum experimental time the experimenter 
can afford to continue and also the experimental 
time is bounded. 
 
Maximum Likelihood Estimators (MLEs) 

Based on the observed data, the 
likelihood function for Case I is 
 

( )
( ) : :

1

1 1
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m
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ym Rm
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and for Case II, the MLE is 
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both are constant. 
The logarithm of (6) and (7), can be 

written without the constant terms as 
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Here  and 

 for 

Case-I and Case-II respectively. It is assumed 
that , otherwise the MLEs do not exist. 

Taking derivatives with respect to  
and  of (9) and equating them to zero results 
in 

,           (10) 
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Here, : : : :
1

( ) (1 ) ln
m
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for Case-I and Case-II respectively. Note that 
 

     (12) 

 
and the MLE of  can be obtained by solving 
 

,                        (13) 
where 
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A simple iterative scheme is proposed to 

obtain the MLE of  from (13). Starting with 

an initial guess of , for example,  obtain 

 and proceed in this way to obtain 

 The iterative procedures stops 

when  which is some pre-

assigned tolerance limit. Once the MLE of  is 
obtained the MLE of  can be obtained from 
(12). Since the MLE’s, when they exist, are not 
in compact forms, the following approximate 
MLE’s and its’ explicit expressions are 
proposed. 
 
Approximate Maximum Likelihood Estimators 
(AMLEs) 

Using the following notations 
 and  the likelihood 

equation of the observed data  for Case-I is 
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and for Case II is 
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where ,  
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1 .σ α=  
Ignoring the constant term, the following log-
likelihood results from (15) is 
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From (16) the following approximate MLE’s of 
 and  are obtained (see Appendix 1), 
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For Case-II, ignoring the constant term, 
the log-likelihood is obtained as 
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In this case the approximate MLE’s are (see 
Appendix 2) 
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Here  and  are the same as above for 

 

 and  
 

Results 
Because the performance of the different 
methods cannot be compared theoretically, 
Monte Carlo simulations are used to compare 
the performances of the different methods 
proposed for different parameter values and for 
different sampling schemes. The term different 
sampling schemes mean different sets of  

and different  values. The performances of 
the MLEs and AMLEs estimators of the 
unknown parameters are compared in terms of 
their biases and mean squared errors (MSEs) for 
different censoring schemes. The average 
lengths of the asymptotic confidence intervals 
and their coverage percentages are also 
compared. All computations were performed 
using a Pentium IV processor and a FORTRAN-
77 program. In all cases the random deviate 
generator RAN2 was used as proposed in Press, 
et al. (1991).  

Because  is the scale parameter, all 
cases  have been taken in without loss of 
generality. For simulation purposes, the results 

are presented when  is of the form 1T α . The 
reason for choosing  in that form is as 
follows: if  represents the MLE or AMLE of 

, then the distribution of α̂ α  becomes 

independent of  in the case for . For 
that purpose the result is reported only for  
without loss of generality, however, these results 
can be used for any other  also. 
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Type-II progressively hybrid censored 
data is generated for a given set  

and  by using the following transformation 
for exponential distribution as suggested in 
Balakrishnan and Aggarwala (2000). 
 

 

(20) 
 

It is known that if  are i.i.d. standard 

exponential, then the spacing  are also i.i.d. 

standard exponential random variables. From 
(20) it follows that 
 

 

(21) 
 

Using (21) and parameters  and , 
Type-II progressively hybrid censored data for 
the Weibull distribution can be generated for a 
given , . If 

 then Case I results and the 

corresponding sample is 

. If , then 

Case II results and  is found such that 
 The corresponding Type-II 

hybrid censored sample is 

{ }1: : 1 : :( , ),..., ( , )m n J m n JY R Y R  and , where  

is same as defined before. 
Consider different  and . Two 

different sampling schemes have been used, 
namely, 
 
Scheme 1: 

 and  
 

Scheme 2: 
 and  

Note that Scheme 1 is the conventional 
Type-II censoring scheme and Scheme 2, is a 
typical progressive censoring scheme. In each 
case the MLEs and AMLEs are computed as 
estimates of the unknown parameters. The 95% 
asymptotic confidence intervals are calculated 
based on MLEs by replacing the MLEs by 
AMLEs. The process was replicated 1,000 
times. Average estimates, MSEs and average 
confidence lengths with coverage percentages 
were reported in Tables 1-8. 

Based on Tables 1-4 (for MLEs) and 
Tables 5-8 (for AMLEs), the following 
observations are made: As expected, for fixed  

, as  increases the biases and the MSEs 
decrease for both  and , however, for fixed 

 as  increases this may not be true. This 
shows that the effective sample size  plays 
an important role when considering the actual 
sample size . It is also observed that the 
MLEs for schemes 1 and 2 behave quite 
similarly in terms of biases and MSEs, unless 
both  and  are small. The performances in 
terms of biases and MSEs improve as  
increases. Similar results are also observed for 
AMLEs. 

Comparing different confidence 
intervals in terms of average lengths and 
coverage probabilities, it is generally observed 
that both the methods work well even for small 

 and . For both methods, it is observed that 
the average confidence lengths decrease as  
increases for fixed , or vice versa. For both 
the MLE and AMLE methods, scheme 1 and 
scheme 2 behave very similarly although the 
confidence intervals for scheme 1 tend to be 
slightly shorter than scheme 2. 
 

Data Analysis 
Kundu and Joarder (2006) analyzed the 

following two data sets obtained from Lawless 
(1982) using exponential distributions. 
 
Data Set 1 

In this case  and, if 

 then the Type II progressively hybrid censored 
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sample is: 11, 35, 49, 170, 329, 958, 1,925, 
2,223, 2,400, 2,568. From the above sample 
data,  is obtained, which yields  
and  of based on MLEs and AMLEs are

1 1ˆˆ( 6.29773 10 , 8113.80176), ( 6.33116 10 , 6511.83036)α λ α λ− −= × = = × =
respectively. Using the above estimates the 95% 
asymptotic confidence interval for  and  is 
obtained based on MLEs and AMLEs which are  

, 

and 

 

respectively. 
 
Data Set 2 

Consider  and 'iR s
are same as Data Set 1. In this case the 
progressively hybrid censored sample obtained 
as: 11, 35, 49, 170, 329, 958, 1,925 and 

 The MLE and AMLEs of  and 
 are 

and 

respectively. From the above estimates the 95% 
asymptotic confidence intervals are obtained for 

 and  based on MLEs and AMLEs, which 
are 

  

and 

 

respectively. 
In both cases it is clear that if the tested 

hypothesis is , it will be rejected, this 

implies that in this case the Weibull distribution 
should be used rather than exponential.  
 

Conclusion 
This article discussed the Type-II progressively 
hybrid censored data for the two parameters 
Weibull distribution. It was observed that the 
maximum likelihood estimator of the shape 
parameter could be obtained by using an 

iterative procedure. The proposed approximate 
maximum likelihood estimators of the shape and 
scale parameters could be obtained in explicit 
forms. Although the exact confidence intervals 
could not be constructed, it was observed that 
the asymptotic confidence intervals work 
reasonably well for MLEs. Although the 
frequentest approach was used, Bayes estimates 
and credible intervals can also be obtained under 
suitable priors along the same line as Kundu 
(2007). 
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Table 1: MLE Estimate for T = 0.75 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.0968(0.0862), 1.2913(94.5) 1.0751(0.0838), 1.1898(93.5) 

 1.0358(0.1611),1.6019(89.1) 1.0760(0.2937), 1.6015(88.8) 

40, 20 
 1.0898(0.0623), 1.0099(96.6) 1.0750(0.0626), 1.0167(94.9) 

 1.0111(0.0934), 1.2453(92.3) 1.413(0.1321), 1.3662(90.7) 

60, 20 
 1.1046(0.0644), 1.1701(92.3) 1.0916(0.0554), 1.0255(94.7) 

 0.9777(0.0962), 1.6693(88.5) 0.9842(0.0902), 1.4432(91.2) 

60, 30 
 1.0473(0.0342), 0.7386(96.5) 1.0385(0.0364), 0.7681(95.1) 

 1.0109(0.0653), 0.9055(92.7) 1.0350(0.0962), 1.0315(90.9) 

80, 30 
 1.0566(0.0344), 0.7918(95.6) 1.0435(0.0302), 0.7074(96.1) 

 0.9913(0.0633), 1.0782(92.5) 1.0081(0.0731), 0.9630(92.6) 

80, 40 
 1.0401(0.0252), 0.6275(97.3) 1.0301(0.0269), 0.6501(95.6) 

 1.0060(0.0449), 0.7670(93.2) 1.0261(0.0614), 0.8732(91.7) 

100, 40 
 1.0471(0.0256), 0.6620(97.4) 1.0323(0.0219), 0.5932(96.4) 

 0.9904(0.0406), 0.878(93.4) 1.0096(0.0465), 07985(93.8) 

100, 50 
 1.0369(0.0209), 05544(96.2) 1,0281(0.0232), 0.5811(95.6) 

 0.9996(0.0292), 0.6760(93.6) 1.0185(0.0418), 0.7800(93.0) 
 
 

Table 2: MLE Estimate for T = 1.00 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1102(0.0841), 1.2367(96.0) 1.0719(0.0730), 1.0287(95.6) 

 0.9982(0.1171), 1.5080(92.1) 1.0383(0.1397), 1.3333(91.2) 

40, 20 
 1.0983(0.0600), 0.9891(97.7) 1.0704(0.0518), 0.8833(96.4) 

 0.9864(0.0629), 1.2035(93.7) 1.0179(0.0817), 1.1445(92.1) 

60, 20 
 1.1046(0.0644), 1.1701(92.3) 1.0933(0.0550), 1.0249(95.2) 

 0.9781(0.0982), 1.6692(88,5) 0.9776(0.0793), 1.4394(91.6) 

60, 30 
 1.0539(0.0329), 0.7320(97.0) 1.0358(0.0291), 0.6855(95.9) 

 0.9945(0.0510), 0.8876(94.2) 1.0157(0.0616), 0.8892(92.3) 

80, 30 
 1.0567(0.0344), 0.7918(95.7) 1.0487(0.0291), 0.7049(96.9) 

 0.9906(0.0605), 1.0781(92.5) 0.9926(0.0553), 0.9508(93.9) 

80, 40 
 1.0456(0.0246), 06214(97.8) 0.0313(0.0225), 0.5879(97.0) 

 0.9927(0.0331), 0.7531(94.1) 1.0110(0.0429), 0.7624(92.2) 

100, 40 
 1.0473(0.0255), 0.6621(97.4) 1.0396(0.0211), 0.5788(97.4) 

 0.9895(0.0385), 0.8781(93.4) 0.9936(0.0364), 0.7655(94.0) 

100, 50 
 1.0397(0.0205), 0.5493(96.9) 1.0252(0.0190), 0.5216(94.7) 

 0.9927(0.0243), 0.6653(94.0) 1.0120(0.0301), 0.6773(93.5) 
 

α
λ
α
λ
α
λ
α
λ
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Table 3: MLE Estimate for T = 1.50 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1130(0.0833),1.2367(96.3) 1.0727(0.0630), 0.9343(95.8) 

 0.9857(0.0820), 1.5075(92.7) 1.0196(0.1079), 1.2004(92.7) 

40, 20 
 1.0992(0.0599), 0.9886(97.8) 1.0682(0.0430), 0.7962(97.5) 

 0.9841(0.0600), 1.2025(93.6) 1.0025(0.0593), 1.0237(94.4) 

60, 20 
 1.1046(0.0644), 1.1701(92.3) 1.0932(0.0550), 1.0248(95.2) 

 0.9781(0.0982), 1.6692(88.5) 0.9779(0.0807), 1.4394(91.6) 

60, 30 
 1.0544(0.0327), 0.7320(97.2) 1.0366(0.0259), 0.6251(94.9) 

 0.9920(0.0451), 0.8875(94.2) 1.0054(0.0498), 0.8042(93.0) 

80, 30 
 1.0567(0.0344), 0.7918(95.7) 1.0492(0.0288), 0.7051(97.0) 

 0.9906(0.0605), 1.0781(92.5) 0.9900(0.0503), 09508(93.8) 

80, 40 
 1.0458(0.0245), 0.6215(97.8) 1.0308(0.0192), 0.5357(96.8) 

 0.9919(0.0312),0.7531) (94.1) 1.0031(0.0319), 0.6896(93.6) 

100, 40 
 1.0473(0.0255),0.6621(97.4) 1.0407(0.0209), 0.5785(97.7) 

 0.9895(0.0385), 08781(93.4) 0.9901(0.0322), 0.7645(94.0) 

100, 50 
 1.0397(0.0205), 0.5492(96.9) 1.0277(0.0156), 0.4768(94.7) 

 0.9928(0.0243), 0.6652(94.0) 1.0008(0.0231), 0.6138(94.7) 
 
 

Table 4: MLE Estimate for T = 2.00 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1130(0.0833),1.2367(96.3) 1.0754(0.062), 0.9106(96.1) 

 0.9857(0.0820), 1.5075(92.7) 1.0045(0.0882), 1.1750(92.6) 

40, 20 
 1.0992(0.0599), 0.9886(97.8) 1.0695(0.0423),0.7720(95.8) 

 0.9841(0.0600), 1.2025(93.6) 0.9966(0.0538), 0.9983(94.6) 

60, 20 
 1.1046(0.0644), 1.1701(92.3) 1.0932(0.0550),1.0248(95.2) 

 0.9781(0.0982), 1.6692(88.5) 0.9779(0.0807), 1.4394(91.6) 

60, 30 
 1.0544(0.0327), 0.7320(97.2) 1.0379(0.0248), 0.6054(95.6) 

 0.9920(0.0451), 0.8875(94.2) 1.0004(0.0433), 0.7836(94.2) 

80, 30 
 1.0567(0.0344), 0.7918(95.7) 1.0492(0.0288), 0.7051(97.0) 

 0.9906(0.0605), 1.0781(92.5) 0.9900(0.0503), 0.9508(93.8) 

80, 40 
 1.0458(0.0245), 0.6215(97.8) 1.0321(0.0176),0.5179(96.6) 

 0.9919(0.0312),0.7531) (94.1) 0.9986(0.0283), 0.6709(94.1) 

100, 40 
 1.0473(0.0255),0.6621(97.4) 1.0407(0.0209), 0.5785(97.7) 

 0.9895(0.0385), 08781(93.4) 0.9901(0.0322), 0.7645(94.0) 

100, 50 
 1.0397(0.0205), 0.5492(96.9) 1.0286(0.0149), 0.4608(94.6) 

 0.9928(0.0243), 0.6652(94.0) 0.9986(0.0219), 0.5969(94.1) 
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Table 5: Approximate MLE Estimate for T = 0.75 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.0873(0.0847), 1.2073(94.2) 1.0814(0.0889), 1.2070(93.3) 

 1.0354(0.1640), 1.4941(89.1) 1.0104(0.3033), 1.5970(88.6) 

40, 20 
 1.0832(0.0615), 0.9924(96.2) 1.0837(0.06559), 1.0651(95.4) 

 1.01103(0.0941), 1.2224(92.2) 0.9752(0.1333), 1.4107(91.3) 

60, 20 
 1.0998(0.0638), 1.1226(92.1) 1.0915(0.0554), 1.0236(94.5) 

 0.9792(0.0968), 1.6005(88.4) 0.9435(0.0823), 1.4270(92.8) 

60, 30 
 1.0432(0.0340), 0.7349(96.5) 1.0486(0.0386), 0.7959(95.5) 

 1.0102(0.0655), 0.900(92.7) 0.9679(1.0962), 1.0530(92.1) 

80, 30 
 1.0533(0.0342), 07870(95.5) 1.0492(0.0308), 0.7288(96.4) 

 0.9920(0.0635), 1.0714(92.5) 0.9520(0.0688), 0.9797(94.7) 

80, 40 
 1.0372(0.0251), 0.6253(97.1) 1.0409(0.0284), 0.6735(96.3) 

 1,0054(0.0450), 0.7640(93.2) 0.9588(0.0620), 0.8914(92.2) 

100, 40 
 1,0447(0,0255), 0,6593(97.2) 1.0417(0.0227), 0.6140(97.4) 

 0.9906(0.0407), 08743(93.4) 0.9463(0.0453), 08151(94.8) 

100, 50 
 1.0346(0.0208), 0.5529(96.2) 1.0392(0.0243), 0.6029(96.4) 

 0.9991(0.0292), 0.6739(93.6) 0.9512(0.0421), 0.7976(93.9) 
 
 

Table 6: Approximate MLE Estimate for T = 1.00 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1003(0.827),1.1683(95.3) 1.0921(0.0811), 1.0824(96.1) 

 0.9968(0.1177), 1.4208(92.0) 0.9378(0.1395), 1.3736(92.3) 

40, 20 
 1.0916(0.0592), 0.9731(97.4) 1.0936(0.0582), 0.9316(97.0) 

 0.9851(0.0628), 1.1827(93.8) 0.9175(0.0809), 1.1.822(94.3) 

60, 20 
 1.0998(0.0638), 1.1226(92.1) 1.0933(0.0550),1.0232(94.9) 

 0.9797(0.0989), 1.6004(88.4) 0.9359(0.0703), 1.4234(93.4) 

60, 30 
 1.0497(0.0327), 0.7283(97.0) 1.0586(0.0326), 0.7217(96.7) 

 0.9936(0.0510), 0.8827(94.2) 0.9150(0.0608), 0.9169(92.7) 

80, 30 
 1.0534(0.0342), 0.7870(95.6) 1.0555(0.0296), 0.7275(97.0) 

 0.9912(0.0607), 1.0712(92.5) 0.9309(0.0476), 0.9685(96.6) 

80, 40 
 1.0426(0.0244), 0.6193(97.7) 1.0546(0.0251), 0.6189(97.2) 

 0.9921(0.0330), 0.7502(94.2) 0.9102(0.0429), 0.7863(92.3) 

100, 40 
 1.0448(0.0254), 0.6594(97.2) 1.0518(0.0218), 0.6009(98.0) 

 0.9897(0.0385), 0.8743(93.4) 0.9183(0.0311), 0.7825(95.7) 

100, 50 
 1.0374(0.0204), 0.5478(96.8) 1.0484(0.0211), 0.5489(95.6) 

 0.9922(0.0243), 0.6633(94.0) 0.9112(0.0299), 0.6984(93.7) 
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Table 7: Approximate MLE Estimate for T = 1.50 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1030(0.0819), 1.1681(95.7) 1.1153(0.0735), 1.0048(96.1) 

 0.9841(0.0820), 1.4202(92.7) 0.8709(0.0978), 1.2553(93.6) 

40, 20 
 1.0925(0.0592), 0.9726(97.6) 1.1158(0.0519), 0.8603(96.9) 

 0.9827(0.0598), 1.1818(93.7) 0.8541(0.0524), 1.0754(95.5) 

60, 20 
 1.0998(0.0638), 1.1226(92.1) 1.0932(0.0550), 1.0231(94.9) 

 0.9797(0.0989), 1.6004(88.4) 0.9361(0.0712), 1.4233(93.4) 

60, 30 
 1.0502(0.0325), 0.7284(97.1) 1.0832(0.0313), 0.6753(95.1) 

 0.9910(0.0450), 0.8826(94.2) 0.8563(0.0443), 0.8445(92.8) 

80, 30 
 1.0534(0.0342), 0.7870(95.6) 1.0560(0.0293), 0.7277(97.2) 

 0.9912(0.0607), 1.0712(92.5) 0.9280(0.0424), 0.9684(96.6) 

80, 40 
 1.0428(0.0244), 0.6193(97.7) 1.0778(0.0232), 0.5787(95.8) 

 0.9912(0.0311), 0.7502(94.2) 0.8540(0.0287), 0.7242(92.0) 

100, 40 
 1.0448(0.0254), 0.6594(97.2) 1.0532(0.0215), 0.6009(98.3) 

 0.9897(0.0385), 0.8743(93.4) 0.9136(0.0262), 0.7816(96.8) 

100, 50 
 1.0374(0.0204), 0.5477(96.8) 1.0748(0.0188), 0.5152(94.4) 

 0.9922(0.0243), 0.6632(94.0) 0.8514(0.0205), 0.6447(91.6) 
 
 

Table 8: Approximate MLE Estimate for T = 2.00 

N.M.  Scheme 1 Scheme 2 

30, 15 
 1.1030(0.0819), 1.1681(95.7) 1.1337(0.0710), 0.9924(96.1) 

 0.9841(0.0820), 1.4202(92.7) 0.8327(0.0690), 1.2439(95.0) 

40, 20 
 1.0925(0.0592), 0.9726(97.6) 1.1326(0.0512), 0.8454(96.0) 

 0.9827(0.0598), 1.1818(93.7) 0.8245(0.0414), 1.0610(96.1) 

60, 20 
 1.0998(0.0638), 1.1226(92.1) 1.0932(0.0550), 1.0231(94.9) 

 0.9797(0.0989), 1.6004(88.4) 0.9361(0.0712), 1.4233(93.4) 

60, 30 
 1.0502(0.0325), 0.7284(97.1) 1.0990(0.0302), 0.6630(94.8) 

 0.9910(0.0450), 0.8826(94.2) 0.8269(0.0336), 0.8319(92.5) 

80, 30 
 1.0534(0.0342), 0.7870(95.6) 1.0560(0.0293), 0.7277(97.2) 

 0.9912(0.0607), 1.0712(92.5) 0.9280(0.0424), 0.9684(96.6) 

80, 40 
 1.0428(0.0244), 0.6193(97.7) 1.0946(0.0217), 0.5678(94.6) 

 0.9912(0.0311), 0.7502(94.2) 0.8247(0.0222), 0.7129(90.8) 

100, 40 
 1.0448(0.0254), 0.6594(97.2) 1.0532(0.0215), 0.6009(98.3) 

 0.9897(0.0385), 0.8743(93.4) 0.9136(0.0262), 0.7816(96.8) 

100, 50 
 1.0374(0.0204), 0.5477(96.8) 1.0916(0.0185), 0.5053(92.4) 

 0.9922(0.0243), 0.6632(94.0) 0.8245(0.0170), 0.6346(89.4) 
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Appendix 1 
For case-I, taking derivatives with respect to  

and  of  as defined in (16), results in 
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Clearly, (22) and (23) do not have explicit 
analytical solutions. Consider a first-order 
Taylor approximation to  

and  by expanding around 

the actual mean  of the standardized order 

statistic , where 

 and ( 1) ,ip i n= +
1i iq p= −  for  similar to 

Balakrishnan and Varadan (1991), David (1981) 
or Arnold and Balakrishnan (1989). Otherwise, 
the necessary procedures for obtaining 

 were made available by Mann 

(1971) and Thomas and Wilson (1972). Note 
that for  
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Using the approximation (24) and (25) in (22) 
and (23), results get 
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and  for   The solution to 

the preceding equations yields the approximate 
MLE’s are 

1 2 1

1

( )c c m d
c

σμ − − +=
               (30) 

2 4

2

B B AC
A

σ − + −=                (31) 

Consider only positive root of ; these 
approximate estimators are equivalent but not 
unbiased. Unfortunately, it is not possible to 
compute the exact bias of  and  theoretically 
because of intractability encountered in finding 

the expectation of . 
 

Appendix 2 
For case-II, taking derivatives with respect to  

and  of  as defined in (18), gives 
(similar to Case-I) 
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Here again consider the first-order 
Taylor approximation to  

and  by expanding around 

the actual mean  of the standardized order 

statistic , where  are defined in 

Appendix 1. Here  is also 
exploded in the Taylor series around the point 
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Using the approximation (24), (25), (34) and 
(35) in (32) and (33) gives 
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The above two equations (36) and (37) can be 
written as 
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The solution to the preceding equations yields 
the approximate MLE’s are  
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Consider only positive root of ; these 
approximate estimators are equivalent but not 
unbiased. Unfortunately, it is not possible to 
compute the exact bias of  and  theoretically 
because of intractability encountered in finding 

the expectation of '2 4B A C′ ′− . 
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Semi-Parametric of Sample Selection Model Using Fuzzy Concepts 
 

L. Muhamad Safiih A. A. Kamil M. T. Abu Osman 
University Malaysia Terengganu International Islamic University, 

Malaysia 
 

 
The sample selection model has been studied in the context of semi-parametric methods. With the 
deficiencies of the parametric model, such as inconsistent estimators, semi-parametric estimation methods 
provide better alternatives. This article focuses on the context of fuzzy concepts as a hybrid to the semi-
parametric sample selection model. The better approach when confronted with uncertainty and ambiguity 
is to use the tools provided by the theory of fuzzy sets, which are appropriate for modeling vague 
concepts. A fuzzy membership function for solving uncertainty data of a semi-parametric sample 
selection model is introduced as a solution to the problem. 
 
Key words: Uncertainty, semi-parametric sample selection model, crisp data, fuzzy sets, membership 
function. 
 
 

Introduction 
The sample selection model has been studied in 
the context of semi-parametric methods. With 
the deficiencies of the parametric model, such as 
inconsistent estimators, etc., semi-parametric 
estimation methods provide the best alternative 
to  handle  the  deficiencies.  The  study of semi- 
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parametric econometrics of the sample selection 
models has received considerable attention from 
both statisticians and econometricians in the late 
of 21st century (Schafgans, 1996). The termed 
semi-parametric, has been used as a hybrid 
model for selection models which do not involve 
parametric forms on error distributions; hence, 
only the regression function of the model of 
interest is used. Consideration is based on two 
perspectives: first, no restriction of estimation of 
the parameters of interest for the distribution 
function of the error terms, and second, 
restricting the functional form of 
heteroscedasticity to lie in a finite-dimensional 
parametric family (Schafgans, 1996). 

Gallant and Nychka (1987) studied these 
methods in the context of semi-nonparametric 
maximum likelihood estimation and applied the 
method to nonlinear regression with the sample 
selection model. Newey (1988) used series 
approximation to the selection correction term 
which considered regression s-pline and power 
series approximations. Robinson (1988) focused 
on the simplest setting of multiple regressions 
with independent observations, and described 
extensions to other econometric models, in 
particular, seemingly unrelated and nonlinear 
regressions, simultaneous equations, distribution 
lags and sample selectivity models. 

Cosslett (1991) considered semi-
parametric estimation of the two-stage method 
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similar to Heckman (1976) for the bivariate 
normal case where the first stage consisted of 
semi-parametric estimation of the binary 
selection model and the second stage consisted 
of estimating the regression equation. Ichimura 
and Lee (1990) proposed an extension of 
applicability of a semi-parametric approach. It 
was shown that all models can be represented in 
the context of multiple index frameworks 
(Stoker, 1986) and that it can be estimated by 
the semi-parametric least squares method if 
identification conditions are met. Andrews 
(1991) proposed the establishment of asymptotic 
series estimators for instant polynomial series, 
trigonometric series and Gallant’s Fourier 
flexible form estimators, for nonparametric 
regression models and applied a variety of 
estimands in the regression model under 
consideration, including derivatives and 
integrals of the regression function (see also 
Klein & Spady, 1993; Gerfin, 1996; Vella, 1998; 
Martin, 2001; Khan & Powell, 2001; Lee & 
Vella, 2006). 

Previous studies in this area 
concentrated on the sample selection model and 
used parametric, semi-parametric or 
nonparametric approaches. None of the studies 
conducted analyzed semi-parametric sample 
selection models in the context of fuzzy 
environment like fuzzy sets, fuzzy logic or fuzzy 
sets and systems (L. M. Safiih, 2007). 

This article introduces a membership 
function of a sample selection model that can be 
used to deal with sample selection model 
problems in which historical data contains some 
uncertainty. An ideal framework does not 
currently exist to address problems in which a 
definite criterion for discovering what elements 
belong or do not belong to a given set (Miceli, 
1998). A fuzzy set, defined by fuzzy sets in a 
universe of discourse (U) is characterized by a 
membership function and denoted by the 
function μA, maps all elements of U that take the 
values in the interval [0, 1] that is 

: [0,  1]A X →  (Zadeh, 1965). The concept of 
fuzzy sets by Zadeh is extended from the crisp 
sets, that is, the two-valued evaluation of 0 or 1, 
{0, 1}, to the infinite number of values from 0 to 
1, [0, 1]. Brackets { } are used in crisp to 
indicates sets, whereas square [ ] brackets and 
parentheses ( ) are used in fuzzy sets to denote 

real-number closed intervals and open intervals, 
respectively (see Terano, et al., 1994). 
 
Semi-Parametric Estimation Model 

The study of the semi-parametric 
estimation model involves and considers the 
two-step estimation approach. The semi-
parametric context is a frequently employed 
method for sample selection models (Vella, 
1998) and is a hybrid between the two sides of 
the semi-parametric approach (i.e., it combines 
some advantages of both fully parametric and 
the completely nonparametric). Thus, parts of 
the model are parametrically specified, while 
non-parametric estimation issues are used for the 
remaining part. As a hybrid, the semi-parametric 
approach shares the advantages and 
disadvantages of each, in terms that allow a 
more general specification of the nuisance 
parameters. In semi-parametric models, the 
estimators of the parameters of interest are 
consistent under a broader range of conditions 
than for parametric models but more precise 
(converging to the true values at the square root 
of the sample size) than their nonparametric 
counterparts. 

For a correctly-specified parametric 
model, estimators for semi-parametric models 
are generally less efficient than maximum 
likelihood estimators yet maintain the sensitivity 
of misspecification for the structural function or 
other parametric components of the model. In 
the semi-parametric approach, the differences 
arise from the weaker assumption of the error 
term in contrast to the parametric approach. In 
this study a two-step semi-parametric approach 
is considered, which generalizes Heckman’s 
two-step procedure. According to Härdle, et al. 
(1999), Powell (1987) considered a semi-
parametric self-selection model that combined 
the two equation structure of (2.1) with the 
following weak assumption about the joint 
distribution of the error terms. For example, the 
participation equation of the first step is 
estimated semi-parametrically by the DWADE 
estimator (Powell, et al., 1989), while applying 
the Powell (1987) estimator for the second step 
of the structural equation. 
Representation of Uncertainty 

Towards representing uncertainty 
various approaches can be considered. In this 
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study, the representation of uncertainty 
identified variables by commonly used 
approaches, that is, putting a range and a 
preference function to the desirability of using 
that particular value within the range. In other 
words, it is similar to the notion of fuzzy number 
and membership function which is the function 

Aμ  that takes the values in the interval [0, 1], 

that is, ]1,0[: →XA . For more details about 
representation of uncertainty, this article 
concentrates on using fuzzy number and 
membership function. 

Generally, a fuzzy number represents an 
approximation of some value which is in the 

interval terms )()()()( ],,[ llll dcdc ≤ for l  0, 1, 

..., n , and is given by the α - cuts at the α -

levels lμ  with 0, 01 =Δ+= − μμμμ ll  and 

1=nμ . A fuzzy number usually provides a 

better job set to compare the corresponding crisp 
values. As widely used in practice, each α-cuts 

Aα  of fuzzy set A  are closed and related with 
an interval of real numbers of fuzzy numbers for 
all ]1,0(∈α  and based on the coefficient :)(xA  

if αα ≥A  then 1=Aα  and if αα <A  then 

0=Aα which is the crisp set Aα  depends onα . 
Closely related with a fuzzy number is 

the concept of membership function. In this 
concept, the element of a real continuous 
number in the interval [0, 1], or a number 
representing partial belonging or degree of 
membership are used. Referring to the definition 
of the membership function, setting the 
membership grades is open either subjectively to 
the researcher, depending on his/her intuition, 
experience and expertise, or objectively based 
on the analysis of a set of rules and conditions 
associated with the input data variables. Here, 
choosing the membership grades is done 
subjectively, i.e., reflected by a quantitative 
phenomenon and can only be described in terms 
of approximate numbers or intervals such as 
“around 60,” “close to 80,” “about 10,” 
“approximately 15,” or “nearly 50.” However, 
because of the popularity and ease of 
representing a fuzzy set by the expert - 
especially when it comes to the theory and 
applications - the triangular membership 
function is chosen. It is called a triangular fuzzy 

number based on a special type of fuzzy number 
containing three parameters: the grade starts at 
zero, rises to a maximum and then declines to 
zero again as the domain increases with its 
nature; that is, the membership function 
increases towards the peak and decreasing away 
from it, and can be represented as a special form 
as: 
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The graph of a typical membership function is 
illustrated in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From that function, the α -cuts of a triangular 
fuzzy number can be define as a set of closed 
intervals as 
 

]1,0(],)(,)[( ∈∀+−+− ααα ndnccn  
 
For the membership function )(xAμ , the 
assumptions are as follows: 
 
(i) monotonically increasing function for 

membership function )(xAμ  with 

0)( =xAμ  and 1)(lim =
∞→

xAx
μ  for .x n≤  

Figure 1: A Triangular Fuzzy Number 

dc n

1

0

)(xAμ  
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(ii) monotonically decreasing function for 
membership function )(xAμ with 

1)( =xAμ  and 0)(lim =μ
∞→

xAx
 for .x n≥  

 
The α -cuts and LR Representation of a Fuzzy 
Number 

Prior to delving into fuzzy modeling of 
PSSM, an overview and some definitions used 
in this article are presented (Yen, et al., 1999; 
Chen & Wang, 1999); the definitions and their 
properties are related to the existence of fuzzy 
set theory and were introduced by Zadeh (1965). 
 
Definition: the fuzzy function is defined by 

),
~

,(
~

;
~~

: AxfYYAXf =→× where 
 

1. Xx ∈ ; X is a crisp set, and 

2. A~ is a fuzzy set, and 

3. Y~ is the co-domain of x associated with 

the fuzzy set A~ . 
 
Definition: Let )(ℜ∈ FA be called a fuzzy 
number if: 
 

1) ℜ∈x  such that 1)( =xAμ , 

2) for any ],1,0[∈α  and  

3) ])(,[ axxA A ≥=
α

μα , is a closed 

interval with )(ℜF representing all 

fuzzy sets, ℜ is the set of real numbers. 
 
Definition: a fuzzy number A  on ℜ  is defined 
to be a triangular fuzzy number if its 
membership function ]1,0[:)( →ℜxAμ  is 
equal to 
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where l m u≤ ≤ , x  is a model value with l  and 
u  be a lower and upper bound of the support of 
A  respectively. Thus, the triangular fuzzy 
number is denoted by ),,( uml . The support of 

A  is the set elements }|{ umlx <<ℜ∈ . A 
non-fuzzy number by convention occurs when 

.uml ==  
 
Theorem 1: 

The values of estimator coefficients of 
the participation and structural equations for 
fuzzy data converge to the values of estimator 
coefficients of the participation and structural 
equations for non-fuzzy data respectively 
whenever the value of cut−α  tends to 1 from 
below. 
 
Proof: 

From the centroid method followed to 
obtain the crisp value, the fuzzy number for all 
observation of iw  is 

 

( ))()(
3

1
iiiic wUbwwLbW ++=  

 
when there is no utc−α . The lower bound and 
upper bound for each observation is referred to 
by the definition above. 
 
Because the triangular membership function is 
followed (see Figure 2) then 
 

( )α= α ),( )(iwLbA  and ( )α= α ),( )(iwUbB , 

where 
( ))()()( )( iiii wLbwwLbwLb −α+=α  

and 
( ))()()( )( iiii wUbwwUbwUb −+= αα  

 
 
 
 
 
 
 
 
 
 
 

Figure 2: Membership Function and cut−α  
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B A cut−α

1



SAFIIH, KAMIL & OSMAN 
 

551 
 

Applying the utc−α  into the triangular 
membership function, the fuzzy number 
obtained depending on the given value of the 

utc−α  over the range 0 and 1 is as follows: 
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When α  approaches 1 from below then 

ii wwLb →)( )(α  and ii wwUb →)( )(α , and is 

obtained as 

i
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www
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→
3)(α  , 

iic wW →)(α . 

 
Thus, when α  approaches 1 from below, then 

iic wW →)(α . Similarly, for all observations ix  

and iz , iic xX →)(α  and iic zZ →)(α  

respectively, as α  tends to 1 from below. This 
implies that the values of estimator coefficients 
of the participation and structural equations for 
fuzzy data converge to the values of estimator 
coefficients of the participation and structural 
equations for non-fuzzy data respectively 
whenever the value of cut−α tend to 1 from 
below 
 
Definition: An LR-type fuzzy number denoted 

as Y~  with functions )))(
1
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The size of Y~ is LU YY −  where minα  and maxα
can be any predetermined levels. 
Theorem 2: 
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Thus, Theorem 2 is proven. 
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Methodology 
Development of Fuzzy Semi-Parametric Sample 
Selection Models 

Prior to constructing a fuzzy SPSSM, 
the sample selection model purpose by Heckman 
(1976) is considered. In SPSSM, it is assumed 
that the distributional assumption of ( ,  )i iuε  is 

weaker than the distributional assumption of the 
parametric sample selection model. The 
distributional assumption that exists in Heckman 
(1979) model is more stringent than anything 
else. However, the Heckman (1979) estimator 
becomes inconsistent if the assumption is 
violated. Härdle, et al. (1999) highlighted that 
ample reason exists to develop consistent 
estimators for PSSM with weaker distributional 
assumptions. Thus, the sample selection model 
is now called a semi-parametric of sample 
selection model (SPSSM). 

In the development of SPSSM modeling 
using the fuzzy concept, as a development of 
fuzzy PSSM, the basic configuration of fuzzy 
modeling is still considered as previously 
mentioned (i.e., involved fuzzification, fuzzy 
environment and defuzzification). For the 
fuzzification stage, an element of real-valued 
input variables is converted in the universe of 
discourse into values of a membership fuzzy set. 
At this approach, a triangular fuzzy number is 
used over all observations. The α -cut method 
with an increment value of 0.2 started with 0 and 
increases to 0.8. This is then applied to the 
triangular membership function to obtain a 
lower and upper bound for each observation (

,  i ix w  and )∗
iz , defined as: 

 
( , , ),  ( , , )isp il im iu isp il im iuw w w w x x x x= =   

 
and 

( , , ).isp il im iuz z z z∗ =  

 
Following their memberships functions, 
respectively defined, results in the following 
forms: 
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In order to solve the model in which 
uncertainties occur, fuzzy environments such as 
fuzzy sets and fuzzy numbers are more suitable 
as the processing of the fuzzified input 
parameters. Because, it is assumed that some 
original data contains uncertainty, under the 
vagueness of the original data, the data can be 
considered as fuzzy data. Thus, each observation 
considered has variation values. The upper and 
lower bounds of the observation are commonly 
chosen based on the data structure and 
experience of the researchers. For a large-sized 
observation, the upper and lower bounds of each 
observation are difficult to obtain. 

Based on the fuzzy number, a fuzzy 
SPSSM is built with the form as: 
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The terms 

spiw~ , 
spix~ , ∗

spiz~ , 
spiε~  and 

spiu~  are 

fuzzy numbers with the membership functions 

spiW~μ , 
spiX~μ , 

spiZ~μ , 
spiεμ~  and 

spiu~μ , 

respectively. Because the distributional 
assumption for the SPSSM is weak, for the 
analysis of the fuzzy SPSSM it is also assumed 
that the distributional assumption is weak. 

To determine an estimate for γ  and β  
of the fuzzy parametric of a sample selection 
model, one option is to defuzzify the fuzzy 

observations '~
spiW , '~

spiX  and ∗
spiZ~ . This means 

converting the triangular fuzzy membership real-
value into a single (crisp) value (or a vector of 
values) that, in the same sense, is the best 
representative of the fuzzy sets that will actually 
be applied. The centroid method or the center of 
gravity method is used to compute the outputs of 
the crisp value as the center of the area under the 

curve. Let 
spicW , ,icspX  and ∗

spicZ  be the 

defuzzified values of 
spiW~ , ,

spiX  and ∗
spiZ~  

respectively. The calculation of the centroid 

method for 
spicW , ,

spicX  and ∗
spicZ  respectively 

is via the following formulas: 
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Thus, the crisp values for the fuzzy 

observation are calculated following the centroid 
formulas as stated above. To estimate spγ  and 

spβ  with the SPSSM approach, applying the 

procedure as in Powell, then the parameter is 
estimated for the fuzzy semi-parametric sample 
selection model (fuzzy SPSSM). Before 
obtaining a real value for the fuzzy SPSSM 
coefficient estimate, first the coefficient 
estimated values of γ  and β  are used as a 
shadow of reflection to the real one. The values 

of γ̂  and β̂  are then applied to the parameters 
of the parametric model to obtain a real value for 
the fuzzy SPSSM coefficient estimates of 

,  ,   ,  
i spspsp sp iuεγ β σ . The Powell (1987) SPSSM 

procedure is then executed using the XploRe 
software. 

The Powell SPSSM procedure combines 
the two-equation structure as shown above but 
has a weaker assumption about the joint 
distribution of the error terms: 
 

'( , | ) ( , | ).
sp sp sp sp sp spi i i i i if u w f u wε ε γ=  

 
For this reason, it is assumed that the joint 
densities of 

spiε , 
spiu  (conditional on 

spiw ) are 

smooth but unknown functions )(⋅f  that 

depend on 
spiw  only through the linear model 

γ'

spiw . Based on this assumption, the regression 

function for the observed outcome iz  takes the 

following form: 
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where )(⋅λ  is an unknown smooth function. 
The Powell idea of SPSSM is based upon two 
observations, i  and ,j  with conditions 

spsp ji ww ≠  but γγ ''

spsp ji ww = . With this 

condition, the unknown function )(⋅λ can be 
differenced out by subtracting the regression 
functions for i  and j : 
 

' '

( | ) ( | )
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sp sp
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i j i j
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∗ ∗= − =

= − + −

= −
 
This is the basic idea underlying the γ  estimator 
proposed by Powell (1987). Powell’s procedure 
is from the differences, regress iz  on differences 

in 
spiw , as the concept of closeness with two 

estimated indices  and  (hence 

)0)ˆ()ˆ( '' ≈− βλβλ
spsp ji xx . Thus, γ  can be 

estimated by a weighted least squares estimator: 
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Where weights Nijϖ̂  are calculated by 
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 with a symmetric 

kernel function )(⋅κ  and bandwidth h . As 
shown in earlier equations, this tacitly assumes 

that β̂  has previously been obtained as an 

estimate β . Based on this assumption, a single 
index model is obtained for the decision 
equation in place of the probit model (probit 
step) in the parametric case: 
 

' '( ( 0 | ) 1) ( )i i iP d d x g x β> = =  

 

where )(⋅g is an unknown, smooth function. 

Using this and given β̂ , the second step consists 

of estimating γ . Executing the Powell 
procedure by XploRe software takes the data as 
input from the outcome equation ( x  and y , 

where x  may not contain a vector of ones). The 
vector id containing the estimate for the first-

step index β̂'

spix , and the bandwidth vector h 
where h is the threshold parameter k that is used 
for estimating the intercept coefficient from the 
first element. The bandwidth h from the second 
element (not covered in this study) is used for 
estimating the slope coefficients. For fuzzy 
PSSM, the above procedure is followed, and 
then another set of crisp values , 

spicX  and 

spicZ  are obtained. Applying the α -cut values 

on the triangular membership function of the 

fuzzy observations 
spiW~ , 

spiX~  and 
spiZ~  with the 

original observation, fuzzy data without α -cut 
and fuzzy data with α -cut to estimate the 
parameters of the fuzzy SPSSM. The same 
procedure above is applied. The parameters of 
the fuzzy SPSSM are estimated. From the 
various fuzzy data, comparisons will be made on 
the effect of the fuzzy data and α -cut with 
original data on the estimation of the SPSSM. 
 
Data Description 

The data set used for this study is from 
the 1994 Malaysian Population and Family 
Survey (MPFS-94). This survey was conducted 
by National Population and Family 
Development Board of Malaysia under the 
Ministry of Women, Family and Community 
Development Malaysia. The survey was 
specifically for married women, providing 
relevant and significant information for the 
problem of married womens’ status regarding 
wages, educational attainment, household 
composition and other socioeconomic 
characteristics. The original MPFS-94 sample 
data comprised 4,444 married women. Based on 
the sequential criteria (Mroz, 1984) the analyses 
were limited to the completed information 
provided by married women; in addition, 
respondents whose information was incomplete 

β̂'

spix β̂'

spjx

spicW
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(for example, no recorded family income in 
1994, etc.), were removed from the sample. 

The resulting sample data consisted of 
1,100 married women, this accounted for 39.4% 
who were employed, the remaining 1,692 
(60.6%) were considered as non-participants. 
The data set used in this study consisted of 2,792 
married women. Selection rules (Martins, 2001) 
were applied to create the sample criteria for 
selecting participant and non participant married 
women on the basis of the MPFS-94 data set, 
which are as follows: 

a) Married and aged below 60; 
b) Not in school or retired; 
c) Husband present in 1994; and 
d) Husband reported positive earnings for 

1994. 
 
Study Variables 

Following the literature (see Gerfin, 
1996; Martins, 2001; Christofides, et al., 2003), 
the model employed in this study consists of two 
equations or parts. The first equation - the 
probability that a married women participates in 
the labor market - is the so-called participation 
equation. Independent variables involved are: 
AGE (age in years divided by 10), AGE2 (age 
squared divided by 100), EDU (years of 
education), CHILD (the number of children 
under age 18 living in the family), HW (log of 
husband’s monthly wage). The standard human 
capital approach was followed for the 
determination of wages, with the exception of 
potential experience. The potential experience 
variable in the data set was calculated by age-
edu-6 rather than actual work experience. In 
order to manage these problems a method 
advanced by Buchinsky (1998) was used. 
Instead of considering the term 

2
21 EXPEXPQw ξξ +=  in the wage equation 

i.e., EXP is the unobserved actual experience, 
we use the alternative for women’s time is child 
rearing and the home activities related to child 
rearing, then the specification of Qz given by:  
 

1 2

3 4

2

       2
zQ PEXP PEXP

PEXPCHD PEXPCHD
γ γ

γ γ
= +

+ +
 

 

The second equation called the wage equation. 
The dependent variable used for the analysis was 
the log hourly wages )(z . While, the 
independent variables were EDU, PEXP 
(potential work experience divided by 10), 
PEXP2 (potential experience squared divided by 
100), PEXPCD (PEXP interacted with the total 
number of children) and PEXPCHD2 (PEXP2 
interacted with the total number of children). 
Both the participation and wage equations were 
considered as the specification I and II 
respectively, that is, the most basic one of SSM. 

According to Kao and Chin (2002), the 
regression parameters ),( γβ  should be 
estimated from the sample data and, if some of 
the observations in the equation ijX  and iY  are 

fuzzy, then they fall into the category of fuzzy 
regression analysis. For the data used in this 
study, it was assumed that uncertainty was 
present, therefore, instead of crisp data, fuzzy 
data are more appropriate. In the participation 
equation, fuzzy data was used for the 
independent variables )(x : AGE (age in year 
divided by 10), AGE2 (age square divided by 
100) HW (log of husband’s monthly wage). For 
the wage equation, fuzzy data used for the 
dependent variable was the log hourly wages 

)(z  while the independent variables )(x  for 
fuzzy data involved the variables PEXP 
(potential work experience divided by 10), 
PEXP2 (potential experience squared divided by 
100), PEXPCD (PEXP interacted with the total 
number of children) and PEXPCHD2 (PEXP2 
interacted with the total number of children). In 
our study, the observations in the fuzzy 
participation and fuzzy wage equations involved 
fuzzy and non-fuzzy data, i.e. a mixture between 
fuzzy and non-fuzzy data, thus the variables fall 
into the category of fuzzy data (Kao and Chyu, 
2002). For instance, the exogenous variables 
AGE, AGE2 and HWS in the participation and 
the variables PEXP, PEXP2, PEXPCHD and 
PEXPCHD2 in the wage equations are in the 
form of fuzzy data. These fuzzy exogenous 
variables are denoted as EGA ~

, 2
~EGA  SWH ~  

and XPEP~
, 2

~PXPE , CHDPPEX ~ , 
2

~CHDPPEX , respectively. In accord with 
general sample selection model, the exogenous 
variables EDU and CHILD in the participation 



SEMI-PARAMETRIC OF SAMPLE SELECTION MODEL USING FUZZY CONCEPTS 

556 
 

and the exogenous variable EDU in the fuzzy 
wage equation are considered as non-fuzzy data. 
However EDU and CHILD are considered as 
fuzzy data.  
 

Results 
A semi-parametric estimation obtained due to 
the so-called curse of dimensionality and 
asymptotic distribution is unknown. Here the 
results that applied to the most basic estimators 
are presented; that is, the participant and wage 
equation of the DWADE estimator and the 
Powell estimator, respectively. Both estimators 

are consistent with −n consistency and 
asymptotic normality. 
 
Participation Equation in the Wage Sector 

The participation equation using the 
DWEDE estimator is presented in Table 1 along 
with FSPSSM results for comparison purposes. 
The first column used the DWADE estimator 
with bandwidth values h  = 0.2 without the 
constant terms. The DWADE estimator shares 
the ADE estimator of the semi-parametric 
sample selection model (SPSSM). This is 
followed by the fuzzy semi-parametric sample 
selection model (FPSSM) with −α cuts 0.0, 0.2, 
0.4, 0.6 and 0.8 respectively. At first the 
estimate coefficient suggests that all variables 
except AGE are significant (significantly and 
negatively estimated coefficient on AGE2 and 
CHILD, while a positive and significant 
coefficient was estimated for EDU and HW). 
However, only CHILD shows a statistically 
significant effect at the 5% level – an 
unexpected and important result. Although in the 
conventional parametric model, it appears 
together with EDU, in the context of SPSSM, 
only estimates of the CHILD effect appears to 
be significantly relevant, which is more aligned 
with economic theory. 

For comparison purposes, the FSPSSM 
was used. The estimated coefficient gives a 
similar trend with the SPSSM (i.e., significant 
for variables AGE2, EDU, CHILD and HW). 
The results show a significant and positive 
coefficient estimate for EDU and HW, and a 
significant but negative estimated coefficient on 
AGE2 and CHILD. In the FSPSSM context, the 
CHILD coefficient appears to be statistically 

significant at the 5% level. This is an interesting 
finding and it should be pointed out that using 
this approach the standard errors for the 
parameter were much smaller when compared to 
those in conventional SPSSM. This provides 
evidence that this approach is better in 
estimating coefficients and provides a 
considerable efficiency gain compared to those 
in the conventional semi-parametric model. In 
addition, the coefficient estimated from 
FSPSSM was considerably close to the 
coefficient estimated with conventional SPSSM. 
Hence, the coefficient estimated from FSPSSM 
is consistent even though it involves uncertain 
data. 
 
The Wage Equation in the Wage Sector 

The wage equation using the Powell 
estimator of SPSSM is presented in Table 2 with 
FSPSSM results for comparison purposes. The 
first column used the Powell estimator with 
bandwidth values h  = 0.2 without the constant 
terms. The other columns show results given by 
the fuzzy semi-parametric sample selection 
model (FPSSM) with −α cuts 0.0, 0.2, 0.4, 0.6 
and 0.8 respectively. 

At first the coefficient estimate 
suggested that the whole variable was significant 
(significant and negatively estimated coefficient 
on EDU, PEXP2 and PEXPCHD, while a 
positive and significant coefficient was 
estimated for PEXP and PEXPCHD2). As the 
estimated coefficient, the results for whole 
variable statistical significance at the 5% level 
resulted in a significant result. The results reveal 
significant differences between the SPSSM 
compared to the PSSM method of correcting 
sample selectivity bias. This increased the 
results obtained in SPSSM where not all 
variables in PSSM contributed significantly 
regarding married women involved in wage 
sectors. 

For comparison purposes it was then 
applied with the FSPSSM. The estimated 
coefficient was significant for all variables. The 
results show significant and positive coefficient 
estimates for PEXP and PEXPCHD2, significant 
but negative estimated coefficients on EDU, 
PEXP2 and PEXPCHD. The coefficient for all 
variables appears to be relevant with statistical 
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significance at the 5% level. It should be noted 
that, the standard errors for the parameter EDU, 
PEXP and PEXP2 were much smaller when 
compared to those in the conventional SPSSM. 
This provides evidence that this method is 
considerably more efficient than the 
conventional semi-parametric model. The 
coefficient estimated obtained from FSPSSM is 
also considerably close to the coefficient 
estimated  via  conventional  SPSSM.  In  other 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

words, applying FSPSSM, the coefficient 
estimated is consistent even though the data may 
contain uncertainties. 
 

Conclusion 
For comparison purposes of the participant 
equation, the estimated coefficient and 
significant factor gives a similar trend as the 
SPSSM. However, an interesting finding and the 
most significant  result appears by  applying  the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table1: Semi-Parametric and Fuzzy Semi-Parametric Estimates for the Participation Equation 

Participation 
Equation 

Coefficients 

DWADE 
Fuzzy Selection Model 

α = 0.8 α = 0.6 α = 0.4 α = 0.2 α = 0.0 

AGE 
−0.002048 
(1.233) 

−0.0015393 
(1.150) 

−0.0043978 
(1.151) 

−0.0015934 
(1.234) 

−0.0016184 
(1.232) 

−0.001642 
(1.232) 

AGE2 
−0.00016099 

(0.1754) 
−0.00016584 

(0.1624) 
−0.00020722 

(0.1627) 
−0.00016629 

(0.1763) 
−0.00016651 

(0.1765) 
−0.00016673 

(0.1767) 

EDU 
0.00034766 

(0.02116) 
0.00023044 
(0.02015) 

0.00011323 
(0.02015) 

0.00023044 
(0.02115) 

0.00023044 
(0.02062) 

0.00023044 
(0.02062) 

CHILD 
−0.0039216* 

(0.06573) 
−0.0044301* 

(0.06341) 
−0.0048986* 

(0.0634) 
−0.0044301* 

(0.06571) 
−0.0044301* 

(0.06485) 
−0.0044301* 

(0.06484) 

HW 
0.044008 
(0.1632) 

0.050262 
(0.1402) 

0.05597 
(0.1396) 

0.049549 
(0.1485) 

0.049189 
(0.1437) 

0.048832 
(0.1432) 

*5% level of significance 

Table 2: Semi-Parametric and Fuzzy Semi-Parametric Estimates for the Wage Equation 

Wage 
Equation 

Coefficients 

Powell 
Fuzzy Selection Model 

α = 0.8 α = 0.6 α = 0.4 α = 0.2 α = 0.0 

EDU 
−0.0112792 
(0.005262) 

−0.0109003 
(0.005258) 

−0.010939 
(0.005258) 

−0.011346 
(0.005259) 

−0.011385 
(0.005259) 

−0.0114256 
(0.005258) 

PEXP 
0.544083* 
(0.1099) 

0.540864* 
(0.1096) 

0.538776* 
(0.1094) 

0.534385* 
(0.1093) 

0.532247* 
(0.1092) 

0.530069* 
(0.109) 

PEXP2 
−0.160272* 
(0.02633) 

−0.159762* 
(0.0263) 

−0.159524* 
(0.0263) 

−0.158781* 
(0.02632) 

−0.158525* 
(0.02632) 

−0.158259* 
(0.02632) 

PEXPCHD 
−0.161205* 
(0.02453) 

−0.159863* 
(0.02453) 

−0.159583* 
(0.02455) 

−0.15889* 
(0.02459) 

−0.158584* 
(0.02461) 

−0.158262* 
(0.02463) 

PEXPCHD2 
0.046591* 
(0.008485) 

0.0463242* 
(0.008485) 

.0462221* 
(0.008493) 

0.0458118* 
(0.008508) 

.0457004* 
(0.008511) 

0.0455835* 
(0.008517) 

*5% level of significance 
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FPSSM, that is, the FSPSSM is a better estimate 
when compared to the SPSSM in terms of the 
standard error of the coefficient estimate. The 
standard errors of the coefficient estimate for the 
FSPSSM are smaller when compared to the 
conventional SPSSM. This is evidence that the 
FSPSSM approach is much better in estimate 
coefficient and results in considerable efficiency 
gain than the conventional semi-parametric 
model. The coefficient estimate obtained was 
also considerably close to the coefficient 
estimate of conventional SPSSM, hence 
providing evidence that the coefficient estimate 
is consistent even when data involves 
uncertainties. 

The wages equation is similar to the 
PSSM in terms of the coefficient estimation and 
significance factors. However, applying the 
FPSSM resulted in the most significant results 
when compared to the PSSM, the coefficient 
estimates of most variables had small standard 
errors. The rest is considerably close to the 
standard error of SPSSM. As a whole, the 
FSPSSM gave a better estimate compared to the 
SPSSM. In terms of consistency the coefficient 
estimate for all variables of FSPSSM were not 
much different to the coefficient estimates of 
SPSSM even though the values of the cuts−α  
increased (from 0.0 to 0.8). In the other words, 
by observing the coefficient estimate and 
consistency, fuzzy model (FPSSM) performs 
much better than the model without fuzzy 
(PSSM) for the wage equation. 
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When the Normality Assumption is Invalid 
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The performance of an autocovariance base estimator (ABE) for GARCH models against that of the 
maximum likelihood estimator (MLE) if a distribution assumption is wrongly specified as normal was 
studied. This was accomplished by simulating time series data that fits a GARCH model using the Log 
normal and t-distributions with degrees of freedom of 5, 10 and 15. The simulated time series was 
considered as the true probability distribution, but normality was assumed in the process of parameter 
estimations. To track consistency, sample sizes of 200, 500, 1,000 and 1,200 were employed. The two 
methods were then used to analyze the series under the normality assumption. The results show that the 
ABE method appears to be competitive in the situations considered. 
 
Key words: Autocovariance Functions, Parameter Estimation, Garch, Normality. 
 
 

Introduction 
The assumption of constant variance in the 
traditional time series models of ARMA is a 
major impediment to their applications in 
financial time series data where 
heteroscedasticity is obvious and cannot be 
ignored. To solve this problem, Engle (1982) 
proposed the Autoregressive Conditional 
Heteroscedascity (ARCH) model. In his first 
application, however, Engle noted that a high 
order of ARCH is needed to satisfactorily model 
time varying variances and that many 
parameters in ARCH will create convergence 
problems for maximization routines. To address 
these difficulties, Bollerslev (1986) extended 
Engle’s model, developing the Generalized 
Autoregressive Conditional Heteroscedasticity 
(GARCH) model. GARCH models time-varying 
variances as a linear function of past square 
residuals and of its past value. It has proved  
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useful in interpreting volatility clustering effects 
and has gained wide acceptance in measuring 
the volatility of financial markets. The ARCH 
and GARCH models are both known as 
symmetric models. 

Other extensions based on observed 
characteristics of financial time series data exist 
and include some asymmetric models. Examples 
of asymmetric models are Nelson’s (1991) 
exponential GARCH (EGARCH) model, 
Glosten, Jaganathan and Runkle’s (1993) GJR-
GARCH and Zakoian’s (1994) threshold model 
(T GARCH). These model and interpret leverage 
effects, where volatility is negatively correlated 
with returns. In addition, the Fractionally 
Integrated GARCH model (FIGARCH) (Baillie, 
Bollerslev & Mikeson, 1996) was introduced to 
model long memory via the fractional operator 
(1-L)d, and the GARCH in mean model allows 
the mean to influence the variance. 

These models are popularly estimated 
by the quasi-maximum likelihood method 
(QMLE) under the assumption that the 
distribution of one observation conditional to the 
past is normal. The asymptotic properties of the 
QMLE are well established. Weiss (1989) 
showed that QMLE estimates are consistent and 
asymptotically normal under fourth moment 
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conditions. These were again shown by Ling and 
McAleer (2003) under second moment 
conditions. If the assumption of normality is 
satisfied by the data, then the method will 
produce efficient estimates; otherwise, 
inefficient estimates will be produced. Engle and 
Gonzalez-Rivera (1991) studied the loss of 
estimation efficiency inherent in QMLE and 
concluded it may be severe if the distribution 
density is heavy tailed. 

The QMLE estimator requires the use of 
a numerical optimization procedure which 
depends on different optimization techniques for 
implementation. This potentially leads to 
different estimates, as shown by Brooks, Burke 
and Perssand (2001) and McCullough and 
Renfro (1999). Both studies reported different 
QMLE estimates across various packages using 
different optimization routines. These techniques 
estimate time-varying variances in different 
ways and may result in different interpretations 
and predictions with varying implications to the 
economy. To resolve these problems, Eni and 
Etuk (2006) developed an Autocovariance Base 
Estimator (ABE) for estimating the parameters 
of GARCH models through an ARMA 
transformation of the GARCH model equation. 
The purpose of this article is to rate the 
performance of the ABE when the normality 
assumption is violated. 
 
The Autocovariance Base Estimator (ABE) 

Consider the GARCH (p, q) equation 
 

2
0 1 1

1 1
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p q

t i t j t
i j

h w e hα − −
= =
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or its ARMA (Max (p, q), q) transform 
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To obtain the autoregressive parameters, 

consider that the variance, )( 22
ittVar −εε  for i > 

q in equation (2) will not contain the moving 

average parameter iΒ . Hence, i = q + 1 … q + p 

is used to obtain the estimator: 
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Where Vi  is the set of variances associated with 
equation (2). The autoregressive parameters 

ii Β+α  are obtained by solving (3). 

Eni and Etuk (2006) have shown that the 
moving average parameters iB  can be obtained 

from 
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or 

( ) 2

0

p

i a
i

f V B bσ
=

Φ Φ =            (4) 

where 
 

( ) ( ) ( )0 0, , .i i i i if f αΦ = −Φ Φ = Φ Φ = + Β  

 

Note that the quantity ( ) ΦΦ
=

Vf
p

i
i

0

 is known, 

the variance V having been calculated from the 
data, and the autoregressive parameters Φ  
having been calculated from equation (3). 
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The moving average parameters Bi are found by 
solving the system: 
 

( ) 2

0

( ) 0
p

i r
i

F B f V B bσ
=

= Φ Φ − =       (5) 

 
Equation (5) is nonlinear and the solution can be 
found only through an iterative method. One 
procedure to consider is based on the Newton-
Raphson algorithm, in this case, the Br+1 solution 
is obtained from the rth approximation according 
to 

{ } 1
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where f(Br) and f’(Br) represent the vector 
function (5) and its derivative evaluated at B=Br. 
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The starting point for the iteration (8) is 2
rσ  = 1, 

B0 = V0, Bi = 0, i = 1 … q. 
 
Having computed the Autoregressive parameters 

)( iii B+=Φ α  and the Moving average 

parameter iB , it is simple to obtain the GARCH 

(p, q) parameters, iα , and the constant 

parameter w0, which is estimated using 
 

2

1 1

( )(1 ).
p B

t i i
i i

W E Bε α
= =

= − −           (9) 

 
Methodology 

The data generating process (DGP) in this study 
involved the simulation of 1,500 data points 
with 10 replications using the random number 
generator in MATLAB 5. The random number 
generator in MATLAB 5 is able to generate all 
floating point numbers in the interval 

53 532 ,  1 2− − −  . Thus, it can generate 
14922  

values before repeating itself. Note that 1,500 

data points are equivalent to 
55.102  and, with 10 

replications; results in only 13.872672  data points. 
Hence 1,500 data points with 10 replications 
were obtained without repetitions. Also, a 
program implementation was used for ARMA to 
find the QMLE (McLeod and Sales, 1983). 
Although normality would typically be assumed, 
the data points were simulated using the Log 
normal and the T-distribution with 5, 10 and 15 
degrees of freedom. 

Of the 1,500 data points generated for 
each process, the first 200 observations were 
discarded to avoid initialization effects, yielding 
a sample size of 12,000 observations, with 
results reported in sample sizes of 200, 500, 
1,000 and 1,200. These sample presentations 
enable tracking of consistency and efficiency of 
the estimators. The relative efficiency of the 
autocovariances based estimator (ABE) and the 
quasi-maximum likelihood (QML) estimators 
were studied under this misspecification of 
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distribution function. The selection criteria used 
was the Aikake information criteria (AIC). 

For simulating the data points, the 
conditional variance equation for low 
persistence due to Engle and Ng (1993) was 
adopted. 
 

1
2

1 75.005.02.0 −− ++= ttt hh ε  

 
22

1 ttt Zh=−ε  

 

and 2
tZ  is any of 

5t~Z   or Z~t10 or Z~LN(0,1) 

or Z~t15, where N = normality, tV = t-distribution 
with V degree of freedom, and LN = log normal. 
 

Results 
Apart from the parameter setting in the DGP, 
selected studies of the parameter settings 

( ) ( ), , 0,  1,  0.15,  0.85W Bα =  and 

( ) ( ), , 0,  1,  0.25,  0.65W Bα =  (Lumsdaine, 

1995), and ( ) ( )6.0,3.0,1,, =BW α  and 

( ) ( )9.0,05.0,1,, =BW α  (Chen, 2002) were 
also studied. The results obtained agree with the 
results obtained from detailed studies of the 
DGP. 

Table 1 shows the results from a sample 
size of 200 data points. The table reveals that the 
estimates are poor for QMLE and ABE. On the 
basis of the Aikate information criteria (AIC), 
however, the QMLE performed better than the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ABE except under the log normal distribution 
where ABE performed better than QMLE. 

Table 2 shows that the estimates using a 
sample size of 500 are better, although still poor. 
The performance bridge between QMLE and 
ABE appears to be closing. This is observed 
from the AIC of QMLE and ABE under the 
different probability distribution functions, with 
one exception in the case of the log normality. 
Surprisingly, the QMLE method failed to show 
consistency, but it is notable that the 
performance of both methods was enhanced 
under the t-distribution as the degrees of 
freedom increase. 

Table 3 shows that both estimation 
models, QMLE and ABE, had equal 
performance ratings and gave consistent 
estimates in general. However, the ABE had an 
edge in its performance under t(5) and LN(0, 1) 
while QMLE had an edge under t(10) and t(15). 
The estimates under t(15) and t(10) were close to 
their true values for both estimation methods. 
Finally, the results shown in Table 3 are further 
confirmed by examining Table 4 where the two 
methods have nearly equal ratings based on the 
values of their AIC. 
 

Conclusion 
It is shown is this study that the ABE method is 
adequate in estimating GARCH model 
parameters and can perform as well as the 
maximum likelihood estimate for reasonably 
large numbers of data points when the 
distribution assumption is misspecified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Performance Rating of QMLE and ABE for Sample Size n = 200 

Estimates 

Estimation Method 
QMLE ABE 

W α  B AIC W α B AIC 

t (5) 0.16 0.01 0.77 -70.90 1.14 0.016 0.74 -65.312 

t (10) 0.14 0.014 0.76 -140.36 1.138 0.012 0.75 -124.31 

t (15) 0.15 0.17 0.76 -169.40 1.42 0.016 0.76 -157.21 

Ln (0, 1) 9.3 -0.2 0.86 129.17 6.2 0.20 0.81 108.23 
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A likelihood ratio test for testing the equality of the ranks of two non-negative definite covariance 
matrices arising in the area of signal processing is derived. The asymptotic distribution of the test statistic 
follows a Chi-square distribution from the general theory of likelihood ratio test. 
 
Key words: Likelihood ratio test; signal processing; white noise. 
 
 

Introduction 
In the area of signal processing, signals are 
observed at different sensors from different 
sources at different time points. Wax, Shan and 
Kailath (1984) and Whalen (1971) discussed 
models and varieties of problems in signal 
processing. In general, the signal processing 
model is as follows: 
 

X(t) = AS(t) + n(t)                 (1) 
 
where, X(t) = (X1(t), X2(t), …, Xp(t))′ is the px1 
observation vector at time t, S(t) = (S1(t), S2(t), 
…, Sq(t))′ is the qx1 vector of unknown random 
signals at time t, n(t) = (n1(t), n2(t), …, np(t))′ is 
the px1 random noise vector at time t, A = 
(A(Φ1), A(Φ2), …, A(Φq)) is the pxq matrix of 
unknown coefficients, and A(Φr) is the px1 
vector of functions of the elements of unknown 
vector Φr associated with the rth signal and q < p. 

In model (1), X(t) is assumed to be 
distributed as p-variate normal with mean vector 
zero and dispersion matrix 

2 2
p pA A I Iσ σ′Ψ + = Γ + , where AA ′Ψ=Γ  is 

unknown n.n.d. matrix of rank q(<p) and Ψ  =  
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covariance matrix of S(t), 2σ (>0) is unknown 

and 2
pIσ  is the covariance matrix of the noise 

vector n(t). In this case, the model is called 
white noise model. 

One important problem that arises in the 
area of signal processing is to estimate q, the 
number of signals transmitted. This problem is 
equivalent to estimating the multiplicity of the 
smallest eigenvalue of the covariance matrix of 
the observation vector. Anderson (1963), 
Krishnaiah (1976) and Rao (1983), among 
others, considered this problem. Wax and 
Kailath (1984) and Zhao, et al. (1986a, b) used 
information theoretic criteria proposed by 
Akaike (1972), Rissanen (1978) and Schwartz 
(1978) to estimate the number of signals. 

More recently, Chen, et al. (2001), Chen 
(2002) and Kundu (2000) developed procedures 
for estimating the number of signals. This article 
considers the two sample problem of testing the 
equality of the number of signals between two 
sets of data from two populations. This problem 
is relevant in practice in the area of signal 
processing because it is important to know 
whether the total numbers of signals received are 
the same or not for two different days, which 
can be separated by a lengthy time. This 
problem is equivalent to testing the equality of 
multiplicity of the smallest eigenvalue of the 
covariance matrices of observation vectors of 
the two sets of data. Consider the following 
model: 
 

( ) ( ) ( ); 1,2i i i iX t A S t N t i= + =  
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where, ( )iX t  is a px1 observation vector for the 

ith population, 1( ( ),..., ( ))
i

i i
i i i qA A A= Φ Φ , 

1( ) ( ( ),..., ( ))
i

i i
i qS t S t S t= , 1, 2i =  and ( )iN t  is 

a px1 random noise vector for the ith population. 
The following are assumed about ( )iN t  and 

( )iS t : 

iN ( ) ~ (0, ),

( ) ~ (0, ),

p i

i p i

t N
S t N

Σ

Ψ
 

 
and ( )iN t  and ( )iS t are independently 

distributed. The null hypothesis to test is 

0 1 2:kH q q k= = , and the alternative 

hypothesis is 1 1 2: , 0,1,..., 1.H q q k p≠ = −  At 

this point, the likelihood ratio test is derived next 
and asymptotic distribution of the test statistic is 
used to obtain the critical value. 
 
Likelihood Ratio Test: Case 1 

Consider 2 , 1,2.i pI iσΣ = =  The test 

hypotheses are: 
 

0 1 2:kH q q k= =  

and 

1 1 2: , 0,1,..., 1.H q q k p≠ = −  

 
The observations from the two populations are 
as follows: 

11 1 1( ),..., ( )nX t X t  are i.i.d. 
2

1 1 1~ (0, )p pN A A Iσ′Ψ +  and 

1 1 22 1 2( ),..., ( )n n nX t X t+ +  are i.i.d. 
2

2 2 2~ (0, ).p pN A A Iσ′Ψ +  

Let 2 , 1,2.i i i i pR A A I iσ′= Ψ + =  It may 

be stated that testing 0kH  is equivalent to testing 

the rank of i i iA A′Ψ  = k, i = 1, 2. 

Let ( )k
i iR R=  under 0kH , i = 1,2. Using 

spectral decomposition of ( )
1

kR  and ( )
2

kR , it can 

be written that 
 

( ) 2 2 2
1 1 1 1( ) ... ( )k

k k k pR U U U U Iλ σ λ σ σ′ ′= − + + − +
 

and 
 

( ) 2 2 2
2 1 1 1( ) ... ( )k

k k k pR VV V V Iμ σ μ σ σ′ ′= − + + − +
 

where 2
1 2 ... kλ λ λ σ≥ ≥ ≥ >  are the 

eigenvalues of ( )
1

kR  and 1,..., kU U  are the 

corresponding orthonormal eigenvectors of  

1 1 1A A′Ψ  and similarly, 2
1 2 ... kμ μ μ σ≥ ≥ ≥ >  

are the eigenvalues of ( )
2

kR  and 1,..., kV V  are the 

corresponding orthonormal eigen vectors of  

2 2 2A A′Ψ . 

Thus, under 0kH  the log-likelihood 

(apart from a constant term) is 
 

( ) ( ) 11 1
1 1 1

( ) ( ) 12 2
2 2 2

( ) 1 ( ) 11 2
1 1 2 2

1 2

1 1

2

ˆlog log .( ( ) )
2 2

ˆ  log .( ( ) )
2 2

ˆ ˆ.( ( ) ) .( ( ) )
2 2

  log log
2 2

  ( ) log
2

k k

k k

k k

k k

i i
i i

n nL R tr R R

n nR tr R R

n ntr R R tr R R

n n

n p k

λ μ

σ

−

−

− −

= =

= − −

− −

= − −

− −

− −

 

(2) 
where 

1

1 1 1
11

1ˆ ( ) ( ),
n

i i
i

R X t X t
n =

′=   

 
1 2

1

2 2 2
12

1ˆ ( ) ( )
n n

i i
i n

R X t X t
n

+

= +

′=   

and 

1 2n n n= + . 

 
Rather than maximizing (2), equivalently 
minimize 
 

* ( ) 1 ( ) 1

1 1 1 2 2 2

1 2
1 1

2

ˆ ˆlog .( ( ) ) .( ( ) )

            log log

            ( ) log

k k

k k

i i
i i

L n tr R R n tr R R

n n

n p k

λ μ

σ

− −

= =

= +

+ +

+ −

   (3) 
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Orthogonal matrices 1 2 1 2, , ,P P U U  exist 

such that 

1 1 1 1R̂ PD P′= ,      ( )
1 1 1 1

kR U U ′= Λ  

and 

2 2 2 2R̂ P D P′= ,      ( )
2 2 2 2

kR U U ′= Λ  

 
where, 1 1.( ,..., ),pD Diag l l=    1 2 ... pl l l≥ ≥ ≥  

are the eigenvalues of 1R̂  and similarly, 

2 1.( ,..., ),pD Diag ξ ξ=    1 2 ... pξ ξ ξ≥ ≥ ≥  are 

the eigenvalues of 2R̂  
2 2

1 1.( ,..., , ,..., ),kDiag λ λ σ σΛ =  and 
2 2

2 1.( ,..., , ,..., ).kDiag μ μ σ σΛ =  Thus, (3) 

can be rewritten as follows: 
 

* 1
1 1 1 1 1 1 1

1
2 2 2 2 2 2 2

1 2
1 1

2

1 1
1 1 1 1 1 2 2 2 2 2

1 2

log .( )

 .( )

 log log

 ( ) log

.( ) .( )

 term independent of  and

k k

i i
i i

L n tr PD PU U
n tr P D PU U

n n

n p k
n tr DV V n tr D V V

V V

λ μ

σ

−

−

= =

− −

′ ′= Λ
′ ′+ Λ

+ +

+ −
′ ′= Λ + Λ

+

   

(4) 
 
where, 1 1 1V PU′=  and 2 2 2V PU′=  and hence 1V  

and 2V  are orthogonal. 

Differentiating (4) with respect to 1V  

subject to 1 1 pVV I′=  and equating it to 0, results 

in 
1 1 2

1 1 1 1 1 1

1

0

. ., p

D V V V

i e V I

− − −′ Λ − Λ = 
=

 

 
Similarly, 2 pV I=  is obtained. Hence, given 

' , 'i is sλ μ  and 2σ , 

 

0

*

1 1
1 22 2

1 1

2

1 2
1 1

log

                

              log log ( ) log

kH

p p

i ik k
i i k i i k

i ii i

k k

i i
i i

Inf L

l
l

n n

n n n p k

ξ
ξ

λ σ μ σ

λ μ σ

= + = +

= =

= =

=

+ + +

+ + + −

   
   
   
      
   

 
 

 
 

(5) 
 
Differentiating (5) with respect to 'i sλ  and 

equating it to 0, results in 
 

1
1 2

0

ˆ. .,

i

i i

i i

l nn

i e l

λ λ

λ

− + =

=
 

 
Similarly, ˆ ; 1,..., .i i i kμ ξ= =   

Differentiating (5) with respect to 2σ  
and equating it to 0, results in 
 

1 2
2 1 1ˆ ,

( )

p p

i i
i k i k

n l n

n p k

ξ
σ = + = +

+
=

−

 
 

hence, 

0

1 1
1 22 2

2
1 2

1 1

1 2
1 1

1 2
1 1

1

log

ˆlog log ( ) log

log log

 ( ) log
( )

 (say)

k

p p
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i k i k

H
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In the above expression of 1L , the unknown k  

can be estimated by using Zhao, Krishnaiah and 
Bai’s (1986a,b) information criterion as follows: 

Estimate k  by k̂  such that 
 

0 1

ˆ( , ) min ( , ),n nk p
I k c I k c

≤ ≤ −
=  

where 
 

1

( 1)
( , ) (2 1) 2

2n n
k kI k c L c k pk k −  = − + + + − −  

  
 

 
and nc  is such that 

(i) lim 0n
n

c
n→∞

=  

 

(ii) lim
log log

n
n

c
n→∞

= ∞  

 
For practical purposes, choose lognc n=  which 

satisfies conditions (i) and (ii). Hence, 
 

ˆ ˆ
*
1 1 2

1 1

1 2
ˆ ˆ1 1

log log

ˆ      ( ) log
ˆ( )

k k

i i
i i

p p

i i
i k i k

L np n l n

n l n
n p k

n p k

ξ

ξ

= =

= + = +

= − − −

 
+ 

 − −
 −
 
 

 

   

(6) 
 
Similarly, 
 

[ ] 1 2

1 2

ˆ ˆ1 1

1 1 2 2

1 1 2 2

1

1 2

*
2

ˆ ˆ

1 2
1 1
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log
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i q i q

H

q q
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n p q n p q

L Sup L
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ξ

ξ

= + = +

= =

+
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(7) 
 
where, 1̂q  and 2q̂  are obtained such that 

1

2

1 2 1 20 1
0 1

ˆ ˆ( , , ) min ( , , )n nq p
q p

I q q c I q q c
≤ ≤ −
≤ ≤ −

=  

and 
 

1 2

1 2

1 2 1 2
1 1

1 2
1 11 1

2 2 1 1 2 2

1 2

1 1 2 2
1 2

( , , ) log log

( )
log

( ) ( ) ( )

( ) 1

( 1) ( 1)
( 1)( )

2 2

q q

n i i
i i

p p

i i
i q i q

n

I q q c np n l n

n l n
n p q

n p q n p q n p q

q q
c q q q qp q q

ξ

ξ

= =

= + = +

= + +

 
+ −   +    + − − + − 

 
 

+ + 
 +  − −+ − + − −  

 

 

 
 
and nc  is defined the same as previously. 

Hence log of likelihood ratio statistic is 
* *
1 2L L− , where *

1L  and *
2L  are given by (6) and 

(7) respectively. The critical value for this test 
can be approximated from the fact that 

asymptotically, 
1 2

* * 2
ˆ1 2 ˆ ˆ( , , )

2( ) ~
q q k

L L γχ− −  under 

0H  where, 

 

1 2

1 2 1 2

1 1 2 2

ˆˆ ˆ( , , )

ˆ ˆˆ ˆ ˆ ˆ  ( 2 ) ( 1)( 2 )

ˆ ˆ ˆ ˆ( 1) ( 1)ˆ ˆ  ( 1) .
2 2

q q k

q q k p q q k
q q q qk k

γ =

+ − + − + −
− −+ − − −

 
 

Likelihood Ratio Test: Case 2 

Consider, 2 , 1,2i i pI iσΣ = = . For case 

2, the problem can be solved similarly and the 
problem is easier than that in case 1.  
 
Likelihood Ratio Test: Case 3 

Consider, 2σ  is known in case 1. 
Without loss of generality, 2σ  = 1 can be 
assumed and in that case, the log likelihood must 
be maximized with respect to the eigenvalues 
subject to the condition that the eigenvalues are 
greater than 1, in which case the technique 
presented by Zhao, Krishnaiah and Bai (1986a, 
b) can be used. 
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A Linear B-Spline Threshold Dose-Response Model with Dose-Specific Response 
Variation Applied to Developmental Toxicity Studies 
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A linear B-spline function was modified to model dose-specific response variation in developmental 
toxicity studies. In this new model, response variation is assumed to differ across dose groups. The model 
was applied to a developmental toxicity study and proved to be significant over the previous model of 
singular response variation. 
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Introduction 
In a developmental toxicity study, fetal response 
is measured and recorded in each litter of an 
animal that has been directly exposed to some 
toxic substance that is environmentally ambient 
and that poses a developmental threat. 
Developmental endpoints include death, 
abnormality (all types), weight and length. A 
positive fetal response, equivalent to negative 
indicators of these endpoints, implies negative 
reaction to the toxic substance. Upon study 
execution, the fetal risk of indirect exposure can 
be assessed. The U.S. Environmental Protection 
Agency (USEPA) uses such study results to 
determine safety exposure levels for the general 
population (USEPA, 1991); statistical modeling 
is a key factor in estimating risk (Ryan, 2000). 

The default assumption in the risk 
assessment process for developmental toxicity 
studies   is   that   a  threshold  dose  level  exists 
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(USEPA, 1991). Threshold is the maximum 
dose level at which the response is equivalent to 
the background response. The USEPA uses the 
no-observed-adverse-effects-level (NOAEL) and 
benchmark dosing approaches. The NOAEL 
approach identifies the highest dose level at 
which the response is not statistically significant 
from the control. Benchmark dosing employs 
actual dose-response modeling. First proposed 
by Crump (1984), the benchmark dose is a lower 
confidence limit for the dose equivalent to a 
level that yields an acceptable limit excess risk. 
Although both approaches search for a tolerable 
dose level, neither is a pure threshold model. 

Cox (1987) introduced a variety of pure 
threshold models for application to toxicology 
studies. Schwartz, et al. (1995) applied a 
threshold model to a developmental toxicity 
study, using quasi-likelihood techniques for 
estimating model parameters. Hunt and Rai 
(2003) introduced the threshold dose-response 
model with a single parameter for response 
variation included in the dose-response function. 
All these approaches model the behavior of the 
dose-response pattern below the threshold level 
as one of constant response. The model 
proposed in this study inherently estimates the 
threshold, while tracking the change in the slope 
of the dose-response curve, thereby allowing 
more flexibility in the sense of being able to 
model multiple dose-response shapes. 
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Hunt and Rai (2003) first modeled the 
observed variation by including a parameter that 
equated to the interlitter response variation. 
Subsequently, they modified their model to 
include additional parameters to account for the 
noticeable multiple response variation across 
dose groups (Hunt & Rai, 2007). They reported 
significance with the model of dose-specific 
response variation compared to a model with 
uniform variation across dose levels. They also 
conducted simulations and found that the dose-
specific model with multiple variation 
parameters led to unbiased estimation of all 
model parameters, whether the true variance 
structure was that of single or multiple 
parameters, whereas the single-parameter model 
was less robust. These results are similar to 
those of Kupper, et al. (1986), who assumed the 
beta-binomial distribution for the response 
number for each litter and a logistic dose-
response model and found that the model with 
the multiple-intralitter correlation structure 
produced less biased results than the model that 
assumed a single-intralitter correlation. 

Similar to Hunt and Rai (2007), the 
model used in this study includes dose-specific 
parameters that estimate the response variation 
in addition to using polynomial regression 
splines to fit to the dose-response pattern 
(Ramsay, 1988). The regression spline approach 
was used formerly in a model with one 
parameter for response variation (Li & Hunt, 
2004). As the polynomial, degree one (linear) 
was used and a set of B-splines was constructed 
recursively to help fit the model. The theory of 
B-splines is described in de Boor (2001). 
Integral to this theory is the incorporation of 
interior knots as change points in the direction of 
the plotted curve. The ability to incorporate 
these knots is desirable for data from 
developmental studies as the threshold is 
inherently assumed. 
 

Methodology 
In a developmental toxicity study, there are g 
dose groups, each of which has a certain level of 
a toxic substance. The ith dose group contains 

im  animals, and therefore litters (i = 1, …, g). 

For ijn  implantations of the jth animal (j = 1, …, 

mi) in the ith dose group, let ijx be the number of 

fetuses that experience at least one adverse 
effect. Adverse effects include early and late 
fetal death and any kind of malformation 
(morphological, visceral or skeletal). An adverse 
effect such as death supersedes malformation. If 

( )j iP d be the probability of a fetus in the jth 

litter indirectly exposed to the i th dose level, id , 

experiencing an adverse event, then the 
proposed dose-response model is the following: 
 

3

,2
1
3

,2
1

2

2

exp( ( , ) )
( )

1 exp( ( , ) )

exp( ( , ) )

1 exp( ( , ) )

k k i i ij
k

j i

k k i i ij
k

i i ij

i i ij

B d z
P d

B d z

d z
d z

θ ξ σ

θ ξ σ

ξ σ
ξ σ

=

=

+
=

+ +

+
=

+ +




B θ

B θ

. (1) 

 
Here, 
 

( )2 1,2 2,2 3,2( , ) ( , ), ( , ), ( , )i i i id B d B d B d=B ξ ξ ξ ξ  

is the set of (order 2, degree 1) linear B-splines, 
with 1 interior knot, ξ , defined on the dose 

interval 1[ , )gd d , and derived recursively from 

the order 1 (degree 0) B-splines ,1( , )k iB d ξ . If 

1 2 1dξ ξ= = , 3ξ ξ= , and 4 5 gdξ ξ= = , then, 

the order 1 B-splines are given by: 
 



 ∈

= +

otherwise   ,0

),[   ,1
),( 1

1,
kki

ik

d
dB

ξξ
ξ k = 1, 2, 3, 

(2) 
 
and the order 2 B-splines formed recursively 
from (2) are given by: 
 

,2 ,1
1

2
1,1

2 1

( , ) ( , )

                  + ( , )

i k
k i k i

k k

k i
k i

k k

dB d B d

d B d

ξξ ξ
ξ ξ

ξ ξ
ξ ξ

+

+
+

+ +

−=
−

−
−

.   (3) 
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Also from (1), the number of elements 

in the three-parameter vector ( )T
321 ,, θθθ=θ , 

for the linear B-splines, corresponds to the 
degree, 1, plus the order, 2 (see de Boor, 2001). 
The interior knot ξ  represents a change point in 
the direction of the dose-response relationship. 
The modification in equation (1) from the 
previous model is in the parameter(s), iσ , 

coefficients of ijz ~N(0,1). Thus, with the 

subscript i, the response variability 2
iσ  is 

allowed to differ across dose levels i = 1, …, g. 
The likelihood function based on the 

dose-response model in equation (1) is given by: 
 

( )
2

1 1

exp( / 2)
     ( )[1 ( )]

2

( , , )

i

ij ij ij ij

ij

mg
n x n x ij

x j i j i ij
i j

z
P d P d dz

L

π

ξ
∞ −

−∞
= =

−
−

=

∏∏ 

θ σ

(4) 
 
where 1( ,..., )gσ σ=σ . Also note, the interior 

knot ξ  is regarded as a parameter of the model 
that must be estimated in addition to the 
parameters θ  and σ . The likelihood function in 
equation (4) integrates out the random effect ijz  

from the joint distribution, thereby leaving a 
marginal function for the number of fetal 
responses ijx (see Collett 1991, p. 208). 

Because (4) cannot be solved directly, 
an approximation is used via the Gauss-Hermite 
formula for numeric integration, given by: 
 

 
∞

∞−
=

=−
q

l
ll bfaduuuf

1

2 )()exp()( .      (5) 

 
Here q , the values of which la  and lb  depend, 

is chosen to approximate (5). The standardized 
tables from which the values of q , la , and lb  

may be found are in Abramowitz and Stegun 
(1972). 

To approximate, first let 2uzij = , 

based on equation (5), take the log of the 
likelihood function in equation (4), and 
approximate the log-likelihood function by: 
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1 1
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where 
1 1

ig m
iji j

N n
= =

=   the study sample size, 

and 
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θ σ

(7) 
 
A value of q = 20 was chosen for the 
approximation; this value has been deemed 
acceptable in many settings (Collett, 1991). 

A profile-likelihood approach was used 

to maximize ),,(
~ ξσθ  in equation (7) and to 

estimate the parameters of the model. The 
approach begins with a search over the dose 
interval (0, )gd , the domain of ξ . A large 

number of G  grid points { }* : 1,...,t t Gξ =  were 

chosen by using the formula: 
* /( 1)t gd t Gξ = × + . Once a fixed grid point *

tξ  

was selected, the order 1 and 2 B-splines in 
equations (2) and (3) were calculated by 
regarding the fixed grid point *

tξ  as the interior 

knot for that part of the search. As a result, the 

maximizer of the profile-likelihood *( , , )tξθ σ , 

denoted by )ˆ,ˆ( tt σθ , can be found and it yields 

),ˆ,ˆ(
~ *

ttt ξσθ , 1,2,...,t G= . Hence, the 

maximum likelihood estimates are given by: 
 

{ }*

*
ˆ ˆ( , , ): 1,2,...,

ˆ ˆ ˆˆ ˆ( , , ) arg max ( , , ).
t t t

t t tt Gξ
ξ ξ

=
=

θ σ
θ σ θ σ  

(8) 
To maximize the log-likelihood function 

in equation (6), the Olsson version (1974) of the 
Nelder-Mead simplex algorithm (1965) was 
used. The approach minimizes a function by 
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construction of a simplex of points; the 
dimension for each corresponds to the number of 
parameters that must be estimated. The 
magnitude of the simplex is the number of 

parameters + 1. Maximization of ~  was 

accomplished by minimizing ~−  using the 
simplex algorithm. This algorithm is coded in 
FORTRAN, version 90. 

The asymptotic variance of the estimates 

in ˆ ˆˆ( , , )ξθ σ  was obtained by evaluating 
1( , , )ξ−I θ σ , the inverse of the observed 

information matrix, at ˆ ˆˆ( , , )ξθ σ . (The formula 

for ),,( ξσθI  is in the Appendix.) The algorithm 
for computing asymptotic variances was written 
in R, version 2.5.1. Because the model with one 
parameter to account for variability (the single-
σ  model) is nested within the model that 
accounts for variability with multiple parameters 
(the multiple-σ  model in equation (1)), the 
likelihood ratio test (LRT) can be used to test for 
significance of the multiple-σ  model. 
 

Results 
The proposed model in equation (1) was applied 
to a well-known data set extracted from a 
developmental toxicity study conducted at the 
National Toxicology Program (Tyl, et al., 1983) 
and set 1499=G . The study was an 
experiment whereby fetal implants were injected 
into 131 CD-1 mice, which were subsequently 
randomly allocated across g = 5 dose levels of 
the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

developmentally toxic substance diethylhexyl 
phthalate (DEHP). The 5 dose levels are 0, 
0.025, 0.05, 0.10, and 0.15, in units of % of 
DEHP in the animal diet. Animals were 
allocated roughly equally across dose levels. The 
summarized results of the experiment are in 
Table 1. The first and last columns of Table 1 
are indicative of a threshold dose-response 
relationship. 

The complete vector of parameters for 
the multiple-σ  model applied to this data is 

given by 1 2 3 1 2 3 4 5( , , , , , , , , )θ θ θ ξ σ σ σ σ σ . 

Because this is a 9-parameter model, the simplex 
method was applied as described previously. 
Olsson’s algorithm allows up to 20 parameters. 
The resulting parameter estimates are shown in 
Table 2 and are compared with the estimates 
from the original single-σ  model. Standard 
errors (SEs) (also shown in Table 2), were 
estimated by the method described. Table 2 
shows that all related estimates from the two 
models are relatively comparable, with some 
noticeable bias in the estimates of the θ s. The 
log-likelihood estimated from (7) is −534.502 
with the log-likelihood from the single-σ  
model being −546.334; the resulting LRT 
statistic for the test of 0 : , 1,...,5iH iσ σ= =  is 

23.664; based on 4 df, the p-value is 
59.326 10−× , indicating significance of the 

multiple-σ  model. 
Figure 1 shows the plot of the linear B-

spline basis based on equation (3); based on the 
estimated interior knot value 0.036, the spline 
basis is constructed to have linearity below and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Summary of Results of Study of Fetal Exposure to DEHP 

DEHP Dose (% 
of Animal Diet) 

Number 
of Litters 

Total Number 
of. Fetuses 

Number of 
Affected Fetuses

Proportion of 
Affected Fetuses 

0 30 396 75 0.189 

0.025 26 320 37 0.116 

0.05 26 319 80 0.251 

0.10 24 276 192 0.696 

0.15 25 308 302 0.981 
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above the knot. Figure 2 shows the plot of the 
logistically transformed estimated dose-response 
curve based on equation (1) without the random 
effects. This plot is indicative of two separate 
linear functions below and above the interior 
knot. 

Figure 3 shows the plots of the two 
estimated curves from the multiple-σ  and 
single-σ  models, respectively. For the multiple-
σ  model, the interior knot 0.036 is very close to 
being the threshold value as the below-knot 
pattern follows closely to a horizontal line. For 
the single-σ  model, it is more of a linear 
pattern of decreasing slope below the knot. This 
degree of difference can be important as 
threshold estimation is crucial aspect of this 
analysis. Although estimate itself is relatively 
close, the general dose-response relationship is 
different and is indicative that the multiple-σ  
model is more appropriate in this situation. 
 

Conclusion 
A linear B-spline threshold dose-response model 
was modified to include multiple parameters for 
modeling dose-specific response variation in 
developmental toxicity study data. The previous 
model showed only singular response variation 
across dose groups. Upon application of this 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

new model, it was found that the addition of 
multiple parameters affected the estimates of 
non-variation model parameters and led to 
statistical significance of the new model over the 
prior one. The spline approach also is more 
robust than typical approaches that use standard 
regression functions which restrict the dose-
response relationship to one pattern. 

Another desirable feature of using 
splines for fitting is that it includes models 
which inherently assume a threshold. The 
approach of using regression splines to account 
for threshold effects has been used recently in 
other fields. For example, Molinari, et al. (2001) 
used spline functions in place of the standard 
linear functions in a Cox regression analysis of 
survival data from several clinical trials and 
Bessaoud, et al. (2005) used spline functions in 
the logistic regression setting for analysis of 
clinical data. The spline approach used in this 
study is similar to these. Both other studies also 
extended their model to handle several 
covariates and indicated the practicality of using 
linear splines to estimate an interior knot as a 
threshold value. As they were dealing with 
larger data sets, both groups looked at cases of 
multiple knots and higher-order spline functions, 
although neither went past cubic splines and 3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Estimates from the Multiple- and Single*-σ  Models 

Parameter 
Multiple-σ  

Estimates (SE) 
Single-σ Estimates 

(SE) 

1θ  –2.006 (0.352) –2.022 (0.305) 

2θ  −2.108 (0.277) −2.530 (0.357) 

3θ  5.519 (0.831) 4.668 (0.490) 

ξ  0.036 (0.006) 0.033 (0.007) 

1σ  1.426 (0.266) 1.331 (0.153)* 

2σ  0.009 (0.823) NA 

3σ  0.783 (0.223) NA 

4σ  2.554 (0.770) NA 

5σ  1.947 (0.472) NA 

*Single-σ  model has only one variability parameter 
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Figure 1: The Linear B-spline Basis on the Dose Interval [0, 0.15], with Estimated Interior Knot 036.0ˆ =ξ  

 

 

Figure 2: The Fitted Curve (solid line) and 95% Point-Wise Confidence Interval 
(dashed and dotted lines) for Logit(P) 
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knots. Bessaoud, et al. (2005) only used up to 
quadratic splines and both indicated that cubic 
splines resulted in overfitting and that linear and 
quadratic seemed appropriate. 

For developmental toxicity studies, the 
existence of a threshold is inherent in current 
guidelines and is accounted for in some manner 
during the risk assessment process, albeit 
indirectly (USEPA, 1991). The pure threshold 
model is a start in the direction of more 
adequately modeling these effects, yet the 
threshold itself has proved to be difficult to 
ascertain, and any threshold estimated from such 
a model may be specific to that data set, rather 
than being a universal value (Cox, 1987). The 
use of the splines to model behavior that is 
common to threshold models may help address 
this issue. Although the interior knot estimated 
in this study is not specifically the threshold 
dose level, the model is useful in that it 
identifies a change point in the direction of the 
dose-response pattern. It also inherently assumes 
threshold existence and robustly models several 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
other possible dose-response patterns (Hunt & 
Li, 2006). 

Another advantage of the spline model 
is the addition of parameters to more adequately 
model the different degrees of response variation 
observed to occur across dose groups in a 
developmental toxicity study. This more 
accurately specified model improves the 
estimation of important parameters such as the 
threshold or, in the case of the spline model, the 
change point. As illustrated in Kupper, et al. 
(1986) and in Hunt and Rai (2007), the model 
assuming multiple parameters to model response 
variation leads to negligible bias, whereas under 
conditions of major differences in dose-specific 
variation the model with single parameter may 
lead to extremely biased estimates. Thus, the 
model that has multiple variation parameters is 
the general model that should be used. However, 
Hunt and Rai (2007) also showed that in cases of 
relatively similar variation across dose groups, 
the single parameter model may suffice. 

Figure 3: Estimated Dose-Response Curves for the Multiple-σ  Model (left) and the Single-σ  Model (right) 
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The potential for future applications in 
this area include the fitting of higher degree 
polynomials; for example, the quadratic B-spline 
might be a reasonable extension to the current 
linear B-spline approach. The most immediate 
advantage is the relative smoothness of the 
quadratic spline over the linear. However, 
disadvantages include overfitting. Also, the 
number of dose levels becomes a factor when 
adding additional knots into the estimation. The 
combination of higher order and multiple knots 
could result in an overly complex model for this 
type of data. Due to the observed dose-response 
pattern of the data set under investigation in this 
article, the linear spline model with one knot 
appears to provide reasonable fit. 

The polynomial regression splines 
approach is a generally advantageous way to 
model data from developmental toxicity studies. 
Rather than requiring a direct estimation of a 
threshold level, it is able to fit several dose-
response curves to the data and implicitly can 
still indicate the existence of effects such as 
threshold. It is more robust than previously 
employed threshold models to such data (Cox, 
1987; Schwartz, et al., 1995; Hunt & Rai, 2003, 
2007). Additionally, the modification of having 
dose-specific variation allows for an even more 
robust model with less biased estimates. 
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Appendix 

To obtain the observed information matrix ),,( ξσθI , the second-order partial derivatives of ),,(
~ ξσθ  in 

equation (7) must be calculated with respect to ),,( ξσθ  and ),,(
~ ξσθ as: 
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Appendix (continued) 
and 
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As a result, the components of ),,( ξσθI  are given, respectively, as follows: 
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Appendix (continued) 
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Appendix (continued) 
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Bayesian Analysis of Evidence from Studies of Warfarin v Aspirin 
for Symptomatic Intracranial Stenosis 

 
Vicki Hertzberg Barney Stern Karen Johnston 
Emory University University of Maryland University of Virginia 

 
 
Bayesian analyses of symptomatic intracranial stenosis studies were conducted to compare the benefits of 
long-term therapy with warfarin to aspirin. The synthesis of evidence of effect from previous non-
randomized studies in monitoring a randomized clinical trial was of particular interest. Sequential 
Bayesian learning analysis was conducted and Bayesian hierarchical random effects models were used to 
incorporate variability between studies. The posterior point estimates for the risk rate ratio (RRR) were 
similar between analyses, although the interval estimates resulting from the hierarchical analyses are 
larger than the corresponding Bayesian learning analyses. This demonstrated the difference between these 
methods in accounting for between-study variability. This study suggests that Bayesian synthesis can be a 
useful supplement to futility analysis in the process of monitoring randomized clinical trials. 
 
Key words: Bayesian analysis, Bayesian hierarchical model, Bayesian learning, randomized clinical trial, 
epidemiology, stroke. 
 
 

Introduction 
A responsibility of the committees charged with 
monitoring randomized clinical trials is to track 
new evidence from similar studies. However, 
there are no specific guidelines for the assembly 
and analysis of such information. Recently the 
use of Bayesian methods has become accepted 
in the randomized clinical trials (RCT) 
community. (Berry, Berry, McKellar & Pearson, 
2003). One area in which Bayesian methods are 
useful is in the synthesis of evidence. 
(Spiegelhalter, Abrams & Myles, 2004) Thus 
such methods could provide a data safety 
committee with useful insights into relevant 
external information accumulating during the 
course of a study. 
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Although Bayesian methods are 

growing in acceptance in the RCT community, 
their use in stroke RCTs is still debated (Berry 
2005, Donnan, Davis & Ludbrook, 2005; 
Howard, Coffey & Cutter, 2005; Krams, Lees & 
Berry, 2005). This study explores the use of two 
Bayesian techniques for synthesis of evidence. 
Specifically sequential Bayesian learning and 
hierarchical Bayesian models are used (Gelman, 
Carlin, Stern & Rubin, 2004) to examine results 
from accumulating studies, then illustrate their 
application to the Warfarin v Aspirin for 
Symptomatic Intracranial Disease (WASID) 
trial. 
 
WASID Background 

A long-standing secondary stroke 
prevention strategy for patients with 
symptomatic intracranial atherostenosis has been 
warfarin therapy. Warfarin’s use was predicated 
on evidence published in a case series from the 
Mayo Clinic in the 1950’s (Millikan, Siekert & 
Shick, 1954). This finding was subsequently 
supported by similarly positive results in 
observational studies (Marzewski, et al,. 1982; 
Moufarrij, Little, Furlan, Williams & 
Marzewski, 1984; Chimowitz, et al., 1995; Thijs 
& Albers, 2000; Qureshi, et al., 2003) 



BAYESIAN ANALYSIS OF WARFARIN V ASPIRIN FOR INTRACRANIAL STENOSIS 

584 
 

In 1998, the National Institute of 
Neurological Diseases and Stroke (NINDS) 
funded the Warfarin vs Aspirin for Symptomatic 
Intracranial Disease (WASID) study, the first 
double-blinded, placebo-controlled randomized 
clinical trial (RCT) to test the superiority of 
warfarin (International Normalized Ratio [INR] 
2 – 3) over high-dose aspirin (650 mg twice 
daily) in this patient population. The protocol 
called for enrollment of 806 patients with 
angiographically proven symptomatic 
intracranial disease to determine a combined 
endpoint of stroke (ischemic and hemorrhagic) 
and vascular death. The sample size was chosen 
to give 80% power to detect a difference 
between event rates of 33% in the aspirin group 
compared to 22% in the warfarin group over 3 
years after, accounting for a 24% rate of 
discontinuation of study medications and 1% 
loss to follow-up, which translates to an 
alternative hazard ratio (HR) of 1.47. 

In July, 2003, after 569 patients were 
enrolled, NINDS, acting upon advice from the 
WASID Performance and Safety Monitoring 
Board (PSMB), stopped WASID because 
subjects randomized to warfarin were at 
significant increased risk of major non-endpoint 
adverse events and the potential for a benefit in 
primary endpoint events that was sufficient to 
outweigh these adverse events was very low. 
Indeed, after study closeout, there was no 
advantage of warfarin versus aspirin (HR = 1.04; 
95% CI = 0.73 to 1.48) (Chimowitz, et al., 
2005). 
 
Description of Prior Evidence 

Existing literature on warfarin treatment 
for intracranial stenosis was reviewed (Millikan, 
et al., 1954; Marzewski, et al., 1982; Moufarrij, 
et al., 1984; Chimowitz, et al., 1995; Thijs, et al., 
2000; Qureshi, et al., 2003). Of the six 
publications, two studies (Marzewski, et al., 
1982; Moufarrij, et al., 1984) insufficiently 
detailed; focus is placed on the remaining four 
publications in addition to the article describing 
the WASID trial results (Chimowitz, et al. 
2005). (Relevant features of these studies, along 
with pertinent effect estimates, are summarized 
in Table 1.) 

Study 1: Millikan, et al. (1954) 
examined Mayo Clinic patients with either 

intermittent insufficiency of the basilar system 
or thrombosis within the basilar arterial system. 
They found that 10/23 (43%) of patients who did 
not receive anticoagulant therapy died, 
compared to 3/21 (14%) of patients receiving 
anticoagulants. The estimated odds ratio (OR) 
for death comparing aspirin to warfarin (with 
associated 95% confidence interval [CI]) is 4.62 
(2.18, 9.79). 

Study 2: Chimowitz, et al. (1995) 
assessed cases with symptomatic, 
angiographically confirmed stenosis (≥ 50%) of 
a major intracranial artery in a retrospective, 
non-randomized cohort study. Of the 151 
patients included in the study, 88 were treated 
with warfarin and 63 were treated with aspirin. 
Treatments and dosages were chosen by local 
physician. Patients were followed by chart 
review and telephone or personal / next-of-kin 
interview until first occurrence of a primary 
endpoint (major vascular event defined as 
ischemic stroke, myocardial infarction or sudden 
death), change in therapy (from aspirin to 
warfarin or vice versa), or last contact or death 
due to non-vascular cause. Warfarin patients 
were followed for a median duration of 14.7 
months, experiencing 8.4 major vascular events 
per 100 patient years of follow-up. Aspirin 
patients were followed for a median duration of 
19.3 months, experiencing 18.1 major vascular 
events per 100 patient years. The estimate of 
relative risk (RR) of major vascular events in 
aspirin patients compared to warfarin patients is 
2.2 (95% CI, 1.2, 4.4). 

Study 3: Thijs and Albers (2000) 
interviewed 51 patients identified from chart 
review. All patients had symptomatic 
intracranial stenosis and had failed 
antithrombotic therapy. Of these, 32 patients 
were followed on warfarin and 19 on aspirin. 
Cox proportional hazards analysis was 
conducted to estimate the hazard ratio (HR) for 
cerebral ischemic events (including TIA) after 
adjusting for age, presence of anterior 
circulation disease, Caucasian race, and 
hyperlipidemia. The estimated aspirin to 
warfarin HR is 4.9 (95% CI, 1.7, 13.9). 

Study 4: Qureshi, et al. (2003) 
retrospectively assessed 102 patients with 
symptomatic vertebrobasilar stenosis. Cox 
proportional hazards analysis gave an estimated  
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HR of 55.6 (95% CI, 9.1, 333), comparing 
stroke free survival for patients receiving either 
warfarin or aspirin to patients receiving neither 
after adjustment for sex, race, hypertension, 
diabetes mellitus, cigarette smoking, 
hyperlipidemia, and lesion location. Additional 
data provided by the authors (Table 2) allowed 
calculation of the aspirin to warfarin HR as 0.63 
(95% CI, 0.25, 1.59). 

Study 5: Chimowitz, et al. (2005) was 
the only RCT comparing warfarin to aspirin in 
patients with this disease. 569 patients were 
followed for an average of 1.8 years. The aspirin 
to warfarin HR is 1.04 (95% CI, 0.74, 1.49). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Endpoints (Stroke or Death) in 
Qureshi, et al. (2003)* 

 Warfarin Aspirin 

 (n=46) (n =40) 

Number of Patients 46 40 

Stroke or Death 10 8 

Person-Months to 
Endpoint 

619 787 

*Qureshi & Suri, personal communication, 
December 22, 2005 

Table 1: Data Used in Study Analyses 

Study 
Number & 
Author(s) 

Year Endpoint 
Warfarin: 
#events/ 

#observations 

Aspirin: 
#events/ 

#observations 

Aspirin/Warfarin 
ratio (95% CI) 

Log(ratio) 
and (sd) 

Caveat* 

(1) 
Millikan, 

et al. 
1954 Death 3 / 21 patients 10 / 23 patients 4.62 (2.18, 9.79) 1.53 (0.75) A 

(2) 
Chimowitz, 

et al. 
1995 

Stroke, MI, 
sudden death 

26 / 143 
patient-year 

14 / 166 patient-
year 

2.17 (1.16, 4.35) 0.63 (0.33) B 

(3) 
Thijs and 

Albers 
2000 

Cerebral 
ischemic 
events 

Not given Not given 4.9 (1.7, 13.9) 0.77 (0.33) C 

(4) 
Qureshi, 

et al. 
2003 

Stroke or 
death 

10 / 619 
patient-month 

8 / 787 patient-
month 

0.63 (0.25, 1.59) -0.46 (0.47) D 

(5) 
Chimowitz, 

et al. 
2005 

Ischemic 
stroke, brain 
hemorrhage, 

vascular 
death 

62 / 504.4 
patient-year 

63 / 541.7 
patient-year 

1.04 (0.73, 1.48) 0.06 (0.18)  

Caveats: 
A: The treatment received by patients not receiving warfarin is unclear as are the inclusion criteria 
B: Retrospective study possibly subject to selection bias 
C: HRR is adjusted for age, presence of anterior circulation disease, Caucasian race, hyperlipidemia 
D: Unpublished result from data supporting paper; Qureshi & Suri, personal communication, December 22, 2005 
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Methodology 
Bayesian Learning 

Because the results of these studies were 
accumulated over 50 years, a Bayesian learning 
approach was first used in which the posterior 
distribution derived from the analysis of the 
oldest result was used as the prior distribution in 
order to derive the posterior distribution with the 
next study. The goal was to estimate the 
posterior distribution of θ, the unknown mean of 
the distribution of log(RRR) from its prior and 
the preceding study results with the posterior 
distribution derived from study i-1 serving as the 
prior distribution for study i for i = 2,…5. This is 
expressed as follows: 

Let Yi = log(RRRi). 
 
Assuming that Yi is a realization from a random 
distribution depending on θ, the Bayes theorem 
gives 

f(θ|Y1) ∝ f(Y1| θ) × f(θ),                (1) 
 

f(θ|Y2) ∝ f(Y2| θ) × f(θ|Y1).             (2) 
 
In general f(θ|Yi) ∝ f(Yi| θ) × f(θ|Yi-1), where 
f(θ) is the baseline prior distribution for θ and i > 
1, assuming that log(RRR) is normally 
distributed, using the normal distribution for the 
likelihood and its conjugate, the normal 
distribution, as the prior for θ. 
 
Hierarchical Random Effects Models 

A simultaneous analysis in a 
hierarchical random effects model was also 
considered, specifically each has an estimate Yi 
of a treatment effect θi, such that: 
 

Yi ~ f(yi | θi).                         (3) 
 
These treatment effects are treated as 
realizations of random variables from the same 
population, that is, 
 

θi ~ f(θi | θµ),                         (4) 
 
with θµ having its own prior distribution f(θµ). 

Because all of the studies present an 
estimate of risk which, after transformation, has 
a normal distribution, a normal distribution was 
used for functional forms of likelihood and prior 
distribution functions. For some studies the 

results may also be viewed as events per person-
years of observation per group. In this case 
Poisson hierarchical models can be used as 
follows: 
 

For group j in study i let the number of 
events, Eij ~ Poiss (nij × exp(φxj + εij)), 
where xj is an indicator variable denoting 
aspirin group membership, εij ~ N(0, σ2

ε) 
and φ ~ N(0, σ2

φ). Here nij, the number of 
person years at risk, is an offset term and φ 
is the population value for log(RRR). 

 
For each of these analyses a posterior mean was 
generated with 95% Bayes interval and posterior 
median with 50% Bayes interval or inter-quartile 
range. 

For each analysis three different 
baseline priors were used as follows: 

1) θ ~ N(0, 10) (a weakly non-informative 
prior; warfarin has no effect); 

2) θ ~ N(0, 0.5) (a skeptical prior; warfarin 
has no effect); 

3) θ ~ N(0.5, 10) (an enthusiastic prior; 
warfarin reduces risk by 40%).  

Additional sensitivity analyses included only 
studies 2, 4 and 5. 

As the Bayesian learning analysis 
proceeded, graphs of the posterior, likelihood 
and prior functions were inspected at each step. 
Thus, the relative influence that the likelihood 
and prior exerted in determination of the 
resulting posterior was able to be determined. 
 
Numerical Methods 

In addition to the distributions for the 
parameters of interest, non-informative prior 
distributions were placed on any nuisance 
parameters (e.g., σ2

ε in the hierarchical Poisson 
model) then integrated over these parameters in 
the posterior distribution. For estimation, Gibbs 
sampling (Casella & George, 1992) was used as 
performed in the WinBUGS software 
(Spiegelhalter, Thomas, Best, Gilks & Lunn, 
2003). Convergence was monitored using the 
scale reduction factor (SRF) (Gelman, et al., 
2004). For each model analyzed, 3 chains were 
run with 1,000 iterations each (discarding the 
first 500 in each chain). For analyses which 
resulted in SRF > 1.1 the number of iterations 
was increased in each chain by a factor of 10 the 
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program run again until the SRF ≤ 1.1. Note that 
such increases were only necessary for analysis 
of the hierarchical random effects Poisson 
models. 
 

Results 
Bayesian Learning Analyses 

The results of the sequential Bayesian 
learning analysis with log(RRR) as a normal 
variate using studies 1-4 are shown in Table 3. 
Note that the Bayesian results that were 
available at the time that WASID began (studies 
1 and 2) were mixed in their support for an 
effect of warfarin as hypothesized for the 
WASID clinical trial, i.e., RRR = .33 / .22 = 1.5, 
versus the null hypothesis RRR = 1.  

Specifically, although the 95% Bayes 
intervals based on the initial informative prior or 
the initial enthusiastic prior include 1.5 but 
exclude 1, the interval based on the initial 
skeptical prior includes both values. With the 
subsequent addition of study 3’s results the 
evidence favoring warfarin grew stronger. The 
95% Bayes intervals stemming from both initial 
skeptical and initial enthusiastic priors now 
include 1.5 but exclude 1. Moreover the interval 
stemming from the initial non-informative prior 
excludes both 1 and 1.5 to the left. Addition of 
study 4 has little effect on point and interval  
estimates. Further point estimates stemming  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from the non-informative prior tend to be much 
higher than corresponding point estimates 
stemming from skeptical and enthusiastic priors 
at each point. This disparity is due to the 
difference in variance between the non-
informative prior versus skeptical and 
enthusiastic priors. 

A hypothetical future study of warfarin 
and aspirin would incorporate the results of 
study 5. With this addition, note that interval 
estimates stemming from initial non-informative 
and skeptical priors now include 1. Indeed, the 
Bayes interval from the initial skeptical prior 
now excludes 1.5 to the right. The Bayes 
interval stemming from the enthusiastic prior 
excludes 1 but covers 1.5 (the alternative 
hypothesis for WASID) and 2. 

Sensitivity analyses including only 
studies 2, 4 and 5 result in posterior point and 
interval estimates that are not much different 
after adding study 4 into the analysis, especially 
with the skeptical and enthusiastic priors (Table 
4). The results after introduction of only study 2 
are like the results after inclusion of both studies 
1 and 2, suggesting that the optimistic estimates 
from study 1 do not contribute substantially to 
the overall conclusion. Additional sensitivity 
analysis including study 4 produced posterior 
point and interval estimates that were virtually 
identical suggesting that study 4 does not have a 
substantial impact on the analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Posterior Point and Interval Estimates for θ = RRR from Bayesian Learning Analysis Using All Studies 
Study 
Added 

Interval Type Non-Informative Prior Skeptical Prior Enthusiastic Prior 

1 
Mean θ (95% Bayes interval) 4.48 (1.14, 17.64) 1.11 (0.75, 1.63) 1.82 (1.23, 2.69) 

Median θ (50% Bayes interval) 4.48 (2.72, 7.39) 1.22 (1.0, 1.35) 1.82 (1.49, 2.23) 

2 
Mean θ (95% Bayes interval) 2.46 (1.36, 4.44) 1.35 (0.91, 1.99) 1.82 (1.23, 2.69) 

Median θ (50% Bayes interval) 2.46 (2.01, 3.00) 1.35 (1.22, 1.49) 1.82 (1.65, 2.01) 

3 
Mean θ (95% Bayes interval) 3.00 (1.67, 5.42) 1.65 (1.12, 2.44) 2.01 (1.36, 2.97) 

Median θ (50% Bayes interval) 3.00 (2.46, 3.67) 1.65 (1.49, 1.82) 2.01 (1.82, 2.46) 

4 
Mean θ (95% Bayes interval) 2.72 (1.65, 4.95) 1.65 (1.11, 2.46) 2.01 (1.35, 3.00) 

Median θ (50% Bayes interval) 2.72 (2.23, 3.32) 1.65 (1.49, 1.82) 2.01 (1.82, 2.23) 

5 
Mean θ (95% Bayes interval) 1.35 (1.00, 2.01) 1.35 (1.00, 1.43) 1.49 (1.11, 2.01) 

Median θ (50% Bayes interval) 1.49 (1.22, 1.65) 1.35 (1.22, 1.49) 1.49 (1.35, 1.65) 
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Simultaneous Analysis of RRR Using 
Hierarchical Random Effects Models with the 
Normal Distribution 

The simultaneous analysis of these 
studies was examined in the normal model for 
log(RRR). Posterior point and interval estimates 
for the analyses of various subsets of studies are 
shown in Table 5. The results are very similar to 
the results of the comparable Bayesian learning 
analysis, although with wider intervals, 
indicating different consequences of the ways 
these methods address variability between 
studies. Specifically the Bayesian learning 
analysis provides for a posterior variance 
estimate at each step, but this estimate can drift 
between steps. In comparison, the simultaneous 
nature of the hierarchical models requires 
adjustment over all studies at once. 
 
Simultaneous Analysis of RRR Using 
Hierarchical Random Effects with the Poisson 
Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The HR from a Poisson model that 
compares events per person year between 
thegroups was examined, with interest in the 
ratio between the two Poisson parameters, which 
are an estimate of RRR. Since not all studies 
were sufficiently detailed in their report of rates, 
these analyses are limited. Nevertheless the 
extent of knowledge for 3 of the existing studies 
and subsets was examined. 

The results of these analyses are shown 
in Table 6. The first analysis, using only study 2, 
represents a simple Bayesian analysis using a 
Poisson distribution. Note that the value of 1.5 is 
included in the 95% Bayes interval estimates, 
while the null value 1.0 is excluded by the 
analysis using the non-informative and 
enthusiastic priors. The other two analyses used 
a hierarchical random effects Poisson model to 
adjust for differences between studies. In these 
analyses using studies 2 and 4 or using studies 2, 
4, and 5, the 95% Bayes interval estimates 
include both 1 and 1.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Posterior Point and Interval Estimates for θ = RRR from Bayesian Learning Analysis Using 
Restricted Set of Studies 

Study 
Added 

Interval Type 
Non-Informative 

Prior 
Skeptical Prior Enthusiastic Prior 

2 
Mean θ (95% Bayes interval) 2.23 (1.23, 4.01) 1.35 (0.91, 1.99) 1.82 (1.23, 2.69) 

Median θ (50% Bayes interval) 2.23 (1.82, 2.72) 1.35 (1.22, 1.65) 1.82 (1.65, 2.01) 

4 
Mean θ (95% Bayes interval) 2.01 (1.22, 3.67) 1.35 (0.90, 2.01) 1.82 (1.22, 2.72) 

Median θ (50% Bayes interval) 2.23 (1.82, 2.46) 1.35 (1.22, 1.49) 1.82 (1.65, 2.01) 

5 
Mean θ (95% Bayes interval) 1.35 (0.90, 1.82) 1.22 (0.90, 1.65) 1.35 (1.11, 1.82) 

Median θ (50% Bayes interval) 1.35 (1.11, 1.49) 1.22 (1.11, 1.35) 1.35 (1.22, 1.49) 
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Conclusion 
Reconciliation of the results of WASID with 
previous reports of a strong effect of warfarin is 
difficult. Many would advocate that the biases of 
the prior observational studies should discount 
those results in favor of the unbiased result of 
the RCT. Certainly the use of randomization, 
blinding, standardization of patient management 
protocols, and central endpoint adjudication 
ensure bias-free estimate of treatment effect 
from the RCT. However, RCTs are not without 
other sources of bias stemming from the 
selection of participating physicians and clinics 
as well as the enrollment of consenting patients. 
Thus, a growing community of investigators 
(Berry, et al., 2003; Brophy & Lawrence, 1995; 
Diamond & Kaul, 2004) advocates the use of 
Bayesian statistical methods to interpret results 
of clinical trials as well as to synthesize 
evidence from a set of studies about the effect of 
treatment(s). Bayesian statistical methods have 
recently gained notice in the arena of stroke 
clinical trials (Berry, 2005; Donnan, et al., 2005; 
Howard, et al., 2005; Krams, et al., 2005). 

Although taken as a single trial the 
WASID results would seem to extinguish the 
utility of warfarin as a secondary prevention 
strategy for patients with symptomatic 

intracranial stenosis, some  have  not  been  so  
quick  to   proclaim 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
warfarin’s demise (Koroshetz, 2005). In this 
presentation we explore application of Bayesian 
methods to interpret the WASID results in light 
of the overall accumulation of evidence 
regarding the effect of warfarin and consider 
what insights the Bayesian analyses might have 
indicated along the way? 

At the time of the WASID proposal 
submission, the accumulated evidence taken 
from the Bayesian learning perspective fit neatly 
with the standard of equipoise necessary to 
justify NIH funding. Specifically, those coming 
to the debate with no or vague prior beliefs (i.e., 
the non-informative prior) as well as those 
favoring warfarin (i.e., the enthusiast) could 
justify RRR = 1.5 and exclude RRR = 1. On the 
other hand, those coming to the problem 
favoring no difference (i.e., the skeptic) could 
justify both values for RRR. With the 
hierarchical analyses the alignments of skeptics 
and enthusiasts remain the same, while those 
with vague beliefs now align with the skeptics. 

In July 2003, when the study was 
terminated for safety reasons, the results of the 
Bayesian learning analyses all excluded RRR = 
1 from interval estimates, regardless of prior 
beliefs. When the analysis is restricted to studies 
meeting perceived quality criteria, the initial 
state of equipoise described above remained. 

Table 5: Posterior Point and Interval estimates for θ = RRR Using Hierarchical Random Effects Model 
with Normal Distribution 

Studies 
Included 

Interval Type 
Non-Informative 

Prior 
Skeptical Prior Enthusiastic Prior 

1, 2, 3, 4 
Mean θ (95% Bayes interval) 2.72 (0.27, 14.88) 1.11 (0.67, 1.82) 1.82 (1.22, 3.00) 

Median θ (50% Bayes interval) 3.00 (2.01, 4.06) 1.11 (1.00, 1.35) 1.82 (1.65, 2.23) 

1, 2, 3, 
4, 5 

Mean θ (95% Bayes interval) 2.01 (0.55, 6.69) 1.22 (0.74, 1.82) 1.82 (1.22, 2.72) 

Median θ (50% Bayes interval) 2.01 (1.49, 2.72) 1.22 (1.00, 1.35) 1.82 (1.49, 2.01) 

2, 4 
Mean θ (95% Bayes interval) 1.49 (0, 4.9 x 105) 1.00 (0.67, 1.65) 1.65 (1.00, 2.72) 

Median θ (50% Bayes interval) 1.82 (0.27, 7.39) 1.00 (0.90, 1.22) 1.65 (1.35, 2.01) 

2, 4, 5 
Mean θ (95% Bayes interval) 1.22 (0.07, 20.1) 1.11 (0.67, 1.65) 1.49 (1.11, 2.46) 

Median θ (50% Bayes interval) 1.35 (0.90, 2.01) 1.11 (1.00, 1.22) 1.49 (1.35, 1.82) 
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Moreover, the hierarchical analyses limited to 
published results as of July 2003 would be no 
different than before. However, the inclusion of 
the rates from study 4, if they had been 
published at that time, leads to hierarchical 
model results that lend support for both 
RRR=1.5 or RRR=1 regardless of prior belief. 
The lack of strict correspondence between 
conclusions from Bayesian learning with those 
from Bayesian hierarchical random effects 
models results from differences between 
methods in incorporating between-study 
variability. The studies do have differences in 
design (sample size, endpoint definitions and 
inclusion criteria) warranting allowances in the 
modeling process. Although none of studies 1-4 
were randomized clinical trials, hierarchical 
models can be extended to adjust for different 
classes (such as RCTs versus non-randomized 
studies) when 2 or more studies of each class are 
present. Unfortunately only one RCT was 
available to include. 

It is particularly interesting to note the 
change in conclusions wrought by the 
unpublished, negative result of Study 4. This 
finding reinforces the importance of finding all 
results, even negative ones, in compiling 
evidence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ability to generate interval estimates 
and use differing priors deepens understanding 
of the current evidence in light of previous 
studies. These results point to the utility of 
Bayesian analyses of prior studies as an 
additional tool for monitoring clinical trials. The 
concordance of frequentist and Bayesian 
efficacy analyses would provide robust 
confirmation of the appropriateness of a futility 
analysis when decisions regarding the 
continuation or stopping of a clinical trial are 
made. 
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BRIEF REPORTS 
A Maximum Test for the Analysis of Ordered Categorical Data 
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Different scoring schemes are possible when performing exact tests using scores on ordered categorical 
data. The standard scheme is based on integer scores, but non-integer scores were proposed to increase 
power (Ivanova & Berger, 2001). However, different non-integer scores exist and the question arises as to 
which of the non-integer schemes should be chosen. To solve this problem, a maximum test is proposed. 
To be precise, the maximum of the competing statistics is used as the new test statistic, rather than 
arbitrarily choosing one single test statistic. 
 
Key words: Exact test, maximum test, ordered categorical data, scores. 
 
 

Introduction 
Ordered categorical data occur often in various 
applications. For example, Gregoire & Driver 
(1987) pointed out that such ordinal data 
frequently result from questionnaire surveys in 
behavioral science investigations. Sheu (2002) 
noted that ordered categorical variables play an 
important role in psychological studies because 
precise measurement is not always possible. 
Hence, Likert scales are frequently used in 
psychological research (Rasmussen, 1989). 
Moreover, ordered categorical data can be found 
in medical studies (Rabbee, et al., 2003). 

When performing exact tests using 
scores on ordered categorical data, different 
scoring schemes are possible. In case of three 
categories the standard scheme is v1 = (0 0.5 1); 
because this scheme corresponds to (0 1 2) it is 
called integer scoring. Ivanova & Berger (2001) 
proposed non-integer scores: the middle score 
should be changed to either 0.49 or 0.51 in order 
to increase the power. 
 Senn (2007) criticized these non-integer 
scores because “there is no substantial reason  
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either in terms of likelihood under an alternative 
hypothesis or on the basis of some other appeal 
to logic or experience” (p. 297) to replace the 
standard scheme. Berger (2007) replied that the 
standard scheme is also arbitrary in case of 
ordered categorical data and, therefore, the 
increased power is a rationale for choosing a 
non-integer scoring scheme. However, the 
question is which of the two non-integer 
schemes should be chosen? Berger wrote: “The 
existence of two viable replacements creates this 
controversy... If it helps at all, then always 
shrink to 0, and use only 0.49” (Berger, 2007, p. 
299). The latter proposal is arbitrary and may 
therefore be regarded as unacceptable. However, 
using the less powerful test with integer scores 
may also be regarded as unacceptable. Is there 
an alternative? 
 In some areas, statistical genetics for 
example, it is common to apply a maximum test. 
That is, the maximum of several competing test 
statistics is used as a new statistic, and the 
permutation distribution of the maximum is used 
for inference (Neuhäuser & Hothorn, 2006). 
Thus, an alternative is using the maximum of the 
competing statistics as the new test statistic, 
rather than arbitrarily choosing one single test 
statistic. Thus, in the case of three categories 
with the three scoring schemes v1 = (0 0.5 1), v2  
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= (0 0.49 1), and v3 = (0 0.51 1) the test is 
performed with the statistic 

),(max
3,2,1

max ii
vCST

=
=  
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are the individual test statistics with scores vi = 
(vi1, vi2, vi3), Cij are the frequencies for ordered 
category j (j = 1, 2, 3) in group i (i = 1, 2), and ni 
is the sample size of group i. 

This maximum test has the advantage of 
a less discrete null distribution and an 
accompanied increased power as the single tests 
based on the non-integer scores. The following 
example was considered by Ivanova & Berger 
(2001) and discussed by Senn (2007): C11 = 7, 
C12 = 3, C13 = 2, C21 = 18, C22 = 4, C23 = 14. 

In case of this example, the maximum 
test gives a significant result for the table (C11, 
C12) = (9, 1), as the scheme v3 does, in contrast 
to v1. For all 76 possible tables with the margins 
of this example the maximum test’s p-value is at 
least as small as the p-value of the test with the 
standard scheme. To be precise, the two p-values 
are identical for 25 tables, but for 51 tables the 
maximum test’s p-value is smaller. Moreover, 
the maximum test’s p-value is always smaller 
than or equal to the bigger one of the two p-
values of the non-integer scoring tests; note that 
in this example ),(max

3,2
ii

vCS
=

 results in an 

identical test as Tmax. 
 

Conclusion 
The maximum test is a compromise that avoids 
the arbitrary choice of just one scheme and 
maintains the advantage of the non-integer 
scores. Note that the maximum test is not 
complicated. Because the exact permutation null 
distribution of Tmax is used for inference, one 
does not need to know the correlation between 
the different ),( ivCS . Thus, when a researcher 
selects a test based on the trade-off between 
power and simplicity – as suggested by Ivanova 
& Berger (2001) – the maximum test is a 
reasonable choice. In addition, the approach may 
have some appeal to logic: there is more than 

one possible test statistic, so combine the 
competing statistics. Recently, it was shown that 
a maximum test can be regarded as an adaptive 
test with the test statistics themselves as 
selectors (Neuhäuser & Hothorn, 2006). Thus, in 
a maximum test the data decide and the 
statistician does not need to arbitrarily choose 
between different tests. 

Note that a multitude of alternative tests 
applicable to ordered categorical data exist (Liu 
& Agresti, 2005). However, the discussed score 
tests as well as the proposed maximum tests 
have – at a minimum – the advantage that they 
are easy to apply. 
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Norton (1984) presented a calculation of the MLE for the parameter of the double exponential distribution 
based on the calculus. An inductive approach is presented here. 
 
Key words: MLE, median, double exponential. 
 
 
 

Introduction 
Norton (1984) derived the MLE using a calculus 
argument. This article shows how to obtain it 
using a simple induction argument that depends 
only on knowing the shape of a function of sums 
of absolute values. Some introductory 
mathematical statistics textbooks, such as Hogg 
and Craig (1970) give the answer to be the 
median – although correct, this does not tell the 
whole story as Norton points out; this is 
emphasized here. 
 

Methodology 
It is useful to review the behavior of linear 
absolute value functions and sums of linear 
absolute value functions. For example, consider 
the function 
 

.8.1)( xxg −=  

 
Its graph is shown in Figure 1. Note that it has a 
V-shape with a minimum at x = 1.8. Now 
consider a sum of two linear absolute value 
terms: 
 

.2.38.1)( xxxh −+−=  
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Plots of this function and its components, |1.8 - 
x| and |3.2 - x|, are shown in Figure 2. Note that 
h(x) takes a minimum at all points in the interval 
1.8 ≤ x ≤ 3.2. 
 
The MLE 

The double exponential distribution is 
given by 
 

1
( ) , .

2
xf x e xθ− −= − ∞ < < ∞  

 
For the sample { },,...,, 21 nxxx  the log-

likelihood function is 
 

.)2/1ln()(  −−=
i

ixn θθ  

 
Maximizing this function with respect to θ is 
equivalent to minimizing 
 

.)(  −=
i

in xg θθ  

 
 To obtain the MLE for general n, begin 
with the case n = 1 where 1 1( ) .g xθ θ= −  This 

function has a minimum at 1,xθ =  hence, for n 

= 1, the MLE is 
 

.1xMLE =θ  
 

 
 



HURLEY 
 

595 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Plot of g(x) = | x - 1.8| 

 

Figure 2: Plot of h(x) = |1.8 - x| + |3.2 - x| 
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Now, consider the case n = 2. For the purposes 
herein it is useful to order the observations, thus, 
suppose that the sample is { })2()1( , xx  where 

.)2()1( xx <  The value of θ which minimizes 

must now be found using 
 

.)( )2()1(2 θθθ −+−= xxg  

 
 Based on the above, this function takes 
the form 
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and has a minimum at any point θ in the interval 

.)2()1( xx ≤≤ θ  Hence the MLE for n = 2 is 

 

(1) (2)(1 ) , 0 1.MLE x xθ λ λ λ= + − ≤ ≤  

 
For this case, the median is defined 
( ) 2/)2()1( xx +  and is a solution, but it is not the 

only solution. 
Next, consider the case n = 3 with an 

ordered   sample   .)3()2()1( xxx ≤≤    Using  the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

same graphical analysis, it can be shown that 
 

θθθθ −+−+−= )3()2()1(3 )( xxxg  

 
has a unique minimum at ,)2(x=θ  the median. 

In the case n = 4, the solution is 
 

(2) (3)(1 ) , 0 1.MLE x xθ λ λ λ= + − ≤ ≤  

 
Thus, the median is a solution, but not the only 
solution. 
 

Conclusion 
Extending the argument for general n is 
straightforward. It is the median, ,)2/)1(( +xx  if n 

is odd and the generalized median, 
,)1( )12/()2/( +−+ nn xx λλ  when n is even. 
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New Effect Size Rules of Thumb 
 

Shlomo S. Sawilowsky 
Wayne State University 

 
 
Recommendations to expand Cohen’s (1988) rules of thumb for interpreting effect sizes are given to 
include very small, very large, and huge effect sizes. The reasons for the expansion, and implications for 
designing Monte Carlo studies, are discussed. 
 
Key words: Effect size, d, Monte Carlo simulation. 
 
 

Introduction 
Some primary considerations for conducting an 
appropriate Monte Carlo simulation were 
explicated in Sawilowsky (2003). For 
convenience, the list is repeated: 
 

• the pseudo-random number generator has 
certain characteristics (e. g. a long period 
before repeating values); 

• the pseudo-random number generator 
produces values that pass tests for 
randomness; 

• the number of repetitions of the 
experiment is sufficiently large to ensure 
accuracy of results; 

• the proper sampling technique is used; 
• the algorithm used is valid for what is 

being modeled; and 
• the study simulates the phenomenon in 

question. 
 
The purpose of this article is to add the 

following two considerations: 
 

• avoid the use of so-called true random 
number generators if the randomization 
process requires replication; and 

• ensure study parameters are 
comprehensive, which necessitates new 
effect size rules of thumb. 
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 Regarding the first addition, so-called 
true random number generators are based on 
sampling atmospheric or thermal noise, quantum 
optics, radioactive decay, or other such physical 
and deterministic phenomena. They aren’t 
seeded, as are pseudo-random number 
generators, and hence it isn’t possible to 
replicate the sequences they produce. The 
unscrupulous could make minor substitutions in 
the sequence to bias the results in such a way 
that may not be detectable by generic tests for 
randomness. 

Lotteries, military conscriptions, or the 
like may attempt to overcome this limitation by 
having the public witness the process via direct 
observation, which is more compelling than 
video records that are easily alterable. However, 
in applications where transparency via 
replication is essential, such as random sampling 
in a study commissioned to support allegations 
in a lawsuit, the use of true random number 
generators are inappropriate. Thus, if the Monte 
Carlo study is also a simulation the appropriate 
number generator, so-called true or pseudo, must 
be chosen. 

Regarding the second addition, Monte 
Carlo studies conducted on statistical tests’ 
robustness and power properties require choices 
pertaining to sample sizes, alpha levels, number 
of tails, choice of competing statistics, inter-
correlations of data structures, etc. The study 
parameters need not, however, be restricted to 
commonly occurring conditions. In Sawilowsky 
(1985), the rank transform was studied in the 
context of a 2×2×2 ANOVA employing sample 
sizes of 2 to 100 per cell. It is perhaps as 
unlikely that a classroom or clinic would contain 



NEW EFFECT SIZE RULES OF THUMB 

598 
 

N=2 study participants as it is that there would 
be N=100 per cell. Those study parameters were 
chosen because they represented the minimum 
and the maximum sample sizes that could be 
handled given the constraints of the time-share 
mainframe computing resources available at that 
time. Prudence dictated sample sizes also be 
chosen between the two extremes to ensure there 
were no anomalies in the middle of the 
robustness rates or power spectrum. 

Another important study parameter that 
must be considered in designing Monte Carlo 
simulations, which thanks to Cohen (e.g., 1962, 
1969, 1977, 1988) has come to be the sin qua 
non of research design, is the effect size (for an 
overview, see Sawilowsky, Sawilowsky, & 
Grissom, in press). Previously, I discussed my 
conversations with Cohen on developing an 
encyclopedia of effect sizes: 
 

I had a series of written and telephone 
conversations with, and initiated by, 
Jacob Cohen. He recognized the 
weaknesses in educated guessing 
(Cohen, 1988, p. 12) or using his rules 
of thumb for small, medium, and large 
effect sizes (p. 532). I suggested 
cataloging and cross-referencing effect 
size information for sample size 
estimation and power analysis as a more 
deliberate alternative. 
 
Cohen expressed keen interest in this 
project. His support led to me to 
delivering a paper at the annual meeting 
of the AERA on the topic of a possible 
encyclopedia of effect sizes for 
education and psychology (Sawilowsky, 
1996). The idea was to create something 
like the “physician’s desk reference”, 
but instead of medicines, the publication 
would be based on effect sizes. 
(Sawilowsky, 2003, p. 131). 

 
In the context of the two independent 

sample layout, Cohen (1988) defined small, 
medium, and large effect sizes as d = .2, .5, and 
.8, respectively. Cohen (1988) warned about 
being flexible with these values and them 
becoming de facto standards for research. (See 
also Lenth, 2001.) Nevertheless, both warnings 

are summarily ignored today. That issue cannot 
be resolved here, but an important lesson that 
can be addressed is redressing the assumption in 
designing Monte Carlo studies that the effect 
size parameters need only conform to the 
minimum and maximum values of .2 and .8. 

For example, when advising a former 
doctoral student on how to deconstruct the 
comparative power of the independent t test vs. 
the Wilcoxon test (Bridge, 2007), it was 
necessary to model very small effect sizes (e.g., 
.001, .01). This led to disproving the notion that 
when the former test fails to reject and the later 
test rejects it is because the latter is actually 
detecting a shift in scale instead of a shift in 
location. It would not have been possible to 
demonstrate this had the Monte Carlo study 
began by modeling effect sizes at .2. 

Similarly, in the Monte Carlo study in 
1985 mentioned above, I modeled what I called 
a very large effect size equivalent to d = 1.2. 
This was done because Walberg’s (1984) 
collection of effect sizes pertaining to student 
learning outcomes included a magnitude of 
about 1.2 for the use of positive reinforcement as 
the intervention. Subsequently, in Monte Carlo 
studies I have conducted, and those conducted 
by my doctoral students that I supervised, the 
effect size parameters were extended to 1.2. 

As the pursuit of quantifying effect sizes 
continued even larger effect sizes were obtained 
by researchers. For example, the use of cues as 
instructional strategies (d=1.25, Walberg & Lai, 
1999), the student variable of prior knowledge 
(d = 1.43, Marzano, 2000, p. 69), and identifying 
similarities and differences (d = 1.6, Marzano, 
2000, p. 63), exceeded what I defined as very 
large. 

Incredibly, effect sizes on the use of 
mentoring as an instructional strategy to 
improve academic achievement have been 
reported in various studies and research 
textbooks to be as large as 2.0! The existence of 
such values, well beyond any rule of thumb 
heretofore published, has led to researchers 
presuming the studies yielding such results were 
flawed. 

For example, when DuBois, et al. (2002) 
were confronted with study findings of huge 
effect sizes in their meta-analysis of mentoring, 
they resorted to attributing them as outliers and 
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deleting them from their study. This was just the 
first step to ignore the obvious. They then 
resorted to Winsorizing remaining “large effect 
sizes [as a] safeguard against these extreme 
values having undue influence,” (p. 167). I have 
long railed against excommunicating raw data 
with a large percentage of extreme values as 
outliers, preferring to re-conceptualize the 
population as a mixed normal instead of a 
contaminated normal (assuming the underlying 
distribution is presumed to be Gaussian; the 
principle holds regardless of the parent 
population). 

Recently, Hattie (2009) collected 800 
meta-analyses that “encompassed 52,637 
studies, and provided 146,142 effect sizes” (p. 
15) pertaining to academic achievement. Figure 
2.2 in Hattie (2009, p. 16) indicated about 75 
studies with effect sizes greater than 1. Most fall 
in the bins of 1.05 to 1.09 and 1.15 to 1.19, but a 
few also fall in the 2.0+ bin. 
 

Conclusion 
Based on current research findings in the applied 
literature, it seems appropriate to revise the rules 
of thumb for effect sizes to now define d (.01) = 
very small, d (.2) = small, d (.5) = medium, d 
(.8) = large, d (1.2) = very large, and d (2.0) = 
huge. Hence, the list of conditions of an 
appropriate Monte Carlo study or simulation 
(Sawilowsky, 2003) should be expanded to 
incorporate these new minimum and maximum 
effect sizes, as well as appropriate values 
between the two end points. 
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Estimation of the Standardized Mean Difference for Repeated Measures Designs 
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This simulation study modified the repeated measures mean difference effect size, dRM

= , for scenarios 

with unequal pre- and post-test score variances. Relative parameter and SE bias were calculated for dRM
≠  

versus dRM
= . Results consistently favored dRM

≠  over dRM
=  with worse positive parameter and negative SE 

bias identified for dRM
=  for increasingly heterogeneous variance conditions. 
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Introduction 
Meta-analysis (Glass, 1976) entails pooling of 
results from related studies in an effort to 
synthesize the research results. Studies typically 
use various experimental designs and thus 
various effect size measures. In quantitative 
meta-analysis, a primary goal is to combine 
effect sizes to produce an overall effect size. 

An effect size (ES) index is used to 
quantify the strength of the relationship between 
two variables. Each study’s finding can be 
represented as an ES. The use of the ES is 
important as it allows for the comparison of 
multiple studies’ results. ES indices do, 
however, differ depending on the type of study 
performed (e.g., repeated measures, independent 
groups, etc.). Although multiple effect sizes can 
be handled using meta-analysis, the effect size 
of interest in this study is the standardized mean 
difference for repeated measures designs, δRM. 
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The formula for the δRM and its 

associated variance have been derived by Becker 
(1988) and Morris and DeShon (2002). The δRM 
is necessary for summarizing results from a 
repeated measures (RM) design in which the 
same subjects are measured before and after a 
treatment is administered. Many primary studies 
employ the RM design. This design allows the 
researcher to assess change in an outcome that 
occurs within a subject as a result of what 
happens between a pre- and post-test. Little 
research has been done to assess the relative 
parameter and standard error bias of δRM 
estimates. 

In the RM design, one group of subjects 
is measured before and after a treatment is 
administered. The RM design’s ES measure is 
defined as follows: 
 

post pre D
RM

D D

−
= =

μ μ μδ
σ σ

             (1) 

 
where μpre and μpost are the population means of 
the pre- and post-test scores, respectively, μD is 
the population mean difference in the pre- and 
post-test scores, and σD is the standard deviation 
of change scores (Gibbons, Hedeker, & Davis, 
1993). The associated sample estimate is 
calculated as follows: 
 

post pre
RM

D

X X
d

s
−

= ,                  (2) 
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where X pre  and X post are the sample means of 

the pre- and post-test scores, respectively, and sD 
is the sample standard deviation of difference 
scores. 

The sampling variance formula for δRM 
is: 

( )
( )

2
2 2

2

1 1
1

3 1
RM

RM
RM

n n
n n c n

−  = + −  −   −  
δ

δσ δ  

(3) 
 
where n is the number of paired observations in 
the RM design study (Morris & DeShon, 2002) 
with a corresponding formula used for sample 
estimates: 
 

( )
( )

2
2 2

2

1 1
1

3 1
RM

RM
d RM

dns nd .
n n c n

−  = + −  −   −  
 

(4) 
 
Equations 3 and 4 also contain the bias 
correction factor, c(n − 1), that is approximated 
by 

( ) ( )
3

1 1
4 1 1

c n
n

− = −
− −

             (5) 

 
(Hedges, 1982). 

Calculation of σD is necessary to obtain 
δRM (see Equation 1). Morris and DeShon (2002) 
presented the following relationship between the 
standard deviation of difference scores, σD, and 
the standard deviation of the original scores, σ: 
 

( )2 1D
= = −σ σ ρ                      (6) 

 
where ρ is the correlation between the pre- and 
post-test scores. The corresponding sample 
estimate is: 

2(1 )Ds s r= = −                       (7) 

 
with r representing the sample correlation. Both 
formulas (Equations 6 and 7) are founded on the 
assumption that the population standard 
deviations for the pre- and post-test scores are 
equal (i.e., pre postσ =σ =σ ). Thus, the notation of 

including a superscript with = was adopted to 

distinguish the relevant formula when 

pre postσ =σ  is assumed from scenarios in which 

pre postσ σ≠  is assumed. 

If σpre ≠ σpost , another formula for σD 

must be employed that does not assume equal 
variances, namely: 
 

2 2 2D pre post pre ,postσ σ σ σ≠ = + −     (8) 

 

where 2
preσ  and 2

postσ  are the population 

variances of the pre- and post-groups, 
respectively, and σpre,post is the covariance 
between the pre- and post-test scores such that: 
 

pre,post pre postσ =ρσ σ .                 (9) 

 
Therefore, the equation for σD

≠  (see Equation 8) 
becomes: 
 

2 2 2D pre post pre postσ = σ +σ ρσ σ≠ − .   (10) 

 
The corresponding sample estimate is then: 
 

2 2 2D pre post pre posts s s rs s .≠ = + −         (11) 

 
Note that when pre postσ =σ , Equations 10 and 11 

reduce to the corresponding (population and 
sample) homogeneous variances formula for σD 
(and sD) (see Equations 6 and 7, respectively). 

This leads to the two primary foci of this 
study. First, empirical research has not been 
conducted to assess how well the formulas for 

δRM and for 2

RM
σδ  work in terms of parameter 

and standard error (SE) bias when pre- and post-
test scores are and are not homogeneous. 
Second, applied meta-analysts assume the 
homogeneity of the pre- and post-test scores and 
use the sD

=  formula (Equation 7) as opposed to 

sD
≠  (Equation 11) when calculating the estimate 

of δRM  (Equation 2). Thus, this study also 
investigated the effect of using the conventional 
formula for sD

=  (Equation 7) when the 
homogeneity of variance assumption is violated 
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and the modified formula for sD (i.e., sD
≠

 in 
Equation 11) should be used. 

In the current simulation study, four 
design factors were manipulated, including: the 
true value of δRM, the correlation between pre- 
and post-test scores, sample size, and values for 
the pre- and post-test score standard deviations 
to assess the effect of these factors on parameter 
and SE estimates of δRM. Results were compared 
when the pre- and post-test scores were assumed 

to have equal variances ( 2 2
pre postσ σ= ), thus sD

=  

was used to calculate dRM  (i.e., providing dRM
= ) 

with the results based on the assumption that 
2 2
pre postσ σ≠  for which sD

≠  was calculated and 

used to obtain the associated dRM  (i.e., dRM
≠ ). 

 
Methodology 

A Monte Carlo simulation study was conducted 
to assess the relative parameter and SE bias of 
the two estimates of δRM. The two estimates, 
dRM

=  and dRM
≠ , are distinguished by the formula 

used to calculate the sample standard deviation 
of the difference (Equation 7 versus Equation 
11). Four design factors were manipulated in 
this study and are described in detail below. R 
software version 2.8.1 was used to generate the 
data and to estimate and summarize all relevant 
parameters. 
 
δRM 

True values of δRM were manipulated to 
assess their effect on parameter and SE 
estimation. These values included: no effect, and 
small, moderate, and large effects (δRM = 0, 0.2, 
0.5, and 0.8, respectively). 
 
Correlation Between Pre- and Post-Test Scores 

The following values of the true 
correlation, ρ, between pre- and post-test scores 
were manipulated to evaluate the effect of no, a 
small, moderate, and large correlation (ρ = 0, 
0.2, 0.5, and 0.8, respectively). 
 
Sample Size 

Sample size was investigated at three 
levels including a small, moderate, and 
moderately large sample size (n = 10, 20, and 
60, respectively). Note that the sample sizes 

used were the same for each of the pre- and 
post-test groups. 
 
Ratio of the Pre- and Post-Test Scores’ Standard 
Deviations 

Five different values of the ratio of the 
pre- and post-test scores’ standard deviations 
were investigated. The following patterns were 
evaluated: σpre = σpost, σpre < σpost, and σpre > 
σpost. For the two unequal standard deviations’ 
conditions, the degree of the difference was also 
manipulated, with the following four unequal 
combinations of values for σpre:σpost 
investigated: 0.8:1.2, 0.5:1.5, 1.2:0.8, and 
1.5:0.5. For the σpre = σpost conditions, both pre- 
and post-test true standard deviations were 
generated to be one (i.e., σpre = σpost = 1). 
 
Repeated Measures Effect Size 

To manipulate the true value of δRM, the 
value of μpre was set to zero across conditions 
and the value of μpost was derived to result in the 
following values for δRM: 0, 0.2, 0.5, and 0.8. 
Specifically, μpost is a function of δRM, μpre, and 
σD (see Equation 1) and thus can be derived 
because 

( )( )post RM D preμ = δ σ +μ            (12) 

 
and the values of δRM and σD are determined by 
the relevant conditions with μpre always set to 
zero. 
 
Estimates of δRM 

For each generated dataset, Equation 2 
was used to calculate the sample standardized 
mean difference effect size for RM designs. Two 
values for sD ( sD

=  and sD
≠ ) were used with the 

former based on the assumption of equal pre- 
and post-test score variances (Equation 7) and 
the latter based on the assumption that 

2 2
pre postσ σ≠  (Equation 11). The resulting 

estimates were termed dRM
=

 and dRM
≠ , 

respectively. 
 
Data Generation 

For each set of conditions, a set of 
random, bivariate normally distributed scores 
(correlated in the population with the condition’s 
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value for ρ) were generated to provide the pre- 
and post-test scores for that condition’s 
replication. Two values of dRM ( dRM

=  and dRM
≠ ) 

were calculated using each dataset as described 
above. Ten thousand replication datasets were 
generated for each combination of conditions. 
 
Bias Assessment 

Relative parameter and SE estimation 
bias of each dRM ( dRM

≠  and dRM
= ) was 

summarized and assessed using Hoogland and 
Boomsma’s (1998) formulas and criteria. More 
specifically, relative parameter bias was 
calculated using the following formula: 
 

( ) ( )j j

j
j

θ̂ θ
ˆB θ =

θ

−
                      (13) 

 
where θj represents the jth parameter’s true value 

and ˆ θ j  is the mean estimate of parameter j 
averaged across the 10,000 replications per 
condition. Hoogland and Boomsma 
recommended considering a parameter’s 
estimate as substantially biased if its relative 
parameter bias exceeds 0.05 in magnitude. This 
cutoff means that estimates that differ from their 
parameter’s true value by more than five percent 
should be considered substantially biased. 

Hoogland and Boomsma’s (1998) 
commonly used formulation of relative standard 
error bias is as follows: 
 

( ) ( )j j

j

j

ˆ ˆθ θ

θ̂
θ̂

ŝ σ
B s =

σ

−
                   (14) 

 

where 
j

ˆŝθ
 

is the mean of the SE estimates 

associated with parameter estimates of θj and 

j
ˆσθ

 
is the empirically true standard error of the 

distribution of jθ̂ s calculated by computing the 

standard deviation of each conditions’ 10,000 

jθ̂ s. Hoogland and Boomsma recommended 

using a cutoff of magnitude 0.10 indicating 
substantial relative SE bias. Note that, for 

conditions in which the true parameter, δRM, was 
zero, simple parameter estimation bias was 
calculated. 
 

Results 
Results are presented in three sections, one for 
each of the three sample size conditions. Note 
that relative parameter bias is not calculable if 
the true parameter value is zero (see Hoogland 
& Boomsma, 1998), thus, simple bias rather 
than relative bias is calculated for conditions in 
which the true δRM is zero. 
 
Sample Size = 10: Relative Parameter Bias 

Substantial positive relative parameter 
bias was identified for all non-zero values of δRM 
and ρ. No substantial bias was found in the ρ = 0 
conditions. In all cases, the positive bias 
identified was greater when dRM

=  was used 

rather than dRM
≠  (see Table 1). No criterion 

exists to indicate whether simple bias is 
substantial or not, however, the simple bias 
values seem small for the δRM = 0 conditions. 
When dRM

=
 was used, the more the ratio of 

pre postσ : σ  values diverged from 1:1, the worse 

the bias. Similarly, the stronger the ρ, the worse 
the bias for the dRM

=
 estimate. 

The dRM
≠

 estimator was unaffected by 

the pre postσ :σ  and ρ values. However, 

substantial bias was detected for both dRM
≠

 and 

dRM
=  even when pre postσ :σ  was 1:1. Patterns of 

bias identified for a given pre postσ :σ  ratio 

closely mimicked patterns identified for the 
inverse ratio. Thus, across conditions, results 
found for the 1.5:0.5 ratio matched those for the 
0.5:1.5 ratio. Similarly, results for the 0.8:1.2 
ratio conditions matched those for the 1.2:0.8 
ratio. This result held across all conditions 
including the three sample sizes and thus will 
not be mentioned further. Parameter estimation 
performance of both the dRM

≠  and dRM
=  

estimators was unaffected by the true δRM value 
(see Table 1). The positive parameter estimation 
bias of the dRM

≠
 estimator was pretty 

consistently close to 10% across the n = 10 
conditions. 
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Table 2: Summary of Relative Standard Error Estimation Bias by Generating Condition for n = 10 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 
0 0.048 0.032 0.046 0.023 0.051 -0.012 0.051 0.027 0.049 -0.011 

0.2 0.048 0.062 0.046 0.039 0.051 0.048 0.051 0.053 0.049 0.047 
0.5 0.051 0.012 0.041 -0.034 0.046 -0.147 0.046 -0.028 0.039 -0.152 
0.8 0.043 -0.013 0.048 -0.112 0.056 -0.308 0.047 -0.110 0.042 -0.317 

δRM Value 
0 0.046 0.016 0.044 -0.031 0.043 -0.143 0.042 -0.032 0.038 -0.145 

0.2 0.041 0.011 0.036 -0.039 0.049 -0.135 0.042 -0.030 0.042 -0.142 
0.5 0.057 0.022 0.047 -0.025 0.049 -0.134 0.051 -0.023 0.046 -0.129 
0.8 0.060 0.020 0.046 -0.027 0.060 -0.111 0.061 -0.014 0.052 -0.120 

Overalla 0.051 0.017 0.043 -0.031 0.050 -0.131 0.049 -0.025 0.044 -0.134 
Notes: Substantial relative SE bias values are highlighted in the table; aOverall = mean relative SE bias across all 
δRM conditions excluding δRM = 0 conditions. 

Table 1: Summary of Relative Parameter Estimation Bias by Generating Condition for n = 10 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 
0 0.002 0.003 -0.003 -0.003 0.002 0.004 0.002 0.002 0.002 0.004 

0.2 0.090 0.106 0.097 0.130 0.096 0.199 0.093 0.125 0.087 0.190 
0.5 0.092 0.126 0.099 0.182 0.087 0.355 0.086 0.168 0.092 0.358 
0.8 0.105 0.165 0.097 0.325 0.100 0.896 0.088 0.311 0.089 0.866 

δRM Value 
0a 0.002 0.003 -0.003 -0.003 0.002 0.004 0.002 0.002 0.002 0.004 

0.2 0.103 0.133 0.104 0.194 0.091 0.397 0.090 0.178 0.072 0.360 
0.5 0.089 0.118 0.101 0.190 0.094 0.392 0.088 0.175 0.092 0.390 
0.8 0.092 0.121 0.093 0.181 0.093 0.394 0.088 0.176 0.096 0.399 

Overallb 0.095 0.124 0.099 0.188 0.093 0.394 0.089 0.177 0.087 0.383 
Notes: Substantial relative parameter bias values are highlighted in the table; aMean simple bias is presented for δRM 
= 0 conditions; b Overall = mean relative parameter bias across all δRM conditions excluding δRM = 0 conditions. 
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Sample Size = 10: Relative SE Bias 
No relative SE bias was found for dRM

≠  
for the n = 10 conditions (see Table 2). For 

,RMd =  however, substantial negative bias was 

identified in certain conditions. Substantial 

negative bias (i.e., ( ) 0 10
jθ̂

B s > . , see Equation 

14) was found at the most extreme pre postσ :σ  

values (i.e., when pre postσ :σ  = 1.5:0.5 and 

pre postσ :σ  = 0.5:1.5). This bias occurred for 

conditions in which ρ = 0.5 or larger and the 
magnitude of the bias seemed to be slightly 
larger for smaller δRM (see Table 2). Substantial 
negative parameter estimation bias was also 
detected for dRM

=  for pre postσ :σ  = 0.8:1.2 and 

for pre postσ :σ  = 1.2:0.8 for the largest ρ 

condition (i.e., when ρ = 0.8). 
 
Sample Size = 20: Relative Parameter Bias 

No substantial parameter bias was 
identified when dRM

≠
 was used to estimate δRM 

across the n = 20 conditions (see Table 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substantial positive relative parameter bias was 
found when dRM

=
 was used to estimate δRM, 

however, the degree of parameter bias was lower 
for the n = 20 conditions (see Table 3) than was 
observed for the n = 10 conditions (in Table 1).  

No substantial relative parameter bias 
was found in the ρ = 0 conditions for dRM

= . With 
the slightly larger sample size, no substantial 
bias was detected when the pre postσ :σ  ratio was 

1:1. Otherwise, the pattern of the bias found 
matched that noted for the n = 10 conditions. 
The more the value of the pre postσ :σ  ratio 

diverged from 1:1 (and for larger ρ values), the 
more the degree of substantial parameter bias 
increased. Values of δRM did not seem to affect 
the degree of bias (see Table 3). 
 
Sample Size = 20: Relative SE Bias 

The relative SE bias results for the n = 
20 conditions (see Table 4) very closely matched 
those described for the n = 10 conditions (see 
Table 2). No substantial relative SE bias was 
found when using dRM

≠  to estimate δRM. For 

dRM
= , however, in the most extreme pre postσ :σ   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Summary of Relative Parameter Estimation Bias by Generating Condition for n = 20 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 

0 -0.001 -0.001 -0.001 -0.001 0.001 0.002 0.002 0.002 <0.001 <0.001 
0.2 0.048 0.053 0.038 0.056 0.049 0.120 0.049 0.067 0.038 0.107 
0.5 0.034 0.046 0.043 0.097 0.036 0.253 0.043 0.097 0.042 0.258 
0.8 0.038 0.060 0.042 0.219 0.043 0.724 0.039 0.216 0.041 0.722 

δRM Value 

0a -0.001 -0.001 -0.001 -0.001 0.001 0.002 0.002 0.002 <0.001 <0.001 
0.2 0.037 0.047 0.031 0.094 0.040 0.285 0.040 0.103 0.037 0.283 
0.5 0.043 0.053 0.045 0.110 0.043 0.290 0.048 0.112 0.044 0.288 
0.8 0.045 0.055 0.040 0.103 0.041 0.286 0.042 0.105 0.042 0.288 

Overallb 0.041 0.052 0.039 0.102 0.041 0.287 0.043 0.106 0.041 0.287 
Notes: Substantial relative parameter bias values are highlighted in the table; aMean simple bias is presented for δRM 
= 0 conditions; bOverall = mean relative parameter bias across all δRM conditions excluding δRM = 0 conditions. 
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ratio value conditions, substantial negative bias 
was again found for the stronger ρ conditions 
(i.e., when ρ = 0.5 and 0.8). The negative 
relative SE bias was slightly worse for smaller 
δRM values (see Table 4). Last, substantial 
negative SE bias was also identified for the 

pre postσ :σ
 

= 0.8:1.2 and pre postσ :σ  = 1.2:0.8 

conditions in the ρ = 0.8 conditions. Again, 
slightly worse substantial negative bias was 
noted for lower true δRM values. 
 
Sample Size = 60: Relative Parameter Bias 

With the larger sample size (n = 60) 
conditions, the degree of bias decreased further 
(see Table 5). As with the n = 20 conditions, no 
substantial bias was detected when dRM

≠
 was 

used to estimate δRM. Substantial positive 
relative parameter bias was only found in certain 
conditions when using dRM

=
 to estimate δRM. 

Specifically, substantial positive bias was found 
in the most extreme pre postσ :σ  ratio value 

conditions (i.e., when pre postσ :σ  = 1.5:0.5 and 

pre postσ :σ  = 0.5:1.5) and for the ρ = 0.8 

conditions when σpre :σpost  = 1.2:0.8 and  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
σpre :σpost  = 0.8:1.2. 

The positive bias for ρ  = 0.5 paired 
with the pre postσ :σ  = 1.2:0.8 and pre postσ :σ  = 

0.8:1.2 conditions only just exceeded Hoogland 
and Boomsma’s substantial relative parameter 
bias criterion. The magnitude of the bias 
increased for larger ρ values and was unaffected 
by δRM values. 
 
Sample Size = 60: Relative SE Bias 

For the n = 60 conditions, no substantial 
relative SE bias was found with dRM

≠  (see Table 
6). The same pattern and degree of substantial 
negative relative SE bias as was found for the n 
= 10 and n = 20 conditions was noted when 
using dRM

=  to estimate δRM. Consistent bias was 

found for the most extreme pre postσ :σ  values 

when ρ = 0.5 and 0.8 and in the pre postσ :σ  = 

0.8:1.2 and pre postσ :σ  = 1.2:0.8 conditions when 

ρ = 0.8. The bias was worse within pre postσ :σ  

values for higher ρ conditions. There seemed to 
be a very slight effect of δRM value on the bias 
with lower δRM values associated with slightly 
larger degrees of negative bias (see Table 6). 

Table 4: Summary of Relative Standard Error Estimation Bias by Generating Condition for n = 20 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 

0 0.020 0.016 0.017 0.007 0.027 -0.006 0.030 0.019 0.010 -0.024 
0.2 0.020 0.018 0.017 0.023 0.027 0.010 0.030 0.016 0.010 0.018 
0.5 0.017 0.003 0.017 -0.034 0.018 -0.151 0.019 -0.031 0.016 -0.150 
0.8 0.023 0.001 0.011 -0.118 0.013 -0.330 0.018 -0.115 0.018 -0.329 

δRM Value 

0 0.018 0.008 0.020 -0.034 0.017 -0.144 0.021 -0.034 0.010 -0.152 
0.2 0.020 0.010 0.010 -0.044 0.016 -0.144 0.014 -0.039 0.012 -0.145 
0.5 0.015 0.003 0.013 -0.041 0.011 -0.142 0.021 -0.033 0.019 -0.135 
0.8 0.025 0.011 0.025 -0.025 0.024 -0.120 0.028 -0.026 0.021 -0.127 

Overalla 0.019 0.008 0.017 -0.036 0.017 -0.138 0.021 -0.033 0.016 -0.140 
Notes: Substantial relative SE bias values are highlighted in the table; aOverall = average relative SE estimation bias 
across δRM and ρ conditions. 
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Table 5: Summary of Relative Parameter Estimation Bias by Generating Condition for n = 60 Conditions 

Condition 

pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 

0 <0.001 <0.001 -0.001 -0.001 <0.001 <0.001 -0.001 -0.001 -0.001 -0.001 
0.2 0.015 0.017 0.018 0.030 0.007 0.061 0.010 0.022 0.010 0.065 
0.5 0.012 0.016 0.010 0.053 0.011 0.204 0.013 0.055 0.007 0.200 
0.8 0.015 0.021 0.012 0.165 0.010 0.643 0.009 0.162 0.014 0.647 

δRM Value 

0a <0.001 <0.001 -0.001 -0.001 <0.001 <0.001 -0.001 -0.001 -0.001 -0.001 
0.2 0.014 0.017 0.010 0.062 0.007 0.229 0.009 0.061 0.013 0.235 
0.5 0.016 0.019 0.014 0.066 0.009 0.229 0.012 0.065 0.012 0.232 
0.8 0.013 0.016 0.014 0.067 0.013 0.235 0.010 0.062 0.012 0.233 

Overallb 0.014 0.017 0.013 0.065 0.010 0.231 0.011 0.063 0.012 0.233 
Notes: Substantial relative parameter bias values are highlighted in the table; aMean simple bias is presented for δRM 
= 0 conditions; bOverall = mean relative parameter bias across all δRM conditions except for δRM = 0 conditions. 

Table 6: Summary of Relative Standard Error Estimation Bias by Generating Condition for n = 60 Conditions 

Condition 
pre postσ :σ  Ratio Value 

1:1 0.8:1.2 0.5:1.5 1.2:0.8 1.5:0.5 

dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  dRM
≠  dRM

=  

ρ Value 

0 0.001 0.001 0.009 0.004 0.004 -0.016 0.015 0.009 -0.003 -0.023 
0.2 0.001 0.009 0.009 0.003 0.004 0.004 0.015 0.005 -0.003 0.010 
0.5 0.001 -0.003 0.010 -0.030 0.007 -0.148 0.001 -0.039 0.009 -0.146 
0.8 0.014 0.007 0.006 -0.114 0.005 -0.338 0.013 -0.109 0.005 -0.336 

δRM Value 

0 0.004 0.001 0.011 -0.036 0.004 -0.148 0.008 -0.038 0.008 -0.142 
0.2 0.006 0.003 0.005 -0.041 0.005 -0.144 0.005 -0.042 0.003 -0.147 
0.5 0.006 0.003 0.010 -0.035 0.012 -0.132 0.009 -0.035 0.004 -0.139 
0.8 0.009 0.005 0.002 -0.040 <0.001 -0.134 0.010 -0.033 0.006 -0.129 

Overalla 0.006 0.003 0.007 -0.038 0.005 -0.140 0.008 -0.037 0.005 -0.139 
Notes: Substantial relative SE bias values are highlighted in the table; aOverall = average relative SE estimation bias 
across δRM and ρ conditions. 
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Conclusion 
The purpose of this study was to compare 
estimation of the repeated measures design 
standardized mean difference effect size, δRM, 
using the conventional dRM

=
 estimator with the 

newly derived dRM
≠

 modification under a variety 
of conditions including unequal pre- and post-
test score variances. The dRM

≠
 estimator was 

designed to correct the standard deviation of the 
difference scores used in the calculation of δRM 
(see Equation 1). The correction recognizes 
potential differences in the population variances 
of the pre- and post-test scores. Most statistical 
tests of differences are based on the assumption 
that pre- and post-test score variances are equal. 
However, it is reasonable to assume that this 
assumption is commonly violated. This study 
assessed the robustness of the dRM

=  and dRM
≠

estimates of δRM in scenarios with unequal 
variances. 

Overall, the results convincingly 
supported use of the suggested modification, 
dRM

≠ , as an improved estimator of δRM. Neither 
substantial parameter nor SE bias was noted for 
this estimate for sample sizes of 20 or 60 across 
the spectrum of δRM and ρ values investigated. In 
comparison, use of the conventional dRM

=  
estimator, however, cannot be recommended. 
Substantial positive parameter estimation bias 
was noted when using the dRM

=  estimator even 
in the equal variance conditions (i.e., when 

pre postσ =σ ) for n = 10 and n = 20. Substantial 

bias was also found across the unequal variance 
conditions. Negative standard error bias was 
noted when using the dRM

=  estimator regardless 
of sample size. Given the consistency of the 
degree of SE bias across sample sizes of 10, 20, 
and 60 for the dRM

=  estimator, it is anticipated 
that this pattern would be maintained for 
samples larger than 60. 

Substantial parameter bias was 
identified for the dRM

≠
 estimator in all of the 

smallest sample size (n = 10) conditions. (Note 
that no substantial standard error bias was noted 
across conditions for the dRM

≠  estimator.) The 

degree of parameter estimation bias in the dRM
≠  

estimator remained around ten percent across 

δRM and ρ values. In other words, the bias was 
unaffected by the degree of correlation between 
pre- and post-test scores and by the magnitude 
of the effect size. 

Across conditions, the degree of positive 
relative parameter bias noted for the dRM

=  
estimator was consistently greater than that 
noted for the dRM

≠  estimator. In addition, the 

bias detected for the dRM
=  estimator was affected 

by the magnitude of ρ. The larger the correlation 
between pre- and post-test scores, the worse the 
bias was in the dRM

=  estimate. The overall 

degree of positive bias found in the dRM
=

estimator was greater for smaller sample sizes. 
But even with samples as large as n = 60, 
substantial bias was still noted in certain 
conditions. 

The source of the bias noted for the 
dRM

≠
 estimator for samples of n = 10 (and not 

when n was 20 or 60), likely originates in the 
negative relationship between sample size and 
degree of bias in the estimation of ρ. 
Specifically, the conventional estimator, r, (the 
one used herein) is a biased under-estimate of ρ. 
Olkin and Pratt (1958) derived an unbiased 
estimate of ρ, ˆ ρ , that is closely approximated 
by: 

2(1 )
ρ̂

2( 4)

r rr
n
−= +
−

.                  (15) 

 
Clearly, the degree of bias exhibited when using 
r to estimate ρ is represented by 

2(1- )/[2( -4)]r r n  which becomes more 
substantial with smaller n. Small-sample bias in 
the estimation of ρ will negatively impact 

estimation of both Dσ
≠  (see Equation 8) and Dσ

=  

(see Equation 6), ultimately increasing bias in 
the estimation of δRM (see Equation 1) for both 
estimators. Bias in r’s estimation of ρ rapidly 
decreases for larger n which seems to explain 
the corresponding rapid decrement in the bias of 
dRM

≠ ’s estimation of δRM. However, while bias in 
r’s estimation of ρ contributes to the bias noted 
in dRM

= ’s estimation of δRM, it cannot fully 

explain it given dRM
= ’s bias decreases less 

rapidly than that of dRM
≠  for larger n. 
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Given the consistency in the degree of 
bias noted for dRM

≠  across conditions when n = 
10, applied researchers and meta-analysts using 
dRM

≠  as an estimate of δRM should recognize that, 
if it is necessary to calculate the repeated 
measures design standardized mean difference 
for a sample as small as 10, then it will be over-
inflated by about ten percent. Thus, optimally 
dRM

≠  should only be used with sample sizes 
larger than 10. 

Future research should extend this 
assessment of how well dRM

≠
 works with smaller 

sample sizes and should investigate other 
potential factors that might influence its 
performance. In addition, future research should 
extend formulation of the standardized mean 
difference effect size for repeated measures 
designs with heterogeneous variances for use 
with independent groups, repeated measures 
designs (i.e., for designs with pre- and post-test 
measures for the treatment and control groups). 

A current policy movement encouraging 
evidence-based practice is leading to an 
increased use of meta-analysis across the 
spectrum of medical, educational, and general 
social science research. Effect sizes 
summarizing results from studies that have been 
conducted using repeated measures research 
designs must also be synthesized to contribute to 
the evidence base for programs and 
interventions. While it is commonly assumed 
that interventions lead to changes in means, not 
in variances, this is not always the case. This 
study introduced and validated a correction to 
the estimate of δRM that can be used to handle 
potentially unequal pre- and post-test variances. 
The new estimator, dRM

≠ , was found to work  
 
 
 
 
 
 
 
 
 
 
 

better than the conventional one ( dRM
= ) across 

conditions including equal variance conditions. 
Given the consistently superior performance of 
dRM

≠  over that of the dRM
=

 estimate, applied 
researchers are encouraged to begin using the 
dRM

=
 estimator as a less biased estimate of δRM. 
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Intermediate r Values for Use in the Fleishman Power Method 
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Several intermediate r values are calculated at three different correlations for use in the Fleishman Power 
Method for generating correlated data from normal and non-normal populations. 
 
Key words: Fleishman Power Method, Monte Carlo simulation, correlation. 
 
 

Introduction 
As Headrick and Sawilowsky (1999) observed, 
“Monte Carlo simulations requiring correlated 
data from normal and non-normal populations 
are frequently used to investigate the small 
sample properties of competing statistics, or the 
comparison of estimation techniques” (p. 25). 
Fleishman (1978) introduced the power method 
for simulating univariate non-normal 
distributions. This method allows for the 
systematic control of skew (γ1) and kurtosis (γ2) 
needed in Monte Carlo studies. Fleishman power 
method models are able to approximate a variety 
of distributions and require few inputs: a normal 
random number generator, three constants and 
an intermediate correlation (Headrick & 
Sawilowsky, 2000). 

A normal random number generator is 
available as a FORTRAN subroutine, Headrick 
and Sawilowsky (2000) calculated and provided 
required constants for various distributions (see 
Table 1), and the intermediate correlation, r, is 
calculated using the formula 
 

2 2 2 2 2 2 4( 6 9 2 6 )xyr r b bd d a r d r= + + + + , (1) 

 
where a, b and d are constants and rxy is the 
correlation to which all data will be set. The 
formula, when solved, results in the graph of a  
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parabola. After graphing, the intermediate r 
value is obtained by determining the point at 
which the positive horizontal axis intercept is at 
zero. Establishing the intermediate r values may 
be accomplished via use of a graphing 
calculator. Values provided in this brief report 
were obtained using a Texas Instruments (TI) 
83-Plus Graphing Calculator by following a five 
step procedure: 
 
1. Clear all registers and engage the function 

editor; 
2. Enter formula (1) using appropriate 

constants and desired correlation; 
3. Graph the parabola; 
4. Use the trace function to position the cursor 

close to Y = 0 on the positive X-axis; 
5. Enlarge the graph using the zoom feature to 

obtain a precise reading of the positive X 
value at the point where Y = 0. 

 
Although simple, the process is time-consuming; 
for this reason several intermediate r values have 
been calculated at three different correlations 
(See Table 2). 
 
Example 

To create correlated data pairs (X, Y) at 
0.70 from an exponential distribution (Chi-
square, df = 2) with γ1 = 2 and γ2 = 6, using the 
constants from Table 1, equation (1) would be as 
follows: 
 
rxy = r2[(.8263)2+(6)(.8263)(.02271)+ 

(9)(.02271)2+(2)(−.3137)2r2+(6)(.02271)r4] 
 
rxy = r2[(.68278)+(.11259)+(.004642)+(.19682)r2 

+(.00309)r4] 
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rxy = r2[(.8000)+(.19682)r2+(.00309)r4] 
 

0 = .8000 r2+.19682r4+.00309r6 − 0.70 
 
The positive solution using the stated procedure 
is r = .859998. This intermediate r value is 
placed in the following two equations: 
 

2
1 21ix rz r z= + −                    (2) 

and 
2

1 31iy rz r z= + −                    (3) 

 
where z1, z2 and z3 are randomly selected 
standard normal z scores (generated using a 
random number generator). The data resulting 
from these equations are not the final correlates, 
but represent intermediate standard normal 
variates that will be used to generate the desired 
correlated data, thus xi and yi and the constants 
appropriate to the distribution are next 
substituted into the Fleishman equation to 
produce the final correlates as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2( )i i iX a bX a X dX= + + − +            (4) 

 
2 2( ) .i i iY a bY a Y dY= + + − +             (5) 

 
The algorithms above produce standardized data 
centered around μ = 0 and σ = 1. To realign the 
values to the χ2 distribution with df = 2, a simple 
transformation is performed so that μ = 2 and σ 
= 2 as follows: 
 

2 (2)( ) 2x Xχ = +                      (6) 

 
and for the Y correlate, 
 

2 (2)( ) 2x Yχ = +                      (7) 

 
The last step is optional, because computed 
values are accurate for the distribution. It is only 
necessary to perform this step if it is desirable to 
have values commonly found in the tables for 
the distribution of interest, such as χ2 (df = 2) in 
the example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Fleishman Power Constants for Various Distributions* 

Distribution 
Skew Kurtosis Constants 

γ1 γ2 a b d 
Chi-square (df=1) √8 12 −.5207 .6146 .02007 

Exponential/Chi-square (df=2) 2 6 −.3137 .8263 .02271 

Chi-square (df=3) 1.633 4 −.2595 .8807 .01621 

Chi-square (df=4) √2 3 −.2269 .9089 .01256 

Chi-square (df=8) 1 1.5 −.1632 .9531 .0060 

Normal 0 0 0 1 0 

Cauchy/t (df=1) 0 25 0 .2553 .2038 

t (df=3) 0 17 0 .3938 .1713 

t (df=7) 0 2 0 .8357 .05206 

Laplace/Double Exponential 0 3 0 .7284 .0679 

*From Headrick and Sawilowsky (2000), p. 427. 
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Table 2: Intermediate r Values for Various Distributions at Correlations 
0.70, 0.80 and 0.90 

Distribution 
Intermediate r Values at Correlation: 

0.70 0.80 0.90 

Chi-square (df=1) .88909 .92960 .96633 

Exponential/Chi-square (df=2) .85998 .91319 .95973 

Chi-square (df=3) .79989 .85067 .89771 

Chi-square (df=4) .87870 .93855 .99461 

Chi-square (df=8) .84466 .90058 .95271 

Normal .83666 .89443 .94868 

Cauchy/t (df=1) .88121 .92549 .96472 

t (df=3) .86665 .91814 .96118 

t (df=7) .84006 .89697 .95008 

Laplace/Double Exponential .84248 .89877 .95110 
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This article examines the creation of contextual aggregate variables from one dataset for use with another 
dataset in multilevel analysis. The process of generating aggregate variables and methods of assessing the 
validity of the constructed aggregates are presented, together with the difficulties that this approach 
presents. 
 
Key words: Aggregate variables, contextual variables, multilevel analysis. 
 
 

Introduction 
Contextual effects influence individual 
outcomes and behaviors. The importance of 
including community level variables has been 
gaining ground in the social sciences. Despite 
their popularity and the presence of theory 
corroborating the existence of contextual effects, 
proper measurement and selection of contextual 
variables continues to challenge researchers. 
Furthermore, researchers often face the 
additional difficulty presented by surveys that 
are not designed to contain contextual 
information at the geographic area of interest. 
Even when data is available at the appropriate 
geographic level, a deficiency of individuals in 
each area may prohibit the calculation of reliable 
estimates in multilevel models and thus make it 
difficult to successfully model contextual 
effects. A suitable approach to address these 
difficulties might be to construct aggregate 
variables in one dataset that has sufficient 
sample size in the area of interest for use with 
other datasets. 
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Conducting multilevel analyses requires 

contextual information at the level of interest, 
for example, family, household, neighborhood, 
province or country. Datasets are selected by 
researchers based on their ability to provide 
answers to research questions and the presence 
of key variables of interest at the level of 
interest. In many cases, datasets do not contain 
the contextual information at the required level 
for a multilevel analysis. In such cases, 
researchers could turn to another dataset to 
construct the desired measure and match this 
information, using geographical or other 
identifiers, to their original dataset. 

Despite the apparent simplicity of this 
approach, the issue of checking aggregate 
variables must be addressed. If possible, the 
aggregate variables should be checked in some 
way to assess their validity (i.e., do they measure 
what they are supposed to measure?). One 
possible way of checking aggregate variables for 
validity is presented here, together with 
problems encountered during the process. These 
are presented as a means of highlighting some of 
the hidden complexities of creating aggregate 
variables that researchers should take into 
consideration when using this approach. 
 

Methodology 
The Survey of Labor and Income Dynamics 
(SLID) is a longitudinal survey on labor market 
activity and income. The survey follows 
individuals with yearly questionnaires 
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administered for six consecutive years, with a 
new wave starting every three years since the 
survey’s 1993 initiation. The SLID contains 
variables that may be used to construct 
numerous interesting and relevant Economic 
Region (ER) level variables; thus, researchers 
could use the following procedures to construct 
ER level variables of their own choosing. For 
this example ten aggregate variables on 
employment and education were constructed; 
these variables were selected for their potential 
value to researchers for use in conjunction with 
other datasets. Table 1 contains the variable 
names, definitions and the original SLID 
variables from which they were constructed. 
 
Creation of an Analytic SLID Dataset 

First, the variables that were used to 
create the aggregates (shown in Table 1), were 
extracted  from  the  SLID  together  with   the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

appropriate cross-sectional weights and 
individual and geographical identifiers for each 
survey year using the SLIDret program. SLID 
identifies ERs by two separate variables: erres25 
and xerres25. The explanation for the presence 
of two identifiers instead of one is that Statistics 
Canada amended their ER identification codes in 
1999, thus, the SLID contains two sets of ER 
identification codes. One code refers to the 1991 
Census boundaries for all survey years of the 
SLID (xerres25), and the other refers to the 1991 
Census boundaries up to 1999 and to the 
amended 1999 Census boundaries in subsequent 
years (erres25). Researchers must decide upon 
the most appropriate variable to use in any 
particular research scenario. This will often be 
determined by the geographical code used in the 
dataset in which the constructed aggregate 
variables will be used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Defining Variables of Interest 

Variable Name Definition SLID Variables 

non-employee 
Proportion of total labor force self 

employed 
clwrkr1 

non-employee_f 
Proportion of female labor force self 

employed 
clwrkr1 

pct_mgt 
Proportion of occupations perceived to 

be managerial 
manag1 

pct_mgt_f 
Proportion of female occupations 

perceived to be managerial 
manag1 

less_hs 
Proportion of individuals with less 

than a high school education 
hlev2g18 

hs 
Proportion of individuals with at least 

a high school education 
hlev2g18 

non_univ_ps 
Proportion of individuals with a non-
university post-secondary certificate 

hlev2g18 

uni_ps 
Proportion of individuals with a 

university post-secondary certificate 
hlev2g18 

ps 
Proportion of individuals with a post-

secondary certificate 
hlev2g18 

ps(_f) 
Proportion of females with a post-

secondary certificate 
hlev2g18 
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This article compares the constructed 
aggregate variables and both the 1996 and 2001 
Census profile data. Because the 1996 Census 
profile data uses the pre-1999 Census 
boundaries, the xerres25 variable was used to 
calculate the 1996 SLID ER level estimates. 
Similarly, because the 2001 Census profile data 
uses the post-1999 Census boundaries, the 
erres25 variable was used for the 2001 SLID ER 
level estimates. 
 
Construction of Aggregate SLID Variables 

After creating a SLID dataset, the ER 
aggregate variables can be constructed. Ten 
aggregate SLID variables were constructed, 
seven for the entire population and three for the 
female population only. The approach was to 
create a count of individuals in each ER 
possessing the characteristics of interest and to 
use this count to construct weighted proportions 
aggregated at the ER level that could then be 
exported for use with other datasets.  

For each characteristic of interest 
individuals with that characteristic are dummy 
coded as 1. This results in dummy variables for 
individuals aged 15 to 69 who are self 
employed, individuals aged 15 to 69 whose 
occupations are perceived as managerial, 
individuals aged 16 and over who have less than 
a high school education, individuals aged 16 and 
over who have at least a high school education, 
individuals aged 16 and over who have a non-
university post-secondary certificate, individuals 
aged 16 and over who have a university post-
secondary certificate, and individuals aged 16 
and over who have a post-secondary certificate 
(university or non-university). There was also a 
dummy variable for gender so dummy variables 
could be created for females, for females aged 
15 to 69 who are self employed, females aged 15 
to 69 whose occupations are perceived as 
managerial, and females aged 16 and over who 
have a post-secondary certificate (university or 
non-university). 
 
Aggregating SLID to the ER Level 

After creating SLID dummy variables; 
the final step was to aggregate these variables. In 
all cases these aggregates will be proportions for 
each ER created by aggregating up to the ER 
level. Because the SLID produces an annual 

cross-section of individuals it is also necessary 
to aggregate to the ER level by survey year in 
order to obtain an accurate estimate of area level 
characteristics for each year. Taking the mean of 
a dummy variable is one way to calculate the 
proportion of individuals with a certain 
characteristic. Hence, proportions for each ER 
are calculated by collapsing the dummy 
variables to their mean for each ER level and for 
each survey year. These proportions are 
weighted using the cross-sectional weight. The 
resulting aggregate variables represent 
proportions of individuals in ERs with the 
characteristics of interest outlined. 

Once created, aggregates are ready for 
use; however, it is highly recommend that a 
check be carried out to assess their validity as 
aggregate measures. This is accomplished in the 
following example by comparing the provincial 
and national population totals followed by the 
basic gender and age characteristics of the 
samples. The logic being that, if the population 
totals are similar and sample characteristics are 
similar across these demographics, there is some 
reason to assume that they will be similar in 
other ways. It is not guaranteed that this is 
actually the case, however. 

As an additional check, similar 
education and employment aggregates 
constructed using the Census profile data from 
1996 and 2001 were compared as well. (This 
will not be an option readily available to 
researchers if one of the main reasons for going 
to another dataset is that the variables of interest 
are not available in the Census profile data.) 
These comparisons are recommended because 
they will alert a researcher to oddities about the 
variables or dataset used and to inconsistencies 
that may require investigation. 

To assess the validity of the aggregate 
SLID variables constructed, a comparison was 
made to the 1996 and 2001 Census. The Census 
is, by design, the most accurate and 
representative approximation of true population 
parameters. In order for the SLID aggregates to 
be useful they should reflect true population 
parameters. It may be argued that using the 
Census to verify how closely the SLID data and 
constructed aggregates reflect the true 
population is the most suitable method of 
comparison available. As the SLID weighting is 



AGGREGATE VARIABLES FOR DATASETS IN MULTILEVEL ANALYSIS 

616 
 

calibrated on Census population totals, it is 
expected that estimates will match well. The 
following is a step-by-step guide to comparing 
aggregate variables. 
 
Choose a Method of Comparison 

Two methods of comparison were used 
in this example. The first involved simply 
calculating and comparing provincial and 
national population totals for both SLID datasets 
for 1996 and 2001. If no similarity existed at this 
level it would not be sensible to continue with 
the comparison and the validity of the aggregate 
variables would be questionable. The second 
method of comparison used confidence intervals 
as a means of statistically assessing how close 
the estimates match. This requires similarly 
defined variables to be created using Census 
profile data so that aggregates are created from 
the SLID and the Census profile data at the ER 
level. Confidence intervals (assuming a Normal 
distribution) can be created around the SLID 
estimates and observations made as to whether 
the population estimates from the Census fall 
within these confidence intervals for each ER. 
The confidence level chosen for this example is 
95% but researchers can choose any level they 
think is suitable. A high number of matches 
show the SLID estimates are a good match to 
true population parameters. 
 
Choose and Generate Demographic Variables 
and Confidence Intervals 

For the provincial and national 
population totals, weighted sums were 
calculated in STATA broken out by province. At 
the ER level, two characteristics were chosen for 
comparison: gender and age. Twenty-one age 
and gender breakouts by ER were calculated 
using the SLID data for 1996 and 2001. In 
addition to the proportion of females, age 
breakouts for the whole population and for 
females only are generated using different age 
intervals. Using STATA, 95% confidence 
intervals were created for each SLID estimate. 
 
Recreate Aggregate Variables Using Census 
Profile Data 

Because the Census profile data does 
not contain ER identification codes it is first 
necessary to merge the Census data with the 

Postal Code Conversion File (PCCF), matching 
the data by Enumeration Area (EA) for 1996 and 
Dissemination Area (DA) for 2001. 
Enumeration areas (EA) in the 1996 Census and 
Dissemination areas (DA) in the 2001 Census 
are smaller geographical areas making up 
various larger Statistics Canada geographical 
areas, including ERs. The 1999 change in 
Census boundaries lead to a name and definition 
change from EA to DA (for more information on 
using the PCCF and the change from EA to DA 
see Gonthier, et al., 2006). 

For 1996 the EA code is an eight-digit 
code constructed from provincial, federal and 
EA identifiers. The provincial code composes 
the first two digits; the federal code the 
following three and the EA code the final three. 
To construct the eight-digit EA code from its 
composite parts the provincial code is multiplied 
by 1,000,000 and the federal code is multiplied 
by 1,000, and these numbers are added to the EA 
code. The Census data is then merged with the 
1996 PCCF file using this eight-digit EA 
identifier. 

For 2001 the DA code is an eight-digit 
code constructed from provincial, census 
division and DA identifiers. The provincial code 
composes the first two digits, the census division 
code the following two and the DA code the 
final four. The eight-digit DA code for 2001 is 
created the same way as the EA code for 1996. 
Merging results in each record being assigned an 
ER identification code. Once again, to ensure the 
production of accurate estimates, data is 
aggregated to the ER level by first creating a 
sum of all individuals within ERs with the 
characteristics of interest. This ensures 
accurately weighted estimates reflecting the 
numbers of individuals in ERs. After these sums 
are created for each ER proportions are then 
calculated that correspond to the ten aggregate 
variables created in the SLID. Table 2 shows the 
variable names and the 1996 and 2001 Census 
variables from which they were constructed. 
 
Compare SLID and Census Profile Data 
Estimates 

With the SLID education and 
employment aggregates, population totals, 
demographic variables, confidence intervals for 
these estimates for 1996 and 2001 and similar 
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variables recreated using Census profile data 
from 1996 and 2001, the comparison was carried 
out. First, weighted provincial and national 
population totals were compared by year and by 
province; results are shown in Tables 3a and 3b. 

It is important to note that some 
variation in the totals is to be expected due to 
rounding error in the Census. In both tables it 
was expected that column 1 and 2 add up to 
column 3. In 1996, there was a difference of 685 
and in 2001 there is a difference of 235. These 
differences are likely due to rounding error. It 
would also be expected that column 4 and 
column 6 would be similar and that column 5 
would be less than both of these. In 1996 the 
total population is SLID is 271,963 more than 
the Census total population and in 2001, the total 
population in the SLID is 1,828,145 below the 
Census total population: no obvious reason 
exists to explain this. Even with the minor 
disparity, population totals in the SLID are close 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
enough to the Census to conclude that the data 
matches reasonably well. 

Second, basic demographics were 
compared by year and by ER in order to 
determine the number of Census profile 
estimates that would fall within the 95% 
confidence intervals generated around the SLID 
estimates. Each Census profile estimate falling 
within the confidence interval was called a 
match. Table 4 shows the percentage of matches 
across 66 ERs in 1996 and 73 ERs in 2001. 

The proportion of females in the 
population variable matched perfectly and the 
age breakouts had a high, but not perfect, 
percentage of matches. The only variables with 
suspiciously low numbers of matches were the 
percentage of individuals aged 15 to 19 and the 
percentage of females aged 15 to 19. The age 
breakouts for individuals and females aged 15 to 
25 and 20 to 24 showed much better matching. 
This suggests that the discrepancy is occurring at 

Table 2: Concordance between 1996 and 2001 Census Variables 

Variable Name Definition 
1996 Census Variable 

Range Used 
2001 Census Variable 

Range Used 

non_employee 
Proportion of total labor force self 

employed 
v1211-v1222 v949-v960 

non_employee_f 
Proportion of female labor force self 

employed 
v1235-v1246 v973-v984 

pct_mgt 
Proportion of occupations perceived 

to be managerial 
v1031-v1090 v985-v1044 

pct_mgt_f 
Proportion of female occupations 

perceived to be managerial 
v1151-v1210 v1105-v1164 

less_hs 
Proportion of individuals with less 

than a high school education 
v1338-v1351 v1382-v1395 

hs 
Proportion of individuals with at 

least a high school education 
v1338-v1351 v1382-v1395 

non_univ_ps 
Proportion of individuals with a non-
university post-secondary certificate 

v1338-v1351 v1382-v1395 

uni_ps 
Proportion of individuals with a 

university post-secondary certificate 
v1338-v1351 v1382-v1395 

ps 
Proportion of individuals with a 

post-secondary certificate 
v1352-v1375 v1358-v1381 

ps_f 
Proportion of females with a post-

secondary certificate 
v1352-v1375 v1358-v1381 
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the lower end of the age spectrum in the 15 to 19 
age range. 

Based on observations of similarities in 
the population totals, gender and age 
characteristics across the SLID and Census 
profile data samples, it may be suggested that 
the SLID and the Census profile data will also 
be similar across other characteristics, in this 
case education and employment. To test this, the 
constructed aggregates were checked for validity 
in a similar manner. Again, 95% confidence 
intervals (assuming a Normal distribution) were 
created around the SLID estimates and 
observations were made as to whether the 
population estimates from the Census fell within 
these confidence intervals for each ER. Table 5 
shows the percentage of matches across 66 ERs 
in 1996 and 73 in 2001. 

Given the excellent age and gender 
match of the data, the low number of matches 
for the constructed aggregate variables is 
surprising. Without a clear explanation as to 
why the variables do not match, the constructed 
aggregates cannot be trusted as representative 
and should not be used. However, if 
explanations can be found for the low matching  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

then the aggregates may be of some use. An 
investigation of the data and variable definitions 
was carried out to identify possible causes for 
the low number of matches. 

Investigation of the data and 
examination of the documentation highlighted 
several limitations with the variables chosen for 
use in both the Census profile data and the 
SLID. These limitations are very likely the cause 
of the low number of matches across the 
aggregate variables. First, the internal 
consistency of the constructed estimates was 
investigated. In particular, confirmation was 
required that the total populations being used on 
the SLID and in the Census Profile data as the 
denominator in the proportions calculations were 
in fact the sum of their composite parts. In both 
the SLID and the Census Profile data, age and 
education populations were verified. A check 
was made of the proportions of individuals aged 
under 25, 25 to 49, 50 to 74 and 75; these 
proportions should total 1 as this range of ages 
encompasses all possible ages in the population. 
The same check was carried out for the female 
proportions and for the proportions of 
individuals aged under 25, 25 to 49, 50 to 64 and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3a: Provincial and National Totals for SLID and Census Profile Data, 1996 
1996 Census SLID 

Province 
1. Male 
Subtotal 

2. Female 
Subtotal 

3. Total 
Population 

4. Total 
Population 15+ 

5. Total Labor 
Force 15+ 

6. Total 
Population 15+ 

10 271,740 278,575 550,420 435,985 245,165 423,747 

11 65,990 68,450 134,440 103,580 70,695 100,100 

12 441,490 466,175 907,635 718,015 438,010 669,414 

13 362,490 374,665 737,255 583,550 363,055 556,031 

24 3,318,800 3,462,665 6,781,570 5,382,325 3,357,080 5,394,101 

35 4,794,345 5,011,300 9,805,685 7,669,850 5,084,190 7,848,826 

46 492,640 509,980 1,002,730 769,900 511,145 782,124 

47 450,690 461,550 912,085 689,015 463,360 687,939 

48 1,225,800 1,227,510 2,453,330 1,864,640 1,348,880 1,895,376 

59 1,706,985 1,751,340 3,458,715 2,743,105 1,819,185 2,874,269 

Total 13,130,970 13,612,210 26,743,865 20,959,965 13,700,765 21,231,928 
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Table 3b: Provincial and National Totals for SLID and Census Profile Data, 2001 
2001 Census SLID 

Province 
1. Male 
Subtotal 

2. Female 
Subtotal 

3. Total 
Population 

4. Total 
Population 15+ 

5. Total Labor 
Force 15+ 

6. Total 
Population 15+ 

10 249,805 260,815 510,545 422,170 240,600 404,336 

11 65,450 69,145 134,530 107,940 73,570 98,323 

12 437,335 466,330 903,505 739,060 450,075 681,910 

13 355,380 371,485 726,990 597,500 370,920 548,849 

24 3,521,985 3,689,680 7,212,255 5,923,010 3,734,615 5,270,975 

35 5,458,005 5,701,920 11,159,880 8,972,500 5,950,800 8,426,920 

46 547,455 567,110 1,114,400 881,395 582,590 796,246 

47 478,785 494,380 973,075 766,390 509,670 691,965 

48 1,470,895 1,473,690 2,944,620 2,334,465 1,678,965 2,193,306 

59 1,908,975 1,978,245 3,887,305 3,183,715 2,046,190 2,994,323 

Total 14,494,070 15,072,800 29,567,105 23,928,145 15,637,995 22,100,000 

Table 4: Comparison of SLID and Census Profile Aggregate Estimates for Gender and Age Variables 

Variable Name Variable Definition 
1996 2001 

% of Matches % of Matches 

female % population that is female 100 97 
pct_15to25 % population aged 15 to 25 71 70 
pct_25to49 % population aged 25 to 49 79 78 
pct_50to74 % population aged 50 to 74 70 84 
pct_75over % population aged 75 & over 62 78 
pct_50to64 % population aged 50 to 64 68 79 
pct_65over % population aged 65 & over 70 74 
pct_15to19 % population aged 15 to 19 44 52 
pct_20to24 % population aged 20 to 24 80 86 
pct_40to44 % population aged 40 to 44 90 88 
pct_75to79 % population aged 75 to 79 74 89 

pct_15to25_f % female population aged 15 to 25 68 74 
pct_25to49_f % female population aged 25 to 49 85 88 
pct_50to74_f % female population aged 50 to 74 76 86 
pct_75over_f % female population aged 75 & over 73 88 
pct_50to64_f % female population aged 50 to 64 79 86 
pct_65over_f % female population aged 65 & over 77 82 
pct_15to19_f % female population aged 15 to 19 70 66 
pct_20to24_f % female population aged 20 to 24 80 92 
pct_40to44_f % female population aged 40 to 44 85 92 
pct_75to79_f % female population aged 75 to 79 83 92 
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65 and over. It was found that the 15 to 19 age 
category produced low numbers of matches. 
Verification was made that the difference 
between the proportion of individuals aged 
under 25 and the proportion of individuals aged 
15 to 19 added to the proportion of individuals 
aged 20 to 24 equals 0. The same verification 
was made for the female proportions. The results 
were either extremely close or exactly 0 or 1 
(See Appendix 1 for details). 

Additional checks were carried out for 
the education variables in the Census Profile 
data for both 1996 and 2001. The difference 
between the proportion of individuals with 
postsecondary certificates and the proportion of 
individuals with university certificates added to 
the proportion of individuals with non-university 
certificates was checked with the expectation 
that, if accurate, they should equal 0. Results 
were either 0 or less than 0.0001 above or below 
0. The proportion of individuals with less than a 
high school education were added to individuals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
with at least a high school education with the 
expectation that they would equal 1. This was 
not the case: most totals ranged from 0.4 to 0.6. 
Referring to the documentation and exploring 
the data illuminated the reason. The Total 
population 15 years and over by highest level of 
schooling is a poorly defined population. The 
Census Profile data contains numerous 
population totals broken out by different 
characteristics. For example, the education 
variables include ‘Total population 15 years and 
over by highest level of schooling’, the marital 
status variables include ‘Total population 15 
years and over by marital status’ and the labor 
force variables include ‘Total population 15 
years and over by labor force activity’. It was 
expected that summing together the number of 
individuals aged 15 years and over using the age 
breakouts in the Census Profile data would 
include the same population as these ‘Total 
population 15 years and over by…’ variables. 
This was checked for the ‘Total population 15 

Table 5: Comparison of SLID and Census Profile Aggregate Estimates for Employment and 
Education Variables 

Variable Name Variable Description 
% of Matches 

1996 2001 

non_employee Proportion of total labor force self employed 44 55 

non_employee_f Proportion of female labor force self employed 61 67 

pct_mgt 
Proportion of occupations perceived to be 

managerial 
20 8 

pct_mgt_f 
Proportion of female occupations perceived to 

be managerial 
30 22 

less_hs 
Proportion of individuals with less than a high 

school education 
33 51 

hs 
Proportion of individuals with at least a high 

school education 
2 0 

non_univ_ps 
Proportion of individuals with a non-university 

post-secondary certificate 
42 79 

univ_ps 
Proportion of individuals with a university 

post-secondary certificate 
35 60 

ps 
Proportion of individuals with a post-

secondary certificate 
74 59 

ps_f 
Proportion of females with a post-secondary 

certificate 
88 85 
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years and over by highest level of schooling’ 
variable. The difference between these two totals 
was more than can be explained by rounding 
error in the Census Profile data. Checking this 
variable against other variables that call 
themselves ‘Total population 15 years and over 
by…’ a sizeable and apparently unexplainable 
difference was found. Another drawback with 
the 2001 education aggregate variables is that in 
the 2001 Census Profile data education data is 
supplied for individuals aged 20 and over 
(Statistics Canada, 1999). By contrast, SLID 
education data was available for individuals 
aged 15 and over. This, added to the other 
problems described, provides the reason why the 
education aggregate variables do not match well. 

Having identified an explanation for the 
low matching across education variables, similar 
explanations were sought for the employment 
variables. Three main limitations in both the 
Census Profiles and SLID documentation 
regarding ambiguous definitions of populations 
and variables were found that could explain the 
low number of matches across the employment 
variables. First, there was some ambiguity over 
the definition of the labor force. SLID defines 
the labor force as persons aged 16 to 69 who 
were employed during the survey reference 
period. Therefore, the employment variables 
used in the construction of the aggregate 
variables only refers to these individuals. The 
Census Profile data on the other hand defines the 
labor force as employed individuals aged 15 and 
over. Although this may cause some disparity, it 
is unlikely to be the only cause of the low 
number of matches. Further investigation 
revealed a more severe limitation regarding the 
classification of individual labor force status 
(Statistics Canada, 1997; Statistics Canada, 
1999). 

One of the strengths of the SLID as a 
longitudinal survey is that it asks for information 
on every job an individual has held during the 
reference year, rather than focusing on the job at 
the time of the survey. Regarding class of 
worker (paid worker, employee, self-employed, 
etc.) individuals can, therefore, hold several 
statuses, in addition, they are asked to report 
their status for each month so that they have 12 
statuses over the year. By contrast, the Census 
Profile data only reports the class of worker for 

individuals at the time the Census is carried out. 
For the construction of the non_employee 
aggregate variable, it was necessary that 
individuals only fall into one class of worker 
category. However, the SLID uses the main job 
concept to categorize individuals into the class 
of worker variable clwrkr1. Main job is typically 
the job with the longest duration, greatest 
number of hours worked over the year, and most 
usual hours worked in a given month (Statistics 
Canada, 1997; Statistics Canada, 2007). Thus, 
the difference in the reference periods of the 
samples and the SLID’s focus on main job is a 
possible explanation for lower matching rates. 

The Census Profile data has its own 
ambiguities around the class of worker variable. 
In the Census Profile data on class of worker 
there is a category defined as Class of worker-
Not Applicable (Statistics Canada, 1999). The 
documentation does not explain who this group 
consists of or what characteristics of individuals 
in this category make class of worker not 
applicable to them. In an effort to take this into 
account, the aggregate variable of non-employee 
was constructed using an all classes of worker 
variable as the denominator (a variable that does 
not include the class of worker-not applicable 
individuals). This was used in place of the 
variable total labor force 15 years and over by 
class of worker, which did include those 
individuals. Although this avoids using unclear 
population definitions as a denominator, it does 
not help explain where that category of 
individuals should be included most accurately 
in the class of worker categorization. These 
problems may explain why the non_employee 
variables are not matching well. 

Finally, there was a difference in the 
definition of the Census Profile data and SLID 
managerial occupation variables that may render 
them incomparable. In the Census Profile data, 
individuals are asked to explain the type of job 
they have and their main responsibilities, and 
from this information they are coded into 
occupation classifications. This classification 
includes a section on management occupations 
that was used to produce the proportion of 
individuals with occupations perceived to be 
managerial variable (Statistics Canada, 1999). In 
the SLID, on the other hand, individuals are 
asked if they perceive their job to be managerial 
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(Statistics Canada, 1997). The self-identification 
involved here suggests that this variable is likely 
to be largely inconsistent: what defines a job as 
managerial is not clearly defined. Individuals 
may identify themselves as having a managerial 
job when in fact they do not. This could explain 
why the pct_mgt variable does not show a high 
number of matches. 
 

Conclusion 
The investigations and results are outlined here 
as a precaution to researchers wishing to create 
aggregate variables or use the SLID aggregate 
variables created in this study. The construction 
and comparison of aggregate variables should 
not be undertaken without caution. Despite their 
limitation, it is hoped that the constructed SLID 
aggregates could be of some use to researchers. 
The following points serve as a set of cautions to 
those wishing to use this approach based on 
difficulties that might be encountered in 
aggregate variable construction and comparison. 
 
Internal Consistency 

When constructing aggregate variables 
it is important that the variables are internally 
coherent. For example, imagine creating two 
aggregate education variables at the EA level; 
one is the proportion of individuals with less 
than a high school education, the other is the 
proportion of individuals with at least a high 
school education. If a researcher added the two 
proportions together across all EAs all totals 
should equal 1, if it does not, further 
investigation would be required to uncover 
reasons why. 
 
Target Population 

When creating and comparing aggregate 
variables it is important to know the target 
population of the variable. Some variables apply 
to individuals over a certain age, some apply to 
individuals who only answered positively to 
survey questions, and some apply to all 
respondents. This becomes more important if 
researchers wish to check the validity of their 
constructed aggregates by comparing the sample 
characteristics with the Census profile data 
characteristics. If constructing proportions of 
individuals with certain characteristics, it is 
important that the denominator be the same in 

both variables. The Census profile data 
documentation clearly defines its target 
population for each variable but it can be unclear 
how individuals were included. For example, in 
the 1996 Census profile data the ‘Total 
population 15 years and over by highest level of 
schooling’ was not the same as ‘All individuals 
aged 15 years and over’. In some cases, the 
target populations for the same variable in the 
1996 and 2001 Census profile data were 
different. For example, in the 1996 Census 
profile data, the education data was available for 
individuals aged 15 and over; and in the 2001 
Census profile data, it was supplied for 
individuals aged 20 and over (Statistics Canada, 
1999). 
 
Definitions 

It is important to understand how 
variables are defined in order to construct useful 
aggregate variables that are as accurate as 
possible. What a researcher may consider to be a 
standard classification may in fact be different 
across different datasets. In the example used in 
this article, it was found that the definition of 
labor force was not clear. In SLID, labor force is 
defined as persons aged 16 to 69 who were 
employed during the survey reference period. In 
the Census profile data, the labor force is 
defined as employed individuals aged 15 and 
over. This difference made comparing the 
Census profile and SLID aggregate employment 
variables inappropriate. Variable definitions may 
also have unexplained ambiguities that must be 
taken into account. For example, in the Census 
profile data there were ambiguities with the class 
of worker variable, which made comparison 
difficult. 
 
Survey Design 

The way in which surveys are designed 
can make constructing and comparing aggregate 
variables problematic. One of the strengths of 
the SLID as a longitudinal survey is that it asks 
for information on every job an individual has 
held during the reference year rather than 
focusing on the job at the time the survey is 
carried out. The result is that many records may 
exist for one individual. By contrast, the Census 
profile data holds one record per individual. 
Researchers must be clear on the survey design 
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and number of records per individual. If several 
records exist for each individual, some rationale 
must be used to select the most suitable record. 
 
Classification 

It is important to understand how 
variables have been coded into categories and 
whether individuals self-identify for certain 
classifications. This has implications for 
category definitions and how comparable they 
are across datasets. In the example provided, a 
difference was identified between the Census 
profile data and SLID in how managerial 
occupations are defined. The difference between 
coding by self-identification and coding by an 
external classifier is an important one that could 
lead to inconsistent definitions. 

This article outlined the importance of 
aggregate level variables for use in multilevel 
analysis and introduced the idea of generating 
aggregate level variables in one dataset for use 
across other datasets. Generating and comparing 
aggregate variables was described using an 
example generating employment and education 
aggregate variables in the SLID for 1996 and 
2001 cross-sectional samples at the ER Level 
and comparing them to similar estimates 
constructed using the 1996 and 2001 Census 
profile data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The difficulties encountered resulted in a set of 
cautions for researchers wishing to use this 
approach. As a whole, this article may serve as a 
guide to researchers in the generation and 
comparison of these or similar aggregate 
variables and also emphasizes the precautions 
that must be taken when using this approach. 
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Appendix 
Tables A1 and A2 show the age and education verifications by ER for both the Census and the SLID for 

1996 and 2001. The variable definitions are as follows: 
SLIDage1: ‘pct_15to25’ + ‘pct_25to49’ + ‘pct_50to74’ + ‘pct_75over’ 
SLIDage2: ‘pct_15to25’ + ‘pct_25to49’ + ‘pct_50to64’ + ‘pct_65over’ 
SLIDage3: Difference between ‘pct_15to25’ and (‘pct_15to19’ + ‘pct_20to24’) 
SLIDage4: SLIDage1 for females 
SLIDage5: SLIDage2 for females 
SLIDage6: SLIDage3 for females 
Censage1: ‘pct_15to25’ + ‘pct_25to49’ + ‘pct_50to74’ + ‘pct_75over’ 
Censage2: ‘pct_15to25’ + ‘pct_25to49’ + ‘pct_50to64’ + ‘pct_65over’ 
Censage3: Difference between ‘pct_15to25’ and (‘pct_15to19’ + ‘pct_20to24’) 
Censage4: Censusage1 for females 
Censage5: Censusage2 for females 
Censage6: Censusage3 for females 
Censedu1: ‘Less than high school’ + ‘at least high school’ 

Censedu2: 
Difference between ‘postsecondary certificate’ and ‘university certificate’ + ‘non-
university certificate’ 
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Table A1: 1996 Age and Education Verifications by ER for the Census and SLID 
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Table A2: 2001 Age and Education Verifications by ER for the Census and SLID 
 

 

 



Journal of Modern Applied Statistical Methods   Copyright © 2009 JMASM, Inc. 
November 2009, Vol. 8, No. 2, 626-631                                                                                                                   1538 – 9472/09/$95.00 

626 
 

Markov Modeling of Breast Cancer 
 

Chunling Cong Chris P. Tsokos 
University of South Florida

 
 
Previous work with respect to the treatments and relapse time for breast cancer patients is extended by 
applying a Markov chain to model three different types of breast cancer patients: alive without ever 
having relapse, alive with relapse, and deceased. It is shown that combined treatment of tamoxifen and 
radiation is more effective than single treatment of tamoxifen in preventing the recurrence of breast 
cancer. However, if the patient has already relapsed from breast cancer, single treatment of tamoxifen 
would be more appropriate with respect to survival time after relapse. Transition probabilities between 
three stages during different time periods, 2-year, 4-year, 5-year, and 10-year, are also calculated to 
provide information on how likely one stage moves to another stage within a specific time period. 
 
Key words: Markov chain, breast cancer, relapse time, tamoxifen and radiation. 
 
 

Introduction 
The Markov (1906) chain model has been 
applied in various fields such as physics, 
queuing theory, internet application, economics, 
finance, and social sciences among others. As an 
effective and efficient way of describing a 
process in which an individual moves through a 
series of states (stages) in continuous time, 
homogeneous Markov models have also been 
extensively used in health sciences where the 
progression of certain diseases are of great 
importance to both doctors and patients. In the 
present study, the main objective is to 
investigate the progression of breast cancer in 
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patients in three different stages who were given 
different treatments. One group of patients 
received combined treatments of tamoxifen and 
radiation, and the other group received only 
tamoxifen. Figure 1 shows the three stages of 
interest in the study are: alive with no relapse, 
alive with relapse, and deceased. Even though 
breast cancer patients who have recurrence may 
be treated and recover from breast cancer to 
become active with no relapse, due to the fact 
that the data does not include any observations 
of that process, we consider the second state- 
alive with relapse as those patients who once 
had relapse and are still alive, regardless of 
whether they have recovered from breast cancer 
or not.  
 
 
 
 
 
 
 
 
 
 
 

Methodology 
Between December 1992 and June 2000, a total 
of 769 women were enrolled and randomized in 
the study. Among these, 386 received combined 
radiation and tamoxifen (RT+Tam), and the 

Figure 1: Three Stages of Breast Cancer 
Modeling 
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remaining 383 received tamoxifen (Tam) only. 
The last follow-up was conducted in the summer 
of 2002. As shown in Figure 2, only those 641 
patients enrolled at the Princess Margaret 
Hospital are included: 320 and 321 in RT+Tam 
and Tam treatment groups, respectively. 
 

Figure 2: Breast Cancer Data 
 
 
 
 
 
 
 
 
 

This data was used by Fyles, et al. and 
was later analyzed by Ibrahim, et al. Analysis 
was conducted on this data with respect to the 
treatment effect of the two different treatments 
using decision tree and modeled relapse time 
using AFT and Cox-PH model. Mixture models 
were also applied to compare the cure rate of the 
two groups. 
 
The Markov Chain Model 

The Markov chain is a model for a finite 
or infinite random process sequence 

1 2,...,{ , }.
NXX X X=  Unlike the independent 

identical distribution (i.i.d) model that assumes 
the independency of a sequence of events iX ’s, 

the Markov model takes into account the 
dependencies among the iX ’s. 

Consider a random process 

1 1, 2{ } { ,...}t tX X X X≥= =  of random variables 

taking values in a discrete set space of stages
{1, 2,3,..., }S s= where tX  represents the state 

of the process of an individual at time t. The 
transitions possible among the three stages in 
this study, alive without relapse, alive with 
relapse, and deceased are shown in Figure 1 
indicated by arrows. Consider a realization of 
the history of the process up to and including 
time t, as 1 1 1 1{ , ,..., },t t t tX x X x X x− −= = =  

where 1 1, ,...,t tx x x−  is a sequence of stages at 

different times. A random process is called a 
Markov Chain if the conditional probabilities 

between the stages at different times satisfy the 
Markov property: the conditional probability of 
future one-step-event conditioned on the entire 
past of the process is just conditioned on the 
present stage of the process. In other words, the 
one-step future stage depends only on the 
present stage:  
 

1 1 1 1 1 1

1 1

( | , ,..., )

( | )
t tt t t t

t tt t

P X x X x X x X x
P X x X x

+ + − −

+ +

= = = =
= = =

  (1) 

 
for every sequence 1 1,..., ,t tx x x + of elements of 

S  and every 1t ≥ .  
The transition probability from stage i to 

stage j  at time t  and transition intensity are 
defined by 

1( ) ( | )ij t tp t p X j X i+= = = ,        (2) 

and 

0

( ( ) | ( ) )
( ) limij h

P X t h j X t iq t
h→

+ = == ,  (3) 

 
where h  is the time interval. 

If the transition probabilities do not 
depend on time, ( )ijp t  can simply be written as

ijp , then the Markov chain is called time-

homogeneous. If not specified, the following 
analysis is based on time-homogeneous Markov 
chain. A transition probability matrix ( )P t  
consisting of all the transition probabilities 
between stages in a matrix form is given by: 
 

11 12 1

21 22 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )
( ) ,

... ... ... ...

( ) ( ) ... ( )

s

s

s s ss

p t p t p t
p t p t p t

P t

p t p t p t

 
 
 =  
 
  

   (4) 

 
where probabilities in each row add up to 1. 
Thus, it is 100% certain that for any individual 
at time t is in one of the stages and the sum of 
probabilities of being in each stage is 1. 

The transition probability matrix can be 
calculated by taking the matrix exponential of 
the scaled transition intensity matrix defined by  
 

( ) ( )P t Exp tQ= ,                    (5) 

641Total  

320 
RT+Tam 

321 
Tam 
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where 
 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

s

s

s s ss

q q q
q q q

Q

q q q

 
 
 =  
 
  

,             (6) 

 
and ijq denotes the transition intensity from 

stage i  to stage j . 

The exponential of a matrix A  is 
defined by  
 

2 3( ) 1 / 2! / 3! ...Exp A A A= + + + ,     (7) 
 
where each summand in the series is the matrix 
products. In this manner, once the intensity 
matrix is given, the transition probabilities can 
be calculated as shown above. 

Next, the intensity matrix and transition 
probabilities matrix can be obtained by 
maximizing the likelihood ( )L Q which is a 

function ofQ . Consider an individual consisting 

of a series of times 1 2( , ,..., )nt t t  and 

corresponding stages 1 2( , ,..., ).nx x x  More 

specifically, consider a pair of successive stages 
observed to be i and j  at time it  and jt . Three 

scenarios are proposed and considered here. 
 
Scenario 1 

If the information for the individual is 
obtained at arbitrary observation times (the exact 
time of the transition of stages is unknown) the 
contribution to the likelihood from this pair of 
states is: 

( )ij ij j iL p t t= − .                    (8) 

 
Scenario 2 
If the exact times of transitions between 
different stages are recorded and there is no 
transition between the observation times, the 
contribution to the likelihood from this pair of 
stages is: 

( ) .ij ij j i ijL p t t q= −                    (9) 

 
 

Scenario 3 
If the time of death is known or

j death= , but the stage on the previous instant 

before death is unknown as denoted by k  ( k
could be any possible stage between stage i and 
death), the contribution to the likelihood 
function from this pair of stages is: 
 

( ) .ij ik j i kj
k j

L p t t q
≠

= −              (10) 

 
Results 

The breast cancer patients were divided into two 
groups RT+Tam and Tam based on the different 
treatments they received. For those patients who 
received combined treatments, 26 patients 
experienced relapse, 13 patients died without 
recurrence of breast cancer during the entire 
period of the study, and 14 died after recurrence 
of breast cancer. For the patients in the Tam 
group, 51 patients experienced relapse, 10 died 
without reoccurrence of breast cancer, and 13 
died after recurrence of breast cancer. 

As can be observed from the transition 
intensity matrixes for both groups RT+Tam and 
Tam as shown in Tables 1 and 2, patients who 
received single treatment have a higher 
transition intensity form Stage 1 to Stage 2, thus, 
they are more likely to have breast cancer 
recurrence. Thus, the probability of that 
happening in the Tam group is higher than that 
of the RT+Tam group. For those patients who 
died without relapse, there is no significant 
difference between the two treatments as 
illustrated by the intensity form Stage 1 to Stage 
3. 

Combined treatment is also more 
effective than a single treatment with respect to 
the possibility of death without relapse as can be 
observed from the transition intensity from 
Stage 1 to Stage 3. However, for those who 
already experienced relapse of breast cancer, 
patients who received combined treatments are 
more likely to die than those who received a 
single treatment. Therefore, combined treatment 
should be chosen over single treatment to avoid 
recurrence, but for those patients who already 
had breast cancer relapse, it would be advisable 
to choose a single treatment to extend the time 
from recurrence to death. 
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Figures 3 and 4 illustrate the 
effectiveness of the two treatments with respect 
to the survival probabilities and also show the 
survival curves of the patients who had 
recurrence and who had no recurrence in each 
treatment group. 

From the above analysis, the proposed 
Markov chain model provides recommendations 
for which treatment to choose for breast cancer 
patients with respect to relapse and survival 
time. Moreover, it provides patients with very 
important information on the exact time or 
possibilities of recurrence and death. Estimated 
mean sojourn times in each transient stage for 
patients who received combined treatment are 
43.46 and 3.25 in Stage 1 and Stage 2, 
respectively. Estimated mean sojourn times for 
patients who received single treatment are 25.53 
and 11.72 in Stage 1 and Stage 2. This further 
confirms that patients with combined treatment 
will remain in Stage 1 longer than those with 
single treatment; however, for patients who had 
relapse of breast cancer, patients with single 
treatment will stay alive longer than those with 
combined treatment. 

Another goal of this study was to 
provide a transition probability matrix at 
different times so that given a specific time 
period, the probability that a patient in a given 
stage will transit to another stage could be 
conveyed. Tables 5a-8b give 2-year, 4-year, 5-
year and 10-year transition probability matrixes 
of patients in RT+Tam and Tam. 
 

Conclusion 
Through Markov chain modeling of the three 
stages of breast cancer patients , it has been 
shown that combined treatment of tamoxifen 
and radiation is more effective than single 
treatment of tamoxifen in preventing the 
recurrence of breast cancer. However, for 
patients who had a relapse of breast cancer, 
single treatment of tamoxifen proves to be more 
effective than combined treatment with respect 
to the survival probability. This finding could 
give significant guidance to doctors with respect 
to which breast cancer treatment should be given 
to breast cancer patients in different stages. 
Transition probabilities between different stages 
during 2 years, 4 years, 5 years and 10 years are 
also calculated for predicting purposes. Those 

transition probabilities could help provide a 
clearer view of how one stage transits to another 
stage within a given time period. 
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Table 1: Transition Intensity Matrix of RT+Tam 
 Stage 1 Stage 2 Stage 3 

Stage 1 -0.02301 0.01957 0.0034 

Stage 2 0 -0.3074 0.3074 

Stage 3 0 0 0 
 

Table 2: Transition Intensity Matrix of Tam 
 Stage 1 Stage 2 Stage 3 

Stage 1 -0.03917 0.03528 0.003889 

Stage 2 0 -0.08533 0.08533 

Stage 3 0 0 0 

Figure 3: Survival Curves of Patients in RT+Tam 
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Table 5a: 2-year transition matrix for RT+Tam 
 Stage 1 Stage 2 Stage 3 

Stage 1 0.9550 0.0285 0.0165 
Stage 2 0 0.5408 0.4592 
Stage 3 0 0 0 

 
Table 6a: 4-year transition matrix for RT+Tam 

 Stage 1 Stage 2 Stage 3 
Stage 1 0.9121 0.0426 0.0453 
Stage 2 0 0.2925 0.7075 
Stage 3 0 0 0 

 
Table 7a: 5-year transition matrix for RT+Tam 

 Stage 1 Stage 2 Stage 3 
Stage 1 0.8913 0.0466 0.0621 
Stage 2 0 0.2151 0.7849 
Stage 3 0 0 0 

 
Table 8a: 10-year transition matrix for RT+Tam 

 Stage 1 Stage 2 Stage 3 
Stage 1 0.7945 0.0515 0.1540 
Stage 2 0 0.0463 0.9537 
Stage 3 0 0 0 

 

Table 5b: 2-year transition matrix for Tam 
 Stage 1 Stage 2 Stage 3 

Stage 1 0.9247 0.0623 0.0130 
Stage 2 0 0.8431 0.1569 
Stage 3 0 0 0 

 
Table 6b: 4-year transition matrix for Tam 

 Stage 1 Stage 2 Stage 3 
Stage 1 0.8550 0.1102 0.0348 
Stage 2 0 0.7108 0.2892 
Stage 3 0 0 0 

 
Table 7b: 5-year transition matrix for Tam 

 Stage 1 Stage 2 Stage 3 
Stage 1 0.8221 0.1295 0.0484 
Stage 2 0 0.6527 0.3473 
Stage 3 0 0 0 

 
Table 8b: 10-year transition matrix for Tam 

 Stage 1 Stage 2 Stage 3 
Stage 1 0.6759 0.1910 0.1331 
Stage 2 0 0.4260 0.5740 
Stage 3 0 0 0 

 

Figure 4: Survival Curves of Patients in Tam 
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STATISTICAL SOFTWARE APPLICATIONS & REVIEW 
Ordinal Regression Analysis: Fitting the Proportional Odds Model 

Using Stata, SAS and SPSS 
 

Xing Liu 
Eastern Connecticut State University 

 
 
Researchers have a variety of options when choosing statistical software packages that can perform 
ordinal logistic regression analyses. However, statistical software, such as Stata, SAS, and SPSS, may use 
different techniques to estimate the parameters. The purpose of this article is to (1) illustrate the use of 
Stata, SAS and SPSS to fit proportional odds models using educational data; and (2) compare the features 
and results for fitting the proportional odds model using Stata OLOGIT, SAS PROC LOGISTIC 
(ascending and descending), and SPSS PLUM. The assumption of the proportional odds was tested, and 
the results of the fitted models were interpreted. 
 
Key words: Proportional Odds Models, Ordinal logistic regression, Stata, SAS, SPSS, Comparison. 
 
 

Introduction 
The proportional odds (PO) model, also called 
cumulative odds model (Agresti, 1996, 2002; 
Armstrong & Sloan, 1989; Long, 1997, Long & 
Freese, 2006; McCullagh, 1980; McCullagh & 
Nelder, 1989; Powers & Xie, 2000; O’Connell, 
2006), is a commonly used model for the 
analysis of ordinal categorical data and comes 
from the class of generalized linear models. It is 
a generalization of a binary logistic regression 
model when the response variable has more than 
two ordinal categories. The proportional odds 
model is used to estimate the odds of being at or 
below a particular level of the response variable. 
For example, if there are j levels of ordinal 
outcomes, the model makes J-1 predictions, each 
estimating the cumulative probabilities at or 
below the jth level of the outcome variable. This 
model can estimate the odds of being at or 
beyond a particular level of the response 
variable as well, because below and beyond a  
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particular category are just two complementary 
directions. 

Researchers currently have a variety of 
options when choosing statistical software 
packages that can perform ordinal logistic 
regression models. For example, some general 
purpose statistical packages, such as Stata, SAS 
and SPSS, all provide the options of analyzing 
proportional odds models. However, these 
statistical packages may use different techniques 
to estimate the ordinal logistic models. Long and 
Freese (2006) noted that Stata estimates cut-
points in the ordinal logistic model while setting 
the intercept to be 0; other statistical software 
packages might estimate intercepts rather than 
cut-points. Agresti (2002) introduced both the 
proportional odds model and the latent variable 
model, and stated that parameterization in SAS 
(Proc Logistic) followed the formulation of the 
proportional odds model rather than the latent 
variable model. Hosmer and Lemeshow (2000) 
used a formulation which was consistent with 
Stata’s expression to define the ordinal 
regression model by negating the logit 
coefficients. 

Because statistical packages may 
estimate parameters in the ordinal regression 
model differently following different equations, 
the outputs they produce may not be the same, 
and thus they seem confusing to applied 
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statisticians and researchers. Researchers are 
more likely to make mistakes in interpreting the 
results if ignoring the differences in parameter 
estimations using different software packages.  

It is the aim of the article to clarify the 
misunderstanding and confusion when fitting 
ordinal regression models. To date, no study has 
been conducted to demonstrate fitting the 
proportional odds model using three general-
purpose statistical packages, comparing 
differences and identifying similarities among 
them. Thus, this article seeks to fill this gap by: 
(1) demonstrating the use of Stata, SAS and 
SPSS to fit the proportional odds model; and (2) 
comparing the features and results for fitting the 
proportional odds model using Stata OLOGIT, 
SAS PROC LOGISTIC (ascending and 
descending), and SPSS PLUM. Data from a 
survey instrument TPGP (Teachers’ Perceptions 
of Grading Practices) is used to demonstrate the 
PO analysis. 
 
Theoretical Framework 

In an ordinal logistic regression model, 
the outcome variable is ordered, and has more 
than two levels. For example, students’ SES is 
ordered from low to high; childrens’ proficiency 
in early reading is scored from level 0 to 5; and a 
response scale of a survey instrument is ordered 
from strongly disagree to strongly agree. One 
appealing way of creating the ordinal variable is 
via categorization of an underlying continuous 
variable (Hosmer & Lemeshow, 2000). 

In this article, the ordinal outcome 
variable is teachers’ teaching experience level, 
which is coded as 1, 2, or 3 (1 = low; 2 = 
medium; and 3 = high) and is categorized based 
on a continuous variable, teaching years. 
Teachers with less than five years of experience 
are categorized in the low teaching experience 
level; those with between 6 and 15 years are 
categorized in the medium level; and teachers 
with 15 years or more are categorized in the high 
level. The distribution of teaching years is 
highly positively skewed. The violation of the 
assumption of normality makes the use of 
Multiple Regression inappropriate. Therefore, 
the ordinal logistic regression is the most 
appropriate model for analyzing the ordinal 
outcome variable in this case. 
 

A Latent-Variable Model 
The ordinal logistic regression model 

can be expressed as a latent variable model 
(Agresti, 2002; Greene, 2003; Long, 1997, Long 
& Freese, 2006; Powers & Xie, 2000; 
Wooldridge & Jeffrey, 2001). Assuming a latent 
variable, Y* exists, Y* = xβ + ε, can be defined 
where x is a row vector (1* k) containing no 
constant, β is a column vector (k*1) of structural 
coefficients, and ε is random error with standard 
normal distribution: ε ~ N (0, 1). 

Let Y* be divided by some cut points 
(thresholds): α1, α2, α3… αj, and α1<α2<α3…< αj. 
Considering the observed teaching experience 
level is the ordinal outcome, y, ranging from 1 to 
3, where 1= low, 2 = medium and 3 = high, 
define: 
 

Y = 
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Therefore, the probability of a teacher at each 
experience level can be computed. For example, 
 

P(y = 1) = P (y* ≤α1)  
= P(xβ + ε ≤ α1) 

= F (α1 - xβ); 
 

P(y = 2) = P (α1 <y* ≤α2) 
= F (α2- xβ) - F (α1 - xβ); 

 
P(y = 3) = P (α2 < y* ≤∞) 

= 1 - F (α2 - xβ); 
 
The cumulative probabilities can also be 
computed using the form: 
 

P(Y ≤ j) = F (αj - xβ), where j = 1, 2,…J-1. (1) 
 
General Logistic Regression Model 

In a binary logistic regression model, the 
response variable has two levels, with 1 = 
success of the events, and 0 = failure of the 
events. The probability of success is predicted 
on a set of predictors. The logistic regression 
model can be expressed as: 
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ln(Y′) = logit [π(x)] 

= ln 
( )

( )






− xπ1

xπ
 

 
= α + β1X1 + β2X2 + … βpXp.           (2) 

 
In Stata, the ordinal logistic regression model is 
expressed in logit form as follows: 
 

ln(Yj′) = logit [π(x)] 
 

= ln 
( )

( )










− xπ1

xπ

j

j
 

 
= αj + (−β1X1 -β2X2 - … -βpXp),        (3) 

 
where πj(x) = π(Y ≤ j|x1,x2,…xp), which is the 
probability of being at or below category j, given 
a set of predictors. j = 1, 2, … J -1. αj are the cut 
points, and β1, β2 …βp are logit coefficients. This 
is the form of a Proportional Odds (PO) model 
because the odds ratio of any predictor is 
assumed to be constant across all categories. 
Similar to logistic regression, in the proportional 
odds model we work with the logit, or the 
natural log of the odds. To estimate the ln (odds) 
of being at or below the jth category, the PO 
model can be rewritten as: 
 

logit [π(Y ≤ j | x1,x2,…xp)] 
 

= ln 
( )
( ) 








>
≤

p

p

xx
x

,...,x|jYπ

,... x,x|jYπ

21

21
 

 
= αj + (−β1X1 -β2X2 - … -βpXp)          (4) 

 
Thus, this model predicts cumulative logits 
across J -1 response categories. By transforming 
the cumulative logits, we can obtain the 
estimated cumulative odds as well as the 
cumulative probabilities being at or below the jth 
category. 

SAS uses a different ordinal logit model 
for estimating the parameters from Stata. For 
SAS PROC LOGISTIC (the ascending option), 
the ordinal logit model has the following form: 
 

logit [π(Y ≤ j | x1, x2,…xp)] 

= ln 
( )
( ) 








>
≤

p

p

xx
x

,...,x|jYπ

,... x,x|jYπ

21

21
 

 
= αj + β1X1 +β2X2 + … +βpXp;          (5) 

 
Using SAS with the descending option, the 
ordinal logit model can be expressed as: 
 

logit [π(Y ≥ j | x1, x2,…xp)] 
 

= ln 
( )
( ) 








<
≥

p

p

xx
x

,...,x|jYπ

,... x,x|jYπ

21

21
 

 
= αj + β1X1 +β2X2 + … +βpXp,         (6) 

 
where in both equations αj are the intercepts, 
and β1, β2 …βp are logit coefficients. 

SPSS PLUM (Polytomous Universal 
Model) is an extension of the generalized linear 
model for ordinal response data. It can provide 
five types of link functions including logit, 
probit, complementary log-log, cauchit and 
negative log-log. Just as Stata, the ordinal logit 
model is also based on the latent continuous 
outcome variable for SPSS PLUM, it takes the 
same form as follows: 
 

logit [π(Y ≤ j | x1, x2,…xp)] 
 

= ln 
( )
( ) 








>
≤

p

p

xx
x

,...,x|jYπ

,... x,x|jYπ

21

21
 

 
= αj + (−β1X1 -β2X2 - … -βpXp),        (7) 

 
where αj’s are the thresholds, and β1, β2 …βp are 
logit coefficients; j = 1, 2…J-1. 

Compared to both Stata and SPSS, SAS 
(ascending and descending) does not negate the 
signs before the logit coefficients in the 
equations, because SAS Logistic procedure 
(Proc Logistic) is used to model both the 
dichotomous and ordinal categorical dependent 
variables, and the signs before the coefficients in 
the ordinal logit model are kept consistent with 
those in the binary logistic regression model. 
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Although the signs in the equations are positive, 
SAS internally changes the signs of the 
estimated intercepts and coefficients according 
to different ordering of the dependent variable 
(with the ascending or descending option). 
 

Methodology 
Sample 

The data were collected from teachers at 
three middle schools and a teacher’s training 
school in Taizhou City, Jiangsu Province, China, 
using a survey instrument named Teachers’ 
Perceptions of Grading Practices (TPGP) (Liu, 
2004; Liu, O’Connell & McCoach, 2006). A 
total of 147 teachers responded to the survey 
with the response rate of 73.5%. The outcome 
variable of interest is teachers’ teaching 
experiences, which is an ordinal categorical 
variable with 1 = low, 2 = medium and 3 = high. 

Explanatory variables included gender 
(female = 1; male = 2) and a set of scale scores 
from the TPGP survey instrument The 
instrument included five scales measuring the 
importance of grading, the usefulness of 
grading, student effort influencing grading,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

student ability influencing grading, and teachers’ 
grading habits. Composite scale scores were 
created by taking a mean of all the items for 
each scale. Table 1 displays the descriptive 
statistics for these independent variables. 

The proportional odds model was first 
fitted with a single explanatory variable using 
Stata (V. 9.2) OLOGIT. Afterwards, the full-
model was fitted with all six explanatory 
variables. The assumption of proportional odds 
for both models was examined using the Brant 
test. Additional Stata subcommands 
demonstrated here included FITSTAT and 
LISTCEOF of Stata SPost (Long & Freese, 
2006) used for the analysis of post-estimations 
for the models. The results of fit statistics, cut 
points, logit coefficients and cumulative odds of 
the independent variables for both models were 
interpreted and discussed. The same model was 
fit using SAS (V. 9.1.3) (ascending and 
descending), and SPSS (V. 13.0), and the 
similarities and differences of the results using 
all three programs were compared. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Descriptive Statistics for All Variables, n = 147 

Variable 

Teaching Experience Level 

1 
n = 70 
47.6% 

2 
n = 45 
30.6% 

3 
n = 32 
21.8% 

Total 
n = 147 
100% 

% Gender 
(Female) 

74.3% 66.7% 50% 66.7% 

Importance 3.33 (.60) 3.31 (.63) 3.55 (.79) 3.37 (.66) 

Usefulness 3.71 (.61) 3.38 (.82) 3.70 (.66) 3.60 (.70) 

Effort 3.77 (.50) 3.79 (.46) 3.80 (.68) 3.78 (.53) 

Ability 3.74 (.40) 3.75 (.54) 3.87 (.51) 3.77 (.47) 

Habits 3.38 (.66) 3.57 (.66) 3.49 (.60) 3.46 (.65) 
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Results 
Proportional Odds Model with a Single 
Explanatory Variable 

OLOGIT is the Stata program 
estimating ordinal logistic regression models of 
ordinal outcome variable on the independent 
variables. In this example, the outcome variable, 
teaching was followed immediately by the 
independent variable, gender. Figure 1 displays 
the Stata output for the one-predictor 
proportional odds model. 

The log likelihood ratio Chi-Square test 
with 1 degree of freedom, LR χ2

(1) = 5.29, p = 
.0215, indicated that the logit regression 
coefficient of the predictor, gender was 
statistically different from 0, so the full model 
with one predictor provided a better fit than the 
null  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

model with no independent variables in 
predicting cumulative probability for teaching 
experience level. The likelihood ratio R2

L = 
.0172, which is the Pseudo R2, and is also called 
McFadden’s R2, suggested that the relationship 
between the response variable, teaching 
experience, and the predictor, gender was small. 
More measures of fit were obtained using SPost 
subcommand fitstat (Long & Freese, 2006). In 
addition to the deviance statistic and 
McFadden’s R2, several other types of R2 

statistics were reported (Figure2). The 
information measures, AIC and BIC, were used 
to compare either nested or non-nested models. 
Smaller AIC and BIC statistics indicate the 
better fitting model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Stata Proportional Odds Model Example: Gender 
. ologit teaching gender 
 
Iteration 0:   log likelihood = -153.99556 
Iteration 1:   log likelihood = -151.35669 
Iteration 2:   log likelihood = -151.35194 
 
Ordered logistic regression                       Number of obs   =        147 
                                                  LR chi2(1)      =       5.29 
                                                  Prob > chi2     =     0.0215 
Log likelihood = -151.35194                       Pseudo R2       =     0.0172 
 
------------------------------------------------------------------------------ 
    teaching |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      gender |   .7587563   .3310069     2.29   0.022     .1099947    1.407518 
-------------+---------------------------------------------------------------- 
       /cut1 |   .9043487   .4678928                     -.0127044    1.821402 
       /cut2 |   2.320024   .5037074                      1.332775    3.307272 
------------------------------------------------------------------------------ 

Figure 2: Measures of Fit Statistics 
. fitstat 
 
Measures of Fit for ologit of teaching 
 
Log-Lik Intercept Only:       -153.996   Log-Lik Full Model:           -151.352 
D(144):                        302.704   LR(1):                           5.287 
                                         Prob > LR:                       0.021 
McFadden's R2:                   0.017   McFadden's Adj R2:              -0.002 
ML (Cox-Snell) R2:               0.035   Cragg-Uhler(Nagelkerke) R2:      0.040 
McKelvey & Zavoina's R2:         0.038                               
Variance of y*:                  3.419   Variance of error:               3.290 
Count R2:                        0.476   Adj Count R2:                    0.000 
AIC:                             2.100   AIC*n:                         308.704 
BIC:                          -415.918   BIC':                           -0.297 
BIC used by Stata:             317.675   AIC used by Stata:             308.704 
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The estimated logit regression 
coefficient, β = .7588. z = 2.29, p = .022, 
indicating that gender had a significant effect on 
teacher’s teaching experience level. Substituting 
the value of the coefficient into the formula (4), 
logit [π(Y ≤ j | gender)] = αj + (−β1X1), we 
calculated logit [π(Y ≤ j | gender)] = αj - .7588 
(gender). OR = e(-.7588) = .468, indicating that 
male teachers were .468 times the odds for 
female teachers of being at or below at any 
category, i.e., female teachers were more likely 
than male teachers to be at or below a particular 
category, because males were coded as 2 and 
girls as 1. 

The results table reports two cut-points: 
_cut1 and_cut2. These are the estimated cut-
points on the latent variable, Y*, used to 
differentiate the adjacent levels of categories of 
teaching experiences. When the response 
category is 1, the latent variable falls at or below 
the first cut point, α1. When the response 
category is 2, the latent variable falls between 
the first cut point α1 and the second cut point α2, 
and when the response category reaches 3 if the 
latent variable is at or beyond the second cut 
point α2. 

To estimate the cumulative odds being 
at or below a certain category, j for gender, the 
logit form of proportional odds model was used, 
logit [π(Y ≤ j | gender)] = αj - .7588 (gender). 
For example, when Y ≤ 1, α1, .9043 is the first 
cut point for the model. Substituting it into the 
formula (4) results in logit [π(Y ≤ j | gender)] = 
.9043 - .7588 (gender). For girls (x = 1), logit  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[π(Y ≤ 1 | gender)] = .1455. By exponentiating 
the logit, the odds for female teachers of being at 
or below experience category 1 is calculated, 
e.1455= 1.157. For male teachers (x = 2), logit 
[π(Y ≤ 1 | gender)] = .9043 - .7588*2 = -.6133, 
so the odds for male teachers being at or below 
teaching experience category 1, e-.6133=.542. 
Odds ratio of male teachers versus female 
teachers = .542/1.157 = .468. Transforming the 
cumulative odds, results in the cumulative 
probabilities by using p = odds/(1+odds). 

The Stata program brant was used to test 
the proportional odds assumption. Brant (1990) 
proposed a test of proportional odds assumption 
for the ordinal logistic model by examining the 
separate fits to the underlying binary logistic 
models. A non-significant omnibus test indicates 
that the proportional odds assumption is not 
violated. It also provides tests for each 
individual independent variable. When only one 
independent variable exists in the model, the 
results of the omnibus test and individual test are 
the same. The Brant test of parallel regression 
assumption yields χ2

1 = .40 (p > .527), indicating 
that the proportional odds assumptions for the 
full-model was upheld. This suggests that the 
effect of gender, the explanatory variable, was 
constant across separate binary models fit to the 
cumulative cut points. Figure 3 also shows the 
estimated coefficient from j-1 binary logistic 
regression models. Each logistic regression 
model estimates the probability of being at or 
beyond teaching experience level j. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Brant Test of Parallel Regression (Proportional Odds) Assumption 
. brant, detail 
Estimated coefficients from j-1 binary regressions 
 
               y>1         y>2 
gender   .66621777   .91021169 
 _cons  -.78882009  -2.5443422 
 
Brant Test of Parallel Regression Assumption 
 
    Variable |      chi2   p>chi2    df 
-------------+-------------------------- 
         All |      0.40    0.527     1 
-------------+-------------------------- 
      gender |      0.40    0.527     1 
---------------------------------------- 
 
A significant test statistic provides evidence that the parallel regression 
assumption has been violated. 
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The Proportional Odds Model can also estimate 
the ln(odds) of being at or beyond category j, 
given a set of predictors. Again, these ln(odds) 
can be transformed into the cumulative odds, 
and cumulative probabilities as well. For 
example, the cumulative probability of a 
teacher’s teaching experience can be estimated 
at or beyond category 3, P(Y ≥ 3), which is the 
complementary probability when Y ≤ 2, at or 
beyond category 2, P(Y ≥ 2), and P(Y ≥ 1), 
which equals 1.  

In Stata, when estimating the odds of 
being beyond category j, or at or beyond j+1, the 
sign of the cut points needs to be reversed and 
their magnitude remain unchanged because the 
cut points were estimated from the right to the 
left of the latent variable, Y*, that is, from the 
direction when Y = 3 approaches Y = 1. 
Therefore, two cut points from right to left turn 
to -2.32 and - .904. When the predictor is 
dichotomous, a positive sign of the logit 
coefficient indicates that it is more likely for the 
group (x = 1) to be at or beyond a particular 
category than for the relative group (x = 0). 
When the predictor is continuous, a positive 
coefficient indicates that when the value of the 
predictor variable increases, the probability of 
being at or beyond a particular category 
increases. 

Using Stata syntax listcoef, the odds of 
being at or beyond a particular category at 2.136 
can be obtained, which was constant across all  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cumulative categories. It also indicated that male 
teachers were 2.136 times the odds for female 
teachers of being at or beyond any category, i.e., 
male teachers were more likely than female 
teachers to be at or beyond a particular category. 
Figure 4 displays the results of Stata listcoef. 
Adding option percent after listcoef, the result of 
percentage change in odds of being at or beyond 
a particular category can be obtained when the 
predictor, gender, goes from males (x = 2) to 
females (x = 1). 
 
Proportional Odds Model with Six Explanatory 
Variables 

Next, a proportional odds model was fit 
with eight explanatory variables, which is 
referred to as the Full Model. Figure 5 displays 
the results for the fitting of the full model with 
six explanatory variables. 

Before interpreting the results of the full 
model, the assumption of proportional odds was 
first examined. The Stata brant command 
provides the results of the Brant test of parallel 
regression (Proportional Odds) assumption for 
the full model with six predictors and tests for 
each independent variable. It also provides the 
estimated coefficient from j-1 binary logistic 
regression models results of two separate binary 
logistic regression models. The data are 
dichotomized according to the cumulative 
probability   pattern   so    that   each    logistic  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Results of Stata listcoef 
. listcoef, help 
 
ologit (N=147): Factor Change in Odds  
 
  Odds of: >m vs <=m 
 
---------------------------------------------------------------------- 
    teaching |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
      gender |   0.75876    2.292   0.022   2.1356   1.4318     0.4730 
---------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
     e^b = exp(b) = factor change in odds for unit increase in X 
 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X 
   SDofX = standard deviation of X 
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regression model estimates the probability of 
being at or beyond teaching experience level j. 
For the omnibus Brant test, χ2

6 = 8.10, p = .230, 
indicating that the proportional odds 
assumptions for the full-model was upheld. 
Examining the Brant tests for each individual 
independent variable indicated that the Brant test 
of the assumption of parallel regression 
(proportional odds) were upheld for gender, 
importance, effort, ability and habits. For 
usefulness, the Brant test, χ2

1 = 4.03, p = .045, 
which is very close to .05, therefore, it may also 
be concluded that the PO assumption for this 
variable is nearly upheld. Checking the 
estimated coefficients for each independent 
variable across two binary logistic regression 
models shows that the logit coefficients for all  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the variables were similar across two binary 
logistic models, supporting the results of the 
Brant test of proportional odds assumption. 

The log likelihood ratio Chi-Square test, 
LR χ2

(6) = 13.738, p = .033, indicating that the 
full model with six predictor provided a better fit 
than the null model with no independent 
variables in predicting cumulative probability 
for teaching experience. The likelihood ratio R2

L 
= .045, much larger than that of the gender-only 
model, but still small, suggesting that the 
relationship between the response variable, 
teaching experience, and six predictors, was still 
small. Compared with the gender-only model, 
all R2statistics of the full-model shows 
improvement (see Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Brant Test of Parallel Regression (Proportional Odds) Assumption 
. brant, detail 
 
Estimated coefficients from j-1 binary regressions 
 
                   y>1         y>2 
    gender   .74115294   .86086025 
importance   .64416122   .46874536 
usefulness  -.94566294  -.19259753 
    effort   .09533898  -.03621639 
   ability   .26862373   .68349765 
    habits   .48959286  -.02795948 
     _cons  -2.7097459  -5.7522624 
 
Brant Test of Parallel Regression Assumption 
 
    Variable |      chi2   p>chi2    df 
-------------+-------------------------- 
         All |      8.10    0.231     6 
-------------+-------------------------- 
      gender |      0.08    0.772     1 
  importance |      0.24    0.622     1 
  usefulness |      4.03    0.045     1 
      effort |      0.10    0.746     1 
     ability |      0.66    0.418     1 
      habits |      2.15    0.142     1 
---------------------------------------- 
 
A significant test statistic provides evidence that the parallel 
regression assumption has been violated. 
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The Stata listcoef command (Figure 8) 
produced more detailed results of logit 
coefficients and cumulative odds (exponentiated 
coefficients). For the proportional odds model, 
interpretation of cumulative odds is independent 
on the ancillary parameters (cut points) because 
they are constant across all levels of the 
response variable. 

The effects of the independent variables 
can be interpreted in several ways, including 
how they contribute to the odds and their 
probabilities of being at or beyond a particular 
category. They can also be interpreted as how 
these variables contribute to the odds of being at 
or below a particular category, if the sign is 
reversed before the estimated logit coefficients 
and corresponding cumulative odds are 
computed. In terms of odds ratios, male teachers 
were 2.241 times the odds for female teachers to 
be at or beyond a particular category 
(OR=2.241), after controlling the effects of other 
predictors in the model. The usefulness of 
grading with a corresponding OR significantly 
less than 1.0 has significant negative effects in 
the model. These cumulative odds are associated 
with a teacher being in lower teaching 
experience categories rather than in higher 
categories. For a one unit increase in the 
usefulness of grading, the odds ratio of being in 
higher teaching experience categories versus 
lower categories was .53 times lower, after 
controlling for the effects of other variables. 
However, variables whose corresponding ORs 
are significantly greater than 1.0 have significant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
positive effects on the response variable in the 
model. For example, the importance of grading 
(OR=1.778) had a positive effect on teachers 
being in higher teaching experience categories. 
For a one unit increase in the importance of 
grading, the odds ratio of being in higher 
teaching experience categories versus lower 
categories was 1.778 times greater, given the 
effects of other predictors are held constant. 
Variables such as student ability and teacher’s 
grading habits, whose corresponding ORs were 
greater than 1.0, but were not statistically 
significant, had positive effects on the response 
variable, but these effects may be due to chance 
and need further investigation. Independent 
variables with ORs close to 1.0 have no effect 
on the response variable. For example, student 
effort influencing grading was not associated 
with teaching experience in this model 
(OR=1.0266, p=.946). 
 
Comparison of Results of a Single-Variable PO 
Model Using Stata, SAS, and SPSS 

Table 2 shows a comparison of the 
results for Stata OLOGIT with results from SAS 
PROC LOGISTIC with the ascending and 
descending options, and SPSS PLUM. The 
similarities and differences between these results 
should be noted, otherwise, it could be 
misleading to interpret the results in the same 
way, disregarding their different 
parameterizations. In estimating proportional 
odds models, Stata sets the intercept to 0, and 
estimates the cut points, while SAS ascending  

Figure 7: Measure of Fit Statistics for Full-Model 
. fitstat 
 
Measures of Fit for ologit of teaching 
 
Log-Lik Intercept Only:       -153.996   Log-Lik Full Model:           -147.127 
D(139):                        294.253   LR(6):                          13.738 
                                         Prob > LR:                       0.033 
McFadden's R2:                   0.045   McFadden's Adj R2:              -0.007 
ML (Cox-Snell) R2:               0.089   Cragg-Uhler(Nagelkerke) R2:      0.102 
McKelvey & Zavoina's R2:         0.098                               
Variance of y*:                  3.646   Variance of error:               3.290 
Count R2:                        0.429   Adj Count R2:                   -0.091 
AIC:                             2.111   AIC*n:                         310.253 
BIC:                          -399.417   BIC':                           16.205 
BIC used by Stata:             334.177   AIC used by Stata:             310.253 
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estimates the intercepts and set the cut points to 
0. Comparing Stata with SAS (ascending), the 
different choice of parameterization does not 
influence the magnitude of cut points (or 
intercepts) and coefficients. However, it does 
determine the sign before these estimates. 

When estimating the odds of being at or 
below a response category, the estimates for the 
cut points using Stata are the same as the 
intercepts using SAS ascending in both sign and 
magnitude. The first cut point, α1 in Stata 
estimation is the same as the first intercept α1 in 
SAS ascending estimation, because there is no 
first intercept α1 in Stata estimation. Using Stata 
and SAS (the ascending option), the estimated 
logit coefficients are the same in magnitude but 
are opposite in sign. Using Stata, the estimated 
logit coefficient β = .759. Substituting it into the 
logit form (4), we get logit [π(Y ≤ j | gender)] = 
αj  −(.759)*(gender) = αj -.759*(gender). OR = 
e(-.759) = .468, indicating that male teachers were 
.468 times the odds for female teachers of being 
at or below at any category, that is, female 
teachers were more likely than male teachers to 
be at or below a particular teaching experience 
level. Using SAS ascending, the estimated logit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
coefficient, β = -.759. Substituting it into its 
corresponding logit form (5) results in the same 
equation: logit [π(Y ≤ j | gender)] = αj -
.759*(gender). Therefore, the same results of 
estimated cumulative odds and cumulative 
probability were obtained using Stata and SAS 
ascending. 

Comparing the results of the 
proportional odds model using Stata and SAS 
with the descending option, it was found that 
estimated cut points for Stata and the estimated 
intercepts for SAS descending are the same in 
magnitude but are opposite in sign. Using Stat 
and SAS descending, the estimated logit 
coefficients are the same in both magnitude and 
sign. To estimate the odds of being at or beyond 
a particular teaching experience level using 
Stata, it is only necessary to reverse the sign of 
the estimated cut points. The estimated logit 
coefficient is β = .759. Exponentiating this 
results in e (.759) =2.136, indicating male teachers 
are 2.136 times greater than female teachers to 
be at or beyond a particular category. In other 
words, female teachers are less likely than male 
teachers to be at or beyond a certain category. 
 

Figure 8: Results of Logit Coefficient, Cumulative Odds, and Percentage Change in Odds 
. listcoef, help 
 
ologit (N=147): Factor Change in Odds  
 
  Odds of: >m vs <=m 
 
---------------------------------------------------------------------- 
    teaching |      b         z     P>|z|    e^b    e^bStdX      SDofX 
-------------+-------------------------------------------------------- 
      gender |   0.80695    2.318   0.020   2.2411   1.4648     0.4730 
  importance |   0.57547    1.897   0.058   1.7780   1.4601     0.6578 
  usefulness |  -0.63454   -2.322   0.020   0.5302   0.6402     0.7029 
      effort |   0.02625    0.068   0.946   1.0266   1.0140     0.5283 
     ability |   0.34300    0.825   0.409   1.4092   1.1752     0.4707 
      habits |   0.31787    1.088   0.277   1.3742   1.2282     0.6466 
---------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
     e^b = exp(b) = factor change in odds for unit increase in X 
 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X 
   SDofX = standard deviation of X 
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Using Stata and SPSS, when estimating 
the effects of predictors on the log odds of being 
at or below a certain category of the outcome 
variable, the sign before the coefficients are both 
minus rather than plus. In other words, the 
effects of predictors are subtracted from the cut 
points or thresholds. SPSS PLUM labels the 
estimated logits for the predicator variables 
LOCATION. When the predicator variable is 
continuous, the estimated logit coefficients are 
the same as those estimated by Stata OLOGIT in 
both magnitude and sign. However, SPSS 
PLUM is different from Stata OLOGIT in this 
aspect: when the predictor variable is 
categorical, for example gender, with 1 = female 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and 2 = male, the estimated coefficient is only 
displayed for the category with smaller value, 
i.e., when gender = 1. The category with larger 
value, gender = 2, is the reference category, and 
has an estimate of 0. If gender is coded with 1 = 
female and 0 = male, the estimated coefficient is 
displayed for the case when gender = 0, and the 
estimated coefficient for female (gender = 1) is 
0. Using SPSS PLUM, the estimated logit 
coefficient, β = -.759 for the case when female = 
1, and β = 0 for the case when male = 2. 
Substituting it into the logit form (7) results in 
logit [π(Y ≤ j | gender)] = αj  −(−.759)*(gender) 
= αj +.759*(gender). By exponentiating, OR = e 
(.759) = 2.136, indicating that female teachers are 

Table 2: Results of Proportional Odds Model with a Single Variable Using Stata, SAS 
(Ascending and descending) and SPSS: A Comparison 

Model 
Estimates 

STATA 
SAS 

(Ascending) 
SAS 

(Descending) 
SPSS 

P(Y ≤ j) P(Y ≤ j) P(Y ≥ j) P(Y ≤ j) 

Cutpoints (Stata)/ 
Intercept (SAS)/ 

Threshold (SPSS) 

_cut1(α1) = .904 α1 = .904 α3 = -2.32 α1 = -.613 

_cut2(α2) = 2.32 α2 = 2.32 α2 = -.904 α2  = .803 

Gender 
(Male = 2) 

.759 -.759 .759 0 

Gender 
(Female = 1) 

   -.759 

LR R2 .017 .017 .017 .017 

Brant Test 
(Omnibus Test)a 

χ2
1 = .40 (p > 

.527) 
   

Score Testb  χ2
1 = .4026 

(p = .5258) 
χ2

1 = .4026 
(p = .5258) 

χ2
1 = .392 

(p > .530) 

Model Fit 
LR χ2

(1) = 5.29,  
p = .0215 

LR χ2
(1) = 5.29,  

p = .0215 
LR χ2

(1) = 5.29, 
p = .0215 

LR χ2
(1) = 5.287, 

p = .021 

a. Brant test for proportional odds assumption. 
b. Score test for proportional odds assumption. 
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2.136 times the odds for male teachers of being 
at or below at a particular teaching experience 
level. This result is equivalent to that of Stata. 

The parameter estimation for the 
categorical predictor in SPSS PLUM makes the 
threshold values in the ordinal logit model 
different from those estimated by Stata 
OLOGIT. These differences can be observed in 
the results of the proportional odds model using 
Stata, SAS (ascending and descending), and 
SPSS (Table 2). In SPSS PLUM, the threshold 
estimates are for the case when gender = 2 (male 
teachers), while in Stata and SAS, the cut points 
or intercepts are for case when gender = 1 
(female students). 

Equivalent results of estimated logit can 
be obtained using different estimates of 
cutpoints (thresholds) and logit coefficients 
fitted by Stata and SPSS. For example, using 
SPSS, the predicted logit for male teachers 
(gender = 2) of being at or below teaching 
experience level 1, logit [π(Y ≤ 1 | gender)] = 
α1  − 0*(gender) = -.613 +0*(2) = -.613; the 
predicted logit for female teachers (gender = 1) 
of being at or below teaching experience level 1, 
logit [π(Y ≤ 1 | gender)] = α1  −(−.759)*(gender) 
= -.613 + .759*1 = .146. Using Stata, the 
predicted logit for male teachers (gender = 2) of 
being at or below teaching experience level 1, 
logit [π(Y ≤ 1| gender)] = α1  −(.759)*(gender) = 
.904 -.759*2 = -.614; the predicted logit for 
female teachers (gender =1) of being at or below 
teaching experience level 1, logit [π(Y ≤ 1 | 
gender)] = α1  −(.759)*(gender) = .904 - .759*1 
= .145. 

To test the proportional odds 
assumption, Stata uses the Brant test of parallel 
regression assumption with the result χ2

1 = .40 p 
> .527; SAS uses ascending and descending 
score test and has the same results χ2

1 = .4026, p 
= .5258; SPSS uses a test of parallel lines with 
the result χ2

1 = .392, p > .530. All tests produce 
similar results in that the proportional odds 
model assumption is upheld. Across the models, 
the omnibus likelihood ratio tests produce the 
same results, indicating the proportional odds 
model with one variable (gender) has better fit 
than the null model. Features of the ordinal 
logistic regression analysis using Stata, SAS and 
SPSS are shown and compared in Table 3. 

Conclusion 
In this article, the use of proportional odds 
models was illustrated to predict teachers’ 
teaching experience level from a set of measures 
of teachers’ perceptions of grading practices. A 
single independent variable model and a full-
model with six independent variables were fitted 
and compared. The assumptions of proportional 
odds for both models were examined. It was 
found that the assumption of proportional odds 
for both the single-variable model and the full-
model was upheld. 

Results from the proportional odds 
model revealed that the usefulness of grading 
had a negative effect on the prediction of 
teaching experience level (OR = .53), while the 
importance of grading practices had a positive 
effect on the experience level (OR = 1.78), after 
controlling for the effects of other variables. 
Although student effort influencing teachers’ 
grading practices (OR = 1.41) and teachers’ 
grading habits (OR = 1.37) had positive effects 
on teaching experience level, these effects were 
not found to be significant. Compared to male 
teachers, female teachers were more likely to be 
at or below a particular category, or in other 
words, males were more likely to be at or 
beyond an experience level. Student effort 
influencing grading was not associated with 
teachers’ teaching experience level in the model. 

These findings suggest that teachers 
with longer teaching experience tended to feel 
the grading practices are more important than 
the teachers with fewer years of teaching. 
However, teachers with longer teaching 
experiences tended to doubt the usefulness of 
grading in their teaching; this may be due in part 
to their requirement of conducting test-oriented 
teaching in China. In addition, the gender 
difference suggests that female teachers were 
more easily categorized as inexperienced 
teachers; this may be due to greater numbers of 
female students receiving the opportunities of 
higher education in recent years and their 
choosing teaching as their profession. The 
frequencies of new female teachers are currently 
greater than those of new male teachers in 
China. 

Comparing the results using Stata and 
SAS, it was found that both packages produced 
the same or similar results in model fit statistics,  
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and the test of proportional odds assumption. 
The estimated coefficients and cut points 
(thresholds) were the same in magnitude but 
may be reversed in sign. Comparing the results 
using Stata and SPSS, it was found that although 
the ordinal logit models are based on latent 
continuous response variables for both packages, 
SPSS PLUM estimated the logit coefficient for 
the category with smaller value when the 
predictor variable was categorical, and thus the 
estimated thresholds were different from those 
estimated by Stata. Researchers should 
understand the differences of parameterization 
of ordinal logistic models using Stata and other 
statistical packages. Researchers should pay 
attention to the sign before the estimated logit 
coefficients and the cut points in the model, and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
exercise caution in interpreting the results.  

In educational research, ordinal 
categorical data is frequently used and 
researchers need to understand and be familiar 
with the ordinal logistic regression models 
dealing with the internally ordinal outcome 
variables. In some situations, Ordinary Least 
Squares (OLS) techniques may be used for 
preliminary analysis of such data by treating the 
ordinal scale variable as continuous. However, 
ignoring the discrete ordinal nature of the 
variable would cause the analysis lose some 
useful information and could lead to misleading 
results. Therefore, it is crucial for researchers to 
use the most appropriate models to analyze 
ordinal categorical dependent variables. In 
addition, the role of any statistical software 

Table 3: Feature Comparisons of the Ordinal Logistic Regression Analysis Using Stata, SAS and SPSS 

 STATA SAS SPSS 

Model Specification 

Cutpoints/Thresholds    

Intercept    

Test Hypotheses of Logit Coefficients    

Maximum Likelihood Estimates 

Odds Ratio    

z-statistic or Wald Test for Parameter Estimate    

Chi-square Statistic for Parameter Estimate    

Confidence Interval for Parameter Estimate    

Fit Statistics 

Loglikelihood    

Goodness-of-Fit Test    

Pseudo R-Square    

Test of PO Assumption 

Omnibus Test of Assumption of Proportional Odds    

Test of Assumption of Proportional Odds for Individual 
Variables 

   

Association of Predicted Probabilities  
and Observed Responses 
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package is a tool for researchers. The choice of 
software is the preference of researchers; it is 
therefore not the purpose of the study to suggest 
which one is the best for ordinal logistic 
regression analysis. This demonstration clarifies 
some of the issues that researchers must consider 
in using different statistical packages when 
analyzing ordinal data. 
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JMASM ALGORITHMS & CODE 
JMASM28: Gibbs Sampling for 2PNO Multi-unidimensional 

Item Response Theory Models (Fortran) 
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A Fortran 77 subroutine is provided for implementing the Gibbs sampling procedure to a multi-
unidimensional IRT model for binary item response data with the choice of uniform and normal prior 
distributions for item parameters. In addition to posterior estimates of the model parameters and their 
Monte Carlo standard errors, the algorithm also estimates the correlations between distinct latent traits. 
The subroutine requires the user to have access to the IMSL library. The source code is available at 
http://www.siuc.edu/~epse1/sheng/Fortran/MUIRT/GSMU2.FOR. An executable file is also provided for 
download at http://www.siuc.edu/~epse1/sheng/Fortran/MUIRT/EXAMPLE.zip to demonstrate the 
implementation of the algorithm on simulated data. 
 
Key words: multi-unidimensional IRT model, two-parameter normal ogive model, MCMC, Gibbs 
sampling, Fortran. 
 
 

Introduction 
Modeling the interaction of a person’s trait and 
the test at the item level for binary response 
data, the conventional item response theory 
(IRT) models rely on a strong assumption of 
unidimensionality. That is, each test item is 
designed to measure some facet of a unified 
latent trait. However, psychological processes 
have consistently been found to be more 
complex and an increasing number of 
educational measurements assess a person on 
more than one latent trait. In the situations when 
a test consists of several subtests with each 
measuring   one    latent      trait,    the    multi-  
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unidimensional IRT models have been found to 
be more appropriate than the unidimensional 
models (Sheng & Wikle, 2007), as they allow 
inferences to be made about a person for each 
distinct trait being measured. 

For the two-parameter normal ogive 
(2PNO) multi-unidimensional model, the 
probability of person i obtaining a correct 
response for item j in subtest v, where 

1,..., ,i n=  1,..., vj k= , 1,...,v m= ,  and 

vv
K k= , is defined as  

 

2

2

( 1) ( )

1
               

2

vj vi vj

vij vj vi vj

t

P y

e dt
α θ γ

α θ γ

π

− −

−∞

= = Φ −

= 
       (1) 

 
(e.g., Lee, 1995; Sheng & Wikle, 2007), where 

vjα  and viθ are scalar parameters representing 

the item discrimination and the continuous 
person trait in the vth latent dimension, and vjγ  

is a scalar parameter indicating the location in 
that dimension where the item provides 
maximum information. To estimate both item 
and person parameters simultaneously, Markov 
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chain Monte Carlo (MCMC; e.g., Chib & 
Greenberg, 1995) techniques are used to 
summarize the posterior distributions that arise 
in the context of the Bayesian prior-posterior 
framework (Carlin & Louis, 2000; Chib & 
Greenberg, 1995; Gelfand & Smith, 1990; 
Gelman, Carlin, Stern, & Rubin, 2003; Tanner & 
Wong, 1987). Lee (1995) applied Gibbs 
sampling (Casella & George, 1992; Gelfand & 
Smith, 1990; Geman & Geman, 1984), an 
MCMC algorithm, to the 2PNO multi-
unidimensional model and illustrated the model 
parameterization by adopting non-informative 
priors for item parameters. 

Due to the reasons that informative 
priors are desirable in some applications in the 
Bayesian framework, and MCMC is 
computational demanding (see Sheng & 
Headrick, 2007, for a description of the 
problems), this study focuses on using Fortran, 
the fastest programming language for numerical 
computing (Brainerd, 2003) to implement the 
procedure. In particular, the paper provides a 
Fortran subroutine that obtains the posterior 
estimates and Monte Carlo standard errors of 
estimates for the item and person parameters in 
the 2PNO multi-unidimensional IRT model, as 
well as the posterior estimates of the correlations 
between the distinct latent traits. The subroutine 
allows the user to specify non-informative and 
informative priors for item parameters. 
 

Methodology 
The Gibbs Sampling Procedure 

To implement Gibbs sampling to the 
2PNO multi-unidimensional IRT model defined 
in (1), a latent continuous random variable Z is 
introduced so that Zvij~ N( vj vi vjα θ γ− , 1) 

(Albert, 1992; Lee, 1995; Tanner & Wong, 
1987). Next, denote each person’s latent traits 

for all items as ( )'

1 ,...,i i miθ θ=θ , which is 

assumed to have a multivariate normal (MVN) 
distribution, ~ ( , )i mNθ 0 Σ , where Σ  is a 

correlation matrix, and stρ  is the correlation 

between θsi and θti, s ≠ t, on the off diagonals. It 
may be noted that the unidimensional IRT model 
is a special case of the multi-unidimensional 
model where 1stρ =  for all s, t. Then, an 

unconstrained covariance matrix Σ* is introduced 

(Lee, 1995), where ij m m
σ

×
 =  

*Σ , so that the 

correlation matrix Σ  can be easily transformed 

from Σ* using st
st

s t

σρ
σ σ

= (s ≠ t). A non-

informative prior is assumed for Σ* so that 

p(Σ*) ∝ Σ*
−

m+1

2 . Hence, with prior 

distributions assumed for vjξ , where 

( , ) 'vj vj vjα γ=ξ , the joint posterior distribution 

for ( , ,  , )*θ ξ Z Σ  is  
 

( , ,  , | )

      ( | ) ( | , ) ( ) ( | ) ( ).

p
f p p p p

∝*

*

θ ξ Z Σ y

y Z Z θ ξ ξ θ Σ Σ
(2) 

 
where ( | )f y Z  is the likelihood function.  

With non-informative priors for vjα  
 

and vjγ
 
so that vjα > 0 and ( ) 1vjp γ ∝ , the full 

conditional distributions of Zvij, iθ , vjξ  and  Σ* 

can be derived in closed forms as follows: 
 

(0, )

( ,0)

( ,1),   1
| ~ ;

( ,1),   0
vj vi vj vij

vij
vj vi vj vij

N if y
Z

N if y
α θ γ
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0 α 0
A

0 0 α




   


 and 

1 1
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( 1)

i

i
K
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×

+ 
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 + 

Z γ
Z γ
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Z γ


, ( )1 ,,..., '
vv v v kα α=α , 

( )1,..., '
vvi vi nikZ Z=Z , ( )1 ,,..., '

vv v v kγ γ=γ ; 

1 1
2| ~   (( ' ) ' ,( ' ) ) ( 0),vj v v v vj v v vjN I α− −• >ξ x x x Z x x  

(5) 
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where vx =[ vθ , –1]; 
* 1 1| ~ ( ,  )W n− −•Σ S                 (6) 

 
(an inverse Wishart distribution), where 

1

( )( ) '
n

i i
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c c
=

=S θ θ  and  
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(see Lee, 1995 for a detailed derivation). 

Alternatively, conjugate priors can be 
assumed for vjα  

 
and vjγ

 
so that 

2
(0, )~ ( , )

v vvj N α αα μ σ∞ , 2~ ( , )
v vvj N γ γγ μ σ . In this 

case, the full conditional distribution of vjξ  is 

derived to be 
 

1 1 1
2

1 1

| ~ (( ' ) ( ' ),

( ' ) ) ( 0)

v v v

v

vj v v v vj

vj

N

I α

− − −

− −

• + +

+ >
ξ ξ ξ

ξ

ξ x x Σ x Z Σ μ

x x Σ
   (7) 

 
where ( , ) '

v v vα γμ μ=ξμ  and 

2

2

0

0
v

v

v

α

γ

σ
σ

 
=   
 

ξΣ . 

Hence, with starting values (0)θ , (0)ξ , 

and (0)Σ ,  observations ( ( )lZ , ( )lθ , ( )lξ , ( )lΣ ) 
can be simulated using the Gibbs sampler by 
iteratively drawing from their respective full 
conditional distributions specified in (3), (4), (5), 
and (6) (or (3), (4), (7), and (6)). In particular, to 

go from ( ( 1)l−Z , ( 1)l−θ , ( 1)l−ξ , ( 1)l−Σ ) to ( ( )lZ , 
( )lθ , ( )lξ , ( )lΣ ), it takes four transition steps: 

 

1. Draw ( )lZ ~ p(Z| y, ( 1)l−θ , ( 1)l−ξ ); 

2. Draw ( )lθ ~ p(θ | ( )lZ , ( 1)l−ξ , ( 1)l−Σ ); 

3. Draw ( )lξ ~ p(ξ | ( )lZ , ( )lθ ); 

4. Draw *( )lΣ ~ p( *Σ | ( )lθ , ( )lξ ), and 

transform *( )lΣ  to ( )lΣ . 
 

This iterative procedure produces a 
sequence of samples for the model parameters    

( ( )lθ , ( )lξ ) and the hyperparameter ( )lΣ , l = 0, 
…, L. To reduce the effect of the starting values, 
early iterations in the Markov chain are set as 
burn-ins to be discarded. Samples from the 
remaining iterations are then used to summarize 
the posterior density of item parameters ξ , 

distinct person trait parameters θ , and the 
correlation matrix Σ . As with standard Monte 
Carlo, the posterior means of all the samples 
collected after burn-in are considered as 
estimates of the true parameters ξ , θ , and Σ .  

However, the Monte Carlo standard 
errors cannot be calculated using the sample 
standard deviations because subsequent samples 
in each Markov chain are autocorrelated (e.g., 
Patz & Junker, 1999). One approach to 
calculating them is through batching (Ripley, 
1987). That is, with a long chain of samples 
being separated into contiguous batches of equal 
length, the Monte Carlo standard error for each 
parameter is then estimated to be the standard 
deviation of these batch means. The Monte 
Carlo standard error of estimate is hence a ratio 
of the Monte Carlo standard error and the square 
root of the number of batches. 
 
The Fortran Subroutine 

The subroutine initially sets the starting 
values for the model parameters, θ , ξ , and the 

hyperparameter Σ , so that (0) 0viθ = , (0) 2viα = , 
(0) 1( / ) 5vi viji

y nγ −= −Φ   (Albert, 1992), and 

(0) =Σ I , with I being the identity matrix. It 
then iteratively draws random samples for Z, θ  

and *Σ  from their respective full conditional 
distributions specified in (3), (4) and (6). 
Samples for vjξ  are simulated either from (5), 

where uniform priors are assumed for vjξ , or 

from (7), where normal priors are adopted with 
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0
v vα γμ μ= =  and 2 2 1

v vα γσ σ= = . The algorithm 

continues until all the L samples are simulated. It 
then discards the early burn-in samples, and 
computes the posterior estimates and Monte 
Carlo standard errors of estimates for the model 
parameters, θ  and ξ , as well as the 

hyperparameter Σ , using batching. 
For example, consider binary responses 

of 2,000 persons to a total of 16 test items, 
which are further divided into two subtests so 
that the first half measures one latent trait and 
the second half measures another (i.e., n = 
2,000, m = 2, k1 = 8, k2 = 8, and K = 16). Three 
dichotomous (0-1) data matrices were simulated 
from the item parameters shown in the first 
column of Tables 1 and 2, so the actual 
correlation ( ρ ) between the two distinct latent 

traits ( 1θ , 2θ ) was set to be 0.2, 0.5 and 0.8, 

respectively. The Gibbs sampler was 
implemented to each data set so that 10,000 
samples were simulated with the first 5,000 
taken to be burn-in. The remaining 5,000 
samples were separated into 5 batches, each with 
1,000 samples. 

With the uniform or the normal prior 
distributions described previously, two sets of 
the posterior means for vα , vγ , and ρ  as well 

as their Monte Carlo standard errors were 
obtained for each simulated data and are 
displayed in the rest of the tables. Note that in all 
the three simulated situations, item parameters 
were estimated with enough accuracy and the 
two sets of posterior estimates differed only in 
the third decimal place, signifying that the 
results are not sensitive to the choice of prior 
distributions for vjξ . In addition, the small 

values of the Monte Carlo standard errors of 
estimates suggested that the Markov chains with 
a run length of 10,000 and a burn-in period of 
5,000 reached the stationary distribution. 
Further, note that the procedure recovered the 
latent structure accurately as well, as the 
posterior estimates of the correlation between 
the two distinct latent traits, displayed in the last 
row of Table 2, was close to the actual 
correlation in all the three situations. For this 
example where 2,000-by-16 data matrices were 
considered, each implementation took less than 

25 minutes. The length of the chains may be 
increased to be as long as 50,000, which takes 
about 90-120 minutes for each execution. 
 

Conclusion 
This Fortran subroutine allows the user to 
choose between uniform and normal priors for 
the item parameters, vα  and vγ . In addition, the 

user can modify the source code by assigning 

other values to αμ  , 2
ασ , and γμ , 2

γσ  to reflect 

different prior beliefs on their distributions. 
Convergence can be assessed by inspecting 
Monte Carlo standard errors, as well as by 
comparing the marginal posterior mean and 
standard deviation of each parameter computed 
for every 1,000 samples after the burn-ins. For 
the latter, identical values provide a rough 
indication of similar marginal posterior 
densities, which further indicates possible 
convergence of the Markov chain (Gelfand, 
Hills, Racine-Poon & Smith, 1990; Hoijtink & 
Molenaar, 1997).  

Note that the algorithm adopts a 
correlation matrix in the prior distribution, 

~ ( , )i mNθ 0 Σ , to solve the problem of model 

nonidentifiability (see e.g., Lee, 1995, for a 
description of the problem). Bafummi, Gelman, 
Park, and Kaplan (2005) provides an alternative 
solution to the problem. 
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Table 1: Posterior Estimates and Monte Carlo Standard Errors of Estimates (MCSEs) for 

vα with Uniform and Normal Priors 

Parameters 

.2ρ =  .5ρ =  .8ρ =  

Uniform Normal Uniform Normal Uniform Normal 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

1α  

0.0966 
0.0838 
(.0013) 

0.0828 
(.0011) 

0.0869 
(.0007) 

0.0846 
(.0012) 

0.0830 
(.0013) 

0.0847 
(.0007) 

0.0971 
0.0675 
(.0010) 

0.0660 
(.0013) 

0.0731 
(.0008) 

0.0740 
(.0010) 

0.0657 
(.0014) 

0.0689 
(.0012) 

0.4589 
0.4698 
(.0035) 

0.4704 
(.0026) 

0.4748 
(.0028) 

0.4707 
(.0021) 

0.4829 
(.0021) 

0.4797 
(.0021) 

0.9532 
0.8556 
(.0039) 

0.8531 
(.0069) 

0.8804 
(.0054) 

0.8753 
(.0058) 

0.8937 
(.0063) 

0.8928 
(.0045) 

0.0771 
0.0510 
(.0009) 

0.0502 
(.0005) 

0.0552 
(.0013) 

0.0550 
(.0008) 

0.0589 
(.0007) 

0.0577 
(.0008) 

0.4891 
0.4900 
(.0020) 

0.4895 
(.0024) 

0.4855 
(.0029) 

0.4864 
(.0012) 

0.4659 
(.0017) 

0.4649 
(.0017) 

0.8599 
1.0401 
(.0185) 

1.0348 
(.0114) 

1.0180 
(.0080) 

1.0120 
(.0069) 

0.9983 
(.0057) 

0.9930 
(.0061) 

0.9427 
0.9381 
(.0075) 

0.9327 
(.0024) 

0.9477 
(.0085) 

0.9408 
(.0088) 

0.9628 
(.0033) 

0.9479 
(.0075) 

2α  

0.2727 
0.3013 
(.0010) 

0.2973 
(.0026) 

0.2654 
(.0006) 

0.2685 
(.0014) 

0.2348 
(.0016) 

0.2358 
(.0013) 

0.6532 
0.7279 
(.0051) 

0.7251 
(.0061) 

0.6354 
(.0028) 

0.6346 
(.0020) 

0.7188 
(.0042) 

0.7142 
(.0028) 

0.1002 
0.1231 
(.0010) 

0.1226 
(.0014) 

0.1528 
(.0008) 

0.1527 
(.0012) 

0.1088 
(.0012) 

0.1108 
(.0018) 

0.2339 
0.0945 
(.0014) 

0.0965 
(.0026) 

0.1557 
(.0021) 

0.1535 
(.0015) 

0.1683 
(.0020) 

0.1670 
(.0013) 

0.9291 
0.8554 
(.0155) 

0.8552 
(.0131) 

0.8145 
(.0042) 

0.8184 
(.0071) 

0.9208 
(.0039) 

0.9149 
(.0061) 

0.8618 
0.8730 
(.0128) 

0.8575 
(.0095) 

0.9107 
(.0060) 

0.9001 
(.0069) 

0.9067 
(.0034) 

0.9055 
(.0050) 

0.0908 
0.0543 
(.0006) 

0.0518 
(.0016) 

0.0556 
(.0005) 

0.0570 
(.0007) 

0.0463 
(.0010) 

0.0464 
(.0007) 

0.2083 
0.2003 
(.0006) 

0.1967 
(.0021) 

0.2045 
(.0016) 

0.2035 
(.0010) 

0.2339 
(.0013) 

0.2351 
(.0007) 
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Table 2: Posterior Estimates and Monte Carlo Standard Errors of Estimates (MCSEs) for 

vγ  and ρ  with Uniform and Normal Priors 

Parameters 

.2ρ =  .5ρ =  .8ρ =  

Uniform Normal Uniform Normal Uniform Normal 
Estimate 
(MCSE) 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

Estimate 
(MCSE) 

1γ  

0.3629 
0.3457 
(.0007) 

0.3447 
(.0003) 

0.3467 
(.0010) 

0.3448 
(.0005) 

0.3450 
(.0004) 

0.3452 
(.0005) 

-0.9010 
-0.8881 
(.0003) 

-0.8875 
(.0002) 

-0.8891 
(.0006) 

-0.8885 
(.0006) 

-0.8875 
(.0005) 

-0.8865 
(.0003) 

-0.9339 
-0.9288 
(.0017) 

-0.9277 
(.0017) 

-0.9288 
(.0018) 

-0.9270 
(.0012) 

-0.9317 
(.0015) 

-0.9310 
(.0011) 

-0.3978 
-0.3976 
(.0023) 

-0.3983 
(.0017) 

-0.4035 
(.0018) 

-0.4012 
(.0016) 

-0.4059 
(.0020) 

-0.4062 
(.0018) 

0.3987 
0.4077 
(.0003) 

0.4076 
(.0008) 

0.4085 
(.0006) 

0.4072 
(.0006) 

0.4073 
(.0002) 

0.4066 
(.0007) 

0.1654 
0.1679 
(.0003) 

0.1681 
(.0005) 

0.1675 
(.0009) 

0.1666 
(.0007) 

0.1665 
(.0010) 

0.1669 
(.0008) 

-0.8108 
-0.8302 
(.0082) 

-0.8294 
(.0062) 

-0.8232 
(.0032) 

-0.8186 
(.0039) 

-0.8122 
(.0030) 

-0.8091 
(.0030) 

-0.8012 
-0.7091 
(.0025) 

-0.7064 
(.0019) 

-0.7145 
(.0043) 

-0.7102 
(.0043) 

-0.7186 
(.0012) 

-0.7140 
(.0048) 

2γ  

0.2452 
0.2902 
(.0008) 

0.2896 
(.0007) 

0.3122 
(.0005) 

0.3109 
(.0002) 

0.3037 
(.0006) 

0.3047 
(.0005) 

0.9792 
1.0954 
(.0031) 

1.0941 
(.0032) 

1.0476 
(.0015) 

1.0461 
(.0024) 

1.1095 
(.0021) 

1.1045 
(.0016) 

-0.0190 
-0.0216 
(.0006) 

-0.0212 
(.0005) 

-0.0058 
(.0006) 

-0.0068 
(.0002) 

-0.0200 
(.0005) 

-0.0196 
(.0009) 

0.8749 
0.9549 
(.0005) 

0.9536 
(.0006) 

0.9624 
(.0008) 

0.9616 
(.0009) 

0.9568 
(.0014) 

0.9538 
(.0005) 

-0.3119 
-0.2139 
(.0026) 

-0.2143 
(.0013) 

-0.2049 
(.0019) 

-0.2068 
(.0011) 

-0.2250 
(.0005) 

-0.2256 
(.0011) 

0.2005 
0.2902 
(.0025) 

0.2888 
(.0024) 

0.2781 
(.0021) 

0.2735 
(.0019) 

0.2777 
(.0012) 

0.2750 
(.0022) 

0.4626 
0.4658 
(.0011) 

0.4638 
(.0004) 

0.4514 
(.0004) 

0.4501 
(.0002) 

0.4550 
(.0005) 

0.4545 
(.0012) 

0.7184 
0.7528 
(.0008) 

0.7510 
(.0007) 

0.7485 
(.0007) 

0.7462 
(.0007) 

0.7738 
(.0003) 

0.7723 
(.0013) 

 

ρ  0.1850 
(.0022) 

0.1853 
(.0018) 

0.5209 
(.0031) 

0.5213 
(.0036) 

0.7872 
(.0037) 

0.7942 
(.0041) 
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Appendix: Fortran Subroutine 
SUBROUTINE GSMU2(Y, N, K, M, MN, L, BURNIN, BN, UNIF, ITEM, PER, RPER) 
C************************************************************************* 
C Y = the n-by-K binary item response data                             
C N = the number of subjects                                           
C K = the test length (total number of items)      
C M = the number of subtests         
C MN = an array with numbers of items in the m subtests    
C L = the number of iterations using Gibbs sampling     
C BURNIN = the early number of iterations that are to be discarded     
C BN = the number of batches        
C UNIF = a 0-1 indicator with 0 specifying normal priors for item   
C parameters and 1 specifying uniform priors for them    
C ITEM = a K-by-4 matrix of posterior estimates and MCSEs for item    
C parameters           
C PER = a n-by-2m matrix of posterior estimates and MCSEs for person   
C  traits           
C RPER = a (m*(m-1)/2)-by-2 matrix of posterior estimates and MCSEs   
C for the correlation(s) between person traits    
C************************************************************************* 
 INTEGER  N, K, MN(M), L, Y(N,K), IRANK, INDX(M), UNIF, COUNT,   
 &   BURNIN, BSIZE, BN 
 REAL   A(K), G(K), TH(N,M), AA(K,M), ZLP(N,K), LP, Z(N,K), PHAT(K),  
 &  U, PVAR(M, M), SIGMA(M,M), RSIG(M,M), PVAR1(M,M), RTH(M),  
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      &  BA(K), PMEAN1(M), PMEAN(M), X(N,2), XX(2,2), IX(2,2), RMN(M), 
      &  ZV(N,1), XZ(2,1), AMAT(2, 2), BZ(2,1), AMU, GMU, AVAR, GVAR,   
 &  AGMU(2,1), AGVAR(2,2), AGSIG(2,2), BETA(2), C(M,M), CTH(M,N),  
 &  D(M,M), AV(L,K), GV(L,K), RHO(M,M,L), THV(N,M,L), ITEM(K,4),  
 &  PER(N,2*M), SUM0, SUM1, SUM2, SUM3,  M0, M1, M2, M3, TOT,  
 &  TOT1, TOT2, TOT3, SS, SS1, SS2, SS3, RPER(M*(M-1)/2,2),   
 &  PRODA, VAR(M,M) 
 DOUBLE PRECISION  BB, TMP 
C************************************************************************* 
C Connect to external libraries for normal (RNNOR), uniform (RNUN), and  
C multivariate normal (RNMVN) random number generator, inverse (DNORIN) 
C and CDF (ANORDF, DNORDF) for the standard normal distribution, and 
C Cholesky factorization (CHFAC) routines      
C************************************************************************* 
 EXTERNAL  RNNOR, RNUN, ANORDF, CHFAC, DNORDF, DNORIN, RNMVN 
C************************************************************************* 
C Set initial values for item parameters a(v), g(v), person ability    

C theta, and the hyperparameter sigma, so a(v)=2, g(v)=
1( / ) 5iji

y n−−Φ     

C for all k(v) items, theta(v)=0 for all n person traits, and sigma=I  
C************************************************************************* 
 PHAT = SUM(Y, DIM = 1) 
      DO 10 I = 1, K 
  A(I) = 2.0 
  G(I) = -ANORIN(PHAT(I)/FLOAT(N))*SQRT(5.0) 
   10 CONTINUE 
 DO 15 I = 1, N 
 DO 15 J = 1, M 
  TH(I, J) = 0.0 
   15 CONTINUE 
  DO 20 I=1,M 
 DO 20 J=1,M 
  SIGMA(I, J) = 0.0 
  SIGMA(I, I) = 1.0 
   20 CONTINUE 
 RMN = FLOAT(MN) 
C************************************************************************* 
C Start iteration           
C************************************************************************* 
 COUNT = 0 
 DO 30 IT = 1, L 
  COUNT = COUNT + 1 
  DO 40 I = 1, K 
  DO 40 J = 1, M 
   AA(I, J) = 0.0 
   40  CONTINUE 
  JJ = 0 
  DO 50 I = 1, M 
   J = 1 
   DO WHILE (J .LE. MN(I)) 
    JJ = JJ+1 
    AA(JJ, I) = A(JJ) 
    J = J + 1 
   END DO 
   50  CONTINUE 
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C************************************************************************* 
C Update samples for Z from its normal posterior distributions          
C************************************************************************* 
   ZLP = MATMUL(TH, TRANSPOSE(AA)) 
   DO 60 I = 1, N 
   DO 60 J = 1, K 
    LP = ZLP(I, J) - G(J) 
    BB = ANORDF(0.0 - LP) 
    CALL RNUN(1, U) 
    TMP = BB*(1-Y(I, J)) + (1-BB)*Y(I, J))*U + BB*Y(I, J) 
    Z(I, J) = DNORIN(TMP) + LP 
   60   CONTINUE 
C************************************************************************* 
C Update samples for theta from their MVN posterior distributions    
C************************************************************************* 
C************************************************************************* 
C Call the matrix inversion routine.       
C Invert matrix SIGMA with the inverse stored in RSIG     
C************************************************************************* 
  CALL MIGS(SIGMA, M, RSIG, INDX) 
  PVAR1 = RSIG + MATMUL(TRANSPOSE(AA), AA) 
C************************************************************************* 
C Call the matrix inversion routine to invert matrix PVAR1 with the   
C inverse stored in PVAR         
C************************************************************************* 
  CALL MIGS(PVAR1, M, PVAR, INDX) 
  DO 70 I = 1, N 
   DO 80 J = 1, K 
    BA(J) = Z(I, J) + G(J) 
   80   CONTINUE 
   PMEAN1 = MATMUL(TRANSPOSE(AA), BA) 
   PMEAN = MATMUL(PVAR, PMEAN1) 
C**************************************************************************** 
C Call the Cholesky factorization routine. Compute the Cholesky factorization 
C of the symmetric definite matrix PVAR and store the C result in RSIG 
C**************************************************************************** 
   CALL CHFAC (M, PVAR, M, 0.00001, IRANK, RSIG, M) 
C************************************************************************* 
C Generate a random sample of theta(v) from MVN dist by calling RNMVN   
C************************************************************************* 
   CALL RNMVN (1, M, RSIG, M, RTH, 1) 
   DO 90 J = 1, M 
    TH(I, J) = RTH(J) + PMEAN(J) 
    THV(I, J, COUNT) = TH(I, J) 
   90   CONTINUE 
   70  CONTINUE 
C************************************************************************* 
C Update samples for item parameters, a(v) and g(v) from their MVN  
C posterior distributions           
C************************************************************************* 
  JJ = 0 
      DO 100 J = 1, M 
   DO 110 I = 1, N 
    X(I, 1) = TH(I, J) 
    X(I, 2) = -1  
  110   CONTINUE 
   IF (UNIF == 0) THEN 
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C************************************************************************* 
C Specify the prior means and variances for a(v) and g(v)   
C************************************************************************* 
    AMU = 0.0 
    GMU = 0.0 
    AVAR = 1.0 
    GVAR = 1.0 
C************************************************************************* 
C Put them in vector or matrix format       
C************************************************************************* 
    AGMU(1, 1) = AMU 
    AGMU(2, 1) = GMU 
    AGVAR(1, 1) = AVAR 
    AGVAR(2, 2) = GVAR 
C************************************************************************* 
C Call the matrix inversion routine to invert matrix AGVAR with the    
C inverse stored in AGSIG         
C************************************************************************* 
    CALL MIGS(AGVAR, 2, AGSIG, INDX) 
    XX = MATMUL(TRANSPOSE(X), X) + AGSIG 
   ELSE IF (UNIF == 1) THEN 
    XX = MATMUL(TRANSPOSE(X), X) 
   END IF 
C************************************************************************* 
C Call the matrix inversion routine to invert matrix XX with the    
C inverse stored in IX          
C************************************************************************* 
   CALL MIGS(XX, 2, IX, INDX) 
C************************************************************************* 
C Call the Cholesky factorization routine. Compute the Cholesky    
C factorization of the symmetric definite matrix IX and store the    
C result in AMAT           
C************************************************************************* 
   CALL CHFAC (2, IX, 2, 0.00001, IRANK, AMAT, 2) 
   JM = 0 
   PRODA = 1.0 
  130   JM = JM + 1 
   JJ = JJ + 1 
   DO 120 I = 1, N 
    ZV(I, 1) = Z(I, JJ) 
  120   CONTINUE 
   IF (UNIF == 0) THEN 
    XZ = MATMUL(AGSIG, AGMU) + MATMUL(TRANSPOSE(X), ZV) 
   ELSE IF (UNIF == 1) THEN 
        XZ = MATMUL(TRANSPOSE(X), ZV) 
   END IF 
   BZ = MATMUL(IX, XZ) 
   A(JJ) = 0 
   DO WHILE (A(JJ) .LE. 0) 
    CALL RNMVN(1, 2, AMAT, 2, BETA, 1) 
    A(JJ) = BETA(1) + BZ(1, 1) 
    G(JJ) = BETA(2) + BZ(2, 1) 
   END DO 
   AV(COUNT, JJ) = A(JJ) 
   GV(COUNT, JJ) = G(JJ) 
   END IF 
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   PRODA = PRODA*A(JJ) 
   IF (JM .LT. MN(J)) THEN 
    GOTO 130 
   END IF 
       DO 135 I = 1, M 
      C(I, J) = 0.0 
  135   CONTINUE 
   C(J, J) = PRODA ** (1/RMN(J)) 
  100  CONTINUE  
C************************************************************************* 
C Update samples for the hyperparameter, SIGMA   
C************************************************************************* 
  CTH = MATMUL(C, TRANSPOSE(TH)) 
  D = MATMUL(CTH, TRANSPOSE(CTH)) 
C************************************************************************* 
C Call the subroutine to generate the unconstrained covariance matrix   
C VAR from the inverse Wishart distribution    
C************************************************************************* 
  CALL INVWISHRND(D, M, N, VAR) 
  DO 140 I = 1, M 
  DO 140 J = 1, M 
   SIGMA(I, J) = VAR(I, J)/SQRT(VAR(I, I))/SQRT(VAR(J, J)) 
   RHO(I, J, COUNT) = SIGMA(I, J) 
  140  CONTINUE 
   30 CONTINUE 
C************************************************************************* 
C Calculate the batch means and se's for a(v), g(v), theta(v) and    
C their correlations, and store them in ITEM, PER, and RPER     
C************************************************************************* 
 BSIZE = (L - BURNIN)/BN 
  DO 150 J = 1, K 
  COUNT = BURNIN 
  TOT1 = 0.0 
  TOT2 = 0.0 
  SS1 = 0.0 
  SS2 = 0.0 
  DO 160 JJ = 1, BN 
   SUM1 = 0.0 
   SUM2 = 0.0 
   DO 170 I = 1, BSIZE 
    COUNT = COUNT + 1 
    SUM1 = SUM1 + AV(COUNT, J) 
    SUM2 = SUM2 + GV(COUNT, J) 
  170   CONTINUE 
   M1 = SUM1/FLOAT(BSIZE) 
   M2 = SUM2/FLOAT(BSIZE) 
   TOT1 = TOT1 + M1 
   TOT2 = TOT2 + M2 
   SS1 = SS1 + M1*M1 
   SS2 = SS2 + M2*M2 
  160  CONTINUE 
  ITEM(J, 1) = TOT1/FLOAT(BN) 
  ITEM(J, 2) = SQRT((SS1-(TOT1*TOT1/BN))/(BN-1))/SQRT(FLOAT(BN)) 
  ITEM(J, 3) = TOT2/BN 
  ITEM(J, 4) = SQRT((SS2-(TOT2*TOT2/BN))/(BN-1))/SQRT(FLOAT(BN)) 
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  150 CONTINUE 
 JJ = 0 
 JK = 0 
 DO 180 IM = 1, M 
  JJ = JK + 1 
  JK = JJ + 1 
     DO 190 J = 1, N 
   COUNT = BURNIN 
   TOT3 = 0.0 
   SS3 = 0.0 
   DO 200 IB = 1, BN 
    SUM3 = 0.0 
    DO 210 I = 1, BSIZE 
     COUNT = COUNT + 1 
     SUM3 = SUM3 + THV(J, IM, COUNT) 
  210    CONTINUE 
    M3 = SUM3/FLOAT(BSIZE) 
    TOT3 = TOT3 + M3 
    SS3 = SS3 + M3*M3 
  200   CONTINUE 
  PER(J, JJ) = TOT3/FLOAT(BN) 
  PER(J, JK) = SQRT((SS3-(TOT3*TOT3/BN))/(BN-1))/SQRT(FLOAT(BN)) 
  190  CONTINUE 
  180 CONTINUE 
 JK = 0 
  DO 220 J = 1, M 
 DO 220 IM = J + 1, M 
  JK = JK + 1 
  COUNT=BURNIN 
  TOT = 0.0 
  SS = 0.0 
  DO 230 JJ = 1, BN 
   SUM0 = 0.0 
   DO 240 I = 1, BSIZE 
    COUNT = COUNT + 1 
    SUM0 = SUM0 + RHO(J, IM, COUNT) 
  240   CONTINUE 
   M0 = SUM0/FLOAT(BSIZE) 
   TOT = TOT + M0 
   SS = SS + M0*M0 
  230  CONTINUE 
  RPER(JK, 1) = TOT/FLOAT(BN) 
       RPER(JK, 2) = SQRT((SS-(TOT*TOT/BN))/(BN-1))/SQRT(FLOAT(BN)) 
  220 CONTINUE 
 
      RETURN 
 END 
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      SUBROUTINE INVWISHRND(S, P, V, IW) 
C************************************************************************* 
C S = p-by-p symmetric, positive definite 'scale' matrix    
C P = order of the scale matrix        
C V = 'degree of freedom parameter'        
C                 (V must be an integer for this routine)   
C IW = random matrix from the inverse Wishart distribution          
C Note:            
C different sources use different parameterizations w.r.t. V.    
C this routine uses the model that     
C density (IW) is proportional to       
C   exp[-.5*trace(S*inv(IW))]/[det(IW)^((V+p+1)/2)]   
C With this density definition:        
C   mean(IW) = S/(V-p-1)       
C************************************************************************* 
 INTEGER  P, V, IRANK, INDX(P) 
 REAL    S(P, P), IS(P, P), IW(P, P), W(P, P), Z(V, P), ZZ(P, P),   
 &    A(P, P), AZ(P, P) 
 
      DO 10 I = 1, V 
 DO 10 J = 1, P 
 CALL RNNOR (1, Z(I, J)) 
   10 CONTINUE 
 ZZ = MATMUL(TRANSPOSE(Z), Z) 
 CALL MIGS(S, P, IS, INDX) 
 CALL CHFAC (P, IS, P, 0.00001, IRANK, A, P) 
 AZ = MATMUL(TRANSPOSE(A), ZZ) 
 W = MATMUL (AZ, A) 
 CALL MIGS(W, P, IW, INDX) 
 
 RETURN 
 END   
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A Fortran 77 program is provided for an ordinal dominance analysis of independent two-group 
comparisons. The program calculates the ordinal statistic, d, and statistical inferences about δ. The source 
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Introduction 
The frequently encountered location comparison 
problem in behavioral and psychological 
research is usually answered by the two-sample 
t-test, comparing means of the two groups, or 
the parallel one-way ANOVA. However, it has 
been argued that ordinal alternatives to mean 
comparisons, such as the dominance analysis δ 
(Agresti, 1984; Cliff, 1991, 1993; 
Hettmansperger, 1984; Randles & Wolfe, 1979), 
have advantages over the classical ones, because 
data in the social sciences are often ordinal in 
nature. In addition, ordinal methods are invariant 
under monotonic transformation, and can be 
more robust than the traditional normal-based 
statistics methods when the parametric 
assumptions are violated (Caruso & Cliff, 1997; 
Cliff, 1993; Long, Feng, & Cliff, 2003). This 
dominance analysis, δ, is summarized by the 
ordinal statistic d which compares the proportion 
of times a score from one group or under one 
condition is higher than a score from the other, to 
the proportion of times when the reverse is true. 
The d method not only tests the H0: δ = 0, but also 
allows for determination of confidence interval 
(CI) bounds. 

Fligner and Policello (1981) introduced 
a robust version of the Wilcoxon-Mann-Whitney 
test (Mann & Whitney, 1947) for comparing the 
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medians of two independent continuous 
distributions, and tested behavior of d, using the 
sample estimate of its variance. Cliff (1993) 
suggested a modification of Fligner and 
Policello’s (1981) procedure by deriving an 
unbiased sample estimate of the variance of d 
and setting a minimum allowable value for it in 
order to increase the efficiency of the estimate 
and to eliminate impossible values. Delaney and 
Vargha (2002) used modifications of the CI for 
δ with Welch-like dfs, but these modifications 
did not take into account specific situations in 
which d with traditional CI performed poorly. 
Long, et al. (2003) proposed a further 
adjustment on the CI to account for boundary 
effects on the variance of d due to the negative 
correlation between σd

2 and δ. Simulation studies 
have shown that independent d, when compared 
to the t-test with Welch’s adjusted df (Welch, 
1937), behaves quite well in small and moderate 
samples under various normal and non-normal 
distributions in terms of Type I error rate, 
power, and coverage of the CI (Feng & Cliff, 
2004). 

Popular statistical software packages do 
not include ordinal dominance analyses. Thus, 
the purpose of this article is to provide a Fortan 
program that calculates the ordinal statistic, d, 
and statistical inferences about δ , for 
independent groups. The program also performs 
Welch's t-test on the same data for comparison. 
 

Methodology 
Independent d Analysis 

The calculation of independent d involves 
comparison of each of the scores in one group to 
each of the scores in the other group . A 
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dominance variable dij is defined as: dij = sign(xi - 
xj), where xi represents any observation in the first 
group, xj in the second. The dij simply represent 
the direction of differences between the xi scores 
and the xj scores: a score of +1 is assigned if xi > 
xj; a score of -1 is assigned if xi < xj; and a score of 
0 is assigned if xi = xj. The d is an unbiased 
estimate of δ: 

ij 1 2d    d /  n n= Σ Σ                    (1) 

 
whereas sd

2, the unbiased sample estimate of σd
2, 

is obtained by 
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and similarly for d.j. To eliminate possible 
negative estimate of variance, (1 - d2)/(n1n2 - 1) 
was used as the minimum allowable value for sd

2. 
An asymmetric CI for δ was shown to improve the 
performance of d (Cliff, 1993; Feng & Cliff, 
2004): 
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2 2 2
/2 d

d d  Z s 1  2d d  Z s
δ 

1 d  Z s
α α

α

− ± − + +
=

− +
 

(4) 
 
where Zα/2 is the 1- α/2 normal deviate. When d is 
1.0, sd reduces to zero, the upper bound for the CI 
for δ is 1.0, and the lower bound is calculated by 
 

( )
2

min /2
2

min /2

(n  Z )
δ 

n  Z
α

α

−=
+

                    (5) 

 
where nmin is the smaller of the two sample sizes. 
When d equals -1.0, the solution is the negative of 
(5). 
 
 
 

The Fortran Program 
The Fortran program for the independent 

groups d analysis applies the algorithm of the 
above Equations (1), (2), (3), (4), and (5). The 
program is interactive, supplying prompts at 
several points. Data can be either read from a file 
or input from the keyboard; if input from the 
keyboard, data will be stored in a file. In both 
cases, any number of experimental variables is 
possible, but an analysis is conducted on only one 
variable at a time. After input, data are sorted 
within each group. 

The program calculates the statistical 
inferences about δ, generating d and its variance, 
as well as the components of variance of d. The 
outputs include a CI for δ and the significance of d 
(a z-score), testing the null hypothesis. The 
program also calculates the dominance variable 
dij, and a dominance matrix for the variables 
analyzed is generated as a part of the outputs 
when the data are no more than 75 cases. 
Otherwise, only the statistics and their 
components are included in the outputs. In order 
to compare the d method with the classical test 
methods, the program also performs the classical t 
statistic for independent groups with Welch’s 
adjustment of degrees of freedom. Table 1 shows 
an example of the output file the program 
generated when the sample size is 25 for both 
groups. 
 

Conclusion 
The ordinal method d does not involve excessive 
elaboration and complicated statistical analyses. 
Its concepts can be easily understood by non-
statisticians. However, popular statistical 
software packages such as SAS and SPSS do not 
allow for ordinal dominance analyses. This 
Fortran program (see the appendix for source 
codes) for independent groups d analysis is easy 
to implement. Its outputs provide descriptive 
information, not only the null hypothesis is 
tested, but also a CI is provided. In addition, a 
dominance matrix is produced as a useful visual 
aid to the test. A comparison of d with Welch’s 
t. also is provided. Furthermore, if the users have 
access to the IMSL library, the current source 
codes can be easily adapted and used in Monte 
Carlo studies to evaluate the performance of d in 
terms of Type I error rate, power, and CI 
coverage. 
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Table 1: An Example of Independent d Analysis for Two Small Samples 

Ordered Scores 

Dominance Diagram Alcoholic Non-alcoholic 

Score di. Score d.j 

1 –1.00 3 .92     -------------------------       
    +++0---------------------       
    +++++0-------------------       
    ++++++-------------------      
    ++++++-------------------       
    +++++++++0---------------       
    +++++++++0---------------       
    ++++++++++++++++000------       
    +++++++++++++++++++------       
    +++++++++++++++++++------       
    +++++++++++++++++++------       
    +++++++++++++++++++++----       
    +++++++++++++++++++++----       
    +++++++++++++++++++++----       
    +++++++++++++++++++++----       
    +++++++++++++++++++++----       
    +++++++++++++++++++++0---       
    ++++++++++++++++++++++00-       
    ++++++++++++++++++++++00-       
    ++++++++++++++++++++++++-       
    ++++++++++++++++++++++++-       
    ++++++++++++++++++++++++-       
    +++++++++++++++++++++++++       
    +++++++++++++++++++++++++       
    +++++++++++++++++++++++++       

4 -.72 3 .92 
6 -.56 3 .92 
7 -.52 4 .88 
7 -.52 5 .84 
14 -.24 6 .80 
14 -.24 12 .60 
18 .40 12 .60 
19 .52 13 .60 
20 .52 14 .52 
21 .52 15 .44 
24 .68 15 .44 
25 .68 15 .44 
26 .68 15 .44 
26 .68 15 .44 
26 .68 16 .44 
27 .72 18 .40 
28 .84 18 .40 
28 .84 18 .40 
30 .92 23 .12 
33 .92 23 .12 
33 .92 27 -.32 
44 1.00 28 -.44 
45 1.00 28 -.44 
50 1.00 43 -.76 

Inferences About δ  

d .389  

sd .154  

.95 confidence interval (.063, .640)  

z for d 2.530  

Components of sd
2   

sdi.
 2 .394  

sd.j
2 .207  

sdij
2 .831  

Mean Comparisons   

t for means 2.322  

Welch’s df for t 44.484  
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Appendix: Fortran Program 
C************************************************************************************C 
C This program computes independent groups d-statistics (Cliff, 1996; Long et al.,   C 
C 2003; Feng & Cliff, 2004) and provides their standard errors, confidence intervals,C 
C and tests of hypotheses. The program is interactive, supplying prompts at several  C 
C points. It should be noted that before doing the analyses, you should have         C 
C arranged your data in the specified format.                                        C 
C Data can be either read from a file or input from the keyboard. If input from the  C 
C keyboard, data will be stored in a file.  Data must be entered casewise, that is,  C 
C all the data for one case or person, then all for the next, etc., and we need to   C 
C know the number of cases and variables.  Group membership must be entered as       C 
C variable.                                                                          C 
C If data are in an external file, they must be cases by variables. That is, all the C 
C scores for the first case or subject, all for the second, etc. In both cases,      C 
C there could be any number of experimental variables, but you can do an analysis on C 
C only one variable at a time.  We need to know the number of cases, and the number  C 
C of variables for each case, including the grouping variable before running the     C 
C program.                                                                           C 
C If the data are no more than 75 cases, a dominance matrix for the variables        C 
C analyzed will be printed as part of the output. Otherwise, just the statistics and C 
C their components will be included in the output.                                   C 
C The program is supplied as a professional courtesy. It can be used or copied for   C 
C any academic or research purpose. However, it should not be copied for any         C 
C commercial purpose.  We do not know of any errors, but do not guarantee it to be   C 
C errors-free.  Please understand that it was written by amateur programmers, and is C 
C not intended to be of commercial quality.                                          C 
C************************************************************************************C 
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        INTEGER I,J,NV,NP,JQ,JC,JPLU,JG(2),NPER(2),GAP,IG, 
     &          JORDER(2000,2),NDCOL(2000),NDROW(2000) 
        REAL  YY,DB,SSROW,SSCOL,MINI,NUM,VARD,DEN,M1,M2, 
     &        VARDROW,VARDCOL,VARDIJ,SD,UPPER,LOWER,SUM1,SUM2,MINN, 
     &        SUMSQ1,SUMSQ2,VARDIFF,MDIFF,TEE,Y(2000,2),Z(2000,50) 
        REAL  DEL,SQIJ,Q1,Q2,Q12 
        CHARACTER*1 ANS, PLUS(3),DFILE*18,SPLU(70),SSPLU*70, 
     &           STR*45, OUTFILE*8 
        DATA PLUS(1),PLUS(2),PLUS(3)/'-','0','+'/ 
C****************************************************************************C 
C Read data from a file, or input from the keyboard.                         C 
C****************************************************************************C 
        WRITE(*,101) 
101     FORMAT('This is inddelta.f for computing d statistics.', 
     & 3X,'It is copyright 1992, Norman Cliff. Comments and', 
     & 1X,'suggestions are solicitted.') 
        WRITE(*,102) 
102     FORMAT('Type b to bypass instructions,any other letter to', 
     & 1X,'see them.') 
        READ(*,'(A1)') ANS 
        IF((ANS.EQ.'B').OR.(ANS.EQ.'b')) GOTO 80 
        WRITE(*,103) 
103     FORMAT('Data can be either read form a file or input', 
     & 1X,'from the keyboard. If it is in a file,it must be cases', 
     & 1X,'by variabls, i.e., all the scores for the first case') 
        WRITE(*,104) 
104     FORMAT(' or subject, all for the second,etc. If it is not', 
     & 1X,'arranged that way, type E for exit and go arrange it.') 
        READ (*,'(A1)') ANS 
        IF ((ANS.EQ.'E').OR.(ANS.EQ.'e')) GOTO 1500 
80      WRITE(*,105) 
105     FORMAT('Type f if it is in a file or k if you will enter', 
     & 1X,'it from the keyboard.') 
        READ(*,'(A1)')ANS 
        IF((ANS.EQ.'K').OR.(ANS.EQ.'k')) THEN 
          WRITE(*,111) 
111       FORMAT('Data will be stored in a file. Give its full', 
     & 1X,'name and extension.') 
          READ(*,'(A18)') DFILE 
          WRITE(*,112) 
112       FORMAT('Data must be entered casewise, that is, all the', 
     & 1X,'scores for one case or person, then all for the next,',1X, 
     & 'etc.. And we need to know the number of cases and variables.') 
          WRITE(*,113) 
113       FORMAT('Group membership should be entered as a', 
     & 1X,'variable.') 
          WRITE(*,114) 
114       FORMAT('Scores, or variables, within each case must be', 
     & 1X,'separated by a comma.') 
          WRITE(*,115) 
115       FORMAT('No. of cases:') 
          READ(*,'(I3)') NP 
          WRITE(*,116) 
116       FORMAT('No. of variables:') 
          READ(*,'(I3)') NV 
          OPEN(3,FILE=DFILE,STATUS='NEW') 
          WRITE(*,117) 
117       FORMAT(1X,'Enter the scores for each case, including', 
     & 1X,'the grouping variable.') 
          DO 1 I=1,NP 
            WRITE(*,*) I 
            DO 2 J=1,NV 
               READ(*,*) Z(I,J) 
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2           CONTINUE 
1         CONTINUE 
         WRITE(*,118) 
118      FORMAT(1X,'The scores will be printed out on the screen', 
     & 1X,'for checking.') 
          DO 3 I=1,NP 
            WRITE(*,*) I 
                WRITE(*,*) (Z(I,J),J=1,NV) 
            WRITE(*,*) 
3         CONTINUE 
          WRITE(*,119) 
119       FORMAT('If there are any corrections, type the row,', 
     & 1X,'column, and the correct value. If not, type 0,0,0.') 
276       READ(*,*) I,J,P 
          IF(I.EQ.0) GOTO 281 
          Z(I,J)=P 
          WRITE(*,120) 
120       FORMAT(1X,'More?  Type 0,0,0 , if not.') 
          GOTO 276 
281       DO 29 I=1,NP 
             DO 30 J=1,NV 
                WRITE(1,*) Z(I,J) 
30           CONTINUE 
29        CONTINUE 
          CLOSE (3,STATUS='KEEP') 
        ELSE 
            IF((ANS.NE.'F').AND.(ANS.NE.'f')) THEN 
                  GOTO 80 
            ELSE 
               WRITE(*,106) 
106            FORMAT('Type name of file, including extention,', 
     & 1X,'also path if not in this directory.') 
                WRITE(*,107) 
107             FORMAT('filename') 
                READ(*,'(A18)') DFILE 
                WRITE(*,108) 
108             FORMAT('How many variables per case?') 
                READ(*,'(I2)') NV 
                WRITE(*,109) 
109             FORMAT('How many cases?') 
                READ(*,'(I3)') NP 
               OPEN(4,FILE=DFILE,STATUS='OLD') 
               DO 31 I=1,NP 
                  READ(4,*) (Z(I,J), J=1,NV) 
31             CONTINUE 
               CLOSE(4,STATUS='KEEP') 
            ENDIF 
         ENDIF 
282    WRITE(*,122) 
122    FORMAT('Which variable no. is the grouping variable?') 
       READ(*,'(I1)') JC 
       WRITE(*,123) 
123    FORMAT('Which variable no. is the experimental?') 
       READ(*,'(I1)') JQ 
       WRITE(*,124) 
124    FORMAT('Which are two values of the grouping variable',1X, 
     & 'designate the groups to be compared?(e.g.:1 and 2)') 
       WRITE(*,125) 
125    FORMAT(1X,'  First group: ') 
       READ(*,'(I2)') JG(1) 
       WRITE(*,126) 
126    FORMAT(1X,'  Second group: ') 
       READ(*,'(I2)') JG(2) 
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       NPER(1) = 1 
       NPER(2) = 1 
       WRITE(*,226) 
226    FORMAT(1X,' Name of the output file is: ') 
       READ(*,'(A9)') OUTFILE 
       OPEN(8,FILE=OUTFILE) 
C******************************************************************************C 
C   Sort data.                                                                 C 
C******************************************************************************C 
       DO 4  I=1,NP 
        IF(Z(I,JC).EQ.JG(1)) THEN 
          Y(NPER(1),1) = Z(I,JQ) 
          JORDER(NPER(1),1) = NPER(1) 
          NPER(1) = NPER(1)+1 
        ELSE IF (Z(I,JC).EQ.JG(2)) THEN 
          Y(NPER(2),2) = Z(I,JQ) 
          JORDER(NPER(2),2) = NPER(2) 
          NPER(2) = NPER(2)+1 
        ELSE 
        ENDIF 
4      CONTINUE 
        NPER(1)=NPER(1)-1 
        NPER(2)=NPER(2)-1 
        WRITE(*,127) NPER(1),NPER(2) 
127     FORMAT(1X,2I4) 
       DO 5  IG=1,2 
         DO 6 K=4,1,-1 
          GAP=2**K-K 
            DO 7 I=GAP,NPER(IG) 
             XX=Y(I,IG) 
             YY=JORDER(I,IG) 
             J=I-GAP 
430          IF((J.LE.0).OR.(XX.GE.Y(J,IG))) GOTO 450 
             Y(J+GAP,IG)=Y(J,IG) 
             JORDER(J+GAP,IG)=JORDER(J,IG) 
             J=J-GAP 
             GOTO 430 
450          Y(J+GAP,IG)=XX 
             JORDER(J+GAP,IG)=YY 
7           CONTINUE 
6         CONTINUE 
5       CONTINUE 
C******************************************************************************C 
C      Calculate dominance matrix (and print the matrix for small data set).   C 
C******************************************************************************C 
          SQIJ = 0.0 
          DEL= 0.0 
        WRITE(8,131) 
131     FORMAT(1X,'This is an independent data analysis using',1X, 
     & 'inddelta.f.') 
        WRITE(8,*) 
        WRITE(8,132) DFILE 
132     FORMAT(1X,'The data are from ',A18) 
        WRITE(8,*) 
        WRITE(8,133) NV-1 
133     FORMAT(1X,'There are ',I3,' experimental variable(s).') 
        WRITE(8,*) 
        WRITE(8,134) JC 
134     FORMAT(1X,'The grouping variable is ',I3) 
        WRITE(8,135) JQ 
135     FORMAT(1X,'The experimental variable is ',I3) 
        WRITE(8,*) 
        DO 999 I = 1,NPER(1) 
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                 NDROW(I) = 0 
999     CONTINUE 
        DO 998 I = 1,NPER(2) 
                 NDCOL(I) = 0 
998          CONTINUE 
         IF(NP.LE.75) THEN 
           WRITE(8,137) JG(1),JG(2) 
137        FORMAT(1X,'Dominance matrix for group',I3,' vs. group',I3) 
           WRITE(8,*) 
           WRITE(8,138) JG(1),JG(2) 
138        FORMAT(1X,'A + INDICATES ',I3,' HIGHER THAN',I3) 
           WRITE(8,*) 
           DO 9 I=1,NPER(1) 
                SSPLU = ' ' 
             DO 10 J=1,NPER(2) 
                   IF(Y(I,1).GT.Y(J,2)) THEN 
                      IWON=1 
                   ELSE IF(Y(I,1).LT.Y(J,2)) THEN 
                      IWON=-1 
                   ELSE 
                      IWON=0 
                   ENDIF 
                 DEL = DEL +IWON 
                 SQIJ = SQIJ+IWON*IWON 
                 NDROW(I) = NDROW(I)+IWON 
                 NDCOL(J) = NDCOL(J)+IWON 
                   JPLU = IWON + 2 
                   SPLU(J) = PLUS(JPLU) 
                   SSPLU = SSPLU(1:J)//SPLU(J) 
10           CONTINUE 
                 WRITE(8,139) SSPLU 
139              FORMAT(1X,A72) 
9          CONTINUE 
           WRITE(8,*) 
           WRITE(8,*) 
           WRITE(8,*) 
         ELSE 
           DO 11 I=1,NPER(1) 
             DO 12 J=1,NPER(2) 
                   IF(Y(I,1).GT.Y(J,2)) THEN 
                      IWON=1 
                   ELSE IF(Y(I,1).LT.Y(J,2)) THEN 
                      IWON=-1 
                   ELSE 
                      IWON=0 
                   ENDIF 
                 DEL = DEL +IWON 
                 SQIJ = SQIJ+IWON*IWON 
                 NDROW(I) = NDROW(I)+IWON 
                 NDCOL(J) = NDCOL(J)+IWON 
12           CONTINUE 
11          CONTINUE 
         ENDIF 
C***************************************************************************C 
C     Calculate d and variance of d.                                        C 
C***************************************************************************C 
        DB = DEL/(NPER(1)*NPER(2)) 
        WRITE(8,*) 
        WRITE(8,140) 
140     FORMAT(1X,'***',2X,'d and its variance',2X,'***') 
        WRITE(8,141) JG(1),JG(2),DB 
141     FORMAT(1X,'d for ',I3,' vs. ',I3,27X,'  =  ',F6.3) 
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C*************************************************************************C 
C       This part is for calculations of variance of d.                   C 
C*************************************************************************C 
         SSROW=0.0 
         SSCOL=0.0 
         DO 14 I=1,NPER(1) 
         SSROW = SSROW + NDROW(I)**2 
14       CONTINUE 
         DO 15 I=1,NPER(2) 
         SSCOL = SSCOL + NDCOL(I)**2 
15       CONTINUE 
         MINI=(SQIJ/(NPER(1)*NPER(2))-DB**2) 
     &       /(NPER(1)*NPER(2)-1) 
         NUM=SSROW-NPER(2)*DEL*DB + SSCOL - NPER(1)*DEL*DB 
     &       -SQIJ + DEL*DB 
         DEN = NPER(1)*NPER(2)*(NPER(1) - 1)*(NPER(2)-1) 
         VARD = NUM/DEN 
         IF (VARD.LE. MINI) THEN 
            VARD = MINI 
            WRITE(8,142) 
142         FORMAT(1X,'variance = minimum.Interpret with caution.') 
         ELSE 
         ENDIF 
         STR='variance for d' 
         WRITE(8,143) STR,VARD 
143      FORMAT(1X,A45,'  =  ',F7.4) 
         VARDROW = (SSROW - NPER(2)*DEL*DB) 
     &           /(NPER(2)**2*(NPER(1) - 1)) 
         VARDCOL = (SSCOL - NPER(1)*DEL*DB) 
     &            /(NPER(1)**2*(NPER(2) - 1)) 
         VARDIJ = (SQIJ - DEL*DB)/(NPER(1)*NPER(2) - 1) 
         WRITE(8,*) 
         WRITE(8,144) 
144      FORMAT(10X,'***  Components of the variance of d :  ***') 
         STR='row di variance ' 
         WRITE(8,145) STR,VARDROW 
145      FORMAT(1X,A45,'  =  ',F7.4) 
         STR='column di variance ' 
         WRITE(8,146) STR,VARDCOL 
146      FORMAT(1X,A45,'  =  ',F7.4) 
         STR='variance of dij' 
         WRITE(8,147) STR,VARDIJ 
147      FORMAT(1X,A45,'  =  ',F7.4) 
         SD = SQRT(VARD) 
C*************************************************************************C 
C   Calculate the asymmetric 95% confidence interval for delta,           C 
C   with further agjustment on C.I. when d = 1.0 or d = -1.0.             C 
C*************************************************************************C 
         IF (NPER(1).LE.NPER(2)) THEN 
            MINN = NPER(1) 
         ELSE 
            MINN = NPER(2) 
         ENDIF    
         IF (DB.EQ.1.0) THEN 
            UPPER = 1.0 
            LOWER = (MINN - 1.96**2) 
     &             /(MINN + 1.96**2) 
         ELSE IF (DB.EQ.(-1.0)) THEN 
            LOWER = -1.0 
            UPPER = -(MINN - 1.96**2) 
     &              /(MINN + 1.96**2) 
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         ELSE 
            UPPER = (DB-DB**3 + 1.96*SD*SQRT(DB**4 - 2*DB**2 + 1  
     &+ 1.96*1.96*VARD)) / (1-DB**2 + 1.96*1.96*VARD) 
             IF (UPPER.GT.1) UPPER = 1 
            LOWER = (DB-DB**3 - 1.96*SD*SQRT(DB**4 - 2*DB**2 + 1  
     &+ 1.96*1.96*VARD)) / (1-DB**2 + 1.96*1.96*VARD) 
             IF (LOWER.LT.-1) LOWER = -1 
         ENDIF 
         WRITE(8,148) 
148      FORMAT(10X,'**  Inference :  **') 
         STR='approximate .95 Confidence limits for d ' 
         WRITE(8,149) STR 
149      FORMAT(1X,A40) 
         WRITE(8,*) 
         IF(UPPER.GT.1) UPPER = 1 
         IF(LOWER.LT.-1) LOWER = -1 
         WRITE(8,150) LOWER,UPPER 
150      FORMAT(20X,F6.3,' to ',F6.3) 
         WRITE(8,*) 
         STR='significance of d :' 
         WRITE(8,151) STR,DB/SD 
151      FORMAT(1X,A45,' z   =  ',F7.4) 
         WRITE(8,*) 
C******************************************************************************C 
C        This short section computes the ordinary unpooled t-test              C 
C        with Welch’s adjusted df.                                             C 
C******************************************************************************C 
         SUM1 = 0.0 
         SUM2 = 0.0 
         SUMSQ1 = 0.0 
         SUMSQ2 = 0.0 
         DO 20 I = 1,NPER(1) 
            SUM1 = SUM1 + Y(I,1) 
20       CONTINUE 
         M1 = SUM1/NPER(1) 
         DO 21 I =1,NPER(1) 
            SUMSQ1 = SUMSQ1 + (Y(I,1) - M1)**2 
21       CONTINUE 
         DO 22 I =1,NPER(2) 
            SUM2 = SUM2 + Y(I,2) 
22       CONTINUE 
         M2 = SUM2/NPER(2) 
         DO 23 I =1,NPER(2) 
            SUMSQ2 = SUMSQ2 + (Y(I,2)-M2)**2 
23       CONTINUE 
         Q1 = SUMSQ1/(NPER(1)*(NPER(1)-1)) 
         Q2 = SUMSQ2/(NPER(2)*(NPER(2)-1)) 
         VARDIFF = Q1 + Q2 
         MDIFF = M1 - M2 
         TEE = MDIFF/SQRT(VARDIFF) 
         WRITE(8,152) 
152      FORMAT(6X,'***  Independent t-test with unpooled variance :', 
     & 1X,' *** ') 
         STR='mean difference' 
         WRITE(8,153) STR,MDIFF 
153      FORMAT(1X, A45,'  =  ',F7.4) 
         STR='standard deviations:' 
         WRITE(8,154) STR,SQRT((SUMSQ1/(NPER(1) - 1))), 
     &               SQRT((SUMSQ2/(NPER(2)-1))) 
154      FORMAT(1X,A47,'(1) ',F7.4,'  (2)   ',F7.4) 
         STR='standard error of mean difference' 
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         WRITE(8,155) STR,SQRT(VARDIFF) 
155      FORMAT(1X,A45,'  =  ',F7.4) 
         Q12=(Q1+Q2)**2/(Q1**2/(NPER(1)-1)+Q2**2/(NPER(2)-1)) 
         WRITE(8,156) TEE,Q12 
156      FORMAT(9X,'t  =  ',F8.4,9X,'adjusted df  =   ',F8.4) 
         WRITE(8,*) 
         WRITE(*,157) 
157      FORMAT('Do you want the data to be printed on the',1X, 
     &          'printer, y/n?') 
         READ(*,'(A1)') ANS 
         IF((ANS.EQ.'Y').OR.(ANS.EQ.'y')) THEN 
             WRITE(8,*) 
             WRITE(8,158) 
158          FORMAT(10X,'***  Ordered data for this variable :  ***') 
             WRITE(8,159) 
159          FORMAT(1X,'ORDER',5X,'SUBJ.',5X,'SCORE',5X,'ROWDOM') 
             WRITE(8,160) JG(1) 
160          FORMAT(1X,'Group ',I3) 
             DO 25 I=1,NPER(1) 
                 WRITE(8,161) I,JORDER(I,1),Y(I,1),NDROW(I) 
161              FORMAT(1X,I5,5X,I5,5X,F6.3,5X,I3) 
25           CONTINUE 
             WRITE(8,162) JG(2) 
162          FORMAT(1X,'Group ',I3) 
             DO 26 I=1,NPER(2) 
                 WRITE(8,163) I,JORDER(I,2),Y(I,2),NDCOL(I) 
163              FORMAT(1X,I5,5X,I5,5X,F6.3,5X,I3) 
26           CONTINUE 
         ELSE 
         ENDIF 
C*****************************************************************************C 
         WRITE(8,*) 
         WRITE(8,*) 
         WRITE(8,*) 
         WRITE(*,164) 
164      FORMAT('Do you want to do another analysis, y or n?') 
         READ(*,'(A1)') ANS 
         IF (ANS.EQ.'Y'.OR.ANS.EQ.'y')  GOTO 282 
1500     CLOSE(8,STATUS="KEEP") 
         END 
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