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INVITED ARTICLES 
Quantile Regression: On Inferences about the Slopes 

Corresponding to One, Two or Three Quantiles 
 

   
 

Rand R. Wilcox Kathleen Costa 
University of Southern California 

 
 
The problem of testing hypotheses about the slope of a quantile regression line when the sample size is 
small is considered. A modified bootstrap method is suggested that is found to have certain advantages 
over the inverse rank method recommended by Koenker (1994). A method is suggested that 
simultaneously controls the probability of at least one Type I error when performing two or three tests 
corresponding to two or three specific quantiles. Using data from actual studies, it is illustrated that the 
new method can yield substantially shorter confidence intervals than the rank inverse method and, even 
with a large sample size, the choice of method can matter. 
 
Key words: Tests of independence, familywise error, bootstrap methods, Porteus Maze Test, Olympic 
athletes. 
 
 

Introduction 
 
Consider the random variables 1, , pX X¼ ,Y  

having some unknown (p+1)-variate distribution  
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and let Yg  be the conditional g  quantile of Y

given 1,..., pX X . When using the Koenker and 

Bassett (1978) quantile regression method the 
goal is to estimate Yg  assuming that 

 

1 1 p pY X Xg g g ga b b= + + + ,     (1) 

 
where the unknown parameters 1 , , pg gb b¼  and 

ga  are estimated based on the random sample 

1( , , , )i ip iX X Y¼ , 1, ,i n= ¼ . The special case 

.5g = corresponds to what is called the least 
absolute value regression estimator, meaning 
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that the parameters are chosen so as to minimize 
the sum of the absolute values of the residuals. 
This special case predates ordinary least squares. 
For a summary of results relevant to .5g = , see 
Birkes and Dodge (1993). A generalization of 
this method to other quantiles was first 
considered by Koenker and Bassett (1978). 
Since then, many new theoretical results have 
been published plus methods for computing 
confidence intervals for the parameters (e.g., 
Koenker, 1994; Koenker & Xiao, 2002). S-
PLUS and R provide functions for estimating the 
parameters, which includes confidence intervals. 
Although some small-sample size results on the 
accuracy of these confidence intervals (plus the 
accuracy of several other methods) were 
reported by Koenker (1994), the results were 
limited to p = 1, n=50 and a Type I error 
probability of 0.1.a =  Moreover, his results 
were limited to symmetric distributions. Thus, a 
goal in this article is to comment on some 
situations not considered by Koenker (1994). 
The focus in this article is on testing 
 

0 1: 0.H gb =  

 
Among the situations considered here, 

preliminary simulations indicated that the rank 
inversion method, recommended by Koenker 
(1994), continues to give fairly accurate 
confidence intervals for n = 20 (and p = 1) when 
testing at the .05 level with .5g = , .8 and .9. 
However, for .01a = , problems begin to 
emerge. For .5g = , and when both X and Y 
have standard normal distributions, simulations 
indicate that now the actual Type I error 
probability is .002. For .8g =  the estimate is 
.001. This is a concern when making inferences 
about two or more quantiles because if the goal 
is to control the probability of at least one Type I 
error using for example the Bonferroni 
inequality, having Type I error probabilities well 
below the nominal level could result in relatively 
poor power. Accordingly, one goal is to suggest 
an alternative approach that gives more 
satisfactory results for this special case. 
 
 
 

Practical Reasons for Considering Quantile 
Regression 

Well-known reasons exist for 
considering quantile regression, but two 
illustrations are provided that helped motivate 
this article. The first illustration stems from 
Costa (2004) where the goal was to study factors 
that influence increases in horizontal velocity of 
the body among Olympic athletes who compete 
in sprints. One issue of specific interest is the 
rate of horizontal force development (RHFD). 
Past studies (Henry, 1952; Payne & Blader, 
1971; Mero, et al., 1983; Hafez, et al., 1985) 
indicate horizontal velocity at block departure is 
dependent on the horizontal impulse generated 
within the starting blocks. Faster horizontal 
velocities at the end of the first step out of the 
blocks are generated with larger net horizontal 
reaction forces during ground contact (Mero, 
1988). These, and related results summarized in 
Costa (1994), led to the hypothesis that there is 
an association between horizontal impulse (HI) 
and RHFD during the first step out of the blocks. 

The sample size is n = 39. Initial 
examination of the data, based on various 
smooths, hinted at a slightly non-linear 
association between HI and RHFD. Using, for 
example, the robust version of the smooth in 
Cleveland (1979), it appears that as HI increases, 
RHFD increases somewhat, up to a point, and 
then decreases. However, a test of the hypothesis 
that the association is linear, using the method in 
Stute, et al. (1998) in combination with a least 
squares fit, failed to reject at the .05 level. 
Replacing least squares with the more robust 
Theil (1950) and Sen (1968) regression 
estimator, again the hypothesis of a linear 
association is not rejected at the .05 level, but 
with only 39 pairs of points, this might be due to 
low power. Testing the hypothesis that the 
regression line is both straight and horizontal, 
using the wild bootstrap method in Wilcox 
(2005, section 9.5), the hypothesis of 
independence between HI and RHFD was 
detected at the .1 level. Simple analyses, such as 
Pearson's correlation and least squares 
regression, provided no indication of an 
association (Pearson's correlation is r = -0.04.). 

However, consider Figure 1, which 
shows a scatterplot of the data and three smooths 
indicated by the three solid lines. The top  
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smooth is aimed at estimating the .8 quantile of 
RHFD given HI. The middle smooth estimates 
the median of RHFD and the bottom smooth is 
for the .2 quantile. The so-called running-
interval smooth was used, as described for 
example in Wilcox (2005, section 11.4.4), in 
conjunction with the Harrell and Davis (1982) 
quantile estimator. (The S-PLUS function 
runmq, which comes with the library of 
functions in Wilcox, 2005, was used.) This 
suggests that as we move from the lower to the 
upper quantiles, a non-linear association begins 
to emerge. As is evident, for the .8 quantile, the 
association appears to be quadratic. If 
 

2
.8 0,.8 1,.8 2,.8Y X Xb b b= + + , 

 
then the estimates of 0,.8b , 1,.8b  and 2,.8b  are -

162.63, 277.13 and -109.47, respectively. The 
dashed line in Figure 1 shows this fitted model, 
which appears to be in reasonable agreement 
with the corresponding smooth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, an issue is testing both 0 1,: 0H gb =  and 

0 2,: 0H gb =  in a manner that controls the 

probability of at least one Type I error in a 
reasonably accurate fashion. 

The second illustration demonstrates 
that even with n large, quantile regression can 
help provide a deeper understanding about any 
association that might exist. Williams, et al. 
(2005) conducted a study dealing generally with 
the Porteus Maze Test (PMT), which is used to 
evaluate intelligence and executive functioning 
and screen for intellectual deficiency. A portion 
of the study dealt with the association between 
the so-called Q score resulting from the PMT 
test and a measure of maladjustment for the 
participants in this study. The sample size is n = 
1063. Pearson's correlation is r = 0.109, and 
using the usual Student's T test, the 
corresponding p-value is less than .001. The .5 
quantile regression estimate of the slope is 0 
indicating no association. 

Figure 1: A plot of HI versus HFRD Plus the .8 and .2 Quantile Regression Lines 
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Figure 2 shows a plot of the data. The 
three straight lines starting from the bottom, are 
the .5, .8 and .9 quantile regression lines. So it 
appears that as we move from the median value 
of Y toward the higher quantiles, an association 
appears. Using either the inverse rank method or 
the method considered here, 0 1,.9: 0H b =  is 

rejected at the .05 level. The least squares slope 
is estimated to be .0099, which is close to the 
estimated .8 quantile regression slope, which is 
.0098. The estimate of the slope for the .9 
quantile is .029. So, although Pearson's 
correlation rejects at the .001 level, the quantile 
regression lines provide an interesting 
perspective on the nature of the association. 
 

Methodology 
 
The Koenker and Bassett (1978) quantile 
regression method arises as follows. For some γ, 
0 1g< < , let  
 

0( ) ( ),uu u Igr g <= -  

 
where the indicator function 0 1uI < =  if u < 0; 

otherwise 0 0uI < = . Assuming that the γ 

quantile of Y, given X, is given by (1), the 
Koenker-Bassett quantile regression method 
estimates the unknown parameters 1 , , pg gb b¼  

and ga  with the values 1 , pb bg g¼  and ,ag  

respectively, that minimize 
 

( )irgrå ,                          (2) 

 
where 1 1i i i p ipr Y b X b X ag g g= - - - -  are 

the residuals. Here, the values that minimize (2) 
were determined with the function rq that is 
included in the robust library included with the 
software S-PLUS. 

The proposed method for dealing with 
very small sample sizes is based in part on a 
bootstrap estimate of the standard error. The 
idea of using a bootstrap estimate of the standard 
error is not new, but the 1, ,i n= ¼ more 
obvious approximation of the null distribution of 
the test statistic, labeled U below, is already 
known to be unsatisfactory. (For general results 

on bootstrap estimates of the standard error, see 
Buchinsky, 1994; Hahn, 1994.) More precisely, 
Koenker (1994) found that the actual probability 
coverage tended to be higher than the nominal 
level. Referring to his Table 2, when both X and 
Y have a Student's T distribution with degrees of 
freedom 1, 3 or 8, the actual probability 
coverage, when computing a .9 confidence 
interval, was estimated to be .920, .948 and .945, 
respectively. So, in terms of Type I error 
probabilities, the actual probability of a Type I 
error can be too low versus the nominal level. 
Very similar results were obtained here, as 
indicated in Section 3. One minor goal here is to 
expand upon Koenker's simulation study by 
considering sample sizes ranging between 20 
and 200, a wider range of α values, and some 
alternative situations that include skewed 
distributions. A more major goal is to suggest an 
adjustment that helps correct the problem just 
described. And as previously indicated, another 
goal is to control the probability of at least one 
Type I error when two or three specific quantiles 
are of interest. 

Let * * *
1( , , , )i ip iX X Y¼ , 1, , ,i n= ¼  be a 

bootstrap sample obtained by randomly 
sampling, with replacement, n vectors of 
observations 1( , , , ),i ip iX X Y¼  1, ,i n= ¼ . Given, 

γ label the resulting estimate of the slopes 
*, 1, ,kb k p= ¼ . Repeat this process B times 

yielding * *
1 ,k Bkb b¼ . Then from basic principles, 

an estimate of the squared standard error of kb g  

is 
 

2 * 2

1

,
1

( )
1

B

k bk k
b

S b b
B =

= -
- å  

 

where 
*

/ .k bk
b b B= å . So an approximate 

1 a-  confidence interval for gb  is

1 /2 ,k kb z Sg a-  where 1 /2z a-  is the 1 / 2a-  

quantile of a standard normal distribution. 
As previously indicated, preliminary 

simulations indicated that the actual probability 
coverage is larger than the nominal level. Here, 
a slight variation of Gosset's original strategy for  
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deriving Student's T test is used in an attempt to 
reduce this problem. That is, assume X and Y 
are independent, standard normal random 
variables and use simulations to approximate the 

distribution of
| |

.k
k

k

b
U

S
g

g =  Letting 1̂u a-  be the 

resulting estimate of the 1 a-  quantile of 
distribution of U, the 1 a-  confidence interval 
for kgb  is taken to be 1 .ˆ kb u Sg a-  

Consider p = 1; the 1 a-  quantile of 
the distribution of 1,.5U  was estimated for n=10, 

20, 30, 40, 60, 100 and 200, and .1a = , .05, 
.025 and .01 using simulations with 1,000 
replications. Then a least squares estimate was 
fitted having the form 
 

1
1 0ˆ .

d
u d

n
a- = +  

 
The resulting values for 0d  and 1d  are shown in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the top portion of Table 1. Results on how this 
approximation performs under non-normality 
are given in the next section of this paper. Still 
assuming p = 1, next consider the goal of 
making inferences about the slope corresponding 
to two different choices for g : .2 and .8.  

Furthermore, the goal is to control the 
probability of at least one Type I error (cf. 
Koenker & Machado, 1999). The strategy now is 
to approximate the null distribution of max(

1,.2 1,.8,U U ). This was also done for n=10, 20, 30, 

40, 60, 100 and 200, and a =.1, .05, .025 and 
.01. The resulting values for 0d  and 1d  are 

shown in the middle portion of Table 1. 
Finally, consideration was given to the 

goal where three choices for g  are to be used, 
namely, .2, .5 and .8. The idea is that any one 
choice for g  might miss an association that 
would be detected if a different choice were 
used, and again there is the goal of controlling 
the probability of at least one Type I error. The 

Figure 2: Q Scores versus a Maladjustment Score 
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resulting values for 0d and 1d  are shown in the 

bottom portion of Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simulation Study 

Simulations were used to study the 
small-sample properties of the methods just 
described, where the critical value is taken to be 

1̂u a- . The distribution for X was taken to be 

standard normal and the distribution for Y was 
taken to be one of four  g-and-h distributions 
(Hoaglin, 1985), which contains the standard 
normal distribution as a special case. If Z has a 
standard normal distribution, then 
 

2((exp( ) 1) / )exp( / 2)Y gZ g hZ= -  
 

if g > 0, and 2exp( / 2)ZY hZ=  if g = 0, has a g-
and-h distribution where g and h are parameters 
that determine the first four moments. The four 
distributions used here were the standard normal 
(g = h = 0.0), a symmetric heavy-tailed 
distribution (h = 0.2, g = 0.0), an asymmetric 
distribution with relatively light tails (h = 0.0, g 
= 0.2), and an asymmetric distribution with 
heavy tails (g = h = 0.2). Table 2 shows the 
skewness (κ1) and kurtosis (κ2) for each 

distribution considered. Additional properties of 
g-and-h distributions are summarized by 
Hoaglin (1985). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 shows the estimated probability 
of a Type I error when testing at the .05 or .01 
level with n = 20. The estimates are based on 
1,000 replications. From Robey and 
Barcikowski (1992), 1,000 replications is 
sufficient from a power point of view. More 
specifically, if we test the hypothesis that the 
actual Type I error rate is .05, and if we want 
power to be .9 when testing at the .05 level and 
the true α value differs from .05 by .025, then 
976 replications are required. As is evident, all 
indications are that reasonable control over the 
probability of a Type I error is obtained. Similar 
results were obtained when for a fixed γ, the 
goal is to test 0 1,: 0H gb =  and 0 2,: 0H gb = , 

or the three hypotheses 0 1,: 0H gb = , 

0 2,: 0H gb =  and 0 3,: 0H gb = , provided that 

when n is small, .2 .8g£ £ ; for brevity, the 
results are not reported. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Values for d0 and d1 
 

α d0 d1 
γ =0.5 

.100 1.645 -1.19 

.050 1.96 -1.37 

.025 2.24 -1.18 

.010 2.58 -1.69 

γ = (0.2, 0.8) 

.100 1.98 -1.13 

.050 2.37 -1.56 

.025 2.60 -1.04 

.010 3.02 -1.35 

γ = (0.2, 0.5, 0.8) 

.100 2.14 -1.31 

.050 2.49 -1.49 

.025 2.86 -1.52 

.010 3.42 -1.85 
 

Table 2: Some Properties of the g-and-h 
Distribution 

g h κ1 κ2 

0.0 0.0 0.00 3.00 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 
 

Table 3: Probability of at Least One Type I Error, 
n = 20 

g h α = 0.05 α = 0.01 

0.0 0.0 0.061 0.011 

0.0 0.2 0.056 0.008 

0.2 0.0 0.064 0.011 

0.2 0.2 0.056 0.007 
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Note that when dealing with the case p=2 or 3, 
the method used here can be used to control the 
probability of at least one Type I error when 
testing simultaneously the two hypotheses 

0 1,: 0H gb =  and 0 2,: 0H gb = , or the three 

hypotheses 0 1,: 0H gb = , 0 2,: 0H gb =  and 

0 3,: 0H gb = . It is noted that the simulations 

were repeated when testing these two 
hypotheses and it was found that the values in 
Table 3 can be used provided that, when n is 
small, .2 .8g£ £ . 
 
Comments and Illustrations Regarding 
Confidence Intervals 

Based purely on simulations, there 
seems to be little separating the rank inverse 
method recommended by Koenker (1994) and 
the bootstrap method used here when α =.05. It 
is illustrated, however, that when working with 
real data, the two methods can yield 
substantially different results. 

Consider again the Olympic athlete data 

and the model 2
.8 0,.8 1,.8 2,.8Y X Xb b b= + + . 

Using the rank inverse method, the .95 
confidence intervals for 1,.8b  and 2,.8b  are 

308( 1.798(10) ,320.245)-  and 

( )143.70,   4903.07- , respectively. By contrast, 

using the bootstrap method, the .95 confidence 
intervals are (25.95, 528.32) and (-208.28, -
10.66). Not only do the methods give different 
results when testing 0 1,.8: 0H b =  testing, the 

length of the confidence intervals differ 
substantially. A similar result is obtained when 
testing 0 2,.8: 0H b = , only now the difference 

between the lengths of the confidence intervals 
is less dramatic. 

Returning to the Porteus maze data, 
consider the model .8 0,.8 1,.8Y Xb b= + . The 

estimate of 1,.8b   is zero and using the standard 

method, the .95 confidence interval is (-0.235, 
0.000). Using the bootstrap method studied here, 
the .95 confidence interval is (-0.126, 0.126). So 
the standard method is unusual in the sense that 
the upper end of the confidence interval is equal 
to the estimated slope. For the .9 quantile, the 

estimate of the slope is -0.133 and the standard 
method gives a .95 confidence interval of (-
0.247, -0.007). Now the point estimate is near 
the center of the confidence interval. The 
bootstrap confidence interval is (-0.253, -0.014). 
 

Conclusion 
 
It is noted that some additional methods and 
situations were considered beyond those already 
described. Simulations were run with γ =.1, but 
now the null distribution of U was found to be 
rather unstable as a function of the distributions 
used to generate the data when the sample size is 
small. A percentile bootstrap method was 
considered, but it was found to be considerably 
less satisfactory in terms of probability 
coverage. The main point is that the adjusted 
bootstrap method considered here appears to 
perform reasonably well even under what would 
seem like extreme departures from normality. 
Moreover, both methods considered here seem 
to perform well when sampling from skewed 
distributions. Generally, when X and Y are 
independent, the choice between the two 
methods considered seems to make little 
difference, but when there is an association, this 
might no longer be the case, as was illustrated. 
Finally, R and S-Plus software is available from 
the author for applying the bootstrap method 
studied here. Ask for the function qregci. 
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Comparative Power Of The Independent t, Permutation t, and WilcoxonTests 
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The nonparametric Wilcoxon Rank Sum (also known as the Mann-Whitney U) and the permutation t-tests 
are robust with respect to Type I error for departures from population normality, and both are powerful 
alternatives to the independent samples Student’s t-test for detecting shift in location. The question 
remains regarding their comparative statistical power for small samples, particularly for non-normal 
distributions. Monte Carlo simulations indicated the rank-based Wilcoxon test was found to be more 
powerful than both the t and the permutation t-tests. 
 
Key words: t test, Wilcoxon, permutation, power. 
 
 

Introduction 
 
When testing for shift in location, Blair and 
Higgins (1985b) and Sawilowsky (1992; see 
also 1990) demonstrated that the nonparametric 
Wilcoxon Rank Sum test (also known as the 
Mann-Whitney U) is more powerful than the 
two independent samples Student’s t test for data 
obtained from non-normal populations. For 
example, the Wilcoxon test can be up to four 
times more powerful than the t-test when the 
data are sampled from an exponential 
distribution (Sawilowsky & Blair, 1992). 

Permutation techniques are also 
distribution-free (Bradley, 1968; Edgington, 
1995; Maritz, 1981; Mielke & Berry, 2001). In 
this context, they require independence (Good, 
1994; Maritz, 1981), exchangeability (Boik, 
1987; Commenges, 2003; Good, 2002), 
continuity of the distributions (Edgington, 
1995), and homogeneity of variance (Boik, 
1987). Regarding their power properties, Good 
(1994), among many other authors, postulated 
that permutation methods are superior in terms 
of comparative power as compared with 
nonparametric procedures. 
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Adams and Anthony (1996) and 

Ludbrook and Dudley (1998) agreed with this 
view, and asserted that the reason permutation 
tests have higher power than nonparametric 
counterparts is because of the use of actual data 
instead of ranks. However, in a Letter to the 
Editor published in The American Statistician, 
Higgins and Blair (2000) demurred, and 
countered that statistical power is not lost via 
ranking data. 

The same point was made previously by 
Blair (1985), “I have never seen an assertion of 
parametric power superiority accompanied by a 
citation to support the position. This is not too 
surprising since the statistical literature does not 
support such a position” (p. 4-5). This sentiment 
was echoed by Sawilowsky (1993) via an 
analogy: 

 
Both an accomplished opera singer 
sings and an off-key beginning tuba 
player plays dots and dashes of the 
International Morse code. While 
some may consider the opera 
singer’s notes to be sounds of 
music, there is, in fact, no more 
information in those dots and 
dashes than in the off-key notes of 
the beginning tuba player, with 
respect to the code. If the 
complexity and subtlety of what is 
often imagined to be included in 
interval scales is noise and not 
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signal, parametric tests will have no 
more information available than a 
rank test, and will be less efficient 
by trying to discriminate a signal 
from noise when in fact there isn’t 
any. (p. 398) 

 
Purpose of the study 

Higgins and Blair (2000) opined that the 
Wilcoxon test is more powerful than the 
permutation t-test (and Student’s t-test) when 
testing for shift in location. They postulated that 
the power properties of the permutation statistic 
follow the spectrum of the native test, not the 
nonparametric alternative. The purpose of this 
study, therefore, is to determine if indeed the 
permutation t-test follows the power properties 
of the two independent samples Student’s t, or if 
it is fact superior to the nonparametric Wilcoxon 
Rank Sum test. 

The resolution of this debate will have 
considerable impact on real data analysis with 
small samples in applied research. The rationale 
for selecting an optimum method for statistical 
analysis resides in the importance of detecting a 
treatment effect or naturally occurring condition, 
even it is subtle, assuming that it exists. The 
ability to detect the effect is quantified by the 
statistical power of the test. This makes the 
study of the comparative power properties of the 
permutation technique very important in applied 
research, where the effect size of treatments or 
interventions is oftentimes very small. 
 

Methodology 
 
A Fortran program was written to study the 
properties of the two independent samples 
Student’s t test, the permutation t test, and the 
Wilcoxon Rank Sum test. Nominal alpha was set 
to α = 0.05. The sample sizes studied were n1 = 
n2 = 10; n1 = 5, n2 = 15; n1 = n2 = 20; and n1 = 
10, n2 = 30. Data were drawn from a normal 
distribution (μ = 0, σ = 1), exponential 
distribution (μ = σ = 1) and Chi-square 
distribution (df = 1). 
 The Type I error portion of the study 
was conducted by drawing samples with 
replacement for the various combinations of 
sample sizes and distribution, conducting the 
hypothesis tests, recording the results, and 

repeating the experiment for one million 
repetitions per study parameter. The power 
portion of the study was based on 1,500 
repetitions per experiment. The reduction in 
repetitions was required due to the CPU time 
necessary for permutation intensive 
computations. The means were shifted by μ = 
.2σ, .5σ, .8σ, and 1.2σ of the respective 
distribution. 
 

Results 
 
Type I Error Rates 
 The Type I error rates, which have been 
extensively studied elsewhere, are briefly 
repeated here to demonstrate the veracity of the 
Fortran program. All Type I error results 
replicated well-known characteristics of the 
tests. The Student’s t-test yielded conservative 
Type I error rates under population non-
normality. For example, the Type I error rates 
for the exponential distribution for n1 = 5, n2 = 
15 was 0.0276. Similarly, the result for the Chi-
square distribution (df = 1) was 0.0180. 
However, the Type I error rates for all 
conditions studied for the Wilcoxon Rank Sum 
test and the permutation t-tests were within 
sampling error of nominal alpha. 

Power Results 

 The comparative power results for the 
normal distribution also replicated well-known 
results in the literature. The t and the 
permutation t-tests’ statistical power were nearly 
indistinguishable. The Wilcoxon Rank Sum 
test’s power was either the same, or slightly less, 
as noted, for example, in Figure 1. As suggested 
by asymptotic theory, the maximum power 
advantage of the two t-tests over the Wilcoxon 
test was only about 0.04. 

The results for the exponential 
distribution (μ = σ = 1) with the different shifts 
in location, as reflected in Figure 2, 
demonstrates the Wilcoxon test is more 
powerful than the t and permutation t-tests, of 
which the latter two have essentially the same 
power. As shown in Figure 3, the power 
properties for the Chi-square distribution (df = 
1) indicates the same power advantages for the 
Wilcoxon Rank-Sum test, with the t-test and  
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Figure 1: Shift vs. Power in the Normal Distribution for Sample Sizes n1 = n2 = 20 
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Figure 2: Shift vs. Power in the Exponential Distribution for Sample Sizes n1 = n2 = 20 
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Figure 3: Shift vs. Power in the Chi-square Distribution (df = 1) for Sample Sizes n1 = n2 = 10 
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Figure 4: Shift vs. Power in the Chi-square Distribution (df = 1) for Sample Sizes n1 = 5 & n2 = 15 
 

0.00

0.20

0.40

0.60

0.80

1.00

0.2 0.4 0.6 0.8 1 1.2

Po
w

er

Shift

t-test Chi 1.0

Permutation 
Chi 1.0
Wilcoxon Chi 
1.0



POWER OF THE INDEPENDENT t, PERMUTATION tT, AND WILCOXON TESTS 

14 
 

permutation t-test presenting nearly identical and 
substantially less statistical power. As indicated 
in Figure 4, the power results for the Chi-square 
distribution (df = 1) and unequal sample sizes 
indicated the permutation test became more 
competitive than the Student’s t-test, but both 
tests remained considerably less powerful than 
the Wilcoxon Rank-Sum test. 
 

Conclusion 
 
Although Edgington (1995), Good (1994), and 
many others have presumed that the permutation 
t-test would be considerably more powerful than 
nonparametric tests, such as the Wilcoxon Rank-
Sum test, the results of this Monte Carlo 
simulation did not support their opinion. These 
results pertain to the detection of a treatment 
modeled as a shift in location parameter, and of 
course, are based on the distributions, sample 
sizes, and the α level studied. 
 The primary answer provided by this 
simulation study is that the permutation test, in 
the context of the two independent samples 
layout, follows the depressed power spectrum of 
the Student’s t-test, and not the superior 
spectrum afforded by the Wilcoxon test. 
Therefore, workers in applied research would be 
better served, when testing hypotheses of shift in 
location parameter, to use the nonparametric test 
instead of the permutation test. 

Secondary results, interestingly, 
confirmed that the permutation t-test provides 
considerable power advantages over the 
Student’s t-test for unbalanced sample sizes 
(e.g., Lu, Chase, & Li, 2001). 
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Aligned Rank Tests for Interactions in Split-Plot Designs: 
Distributional Assumptions and Stochastic Heterogeneity 

 
T. Mark Beasley Bruno D. Zumbo 
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Three aligned rank methods for transforming data from multiple group repeated measures (split-plot) 
designs are reviewed. Univariate and multivariate statistics for testing the interaction in split-plot designs 
are elaborated. Computational examples are presented to provide a context for performing these ranking 
procedures and statistical tests. SAS/IML and SPSS syntax code to perform the procedures is included in 
the Appendix. 
 
Key words: nonparametrics, aligned ranks, split-plot design, repeated measures, stochastic heterogeneity. 
 
 

Introduction 
 
Measuring pre-treatment or baseline levels of 
behavior, aptitude, achievement, or pre-existing 
status is often necessary as a means of assessing 
the internal validity of applied research (Cook & 
Campbell, 1979). Therefore, repeated measures 
designs involving two or more independent 
groups (split-plot designs) are among the most 
common experimental designs in educational, 
psychological, developmental, and many other 
fields of scientific research (e.g., Keselman et 
al., 1998; Koch, Amara, Stokes, & Gillings, 
1980). Various statistical procedures have been 
suggested for analyzing data from split-plot 
designs when parametric model assumptions are 
violated. The focus here is aligned rank 
procedures for testing the interaction. 

The effects of ranking on data and the 
resultant test statistics for one- and two-factor 
designs involving only between-subjects factors  
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(e.g., Blair, Sawilowsky, & Higgins, 1987; 
Sawilowsky, Blair, & Higgins, 1989; Vargha & 
Delaney, 1998; Toothaker & Newman, 1994; 
Wilcox, 1993; Zimmerman, 1996) and single 
sample within-subjects designs (e.g., Agresti & 
Pendergast, 1986; Harwell & Serlin, 1994, 1997; 
Zimmerman & Zumbo, 1993) are well known. 
However, there have been fewer investigations 
concerning the effects of ranking in split-plot 
designs (e.g., Akritas & Arnold, 1994; Beasley, 
2000, in press; Brunner & Langer, 2001; 
Higgins & Tashtoush, 1994; Koch, 1969). 
 

Methodology 
 
Parametric Models for Split-Plot Designs: 
Univariate Approach 

The univariate analysis of variance 
(ANOVA) approach to the split-plot design 
employs the following linear model: 
 

( ) ( )***

 

i   

ijk

j k jk ijki j k j

Y =

μ + β +π + τ + βτ + τπ +ε  

(1) 
 
where, j is referenced to the J groups of the 
between-subjects factor, i is referenced to the nj 
subjects nested within the jth group, k is 
referenced to the K levels of the within-subjects 
(repeated measures) factor, εijk is a random 
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error vector,  and N = Σnj is the total number of 
subjects. The interaction of the between-subjects 
(i.e., independent grouping or treatment 
variable) and the within-subjects (i.e., repeated 
measures) factors is of interest in many 
applications (Boik, 1993; Koch et al., 1980). In 
educational experiments, the interaction 
typically represents differential gains in 
achievement for a treatment group. In 
psychological and developmental research, the 
interaction indicates that independent groups do 
not have parallel profiles or do not exhibit 
identical growth curves (Winer, Brown, & 
Michels, 1991). In genetics experiments, the 
interaction typically indicates differential growth 
rates for organisms of different genotypes 
(Lynch & Walsh, 1998). 

The interaction is tested with an F-ratio, 
F(Y),  that   is  distributed   approximately  as  
F[(J-1)(K-1),(N-J)(K-1)]  under   the  null  hypothesis: 
 

2

1 1
0( x ) ( )  0H : =

J K

j k
J K jk

= =

βτ                (2) 

 
In using the parametric F-ratio for testing the 
interaction, the random error components (εijk) 
are assumed to be independent and identically 
distributed with a mean of zero, a common 
variance (  σε

2 ), and normal shape for each of the 

JK cells (i.e., NID[0,  σε
2 ] for all j and k). By 

requiring identical error distributions, it can be 
assured that a rejection of the null hypothesis in 
(2) is due to shifts (differences) among location 
parameters. Furthermore, by assuming normal 
error distributions means as estimates of location 
will yield the maximum statistical power for 
rejecting (2). 

For K > 2, there is an additional 
assumption concerning the sphericity of the 
pooled covariance matrix. If the pooled 
covariance matrix is non-spherical, the F-ratio is 
valid if the degrees-of-freedom (dfs) are 
corrected by a factor epsilon (see Huynh & 
Feldt, 1970). Methods for estimating epsilon 
have been investigated for over four decades 
(e.g., Box, 1954; Greenhouse & Geisser, 1959; 
Huynh & Feldt, 1970, 1976; Lecoutre, 1991). 
Also, general approximate methods to correct 
the dfs have been developed (Huynh, 1978). 

However, these df-correction procedures tend to 
be less powerful than multivariate approaches to 
analyzing repeated measures designs (e.g., 
Algina & Keselman, 1998; Algina & Oshima, 
1994; Keselman & Algina, 1996) and thus will 
not be elaborated. 
 
Multivariate Approach 

The multivariate approach to analyzing 
repeated measures designs (i.e., multivariate 
profile analysis) is often suggested because the 
multivariate tests do not require the additional 
sphericity assumption. This of great concern for 
repeated measures (e.g., longitudinal) designs 
because it seems unreasonable to make 
assumptions about the consistency of 
covariances (i.e., correlational structure) among 
measures taken over an extended period of time 
(Koch et al., 1980). One approach to conducting 
the multivariate profile analysis is to take 
pairwise differences among the K repeated 
measures in order to compute (K−1) transformed 
scores, Y* = YD, where Y is the NxK data 
matrix of scores (Yijk) and D is a Kx(K−1) 
difference matrix of the general form: 
 
 
 
 
 
 
 
 

(3) 
 
These transformed scores are then submitted to a 
MANOVA with the following multivariate 
linear model: 
 

Y*j = Μ** + Βj + Εj,                (4) 
 
where Μ** is a (K-1) vector of grand means 

(centroids), Βj is a (K-1) vector of between-

subjects effects, and Εj is a random error matrix. 

Testing the null hypothesis (H0(K): Μ** =        
0(K-1),where 0(K-1) is a (K−1) vector of zeros) is 
equivalent to testing the repeated measures main 
effect. With the original scores expressed as 
difference scores, the multivariate model (4) 

  1 -1 0 . . . 0 0  

D =  0 1 -1 . . . 0 0  

  . . . . . .  

  0 0 0 . . . 1 -1  
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contains only between-subjects effects. Thus, the 
null hypothesis in (2) can be expressed as: 
 

H0(JxK): Β1 = Β2 = … = Βj = … = ΒJ ,   (5) 
 
where Βj is a (K-1) vector of between-subjects 
effects (i.e., mean differences) for the jth group. 
Thus, the variables from the Y* matrix are 
defined as difference scores and the null 
hypothesis in (2) can also be expressed as: 
 
H0(JxK): (μ1k−μ1k´) = (μ2k−μ2k´) = … = 

(μjk−μjk´) = … = (μJk−μJk´), for k ≠  k´ ; k = 1, 
… K.  

(6) 
 
To illustrate the assumptions underlying the 
multivariate approach to repeated measures data, 
define Σj as the K x K covariance matrix of Yj. 
The homogeneity of covariance assumption 
requires that the J covariance matrices (Σj) are 

equivalent so that they can be combined to form 
the pooled covariance matrix, Σ. Parametric tests 
for the multivariate model (4) assume that the 
random error components are independent and 
multivariate normal with means of zero and a 
common covariance matrix (i.e., NID[0(K-1), 
D′ΣD]). 

In contrast to the univariate approach 
(1), the multivariate model (4) does not require 
homogeneity of the variances for each of the K 
repeated measures. That is, the multivariate 
approach does not require the diagonal elements 
of Σ to be equal. By taking difference scores this 
also translates into not requiring the (K−1) 
transformed variables (Y*) to have the same 
variances. For example, with K=3 repeated 
measures, the variance of the first pairwise 
difference, σ2

(Yj1−Yj2), is not assumed to be 

equivalent to the variance of the second pairwise 
difference, σ2

(Yj1−Yj2), under the multivariate 

model (4); however, this variance homogeneity, 
which is equivalent to the sphericity requirement 
(see Winer, et al., 1991, pp. 240-243), is 
assumed implicitly in the univariate model (1). 
 
 
 

Rank-Based Tests 
Regardless of whether (a) the univariate 

ANOVA test with possible df-corrections (e.g., 
Huynh, 1978; Huynh & Feldt, 1976; Lecoutre, 
1991), or (b) the multivariate approach to 
analyzing repeated measures design is 
employed, there are normality assumptions for 
parametric models. Unfortunately, the normality 
assumption is violated frequently in a variety of 
research fields including genetics (e.g., Allison 
et al., 1999) and behavioral research (e.g., 
Bradley, 1968; Cliff, 1996; Micceri, 1989; 
Zumbo & Coulombe, 1997).  

Rank-based approaches can be used in 
order to relax the normality assumptions by 
assuming that the error components are random 
variables from some continuous distribution, not 
necessarily the normal. However, rank-based 
approaches cannot be simply applied due to 
violations of model assumptions. For example, 
Zimmerman and Zumbo (1993) demonstrated 
that rank transformed scores inherit the 
heterogeneity of variance in the original data. 
Likewise, ranks can also inherit the non-
sphericity present in repeated measures data 
(Beasley & Zumbo, 1998; Harwell & Serlin, 
1994). Thus, to test hypotheses concerning shifts 
in location parameters the assumptions of 
independence, homogeneity of variance, and 
identical shape must still preside (Serlin & 
Harwell, 2001). 

Specifically, credible inferences about 
means require the assumption that the 
population distributions are symmetric (Koch, 
1969; Serlin & Harwell, 2001); whereas, 
credible inferences concerning location 
parameters generally require the assumption that 
the population distributions are of identical 
shape, not necessarily symmetric (i.e., IID

2[0, ]εσ  or IID[0(K-1), D′ΣD]). This frequently 

overlooked detail is one reason why so much 
attention has been given to rank-based 
procedures such as tests of stochastic 
homogeneity (Vargha & Delaney, 1998), 
distributional equivalence (Agresti & 
Pendergast, 1986; Beasley, 2000), or fully 
nonparametric hypotheses (Akritas & Arnold, 
1994). 

As a departure from parametric models 
that test differences among means, general 
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nonparametric models specifying only that 
observations in different cells which are 
governed by different distribution functions 
(Akritas & Arnold, 1994; Akritas, Arnold, & 
Brunner, 1997) have been developed for a 
variety of factorial designs including split-plot 
designs (Akritas & Arnold, 1994; Brunner & 
Langer, 2000). For a split-plot design, the fully 
nonparametric approach would involve ranking 
the data from 1 to NK and computing the 
appropriate test statistics (e.g., Serlin & Harwell, 
2001). 

Brunner, Domhof, and Langer (2002) 
warn that this practice should not be regarded as 
a technique for the derivation of statistics but 
rather as a property that can be useful for 
computational purposes. Therefore, fully 
nonparametric tests are not viewed as robust 
alternatives to normal theory methods, allowing 
direct inference concerning location parameters 
(Akritas, et al., 1997). Rather, statistically 
significant fully nonparametric tests are 
attributed to differences among any 
distributional characteristic (e.g., location, 
dispersion, shape). Hypotheses of this form 
reduce the risk of drawing incorrect conclusions 
about the likely sources of the significant 
interaction, but do so at the cost of not being 
able to characterize precisely how population 
distributions differ (Serlin & Harwell, 2001). 

Rank-based tests, however, are 
especially sensitive to shifts in location 
parameters because they are computed using 
mean ranks. Therefore, even if assumptions 
concerning identical distributions and 
homogeneous variances are not tenable, the 
researcher may still conclude that one or more 
groups are stochastically dominant over another 
group(s). For an interaction in a multiple group 
repeated measures design, this concept of 
stochastic heterogeneity (Vargha & Delaney, 
1998) implies that one or more groups tends to 
have higher scores on some measurement and 
that this stochastic dominance is not constant 
over the K measurements (Agresti & Pendergast, 
1986; Brunner & Langer, 2000). 
 
Aligned Rank Transform Procedures 

Because the Rank Transform is 
monotonic, it is commonly believed that the null 
hypothesis for the parametric test of interaction 

(2) from model (1) is similar to the null 
hypothesis for similar tests performed on ranks, 
except statistical inferences concern mean ranks 
(i.e., location parameters). However, interaction 
tests performed on ranked data from factorial 
designs have performed poorly compared with 
their normal theory counterparts. This is because 
the expected value of ranks for an observation in 
one cell has a non-linear dependence on the 
original means of the other cells (Headrick & 
Sawilowsky, 2000). For example, consider a 
two-factor model where ranks are assigned 
regardless of cell membership. The result is that 
if one of the effects is large then other effects 
must (because of the ranking) be small, thus 
producing distorted Type I and Type II error 
rates. Thus, a parametric test for interaction 
applied to ranks lacks an invariance property.  
Hence, interaction and main effect relationships 
are not expected to be maintained after rank 
transformations are performed (Blair, et al., 
1987). 

Headrick and Sawilowsky (2000) 
demonstrated computationally that in the 
presence of main effects the expected mean 
ranks for the cells in a factorial design can 
indicate an interaction when the original data do 
not. Moreover, Salter and Fawcett (1993) 
demonstrated conditions in which an interaction 
effect in the original data is lost in the ranking 
process. These situations illustrate that additivity 
in the original data does not imply additivity of 
the ranks, nor does additivity in the ranks imply 
additivity in the original data. Thus, Hora and 
Conover (1984) warned that simply ranking the 
data does not provide an adequate test for non-
additivity (i.e., interaction) in the conventional 
sense of testing shifts among location 
parameters. 

Several studies have shown that aligning 
the data before ranking yields better tests of the 
interactions among location parameters in 
factorial designs. Based on the work of Hodges 
and Lehmann (1962), McSweeney (1967) 
developed a Chi-square approximate statistic for 
testing the interaction using aligned ranks in the 
two-way layout. Hettmansperger (1984) 
developed a linear model approach in which the 
nuisance effects are removed by obtaining the 
residuals from a regression model. Higgins and 
Tashtoush (1994) and Koch (1969) have 
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proposed aligned rank procedures for testing 
interactions in split-plot designs. Based on 
Hollander and Sethuraman (1978), statistics for 
the Friedman (1937) model of ranks have been 
suggested as tests for interactions (Beasley, 
2000; Rasmussen, 1989). Each of these 
procedures aligns the data in different ways. 
 
Higgins and Tashtoush Alignment Procedure 

Both the McSweeney (1967) and 
Hettmansperger (1984) alignment procedures 
were developed for the two-way between-
subjects factorial design and thus are not 
desirable because they do not remove the 
subjects’ individual differences effect that is 
nested in the between-subjects factor. To 
elaborate, the data from a split-plot design has 
three nuisance parameters that must be removed 
in order to align the scores for ranking and 
subsequent analysis of interaction effects. 
Specifically, the three nuisance parameters from 
model (1) are the repeated measures main effect 
(τk), the between-subjects main effect (βj), and 
subjects’ individual differences effect that is 
nested in the between-subjects factor, πi(j). In 
terms of population effects, model (1) can be 
expressed as: 
 

(Yijk - μ***) = βj + πi(j) + τk + βτjk 
 
(see Winer, et al., 1991). Solving for the 
interaction yields: 
 

βτjk = (Yijk − μ***) − βj − πi(j) − τk. 
 
Using sample estimates of the effects yields: 
 

βτjk = (Yijk −   Y ***) − (  Y *j* -   Y ***) −             

(  Y ij* −  Y *j*) − (  Y **k −   Y ***), 

(7) 
 
where   Y **k is the marginal mean of the kth 

measure averaged over all N subjects,  Y *j* is 

the marginal mean of the jth measure averaged 
over all K measures and N subjects,   Y ij* is the 

mean for the ith subject averaged across the K 
measures, and   Y *** is the grand mean of all 

NK observations. Thus, to create scores aligned 

for effects other than the interaction (βτjk) in 
model (1), equation (7) reduces to: 
 

Y*ijk = [Yijk −  Y **k −   Y ij* +   Y ***],   (8) 

 
These aligned scores have the nuisance effects 
removed so that a subsequent test performed on 
the ranks of Y*ijk will be sensitive only to 
detecting interaction effects. Higgins and 
Tashtoush (1994) proposed using this method of 
alignment and then ranking the aligned data 
from 1 to NK as follows: 
 

Aijk = Rank[Yijk −  Y **k −   Y ij* +  Y ***] (9) 

 
(see Table 1). Following Hettmansperger (1984), 
this alignment could also be accomplished by 
obtaining the residuals from a linear model 
regressing Yijk on a set of (N−1) dummy codes 

that represent the subject effect (πi(j)) and a set 
of (K−1) contrast codes that represent the 
repeated-measures main effect (τk) from model 
(1). As can be inferred from (8) a set of (J−1) 
contrast codes that represent the between-
subjects main effect (βj) is not necessary for the 
residualization. 
 
Univariate Approach 

Higgins and Tashtoush (1994) 
recommended applying the split-plot ANOVA 
from model (1) to the aligned ranks (F(A)), thus 
replacing Yijk with Aijk. As previously 
mentioned, many of the properties of the 
original data transmit to ranks, including 
heterogeneity of variance (Zimmerman & 
Zumbo, 1993) and non-sphericity (Harwell & 
Serlin, 1994). Therefore, it is possible that the 
aligned ranks could also inherit some of the 
distributional properties of the original data as 
well. Thus, when performing the split-plot 
ANOVA F on aligned ranks, df-correction 
methods (e.g., Huynh & Feldt, 1976) may be 
employed if the pooled covariance matrix is 
non-spherical or if the between-subjects 
covariance matrices are heterogeneous (e.g., 
Huynh, 1978). These methods performed on 
ranks hold the Type I error rate near the nominal 
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alpha but have low statistical power in a variety 
of conditions (Beasley & Zumbo, 1998). 
 
Multivariate Approach 

Agresti and Pendergast (1986) proposed 
a multivariate rank-based test for testing 
repeated measures effects in a single-sample 
design. Beasley (2002) extended this approach 
for testing the interaction in a split-plot design 
using aligned ranks (9). Define E as a K x K 
pooled-sample cross-product error matrix with 
elements: 
 

ekk′ = '

1 1

(  )(  ) 
jnJ

ijk jk ijk jk
j i

A A A A
= =

− − .   (10) 

 
Let E* be a JK x JK block diagonal matrix 
where the jth block of the main “diagonal” for E* 
is defined as E/nj, and all other off-diagonal 
blocks are zero. That is, E* is the Kronecker 
product of a diagonal matrix n = diag{1/n1, 
1/n2, …, 1/nJ} and E, E*=n E. Also, define 

AJK = [  A 11,   A 12, …  A 1K,   A 21, …  A 2K, 

…   A J1, …   A JK]′ as a JK-dimensional vector 

of mean ranks and CJK as a (J-1)(K-1)xJK 

contrast matrix that represents the interaction. In 
general, CJK can be defined as CJK = CJ CK, 

where CJ is a (J−1)xJ contrast matrix for the 

between-subjects effect and CK is a (K−1)xK 

contrast matrix for the repeated measures effect. 
For example, in a J = 3 x K = 4 split-plot design, 
define: 
 
 
 
and 
 
 
 
 
 
 
 
 
 
 
 
 

It should be noted, however, that CJ and CK 

need not be orthogonal, only linearly 
independent. For example, this matrix could be 
constructed by defining CJ and CK as difference 

matrices in the general form of D in (3), and 
thus, 
 
 
 
 
 
 
 
 
Based on Agresti and Pendergast (1986), 
Beasley (2002) proposed the statistic, 
 

H(A)=(CJK AJK)′ (CJK E*C′JK)-1(CJK AJK). 

(11) 
 
It should be noted that H(A) is the Hotelling’s 

(1931) trace for the interaction effect from a 
multivariate profile analysis of model (4) 
performed on Aijk. Thus, this procedure could 

also be accomplished by computing A*=AD, 
where A is the (NxK) data matrix of aligned 
ranks (9), and then replacing Y* with A* in the 
multivariate model (4). 

Because it is a rank-based version of the 
Hotelling’s trace, H(A) multiplied by (N−1) 

should approximate a χ2 distribution with df = 
(J−1)(K−1), asymptotically. Consistent with 
Agresti and Pendergast (1986), transforming 
H(A) to an F-test may provide better control of 

Type I error rates as opposed to comparing 
H(A)(N−1) to a chi-square distribution with df = 

(J−1)(K−1), especially with smaller sample sizes 
(Beasley, 2002; Harwell & Serlin, 1997). Based 
on Hotelling (1951), H(A) is transformed to an F 

approximation statistic by: 
 

FH(A) = [2(sn+1)/(s2(2m+s+1))]H(A),   (12) 

 
where s = min[(J−1),(K−1)], m = [(|K−J|−1)/2], 
and n = [(N−J−K)/2].  This F approximation has 
numerator dfs of dfh = [s(2m+s+1)] = 

[(J−1)(K−1)] and denominator dfs of dfe = 

⊗

⊗

CJ =  2 -1 -1   
 0 1 -1   

  -3 -1 1 3   
CK =  -1 1 1 -1   

  -1 3 -3 1  

1 -1 0 0 -1 1 0 0 0 0 0 0
0 1 -1 0 0 -1 1 0 0 0 0 0

CJK=  0 0 1 -1 0 0 -1 1 0 0 0 0 
0 0 0 0 1 -1 0 0 -1 1 0 0
0 0 0 0 0 1 -1 0 0 -1 1 0
0 0 0 0 0 0 1 -1 0 0 -1 1 .

  -6 -2 2 6 3 1 -1 -3 3 1 -1 -3  
  -2 2 2 -2 1 -1 -1 1 1 -1 -1 1
CJK=  -2 6 -6 2 1 -3 3 -1 1 -3 3 -1

  0 0 0 0 -3 -1 1 3 3 1 -1 -3
  0 0 0 0 -1 1 1 -1 1 -1 -1 1
  0 0 0 0 -1 3 -3 1 1 -3 3 -1 .



ALIGNED RANK TESTS FOR INTERACTIONS IN SPLIT-PLOT DESIGNS 

22 
 

[2(sn+1)]. Alternatively, a critical value for H(A) 

could be obtained from the sampling distribution 
of the Hotelling’s trace using the s, m, and n 
parameters. This approach has been shown to 
maintain the expected Type I error rate better 
than the F approximate test (12) with a relatively 
small sample size of N = 30 (Beasley, 2002). 
Unfortunately, few multivariate texts have 
extensive tables of these critical values. 
 
Koch Model of Ranking 

In the Koch (1969) model, each of the 

K2 paired differences among the repeated 
measures is ranked separately regardless of 
group membership. These ranks are then 
summed over the K levels of the repeated 
measures factor. To elaborate, for each of the K 
repeated measures, let Tij(k,k´) = Rank[Yijk − 

Yijk´] using mid-ranks in case of ties.  Thus, 

Tij(k,k´) ranges from 1 to N, except when k = k´ 

in which case [Yijk − Yijk´] = 0, and thus, all 

values of Tij(k,k) = (N+1)/2. Also, many of the 

K2 ranked differences are reverse rankings so 
that the correlation between say Tij(1,2) and 

Tij(2,1) is -1. The final data set is defined as 

 

Qijk  = ( , )

1

K

ij k k
k

T ′

′=
                    (13) 

 
(see Table 2). This procedure aligns the data in a 
less explicit manner than the Higgins-Tashtoush 
method (9). Specifically, the subjects’ individual 
differences effect that is nested in the between-
subjects factor, πi(j) from model (1), is removed 
by computing pairwise differences. This is 
analogous to the manner in which πi(j) is 
removed from Yijk in model (1) by computing 

Y*=YD and submitting Y* to the multivariate 
model in (4), which only has between-subjects 
effects. Furthermore, by ranking each pairwise 
difference separately (i.e., Tij(k,k´)) before 

summing, the mean for each of the K measures 
and for all the Qijk values must equal K(N+1)/2. 

This eliminates the variance due to the repeated 
measures main effect (τk) from model (1). 

To test the interaction, a univariate F-
test on this ranked data F(Q) could be performed 

(Iman, Hora, & Conover, 1984). However, Koch 
(1969, p. 495) proposed performing a 
nonparametric analog to the multivariate profile 
analysis, V(Q). Let Qij = [Qij1, …, Qijk, …, 

QijK]´ be a (Kxnj) data matrix for the jth group 

and let j be a K dimensional vector of means 

for the jth group: 
 

j = 
  

1

n j i =1

n j

 Qij = [ , ..., , …, ]´. 

(14) 
 
Also, let j  = { j − K(N+1)/2} be a vector of 

mean deviations and define the pooled 
covariance matrix as SQ = 1/N [Qij − 

K(N+1)/2][Qij − K(N + 1)/2]´.  The test statistic 

V(Q) is computed as: 

 

V(Q)  =  (N-1)/N [ *´SQ
*-1 

*] , (15) 

 
where  

SQ
* = n SQ, * =  [ 1´, ..., 2´ , ..., J´]´, 

 
and n = diag{1/n1, 1/n2, . . . , 1/nJ}.    

This test is a synthesis of a 
nonparametric multivariate statistic for the 
repeated measures main effect (Koch & Sen, 
1968) and the Kruskal-Wallis test. In fact, it is 
computationally equivalent to the Pillai’s (1960) 
trace (V) scaled by (N−1). That is, a multivariate 
profile analysis performed on Qijk yields a 

Pillai’s trace such that V(Q) = V(N−1). Thus, this 

procedure could also be accomplished by 
computing Q*=QD, where Q is the (NxK) data 
matrix for the Koch model ranks (14), and then 
substituting Y* with Q* in the multivariate 
model (4). 

V(Q) is a permutationally distribution-

free test. As sample sizes become large the 
number of permutations prohibits the 
computation of an exact test; however, the 

permutation distribution is χ2 with df = 
(J−1)(K−1) asymptotically. As an alternative 
approach to this statistic proposed by Koch 

Q

Q Q j1 Q jk QjK

Q Q

Q
 

Q
 

⊗ Q Q
 

Q
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(1969), the Hotelling’s trace could be used, thus 
calculating H(Q), the statistic in (11), by 

replacing Aijk (9) with Qijk (13). As before, 

H(Q) could be transformed to an F 

approximation test by (12) or critical values 
from the multivariate referent distribution (e.g., 
Hotelling’s trace; Pillai’s trace) could be 
obtained in order to assess statistical 
significance. 
 
Assumptions and Hypotheses for Interaction 
Tests Performed on Aligned Ranks 

It is important to reiterate that 
statistically significant values of these tests 
performed on aligned ranks (e.g., H(A), V(Q)) do 

not necessarily imply that the interaction is due 
to differences in location parameters unless 
additional assumptions are made. Strictly, 
statistical tests performed on aligned ranks 
involve inferences concerning the distribution of 
the original data. This is because the aligned 
ranks can be considered placeholders for the 
percentiles of the original raw score distribution 
(Yijk) with the nuisance location parameters 
removed (M. R. Harwell, personal 
communication, April 24, 2001). To elaborate, 
the univariate F-ratio performed on Aijk or Qijk 
in a repeated measures design actually evaluates 
a null hypothesis of exchangeability or 
permutational equivalence: 
 
H0(JxK):  
G1(Y1) = G2(Y2) =…= Gj(Yj) =…= GJ(YJ), 

 (16) 
 
where Gj(Yj) is the K-dimensional distribution 

function of the original scores for the jth group 
(Agresti & Pendergast, 1986, p. 1418). This 
implies that not only are all J groups expected 
have identical distribution functions, the K 
repeated measures are also expected to have 
identical distribution functions (i.e., IID[0,  σε

2 ] 
for all j and k). 

The multivariate procedures (11 or 15) 
test a broader null hypothesis of between-group 
marginal homogeneity: 

 
 

H0(JxK): 
G1(Y1k) = G2(Y2k) = … = Gj(Yjk) = … = GJ 

(YJk) , for k = 1, … K , 

(17) 
 
where Gj(Yjk) is the one-dimensional 

distribution function of the kth repeated measure 
for the jth group (Yijk). Strictly, this is a null 
hypothesis of distributional equivalence across 
the J groups for each of the K repeated 
measures. That is, each of the K repeated 
measures may have different distribution 
functions, but as long as there are no 
distributional differences across the J groups, 
(17) is true. Thus, to obtain the asymptotic null 
distributions of the test statistics (11 or 15), it is 
only necessary to assume the null hypothesis 
(17) of between-group distributional equivalence 
(i.e., IID[0,  σε

2 ] for all j for each k separately or 
IID[0(K-1),D′ΣD]) rather than to make stronger 
assumptions concerning joint (or permutational) 
distributions (i.e., common correlations between 
pairs of measures). 

To illustrate, suppose that on the first 
and second measures in a J = 2 by K = 3 split-
plot design, both groups are sampled from 
symmetric distributions with common variances 

( 2
1σ  and 2

2σ ); however, both groups are sampled 
from identically skewed distributions with a 

common variance ( 2
3σ ) for the third repeated 

measurement. This situation would not violate 
the multivariate IID[0(K-1), D′ΣD] assumption; 
however, it would violate the univariate IID[0,

 σε
2 ] assumption. 

 
Shift Model for Aligned Ranks in Split-Plot 
Designs 

The major purpose of the alignment 
process is to remove the nuisance effects (i.e., 
main effects) so that test statistics will be 
sensitive to the effect of interest (i.e., 
interaction). The alignment processes (9) and 
(13) remove the mean values for the nuisance 
main effects, thus involving linear 
transformations of the data. However, both Aijk 
and Qijk are monotone transformations of the 
aligned data. As a result, these aligned rank 
procedures do not guarantee that test statistics 
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performed on Aijk or Qijk will reflect shifts in 
location parameters. Therefore in order to make 
a credible inference about a single parameter, 
assumptions about other parameters are 
necessary (Serlin & Harwell, 2001). 

Assuming that all JK cells have 
identically shaped distributions with a common 
variance (i.e., IID[0,  σε

2 ] for all j and k), then 
rejection of the null hypothesis (16) must be due 
to shifts in the location parameters (Lehmann, 
1998). To illustrate the shift model for the 
univariate approach to the split-plot design, 
define the null hypothesis in (16) as: 
 
H0(JxK): 

G1(Y1−1Δ1)=G2(Y2−1Δ2)=…=Gj(Yj−1Δj)=…

= GJ(YJ −1ΔJ) 

(18) 
 
where 1 is an njx1 vector of ones and Δj = [δj1 

δj2 … δjk … δjK] is a 1xK vector of location 

parameters for the jth group. To illustrate the 
shift model for the multivariate approach to the 
split-plot design, define the null hypothesis in 
(17) as: 
 
H0(JxK): 

G1(Y1k − δ1k) = G2(Y2k − δ2k) = … = Gj(Yjk − 

δjk) = … = GJ(YJk − δJk), for k = 1, ...K, 

(19) 
 
where δjk is a scalar location parameter for the 

jkth cell. It is important to note that if (18) is true 
so is (19); however, if (19) is true, it does not 
imply that (18) is true. Likewise, a false (18) 
does not imply a false (19). These distinctions 
are important because in order to test a null 
hypothesis of shifts in location parameters 
analogous to the null hypotheses in (2) or (6), 
the univariate null model for ranks (18) requires 
an assumption that the data for all JK cells are 
sampled from identically shaped distributions 
with a common variance. By contrast, the 
multivariate null model for ranks (19) only 
requires an assumption that the distribution for 
each of the K repeated measures is identical for 
each of the J groups; however, there is no 
assumption that the K repeated measures are 

identically distributed. Thus, the relationship 
between the multivariate approach to analyzing 
aligned ranks and the F-ratio performed on 
aligned ranks is analogous to the relationship of 
the multivariate approach to repeated measures 
designs (4) and the univariate approach (1) that 
requires the sphericity assumption (Agresti & 
Pendergast, 1986). Therefore, just as the null 
hypotheses for the univariate (2) and 
multivariate (6) parametric models are 
equivalent, differing only in the sphericity 
condition required by the univariate test, the 
same holds for the univariate (18) and 
multivariate (19) shift models for aligned ranks.  
Furthermore, note that the null hypotheses (18) 
and (19) are equivalent in terms of location 
parameters. Thus under either the univariate 
IID[0,  σε

2 ] assumption or the multivariate 
IID[0(K-1),D′ΣD] assumption, the null hypotheses 
in (18) or (19), respectively, reduce to an 
interaction null hypothesis expressed in terms of 
location parameters: 
 
H0(JxK): 
(δ1k − δ1k´) = (δ2k − δ2k´) = … = (δjk − δjk´) = 

… = (δJk − δJk´) for k ≠  k´ ; k = 1, … K, 
(20) 

 
which is conceptually similar to a rejection of 
the parametric null hypothesis in (6). The 
difference between these null hypotheses is that 
the parametric models (1) and (4) require 
normally distributed error components, and thus, 
a rejection of (2) or (6) implies the effect must 
be attributed to differences among means. The 
shift models require identical, not necessarily 
normal, error distributions, and thus, a rejection 
of (20) implies that the effect can be attributed to 
differences among location parameters but not 
necessarily means (e.g., medians). It is important 
to note, however, that if (20) is false, then (18) 
and (19) are also false. However, a false (18) or 
(19) does not imply that (20) is necessarily false. 
That is, a significant test statistic may reflect 
differences in other distributional characteristics 
(i.e., variance or shape) rather than differences 
in location (Serlin & Harwell, 2001), unless 
these additional distributional assumptions are 
met. 
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Friedman Model of Ranks 
For data from a repeated measures 

design, a researcher could employ the Friedman 
(1937) model and rank the data from 1 to K 
across the K levels of the repeated measures 
factor for each subject. The Friedman model of 
ranks has been applied to related samples data as 
well as to data originating from repeated 
measures designs (Zimmerman & Zumbo, 
1993). The Friedman model has also been 
suggested when the assumptions of the split-plot 
ANOVA are violated (e.g., Beasley, 2000; 
Rasmussen, 1989). After applying the Friedman 
model of ranking to a split-plot design, all 
subjects have the same marginal mean of 
(K+1)/2. Thus, it is an attempt to eliminate the 
between-subjects variance (βj) and the nested 

subjects variance (πi(j)) in model (1) (Hollander 
& Wolfe, 1973, p. 143). 

The Friedman model rank method does 
not remove the repeated measures main effect 
(τk) from model (1). Beasley (2000) 
demonstrated that test statistics for the Friedman 
model maintained the expected Type I error rate 
when a slight repeated measures main effect was 
present; however, without removing the repeated 
measures main effect through alignment, the 
statistics for testing the interaction suggested by 
Beasley (2000) can demonstrate low statistical 
power when a strong repeated measures main 
effect is present in each group. Aligning the data 
before applying Friedman ranks results in Type I 
error rates that are more consistent with the 
nominal alpha and a gain in statistical power, 
especially for a univariate approach (Beasley & 
Zumbo, in press). 

To apply the Friedman ranks to data 
from a split-plot design, let Rijk be the rank 
assigned to measure k for the ith subject in group 
j after alignment (8). Also, let   R jk be the mean 
of the ranks assigned to measure k by the 
subjects in group j,   R *k be the mean of the 

ranks assigned to measure k averaged over all N 
subjects, and   R **=(K+1)/2, which is the 

average of all NK ranks (see Table 3). 
 
Univariate Approach 

Based on Beckett and Schucany’s 
(1979) multiple comparison tests, Beasley 

(2000) demonstrated an omnibus test for the 
Friedman model with two or more independent 

groups of subjects. Based on the χ2 analog of 
Scheffé’s (1959) theorem (see Marascuilo, 
1966), the Friedman model for J > 2 
independent samples can be generalized as: 
 

F(R) = 
  

n j (R j k − R *k )2

k =1

K


j =1

J


K (K + 1) / 12

.         (21) 

 
This test approximates a χ2 distribution with df = 
(J−1)(K−1), asymptotically (Beasley, 2000). 
However, with smaller samples sizes computing 
an F-ratio on Rijk may be more appropriate if 
the covariance structure is spherical. Otherwise 
epsilon-adjusted tests or multivariate procedures 
are more appropriate (Beasley & Zumbo, in 
press). 
 
Multivariate Approach 

Hollander and Sethuraman (1978) 
developed a multivariate statistic to test for 
discordance in ranking patterns for J = 2 groups 
of raters. Beasley (2000) proposed an extension 
of this statistic for J > 2 groups. For the jth 
group, let mj = [(  R j1−  R *1), …, (  R jk−  R *k), 

…, (  R jK−  R *K)]´, for j = 1, …, J, be a K-

dimensional column vector of deviations for the 
kth measure for each group j. Let SR be the total 

sample covariance matrix of the ranks computed 
with ordinary least squares. Also, define SR

* as 

the Kronecker product of a diagonal matrix n = 
diag{1/n1, …, 1/nJ} and SR, SR

*
 = n SR. 

Then, the following statistic takes the general 
quadratic form: 
 

V(R) =   M´ SR
*  - M  (22) 

 
where M = [m1́, …, mj́ , …, mJ́]´ is a JK 

column vector. Because the data matrix has a 
fixed mean of (K+1)/2, both SR and SR

* will be 

singular. Therefore, a generalized inverse must 

be employed to compute SR
*-. For computational 

purposes, it should be noted that V(R) is the 
Pillai’s trace (V) scaled by (N−1). That is, a 

⊗
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multivariate profile analysis performed on the 
Friedman ranks (Rijk) yields a Pillai’s trace such 

that V(R) = V(N−1), which approximates a χ2 
distribution with df =(J−1)(K−1), asymptotically 
(Beasley, 2000). Thus, this procedure could also 
be accomplished by computing R*=RD, where 
R is the (NxK) data matrix for the Friedman 
model ranks, and then substitute Y* with R* in 
the multivariate model (4). As an alternative 
approach to this statistic proposed by Beasley 
(2000), the Hotelling’s trace could be used, thus 
calculating H(R), the statistic in (11), by 

replacing Aijk with Rijk. As shown previously, 

H(Q) could be transformed to an F 

approximation test by (12) or critical values 
from the multivariate referent distribution (e.g., 
Hotelling’s trace; Pillai’s trace) could be 
obtained in order to assess statistical 
significance. 
 
Assumptions and Hypotheses for Interaction 
Tests Performed on Friedman Ranks 

By using the shift model (18) and 
requiring the univariate model assumptions of 
IID[0,  σε

2 ] for all j and k, a rejection of (18) 
using the univariate F(R) test (21) implies that 
(20) is false (i.e., the interaction is due to 
differences in location parameters). Likewise, 
requiring the multivariate model assumption that 
the random error vectors (εjk) are independent 
and identically distributed across the J groups 
for each of the K repeated measures separately 
(i.e., IID[0(K-1),D′ΣD]), a rejection of (19) using 
V(R) implies that (20) is false. However, if these 
distributional assumptions are not tenable, 
inferences concerning shifts in location 
parameters are not credible. Therefore in the 
strictest sense, the null hypothesis in (20) 
applied to the Friedman model ranks implies the 
equality of ranking patterns across groups, 
which would involve a Chi-square test of 
homogeneity of ranking distributions in a JxK! 
contingency table. Analogous to the null 
hypotheses for aligned ranks, (20) does not 
imply that the probabilities of occurrence for 
each permutation of the ranks are equal in value 
across groups. 

To elaborate, the univariate model null 
hypothesis of permutational equivalence (16) 

and the multivariate model null hypothesis of 
distributional equivalence (17) can be 
formulated in terms of the probability of ranking 
patterns for Rijk. Let φr be the rth permutation of 

the K Friedman ranks (r = 1, … K!). Let πrj be 

the probability of the rth permutation for subjects 
in the jth group. Because the average rank for 
each individual equals (K+1)/2, the null 
hypothesis in (20) can be expressed in a form 
similar to (5): 
 

H0(JxK): Δ1 = … = Δj  = … = ΔJ,      (23) 
 
where, 

Δj = 
  r =1

K !

 πrj φr. 

 
Thus, consistent with the null hypothesis in (16), 
the univariate F(R) statistic approximates a chi-
square distribution with df = (J−1)(K−1) under 
the null hypothesis: 
 
H0(JxK): 

πrj = 1/K!, for r = 1, ... K! and j = 1, … J. 
(24) 

 
Therefore, F(R) (21) does not necessarily 
provide a test of (20) because a false (24) does 
not imply a false (20). It is also important to 
recognize that if (24) is true so are (16), (17), 
and (20), but (20) does not imply (24). That is, it 
is possible to have identical mean ranks without 
each permutation of ranks occurring with the 
same frequency. Therefore, using F(R) as an 
approximate test may occasionally reject (20) 
incorrectly because (24) is false. 

Likewise, V(R) does not necessarily test 
the null hypothesis (20). The null hypothesis 
actually tested by V(R) is: 
 
H0(JxK): 

πr1 = … = πrj  = … = πrJ for r = 1, … K! 

(25) 
 

The asymptotic distribution of V(R) is χ2 with df 
= (J−1)(K−1) under (25) but not necessarily 
under (20). As with the univariate F(R) test, it is 
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important to recognize that if (25) is true so is 
(20), but (20) does not imply (25). That is, it is 
possible for two groups to have identical mean 
ranks but different permutational distributions. 
Therefore, using V(R) as an approximate test 
may occasionally reject (20) incorrectly because 
(25) is false. 

It should be noted that if the univariate 
null hypothesis (24) is true so is the multivariate 
null hypothesis (25). However, if (25) is true, it 
does not imply that (24) is true. Likewise, a false 
(24) does not imply a false (25). Thus, the 
univariate F(R) and the multivariate V(R) 
statistics test two distinctly different, although 
conceptually related, hypotheses concerning the 
similarity of ranking patterns among multiple 
groups. Table 4 shows various scenarios in 
which these null hypotheses are true or false in a 
(J=2)x(K=3) split-plot design. 

The multivariate model null hypothesis 
(25) is less restrictive than the univariate model 
null hypothesis (24) because F(R) uses a fixed 
covariance structure (i.e., K(K+1)/12) in the 
denominator (Marascuilo & McSweeney, 1967), 
thus implying compound symmetry of the 
covariance matrix. Thus, the null hypothesis in 
(24) implies sphericity because it translates to 
the assumption that the errors are IID[0,  σε

2 ] for 
all j and k from the univariate model null 
hypothesis in (16). 

Similarly, the null hypothesis in (25) 
translates into relaxing the assumption that all K 
repeated measures have identical distributions. 
This is analogous to the multivariate model null 
hypothesis in (17), which only assumes the 
random error components are independent and 
identically distributed across the J groups for 
each of the k measures separately (i.e., IID[0(K-1), 
D′ΣD]; Hollander & Wolfe, 1973, p. 145). Thus, 
V(R) as a multivariate test of the null hypothesis 
in (25) does not assume sphericity of the 
covariance matrix. This is because under the null 
hypothesis in (25) each group is not required to 
have πrj = 1/K!, which implies a fixed 

covariance structure and thus sphericity. 
If it is tenable to assume that the errors 

are IID[0,  σε
2 ] for all j and k, then rejections of 

(24) using the univariate F(R) imply an 
interaction due to location parameters (i.e., a 

false 20). Likewise, rejections of (25) using the 
multivariate V(R) imply a false (20) if the errors 

are assumed to be IID[0(K-1), D′ΣD]. 
Although the univariate (24) and 

multivariate (25) null hypotheses for Friedman 
ranks can be expressed by different formulations 
than the univariate (18) and multivariate (19) 
null hypotheses for the shift model for aligned 
ranks, the concept of stochastic homogeneity 
applies to the Friedman ranks (Randles & 
Wolfe, 1979; Vargha & Delaney, 1998). 
However, if the additional distributional 
assumptions are not met, these statistics based 
on Friedman model ranks should strictly be 
considered test of stochastic homogeneity 
(Beasley, 2000; Serlin & Harwell, 2001; Vargha 
& Delaney, 1998). 
 
Computational Example One 

Table 1 shows hypothetical data and 
sample moments for a J=2 groups by K=3 
repeated measures design. An educational 
psychology research application of this design 
could be a comparison of the forgetting rates 
over a three week period (e.g., recall measured 
at 7, 14, and 21 days) for children classified as 
slow (j=1) or fast (j=2) learners (e.g., Gentile, 
Voelkl, Mt. Pleasant, & Monaco, 1995). A 
medical psychology application would be a 
comparison of the addiction severity scores of 
opioid-dependent patients in a Day Treatment 
program (j=1) versus patients in an Enhanced 
Standard Methadone program (j=2) at three time 
points: Pre-treatment, Post-treatment, and 
Follow-up (e.g., Avants, Margolin, Sindelar, & 
Rounsaville, 1999). 

Analyses of these data using the 
univariate model (1) show that the between-
subjects effect was statistically significant, 
F(Y)(1,16) = 6.27, p = .023. The covariance 

structure was non-spherical with a Greenhouse-
Geisser epsilon estimate of .681. The Huynh-
Feldt correction results in an epsilon estimate of 
.769. After a Huynh-Feldt correction to the dfs, 
both the repeated measures main effect 
[F(Y)(1.54,24.61) = 194.22,  p < .001] and the 

interaction effect [F(Y)(1.54, 24.61) = 12.20, p = 

.001] were statistically significant. A 
multivariate profile analysis yielded similar 
findings. Both the Pillai’s trace (V(Y) = 0.936) 
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and Hotelling’s trace (H(Y) = 14.706) for the 

repeated measures main effect were statistically 
significant (p <.001). For the interaction effect, 
both the Pillai’s trace (V(Y) = 0.494) and 

Hotelling’s trace (H(Y) = 0.977) were 

statistically significant (p = .006) also. 
Examining the moments for each of the 

JK=6 cells in Table 1, it is apparent that the data 
are skewed for many cells, thus potentially 
violating the normality assumptions of both the 
univariate (1) and multivariate (4) models. This 
provides a reason for employing rank-based 
tests. However, given that both the repeated 
measures and between-subjects main effects 
were statistically significant, it is necessary to 
align the data before ranking and subsequent 
analysis. 

Table 1 also shows the aligned data (8) 
and the aligned ranks (9). Analysis of the 
aligned ranks showed a statistically significant 
interaction using the univariate model [F(A)(2,32) 

= 16.33, p < .001]. The Greenhouse-Geisser 
epsilon estimate was .839 and the Huynh-Feldt 
correction was .984. Thus, any correction to the 
dfs would not affect statistical significance. The 
multivariate approach yielded a statistically 
significant Hotelling’s trace [H(A) = 1.426 from 

(11)], which multiplied by (N-1)=17 yields a 
chi-square approximate statistic of χ2

(A)(df=2) = 

24.242, p < .001. Converting H(A) to an F 

approximate using (12) yields FH(A)(2,15) = 

10.697, p = .001. 
Table 2 shows the Koch (1969) model 

of alignment and ranking. As was the case with 
the aligned ranks, the results show a statistically 
significant interaction with a Pillai’s trace of 
V(Q) = 0.574 from (15), which multiplied by 

(N−1) = 17 yields a Chi-square approximate 
statistic of χ2

(Q)(df=2) = 9.758, p < .01. The 

Hotelling’s trace for the Koch model ranks was 
H(Q) = 1.345 with an F approximate (12) of 

FH(Q)(2,15) = 10.091, p = .002. 

Table 3 shows the aligned data and the 
Friedman (1937) model of ranking applied to the 
aligned data. As was the case with the aligned 
ranks and the Koch ranks, the results show a 
statistically significant interaction. Analyzing a 
univariate model and calculating the multiple 

group extension of the Friedman (1937) statistic 
(21) yields [F(R)(df=2) = 15.239, p < .001]. The 

Huynh-Feldt correction of the Greenhouse-
Geisser estimate of epsilon was 1.0. Thus, there 
are no corrections to the dfs. The multivariate 
approach yielded a statistically significant 
Pillai’s trace of V(R) = 0.624 from (22), which 

multiplied by (N−1) = 17 yields a Chi-square 
approximate statistic of 10.608, p < .005. The 
Hotelling’s trace for the Friedman model aligned 
ranks was H(R) = 1.657 with an F approximate 

(12) of FH(R)(2, 15) = 12.426, p = .001. 

By further examination of the six cells 
in Table 1, the data at time k = 1 are positively 
skewed with similar means, variances, and 
kurtosis values for both groups. At time k = 2, 
the data for both groups are symmetric with 
similar variances, but group j = 2 has a higher 
mean. At time k = 3, there are still location 
differences, but the data for both groups are 
negatively skewed with similar variances and 
kurtosis. 

In analyzing real data, it is difficult to 
trust sample statistics for skew and kurtosis, 
especially for small sample sizes. Therefore, 
judging whether the IID assumptions are tenable 
presents a conundrum. Although such practice is 
not advised, for the sake of illustration, suppose 
that these sample moments are valid estimates of 
population parameters. This data pattern then 
illustrates a situation in which there is a 
violation of the univariate shift model (18) 
distributional assumptions (i.e., IID[0,  σε

2 ] for 
all j and k); however, the multivariate shift 
model (19) assumption (i.e., IID[0(K-1),D′ΣD]) 
seems tenable. That is, the univariate model 
requires that all six cells have identical 
distribution functions; whereas, the multivariate 
model only requires the two groups to have 
identical distribution functions for each of the K 
= 3 measures separately. Given that all three 
multivariate aligned rank tests led to rejections 
of the interaction null hypothesis in (17), the 
interaction can be attributed to shifts in location 
parameters (i.e., a false 20). Furthermore, one 
may conclude that the stochastic dominance of 
one group over the other was not constant across 
the K = 3 repeated measures. 
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Computational Example Two 
Table 5 shows the sample moments and 

the univariate and multivariate test statistics for 
the Original Data, Aligned Ranks, Koch Model 
Ranks, and Friedman Model Ranks for 
hypothetical data from J = 3 groups by K = 4 
repeated measures design (see Appendix for 
data). A medical psychology research 
application of this design could be a comparison 
of the number of errors in recall over K = 4 trials 
for men with treated blood pressure elevation (j 
= 3), men with untreated elevated blood pressure 
(j = 2), and a group of normotensive males (j = 
1) (e.g., Waldstein, et al., 1991). A genetic 
association research application would be an 
alcohol sensitivity study in which motor 
coordination of humans with J = 3 different 
genotypes (e.g., aa, AA, Aa) was measured once 
before (k = 1) and three times after ingesting a 
standard dose of alcohol (e.g., Boomsma, 
Martin, & Molenaar, 1989). 

Suppose that these sample moments are 
valid estimates of population parameters, then 
upon examination of the Original Data, it can be 
seen that Group One has positively skewed data 
with minor changes in spread (variance) and 
location (mean and median) across the four 
measures. Similarly, Group Three also has 
positively skewed data with minor changes in 
variance over time. However, Group Three also 
exhibits significant increases in location over the 
four time periods. Thus, if this example only 
included Groups One and Three, even the more 
restrictive distributional assumptions of the 
univariate shift model (18) would be tenable. 
That is, the eight cells for Groups One and Three 
have similar variance and shape (i.e., IID[0,  σε

2 ] 
for all j and k) and differ only in location. 

By contrast, Group Two has data that is 
positively skewed initially (k = 1). Subsequently, 
Group Two increases in location, fluctuates in 
spread, and changes from a positively skewed 
shape at k = 1 to a symmetric shape at k= 2 and 
then to a negatively skewed shape at the third 
and fourth measures. In comparing Group Two 
to the other groups, neither the univariate (18) 
nor the multivariate shift model (19) 
distributional assumptions are met. Therefore, 
the significant test statistics that result in 
rejections of the null hypotheses (16) or (17) 

cannot be attributed to a single parameter. Thus, 
the rejection must be interpreted as the groups 
demonstrating stochastic heterogeneity in trends 
(growth curves). Namely, Group Two appears to 
be stochastically dominant over the other two 
groups at time points k = 2 and 3 and 
stochastically dominant over Group One at k = 
4; however, contrast procedures are necessary to 
test this interpretation. 
 
Multiple Comparison Procedures for Aligned 
Rank Procedures 

Given that the three rank-based 
procedures are viable approaches to analyzing 
repeated measures data, then contrast procedures 
based on these methods should hold quite 
generally (Agresti & Pendergast, 1986; Beasley, 
2000, 2002; Koch, 1969). The most typical form 
is a product interaction contrast (Hochberg & 
Tamhane, 1987, pp. 294-303; Marascuilo & 
Levin, 1970) defined as: 
 

 = a1(b1  U 11 + b2  U 12 + … + bk  U 1k + … 

+ bK  U 1K) + a2(b1  U 21 + b2  U 22 + … + bk
 U 2k + … + bK  U 2K) + aj(b1  U j1 + b2  U j2 + 

… + bk  U jk + … + bK   U jK) + aJ(b1  U J1 + b2
 U J2 + … + bk  U Jk + … + bK   U JK); 

(26) 
 
where  U jk is a general term for the mean rank 

of the jth group on the kth repeated measure. 
Define a = (a1 + a2 + ... + aj ... + aJ)´ as 

a vector of contrast coefficients that compares 
the J independent samples and b = (b1+b2+ 
…+bk+…+bK)´ as a vector of contrast 
coefficients that involves the K repeated 
measures with the restriction that Σaj = 0 and 

Σbk = 0. For comparing the J independent 
groups, a set of pairwise or group combination 
contrasts would most likely be of interest for 
defining a. For comparing the K repeated 
measures either pairwise, polynomial, or trend 
contrasts would most typically define b (Lix & 
Keselman, 1996; Marascuilo & McSweeney, 
1967). In some cases, it may be desirable to 
normalize the trend coefficients, b, so that the 
metric of the repeated measures variable will not 

ψ 
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change, thus making confidence intervals more 
interpretable. 

From a univariate perspective, a pooled 
squared standard error of a contrast in a split-
plot design (see Kirk, 1982, pp. 516-518) can be 
calculated by defining: 
 

2

1

( )
J

j

j j

a
n=

 ,             (27) 

 
where E is the error matrix (4) computed for 
Uijk (i.e., any of the three ranking procedures). 
This approach assumes homogeneity of variance 
of the transformed scores: 
 

U*ij  =
1

K

k =
 bkUijk.               (28) 

 
This requirement of homogeneity of variance for 
transformed scores implies the sphericity of the 
pooled covariance matrix (4). Thus from the 
perspective of rank-based tests, this approach 
requires that the error components are IID[0,  σε

2 ] 
for all j and k. 

From a multivariate perspective, a 
standard error that does not require homogeneity 
of variance of the transformed scores (i.e., 
sphericity) can be calculated by defining J 
separate Sums of Squares (SS): 
 

SSU*j = 
1

jn

i=
 (U*ij -   U *j)2,      (29) 

 
where   U *j is the mean for the jth group for the 
transformed scores U*ij in (29). The standard 
error is calculated as: 

2

1

( )
J

j

j j

a
n=


    

SSU j
*

(n j − 1)
,        (30) 

 
A (1−α)% confidence interval for the contrast of 
aligned ranks can be formed by: 
 

 + S ( ).                    (31) 

 

The null hypothesis H0: ψ = 0 is rejected if the 
confidence interval in (31) does not cover zero. 
If the univariate IID[0,  σε

2 ] assumption is 

tenable,  can be defined as the square root 

of (26). However,  should be defined as the 

square root of (30) if the transformed scores 
have heterogeneous variances (i.e., the 
sphericity condition does not hold). 

The definition of S depends on the type 
of contrast conducted. For example, in the J = 3 
by K = 4 design from Example Two, suppose 
that after rejecting the null hypothesis (17) the 
interest was in assessing whether the linear 

trend, b Ĺ = {-3 -1 +1 +3}/ 20 , of Group One 

is stochastically different from the linear trend of 
the other two groups combined, a 1́ = {+1 -0.5 –

0.5}, and whether the linear trends for Groups 
Two and Three are stochastically different, a 2́ = 

{0 +1 -1}. In this case, the trend coefficients, b 
L, were normalized so that the metric of the 

repeated measures variable was not changed, 
thus making subsequent confidence intervals 
more interpretable. 

Also, consider the same group 
comparisons for the Initial Change from Time k 
= 1 to Time k = 2, b´C = {-1 +1  0  0}. Thus, c = 

4 post hoc tests would be conducted. To 
construct a post hoc confidence interval, S could 
be defined as a critical value from Student’s t 
distribution using the Dunn-Sidák correction, 
αDS = [1−(1−α)1/c]/2: 

 
S = t(1−αDS),dfe.                  (32) 

 
For c = 4 contrasts, αDS = .00637; however, dfe 

for (32) differs for the univariate (27) and 
multivariate approaches (30). For the univariate 
pooled standard error (27), dfe = (N−J); 

however, if the standard error in (30) is used 
then a Welch (1947) correction must be applied 
to dfe. For defining S in terms of the sampling 

distribution of the Hotelling’s trace or other 
multivariate referent distribution, refer to 
Gabriel (1968) and Sheehan-Holt (1998). 

For computational convenience, the 
interaction contrasts can be calculated by 

SEψ
 2

 =
( b  ́E b )  

( N  -  J)

SEψ
 2

 =

ψ SE ψ
 

SE ψ
SE ψ
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transforming the data into a single variable: Ub, 
where U is the NxK data matrix and b is the Kx1 
vector of trend coefficients. Then, the group 
contrasts, a, can be performed on the 
transformed data. The univariate pooled 
standard error (27) can be computed from 
methods that assume equal variances, such as 
Fisher’s LSD. The multivariate standard error 
(30) can be computed from methods that do not 
assume equal variances, such as Tamhane’s 
(1979) T2. 

It is debatable whether the multivariate 
(30) or univariate (27) approach is better in 
terms of robustness and power (Maxwell & 
Delaney, 2000), and thus, this issue should be 
investigated. However, the multivariate 
approach would be expected to yield more 
precise confidence intervals than the univariate 
approach, especially in situations where the 
pooled covariance matrix is non-spherical (Boik, 
1981). 

Conducting post hoc analyses is not 
generally suggested as an optimal procedure to 
adopt (Marascuilo & Levin, 1970). Rather, a 
defined set of planned contrasts with an 
appropriate adjustment for controlling Type I 
errors is often recommended, in which case the 
omnibus tests previously elaborated should be 
bypassed. For conducting multiple planned 
comparisons or simultaneous test procedures, 
there are several excellent references for both 
the univariate and multivariate approaches 
references (e.g., Hochberg & Tamhane, 1987; 
Gabriel, 1968; Lix & Keselman, 1996; Maxwell 
& Delaney, 2000; Sheehan-Holt, 1998). 
 
Defining Confidence Intervals for Interpretable 
Parameters 

Reasons for rejecting an interaction null 
hypothesis are of more interest than the simple 
conclusion that it is false; therefore, the contrast 
testing procedures detailed in the previous 
section are of great utility. Furthermore, there is 
a trend toward interpreting confidence intervals 
instead simply reporting p-values in a variety of 
research disciplines (Campbell & Gardner, 
1988; Gardener & Altman, 1986; Serlin, 1993). 
Moreover, it is important to construct confidence 
intervals around interpretable parameters when 
possible. Thompson (2002) discusses a bootstrap 
methodology to compute confidence intervals 

for effect sizes from parametric analyses. For 
location parameters less sensitive to skewness, 
confidence intervals for medians have been 
proposed (Bonett & Price, 2002; Campbell & 
Gardner, 1988; Hodges & Lehmann, 1963). 

Unfortunately, aligned ranks have no 
inherent meaning except that they serve as 
placeholders for the percentiles of the original 
raw score distribution with the nuisance location 
parameters removed. Thus, the rank statistics 
previously discussed are useful for assessing the 
statistical significance of the interaction, but 
they do not provide direct information about the 
nature or magnitude of the effect. For this 
reason, Koch, et al. (1980) suggested that results 
from nonparametric omnibus tests should be 
accompanied by appropriate descriptive 
statistics (e.g., frequency distributions or 
percentiles) and nonparametric estimates for 
confidence intervals. Newson (2002) reviewed 
methods for computing confidence intervals for 
rank-based statistics, which convey estimates 
and boundaries for informative parameters such 
as Cliff’s (1996) d and Somers’ (1962) D. 
 
Confidence Intervals for Aligned Ranks 

The cell means for the aligned ranks 
provide descriptions of the degree to which the 
JK cells have different locations due to 
discrepancies from the marginal distributions 
(i.e., due to interaction). Thus, these cell means 
give information about interaction trends relative 
to main effects and which cells contribute more 
to the omnibus interaction effect. For repeated 
measures designs, Agresti and Pendergast 
(1986) suggested dividing ranks by (NK+1). 
These values, Uijk = Aijk/(NK+1), have a grand 

mean, **U =0.5, that is equivalent to the median 

of the aligned scores. The cell means, jkU , 

provide the probability that a randomly selected 
observation from cell jk is larger than an 
independent observation selected at random 
from another cell after removing the main 
effects. This approach suggested by Agresti and 
Pendergast (1986) is consistent, though not 
identical, to Cliff’s (1996) notion of dominance1 
and the computation of relative effects2 
(Brunner, et al., 2002). It is also similar to the 
Hodges and Lehmann (1963) median difference, 
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which estimates the typical difference between 
individual observations from different cells. 

As noted, the interaction contrasts can 
be accomplished by transforming the data, Ub, 
and performing the group contrasts, a, on the 
transformed data. The upper panel of Table 6 
shows the means and standard deviations for U 
= A/(NK+1), the data transformed by the linear 
trend contrast, UbL , and the data differenced by 

the Initial Change contrast, UbC. The upper 

panel of Table 7 shows the univariate-based (27) 
and multivariate-based (30) 95% confidence 
intervals for the four contrasts previously 
discussed performed on the adjusted aligned 
ranks. 

The cell mean for Group 1 at time k = 1 
had the highest mean of 0.9476. This indicates 
that, after removal of the main effects, this cell 
had higher scores relative to the other cells and 
that a randomly selected observation from this 
cell has a very high probability (0.9476) of being 
larger than an independent observation selected 
at random from any other cell. Likewise, the cell 
mean for Group 1 at time k = 4 had the lowest 
mean of 0.1012, and thus, a randomly selected 
observation from this cell has a very low 
probability of being larger than an independent 
observation selected at random from any other 
cell. 

Similar to Cliff’s (1996) d-statistic, the 
difference in these probabilities can be used to 
judge the stochastic dominance of one cell over 
another. Thus, the aligned ranks for Group 1 
have a descending trend in that relative to the 
main effects the observations in Group 1 tend to 
get stochastically smaller over time. By 
examining the original data in Table 5, Group 1 
had a slight increase in means across the K = 4 
time points. Therefore, the aligned ranks provide 
information about which cells have 
stochastically larger scores relative to the main 
effects. In other words, given that there was a 
repeated measures main effect with increasing 
means for all three groups combined, the trend 
for Group 1 was descending in a relative 
manner. This can be seen in the data transformed 
by the linear contrast coefficient, UbL, in which 

the probability of larger scores (i.e., stochastic 
dominance) for observations in Groups 1 tends 
to decrease at a rate of -.620 on average. 

For Group 2, the probability of larger 
scores tends to increase at average rate of .336 
relative to the main effects. For Group 3, the 
stochastic dominance of scores relative to the 
main effects increases at a slight lower rate 
(.202) as compared to Group 2. For comparing 
Group 1 to Groups 2 and 3 combined, the results 
show a value of a1bL = -0.8891. This 

indicates that Groups 2 and 3 combined, as 
compared to Group 1, have a very high 
probability of having stochastic larger scores at 
time k = 4 and smaller scores at k = 1. To 
elaborate, suppose Case A is a randomly 
selected case from Group 2 or 3 and Case B is a 
randomly selected case from Group 1. The 
probability that Case A will have a steeper 
ascending (positive monotonic) trend across the 
K = 4 time points than Case B from Group 1 is 
0.8891. 

The univariate 95% simultaneous 
confidence interval indicates that plausible 
values range between -1.1276 and -0.6506. The 
multivariate 95% simultaneous confidence 
interval gives a tighter band of plausible values 
that range between -1.0474 and -0.7308. Note 
that the sign of the contrast value only indicates 
the direction of the stochastic dominance; it does 
not indicate a negative probability. Also, this 
approach can yield a bound on the confidence 
interval that exceeds 1 (-1 in this case), thus, an 
asymmetrical confidence interval with 1 (or -1) 
as the upper (or lower) bound may be 
constructed. Other methods create this bound 
and asymmetrical confidence interval by 
computing the standard errors in a different 
manner (see Endnotes 1 and 2; Brunner, et al., 
2002; Cliff, 1996; Newson, 2001). The 
difference between Groups 2 and 3 is not 
statistically significant: both the univariate and 
multivariate 95% confidence intervals contained 
zero as a plausible value (see Table 7). 

By examining the data transformed by 
the initial change contrast coefficient, UbC, it is 

observed that observations from time k = 1 tend 
to be stochastically larger than observations 
taken at k = 2, for Groups 1 and 3. For Group 2, 
the measures taken at k = 2 are stochastically 
larger than the scores from k = 1 and the 
probability of randomly selecting a larger score 
at k = 2 increases by 0.3657 relative to the main 

ψ
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effects. Thus, Group 2 has a tendency for scores 
to become stochastically larger from k = 1 to k = 
2; whereas, Groups 1 and 3 have a tendency for 
scores to decrease relative to the main effects. 

As compared to Group 1, Groups 2 and 
3 combined have a higher probability of scores 
becoming stochastically larger from time point k 
= 1 to k = 2, ψ̂ a1bC = -0.4824. The univariate 

95% simultaneous confidence interval indicates 
that plausible values range between -0.7236 and 
-0.2385. The multivariate 95% simultaneous 
confidence interval gives a tighter band of 
plausible values that range between -0.6531 and 
-0.3117. The contrast of Group 2 with Group 3 
is statistically significant; thus, the probability 
that Group 2 has stochastically larger scores at k 
= 2 relative to k = 1 as compared to Group 3 is 
0.8552. 

To elaborate, suppose a randomly 
selected case from Group 2 and a randomly 
selected case from Group 3. The probability that 
the case selected from Group 2 will have a 
stochastically larger gain from time k = 1 to k = 
2 as compared to the latter case from Group 3 is 
0.8552. The univariate 95% simultaneous 
confidence interval indicates that plausible 
values range between .5833 and 1.1271. The 
multivariate 95% simultaneous confidence 
interval gives a wider band of plausible values 
that range between 0.4779 and 1.2326. As with 
previous analyses, a researcher may choose to 
construct an asymmetrical confidence interval 
with 1 as the upper bound or use other methods 
that compute standard errors in a different 
manner (Brunner, et al., 2002; Cliff, 1996; 
Newson, 2001). 
 
Confidence Intervals for Koch Model Ranks 

Using the logic of Agresti and 
Pendergast (1986), the Koch ranks can be 
transformed by: 
 

Uijk = [Qijk –[((N+1)/2)]]/[(K-1)(N+1)]. 
 
These values have a grand mean of 0.5. The cell 
means provide descriptions of the degree to 
which the JK cells have different locations due 
to discrepancies from the marginal distributions. 
As shown in Table 6, the cell mean values for 
the Koch ranks (middle panel) are similar to the 

aligned rank cell means (upper panel). Thus, it 
would seem that the Koch ranks could be 
interpreted in a similar manner, but whether they 
represent probabilities in the same sense that the 
aligned ranks is debatable. 

In Table 7, note that the Koch model 
tends to give lower estimates of the contrast 
effects with smaller standard errors, thus, one ay 
question the statistical power of the Koch model 
relative to the aligned rank procedure. For 
identically skewed (i.e., multivariate 
exponential) error distributions, Tandon and 
Moeschberger (1989) found the Koch model to 
have similar power as parametric procedures, 
whereas, Beasley (2002) found the aligned rank 
procedure to have more statistical power than 
parametric tests for interactions. It is debatable 
whether these differences are due to estimation 
bias, violations of assumptions, or differences in 
statistical power. 
 
Confidence Intervals for Friedman Ranks 

A different logic is used to standardize 
the Friedman Ranks: 
 

Uijk = [Rijk –[((K+1)/2)]]/[(K2-1)/12]. 
 
For each subject, Uijk has a mean of 0 and unit 
variance, which is similar in concept to 
Hettmansperger’s (1984) standardization of 
ranks. As previously noted, the interaction 
contrasts can be accomplished by transforming 
the data, Ub, and then performing the group 
contrasts, a, on the transformed data. The lower 
panel of Table 6 shows the means and standard 
deviations for U=[Rijk–[((K+1)/2)]]/[(K2−1)/12]. 
To transform the data by the linear trend 
contrast, bL is standardized, rather than 

normalized, so that it also has a variance of one, 
rather than a sum of squares of one, b Ĺ={-

1.3416–0.4472+0.4472+1.3416}. The values of 
UbL/K are a linear transformation of Page’s 

(1963) L statistic and represent each individual’s 
rank correlation with the linear trend coefficients 
(Lyerly, 1952). Thus, the mean values of UbL/K 

for each group represent the group’s average 
concordance with the ordered alternative, in this 
case linear trend. The contrasts, a, applied to 
these values will estimate how the groups differ 
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Table 1: Hypothetical Data and the Aligned Ranking Procedure for the J = 2 by K =3 Split-Plot Design in 
Example One. 

 

 Original Data Aligned Data Aligned Ranks 

 k = 1 k = 2 k = 3  Y ij* k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 

Group One 
j = 1 
Slow 

Learners 
or 

Day 
Treatment 

1.1 6.2 7.2 4.83 .56 -.03 -.53 39 28 18 
2.2 4.8 6.1 4.37 2.13 -.96 -1.16 53 10 8 
2.3 7.1 8.0 5.80 .79 -.10 -.70 44 24 15 
2.4 8.1 9.4 6.63 .06 .07 -.13 30 31 23 
3.2 7.3 10.4 6.97 .53 -1.06 .54 37 9 38 
3.4 9.3 10.5 7.73 -.04 .17 -.13 26 34 22 
4.1 8.1 9.3 7.17 1.23 -.46 -.76 48 20 14 

10.1 10.4 10.2 10.23 4.16 -1.23 -.2.93 54 7 1 
Mean 3.60 7.66 8.89 6.72 1.18 -.45 -.73 41.38 20.38 17.38 

Median 2.80 7.70 9.35 6.80 .68 -.28 -.61 41.5 22.00 16.50 
SD 2.78 1.75 1.62 1.84 1.39 .56 1.03 10.25 10.60 11.03 

Variance 7.72 3.05 2.64 3.37 1.93 .32 1.06 105.13 112.27 121.70 
Skew 2.24 -.06 -.76 .75 1.69 -.36 -1.47 -.23 -.12 .54 

Kurtosis 5.65 -.09 -.75 1.08 2.88 -1.97 3.22 -1.22 -1.88 1.17 

Group Two 
j = 2 
Fast  

Learners 
or 

Enhanced 
Standard 

Methadone 

1.0 7.9 8.8 5.90 -.61 .60 0 16 41 29 
2.4 9.2 10.1 7.23 -.54 .57 -.03 17 40 27 
2.2 10.1 11.8 8.03 -1.54 .67 .87 3 42 45 
2.3 10.9 11.1 8.10 -1.51 1.40 .10 4 50 33 
3.1 10.1 13.2 8.80 -1.41 -.10 1.50 5 25 51 
3.3 9.9 12.1 8.43 -.84 .07 .77 12 32 43 
3.2 11.2 14.4 9.60 -2.11 .20 1.90 2 35 52 
4.4 12.3 13.1 9.93 -1.24 .97 .27 6 46 36 
4.9 11.2 14.2 10.10 -.91 -.30 1.20 11 21 47 
9.2 13.1 14.3 12.20 1.29 -.50 -.80 49 19 13 

Mean 3.60 10.59 12.31 8.83 -.94 .36 .58 12.50 35.10 37.60 
Median 3.15 10.50 12.60 8.62 -1.07 .39 .52 8.50 37.50 39.50 

SD 2.26 1.50 1.89 1.74 .92 .59 .82 13.90 10.63 12.36 
Variance 5.11 2.24 3.59 3.03 .85 .35 .67 193.17 112.99 152.71 

Skew 1.85 -.06 -0.63 .31 1.63 .26 .05 2.35 -.32 -.74 
Kurtosis 4.35 .21 -0.50 .76 3.90 -.56 -.53 6.22 -1.18 .075 

Epsilon* .769 .769 .984 

Note: * Based on the Huynh-Feldt adjustment of the Greenhouse-Geisser estimate of epsilon from the pooled 
within-group covariance matrix. 
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Table 2: Hypothetical Example of Koch’s Model of Ranking for Interactions for Hypothetical Data in 
Table 1. 

 

 Koch’s Model for Analyzing Interaction Effects 

 Tij(1,1) Tij(1,2) Tij(1,3) Tij(2,1) Tij(2,2) Tij(2,3) Tij(3,1) Tij(3,2) Tij(3,3)

Group One 
j = 1 
Slow 

Learners 
or 

Day 
Treatment 

9.5 12 13 7 9.5 12 6 7 9.5 
9.5 17 17 2 9.5 8 2 11 9.5 
9.5 13 14 6 9.5 14 5 5 9.5 
9.5 11 12 8 9.5 7 7 12 9.5 
9.5 14. 10 5 9.5 2 9 17 9.5 
9.5 10 11 9 9.5 11 8 8 9.5 
9.5 15 15 4 9.5 9.5 4 9.5 9.5 
9.5 18 18 1 9.5 18 1 1 9.5 

Group Two 
j = 2 
Fast   

Learners 
or 

Enhanced 
Standard 

Methadone 

9.5 6 8 13 9.5 14 11 5 9.5 
9.5 7 9 12 9.5 14 10 5 9.5 
9.5 4 3 15 9.5 6 16 13 9.5 
9.5 1 5.5 18 9.5 17 13.5 2 9.5 
9.5 5 2 14 9.5 3 17 16 9.5 
9.5 8 5.5 11 9.5 5 13.5 14 9.5 
9.5 2 1 17 9.5 1 18 18 9.5 
9.5 3 7 16 9.5 16 12 3 9.5 
9.5 9 4 10 9.5 4 15 15 9.5 
9.5 16 16 3 9.5 9.5 3 9.5 9.5 

 Qij1   Qij2   Qij3   

Group One 
j = 1 
Slow 

Learners 
or 

Day 
Treatment 

34.5   28.5   22.5   
43.5   19.5   22.5   
36.5   29.5   19.5   
32.5   24.5   28.5   
33.5   16.5   35.5   
30.5  37.00 29.5 24.94 25.5 23/56 
39.5 SD(Q11) 5.37 23.0 SD(Q12) 4.95 23.0 SD(Q13) 6.92 
45.5 Var(Q11) 28.86 28.5 Var(Q12) 24.53 11.5 Var(Q13) 47.89 

Group Two 
j = 2 
Fast   

Learners 
or 

Enhanced 
Standard 

Methadone 

23.5   36.5   25.5   
25.5   35.5   24.5   
16.5   30.5   38.5   
16.0   44.5   25.0   
16.5   26.5   42.5   
23.0   25.5   37.0   
12.5   27.5   45.5   
19.5  21.70 41.5 31.35 24.5 32.45 
22.5 SD(Q21) 8.08 23.5 SD(Q22) 7.76 39.5 SD(Q23) 8.93 
41.5 Var(Q21) 65.34 22.0 Var(Q22) 60.23 22.0 Var(Q23) 79.75 

 

Q 1 1 Q1 2 Q 1 3

Q2 1 Q2 2 Q2 3
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Table 3: Friedman Model of Aligned Ranks for Hypothetical Data in Table 1. 
 

 Aligned Data Friedman Aligned Ranks 

 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 

Group One 
j = 1 
Slow 

Learners 
or 

Day 
Treatment 

.56 -.03 -.53 3 2 1 
2.13 -.96 -1.16 3 2 1 
.79 -.10 -.70 3 2 1 
.06 .07 -.13 2 3 1 
.53 -1.06 .54 2 1 3 
-.04 .17 -.13 2 3 1 
1.23 -.46 -.76 3 2 1 
4.16 -1.23 -.2.93 3 2 1 

Mean 1.18 -.45 -.73 2.625 2.125 1.250 
Median .68 -.28 -.61 3.000 2.000 1.000 

SD 1.39 .56 1.03 .518 .641 .707 
Variance 1.93 .32 1.06 .268 .411 .500 

Skew 1.69 -.36 -1.47 -.644 -.068 2.828 
Kurtosis 2.88 -1.97 3.22 -2.240 .741 8.000 

Group Two 
j = 2 
Fast   

Learners 
or 

Enhanced 
Standard 

Methadone 

-.61 .60 0 1 3 2 
-.54 .57 -.03 1 3 2 

-1.54 .67 .87 1 2 3 
-1.51 1.40 .10 1 3 2 
-1.41 -.10 1.50 1 2 3 
-.84 .07 .77 1 2 3 

-2.11 .20 1.90 1 2 3 
-1.24 .97 .27 1 3 2 
-.91 -.30 1.20 1 2 3 
1.29 -.50 -.80 3 2 1 

Mean -.94 .36 .58 1.200 2.400 2.400 
Median -1.07 .39 .52 1.000 2.000 2.500 

SD .92 .59 .82 .633 .516 .699 
Variance .85 .35 .67 .400 .267 .489 

Skew 1.63 .26 .05 3.162 .484 -.780 
Kurtosis 3.90 -.56 -.53 10.000 -2.277 -.146 

Epsilon* .769 1.000 

Note: * Based on the Huynh-Feldt adjustment of the Greenhouse-Geisser estimate of 
epsilon from the pooled within-group covariance matrix. 
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Table 4: Hypothetical Population Distribution of Probabilities (πr*) for Friedman Model Ranks with Descriptive 
Statistics for Each Element (Rijk). in a J = 2 by K =3 Split-Plot Design. 

 

Permutation Probability of rth Permutation 
Group 

Configuration 
Status of Null Hypotheses 

R1 R2 R3 πr1 πr2 πr3 πr4 πr5 j = 1 j =2 H0 (23) H0 (24) H0 (25)

1 2 3   
1

6  
  
1

12  
  
10

24  
1

12  
 
1

6  πr1 πr1 True True True 

1 3 2   
1

6  
  
1

6  
  
1

24  
 
1

12  
 
1

8
 πr2 πr2 True False True 

2 1 3   
1

6  
  
1

4  
  
1

24  
 
1

6  
 
1

24  πr2 πr3 True False False 

2 3 1   
1

6  
  
1

4  
  
1

24  
 
1

6  
 
1

24  πr4 πr4 True False True 

3 1 2   
1

6  
  
1

6  
  
1

24  
 
1

4  
 
7

24
 πr4 πr5 True False False 

3 2 1   
1

6  
  
1

12  
  
10

24  
1

4  
 
1

3
 πr3 πr4 False False False 

   2.000 2.000 2.000 2.333 2.333      

   0.667 0.500 0.917 0.556 0.806      

   2.000 2.000 2.000 1.833 1.833      

   0.667 0.833 0.167 0.639 0.472      

   2.000 2.000 2.000 1.833 1.833      

   0.667 0.667 0.917 0.639 0.556      

  ε 1.000 0.923 0.640 0.992 0.903      
 

R1

σR1
2

R2

σR2
2

R3

σR3
2
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Table 5: Sample Moment and Tests Statistics for Hypothetical Data from the J=3 by K=4 Split-Plot Design in 
Example Two. 

 

Original 
Data 

Group j = 1 (n1 = 8) 
(e.g., Normotensive; aa) 

Group j = 2 (n2 = 10) 
(e.g., Untreated EBP; AA) 

Group j = 3 (n3 = 8) 
(e.g., Treated EBP, Aa) 

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

Mean 5.80 6.11 6.88 7.21 5.80 11.79 13.29 15.84 5.88 7.05 9.59 13.70
Median 5.10 5.20 5.95 6.55 5.10 11.75 13.70 17.10 5.20 6.20 8.70 13.05

SD 2.63 2.93 2.73 2.86 2.82 1.55 1.77 2.72 2.85 2.91 2.80 2.78 
Variance 6.90 8.56 7.43 8.19 7.98 2.40 3.12 7.39 8.15 8.46 7.82 7.70 

Skew 2.34 2.45 2.33 2.37 2.09 0.10 -0.75 -0.78 2.13 2.59 2.36 2.40 
Kurtosis 5.94 6.44 5.85 6.15 5.19 0.08 -0.65 -1.21 5.45 7.06 5.99 6.28 

H-F = .795, F(Y)(4.77, 54.86) = 53.42, p < .001; H(Y) = 10.06,  p < .001; V(Y) = 1.66, p < .001 

Aligned Ranks 

Mean 99.50 58.25 33.69 10.63 15.20 69.50 69.90 67.65 57.75 22.25 38.75 83.88
Median 99.50 56.50 34.00 10.50 6.50 66.00 72.50 71.00 57.00 21.50 39.00 83.50

SD 2.45 6.88 5.81 3.32 24.53 16.08 18.44 26.67 12.14 4.30 8.89 6.22 
Variance 6.00 47.36 33.78 11.05 602.0 258.5 340.0 711.2 147.4 18.50 79.00 38.70

Skew 0 1.09 0.21 -0.36 2.84 0.03 -1.75 0.00 0.01 1.19 -0.09 -0.06 
Kurtosis -1.20 0.37 -0.93 -0.53 8.46 -1.61 4.75 -1.95 -0.86 1.93 -2.20 -1.66 

H-F = .893, F(A)(5.36, 61.61) = 43.10, p < .001; H(A) = 8.50, p < .001; V(A) = 1.61, p < .001 

Koch Ranks 

Mean 80.25 60.75 47.38 27.63 32.35 62.25 59.55 61.85 54.81 36.94 53.69 70.56
Median 81.00 57.25 49.25 27.50 28.50 63.25 57.50 59.50 55.75 34.50 52.75 70.50

SD 7.16 8.22 8.27 7.66 12.56 10.15 12.37 12.89 7.20 8.17 7.28 7.81 
Variance 51.29 67.57 68.41 58.70 157.7 103.0 153.1 166.1 51.78 66.82 53.00 61.03

Skew -1.02 0.84 -0.35 0.70 1.72 0.08 0.37 0.86 -0.06 0.79 0.14 -0.05 
Kurtosis 1.49 0.42 -0.28 0.68 3.39 -0.79 1.34 -0.04 0.01 -0.22 -1.87 -0.51 

H-F = 1.00, F(Q)(6, 69) = 30.35, p < .001; H(Q) = 7.52, p < .001; V(Q) = 1.55, p < .001 

Friedman Ranks 

Mean 4.00 3.00 2.00 1.00 1.30 2.80 2.90 3.00 2.75 1.00 2.25 4.00 
Median 4.00 3.00 2.00 1.00 1.00 2.50 3.00 3.00 3.00 1.00 2.00 4.00 

SD 0 0 0 0 0.95 0.92 0.88 0.94 0.46 0 0.46 0 
Variance 0 0 0 0 0.90 0.84 0.77 0.89 0.21 0 0.21 0 

Skew     3.16 0.47 -1.02 0.00 -1.44  1.44  
Kurtosis     10.00 -1.81 1.83 -2.13 0.00  0.00  

H-F = .931, F(R)(df = 5.59) = 56.50, p < .001; H(R) = 8.80, p < .001; V(R) = 1.60, p < .001 

Note: H-F = Huynh-Feldt adjustment of the Greenhouse-Geisser estimate of epsilon from the pooled within-
group covariance matrix. 
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Table 6: Sample Moment and Tests Statistics for Hypothetical Data from the J=3 by K=4 Split-Plot Design in 
Example Two. 

 

 
Group j = 1 (n1 = 8) 

(e.g., Normotensive; aa) 
Group j = 2 (n2 = 10) 

(e.g., Untreated EBP; AA) 
Group j = 3 (n3 = 8) 

(e.g., Treated EBP; Aa) 

Aligned Ranks U=A/(NK+1) 

 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

Mean .9476 .5548 .3208 .1012 .1448 .6619 .6657 .6443 .5500 .2119 .3690 .7988 

SD .0233 .0655 .0554 .0317 .2337 .1531 .1756 .2540 .1156 .0410 .0847 .0592 

Linear UbL -.6201 
SD = .0194 

.3359 
SD = .3157 

.2020 
SD = .1132 

Change UbC -.2778 
SD = .0592 

.3657 
SD = .2199 

-.2391 
SD = .0910 

Koch Ranks U = Qijk –[((N+1)/2)]/[(K-1)(N+1)] 

 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

Mean .8241 .5833 .4182 .1744 .2327 .6019 .5685 .5969 .5100 .2894 .4961 .7045 

SD .0884 .1015 .1021 .0946 .1550 .1253 .1528 .1591 .0888 .1009 .0899 .0965 

Linear UbL -.4727 
SD = .0666 

.2369 
SD = .2184 

.1767 
SD = .1094 

Change UbC -.2407 
SD = .1848 

.3691 
SD = .1759 

-.2207 
SD = .1504 

Friedman Ranks U = Qijk –[((N+1)/2)]/[(K-1)(N+1)] 

 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

Mean 1.3416 .4472 -.4472 -1.3416 -1.0733 .2683 .3578 .4472 .2236 -1.3416 -.2236 1.3416

SD 0 0 0 0 .8485 .8219 .7832 .8433 .41404 0 .41404 0 

Linear 
UbL/K 

-1.0000 
SD = 0 

.5200 
SD = .5750 

.5000 
SD = .1852 

Change 
UbC/K 

SD 

-.3162 
SD = 0 

.4742 
SD = .4104 

-.5535 
SD = .1464 
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Table 7: Results of Contrast Procedures for the J = 2 by K =3 Split-Plot Design in Example Two. 
 

Rank 
(Contrast) 

 
Univariate Approach 

df = 23; S = 2.701 
Multivariate Approach 

Aligned 
Ranks  SE (27) 

Lower 
Bound 

Upper 
Bound 

df* S 
SE 

(30) 
Lower 
Bound 

Upper 
Bound 

a1bL -0.8891 0.0883 -1.1276 -0.6506 12.11 2.920 0.0542 -1.0474 -0.7308 
a2bL 0.1339 0.0984 -0.1319 0.3997 11.73 2.936 0.1076 -0.2461 0.5139 
a1bC -0.4824 0.0903 -0.7263 -0.2385 18.22 2.762 0.0618 -0.6531 -0.3117 
a2bC 0.8552 0.1007 0.5833 1.1271 12.53 2.903 0.1084 0.4779 1.2326 

Koch 
Ranks  SE (27) 

Lower 
Bound 

Upper 
Bound 

df S 
SE 

(30) 
Lower 
Bound 

Upper 
Bound 

a1bL -0.6795 0.0655 -0.8564 -0.5026 20.27 2.732 0.0461 -0.8054 -0.5536 
a2bL 0.0602 0.0730 -0.1369 0.2572 13.79 2.861 0.0792 -0.2102 0.3305 
a1bC -0.3150 0.0730 -0.5122 -0.1178 12.06 2.922 0.0758 -0.5365 -0.0935 
a2bC 0.5898 0.0813 0.3702 0.8094 15.90 2.806 0.0770 0.3335 0.8461 

Friedman 
Ranks  SE (27) 

Lower 
Bound 

Upper 
Bound 

df S 
SE 

(30) 
Lower 
Bound 

Upper 
Bound 

a1bL -1.5100 0.1592 -1.9400 -1.0800 11.24 2.958 0.0966 -1.7957 -1.2243 
a2bL 0.0200 0.1774 -0.4591 0.4991 11.24 2.958 0.1933 -0.6696 0.7096 
a1bC -0.2767 0.1123 -0.5800 0.0266 11.82 2.932 0.0685 -0.4775 -0.0759 
a2bC 1.0277 0.1251 0.6898 1.3657 11.82 2.932 0.1371 0.5443 1.5111 

Notes: From (32) αDS = .00637. a1={+2 -1 -1} is a comparison of Group One to a combination of Groups 

Two and Three. a2={0 +1 -1} is a comparison of Groups Two and Three. bL={-3 -1 +1 +3} is a linear 

polynomial contrast. bQ={+1 -1 -1 +1} is a quadratic polynomial contrast. *The dfs for the Multivariate 

Approach were computed from the Welch (1947) correction. 
 

ψ

ψ

ψ
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in their concordance with the ordered alternative 
(i.e., linear trend) on average. As shown in the 
lower panel of Table 6, Group 1 has a perfect 
negative rank correlation with the linear trend 
with no variance, which means that relative to 
the main effects each person in Group 1 had a 
descending trend or was discordant with the 
ordered alternative. Groups 2 and 3 had rank 
correlations with the linear trend (concordance) 
of approximately 0.50. Comparing Group 1 to 
Groups 2 and 3 combined, it is apparent that 
there are strong differences in their average rank 
correlation, ψ̂ a1bL = -1.510. The univariate 

95% simultaneous confidence interval indicates 
that plausible values range between -1.9400 and 
-1.0800. The multivariate 95% simultaneous 
confidence interval gives a tighter band of 
plausible values that range between -1.7957 and 
-1.2243. 

This type of interpretation can be used 
for any trend contrast that involves a linear 
combination of all K repeated measures by 
thinking of the trend in terms of ordered 
alternatives. These results can also be couched 
in terms of stochastic heterogeneity (Beasley, 
2000; Vargha & Delaney, 1998) in that Groups 2 
and 3 combined, as compared to Group 1, have a 
very high probability of yielding stochastic 
larger scores at time k = 4 and smaller scores at 
k = 1 (i.e., very high probability of having 
stochastically larger or steeper slopes). Group 2 
did not significantly differ from Group 3 in 
terms of linear trend (i.e., the confidence interval 
contains zero). 

To transform the data by the initial trend 
contrast is standardized, b´C = {- 2  + 2   0  0}. 

The values of UbC/K represent each individuals 

rank correlation with this ordered alternative. 
The results in the bottom panel of Table 7 show 
that Group 1 does not significantly differ from 
Groups 2 and 3 combined (i.e., the confidence 
interval contains zero). However, the change 
from time k = 1 to k = 2 was positive for Group 
2 and negative for Group 3 (see Table 6, lower 
panel). The difference in these rank correlations 
was -1.0277. The univariate 95% simultaneous 
confidence interval indicates that plausible 
values for the difference in rank correlation 
range between 0.6898 and 1.3657. The 
multivariate 95% simultaneous confidence 

interval gives a wider band of plausible values 
that range between 0.5433 and 1.5111. 

For analyses such as Initial Change 
contrast, UbC, only two of the K repeated 

measures are used and thus interpretations 
reduce to the interpretations similar to the sign 
test. However, this approach includes 
information from the other time points; thus, 
these effects are relative to the other time points. 
If a more direct interpretation is desired, then the 
signs or signed ranks for the differences for the 
two measures could be computed and statistical 
analyses conducted to compare the groups. This 
is a methodology proposed by Cliff (1996) and 
is not detailed here. 
 

Conclusion 
 
Rank-based methods could be applied to the data 
in a multiple group repeated measures 
experiment because the normality assumptions 
of the split-plot ANOVA model in (1) are 
violated. In such a case, testing against the shift 
model null hypothesis (20) would be of interest 
because it seems conceptually similar to the 
differences among means in the parametric 
model hypotheses in (2) or (6). However, if 
aligned rank procedures are employed and tests 
of interactions are conducted, then (20) may be 
rejected incorrectly because some other 
hypothesis (i.e., 16, 17, 24 or 25) is false. That 
is, a statistically significant test statistic may be 
attributable to differences in other distributional 
characteristics (i.e., variance or shape) rather 
than reflecting solely differences in location, 
unless additional distributional assumptions are 
made (Serlin & Harwell, 2001). 

In order to test against (20) and make 
inferences in terms of location parameters, 
distributional assumptions must be made. 
Credible inferences concerning location 
parameters (20) require the assumption that the 
population distributions are of identical shape 
(Serlin & Harwell, 2001; Vargha & Delaney, 
1998). This may seem restrictive, however, 
because parametric statistical tests, which also 
require IID[0,  σε

2 ] or IID[0(K-1),D′ΣD] with the 
additional restriction that the error distributions 
have a normal shape (Bradley, 1968) have been 
conducted for decades. 
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Unfortunately, these distributional 
assumptions present a conundrum for data 
analysis. Specifically, the sample estimates of 
skew and kurtosis are unstable, especially with 
small sample sizes. Therefore, it is difficult to 
judge the tenability of the IID assumptions. The 
choices are: (a) accept the assumptions without 
testing their tenability or (b) test the assumptions 
based on unstable estimates. Furthermore, 
estimates of skew and kurtosis are more reliable 
with larger samples sizes. However, parametric 
procedures are more likely to be robust with 
large samples sizes and the advantage of rank-
based procedures over parametric methods in 
terms of statistical power is likely to decrease. 

To circumvent this conundrum, Akritas 
and Arnold (1994) have argued that hypotheses 
should be expressed in a manner that does not 
place additional distributional assumptions on 
the data. These fully nonparametric hypotheses 
differ because statistically significant results are 
not attributed to location parameters alone but 
rather to any distributional difference. Vargha 
and Delaney (1998) and Beasley (2002) have 
suggested analyses of hypotheses related to 
stochastic heterogeneity. Similarly, Cliff (1996) 
has argued that rank-based and other 
nonparametric methods provide ordinal answers 
to ordinal questions, which are equivalent to 
results of stochastic heterogeneity and that these 
results correspond more closely to the goals of 
many researchers. These forms of hypotheses 
reduce the risk of drawing incorrect conclusions 
about the likely sources of the significant 
interaction, but do so at the cost of not being 
able to characterize precisely how population 
distributions differ (Serlin & Harwell, 2001). 

The process of aligning the scores 
before ranking permits test statistics to focus on 
interactions among location parameters; by 
removing main effects, the aligned ranks should 
not inherit any effects due to marginal location 
differences (i.e., main effects). However, the 
alignment does not remove other marginal 
distributional effects; therefore, aligned ranks 
may still inherit the distributional properties of 
the original data (e.g., heterogeneity of 
variance). When the distributions have 
heterogeneous variances or have different 
shapes, the null hypothesis of equal location 
parameters (20) and the null hypothesis of 

identical distributions are no longer equivalent. 
Therefore, as analogs to parametric procedures, 
aligned rank tests are likely to be sensitive to 
variance heterogeneity, especially with unequal 
sample sizes (Algina & Keselman, 1998; 
Kowalchuk, Keselman, & Algina, 2003; Lei, 
Holt, & Beasley, 2004). 

Similarly, Wilcox (1993) noted that 
parametric tests are not robust to differences in 
skew when sample sizes are not equal; however, 
they are more sensitive to mean differences 
when there are differences in shape and equal 
sample sizes. Thus, it may be conjectured that 
the aligned rank procedures as tests of location 
parameters would be somewhat robust to 
heterogeneous variance and differences in shape 
when sample sizes are equal; however, Lei, et al. 
(2004) have shown that tests that correct for 
unequal variances (e.g., Huynh, 1978) 
performed on aligned ranks still detect 
distributional (i.e., variance) differences when 
location parameters do not reflect an interaction. 
Furthermore, with increasing disparity among 
sample sizes, aligned rank procedures become 
more sensitive to detecting any distributional 
difference and thus should strictly be considered 
tests of stochastic homogeneity. 

Vargha and Delaney (1998) explicated 
this issue by showing that the null hypotheses of 
stochastic homogeneity and a null hypothesis of 
equal mean ranks are equivalent for non-
identical, but symmetric distributions. They also 
demonstrated that stochastic homogeneity and a 
null hypothesis of equal location parameters (20) 
are equivalent for identical, asymmetric 
distributions. Therefore, statistically significant 
values for interaction tests performed on aligned 
ranks, and the subsequent rejections of the 
associated null hypotheses, typically imply a 
pattern in which one of the J groups is 
stochastically larger than the other(s) on at least 
one of the K repeated measures and that this 
stochastic dominance is not constant across all K 
repeated measures (Brunner & Langer, 2000; 
Vargha & Delaney, 1998). 

To illustrate, imagine a J = 2 groups 
(e.g., Control and Treatment) by K = 3 repeated 
measures (e.g., Pretest, Posttest, Follow-up) 
design. Suppose that for the first measure (k = 1) 
the two groups are stochastically identical, 
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G1(Y11) = G2(Y21), which would be expected 

on a pretest if the groups were randomly 
assigned. Thus for all real values, u, the 
probability of scores larger than u is the same in 
both groups, P(Y11 > u) = P(Y21 > u). 

Now imagine that the posttest (k = 2) 
was measured after some treatment had been 
administered to second group (j = 2) while the 
first group remained a control. If the treatment 
worked, then the second group should have 
higher scores, and thus, G1(Y12) ≠  G2(Y22). 

Because the Treatment group has scores (Y12) 

that are stochastically larger than the scores for 
the Control group (Y22), the between-group 

probabilities of scores larger than all real values 
(u) are no longer equal, P(Y12 > u) < P(Y22 > u). 

This conclusion that the stochastic dominance of 
one group over another is not constant over time 
is consistent with the answers that aligned rank 
tests provide to the ordinal question: did the 
groups respond differently after treatment? 
Specifically, the treatment group tends to have 
stochastically larger gains than the control 
group. 

Although statistically significant results 
may be attributed to other distributional 
differences, these aligned rank tests are 
especially sensitive to shifts in location 
parameters because they use mean ranks in their 
computation. Therefore, statistically significant 
test statistics performed on aligned ranks can 
generally be attributed to differences in location 
parameters (Marascuilo & McSweeney, 1977, 
pp. 304-305), which is fortunate because it is 
difficult to test the tenability of the IID 
assumptions associated with the shift models. 
Newson (2002) reviewed methods for 
constructing confidence intervals that are robust 
to between-group differences in parameters 
other than location (e.g., variance; skew). 
Technically, however, statistically significant 
tests performed on aligned ranks cannot be 
attributed solely to differences in location 
parameters. Given the difficulty of testing model 
assumptions especially with small samples, 
results from these procedures should be 
interpreted in terms of stochastic heterogeneity 
(Beasley, 2002; Varga & Delaney, 1998). 
Newson (2002) and Cliff (1996) suggest that 

rank-based statistics are based on population 
parameters, related to Somer’s (1962) D, which 
are extremely informative in terms of stochastic 
dominance and can be estimated using 
corresponding sample statistics. Thus, although 
aligned rank-procedures produce what may be 
considered a more ambiguous formulation of the 
underlying null hypothesis that is of interest 
conceptually, the conclusions are consistent with 
the ordinal answers that Cliff (1996) has extolled 
as the effect of actual interest to many 
researchers. 
 

Notes 
 

1. In a two-group Between-Subjects 
design, Cliff (1996) has shown that transforming 
the ranks by [(2Rijk − 1)/N] yields a rank mean 
difference equal to the d statistic. This 
transformation will only yield standard errors 
similar to Cliff’s method asymptotically. This is 
because they are based on different counting 
procedures. Furthermore, this transformation 
does not necessarily extend to multiple groups 
and dependent measures. Thus, the 
transformation suggested by Agresti and 
Pendergast (1986) was used.  
 

2. Brunner, et al. (2002) showed a linear 
transformation of unaligned ranks [(Rijk − 
½)/NK], similar to the Agresti and Pendergast 
(1986) suggestion, will yield cell means that 
provide estimates of relative treatment effects. 
Test statistics performed on these values will 
provide valid tests of fully nonparametric 
hypotheses. According to Brunner, et al. (2002), 
however, these values cannot simply be used to 
compute standard errors, unless the sample size 
is large.  Constructing accurate confidence 
intervals using the Brunner, et al. method 
involves a more complicated procedure of 
computing partial ranks and logit 
transformations. Whether the Brunner, et al. 
method can be applied to aligned ranks has yet 
to be investigated. Thus, for the sake of 
simplicity the transformation suggested by 
Agresti and Pendergast (1986) was used. 
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Appendix I: SAS Code 
 
data egtwo; 
input k1 k2 k3 k4 group; 
cards; 
   3.90  4.20  5.10  5.10  1 
   4.10  4.00  5.00  5.20  1 
   4.30  5.00  5.40  6.10  1 
   5.00  5.10  6.00  6.00  1 
   5.20  5.30  5.90  7.20  1 
   5.80  6.00  7.00  7.00  1 
   6.10  6.20  7.30  7.10  1 
  12.00 13.10 13.30 14.00  1 
   3.00  9.20 10.10 11.30  2 
   4.10 10.10 11.00 12.20  2 
   4.00 11.20 11.90 13.00  2 
   4.20 12.30 13.10 17.20  2 
   5.20 11.20 14.30 15.20  2 
   5.00 11.30 13.40 18.30  2 
   6.00 12.20 14.90 17.00  2 
   6.20 12.40 14.00 17.90  2 
   7.30 13.50 15.20 18.20  2 
  13.00 14.50 15.00 18.10  2 
   3.00  4.90  7.70 11.60  3 
   4.10  6.10  7.70 11.70  3 
   5.10  5.90  8.10 13.20  3 
   5.00  5.80  8.70 12.80  3 
   5.30  6.30  9.70 13.90  3 
   5.90  6.30  8.70 13.00  3 
   6.10  7.00  9.90 13.10  3 
  12.50 14.10 16.20 20.30  3 
;proc sort out=two;by group; 
data three;options ls=120; 
proc iml; use two; 



ALIGNED RANK TESTS FOR INTERACTIONS IN SPLIT-PLOT DESIGNS 

48 
 

read all var{k1 k2 k3 k4} into 
Y;read all var{group} into 
Group; 
JJ=max(Group);K=ncol(Y);N=nrow(Y
);NV=j(JJ,1,0); 
Q=j(N,K,0);FR=j(N,K,0); CK=j((k-
1),K,0);CJ=j((jj-1),JJ,0); 
dfjk=(JJ-1)*(K-1);dfeu=N-JJ)*K-
1); 
smv=min(JJ,K);smv=smv-1; 
mmv=((ABS(K-JJ))-1)/2; 
nmv=(N-JJ-K)/2; 
dfem=2#((smv#nmv)+1); 
do hh=1 to JJ; 
  do ii=1 to N; 
    if group[ii,1]=hh then 
NV[hh,1]=NV[hh,1]+1; 
end;end; 
RMMEAN=Y[:,];RMMEAN=(j(N,1,1))*R
MMEAN; 
PMEAN=Y[,:];GMEAN=PMEAN[:,];PMEA
N=PMEAN*(j(1,K,1)); 
AD=(Y-PMEAN-
RMMEAN)+GMEAN;AR=RANKTIE(AD);AR=
AR/((N*K)+1); 
do hh=1 to K; 
  do ii=1 to K; 
   DX=Y[,hh]-
Y[,ii];RDX=RANKTIE(DX);Q[,hh]=Q[
,hh]+RDX; 
end; end; 
Q=(Q-((N+1)/2))/((K-1)*(N+1)); 
do ii=1 to N; 
  FR[ii,]=RANKTIE(AD[ii,]); 
end; 
FR=(FR-((K+1)/2))/(((K##2)-
1)/12); 
do ii=1 to (K-1); 
  CK[ii,ii]=1; CK[ii,(ii+1)]=-1; 
end; 
do ii= 1 to (JJ-1); 
  CJ[ii,ii]=1;CJ[ii,(ii+1)]=-1; 
end; 
CJK=CJ@CK; 
AMEANK=AR[:,];QMEANK=Q[:,];RMEAN
K=FR[:,]; 
do ii=1 to JJ; 
  if ii=1 then zz=1;else 
zz=zz+NV[(ii-1),1]; 
  if ii=1 then zzz=NV[ii,1];else 
zzz=zzz+NV[ii,1]; 
 do hh=zz to zzz; 

  if hh=zz then AJ=AR[hh,]; else 
AJ=AJ//AR[hh,]; 
  if hh=zz then QJ=Q[hh,]; else 
QJ=QJ//Q[hh,]; 
  if hh=zz then RJ=FR[hh,]; else 
RJ=RJ//FR[hh,]; 
end; 
MAJ=AJ[:,];DMAJ=MAJ-
AMEANK;DMAJ=DMAJ#(NV[ii,1]); 
EAJ=AJ-
(((j((NV[ii,1]),1,1))*MAJ)); 
if ii = 1 then AMEAN=MAJ; else 
AMEAN=AMEAN//MAJ; 
if ii = 1 then DEVA=MAJ; else 
DEVA=DEVA||MAJ; 
if ii = 1 then EA=EAJ; else 
EA=EA//EAJ; 
MQJ=QJ[:,];DMQJ=MQJ-QMEANK; 
DMQJ=DMQJ#(NV[ii,1]); 
EQJ=QJ-
(((j((NV[ii,1]),1,1))*MQJ)); 
if ii = 1 then QMEAN=MQJ; else 
QMEAN=QMEAN//MQJ; 
if ii = 1 then DEVQ=MQJ; else 
DEVQ=DEVQ||MQJ; 
if ii = 1 then EQ=EQJ; else 
EQ=EQ//EQJ; 
MRJ=RJ[:,];DMRJ=MRJ-
RMEANK;DMRJ=DMRJ#(NV[ii,1]); 
ERJ=RJ-
(((j((NV[ii,1]),1,1))*MRJ)); 
if ii = 1 then RMEAN=MRJ; else 
RMEAN=RMEAN//MRJ; 
if ii = 1 then DEVR=MRJ; else 
DEVR=DEVR||MRJ; 
if ii = 1 then ER=ERJ; else 
ER=ER//ERJ; 
end; 
EA=EA`*EA;TA=AR-
((j(N,1,1))*AMEANK);TA=TA`*TA; 
EQ=EQ`*EQ;TQ=Q-
((j(N,1,1))*QMEANK);TQ=TQ`*TQ; 
ER=ER`*ER;TR=FR-
((j(N,1,1))*RMEANK);TR=TR`*TR; 
HTA=((CJK*(DEVA`))`)*(ginv((CJK*
((diag((1/nv)))@EA)*((CJK`)))))*
(CJK*(DEVA`)); 
VA= 
((CJK*(DEVA`))`)*(ginv((CJK*((di
ag((1/nv)))@TA)*((CJK`)))))*(CJK
*(DEVA`)); 
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HTQ=((CJK*(DEVQ`))`)*(ginv((CJK*
((diag((1/nv)))@EQ)*((CJK`)))))*
(CJK*(DEVQ`)); 
VQ= 
((CJK*(DEVQ`))`)*(ginv((CJK*((di
ag((1/nv)))@TQ)*((CJK`)))))*(CJK
*(DEVQ`)); 
HTR=((CJK*(DEVR`))`)*(ginv((CJK*
((diag((1/nv)))@ER)*((CJK`)))))*
(CJK*(DEVR`)); 
VR= 
((CJK*(DEVR`))`)*(ginv((CJK*((di
ag((1/nv)))@TR)*((CJK`)))))*(CJK
*(DEVR`)); 
FHA=HTA#(dfem/(smv#dfjk));pvalam
=1-(probf(FHA,dfjk,dfem)); 
FHQ=HTQ#(dfem/(smv#dfjk));pvalqm
=1-(probf(FHQ,dfjk,dfem)); 
FHR=HTR#(dfem/(smv#dfjk));pvalrm
=1-(probf(FHR,dfjk,dfem)); 
FA=(((CJK*(DEVA`))`)*(ginv((CJK*
((diag((1/nv)))@I(K))*((CJK`))))
)*(CJK*(DEVA`))/(TRACE(EA)))*(df
eu/dfjk);  
pvalau=1-(probf(FA,dfjk,dfeu)); 
FQ=(((CJK*(DEVQ`))`)*(ginv((CJK*
((diag((1/nv)))@I(K))*((CJK`))))
)*(CJK*(DEVQ`))/(TRACE(EQ)))*(df
eu/dfjk); 
pvalqu=1-(probf(FQ,dfjk,dfeu)); 
FRC=((CJK*(DEVR`))`)*(ginv((CJK*
((diag((1/nv)))@I(K))*((CJK`))))
)*(CJK*(DEVR`))/((K#(K+1))/12); 
pvalru=1-(probchi(FRC,dfjk)); 
 
Print 'Univariate Tests'; 
Rowun={"Aligned Ranks F(A)", 
"Koch Ranks F(Q)",  
"Chi-Square - Friedman Ranks 
F(R)"}; 
ColUN={"TEST" "DFh" "DFe" "p-
value"}; 
Uprt=(FA//FQ//FRC)||(dfjk//dfjk/
/dfjk)||(dfeu//dfeu//0)|| 
(pvalau//pvalqu//pvalru); 
print UPrt[rowname=rowun 
colname=colun]; 
 
Print 'Multivariate Tests';Print 
'DFh =' dfjk;Print 'DFe =' dfem; 

Rowmn={"Aligned Ranks (A)", 
"Koch Ranks (Q)", "Friedman 
Ranks (R)"}; 
ColmN={"Pillia Trace V(*)" 
"Hotelling Trace H(*)" "F-
approx" "p-value"}; 
Mprt=(VA//VQ//VR)||(HTA//HTQ//HT
R)||(FHA//FHQ//FHR)||(pvalam//pv
alqm//pvalrm); 
print MPrt[rowname=rowmn 
colname=colmn]; 
 
DLINE={-3 –1 1 
3};DLINE=DLINE/(20##.5); 
DCHNG={-1 1 0 0}; 
YL=Y*(DLINE`);YC=Y*(DCHNG`); 
AL=AR*(DLINE`);AC=AR*(DCHNG`); 
QL=Q*(DLINE`);QC=Q*(DCHNG`); 
FL=(FR*((DLINE`)#2))/4;FC=(FR*((
DCHNG`)#(2##.5)))/4; 
 
outx=Y||AR||Q||FR||YL||YC||AL||A
C||QL||QC||FL||FC||Group; 
create xxx from outx[colname={k1 
k2 k3 k4 ak1 ak2 ak3 ak4 qk1 qk2 
qk3 qk4 fk1 fk2 fk3 fk4 yl yc al 
ac ql qc fl fc group}]; 
append from outx; 
data last;set xxx; 
proc glm;class group; 
model k1 k2 k3 k4=group/nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4) 
polynomial/summary;run; 
proc glm;class group; 
model ak1 ak2 ak3 
ak4=group/nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4) 
polynomial/ summary;run; 
proc glm;class group; 
model qk1 qk2 qk3 qk4 = group / 
nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
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contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4) 
polynomial/ summary;run; 
proc glm;class group; 
model fk1 fk2 fk3 fk4 = group / 
nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

polynomial/ summary;run; 
proc glm;class group; 
model yl yc al ac ql qc fl fc = 
group / nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4) 
polynomial/ summary;run; 
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Quantifying Bimodality Part 2: A Likelihood Ratio Test for the Comparison of a 
Unimodal Normal Distribution and a Bimodal Mixture of Two Normal 

Distributions 
 

B. W. Frankland Bruno D. Zumbo 
Dalhousie University University of British Columbia 

 
 
Scientists in a variety of fields are often faced with the question of whether a sample is best described as 
unimodal or bimodal. In an earlier paper (Frankland & Zumbo, 2002), a simple and convenient method 
for assessing bimodality was described. That method is extended by developing and demonstrating a 
likelihood ratio test (LRT) for bimodality for the comparison of a unimodal normal distribution and a 
bimodal mixture of two normal distributions. As in Frankland and Zumbo (2002), the LRT approach is 
demonstrated using algorithms in SPSS. 
 
Key words: Bimodality, likelihood ratio test, mixture distribution, SPSS. 
 
 

Introduction 
 
Previously, a method for assessing bimodality 
using the non-linear algorithms in SPSS was 
presented (Frankland & Zumbo, 2002). It is a 
method for modeling complex mixture 
distributions with a unimodal normal 
distribution (with 2 free parameters) and with a 
bimodal mixture of two normal distributions 
(with 5 free parameters). The current work 
extends that previous work to the development 
of a likelihood ratio test (LRT) for bimodality. 
In this extension, the research question is: Does 
a bimodal mixture of two normal distributions 
represent a significantly better fit to the data 
than a unimodal normal distribution? Here, the 
fit of the data to the unimodal normal 
distribution is considered the null hypothesis. 
The fit of the data to the bimodal mixture of 
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two normal distributions is considered the 
alternative hypothesis. The null hypothesis is 
rejected if it provides a significantly poorer fit to 
the data. 

As noted in Frankland and Zumbo 
(2002), the techniques developed herein are 
focused on putative mixtures of normal 
distributions; they can be applied, in principle, to 
the comparison of any set of theoretical 
distributions. Normal distributions were chosen 
as the focus because it is likely that the normal 
distribution is a reasonable approximation to the 
data, either as a single unimodal distribution, or 
as each component of the mixture of two 
distributions. It is admitted, a priori, that the 
solution offered is not an analytical solution to 
the question of bimodality. The point was to 
develop an accessible, flexible and, most 
importantly, accurate method that could be used 
to test any number of hypotheses. The procedure 
uses the commercially available statistical 
package SPSS (most statistical packages should 
be capable of comparable analyses) to 
accomplish a Monte Carlo simulation to 
generate the likelihood ratio distribution for the 
bimodal/unimodal comparison. Because it can 
be assumed that most researchers will use this 
technique to analyze a single (or limited number 
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of) data set, the application is demonstrated 
within that context. 
 
The Likelihood Ratio Method 

A set of empirically determined data, of 
size n (lower case n), is compared to two 
hypothetical population distributions. It is 
assumed that the data is represented as a 
histogram (hereafter, data histogram, or 
histogram; the term empirical data will refer to 
the original pre-binned data). 

The histogram will define the number of 
bins, and their statistics (lower limit, center, 
upper limit) for the subsequent analyses (see 
Frankland & Zumbo, 2002). This determination 
should be made in the context of subsequent 
simulation. The sample size (n) is the most 
important factor for creating bins. The most 
efficient method is to determine the mean and 
standard deviation of the sample using a 
traditional method. These are estimates of the 
mean and standard deviation (μ, σ) of the 
corresponding normal population. Thereafter, 
the number of bins per standard deviation is set 
to accommodate the expected range and density 
of scores for any sample of size n, from this 
particular population, N(μ, σ). For example, 
given n = 500, one could use 10 bins per sd, 
with a full range of z-scores from -5.0 to 5.0. 
(This point will be discussed more fully later.) 
These bins can then be adjusted to fit the actual 
data.  

Alternatively, the raw data can be 
converted to z-scores, and the likelihood ratio 
test can be conducted using z-scores. The 
likelihood ratio test is agnostic with respect to 
the original scale of the data. The use of z-scores 
is more convenient for testing multiple data sets. 
However, the fitted statistics for the unimodal 
and bimodal distributions are not obtained. Here, 
z-scores were used (see Frankland & Zumbo, 
2002 for raw scores). 

In the first step, the best-fit parameters 
for the unimodal and bimodal functions are 
determined (see Frankland & Zumbo, 2002). 
The data histogram is first compared to a 
function that describes a hypothetical unimodal 
normal distribution (hereafter, unimodal 
function). With the unimodal function, the free 
parameters to be determined are the mean (μ) 
and standard deviation (σ, or variance, σ2): 
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The mean and standard deviation could be easily 
obtained using traditional methods, but for this 
application, the mean and standard deviation 
must be determined using a method that 
compliments that which is used for the bimodal 
values. 

The histogram is compared to a function 
that describes a hypothetical bimodal mixture of 
two normal distributions (i.e., bimodal function). 
In this case, there is a mean (μ1, μ2) and a 
standard deviation (σ1, σ2) for each normal 
distribution, as well as, the mixture proportion 
(λ; note that some authors use π, and others use 
α, for this parameter):  
 ( , , , , ) = 

 ∗ 12 ( ) + 

(1 −  ) ∗ 12 ( )
 

 = ∗ ( , ) + (1 − ) ∗ ( , )     (2) 
 
Means and variances with subscripts refer to 
those from the bimodal distribution. In addition 
to the best-fit parameters, the likelihood that the 
sample came from a unimodal population, and 
the likelihood that the sample came from a 
bimodal population are determined. These two 
likelihoods are converted to a ratio (the 
likelihood ratio, LRdata). 

In the second step, a Monte Carlo 
simulation is used to create the likelihood ratio 
test (LRT) for bimodality. In this step, a normal 
distribution is defined, N(0, 1). From this 
unimodal population, a sample is taken. This 
sample is converted to a histogram using the 
same bin parameters as defined previously. The 
bins used for the raw data must match the bins 
used for the simulation. The binned sample from 
the normal distribution is then fitted to a 
unimodal function and to a bimodal function. 
Finally, the likelihood ratio for the sample is 
computed. This process is repeated for a large 
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number of samples drawn at random from the 
defined unimodal normal population. From the 
set of samples, a distribution of the likelihood 
ratios is created. The likelihood ratio distribution 
provides a direct assessment of the probability of 
getting the original likelihood ratio (LRdata), if 
the data were drawn from a unimodal normal 
population. If that probability is low, then the 
original data is assumed to be bimodal. This is 
simply type 1 error rate, which is normally set to 
α = 0.05. 

In the simulation there are K samples, 
each being denoted by k. Each of the K samples 
is based on n data points, drawn from a normal 
distribution. Each data point is Xi. These n data 
points per sample are converted to a histogram: 
The number and the boundaries of bins are 
determined by the original data (i.e., bin centers 
and limits reflect the raw data, X). There are Ii 
bins (I = 1 to I). The initial definition of the bins 
should encompass the full plausible range of the 
data (i.e., ideally, the tails should stretch to 
infinity). For each sample, one likelihood-ratio 
statistic (LRk) is produced. The distribution of K 
likelihood-ratio statistics (LRk, k = 1 to K) 
statistics provides the test of likelihood ratio of 
the data (LRdata). Note that the original empirical 
data determines the sample size n. As will be 
discussed, the sample size is the primary 
determinate of the number of bins, I. Time, 
computational resources and desired accuracy 
determine K. The procedure is demonstrated 
with a specific example. 
 
The Original Data 

For this demonstration, a bimodal data 
set of N = 500 data points was created. The data 
set consisted of a mixture of two normal 
distributions. Each distribution was obtained 
using the SPSS command NORMAL, which 
generates standard Normal pseudo-random 
variates. The first distribution was N(μ1, σ1) = 
N(-1.0, 0.7) and the second was N(μ2, σ2) = 
N(1.0, 1.0). Note that the variances are different. 
The data set consisted of 60% from the first 
distribution and 40% from the second 
distribution (sd), and is notated as B(μ1, σ1, μ2, 
σ2, λ) = B(-1.00, 0.71, 1.00, 1.00, 0.60). The raw 
data had a mean of .169, a standard deviation 
(sd) of 1.296, a skew of .412 + .109 and a 
kurtosis of .371 + .218. The median was .329. 

These data were converted to z-scores 
and then binned. By design, there were 10 bins 
per sd and a full range of -5.0 ≤ z ≤ 5.0. Each 
bin had a width of .01 sd. There was a single bin 
centered at z = 0 (hence, the bin was defined as -
.05 ≤ z ≤ .05). By design, there were 101 bins in 
total, with the last being 4.95 ≤ z ≤ 5.05 and -
5.05 ≤ z ≤ - 4.95. However, the bins in the tails 
were widened to encompass the ranges 4.95 ≤ z 
≤ 6.95 and -6.95 ≤ z ≤ -4.95. This captures the 
skewness that can manifest in an empirical 
bimodal distribution (alternatively, one can use a 
larger range of bins). The resulting distribution 
is shown in Figure 1. 

The z-scores in the raw data ranged 
from -2.09 to 3.07, and after binning, there were 
only 50 bins with non-zero counts (see Figure 
1). However, the full range of bins must be 
provided, with zero counts for those that are 
empty. This is important for the subsequent 
simulations. There are ways to create empty bins 
in SPSS, but for a single data set, the manual 
method is about as fast as any other. The data do 
not appear to be bimodal, although they are not 
obviously normal either (it simply seems 
skewed). Based on counts per bin, the binned 
distribution, with I = 50, produced (μ, σ)=(-.002, 
1.001). This is slightly altered from the original 
raw data. This alteration is important because all 
subsequent analyses are based on the binned 
data. 

The subsequent analysis uses the bin 
lower limit (xl), bin center (xc) and upper limit 
(xu), so the SPSS data file is expected to contain 
the following variables: 
 
• Binnum: bin number (not actually used, but 

useful for humans) 
• Observed: observed count per bin (X) 
• xl: bin lower limit in the original scores 
• xc: bin center in the original scores 
• xu: bin upper limit in the original scores 
• Total: total counts (total number of data 

points, a constant 
 
Fitting the Original Data 
As described previously (Frankland & Zumbo, 
2002), when fitting the unimodal or bimodal 
functions, the algorithm determines the 
parameters  for  the  unimodal,  N(μ, σ),    and 
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bimodal, B(μ1, σ1 ,μ2, σ2, λ), distributions using 
an iterative, sequential-quadratic, search 
algorithm. The algorithm determines the values 
of μ and σ (or μ1, σ1, μ2, σ2, and λ) so that the 
predicted count per bin (Ŷi or Y’i) forms the best 
possible match to the by minimizing the sum of 
the squared deviations between theoretical count 
per bin and the actual count per bin (Yi). 
Conceptually, the fitting procedure is the same 
as ordinary, unweighted, least-squares 
regression (OLS) with Xi being the center of the 
bin, and Yi being the actual count per bin. The 
Xi are transformed non-linearly to create 
predicted bin count Ŷi (or Y’i).  

The parameters of the functions are 
adjusted iteratively until Ŷi produces the best 
match to Yi, ascertained by minimizing the sum 
of the squared deviations between the predicted 
and actual, Σe2

i = Σ(Ŷi-Yi)
2. Relative to OLS, 

only the method of fitting is different. Note that, 
in this analysis, every bin has the same 
contribution to the final solution regardless of 
the number of scores per bin. The predictions, 
Ŷi, are not weighted by sample size per bin. This 
is the simplest approach, but a weighted 
approach could be developed (i.e., weighted by 
bin count or, equivalently, bin error). 

Because each bin has an equivalent 
contribution to the final solution, one must  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
choose the bins carefully. After much trial and 
error, bolstered by post hoc rationalizations, it 
seems that empty bins for the full range of z-
scores should be included in the analysis. This is 
not a χ2 solution, though there are links to that 
methodology. Such data should not be dropped 
(or trimmed). That is, empty bins between bins 
with counts, and empty bins representing the 
tails of the distribution should be retained or 
added to the histogram. These empty bins in the 
tails can be combined if necessary. 

First, as noted, after much trial and 
error, the inclusion of empty bins does not seem 
to make a lot of difference to the final solution. 
The fitted parameters do change, but the change 
is within the error of all approaches. However, 
the inclusion of empty bins has many benefits 
for the later simulations. 

Second, the true functions that are being 
fitted technically stretch to ±∞. It is only by 
virtue of sample size that the data does not 
stretch to infinity. Having empty bins in the tails 
forces the functions to go to zero when they 
should go to zero. Alternatively, the inclusion of 
empty bins in the tails is equivalent to forcing 
the regression solution to go through the origin, 
which is reasonable (the distributions approach 
zero asymptotically). At this point, the goal is to 

Figure 1:The Empirical Bimodal Distribution B(-1.00, 0.71, 1.00, .1.00, 0.60) 
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find the best fitting parameters to define the 
populations. 

Third, bins in the tails (particularly those 
distant from the center of the data) represent 
real, though rare, data. Assuming that the 
original sampling that led to the data is truly 
random, deleting such outliers would be 
equivalent to lobbing off a part of the 
population. On the other hand, if retained, these 
outliers have high leverage in the solution. 
Empty bins in the tails also represent real 
information (low probability events). The 
inclusion of empty bins in the tails has the effect 
of reducing the leverage associated with the 
retention of outliers. That is, in the solution, a 
number of bins with (Ŷ, Y) = (~0, 0) will 
balance a few bins with (Ŷ, Y) = (~0, 1) or (~0, 
2). 

Last, bins in the tails can be combined. 
The fitting functions work by determining the 
probability of observed data per range of z-
scores. The functions use numerical integration 
with a trapezoid rule. In the tails, the functions 
are relatively flat (or, at least, approaching 
linear). Hence, in the tails, the use of a trapezoid 
rule with wider bins would not introduce large 
distortions. 

Bins should define a reasonable range of 
data that can incorporate the full range of the 
data, including the possible range that might 
occur in the subsequent simulation. A simple 
definition would use a range of ±5σ (i.e., z-
scores). More sophisticated estimates can be 
made, particularly with very large samples, but 
this seems to be a useful default value. 

The fitting algorithms for the unimodal 
and bimodal functions are shown in Listing 1 
(also see Frankland & Zumbo, 2002). Note that 
probabilities are actually computed using a two-
trapezoid rule per bin, with three values (Xl, Xc, 
Xu) per bin (the routine uses proportions per bin, 
but it could be written to use actual counts). 
 
Listing 1 
 
compute              prop = observed/total. 
model program   mean= 0.0 sd = 1.0. 
compute xa = abs(xl - xc). 
compute xb = abs(xu - xc). 
compute h1 = (.398942/sd)  
                * exp(-(((xl-mean)**2) / (2*sd**2)) ). 

compute h2 = (.398942/sd) 
                * exp(-(((xc-mean)**2) / (2*sd**2)) ). 
compute h3 = (.398942/sd)  
                * exp(-(((xu-mean)**2) / (2*sd**2)) ). 
compute  predun = .5 * (h1+h2) * xa  
                + .5*(h2+h3)*xb. 
cnlr          prop. 
                /pred = predun 
                /bounds sd gt 0.0001 
                /save = predun residun. 
 
model program  mean1 = -1.0 mean2 = 1.0  
                           sd1 = 1.0 sd2 = 1.0 ratio = 0.5. 
compute  xa = abs(xl - xc). 
compute  xb = abs(xu - xc). 
compute  h1 = (.398942/sd1)  
                *exp(-(((xl-mean1)**2)/(2*sd1**2)) ). 
compute  h2 = (.398942/sd1) 
                *exp(-(((xc-mean1)**2)/(2*sd1**2))). 
compute  h3 = (.398942/sd1)  
                *exp(-(((xu-mean1)**2)/(2*sd1**2))). 
compute  h4 = (.398942/sd2) 
                *exp(-(((xl-mean2)**2)/(2*sd2**2)) ). 
compute  h5 = (.398942/sd2)  
                *exp(-(((xc-mean2)**2)/(2*sd2**2))). 
compute   h6 = (.398942/sd2) 
                *exp(-(((xu-mean2)**2)/(2*sd2**2))). 
compute   predbi = ratio *(.5*(h1+h2)*xa 
                 + .5*(h2+h3) * xb) 
                 + (1-ratio)*(.5*(h4+h5)*xa  
                 + .5*(h5+h6) * xb). 
 
cnlr           prop. 
                 /pred = predbi 
                 /bounds sd1 gt 0.0001; sd2 gt 0.0001; 
                  1.0 ge ratio ge 0.0 
                 /save = predbi residbi. 
 

The constraints (bounds) are placed on 
the values of variances and the ratio. A constant 
could be included in the equations. In practice, it 
seems to make little difference for the fit of 
either function. More precisely, other factors, 
particularly the width of the bins, have a greater 
effect. The routine produces the predicted 
proportion per bin, Ŷi (or Y’i, notated as predun 
and predbi) and the residual, ei = Y’i − Yi 
(notated as residun and residbi). These variables 
are added to the data file. The sum of the 
residuals should be zero. The sum of the 
residuals-squared (Σe2

i) is equivalent to SSY.X in 
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OLS (i.e., SSY.X = Σe2
i), which can be converted 

to the standard error of estimate, sY.X, and 
eventually R2 

For the current data, after creating bins 
that stretched to ±7σ, the analysis using the 
bimodal function produced B(μ1, σ1, μ2, σ2, λ) = 
B(-0.489, 0.681, 1.145, 0.497, 0.734), with s2

Y.X 
= 1.389*10-5 and R2 = .933. The standard errors 
on the parameters estimates are 0.046, 0.043, 
0.075, 0.064, and 0.041 respectively. When 
converted back to raw scores using the inverse 
of the z-transform, these correspond to B(-0.802, 
0.881, 1.312, 0.643, 0.734) This compares 
acceptably with the parameters used to define 
the population. The analysis using the unimodal 
function produced N(μ, σ) = N(-0.163, 1.038), 
with s2

Y.X = 2.419*10-5 and R2 = .880. The 
standard errors on the parameters estimates are 
0.044 and 0.036 respectively. Converted to raw 
scores, one has N( -0.380, 1.343). The fitted 
functions are layered on top of the original data 
in Figure 2. 

The s2
Y used for the computation of R2 

is the variance of the counts, not the variance of 
the original data. The point here is not to 
compare the parameters returned by algorithm to 
those of the optimal solution. Rather, the point is 
to compare the fits using the unimodal and 
bimodal functions when computed using the 
same routine. Note that the change in fit is ΔR2 = 
.933 - .880 = .053. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For comparison purposes, if the 
histogram is cut off at the edge of the data (i.e., -
2.2 < z < 3.2), but retaining the empty bins 
between those extremes, one obtains B(-.486, 
.686, 1.150, .491, .739) with s2

Y.X = 2.764*10-5 
and R2 = .880. Note that these are within the 
errors cited above. For the unimodal function, 
one gets N(-.176, 1.054) with s2

Y.X = 5.720*10-5 
and R2 = .764. 

If all the empty bins are removed (even 
those between other non-empty bins), one 
obtains B(-.486, .686, 1.150, .491, .739) with 
s2

Y.X = 2.948*10-5 and R2 = .866, and N(-.175, 
1.055) with s2

Y.X = 4.777*10-5 and R2 = .769. 
Clearly, all three methods produce equivalent 
fits and parameters. 

As expected, in all cases the bimodal 
function produced the better fit between Ŷi and 
Yi. when using the same method (smaller error, 
higher R2). It is interesting that s2

Y.X is smaller 
when there are more bins (i.e., more X and Y 
points). This is counterintuitive, but it implies 
that the additional points – the empty bins – 
have very little error (so that the average error 
decreases). In addition, note that the choice of 
bin values does not affect the relative fits 
dramatically. The ratios s2

Y.X,b/s
2

Y.X,u are .662, 
.691 and .710 respectively, while the ΔR2 are 
.055, .082 and .098 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Unimodal Bimodal Curve Fits to the Empirical Bimodal Distribution 
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The Likelihood Ratio for the Original Data 
These two fits cannot be directly 

compared (either R2 or s2
Y.X) because the 

population with greater number of free 
parameters will generally produce the better fit. 
The reason for this is somewhat oblique to the 
statistical analysis. The premise is that when 
comparing two theories (i.e., two populations) 
both theories will have been selected by past 
research to be reasonable fits to the data (even if 
only by eye). Hence, both functions will 
approximately match the data, so the function 
with the more flexibility (more df's) will 
generally fit better. 

Instead, the likelihood that the data 
came from a unimodal population can be 
compared to the likelihood that the data came 
from a bimodal population (this is almost 
Bayesian). The probability, or likelihood, of 
getting the particular set of data if, in fact, that 
data came from the specified unimodal, N(μ, σ) 
is L(N). It is also known as L0, since the simpler 
unimodal distribution will become the null 
hypothesis. Similarly, for the bimodal 
population, B(μ1, σ1, μ2, σ2, λ), the probability is 
L(B) or LA since the more complex bimodal 
population will become the alternative 
hypothesis. In each case, the probability is 
nothing more than the product of the 
probabilities for the individual bins, i (i = 1 to I). 
 

( ) ( , )μ σ= = ∏O i
i

L N L P             (3) 

 

( ) ( )1 1 2 2, , , ,μ σ μ σ= = ∏A i
i

L B L P       (4) 

L0 and LA represent the maximum 
likelihood solutions for each population: They 
are, in some sense, the best possible fits between 
the data and the corresponding function, and 
therefore represent the maximum probabilities 
(likelihoods) for each hypothesis. The usual 
mean and standard deviation is, in fact, the 
maximum-likelihood solution for the normal 
distribution. 

Usually, to compare the two hypotheses, 
the ratio of likelihoods is computed. This is the 
likelihood ratio (LRdata or Λdata) for the data. In 
the likelihood ratio, for reasons that will be 

obvious momentarily, the simpler or null 
hypothesis is placed in the numerator. 

 = Λ =             (5) 

 
This ratio will be bounded by (0.0, 1.0). 

A ratio near 0 indicates that the alternative 
hypothesis (the bimodal distribution) is a much 
better fit, and a ratio near 1 indicates that both 
hypotheses provide equivalent fits. A ratio much 
greater than 1 should be impossible since the 
unimodal should not be able to provide a better 
fit than the bimodal distribution. 

Because there are many computational 
advantages, one usually works with the natural 
logarithm of the likelihood ratio. Hence, one 
usually has: 
 

-2ln(Λ ) =  − 2 ln            (6) 

 = 2 ln( ) − 2 ln( ) 
 

= 2 ln ∏ ( , , , , ) -2 ln ∏ ( , )  
 
= 2 ∑ ln ( , , , , ) − 2 ∑ ln ( , )  
 = 2 ln ( , , , , ) − ln ( , )  =  

 
The value of logarithm of the likelihood 

ratio, LLR = -2ln(Λ), is bounded by (-∞, ∞), 
although very large positive or negative values 
(<-1000, >1000) would not be expected. A zero 
indicates equivalent fits, negative values imply 
that the unimodal is a better fit while positive 
values imply that the binomial is a better fit. 
Large positive values lead to rejection of the null 
hypothesis. The important point (for algorithms) 
is that by using ln(LA) and ln(L0), one converts 
the previous products and their ratio into a series 
of sums. Most importantly, the difference 
between the two hypotheses can be computed on 
a bin-by-bin basis, and then summed. 

To find the ratio, the likelihood that the 
data comes from the best-fit unimodal 
distribution must be determined, along with the 
likelihood that the data comes from best-fit 
bimodal distribution. This has not been detailed 
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in previous work (i.e., Frankland & Zumbo, 
2001). To obtain these probabilities, for each 
bin, the probability of an observed count, given 
the theoretical bin count must be determined. If 
it is assumed that, within any single bin, i (i = 1 
to I), the counts per bin follow a Poisson 
distribution (a normal distribution per bin may 
also be assumed), the probability of any 
observed count (Yi) can be obtained given the 
theoretically predicted count (Ŷi or Y’i). Within 
each bin, the probability for any particular count 
is (subscripts have been dropped for clarity): 
 ( ) = !  

 
           ln ⁄ = ln − ln( !) −     (7) 
 

Essentially, the predicted count, Ŷ, is 
nothing more than a non-linear transformation of 
the bin value (e.g., collectively, xl, xc, xu). 
Listing 2 provides a method for computing the 
probabilities in each bin, given predicted counts 
from the unimodal and bimodal functions. Note 
that since the Poisson distribution uses counts, 
not proportions, proportions (of Listing 1) are 
converted into counts. The loop simply 
computes the factorial. The loop should not be 
executed if the observed count is zero. 
 
Listing 2: Poisson Probabilities per Bin: 
Unimodal and Bimodal Functions 
 
compute  expectun = predun * total. 
compute  expectbi = predbi * total. 
compute  poisun = (expectun**observed) 
                  * exp(-1*expectun). 
compute   poisbi = (expectbi**observed) 
                  * exp(-1*expectbi). 
loop          #i = 1 to observed. 
 compute   poisun = poisun / #i. 
 compute   poisbi = poisbi / #i. 
end loop. 
compute    lnpoisun = ln(poisun). 
compute    lnpoisbi = ln(poisbi). 
compute    llrdata = 2 * (lnpoisbi - lnpoisun). 
 
Bin-by-bin, the probabilities (poisun and poisbi) 
are converted to logs and then subtracted. In the 

final step, the differences would be summed to 
create the ratio LLRdata. 

However, the use of logarithms has 
many benefits. As noted in Equations 6 and 7 
(and Listing 2), the factorial depends on the 
observed count and as such, is the same for both 
the unimodal and bimodal functions on a bin-by-
bin basis. When converted to logs, the factorials 
become sums that cancel in each bin. Hence, the 
pesky loop to compute the factorial is not 
needed, removing complications arising from 
bins with zero counts. The early transition to 
logarithms also prevents possible overflow 
errors in the event that there is a large difference 
between the observed and predicted, and 
underflow errors in the event that e-Ŷ is very 
small. Hence, Listing 2 is revised as follows: 
 
Listing 2 Revised: LRT using Poisson 
Probabilities per Bin 
 
compute  expectun = predun * total. 
compute  expectbi = predbi * total. 
compute  lnpoisun = observed 
                 * ln(expectun) - expectun. 
compute  lnpoisbi = observed  
                 * ln(expectbi) - expectbi. 
compute  llrdata = 2 * (lnpoisbi - lnpoisun). 
 
Comment Sum the ln(LRdata) using the 
                 simple frequencies command. 
 
frequencies prop expectun residun lnpoisun 
                    expectbi residbi lnpoisbi llrdata 
                    /format = notable 
                    /statistics = mean stddev variance 
                     minimum maximum sum. 
The sum of llrdata is LLRdata = -2ln(Λdata), easily 
obtained from the descriptives or frequencies 
command of SPSS 

For the current data, when using bins in 
the full range of -5.0 < z < 5, the LLR = 28.645. 
Note that this is far from the value of zero that 
would be expected if the data were truly 
unimodal. However, this is not surprising given 
that the data was designed as bimodal. 

With the more restrictive range -2.2 < z 
< 3.2 (i.e., cut the histogram at the edge of the 
data, but retaining intervening empty bins), the 
value is LLR = 4.259 (but the simulation 
distribution changes accordingly). When no 
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empty bins are included the value is LLR = 
2.363. One then uses these values to determine 
whether the sample is more likely to have come 
from a unimodal or bimodal population. 

The other variables in the frequencies 
command provide quick, but useful, checks on 
the analysis. The sums of the proportion per bin 
(prop) or the predicted per bin (predun, predbi) 
should be one. The sums of the observed, 
expectun and expectbi should equal the number 
of data points (N = 500). The residuals should 
sum to zero. In addition, the variance of the 
residuals is essentially the squared-standard 
error of estimate (s2

Y.X) for each function. The 
output includes the variance of the bin counts. 
This is s2

Y. From this, one can compute the 
correlation R2 ≈ 1 - s2

Y.X/s2
Y. Although the 

CNLR routine will provide R2 directly, this 
computation is useful when computing R2 in a 
simulation (herein it serves as a further check). 
 
The Sampling Distribution of Log-Likelihood 
Ratio (LLR) 

The last step is to decide whether or not 
the observed ratio, LLRdata = -2ln(Λdata), is 
reasonable if, in fact, the null hypothesis is true. 
This is the likelihood ratio test (LRT) or more 
properly the log- likelihood ratio test (LLRT). To 
make this decision, one needs the theoretical 
sampling distribution of LLR = -2ln(Λ). This 
theoretical distribution is focused on the possible 
values of LLR when the data is taken from the 
defined unimodal normal distribution (i.e., from 
N(μ, σ), or L0). The empirical or theoretical 
bimodal population is irrelevant to the creation 
of this distribution. 

To create this distribution, one defines a 
normal distribution, and then takes a sample 
(notated by k) from that distribution. That 
sample is fit with a unimodal function, with a 
bimodal function and then the LLRk is 
determined. If the two functions provide 
equivalent fits, the LLRk is expected to be near 
0.0, but in fact, a value slightly greater than 0.0 
is expected (if the data is unimodal, the bimodal 
function will provide a better fit given its greater 
flexibility). This sample has the same sample 
size as the original data (n; called total in Listing 
2). 

The process is repeated for K samples to 
create the sampling distribution of LLR. The 

mean of this distribution is expected to be 
slightly greater than 0.0. The value of K reflects 
the desired precision in the final likelihood ratio 
distribution, weighted by the amount of 
patience. 

If the observed value of LLRdata = -
2ln(Λdata) for the single sample under 
consideration is unlikely given that distribution, 
then the null hypothesis is rejected – it is then 
concluded that the data is bimodal. That is, the 
null hypothesis is that the data is unimodal. In 
that case, the LLRdata should be near 1.0 (the 
mean of the likelihood ratio distribution). If the 
data is actually bimodal, then the value of 
LLRdata will be unexpectedly large. The usual 
criteria regarding Type 1 Error Rate (α) can be 
employed as the basis for the decision. If the 
LLRdata is one of those values that is so large that 
it would only be expected to occur 5% of the 
time (if the null hypothesis, L0, were to be true), 
then it is unlikely and the associated L0 is 
unlikely, and the null hypothesis is rejected. 

A Monte-Carlo simulation is used to 
create the sampling distribution of LLR. There 
are many nuances that can be varied for the 
simulation, but the point here is to create a basic 
template that can be used broadly or adapted to 
specific situations. 

For that simulation, there are a couple of 
important observations. Firstly, for the 
simulation, the scaling of the bin centers (or 
limits) is irrelevant to the issue of computing the 
sampling distribution of the LLR. The routine 
assesses the relative match of the Yi to the 
predictions based on the best fitting unimodal 
function (Ŷi,0) and bimodal function (Ŷi,A). Both 
the unimodal and bimodal functions use the 
same bin centers. Both Ŷi,0 and Ŷi,A are simply 
non-linear transforms of the same underlying bin 
centers. Hence, the data can be conveniently 
rescaled so that the bins are coded in terms of z-
scores, with a certain number of bins per 
standard deviation. The data only needs to be 
coded in the original units for discussion of the 
actual unimodal or bimodal means, variances, as 
well as the λ. 

Secondly, the routine must run 
unattended. This requires careful consideration 
of the bin definitions. When taking random 
samples from a population (unimodal or 
bimodal), every sample in the simulation will 
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produce different data. Each data point will be 
assigned to one bin in the histogram. Therefore, 
one must provide the full range of possible bins 
for the data to fall into. Most critically, there 
cannot be any missing bins within the range of 
the data. That is, each sample may not produce a 
non-zero count for every bin, but for the 
simulation as a whole, every individual data 
point must fall within some bin. Hence, all 
possible bins must be defined a priori. However, 
this is not difficult to do because one knows that 
the K samples are derived from a normal 
distribution with known mean and variance. 

It is important to remember that 
sampling from the theoretical normal 
distribution may produce data that extends 
beyond the range of the original raw data. 
Hence, the creation of the likelihood ratio 
distribution should allow for bins that 
encompass far more range than that of the 
original data. The bins should extend as far as is 
reasonable given the theoretical normal 
population and the empirical data to be tested. It 
is also appropriate (or safe) to retain a wide bin 
for each tail to capture the occasional data point 
that goes beyond the expected range. 

The bins in the simulation must match 
those used with the histogram for the original 
data: If not, the wrong sampling distribution is 
created. Note that the LLRdata previously 
computed depended on the types of bins used. 
Hence, the bins used to construct the histogram 
for the original data, and the bins used for the 
simulation must be the same. This is most easily 
accomplished using a fixed number of bins per 
sd (e.g., 5 or 10 depending on n), with a range of 
bins that is adequate for both the raw data and 
the simulation. Bins in the tails can be made 
wider without affecting the solution. This is the 
logic behind the aforementioned range of -5.0 < 
z < 5.0 with bin for the lower tail expanded to -
5.0 to -7.0 and the bin for the upper tail 
expanded to 5.0 to 7.0. For example, if one is 
working with original data that contains n = 100 
data points, the range of z-scores should be 
about +3.5 standard deviations with 4 or 5 bins 
per sd (hence 28 to 35 bins in total). This should 
result in reasonable counts near the center of the 
distribution, while allowing for the increased 
spread that is characteristic of a bimodal 
distribution.  

If an original sample of n = 100 should 
have a large proportion of data extending 
beyond 3.5 standard deviations, one should 
question the need for a test based on the null 
hypothesis of a unimodal normal distribution 
(i.e., the data is clearly not normal). That is, only 
0.047% of a normal distribution is beyond 3.5σ, 
which, for a sample of 100, is no scores. For 500 
data points, the range should be expanded to at 
least +4 bins (0.0063% of a normal distribution) 
or +5 (0.00057% of a normal distribution). Of 
course, wider limits are needed because nothing 
is truly normal, and one must have sufficient 
range to encompass the original histogram 
which is not likely normal. 
 
Creating the Sampling Distribution 

For the Monte-Carlo simulation, the 
only significant addition to the previously cited 
routines is the automated data generation. In the 
following, it is acknowledged that many of the 
routines can be simplified or streamlined. This 
presentation was chosen to maintain the clarity 
of the logic. 

To find the distribution of the LLR, the 
Monte-Carlo simulation (MCS) uses the full 
range of bins defined by the data and simulation. 
These bins are notated by z-scores since this is 
convenient. The MCS then takes K samples, 
each of size n, from this population. This results 
in one large data file. That file contains 
individual data points. That large data file is split 
and each sample is analyzed separately (and 
automatically). Each sample is converted to a 
histogram using the aforementioned bin sizes. 
Again, the bin sizes for the theoretical 
distribution are perfectly matched to those used 
with the real data, and the real data must have 
defined and used a sufficient range of bins for 
the entire simulation. Then, for each sample, the 
LLR is computed. Finally, all samples are 
reduced to a single data file containing the 
distribution of LLRk. This distribution can be 
plotted, or more simply the necessary critical 
values can be obtained. 

The first part of the process is shown in 
Listing 3. This generates K samples of size n. 
There are a couple of tricks to be discussed 
momentarily. Note the random seed. 
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Listing 3: Generating K samples of Size n 
 
set seed           random. 
input program. 
compute        #mean = 0. 
compute        #std = 1. 
loop               #K = 1 to 1000. 
+ loop            #N = 1 to 601. 
+ compute     K = #K. 
+ compute     meanbin = 51. 
+ compute     binpersd = 10. 
+ compute     total = 500. 
+ do if ( #N le 101 ). 
+ compute     N = -1. 
+ compute     zscore = 0. 
+ compute     binnum = #N. 
+ compute     xl = (binnum-meanbin - .5)  
                      / binpersd. 
+ compute     xc = (binnum-meanbin)  
                      / binpersd. 
+ compute     xu = (binnum-meanbin + .5)  
                      / binpersd. 
+ end if. 
+ do if ( #N gt 101 ). 
+ compute     N = #N - 101. 
+ compute     zscore = normal(#std) + #mean. 
+ compute     binnum = rnd(zscore * binpersd)  
                      + meanbin. 
+ end if. 
+ end case. 
+ end loop. 
end loop. 
end file. 
end input program. 
execute. 
 
frequencies   binnum. 
if ( binnum le 1 )       binnum = 1. 
if ( binnum ge 101 )  binnum = 101. 
if ( binnum eq 1 )      xl = -6.95. 
if ( binnum eq 101 )  xu = 6.95. 
if ( binnum eq 1 )      xc = (xu - xl) / 2 + xl. 
if ( binnum eq 101 )  xc = (xu - xl) / 2 + xl. 
execute. 

First, to generate n data points, n+101 
data points are generated. The extra 101 data 
points are a trick. They are place holders to 
ensure that every data set has the same range of 
bins. They define the bin sizes (in z-scores). The 
101 comes from the desire to have a range of -
5.0 < z < 5.0, with 10 bins per standard 

deviation. Note the variable meanbin and 
binpersd. There is one odd bin at the center. This 
can be altered to suit the circumstances (i.e., a 
different number of bins per standard deviation; 
a range of z-score range of bins). 

Second, bins are actually numbered 
from 1 to 101, rather than from -50 to 50. The 
variable meanbin defines the center bin. The 
values of xl, xc, and xu define the limits (lower, 
center, upper) of the bin in terms of z-scores. 
These are most useful for verifying the 
execution of the program. The frequencies 
command simply serves to check if any data 
exceeded the expected range of z-scores. Note 
that the tails are artificially widened after the 
data is created. 

This routine creates a data file that 
contains the following variables per case: 
K               sample number 
meanbin    the center bin 
binpersd    the number of bins per standard  
                  deviation 
xl               the lower (left) limit of the bin, in  
                  z-scores 
xc              the center of the bin, in z-scores 
xu              the upper (right) limit of the bin, in  
                  z-scores 
total           the total number of data points per 
                  sample 
N               datum number (not actually used, but 
                  useful for humans) 
                  N = -1 indicates a bin place holder 
zscore        the z-score of the created datum 
binnum      the conversion of the zscore to a bin 
number 
Note that some of the defined values are 
constants for all cases (for each data point). This 
is essentially the same as in original data. 

The processing continues in Listing 4. 
This large data file is split into K smaller files 
for individual analyses. The SPSS SPLIT FILE 
function accomplishes this. The data is then 
sorted (within each sample is faster) by bin 
number, and collapsed by bin number using the 
AGGREGATE function. This creates a 
histogram, for each sample, by counting the 
number of times each binnum was presented in 
the data (the line observed = n(binnum)). Other 
variables are collapsed as well. Note that 
meanbin, binpersd, total, xl, xc, and xu are all 
constants. Hence, taking the first occurrence 
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(within each sample) is the most efficient 
manner to get these values: It does not require 
any computations by SPSS. Also note that the 
breaking variables (K and binnum) are 
automatically included in each sample, while the 
variable zscore is dropped (one could take the 
mean of zscore to obtain the true bin center). 
 
Listing 4: Converting Data to Histograms, then 
Cleaning 
 
split file by K. 
sort cases by k binnum. 
aggregate       outfile = * 
                       /break = K binnum  
                       /meanbin binpersd total = 
                        first(meanbin, binpersd, total) 
                       /xl xc xu = first(xl, xc, xu) 
                       /observed = n(binnum). 
execute. 
compute         observed = observed - 1.  
frequencies    observed. 
if ( observed lt 0 )  observed = 0. 
 

In addition, recall that the first 101 
values of data only served to ensure that every 
bin existed (i.e., they were place holders used to 
define bins). This case would have been 
included in the count of values per bin number 
(binnum). Hence, every bin has one count (i.e., 
observed) too many, so one must subtract one 
from every value of observed. Note that if the 
range of bins was not defined sufficiently (the 
initial 101 bins), there will be a negative count 
in some bins. This would create havoc with the 
routines, so a check is used to force the count 
per bin (observed) to be greater than or equal to 
zero. The frequencies command is a better 
check. In fact, if there are negative bin counts 
(after subtracting one), the analysis should be re-
run, or widen the tails still further. Technically, 
this would also require recomputing LLRdata 
because the bins used for the simulation must 
match the bins used for the data. 

Listing 5 provides the fitting of the two 
functions and the computation of LLRk. It is 
essentially a repeat of previous discussions 
(particularly Listing 1). Note the set results none 
command. This turns off the outputting of 
results which is very useful in a simulation. In 
addition, split file processing is still engaged. 

This is the slowest part of the routine (get a large 
coffee). 
 
Listing 5: Fitting Each Sample with the Bimodal 
and Unimodal Functions to Obtain LLR 
 
set results none. 
 
compute  prop = observed / total. 
 
model program   mean=0.0 sd = 1.0. 
compute  xa = abs(xl - xc). 
compute  xb = abs(xu - xc). 
compute  h1 = (.39894228/ sd) 
                 *exp(-(((xl-mean)**2) /(2*sd**2)) ). 
compute  h2 = (.39894228/ sd) 
                 *exp(-(((xc-mean)**2) /(2*sd**2)) ). 
compute  h3 = (.39894228/ sd) 
                 *exp(-(((xu-mean)**2) /(2*sd**2)) ). 
compute   predun = .5*(h1+h2)*xa  
                 + .5*(h2+h3)*xb. 
cnlr           prop 
                 /pred = predun 
                 /bounds sd gt 0.0001 
                 /save = predun residun 
                 /criteria iter 100. 
 
model program  mean1=-1.0 mean2=1.0  
                           sd1=1.0 sd2=1.0 ratio=0.5. 
compute  xa = abs(xl - xc). 
compute  xb = abs(xu - xc). 
compute  h1 = (.39894228/ sd1) 
                *exp(-(((xl-mean1)**2)/(2*sd1**2))). 
compute  h2 = (.39894228/ sd1) 
                *exp(-(((xc-mean1)**2)/(2*sd1**2))). 
compute  h3 = (.39894228/ sd1) 
                *exp(-(((xu-mean1)**2)/(2*sd1**2))). 
compute  h4 = (.39894228/ sd2) 
                *exp(-(((xl-mean2)**2)/(2*sd2**2))). 
compute  h5 = (.39894228/ sd2) 
                *exp(-(((xc-mean2)**2)/(2*sd2**2))). 
compute  h6 = (.39894228/ sd2) 
                *exp(-(((xu-mean2)**2)/(2*sd2**2))). 
compute  predbi = ratio *(.5*(h1+h2)*xa  
                + .5*(h2+h3)*xb) 
                + (1-ratio)*(.5*(h4+h5)*xa  
                + .5*(h5+h6)*xb) . 
cnlr          prop 
                /pred = predbi 
                /bounds sd1 gt 0.00001; 
                 sd2 gt 0.00001; 
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                 1.0 ge ratio ge 0.0 
                /save = predbi residbi 
                /criteria iter 100. 
 
compute  expectun = predun * total. 
compute  expectbi = predbi * total. 
compute  lnpoisun = observed * ln(expectun)  
                - expectun. 
compute  lnpoisbi = observed * ln(expectbi)  
                - expectbi. 
compute  llrdata = 2*(lnpoisbi - lnpoisun). 
execute. 
 

Finally, as shown in Listing 6, the data 
are collapsed once again (using the 
AGGREGATE function) to create one case (i.e., 
one line in the data file) per sample. This one 
case contains all the essential information for the 
entire sample. The most important is the LLRk 
from which the sampling distribution of LLR can 
be created. The use of percentiles in the 
FREQUENCIES command provides the 
standard critical points directly, but the 
distribution can also be created. 
 
Listing 6: The Sampling Distribution of LLR 
 
aggregate outfile = * 
                 /break k 
                 /nbins = n(total) 
                 /count = sum(observed) 
                 /sumy predun residun predbi residbi= 
                  sum(prop, predun, residun, predbi, 
                  residbi) 
 
                 /sdy sdresun sdresbi =  
                    sd(prop, residun, residbi) 
                 /llr = sum(llrdata). 
 
compute   R2bi = 1 - (sdresbi**2 / sdy**2). 
compute   R2un = 1 - (sdresun**2 / sdy**2). 
compute   chgR2 = (sdresun**2 - sdresbi**2)  
                 / sdy**2. 
 
frequencies  variables = llr chgr2 
                     /percentiles = 90 95 99 
                     /statistics = mean stddev variance 
                      minimum maximum median  
                      skewness seskew kurtosis sekurt 
                     /order= analysis. 
 

For the current data, using the bin sizes of the 
original data, with n = 500 and K = 1,000, one 
obtains the following distribution of LLR (see 
Figure 3). 

From this, it can be determined that 5% 
of the distribution for LLR exceeded the critical 
value of .186, so the observed value of LLRdata = 
28.645 is significant. The hypothesis that the 
data came from a unimodal distribution is 
rejected, using a type 1 error rate of α = .05. 
This is not surprising given the population 
definition B(-1.0, 0.7, 1.0, 1.0, .6), the large 
sample size (N=500), range of bins -5.0 < z < 
5.0 and the 10 bins per standard deviation. Note 
that it is the sample size that allows for a large 
range of z, with a small z per bin. The 10% point 
was .153, and the 1% point was .226. The mean 
for the distribution was .002 and the standard 
deviation was .122 (skew: -.573 + .077; kurtosis: 
.413 + .155). Note that the mean is quite close to 
the expected value of zero. 

The CNLR function does not allow the 
correlation (R2) to be saved per sample. 
However, R2 can be computed per sample from 
R2 ≈ 1 - s2

Y.X/s2
Y. This can also be converted to a 

distribution. Given the unimodal and bimodal R2 
per sample, one can create ΔR2, and create the 
distribution of ΔR2. The sample ΔR2 can also be 
compared to this distribution, or this empirically 
determined sampling distribution of ΔR2 can be 
compared to the theoretical distribution of ΔR2 
with df1=3 and df2=n-5. 

For the current data, the change in fit 
was ΔR2 = .053. For the distribution of ΔR2, the 
critical points were .0000916 at 10%, .000115 at 
5% and .000152 at 1%. The mean was 
.00000153 and the standard deviation 
.00000064. Given that the observed ΔR2 was 
.053, the hypothesis that the data came from a 
unimodal distribution is rejected. 

Te standard deviation function in the 
AGGREGATE command (e.g., sdresun = 
sd(residun)) returns the inferential form of the 
standard deviation which in these simulations is 
Σe2

i / (I-1) (where I = number of bins). However, 
the CNLR algorithm provides the standard error 
of regression (s2

Y.X), and this is used to compute 
R2 for each sample. Thus, the s2

Y.X cited in the 
output of the unimodal modal is Σe2

i / (I-2), and 
the s2

Y.X cited for the bimodal modal is Σe2
i / (I-

5). Therefore, technically, the R2 cited in the  
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output of the CNLR for the single sample cannot 
be directly compared to the distribution of R2 
determined from R2 ≈ 1 - s2

Y.X/s2
Y. However, the 

difference is slight, and this entire process only 
estimates the distributions (i.e, it is not an 
analytic solution). A correction could be applied 
if desired (I-1 / I-dfmodel), which would be useful 
if generating very large simulations. 
 
Extensions 

The CNLR (or NLR) command, with 
the use of the subcommand /outfile= aaaa.bbb, 
allows various parameters from each sample to 
be saved for future analyses. For example, the 
fitted parameters can be obtained per sample (μ, 
σ) and (μ1, σ1, μ2, σ2, λ) so to map the parameter 
space. When examining these values, it should 
be kept in mind that the algorithm will 
occasionally flip the order of μ1 and μ2, so, 
before computing any interesting statistics, one 
should insure that μ1 is less than μ2 (flipping μ1 
and μ2 also requires flipping σ1 and σ2, as well as 
inverting λ). The output file also contains the 
SSY.X, the number of cases and the split file 
number. 

A χ2 test of the fit can also be obtained, 
by computing (Ŷi - Yi)

2/Ŷi, per bin before 
collapsing the data. This is not advocated 
because the sum can create overflow errors. The 
reduced χ2 can also be used. It is interesting to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
note that in the special case when the null is a 
normal distribution, and the alternative is a 
mixture distribution of two normal distributions 
with equal variances (σ1 = σ2), the sampling 
distribution of LLR is known to be related to the 
χ2 distribution: 
 = −2 ln(Λ) 

 

= −2 ln  

 = 2 ln( ) − 2 ln( )              (8) 
 
The df (υ) for the χ2 distribution is equal to the 
difference in the number of parameters fitted. In 
this special case, υ = 2: There are two 
parameters for the unimodal normal distribution, 
N(μ,σ), and four for the bimodal mixture of two 
normal distributions B(μ1, σ, μ2, σ, λ),. Hence, in 
that special case, LLRdata = -2ln(Λdata) can be 
compared to the χ2

2 distribution (see McLachlan, 
1987, for a more extensive discussion), though 
this equivalency assumes that the computation 
of the expected frequency per bin follows a 
Normal, rather than Poisson distribution. If the 
LLRdata exceeds the critical value for χ2(2), then 
the null can be rejected. The χ2

2 distribution can 
also be compared to the LLR distribution 
obtained herein. However, these constraints are 

Figure 3: The Likelihood Ratio Distribution (K = 1,000, N = 500) 
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not acceptable in the general case. The current 
procedure allows the use of unequal variances, 
and the current procedure can be extended to 
any non-normal distributions. 

Because the scaling of the bin centers 
(or limits) is irrelevant (i.e., Xi), z-scores can be 
used for any data set. When the data set is 
converted to a histogram, the important issues 
are the number of bins per standard deviation 
and the full range of bins. The actual scaling of 
the bins is irrelevant (to the computation of 
LLRdata). As such, any particular data set can be 
converted to a standard histogram, with a set 
number of bins and range of bins. The LLRdata 
can be determined for that standard histogram. 
This LLRdata could then be compared to tabulated 
values of critical LLRs for particular values type 
1 error rate (α). That is, using SPSS, tables of 
critical values can be created for various 
combinations of total sample size, bin size (bins 
per sd), and range of bins. This would avoid all 
the tedium of running this simulation for every 
data set. The simulation could be saved for non-
tabulated situations. Arguably, it is still better to 
complete the entire simulation so that the bins 
can be carefully tailored to data. Note that the 
number of samples in the simulation (i.e, K) 
should not be an issue. That is, K reflects desired 
precision and reliability. Every simulation 
should produce approximately the same critical 
values (always remember that the fitting process 
is iterative, not algorithmic). 
 
Power 

The previous simulations can be used to 
compute power for any given exact alternative to 
the null. The exact alternative would specify the 
parameters in B(μ1, σ1, μ2, σ2, λ), and then use 
this as the population for the simulation, in place 
of N(μ, σ). The proportion of sample LLR’s that 
exceeded the previously defined critical values 
for the null would then be determined. For this 
to work, the bimodal population must use the 
same range of bins and the same bin size as the 
corresponding null hypothesis.  

Often, when computing power, a wider 
range of bins is needed because data in the tails 
are more common from a bimodal population. 
This implies that the LLR test for the unimodal 
population would need to be computed with a 
larger range of bins. 

In addition, when the bimodal 
population is not symmetric (i.e., σ1 = σ2, and λ 
= .5), it is more difficult to get the population 
centered in the histogram. The middle of the 
histogram should correspond to the mean of the 
bimodal distribution, so that there is sufficient 
range in the tails. This is a pragmatic issue since 
the bimodal population, and hence every random 
sample from it, is fit with the unimodal and 
bimodal function on the basis of the same 
histogram. 
 

Conclusion 
 
This work has been a demonstration of the 
application of commonly available statistical 
software, in this case SPSS, to solving the 
problem of assessing putative mixture 
distributions, particularly decisions comparing a 
unimodal normal distribution to a bimodal 
mixture of two normal distributions. Routines 
were developed to enable anyone to determine 
the best-fit statistics for fitting data to a 
unimodal normal distribution or a bimodal 
mixture of two normal distribution, to then use 
those parameters to generate the LLR, and 
finally, to generate the sampling distribution of 
the LLR. 

These routines have been developed and 
refined over a number of versions of SPSS from 
6.0. to 11.5. In fact, the routines were initially 
developed within SPSS 4.0, running under VMS 
8.0, on a VAX 4500. Different version might 
require minor modifications. In addition, 
routines have be developed and run on a variety 
of hardware. On a 1,000 MHZ Duron with 1.256 
Gigs of memory, a simulation with K = 1,000, 
and N = 500 required about 15 minutes. A 600 
MHZ, Pentium 4 with 256 Megs of memory 
increased this to about 15 minutes. By contrast, 
similar simulations on a 40 MHZ AMD 386 had 
to be run overnight. Interestingly, the VAX also 
required an overnight batch job. 

When setting up, the process is simple 
and relatively efficient: simply convert the 
empirical data to z-scores and then create a 
histogram with an appropriate number of bins 
per sd and an appropriate range of z-scores. This 
depends primarily on the sample size. The 
simulation to create the LLR distribution uses 
the same bin size and range. The variable bin 
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widths could be used, with narrower bins near 
the center of the distribution and wider bins in 
the tails. As long as the bins form a mutually 
exclusive and exhaustive set for the range of 
interest, this is not a problem. In fact, it might be 
more optimal in the long run to develop 
algorithms that use bins that represent constant 
probabilities under the normal distribution. 

The method can be adapted to non-
normal distributions or to mixtures of non-
normal distributions. There is unlimited 
flexibility in the choice of fitting functions. The 
process creates an empirical sampling 
distribution for whatever hypotheses are being 
tested. 

As noted predicted bin counts could be 
generated using other methods, in particular the 
normal distribution. That route was not 
presented here because it the use of normal 
distribution to predict bin counts resulted in a 
test with lower power. However, that method is 
more closely tied to the χ2 test of fit, and the 
LLRT approximation to the χ2. 

The second advantage is that the 
algorithm can be modified to obtain greater 
accuracy. Non-linear regression using a least-
squares error term assumes that the theoretical 
error is a constant for all values of the 
independent variable. That is, every bin, 
regardless of its count, has the same contribution 
to the final solution. However, the error of a 
count (if Poisson statistics are valid) is the 
square root of the count. Hence, relative errors 
per bin increase as the count decreases. This can 
be used as a control in the CNLR routine. SPSS 
non-linear regression allows one to specify the 
error term. Hence, a weighted least-squares 
(non-linear) regression approach could be used. 

In summary, the routine works; 
however, it must be cautioned that this algorithm 
is only considered an interim solution to the 
problem – one of many (cf., Eriksen & Eriksen, 
1972; Eriksen & Yeh, 1985; Hartigan, 1974; 
Jones & McLachlen, 1990; Müller & Sawitzki, 
1991; Roeder, 1990, 1994; Yantis, Meyer and 
Smith, 1991; Yellott, 1971).  

Hopefully, a proper fully parametric 
method for assessing bimodality will be 
developed, one that extracts all the information 
contained within each individual data point 
rather than working through the intermediary of 

a histogram. However, even if a proper 
parametric method is developed, it will 
necessarily be tied to particular parent 
distributions. As such, the algorithms developed 
herein will continue to serve some purpose with 
other non-normal parent distributions. 
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Capture-Recapture models estimate unknown population sizes. Eight standard closed population models 
exist, allowing for time, behavioral, and heterogeneity effects. Bayesian versions of these models are 
presented and use of Akaike's Information Criterion (AIC) and the Deviance Information Criterion (DIC) 
are explored as model selection tools, through simulation and real dataset analysis. 
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Introduction 
 
For capture-recapture experiments involving 
closed populations, likelihood-based models 
based upon the multinomial distribution are 
commonly used, and a thorough treatment of 
these models is given by Otis, Burnham, White, 
and Anderson (1978). These models allow 
animal capture probabilities to vary based on 
three types of effects: time effects, heterogeneity 
effects, and behavioral effects. Time effects 
occur when capture probabilities vary by capture 
period. Heterogeneity effects occur when 
capture probabilities vary by animal. Behavioral 
effects occur when an animal's capture 
probability changes after they are captured for 
the first time. 

This effect is called a trap-happy effect 
when the capture probability increases after 
initial capture, and is called a trap-shy effect  
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when the capture probability decreases after 
initial capture. Denoting subscripts t, h, and b to 
refer to time, heterogeneity, and behavioral 
effects, respectively, eight models have been 
developed, with the model subscripts indicating 
which effects are present in the modeling of 
capture probabilities. The goal of each model is 
to estimate the unknown population size N. The 
model M0 denotes a model which has none of 
the three effects. Model Mt contains time effects, 
model Mh contains heterogeneity effects, and 
model Mb contains behavioral effects. Models 
Mtb, Mbh, Mth, and Mtbh are complex models 
accounting for variation in capture probabilities 
from each listed effect. Chao (2001) provides an 
overview of closed population models as well. 

Pledger (2000) discussed using mixture 
models to fit heterogeneity effects in capture-
recapture data, and discussed use of Akaike's 
Information Criterion (AIC) as a model selection 
tool.  Caution in using heterogeneity models is 
necessary, though, as Link (2003) showed that 
estimates of N under Mh models are highly 
dependent upon the assumed distribution of 
capture probabilities in the population. He refers 
to the parameter N as non-identifiable in 
heterogeneity models because different, 
reasonable, models may fit the data equally well 
but give very different inferences about N. 
Link's results imply that distinguishing between 
different heterogeneity models may never be 
possible.  However, it remains plausible that 
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estimates of N from Mh models are more 
accurate than those from Model M0, for 
example, in populations with heterogeneity. 

Program MARK (see 
http://welcome.warnercnr.colostate.edu/~gwhite/
mark/mark.htm), provides estimates of N for 
these closed population models as well as end-
user flexibility in the specific parameterization 
of the models. For example, the mixture models 
of Pledger (2000) can be fit in Program MARK 
with different numbers of mixture groups 
specified by the user. Program MARK also 
provides model selection functionality based on 
Akaike’s Information Criterion (Akaike, 1973). 

Bayesian versions of closed population 
models have also been presented. Early 
approaches focused on Model Mt, such as 
Castledine (1981), and George and Robert 
(1992). Ghosh and Norris (2005) presented a 
Bayesian version of Mbh, and Mh, Mb, and M0 as 
special cases of this model. Furthermore, they 
presented a model selection approach based 
upon a criterion proposed by Gelfand and Ghosh 
(1998). Other recent work on Bayesian models 
have been presented by Durban and Elston 
(2005) and by King and Brooks (2008). King 
and Brooks recommended Bayesian Model 
Averaging and Reversible Jump Markov Chain 
Monte Carlo (RJMCMC) methods for 
recapture/recovery data analyses, while Durban 
and Elston focused on Model Mth by adapting a 
log-linear modeling approach to the models of 
Agresti and Coull (1999). More recently, Gosky 
and Ghosh (2011) provide Bayesian estimation 
methodologies for all eight models. 
 

Methodology 
 
Bayesian Closed Population Capture-Recapture 
Models 

Bayesian statistical modeling requires 
the development of the likelihood function of the 
observed data, given a set of parameters, as well 
as the joint prior distribution of all model 
parameters. A major benefit of Bayesian models 
for capture-recapture data is that Bayesian 
estimates of N, from its posterior distribution, 
are easily obtainable and this posterior 
distribution gives appropriate measures of 
variability for estimating N. Even when non-
informative prior distributions are used for 

model parameters, these estimates of variability 
are not based on asymptotic criteria and hold 
when N and the number of capture periods are 
relatively small (e.g., see Gosky and Ghosh, 
2011). Bayesian modeling also allows for the 
possibility of using informative prior 
information about model parameters, if 
available. 

The approach to modeling heterogeneity 
used is identical to that presented in Ghosh and 
Norris (2005), using a finite-mixture approach to 
heterogeneity rather than utilizing a continuous 
distribution to model individual capture 
probabilities. This basic idea was introduced by 
Norris and Pollock (1996) and discussed further 
in Pledger (2000), and has been shown to be 
effective in modeling heterogeneity. 

Let k represent the number of capture 
periods in the study. Define indicator variables 
Xij = 1 if animal i is captured during capture 
period j, for i = 1, 2, ..., N and j = 1, 2, ..., k. 
Also denote pij = Pr(Xij = 1) as the probability 
that animal i is captured during capture period j. 

Denote the capture matrix X with 
dimensions N x k with entry Xij. Denote X[i,.] as 
the ith row of X, a vector with 2k possible values 
because each entry in the vector is zero or one. 
For simplicity, these outcomes can be ordered as 
 
Outcome 0: capture history (0, 0, 0, ..., 0, 0, 0); 

 
Outcome 1: capture history (0, 0, 0, ..., 0, 0, 1); 

 
Outcome 2: capture history (0, 0, 0, ..., 0, 1, 0); 

 
Outcome 3: capture history (0, 0, 0, ..., 0, 1, 1); 

 
through Outcome 2k - 1: capture history (1, 1, 1, 
…, 1, 1, 1). 
 

Each animal in the population has 
exactly one of the 2k capture histories. Noting 
that (Xi1, Xi2, ..., Xik) represents the observed 
capture history of any animal in the population, 
Capture History hi is defined corresponding to 
the previous ordering of outcomes, as hi =


=

−
k

j

jk
ijX

1

2 . Notice that each hi takes values in 

the set 0, 1, ..., 2k - 1. Denote Zl as the number of 
animals with capture history l, for l = 0, 1, ..., 2k 
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- 1, i.e., Zl =  =
i

i lhI )(  where I(.) denotes the 

indicator function which takes the value 1 if hi = 
l and takes the value 0 otherwise. Note that Z0, 
the number of animals with capture history (0, 0, 
..., 0), cannot be observed. Also, note that 


−

=

12

0

k

l
lZ = N. Denote S = N – Z0 as the number of 

animals observed during at least one capture 
period. Denote Pl as the probability of animal i 
having capture history l. Then 
 

( )
1

: 1

1 .
ij

ij

i

xk
x

l ij ij
i h l j

P p p
−

= =

= −∏∏       (2.1) 

Defining L = 2k - 1, the joint distribution of (Z1, 
Z2, ..., ZL) is 
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(2.2) 
 
where P = (P1, P2,..., PL). Note that if N were 
known, this model would represent a 
multinomial likelihood function with counts Z0, 
…, ZL and probabilities P0, …, PL. However N is 
unknown and it is the main parameter of interest. 
From equation (2.2) it follows that the likelihood 
function of (N, P) is given by 
 

L(N, P|Z) α ∏ 
=

−

=







 −






 L

l

SNL

l
l

Z
l PP

S
N

l

1 1

1  (2.3) 

 
where Z = (Z1, …, ZL) denotes the set of 
observed counts, which turns out to be the 
minimal sufficient statistic for this model. 

It is of interest to estimate N, treating P 
as a nuisance parameter. The capture probability 
vector P varies depending on the specific model. 
A Bayesian modeling framework was adopted 
for each of the eight models, where  

)Pr( nN =  α δn
1

 , n = 1, 2, …, Nmax 

was used as the prior distribution for N, with δ > 
0 fixed at a specific value and Nmax fixed at a 
realistic upper bound for N. A non-informative 
prior distribution can be obtained with δ = 0.5 
(or alternatively  δ = 1) and a uniform prior is 
obtained with δ = 0. The final estimate of N is 
obtained from the marginal posterior distribution 
of N by integrating out the parameters 
corresponding to P. The most complex model, 
Mtbh, is introduced first followed by descriptions 
of each of the other seven models as special 
cases of Mtbh. 
 
Model Mtbh 

This model allows for individual 
heterogeneity, time, and behavior effects. For 
heterogeneity, a finite mixture distribution is 
used, representing m possibly distinct groups 
within the population. Behavioral effects are 
modeled as constant across each of the m groups 
and across capture periods 2 through k to 
minimize the number of model parameters and 
to allow the model to be fit to studies with a 
minimal number of capture periods. 

Denoting τij = 1 if animal i has been 
captured before capture period j, then for each 
group, the capture probability vector is pi = pi1 
I(τij = 0) + pi2 I(τij = 1) and (pi1, pi2) ~ F(.), 
described next. A finite mixture distribution is 
assumed for the 2k-dimensional distribution 
function, F, specifically dF(p) = 


=

=
r

m
mm pI

1

)( θπ , where πm denotes the 

probability at support point θm = (θ11m, …, θ1km, 

θ21m, …, θ2km)T, and 
=

r

m
m

1

π =1. The probability 

of initial capture in capture period j is 
represented as θ1jm, where j = 1, 2, ..., k within 
population group m, where m = 1, 2, ..., r. 
Similarly, θ2jm is the probability of subsequent 
capture in capture period j within population 
group m. As previously stated, the behavior 
effect is constant across the capture periods and 
the m population groups. Thus θ2jm = θ1jm + c for 
j = 2, ..., k and m = 1, 2, ..., r. Furthermore, θ2jm 
= 0 for m = 1, 2, ..., r because subsequent 
capture is impossible in capture period one. 
Fixing r = 2 mass points representing possibly 
two distinct population groups implies that 1-π2 
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= π1= π. Prior distributions for π and θ1jm are π, 
θ1jm ~ Beta(a,b) for j = 1, …, k and m = 1, 2. 

A conditional prior distribution of c 
given θ1jm for j = 1, …, k. and m = 1, 2 is 
Uniform(-min rmkj ≤≤≤≤ 1;2  θ1jm, 1-max rmkj ≤≤≤≤ 1;2  

θ1jm). This mixture model requires restrictions 
for identifiability of all model parameters, so θ1j1 
< θ1j2 for j = 1, 2, ..., k and θ2j1 < θ2j2 for j = 2, 3, 
..., k is set. 
 
Model Mtb 

Restrict π1 = 1 from Model Mtbh.  
 
Model Mth 

Restrict θ2jm = θ1jm for j = 2, ..., k and m 
= 1, ..., r, from Model Mtbh. 
 
Model Mbh 

Restrict θ11m = θ12m = … = θ1km and θ22m 
= θ23m = … = θ2km for m = 1, 2, …, r from Mtbh. 
Rather than modeling θ2jm = θ1jm + c, choose 

prior distributions θ11m , θ22m 
...

~
dii

Beta(a, b) for 
m = 1, ..., r. Fixing r = 2 mass points as 
described in Mtbh, restrict θ111 < θ112 and θ221 < 
θ222 for identifiability of all model parameters. 
 
Model Mt 

From Model Mth, restrict π1 = 1. 
 
Model Mh 

From Model Mbh, restrict θ22m = θ11m for 
m = 1, 2, …, r. 
 
Model Mb 

From Model Mbh, restrict π1 = 1. 
 
Model M0 

Restrict π1 = 1 from Model Mh. 
 

The number of parameters in each 
model as a function of r, the number of support 
points of the finite mixture distribution F and k, 
the number of capture periods, is determined 
from the preceding model descriptions. For 
example, Model Mtbh has parameters N, π1, ..., 
πr-1, θ111, … , θ1k1, θ112, … , θ1k2, θ11r, … , θ1kr, 
and c. The number of parameters is thus 1 + (r-
1) + kr + 1 = r(k + 1) + 1. Similarly it is 
established that Mth has r(k + 1) parameters, Mbh 
has 3r parameters, Mtb has k + 2 parameters, Mh 

has 2r parameters, Mb has 3 parameters, Mt has k 
+ 1 parameters, and M0 has 2 parameters. 

Posterior distributions of the model 
parameters for all eight models can be closely 
approximated using Markov Chain Monte Carlo 
(MCMC) methods available in the WinBUGS 
V1.4 software package (http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml). 
 
Model Selection Methods 

Because eight possible models exist for 
a given closed population data set, definitive 
methods for model selection are necessary in 
such analyses. The eight models are generally 
(though not exclusively) nested, ranging from 
very simple models (M0) to complex models 
(Mtbh). Model selection criteria allow the best 
model of the eight to be fit to the data. Striking a 
balance and finding a model that neither under-
fits nor over-fits the data is the motivation for 
model selection criteria (Burnham & Anderson, 
2002). 

Akaike's Information Criterion (AIC) is 
one such method of model selection, and seems 
to be the most commonly used criterion for 
model selection. The intent of AIC is to measure 
the mathematical distance between the true 
population and the fitted model, by using the so-
called Kullback-Leibler discrepancy. To 
differentiate between models with different 
numbers of parameters, AIC adds two times the 
number of model parameters to the estimated 
Kullback-Leibler discrepancy. Thus, when two 
models of differing complexity fit a data set 
equally well AIC chooses the simpler model by 
penalizing the complex model for having more 
model parameters. The rule of parsimony says 
that a researcher should choose the simplest 
model that adequately describes the behavior of 
the population. Use of AIC generally supports 
this rule. 

As the models are nested, AIC is 
examined as model selection tool. However, 
AIC is not asymptotically consistent in the sense 
that the probability that it chooses the correct 
model (given that the data has been generated 
from the correct model) does not converge to 
one as the sample size tends to infinity 
(Schwartz, 1978). A modified version of AIC 
within the Bayesian framework is used for 
model selection. 
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The Deviance Information Criterion 
(DIC) is strictly a Bayesian model selection 
criterion (Spiegelhalter, et al., 2002), which is 
structured similarly to AIC. The main difference 
between AIC and DIC is in the penalty term 
added to the estimated Kullback-Leibler 
discrepancy. DIC adds two times the effective 
number of parameters to the estimated Kullback-
Leibler discrepancy. The effective number of 
parameters is a Bayesian concept. It recognizes 
that the number of parameters in a Bayesian 
model is influenced by the prior distributions of 
these parameters. The DIC criterion presents a 
methodology to measure this number of 
parameters. The DIC is, then, the difference 
between the estimated mean KL distance, and 
the KL distance estimated at the posterior mean 
of each of the model parameters. 

DIC is also examined as a model 
selection criterion for these models. Use of DIC 
does not require the models to be nested. 
However, the modeling herein uses a mixture 
approach for heterogeneity models, and there are 
some questions about use of DIC for mixture 
models. Some recent suggestions have been 
made regarding these problems (see Celeux, et 
al., 2006). 

Use of the Bayesian Information 
Criterion (BIC) was considered for model 
selection, but, for capture-recapture models the 
sample size is unclear (as N itself is a parameter 
and k, the number of capture periods, is usually 
much smaller than necessary for asymptotic 
properties to work). Therefore, AIC and DIC are 
focused on as potential model selection criteria; 
specifically, it is assessed whether AIC and DIC 
choose the correct model for a given data set. 

A model selection criterion proposed by 
Gelfand and Ghosh (1998) is based upon 
minimizing the squared predictive error of the 
observed data, where the predictive distribution 
of the observed data is based partially upon the 
posterior distribution of the parameters, given 
the observed data, rather than on the prior 
distribution of the parameters. Ghosh and Norris 
(2005) discussed using this method for Model 
Mbh, and their findings were promising. This 
criterion is an area of future research, as it easily 
allows non-nested models to be directly 
compared and it balances between model fit and 
model complexity. 

Results 
 
Data Generation Process and Bayesian Analysis 
Method 

This simulation consists of eight 
experiments. Experiment one contains 100 data 
sets generated under each modeling assumption 
(M0, Mt, Mh, ..., Mtbh). Experiments two through 
eight each contain 50 data sets generated under 
each modeling assumption. Each experiment 
uses Markov Chain Monte Carlo (MCMC) 
methods to fit each data set using each of the 
eight models. Thus, experiment one consists of 
6,400 analyses (800 data sets each analyzed 
under eight models). Experiments two through 
eight consist of 3,200 analyses (400 data sets 
analyzed under eight models). Each data set is a 
simulated capture-recapture study with k = 5 
capture periods. The methodology used to 
generate pij values is illustrated in Table 1, and 
detailed information regarding the data 
generating parameters is provided in an 
Appendix available at 
http://www.mathsci.appstate.edu/~rmg/. 

Calculations of pij for Mtbh, the most 
complex model, are computed as F(µ + βj + ητij 
+ κZi), where F is the Logistic distribution 
function 

F(x) = [1 + e-1]-1, Zi 
...

~
dii

N(0,1), 
 
where τij = 1 if the animal has been previously 
captured, and τij = 0 otherwise. 

The approach in Table 1 resembles a 25-2 
fractional factorial design with factors N, 
Average pij, and magnitude of time, behavioral, 
and heterogeneity effects. Means and standard 
deviations of the pij for each simulation 
experiment are listed in the Appendix. 

For each data set, and under each model, 
an estimate of the posterior density of N was 
constructed using WinBUGS Version 1.4. The 
median of this posterior distribution, denoted 
ˆ ,N  was chosen to estimate N and AIC and DIC 

were also computed. For these simulation 
experiments, non-informative prior distributions 
were chosen for the model parameters. 
Specifically, δ = 0.5 was chosen as the 
hyperparameter for the prior distribution of N; r 
= 2 was selected for the number of support 
points for F, and a = b = 0.5 for hyperparameters  
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for the prior distributions of all the capture 
probabilities. 

A burn-in period of 3,000 samples was 
used to allow convergence of the MCMC 
processes to a stable distribution. After the burn-
in period, 2,000 samples were selected from 
each of three MCMC chains with dispersed 
starting values for the model parameters. 
Therefore, posterior distribution estimates are 
based upon 6,000 total samples. Convergence of 
the models was checked through the Gelman-
Rubin statistic in WinBUGS. Table 2 shows 
means and percentages of times each model was 
selected by the MCMC estimates of AIC for 
Experiment one. 
 
Analysis of AIC as a Model Selection Criterion 

AIC (Akaike, 1973) has been used 
extensively as a model selection tool. 
Calculation of AIC adds a parameter penalty to 
the estimated Kullback-Leibler Discrepancy 
between the fitted model and the true model. 
Using θ as a general term to represent all the 
model parameters (e.g. θ = (N, P) as in Equation 
2.3), X as a general term to represent the 
observed data (e.g. X = (Z1, …, ZL) as in 
Equation 2.3), p' as the number of model 
parameters, and LogL as the log likelihood 
function, a form for calculation of AIC is given 
by 

AIC = -2LogL(θ̂  | X) + 2p'           (4.1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where θ̂  is the MLE of θ under the assumed 
model. However, the AIC calculation used here 
is different from the usual form of AIC. 
Defining 
 

D(θ) = -2LogL(θ |X),             (4.2) 
 
use AIC = E[D(θ)|X] + 2p' where E[D(θ)|X] is 
the mean of the posterior distribution of D(θ). 

Analysis of Table 2, which gives the 
MCMC AIC means and model selection 
percentages for simulation experiment one, 
indicates that overall the AIC is effective in 
determining the correct model. For the first 
seven columns in the table, the minimum AIC 
mean occurs when the fitted model matches the 
data generating assumptions. This suggests that 
AIC is capable of identifying the correct model, 
on average. 

Perhaps more indicative of the 
performance of AIC is the percentage of times it 
chooses the correct model. For this analysis, a 
model with the minimum posterior mean of AIC 
was chosen for a given data set. When a tie 
occurs between two models, the simpler model 
is chosen. Ideally, the diagonal entries in the 
table should have the highest percentages of 
selections by AIC. The table columns represent 
the true model generating assumptions. 

Selection of a different model from the 
data generating assumptions may be called a 
model selection error, and the percentage of AIC 

Table 1: Data Generating Assumptions for Simulation Experiments 1 to 8 

Experiment 
Number 

N 
Average 

pij 
Time 

Effects 
Behavioral 

Effects 
Heterogeneity 

1 500 0.2 Large Positive Large 

2 500 0.2 Small Positive Small 

3 500 0.4 Large Negative Large 

4 100 0.4 Large Positive Small 

5 100 0.4 Small Positive Large 

6 100 0.2 Large Negative Small 

7 500 0.4 Small Negative Small 

8 100 0.2 Small Negative Large 
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model selection errors is also listed in the last 
row of Table 2. In this respect, for seven of the 
eight models, AIC performs well. Among these 
seven models, for Mt and Mth, the percentage of 
selections is 87 percent, which is somewhat 
lower than for the other models. When Mt and 
Mth are not selected by AIC, though, AIC selects 
a similar model, but with more effects. This is 
better than the selection of an unrelated model. 
Model Mtbh does not perform as well. Data 
generated under the assumptions of Mtbh only 
had a 42% selection rate by AIC. When Mtbh 
was not selected in this column, the model 
selected was one of the sub-models containing 
two of the effects (Mth, Mbh, and Mtb). 

Some of this could be due to relative 
weighting of the time, behavioral, and 
heterogeneity effects within Mtbh, as AIC may be 
picking the model based on the most significant 
of these effects present in any particular data set 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Furthermore, with five capture periods, model 
Mtbh may be somewhat over-parameterized. 
Thirty-one distinct capture histories were 
observed, and model Mtbh includes 13 
parameters for such data, which may lead to the 
estimation of effects due only to random chance. 
However, from an overall look at this table, it is 
concluded that AIC performs well as a model 
selection tool. 

A summary of the AIC selection rates 
from Experiments two through eight is given in 
Table 3, which lists only whether AIC chose the 
correct model in each experiment. Thus, the 
94% entry in the first row and column shows 
that in experiment two, AIC chose model M0 
correctly 94% of the time for the data sets 
generated with constant capture probability. 

In column one of Table 3, a strong AIC 
selection rate is  observed  for M0 data  for  all  
 

Table 2: Simulation Experiment One Average AIC Posterior Mean and AIC 
Model Selection Percentages 

   True Model     

Model 
Fit 

M0 Mh Mt Mb Mbh Mtb Mth Mtbh 

Avg AIC (Top Line) 
AIC% (Bottom Line) 

M0 
134.3 
92% 

197.2 
0% 

320.7 
0% 

191.8 
0% 

252.4 
0% 

533.4 
0% 

354.3 
0% 

539.0 
0% 

Mh 
138.4 
0% 

159.2 
95% 

325.1 
0% 

194.4 
0% 

196.6 
0% 

537.2 
0% 

328.5 
0% 

501.4 
0% 

Mt 
142.4 
1% 

205.4 
0% 

136.2 
87% 

173.2 
0% 

236.2 
0% 

164.6 
2% 

198.1 
0% 

239.7 
0% 

Mb 
136.4 
7% 

197.9 
0% 

208.0 
0% 

157.9 
99% 

201.6 
0% 

227.2 
0% 

193.6 
0% 

181.3 
0% 

Mbh 
142.5 
0% 

163.0 
5% 

214.8 
0% 

163.6 
1% 

165.5 
99% 

234.1 
0% 

184.5 
2% 

174.5 
13% 

Mtb 
144.2 
0% 

203.8 
0% 

138.0 
13% 

165.8 
0% 

207.1 
0% 

151.1 
97% 

186.1 
3% 

174.5 
11% 

Mth 
153.8 
0% 

175.0 
0% 

147.7 
0% 

177.0 
0% 

181.1 
1% 

161.9 
2% 

166.7 
87% 

165.1 
36% 

Mtbh 
155.6 
0% 

176.6 
0% 

149.4 
0% 

177.1 
0% 

179.8 
0% 

162.1 
0% 

168.5 
8% 

163.5 
42% 

Error % 8% 5% 13% 1% 1% 3% 13% 58% 
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experiments. Column two shows strong AIC 
selection rates for the Mb data sets, with the 
exception of experiments six and eight. These 
two experiments had relatively small capture 
probabilities, smaller population sizes of N = 
100, and negative behavioral effects. This 
combination of factors makes detection of 
behavioral effects difficult due to small observed 
numbers of recaptures. 

Column three shows strong selection 
rates for Mt data, except for experiments five 
and eight. However, both of those experiments 
have small-magnitude time effects and smaller 
population sizes N = 100, indicating a simpler 
model such as M0 may be more appropriate for 
the data. Experiments two and seven, which also 
have small time effects, but a larger population 
size N = 500 show larger AIC selection 
percentages of 78% and 88% respectively. 

Column four shows that Mh data has 
reasonably high selection percentages for 
experiments three, five, and eight, and small 
selection percentages for experiments two, four, 
six, and seven. The low selection rates occur in 
experiments with small heterogeneity effects in 
the data. It appears AIC selects a heterogeneity 
model when the heterogeneity effects are large, 
but not when they are relatively small. 

Column five shows that Mtb data has a 
high AIC selection rate in experiments two, 
three, and seven. Mtb data has a moderate AIC 
selection rate of 62% in experiment four, and 
has low selection rates in experiments five, six, 
and  eight.  The  low  selection  rates  occur  in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
experiments with small time effects. The 
moderate selection rate in experiment four 
occurs when time effects in the data are large. 
Some examination of this case shows that when 
Mtb is not chosen, one of the submodels Mb or 
Mt is chosen by AIC. 

The low selection percentages for 
experiments two, four, six, and seven for the 
heterogeneity models Mbh, Mth, and Mtbh occur 
due to the small heterogeneity effects in those 
experiments, and this again reflects that 
comparable models without heterogeneity 
effects can adequately fit the data. Low selection 
rates for Mbh, Mth, and Mtbh are seen in 
experiment eight, and for the Mth and Mtbh data 
for experiment five. These low rates occur for 
experiments where heterogeneity effects are 
large. However, due to the small magnitude time 
effects in experiments five and eight, for the Mth 
data AIC chooses Mb and Mbh most often as the 
best model, reflecting adequate fit for these data 
sets by simpler models. Some examination of 
the underlying results (not available in Table 3) 
shows that the penalty term for the number of 
parameters is the reason that Mth has a higher 
AIC value for these data sets. 

For the Mtbh data sets, AIC chooses 
Model Mbh most commonly, followed by model 
Mb. The choice of Mbh again reflects the small 
magnitude of the time effects in these data sets. 
The choice of model Mb is surprising given that 
the heterogeneity in the data is strong in 
experiment five. However, a behavioral effect 
and a heterogeneity effect are not completely 

Table 3: Selection Rates for AIC for Simulation Experiments 2 to 8 Selection 
Rates for Data Sets Generated Via Listed Model Assumptions 

Experiment M0 Mb Mt Mh Mbh Mtb Mth Mtbh 

2 94% 96% 78% 0% 86% 0% 0% 0% 

3 90% 96% 90% 92% 98% 100% 94% 70% 

4 92% 96% 82% 6% 62% 0% 0% 0% 

5 94% 92% 36% 78% 12% 52% 2% 0% 

6 84% 48% 62% 2% 8% 0% 0% 0% 

7 96% 100% 88% 0% 76% 4% 0% 0% 

8 92% 44% 18% 54% 6% 20% 0% 0% 
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unrelated. For capture periods two through k, the 
behavioral effect creates two distinct groups in 
the population: those which have been 
previously captured and those which have not 
been previously captured. Each group has 
separate capture probabilities. Although group 
membership is changing with each capture 
period, Model Mb could provide a reasonable fit 
to data with heterogeneity in some instances. 

Finally, for experiment eight, for the 
Mbh, Mth, and Mtbh data sets, no particular model 
is selected overwhelmingly, and the true model 
is also rarely selected for these data sets. This 
may reflect the combination of small population 
size of N = 100, the negative behavioral effects, 
the average capture probabilities being 20%, and 
the large degree of heterogeneity in the data. For 
a small population, it is difficult to have one data 
set reflect all those sources of variation, causing 
problems for a selection criterion such as AIC. 

Overall the performance of AIC as a 
model selection method for these models is 
encouraging. However, it is recommended that 
AIC be a guide to select a subset of suitable 
models for further analysis. Although AIC 
performed well in selecting the true model when 
the degree of underlying time, heterogeneity, or 
behavioral effects was large, the performance 
when these effects were small means that 
another model is selected. For this reason, it is 
recommended that AIC be used to narrow the set 
of eight models down to a smaller number of 
candidate models. A more detailed analysis 
involving other factors, such as the opinion of a 
subject matter expert, should be used to make 
the final model choice. 
 
Analysis of DIC as a Model Selection Criterion 

The DIC criterion is a recent 
development in model selection. DIC can be 
expressed similarly to AIC. Given the common 
use of AIC, this feature allows users to quickly 
understand the form and use of DIC. 
Additionally, DIC is easy to calculate, as it is a 
function of the posterior parameters and the 
model deviance (where deviance is related to the 
log-likelihood). 

Using the same notation as in the 
definition of AIC, and again denoting D(θ) = -
2LogL(θ |X), and defining pD = E(D(θ)|X) - D(

θ̂ ), where E(D(θ)|X) represents the posterior 
mean of D(θ), it is possible to calculate 
 

DIC = D(θ̂ ) + 2pD,                (4.3) 
 

where θ̂  is a posterior estimate of θ, e.g., θ̂  = 
E[θ |X] or Median[ θ |X]. As stated previously, 
the pD term in DIC represents an effective 
number of parameters. The pD term measures 
the decrease in the deviance (increase in the 
likelihood) obtained by using posterior estimates 
of the parameters θ. Note that although DIC is 
structured to look like AIC, the penalty term is 
actually a function of the model fit, not simply a 
discrete number of parameters. 

For computational purposes, Dev(θ) is 
defined as the MCMC computed deviance for 
any particular data set and model combination 

and D as the MCMC mean of the deviance 

statistic, pD is computed as pD = D - Dev(θ̂ ) 

and computationally, results in DIC = Dev(θ̂ ) + 
2pD. 

In the simulations, DIC did not perform 
as well as AIC in model selection. For several of 
the models, most notably Mbh, the pD penalty 
term in the DIC criterion was frequently 
negative in the simulations. Although pD is 
typically positive for most Bayesian statistical 
models, pD can be negative for a particular 
model and data set if the likelihood function is 
not log-concave. A negative pD rewards, rather 
than penalizes, a model for model complexity. 
When pD is negative, then for simple data sets 
(M0, for example), DIC selects a more complex 
model in the majority of cases. Of particular 
concern was the disproportionately large number 
of selections of model Mbh across all data sets, 
due to the frequency of the penalty term pD 
being negative. Detailed data tables regarding 
the performance of DIC across the eight 
simulation experiments are available at 
http://www.mathsci.appstate.edu/~rmg/. 

Spiegelhalter, et al. (2002) stated that 

alternative choices for θ̂  could be the posterior 
median or posterior mode. So, pD can be 
calculated with these alternatives to the posterior 

mean ofθ̂ . Because DIC performed poorly with 

the posterior mean asθ̂ , the performance of DIC 
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was examined when the posterior median was 

used for θ̂  instead. Ultimately, with this change, 
the problem of negative pD values improved, 
but still persisted with this change. Overall, 
performance of DIC in model selection for these 
models is inferior to that of AIC; based upon this 
simulation study, use of AIC as a model 
selection tool is recommended over DIC. 
 
Analysis of Real Data Sets: Cottontail Rabbit 
Data 

In Edwards and Eberhardt (1967), a 
capture-recapture experiment involving 135 
cottontail rabbits was performed. The rabbits 
were released into a forty acre rabbit-proof area, 
and eighteen capture periods followed after a 
four day waiting period which gave the rabbits 
familiarity with their surroundings. Bayesian 
Models with the Program MARK models are 
compared. The data and a Program MARK 
analysis of the data are included with the MARK 
software package, and Pledger (2000), among 
others, has analyzed this data set. A total of 
seventy-six animals were captured at least once 
during the eighteen capture periods. Forty-three 
animals were captured once during the study, 
sixteen were captured twice, eight were captured 
three times, six were captured four times, two 
were captured six times, and one rabbit was 
captured seven times. 

Using the models provided by Program 
MARK, Table 4 gives the estimate of N for each 
model, and the upper and lower limits of ninety-
five percent confidence intervals for N, and the 
frequentist AIC statistic for each model. For 
Model Mth, the data was analyzed under two 
specifications, once with constant difference in 
capture probabilities between the two mixture 
groups across the time periods, and once without 
this restriction. Estimates and confidence limits 
for N are rounded to the nearest integer. 

Using AIC, it is found that the Mth 
model with additive capture probability 
difference across the r = 2 groups across capture 
periods, and Model Mtbh have comparably small 
AIC values. The point estimator from the chosen 
Mth model is more accurate than the Mtbh model 
and the confidence interval for Mth is narrower. 

Using WinBUGS v.1.4, the Bayesian 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models were fit to the cottontail data, using the 
non-informative prior distributions for N and the 
capture probabilities described in Section 4.1. 

For each model, Table 5 lists N̂  (the posterior 
median), the AIC posterior mean, and ninety-
five percent, equal-tailed posterior interval 
bounds from the MCMC posterior distribution 
of N. Figure 1 shows the MCMC posterior 
density of N for Model Mtb. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Bayesian Model Results for Cottontail 
Dataset 

Model N̂  2.5% 97.5% 
AIC Posterior 

Mean 
M0 97 86 114 461.5 

Mh 145 99 615 453.3 

Mb 96 81 153 464.4 

Mt 92 83 106 453.2 

Mtb 104 88 138 452.8 

Mbh 119 85 581 457.2 

Mth 98 86 120 475.8 

Mtbh 107 88 151 477.2 

Table 4: Program MARK Results for Cottontail 
Dataset 

Estimator N̂  LCL UCL AIC 

M0 96 87 114 379.6 
Mh 

(2 mixture groups) 
136 96 256 369.6 

Mh 
(3 mixture groups) 

157 89 593 373.5 

Mb 94 82 129 381.6 

Mt 95 86 112 354.6 

Mbh 113 86 214 369.1 
Mth 

(2 mixture groups; 
additive) 

133 96 241 341.3 

Mth 
(2 mixture groups; 

unrestricted) 
98 88 117 367.0 

Mtb 162 117 260 343.3 

Mtbh 270 100 1698 341.9 
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Note that AIC chooses Model Mtb. Other 
candidate models with comparable AIC values 
are Mh and Mt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model Mtb underestimates the true N = 135 but a 
95% equal-tail interval from the posterior 

distribution of N contains the true N. The N̂
from the Bayesian Model Mt underestimates the 
true N = 135, as does Model Mt in Program 
MARK. The interval estimates produced by the 
two methods are similar, which is not surprising 
given that relatively uninformative prior 
distributions for the parameters were used, and 
the likelihood functions of the two models are 
the same. 

The Bayesian Mh estimate is somewhat 
above, but relatively close to the true N = 135, 
as are both Mh estimates from Program MARK. 
The Bayesian posterior density of N has a higher 
97.5th percentile than the upper bound for the 
confidence interval given for Model Mh in 
Program MARK. The Model Mh posterior 
density for N is heavily right-skewed, and the 
posterior interval length could be significantly 
shortened by choosing an interval other than an 
equal-tailed interval, or by lowering the 
confidence level. 

Ultimately, the Mtb point estimate of N, 
via the posterior median of N, is comparably 
accurate with the Mtb estimator from Program 
MARK. Also note the Program MARK Mth 
estimator is quite accurate for N. The Bayesian 
Mtb model has a narrower confidence interval 
than that from Program MARK, and the 
Bayesian interval contains the true N = 135. 

Because this is only one data set, general 
conclusions cannot be made. 
 
Analysis of Real Data Sets: Mead’s Milkweed 
Flower Data 

Alexander, Slade, and Kettle (1997) 
used mark-recapture methods to estimate the 
number of Mead’s Milkweed plants on a 4.5-ha 
tract of land in Kansas. The capture periods 
consisted of an annual search of the land area 
over a span of four years. Observed plants were 
marked with a flag so that previous captures 
were detectable in subsequent years. Censuses 
were considered impossible because these plants 
are perennial and do not flower every year. 
Presence of flowering stems makes the plants 
easier to observe. The authors considered the 
population closed over the four-year span 
because the plant has a long lifespan, a high 
survival rate, and births and deaths were 
considered negligible during the study. 
Ultimately, a total of 129 flowers were observed 
in the study. Twenty-two plants were observed 
during one capture period, fifty-six were 
observed during two capture periods, twenty-
five were observed during three capture periods, 
and twenty-six were observed during all four 
capture periods. 

Model Mtbh was chosen as an ideal 
model for the data because time effects occur 
due to annual variation in flowering, behavioral 
effects occur because the visible flags make 
recapture easier in subsequent years, and 
heterogeneity effects occur because some plants 
have larger underground root systems which 
make them more likely to flower in a given year. 
Alexander, et al. used Program CAPTURE for 
the analysis (see http://www.mbr-
pwrc.usgs.gov/software. html for details), Model 
Mtbh was unavailable in Program CAPTURE at 
that time, and they ultimately found some 
reasonable, but non-ideal, options for 
simplifying the data to allow the other seven 
closed population models to be fit. 

Both Program MARK and WinBUGS v. 
1.4 were used to analyze the data set and to 
choose the proper model from using the AIC 
statistic in each case. Results are listed below in 
Tables 6 and 7. Note that in Program MARK, 
Mtb and Mtbh models were fit with behavioral 

Figure 1: Posterior Density of N for Model Mtb 
for Cottontail Dataset 
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effects additive across time periods and mixture 
groups. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparing the results, it is observed 
that in Program MARK, the AIC statistic favors 
Model Mtbh. This model has a very large upper 
bound for the confidence interval and thus a 
wide confidence interval for N. Model Mtb in 
Program MARK has an AIC statistic that is 
fairly close to that of Mtbh and the confidence 

interval for N is much narrower than that of 
Mtbh. 

The Bayesian AIC statistic favors Model 
Mtb, and Models Mth and Mtbh are other possible 
choices. The Bayesian Mtb model has a large 
interval width and a large 97.5th percentile of the 
posterior distribution of N. The competing 
Bayesian models Mth and Mtbh have equal point 
estimates of N, but Mtbh has a much larger 97.5th 
percentile of the posterior distribution of N, 
leading to a wider posterior 95% interval. 
 

Conclusion 
 
In summary, useful findings for closed 
population capture-recapture models have been 
established. Eight Bayesian capture-recapture 
models accounting for the known sources of 
variability in the capture probabilities of closed 
animal populations were developed. Using the 
WinBUGS v.1.4 software, these models were 
easy to fit to capture-recapture data sets, and 
MCMC estimates of the posterior density of N 
are easily obtained from the output. 
Additionally, the modified version of AIC works 
well as a model selection tool for capture-
recapture data sets, thus AIC is useful as a 
preliminary method of reducing the set of 
candidate models from eight down to a smaller 
subset worthy of further exploration to 
determine the best fitting model. The DIC 
criterion did not perform as well as AIC for 
capture-recapture data sets and the use of AIC 
over DIC is recommended. 

Further areas of exploration include 
examining whether informative priors improve 
estimation of N when capture probabilities are 
small. Negative bias in estimating N is common 
for populations with heterogeneity, particularly 
when a significant fraction of the population has 
small capture probabilities. The performance of 
the heterogeneity models (Mh, Mth, Mbh, Mtbh) 
when the finite mixture distribution F has r > 2 
mass points should also be examined. 
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Table 6: Program MARK Results for Mead’s 
Milkweed Dataset 

Estimator N̂  LCL UCL AIC 

M0 132 130 139 227.9 
Mh 

(2 mixture 
groups) 

135 132 144 218.7 

Mb 222 162 393 115.8 

Mt 129 130 135 80.2 
Mbh 

(2 mixture 
groups) 

945 230 6,769 109.7 

Mth 
(2 mixture 

groups) 
130 130 137 51.3 

Mtb 167 137 326 48.1 

Mtbh 1,228 233 11,769 38.4 
 

Table 7: Bayesian Model Results for Mead’s 
Milkweed Dataset 

Model N̂  2.5% 97.5% 
AIC Posterior 

Mean 
M0 133 130 138 263.4 

Mh 136 131 145 259.3 

Mb 270 172 2823 152.4 

Mt 130 130 133 119 

Mtb 632 336 2445 79.8 

Mbh 365 182 2823 149 

Mth 131 130 136 82.9 

Mtbh 131 130 632 85 
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Covariate-Adjusted Constrained Bayes Predictions 
of Random Intercepts and Slopes 
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Constrained Bayes methodology represents an alternative to the posterior mean (empirical Bayes) method 
commonly used to produce random effect predictions under mixed linear models. The general constrained 
Bayes methodology of Ghosh (1992) is compared to a direct implementation of constraints, and it is 
suggested that the former approach could feasibly be incorporated into commercial mixed model 
software. Simulation studies and a real-data example illustrate the main points and support the 
conclusions. 
 
Key words: Mixed linear model, prediction, random effects, shrinkage. 
 
 

Introduction 
 
The standard mixed linear model (e.g., Laird & 
Ware, 1982) remains a popular practical tool for 
analyzing longitudinal, repeated measures, or 
otherwise correlated continuous data. In such 
analyses, the prediction of linear combinations 
of fixed and random effects can be of great 
interest. The typical approach implemented in 
commercial software is to obtain empirical best 
linear unbiased predictors (EBLUPs), which 
estimate the posterior mean of the linear 
combination given the response data (Littell, et 
al., 2006). The general acceptance of these 
empirical Bayes-like predictions stems from 
their   intuitive   appeal  and  their   theoretical 
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underpinnings as minimal prediction mean 
squared error estimates (Searle, et al., 1992). 
They are also referred to as shrinkage 
estimators, given their characteristic of pulling 
subject-specific predictions toward a population 
mean. 

Due to the shrinkage phenomenon, 
EBLUPs stemming from linear mixed models 
exhibit distributions that can be much narrower 
than those assumed to characterize the random 
variables being predicted. Several authors (e.g., 
Efron & Morris, 1971; Louis, 1984; Ghosh, 
1992) have suggested potential drawbacks to 
this general feature and proposed methods that 
reduce shrinkage and/or more closely match the 
predictor and underlying true distributions. 

One effect of overshrinkage in certain 
applications is that it can lead to a lack of 
sensitivity for identifying extreme experimental 
units relative to a fixed threshold (i.e., the 
probability that an EBLUP lies beyond a 
threshold given that the true random variable 
does can be quite small). To improve sensitivity 
in such a context, Lyles and Xu (1999) proposed 
constrained Bayes predictors of random 
intercepts and slopes aimed to minimize mean 
squared error of prediction (MSEP) given that 
the means and variances of the predictor 
distributions match those of the true random 
effects. Lyles, et al. (2007) introduced additional 
prediction criteria (e.g., regional bias and 
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MSEP) that are relevant when extreme subjects 
are of key interest and they suggested that the 
constrained Bayes approach can be an appealing 
alternative in such situations. Constrained Bayes 
prediction of random effects has not been widely 
advocated for use in the mixed linear model 
context. 

The models considered by Lyles and Xu 
(1999) are extended here to use fixed and/or 
time-dependent covariates, and their direct 
constrained Bayes strategy is compared with the 
general paradigm advocated by Ghosh (1992). 
This comparison is relevant for two reasons.  

First, while the criteria put forth by 
Lyles and Xu are specific to the mixed linear 
model, Ghosh’s approach originates from a more 
general and decidedly Bayesian point of view. 
Ghosh provides a paradigm for minimizing a 
mean squared error criterion subject to matching 
the posterior expectation of the first two 
moments of a parameter distribution to 
corresponding moments of the histogram of the 
set of estimates. It is therefore useful to assess 
the performance of Ghosh’s paradigm in the 
mixed model setting and to compare it against 
an approach that is directly rooted in that 
context.  

Second, Ghosh’s method is general, 
flexible, and implemented in a straightforward 
and consistent manner. Therefore its validation 
against an approach directly rooted in the mixed 
model setting could highlight, for practitioners 
and commercial mixed linear model software 
developers, the viability of an accessible 
alternative prediction method. 
 

Methodology 
 
Models and Posterior Mean Predictions 

Two familiar normal-theory mixed 
linear models are used for illustration: the 
random intercept and random intercept/slope 
models, respectively. 

The random intercept (or one-way 
random effects ANOVA) model is specified as 
follows (e.g., Searle, et al., 1992): 
 

ijiij ebμY ++=                (1) 

 

(i = 1,2,…, k; j = 1,2,…, ni), with i indexing the 
subject and j indexing the observation. Typical 
normality assumptions dictate that 

)σN(0,~b 2
bi  and )σN(0,~e 2

wij , with 

independence across subjects and between the 
random terms bi and eij. 

Under model (1), a common objective is 
to predict the ith subject’s random subject-
specific mean, i.e., ii bμμ +=  (i=1,…,k). The 
EBLUP, as provided by standard mixed model 
software, is an estimate of the posterior mean 
E(μi | Y) = E(μi | Yi), where Y and Yi denote the 
complete and ith subject-specific data vectors, 
respectively: 
 

μ)ν(1yν)|E(μμ~ iiiiiii −+=== yY   (2) 
 

where =
=

− in

1j
ij

1
ii yny  , and 

12
bi

2
wi )}σ/(nσ1{ν −+= . 

The parameter νi governs the extent to 
which the predicted value shrinks toward the 
population mean μ, with more excessive 
shrinkage occurring when νi is small (i.e., when 

)σ/(nσ 2
bi

2
w  is large). The BLUP is obtained by 

replacing μ in (2) by its best linear unbiased 
estimate (Searle, et al., 1992), whereas in 
practice the EBLUP also replaces the variance 
components in (2) by their estimates. 

Next, consider the random intercept/ 
slope model, also known as a randomized 
regression or linear growth curve model (e.g., 
Diggle, et al., 1994): 
 

ijijiiij et)b(β)a(αY ++++=   (3) 

 
(i = 1,2,…, k; j = 1,2,…, ni), where tij denotes 
the time at which Yij is measured. Typically this 
model assumes independence across subjects 
and normally distributed random effects as 
follows: 
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with ,σ,σ 2
2

2
1  2

12 σand,σ  denoting the 

variances of the subject-specific intercept and 
slope deviations, their covariance, and the 
random error variance, respectively. 

Under model (3), it is common to seek 
predictions of the ith subject’s random intercept 
(αi = α + ai) and slope (βi = β + bi). As with 
model (1) and most feasible mixed linear 
models, standard software provides EBLUPs for 
these quantities. In this case, they are estimates 
of the posterior means E(αi | Y) = E(αi | Yi) and 
E(βi | Y) = E(βi | Yi). The normality assumptions 
accompanying model (3) yield 
 

i i

i i i i
2 1

n n12 2 i i i i

β E(β | )

β (σ σ )Σ ( α β )−

= =
= + + − −′ ′

 Υ y

1 t y 1 t

    (4) 

 

where 
in

2
iiii σ)Var( IZZY +′== ΔΣ , Zi is 

the design matrix for the simple linear regression 
of Yi on time (ti) for subject i, and Δ = Var

)b,(a ii ′ . Assuming ni ≥ 2, Lyles and Xu (1999) 

showed that E(βi | Yi) takes an appealing form: 
 

i i i

i1 i2 i,ols i3 i,ols

β E(β | )

ˆˆγ γ α γ β

=

= + +

 Y
             (5) 

 

where olsi,α̂  and olsi,β̂  represent the ordinary 

least squares (OLS) intercept and slope from 
regressing Yi on ti. The coefficients in (5) are 
given by: 

iαβi
2
2βi122i /δ)cσv(σγ −= , 

iαβi12αi
2
23i /δ)cσv(σγ −= , 

and 

2i3i1i αγ)γβ(1γ −−= , 

with 

)cv(vδ 2
αβiβiαii −= , 

2 2 2 2
αi i,ols 1 i i i ti

ˆv Var(α ) σ σ [1/ n t /{(n 1)s }],= = + + −
 

2 2 2
βi i,ols 2 i ti

ˆv Var(β ) σ σ / {(n 1)s },= = + −  

 
2 2

αβi i,ols i,ols 12 i i ti
ˆˆc Cov(α ,β ) σ tσ / {(n 1)s },= = − −

 

and where it  and 2
tis  denote the sample mean 

and variance of the observation times 
)t,...,(t

iin1ii ′=t . Similarly, it can be shown 

that 

i i i i1 i2 i,ols i3 i,ols
ˆˆα E(α | ) τ τ α τ β= = + + Y    (6) 

 
with 
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2
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Consider the problem of predicting the 

unknown response under model (3) for subject i 
at some clinically or otherwise significant point 

in time ( *
it ). In other words, seeking to predict 

the value of  
*
iii

*
iijiiij

*
it tβα)tt,β,α|E(YY +=== .  

The posterior mean of *
itY  is 

 
*
iiii

*
it

*
it tβ

~
α~)|E(YY

~ +== Y         (7) 

 

where ii α~andβ
~

 are as defined in (5) and (6), 

for ni ≥ 2. EBLUPs for ii α~andβ
~

 are obtained 

by inserting parameter estimates into the general 
expressions for E(βi | Yi) and E(αi | Yi), where 

ni=1 is permissible. The EBLUP for *
itY  inserts 

the EBLUPs for ii α~andβ
~

 into (7). 

 
Constrained Bayes Predictions 

The constrained Bayes (CB) approach 
(Louis, 1984) was extended by Ghosh (1992) 
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into a flexible paradigm. Lyles and Xu (1999) 
suggested that this general idea provides a 
natural alternative to the EBLUP in the mixed 
linear models context when overshrinkage could 
detract from the desired application of predicted 
values. They applied a slight adaptation of the 
CB concept under models (1) and (3) by 
minimizing prediction mean squared error 
(MSEP) among unbiased candidates whose 
variances match that of the assumed random 
effects distribution. While this necessarily 
results in some sacrifice in overall MSEP 
relative to the posterior mean, it provides a set of 
predictions that more faithfully reproduce the 
underlying distribution of interest and are less 
likely to under-represent the extremeness of 
experimental units in the tails. 

Under model (1), the CB predictor for μi 
recommended by Lyles and Xu is obtained 
directly by forcing the first two moments of the 

iμ
~  and μi distributions to match: 
 

μ)ν(1yνμ~ iiiLXi, −+=           (8) 

 
The square root is indicative of the reduction in 
shrinkage relative to the posterior mean in (2). 
Under model (3), use of a Lagrangian multiplier 
to enforce equality of the second moments while 
minimizing MSEP yields a constrained Bayes 
alternative to the posterior mean in (5): 
 

olsi,3iolsi,2i1iLXi, β̂γα̂γγβ
~ ++=      (9) 

 
The coefficients in (9) are defined as  
 

γi1 = β(1−γi3) −αγi2 ,  
 

2 1/2
i2 i 2 βi i αβi i αiγ η [σ /{v η (2c η v )}] ,= ± + +  

 
and 

 i2i3i /ηγγ =  , 

where 
 

1
αβi12

2
2αiαβi

2
212βii )cσσ)(vcσσ(vη −−−= . 

 
The ± sign in front of γi2 is needed because there 
are two roots, although the positive root is 

usually correct. The positive or negative root is 
taken for γi2 depending on which yields the 
lower value of the MSEP criterion: 
 

2
i i

2 2 2 2
i2 αi i3 βi i2 i3 αβi i2 12 i3 2 2

MSEP E(β β )

(γ v γ v 2 γ γ c ) 2(γ σ γ σ ) σ

= −

= + + − + +



 
(10) 

 
The definitions of ηi and γi2 serve to 

correct a subtle error in the result originally put 
forth by Lyles and Xu (1999). The Appendix 
provides analogous constrained Bayes predictors 

for iα  and *
itY , which are both new to the 

literature. Empirical constrained Bayes (ECB) 
predictions are obtained for practical use by 
replacing unknown parameters by their estimates 
in equations (8), (9), (A1), and (A3), and when 
calculating the MSEP criterion in (10). 

In contrast to the preceding direct 
model-specific CB predictors, consider the 
general CB paradigm provided by Ghosh (1992). 

Using βi under model (3) to illustrate, Bi,β
~

 is 

first taken to indicate the posterior mean (or 
Bayes) predictor for subject i. An algebraic 

expression for Bi,β
~

 was given in (5). Ghosh’s 

approach defines the CB estimate ( Gi,β
~

) as 

follows: 

BBi,Gi, β
~

w)(1β
~

wβ
~ −+=       (11) 

where 

=
=

− k

1h
Bh,

1
B β

~
kβ

~
, w = (1 + H1/H2)

1/2, 

 

 −=
=

k

1h

2
BBh,2 )β

~
β
~

(H ,  

and 

−=−=
=

− k

1h
hh

1
k1 )|Var(β)k(1)}|βtr{Var(H YY1β  

(12) 
 
with β representing the k-vector 

)β,...,β,(β k21 ′ . 
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The latter equality is supplied in (12) as 
a result of assumed independence across 
experimental units for the class of mixed models 
under consideration here. Note that in addition 
to the posterior means, this paradigm requires 
only the corresponding posterior variances. 
Using the previous notation (see equation (4) 
and Appendix), results in: 
 

i i

i i

2 2 1 2
2 12 n 2 i i 12 n 2 i

Var(β | )

σ {σ σ } {σ σ } ,

Y

1 t Σ 1 t−

=
′ ′ ′ ′ ′− + +

 (13) 

i i

i i

2 2 1 2
1 1 n 12 i i 1 n 12 i

Var(α | )

σ {σ σ } {σ σ } ,

Y

1 t Σ 1 t−

=
′ ′ ′ ′ ′− + +

 (14) 

 
and 
 

i i

*
it i

* 1
it i1 n i2 i i i1 n i2 i

Var(Y | )

Var(Y ) {ψ ψ } {ψ ψ } .−

=
′ ′ ′ ′ ′− + +

Y

1 t Σ 1 t

  (15) 
 
ECB predictions for practical use can be 
obtained by replacing unknown parameters by 
their estimates when computing the posterior 
means and variances, and the building blocks for 
these calculations are already built into standard 
software for mixed linear models. 
 
Incorporating Fixed or Time-Dependent 
Covariates 

Consider the following extensions of 
models (1) and (3) to include a set of T 
covariates, some of which may be time-
dependent: 

ij
T

1t
ijttiij ecθbμY  +++=

=
  (16) 

 
T

ij i i ij t ijt ij
t 1

Y (α a ) (β b ) t θ c e
=

= + + + + +    (17) 

 
where cijt represents the observed value of the tth 
covariate for subject i at time point j (t=1,..,T; 

i=1,..,k; j=1,..,ni). Let )c,...,c,(c ijT2ij1ijij =′c  

and form the ni×T matrix Ci by stacking the row 

vectors ′
ijc  in order. Next, define the 

transformed observed data vector 

θCyy iii −=• , where )θ,...,θ,(θ T21 ′=θ . 
The extension to the posterior mean formula in 
(2) is 
 

μ)ν(1yν),|E(μμ~ iiiiiii −+== •CY  (18) 
 
with μi and νi defined exactly as before and 

=
=

•−• in

1j
ij

1
ii yny . In practice, predicting 

θcC ′+== ijiiiijij μ),b|E(YY
~

 may be more 

likely. Standard mixed linear model software 
typically provides the EBLUP for bi, from which 

EBLUPs for μi and ijY
~

 are easily obtained. 

Similarly, extensions to (4) and (5) 
under the randomized regression model (17) are 
 

i i

i i i i

2 1
12 n 2 i i i n i

β E(β | , )

β (σ σ ) ( α β )− •

=
′ ′= + + − −

 Y C

1 t Σ y 1 t
 

 
and 

i i i i

i1 i2 i,ols i3 i,ols

β E(β | , )

ˆˆγ γ α γ β

=

= + +

 Y C
      (19) 

 
where βi, γi1, γi2, and γi3 are defined as before, 

but with olsi,olsi, β̂andα̂  now representing the 

OLS intercept and slope from regressing •
iy  on 

ti. The algebraic expression in (19) requires ni ≥ 
2. Standard software typically provides EBLUPs 
for ai and bi, from which EBLUPs for αi and βi 
follow directly. In turn, the analogue to equation 
(7) becomes 

*

* *
it it i i

*
i i i i,t

Y E(Y | , )

α β t

=

= + +




Y C

c θ
         (20) 

 
which can arguably be defined only for non-
time-dependent covariates unless the values of 
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any time dependent ones are known at time *
it  

(as indicated by the notation *ti,
c ). 

Extensions of the CB predictors 

LXi,LXi,LXi, α~and,β
~

,μ~  in equations (8), 

(9), and (A1) with covariate adjustment 
according to models (16) and (17) require no 
changes to the coefficients already given, once 

the transformation θCyy iii −=•  is made. The 

same is true for *
LXit,Y

~
 in equation (A3), except 

the term θc *ti,
 is added as in (20). ECB 

predictions for practical use follow, once 
estimates of the mixed linear model parameters 
are inserted. 

In adapting the paradigm of Ghosh 
(1992) as in (11) and (12), ECB predictions 
appear straightforward for a broad class of 
general linear mixed models because (i) 
EBLUPs accounting for covariates come directly 
out of standard software, and (ii) the required 
conditional variances [e.g., (13)-(15)] are 
unchanged by the addition of covariates. In the 

case of *
itY

~
, Ghosh’s paradigm requires a 

separate application of posterior mean and 
variance calculations analogous to those in (11) 

and (12) for each unique value of *
it  (Moore, 

2006). 
 
Example 

Consider longitudinal data on CD4 cell 
counts collected for the Pediatric Pulmonary and 
Cardiovascular Complications of Vertically 
Transmitted (P2C2) HIV Infection Study (The 
P2C2 Study Group, 1996). This National Heart, 
Lung, and Blood Institute-funded study enrolled 
infants born to HIV-positive women during the 
years 1990-1993, and followed them 
prospectively during the first few years of life. 
Specifically, data was analyzed on 59 vertically 
infected infants who contributed a total of 539 
CD4 counts over time, with the number of 
measurements per child ranging from 3 to 19. 
Initial CD4 counts were typically observed at or 
within a few weeks of birth. The length of 
follow-up on children ranged from 1 to 6 years, 
with a median of 3.5 years. Also recorded for 

each child was the age at which he or she was 
determined to have reached Class A (mildly 
symptomatic) HIV status (Centers for Disease 
Control and Prevention, 1994). Across the 59 
subjects, this age ranged from 0.4 to 16 months. 

A mixed linear model was fit to these 
data, with age as the longitudinal metameter. 
While there was some indication of right 
skewness in the CD4 counts, standard 
transformations tended to overcorrect this and 
for the sake of clarity the untransformed CD4 
counts were analyzed. For an illustration with 
covariate adjustment, the child’s gender (1 for 
male, 0 for female) and the concurrent CD8 cell 
count were accounted for via the following 
model: 
 

ij

1 2i i ij i ij ij

CD4

(α a ) (β b )AGE θ GENDER θ CD8 e

=
+ + + + + +

 

(21) 
 
The primary objective was to compare EBLUP 
and ECB predictions of the random intercepts 
(αi = α+ai) and random slopes (βi = β+bi). For 
this purpose, both the direct ECB approach 
patterned after Lyles and Xu (1999; ‘LX ECB’) 
and the general ECB method following Ghosh 
(1992) were investigated. 

Next, EBLUP and Ghosh ECB 

predictions of *
itY  were compared, where *

itY  = 

i2i1
*
iii 8CDθGENDERθtβα +++  represents 

the unknown model-based CD4 count at  time 
*
it . For this latter purpose, *

it  was defined as 
the age at which the child was diagnosed with 
Class A HIV disease, and model (21) was re-fit 
with the initial CD8 count (CD8i) in place of the 
time-dependent version in light of the fact that 

CD8 was unrecorded at the times *
it . Table 1 

provides the coefficient and variance component 
estimates from fitting both versions of model 
(21) by maximum likelihood via SAS PROC 
MIXED (SAS Institute, Inc., 2004a). The table 
indicates a highly significant average decline of 
approximately 400 CD4 cells per year, little 
effect of gender, and a significant positive 
association with the CD8 count, regardless of 
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whether the latter was measured only initially or 
treated as time-dependent. 

In Figure 1A, EBLUPs are plotted for 
the random intercepts αi  against the 
corresponding Ghosh ECB predictions, based on 
the model treating CD8 as time-dependent. The 
EBLUPs were obtained directly from the mixed 
linear model software, and the Ghosh ECBs 
were computed readily using the EBLUPs and 
posterior variance calculations with variance 
components replaced by their MLEs (see e.g., 
eqns. 11-15). The reduction in shrinkage 
afforded by the CB method is evidenced by the 
characteristic tilting in the pattern of plotted 
points. 

Figure 1B plots the LX ECB predictions 
of αi  versus the Ghosh ECBs. To obtain the LX 
ECBs, the MLEs for variance components were 
inserted into the formulae provided herein, with 
covariate adjustment as described in Section 2.3. 
With a few exceptions, the two approaches 
produce essentially identical results. The sample 
means of the 59 EBLUP, Ghosh ECB, and LX 
ECB predicted values were 1675.5, 1675.5, and 
1675.3, respectively. The corresponding sample 
variances were 365470, 475026, and 473752. 
Comparing these to 5.1675α̂ =  and 

468832σ̂2
1 = (Table 1) highlights the moment 

matching characteristics of the CB approaches, 
as well as the overshrinkage of the EBLUP. 

Figure 2 is the counterpart to Figure 1, 
for the predicted random slopes (βi ). The tilting 
remains prominent in Figure 2A, while Figure 
2B reveals somewhat more pronounced 
discrepancies between the Ghosh and LX ECB 
point predictions than in the case of the 
intercepts. The sample means of the EBLUP, 
Ghosh ECB, and LX ECB predicted values were 
−388.2, −388.2, and −395.3, respectively, with 
sample variances of 27904, 48316, and 49401. 

Comparing these to 2.388β̂ −=  and 

47843σ̂2
2 = (Table 1) again highlights the ECB 

moment-matching properties in action. 
Figure 3 illustrates the reduction in 

shrinkage of the Ghosh ECB predictions (open 
circles) of CD4 cell counts at the time of Class 

A disease ( *
itY ), relative to the EBLUPs (closed 

circles). Separate plots are presented for females 

and males, with overlays of the population 
average regression lines calculated at the overall 
mean of the 59 initial CD8 counts (1294.7 cells). 
The lines provide a relevant visual reference 
based on the fit of model (21) (Table 1), 
although the plotted points were not expected to 
directly follow these linear trends given that 
subjects with less rapidly declining CD4 counts 
theoretically reach Class A disease at later ages. 
 

Results 
 
While the close agreement of the sample means 
and variances of the ECB predictions to the 

corresponding estimated moments ( α̂  and 2
1σ̂ , 

β̂  and 2
2σ̂ ) in the real-data example is 

indicative, simulation studies are required to 
further assess the quality of the variance match 
and to compare the performances of the Ghosh 
and LX ECB methods in practical settings. 
Several combinations of covariates and true 
parameter values were examined and 
qualitatively similar results were found. In the 
interest of brevity and relevance to the 
application presented in the previous section, 
simulations designed to mimic the conditions 
observed in the example are summarized. 
Simulations were carried out using matrix 
manipulations and standard random number 
generating functions available in the SAS IML 
package (SAS Institute, Inc., 2004b). 
 
Performance comparison: LX vs. Ghosh CB 
predictors 

Data was generated according to model 
(21) for 20,000 hypothetical subjects, with true 
parameter values equal to the estimates listed in 
the top half of Table 1. The fabricated CD4 data 
were unbalanced with ni ranging randomly 
between 2 and 10, and measurements were 
unequally timed over approximate 2 month 
intervals. Simulated subjects were male or 
female with probability 0.5. For simplicity, time-
varying CD8 counts were generated at each visit 
from a normal distribution mimicking the 
sample mean and variance of the initial CD8 
counts in the actual example. To illustrate results 

for predicting *
itY , the same simulation exercise 

was repeated except with a time independent  
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Table 1: Summary of mixed linear models fit to CD4 cell count data * 

Model † Coefficient 
Estimate 

(standard error) 
Variance 

Component 
Estimate 

CD8 as time-
dependent 

α 
1675.50 
(138.27) 

2
1σ  468832 

β 
−388.17 
(38.06) 

2
2σ  47843 

θ1 
−163.41 
(146.61) 12σ  −103226 

θ2 
0.26 

(0.03) 
2σ  477810 

CD8 as time-
independent 

(initial value) 

α 
1735.88 
(188.60) 

2
1σ  429957 

β 
−417.51 
(40.57) 

2
2σ  55206 

θ1 
−105.28 
(146.61) 12σ  −102537 

θ2 
0.27 

(0.10) 
2σ  529062 

* Data from P2C2 HIV Infection Study (The P2C2 Study Group, 1996) 
† ij i i ij 1 i 2 ijCD4 (α a ) (β b )AGE θ GENDER θ CD8 e= + + + + + +  

Figure 1: EBLUP (panel A) and LX ECB (panel B) vs. Ghosh ECB predictions for random intercepts 
(αi) based on the fit of model (21) with CD8 count as time-dependent 
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Figure 2: EBLUP (panel A) and LX ECB (panel B) vs. Ghosh ECB Predictions for Random Slopes 
(βi) Based on the Fit of Model (21) with CD8 Count as Time-Dependent 

Figure 3: EBLUP (dark circle) vs. Ghosh ECB (open circle) Predictions of 
* *
it i i i 1 i 2 iY α β t θ GENDER θ CD8= + + +  for Females (panel A) and Males (panel B), with Initial 

CD8 Count as a Time-Independent Covariate 
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initial CD8 count in place of the time-varying 

version. The time point of interest ( *
it ) was 

taken to occur at 2 years for each simulated 
subject. 

Table 2 summarizes the simulation 
results for predicting the αi’s and βi’s, and Table 

3 summarizes the results for predicting *
itY . In 

each case, the sample means of the BLUPs and 
the two CB predictors closely match the true 
mean of the random variable being predicted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The sample variances over 20,000 simulated 
subjects for both the LX and Ghosh CB methods 
are very close to the corresponding true 
variances in each case, while the overshrinkage 
of the BLUPs is evident by their notably tighter 
sampling distributions. As a final note, the 
empirical prediction MSEs of the LX and Ghosh 
methods are similar, though predictably 
somewhat larger than those for the 
corresponding BLUPs. In each case, the Ghosh 
method achieved a small MSE advantage 
relative to the LX approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Simulation Results for Random Intercept and Slope Predictions*† 

 True αi’s BLUPi,α~  LXi,α~  Gi,α~  

Mean 1675.5 1680.8 1681.2 1680.8 

Variance 468832 376252 475834 474736 

Prediction MSE -- 98600 105400 104469 

 True βi’s BLUPi,β
~

 LXi,β
~

 Gi,β
~

 

Mean −388.2 −389.4 −386.2 −389.4 

Variance 47843 16115 48693 48134 

Prediction MSE -- 31593 40375 40125 

*Data simulated to mimic model (21) with parameters equal to estimates in 
Table 1 (top) 
†Predictions computed assuming parameter values that generated the data 

Table 3: Simulation Results for *
itY  Predictions*† 

 True s'Y*
it  *

BLUPit,Y
~

 *
XLit,Y

~
 *

Git,Y
~

 

Mean 1156.4 1158.4 1158.3 1158.4 

Variance 289054 177184 289249 288880 

Prediction MSE -- 110636 128884 124112 

*Data simulated to mimic model (21) with parameters equal to estimates in 
Table 1 (bottom) 
†Predictions computed assuming parameter values that generated the data 
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Flexibility of Ghosh’s Approach under More 
General Covariance Structures 

The LX approach, while presentable in 
closed form for the models considered thus far, 
relies upon a strict form for candidate predictors 
and may be cumbersome or infeasible to extend 
to arbitrary mixed linear models. For example, 
consider an extension of model (17) to 
incorporate serially correlated random errors, 

e.g., via an AR(1) structure. Rather than 
i

2
nσ ,I  

the covariance matrix of the ith vector of random 
errors )( ie  now takes the form 
 

i

i

n 12

n 2

2 2

i AR(1)

1 ρ ρ ... ρ

1 ρ ... ρ

1 ρ .
Var( ) σ σ

.

.

1

−

−

= =

 
 
 
 
 
 
 
  
 

e Ρ  

 
The structured error covariance makes it less 
reasonable to restrict to the class of predictors 

that are linear combinations of olsi,α̂  and olsi,β̂  

[see eqn. (5)] in order to develop a CB predictor 
via the LX approach. Further, the MSEP 
becomes a much more difficult objective 
function to work with analytically. 

Fortunately, the general paradigm of 
Ghosh (1992) encounters no difficulty with such 
an extension. In particular, the EBLUP remains 
available via common mixed linear model 
software, and the MVN theory-based posterior 
variance remains straightforward, with the only 
adjustment necessary to equations (13) and (14) 
being that the matrix 

in
2

iiii σ)Var( IZZY +′== ΔΣ  becomes 

AR(1)
2

i σ ΡZΔZΣ ii +′= . 

Table 4 displays the results of an 
additional simulation under the AR(1) error 
model. Data were generated under model (21) 
using the same true parameter values as for the 
simulation summarized in the top half of Table I, 
except with an AR(1) error structure for the 
covariance matrix of the random errors. The 
value ρ=0.30 was assumed. There were 5,000 

simulated subjects, each with ni=8 observations. 
The model was fit via SAS PROC MIXED and 

the ECB versions of Gi,α~  and Gi,β
~

 were 

computed as in (11) and (12), by incorporating 
the EBLUPs produced by the software together 
with the estimated posterior variances as in (13) 
and (14). 

As Table 4 shows, excellent matches 
were achieved between the sample means and 
variances of the ECB predictions, and the 
corresponding estimated population moments 

)σ,σβ,,( 2
2

2
1α . Figure 4 displays histograms of 

the ECBs, which almost perfectly match the 
overlaid estimated theoretical normal 
distributions. In contrast, histograms of the 
EBLUPs (not shown) are characterized by 
markedly narrow spread as expected, thus 
dramatically failing to match the underlying 
theoretical distribution. Potential drawbacks of 
this overshrinkage in certain applications have 
been discussed at length in the literature (e.g., 
Louis, 1984; Ghosh, 1992; Shen & Louis, 1998; 
Stern & Cressie, 1999). The current example 
further highlights the flexibility of the Ghosh 
paradigm as a general approach to ECB 
prediction under the mixed linear model. 
 

Conclusion 
 
Louis (1984) and Ghosh (1992) discussed the 
motivation and potential benefits of constrained 
Bayes estimation, which seeks to optimize a 
traditional MSE criterion subject to matching the 
posterior expectation of the first two moments of 
a parameter distribution to the corresponding 
true moments. In particular, the known overall 
MSE advantage of the traditional posterior mean 
approach (which underlies the BLUP in the 
mixed linear model setting) is sometimes worth 
sacrificing to obtain a set of predictions with a 
histogram more closely matching a true 
distribution of random effects. For specific 
discussions of contexts in which constrained 
Bayes and related approaches offer tangible 
appeal, see Shen and Louis (1998), Lyles and 
Xu (1999), Stern and Cressie (1999), and Lyles, 
et al. (2007). 
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Table 4: Simulation Results for Random Intercept and Slope Predictions Under 
AR(1) Error Model*† 

Parameter 
Estimates‡ 

ECB Sample 
Moments Gi,α~  Gi,β

~
 

818994σ̂

4.06831α̂
2
1 =

=
 Mean 1683.04 −389.21 

53551σ̂

1.2938β̂
2
2 =

−=
 Variance 481961 53556 

*Data simulated to mimic model (21) with k=5000, ni=8 (∀ i), true parameters 
set equal to estimates in Table 1 (top), and ρ=0.30 
†Ghosh ECB predictions computed by inserting MLEs of parameters 

‡MLEs; Other parameter estimates: 1 2 12
ˆ ˆ ˆθ 172.30,θ 0.23,σ 112073,= − = = −  

2 ˆσ̂ 510618,ρ 0.29= =  

Figure 4: ECB Histograms Using Simulated Data from AR(1) Model (Table IV) 
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The purpose of this article has been to outline 
and compare in detail the application of a direct 
(LX) CB approach considered by Lyles and Xu 
(1999) for certain mixed linear models, as 
opposed to the general method of Ghosh (1992). 
Both approaches were explored in the presence 
of covariates (possibly time-dependent), and it 
was concluded based on simulations and a real-
data example that both may be effectively 
applied to achieve the moment-matching goals 
of the CB paradigm. 

The LX approach, while presentable in 
closed form for the models considered herein, 
relies upon a strict form for candidate predictors 
and may not be straightforward to extend to 
arbitrary mixed linear models. However, as 
highlighted previously, the general method of 
Ghosh (1992) appears remarkably flexible and 
consistent in its application. In practice, it 
requires only EBLUPs and estimates of the 
posterior variances of the random effects being 
predicted, with the latter readily obtainable 
under normal-theory mixed models. It thus 
seems natural to compare the performance of the 
Ghosh method versus the LX approach in mixed 
model settings where the latter is available. The 
simulation studies summarized (and others, 
unreported) consistently show the Ghosh 
approach to be as effective as the direct LX 
method at matching moments, and also suggest 
slight prediction MSE gains via its use for 
unbalanced data. 

Because the primary aim was to serve as 
proponents of the ECB approach under the 
mixed linear model, the results of the current 
study are encouraging. The CB paradigm of 
Ghosh (1992) relies on building blocks that are 
available in commercial software for mixed 
linear models (e.g., SAS PROC MIXED and 
similar procedures in other packages such as 
Splus, R, SPSS, STATA or BMDP). It was 
shown that it performs well relative to a direct, 
but far less flexible, CB approach developed 
expressly for mixed linear models. Although 
further assessments will be necessary, it is hoped 
that these results will encourage software 
developers to consider the possible inclusion of 
options to produce the Ghosh ECB predictions 
in future releases. This software advance would 
be welcome, for the purpose of allowing 
practitioners the freedom to select a validated 

alternative to the traditional EBLUP when 
overshrinkage could run counter to the objective 
at hand. 
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Appendix 
 
A constrained Bayes predictor for the ith 
subject’s random intercept (αi) may be obtained 
via calculations similar to those leading to 

LXi,β
~

 in equation (8), as follows: 

olsi,3iolsi,2i1iLXi, β̂τα̂ττα~ ++= ,   (A1) 

 
where  

τi1 = α (1−τi2) −βτi3, 
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Specifically, iα
~  defined in this way minimizes 

MSEP among predictors of the form (A1) 

subject to the constraints that i iE(α ) E(α ) α= =  

and 2

i i 1Var(α ) Var(α ) σ= = , where the MSEP 

criterion is 
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In an analogous manner, constrained Bayes 

predictor for *
itY  is defined as 

olsi,3iolsi,2i1i
*

LXit, β̂φα̂φφY
~ ++= ,  (A3) 

where 

1iφ  = α (1− 2iφ ) −β( 3iφ − *
it ), 

 
2/1

βiiαβiiαi3i2i )}]vωc(2ω/{v[ψφ ++±= , 

 
and 

2ii3i φωφ =  , 

with 
1

i αi i2 i1 αβi βi i1 i2 αβiω (v ψ ψ c )(v ψ ψ c ) ,−= − −  

 

12
*
i

2
11i σtσψ += , 2

2
*
i122i σtσψ += , 

 
and 

12
*
i

2
2

*2
i

2
13i σt2σtσψ ++= . 

 
This minimizes MSEP for predictors of the form 
(A3), subject to the constraints 
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As with γi2 in equation (9), technically 

the choice of the positive or negative root to 
define τi2 and 2iφ  should be based on which 
minimizes the corresponding MSEP criterion. 
However, it has been observed that the negative 
roots have never applied except in the case of γi2. 
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Effects of Population Distribution, Sample Size and Correlation Structure 
on Huberty’s Effect Size R 
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Huberty’s (1994) R2 is derived by subtracting the expected value of R2 from an adjusted R2, and the 
square root of Huberty’s R2 is Huberty’s effect size R. The present study examined the effects of 
population distribution, sample size and population correlation structure on the statistical power of 
Huberty’s R. 
 
Key words: Huberty’s R; Statistical Power; Multiple Regression; Effect Size. 
 
 

Introduction 
 
In the context of multiple regression analysis, it 
is often standard practice to examine whether the 
squared multiple correlation coefficient, R2, is 
statistically significant. The intent of such a test 
is to determine whether R2 differs significantly 
from zero, and the null hypothesis may be stated 
as Ho: ρ

2 = 0. Although this test is widely used, 
it is misleading because the expected value of R2 
is not zero when ρ = 0. Rather, as Morrison 
(1990) pointed out, the expected value, or 
expected long-run mean, of R2 is equal top / N – 
1, where p is the number of predictor variables. 
The implication of this equation is that R2 should 
be examined in relation to the expected value of 
R2, E(R2), because the latter quantity is the value 
of R2 that can be expected simply by chance.  

In light of this realization, it seems more 
appropriate for researchers to test the null 
hypothesis, Ho: ρ

2 = ρo
2, where ρo

2 = E(R2). 
Darlington (1990) gave an F statistic for testing 
this null hypothesis and Huberty (1994) 
presented an adjusted R2 index that takes into 
account the value of E(R2). The formula for 
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Huberty’s adjusted R2 index is: 
 

R2
adj = (R2 - E(R2)) / (1 - E(R2)). 

 
Huberty (1994) also presented an effect size 
measure for multiple regression studies that is 
calculated by subtracting E(R2) from Huberty’s 
adjusted R2 index. This effect size measure 
seems more appropriate than either R2 or the 
adjusted R2 given that it simultaneously accounts 
for both shrinkage and the sample size-to-
predictor ratio. 

Despite the apparent appropriateness of 
Huberty’s effect size measure, standard 
statistical software packages, such as SPSS and 
Minitab, report only R2 and adjusted R2 values. 
Furthermore, although fourteen years have 
passed since the article was first published, very 
little, if any, quantitative research has been 
conducted on Huberty’s proposed effect size 
measure. Due to this omission from the 
statistical literature, the present study generated 
simulated data and examined Huberty’s effect 
size measure under different population 
distributions, sample sizes, and population 
correlation structures. 
 

Methodology 
 
Random variables were generated from the 
following three population distributions: Normal 
(µ = 0, σ = 1), Weibull (λ = 0.5, k = 1.2), and 
Poisson (µ = λ = 0.5). These distributions differ 
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in shape and are representative of the types of 
data distributions often encountered in applied 
research. The Weibull distribution, for example, 
is commonly used to model failure 
characteristics such as infant mortality, random 
failures, product wear-out, and the breaking 
strength of materials; it is also appropriate for 
lifetime modeling/survival analyses. Although 
similar in form to the exponential distribution 
the Weibull distribution can accommodate 
hazard changes over time, unlike the exponential 
which assumes a constant hazard rate (Heo, 
Faith, & Allison, 1998). The Poisson 
distribution is a discrete distribution that is often 
used to model counts, such as the number of 
arrivals, deaths, or failures in a given time 
period, and it can also be used to model the 
number of times a random event occurs over a 
given distance or across a particular spatial area. 
Such modeling of frequency count data per unit 
time, distance or area is tantamount to modeling 
rate data. 

For each of the three population 
distributions, four random variables were 
generated for three different sample sizes (N’s of 
50, 100, 200) and three different population 
correlation structures (ρ’s of 0.15, 0.30 and 0.65, 
representing low, moderate and high levels of 
correlation, respectively). This data generation 
process resulted in a total of 27 sets of four 
random variables (i.e., 3 distributions x 3 sample 
sizes x 3 correlation structures). For each set of 
four random variables, the specified correlation 
structure was induced by adding a multiple of a 
random variable, U, from the same population 
distribution to each randomly generated variable 
(X1, X2, X3, and Y). For each variable set, the 
value of the multiplicative constant, c, was 
chosen to produce the desired correlation. The 
specific algorithm was as follows: 
 

X1new = (X1 + cU) / (1 + c2) 
X2new = (X2 + cU) / (1 + c2) 
X3new = (X3 + cU) / (1 + c2) 
Ynew = (Y + cU) / (1 + c2) 

 
In generating the new, correlated, 

variables the choice as to which variable 
constituted Y was arbitrary. For consistency, the 
fourth correlated variable was always designated 
as Y. An important point concerning this 

methodology is that the algorithm produces 
variables that correlate, on average, at the 
specified level of correlation. By generating 
variables that demonstrate approximate rather 
than exact and unvarying levels of correlation, 
the above algorithm produces sets of correlated 
variables that more closely mirror real-world 
datasets. For example, in the case of the Weibull 
distribution with N = 200 and a population 
correlation structure of 0.30, the mean empirical 
correlation for the four variables was 0.303 and 
the 95% confidence interval for the mean r 
ranged from 0.272 to 0.334. All of the variables 
in the present study were generated using the 
Statistical Package for the Social Sciences 
(SPSS, version 14). 

For each of the 27 simulated datasets, a 
simultaneous multiple regression analysis was 
conducted (using SPSS) whereby Y was 
regressed onto the three predictor variables (X1, 
X2 and X3). The resulting R2 value, along with 
the sample size, N, and the number of predictors, 
p, was then entered into a SAS data step 
program to calculate the expected value of R2, 
Huberty’s adjusted R2 index, and Huberty’s 
effect size measure (the SAS data step program 
is available from the author upon request). For 
each of the 27 datasets, the square root of 
Huberty’s R2 effect size measure - hereafter 
referred to as Huberty’s effect size R - was 
examined to determine whether, given a 
specified sample size (50, 100, 200), number of 
predictors (3), level of statistical power (0.80) 
and alpha level (0.05), the value of R would be 
large enough to attain statistical significance at  
p ≤ 0.05. The relevant power calculations were 
carried out using a FORTRAN program written 
by Dunlap, Xin, and Myers (2004). This 
program calculates power using the random, or 
unconditional, approach recommended by 
Gatsonis and Sampson (1989). Monte Carlo 
simulation results reported by Dunlap, et al. 
(2004) indicate that the random approach is 
more accurate than the more commonly used 
fixed approach. For each generated dataset, 
Huberty’s effect size R was evaluated against the 
minimally detectable population R given the 
specified sample size, power = 0.80, alpha = 
0.05, and p = 3 predictors. Based on Dunlap et 
al.’s power program, the minimally detectable 
population R values under these conditions for 
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N’s of 200, 100, and 50 are 0.231, 0.323, and 
0.448, respectively. Considering the above R 
values as comparative benchmarks, the objective 
of this study was to examine the effects of 
population distribution, sample size, and 
population correlation structure on the power of 
Huberty’s effect size R, where power is defined 
as being adequate (≥ 0.80) when Huberty’s R 
exceeds the minimally detectable population R. 
 

Results 
 
For all cases with a correlation structure of ρ = 
0.65, Huberty’s effect size R estimates exceeded 
the minimally detectable population R, thereby 
demonstrating adequate levels of statistical 
power. For cases with a correlation structure of ρ 
= 0.30, six of the nine Huberty R estimates 
demonstrated adequate power, two demonstrated 
inadequate power, and one could not be 
calculated. The two underpowered cases were 
the Weibull distribution at N = 100 and the 
Poisson distribution at N = 100. The incalculable 
estimate was for the Weibull distribution at N = 
50. Huberty’s effect size R could not be 
computed for this case because the value of 
Huberty’s adjusted R2 index (0.030) was less 
than the expected value of R2 (0.061). The 
difference between these two values equals 
Huberty’s effect size measure, R2, which in this 
case amounted to −0.031 (i.e., 0.030 - 0.061). 
Because the square root of a negative number 
cannot be computed, the value of Huberty’s 
effect size R for this case is incalculable. For 
cases with a correlation structure of ρ = 0.15, six 
of the nine Huberty R estimates were 
underpowered and the remaining three could not 
be calculated (for the same reasons as noted 
above). The Huberty effect size R estimates and 
other relevant data for each case examined in 
this study are presented in Table 1. 

One finding of interest concerns the two 
underpowered cases with a correlation structure 
of ρ = 0.30 (the Weibull and Poisson 
distributions at N = 100). In an effort to explain 
these findings, the mean empirical correlations 
and the coefficients of variation (CV; standard 
deviation of the empirical correlations divided 
by the mean correlation) for the Weibull and 
Poisson cases were compared against the 
corresponding, adequately powered, Normal 

distribution case. All of the mean correlation 
comparisons were statistically nonsignificant (all 
Fisher Z-tests < 0.50, all p-values > 0.60). By 
contrast, all pairwise likelihood ratio tests on the 
CV’s were statistically significant (p’s < 0.005), 
with the Weibull and Poisson CV’s being 
significantly larger than the Normal distribution 
CV. These data suggest that, relative to the 
Normal case, the greater noise-to-signal ratio in 
the empirically generated correlations for the 
Weibull and Poisson cases may have contributed 
to their compromised levels of statistical power. 

Another finding of interest was the 
negative value for Huberty’s R2 (and 
corresponding incalculable value for Huberty’s 
effect size R) for the Weibull distribution at N = 
50 and correlation structure of ρ = 0.30. 
Although the reason for this finding is not 
entirely clear, one possible explanation is that 
the small sample size (50) and relatively large 
CV (0.326) interacted with the shape (i.e., 
moments) of the Weibull distribution to produce 
an insufficiently large R2 value. With respect to 
the cases with a correlation structure of ρ = 0.15, 
the fact that all six of the calculated Huberty R 
estimates were underpowered (three were 
incalculable) suggests that such a low level of 
intercorrelation among predictors and criterion 
generated a regression model that lacks adequate 
statistical power. It is important to note, 
however, that the data generation algorithm used 
in this study produced empirical correlations for 
the ρ = 0.15 cases that were noticeably more 
variable, as evidenced by the CV’s, than were 
the correlations for the 0.30 and 0.65 cases. This 
heightened level of variability could have 
contributed to the underpowered estimates for 
the ρ = 0.15 cases. These same two factors (low 
level of intercorrelation, greater variability in 
estimated correlations), more so than sample 
size and distribution type, are the likely reasons 
underlying the incalculable Huberty R estimates. 

One point worth mentioning about 
statistical power analysis in the context of 
multiple regression is that the algorithms used to 
compute integrals from the distribution of R2 
assume that the joint distribution of predictors 
and criterion is multivariate normal (Dunlap et 
al., 2004; Gatsonis & Sampson, 1989). When 
the multivariate distribution deviates from  
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Table 1: Huberty’s Effect Size R and Related Statistics 
 

Distrib N rstruct ExpRsq HuberRsq HuberES HuberESR Meanr Sdr CVr 

Weib 200 0.15 0.015 0.038 0.023 0.152 0.145 0.031 0.214 
Weib 200 0.30 0.015 0.164 0.149 0.386 0.303 0.030 0.099 
Weib 200 0.65 0.015 0.554 0.539 0.734 0.655 0.022 0.034 
Poiss 200 0.15 0.015 0.033 0.018 0.134 0.139 0.048 0.345 
Poiss 200 0.30 0.015 0.168 0.153 0.391 0.321 0.040 0.125 
Poiss 200 0.65 0.015 0.557 0.542 0.736 0.665 0.022 0.033 
Norm 200 0.15 0.015 0.023 0.008 0.089 0.156 0.064 0.410 
Norm 200 0.30 0.015 0.140 0.125 0.354 0.321 0.058 0.181 
Norm 200 0.65 0.015 0.519 0.504 0.710 0.659 0.034 0.052 
Weib 100 0.15 0.030 0.001 -0.030  0.146 0.092 0.630 
Weib 100 0.30 0.030 0.099 0.068 0.261 0.295 0.078 0.264 
Weib 100 0.65 0.030 0.496 0.465 0.682 0.643 0.043 0.067 
Poiss 100 0.15 0.030 0.012 -0.018  0.153 0.063 0.412 
Poiss 100 0.30 0.030 0.123 0.093 0.305 0.312 0.060 0.192 
Poiss 100 0.65 0.030 0.508 0.478 0.691 0.651 0.034 0.052 
Norm 100 0.15 0.030 0.056 0.026 0.161 0.145 0.061 0.421 
Norm 100 0.30 0.030 0.244 0.214 0.463 0.357 0.051 0.143 
Norm 100 0.65 0.030 0.594 0.563 0.750 0.672 0.030 0.045 
Weib 50 0.15 0.061 -0.054 -0.115  0.165 0.118 0.715 
Weib 50 0.30 0.061 0.030 -0.031  0.304 0.099 0.326 
Weib 50 0.65 0.061 0.491 0.430 0.656 0.668 0.043 0.064 
Poiss 50 0.15 0.061 0.113 0.051 0.226 0.152 0.171 1.125 
Poiss 50 0.30 0.061 0.315 0.254 0.504 0.390 0.128 0.328 
Poiss 50 0.65 0.061 0.651 0.589 0.767 0.693 0.074 0.107 
Norm 50 0.15 0.061 0.076 0.015 0.122 0.161 0.104 0.646 
Norm 50 0.30 0.061 0.274 0.212 0.460 0.369 0.090 0.244 
Norm 50 0.65 0.061 0.608 0.547 0.740 0.688 0.042 0.061 

 
Notes: Distrib = Population distribution (Weibull, Poisson, Normal); N = Population sample size; 
rstruct = Population correlation structure; ExpRsq = Expected value of R2; HuberRsq = Huberty’s 
adjusted R2; HuberES = Huberty’s adjusted R2 minus the expected value of R2; HuberESR = The 
square root of HuberES; Meanr = Arithmetic average of empirically generated correlations (i.e., 
correlations among X1, X2, X3, and Y); Sdr = Standard deviation of empirically generated 
correlations; CVr = Coefficient of variation for empirically generated correlations (i.e., Sdr / 
Meanr). Blank entries for HuberESR indicate incalculable values (see text for details). 
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normality, then power estimates may become 
biased. However, the extent of bias is difficult to 
quantify and represents an important topic for 
future research. Another point worth noting is 
that the present investigation focused solely on 
factors affecting the power of Huberty’s overall 
multiple regression coefficient. Factors affecting 
the power of individual predictors within the 
context of a larger regression model were not 
considered (for a treatment of this topic, the 
reader is referred to Maxwell, 2000). Though it 
is commonplace in multiple regression to test the 
partial contribution of a single predictor in the 
context of other predictor variables, such a 
practice is not without interpretive problems 
(Dunlap & Landis, 1998). A final point is that, 
in the present study, datasets with known a 
priori properties, in terms of population 
distribution, sample size and correlation 
structure, were generated and the obtained 
power of Huberty’s effect size R was examined 
for each generated dataset. The present 
investigation was not a Monte Carlo simulation 
study in which the empirical properties of one or 
more statistical tests were examined. Such 
Monte Carlo work designed to investigate the 
power and efficiency (Type I error rate) of a 
significance test of Huberty’s R represents an 
important direction for future research. 
 

Conclusion 
 
This study examined the power of Huberty’s 
effect size R under three different population 
distributions (Weibull, Poisson, Normal), 
sample sizes (N’s of 50, 100, 200), and 
population correlation structures (ρ’s of 0.15, 
0.30, and 0.65). For all conditions with a 
correlation structure of 0.65, Huberty’s R 
demonstrated adequate statistical power. For 
cases with a correlation structure of 0.30, six of 
the eight estimated Huberty R values maintained 
adequate power (one value could not be 
calculated). For cases with a correlation 
structure of 0.15, the Huberty R values were 
either underpowered (six cases) or incalculable 
(three cases). 

These results suggest that - in the 
context of multiple regression research - 
Huberty’s effect size R maintains adequate 
statistical power under a variety of distributional 

shapes, samples sizes and correlation structures. 
The notable exception to this rule concerns cases 
with a correlation structure of 0.15, in which all 
of the estimated Huberty R values (six of nine 
cases) were underpowered. Such low power 
estimates suggest that practitioners of multiple 
regression analysis should restrict their attention 
to variables that correlate above 0.15 if they 
hope to maintain adequate statistical power for 
Huberty’s effect size R (at least for models with 
3 predictors and sample sizes ≤ 200). The 
precise magnitude of correlation needed to 
maintain adequate power for Huberty’s R under 
various distributional shapes and sample size 
conditions is a topic for future research. It is 
hoped that the present study fosters a greater 
appreciation of Huberty’s R and that the findings 
motivate additional research into factors that 
influence the statistical power of Huberty’s 
effect size R. 
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The behavior of the t test in small samples for coefficient significance in time-series regressions is 
examined after using the Prais-Winsten (PW) and Cochrane-Orcutt (CO) corrections for autocorrelation. 
Results are compared to ordinary least squares and generalized least squares. 
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Introduction 
 
The Prais-Winsten (PW) and Cochrane-Orcutt 
(CO) methods are popular procedures for 
correcting for autocorrelation in time-series 
regression models. Both methods transform the 
data using a differencing transformation to 
remove autocorrelation. Ordinary least squares 
(OLS) applied to the transformed observations 
will yield estimators that are asymptotically 
more efficient than OLS applied to the original 
data.  

The PW and CO methods are essentially 
equivalent except for the treatment of the first 
observation in the data set. The CO method 
simply omits the first observation, while the PW 
method transforms the observation and retains it. 
Asymptotically, there is no difference in the 
efficiency of estimators produced by the two 
methods. In previous studies of small sample 
behavior, however, the superior performance of 
the PW procedure has been documented. Using 
the CO procedure results in estimators that are 
less efficient in small samples. Under certain 
conditions, the CO estimator can even be less 
efficient than OLS applied to the original data. 
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Due to the inefficiency of the CO estimator, 
comparisons of hypothesis testing results from 
models estimated by PW and CO have not been 
considered. This article examines the behavior 
of the t test in small samples for coefficient 
significance in time-series regressions. Tests are 
compared using four estimation procedures: 
OLS, CO, PW and generalized least squares 
estimation (GLS) using the true value of the 
autocorrelation coefficient. 

The results suggest that the PW and CO 
methods perform similarly when testing 
hypotheses, but in certain cases, CO outperforms 
PW. This does not, however, mean that either 
method performed particularly well. Both had 
levels of significance that were much higher 
than desirable in certain circumstances. The poor 
performance of these procedures in situations 
when they are intended to correct for 
autocorrelation suggests the need for either 
better estimates of the autocorrelation 
coefficient, better procedures for correcting for 
autocorrelation, or alternative approaches that 
will result in improved hypothesis tests. 
 

Methodology 
 
The following simple regression model is 
considered: 
 

εββ tt10t  + x +  = y  with ηερε t1-tt  +  =   (1) 

 
for t =1,2,...,T. In equation (1), yt and xt are the 
tth observations on the dependent and 
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explanatory variables, respectively, and εt is a 
random disturbance for the tth observation and 
may be subject to autocorrelation. The ηt 
represents disturbance components that are 
assumed to be independent and identically 
distributed. The parameters β0 and β1 are 
unknown and must be estimated. The parameter 
ρ is the autocorrelation coefficient, with |ρ|<1. 
Using matrix notation, the model can be written 
as: 

εXβY +=                          (2) 
where 
 

11 1

22 2

0

1

1

1

.. . .
, , , and

.. . .

.. . .

1

Y  X  ε   β
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y x

y x

y x

ε
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β
β

ε

    
    
    
      

= = = =      
     

    
    

          
(3) 

 
Two procedures to correct for 

autocorrelation are examined. These are the 
Prais-Winsten (1954) and Cochrane-Orcutt 
(1949) procedures. Both procedures transform 
the data using the autocorrelation coefficient, ρ, 
after which the transformed data are used in 
estimation. The procedures differ in their 
treatment of the first observation, (x1, y1). The 
PW transformation matrix is: 
 

21 0 . . . 0 0
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   (4) 

 
Pre-multiplying the model in (2) by MPW yields 
 

εMXβMYM PWPWPW +=             (5) 

or 

ηβXY ** +=                         (6) 

where Y* contains the transformed dependent 
variable values and X* is the matrix of 
transformed independent variable values, so 
 

[ ]1121
2 ,...,,1 −−−−= TT yyyyy ρρρ*Y   (7) 
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          (8) 

 
In (6), η is the vector of serially uncorrelated ηt 
errors. 

The CO transformation matrix is the 
(T−1) x 1 matrix obtained by removing the first 
row of the MPW transformation matrix. The use 
of the CO transformation means that (T−1) 
observations, rather than T, are used to estimate 
the model. In the CO transformation, the first 
observation is omitted, whereas it is transformed 
and included in the estimation in the PW 
transformation. Asymptotically, the loss of this 
single observation is probably of minimal 
concern. However, for small samples, omitting 
the first observation has been shown to result in 
an estimator inferior to that obtained when the 
first observation is retained and transformed. See 
Dielman & Pfaffenberger (1984), Maeshiro 
(1979), and Park & Mitchell (1980) for 
simulation studies demonstrating the efficiency 
gains of PW, and Doran (1981), Magee (1987), 
Taylor (1981), and Thornton (1987) for 
analytical results. 

In practice the value of ρ will be 
unknown and it must be estimated from sample 
data. The estimators of ρ used will be as follows: 
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when all T observations are used, and 
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when T−1 observations are used, where the tε̂  

represent OLS residuals. Park and Mitchell 
(1980) showed that these two estimators 
minimize the error sum of squares conditional 
on β when T and T−1 observations are used, 
respectively, in the estimation process. 

The actual estimation procedures for 
both PW and CO are iterative procedures. OLS 
is run to obtain estimates of the regression 
coefficients and, subsequently, the tε̂ . The 

estimator of the autocorrelation coefficient, ρ, is 
computed, the data are transformed, and new 
estimates of the regression coefficients are 
obtained. The autocorrelation coefficient 
estimate is recomputed and compared to the 
previous estimate. In the results, if these 
estimates differ by less than 0.000001, the 
iterative procedure stops. The procedure also 
stops when it reaches 25 iterations. If boundary 
conditions are encountered the estimate of ρ is 
set at ±0.999999. 

The model considered in this article is 
described in equation (1). The explanatory 
variable values are generated as follows: 
 
1. u + x = x t1-tt λ  for t = 1, 2, …, T with the ut 

chosen from the N(0,2) distribution. The 
values of λ used were 0.0, 0.4 and 0.8. 

 
2. A stochastic time trend is used. In this case 

u + t = x tt λ  for t = 1, 2, ..., T and ut is chosen 
from the N(0,2) distribution for λ = 0.4 and 
0.8. 

 
Once generated, these values are held fixed 
throughout the experiment for each sample size. 
The disturbances, ηt, are chosen from the N(0,1) 
distribution. After generating the ηt, the εt values 

are created as ηρεε ttt  +  = 1−  where 
2

0
0

1 ρ
ηε
−

=  

and η0 is an initial draw from the disturbance 

distribution. The explanatory variable values 
were generated independently of the 
disturbances. 

The parameter β0 was set equal to zero 
(without loss of generality). The parameter β1 
was set equal to zero to examine the level of 
significance. For each factor combination in the 
experimental design, ten thousand Monte Carlo 
trials were used to assess levels of significance. 
A sample size of T = 20 was used. The values of 
ρ were 0.0, 0.2, 0.4, 0.6, 0.8, and 0.95. The null 
hypothesis H0: β1 = 0 is tested using the t test 
and the number of rejections of the null 
hypothesis was recorded to assess the level of 
significance. 

The hypothesis tests were also 
conducted with β1 = 0.2, 0.3, 0.4, 0.5, and 1.0. 
When H0 is rejected, the proportion of correct 
rejections can be used to construct empirical 
power functions. Power comparisons based on 
the original simulations are complicated by the 
differences in the observed significance levels. 
A valid power comparison can be made only if 
the true significance levels of the tests are 
similar, which is clearly not the case based on 
our results. 

The power comparison was 
accomplished using a procedure suggested by 
Zhang and Boos (1994). From the original 
10,000 simulations with β1 = 0, the test statistics 
were sorted and the critical values producing a 
5% level of significance were chosen for each 
design point. These values represent estimates of 
the critical values under the null hypothesis that 
produce an exact 5% level of significance. The 
simulation was repeated with the non-zero 
values of β1, using the empirically determined 
critical values. The test statistics from the 
second set of simulations will have similar levels 
of significance, making their powers 
comparable. Zhang and Boos (1994) suggested 
using a larger number of Monte Carlo trials to 
estimate the correct critical value under the null 
hypothesis if possible. In this experiment 10,000 
trials under the null and 5,000 under the 
alternative hypotheses were used. 

Results are reported for four estimation 
procedures: OLS (assuming ρ = 0), PW and CO 
and GLS (which is the PW procedure using the 
true value of ρ). All random numbers were 
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generated using IMSL subroutines and the 
simulation was written in FORTRAN. 
 

Results 
 
Consider Tables 1 and 2. These tables show the 
number of rejections of the true null hypothesis 
that the slope is zero for all factor combinations 
in the Monte Carlo simulation. Table 1 shows 
the results for the autoregressive independent 
variable; Table 2 for the stochastic trend 
variable. The most striking results are for the 
autoregressive case when λ is 0.8 and the 
stochastic trend case for λ equal to both 0.4 and 
0.8. As the level of autocorrelation increases, the 
observed levels of significance become very 
high for OLS, but this is not unexpected. OLS is 
not expected to perform well when disturbances 
are autocorrelated.  

However, the two methods that correct 
for autocorrelation do not perform well either. 
PW has very high rejection rates with some 
cases approaching 50%. The rejection rates for 
CO are high as well, but often not as high as 
PW. This is particularly evident when the 
independent variable is autoregressive. These 
results suggest that correcting for autocorrelation 
does not guarantee reliable inferences about the 
slope coefficient. 

Selected power comparisons using 5,000 
Monte Carlo trials are shown in Table 3 for the 
autoregressive independent variable with λ = 0.8 
and in Table 4 for the stochastic trend variable 
with λ = 0.8. When the independent variable is 
autoregressive, CO generally has power equal to 
or slightly higher than PW. Figures 1 and 2 plot 
the empirical power curves for ρ = 0.0 and ρ = 
0.95 from Table 3. When ρ = 0.0 there is little 
difference in adjusted power; when ρ = 0.95 CO 
has higher power than PW. 

When the independent variable is a 
stochastic trend, there is little difference between 
PW and CO as evidenced in the empirical power 
curves in Figures 3 and 4 for ρ = 0.0 and ρ = 
0.95, respectively. In this case, when ρ = 0.95, it 
is especially troublesome that OLS has higher 
adjusted power than either PW or CO, which 
supposedly adjust for autocorrelation. This result 
is driven by the very high levels of significance 
for OLS of course. 
 

Conclusion 
 
Previous studies have shown that the PW 
method is superior to CO as a correction for 
autocorrelation in terms of estimator efficiency. 
However, these results do not hold up in an 
examination of inference results. CO generally 
performs as well and in many cases better than 
PW in terms of observed level of significance 
and adjusted power. This should not be taken as 
a suggestion that the PW method should be 
abandoned and CO resorted to, however. 
Perhaps both methods should be abandoned and 
a better approach sought for handling 
autocorrelation in regression models. In terms of 
inference, a bootstrap approach as Rayner 
(1991) suggested might be preferred to either the 
PW or CO method. Alternatively, as suggested 
by Mizon (1995), perhaps another approach to 
correcting for autocorrelation should be 
considered. Bayesian estimators (see Ohtani, 
1990, and Kennedy & Simons, 1991) also hold 
promise for improvements. 
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Table 1: Empirical Significance Level: Number of Rejections of True Null Hypothesis H0: β1 = 
0 Using Autoregressive Independent Variable (10,000 Trials) 

 

Lambda = 0.0 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 508 601 623 531 342 226 
PW 754 757 716 637 523 462 
GLS 508 500 516 514 526 530 
CO 699 716 697 617 471 424 

Lambda = 0.4 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 516 712 870 852 700 491 
PW 808 819 826 755 640 546 
GLS 516 516 501 503 508 493 
CO 744 771 764 694 566 447 

Lambda = 0.8 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 521 865 1307 1848 2658 3613 
PW 806 942 1048 1232 1442 1679 
GLS 521 512 512 506 505 496 
CO 726 877 995 1057 949 822 

 

Table 2: Empirical Significance Level: Number of Rejections of True Null Hypothesis H0: β1 = 0 
Using Stochastic Trend Independent Variable (10,000 Trials) 

 

Lambda = 0.4 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 453 936 1685 2848 4537 6111 
PW 842 1026 1291 1815 2965 4496 
GLS 453 458 475 482 477 494 
CO 805 1008 1307 1860 2955 4419 

Lambda = 0.8 
Rho = 

0.00 0.20 0.40 0.60 0.80 0.95 
OLS 467 1013 1822 3087 4812 6352 
PW 831 1039 1347 1941 3181 4711 
GLS 467 456 453 459 484 487 
CO 819 1036 1399 2038 3288 4706 
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Table 3: Adjusted Power Comparisons Using Autoregressive Independent Variable with 
Lambda = 0.8 (5,000 trials) 

Rho = 0.0 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 3006 4572 4961 4998 5000 
PW 250 3107 4535 4922 4988 5000 
GLS 250 3006 4572 4961 4998 5000 
CO 250 3108 4550 4920 4992 5000 

Rho = 0.2 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 2476 4079 4819 4976 5000 
PW 250 2332 3856 4695 4944 5000 
GLS 250 2361 4043 4817 4978 5000 
CO 250 2457 3991 4731 4953 5000 

Rho = 0.4 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 2039 3407 4429 4845 5000 
PW 250 1737 3003 4175 4749 5000 
GLS 250 1860 3420 4507 4907 5000 
CO 250 1932 3254 4346 4795 5000 

Rho = 0.6 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 1684 2711 3659 4364 5000 
PW 250 1286 2313 3359 4252 5000 
GLS 250 1526 2925 4120 4729 5000 
CO 250 1655 2771 3749 4490 5000 

Rho = 0.8 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 1478 2153 2849 3475 4906 
PW 250 1089 1808 2656 3497 4967 
GLS 250 1424 2771 3935 4637 5000 
CO 250 1651 2430 3287 3970 4977 

Rho = 0.95 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 1430 1874 2361 2852 4473 
PW 250 973 1526 2235 3048 4821 
GLS 250 1532 2911 4072 4686 5000 
CO 250 1726 2307 3025 3626 4835 
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Figure 1: Power Curve for Testing Slope Equal Zero:  
Autoregressive With Lambda = 0.8; rho = 0.0
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Figure 2:  Power Curve for Testing Slope Equal Zero: 
Autoregressive With Lambda=0.8, rho=0.95
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Table 4: Adjusted Power Comparisons Using Stochastic Trend Independent Variable with 
Lambda = 0.8 (5,000 trials) 

Rho = 0.00 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 4866 4999 5000 5000 5000 
PW 250 4785 4983 4998 5000 5000 
GLS 250 4866 4999 5000 5000 5000 
CO 250 4666 4959 4993 4996 5000 

Rho = 0.20 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 4475 4990 5000 5000 5000 
PW 250 4124 4873 4988 5000 5000 
GLS 250 4494 4994 5000 5000 5000 
CO 250 3900 4788 4959 4989 5000 

Rho = 0.40 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 3591 4817 4992 5000 5000 
PW 250 2860 4389 4869 4984 5000 
GLS 250 3768 4882 4998 5000 5000 
CO 250 2656 4207 4752 4931 5000 

Rho = 0.60 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 2268 3856 4712 4959 5000 
PW 250 1520 2963 4176 4714 5000 
GLS 250 2673 4294 4916 4996 5000 
CO 250 1440 2840 3964 4540 4997 

Rho = 0.80 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 1133 2124 3209 4022 5000 
PW 250 715 1406 2295 3193 4962 
GLS 250 1713 3143 4291 4841 5000 
CO 250 701 1371 2232 3049 4880 

Rho = 0.95 
Beta = 

0.0 0.2 0.3 0.4 0.5 1.0 
OLS 250 685 1161 1766 2446 4661 
PW 250 415 713 1112 1608 4074 
GLS 250 1294 2457 3634 4450 5000 
CO 250 442 733 1164 1660 4024 
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Figure 3:  Power Curve for Testing Slope Equal Zero: 
Stochastic Trend With Lambda = 0.8; rho = 0.0

OLS

PW

GLS

CO

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f R
ej

ec
tio

ns

Value of Slope Coefficient

Figure 4:  Power Curve for Testing Slope Equal Zero:  
Stochastic Trend With Lambda = 0.8; rho = 0.95
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Beyond Kappa: Estimating Inter-Rater Agreement with Nominal Classifications 
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Cohen’s Kappa and a number of related measures can all be criticized for their definition of correction for 
chance agreement. A measure is introduced that derives the corrected proportion of agreement directly 
from the data, thereby overcoming objections to Kappa and its related measures. 
 
Key words: Interrater agreement, Cohen’s Kappa, nominal data, reliability. 
 
 

Introduction 
 
The most popular measure of inter-rater 
agreement in the case of nominal classification 
is Cohen’s kappa (Cohen, 1960). Kappa is a 
member of a family of measures that are all 
defined by the same basic formula (Zwick, 
1988): 

( )
( )Ap1

Apf
A

c

c

−
−

=                     (1.1) 

 
where f = the observed proportion of agreement 
and pc(A) = the definition of chance agreement 
according to measure A. The measures of this 
family differ only in their definitions of chance 
agreement pc(A).  
 

Methodology 
 
A General Model 

Starting with n cases classified by two 
raters into c exhaustive and mutually exclusive 
categories, the population distribution of the c 
categories is given by the vector V. The joint 
distribution of the ratings is given by the c by c 
population matrix X. The model distinguishes 
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three types of classifications: (1) a correct 
observation, (2) a correct guess, and (3) a wrong 
guess. The second type is a correct 
classification, but not a correct observation. The 
model assumes a fixed probability pr that rater r 
makes a correct observation, i.e., a classification 
of type (1). Fixed means that pi is independent of 
the true category Vi of the case and of its 
classification by the other rater. Rater 
agreement, as far as it is not based on chance, 
arises if both raters make a correct observation. 
Assuming that raters act independently, the 
probability of such non-chance-agreement is 
p1p2. Therefore a measure of inter-rater 
agreement is defined as: s = p1p2.  

If rater r performs a correct observation, 
the probabilities of the categories are given by 
the population distribution V. However, if the 
rater does not, the classifications follow an error 
distribution Wr. The error distributions may 
differ from V and from each other. It is assumed 
that Wr is independent of the true category of the 
case. The model parameters are p1, p2, V, W1 
and W2 as defined above. In order to simplify 
the formulas qr = 1−pr and Dr = Wr−V are also 
defined. This article will show that s and V can 
be estimated directly from the observed sample 
of classifications by the raters, without any 
assumptions regarding the error distributions W1 
and W2. 
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Some Measures for Inter-rater Agreement 
In formula (1.1), f is the proportion of 

cases classified in the same way by both raters, 
and pc(A) is the correction for chance agreement 
according to measure A. The denominator is a 
scaling factor restricting the measure to a 
maximum of 1. 

Bennett, Alpert and Goldstein (1954) 
assumed that a rater who does not recognize the 
true category of a case draws from a uniform 
distribution, thus giving each category an equal 
chance. In terms of the general model, they 

assume W1 = W2 = 
1 1 1 1

, ,..., , .
T

c c c c
 
 
 

 If both 

raters draw from this common error distribution, 
the probability of chance agreement on one 

specific category is 
2c

1
 and the overall expected 

proportion of chance agreement is 
2c

c
 = 

c

1
. 

Therefore, Bennett, Alpert and Goldstein (1954) 
defined the correction for chance agreement as 

pc(A) = 
c

1
 for their measure S. 

At least two objections to this choice exist: 
1. In many situations it is plausible that the 

true distribution V of the cases deviates 
from uniformity and that the raters, 
knowing so, adjust their guessing 
distributions accordingly. 

2. Scott (1955) objected that if W1 and/or W2 
deviate from uniformity, the proportion of 
agreement by chance will always be greater 

than 
c

1
. In other words, 

c

1
 is a lower limit 

for the proportion of agreement by chance, 
meaning that S is an upper bound for inter-
rater agreement. 

 
S has been presented several times under 

different names and different notations. For the 
case of two categories S is equal to the random 
error RE (Maxwell, 1977). With only two 
categories, this measure is equal to the 
difference between the proportion of agreement 

and the proportion of disagreement:
f1

f

−
. For 

the general case, Brennan and Prediger (1981) 

reported the measure as κn, Zwick (1988) 
mentioned Guilford’s G, for the two categories 
case, and Janson and Vegelius’ C for the general 
case. 

Scott (1955) tried to overcome the 
second objection by introducing the assumption 
that both raters, when guessing, follow the true 
distribution. In terms of the general model, Scott 
assumed that W1 = W2 = V. Therefore he 
estimated the distribution by the average of the 
two marginal distributions. His measure is called 

π and pc(π) is defined as 
=








 +c

1i

2
i2i1

2

MM
, 

where M1i and M2i are the two observed 
marginal proportions of category i. 

Cohen (1960) objected to Scott that one 
source of disagreement is precisely the tendency 
of the raters to spread their ratings differently 
over the categories: "one source of disagreement 
between a pair of judges is precisely their 
proclivity to distribute their judgments 
differently over the categories." Therefore, 
Cohen dropped the assumption of equal 
marginal distributions and defined the 
proportion of chance agreement as 


=

c

1i
i2i1 MM . 

It can be seen, however, that the 
marginal distributions are a mix of the true 
distribution V and the error distributions W1 and 
W2, more precisely, Mr = prV + qrWr, so 
Cohen’s estimation of chance agreement is only 
correct under the null hypothesis that p1 and p2 
are both zero, or under the assumption that W1 = 
W2 = V. The latter assumption would mean that 
the two marginal distributions are equal, so 
Scott’s π could be used as well. As Brennan and 
Prediger (1981) stated: “For descriptive 
purposes, therefore, when marginals are free it 
seems questionable to reduce observed 
agreement by i..i PP    , which is directly 
dependent on agreement in the marginals” (p. 
692). Other objections and alternatives to Kappa 
have also been brought forward. For details, 
readers are referred to Perreault and Leigh 
(1989) and Brennan and Prediger (1981). 

The next section will elaborate on the 
formal model and investigate possibilities to 
identify and estimate the model parameters. 
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What is special to this approach is that the inter-
rater agreement is estimated without any 
assumptions regarding the rater distributions W1 
and W2. In addition, a short outline of an 
algorithm that performs the required calculations 
is provided and an extension for the case of three 
simultaneous raters is introduced. Two computer 
programs, called Raters2 and Raters3, that 
implement these ideas are available at 
http://www.ru.nl/socialewetenschappen/rtog 
/software/statistische/kunst/. 

Table 1 shows the two-way frequency 
distribution and the corresponding proportions, 
Cohen (1960, p. 45) used as an illustration. The 
proportion of joint judgments is the sum of the 
diagonal cells, here called f. In this example f = 
0.70. Cohen defined chance agreement as 


=

c

1i
i2i1 MM . In the example the correction is 

0.30 + 0.09 + 0.02 = 0.41, so the corrected 
proportion of joint judgments is: 


=

−
c

1i
i2i1 MMf = 0.29. 

If this value is rescaled by dividing it by its 
maximum, Cohen’s Kappa results: 

Kappa = 





=

=

−

−

c

1i
i2i1

c

1i
i2i1

MM1

MMf

 = 0.4915     (1.2) 

 
 
 
 
 
 
 
 
 
 
The General Model in Detail 

From the model parameters, the 
population distribution X of the simultaneous 
classifications can be derived. Any cell X(i,j) of 
X defines the probability of a joint classification 
in category i by rater 1 and category j by rater 2. 
X can be estimated from the two-way frequency 
matrix of the ratings in the sample, which will be 

indicated as X̂ . X can be interpreted as a 

weighted sum of four c by c matrices, 
corresponding to the behavior of the raters: 
X1: Both raters perform a correct observation. 

The probability of a score in a diagonal cell 
X1ii is the product of: (a) the probability Vi 
that the case belongs to category i, (b) the 
probability p1 that rater 1 performs a correct 
observation and (c) the probability p2 that 
rater 2 performs a correct observation. 
Thus, X1ii=p1p2Vi. The probability of a 
score in an off-diagonal cell is zero, so X1 is 
a diagonal matrix. 

X2: Only rater 1 performs a correct observation. 
The probability of a score in a cell X2ij is 
the product of: (a) the probability Vi that the 
case belongs to category i, (b) the 
probability p1 that rater 1 performs a correct 
observation, (c) the probability q2 that rater 
2 guesses and (d) the probability W2j that 
rater 2 guesses category j. Thus, X2ij = 
p1Viq2W2j. 

X3: Only rater 2 performs a correct observation. 
The probability of a score in a cell X3ij is 
the product of: (a) the probability Vj that the 
case belongs to category j, (b) the 
probability p2 that rater 2 performs a correct 
observation, (c) the probability q1 that rater 
1 guesses and (d) the probability W1i that 
rater 1 guesses category i. Thus, X3ij = 
p2Vjq1W1i. 

X4: Both raters are guessing. The probability of 
a score in a cell X4ij is the product of: (a) 
the probability q1 that rater 1 is guessing, 
(b) the probability q2 that rater 2 is 
guessing, (c) the probability W1i that rater 1 
guesses category i and (d) the probability 
W2j that rater 2 guesses category j. Thus, 
X4ij = q1q2W1iW2j. 

 
The matrix X is the sum of these 4 matrices and 
its content can be summarized as follows:  
 
For i ≠  j: 
 
Xij = p1q2ViW2j+q1p2W1iVj+q1q2W 1iW2j 

 = (1-p1p2)ViVj+q1VjD1i+q2ViD2j+q1q2D1iD2j, 
 

(2) 
and, for i = j: 
 

Table 1: Cohen’s Example Data 
Frequencies Proportions 

88 14 18 120 0.44 0.07 0.09 0.60 

10 40 10 60 0.05 0.20 0.05 0.30 

2 6 12 20 0.01 0.03 0.06 0.10 

100 60 40 200 0.50 0.30 0.20 1.00 
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Xii = p1p2Vi+p1q2ViW2i+q1p2ViW1i+q1q2W1iW2i 
 = 
p1p2Vi+(1-p1p2)Vi

2+q1ViD1i+q2ViD2i+q1q2D1iD2i. 
 

(3) 
The marginal distributions M1 and M2 of X are 
given by:  
 

Mr = pr.V + qrWr = V + qrDr, for r = 1, 2.   (4) 
 
A similar model is given by Klauer and 
Batchelder (1996). 
 
Comparing s to Cohen’s Kappa 

The measure s and Cohen's Kappa can 
be compared based on the following derivation: 
from (3) it is evident that 
 
Xii = sVi(1–Vi)+Vi

2+q1ViD1i+q2ViD1i+ q1q2D1iD2i 
 
and, from (4), 
 

M1iM2i = Vi
2+q1ViD1i+q2ViD2i+q1q2D1iD2i 

 
thus, 

Xii–M1iM2i = sVi(1-Vi),                (5) 
 
and, 

( )

( )

1 2

1 2
1

1

1 2
1

2

1

s
1

1

.
1

ii i i

i i

c

i i
i

c

i i
i

c

i i
i

c

i
i

X M M
V V

f M M

V V

f M M

V

=

=

=

=

−=
−

−
=

−

−
=

−









 

 
Comparing this result with the formula for 
Kappa in (1.2) it follows that Kappa and s are 

only equivalent if 
=

c

1i
i2i1 MM  = 

=

c

1i

2
iV . From 

(4) it becomes clear that such is the case only if 
p1 = p2 = 1, or if W1 = W2 = V. The p1 = p2 = 1 
assumption is very unrealistic. The assumption 
that both W-vectors equal the true distribution 

implies that the two marginal distributions M1 
and M2 are equal. This is a severe and 
unnecessary restriction that Cohen rejected when 
he introduced Kappa. In his example, as shown 
in Table 1, the two marginal distributions differ 
significantly (χ2 = 34.6959, df = 3, p = 0.0000). 
Table 2 shows Kappa as well as the results of an 
analysis of Cohen’s example according to the 
model presented herein. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Identifiability of Model Parameters 

By the identifiability of the parameters 
is meant that their values can be uniquely 
derived from the joint distribution matrix X. If 
Bi = Xii – M1iM2i, then from (5): 

 
Bi = sVi(1 – Vi)                    (6) 

 
With at least 3 non-zero entries in V, the largest 
entry is the one closest to 0.5. Therefore, it 
corresponds to the largest entry in B. In other 
words: if Bm is (one of) the largest entry(s) in B, 
Vm is (one of) the largest entry(s) in V. From 
(6): 

( )
( ) m

j

mm

jj

B

B

V1V

V1V
=

−
−

 

 
and, as a consequence, for all j ≠ m,  
 

( )jV 0.5 0.25 1 j
m m

m

B
V V

B
= ± − −   

 
Because there can be only one entry in V greater 
than 0.5, the sign before the square root must be 
negative for all j ≠ m: 

Table 2: Parameter Estimates According to 
Proposed Model for Cohen’s Example 

V W1 W2 
Parameter 
Estimates 

0.6861 0.0000 0.0000 s = 0.6280
0.2347 0.7620 0.4683 p1 = 0.8696
0.0792 0.2380 0.5317 p2 = 0.7221

   kappa = 0.4915

model fit: χ2 = 2.0325, df = 1, p = 0.1540 
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( )jV 0.5 0.25 1 j
m m

m

B
V V

B
= − − −        (7) 

 
It can be proved that there is only one value Vm 
for which the sum of elements in V according to 
(7) becomes 1, provided that: X obeys to the 
model, c > 2 (and consequently Vm < 1), s > 0, 
and, by definition, the sum of the elements in V 
equals 1. Figure 1 shows an example of the sum 
g(Vm) = 

≠
+

mj
jm VV as a function of Vm and 

with Vj defined by (7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, there is only one vector V for which 
equation (7) holds and for which the elements of 
V add up to 1. So V can be identified.  

Once V has been identified, s can also 
be derived from (6): 

( )
s

1
i

i i

B
V V

=
−

                          (8) 

 
for any i, except those for which Vi = 0. 
 
Although the product p1p2 (i.e., s) can be 
identified, it is generally impossible to identify 
its components p1 and p2. From (4) it is known 
that qrDr = Mr – V, but looking at formulas (2) 
and (3) for the cells in X a multiplication of Dr 
by a constant h can be compensated by dividing 
qr by the same h. Thus, neither W1 and W2, nor 
p1 and p2 can be identified. 

The good news is that boundaries can be 
identified, within which these parameters are 
enclosed. The boundaries follow from the facts 
that: all cells of V, W1 and W2 represent 
probabilities and therefore must be in the range 
[0,1], and that V, W1 and W2 must add up to 1. 
Therefore, the following series of restrictions 
can be derived: 
1. s ≤ p1 ≤ 1 and s ≤ p2 ≤ 1. 
 
2. From (4) it is known that  

i2

i

M

V
s  = 

i22i2

i2
1 WqVp

Vp
p

+
, thus, 

 

i2

i

M

V
s  ≤ p1 and p2 ≤

i

i2

V

M
. 

 
3. Similarly, it is known that: 

i1

i

M

V
s  ≤ p2 and p1 ≤

i

i1

V

M

 
 
4. Since all values of W1 are between 0 and 1, 

it is known that: 
  q1(1-W1i) ≥ 0 
  q1(1-Vi) - q1(W1i - Vi) ≥ 0 
  p1(1-Vi) + q1(1-Vi) - q1(W1i - Vi) ≥ p1(1-Vi) 
  1-Vi - q1(W1i - Vi) ≥p1(1-Vi) 

  
( )

i

ii11i

V1

VWqV1

−
−−−

≥ p1 

  
i

i1

V1

M1

−
−

 ≥ p1, and consequently: 

  
i1

i

M1

V1
s

−
−

 ≤ p1. 

 
5. In the same way the following may be 

derived: 
 

i

i1

V1

M1

−
−

 ≥ p1 and 
i1

i

M1

V1
s

−
−

 ≤ p2. 

 
These restrictions can be summarized by the 
following boundaries for all i and k: 
 

p1.p2 ≤ p1 ≤ 1                        (9) 
 

p1.p2 ≤ p2 ≤ 1                      (10) 
 

Figure 1: Example of the Function g(Vm) 
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If M2i < 1 (and Vi < 1), then: 
 

i2

i

M

V
s  ≤ p1 ≤ 

k

k1

V

M
              (11) 

 
If M1i < 1 (and Vi < 1), then: 
 

k1

k

M

V
s  ≤ p2 ≤ 

i

i2

V

M
                   (12) 

 
If M2i < 1 (and Vi < 1), then: 
 

i2

i

M1

V1
s

−
−

 ≤ p1 ≤ 
k

k1

V1

M1

−
−

             (13) 

 
If M1i < 1 (and Vi < 1), then: 
 

k1

k

M1

V1
s

−
−

 ≤ p2 ≤ 
i

i2

V1

M1

−
−

              (14) 

 
These formulas are cross-linked: the minimum 
for p1 in (11) goes together with the maximum p2 
in (12) and the maximum for p1 in (11) 
corresponds to the minimum for p2 in (12). The 
link comes from the fact that their product must 
be s. The formulas in (13) and (14) are 
connected in a similar way. 

The limits from (11) through (14) all 
hinge upon the differences between the true 
distribution V and the rater error distributions 
W1 and W2. If W2 = V the lower limit for p1 is s 
and the maximum for p2 is 1. If W1 = V the 
lower limit for p2 is s and the maximum for p1 is 
1. From these formulas it is also observed that, 
for categories with V-values close to 0 or 1, even 
small differences between W1 or W2 and V will 
impose strong restrictions.  

It must be noted that this model cannot 
be applied if the number of categories is only 2. 
 
Reparametrization 

The parameters, as defined to this point, 
are neither all identifiable, nor are they 
independent. Wr and pr cannot be identified, 
only the combination qrDr = (1-pr)(Wr-V). 
Therefore, a reparametrization from the original 
set of parameters to the set [s, V, q1D1 and q2D2] 
is used in the estimations. Moreover, the vector 

V adds up to 1 and the vectors q1D1 and q2D2 
add up to 0, which means that their elements 
cannot be estimated independent. Therefore, 
following Klauer and Batchelder (1996) the 
model is reparametrized again as follows: 

*
iA  = 


−

=
−

1i

1j
j

i

A1.1

A
 for i = 1, c, 

 
where A = V, q1D1 and q2D2 respectively. The 
last element Ac is dropped. The back-translation 
to the original parameters is performed by the 
formula: 
 











−= 

−

=

1i

1j
j

*
ii A1.1AA , for i = 1, c 

 
Initial Parameter Estimations: V and s 

For the parameter estimations from an 

observed matrix X̂  one may proceed in two 
steps. The first step is a procedure directly 
derived from the model and uses only 
information from the diagonal and the marginal 
frequencies of the observed matrix. In the 
second step a general minimization algorithm is 
applied to minimize a criterion (for instance, the 
negative of the likelihood) based on all cells of 

X̂ . This algorithm starts from the estimations 
produced by the first step.  

For the first step define: 
 

g(x) = ( )
≠ 













−−−+

c

mj m

j

B̂

B̂
x1x25.05.0x

 
 
with iB̂  = i2i1ii M̂M̂X̂ −  and mB̂ = the largest 

value in B̂ . (Figure 1 shows an example of this 
function.) From (7) it is clear that Vm can be 
estimated by the value of x for which g(x) = 1 
with 0 < x < 1.  Starting with evaluations of g at 
1/c and a suitable maximum (for instance f), an 
estimate of Vm can be found by a simple 
iteration process using, for example, the 
bisection method. The remaining elements of V 
can be estimated by: 
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jV̂  =  ( )
m

j
mm

B̂

B̂
V̂1V̂25.05.0 −−−    (15) 

 
Once estimates of V are obtained, s can be 
estimated on the base of (8) as: 
 

ŝ  = ( )ii

i

V̂1V̂

B̂

−
 for any i (unless iV̂ = 0), 

 
or for a combination of the estimates for 
different i.  

However, with sampled data this direct 
method may easily fail. Therefore a numerically 
more robust algorithm to find the same initial 
estimates of V and s was designed, called the 
ping-pong algorithm, a detailed description of 
which is provided later. 
 
Initial Estimation of W1 and W2 

Although the parameters W1, W2, p1 and 
p2 are not identifiable, the inequalities (9) 
through (14) offer the possibility to set 
boundaries around them. These boundaries may 
define a very narrow area, especially for 
categories that are very frequent or very rare. 
But unfortunately it is the infrequent categories 
for which the analysis produces the least reliable 
estimations. The problem becomes most serious 
if there are many categories and relatively few 
observations, i.e., if n/c is small. If the limits 
given by (9) through (14) restrict the estimates 

1p̂  and 2p̂  to single values, as occurred when 
Cohen’s example was analyzed, W1 and W2 can 
also be estimated using (4) as: 
 

rŴ  = ( )V̂M
q̂

1
V̂ r

r
−+  

 
Final Estimations and Model Test 

The initial parameter estimates based on 
the considerations above are based completely 

on the diagonal and marginal distributions of X̂  
disregarding any information in the off-diagonal 
cells. In the final estimation procedure 
information from all cells will be used. A 
criterion is defined for the dissimilarity between 
the reconstruction X* of X from the parameter 

estimates and the observed matrix X̂ , and a 

powerful minimization technique like the 
Davidon-Fletcher-Powell algorithm is used to 
improve the initial parameter estimates. An 
attractive criterion is based on the negative of 
the likelihood ratio with a small adjustment, 
defined as: 

eij = Max(X*
ij,ε) 

 

Crit =  
= = 












c

1i

c

1j ij

ij
ij e

X̂
LN.X̂  + penalty 

 
The term ε is a small value to prevent division 

by zero and to avoid too exotic values of 
ij

ij

e

X̂
, 

for instance ε = 1.0e-20. The penalty serves to 
force the parameters within the restrictions of 
the model (for instance 0 ≤ s ≤ 1). 

The estimation procedure as designed 
starts with the ping-pong algorithm resulting in 

estimates V̂  and ŝ , after which the 
reparametrizations and the minimization 
procedure are applied. When the final parameter 
estimates are obtained, a model test can be 
performed based on the test statistic for the 
likelihood ratio: 
 

χ2 = 


























 
= =

c

1i

c

1j ij

ij
ij e

X̂
LN.X̂.n.2  

 
The associated number of degrees of freedom is 
c2-3.c + 1. 

The whole model as described above is 
based on the assumption that s is greater than 
zero. If p1 = 0 or p2 = 0, the value of any cell Xij 
is equal to the product of the corresponding 
marginal probabilities M1i and M2j, even if Xij is 
a diagonal cell. This assumption that s > 0 may 

be tested by the statistic t = 
=

−
c

1i
i2i1 M.Mf , 

which is (approximately) distributed as 
Student’s t with 1 degree of freedom. 
Confidence intervals for the parameters may be 
constructed by the use of the information matrix 
or, if the Hessian matrix is singular, by 
bootstrapping methods. 
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The Ping-Pong Algorithm 
The ping-pong algorithm is designed to 

simultaneously estimate s = p1.p2, and the largest 
element Vm in V. Once Vm is estimated, the 
entire vector V can be estimated according to 
(15). In order to grasp the basic idea of the 
algorithm, assume that the exact values for B 
and f are known. Then the logic is as follows. 
Define: ti = upper boundary for s in the ith 
iteration, and ui = lower boundary for Vm in the 
ith iteration. 

 

1. From (3) s ≤ f = 
=

c

1i
iiX , so choose t0 = f. 

2. From (7): 

1 = 
=

c

1i
iV  = 

( ) ( )
≠

− −−+−
mj m

j
mmm B

B
V1V25.0V1c

2

1

 
so, using (8)  

Vm =  ( ) 
≠

−+−−
mj

j

s

B
25.01c

2

1
1  

 
and as a consequence: 

Vm ≤ ( ) 
≠

−+−−
mj i

j

t

B
25.01c

2

1
1  for any 

step i 

3. From (8): s = ( )mm

m

V1V

B

−
 
, thus 

s ≤ ( )ii

m

u1u

B

−
 

 
Now the following procedure is applied: 
 
1) t0 = f  

2) ui = ( ) 
≠

−+−−
mj i

j

t

B
25.01c

2

1
1

 

3) ti = ( )1i1i

m

u1u

B

−− −
 

4) Repeat from 2) until convergence is reached. 
 

This algorithm converges to ti = ŝ and ui = mV̂ . 

When working with the sample estimators B̂
and f̂  it may be necessary to make some 
corrections during the iteration process:  
1. In the iteration process ti may exceed the 

value t0 = f̂ . In that case, force mB̂ to 

( )1i1i u1u.f̂ −− −  and set ti equal to f̂ . In 

order to keep the sum of B̂ unchanged, 

replace the other elements of B̂ according to 
the following rule: 

iB̂  ← ( )
BB̂

BB̂
BB̂B

m

*
m

i −
−

−+  

 

where B is the mean of the B̂ -values,  mB̂

the original estimate of Bm and *
mB̂  the 

corrected estimate. 
 
2. If the estimate ui becomes less than 1/c force 

it back to 1/c and adjust the B-values 
accordingly: 

ui < 
c

1
, 

so 

( ) 
≠

−+−−
mj i

j

t

B
25.01c

2

1
1  < 

c

1

 

 
Adjust the B-vector by a vector B*, such that 

( ) 
≠

−+−−
mj i

*
j

t

B
25.01c

2

1
1 = 

c

1
,
 

which means that 


≠

−
mj i

*
j

t

B
25.0  = 5.1

c

1
c5.0 −+

 

 
Make the adjustment by taking B* such that each 
term in the summation, except Bm, is multiplied 
by:  

a = 


≠

−

−+

mj i

j

t

B
25.0

5.1
c

1
c5.0

 = 
iu5.1c5.0

c

1
5.1c5.0

+−

+−
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This is realized by replacing each Bj, except Bm, 

by *
jB  = 0.25ti(1-a2) + a2Bj. 

 
 
Three Raters 

Under the given model, the expansion to 
three simultaneous raters is straightforward. 
Moreover, with three simultaneous raters, all 
parameters are identifiable if there are at least 
three categories. The notation must be extended 
to three p-values p1, p2 and p3, three q-values q1, 
q2 and q3, three W-vectors W1, W2 and W3, and 
three marginal distributions M1, M2 and M3. In 
addition the matrix X will now have three 
dimensions. The formulas for the probabilities in 
the cells of X are more complicated: Xijk is the 
sum of the corresponding cells in eight 
submatrices as shown in Tables 3a through 3c. 
 
 
Table 3a: Formulas for Two Parts of the Matrix 

X in Case of Three Raters 
Raters 
i, j, k 

123 
i = j = k i = k ≠ j 

Xijk Xijk 

X1 ccc p1p2p3Vi, 0 

X2 cci p1p2Viq3W3k 0 

X3 cic p1p3Viq2W2j p1p3Viq2W2j 

X4 cii p1Viq2W2jq3W3k p1Viq2W2jq3W3k 

X5 icc p2p3Vjq1W1i 0 

X6 ici p2Vjq1W1iq3W3k p2Vjq1W1iq3W3k 

X7 iic p3Vkq1W1iq2W2j p3Vkq1W1iq2W2j 

X8 iii q1W1iq2W2jq3W3k q1W1iq2W2jq3W3k 

 
Table 3b: Formulas for Two Parts of the Matrix 

X in Case of Three Raters 
Raters 
i, j, k 

123 
i = j ≠ k i ≠ j = k 

Xijk Xijk 

X1 ccc 0 0 

X2 cci p1.p2Viq3W3k 0 

X3 cic 0 0 

X4 cii p1Viq2W2jq3W3k p1Viq2W2jq3W3k 

X5 icc 0 p2p3Vjq1W1i 

X6 ici p2Vjq1W1iq3W3k p2Vjq1W1iq3W3k 

X7 iic p3Vkq1W1iq2W2j p3Vkq1W1iq2W2j 

X8 iii q1W1iq2W2jq3W3k q1W1iq2W2jq3W3k 

 
Table 3c: Formulas for One Part of the Matrix X 

in Case of Three Raters 
Raters 
i, j, k 

123 
i ≠ j ≠ k 

Xijk 

X1 ccc 0 

X2 cci 0 

X3 cic 0 

X4 cii p1Viq2W2jq3W3k 

X5 icc 0 

X6 ici p2Vjq1W1iq3W3k 

X7 iic p3Vkq1W1iq2W2j 

X8 iii q1W1iq2W2jq3W3k 

 
Submatrix X1 contains those ratings for 

which all three raters make a correct 
observation, as indicated by the code ccc, which 
means correct-correct-correct. The value in cell 
i, j, k depends on the equality of the three indices 
as indicated by the column headings. The other 
submatrices are organized in the same way: X2 
contains ratings where raters 1 and 2 made 
correct observations, but rater three did not (he 
guessed, correctly or not), indicated by the label 
cci (correct-correct-incorrect). 
 

Table 4: Frequency Matrix with Three 
Categories and Three Raters 

 Rater 3 = 1 Rater 3 = 2 Rater 3 = 3 

 Rater 2 Rater 2 Rater 2 

Rater 
1 

37 16 19 32 21 13 0 2 7 

19 11 7 30 103 38 9 11 16 

5 7 2 10 22 11 11 13 28 
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Table 4 shows an example of the three-
way distribution in a sample with size 500. The 
data were generated by random sampling from a 
theoretical distribution based on the probabilities 
given in tables 3a-3c, with the following 

parameters: p1 = 0.5, p2 = 0.4, p3 = 0.6, TV  = 

(0.3,0.5,0.2), T
1W  = (0.2,0.5,0.3), T

2W  = 

(0.3,0.4,0.3), and T
3W  = (0.1,0.7,0.2). Initial 

estimations for p1, p2, p3, V, W1, W2 and W3 can 
be derived from the three marginal planes, which 

can be computed from X̂  by summation over 
the categories of one rater:  

X12
ij = 

=

c

1k
ijkX  

X13
ij = 

=

c

1k
ikjX  

X23
ij = 

=

c

1k
kijX  

 
Tables 5, 6 and 7 show these planes for the 
example in table 4. 
 
 
 

Table 5: The Marginal Planes for Raters 1 
and 2 in the Example 

12X̂ : Rater 2 1M̂  

Rater 1 
0.138 0.078 0.078 0.294 
0.116 0.250 0.122 0.488 
0.052 0.084 0.082 0.218 

2M̂  0.306 0.412 0.282 1.000 

 
 
 

Table 6: The Marginal Planes for Raters 1 
and 3 in the Example 

13X̂ : Rater 3 1M̂  

Rater 1 
0.144 0.132 0.018 0.294 
0.074 0.342 0.072 0.488 
0.028 0.086 0.104 0.218 

3M̂  0.246 0.560 0.194 1.000 

 

Table 7: The Marginal Planes for Raters 2 
and 3 in the Example 

23X̂ : Rater 3 2M̂  

 0.122 0.144 0.040 0.306 
Rater 2 0.068 0.292 0.052 0.412 

 0.056 0.124 0.102 0.282 

3M̂  0.246 0.560 0.194 1.000 

 
Define: 

B12
i = X12

ii – M1i.M2i 
B13

i = X13
ii – M1i.M3i 

B23
i = X23

ii – M2i.M3i 
 
In the example above these values are estimated 
by: 
 

T12B̂  = [0.038036, 0.048944, 0.020524] 
T13B̂  = [0.071676, 0.068720, 0.061708] 
T23B̂  = [0.046724, 0.061280, 0.047292] 

Because B12
i = p1p2Vi(1 – Vi) and analogously 

B13
i = p1p3Vi(1 – Vi) and B23

i = p2p3Vi(1 - Vi): 
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The largest value Vm in V can be estimated by 
setting it to the value of x for which the function 
g(x) = 1, where g is defined as: 
 
g(x) = 

( )
≠ 
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or as 
 
g(x) = 

( )
≠ 
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In this function the index m refers to the largest 
value (or one of the largest values) in the B-
vectors. Because the three estimated B-vectors 
in a sample may have different orders, choose m 
as the index for which 
 

23
m

13
m

12
m B̂B̂B̂ ++  ≥ 23

i
13
i

12
i B̂B̂B̂ ++  

 
for all i. In the example, from (15), mV̂  = 
0.422659.  

From (14) follows that, for the other 
elements of V, 

Vj = ( )














++

++
−−−

23
m

13
m

12
m

23
j

13
j

12
j

mm
B̂B̂B̂

B̂B̂B̂
V1V25.05.0  

and it is found that: 
 

TV̂  = [0.348216, 0.422659, 0.229124] 
Once the initial estimate of V is made, the 
parameters p1, p2 and p3 can be estimated in the 
following way: from (8) it is known that, for all 
i, 

12s  = p1p2 = ( )ii

12
i

V1V

B

−
, 

 
so the product can be estimated by averaging 
over i-values: 

12ŝ  = ( )
12

1

ˆ1
.

ˆ ˆ1

c
i

i i i

B
c V V= −


 
 
In the same way s13 and s23 can be estimated and 
estimates of the parameters p1, p2 and p3 can be 
found by combining the three estimated s-
values. For any triple (i, j, k) raters: 
 

jk

ikij

s

ss
 = 

kj

kiji

pp

pppp
 = 2

ip , 

 
so the p-values can be estimated from their 
estimated products: 

ip̂  = 
ˆ ˆ

.
ˆ

ij ik

jk
s s
s  

 

In the example: 12ŝ  = 0.176141, 13ŝ  = 

0.315598, 23ŝ  = 0.241583 and 1p̂  = 0.479694, 

2p̂  = 0.367195, 3p̂  = 0.657915. Once initial 
estimates for V and the p-parameters are 
obtained, the estimation of the W-vectors is 
straightforward. From (4), it is known that, for 
rater r, Mr = prV + (1-pr)Wr, so Wr can be 
estimated by: 
 

Wr = ( )V̂p̂M
p̂1

1
rr

r
−

−
. 

 
In the example this results in the following 
initial estimates: 
 

T
1Ŵ  = [0.244016, 0.548241, 0.207744], 
T
2Ŵ  = [0.281504, 0.405815, 0.312682], 
T
3Ŵ  = [0.049413, 0.824141, 0.126448], 

but with sample data these formulas may lead to 
negative entries in the estimated W-vectors. If 
that occurs the initial estimate for the W-vector 
at hand can be set equal to the estimated V. 

Final estimates, using information from 

all cells in X̂ , can be computed by methods 
analogous to those described, minimizing the 
adjusted likelihood ratio. 
 

Conclusion 
 
When Cohen (1960) introduced his measure 
Kappa, he provided a good index to estimate 
inter-rater agreement in the case of a nominal 
category system that could be easily computed 
by hand. Cohen argued that differences in the 
marginal distributions must be taken into 
account, but, as shown, his measure Kappa does 
so correctly only if the marginal distributions are 
equal. For practical reasons, especially the fact 
that computers were mostly unavailable in 1960, 
Kappa could be considered the best available 
instrument at the time, but with modern 
computers advancements can be made. A model 
based on Cohen’s ideas and a procedure to 
correctly estimate its parameters was presented 
herein. The model allows - to a certain extent - 
to separately estimate the qualities of two raters 
by giving two measures p1 and p2. It also breaks 
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apart the rater characteristics (W1 and W2) on 
one hand and the true distribution of the 
categories (V) on the other. 

If the estimates pr and Wr are truly 
independent from the distribution V, it becomes 
possible first to assess these statistics for one 
rater (using a second rater) in a pilot study, and 
then to use them in order to find boundaries for 
the V-values in the main study without the need 
for a second rater. The formula to be used 

follows from (4): iV̂  = 
ˆˆ

.
ˆ

ri r ri

r

M q W
p
−
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Multiple Regression in Pair Correlation Solution 
 

Stan Lipovetsky 
GfK Custom Research North America 

 
 
Behavior of the coefficients of ordinary least squares (OLS) regression with the coefficients regularized 
by the one-parameter ridge (Ridge-1) and  two-parameter ridge (Ridge-2) regressions are compared. The 
ridge models are not prone to multicollinearity. The fit quality of Ridge-2 does not decrease with the 
profile parameter increase, but the Ridge-2 model converges to a solution proportional to the coefficients 
of pair correlation between the dependent variable and predictors. The Correlation-Regression (CORE) 
model suggests meaningful coefficients and net effects for the individual impact of the predictors, high 
quality model fit, and convenient analysis and interpretation of the regression. Simulation with three 
correlations show in which areas the OLS regression coefficients have the same signs with pair 
correlations, and where the signs are opposite. The CORE technique should be used to keep the expected 
direction of the predictor’s impact on the dependent variable. 
 
Key words: multiple regression, ridge regression, multicollinearity, net effects, simulation modeling. 
 
 

Introduction 
 
Regression analysis is one of the main tools of 
statistical modeling. It is efficient for prediction 
but often produces poor results in the analysis of 
the individual predictors importance due to 
multicollinearity (Dillon & Goldstein, 1984; 
Weisberg, 1985; Grapentine, 1997). 
Multicollinearity among predictors makes 
parameter estimates fluctuate uncontrollably 
with only a minor change in the sample, 
produces signs of coefficients in regression 
opposite to the signs of pair correlations, and 
yields theoretically important variables with 
insignificant coefficients. Multicollinearity also 
causes a reduction in statistical power that leads 
to wider confidence intervals for the 
coefficients, leaving some to be incorrectly 
identified as insignificant, while the ability to 
determine the difference between parameters is 
also degraded (Mason & Perreault, 1991).  To 
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overcome the deficiencies of multicollinearity, a 
ridge regression technique was developed (Hoerl 
& Kennard, 1970, 1988, 2000; Brown, 1994). 
However, compared to the ordinary least squares 
(OLS) regression, the quality of fit of the one-
parameter ridge, or Ridge-1, is worse. This 
quality decreases with an increase of the ridge 
parameter used to attain interpretable signs of 
the regression coefficients. 

Other approaches include regularization 
methods based on the principal components, on 
the quadratic L2-metric, lasso regression based 
on the linear L1-metric, and other Lp-metrics 
used for modeling (Frank & Friedman, 1993; 
Wildt, 1993; Tibshirani, 1996; Hawkins & Yin, 
2002; Efron, et al., 2004; Lipovetsky, 2007). A 
useful two-parameter ridge model is considered 
in (Lipovetsky, 2006) where it is shown that the 
quality of fit of the Ridge-2 model is much 
better than that of the regular Ridge-1 regression 
and is close to the OLS model. With an increase 
of the profile parameter, the quality of the 
Ridge-2 model stays high, and its solution 
becomes proportional to the coefficients of pair 
correlations of the dependent variable with the 
predictors. The quality of fit can be very similar 
for the models with rather different coefficients 
(Ehrenberg, 1982; Weisberg, 1985). 
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Methodology 
 
Ordinary Least Squares Regression and Ridge-1 
Regression 

Consider the ordinary least squares 
(OLS) regression and some of its features. For 
the standardized (centered and normalized by 
standard deviation) variables, a multiple linear 
regression is iinnii xxy εββ +++= ...11 , or in 

the matrix form: 
 

εβ += Xy                          (1) 
 
where X is N by n matrix with elements xij of ith 
observations (i=1,...,N) by jth independent 
variables (j=1,...,n), y is the vector of 
observations for the dependent variable, β is the 
nth order vector of beta-coefficients for the 
standardized regression, yX ~=β  is the 
theoretical predicted by the model vector of the 
dependent variable, and ε  is a vector of 
deviations from the theoretical relationship. The 
Least Squares (LS) objective for the regression 
corresponds to minimizing the sum of squared 
deviations: 
 

2 2|| ||

( ) ( )

1 2

S
y X y X

r C

ε
β β

β β β

=
′= − −

′ ′= − +
            (2) 

 
where prime denotes transposition, variance of 
the standardized y equals one, 1=′yy , and 
notations C and r correspond to the correlation 
matrix XXC ′=  and vector of the correlations 

with the dependent variable yXr ′= . The first 

order condition of minimization 0/2 =∂∂ βS  
yields a system of equations with the 
corresponding solution: 
 

rCrC 1, −== ββ             (3) 
The vector of standardized coefficients of 
regression β  in the OLS solution (3) is defined 

via the inverse correlation matrix 1−C . The 
quality of the model is estimated by the residual 
sum of squares (2), or by the coefficient of 
multiple determination: 

2 21 '(2 )R S r C= − = β − β             (4) 
 
The Pythagorean connection between the unit of 
the original standardized empirical sum of 
squares with the sum of squares explained (R2) 
and non-explained (S2) by the regression, is 

122 =+ SR . 
          The minimum of the objective (2), when 
the equation rC =β  (3) is satisfied, 
corresponds to the maximum of the coefficient 
of multiple determination which reduces to: 
 

2 ' 'R C r= β β = β                    (5) 
 
The items jr)(β ′  of the scalar product in (5) 

define the net effects, jNetEff , which can be 

used to estimate the individual contribution of 
each jth regressor: 
 

 
= =

≡=′=
n

j

n

j
jyjj NetEffrrR

1 1

2 ββ     (6) 

 
where yjr  are the pair correlations of y with the 

regressors jx . 

If any regressors are highly correlated or 
multicollinear, correlation matrix C (3) becomes 
ill-conditioned, its determinant is close to zero, 
and the inverse matrix in (3) produces a solution 
with highly inflated values of the coefficients of 
regression. The values of these coefficients often 
have signs opposite to the corresponding pair 
correlations of regressors with the dependent 
variable, so the net effects (6) become negative. 
Such a model can be used for prediction, but it is 
useless for analyzing and interpreting the 
predictors’ role in the model. 
          The one-parameter ridge model (Ridge-1) 
is widely used for overcoming the difficulties of 
multicollinearity. Adding a regularization of the 
squared norm for the vector of regression 
coefficients (that prevents their inflation) to LS 
objective (2) yields a conditional objective: 
 

2 2 2|| || || ||

1 2
rd

rd rd rd rd rd

S k
r C k

ε β
β β β β β

= +
′ ′ ′= − + +

    (7) 
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where βrd denotes a vector of the ridge 
regression estimates for the coefficients in (1), 
and k is a positive profile parameter. Minimizing 
the objective (7) by vector βrd yields a system of 
equations and its corresponding solution as: 
 

1( ) , ( )rd rdC kI r C kI rβ β −+ = = +     (8) 

 
where I is the identity matrix of nth order. The 
solution (8) exists even for a singular matrix C. 
If k = 0 the Ridge-1 model (7)-(8) reduces to the 
OLS regression model (2)-(3).  

The eigenproblem for the matrix of 
correlations among the regressors is aCa λ= , 
(9) so the matrix can be presented as 

AdiagAC j ′= )(λ , where A is the matrix of 

eigenvectors aj in its columns, and )( jdiag λ  is 

a diagonal matrix of the eigenvalues jλ . By the 

eigenproblem results, the Ridge-1 solution (8) 
can be represented as follows: 
 

( ) rAkdiagA jrd ′+= −1)(λβ        (10) 

 
Increasing the profile parameter k drives the 
Ridge-1 solution (10) to zero at a rate of 1/k. The 
coefficient of multiple determination (4) for the 
Ridge-1 model can be presented as: 
 

2
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2

2
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2
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j
rd

j j
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j

R r A diag A r
k k

k
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k

λ
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′ ′= −  + + 

 +
′ ′=   + 

 

(11) 
 
So the quality of fit for the Ridge-1 model also 
reaches zero in a proportion reciprocal to k. This 
means that increasing the profile parameter k 
could yield coefficients with interpretable signs, 
but small values, and poor quality of fit for the 
model. 
 
 
 
 

Two-Parameter Ridge and Correlation-
Regression Model 

Consider a generalization of the 
regularization (7) with several positive 
parameters k: 
 

2 22 2 2
1 2 3

1

2 3

|| || || ( ) ||

(1 2 ) ( )
.

( 2 ) (1 2 )

S y Xb k b k X y b k y y Xb

b r b Cb k b b
k r r b r b b k b r b rr b

′ ′= − + + − + −

′ ′ ′− + + + 
=  ′ ′ ′ ′ ′ ′− + + − + 

 

(12) 
 
The vector b is an estimator of the coefficients 
of regression (1) by the multiple objective (12), 
where the first two items coincide with those in 
the Ridge-1 objective (7). The next item with k2 
pushes the estimates b to be closer to the pair 
correlations r with the dependent variable, which 
helps us obtain a solution with interpretable 
coefficients. The last item with k3 expresses the 

relation 21 Ry −=′ε , so its minimum 
corresponds to the maximum coefficient of 
multiple determination (more details are given in 
Lipovetsky, 2006). Minimization (12) yields a 
matrix equation 
 

rkrkrbrrkbkbkCb 32321 ++=′+++ . 

 
The scalar product br′  can be considered as 
another constant and combined with the 
parameter k3, so this item at the left-hand side is 
proportional to vector r and can be transferred to 
the right-hand side of this equation. By 
combining constants at each side of this 
equation, it is easy to reduce it to the following 
system with the corresponding solution: 
 

1( ) , ( )C kI b qr b q C kI r−+ = = +   (13) 
 
where k and q are two new constant parameters. 
It is the Ridge-2 model that is proportional to the 
Ridge-1 (8) with the term q. 

For a current profile ridge parameter k, 
the value of the second parameter q can be found 
by a criterion of maximum quality of fit. 
Substituting solution (13) into the coefficient of 
multiple determination (4) yields: 
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2 1

2 1 1

2 [ ( ) ]

[ ( ) ( ) ]

R q r C kI r
q r C kI C C kI r

−

− −

′= + −
′ + +


  (14) 

 

The coefficient of multiple determination 2~R  
for the Ridge-2 model is a concave quadratic by 
q function, and it reaches its maximum at the 
value: 

1

1 1

( )
,

( ) ( )

r C kI rq
r C kI C C kI r

−

− −

′ +=
′ + +

      (15) 

 
so the parameter q is uniquely defined as a 
quotient of two quadratic forms dependent on 
the profile parameter k. While the term k serves 
for regularization of an ill-conditioned matrix, 
the term q is used for tuning the quality of the 
model fit. 

Using the term (15) in (13) presents the 
Ridge-2 solution in the explicit form: 
 

rkIC
rkICCkICr

rkICrb 1
11

1

)(
)()(

)( −
−−

−

+
++′

+′
=  

(16) 
 
Substituting q (15) into (14) yields the 
maximum coefficient of multiple determination 
in two following equivalent forms: 
 

brCbb
rkICCkICr

rkICrR ′=′=
++′

+′
= −−

−

11

21
2

)()(

])([~

(17) 
 
Both Ridge-2 (17) and OLS (5) coefficients of 
multiple determination can be presented 
similarly as scalar products of the vectors of 
regression coefficients and pair correlations. The 
coefficient of multiple determination for Ridge-2 
(17) is smaller than that of the OLS (5) but 
larger than that of Ridge-1 (11). 

Consider the behavior of the Ridge-2 
solution with the parameter k increasing. In the 
limit of large k, the matrix kIC +  gets a 
dominant diagonal, so the inverse matrix 

1)( −+ kIC  reduces to the scalar matrix Ik 1− , 
and the term (15) becomes: 
 

1

2
, ,

k r r r rq k
k r Cr r Cr

γ γ
−

−

′ ′
= = =

′ ′
       (18) 

 
so q is linearly proportional to k with a constant 
γ  defined by the positive ratio of two quadratic 
forms. Similarly, in the limit of large k, the 
Ridge-2 solution (16) eventually converges to 
the independent of k asymptote: 
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2

2

    (19) 

 
where γ  is a constant from (18). Thus, in 
contrast to diminishing to zero Ridge-1 
coefficients (8), the coefficients of the Ridge-2 
solution (19) become proportional to the vector r 
of the pair correlations of y with each regressor. 
It is a model which can be called Correlation-
Regression (CORE) model. It can also be 
described in terms of the pair-wise regressions 
of y by each jx  separately, where a beta-

coefficient equals the pair correlation yjr  of y 

with the variable jx . 
The signs of CORE coefficients b (19) 

coincide with the signs of the pair correlations r. 
It guarantees the clear interpretability of this 
solution, and the positive net effect contributions 

2
jjj rrb γ=  (6) of the regressors into the 

coefficient of multiple determination (17). With 
k increasing, the coefficient of multiple 
determination (17) reaches the limit: 

 

)(
)()(~ 2

2

22
2 rr

Crr
rr

Crrk
rrkR ′=

′
′

=
′
′

= −

−

γ    (20) 

 
Thus, eventually, while k increases, the 
coefficient of multiple determination becomes a 
constant independent of k. 

Numerical runs support the features of 
the eventual ridge regression. With increasing 
parameter k, the Ridge-2 coefficient of multiple 

determination 2~R  (17) stays consistently close 
to the maximum R2 (5) of the OLS model, while  
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the Ridge-1 coefficient 2
rdR  (11) quickly 

diminishes to zero. In Ridge-2 modeling k can 
be increased without losing the quality of 
regression fit and prediction, until reaching the 
asymptotic solution (19) of interpretable 
coefficients of multiple regression proportional 
to pair correlations of y with the x-s, with the 
coefficients of multiple determination (20). 

The constant γ  (18) used in the CORE 
solution (19)-(20) can be obtained in a simpler 
approach. If the vector r of the pair correlations 
of y with regressors is taken for the coefficients
β  in a multiple regression (1), then the vector 
of theoretical values of the dependent variable is 

rXy =~ . Consider a pair regression of the 
observed values y on the theoretical aggregate 
y~ , so a model yy ~γ= , with a slope coefficient 

γ . As in any pair regression, this coefficient is 
defined as follows: 

 

Crr
rr

XrXr
rXy

yy
yy

′
′

=
′′

′
==

)~,~cov(

)~,cov(γ     (21) 

 
where C and r are defined as in (2)-(3). The 
slope (21) coincides with the coefficient γ  in 
(18). Then the model is 

bXrXyy === )(~ γγ , with the same 
coefficients b as in (19). Also, the coefficient of 
pair correlation between y and the aggregate y~  
is: 

cov( , )
( , )

cov( , ) cov( , )

y ycor y y
y y y y

r r
r Cr

=
⋅

′
=

′


 

   (22) 

 
with 1=′yy  as in (2). This coefficient (22) 
squared yields the same expression (20), as a 
regular pair correlation squared equals the 
coefficient of multiple determination in the 
model by only one predictor. 

A simple solution for the coefficients of 
regression can also be based on the relation 
between the coefficients of multiple 

determination 2R  (5) and 2
).( jyR −  in the 

regressions of y by all n and by n-1 predictors 

without xj variable, respectively. The increment 

jU  from 2
).( jyR −  to 2R  is defined by the jth 

coefficient of regression (1) and by the multiple 

determination 2
).( jjR −  of the regression xj by all 

the other n-1 predictors: 
 

jjjjjj VIFRU /)1( 22
).(

2 ββ =−= −       (23) 

 
where jVIF  is the so-called variance inflation 

factor (Weisberg, 1985). The VIF value for each 
regressor equals the diagonal elements of the 
inverse correlation matrix of predictors, 

jjjjj CRVIF )()1( 112
).(

−−
− =−= . The measure 

(23) of predictor importance is considered in 
(Darlington, 1968; Harris, 1975; Lipovetsky & 
Conklin, 2005). 

A criterion of proportionality 

jj NetEffgU =  (where g is a constant) 

between the increments (23) and net effects (6) 
for each predictor can be used to estimate the 
coefficients of regression by the relation 

yjjjj rgVIF ββ =/2 , which yields the solution: 

)( jyjj VIFrg=β . The constant g is estimated 

by the same expression (21) up to using the 
vector with elements jyjVIFr  in place of the 

vector r with the elements yjr . However, the 

numerical simulations show that the results 
based on this approach are very close to those 
obtained in a simple pair correlation CORE 
solution (19)-(20). This means that in the 
eventual ridge solution (19) the coefficients of 
regression yield the increments in (23) 
approximately proportional to the net effects (6) 
in the coefficient of multiple determination. 

Another way to obtain CORE-type 
model consists in the rearranging the OLS 
objective by opening parentheses and squaring 
the items in (2) explicitly: 
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(24) 

 
so the LS objective (2) can be presented as the 
total of squared deviations ijji xny β−/  in the 

pair-wise regressions of 1/nth portion of y by 
each xj separately, plus double cross-products of 
such deviations from each two pair-wise 
regressions by variables xj and xk. If the cross-
products of deviations are small in comparison 
with squared deviations, the result (24) reduces 
to the total of least squares objectives by each 
variable separately: 
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1 1

2
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Minimizing (25) yields coefficients nryjj /=β  

equal to the pair correlations of y/n with the 
variables jx . This multiple regression’s 

coefficients are proportional to the pair 
correlations (similarly to the solution (19) of 
CORE model), and each predictor explains 1/nth 
portion of the dependent variable. The constant 
γ  in (19) is also used for sharing the regressors 
influence on the dependent variable, and it 
approximately equals 1/n as well. 
 In place of skipping cross-products in 
reducing LS objective to (25), it is possible to 
use them with a diminished influence by 

inserting a varying parameter g into the result 
(24): 
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For g = 0 the multi-objective 2
multiS  reduces to 

the pair objective (25), for g=1 (26) coincides 
with the regular LS objective (2), and for 
intermediate g values from 0 to 1 it corresponds 
to a model between the pair-wise CORE and 
regular OLS regressions. The objective (26) is 
identical to the expression: 
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(27) 
 

where 2S  and 2
pairS  are OLS and CORE 

objectives defined in (24)-(25). Minimizing the 
objective (27) yields a system of equations and 
its corresponding solution as in (13), with the 
parameters ggk /)1( −=  and nkq /1+= . 
Further results can be derived as in the relations 
(14)-(20). 
 
Numerical Simulation 
 All pair correlations in vector r can be 
positive, or the scales of the predictors with 
negative correlations with y can be reversed to 
make all correlations positive. The positive 
regression solution (or of the same signs as pair 
correlations) can be obtained if the system 

rC =β  of normal equations (3) satisfies the 
conditions of the Farkas lemma (Craven, 1978). 
In practice, it is convenient to use more explicit 
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criteria, for instance, a criterion proposed by 
Redheffer (2000), which can be written in terms 
of correlations: for the satisfied conditions 
 


≠≠

+≤<
ij

ijiiyj
ij

ij rrrr )0,min()0,max(  

(28) 
 
the system rC =β  has a positive solution 

0>β . In (28) ijr  and yjr  are the elements of 

correlation matrix C and vector r, respectively, 
and the diagonal elements 1=iir . The criterion 

(28) is a sufficient but not a necessary condition 
for positive regression coefficients. 

Consider an example of a regression by 
two predictors, 2211 xxy ββ += , when the 
normal system and its solution (3) explicitly are: 
 

1 2 12 2 1 12
1 22 2

12 12

,
1 1

y y y yr r r r r r
r r

β β
− −

= =
− −

    (29) 

 
If 12r  reaches one, the OLS coefficients (29) are 
becoming inflated, and of different signs, 
although 1yr  becomes close to 2yr , so it could 

be more reasonable to have both coefficients 
(29) of the same impact on the dependent 
variable y. At the same time, the eventual ridge 
regression solution (19) in this case of two 
predictors is: 

2 2
1 2

1 12 2
1 2 1 2 12

2 2
1 2

2 22 2
1 2 1 2 12

,
2

2

y y
y

y y y y

y y
y

y y y y

r r
b r

r r r r r

r r
b r

r r r r r

+
=

+ +

+
=

+ +

         (30) 

 
so the coefficients of regression have the same 
signs as the pair correlations of the predictors 
with the dependent variable, and their values are 
not inflated. 

For the model 2211 xxy ββ += , the 
correlation matrix of all three variables is a non-
negatively definite matrix, so its determinant can 
be presented in the following inequality: 
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(31) 

 
so for any two given correlations, 1yr  and 2yr , 

the third one 12r  can have values within the 
range satisfying the inequality (31). 

Numerical simulation results of the OLS 
solution (29) for the set of 1yr  and 2yr  in the 

wide range of their values, and several values of 

12r  are given in Tables 1-6. Each table presents 

the coefficients 1β , and the other coefficient 2β  
can be obtained in the transposed across the 
second diagonal of the matrix location. Table 1 
shows the results for 012 =r , Table 2 – the 

results for 2.012 =r , etc., through the last Table 

6 for 99.012 =r . The tables for the negative 

values of 12r  can be obtained from the given 
tables by their reflection across the vertical axis 
of the central column for 02 =yr  in Tables 1-6. 

Tables 1-6 have filled cells only at the 
locations where the condition (31) is satisfied. 
The bold font in the tables marks those cells 
where the OLS coefficients (29) have the signs 
of pair correlations, )()( 11 yrsignsign =β  and 

)()( 22 yrsignsign =β . The tables show that 

with the parameter 12r  increasing from zero to 
one the shape of the feasible solutions area 
changes from anisotropic circular to a straight 
line direction, corresponding to the regression as 
the expectation of the dependent variable 
conditioned on the independent variables in their 
tri-variate normal distribution. What is more 
interesting – the proportion of the cells where 
one or two coefficients 1β  and 2β  have signs 

opposite to the signs of the pair correlations 1yr  

and 2yr  is rather high (the solutions non-marked 

by bold font). The frequency to obtain hardly 
interpretable regression coefficients is 
substantial, and there is no way to reduce the 
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occurrence of such a solution in regular 
regression modeling. However, the CORE 
solution (30) yields coefficients of regression 
that are always of the same signs as the pair 
relations: )()( 11 yrsignbsign =  and 

)()( 22 yrsignbsign = , in each feasible cell of 

Tables 1-6 where the condition (31) is satisfied. 
 

Conclusion 
 
The two-parameter ridge regression model and 
its solution proportional to the pair correlation 
coefficients are considered. The results of the 
eventual ridge regression are robust, not prone to 
multicollinearity effects, and are easily 
interpretable. The suggested approach is useful 
for theoretical consideration of regression 
models and for the practical needs of regression 
analysis. 
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Table 1: OLS solutions for 1β , when 012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99      0.99      
0.80    0.80 0.80 0.80 0.80 0.80    
0.60   0.60 0.60 0.60 0.60 0.60 0.60 0.60   
0.40  0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40  
0.20  0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20  
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-0.20  -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20  
-0.40  -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40  
-0.60   -0.60 -0.60 -0.60 -0.60 -0.60 -0.60 -0.60   
-0.80    -0.80 -0.80 -0.80 -0.80 -0.80    
-0.99      -0.99      

 

Table 2: OLS solutions for 1β , when 2.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99       0.99     
0.80    0.92 0.88 0.83 0.79 0.75 0.71   
0.60   0.75 0.71 0.67 0.63 0.58 0.54 0.50 0.46  
0.40  0.58 0.54 0.50 0.46 0.42 0.38 0.33 0.29 0.25  
0.20  0.38 0.33 0.29 0.25 0.21 0.17 0.13 0.08 0.04 0.00 
0.00  0.17 0.13 0.08 0.04 0.00 -0.04 -0.08 -0.13 -0.17  
-0.20 0.00 -0.04 -0.08 -0.13 -0.17 -0.21 -0.25 -0.29 -0.33 -0.38  
-0.40  -0.25 -0.29 -0.33 -0.38 -0.42 -0.46 -0.50 -0.54 -0.58  
-0.60  -0.46 -0.50 -0.54 -0.58 -0.63 -0.67 -0.71 -0.75   
-0.80   -0.71 -0.75 -0.79 -0.83 -0.88 -0.92    
-0.99     -0.99       

 

Table 3: OLS solutions for 1β , when 4.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99        0.99    
0.80     1.05 0.95 0.86 0.76 0.67 0.57  
0.60    0.90 0.81 0.71 0.62 0.52 0.43 0.33  
0.40   0.76 0.67 0.57 0.48 0.38 0.29 0.19 0.10 0.00 
0.20  0.62 0.52 0.43 0.33 0.24 0.14 0.05 -0.05 -0.14  
0.00  0.38 0.29 0.19 0.10 0.00 -0.10 -0.19 -0.29 -0.38  
-0.20  0.14 0.05 -0.05 -0.14 -0.24 -0.33 -0.43 -0.52 -0.62  
-0.40 0.00 -0.10 -0.19 -0.29 -0.38 -0.48 -0.57 -0.67 -0.76   
-0.60  -0.33 -0.43 -0.52 -0.62 -0.71 -0.81 -0.90    
-0.80  -0.57 -0.67 -0.76 -0.86 -0.95 -1.05     
-0.99    -0.99        
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Table 4: OLS solutions for 1β , when 6.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99         0.98   
0.80       1.06 0.88 0.69 0.50  
0.60     1.13 0.94 0.75 0.56 0.38 0.19 0.01 
0.40    1.00 0.81 0.63 0.44 0.25 0.06 -0.13  
0.20   0.88 0.69 0.50 0.31 0.13 -0.06 -0.25 -0.44  
0.00   0.56 0.38 0.19 0.00 -0.19 -0.38 -0.56   
-0.20  0.44 0.25 0.06 -0.13 -0.31 -0.50 -0.69 -0.88   
-0.40  0.13 -0.06 -0.25 -0.44 -0.63 -0.81 -1.00    
-0.60 -0.01 -0.19 -0.38 -0.56 -0.75 -0.94 -1.13     
-0.80  -0.50 -0.69 -0.88 -1.06       
-0.99   -0.98         

 

Table 5: OLS solutions for 1β , when 8.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99          0.97  
0.80        1.33 0.89 0.44 0.02 
0.60       1.22 0.78 0.33 -0.11  
0.40     1.56 1.11 0.67 0.22 -0.22 -0.67  
0.20    1.44 1.00 0.56 0.11 -0.33 -0.78   
0.00    0.89 0.44 0.00 -0.44 -0.89    
-0.20   0.78 0.33 -0.11 -0.56 -1.00 -1.44    
-0.40  0.67 0.22 -0.22 -0.67 -1.11 -1.56     
-0.60  0.11 -0.33 -0.78 -1.22       
-0.80 -0.02 -0.44 -0.89 -1.33        
-0.99  -0.97          

 

Table 6: OLS solutions for 1β , when 99.012 =r . 

       2yr  

1yr  
-0.99 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 0.99 

0.99           0.50 
0.80          0.40  
0.60         0.30   
0.40        0.20    
0.20       0.10     
0.00      0.00      
-0.20     -0.10       
-0.40    -0.20        
-0.60   -0.30         
-0.80  -0.40          
-0.99 -0.50           
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Quel Test for Two Linear Restrictions in the Nonlinear Models 
 

Krishna K. Saha 
Central Connecticut State University 

 
 
An alternative Wald type test called the quel test is developed for two linear restrictions by finding the 
critical region based on the quel utilizing the repeated values of estimated parameters of interest under the 
null. Simulation shows evidence that the full quel test performs best in that it holds nominal level well 
and shows monotonic increasing power properties. 
 
Key words: Bootstrap technique, nonlinear models, percentile confidence contour, power, quel, size. 
 
 

Introduction 
 
Considerable interest exists in testing linear 
restrictions in the nonlinear models such as logit, 
Tobit and exponential models. For testing such 
hypotheses in the context of nonlinear models, 
an asymptotic test such as the Wald test or the 
likelihood ratio test is usually employed. The 
Wald test has an advantage over the likelihood 
ratio test since the Wald test requires the 
maximum likelihood estimates of the parameters 
only under the alternate hypothesis.  

Unfortunately, for small samples the 
Wald test does not perform well in terms of size 
and power property. In some situations, the 
power of the Wald test first increases then 
eventually starts decreasing when alternative 
hypothesis parameters increase in distance from 
the null hypothesis. The Wald test behaves this 
way because, for certain parameter values, the 
estimated covariance matrix of the maximum 
likelihood estimator increases faster than the 
square of the distance between the parameter 
estimate and null value (see, for example, Hauck 
& Donner, 1977; Vaeth, 1985; Mantel, 1987; 
Nelson & Savin, 1988, 1990). Moreover, the 
biased estimates of the parameters being tested 
can cause the power of the Wald test to drop 
below its size at local alternatives (for example 
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see, Goh, 1998). These two types of behavior 
discussed above are usually known as non-
monotonicity in the power function and local 
biasedness respectively. 

Other important situations exist in which 
the estimated covariance matrix cannot be 
assessed and may not have an explicit form. For 
example, testing for the presence of first-order 
moving average disturbances in a linear 
regression model the information matrix is not 
well defined if the parameter of the moving 
average process is 1 or -1 (see Goh, 1998).  

This article introduces to construct the 
alternative Wald type tests that do not depend on 
the estimated covariance matrix, and use 
nonparametric ideas and computer simulation to 
judge whether the estimates observed are likely 
to have come from a null hypothesis data 
generating process. Applying the above 
concepts, we construct the bivariate 
generalizations of the boxplot based on  a 
generalized quel  introduced by Goldberg and 
Iglewicz (1992) which is defined as four 
separate quarter ellipses matched on their major 
and minor axes so that the quel is continuous 
and smooth. Previously, many authors including 
Turkey (1947), Scott (1985) and Becketti and 
Gould (1987) attempted to estimate the 
confidence contours of a bivariate density, but 
those approaches had serious shortcomings. 

The primary aim of this article is to 
construct new tests that solve the problem of 
non-monotonicity in the power function, but do 
not face the limitations discussed above in 
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practice. These new tests only require simulated 
estimates of the parameters of interest under the 
null hypothesis but do not involve estimating the 
covariance matrix. Moreover, these new tests 
require defining the rejection region based on 
the contour points of the percentile confidence 
limits of quels (half and full) of the values of 
estimated parameters of interest under the null 
hypothesis. Furthermore, the null hypothesis is 
rejected if the sample data estimates fall outside 
the percentile confidence limit of a quel (half or 
full). 
 

Methodology 
 
The Wald and LR Tests 

Let nyy ,,1   be n  independent 

observations distributed with density function 
),|( θtt xyf  , t=1,…,n, where tx  is a vector of 

covariates  and θ   is an unknown 1×k  
parameter vector. Let ),( ′′′= ηβθ , where 

′= )( 2,1 βββ  are two parameters of interest and 

η  is a 1)2( ×−k  vector of nuisance 
parameters. The log-likelihood function is given 

by ),|(ln)(
1

θθ t
n

t t xyfl  =
= . The interest 

lies in testing the composite hypotheses 
 

0 0 1 0:    against  : ,H Hβ β β β= ≠        (1) 

 
where 0β is a 12 ×  vector of known constants. 

Let )ˆ,ˆ(ˆ ′′′= ηβθ  be the maximum likelihood 

estimators of θ  under the alternative 
hypotheses. Then the Wald test statistic is 
 

),ˆ())ˆ(ˆ)(ˆ( 0
1

0 ββθββ −′−= −RVRW    (2) 

 
where )0:( 2IR = , 2I  is the 22 ×  identity 

matrix, )ˆ(ˆ θV  is a constant estimator of )ˆ(θV  

with replace θ  by θ̂  and 
 
























∂∂
∂−=

ji

lEV
θθ
θθ )(

)ˆ(
2

 

 

is the covariance matrix of θ̂ . Under the 
standard regularity conditions (see, for example, 
Godfrey, 1988), W  asymptotically follows a 

2χ  distribution with 2 degrees of freedom 
under the null hypothesis. The null hypothesis is 
rejected for large values of W  (for details see 
Goh, 1998). 

Neyman and Pearson (1928) first 
proposed the likelihood ratio (LR) test for 
testing a composite hypothesis. Note that the 
Wald and LR tests have the same first-order 
asymptotic properties and they are 
asymptotically equivalent (see Rao, 1973). 
Several authors have studied the asymptotic 
relationship between these two tests (see, for 
example, Gourieroux and Monfort 1995, 

Chapter 17; Hendry 1995, Chapter 13). Let 0θ̂  

be the maximum likelihood estimators of θ  
under the null hypotheses. Then the LR test for 
the hypothesis in (1) involves rejecting the null 
hypothesis for large values of 
 

[ ],)ˆ()ˆ(2 0θθ llLR −=                 (3) 

which, under the standard regularity conditions, 

follows a 2χ distribution with 2 degrees of 
freedom asymptotically under the null 
hypothesis.  
 
The Quel (Full or Half) Test 

As observed for some nonlinear models, 
the estimated covariance matrix is not always 
available. Thus, some new test procedures 
namely, full quel and half quel tests, for two 
linear restrictions, are outlined which do not 
require an expression of this matrix. As only the 
quel for a two-dimensional case can be 
constructed (see Goldberg & Iglewicz, 1992), 
attention is limited to testing problems involving 
only two restrictions. 
 
The Percentile Confidence Contour Points of a 
Quel (Full or Half) 

Let ,,,2,1),,( Nivu ii =  be a set of 

simulated maximum likelihood estimates of 
),( 21 ββ  for the ith sample under the null 

hypothesis. Specifically, ),,( 11 vu ),,( 22 vu …,
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),,( NN vu  are bivariate observations of size N  

for ),( VU . Following the method of an 
asymmetric plot provided by Goldberg and 
Iglewicz (1992), the two-dimensional 
confidence contour based on the standardized 
errors of each point of ),( VU can be found. To 
obtain these errors, requires first finding the 
location, scale, and correlation estimators for 

),( VU  as well as the two additional parameters 
represented by the proportions of the total 
standard deviation due to residuals in the 
positive direction of the major and minor axes of 
the asymmetric plot. Goldberg and Iglewicz 
(1992) introduced the estimation of those 
parameters by an extended biweight bivariate 
estimator (BIWT) and one-step biweight 
estimator (BIWT-1) as being efficient. Based on 
the extended BIWT and BIWT-1 method 
provided by Goldberg and Iglewicz (1992), the 
location, scale, and correlation estimators for 

),( VU  can be easily obtained, as well as the 
two additional parameters. 

Let q
ub
*μ , q

vb
*μ , q

ubσ , q
vbσ  and q

uvbr  be 

the location, scale, and correlation estimates of 
U and V respectively, and let 1γ  and 2γ  be the 
estimates of the two additional parameters. In 
order to find the boundary points of the 
confidence contour of a quel, regardless of size, 

define q
s

q
s VUG +=1  and q

s
q
s VUG −=2 , as 

the major and minor axes in this order, where 
q
sU  and q

sV  are the standardized values of U 

and V based on the location and scale estimators 

for a quel as q
ub

q
ubi

q
si uu σμ /)( *−=  and 

q
ub

q
ubi

q
si vv σμ /)( *−= , respectively. 

Note that )()( 21
q

uvbrsignGGsign =− . 

Therefore, the major and minor axes must be 
redefined with respect to the correlation 

estimator q
uvbr  as q

uvb
q
si

q
sii rvuG *

1
*
1 /)( +=  and 

q
uvb

q
si

q
sii rvuG *

2
*
2 /)( −= , where 

)1(2*
1

q
uvb

q
uvb rr +=  and )1(2*

2
q

uvb
q
uvb rr −= , 

respectively. In addition, the standardized errors 
for the construction of a quel whose percentile 
point approximately determines the percentile 
confidence contour of the rejection region for 

the quel (see Figure 1) must be computed. 

Compute the standardized errors, q
iξ , based on 

*
1iG  and *

2iG using the additional parameter 

estimates 1γ  and 2γ  as 
 

,,,2,1for ,2
2

2
1 Niii

q
i =∇+∇=ξ   (4) 

where for l = 1, 2, 
 







−

>
=∇

otherwise.)1(2/

0 if2/
*

**

lli

lilli
li G

GG
γ

γ
 

 
Note that these errors assess the distances of 
each point obtained from the observations of U 

and V to the center ( q
ub
*μ , q

vb
*μ ). Let q

percentileξ  be 

the percentile of the standardized errors q
iξ  (i = 

1, 2, …, N) in equation (4). 
The construction of a quel depends on 

two things, the percentile of the errors q
percentileξ  

and the estimators of two additional parameters 

1γ  and 2γ . As a result, options of different 

values of q
percentileξ , 1γ  and 2γ  create different 

kinds of quel. In this case, these values are 
chosen from two different options, which assess 
two different quels called full and half quels. 
These two options for constructing full and half 
quels are discussed in the Appendix. 

Upon acquiring the percentile of the 
standardized errors as well as the two additional 
estimators from either options for a full or half 
quel as shown in the Appendix, it is easy to find 
the boundary points of the percentile confidence 
limit for the full or half quel. In doing so, based 

on q
percentileξ  as well as fq

lγ  for l = 1, 2 from 

option-I in the Appendix, the lengths of the 
vertices in all four quadrants from the origin for 
the full quel are: 
 

[ ] ( ) 2/1)1(2 1
)1(

1
q

uvb
fqfq

percentile r+−=− γξφ
 

 

[ ] ( ) 2/1(2 1
)1(

1
q

uvb
fqfq

percentile r+=+ γξφ  
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[ ] ( ) 2/1(2 1
)1(

1
q

uvb
fqfq

percentile r+=+ γξφ  

 

[ ] ( ) .2/12 2
)1(

2
q

uvb
fqfq

percentile r−=+ γξφ  

 
Next, based on the parametric equations of an 
ellipse in terms of angle fqθ  with range 0 to 360 

degrees using )1(
1

−φ , )1(
1

+φ , )1(
2

−φ , and )1(
2

+φ  as 
 

fqsign fq

θφ θ cos)(cos
11 =Φ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and 

,sin)(sin
22

fqsign fq

θφ θ=Φ               (5) 
 
the boundary points of the percentile confidence 
contour for the full quel are given by 
 

q
ub

q
ub

fqX σμ )( 21 Φ+Φ+=  

and 

1 2( ) .fq q q
vb vbY μ σ= + Φ − Φ              (6) 

 

Figure 1: Exact Percentile Confidence Contour of a Full or Half Quel for the 95th Percentile 

of the Standardized Errors q
iξ  (i = 1, 2, …, N) for a Full or Half Quel when N = 200.* 
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 (a) 94.5% C.L. of a Full Quel for the 
 95th Percentile of the Standardized Errors
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 (c) 93% C.L. of a Full Quel for the 
95th Percentile of the Standardized Error

 

 

-2 -1 0 1

-2
-1

0
1

 (b) 94.5% C.L. of a Half Quel for the 
 95th Percentile of the Standardized Errors
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 (d) 94.5% C.L. of a Half Quel for the 
95th Percentile of the Standardized Error

 
*The scatter points represent the simulated ML estimates of ( )21, ββ  of size N. The 
underlying distribution was the two-regressor binary logit model of size n = 30 using 
design matrix 3X  [(a), (b)] and the three-regressor binary logit model of size n = 30 

using design matrix 2X  [(c), (d)]. 
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In a manner similar to the case of a full quel 
discussed above, the boundary points of the 
percentile confidence limit for a half quel can 
also be obtained as in equation (6) by using 

equation (5) with fq
percentileξ  and fq

lγ  for l = 1, 2 

replaced by hq
percentileξ  and hq

lγ  for l = 1, 2 from 

option-II in the Appendix. 
 
A Point on the Percentile Confidence Limit of a 
Quel for a Fixed Angle 

Consider the case of using a full quel to 
find the boundary point PH0

. In doing so, it is 

necessary to find a solution of an angle θ fq , 
based on the angle AH1

 so that the x and y 

coordinates of a point PH0
 using equations (5) 

and(6) for a particular solution of this θ fq  can 

easily be obtained. To solve this θ fq  based on 
the angle AH1

, define 

 

10
cos HH

fq ADX =  

10
sin HH

fq ADY =                    (7) 

 
Using equation (5), results in an updated 

equation for the solution of an angle θ fq  from 
equations (6) and (7) as given by 
 

1

(cos ) (sin )
1 2

(cos )
1

(sin )
2

cos sin

cos
tan

sin

fq fq

fq

fq

q sign fq sign fq q
vb vb

sign fq
q q
ub ub Hsign fq

A

θ θ

θ

θ

μ ϕ θ ϕ θ σ

ϕ θ
μ σ

ϕ θ

 + − 
  + = +   

    
 

(8) 

 

To obtain the solution of θ fq from (8), start with 
the combination of φ φ1 and 2 from the previous 
section, which depends on the sign of 

cos sinθ θfq fq and . Based on the values of 

cos sinθ θfq fq and , the solution for an angle 

θ fq  in four different cases is obtained as 
follows. 
 

Case I: Values of cos sinθ θfq fq and  are both 
positive 

(cos ) ( 1)
1 1

fqsign θϕ ϕ +=  

(sin ) ( 1)
2 2

fqsign θϕ ϕ += .                 (9) 

 

Using (9), solve for the angle θ fq  from equation 
(8), which is 
 

,
)(2

)1(42
arcsin

2
1

2
1

2
1

2
1

2
11

ba
baabfq

+
+−±

=θ   (10) 

where 

q
vbH

q
ub

H
q
ub

q
vb

A
A

a
μμ

σσφ
−

−
=

+

1

1

tan

)tan()1(
1

1  

and 

1

1

( 1)
2

1

( tan )
.

tan

q q
vb ub H

q q
ub H vb

A
b

A
ϕ σ σ

μ μ

+ +
=

−
 

 

Case II: Values of cos sinθ θfq fq and  are 
positive and negative respectively 
 

(cos ) ( 1)
1 1

fqsign θϕ ϕ +=  

(sin ) ( 1)
2 2

fqsign θϕ ϕ −=                 (11) 

 
Similar to Case-I, find the solution of an angle 

θ fq  from (8) using equation (11) as 
 

,
)(2

)1(42
arcsin

2
1

2
1

2
1

2
1

2
12

ba
baabfq

+
+−±

=θ   (12) 

 
where 

q
vbH

q
ub

H
q
ub

q
vb

A
A

b
μμ

σσφ
−

+
=

−

1

1

tan

)tan()1(
2

2 . 

 

Case III: Values of cos sinθ θfq fq and  are, 
respectively, negative and positive 
 

(cos ) ( 1)
1 1

fqsign θϕ ϕ −=  

(sin ) ( 1)
2 2

fqsign θϕ ϕ +=                 (13) 
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Using equation (13), obtain the angle θ fq  from 
equation (8) as 
 

,
)(2

)1(42
arcsin

2
1

2
2

2
1

2
2

2
21

ba
baabfq

+
+−±

=θ   (14) 

where 

q
vbH

q
ub

H
q
ub

q
vb

A
A

a
μμ

σσφ
−

−
=

−

1

1

tan

)tan()1(
1

2 . 

 

Case IV: Values of cos sinθ θfq fq and  are both 
negative 

(cos ) ( 1)
1 1

fqsign θϕ ϕ −=  

(sin ) ( 1)
2 2

fqsign θϕ ϕ −= .               (15) 

In this final case, evaluate the angle θ fq  from 
equation (8) by using equation (15), to get 
 

.
)(2

)1(42
arcsin

2
2

2
2

2
2

2
2

2
22

ba
baabfq

+
+−±

=θ   (16) 

 

Upon achieving the solutions of the angle θ fq  
from all four cases in equations (10), (12), (14) 
and (16), these solutions need to be adjusted by 
considering all four quadrants as 
 

* 0

*

0 0

180 , if 0

180 360 , otherwise.

fq fq

fq fq

and

and

θ θ θ
θ

θ θ

− >
=

− −





 

(17) 
 
Angle θ fq  has two solutions for each case but 
imposing equation (17) means there are four 

solutions for θ fq  for each case, which in turn 
gives sixteen solutions from all four cases. In 

practice, only one of the solutions of θ fq  is 
accountable for the angle AH1

. In order to 

obtain this particular solution, use all sixteen 
solutions in equation (5) to find the 
corresponding x and y coordinates for the 
boundary points based on equation (6). 
Consequently, find an angle for this boundary 

point for each solution of θ fq  deeming all four 

quadrants. Assume P X YH
fq fq fq
0
( , )  is a 

boundary point having an angle AH
fq

0
 for a 

specific value of θ fq . Now, finding this 

particular value of θ fq , which applies to AH1
 

requires finding which AH
fq

0
 is such that 

,0
01

≈− HH AA  that is, AH
fq

0
 is equal or close 

to AH1
. As a result, P X YH

fq fq fq
0
( , )  would be a 

boundary point of a full quel for angle AH1
 (see, 

Figures 2a and 2c). In a manner similar to the 

case for the full quel, the angle θ fq  may be 
solved for, which is responsible for an angle 

AH1
 and boundary point P X YH

fq fq fq
0
( , )  of a 

half quel for angle AH1
 found (see, Figures 2b 

and 2d) for the particular solution of θ fq . 
 
Outline of the New Tests 

An outline of the new test procedure is 
as follows: 
 
1. Estimate the parameter vector θ  for the 

given data set, )ˆ,ˆ(ˆ ′′′= ηβθ . Assume 
1HP  

is the sample point for ′= )ˆˆ(ˆ
2,1 βββ  and 

compute 21
ˆˆ

1
ββ +=HD  and 

)ˆˆarctan( 211
ββ +=HA . 

 
2. Utilizing the estimate of η  in step 1 and the 

null values of β , construct ( )′′′= ηβθ ˆ,ˆ
00 . 

Generate a sample of size n under the null 
from the density function ),|( θtt xyf  by 

setting 0θ̂θ =  and estimate ( )′= 21 , βββ  

for this sample. Repeat this process N times 
and let ,,,2,1),,( Nivu ii =  be the 

estimates of ( )′= 21 , βββ  for the ith sample 
under the null. 

 
3. Based on the values ( , ),i iu v  1, 2, , ,i N= 

in step 2, obtain the contour points of the 
100(1 - α )% confidence limit of the quel  
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Figure 2: Point A on 95% Confidence Contour of a Full or Half Quel for a Fixed Angle 
1HA  

Obtained from a Point B when N = 200, where the Points A and B Are the Points 
9HP  and 

1HP  as Defined so that 
9HD  = AO and 

1HD  = BO.* 
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*The underlying distribution was the two-regressor binary logit model of size n = 30 using 
design matrix 3X  [(a), (b)] and the three-regressor binary logit model of size n = 30 using 

design matrix 2X  [(c), (d)]. 0H  is not rejected for [(a), (b)] and is rejected for [(c), (d)]. 
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(half or full) by considering fqfq
percentile αξξ −= 1  

or hqhq
percentile αξξ −= 1  for a full or half quel, 

respectively. 
 
4. Corresponding to the angle AH1

 in step 1, 

obtain a point ),(
1

YXPH  on the contour of 

the 100(1 -α )% confidence limit of the quel 
(full or half) following subsection 3.2 and 

compute 22

0
YXDH += . Reject 0H  if 

01 HH DD > . 

 
Examples 

Consider the problems of testing two 
linear restrictions associated with the two-
regressor binary logit and the three-regressor 
binary logit models. 

A binary logit model associated with 

two regressors ( )′= ttt xxx 21 ,  and errors tς  is 

given by 
 

[ ]

Pr( 1) ( )

1
, 1, 2, ,

1 exp( )

t t

t

y x

t n
x

ν θ

θ

′= =

= =
′+ −


 (18) 

where 



 >+′

=
otherwise,0

0xif1 t t
ty

ξθ
 

 
βθ =  and tξ  is a standard logistic distribution 

with [ ])exp(1)( uu −+=ν  being the standard 

logistic distribution function. Let θ̂  be the ML 

estimate of θ . The covariance matrix of βθ ˆˆ =  
for this model is given by 

[ ] 1
)1()ˆ()ˆ(

− ′−==
t tttt xxVV ννβθ , where 

)ˆ(ˆ θνν tt x′= . Thus, the Wald test statistic is 

similar to (2) with )ˆ(θV  and 2IR = . The LR 
test statistic for this model is given by (3), where 
ˆ ˆ,θ β=

 0 0θ̂ β=  and  

 

 −−+=
t tttt yyl )]1ln()1(ˆln[)( ννθ  

with 
)( θνν tt x′= . 

 
Also, consider the three regressors 

binary logit model having the same form as (18) 

but with ( )′= tttt xxxx 321 ,,  and ( )′′= ηβθ , . 

Here η  is a scalar nuisance parameter. Let 

( )′′= ηβθ ˆ,ˆˆ  be the ML estimate of θ  under the 
alternative hypothesis. In this three-regressor 
binary logit model, the Wald test statistic is 

defined in (2) with the covariance matrix of θ̂  
as, 

[ ] 1
)1()ˆ()ˆ(

− ′−==
t tttt xxVV ννβθ ,  

where )ˆ(ˆ θνν tt x′=  and ( )0:2IR = . The LR 

test statistic of this model is given by (3), where 

( )′′= ηβθ ˆ,ˆ
00  is the ML estimate of θ  under the 

null hypothesis. 
In these two linear restrictions testing 

problems, all the test statistics defined follow the 
asymptotic Chi-squared distribution with two 
degrees of freedom under the null and standard 
regularity conditions. 
 
Simulation Study 

The object of the simulation study is to 
investigate the small-sample properties of the 
Wald, LR, and quel (full or half) tests for 
hypothesis testing problems involving two linear 
restrictions in both models discussed in terms of 
size and power. For testing two linear 

restrictions, ( )′= 0,00β  was used so that the 

null hypothesis is 0: 210 == ββH  and the 

alternative hypothesis is :1H  at least one of 1β  

or 02 ≠β . In this case, four design matrices for 

tx  were used as follows: 1X : Two independent 

series of independent N(0, 1) random drawings   
( tx1  and tx2 ), 2X : Three independent series of 

independent N(0, 1) random drawings ( tt xx 21 ,  

and tx3 ), 3X : Quarterly Australian private 

capital movements ($'000 million) ( tx1 ) and 

government capital movements ($'00 million)     
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( tx2 ) beginning the first quarter of 1968, and 

4X : Quarterly Australian private capital 

movements ($'000 million) ( tx1 ), the same 

capital movements lagged one quarter ( tx2 ) and 

government capital movements ($'00 million)     
( tx3 ) beginning the first quarter of 1968. All 

tests were performed at the 5% nominal level 
using the sample sizes, n = 30 and 80. In the 
three-regressor binary logit model, value of the 
nuisance parameter was set at η  = 0.1. Each 
experiment was based on 1,000 replications. 
Empirical sizes and powers of the Wald and LR 
tests were estimated using asymptotic critical 
values. The empirical sizes and powers of the 
quel (full and half) test were also computed for 
both models. In each replication of the 
experiment, N = 200 samples were drawn from 
the data generating process under the null 
hypothesis to find the contour points of the 
percentile confidence limit of a quel (full or 
half). 

Empirical sizes and powers of the Wald, 
LR and quel (full or half) tests are reported in 
Tables 1-4 for the selected small-sample and 
experiments noted above. In the analysis of size, 
the rejection probabilities of the tests under the 
null, which are outside the range [0.0322, 
0.0678], were significantly different from 5% at 
the 0.01 level for 1,000 replications. Based on 
these rejection probabilities, Tables 1 and 2 
show that estimated sizes for the Wald and LR 
tests are significantly different from 5% at the 
0.01 level in both models for sample size n = 30 
and Table 3 shows that estimated sizes for the 
Wald test were significantly different from 5% 
at the 0.01 level in the two-regressor binary logit 
model for sample size n = 80. Of these tests, the 
LR test in general shows extreme liberal 
behavior, whereas the Wald test shows extreme 
conservative behavior in most data situations. 
Both proposed tests reported in Tables 1-4 
perform extremely well and hold nominal level 
reasonably well in all instances. However, the 
performance of the full quel test is uniformly 
best in that it holds nominal level well in all data 
distribution situations with no apparent anti-
conservative behavior. 

Empirical powers of all tests were 
computed for the parameter space around the 
null that divided into five different regions based 
on the signs of the parameter values. In both 
models, the powers of the Wald test are non-
monotonic at non-local alternatives in most of 
the regions (see, for example, regions 1 and 5 in 
Table 1). The Wald power function becomes 
almost flat at zero, for example, region 5 in 
Table 2. In the most serious case of region 4 in 
Table 2, the power for the Wald test is below 
26% whereas at the same point in the parameter 
space, our proposed tests attain a power of 
100%. The LR test, as well as the proposed new 
tests, has monotonic power functions in all the 
five regions of the parameter space in all cases 
for both of the models considered here. In some 
regions, the LR test perform better than all other 
tests, for example, region 2 in Table 2. However, 
power estimates of the LR test are erroneous 
because this test is liberal. The proposed quel 
tests show excellent power properties in most 
data situations. Of these new tests, power of the 
full quel test is better than that of the half quel 
test in all five regions except for a few points of 
some regions in the parameter space. Moreover, 
the full quel test has more balanced power 
compared to that of the half quel test at the same 
local alternatives in most of the regions. 

Overall, the full quel test has 
consistently higher power and holds its level 
quite well. In some situations, the half quel test 
showed good power property and well 
controlled level. Among the LR, half quel and 
full quel tests, the full quel test can be 
recommended for testing two linear restrictions 
in these nonlinear models. 
 

Conclusion 
 
The Wald test requires an analytical form of the 
variance-covariance matrix of the ML estimators 
of the parameters, and it shows extreme 
conservative and non-monotonic power behavior 
caused by inaccuracy of the estimated 
covariance matrix of the estimator. In this article 
an alternative Wald type test was proposed to 
resolve this problem of small-sample local 
biasedness and non-monotonic power behavior 
of the Wald test for two linear restrictions. The 
proposed new tests have desirable size with 
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Table 1: Estimates of Size and Power for the Wald, LR, Full Quel, and Half QuelTests 
at the α  = 5% Level of Significance for Testing 0: 210 == ββH  in the Two-

Regressor Binary Logit Model Using Design Matrix 1X when n = 30. 

   Asymptotic Tests New tests 

Region 1β  2β  Wald LR Full Quel Half Quel 

0.00 0.000 0.015* 0.058 0.048 0.046 

1 

-0.30 0.000 0.068 0.114 0.135 0.131 
-0.60 0.000 0.221 0.313 0.354 0.356 
-0.90 0.000 0.504 0.633 0.690 0.688 
-1.50 0.000 0.875 0.949 0.965 0.965 
-2.00 0.000 0.890 1.000 0.994 0.994 
-3.50 0.000 0.467 1.000 1.000 1.000 

2 

0.30 0.000 0.067 0.146 0.154 0.149 
0.60 0.000 0.232 0.401 0.410 0.405 
0.90 0.000 0.504 0.691 0.704 0.697 
1.50 0.000 0.877 0.960 0.965 0.963 
2.00 0.000 0.859 0.994 0.998 0.998 
3.50 0.000 0.462 1.000 1.000 1.000 

3 

-0.30 -0.300 0.087 0.200 0.193 0.183 
-0.50 -0.500 0.231 0.405 0.415 0.416 
-0.90 -0.900 0.692 0.863 0.870 0.869 
-1.40 -1.400 0.802 0.986 0.990 0.991 
-1.90 -1.900 0.580 0.999 1.000 1.000 
-3.35 -3.350 0.118 1.000 1.000 1.000 

4 

0.30 0.300 0.097 0.202 0.209 0.204 
0.50 0.500 0.253 0.418 0.439 0.435 
0.90 0.900 0.659 0.847 0.863 0.859 
1.40 1.400 0.788 0.991 0.996 0.995 
1.90 1.900 0.561 0.999 1.000 1.000 
3.35 3.350 0.117 1.000 1.000 1.000 

5 

-0.30 0.300 0.097 0.176 0.183 0.178 
-0.50 0.500 0.268 0.418 0.425 0.425 
-0.95 0.950 0.779 0.915 0.924 0.917 
-1.55 1.550 0.815 1.000 0.998 0.998 
-2.25 2.250 0.535 1.000 1.000 1.000 
-3.35 3.350 0.230 1.000 1.000 1.000 

Note: * Size is significantly different from 5% at the 1% level. 
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Table 2: Estimates of Size and Power for the Wald, LR, Full Quel, and Half Quel Tests at 
the α  = 5% Level of Significance for Testing 0: 210 == ββH  in the Two-Regressor 

Binary Logit Model Using Design Matrix 4X when n = 30. 

   Asymptotic tests New tests 

Region 
1β  2β  Wald LR Full Quel Half Quel 

0.00 0.00 0.019* 0.076* 0.053 0.044 

1 

-0.40 0.00 0.022 0.088 0.092 0.089 
-0.75 0.00 0.030 0.116 0.134 0.121 
-0.95 0.00 0.039 0.131 0.156 0.141 
-1.25 0.00 0.060 0.182 0.197 0.185 
-1.90 0.00 0.160 0.311 0.349 0.328 
-3.25 0.00 0.522 0.709 0.769 0.759 

2 

0.15 0.00 0.023 0.077 0.075 0.066 
0.55 0.00 0.037 0.109 0.097 0.082 
0.90 0.00 0.063 0.150 0.127 0.116 
1.55 0.00 0.125 0.253 0.237 0.229 
2.25 0.00 0.289 0.455 0.416 0.409 
3.10 0.00 0.502 0.689 0.667 0.645 

3 

-0.10 -0.10 0.017 0.077 0.060 0.051 
-0.35 -0.35 0.026 0.098 0.081 0.077 
-0.75 -0.75 0.085 0.201 0.170 0.153 
-1.15 -1.15 0.215 0.384 0.305 0.295 
-1.45 -1.45 0.355 0.538 0.460 0.442 
-2.25 -2.25 0.756 0.876 0.771 0.791 

4 

0.10 0.10 0.022 0.079 0.094 0.095 
0.35 0.35 0.046 0.114 0.774 0.775 
0.75 0.75 0.107 0.215 0.998 0.999 
1.15 1.15 0.259 0.415 1.000 1.000 
1.45 1.45 0.393 0.570 1.000 1.000 
2.25 2.25 0.751 0.881 1.000 1.000 

5 

-0.10 0.10 0.019 0.077 0.087 0.078 
-0.35 0.35 0.021 0.085 0.092 0.095 
-0.75 0.75 0.019 0.099 0.113 0.106 
-1.15 1.15 0.022 0.122 0.143 0.134 
-1.45 2.45 0.029 0.147 0.184 0.165 
-2.25 2.25 0.040 0.247 0.296 0.265 

Note: * Size is significantly different from 5% at the 1% level. 
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Table 3: Estimates of Size and Power for the Wald, LR, Full Quel, and Half Quel Tests at 
the α  = 5% Level of Significance for Testing 0: 210 == ββH  in the Two-Regressor 

Binary Logit Model Using Design Matrix 3X when n = 80. 

   Asymptotic tests New tests 

Region 1β  2β  Wald LR Full Quel Half Quel 

0.00 0.00 0.015* 0.061 0.058 0.061 

1 

-0.40 0.00 0.427 0.573 0.600 0.590 
-0.75 0.00 0.905 0.983 0.976 0.975 
-0.95 0.00 0.983 0.997 0.999 0.999 
-1.25 0.00 1.000 1.000 1.000 1.000 
-1.90 0.00 1.000 1.000 1.000 1.000 
-3.25 0.00 1.000 1.000 1.000 1.000 

2 

0.15 0.00 0.060 0.144 0.154 0.142 
0.55 0.00 0.732 0.814 0.820 0.821 
0.90 0.00 0.986 0.995 0.997 0.996 
1.55 0.00 1.000 1.000 1.000 1.000 
2.25 0.00 1.000 1.000 1.000 1.000 
3.10 0.00 1.000 1.000 1.000 1.000 

3 

-0.10 -0.10 0.395 0.710 0.779 0.768 
-0.35 -0.35 0.998 1.000 1.000 1.000 
-0.75 -0.75 1.000 1.000 1.000 1.000 
-1.15 -1.15 1.000 1.000 1.000 1.000 
-1.45 -1.45 1.000 1.000 1.000 1.000 
-2.25 -2.25 1.000 1.000 1.000 1.000 

4 

0.10 0.10 0.369 0.691 0.694 0.694 
0.35 0.35 1.000 1.000 1.000 1.000 
0.75 0.75 1.000 1.000 1.000 1.000 
1.15 1.15 1.000 1.000 1.000 1.000 
1.45 1.45 1.000 1.000 1.000 1.000 
2.25 2.25 1.000 1.000 1.000 1.000 

5 

-0.10 0.10 0.200 0.454 0.492 0.492 
-0.35 0.35 0.985 1.000 0.999 0.999 
-0.75 0.75 1.000 1.000 1.000 1.000 
-1.15 1.15 1.000 1.000 1.000 1.000 
-1.45 2.45 1.000 1.000 1.000 1.000 
-2.25 2.25 1.000 1.000 1.000 1.000 

Note: * Size is significantly different from 5% at the 1% level. 
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Table 4: Estimates of Size and Power for the Wald, LR, Full Quel, and Half QuelTests at the 
α  = 5% Level of Significance for Testing 0: 210 == ββH  in the Two-Regressor Binary 

Logit Model Using Design Matrix 2X when n = 80. 

   Asymptotic Tests New tests 

Region 1β  2β  Wald LR Full Quel Half Quel 

0 0 0.035 0.058 0.050 0.051 

1 

-0.30 0.00 0.192 0.244 0.275 0.271 
-0.60 0.00 0.668 0.732 0.754 0.749 
-0.90 0.00 0.948 0.968 0.973 0.973 
-1.50 0.00 0.999 1.000 1.000 1.000 
-2.00 0.00 1.000 1.000 1.000 1.000 
-3.50 0.00 1.000 1.000 1.000 1.000 

2 

0.30 0.00 0.215 0.258 0.263 0.257 
0.60 0.00 0.664 0.735 0.764 0.745 
0.90 0.00 0.936 0.956 0.968 0.960 
1.50 0.00 1.000 1.000 1.000 0.999 
2.00 0.00 1.000 1.000 1.000 1.000 
3.50 0.00 1.000 1.000 1.000 1.000 

3 

-0.30 0.30 0.358 0.437 0.460 0.453 
-0.50 -0.50 0.833 0.875 0.875 0.873 
-0.90 -0.90 1.000 1.000 1.000 1.000 
-1.40 -1.40 1.000 1.000 1.000 1.000 
-1.90 -1.90 1.000 1.000 1.000 1.000 
-3.35 -3.35 0.991 1.000 1.000 1.000 

4 

0.30 0.30 0.424 0.460 0.468 0.464 
0.50 0.50 0.842 0.842 0.859 0.865 
0.90 0.90 0.999 0.999 1.000 1.000 
1.40 1.40 1.000 1.000 1.000 1.000 
1.90 1.90 1.000 1.000 1.000 1.000 
3.35 3.35 0.988 1.000 1.000 1.000 

5 

-0.30 0.30 0.284 0.332 0.345 0.343 
-0.50 0.50 0.675 0.733 0.756 0.747 
-0.95 0.95 0.992 0.997 0.992 0.995 
-1.55 1.55 1.000 1.000 1.000 1.000 
-2.25 2.25 0.999 1.000 1.000 1.000 
-3.35 3.35 0.995 1.000 1.000 1.000 
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good power properties, which are developed 
defining the critical region based on constructing 
a quel (full or half) utilizing the bootstrap that 
are known as full and half quel tests. These new 
test procedures do not suffer from the non-
monotonic power and local biasedness behavior 
of the Wald test. More importantly, the full quel 
test performs uniformly best in that it holds 
nominal level quite well and shows comparable 
power in most instances. In addition, this full 
quel test can occasionally surpass the LR and 
half quel test in terms of power over most of the 
regions of the parameter space. Furthermore, in 
contrast to the Wald test, this new test does not 
require an analytical form of the variance-
covariance matrix of the ML estimators of the 
parameters. This adds to its practical advantage 
when this matrix causes the non-monotonic 
power of the Wald test or is difficult to obtain. 
In light of this, the full quel test is best applied 
with the use of the quel critical region via 
bootstrap. 
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Appendix: Options for a Quel 
 
The confidence contour points for full or half 
quel are computed by considering the following 
two options of the percentile of the standardized 

errors fq
percentileξ  and the estimators 1γ  and 2γ . 

 
Option I - Full quell: 

Constant ratio: In this case, the 

percentile of the standardized errors fq
percentileξ  

and the two additional estimators fq
1γ  and fq

2γ  
are taken into account to construct the full quel, 

respectively, the same as q
percentileξ , 1γ  and 2γ  

discussed in subsection 3.2, that is, fq
percentileξ  = 

q
percentileξ  and fq

lγ  = lγ  for l= 1, 2. 

 
Option II: Half quel 

Constant difference in the direction of 
the angle of the parametric equations: In this 
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option to find those values for the construction 
of the half quel, first compute the standardized 

errors as q
i
*ξ  based on equation (4) in 

subsection 3.2 with 1γ  and 2γ  replaced by a
1γ  

and a
2γ . Then define q

median
q

percentile
** ξξϑ =  and 

ϑϑγγ 2/)12( +−= l
a
l  for l = 1, 2, where 

q
percentile
*ξ  and q

median
*ξ  are the percentile and 

median of the errors q
i
*ξ . In this case, q

percentile
*ξ  

and a
lγ  are functions of each other. Thus, the 

solution of a
lγ  for l = 1, 2 can be simply found 

by the following iterative procedure: 
• Start with the initial value of ϑ , 0ϑ . 

• Using this initial value 0ϑ , compute a
lγ  

using the above formula for l = 1, 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Based on the above values of a
lγ , compute 

the standardized errors q
i
*ξ  from equation 

(4) in subsection 3.2. 
• Compute the percentile and median of the 

errors q
i
*ξ  and compute ϑ  from the above 

equation. 
• Stop if the convergence condition holds, that 

is, |ϑ - 0ϑ | < 0.01, ϑ  and 0ϑ  are the current 

and previous iteration's values, respectively. 

Store the final solution of a
lγ  as hq

lγ  for l = 

1, 2 and compute the percentile of the 
standardized errors obtained from equation 

(4) with these values, hq
lγ  for l = 1, 2, as 

hq
percentileξ  for the construction of a half quel. 
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Least Absolute Value vs. Least Squares Estimation and Inference Procedures in 
Regression Models with Asymmetric Error Distributions 
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A Monte Carlo simulation is used to compare estimation and inference procedures in least absolute value 
(LAV) and least squares (LS) regression models with asymmetric error distributions. Mean square errors 
(MSE) of coefficient estimates are used to assess the relative efficiency of the estimators. Hypothesis tests 
for coefficients are compared on the basis of empirical level of significance and power. 
 
Key words: L1 regression, least absolute deviations, robust regression, simulation. 
 
 

Introduction 
 
The use of regression analysis relies on the 
choice of a criterion in order to estimate the 
coefficients of the explanatory variables. 
Traditionally, the least squares (LS) criterion has 
been the method of choice; however, the least 
absolute value (LAV) criterion provides an 
alternative. LAV regression coefficients are 
chosen to minimize the sum of the absolute 
values of the residuals. By minimizing sums of 
absolute values rather than sums of squares, the 
effect of outliers on the coefficient estimates is 
diminished. 

In most previous studies comparing the 
performance of LAV and LS estimation, the 
distributions examined have been symmetric. 
Fat-tailed distributions that introduce outliers 
have been used, but these have typically been 
symmetric fat-tailed distributions (Laplace, 
Cauchy, etc). This study examined the 
performance of LAV and LS coefficient 
estimators when the regression disturbances 
come from asymmetric distributions.  
 Also, hypothesis tests for coefficient 
significance are examined.  For the LAV  
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regression, the tests compared include the 
likelihood ratio (LR) test, the Lagrange 
multiplier (LM) test suggested by Koenker and 
Bassett (1982) and a bootstrap test. The tests are 
compared in terms of both observed significance 
level and empirical power. Four alternative 
variance estimates are considered for the LR and 
bootstrap tests.  The LAV tests are also 
compared with the traditional t-test for LS 
regression. 
 

Methodology 
 
Least Absolute Value Estimation and Testing 

The model considered in this article is 
the linear regression model: 
 

i

K

k
ikki xy εββ ++= 

=1
0  

 
i = 1,2,…,n                         (1) 

 
where yi is the ith observation on the dependent 
variable, xik is the ith observation on the kth 
explanatory variable, and εi is a random 
disturbance for the ith observation. The 
distribution of the disturbances may not be 
normal or even symmetric in this examination. 
The parameters β0, β1, β2,…, βK are unknown 
and must be estimated. For a discussion of 
algorithms to produce LAV coefficient 
estimates, see Dielman (1992, 2005). 
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In matrix notation, the model in (1) can 
be written 

Y = Xβ + ε                         (2) 
 
where Y is an n x 1 vector of values of the 
dependent variable, X is an n x (K+1) matrix of 
values of the explanatory variables, including a 
column of ones for the constant, β is a (K+1) x 1 
vector of the regression coefficients to be 
estimated and ε is an n x 1 vector of 
disturbances. Bassett and Koenker (1978) 
showed that, under reasonable conditions, the 
LAV coefficient estimator has an asymptotic 
distribution that converges to 

))( ,N( 12 −′XXβ λ  where 
n

2λ
 is the asymptotic 

variance of the sample median for a sample of 
size n from the disturbance distribution. 

Equation (2) can be rewritten in the 
following form: 
 

Y = X1β1 + X2β2 + ε                   (3) 
 
The coefficient vector β and the data matrix X 
from equation (2) have been partitioned: β1 is a 
k1 x 1 vector of coefficients to remain in the 
model and X1 is the associated part of the 
original data matrix, X; β2 represents the k2 x 1 
vector of coefficients to be included in a 
hypothesis test, and X2 is the associated part of 
the original data matrix, X. The test considered 
is the basic test for coefficient significance, i.e., 
H0: β2 = 0. In the simulation β2 consists of a 
single coefficient. 

Koenker and Bassett (1982) proposed 
three procedures for conducting hypothesis tests 
on the LAV regression model coefficients. The 
three tests are based on Wald, likelihood ratio 
(LR), and Lagrange multiplier (LM) test 
statistics, each of which has the same limiting 
Chi-square distribution. The LR and LM 
statistics will be examined in the Monte Carlo 
simulation. In previous studies, the Wald test has 
been shown to be inferior to the LR and LM 
statistics in small samples, so it is not included 
in this study (See, for example, Dielman and 
Pfaffenberger, 1988, 1990, 1992; Dielman, 
2006). 

The Lagrange Multiplier (LM) test 
statistic for the test of the null hypothesis H0: β2 
= 0 is given by 

LM = 22Dgg′ ,                     (4) 
where g2 is the appropriate portion of the 
normalized gradient of the unrestricted LAV 
objective function, evaluated at the restricted 
estimate, and D is the appropriate block of the 

1)( −′XX matrix to be used in the test. 
The Likelihood Ratio (LR) test statistic 

(assuming the disturbances follow a Laplace 
distribution) is 
 

1 22( )
LR

SAD SAD
λ
−=                (5) 

 
where SAD1 is the sum of the absolute deviations 
of the residuals in the restricted or reduced 
model (i.e., β2 = 0) and SAD2 is the sum of the 
absolute deviations of the residuals in the 
unrestricted model. 

The LR test statistic requires the 
estimation of the scale parameter λ, whereas the 
LM test statistic does not. One often-suggested 
estimator for λ can be computed as follows: 
 

2/

)()1'('ˆ
α

λ
z

]e - [en
 = mmn −−

, 

where, 

4
nz - 

2
1 + n = m ''

2/α                    (6) 

 
where the e(.) are ordered residuals from the 
LAV-fitted model, and 'n  = n – r where r is the 
number of zero residuals. A value of α = 0.05 is 
usually suggested. This estimator will be 
referred to as the SECI estimator. See McKean 
and Schrader (1984), McKean and Schrader 
(1987), Sheather (1987), Dielman and 
Pfaffenberger (1990, 1992) and Dielman and 
Rose (1995, 1996) for discussions and uses of 
this estimator. 

When computing the variance of the 
slope coefficient in a LAV regression, the 
estimator of λ in equation (6) will be used. 
However, four different options in constructing 
this estimator will be considered. These options 
are as follows: 
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SECI1: 1̂λ  uses z = 1.96 (α = 0.05 value) and n′
= total number of observations (n). 

SECI2: 2λ̂  uses t0.025 with n degrees of freedom 

rather than the z value and n′  = total 
number of observations (n). 

SECI3: 3̂λ  uses z = 1.96 (α = 0.05 value) and n′  

= n – r where r is the number of zero 
residuals. 

SECI4: 4λ̂  uses t0.025 with n – r degrees of 

freedom rather than the z value and n′  = n – 
r where r is the number of zero residuals. 

 
The notation L1, L2, L3 and L4 will be used to 
indicate the LR test using variance estimator 1, 
2, 3, or 4. Much of the literature in this area 
recommends using the estimator SECI3. 
However, Dielman (2006) performed a 
simulation study that suggested using SECI2. 
These results were for symmetric distributions 
only. Results for asymmetric distributions will 
be examined in this paper. In addition, the 
bootstrap tests were not included in the previous 
study. 

The bootstrapping methodology 
provides an alternative to the LR and LM tests. 
In a LAV simple regression, for example, a 
bootstrap test statistic for H0: β1 = 0 can be 
computed in several ways (see Li & Maddala, 
1996). The following procedure will be used in 
this study: The model shown as equation (1) is 
estimated (when K = 1 for simple regression) 
using LAV estimation procedures and residuals 

are obtained. The test statistic,
)ˆ(

0ˆ

1

1

β

β

se

−
, is 

computed from the regression on the original 

data, where )ˆ( 1βse  represents the standard error 
of the coefficient estimate. The residuals, ei (i = 
1,2,…,n), from this regression are saved, 
centered, and resampled (with replacement, 
excluding zero residuals), to obtain a new 
sample of disturbances, ei

*. The ei
* values are 

used to create pseudo-data as follows: 
 

e + x +  = y *
ii0

*
i 1̂

ˆ ββ                  (7) 

 

where β̂0  and β̂1
are the initial LAV estimates 

of the intercept and slope. The coefficients in 
equation (7) are then re-estimated to obtain new 

parameter estimates, β̂
*

1
 and β̂

*

0
, and the test 

statistic 
)se(

| - |
 = T *

1

*

1

β

ββ
ˆ

ˆˆ
1

 is computed and saved. 

The process of computing T is repeated a large 
number of times. For a test to be performed at a 
particular level of significance, α, the critical 
value is the (1 -α)th percentile from the ordered 
test statistic values. If the original test statistic is 
larger than this critical value, then the null 
hypothesis that β1 = 0 is rejected. The extension 
to a single coefficient in a multiple regression is 
easily accomplished. 

Although Li and Maddala (1996) 
suggested that the pseudo-data generating 
process can proceed in other ways, the method 
outlined here is fairly typical. Research by van 
Giersbergen and Kiviet (2002) and Dielman and 
Rose (2002) suggest that the aspect of primary 
importance is that the resampling scheme should 
mimic the null distribution of the test statistic to 
be bootstrapped. This suggestion is followed in 
the bootstrap approach used in this paper. 
Results from the traditional LS t-test are 
compared to those from the LAV-based tests.  
 
Description of the Simulation Experiment 

The simulation is based on the model in 
equation (1). The sample sizes used are n = 20, 
30, 40 and 100. The disturbances are generated 
using stable distributions with the following 
combinations of characteristic exponent (alpha) 
and skewness parameter (beta): 
 

Beta = 0.0, 0.4 and 0.8 with Alpha = 1.2 
 

Beta = 0.0, 0.4 and 0.8 with Alpha = 1.8 
 

In addition the normal (beta = 0.0 with 
alpha = 1.2) and Cauchy distributions (beta = 0.0 
with alpha = 1.0) were used. The normal and 
Cauchy distributions serve as extremes. Stable 
distributions are infinite variance distributions 
when the characteristic exponent is less than 2.0, 
so the LAV estimator would be expected to 
outperform LS in these cases. When the 
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characteristic exponent equals 2.0 (and beta is 
zero), the distribution is normal and LS will be 
optimal. For a characteristic exponent close to 
2.0 (and a symmetric distribution), we would 
expect LS to perform relatively better than for 
an exponent near 1.0 (Cauchy disturbances). As 
alpha approaches 1.0, LAV is expected to 
perform better than LS. 

The independent variables are generated 
as independent standard normal random 
variables, independent of the disturbances. 
Bootstrap tests used 199 bootstrap replications. 

The value of 0β  is set equal to zero (without 

loss of generality). In the simple regression, the 

value of 1β  is set equal to 0.0 to assess the level 

of significance and is set equal to 0.2, 0.4, 0.6, 
0.8, 1.0 and 2.0 to examine power. In the 
multiple regressions, all slope coefficients are 
set equal to zero (without loss of generality), 
except for one coefficient which is set equal to 
0.0 to assess the level of significance and is set 
equal to 0.2, 0.4, 0.6, 0,8, 1.0 and 2.0 to examine 
power. For each factor combination in the 
experimental design, 5,000 Monte Carlo 
simulations are used, and the number of 
rejections of the null hypothesis of whether the 
selected slope coefficient is equal to zero is 
counted for each setting. All testing is done 
using a nominal 5% level of significance. 
 

Results 
Estimation 

Table 1 contains ratios of mean square 
errors (MSEs) for estimates of the intercept and 
slope coefficients in simple regressions (K = 1) 
and for the intercept and one of the coefficients 
in the multiple regressions (K = 3 and 5) for 
sample size n = 20 in Panel A, n = 30 in Panel 
B, n = 40 in Panel C, and n = 100 in Panel D. 
The extremes of alpha = 0.0 (Cauchy) and alpha 
= 2.0 (normal) show the range of possibilities 
when distributions are symmetric. LS is always 
preferred to LAV when disturbances are normal. 
The ratio of MSEs is consistently 0.8 except 
when n = 20 and K = 5, in which case the 
preference for LS is even stronger. 

The LAV estimator is preferred over LS 
for alpha of 1.8 and 1.2, although the advantage 
decreases as alpha approaches two (normal 
distribution) as would be expected. The only 

exception to this rule is when n = 20 and K = 5 
when LS is preferred for beta = 0.0 or 0.4, that 
is, when the skewness is less extreme. LAV is 
preferred in all cases when beta = 0.8. 

When alpha = 1.8, the preference for 
LAV over LS increases in all cases as skewness 
increases. When alpha = 1.2 and K = 1, the 
preference for LAV over LS decreases (although 
LAV is still better than LS by a wide margin). 
With alpha = 1.2 and K = 3 or 5, the results are 
mixed in terms of the increase or decrease of the 
preference for LAV over LS based on skewness. 
This may be a result of looking at an efficiency 
measure for only a single coefficient. 
Regardless, LAV is still preferable to LS by a 
wide margin when alpha = 1.2. 
 
Hypothesis Tests 

Tables 2 through 5 contain the median 
percentage of trials in which H0: coefficient = 0 
is rejected for various combinations of test and 
coefficient values for n = 20, 30, 40 and 100, 
respectively, when K = 1. The medians are taken 
over the disturbance distributions. Thus, the 
results for the symmetric distributions (beta = 
0.0) include Stable distributions with alpha = 1.0 
(Cauchy) 1.2, 1.8 and 2.0 (normal). The 
asymmetric distributions include Stable with 
alpha = 1.2 and 1.8 when beta is either 0.4 or 
0.8. When the coefficient value is zero, the 
empirical significance levels can be assessed; 
when it is non-zero, power for the tests can be 
compared. Tables 6 through 9 contain the same 
information for K = 3 while tables 10 through 13 
contain results for K = 5. 

The empirical level of significance for 
the LS t-test never exceeds 0.06 in any of the 
experimental settings (nominal level = 0.05). 
However, the test lacks power when compared 
to the LAV tests. For example, consider Table 5 
with K = 1 and n = 100. All tests have empirical 
level of significance 0.05, but LST has 
considerably lower power. 

There is little difference in performance 
for skewed and symmetric error distributions. 
When LAV is preferred to LS, the preference is 
due to the presence of outliers from the fat-tailed 
distribution rather than from any lack of 
symmetry in the distributions. 

Among the LAV tests, the bootstrap 
tests and the LM test tend to maintain a median  
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Table 1: Ratios of mean square error of estimates of intercept and slope (or one of the slope 
coefficients if K = 3 or 5): LS/LAV. Numbers greater than one favor LAV, numbers less than 

one favor LS. Alpha is the characteristic exponent of the Stable distribution; beta is the 
skewness parameter. (Alpha = 2.0 is the normal distribution, Alpha = 0.0 is the Cauchy). 

 

Panel A: Intercept (n = 20)  Panel A: Slope (n = 20) 

 Beta 
  Beta 

Alpha K 0.0 0.4 0.8  Alpha K 0.0 0.4 0.8 

0.0 

1 102.0    

0.0 

1 69.5   

3 55.9    3 46.3   

5 82.3    5 28.6   

1.2 

1 83.1 68.8 38.1  

1.2 

1 99.1 83.9 52.8 

3 17.8 57.0 21.4  3 13.7 27.6 11.9 

5 25.6 22.2 14.7  5 10.0 10.7 12.8 

1.8 

1 1.3 1.3 1.4  

1.8 

1 1.2 1.2 1.2 

3 1.2 1.2 1.2  3 1.1 1.1 1.1 

5 0.7 0.7 2.5  5 0.7 0.7 1.4 

2.0 

1 0.8    

2.0 

1 0.8   

3 0.8    3 0.8   

5 0.4    5 0.5   
   

Panel B: Intercept (n = 30)  Panel B: Slope (n = 30) 

 Beta 
  Beta 

Alpha K 0.0 0.4 0.8  Alpha K 0.0 0.4 0.8 

0.0 

1 130.8    

0.0 

1 90.4   

3 104.7    3 56.0   

5 1016.7    5 933.9   

1.2 

1 76.8 67.2 37.0  

1.2 

1 71.4 83.4 56.1 

3 64.6 53.3 29.8  3 50.4 43.2 29.7 

5 44.9 37.7 25.6  5 58.0 51.1 38.8 

1.8 

1 1.3 1.3 1.4  

1.8 

1 1.3 1.4 1.5 

3 1.2 1.3 1.4  3 1.2 1.3 1.3 

5 1.1 1.2 1.3  5 1.3 1.3 1.4 

2.0 

1 0.8    

2.0 

1 0.8   

3 0.8    3 0.8   

5 0.8    5 0.8   
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Table 1: continued 
 

Panel C: Intercept (n = 40)  Panel C: Slope (n = 40) 

 Beta 
  Beta 

Alpha K 0.0 0.4 0.8  Alpha K 0.0 0.4 0.8 

0.0 

1 176.2    

0.0 

1 123.8   

3 136.3    3 74.3   

5 130.0    5 109.7   

1.2 

1 53.7 46.0 29.2  

1.2 

1 25.7 24.0 21.0 

3 39.0 35.3 26.2  3 28.8 28.9 29.7 

5 41.2 36.8 26.3  5 22.6 23.0 24.0 

1.8 

1 1.4 1.5 1.6  

1.8 

1 1.2 1.3 1.3 

3 1.4 1.5 1.6  3 1.4 1.4 1.5 

5 1.4 1.5 1.6  5 1.3 1.4 1.4 

2.0 

1 0.8    

2.0 

1 0.8   

3 0.8    3 0.8   

5 0.8    5 0.8   

           

Panel D: Intercept (n = 100)  Panel D: Slope (n = 100) 

 Beta 
  Beta 

Alpha K 0.0 0.4 0.8  Alpha K 0.0 0.4 0.8 

0.0 

1 1467.5    

0.0 

1 1017.6   

3 1555.1    3 751.2   

5 1513.6    5 278.5   

1.2 

1 96.4 96.4 76.1  

1.2 

1 57.3 50.7 38.5 

3 119.2 121.6 96.4  3 117.3 132.0 149.6 

5 117.9 121.1 95.4  5 99.4 107.1 115.9 

1.8 

1 2.0 2.3 2.6  

1.8 

1 1.2 1.3 1.3 

3 2.4 2.8 3.0  3 2.5 2.9 3.3 

5 2.4 2.8 3.1  5 2.3 2.6 3.0 

2.0 

1 0.8    

2.0 

1 0.8   

3 0.8    3 0.8   

5 0.8    5 0.8   
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significance level close to nominal. The LR tests 
often deviate considerably from nominal. 
However, LR2 has median significance level 
closer to nominal than the other LR tests in most 
cases. Performance is similar for the LR tests for 
skewed and symmetric distributions. Among the 
bootstrap tests, there is little difference in 
performance for any of the experimental 
settings. 

In choosing among the LAV tests, it 
appears that the LR2 test maintains relatively 
high power - even when the level of significance 
is lower compared to the other tests. Also, the 
LM test is consistently lower in power. This 
negates some of the advantage the LM test 
might have due to the fact that it does not need 
an estimate of the nuisance parameter. As noted, 
the bootstrap tests have levels of significance 
that tend to be close to the nominal level. Power 
for the bootstrap tests can be slightly lower than 
that for LR2, even when the level of significance 
is equal or lower for LR2. Increasing the number 
of bootstrap iterations might improve the power 
of these tests. When sample size is large (n = 
100), there is little difference among any of the 
LAV based tests. These tests still improve on the 
LS t-test even in large samples. 

The variance estimate used to obtain 
LR2 uses n in the computations rather than n- r 
(where r is the number of zero residuals). This 
adjustment for zero residuals does not appear to 
be necessary. The variance estimates used to 
obtain LR1 and LR2 differ in that LR1 uses the z 
value while LR2 uses the appropriate t value in 
the computations. This provides some 
improvement in test performance for LR2 in 
small samples but the advantage vanishes for a 
sample size of 100. 

 
Conclusion 

 
Previous research examining small sample 
performance of some of the test statistics 
discussed in this article based on symmetric 
error distributions include Dielman (2006), 
Dielman and Pfaffenberger (1988, 1990, 1992), 
Dielman and Rose (1995, 1996, 2002), Koenker 
(1987) and Stangenhaus (1987). The results of 
these studies suggest that, in small samples, the 
LR and LM tests generally outperform the Wald 

test (not considered in the present study) in 
terms of both power and observed significance 
level. 

The LR and LM tests differ in that the 
LR test requires an estimate of the λ parameter 
discussed previously, while the LM test does 
not. However, using a fairly simple estimate of 
this scale parameter, the LR test has generally 
performed as well as, or better than, the LM test. 
In addition to the Wald, LR, and LM tests, 
bootstrap approaches have also been examined 
for inference in LAV regression. Dielman and 
Pfaffenberger (1988) used a bootstrap approach 
to estimate the scale parameter, λ, but the 
significance tests based on these bootstrap 
estimates did not perform particularly well.  

Dielman and Rose (1995) compared a 
true bootstrap test statistic with the LR and LM 
tests, and found that the bootstrap performed 
well in small samples. Dielman and Rose (2002) 
compared the LR, LM and three versions of the 
bootstrap suggested by Li and Maddala (1996) 
along with the LS t-test. They found that the LR 
test performed at least as well as, and often 
better than, the competing tests. Prior results for 
symmetric error distributions are consistent with 
the results from this study for both symmetric 
and asymmetric error distributions. 

If error distributions are suspected to be 
fat-tailed, improvements in estimation and 
inference are possible using LAV estimation 
rather than LS. This is true regardless of whether 
the distributions are symmetric or skewed. When 
choosing a test procedure for LAV estimated 
models, the bootstrap approaches perform 
reasonably well for all cases examined here. If a 
likelihood ratio test is to be used, LR2 seems to 
perform better than the other choices examined 
here. In addition, the LM test performs 
reasonably well in most settings examined 
although the power may be somewhat lower 
than the LR2 test. Differences in performance 
between the LAV based tests are small once the 
sample size reaches 100. 
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Table 2: Median percentages of rejections of H0: β1 = 0, normal explanatory variable, n = 20, K 
= 1 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed (stable 

with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.03 0.07 0.08 0.06 0.06 0.06 0.06 0.06 0.04 
0.2 0.10 0.06 0.10 0.12 0.08 0.08 0.08 0.08 0.09 0.07 
0.4 0.20 0.14 0.21 0.23 0.15 0.16 0.15 0.15 0.18 0.15 
0.6 0.37 0.28 0.38 0.41 0.28 0.29 0.27 0.27 0.31 0.27 
0.8 0.56 0.47 0.57 0.60 0.43 0.46 0.43 0.43 0.47 0.41 
1.0 0.72 0.64 0.73 0.75 0.59 0.62 0.59 0.59 0.61 0.54 
2.0 0.99 0.98 0.99 0.99 0.97 0.98 0.97 0.97 0.94 0.81 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.04 0.03 0.07 0.05 0.05 0.06 0.05 0.05 0.06 0.04 
0.2 0.07 0.06 0.10 0.08 0.08 0.08 0.07 0.07 0.09 0.07 
0.4 0.16 0.13 0.20 0.18 0.15 0.15 0.14 0.15 0.17 0.13 
0.6 0.29 0.26 0.36 0.32 0.27 0.28 0.24 0.25 0.29 0.25 
0.8 0.46 0.44 0.54 0.50 0.41 0.42 0.38 0.40 0.43 0.38 
1.0 0.63 0.60 0.70 0.66 0.57 0.58 0.52 0.55 0.56 0.53 
2.0 0.98 0.98 0.99 0.98 0.97 0.97 0.95 0.96 0.92 0.82 

 

Table 3: Median percentages of rejections of H0: β1 = 0, normal explanatory variable, n = 30, K 
= 1 for symmetric (with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed (stable with 

beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.04 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 
0.2 0.11 0.08 0.12 0.13 0.09 0.09 0.10 0.10 0.10 0.09 
0.4 0.26 0.20 0.27 0.28 0.21 0.21 0.21 0.21 0.22 0.21 
0.6 0.48 0.40 0.49 0.50 0.37 0.39 0.38 0.38 0.40 0.41 
0.8 0.69 0.62 0.70 0.71 0.57 0.59 0.57 0.57 0.58 0.61 
1.0 0.84 0.79 0.84 0.85 0.74 0.76 0.74 0.74 0.73 0.77 
2.0 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.97 0.97 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.04 0.06 0.07 0.06 0.06 0.06 0.06 0.05 0.05 
0.2 0.11 0.08 0.11 0.12 0.09 0.09 0.09 0.09 0.09 0.08 
0.4 0.25 0.20 0.26 0.27 0.19 0.20 0.19 0.19 0.21 0.18 
0.6 0.47 0.40 0.48 0.49 0.36 0.37 0.36 0.36 0.41 0.33 
0.8 0.69 0.62 0.69 0.71 0.55 0.58 0.56 0.56 0.60 0.49 
1.0 0.84 0.80 0.85 0.86 0.73 0.75 0.73 0.73 0.76 0.60 
2.0 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.98 0.83 
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Table 4: Median percentages of rejections of H0: β1 = 0, normal explanatory variable, n = 40, K 
= 1 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed (stable 

with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.13 0.14 0.14 0.14 0.11 0.11 0.11 0.11 0.12 0.09 
0.4 0.37 0.38 0.37 0.38 0.30 0.30 0.30 0.30 0.32 0.25 
0.6 0.65 0.66 0.66 0.67 0.56 0.56 0.56 0.56 0.58 0.44 
0.8 0.85 0.86 0.86 0.86 0.78 0.78 0.78 0.78 0.78 0.59 
1.0 0.96 0.96 0.96 0.96 0.92 0.92 0.92 0.92 0.90 0.68 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.13 0.14 0.13 0.14 0.11 0.11 0.11 0.11 0.12 0.09 
0.4 0.35 0.36 0.36 0.37 0.28 0.28 0.27 0.27 0.32 0.25 
0.6 0.64 0.65 0.65 0.66 0.53 0.53 0.53 0.53 0.56 0.44 
0.8 0.85 0.86 0.85 0.86 0.76 0.76 0.77 0.77 0.77 0.59 
1.0 0.95 0.96 0.95 0.96 0.91 0.91 0.91 0.91 0.90 0.68 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 

Table 5: Median percentages of rejections of H0: β1 = 0, normal explanatory variable, n = 100, 
K = 1 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed 

(stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.24 0.24 0.24 0.25 0.22 0.22 0.22 0.22 0.23 0.14 
0.4 0.68 0.68 0.68 0.69 0.63 0.63 0.63 0.63 0.64 0.39 
0.6 0.94 0.94 0.94 0.94 0.92 0.92 0.91 0.91 0.92 0.57 
0.8 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.22 0.22 0.22 0.22 0.20 0.20 0.19 0.19 0.20 0.14 
0.4 0.63 0.64 0.64 0.64 0.57 0.57 0.56 0.56 0.62 0.39 
0.6 0.94 0.94 0.94 0.94 0.88 0.88 0.88 0.88 0.91 0.57 
0.8 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 
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Table 6: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, 
n = 20, K = 3 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.09 0.04 0.09 0.11 0.06 0.06 0.06 0.06 0.06 0.04 
0.2 0.14 0.08 0.14 0.15 0.08 0.08 0.08 0.08 0.11 0.07 
0.4 0.27 0.18 0.27 0.29 0.15 0.16 0.15 0.15 0.20 0.16 
0.6 0.45 0.33 0.45 0.47 0.27 0.29 0.27 0.27 0.34 0.29 
0.8 0.63 0.52 0.64 0.66 0.41 0.45 0.41 0.41 0.49 0.44 
1.0 0.78 0.69 0.78 0.80 0.56 0.62 0.56 0.56 0.62 0.56 
2.0 0.99 0.98 0.99 0.99 0.96 0.97 0.96 0.96 0.92 0.82 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.09 0.05 0.08 0.10 0.06 0.06 0.05 0.05 0.06 0.04 
0.2 0.14 0.08 0.13 0.14 0.08 0.08 0.07 0.07 0.10 0.07 
0.4 0.26 0.17 0.25 0.28 0.15 0.15 0.14 0.14 0.20 0.16 
0.6 0.44 0.33 0.42 0.45 0.26 0.29 0.25 0.25 0.33 0.29 
0.8 0.62 0.51 0.61 0.63 0.41 0.44 0.39 0.39 0.48 0.43 
1.0 0.77 0.68 0.76 0.78 0.55 0.61 0.54 0.54 0.62 0.56 
2.0 0.99 0.98 0.99 0.99 0.95 0.97 0.95 0.95 0.93 0.82 

Table 7: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, 
n = 30, K = 3 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.09 0.06 0.10 0.10 0.06 0.06 0.06 0.06 0.07 0.05 
0.2 0.14 0.09 0.14 0.15 0.08 0.09 0.08 0.08 0.11 0.08 
0.4 0.26 0.20 0.27 0.29 0.16 0.16 0.16 0.16 0.22 0.15 
0.6 0.44 0.36 0.45 0.47 0.28 0.30 0.28 0.28 0.36 0.27 
0.8 0.63 0.55 0.65 0.66 0.43 0.47 0.44 0.44 0.53 0.42 
1.0 0.79 0.72 0.80 0.81 0.59 0.63 0.60 0.60 0.67 0.54 
2.0 0.99 0.99 0.99 0.99 0.97 0.98 0.98 0.98 0.96 0.80 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.09 0.06 0.10 0.10 0.06 0.06 0.05 0.05 0.07 0.05 
0.2 0.13 0.09 0.14 0.15 0.08 0.08 0.08 0.08 0.11 0.08 
0.4 0.26 0.20 0.26 0.27 0.15 0.17 0.15 0.15 0.22 0.15 
0.6 0.44 0.36 0.44 0.46 0.27 0.29 0.27 0.27 0.36 0.27 
0.8 0.63 0.55 0.63 0.65 0.43 0.46 0.42 0.42 0.52 0.42 
1.0 0.80 0.72 0.79 0.80 0.59 0.62 0.59 0.59 0.66 0.54 
2.0 0.99 0.99 0.99 0.99 0.97 0.98 0.97 0.97 0.96 0.80 
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Table 8: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, n 
= 40, K = 3 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed 

(stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.08 0.08 0.08 0.09 0.05 0.05 0.05 0.05 0.06 0.05 
0.2 0.14 0.14 0.14 0.15 0.09 0.09 0.08 0.08 0.12 0.08 
0.4 0.31 0.32 0.32 0.33 0.19 0.19 0.19 0.19 0.26 0.19 
0.6 0.54 0.55 0.55 0.56 0.36 0.36 0.37 0.37 0.45 0.34 
0.8 0.75 0.76 0.76 0.77 0.57 0.57 0.57 0.57 0.65 0.49 
1.0 0.88 0.89 0.89 0.89 0.75 0.75 0.75 0.75 0.79 0.60 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.82 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.08 0.09 0.08 0.09 0.05 0.05 0.05 0.05 0.06 0.05 
0.2 0.13 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.12 0.08 
0.4 0.30 0.31 0.31 0.32 0.19 0.19 0.19 0.19 0.25 0.18 
0.6 0.53 0.54 0.54 0.55 0.36 0.36 0.36 0.36 0.44 0.34 
0.8 0.75 0.76 0.75 0.76 0.57 0.57 0.56 0.56 0.63 0.49 
1.0 0.88 0.89 0.88 0.89 0.74 0.74 0.74 0.74 0.78 0.60 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.82 

Table 9: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, n 
= 100, K = 3 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 
0.2 0.25 0.26 0.26 0.27 0.21 0.21 0.21 0.21 0.23 0.14 
0.4 0.68 0.68 0.69 0.69 0.60 0.60 0.60 0.60 0.63 0.38 
0.6 0.94 0.94 0.94 0.94 0.90 0.90 0.90 0.90 0.91 0.57 
0.8 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 
0.2 0.24 0.24 0.24 0.25 0.20 0.20 0.20 0.20 0.22 0.14 
0.4 0.67 0.67 0.67 0.68 0.55 0.55 0.56 0.56 0.62 0.38 
0.6 0.93 0.93 0.93 0.93 0.87 0.87 0.88 0.88 0.88 0.57 
0.8 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 
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Table 10: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, 
n = 20, K = 5 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.18 0.09 0.11 0.13 0.05 0.05 0.05 0.05 0.15 0.06 
0.2 0.21 0.10 0.13 0.15 0.06 0.06 0.05 0.05 0.17 0.07 
0.4 0.27 0.14 0.18 0.20 0.07 0.08 0.07 0.07 0.20 0.09 
0.6 0.35 0.21 0.25 0.28 0.10 0.11 0.09 0.09 0.24 0.14 
0.8 0.45 0.31 0.34 0.37 0.13 0.15 0.14 0.14 0.29 0.20 
1.0 0.56 0.40 0.44 0.47 0.18 0.21 0.19 0.19 0.33 0.28 
2.0 0.90 0.83 0.84 0.86 0.51 0.63 0.56 0.56 0.53 0.65 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.19 0.09 0.10 0.12 0.05 0.05 0.04 0.04 0.15 0.06 
0.2 0.21 0.10 0.12 0.14 0.05 0.05 0.05 0.05 0.17 0.07 
0.4 0.27 0.14 0.16 0.18 0.07 0.07 0.06 0.06 0.20 0.09 
0.6 0.35 0.21 0.23 0.26 0.09 0.10 0.09 0.09 0.23 0.14 
0.8 0.44 0.30 0.32 0.34 0.13 0.15 0.13 0.13 0.28 0.20 
1.0 0.55 0.40 0.41 0.44 0.18 0.20 0.17 0.17 0.32 0.28 
2.0 0.89 0.82 0.82 0.84 0.51 0.62 0.53 0.53 0.51 0.65 

 

Table 11: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, n 
= 30, K = 5 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed 

(stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.14 0.08 0.13 0.14 0.05 0.05 0.05 0.05 0.08 0.04 
0.2 0.20 0.13 0.18 0.20 0.08 0.08 0.07 0.07 0.11 0.07 
0.4 0.35 0.26 0.34 0.36 0.15 0.16 0.15 0.15 0.19 0.16 
0.6 0.55 0.46 0.55 0.57 0.26 0.30 0.28 0.28 0.34 0.30 
0.8 0.74 0.66 0.74 0.75 0.42 0.47 0.45 0.45 0.50 0.45 
1.0 0.86 0.81 0.86 0.87 0.58 0.64 0.61 0.61 0.64 0.58 
2.0 1.00 0.99 1.00 1.00 0.96 0.98 0.97 0.97 0.95 0.82 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.14 0.08 0.12 0.13 0.05 0.05 0.05 0.05 0.07 0.04 
0.2 0.19 0.13 0.17 0.19 0.07 0.08 0.08 0.08 0.10 0.07 
0.4 0.35 0.26 0.33 0.34 0.15 0.16 0.15 0.15 0.20 0.16 
0.6 0.55 0.46 0.53 0.55 0.27 0.30 0.27 0.27 0.34 0.30 
0.8 0.73 0.65 0.72 0.73 0.41 0.46 0.43 0.43 0.50 0.45 
1.0 0.86 0.81 0.85 0.86 0.57 0.63 0.59 0.59 0.64 0.58 
2.0 1.00 0.99 1.00 1.00 0.96 0.98 0.97 0.97 0.95 0.82 
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Table 12: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, n 
= 40, K = 5 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed 

(stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.11 0.12 0.12 0.13 0.06 0.06 0.06 0.06 0.07 0.05 
0.2 0.20 0.21 0.21 0.21 0.10 0.10 0.10 0.10 0.13 0.09 
0.4 0.44 0.45 0.44 0.45 0.24 0.24 0.24 0.24 0.30 0.23 
0.6 0.69 0.70 0.70 0.71 0.45 0.45 0.45 0.45 0.53 0.42 
0.8 0.87 0.87 0.88 0.88 0.66 0.66 0.67 0.67 0.73 0.57 
1.0 0.95 0.96 0.96 0.96 0.82 0.82 0.83 0.83 0.86 0.67 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.85 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.12 0.12 0.11 0.12 0.06 0.06 0.06 0.06 0.06 0.05 
0.2 0.20 0.21 0.20 0.21 0.10 0.10 0.10 0.10 0.13 0.09 
0.4 0.43 0.44 0.43 0.44 0.23 0.23 0.23 0.23 0.30 0.23 
0.6 0.69 0.70 0.69 0.70 0.44 0.44 0.44 0.44 0.52 0.42 
0.8 0.87 0.87 0.87 0.88 0.65 0.65 0.65 0.65 0.72 0.57 
1.0 0.95 0.96 0.96 0.96 0.82 0.82 0.82 0.82 0.85 0.67 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.85 

 

Table 13: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, 
n = 100, K = 5 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.28 0.28 0.29 0.29 0.19 0.19 0.19 0.19 0.21 0.14 
0.4 0.72 0.72 0.72 0.73 0.58 0.58 0.58 0.58 0.61 0.39 
0.6 0.95 0.95 0.95 0.95 0.88 0.88 0.88 0.88 0.89 0.57 
0.8 0.99 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.98 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.06 
0.2 0.27 0.27 0.27 0.28 0.18 0.18 0.19 0.19 0.20 0.15 
0.4 0.70 0.70 0.70 0.71 0.55 0.55 0.56 0.56 0.61 0.39 
0.6 0.94 0.94 0.94 0.95 0.87 0.87 0.87 0.87 0.89 0.58 
0.8 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 

 



COMPARISON OF LAV AND LS ESTIMATION AND INFERENCE PROCEDURES 

160 
 

Dielman, T. E. (2006). Variance 
estimates and hypothesis tests in least absolute 
value regression. Journal of Statistical 
Computation and Simulation. 76. 103-114. 

Dielman, T. E. (2005). Least absolute 
value regression: Recent contributions. Journal 
of Statistical Computation and Simulation, 75, 
263-286. 

Dielman, T. E. (1992). Computational 
algorithms for least absolute value regression. In 
Dodge, Y., (Ed.): L1-statistical analysis and 
related methods, 311-326. Amsterdam: Elsevier 
Science Publishers. 

Dielman, T. E., & Pfaffenberger, R. 
(1992). A further comparison of tests of 
hypotheses in LAV regression. Computational 
Statistics and Data Analysis, 14, 375-384. 

Dielman, T. E., & Pfaffenberger, R. 
(1990). Tests of linear hypotheses in LAV 
regression. Communications in Statistics – 
Simulation and Computation, 19, 1179-1199. 

Dielman, T. E., & Pfaffenberger, R. 
(1988). Bootstrapping in least absolute value 
regression: An application to hypothesis testing. 
Communications in Statistics – Simulation and 
Computation, 17, 843-856. 

Dielman, T. E., & Rose, E. L. (2002). 
Bootstrap versus traditional hypothesis testing 
procedures for coefficients in least absolute 
value regression. Journal of Statistical 
Computation and Simulation, 72, 665-675. 

Dielman, T. E., & Rose, E. L. (1996). A 
note on hypothesis testing in LAV multiple 
regression: A small sample comparison. 
Computational Statistics and Data Analysis, 21, 
463-470. 

Dielman, T. E. & Rose, E. L. (1995). A 
bootstrap approach to hypothesis testing in least 
absolute value regression. Computational 
Statistics and Data Analysis, 20, 119-130. 

 
 
 
 
 
 
 
 
 
 

Koenker, R. (1987). A comparison of 
asymptotic testing methods for L1-regression. In 
Dodge, Y., (Ed.): Statistical data analysis based 
on the L1-norm and related methods, 287-295. 
Amsterdam: Elsevier Science Publishers. 

Koenker, R., & Bassett, G. (1982). Tests 
of linear hypotheses and L1 estimation. 
Econometrica, 50, 1577-1583. 

Li, H., & Maddala, G. S. (1996). 
Bootstrapping time series models. Econometric 
Reviews, 15, 115-158. 

McKean, J., & Schrader, R. (1987). 
Least absolute errors analysis of variance. In: 
Dodge, Y., (Ed.): Statistical data analysis based 
on the L1-norm and related methods, 297-305. 

Amsterdam: Elsevier Science Publishers. 
McKean, J., & Schrader, R. (1984). A 

comparison of methods for studentizing the 
sample median. Communications in Statistics – 
Simulation and Computation, 13, 751-773. 

Sheather, S. J. (1987). Assessing the 
accuracy of the sample median: Estimated 
standard errors versus interpolated confidence 
intervals. In: Dodge, Y., (Ed.): Statistical data 
analysis based on the L1-Norm and related 
methods, 203-215. Amsterdam: Elsevier Science 
Publishers.  

Stangenhaus, G. (1987). Bootstrap and 
inference procedures for L1- regression. In 
Dodge, Y., (Ed.): Statistical data analysis based 
on the L1-norm and related methods, 323-332. 
Amsterdam: Elsevier Science Publishers. 

van Giersbergen, N. P. A., & Kiviet, J. 
F. (2002). How to implement the bootstrap in 
static or stable dynamic regression models: test 
statistic versus confidence region approach. 
Journal of Econometrics, 108, 133-156. 
 
 
 



Journal of Modern Applied Statistical Methods   Copyright © 2009 JMASM, Inc. 
May 2009, Vol. 8, No. 1, 161-172                                                                                                                             1538 – 9472/09/$95.00 

161 
 

A Monte Carlo Comparison of Regression Estimators 
When the Error Distribution is Long-Tailed Symmetric 
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The performances of the ordinary least squares (OLS), modified maximum likelihood (MML), least 
absolute deviations (LAD), Winsorized least squares (WIN), trimmed least squares (TLS), Theil’s (Theil) 
and weighted Theil’s (Weighted Theil) estimators are compared under the simple linear regression model 
in terms of their bias and efficiency when the distribution of error terms is long-tailed symmetric. 
 
Key words: Long-tailed symmetric, ordinary least squares, modified maximum likelihood, least absolute 
deviations, Winsorized least squares, trimmed least squares, Theil’s method, Weighted Theil’s method. 
 
 
 

Introduction 
 
Consider the simple linear regression model: 
 

0 1 ,i i iy x eβ β= + +                   (1) 

 
where (i = 1, 2, …, n), iy  is the response 

variable, ix  is a nonstochastic explanatory 

variable and 0β  and 1β  are the unknown 

parameters. Traditionally, error terms ie  

)1( ni ≤≤  are assumed to be independently and 

identically distributed (iid) normal ),0( 2σN  

and the regression coefficients 0β  and 1β  are 

estimated by using the OLS estimators given by 
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respectively. 
 

The OLS estimators are optimal only if 
the error distribution is normal. However, in 
most real life applications, nonnormal 
distributions are more prevalent; see, Pearson 
(1932), Geary (1947), Huber (1981), Şenoğlu 
(2005) and Şenoğlu (2007). Additionally, the 
occurrence of outliers in a data set is another 
indication of nonnormality. Due to these 
weaknesses of the OLS estimators, statisticians 
prefer to use the alternative regression 
estimators which are more efficient and robust 
under nonnormality 

However, the choice of which method to 
use is not defined clearly for different types of 
error distributions. In the literature, there exists a 
very limited number of researches comparing 
alternative regression methods, see Tam (1996) 
and Nevitt and Tam (1998). In this study, our 
main concern is to identify the most efficient 
method when the error distribution is long-tailed 
symmetric and also to see the effect of 
nonnormality on the efficiencies and robustness 
of the regression estimators. 
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Long-tailed Symmetric (LTS) Distribution 
The LTS distribution has the probability 

density function: 
 

2

2

1
( , ) :   ( ) 1 ,

p
eLTS p f e

k
σ

σ σ

−
 

∝ + 
 

 

;∞<<∞− e  
 
with 32 −= pk  and 2≥p . The mean and 

variance of the random variable e  is 0 and 2σ , 
respectively. See also the following table for the 
Pearson coefficient of kurtosis, i.e., 

2
242 μμβ =  of the ),( σpLTS  distribution: 

 
p = 2.5 3.5 5.0 10 ∞ 

2β = ∞ 9 4.2 3.4 3.0 

 
This reduces to the normal distribution when p  
is equal to ∞. 
 

Methodology 
 
OLS is the most popular method for estimating 
the parameters of the simple linear regression 
model. This is partly due to the relative 
simplicity of its computations. However, the 
OLS method is very sensitive to outliers and to 
nonnormality. To remedy these problems, 
alternative regression methods have been 
developed that are not sensitive to the violations 
of the assumptions of the simple linear 
regression model. The only disadvantage of 
these alternative methods is their computational 
difficulty. Today, however, computational 
difficulties are unimportant issue because of the 
improvements in computer technology (see 
Birkes & Dodge, 1993; Rousseeuw & Leroy, 
1987). 
 
The Modified Maximum Likelihood Method 

The maximum likelihood (ML) 
estimators are the solutions of the equations 
 

0ln 0 =∂∂ βL , 

0ln 1 =∂∂ βL , 
and 

ln 0.L σ∂ ∂ =                       (3) 
 
These equations do not have explicit solutions. 
Tiku, et al. (2001) express likelihood equations 
in terms of order statistics (for a given 1β ), 
since complete sums are invariant to ordering. 
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where [ ] [ ]),( ii xy  is that pair of observations 

which correspond to )(iz  )1( ni ≤≤ ; [ ] [ ]),( ii xy  

are called the concomitants of )(iz . They 

linearize the intractable functions 

{ }2
)()()( )/1(1)( iii zkzzg +=  by using the first 

two terms of a Taylor series expansion by using 
the following linear approximation 
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)(it ’s ( ni ,.....,2,1= ) are the expected values of 

the order statistics )(iz , i. e., ).( )()( ii zEt =  

Incorporating (4) in (3), results in modified 
likelihood equations: 
 

0ln 0
* =∂∂ βL , 

0ln 1
* =∂∂ βL , 

and 

0ln * =∂∂ σL . 
 
These equations have explicit solutions called as 
MML estimators: 
 

[ ] [ ].1.0
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Least Absolute Deviations (LAD) 

The LAD regression method was 
developed by Roger Joseph Boscovich in 1757, 
see Birkes and Dodge (1993). The LAD 
estimators of regression coefficients, 0β  and 

1,β  are found by minimizing the function: 

0 1
1

( ) .
n

i i
i

F y xβ β
=

= − +                (5) 

 
Although the logic behind LAD is not more 
difficult than the concept of OLS, calculation of 
the LAD estimates is more troublesome. An 
algorithmic method is used for the calculation of 

the LAD estimates 0β̂  and 1β̂ , since there are 

no exact formulas. 
 This algorithm starts with one of the 
data points ),( yx , say ),( 11 yx , and tries to find 
the best line passing through it. The line passing 
through ),( 11 yx  also passes through another 

data point denoted by ),( 22 yx . Next we find 

the best line passing through ),( 22 yx . As the 
algorithm continues, we obtain increasingly 
better lines and finally the most recent line 
obtained will be the same as the previous line. 
This line is the best line and it is called as LAD 
regression line, see Birkes and Dodge (1993)  
for more detailed information. 
 
Winsorized Least Squares 

The WLS which is an iterative method 
is another alternative to OLS method; see Yale 
and Forsythe (1976). Smoothing techniques 
based on the OLS estimation are applied to 
reduce the effect of the outliers in the sample. 
The basic idea is to replace the most extreme 
residual with the next closest residual in the 
sample in an iterative way. In the literature, the 
studies show that Winsorization does not worsen 
a good linear relationship on non-contaminated 
data. On the contrary, it improves the estimates 

0β̂  and 1β̂ , when the sample is contaminated 

with outliers. 
 
Trimmed Least Squares 

The fourth method is the TLS 
introduced by Rousseeuw in 1984. The TLS 
estimation procedure is similar to the OLS 
estimation, but in TLS procedure, the fit is not 
so much affected from the outliers, because the 
data points corresponding to a specified 
percentage of the highest residuals based on an 
initial OLS estimation are removed. The OLS 
estimates of slope and intercept for the 
remaining data are called TLS estimates, see 
Rousseeuw and Leroy (1987) and Nevitt and 
Tam (1998). The aim is to minimize 
 

( )
=

−−
h

i
ii xy

1

2
10 ββ                  (6) 

 
As it is seen in equation (6), rather than 
smoothing the data as in Winsorized regression, 
the outlying cases are deleted, therefore the n-h 
observations do not affect the estimators. 
 
Theil’s Method 

Theil’s nonparametric regression 
method using the median as robust measures 
(see Theil, 1950) is presented. In Theil’s 
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method, the only assumption is that the error 
terms are identically and independently 
distributed (i.i.d); this is different than the robust 
methods. 

Sprent (1993) stated that for a simple 
linear regression model to obtain the slope of a 
line that fits the data points, the set of  all slopes 

ij

ij
ij xx

yy
b

−
−

=  of lines joining pairs of data 

points (xi, yi), (xj, yj), xj≠xi, for 1 nji ≤<≤  
should be calculated. 

Hussain and Sprent (1983) say that no 
generality is lost if 1 nji ≤<≤  is taken, 
assuming that the xi’s are arranged in ascending 
order (note that jiij bb = ). According to these 

results the Theil’s slope estimator is: 
 

{ }ijij xxbmed ≠= |ˆ
1β  

 
where nxxx ≤≤≤ ...21 . 

It is known that median estimators are 
less affected from the outlying values in the data 
set as compared to the mean estimators, i.e., they 
are resistant estimators. The corresponding 
intercept term is defined as the median of the 

ii xy 1β̂−  terms (see Birkes & Dodge, 1993). 

 
Weighted Theil’s Method 

A modified version of the Theil’s 
method is called a Weighted Theil’s Regression 
Method. In this method, different than the 
Theil’s original method, each of the pairwise 
slopes are weighted using a weighting scheme. 
The weighted Theil slope estimator for the n 
observations in the sample data is the weighted 
median of these bij’s. ijw , as the weighting 

procedure, can be taken as 
 

ij xx − , ij −  or ij xx − , 

 
see, for example Jaeckel (1972) and Scholz [16] 
and Birkes and Dodge (1993). In this study, the 

weights 
( )

( ) −

−
=

2

2

ji

ji
ij

xx

xx
w  were used to 

calculate the slope estimator = ijijbw1β̂ . 

The intercept estimator is calculated in a similar 
fashion as in Theil’s original method. 

 
Results 

 
The design points xi )1( ni ≤≤  follow an 
equally spaced, sequential additive series (xi = 1, 
2, …, n) (see Hussain & Sprent, 1983) and are 
common to all random samples ),.....,,( 21 nyyy  

for the [ ]nN 000,100=  (integer) Monte Carlo 

runs. The error terms, ie , are generated from the 

long-tailed symmetric distribution given above, 
and 0β , 1β  and σ  are taken to be 0, 1 (1 in the 

remainder of this article) without loss of 
generality. The simulated means, variances and 
mean square errors (MSE) of the estimators are 
computed for some selected values of p (2.0, 
2.5, 3.0, 3.5 and 5.0) and the results are given in 
Table 1. 

From the simulation results presented in 
Table 1, all of the methods of estimation 
produced negligible bias therefore comparisons 

may be made in terms of MSE for both 0β̂  and 

1β̂ . In view of MSE, the following conclusions 

are put forth for the intercept estimator 0β̂ : 

• WIN20 and WIN10 outperformed other 
estimators at all sample sizes for 3<p . For 

moderate ( 20=n ) and large sample sizes 
(n=50) they had the smallest MSE when p
= 3.0. For values of the shape parameter p  
greater than 3, WIN20 and WIN10 were the 
preferred estimators for large sample sizes 
(n=50). 

• The performance of the MML is best for 
small sample sizes (n=10) when p =3. 

When p = 3.5 and 5, the highest 
performance was achieved by MML for 
small (n=10) and moderate (n=20) samples. 

• LAD and TLS performed poorly at all 
sample sizes for all values of the shape 
parameter .p  As expected, the performance 

of OLS was the worst for p = 2.5, however, 
it consistently increased with the value of  
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Table 1: Means, Variances and MSE’s for the estimators 0β̂  and 1β̂ , n =10 

                                          0β̂                     1β̂  

 
Method       Mean      Variance      MSE      Mean      Variance     MSE 
 

p=2.0 
 
OLS        0.003516   0.442733   0.442745   0.998563   0.011514   0.011516 
MML        0.004207   0.341639   0.341656   0.998604   0.009006   0.009008 
LAD       -0.002318   0.362488   0.362493   0.999963   0.009799   0.009799 
WIN10      0.000232   0.361181   0.361181   0.999536   0.009411   0.009411 
WIN20      0.001934   0.300163   0.300167   0.999102   0.007824   0.007825 
TLS        0.006592   0.329992   0.330035   0.998576   0.008706   0.008708 
Theil      0.000764   0.314738   0.314738   0.999397   0.008095   0.008096 
Wtd.Theil  0.001506   0.312057   0.312059   0.999328   0.008060   0.008060 

 
P=2.5 

 
OLS       -0.003356   0.461119   0.461130   1.000817   0.012041   0.012042 
MML       -0.003358   0.413896   0.413908   1.000816   0.010877   0.010878 
LAD       -0.001238   0.494956   0.494957   1.000694   0.013322   0.013322 
WIN10     -0.003894   0.459236   0.459251   1.000988   0.012092   0.012093 
WIN20     -0.001129   0.385763   0.385764   1.000446   0.010191   0.010191 
TLS       -0.002565   0.445692   0.445699   1.000634   0.011855   0.011855 
Theil     -0.002769   0.413026   0.413033   1.000909   0.010785   0.010786 
Wtd.Theil -0.000713   0.407067   0.407068   1.000667   0.010531   0.010531 

 
 
P=3.0 

 
OLS       -0.002395   0.459847   0.459853   1.000911   0.012078   0.012079 
MML       -0.001450   0.410860   0.410862   1.000782   0.010912   0.010913 
LAD        0.003457   0.556958   0.556970   0.999881   0.015020   0.015020 
WIN10      0.002749   0.475428   0.475435   0.999938   0.012637   0.012637 
WIN20      0.001543   0.415174   0.415177   1.000308   0.010967   0.010968 
TLS       -0.002892   0.485833   0.485841   1.000915   0.012907   0.012908 
Theil      0.000275   0.448417   0.448417   1.000647   0.011503   0.011503 
Wtd.Theil  0.000458   0.438228   0.438228   1.000618   0.011210   0.011210 

 
P=3.5 

 
OLS       -0.013050   0.470511   0.470681   1.000804   0.012082   0.012082 
MML       -0.010891   0.434622   0.434741   1.000796   0.011308   0.011309 
LAD       -0.012993   0.594436   0.594605   1.001073   0.016032   0.016034 
WIN10     -0.014704   0.510295   0.510512   1.001517   0.013519   0.013521 
WIN20     -0.010134   0.446861   0.446964   1.000764   0.011649   0.011650 
TLS       -0.009950   0.524629   0.524728   1.000705   0.013743   0.013743 
Theil     -0.009799   0.472920   0.473016   1.000470   0.011964   0.011964 
Wtd.Theil -0.009878   0.470252   0.470350   1.000552   0.011806   0.011806 

 
P=5.0 

 
OLS        0.006726   0.473619   0.473664   0.999226   0.012242   0.012243 
MML        0.006238   0.459306   0.459345   0.999366   0.011917   0.011917 
LAD        0.005333   0.653941   0.653969   0.999511   0.017332   0.017332 
WIN10      0.004859   0.542576   0.542600   0.999847   0.014320   0.014320 
WIN20      0.006534   0.482789   0.482832   0.999342   0.012526   0.012526 
TLS        0.005403   0.587715   0.587744   0.999960   0.015314   0.015314 
Theil      0.005450   0.523069   0.523098   0.999733   0.013058   0.013058 
Wtd.Theil  0.007827   0.507404   0.507465   0.999458   0.012595   0.012596 
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Table 1 (continued): Means, Variances and MSE’s for the estimators 0β̂  and 1β̂ , n =20 

      m                                  0β̂                                   1β̂          
 
Method       Mean      Variance      MSE      Mean      Variance     MSE 
 

p=2.0 
 
OLS       -0.002366   0.214414   0.214420   1.000324   0.001462   0.001463 
MML       -0.001976   0.141376   0.141380   1.000244   0.000964   0.000964 
LAD       -0.016728   0.152118   0.152398   1.001465   0.001097   0.001099 
WIN10     -0.000748   0.168078   0.168079   1.000103   0.001165   0.001165 
WIN20     -0.000829   0.128047   0.128048   1.000164   0.000879   0.000879 
TLS       -0.000038   0.144824   0.144824   1.000100   0.001000   0.001000 
Theil      0.007148   0.132135   0.132187   0.999243   0.000896   0.000897 
Wtd.Theil -0.000949   0.130729   0.130730   1.000045   0.000880   0.000880 
 
 

P=2.5 
 
OLS       -0.004576   0.210169   0.210190   1.000161   0.001458   0.001458 
MML       -0.005110   0.173648   0.173674   1.000131   0.001211   0.001211 
LAD       -0.024790   0.207893   0.208508   1.001937   0.001483   0.001487 
WIN10      0.000021   0.205904   0.205904   0.999652   0.001469   0.001469 
WIN20     -0.006372   0.161651   0.161691   1.000210   0.001144   0.001144 
TLS       -0.006068   0.186094   0.186131   1.000211   0.001325   0.001325 
Theil      0.005634   0.173694   0.173725   0.999042   0.001185   0.001186 
Wtd.Theil -0.005509   0.171549   0.171580   1.000126   0.001166   0.001167 

 
P=3.0 

 
OLS       -0.000997   0.217897   0.217898   1.000303   0.001517   0.001518 
MML       -0.001199   0.190935   0.190936   1.000301   0.001320   0.001320 
LAD       -0.015553   0.236484   0.236726   1.001847   0.001681   0.001684 
WIN10     -0.001128   0.227378   0.227379   1.000144   0.001614   0.001614 
WIN20      0.000029   0.181401   0.181401   1.000151   0.001256   0.001256 
TLS        0.002355   0.211460   0.211466   1.000057   0.001474   0.001474 
Theil      0.014359   0.195260   0.195466   0.999013   0.001304   0.001305 
Wtd.Theil  0.001850   0.192893   0.192896   1.000188   0.001278   0.001278 

 
P=3.5 

 
OLS       -0.005599   0.215732   0.215764   1.001062   0.001529   0.001530 
MML       -0.002278   0.193426   0.193431   1.000902   0.001370   0.001371 
LAD       -0.019423   0.262883   0.263260   1.002378   0.001877   0.001882 
WIN10     -0.002735   0.242673   0.242680   1.000908   0.001750   0.001751 
WIN20     -0.001386   0.195807   0.195809   1.000829   0.001384   0.001385 
TLS        0.003151   0.232698   0.232707   1.000321   0.001637   0.001637 
Theil      0.008258   0.211309   0.211377   0.999694   0.001439   0.001439 
Wtd.Theil -0.003741   0.209351   0.209365   1.000870   0.001413   0.001414 

 
P=5.0 

 
OLS       -0.001472   0.206327   0.206329   1.000286   0.001458   0.001458 
MML       -0.001661   0.196991   0.196994   1.000312   0.001395   0.001395 
LAD       -0.019671   0.282823   0.283210   1.002131   0.002007   0.002011 
WIN10      0.002690   0.250279   0.250286   0.999782   0.001833   0.001833 
WIN20     -0.002567   0.202167   0.202173   1.000406   0.001418   0.001419 
TLS       -0.003974   0.243164   0.243180   1.000674   0.001704   0.001704 
Theil      0.013557   0.220453   0.220637   0.999055   0.001461   0.001462 
Wtd.Theil  0.001284   0.217649   0.217651   1.000161   0.001438   0.001438 
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Table 1 (continued): Means, Variances and MSE’s for the estimators 0β̂  and 1β̂ , n =50 

                                        0β̂                                   1β̂                    
 
Method       Mean      Variance      MSE      Mean      Variance     MSE 
 

p=2.0 
 
OLS       -0.000594   0.084085   0.084085   1.000087   0.000104   0.000104 
MML        0.001371   0.047691   0.047692   1.000004   0.000055   0.000055 
LAD        0.000378   0.052987   0.052987   0.999985   0.000063   0.000063 
WIN10      0.006258   0.065587   0.065626   0.999828   0.000079   0.000079 
WIN20      0.000867   0.046586   0.046586   1.000034   0.000055   0.000055 
TLS        0.001880   0.050630   0.050634   1.000005   0.000060   0.000060 
Theil     -0.000014   0.047390   0.047390   1.000006   0.000054   0.000054 
Wtd.Theil -0.000386   0.047201   0.047202   1.000025   0.000053   0.000053 
 
   

P=2.5 
 
OLS        0.002424   0.086628   0.086634   0.999785   0.000099   0.000099 
MML       -0.000641   0.066412   0.066413   0.999911   0.000076   0.000076 
LAD        0.001515   0.080364   0.080366   0.999884   0.000094   0.000094 
WIN10      0.004181   0.091114   0.091131   0.999756   0.000108   0.000108 
WIN20     -0.000303   0.064850   0.064850   0.999878   0.000075   0.000075 
TLS       -0.004784   0.076472   0.076495   1.000056   0.000087   0.000087 
Theil      0.002601   0.068287   0.068294   0.999896   0.000075   0.000075 
Wtd.Theil  0.002145   0.068267   0.068272   0.999915   0.000075   0.000075 

 
P=3.0 

 
OLS       -0.012133   0.085280   0.085428   1.000378   0.000100   0.000100 
MML       -0.011707   0.073272   0.073409   1.000390   0.000085   0.000085 
LAD       -0.012364   0.089730   0.089883   1.000416   0.000106   0.000106 
WIN10     -0.007459   0.096523   0.096579   1.000233   0.000115   0.000115 
WIN20     -0.009552   0.071668   0.071759   1.000327   0.000084   0.000084 
TLS       -0.010372   0.078219   0.078326   1.000291   0.000094   0.000094 
Theil     -0.009797   0.075452   0.075548   1.000351   0.000084   0.000084 
Wtd.Theil -0.009190   0.074861   0.074945   1.000330   0.000083   0.000083 

 
P=3.5 

 
OLS       -0.013384   0.081143   0.081322   1.000466   0.000093   0.000093 
MML       -0.012900   0.070895   0.071062   1.000445   0.000082   0.000082 
LAD       -0.009534   0.092041   0.092131   1.000356   0.000108   0.000108 
WIN10     -0.012675   0.089156   0.089317   1.000384   0.000108   0.000108 
WIN20     -0.012857   0.069653   0.069818   1.000447   0.000081   0.000081 
TLS       -0.012912   0.079559   0.079725   1.000442   0.000093   0.000093 
Theil     -0.012624   0.077350   0.077510   1.000469   0.000083   0.000083 
Wtd.Theil -0.012442   0.076734   0.076889   1.000476   0.000082   0.000082 

 
P=5.0 

 
OLS        0.000349   0.080924   0.080924   1.000022   0.000093   0.000093 
MML       -0.002554   0.075887   0.075893   1.000110   0.000088   0.000088 
LAD       -0.004909   0.110364   0.110388   1.000214   0.000129   0.000129 
WIN10      0.000915   0.100494   0.100495   1.000063   0.000122   0.000122 
WIN20     -0.001840   0.076396   0.076399   1.000070   0.000088   0.000088 
TLS       -0.002449   0.093636   0.093642   1.000074   0.000108   0.000108 
Theil     -0.003242   0.083709   0.083720   1.000146   0.000090   0.000090 
Wtd.Theil -0.002844   0.083042   0.083050   1.000120   0.000089   0.000089 
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the shape parameter p  since OLS is the optimal 

method under normality and the ),( σpLTS  

distribution approaches normal as ∞→p . 
Results were not reproduced for the sake of 
brevity, however. 
 

For the slope estimator 1β̂ : 

• For 2=p  and 2.5, the performances of the 
WIN20 and WIN10 were the best at sample 
sizes 10 and 20 and Wtd.Theil and Theil 
provide the smallest MSE for the large 
sample sizes )50( =n . 

• For 0.3=p , WIN20 demonstrated the 
strongest performance with lowest MSE at 
all sample sizes except for =n 10, in which 
case MML provides the smallest MSE. 

• MML, WIN10 and Wtd.Theil were the 
preferred methods for 5.3=p . When 

0.5=p , MML, WIN10 and WIN20 have 
the smallest MSE.  

• The LAD and TLS slope estimators showed 
very poor performance with the largest MSE 
values at all sample sizes for all values of 
the shape parameter, p .  

• The performance of the OLS slope estimator 
is similar to the OLS intercept estimator. 

 
Robustness 

In practice, a model is identified by Q-Q 
plots or goodness of fit tests. Neither of these 
methods, nor in fact any other method, identifies 
a model exactly or uniquely. In other words, the 
value of the shape parameter p  in ),( σpLTS  
might be misspecified. Assume, for illustration, 
that the true distribution is the ),5.3( σLTS . To 
represent a large number of plausible 
alternatives, consider the following sample 
models: 
 
• Model (1): LTS(2.0,σ) 
• Model (2): LTS(5.0,σ) 
• Model (3): Outlier Model; (n-r) observations 

from LTS(3.5,σ) and r observations from 
LTS(3.5, 4σ) where r =[0.5+0.1n] 

• Model (4): Mixture Model; 0.90LTS(3.5,σ) 
+ 0.10LTS(3.5,4σ) 

• Model (5): Contamination Model; 
0.90LTS(3.5,σ) + 0.10 Normal (0, 4) 

 
The simulated means, variances and MSE of the 
regression estimators for the alternative models 
are shown in Table 2. It should be noted that an 

estimator θ̂  of θ  is called robust if it is fully 
efficient (or nearly so) for an assumed model but 
maintains high efficiencies for plausible 
alternatives to the assumed model. Based on the 
information in Table 2, the following 
conclusions are put forth for the intercept 

estimator 0β̂ : 

• WIN10 and WIN20 showed the strongest 
performance with lowest MSE for Models 
(1), (3), (4) and (5) at all sample sizes except 
for a sample of size 50 in Models (1) and (5) 
in which case the Wtd. Theil provides the 
smallest MSE. 

• MML demonstrated the strongest 
performance with lowest MSE as compared 
to other methods in Model (2). 

• OLS and LAD showed very poor estimator 
performance at all sample sizes with largest 
MSE values for Models (1), (3), (4), (5) and 
Model (2), respectively. 

 

For the slope estimator 1β̂ : 

• WIN10 and WIN20 provided the smallest 
MSE for Models (1), (3), (4) and (5) at 
sample sizes 10 and 20, however, for the 
sample size 50=n , the Wtd. Theil’s slope 
estimator had the strongest efficiency. 

• The highest performance for Model (2), 

similar to intercept estimator 0β̂ , is 

achieved by MML. 
• OLS and LAD have the highest MSE values 

for Models (1), (3), (4), (5) and Model (2), 
respectively. Therefore, they are not 
preferred estimators under these sample 
models. 

 
Conclusion 

 
The OLS estimation procedure provides good 
results when the error terms have a normal 
distribution. However, in real life, it is nearly 
impossible to find a data set that satisfies all of  
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Table 2: Means, Variances and MSE’s for the sample models (1)-(5), n =10 

   0β̂                     1β̂  
 
Method       Mean      Variance      MSE      Mean      Variance     MSE 
 

Model (1) 
 

OLS       -0.012290   0.485174   0.485325   1.001940   0.012996   0.013000 
MML       -0.010016   0.352918   0.353018   1.001675   0.009657   0.009660 
LAD       -0.009981   0.357653   0.357753   1.001655   0.009603   0.009605 
WIN10     -0.007079   0.365626   0.365676   1.001175   0.009806   0.009807 
WIN20     -0.010102   0.317492   0.317594   1.001656   0.007995   0.007998 
TLS       -0.009358   0.325208   0.325295   1.001784   0.008635   0.008638 
Theil     -0.010226   0.307593   0.307697   1.001484   0.008033   0.008035 
Wtd.Theil -0.012949   0.308182   0.308350   1.001986   0.008008   0.008012 

 
Model (2) 

 
OLS       -0.006355   0.470296   0.470337   1.000850   0.012108   0.012109 
MML       -0.006313   0.456893   0.456933   1.000915   0.011789   0.011790 
LAD       -0.008034   0.656990   0.657055   1.001427   0.017477   0.017479 
WIN10     -0.008389   0.546347   0.546417   1.001590   0.014378   0.014380 
WIN20     -0.006451   0.480393   0.480435   1.001023   0.012422   0.012423 
TLS       -0.005099   0.577213   0.577239   1.000909   0.015085   0.015086 
Theil     -0.005327   0.520019   0.520047   1.000805   0.012966   0.012966 
Wtd.Theil -0.006527   0.507479   0.507522   1.001039   0.012562   0.012563 

 
Model (3) 

 
OLS        0.012384   1.223769   1.223923   0.998354   0.032164   0.032167 
MML        0.009457   0.753716   0.753806   0.998816   0.020260   0.020262 
LAD        0.016420   0.751355   0.751625   0.997478   0.019980   0.019987 
WIN10     -0.010434   0.754763   0.754872   1.000511   0.019574   0.019574 
WIN20      0.008255   0.630553   0.630621   0.998781   0.016398   0.016400 
TLS        0.012560   0.667084   0.667242   0.998366   0.017401   0.017404 
Theil      0.007114   0.660818   0.660869   0.999191   0.016871   0.016872 
Wtd.Theil  0.006276   0.658813   0.658853   0.999105   0.016838   0.016839 

 
Model (4) 

 
OLS       -0.015771   1.169783   1.170031   1.003291   0.030152   0.030163 
MML       -0.015086   0.776937   0.777164   1.002934   0.020509   0.020518 
LAD       -0.022904   0.798735   0.799260   1.003815   0.021329   0.021343 
WIN10     -0.026484   0.830451   0.831153   1.003516   0.021298   0.021310 
WIN20     -0.013370   0.661862   0.662040   1.002650   0.017077   0.017084 
TLS       -0.011041   0.710763   0.710885   1.002151   0.018798   0.018803 
Theil     -0.016685   0.694106   0.694385   1.002835   0.017787   0.017795 
Wtd.Theil -0.015797   0.690942   0.691192   1.002849   0.017729   0.017737 

 
Model (5) 

 
OLS       -0.004107   1.179549   1.179566   1.001699   0.030212   0.030215 
MML       -0.001795   0.797778   0.797782   1.001125   0.021203   0.021204 
LAD        0.004313   0.797272   0.797291   0.999694   0.021461   0.021461 
WIN10     -0.011044   0.839572   0.839694   1.001791   0.022213   0.022217 
WIN20      0.000062   0.684177   0.684177   1.000728   0.017888   0.017889 
TLS        0.002536   0.742882   0.742889   1.000399   0.019719   0.019719 
Theil     -0.000683   0.701909   0.701910   1.000896   0.018376   0.018377 
Wtd.Theil -0.001727   0.715698   0.715701   1.000978   0.018841   0.018842 
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Table 2 (continued): Means, Variances and MSE’s for the sample models (1)-(5), n =20 

    0β̂                                                  1β̂      
 
Method       Mean      Variance      MSE      Mean      Variance     MSE 
 

Model (1) 
 
OLS       -0.003752   0.222670   0.222685   0.999951   0.001546   0.001546 
MML       -0.004145   0.138954   0.138971   1.000165   0.000966   0.000966 
LAD       -0.014743   0.152306   0.152524   1.001444   0.001072   0.001074 
WIN10     -0.004923   0.163155   0.163179   1.000060   0.001149   0.001149 
WIN20     -0.001735   0.123830   0.123833   1.000051   0.000863   0.000863 
TLS       -0.002840   0.142264   0.142272   1.000216   0.000988   0.000988 
Theil      0.011090   0.129912   0.130035   0.998996   0.000873   0.000874 
Wtd.Theil  0.001468   0.128770   0.128772   0.999909   0.000861   0.000861 

 
 
Model (2) 

 
OLS       -0.009421   0.220500   0.220589   1.000323   0.001527   0.001527 
MML       -0.007871   0.208822   0.208884   1.000299   0.001453   0.001453 
LAD       -0.015340   0.296896   0.297132   1.001461   0.002084   0.002086 
WIN10     -0.008323   0.263561   0.263631   1.000316   0.001861   0.001861 
WIN20     -0.006477   0.212390   0.212432   1.000258   0.001475   0.001475 
TLS       -0.000358   0.260313   0.260313   0.999871   0.001816   0.001816 
Theil      0.010322   0.231483   0.231589   0.998944   0.001514   0.001515 
Wtd.Theil -0.002871   0.228255   0.228263   1.000186   0.001491   0.001491 
 

Model (3) 
 

OLS        0.008763   0.534048   0.534125   0.998650   0.003708   0.003710 
MML        0.009852   0.271805   0.271903   0.998716   0.001954   0.001955 
LAD       -0.004580   0.312706   0.312727   0.999984   0.002225   0.002225 
WIN10      0.007319   0.356939   0.356993   0.998841   0.002524   0.002525 
WIN20      0.010996   0.254113   0.254234   0.998615   0.001813   0.001815 
TLS        0.012679   0.292134   0.292295   0.998599   0.002067   0.002069 
Theil      0.025097   0.270968   0.271598   0.997220   0.001856   0.001864 
Wtd.Theil  0.010753   0.268535   0.268651   0.998603   0.001824   0.001826 

 
Model (4) 

 
OLS       -0.011834   0.530361   0.530501   1.000266   0.003641   0.003641 
MML       -0.007635   0.285413   0.285471   1.000330   0.002019   0.002019 
LAD       -0.021156   0.320834   0.321282   1.001696   0.002262   0.002265 
WIN10     -0.002971   0.383144   0.383153   0.999619   0.002664   0.002664 
WIN20     -0.004989   0.263167   0.263192   1.000165   0.001853   0.001853 
TLS       -0.002033   0.301227   0.301231   0.999793   0.002084   0.002084 
Theil      0.007851   0.274877   0.274938   0.998851   0.001875   0.001876 
Wtd.Theil -0.005549   0.272119   0.272150   1.000128   0.001839   0.001839 

 
Model (5) 
 

OLS       -0.014204   0.546967   0.547169   1.000832   0.003830   0.003830 
MML       -0.007622   0.291418   0.291476   1.000401   0.002046   0.002046 
LAD       -0.018763   0.323247   0.323599   1.001347   0.002247   0.002249 
WIN10     -0.012408   0.388890   0.389044   1.000889   0.002683   0.002684 
WIN20     -0.007292   0.271799   0.271852   1.000305   0.001893   0.001893 
TLS       -0.000146   0.296508   0.296508   0.999684   0.002040   0.002040 
Theil      0.006440   0.283805   0.283846   0.999057   0.001913   0.001914 
Wtd.Theil -0.007353   0.281584   0.281638   1.000388   0.001892   0.001892 
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Table 2 (continued): Means, Variances and MSE’s for the sample models (1)-(5), n =50 

                                        0β̂                                                  1β̂      
 
Method       Mean      Variance      MSE      Mean      Variance     MSE 
 

Model (1) 
 
OLS       -0.000805   0.074541   0.074542   0.999982   0.000084   0.000084 
MML       -0.000114   0.044790   0.044790   0.999976   0.000050   0.000050 
LAD        0.004056   0.051563   0.051579   0.999809   0.000059   0.000059 
WIN10     -0.002538   0.065713   0.065719   1.000100   0.000077   0.000077 
WIN20      0.000232   0.045412   0.045412   0.999965   0.000052   0.000052 
TLS        0.001835   0.048722   0.048726   0.999970   0.000055   0.000055 
Theil     -0.000018   0.044688   0.044688   0.999963   0.000050   0.000050 
Wtd.Theil -0.000159   0.044719   0.044719   0.999970   0.000050   0.000050 
 

Model (2) 
 
OLS       -0.005070   0.082616   0.082642   1.000184   0.000095   0.000095 
MML       -0.003343   0.078478   0.078489   1.000146   0.000091   0.000091 
LAD       -0.004388   0.107137   0.107156   1.000242   0.000124   0.000124 
WIN10     -0.002386   0.102003   0.102008   1.000153   0.000125   0.000125 
WIN20     -0.002738   0.079004   0.079012   1.000119   0.000092   0.000092 
TLS       -0.001691   0.099586   0.099589   1.000081   0.000116   0.000116 
Theil     -0.001652   0.086823   0.086826   1.000123   0.000093   0.000093 
Wtd.Theil -0.001529   0.086498   0.086501   1.000126   0.000092   0.000092 

 
Model (3) 

 
OLS        0.001170   0.218986   0.218987   1.000070   0.000247   0.000247 
MML        0.005980   0.138048   0.138083   0.999923   0.000149   0.000149 
LAD        0.007935   0.116472   0.116535   0.999940   0.000131   0.000131 
WIN10      0.006277   0.158747   0.158786   0.999961   0.000176   0.000176 
WIN20      0.007735   0.102137   0.102197   0.999891   0.000112   0.000112 
TLS        0.005534   0.118133   0.118164   1.000001   0.000130   0.000130 
Theil      0.008831   0.099889   0.099967   0.999887   0.000108   0.000109 
Wtd.Theil  0.009458   0.100008   0.100097   0.999849   0.000108   0.000108 

 
Model (4) 

 
OLS        0.007550   0.213060   0.213117   0.999828   0.000249   0.000249 
MML        0.008803   0.134974   0.135051   0.999741   0.000155   0.000155 
LAD        0.009354   0.118182   0.118269   0.999582   0.000142   0.000142 
WIN10      0.014525   0.166463   0.166674   0.999435   0.000197   0.000197 
WIN20      0.007484   0.104324   0.104380   0.999757   0.000123   0.000123 
TLS        0.003825   0.115579   0.115593   0.999892   0.000138   0.000138 
Theil      0.006978   0.103516   0.103565   0.999747   0.000119   0.000119 
Wtd.Theil  0.007271   0.103704   0.103757   0.999727   0.000118   0.000119 

 
Model (5) 

 
OLS        0.000823   0.213641   0.213642   1.000111   0.000251   0.000251 
MML        0.001214   0.139224   0.139226   1.000019   0.000158   0.000158 
LAD       -0.006313   0.123031   0.123071   1.000148   0.000146   0.000146 
WIN10      0.002004   0.175000   0.175004   1.000008   0.000198   0.000198 
WIN20      0.000914   0.109873   0.109874   0.999948   0.000129   0.000129 
TLS        0.001631   0.116706   0.116709   0.999897   0.000135   0.000135 
Theil     -0.000120   0.107528   0.107528   0.999936   0.000122   0.000122 
Wtd.Theil -0.000712   0.107393   0.107394   0.999947   0.000122   0.000122 
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the normality assumptions, therefore, alternative 
regression methods are needed. In this study, 
efficiency and robustness properties of some 
prominent robust and nonparametric regression 
estimators have been compared via Monte Carlo 
simulation when the error terms come from 
long-tailed symmetric ),( σpLTS  distributions.  

The methods giving the smallest MSE 
for various shape parameters and sample models 
were defined clearly for different sample sizes. 
If the distribution of error terms is ),( σpLTS  
in a simple linear regression model, it is 
therefore suggested that the selection procedure 
for the most efficient and robust method of 
estimation should be accomplished according to 
the results given above. 
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Little is known about the use and accuracy of model selection criteria when selecting among a set of 
competing multilevel models. The practices of applied researchers and the performance of five model 
selection criteria are examined when selecting the correct multilevel model using simulation techniques. 
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Introduction 
 
Researchers are typically interested in 
comparing the fit of various theoretically 
plausible models to data. Hierarchical Linear 
Modeling (HLM), or multilevel modeling, has 
become a widely used tool to aid in the 
explanation of predictive theoretical models 
within the social and behavioral sciences. As is 
common with other statistical techniques (e.g., 
multiple linear regression, structural equation 
modeling), there exist various criteria for model 
comparison and selection within the HLM arena. 
Little is known, however, about the accuracy of 
various selection criteria within the HLM arena. 

The purpose of this article is twofold: 
(1) to examine the current practices of 
researchers in the field when comparing and 
selecting hierarchical linear models; and (2) to 
examine the performance of various model 
selection techniques with respect to selecting the 
correct hierarchical linear model from a group of 
competing models. 
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Model Comparison and Selection Criteria in the 
HLM Arena 

One method for the comparison of 
nested hierarchical linear models is the Chi-
square difference test. The Chi-square difference 
test incorporates the deviance statistic in its 
calculation. The deviance statistic is given as: 
 

][2 modelsaturatedmodelcurrent LLLL −−      (1) 

 
where modelcurrentLL  is the Log Likelihood (LL) 

value obtained from fitting the proposed model 
to the data. modelsaturatedLL  is the Log Likelihood 

value of fitting the best possible fitting model, 
the saturated model, to the data which results in 
a LL value of zero. Consequently, the deviance 
statistic reduces to –2LL. 

The difference between two nested 
models’ deviance statistics, which is 

asymptotically distributed as a Chi-square ( 2χ ) 

statistic, may be used to determine if a 
significant difference between the two models 
exists when adding or eliminating model 
parameters: 
 

edunrestrictrestrictedceLLdifferen LLLL 222
2 −−=−χ , (2) 

 
where restrictedLL2−  is the deviance statistic for 

the nested, less parameterized (restricted) model 
and teduntrestricLL2−  is the deviance statistic for 
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the more parameterized, less restricted 
(unrestricted) model, with corresponding 
degrees of freedom equal to the difference in the 
number of parameters estimated (q) in each 
model: 
 

edunrestrictrestrictedceLLdifferen qqdf −=2- .     (3) 

 

When the 2
2 ceLLdifferen−χ indicates a significant 

difference between two hierarchically related 
models, the nested model with less parameters 
has been oversimplified. That is, the less 
parameterized (nested) model has significantly 
decreased the overall fit of the model when 
compared to the model with more parameters. In 
this situation, then, the more parameterized 
model would be selected over the less 
parameterized model. On the other hand, when 

the 2
2 ceLLdifferen-χ  test is not significant, the two 

models are comparable in terms of overall model 
fit.  In this situation, the less parameterized 
would most likely be selected over the more 
parameterized model in support of parsimony. 

When hierarchical linear models are 

non-nested, the 2
2 ceLLdifferen-χ  test is an 

inappropriate method to assess significant model 
fit differences because neither of the two models 
can serve as a baseline comparison model. Still, 
there are instances in which different theoretical 
models posited to support the data are non-
nested. In this situation, information criteria may 
be used for model comparison and selection. 
The benefit of using information criteria in the 
model selection process is that they may be used 
to compare and select among a set of nested 
and/or non-nested models. 

The most popular information criterion 
is Akaike’s (1973) information criterion (AIC) 
which compensates for the number of 
parameters in the model to encourage 
parsimony: 
 

qLL 22AIC +−= ,                (4) 
 
where -2LL is the deviance statistic for a given 
model and q is the number of parameters 
estimated in the given model. When comparing 
two competing models, the model with the 

lowest AIC value would be selected as the 
model demonstrating better fit than its 
comparison model. 

The AIC is asymptotically efficient, 
meaning that it will select the best finite 
dimensional model (closest to the correct/true 
model) if the correct/true model is infinite 
dimensional. The AIC, however, has often been 
criticized for lack of consistency (Bozdogan, 
1987; Hannon & Quinn, 1979; Hurvich & Tsai, 
1989; Schwarz, 1978). Consistent model 
selection criteria select the correct/true model 
reliably (probabilities close to or at 1) when the 
correct/true model exists among the set of 
competing models. In addition, the AIC has been 
shown to incorrectly select more highly 
parameterized models, particularly when the 
ratio of estimated parameters to sample size is 
large (Hurvich & Tsai, 1989). Consequently, 
additional information criteria, which have 
extended the AIC to account for both model 
complexity and sample size, have been 
proposed. 

Although various information criteria 
exist, this paper will focus on the information 
criteria readily available in current versions of 
SAS’s PROC MIXED (version 9.2; SAS 
Institute Inc., 2007) and/or SPSS when using the 
Mixed Models command (version 16.0; SPSS 
Inc., 2007). SAS’s PROC MIXED is a 
commonly used multilevel software program 
and with the recent addition of the Mixed 
Models command in SPSS, it too should become 
increasingly used when conducting multilevel 
analyses. Both software programs are able to 
provide more than one information criterion in 
the output. These include the Bayesian 
information criterion (BIC; Schwarz, 1978): 
 

qNLL )ln(2BIC +−= ;             (5) 
 
Hannon and Quinn’s (1979) information 
criterion, which is only available in SAS 
(HQIC): 
 

HQIC = -2LL + 2qln(ln(N));          (6) 
 
and Bozdogan’s (1987) consistent AIC (CAIC): 
 

qNLLk ]1)[ln(2)CAIC( ++−= ;     (7) 
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where ln is the natural log and N is the sample 
size. While the BIC, HQIC, and CAIC were 
proposed to be more consistent model selection 
criteria,  Hurvich and Tsai (1989) proposed a 
criterion that extends the AIC to correct for its 
tendency to overfit models (select highly 
parameterized models) which is still 
asymptotically efficient, called the finite sample 
corrected AIC (AICC): 
 

AICC = -2LL + 2qN/(N-q-1).         (8) 
 
There remains debate concerning which model 
selection feature is best (efficiency versus 
consistency). Some may argue that models are 
simply approximations of the truth and that 
researchers will never know if the true model 
exists in their set of competing models, 
supporting the use of efficient model selection 
criteria. Others, however, may argue that they 
are able to measure all relevant variables and 
thus have the correct model in their set of 
competing models, supporting the use of 
consistent model selection criteria.  

The point of this article is not to argue in 
favor of either efficiency or consistency as it 
depends upon the context and the discipline 
(Burnham & Anderson, 2002; McQuarrie & 
Tsai, 1998; Shi & Tsai, 2002). Nonetheless, the 
current paper will assess the performance of 
these five model selection criteria (both efficient 
and consistent ones) in terms of selecting the 
correct multilevel model from among a set of 
competing incorrect models. This performance 
standard does support the definition of 
consistency; unfortunately, it is difficult to 
assess the performance of these model selection 
criteria otherwise. 

To our knowledge, there is no study that 
has compared the performance of all five of 
these information criteria with respect to 
selecting the correct model among a set of 
competing models in the HLM arena. The most 
recent and relevant study was conducted by 
Gurka (2006) who examined the performance of 
the AIC, AICC, BIC, and CAIC in terms of 
selecting the correct multilevel growth curve 
model under various conditions, including 
different sample sizes, total variances, ICC 
values, model misspecification, criteria 
calculation, and estimation methods. 

The model selection criteria were 
assessed in three different scenarios: 1) the 
ability to select the correct fixed effects given a 
compound symmetric covariance structure; 2) 
the ability to select the correct random effects 
given the fixed effects in the model; and 3) the 
ability to select the correct fixed and random 
effects in the model. Overall, the results 
indicated that the BIC and CAIC tended to 
outperform both the AIC and AICC. In addition, 
the AICC tended to outperform the AIC when 
selecting the correct model. None of the criteria 
performed well under the small sample size 
condition (with 25 cases at level-2 and 3 
observations within each case). All four criteria 
performed well when selecting the correct 
random effects model (in more than 90% of the 
replications), regardless of total variance and 
ICC conditions. When selecting the correct fixed 
effects only and the correct fixed and random 
effects models, the criteria performed worse as 
the ICC values increased with the larger total 
variance conditions. 

The impetus behind Gurka’s (2006) 
study was the interest in comparing these criteria 
under different estimation methods available in 
multilevel software packages. The five model 
selection criteria presented in Equations 4 
through 8 above are calculated under full 
information maximum likelihood (FIML) 
estimation as opposed to restricted maximum 
likelihood (REML) estimation in which the 
calculations change a bit with respect to N and q. 
When using FIML, the likelihood function 
contains both the fixed effects and the random 
effects (Raudenbush & Bryk, 2002). REML, 
however, rests on the assumption that fixed 
effects are uncertain and should be estimated 
separately from the random effects. It has been 
argued that deviance statistics, as well as the 
information criteria, of different models can be 
compared when the models differ only in their 
random effects under REML estimation while 
the deviance statistics, as well as the information 
criteria, of different models can be compared 
when the models differ in their fixed effects or 
their random effects under FIML estimation 
(Verbeke & Molenberghs, 2000). 

Gurka (2006) questioned why the 
information criteria calculated under REML 
estimation could not be used in the model 
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selection process when comparing models 
containing fixed effects. As a result, he 
compared the performance of the four model 
selection criteria under FIML and REML 
estimation conditions. The findings indicated 
that the selection criteria performed better or 
equally well under REML estimation compared 
to FIML estimation when selecting the fixed 
effects model. As Gurka (2006) noted, the 
question as to whether the information criteria of 
fixed effects models may be compared under 
REML estimation should be examined further. 
In spite of this, the current paper does not 
examine this question. Instead, FIML estimation 
will solely be used as the models compared in 
the current paper differ with respect to their 
fixed and random effects. 

SAS and SPSS differ with respect to the 
calculations of the BIC and the CAIC. More 
specifically, sample size in SAS is equal to the 
number of observations at level-2 (m) whereas 
sample size in SPSS is equal to the total number 
of observations at level-1 (N) when calculating 
the BIC and the CAIC under FIML estimation. 
The AICC, however, is calculated identically in 
both SAS and SPSS, using the total number of 
observations at level-1 (N) in the calculation. In 
cross-sectional designs, it seems reasonable to 
use the number of observations at level-1 as N in 
the calculation of these criteria. 

In contrast, it seems more reasonable to 
use the number of observations at level-2 (m) in 
the calculation of these criteria in growth curve 
modeling designs. Additionally, Raudenbush 
and Liu (2000) reported that in their research on 
power with HLM designs, the sample size at 
level-2 was typically more important for power 
than the sample size at level-1. This research 
would also seem to indicate the utility of using 
m in the calculation of these criteria. Gurka 
(2006) also examined the performance of the 
model selection criteria (AICC, BIC, and CAIC) 
when using N versus m in their calculation. The 
results indicated that the criteria tended to 
perform better in terms of selecting the correct 
model when they were calculated using the 
number of observations at level-2 (m) as 
opposed to the number of observations at level-1 
(N) under FIML estimation. 

To summarize, there is no study, to our 
knowledge, that has examined all five model 

selection criteria (AIC, AICC, BIC, CAIC, and 
HQIC) simultaneously within the HLM arena. 
Gurka (2006) recently examined all of these 
criteria, with the exception of the HQIC. Hence, 
it is unknown how the HQIC will compare with 
the remaining model selection criteria examined 
in his study under different conditions. In 
addition, Gurka used a fairly simple correct 
model, both in terms of fixed and random 
effects, with only two predictors included in the 
model, and the single slope coefficient from 
level-1 was not allowed to randomly vary at 
level-2. This is unfortunate as researchers 
commonly allow slopes to vary randomly and 
the capability to model random slopes is a major 
advantage of multilevel modeling. 

Researchers are also typically interested 
in examining more complex models that include 
more than just two predictors. Consequently, it 
is unclear how the model selection criteria will 
perform when comparing a set of simple models 
versus more complicated models. In addition, 
because Gurka was interested in how the criteria 
perform under a growth curve modeling context, 
the sample sizes used in his study were not 
reflective of those found in typical HLM designs 
where individuals are nested within groups. 
Thus, the purpose of this article is to examine 
the performance of all five model selection 
criteria in terms of selecting the correct 
multilevel model (with slopes allowed to 
randomly vary) under various conditions, 
including criteria calculation, model complexity, 
model misspecification, number of groups at 
level-2, number of participants per group, 
parameter magnitude, and ICCs. 
 
Content Analysis 

In order to evaluate the use of model 
selection criteria within the HLM arena, a 
content analysis was conducted. When 
conducting the content analysis, several different 
characteristics were assessed. More specifically, 
interest was placed on 1) the frequency with 
which model selection criteria are used by 
applied researchers when selecting among 
competing hierarchical models; 2) the types of 
model selection criteria used by applied 
researchers in the model comparison/selection 
process; and 3) if model selection criteria were 
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used, what  multilevel software package was 
used when conducting the analyses. 
 
Content Analysis Procedure  

To assess these characteristics, a search 
in PsycInfo was conducted using the following 
search terms: “HLM,” “Hierarchical Linear 
Modeling,” “Multilevel Modeling,” and 
“Random Effects Modeling.” All applied articles 
using HLM techniques published between 
January 2002 and March 2007 were collected. 
Two hundred twenty articles were collected as a 
result of this search. These 220 articles were 
examined in order to collect information 
concerning the three characteristics mentioned 
above (see Table 1 for complete information on 
the content analysis characteristics). 
 
Content Analysis Results 

Of the 220 articles reviewed, the authors 
of 45 articles reported using some form of model 
selection criteria whereas the authors of 175 
articles did not report using model selection 
criteria. The most commonly used model 
selection criteria was the Chi-square difference 
test followed by both the AIC and the BIC used 
together. Neither the AICC, the CAIC, nor the 
HQIC was used in any of these reviewed 
articles. The articles in which model selection 
criteria were used were also reviewed to 
determine what type of multilevel software 
package was used to conduct the analyses. The 
most popular software used was HLM 
(Raudenbush, Bryk, & Congdon, 2007) followed 
by MLwiN (Rasbash, Charlton, Browne, Healy, 
& Cameron, 2005) and SAS’s PROC MIXED 
(SAS Institute Inc., 2003). LISREL (Jöreskog & 
Sörbom, 2006), MIXREG (Hedeker & Gibbons, 
1999), and Mplus (Muthén & Muthén, 2007) 
were used less frequently. The authors of the 
remaining 20 articles did not report which 
software package was used. For a list of all the 
articles collected in this study, please contact the 
first author. 
 

Methodology 
Simulation Study 

A Monte Carlo simulation study was 
conducted in order to examine the performance 
of five different model selection criteria when  

selecting the correct multilevel model from a 
group of competing multilevel models. The 
performance of these criteria was examined 
under varied conditions, including criteria 
calculation, model complexity, model 
misspecification, number of groups at level-2, 
number of participants per group, parameter 
magnitude, and the intraclass correlation (ICC) 
value. 
 
Model Selection Criteria Calculation 

The five model selection criteria (AIC, 
AICC, BIC, CAIC, HQIC) were examined under 
all conditions. To compare whether m or N is 
best in the calculation of the criteria (except the 
AIC as sample size is not used in its 
calculation), the AICC, BIC, CAIC, and HQIC 
were calculated in all conditions using the 
number of observations at level-2 (m; as 
calculated in SAS) and the number of 
observations at level-1 (N; as calculated in 
SPSS), resulting in the following nine model 
selection criteria: the AIC, the AICCm, the 
AICCN, the BICm, the BICN, the CAICm, the 
CAICN, the HQICm, and the HQICN. Although 
the Chi-square difference test was more 
commonly used by applied researchers, as 
demonstrated by the content analysis, a number 
of the misspecified models (described below) 
examined in this study were non-nested, 
rendering the Chi-square difference test 
ineffectual across all possible model 
comparisons. Therefore, the Chi-square 
difference test was not used as one of the model 
selection criteria. 
 
Model Complexity 

To examine whether the model selection 
criteria would perform differently when 
selecting among a simple set of multilevel 
models versus a more complex set of multilevel 
models, a simple generating model and a 
complex generating model were used. The 
simple generating model (Simple Model 1) 
consisted of a two-level model in which one 
predictor is included at both the participant-level 
(level-1) and the group-level (level-2) and is as 
follows: 
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In the simple generating model, the parameters 
from level-1 were all allowed to randomly vary 
at level-2. However, there was no cross-level 
interaction between X1 and W1. The 
variance/covariance matrix at level-2 associated 
with this model is: 
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The complex generating model 

(Complex Model 1) consisted of the same 
variance/covariance structure as the simple 
model but included a more complex fixed effects 
structure in which two predictors were included 
at both the participant-level (level-1) and the 
group-level (level-2): 
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While the simple model did not include a cross-
level interaction, there were four cross-level 
interaction terms estimated in the complex 
model. 
 
Model Misspecification 

The simple and complex hierarchical 
linear model sets consisted of eight different 
nested and non-nested models, including the 
correct simple and complex generating model, 
respectively. The models examined were 
misspecified by incorrectly adding a parameter, 
incorrectly removing a parameter, or incorrectly 

adding and removing a parameter from the 
correct model. For the simple model set, the 
seven models were misspecified as follows: 
 

a) by including a cross-level interaction 
between X1 and W1, γ02 (Simple Model 
2); 

b) by dropping X1 from the model which 
results in the loss of the level-2 equation 
for the prediction of j1β  (Simple Model 

3); 
c) by dropping W1, γ01, from the model 

(Simple Model 4); 
d) by dropping ju1 from the model, thus the 

corresponding variance, 11τ , and 

covariance, 10τ  were not estimated 

(Simple Model 5); 
e) by dropping ju0  from the model, thus the 

corresponding variance, 00τ , and 

covariance, 10τ  were not estimated 

(Simple Model 6); 
f) by dropping ju1 from the model and 

including the cross-level interaction 
between X1 and W1, γ02 (Simple Model 
7); and  

g) by dropping ju0 from the model and 

including the cross-level interaction 
between X1 and W1, γ02 (Simple Model 
8). 

 
Of all of these misspecified models, Model 2 is 
the more parameterized, incorrect nested model, 
Models 3 – 6 are less parameterized, incorrect 
nested models, and Models 7 – 8 are non-nested, 
incorrect models. 

For the complex model set, the seven 
models were misspecified as follows: 

 
a) by including u2j, thus estimating the 

corresponding variance, 22τ , and 

covariance, 20τ   (Complex Model 2); 

b) by including an interaction between X1 
and X2 that was fixed at level-2, γ30 
(Complex Model 3); 
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c) by including an interaction between W1 
and W2 in the intercept equation, γ03 
(Complex Model 4); 

d) by dropping u1j, from the model, thus the 
corresponding variance, 11τ , and 

covariance, 10τ , were not estimated 

(Complex Model 5); 
e) by dropping the cross-level interaction 

between X1 and W2, γ12 (Complex Model 
6); 

f) by dropping u1j from the model and 
including u2j (Complex Model 7); and 

g) by dropping W2 from the intercept 
equation, γ02, and including u2j (Complex 
Model 8). 

 
Of all of these misspecified models, Models 2 – 
4 are more parameterized, incorrect nested 
models, Models 5 – 6 are less parameterized, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
incorrect nested models, and Models 7 – 8 are 
non-nested, incorrect models. 
 
Number of Groups at Level-2 and Participants 
per Group 

The number of groups modeled at level-
2 was varied to be either 20 or 40 to represent 
small to moderate sizes. Within each group, the 
sample size was varied to be either 15 or 30 
participants to represent fairly small to moderate 
to large total sample sizes (300, 600, and 1,200, 
respectively). 
 
Parameter Magnitude 

The magnitude of all of the slope 
coefficients was varied to equal .5 or .7 to 
represent moderate to large magnitudes. The 
overall intercept ( 00γ ) remained constant at a 

value of 1 and the intercept values for the slope 

Table 1: Characteristics of the Applied HLM Articles Reviewed 
(January 2002 – March 2007) 

 

Characteristic Frequency 

Reported Use of Model Selection Criteria 45 

Model Selection Criteria Used 
Chi-Square Difference Test 35 
AIC 2 
BIC 1 
AIC with BIC 3 
Chi-Square Difference Test with AIC 2 
Chi-Square Difference Test with BIC 1 
Chi-Square Difference Test with AIC & BIC 1 

HLM Software Used 
HLM 10 
MLwiN 7 
SAS PROC MIXED 4 
LISREL 2 
MIXREG 1 
Mplus 1 
Did Not Specify 20 
Did Not Report Use of Model Selection Criteria 175 
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equations ( 2010 and γγ  in the complex model 

and only 10γ  in the simple model) remained 

constant at a value of .5. 
 
Intraclass Correlation (ICC) Value 

The conditional intraclass correlation 
(ICC), which represents the proportion of the 
residual variance between groups remaining 
after including explanatory variables, was varied 
to equal either .1 or .3. The level-1 residual 
variance was set to equal .5. The level-2 
variance components, 00τ  and 11τ , were set to 

be equal to one another and their values were 
dictated by the ICC and the level-1 variance. 
This resulted in level-2 variances equal to 
0.055555556 with an ICC of .1 and 
0.214285714 with an ICC of .3. The level-2 
covariance term, 01τ , was assumed to be equal 

to 0. 
 
Simulation Study Procedure 

SAS (version 9.1) was used to generate 
raw data according to the correct simple and 
complex generating models (see Equations 9 and 
11) under the 16 combinations of different 
number of groups, participants per group, 
parameter magnitude, and ICC value conditions, 
resulting in 32 conditions. For each of the 32 
conditions, 1,000 sets of raw data were 
generated. Each variable was generated to be 
standard normal. Once each data set was 
generated, all eight models (one correct and 
seven misspecified) were fit to the data using 
full information maximum likelihood (FIML) 
estimation in SAS’s PROC MIXED procedure. 
The nine model selection criteria under 
examination were calculated for each of the 
models. The number of times each criteria 
selected each of the models was then 
documented. 
 

Results 
 
The selection rates of the nine criteria are 
presented in Tables 2 – 9. The simple model 
selection rates are presented in Tables 2 – 5 and 
the complex model selection rates are presented 
in Tables 6 – 9. None of the criteria performed 
well in the smallest total sample size (20 groups 

x 15 participants per group = 300) and low ICC 
value (.1) conditions, regardless of parameter 
magnitude (see Tables 2 and 6). Overall, 
however, the accuracy of the selection criteria 
with respect to selecting the correct hierarchical 
linear model tended to increase as total sample 
size and ICC values increased. Further, the 
criteria generally performed better when 
selecting the correct model from the simple 
multilevel model set than when selecting the 
correct model from the complex multilevel 
model set. 

Parameter magnitude did not have an 
effect on all of the selection criteria in all of the 
conditions. In general, the criteria tended to 
perform similarly in both low and high 
parameter magnitude conditions. Still, it did 
have an effect on the performance of the AICCm 
in two conditions. More specifically, the AICCm 
selected the correct model more frequently in the 
high parameter condition when group size was 
equal to 20 and the ICC value was high in the 
complex model set (see Tables 6 – 7). 

The AIC and the AICCN were the least 
accurate selection criteria. These criteria never 
correctly selected the Simple or Complex Model 
1 in more than 84% or 62% of the replications in 
any one condition, respectively. When the AIC 
or the AICCN did not select the correct 
multilevel model, they tended to select the more 
parameterized, misspecified models. 

The next least accurate criterion was the 
HQICm, which never selected the Simple or 
Complex Model 1 in more than 89% or 73% of 
the replications in a condition, respectively. The 
HQICN outperformed its m-calculated 
counterpart in all but four conditions (see Tables 
2 and 4). Still, while the HQICN selected the 
Simple Model 1 in more than 90% of the 
replications in more than half of the conditions, 
it never selected the Complex Model 1 in more 
than 90% of the replications in any condition. 
When the HQICm or HQICN did not select the 
correct multilevel model, they tended to 
incorrectly select the more parameterized, 
misspecified models. 

The next least accurate criterion was the 
BICm. It correctly selected Simple Model 1 in 
more than 90% of the replications in half of the 
conditions but never correctly selected Complex 
Model 1 in more than 90% of the replications in 
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Table 2: Percentage of Times Out of 1,000 Replications Each Model Selection Criteria Selected Each 
Hierarchical Linear Model with 300 Total Participants (20 Groups X 15 Participants Per Group) as a 

Function of Parameter Magnitude and ICC Value – Simple Model Set 
 
 AIC AICCm AICCN BICm BICN CAICm CAICN HQICm HQICN 
Parameter Magnitude = .5, ICC = .1 
M1 57.8 31.1 57.8 50.0 20.1 37.4 14.4 57.3 43.3 
M2 11.8   0.0 10.8   3.7   0.0   0.9   0.0   9.9   1.8 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5 10.5 27.3 11.0 17.4 33.7 24.1 36.9 11.4 21.5 
M6 10.4 32.6 10.9 18.6 39.6 28.5 43.7 11.7 23.7 
M7   7.0   7.6   7.0   8.4   5.9   7.7   4.7   7.2   8.2 
M8   2.5   1.4   2.5   1.9   0.7   1.4   0.3   2.5   1.5 
Parameter Magnitude = .5, ICC = .3 
M1 81.5 92.0 82.8 88.4 89.9 91.1 85.8 83.7 90.3 
M2 17.6   1.9 16.2   9.5   1.9   5.3   0.7 15.2   6.8 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.9   4.9   1.0   1.7   6.2   2.8   9.8   1.1   2.4 
M5   0.0   0.3   0.0   0.0   0.7   0.1   1.1   0.0   0.0 
M6   0.0   0.4   0.0   0.2   0.9   0.4   1.9   0.0   0.2 
M7   0.0   0.3   0.0   0.1   0.3   0.2   0.6   0.0   0.2 
M8   0.0   0.2   0.0   0.1   0.1   0.1   0.1   0.0   0.1 
Parameter Magnitude = .7, ICC = .1 
M1 59.3 30.9 59.2 49.5 18.4 35.7 12.3 58.0 42.9 
M2 10.8   0.2   9.8   3.9   0.2   1.3   0.1   9.2   2.3 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5 10.9 28.1 11.2 17.5 35.6 25.7 39.9 12.0 21.4 
M6 10.5 31.8 10.9 19.2 39.7 28.7 43.2 11.9 24.2 
M7   6.3   7.8   6.6   8.1   5.4   7.3   4.0   6.8   7.8 
M8   2.2   1.2   2.3   1.8   0.7   1.3   0.5   2.1   1.4 
Parameter Magnitude = .7, ICC = .3 
M1 82.8 97.3 83.6 90.1 96.2 94.1 94.9 83.9 92.3 
M2 17.0   1.4 16.2   9.4   1.4   5.1   0.8 15.7   7.0 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.5   0.0   0.1   0.8   0.3   1.3   0.0   0.3 
M5   0.1   0.3   0.1   0.2   0.9   0.3   1.6   0.1   0.2 
M6   0.0   0.1   0.0   0.0   0.3   0.0   1.1   0.0   0.0 
M7   0.1   0.4   0.1   0.2   0.4   0.2   0.3   0.3   0.2 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Note: M1 is the correct model. M2 is the more parameterized, incorrect nested model. M3 – M6 are less 
parameterized, incorrect nested models. M7 – M8 are non-nested, incorrect models. 
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Table 3: Percentage of Times Out of 1,000 Replications Each Model Selection Criteria Selected Each 
Hierarchical Linear Model with 600 Total Participants (20 Groups X 30 Participants Per Group) as a 

Function of Parameter Magnitude and ICC Value – Simple Model Set 
 
 AIC AICCm AICCN BICm BICN CAICm CAICN HQICm HQICN 
Parameter Magnitude = .5, ICC = .1 
M1 79.8 82.1 80.2 83.2 70.9 82.6 64.6 80.9 83.1 
M2 16.5   1.3 16.1   8.2   0.6   4.0   0.3 14.8   4.8 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.1   0.0   0.0   0.1   0.1   0.2   0.0   0.0 
M5   0.8   4.0   0.8   2.2   8.8   3.3 11.4   1.1   3.1 
M6   1.5   9.0   1.5   4.3 16.4   7.5 20.4   1.9   6.5 
M7   1.2   2.9   1.2   1.8   2.8   2.3   2.8   1.2   2.3 
M8   0.2   0.6   0.2   0.3   0.4   0.2   0.3   0.1   0.2 
Parameter Magnitude = .5, ICC = .3 
M1 81.7 93.5 82.2 88.5 91.3 91.4 87.7 83.4 90.7 
M2 17.7   2.5 17.2 10.1   1.5   5.8   1.0 16.0   6.7 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.6   4.0   0.6   1.4   7.0   2.8 11.1   0.6   2.6 
M5   0.0   0.0   0.0   0.0   0.1   0.0   0.1   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.1   0.0   0.1   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .1 
M1 78.0 82.3 78.6 81.5 70.7 82.9 65.2 79.4 82.8 
M2 18.0   1.6 17.3 10.7   1.0   4.8   0.5 16.0   6.1 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5   1.1   4.9   1.1   2.5 10.8   3.9 14.1   1.4   3.4 
M6   1.1   7.4   1.1   3.0 14.3   5.1 17.6   1.5   4.6 
M7   1.3   3.2   1.4   1.9   2.8   2.7   2.4   1.3   2.5 
M8   0.5   0.6   0.5   0.4   0.4   0.6   0.2   0.4   0.6 
Parameter Magnitude = .7, ICC = .3 
M1 82.6 97.9 83.2 91.4 97.9 94.9 97.7 84.3 94.0 
M2 17.4   2.0 16.8   8.6   1.5   5.1   1.1 15.7   6.0 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.1   0.0   0.0   0.6   0.0   1.2   0.0   0.0 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Note: M1 is the correct model. M2 is the more parameterized, incorrect nested model. M3 – M6 are less 
parameterized, incorrect nested models. M7 – M8 are non-nested, incorrect models. 
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Table 4: Percentage of Times Out of 1,000 Replications Each Model Selection Criteria Selected Each 
Hierarchical Linear Model with 600 Total Participants (40 Groups X 15 Participants Per Group) as a 

Function of Parameter Magnitude and ICC Value – Simple Model Set 
 
 AIC AICCm AICCN BICm BICN CAICm CAICN HQICm HQICN 
Parameter Magnitude = .5, ICC = .1 
M1 79.8 83.0 80.4 78.9 59.0 73.1 51.2 81.0 78.9 
M2 16.0   6.6 15.3   4.2   1.1   2.2   0.4 10.3   4.0 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5   1.7   3.8   1.7   6.1 17.4 10.3 21.4   3.4   6.2 
M6   1.2   4.1   1.2   7.9 20.7 11.4 25.2   3.0   7.9 
M7   0.8   1.8   0.9   2.2   1.5   2.4   1.5   1.4   2.3 
M8   0.5   0.7   0.5   0.7   0.3   0.6   0.3   0.9   0.7 
Parameter Magnitude = .5, ICC = .3 
M1 81.9 91.6 82.5 94.0 98.8 96.7 99.1 88.1 94.0 
M2 18.1   8.4 17.5   6.0   1.2   3.3   0.7 11.9   6.0 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.2   0.0   0.0 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .1 
M1 80.1 84.0 80.5 82.0 61.0 76.9 51.4 82.2 82.0 
M2 16.5   8.8 15.7   5.1   0.4   2.0   0.1 11.7   4.9 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5   1.2   2.9   1.2   5.6 15.5   8.1 20.4   2.7   5.6 
M6   1.3   2.9   1.5   6.1 21.2 11.1 26.3   2.4   6.3 
M7   0.6   1.1   0.8   1.2   1.6   1.5   1.7   0.8   1.2 
M8   0.3   0.3   0.3   0.0   0.3   0.4   0.1   0.2   0.0 
Parameter Magnitude = .7, ICC = .3 
M1 82.0 90.5 82.4 93.2 98.1 95.7 98.6 87.0 93.2 
M2 18.0   9.5 17.6   6.8   1.9   4.3   1.4 13.0   6.8 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Note: M1 is the correct model. M2 is the more parameterized, incorrect nested model. M3 – M6 are less 
parameterized, incorrect nested models. M7 – M8 are non-nested, incorrect models. 
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Table 5: Percentage of Times Out of 1,000 Replications Each Model Selection Criteria Selected Each 
Hierarchical Linear Model with 1200 Total Participants (40 Groups X 30 Participants Per Group) as a 

Function of Parameter Magnitude and ICC Value – Simple Model Set 
 
 AIC AICCm AICCN BICm BICN CAICm CAICN HQICm HQICN 
Parameter Magnitude = .5, ICC = .1 
M1 83.5 91.4 83.8 93.8 97.9 96.1 97.7 88.4 94.7 
M2 16.4   8.4 16.1   5.8   0.8   3.3   0.4 11.4   4.9 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5   0.0   0.0   0.0   0.1   0.4   0.1   0.5   0.0   0.1 
M6   0.1   0.1   0.1   0.2   0.6   0.3   1.1   0.1   0.2 
M7   0.0   0.1   0.0   0.1   0.3   0.2   0.3   0.1   0.1 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .5, ICC = .3 
M1 83.2 91.5 83.6 93.6 98.9 96.2 99.3 88.1 94.2 
M2 16.8   8.5 16.4   6.4   1.0   3.8   0.5 11.9   5.8 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.2   0.0   0.0 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .1 
M1 82.3 89.9 82.5 92.8 98.2 95.1 97.8 87.0 93.5 
M2 17.5   9.9 17.3   6.9   1.0   4.5   0.5 12.8   6.2 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5   0.1   0.1   0.1   0.1   0.3   0.1   0.4   0.1   0.1 
M6   0.1   0.1   0.1   0.2   0.4   0.2   1.2   0.1   0.2 
M7   0.0   0.0   0.0   0.0   0.1   0.1   0.1   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .3 
M1 82.7 90.2 83.0 92.1 98.8 95.3 99.2 87.3 92.9 
M2 17.3   9.8 17.0   7.9   1.2   4.7   0.8 12.7   7.1 
M3   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M4   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Note: M1 is the correct model. M2 is the more parameterized, incorrect nested model. M3 – M6 are less 
parameterized, incorrect nested models. M7 – M8 are non-nested, incorrect models. 
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Table 6: Percentage of Times Out of 1,000 Replications Each Model Selection Criteria Selected Each 
Hierarchical Linear Model with 300 Total Participants (20 Groups X 15 Participants Per Group) as a 

Function of Parameter Magnitude and ICC Value – Complex Model Set 
 
 AIC AICCm AICCN BICm BICN CAICm CAICN HQICm HQICN 
Parameter Magnitude = .5, ICC = .1 
M1 41.8   1.0 45.0 45.9 30.1 43.3 24.3 44.6 45.7 
M2   8.9   0.0   6.2   2.2   0.2   0.5   0.0   6.4   0.7 
M3 11.0   0.0   9.3   5.9   1.0   2.6   0.6   9.4   3.8 
M4 19.8   0.0 18.2 12.4   3.2   7.5   2.0 18.2   9.5 
M5 14.9 96.9 18.0 31.6 65.0 44.5 72.8 18.1 38.6 
M6   0.0   1.9   0.0   0.0   0.1   0.0   0.1   0.0   0.0 
M7   3.6   0.2   3.3   2.0   0.4   1.6   0.2   3.3   1.7 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .5, ICC = .3 
M1 56.1 16.8 60.0 72.9 84.1 80.3 82.1 59.7 78.1 
M2   9.5   0.0   7.8   4.1   0.2   1.4   0.0   8.0   2.5 
M3 14.3   0.0 12.8   7.6   1.7   5.2   1.1 12.8   6.1 
M4 18.4   0.0 17.4 12.5   3.6   7.8   2.4 17.5   9.5 
M5   0.1 21.1   0.2   0.6   2.3   0.8   3.6   0.2   0.6 
M6   1.4 62.1   1.6   2.2   8.1   4.4 10.8   1.6   3.1 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.2   0.0   0.2   0.1   0.0   0.1   0.0   0.2   0.1 
Parameter Magnitude = .7, ICC = .1 
M1 40.8   2.0 43.5 45.8 35.9 43.5 30.2 43.3 45.4 
M2   8.2   0.0   6.6   2.0   0.1   0.4   0.0   6.7   0.8 
M3 10.9   0.0   9.4   5.4   0.5   2.7   0.5   9.4   4.0 
M4 19.7   0.2 18.0 11.5   3.0   7.5   2.0 18.1   9.1 
M5 17.6 97.4 19.9 33.1 60.1 44.3 67.3 20.0 38.9 
M6   0.0   0.3   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   2.8   0.1   2.6   2.2   0.4   1.6   0.0   2.5   1.8 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .3 
M1 55.6 48.0 60.4 72.5 90.7 83.0 91.9 60.0 77.7 
M2 9.9   0.0   7.5   2.6   0.1   0.7   0.0   7.7   1.2 
M3 14.3   0.0 13.3  10.0   2.6   5.6   1.6 13.3   8.0 
M4 19.9   0.0 18.5 14.4   4.4   9.8   3.1 18.6 12.3 
M5   0.2 22.4   0.2   0.4   1.6   0.6   2.2   0.3   0.6 
M6   0.1 29.6   0.1   0.1   0.5   0.3   1.1   0.1   0.2 
M7   0.0   0.0   0.0   0.0   0.1   0.0   0.1   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Note: M1 is the correct model. M2 – M4 are more parameterized, incorrect nested models. M5 – M6 
are less parameterized, incorrect nested models. M7 – M8 are non-nested, incorrect models. 
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any one condition. When the BICm did not select 
the correct model, it tended to select both the 
less parameterized and more parameterized, 
misspecified models, depending upon the 
condition. More specifically, it tended to select 
the less parameterized, misspecified models 
when ICC values were low with smaller total 
sample sizes and the more parameterized, 
misspecified models when ICC values were high 
with larger total sample sizes. 

Interestingly, the AICCm tended to 
outperform the AICCN in all but two conditions 
in the simple model set, but only in 
approximately half of the conditions in the 
complex model set. More specifically, the 
AICCm did not outperform the AICCN until total 
sample size reached a moderate size (20 groups 
x 30 participants per group = 600), high 
parameter magnitude (.7), and high ICC value 
(.3) (see Tables 7 – 9). The AICCm correctly 
selected Simple Model 1 in more than 90% of 
the replications in more than half of the 
conditions and correctly selected Complex 
Model 1 in more than 90% of the replications in 
a little less than half of the conditions. When the 
AICCm did not select the correct model, it 
tended to incorrectly select the less 
parameterized, misspecified models. 

The CAICm performed fairly 
comparably to the AICCm, selecting the Simple 
Model 1 in more than 90% of the replications in 
a little more than half of the conditions but 
correctly selected Complex Model 1 in more 
than 90% of the replications in a little less than 
half of the conditions. When the CAICm did not 
select the correct model, it tended to select the 
more parameterized and less parameterized, 
misspecified models depending upon the 
condition. For example, it tended to select the 
less parameterized, misspecified models when 
ICC values were low with smaller sample sizes 
and the more parameterized, misspecified 
models when ICC values were high with larger 
sample sizes. 

The BICN and CAICN performed the 
most accurately and fairly similarly. While the 
BICN did perform slightly better than the CAICN, 
these differences were generally small. The 
BICN correctly selected Simple Model 1 in more 
than 90% of the replications in a little more than 
half of the conditions and correctly selected 

Complex Model 1 in more than 90% of the 
replications in half of the conditions. The BICN 
outperformed its m-calculated counterpart in 
more than half of the conditions. Nonetheless, 
when the BICm outperformed the BICN in the 
remaining conditions, the ICC value was low 
(see Tables 2 – 4, 6, and 8). When the BICN did 
not select the correct model, it generally tended 
to incorrectly select the less parameterized 
models. 

The CAICN correctly selected Simple 
Model 1 in more than 90% of the replications in 
half of the conditions and correctly selected 
Complex Model 1 in more than 90% of the 
replications in a little more than half of the 
conditions. The CAICN outperformed the CAICm 
in a little more than half of the conditions. 
Similar to the BIC, when the CAICm 
outperformed the CAICN in the remaining 
conditions, the ICC value tended to be low (see 
Tables 2 – 4, and 6 - 8), with the exception of 
two conditions (see Tables 2 and 3). When the 
CAICN did not select the correct model, it tended 
to incorrectly select the less parameterized, 
misspecified models. It should be mentioned that 
when the m-calculated BIC and CAIC 
outperformed their N-calculated counterparts, 
the differences were quite large, particularly 
within the Simple Model set. In contrast, when 
the N-calculated BIC and CAIC outperformed 
their m-calculated counterparts, the differences 
were not as large. 

It must be noted that the results 
presented are based on 1,000 replications in 
which all of the eight simple and complex 
models did not encounter any estimation 
problems. Hence, replications in which any 
model encountered a problem involving a non-
positive definite variance component matrix or a 
convergence problem were discarded. 

Additional replications were conducted 
until 1,000 replications in which problems did 
not exist were reached (see Table 10 for a 
summary of replications needed and percentage 
of usable replications in each generating 
condition). Less estimation problems were 
encountered when running the simple models 
than when running the complex models. Overall, 
fewer problems were encountered as total 
sample size and ICC values increased. Non-
positive   definite   covariance    matrix    and 
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Table 7: Percentage of Times Out of 1,000 Replications Each Model Selection Criteria Selected Each 
Hierarchical Linear Model with 600 Total Participants (20 Groups X 30 Participants Per Group) as a 

Function of Parameter Magnitude and ICC Value – Complex Model Set 
 
 AIC AICCm AICCN BICm BICN CAICm CAICN HQICm HQICN 
Parameter Magnitude = .5, ICC = .1 
M1 54.8 27.3 57.1 70.8 75.4 77.8 72.3 58.8 76.3 
M2 12.2   0.0 10.9   4.8   0.3   2.0   0.0   9.8   2.7 
M3 12.1   0.0 11.7   6.9   0.9   3.7   0.2 11.0   4.5 
M4 18.7   0.0 17.9 12.3   2.4   7.7   1.5 17.7   8.9 
M5   2.0 68.5   2.2   4.9 20.9   8.5 25.9   2.5   7.3 
M6   0.0   4.2   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.2   0.0   0.2   0.3   0.1   0.3   0.1   0.2   0.3 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .5, ICC = .3 
M1 53.4 33.1 55.5 72.2 88.8 82.3 86.9 57.5 80.1 
M2 14.4   0.0 13.3   4.6   0.4   2.0   0.0 12.0   2.6 
M3 13.1   0.0 12.6   8.4   1.2   5.2   0.9 12.2   5.6 
M4 18.4   0.0 17.8 12.6   2.0   7.8   1.4 17.3   9.1 
M5   0.0   0.6   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.7 66.3   0.8   2.0   7.6   2.5 10.8   1.0   2.4 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.2   0.0   0.2   0.0   0.0   0.2 
Parameter Magnitude = .7, ICC = .1 
M1 51.4 33.3 53.5 68.0 75.9 76.4 72.6 55.4 75.6 
M2 12.8   0.0 11.8   5.7   0.1   1.5   0.0 11.2   2.1 
M3 12.7   0.0 11.9   7.8   0.8   4.4   0.4 11.2   5.1 
M4 20.1   0.0 19.7 13.7   2.2   8.4   1.2 19.0   9.6 
M5   2.2 66.4   2.3   4.0 20.6   8.5 25.7   2.4   6.6 
M6   0.0   0.3   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.8   0.0   0.8   0.8   0.4   0.8   0.1   0.8   1.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .3 
M1 53.4 73.6 56.7 72.6 95.3 84.6 96.6 58.7 81.4 
M2 13.6   0.0 12.1   5.2   0.4   2.0   0.1 11.0   2.6 
M3 12.5   0.0 11.7   7.7   0.8   3.4   0.2 11.2   4.7 
M4 20.5   0.0 19.5 14.5   2.9   9.9   1.9 19.1 11.2 
M5   0.0   1.5   0.0   0.0   0.0   0.0   0.1   0.0   0.0 
M6   0.0 24.9   0.0   0.0   0.6   0.1   1.1   0.0   0.1 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Note: M1 is the correct model. M2 – M4 are more parameterized, incorrect nested models. M5 – M6 
are less parameterized, incorrect nested models. M7 – M8 are non-nested, incorrect models. 
 



MODEL SELECTION CRITERIA WITH HLM 

188 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8: Percentage of Times Out of 1,000 Replications Each Model Selection Criteria Selected Each 
Hierarchical Linear Model with 600 Total Participants (40 Groups X 15 Participants Per Group) as a 

Function of Parameter Magnitude and ICC Value – Complex Model Set 
 
 AIC AICCm AICCN BICm BICN CAICm CAICN HQICm HQICN 
Parameter Magnitude = .5, ICC = .1 
M1 56.3 79.1 57.8 76.5 70.7 75.7 63.1 67.6 76.7 
M2 12.1   0.6 11.5   2.4   0.1   0.9   0.0   6.5   2.4 
M3 12.9   1.7 12.5   3.4   0.4   1.7   0.3   8.6   3.3 
M4 15.4   3.2 14.6   5.7   1.1   3.5   0.7 11.0   5.6 
M5   2.1 14.4   2.2 10.6 26.9 17.3 35.3   5.0 10.6 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   1.2   1.0   1.4   1.4   0.8   0.9   0.6   1.3   1.4 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .5, ICC = .3 
M1 55.9 92.4 57.9 83.5 97.2 91.5 98.4 69.2 83.8 
M2 13.2   0.8 12.1   3.8   0.2   1.4   0.0   7.6   3.6 
M3 14.8   3.1 14.2   5.1   1.0   3.2   0.5 10.9   5.1 
M4 16.1   3.7 15.8   7.6   1.5   3.9   0.8 12.3   7.5 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.1   0.0   0.3   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .1 
M1 57.0 81.1 59.5 77.7 71.0 77.6 64.2 67.5 77.7 
M2 12.0   0.4 10.8   1.6   0.0   0.7   0.0   6.8   1.6 
M3 13.3   3.1 12.6   5.0   1.4   3.1   0.8   9.6   4.9 
M4 14.7   2.4 14.0   5.5   1.0   2.5   0.7 11.0   5.5 
M5   2.6 12.2   2.6   9.7 26.4 15.8 34.1   4.4   9.8 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.4   0.8   0.5   0.5   0.2   0.3   0.2   0.7   0.5 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .3 
M1 56.1 91.0 58.8 83.9 96.7 90.2 98.3 70.0 83.9 
M2 15.5   0.9 13.8   3.0   0.1   1.1   0.0   8.4   3.0 
M3 11.8   3.1 11.3   5.2   1.6   3.1   0.8   8.6   5.2 
M4 16.6   5.0 16.1   7.9   1.6   5.6   0.9 13.0   7.9 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Note: M1 is the correct model. M2 – M4 are more parameterized, incorrect nested models. M5 – M6 
are less parameterized, incorrect nested models. M7 – M8 are non-nested, incorrect models. 
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Table 9: Percentage of Times Out of 1,000 Replications Each Model Selection Criteria Selected Each 
Hierarchical Linear Model with 1,200 Total Participants (40 Groups X 30 Participants Per Group) as a 

Function of Parameter Magnitude and ICC Value – Complex Model Set 
 
 AIC AICCm AICCN BICm BICN CAICm CAICN HQICm HQICN 
Parameter Magnitude = .5, ICC = .1 
M1 59.4 92.1 60.3 85.4 97.6 91.7 97.8 71.4 86.8 
M2 13.2   0.8 12.8   3.2   0.0   1.0   0.0   7.9   2.9 
M3 12.3   3.0 12.1   4.7   0.6   3.0   0.3   9.6   4.1 
M4 15.1   3.9 14.8   6.6   1.1   4.1   0.4 11.1   6.0 
M5   0.0   0.2   0.0   0.1   0.7   0.2   1.5   0.0   0.2 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .5, ICC = .3 
M1 58.6 92.1 59.6 85.3 97.2 91.6 97.7 71.8 87.2 
M2 13.4   0.9 13.1   2.6   0.2   1.1   0.1   7.5   2.1 
M3 13.0   2.7 12.4   5.3   0.7   2.9   0.6   9.3   4.9 
M4 15.0   4.3 14.9   6.8   1.4   4.3   0.9 11.4   5.8 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.5   0.1   0.7   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .1 
M1 55.3 91.2 56.6 82.7 96.6 90.1 96.7 68.5 84.7 
M2 14.7   1.3 14.2   3.7   0.1   1.7   0.0   9.0   3.3 
M3 13.0   2.8 12.8   5.9   0.9   3.2   0.3   9.7   5.1 
M4 17.0   4.4 16.4   7.5   1.2   4.7   1.1 12.6   6.7 
M5   0.0   0.3   0.0   0.2   1.2   0.3   1.9   0.1   0.2 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.1   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
Parameter Magnitude = .7, ICC = .3 
M1 59.3 93.7 61.1 87.6 97.6 92.9 98.7 72.7 89.2 
M2 12.5   0.5 11.7   1.8   0.2   1.0   0.0   6.6   1.4 
M3 14.5   2.3 13.9   5.0   0.6   2.5   0.3 10.0   4.2 
M4 13.7   3.5 13.3   5.6   1.6   3.6   1.0 10.7   5.2 
M5   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M7   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
M8   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 
 
Note: M1 is the correct model. M2 – M4 are more parameterized, incorrect nested models. M5 – M6 
are less parameterized, incorrect nested models. M7 – M8 are non-nested, incorrect models. 
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convergence problems could both be 
encountered for different models within the 
same replication. Convergence problems were 
encountered more frequently when trying to fit 
Complex Model 2 (which incorrectly included a 
random effect), Complex Model 7 (which was 
missing a random effect and incorrectly included 
a random effect), and Complex Model 8 (which 
was missing a fixed effect and incorrectly 
included a random effect). 
 

Conclusion 
 
The current study examined the performance of 
the AIC, AICC, BIC, CAIC, and the HQIC 
when selecting the correct multilevel model 
under different criteria calculation, model 
complexity, model misspecification, number of 
groups at level-2, number of participants per 
group, parameter magnitude, and intraclass 
correlation (ICC) value conditions. Several of 
the study factors, either in isolation or in 
conjunction with another factor or factors, did 
affect the performance of the model selection 
criteria. For example, none of the model 
selection criteria performed well with respect to 
selecting the correct model when total sample 
size and ICC values were small and the 
performance of the model selection criteria 
improved as total sample size and ICC value 
increased. 

The criteria generally performed more 
accurately when selecting the correct model 
from the simple model set than the complex 
model set. This seems reasonable given that 
adding or dropping parameters from a simple 
model would result in a more highly 
misspecified model than when adding or 
dropping parameters from a complex model. For 
example, dropping a random slope from a model 
in which there is only 1 random slope would 
result in a more highly misspecified model than 
dropping a random slope from a model in which 
there are 2 or more random slopes. Thus, the 
criteria would be more likely to select the 
correct model from among a set of severely 
misspecified models in the simple model set 
than a set of moderately misspecified models in 
the complex model set. 

Although parameter magnitude did not 
appear to have a great impact on the 

performance of the model selection criteria, it 
did impact the AICCm in two conditions. That is, 
the AICCm performed more accurately in the 
high parameter magnitude condition when group 
size was 20 with a high ICC value in the 
complex model set. Again, this appears to be an 
isolated occurrence as parameter magnitude did 
not generally affect the remaining criteria. 

The efficient model selection criteria, 
the AIC and the AICCN, did not perform as well 
as the remaining, consistent criteria. This is to be 
expected when the definition of the performance 
standard, such as the one used in this study, is 
consistency (i.e., the selection of the correct 
model from among a set of competing models). 
These results corroborate the findings in Gurka’s 
(2006) study. 

To date, the HQIC, to the best of our 
knowledge, has not been examined in the 
relevant literature. Thus, the performance of the 
HQIC under various conditions and in 
comparison to the remaining criteria was of 
interest in the current study. The results 
indicated that while the HQIC performed more 
accurately than the AIC and the AICCN, it did 
not perform more accurately than the BIC, 
CAIC, or the AICCm when selecting the correct 
model. 

The AICCm proved to be a contender, 
not only outperforming its N-calculated 
counterpart in almost all conditions, but also 
performing comparably to the CAICm, next to 
the most accurately performing criteria (BICN 
and CAICN). Gurka (2006) also found that the 
AICCm performed adequately. Gurka (2006) 
recommended the use of the BICm and the 
CAICm based on his findings, however, the BICN 
and CAICN outperformed their m-calculated 
counterparts in several conditions in the current 
study. When the BICm and the CAICm did 
outperform their N-calculated counterparts, the 
ICC value was low. Also, the differences in the 
rates of choosing the correct model were 
appreciably higher for the m-calculated criteria 
in these conditions, particularly within the 
Simple Model set. 

The results of the current study did not 
determine which one model selection criterion 
will perform optimally in every situation 
encountered. It is clear, however, that the BIC, 
the CAIC, as well as the AICCm, generally out- 
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performed the remaining criteria examined. Still, 
the performance of these criteria was dependent 
upon the conditions examined in the current 
study. None of the criteria performed very well 
in the smallest total sample size with low ICC 
value conditions. Thus, in this situation, 
researchers may want to employ the BICm and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the CAICm along with the AIC, regardless of 
model complexity. When total sample sizes are 
larger with higher ICC values, the BICN, CAICN, 
and the AICCm together may be used to select 
among a set of multilevel models. Researchers 
should be cautioned, however, that the AICCm 
performs less accurately when the competing 

Table 10: Non-Positive Definite Variance Component Matrix and Convergence Problems 
Encountered as a Function of Generating Condition 

 
                                                                            Simple Complex 
 
Condition         Replications        % Usable          Replications        % Usable 
              Needed         Replications            Needed       Replications 
 
20 x 15; Parameter = .5; ICC = .1 1110      90.1  1733  57.7 
 
20 x 15; Parameter = .5; ICC = .3 1000  100.0  1318  75.9 
 
20 x 15; Parameter = .7; ICC = .1 1118      89.4  1794  55.7 
 
20 x 15; Parameter = .7; ICC = .3 1002     99.8  1397  71.6 
 
20 x 30; Parameter = .5; ICC = .1 1018     98.2  1184  84.5 
 
20 x 30; Parameter = .5; ICC = .3 1000  100.0  1096  91.2 
 
20 x 30; Parameter = .7; ICC = .1 1009    99.1  1185  84.4 
 
20 x 30; Parameter = .7; ICC = .3 1000  100.0  1117  89.5 
 
40 x 15; Parameter = .5; ICC = .1 1006     99.4  1072  93.3 
 
40 x 15; Parameter = .5; ICC = .3 1000  100.0  1019  98.1 
 
40 x 15; Parameter = .7; ICC = .1 1010    99.0  1096  91.2 
 
40 x 15; Parameter = .7; ICC = .3 1000  100.0  1035  96.6 
 
40 x 30; Parameter = .5; ICC = .1 1000  100.0  1012  98.8 
 
40 x 30; Parameter = .5; ICC = .3 1000  100.0  1001  99.9 
 
40 x 30; Parameter = .7; ICC = .1 1000  100.0  1013  98.7 
 
40 x 30; Parameter = .7; ICC = .3 1000  100.0  1004  99.6 
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models are complex, unless the number of 
groups is large. 

The models and conditions examined in 
the current study do not reflect all possible 
models and conditions found when analyzing 
real-world data. Hence, it is difficult to 
generalize the findings to every situation that 
may be encountered by applied researchers. 
Future research still needs to be conducted in 
order to more fully understand the 
characteristics of model selection criteria in the 
HLM arena. For example, the models examined 
in this study were limited to two levels; it would 
be interesting to examine how well these 
selection criteria perform with three-level 
models, particularly when calculating the criteria 
using N, m at level-2, and m at level-3.  

Future research should also examine the 
sensitivity of the model selection criteria to non-
normally distributed data as well as data that are 
missing at level-1, level-2, or both. Based on 
Gurka’s (2006) finding that the model selection 
criteria worked well when models were 
misspecified by fixed effects using REML 
estimation, future research could also examine 
how well these criteria work using REML 
estimation under additional conditions. 

In recent years, HLM has grown widely 
popular in its use. Indeed, our search in PsycInfo 
between January 2002 and March 2007 for 
articles in which HLM was used uncovered 220 
articles. Our content analysis also indicated that 
model selection criteria were used in the model 
selection/comparison process in 45 of the 220 
articles, with only 10 of those consisting of 
information criteria. Thus, most HLM research 
does not incorporate any type of model selection 
criteria. This could be a result of a lack of 
literature informing researchers as to the 
performance of these criteria and a lack of 
literature pointing to the necessity of these 
criteria when deciding between several 
competing models. In addition, while major 
software packages like SAS and SPSS include a 
number of information criteria in their output, 
other packages that estimate multilevel models, 
such as HLM 6 (Raudenbush, Bryk & Congdon, 
2007) and MLwiN (Rasbash, et al., 2000), do 
not provide any information criteria in their 
output. While the deviance statistic is provided 
in these software packages, applied researchers 

may be less likely, or aware of, the different 
information criteria available. This may also 
possibly be contributing to the lack of utilization 
of these criteria in the applied literature. 
Therefore, the current study provides valuable 
information concerning the existing practices of 
applied researchers when comparing and 
selecting among hierarchical models as well as 
the performance of existing and alternative 
criteria when selecting among hierarchical 
models. 
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On The Expected Values of Distribution of the Sample Range of Order Statistics 
from the Geometric Distribution 
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The expected values of the distribution of the sample range of order statistics from the geometric 
distribution are presented. For n  up to 10, algebraic expressions for the expected values are obtained. 
Using the algebraic expressions, expected values based on the p and n  values can be easily computed. 
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Introduction 
 
Let nXXX ,,, 21   be a random sample of size 

n from a discrete distribution with a probability 
mass function ( pmf ) ( )xf  ( ),2,1,0=x  and 

a cumulative distribution function ( )xF . Let 

nnnn XXX ::2:1 ≤≤≤   be the order statistics 

obtained from the above random sample by 
arranging the observations in increasing order of 
magnitude. When spacing is denoted as 

ninjnji XXW :::, −= , and 1=i  and nj = , that 

is, in the case of the sample range nW , then 

nnnn XXW :1: −= . Denote the expected values 

of distribution of the sample range ( )nWE  by 
( )k
Wn

μ  ( )2≥n . For convenience, denote ( )1

nWμ  

simply by
nWμ . 

Order statistics from the geometric 
distribution have been studied by many authors, 
for example, see Abdel-Aty (1954) and 
Morgolin and Winokur (1967).   In  particular, 
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characterizations of the geometric distribution 
using order statistics have received great 
attention; for example, see Uppuliri (1964), 
Ferguson (1965, 1967), Crawford (1966), 
Srivastava (1974), Galambos (1975), El-Neweihi 
and Govindarajulu (1979), and Govindarajulu 
(1980). Expressions for the first two single 
moments of order statistics have been obtained 
by Morgolin and Winokur (1967). 

The calculation of the exact sampling 
distribution of ranges from a discrete population 
was obtained by Burr (1955). The distribution of 
the sample range from a discrete order statistics 
were given by Arnold, et al. (1992). Additional 
details on discrete order statistics can be found 
in the works of Khatri (1962), David (1981), 
Nagaraja (1992), and Balakrishnan and Rao 
(1998). In this study, for n  up to 10, algebraic 
expressions for the expected values of the 
distribution of the sample range of order 
statistics from the geometric distribution are 
obtained. 
 

Methodology 
 
Marginal Distribution of Order Statistics 

If ( ) ( )nrxF nr ,,2,1: =  denotes the 

cumulative distribution function ( cdf ) of nrX : , 

then the following results: 
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(1) 
for - ∞<<∞ x . 

For a discrete population, the probability 
mass function ( pmf ) of nrX :  may be obtained 

from (1) by differencing as 
 

 

 
(Arnold, et al., 1992; Balakrishnan, 1986). 
 
Order Statistics from the Geometric Distribution 

To explore the properties of the 
geometric distribution order statistics, begin by 
stating that X  is a Geometric ( p ) random 

variable. Note that it’s pmf  is given by

( ) 1−= xpqxf , and it’s cdf  is ( ) xqxF −= 1 , 

for ,...,2,1=x . Consequently the cdf  of the r
th order statistic is given by 
 

,...,2,1=x . 

 
Joint Distribution of Order Statistics 

The joint distribution of order statistics 
can be similarly derived. For example, the joint 
cumulative distribution function of niX :  and 

njX :  ( nji ≤≤≤1 ) can be shown to be 

 

 for  

 

For ji xx < , 

 

 

 
(2)

 

 
This expression holds for any arbitrary 
population whether continuous or discrete. 

For discrete populations, the joint 
probability mass function of niX : and njX :  

 may be obtained from (2) by 
differencing as: 
 
 

 

 
Theorem 1. For niii k ≤≤≤≤≤ 211 , the 

joint pmf  of ninini k
XXX ::: ,,,

21
  is given by 

 

 
where 0i = 0, 0u = 0, 

 

 

 
and D  is k-dimensional space given by 
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(Nagaraja, 1986; Arnold, et al., 1992; 
Balakrishnan & Rao, 1988). Khatri (1962) 
presented this result for  but only proved 

it for 2≤k  for the case of no ties. 
 
Distribution of the Sample Range 

Starting with the pmf  of the spacing

ninjnji XXW :::, −= , and using Theorem 1, 

results in 
 

(3) 
 
Substantial simplification of the expression in 
(3) is possible when 1=i  and nj = , that is, in 

the case of the sample range nW , this results in: 

 

 

 
Thus, the pmf  of nW  is given by 

 

(4) 
 
and, for 0>w , from Arnold, et al., 1992, 
 

(5) 
 

Expressions (4) and (5) can also be 
obtained without using the integral expression 
from Theorem 1, and a multinomial argument 
can also be used to obtain an alternative 
expression for the pmf of nW . 

 
Expected Values of the Sample Range 

The  moments of nW  can be written 

as 

   (6) 

 
where )( wWP n =  is as given in (5). 

When X  is a geometric ( p ) random 
variable, as in the case of the expected values of 
the sample range, (6) yields 
 

         (7) 

 
where )( wWP n =  is as given in (7). 

 
Distribution of the Sample Range from the 
Geometric Distribution 

The distribution of higher order statistics 
is not as simple for the geometric distribution. 
For the sample range nW , from (2), 
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and from (3) the following is obtained: 
 

(7) 
for . 
 
In particular, 
 

 

 
for , thus 
 

 

for . 
 
Using the above pmf , the moments of nW  can 

be determined. For example, when 2=n , 
using the pmf  in (7), the following results: 

 

 
For n  up to 10, algebraic expressions for the 
expected values of the distribution of the sample 
range of order statistics from the geometric 
distribution are obtained; these are shown in 
Table 1. 
 

Conclusion 
 
Algebraic expressions are presented for n  up to 
10 for the expected values of distribution of the 
sample range of order statistics from the 
geometric distribution. Using the obtained 
algebraic expressions, these expected values can 
be computed. As it is shown in Table 1, different 
values can be obtained for q and n . For 
example, for q=0.50, using the value n =2 in 

Table 1, 
2Wμ ≈ 0,011765 is obtained. Further 

studies may focus on a software program for 
estimating the expected values found in this 
study. 
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Table 1: The expected values of distribution of the sample range of order statistics 
from the geometric distribution 
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Approximations to Power When Comparing Two Small Independent Proportions 
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Researchers often face the problem of accurately calculating power for tests of differences between two 
independent proportions. Four commonly used and accepted approximations are the arc sine, the Chi-
squared, and the continuity-corrected versions of each. Comparisons of these are discussed for various 
sample sizes, ultimately focusing on small proportions. 
 
Key words: Fisher’s exact test, power calculation, power approximation, arc sine approximation, Chi-
squared approximation, small proportions. 
 
 

Introduction 
 
The conditional probability of rejecting the null 
hypothesis, in an accept-reject test of hypothesis, 
given that the alternative hypothesis is true, is 
called the power of the test. Determining the 
power of a test is referred to as power 
calculation. For the purposes of this discussion, 
the alternative hypothesis is P1 > P2, where P1 
and P2 are the larger and smaller proportions 
being compared, respectively. Many researchers 
use these hypothesis tests to determine the 
minimum detectable differences between two 
proportions, given desired power level (1-β), 
sample size (n), and significance level (α). The 
method for calculating the exact power of these 
tests requires an extremely time-consuming, 
iterative process using 2 x 2 contingency tables. 
A common approach to circumventing this 
arduous process is to use an approximation of 
the power. Researchers often indiscriminately 
apply some of these formulas without 
questioning the reliability of the results obtained. 

Two standard approximations used to 
calculate  the  power  of  a  test  of  difference  
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between two independent proportions are the arc 
sine approximation, provided by Cochran and 
Cox (1957), 
 

( )1 1
1 1 22Z Z n Sin P Sin Pβ α

− −
−= − − , (1) 

 
and the Chi-squared approximation, provided by 
Fleiss (1973), 
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A continuity-corrected version of the arc sine 
approximation was provided by Walters (1979), 
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and a continuity-corrected version of the Chi-
squared approximation has been provided by 
Fleiss, Tytun, and Ury (1980), as follows: 
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Each of these corrected approximations offers 
advantages and drawbacks, depending on the 
sample size and magnitude of the proportions. 
The corrected arc sine formula (Equation 3) is a 
simpler formula but requires the use of the arc 
sine function for (P1 – 1/2n), so P1 must be 
greater than 1/2n. Additionally, the corrected 
Chi-squared formula is invalid when (P1 – P2) is 
less than 2/n. 

Ury (1981) and Dobson and Gebski 
(1986) showed that the corrected approximations 
(Equations 3 and 4) yield a substantial 
improvement in the accuracy of the uncorrected 
approximations, as compared with Fisher’s exact 
test for a 2 x 2 contingency table, when the 
sample size is equal to 30, and the proportions 
are relatively large (i.e., P1 of 0.6-0.9, P2 of 
0.1-0.8, with minimum difference of 0.1). To the 
best of our knowledge, the accuracy of results 
from these corrected approximations when 
testing differences between smaller proportions 
has not been previously evaluated. 

Power calculations for detecting 
differences between smaller proportions, using 
Fisher’s exact test, all the approximations and a 
sample size of 30, are presented and discussed. 
Also presented is a discussion of power results 
comparisons for detecting differences between 
relatively small proportions, where the larger 
proportion is between 0.01 and 0.05 and the 
smaller proportion ranges from 0.001 to 0.007, 
for a sample size of 300. Finally, power results 
are compared for detecting differences of 
relatively small proportions for sample sizes of 
300, 750, and 1,500 using both corrected 
approximations, and the accuracy of these 
approximations is discussed. 
 

Methodology 
 
In a preliminary analysis, Fisher’s exact test, 
corrected and uncorrected approximations were 

used to calculate the power needed to detect the 
differences between smaller proportions 
(ranging between 0.001 and 0.15). It was found 
that all of these approximations overestimate 
power for small proportions when the sample 
size is small, but the corrected approximations 
can be very accurate when the sample size is 300 
or greater. 

The power needed to detect differences 
of relatively small proportions using all four 
approximations, as well as Fisher’s exact test, 
were calculated and compared. Table 1 shows 
the power, as calculated using Fisher’s exact 
method and the two uncorrected approximations 
(Equations 1 and 2), associated with detectable 
differences where the larger proportion ranges 
from 0.075 to 0.15, the smaller proportion 
ranges from 0.001 to 0.008, and sample size is 
30. 

Table 2 is a replication of Table 1, 
substituting the two corrected approximations 
(Equations 3 and 4) for the uncorrected 
approximations. Tables 3 and 4 compare the 
power levels, as calculated using Fisher’s exact 
method and both the uncorrected and corrected 
versions of each approximation, associated with 
detectable differences where the larger 
proportion ranges from 0.02 to 0.03, the smaller 
proportion ranges from 0.001 to 0.007, and 
sample size is 300. Table 3 compares exact vs. 
arc sine (Equations 1 and 3), and Table 4 
compares exact vs. Chi-squared (Equations 2 
and 4). Tables 5, 6, and 7 compare the power, 
calculated using the same methods as in Table 2, 
associated with detectable differences where the 
larger proportion is between 0.01 and 0.05, and 
the smaller proportion ranges from 0.001 to 
0.007, for sample sizes of 300, 750, and 1,500, 
respectively. 
 

Results 
 
All four approximations overestimate power, 
sometimes by as much as 1,000% when P1 is 
less than 0.2, P2 is less than 0.1, and n = 30 (see 
Tables 1 and 2). However, the corrected 
approximations can be very accurate in 
determining power when the proportions are 
small and the sample size approaches 300. 
Additionally, the corrected approximations are 
more accurate than the uncorrected versions  
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Table 1: Power of Fisher’s Exact Test, with Both Uncorrected Approximations 
(n = 30, α = 0.05) 

Approximation 
Larger 

Proportion 
(P1) 

Smaller Proportion (P2) 

0.001 0.003 0.005 0.007 0.008 

Exact Power 

0.075 

0.06 0.06 0.06 0.05 0.05 

Corrected Arc Sine 
Approximation 

0.60 0.53 0.48 0.44 0.42 

Corrected Chi-Squared 
Approximation 

0.44 0.42 0.40 0.37 0.36 

Exact Power 

0.100 

0.17 0.16 0.15 0.14 0.14 

Corrected Arc Sine 
Approximation 

0.73 0.66 0.62 0.58 0.56 

Corrected Chi-Squared 
Approximation 

0.54 0.52 0.50 0.48 0.47 

Exact Power 

0.150 

0.46 0.40 0.42 0.41 0.40 

Corrected Arc Sine 
Approximation 

0.88 0.84 0.81 0.78 0.77 

Corrected Chi-Squared 
Approximation 

0.71 0.70 0.68 0.67 0.66 

Table 2: Power of Fisher’s Exact Test, with Both Corrected Approximations 
(n = 30, α = 0.05) 

Approximation Larger 
Proportion (P1) 

Smaller Proportion (P2) 

0.001 0.003 0.005 0.007 0.008 

Exact Power 

0.075 

0.06 0.06 0.06 0.05 0.05 

Corrected Arc Sine 
Approximation 

0.22 0.20 0.18 0.17 0.16 

Corrected Chi-Squared 
Approximation 

0.12 0.10 0.09 0.07 0.06 

Exact Power 

0.100 

0.17 0.16 0.15 0.14 0.14 

Corrected Arc Sine 
Approximation 

0.34 0.32 0.30 0.28 0.27 

Corrected Chi-Squared 
Approximation 

0.25 0.24 0.22 0.21 0.20 

Exact Power 

0.150 

0.46 0.40 0.42 0.41 0.40 

Corrected Arc Sine 
Approximation 

0.59 0.56 0.54 0.52 0.51 

Corrected Chi-Squared 
Approximation 

0.49 0.47 0.46 0.44 0.43 
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Table 3: Power of Fisher’s Exact Test, with Arc Sine Approximations 
(n = 300, α = 0.05) 

Approximation Larger 
Proportion (P1) 

Smaller Proportion (P2) 

0.001 0.002 0.003 0.005 0.007 

Exact Power 

0.020 

0.62 0.53 0.46 0.34 0.24 

Corrected Arc Sine 
Approximation 

0.66 0.58 0.50 0.37 0.27 

Uncorrected Arc Sine 
Approximation 

0.86 0.77 0.69 0.54 0.41 

Exact Power 

0.025 

0.79 0.72 0.65 0.51 0.40 

Corrected Arc Sine 
Approximation 

0.80 0.73 0.67 0.54 0.43 

Uncorrected Arc Sine 
Approximation 

0.93 0.87 0.82 0.70 0.58 

Exact Power 

0.030 

0.89 0.84 0.78 0.67 0.57 

Corrected Arc Sine 
Approximation 

0.89 0.84 0.79 0.69 0.58 

Uncorrected Arc Sine 
Approximation 

0.97 0.94 0.90 0.81 0.71 

Table 4: Power of Fisher’s Exact Test, with Chi-Squared Approximations 
(n = 300, α = 0.05) 

Approximation Larger 
Proportion (P1) 

Smaller Proportion (P2) 

0.001 0.002 0.003 0.005 0.007 

Exact Power 

0.020 

0.62 0.53 0.46 0.34 0.24 

Corrected Chi-Squared 
Approximation 

0.58 0.51 0.45 0.34 0.25 

Uncorrected Chi-
Squared Approximation 

0.74 0.68 0.62 0.50 0.40 

Exact Power 

0.025 

0.79 0.72 0.65 0.51 0.40 

Corrected Chi-Squared 
Approximation 

0.71 0.66 0.61 0.50 0.40 

Uncorrected Chi-
Squared Approximation 

0.83 0.79 0.74 0.64 0.54 

Exact Power 

0.030 

0.89 0.84 0.78 0.67 0.57 

Corrected Chi-Squared 
Approximation 

0.81 0.77 0.73 0.64 0.55 

Uncorrected Chi-
Squared Approximation 

0.89 0.86 0.83 0.76 0.67 
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Table 5: Power of Fisher’s Exact Test, with Both Corrected Approximations 
(n = 300, α = 0.05) 

Approximation Larger 
Proportion (P1) 

Smaller Proportion (P2) 

0.001 0.002 0.003 0.005 0.007 

Exact Power 

0.020 

0.62 0.53 0.46 0.34 0.24 

Corrected Arc Sine 
Approximation 

0.66 0.58 0.50 0.37 0.27 

Corrected Chi-Squared 
Approximation 

0.58 0.51 0.45 0.34 0.25 

Exact Power 

0.025 

0.79 0.72 0.65 0.51 0.40 

Corrected Arc Sine 
Approximation 

0.80 0.73 0.67 0.54 0.43 

Corrected Chi-Squared 
Approximation 

0.71 0.66 0.61 0.50 0.40 

Exact Power 

0.030 

0.89 0.84 0.78 0.67 0.57 

Corrected Arc Sine 
Approximation 

0.89 0.84 0.79 0.69 0.58 

Corrected Chi-Squared 
Approximation 

0.81 0.77 0.73 0.64 0.55 

Exact Power 

0.050 

0.99 0.99 0.98 0.96 0.93 

Corrected Arc Sine 
Approximation 

0.99 0.99 0.98 0.96 0.93 

Corrected Chi-Squared 
Approximation 

0.97 0.99 0.95 0.93 0.90 
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Table 6: Power of Fisher’s Exact Test, with Both Corrected Approximations 
(n = 750, α = 0.05) 

Approximation Larger 
Proportion (P1) 

Smaller Proportion (P2) 

0.001 0.002 0.003 0.005 0.007 

Exact Power 

0.010 

0.68 0.51 0.38 0.19 0.09 

Corrected Arc Sine 
Approximation 

0.70 0.54 0.40 0.21 0.10 

Corrected Chi-Squared 
Approximation 

0.63 0.50 0.38 0.19 0.08 

Exact Power 

0.015 

0.92 0.84 0.74 0.53 0.34 

Corrected Arc Sine 
Approximation 

0.92 0.84 0.74 0.53 0.35 

Corrected Chi-Squared 
Approximation 

0.86 0.79 0.70 0.51 0.33 

Exact Power 

0.020 

0.98 0.96 0.92 0.80 0.64 

Corrected Arc Sine 
Approximation 

0.99 0.96 0.92 0.80 0.64 

Corrected Chi-Squared 
Approximation 

0.96 0.93 0.88 0.77 0.62 

Exact Power 

0.025 

0.99 0.99 0.98 0.93 0.85 

Corrected Arc Sine 
Approximation 

0.99 0.99 0.98 0.93 0.85 

Corrected Chi-Squared 
Approximation 

0.99 0.98 0.96 0.91 0.82 
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when the proportions are small and n = 300 (see 
Tables 3 and 4). 

When n = 300 (see Table 5), the 
corrected Chi-squared approximation (Equation 
4) is more accurate for smaller proportions, 
whereas the corrected arc sine approximation 
(Equation 3) overestimates the exact power. As 
the proportions and differences become larger, 
the corrected arc sine approximation (Equation 
3) becomes more accurate, although still slightly 
overestimating the exact power. 

As n reaches 750 (see Table 6), the 
accuracy of both corrected approximations for 
calculating the power of tests of differences 
between relatively small proportions increases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Again, with smaller proportions the corrected 
Chi-squared approximation (Equation 4) 
provides a more accurate and conservative 
calculation of power. However, once P1 reaches 
0.015, the corrected arc sine approximation 
(Equation 3) provides power calculations 
identical (to 2 decimal points) to Fisher’s exact 
test, whereas the corrected Chi-squared 
approximation (Equation 4) still slightly under-
estimates the power. 

Furthermore, as n reaches 1,500 (see 
Table 7), the corrected arc sine approximation 
(Equation 3) is more accurate regardless of the 
magnitude of the proportions considered, and it 

Table 7: Power of Fisher’s Exact Test, with Both Corrected Approximations 
(n = 1,500, α = 0.05) 

Approximation Larger 
Proportion (P1) 

Smaller Proportion (P2) 

0.001 0.002 0.003 0.005 0.007 

Exact Power 

0.010 

0.96 0.87 0.72 0.40 0.17 

Corrected Arc Sine 
Approximation 

0.96 0.86 0.72 0.40 0.17 

Corrected Chi-Squared 
Approximation 

0.92 0.83 0.69 0.39 0.16 

Exact Power 

0.015 

0.99 0.99 0.96 0.84 0.62 

Corrected Arc Sine 
Approximation 

0.99 0.99 0.97 0.84 0.62 

Corrected Chi-Squared 
Approximation 

0.99 0.98 0.95 0.82 0.61 

Exact Power 

0.020 

0.99 0.99 0.99 0.98 0.91 

Corrected Arc Sine 
Approximation 

0.99 0.99 0.99 0.98 0.91 

Corrected Chi-Squared 
Approximation 

0.99 0.99 0.99 0.97 0.90 

Exact Power 

0.025 

0.99 0.99 0.99 0.99 0.98 

Corrected Arc Sine 
Approximation 

0.99 0.99 0.99 0.99 0.99 

Corrected Chi-Squared 
Approximation 

0.99 0.99 0.99 0.99 0.98 
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no longer overestimates the power for smaller 
proportions. Thus, these analysis results suggest 
that the corrected arc sine approximation 
(Equation 3) should be used exclusively to 
determine the power of tests of differences 
between two proportions once n reaches 1,500. 
 

Conclusion 
 
Analysis of results suggest that the continuity-
corrected approximations provided by Walters 
(1979) and Fleiss, et al. (1980) result in more 
accurate power levels than the uncorrected 
versions previously provided by Cochran and 
Cox (1957), and Fleiss (1973), for determining 
the power of tests of differences between small 
proportions when sample size is at least 300. 
The uncorrected approximations greatly 
overestimate the power of these tests. 
Specifically, when n = 300 or 750 the corrected 
Chi-squared approximation (Equation 4) is more 
accurate for smaller proportions, whereas the 
corrected arc sine approximation (Equation 3) 
becomes more accurate as the size of the 
proportions increases. When n = 1,500 the 
corrected arc sine approximation (Equation 3) is 
more accurate for all proportions presented 
above. 
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Wald-z asymptotic methods, with and without a continuity correction, have less than nominal coverage 
probability characteristics but continue to be used. Newcombe's hybrid method and the Agresti-Caffo 
methods have coverage probabilities that are near nominal for either equal or unequal samples. 
Newcombe's hybrid and Agresti-Caffo methods demonstrate superior coverage properties. 
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Introduction 
 
In reporting the results of medical studies the 
problem of comparing two binomial success 
probabilities p1 and p2, p1 > 0 and p2 > 0 is often 
encountered. Implicit in this comparison are the 
independent observations X1 ~ B (n1, p1) and X2 
~ B (n2, p2). The most common comparison is 
the hypothesis Ho: p1 = p2 versus Ha: p1 ≠ p2. 
Accompanying the hypothesis test is the 
construction of a confidence interval for the 
difference between p1 and p2. Nearly all 
introductory statistics textbooks include a 
method for computing this confidence interval 
and issue a warning - usually in a footnote - 
when not to use the common method: this 
commonly described method is the Wald-z 
method. Occasionally, a continuity corrected 
version is given (Wald-c). 

The problems associated with the 
confidence interval for the difference between 
two independent proportions are similar to the 
confidence interval of a single proportion. 
Despite these properties, the Wald-z and Wald-c 
methods continue to dominate. We review the 
coverage probability functions of the Wald 
methods and a set of alternative methods for 
computing a confidence interval for the 
difference between two independent proportions. 
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Methodology 

 
The Wald-z and Wald-c confidence interval 
lower upper bounds for the difference between 
two independent proportions are defined as (See 
Appendix A for a typical data structure): 
 
Wald-z: 

LB = (p1 − p2) − zα/2√ (ac/m3 + bd/n3) 
UB = (p1 − p2) + zα/2√ (ac/m3 + bd/n3) 

 
Wald-c: 
LB=(p1−p2)−[zα/2√{ac/m3+bd/n3}+(1/m+1/n)/2] 
UB=(p1−p2)+[zα/2√{ac/m3+bd/n3}+(1/m+1/n)/2] 
 

The primary criteria for evaluating a 
confidence interval method is the coverage 
probability function. This coverage probability 
for the difference between two independent 
proportions, C(π1,π2|n1,n2,α), is found by fixing 
n1, n2, π1, and π2, then computing the confidence 
interval for each xi = 0, …, ni for i= 1, 2. The 
coverage probability is then defined by: 
 
C(π1,π2|n1,n2,α) = 

ΣPr(X1 = x1|n1,π1)Pr(X2 = x2|n2,π2) 
δ(π1,π2|x1,x2,n1,n2,α). 

 
If (π1-π2)∈[LB(x1,x2,n1,n2,α), UB(x1,x2,n1,n2,α)], 
δ(π1,π2|x1,x2,n1,n2,α) = 1, and 0 otherwise. 

Figure 1 shows the 95% confidence 
interval coverage probability function for the 
Wald-z and Wald-c methods as a function of π1, 
π1 ∈ [0,1] for n1 = n2 = 20 and p2 = 0.3. The 
sawtooth appearance of the coverage functions  
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is due to the discontinuities for values of p1 
corresponding to any lower or upper limits in the 
set of confidence intervals. Like its one sample 
cousin, the Wald-z coverage probability curve is 
subnominal and less than 0.95 overall. The 
Wald-c coverage probability always exceeds 
0.95 overall with interval widths larger than 
Wald-z. 

Figure 2 shows the 95% confidence 
interval coverage probability function for the 
Wald-z and Wald-c methods as a function of π1, 
π1 ∈ [0,1] for n1 = 20, n2 = 10 and p2 = 0.3. The 
Wald-z coverage probability curve is 
subnominal for differences in proportions near 0 
and 1 and less than 0.95 overall. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Beal evaluated several asymptotic 
methods for computing a confidence interval 
between the differences of two independent 
proportions. All involved identifying the interval 
within which (θ - θ')2 ≤ z2 V(ψ, θ'), where θ'= p1 
− p2, and V(ψ, θ')=u{4ψ(1 − ψ)θ = π1(1 − π1)/m 
+ π2(1 − π2)/n (Beal, 1987). Beal examined two 
methods, labeled the Haldane (H) and Jeffreys-
Perks (JP) methods. The JP method provides 
non-degenerative confidence intervals for all 
values of p1 and p2 unlike Wald-z or Wald-c. H 
and JP generally performed better than the 
Wald-z and Wald-c and of the two, JP was 
preferred (Beal, 1987; Radhakrishna, et. al., 
1992). 

Figure 1: Coverage probabilities for nominal 95% Wald-z and Wald-c as a function of p1 
when p2=0.3 with n1=n2=20 
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The Haldane and Jeffreys-Perks lower and upper 
limits are defined by: 
 
H 

LB=θ* − w,  
and 

UB=θ* + w, 
 
where 

θ*=(θ'+z2v(1−2ψ'))/(1+z2u), 
 
w=[z/(1+z2u)]√[u{4ψ'(1−ψ')−θ'2}+2v(1−2ψ')θ'+

4z2u2(1−ψ')ψ'+z2v2(1−2ψ')2] 
 

ψ'=(a/m+b/n)/2, 
 

u=(1/m+1/n)/4, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and 
 

v=(1/m−1/n)/4. 
 
JP 

LB=θ* − w, 
and 

UB=θ* + w, 
 
where ψ' from the Haldane method is: 
 

ψ'=[(a+0.5)/(m+1)+(b+0.5)/(n+1)]/2. 
 

Newcombe (1998) compared eleven 
methods for estimating the difference between 
independent proportion. Similar to the single 
proportion, the virtues of Wald-z and Wald-c 

Figure 2: Coverage probabilities for nominal 95% Wald-z and Wald-c as a function 
of p1 when p2=0.3 with n1=20, n2=10 
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methods are in their simplicity, but overshoot 
and inappropriate intervals are still common. 
The Haldane and Jeffreys-Perks methods 
attempt to overcome the overshoot and 
inappropriate intervals while maintaining 
closed-form tractability. Newcombe concluded 
that both H and JP were improvements over the 
Wald-z and Wald-c methods, but both were still 
inadequate. Newcombe recommended a hybrid 
method based on Wilson's score method for a 
single proportion without continuity correction 
(NS). The LB and UB for the NS method are: 
 
NS 

LB=(p1−p2)−δ, 
where 

δ=√{(a/m−l1)
2+(u2−b/n)2} 

=zα/2√{l1(1−l1)/m+u2(1−u2)/n}. 
 

UB = (p1 − p2) +ε, 
where 

ε=√{(u1−a/m)2+(b/n−l2)
2} 

=zα/2√{u1(1−u1)/m+l2(1−l2)/n}, 
 
and l1, l2, u1, u2 are the lower and upper bounds 
for the two proportions p1 and p2 using Wilson's 
score method. 

Agresti & Coull's (1998) adjustment to 
the Wald method for a single proportion adds t/2 
successes and t/2 failures. Agresti & Caffo 
(2000) later suggested that by adding two 
successes and two failures (total) to the two-
sample method would improve the simple Wald  
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method. This is an adjustment that adds a pseudo 
observation of each type to each sample. For 
instance, for sample i, pi = (ri+1)/(ni+2). 

Results 
 
Figure 3 shows the 95% confidence interval 
coverage probability function for the Newcombe 
NS, Haldane, Jeffreys-Perks, and Agresti-Caffo 
methods as a function of π1, π1 ∈ [0,1] for n1 = 
n2 = 20 and p2 = 0.3. The NS and Agresti-Caffo 
methods demonstrate coverage probabilities that 
are near nominal over π1 ∈ [0, 1]. 

Figure 4 shows the 95% confidence 
interval coverage probability function for the 
Newcombe NS, Haldane, Jeffreys-Perks, and 
Agresti-Caffo methods as a function of π1, π1 ∈ 
[0,1] for n1 = 20, n2 = 10 and p2 = 0.3. In the 
unequal sample size situation, Newcombe NS 
and Agresti-Caffo coverage probability 
functions are near nominal over π1 ∈ [0, 1]. 
 

Conclusion 
 

In the case of differences between two 
independent proportions the Wald-z confidence 
interval behaves poorly with coverage 
probabilities below nominal values. Considering 
the coverage probability criterion, two 
alternative methods demonstrate superior 
coverage properties and both are easily 
programmable. Based on these results, the 
recommendation is to use either the NS or the 
Agresti-Caffo methods. 
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Figure 3: Coverage probabilities for nominal 95% Newcombe NS, Haldane, 
Jeffreys-Perks, and Agresti-Caffo as a function of p1 when p2=0.3 with n1=n2=20 
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Figure 4: Coverage probabilities for nominal 95% Newcombe NS, Haldane, Jeffreys-
Perks, and Agresti-Caffo as a function of p1 when p2=0.3 with n1=20, n2=10 
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Appendix A: Methods for calculation of confidence intervals for the 
difference between independent proportions 

 

 Sample 1 Sample 2  

+ a b p1 = a/m 

− c d p2 = b/n 

Total m m 
θ = π1 − π2 

θ' = p1 − p2 
 

Method Formula 

Wald-z 
LB=(p1 − p2) − zα/2√ (ac/m3 + bd/n3) 
UB=(p1 − p2) + zα/2√ (ac/m3 + bd/n3) 

Wald-c 
LB=(p1 − p2) − [zα/2√{ac/m3 + bd/n3} + (1/m + 1/n)/2] 
UB=(p1 − p2) + [zα/2√{ac/m3 + bd/n3} + (1/m + 1/n)/2] 

Haldane-H 

LB=θ*−w 
UB=θ*+w, where θ*=(θ'+z2v(1-2ψ'))/1+z2u), 

w=[z/(1+z2u)]√[u{4ψ'(1-ψ')-θ'2}+2v(1-2ψ')θ'+4z2u2(1-ψ')ψ'+z2v2(1-2ψ')2] 
ψ'=(a/m+b/n)/2, u=(1/m+1/n)/4, and v=(1/m − 1/n)/4 

Jeffreys-
Perks-JP 

LB=θ*−w 
UB=θ*+w, where ψ' (from Haldane method) is: 

ψ'=[(a+0.5)/(m+1)+(b+0.5)/(n+1)]/2 

Newcombe-
NS 

LB=(p1-p2) − δ, where δ=√{(a/m−l1)
2+(u2−b/n)2}=zα/2√{l1(1−l1)/m+u2(1−u2)/n} 

UB=(p1-p2) + ε, where ε=√{(u1−a/m)2+(b/n−l2)
2}=zα/2√{u1(1−u1)/m+l2(1−l2)/n} 

l1, l2, u1, u2 are the LB and UB for p1 and p2 using Wilson's score method 

Agresti & 
Caffo 

LB = (p1-p2) − zα/2√ (ac/m3 + bd/n3) 
UB = (p1-p2) + zα/2√ (ac/m3 + bd/n3) 
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Robustness to Non-Independence and Power of the 
I Test for Trend in Construct Validity 

 
John Cuzzocrea Shlomo Sawilowsky 

Wayne State University 
 

 
The Multitrait-Multimethod Matrix is used to evaluate construct validity; Sawilowsky (2002) created the I 
test to analyze the matrix. This article examined the robustness and power of the Sawilowsky I test. Ad 
hoc critical values were determined to improve the statistical power of the technique for analyzing the 
Multitrait-Multimethod Matrix. 
 
Key words: Multitrait-Multimethod matrix, convergent validity, discriminant validity, I test, robustness, 
power. 
 
 

Introduction 
 
“A construct is a fiction that is used to explain 
reality” (Sawilowsky, lecture notes). Nearly half 
a century ago, Campbell and Fiske (1959) 
developed the Multitrait-Multimethod Matrix as 
a means of analyzing convergent and divergent 
validity, the two integral parts of construct of 
validity. Analysis of the matrix is hinged on the 
concept that the greater the degree of convergent 
and discriminant validity; the greater the 
evidence of construct validity. The matrix is the 
classical approach to construct validation and 
has received  considerable  attention. According 
to Sternberg (1992), it had received over 2,000  
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citations over the years, making it the most cited 
paper published by Psychological Bulletin. Yet, 
the matrix remains troubled by the same issues 
that plagued it when it was initially conceived. 
According to Sawilowsky (2002), the 
“interpretation of the matrix is subjective … 
(and) not amenable to straightforward 
interpretation” (p.78). 

Campbell and Fiske (1959) recognized 
that further study was required and that “various 
statistical treatments for Multitrait-Multimethod 
matrices might be developed…However, the 
development of such statistical methods is 
beyond the scope of this paper” (p.103). The 
development of the Multitrait-Multimethod 
Matrix was viewed as a necessary first step in 
determining construct validity, from which it 
was believed that further research would resolve 
these issues over time. The recognized 
limitations of their study, as presented in their 
original article, turned to exasperation as little 
progress had been made in evaluating the 
matrix. Fiske and Campbell (1992) expressed 
their frustration by stating that scholarly journals 
and researchers alike continue to accept articles 
that provide no greater evidence of convergent 
and discriminant validity than from the time 
their original article was first published, and that 
there was still no general consensus of how to 
statistically evaluate convergent and 
discriminant validity. 

The matrix is subdivided into various 
components that contribute to the analysis which 



ROBUSTNESS AND POWER OF THE I TEST IN CONSTRUCT VALIDITY 

216 
 

include the: a) reliability diagonal, b) validity 
diagonal, c) heterotrait-monomethod block, and 
d) heterotrait-heteromethod block. Campbell and 
Fiske (1992) provided a guideline for 
interpreting the matrix and determining the 
degree of convergent and discriminant validity. 
Figure 1 provides an illustration of the various 
components of the Multitrait-Multimethod 
Matrix. 

To evaluate convergent validity, the 
values found in the validity diagonal “should be 
significantly different from zero and sufficiently 
large to encourage further examination of 
validity” (Campbell & Fiske, 1959, p.82). 
Conversely, the process in determining 
discriminant validity is more involved. To begin, 
the values in the validity diagonal should be 
higher than the values found in the 
corresponding heterotrait-monomethod block. 
Second, the values in the heterotrait-
monomethod block should be higher than the 
values found in the heterotrait-heteromethod 
block. In applying the rationale outlined by 
Campbell and Fiske (1959), there should be an 
ascending trend from the heterotrait-
heteromethod values to the reliability diagonal. 

Various statistics have been employed 
as a means of analyzing the matrix (Hubert & 
Baker, 1978, Stanley, 1961, Jöreskog, 1971). 
However, these approaches are not without their 
own set of difficulties ranging from the 
complexity of the procedures to restrictive 
assumptions that are difficult to satisfy (Schmitt 
& Stults, 1986; Widaman, 1985). As a result, 
Sawilowsky (2002) created a quick, distribution-
free test that does not suffer the same pitfalls of 
its predecessors. It was called the I statistic 
because it focuses on the number of inversions 
found within the matrix. The I statistic is 
relatively simple to compute, it incorporates the 
entire matrix, and it does not have the restrictive 
assumptions that have hampered previous 
efforts. 

The I statistic is a combination of the 
Jonckheere’s distribution-free k-sample test 
against ordered alternatives (Jonckheere, 1954) 
and Mann’s test for randomness in a single 
sample (Neave & Worthington, 1988). 
According to Sawilowsky (2002), “The I 
statistic combines the counting function of the 
Mann’s test with the logic of Jonckheere’s 

statistic.” (p.85). Whereas Jonckheere’s test uses 
all of the values within the matrix, which 
increases the power of the test, but also increases 
the probability of violating the independence 
assumption; the I statistic is limited to three 
values at each level of the matrix: a) minimum 
coefficient, b) median coefficient, and c) 
maximum coefficient. As a result, a minimum, 
median, and maximum value is derived from the 
each of the following components of the 
Multitrait-Multimethod Matrix: a) reliability 
diagonals, b) validity diagonals, c) heterotrait-
monomethod block, and d) heterotrait-
heteromethod block. 

The hypothesis tested by the I statistic is 
the upward trend of values, from the heterotrait-
heteromethod values to the reliability diagonal, 
as evidence of construct validity. This approach 
incorporates the criteria outlined by Campbell 
and Fiske (1959), in that the values in the 
heterotrait-heteromethod block should be lower 
than the values found in the heterotrait-
monomethod block, which in turn should be 
lower than those found in the validity diagonals, 
and so forth. Therefore, construct validity is 
supported through fewer inversions. A nominal 
number of inversions are easily regarded as 
evidence of construct validity; however, the 
decision becomes more difficult and subjective 
as the number of inversions increase. 

The internal correlation structure of the I 
test makes it susceptible to the independence 
assumption and although the risk of violating 
this assumption is minimized by using a limited 
number of the values in the matrix (i.e. 
minimum, median, and maximum coefficients 
with a three-point I statistic), the risk of 
violating this assumption increases as the 
number of values used in the test increases (i.e. 
four-point I statistic). However, the question 
becomes whether a violation of independence 
will impact adversely impact the Type I error 
rate. 
 
Statement of the Problem 

As a result, a modified version of the 
Sawilowsky I test is proposed to incorporate 
more data points. The three-point I statistic is 
comprised   of  four  groups,  representing  the  
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different facets of the Multitrait-Multimethod 
Matrix, with three values in each (i.e., minimum 
coefficient, median coefficient, and maximum 
coefficient). A modified four-point version of 
the I statistic will encompass four data points at 
each level of the matrix (minimum coefficient, 
lower quartile, upper quartile, and maximum 
coefficient). Both versions of the I statistic will 
be examined to determine the impact upon each 
when independence has been violated.  The 
study will also examine the power properties of 
both the three-point and four-point versions of 
the test to determine if an increasing number of 
data points will (comparing the three-point 
version to the four-point version) will lead to 
greater power. 

Although Campbell and Fiske (1959) 
provided a heuristic approach for evaluating 
construct validity, a statistical approach that 
incorporates these guidelines is necessary in 
order to eliminate the subjectivity involved in 
this process. Fiske and Campbell (1992) argued 
that “editors and readers are accepting matrices 
showing limited convergence or discrimination, 
or both, perhaps because these are so typical, so 
common in the published literature” ( p. 393). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sawilowsky (2002) showed that the I statistic 
provided comparable results to those achieved 
by Campbell and Fiske (1959) using a quick test 
that eliminates the subjectivity that has plagued 
this process in the past. 
 

Methodology 
 
The study involved a Monte Carlo simulation 
whereby data were obtained through repeated 
sampling from the uniform distribution, as 
opposed to collecting data from a group of test 
subjects. The uniform distribution was selected 
because the data collected from this distribution 
would be similar in nature to the correlation 
coefficients that are found within the Multitrait-
Multimethod matrix. A program was written in 
Intel Visual Fortran (Version 10) to compute the 
three-point and four-point versions of the I test. 
Specifically, the programs were written with the 
intent of examining the robustness of each test 
with regard to the internal correlation structure 
and the power properties of each version of the 
test. The design layouts used in the analysis 
were modeled on the matrices provided in 
Campbell and Fiske (1959). As a result, both the 

Figure 1: An Example of a Multitrait-Multimethod Matrix (Campbell & Fiske, 1959, p.82) 
 

 Method One Method Two Method Three 
 A1 B1 C1 A2 B2 C2 A3 B3 C3 
Method One          

A1 (.89)         
B1 .51 (.89)        
C1 .38 .37 (.76)       

          
Method Two          

A2 [.57] .22 .09 (.93)      
B2 .22 [.57] .10 .68 (.91)     
C2 .11 .11 [.46] .59 .58 (.81)    

          
Method Three          

A3 [.56] .22 .11 [.67] .42 .33 (.94)   
B3 .23 [.58] .12 .43 [.66] .34 .67 (.92)  
C3 .11 .11 [.45] .34 .32 [.58] .58 .60 (.85) 

  
Note. A = assertive; B = cheerful; C = serious. Values in parentheses represent the reliability 
diagonal. Values in the squared brackets represent the validity diagonal. Boldface type 
represents the heterotrait-monomethod values and regular type represents the heterotrait-
heteromethod values. 



ROBUSTNESS AND POWER OF THE I TEST IN CONSTRUCT VALIDITY 

218 
 

three-point and four-point versions of the I test 
were computed using a 2x3, 3x2, 3x3, 2x4, and 
3x5 matrix. 

The number of values obtained was 
dependent upon the design layout modeled. As 
an example, with a 2x3 matrix, the total number 
of values obtained from the random number 
generator would be 21. These values were then 
placed into one of four groups corresponding to 
the different levels of the Multitrait-
Multimethod matrix. Therefore, in a 2x3 matrix, 
there are 6 heterotrait-heteromethod values, 6 
heterotrait-monomethod values, 3 validity 
diagonal values, and 6 reliability diagonal 
values. The three-point version of the I test 
required three data points at each level: a) 
minimum, b) median, and c) maximum values. 
The four-point version of the I test required four 
data points at each level: a) minimum, b) lower 
quartile, c) upper quartile, and d) maximum 
values. These data points were obtained by 
sorting the data placed within each level to 
determine the minimum and maximum values 
and then computing the median for the three-
point I test and the lower and upper quartiles for 
the four-point version of the I test. 

In analyzing the robustness of I test, 
separate subroutines were programmed to 
calculate both the three-point and the four-point 
versions of the test. A counter was written into 
the program to check for the number of 
significant results at the 0.05 alpha level. This 
process was repeated for 1,000,000 repetitions 
and the number of times that the null hypothesis 
was rejected was then divided by 1,000,000; 
thereby providing the Type I error rate. This 
process was in turn repeated for the 0.01 alpha 
level. 

These results were compared to those 
obtained by computing the I test using random, 
as opposed to sorted values. Specifically, a 
program was written to compute both the three-
point and four-point versions of the I test, 
whereby values were placed within each level at 
random. Therefore, there is no internal 
correlation structure within each level. As a 
result, the program to be used to calculate the 
three-point I test using random data, only 
obtained 12 random values from the uniform 
distribution, as opposed to 21 (assuming a 2x3 
matrix). The first three values were placed in the 

heterotrait-heteromethod level; the next three 
values were placed in the heterotrait-
monomethod level, and so forth. The four-point 
I test program using random data obtained 16 
random values from the uniform distribution, as 
opposed to 21. The first four values were placed 
in the heterotrait-heteromethod level; the next 
four values were placed in the heterotrait-
monomethod level, and so forth. As a result, the 
values were not sorted and the minimum, 
median, and maximum values were not 
calculated for the three-point I test, nor the 
minimum, lower quartile, upper quartile, and 
maximum values for the four-point I test. This 
process was in turn repeated for the 0.01 alpha 
level. 

Despite the fact that the values are not 
ascending within each level of the randomized 
version of the I test, the number of comparisons 
remained constant for both the randomized and 
sorted versions of the I test. As a result, there 
were still 54 comparisons made for the three-
point version and 96 comparisons made for the 
four-point version. There were no comparisons 
made within each level in determining the 
number of inversions. By maintaining the same 
number of comparisons, the critical values 
remained the same and thus a comparison could 
be made for the random and sorted versions of 
both the three-point and four-point I tests 
regarding the Type I error rate. 

The next phase of the study examined 
the power properties of both the three-point and 
four-point versions of the I test. First, focus was 
placed on the Type I error rate, whereby 
significance was based solely on the number of 
inversions, without regard for the types of values 
comprised within each of the levels. In an 
applied setting, an analysis of the Multitrait-
Multimethod matrix may be found to be 
significant; however, the results would be valid 
only if the reliability diagonal values were 
greater than or equal to 0.8. As a result, in 
determining the power properties of the I test, 
the reliability diagonal values were kept above a 
predetermined standard. Specifically, a series of 
programs were written for both the three-point 
and four-point versions of the I test that would 
ensure that the reliability diagonal values used in 
the analysis are greater than or equal to 0.7, 0.8, 
and 0.9 respectively. For each program, the 
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number of significant results were divided by the 
total number of repetitions to determine the 
power of the test. This process was completed 
for both the 0.05 and 0.01 alpha levels. 

The number of repetitions used in this 
phase of the analysis was 2,000. Fewer 
repetitions were used because of the time 
involved in processing 1,000,000 repetitions 
when the values are required to be above a 
predetermined standard. As a result, if the 
random number generator returns values that are 
below this predetermined standard, then the 
program will be prompted to loop back to the 
beginning to find a new random set of values 
from the distribution. As an example, if the 
reliability diagonal values are required to be 
greater than or equal to 0.9, then the program 
will be required to cycle through numerous 
times before it will return values that conform to 
this requirement. 

The results were compared to those 
obtained by computing the I test using random, 
as opposed to sorted values. Once again, a 
program was written to compute both the three-
point and four-point versions of the I test, 
whereby values were placed within each level at 
random. As a result, there was no internal 
correlation structure within each level. The 
program was set to 2000 repetitions and the 
number of significant results was divided by the 
number of repetitions to determine the power of 
the test. This process was completed for both the 
0.05 and 0.01 alpha levels. 

In order to establish a baseline for 
comparison, the relative efficiency was 
calculated to quantify and thereby allow for a 
comparison between the power of the four-point 
I test and the three-point I test.  The relative 
efficiency was calculated by dividing the three-
point randomized values by the three-point 
sorted values. As well, the four-point 
randomized values were divided by the four-
point sorted values. The next step was to divide 
the quotient from the four-point calculation by 
the quotient from the three-point calculation. 
This provided the relative efficiency of the four-
point I test versus the three-point I test and this 
calculation was repeated for the 0.7, 0.8, and 0.9 
thresholds for each of the experimental design 
layouts at both the 0.05 and 0.01 alpha levels. 

The critical values used for the analysis 
of the three point I statistic were obtained from 
Sawilowsky (2002). It was found that the critical 
values for the three-point I statistic at the 0.05 
and 0.01 alpha levels were 14 and 10, 
respectively. In contrast, the critical values for 
the four-point I statistic were obtained from 
Jonckheere (1954). Critical values for the 0.05 
and 0.01 alpha levels were obtained by counting 
the number of inversions starting from the 
bottom of the table (refer to his Table 3, p.145). 
This is due to the fact that the Jonckheere test 
works in reverse order to the Sawilowsky I 
statistic. It was found that the critical values for 
the four-point I statistic at the 0.05 and 0.01 
alpha levels were 29 and 23 respectively. 
 

Results 
 
Type I Error 

It was predicted by Sawilowsky (2002), 
that the Type I error rate would increase with an 
increasing number of data points (i.e. the three-
point versus the four-point versions of the test). 
Although it was predicted that the Type I error 
rate would be adversely affected, the severity in 
violating this assumption remained unknown. As 
a result, the Type I error rate for both the three-
point and four-point versions of the I test were 
examined at both the 0.05 and 0.01 alpha levels. 
The three-point and four-point sorted versions of 
the I test were compared to the three-point and 
four-point randomized versions of the I test for 
various experimental design layouts (i.e. 2x3, 
2x4, 3x2, 3x3, and 3x5 matrices). 

In Table 1, it is shown that the 
randomized versions of both the three-point and 
four-point versions of the test performed as 
expected, with a Type I error rate that was close 
to 0.05; specifically, 0.042514 for the three-
point randomized version and 0.042045 for the 
four-point randomized version. In examining the 
three-point and four-point sorted versions of the 
I test, it was found that the Type I error rate did 
increase with an increasing number of data 
points. Using the 2x3 matrix as an example, the 
Type I error rate for the three-point sorted 
version of the I test was 0.002193 and the Type I 
error rate for the four-point sorted version of the 
I test was 0.007527. This result was consistent 
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across each of the experimental design layouts 
tested. 

Table 2 examined the robustness of both 
the three-point and four-point versions of the I 
test at the 0.01 alpha level. Once again, it was 
found that the randomized versions of the test 
performed as expected, with a Type I error rate 
that was close to 0.01 (i.e. 0.009254 for the 
three-point randomized version and 0.009789 
for the four-point randomized  version). As well, 
it was found that the Type I error rate increased 
with an increasing number of data points. Using 
the 2x3 experimental design layout, it was found 
that the Type I error rate for the three-point 
sorted version of the I test was 0.000106 and the 
Type I error rate for the four-point sorted 
version of the I test was 0.000842. Once again, 
the result was consistent across each of the 
experimental design layouts tested. 
 
Power Results 

The second phase of the research 
examined the power of the I test by maintaining 
a predetermined threshold for the reliability 
diagonal values used in the analysis. The I test 
was computed with minimum reliability 
diagonal values set at 0.7, 0.8, and 0.9. It was 
expected that the power of both the three-point 
and four-point versions of the test would 
increase as the predetermined threshold for the 
reliability diagonal values increased, because it 
was logical to assume that there would be fewer 
inversions. As a result, focus was instead placed 
upon the examination of the three-point versus 
the four-point I test in terms of power. 

Tables 3, 4, and 5 illustrate the 
comparative power of both the three-point and 
four-point versions of the I test at the 0.05 alpha 
level, using various experimental design layouts 
(i.e. 2x3, 2x4, and 3x2 matrices respectively). 
Programs were written to compute the three-
point and four-point versions of the I test using a 
3x3 and 3x5 matrix; however, due to limitations 
in the processing speed of the computer used, 
the programs did not resolve values for these 
design layouts. However, it must be noted that 
these power equations are in closed form; 
therefore, a lack of resolution only indicates a 
limitation of resources. These values would 
compute given the proper time and resources to 
complete the analysis. 

Tables 3, 4, and 5 each display an 
increased efficiency of the four-point over the 
three-point versions of the I test. In Table 3, the 
relative efficiency of the four-point test is nearly 
double (1.88) in comparison to the three-point 
test with a minimum reliability diagonal value of 
0.7. In Table 4, the relative efficiency is more 
than four times greater (4.16) with a minimum 
reliability diagonal value of 0.7. A higher 
relative efficiency was displayed in Table 5 as 
well with a value that is double that of the three-
point version with a minimum reliability 
diagonal value of 0.7. The gains in relative 
efficiency do tend to decrease as the minimum 
reliability diagonal values increase. Despite this 
fact, the four-point I test was proven to be a 
more powerful test because it draws on a greater 
number of data points. 

Tables 6, 7, and 8 illustrate the 
comparative power of both the three-point and 
four-point versions of the I test at the 0.01 alpha 
level, using various experimental design layouts 
(i.e. 2x3, 2x4, and 3x2 matrices respectively). 
Once again, programs were written to compute 
the three-point and four-point versions of the I 
test using a 3x3 and 3x5 matrix; however, due to 
limitations in the processing speed of the 
computer used, the programs did not resolve 
values for these design layouts. 

The trend regarding the increased 
efficiency of the four-point I test versus the 
three-point I test is again displayed in Tables 6, 
7, and 8. In Table 6, the relative efficiency of the 
four-point test is more than three times greater 
(3.02) in comparison to the three-point test with 
a minimum reliability diagonal value of 0.7. In 
Table 7, the relative efficiency is nearly 
seventeen times greater (16.96) with a minimum 
reliability diagonal value of 0.7. A higher 
relative efficiency was displayed in Table 8 as 
well with a relative efficiency nearly three and 
half times greater with a minimum reliability 
diagonal value. Once again, the difference in 
relative efficiency did decrease as the minimum 
reliability diagonal values increased; however, 
the fact remained that the four-point I test is 
more powerful than its three-point counterpart. 

The I test is to be extremely 
conservative. As a result, although the critical 
values used in the analysis were mathematically 
correct based on elementary combinatorial  
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Table 1: Type I Error Rate for both the Three-Point and Four-Point I Test at the 0.05 Alpha Level 

Matrix 
Three-point 
Randomized 

Values 

Three-Point 
Sorted 
Values 

Four-point 
Randomized 

Values 

Four-point 
Sorted 
Values 

2x3 0.042514 0.002193 0.042045 0.007527 

3x2 0.042514 0.001807 0.042045 0.006161 

2x4 0.042514 0.000039 0.042045 0.000285 

3x3 0.042514 0.000001 0.042045 0.000036 

3x5 0.042514 0.000000 0.042045 0.000000 
Note: Values obtained using 1,000,000 repetitions 

Table 2: Type I Error Rate for both the Three-Point and Four-Point I Test at the 0.01 Alpha Level 

Matrix 
Three-point 
Randomized 

Values 

Three-Point 
Sorted 
Values 

Four-point 
Randomized 

Values 

Four-point 
Sorted 
Values 

2x3 0.009254 0.000106 0.009789 0.000842 

3x2 0.009254 0.000081 0.009789 0.000585 

2x4 0.009254 0.000001 0.009789 0.000006 

3x3 0.009254 0.000000 0.009789 0.000000 

3x5 0.009254 0.000000 0.009789 0.000000 

Note: Values obtained using 1,000,000 repetitions 

Table 3: Comparative Power Between the Three-point and Four-point Versions of the I Test Using a 
2x3 Matrix Design Layout at the 0.05 Alpha Level 

Reliability 
Diagonal 
Values 

Three-point 
Randomized 

Values 

Three-Point 
Sorted 
Values 

Four-point 
Randomized 

Values 

Four-Point 
Sorted 
Values 

Relative 
Efficiency 

≥  0.7 0.3040 0.1430 0.3920 0.3460 1.88 

≥  0.8 0.3980 0.2305 0.5305 0.5020 1.63 

≥  0.9 0.5405 0.3600 0.6510 0.6830 1.57 
Note: Values obtained using 2,000 repetitions 
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Table 4: Comparative Power Between the Three-point and Four-point Versions of the I Test Using a 
2x4 Matrix Design Layout at the 0.05 Alpha Level 

Reliability 
Diagonal 
Values 

Three-point 
Randomized 

Values 

Three-Point 
Sorted 
Values 

Four-point 
Randomized 

Values 

Four-Point 
Sorted 
Values 

Relative 
Efficiency 

≥  0.7 0.3040 0.0390 0.3920 0.2090 4.16 

≥  0.8 0.3980 0.0625 0.5305 0.3365 4.03 

≥  0.9 0.5405 
Did not 
resolve 

0.6510 
Did not 
resolve 

n/a 

Note: Values obtained using 2,000 repetitions. n/a = not applicable 

Table 5: Comparative Power Between the Three-point and Four-point Versions of the I Test Using 
a 3x2 Matrix Design Layout at the 0.05 Alpha Level 

Reliability 
Diagonal 
Values 

Three-point 
Randomized 

Values 

Three-Point 
Sorted 
Values 

Four-point 
Randomized 

Values 

Four-Point 
Sorted 
Values 

Relative 
Efficiency 

≥  0.7 0.3040 0.1315 0.3920 0.3490 2.06 

≥  0.8 0.3980 0.2165 0.5305 0.5120 1.77 

≥  0.9 0.5405 
Did not 
resolve 

0.6510 
Did not 
resolve 

n/a 

Note: Values obtained using 2,000 repetitions. n/a = not applicable 

Table 6: Comparative Power Between the Three-point and Four-point Versions of the I Test Using 
a 2x3 Matrix Design Layout at the 0.01 Alpha Level 

Reliability 
Diagonal 
Values 

Three-point 
Randomized 

Values 

Three-Point 
Sorted 
Values 

Four-point 
Randomized 

Values 

Four-Point 
Sorted 
Values 

Relative 
Efficiency 

≥  0.7 0.0995 0.0205 0.1525 0.0949 3.02 

≥  0.8 0.1410 0.0435 0.2435 0.1755 2.34 

≥  0.9 0.2280 0.0839 0.3395 
Did not 
resolve 

n/a 

Note: Values obtained using 2,000 repetitions. n/a = not applicable 
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analysis (i.e. 14 and 10 for the three-point I test 
at the 0.05 and 0.01 alpha levels respectively, 
and 29 and 23 for the four-point I test at the 0.05 
and 0.01 alpha levels respectively), the lack of 
independence within each level of the I test 
results in a depressed false positive rate. 

Ad hoc critical values were tested to 
determine the critical values that should be used 
in an applied setting to optimize the power of the 
test. They were obtained for both the three-point 
and four-point versions of the I test at both the 
0.05 and 0.01 alpha for the following 
experimental design layouts: a) 2x3 matrix, b) 
2x4 matrix, c) 3x2 matrix, d) 3x3 matrix, and e) 
3x5 matrix. 

The ad hoc critical values for both the 
three-point and four-point versions of the I at the 
0.05 alpha level are presented in Table 9. It was 
found that the ad hoc values were quite different 
from    those   taken    from    the   cumulative 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
distribution function. As an example, the 
optimal critical value for a 2x3 matrix at the 
0.05 alpha level is 19 for the three-point I test 
and 35 for the four-point I test. These values are 
different from those taken from the suggested 
values of 14 and 29 respectively. The difference 
is greater as the matrix becomes larger. In 
analyzing a 3x5 matrix, it was found that the 
optimal critical values were 22 for the three-
point I test and 41 for the four-point I test. 

These findings were consistent with ad 
hoc critical values tested at the 0.01 alpha level. 
The ad hoc critical values for both the three-
point and four-point versions of the I at the 0.01 
alpha level are presented in Table 10. Once 
again, these values were quite different from 
those taken from the suggested values of 10 for 
the three-point I test and 23 for the four-point I 
test. Using a 2x3 matrix as an example, the 
optimal critical value at the 0.01 alpha level is  

Table 7: Comparative Power Between the Three-point and Four-point Versions of the I Test Using 
a 2x4 Matrix Design Layout at the 0.01 Alpha Level 

Reliability 
Diagonal 
Values 

Three-point 
Randomized 

Values 

Three-Point 
Sorted 
Values 

Four-point 
Randomized 

Values 

Four-Point 
Sorted 
Values 

Relative 
Efficiency 

≥  0.7 0.0995 0.0005 0.1525 0.0130 16.96 

≥  0.8 0.1410 0.0025 0.2435 
Did not 
resolve 

n/a 

≥  0.9 0.2280 
Did not 
resolve 

0.3395 
Did not 
resolve 

n/a 

Note: Values obtained using 2,000 repetitions. n/a = not applicable 

Table 8: Comparative Power Between the Three-point and Four-point Versions of the I Test Using 
a 3x2 Matrix Design Layout at the 0.01 Alpha Level 

Reliability 
Diagonal 
Values 

Three-point 
Randomized 

Values 

Three-Point 
Sorted 
Values 

Four-point 
Randomized 

Values 

Four-Point 
Sorted 
Values 

Relative 
Efficiency

≥  0.7 0.0995 0.0160 0.1525 0.0845 3.45 

≥  0.8 0.1410 0.0299 0.2435 0.1535 2.97 

≥  0.9 0.2280 
Did not 
resolve 

0.3395 
Did not 
resolve 

n/a 

Note: Values obtained using 2,000 repetitions. n/a = not applicable 
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16 for the three-point I test and 29 for the four-
point I test. Once again, these differences grew 
larger as the matrix grew more complex. 
 

Conclusion 
 
According to Sawilowsky (2002), the problem 
with using the Jonckheere test in analyzing the 
Multitrait-Multimethod Matrix is the use of all 
of the values in the matrix increases the risk of 
violating the assumption of independence, and 
would thereby lead to inflation in the Type I 
error rate. By using only three data points within 
each level, the three-point I test was conceived 
as an alternative test of trend that would limit the 
severity of violating this assumption. 

The four-point I test was found to have a 
higher Type I error rate that more closely 
matched nominal alpha. Nevertheless, the test 
remains quite conservative, with concomitant  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
depressed power that should be achievable for 
the stated nominal alpha level. Nevertheless, the 
I test is still a better alternative to evaluating the 
Multitrait-Multimethod Matrix than an using the 
guidelines established by Campbell and Fiske 
(1959) and alternatives such as confirmatory 
factor analysis which has restrictive underlying 
assumptions. Further developments on this 
approach to the analysis of construct validity is 
warranted, with goal of increasing its statistical 
power. 
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Which Is the Best Parametric Statistical Method For Analyzing Delphi Data? 
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This study compares the three parametric statistical methods: coefficient of variation, Pearson correlation 
coefficient, and F-test to obtain reliability in a Delphi study that involved more than 100 participants. The 
results of this study indicated that coefficient of variation was the best procedure to obtain reliability in 
such a study. 
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Introduction 
 
The Delphi Technique is a method for 
systematic solicitation and collation of 
judgments on a particular topic through a set of 
carefully designed sequential questionnaires 
interspersed with summarized information and 
feedback of opinions derived from earlier 
responses (Delbecq, Van de Van, & Gustafson, 
1975). The Delphi technique can be considered 
as an important tool to bring the knowledge and 
intuition of a group of qualified individuals to 
bear upon the future possibilities in a given field. 
Therefore, the technique can be used at a micro-
level to arrive at a qualitative forecast which 
may vary from past trends in an organization. 

The Delphi process consists of a series 
of rounds of questionnaires. The first round is 
characterized by exploration of the subject under 
discussion, wherein each individual contributes 
with information that he/she believes is 
pertinent. The second round involves the process 
of reaching an understanding of how the group 
views the issue (i.e., what group members mean 
by relative terms such as importance, desirability 
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or feasibility). The Delphi rounds of 
questionnaires should continue until a 
predetermined level of consensus is reached or 
no new information is gained (Ludwig, 1997; 
Linstone & Turoff, 1795; Delbec, Van de Ven & 
Gustafson, 1975). In most instances it is found 
that three iterations are sufficient, and not 
enough new information is gained to warrant the 
cost of more iterations (Ludwig, 1997). 

Parametric statistical methods such as 
the coefficient of variation (CV) and the F-test 
have been used in Delphi studies with sample 
size below 50. The CV is a statistical measure of 
the deviation of a variable from its mean. The F-
test is performed to determine the ratio of 
squares of two variances or, in other words, to 
test if the standard deviations of two populations 
are equal. 

English and Kernan (1976, cited in 
Yang 2003) used the coefficient of variation 
(CV) to determine the stopping rule. If the 
magnitude of CV for an item was found to be 
too large (e.g., greater than 0.8), the 
corresponding statement was needed to be 
modified and required an additional round(s) of 
questionnaire administration. 

Yang (2003) suggested using the F-test 
to compare two variances. The F-value is 
determined by the ratio of the variances of item 
scores among panelists between the two 
successive rounds. If no significant difference is 
found in the F-test, the questionnaire item will 
be dropped from further rounds. Questionnaire 
items where significant between-round 
difference in variances is found are retained in a 
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subsequent round. Yang (2003) described this 
method as being suggested by Jolson and 
Rossow (1971) with the problem being that 
assumptions made for the F-test may be 
seriously violated when using data collected 
from the Delphi rounds. 

This study compared the three 
parametric statistical methods: coefficient of 
variation (CV), Pearson correlation coefficient, 
and F-test to obtain consensus and reliability in a 
Delphi study using data from Shah (2004) and 
Shah and Kalaian (2006) to find out the best 
method that fits the study that involves a large 
number of participants. 

The data used in this study was obtained 
from research conducted by Shah (2004). The 
purpose of this study was to gather data using 
Delphi technique to discover and describe what 
experts in the field consider important to know 
in the discipline of engineering management, 
and use that information to update the 
curriculum for Eastern Michigan University’s 
Engineering Management masters program. The 
Delphi panel in the study consisted of 194 
panelists. These panelists were asked to rate the 
competency areas on a 5-point Likert-type scale 
and provide qualitative comments through 
mailed questionnaires. The following criterion 
of importance was assigned to the responses 
provided on the questionnaire, along with an 
example of how to respond: 5= of very high 
importance, 4 = of high importance, 3 = of 
medium importance, 2 = of low importance, 1 = 
of very low importance. 

This study consisted of three rounds of 
questionnaires. The sample comprised of 
individuals who belonged to any of these four 
categories: (a) Professor/instructor of 
Engineering Management, (b) Industry 
Professional, (c) Author of published 
text/papers/articles related to the breadth of 
Engineering Management discipline, and (d) 
Certified Engineering Manager/Certified 
Enterprise Integrator. Moreover, the competency 
areas were also grouped into four categories, 
namely: (a) Technical, (b) R&D/Design, (c) 
System/Organization/Project Management, and 
(d) Human Issues. 
 
 
 

Methodology 
 
The Round 1 Delphi questionnaire was sent to 
707 subjects. Based on the information obtained 
from Round 1, Delphi panel members were 
selected and the Round 2 Delphi questionnaire 
was developed. In the second round, an analysis 
of the group’s modal response and percentage 
concurrence for each degree of importance from 
the first round was provided to the Delphi panel 
for reference. Specific comments to a particular 
competency provided by the Round 1 subjects 
were reported in the Round 2 Delphi 
questionnaire. A space for comments was 
provided after every competency area for the 
respondents to respond to the comments made 
by other panel members from Round 1 or to give 
their own comment. Additional competency 
areas suggested by the Round 1 respondents 
were added to the existing list of competencies. 

Panel members were asked to consider 
respondent comments and the percents of 
concurrence obtained from Round 1, rate each 
competency area on a five-point Likert-type 
scale, and explain their choice if it was two or 
more categories away from the Round 1 
respondent’s modal rating. An example of how 
and where to record their responses and 
comments was also provided. Additional 
comments made by Round 1 respondents were 
reported in Round 2 questionnaire for their 
reference. Space for additional or general 
comments was provided at the end of 
questionnaire. 

The Round 3 Delphi questionnaire was 
developed using Round 2 results and was 
administered in the same manner as Round 2. 
Based on the category in which the Delphi panel 
members categorized themselves, a six-digit 
(rCodexxx) alphanumeric code was assigned to 
each of them. The first digit - r - represented the 
Delphi round (2 or 3) to which they responded; 
the code represented the category to which they 
belonged to in the form of letters A-for authors, 
C-for Certified Engineering Manager/Certified 
Enterprise Integrator, I-Industry professionals, 
and P-Professors teaching Engineering 
Management; and xxx represented the panel 
member’s assigned number. Round 3 was also 
sent to the individuals who participated in 
Round 1 but did not participate in Round 2. 
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Because the codes could not be assigned to the 
panelists who did not participate in Round 2, an 
additional sheet was sent to these panelists 
asking them to participate in the final Round 3 
and also to checkmark the category to which 
they belonged. 

The Round 3 Delphi questionnaire that 
was sent to the panel members who participated 
in Round 2 had individual codes. Moreover, 
additional questions were asked on the front 
page of the questionnaire asking the Delphi 
panel members to: Rate the overall importance 
of the results of this to the discipline of 
Engineering Management as a guide for others 
for curriculum development, rate the overall 
quality of this study, rate their own level of 
expertise in the field of Engineering 
Management, and additional space was provided 
to comment on the importance/quality of this 
study and suggestions for possible 
improvements. Table 1 shows the participation 
in the study and the response rates at the end of 
each round of Delphi study. 
 
 
 
 
 
 
 
 
 
 
 
 
Data Analysis using Parametric Statistical 
Methods 

The data was entered for each of the 
rounds using SPSS software. Due to missing 
values for one or more competency areas in 
several cases, those cases were excluded from 
the study. Thus, the sample size for this study 
was 52. The mean and standard deviation 
corresponding to each of the competency areas 
in Rounds 1, 2 and 3 were calculated using 
SPSS and Microsoft Excel software. Because 
coding for each panel member was applied from 
Round 2, the data obtained from Rounds 2 and 3 
of the Delphi study could be corresponded case-
wise. Hence, for this study, Rounds 2 and 3 will 
be considered for analysis purposes. 

Coefficient of Variation 
The Coefficient of Variation (CV), 

which is the ratio of standard deviation (σ ) of a 
competency area to its corresponding mean (µ ) 
among the panelists, was calculated using the 
formula: 

CV = σ /µ.                         (1) 
 
The CV was obtained for Rounds 2 and 3, and in 
order to determine if additional rounds were 
required, the absolute difference was calculated 
by subtracting the CV obtained from Round 3 
from that obtained from Round 2. A small CV 
value was an indication that the data scatter or 
variation compared to the mean was small. A 
large CV value compared to the mean was an 
indication that the amount of variation was 
large. 

As shown in Table 2, the absolute value 
of the difference in CV between Rounds 2 and 3 
was less than 0.2, which can be considered to be 
a minor difference according to Dajani (1979, 
cited in Yang, 2003). Though negative values of 
difference was obtained for competency areas 
such as: Information systems, Linear 
programming, Materials engineering, 
Metrology-Measurement Science, Six sigma 
black belt certification and others, the absolute 
difference was still less than 0.2. Hence, it can 
be assumed that stability was reached for each of 
the competency areas and no further rounds of 
Delphi were required. 
 
F-test to compare Two Variances 

The F value for each competency area 
was obtained by calculating the ratio of the 
variances (σ2) of item scores among panelists 
between Rounds 2 and 3. Hence, 
 

2

2

σ 3
F-Ratio

σ 2

Round
Round

=                    (2) 

 
It is important to note that the degrees of 
freedom have not been taken into consideration 
in the F-test as they are already a part of 
variances. When no significant difference in the 
F-test is obtained, the questionnaire item will be 
dropped from further rounds. 

The F-ratio of 1 implies that the 
variance of Round 3 is equal to the variance of  

Table 1: Response Rates from Three 
Rounds of Delphi Study 

Delphi 
Round 

Number 
Sent 

Number 
Received 

Response 
Rate (%) 

1 707 194 27.4% 

2 194 148 76.3% 

3 194 136 70.1% 
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Round 2. Hence, a F-ratio less than or equal to 1 
is desirable. The results from the F-test 
suggested that 79% of the competency areas had 
F-ratios less than or equal to 1 (see Table 2), 
indicating that stability was established in 
Round 3. 
 
Pearson’s Product-Moment Correlation 

Correlation is a technique used to 
determine the relationship between two 
quantitative, continuous variables. A correlation 
is often called a bivariate correlation to 
designate a simple correlation between two 
variables, as opposed to relationships between 
more than two variables (George & Mallery, 
2005). A correlation, also known as Pearson’s 
Product-Moment Coefficient of Correlation, or 
the Pearson r, is one such measure of the 
strength of the association between two 
variables. George and Mallery (2005) stated, 
“although the Pearson r is predicted on the 
assumption that the two variables involved are 
approximately normally distributed, the formula 
often performs well even when assumptions of 
normality are violated or when one of the 
variables is discrete” (p. 124). A correlation 
value of +1.00 indicates a perfect, positive 
correlation,  whereas,  a  correlation  of   zero  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
indicates no relationship between the two 
variables. A negative correlation indicates a 
relation in which one variable tends to increase 
as the other variable tends to decrease. The 
closer a correlation coefficient is to zero, the 
weaker the relationship between the two 
variables. 

The correlation value, r, was obtained 
for each competency area using SPSS software. 
If the correlation coefficient for a particular 
competency area varied significantly from zero 
and was very high, it indicated that the ratings of 
panel members on the competency area were 
stable and less fluctuating. 

The Pearson’s correlation coefficient 
obtained, indicated that there was a negative 
relationship for competency areas: Management 
of technology, Communications, Customer 
issues, and People and teamwork. Values of 
these coefficients were closer to zero, indicating 
a weaker tendency of increase in value of one 
competency with the decrease of value in the 
subsequent round. Thus, the panel members who 
responded lower in Round 2 for these 
competency areas, tended to respond higher in 
Round 3. The relationship was found to be weak 
and hence it was an indication that stability was 
obtained in Round 3. The results from Pearson’s 
correlation indicated that 83% of the 

Table 2: Results of the Three Parametric Procedures from Round 2 to Round 3 

Statistic 
Absolute difference in 

CV = CV(R2) – CV(R3) 
F-ratio =  

Var(R3/R2) 
Pearson’s r 

Mean 0.025 0.789 0.397 

Median 0.025 0.746 0.416 

Minimum Value 0.070 0.000 -0.240 

Maximum Value 0.130 2.070 0.730 

% Reliability 
Obtained 

100% 79% 83% 

Skewness Value 
Using Z scores 

0.080 0.093 -0.429 

Note: R3=Round 3, R2=Round 2 
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competency areas had correlation values, which 
were either greater than or equal to zero (Table 
2). Thus, it can be implied that there was a good 
correlation between the competency areas in 
Round 2 and Round 3. 
 

Results 
 
As the results of all the three parametric 
procedures used to obtain reliability in the 
Delphi study indicated similar results, it was 
important to determine the best procedure 
among the three. Hence, further analysis was 
performed on the results of the three parametric 
procedures: CV, F-ratio, and Pearson’s r. 
Because the values of the three procedures were 
on a different scale, transformation of the values 
to similar scales for all the three procedures was 
completed using z scores (a measure of the 
distance in standard deviations of a sample from 
the mean). The z transformation is calculated as 
(X – μ)/σ; where X is the observation, μ is the 
mean and σ is the standard deviation of the 
observations. A positive z score indicates that an  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

observation is greater than the mean whereas a 
negative z score indicates that an observation is 
below the mean. 

A box plot comparing the z scores of the 
three parametric procedures for the 76 
competency areas contained three outliers: case 
numbers 32, 38 and 69. As the outliers tended to 
skew the normal distribution, these cases were 
deleted and a box plot was derived. Figure 1 
shows the box plots comparing the three 
parametric procedures without outliers and 
Figure 2 shows the histogram obtained from the 
data. 

Because skewness is a measure of 
symmetry of the distribution, a positive value 
shows the distribution is positively skewed and a 
negative value shows that the data is negatively 
skewed. A comparative look at the values of 
skewness for all the three parametric procedures 
as shown in Figure 2 and Table 2 was the 
procedure to determine the best parametric 
procedure. Coefficient of variation had a smaller 
positive value of skewness (0.080) compared to 
Pearson r (-0.429), and F-ratio (0.093). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Box Plot Comparing the Z-Scores of the Three Parametric Procedures: Coefficient 
of Variation (CV), F-test, and Pearson’s r 
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Conclusion 
 
In summary, the results of the three parametric 
procedures indicated: 100% of the competency 
areas in Round 3 obtained stability and hence 
reliability was achieved by the coefficient of 
variation method; 79% of the competency areas 
had F-ratios less than or equal to 1, which 
indicated that stability has been established in 
Round 3; and 83% of the competency areas had 
Pearson r correlation values either greater than 
or equal to zero, depicting a good correlation 
between Round 2 and Round 3. As all the three 
parametric procedures were a good indication of 
obtaining reliability in a Delphi study a z scores 
were calculated and box plot was graphed. 

The values of the skewness obtained 
from the descriptive values of the box plots, it 
was found that the coefficient of variation (CV) 
had a smaller positive value of skewness (0.080)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
compared to Pearson’s r (-0.429), and F-ratio 
(0.093). From these values, it could be 
concluded that the coefficient of variation was 
the best procedure to obtain reliability in a 
Delphi study that included more than 100 
participants. The second best procedure to obtain 
reliability in a Delphi study is F-ratio and the 
third one is Pearson’s r. As the literature related 
to Delphi procedure describes, it can be further 
confirmed that stability is obtained at the third 
round of Delphi and hence, three rounds of 
questionnaire are enough in a Delphi study. 
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The Bootstrap Method for the Selection of a Shrinkage Factor in Two-stage 
Estimation of the Reliability Function of an Exponential Distribution 

 
Makarand V. Ratnaparkhi Vasant B. Waikar Fredrick J. Schuurmann 
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An application of a bootstrap method for selecting a suitable shrinkage factor for the two-stage shrinkage 
estimator of a reliability function for the exponential distribution is discussed. The estimator obtained 
here has higher efficiency as compared to the one where the shrinkage factor is not subjected to 
bootstrapping. 
 
Key words: Reliability function, two-stage estimation, shrinkage, bootstrap, efficiency. 
 
 

Introduction 
 
The estimation of the reliability function for an 
exponential distribution is introduced. The 
estimation procedure is similar to the two-stage 
shrinkage estimation procedure discussed by 
Adke, et al. (1987) for the estimation of the 
mean of an exponential distribution. A brief 
background of their procedure is provided; such 
background is applicable in the case described 
herein. 

In certain studies the experimenter may 
have some knowledge about the value of a 
parameter (or has a hypothesis about the value 
of a parameter). The use of such information in 
estimation is considered in certain shrinkage 
estimation methods. For example, Thompson 
(1968) defined the shrinkage estimator of the 
normal mean μ in terms of the value 0μ  of μ . H 

also has a commented about the use of 0μ  

instead  of  the  Bayesian  estimation  for  the  
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normal mean. More aggressive use of 0μ  after 

testing the related hypothesis about μ  can be 
found in two-stage shrinkage estimation method 
for μ  developed by Waikar, et al. (1984). 
Further, the shrinkage factors considered in 
Thompson (1968), Waikar, et al. (1984) and 
Adke, et al. (1987) are based either on the 
corresponding test statistics or their respective 
functions. 

The shrinkage estimation of reliability 
for exponentially distributed life times has also 
been discussed in Tse and Tso (1996). However, 
their method is different from the one that is 
discussed in this article. In particular, Tse and 
Tso (1996) do not use the two-stage estimation. 
 

Methodology 
 
Two-Stage Shrinkage Estimator of Reliability 

Let T, a r.v. representing the failure 
time, have an exponential distribution with pdf 
 

( ) (1 / ) exp ( / ) , 0, 0.f t t tβ β β= − > >   (1) 
 
then the corresponding reliability function is: 
 

( ) ( ) exp ( / ).R t P T t t β= ≥ = −    (2) 
 
 
 
 



EXPONENTIAL DISTRIBUTION ESTIMATION OF THE RELIABILITY FUNCTION 

234 
 

The First Stage Estimation 
The two- stage shrinkage estimation 

procedure for ( ) exp ( / )R t t β= −  is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Second Stage Estimation 
 

0

2 2 2

2

1 1 2 2

1 2

If is rejected then select the second sample of size

         , , 1, 2, , . 

Let   be the sample mean of the second sample .

       Calculate:        

                       ,   

i

H

n T i n

T

n T n T
T

n n

=

+
=

+



                         (5)

and define the estimator of the reliability as

      ( ) exp ( / ).R t t T= −


 

Thus, the two-stage shrinkage estimator of the 
reliability function denoted by is given by 

( ):sR t


 

 

1 0

0

0

( ) exp ( / ) (1 )exp ( / )

if  is not rejected,  

and 

( ) exp ( / )

if  is rejected.                                 (6)

                     

s

s

R t k t T k t
H

R t t T
H

β= − + − −

= −



  

 
Bootstrapping the Shrinkage Factor k and 
Related Two-stage Estimator of Reliability 

The shrinkage estimators and the choice 
of shrinkage factor have been studied for over 
the last five decades for various applications. In 
what follows, the use of bootstrap technique for 
selecting a shrinkage factor k in the above 
estimator (6) is investigated. 

First, note that the efficiency of (6) is a 
function of as k defined above in (4). Further, for 

given α, the factor k is a function of 1T , the 
mean of the first-stage sample, and hence is a 
random variable. Therefore, the bootstrapping 
for the first-stage sample 1 1, 1, 2,.....,iT i n=
and the corresponding k is considered as 
follows. 
 
Generating a Set of k’s Using Bootstrap Method 

First, proceed as in the steps (1)-(4) 
described above in the methods section. If Ho is 
not rejected, then the bootstrap method is used 
as follows for the observed data on T. 
 
1. Generate a bootstrap sample 

*
1 1, 1, 2,.....,iT i n= , from the first stage 

sample 1 1, 1, 2,.....,iT i n= . (The * denotes 

the bootstrapping sample operation). Let 

1 *T denote the bootstrap mean and let k* 
denote the corresponding shrinkage factor. 

Thus, *
1 0 2 1 1* | | /[ ( ) / ]k T a a nβ= − −  with 

the property 0 < *k < 1. 
 
 

1

1 1

1 1

1 1 1

1) 

      Select a sample of size  on  . 

      Let , 1, 2,.....,  be the first sample. 

      Let = .

      Then, / is the mean of the first stage sample.

2)

     Test the prior knowledge

i

i

n T

T i n

T T

T T n

=

=


0

0 0 0

1 1 1 2

1 2

1 1 2 0 1 1 1 0

1 1

, about , . .

      test : :  at level .

3)

     The rejection region is given by or ,

      where and are given by:

            ( , / ) ( , / ) 1 , and

( 1

a

i e

H versus H

T a T a

a a

n a n a

n

β β
β β β β α

β β α

=

= ≠

≤ ≥

Γ − Γ = −

Γ + 2 0 1 1 1 0

1

0 0

, / ) ( 1, / ) 1

      where (.)  denotes the incomplete gamma function. 

      [See Bain (1991) for details.]

4)

     If : is not rejected, then the shrikage estimator

      of reliabilit

a n a

H

β β α

β β

− Γ + = −

Γ

=

1 0

1 0 2 1 1

y is: 

                 ( ) exp ( / ) (1 ) exp ( / )    (3)

     where the shrikage factor ,  0 1 , is given by 

                 | | /[ ( ) / ].                           (4)

R t k t T k t

k k

k T a a n

β

β

= − + − −

< <

= − −
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2. Repeat the bootstrap procedure and calculate 
*k  until a set of predetermined B values of 
*k (where 0 < *k  < 1) is generated. 

 
3. Several ways of using this sequence of *k

values are available for defining the 
shrinkage factor. Here, the mean of B values 

of *k is selected. Let *k  denote this mean. 
Now, the two-stage bootstrap shrinkage 
estimator of the reliability function, denoted 

by ( )bR t


, is defined as, 

 
* *

1 0

0

0

( ) exp( / ) (1 )exp( / )

    if  is not rejected, and 

( ) exp( / )

    if  is rejected.                   (7)

b

b

R t k t T k t
H

R t t T
H

β= − + − −

= −



  

 
Since, the derivations for the mean and the mean 

squared errors for ˆ ( )sR t and ( )bR t


are not 

straightforward the values of ( ˆ ( )sR t , ( )bR t


) 

were simulated for the comparison of bias and 
the MSE’s of these estimators. 
 

Results 
 
Fifteen thousand repetitions were carried out for 
different combinations of the parameter 
β  = 1  and specified values of 

0 1 2( ( ), , , , )R t n nβ α . For each repetition, B = 

100 bootstrap samples were selected from the 
first stage sample. The simulation results are 
shown in Table 1. 
 

Conclusion 
 
The simulation results show that the estimator of 
the reliability function based on the mean of the 
values of the shrinkage factor obtained using the 
bootstrap procedure is more efficient as 
compared to the one without such bootstrapping. 
The same conclusion for the other values of the 
parameters and the sample sizes 1 2,n n  is 
applicable. For brevity, the other simulations 
results are not included here. 

This article is demonstrates the use of a 
bootstrap method for generating a set of 

shrinkage factors. Using this, a final shrinkage 
factor can be defined based on these 
bootstrapped shrinkage factors as appropriate for 
a given problem. In the above discussion the 
mean of the set of shrinkage factor values is 
used, however, other possible selections are the 
median, the maximum or the minimum of the set 
of *k ’s. In fact, the bootstrapping of the 
shrinkage factor can be used in many other 
shrinkage estimator settings where such factor is 
a function of a sample statistic. 
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Table 1: The Bias and Mean Squared Error for Estimators ˆ ( )sR t  and ( )bR t


 
( β =1.00, 0β = 1.00, α= 0.05) 

 

1 2( ) 0.9, 10, 10

                                    ( )                    ( )                     ( )  ( )

                Bias         0.00229            0.00213                    
s b s b

R t n n

R t R t R t R t

= = =

− −

   

1 2

    -

               MSE            0.00019                 0.00016                  1.19

_____________________________________________________________

        ( ) 0.8, 10, 10

                       

R t n n= = =

             ( )                    ( )                         ( )  ( )  

                Bias         0.00387            0.00374                    -

               MSE            0.00065

s b s bR t R t R t R t
− −

   

1_ 2

                 0.00055                1.20

_____________________________________________________________

( ) 0.9, 10, 15

                                    ( )                    ( )      s b

R t n n

R t R t

= = =
 

               ( )  ( )

                Bias         0.00189            0.00182                        -

               MSE            0.00015                 0.00012                  1.20

s bR t R t
− −
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A New Approximate Bayesian Approach for Decision Making 
About the Variance of a Gaussian Distribution Versus the Classical Approach 

 
Vincent A. R. Camara 
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Rules of decision-making about the variance of a Gaussian distribution are obtained and compared. 
Considering the square error loss function, an approximate Bayesian decision rule for the variance of a 
normal population is derived. Using normal data and SAS software, the obtained approximate Bayesian 
test results were compared to their counterparts obtained with the well-known classical decision rule. It is 
shown that the proposed approximate Bayesian decision rule relies only on observations. The classical 
decision rule, which uses the Chi-square statistic, does not always yield the best results: the proposed 
approach often performs better. 
 
Key words: Hypothesis testing, loss function, Type II error, statistical analysis. 
 
 

Introduction 
 
Life testing in reliability has received a 
substantial amount of interest from theorists as 
well as reliability engineers. Their concern was a 
product of the increased complexity and 
sophistication in electronic and structural 
systems, which came into existence very rapidly 
during this time. In the early 1950’s, Epstein and 
Sobel began to explore the field of parametric 
life testing. Under the assumption of an 
exponential time-to-failure distribution, they 
produced a series of papers (1953, 1954, 1955) 
which were to influence future work in 
reliability and life parameter testing. 

Shortly thereafter other failure 
distributions more complex than the exponential 
were used as failure models. For example, Kao 
(1956) brought attention to the Webull 
probability distribution, while Birnhaum and 
Saunders (1958) suggested the gamma 
distribution. In this study, the normal probability 
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distribution - which has been and is still widely 
used in industry and in academia - is considered. 
The normal distribution is defined as follows: 
 

1
221

( ) ;
2

,  , 0.

x

f x e
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μ σ

− −  
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− ∞ ∞ − ∞ ∞    
 (1) 

 
A test of hypothesis consists in testing a 

given theory or belief about a population 
parameter based on some sample information. 
Once the underlying model is found to be 
normal or approximately normal, the classical 
approach considers the following decision rule 
for a level of significance of alpha and a sample 
of size n (Mario F. Triola, 2007): 
 
Two-Tailed Test 

Hypotheses: 
2

0 :H cσ =  
2:aH cσ ≠  

 
Non-rejection region: 

2 2
1,1 /2 1, /2( , )n nα αχ χ− − −  

 
Rejection region: 

2 2
1,1 /2 1, /2( , ] [ , )n nα αχ χ− − −−∞ ∪ ∞  
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Right Tailed Test 
Hypotheses: 

2
0 :H cσ =  

2:aH cσ   

 
Non-rejection region: 

2
1,( , )n αχ −−∞  

 
Rejection region: 

2
1,[ , )n αχ − ∞  

 
Left Tailed Test 

Hypotheses: 
2

0 :H cσ =  
2:aH cσ   

 
Non-rejection region: 

2
1,( , )n αχ − ∞  

 
Rejection region: 

2
1,( , ]n αχ −−∞  

 
The Chi-square test statistic that is used to 
conduct the above tests will be denoted by Chi, 
with: 

2

2

( 1)n sChi
σ
−= . 

 
Methodology 

 
Although no specific analytical procedure exists 
that allows identification of the appropriate loss 
function to be used in Bayesian analysis, the 
most commonly used is the square error loss 
function. One of the reasons for selecting this 
loss function is due to its analytical tractability 
in Bayesian analysis. The square error loss 
function places a small weight on estimates near 
the true value and proportionately more weight 
on extreme deviation from the true value of the 
parameter. The square error loss is defined 
 

 
(2) 

 

The use of the square error loss function 
along with a suitable approximation of the 
Pareto prior leads to the following approximate 
Bayesian confidence bounds for the normal 
population variance (Camara, 2003): 
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      (3) 

 
To obtain the approximate Bayesian 

decision rule for the variance of a normal 
population, the close relationship that exists 
between confidence intervals and hypothesis 
testing is used. Considering the above mentioned 
approximate Bayesian confidence intervals 
along with the test statistic Chi, the following 
approximate Bayesian decision rule is derived: 
 
Two-Tailed Test 

Hypotheses: 
2

0 :H cσ =  
2:aH cσ ≠  

 
Non-rejection region: 

2 2 ln(1 / 2) , 2 2ln( / 2)( )n nα α− − − − −  

 
Rejection region:  

( , 2 2 ln(1 / 2)] [ 2 2 ln( / 2), )n nα α−∞ − − − ∪ − − ∞
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Right Tailed Test 
Hypotheses: 

2
0 :H cσ =  

2:aH cσ   

 
Non-rejection region: 

( , 2 2 ln( ))n α−∞ − −  
 

Rejection region: 
[ 2 2 ln( ), )n α− − ∞  

 
Left Tailed Test 

Hypotheses: 
2

0 :H cσ =  
2:aH cσ   

 
Non-rejection region: 

( 2 2 ln( ), )n α− − ∞  
 

Rejection region: 
( , 2 2 ln( )]n α−∞ − −  

 
To compare the classical and 

approximate Bayesian decision rules and 
evaluate their performances, the absolute 
difference, AD, between the parameter and the 
claim is used and is defined by: 
 

AD Parameter Claim= −  

 
From the calculated results of the absolute 
difference between the parameter and the claim, 
the following are able to be concluded: 
 

• For a reasonably large value of AD, the 
test that will perform better than its 
counterpart will be the one that will reject 
the null hypothesis. 

• For a reasonably small value of AD, the 
test that will perform better than its 
counterpart will be the one that will fail to 
reject the null hypothesis. 

• A test and its counterpart will perform 
equally well, if both reject the null 
hypothesis for a reasonably large value of 
AD or both fail to reject the null 

hypothesis for a reasonably small value of 
AD. 

• A test and its counterpart will perform 
poorly if, for a reasonably large value of 
AD, both fail to reject the null hypothesis, 
or both reject the null hypothesis for a 
reasonably small value of AD. 

 
Results 

 
In order to compare the proposed approximate 
Bayesian decision rule with the classical 
approach, samples obtained from normally 
distributed populations (e.g., 1, 2, 3, .4, 7) as 
well as approximately normal populations (e.g., 
5, 6) are considered. SAS software was used to 
obtain the normal population parameters 
corresponding to each sample data set. 

The observed value, which is the value 
of the test statistic Chi under the assumption that 
the null hypothesis is true, will be denoted by 
Chio. If this observed value, Chio, falls into the 
rejection region, the null hypothesis will be 
rejected at a level of significance selected 
beforehand. If the observed value falls into the 
non-rejection region, the null hypothesis will not 
be rejected at the selected level of significance 
 
Data Set #1: 
24, 28, 22, 25, 24, 22, 29, 26, 25, 28, 19, 29 
(Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 
 

( 25.083, 3.1176)N μ σ= = . 
 
The population and sample variances are: 

2 9.71943σ = , and 2 9.719696s = . For the 
following test of hypothesis, 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 1. Table 
1 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the first data set. 
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Test of Hypothesis #1: 

2
0 : 9.71943H σ = , 

2: 9.71943aH σ ≠ , 

AD = 0. 
The observed value is Chio = 11.0003. 

Therefore, both, the classical and proposed 
approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. These are good decisions 
since the normal population variance under 
study is equal to 9.71943 
 
Test of Hypothesis #2: 

2
0 : 8H σ = , 

2: 8aH σ ≠ , 

AD = 1.71943. 
The observed value is Chio = 

13.364582. Therefore, both the classical and our 
proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2. 
 
Test of Hypothesis #3: 

2
0 : 4H σ = , 

2: 4aH σ ≠ , 

AD=5.71943. 
Considering the observed value Chio = 

26.729164, the classical approach fails to reject 
the null hypothesis at a level of significance 
equal to 0,01, while the approximate Bayesian 
approach rejects the null hypothesis at any level 
of significance smaller or equal to 0.2. 
 
 

Test of Hypothesis #4: 
2

0 : 20H σ = , 
2: 20aH σ ≠ , 

AD = 10.28057. 
In this case, considering the observed 

value Chio = 5.345832, the classical approach 
fails to reject the null hypothesis at any level of 
significance smaller or equal to 0.1, while the 
approximate Bayesian approach reject the null 
hypothesis at any level of significance smaller or 
equal to 0.2 
 
Test of Hypothesis #5: 

2
0 : 23H σ ≥ , 

2: 23aH σ  , 

AD greater or equal to 13.28057. 
Considering the observed value Chio = 

4.64855, the classical approach fails to reject the 
null hypothesis at a level of significance smaller 
or equal to equal to 0.05. The approximate 
Bayesian approach rejects the null hypothesis at 
any level of significance smaller or equal to 0.2. 
 
Data Set #2: 
13, 11, 9, 12, 8, 10, 5, 10, 9, 12, 13 (Mann, 1998 
p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 10.182, 2.4008)N μ σ= = . 
 
The population and sample variances are 

2 5.76384σ = , and 2 5.763636s = . For the 
following two tailed test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 2. Table 
2 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the second data set. 
 
 
 
 

Table1: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 5.578 – 17.275 10.211 – 14.605 

90 4.575 – 19.675 10.101 – 15.991 

95 3.8159 – 21.92 10.051 – 17.378 

99 2.603 – 26.757 10.010 – 20.597 
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Test of Hypothesis #6: 

2
0 : 5.76384H σ = , 

2: 5.76384aH σ ≠ , 

AD = 0. 
The observed value is Chio = 9.999645. 

Considering Table 2, it is observed that both, the 
classical and the approximate Bayesian 
approaches, fail to reject the null hypothesis at 
any levels of significance smaller of equal to 
0.2. 
 
Test of Hypothesis #7: 

2
0 : 4.5H σ = , 

2: 4.5aH σ ≠ , 

AD = 1.26384. 
The observed value is Chio = 12.80808. 

Therefore both, the classical and proposed 
approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
Test of Hypothesis #8: 

2
0 : 10H σ = , 

2: 10aH σ ≠ , 

AD = 4.23616. 
In this case, Chio = 5.763636. Contrary 

to the classical approach, the proposed 
approximate Bayesian approach rejects the null 
hypothesis at levels of significance smaller or 
equal to 0.2. 
 
 

Test of Hypothesis #9: 
2

0 : 15H σ = , 
2: 15aH σ ≠ , 

AD = 9.23616. 
In this case, Chio = 3.8424.The 

proposed approach rejects the null hypothesis at 
any level of significance smaller than or equal to 
0.2, while the classical approach fails to reject 
the same null hypothesis only at significance 
levels smaller or equal to 0.05. 
 
Test of Hypothesis #10: 

2
0 : 14H σ ≥ , 

2: 14aH σ  , 

AD is greater or equal to 8.23616. 
Here the Chio = 4.11688. The proposed 

approach rejects the null hypothesis at levels of 
significance smaller or equal to 0.2. The 
classical approach fails to reject the null 
hypothesis at a level of significance of 0.05. 
 
Data Set #3: 
16, 14, 11, 19, 14, 17, 13, 16, 17, 18, 19, 12 
(Mann, 1998 p. 504). 
 
Normal population distribution obtained 
with SAS: 

( 15.5, 2.6799)N μ σ= = . 
 
The population and sample variances are 

2 7.18186σ = , and 2 7.181818s = . For the 
following test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 3. Table 
3 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the third data set. 
 
Test of Hypothesis #11: 

2
0 : 7.18186H σ = , 

2: 7.18186aH σ ≠ , 

AD = 0, Chio=10.999935. 

Table 2: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 4.865 – 15.987 9.211 – 13.605 

90 3.94 – 18.307 9.102 – 14.991 

95 3.247 – 20.483 9.051 – 16.378 

99 2.156 – 25.188 9.010 – 19.597 
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Both, the classical and proposed 
approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test of Hypothesis #12: 

2
0 : 6H σ = , 

2: 6aH σ ≠ , 

AD = 1.18186. 
The observed value is Chio = 

13.166666. Therefore both, the classical and 
proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2 
 
Test of Hypothesis #13: 

2
0 : 14H σ = , 

2: 14aH σ ≠ , 

AD = 6.81814, Chio = 5.64285. 
Contrary the classical approach, the 

proposed approximate Bayesian approach rejects 
the null hypothesis at levels of significance 
respectively small or equal to 0.2. 
 
Test of Hypothesis #14: 

2
0 : 18H σ = , 

2: 18aH σ ≠ , 

AD=10.81814, Chio=4.388888. 
The proposed approximate Bayesian 

approach rejects the null hypothesis at any 
significance level smaller or equal to 0.2. The 
classical approach fails to reject the null 
hypothesis at levels of significance respectively 
smaller or equal to 0.05. 

Test of Hypothesis #15: 
2

0 : 17H σ ≥ , 
2: 17aH σ  , 

AD is greater or equal to 9.81814. 
The observed value Chio = 4.647058. 

Based on Table 3, the proposed decision rule 
rejects the null hypothesis at any level of 
significance smaller or equal to 0.1. The 
classical approach fails to reject the null 
hypothesis at levels of significance smaller or 
equal 0.05. 
 
Data Set #4: 
27, 31, 25, 33, 21, 35, 30, 26, 25, 31, 33, 30, 28 
(Mann, 1998 p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 28.846, 3.9549)N μ σ= =  
 
The population and sample variances are 

2 15.64123σ = , and 2 15.641025s = . For the 
following test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 4. Table 
4 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the fourth data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 5.578 – 17.275 10.211 – 14.605 

90 4.575 – 19.675 10.103 – 15.991 

95 3.8159 – 21.92 10.051 – 17.378 

99 2.603 – 26.757 10.010 – 20.597 

Table 4: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 6.304 – 18.549 11.211 – 15.605 

90 5.226 – 21.026 11.103 – 16.991 

95 4.404 - 23.337 11.051 – 18.378 

99 3.074 – 28.300 11.010 – 21.597 
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Test of Hypothesis #16: 
2

0 : 15.64123H σ = , 
2: 15.64123aH σ ≠ , 

AD = 0, Chio=11.999842.  
Both, the classical and proposed 

approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
Test of Hypothesis #17: 

2
0 : 16.5H σ = , 

2: 16.5aH σ ≠ , 

AD = 0.85877. 
The observed value is Chio = 

11.3752909. Therefore both, the classical and 
proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2. 
 
Test of Hypothesis #18: 

2
0 : 30H σ = , 

2: 30aH σ ≠ , 

AD = 14.35877, Chio = 6.2564 
The classical approach fails to rejects 

the null hypothesis at a level of significance 
smaller or equal to 0.1. The proposed decision 
rule rejects the null hypothesis for any level of 
significance smaller or equal to 0.2. 
 
Test of Hypothesis #19: 

2
0 : 8H σ = , 

2: 8aH σ ≠ , 

AD = 7.64123, Chio = 23.461536. 
The proposed approximate Bayesian 

approach rejects the null hypothesis at levels of 
significance smaller or equal to 0.2. The 
classical approach fails to reject the null 
hypothesis at a level of significance of 0.01. 
 
Test of Hypothesis #20: 

2
0 : 25H σ ≥ , 

2: 25aH σ  , 

AD=9.35877, Chio=7.50779. 
Based on Table 4, the classical approach 

fails to reject the null hypothesis at any 
significance level smaller or equal to 0.1. The 

proposed approximate Bayesian decision rule 
rejects the null hypothesis for any level of 
significance smaller or equal to 0.1. 
 
Data Set #5: 
52, 33, 42, 44, 41, 50, 44, 51, 45, 38, 37, 40, 44, 
50, 43 (McClave & Sincich, 1997 p. 301). 
 
Normal population distribution obtained with 
SAS: 

( 43.6, 5.4746)N μ σ= =  
 
The population and sample variances are 

2 29.97124σ = , and 2 29.971428s = . For 
the following test of hypothesis: 
 

2:aH cσ ≠ , 
2

0 :H cσ = , 
 
the classical and approximate Bayesian non-
rejection regions are presented in Table 5. Table 
5 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the fifth data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test of Hypothesis #21: 

2
0 : 29.97124H σ = , 

2: 29.97124aH σ ≠ , 

AD = 0, Chio = 14.000882. 
Both, the classical and the proposed 

approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 

Table 5: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 7.790–21.064 13.211–17.605 

90 6.571–23.685 13.103–18.991 

95 5.629–26.119 13.051–20.378 

99 4.075–31.319 13.010–23.597 
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Test of Hypothesis #22: 
2

0 : 31.5H σ = , 
2: 31.5aH σ ≠ , 

AD = 1.52876. 
The observed value is Chio = 

13.32063467. Therefore both, the classical and 
proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2 
 
Test of Hypothesis #23: 

2
0 : 60H σ = , 

2: 60aH σ ≠ , 

AD = 30.02876, Chio = 6.99333. 
The proposed approximate Bayesian 

approach rejects the null hypothesis at levels of 
significance smaller or equal to 0.2. The 
classical approach fails to reject the null 
hypothesis at any level of significance smaller or 
equal to 0.1. 
 
Test of Hypothesis #24: 

2
0 : 17H σ = , 

2: 17aH σ ≠ , 

AD = 12.97124, Chio = 24.682352. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.05, while the proposed 
approximate Bayesian approach rejects the null 
hypothesis at levels of significance smaller or 
equal to 0.2. 
 
Test of Hypothesis #25: 

2
0 : 18H σ = , 

2: 18aH σ ≠ , 

AD = 11.97124, Chio = 23.31111. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.1, while the proposed 
approximate Bayesian approach only fails to 
reject the null hypothesis at levels of 
significance r equal to 0.01. 
 
Data Set #6: 
52, 43, 47, 56, 62, 53, 61, 50, 56, 52, 53, 60, 50, 
48, 60, 55 (McClave & Sincich, 1997 p. 301). 
 

Normal population distribution obtained with 
SAS: 

( 53.625, 5.4145)N μ σ= =  
 
The population and sample variances are 

2 29.31681σ = , and 2 29.316666s = . For the 
following test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 6. Table 
6 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the sixth data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test of Hypothesis #26: 

2
0 : 29.31681H σ = , 

2: 29.31681aH σ ≠ , 

AD = 0, Chio = 14.99992. 
Both, the classical and proposed 

approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
Test of Hypothesis #27: 

2
0 : 26H σ = , 

2: 26aH σ ≠ , 

AD = 3.31681. 
The observed value is Chio = 

16.91346115. Therefore both, the classical and 

Table 6: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 8.547–22.307 14.211–18.605 

90 7.261–24.996 14.103–19.991 

95 6.262–27.488 14.051–21.378 

99 4.601–32.801 14.010–24.597 
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proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2. 
 
Test of Hypothesis #28: 

2
0 : 60H σ = , 

2: 60aH σ ≠ , 

AD = 30.68319, Chio=7.329166.  
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.1. The proposed 
approximate Bayesian approach rejects the null 
hypothesis at any level of significance smaller or 
equal to 0.2. 
 
Test of Hypothesis #29: 

2
0 : 17H σ = , 

2: 17aH σ ≠ , 

AD=12.31681, Chio=25.867646. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.05. On the other hand, the 
proposed approximate Bayesian approach rejects 
the null hypothesis at any level of significance 
smaller equal to 0.2. 
 
Test of Hypothesis #30: 

2
0 : 50H σ ≥ , 

2: 50aH σ  , 

AD is greater or equal to 20.68319. 
Using Table 6 it can be inferred that the 

classical approach fails to reject the null 
hypothesis at any level of significance smaller or 
equal to 0.1, while the proposed approximate 
Bayesian approach o reject the null hypothesis at 
levels of significance smaller or equal to 0.1. 
 
Data Set #7: 
 
The following observations have been obtained 
from the collection of SAS data sets: 50, 65, 
100, 45, 111, 32, 45, 28, 60, 66, 114, 134, 150, 
120, 77, 108, 112, 113, 80, 77, 69, 91, 116, 122, 
37, 51, 53, 131, 49, 69, 66, 46, 131, 103, 84, 78. 
 
Normal population distribution obtained with 
SAS: 

( 82.861, 33.226)N μ σ= =  

 
The population and sample variances are 

2 1103.96716σ = , and 2 1103.951587s = . 
 
For the following test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 7. Table 
7 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the seventh data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test of Hypothesis #31: 

2 1103.96716σ = , 
2 1103.96716σ ≠ , 

Chio = 34.9995. 
Both, the classical and the proposed 

approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
Test of Hypothesis #32: 

2
0 : 1110H σ = , 

2: 1110aH σ ≠ , 

The observed value is Chio = 4.809284. 
Therefore both, the classical and proposed 
approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 

Table 7: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 24.825–46.031 34.211–38.605 

90 22.501–49.765 34.103–39.991 

95 20.612–53.160 34.051–41.378 

99 17.247–60.219 34.010–44.597 
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Test of Hypothesis #33: 
2

0 : 1800H σ = , 
2: 1800aH σ ≠ , 

AD = 0, Chio = 21.46572. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.0.5, The proposed 
approximate Bayesian approach rejects the null 
hypothesis at levels of significance smaller or 
equal to 0.2 
 
Test of Hypothesis #34: 

2
0 : 800H σ = , 

2: 800aH σ ≠ , 

AD = 1000, Chio = 48.297879. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.1. The proposed 
approximate Bayesian approach rejects the null 
hypothesis at levels of significance smaller or 
equal to 0.2. 
 
Test of Hypothesis #35: 

2
0 : 800H σ ≤ , 

2: 800aH σ  , 

AD is greater or equal to1000, Chio = 
48.297879.  

Using Table 7 it is inferred that the 
classical approach fails to reject the null 
hypothesis at any level of significance smaller or 
equal to 0.05. On the other hand the proposed 
approximate Bayesian approach o reject the null 
hypothesis at levels of significance smaller or 
equal to 0.1. 
 

Conclusion 
 
All randomly selected thirty-five tests of 
hypothesis show that the proposed approximate 
Bayesian decision rule performs well: The 
approximate Bayesian approach yields a non-
rejection region that is strictly included in its 
classical counterpart. 

In the present study, a new approximate 
Bayesian decision rule for the variance of a 
normal population has been derived with the use 
of the square error loss function.  Based on the 

above numerical results we can conclude the 
following: 
 
1. The classical decision rule for the variance 

of a normal population does not always 
yield the best results. In fact, contrary to  our 
proposed Bayesian decision rule, the 
classical  approach fails, at times , to reject  
claims that are far from being good 
estimates of the population variance 

 
2. The classical decision rule does not always 

yield a smaller Type II error than the 
approximate Bayesian decision rule. In fact 
the numerical simulation shows that the 
Bayesian approach performs better when it 
comes to rejecting a wrong null hypothesis. 

 
3. Contrary to the classical rejection and non-

rejection regions  that are defined with the 
use the Chi-square table, their  approximate 
Bayesian counterparts rely only on the 
observations 

 
4. The approximate Bayesian decision rule can 

be easily applied to any normal or 
approximately normal data, irrespective of 
the size of the sample that is used for the 
study. 

 
5. With the approximate Bayesian decision 

rule, tests of hypothesis about a normal 
population variance are easily conducted at 
any level of significance.  

 
Bayesian analysis contributes to 

reinforcing well-known statistical theories such 
as the Decision Theory. 
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Bias in Stabilized Sieve Sampling 
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University of Hawaii at Manoa 

 
 
The stabilized sieve sample selection method (SSM) is considered to be a probability proportional to size 
(PPS) sampling method with an unbiased estimator (Horgan 1997, 1998). This article demonstrates that 
SSM does not select items with PPS and that the point estimator is biased. 
 
Key words: Sampling with probability proportional to size; Hansen-Hurwitz estimator; Horvitz-
Thompson estimator. 
 
 

Introduction 
 
Consider a situation where it is desired to make 
an inference about an unknown population 
parameter, Y, such that 
 

1

N

I
I

Y y
=

=                            (1) 

 
where N is the population size, I = (1, 2, …N), 
and yI is unknown but can be determined exactly 
by applying some procedure. An unbiased 
estimate of Y can be obtained when sampling 
with replacement using the Hansen-Hurwitz 
estimator (Brewer & Hanif 1983, p. 5) 
 

1ˆ
n

i
HH

i i

yY
n p

=                         (2) 

 
where n is the sample size, yi is the value yI that 
is determined for the ith item in the sample, pI is 
the probability of inclusion as the ith item in the 
sample of the population item I and pi is the 
value of pI for the ith item selected for the 
sample. Note that under sampling with 
replacement an individual population item, I, 
can be included in the sample more than once. 
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When sampling without replacement, an 
unbiased estimate of Y can be obtained using the 
Horvitz-Thompson estimator (Brewer & Hanif 
1983, p. 6)  

1

ˆ
n

i
HT

i i

yY
π=

=                        (3) 

 
where πI is the probability of inclusion in the 
sample of the population item I and yi is the 
value of yI for the ith item in the sample. 

Equations (2) and (3) are general and 
allow for an unbiased estimate of Y regardless of 
how pI or πI are determined. For sampling with 
equal probabilities pI = 1/N and πI = n/N. 
Sampling with unequal probabilities is often a 
good choice and may be the only possible 
method given the sampling frame. Examples of 
sampling with unequal probabilities are stratified 
sampling and cluster sampling. Another method 
for sampling with unequal probabilities is 
probability proportional to size (PPS) sampling. 
The size variable can be any variable x for which 
every xI satisfies 

1

0  where .
N

I I
I

Xx X x
n =

< < =          (4) 

The right side of the inequality is a requirement 
only when sampling without replacement. If 
these conditions are met then a PPS sample can 
be drawn by setting 

I
I

xp
X

=                            (5) 

 
when sampling with replacement and 
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I
I

xn
X

π =                           (6) 

 
when sampling without replacement. 

PPS sampling methods are generally 
applicable to any population where it is desired 
to estimate Y using either (2) or (3) and there is a 
size variable available conforming to (4). This 
article examines the properties of two such 
methods, the sieve method and the stabilized 
sieve method (SSM). 
 
Sieve Sampling 

The sieve method is a PPS sampling 
without replacement method that was developed 
by Rietveld (1978, 1979a,b). The presentation of 
the method given here is based on Horgan 
(1998). A population item is selected for 
inclusion in the sample if it satisfies the 
inequality 
 

I Ir x≤                              (7) 

 
where rI is a random variable uniformly 
distributed on the interval (0, X/n) and each rI is 
independently generated. It is important to note 
that the realized sample size, nr, is a random 
variable that will not always be the same as n. 
Equation (3) with the sum over nr and πI defined 
as in (6) will yield an unbiased estimate of Y. 
The properties of the sieve method and the SSM 
will be illustrated by sampling from a 
hypothetical population with N = 5 and n = 2 
used by Wright (1991) to demonstrate that 
systematic PPS samples lose their PPS property 
when augmented by systematically sampling the 
remaining population. The details of this 
population are given in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Test Population. N = 5, n = 2, X = 20. 

I xI πI 1 - πI pI 

1 2 0.2 0.8 0.10 

2 3 0.3 0.7 0.15 

3 4 0.4 0.6 0.20 

4 5 0.5 0.5 0.25 

5 6 0.6 0.4 0.30 

Table 2: Probabilities of sample outcomes for 
the test population in Table 1 for sieve 

sampling. Column j is an identification variable 
for each of the 32 outcomes. The second 

column indicates which population items were 
included in a particular sample outcome and p 

is the probability of that outcome. 
j Is p 
1 Null 0.0672 

2 1 0.0168 

3 2 0.0288 

4 3 0.0448 

5 4 0.0672 

6 5 0.1008 

7 1,2 0.0072 

8 1,3 0.0112 

9 1,4 0.0168 

10 1,5 0.0252 

11 2,3 0.0192 

12 2,4 0.0288 

13 2,5 0.0432 

14 3,4 0.0448 

15 3,5 0.0672 

16 4,5 0.1008 

17 1,2,3 0.0048 

18 1,2,4 0.0072 

19 1,2,5 0.0108 

20 1,3,4 0.0112 

21 1,3,5 0.0168 

22 1,4,5 0.0252 

23 2,3,4 0.0192 

24 2,3,5 0.0288 

25 2,4,5 0.0432 

26 3,4,5 0.0672 

27 1,2,3,4 0.0048 

28 1,2,3,5 0.0072 

29 1,2,4,5 0.0108 

30 1,3,4,5 0.0168 

31 2,3,4,5 0.0288 

32 1,2,3,4,5 0.0072 
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These sample outcome probabilities are 
calculated as 
 

1
j j

j I I
I s I s

p π π
∈ ∉

= −∏ ∏                 (8) 

 
where sj is the jth sample outcome in Table 2. 
For example, the probability of getting sample 
outcome 11, item 2 and 3, is 0.3 × 0.4 × 0.8 × 
0.5 × 0.4 = 0.0192. That the sieve method is 
indeed PPS for this population can be checked 
by summing the probabilities for each sample 
outcome containing a particular population item, 
I, and verifying that it is equal to the value for πI 
in Table 1. 

Table 3 shows the probability of 
achieving a particular nr. These probabilities can 
be calculated from Table 2 by summing all 
probabilities for outcomes of a given size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 shows the probabilities of inclusion in nr 
for each combination of population item and 
realized sample size for the test population in 
Table 1. These conditional probabilities are not 
proportional to xI. 
 
 
 
 
 
 
 
 
 
 
Stabilized Sieve Sampling 

The stabilized sieve method (SSM) 
(Horgan 1997, 1998) is a modification of the 
sieve method that ensures that the final sample 
size is always equal to n. This section details 
how the method selects items for a sample and 
then considers the properties of point estimators 
of Y for samples selected using the SSM. 

The SSM is selected in two stages. First 
an initial sample, S1, is selected using (7). In the 
second stage the sampling process is conditioned 
upon the number of items in S1 (Horgan 1998) 
 

( )1

2 1

1

+ A if

if

R( ) if

r r

r

r r

S n n n n
S S n n

S n n n n

− <
= =
 − − >

   (9) 

 
where S2 is the final sample and A(m) and R(m) 
are defined as follows: A(m) selects m items one 
at a time (with replacement) by taking a simple 
random sample of one from the entire population 
(including items in S1) and this item is selected 
for inclusion in the sample if 
 

Ir x≤                          (10) 

 
where r is a uniformly distributed random 
number in the interval (0, max(xI)]. The process 
is repeated, generating a new value for r each 
time, until m items are selected. All items 
selected using A(m) satisfy (5). R(m) selects m 
items to remove from S1 by taking a simple 
random sample of size m from S1. 

Table 5 gives the probabilities for each 
sample outcome and nr for the population in 
Table 1 sampled using SSM. Because of the 
complexity of (9) some explanation of how 
individual cells in this table were calculated may 
be useful. The simplest case is when nr = 2 
where the values are taken directly from Table 2. 
Outcome 9 (2,5) with nr = 4 will be used to 
illustrate the cases when nr > 2. First, the 
probabilities of all the outcomes where nr = 4 
and both item 2 and 5 are present (outcomes 28, 
29, and 31) are summed and then divided by the 
number of combinations of two items that can be 
drawn from a population of four items. This 
gives (0.0072 + 0.0108 + 0.0288)/6 = 0.0078. 
When nr < 2, there may be more than one path to 
a sample outcome. For example, outcome 7 (2,3) 

Table 3: Probabilities of a realized sample 
size for the test population in Table 1. 

nr p 

0 0.0672 

1 0.2584 

2 0.3644 

3 0.2344 

4 0.0684 

5 0.0072 

Table 4:. Conditional probabilities of inclusion. 

 nr 

I 0 1 2 3 4 5 

1 0 0.0650 0.1658 0.3242 0.5789 1 

2 0 0.1115 0.2700 0.4863 0.7544 1 

3 0 0.1734 0.3908 0.6314 0.8421 1 

4 0 0.2601 0.5247 0.7389 0.8947 1 

5 0 0.3901 0.6487 0.8191 0.9298 1 
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with nr = 1 can occur when the initial sieve 
sample contains only item 2 or only item 3. 
Outcome 3 in Table 2 gives the probability of S1 
containing only item 2 and Table 1 gives the 
value of pI for selecting item 3 in the second 
stage. The probabilities that S1 contains only 
item 3 and that item 2 is selected in the second 
stage can be determined in the same manner. 
Thus, the probability for outcome 7 when nr = 1 
is 0.0288 × 0.20 + 0.0448 × 0.15 = 0.01248. 

Table 5 shows probabilities for sample 
outcomes for the test population in Table 1 for 
stabilized sieve sampling. Column j is an 
identification variable for each of the 15 
outcomes. The second column indicates which 
population items were included in a particular 
sample outcome, nr is the realized sample size in 
stage one and the cells contain the joint 
probability of the sample outcome and nr. Table 
6 provides pI for the population in Table 1 when 
sampling with SSM and demonstrates that these 
probabilities are not PPS. These probabilities are 
derived from Table 5 by summing the 
probabilities for each sample outcome that 
contains a particular I divided by n, which is 2 in 
this case. For outcomes where I is included 
twice it is counted twice. 

Horgan (1998, equations 8, 17, and 19) 
provides an estimator for Y that is conditional 
upon nr: 

1

r2

1
if

2

1ˆ  where if

if n

r
r

n
i

s r
i i

r

n n
n n

yY wX w n n
x n

n n
n

=

 < −
= = =

 >




(11) 
 

Although (11) conditions on nr, it does 
not take into consideration that the probabilities 
of inclusion in the sample given nr are not 
proportional to xI (see Table 4). Consequently, 
Ŷs is a biased estimator. The expected value of Ŷs 
for the test population can be calculated by 
determining Ŷs for every cell in Table 5, 
multiplying the result by the probability in the 
cell and then taking the sum of those products. 
The result is 1.0917 y1 + 1.0877 y2 + 1.0824 y3 + 
1.0749 y4 + 1.0637 y5. 

Because the SSM method is a sampling 
with replacement method based on the sieve 
method, and the sieve method is a PPS method 
without replacement it seems reasonable to use 
ŶHH with pI calculated according to (5). This will 
also give a biased estimate of Y, the expected 
value of which is 0.9491 y1 + 0.9693 y2 + 1.0029 
y3 + 1.0111 y4 + 0.9791 y5 for the Table 1 
population. 

It is possible to construct an unbiased 
estimator of Y when using the SSM with the 
population in Table 1. This is done by first 
setting each pI to the corresponding value in 
Table 6 and then calculating ŶHH accordingly. 
Unfortunately, the use of this estimator is 
limited to very small populations because it 
requires an enumeration of all 2N possible 
sample outcomes for the stage 1 sieve sample. 
 

Conclusion 
 
The stabilized sieve method does not sample 
with PPS and that both Ŷs and ŶHH with pI 
calculated according to (5) are biased estimators 
of Y. Further, the calculation of the unbiased 
estimator is prohibitively expensive to compute 
for any but the smallest populations. 
Nonetheless, the SSM performed well in the 
simulations in Horgan (1997 and 1998) in 
comparison to the sieve method and the 
probability proportionate to size with 
replacement method (PPR). 

All three of these methods have 
drawbacks, either the possibility of items 
showing up more than once in the sample (SSM, 
PPR) or variable sample size (sieve), or bias 
(SSM). Systematic PPS sampling methods 
utilizing a random sort of the population before 
application have none of these drawbacks 
because they select fixed size samples without 
replacement with probabilities that are exactly 
proportional to xI (see Brewer & Hanif 1983, 
procedures 2 and 3). These selection methods 
are easily applied with modern computers if both 
I and xI are available in a computer accessible 
file. Consequently, with these sampling frames 
the systematic procedures should be preferred 
over either the sieve, SSM, or PPR methods. 
However, not all sampling frames make the 
entire population xI conveniently accessible by 
computer and the sieve, SSM, and PPR methods 
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may have some practical advantages with these 
sampling frames that offset their disadvantages. 
With such challenging sampling frames, the 
SSM method should not be ruled out simply 
because of the difficulty in achieving a 
completely unbiased estimate of Y, particularly 
if the population characteristics and sample sizes 
are similar to those used for the simulations in 
Horgan (1997 and 1998). 
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Table 5: Probabilities of sample outcomes for the test 
population in Table 1 for stabilized sieve sampling. 

  nr 
j Is 0 1 2 3 4 5 

1 1,1 0.00067 0.00168 0 0 0 0 

2 1,2 0.00202 0.00540 0.00720 0.00760 0.00380 0.00072 

3 1,3 0.00269 0.00784 0.01120 0.01093 0.00480 0.00072 

4 1,4 0.00336 0.01092 0.01680 0.01453 0.00540 0.00072 

5 1,5 0.00403 0.01512 0.02520 0.01760 0.00580 0.00072 

6 2,2 0.00151 0.00432 0 0 0 0 

7 2,3 0.00403 0.01248 0.01920 0.01760 0.00680 0.00072 

8 2,4 0.00504 0.01728 0.02880 0.02320 0.00740 0.00072 

9 2,5 0.00605 0.02376 0.04320 0.02760 0.00780 0.00072 

10 3,3 0.00269 0.00896 0 0 0 0 

11 3,4 0.00672 0.02464 0.04480 0.03253 0.00840 0.00072 

12 3,5 0.00806 0.03360 0.06720 0.03760 0.00880 0.00072 

13 4,4 0.00420 0.01680 0 0 0 0 

14 4,5 0.01008 0.04536 0.10080 0.04520 0.00940 0.00072 

15 5,5 0.00605 0.03024 0 0 0 0 
 

Table 6. Probabilities of 
inclusion in a sample 
draw for each item in 
the test population in 

Table 1 compared to the 
probability under PPS. 

I 
pI 

actual PPS 

1 0.09491 0.10 

2 0.14540 0.15 

3 0.19805 0.20 

4 0.25277 0.25 

5 0.30886 0.30 
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Some Estimators for the Population Mean Using Auxiliary Information 
Under Ranked Set Sampling 
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Auxiliary information is used along with ranking information to derive several classes of estimators to 
estimate the population mean of a variable of interest based on RSS (ranked set sample). The properties of 
these newly suggested estimators were examined. Comparisons between special cases of these estimators 
and other known estimators are made using a real data set. Some of the new estimators are superior to the 
old ones in terms of bias and mean square error.  
 
Keywords: Auxiliary variables, efficiency, ranking, ranked set sample. 
 
 

Introduction 
 
Many authors have discussed the use of 
supplementary information of auxiliary variables 
in survey sampling to improve the existing 
estimators (for example, Cochran, 1977). The 
ratio estimator is among the most commonly 
adopted to estimate: (1) population means, or (2) 
the total of some variable of interest from a 
finite population with the help of an auxiliary 
variable when the correlation coefficient 
between the two variables is positive. When the 
correlation coefficient between the two variables 
is negative, the product estimator is used. These 
estimators are more efficient, i.e. have smaller  
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variances than the usual estimators of the 
population mean based on the sample mean of a 
simple random sample (SRS). 

Ranked set sampling (RSS) can be used 
when the measurement of sample units drawn 
from a population of interest is very laborious or 
costly, but several elements can be easily 
arranged (ranked) in the order of magnitude. 
Takahasi and Wakimoto (1968) established the 
theory of RSS. They showed that the mean of 
the RSS is an unbiased estimator for the 
population mean and is more efficient than the 
mean of SRS. Dell and Clutter (1972) studied 
the effect of ranking error on the efficiency of 
RSS. The RSS has many statistical applications 
in biology and environmental studies (Barabesi 
& El-Sharaawi, 2001), for example, McIntyre 
(1952) first suggested using RSS to estimate the 
yield of pasture. In addition, RSS has been 
investigated by many researchers (Stokes, 1977; 
Stokes & Sager, 1988; Lam, et al., 1994, 1980; 
Mode, et al., 1999; Al-Saleh & Al-Shrafat, 2001; 
Al-Saleh & Zheng, 2000; Al-Saleh & Al-Omary, 
2000), for more details about RSS, see Kaur, et 
al., 1995. 

The RSS method can be summarized as 
follows: Select m random samples of size m 
units each and rank the units within each sample 
with respect to the variable of interest by a 
visual inspection or some other simple method. 



ESTIMATORS FOR THE MEAN UNDER RANKED SET SAMPLING 

254 
 

Next, select for actual measurement the thi  

smallest unit from the thi sample for i =1, 2,..., 
m. In this way, a total of m measured units are 
obtained, one from each sample. The cycle may 
be repeated r times to get a sample of size n = 
rm. These n = rm units form the RSS data. Note 

that in RSS, 2rm  elements are identified, but 
only rm  of them are quantified. Thus, 
comparing this sample with a simple random 
sample (SRS) of size rm  is reasonable. 
 
Some Notions and Preliminaries 

Let Y denote the variable of interest 
whose population mean and variance are yμ and 

2
yσ  respectively. Estimate yμ  using the 

information provided by one or two auxiliary 
variables 1X  and 2X based on SRS and RSS 

will be considered. Let 
ixμ and 2

ixσ be the 

population mean and variance for , 1,2iX i = . 

Let jj XY 1, and jX 2 denote the values of the 

variables 1, XY and  respectively, on the 
thj unit of the population. The population means 

1xμ and 
2xμ of the auxiliary variables are 

assumed to be known. 
Let ( )i jY , 1( )i jX and 2( )i jX represent the 

ith order statistics of a sample of size m in the jth 
cycle of the variables 1,Y X and 2X  respectively 
based on a RSS of size n = rm drawn from the 
population. The sample mean for each variable 
using RSS data are defined as follows:  
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Consider the following notations:  

( ) ( )( )i iy y yT μ μ= − , 
( ) ( )( )1 1 1i ix x xT μ μ= − , 

( ) ( )( )2 2 2i ix x xT μ μ= − , 

( ) ( )( ) ( )( )1 11i iyx y y xx iT μ μ μ μ= − − , 

( ) ( )( ) ( )( )2 2 2i i iyx y y x xT μ μ μ μ= − − , 

( ) ( )( ) ( )( )1 2 1 1 2 2i i ix x x x x xT μ μ μ μ= − −  ,

( ) ( ) ( )( ) ( ) ( )( )1 11iyx y xi i i iE Y Xσ μ μ= − − , 

( ) ( ) ( )( ) ( ) ( )( )2 22iyx y xi i i iE Y Xσ μ μ= − − ,

( ) ( ) ( )( ) ( ) ( )( )1 2 1 21 2ix x x xi i i iE X Xσ μ μ= − − . 
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The following classes of estimators of 

the mean of the variable Y based on RSS are: 
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      (2.1) 

and 
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Y

X X
Y w w
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   (2.2) 

 

where 121 ,, waa , 2w  are constants and 

1 2 1w w+ = . 

 
Estimators Based on RSS and One or Two 
Auxiliary Variables 

It is not possible to rank two or more 
dimensional data, therefore, ranking one of the 
variables and taking the corresponding values of 
other variables is an option. Assuming that the 
variable can be ranked perfectly - there are no 
errors in ranking the units, there will be errors in 
ranking the other variables. 
 
Ranking on Study Variable Y 

Assume that the ranking on variable Y
is perfect while the ranking on variables 1X and

2X  will have errors; the estimators (2.1) and 

(2.2) are respectively given by: 
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where 
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i
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n
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1
 

 

are the sample means of the RSS for 1X and 

2X  respectively and [ ] jiX 1 and [ ] jiX 2  are the 

thi judgment order statistic of the ith sample of 

the thj cycle, of the variables 1X  and 2X  

respectively.  
Let  
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Obtain the bias and the MSE of the 

estimators aY~ and wY~ respectively up to the order 

of 
1−n as follows: 
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(3.3) 
 

The MSE of aY~  when ranking on variable Y is: 
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(3.4) 
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up to the order of 1−n . The optimum values of 

1a  and 2a , which minimize the MSE of aY~ , are 

obtained by the derivation of (3.4) with respect 

to 1a and 2a  respectively  
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(3.6) 

 

The minimum MSE up to terms of 
1−n  for the 

class ∗a
Y~  is: 
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(3.7) 

 

If 1a and 2a take the values in (3.5) and (3.6) 

respectively, the bias of aY~ from (3.3) is given 

by: 
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(3.8) 

where 1g  is given in the Appendix. 

The bias and the MSE of the estimators 
of (3.2) are given by: 
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up to the order of 
1−n . The MSE of the 

estimator wY if ranking on variable Y  is: 
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(3.10)

 

 

if 1a and 2a are both known and take the values 

in (3.5) and (3.6) respectively, up to order
1−n .  

The optimum values of 1w  and 2w , 

which minimize the MSE of wY~ , obtained by the 

derivation of equation (3.10) with respect to 1w  

under the restriction 1 2 1w w+ = , are given by: 
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and the MSE of  
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(3.12) 

is the minimum MSE up to terms of 1−n . As for 

the class wY~ : 
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(3.13) 
 

If w takes the value in (3.11), then bias of wY~

from (3.9) is given by:  
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(3.14) 

 
Ranking on One Auxiliary Variable 

If the ranking of 1X  is perfect, then the 

two estimators (2.1) and (2.2) are given by: 
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and 
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(3.16) 
 
The formulas for the bias and MSE of estimators 
(3.15) and (3.16) respectively will be the same 
as in 3.1 except for the current estimators 

replace [ ]  by ( ) in 1X , and ( )  by [ ] in Y . 

Similarly if the ranking on 2X  is 

perfect, then the estimators:  
 

[ ]
( ) [ ]

1 2

1 2

1 2

a a
n n

a n
x x

X X
Y Y

μ μ

   
   =
   
   

     (3.17) 

 

[ ]
( )

( )
[ ]

1 2

1 2

1 2
1 2

a a
n n

w n n
x x

X X
Y wY w Y

μ μ

   
   = +
   
   

 (3.18) 

 
result. 

The formulas for the bias and the MSE 
of estimators (3.17) and (3.18) respectively, will 
be the same as in 3.1 except for the case of 

replacing [ ]  by ( )  in 2X , and ( )  by [ ]  in 

Y  ( 1 0a = or 2 0a =  in (2.1) and 1 0w =  or 

2 0w =  correspond to the case of one auxiliary 

variable). 
 
Comparisons of Estimators  

Consider the following known 
estimators. The RSS sample mean of the data: 
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(Takahasi & Wakimoto, 1968). 
 

The Ratio estimator using RSS data is 
defined as:  
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This estimator is a special case of the estimator 
in equation (1) where 1 11 0a and a= − = . The 

bias and the MSE of this estimator are 
respectively given by: 
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(Samawi & Muttlak, 1996). 
 

The product estimator using RSS data is 
defined as: 
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x

n
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X
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μ
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This estimator is a special case for the estimator 
in equation (1) where 1 11 0a and a= = . The 

new estimator is called the product estimator and 
its bias and MSE respectively are given by  
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If 121 −== aa  is set in the estimator of 

equation (2) the following new estimator results: 
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The bias and the MSE are respectively given by 
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Setting 121 == aa  in the estimator of 

equation (2) results in a new estimator defined 
as: 
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The bias and the MSE  are respectfully given 
by 
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If 1 2 1a a= =  in the estimator of equation 3 is 

set, a new estimator called the Multivariate ratio 
estimator using RSS can be defined as  
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The bias and the MSE  are respectively given 
by 
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The comparison between the estimators 
proposed is illustrated by using a real data set. 
The data for the illustration was taken from 
Ahmed (1995); the population consists of 332 

villages. Consider the variables,Y , 1X and 2X
where Y is number of cultivators, 1X  is the 

area of the village and 2X  is the number of 

household in the village. 
The following steps summarize the 

simulation procedure to find the bias and MSE  
of an estimator for the population mean using 
perfect ranking on the variable of interest Y. 
 
Step 1: 

Simulate 
2rm observations from the 

332 real data values with replacement and 
perform the RSS procedure with m =5 and r = 
16 to get sample of size 80== rmn .  
 
Step 2: 

Use the data in Step 1 to calculate  
 

  
16 5

( ) ( : ) ( : )

1 1 1 1

1 1

80

r m

n i m j i m j
j i j i

Y Y Y
mr = = = =

= =   

where  ( : )i m jY is the thi  smallest in the sample of 

size m =5 in the thj cycle.  
 
Step 3: 

Repeat steps 1 and 2 (30,000) times, 
using these 30,000 values to obtain  

 

 
30000

( ) ( )

1

1

30000
n n i

i
Y Y

=

= 
 

 
Step 4: 

Find the approximate bias and MSE for 

( )nŶ . The bias is obtained by  

( )( ) ( )

30000

1

1ˆ ˆ
30000 yn n i

i
B Y Y μ

=

= − , 

and the MSE  of ( )nŶ  is obtained as  

( )( ) ( ) ( )( )230000

1

ˆˆ
30000

1ˆ 
−

−=
i

ninn YYYMSE . 

 
The above simulation was preformed for 

all other estimators suggested ranking on one of 

the variables Y, 1X  or 2X . Calculate the 

efficiency of these estimators with respect to the 
( )( ) ( )( )n nMSE Y Var Y=  estimator using  

( )
( )
( )

( )

,
ˆ

=
nMSE Y

e Y
MSE Y

 
 

where Y represents any of the estimators given. 
In Tables 1-3, MSE , bias, and 

efficiency have been calculated for each of the 
suggested estimators. In Table 1, ranking on the 
variable Y is shown (i.e., the ranking of variable 
Y will be perfect while the ranking of the other 
variables will be with errors in ranking). Tables 

2 and 3 show the ranking on the variables 1X
and 2X respectively.  

Considering the results of Tables 1-3 it is 

observed that ∗a
Y~  dominates all other estimators 

and achieved the highest efficiency. Its 
efficiency is more than 22 times higher than the  
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Table 1: The Bias, MSE  and the Efficiency for all Estimators Based on Ranking of the 
Variable Y  

 

Estimator 
Auxiliary 
variable 

MSE Efficiency Bias 

( )nY  None 8374.579 1 0 

∗Y~  1x  820.252 10.2041 0.843 

∗Y~  2x  909.625 9.17431 0.752 

∗a
Y~  21 , xx  379.579 22.2222 0.253 

∗w
Y~  21 , xx  582.065 14.4928 -0.521 

RY  1x  4403.464 1.8939 0.422 

RY  2x  2217.261 3.7594 0.998 

PY  1x  33092.8 0.25163 12.522 

PY  2x  30979.3 0.2688 7.121 

aY


 21 , xx  8479.4 0.98231 14.153 

aY  21 , xx  69893.8 0.119147 15.332 

wY


 21 , xx  598.243 14.0845 7.151 
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Table 2: The Bias, MSE  and the Efficiency for all Estimators Based on Ranking of the 

Variable 1X  
 

Estimator 
Auxiliary 
variable 

MSE Efficiency Bias 

[ ]nY  None 8311.06 1 0 

∗Y~  1x  899.012 9.2592 0.899 

∗Y~  2x  1250.112 6.6666 0.822 

∗a
Y~  21 , xx  378.865 22.2222 0.299 

∗w
Y~  21 , xx  581.231 14.4928 -0.675 

RY  1x  4403.511 1.8903 0.533 

RY  2x  2213.96 3.7594 1.228 

PY   33077.6 0.2513 14.532 

PY  2x  30895.8 0.26903 9.217 

aY


 21 , xx  8711.43 0.98231 15.533 

aY  21 , xx  69790.4 0.11909 17.222 

wY


 21 , xx  612.103 13.6986 10.511 

 

1x
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RSS estimator. Some other estimators achieved 

higher efficiency than  ( )nY , theses estimators 

are: ∗w
Y~ , wY


,

∗Y~ , and RY .  

The estimators achieved about the same 
efficiency no matter which variable was ranked 
on. This provides greater flexibility in choosing 
the variable to rank on, since some of the 
variables are more difficult to rank than others. 
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On the BLUE of the Population Mean for Location and Scale Parameters of 
Distributions Based on Moving Extreme Ranked Set Sampling 

 
Walid Abu-Dayyeh Lana Al-Rousan 

Sultan Qaboos University Yarmouk University 
Muscat, Oman Jordan 

 
 
The best linear unbiased estimator (BLUE) for the population mean under moving extreme ranked set 
sampling (MERSS) is derived for general location and scale parameters of distributions which generalizes 
Al-Odat and Al-Saleh (2001). It is compared with the sample mean of simple random sampling (SRS). 
The efficient sample size under the MERSS for which the BLUE estimator dominates the usual sample 
mean under SRS for estimating the population mean is also computed for several distributions. 
 
Key words: Best linear unbiased estimator; location parameter; scale parameter; moving extreme ranked 
set sampling, simple random sampling. 
 
 

Introduction 
 
Ranked set sampling (RSS) as introduced by 
McIntyre (1952) is useful for cases when the 
variable of interest can be more easily ranked 
than quantified. The aim of RSS is to increase 
the efficiency of the sample mean as an 
estimator for the population mean μ. Takahasi 
and Wakimoto (1968) established a very 
important statistical foundation for the theory of 
RSS. They showed that the mean of the RSS is 
an unbiased estimator for the population mean 
and has smaller variance than the mean of SRS. 
Dell and Clutter (1972) studied the effect of 
ranking error on the procedure. The RSS has 
many statistical applications in biological and 
environmental studies and reliability theory (e.g. 
Dell & Clutter, 1972; Stokes, 1977, 1980; Mode 
et al., 1999; Barabesi & El-Sharaawi, 2001; Al-
Saleh & Zheng, 2002; & Al-Saleh & Al-Omary, 
2002). Sinha, et al., (1996) explored the concept 
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of RSS when the population is partially known 
using the parameters of normal and exponential 
distributions. They found that the use of 
knowledge of the distribution along with RSS 
provides improvement in estimation over SRS, 
as well as over nonparametric RSS. Li and 
Chuiv (1997) discussed the issue of the 
efficiency of RSS compared to SRS in many 
parametric estimation problems. They found an 
improvement in estimation of many common 
parameters of interest with smaller numbers of 
measurements compared to SRS.  

RSS has been investigated extensively 
(see for example, Stokes, 1977; Stokes & 
Sager, 1988; Lam, et al., 1994; Barabesi & El-
Sharaawi, 2001). Al-Saleh and Al-Kadiri 
(2000) introduced Double RSS to increase the 
efficiency of RSS estimates without increasing 
the set size m and Al-Saleh and Al-Omary 
(2002) generalized it to multistage RSS. 
Samawi, et al., (1996) used extreme ranked set 
sample (ERSS), which is easier to use than the 
usual RSS procedure, when the set size is 
large to estimate the population mean in the 
case of symmetric distributions. Al-Odat and 
Al-Saleh (2001) introduced the concept of 
varied set size RSS, which is coined here as 
Moving Extreme Ranked Set Sampling 
(MERSS). They investigated this modification 
non-parametrically and found that the 
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procedure can be more efficient and applicable 
than the simple random sampling technique 
(SRS). The MERSS procedure is as follows: 

1. Select m  random samples of size 1, 2, 
3,…, m  respectively. 

2. Identify the maximum of each set by eye 
or by some other relatively inexpensive 
method without actually measuring the 
characteristic of interest. 

3. Measure accurately the selected judgment 
identified maximum. 

4. Repeat steps 1, 2, 3, but for the minimum. 
5. Repeat the above steps r times until the 

desired sample size, 2n rm=  is obtained. 
Clearly, the procedure of MERSS is easier to use 
than the usual RSS procedure. 
 

Methodology 
 
The BLUE of the Mean for Distributions with a 
Location Parameter 

Let { }1 1 1

1 2
, ,i i iiX X X

 
and 

 
{ }2 2 2

1 2
, ,i i iiX X X be simple random 

samples each of size i. for 1, 2,...,i m= from a 
population with distribution function F and a 

probability density function f. Let μ  and 
2σ be 

the mean and variance of the population 
respectively. If 

{ }1 1 1

1 21
, ,i i iii

Miny X X X=  , 

and 

{ }2 2 2

1 22
, ,i i iii

Maxy X X X=  ,

1, 2,...,i m= , 
then 

{ }21 1 12 22 211
, , , , ,

m my y y y y y   

 
is a MERSS of size 2m. 

The BLUE for μ for a population can 
be derived with a pdf of the form: 
 

( ) ,f x θ θ− − ∞ < < ∞ ,              (2.1) 

 
where f is a pdf. 
 

Result 1 

Let 
1 2 2
, , ,

my y y  be 2m 

independent ordered statistics of simple random 
samples each of size less than m from an 
underlying distribution with a pdf as in (2.1). 
Then the BLUE of the population μ is then given 
by: 
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and iC  and 2
iσ are the mean and the variance of 

iZ  respectively, where 
iiZ y θ−=  and 

X bE θμ θ= = + . (Note that 

1 2 2
, , ,

my y y are not necessarily 

identically distributed.) 
 
Proof 

Starting with a class of unbiased linear 
estimators of μ  of the form 
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i i
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which, in turn, implies that 
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Applying the method of the Lagrange multiplier 
to minimize 
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where 
1λ and 

2λ are the Lagrange multipliers 

and 

{ }2

1
.

2i i i
i
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is the BLUE of μ with variance 
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(2.7) 

If 
1i iy y= , for i = 1, 2,….,m and 

2iiy y= , for 1, 2,..., 2i m m m= + + . 
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where ( )1i iE uc = , ( ) 2
1iiVar u σ=  , and iu  

is the minimum of a SRS of size i, and 

( )2i iE wc = , ( ) 2
2iiVar w σ=  and iw  is the 

maximum of a SRS of size i, under θ = 0. It then 
follows that: 
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(2.9) 
 

Al-Odat and Al-Saleh (2001) introduced 
MERSS and studied the linear estimators of the 

form: ( )yya ii

m

i
i 21

1

+
=

. They derived the 

BLUE among such linear combinations for the 
population mean. The BLUE derived by Al-Odat 
and Al-Saleh (2001) is not the BLUE estimator 

based on (
11 21 1

, ,
m

y y y ,
12 22 2

, ,
m

y y y ), 



ABU-DAYYEH & AL-ROUSAN 
 

269 
 

but the BLUE based on (
1 2

, ,
mk k k ) where 

=ki yi1
+ yi2

 for i=1,2,… m. If the underlying 

distribution is symmetric about its mean μ, then 
(2.9) coincides with the results obtained by Al-
Odat and Al-Saleh (2001). 

The BLUE estimator based on MERSS, 
obtained with the sample mean based on SRS in 
case of uniform U(θ ,θ  +1) and Exp(θ ,1) 
distributions are compared. The first is 

symmetric about its mean 
2

1+θ  and the second 

is skewed to the right with mean 1+θ . Both 
families are location parameter families of 
distributions, so the BLUE's are the same as 

given in (2.8), with b = 
2

1
 for U (θ ,θ +1) and 

b=1 for Exp(θ , 1). Balakrishnan and Cohen 
(1990) computed the variances of the estimators 
in this case and in the following cases. 

The estimators compared are both 
unbiased for μ . Therefore, they will be 
compared through their variances. The 

efficiency between two estimators μ̂1
 and μ̂ 2

is defined as: 

( ) ( ) ( ) 1

2 1 1 2
,ˆ ˆ ˆ ˆeff Var Varμ μ μ μ

−
 =   . 

 
The larger the efficiency, the better the estimator 

μ̂ 2
will be. The efficiency of μ̂

MEBlue
 with 

respect to the sample mean under SRS was 
computed for both distributions for m = 2,…,10. 
The results are summarized in Tables 1 and 2. 
From these tables, it may be concluded that the 
variance of the BLUE decreases as m increases 

and ( )2
, 1ˆ mMEBlue

eff μ ≥Χ  for both 

distributions. Also, the efficiency is more than 2 
for m 4≥  in the uniform case and for m 9≥  in 
the exponential case. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The BLUE of the mean for distributions with a 
scale parameter 
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where f is a pdf. Then as shown previously, if 
  

yi1
 = θ  min













θθθ
XXX 1
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1
2i

1
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then 
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1 1 1

1 2

1

1

, ,i i ii
i

i

E Min

C

X X Xy θ
θ θ θ

θ

  =  
  

=


 

 

where ( )1i iC E U= and iU  is the first order 

statistic of a SRS of size i from the pdf in (3.1), 

under θ  = 1. Similarly, E ( yi2
) = θ2iC , for

( )2i iC E W=  where iW  is the maximum order 

statistic of a SRS of size i from the pdf in (3.1), 

Efficiency of μ̂
MEBlue

with respect to 
2mΧ  

 

Table 1  Table 2 

 
U (θ ,θ +1)  

 
Exp(θ ,1) 

m ( )2
,ˆ mMEBlue

eff μ Χ   m ( )2
,ˆ mMEBlue

eff μ Χ  

2 1.333  2 1.167 

3 1.765  3 1.333 

4 2.200  4 1.483 

5 2.863  5 1.639 

6 3.150  6 1.647 

7 3.683  7 1.8397 

8 4.288  8 1.996 

9 4.932  9 2.087 

10 5.620  10 2.177 
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under θ  = 1. Also, Var ( yi1
) = θ 2 σ 2

1i  and 

Var ( y 2i
) = θ 2 σ 2

2i
where σ 2

1i
and σ 2

2i
are 

the variances of ui and wi respectively, for i = 
1, 2,…, m. (The BLUE of  the mean of the 
population with pdf (3.1) proof is similar to that 
of Result (1) and therefore is omitted.) 
 
Result 2 

Let 
1 2 2
, , ,

m
y y y be 2m independent 

order statistics each of size less than m from an 
underlying distribution with a pdf as in (3.1). 
Then the BLUE of the population μ is given by: 
 

2

2
1

22

2
1

ˆ

m
i

i
i i

Blue m
i

i i

c y

c
σμ

σ

=

=

=



                (3.2) 

with variance 

( )
2

22

2
1

ˆ
Blue m

i

i i

Var
c

θμ

σ=

=


                (3.3) 

 
where μ = b θ  and b = XE 1=θ . 

The BLUE of μ using MERSS is given 
by: 

2
1 2

2 21 2
1 11 2

2 22
1 2
2 2

1 11 2

ˆ

m m
i i

i i
i i mi i

MEBlue m m
i i

i i mi i

c cy y

c c
σ σμ

σ σ

= = +

= = +

+

=
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 (3.4) 

and 

( )
2 2

2 2 22 2
1 2

2 2 2
1 1 11 2

ˆ
MEBlue m m m

i i i

i i i mi i i

Var
c c c

θ θμ

σ σ σ= = = +

= =
  + 
  

  
 

(3.5) 
 
Comparing the BLUE estimator based on 
MERSS with the sample mean based on SRS in 

case of uniform Exp(θ ) and U(0, θ  )  
distributions. The first is skewed to the right 
with mean θ and the second is symmetric about 

its mean 
2

θ
. So, the BLUE's are the same as 

given in (3.2). The estimators are unbiased and 
therefore are compared using their variances for 
m = 2… 10. The results are summarized in 
Tables (3) and (4). Similar conclusions to those 
presented for Tables (1) and (2) can be given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Saving by using MERSS to estimate the 
population mean 

Measuring the units of a sample costs 
money, time, and effort. The previous tables 
show that the BLUE for estimating the 
population mean μ under MERSS is more 
efficient (less variance) than the sample mean of 
SRS, which is usually used for estimating μ. 

Therefore, μ̂
MEBlue

 will be as good as Χ m2
 by 

using a smaller number of observations which 
will result in saving time, money and effort. 
Table (5) shows the smallest 2m such that the 
variance of the BLUE under MERSS using 2m 
observations is smaller than the variance of the 
sample mean of SRS using a specified sample 
size in case of the normal, logistic, uniform, and 
exponential distributions. The first two 

Efficiency of μ̂
MEBlue

with respect to 
2mΧ  

 

Table 3 
 

Table 4 

 
Exp(θ )

  
U(0, θ )

m ( )2
,ˆ mMEBlue

eff μ Χ  m ( )2
,ˆ mMEBlue

eff μ Χ  

2 1.200  2 1.331 
3 1.380  3 1.815 
4 1.540  4 2.264 
5 1.690  5 2.955 
6 1.820  6 3.574 
7 1.950  7 4.593 
8 2.070  8 5.713 
9 2.190  9 6.935 
10 2.300  10 8.261 



ABU-DAYYEH & AL-ROUSAN 
 

271 
 

distributions are location parameter families of 
distributions while the other two are scale 
parameter families. 

Table (5), shows how the BLUE, under 
MERSS for estimating the population mean, 
requires a smaller number of observations than 

Χ m2
based on SRS. This indicates a reduction 

in the sample size required for estimating the 
mean. As m increases then the savings will be 
greater for all the cases studied. According to 
Table (5), the savings in sample sizes range from 

0% to 70%. For example, μ̂
MEBlue

based on 12 

observations is better than Χ m2
based on 40 

observations in the case of U (θ , 1+θ ) for 
estimating the mean, resulting in saving 70% of 
the sample size from using the MERSS 
compared to SRS. 
 

Conclusion 
 
If ordering the data can be done more easily than 
quantifying it, then the BLUE under MERSS 
can be used instead of the mean of SRS for 
estimating the population mean because the 
BLUE under MERSS provides better results 
than the mean of SRS with fewer numbers of 
observations. 
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Table 5: Efficiency of the Smallest Number of Observations for MERSS Compared to 
the SRS of Size 2m 

SRS MERSS 

2m ( )1,θN  ( )1,θL  ( )1,θExp  ( )θExp  ( )1, +θθU  ( )θ,0U  

2 2 2 2 2 2 2 
4 4 4 4 4 4 4 
6 6 6 6 6 6 6 
8 6 6 8 6 6 6 

10 8 8 8 8 6 6 
12 8 10 10 8 8 8 
14 10 10 10 10 8 8 
16 10 12 10 10 8 8 
18 12 12 12 12 10 10 
20 12 14 12 12 10 10 
22 14 14 14 14 10 10 
24 14 16 14 14 10 10 
26 14 16 16 14 10 10 
28 16 18 16 16 10 10 
30 16 20 16 16 12 12 
32 16 20 18 16 12 12 
34 18 21 18 18 12 12 
36 18 21 18 18 12 12 
38 19 22 20 18 14 12 
40 19 22 20 20 14 12 
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Bayesian Inference on the Variance of Normal Distribution 
Using Moving Extremes Ranked Set Sampling 

 
Said Ali Al-Hadhrami Amer Ibrahim Al-Omari 

College of Applied Sciences, Nizwa, Oman  Al al-Bayt University, Mafraq, Jordan 
 

 
Bayesian inference of the variance of the normal distribution is considered using moving extremes ranked 
set sampling (MERSS) and is compared with the simple random sampling (SRS) method. Generalized 
maximum likelihood estimators (GMLE), confidence intervals (CI), and different testing hypotheses are 
considered using simple hypothesis versus simple hypothesis, simple hypothesis versus composite 
alternative, and composite hypothesis versus composite alternative based on MERSS and compared with 
SRS. It is shown that modified inferences using MERSS are more efficient than their counterparts based 
on SRS. 
 
Key words: Moving extremes ranked set sampling (MERSS), confidence interval, test hypothesis, 
Bayesian approach. 
 
 

Introduction 
 
Ranked set sampling (RSS) for estimating a 
population mean was suggested by McIntyre 
(1952) as a cost efficient alternative to simple 
random sampling (SRS) if the units of a sample 
can be easily ranked according to the variable of 
interest rather than actual measurements. The 

RSS involves randomly selecting 2m  units from 
the population and randomly allocating them 
into m sets, each of size m. The m units of each 
sample are ranked visually (or by any 
inexpensive method) with respect to the variable 
of interest. From the first set of m units, the 
smallest unit is measured. From the second set 
of m units, the second smallest unit is measured, 
the process continues until the largest unit is 
measured from the mth set of m units. Repeating 
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the process r times results in a set of size mr 
from initial m2r units. 

Takahasi and Wakimoto (1968) 
provided the mathematical theory for RSS. 
Muttlak (1996) proposed pair ranked set 
sampling instead of RSS, and Samawi, et al. 
(1996) suggested using extreme ranked set 
sampling to estimate the population mean. 
Muttlak (1997) also suggested using median 
ranked set sampling. Al-Saleh and Al-Kadird 
(2000) considered double ranked set sampling 
(DRSS). Al-Saleh and Al-Omari (2002) 
generalized DRSS to multistage RSS. Muttlak 
(2003) proposed quartile ranked set sampling. 
Weighted modified RSS was put forward by 
Muttlak and Abu-Dayyeh (2004). 

Al-Odat and Al-Saleh (2001) introduced 
the concept of varied set size RSS. They 
investigated this modification non-
parametrically and found that the procedure can 
be more efficient than the simple random 
sampling technique. Al-Saleh and Al-Hadhrami 
(2003a) considered the work of Al-Odat and Al-
Saleh (2001) and investigated parametrically the 
mean of exponential distribution; they coined 
their method of moving extremes ranked set 
sampling (MERSS). Investigation of the mean of 
the normal distribution under MERSS was 
considered by Al-Saleh and Al-Hadhrami 
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(2003b). They showed that the suggested 
estimators of the population mean are unbiased 
and more efficient than those based on SRS. 
Abu-Dayyeh and Al-Sawi (2007) studied the 
scale parameter of exponential distribution based 
on MERSS. (For more about RSS see Chen, et 
al., 2004; Al-Saleh & Al Ananbeh, 2007; Al-
Omari & Jaber, 2008; Al-Nasser, 2007; Tseng & 
Wu, 2007; and Balakrishnan & Li, 2008.) 
 

Methodology 
 
The MERSS General Process 

The MERSS can be described as 
follows: 
 

Step 1: Select m  random samples sized 1, 2, 
3,…, m , respectively. 

 
Step 2: Identify the maximum of each set by 

eye or by some other inexpensive method, 
without actually measuring the 
characteristic of interest. 

 
Step 3: Accurately measure the selected 

judgment identified maxima. 
 
Step 4: Repeat Steps 1, 2, 3 but for the 

minimum. 
 
Step 5: Repeat the above steps r  times until 

the desired sample size, 2n rm=  is 
obtained. The sample of these units is 
called moving extremes ranked set sample 
(MERSS). 

 
For one cycle, let 
 

: 1: 1 2: 2

1:1 1: 1: 1 1: 2 1:1

, , ,...,

, , , ,...,
m m m m m m

m m m

X X X
X Y Y Y Y

− − − −

− −

  
 
  

 

 
be a MERSS from a normal distribution mean 

μ  and variance 2σ . If judgment ranking is 

perfect, then for 1, 2,..., ,i m=  :i iX  has the same 

density as the ith order statistic of a SRS of size 
i  from ( ; )f x θ , i.e., iiX :  has the density: 

 

[ ] 1

: ( ) ( ; ) ( ; ) .
i

i if x if x F xθ θ −=        (2.1) 

 
In addition, 1:iY  has the same density as the first 

order statistic of a SRS of size i  from ( ; )f y θ , 

i.e., 1:iY  has the density 

 

[ ] 1

1: ( ) ( ; ) 1 ( ; ) ,
i

if y if y F yθ θ −= −   (2.2) 

 
and the likelihood function of θ  is given by 
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i i

i I i i i i
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=
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Assuming the random variable X  is normally 

distributed with mean μ  and variance 2σ , then 
the probability density function (pdf) of X is 
given by 
 

( )
( )2

221
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1
,

x

Xf x e

x

θ
σθ

σ π
θφ

σ σ

−
−

=

− =  
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(2.4) 
 
and the cumulative distribution function is 
 

( )
( )2

221
;

2

ux

X
xF x e du

θ
σ θθ

σσ π

−
−

−∞

− = = Φ  
  , 

(2.5) 
 
where φ  and Φ  are the density and cumulative 
distribution of the standard normal distribution, 
respectively. 
 
Generalized Maximum Likelihood Estimator 
(GMLE) 

In the case of estimating the population 
variance, the information number is proportional 

to 21/σ  (see Al-Hadhrami, et al., 2009), 
allowing the Jeffery prior for σ  to be written as 
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( ) 1 /π σ α σ . The posterior distribution for σ  is 
then given by 
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The log of both sides of (3.1) is 
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,  (3.2) 

 
where C  is a constant. The first derivative of 
(3.2) is given by 
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Let 0
L
σ

∗∂ =
∂

, then the likelihood equation is 

defined as 
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which may be written as 
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(3.3) 
 
If the second derivative of the likelihood with 
respect to σ  is negative at the solution of 

0
L
σ

∗∂ =
∂

, then this solution is the GMLE of .σ

The second derivative of the log likelihood with 
respect to σ  is 
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The value of 1T  at the solution of Equation (3.3) 

is 
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which are both negative. Therefore,  



BAYESIAN INFERENCE USING RANKED SET SAMPLING 
 

276 
 

2

2
0

L
σ

∗∂ <
∂

. Thus, the GMLE of σ  is the solution 

of Equation (3.3) and the GMLE of variance is 
the square of this solution. Note that the GMLE 
of σ  using SRS, when μ  is known is given by: 
 

2

1

( )
ˆ

1

n
i

SRS
i

x
n

μσ
=

−=
+ .              (3.5) 

 
As shown in Table (1), the GMLE using 
MERSS is more efficient than its counterparts 
based on SRS, and the efficiency increases as 
the sample size increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Confidence Interval 

From the sampling distribution of the 
variance, Table 2 shows the interval width (IW), 
lower bound (LB), upper bound (UB), and the 
approximated two-sided 95% confidence 
intervals (CI) for the variance of the normal 
distribution (3,1)N  using both MERSS and 
SRS methods. Table 3 shows the approximated 
two-sided 95% confidence intervals (CI) for the 
variance of (4,4)N  based on MERSS and SRS. 

Based on Tables 2 and 3, it may be 
noted that the intervals using MERSS are shorter 
than that those based on SRS. Also, the width of 
the intervals becomes shorter as the set size 
increases. The width also depends on the 
population variance; the smaller the variance, 
the smaller the width. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Testing Hypothesis 

Once a confidence interval about the 
parameter is obtained, a test hypothesis about 
this parameter can be constructed. For a two-
sided hypothesis the two-sided confidence 
interval may be used and the upper or lower 

Table 1: The Efficiency of
/SRS MERSSeff MSE MSE= , ~ ( ) 1/σ π σ σ∝ , 

and ~ (0,1)X N 

m SRSMSE  MERSSM  eff 

3 0.2721 0.2405 1.1313 

5 0.1740 0.1230 1.4150 

7 0.1304 0.0769 1.6951 

11 0.0820 0.0375 2.1848 

14 0.0661 0.0251 2.6261 
 

Table 2: 95% Confidence Intervals for 2σ  of 

the Normal Distribution, (3,1)N , Using 
MERSS and SRS 

CI for 2σ  using SRS 

m IW LB UB 

3 2.3216 0.1676 2.4892 

7 1.5719 0.3810 1.9530 

10 1.2898 0.4701 1.7599 

15 1.0330 0.5456 1.5787 

CI for 2σ  using MERSS 

m IW LB UB 

3 1.8525 0.3952 2.2477 

7 1.1120 0.4939 1.6059 

10 0.8358 0.6188 1.4546 

15 0.5628 0.7352 1.2981 
 

Table 3: 90% Confidence Intervals for the 
Variance of the Normal Distribution, 

(4,4)N , Using MERSS and SRS with MLE 

CI for 2σ  using SRS 

m IW LB UB 

3 8.0225 0.9010 8.9235 
7 4.4965 2.0174 6.5139 

10 3.9709 2.2040 6.1749 
15 3.2805 2.4799 5.7605 

CI for 2σ  using MERSS 

m IW LB UB 

3 6.3062 1.9864 8.2926 
7 3.2390 2.5284 5.7675 

10 2.3814 2.8574 5.2388 
15 1.8909 3.1147 5.0056 
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bound confidence interval is for one-sided 
hypotheses with same significance level. 

Consider the test hypothesis about the 
variance 2σ  of the normal distribution with 
known mean based on Bayesian paradigm when 
the sample is drawn using MERSS. The decision 
is based on the Bayes factor which is of the form 
 

0 1 0 1

0 1 1 0

/

/

p p pB
p

π
π π π

= = ,               (4.1) 

where 
 

0 0( )pπ θ= ∈Θ : Prior probability for 

0θ ∈Θ . 

1 1( )pπ θ= ∈Θ : Prior probability for 

1θ ∈Θ . 

( )0 0 |P P xθ= ∈Θ : Posterior probability 

for 0θ ∈Θ . 

( )1 1 |P P xθ= ∈Θ : Posterior probability 

for 1θ ∈Θ . 

0 1/π π : Prior odds on 0H  versus 1H . 

0 1/p p : Posterior odds on 0H  versus 1H . 

 
Two Simple Hypotheses 

Consider testing 2 2
0 0:H σ σ=  against 

2 2
1 1:H σ σ= , where 2σ  is the variance of a 

normal distribution with known mean, μ . The 
Bayes factor in this case is 

( ) ( )2 2
0 1, | / , |B p x y p x yσ σ=  which can be 

written for a sample from a normal distribution 
using MERSS as 
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(4.2) 

To test the null hypothesis, 1,000 
numerical comparisons were made between 
MERSS and SRS. Results for tests of rejection 
of the true null hypothesis are summarized in 
Tables 4 and 5 for two normal distributions 

(4,1)N  and ( 6,3)N − , respectively, using SRS 
and MERSS methods.  

Tables 4 and 5 show that the error in 
rejecting the null hypothesis using MERSS is 
less than the error when using SRS; the error in 
rejecting the true hypothesis also becomes 
smaller as the sample size increases. In addition, 
the error becomes smaller as the alternative 
moves farther from the value assumed for the 
null hypothesis. 
 
Simple Null Hypothesis versus Composite 
Hypothesis 

Next a simple hypothesis was tested 
against a composite hypothesis about the 
variance of normal distribution using MERSS. 

That is 2 2
0 0:H σ σ=  was tested against 

2 2
1 1:H σ σ≠  when the population mean was 

known. The following Bayes factor was used 
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Also, 
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therefore, the Bayes factor can be written as: 
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Table 4: Comparison Between MERSS and SRS When a Simple Hypothesis 
about the Variance of the Normal Distribution, (4,1)N  was Tested 1,000 Times 

Number of Rejections of the Null Hypothesis 

1H  
3m =  6m =  15m =  

MERSS SRS MERSS SRS MERSS SRS 

1.2 287 302 252 284 111 218 

1.4 223 237 123 163 14 85 

1.6 151 154 62 92 0 40 

1.8 88 131 28 75 0 7 

2 67 79 16 40 0 6 

2.2 43 69 6 18 0 2 

2.4 37 47 5 15 0 0 
 

Table 5: Comparison Between MERSS and SRS When a Simple Hypothesis about 
the Variance of the Normal Distribution, ( 6,3)N −  was Tested 1,000 Times 

Number of Rejections of the Null Hypothesis 

1H  
6m =  10m =  15m =  

MERSS SRS MERSS SRS MERSS SRS 

3.2 378 396 363 380 327 346 

3.4 317 321 243 307 167 290 

3.6 245 271 172 231 107 228 

3.8 213 251 122 186 54 159 

4 173 205 83 172 23 109 

4.2 119 141 59 129 8 79 

4.4 99 127 32 95 2 52 

4.6 82 120 22 71 1 32 

4.8 53 91 6 63 0 31 
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Using Monte Carlo methods, an approximation 
for the denominator of the Bayes factor is given 
by 
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(4.5) 
 

If the underlying distribution is ( )2,1N , 

assuming that 0 1 0.5π π= = , the test is 

executed 1,000 times using computer simulation 
using SRS and MERSS for m = 5, 10, 15; results 
are presented in Table 6 based on the constant 
prior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Table 6, it is observed that the error in 
testing the hypothesis using MERSS is less than 
the error when using SRS, also the error 
becomes smaller as sample size increases. 
 
Composite Null Hypothesis versus Composite 
Alternative Hypothesis 

If the null and alternative hypotheses are 
composite, the Bayes factor 
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may be used, where 
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with 
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where 
 

( ) ( )2 1, ( 1) i

i

k i
i ka i k i −= −  , 0,1,2,...., 1ik i= − . 

 
Suppose that the hypothesis to be tested is a one-

sided hypothesis 2 2
0 0:H σ σ≤  versus 

2 2
1 0:H σ σ> . For example, let 0 1 0.5π π= = , 

5,10,15m = , 2
0 : 9H σ ≤  versus 2

1 : 9H σ > , 

and assume that the hypothesis is tested 1,000 
times. Table 7 shows the simulation comparison 
between MERSS and SRS based on Bayes 
factors. 

Table 7 indicates that the error in 
rejecting the null hypothesis using MERSS is 
less than using SRS based on the same sample 
size. Also, the error decreases as the sample size 

increases. Furthermore, because 2
0 : 9H σ ≤ , 

the error decreases as the true value moves 
farther from 9. 
 

Table 6: Numerical Comparison Between 
MERSS and SRS when Testing Hypothesis 

about the Variance of the Normal Distribution 

Method 

Number of rejections the null 
hypothesis while it is true 

5m =  10m =  15m =  

MERSS 300 168 119 

SRSS 384 278 206 
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Conclusion 
 
Bayesian inferences regarding the population 
variance of the normal distribution were 
considered based on the MERSS method. 
Results indicate that the confidence intervals 
based on MERSS are shorter than those from 
SRS. These intervals will be shorter as the set 
size and the width increases, and they depend on 
the population variance. For the hypothesis 
testing considered in this study, it was shown 
that the error in rejecting the null hypothesis 
using MERSS is less than the error observed 
when using SRS. 
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Estimating Task Duration in PERT using the Weibull Probability Distribution 
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The Weibull probability distribution can be used as an alternative model for task time estimates in the 
PERT estimating methodology. It has the same advantages as the traditional beta distribution for this 
application. It has additional benefits, however, that make it a preferred option. 
 
Key words: PERT; Weibull Probability Distribution; Beta Probability Distribution; Pearson Skew Plot. 
 
 

Introduction 
 
Malcolm, Roseboom, Clark, and Fazar (1959) 
published the project time estimating 
methodology that they developed for Project 
PERT (Program Evaluation Research Task) 
under the Polaris Ballistic Missile Program. The 
development of their methodology was 
motivated by the fact that there was little or no 
historical data available upon which to base 
estimates of task durations. In subsequent years, 
this methodology has been applied in wide 
variety of fields. However, various authors have 
identified five significant issues with PERT 
(e.g., Cottrell, 1999; Premachandra, 2001; 
Pleguezuelo et al., 2003): 
 
1. Accurately estimating the optimistic, most 

likely and pessimistic durations of an 
activity is, in general, difficult. 

2. The calculated mean and variance of the 
specific activity durations are estimates of 
the actual mean and variance. 
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3. The beta distribution is assumed to provide 

an adequate model for activity durations. 
4. PERT focuses on the critical path when 

computing project completion time 
probabilities. 

5. The methodology requires that multiple time 
estimates be developed. These estimates can 
be costly. 

 
Focus on items two and three in the 

above list. Specifically, consider the Weibull 
distribution as an alternative to the traditionally 
used beta distribution. It is shown, among other 
advantages, that the Weibull distribution does 
not require approximations for the mean and 
variance, as does the beta distribution. 
 
Beta Probability Distribution 

The beta probability distribution has 
traditionally been used as the distribution of 
choice in PERT analyses based on the following 
advantages (Fente, Schexnayder, & Knutson, 
2000; Lu & AbouRizk, 2000): 
 
1. It is continuous. 
2. It has finite endpoints. 
3. It has a defined mode between its endpoints. 
4. It is capable of describing both skewed and 

symmetric activity time distributions. 
 
For the current discussion, consider stated 
advantage two. The second advantage makes 
sense from a practical point of view in that every 
activity must have a maximum completion time. 
The difficulty with this stated advantage, 
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however, is determining the value of this 
maximum. For example, the truck travel time 
study described by Fente, et al. (2000). The 
maximum travel time is computed as two times 
the mode. This assumption is supported by the 
reasoning that management would notice the 
slow moving truck and take actions necessary to 
reduce its travel time. Undoubtedly, this type of 
assumption is necessary when a decision maker 
is constrained to using the beta probability 
distribution. However, it may be more 
reasonable to consider a distribution that can 
accommodate a longer tail probability than is 
allowed by the beta distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Weibull Probability Distribution 
The Weibull probability distribution can 

accommodate this longer right tail probability. 
Additionally, the Weibull distribution has 
advantages one, three, and four as listed above 
for the beta probability distribution. 

Figure 1 shows a Pearson skew plot 
(Pearson, 1920; Pearson & Tukey, 1965) with 
the Weibull probability distribution plotted. The 
Type I areas shown in Figure 1 can be 
represented by the beta probability distribution. 
Figure 1 shows that the Weibull distribution can 
approximate distributions ranging from close to 
the normal to the exponential, can accommodate  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Pearson’s Skew Curves Plot Showing the Weibull Distribution 
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distributional skewness (β1),  and  can  
approximate  activity duration models with fatter 
distributional tails (β2) than can be 
accommodated by the beta probability 
distribution. Note that the Weibull probability 
distribution divides the triangular Type I (∩ 
shaped) region. It is expected that the Weibull 
probability distribution can satisfactorily 
describe those Type I (∩ shaped) models that are 
coincident with the beta models located in this 
region. Further research may also show that the 
Weibull probability distribution can serve as a 
proxy for the entire Type I ( ∪  shaped) region. 
An additional advantage of the Weibull 
distribution is that it should also satisfactorily 
model some Type III, IV, V, and VI 
distributions. This would be useful considering 
the review by Maio, et al. (2000), which shows 
that the beta probability distribution is not the 
best model for all construction operations. 

Equations (1) – (5) show the Weibull 
probability density function, reliability, mode, 
variance, and mean formulas, respectively, from 
Ebeling (1997): 
 

( )( ) ( )1
( ) expf x x x

β ββ θ θ θ−  = −   (1) 

 

( )( ) exp
βθ = − R x x                (2) 

 

( )1
mode 1 1  for 1M βθ β β= = − >   (3) 

 

( ) ( ){ }22 2 1 2 1 1σ θ β β= Γ + − Γ +    (4) 

 

( )0 1 1mean xμ θ β= = + Γ +          (5) 

 
where β is the shape parameter, θ is the scale 
parameter, Γ is the gamma function, and x0 
shifts the mean on the x-axis. 
 

Methodology 
 
Let xa be the lower expert judgment percentile 
estimate, xb be the upper expert judgment 
percentile estimate, and M be the most likely 
expert judgment estimate. Equation (2) can, 
therefore, be rewritten to solve for xa and xb, 

with the results as Equations (6) and (7), 
respectively: 

( ) 1
ln 1 ( )a ax R x

βθ=                  (6) 

 

( ) 1
ln 1 ( )b bx R x

βθ=                  (7) 

 
The traditional form of the Weibull 

distribution has defined left and right bounds of 
zero and infinity, respectively. As a result, only 
two of the three expert opinion estimates are 
required to calculate the distributional 
parameters. If xa and xb, as well as their 
respective percentiles, are known, then 
Equations (6) and (7) can be used to calculate 
the shape parameter β in Equation (8): 
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 (8) 

 
Substituting the calculated value of β into 
Equation (6) or (7) allows the scale parameter to 
be calculated. 

If xa or xb and also M are known, then 
Equation (6) or (7) and also Equation (3) can be 
used to calculate the shape parameter β as in 
Equation (9): 
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 −
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  (9) 

 
Finally, the scale parameter θ can be calculated 
using Equation (6) as in Equation (10): 
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( )1
1 1M βθ β= −                (10) 

 
An additional advantage to using the 

Weibull distribution exists. Specifically, a user 
is allowed to use whichever percentiles he/she 
feels are the most appropriate. Moreover, not 
only is a user now able to use percentiles other 
than the 5 and 95 percentiles with equal 
accuracy, the percentiles need not be symmetric; 
i.e., the 5 and 90 percentiles could be used. 

Consider the situation in which there is a 
zero probability of an event occurring before a 
certain threshold time. For the Weibull 
distribution, a threshold value, x0, can be 
included as in Equations (11) – (14) from 
Ebeling (1997): 
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( )( )0 0( ) expR x x x x
βθ − = − − 

     (12) 

 

( )1

0mode 1 1  for 1M x βθ β β= = + − >    

(13) 
 

( ) 1

0ln 1 ( )x R x x
βθ= +             (14) 

 
The equation for the variance remains 
unchanged. The addition of a threshold value 
does not change the basic shape of the 
distribution, only its location on the x-axis. 
Because the left boundary is no longer known 
and there is an additional parameter, additional 
information needs to be incorporated. 

The calculation of the ratio 
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A

B A

M x
x x

−
−

 

 
in terms of its respective components from 
Equations (13) and (14) is shown in Equation 
(15): 
 

( )
( ){ }

( )
( ){ }

1

0

1

0

1

0

1

0

1 1

ln 1 ( )

ln 1 ( )

ln 1 ( )

A

B A

a

b

a

M x
x x

x

x R x

x R x

x R x

β

β

β

β

θ β

θ

θ

θ

− =
−

+ −

− +   

+   

− +   

   (15) 

 
The threshold value cancels, as do the scale 
parameters, with the result in Equation (16): 
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The shape parameter β can be computed using a 
solver program (e.g., Microsoft Excel’s Solver® 
function). Because the threshold value is 
unknown, the equation for the mode cannot be 
used to calculate the scale parameter θ as in 
Equation (10). However, the variance constant K 
can be calculated and used to calculate the 
variance. 

Using the calculated shape parameter β 
and a scale parameter θ equal to 1.0, the 
temporary variance is calculated as in Equation 
(17): 
 

( ) ( ){ }
2

22 1 2 1 1

temp

temp

σ

θ β β

=

Γ + − Γ +  
 (17) 

 

where 1.tempθ =  Next, the temporary x-axis 

values for the required lower and upper 
percentiles are calculated using Equations (6) 
and (7). The variance constant K can now be 
calculated as shown in Equation (18): 
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( )  b temp a temp tempK x x σ= −           (18) 

 
The variance based on the actual data can now 
be calculated using Equation (19): 
 

( )( )22
b ax x Kσ = −                   (19) 

 
With the variance known, the actual scale 
parameter θ can be calculated as shown in 
Equation (20): 
 

( ) ( )[ ]{ }
( ) ( )[ ]{ }

22 2

22

1 2 1 1

1 2 1 1

σ θ β β

θ σ β β
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 = Γ + − Γ +
  (20) 

 
With β and θ known, the threshold value can be 
calculated using the most likely value M as in 
Equation (21): 
 

( )
( )

1

0

1

0

mode 1 1

1 1

M x

x M

β

β

θ β

θ β

= = + −

 = − −
     (21) 

 
All of the parameters for the required Weibull 
distribution in Equation (11) can now be 
calculated. 
 
Example 

As an example of these parameter 
calculations, consider the truck travel example 
as shown in Fente, et al. (2000). The travel 
distance is 3.7 – 3.9 km. The traditional PERT 
information is as follows. The minimum 
possible travel time is based on the physical 
characteristics of the project site and the truck 
manufacturer’s specifications and is equal to 
7.67 minutes. The most likely travel time is 9.21 
minutes. The maximum travel time is 18.42 
minutes. Additionally, it is given that the 75th 
percentile estimate is 11.05 minutes. Fente, et al. 
(2000) report that a beta probability distribution 
with parameters α = 1.898 and β = 6.372 is a 
reasonable model for the truck travel time 
distribution. 

To use the methodology presented in 
this paper for the offset Weibull probability 
distribution, only two percentile estimates and 

the mode estimate are required. Because the 75th 
percentile estimate is explicitly stated, it is an 
obvious choice for one of the required estimates. 
The required second boundary estimate requires 
an assumption with regard to the percentile that 
it represents. The lower boundary of 7.67 
minutes was selected because it is a finite 
boundary. Specifically, the lower boundary is 
assumed to represent the 0.01 percentile. As a 
result, the following parameters were calculated 
in Table 1. Figure 2 shows the resulting Weibull 
distribution plotted with the resulting beta 
distribution as derived in Fente, et al. (2000). 
The two curves converge together as the value 
of the lower percentile converges to zero. 

Because the proposed Weibull model 
and the resulting beta model, as presented by 
Fente, et al. (2000), are both estimates of the 
unknown underlying distribution, it is not useful 
to compare the fits via a goodness-of-fit test. 
However, visually it seems that either model 
could satisfactorily model the underlying 
distribution. So why consider the Weibull model 
over the beta model? First, the Weibull model 
required only three estimates, while the beta 
model required four. Second, the Weibull model 
can easily be developed in a Microsoft Excel® 
spreadsheet. Finally, when compared to the 
traditional PERT methodology, the Weibull 
model does not require an estimate of the 
variance -- this value is calculated exactly (as is 
the mean value). Moreover, with regard to this 
last point, the only errors associated with the 
Weibull model relate to the accuracy of the 
original estimates and whether the Weibull 
model can satisfactorily describe the underlying 
distribution. 
 

Conclusion 
 
If an activity’s duration time starts at t=0, and 
one can estimate at least two of three estimates 
(xa, xb, and M) of an unknown distribution, then 
one can estimate the unknown distribution with 
a Weibull probability distribution. This approach 
could be beneficial in situations where two of 
the three estimates (lower percentile, most 
likely, upper percentile) can be assumed to be 
known with greater certainty than the third 
estimate. If all three estimates are assumed 
known with equal certainty and/or an activity’s 
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Table 1: Results of Fitting the Presented Weibull Model to the Data in Fente, et al. (2000) 
Parameter Eq. Substituted Values Result 

β (16) 
M = 9.21, xa = 7.67 

xb = 11.05, R(xa) = 1-0.01 
R(xb) = 1-0.75 

1.6900 

xa temp (6) θ = 1, R(xa) = 1-0.01, β = 1.6900 0.0657 

xb temp (7) θ = 1, R(xb) = 1-0.75, β = 1.6900 1.2132 

σ2
temp

 
(17) θ = 1, β = 1.6900 0.2953

 

K
 

(18) 
xb temp = 1.2132, xa temp = 0.0657 

σ2
temp = 0.2953 

2.1118
 

σ2

 
(19) xb = 11.05, xa = 7.67, K = 2.1118 2.5618

 

θ
 

(20) σ2 = 2.5618, β = 1.6900 2.9456
 

x0

 
(21) M = 9.21, θ = 2.9456, β = 1.6900 7.4764

 

μ (5) x0 = 7.4764, θ = 2.9456, β = 1.6900 10.1056
 

 

Figure 2: Plot of the Truck Travel Time from Fente, et al. (2000) and the Weibull Model 
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duration time does not begin at t = 0, then it is 
advisable to use the shifted Weibull distribution. 

The objective of this article was to 
provide an alternative approach to the traditional 
Project PERT methodology using the Weibull 
probability distribution. It was shown that by 
using the Weibull probability distribution it is 
not necessary to estimate a future activity’s 
mean or variance. These values are calculated 
exactly and have only the uncertainty inherent in 
the original subjective estimates and the 
uncertainty as to whether the Weibull 
probability distribution accurately models the 
underlying distribution of future activity times. 
The ease of use and the reduction in uncertainty 
with the proposed Weibull model will benefit 
both practitioners and researchers. 

The beta distribution unarguably is more 
robust within the Pearson Type I ( ∪  shape) 
region than the Weibull distribution. However, 
as Lau, Lau, and Zhang (1996) have pointed out, 
there is a practical application for distributional 
models that are more robust to the third and 
fourth moments. The Weibull distribution 
satisfies this need. The true test with regard to 
the applicability of the Weibull distribution will 
be its ability to accurately model a broad range 
of actual problems. 
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Industrialization in Animal Agriculture: A Kalman Filter Analysis 
 

Oya S. Erdogdu Levent Ozbek 
Ankara Unıversıty, Turkey 

 
 
Studies discussing the effects of technological developments on (animal) agricultural production argue 
that the effective usage of chemicals and genetic engineering increase control over production processes, 
which in turn decreases seasonality (one significant factor defining agricultural production) significantly 
and brings standardization to production. Studies on broilery also show that production is not limited by 
nature determined seasons. Supply side changes accompanied by changes in demand have led to more 
healthier, standardized products. Using tools of economics and statistics, this study documents this 
transformation in animal agricultural production of beef, pork and milk. Results indicate decreasing 
seasonality, thus the industralization of animal agriculture. 
 
Key words: Animal agriculture,seasonality, Kalman Filter. 

 
 

Introduction 
 
Agricultural production today is far different 
than it was 50 years ago. The social conditions 
and living standarts in the 21st century has led 
consumer preferences to support more 
standardized, health concerned, and user friendly 
agricultural products. This change from the 
demand side opened the door to big corporations 
who are are capable of producing different, 
standardized products to satisfy demand. As 
opposed to small family producers, these big 
corporations easily deal with economies of 
scope, economies of scale, market power and 
risk management problems, by using techonolgy 
intensive, manufacturing-type production 
techniques. These demand and supply side 
changes have replaced small family production 
with large corporations and have led to the 
industralization of agricultural production. This 
process is called industralization due to the 
intensive usage of high technology which 
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increases control over nature and nurture, and 
standardization which increases size and quality 
of production. 

Although it is important to analyze the 
demand and supply side factors that have caused 
significant changes in the sector, this article only 
attempts to document the decreasing seasonality 
in pork, beef and milk production that is the 
result of increased control achieved by using 
intensivehigh technology production techniques.  
 
Control over nature and nurture 

Allen and Lueck (2000) argued that 
nature is “the main feature that distinguishes 
farm organization from ‘industrial’ 
organization” (p. 14). Due to its very core of 
existence, agricultural production is defined and 
restricted by the forces of nature. Nature 
determines the properties, types, sequence, and 
timing of the stages of production, creating a 
certain amount of stability and predictability in 
the process. Nature determines the time to plant, 
harvest, breed, and furrow, and so creates a type 
of certainty in production. For example, in Iowa, 
USA, April-June is the time to sow, whereas 
September-November is the time to harvest, and 
spring has traditionally been the time to furrow 
for pigs. These are subject to weather conditions 
and so, contrary to standardization in 
manufacturing process, it can be different for 
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different parts of the world and for different 
products.  

Nature not only governs certainty but 
also uncertainty in agricultural production. The 
random forces of nature – unexpected changes in 
weather conditions, blizzards, and storms –
create unpredictable and unpreventable shocks 
to the system. 

The forces of nature and the concept of 
seasonality it creates, is significant to understand 
in the agricultural production process. For a 
producer of an agricultural product, a season is 
the specific period of the year during which a 
given activity takes place. Hence, shaped by the 
forces of nature, seasonality determines the 
stages, timing and time length of a specific 
process. As can be expected, this creates cycles 
in the production over a given period of time. As 
opposed to analyzing the properties or its effects 
of (decreasing) seasonality on production or 
managerial decisions, this article documents the 
decreasing seasonality in agricultural production 
over the last 50 years. 

Mobility of livestock during growing 
stages allow it to be reared in controlled 
environments. Though seasonality is an issue for 
all types of agricultural production, compared to 
crop production, mobility of livestock allows a 
producer to exercise greater control over nature 
by using high-tech factory style production 
techniques. This article focuses on the effect of 
increased control over nature and nurture on 
animal production, specifically, beef, pork and 
milk. 

Technological advancements are the 
primary factor in decreasing seasonality; they 
have facilitated human control on biological 
processes and the production environment by the 
effective use of veterinary medicine and by the 
use of genetically improved products. Thus, 
intensive use of technolgy has increased control 
over the production environment and biological 
development processes and allows producers to 
implement modern manufacturing principles to 
create less risky, more elastic production 
environments to produce more consistent, feed 
efficient, special nutrution enriched products. In 
other words, with the ability to control nature, 
producers have gained higher flexibility to 
respond to changes in consumer demand and 
have had an increased ability to set and sustain a 

certain quality level and have given the ability to 
reduce risks concerning food safety and 
contamination. 

In general terms, the ability to control 
nature, and thus the genetic input, allows a 
producer to change the order in the system 
through mixture or separation. The method of 
mixture/separation can be used at the farm level, 
which leads to herd heterogeneity, or at the 
processing level, which leads to heterogeneous 
raw produce. The profit maximizing producer 
performs a cost/benefit analysis to decide on 
separating (at cost) or working with the mixed 
types they purchased to satisfy the strong 
demand for consistent, preparation-friendly 
products. 

On the cost side, the use of genetic 
engineering is subject to patent costs and costs 
associated with information and uncertainty. 
Patent costs being a large asset, are specific 
costs to achieve a genetic improvement of a 
given species. But more importantly, the 
biological improvement creates information 
costs due to uncertainty about the composition 
of the mixture or the uncertainty about the 
reaction of each type to stimulation. Moreover, 
these uncertainties create inefficiency in volume 
production, low quality and inconsistency in raw 
production, leading to unsatisfactory completion 
of the transformation process. However, besides 
these negative significant impacts on 
commercial gains, extensive use of controlled 
genetic inputs is expected to decrease costs and 
improve commercial gains. 

Given incentives, variations in inputs 
lead to variations in the performance of the 
product brought to market at the same time 
(intra-temporal inconsistency) and at different 
times. Therefore, inconsistency in production 
due to variations in input, like nutrition and 
environment, is decreased by greater control of 
the production environment. 

Confined production systems with 
increased control over the production 
environment such as improvements in nutrition, 
housing, handling equipment, and management 
have encouraged higher and more uniform 
supply. Factory–style corporate livestock 
farming, using veterinary medicines, healthier 
diets and indoor environmentally controlled 
sheds has satisfied the needs and improved the 
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health and production conditions of the animals. 
The result is a healthier, uniform, larger supply 
(Hurt, 1994). 

Thus, the ability to control nature and 
nurture leads to structural changes in animal 
production and decreasing seasonality with more 
uniform and standard products. The remainder 
of this article aims to document this 
transformation using different analytical and 
statistical tools. 
 
Data analysis 

The data on the monthly production of 
pork, beef, and milk were obtained from the 
United States Department of Agriculture 
(USDA) website. Monthly milk production data 
was obtained for the period 1930-2000 (except 
1960-1963), and monthly beef and hog 
production data are for the period 1944-1999 
(except 1982). 

The data series are monthly calculations 
from the first to the last day of the month. 
Monthly data was first normalized to 30 days per 
month to decrease noise in the system, in order 
to detect decreasing seasonality in production, 
the Herfindahl-Hirshman Index (HHI) was 
calculated, model stability/structural change 
tests were conducted and lastly the Kalman filter 
analysis was performed. 

Figure 1 shows the normalized monthly 
production shares, calculated for 12–year 
averages for each month for different time 
periods. The shares getting closer to each other 
indicate increasing smoothness, which is clearly 
observed in the production of pork and milk. 
However, for beef production the variability 
continues; this may be due to the definition of 
the beef data group. Data on beef production 
includes data on all kinds of meat production, 
such as cattle and sheep. Since every production 
has its own timing of structural transformation, it 
is difficult to capture structural change from that 
data group, which is also expected to be a very 
slow process. 

Figure 1 shows that the most dramatic 
change has occurred in milk production. The 
significant importance of summertime 
production in the 1930’s is replaced with rather 
constant shares in 2000, indicating relatively 
stable production. 
 

Methodology 
 

In order to verify the industrialization process of 
animal agricultural production statistically, the 
Herfindahl-Hirshman (HHI) index was 
calculated and, to analyze the structural change 
in the system, Chow, CUSUMSQ and ARCH 
LM statistics were calculated. 
 
Herfindahl-Hirshman Index (HHI) 

HHI, is a market structure analysis tool 
that measures the degree of concentration in an 
industry. It has an advantage over other 
concentration measures since it works with all 
firms in the market and takes into account the 
relative distributional shares of the market held 
by all firms.  

Based on the Jensen Inequality, the HHI 
is calculated using the sum of squares of the 
market shares of all firms. The HHI index is 
 


=

=
K

i
iwHHI

1

2000,10 , i = 1, …, K, 

 
where, iw  is the market share of the firm i.  
In this study HHI was used to measure the 
degree of spread of production over 12 months 
for beef, pork, and milk production. HHI was 
calculated for each year by summing up the 
square of each month’s share in total production; 
the 12-year averages of that sum were also 
calculated. Thus, for the time period 1945-1956 
the HHI index was calculated as: 
 

 
= =

=
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jisHHI , 

 
where s2

ij is the  ith monthly production share in 
the jth year: the calculation is slightly different 
from its original form. Since decimals were not a 
concern, the summation result was not 
multiplied by 10,000, but it was preferred to take 
the averages to minimize the noise in the system.  

Table 1 summarizes the calculation of 
the HHI for beef and pork averaged over the 
time periods: 1945-1956, 1958-1969, 1970-
1981, 1983-1994, and 1988-1999. The HHI for 
milk production was averaged over the time 
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Figure 1: Monthly U.S. Production Averages for Beef, Pork and Milk 
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Table 1: HHI Index Values 

HHI Beef HHI Pork HHI Milk 

1945-1956 
1958-1969 
1970-1981 
1983-1994 
1988-1999 

0.084035 
0.083530 
0.083536 
0.083542 
0.083534 

1945-1956 
1958-1969 
1970-1981 
1983-1994 
1988-1999 

0.086944 
0.084153 
0.083995 
0.083977 
0.082635 

1930-1941 
1941-1952 
1948-1959 
1963-1974 
1971-1982 
1981-1992 
1989-2000 

0.085029 
0.085543 
0.084893 
0.083811 
0.083591 
0.083453 
0.083416 

 



ERDOGDU & OZBEK 
 

293 
 

periods 1930-1941, 1941-1952, 1948-1959, 
1963-1974, 1971-1982, 1981-1992, and 1989-
2000. 

If each month of each year had equal 
shares of production, 1/12, the index takes the 

value:  
= =

=
1956

1945

12

1

2)08333.0(
12

1

j i
HHI = 0.0833. 

At the other extreme, if production was 
composed in only one month at each year – si,j = 
1 and sk,j = 0 for all k ≠ i, the index takes the 

value: 
=

=
1956

1945

1
12

1

j
HHI =1. 

As shown in Table 1, all indexes 
decrease over the time periods and move 
towards the value of 0.083. This indicates a 
change in the production process such that the 
production is spreading over the whole year 
equally. 
 
Model stability tests 

The decline in seasonality implies an 
underlying structural change in the production 
process and changing parameter values, which 
can be detected using the Chow, CUSUMSQ 
and ARCH LM statistics. The OLS regression 
analysis implicitly assumes that the coefficients 
do not change over time, however, Chow, 
CUSUMSQ and ARCH LM tests can detect the 
existence of time dependency in the model, if 
any are present.  

To test for structural change in our 
problem, the monthly production shares were 
regressed on a constant term and the monthly 
dummy variables: 

 

t
i

iit My εββ ++= 
=

11

1
0  (*) 

 
In order to prevent the dummy trap, 

11dummies were used instead of 12. The 
dummy for the month with less production share 
is excluded from the regression. Thus, for beef 
production the dummy for November was 
excluded, for pork production the dummy for 
October was excluded, and for milk production 
the dummy for March was excluded. 

The monthly production shares getting 
closer to each other is a satisfactory indicator of 

decreasing seasonality. Therefore, it was 
expected that a structural change had occurred 
and the coefficients of the model have changed 
over time. 

To document these changes, structural 
change statistics including Chow, CUSUMSQ 
and ARCHLM were calculated. To calculate the 
Chow test statistics, the time of structural change 
must be defined. However, the graphical 
analysis indicates a very slow change; no 
specific shock is given, thus the statistics for 
different time periods were calculated. For beef 
and pork production the statistics are calculated 
to determine if the coefficients of the regressions 
are different for the periods 1944-1961, 1962-
1998, 1944-1974, and 1975-1998. For milk 
production Chow statistics are calculated for the 
periods 1930-1961 and 1962-2000. These results 
are summarized in Table 2. 

Each Chow statistic for pork and milk 
production was greater than the critical value 
1.75 at the 5% significance level. Therefore, the 
null hypothesis of same coefficients was 
rejected, and it was concluded that the 
coefficients obtained on regression for the given 
two time periods were significantly different 
from each other. That is, a structural change has 
occurred in pork and milk production in the last 
50 years. 

As for beef production, similar to the 
case in Figure 1, the Chow test results are the 
image of the definition of the beef data group. 
The test statistics for beef production indicate a 
structural change between 1944-1981 and 1983-
1999. The same result was achieved when the 
sample is divided into three different time 
periods, but a more detailed analysis indicated 
that no structural change has occurred. The 
Chow calculation did not result in rejecting the 
null of no structural change for the time periods, 
1944-1961 and 1962-1981, and similarly for the 
periods 1983-1992 and 1993-1999. This reflects 
a significant, but slow, transformation in beef 
production. 

The Chow test statistics search for 
structural changes in the specified markets for 
specified periods of time. In this study the 
CUSUMSQ statistics were also calculated 
without restricting the cut off time periods in the 
data when searching for the existence of 
stability. In addition, the CUSUMSQ test has a 
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lower power than the Chow test; results are 
shown in Figure 2. 

The CUSUMSQ statistics for beef and 
pork production move outside the confidence 
bounds until the 1980’s, indicating a structural 
change in the production process. However, the 
statistic moves inside the confidence bounds in 
the 1990’s. This same confusing result was 
observed in milk production. Although the lack 
of milk production data may provide the 
explanation regarding the generality of the null 
hypothesis, the CUSUMSQ statistics are not 
very helpful in determining a structural change. 
This is surprising given that previous results 
indicated a very slow transformation process, 
which may be ongoing even now. 

Besides searching for structural changes 
in the model using the Chow and CUSUMSQ 
statistics, ARCH LM statistics were also 
calculated to test whether the coefficients of the 
model were time varying. The results shown in 
Table 3 reject the null hypothesis of constant 
variance and thus certifies that beef, pork and 
milk production coefficients are time varying.  

Based on these analyses the models for 
beef, pork and milk production were estimated 
again under the assumption that parameters were 
time varying: the Kalman filter was used for that 
purpose. 
 
Kalman filter analysis 

Because the model stability/structural 
change test results indicated that the parameters 
of the equation (*) are not constant due to the 
ongoing industrialization process of animal 
agricultural production, the equation is modified 
to allow for parameters varying over time. 

t
i

iittt My εββ ++= 
=

11

1
0                (2) 

The Kalman filter estimation results from 
equation (**) reported in Figures 3, 4 and 5 
show convergent monthly shares and thus 
decreasing seasonality in production. The beef 
production estimation results are not as clear in 
defining structural change, but pork and milk 
production estimation results show that monthly 
production shares are getting closer to each 
other. Figures show that the constant term 
converges to 0.1 and the dummy variable 
coefficient values converge to zero. As in Figure 

1, the most significant change is observed in 
milk production. The increase in summer 
production and relatively low winter production 
is replaced by production spreading equally 
across all year. This change occurring in the late 
1990’s indicates the effect of greater control 
over nature and nurture in animal agricultural 
production. 
 

Discussion 
 
This study focused on decreasing seasonality to 
document the structural change in animal 
agricultural production. To satisfy consumers’ 
preferences for healthier, user-friendly products, 
high technology is used intensively in 
production, thus increasing control over nature 
and nurture. The demand and supply side factors 
leading to decreasing seasonality have caused a 
significant transformation in the sector, creating 
factory style large manufacturing firms instead 
of small family farms. That process is named the 
industrialization of animal agricultural 
production. 

In this study analytical (HHI) and 
statistical (Chow, CUSUMSQ and ARCH LM) 
tools were used with Kalman Filter methodology 
to document the industrialization process of 
animal agricultural production. However, many 
questions remain that must be answered by 
economists. 

First, it is important to document how 
effective existent policies have been on the 
structural changes in animal agriculture. To 
document the impact of these policies on 
innovation, the implementation of scientific 
knowledge, and the role of policies to 
encourage/discourage vertical integration is 
crucial to decide on the direction of future 
actions. 

Second, it is important to analyze the 
impacts of this new production structure on 
technological developments, bio-security, 
national and international market structure, 
prices, and the environment. 

It is argued that the use of technological 
developments in animal agriculture have created 
uniformity in production. Is this a two-way 
road? Does uniformity encourage or discourage 
technological developments and innovative 
attempts? If so, what would the effect on market  
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Table 2: Chow Test Results 
 

Beef Production 
Hypothesis                                                                Chow Statistics 

19991983198119440 : −− = ββH                                            Chow Test: 4.19 

19811962196119440 : −− = ββH                                            Chow Test: 1.19 

19991993199219830 : −− = ββH                                            Chow Test: 0.53 

1999199219911983198119440 : −−− == βββH                        Chow Test: 46.65 

1999198319811972197119440 −−− === βββH                       Chow Test: 5.23 

 
Pork Production 

Hypothesis                                                                      Chow Statistics 

19991983198119440 : −− = ββH                                           Chow Test: 5.85 

19811962196119440 : −− = ββH                                          Chow Test: 27.55 

1999199219911983198119440 : −−− == βββH                       Chow Test: 4452.44 

1999198319811972197119440 −−− === βββH                      Chow Test: 622.41 

 
Milk Production 

Hypothesis                                                                    Chow Statistics 

20001963195919300 : −− = ββH                                          Chow Test: 228.45 

19591946194519300 : −− = ββH                                          Chow Test: 5.37 

20001983198219630 : −− = ββH                                          Chow Test: 43.92 

2000198219811963195919300 : −−− == βββH                       Chow Test: 315.65 

2000196319591946194519300 : −−− == βββH                       Chow Test: 259.04 
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Figure 2: CUSUMSQ Results 
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Table 3: Arch LM Test Results 

 
Milk 

1930-1959 
Milk 

1963-2000 
Beef 

1944-1999 
Pork 

1944-1999 

ARCH LM 
93.68 
(0.00) 

70.23 
(0.00) 

24.49 
(0.00) 

15.16 
(0.00) 
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Figure 4: Milk Production Estimation Results 
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Figure 5: Pork Production Estimation Results 
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Figure 6: Beef Production Estimation Results 
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Figure 6: continued 
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structure, quality, quantity, prices, and the role 
of government? How and how much regulation 
should be there? As the Dioxin case in Belgium 
and Starlink case in Iowa pointed out, there exist 
important bio-security issues regarding the usage 
of veterinary medicines and genetic 
improvement techniques in large corporations 
with high division of labor. What would be the 
regulations on the usage of veterinary medicines, 
genetic inputs, and patent rights? Do these 
regulations affect the pattern of seasonality in 
animal agriculture? 

With globalization, the international 
effects of decreasing seasonality in domestic 
markets have also become an important issue. 
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The effects of seasonality on the price, quantity, 
and quality in the international markets should 
be analyzed as well as the consequences of 
policies on the usage of biological improvement 
techniques and medicines. 

Finally, similar to arguments regarding 
the use of genetics in human development 
processes, arguments on the effect of high 
control of nature and nurture on animal welfare 
exist. Animal rights activists question if it is fair 
to genetically and environmentally restrict the 
natural development process, as in the case of 
factory style animal production. All of these 
present areas for further research. 
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Applying Census Data for Small Area Estimation 
in Community and Social Service Planning 
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Small area estimation provides a tool for community analysis. A procedure for accessing, selecting, 
joining and analyzing US Census data is provided. Skills acquired while completing the procedure 
include accessing census data, downloading boundary files and displaying themes. Such skills are 
valuable tools for students to possess as they enter the workforce. 
 
Key words: Small area estimation, US Census, social policy analysis, geographic information systems 
(GIS), systems evaluation. 
 
 

Introduction 
 
Social services planners and evaluators have 
developed their planning abilities through 
improved access to data, methods for analyzing 
data, and techniques for visualizing the results. 
This article presents a method for data 
application. Small area estimation involves 
using outcome data that joins to a set of 
predictor variables within small domains or 
geographic areas in order to generate estimates. 

Although small area estimates and 
geographic information systems (GIS) have been 
used by human service workers for years (Wolf-
Branigin, LeRoy & Miller, 2001), the study of 
human environment interactions often fail to 
consider individual-level information or cross-
discipline data, resulting in a lack of explanatory 
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and predictive power (An, Linderman, Qi, 
Shortridge & Liu, 2005). Calls from the field 
advocate for governmental and non-
governmental organizations to improve the 
collecting, linking, and sharing of microdata in 
order to improve decision-making (Weitzman, 
Silver & Brazill, 2006). 

For more than a century, the United 
States Census has collected data based on census 
tracts in selected areas (Krieger, 2006). These 
tracts, which typically include approximately 
4,600 individuals, provide the basis for 
conducting small area estimations. Census tracts 
were defined for the entire country for the first 
time in 2000. This allows for better access to 
data needed for social policy and planning and 
to for documenting need and making informed 
decisions about the allocation of resources in 
various communities (Krieger, 2006). In 
addition to an increase in the scientific use of 
census tract data, the American FactFinder 
function of the US Census has increased 
consumer access to this vast database. The 
improvement in coverage of census tracts as 
well as easier access to this data allows for more 
precise service planning. 

Given these improvements, social 
workers have the potential to be at the forefront 
of policy decisions by including GIS and 
mapping skills in their toolboxes. These skills 
allow health and social service workers to 
strengthen the social survey tradition, identify 
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community needs and resources, improve the 
delivery of services, and empower communities 
and disenfranchised groups (Hoefer, Hoefer & 
Tobias, 1994; Robinson & Wier, 1998: Wier & 
Robinson, 1998; Hillier, 2007).  

Introducing students to GIS 
methodologies can further enhance their ability 
to visualize and solve complex issues (Watkins, 
2001). Potential issues to explore cover a vast 
range, for example, child maltreatment patterns 
based on neighborhoods (Ernst, 2000; Frieshler, 
Lery, Gruenewald & Chow, 2006), housing 
patterns of persons with disabilities (Wolf-
Branigin, 2002), or adult addiction epidemiology 
(Grant, Martinez & White, 1998; Gerwe, 2000; 
Maxwell, 2000). Empirical research has 
increasingly shown the significance of context in 
social problems, thereby pointing to a need for 
better understanding determinants such as place 
and time or community and neighborhood 
effects on outcomes for various populations. 
 

Procedure 
 
The following six steps provide access to 
software and data for creating and displaying 
small area estimates. These steps are: (1) 
downloading census data, (2) using MS Excel 
for descriptive analysis, (3) creating a DBF file 
from an Excel file, (4) downloading GIS 
boundary files, (5) importing Census data to a 
GIS environment, and (6) displaying themes. 

The required software to complete these 
steps include: ArcView (GIS) software, Excel, 
Access, Internet Explorer (not Netscape) and 
Winzip (or any unzipping software). This 
method, designed for a course assignment 
entitled, Community Analysis Using GIS 
Technology, takes about two hours to complete. 
 
Step 1: Downloading Census Data 

Extract census variables such as low-
income families (poverty), older people with low 
income, or other demographic variables (e.g., 
language speaking, Hispanic population) from 
an online database, called American Factfinder, 
and download them in MS Excel format. It is 
helpful to first create and name a folder on the 
C: drive in which to store the data before starting 
this exercise. 

Census information needed is by census 
tract level in a county in northern Virginia. 
• Visit the American Factfinder Website 

(http://www.factfinder.census.gov).  
• Click on Data Sets (Decennial Census) in 

the left hand side menu of the website.  
• In the 2000 section, select Census 2000 

Summary File 3 (SF3)-Sample Data and 
click on the Detailed Tables on the right 
hand side.  

• In the Select Geography type section, scroll 
down to Census Tracts in the drop down 
menu. In the state section, use the drop 
down menu to select Virginia; in the county 
section, use the drop down menu and select 
Fairfax County.  

 
In the Select One or More Geographic Areas, 
select all census tracts and click on Add, then 
click Next. 
 

 
 
• Select Census Variables that for analysis and 

mapping. For example, P87 for poverty 
status in 1999 by age number of 65 years 
and over below the poverty level, P77 for 
median family income, P1 for total 
population, etc., and click on Add. 

• Click on Show Result to view a summary of 
the table selected. 

• In the Print/Download option in the top 
menu, click Download. This will provide 
various format options for downloading 
data.  
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• Uncheck the Include Descriptive Data 

Element names box. Select MS Excel (.xls) 
and click OK. Next, save the zipped file to 
the folder created on the C: drive. 

• Unzip the downloaded census file using 
Winzip software (or any other unzipping 
software) and save it in the created folder in 
C: as a file named census. 

 
The census data that is downloaded 

gives two Excel sheets with information on the 
total population and median value with the 
names ending with geo and data1. For example, 
when the poverty by age data set is downloaded, 
it provides two excel sheets; one would be 
named dt_dec_2000_sf3_u_geo and the other 
would be named as dt_dec_2000_sf3_u_data1. 
The file data1 contains the population 
information, while the geo information contains 
the county geographic information such as 
census tracts, etc.  
 
Step 2: Descriptive Analysis in Excel. 

Open dt_dec_2000_sf3_u_data1 in 
Excel; this gives 18 columns starting with 
P087001. To make this exercise easier, change 
the name of these columns based on the 
description of the detailed table downloaded 
earlier (e.g., P087001 as total, etc.). In order to 
analyze the distribution of older people below 
the poverty level in Fairfax County, choose 
P087008 and P087008 and add these two 
columns for the total or sum to a new column 
(create a new column called, 65+) and add the 
last two columns of data (65+ and 75+) to this 
new column). To complete this, highlight the 

columns to be summed (65+ and 76+) along 
with the newly labeled column. Click on the 
sigma sign (∑) on the Excel toolbar as shown 
below while holding shift key. 
 

 
 
This will add the two columns and give the total 
number of persons who are 65 years older in 
poverty status in each census tract. 
 

 
 

If not already activated in Excel, 
activate the Analysis ToolPak in the Tools menu 
under Add-ins. Label one additional column to 
the right. Highlight the columns for analysis 
along with the new column and click on Tools 
and Data Analysis. Check Descriptive Statistics 
and then highlight the column to be analyzed 
and click on Summary Statistics. This will create 
a table with several summary statistics (e.g., 
mean, median, and mode). 
 
Step 3: Create a DBF file from an Excel file. 

You must have MS Access to continue 
with this exercise. Before starting this step, 
check to see that the columns containing 
population information in the downloaded Excel 
sheets. This Excel file must be imported to the 
MS Access database in order to keep the Census 
tract number column, to relationally join the 
table to another table in GIS software such as 
ArcView, and to save the file to a dbf format.  
 
Importing Excel files into Access 
• To import the Excel files into Access, open 

the Access database. 
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• Click on Blank Access database and on OK. 
• Save db1 database in a temporary folder and 

click Create. 
• Go to File>Get External Data>Import. 
 

 
 

 
• Scroll to the folder where the Excel files are 

stored and open the Excel file containing the 
census tract data. 

• Access opens a wizard to import Excel files. 
In the first screen make sure the First Row 
Contains Column Headings box is checked 
and then click Next.  

 

 
 
• When asked where would you like to store 

data, check the In a New Table option, then 
click Next. 

• In the current screen click Next. 
• Click on No Primary Key and click Next. 
• Name the table with the same name as the 

excel sheet containing the census data. 
• The wizard will display that it has finished 

importing the excel sheet; click on OK. 
 
Delete any unnecessary columns and save the 
table in Access Database as a dbf format by 
going to File>Export and saving the table as 
census.dbf in the same folder created at the 
beginning of the exercise on the C: drive. Make 
sure the file is saved as a DBF IV format, which 
is ArcView compatible.   
 
Exercise 2: GIS Mapping using Census Data 
 
Step 1: Downloading Boundary Files for a 
County in Virginia 

In order to map census data, a map 
boundary file which shows Census Tracts is 
needed. 
• Go to http://129.174.55.51/website and 

choose the fairfaxcounty folder. Download 

this file using sign from the menu on 
the left side of the screen. Unzip all three 
files (shp, shx and other) and save them all 
in a fairfaxCT folder on the C: drive. 
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Another boundary file may also be chosen, 
including Arlington, D.C. and other counties in 
Northern Virginia from this same web site. If 
downloading the boundary files from this site is 
problematic, go to the ESRI website at 
http://www.esri.com/data/download/census2000
_tigerline. At this site, click on Freeview and 
Download on the left hand side of the page.  
Select a state, such as Virginia, and then select 
Census Tract 2000 from the Select by Layer 
category. Select a county, for example, Fairfax 
County, on which to conduct the analysis.  
Download the file (zipped). Unzip the three files 
(shp, shx, and other) and save them. 
 
Step 2: Importing Census Data to GIS 
Environment. 

In order to map census data (e.g. a 
distribution of elderly in the poverty level), the 
census data must be added to the boundary data 
file in GIS software such as ArcView. This 
involves importing the DBF file (Census.dbf) 
and joining it to the Fairfax County Boundary 
Data. 
• To begin, open ArcView and choose the 

Select With a New View option. 
• Say Yes to the question, would you like to 

add data now? and scroll to the folder where 
the Fairfax County shape files are stored. 
Open the census tracts folder (which is 
inside the fairfaxCT folder) and select the 

tgr51059trt.shp (or 0.shp) file, which is the 
Fairfax county shape file. This creates a new 
view named View1 with the Fairfax County 
theme added to it (by using Theme-
Property). 

• Open the attribute table for the shape file by 
clicking on the Open Theme Table button. 

• Next, go to the project window and click on 
the Tables icon on the left hand side: click 
the Add button to open a table. 

 

 
 
• Browse and open the census.dbf file.  
• To join the two tables first determine the 

common field (column) for the join. 
Looking at the two tables, the Tract column 
is common to both the tables. For the join, 
the attribute table for Fairfax County is the 
destination table and the dbf file is the 
source table. 

 

 
 



APPLYING CENSUS DATA FOR SMALL AREA ESTIMATION 

304 
 

• Open the dbf table and click the Tract 
column name, then click on the Tract 
column name of the attribute table to 
highlight it. Make sure the attribute table is 

on top and click on the JOIN button . 
The dbf file table will automatically close 
after the join indicating that the join was 
successful. 

 
Step 3: Display Themes in ArcView.  

To plot the calculated fields as maps, go 
to the project window and double click view1. 
• Double click on this theme to view the 

legend editor. In the legend editor, select 
Graduated Color from the Legend Type 
field. 

• Choose a suitable color ramp from the color 
ramps section and then click Apply.  

 

 
 

 
 

• Save this project by going to File>Save as 
.apr extension and open the file in ArcView.   
This figure can be saved by going to 
File>Export and selecting the bitmap option.  
Open this .bmp extension file to MS Word 
by using the Insert menu (on the tool bar) 
and File Option (find your bmp file) in MS 
Word. 

 
Application and Discussion for Social Work 

The range of education, health and 
family unit data readily available through the US 
Census, provides a valuable resource for persons 
working with a variety of populations. Local 
area data allows a user to focus on the identified 
needs within small geographic regions and to 
identify trends. Because the data can be used at 
the elementary and school district level, it 
further provides useful estimates for planners 
and evaluators dealing with a variety of complex 
issues such as resource allocation. 

The procedure appears appropriate for 
advanced undergraduate and graduate levels in 
disciplines such as nursing, educational 
administration, social work and public health. 
Students and practitioners completing this 
procedure will acquire awareness and basic 
skills in downloading census data, using MS 
Excel for descriptive analysis, creating a DBF 
file from an Excel file, downloading GIS 
boundary files, importing Census data to a GIS 
environment, and displaying themes. Based on 
our experience, the typical student can complete 
the assignment in approximately two and one 
half hours assuming they have the access and 
have loaded the appropriate software. 
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Efficiency of Canonical Discriminant Function versus Mahalanobis Distance in 
Differentiating Groups: Screening Ovarian Cancer in a Multivariate System 

Analysis Using Enzyme Markers 
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Due to its low prevalence, high mortality and uniquely hidden intrapelvic position, ovarian cancer 
remains a subject of intense interest to researchers. Statistical calculation and new technology both have 
major roles to play in the effort to screen this cancer at an early stage. Advanced statistics, such as 
multivariate analysis, remain at the root of screening endeavors. Multivariate analysis has the power to 
combine many tests and to produce better results in terms high specificity and positive predictive value. 
Multivariate analysis techniques include Mahalanobis distance (D2), canonical stepwise discriminant 
function (Z) and Posterior Probability. These may have varied efficacy, but to date comparisons have not 
been conducted to determine which is best in the context of ovarian cancer screening. 
 
Key words: Multivariate analysis, Mahalanobis distance (D2), canonical stepwise discriminant function 
(Z), posterior probability, ovarian cancer screening, tumor marker. 
 
 

Introduction 
 
With an overall survival rate of 30%, ovarian 
cancer remains the fifth leading cause of cancer 
death. This disease, which is neither common 
nor rare (Bast, 2004), has remained enigmatic 
amongst gynecological cancers with agonizing 
prospects. Ovarian cancer is the second most 
common gynecologic malignancy, and little is 
known about the progression of its early changes 
(dysplasia). 

Ovarian cancer has the highest mortality 
rate among gynecologic malignancies (70%) and 
its mortality rate has not lowered in the last 50 
years. Only 25% of cases are diagnosed in an 
early stage and late case diagnosis survival is 
very poor. Though tests such as tumor markers 
and ultrasounds are available, no cost-effective  
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screening method with adequate sensitivity and 
specificity is available to detect early ovarian 
cancer. 

Combining markers and tests results in 
higher sensitivity and specificity, thus, many 
scientists have used multivariate analysis in their 
experiments. In an ovarian cancer screening 
system, multivariate stepwise discriminant 
function analysis is described using different 
tumor markers, for example, CA125, TPA, IAP, 
CEA, and ferritin (Yabushita, et al., 1985; 
LaHousen, et al., 1987). Kobayashi and Terao 
(1992) combined CA 125, TPA, Ferritin, CEA, 
AFP and Sialyl Lewis Xi using Mahalanobis 
distance and were able to decrease both false 
positive and false negative cases. Bose and 
Mukherjea (1994) statistically combined several 
enzymatic tumor markers to increase specificity, 
positive predictive value (PPV) and to decrease 
false positive tests. 

Other groups described combining 
multiple markers, but they either combined them 
in a statistically unacceptable way (Inoue, Fujita, 
Nakazawa, Ogawa & Tanizawa, 1992), in a 
simple Euclidian relationship, such as the risk of 
malignancy Index (RMI, Oram, et al.,1990; 
Jacobs, et al., 1990) or otherwise (Jacobs, et al., 
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1990). Jacobs, Oram & Bast (1992) used a 
multivariate system while also using 
apolipoprotein A1 (down-regulated in cancer); a 
truncated form of transthyretin (down-regulated) 
and a cleavage fragment of inter- -trypsin 

inhibitor heavy chain H4 (up-regulated). 
Zhang, Bast, et al. (2004) described the 

risk of ovarian cancer (ROC) algorithm. They 
combined the parameters Serial CA125 assay 
value, changes in CA125 levels over time and 
woman’s age, and assay variability by a 
multivariate based software program, which they 
called the ROC algorithm. However, they did 
not describe the actual procedure they followed. 
They speculated sensitivity 86%, specificity 
99.7%, and PPV up to 19% which is 
encouraging (Menon, et al., 2005). They are now 
conducting a massive trial on population 
screening in the UK, which will take another 
two years to complete. 

Timmerman, et al. (2005) combined 12 
useful independent prognostic variables in a 
logistic regression model and found a 
probability cut off value of 0.10 that gave a 
sensitivity of 93% and a specificity of 76%. 
Curling, et al. (1998) conducted a multivariate 
analysis of DNA ploidy, steroid hormone 
receptors and CA 125 as prognostic factors in 
ovarian carcinoma, and Kozak, et al. (2005) 
used multivariate analysis to greatly improve the 
detection of early stage ovarian tumors 
compared to cancer antigen CA125 alone with 
the help of differential expression of 
transthyretin (TTR), beta-hemoglobin (Hb), 
apolipoprotein AI (ApoAI) and transferrin (TF). 

Multivariate procedures include 
Mahalanobis distance (D2), canonical stepwise 
discriminant function (Z) and Posterior 
Probability, but no research has been conducted 
to determine whether they are equally effective 
in detection systems for screening ovarian 
cancer using multiple parameters. 
 

Methodology 
 
Serum levels of four enzyme makers (placental 
alkaline phosphatase, lactate dehydrogenase, 5' 
nucleotidase and Amylase) were measured using 
a commercially available kit, in 50 ovarian 
cancer patients and 31 patients with benign 
gynecological disease before initiation of any 

treatment. These were compared with the levels 
in a control group of 30 healthy women using 
different multivariate parameters Mahalanobis 
distance (D2), canonical stepwise discriminant 
function (Z) and Posterior Probability. The goal 
was to determine if any difference exists in the 
power of detection of disease state by these 
methods and if one is more or most efficient in 
detecting disease state. 

Data for all enzyme levels in different 
groups were fed into a DIGITAL-VAX 8650 
computer using a VMS operating system. 
BMDP 1990 version software program packages 
3D and 7M were used to analyze the data. In 
BMDP 3D, mean, standard deviation, standard 
error of mean and pooled T test were used to 
show significant group differences separately for 
each enzyme. Sensitivity and specificity for each 
enzyme were determined at different cut off 
scores and a Receiver Operator Characteristic 
Curve (ROC) was prepared to compare the 
efficacy of individual enzyme. 

In the same program, Hotelling’s T2 test, 
F, p for four enzymes taken together at a time 
(multivariate analysis) were obtained and were 
analyzed to observe significant differences 
between different groups. The F value was 
observed and, if it significantly exceeded unity, 
the two groups were assumed to be statistically 
significantly different. 

If a random sample of size n yields the 
sample value x1, x2, x3,…, xn 
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then these are estimates of corresponding 
population parameters – the population mean μ 
and the population variance σ2. 

In a similar way, multivariate population 
can be summarized by mean vectors and 
covariance matrices. These are defined as 
follows. If there are p variables x1, x2, x3, …, xp 
and the values of these for the ith individual in a 
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sample are xi1, xi2, xi3, …, xip respectively, then 
the sample mean of variable j is 
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and the sample variance is 
 

2
2

1

( )
.

( 1)

n
ij j

j
i

x x
s

n=

−
=

−  

 
In addition the sample covariance between 
variable j and k is defined as 
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The pooled estimate of variance from the two 
sample n1 and n2 is, 
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the matrix of covariances (C 1 and C 2) 
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the pooled estimate of covariance matrix is 
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and Hotelling’s T2 statistics is defined as 
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A significantly large value for these statistics is 
evidence that the mean vectors are different for 
the two sample populations. The significance or 
the lack of significance of T2 is most simply 
determined by using the null hypothesis case of 

equal population means for the transformed 
statistics. 

The analysis of variance (also known as 
Snedecor’s F or the Fisher-Snedecor F) test is 
based on the continuous F-distribution, which is 
a random variate arising as the ratio of two Chi-
squared variates: 
 

1

1

2

2

,

U
d

U
d

 

 
where U1 and U2 have Chi-square distributions 
with d1 and d2 degrees of freedom respectively, 
and U1 and U2 are independent. Thus,  
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Because T2 is a quadratic form it is scalar, and 
can be written in as 
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which is simpler to compute. Here xji is the mean 
of the variable xi in the jth sample and cik is the 
element in the ith row and the kth column of the 
inverse matrix C-1. 

BMDP 7M was used for multivariate 
stepwise canonical discriminant function 
analysis. To separate the different groups of 
patients, following simple linear combination 
was used 
 

1 1 2 2 3 3 4 4.Z K a X a X a X a X= + + + +  

 
Z is the canonical discriminant function of 
variable enzymes namely X1 = PLAP, X2 = 
LDH, X3 = 5’N, X4 = Amylase, whereas a1, a2, 
a3, and a4 are the coefficients of the above 
variable respectively and K is the constant. 
Coefficient and constant were determined by 
using BMDP. 

Mahalanobis distance of individuals to 
group centers can be calculated by the following 
formula 
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while the posterior probability is 
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where p is probability, A is the abnormality, and 
PT is the positive test result. Thus, the 
expression on the left, P (A: PT) is equivalent to 
the probability P of abnormality A given the 
positive test result PT. This is described as 
posterior probability and is in Bayes’ theorem, 
which relates the conditional and marginal 
probabilities of stochastic events A and B: 
 

Pr(A B) Pr(BA)
Pr(A (A B) Pr(A)

Pr(B)
L⏐ ⏐⏐Β) = ∝ |

 
where L(A|B) is the likelihood of A given fixed 
B. Each term in Bayes’ theorem has a 
conventional name. Pr(A) is the prior probability 
or marginal probability of A. It is prior in the 
sense that it does not take into account any 
information about B. Pr(A|B) is the conditional 
probability of A given B; it is also called the 
posterior probability because it is derived from 
or depends upon the specified value of B. 
Pr(B|A) is the conditional probability of B given 
A. Pr(B) is the prior or marginal probability of 
B, and acts as a normalizing constant. The 
posterior probability is proportional to the prior 
probability times the likelihood. 

Both D2 and PP were determined 
through the same package. The ROC curve of 
individual marker enzymes showed LDH to be 
most sensitive and specific. Thus, LDH was 
compared with these three multivariate systems 
in Receiver Operator Characteristic (ROC) 
chart. 

In healthy women discriminant function 
(Z), Mahalanobis distance (D2) and posterior 
probability (PP) were determined for each case. 
Their mean and standard deviation were 

compared with the values of corresponding 
multivariate parameters for each individual in 
both the benign gynecological disease (BGD) 
and ovarian cancer group. When plotted with 
chosen cut-off scores with their corresponding 
(1−specificity) in x axis and sensitivity in y axis 
the ROC curve will show comparative efficacy 
of Z over D2, PP and LDH in terms of largest 
area under the graph. 
 

Results 
 
Table 1 shows the serum concentration of four 
enzymes markers, placental alkaline 
phosphatase, lactate dehydrogenase, 5' 
nucleotidase and Amylase, with their mean ± 
standard error of mean. Results of enzyme 
estimations of three groups, Healthy control, 
Benign gynecological disease (BGD) and 
Ovarian cancer are shown in three columns. 
Significant differences are also shown as p 
values. Although activities of all enzymes have 
been found to be significantly higher in ovarian 
cancer cases than in healthy women, positivity 
rates were not very high. The positivity rate 
measured for each enzyme in ovarian cancer, 
showed LDH to be the most sensitive (positivity 
48%), whereas amylase showed least sensitivity 
at a positivity rate of 30%. However, these are 
much lower compared to the positivity rate 
(75%) of cancer antigen CA 125, the most 
sensitive tumor marker in ovarian cancer 
(Heinonen, Kallinoiemi & Koivula, 1987). 

Test results in the ovarian cancer group 
were significantly different from the healthy 
control group, but showed no statistically 
significant difference with the benign 
gynecological disease (BGD) group. 

Table 2 shows sensitivity and specificity 
of serum enzymes markers at different cut-off 
concentrations. Table 3 summarizes the cut-off 
scores of the markers that had the highest 
sensitivity and specificity. They were compared 
with CA125 at a suitable cut off level of 35 
IU/L. LDH had the highest sensitivity and 
specificity at a cut off score of 157.88 IU/L but 
it still fell behind CA125. 

With different sensitivity and specificity 
at cut-off values of those enzyme markers, a 
Receiver Operator Characteristic Curve (ROC) 
was prepared to compare the power and efficacy 
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of individual enzymes to differentiate between 
groups in a univariate system (Figure 1). 

Four serum enzymes are used at a time 
in multivariate analysis by the BMDP package 
(program 3D), where a significant group 
difference was observed between healthy versus 
ovarian cancer and BGD versus ovarian cancer 
patients; in healthy versus BGD there was no 
statistically significant difference (Table 4.). Z, 
D2 and PP were obtained through program 7M 
for healthy versus ovarian cancer patients. 
Sensitivity and specificity of LDH, Z, D2 and 
PP at different cut-off scores or action lines with 
their confidence interval (derived from the 
binomial distribution chart) for healthy women 
and ovarian cancer cases are shown in Table 5. 
Table 6 compares sensitivity and specificity of 
different multivariate parameters such as, LDH, 
Z, D2 and PP.  

The performance of the canonical 
discriminant function (Z) at various upper limits 
is illustrated in the ROC chart (Figure 2) and is 
observed to combine higher levels of sensitivity 
and specificity than those achieved by 
Mahalanobis distance (D2), PP and LDH. Table 
7 shows the positive and negative predictive 
values for malignancy of ovary for different 
levels of Z (cutoff scores 1.377, 2.907. 3.437 
and 5.967). A cut-off score of 3.437 produced 
the best results. No statistically significant group 
difference was predicted between healthy and 
BGD, which was corroborated by the 
determination of Z value. 
 

Conclusion 
 
The population screening of ovarian cancer has 
remained elusive due to low disease prevalence 
and low positive predictive value of the tests. 
Some groups are trying to combine different test 
results in different software packages using 
algorithms based on multivariate systems of data 
processing, but many alternatives in this 
multivariate system exist which are not based on 
some type of mathematical calculation. As a 
result, finding more efficacious methods in 
terms of higher specificity and higher positive 
predictive value is a priority. This system is 
applicable in many areas in biology and 
medicine. This article presented an example of 
the use of multivariate analysis in ovarian cancer 

screening to illustrate the comparative efficacy 
of stepwise discriminant function (Z) 
Mahalanobis distance (D’) and posterior 
probability (PP).  

It is expected that this example will be 
replicated in other experimental circumstances, 
but will need further verification and 
establishment of mathematical proof as to why it 
occurs. In the experiment presented, it was 
observed that the Multivariate stepwise 
discriminant function (Z) analysis of enzyme 
variables establishes an easy quantitative 
assessment method of the risk of malignancy in 
the ovary. A Z value with a cut-off score of 
3.437 has a higher predictive value and relative 
risk than LDH, Mahalanobis distance (D2) or 
posterior probability (PP). This system of 
combining four enzymes for improvement of 
ovary screening must be established in clinical 
practice through further research. 
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Table 1: Serum Concentration of Enzymes Markers Mean ± SEM 

Enzymes 
Healthy 
Control 

Benign 
Gynecological 
Disease (BGD) 

Ovarian Cancer 

Placental alkaline 
phosphatase (IU/L) 

0.81± 0.09 
1.76 ± 0.47 
(P< .0615) 

4.47 ± 0.89 
(P< .0011) 

Lactate 
dehydrogenase 

(IU/L) 
157.88 ± 8.61

155.65 ± 7.88 
(P< .8497) 

255.44 ± 16.19 
(P< .0001) 

5' nucleotidase 
(IU/L) 

5.94 ± 0.75 
5.22 ± 0.42 
(P< .4098) 

9.13 ± 0.93 
(P< .0191) 

Amylase (IU/L) 79.1 ± 3.83 
77.8 ± 3.38 
(P< .6828) 

121.54 ± 8.23 
(P< .0001) 

 

Table 2: Sensitivity and Specificity of Serum Enzymes Markers at 
Different Cut-off Concentrations 

Test and Action Line 
(cutoff score in IU/L) 

Sensitivity Specificity 

LDH 
110.73 
157.88 
205.03 
252.18 

94 
88 
50 
34 

20 
63 
90 

93.3 
Amylase 

75.25 
79.1 

83.93 
86.76 

76 
74 
68 
64 

43.3 
53.3 
60 
60 

PLAP 
0.72 
0.81 
0.90 

64 
60 
58 

50 
60 

66.6 
5’Nucleotidase 

5.19 
5.94 
6.69 
7.44 

56 
54 
42 
39 

56.6 
63.6 
66.6 
66.6 
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Table 3: Cut-off Score Offering Highest Sensitivity and Specificity 

Cutoff Scores (IU/L) Enzyme Markers Sensitivity Specificity 

0.90 
Placental alkaline 

phosphatase (IU/L) 
58 66.6 

157.88 
Lact dehydrogenase 

(IU/L) 
88 63 

83.93 Amylase (IU/L) 68 60 

5.95 5' nucleotidase(IU/L) 54.8 64.3 

35 CA125 72 75 

Figure 1: Receiver Operator Characteristic Curve (ROC) to Compare the Power of 
Individual Enzymes 
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Table 4: Mahalanobis Distance (D2) Hotelling's T2 F & P Value to Predict Multivariate Based 
Statistical Significance of Different Between Groups 

Group Difference 
Mahalanobis 
Distance (D2) 

Hotelling's 
T2 

F P 

Healthy women vs. ovarian cancer 2.7061 50.7390 12.1969 0.0001 

Healthy women vs. Benign gyn. disease 0.2992 4.5611 1.0823 0.3741 

Ovarian cancer vs. Benign gyn. disease 2.4808 54.3602 13.0740 0.0001 

Ovarian cancer vs. non-responder 0.0530 1.0721 0.2582 0.9028 

Ovarian cancer vs. responder 1.3802 12.444 2.9528 0.0277 

 

Table 5: Sensitivity and Specificity of Multivariate Based Statistical Parameters 
Compared With LDH at Different Cut-off Concentrations 

Test and action line 
(cutoff score in IU/L) 

Sensitivity Specificity 

% (95% CI) % (95% CI) 

LDH 

110.73 
157.88 
205.03 
252.18 

94 
88 
50 
34 

(82-99) 
(82-99) 
(82-99) 
(82-99) 

20 
63 
90 

93.3 

(82-99) 
(82-99) 
(82-99) 
(82-99) 

Z 
1.337 
2.907 
3.437 
5.967 

98 
96 
96 
76 

(88-100) 
(86-99) 
(86-99) 
(61-87) 

13 
70 
83 

93.3 

(82-99) 
(82-99) 
(82-99) 
(82-99) 

D2 
0.09 
0.93 
1.77 
2.61 

100 
86 
82 
74 

(92-100) 
(72-94) 
(68-91) 
(59-86) 

0 
73 

86.6 
93 

(0-12) 
(54-87) 
(66-96) 
(77-99) 

PP 
0.525 
0.726 
0.887 
1.048 

80 
92 
96 

100 

(67-90) 
(80-92) 
(86-99) 

(92-100) 

90 
76.6 
20 
0 

(72-97) 
(56-89) 
(10-58) 
(0-12) 

Table 6: Sensitivity and Specificity of Different Multivariate Parameters 
Such as, LDH, Z, D2 and PP 

Statistics Sensitivity Specificity 

Mahalanobis Distance 
D2 = 1.77 

82 86.3 

Posterior Probability 
Pp = 0.726 

92 76.6 

Discriminant Function 
Z = 3.437 

96 83 
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Table 7: Positive and Negative Predictive Value for 
Different Levels of Z 

Z Score 
Predictive Value (%) 

Positive Negative 

1.337 91.3 3.7 

2.907 91.3 9.6 

3.437 84 92 

5.967 70 95 

 

Figure 2: Receiver Operator Characteristic Curve (ROC) to Compare the Power of Multivariate Based 
Statistical Parameters Compared with LDH 
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A Socratic Dialogue 
 

Vance Berger 
National Institute of Health 

 
 
Socrates has found some aspects of medical biostatistics a bit confusing, and wishes to discuss some of 
these issues with Simplicio, a prominent medical researcher.  This Socratic dialogue will shed some light 
on the errant use of parametric analyses in clinical trials. 
 
Key words: Exact test, parametric analysis, permutation test. 
 
 

Introduction 
 
Socrates: Good morning Simplicio, how are you 
today? 
 
Simplicio: Doing well, thank you, and how are 
you Socrates? 
 
Socrates: Not bad, thank you, but a bit confused 
by some of these newfangled ideas I am now 
seeing in the medical literature. Tell me, 
Simplicio, is it not the case that you also 
contribute to this medical literature?  If so, then 
you must be somewhat of an expert, and 
certainly in a position to teach me some of the 
analyses so that I will no longer be confused. 
 
Simplicio: Yes, Socrates, in fact I was part of a 
research team that recently published a clinical 
trial is a prestigious medical journal.  Would you 
like a reprint? 
 
Socrates: No thank you, I have already read it. 
And it contributed to my confusion. 
 
Simplicio: How so, Socrates?  
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Socrates: In many ways, but let us focus, at least 
for now, on just one of these ways. You mention 
that you will compare the blood pressures 
between the treatment groups by using a t-test, is 
that right? 
 
Simplicio: Yes, although I fear that, being a 
laymen, you are not using sufficiently precise 
language. The primary endpoint in our cardiac 
trial was the diastolic blood pressure 12 weeks 
after treatment. It is this endpoint that we 
compared with a t-test. 
 
Socrates: That is all very well, but my interest at 
the moment is in the t-test itself, and not in the 
specific details of the variable on which it was 
used. I thought that I had read somewhere that 
the t-test requires normality to be valid, is this 
not so? And I also read about permutation tests 
that do not require normality for their validity. 
 
Simplicio: Technically, yes, but in practice the 
distributions are close enough to Gaussian that 
we can treat them as such. And we do not use 
permutation tests for a variety of reasons. 
 
Socrates: Pray tell me these reasons, dear 
Simplicio. 
 
Simplicio: For one thing, permutation tests use 
an overly restrictive null hypothesis, specifically 
that the entire distribution of outcomes is the 
same across treatment groups. In contrast, the t-
test is testing only the equality of the means. 
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Socrates: So the permutation test would be 
sensitive to changes in spread and/or shape, 
whereas the t-test would not? 
 
Simplicio: Yes, I believe this to be true. 
 
Socrates: But I also read that the t-test requires 
equal variances, or homogeneity, to be valid. 
Does this mean that without equal variances it is 
not valid, or might have a high probability of 
rejecting a true null hypothesis? 
 
Simplicio: We compute the p-value under the 
assumption that the null hypothesis is true, so 
this would specify that the variances are equal. 
 
Socrates: So the null hypothesis is that the 
means are the same and that the variances are 
the same, across the two treatment groups? 
 
Simplicio: Quite so. 
 
Socrates: Did you not tell me that the benefit of 
the t-test was the ability to test nothing more 
than the equality of the means? 
 
Simplicio: I need to confer with my text book, 
but remember, that was only one reason. We 
also use the t-test because it is robust to 
violations of its assumptions. 
 
Socrates: Robustness sounds nice. What does it 
actually mean? If the data are not normally 
distributed, and/or the variances are not equal, 
then the t-test p-value is the same as it would 
have been had the data been normally distributed 
and the variances equal? 
 
Simplicio: Yes, I believe so. 
 
Socrates: If the variances are unequal, then we 
can make them equal by increasing the smaller 
to match the larger, by decreasing the larger to 
match the smaller, by bringing them both in to 
the mean (or geometric mean or harmonic 
mean), or in any other of a myriad number of 
ways. The t-test p-value is the same as which 
one of these?  Or are they all the same? 
 
Simplicio: Yes, I would say that they will all be 
the same. 

Socrates: Is it not the case that with larger 
variances the p-value will be larger, and with 
smaller variances the p-value will be smaller? 
 
Simplicio: Yes, I am afraid so. 
 
Socrates: So then would you agree that the t-test 
p-value cannot possibly agree with all possible 
values of the t-test p-value when the variances 
across groups are equal? 
 
Simplicio: Yes, I am afraid so. 
 
Socrates: Once again, what does this supposed 
robustness mean? 
 
Simplicio: I was mistaken, but now I remember. 
Robustness means that even if the assumptions 
are violated, the t-test p-value will still be close 
to the exact one. 
 
Socrates: Is there but one exact p-value to be 
close to? 
 
Simplicio: There is only one way to conduct an 
exact permutation test when using the same 
randomization scheme as was used in the study 
and the t-test statistic. 
 
Socrates: I will agree that this is a well-defined 
p-value, this exact t-test p-value. So your 
statement is beginning to take some form, but 
there is still ambiguity in the closeness concept. 
Can we say that the difference in p-values is 
bounded by some function of the extent to which 
the assumptions underlying the t-test are 
violated? 

For example, if R is the ratio of 
variances across the two groups, and D is the 
difference between the t-test p-value and the 
exact t-test p-value, then can we say something 
to the effect that |D|<log(R)? I should be quite 
interested in any theorem of this sort, especially 
if it accounts for and quantifies deviations from 
both normality and homoscedasticity. 
 
Simplicio: I am not aware of any such theorems, 
but in practice the two p-values are usually 
close. That is, D is usually quite small. 
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Socrates: Do you have the values of D from 
prior studies to substantiate this assertion? 
 
Simplicio: No. 
 
Socrates: Do you even bother to compute the 
exact p-value? 
 
Simplicio: We do if the assumptions are grossly 
violated. 
 
Socrates: You mean if the assumptions are 
violated enough that D would be large? 
 
Simplicio: Yes. 
 
Socrates: Yet you never actually compute D? 
 
Simplicio: Correct. 
 
Socrates: So you presume to know when D is 
large or small based on a cursory examination of 
the extent to which the assumptions are violated, 
then take the smallness of D in these cases as a 
known fact with which to justify continuing in 
this fashion? Is this not circular reasoning? 
 
Simplicio: Perhaps so, but we use the exact test 
when we need to. 
 
Socrates: You said you do this when the 
assumptions are violated enough that D would 
be expected to be large. Why not use the t-test 
even in these cases? 
 
Simplicio: Socrates, you are not seriously 
suggesting that we use the t-test when its 
assumptions are known to be grossly violated? 
Especially after grilling me for using it when the 
assumptions are violated to a lesser degree? 
 
Socrates: My good man, I am not suggesting 
anything. Recall that you are the clinical trials 
expert, and I am merely trying to learn from you.  
Right now I want to learn why you do not use 
the t-test when the assumptions are badly 
violated. 
 
Simplicio: I am afraid that this is a trap, and you 
are asking me an obvious question just to see 
what I will say, but the reason is that we do not 

want to use the t-test if its assumptions are badly 
violated because then it may give distorted 
results. 
 
Socrates: When you say “distorted” you are 
referring implicitly to deviation from some gold 
standard, presumably the exact test? 
 
Simplicio: Yes, that is correct. 
 
Socrates: Is it the exact p-value, and not the t-
test p-value, that is of interest? It was 
conceivable that the t-test itself was the quantity 
of interest, but now it appears that this is not the 
case, and that when you use the t-test, you do so 
only so that it can serve as an approximation to 
the exact p-value? 
 
Simplicio: Quite right Socrates. 
 
Socrates: I understand the need for 
approximations in some cases. For example, one 
could compute the number of defective items in 
a large batch by examining each one, but this 
would consume large amounts of resources, so a 
sample is taken and an estimate based on this 
sample is offered as an approximation so as to 
save time and money. 
 
Simplicio: Yes, that is a good example. 
 
Socrates: Similarly, when you want to compute 
the area under the curve of some function that is 
not written explicitly in closed form, you could 
graph the function on your computer screen, 
trace the region below it with a marker, get a 
glass cutter, cut out the glass from the screen to 
correspond to this area, then weigh the glass. 
But instead you rely on an approximation so as 
to save the computer screen, is that correct? 
 
Simplicio: Yes, I suppose so. 
 
Socrates: Do you see the common element in 
these two examples? 
 
Simplicio: Yes, in both cases we needed to use 
an approximation. 
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Socrates: No Simplicio, we did not need to use 
an approximation, but we chose to do so in order 
to save resources. 
 
Simplicio: Yes, that was what I meant. 
 
Socrates: When you use the t-test as an 
approximation, what resources are you saving? 
 
Simplicio: What do you mean? 
Socrates: What great cost is involved in 
computing the exact test p-value? Clearly, you 
can compute it, since you just told me that you 
would compute it if the situation so warranted.  I 
am trying now to get some sense of the cost-
benefit ratio in doing so. Do you need to rent 
time on the university super computer to 
compute the exact p-value. 
 
Simplicio: No, Socrates, computing has gotten 
to the point that I can compute the exact p-value 
instantaneously on my PC. 
 
Socrates: Is the exact test patented, so that you 
need to pay royalties to use it? 
 
Simplicio: No Socrates, that is not it either. 
 
Socrates: Why don’t you just tell me the reason? 
 
Simplicio: There is no additional cost in 
computing the exact p-value. 
 
Socrates: I see. But I am not sure that I like what 
I hear. You have no reason not to compute the 
exact p-value, yet choose not to do so even 
though your decision to use it or not to use it is 
based on how well an approximation 
approximates it. And you assess this closeness 
not by computing both quantities and simply 
comparing them but rather by using some vague 
notion of how well the assumptions of the 
approximation seem to hold, even though you 
readily admit that this has no implications for an 
upper bound on the difference between the two 
p-values. 

Then you count the times that you 
ostensibly do not need to compute the exact p-
value and offer this as further evidence of 
successes without the exact p-value, so more 
reason not to have to use it in the future. Tell 

me, Simplicio, can you offer a valid reason for 
this approach instead of simply computing both 
p-values and assessing the difference in this 
way? 

 
Simplicio: No, I am afraid that I cannot. 
 
Socrates: Would you agree that it would be 
better to dispense with this nonsense about 
testing the assumptions underlying the t-test, or 
similarly checking that expected cell counts 
exceed five for the chi-square test, and instead 
just compute both p-values, and note how close 
or far they are to each other? After all, how 
much power would you expect these tests to 
have to detect deviations from normality (or 
some other distribution) when the sample sizes 
are chosen not for this purpose but rather to 
detect a treatment effect? 
 
Simplicio: Yes, this would be better. 
 
Socrates: Let us anticipate your doing this in the 
future. You will then have an exact p-value as 
the gold standard, and you will have an 
approximation to it, the t-test p-value. How will 
you use these two to render a decision as to the 
suitability of the t-test? 
 
Simplicio: Socrates, as we already said, I would 
use the approximation only if it is close enough 
to the exact p-value. 
 
Socrates: When you go to the market for 
groceries, and the cashier totals the price of your 
selected merchandise, do you pay this amount, 
or some other amount that is close enough to this 
amount? I mean, one could obtain the dollar 
amount for the items in question, then toss two 
dice, and add (in cents) the value showing on the 
first die and subtract the value showing on the 
second die. The deviation would be no more 
than six cents either way. 
 
Simplicio: Of course, I pay the requested 
amount. 
 
Socrates: If you had a wrist watch with the 
approximate time, but also were able to see a 
clock with the exact time (which I could not 
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see), then what would you do if I, with no watch, 
were to ask you the time? 
 
Simplicio: I would imagine that I would tell you 
the time. 
 
Socrates: But how would you obtain the time? 
 
Simplicio: You just told me that there is a watch 
and a clock, so I can’t imagine having too much 
difficulty in telling the time. You seem to be 
belittling my intelligence, Socrates, but I assure 
you that even I can tell time. 
 
Socrates: I meant no offense, Simplicio, and 
rather meant to ask only which measure of time 
you would use. 
 
Simplicio: Because the clock has the exact time, 
I would use that one when it were available, as 
you said it would be in this case. I would use my 
watch only when I could not see the clock, or 
some other clock with a more precise measure of 
the time. 
 
Socrates: You would not check both the watch 
and the clock, and then decide to report the time 
on the watch if it were sufficiently close to the 
exact time on the clock? 
 
Simplicio: No, Socrates, this seems to me rather 
silly. If I can just check the exact time and tell 
you that, then why would I also check an 
approximation to a quantity I can observe? 
 
Socrates: If you can observe the exact p-value, 
then why would you go on to attempt to 
approximate it? How close must an 
approximation be before it is preferred to the 
very quantity it is attempting to approximate? 
 
Simplicio: I hear your point. 
 
Socrates: Is it not the case that decision analysts 
concern themselves with the value of perfect 
information? And do they not sometimes decide 
to exchange resources for additional 
information? It is unclear to me why someone 
would have perfect information, in the form of 
an exact value, and then choose to instead use 
imperfect information, in the form of an 

approximation. Have you considered the 
ramifications of this loss of information? 
 
Simplicio: It would not really matter too much if 
the two p-values are close, especially if they are 
both on the same side of alpha (0.05). 
 
Socrates: If the t-test p-value is 0.03 and, for the 
same data, the exact p-value is 0.04, then there is 
no harm in using the t-test? 
 
Simplicio: None that I can imagine. 
 
Socrates: Would there be any harm in using the 
exact p-value in this case? 
 
Simplicio: No, of course not! 
 
Socrates: Hence, we have one analysis that is 
always right, and another that is right or wrong 
depending on the extent to which it agrees with 
the first one. Because it is often close, we use 
the approximate one, is that it? 
 
Simplicio: At least when they are on the same 
side of alpha. 
 
Socrates: And alpha is always 0.05? 
 
Simplicio: Yes, this is an industry standard. 
 
Socrates: My dear Simplicio, at my age I suffer 
many ailments, including arthritis. Now suppose 
that a new medication comes along that can 
offer relief for my symptoms. How certain 
would I need to be that this new treatment is 
effective before I decide to take it? Surely this 
question cannot be answered in a vacuum, but 
rather requires careful consideration of the 
frequency and severity of side effects, would 
you agree? 
 
Simplicio: Most certainly. 
 
Socrates: Is it conceivable that, after considering 
the side effect profile, I would come up with a 
personal alpha level of 0.035? 
 
Simplicio: I cannot see why not. 
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Socrates: In such a case, I would take the 
medication if the primary efficacy p-value were 
0.03, but not if it were 0.04. Use of the t-test 
could change what should be 0.04 to 0.03. In 
other words, I would be misled into taking a 
medication that, were I to know all the facts, I 
would not take. I would be denied the ability to 
render an informed decision. 
 
Simplicio: I suppose so. 
 
Socrates: Are you familiar with dense sets, 
Simplicio? 
 
Simplicio: Are you calling me dense again 
Socrates? 
 
Socrates: No Simplicio, dense sets are a formal 
construct in mathematics. For example, the 
rational numbers are a dense subset of the real 
numbers, because between any two real 
numbers, no matter how close together, one can 
find a rational number. Is it not also the case that 
the set of potential personal alpha levels is a 
dense subset of the set of potential p-values? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simplicio: Yes, I suppose that it is. 
 
Socrates: In that case, no matter how close the 
approximation is, somebody could have an alpha 
level that falls between the two p-values. In 
other words, the distortion in p-values created by 
the use of the approximation has consequences, 
not only abstractly, but also for real patients, the 
very patients who are relying on the researchers 
to provide unbiased information. 
 
Simplicio: I never looked at it that way. 
 
Socrates: Given the extent to which your 
research is funded by taxpayers, do you feel any 
obligation to deal with them honestly? 
 
Simplicio: Yes, Socrates, thank you for bringing 
these issues to my attention. From now on I will 
use nothing but exact p-values. 
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Introduction 
 
The factorial independent groups design 
investigates the effects of two or more factors on 
an outcome variable and usually considers both 
the main and interactive effects. For example, 
Pegg et al. (2005) investigated therapeutic 
methods for military personnel who had 
experienced traumatic brain injury. The 
researchers were interested in how information 
offered (personal vs. general) and information 
preference (high vs. low preference for health 
care information) would influence therapeutic 
outcome. The design was a 2 x 2 independent 
groups factorial design and the results indicated 
that regardless of preference for information, 
information offered positively affected treatment 
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outcome. This type of design is common in 
psychological studies and the analysis of 
variance (ANOVA) F statistic is most often 
employed to analyze the results. 

The ANOVA F test may not be 
appropriate when the data do not meet the 
validity assumptions that accompany the test 
(e.g., homogeneity of variance). These 
assumptions are discussed in most if not all texts 
but are largely ignored in applied research. This 
is especially problematic as previous studies 
have found that the assumptions of the ANOVA 
F are rarely met (e.g., Micceri, 1989; Wilcox, 
1989). This article focuses on three objectives. 
The first is to discuss the assumptions associated 
with the ANOVA F statistic. The second is to 
examine recommended procedures for analysis 
of factorial designs when assumptions are 
violated. Finally, these previously recommended 
procedures will be compared to a new procedure 
to determine the method that provided the best 
balance between Type I error control and power. 
Ultimately, the goal is for applied researchers to 
regard alternatives to the ANOVA F test as 
necessary tools that need to be considered for 
implementation when assumptions are violated. 
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Assumption Violation 
The first assumption of the ANOVA F 

test is that the observations are independent of 
one another; this is ascertained during the design 
stage and established during sampling. The 
second assumption is that data from each 
population are normally distributed. When non-
normality is a characteristic of the data in the 
cells, the deleterious effects on the ANOVA F 
can be quite serious. As a distribution becomes 
increasingly skewed, the mean of that 
distribution will be misrepresented because it 
will be pulled toward the tail and away from the 
middle of the data. Further, extreme scores in 
skewed distributions can elevate the variances of 
the distributions. 

The third assumption of the ANOVA F 
is that the data are drawn from populations with 
equal variances. The standard error of the 
ANOVA F is based on a pooled variance term 
which weights the variances of the cells by their 
sample sizes. The cells with the larger sample 
sizes will contribute more information about 
variability to the computation of the standard 
error than the cells with the smaller sample 
sizes. For example, when sample sizes and 
variances are positively paired (larger sample 
sizes with larger variances and smaller sample 
sizes with smaller variances), empirical Type I 
error rates for the ANOVA F will be deflated 
and power will be compromised. When sample 
sizes and variances are negatively paired (larger 
sample sizes with smaller variances and smaller 
sample sizes with larger variances), empirical 
Type I error rates will be inflated. 
 
Criteria for Robustness 

The current study investigates how well 
different procedures perform, and thus a 
measure of how well warrants a brief discussion. 
The threshold for acceptable empirical Type I 
error rate adopted in the current study was +/-.2 
α, meaning a statistical procedure was 
considered robust if it maintained empirical 
Type I error rates between .04 and .06 when α  = 
.05. This was deemed a reasonable middle 
ground between Bradley’s (1978) conservative 
(+/-.1α) and liberal (+/- .5α) criteria. 

 
 

 

Robust Test Statistics 
When assumptions are violated, the 

empirical Type I error rates of the ANOVA F 
vary in terms of robustness. The following 
summarizes conditions where the ANOVA F 
holds acceptable empirical Type I error rates and 
offers suggestions for alternatives when it does 
not. When data are normal in shape and have 
equal variance, the ANOVA F has accurate 
empirical Type I error rates and maximal power. 
In this situation, it merits the popularity it 
enjoys. 

 
Non-normality 

When distributions are non-normal but 
have equal variance, Hsuing and Olejnik (1996) 
found that the empirical Type I error rates for 
ANOVA F satisfied the threshold of +/-.2 α. 
However, Wilcox (2003) argued that non-
normality has deleterious effects on statistical 
power and that these effects are exacerbated by 
unequal sample size and heterogeneity (see, for 
example, Keselman, Wilcox, & Lix, 2003; 
Wilcox & Keselman, 2003). In these cases, the 
Welch on trimmed means (Wt) is recommended. 
 
Variance Heterogeneity 

The presence of unequal variances with 
normal distributions resulted in empirical Type I 
error rates for the ANOVA F that deviated 
considerably from the nominal level (Hsuing & 
Olejnik, 1996). Recommended alternatives for 
data that violate the assumption of variance 
homogeneity include the James, Welch, and 
Alexander-Govern (A-G) tests (Hsuing & 
Olejnik, 1996; Luh, 1999). Each of these 
procedures had acceptable empirical Type I 
error rates under heterogeneity. 
 
Variance Heterogeneity and Non-normality 

When non-normality was coupled with 
heterogeneous variances, the empirical Type I 
error rates for the ANOVA F become extremely 
unreliable (Hsuing & Olejnik, 1996). In this 
case, trimmed version of the James, Welch or A 
– G procedures have acceptable Type I error 
rates for several nonnormal distributions (Luh, 
1999). Further, the use of a Johnson 
transformation improves the empirical Type I 
error rates of these procedures (Luh & Guo, 
2001). 
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In general, the ANOVA F test is 
inappropriate when variance equality is 
compromised and especially so in combination 
with non-normality and unequal sample sizes. 
Researchers have the option of choosing from 
robust alternatives, but it remains unclear which 
choice is optimal. One method of simplifying 
the alternatives is to determine the procedures 
that maintain acceptable Type I error control, 
and then seek the procedure with the highest 
statistical power. Below is an overview of the 
reported power findings for procedures that 
maintained acceptable Type I error control. 
 
Power Findings 

When distributions were normal but 
variances heterogeneous, the James, Welch, and 
A-G tests reported by Luh (1999) all had similar 
power findings. When both normality and 
variance homogeneity were violated, trimmed 
versions of the the A-G, Welch and James tests 
had very similar power (Luh, 1999). 

The primary goal of this study is to 
identify test statistics for 2 x 2 factorial designs 
that are best suited to psychological research 
whether the data meets the assumptions of the 
ANOVA F or it does not.  
 
Test Statistics 

Five procedures were evaluated and 
compared with the intention of determining one 
test that holds the most acceptable empirical 
Type I error rates combined with the highest 
power findings. The computational methods for 
each procedure are provided in Appendix A. 1) 
ANOVA F test. This test is included in this 
study as it is almost exclusively adopted by 
applied researchers, regardless of whether the 
assumptions of the test are violated; 2) Welch on 
trimmed means (Wilcox, 2003) using a Johnson 
transformation and Johansen interaction term 
(JW-Jt). The JW-Jt circumvents the problem of 
heterogeneous variances by unweighting the 
error term and the problem of non-normality by 
transforming and trimming the data. The Welch-
James using trimmed means and Winsorized 
variances was found by Keselman, Kowalchuk,  
and Lix (1998) to be robust to heterogeneity and 
non-normality in non-orthogonal (unequal 
sample size) designs. Further, Luh & Guo 
(2001) recommended the use of this procedure 

with a Johnson transformation. 3) Alexander-
Govern with trimmed means and Johnson’s 
transformation (JA-Gt). Luh & Guo (2001) 
found that the Alexander-Govern test with a 
combination of trimmed means and Johnson’s 
transformation had acceptable empirical Type I 
error control under several conditions of non-
normality and variance heterogeneity (Luh & 
Guo, 2001; Luh & Guo, 2004). 4) Welch on 
trimmed data (Wt). The Welch test on trimmed 
data is advantageous under heterogeneity of 
variance, as it unweights the pooled error term. 
In other words, the largest sample sizes no 
longer have the most influence on the pooled 
error term. 

The final procedure investigated in this 
study is the Welch test, with the Johansen 
interaction procedure, on ranked data (Wr). 
Cribbie, Wilcox, Bewell & Keselman (2007) 
found that the Welch (1951) test on ranked data 
provided the best balance between Type I error 
control and power in one-way independent 
groups designs when both the assumptions of 
normality and variance homogeneity were 
violated. It is hypothesized in this study that the 
use of the Wr will also provide the best balance 
between Type I error control and power in 2 x 2 
factorial independent groups designs. The use of 
a heteroscedastic test statistic in combination 
with ranked data is expected to simultaneously 
correct for violations of the assumptions of 
variance homogeneity and normality. Ranking 
data assigns the lowest score on the outcome 
variable a value of 1 and every other score a 
rank relative to that score, regardless of group 
membership. Thus, outlying data points become 
less distant and the problems associated with 
extreme data points are reduced. The Wr 
procedure is exactly as described for the Welch 
(see Appendix A), but because trimming and 
Winsorizing are unnecessary when using ranked 
data, the substitutions 

jk
jk n

sd
2

=   

for 

 
( )

( )d
n s

h h
jk

jk wjk

jk jk

=
−

−

1

1

2

 



MILLS, CRIBBIE & LUH 
 

325 
 

and jkX  for tjkX are made.  

The Johansen test (see Appendix A) is 
used for evaluating the statistical significance of 
the interaction term. 

Methodology 
 
The current study aims to facilitate decision-
making by applied researchers by discovering 
the one procedure which can offer the best 
balance of empirical Type I error control and 
power for 2 x 2 factorial designs. It is 
hypothesized that the Wr will be such a 
procedure, following the findings of Cribbie, et 
al. (2007) for one-way designs. 
 To test this hypothesis, a Monte Carlo 
study was conducted using 5000 simulations. R-
project (Ihaka & Gentleman, 1996) and 
SAS/IML (SAS Institute Inc, 1989) software 
were used, with data generated using the rnorm 
and the RANNOR generators, respectively. The 
variables manipulated were: degree of sample 
size imbalance, variance inequality, pairings of 
unequal group sizes and variances (positive and 
negative), population distribution shape, and 
population means. The total sample size for the 
current study was set at 56 with specific 
individual cell sizes outlined below. 

The procedures were tested with equal 
variances and with largest to smallest variance 
ratios of 4:1 and 8:1, respectively. This disparity 
was found by Keselman et al. (1998) to be 
common in psychological testing. The unequal 
variances were then reversed when sample sizes 
were unequal in order to test for both positive 
and negative pairings of unequal sample sizes 
and variances. The sample size and variance 
conditions investigated in this study are 
presented in Table 1. 

Data were tested when population 
distribution shapes were normal and non-
normal. The data were drawn from distributions 
defined by Hoaglin (1985) where both skewness 
(g) and kurtosis (h) can be manipulated to create 
varying levels of non-normality. In the current 
study, the distributions were set to normal (g = 
0, h = 0), moderately skewed (g = 0.5, h = 0), 
and heavily skewed (g = 1, h = 0). Standard 
normal variates were generated with SAS 
RANNOR (SAS Institute, 1989) and R-project 
RNORM (Ihaka & Gentleman, 1996) and to 

obtain data from a skewed g- and h- distribution, 
these variables were converted to: 
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was subtracted from each observation, and for 
trimmed data the population trimmed mean (μtgh) 
was subtracted from each observation. In order 
to create cells with mean µjk and standard 
deviation σjk, the resulting εijk were converted to 
Yijk =  µjk + (εijk σjk). For the Wr, the population 
mean rank is not equal across cells when the 
distribution shapes are skewed and the variances 
are unequal. Therefore, for each condition of 
skewness and variance heterogeneity, we 
adjusted the distribution of the cells so that the 
population mean ranks were equal. Specifically, 
the empirically derived population mean rank 
for each cell was subtracted from Yijk. 
 
Null Hypotheses 

Given a 2 x 2 independent groups 
factorial design, the null hypotheses for the row 
and column main effects are: H0: μ1 = μ2 where 

μj. = 
2

 jkk μ
and μk. = 

2
 jkj μ

. When 

trimmed means are applied, as is the case for the 
Wt, the null hypotheses becomes H0: μt1 = μt2 

where μtj. = 
2

 tjkk μ
 and μtk. = 

2
 tjkj μ

. The 

null hypotheses for the interaction term can be 
expressed as H0: μ11 - μ12 = μ21 - μ22 for the usual 
means and for trimmed means H0: μt11 - μt12 = 
μt21 - μt22. For ranked data, the null hypotheses 
for the main effects and interactions (without a 
heteroscedastic test statistic) relate to the 
population mean ranks (i.e., μrjk) only when the 
distributions are the same shape and variances 
are equal. Hence, an important part of this study 
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is to evaluate how the Welch on ranks performs 
when variances are unequal. 

 
Results 

 
Normal Distributions and Equal Variances 

When distributions were normal and 
variances were equal, all tests produced 
acceptable empirical Type I error rates. The 
ANOVA F and the Wr held the highest power 
under these conditions, although differences 
among procedures were minimal. (Empirical 
Type I error and power rates are presented in 
Tables 2 - 6.) 

  
Skewed Distributions and Equal Variances 

When distributions were moderately 
skewed and variances were equal, empirical 
Type I error rates were within the acceptable 
range for all procedures. The power of the 
procedures was very similar in terms of main 
effects, but when interaction is present, the Wr is 
the most powerful. 

When distributions were heavily skewed 
and had equal variances, the ANOVA F and the 
Wr maintained Type I error rates within the 
acceptable range while the other procedures 
were deflated relative to α. The Wr was more 
powerful than the ANOVA F (and all other 
procedures). 
 
Heterogeneity and Normal Distributions 

When unequal variances were combined 
with normal distributions, the ANOVA F had 
Type I error control that was deflated relative to 
α when the pairing of the unequal variances and 
sample sizes was positive and inflated relative to 
α when the pairing was negative. Type I error 
rates for the Wt slightly exceeded the robustness 
criteria when testing interactions with negatively 
paired sample sizes and variances, but all other 
procedures had Type I error rates within the 
acceptable range. Power findings were similar 
across all procedures, with the Wr slightly 
higher, particularly for interactions when there 
was a negative pairing of unequal sample sizes 
and variances. 
 
Heterogeneity and Skewed Distributions 

When distributions were moderately 
skewed and variances were unequal, the 

ANOVA F and the Wt had unacceptable Type I 
error control. Specifically, the ANOVA F had 
inflated Type I error rates when sample sizes 
and variances were negatively skewed and 
deflated Type I error rates when sample sizes 
and variances were positively skewed, for both 
main effects and interactions. The Wt procedure 
had inflated Type I error rates when testing 
interactions with negatively paired sample sizes 
and variances. The Wr maintained much higher 
power than all other procedures, again 
particularly in the case of negative pairings. 
Finally, when distributions were heavily skewed 
with unequal variances, the Wr was the only 
procedure that maintained empirical Type I error 
rates within the acceptable range, and even when 
other procedures had acceptable Type I error 
rates the power of the Wr was generally superior. 
 

Conclusion 
 
Factorial designs are extremely common in 
psychological research. The method most 
commonly used for analyzing factorial designs, 
the ANOVA F statistic, is clearly a poor choice 
when the assumptions of homogeneity and 
normality are violated.  The F test simply falls 
short of the expectations that researchers assign 
it. The goal of the current paper was to elucidate 
the problems with the popular ANOVA F test 
while at the same time offering a comparison of 
alternative procedures across numerous 
conditions of normality/non-normality and 
variance homogeneity/heterogeneity with 
respect to the balance between empirical Type I 
error control and statistical power. 

It is strikingly clear that the most 
popular procedure, the ANOVA F, is also the 
most inappropriate test for factorial research 
unless data conform to the assumptions of 
normality and variance homogeneity. Empirical 
Type I error rates stray considerably from the 
nominal α, especially when variances are 
unequal or unequal variances are combined with 
non-normal distributions. When α is set at .05, 
the empirical Type I error rates for the ANOVA 
F can be as low as 1.8% or as high as 14% under 
the conditions used in the current study. Further, 
if the ratio of the largest to smallest variances 
exceeds 8:1 or more extreme sample size 
imbalance is present (both realities in real-world 
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data), the rates of Type I error become even 
more alarming (see Hsuing & Olejnik, 1996). 

These results are troubling given that the 
assumptions of the ANOVA F are routinely 
violated. Micceri (1989) investigated the 
distribution shapes of over 400 sets of data from 
empirical studies and found that in psychometric 
and ability type scores about 70% were 
asymmetric and/or had heavy tails. In other 
words, most of the studies had distributions that 
could be considered non-normal. Further, 
Keselman, Kowalchuk, and Lix (1998) discuss 
the regular occurrence of unequal variances in 
psychology, and unbalanced cell sizes are the 
norm in psychological research. 

The closer the data come to meeting 
assumptions, the more choices there are for 
researchers in terms of accuracy and power. As 
the data move farther from normality and 
variance homogeneity, the decision is made 
easier by elimination. The procedure that holds 
empirical Type I error rates closest to α and has 
the highest power is the Welch on ranked data 
using the Johansen procedure for interactions. 
Under all conditions, the procedure performed 
well in terms of Type I error control and power. 
The most exciting aspect of the findings in this 
project is that the Welch on ranked data worked 
well under the majority of conditions that were 
investigated for a 2 x 2 design, including equal 
variances and normal distributions. In other 
words, researchers don’t need to sort through a 
confusing decision-making process. This 
procedure can easily fill the role that the 
ANOVA F now occupies by offering more 
accuracy and power when assumptions are 
violated while only losing a trivial amount of 
power when assumptions are met. Therefore, it 
is highly recommended that researchers 
routinely adopt the Welch procedure with 
ranked data when analyzing factorial designs. 

With regard to limitations of the current 
study, Micceri (1989) notes that Monte-Carlo 
investigations don’t necessarily replicate real-
world data. With real-world data, researchers 
might experience different kinds of non-
normality than the distribution shapes that were 
investigated in this study. Likewise, the degree 
of variance heterogeneity has innumerable 
possibilities while only five conditions were 
investigated in the current project. However, the 

conditions investigated in the current project 
covered many of the most extreme assumption 
violations that researchers will encounter and 
thus if the procedure is robust under these 
conditions, it will likely be robust under most 
conditions encountered in applied research. 

An obvious future direction for this 
procedure is to investigate the performance of 
the Welch on ranks in higher order factorial 
designs. Although it is expected that the results 
of this study will replicate in larger factorial 
designs, this hypothesis still needs to be 
evaluated, especially in light of the fact that 
Seaman, Walls, Wise, and Jaeger (1994) report 
that in designs larger than a 2 x 2 factorial that 
because rank transformations are nonlinear, the 
expected rank of an observation in one cell will 
depend nonlinearly on the original population 
means of the other cells.  

It is expected that the complications that 
arise when utilizing ranks with traditional test 
statistics [e.g., the rank transform procedure 
suggested by Conover and Iman (1981)] will not 
have a significant effect on the Welch on ranks 
procedure because it utilizes heteroscedastic test 
statistics; however this is still to be 
demonstrated. Another important consideration 
in future research is the effect of between-cell 
distribution shape heterogeneity. In other words, 
the degree of skew might differ from group to 
group and exacerbate the effects of skewness 
beyond what was reported in this paper. In fact, 
Wilcox (2005) notes that skewness per se is not 
necessarily the problem, but the degree to which 
skewness varies from group to group raises 
cause for alarm. 

As a result of the findings of the current 
study, it is strongly recommended that 
researchers discontinue the use of the ANOVA 
F procedure. Instead, it is suggested that 
researchers utilize the Welch on ranked data 
(with Johansen procedure for interactions) 
regularly for analyzing independent groups 
factorial designs. 
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Table 1: Means, Sample Sizes and Variances Utilized in the Monte Carlo Study 

Condition 

Relevant Statistic 

Means 
μ11 μ12 μ21 μ22 

No Main Effect or Interaction 0 0 0 0 
Main Effect + Interaction 0 0 0 2 
No Main Effect, Interaction 0 1 1 0 

 Sample Sizes 

n11 n12 n21 n22 

Equal Sample Sizes 14 14 14 14 

Moderately Unequal Sample Sizes 11 14 14 17 

Extremely Unequal Sample Sizes 7 10 18 21 

 Variances 

σ11 σ12 σ21 σ22 

Equal Variances 1 1 1 1 

Moderately Unequal Variances 
  (Positively Paired with Unequal 

Sample Sizes) 
1 2 3 4 

Moderately Unequal Variances 
  (Negatively Paired with Unequal 

Sample Sizes) 
4 3 2 1 

Extremely Unequal Variances 
  (Positively Paired with Unequal 

Sample Sizes) 
1 3 5 8 

Extremely Unequal Variances 
  (Negatively Paired with Unequal 

Sample Sizes) 
8 5 3 1 
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Table 2: Type I Error Rates for Main Effects with Normal and Skewed Distribution for N = 56 
 

Distribution Variances  F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal   .050        .047 .048         .048             .050 
  Positive Pair  .034        .046 .048         .048     .055 
  Negative Pair  .094        .050 .048         .050     .054 
 
Moderate Equal   .048        .043 .041        .046     .050 
Skew  Positive Pair  .037        .045 .045        .046     .053 
  Negative Pair  .095        .049 .047        .049     .055 
 
Heavy  Equal   .042        .040 .037        .038     .052 
Skew  Positive Pair  .041        .041 .035        .037     .053 
  Negative Pair  .093        .039 .035        .046     .054 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Wt (Welch on trimmed data), Wr (Welch on 
ranked data). 
Bolded entries indicate conservative empirical Type I error rate.  Bolded and underlined entries represent 
liberal Type I error rates 

Table 3: Type I Error Rates for Interactions with Normal and Skewed Distribution for N = 56 
 

Distribution Variances  F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal   .054        .048 .050        .056     .051 
  Positive Pair  .035        .047 .049        .055     .054 
  Negative Pair  .095        .051 .049        .062     .054 
 
Moderate Equal   .050        .045 .042        .054     .052 
Skew  Positive Pair  .033        .045 .046        .053     .051 
  Negative Pair  .095        .050 .045        .064     .054 
 
Heavy  Equal   .044        .039 .035        .052     .052 
Skew  Positive Pair  .029        .040 .035        .050     .051 
  Negative Pair  .079        .042 .034        .064     .057 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Wt (Welch on trimmed data), Wr (Welch on 
ranked data). 
Bolded entries indicate conservative empirical Type I error rate.  Bolded and underlined entries represent 
liberal Type I error rates 
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  Table 4: Power Findings for Main Effects with Normal and Skewed Distribution when both Main Effects 

and Interaction were Present for N = 56 
 

Distribution Variances F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal  .940        .893 .886        .897     .911 
  Positive Pair .468        .484 .490        .492     .467 
  Negative Pair .556        .367 .363        .377     .493 
 
Moderate  Equal  .838        .816 .859        .841     .847 
Skew  Positive Pair .344        .487 .494        .459     .518 
  Negative Pair .480        .321 .345        .361     .402 
 
Heavy  Equal  .516        .680 .750        .708     .733 
Skew  Positive Pair .134        .427 .422        .362     .556 
  Negative Pair .330        .266 .290        .310     .334 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Wt (Welch on trimmed data), Wr (Welch on 
ranked data). 
Greyed power findings indicate cases where empirical Type I error rate does not fall within +/- .2α criteria.

 

Table 5: Power Findings for Interactions with Normal and Skewed Distribution when Both Main Effects 
and Interactions were Present for N = 56 

Distribution Variances    F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal  .941        .898 .888        .946     .954 
  Positive Pair .470        .483 .491        .548     .468 
  Negative Pair .558        .365 .363        .504     .651 
 
Moderate  Equal  .832        .854 .874        .941     .962 
Skew  Positive Pair .356        .432 .456        .522     .584 
  Negative Pair .449        .326 .328        .505     .577 
 
Heavy  Equal  .508        .712 .764        .886     .921 
Skew  Positive Pair .188        .343 .382        .448     .726 
  Negative Pair .278        .240 .254        .472     .502 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Wt (Welch on trimmed data), Wr (Welch on 
ranked data). 
Greyed power findings indicate cases where empirical Type I error rate does not fall within +/- .2α criteria.
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Table 6: Power Findings for Interactions with Normal and Skewed Distribution When Interaction 
Was Only Present for N = 56 

Distribution Variances F        JA-Gt JW-Jt          Wt       Wr 
    Shape 
 
Normal Equal  .943        .895 .894        .910     .925 
  Positive Pair .469        .489 .494        .509     .560 
  Negative Pair .557        .370 .362        .409     .465 
 
Moderate Equal  .832        .842 .843        .867     .925 
Skew  Positive Pair .366        .466 .466        .477     .596 
  Negative Pair .473        .382 .371        .406     .482 
 
Heavy  Equal  .511        .724 .724        .752     .910 
Skew  Positive Pair .204        .395 .383        .403     .668 
  Negative Pair .288        .357 .333        .365     .613 
 
F (ANOVA F), JA-Gt (Alexander-Govern with trimmed means and Johnson transformation), JW-Jt (Welch-
James with trimmed means and Johnson transformation), Welch (Welch on trimmed data), Wr (Welch on 
ranked data). 
Greyed power findings indicate cases where empirical Type I error rate does not fall within +/- .2α criteria.  
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Appendix A: 
ANOVA F Procedure 

 
The main effect of one factor (A) is a measure of 
the ratio of mean squared group variation to 
mean squared error and is defined as: 
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where n = cell group size, N = total sample size, 
j = 1 … J (number of levels for factor A), k = 1 
… K (number of levels for factor B), X is an 

observation, jkX  is the mean of the cell at the 

ith row and the jth column, X .. is the grand 

mean, X j. is the mean of the jth level of factor A, 

and X .k is the mean of the kth level of factor B. 
The degrees of freedom for factor A are J - 1 and 
JK(n – 1). 
 
The main effect for factor B is likewise defined, 
with the means of each level obtained across 
(and disregarding) all levels of Factor A. The 
equation is: 
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The degrees of freedom for the main effect of B 
are K-1 and JK(n–1). The interaction term for 
the ANOVA F test is a ratio of mean squared 
cell variation (less mean squared variance of 
both factors) to mean squared error and is 
defined as: 

( ) ( ) ( )

( ) ( )

2 2 2

.. . .. . ..

2 2

..
..

( 1)( 1)

( 1)

AB

jk j k

jk

F

n X X nK X X nJ X X

J K

X X n X X

JK n

=

− − − − −

− −

− − −

−

  

 

 

The main effect for factor B is likewise defined, 
with the means of each level obtained across 
(and disregarding) all levels of Factor A. The 
equation is: 
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The degrees of freedom for the main effect of B 
are K - 1 and JK(n – 1). The interaction term for 
the ANOVA F test is a ratio of mean squared 
cell variation (less mean squared variance of 
both factors) to mean squared error. It is defined 
as: 
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The degrees of freedom for the interaction term 
are (J-1)(K-1) and JK(n – 1). 
 

Appendix B: 
The Welch Procedure using Johansen Interaction 

Term 
 
Wilcox (2003, p. 345) defines the Welch 
procedure using trimmed means and Winsorized 
variances. Winsorizing is a method by which 
trimmed scores are replaced with the remaining 
highest and lowest score in the data. This 
generates an appropriate estimate of variance 
when using a trimmed mean as opposed to 
estimating variance using only the scores left 
after trimming by accounting for the original 
sample size. The current study adopts these 
procedures for the Welch. Consider X1, …, Xn, 
a random sample from a single group, ordered 
from smallest to largest. Let e = [γn], where γ is 
the proportion of symmetric trimming, set at .20 
in this study, and [X] is the greatest integer less 
than or equal to X, and let hjk=n-2e be the 
effective sample size (i.e., sample size after 
trimming). 
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A trimmed mean can be expressed as 
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where Yi = Xe+1 if Xi ≤ Xe+1, Xi if Xe+1 < Xi <Xn-e 
and Xn-e if Xi ≥ Xn-e. 

A measure of row means is indicated by 
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Two final terms contribute to the Welch statistic: 
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Degrees of freedom for Factor B are v K1 1= −  

and v
K
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. To test for interactions, 

Wilcox recommends the Johansen (1980) 
method. The inverse of the mean cell deviation 

is D
djk

jk
=

1
 which are summed across each 

factor and in total to determine (respectively) 
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The interaction is determined with a ratio of the 
cell mean residuals to cell mean deviation using 
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. Using the 

example, the interaction is calculated as follows: 
The critical value for the Johansen 

method is found by computing 
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where 1−= jkjk hf and c is the cutoff value in 

the 1 – α chi-square distribution, with 
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Appendix C: 
Alexander-Govern Procedure with Trimmed 
Means and Johnson Transformation 
 
This procedure involves terms identical to those 

used for the Welch statistic: rj, Rj, jυ̂ , & R̂ for 

the row effect and wk, Wk, kω̂ , & Ŵ for the 

column effect, with 
jk

jk
jk n

s
d

2

= for both row and 

column effects. The A-G then computes the row 

Z statistic using ( )T r R Rj j j= −  , 

A vj j= − .05 , 
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This test statistic is compared to a χ2 critical 
value at 1 – α with J – 1 degrees of freedom. For 
the example, the critical value is 3.84 when α = 
.05. To test for interactions, the Johansen 
method is recommended by Luh (1999), which 

is the same as used by the Welch and so its 
definition will suffice. 

For use in the transformation, the third 
central Winsorized moment is defined using 

( )
n

XY wi −
=

3

3μ̂ , where Yi are the 

observations in the cell of interest and 

n
Y

X i
w
=  is the Winsorized mean, 
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=
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w
w h

snσ is the squared standard error of 

the trimmed mean and 
jk

w h
n 3μμ
 = is the third 

central sample Winsorized moment.  The 
transformation is executed in the residual 
computations for the Tt  terms. These residuals 
are defined as 
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for the row effect and 
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for the column effect, where 
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Appendix D: 
Welch-James with Trimmed Means and Johnson 

Transformation 
 
C1 are contrast matrices associated with either 
the main effect of factor A or B or AB. The cell 

means are: =
i jkijkjk nYY / . The matrix of 

cell means is: ( )''
1 ,..., jKjj YYY =   and the 1 x J 

matrix of cell means is thus, ( )''
1 ,..., jYYY = . 

The sample variance matrix of Y is: 
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The test statistic is: 
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and Pjk,jk = the jk,jkth element of the matrix 
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'
1 )( CSCCSCI −− . TWJ has an approximate 

F distribution with degrees of freedom f1 = r and 
f2 = r(r + 2)/(3/4).  

The Johnson transformation applied to 
the W-Jt is defined by Luh & Guo (2001) as 

follows tjkX  is replaced by  
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A Comparison of Maximum Likelihood and Expected A Posteriori Estimation 
for Polychoric Correlation Using Monte Carlo Simulation 

 
Jinsong Chen Jaehwa Choi 
The George Washington University 

 
 
This study aims to compare the maximum likelihood (ML) and expected a posterior (EAP) estimation for 
polychoric correlation (PCC) under diverse conditions, especially when considering a sample size. As the 
ML is the classical solution to estimate PCC, the EAP is a new method based on Bayes’ theorem. 
Different types of prior distributions are also adapted to investigate the sensitivity of prior distribution 
onto the PCC estimate for the EAP case. The Monte Carlo simulation is used for this comparison by a 
specialized program code in MATLAB. 
 
Key words: Polychoric correlation, maximum likelihood, expected a posterior. 
 
 

Introduction 
 
It is fairly common that observed variables are 
measured using ordinal scales, which represent 
categorizations of underlying constructs that are 
continuous. This scenario is especially relevant 
in psychological and educational measurement. 
As an estimate of the relation between the two 
continuous constructs underlying two such 
ordinal variables, the polychoric correlation 
(PCC) has been widely employed. For instance, 
PCC has been used in many confirmatory factor 
analysis (CFA) or structural equation model 
(SEM) scenarios recently (e.g., Flora, 2002; 
Flora & Curran, 2004; Rigdon & Ferguson, 
1991). The estimation of PCC has been 
conducted using maximum likelihood (ML) 
methods (e.g., Olsson, 1979), which can be 
accomplished using several popular statistical 
applications such as PRELIS (Jöreskog, 2002-
2005) or SAS PROC FREQ (SAS Institute Inc., 
2004). 
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Regarding the ML estimation of PCC, 
research showed that it: 1) produces an unbiased 
estimate of the correlation between the original 
bivariate normal variables (Babakus & 
Ferguson, 1988; Olsson, 1979); 2) outperforms 
Pearson’s product-moment correlation (PPMC), 
Spearman’s rho, and Kendall’s tau-b for ordinal 
data (Babakus & Ferguson, 1988); and 3) is 
rather robust to modest violation of the 
underlying normality assumptions (Quiroga, 
1992). 

Even though estimating PCC with the 
ML method has been quite satisfactory as stated 
above, empirical or simulation results from 
previous research are based on relatively large 
sample sizes. For instance, the sample size was 
500 for Olsson (1979), and 200 or above for 
Quiroga (1992). In many situations however, the 
sample size could be much smaller (e.g., less 
than 100), and the performance of the ML 
estimator has not been studied yet in the case of 
smaller sample sizes. Furthermore, due to the 
properties of numerical procedure of ML (i.e., 
iterative hill-climbing method using gradients of 
the target function), the ML estimation method 
for PCC also has several disadvantages such as, 
local maxima and non-converged solution. 

Recently, expected a posteriori (EAP) 
estimation for PCC was introduced (Choi, Chen, 
& Kim, in press). As the EAP method is based 
on Bayes’ theorem (Bock & Aitken, 1981), the 
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estimation of PCC can incorporate prior 
information regarding the correlation. The EAP 
method has been spotlighted in social and 
behavioral methodologies, such as Item 
Response Theory (IRT) models (e.g., Mislevy & 
Stocking, 1989). Also, this estimator has been 
compared with the ML method in IRT models 
(see Chen, Hou, & Dodd, 1998 for a summary). 
Because both PCC and EAP are becoming 
increasingly popular in social science research, 
understanding the behavior of the newly 
developed EAP estimator for PCC from a 
systematic comparison with the ML estimator 
would be beneficial. In this article, a 
methodological framework of both ML and EAP 
estimators will be introduced and the 
performance of the two estimators under various 
conditions will be compared, especially in the 
case of small sample size, using a Monte Carlo 
simulation study. 
 
Polychoric Correlation and the Maximum 
Likelihood (ML) Estimation 

Traditionally, ML has been the only 
estimator for estimating PCC, and the 
procedures are summarized here (see Olsson, 
1979 for details). Two ordinal variables are 
observed with r and s possible categories. Given 
that the two corresponding continuous latent 
constructs follow the crucial assumption of 
bivariate normal distribution, the log-likelihood 
function of any sample is: 
 

1 1

ln ln ln
s r

ij ij
i j

L C n π
= =

= +         (1.1) 

 
where C is a constant and ijπ  is the probability 

that a given observation falls into the 
contingency table cell (i, j) between two ordinal 
variables, 
 

( ) ( ) ( ) ( )2 2 1 2 1 2 1 1      , , , ,

ij

i j j ii j i ja b a b a b a b

π

− − − −

=

Φ − Φ − Φ + Φ

(1.2) 
 
where a and b are the threshold parameters for 
the categories i = 1, 2, …, s and j = 1, 2, …, r, 

with a0 = b0 = -∞ and as = br = + ∞, and 2Φ  is 

the bivariate standard normal cumulative density 
function (CDF) with correlation ρ. 

The threshold and correlation 
parameters can be estimated by: 1) taking partial 
derivatives of the log-likelihood function with 
respect to the parameters (thresholds and 
correlation), 2) setting these equations equal to 
zero, and 3) solving these equations for the 
parameters of interest using the numerical 
iterative procedure such as the Newton-Raphson 
method (Olsson, 1979). This method attempts to 
estimate all parameters of interest 
simultaneously, and was referred to as the “full 
ML method” or the “one-step ML method” by 
Olsson (1979). 

Olsson also presented the two-step ML 
method for PCC, which estimates threshold 
values first: 
 

( ).1
1 ii Pa −Φ=  and ( )jj Pb .1

1
−Φ=      (1) 

 
where Pij is the observed proportion in cell (i, j), 
Pi. and Pj are observed cumulative marginal 
proportions of the contingency table, and Φ1 is 
the univariate normal CDF. 

These threshold values are then 
substituted into the log-likelihood function, 
Equation (1), and the correlation parameter is 
estimated similar to the one-step ML method 
illustrated above. Olsson (1979) further showed 
that the difference of estimation between the 
one-step and two-step ML methods is negligible. 
Therefore, the two-step method is used in this 
study for the purpose of computational 
convenience. 

Several issues of the ML methods are 
worthwhile to be noted here. As mentioned 
earlier, ML methods are iteratively searching the 
maximum of the log-likelihood function using 
the gradients (the first and second derivative of 
the log-likelihood function). Therefore, in 
general, ML estimators present the following 
disadvantages: 1) it is possible to get a non-
converged solution; 2) there is no guarantee of 
getting the global maximum; 3) consequently, 
the ML estimates depend on a starting value; 4) 
above disadvantages tend to get worse as sample 
sizes decrease. Because it is very common for 
one to analyze small sample sizes (e.g., less than 
100) in social and behavioral applied research, 
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these disadvantages of ML estimation have 
occasionally frustrated researchers who want to 
estimate PCC over the last several decades. 
 
Expected A Posteriori Estimation 

The EAP estimation method for PCC 
proposed by Choi et al. (in press) also adopts the 
assumption of bivariate underlying normal 
distribution, and uses the same procedure, 
Equation (3), in the above two-step ML method 
to estimate threshold values. However, when it 
estimates PCC, it follows Bayes’ theorem: 
posterior distribution ∝  likelihood function × 
prior distribution. In other words, subjective 
belief about what the true correlation is likely to 
be can be incorporated into the estimation 
procedure through the prior distribution. Here is 
a brief development of the EAP method for PCC 
(more details of the EAP estimator of IRT model 
are available in Bock & Aitken, 1981): 
 

1

1

Pr( ) Pr( )
Pr( )

Pr( ) Pr( )

x
x

x d

ρ ρ
ρ

ρ ρ ρ
−

=


           (2) 

 

where )Pr( xρ  is the posterior distribution of 

given x which is frequency data of two variables, 

)Pr( ρ  is a prior distribution of ρ, and )Pr( ρx  

is the same likelihood function L in the ML 
method. Then, the EAP (i.e., the mean of the 
posterior distribution) estimate of PCC can be 
simply expressed as: 
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1
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For the purpose of numerical computation of the 
integration, the above two equations can be re-
expressed as: 
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and 

 =
= k

i iiEAP x
1

)|Pr(ˆ ρρρ                (5) 

 
where k is the number of equally spaced 
quadrature points from -1 to +1. 

As described in the above development, 
the EAP method is based on both Bayes’ 
theorem and the non-iterative numerical 
integration. Consequently, the EAP method has 
the following advantages over the ML method: 
1) there is no non-convergence issue (i.e., the 
estimates always exist); 2) there is no risk of a 
local maxima problem; 3) the estimates do not 
depend on a starting value; 4) the capability of 
including the a priori knowledge/belief on the 
parameter into the estimation process using prior 
distribution. 
 

Methodology 
 
Beyond the methodological advantages of the 
EAP over the ML illustrated above, it would be 
useful to investigate the empirical behavior of 
the two estimators over various conditions 
especially for a small sample sizes. In this study, 
a Monte Carlo simulation was used to examine 
the effect of sample size, population correlation 
magnitude, and number of categories on the 
PCC estimation for both EAP and ML 
estimators. The procedures can be summarized 
in the following way: (1) bivariate normal data 
was randomly generated from specific 
population correlation magnitude (ρ) and sample 
size (n); (2) the generated interval data was 
categorized over number of categories based on 
the threshold scheme and; (3) PCC was 
estimated by the EAP and ML estimation 
methods; and (4) the above procedures were 
repeated 1,000 times (i.e., iteration number in = 
1,000). 
 
Data Generation 

The sample size variable was n = 30, 50, 
100, and 500 observations. These numbers were 
chosen to reflect from small to moderate sample 
size that might be commonly encountered in the 
social sciences. The population correlation 
variable was chosen with ρ = 0, 0.1, 0.3, 0.5, and 
0.7 magnitudes, ranging from null to moderate 
high. 

The categorization rule (threshold 
scheme) used in this simulation study was the 
normal category option, which was also called 
the equal category width option within the range 
from -3 to 3 in standard normal distribution 
(Bollen & Barb, 1981). Therefore, the 
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distribution of categorized data gets closer to 
normal as the number of categories is increased. 
The number of category for both ordinal 
variables was r = s = 2, 3, 5, and 7. 

EAPPCC, a MATLAB subroutine (Choi 
et al., in press) was adopted for both EAP and 
ML estimators. Also, entire Monte Carlo 
simulation was implemented by a specialized 
program code in MATLAB (The MathWorks 
Inc., 2007), and the MVNRND function in 
MATLAB was used to generate bivariate normal 
data with specified population correlation (ρ) 
magnitude and sample size (n). 
 
Estimation Options 

In this study, the following estimators 
were considered: the ML, the EAP with Uniform 
(−1, 1) prior (EAPU), the EAP with Normal (0, 
1/3) prior (EAPN), the EAP with Beta (5, 5) 
prior (EAPB5), and the EAP with Beta (1.5, 1.5) 
prior (EAPB1.5). The latter three were 
compared for prior sensitivity  onto  estimates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that the range of Beta and Normal prior 
distribution have been adjusted to [-1, 1] for the 
purpose of constructing the appropriate priors 
for the correlation. As shown in Figure 1, the 
shape of Beta (5, 5) is very similar to that of 
Normal (0, 1/3). From the perspective of 
informativeness of prior, above two priors are 
more informative than Beta (1.5, 1.5) prior 
whereas the uniform distribution is least 
informative, specifically non-informative. Note 
that for comparing the performance of ML and 
EAP estimator, the EAPU (EAP with Uniform 
prior) was compared to the ML. 

A two-step ML method was employed 
for the ML method and the EAP method adopted 
100 quadrature points (k = 100). Chen et al. 
(1998) showed that any quadrature points of 20 
or above were substantially the same. Therefore, 
100 quadrature points would be a fair balance 
considering both accuracy requirement and 
computational load in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Probability density functions for four prior distributions: Uniform (-1, 1), 
Beta (1.5, 1.5), Beta (5, 5), Normal (0, 1/3) 
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First, the convergence of the ML estimator was 
examined using the convergence rate (CR): 
 

/ 100 %CR pcin in= ×                (6) 
 
where pcin was the properly converged iteration 
number, and in was the total iteration number 
attempted (i.e., in = 1,000). 

Second, for evaluating the bias of the 
ML and EAPU (EAP with uniform distribution 
as prior) estimates, mean relative bias (MRB) 
was employed as the major statistics, and its 
general form was (Bandalos, 2006): 
 

1
( ) / /

pcin
ii

MRB pcinρ ρ ρ
∧

=
 = −  

       (7) 

where i

∧
ρ  was the ith iteration PCC estimate. In 

case of ρ = 0, mean bias (MB) was used instead 
of MRB, to avoid the issue of dividing by zero: 
 

1
/

pcin
ii

MB pcinρ ρ
∧

=
 = −  

 .          (8) 

 
In case average MRB values over different ρ 
magnitudes were needed (e.g., Figures 2 and 4), 
the MB values of ρ = 0 were excluded from 
averaging MRB values. Additionally, mean 
value (M) of estimates were also presented and 
analyzed: 
 

1
/
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i i
M pcinρ

∧

=
= .              (9) 

 
Third, for evaluating the variability of 

the ML and EAPU estimates, root mean squared 
error (RMSE) and standard deviation of mean 
values (SD) were examined with the following 
definitions: 
 

1/2
2

1
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ii
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∧

=
 = −  
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and 
 

1/2
2

1
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ii

SD M pcinρ
∧

=
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   (11) 

MRB and SD were used for examining the prior 
sensitivity of EAP estimators. 
 

Results 
 
Convergence Rate for the ML Estimator 

In this study, the convergence of both 
EAP and ML estimators was assessed; as shown 
in previous studies (e.g., Flora & Curran, 2004), 
not all iterations were converges for the ML 
estimator in this study as well. From the pilot 
study, it was found that the convergence rate 
was very low (< 30%) in most cases when a 
fixed initial value (0) was used. Therefore, 
PPMC was used with categorized data as the 
initial value for the ML method in this 
simulation study. 

As indicated in Table 1, the average 
convergence rates were below 100% in all 
scenarios for the ML. Furthermore, as the 
sample size, number of categories, or ρ 
magnitude decrease, the rates tended to become 
worse. In contrast, as expected, EAP estimates 
could be obtained for all iterations for all 
conditions (i.e., pcin = 1,000 for the EAP). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bias of ML and EAPU Estimates 

Statistics regarding the bias of 
estimators (M and MRB) are presented in Table 
2, and are also summarized and depicted in 
Figure 2. 

First, for ρ = 0, the differences between 
the ML and EAP (specifically the EAPU) 
estimators were negligible, and M for both 
estimates were very close to zero (i.e., |M| < 0.01 
for most cases). 

Table 1: Convergence Rates of the ML 
Estimator 

n 30 50 100 500  

% 98.1 98.7  99.1  99.4  

r = s 2 3 5 7  

% 97.5 99.1  99.5  99.4  

ρ 0 0.1 0.3 0.5 0.7 

% 97.8 98.1  98.7  99.1 99.5 
Note. Values were averaged over other 
conditions 
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Table 2: Simulation Results of the ML and EAPU Estimates 

 

ML EAPU 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0, r = s = 2 ρ = 0, r = s = 2 
30 -0.013 0.295 -0.013 0.295 -0.011 0.249 -0.011 0.249 
50 0.001 0.224 0.001 0.224 0.001 0.201 0.001 0.202 

100 -0.003 0.161 -0.003 0.161 -0.003 0.152 -0.003 0.152 
500 0.002 0.074 0.002 0.069 0.002 0.072 0.002 0.068 

n ρ = 0, r = s= 5 ρ = 0, r = s= 5 
30 0.007 0.231 0.007 0.231 0.006 0.202 0.006 0.202 
50 0.007 0.165 0.007 0.165 0.007 0.150 0.007 0.150 

100 0.000 0.111 0.000 0.110 0.000 0.105 0.000 0.105 
500 0.004 0.050 0.004 0.051 0.004 0.050 0.004 0.050 

n ρ = 0.1, r = s= 2 ρ = 0.1, r = s= 2 

30 0.102 0.291 2.115 0.291 0.087 0.247 -13.291 0.247 
50 0.096 0.224 -3.980 0.225 0.086 0.202 -13.581 0.203 

100 0.091 0.150 -9.227 0.151 0.086 0.142 -14.056 0.143 
500 0.103 0.073 3.334 0.070 0.102 0.071 1.924 0.069 

n ρ = 0.1, r = s= 5 ρ = 0.1, r = s= 5 
30 0.109 0.217 9.145 0.217 0.095 0.191 -4.611 0.191 
50 0.097 0.163 -2.837 0.163 0.089 0.149 -11.277 0.150 

100 0.102 0.112 1.488 0.112 0.096 0.107 -3.552 0.107 
500 0.102 0.050 1.460 0.050 0.100 0.050 0.297 0.050 

n ρ = 0.3, r = s= 2 ρ = 0.3, r = s= 2 
30 0.282 0.265 -6.102 0.267 0.240 0.226 -20.096 0.234 
50 0.300 0.205 0.080 0.205 0.271 0.186 -9.587 0.188 

100 0.302 0.150 0.515 0.150 0.286 0.143 -4.631 0.143 
500 0.299 0.069 -0.476 0.066 0.295 0.069 -1.761 0.065 

n ρ = 0, r = s= 3 ρ = 0, r = s= 3 
30 -0.016 0.275 -0.016 0.276 -0.014 0.236 -0.014 0.236 
50 0.002 0.214 0.002 0.215 0.002 0.194 0.002 0.195 

100 0.001 0.140 0.001 0.140 0.001 0.132 0.001 0.132 
500 0.001 0.062 0.001 0.062 0.001 0.061 0.001 0.061 

n ρ = 0, r = s= 7 ρ = 0, r = s= 7 
30 0.002 0.208 0.002 0.208 0.002 0.182 0.002 0.182 
50 -0.001 0.155 -0.001 0.155 -0.001 0.142 -0.001 0.141 

100 0.003 0.113 0.003 0.113 0.003 0.108 0.003 0.107 
500 0.002 0.048 0.002 0.048 0.002 0.048 0.002 0.048 

a Mean bias (MB) was used instead of MRB in case of ρ = 0 
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Table 2: Simulation Results of the ML and EAPU Estimates (continued) 

 

ML EAPU 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0.1, r = s= 3 ρ = 0.1, r = s= 3 

30 0.112 0.270 11.719 0.271 0.096 0.231 -4.081 0.231 
50 0.104 0.203 3.799 0.201 0.094 0.184 -6.248 0.182 

100 0.108 0.136 7.582 0.137 0.102 0.129 1.688 0.129 
500 0.103 0.058 2.509 0.058 0.101 0.058 1.211 0.058 

n ρ = 0.1, r = s= 7 ρ = 0.1, r = s= 7 
30 0.082 0.192 -18.201 0.193 0.071 0.168 -28.592 0.171 
50 0.104 0.147 3.537 0.147 0.095 0.135 -5.346 0.135 

100 0.106 0.111 5.876 0.111 0.101 0.105 0.714 0.105 
500 0.099 0.047 -0.563 0.047 0.098 0.047 -1.691 0.047 

n ρ = 0.3, r = s= 3 ρ = 0.3, r = s= 3 
30 0.323 0.255 7.648 0.256 0.280 0.222 -6.835 0.223 
50 0.316 0.184 5.209 0.185 0.287 0.170 -4.226 0.170 

100 0.299 0.132 -0.243 0.132 0.284 0.127 -5.286 0.127 
500 0.297 0.055 -1.025 0.055 0.294 0.055 -2.140 0.055 

n ρ = 0.3, r = s= 5 ρ = 0.3, r = s= 5 
30 0.301 0.200 0.462 0.200 0.266 0.180 -11.369 0.183 
50 0.297 0.151 -1.169 0.151 0.273 0.142 -9.041 0.144 

100 0.304 0.104 1.263 0.103 0.290 0.100 -3.199 0.100 
500 0.300 0.046 -0.006 0.046 0.297 0.046 -0.982 0.046 

n ρ = 0.5, r = s= 2 ρ = 0.5, r = s= 2 
30 0.492 0.235 -1.602 0.235 0.422 0.206 -15.541 0.220 
50 0.488 0.176 -2.329 0.176 0.444 0.163 -11.237 0.173 

100 0.499 0.128 -0.161 0.128 0.475 0.123 -4.947 0.125 
500 0.501 0.058 0.236 0.056 0.495 0.058 -0.988 0.056 

n ρ = 0.5, r = s= 5 ρ = 0.5, r = s= 5 

30 0.515 0.172 3.003 0.172 0.463 0.164 -7.332 0.168 
50 0.501 0.130 0.235 0.130 0.468 0.127 -6.339 0.131 

100 0.508 0.088 1.693 0.088 0.491 0.088 -1.778 0.088 
500 0.499 0.041 -0.164 0.041 0.496 0.041 -0.884 0.041 

n ρ = 0.7, r = s= 2 ρ = 0.7, r = s= 2 
30 0.685 0.192 -2.217 0.193 0.598 0.178 -14.637 0.205 
50 0.692 0.142 -1.180 0.143 0.636 0.138 -9.079 0.151 

100 0.698 0.099 -0.241 0.099 0.669 0.098 -4.400 0.102 
500 0.700 0.044 -0.009 0.043 0.693 0.044 -0.945 0.044 

a Mean bias (MB) was used instead of MRB in case of ρ = 0 
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Table 2: Simulation Results of the ML and EAPU Estimates (continued) 

 

ML EAPU 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0.7, r = s= 5 ρ = 0.7, r = s= 5 

30 0.709 0.124 1.299 0.124 0.655 0.128 -6.458 0.136 
50 0.711 0.092 1.622 0.092 0.679 0.095 -2.997 0.097 

100 0.705 0.064 0.714 0.065 0.689 0.066 -1.559 0.067 
500 0.701 0.028 0.119 0.028 0.698 0.029 -0.330 0.029 

n ρ = 0.3, r = s= 7 ρ = 0.3, r = s= 7 
30 0.310 0.187 3.472 0.188 0.275 0.170 -8.252 0.171 
50 0.303 0.146 1.003 0.146 0.280 0.137 -6.707 0.138 

100 0.301 0.102 0.353 0.102 0.288 0.099 -3.927 0.099 
500 0.301 0.045 0.301 0.044 0.298 0.044 -0.644 0.044 

n ρ = 0.5, r = s= 3 ρ = 0.5, r = s= 3 
30 0.503 0.214 0.571 0.214 0.440 0.193 -12.068 0.202 
50 0.507 0.162 1.445 0.162 0.466 0.154 -6.707 0.157 

100 0.502 0.112 0.445 0.112 0.481 0.110 -3.861 0.112 
500 0.500 0.051 0.049 0.051 0.496 0.051 -0.863 0.051 

n ρ = 0.5, r = s= 7 ρ = 0.5, r = s= 7 

30 0.513 0.156 2.530 0.157 0.464 0.151 -7.108 0.155 
50 0.510 0.122 2.018 0.122 0.479 0.120 -4.156 0.122 

100 0.502 0.083 0.341 0.083 0.486 0.083 -2.896 0.084 
500 0.501 0.037 0.214 0.037 0.498 0.037 -0.456 0.037 

n ρ = 0.7, r = s= 3 ρ = 0.7, r = s= 3 
30 0.719 0.169 2.641 0.170 0.640 0.161 -8.573 0.172 
50 0.706 0.122 0.791 0.122 0.659 0.121 -5.906 0.127 

100 0.695 0.090 -0.665 0.090 0.672 0.090 -4.028 0.094 
500 0.701 0.038 0.178 0.038 0.697 0.038 -0.491 0.039 

n ρ = 0.7, r = s= 7 ρ = 0.7, r = s= 7 
30 0.705 0.116 0.646 0.116 0.657 0.120 -6.143 0.128 
50 0.703 0.089 0.366 0.089 0.674 0.093 -3.677 0.096 

100 0.703 0.057 0.436 0.057 0.689 0.058 -1.542 0.059 
500 0.700 0.026 0.057 0.026 0.698 0.026 -0.329 0.026 

a Mean bias (MB) was used instead of MRB in case of ρ = 0 
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Figure 2: MRB across Different Sample Sizes, Correlation Magnitude, and Number of Categories 
(Values averaged over other conditions; Mean Bias (MB) was Used in Case of ρ = 0) 
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Second, as sample size increased, the 
difference between the two estimators 
disappeared, and both estimators performed 
better (i.e., smaller magnitude of MRB). Also, it 
seemed the EAP estimator was more sensitive to 
the change of sample size than the ML estimator 
according to Table 2 and Figure 2. 

Third, for small sample sizes (n = 30 
and 50) with non-zero ρ magnitude, MRB 
patterns of the two estimators substantially 
differed. For the ML case, MRB values can be 
largely positive or negative. Accordingly, the 
average MRB values (depicted in Figure 2) 
appeared to be smaller than most individual 
biases. Namely, the average MRB in Figure 2 
were attenuated compared with the actual bias of 
the ML estimator in terms of MRB. For EAPU 
case, the MRB values tended to be largely 
negative for most cases, which supported the 
consistency between average and individual 
MRB values in Table 2 and Figure 2. These 
observations suggested the existence of 
systematic underestimation for the EAP 
estimator. 

Fourth, the EAP estimator performed 
slightly better as ρ magnitude increased except 
in the null case. Also, the EAP estimator 
performed poorly for two categories as 
compared to higher numbers of categories, as 
shown in Figure 2. Again, the average MRB 
values for the ML in Figure 2 were less 
meaningful because they represent averages of 
the negative and positive values in each 
simulation cell MRB values. 
 
Variability of ML and EAPU Estimates 

Detailed RMSE and SD values of ML 
and EAP estimates are presented in Table 2, and 
are summarized and depicted in Figure 3. 

First, in terms of RMSE and SD, the 
EAP outperformed the ML estimator in most 
cases. However, the differences in RMSE and 
SD among estimators are negligible for many 
cases. 

Second, in small sample sizes (n = 30 
and 50), the EAP estimator clearly outperformed 
the ML estimator (Figure 3). As sample size 
increased, the difference of RMSE values 
between two estimators disappeared, and the 
variability or fluctuation became increasingly 

smaller, which suggested that both estimators 
were asymptotically efficient. 

Third, a similar pattern was found over 
ρ magnitude. In small magnitude, the EAP 
estimator evidently outperformed the ML 
estimator. As the magnitude increased, the 
difference between the two estimators 
disappeared, and the variability of estimates 
decreased for both estimators. However, RMSE 
values were more sensitive to the change of 
sample size than that of ρ magnitude. This can 
be observed by comparing different charts in 
Figure 3. 

Fourth, for number of categories, the 
EAP estimator also appeared to outperform the 
ML estimator in all cases. However, the 
differences in RMSE values between five and 
seven categories were very small for both 
estimators. 
 
Prior Sensitivity for EAP with Different Prior 
Distributions 

Statistics of EAP estimates with 
different prior distributions are presented in 
Table 3, and those are also summarized and 
depicted in Figures 4 through 5. 

First, the EAP estimators whose prior 
distributions were more informative increasingly 
biased toward the mean of prior distribution. As 
shown in Table 3, the mean of estimates (M) for 
both EAPN and EAPB5 estimators, whose prior 
distributions are most informative (Figure 1), are 
very close to zero for most conditions. Also, 
MRB values for both EAPN and EAPB5 were 
extremely negatively biased (approximately -92) 
for all non zero population correlation cases. 
The M and MRB values for EAPB1.5, whose 
prior distribution is moderately informative in 
this study, are always between the above 
informative prior cases and the least informative 
prior case, EAPU. The MRB values in Figure 4 
present essentially the same results. 

Second, for estimators whose prior 
distributions were more informative, the 
variability of estimates in terms of SD was less. 
Both EAPN and EAPB5 cases showed the 
smallest SD values, whereas the SD values of the 
EAPB1.5 estimator were larger when compared 
with the above two estimators, but smaller when 
compared with the EAPU case (Figure 5). These 
results     were    also     consistent    with    the 
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Figure 3: RMSE across Different Sample Sizes, Correlation Magnitude, and 
Number of Categories  

(Values were averaged over other conditions.) 
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Table 3: Simulation Results of EAPU Estimates with Different Prior 
Distributions 

 

EAPU EAPB1.5 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0 ρ = 0 

30 -0.004 0.217 -0.004 0.217 -0.001 0.089 -0.001 0.089 
50 0.002 0.172 0.002 0.172 0.001 0.069 0.001 0.069 

100 0.000 0.124 0.000 0.124 0.000 0.049 0.000 0.049 
500 0.002 0.058 0.002 0.057 0.001 0.022 0.001 0.022 

n ρ = 0.1 ρ = 0.1 
30 0.087 0.209 -12.644 0.210 0.036 0.085 -63.600 0.107 
50 0.091 0.168 -9.113 0.168 0.038 0.067 -62.341 0.092 

100 0.096 0.121 -3.801 0.121 0.039 0.048 -61.026 0.077 
500 0.100 0.056 0.435 0.056 0.040 0.022 -60.496 0.065 

n ρ = 0.3 ρ = 0.3 
30 0.265 0.200 -11.638 0.203 0.112 0.082 -62.550 0.205 
50 0.278 0.159 -7.390 0.160 0.115 0.065 -61.684 0.196 

100 0.287 0.117 -4.261 0.117 0.116 0.047 -61.302 0.190 
500 0.296 0.053 -1.382 0.052 0.118 0.022 -60.675 0.184 

n ρ = 0.5 ρ = 0.5 
30 0.447 0.179 -10.512 0.186 0.191 0.077 -61.865 0.319 
50 0.464 0.141 -7.110 0.146 0.194 0.061 -61.179 0.312 

100 0.483 0.101 -3.370 0.102 0.199 0.044 -60.226 0.304 
500 0.496 0.047 -0.798 0.046 0.203 0.024 -59.395 0.300 

n ρ = 0.7 ρ = 0.7 
30 0.637 0.147 -8.967 0.160 0.275 0.071 -60.667 0.430 
50 0.662 0.112 -5.415 0.118 0.284 0.055 -59.471 0.419 

100 0.680 0.078 -2.882 0.081 0.289 0.039 -58.658 0.412 
500 0.697 0.034 -0.524 0.034 0.297 0.023 -57.632 0.406 

Note. Values were averaged across different number of categories 
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Table 3: Simulation Results of EAPU Estimates with Different Prior 
Distributions (continued) 

 

EAPB5 EAPN 

M SD MRBa RMSE M SD MRBa RMSE 
n ρ = 0 ρ = 0 

30 -0.001 0.017 -0.001 0.017 -0.001 0.016 -0.001 0.016 
50 0.000 0.013 0.000 0.013 0.000 0.012 0.000 0.012 

100 0.000 0.010 0.000 0.010 0.000 0.009 0.000 0.009 
500 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 

n ρ = 0.1 ρ = 0.1 
30 0.007 0.016 -92.914 0.095 0.006 0.015 -93.578 0.095 
50 0.007 0.013 -92.636 0.094 0.007 0.012 -93.352 0.094 

100 0.007 0.009 -92.400 0.093 0.007 0.009 -93.164 0.093 
500 0.007 0.005 -92.328 0.092 0.007 0.004 -93.114 0.093 

n ρ = 0.3 ρ = 0.3 
30 0.022 0.016 -92.712 0.278 0.020 0.014 -93.393 0.280 
50 0.022 0.012 -92.585 0.278 0.020 0.011 -93.306 0.280 

100 0.022 0.009 -92.538 0.278 0.020 0.008 -93.286 0.280 
500 0.023 0.005 -92.409 0.277 0.021 0.004 -93.185 0.280 

n ρ = 0.5 ρ = 0.5 
30 0.037 0.014 -92.688 0.464 0.033 0.013 -93.368 0.467 
50 0.037 0.011 -92.603 0.463 0.033 0.010 -93.319 0.467 

100 0.038 0.008 -92.453 0.463 0.034 0.007 -93.205 0.466 
500 0.039 0.005 -92.293 0.462 0.035 0.004 -93.076 0.466 

n ρ = 0.7 ρ = 0.7 
30 0.052 0.013 -92.623 0.648 0.047 0.011 -93.304 0.653 
50 0.053 0.009 -92.470 0.647 0.048 0.009 -93.192 0.652 

100 0.053 0.007 -92.370 0.647 0.048 0.006 -93.123 0.652 
500 0.054 0.004 -92.213 0.646 0.049 0.004 -92.998 0.651 

Note. Values were averaged across different number of categories 
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Figure 4: MRB of the EAP Estimator across Different Sample Sizes and 
Correlation Magnitude 

(Values were averaged over other conditions) 
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Figure 5: SD of the EAP Estimator across Different Sample Sizes and 
Correlation Magnitude 

(Values were averaged over other conditions) 
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informativeness order of different prior 
distributions (Figure 1). 

Third, the performance of the EAP 
estimators in terms of biases (MRB) and 
variability (SD) got better as sample size or ρ 
increase. However, as the prior distribution got 
more informative, both MRB and SD are less 
sensitive to the change of sample size or ρ 
magnitude, whereas the EAPU estimates were 
most sensitive to those changes (Figures 4 
through 5). Furthermore, for ρ = 0 magnitude, 
biases of all estimators disappeared. 
 

Conclusion 
 
This study attempted to evaluate and compare 
the behaviors of ML and EAP estimators for 
PCC focusing on small sample size cases. The 
convergence rate of the ML estimator improves 
when using the PPMC for categorized data as 
the initial value rather than a fixed number, 0. 
However, non-converged cases for the ML 
remain an issue. In contrast, for the EAPU 
estimator, there is no non-convergent issue. 
These results could prove promising and useful 
to the applied researcher who is planning to 
estimate PCC and perhaps already arrived at a 
non-converged solution from the ML estimator. 

For small sample sizes, the ML 
estimator can substantially underestimate or 
overestimate the ρ magnitude, whereas the EAP 
estimator always underestimates the ρ 
magnitude as shown in Figure 6. This, shrinkage 
effect, is a well known problem of EAP, similar 
to other Bayesian estimates. Because of the 
nature of EAP, a weighted average of posterior 
distribution which is a function of prior, EAP 
estimates is generally biased toward the mean of 
the prior distribution. Because all priors used in 
this research have zero as a mean, EAP 
estimates were biased toward zero for all cases. 
Important issues to be addressed include 1) the 
shrinkage effect is more apparent as the ρ 
magnitude increased or sample size decreased; 
and 2) the shrinkage effect disappears when ρ = 
0. 

Although this shrinkage effect is 
obviously a negative aspect of the EAP 
estimator, the systematic underestimation pattern 
could be wisely utilized to arrive at a 
conservative estimate of the true value. As 

shown in Figure 2 and Table 2, the true value is 
most likely 0% to 15% higher than the EAPU 
estimate. Applied researchers should note that 
the ML estimator cannot provide such 
information. 

For the variability of estimates in terms 
of RMSE or SD, the EAP estimator generally 
outperforms the ML estimator. The results are 
more apparent when the sample size, ρ 
magnitude, or number of categories is small. 
Because the EAP estimator is a weighted 
average over a prior distribution, it tends to 
provide more stable estimates than the ML 
estimator in those conditions. 

For the EAP estimator with small 
sample sizes, the use of two categories would 
not be recommended due to relatively large bias 
and variability of estimates. Meanwhile, the use 
of three, five, or seven categories does not 
provide much difference in MRB values. 
Although RMSE gets smaller as the number of 
categories increases, the difference in RMSE 
between two categories and higher numbers of 
categories is not as imminent as that of MRB 
(i.e., the average RMSE with two categories – 
the average RMSE with seven categories < 
0.05). In sum, especially when sample sizes are 
small (50 or below) and number of categories 
are not large (five or below), the EAP estimator 
can be recommended over the ML because the 
EAP is free from the convergence issue and 
provides smaller estimate variability. Also, as 
the sample size increases, both the shrinkage 
effect and the difference between the ML and 
EAP estimators disappear. 

EAP estimators with more informative 
prior distribution could result in stronger bias 
toward the mean of the prior distribution, and 
provide less variation of estimates in terms of 
SD. For EAP estimators with relatively 
informative prior distributions like EAPN or 
EAPB5, both bias and variation of estimates are 
insensitive to the change of the sample size or ρ 
magnitude. For applied researchers with a strong 
a priori belief of the true correlation, EAP can 
provide a more stable estimate. Researchers can 
also include such information into an estimation 
procedure by adopting an informative prior 
distribution in the EAP estimator. This 
advantage of the EAP is beneficial especially 
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when the research involves small sample sizes in 
practice. 

The following suggestions for future 
research on the estimation of PCC are based on 
the findings from this study. First, other 
Bayesian estimate, e.g., maximum a posteriori 
(MAP) estimate might be considered for 
analysis. As it relies on the mode, rather than the 
mean, of the posterior distribution, MAP could 
have some advantages against either the EAP or 
ML   estimates.   Second,  the    violation     of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

normality under different settings should be 
considered. As it has been shown that modest 
violation to normality is not critical for the ML 
estimator under relatively large sample size 
(Flora & Curran, 2004; Olsson, 1979; Quiroga, 
1992), the situations for small sample size or for 
other estimators are not fully understood yet. 
Third, as this study focused on the point 
estimate, investigations on the interval estimates 
over different estimators would be needed, and 
should be addressed in future research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: M across Different Sample Sizes 
(Values were averaged over number of categories) 
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It’s Back!
Design and Analysis of Time-Series Experiments
(with a new Introduction by the first author)

Gene V Glass, Arizona State University
Victor L. Willson, Texas A&M University
John M. Gottman, The Gottman Institute, Seattle, Washington

Hailed as a landmark in the development of experimental methods when it 
appeared in 1975, Design and Analysis of Time-Series Experiments  is available 
again after several years of  being out of print. 

Gene V Glass, Victor L. Willson and John M. Gottman have carried forward the
design and analysis of perhaps the most powerful and useful quasi-experimental
design identified by their mentors in the classic Campbell & Stanley text Experimental and Quasi-experimental
Design for Research (1966). In an era when governments seek to resolve questions of experimental validity by
fiat and the label "Scientifically Based Research" is appropriated for only certain privileged experimental
designs, nothing could be more appropriate than to bring back the classic text that challenges doctrinaire
opinions of proper causal analysis. 

Glass, Willson & Gottman introduce and illustrate an armamentarium of interrupted time-series experimental
designs that offer some of the most powerful tools for discovering and
validating causal relationships in social and education policy analysis.
Drawing on the ground-breaking statistical analytic tools of Box & Jenkins,
the authors extend the comprehensive autoregressive-integrated-moving-
averages (ARIMA) model to accommodate significance testing and
estimation of the effects of interventions into real world time-series. Designs
and full statistical analyses are richly illustrated with actual examples from
education, behavioral psychology, and sociology. 

"…this book will come to be viewed as a true landmark. … [It] should stand 
the test of time exceedingly well."   ~ James A. Walsh (Educational & 
Psychological Measurement, 1975)

"Ordinary least squares estimation is usually inapplicable because of 
autoregressive error…. Glass, Willson, and Gottman have assembled the best approach."     ~Donald T. 
Campbell 

Special Price: $25.99 paperbacks plus s/h

Book URL: http://www.infoagepub.com/products/content/p489c9049a428d.php

IAP - Information Age Publishing, PO Box 79049, Charlotte, NC 28271
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It’s Back in Paperback!
Statistical Theories of Mental Test Scores
by Frederic M. Lord and Melvin R. Novick 

A classic returns. 

…pioneering work…
…comprehensive…
…classic…
…definitive…
…unquestioned status and authority…

Tatsuoka was right:
"This comprehensive and authoritative work is a major 
contribution to the literature of test theory. Without doubt it is 
destined to become a classic in the field."  ~ Maurice Tatsuoka 
(1971)

One of the most important books in the history of 
psychometrics has been virtually unavailable to 
scholars and students for decades. A gap in the 
archives of modern test theory is now being filled by 
the release in paperback for the first time of the 
classic text, Statistical Theories of Mental Test Scores, 
by the late and honored statisticians and 
psychometricians, Frederic M. Lord and Melvin R. 
Novick. No single book since 1968 when Lord & 
Novick first appeared has had a comparable impact 
on the practice of testing and assessment. 

Information Age Publishing is proud to make this 
classic text available to a new generation of scholars and researchers. 

http://www.infoagepub.com/products/content/p4810c9a0891af.php

IAP - Information Age Publishing, PO Box 79049, Charlotte, NC 28271
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New Book Information

Advances in Latent Variable
Mixture Models
Edited by Gregory R. Hancock, University of Maryland, College Park, 
and Karen M. Samuelsen, University of Georgia

The current volume, Advances in Latent Variable Mixture Models, contains chapters by all of the
speakers who participated in the 2006 CILVR conference, providing not just a snapshot of the
event, but more importantly chronicling the state of the art in latent variable mixture model
research. The volume starts with an overview chapter by the CILVR conference keynote speaker,
Bengt Muthén, offering a “lay of the land” for latent variable mixture models before the volume
moves to more specific constellations of topics. Part I, Multilevel and Longitudinal Systems, deals
with mixtures for data that are hierarchical in nature either due to the data’s sampling structure or
to the repetition of measures (of varied types) over time. Part II, Models for Assessment and Diag-
nosis, addresses scenarios for making judgments about individuals’ state of knowledge or devel-
opment, and about the instruments used for making such judgments. Finally, Part III, Challenges
in Model Evaluation, focuses on some of the methodological issues associated with the selection of models most accurately represent-
ing the processes and populations under investigation. It should be stated that this volume is not intended to be a first exposure to latent
variable methods. Readers lacking such foundational knowledge are encouraged to consult primary and/or secondary didactic resources
in order to get the most from the chapters in this volume. Once armed with that basic understanding of latent variable methods, we
believe readers will find this volume incredibly exciting.

CONTENTS: Editors’ Introduction, Gregory R. Hancock and Karen M. Samuelsen. Acknowledgments. Latent Variable Hybrids:
Overview of Old and New Models, Bengt Muthén. PART I: Multilevel and Longitudinal Systems. Multilevel Mixture Models,
Tihomir Asparouhov and Bengt Muthén. Longitudinal Modeling of Population Heterogene-
ity: Methodological Challenges to the Analysis of Empirically Derived Criminal Trajectory
Profiles, Frauke Kreuter and Bengt Muthén. Examining Contingent Discrete Change Over
Time with Associative Latent Transition Analysis, Brian P. Flaherty. Modeling Measure-
ment Error in Event Occurrence for Single, Non-Recurring Events in Discrete-Time Survival
Analysis, Katherine E. Masyn. PART II: Models for Assessment and Diagnosis. Eviden-
tiary Foundations of Mixture Item Response Theory Models, Robert J. Mislevy, Roy Levy,
Marc Kroopnick, and Daisy Rutstein. Examining Differential Item Functioning from a
Latent Mixture Perspective, Karen M. Samuelsen. Mixture Models in a Developmental Con-
text, Karen Draney, Mark Wilson, Judith Glück, and Christiane Spiel. Applications of Sto-
chastic Analyses for Collaborative Learning and Cognitive Assessment, Amy Soller and Ron
Stevens. The Mixture General Diagnostic Model,  Matthias von Davier. PART III: Chal-
lenges in Model Evaluation. Categories or Continua? The Correspondence Between Mix-
ture Models and Factor Models, Eric Loken and Peter Molenaar. Applications and
Extensions of the Two-Point Mixture Index of Model Fit, C. Mitchell Dayton. Identifying
the Correct Number of Classes in Growth Mixture Models, Davood Tofighi and Craig K.
Enders. Choosing a “Correct” Factor Mixture Model: Power, Limitations, and Graphical
Data Exploration, Gitta H. Lubke and Jeffrey R. Spies. About the Contributors. 
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New Book Information
Structural Equation Modeling: 
A Second Course
Edited by Gregory R. Hancock, University of  Maryland 
and Ralph O. Mueller,  The George Washington University
A volume in Quantitative Methods in Education and the Behavioral Sciences: 
Issues, Research, and Teaching
Series Editor Ron Serlin, University of Wisconsin

(sponsored by the Educational Statisticians, SIG)

"I believe that this volume represents a vital contribution to the field of SEM beyond the introduc-
tory level." 

From the Preface by
Richard G. Lomax, The University of Alabama

This volume is intended to serve as a didactically-oriented resource covering a broad range of
advanced topics often not discussed in introductory courses on structural equation modeling (SEM).  Such topics are important in fur-
thering the understanding of foundations and assumptions underlying SEM as well as in exploring SEM as a potential tool to address
new types of research questions that might not have arisen during a first course. Chapters focus on the clear explanation and application
of topics, rather than on analytical derivations, and contain syntax and partial output files from popular SEM software.

CONTENTS: Introduction to Series, Ronald C. Serlin. Preface, Richard G. Lomax. Dedication. Acknowledgements. Introduction, Gre-
gory R. Hancock & Ralph O. Mueller. Part I: Foundations. The Problem of Equivalent Structural Models, Scott L. Hershberger. For-
mative Measurement and Feedback Loops, Rex B. Kline. Power Analysis in Covariance Structure Modeling, Gregory R. Hancock. Part
II: Extensions. Evaluating Between-Group Differences in Latent Variable Means, Marilyn S. Thompson & Samuel B. Green. Using
Latent Growth Models to Evaluate Longitudinal Change, Gregory R. Hancock & Frank R. Lawrence. Mean and Covariance Structure
Mixture Models, Phill Gagné. Structural Equation Models of Latent Interaction and Quadratic Effects, Herbert W. Marsh, Zhonglin
Wen, & Kit-Tai Hau. Part III: Assumptions. Nonnormal and Categorical Data in Structural Equation Modeling, Sara J. Finney &
Christine DiStefano. Analyzing Structural Equation Models with Missing Data, Craig K.
Enders. Using Multilevel Structural Equation Modeling Techniques with Complex Sample
Data, Laura M. Stapleton. The Use of Monte Carlo Studies in Structural Equation Modeling
Research, Deborah L. Bandalos. About the Authors.
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New Book Information
Multilevel Modeling of Educational Data
Edited by Ann A. C’Connell, Ohio State University 
and D. Betsy McCoach, University of Connecticut
A volume in Quantitative Methods in Education and the Behavioral Sciences: 
Issues, Research, and Teaching
Series Editor Ron Serlin, University of Wisconsin

(sponsored by the Educational Statisticians, SIG)

Multilevel Modeling of Educational Data, co-edited by Ann A. O’Connell, Ed.D., and D. Betsy McCoach,
Ph.D., is the next volume in the series: Quantitative Methods in Education and the Behavioral Sciences:
Issues, Research and Teaching (Information Age Publishing), sponsored by the Educational Statisticians’
Special Interest Group (Ed-Stat SIG) of the American Educational Research Association. The use of
multilevel analyses to examine effects of groups or contexts on individual outcomes has burgeoned over the
past few decades. Multilevel modeling techniques allow educational researchers to more appropriately model
data that occur within multiple hierarchies (i.e.- the classroom, the school, and/or the district). Examples of
multilevel research problems involving schools include establishing trajectories of academic achievement for
children within diverse classrooms or schools or studying school-level characteristics on the incidence of
bullying. Multilevel models provide an improvement over traditional single-level approaches to working with clustered or hierarchical data; however,
multilevel data present complex and interesting methodological challenges for the applied education research community. 

In keeping with the pedagogical focus for this book series, the papers this volume emphasize applications of multilevel models using educational
data, with chapter topics ranging from basic to advanced. This book represents a comprehensive and instructional resource text on multilevel
modeling for quantitative researchers who plan to use multilevel techniques in their work, as well as for professors and students of quantitative
methods courses focusing on multilevel analysis. Through the contributions of experienced researchers and teachers of multilevel modeling, this
volume provides an accessible and practical treatment of methods appropriate for use in a first and/or second course in multilevel analysis. A
supporting website links chapter examples to actual data, creating an opportunity for readers to reinforce their knowledge through hands-on data
analysis. This book serves as a guide for designing multilevel studies and applying multilevel modeling techniques in educational and behavioral
research, thus contributing to a better understanding of and solution for the challenges posed by multilevel systems and data. 

CONTENTS: Series Introduction, Ronald C. Serlin. Acknowledgements. Part I: Design Contexts for Multilevel MoDels. Introduction, Ann A.
O’Connell and D. Betsy McCoach. The Use of National Datasets for Teaching and Research, Laura M. Stapleton and Scott L. Thomas. Using Multi-
level Modeling to Investigate School Effects, Xin Ma, Lingling Ma, and Kelly D. Bradley. Modeling Growth Using Multilevel and Alternative
Approaches, Janet K. Holt. Cross-Classified Random Effects Models, S. Natasha Beretvas. Multilevel
Logistic Models for Dichotomous and Ordinal Data, Ann A. O’Connell, Jessica Goldstein, H. Jane Rog-
ers,and C. Y. Joanne Peng. Part II: Planning and Evaluating Multilevel Models. Evaluation of Model
Fit and Adequacy , D. Betsy McCoach and Anne C. Black. Power, Sample Size, and Design, Jessaca
Spybrook. Part III: Extending the Multilevel Framework. Multilevel Methods for Meta-Analysis,
Sema A. Kalaian and Rafa M. Kasim. Multilevel Measurement Modeling, Kihito Kamata, Daniel J.
Bauer, and Yasuo Miyazaki. Part IV: Mastering the Technique. Reporting Results from Multilevel
Analyses, John M. Ferron, Kristin Y. Hogarty, Robert F. Dedrick,Melinda R. Hess, John D. Niles, and
Jeffrey D. Kromrey. Software Options for Multilevel Models, J. Kyle Roberts and Patrick McLeod. Esti-
mation Procedures for Hierarchical Linear Models, Hariharan Swaminathan and H. Jane Rogers.
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New Book Information
Real Data Analysis
Edited by Shlomo S. Sawilowsky, Wayne State University
A volume in Quantitative Methods in Education and the Behavioral Sciences: 
Issues, Research, and Teaching
Series Editor Ron Serlin, University of Wisconsin

(sponsored by the Educational Statisticians, SIG)

The invited authors of this edited volume have been prolific in the arena of Real Data
Analysis (RDA) as it applies to the social and behavioral sciences, especially in the disciplines of
education and psychology. Combined, this brain trust represents 3,247 articles in refereed journals,
127 books published, US $45.3 Million in extramural research funding, 34 teaching and 92
research awards, serve(d) as Editor/Assistant Editor/Editorial Board Member for 95 peer reviewed
journals, and provide(d) ad hoc reviews for 362 journals. Their enormous footprint on real data
analysis is showcased for professors, researchers, educators, administrators, and graduate students
in the second text in the AERA/SIG ES Quantitative Methods series.
CONTENTS: Preface. Shlomo S. Sawilowsky. PART I: FOUNDATIONS. The Co-Evolution of Statistics
and Hz, Joseph M. Hilbe. Effective Sample Size: A Crucial Concept, Thomas R. Knapp. Advances in Missing
Data Methods and Implications for Educational Research, Chao-Ying Joanne Peng, Michael Harwell, Show-Mann Liou, Lee H. Ehman. Methods for
Simulating Real World Data for the Psycho-Educational Sciences, Todd Christopher Headrick. How and Why I Use Real, Messy Data to Investigate
Theory and Inform Decision Making, Ted Micceri. PART II: STATISTICAL METHODS. Using E-Mail Messages to Help Students Prepare for a
Statistics Exam, Schuyler Huck. Randomization Tests: Statistical Tools for Assessing the Effects of Educational Interventions When Resources are
Scarce, Joel R. Levin. A Skipped Multivariate Measure of Location: One- And Two-Sample Hypothesis Testing, Rand R. Wilcox, H. J. Keselman.
Robust Step-Down Tests for Multivariate Group Differences, Lisa M. Lix, Ian Clara, Aynslie Hinds, Charles Bernstein. Dunn-Sidák Critical Values
and p Values, Roger E. Kirk, Joel Hetzer. Controlling Experiment-wise Type I Errors: Good Advice for Simultaneous and Sequential Hypothesis Test-
ing, Shlomo S. Sawilowsky, Patric R. Spence. Robustness and Power of Ordinal d for Paired Data, Du Feng. Factorial ANOVA in SPSS: Fixed-, Ran-
dom-, and Mixed-Effects Models, Richard G. Lomax, Stacy Hughey Surman. ANOVA: Effect Sizes, Simulating Interaction vs. Main Effects, and a
Modified ANOVA Table, Shlomo S. Sawilowsky. ANCOVA and Quasi-Experimental Design: The Legacy of Campbell and Stanley, Shlomo S. Saw-
ilowsky. PART III: MEASUREMENT: Thinking About Item Response Theory from a Logistic Regression Perspective: A Focus on Polytomous
Models, Amery D. Wu, Bruno D. Zumbo. Some Practical Uses of Item Response Time to Improve the Quality of Low-Stakes Achievement Test Data,
Steven L. Wise, Xiaojing Kong. Using Moving Averages to Detect Exposed Test Items in Computer-Based Testing, Ning Han, Ronald K. Hambleton.
An Empirical Calibration of the Effects of Multiple Sources of Measurement Error on Reliability Estimates for Individual Differences Measures,
Frank L. Schmidt, Huy Ahn Le. Latent Structure of Attitudes toward Abortion, C. Mitchell Dayton.
PART IV: DATA ANALYSIS. Hierarchical Linear Models and the Estimation of Students’ Mathemat-
ics Achievement, Kathrin A. Parks, Dudley L. Poston, Jr. Grade Inflation: An Examination at the Insti-
tutional Level, Sharon L. Weinberg. Using Discrete-Time Survival Analysis to Study Gender
Differences in Leaving Mathematics, Suzanne E. Graham, Judith D. Singer. Nonparametric procedures
for testing for dropout rates on University courses with application to an Italian case study, Rosa Arbo-
retti Giancristofaro, Fortunato Pesarin, Luigi Salmaso, Aldo Solari. Nonparametric Approaches for
Multivariate Testing with Mixed Variables and for Ranking on Ordered Categorical Variables with an
Application to the Evaluation of Ph. D. Programs, Rosa Arboretti Giancristofaro, Fortunato Pesarin,
Luigi Salmaso. Randomized Replicated Single-case Experiments: Treatment of Pain-related Fear by
Graded Exposure In Vivo, Patrick Onghena, Johan W. S. Vlaeyen, Jeroen de Jong. Whole Brain Cor-
relations:  Examining Similarity Across Conditions of Overall Patterns of Neural Activation in fMRI,
Arthur Aron, Susan Whitfield, Wemara Lichty. Principal Component Analysis of Senate Voting Pat-
terns. Jan de Leeuw
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