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Four examples are given to illustrate the ease and practicality of the procedure for finding locally most powerful rank 
tests for correlation. The first two examples deal with bivariate exponential models. The third example uses the bivari
ate normal distribution, and the fourth example analyzes the Morgenstem’s general correlation model.
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Introduction

There are two primary difficulties in developing tests with 
good power properties for testing the null hypothesis o f 
independence between two variables X and Y, based on a 
bivariate random sample (X., Yj), i = 1 ,2 ,..., n, against the 
alternative hypothesis o f correlation. One difficulty is in 
finding a suitable model for the bivariate distribution, and 
the other is in developing a powerful test for correlation 
once the model is selected.

The bivariate normal distribution is a convenient 
model to use for many reasons. The parameter rho is the 
linear correlation coefficient, so correlation is convenient 
to address in this model. The most powerful test for corre
lation is well known, and the locally most powerful rank 
test (LMPRT) uses Fisher-Yates expected normal scores.

But the bivariate normal distribution does not fit 
some types o f data very well. Therefore other classes of 
bivariate distributions have been developed in an attempt 
to find models more appropriate than the bivariate normal 
distribution, while retaining some o f the nice analytical 
properties found in the bivariate normal distribution. In 
this paper the general bivariate density function h(x,y;@) 
is considered, with some fairly general restrictions.

One popular family ofbivariate distributions was 
proposed by Morgenstem (1956). Let F(x) and G(y) be 
the marginal distribution functions. A bivariate distribu
tion function with those marginals is given by

H(x,y;0) = F(x)G(y)[l + e{l -  F(x)}(l -  G(y)}] (1.1)

W. Jay Conover has been publishing papers in nonpara- 
metric statistic since 1964. He is best known for his books, 
including Practical Nonparametric Statistics, which first 
appeared in 1971. The third edition was published in 1999. 
He is a Fellow of the American Statistical Association.

where 0  is the parameter that governs the degree o f depen
dence between the random variables. Farlie (1961) found 
Spearman’s rho to be the optimal correlation coefficient 
for testing the null hypothesis 0=0 in Morgenstem’s model 
( 1 .1), and studied the efficiency o f less than optimal coef
ficients. Our derivation o f the same result is much simpler 
and with fewer restrictions on the model.

Morgenstem’s model (1.1) was generalized by 
Farlie (1960) to

H(x,y;0) = F(x)G(y)[l + 9A(x)B(y)] (1.2)

where A(x) an B(y) are bounded functions such that A(~) 
= B(o°) = 0. The model (1.2), and thus (1.1) also, is a spe
cial case of the general model studied in this paper.

Konijn (1956) studied correlation tests for the 
hypothesis 0 2 = 0 3 = 0  in the model

X = QlW  + 0?Z
Y = 03W + 0'Z (1.3) 

where W and Z are independent random variables. Corre
lation tests for a similar class o f alternatives

x  = a  ~e)u + e z
Y = (1 - 0)V + 0Z (1.4) 

where U, V and Z are independent random variables, and 
the null hypothesis is 0  = 0 , were investigated by 
Bhuchongkul (1964). Hajek and Sidak (1967, p.75, or see 
Hajek et al., 1999, p.77) discuss the nearly identical model

X = U + 0Z
Y = V + 0Z (1.5) 

These models are more restrictive in their application than 
the more general model considered in this paper.

In this paper the general bivariate density func
tion h(x,y;0) is investigated. A theorem is presented that 
enables the locally most powerful rank test o f 0 =0 O to be 
derived under some fairly general conditions. Four ex
amples are given to illustrate the usefulness o f this result.

19
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Although the development stops short o f finding the effi
ciencies of the obtained tests, in some cases the tests are 
well known, and their efficiencies have been studied.

The Locally Most Powerful Rank Test For Correlation

Let (X,Y) have the joint density function h(x,y;θ ) 
under Ha and the density h(x,y;θ0) = f(x)g(y) under H0, the 
independence hypothesis, where f(x) and g(y) are the mar
ginal density functions o f X and Y respectively. Consider 
independent copies (Xm,Ym), m = 1, ..., n o f (X,Y), with 
ranks Rm for Xm, and Qm for Ym, where the X 's and the Y 's
are ranked separately. Also define the scores

a(i,j;h) = E[∂1n {h(Xn(i)Yn(j);θ )}/∂0 | θ=θ0 | H0] (2.1)

where Xn(i) and Yn(j) are the ith and jth order statistics in a
random sample of size n from f(x) and g(y) respectively.

The follow ing theorem  was first proven by 
Shirahata (1974) in the p-variate case, for general regres
sion alternatives. This is the simplified version for testing 
correlation in the bivariate case.

Theorem for locally most powerful rank correlation tests. 
Let J be some open interval around θ0 . If

1. h(x,y;θ )/h(x,y;θ0) exists for θ  ∈  J,
2. ∂ {h(x,y;θ )}/∂θ| θ= θ0  exists for 0 ∈  J,
3. h(x,y;θ0) =  lim θ → θ 0  h(x,y;θ ) exists for 

θ  ∈  J , and
4. lim θ  → θ 0  ∫ ∫ | ∂ {h(x ,y ;θ)}/d0 | dx dy 

= ∫ ∫ | ∂ {h(x ,y ;θ)}/∂θ | θ= θ0 | dx dy < ∞ ,

then the locally (δ  →  0) most powerful rank test o f H0: 0 

= 0O against Ha: 0 = 0O + δ  is given by the test with the 
critical region

(a) the result of Step 2,
(b) the density function of the ith order statistic from f(x),
(c) and the density function o f the j th order statistic from 

g(y), over the entire range o f values o f X and Y.

Four Examples O f Locally Most Powerful Rank Tests

These four examples show the ease with which 
the theorem of Section 2 can be applied to obtain locally 
most powerful rank tests for correlation. In all four ex
amples the resulting test statistic is known, and the litera
ture citations can be consulted to find tables for small 
sample sizes, and asymptotic approximations for large 
sample sizes.

The first two examples involve bivariate distri
butions, where both marginal distributions are exponen
tial. The model in the first example allows only nonnega
tive correlations, and may be used when the alternative 
hypothesis is one o f positive correlation. The model in the 
second example allows only nonpositive correlations, and 
may be used when the alternative hypothesis is one of nega
tive correlation. In both examples, the locally most power
ful rank test uses the top-down correlation coefficient of 
Iman and Conover (1987). The third example involves the 
bivariate normal distribution, and the fourth example looks 
at a very general bivariate distribution.

Example 1. Mardia (1970) presented a bivariate exponen
tial distribution

where k is chosen so the test will have an appropriate size 
a.

Implementation o f the previous theorem to find 
the scores a(i,j;h) associated with the locally most power
ful rank test for correlation involves the following steps.
1. Find the partial derivative o f h(x,y;0) with respect to 0 

and set 0 equal to 0Q.
2. Divide the result in Step 1 by h(x,y;0o) = f(x)g(y).
3. Substitute Xn(i) for x and Yn0) for y in the quotient in Step

2, where Xn(i) and Yn0) are the i th and j th order statistics 
in random samples o f size n from f(x) and g(y) respec
tively.

4. Find the expected value o f the random variable in Step 
3 under H0. That is, integrate the product of

which has exponential marginal densities exp(-x) and 
exp(-y), and which degenerates to the product of those 
marginal densities exp{-x-y} for 0 = 0, representing the 
case of independence. The correlation coefficient between 
X and Y is 0. Although this model has standardized expo
nential distributions, the non-standardized exponential dis
tributions, with a general scale variable, give the same re
sult because the test derived is a function only o f ranks 
within each variable, and the ranks are not changed by a 
change in the scale variable.

This model first appeared in Mardia (1962) as a 
special case of a bivariate gamma distribution that appeared 
in Kibble (1941). It has been attributed to various authors, 
such as to Downton (1970) by Hawkes (1972) and others, 
and to N agao and K adoya (1971) by C ordova and 
Rodreguez-Iturbe (1985), Johnson and Kotz (1972), and 
others. It is widely used as a m odel for the bivariate
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exponential distribution. A parametric test o f the null hy
pothesis o f independence is apparently unknown. The lo
cally most powerful rank test is derived in the following.

where sn(i) and sn(j) are the expected values o f order statis
tics from the exponential distribution. That is, step 1 in the 
previous section involves finding the derivative of h ^ y ;© ) 

with respect to 0, and setting 0 = 0. This gives

The second step is to divide by f(x)g(y) = e x y, which gives 
(x- l ) (y -1)

In the third step the ith and jth  order statistics from the 
exponential distributions f(x) and g(y) replace x and y re
spectively. Thus the expected values, in step 4, give the 
LMPRT scores in (3.2).

The scores in (3.2) are given by the formula

and are sometimes called Savage scores because they 
were introduced by Savage (1956). Their use in a rank 
correlation coefficient

was studied by Iman and Conover (1987), and called the 
top-down correlation coefficient rT because o f its tendency 
to emphasize the tail values. That is, items are ranked from 
least important or lowest, with rank 1, to most important 
or greatest, with rank n. The top-down correlation coeffi
cient gives more emphasis to the agreement among the most 
important items, and less emphasis to agreement among 
the least important items. Spearman’s rho and Kendall’s 
tau give equal importance to agreement at all ranks.

Exact quantiles for the null distribution o f rT in a 
test o f independence are given by Iman (1987) for n < 14. 
Therefore the locally most powerful rank test o f H0: 0 = 0 
against Ha: 0 > 0 in the bivariate exponential distribution 
given by (3.1) rejects H0 if  and only if  rT > k for a suitably 
chosen value o f k.

Example 2 . Gumbel (1960) introduced another bivariate 
exponential distribution

Note that the correlation coefficient is zero when 0 = 0, 
and it decreases monotonically as 0 increases. Therefore 
the LMPRT for correlation is also the LMPRT for 0. This 
distribution degenerates to exp{-x-y} under HQ: 0 = 0. This 
widely known model was studied further by Gumbel (1961) 
and has been used more recently by Wei (1981) and Barnett 
(1983). As with the previous model, a parametric test o f 
the null hypothesis of independence is apparently unknown. 
The locally most powerful rank test is derived in the fol
lowing.

The optimal scores are again found to be func
tions of the Savage scores. Specifically the scores are:

which leads to the locally most powerful rank test that re
jects H0 when rT < k for some suitably chosen negative 
number k. Note that the negative value for k is due to the 
model, which allows only negative correlation in the re
stricted parameter range for 0.

Example 3. The all-important bivariate normal distribu
tion has density:

and correlation coefficient 0. The scores for the locally 
most powerful rank test are given by:

where Z (i) and Z (j) are order statistics from the standard
n n

normal distribution. These scores are used in the well- 
known normal scores statistic first given by Fisher and Yates 
(1957). This derivation of the locally most powerful rank 
test for the bivariate normal distribution, also given by 
Shirahata (1974), is much simpler than the previous ones, 
and uses a more general model than the rather restrictive 
models (1.3), (1.4) and (1.5).

Example 4. The class of bivariate distributions in 
introduced by Morgenstern (1956) has the bivariate distri
bution function:

for any marginal distribution functions F(x) and G(y). This 
model has been extended by Plackett (1965) and often 
appears in discussions of bivariate distributions (see for
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example Mardia, 1970, or Johnson and Kotz, 1972). Due 
to the unspecified nature o f F(x) and G(y) no parametric 
test is possible. However, rank tests are possible. In fact 
the locally most powerful rank test is easily derived, as 
shown in the following.

W hen H(x,y) is continuous then the density func
tion is

h4(x,y;0) = f(x)g(y)[l + 0{1 - 2F(x)} {1 - 2G(y)}]

(3.12)

which reduces to the independence case f(x)g(y) when 0  = 
0. This example shows the full power o f the method dis
cussed in this paper for finding the locally most powerful 
rank test for independence. The scores a(i,j;h4) in this case 
reduce to

a(i,j;h4) = E{(2F(Xn(i>) - l)(2G (Y n0>) - 1)}
= (2E{Un(i)} - l)(2E{Un(j)} - 1)

(3.13)
where Un(i) and Un0) represent order statistics from the uni
form distribution on (0,1). These are the scores used in the 
Spearman rank correlation coefficient, so Spearman’s rho 
is the locally most powerful rank test for correlation for 
the entire class o f Morgenstem distributions, assuming only 
that the bivariate distributions are continuous. This result 
was first obtained by Farlie (1961), but this method of proof 
is much simpler.

Note that h4(x,y;0) is a density function with mar
ginal densities f(x) and g(y) for all density functions f  and 
g. In particular if  f  and g are exponential density functions, 
h4 is another form o f a bivariate exponential distribution. 
In this case the correlation coefficient is 0/4 (Gumbel, 1960) 
and it varies only within the narrow domain [-.25, .25]. 
Since the correlation coefficient is a monotonic function 
o f 0, the LMPRT for correlation in this bivariate exponen
tial model uses Spearman’s rho, instead o f the top-down 
correlation coefficient o f the previous two bivariate expo
nential models.

Conclusion

Asymptotic normality for the special cases o f the test sta
tistic given in the previous section is already known. In 
general, asymptotic normality under the null hypothesis 
results from Theorem 3, and under contiguous alternatives 
from Theorem 4, o f Shirahata (1974). Closely related re
sults were also given by Behnan (1971), Ruymgaart et al. 
(1972), and Ruymgaart (1974).
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