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A Visually Adaptive Bayesian Model In Wavelet Regression 
 

Dongfeng Wu 
Department of Mathematics and Statistics 

Mississippi State University 
 
 
The implementation of a Bayesian approach to wavelet regression that corresponds to the human visual 
system is examined. Most existing research in this area assumes non-informative priors, that is, a prior 
with mean zero. A new way is offered to implement prior information that mimics a visual inspection of 
noisy data, to obtain a first impression about the shape of the function that results in a prior with non-zero 
mean. This visually adaptive Bayesian (VAB) prior has a simple structure, intuitive interpretation, and is 
easy to implement. Skorohod topology is suggested as a more appropriate measure in signal recovering 
than the commonly used mean-squared error. 
 
Key words: Wavelet regression, wavelet shrinkage, optimal, Skorohod topology, uniform distance, mean-

squared error 
 
 

Introduction 
 

Wavelets unify many ideas from the fields of 
applied mathematics, signal processing, and 
physics (see Daubechies 1992). Wavelets are 
families of basis functions that can be used to 
approximate other functions, with powerful 
properties such as orthonormality, compact 
support, localization in time and scale, etc. 
Daubechies (1988) and Mallat (1989) 
encouraged the use of wavelets in the 
mathematical sciences, while Donoho and 
Johnstone (1994, 1995) popularized wavelets in 
the statistics community.  
 Some of the uses of wavelets for 
statistical problems have been developed by 
Donoho and Johnstone (1993, 1994) and Nason 
(1994) and are available in the S+ package. 
More recent work includes the block 
thresholding method of Cai (1999), which 
achieves adaptivity, spatial adaptivity and 
computational efficiency simultaneously. 

 
 
 
The author wishes to thank David V. Hinkley for 
suggestions regarding this study. Most of the 
numerical work was conducted using 
wavethresh (Nason, 1994, Version 3). Contact 
the author at dw183@ra.msstate.edu 
 

When fitting wavelet-based models, 
shrinkage of the empirical wavelet coefficients 
is an effective tool for denoising the data. 
Shrinkage of the empirical wavelet coefficients 
works best in problems where the underlying set 
of the true coefficients of f is sparse. One natural 
way to obtain the shrinkage estimates of the true 
coefficients is via Bayesian methods.  

An appealing and simple model 
(ABWS) using the posterior mean has been 
proposed by Chipman, Kolaczyk, and 
McCulloch (1997) who assume that an accurate 
estimate of the noise level σ is available. A more 
complete Bayesian approach that captures the 
uncertainty about the noise level σ was proposed 
by Clyde, Parmigiani, and Vidakovic(1998). 
Abramovich, Sapatinas and Silverman (1998) 
proposed the posterior median method, with 
almost the same set up as Clyde et.al., but using 
the posterior medians to estimate the true 
coefficients. Huang and Cressie (1999) proposed 
a normal prior with non-zero means for wavelet 
coefficients, and estimated the hyper-parameters 
of the prior covariance by a pseudo maximum 
likelihood method.  

A different prior structure with non-zero 
means is offered. The model is simple, 
combining a normal prior with non-zero mean 
and a point mass. Explanations are provided for 
each hyper-parameter in addition to a specific 
way to choose the prior parameters.  
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Methodology 
 

The Bayesian model  
Suppose the function f is sampled at n = 

2J equally spaced points, but is observed with 
additive white noise, 

 
yi  = f(i/n) + σzi,        i=0, 1,…, n-1,          (1) 
 

where zi, i = 0,1,… ,n-1, are iid standard normal 
random variables, and σ is unknown. 
Equivalently this observation model can be 
expressed in wavelet regression form,  
 
vj,k = wj,k + σzj,k ,   j = 0, …, J-1,  k= 0, …, 2j,       
             (2) 
 
where vj,ks are the discrete wavelet coefficients 
of noisy observation y; wj,ks are the discrete 
wavelet coefficients of f; and  zj,ks are still iid 
N(0,1) random variables. 

In the Bayesian approach, a prior 
distribution is placed on the coefficients, and 
some particular prior distributions that are 
designed to capture the sparseness common to 
most wavelet applications are proposed. Most of 
the published works in this area have a common 
characteristic, that is, a prior distribution is 
designed such that some of the mass is 
concentrated on values close to zero or just 
being zero, while the rest of the mass is spread 
to accommodate the possibility of large 
coefficients. 

Then, the posterior means or the 
posterior medians are used as the estimates of 
the true coefficients. Though appealing, this 
framework assumes that all of the coefficients 
have the same prior in each level, with zero 
mean, which overlooks the facts that certain 
coefficients are significantly departs from zero. 
The overall shape of the curve gives us more 
useful information, and accommodation of this 
information will ease the procedure to denoise, 
and hence, recover the curve. 

Inspired by the work of Chipman et al. 
(1997), Clyde et al. (1998), and Abramovich et 
al. (1998), and assuming that a good estimate of 
the obtained noise level σ, the following prior 
model is proposed: 

 
)0()1(),(~| ,

2
,,,, δγτγγ kjjkjkjkjkj aNw −+  

                         (3)  
 
In this prior model, the coefficients are 

mutually independent, and modeled as a mixture 
of a normal distribution and a point mass at zero. 
The innovation is that assumed is that the 
normal prior has non-zero mean aj,k for each 
coefficient wj,k. Also, a really small variance τj 
depends on each level j, so that each coefficient 
has a different prior associated with it. 

This idea comes from the observation 
that when coefficients are changed in a small 
scale in each level, the function estimate won’t 
change much, and it won’t affect our visual 
perspective either. This means that each 
coefficient can change around its true value in a 
small scale, called its safety range, without any 
deleterious effects. This is captured in the form 
of N(aj,k,τj

2), where aj,k is the prior information 
on the true value of the coefficient, and τj is the 
allowable perturbation on level j, so that the 
estimate would be close to the true function.  

A point mass at zero is assumed based 
on the belief that the coefficients are sparse. This 
simple form of prior modeling has intuitive 
interpretations and captures the few big spikes in 
the coefficients. Empirical evidence shows that 
if  aj,k = wj,k, ∀j = 0, …, J-1, k= 0, …, 2j, the 
“recovered estimate” f~  is a slight shift from the 
true f. 

The mixture parameter γj,k has its own 
prior distribution given by 

 
),(~ ,, kjkj pBernoulliγ          (4) 

 
The prior parameters aj,k, τj, pj,k need to 

be decided. A different prior is assigned for each 
individual coefficient, though in each level the 
coefficients share a common prior variance τj, 
which reflects the perturbation in level j.  

Once data are observed, the wavelet 
coefficients of the signal y are distributed as  

 
).,(~,| 2

,
2

,, σσ kjkjkj wNwv           (5)  
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The posterior distribution on the (unobserved) 
true value of wj,k, and use its expected value as 
the estimate. Then the inverse wavelet is applied 
transformation to get f̂ . 
  
The Prior Parameters 

In this section details are given on how 
to choose the values for each of the prior 
parameters. This prior seems more intuitive, and 
computer simulation demonstrates that it works 
well.  

The intuitive meaning of aj,k is the prior 
mean of each coefficient. The value of a specific 
coefficient is not necessarily zero, but is 
determined by the overall shape of the signal; in 
other words, it is related to the first impression 
of the data. The Universal thresholding method 
is used to get the value aj,k for each coefficient. 
The Universal threshold value is generally 
bigger than all the other methods, and gives the 
overall shape of the data. Suppose a sound 
estimate exists of σ, say σ̂ , then for each level j 

= 1, … J, let tj  = )2log(2ˆ jσ  according to the 
Universal rule, then 

 
, ,

, , ,

( , )

sgn( )( ) ( )
j k soft j k j

j k j k j j k j

a T v t

v v t I v t

=

= − >
         (6) 

 
 This process mimics a visual inspection 
of the noisy data whereby the first  impression 
about the shape of the function is obtained. 
Using the threshold value as the empirical prior 
information of aj,k makes sense. Because this 
estimate is close to the true curve, only small 
perturbations are allowed, so the τj will be a 
small number compares to the scale in the same 
level j. It is believed that this τj is largely 
connected with the scales of the coefficients in 
the same level. Chosen was τj = 10% Mj based 
on previous empirical experience, where 

|}{|max ,120 kjkj vM j −≤≤
= . 

 Usually, for a smaller signal-to-noise 
ratio, a bigger percentage is chosen to obtain τj; 
and a bigger signal-to-noise ratio means a 
smaller percentage to obtain τj. As for pj,k, the 
probability that one specific coefficient is non-
zero, also depends on the scales of the 

coefficients in that level. If vj,k is comparatively 
large, it is more likely that wj,k ≠0, and choose 
was pj,k  = | aj,k / Mj |, which is the ratio of the 
absolute value of that coefficient over the largest 
one in that level. Now, the prior parameters for 
each coefficient are given. 

In practice, the noise level σ is unknown 
and must be replaced by an estimate σ̂ . Used 
here is the slope estimate in Wu (2002), defined 
by  

 

2*6745.0
ˆ

25.075.0

)25.0()75.0( IQR
zz
vv nn ≈

−

−
=σ ,         (7) 

 
where v(k)s are the order statistics of the highest 
level wavelet coefficients, z0.75 and z0.25 are the 
quantiles of the standard Normal distribution; n 
is the total number of coefficients in the highest 
level J-1, IQR is the inter-quartile range of the 
observed coefficients. Simulation studies show 
that this estimation is accurate in the 
applications (Wu, 2002). 
 
Posterior Distribution of the Coefficients 

Based on this model, it is derived that 
the posterior mean and variance of wj,k given the 
observation of noisy date Y, where wj,k, vj,k, γj,k, 
aj,k, pj,k, τj  are simplified as w, v, γ, a, p, τ. 
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         (8) 

 
Because 
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this implies 
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Because  
 

( 1| )
( | 1) ,

( | 1) (1 ) ( | 0) 1

P v
p v O

p v p v O

γ
π γ

π γ π γ

=
=

= ≡
= + − = +

 (11) 

where 
 

)],0|()1/[()1|( =−== γπγπ vpvpO    (12) 
                
and because 

),,(~)1|( 22 τσγπ += aNv          (13) 
),,0(~)0|( 2σγπ Nv =        (14) 

 
when plugged into (12), the following 
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This is, the posterior mean of the coefficient. 
Then, apply the inverse wavelet transformation 
to obtain the function. 

The posterior variance of a coefficient 
can be calculated similarly, 
 

| |

2
| |

2
|
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where  
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and 
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Hence, 
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Results 

 
Presented are some simulation results of 
different shrinkage methods. For estimation of f,  
the usual L2 norm is used to evaluate 
performance. Let f={f(xi)}i

n
=1 and 

n
iixff 1)}(ˆ{ˆ
== be the vectors of true and 

estimated function values where xi are equally 
sampled. Performance is measured by the 
average mean-squared error 
 

[ ] .)()(ˆ1ˆ1)ˆ(
2

1

2

,2
∑
=

−=−=−
n

i
iin

xfxf
n

ff
n

ffR  (22) 

 
A smaller ),ˆ( ffR means a better estimation.  

The optimal thresholding value is the 
value t that minimizes  
 

[ ] ( )∑ ∑
=

−=−=
n

i kj
kjkjiit wwxfxftM

1 ,

2
,,

2
,ˆ)()(ˆ)(  (23) 

 

where tf̂  is the t-threshold estimator using soft-
thresholding. The optimal value is an ideal that 
is not available in a practical problem because f 
is unknown; however, it is a benchmark.  

To simplify the presentation, the 
following abbreviations are used for the several 
thresholding methods, as follows: 

 
OPT: the level-dependent optimal thresholding 
method. ABWS: the adaptive Bayesian wavelet 
shrinkage method in Chipman et al. (1997). 
 
MethodS: the multiple shrinkage MethodS in 
Clyde et al. (1998). VAB: the visually Adaptive 
Bayesian method presented here. 
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Eight testing functions were used as in 
Figure 1. The add iid N(0, σ2) noise to each 
function to generate 1000 simulated noisy data 
sets, and run the ABWS, multiple shrinkage 
(MethodS) and the new method in Section 4  on 
these data sets. The parameters θ and c in 
MethodS is θ =(0.90, 0.90, 0.90, 0.90, 0.90, 
0.50, 0.50, 0.50, 0.50, 0.05) and c=1048561 
according to Clyde et al. (1998).  The resulting 
L2 deviations from the true function are 
summarized in Table 1. 

In these eight simulations, ABWS 
performs best in the PIECEWISE polynomial 
and CORNER case, method S performs best in 
HEAVISINE and BUMPS, and our new VAB 
method performs best in the remaining four 
cases. In fact, in the case of BUMPS and 
SMOOTH signal, the performances of method S 
and our method are very close to each other; in 
the case of CORNER, the performances of 
ABWS and method S are very close to each 
other. Notice that in the case of DOPPLER, our 
VAB  method slightly outperformed the level-
dependent optimal soft-thresholding. There are a 
few other cases in which Bayes shrinkage is 
very close to the optimal soft-thresholding, such 
as, ABWS in the PIECEWISE polynomial case, 
VAB in the SMOOTH signal and CHIRP case, 
method S and ABWS in the CORNER case.  

Simulation examples are plotted in 
Figures 2-9. In each figure, upper left is the 
noisy data; upper right is the signal recovered by 
ABWS, with real signal in dotted line; lower left 
is the signal recovered by method S with real 
signal in dotted line; lower right is the signal 
recovered  by VAB, with real signal in dotted 
line. 

An inspection of Figures 2-9 reveals 
some facts. ABWS tends to over-smooth the 
data, sometimes this over-smooth will cause a 
big departure from the original signal, as in the 
case of CHIRP and DOPPLER. MethodS and 
VAB both capture the coarse shape of the curve 
very effectively.  

The L2 norm might not be an appropriate 
value to measure performance. It is easy to find 
two estimates 1̂f  and 2f̂ , such that  

2221
ˆˆ ffff −<− , but visually  2f̂  is 

preferred. It is not uncommon in our simulation 

study, because only a slight left or right shift of f 
will lead to this result. 

This created a motivation to do more 
investigation to determine a measure that better 
reflects our visual system. Clearly distance plays 
a very important role in pattern recognition. 
Many books and papers on pattern recognition 
try to define picture similarity without success. 
In fact it is not understood what is truly meant 
by cognitive similarity. That is the underlying 
intuition. However, it was found that Skorohod 
topology might be a good choice. 

Let D[0,1] = {f; f:[0,1] → R1, with 
properties 1) to 3)}, where properties 1) to 3) are 
defined as follows: 
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 Denote ],1,0[]1,0[:;{ λλ=Λ is a 1-
1 monotone continuous mapping}, and denote 

ελλε ≤−Λ∈=Λ ∈ |)(|sup;{ ]1,0[ ttt }, then for 
any f,g ∈D[0,1], define 
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                                                                       (25) 
 
The Skorohod distance considers the distance 
between two functions after translating or 
revolving them, and describes the similarity of 
functions very well. For details, see Billingsley 
(1968). 

The Skorohod distance is more 
reasonable in describing the difference between 
broken functions by considering the uniform 
distance between two functions after doing a 
monotone continuous lengthening or shortening 
to the independent variables of the functions. It 
introduces a certain level of invariance to 
distortions and translations. 
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Figure 2: Smooth signal data, with σ = 0.1 
 

 
Figure 3: Piecewise polynomial data, with σ = 0.1. 
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Figure 4: Chirp data, with σ = 0.1. 
 

 
Figure 5: Corner data, with σ = 0.1. 
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Figure 6: Blocks data, with σ = 0.2. 
 

 
Figure 7: Bumps data, with σ = 0.3. 
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Figure 8: Doppler data, with σ = 0.2. 
 

 
 

Figure 9: Heavisine data, with σ = 0.3. 
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It is well known that C [0,1] ⊂ D [0,1] 
(Billingsley 1968), which means that the 
uniform topology is equivalent to the Skorohod 
topology for continuous functions. It is easy to 
show that in discrete cases such as in computer 
simulation, the uniform topology is equivalent to 
the Skorohod topology, where the uniform 
topology is defined as 

 
.)()(sup),(

10
xgxfgfd

x
−=

<<
      (26) 

 
Convergence in the uniform topology implies 
convergence in the L2 norm, but convergence in 
L2 norm can not guarantee convergence in the 
uniform topology. In this sense, Uniform 
topology seems to be a better candidate to serve 
as the measurement of the performance. 

Table 2 summarizes the uniform 
topology in the same simulation study. Notice 
that in the case of PIECEWISE polynomial, 
CORNER and HEAVISINE, the pedigree of the 
uniform topology and the L2 are very 
controversial. Our visual impression seems to 
prefer the uniform topology. In the other cases, 
the two measurements are compatible. 

 
Conclusion 

 
This article presents and implements a new VAB 
method to recover signals from noisy data. The 
VAB method was compared with existing 
Bayesian methods. The results support the 
notion that many methods are serviceable when 
iid Normal noise are added. 
 The appealing part of this model is that 
it can capture the few big spikes in the 
coefficients effectively, thereby preserving the 
coarse shape of the picture. The simplicity of the 
model is also an advantage. Compared with 
other prior models, VAB uses less CPU time. In 
simulation studies, VAB performs best in four 
out of the eight cases when using the mean-
squared error, and it performs best in six out of 
the eight cases studied when using the uniform 
distance. 
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