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Allele Frequency Estimation from Ambiguous Data: Using Resampling
Schema in Validating Frequency Estimates and in Selective Neutrality
Testing

Abstract
The development of molecular typing techniques applied to the study of population genetic diversity
originates data with increasing precision but at the cost of some ambiguities. As distinct techniques may
produce distinct kinds of ambiguities, a crucial issue is to assess the differences between frequency
distributions estimated from data produced by alternative techniques for the same sample. To that aim, we
developed a resampling scheme that allows evaluating, by statistical means, the significance of the difference
between two frequency distributions. The same approach is then shown to be applicable to test selective
neutrality when only sample frequencies are known. The use of these original methods is presented here
through an application to the genetic study of a Munda human population sample, where three different HLA
loci were typed using two different molecular methods (reverse PCR-SSO typing on microbeads arrays based
on Luminex technology and PCR-SSP typing), as described in details in the companion article by Riccio et al.
[The Austroasiatic Munda population from India and its enigmatic origin: An HLA diversity study. Hum.
Biol. 38:405–435 (2011)]. The differences between the frequency estimates of the two typing techniques
were found to be smaller than those resulting from sampling. Overall, we show that using a resampling scheme
in validating frequency estimates is effective when alternative frequency estimates are available. Moreover,
resampling appears to be the unique way to test selective neutrality when only frequency data are available to
describe the genetic structure of populations.
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Allele Frequency Estimation from Ambiguous Data: Using
Resampling Schema in Validating Frequency Estimates and
in Selective Neutrality Testing

JOSÉ MANUEL NUNES,1* MARIA EUGENIA RICCIO,1 JEAN-MARIE TIERCY,2

AND ALICIA SANCHEZ-MAZAS1

Abstract The development of molecular typing techniques applied to the
study of population genetic diversity originates data with increasing precision
but at the cost of some ambiguities. As distinct techniques may produce distinct
kinds of ambiguities, a crucial issue is to assess the differences between
frequency distributions estimated from data produced by alternative techniques
for the same sample. To that aim, we developed a resampling scheme that allows
evaluating, by statistical means, the significance of the difference between two
frequency distributions. The same approach is then shown to be applicable to test
selective neutrality when only sample frequencies are known. The use of these
original methods is presented here through an application to the genetic study of
a Munda human population sample, where three different HLA loci were typed
using two different molecular methods (reverse PCR-SSO typing on microbeads
arrays based on Luminex technology and PCR-SSP typing), as described in
details in the companion article by Riccio et al. [The Austroasiatic Munda
population from India and its enigmatic origin: An HLA diversity study. Hum.
Biol. 38:405–435 (2011)]. The differences between the frequency estimates of
the two typing techniques were found to be smaller than those resulting from
sampling. Overall, we show that using a resampling scheme in validating
frequency estimates is effective when alternative frequency estimates are
available. Moreover, resampling appears to be the unique way to test selective
neutrality when only frequency data are available to describe the genetic
structure of populations.

Different alternative molecular techniques are commonly used to type human
genetic polymorphisms and may produce data with distinct kinds of ambiguities
(e.g., in HLA typing described by Marsh et al. 2010). For example, HLA typings
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obtained by reverse PCR–sequence-specific oligonucleotide (SSO) hybridiza-
tion technique on microbeads array (usually known as SSO-Luminex) and
PCR–sequence-specific primer (SSP) techniques generate highly complex geno-
typic distributions, as described in the companion article by Riccio et al. (this
issue). In a clinical setting, whenever required, such ambiguities are resolved by
extra laboratory work such as sequencing. However, the cost of such additional
testing generally prevents its general use to systematically resolve all the typing
ambiguities observed in an entire population sample. This represents a main
problem when data of large samples of individuals are needed to estimate allele
or haplotype frequencies within the scope of epidemiological or anthropological
studies, because the results remain ambiguous and are hardly comparable to data
provided by other laboratories. An approach that is commonly used consists in
“treating” and “cleaning” the data, but this leads to nonrandom elimination in
putative alleles and provides biased frequency estimates with moderate to severe
deviations (Buhler 2007). An alternative approach that avoids this problem is to
apply a statistical methodology accommodating ambiguous data, a very effective
way of getting accurate gene frequencies and other statistics for the population
under study. One must be sure, however, that this second approach provides
acceptable results. In particular, how to assess, when data include ambiguities,
whether two different frequency distributions estimated for the same population
sample differ?

We address this question in the present study. To this aim, we use the
results of the analysis of the HLA-A, -B, and -DRB1 molecular polymorphisms
of the Munda population sample described in the companion article (Riccio et al.
this issue). These data were produced by two different molecular methods,
SSO-Luminex and PCR-SSP. The two methods produce different genotyping
ambiguities at each locus, and PCR-SSP reveals fewer ambiguities than
SSO-Luminex. Allele frequencies were estimated for both methods and each of
the three loci by using the GENE[RATE] implementation of the Expectation-
Maximization (EM) algorithm (Dempster et al. 1977; Nunes 2005), an extension
capable of accommodating all kinds of ambiguous data (Nunes 2005, 2007;
Nunes et al. 2010). To test the equivalence of the two estimations, we developed
an original resampling procedure to compare the values of the frequency
estimates. This approach also provides the basis for an original test of selective
neutrality.

Materials and Methods

Testing the Accuracy of the Allele Frequency Estimation through a
Resampling Scheme. To compare the frequency distributions estimated for
the SSO-Luminex typings with those estimated for the PCR-SSP typings, we
have used a resampling approach. The frequency distribution estimated with
GENE[RATE] from the ambiguous SSO-Luminex data is assumed to be the
population distribution. From this distribution, a given number of random
samples of the same size as the observed sample and whose genotypes do not
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include ambiguities are drawn. The frequency distributions of these random
samples are also estimated with GENE[RATE]. We then chose the usual sum of
squared differences between allelic frequencies as a test statistic to compare these
distributions, i.e., we computed the sum of squared differences between the
assumed population frequencies and the frequencies of each random sample. This
gives us the empirical distribution of the statistic, which is an empirical estimate
of the sampling variance. Assessing the sampling variance in this way avoids
making hypotheses about the number of alleles actually present in samples and
avoids concerns about the accuracy of multinomial sampling.

This procedure is done twice, once using the SSO-Luminex estimates, as
mentioned above, and once using the PCR-SSP estimates as the population
frequencies. To see how extreme is the difference observed between the
estimations obtained for the two typing techniques, we compared the observed
statistic to the empirical distributions. This observed statistic is the same in both
cases, i.e., the sum of the squared differences between the PCR-SSP and the
SSO-Luminex frequencies. The conclusion of the test depends on the location of
the observed statistic relative to the empirical distribution. If the test statistic falls
within the central 95% interval (but other significance levels can be used), it
means that the difference is comparable to the sampling variation. If the test
statistic falls to the right of that interval, it means that the estimates differ
significantly more than expected from sampling. If, on the other hand, the test
statistic falls to the left of the interval, it can be said that the observed difference
is significantly smaller than expected from sampling. In other words, in this latter
case, taking another sample from the same population would yield, on average,
frequency differences larger than those observed when different typing tech-
niques are used.

According to common practice in resampling (e.g., Davison and Hinkley
2006; Efron and Tibshirani 1993), the number of generated samples has been set
to 1000 so that the empirical distribution provides a good approximation of the
population distribution. The program implementing this, however, accepts the
number of random samples as input along with the two sets of frequency
estimates. The outputs of the program are the two empirical distributions, one for
each PCR-SSP and SSO-Luminex estimation, and the value of the test statistic
for the original samples.

Testing Selective Neutrality through a Resampling Scheme. Ewens-
Watterson’s (EW) test is a test for selective neutrality under the infinite allele
model (Ewens 1972; Watterson 1978). The method used here is an improvement
of the procedure implemented in GENE[RATE] (Nunes 2004, 2007; Nunes et al.
2010), which is an adaptation of the classical EW test to ambiguous data. It
consists in estimating the p values of the usual EW test for nonambiguous
random samples and in using the distribution of these p values to assess selective
neutrality. The resampling scheme consists in generating a certain number of
random samples in which no individual has ambiguous genotypes. Then, the
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Slatkin’s version of the EW test (Slatkin 1994, 1996) is applied to each replica
sample, providing a set of p values. The same considerations, made above, lead us
to set a default value of 1,000 samples and 10,000 replicas for each EW test, but these
values can be adjusted, if necessary, by indicating them explicitly to the program.

The obtained set of p values can be seen as an empirical distribution from
which it is possible to calculate the probability of observing a p value smaller
than a given value. Actually, however, this is not the best approach. A faster
approach to test selective neutrality is to consider the set of p values as a multiple
testing situation. As the null hypothesis is selective neutrality, an overall result
requires the use of Bonferroni’s (Bonferroni 1936) adjusted significance levels to
detect extreme p values. The program that we have developed provides a count
of the p values that are significantly lower or significantly higher than expected
under the neutral hypothesis at a given significance level (default value is 5%, but
the level can be set as an input to the program). As usual in a Bonferroni’s
multiple testing framework, a count of one significant value is sufficient to reject
neutrality. If all significant counts are lower (or higher) than the critical levels,
then it is reasonable to assume a deficiency (respectively, an excess) of
homozygotes. If both higher and lower counts appear, neutrality is also rejected,
but it is not possible, then, to suggest any selective model (and it might also be
an indication of nonconformity to Hardy-Weinberg equilibrium).

If the multiple comparison approach described above is not directly
applicable, for instance, because of the existence of zeros among the p values, the
empirical distribution that can be obtained as an output of the program helps to
make significance decisions that would require huge calculations otherwise (both
in the number of samples and of replicas). If no p values are obtained between
zero and Bonferroni’s corrected significance level, we may suspect the zeros as
being artifacts due to insufficient numbers of EW replicas or generated samples.
Therefore, the neutral hypothesis cannot be rejected.

Application. The methods described above were applied to the data analyzed
in our companion article by Riccio et al. (2011), i.e., HLA-A, -B and -DRB1 data
obtained on a sample of 40 individuals of the Munda population living in the
Ranchi district in Northeast India.

As described by Riccio et al. (2011), the allele frequencies were estimated
with an EM algorithm, taking into account typing ambiguities—a method
implemented in the GENE[RATE] program package (Nunes 2004, 2007; Nunes et
al. 2010) available online (http://geneva.unige.ch) from two genetic data series:
one obtained by SSO-Luminex typings, leading to a high number of genotyping
ambiguities, and the other one obtained by PCR-SSP, leading to a lower number
of such ambiguities.

Comparison between Allele Frequencies Estimated from SSO-Luminex and
PCR-SSP Typings. Our first aim was to test the null hypothesis of no
significant differences between the frequencies of the two data series, at each
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locus. Figures 1 and 2 shows the results of the resampling procedure developed
to compare these two allele frequency distributions. In Figure 1, the SSO-
Luminex estimates are taken as the population frequencies that are used to draw
nonambiguous random samples. The frequencies of these samples are then
estimated and compared with the assumed population frequencies. The distribu-
tions shown in Figure 1 represent the test statistic, i.e., the sum of squared allele
frequency differences, over the simulated data, at each locus. In all cases, the
observed value (calculated from the difference between the observed SSO-
Luminex and PCR-SSP frequencies, indicated by an arrow) falls at the left
tail of the empirical distribution, meaning that frequency differences due to
the use of the two distinct methods are less important than expected by chance
as a consequence of sampling. The same conclusion is drawn when PCR-SSP
frequency estimates are taken as the population frequencies, as shown in
Figure 2.

These results indicate that the frequency estimations obtained with
GENE[RATE] on ambiguous data can be used with confidence to represent the
population under study and can be applied in population genetics analyses such
as genetic distance comparisons and multivariate and correlation analyses.
Although the present demonstration is empirical, the same conclusion has been
reached independently for three loci (with unequal levels of polymorphism),
which gives it stronger support.

Test for Selective Neutrality. We also tested the hypothesis of selective
neutrality on the Munda sample, at each locus and for the two data series
(SSO-Luminex and PCR-SSP). The results are summarized in Table 2 of the
companion article by Riccio et al. (this issue). No clear rejection toward an
excess or a deficit of heterozygotes is found when analyzing the SSO-Luminex
frequencies. The tests applied to the PCR-SSP frequencies give the same results
for loci HLA-A and -B, but not for HLA-DRB1. As the frequency estimates
obtained with the two typing methods were not found to be significantly
different, we further analyzed the divergence observed for neutrality at locus
HLA-DRB1. According to the techniques described in Materials and Methods,
we increased both the number of samples and the number of replicas, and we
analyzed the distributions of the p values. These distributions showed that almost
all values exceeded the Bonferroni’s significance level, to the exception of p
values of zero, consistently for all numbers of samples and replicas used. In order
to make a decision, we set the significance level to 1% and the number of
generated samples successively to 1,000, 10,000, and 100,000. The distributions
of p values showed that the only p values that were smaller than the
corresponding significances (1e-5, 1e-6, and 1e-7) were zeros. To avoid such
situations and obtain p values with enough significant digits, one would need to
increase the number of replicates for the EW Slatkin’s test to more than
1,000,000. However, as explained in Materials and Methods, the absence of
intermediate p values for all the bootstrapped sample sizes used lead us to
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Figure 1. Results of the resampling procedure developed to compare allelic frequency distributions
using SSO-Luminex estimates. In all cases the observed value (calculated from the
difference between the observed SSO-Luminex and PCR-SSP frequencies, indicated by
an arrow) falls at the left tail of the empirical distribution.
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consider these zeros as numerical artifacts. Therefore, the test of selective
neutrality cannot be rejected at the HLA-DRB1 locus typed by PCR-SSP; we
thus conclude that all loci are compatible with the hypothesis of selective
neutrality for both typing techniques.

Discussion and Conclusion

There are two difficulties concerning the estimation of gene frequencies:
one relates to the estimation with ambiguities and the other to the comparison of
samples for which precise genotypes are not known. The questions raised by the
existence of ambiguous typings are well documented in the literature (Adams et
al. 2004; Leffell 2002; Lind et al. 2010; Scott et al. 1998; Swelsen et al. 2004;
Voorter et al. 2007), but the approach of improving the resolution is simply not
feasible in general for population-based studies. As the vast majority, if not
almost all, of the computer programs are not able to handle frequency estimation
for arbitrarily ambiguous data [e.g., ARLEQUIN (Excoffier et al. 2005), PYPOP
(Lancaster et al. 2003), PHASE (Stephens and Donnelly 2003)]), we have
developed an extension of the EM algorithm (Nunes 2005) capable of dealing
with them. Actually, this corresponds to the ability to use an EM-like algorithm
for noncodominant data. Although this is useful by itself, the problem of
comparing ambiguous estimates for noncodominant data cannot be handled by
the usual homogeneity test that requires data with nonambiguous genotypes
(Sokal and Rohlf 1995).

Figure 1. (continued)
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Figure 2. Results of the resampling procedure developed to compare allelic frequency distributions
using PCR-SSP estimates. In all cases the observed value (calculated from the difference
between the observed SSO-Luminex and PCR-SSP frequencies, indicated by an arrow)
falls at the left tail of the empirical distribution.
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To our knowledge, this is the first study evaluating the consistency of allele
frequency distributions estimated from genotypic data obtained by two different
molecular approaches. Here, we have applied a new approach to HLA data
obtained by SSO-Luminex and PCR-SSP methods at three different loci
(HLA-A, -B, and -DRB1) for the same Austroasiatic Munda population sample
from India (see Riccio et al., this issue). This allowed us to assess, by an original
resampling procedure, whether the frequency estimations obtained using highly
ambiguous SSO-Luminex typing data could be accepted as equivalent to those
obtained by PCR-SSP data.

The EM algorithm accommodating ambiguous data implemented in
GENE[RATE] is a useful tool allowing to avoid arbitrary elimination of alleles from
ambiguous genotypes and to prevent both a loss of information and additional
typing work. In the present study, we presented a procedure allowing to assess
whether HLA frequency distributions estimated on ambiguous data can be used
with confidence in population genetics analyses. Of course, prudence is required
while making comparisons of specific allelic frequencies estimated from am-
biguous data between populations, as discussed in the companion article by
Riccio et al. (this issue). In particular, allelic frequencies should not be used as
indicators of the presence or absence of any given allele.

We believe that the most useful result of this study for researchers working
with frequency data is the simple and easy way, developed here, of assessing
selective neutrality. It may be argued about the power of such a test; however, if
a rejection of neutrality still holds after the detailed inspection, considering both

Figure 2. (continued)
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multiple testing and the actual p value distributions, which we have illustrated,
then it can be taken as very likely.

Overall, using a resampling scheme in validating frequency estimates
proves to be most useful when alternative frequency estimates are available, for
example, due to the application of different typing techniques. Also, using a
resampling approach currently appears to be the unique way to test selective
neutrality when only frequency data are available to describe the genetic
structure of populations.
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