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Least Error Sample Distribution Function 
 

Vassili F. Pastushenko 
Johannes Kepler University of Linz, Austria 

 
 
The empirical distribution function (ecdf) is unbiased in the usual sense, but shows certain order bias. 
Pyke suggested discrete ecdf using expectations of order statistics. Piecewise constant optimal ecdf saves 
200%/N of sample size N. Results are compared with linear interpolation for U(0, 1), which require up to 
sixfold shorter samples at the same accuracy. 
 
Key words: Unbiased, order statistics, approximation, optimal. 
 
 

Introduction 
Natural sciences search for regularities in the 
chaos of real world events at different levels of 
complexity. As a rule, the regularities become 
apparent after statistical analysis of noisy data. 
This defines the fundamental role of statistical 
science, which collects causally connected facts 
for subsequent quantitative analysis. There are 
two kinds of probabilistic interface between 
statistical analysis and empirical observations. In 
differential form this corresponds to histograms, 
and in integral form to the so-called sample 
distribution function or empirical distribution 
function (edf or ecdf in Matlab notation), c.f. 
Pugachev (1984), Feller (1971), Press, et al. 
(1992), Abramowitz & Stegun (1970), Cramér 
(1971), Gibbons & Chakraborti (2003). If 
histogram bins contain sufficiently big numbers 
of points, the usual concept of ecdf is more or 
less satisfactory. The focus of this paper is on 
short samples, where a histogram approach is 
not possible and an optimal integral approach is 
welcome. Consider i.i.d. sample X with N 
elements, numbered according to their 
appearance on the x-axis 
 

X= [X1, X2,…,XN],                  (1) 
 

X1 ≤X2 ≤…≤ XN.                    (2) 
 
 
 
 
Email Vassili F. Pastushenko at 
vassili.pastushenko@jku.at. 
 

 
Sorted X-values are sometimes denoted X(n), but 
here parentheses are omitted. Parent d.f. F(x) is 
connected with corresponding p.d.f. f(x)  
 


∞−

=
x

dxxfxF )()(                     (3) 

 
F(x) is defined for the whole range of possible 
sample values between extreme x-values X0 and 
XN+1 (denoted similarly to X for formal 
convenience): 
 

X0 =inf(x), XN+1= sup(x)           (4) 
 
Due to the fact that f(x) ≥ 0, F(x) is non-
decreasing. Therefore the exact random values 
of F(X), usually unknown in practical ecdf 
applications, are ordered according to positions 
of X elements at x-axis, 
 

F1 ≤ F2 ≤…≤ FN.                  (5) 
 
where F1 = F(X1), F2 = F(X2), …, FN = F(XN). 
For this reason values (5) are called order 
statistics, Gibbons & Chakraborti (2003). In 
literature ecdf is frequently denoted as Fn(x) 
meaning that a sample consists of n elements. 
Here the notations are different. As defined in 
(5), Fn = F(Xn), n = 1:N (colon is a convenient 
notation of MathWorks, meaning arithmetic 
progression between delimited expressions, here 
with an increment 1, more generally start : 
increment : finish). Usually ecdf is denoted F*(x, 
X), where x is the independent variable, 
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sometimes called parameter, taking any value of 
the principally possible X-values 
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* n

N
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XxH

N
XxF 

=

−=           (6) 

 
H(t) is Heaviside unit step function, H = 1 for 
t≥0, otherwise H=0. Function (6) as a piecewise 
constant approximation of F(x) takes N+1 values 
(levels) equal to (0:N)/N in N+1 x-intervals 
between and outside of N sample values. F* is 
continuous from the right, although Pugachev 
(1984) suggested that the continuity from the left 
would be more reasonable. A centrally 
symmetrical version could be a compromise (H 
= 0.5 at t = 0). Middle points between adjacent 
F* levels are 
 

m = (n-0.5)/N,  n = 1:N               (7) 
 
For convenience, an example of F* is shown for 
N = 3, Figure 1 A. Expected Fn-values (En, c.f. 
next section), shown by circles, are different 
from m. 

Eq. (6) is constructed as an arithmetic 
mean of N ecdf, each corresponding to a 1-point 
sample, 


=

=
N

n
nXxF

N
XxF

1
** ),(

1
),(           (8) 

 
This shows that E[F*(x, X)] = F(x) for any N, 
where E[…] denotes the mathematical 
expectation, because this expectation 
corresponds to F* for an infinitely long sample. 
In other words, for any fixed-in-advance x-value 
F*(x, X) represents an unbiased estimation of 
F(x). The name empirical reflects the similarity 
between F*(x, X), which gives the proportion of 
sample elements r satisfying r ≤ x, and F(x) = 
Prob(r≤x), r being a single random number. 
However, this similarity contains an arbitrary 
assumption. Indeed, differentiation of (8) with 
respect to x gives empirical p.d. f. f*(x, X), Feller 
(1971) 

*
1

1
( ) ( ),

N

n
n
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N

δ
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= −             (9) 

 
δ(x) being the Dirac delta. As can be seen from 
this expression, ecdf (8) attributes probability 

measure 1/N to each sample element. As a 
result, any sample is represented as a set of 
measure 1, whereas in reality it represents a set 
of measure zero, which is obvious for the main 
class of continuous distributions, and 
discontinuous distributions can be considered as 
a limit of continuous ones. This contradiction is 
especially strongly expressed in eq.(6), where 
measure 1 is attributed to every single-point 
sample on the right-hand side, which should 
mean that every sample element is a 
deterministic, not a stochastic item. 

As indicated by Pyke (1959), a more 
reasonable approach should consider a sample as 
a set of measure zero, which delimits N+1 
nonzero-measure intervals on the x-axis. This is 
consistent with the point of view that the 
sampling procedure represents mapping of N 
random values of parent F(x) to the x-axis. A 
single random F-value is uniformly distributed 
in (0, 1), i.e., F∈U(0, 1) . Each of the F-values 
mapped into the sample values is selected 
independently. However, these values finally 
appear on the F-axis as an ordered sequence, so 
that the neighbouring elements of the sequence 
are no longer independent. Order statistics F1, 
…, FN have their own distributions. Therefore, 
an optimal ecdf must use this information. 
Probability densities for random u ∈  U(0,1), u = 
Fn, are c.f. Gibbons & Chakraborti (2003), 
Durbin (1973), Pyke (1959): 
 

)!()!1(

!
)1()( 1

, nNn
Nuuuf nNn

nN −−
−= −− , 

n = 1:N.                         (10) 
 
The first two moments of these distributions, or 
expected values and variances of Fn, denoted En 
and Vn respectively, are (c.f. Gibbons & 
Chakraborti (2003)): 
 

1

,

0
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As a research tool, F* is expected to optimally 
reproduce parent F(x). However, there are some 
discrepancies with predictions of order statistics 
(11-12). It follows from (6) that E[F*(Xn, X) ] = 
E[n/N] = n/N, n=1:N, whereas the correct 
expectation (11) is different , Pyke (1959). This 
discrepancy means a certain order bias. 

Pyke (1959) considered order statistics 
Fn as zero-measure delimiters of probability 
intervals, created by the sample. He also 
considered statistic nnN FEC −=+  instead of 

the usual statistic, nN FNnD −=+ / , n = 1:N. 

This was interpreted by Brunk (1962), Durbin 
(1968) and Durbin and Knott (1972) as a 
discrete modification of ecdf. In particular, 
Brunk mentions Pyke’s (1959) suggestion that 
the plotted points (Fn, n/(N+1)) in the Cartesian 
plane replace the empirical distribution function. 
In fact, as Hyndman and Fan (1996) mentioned, 
similar suggestions were made much earlier by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Weibull (1939) and Gumbel (1939). These 
suggestions were partly considered for 
applications using ecdf values only at x = X, 
such as two-sided Kolmogorov-Smirnov test, 
Durbin (1968). However, any generalization for 
arbitrary x-values was not presented, although 
Hyndman and Fan (1996) discuss similar ideas 
concerning distribution quantiles. 

To find an alternative for ecdf, an 
optimality criterion must be selected. Because 
the aim of ecdf is to approximate F(x), the main 
criterion is the approximation accuracy. 
Additionally convenience or simplicity may be 
discussed, but these aspects are almost the same 
within the class of piecewise constant 
approximations which are considered here. 

The approximation accuracy needs a 
definition of distance between two compared 
distribution functions. The distance between two 
distributions, e.g. between exact F(x) and its 
empirical approximation, is frequently 

Figure 1: Different Ecdf-Versions for a Sample with 3 Elements 
Expectations of order statistics are shown by circles. A: F*(x, X); B: P(x, X); C: C(x, X); 
D: S(x, X). Note that the numbers of jumps are different, A: N; B: N+1; C: N+2; D: N+2. 
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characterized by the biggest (supremum) 
absolute value of their difference. Another 
possible measure could be an average absolute 
value of the difference. A more commonly used 
statistical measure is mean squared deviation, 
calculated either as a sum in discrete approaches 
or as an integral in continual approaches. For 
discrete applications, which only need ecdf 
values for the sample elements, Pyke’s approach 
already gives an optimal solution in the sense of 
minimal rms deviation. Indeed, if it is desirable 
to replace a random Fn by a single number with 
minimal rms error, this number is En. 

However, some applications need an 
extension of Pyke’s discrete function to the 
whole range of possible x-values. Interpolation 
based on known knots (Xn, En) is one option. 
Linear interpolation, which was probably meant 
by Brunk’s suggestion to plot (Xn, En), may 
work well numerically in some cases, such as 
uniform parent distribution, however, it is badly 
suited for unlimited distributions and it is 
difficult to obtain general, distribution-
independent results. This article focuses on 
nearest interpolation, for which two versions are 
possible depending on the choice of an 
independent variable. A more attractive version 
corresponds to independent F. In this way, 
interpolating from known knots (En, Xn) to 
arbitrary (C, x), ecdf C(x, X) (Figure 1C) with 
expected En (circles) in the centres of 
corresponding probability intervals may be 
obtained. Table 1 lists the various notations used 
throughout this article. 
 

Methodology 
A family of sample distribution functions. An 
ecdf-like function P(x, X) can be constructed 
using (Xn, En): 


=

−
+

=
N

n
nXxH

N
XxP

1

)(
1

1
),( .      (13) 

This function exactly corresponds to Pyke’s 
suggestion at x = X.  Nevertheless, P(x, X) is not 
very useful for arbitrary x-values, because it 
corresponds to a one-directional near 
interpolation, extending the optimal values only 
to the right. This is illustrated by Figure 1, B (En 
are shown by circles). 

Vectors E = [E1, …, En], and X = [X1 , 
…, Xn], n=1:N, can be complimented by 
extremal values of Fn and x in order to enable 
interpolation in the entire range of x- and F-
values. This leads to extended vectors E and X, 
each of size N+2: 
 

E = [0, E, 1]                       (14) 
 

X=[X0, X, XN+1]                   (15) 
 
Two versions of the nearest interpolation are 
possible. In MathWorks syntax: 
 

C= interp(X , E, x,’nearest’), X0 ≤ x  ≤ XN+1 
(16) 

and 
 

x = interp(E, X, C,’nearest’), 0 ≤ C ≤ 1. 
(17) 

 
Version (17) is more attractive for two reasons. 
First, E has known boundaries 0 and 1, whereas 
X0 and/or XN+1 can be either unknown or 
infinite. Second, eq. (16) is less convenient for 
analysis because it involves middle points 
mxn=(Xn+Xn-1)/2, n=1:N+1, where any exact 
calculation of E[F(mxn)] and E[F(mxn)

2] for an 
unknown F(x) is not possible. As follows from 
(17), 

C(x,X) = 
+

=

−
+

1

0

(
1

1 N

n
n xHw

N
Xn)    (18) 

 
Weight coefficients wn are equal to 1 except for 
n = 0 and n = N + 1, where wn = 0.5. Thus eq. 
(18) attributes probability measure of 0.5/(N+1) 
to x-values below X1 and above XN respectively, 
formally to extremal x-values X0 and XN+1, and 
measure of 1/(Ν+1)  to every sample element. 
Altogether, measure of N/(N+1) < 1 is now 
attributed to the very sample. Incomplete 
measure does not lead to any difficulty, because 
sample estimations based on (18) should be 
considered as conditional ones, and therefore the 
result should be normalized by condition 
probability N/(N+1). Thus, estimation of 
expected value of some function t(x) results in a 
traditional answer, mean(t(X)): 
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(19) 
 
Because extremal x-values acquire a probability 
measure,  the  first  and  last  summands  can  be 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

simplified in (18), which results in an equivalent 
of C in the entire x-range: 
 

C(x,X) = 






 −+
+ 

=

N

n
nXxH

N 1

)(
2

1

1

1
, 

 
X0 < x < XN+1.                    (20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Notations 
[A, B, …] Concatenation of A, B, …, a set consisting of A, B, … 

C(x, X) 
Centred ecdf, E-values are in the centres of corresponding 
probability intervals 

d 
Defect of levels, sum of their squared deviations from the 
optimal (natural) levels 

D(α) Total expected squared Deviation of s(x, X, α) from F(x) 

D*, DC, DS, … 
Total expected squared deviations for F*(x, X), C(x, X), S(x, 
X), … 

E = n/(N+1) n = 1:N vector of expected order statistics. 
En nth element of E 

E = [0, E1, …, EN, 1] Vector E extended by extremal E-values 
E[<abc>] Mathematical expectation of an expression <abc> 

F(x) Parent d.f. 
f(x) p.d.f., f = dF/dx 

F*(x, X) Presently accepted ecdf 
f*(x) Empirical p.d.f., f* =  dF*(x)/dx 

fN,n(u) p.d.f. of n-th order statistic u ∈U(0,1),  n = 1:N 

gz 
Gain, relative total squared deviation (in units of total deviation 
for F*), gz = Dz/D* ,  z = C,S,… 

H(t) 
Heaviside unit step, H=1 if t ≥ 0, otherwise H = 0. In Matlab: H 
= t >= 0 

M = mean(X) Average of sample elements 
N Sample size (length of i.i.d. sample) 

P(x, X) NF*(x, X)/(N+1) Pyke function 
s(x, X, α) Family of ecdf with parameter α, 0 ≤ α < 0.5 

sn Levels of s(x, X, α), n = 1:N+1 
S(x, X) Optimal member of s-family, minimizing D(α) 

u Uniform random variable, 0 ≤ u ≤ 1 
U(0, 1) Standard uniform distribution, F(u) = u, 0 ≤ u ≤ 1 

X = [X1, X2, …, XN] i.i.d. sample with parent d.f. F(x) 
X = [X0, X1, X2, …, XN, XN+1] Extended sample X by adding extremal x-values, size(X)= N+2 

x A number ∈( set of possible X-values) 
α, β Parameters of ecdf family s(x, X, α, β)
δ(x) Dirac delta
δxX Kronecker symbol. In Matlab: δxX = any(x == X) 
Δ  The deviation of an ecdf from the parent d.f. 

Φ(x, X) Hybrid of S and P for both continual and discrete applications
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An example of C(x, X) is shown in Figure 1,C. 
Note that eq. (20) follows from eq. (13) by 
adding 0.5/(N+1),  and C(x, X) has expected 
values En in the middle of the corresponding 
probability intervals. Therefore if the centrally 
symmetric unit step H(t) is accepted, C(Xn, X)  
automatically gives expected value En. 

Functions P(x, X) and C(x, X) represent 
linear transformations of F*, therefore F*, P and 
C could be considered as members of two-
parametric ecdf family s: 
 

),( ),,( * XxFXxs βαα +=          (21) 
 
Thus, α = 0, β = 1 leads to s = F*(x, X); 
α = 0, β = N/(N+1) gives s = P(x ,X) and α = 
0.5/(N+1), β = N/(N+1) gives s = C(x, X). 
Levels of P(x, X) are not symmetrical with 
respect to probability centre 0.5, i.e. not 
invariant in transformation levels 1-levels. 
Therefore, although P(x, X) has expected values 
at x = X, it cannot be considered as a real 
alternative to F*. Excluding P(x, X) from the s-
family, the number of parameters may be 
reduced by setting β = 1−2α , which enables the 
automorphism levels  1-levels. This leads to 
one-parametric s-family 
 

),()21(),,( * XxFXxs ααα −+= , 

0 ≤ α < 0.5.                      (22) 
 
Levels sn of s(x, X, α) follow from the levels of 
F*: 

Nnsn /)1)(21( −−+= αα , n=1:N+1, 

(23) 
 
where α = 0 corresponds to F*(x, X), and α = 
0.5/(N+1) to C(x, X). Consider the properties of 
s(x, X, α) in terms of order statistics and squared 
deviation of s(x, X, α) from F(x). 
 
Mean Values of F(x) Between Adjacent Xn and 
Natural Levels 

As noted above, the mapping of F(x) to 
sample X leads to certain order statistics 
predictions (11-12), therefore, 
 

E[Fn
2]=En

2+Vn =
2N

1)E(n 
  n

+
+

; n=1:N    (24) 

In order to see how the levels sn (23) agree with 
these predictions, different ecdf versions must be 
compared with F(x) within intervals (Xn-1, Xn) 
numbered by n=1:N+1. Consider the integrals: 
 

1 1

2 2
1

, = F( )f(x) F
2

n n

n n

X F
n n

F n
X F

F FI x dx dF
− −
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n=1:N+1                       (25) 
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, 1s( , , )f(x) ( )
n

n

X

s n n n n
X

I x X dx s F F
−

−= = − ; 

n=1:N+1                       (26) 
 
Integrals (25-26) represent another kind of order 
statistics. Natural levels Sn can be found from a 
comparison of their mathematical expectations, 
that is, from E[Is,n] = E[IF,n], where 
 

;
2

  ][ , +
=

N
EIE n

nF  n=1:N+1         (27) 

and  

1
  ][ , +
=

N
sIE n

ns ; n= 1:N+1.        (28) 

 
Equality of (27) and (28) leads to natural levels: 
 

;
2

 n +
=

N
nS  n = 1:N+1.           (29) 

 
The levels follow if the right hand sides of (25 
and 26) are equated and divided by Fn-Fn-1. The 
mathematical expectations found lead to levels 
of C(x, X): 
 

;
)1(2
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]

2
[]

)(2
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1
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2

+
−=+=

−
−= −

−

−

N
nFFE
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FFEC nn
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nn
n  

n = 1:N+1                        (30) 
 
Comparing the levels of F*, given by (n-1)/N, 
and Cn (30) with natural levels Sn (29), n = 
1:N+1, both are smaller than Sn below 0.5 and 
bigger than Sn above 0.5. If the ratio of 
differences between these levels is constructed 
and the natural ones, this ratio (for nonzero 
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values) appears to be greater than 2 at any N 
(zeros happen at the median level 0.5 for even 
N): 

NNnNn
NnNn 2

2
)2/()1/()5.0(

)2/(/)1( +=
+−+−

+−−
  (31) 

 
Thus, the detailed comparison leads to a 
conclusion: both levels of F*(x, X) and of C(x, 
X) show certain order bias, because in average 
these levels do not match the expected behaviour 
of integrals of F between order statistics Fn. 
They are insufficiently big below the sample 
median, and too big above it. 

The defect d of s(x, X, α) is introduced 
as a sum of squared deviations of sn from natural 
levels (29), 

1
2
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n nd s S
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The defect of F* is 
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and the defect of C is 
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In agreement with eq. (31), the ratio of these 
defects is: 

2* )
1

1(4
Nd

d
C

+=                   (35) 

 
Two conclusions can be made. First, although 
near interpolation seems to be attractive in the 
sense that in puts expected values En exactly in 
the middle between C- levels, it is still not yet 
optimal S(x, X), based on natural levels (29): 
 

S(x, X) = s(x, X, 1/(Ν+2)).           (36) 
 
Thus, the optimum should occur at: 
 

1
  .

2N
α =

+
                          (37) 

Ecdf S(x, X) formally ascribes to every element 
of the extended sample X probability measure of 
1/(N+2): 


+

=

−
+

=
1

0

(
2

1
 X)S(x,

N

n
xH

N
Xn).     (38) 

 
Ecdf S(x, X) has zero defect d by definition. 
Similar to C(x, X), the expression for S may be 
simplified as: 








 −+
+

= 
=

N

n
nXxH

N 1

)(1
2

1
 X)S(x, , 

X0<x<XN+1.                       (39) 
 
An illustration of S(x, X) for N = 3 is given by 
Figure 1, D. 
 

Results 
Function S(x, X) Minimizes the Expected Total 
Error of F(x) Approximation. 

It can be shown that S(x, X) minimizes 
the error of F(x) approximation by calculating 
total squared deviation D of s(x, X, α) from F(x) 
and finding an optimal α as argmin(D(α)), 
getting in this way again α = 1/(N+2) as the 
optimal value. Total expected approximation 
error, or expected squared deviation is 
 

]f(x)))X,s(x,-)(F([  )(
1

0

2 dxxED
NX

X


+

= αα   (40) 

 
The optimality of S is confirmed by following 
theorem and proof. 
 
Theorem 

S(x, X) represents least error 
approximation of F(x) at the family s(x, X, α), 
because it minimizes the total squared 
approximation error (40). 
 
Proof 
Consider deviation Δ, 
 

Δ = F(x) - s(x, X, α)                  (41) 
 
as a random quantity at every fixed x due to 
randomness of X. Mathematical expectation of 
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Δ, taking into account eq. (22) and E[F*(x, X)] = 
F(x), is: 

E[Δ] = F(x) - (α+(1-2α)F(x)) = α (2F(x)-1). 
(42) 

 
The goal is to find D = E[Δ 2], therefore the 
variance, var(Δ), is needed. This can be found 
using the variance of F*(x, X), expressed as 
F(x)(1-F(x))/N, Gibbons and Chakraborti 
(2003). Because in (41) F(x) is a deterministic 
function, only the second term in (41) 
contributes to var(Δ): 
 

VΔ = var(Δ) = (1-2α)2F(x)(1-F(x))/N.  (43) 
 
Therefore, the expected squared deviation is: 
 

E[Δ 2 = VΔ + E[Δ]2 

= (1-2α)2 F(x)(1-F(x))/N + α2 (2F(x)-1)2 
(44) 

 
Substituting (44) into (40) leads to total expected 
squared deviation D 
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(45) 
 
Thus, D(α) is quadratic in α with minimum at 
α defined by (37), which proves the theorem. 

Now consider expected squared 
deviations for three different α-values leading to 
F*, C and S. For α = 0 eq. (45) yields known 
result for F*, 

1

*

0

(1 ) 1
(0) .

6

F FD D dF
N N
−= = =   (46) 

 
For C(x, X), i.e. for α=0.5/(N+1): 

2

0.5 2 1
( ) ,

1 12( 1)C
ND D

N N
+= =

+ +
        (47) 

 
and correspondingly, for S(x, X), 
 

1 1
( ) .

2 6( 2)SD D
N N

= =
+ +

         (48) 

 
Parabolic dependency of D(α), eq. (45) is 
illustrated in Figure 2 for several N-values. The 
values of D for three ecdf versions, F*, C and S 
(46- 48), are indicated by special markers. 
 
Linear Interpolation for Uniformly Distributed 
Data 

Compare the piecewise constant 
approximation in versions presented above with 
possibilities of different linear interpolations. In 
the case of a general parent d.f. F(x), it is 
difficult to get any analytical results. Therefore, 
F(x) is taken as standard uniform distribution, 
U(0, 1). However, this is more than a mere 
numerical example. Any known F(x) can be 
transformed to U(0, 1) by probability integral 
transformation u = F(x). Although in practice 
F(x) is mostly unknown, sometimes the 
transformation is possible, e.g. in fitting 
distribution parameters to X. Another 
meaningful aspect is - assuming that F(x) is 
known and transformed to standard uniform - 
the potentials of the linear interpolation become 
apparent. 

Both versions of interpolation, eq. (16) 
and (17) are now considered linear instead of 
nearest. Let Elin(x, X) be ecdf, defined as 
interpolation between Pyke points (Xn, En) 
according to (16) 
 

1
lin 1 1

1

1
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X X

X x X

−
− −

−

−
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≤ ≤
 

n = 1:N+1, X(1:N) ∈ U(0, 1).         (49) 
 
Here X in the left hand side is usual sample, and 
X in the right hand side is the extended sample, 
X0 = E0 = 0, XN+1 = EN+1 = 1. 
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Eq. (49) is nonlinear with respect to random 
numbers X. Correspondingly, the expectation 
E[Elin(x, X)] deviates from x. Expected squared 
deviations E[(Elin(x, X)-x)2] were estimated 
numerically as an average over 105 X-samples at 
N = 5. Figure 3 compares the result with E(Δ2

*), 
E(Δ2

C) and E(Δ2
S).  The left figure shows these 

expectations for all four compared versions, and 
the right figure shows their integrals in (0, x), 
which give at x = 1 corresponding total errors D. 
The gains, shown on the top of the right figure, 
represent the relative total errors, i.e. DC/D*, 
DS/D* and Dlin/D* respectively. 

The total approximation error is notably 
smaller for linear interpolation, as reflected by 
gC (1.31), gS (1.4) and glin (1.68). As illustrated 
in Figure 3 (left), the total squared error is 
smaller for Elin than for C at any x, and it is 
smaller than that for F* almost everywhere, with 
exception of narrow intervals near x = 0 and x = 
1. In addition, Elin loses to S around x = 0.5, but 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
wins in wide intervals near x = 0 and x = 1. 

More interesting results follow if linear 
interpolation is made according to eq. (17). Now 
the interpolation target is x, i.e. ecdf-values are 
selected as an independent variable e. In this 
case the implicitly defined ecdf e(x, X) is given 
by: 

x(e, X) = Xn-1(1-λ)+ Xnλ; n = 1:N+1.    (50) 
 
Here, λ is the interpolation variable, 
 
λ=(e-En-1)(N+1), 10 ≤≤ λ  (En-1 ≤ e ≤ En).  (51) 
 
Note that an equation similar to (50) was used 
by Hyndman & Fan (1996), eq. (1), who applied 
linear interpolation for calculating distribution 
quantiles. Due to the linearity of eq. (50) with 
respect to random X-values, this equation 
represents an unbiased empirical estimation of 
parent  U(0, 1),  that is,    E[x(e, X)] = e,    which 

Figure 2: Total Squared Expected Error D(α) of the Family s(x, X, α) for Several N-values 
The cases of F*(x, X), C(x, X) and S(x, X) as members of s-family are shown by special 

symbols; note that min(D(α))-values (circles) linearly depend on optimal α-values. 
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immediately follows from E[X] = E. This is 
interesting, because it shows that F*(x, X) is not 
the only possible unbiased estimation of F(x). 
The squared error of xlin defined by (50) is: 
 

E[Δlin
2] = E[(x(e,X)-e)2]  

= E[((Xn-1 – En-1)(1-λ) +(Xn-En)λ)2]  
= Vn-1(1-λ)2+Vnλ2+2c(n,n+1)λ(1-λ), n = 1:N+1. 

(52) 
 
Here c = cov(X), a covariance matrix of 
extended sample X, and V=[0 V 0] is the 
variance (12), extended by the values V0 = VN+1 

= 0. As can be seen from eq. (52), expected 
squared approximation error in every interval En-

1 ≤ e ≤ En is given by parabola, connecting 
adjacent points (En, Vn). This is illustrated in 
Figure 4. The integral of (52) in (0, e) is now 
represented by piecewise cubic parabolas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The gain of linear interpolation is now 
the same as in Figure 3, that is, the linear gain is 
invariant with respect to the interpolation target. 
The value of the linear gain for N > 1 is well 
approximated by g = 1 + 6/(2N-1), which means 
about 300%/N savings on sample size in 
comparison with F*. This raises the question 
about how such gain correlates with the quality 
of predictions based on linear interpolation. 

Eq. (8) can be directly applied to linear 
interpolation, which gives unbiased estimation 
and therefore eq. (8) should be valid. Given M = 
mean(X), eq. (8) suggests to represent x(e, X) as 
x(e, M(X)): 
 

x = 2eM, e ≤ 0.5 
and 

x = 2(1-e) M + 2e-1, e > 0.5.         (53) 
 

 

Figure 3: Expected Squared Errors of Different Versions of ecdf for Samples from U(0, 1), N=5 
Left: E[Δ2]; right: integrals of left curves in (0, x), which define at x = 1 the total expected errors. 
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Because E[M] = 0.5 (uniform data), (53) is 
indeed an unbiased estimation of x = e, the 
expected squared deviation of x from e is given 
by 

var(x) = 4e2VM, e ≤ 0.5 
and 

var(x) = 4(1-e)2 VM,  e > 0.5.         (54) 
Where 

VM = 1/(12N)                     (55) 
 
VM is the variance of M. Integrating (54) over e 
in (0, 1), the total mean squared deviation DM is 
obtained as 

DM = 1/(36N).                     (56) 
 
This result seems to be extraordinary, because it 
means a gain of ecdf (53) equal to 6, that is, 6 
times shorter samples in comparison with F* at 
the same approximation error, and this happens 
at any N value! Is it possible to get some 
practical advantages out of such a precise 
approximation? 

One such possibility is suggested by 
distribution parameter fitting. Thus, unknown 
parameter(s) q can be found as 
argmin((mean(F(X, X, q))-0.5)2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This method works indeed, and it should be 
compared with others. However, fitting 
parameters is a special topic, which should be 
discussed separately. 

Optimal ecdf S is constructed to 
minimize expected total error for continual 
applications. Discrete applications only need 
ecdf values at x = X, and then P(x, X) should be 
used. How is it possible to combine P(x, X) and 
S(x, X) into a universal ecdf, valid both for 
continual and discrete applications? This can be 
done by redefining S at x = X, e.g. by 
introducing function Φ(x, X) = S(x), if x ≠ Xn, 
otherwise Φ(Xn, X) = En, n = 1:N. Such 
switching between P(X, X) and S(x, X) can be 
expressed as a formal mixture of both functions, 
using Kronecker symbol δxX: 
 

Φ(x,X) = δxX P(x,X) + (1- δxX) S(x,X), δxX = 1, 
if any(x==X), otherwise δxX  = 0.         (57) 

 
Function Φ(x, X) is discontinuous at x = X both 
from left and right, which is physically and 
functionally more reasonable, than in the case of 
F*(x, X), continuous from the right only. 

Figure 4: Expected Squared Error of the Linear Approximation (50), E[(x-e)2] and its Integral in (0, e) 
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Conclusion 
The least error piecewise constant 
approximation of F(x) was presented. The 
starting point was that ecdf ascribes total 
probability of 1 to the sample, whereas any finite 
sample represents a set of measure zero. An 
optimal approach should ascribe zero measure 
associated with the sample. However, due to its 
convenience, a piecewise constant formalism 
has been selected. As a result, a part of total 
probability, equal to N/(N+2), is still associated 
with the sample. However, the aim was roughly 
achieved, because this measure is now smaller 
than 1, and this enabled a higher accuracy. 

Optimal ecdf S(x, X) was built as a 
result of eliminating order bias of levels in ecdf 
F*(x, X), which is an unbiased estimation of F(x) 
for any fixed-in-advance x-value. Are ecdf 
versions C and S also unbiased? If it is forgotten 
for a moment that C and S are not designed for 
straightforward averaging over different 
samples, E[s(x, X, α)] could be calculated. As 
follows from (22), the s-family is biased at α > 
0, i.e. C and S are biased. This bias 
asymptotically disappears as N ∞. Is this bias 
important or not? What is more important for 
practical applications, improved accuracy of 
F(x) approximation, or formal bias which is in 
fact artificially created? 

This bias has no practical meaning. 
Versions C and S use all available sample 
elements by definition, and the way this is done 
is not reducible to simple averaging. In fact, the 
bias is created by violation of the procedures 
behind C and S. The correct comparison is not 
reduced to an averaging over several samples. 
Instead, all available samples should be fused 
into one long sample before C or S functions are 
found. As eq. (8) shows, in the case of F* the 
averaging over many samples gives the same 
result, as one combined sample. This enables 
formal ubiasedness, but the consequence thereof 
is increased approximation error. 

A correct comparison of DF*, DC and DS 
should always be done using the same sample or 
set of samples. If N∞, then F*, C and S all 
converge to the same F(x). The only difference 
is that DS is the smallest of the three at any N. 
For this reason, if N is not very large, S(x, X) 
should always be preferred in practice as the 
best piece-wise constant approximation of F(x). 

The smallest possible error of empirical 
estimation of F(x) is desirable, regardless of 
whether the error is due to the variance or due to 
inexact mathematical expectation. An optimal 
method should minimize the total error, and 
exactly this is done by Φ(x, X) both for discrete 
and continual applications. Physically, S has a 
smaller approximation error, because it takes 
into account additional information, contained in 
the order statistics F(X), whereas F* neglects this 
information. As a result, ecdf F* has order bias 
and an unnecessarily big approximation error. 

The optimal ecdf Φ(x, X), presented 
here, is based on the most popular optimality 
criterion in statistics, i.e. least squared deviation. 
Final decision about its superiority depends on 
the quality of statistical predictions produced by 
different ecdf versions. 
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