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Size-Biased Generalized Negative Binomial Distribution 
 

Khurshid Ahmad Mir 
Govt.Degree College Bemina, 

Srinagar (J&K) India. 
 

 
A size biased generalized negative binomial distribution (SBGNBD) is defined and a recurrence 
relationship for the moments of SBGNBD is established. The Bayes’ estimator for a parametric function 
of one parameter when two other parameters of a known size-biased generalized negative binomial 
distribution is derived. Prior information on one parameter is given by a beta distribution and the 
parameters in the prior distribution are assigned by computer using Monte Carlo and R-software. 
 
Key words: Generalized negative binomial distribution, size-biased generalized negative binomial distribution, 
zero-truncated generalized negative binomial distribution; size biased negative binomial distribution, goodness 
of fit, Bayes’ estimation. 
 
 

Introduction 
 
Jain and Consul (1971) first defined generalized 
negative binomial distribution (GNBD), and it 
was subsequently obtained by Consul and 
Shenton (1972, 1975) as a particular family of 
the Lagrangian distribution. The parameter 
space of the distribution was further modified by 
Consul and Gupta (1995). The probability 
function of the GNBD is given by 
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The probability model (1.1) reduces to the  
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binomial distribution when β = 0, and to the 
negative  binomial  distribution  when   β = 1. It 
also resembles the Poisson distribution at β=½ 
because, for this value of β, the mean and 
variance are approximately equal. Jain and 
Consul (1971) obtained the first four non-central 
moments by using a recurrence relation and 
Shoukri (1980) obtained a recurrence relation 
among the central moments. The model (1.1) has 
many important applications in various fields of 
study and is useful in queuing theory and 
branching processes. Famoye and Consul (1989) 
considered a stochastic model for the GNBD and 
gave some other interesting applications of this 
model. The moments about the origin of the 
model (1.1) are given as: 
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(1.5) 
and variance 
 

32 )1(

)1(m

αβ−
α−α=μ . 

(1.6) 
 

Jain and Consul (1971) discussed the 
method of moments of estimation, and Gupta 
(1972, 1975) and Hassan (1995) obtained 
maximum likelihood estimations. Jani (1977), 
Kumar and Consul (1980), and Consul and 
Famoye (1989) studied the minimum variance 
unbiased estimation of GNBD, while Islam and 
Consul (1986) examined its Bayesian method of 
estimation. Recently, Consul and Famoye (1980) 
and Famoye (1997) discussed these methods in 
brief with respect to the model (1.1). Estimation 
techniques in the case of GNBD are not simple, 
all involve computation and can become tedious 
and time intensive. 

The weighted distributions arise when 
observations generated from a stochastic process 
are not given an equal chance of being recorded, 
but instead are recorded according to some 
weight function. When the weight function 
depends on the lengths of the units of interest, 
the resulting distribution is called length biased. 
More generally, when the sampling mechanism 
selects units with probability proportional to 
some measure of the unit size, the resulting 
distribution is called size-biased. Such 
distributions arise, for example, in life length 
studies (see Blumenthal, 1967; Consul, 1989; 
Gupta 1975, 1976, 1979, 1984; Gupta & 
Tripathi, 1987, 1992; Schaeffer, 1972). 

Size-biased generalized negative 
binomial distribution (SBGNBD) taking the 
weights of the probabilities as the variate values, 
are defined in this study. The moments of size-
biased GNBD are also obtained. As far as 
estimation the parameters of a size-biased 
generalized negative binomial distribution 
(SBGNBD) is concerned, no method seems to 
have evolved to date, thus a Bayes’ estimator of 
size-biased generalized negative binomial 
distribution is presented. A computer program in 
R-software has been developed to ease 
computations while estimating the parameters 
for data. A goodness of fit test is employed to 
test the program’s improvement over the Bayes’ 
estimator of the zero truncated generalized 
negative binomial distribution (ZTGNBD) and 
of the size biased negative binomial distribution 
(SBNBD). 
 
The Truncated Generalized Negative Binomial 
Distribution 

Jain and Consul’s (1997) generalized 
negative binomial distribution (1.1) can be 
truncated at x = 0. The probability function of 
the zero-truncated GNBD is given by: 
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x =1, 2….. 
(2.1) 

 
where 0 < ߙ < 1, ݉ > |ߚߙ| ݀݊ܽ 0 ≤ 1. 

Bansal and Ganji (1997) obtained the 
Bayes’ estimator of zero-truncated generalized 
negative binomial distribution (2.1). Famoye and 
Consul (1993) defined a truncated GNBD using 
(1.1); they obtained an estimator of its 
parameters by using different estimation 
methods. 
 

Methodology 
 
A size-biased generalized negative binomial 
distribution (SBGNBD) - a particular case of the 
weighted generalized negative binomial - taking 
weights as the variate value is defined and 
moments of SBGNBD are obtained. 
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Using (1.1) and (1.2), results in the 
following: 
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represents a probability distribution. This gives 
the size-biased generalized negative binomial 
distribution (SBGNBD) as: 
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(3.1) 

 
Putting 1 and 0 =β=β , results in size-biased 
binomial (SBB) and size-biased negative 
binomial (SBNB) distributions. 
 
Moments of SBGNBD 

The rth moment, )s('
rμ , about origin of 

the size-biased GNBD (3.1) can be defined as: 
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where 1r+μ′  is the (r + 1)th moment about the 
origin of (1.1). The first three moments of (3.1) 

about the origin using relations from (1.2) to 
(1.5) in (3.2) can be obtained by: 
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which is the mean of (3.1). Similarly, for r = 2 in 
(3.2) using relation (1.4): 
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Using relation (1.5) for r = 3 in (3.2) results in: 
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The variance )s(2μ  of (3.1) using (3.3) and 
(3.4) is obtained by: 
 

)s(2μ [ ]1)2(
)1(

)1(

)1(

)1(m
43

−α−β
αβ−

α−α+
αβ−

α−α=  

(3.7) 
 
The higher moments of (3.1) about the origin 
can also be obtained similarly by using (3.2). 
 
Bayes’ Estimation in Size-biased Generalized 
Negative Binomial Distribution 

The likelihood function of SBGNBD 
(3.1) is: 
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( ) ( ) yymnnyn 11K −β+− α−ααβ−=  (4.1) 
 
where 
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Because 10 <α< , it is assumed that prior 
information about α came from the beta 
distribution. Thus,  
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Using Bayes’ Theorem, the posterior 
distribution of ߙ from (4.1) and (4.2) can be 
written as: 
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Under square error loss function the 

Bayes’estimator of parametric function zα  is 
the posterior mean given as 
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Using relations (4.5) and (4.6) in (3.4), the 

Bayes’ estimator of zα  becomes: 
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Similarly, the Bayes’ estimator of the parametric 

function ( )z1 α−  can also be obtained as: 
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Using the values from (4.9) and (4.6) in (4.8), 
the Bayes’ estimator of the parametric function 

( )z1 α−  can be obtained as 
 

( )
( ) ( )

[ ]
( ) ( )

[ ]

2

1

2

1

  y mn b-y z  y mn b-n

                                  F , , ,

     

                            F , , ,

1
z

a

n y a n y mn a b n z

y mn a b n z y mn b y

n y a n y mn a b n

β β

β β
β β

β β

α
Γ + + + Γ + + +

− + − + + + − +

Γ + + + − + Γ + + −

− + − + + + −

− =

 
(4.10) 

 
The Bayes’ estimator for some parametric 
functions ( )αφ  and for particular models of 
SBGNBD are shown in Tables 4.1 and 4.2. 
 

Conclusion 
 
A computer program in R-Software was 
developed to ease computations while estimating 
the parameters for data. The expected 
frequencies and Chi-square obtained are shown 
in tables 5.1, 5.2 and 5.3. Assuming that the 
parameter α is unknown and that it has a beta 
distribution with parameters a and b, the Bayes’ 
relative frequencies are estimated by using the 
estimator of (2.1) and (3.1). Since no other 
information is provided about the values of a 
and b, except that they are both positive and real, 
a range of values from 1 to 50 were considered 
for a and b, and the values of (2.1) and (3.1) 
were computed. Three sets of simulated values 
were obtained with the help of R-software: one 
each for the parameter combination (α=0.5, 
β=0.3, a=b=1), (α=0.6, β=0.5, a=b=2) and 
(α=0.6, β=0.7, a=b=3). We noted that the 
estimated Bayes’ frequencies were quite close to 
the simulated sample frequencies when a and b 
were equal and that the variation in the Bayes’ 
frequencies was very little as the equal values of 
a and b increased. The graph also reveals that 

the simulated frequencies and the estimated 
Bayes’ frequencies are very close to each other 
for almost all values of X. 
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Table 4.1: Bayes’ Estimators of SBGNBD
Parametric 
Function 
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Bayes’ Estimator of SBGNBD 
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Table 4.2: Bayes’ α̂  Estimators 

β  Distribution Bayes’ Estimator α̂  

1 SBNBD 
bamny

nay

+++
−+

 

0 SBBD 
nbamn

nay

−++
−+
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Table 5.1: Number of mothers (fx) in Sri Lanka having at least one neonatal death according to 
number of neonatal deaths (x) Meegama (1980) (a=b=2, m=5, β=0.3) 

x fx 

Expected Frequency 

BSBNBD BZTGNBD BSBGNBD 

1 
2 
3 
4 
5 

567 
135 
28 
11 
5 

545.25 
154.67 
27.31 
16.61 
2.16 

549.22 
153.03 
29.65 
12.69 
1.41 

547.45 
150.47 
29.41 
15.65 
3.02 

Total 746 746 746 746 

Estimates α̂   0.48 0.49 0.51 
2χ   3.7953 3.0477 2.738 

Table 5.2: Number of workers (fx) having at least one accident according to number of accidents 
(x) (a=b=2, m=7, β=0.5) 

x fx 

Expected Frequency 

BSBNBD ZTGNBD BSBGNBD 

1 
2 
3 
4 
5 

2039 
312 
35 
3 
1 

2033.32 
325.33 
29.28 
1.95 
0.12 

2031.45 
322.78 
32.98 
2.56 
0.23 

2033.45 
320.15 
33.26 
2.89 
0.25 

Total 2,390 2,390 2,390 2,390 

Estimates α̂   0.465 0.493 0.503 
2χ   2.428 0.68 0.4077 

Table 5.3: Number of households (fx) having at least one migrant according to number of migrants 
(x) Singh and Yadav (1980) (a=b=2, m=9, β=0.7) 

x fx 
Expected Frequency 

BSBNBD BZTGNBD BSBGNBD 
1 
2 
3 
4 
5 
6 
7 
8 

375 
143 
49 
17 
2 
2 
1 
1 

370.87 
156.29 
48.42 
11.44 
2.40 
0.47 
0.09 
0.02 

368.37 
155.79 
49.12 
13.24 
3.01 
0.33 
0.11 
0.03 

371.81 
151.49 
50.21 
12.51 
2.89 
0.73 
0.30 
0.06 

Total 590 590 590 590 

Estimates α̂   0.475 0.489 0.493 
2χ   6.9458 4.06227 3.16908 
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Graph 3: Sample Relative Frequency and Bayes’ Relative 
Frequency for a=b=2, m=9, β=0.7 
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Graph 1: Sample Relative Frequency and Bayes’ Relative 
Frequency for a=b=2, m=5, β=0.3
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Graph 2: Sample Relative Frequency and Bayes’ Relative 
Frequency for a=b=2, m=7, β=0.5
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