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Two Dimension Marginal Distributions of Crossing Time and Renewal Numbers 
Related to Two-Stage Erlang Processes 
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               Jamshoro, Pakistan 

 
 
The two dimensional marginal transform, probability density and cumulative probability distribution 
functions for the random variables 

N
Tξ  (time taken by servers during vacations), Nξ (number of vacations 

taken by servers) and Nη  (number of customers or units arriving in the system) are derived by taking 

combinations of these random variables. One random variable is controlled at one time to determine the 
effect of the other two random variables simultaneously. 
 
Key Words: Two dimensional marginal distribution, Erlang processes, Markov processes, renewal 
processes. 
 
 

Introduction 
 
Biggins and Cannings (1987) found that a 
Markov renewal process ( ){ }0:, ≥nTX nn  

might have two constituents, and that 
{ }0: ≥nX n  is a homogenous Markov chain 

where ( )nn TT −+1  is the sojourn time in

( )00 =TX n . Thus, nX  could be the state 

entered at nT  and left at 1+nT , assuming that 

{ }0: ≥nX n  and { }01 ≥−+ nn TT  are 

independent, and the distribution of ( )nn TT −+1  

is dependent on { }0: ≥nX n  through nX  and 

1+nX  only (otherwise not dependent on n). It is 

assumed that sojourn time is always strictly 
positive. When the initial state is i, which is X0 = 
i, the   return to state i is an ordinary   renewal  
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process, and the visit to ij ≠  forms a delayed 
renewal process (the delay being the elapsed 
time until the first visit to j). Thus, Cinlar (1969) 
proved the theory of Markov renewal processes 
which generalizes those of renewal processes 
and the Markov chain and is a blend of the two. 
Biggins and Cannings (1987) applied the 
Markov Chain { }0: ≥nX n  to a finite state 

space assuming it to be the case in what 
followed, so that all introduced matrices are 
finite. In addition, the time Tn is integer-valued 
for transforms used for generating functions 
(with argument z) and Laplace transforms. They 
showed that the Markov renewal process theory 
provided a useful framework for the Markov 
chain model with wider applicability to the 
occurrence of sequences in the Markov chains, 
specifically on type one counters. Results are 
applied to problems regarding the reliability of 
the consecutive k-out-of-n:F system (Koutras & 
Papastavirdis, 1993; Godbole, 1993; Fu & 
Koutras,1994). The geometric distribution of 
order k was one of the simplest waiting time 
distributions. Several waiting time problems 
have been studied in more general situations 
(Ebneshahrshoob & Sobel, 1990; Kreos, 1992; 
Aki, 1992; Aki & Hirano, 1989, 1993, 1999; 
Mohanty, 1994). A class of waiting time 
problems was proposed by Ebneshahrshoob and 
Sobel (1990), who obtained the probability 
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generating functions (PGF) of waiting time 
distributions for a run of 0 of length r and a run 
of 1 of length k. Ling (1990) studied the 
distribution of waiting time for first time 
occurrence among E’s when X’s are 
independently and identically distributed (IID) 
and finite valued random variables, and all k’s 
had the same value. Aki and Hirano (1993) 
obtained the PGF’s of the distributions of the 
sooner or later waiting time for the same event 
as Ebneshahrshoob and Sobel. Talpur and Shi 
(1994) found the two dimension marginal 
distributions of crossing time and renewal 
numbers related with two Poisson processes 
using probability arguments, and constructing an 
absorbing Markov process. In this article, the 
same technique is extended for the case of the 
two stage Erlang process. 
 

Methodology 
 
An extensive literature review has shown that 
renewal processes are widely used in reliability 
theory and in models of queuing theory. Both 
theories are based on counting processes, and 
situations where the differences between two or 
more counting processes examined are common. 
Stochastic processes can be helpful in analyzing 
such situations. Kroese (1992) showed the 
difference process of the two counting processes 
as 
 

D(t) = N1(t) - N2(t), 
 
where N1(t) and N2(t) are two counting processes 
associated with the corresponding renewal  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sequences of {Xi } and {Yj}. The problem 
considered here is extended from the work of 
Kroese (1992) and Talpur & Shi (1994) and is 
based upon the renewal sequence of two 
variables {Xi} and {Yj} as shown in Figure 1. 
Let 

Nξ  = { }Nnn
STn ≥

∞→
/min , 

where Nξ  is a random variable and N is a 

constant. 
 

S0 = 0, SN = X1 + X2 +…+ Xn 
 

T0 = 0, Tn = Y1 + Y2 +…+ Yn 
 


=

=
N

N
j

jYT
ξ

ξ
1

, 

 
X represents the inter arrival, and Y is the 
number of vacations performed by the server. 
Both variables are discrete and have renewal 
processes at each occurrence. The level of 
absorption is achieved at the nth arrival of Xn; 
after the nth arrival, the nth vacation Yn of the 
server occurs. The difference between the times 
at which the nth vacation occurred and the nth 
customer arrived is the crossing time of the 
server. The probability generating function, 
probability density function, and cumulative 
probability distribution function for the two 
dimensional marginal distribution for the three 
random variables 

N
Tξ  (time taken by servers 

during vacations), Nξ (number of vacations 

taken by servers), and Nη  (number of customers 

or units arriving in the system) are thus obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 

X1 X2 

Y1 Y2 

X3

Y3 Yn-1 Yn 

XnXn-1 Xn+1
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                         Assumptions 
 

Let N be a constant and Xi and Yj be two 
sequences of random variables. Assume that Xi 
(i = 1, 2, 3,…) is independently and identically 
distributed (IID) with a finite mean, λ-1, and that 
Yj (j = 1,2,3,…) is IID with a finite mean μ-1. 
Assume also that ( )tN1  is the Erlang process 
associated with Xi, in which the distribution of Xi 
is the 2-stage Erlang distribution, and N2(t) is the 
Erlang process associated with Yj, in which the 
distribution of Yj is the 2-stage Erlang 
distribution. In addition, assume that Xi and Yj 
are mutually independent. 
 
Absorbing Markov process and absorbing time           
distribution 

Consider a Markov process {X(t), t ≥ 0} 
on the state space E = (0,1,2,…). If E0 and E1 are 
two non-null subsets of E and they satisfy the 
cases 

E0 ∪ E1 = E 
and 

E0 ∩ E1 = ∅, 
 
then, E0 and E1 are called a partition of E. If E0 is 
the absorbing state set and E1 is the transient 
state set, and αE is the initial condition, the 
absorbing Markov process (AMP) is constructed 
to analyze the problem. Consider the AMP 
{N1(t), N2 (t), I(t), J(t)}, in which N1(t) and N2(t) 
are the counting processes associated with Xi  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and Yj respectively. I(t) and J(t) represent the 
phases of Xi and Yj at time t respectively, and its 
state space is 
 

( ){ ( )jiljkiE ′′= ,,,,, / ,...;1,0, =ji ;2,1, =lk
,...;1, ′+′′=′ NNi },...;2,1 ′′=′j  

 
where ( )ji ′′,  are absorbing states. The 
transition of states is illustrated in Figure 2. Let 
 

( ) ( ) ( ) ( ) ( )1 2, , { , , , }ijP k l t p N t i N t j I t k J t l= = = = =
 
and 
 

 

 
 
From the transition rate diagram, the systems 
differential equations are as follows 
 

( )ijP t′ =  

( )
0 0ijp t
λ λ μ μ

λ μ
− −

− +
     
      

     
 

( ) ( ) ( )1 , 1

0 0 0
1 0

0i j ijp t p t
λ μ− −+ +

   
   
   

 
where ,...;2,1,0,;1,...1,0 =−= jNi .         (2.1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )ijP t =

( ) ( ) ( ) ( )1,1, ,... 1, , ,... ,1, ,... , , .ij ij ij ijp t p n t p m t p m n t  

Figure 2: Transition Rate Diagram 
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and 

( )ijP t′ = ( )
0 0

ijp t
λ λ μ μ

λ μ
− −

− +
     
     

     
 

+ ( )1

0 0

0i jp t
λ−

 
 
 

, 

 
where , 1,...; , 0,1,...i N N j= + =             (2.2) 
 
Using these differential equations, Talpur and 
Iffat (2007) obtained the joint distribution for 
three random variables. The two dimension 
marginal distributions for the same problem 
were also obtained in this study. 
 
Two dimensional marginal probability 
distribution function for NN

T ξξ ,  

The number of arriving customers is 
fixed in order to observe the effect of time taken 
by server vacations and the number of vacations 
taken. The two dimensional marginal probability 
generating function (probability transform 
function), two dimensional marginal probability 
density function, and the two dimensional 
marginal cumulative probability distribution 
function for random variables NN

T ξξ ,  are 

computed under the following theorems. 
 
Theorem 3.1 

The two dimensional marginal 
probability generating function of the two 
random variables NN

T ξξ ,  is given by: 

 

( )usf ,∗ = 

( )01u
N

su
s





























++−

+−++ −

0

00)(
1

λμλμ
μλμλ

 

1
)(

−









++−

+−++
μλλ

μλμλ
s

s








μ
μ

. 

 
Proof 3.1 

The two dimensional marginal 
probability generating function of two random 
variables NN

T ξξ ,  is calculated from the joint 

probability generating function of three random 
variables NN

T ξξ ,  and Nη  (Talpur & Iffat, 

2007): 
 

( ), ,f s u z∗ = 

( )1 0u
1

( ) 0 0

0

N
s

u s z
λ μ λ μ

μ λ μ λ

−+ + − +

− + +

     
    
     

 

1
( )s

z s
λ μ λ μ
λ λ μ

−+ + − +

− + +
 
 
 

μ
μ
 
 
 

 

 
If z is close to 1, then the two dimensional 

marginal probability generating function is: 

 

( ),f s u∗ = 

( )1 0u
1

( ) 0 0

0

N
s

u s
λ μ λ μ

μ λ μ λ

−+ + − +

− + +

     
    
     

 

1
( )s

s
λ μ λ μ
λ λ μ

−+ + − +

− + +
 
 
 

μ
μ
 
 
 

. 

(3.1) 

 
Theorem 3.2 

The two dimensional marginal 
probability density function of two random 
variables NN

T ξξ ,  is given by: 

 

{ },
N Np T t jξ ξ≤ = =

2

1i N

N j
j

∞

=

+ −

−
 
 
 

  

( ) ( )

( ) ( )

2 2 2
1 ( )

2 2 1
( )

2 2 2 !

2 2 1 !

j i
j ii j t

j i
j ii j t

t
e

j i
dt

t
e

j i

λ μ

λ μ

λ μ λ μ

λ μ λ μ

+ −
+ − − +

+ −
+ − +

+
+ −

+ +
+ −

 
 
 
 
 
 

 

 
Proof 3.2 

As used by Talpur and Shi (1994), the 
following equation can be obtained by definition 
of the z and L transform 
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( ),f s u∗ = 

{ }
1 0

exp( ) ,
N

j
N

j

st dp T t j uξ ξ
∞∞

=

− ≤ =   

 
Inserting the value from equation (3.1) results 
in: 
 

( ),f s u∗ = 

( )1 0u
1

( ) 0 0

0

N
s

u s
λ μ λ μ

μ λ μ λ

−+ + − +

− + +

     
    
     

 

 
1

( )s
s

λ μ λ μ
λ λ μ

−+ + − +

− + +
 
 
 

μ
μ
 
 
 

 

 
Let μλ ++= sa  and applying the rule of 
power series as in Pipes and Harwil (1970) 
results in: 
 

( ),f s u∗  =  

1

0

Nk k

k

u u
a a a a

λ λ μ μ+∞

=

+    
    

    
  

{ }
0

1
l l

l a a a
λ μ λ λ μμ

∞

=

+ +
+   

   
   

  

 
Applying the negative binomial distribution and 
simplifying the series (Hogg & Craig, 2006), 
and setting 1+= kj  and lNi += , results in: 
 

( ),f s u∗ = 

1

1

1

1

1

j i

j i N

j i j i
k

N j u
j s s

u
s s

λ
λ μ λ μ

λ μ λ μ
λ μ λ μ

∞ ∞

= =

+ − +

+

+ −

− + + + +

+ +
+

+ + + +

    
    
    

     
    
     


 

 
After comparing the coefficient of ju  and 
taking the inverse of the Laplace transform, the 
two dimensional probability density function for 
the two random variables time taken by vacation 
of servers with respect to number of vacations is 
obtained as follows: 

 
 

{ },
N Np T t jξ ξ≤ = = 

2

1i N

N j
j

∞

=

+ −

−
 
 
 

 i jλ μ

( ) ( )

( ) ( )

2 2 2
1

( )

2 2 1

2 2 2 !

2 2 1 !

j i
j i

t

j i
j i

t
j i

e
t
j i

λ μ

λ μ

λ μ

+ −
+ −

− +

+ −
+

+
+ −

+ +
+ −

 
 
 
 
 
 

 

(3.2) 
 
Theorem 3.3 

The two dimensional marginal 
cumulative probability distribution function of 
two random variables NN

T ξξ ,  is given by: 

 

{ },
N Np T t jξ ξ≤ = =  

2

1

i j

i N

N j
j

λ μ
λ μ λ μ

∞

=

+ −

− + +
    

    
    


 

( )[ ] ( )[ ] ( )
2 2 1 2 2

0 1! !

r ri j i j
t

r r

t t
e

r r
λ μλ μ λ μ+ − +

− +

= =

+ +
+

 
 
  
   

 
Proof 3.3 

The two dimensional marginal 
cumulative probability distribution function 

NN
T ξξ , , is obtained by integrating the 

probability density function (Medhi, 1982). 
 

{ },
N Np T t jξ ξ≤ =  

= { }
0

,
N Ndp T t j dtξ ξ

∞

≤ =  

=
0

∞


2

1i N

N j
j

∞

=

+ −

−
 
 
 

 i jλ μ  

( ) ( )

( ) ( )

2 2 2
1

( )

2 2 1

2 2 2 !

2 2 1 !

j i
j i

t

j i
j i

t
j i

e
t
j i

λ μ

λ μ

λ μ

+ −
+ −

− +

+ −
+

+
+ −

+ +
+ −

 
 
 
 
 
 

dt 
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Integration by parts is applied to obtain the 
cumulative probability distribution function for 
the length of vacations taken by servers with the 
number of vacations taken by servers: 
 

{ },
N Np T t jξ ξ≤ =  = ( , )F t u  

=
2

1

i j

i N

N j

j

λ μ
λ μ λ μ

∞

=

+ −

− + +
    

        
  

( )[ ] ( )[ ] ( )
2 2 1 2 2

0 1! !

r ri j i j
t

r r

t t
e

r r
λ μλ μ λ μ+ − +

− +

= =

+ +
+

 
 
 
   

(3.3) 
 
Two dimensional marginal probability 
distribution functions for NN

T ηξ ,  

The effect of the number of vacations 
taken by servers combined with the numbers of 
customers arriving is studied by controlling the 
number of vacations taken by the servers. The 
two dimensional marginal probability transform 
function (probability generating function), two 
dimensional probability density function, and 
two dimensional marginal cumulative 
probability distribution function are obtained. 
The time taken by number of vacations by 
servers with the number of arriving units are 
represented by random variables NN

T ηξ , . 

 
Theorem 4.1 

The two dimensional marginal 
probability generating function (probability 
transform function) for random variables 

NN
T ηξ ,  is: 
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Proof 4.1 

The two dimension marginal probability 
generating function for the two random 
variables, NN

T ηξ , , is calculated from the joint 

probability generating function (joint probability 
transform function) for the three random 
variables NN

T ξξ ,  and Nη  as given by Talpur 

and Iffat (2007): 
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Let u be close to 1- for controlling the effect of 
the random variable Nξ . Then we get the two 

dimensional marginal probability generating 
function of the two random variables NN

T ηξ ,  as 
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(4.1) 
 
Theorem 4.2 

The two dimensional marginal 
probability density function for random 
variables ,

N NTξ η  is: 
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Proof 4.2 

The following equation as given by 
Talpur and Shi (1994) can be expressed by the 
definition of z and L transform as: 
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Let a= μλ ++s , the following results after 
algebraic manipulation: 
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After substituting the value of a, comparing the 
coefficient of zi, and taking the inverse of the 
Laplace transform, the two dimensional 
marginal probability density function for the 
variables time taken by servers vacations with 
respect to the number of customers arriving, 

NN
T ηξ , , is established by: 
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(4.2) 
 
Theorem 4.3 

The two dimensional marginal 
probability distribution function of random 
variables NN

T ηξ ,  is:  
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Proof 4.3 

The two dimensional cumulative 
probability distribution function for two random 
variables, NN

T ηξ , , is obtained by integrating the 

two dimension marginal probability density 
function for the same random variables. 
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After algebraic manipulation and applying the 
integration by parts the proof is obvious. 
 
Two dimensional marginal distribution functions 
for NN ηξ ,  

The effect of the number of vacations 
taken by servers on the number of customer 
arrivals was studied by controlling the time 
taken with the number of vacations made by 
servers. The two dimensional marginal 
probability transform function (probability 
generating function), two dimensional 
probability density function and two 
dimensional marginal cumulative probability 
distribution function for the number of server 
vacations with number of arriving customers, as 
represented by random variables NN ηξ , , are 

now calculated. 
 
Theorem 5.1 

The two dimensional marginal 
probability generating function (probability 
transform function) for the two random variables 

NN ηξ ,  is: 
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The two dimensional probability density 

function for random variables NN ηξ ,  is: 
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The two dimensional marginal 

cumulative probability distribution function for 
the random variables NN ηξ ,  is: 
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Proof 5.1 

The two dimensional marginal 
probability generating function (probability 
transform function) for the two random variables 

NN ηξ ,  is obtained from the joint probability 

transform function of the three random variables 
as: 
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Let s be close to 0+ to control the effect of time 
by the number of vacations taken by the number 
of servers. The two dimensional marginal 
probability generating function for random 
variables NN ηξ ,  is obtained using: 
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(5.1a) 
 
The definition of the z transform is expressed by 
the following equation (Talpur & Shi, 1994): 
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Using the same process as in theorem 2.2 results 
in: 
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and comparing the coefficients u and z, the 
following proof is obtained: 
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(5.1b) 
 

Two dimensional marginal cumulative 
probability distribution functions for two 
random variables, Nξ  and Nη , was obtained by 

summing their density function and the number 
of vacations made by servers with the number of 
arriving units. 
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Results 
 
As shown in Table 1, the two dimensional 
marginal probability distributions of random 
variables involving the crossing time spent for 
the number of vacations taken by servers (

N
Tξ ) 

followed by the number of vacations by the 
service channels ( Nξ ) shows a two stage Erlang 

distribution for the probability density function 
for achieving the absorption state. The 
cumulative probability distribution function is 
found to be a Gamma distribution. 

The two dimensional marginal 
probability distribution for random variables 
involving the crossing time spent for the number 
of vacations taken by servers (

N
Tξ ) with a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reasonable number of arriving customers ( Nη ) 

for achieving the absorption state is shown in 
Table 2. The two variables show a two stage 
Erlang distribution for the probability density 
function. The Gamma distribution is satisfied for 
the cumulative probability distribution function. 

The probability density function for two 
random variables is expressed as a negative 
binomial distribution. The cumulative 
probability distribution function also satisfied 
the negative binomial distribution. As Medhi 
(1982) expressed, if the parameter λ  (intensity 
function) of a Poisson process is a random 
variable with Gamma distribution, then the 
mixed Poisson distribution is Negative binomial. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Two Dimensional marginal probability distributions 
of random variables NN
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Table 2: Two Dimensional marginal probability distributions 
of random variables NN

T ηξ ,  

Transform function 
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Table 3: Two dimensional marginal probability distribution 
functions of random variables NN ηξ ,  
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