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Statistical Software Applications & Review 
Robust General Linear Models and Graphics via a User Interface (Web RGLM) 

 
        Kimberly Crimin       Asheber Abebe   Joseph W. McKean   

                     Wyeth Research                    Auburn University             Western Michigan University 
 

 
Rank-based procedures provide superior estimation and testing techniques when the data deviate from 
normality or contain gross outliers. However, these robust techniques are rarely incorporated in a 
nonparametric statistics or methods courses due to the lack of computational tools. One reason for this is 
the existence of certain unavoidable complexities in the numerical methods due to the absence of a closed-
form solution for the rank estimation problem. This article introduces a user interface, Web RGLM, which 
may be used to perform rank-based analyses of linear models across the World Wide Web. These models 
include simple location problems to complicated ANOVA and ANCOVA designs with multiple 
comparison procedures. The robust and least squares analyses are presented side-by-side for immediate 
comparisons. Web RGLM meets many of the computational demands of the classroom as well as the 
computational demands of quantitative researchers. Several illustrative examples are provided.  
 
Key words: R-estimation, RGLM, rank-based procedures, least squares, analysis of covariance 
 
 

Introduction 
 

Recent work on rank-based procedures for linear 
models has brought together a unified analysis 
of linear models analogous to the traditional 
analysis based on least squares. The rank-based 
analysis includes estimation, confidence 
procedures, testing of general linear hypotheses, 
and diagnostic methods. These rank-based 
analyses generalize the classical nonparametric 
rank procedures for one and two sample location  
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problems and they inherit the robustness and 
high efficiency of these simple methods. The 
recent article by McKean (2004) reviews this 
analysis while the monograph by 
Hettmansperger and McKean (1998) presents a 
thorough discussion of these rank-based 
analyses. Chapter 9 of the second edition of 
Hollander and Wolfe (1999) also offers a recent 
discussion of these methods. In Section 4, we 
give a quick overview of the rank-based 
analyses that are on our web page. 

Traditional least squares analyses are 
based on estimation by minimizing the 
Euclidean (squared) norm, while the rank-based 
procedures are based on the minimization of a 
different norm. The minimization of this norm is 
a benign numerical problem which can be 
handled by existing numerical methods. 
However, to be of practical use these procedures 
must be easily computed. In this article we 
present an easy-to-use web version of these 
rank-based procedures. It allows the user to 
‘point-and-click’ to perform these analyses for 
simple location problems through complex 
experimental designs. The output offers 
numerical results and diagnostic plots, produced 
by the R language; see Ihaka and Gentleman 
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(1996). Another advantage of the output is that it 
offers side-by-side comparisons of the robust 
and least squares (LS) analyses. If the analyses 
disagree then the user may choose to explore the 
data to determine reasons for this disagreement. 
This side-by-side comparison also serves as a 
very useful teaching tool. For instance, the 
student can immediately see the impact that 
perturbations of the data have on the LS and 
robust analyses.  

Our web-based version of these analyses 
is discussed. Several examples are provided. It is 
found http://fisher.stat.wmich.edu/slab/RGLM/. 
 
Web-Based RGLM 

RGLM, (Robust General Linear Model), 
is the name of the FORTRAN program that 
performs the robust general linear model 
estimation and hypotheses testing described in 
Section 5. It was developed by Kapenga, 
McKean, and Vidmar (1988), and follows 
algorithms listed below. For the linear 
model eXβY += , the package RGLM returns 
a robust fit of this model. To make this program 
accessible to researchers, scientists and students, 
a web interface to RGLM was created. All the 
analyses discussed in this article were obtained 
using the Web based RGLM, which is available 
at http://fisher.stat.wmich.edu/slab/RGLM/. 

The web interface to RGLM is module 
driven. Each module represents a different linear 
model that can be run using Web RGLM. Figure 
1 is a screen capture of the home page for 
RGLM.  

Note that many of the usual designs are 
given as options, from simple location models to 
complicated crossed factorial designs. When a 
user clicks on the name of the desired linear 
model (see Figure 1), a form is returned which 
allows the user to input the data and further 
customize the desired analysis. Some of the 
analysis options are: residuals and studentized 
residual plots, data plots appropriate for the 
model, contrasts along with type of interval, and 
type of scores used to estimate cell location 
(either Wilcoxon or signed-rank Wilcoxon). 
Each data input page describes the format of the 
input data set and contains an example data set. 
Data may be directly typed into the data entry 

window or entered as a file that resides on the 
user’s machine. 

The freeware R (Ihaka & Gentleman, 
1996) is used to produce the residual and data 
plots. Clicking the “Submit Data” button will 
result in a run of the desired analysis with the 
selected options. Clicking the “Clear Form” 
button will result in a default form and an empty 
data window. 

For each module, both the traditional 
and rank-based analyses are provided. This 
summary has served as a useful teaching tool in 
applied nonparametric courses and methodology 
courses, in general. For a given data set, students 
can easily see if there is a difference in the 
analyses. In the case where the analyses differ, 
students can then try to determine why they 
differ by using residual plots and exploring the 
data to see if the discrepancy is caused by 
outliers or decidedly non-normal data, etc. It 
forces them to decide which analysis, if any, to 
use. Further, students can easily see how 
sensitive the robust and traditional analyses are 
by changing data points. For example, consider a 
one-sample problem. By repeatedly changing a 
data point, in a few seconds the student can have 
the data base to do comparison sensitivity plots 
of the Hodges-Lehmann estimator and the 
sample average. 

The Web version of RGLM will run on 
any browser that is compatible with forms and, 
if the user selected residual or data plots, with 
graphics. All of the computations are done on 
the side of the server, reducing the hardware and 
software requirements of the user and ensuring 
uniformity of the output. 
 
Behind the Scenes 

 The Web version of RGLM is a 
collection of CGI scripts, written in Perl (see 
Srinivasan (1997)), UNIX shell and FORTRAN 
programs. The statistical software R is used to 
obtain the user selected plots. The home page for 
Web RGLM and the input page for each linear 
model exist as separate HTML documents. The 
HTML page displaying the output is created by  
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the CGI script once RGLM has executed. This 
section provides a brief overview of the behind 
the scenes workings of Web RGLM. 

RGLM is the main FORTRAN program 
that performs the robust analysis. RGLM  

requires three input files of a specific format. 
One file contains options for the rank-based 
analysis, another file contains the X|Y 
augmented matrix, where X is the design matrix 
and Y is the data matrix, and the third file 
contains the hypotheses matrices. To shorten the 
learning curve for the user and to make Web  

 

 

 

RGLM ’point-and-click’, a FORTRAN program 
creates the three RGLM input files from the 
information provided by the user in the data 
input page. 

The use of a FORTRAN program to 
create the input files also provides some security 
for the server, since the form only sends data  

and options to the CGI program and not 
commands. Within the CGI program, the data is 
checked to make sure it only contains digits. If 
characters other than digits are found, then an 
error page is returned to the user indicating an  

 

Figure 1:  RGLM Home Page 
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Figure 2:  Covariate vs. Final Distance by Treatment. The solid line is the robust fit, while the dashed 

line is the LS fit. Plots are for: Control, Upper Left Panel; Treatment 1, Upper Right Panel; 
Treatment 2, Lower Left Panel; and Treatment 3, Lower Right Panel. 

 
Figure 3:  Residual Plots 
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error in the data input file. The FORTRAN 
program that creates the RGLM input files is the 
only program that is run with a system call that 
uses input provided by the user. All other system 
calls are executed on data files created by this 
FORTRAN program. This strategy limits the 
number of doors left open to the server. 

The RGLM program allows the user to 
specify the name of the input file containing the  

augmented X|Y matrix and the hypothesis 
matrix, but does not allow the user to specify the 
names of the output files. To allow multiple 
users to run Web RGLM at the same time 
without clobbering each other, each user is 
assigned a user ID. The user ID maps to a 
temporary directory and all files created for that 
run are stored in the temporary directory. After 
the HTML page containing the output is 
returned, all files in the temporary directory are 
removed along with the temporary directory. If a 
user runs multiple analyses in the same web 
session, a temporary directory is created and 
removed on each run. An earlier version of Web 
RGLM stored the user ID as a cookie. In this 
previous version, the temporary directories were 
removed after a prescribed length of time. This 
caused unwanted complications when a web 
session exceeded the allowable time. 

When a user selects data plots or 
residuals plots, the CGI program writes the R 
code to create the plots to a file. Then R is run in 
batch mode, producing a postscript file 
containing the plots. To display the plots in an 
HTML page, the postscript file is converted to a 
gif file using Netpbm graphics utilities available 
at sourceforge.net/projects/netpbm. 
 
Examples 

 Using the Web version of RGLM we 
offer three illustrative examples of the rank-
based analysis, comparing it with the traditional 
Least Squares analysis in each case. We use the 
default Wilcoxon scores. These scores are based 
on a linear score function (see Section 5.2) and 
for the one and two-sample location problems 
these scores result in the usual Mann-Whitney-
Wilcoxon analyses. They require no tuning 
constants. Other scores can be used, as briefly 
cited in Section 4. 
 

Analysis of Covariance: Snake Data Set 

 The dataset used for this example was 
discussed in Afifi and Azen (1972). The purpose 
of the experiment was to compare methods of 
reducing human’s fear of snakes. There are three 
methods intended to reduce ones fear of snakes 
and one control, or placebo. Forty subjects were 
randomly assigned to the four treatments. To 
measure ones fear of snakes, a behavior 
approach test was used to determine how close 
one could walk towards a snake without feeling 
uncomfortable. The behavior approach test was 
given to each subject before and after treatment. 
The score on the before treatment test was taken 
as a covariate. 

To obtain the rank-based analysis of this 
data set using Web RGLM proceed as follows: 
from the home page, click on “Oneway” under 
Analysis of Covariance Models (see Figure 1) 
and drop the data and covariate into the data 
boxes. For this analysis, we included covariate 
by treatment interaction in the model and used 
cell medians as the estimates of location.  

There are several options for plots 
available to the user. For the analysis below, we 
requested covariate versus response by 
treatment, residuals versus fitted values and a 
normal q-q plot of the residuals. These plots are 
shown in Figure 2 and Figure 3, respectively. 
The residual plot indicates that the data are 
heteroscedastic which can be eliminated by the 
square root transformation applied to the 
response variable. 

Figure 4 contains the analysis part of the 
output from Web RGLM. It is clear from the 
plots of the response, final distance, by 
treatment, Figure 2, that the treatment slope 
parameters are not the same. The comparison 
analyses show that the robust F-test for 
parallelism detects this difference with a p value 
of 0.01, but that the LS F-test with p value is 
0.09 fails to detect this difference at the 5% 
level. Based on the q-q plot of residuals, Figure 
3, the underlying error structure appears to be 
heavy tailed, so the difference in the analyses is 
not surprising. 
 
One-Way Analysis: Creatine Data Set 

 For our second example we have chosen 
a data set from a pharmaceutical study. The data  
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set contains the results of an experiment that was 
run on mice to determine the effects of different 
doses of an experimental compound on the 
amount of creatine cleared from the body. The 
mice were randomly divided into six groups. 
The first group formed the control which had a 
dose level of 0 of the compound. The other five 
groups each had a different dose of the 
compound. The data have been corrected for the 
body weights of the mice. Thus the appropriate 
design is a one-way design. Besides the test of 
an overall effect, it was of interest to compare 
the five groups to the control. On the RGLM 
page, “Oneway” was selected. 

 

 

 
 
One of the plots we checked on the form 

was the comparison boxplots of the levels which 
is shown in Figure 5. Besides the apparent 
outliers, this plot indicates that all the treatment 
levels may be significantly different from the 
placebo. 

For the contrast query on the RGLM 
one-way page, we checked versus control and 
entered the level (1) for the control. We selected 
the Tukey-Kramer multiple comparison  
procedure, (MCP). As shown in Figure 6, the 
Wilcoxon ANOVA detects these differences, the 
F-statistic has the value 7.24 with p-value 
0.00001. In contrast, note that the LS F-statistic 
has p-value 0.056. The outliers impaired its  

 
Figure 4:  Screen Capture of Rank-Based Analysis of Snake Data 
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power. The table in Figure 6 summarizes the 
MCP study. For the Wilcoxon analysis, the 
Tukey-Kramer procedure declares that all five 
levels differ significantly from the control while  

 
 
 

 
the LS version of the Tukey-Kramer procedure 
only declares that the third level differs 
significantly from the control. 
 

 
Figure 5:  Comparison Boxplots of the observations by level and q-q plot of Wilcoxon Studentized 

Residuals for Creatine Data 
 

 
Figure 6:  Wilcoxon and Least Squares ANOVAs for Creatine Data 

 



CRIMIN, ABEBE, & MCKEAN 
 

325 
 

Multiple Regression: Snow Geese Data Set 
In this example, we consider the snow 

geese data set discussed on page 441 of 
Hollander and Wolfe (1999). It is a multiple 
regression problem with four predictors. The  
response is the time, minutes before (-) or after 
(+) sunrise, that lesser snow geese leave their  
overnight roost sites to fly to their feeding areas. 

The predictors are: 1x , the air temperature in 

Celsius; 2x , relative humidity; 3x , light 

intensity; and 4x , percent cloud cover. Data 
were collected for n=36 days. We assume the 
linear model,  
 

0 1 1 2 2 3 3 4 4 ,i i i i i iY x x x x eβ β β β β= + + + + +  

                            1, 2,...,36i = .                  (1) 

 
Besides estimating the regression coefficients, 
the following two hypotheses are of interest:  
 
             0: 432101 ==== ββββH          (2) 

 
             0: 2102 == ββH                           (3) 

 
Hollander and Wolfe used the rregr command of 
Minitab to perform this analysis. We show how 
it is easily performed by the RGLM web page. 

On the web page (Figure 1), click on 
“Multiple Regression”. Next, drop in the data in 
the form Y  X  into the data box. The user has a 
choice on the estimate of the intercept, either the 
median of the residuals or the Hodges-Lehmann 
estimate of location based on the residuals. The 
hypothesis 01H  is the usual regression 

hypothesis that all regression coefficients are 
zero, except for the intercept. Web RGLM 
always obtains the robust and LS tests for this 
hypothesis. For the second hypothesis, 02H , the 

reduced model is iiii exxY +++= 44330 βββ . 

To obtain the test of 02H , indicate that this 

reduced model is to be fit by entering 3 and 4 
into the box labeled “Enter column ids, 1 to p, to 
include in the reduced model.” 

Figure 7 shows the output. The full 
model estimates are given in the first table. The 
robust and LS fits are similar, except for the 

estimate of 1β  in which the fits differ by about a 
half of a standard error. This may have been 
caused by the one outlier in the data set as seen 
in the residual and q-q plots of the robust fit as 
shown in Figure 8. The tests that all regression 
coefficients are 0, 01H , are given in the third 

table, while the tests of 02H  are given in the last 

table. This later hypothesis concerns 

dropping 1β . As with the estimate of 1β , the 
robust F test is more significant than the LS F 
test. 
 

Conclusion 
 
The statistical computation tool introduced in 
this article uses state-of-the-art web interfacing 
to provide users access to robust nonparametric 
methods. In addition to the traditional ASCII 
text output provided by RGLM, Web RGLM 
provides graphics for visual assessment of the 
data and model diagnostics. Graphics associated 
with rank-based procedures have customarily 
been produced using other statistical software 
after the output from RGLM is manually edited. 
With the web interface available, this 
cumbersome activity is now unnecessary. 
Moreover, the user is not limited to specific 
score functions. The RGLM Format page gives 
the user the option of choosing a score function, 
in addition to several other options, thus, 
retaining the flexibility of RGLM. There is an 
online manual describing customized analyses 
which the user can download. 

There is an experimental companion to Web 
RGLM that uses high breakdown (HBR) 
techniques. This can be found at the URL:  
http://fisher.stat.wmich.edu/slab/RGLM/HBR2. 
As with the Web RGLM page, it offers side-by-
side comparisons of the high breakdown and LS 
fits. These techniques, developed by Chang et al. 
(1999), use a stochastically weighted Wilcoxon 
norm to obtain estimators that are robust to 
outliers in both design and response space, while 
the Wilcoxon analysis is only robust in response 
space. We plan on finishing this page in the 
future. Also, we are planning future expansions 
of the page to other designs, including nested 
designs, generalized estimating equations, 
nonlinear models, and mixed models.  
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Figure 7:  RGLM’s ANOVA Output for the Snow Geese Data 
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Background 
Just like the traditional least squares 

procedures, rank-based procedures give a 
unified approach to testing and estimation 
problems. The recent monograph by 
Hettmansperger and McKean (1998) (’HM’ 
hereinafter) gives a detailed treatise of rank-
based procedures for handling problems of 
estimation and testing in situations ranging from  
the simple one sample location problems to the 
highly complicated multi-factor experimental 
designs. In this section we briefly review rank-
based estimation and testing procedures and 
direct the reader to HM for further details.  
 
Linear Models 

Let ),,( 1 ′= nYY Y  denote the 1×n  

vector of observations which follows the linear 
model  
  
                   ,α= + +Y 1 η e ∈Ωη               (4) 
 
where 1 is an 1×n vector of ones, Ω  is a 

subspace of nR  spanned by the columns of a 
centered pn × design matrix X , and e  is an 

1×n  vector of random errors. 

In addition to estimating α and η  we 
test general linear hypotheses such as  
 
           0 :H ω∈η versus :AH ω ⊥∈ Ω ∩η    (5) 

 
where Ω⊂ω  is qp −  dimensional for 

pq ≤≤0 . In the following we shall refer to the 
model given in (4) as the full model and the 
same model under 0H  as the reduced model. 

 
R-Estimation 

The estimate of η  will be obtained by 
minimizing the distance between Y and the 
space Ω . The distance we minimize for R-
estimation is based on the R pseudonorm defined 
as  
 

                
1

( ( )) , 
n

n
i i

i

a R u uϕ
=

= ∈u u R           (6) 

 
where )( iuR  denotes the rank of iu  among 

nuu ,,1  , and ( )( )1)( += niia ϕ  for some 

nondecreasing score function ϕ defined on the 
interval (0,1) and standardized such that 

 
Figure 8:  Wilcoxon studentized residual and q-q plots and LS ANOVAs for the Snow Geese 

Data 
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  == 1 and 0 2ϕϕ . . For the proof that (6) is 

indeed a pseudonorm the reader is referred to 
McKean and Schrader (1980). The set 

{ }a(n),a(2),a(1),  is called the set of rank 
scores. The most common R scores used in 
practice are the Wilcoxon scores which are 

generated by )5.0(12)( −= uuϕ ; i.e a linear 
score function. In the simple location models, 
the rank-based analyses based on this score 
function are the Mann-Whitney-Wilcoxon 

procedures. The 1L  pseudonorm is another 
popular special case of (6) obtained when 

)5.0sgn()( −= uuϕ . In the location cases, 
analyses based on the sign scores are the median 
(Mood) procedures. 

The R-estimator of η  is a vector 

ϕŶ such that  

 

          )(minˆ Ω≡−=−
Ω∈

Dϕϕϕ ηYYY
η

    (7) 

 
The R-estimates are analogous to the 

least squares estimates. Suppose we use the 

Euclidean norm  −= 22
)( uuiLS

u . There 

the estimator is, of course, HYY =LS
ˆ  where 

XX)XX(H ′′= −1  is the projection matrix onto 
the column space of the centered design 
matrix X . To obtain the R-estimates we simply 
replace the Euclidean norm by the norm given in 
(6). 
 
Estimation of Regression Coefficients 

Rewriting (4) as eXβ1Y ++= α , 

where β is a 1×p  vector, the R-estimate of β , 

ϕβ̂ , is the solution vector of the p normal 

equations  
 

                                   ϕϕ YβX ˆˆ =                        (8) 

 

Based on ϕβ̂ , we estimate the intercept as  

 

                         { }ϕα βx ˆˆ iiS Ymed ′−=                (9) 

 
Assume that the random errors follow a 
distribution G with density g and 
median )2/1(1−= Geθ . Under some mild 

regularity conditions  
 

ˆ
  has an approximate ˆ

S

ϕ

α 
  
 β

 

     
( )

1 2

1 12
,

S

p

n
N

ϕ

τα
τ

−

+ −

 ′      ′     

0
β 0 X X

       (10) 

 
distribution, where  
 

       

[ ]
[ ]

[ ] [ ].))(())(()(

 and  ,)(2

)()(

111

1

1

uGguGgu

g

duuu

g

eS

g

−−−

−

−

′−=

=

= 

ϕ

θτ

ϕϕτ ϕ

   (11) 

 
Thus we have an asymptotic )%1(100 γ−  
confidence interval for the linear combination 
βl′  given by  

 

     lX)X(lβl 1
)1,2/( ˆˆ −

−− ′′±′ ϕγϕ τpnt    (12) 

 
where ϕτ̂  is an estimate of ϕτ  obtained as in 

Koul et. al. (1987), briefly discussed below. 
 
Estimation of Scale 

Let ê denote the vector of residuals 

based on the R-fits and let 1−= ϕτς . Then from 

(11) it follows upon integrating by parts that  
 

                       
∞

∞−

= ))(()( xGdxg ϕς                 (13) 

 
The estimate of g(x) is obtained using the 
rectangular kernel density estimator  
 


=

− ≤−=
n

i
ninn texIntxg

1

1 )|ˆ(|)2()(ˆ  
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where nt2  is the window width which will be 

decided later and I(A) is the indicator function of 
the event A. Hence an estimate of ς is,  

( )
( )

1

1 1 ( ) ( )

( /( 1)) ( /( 1))
ˆ (2 )

| |

n n

n
j i j i n

j n j n
nt

I e e t

ϕ ϕ
ς −

= =

 + − +  =  
− ≤  

  

 
where )(ˆ je  denotes the jth ordered residual. 

Using the mean value theorem, standardize the 
expression in braces above as  
 

2 1( ) ( {( (1) (0)) })nH z n cϕ ϕ −= −  

1 1

ˆ ˆ ˆ( ( /( 1))) (| | )
n n

j j i
j i

R e n I e e zϕ
= =

′ + − ≤  

 

The constant c is chosen so that nH  is an 

empirical distribution function of the absolute 
differences |ˆˆ| ij ee − . Then choose δnt  so that 

δδ −= 1)( nn tH  for 10 ≤≤ δ . Our estimate of 

ς  is then,  
 

               
nt

ntH

n

nn

/2

))0()1()(/(
ˆ

δ

δ ϕϕς −
=      (14) 

 
Thus our estimate of ϕτ  is given by  

 
1ˆˆ −= ςτϕ  

 
Koul et al. (1987) showed that this estimate is 
consistent for ϕτ  under both symmetric and 

asymmetric error distributions. 
 
Testing 

Testing the hypothesis given in (5) will be 
performed using an F-type test statistic given by  
 

                     
[ ]

2/ˆ
/)()(

ϕ
ϕ τ

ω qDD
F

Ω−=           (15) 

 
where 

ϕωω ηYη −≡ ∈min)(D  is the 

minimum dispersion under the restriction 
imposed by 0H . The quantity ϕqF  has an 

asymptotic 2χ  distribution. Small sample 
studies, however, indicate that F  should be 
compared to F distribution critical values with 
q and pn −  degrees of freedom.  
 
Algorithm 
Consider the QR-decomposition of X   
 
                               RXQ =′                           (16) 
 
where R is an pn ×  upper triangular matrix of 

rank p and Q is an nn × orthogonal matrix. We 

may write Q as ] [ 21 QQ  where 1Q  is an pn ×  
matrix whose columns form an orthonormal 
basis for the column space of X. We can now 
write the kth Newton step as  
 

               ))ˆ((ˆˆˆ )1()1()( −− −= kkk R eHaee ϕτ       (17) 

 

where 11QQH ′=  and ))ˆ(( )1( −kR ea  is a vector 

whose jth component is ))ˆ(( )1( −k
ieRa . Here is 

the formal algorithm. Let Dε  be a given 
tolerance.  

Step 0: Set k=1. Obtain initial residuals )1(ˆ −ke , 
)1(ˆ −k

ϕτ , and the (k-1)th step dispersion, 
)1( −kD .  

Step 1: Get )(ˆ ke  as in (17). Obtain )(ˆ k
ϕτ , and 

)(kD .  

• If )1()( −< kk DD , then go to Step 2.  
• Else perform a linear search (see HM 

pp. 186-187) along the direction 

))ˆ((ˆ )1( −kR eHaϕτ  for a value which 

minimizes D, then go to Step 2.  

Step 2: If D
kkk DDD ε<− −− )1()()1( /][ , then go 

to Step 3. Otherwise set )()1( ˆˆ kk ee =−  and go 
to Step 1.  

Step 3: Obtain estimates as 
)()( ˆˆ ,ˆˆ kk

ϕϕ ττ =−= eYY ,  and β̂ by solving 

YβX ˆˆ = .  
As a final note we mention that the QR-

decomposition can be used to form reduced 
model design matrices for testing the hypotheses 
in (5) (see Theorem 3.7.2 of HM). 



ROBUST GENERAL LINEAR MODELS AND GRAPHICS VIA A USER INTERFACE 
 

330 
 

References 
 

Abebe, A. , Crimin, K. , McKean, J. W.,  
Haas, J. V. & Vidmar, T. J. (2001), Rank-based 
procedures for linear models : Applications to 
pharmaceutical science data. Drug Information 
Journal, 35, 347-371. 

Afifi, A. A. & Azen, S. P. (1972), Statistical 
analysis: A computer oriented approach. New 
York: Academic Press. 

Chang, W. H., McKean, J. W., Naranjo, 
J. D., & Sheather, S. J. (1999), High breakdown 
rank regression, Journal of the American 
Statistical Association, 94, 205-219. 

Hettmansperger, T. P., & McKean, J. W.  
(1998), Robust nonparametric statistical 
methods, London: Arnold. 

Hettmansperger, T. P.,  McKean, J. W.,   
& Sheather, S. J. (2000), Robust nonparametric 
methods, Journal of the American Statistical 
Association, 95, 1308-1312. 

Hollander, M., & Wolfe, D. A. (1999),  
Nonparametric statistical methods, Second 
edition, New York: Wiley. 

Ihaka, R.  & Gentleman, R. (1996). R:  
A language for data analysis and graphics, 
Journal of Computational and Graphical 
Statistics, 5, 229-314. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Kapenga, J. A., McKean, J. W., & Vidmar, 

T. J. (1995), RGLM: Users manual, version 2, 
SCL Technical Report, Dept. of Statistics, 
Western Michigan University. 

Koul, H. L.  Sievers, G. L.  & McKean,  
J. W. (1987), An estimator of the scale 
parameter for the rank analysis of linear models 
under general score functions, Scandinavian 
Journal of Statistics, 14, 131-141. 

McKean, J. W. (2004), Robust analyses  
of linear models, Statistical Science, 19, 562-
570. 

McKean, J. W., & Schrader, R. (1980),  
The geometry of robust procedures in linear 
models, Journal of the Royal Statistical Society, 
Series B, 42, 366-371. 

McKean, J. W.,  Vidmar, T. J.,  & Sievers, 
G. L. (1989), A robust two stage multiple 
comparison procedure with application to 
random drug screen, Biometrics, 45, 1281-1297. 

Srinivasan, S. (1997), Advanced PERL  
programming, Sebastopol, CA: O’Reilly. 
 

 
 


	Journal of Modern Applied Statistical Methods
	5-1-2008

	Robust General Linear Models and Graphics via a User Interface (Web RGLM)
	Kimberly Crimin
	Asheber Abebe
	Joseph W. McKean
	Recommended Citation


	Microsoft Word - 1_Algina_p

