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Second-Order Latent Growth Models with Shifting Indicators 
 

Gregory R. Hancock                     Michelle M. Buehl 
            University of Maryland                George Mason University 

 
 

Second-order latent growth models assess longitudinal change in a latent construct, typically employing 
identical manifest variables as indicators across time. However, the same indicators may be unavailable 
and/or inappropriate for all time points.  This article details methods for second-order growth models in 
which constructs’ indicators shift over time. 
 
Key words:  latent growth modeling; structural equation modeling; curve-of-factors models. 
 
 

Introduction 
 
Applying structural equation modeling (SEM) 
techniques to the study of change has become a 
particularly powerful method for analyzing 
change over time. Specifically, a special 
parameterization of SEM called latent curve 
analysis or latent growth modeling (LGM) has 
proven to be an extremely flexible approach to 
study a variety of growth and change questions. 
LGM provides estimates of many substantively 
important aspects of change, such as the status 
of individuals at some substantively interesting 
temporal reference (e.g., initial measurement 
point), their growth or change trajectory over 
time, and the amount of individual variability at 
a reference point and in rates of growth.  

Although techniques such as 
hierarchical linear modeling can offer such 
information, LGM also allows one to examine 
latent correlates or latent predictors of these  
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growth parameters. Thus, one may not only 
estimate the form and nature of intra- and inter-
individual growth over time, but also test the 
contribution of other constructs to these growth 
processes. Further, the flexibility offered by 
LGM allows for the testing of diverse error 
structures (e.g., auto-regressive), allows means 
and variances to change over time, and thus 
provides a unified assessment of many aspects 
of change. The basic principles and applications 
of these models are discussed in several useful 
didactic sources (e.g., Bollen & Curran, 2005; 
Byrne & Crombie, 2003; Duncan, Duncan, & 
Strycker, 2006; Hancock & Lawrence, 2006; 
Preacher, Wichman, MacCallum, & Briggs, 
2008). 

Whereas traditional growth models 
evaluate change in a single measured variable 
over time, a more complex parameterization 
evaluates growth in a single unmeasured latent 
variable (i.e., factor or construct) over time, 
where that factor has the same multiple 
measured indicators at each time point. For 
example, if a child development researcher 
gathered data using the same five childhood 
aggression scales at multiple time periods, one 
could specify relations from, say, an initial status 
factor and a linear growth factor to each of the 
latent constructs at each time period. This model 
has the benefit of analyzing growth using latent 
constructs disattenuated from measurement 
error, error that would be present when 
analyzing only one of the repeated manifest 
scale values or even some aggregate across 
scales. Such a model has been referred to as a 
“curve-of-factors model” (McArdle, 1988), a 
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“latent variable longitudinal curve model” 
(Tisak & Meredith, 1990), and, because there 
are two levels of latent constructs but only one 
level of manifest indicators, a “second-order 
latent growth model” (Hancock, Kuo, & 
Lawrence, 2001; Sayer & Cumsille, 2001). 

To elaborate briefly, for change being 
assessed across T time points, let ηt be a latent 
construct indicated at time t by J measured 
variables Ytj (j=1,..., J). That is, y=τ+Λη+ε, 
where the vector y contains T sets of values 
across time for J Y variables, τ is a vector of 
variable intercepts, Λ is a matrix of loadings 
relating each ηt construct to its measured 

variable indicators, η is a vector of the ηt 

constructs, and ε is a vector of random normal 
errors. So far, this is simply a conventional first-
order confirmatory factor model with its mean 
structure modeled simultaneously. 

As for modeling growth in the ηt 

constructs, it can be described by η=Γξ+ζ, 
where Γ is a matrix of second-order factor 
loadings reflecting the hypothesized growth 
pattern underlying the ηt constructs, ξ is a vector 
of exogenous latent factors capturing the facets 
of growth being modeled, and ζ is a vector of 
random normal disturbances in the first-order ηt 
constructs. As an example, a model could posit 
that ξ=[α  β]', where α is an intercept factor 
representing the true initial amount of η and 
where β is a slope factor representing the true 
rate of linear change in η over time. If the 
indicators of this η construct are measured at 
four equal-interval time points, a test for linear 
growth in the construct could be conducted by 
fitting second-order factor loadings Γ with [1  1  
1  1]' in its first column and [0 1 2 3]' in its 
second. Of course, nonlinear models may be 
accommodated in this framework as well, as can 
unequally spaced times points, precisely 
paralleling first-order growth models. 

The illustrative second-order latent growth 
model described above, referred to herein as 
Model 1, is depicted in Figure 1. Indicator 
variables A through E are measured at each of 
four equal-interval time points.  First-order 
loadings λ are constrained equal across 
constructs, as are first-order intercepts τ. As 

explained elsewhere (e.g., Hancock et al., 2001), 
indicator variables used to identify factor scales 
do not require intercepts. Potential variations in 
this model include the imposition of error 
variance constraints on the same variable over 
time, disturbance variance constraints, error 
covariances for corresponding variables over 
time (with or without equality constraints), 
unequally spaced time intervals, alternative 
temporal reference points, and the inclusion of 
nonlinear growth constructs. There are five key 
parameters in this model as specified: κα and κβ, 
the means of the intercept and slope factors, 
respectively; ψα and ψβ, the variances of the 
intercept and slope factors (through their 
disturbances), respectively; and ψαβ, the 
covariance between the intercept and slope 
factors. This type of model serves as the 
foundation for a case in which the same 
variables are not used across all time points, as 
detailed next. [Note that in Figure 1, as well as 
Figures 2, 4, and 5, there appear two 
pseudovariables (unit constants, depicted as a 1 
in a triangle).  Although common notation 
utilizes a single such symbol in a given path 
diagram, two are used here to reduce clutter in 
each figure.] 

 
Shifting indicators 

In all treatments of second-order growth 
models (e.g., Hancock et al., 2001; McArdle, 
1988; Sayer & Cumsille, 2001; Tisak & 
Meredith, 1990), the assumption is that identical 
manifest indicators are available at each time 
period. However, for a variety of phenomena in 
the social sciences, such an assumption may be 
unreasonable (see, e.g., McArdle, 1994). For 
example, when assessing fear responses from 
infancy through early childhood to ascertain if 
children become more or less fearful over time, 
as well as the determinants of such development, 
the process of eliciting and measuring a fear 
response must differ at different ages. 

Quite simply, some stimuli that frighten a 
6-month old might not frighten the child when 
reaching 12 or 18 months of age, and children 
might not demonstrate fear in the same manner 
over time as their ability to communicate 
develops. 
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Figure 1.  Standard second-order latent growth model (“Model 1”) 
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Figure 2. Second-order latent growth model with shifting indicators (“Model 2”) 
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Similarly, when administering survey 

items to children over a time period before and 
after becoming literate, rating scales may start 
with oral administration by a teacher, follow 
later by having the child circle “smiley face” 
responses, and ultimately end by having the 
child circle verbal descriptors. As a final 
example, an organization assessing employee 
satisfaction longitudinally might find that the 
wording of some of the items falls out of 
common usage. This was the case with the very 
popular Job Descriptive Index (JDI), where 
several satisfaction items were changed because 
the wording of some items was no longer in the 
popular vocabulary (Smith et al., 1987). Thus, 
reminiscent of issues of equating in item 
response theory (see, e.g., Kolen & Brennan, 
2004), what is needed here is a way of analyzing 
growth when the latent construct is 
conceptualized to be the same over time but the 
manifest indicators shift or change. 

Consider the developmental researcher 
who wishes to investigate growth in a latent 
construct across equally-spaced time points in 
children’s lives, and ideally would like to be 
able to obtain the same five measurements at 
each time as depicted in Figure 1 (i.e., measures 
A, B, C, D, and E). Thus, the same five indicator 
variables would be used at each time point in a 
second-order latent growth model, with 
corresponding first-order loadings and intercepts 
constrained equal over time. Imagine, however, 
that at Time 1 only measures A and B are 
developmentally appropriate; that is, the child is 
not yet ready to face the stimuli or tasks required 
for measures C, D, and E. Further, at Time 2, 
measure A is now too simple and only measures 
B and C are developmentally appropriate; D and 
E are still too advanced; and so forth. So, the 
indicators are shifting as required by 
developmental considerations, and the actual set 
of available indicator variables is thus as 
follows: 

 
Time 1  Time 2 Time 3 Time 4 

     A1 
      B1     B2 
      C2     C3 
       D3    D4 
       E4 

 
Notice first that Time 1 and Time 3 share no 
common indicators, nor do Time 2 and Time 4. 
However, there is overlap between adjacent time 
points, such that each construct is linked to its 
temporal neighbor through a common indicator 
variable. Linking among constructs, of which 
many forms exist (as discussed below), will be 
necessary to facilitate model identification for a 
second-order growth model with shifting 
indicators. The model just described, referred to 
herein as Model 2, is depicted in Figure 2 above. 

In addition to the lack of any common 
indicators across all time points, many features 
are noteworthy about Model 2. First, and as 
before, corresponding loadings and intercepts 
are constrained equal across time; such 
invariance is crucial for the shifting indicator 
model to function properly. In the full model, 
Model 1, variable A was chosen as the scale 
indicator for all factors. In Model 2 where 
indicators shift, even though only the first 
construct has variable A as an indicator, it is 
still, in fact, the scale indicator for all factors by 
virtue of the loading constraints across factors. 
A one unit increase in η1 yields a one unit 
increase in A (A1) and a λB unit increase in B 
(B1); a one unit increase in η2 also yields a λB 
unit increase in B (B2), as well as a λC unit 
increase in C (C2); a one unit increase in η3 also 
yields a λC unit increase in C (C3), as well as a 
λD unit increase in D (D3); a one unit increase in 
η4 also yields a λD unit increase in D (D4), as 
well as a λE unit increase in E (E5). 

Thus, all variables are linked back to the 
first construct through equality constraints on 
λB, λC, and λD, and to the units assigned the first 
construct through its scale indicator. Note also 
that any other variable could have been chosen 
as the scale indicator, resulting only in a change 
of the metric of parameters’ solutions. If 
variable B had been selected, for example, it 
would have a unit loading on both η1 and η2 , 
thereby constraining those loadings implicitly; 
the C and D loadings would be constrained 
explicitly with formal equality constraints, while 
the A and E loadings would be free. Whether A 
or B is chosen as the scale indicator, or any other 
variable for that matter, only four unique 
loadings are estimated. 
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Second, with regard to intercepts, 
corresponding parameters are constrained over 
time just as in Model 1, and variables assigned 
the role of scale indicator have no intercept term 
estimated. In Model 2, just as in the full model, 
only four intercepts will be estimated: one for 
each variable other than the system’s scale 
indicator. 

Third, just as in Model 1, there are five 
key parameters to be estimated: κα and κβ, the 
means of the intercept and slope factors, 
respectively; ψα and ψβ, the variances of the 
intercept and slope factors (through their 
disturbances), respectively; and ψαβ, the 
covariance between the intercept and slope 
factors. As will be illustrated below, the 
parameters estimated under this reduced model 
with shifting indicators are the same as those 
under the full model. 

Finally, many variations and extensions 
to this model are possible. Error variances for 
the same variable may be constrained over time, 
reflecting comparable measurement error in each 
variable across time. Similarly, disturbance 
variances in the first order constructs may be 
constrained equal. Also, error covariance 
parameters may be estimated for corresponding 
variables over time (with or without equality 
constraints). Unequally spaced time intervals 
may be accommodated, alternate temporal 
reference points may be employed, and 
nonlinear growth constructs may be included 
under similar configurations. And lastly, as 
discussed below, many configurations of linked 
variables could make such a model identified. 

 
Configuration requirements for shifting 
indicators 

As mentioned earlier, many practical 
reasons might give rise to a shifting set of 
indicator variables.  Developmental necessities, 
for example, could yield a pattern as seen in 
Model 2. Administrative decisions within a 
company, on the other hand, could change the 
content of the evaluation instruments as new 
issues arise. In fact, one could simply encounter 
a loss or corruption of data gathered at different 
points in time, or errors in measure 
administration could result in some items being 
mistakenly omitted from a survey. Regardless of 
the mechanism giving rise to the particular 

shifting pattern of the indicators, all factors must 
be linked to each other through loading 
constraints (equality or unit scaling) either 
directly or indirectly; otherwise a consistent 
metric for constructs is not preserved over time.   

In most practical situations, one could 
most likely inspect the available indicators at 
each time point to see if adequate construct 
linking exists. In more complex longitudinal 
systems, however, establishing the necessary 
linking might be less clear by inspection alone. 
A heuristic is thus offered for establishing this 
sufficient condition. Consider a first-order factor 
repeated over T time points, with Jt indicators at 
each time. All first-order factor loadings are in 

matrix Λ, which has 
=

T

t
tJ

1

 rows and T columns. 

Figure 3 depicts the loading matrix for Model 2 
from Figure 2. The information in Λ may be 
abbreviated in a symbolic p×T configuration 
matrix C, where p is the number of unique 
variables across all T time points (i.e., the 
number of distinct elements in the union of the T 
indicator sets, each of which has Jt elements). 
The 5×4 configuration matrix C for Model 2 is 
also shown in Figure 3, where asterisks indicate 
a variable loading on a construct at one or more 
time points. Next, from C a T×T incidence 
matrix M may be derived such that, for t=1 to T 
and u=1 to T, element mtu=1 if the tth and uth 
constructs have one or more common 
constrained indicator variables (measured at 
times t and u) and element mtu=0 otherwise. If 
t=u, then obviously mtu=1. The incidence matrix 
M for Model 2 appears in Figure 3. Finally, 
drawing from Markov-chain treatments of the 
decomposition of a state-space into equivalence 
classes (see, e.g., Ross, 2000), a heuristic for 
assessing whether sufficient linkages exist 
among constructs comes by assessing whether 
matrix M is irreducible. Specifically, if raising 
M to the Tth power yields a matrix with all 
positive elements, then the matrix is irreducible 
and sufficient linkages exist. If, however, any 
zero elements are present in MT, then the 
constructs are not all linked, and a second-order 
growth model with shifting indicators cannot be 
fit to the data. Because elements etu in MT are all 
nonnegative, this operationalizes sufficient 
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linkage as 0
1 1

>⊆ ⊆
= =

T

t

T

u
tue . Although in the case 

of Model 2 inspection alone is enough to 
establish sufficient construct linkage, as shown 
in Figure 3 the resulting matrix MT contains all 
positive elements. 

 
Figure 3.  Matrices associated with Model 2 

 
It should be also noted that the above 

criterion of incidence matrix irreducibility does 
not actually constitute a minimum condition for 
model identification. Regardless of how many 
indicators are present at each of the T time 
points, the minimum condition for model 
identification requires that T-1 pairwise 
constraints (equality or unit scaling) must exist 
and in a specific configuration. This can be 
operationalized using the elements below the 
diagonal of the incidence matrix M, requiring 
that a minimum of T-1 nonzero elements be 
arranged such that every combination of tth row 
and uth column has at least one nonzero lower 
triangular element in its union (note that 
multiple such configurations exist). Put simply, 
if one draws horizontal and vertical lines 
through and beyond each of the T-1 nonzero 

entries below the diagonal of M, minimum 
identification conditions have been met if and 
only if every lower-triangular cell has at least 
one line passing through it. This heuristic of 
course works with more than the minimum T-1 
constraints as well. 

 
Examples 

Two examples are offered in this 
section. The first is for a population matrix in 
which five indicators are present at each of four 
time points. This model will be analyzed in a 
full second-order latent growth model form as in 
Model 1, and a minimal reduced form as in 
Model 2, showing key parameters to be 
equivalent in both solutions. The second 
example will draw from the National Education 
Longitudinal Survey of 1988 (NELS:88) data 
set, sponsored by the National Center for 
Educational Statistics, U.S. Department of 
Education (see Ingels, Dowd, Baldridge, Stipe, 
Bartot, & Frankel, 1994). In this example, 
sample data for four indicators are present at 
each of three time points. The model will be 
analyzed in full second-order latent growth 
model form, and then all possible minimal 
reduced forms (using the same scale indicator). 
Summary information for all reduced forms will 
be presented and compared to the results from 
the full sample. 

 
Example 1: Contrived Population Data 

Population data were created for all 20 
variables in Model 1, where the same five 
indicators are used for a factor at each of four 
equally-spaced time points. These data, which 
consist of a 20×20 population covariance matrix 
and 20 population means, are embedded within 
the EQS 6.1 syntax (Bentler, 2004) for this 
example presented in Appendix A. [This model 
could be run in any standard SEM software; 
EQS was chosen merely for illustration as seen 
in Appendices A and B.] Note that in this 
program the sample size for this population was 
arbitrarily set to 100,000; this choice does not 
affect parameter estimation.  

A full second-order latent growth model 
was imposed upon the data as shown in Figure 1 
(with intercept factor α, linear growth factor β, 
and loading and intercept constraints), and 
allowed error covariances between residuals of 
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common indicators at multiple time points (e.g., 
εA1, εA2, εA3, εA4). No variance or covariance 
equality constraints were imposed. This model 
resulted in perfect data-model fit (given the 
contrived nature of the data) and yielded the 
following (expected) key parameter solutions: 
κα=1.400, κβ=0.700, ψα=0.490, ψβ=0.490, ψαβ= 
-0.098. 

Now imagine having population data for 
only the eight indicators in the shifting indicator 
model as depicted in Figure 2. These data, which 
consist of an 8×8 population covariance matrix 
and eight population means, are embedded 
within the EQS 6.1 syntax (Bentler, 2004) for 
this example also presented in Appendix A. 
Again the sample size for this population was 
arbitrarily set to 100,000.     

A second-order latent growth model with 
shifting indicators was imposed as shown in 
Figure 2 (intercept factor α, linear growth factor 
β, intercept and loading constraints). As before 
the A variable loading is set to unity, but in this 
case there is only one A variable, that at the first 
time point (i.e., A1). Even though this model 
does not have the same indicator variables 
directly present across factors, and even though 
there is no loading fixed to unity for the 
construct at times 2, 3, and 4, a solution emerges 
that is identical to that from the full set: 
κα=1.400, κβ=0.700, ψα=0.490, ψβ=0.490, ψαβ= 
-0.098. As discussed previously, this 
phenomenon arises because the imposition of 
constraints effectively forces the first factor’s 
scale indicator A1 to be the scaling indicator for 
all constructs even though variable A does not 
load on them. Further, any set of indicators 
meeting the configuration criteria previously 
described will yield identical parameter 
solutions as long as variable A provides scale 
directly and indirectly to all first-order factors. 
Thus, the shifting indicator model can capture 
the parameter estimates using only a subset of 
the indicators. 

 
 
Example 2: NELS Data for Full and Reduced 
Second-Order Growth Models 

As a second illustration of second-order 
growth models with shifting indicators, data 
from 228 females from the NELS:88 data set 

were used. Specifically, the construct of self-
concept was assessed at 8th, 10th, and 12th 
grades, using a variety of indicator variables. 
Four indicator variables were selected that 
seemed most theoretically related to students' 
self-concept. These items were based on 
Rosenberg’s (1965) widely used measure of 
self-esteem and included: “On the whole, I feel 
good about myself;” “I feel I am a person of 
worth;” “On the whole, I feel satisfied with 
myself;” and “At times, I think I am no good at 
all.” Respectively, these are items 44A, 44D, 
44H, and 44J from 8th grade, 62A, 62D, 62H, 
and 62J from 10th grade, and 66A, 66D, 66H, 
and 66J from 12th grade. All measures utilized a 
four-point Likert format; for the current example 
all responses were recoded such that a higher 
numerical response on a variable represented a 
more positive self-concept. Although a 
compelling argument could be made for treating 
these data as ordinal, we will treat them as 
intervally scaled measures for the purposes of 
illustration. Summary statistics for these data are 
embedded within the EQS 6.1 syntax (Bentler, 
2004) for this example, presented in Appendix 
B. 

First, as a frame of reference, a second-
order latent growth model was fit to these data 
as shown in Figure 4, with intercept factor α and 
linear growth factor β, assuming equally-spaced 
time points, constraining first-order loadings and 
intercepts to be equivalent across shared 
(adjacent) time points, constraining error 
variances for common variables and first-order 
disturbance variances to be equal over time, 
allowing nonzero error covariances for common 
indicator variables over time (not shown in 
figure), and using variable J (i.e., 44J, 62J, 66J) 
as the first-order factors’ scale indicator. 

The comparative fit index (CFI) and root 
mean-square error of approximation (RMSEA), 
as well as key parameter estimates for the full 
model, appear in Table 1. By even the most 
modern and rigorous of standards (e.g., Hu & 
Bentler, 1999), this data-model fit was excellent. 
The  parameter  estimates  indicate  interesting  
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Figure 5.  Example of second-order latent growth model with shifting indicators, for NELS:88 data 
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intercept behavior, but rather uninteresting slope 
behavior (small mean and variance, neither 
statistically significant). This is probably due to 
the very stable nature of global self-esteem 
assessed by the Rosenberg (1965) measure. 

Second, using the same NELS:88 data 
for 228 females, a complete set of shifting 
indicator models was conducted with the 
following characteristics: only two indicators 
were present at each time point, no variable 
appeared at more than two time points, adjacent 
time points were linked with a single common 
indicator variable, and variable J was present in 
all models as the scale indicator (appearing 
either at one or two time points). As with the full 
model, each of these minimal shifting indicator 
models had corresponding loadings, intercepts, 
and error variances constrained, as well as error 
covariances between common indicators’ 
residuals at adjacent time points and constrained 
first-order disturbance variances. A total of 24 
such configurations existed and were run on 
these data; an example of such a model is 
depicted in Figure 5. Summaries of data-model 
fit as well as means and medians of key 
parameter estimates are presented in Table 1. 

Whereas the previous example illustrated 
that population values will be identical for the 
full and reduced models, sample values will vary 
across reduced models. This is because the full 
model imposes constraints across factors at all 
time points (i.e., their indicators’ loadings, 
intercepts, and error variances), but in these 
reduced models such constraints exist only in 
temporally adjacent factors. Thus, in applied 
scenarios when data exist with only select 
indicators available at each time point, and in a 
shifting but linked configuration, one can expect 
results to be somewhat dependent upon the 
variables at hand. Still, in the current example 
when averaging across all of the reduced 
models, the typical inferences regarding each of 
the key parameter estimates do match those of 
the full model. In general, such coherence will 
be expected to be enhanced the more the model 
at hand, and all its constraints, constitute a sound 
approximation to the true growth process 
operating in the population, as is true in any 
latent variable model. 

 

Discussion 
The methods presented in the current 

article have roots in several related areas of 
modeling. Certainly the principles of latent 
growth modeling for measured variables, and in 
particular their second-order adaptation for 
growth in latent variables, are foundational. Also 
related are growth modeling methods for 
accelerated longitudinal designs with measured 
(or latent) variables (see, e.g., Duncan, Duncan, 
& Hops, 1996; McArdle, 1994; McArdle & Bell, 
2000; McArdle & Hamagami, 1991; McArdle & 
Woodcock, 1997). In such designs interest still 
resides in gaining an understanding of 
development over T time points, but specifically 
in doing so without following the same group of 
individuals for the entire period. Rather, 
concurrent cohorts of individuals with adjacent 
and overlapping subsets of time points (e.g., 
Cohort 1 at ages 4, 5, and 6, Cohort 2 at ages 6, 
7, and 8, and Cohort 3 at ages 8, 9, and 10) are 
essentially spliced together through constraints 
on common parameters within a multisample 
latent growth model. The current work also 
effectively splices together parts of a model by 
constraining common parameters, but does so all 
within a single sample followed for the entire T 
time points. The need for the current method’s 
splicing arises because one is faced with 
staggered subsets of (“shifting”) indicator 
variables perhaps due to indicators’ 
unavailability or their developmental 
inappropriateness. As such constructs’ common 
parameters across different time points are 
constrained in an attempt to give constructs a 
common identity and thus be able to model 
growth therein. Minimum constraint conditions 
involving the incidence matrix M were 
presented in this article (and which can, in fact, 
easily be adapted for accelerated longitudinal 
designs). 

The need for parameter constraints and a 
common identity for factors also brings up the 
larger (and much thornier) issue of factorial 
invariance, both from theoretical and statistical 
perspectives. First, addressing the theoretical, 
the second-order latent growth model with 
shifting indicators is predicated upon the 
assumptions that (1) the same unidimensional 
construct exists at all time points, and (2) that 
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are adequate to draw inference regarding said 
construct. If a researcher believes that, for 
example, the nature of fear in children 
transforms with age, or that the new survey 
items do not quite reflect the same construct as 
those used previously, then the techniques 
illustrated here should not be used.   

Second, regarding the statistical issues of 
factorial invariance, one might wonder what 
level of invariance is necessary to give us 
confidence that the same construct does indeed 
exist at all time points. Should all common 
loadings, intercepts and error variances be 
constrained equal, representing strict factorial 
invariance? Should just common loadings and 
intercepts be constrained, representing strong 
factorial invariance (Meredith, 1993)? May 
loadings alone be constrained, representing weak 
factorial invariance (Widaman & Reise, 1997)? 
May only some loadings and intercepts be 
constrained, yielding partial loading invariance 
and partial intercept invariance (Byrne, 
Shavelson, & Muthén, 1989)? Such questions 
are, first, not unique to the growth models at 
hand, but in fact pervade many model types 
whether longitudinal or multisample. Second, 
while discussion of such types of invariance is in 
no short supply (for a nice didactic treatment see 
Widaman and Reise, 1997), recommendations  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
within the methodological and applied literature 
regarding sufficient invariance conditions to 
ensure valid structure inference are without 
general consensus. Nor is it the purpose of this 
article to attempt to facilitate such consensus, 
either in the context of the current models or 
otherwise.   

As is often practiced in other scenarios, 
for assessing second-order latent growth with 
shifting indicators a family of models 
representing different degrees of invariance may 
be tested, ranging from strict factorial invariance 
(involving all available common parameters) to 
a model meeting only minimum identifying 
constraints. Certainly if a model is selected 
whose constraints are inconsistent with truth, 
then the ability to make accurate population 
inferences regarding growth could become 
compromised. On the other hand, if a model is 
selected whose constraints perfectly mirror the 
population invariance (whether strict, partial, or 
in between), growth in the construct can indeed 
be modeled as demonstrated in the current 
article as long as minimum identification 
conditions are met. [It should be noted that these 
minimum conditions, while sufficient for model 
identification, actually render the structural 
parameters of interest locally just-identified; 
having additional common indicators across 

 
Table 1 

Parameter Estimates for Full and Reduced NELS:88 Growth Models 
______________________________________________________________________________ 
      Full model  Shifting model Shifting model 
 estimate    mean estimate    median estimate  
_____________________________________________________________________________ 

CFI .969 .987 1.000 
RMSEA .039 .015 .000 
κα 2.746* 2.730* 2.671*  

κβ .011 .028 .027 
ψα .044* .094* .077* 
ψβ .006 .017 .012  
ψαβ .002 -.018 -.008 

 
*p<.05 

______________________________________________________________________________ 
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time (i.e., two or more per factor) therefore 
allow for improved structural assessment in 
terms of both testability and parameter 
estimation.] However, even satisfactory data-
model fit for the strictest of invariance 
conditions cannot guarantee that the nature of 
the construct is intransient, but rather can only 
lend support to the theory of stability of the 
construct's identity. That is to say, ultimately the 
stability of a construct's identity rests with 
strong theoretical foundations regarding the 
construct as well as the indicators themselves, 
for which tests of invariance may provide 
confirmatory evidence. For cases where a stably 
defined construct is hypothesized, it is expected 
that the methods illustrated in the current article 
(and the many variations thereof) will have 
wide-ranging applications in scenarios where 
developmental and/or administrative conditions 
have dictated the absence of common variables 
across all time points. 
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Appendix A 
EQS syntax for full and reduced population models in Example 1 
______________________________________________________________________________ 
EQS syntax for Model 1 (full model): 
 
/TITLE                                                                           
 Example 1, full model 
/SPECIFICATIONS                                                                  
 cases=100,000; variables=20; matrix=cov; method=ml; analysis=moment; fields=10; 
/LABELS 
 V1 = AA1; V2 = BB1; V3 = CC1; V4 = DD1; V5 = EE1;  
 V6 = AA2; V7 = BB2; V8 = CC2; V9 = DD2; V10 = EE2;  
 V11 = AA3; V12 = BB3; V13 = CC3; V14 = DD3; V15 = EE3;  
 V16 = AA4; V17 = BB4; V18 = CC4; V19 = DD4; V20 = EE4;  
 F1 = ETA1; F2 = ETA2; F3 = ETA3; F4 = ETA4; F5 = ALPHA; F6 = BETA;                          
/EQUATIONS                        
 V1 = 1F1 + 0V999 + E1;       
 V2 = *F1 + *V999 + E2;       
 V3 = *F1 + *V999 + E3;       
 V4 = *F1 + *V999 + E4;       
 V5 = *F1 + *V999 + E5;       
 V6 = 1F2 + 0V999 + E6;       
 V7 = *F2 + *V999 + E7;       
 V8 = *F2 + *V999 + E8;       
 V9 = *F2 + *V999 + E9;       
 V10 = *F2 + *V999 + E10;   
 V11 = 1F3 + 0V999 + E11;   
 V12 = *F3 + *V999 + E12;   
 V13 = *F3 + *V999 + E13;   
 V14 = *F3 + *V999 + E14;   
 V15 = *F3 + *V999 + E15;   
 V16 = 1F4 + 0V999 + E16;   
 V17 = *F4 + *V999 + E17;   
 V18 = *F4 + *V999 + E18;  
 V19 = *F4 + *V999 + E19;  
 V20 = *F4 + *V999 + E20;  
 F1 = 1F5 + 0F6 + D1;  
 F2 = 1F5 + 1F6 + D2; 
 F3 = 1F5 + 2F6 + D3;  
 F4 = 1F5 + 3F6 + D4;  
 F5 = *V999 + D5;  
 F6 = *V999 + D6;  
/VARIANCES  
 E1 to E20=*;  
 D1 to D6=*;  
/COVARIANCES  
 D5,D6 =*;                                                                     
 E1,E6=*; E1,E11=*; E1,E16=*; E6,E11=*; E6,E16=*; E11,E16=*; 
 E2,E7=*; E2,E12=*; E2,E17=*; E7,E12=*; E7,E17=*; E12,E17=*; 
 E3,E8=*; E3,E13=*; E3,E18=*; E8,E13=*; E8,E18=*; E13,E18=*; 
 E4,E9=*; E4,E14=*; E4,E19=*; E9,E14=*; E9,E19=*; E14,E19=*; 
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 E5,E10=*; E5,E15=*; E5,E20=*; E10,E15=*; E10,E20=*; E15,E20=*; 
/CONSTRAINTS 
 (V2,F1)=(V7,F2)=(V12,F3)=(V17,F4);  
 (V3,F1)=(V8,F2)=(V13,F3)=(V18,F4);  
 (V4,F1)=(V9,F2)=(V14,F3)=(V19,F4);  
 (V5,F1)=(V10,F2)=(V15,F3)=(V20,F4);  
 (V2,V999)=(V7,V999) =(V12,V999)=(V17,V999);  
 (V3,V999)=(V8,V999) =(V13,V999)=(V18,V999);  
 (V4,V999)=(V9,V999) =(V14,V999)=(V19,V999);  
 (V5,V999)=(V10,V999) =(V15,V999)=(V20,V999);  
/MATRIX                                                                          
 1.288  
 0.630 1.575 
 0.672 0.720 1.468 
 0.714 0.765 0.816 1.767 
 0.756 0.810 0.864 0.918 1.672 
 0.492 0.420 0.448 0.476 0.504 1.929 
 0.420 0.650 0.480 0.510 0.540 1.1025 1.88125 
 0.448 0.480 0.612 0.544 0.576 1.176 1.260 2.244 
 0.476 0.510 0.544 0.778 0.612 1.2495 1.33875 1.428 2.21725 
 0.504 0.540 0.576 0.612 0.748 1.323 1.4175 1.512 1.6065 2.601 
 0.494 0.315 0.336 0.357 0.378 1.376 1.260 1.344 1.428 1.512 
 0.315 0.4375 0.360 0.3825 0.405 1.260 1.450 1.440 1.530 1.620 
 0.336 0.360 0.584 0.408 0.432 1.344 1.440 1.736 1.632 1.728 
 0.357 0.3825 0.408 0.5335 0.459 1.428 1.530 1.632 1.834 1.836 
 0.378 0.405 0.432 0.459 0.686 1.512 1.620 1.728 1.836 2.144 
 0.296 0.210 0.224 0.238 0.252 1.668 1.680 1.792 1.904 2.016 
 0.210 0.425 0.240 0.255 0.270 1.680 2.000 1.920 2.040 2.160 
 0.224 0.240 0.356 0.272 0.288 1.792 1.920 2.148 2.176 2.304 
 0.238 0.255 0.272 0.489 0.306 1.904 2.040 2.176 2.512 2.448 
 0.252 0.270 0.288 0.306 0.424 2.016 2.160 2.304 2.448 2.692 
 3.150 
 2.625 3.7125 
 2.800 3.000 3.900 
 2.975 3.1875 3.400 4.5125 
 3.150 3.375 3.600 3.825 4.750 
 3.140 3.150 3.360 3.570 3.780 5.947 
 3.150 3.475 3.600 3.825 4.050 5.4075 6.49375 
 3.360 3.600 4.040 4.080 4.320 5.768 6.180 7.492 
 3.570 3.825 4.080 4.435 4.590 6.1285 6.56625 7.004 8.14175 
 3.780 4.050 4.320 4.590 5.060 6.489 6.9525 7.416 7.8795 9.243 
/MEANS 
 1.400 2.500 3.600 4.700 5.800 2.100 3.250 4.400 5.550 6.700 
 2.800 4.000 5.200 6.400 7.600 3.500 4.750 6.000 7.250 8.500 
/PRINT 
  fit=all;                                                                        
/END 
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EQS syntax for Model 2 (reduced model): 
/TITLE                                                                           
 Example 1, Model 2 (reduced model) 
/SPECIFICATIONS                                                                  
 cases=100,000; variables=8; matrix=cov; method=ml; analysis=moment; fields=10; 
/LABELS 
 V1 = AA1; V2 = BB1; V3 = BB2; V4 = CC2;  
 V5 = CC3; V6 = DD3; V7 = DD4; V8 = EE4;  
 F1 = ETA1; F2 = ETA2; F3 = ETA3; F4 = ETA4; F5 = ALPHA; F6 = BETA;                          
/EQUATIONS                        
 V1 = 1F1 + 0V999 + E1;       
 V2 = *F1 + *V999 + E2;       
 V3 = *F2 + *V999 + E3;       
 V4 = *F2 + *V999 + E4;       
 V5 = *F3 + *V999 + E5;       
 V6 = *F3 + *V999 + E6;       
 V7 = *F4 + *V999 + E7;       
 V8 = *F4 + *V999 + E8;       
 F1 = 1F5 + 0F6 + D1;  
 F2 = 1F5 + 1F6 + D2; 
 F3 = 1F5 + 2F6 + D3;  
 F4 = 1F5 + 3F6 + D4;  
 F5 = *V999 + D5;  
 F6 = *V999 + D6;  
/VARIANCES  
 E1 to E8=*;  
 D1 to D6=*;  
/COVARIANCES  
 D5,D6 =*;                                                                     
 E2,E3=*; E4,E5=*; E6,E7=*; 
/CONSTRAINTS 
 (V2,F1)=(V3,F2);  
 (V4,F2)=(V5,F3);  
 (V6,F3)=(V7,F4);  
 (V2,V999)=(V3,V999);  
 (V4,V999)=(V5,V999);  
 (V6,V999)=(V7,V999);  
/MATRIX        
 1.288 
 .630 1.575 
 .420    .650   1.881 
 .448     .480    1.260  2.244 
 .336   .360    1.440   1.736  3.900 
 .357     .383    1.530   1.632  3.400 4.513 
 .238     .255   2.040   2.176   4.080 4.435 8.142 
 .252     .270   2.160   2.304   4.320 4.590    7.880 9.243 
/MEANS 
 1.400  2.500 3.250 4.400  5.200 6.400 7.250 8.500 
/PRINT 
  fit=all;                                                                        
/END 
______________________________________________________________________________ 
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Appendix B 
 

EQS syntax for full NELS:88 model in Example 2 
______________________________________________________________________________ 
/TITLE 
 Full model for females' self-concept data 
/SPECIFICATIONS 
 cases=228; variables=12; matrix=cor; method=ml; analysis=moment; fields=6; 
/LABELS 
 V1= 44A; V2=44D; V3=44H; V4=44J;  
 V5=62A; V6=62D; V7=62H; V8=62J;  
 V9=66A; V10=66D; V11=66H; V12=66J; 
 F1=SC8; F2=SC10; F3=SC12; F4=ALPHA; F5=BETA; 
/EQUATIONS 
 V1 = *F1 + *V999 + E1; 
 V2 = *F1 + *V999 + E2; 
 V3 = *F1 + *V999 + E3; 
 V4 = 1F1 + 0V999 + E4; 
 V5 = *F2 + *V999 + E5; 
 V6 = *F2 + *V999 + E6; 
 V7 = *F2 + *V999 + E7; 
 V8 = 1F2 + 0V999 + E8; 
 V9 = *F3 + *V999 + E9; 
 V10 = *F3 + *V999 + E10; 
 V11 = *F3 + *V999 + E11; 
 V12 = 1F3 + 0V999 + E12; 
 F1 = 1F4 + 0F5 + D1; 
 F2 = 1F4 + 1F5 + D2; 
 F3 = 1F4 + 2F5 + D3; 
 F4 = *V999 + D4; 
 F5 = *V999 + D5; 
/VARIANCES 
 E1 to E12 = *; 
 D1 to D5 = *; 
/COVARIANCES 
 E1,E5 = *; E1,E9 = *; E5,E9 = *; 
 E2,E6 = *; E2,E10 = *; E6,E10 = *; 
 E3,E7 = *; E3,E11 = *; E7,E11 = *; 
 E4,E8 = *; E4,E12 = *; E8,E12 = *; 
 D4,D5 = *; 
/CONSTRAINTS 
 (V1,F1)=(V5,F2)=(V9,F3); 
 (V2,F1)=(V6,F2)=(V10,F3); 
 (V3,F1)=(V7,F2)=(V11,F3); 
 (E1,E1)=(E5,E5)=(E9,E9); 
 (E2,E2)=(E6,E6)=(E10,E10); 
 (E3,E3)=(E7,E7)=(E11,E11); 
 (E4,E4)=(E8,E8)=(E12,E12); 
 (D1,D1)=(D2,D2)=(D3,D3); 
 (V1,V999)=(V5,V999)=(V9,V999); 
 (V2,V999)=(V6,V999)=(V10,V999); 
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 (V3,V999)=(V7,V999)=(V11,V999); 
/MATRIX 
 1.000 
  .347     1.000 
  .564      .291      1.000 
  .245      .277       .188      1.000 
  .375      .209       .223       .187       1.000 
  .146      .228       .133       .126        .457      1.000 
  .189      .182       .220       .108        .568       .450 
  .240      .137       .111       .378        .432       .317 
  .284      .135       .190       .156        .331       .204 
  .137      .237       .104       .089        .242       .245  
  .192      .125       .229       .066        .249       .193 
  .138      .097       .109       .164        .088       .124 
 1.000 
  .311      1.000 
  .280       .223     1.000 
  .190       .164      .360      1.000 
  .354       .168        .595       .479      1.000 
  .178       .334        .428       .226       .338      1.000 
/STANDARD DEVIATIONS 
  .57   .63   .64   .88   .59   .60   
  .66   .87   .61   .70   .68   .76 
/MEANS 
 3.20 3.30   3.21   2.67   3.21   3.28   
  3.08   2.71   3.24   3.32   3.16   2.88 
/PRINT 
 fit=all; 
/END 
______________________________________________________________________________ 
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