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Two longitudinal regression models, one parametric and one nonparametric, are developed to reduce 
selection bias when analyzing longitudinal health data with high mortality rates. The parametric mixed 
model is a two-step linear regression approach, whereas the nonparametric mixed-effects regression 
model uses a retransformation method to handle random errors across time. 
 
Key words: Longitudinal data, mortality rates, nonrandom dropouts, selection bias. 
 
 

Introduction 
Analyzing large-scale longitudinal health data 
poses special challenges to statisticians, 
demographers and other quantitative 
methodologists. Most longitudinal surveys 
collect random and unbiased samples at 
baseline. Among older persons, however, a 
considerable proportion of the baseline 
respondents will not survive to the ensuing 
phases of investigation. As a result, longitudinal  
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health outcomes are based on several follow-up 
samples selected by values of the dependent 
health variable because physically frailer, 
functionally disabled and environmentally 
disadvantaged persons are more likely to die. 
Thus, follow-up data of a longitudinal health 
survey on these populations often bear little 
resemblance to the initial sample, making 
dropouts non-ignorable. Consequently, currently 
existing longitudinal regression models, such as 
the random-effects linear regression model, can 
be highly sensitive to untestable assumptions 
and inestimable parameters (Hedeker & 
Gibbons, 2006; Hogan, Roy, & Korkontzelou 
2004; Little & Rubin, 2003; Schafer & Graham, 
2002). 

There is abundant literature devoted to 
modeling non-ignorable longitudinal missing 
data in biostatistics (Demirtas, 2004; Hedeker & 
Gibbons, 2006; Hogan, Roy & Korkontzelou, 
2004; Little, 1995; Little & Rubin, 2003; 
Robins, Rotnitzky & Zhao, 1995; Yao, Wei & 
Hogan, 1998). The primary focus of this 
literature, however, is dropout in clinical trials. 
Here the missingness is primarily due to reasons 
other than death and is closely related to 
outcomes being measured (Schafer & Graham, 
2002). In large-scale longitudinal health data for 
older persons, high death rates are usually the 
primary reason for dropouts in follow-up waves; 
in a strict sense, this cannot be simply viewed as 
missing because the deceased no longer 
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possesses any values or characteristics to 
estimate (Hogan, Roy & Korkontzelou, 2004; 
Pauler, McCoy &Moinpour, 2003). On the other 
hand, although assumptions on measurability of 
the deceased’s health outcomes are 
imperceptible and inappropriate, the influence of 
high mortality on the distribution of survivors’ 
health data cannot be ignored. When creating a 
longitudinal model with high death rates, 
researchers should establish the statistical 
structure needed to account for the potential lack 
of independence that often exists among those 
who have been selected from the survival of the 
fittest process. 

Some researchers have proposed the use 
of joint modeling, originally developed by 
Heckman (1979), for longitudinal and survival 
data that link the health outcomes by means of a 
common selection factor (Egleston, Scharfstein, 
Freeman & West, 2006; Fu, Winship & Mare, 
2004; Kurland & Heagerty, 2005; Leigh, Ward 
& Fries, 1993; Pauler, McCoy & Moinpour, 
2003; Ratcliffe, Guo & Ten Have, 2004). Given 
specification of the selection factor, the two 
responses, survival and longitudinal health 
outcomes, are thought to be conditionally 
independent, hence more efficient and less-
biased parameter estimates can be obtained from 
this type of statistical modeling. However, the 
two-step parametric joint modeling has been 
criticized because of its considerable 
dependence on distributional assumptions for the 
non-ignorable missing data that are impossible 
to verify (Demirtas, 2004; Hedeker & Gibbons, 
2006; Hogan, Roy & Korkontzelou, 2004; Little 
& Rubin, 2003; Winship & Mare, 1992). Due to 
the unique characteristics involved in health 
transitions among older persons, the restrictive 
assumptions of this method on the parametric 
disturbance function can be readily violated, 
thereby degrading the quality of parameter 
estimates and model-based prediction. 

This research develops two longitudinal 
regression models to account for the selection 
bias from high mortality rates, one parametric 
and one nonparametric. The parametric model is 
a two-step statistical technique developed as a 
joint model combining longitudinal and survival 
data. By contrast, the nonparametric longitudinal 
model uses a retransformation approach, taking 
into account the missing data mechanism by 

assuming a skewed distribution of disturbances. 
Empirical examples are employed to illustrate 
the new methods developed herein and to 
discuss the merits and weaknesses in each of the 
two-step estimators. 
 
Impact of Selection Bias from Mortality 

For a baseline sample of I individuals 
and J  follow-up time points, for convenience of 
analysis, a disability severity score, Yit, is 
defined to indicate health status for individual i 
(i = 1, 2, …., I) at time t (t = 0, 1, …., J). It is 
then assumed that a hypothetical disability 
severity score exists instantaneously before 
dying for those who have been deceased 
between time (t - 1) and time t (t = 1, …., J). It is 
further assumed that the hypothetical disability 

severity score for the deceased, denoted by d
itY , 

is greater than or equal to a constant Ct, and the 

disability severity scores among survivors, s
itY , 

are all smaller than this constant. 
Heckman’s (1979) perspective serves to 

exhibit the impact of selection bias from 
mortality. Beginning with two longitudinal 
random-effects linear regression models, the 
complete model that includes all members of the 
baseline sample and a truncated model that 
consists of survivors only, given by 
 

1 1 1 1 1   Y X Z′ ′= β + γ + ε                (1a) 

 

2 2 2 2 2 ,Y Y C X Z′ ′< = β + γ + ε         (1b) 

 
where Y represents the (n × 1) vector of 
observed outcome data within the framework of 
a block design (n = I × [J + 1]). The matrix X is 
an (n × p) matrix for p − 1 independent variables 
and Z is a (n × r) design matrix for the random 
effects. The matrices β and γ are parameters for 
X and Z respectively. The random effects are 
assumed to be normally distributed with mean 0 
and variance matrix G. The joint distribution of 
ε1 ε2 is assumed to be a singular distribution with 
covariance matrix σ12. While the residual term ε1 
is assumed to be normally distributed with mean 

0 and variance matrix 2
1σ , it is implausible to 

assume that ε2 be normally distributed with zero 
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expectation, because the error term in (1b) may 
not be independent of the covariates. 

Because Yd is not observable, a 
dichotomous factor δit is defined to indicate the 
survival status for individual i between time (t – 
1) and time t (t = 1, 2, …, J) and is used as a 
proxy for C, such that 
 

( )

( ) ( )

it

it

it

it

δ 0 if individual i dies between 

        time (t-1) and t Y

δ 1 if individual i survives from

        time t-1  and time t Y

t

t

C
.

C

=
 ≥
 =
 <

 

 
Specifically, the disability severity score 

is viewed at time t as a joint distribution of two 
sequential events: the likelihood of survival 
between time (t - 1) and time t (St; t = 1,2, …., J) 
and the conditional density function on the 
disability severity score (Yt) among those who 
have survived to t. Given the aforementioned 
assumptions, the expected disability severity 
score for individual i at time t can be estimated 
by the following equation 
 

( )

( ) ( )

2 2

2 2 2 2

1
2 2 1 1 1 1

E 1

1 .

it i i it

i i
it i

i i t i i

Y X ,Z ,

X Z
Pr X

E C X Z

δ = =

′ ′β + γ  δ =  ′ ′+ ε ε < − β + γ    
(2) 

 
As demonstrated by (2), the conditional mean of 
the disturbance in the survivors sample is a 
function of X1i and Z1i. The estimation of 
equation (2) without considering this correlation 
will lead to inconsistent parameter estimates and 
prediction biases. Therefore, modeling 
longitudinal processes of this disability severity 
score can be much beyond what a conventional 
single-equation linear regression can handle. 
Next, two refined longitudinal models are 
developed for reducing the selection bias in the 
analysis of longitudinal health data for older 
persons, one parametric and one nonparametric. 
 
Parametric Joint Model 

The parametric joint mixed model 
begins by constructing a selection model using 

survival rates as the dependent variable. 
Specifically, a Probit survival model is 
developed using the rationale of Heckman’s 
(1979) two-step perspective to estimate the 
proportion surviving between time (t – 1) and 
time t (t =1, 2, …., J). Some empirical studies 
with joint modeling of longitudinal and survival 
data have used other statistical functions to 
estimate survival rates such as the Cox 
proportional hazard rate model and logistic 
regression (Egleston, Scharfstein, Freeman & 
West, 2006; Kurland & Heagerty, 2005; Leigh, 
Ward & Fries 1993; Pauler, McCoy & 
Moinpour, 2003; Ratcliffe, Guo & Ten Have, 
2004). The Probit function is used here for 
convenience of illustration assuming survival 
probabilities are normally distributed. 
Specification of other functions would lead to 
the same results (Greene, 2003; Kalbfleisch & 
Prentice, 2002). 

For individual i at time (t – 1), the 
probability of his or her survival to time t is 
given by 
 

( ) ( ) ( )( )1 11

t 1, 2, 3,..., J

it it p pi t i tPr Y X Z− −′ ′δ = = Φ β + γ

=
  (3) 

 
where Φ(.) represents the cumulative normal 
distribution function (Probit). From this 
equation, estimated survival rates can be 
obtained for each individual at J – 1 observation 
intervals. The estimates of Φ(X′β + Z′γ) are 
then saved for each individual at each follow-up 
time point as an unbiased estimate of the 
survival rate. 

Given the assumption that the 
hypothetical disability severity score for those 
who have been deceased between time (t – 1) 
and time t (t = 1, 2, …, J), the distribution of  
survivors’ disability severity scores at time t is 
truncated on the right. Accordingly, the inverse 
Mills ratio for individual i at time t can be given 
by 
 

( ) ( )( )
( ) ( )( ) ( )1 1

it

1 1

φ
  if 1 Y C

Φ

p pi t i t
it

p pi t i t

X Z
,

X Z
− −

− −

′ ′β + γ
λ = − δ = <

′ ′β + γ
 

(4a) 
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( ) ( )( )
( ) ( )( ) ( )1 1

it

1 1

φ
  if 0 Y C

1 Φ

p pi t i t
it

p pi t i t

X Z
,

X Z
− −

− −

′ ′β + γ
λ = δ = ≥

′ ′− β + γ
 

(4b) 
 
where φ(.) represents the standard normal 
density function. Values of λ’s at time 0 (first 
wave) are all zero because no selection bias is 
present from deaths at the outset of the 
longitudinal investigation. As defined, the 
inverse Mills ratio for the deceased is the hazard 
rate of surviving between two adjacent time 
points; for those who have survived, it 
represents the risk of not surviving within an 
observational interval (Greene, 2003). 

With the vector λ created, a 
conditionally unbiased truncated random-effects 
model is developed on the disability severity 
score at J time points, given by 
 

( )
22 3 2 3 31 ,e vY Y X Z′ ′ ′δ = = β + γ + σ λ + ε      (5) 

 
where σev is a vector of covariance between ε1 
and v, the latent error vector from (3), specified 
in the estimation process as a vector of the 
regression coefficients of λ, with elements 
assumed to be normally distributed. Because the 
survival rate and the disability severity score are 
inversely correlated, elements in σev – with the 
exception of the first – are expected to take 
negative signs. With λ included in the estimation 
process, the error term ε3 is assumed to have 

mean 0 and variance 2
3σ , and to be uncorrelated 

with X2, Z2, and λ. When all assumptions on 
error distributions are satisfied, equation (5) 
generates unbiased and consistent parameter 
estimates because observations are presumably 
conditionally independent of each other.  

Note that in equation (5), the inclusion 
of λ and σ accounts for the covariance between 
two error terms, ε1 and v, thereby indicating that 
the joint distribution of two sequential equations, 
represented by equation (2), is empirically 
embedded in (5). 
 
Nonparametric Joint Random-Effects Model 

The traditional two-step linear 
regression estimator and the joint longitudinal 
models depend on several strong assumptions 

regarding error distributional functions. When 
the assumption of multivariate normality for ε 
cannot be satisfied, as is often the case in health 
transitions (Liu, 2000; Manning, Duan & 
Rogers, 1987), Equation (5) cannot derive 
correct estimates for the underlying disability 
severity score. In these circumstances, Duan’s 
(1983) and Liu’s (2000) retransformation 
methods are extended into the context of 
repeated measures, assuming a nonparametric 
distribution of disturbances. One of the 
advantages of this approach is that researchers 
do not need to specify a parametric selection 
model to consider the missing data mechanisms. 
Rather, the selection bias is handled indirectly 
through estimating a smearing effect in the 
estimation process (Duan, 1983; Liu, 2000). 

The log transformed nonzero value of 
the underlying disability severity score is used to 
address the possible non-linearity of its 
distribution among those with any disability. For 
this reason, a two-step procedure is proposed 
with the first equation meant to estimate the 
likelihood of having a nonzero disability score. 
The two-stage nonparametric mixed model is 
given by 
 

( ) ( )2 4 2 4Pr Y 0 X Z′ ′> = Φ β + γ        (6a) 

 

( ) ( )2 5 2 5 50 ,log Y Y X Z′ ′> = β + γ + ε ξ  

(6b) 
 
where ξ serves as a nonparametric adjustment 
factor for selection bias from high mortality. The 
expected disability severity score at various 
points in time can be expressed by the following 
joint distribution: 
 

( ) ( ) ( )2 4 2 4 2 5 2 51 ˆ ˆ ˆˆ ˆ ˆE Y S X Z exp X Z .′ ′ ′ ′= = Φ β + γ β + γ ξ

(7) 
 
As previously indicated, the distribution of the 
error term in health transition data is often 
skewed without following an identifiable pattern 
(Duan, 1983; Liu, 2000; Manning, Duan & 
Rogers, 1987). However, empirical data can be 
used to estimate values of ξ when the error 
distributional function is uncertain. First, 
assuming X to have full rank: 
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( ) ( )
( )

2 5 2 5 5

2 5 2 5 5 5

0E Y Y E log X Z

log X Z dF( ).

′ ′> = β + γ + ε  
′ ′= β + γ + ε ε  

 

(8) 
 
When the error distributional function F is 
unknown, this cumulative density function, F, is 

replaced by its empirical estimate jF̂  at time-

point t; this is referred to as the smearing 
estimate and is given by 
 

( ) ( ) ( )

( )

( ) ( )

2 5 2 5 5 5

2 5 2 5 5
1

1
2 5 2 5 5

1

0

1

,

j

t

tj

t t t t t n t

n

it it it
it

n

t t t it
i

ˆ ˆE Y Y E log X Z dF

ˆlog X Z
n

ˆ ˆ ˆlog X Z n exp

=

−

=

 ′ ′> = β + γ + ε ε 

′ ′= β + γ + ε

′ ′= β + γ ε







 

(9) 
 
where nt is the number of observations at time t 

with nonzero disability severity scores and 5β̂  

and 5γ̂  can be estimated by employing the 

maximum likelihood procedure without 
specifying a disturbance distributional function 
(Liu, 2000). When the sample size for a 
longitudinal study is large enough to derive a 
reliable expected value of errors, such a 
smearing estimate for the retransformation in 
log-linear equations is consistent, robust and 
efficient (Duan, 1983; Liu, 2000; Manning, 
Duan & Rogers, 1987). 

The estimate of ξ at time t can be 
calculated by the equation 
 

( ) ( )2 5 2 5
1

0
.

tn

it it it it
i

t
t

ˆ ˆexp log Y Y X Z

n
=

 ′ ′> − β + γ 
ξ =


 

(10) 
 

As presented, the nonparametric 
random-effects model does not depend on the 
specification of a given selection process; rather, 
it estimates an unknown error distribution by the 
empirical cumulative density function of the 
estimated regression residuals, and then takes 
the desired expectation with respect to the 
expected error distribution. If skeptical whether 

observations are conditionally independent, 
researchers might use the inverse Mills ratio as a 
covariate to account for the potential clustering 
among survivors thereby deriving more reliable 
parameter estimates. The complete dependence 
of this nonparametric approach on empirical 
data is obvious: If the longitudinal attrition due 
to reasons other than death is not random 
making the missingness non-ignorable, then the 
model-based predicted values of the disability 
severity score can be still severely biased. 
 

Methodology 
Illustrations 

Data used for empirical demonstrations 
are from the Survey of Asset and Health 
Dynamics among the Oldest Old (AHEAD), a 
nationally representative investigation of older 
Americans. This survey, conducted by Institute 
of Social Research (ISR), University of 
Michigan, is funded by National Institute on 
Aging as a supplement to the Health and 
Retirement Study (HRS). At present, the survey 
consists of six waves of investigation; the Wave 
I survey was conducted between October 1993 
and April 1994. Specifically, a sample of 
individuals aged 70 or older (born in 1923 or 
earlier) was identified throughout the HRS 
screening of an area probability sample of 
households in the nation. This procedure 
identified 9,473 households and 11,965 
individuals in the target area range. AHEAD 
obtains detailed information on a number of 
domains, including demographics, health status, 
health care use, housing structure, disability, 
retirement plans and health and life insurance. 
Survival information throughout the six waves 
has been obtained by a link to the data of 
National Death Index (NDI). The present 
research uses data of all six waves: 1993, 1995, 
1998, 2000, 2002 and 2004. 

Disability severity, standing for an 
individual’s health status in this study, is 
measured by a score of activities of daily living 
(ADL), instrumental activities of daily living 
(IADL), and other types of functional limitations 
(Liu, Engel, Kang & Cowan, 2005). A score of 
one is given to an individual who has any 
difficulty with a specific physical or social 
activity and the number of items for which 
difficulties are reported is then summed. As a 
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result, the score ranges from 0 (functional 
independence) to 15 (maximum disability). 
When predicting the survival rate (for the 
parametric joint model) or the probability of 
having any functional limitation (for the 
nonparametric joint model), such covariates as: 
veterans status (1 = veteran, 0 = non-veteran), 
age, gender (1 = female), education (years in 
school), ethnicity (1 = white, 0 = others), marital 
status (1 = currently married, 0 = other), 
smoking cigarettes and drinking alcohol, the 
number of serious health conditions, and self-
rated health (5 scales: 1 = poor, 5 = excellent) 
are considered. The first four of these covariates 
(veteran status, age, gender and education) are 
used as the control variables in estimating the 
random-effects models and are rescaled to be 
centered about their means for analytic 
convenience. Specification of different sets of 
covariates at two different estimation stages 
helps reduce the occurrence of collinearity 
(Winship & Mare, 1992). 

Three sets of the predicted number of 
functional limitations are compared at six time 
points; these are derived, respectively, from the 
conventional single-equation random-effects 
model, the parametric two-step joint model, and 
the nonparametric joint model. This provides the 
basis for examining how well each of these three 
random-effects longitudinal models fits the 
observed data for the following two reasons. 
First, if longitudinal dropouts due to reasons 
other than death are missing at random (MAR), 
the trajectory of the observed mean number of 
functional limitations is approximately unbiased. 
Here, the accurate description of empirical data 
serves as a criterion for the quality of a statistical 
model. Second, even if dropouts due to other 
reasons are missing not at random (MNAR), 
useful theoretical implications can be obtained 
by deviations of model-based predicted values 
from the empirical data. 

The SAS PROC MIXED procedure with 
repeated measures is used to compute both fixed 
and random effects and to derive the predicted 
number of functional limitations at each time 
point (Littell, Milliken, Stroup, Wolfinger & 
Schabenberger 2006). Because intervals between 
two adjacent time points are unequally spaced in 
the AHEAD longitudinal data the 
REPEATED/TYPE = SP option was used in 

executing the SAS PROC.MIXED procedure to 
represent the autoregressive error structure of 
the data (Littell, et al., 2006). For analytic 
simplicity without loss of generality, between-
individuals random effects are not further 
specified with the presence of a specific residual 
variance/covariance structure. Statistically, a 
combination of both error types is often found to 
fit the data about the same as does a model of 
either type (Hedeker & Gibbons, 2006). Hence, 
in the estimation process the variable time is 
treated as a series of dichotomous variables with 
the last time point, time 5 (time = 0, 1, 2, 3, 4, 
and 5), used as the reference. 
 

Results 
Table 1 presents the results of three random-
effects models, the conventional, the parametric 
two-step and the nonparametric two-stage. In 
terms of the fixed effects, the intercept suggests 
the population estimate of the dependent 
variable at time 5 (year 2004); this time point is 
used as the reference in specification of five 
time dichotomous variables and all other 
covariates are centered about their sample 
means. The combined regression coefficients of 
the five time variables demonstrate an inverse-U 
shaped nonlinear function for the trajectory of 
transitions in the number of functional 
limitations, revealing the strong impact of the 
survival-of-the-fittest selection process among 
older Americans.  

Of the control variables, veterans, older 
persons and women are expected to have a 
higher number of functional limitations than do 
their non-veteran, younger and male 
counterparts, other variable being equal. All 
regression coefficients, except those of veteran 
status, are statistically significant. The 
regression coefficient of lambda, the inverse 
Mills ratio, estimated for the parametric second-
step random-effects model is sizable (-4.8184), 
statistically significant and takes a negative sign 
as expected. This suggests the importance of 
accounting for clustering effects when analyzing 
the longitudinal health data of older persons. 

All estimates of the random effects are 
statistically significant. The SP variance/ 
covariance structure covers a relatively small but 
statistically significant portion of total variance 
for the conventional and the parametric two-step 
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random-effects longitudinal models. The relative 
size of this variance component increases 
considerably for the nonparametric random-
effects model in which the dependent variable is 
the natural logarithm of the number of functional 
limitations among those with any functional 
limitation. The values of ξ’s at the six time 
points, the adjustment factors in the means for 
the retransformation in the nonparametric 
random-effects model (not presented in Table 1) 
are, respectively, 1.3678 at time 0, 1.2448 at 
time 1, 1.1371 at time 2, 1.1491 at time 3, 
1.1408 at time 4, and 1.2616 at time 5, all are 
statistically significant. The model Chi-square 
for each mixed model, reported in the last row of 
the table, is calculated as the difference in the 
value of -2 × (log likelihood) between the model 
with covariates and the model without any 
covariates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 shows four sets of mean numbers of 
functional limitations in older Americans at six 
time points - 1993, 1995, 1998, 2000, 2002 and 
2004 - derived from observed data and the three 
types of longitudinal random-effects models, 
respectively. Compared to the observed data, the 
conventional single-equation linear random-
effects model systematically overestimates the 
number of functional limitations at every time 
point except the baseline and this overestimation 
increases as the survey progresses. The 
parametric two-step longitudinal joint model 
somewhat reduces such overestimation, but the 
adjustment appears very limited and deviations 
from the observed data are still considerable and 
systematic. By contrast, the nonparametric 
longitudinal joint model derives the closest set 
of the estimates to describe transitions in the 
number of functional limitations in older 
Americans. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Results of Three Random-Effects Models on Number of Functional Limitations in 
Older Americans: AHEAD Longitudinal Survey (n = 8,443) 

Explanatory Variables and 
Other Statistics 

Conventional 
Mixed Model 

Parametric 
2-Step Modela 

Nonparametric  
2-Step Modelb 

Fixed Effects: 

Intercept 5.5045** 5.3967** 1.4515** 

Time 0 (1993) -3.0158** -2.9079** -0.4582** 

Time 1 (1995) -0.2583** -0.1320 0.0028 

Time 2 (1998) 0.8780** 0.9613** 0.2348** 

Time 3 (2000) 0.9984** 1.0416** 0.2287** 

Time 4 (2002) 1.2367** 1.2575** 0.2569** 

Veteran status 0.1613 0.1023 0.0292 

Age 0.1742** 0.1320** 0.0274** 

Female 0.7360** 0.8773** 0.0849** 

Education -0.1665 -0.1519** -0.0269** 

Lambda (λ)  -4.8184**  

Random Effects: 

Spatial power (POW) 0.5651** 0.5295** 0.4571** 

Residual 12.3156** 11.5321** 0.4939** 

Model Chi-Square 13367.1** 16715.9** 6100.3** 

*0.01 < P < 0.05; **P < 0.01; a Results of the second-step mixed model; b Results of the second-
step mixed model for those with at least one functional limitation, with the dependent variable 
being the natural logarithm of the number of functional limitations 



REDUCING SELECTION BIAS IN HIGH MORTALITY RATE LONGITUDINAL DATA 

410 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 illustrates deviations in the 
predicted number of functional limitations 
derived from the three types of mixed models. 
Panel A compares the observed curve with the 
predicted values derived from the conventional 
single-equation random-effects model and 
shows distinct and systematic separations 
between the two growth curves. At each time 
point following the baseline survey, the 
predicted number of functional limitations 
obtained from the conventional single-equation 
random-effects model is considerably higher 
than the corresponding observed number. The 
predicted growth curve in Panel B, derived from 
the parametric longitudinal joint model, displays 
mitigated separation from the observed curve; 
however, the deviations remain sizable and 
systematic thereby reflecting the restriction of 
using parametric approach to correct for 
selection bias. In Panel C, the two curves almost 
coincide, demonstrating the accurate description 
of the empirical data by applying the 
nonparametric longitudinal joint modeling, 
which builds upon observed pattern of health 
transitions rather than impose strong 
assumptions on error distributions. 
 

Conclusion 
Non-ignorable missing data are important issues 
in longitudinal data analysis. Despite an 
abundant literature on this subject, none of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
currently existing statistical models has the 
capacity to handle all types of non-ignorable 
dropouts (Hogan, Roy & Korkontzelou, 2004). 
Most models of this type are created for the 
analysis of longitudinal missing data in clinical 
experimental studies where repeated measures 
are often narrowly spaced and mortality is 
almost nonexistent. With respect to large-scale 
longitudinal data of older persons, currently 
available models are not specifically developed 
to reflect the unique influence of high mortality 
on estimating and predicting health outcomes at 
older ages. Because those who have been 
deceased between assessment periods no longer 
exist, various assumptions on the measurability 
of health status for dropouts are not plausible 
and meaningful. 

When mortality rates are high, the direct 
application of conventional random-effects 
linear models on longitudinal health data can be 
associated with serious selection bias. As 
previously noted, mechanisms leading to biases 
on parameter estimates have been well 
documented (Egleston, Scharfstein, Freeman & 
West, 2006; Hogan, Roy & Korkontzelou, 2004; 
Kurland, & Heagerty, 2005; Leigh, Ward & 
Fries, 1993; Liu, 2000; Manning, Duan & 
Rogers, 1987; Pauler, McCoy & Moinpour, 
2003; Ratcliffe, Guo & Ten Have, 2004). This 
study introduced two refined random-effects 
joint models and sought to substantially reduce  

Table 2: Predicted Number of Functional Limitations in Older Americans Derived 
From Three Random-Effects Models (n = 8,443) 

 

Time Point 
Observed and Predicted Number of Functional Limitations 

Observed Conventional Parametric Nonparametric 

1993 2.4887 2.4996 2.4759 2.6918 

1995 5.1514 5.2571 5.2518 5.1184 

1998 6.1378 6.3934 6.3451 6.1197 

2000 6.1602 6.5138 6.4254 6.1598 

2002 6.3348 6.7521 6.6413 6.3056 

2004 4.9608 5.5154 5.3838 4.9088 

Note: All predicted values derived from the three mixed models are statistically 
significant relative to value zero. 
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Figure 1: Transitions in Functional Limitations in Older Americans: 
Growth Curves Derived from Three Approaches 
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bias incurred from changes in the distribution of 
health outcome data at multiple time points. The 
parametric longitudinal model is an extension of 
Heckman’s (1979) traditional two-step estimator 
which, like other parametric joint models, is 
based on several restrictive assumptions on the 
joint modeling and error distributional functions. 
Researchers have questioned and discussed the 
validity and reliability of this type of two-step 
estimator. Much of the literature about this 
estimator focuses on the ill effects of violations 
against assumptions regarding λ, X and the error 
distributions (Demirtas, 2004; Fu, Winship & 
Mare, 2004; Hedeker & Gibbons, 2006; Hogan, 
Roy & Korkontzelou, 2004; Little & Rubin 
2003; Manning, Duan & Rogers, 1987; Winship 
& Mare, 1992). 

This study shows that - as an extended 
case of the Heckman’s perspective - the 
parametric two-step random-effects joint model 
has the capacity to reduce some of the deviations 
from the observed data; however, the degree of 
this adjustment is limited and deviations remain 
considerable and systematic. The limited effects 
of this approach are further evidenced by the 
similarity between the growth curve derived 
from this two-step estimator and the curve from 
the single-equation random-effects model (see 
Table 1 and Figure 1). In view of the difficulty 
in verifying assumptions on parametric 
distributional functions at multiple time points, 
the use of a nonparametric approach seems a 
more promising way of modeling longitudinal 
health data for older persons. 

In reality, it is not possible to verify or 
contradict whether missingness is random by 
examination of the observed data (Demirtas, 
2004; Little & Rubin, 2002). However, if non-
death dropouts are missing at random, the 
selection bias from high mortality rates can be 
identified by examining the model fitness with 
observed health transition data. In many 
empirical applications in which mortality is low, 
the true cause of the missingness is often 
thought to be an unmeasured variable that is 
only moderately correlated with the response, 
not the response itself. Failure to account for the 
cause seems to introduce only minor bias 
(Schafer & Graham, 2002). If this phenomenon 
can be viewed as a general rule, the agreement 
of the model-based longitudinal trajectory with 

the observed curve can be used to measure the 
sensitivity of predicted health scores in older 
persons. The nonparametric longitudinal joint 
model presented herein is created particularly to 
correct for the selection bias from high mortality 
rates when the observed data are trustworthy and 
the non-death longitudinal dropouts are missing 
at random and thereby ignorable. This 
nonparametric regression model has the added 
advantage that the selection information 
(survival in the present study) does not need to 
be accounted for directly in the estimation 
process. 

Because the nonparametric approach 
presented is meant to correct for the selection 
bias using empirical adjustments, its application 
must be based on researchers’ confidence that 
biases from ignoring missing data from other 
causes are minor (Little, 1995). Therefore, its 
practicality is limited within the circumstances 
that non-response due to mortality is the only 
source of non-ignorable dropouts.  

If non-death dropouts are missing not at 
random (MNAR), which is thought to be 
exceptional by some researchers (Schafer & 
Graham, 2002), investigators need to compare 
results generated from various statistical models 
handling non-ignorable dropouts, such as 
selection, semi-parametric, pattern-mixture 
models (Demirtas, 2004; Hedeker & Gibbons, 
2006; Hogan, Roy & Korkontzelou, 2004; Little, 
1995; Pauler, McCoy & Moinpour, 2003; 
Robins, Rotnitzky & Zhao, 1995), and the 
present nonparametric joint approach. However, 
the effects of dropouts from different reasons on 
the longitudinal selection bias should be dealt 
with separately before a unified statistical model 
handling multi-cause dropouts can be eventually 
developed (Demirtas, 2004; Hedeker & 
Gibbons, 2006; Hogan, Roy & Korkontzelou, 
2004). For example, dropouts due to mortality, 
sickness, migration or difficulty in answering 
sensitive questions may each involve a unique 
missing data mechanism. To fulfill this task, 
researchers must collect as much information as 
possible about various reasons for dropouts and 
incorporate this information into model 
development (Little, 1995). 
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