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REGULAR ARTICLES 
Recommended Sample Size for Conducting Exploratory Factor Analysis 

on Dichotomous Data 
 

Robert H. Pearson Daniel J. Mundfrom 
University of Northern Colorado, 

Greeley, CO USA 
New Mexico State University, 

Las Cruces, NM USA 
 

 
Minimum sample sizes are recommended for conducting exploratory factor analysis on dichotomous data. 
A Monte Carlo simulation was conducted, varying the level of communalities, number of factors, 
variable-to-factor ratio and dichotomization threshold. Sample sizes were identified based on congruence 
between rotated population and sample factor loadings. 
 
Key words: Exploratory Factor Analysis, dichotomous data, sample size. 
 
 

Introduction 
Selecting a sample size is one of the most 
important decisions to be made when planning 
an empirical study. Often the choice is based on 
the minimum necessary sample size to obtain 
reliable results from the statistical procedures to 
be conducted. For many procedures (e.g., t-test, 
F-test) an exact minimum can be found which 
will allow relationships in the population (if they 
exist) to be detected with high probability. The 
issue of sample size for exploratory factor 
analysis (EFA) is not as straightforward, 
however, because an exact minimum cannot 
easily be found analytically and because the 
procedure’s use involves a greater degree of 
subjectivity. 

Although factor analysis has been used 
in a vast array of scientific fields, it is most 
frequently used as a tool to investigate the 
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structure of scores obtained via psychometric 
measures. Such research seeks to identify and 
possibly measure a small number of 
unobservable traits that are hypothesized to 
explain a large portion of the covariation among 
observed variables. The statistical problem for 
EFA is the estimation of communalities and - 
perhaps more importantly - factor loadings. If 
the results of a factor analysis are to be useful 
beyond a particular study, then the estimated 
loadings must be reasonable approximations of 
true population loadings. Thus, reliable 
guidelines for selecting a sample size that is 
likely to produce a factor solution which closely 
matches a population factor structure would be a 
boon to researchers planning factor analytic 
studies. 

Until recently, most of the published 
sample size recommendations were simplified 
rules based on experts’ experience. Several of 
the most frequently cited guidelines are absolute 
numbers. Gorsuch (1983) and Kline (1994) 
suggested sampling at least 100 subjects. 
Comrey and Lee (1992) provided the following 
scale of sample size adequacy: 50 – very poor, 
100 – poor, 200 – fair, 300 – good, 500 – very 
good, and 1,000 or more – excellent. Authors 
have also proposed minimum ratios of sample 
size to the number of variables (n:p). Cattell 
(1978) suggested three to six subjects per 
variable, Gorsuch (1983) suggested this ratio be 
at least five and both Everitt (1975) and 
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Nunnally (1978) recommended sampling at least 
ten times as many subjects as variables. 

MacCallum, Widaman, Zhang, and 
Hong (1999) demonstrated mathematically and 
empirically that sample size requirements are 
contingent upon two aspects of the factor 
structure. Specifically, they showed that both 
mathematical overdetermination (the extent to 
which the common factors are sufficiently 
represented by an adequate number of variables) 
and the size of communalities have a 
considerable effect on the agreement between 
sample and population factor loadings. In a 
Monte Carlo study they showed that 
communality had an estimated effect size ( ) 
nearly three times greater than sample size and 
overdetermination had an effect nearly as large 
as sample size. Mundfrom, Shaw and Ke (2005) 
subsequently provided sample size 
recommendations for 180 population conditions 
on the basis of a Monte Carlo study that varied 
the number of factors, the ratio of variables to 
factors (an important aspect of 
overdetermination) and communalities. 

In practice, data are often measured on 
ordinal or nominal scales, particularly in the 
social sciences (Hip & Bollen, 2006; Lee & 
Song, 2003; Schoenberg & Arminger, 1989). 
Exploratory factor analysis is often applied to 
ordinal or dichotomous data to examine their 
relationship with underlying factors (Baños & 
Franklin, 2002; Mundfrom, Bradley, & 
Whiteside, 1994; Tomás-Sábado & Gómez-
Benito, 2005). Many authors have suggested 
other approaches for this situation (Bartholomew 
& Knott, 1999; Bock & Aitkin, 1981; Muthén, 
1978), however, a traditional factor analysis can 
be useful as long as a meaningful and 
interpretable set of factors can be identified, 
regardless of the measurement level of the input 
data. Johnson and Wichern (2002) refer to this 
as the WOW criterion: “If, while scrutinizing the 
factor analysis, the investigator can shout ‘Wow, 
I understand these factors,’ the application is 
deemed successful” (p. 524). 

Darlington (1997) described this use of 
factor analysis as heuristic rather than absolute. 
It is understood that any factor solution is only 
one among many that are possible. If the 
retained factor structure can be cross-validated 

or together with other evidence supports a 
broader theory, then the analysis is successful. 
Mulaik (1989) discussed how this approach fits 
with theory development throughout science: 
 

Theoretical physics, for example, is 
continuously occupied with differing 
speculations designed to synthesize the 
same sets of diverse experimental data. 
All of these differing theoretical 
speculations may yield models that fit 
equally well the data already at hand, 
but in time some or all of these 
speculative models may be eliminated 
from further consideration by their 
inconsistency with new data obtained to 
test certain predictions derived from 
them. (p. 54) 

 
For a factor solution to be replicable across 
studies it must represent a structure that truly 
exists in the population. 

The primary purpose of this study was 
to provide sample size recommendations for 
researchers who are planning factor analytic 
studies that will involve dichotomous variables. 
It was also of interest to compare the results of 
this study to requirements for continuous data 
(Mundfrom, et al., 2005). From a 
methodological standpoint, the extent to which 
these results differ from those found by 
Mundfrom, et al. (2005) lends insight into the 
effect that scale of measurement has on this 
statistical procedure. Because the case of 
dichotomous data is the most extreme departure 
from continuity, these recommendations 
represent an upper bound for minimum 
necessary sample size. Therefore, these 
recommendations were also intended to serve as 
conservative guidelines for EFA of ordinal data. 
 

Methodology 
Monte Carlo simulation was used for this study. 
Population data were generated using the SAS 
System v9.1.3 (SAS Institute Inc., 2007). One-
hundred matrices of dichotomous data, each 
conceptually representing a unique population of 
100,000 observations on p variables, were 
generated for each condition determined by four 
manipulated variables: the number of common 
factors (m), the variable-to-factor ratio (p:m), the 

2ω̂
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variable communalities and the dichotomization 
threshold. Populations were randomly generated 
using the following two-stage process. 

In the first stage, the procedure 
described by Tucker, Koopman, and Linn (1969) 
was used to randomly generate population 
correlation matrices with specified factor 
structures. A total of 180 factor structures were 
investigated by crossing the number of factors (1 
≤ m ≤ 6), the variable-to-factor ratio (3 ≤ p:m ≤ 
12), and the variable communalities. Three 
levels of variable communalities were examined: 
high, in which communalities were randomly 
assigned values of 0.6, 0.7 or 0.8; wide, in which 
they could have values from 0.2 to 0.8 in 
increments of 0.1; and low, in which they could 
have values of 0.2, 0.3, or 0.4 (Tucker, 
Koopman & Linn, 1969). Ten correlation 
matrices were generated for each factor 
structure. 

In the second stage, ten matrices of 
binary data were generated from each population 
correlation matrix (R). Each data matrix 
consisted of 100,000 rows of values on p 
dichotomous variables. First, a matrix X was 
created by taking the product of the Cholesky 
root of R and a matrix of multivariate-normal 
deviates. Elements of each column of X were 
then dichotomized according to three conditions. 
In the first condition, all variables were 
dichotomized to have a 50/50 split. This 
condition results in the smallest amount of 
information loss due to dichotomization (Cohen, 
1983) and can be considered the best case. In the 
second condition, all variables were 
dichotomized to have an 80/20 split. This 
condition was used in simulation studies by 
Parry and McArdle (1991) and Weng and Cheng 
(2005), and is similar to the 84/16 split used by 
Bernstein and Teng (1989) which they likened to 
item distributions found in symptom description 
scales such as in the MMPI or a difficult ability 
test. In the remaining condition, half of the 
variables were dichotomized using an 80/20 split 
and half using a 50/50 split. 

Because differences in item means limit 
the maximum possible value of the product-
moment correlation it was important to 
investigate the resulting effect on factor loading 
estimates. As a result, one-hundred population 
data matrices (hereafter referred to as 

populations) were generated for each 
combination of communality level, number of 
factors, variable-to-factor ratio and 
dichotomization threshold. 

Each population was factor analyzed 
using maximum likelihood estimation and 
varimax rotation. One-hundred simple random 
samples of a specific size were then selected 
from each population. If a sample correlation 
matrix was non-positive-definite, another was 
generated and used instead. Each sample was 
factor analyzed and the rotated factor loadings 
were compared to those in the population using 
a coefficient of congruence. 

Sample sizes were chosen by first 
starting with a sample size that was too small 
based on the recommendations of Mundfrom, et 
al. (2005). Sample sizes were then increased 
systematically according to the following 
algorithm: 
 
• while 30<n  , it was increased by 1; 
• while 30 100≤ <n , it was increased by 5; 
• while 100 300≤ <n , it was increased by 

10; 
• while 300 500≤ <n , it was increased by 

20; 
• while 500 1,000≤ <n , it was increased 

by 50; 
• while 1,000≥n , it was increased by 200. 

 
This system of increments is nearly identical to 
that used by Mundfrom, et al. (2005). The 
procedure was stopped when the sample and 
population correlation matrices met criteria 
based on a coefficient of congruence. These 
criteria are defined below. The procedure was 
also stopped if a sample size greater than 5,000 
was necessary. 

In summary, a 3 × 6 × 10 × 3 factorial 
design was implemented, corresponding to the 
experimental variables communality level, 
number of factors, variable-to-factor ratio, and 
dichotomization threshold, resulting in a total of 
540 population conditions. One-hundred 
populations were randomly generated for each 
population condition and 100 samples were 
taken from each population for every sample 
size considered. Thus, a total of 10,000 samples 
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were taken for each population condition and 
sample size combination. 
Coefficient of Congruence 

A coefficient of congruence was 
calculated to assess the degree of 
correspondence between the sample and 
population solutions (MacCallum, et al., 1999; 
Tucker, et al., 1969). The coefficient for the kth 
factor was calculated using the formula: 
 

( ) ( )

( )( ) ( )( )
1

2 2

1 1

,=

= =

φ =


 

p
jk s jk tj

k p p
jk s jk tj j

λ λ

λ  λ   
 

 
where ( )jk tλ  is the true population factor loading 

for variable j on factor k, and ( )jk sλ  is the 

corresponding sample loading. To assess the 
degree of congruence for a given solution, the 
mean value of k φ  across the m factors was 

computed and denoted K. For any solution with 
m factors there were m! possible arrangements 
of the factors and therefore m! possible values of 
K. The maximum value of K was used for each 
solution, thus representing the sample solution 
that was most similar to the targeted population 
solution. 

For each population, 100 samples were 
taken and factor analyzed, resulting in 100 
values of K. The fifth percentile of these 
coefficients, denoted K95, was used to represent 
the lower bound of a 95% confidence interval 
for a particular population. Subsequently, 100 
values of K95 were obtained for each population 
condition, corresponding to the 100 generated 
populations. 

MacCallum, et al. (1999) provided the 
following guidelines for interpreting values of 
the coefficient of congruence: 0.98 to 1.00 = 
excellent, 0.92 to 0.98 = good, 0.82 to 0.92 = 
borderline, 0.68 to 0.82 = poor, and below 0.68 
= terrible. Because the purpose of this study was 
to determine minimum recommended sample 
sizes, only those that provided good and 
excellent levels of agreement were retained. For 
a given population condition and sample size, 
the proportions of K95s that were greater than 
0.92 and 0.98 were respectively denoted P92 and 
P98. 

For a particular condition, a sample size 
was determined to meet the good criterion if 
either of the following occurred (Mundfrom, et 
al., 2005): 
 
• The P92 from three successive sample sizes 

was at least 0.95. 
• The P92 from two successive sample sizes 

was at least 0.95, the P92 from the next 
sample size was less than 0.95 and the P92 
from the next two successive sample sizes 
was at least 0.95. 

 
The same system was used to select a sample 
size to meet the excellent criterion. Thus, for 
every population condition, two sample sizes 
were chosen as recommendable according to the 
two criteria. 
 

Results 
Minimum necessary sample sizes were 
identified using a Monte Carlo simulation that 
manipulated four population characteristics. 
Factor structures were determined by crossing 
three levels of communality (high, wide and 
low), six numbers of factors (1 to 6), and ten 
variable-to-factor ratios (3 to 12). The three 
variable distributions considered were 50/50, 
80/20 and a third distribution, hereafter referred 
to as mix, for which half the variables had a 
50/50 split and half had an 80/20 split. The 
minimum necessary sample sizes for each of the 
540 population conditions and two agreement 
criteria are presented in Tables 1, 2, and 3 for 
the high, wide and low levels of communality 
respectively. 

A few cautions should be observed 
when interpreting these results. First, the 
methodology employed did not consider sample 
sizes beyond 5,000, so this was an artificial 
ceiling in this study. Secondly, frequent 
computational errors occurred for conditions 
when the p:m ratio was three: all results for these 
conditions should be interpreted cautiously. In 
addition, the three conditions involving one-
factor models with p:m = 3 could not be run by 
SAS PROC FACTOR with maximum likelihood 
estimation. Thirdly, the observed results for the 
mix condition were unstable for models with 
four to six factors. This instability may be an  
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Table 1: Minimum Sample Size for Two Agreement Criteria - High Level of Communality 

p:m 
Excellent (0.98) Criterion Good (0.92) Criterion 

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 
50/50 Variable Distribution 

3 . 1,200 3,000 5,000 5,000 5,000 . 400 1,400 3,800 5,000 5,000

4 120 270 750 1,600 5,000 5,000 40 90 380 800 3,600 5,000

5 80 280 460 1,800 5,000 5,000 35 85 180 550 2,600 5,000

6 75 250 500 650 1,800 2,600 28 85 200 250 650 700 

7 70 250 340 750 1,000 1,200 26 85 120 360 340 400 

8 60 270 260 500 1,800 1,000 23 100 90 170 340 460 

9 55 320 200 400 1,200 1,400 22 95 65 150 300 700 

10 65 260 200 290 480 1,400 25 75 70 110 140 420 

11 55 200 220 440 380 800 22 85 75 150 130 250 

12 50 160 250 400 550 900 20 60 100 150 170 280 

80/20 Variable Distribution 

3 . 2,000 5,000 5,000 5,000 5,000 . 420 5,000 5,000 5,000 5,000

4 230 750 1,600 5,000 5,000 5,000 75 320 900 3,200 3,800 5,000

5 170 900 1,200 2,400 4,400 5,000 65 340 400 900 1,400 4,600

6 150 360 800 2,400 3,800 5,000 55 120 250 500 1,400 2,000

7 130 340 1,200 1,600 3,200 2,200 55 120 420 950 1,200 1,600

8 120 270 650 1,600 2,000 2,000 50 110 230 300 650 900 

9 120 240 700 800 1,600 1,800 50 75 190 420 500 650 

10 100 320 400 600 950 1,400 45 100 180 200 360 380 

11 100 240 440 800 1,400 1,000 45 75 150 290 460 380 

12 95 400 700 1,200 850 1,400 45 120 180 320 250 460 

Half 50/50 and Half 80/20 

3 . 5,000 2,200 5,000 5,000 5,000 . 4,200 800 5,000 5,000 5,000

4 180 2,000 5,000 5,000 5,000 5,000 55 600 4,000 5,000 5,000 5,000

5 130 480 1,400 2,400 5,000 5,000 40 300 550 1,400 1,400 5,000

6 120 480 1,000 3,200 4,200 5,000 45 190 380 2,200 1,800 3,400

7 95 480 950 1,400 1,600 3,200 40 160 320 460 600 850 

8 95 260 500 2,600 1,800 3,000 40 85 180 1,200 600 1,200

9 85 200 340 600 1,200 3,200 35 65 140 240 360 650 

10 85 180 340 480 1,800 3,800 35 60 120 160 550 1,200

11 75 140 320 380 1,800 3,600 27 50 100 140 900 750 

12 80 190 240 440 650 1,800 30 55 80 150 220 550 
Note: F1 denotes one-factor models, F2 two-factor models, etc. 
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Table 2: Minimum Sample Size for Two Agreement Criteria - Wide Level of Communality 

p:m 
Excellent (0.98) Criterion Good (0.92) Criterion 

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 
50/50 Variable Distribution 

3 . 4,000 5,000 5,000 5,000 5,000 . 1,800 5,000 5,000 5,000 5,000

4 700 1,400 5,000 5,000 5,000 5,000 200 480 2,400 5,000 5,000 5,000

5 320 1,400 5,000 5,000 5,000 5,000 95 480 1,400 5,000 5,000 4,600

6 250 950 1,600 2,800 4,000 3,600 75 380 550 1,000 2,200 1,400

7 280 360 1,000 1,600 5,000 5,000 90 180 360 550 1,600 1,600

8 150 460 600 1,400 3,600 3,800 50 190 210 380 1,800 1,400

9 210 650 600 1,800 1,200 2,200 65 170 230 460 420 850 

10 150 420 600 1,600 1,400 1,600 55 150 220 550 420 550 

11 140 320 700 1,200 1,600 1,600 45 110 210 320 460 550 

12 170 440 500 700 950 1,600 55 140 170 180 320 550 

80/20 Variable Distribution 

3 . 5,000 5,000 5,000 5,000 5,000 . 5,000 5,000 5,000 5,000 5,000

4 650 5,000 5,000 5,000 5,000 5,000 180 2,000 5,000 5,000 5,000 5,000

5 500 2,000 3,800 5,000 5,000 5,000 160 850 1,400 5,000 5,000 5,000

6 440 1,200 2,000 5,000 5,000 5,000 140 460 500 3,000 5,000 5,000

7 340 1,800 1,800 2,800 4,400 5,000 110 550 600 800 1,600 3,200

8 340 950 1,200 3,000 2,800 4,400 110 270 420 700 1,400 1,600

9 320 550 1,000 1,400 2,600 5,000 100 230 300 550 750 2,000

10 240 550 1,000 1,600 2,200 3,600 85 200 360 550 750 1,400

11 220 400 850 1,200 1,600 2,200 75 130 270 360 480 650 

12 210 420 650 950 1,600 1,800 70 140 180 320 460 600 

Half 50/50 and Half 80/20 

3 . 4,200 5,000 5,000 5,000 5,000 . 2,200 4,200 5,000 5,000 5,000

4 600 1,800 5,000 5,000 5,000 5,000 200 1,200 5,000 5,000 5,000 5,000

5 290 900 5,000 5,000 5,000 5,000 90 460 3,800 5,000 5,000 5,000

6 300 750 3,600 5,000 5,000 5,000 85 300 1,400 1,200 1,800 5,000

7 210 700 900 5,000 5,000 5,000 70 200 420 2,000 2,800 2,200

8 210 850 1,600 5,000 2,800 5,000 70 300 360 1,200 1,200 2,400

9 210 1,200 650 2,600 2,600 3,000 70 380 220 900 1,200 1,600

10 180 750 800 1,200 1,400 3,000 55 260 250 460 550 850 

11 190 500 750 1,600 2,000 5,000 65 180 280 420 600 1,600

12 280 700 1,000 1,200 3,600 3,600 85 240 240 340 1,200 1,400
Note: F1 denotes one-factor models, F2 two-factor models, etc. 
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Table 3: Minimum Sample Size for Two Agreement Criteria - Low Level of Communality 

p:m 
Excellent (0.98) Criterion Good (0.92) Criterion 

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 
50/50 Variable Distribution 

3 . 5,000 5,000 5,000 5,000 5,000 . 5,000 5,000 5,000 5,000 5,000

4 950 3,000 5,000 5,000 5,000 5,000 280 1,200 2,000 5,000 5,000 5,000

5 900 5,000 3,800 5,000 5,000 5,000 270 1,800 1,600 5,000 5,000 5,000

6 650 2,600 3,600 5,000 5,000 5,000 200 1,200 1,400 3,600 5,000 5,000

7 460 2,400 1,600 3,000 5,000 5,000 140 750 600 1,200 5,000 2,800

8 400 950 2,200 5,000 5,000 5,000 120 340 700 1,800 5,000 5,000

9 380 1,400 2,600 2,800 5,000 3,400 120 480 900 1,000 1,600 1,400

10 380 600 1,800 2,200 3,200 4,200 110 180 750 1,000 1,200 1,600

11 340 850 1,400 1,800 5,000 3,200 95 260 400 500 5,000 1,200

12 290 1,000 1,600 2,000 5,000 5,000 85 320 700 700 2,400 2,600

80/20 Variable Distribution 

3 . 5,000 5,000 5,000 5,000 5,000 . 5,000 5,000 5,000 5,000 5,000

4 1,800 5,000 5,000 5,000 5,000 5,000 550 2,600 3,800 5,000 5,000 5,000

5 2,000 5,000 5,000 5,000 5,000 5,000 550 2,600 5,000 5,000 5,000 5,000

6 1,200 2,200 5,000 5,000 5,000 5,000 320 750 2,600 5,000 5,000 5,000

7 800 2,600 2,800 5,000 5,000 5,000 230 650 1,200 2,000 2,800 5,000

8 700 1,800 5,000 5,000 5,000 5,000 200 480 5,000 5,000 3,000 5,000

9 700 1,600 3,400 4,400 4,600 5,000 200 600 1,000 1,800 2,000 4,600

10 600 1,800 3,400 2,400 5,000 5,000 180 650 1,200 800 2,400 2,600

11 550 1,400 2,800 2,800 4,400 5,000 160 420 650 950 1,600 3,200

12 550 1,000 1,200 2,400 4,400 4,400 160 360 1,000 850 1,600 1,600

Half 50/50 and Half 80/20 

3 . 5,000 5,000 5,000 5,000 5,000 . 5,000 5,000 5,000 5,000 5,000

4 2,000 5,000 5,000 5,000 5,000 5,000 600 5,000 3,000 5,000 5,000 5,000

5 950 5,000 5,000 5,000 5,000 5,000 260 2,600 5,000 5,000 5,000 5,000

6 700 1,800 5,000 5,000 5,000 5,000 220 700 5,000 5,000 5,000 5,000

7 550 1,800 5,000 5,000 5,000 5,000 170 500 5,000 3,000 3,800 2,800

8 550 1,600 2,600 5,000 5,000 5,000 170 600 1,200 1,600 2,600 2,800

9 420 1,400 2,400 5,000 5,000 5,000 130 460 950 2,000 2,800 3,800

10 460 1,200 5,000 2,400 5,000 5,000 140 400 1,800 850 4,400 2,000

11 400 1,000 2,800 2,600 4,000 5,000 120 260 1,000 950 1,600 2,800

12 360 2,800 1,800 4,000 2,800 5,000 110 700 650 2,600 950 1,800
Note: F1 denotes one-factor models, F2 two-factor models, etc. 
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artifact of the methodology used to generate the 
data. 

Overall, the sample sizes needed to 
analyze dichotomous data are higher than those 
needed for continuous data as presented by 
Mundfrom, et al. (2005). For many models with 
high communalities, three or fewer factors, and 
high p:m ratios, sample sizes below 100 are 
likely to achieve good agreement. Conversely, 
sample sizes in the thousands are necessary to 
meet that criterion for most cases when all 
variables have low communalities or the factors 
are weakly determined. 

Some relationships are apparent from 
Tables 1 and 2. For a given distribution, level of 
communality and number of factors, the 
necessary sample size tends to decrease sharply 
as the p:m ratio increases until some elbow after 
which changes in sample size are very small. 
This elbow tends to occur at p:m ratios between 
seven and ten. For a fixed p:m ratio, the 
minimum sample size tends to increase as the 
number of factors increases. These relations 
mimic those reported by Mundfrom, et al. 
(2005) for continuous data, but with more 
extreme patterns. 

Among the three dichotomization 
conditions, the 50/50 distribution generally 
requires the lowest sample size. No 
generalizations are evident as to which of the 
80/20 and mix conditions require a lower sample 
size. The disparity between continuous and 
binary conditions is smallest for the most well-
defined factor structures, especially those with 
high p:m ratios. Differences among the binary 
distribution conditions tend to be small relative 
to their differences from the continuous data 
requirements. 
 

Conclusion 
One purpose of this study was to provide sample 
size recommendations to be used by researchers 
planning studies involving factor analysis of 
dichotomous data; these are provided in Tables 
1, 2 and 3. Although the requirements for 
analyzing binary data are uniformly higher than 
those for continuous data across varied aspects 
of factor model design, they are still reasonable 
for well-defined factor models. A sample size of 
100, which Gorsuch (1983) called the absolute 
minimum and Comrey and Lee (1992) labeled as 

poor, is enough to achieve a good level of 
agreement for models having one or two factors, 
as well as for three-factor models with at least 
24 variables when communalities are high and 
variables have a symmetric distribution. When 
the p:m ratio is high, a sample size of 300 results 
in good agreement for many models in the wide 
communality condition and all three examined 
variable distribution conditions. This sample 
size is also enough to achieve excellent loading 
agreement for small models (one or two factors) 
when variables have high communalities. 

The necessary sample size to achieve 
good agreement between sample and population 
loadings is grossly inflated for poorly-defined 
factor models. When communalities are all in 
the low range, sample sizes in the thousands are 
necessary for most of the examined conditions. 
The same is true for most models having four or 
more factors and p:m ratios of five or lower. 

Another goal of this study was to 
investigate how dichotomization affects the 
necessary sample size for EFA. Cohen (1983) 
showed that when two continuous variables with 
a joint correlation of r are dichotomized at their 
means, the correlation between the resulting 
variables is attenuated to a value of .637r. One 
effect of the reduced correlations is that the 
communalities estimates are concordantly 
reduced. As described by Schiel and Shaw 
(1992), 36% of the information is lost when a 
perfectly reliable continuous variable is 
dichotomized at the mean. Hence, the 
communalities are deterministically reduced and 
additional error is present in the correlation 
estimates themselves. 

MacCallum, et al. (1999) illustrated the 
role that sampling error has in the formula for 
the sample factor model. In the presence of 
sampling error the unique factors will neither 
have zero correlations with each other nor with 
the common factors. The terms that are affected 
by this error are weighted by the size of the 
unique factor loadings, which are inversely 
related to communalities. 

In summary, dichotomization results in 
increased sampling error in correlation estimates 
and attenuated correlation coefficients, which in 
turn results in decreased communalities. The 
latter outcome produces larger unique variances 
which places more weight on the lack of fit 
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terms in the sample factor model. Thus, there is 
more sampling error and more weight placed on 
its detrimental effects. 

Dichotomization has the greatest 
deleterious impact on necessary sample size 
when communalities are low, the ratio of 
variables to factors is low or the number of 
factors is high. The direct and interaction effects 
of communality follow directly from the 
previous argument. The other two characteristics 
affect the overdetermination of common factors. 
Although the variable-to-factor ratio is not the 
sole basis of overdetermination, it is an 
important aspect of it. Many authors have 
suggested the importance of having a high p:m 
ratio (Comrey & Lee, 1992; Tucker, Koopman, 
and Linn, 1969). 

Mundfrom, et al. (2005) demonstrated 
that the p:m ratio both has a strong direct 
relationship with sample size for a fixed m as 
well as a moderating effect on the relationships 
between sample size, communality, and the 
number of factors. Moreover, the results of the 
present study show that the ratio also moderates 
the effects of dichotomization and variable 
distribution. At high p:m ratios, the sample size 
requirements between the 50/50, 80/20, and mix 
distributions are fairly similar and in some cases 
(high communalities, one or two factors) are not 
that discrepant from those for continuous data. 
On the contrary, when the ratio is low and the 
common factors have a low degree of 
overdetermination, then other changes to the 
factor model have dramatic consequences on the 
necessary sample size. 

Unless extremely large samples are 
tenable, some general strategies are 
recommended when binary data will be factor 
analyzed. Using variables with high 
communalities substantially reduces sample size 
requirements. However, this aspect of the study 
may be the most difficult to control in practice, 
especially in survey development. A more 
manageable design aspect is the p:m ratio. 
Having at least eight variables per factor is 
advised, and a ratio of ten or more should be 
preferred. This practical step may ameliorate 
unexpected problems of skewed variables and 
occasional low communalities. 

Results of this study provide direct 
guidelines to applied researchers who are 

selecting a sample size for research that will 
involve exploratory factor analysis of 
dichotomous data. It is also intended for these 
results to serve as conservative guidelines for 
research involving ordinal data. Although the 
use of dichotomous measures does necessitate 
larger samples, if many high-quality indicators 
are used to measure a small number of factors, 
then applied researchers can be confident that a 
small to moderate sample size will be adequate 
to produce a reliable factor solution. 
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