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Applying Multiple Imputation with Geostatistical Models to Account for 
Item Nonresponse in Environmental Data 

 
Breda Munoz Virginia M. Lesser Ruben A. Smith 

RTI International, 
RTP, NC 

Oregon State University, 
Corvallis, OR

 
 
Methods proposed to solve the missing data problem in estimation procedures should consider the type of 
missing data, the missing data mechanism, the sampling design and the availability of auxiliary variables 
correlated with the process of interest. This article explores the use of geostatistical models with multiple 
imputation to deal with missing data in environmental surveys. The method is applied to the analysis of 
data generated from a probability survey to estimate Coho salmon abundance in streams located in 
western Oregon watersheds. 
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Introduction 
Environmental surveys are often subject to 
missing data. An entire observational unit, such 
as a sampling site, may be missing; conversely, 
one or a few variables for an observational unit 
may be missing. These types of missing data are 
referred to in the survey literature as either unit 
or item nonresponse, respectively (Lessler & 
Kalsbeek, 1992). Causes for missing data in 
environmental studies include failure of the 
measuring instruments (resulting in unit and/or 
item nonresponse), inaccessibility of the site 
(unit nonresponse), and data lost or damaged 
(unit  and/or  item  nonresponse).   A multiple 
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imputation approach is proposed for handling 
missing item nonresponse data that occurs at one 
sample point in time data in environmental 
surveys. 

Further study of the magnitude and 
factors resulting in missing data is necessary to 
interpret the data that has been collected. The 
impact of missing data in the estimation stage 
depends on the missing data mechanism or 
random process leading to it and also on whether 
the observed missingness is related to any 
variables in the dataset (Little & Rubin, 2002). 
Specifically, the impact of nonresponse on 
survey error depends on how the missing data 
occurred, the percent of nonresponse, and the 
parameters to be estimated (Lessler & Kalsbeek, 
1992; Little & Rubin, 2002). 

Let obs

miss

 
=  
 

Y
Y

Y
 denote the matrix of 

complete data corresponding to observations of 
a random process, where missY  and obsY  denote 

the missing and observed components of Y, 
respectively. Missing data can be classified as 
missing completely at random (MCAR), missing 
at random (MAR), and nonignorable or 
informative nonresponse (Little & Rubin, 2002). 
Data is called MCAR if the observed data ( obsY ) 

can be considered a representative sample of the 
population, that is, the missingness does not 
depend on the response (Y) or other variables 
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measured at the site or regional level. Under this 
assumption, valid results are obtained when 
analysis techniques developed for complete data 
sets are performed on the observed data ( obsY ) 

(Little & Rubin, 2002; Lessler & Kalsbeek, 
1992; Lohr 2001). 

When the missingness does not depend 
on the unobserved response but depends only on 
observed values of auxiliary variables, then the 
missing data mechanism is known as MAR. This 
is also referred to as ignorable nonresponse. A 
model for this nonresponse mechanism can be 
formulated and incorporated into either design-
based or model-based analysis techniques to 
explain and account for the nonresponse. For 
example, among the design based approaches, 
weighting methods - such as a weighting class 
adjustment - can be used to produce estimates to 
adjust for the nonresponse (Lohr, 2001).  

Finally, if the probability of 
nonresponse depends on the response and cannot 
be completely explained by the values of the 
auxiliary variables, then the nonresponse is 
nonignorable (Little & Rubin, 2002). Models for 
the nonignorable missing mechanism are usually 
more complicated than models for ignorable 
nonresponse because they depend on the 
unobserved values. 

Recognized approaches to handle 
missing data problems include deletion of the 
records, hot or cold deck imputation (Chen & 
Shao, 1999), substitution, parametric and semi 
parametric modeling techniques (Rotnitzky, et 
al., 1998; Robins, 1995), and multiple 
imputation (Little & Rubin, 2002). More 
innovative techniques include neural networks 
(Gupta & Lam, 1996), Bayesian models 
(Sebastiani & Ramoni, 2000; Kleinman, et al., 
1998), maximum likelihood estimation 
approaches (Little & Schluchter, 1985; 
Schneider, 2001; Little 1982), and linear and 
generalized linear model imputation assuming 
nonignorable missing data (Greenless, et al., 
1982; Baker & Laird, 1988; Ibrahim, 1990). 

Most of these approaches result in a 
single imputation of the missing data, generating 
one complete data set. Analyses are then applied 
to the complete data set. The results of data 
analysis on single imputation data neither reflect 
the missing-data uncertainty nor on the 

consequence of imputation. Furthermore, 
analyses based on a single imputation may result 
in under-estimated standard errors, incorrect p-
values, and high Type I error rates. This problem 
increases as the rate of missing information and 
the number of model parameters increases 
(Schafer & Olsen, 1998). 

Another method to deal with 
nonresponse is the well-known multiple 
imputation (MI) methodology. This method 
incorporates the uncertainty of the missing data 
into the inference (Rubin, 1987). MI replaces 
each missing item with m values from a 
distribution of likely values. This process 
generates m complete data sets on which the 
same analysis procedure is performed. The final 
inferences combine the individual estimates 
obtained from the m complete data sets, thus 
allowing a researcher to account for the 
variability due to imputation and to analyze the 
data using standard techniques and software 
available for complete datasets (Schafer & 
Olsen, 1998; Schafer, 1997). 

To account for the spatial variability 
inherent in environmental monitoring programs, 
a geostatistical model is considered as the 
imputation model. Kriging and other stochastic 
predictors for spatial data are referred to as 
geostatistical models in the spatial statistics 
literature (Diggle, et al., 1998). Kriging is a 
well-known technique for spatial interpolation 
that generates predictions for the unobserved 
values of the spatial random process at the 
unvisited sites. The kriging estimator is a 
minimum error weighted linear predictor that 
assumes a Gaussian distribution for the random 
process and a model for the variance-covariance 
matrix (see Cressie, 1993 for more details). 
Diggle, et al. (1998) extended the concept of 
geostatistical models to non-Gaussian situations 
within the framework of generalized linear 
models (see McCullagh & Nelder, 1989 for 
more details on generalized linear models). 

In this study MI is explored using 
geostatistical models for handling missing data 
in environmental surveys for item nonresponse. 
An advantage of using geostatistical models in 
MI is the possibility of imputing missing values 
for both continuous and discrete environmental 
variables. 
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Multiple Imputation 
Multiple imputation (MI) is a 

simulation-based approach analyzing missing 
data that incorporates the uncertainty of missing 
data into the inference (Rubin, 1987; Rubin, 
2002, Harrel & Zhou, 2007). In MI, each 
missing datum is replaced by a set of m > 1 
simulated plausible values from their predictive 
distribution creating m complete data sets. Each 
complete data set is analyzed separately. The 
final estimator is the average of the estimators 
obtained in the individual analyses. The 
variability introduced by the m analyses is 
combined with an estimate of the sample 
variance to provide a single variability measure 
for the parameters of interest (Schafer, 1997). 

Following Rubin (1996) and Schafer 

(1997), ˆiQ  is denoted as a point estimate (e.g., 

an estimate of salmon abundance in the State of 
Oregon) of the parameter of interest, Q (e.g., 
salmon abundance in the State of Oregon), 

where i = 1,…,m. Let ˆ
iU   denote the estimated 

variance of ˆiQ  obtained from the ith individual 

analysis, i = 1,…,m. The overall point estimate 
is obtained as 

1

1 ˆ
m

m i
i

Q Q
m =

=   

 
and the overall within imputation variance 
estimate is given by 
 

1

1 ˆ .
=

= 
m

m i
i

U U
m

 

 
The between imputation variance estimate, 
defined as 

2

1

1 ˆ( ) ,
1 =

= −
− 

m

m i m
i

B Q Q
m

 

 
reflects the extra inferential uncertainty due to 
the imputation of the missing data. The total 

variance of mQ , is calculated as 

 

1(1 ) .−= + +m m mT U m B  

 
A confidence interval for the parameter of 

interest, Q, can be obtained as: m df mQ t T± , 

where tdf is the df-quantile of the t-Student 
distribution, and 

2

( 1) 1
( 1)

m

m

mUdf m
m B

 
= − + + 

 

 
denotes the corresponding degrees of freedom 
(Barnard & Rubin, 1999). 

To ensure valid inferences when using 
MI, researchers must assume a mechanism of 
missingness, a model for the complete data 

miss obs( , )f Y Y , and a prior distribution for the 

parameters of the model. A MAR mechanism 
for the missing data was assumed and 
imputations for miss ( )Y s  from the posterior 

predictive distribution of the missing data 

miss obs( | )f Y Y  were generated. The posterior 

predictive distribution of missY  can be obtained 

by Bayes’s Theorem as 
 

miss obs miss obs obs( | ) ( | , ) ( | )df f f
Θ

= Y Y Y Y θ θ Y θ  

(1) 
 
where θ represents the vector of parameters of 
the imputation model for the complete data (e.g.,

miss obs( , )f Y Y ), miss obs( | , )f Y Y θ  is the 

posterior predictive distribution of missY  given 

θ and the observed data (e.g., obsY ), 

obs( | )f θ Y  is the posterior distribution of θ 

given the observed data (e.g., obsY ), and Θ 

denotes the parameter space (Schafer, 1997; 
Little & Rubin, 2002). It can be shown that 

obs obs( | ) ( | ) ( )f L π∝θ Y θ Y θ , where 

obs( | )L θ Y  is the observed data likelihood, and 

( )π θ  is an assumed prior for θ. 
The resulting posterior predictive 

density of miss ( )Y s , miss obs( | )f Y Y , may not 

be a recognizable distribution. Whether the 



MUNOZ, LESSER & SMITH 
 

277 
 

distribution is recognizable depends on the 
assumptions adopted for the conditional 
distributions and the priors. In some cases 

miss obs( | )f Y Y  can be written as the product 

of conditional and marginal known densities.  
In other cases, only an approximation 

can be obtained by means of computational 
analyses such as the Markov Chain Monte Carlo 
(MCMC) methods, which consist of a collection 
of techniques for drawing pseudo random values 
from approximate or exact predictive 
distributions (Schafer, 1997; Gelman, et al., 
1995). These methods include the Gibbs 
sampling algorithm, data augmentation methods, 
the Metropolis-Hasting algorithm and a series of 
hybrid algorithms. 

MCMC is one of the primary methods 
for generating MI’s in nontrivial problems. 
MCMC is discussed in the literature for 
parameter simulation by creating a dependent 
sequence of random draws of parameters from 
Bayesian posterior distributions under 
complicated parametric models (Gilks, et al., 
1996). However, in MI-related applications 
MCMC is used to create a small number of 
independent draws of the missing data from a 
predictive distribution; these draws are then used 
for multiple-imputation inference (Schaffer, 
1997; Rubin, 2003). 

The MCMC methods generate 
sequential realizations of the posterior predictive 

density of miss ( )Y s , ( )
miss{ ( ) : 1, 2,...}t t =Y s . 

Each term in the sequence (e.g., ( )
miss ( )tY s ) 

depends on the preceding one, and the limiting 
distribution of the sequence converges to the 
posterior predictive density of miss ( )Y s . These 

methods are attractive because the convergence 
of the MCMC algorithms does not require that 
the starting values for the distribution of 

miss ( )Y s  to be actual realizations of the 

posterior predictive density of miss ( )Y s . Close 

starting values are recommended, however, to 
assure faster convergence (Gelman & Rubin, 
1992; Shafer, 1997). Finally, the posterior 
predictive mean is defined as the expected value 
of the posterior predictive distribution of Ymiss,

miss obs( | , )E Y Y θ . Diagnostic assessment of the 

convergence of the MCMC chains can be made 
using the convergence diagnostics of Geweke 
(1992) and Heidelberger and Welch (1983). 
Both convergence diagnostics assess the 
stationary distribution assumption of the chain. 
 
Geostatistical Models 

In environmental science, researchers 
use geostatistical techniques to model 
environmental processes that evolve in space 
and time. Geostatistical models are proposed 
(Handcock & Stein, 1993; Le & Zidek, 1992; 
Diggle, et al., 1998; Diggle & Ribeiro, 2002; 
Christensen & Waagepetersen, 2002) in 
conjunction with MI (Schafer, 1997; Rubin, 
1996; Little & Rubin, 2002) to handle missing 
data in environmental surveys. 

An environmental process of interest is 
generated by an unobserved spatial random 
field, Y , defined over a continuous region of 

interest, 2RD ⊂ . ( )Y s  denotes the outcome of 
the process of interest at location s, and s be the 
coordinates of a site or point in D, D∈s . The 
observed data is collected from a finite number 
of sites, 1 2{ , ,..., }nS = s s s . The sites can be 

selected either from a probability or a non-
probability sampling design. Missing data 
occurrs in n1 of the n sites, with n1 < n. 

For each point s in D, the random 
process of interest, Y, has a distribution with 
mean μ(s), [ ( )] μ( )E Y =s s . A continuous 
differentiable function g of μ exists, such that 

[ ]μ( ) β ( ) ( )g Z ε= + +s X s s , where X is a 

vector of covariates, correlated with the random 
process Y, that is available at the site level, and β 
is a vector of unknown parameters. Z denotes a 
spatial random effect with mean 0 and its 

variance-covariance matrix 2 ( )Zσ R θ . ( )R θ  is a 

correlation matrix. This correlation matrix is a 
function of the distance between two sites and θ
, where θ  is a vector of unknown correlation 

parameters and 2
Zσ  is the unknown structural 

parameter or constant variance. In addition, ε 
denotes an independent non-spatial random 
effect with mean 0 and variance-covariance 

matrix 2
εσ I . In this case, 2

εσ  represents the 

classical nugget effect and captures 
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measurement error or a combined effect of 
measurement error and any small scale spatial  
variation (Diggle & Ribeiro, 2002). 

The posterior predictive density 

miss ( )Y s  is obtained by integrating the 

following expression with respect to the 

parameters β, θ, 2
εσ  and 2

Zσ  (see Equation 1) 

is: 
2 2

miss obs

2 2
obs

2 2
miss obs

2 2 2
obs

2
obs obs

2 2 2
obs

( | , , , , , )

    ( , , , , | )

( | , , , , , )

    ( | , , , , ) ( | , )

  ( | ) ( | )

   ( | ) ( ) ( ) ( ) ( )

Z

Z

Z

Z s

Z Z

f

f

f

f f

f f

f

ε

ε

ε

ε

ε

ε

σ σ

σ σ

σ σ

σ σ σ

σ

σ π π π σ π σ

∝

×

Y Y β θ Z

β θ Z Y

Y Y β θ Z

β Y θ Z Z θ

θ Y Y

Y β θ

 

 
An exact expression for the integral will 

depend on the distribution (such as normal, 
Poisson, gamma, Bernoulli, binomial) assumed 
for the complete data, miss obs( , )f Y Y , the 

distributions assumed for the two random 

components of the model, 2( | , )Zf σZ θ  and 

2( | )f εσε , and the priors assumed for the 

parameters, 2 2( ), ( ), ( ) and ( )Zεπ π π σ π σβ θ . 

Diggle and Ribeiro (2002), Handcock and Stein 
(1993) and Omre and Halvorsen (1989) 
investigated the case assuming a Gaussian 
distribution for the data and a number of prior 
distributions for the parameters; their results are 
applied when selecting appropriate priors for the 
simulation and illustrative examples herein. 
 

Methodology 
The use of MI with a geostatistical model was 
assessed in a simulation. In addition, these 
procedures were applied to data collected from a 
2002 probability survey of Coho salmon located 
in streams in western Oregon watersheds. 
 
Simulation Example 

One realization from a multivariate 
normal process with mean vector equal to 0, and 
a variance covariance matrix equal to 

2 2( )Z εσ σ+R θ I  over a 21 by 21 regular grid was 

generated and variances were chosen to be 

unequal and small. The variance, 2 0.8Zσ =  is 

the variance of the latent spatial random process 

and 2 0.2εσ =  is the variance of the non-spatial 

random process. ( )θR  denotes the one-
parameter 21 by 21 correlation matrix generated 
assuming an exponential correlation function, 

|| ||/i je θ−s s
 , with si and sj denoting two different 

sites, and 2θ =  denoting the maximum distance 
where correlation between two sites is expected.  

The parameter θ  is known as the scale 
parameter and controls how fast the correlation 
decays with distance. Large values of θ  
correspond to a strong spatial correlation and 
small values to a weak spatial correlation. I is 
the 21 by 21 identity matrix. This simulated 
process accounts for spatial variation and 
measurement error. The collection of 441 
observations defines the population values. 

To induce a missing at random (MAR) 
mechanism on the response, stratification was 
imposed to the region of interest by dividing it 
into seven equal area vertical regions and then 
assigning a different response rate to each 
stratum; each stratum consists of 63 sites. 
Specification of the response rate range was 
based on the observed response rates from seven 
environmental surveys ranging from 0.69 to 
0.90, as reported by Herger and Hayslip (2000) 
and Flitcroft, et al (2002). A range of response 
rates from 0.70 to 0.90 was assumed and 
randomly assigned to the seven strata. Within 
each stratum, 63 values of a uniform random 
variable P was assigned randomly to the 63 
sites. A site, s, if selected, would be missing if 

( ) 1P α≤ −s , where ( )P s  denotes the value of 
the random variable P assigned to the site s, and 
α denotes the stratum response rate. 

Samples of size n = 152 were selected at 
random using equal allocation. Missing rates of 
5%, 15%, 25%, 35% and 45% were assumed. 
For each missing rate, the number of missing 
sites in the sample was allocated proportional to 
the stratum response rates.  Using the same 
sampling design,  2,000 samples of size 152=n  
were generated. The Horvitz-Thompson (HT) 
mean and variance estimators for the continuous 
domain (Cordy, 1993) were calculated under the 
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following settings: (1) the observed data; (2) hot 
deck imputation; (3) a single imputation 
obtained from the geostatistical imputation 
model; (4) the predictive posterior mean 
imputation calculated as the mean of 
independent realizations from the predictive 
posterior distribution at each missing site; (5) 
hot deck multiple imputation using five and ten 
multiple imputations for the missing data and (6) 
multiple imputations for the predictive posterior 
mean imputation using five and ten multiple 
imputations for the missing data. 

For the single and multiple imputation 
approaches, a multivariate mixed Gaussian 
model with constant mean β and variance 

covariance matrix 2 2( )Z εσ θ σ+R I  was assumed. 

( )θR is a correlation matrix that is a function of 
the distance between sites and an unknown 
parameter θ. The parameters of the posterior 
distribution were estimated by implementing 
MCMC techniques using a MATLAB program 
(Smith, 2004). An exponential correlation 
function and a uniform prior for β, an 
exponential prior for the correlation parameter 
with mean 1, and an inverse gamma distribution 
with parameters 0.1 and 10α β= = for the 

variance parameters 2
Zσ  and 2

εσ  were assumed. 

As discussed by both Diggle and Ribeiro (2002) 
and Banerjee, et al. (2004), these prior selections 
lead to proper posterior distributions. 

Imputation values for the missing data 
were obtained after verifying that the sample 
auto-correlations of the MCMC traces were less 
than 0.01 to ensure independence of the MCMC 
realizations. Values were randomly selected 
from the collection of independent realizations 
and used for the single and multiple imputations. 
 
Salmon Example 

This approach was illustrated with the 
2002 winter Coho salmon spawning probability 
survey conducted by the Oregon Department of 
Fish and Wildlife (ODFW). This survey 
provides annual inventories of the Coho salmon 
abundance in streams located within western 
Oregon watersheds. These streams drain into the 
Pacific Ocean south of the Columbia River and 
are considered suitable habitat for salmon 
(Flitcroft, et al., 2002). The target population 

consists of all streams located in a United States 
Geographical Survey (USGS) hydrography data 
layer of Oregon, except those streams located 
upstream of large dams that blocked 
anadromous fish passage (Flitcroft, et al., 2002). 

The ODFW uses a generalized random 
tessellation stratified (GRTS) probability design 
(Stevens & Olsen, 1999) to select the sample site 
locations within the population of stream 
segments. The objective of these surveys is to 
estimate spawning Coho salmon abundance in 
both the entire area as well as within five 
monitoring areas (MA): North Coast, Mid Coast, 
Mid South Coast, Umpqua and South Coast. 

Approximately 120 sites are selected per 
year within each MA, except in the South Coast 
MA where the sample size is about 60 sites per 
year. A total of 495 sites were surveyed in 2002. 
An additional 61 sites were originally selected in 
the sample but not visited because of time 
constraints or inaccessibility of the site location, 
resulting in 11% missing rate. It was assumed 
that these missing values resulted from a MAR 
mechanism. Figure 1 shows the location of the 
surveyed and missing sites corresponding to the 
year 2002. Stars represent surveyed sites, and 
open dots denote the missing sites in the same 
year. Each sampling site is approximately one-
mile in length. At each selected site, counts of 
spawning Coho are obtained by visual 
observation. The population abundance of 
returning adult Coho in individual sites is 
estimated using area-under-the curve (AUC) 
techniques (Jacobs, et al., 2002). 

Let iY  denote the total number 

(abundance) of spawning Coho salmon observed 
at site is  in 2002 and il  be the length of the site 

is (in kilometers). Let iλ  be the density of 

spawning Coho salmon (counts per kilometer) at 
site is , 1, ,i n=  , where n is the total number 

of surveyed sites. The total number of spawning 
Coho salmon at each site, iY , was assumed a 

noisy version of an unobserved spatial random 
process Zi, and that conditional on Zi, Yi has a 
Poisson distribution with mean i il λ . In other 

words, ( )| ~ Poissoni i i iY Z l λ , where 

log( )i i i iZλ μ ε= + + , where iμ  denotes a 
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systematic component, iZ  denotes the spatial 

random component and iε  the non-spatial 

random component, 1, ,i n=  . 
The systematic component is assumed 

constant within each MA: 
 

4

0
1

i j ij
j

xμ β β
=

= +  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where 1 2 3 4, ,  and β β β β are the regression 

coefficients measuring the MA effects (North 
Coast, Mid-Coast, Mid-South and Umpqua, 
respectively, compared to the South Coast MA). 
The variable ijx , is denoted by the value 1 if the 

thi  site is located in MA j, and 0 otherwise, 
1, ,i n=  , 1, 2,3, 4.j =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1: Site Locations for ODFW 2002 Spawning Locations 
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The spatial random process Z is 
assumed to have a multivariate normal 
distribution with 0 mean vector and variance-

covariance matrix given by 2 ( )Zσ θR , where θ is 

the spatial correlation parameter, and 
|| ||/( ) i j

ijR e θθ −= s s
 denotes the exponential 

model. The non-spatial random effects, iε , are 

assumed to be independent and normally 

distributed with mean 0 and variance 2
εσ . 

All parameters are assumed 
independent; vague prior distributions for the 
parameters were also assumed based on 
discussions from scientists experienced with 
these studies. An inverse-gamma 

( 0.1, 10)α β= =  prior for 2 2 and Z εσ σ , which 

has a wide distribution due to a long tail, and a 

proper prior 2( ) 1/π θ θ=  for θ  on the interval 
[0.01,50] was assumed. Selection of the upper 
limit of 50 kilometers was based on the 
assumption that it is unlikely to observe spatial 
correlation beyond this value. For the 
components of β , independent improper 
uniform priors were used. Mathematical 
expressions for the marginal posterior 
distributions follow those presented in 
Christensen and Waagepetersen (2002). 

A MATLAB program was used to 
obtain realizations from the posterior 

distributions of θ , 2
Zσ  and 2

εσ , and each of the 

elements of Z and β  (Smith, 2004). The MCMC 
simulation was run for 250,000 iterations after a 
250,000 burn-in period. In order to reduce serial 
correlation in the simulated values, particularly 
in the chain for the parameter θ , each chain was 
re-sampled to obtain a final sample of 2,500 
values of almost uncorrelated values (auto-
correlation = 0.01) from the posterior for 

2 2, ,Z εθ σ σ  and each of the elements of ,  β Z , 

and log( )λ . 
 

Results 
Simulation Example 

The Geweke’s statistics and two sided 
p-value for the model parameters 

2 2, ,  and Z εβ θ σ σ are 0.107 and 0.915; 0.875 and 

0.382; 0.871 and 0.384; and 0.826 and 0.401, 
respectively, suggesting no evidence exists 
against convergence for each parameter. Similar 
results were achieved with the Heidelberger and 
Welch test for the model parameters, suggesting 
that chain convergence was achieved 
immediately after the 10,000 burn-in period for 
each model parameter (p-values for 

2 2, ,  and Z εβ θ σ σ are 0.552, 0.891, 0.926 and 

0.784, respectively). 
Table 1 shows the simulated root mean 

squared error (RSME), the average width of the 
95% confidence interval, and the coverage rate 
of the simulated 95% confidence interval for 
each missing rate. A number of observations can 
be made from this simulation. As the percentage 
of missing data increases, the coverage rate 
decreases. As the missing rate increases, the 
imputation approaches all appear to be much 
closer to the 95% coverage as compared to the 
observed data. The multiple imputation 
approaches increase the RMSE slightly as 
compared to the simple and posterior mean 
imputation approach. In general, all multiple 
imputation methods (M = 20 not shown) 
performed similarly suggesting that there is no 
considerable gain in precision with more than 5 
imputations. 
 
Salmon Example 

Sensitivity to selection of hyper-
parameters was explored and no meaningful 
change was observed in the results. The 
convergence of the MCMC traces was assessed 
with the Geweke’s statistic and the Heidelberger 
and Welch test. The Geweke’s statistics and two 
sided p-values for the model parameters 

2 2
0 1 2 3 4, , , , , ,  and Z εβ β β β β θ σ σ  are −0.052 and 

0.959, −1.081 and 0.230, 0.222 and 0.824, 
−0.154 and 0.878, -−0.240 and 0.810, −0.588 
and 0.556, 0.910 and 0.363, and 0.551 and 
0.5821, respectively, suggesting that no 
evidence exists against convergence for each 
parameter. Similar results were achieved with 
the Cramer-von-Mises statistics for the model 
parameters, suggesting that chain convergence 
was achieved for each model parameter (p-
values: 0.886, 0.753, 0.921, 0.989, 0.667, 0.410, 
0.944, and 0.366). As a result, the iterations  
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Table 1 Simulated Root Mean Squared Error (RMSE) of the Mean Estimate, Average Width and Coverage 
Rate of the 95% Confidence Interval for 5%, 15%, 25%, 35% and 45% Missing Rates 

Missing 
Response Rate 

Analysis Method RMSE × 100 
Width of 

Interval × 100 
Coverage 

Rate(%) × 100 

5% Missing 

Observed Data 5.502 21.569 95.10 
Single Posterior Imputation 5.425 21.266 95.85 
Hot Deck Imputation 5.677 21.319 96.11 
Posterior Mean Imputation 5.423 21.259 96.00 
Multiple Imputation (M=5) 5.446 21.349 95.94 
Multiple Imputation (M=10) 5.446 21.351 96.00 
Hot Deck Multiple Imputation (M=5) 5.601 21.956 93.80 
Hot Deck Multiple Imputation (M=10) 5.553 21.768 94.10 

15% Missing 

Observed Data 5.480 21.482 92.05 
Hot Deck Imputation 5.509 20.693 93.81 
Single Imputation Data 5.264 20.636 94.55 
Predictive Posterior Mean Imputation 5.259 20.615 94.65 
Multiple Imputation (M=5) 5.280 20.700 94.83 
Multiple Imputation (M=10) 5.279 20.705 94.85 
Hot Deck Multiple Imputation (M=5) 5.432 21.293 93.20 
Hot Deck Multiple Imputation (M=10) 5.354 20.988 93.73 

25% Missing 

Observed Data 5.477 21.468 88.40 
Single Imputation Data 5.103 20.001 93.10 
Hot Deck Imputation 5.174 20.056 93.36 
Predictive Posterior Mean Imputation 5.093 19.964 92.90 
Multiple Imputation (M=5) 5.111 20.035 90.14 
Multiple Imputation (M=10) 5.110 20.051 93.35 
Hot Deck Multiple Imputation (M=5) 5.382 21.097 90.21 
Hot Deck Multiple Imputation (M=10) 5.313 20.827 93.23 

35% Missing 

Observed Data 5.490 21.519 82.20 
Single Imputation Data 4.944 19.381 91.45 
Hot Deck Imputation 5.174 19.434 91.70 
Predictive Posterior Mean Imputation 4.931 19.330 91.20 
Multiple Imputation (M=5) 4.952 19.414 92.00 
Multiple Imputation (M=10) 4.950 19.433 91.90 
Hot Deck Multiple Imputation (M=5) 5.264 20.634 89.23 
Hot Deck Multiple Imputation (M=10) 5.271 21.662 90.30 
Observed Data 5.480 21.483 73.05 

45% Missing 

Single Imputation Data 4.810 18.854 91.55 
Hot Deck Imputation 5.033 18.837 91.80 
Predictive Posterior Mean Imputation 4.792 18.785 90.85 
Multiple Imputation (M=5) 4.811 18.863 91.24 
Multiple Imputation (M=10) 4.809 18.887 91.45 
Hot Deck Multiple Imputation (M=5) 5.124 20.086 88.70 
Hot Deck Multiple Imputation (M=10) 5.212 20.431 89.23 
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( ) ( ) 2( ), , ,t t t
Zθ σβ  2( ) ( ),t tZεσ  and ( )( )log tλ  for 

1,  ,  2,500= t  can be treated as a sample 
from the joint posterior distribution 

( )2 2log( ), , , , , |Zp εθ σ σλ Z β Y . 

The posterior mean, median and the 
95% Bayesian credible interval for each of the 
parameters in the model are shown in Table 2. 
The regression coefficients for the region 
covariates indicate that the MAs Mid-Coast, 
North Coast, Mid-South Coast and Umpqua tend 
to have a higher abundance of spawning Coho 
salmon than the MA South Coast. In addition, 
the posterior 95% Bayesian credible intervals for 
all region parameters except the Mid-Coast 
include zero, suggesting that all MAs except the 
Mid-Coast have a similar abundance of 
spawning Coho salmon. 

The quantiles for 2
Zσ  (1.93; 4.73) (on 

the log scale) are above zero, indicating that 
after the inclusion of the five-level region 
covariates in the model there is substantial 
unexplained spatial variation left in the model. 
The 0.025 and 0.975 quantiles for the distance-
scale parameter θ  (8.50; 34.66) (in kilometers) 
indicate that there is significant spatial 
dependence after the inclusion of the five-level 

region covariate. The quantiles for 2
εσ  (0.82; 

1.95) (on the log scale) are above zero,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

indicating that after the inclusion of the five-
level region covariate and the spatial random 
effect, some additional variability may be 
attributed to observation error and other small-
scale variation not accounted for in the model. 

Using the 2,500 iterations of the 
posterior predictive parameters, the geostatistical 
imputation model is compared with hot deck 
imputation. The single imputation method was 
obtained by selecting one independent draw 
from the posterior predictive distribution. 
Multiple imputation was used to assess the 
impact of the error for this method using five 
and ten draws.  This method was compared to 
the hot deck imputation, also employing both 
five and ten imputations.  

Finally, the mean of the 2,500 values 
from the predictive posterior distribution of each 
missing site was used to estimate the predictive 
posterior mean for the missing site. These 
imputation methods are compared with the 
complete observed data ignoring the missing 
values. The predicted values were back 
transformed and the Horvitz-Thompson (HT) 
estimator for the total estimate for the abundance 
of spawning Coho salmon, the standard error 
using the local-variance estimator (Stevens & 
Olsen, 2003), and the 95% confidence intervals 
for the total were calculated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Mean, Median, and 95% Bayesian Credible Intervals for the Parameters of the Model 
Parameter Mean Median 0.025 Quantile 0.975 Quantile 

0β  (South Coast) 0.17 0.16 -1.06 1.41 

1β  (North Coast) 1.64 1.67 -0.19 3.39 

2β  (Mid-Coast) 2.48 2.50 0.87 4.07 

3β  (Mid-South) 1.52 1.51 -0.03 3.11 

4β  (Umpqua) 1.28 1.28 -0.16 2.68 

θ  17.49 16.10 8.50 34.66 

2
Zσ  3.07 2.98 1.93 4.73 

2
εσ  1.39 1.39 0.82 1.95 
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Table 3 shows a summary of the results; 
the total estimate using only the observed data 
provides the lowest total counts estimate of all 
approaches. No adjustment for missing data was 
made for this estimate. Examination of the data 
reveals that the highest level of missing data was 
found in the Mid-Coast and the highest 
abundance values were located in this region. 
All imputation methods that made adjustments 
for this differential nonresponse across regions 
provided larger total estimates than the observed 
data.  

The single posterior imputation obtains 
just one draw and may be more variable than an 
imputation based on multiple or the mean of 
multiple draws. The standard error for the MI 
method is larger than that obtained with the 
other methods: : this was expected because MI 
accounts for uncertainty due to the imputations 
(Schafer, 1997). As a result, the 95%  
confidence intervals using only the observed 
data (ignoring the missing values), single 
imputation and mean imputation, are less 
conservative than that which uses multiple 
imputation. 
 

Conclusion 
Statistical techniques that incorporate the spatial 
structure of the data in the random and/or 
systematic part of a model are currently used for 
modeling environmental phenomena, either 
discrete or continuous. Therefore, it seems 
natural to explore the efficiency of a multiple 
imputation approach that incorporates the spatial 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

structure of the latent process while accounting 
for missing data. The use of generalized mixed 
models to account for the missing data in 
environmental surveys was explored in this 
article. Generalized mixed models are recent 
techniques used for modeling environmental 
phenomena in an attempt to capture any spatial 
and/or temporal structure in the data. The 
possibility of implementing generalized linear 
models to different data distributions make them 
appealing for handling missing data in 
environmental surveys. Evaluations of the 
selection of the priors and the model 
specifications are performed before any 
imputation is conducted. This allows the 
researcher to explore different models for the 
covariance matrix and different priors that may 
better reflect the study data. 

Simulation results from this study 
suggest that all imputation methods perform 
well at 5% and 15% missing rates. When the 
missing rate is 15% or higher, the performance 
of the statistics decays similarly for all 
techniques considered. However, the coverage 
rates for the 95% confidence intervals for all 
imputation methods are improved over no 
imputation. The performance of the statistics 
observed with 5 and 10 multiple imputations at 
all response rates, suggests that as in human 
populations (Schafer, 1997, Little & Rubin, 
2002), little is gained when the number of 
imputations exceeds 5. 

The method was illustrated by 
estimating   the   mean   of   an  environmental 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Total, SE and 95% Confidence Intervals for the Abundance of Spawning 
Coho Salmon (Total counts of Spawning Coho Salmon) in the Oregon Coast 

Imputation Technique Total SE 
0.025 

Quantile 
0.975 

Quantile 

Observed Data (No Imputation) 227,885 16,648 195,255 260,514 

Hot Deck Imputation 249,271 16,966 216,018 282,524 

Single Posterior Imputation 238,185 16,919 205,023 271,346 

Posterior Mean Imputation 250,921 16,519 218,543 283,298 

MI Hot Deck (m=5) 257,931 18,193 222,274 293,589 

MI Posterior (m=5) 250,213 21,689 206,302 294,127 
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variable, the abundance of spawning Coho 
salmon in the Oregon coastal streams. It is 
expected that multiple imputation methods 
which incorporate auxiliary information into the 
systematic part may render better results than the 
observed data. By incorporating auxiliary 
variables correlated with the process of interest 
into an imputation geostatistical model, the 
variances of the spatial component and the 
measurement error may be reduced resulting in 
narrowed posterior prediction intervals for the 
missing data. This implies that imputations may 
be closer to the unobserved true value, which 
will improve the imputation results. However, 
given the variability expected in natural 
environments, it is important to account for the 
imputation error through a multiple imputation 
approach. 
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