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Estimations on the Generalized Exponential Distribution Using Grouped Data 
 

Hassan Pazira Parviz Nasiri 
Payame Noor University of Tehran 

Tehran, Iran
 

 
Classical and Bayesian estimators are obtained for the shape parameter of the Generalized-Exponential 
distribution under grouped data. In Bayesian estimation, three types of loss functions are considered: the 
Squared Error loss function which is classified as a symmetric function, the LINEX and Precautionary 
loss functions which are asymmetric. These estimators are compared with the corresponding estimators 
derived from un-grouped data empirically using Monte-Carlo simulation. 
 
Key words: Generalized-Exponential; Bayesian estimation; Grouped data; LINEX loss; Precautionary 
loss; Newton-Raphson method; Fisher's information number; Monte-Carlo simulation. 
 
 

Introduction 
In various fields of science such as biology, 
engineering, and medicine it is not possible to 
obtain the measurements of a statistical 
experiment exactly, but is possible to classify 
them into intervals, rectangles or disjoint subsets 
(Alodat & Al-Saleh, 2002; Heitjan, 1989; Surles 
& Padgett, 2001; Wu & Perloff, 2005; Pipper & 
Ritz, 2006). For example, in life testing 
experiments, the failure time of a component 
may be observed to the nearest hour, day or 
month. Data for which true values are known 
only up to subsets of the sample space are called 
grouped data. In general, grouped data can be 
formulated as follows: Let nXXX ,...,, 21  be a 

random sample from the density 

Θ∈∈ θχθ ,,);( xxf  and 
121 ,...,, +kχχχ  be a 

partition of the sample space χ  and =jN  the 

number of 'jX s that fall in jχ  for j 1,2,..., k 1.= +  

The set of pairs { }),(...,),,( 1111 ++ kk NN χχ  is 
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called grouped data, and these data are used to 
draw inferences about the parameter θ . Due to a 
lack of complete information about the sample, 
there is a loss in information due to the 
grouping. Schervish (1995, p. 114), shows the 
following 
 

[ ])|()()( | YIEII YXYX θθθ θ+=  

 
where )(θXI  and )(θYI  are Fisher's information 

numbers obtained from X  and Y , respectively, 

and [ ])|(| YIE YX θθ  is the conditional score 

function. If Y  is replaced by the grouped sample 

),...,,( 121 += kNNNn , then )()( θθ nX II ≥  for all θ , 

meaning that the information in the sample X  

about θ  is reduced to )(θnI  due to grouping. 

Kuldorff (1961) considered non-
Bayesian estimation from grouped data when the 
data were from normal and exponential 
distributions. Alodat and Al-Saleh (2000) 
considered the Bayesian estimation from 
grouped data when the underlying distribution is 
exponential. Alodat, et al. (2007) obtained 
Bayesian prediction intervals from grouped data 
when the underlying distribution is exponential. 
Aludaat, et al. (2008) obtained the Bayesian and 
non-Bayesian estimation from grouped data 
when the underlying distribution is Burr type X. 
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Recently a new distribution, called the 
Generalized-Exponential (GE) distribution, has 
been introduced. This distribution can be used 
quite effectively in situations where a skewed 
distribution is needed. It has been studied 
extensively (Gupta & Kundu, 1999, 2001a, 
2001b, 2002, 2003a, 2003b, 2004; Raqab, 2002; 
Raqab & Ahsanullah, 2001; Zheng, 2002; 
Kundu, Gupta & Manglick, 2004). Singh, et al. 
(2008) estimated the parameters of this 
distribution under some symmetric and 
asymmetric loss functions using Lindley’s 
approximation technique. Note that the 
generalized exponential distribution is a sub-
model of the exponentiated Weibull distribution 
introduced by Mudholkar and Srivastava (1993) 
and later studied by Mudholkar, Srivastava and 
Freimer (1995) and Mudholkar and Hutson 
(1996). Also recently, Nasiri and Pazira (2010) 
conducted Bayesian and non-Bayesian 
estimations on the Generalized Exponential 
distribution in the presence of outliers. 

This articles considers the group data 
problem when the density );( θxf  is 
Generalized-Exponential, that is, 
 

x x 1f (x ; ) e (1 e ) ; x 0, 0− − θ−θ =θ − > θ > ,  (1) 
 
and the corresponding distribution function is 
 

xF(x ; ) (1 e ) ; x 0, 0− θθ = − > θ > .      (2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The density functions of the generalized 
exponential distribution can take different 
shapes. For 1≤θ , it is a decreasing function and 
for 1>θ , it is a unimodal, skewed, right tailed 
similar to the Weibull, or gamma density, 
function. It is observed that even for very large 
shape parameter (θ ), it is not symmetric. For 
this density function (1), the mode is at θlog  for 

both 1>θ  and 1≤θ , the mode is at 0 and the 

median is at )5.01(ln θ−− . The mean, median 
and mode are non-linear functions of the shape 
parameter θ  and, as this parameter goes to 
infinity, all of them tend to infinity. For large 
values of θ , the mean, median and mode are 
approximately equal to θ  but they converge at 
different rates. Figure 1 shows the shape of 

);( θxf  for different values of θ . 
 
Likelihood Function and M.L.E from Grouped 
Data 

The likelihood density based on the 
grouped data is derived as follows. Let 

nXXX ,...,, 21  be a random sample from GE(θ ). 

Assume that the sample space of );( θxf  is 

partitioned into 1+k  equally-spaced intervals as 
follows. Let kjjjI j ...,,1,),)1[( =−= δδ  and 

0,),[1 >∞=+ δδkIk . If jN  denotes the number of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: PDF of GE(θ ) for Different Values of θ  
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'jX s that fall in 1...,,2,1, += kjI j , then 

11 ... +++= kNNn . Let 

 

( )
( ) ( )

j j

j

j ( j 1)

P P ( )

P(X I )

P ( j 1) X j

1 e 1 e ,
θ θ− δ − − δ

= θ

= ∈

= − δ < < δ

= − − −

 

 
for kj ...,,1=  and 
 

θδδθ )1(1)()(11
k

kk ekXPPP −
++ −−=>== . 

 
If 

),1log( )1( δ−−−= j
j eA

 
then 

j 1 jA A

jP e e ,+θ θ= −
 

 
for kj ...,,1=  and 

111
+−=+

kA
k eP θ

. 

 
Thus, the density of ),...,,( 121 += kNNNn  is 

given by the multinomial distribution as follows: 
 

( ) ( )

1 k 1

k 1 j
k 1 j 1 j

n n

1 k 1

1 k 1

kn nA A A

j 1

n!
f (n ; ) P ...P

n !...n !

C 1 e e e

+

+
+ +

+
+

θ θ θ

=

θ =

= − ∏ −
 (3) 

 
where C is a normalizing constant. 

Next, find the MLE of θ  based on the 
density (3) by maximizing the log-likelihood 
function 
 

j 1 j

k 1

k
A A

j
j 1

A

k 1

log f (n ; ) consta nt n log(e e )

                    n log(1 e ).

+

+

θ θ

=

θ
+

θ = + −

+ −
 
The first derivative of the log-likelihood is 
 

j 1 j k 1

j 1 j k 1

A A Ak
j 1 j k 1

j k 1A A A
j 1

log f (n ; )

A e A e A e
   n n

e e 1 e

+ +

+ +

θ θ θ
+ +

+θ θ θ=

∂ θ =
∂θ

−
 −

− −

. 

(4) 
 
The M.L.E for θ  is the solution of 

0);(log =∂∂ θθnf , so the M.L.E is θ̂  such 
that 
 

j 1 j k 1

j 1 j k 1

ˆ ˆ ˆA A Ak
j 1 j k 1

j k 1ˆ ˆ ˆA A Aj 1

A e A e A e
n n .

e e 1 e

+ +

+ +

θ θ θ
+ +

+θ θ θ=

−
 =

− −
(5) 

 

The notation MGθ̂  is used to denote the M.L.E of 

θ  obtained from the grouped data. The Newton-
Raphson method can be used to solve (5), thus, 
the solution of the equation is 
 

i
i 1 i

i

h( )
; i 1,2,3,...

h ( )+

θ
θ = θ − =

′ θ
.       (6) 

where 
 

i j 1 i j

i j 1 i j

i k 1

i k 1

A A
k

j 1 j
i j A A

j 1

A

k 1
k 1 A

A e A e
h( ) n

e e

A e
            n

1 e

+

+

+

+

θ θ
+

θ θ=

θ
+

+ θ

−
θ = 

−

−
−

,

 

and 
 

( )

( )

i j j 1

i j 1 i j

i k 1

i k 1

(A A )2k
j 1 j

i j 2A Aj 1

A2
k 1

k 1 2A

(A A ) e
h ( ) n

e e

A e
               n

1 e

+

+

+

+

θ +
+

θ θ=

θ
+

+ θ

−
′ θ = −

−

−
−

.

 

 
Here, the initial solution 0θ  should be selected 

from the M.L.E of θ  based on the un-grouped 
data. Gupta and Kundu (1999 & 2001a) showed 
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that the M.L.E of θ  based on the un-grouped 
sample nXXX ,...,, 21  is 

 

)1(log

ˆ

1

iX
n

i

M

e

n
−

=
−

−=θ .                  (7) 

 
Fisher’s Information Number 

To find the Fisher’s information number 
contained in the grouped sample about θ , find 
the expectation of the second derivative of the 
log-likelihood 
 

)()(
);(log

211
1

2

2

θθ
θ

θ Ψ−Ψ−=
∂

∂
+

=
kjj

k

j
nnnf

 
(8)

 where 

( ) 2

)(2
1

1
1

1)(
)(

jj

jj

AA

AA
jj

j
ee

eAA
θθ

θ

θ
−

⋅−
=Ψ

+

++
+

 

and 

( )2

2
1

2
1

1

1
)(

+

+

−

⋅
=Ψ +

k

k

A

A
k

e

eA
θ

θ

θ . 

 
If )(θGI  denotes the Fisher’s 

information number from grouped data, then 
 









∂

∂−=
2

2 );(log
)(

θ
θθ nfEIG , 

 
and, because jj nPNE =][ , 

 

k 1j j 1

j 1 j k 1

k

G j 1j k 1 2
j 1

A(A A ) 22k
k 1j 1 j

A A A
j 1

I ( ) E N ( ) N ( )

A e(A A ) e )
n n

e e 1 e

++

+ +

+
=

θθ +
++

θ θ θ=

 θ =  Ψ θ + Ψ θ  

−
=  +

− −
(9) 

 
Using )(θGI , a large sample (1-α )100% 

confidence interval for θ  can be found as 
follows: 

1
2/1 )ˆ(ˆ −

−± MGGMG IZ θθ α .         (10) 

Simple calculations can show that the Fisher’s 
information number about θ  in a random 
sample nXXX ,...,, 21  from (1), that is, from un-

grouped data, is 2/)( θθ nI = . 
 
Bayesian Estimation 

In classical statistics, the likelihood of 
the data, );()( θθ nfL = , is used to estimate the 

parameter θ . In Bayesian statistics, it is 
assumed that θ  has a prior distribution, for 
example, )(θπ . The likelihood data is then 
combined with the prior distribution to obtain 
the posterior distribution )|( nθπ . Herein, three 
loss functions based on the grouped data are 
used.  

First the squared error loss function, that 
is a symmetric loss function, and with respect to 
it, the posterior mean is used to estimate θ , for 

example BSGθ̂ , because it minimizes the 

posterior expected loss, ]|)ˆ[( 2 nE θθ − . The 
second is the asymmetric LINEX loss function, 
which was introduced by Varian (1975). These 
loss functions were widely used by several 
authors; among of them Basu and Ebrahimi 
(1991), Pandey (1997), Soliman (2000) and 
Nassar and Eissa (2004). The LINEX loss 
function may be expressed as 
 

cL( ) b(e c 1), c 0, b 0ΔΔ = − Δ − ≠ > ,  (11) 
 
where b and c are the scale and shape 

parameters, respectively, and θθ −=Δ ˆ . The 
sign and magnitude of the shape parameter c 
reflects the direction and degree of asymmetry, 
respectively. (If 0>c , the overestimation is 
more serious than underestimation, and vice-
versa). For c close to zero, the LINEX loss is 
approximately squared error loss and therefore 
almost symmetric. The posterior expectation of 
the LINEX loss function equation (11) is 
 

ˆc cˆ ˆE[L( ) | n ] e E[e | n ] c( E[ | n ]) 1θ − θθ − θ ∝ − θ − θ −
(12) 

 
where ]|[. nE  denotes posterior expectation 

with respect to the posterior density of θ . Based 
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on results from Zellner (1986), the (unique) 

Bayes estimator of θ , denoted by BLGθ̂  under 

the LINEX loss is the value θ̂  which minimizes 
(12), is given by 
 

( )]|[ln
1ˆ neE
c

c
BLG

θθ −−= ,            (13) 

 
provided that the expectation ]|[ neE cθ−  exists 
and is finite (see Calabria & Pulcini, 1996), then 
the precautionary loss function introduced by 
Norstrom (1996) is used. Norstrom introduced 
an alternative asymmetric precautionary loss 
function and also presented a general class of 
precautionary loss function with the quadratic 
loss function as a special case. These loss 
functions approach infinitely near the origin to 
prevent underestimation, thus giving 
conservative estimators - especially when low 
failure rates are being estimated. These 
estimators are very useful when underestimation 
may lead to serious consequences. A useful and 
simple asymmetric precautionary loss function is 
 

θθ
θθθθ

ˆ
)ˆ(

),ˆ(
2−=L .                  (14) 

 
The Bayes estimator under the above 

asymmetric loss function is denoted by BPGθ̂  and 

may be obtained by solving the following 
equation, 
 

)|(

)|(ˆ
1

2

nE
nE

BPG −=
θ
θθ .                 (15) 

 
Note that the special case of the precautionary 
loss function (14) is the same as the entropy loss 
function (for details see Norstrom, 1996). 

The following prior distribution for θ  is 
used to derive an estimate for θ , 
 

1

( ) exp( ); 0
( )

α −

α

θ θπ θ = − θ >
Γ α β β

. 

 

Using the Binomial theorem, the likelihood 
function of the grouped data is re-written as 
follows: 
 

( ) ( )

( )

j
j j j

j 1 jj

j

k 1
k 1

k 1 k 1

k 1

1 k 1
1 k 1 1 k 1

1 k 1

nk n r rA Aj r

j 1 r 0 j

n rr Ak 1

r 0
k 1

n n
k 1 r ... r H(r ,...,r )1

r 1 r 0 k 11

f (n ; )

n
    C ( 1) e e

r

n
( 1) e

r

nn
    C ... ( 1) e

rr

+

+ +
+ +

+

+
+ +

+

−θ θ

= =

θ+

= +

+ + + θ

= = +

θ =

 
= ∏  − 

 
 

         ×  − 
 

  
=  ⋅⋅⋅  −  

   
(16) 

where 
 

k k

1 k 1 k 1 k 1 j j j 1 j j
j 1 j 1

H(r ,..., r ) r A (n r )A r A .+ + + +
= =

= + − +

 
Combining the likelihood information with the 
prior information yields the posterior 
distribution of θ  given n , 
 

1 k 1 1 k 1
1 k 1

1 k 1

0

1n n H(r ,...,r )
k 1 r ... r1 1

r 0 r 0 k 11

( | n)

f (n ; ) ( )
  =

f (n ; ) ( )d

nn
 ( 1) e

rr

+ +
+

+

∞

 −θ − + + + βα−  

= = +

π θ =
θ ⋅π θ

θ ⋅π θ θ

  
∝  ⋅⋅⋅  ⋅⋅⋅ − θ  

   



 
resulting in 
 

1 k 1
1 k 1

1 k 1

1 k 1
1 k 1

1 k 1

1n n H
k 1 r ... r1 1

r 0 r 0 k 11

n n
k 1 r ... r1

r 0 r 0 k 11

( | n)

nn
( 1) e

rr

nn 1
( ) ( 1) H

rr

+
+

+

+
+

+

 −θ − + + + βα−  

= = +
−α

+ + +

= = +

π θ =

  
 ⋅⋅⋅  ⋅ ⋅ ⋅ − θ  

   
    Γ α  ⋅⋅⋅  ⋅ ⋅ ⋅ − −    β    

(17) 
 
where ),...,( 11 += krrHH . 
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The Bayesian estimate of θ  with respect 
to the squared error loss function, based on the 
grouped data, is the posterior mean, 
 

1 k 1
1 k 1

1 k 1

1 k 1
1 k 1

1 k 1

BSG

1n n
k 1 r ... r1

r 0 r 0 k 11

n n
k 1 r ... r1

r 0 r 0 k 11

ˆ E( |n)

nn 1
( 1) H

rr

nn 1
( 1) H

rr

+
+

+

+
+

+

−α−
+ + +

= = +
−α

+ + +

= = +

θ = θ

    α  ⋅⋅⋅  ⋅⋅⋅ − −    β    =
    

 ⋅⋅⋅  ⋅⋅⋅ − −    β    
(18) 

 
Kundu and Gupta (2008) obtained the Bayes 
estimator of θ , based on the un-grouped data, 
only under square error loss function as follows 
 

)1(log
ˆ

1

1 ixn
i

BS e
n

−
=

− −−
+=

Σβ
αθ ,          (19) 

 
Note that, for the non-informative prior - when 

01 == −βα  - the above Bayes estimator ( BSθ̂ ) 

and MLE of θ  from the un-grouped data ( Mθ̂ ), 
are identical. 

The Bayesian estimate of θ  with respect 
to the LINEX loss function, based on the 
grouped data, is obtained as follows: 
 

( )
1 k 1

1 k 1

1 k 1

1 k 1

1 k 1

1 k 1

n n
k 1 r ... r1

r 0 r 0
k 11

n n
k 1 r ... r1

r 0 r 0
k 11

c

BLG

nn 1
( 1) c H

rr1
ln

nnc 1
( 1) H

rr

1
ln E[e | n ]

c

ˆ

+

+

+

+

+

+

−α
+ + +

= =
+

−α
+ + +

= =
+

− θ

 ⋅ ⋅ ⋅  ⋅ ⋅ ⋅ − + −
β

−

 ⋅ ⋅ ⋅  ⋅ ⋅ ⋅ − −
β

= −

=

θ =

     
          
     
          

(20) 
 
Here, the Bayes estimator of θ  is obtained under 
the LINEX loss function based on the un-
grouped data. It may be shown that the posterior 
density of θ  based on the un-grouped data is 
gamma with the shape and scale parameters as 

n+α  and )1(log
1

1 ixn
i e−
=

− −−Σβ , respectively. 

Whereas, 
 

n

xn
i

c
ie

cxeE
−−

−
=

−
−















−−
+=

Σ

α

θ

β )1(log
1)|[

1

1
 

 
thus, the Bayes estimator of θ  under the LINEX 
loss function based on the un-grouped data is as 
follows 
 















−−
++= −

=
− Σ )1(log

1lnˆ

1

1 ixn
i

BL e
c

c
n

β
αθ . 

(21) 
 
The Bayesian estimate of θ  with respect to the 
precautionary loss function, based on the 
grouped data, is obtained as follows: 
 

1 k 1

1 k 1

1 k 1

1 k 1

1 k 1

1 k 1

1
1n n 2

k 1 r ... r1

r 0 r 0
k 11

1n n
k 1 r ... r1

r 0 r 0
k 11

BPG 1

nn 1
( 1) ( 1) H

rr

nn 1
( 1) H

rr

E( |n)ˆ
E( |n)

+

+

+

+

+

+

−α−
+ + +

= =
+

−α+
+ + +

= =
+

−

α α −  ⋅ ⋅ ⋅  ⋅ ⋅ ⋅ − −
β

 ⋅ ⋅ ⋅  ⋅ ⋅ ⋅ − −
β

θθ =
θ

     
          =
     
          

(22) 
 
Also, the Bayes estimator of θ  is obtained under 
the precautionary loss function based on the un-
grouped data. Whereas  
 

))1(log,(~|
1

1 ixn
i enx −
=

− −−+Γ Σβαθ , 

 
it may be shown that 
 

)1(

)1(log
)|

1
( 1

1

−+
−−

=
−

=
− Σ

n
e

xE
ixn

i

α
β

θ
, 

 
thus, the Bayes estimator of θ  under the 
precautionary loss function based on the un-
grouped data is as follows 
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)1(log

)1)((ˆ

1

1 ixn
i

BP e
nn

−
=

− −−
−++

=
Σβ

ααθ .             (23) 

 
 

Methodology 
Simulation Study 

The estimator Mθ̂  is the Maximum 
Likelihood Estimator (MLE) of the shape 
parameter of the generalized exponential 
distribution obtained from the un-grouped data; 

whereas, MGθ̂  is the MLE of θ  obtained from 

the grouped data. BSθ̂ , BPθ̂  and BLθ̂  are Bayes 

estimators under squared-error, precautionary 
and LINEX loss functions, respectively, based 

on un-grouped data. Also, BSGθ̂ , BPGθ̂  and BLGθ̂  

are Bayes estimators under squared-error, 
precautionary and LINEX loss functions, 
respectively, based on grouped data. The 
notation CLG is used to denote the confidence 
length for θ  based on the grouped data. Because  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the large sample properties of these estimators 
are unknown, the bootstrap method can be used 
to assess the precision of estimates, but 
construction of bootstrap confidence interval is 
computationally more demanding than 
asymptotic confidence interval. Therefore, the 
95% confidence interval is computed based on 
the MLE’s. The main goal is to compare the 
estimators in terms of biases and MSE’s.  

As noted, MGθ̂  and hence its MSE 

cannot be put in a convenient closed form. 
Therefore, MSE’s of the estimators are 
empirically evaluated based on a Monte-Carlo 
simulation study of 1,000 samples by MATLAB 
mainly for small sample sizes. The simulation 
study was carried out for 1=θ  with sample sizes 
n = 6, 9, 12, 15, 18 and 20. These samples were 
placed into five intervals ( 4=k ) with 1=δ . The 
loss and prior parameters are arbitrarily taken as 
c = −1.5, −1, −0.5, 0.5, 1 and 1.5, 2=α  and 

5.0=β . Results are summarized in Table 1-2 
and Figures 1-5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Bias and MSE of the MLE’s and Three Bayes Estimates from Un-grouped Data, 
when 2,1,1,4 ==== αθδk 5.0=βand (MSE in parenthesis) 

n Mθ̂  BSθ̂  BPθ̂  
BLθ̂  

C 
−1.5 −1 −0.5 0.5 1 1.5 

6 
0.2569 0.1297 0.0567 0.2896 0.2288 0.1761 0.0882 0.0508 0.0269 

(0.4697) (0.1419) (0.1126) (0.3063) (0.2314) (0.1792) (0.1150) (0.0957) (0.0821) 

9 
0.1551 0.1025 0.0512 0.2031 0.1666 0.1333 0.0740 0.0475 0.0227 

(0.1893) (0.0963) (0.0806) (0.1655) (0.1366) (0.1139) (0.0825) (0.0719) (0.0638) 

12 
0.1096 0.0850 0.0462 0.1357 0.1206 0.1071 0.0580 0.0412 0.0199 

(0.1205) (0.0751) (0.0665) (0.1118) (0.0970) (0.0849) (0.0672) (0.0609) (0.0559) 

15 
0.0929 0.0730 0.0409 0.1304 0.1103 0.0912 0.0506 0.0389 0.0187 

(0.0918) (0.0642) (0.0571) (0.0902) (0.0800) (0.0714) (0.0581) (0.0531) (0.0490) 

18 
0.0704 0.0570 0.0303 0.1036 0.0874 0.0719 0.0427 0.0289 0.0156 

(0.0728) (0.0547) (0.0497) (0.0722) (0.0654) (0.0596) (0.0504) (0.0469) (0.0439) 

20 
0.0629 0.0519 0.0277 0.0934 0.0791 0.0652 0.0390 0.0265 0.0144 

(0.0668) (0.0510) (0.0469) (0.0658) (0.0601) (0.0553) (0.0474) (0.0443) (0.0417) 
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Table 2: Bias and MSE of the MLE’s and Three Bayes Estimates from the Grouped Data, 
when ,1,4 == δk  5.02,1 === βαθ and  (MSE in parenthesis) 

n MGθ̂  BSGθ̂  BPGθ̂  
BLGθ̂  

CLG C 
−1.5 −1 −0.5 0.5 1 1.5 

6 
0.3274 0.1386 0.0079 0.4326 0.3127 0.2173 0.0727 0.0160 0.0335 

3.1229 
(0.6874) (0.1280) (0.1038) (0.3930) (0.2575) (0.1770) (0.0985) (0.0815) (0.0729) 

9 
0.1817 0.0983 -0.0033 0.3032 0.2237 0.1564 0.0475 0.0025 -0.0377 

2.3723 
(0.3099) (0.1025) (0.0925) (0.2379) (0.1731) (0.1305) (0.0847) (0.0749) (0.0693) 

12 
0.1205 0.0726 -0.0104 0.2299 0.1707 0.1187 0.0312 -0.0061 -0.0400 

1.9877 
(0.2380) (0.1010) (0.0880) (0.1899) (0.1492) (0.1208) (0.0817) (0.0722) (0.0682) 

15 
0.0896 0.0708 0.0338 0.1917 0.1588 -0.0130 -0.0423 0.0036 -0.0166 

1.7430 
(0.1732) (0.0868) (0.0819) (0.1446) (0.1183) (0.0993) (0.0765) (0.0704) (0.0670) 

18 
0.0885 0.0635 0.0016 0.1725 0.1327 0.0965 0.0285 0.0030 0.0232 

1.5973 
(0.1560) (0.0837) (0.0800) (0.1363) (0.1152) (0.0994) (0.0764) (0.0702) (0.0668) 

20 
0.0619 0.0443 -0.0133 0.1418 0.1066 0.0741 0.0154 -0.0049 -0.0343 

1.4862 
(0.1312) (0.0783) (0.0729) (0.1156) (0.0996) (0.0872) (0.0705) (0.0649) (0.0578) 

Figure 1: MSE’s of the Estimators Mθ̂ , BSθ̂ , BPθ̂  and BLθ̂  from the Un-grouped Data, Based on Table 1 
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Figure 2: MSE’s of the Estimators MGθ̂ , BSGθ̂ , BPGθ̂  and BLGθ̂  from the Grouped Data, Based on Table 2 
 

 
 
 
 
 

Figure 3: MSE’s of the Bayes Estimators under Three Loss Functions Based on the Un-grouped and Grouped 
Data (when the overestimation is more serious than underestimation, c = 1) 
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Figure 4: MSE’s of the Estimators as Function of Loss Parameter Based on the Un-grouped Data 
when n = 20 

 

 
 
 
 

Figure 5: MSE’s of the Estimators as Function of Loss Parameter Based on the Grouped Data when 
n = 20 
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Conclusion 
In this study, the Bayesian and non-Bayesian 
estimators for the shape parameter of the 
generalized exponential distribution based on 
grouped and un-grouped data were obtained. In 
addition, the interval estimator for θ  was 
considered when the data are given in groups. 
The Bayes estimators under symmetric squared 
error loss function and asymmetric 
precautionary and LINEX loss functions were 
derived. Observations regarding the results are 
stated in the following points. 
 
Results Based on Un-Grouped Data 

Table 1 shows that all of the estimators 
are overestimations. Also, it is noted that derived 
estimators are consistent, because both bias and 
MSE decrease as the sample size increases. The 
Bayes estimates have the smallest estimated 
MSE’s compared with the classical estimate. 
The Bayes estimates under the precautionary 

loss function ( BPθ̂ ) always have the smallest 

estimated MSE’s as compared with the Bayes 

estimates under Squared error loss function, BSθ̂  

(see Figures 1 and 4). When the underestimation 
is more serious than overestimation (for    

5.0≤c ), the performance of the Bayes estimates 

under precautionary loss function ( BPθ̂ ) are 

better than the rest: however, when the 
overestimation is more serious than 
underestimation (for 5.0>c ), the performance 
of the Bayes estimates under LINEX loss 

function, BLθ̂ , are better than the rest (see 

Figures 1 and 4). 
 
Results Based on Grouped Data 

The results (based on the un-grouped 
data) are true for the grouped data. Table 2 
shows that almost all of the estimators are 
overestimations. Also, it is clear that derived 
estimators are consistent, because both, bias and 
MSE decrease as the sample size increases. The 
Bayes estimates have the smallest estimated 
MSE’s compared with the classical estimate. 
The Bayes estimates under the precautionary 

loss function, BPGθ̂ , always have the smallest 

estimated MSE’s compared with the Bayes 
estimates under squared error loss function, 

BSGθ̂ , (see Figures 2 and 5). When the 

underestimation is more serious than 
overestimation (for 5.0<c ), the performance of 
the Bayes estimates under Precautionary loss 

function, BPGθ̂ , are better than the rest: however, 

when the overestimation is more serious than 
underestimation (for 5.0≥c ), the performance 
of the Bayes estimates under LINEX loss 

function, BLGθ̂ , are better than the rest (see 

Figures 2 and 5). Otherwise, the confidence 
intervals work quite well. 
 
General Conclusions 

In general, when the data are given in 

groups, the proposed Bayes estimators ( GB.θ̂ ) 

are more efficient than the corresponding Bayes 

estimators based on un-grouped data ( .
ˆ

Bθ ) for 

very small sample sizes, thus these estimators 
work very well (see Figure 3). Also, whereas the 
proposed Bayes estimators are better than the 
proposed estimators by Gupta and Kundu (1999, 
2001a, 2008), it is suggested that the Bayes 
estimators be used for estimating the shape 
parameter of GE distribution when the data are 
given in groups, for example, in life testing 
experiments. 
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