
Journal of Modern Applied Statistical
Methods

Volume 9 | Issue 1 Article 22

5-1-2010

A New Biased Estimator Derived from Principal
Component Regression Estimator
Set Foong Ng
Universiti Teknologi MARA, Malaysia, setfoong@yahoo.com

Heng Chin Low
Universiti Sains Malaysia, hclow@cs.usm.my

Soon Hoe Quah
Universiti Sains Malaysia, shquah@gmail.com

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Ng, Set Foong; Low, Heng Chin; and Quah, Soon Hoe (2010) "A New Biased Estimator Derived from Principal Component
Regression Estimator," Journal of Modern Applied Statistical Methods: Vol. 9: Iss. 1, Article 22.
Available at: http://digitalcommons.wayne.edu/jmasm/vol9/iss1/22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56682977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol9?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol9/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol9/iss1/22?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol9/iss1/22?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol9%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2010 JMASM, Inc. 
May 2010, Vol. 9, No. 1, 227-234                                                                                                                             1538 – 9472/10/$95.00 

227 
 

A New Biased Estimator Derived from Principal Component Regression Estimator 
 

Set Foong Ng Heng Chin Low Soon Hoe Quah 
Universiti Teknologi MARA, 

Malaysia 
Universiti Sains Malaysia 

 
 
A new biased estimator obtained by combining the Principal Component Regression Estimator and the 
special case of Liu-type estimator is proposed. The properties of the new estimator are derived and 
comparisons between the new estimator and other estimators in terms of mean squared error are 
presented. 
 
Key words: Linear regression model, Principal Component Regression Estimator, special case of Liu-type 
estimator, mean squared error. 
 
 

Introduction 
Multicollinearity is one of the problems faced in 
linear regression models. When multicollinearity 
is detected in data and the regressors that caused 
it are identified, one solution is to eliminate the 
regressors that are causing the multicollinearity. 
However, deleting regressors is not a safe 
strategy: there is no warning for extrapolation 
and there is no data to support a prediction in the 
region away from the multicollinearity. 

Principal component regression is an 
alternative to regression deletion. Principal 
component regression is one type of biased 
regression method and its purpose is to eliminate 
those dimensions (which usually correspond to 
very small eigenvalues) causing the 
multicollinearity problem. Principal component 
regression approaches the problem of 
multicollinearity by dropping the dimension 
defined by a linear combination of the 
independent variables but not by a single 
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independent variable (Rawlings, et al., 1998). 
Thus, the Principal Component Regression 
Estimator (Massy, 1965; Marquardt, 1970; 
Hawkins, 1973; Greenberg, 1975) is a biased 
alternative to the unbiased Ordinary Least 
Squares Estimator in the presence of 
multicollinearity. 

Motivated by the idea of combining 
different estimators that might produce a better 
estimator, the r-k Class Estimator was proposed 
by Baye & Parker (1984). It has been shown that 
theoretical gains exist from combining the 
principal component regression and the ridge 
regression techniques. In addition, Kaciranlar 
and Sakallioglu (2001) proposed the r-d Class 
Estimator by combining the Liu Estimator and 
the Principal Component Regression Estimator. 

A linear regression model with a 
dependent variable and p independent variables 
is given by 
 

= +Y Zγ ε ,                    (1.1) 
 
where Y  is an n×1 standardized observed 
random vector, Z  is an n×p standardized known 
matrix with p independent variables, γ  is an 
p×1 vector of parameter and ε is an n×1 vector 
of errors such that 2~ ( , )σ nNε 0 I . 

If the matrix λ  is a ×p p  diagonal 
matrix whose diagonal elements are eigenvalues 
of ′Z Z , where the eigenvalues of ′Z Z  are 
denoted by 1 2, , ...,λ λ λp , and if the matrix T  is 
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a ×p p  orthonormal matrix consisting of the p  

eigenvectors of ′Z Z , then the Principal 
Component Regression Estimator of parameter 
γ  is given by 
 

1ˆ ( )−′ ′ ′ ′=r r r r rγ T T Z ZT T Z Y ,          (1.2) 
 
where r < p, rT  are the remaining eigenvectors 

of ′Z Z  after deleting p-r of the columns of T . 
This satisfies 1 2= diag( , , ..., ).r r r p

′ ′ = λ λ λT Z ZT λ  

From the Liu-type estimator proposed 
by Liu (2003), a special case of Liu-type 
estimator was derived by Ng, et al. (2007) 
 

1ˆ ˆ( ) ( )−′ ′= + +c cγ Z Z I Z Y γ ,           (1.3) 
 
where 1>c , 1ˆ ( )−′ ′=γ Z Z Z Y  is the Ordinary 
Least Squares Estimator. 
 

Methodology 
In this article, a new estimator was derived by 
combining the advantage of the principal 
component regression, ˆ rγ , and the special case 

of the Liu-type Estimator, ˆ cγ . Here, the 

estimator, γ̂ , in 1ˆ ˆ( ) ( )−′ ′= + +c cγ Z Z I Z Y γ  was 
substituted by the Principal Component 
Regression Estimator, ˆ rγ . Hence, a new 

expression of ˆ cγ  was obtained, that is 
 

1ˆ ˆ( ) ( ) ( )−′ ′= + +c rnew cγ Z Z I Z Y γ .   (1.4) 
 
Note that the eigenvalues and the eigenvectors 
are ordered so that 1 2 ...λ λ λ> > > p . The 

purpose of principal component regression is to 
eliminate those dimensions that usually 
correspond to eigenvalues that are very small. 
Thus, the concept of principal component 
regression eliminates p-r of the columns of T  
which correspond to the smallest p-r 
eigenvalues. Hence, 1 2[ , , ..., ]=r rT t t t  is the 

matrix of the remaining eigenvectors of ′Z Z  
while 1 2diag( , , ..., )λ λ λ=r rλ  is the matrix of 

the remaining eigenvalues of ′Z Z  after deleting 
−p r  of the columns of T ; once again, this 

satisfies 1 2= diag( , , ..., )λ λ λ′ ′ =r r r rT Z ZT λ . 

By including the matrix rT  in the new 

expression of ˆ cγ , 
1ˆ ˆ( ) ( ) ( )−′ ′= + +c rnew cγ Z Z I Z Y γ , a new biased 

estimator, ˆ ( )r cγ , was obtained which is given 
by: 
 

1ˆ ˆ( ) ( ) ( )−′ ′ ′ ′ ′= + +r r r r r r r rc cγ T T Z ZT I T Z Y T γ , 
(1.5) 

 
where 1>c , <r p , 1ˆ ( )−′ ′ ′ ′=r r r r rγ T T Z ZT T Z Y , 

rT  are the remaining eigenvectors of ′Z Z  after 
deleting p-r of the columns of T . This satisfies 

1 2= diag( , , ..., )λ λ λ′ ′ =r r r pT Z ZT λ . 

 
Properties of the New Estimator 

The properties of the proposed new 
estimator are as follows: 
 

(1) Bias of ˆ ( )r cγ : 
 

1

ˆbias( ( ))

       ( ) ( 1)

r

p r p r r r r r

c

c c−
− −

=

′′− − + −

γ

T T γ T λ I T γ  

(2.1) 
 
(2) Variance-covariance matrix of ˆ ( )r cγ : 
 

1 2 1 2

ˆVar( ( ))

        [ ( ) ( ) ]

r

r r r r r r r r r

c

c − −

=

′ ′+ + σ

γ

T λ I λ I T T λ T  

(2.2) 
 

(3) Mean squared error of ˆ ( )r cγ : 
 

2 2

21

2 2
2

21 1

( 1)
ˆmse( ( ))

( )

( 1)
                      

( )

r j
r j

j j

p r j
jj r j

j

c
c

c
c

=

= + =

 +
=  

+  
 −

+ +  
+  



 

λ σ
λ λ

γ
γ

λ

γ

 

(2.3) 
 
(4) When r = p, the new estimator, ˆ ( )r cγ , is 

equal to the special case of Liu-type 
estimator, ˆ cγ , that is, 
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ˆ ˆ( ) =p ccγ γ .                    (2.4) 

 
(5) When r = p and c = 1, the new estimator, 

ˆ ( )r cγ , is equal to the Ordinary Least 

Squares Estimator, γ̂ , that is, 
 

ˆ ˆ(1) =pγ γ .                        (2.5) 

 
(6) When c = 1, the new estimator, ˆ ( )r cγ , is 

equal to the Principal Component 
Regression Estimator, ˆ rγ , that is 

 
ˆ ˆ(1) =r rγ γ .                       (2.6) 

 
Results 

The new estimator, ˆ ( )r cγ , was compared with 

the special case of Liu-type estimator, ˆ cγ , the 

Ordinary Least Squares Estimator, γ̂ , and the 

Principal Component Regression Estimator, ˆ rγ , 
in terms of mean squared error in order to 
evaluate the performance of the new estimator. 

The mean squared errors ˆ cγ , γ̂  and ˆ rγ  
are shown in Equations (3.1) to (3.3), 
respectively: 
 

2 2 2 2

2 21

( 1) ( 1)
ˆmse( )

( ) ( )

λ σ γ
λ λ λ=

 + −
= + 

+ +  
 p j j

c j
j j j

c
c c

γ  

(3.1) 
 

2

1
ˆmse( )

σ
λ=

= p

j
j

γ                  (3.2) 

 
2

2

1 1
ˆmse( )

σ γ
λ= = +

= + r p
r jj j r

j

γ       (3.3) 

 
From the properties of the new estimator, ˆ ( )r cγ  

is equivalent to ˆ cγ  when r = p. 
 
Theorem 3.1: Comparison Between the ˆ ( )r cγ  

and 1
ˆ ( )+r cγ  

If 2 2
1 1σ γ λ+ +> r r , 

 
 

(a) 

1
ˆ ˆmse( ( )) mse( ( ))+ >r rc cγ γ  for 11< <c a , 

 
(b) 

1
ˆ ˆmse( ( )) mse( ( ))+ <r rc cγ γ  for 1>c a , 

 
where 

2 2 2 2
1 1 1 1

1 2
1 1 1

( 1) (1 )

2 (1 )

λ σ λ γ λ
λ γ λ

+ + + +

+ + +

+ + −=
+

r r r r

r r r

a . 

 
Theorem 3.1 Proof 

Consider the difference between the 
mean squared errors of ˆ ( )r cγ  and 1

ˆ ( )+r cγ : 
 

1 1
ˆ ˆD mse( ( )) mse( ( ))+= −r rc cγ γ  

 
2 2 2 2

1 12
2 21 2 1

2 2 2 2
2

2 21 1 1

( 1) ( 1)

( ) ( )

( 1) ( 1)

( ) ( )

λ σ γ
γ

λ λ λ

λ σ γ
γ

λ λ λ

+ +

= = + =

= = + =

   + −
= + +   

+ +      
   + −

− − −   
+ +      

  

  

r p rj j
jj j r j

j j j

r p rj j
jj j r j

j j j

c
c c

c
c c

 
2 2 2 2

21 1
12 2

1 1 1

( 1) ( 1)

( ) ( )

λ σ γ γ
λ λ λ

+ +
+

+ + +

+ −= + −
+ +

r r
r

r r r

c
c c

 

 
2 2 2 2 2 2

1 1 1 1 1 1
2

1 1

( 1) ( 1) ( )

( )

λ σ λ γ λ λ γ
λ λ

+ + + + + +

+ +

+ + − − +=
+

r r r r r r

r r

c c
c

(3.4) 
 
Thus, 1D 0>  if and only if 
 

2 2 2 2 2 2
1 1 1 1 1 1( 1) ( 1) ( ) 0.r r r r r rc c+ + + + + ++ + − − + >λ σ λ γ λ λ γ

(3.5) 
 
The solution for the inequality (3.5) is 
 

11< <c a ,                      (3.6) 
where  

2 2 2 2
1 1 1 1

1 2
1 1 1

( 1) (1 )

2 (1 )

λ σ λ γ λ
λ γ λ

+ + + +

+ + +

+ + −=
+

r r r r

r r r

a . 

 
Because 1>c , it requires 1 1>a , that is 
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1

2 2 2 2
1 1 1 1

2
1 1 1

1

( 1) (1 )
1

2 (1 )

λ σ λ γ λ
λ γ λ

+ + + +

+ + +

>

+ + − >
+

r r r r

r r r

a
 

 
2 2

1 1σ γ λ+ +> r r .                       (3.7) 
 
Thus, if 2 2

1 1σ γ λ+ +> r r , 1
ˆ ˆmse( ( )) mse( ( ))+ >r rc cγ γ  

for 11< <c a . Similarly, 

1
ˆ ˆmse( ( )) mse( ( ))+ <r rc cγ γ  for 1>c a . Hence, the 

proof for Theorem 3.1 is completed. 
 
Theorem 3.2: Comparison between the New 
Estimator, ˆ ( )r cγ , and the Special Case of Liu-

Type Estimator, ˆ cγ  

If 2 2σ γ λ> j j  for { 1, 2, , }∈ + + j r r p , 

(a) 
ˆ ˆmse( ) mse( ( ))>c r cγ γ  for { }21 min ( )< < jc a , 

 
(b) 

ˆ ˆmse( ) mse( ( ))<c r cγ γ  for { }2max ( )> jc a , 

 
where 

2 2 2 2

2 2

( 1) (1 )
( )

2 (1 )

λ σ λ γ λ
λ γ λ

+ + −
=

+
j j j j

j
j j j

a  

for 
{ 1, 2, , }∈ + + j r r p . 

 
Theorem 3.2 Proof 

From Theorem 3.1(a), 

1
ˆ ˆmse( ( )) mse( ( ))+ >r rc cγ γ  for 11< <c a , where 

2 2 2 2
1 1 1 1

1 2
1 1 1

( 1) (1 )

2 (1 )

λ σ λ γ λ
λ γ λ

+ + + +

+ + +

+ + −=
+

r r r r

r r r

a . Thus, the 

1
ˆ ˆ ˆmse( ( )) ... mse( ( )) mse( ( ))+> > >p r rc c cγ γ γ  for 

{ }21 min ( )< < jc a , where 

2 2 2 2

2 2

( 1) (1 )
( )

2 (1 )

λ σ λ γ λ
λ γ λ

+ + −
=

+
j j j j

j
j j j

a  for 

{ 1, 2, , }∈ + + j r r p . From the properties of 

the new estimator, when r = p, ˆ ˆ( ) =p ccγ γ . Thus, 

ˆ ˆmse( ) mse( ( ))>c r cγ γ  for { }21 min ( )< < jc a . 

Similarly, ˆ ˆmse( ) mse( ( ))<c r cγ γ  for 

{ }2max ( )> jc a . The proof for Theorem 3.2 is 

completed. 
 
Theorem 3.3: Comparison between the New 
(Biased) Estimator and the Unbiased Ordinary 
Least Squares Estimator 
 
(a) If 2 2σ γ λ> j j  for all {1, 2, , }∈ j r  and 

2 2

1
0

γ λ σ
λ= +

−
≤ p j j

j r
j

, 

ˆ ˆmse( ( )) mse( )<r cγ γ  for 1>c . 
 

(b) If 
2 2σ γ λ< j j  for some {1, 2, , }∈ j r  and 

2 2

1
0

γ λ σ
λ= +

−
≤ p j j

j r
j

, 

ˆ ˆmse( ( )) mse( )<r cγ γ  for 

{ }31 min ( )< < jc a , ˆ ˆmse( ( )) mse( )>r cγ γ  

for { }3max ( )> jc a , where 

2 2 2

3 2 2

2
( )

λ γ λ σ σ
λ γ σ
+ +

=
−

j j j
j

j j

a  for 

{1, 2, , }∈ j r . 
 
Theorem 3.3 Proof 

Consider the difference between the 
mean squared errors of ˆ ( )r cγ  and γ̂ : 
 

2
ˆ ˆD mse( ( )) mse( )= −r cγ γ  

 
2 2

2
21 1

2 2 2

21 1

( 1)

( )

( 1)
  

( )

r pj
jj j r

j j

r pj
j j

j j

c

c
c

= = +

= =

 +
= + 

+  
 −

+ − 
+  

 

 

λ σ
γ

λ λ

γ σ
λ λ

 

 
2 2 2 2 2 2

21

2 2

1

( 1) ( 1) ( )

( )

  

r j j j j
j

j j

p j j
j r

j

c c
c=

= +

 + + − − +
=  

+  
−

+





λ σ λ γ σ λ
λ λ

γ λ σ
λ

(3.8) 
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Thus, 2D 0<  if and only if 
 

2 2

1
0

γ λ σ
λ= +

−
≤ p j j

j r
j

                (3.9) 

and 
 

2 2 2 2 2 2( 1) ( 1) ( ) 0λ σ λ γ σ λ+ + − − + <j j j jc c . 

(3.10) 
 
The inequality (3.10) can also be written as 
 

2 2 2 2 2 2 2 2( ) 2( ) ( 2 ) 0γ λ σ γ λ λ σ γ λ λ σ σ− − + + + + <j j j j j j j jc c
(3.11) 

 
Solving the equation 
 

2 2 2 2 2

2 2 2

( ) 2( )

   ( 2 ) 0

j j j j j

j j j

c c− − +

+ + + =

γ λ σ γ λ λ σ

γ λ λ σ σ      (3.12)
 

 

the solutions 
2 2 2

2 2

2λ γ λ σ σ
λ γ σ
+ +

=
−

j j j

j j

c  and 1=c  

are obtained. 

Let 
2 2 2

3 2 2

2
( )

λ γ λ σ σ
λ γ σ
+ +

=
−

j j j
j

j j

a  where 

the values of 3( ) ja  could be less than 1 or 

greater than 1. The condition requiring for 

3( ) 1<ja  is given by 

3

2 2 2

2 2

2 2

2 2

2 2

( ) 1

2
1

2 2
0

0

λ γ λ σ σ
λ γ σ

λ σ σ
λ γ σ

λ γ σ

<

+ +
<

−

+
<

−

− <

j

j j j

j j

j

j j

j j

a

 

 
2 2σ γ λ> j j .                   (3.13) 

 
Similarly, the condition requiring for 3( ) 1>ja  is 

given by 
2 2σ γ λ< j j .                   (3.14) 

 

For the first situation where 3( ) 1<ja  

for all {1, 2, , }∈ j r , the solution for the 
inequality (3.11) is 
 

1>c  if 2 2σ γ λ> j j  for all {1, 2, , }∈ j r . 

(3.15) 
 
Thus, ˆ ˆmse( ( )) mse( )<r cγ γ  for 1>c  if 

2 2σ γ λ> j j  for all {1, 2, , }∈ j r  and 
2 2

1
0

γ λ σ
λ= +

−
≤ p i i

j r
i

. The proof for Theorem 

3.3(a) is completed. 
 
For the second situation where 3( ) 1>ja  for 

some {1, 2, , }∈ j r , the solution for the 

inequality (3.11) is: { }31 min ( )< < jc a  if 
2 2σ γ λ< j j  for some {1, 2, , }∈ j r , where 

2 2 2

3 2 2

2
( )

λ γ λ σ σ
λ γ σ
+ +

=
−

j j j
j

j j

a  for {1, 2, , }∈ j r . 

Thus, ˆ ˆmse( ( )) mse( )<r cγ γ  for 

{ }31 min ( )< < jc a  and ˆ ˆmse( ( )) mse( )>r cγ γ  for 

{ }3max ( )> jc a  if 2 2σ γ λ< j j  for some 

{1, 2, , }∈ j r  and 
2 2

1
0

γ λ σ
λ= +

−
≤ p j j

j r
j

. The 

proof for Theorem 3.3(b) is completed. 
 
Theorem 3.4: Comparison between the New 
Estimator and the Principal Component 
Regression Estimator in terms of Mean Squared 
Error 
 

(a) If 
2 2σ γ λ> j j  for all {1, 2, , }∈ j r , 

ˆ ˆmse( ( )) mse( )<r rcγ γ  for 1>c . 
 

(b) If 
2 2σ γ λ< j j  for some {1, 2, , }∈ j r , 

ˆ ˆmse( ( )) mse( )<r rcγ γ  for 

{ }31 min ( )< < jc a , ˆ ˆmse( ( )) mse( )>r rcγ γ  

for { }3max ( )> jc a , where 
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2 2 2

3 2 2

2
( )

λ γ λ σ σ
λ γ σ
+ +

=
−

j j j
j

j j

a  for 

{1, 2, , }∈ j r . 
 
Theorem 3.4 Proof 

The first derivative of ˆmse( ( ))r cγ  with 
respect to c is given by 
 

[ ]

2 2

21

2 2

2

21 1

( 1)

( )d d
ˆmse( ( ))

d d ( 1)

( )

r j

j
j j

r

p r j
jj r j

j

c
c

c c c

c

=

= + =

+

+
=

−
+ +

+

  
  
  
 

  
  
  



 

λ σ
λ λ

γ
γ

λ

γ

 
2 2 2

3 31

( 1) ( 1)( 1)
2

( ) ( )

σ λ λ γ
λ λ λ=

 − + − +
= + 

+ +  
 r j j j

j
j j j

c
c c

. 

(3.16) 
 
When 1=c , 

2

1

d 1
ˆmse( ( )) 2 0

d ( 1)
σ

λ λ=

 
= − <     +  

 r
r j

j j

c
c

γ . 

(3.17) 
 

It was found that the function of 
ˆmse( ( ))r cγ  has a negative slope of 

approximately 1=c . Furthermore, the new 
estimator, ˆ ( )r cγ , is equivalent to the Principal 

Component Regression Estimator, ˆ rγ , when 

1=c . Thus, 1>c  exists such that 
ˆ ˆmse( ( )) mse( )<r rcγ γ . 

Consider the difference between the 
mean squared errors of ˆ ( )r cγ  and ˆ rγ : 
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2 2
2

21 1

2 2 2
2

21 1 1

2 2 2 2 2 2

21
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c
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c

= = +

= = = +

=

= −

 +
= + 
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 −

+ − − 
+  

 + + − − +
=  

+  

 

  



λ σ
γ

λ λ

γ σ γ
λ λ

λ σ λ γ σ λ
λ λ

γ γ

(3.18) 

Thus, 3D 0<  if and only if 
 

2 2 2 2 2 2( 1) ( 1) ( ) 0λ σ λ γ σ λ+ + − − + <j j j jc c . 

(3.19) 
 
The inequality (3.19) can also be written as 
 

2 2 2 2 2 2 2 2( ) 2( ) ( 2 ) 0j j j j j j j jc c− − + + + + <γ λ σ γ λ λ σ γ λ λ σ σ
(3.20) 

 
The solution for the inequality (3.20) is the same 
as the solution for the inequality (3.11). Thus, 

ˆ ˆmse( ( )) mse( )<r rcγ γ  for 1>c  if 2 2σ γ λ> j j  for 

all {1, 2, , }∈ j r . 

By contrast, if 2 2σ γ λ< j j  for some 

{1, 2, , }∈ j r , ˆ ˆmse( ( )) mse( )<r rcγ γ  for 

{ }31 min ( )< < jc a  and ˆ ˆmse( ( )) mse( )>r rcγ γ  

for { }3max ( )> jc a  where 

2 2 2

3 2 2

2
( )

λ γ λ σ σ
λ γ σ
+ +

=
−

j j j
j

j j

a  for {1, 2, , }∈ j r . 

The proof for Theorem 3.4 is completed. 
 
Numerical Example 

A numerical example illustrates 
Theorems 3.2, 3.3 and 3.4. The data set is from 
Ryan (1997, pp. 402-403). The data consists of 
one dependent variable and six independent 
variables. The regression model with 
standardized variables is 
 

= +Y Zγ ε ,                    (4.1) 
 
where Y is a 50×1 standardized observed 
random vector, Z is a 50×6 standardized known 
matrix with six independent variables, γ is a 6×1 
vector of parameters and ε is a 50×1 vector of 
errors. 

Multicollinearity diagnostic indicates 
the presence of multicollinearity in the data. The 
least squares estimates are given by 1̂γ  = -5.218, 

2γ̂  = -0.376, 3γ̂  = 8.869, 4γ̂  = -1.755, 5γ̂  = -

0.320 and 6γ̂  = -1.178. The estimated variance 

of the error term is given by 2ˆ 0.000655σ =  
while the eigenvalues are given by 1 5.80831,λ =  
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2 0.11749,λ =  3 0.04812,λ =  4 0.02501,λ =  

5 0.00081λ =  and 6 0.00025λ = . 

For practical purpose, γ i  and 2σ  in 
Theorems 3.2, 3.3 and 3.4 are substituted by the 
estimated γ̂ i  and 2σ̂  in this numerical example. 
In this numerical example, the Principal 
Component Regression Estimator has the 
smallest mean squared error when 4=r . Thus, 

6=p  and 4=r  are used throughout this 
example. 

It was found that the condition for 
Theorem 3.2 is satisfied, that is, 2 2σ γ λ> j j  for 

{5,6}∈j , and { }2( ) 4.43639, 1.42839=ja  for

{5,6}∈j  was obtained. Taking the value of 

1.3=c  where { }21 min ( )< < jc a , it was found 

that ˆmse( ) 5.62615=rγ (c) , that is, less than 

ˆmse( ) 6.21735=cγ . This agrees with Theorem 
3.2(a). On the other hand, taking 4.5=c  where 

{ }2max ( )> jc a , it was found that 

ˆmse( ) 52.7144=cγ  and ˆmse( ( )) 53.1363=r cγ , 

thus, ˆ ˆmse( ) mse( ( ))<c r cγ γ . This is also in line 
with Theorem 3.2(b). 

For Theorem 3.3, the value of 
2 2

6

5
1.8931 0

γ λ σ
λ=

−
= − < j j

j
j

. It was also found 

that the values for 
{ }2 158.13, 0.01662, 3.78485, 0.07705γ λ =j j  for 

{ }1, 2, 3, 4=j . This shows that the condition for 

Theorem 3.3(a) is not satisfied since 2 2ˆσ̂ γ λ< j j  

for { }1, 2, 3, 4=j . Thus, Theorem 3.3(b) will be 

used to illustrate Theorem 3.3. 
The values of 
{ }3( ) 1.00006, 1.09168, 1.00036, 1.01758=ja  

for { }1, 2, 3, 4=j . Choosing 1.00003=c  where 

{ }31 min ( )< < jc a , ˆmse( ( )) 1.536355=r cγ , was 

obtained that is, smaller than ˆmse( ) 3.42946=γ . 
By contrast, taking 1.3=c  where 

{ }3max ( )> jc a , it was found that 

ˆ ˆmse( ( )) 5.62615 mse( ) 3.42946= > =r cγ γ . This 
agrees with Theorem 3.3. 

For Theorem 3.4, it was found that 
2 2ˆσ̂ γ λ< j j  for { }1, 2, 3, 4=j . Since the 

condition for Theorem 3.4(b) is satisfied, 
Theorem 3.4(b) was used to illustrate Theorem 
3.4. Choosing 1.00003=c  where 

{ }31 min ( )< < jc a , ˆmse( ( )) 1.536356=r cγ  and 

ˆmse( ) 1.536359=rγ  were obtained. This shows 
that new estimator has a smaller mean squared 

error for { }31 min ( )< < jc a . By contrast, taking 

1.3=c  where { }3max ( )> jc a , it was found that 

ˆ ˆmse( ( )) 5.62615 mse( ) 1.536358= > =r rcγ γ . 
This is in line with the Theorem 3.4. This 
numerical comparison is shown to be in line 
with the theoretical comparison. 
 

Conclusion 
The new biased estimator was obtained by 
combining the Principal Component Regression 
Estimator and the special case of Liu-type 
estimator. When certain conditions are satisfied, 
the new estimator has been shown to have 
smaller mean squared error compared to the 
special case of Liu-type estimator, the Ordinary 
Least Squares Estimator and the Principal 
Component Regression Estimator. The 
numerical comparison was also shown to be in 
line with the theoretical comparison. 

In conclusion, the proposed new 
estimator was shown be an improvement in 
terms of reduction in mean squared error. Thus, 
the new estimator could be considered as an 
alternative to the unbiased Ordinary Least 
Squares Estimator when multicollinearity is 
detected in a linear regression model. 
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