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Another Look at Resampling: 
Replenishing Small Samples with Virtual Data through S-SMART 

 
Haiyan Bai Wei Pan Leigh Lihshing Wang Phillip Neal Ritchey

University of Central Florida University of Cincinnati 
 

 
A new resampling method is introduced to generate virtual data through a smoothing technique for 
replenishing small samples. The replenished analyzable sample retains the statistical properties of the 
original small sample, has small standard errors and possesses adequate statistical power. 
 
Key words: Small sample, resampling, smoothing, bootstrap. 
 
 

Introduction 
Drawing statistical inferences based upon small 
samples has long been a concern for researchers 
because small samples typically result in large 
sampling errors (Hansen, Madow, & Tepping, 
1983; Lindley, 1997) and small statistical 
powers (Cohen, 1988); thus, sample size is 
essential to the generalization of the statistical 
findings and the quality of quantitative research 
(Lindley, 1997). Unfortunately, sample size is 
often constrained by the cost or the restrictions 
of data collection (Adcock, 1997), especially for 
research involving sensitive topics. 
Consequently, it is not unusual for researchers to 
use small samples in their quantitative studies. 
For example, in American Educational Research 
Journal and Journal of Consulting and Clinical 
Psychology, 155 out of 575 (27.0%) quantitative 
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research articles published between 2003 and 
2007 used relatively small sample sizes ranging 
from 10 to 100. Therefore, the need for studies 
addressing the problem of small samples is 
prominent. 

With the development of modern 
computer science, four commonly used 
resampling methods emerged as revolutionary 
techniques to address small sample problems 
(Diaconis & Efron, 1983), these are: 
 

(a) randomization test (Fisher, 1935); 
(b) cross-validation (Kurtz, 1948); 
(c) the jackknife (Quenouille, 1949; 

modified by Tukey, 1958); and 
(d) the bootstrap (Efron, 1979, 1982). 

 
The bootstrap is the most commonly-used 
resampling method in research with small 
samples (Efron & Tibshirani, 1998). Not only 
have resampling methods been applied to basic 
statistical estimation, such as estimation bias, 
standard errors, and confidence intervals, but 
they also have been applied to more advanced 
statistical modeling, such as regression (Efron, 
1979, 1982; Hinkley, 1988; Stine, 1989; Wu, 
1986), discriminant analysis (Efron,1979), time 
series (Hinkley, 1988), analyses with censored 
data (Efron, 1979; Efron & Gong 1983), missing 
data (Efron, 1994), and dependent data (Lahiri, 
2003). 

Existing resampling methods are very 
useful statistical tools for dealing with small 
sample problems; however, they have critical 
limitations (see Bai & Pan, 2008, for a review). 
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Specifically, the randomization test requires data 
that can be rearranged, the cross-validation splits 
an already small sample, and the jackknife 
usually needs a large sample to obtain good 
estimates (Davison & Hinkley, 1999). Bootstrap, 
the most commonly-used method, also has a few 
limitations. For example, the lack of 
independent observations is evident due to the 
possible duplications of the observations in the 
bootstrap samples that are randomly drawn from 
the same small samples with replacement (Efron 
&Tibshirani, 1998); and the bootstrap technique 
is potentially nonrobust to outliers because every 
observation in the small sample, including the 
outliers, has an equal chance of being selected 
(Troendle, Korn & McShane, 2004). 

More importantly, all of the resampling 
methods have a common problem: the new 
resamples are limited to being selected from the 
same original small sample, which leaves a 
considerable number of data points unselected in 
the population. The problem with this common 
resampling process is that the resamples carry no 
more information than the original small sample. 
This common limitation of existing resampling 
methods potentially undermines the validity of 
the statistical inference. Therefore, if a small 
sample could be replenished with additional data 
points to capture more information in the 
population, it would significantly reduce the 
common limitation of the extant resampling 
methods.  

The smoothing technique (Simonoff, 
1996) made a breakthrough in lessening the 
limitation of sampling from the original small 
sample; however, the smoothing procedure in 
the smoothed bootstrap (de Angelis & Young, 
1992, Hall, DiCiccio, & Romano 1989; 
Silverman & Young 1987) is so complicated that 
even statisticians ask how much smooth is 
optimal. In addition, the question of when to use 
smoothing technique still remains problematic 
for researchers (Silverman & Young, 1987). 
Therefore, developing an alternative but simpler 
resampling method for lessening the limitations 
of the existent resampling methods is 
imperative. 

The purpose of this article is to develop 
a new resampling method, namely Sample 
Smoothing Amplification Resampling Technique 
(S-SMART), for generating virtual data to 

replenish a small sample based on the 
information provided by the small sample, both 
in its own right and as an ingredient of other 
statistical procedures. The S-SMART technique 
directly employs kernel smoothing procedures to 
the original small sample before resampling so 
that the information carried by the original small 
sample is well retained. Not only does the S-
SMART procedure potentially lessen some 
limitations of the existing resampling methods, 
but also it reduces sampling errors and increases 
statistical power. Therefore, the use of the 
replenished sample through S-SMART provides 
more valid statistics for estimation and modeling 
than does the original small sample; and 
ultimately, it will improve the quality of 
research with small samples. 

Specifically, this study aims to develop 
S-SMART as a distribution-free method to 
produce S-SMART samples which (a) have 
sufficient sample sizes to provide an adequate 
statistical power, (b) have stable sample 
statistics across different replenishing scenarios, 
(c) have smaller sampling errors, (d) are 
independent observations, (e) are robust to 
outliers, and (f) are easily obtained in a single 
simple operation. This study evaluated the 
accuracy of the statistics through both a 
simulation study and an empirical example. 
 

Methodology 
The S-SMART Procedure 

The S-SMART procedure integrates 
smoothing technique and distribution theory into 
a new resampling method. The smoothing 
parameter, sample size, quantiles, and standard 
error of the mean of the original small sample 
are the simulation parameters for generating S-
SMART samples. 

Figure 1 shows a schematic diagram of 
the S-SMART procedure. First, the percentile 
range from 2.5% to 97.5% of the original small 
sample of size n is evenly divided into k equal 
intervals for obtaining the corresponding 
quantiles qi, i = 0, 1, …, k; second, the quantiles 
are used as means for the small smoothing 
Gaussian kernels and the standard error of the 
mean of the small sample are used as a random 
noise for the Gaussian kernels; third, random 
samples of size s are generated from the 
Gaussian kernels as the S-SMART sub-samples 
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to replenish the small sample; and last, a union 
of the (k + 1) S-SMART sub-samples is taken to 
obtain an amplified S-SMART sample with 
enlarged sample size of (k + 1)×s. 

The following algorithm is a more 
explicit description of the S-SMART procedure 
for obtaining the amplified S-SMART sample 
with replenishing virtual data: 
 
1. Let U be a population with an unknown 

underlying probability density function f(x).  
2. Let X = {x1, x2, …, xn} be an independent 

identically distributed (i.i.d.) random small 
sample of size n drawn from U. 

3. Let fn(x) be the empirical probability density 
function of X. 

4. Let Q = {q0, q1, …, qk}, k ≥ n, be a set of 
quantiles whose corresponding percentile 
ranks equally divide the 95% range of X’s 
percentile ranks into k intervals (i.e., q0 ~ 
2.5%, …, qk ~ 97.5%). 

5. Let fk
(q)(x) be the empirical probability 

density function of Q. By the probability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

theory, the quantile function of a probability 

distribution is the inverse of its cumulative 
distribution function; therefore, fk

(q)(x) 
captures the shape of the distribution fn(x) 
(Gilchrist, 2000). Using the 95% range of 
the percentile ranks, instead of using all the 
percentile ranks, is intended to eliminate 
possible outliers; and the equal division of 
the 95% percentile range complies with the 
principle of smoothing (Simonoff, 1996).  

6. Let Xi* = {xi1*, xi2*, …, xis*}, i = 0, 1, …, k, 
be an i.i.d. random sample of size s drawn 
from a Gaussian kernel: 
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that is, xij* = qi + h×εj, where εj ~ N(qi, h2), j 
= 1, 2, …, s; i = 0, 1, …, k. The choice for 
the bandwidth h can be the standard error of 
X  or Q  as suggested by Hesterberg 
(1999). The kernel estimators center the 
kernel  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Schematic Diagram of the S-SMART Procedure 

 
 

Notes: (1) q0, q1, …, qk are the quantiles whose corresponding percentiles evenly divide the 
middle 95% percentile range of the original small sample; (2) k is the number of intervals 
which determine k + 1 Gaussian kernels, each uses qi (i = 0, 1, …, k) as its mean and the 
standard error of the mean of the original small sample as its standard deviation. 
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function at each quantile point qi, which 
smoothes out the contribution of each point 
over a local neighborhood of that point. Xi*, 
i = 0, 1, …, k, serve as the replenishing 
virtual data to the small sample X. 

7. Let S* = 
k

i 0=

Xi*. Then, the empirical 

probability density function of S* can be 
expressed as a weighted average over the 
Gaussian kernel functions (Parzen, 1962; 
Silverman,1986): 
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S* is called as the amplified S-SMART 
sample with an enlarged sample size of (k + 
1)×s. fk*(x) is a consistent estimate of f(x) 
because the Gaussian kernel Gi(x) is a 
weighting function and the bandwidth h, 
specified as the standard error, satisfies the 
conditions limk→∞ h = 0 and limk→∞ kh = ∞ 
(Parzen, 1962). 

 
It is notable that the resamples of all the 

existing resampling methods are the replica of 
the original data points in the small sample 
which is in practice not always representative of 
the population through the randomization 
because “random sampling for 
representativeness is theoretically possible on a 
larger scale” (Cook & Campbell, 1979, p. 75). 
On the contrary, this newly-developed S-
SMART method intends to recover the 
randomization through the random noise of the 
Gaussian kernels in the smoothing technique, 
rather than striving to achieve a one-mode 
estimated empirical distribution from the small 
sample, which is the common goal of 
smoothing. 
 
Monte Carlo 

As with all other resampling methods, 
the S-SMART method is bound to have some 
properties that are mathematically difficult to 
evaluate; therefore, a simulation study is 
conducted to provide additional knowledge and 

numerical evidence to address the questions 
about the method’s properties (Johnson, 1987). 
The statistical behaviors of the S-SMART 
samples from both the simulated data and 
empirical data are evaluated in terms of the first 
two generalized method of moments (GMM), 
mean and variance, which are commonly used to 
describe a set of data (Gravetter & Wallnau, 
2004). The sample distributions, sampling 
distributions of the means, and confidence 
intervals of the means and standard deviations 
are also studied. 

The evaluation of the S-SMART method 
is conducted for small samples from normal, 
exponential, and uniform distributions, 
representing the three families of continuous 
distributions, which demonstrates that the S-
SMART procedure is a distribution-free 
technique.  The Statistical Analysis System 
(SAS) (SAS Institute Inc., 2001) is employed to 
both generate the small samples and resample 
the replenishing virtual data. 

To investigate the stability of the S-
SMART samples, the first two generalized 
method of moments of the S-SMART samples 
amplified from the simulated random small 
samples were compared across different 
amplifying times for each different sample size 
of the small samples. The different sample sizes 
of the small samples are 10, 15, 20, 25, and 50, 
which were randomly generated from normal, 
exponential, and uniform distributions. The 
small sample sizes were determined according to 
a power analysis, that is, the smallest sample 
size for statistical analysis with an adequate 
power, such as the t-test, is 64 (Cohen, 1988). 
The corresponding amplified S-SMART 
samples were simulated with the amplified 
sample sizes as 10, 20, 50, and 100 times as the 
original small sample sizes; accordingly, the 
sample sizes of the S-SMART samples ranged 
from 100 to 50,000, providing adequate power 
for a variety of statistical analyses (Cohen, 
1988). 
 

Results 
Evaluating the Sample Distributions 

To understand the properties of the 
distribution of the S-SMART samples, 
histograms of the S-SMART samples and the 
corresponding original small samples were 
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compared. Three sets of five small samples of 
size 10, 15, 20, 25, and 50 were randomly 
generated from three different distributions: 
standard normal, exponential, and uniform, 
respectively; then, they were amplified 10, 20, 
50, and 100 times, respectively, through the S-
SMART procedure. 

For illustration purpose, Figure 2 only 
shows the amplification results for the small 
sample of size 20 because the amplification 
results for the small samples of other sizes were 
the same. In Figure 2, the histograms on the left 
panel illustrate that at all levels of the 
amplifying times, the S-SMART samples 
imitated the original small-sample distribution. 
That is, all the S-SMART samples amplified 
from the normally-distributed small sample 
appear to be also normally distributed. The same 
phenomenon was also true for both the 
exponential distribution and uniform distribution 
(see the middle and right panels in Figure 2). 
 
Evaluating the First Two Moments 

To test the stability of the sample 
statistics of the S-SMART sample across the 
different S-SMART sample sizes, an ANOVA 
test for equal means and the Brown and 
Forsythe’s (1974) test for equal variances were 
conducted. The Brown and Forsythe’s test for 
homogeneity of variances is a more robust and 
powerful test for comparing several variances 
under heteroscedasticity and non-normality 
(O’Brien, 1992; Tabatabai, 1985). It is important 
to examine the stability of variances because the 
variance is another essential measure reflecting 
the statistical properties of data. 

The ANOVA results (see Tables 1, 2, 3) 
indicate that the S-SMART samples statistically 
did not have mean differences across all levels 
of the S-SMART samples and also have equal 
means with those of the original samples with 
almost all the p-values larger than .90; therefore, 
they had stable means with different amplifying 
times. Thus, the S-SMART procedure cloned 
samples carrying the same most important 
statistical behavior of the original small sample. 

The results of the Brown and Forsythe’s 
test showed that no significant differences 
existed among the variances across different 
amplifying times and the small samples from 
non-normal, exponential, and uniform 

distributions (Tables 2, 3). The phenomenon is 
also generally true for the normal distribution 
(Table 1) except for the last two cases (see last 
two p-values for the Brown and Forsythe’s test 
in Table 1) where the sample sizes are very 
large, which inevitably caused overpowered 
tests with biased small p-values for testing equal 
variances between groups.  

The significance of the Brown and 
Forsythe’s test for equal variance were 
generated from the very large sample sizes with 
excessive power and extremely unbalanced 
sample sizes. Nonetheless, when all the 
variances in Tables 1, 2 and 3 were examined, it 
was found that the magnitudes of the variances 
did not differ substantially. Taking the most 
significant group in the three tables, for 
example, the small sample of size 50 in Table 1 
with the p-value of .001, the relative differences 
(the absolute value of (S-SMART_SD – Small-
Sample_SD)/ Small-Sample_SD) are only .033 
for the S-SMART of size 500, .041 for the S-
SMART of size 1000, and .091 for S-SMART of 
size 5000. According to a rule of thumb 
provided by Efron and Tibshirami (1993), if the 
relative difference is less than .25, the 
differences can be ignored. As results show, all 
the relative differences are smaller than .25. 
 
Evaluating Confidence Intervals 

To further investigate the properties of 
the S-SMART samples, three groups of 95% 
confidence intervals were estimated for 
comparing the S-SMART samples with the 
original small samples from the three 
representative distributions: normal, exponential, 
and uniform. The current intervals were 
constructed parametrically because the S-
SMART sample sizes were large enough (all > 
100) for the sampling distributions to be 
approximately normal according to the central 
limit theorem. Figure 3 shows fifty replications 
of the confidence intervals generated based on 
the original small samples of size 20 from 
standard normal, exponential, and uniform 
distributions. The longest bar for the interval 
corresponding to the label S0 represents the 
confidence interval of the original small sample 
from each distribution. The clustered, short 
intervals corresponding to the labels Li, i = 1, 2, 
…, 50, represent the confidence intervals for the 
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Figure 2: Histograms of the Original Small Sample (n = 20) and the S-SMART Samples 
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Table 1: Statistics Stability Test Results for Normal Data 
 

Small Sample 
(n) 

S-SMART 
(n) M SD 

ANOVA 
Brown and 

Forsythe’s Test 
F p F p 

10 

— -0.22349274 0.96181667 

0.04 0.9971 0.24 0.9143 

100 -0.19069581 0.90544626 

200 -0.23229805 0.93433640 

500 -0.21896046 0.89065269 

1000 -0.21946580 0.88752468 

15 

— 0.10073266 1.07928841 

0.09 0.9869 1.39 0.2363 

150 0.10655489 1.16529037 

300 0.09984589 1.10383676 

750 0.09580675 1.04833640 

1500 0.10087356 1.02527119 

20 

— 0.05855377 1.00343478 

0.13 0.9706 0.79 0.5317 

200 0.08582172 1.04418680 

400 0.06449656 0.98977889 

1000 0.04226237 0.94223102 

2000 0.04501257 0.93789847 

25 

— 0.06687785 0.95343286 

0.21 0.9315 3.64 0.0058 

250 0.06043331 1.04887182 

500 0.05241659 0.97349343 

1250 0.08302555 0.89050723 

2500 0.08860332 0.88523717 

50 

— -0.09631057 0.95323886 

0.09 0.9855 4.64 0.0010 

500 -0.08740131 0.98512214 

1000 -0.08806617 0.91383556 

2500 -0.07644308 0.87315825 

5000 -0.07321744 0.86062323 
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Table 2: Statistics Stability Test Results for Exponential Data 
 

Small Sample 
(n) 

S-SMART 
(n) M SD ANOVA 

Brown and 
Forsythe’s Test 

F p F p 

10 

— 10.7014225 6.89706159 

0.11 0.9795 0.14 0.9683 

100 11.1492282 6.82349786 

200 10.6658978 6.84719726 

500 10.7544083 6.64931520 

1000 10.7359794 6.56322669 

15 

— 8.99177780 6.68143971 

0.10 0.9840 0.16 0.9603 

150 9.29636554 6.81088054 

300 9.16996847 6.55176270 

750 9.03166915 6.43617622 

1500 9.02165396 6.41504747 

20 

— 8.48010059 6.72584611 

0.05 0.9956 0.09 0.9841 

200 8.57848028 6.73279566 

400 8.36743416 6.60753442 

1000 8.42812276 6.50174430 

2000 8.39118617 6.45948948 

25 

— 7.90545531 6.25441137 

0.18 0.9465 1.21 0.3050 

250 8.11257241 6.56518979 

500 7.95441471 6.19530349 

1250 7.82502044 6.03353920 

2500 7.82480295 5.94773232 

50 

— 8.49794161 7.36349688 

0.31 0.8682 1.96 0.0975 

500 8.52943241 7.29392134 

1000 8.36130973 7.04365418 

2500 8.24090907 6.73168660 

5000 8.23225084 6.66201829 
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Table 3: Statistics Stability Test Results for Uniform Data 
 

Small Sample 
(n) 

S-SMART 
(n) M SD ANOVA 

Brown and 
Forsythe’s Test 

F p F p 

10 

— 0.10577084 0.07134369 

0.06 0.9924 0.21 0.9352 

100 0.10730272 0.06681932 

200 0.10555560 0.06843615 

500 0.10687757 0.06975516 

1000 0.10521426 0.06763157 

15 

— 0.12313716 0.07294208 

0.03 0.9988 0.09 0.9867 

150 0.12102230 0.07446817 

300 0.12148089 0.07131987 

750 0.12254982 0.07204738 

1500 0.12231181 0.07118637 

20 

— 0.12922731 0.07208107 

0.03 0.9987 0.19 0.9429 

200 0.12916945 0.07348706 

400 0.12800374 0.06998499 

1000 0.12892277 0.06975528 

2000 0.12920833 0.07004994 

25 

— 0.13314226 0.06703704 

0.03 0.9980 1.24 0.2931 

250 0.13349798 0.06986992 

500 0.13219283 0.06673523 

1250 0.13271716 0.06498865 

2500 0.13314679 0.06537055 

50 

— 0.13108854 0.06864826 

0.00 1.0000 1.81 0.1238 

500 0.13114757 0.07018810 

100 0.13115067 0.06762741 

2500 0.13112839 0.06676879 

5000 0.13109725 0.06599090 
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means and standard deviations of the S-SMART 
samples with fifty replications for each group. 
Fifty was the maximum number of replications 
that could provide a clear enough graphical 
presentation of the confidence intervals. 

As shown in Figure 3, all means and 
standard deviations of the S-SMART samples 
were centered at the mean or standard deviation 
of the original small sample in each group. 
Furthermore, the confidence intervals of the S-
SMART samples covered all the means and 
standard deviations of the original small 
samples, except for the standard deviation of the 
original small sample from the exponential 
distribution. This problem with the skewed 
distribution has nothing specifically to do with 
the S-SMART method. Even for the well-
established bootstrap method, the interval 
estimation for the skewed data also needs 
adjustment to obtain a better estimation 
(Hesterberg, 1999). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evaluating Sampling Distributions 
The simulation study shows that the S-

SMART sampling distributions closely followed 
the normal distribution as concluded in the 
central limit theorem. The histograms in Figures 
4 display the sampling distributions of the S-
SMART samples based on random small 
samples from standard normal, exponential, and 
uniform distributions. For illustration purposes, 
Figure 4 presents two samples for each 
distribution to show the property of the S-
SMART sampling distributions. The two S-
SMART samples were selected based on sample 
sizes of 10 and 100, representing the sampling 
distributions of samples with the largest 
difference among the small sample sizes. 
 
An Empirical Example 

S-SMART may be claimed as the 
easiest resampling method in application 
because it does not require researchers to learn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: 95% CIs of the Mean and Standard Deviation with 50 Replications for the Amplified Samples 
(Li, i = 1, 2, …, 50; n = 200) and the Original Small Sample (S0; n = 20) 
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any computer programming or model 
modifications to obtain an adequate sample size 
to conduct statistical analysis. At the current 
stage, a SAS macro program is ready for 
researchers to directly plug in their small sample 
to get the amplified S-SMART samples. A 
stand-alone computer program will be available 
soon. In this article, the SAS macro is presented 
as an example for the application of the S-
SMART method. 

To use the SAS macro, researchers need 
only to specify five macro variables in a short 
SAS macro: %S_SMART (in=, k=, NUM=, 
Var=, outfile=) to invoke the S-SMART macro 
%macro S_SMART (in=, k=, NUM=, Var=, 
outfile=) which is available from the first author. 
Researchers simply plug in the small sample 
data file after in =, the small sample size after k 
=, the times to amplify the small sample after 
NUM =, the name of the variable in the small 
sample after var =, and the output file to save 
the amplified S-SMART sample after outfile =. 
After running the SAS macro program, the S- 
SMART sample is ready for statistical analysis. 

To illustrate how to obtain an S-
SMART sample from an empirical small sample 
using the SAS macro program, a random sample 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(N = 269) was drawn from a real, large-scale 
study of education: the National Educational 
Longitudinal Study of 1988 (NELS:88) 
database. A small sample of 20 cases was further 
randomly drawn from the random sample. An 
achievement variable, bytxhstd (base year 
history/citizenship/geography standardized test 
score), was used and was renamed as BHIST20 
(see Table 4). 

If it is desired to amplify the 20 cases 
into 200 (10 times), the small sample data file is 
C:\NELS20hist.dat, the variable name is 
BHIST20, and the amplified output data file is 
C:\NELS20_200hist.txt. At this point the 
amplified S-SMART data can be obtained by 
plugging in the five macro variables into the 
SAS macro as follows: %S_SMART (in = 
C:\NELS20hist.dat, k = 20, NUM = 10, Var = 
BHIST20, outfile = C:\NELS20_200hist.txt). 

This SAS macro program invokes the S-
SMART macro % macro S-SMART (in=, k=, 
NUM=, Var=, outfile=); then the amplified S-
SMART data in a text file is saved as 
C:\NELS20_200hist.txt. To study the property 
of the sample distribution of the S-SMART 
sample from the empirical data, histograms of 
the S-SMART sample were compared with the 

Figure 4: Histograms of 1,000 S-SMART Samples Based on Small Samples Sizes of 10 and 100 
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small sample and the random NELS:88 sample. 
The shape of the small sample distribution 
(Figure 5, left panel) roughly reflected the 
random sample of NELS:88 (Figure 5, right 
panel), but it had a gap between the scores of 33 
and 38; while the sample distribution of the S-
SMART sample (Figure 5, middle panel) closely 
followed the shape of the small sample with a 
similar gap. 

To compare the means and variances 
between the small sample of size 20 from the 
random sample of the NELS:88 dataset, the 
corresponding S-SMART sample, and the 
random sample of NELS:88, ANOVA test and 
the homogeneity test were conducted over the 
three sets of data. The test results are shown in 
Table 5. From the ANOVA results it was found 
that there were no mean differences among the 
three groups of data with a p-value of .189 even 
with the unbalanced group. With two random 
errors, the sampling error and the Monte Carlo 
error, the S-SMART sample still reflect the 
sample mean of the small sample and the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mean of the random sample from which the 
small sample was selected. When the means of 
the amplified S-SMART sample were compared 
with the small sample using the t-test, a p-value 
of .993 resulted, thus revealing the equality of 
the two sample means. 

The results of the Brown and Forsythe’s 
test revealed that equal variances were assumed 
among the three groups of data with a p-value of 
.762. Under this condition, it was found that the 
mean standard error (.68) of the S-SMART 
sample is very close to that (.59) of the random 
sample, and as expected, it is much smaller than 
that (2.07) of the small sample. This finding 
demonstrates that the S-SMART method has the 
potential to reduce sampling errors while 
maintaining all other statistical properties carried 
by the small sample. 

To explore the property of the interval 
estimation of the S-SMART sample for the 
empirical data, the interval estimation of the 
means among the small sample, the S-SMART 
sample, and the random sample were compared.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: The Small Sample of 20 Cases from the NELS:88 Database 

No. BHIST20 No. BHIST20 No. BHIST20 No. BHIST20 

1 69.508 6 59.132 11 52.907 16 47.009 

2 67.761 7 57.385 12 52.907 17 46.026 

3 64.266 8 56.402 13 50.396 18 46.026 

4 60.770 9 55.747 14 47.883 19 40.020 

5 59.460 10 53.781 15 47.883 20 31.392 

Figure5. Histogram of the Scores in Base Year History of 20 Cases from NELS:88 and S-SMART Samples 
 

S-SMART 
n = 200 Small 

k = 20 
Random 
N = 269 
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Table 6 shows that S-SMART interval 
estimation of the mean is much narrower than 
that of the small sample and very close to the 
random sample. This result further reveals that if 
a small sample is randomly selected from a 
population, the S-SMART method can replenish 
the small sample to obtain a larger sample with 
the same statistical properties as those of any 
random sample of a comparable sample size 
from the same population. 

In sum, the application of the S-SMART 
method to real-world data demonstrated that the 
newly-developed resampling method can be 
utilized in the real-world settings. The 
evaluation on the quality of the S-SMART 
sample yielded the same results as those of from 
the simulated data. In other words, the S-
SMART sample generated from the real-world 
data has the same sample distribution as that of 
the original small sample; furthermore, the S-
SMART method can replenish an original real-
world small sample to a larger sample with the 
same sample distribution, mean and standard 
deviation, while the standard error is reduced. 
 

Conclusion 
This study developed a new resampling method, 
S-SMART, which can replenish a small sample 
becoming   a   larger   sample   to   meet    the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

requirement of sample size for inferential 
statistics. It allows researchers to use familiar 
statistical analysis directly on the amplified S-
SMART samples. 
 
S-SMART is a Distribution-Free Method 

According to the theoretical verification, 
simulation study, and empirical evidence of 
distributional characteristics of the amplified S-
SMART samples, it was also demonstrated that 
S-SMART is a distribution-free method. From 
the distributional study it was found that the S-
SMART method can amplify an original small 
sample from any distributions into a larger 
sample with the same distribution as that of the 
original small sample. Regardless of whether the 
sample distribution of the original small samples 
are symmetric or asymmetric, the sample 
distribution of the S-SMART sample follows the 
same distribution as does the original sample; 
and the sampling distributions of the S-SMART 
samples are normal. The use of the Gaussian 
kernel smoothing over the percentile range from 
2.5% to 97.5% of the original small sample 
captured the shape of the original small-sample 
distribution. 

It may be argued that the S-SMART 
sample copies the sampling bias caused by the 
small size of the original sample. However, if a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Comparisons of Basic Statistics 

Sample N M SD Std. Error 
of Mean 

ANOVA 
Brown and 

Forsythe’s Test
F P F P 

Small Sample 20 53.3331 9.2380 2.0657 

1.672 .189 .502 .762 S-SMART Sample 220 53.3136 10.1527 .6845 

Random Sample 269 51.7111 9.6217 .5911 
 
 

Table 6: Comparisons of Interval Estimation of Mean 

Sample N M SD Std. Error 
of Mean 

CI 
Lower 

CI 
Upper 

Small Sample 20 53.3331 9.2380 2.0657 49.0059 57.6566 

S-SMART Sample 220 53.3136 10.1527 .6845 51.9645 54.6626 

Random Sample 265 51.7111 9.6217 .5911 50.5474 52.8749 
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small sample is not representative of the 
population due to the sampling bias, the sample 
is not valid to be used for any statistical analysis 
or any other resampling methods; therefore, in 
the case of sampling bias, researchers’ judgment 
must be relied upon to assess the quality of the 
data collected. 
 
S-SMART is a Robust Procedure 

From the simulation study, it was found 
that the S-SMART samples based on the original 
small samples from various distributions are 
robust to outliers. By using the middle 95% of 
percentiles instead of all the data points in the 
original sample, the S-SMART technique can 
reduce the influence of the extreme values or 
potential outliers in the original small sample. At 
the same time, some beneficial information 
carried by the extreme values can be retained 
through the estimation of the percentiles from 
the original sample. 
 
The S-SMART Sample Statistics Are Stable 

The results of the F-tests in ANOVA of 
the simulation study have shown that the means 
of the S-SMART samples are statistically equal 
across all different sizes of replenished samples 
for each of the different sizes of the original 
small samples. The stability of the means of the 
S-SMART samples makes the method reliable in 
representing the mean values of the original 
small samples at any times of amplification. The 
F-tests also show that the homogenous S-
SMART sample means are not significantly 
different from that of the original small sample: 
this property of imitating the mean of the 
original small sample makes the S-SMART 
sample reflect the essential statistic of the 
original small sample well. 

As evident in the Brown and Forsythe’s 
Tests, with few reasonable exceptions, the S-
SMART samples have equal variances across 
almost all different sizes of replenishing samples 
for each of the different sizes of the original 
small samples; and the stable S-SMART sample 
variances are not significantly different from 
that of the original small sample. The similarity 
between the homogeneous sample variances of 
the S-SMART samples and the original small 
sample makes the S-SMART sample closely 
mirror the original small sample for its 

variability. The variation of the S-SMART 
sample come from two sources: one is from the 
random errors and the other from the simulation 
procedure. However, even with the two sources 
of variation, the S-SMART procedure still 
produces the amplified samples with the similar 
variation to that of the original small sample. 
The stability of the amplified sample together 
with its robustness to the influence of outliers 
makes the S-SMART sample representative of 
the population or local data from which the 
original small sample is drawn. 
 
The S-SMART Sampling Distribution is Normal 

The sampling distribution of the mean 
of the S-SMART sample is also examined 
through a series of histograms. The sampling 
distributions for the S-SMART data from both 
symmetric and asymmetric distributions are 
normal as expected from the central limit 
theorem. The means of the S-SMART samples 
distribute normally and center around the small 
sample means. Even though the shape and 
dispersion depend on the original sample, the 
variation from sample to sample is not 
noticeable. 
 
The S-SMART Samples Produce Accurate 
Confidence Intervals 

The confidence intervals for both the 
mean and standard deviation of the amplified 
samples produced by the S-SMART method 
have been studied. The findings in the 
confidence interval study are promising in that 
the confidence intervals of the S-SMART 
samples aptly covered the means. The 
confidence intervals for the mean of the S-
SMART sample are more accurate with the 
narrower range than the confidence intervals of 
the original samples for the symmetric and 
asymmetric distributions. The confidence 
intervals for the standard deviation of the S-
SMART sample are better than those of the 
original small sample, with the exception of the 
skewed distribution. It requires more research on 
the adjustment of the skewness in the S-SMART 
procedure to make a better estimation for the 
confidence intervals. 
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Implications 
The findings suggest that the S-SMART 

procedure has potential to lessen some 
limitations of the existing resampling methods. 
First, S-SMART can reduce the influence of 
outliers, a problem from which the bootstrap 
method has long suffered. It is known that 
outliers can severely influence statistics such as 
mean and variance. Reducing outlier influence 
can greatly improve the validity of statistical 
inferences, thus improving the quality of 
quantitative studies with small samples. Second, 
the S-SMART sample is the union of the sub-
samples randomly generated from the Gaussian 
kernels centered at the quantiles with a random 
noise instead of repeatedly selecting resamples 
from the same data points in the original small 
sample; therefore, it has independent 
observations conditionally on the original small 
sample. Third, the S-SMART procedure 
produces amplified samples with larger 
statistical power than the original small sample. 
As is known, small samples suffer from 
problems of small statistical power in detecting 
significant effects of interventions. When only 
small samples are available, researchers can 
directly apply the amplified S-SMART sample 
to statistical analysis in their research to draw 
more accurate statistical inferences than using 
the original small sample. 

Some researchers may have a concern 
that the S-SMART method would produce 
samples with too large power. It is true that 
researchers can amplify their small sample as 
large as they wish. However, samples size for 
any statistical analysis should be determined by 
a statistical power analysis (Cohen, 1988). The 
S-SMART is the right tool to help researchers 
amplify their small samples as large as required 
by the corresponding statistical power. 

In sum, because the S-SMART samples 
are unbiased in imitating the original sample in 
terms of distributions and statistical behaviors 
with less influence of outliers through its robust 
procedures, they can better represent the 
population or local data from which the small 
samples are drawn. With this property the S-
SMART samples have the potential to be used 
for any kind of statistical analysis in quantitative 
research with small samples. 
 

Limitations 
Like all other resampling methods, the 

S-SMART method relies on how well the small 
sample represents its population. Because S-
SMART produces amplified samples based on 
the original small samples, if the original small 
sample is randomly selected and represents its 
population, S-SMART can produce the 
corresponding amplified samples representing 
the population; however, if the original small 
sample is not randomly selected, the S-SMART 
can only produce the corresponding amplified 
samples similar to the original small sample in 
terms of distribution and other statistical 
behaviors locally. In this case, the statistical 
analysis using the S-SMART samples cannot 
provide reliable statistical inferences to be 
generalized to the population even though the 
sample size is amplified. With this concern, 
researchers should judge the quality of their 
samples to see if their original small samples are 
randomly selected so that the statistical results 
can be generalized to the population; otherwise, 
statistical results from either the original small 
sample or the amplified S-SMART sample are 
only valid locally. 

It is also worth noting that the S-
SMART method has some restrictions for the 
sample sizes when estimating the confidence 
interval of the standard deviation of the data 
amplified from a skewed population distribution. 
This limitation requires further investigations. In 
addition, again like all other resampling 
methods, the present research of the S-SMART 
method lacks in-depth mathematical derivations. 
Adding to the numerical evidence from the 
simulation study and empirical example, 
mathematical investigations on the equalities of 
the means and variances between the S-SMART 
samples and the corresponding original small 
sample would make the study of S-SMART 
stronger. 
 
Further Research 

Simulation study on the new resampling 
method S-SMART has produced promising 
findings; however, it is desirable to have more 
mathematical investigations on sample 
distributions, sampling distribution, sample 
means, standard errors, and sampling bias. This 
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study focused on the basic concept, simulation 
procedures, and verification of the newly-
developed S-SMART method; therefore, the 
simulation study was only conducted over the 
small samples with univariate data. Besides the 
current univariate small sample simulation 
study, investigations with the S-SMART method 
to amplify multivariate data is in progress. 

Future studies could also involve more 
real-world data to examine how to solve real 
research questions with the S-SMART samples 
and thereafter to compare the data analysis 
results from the S-SMART samples with the 
results from the other resampling methods. In 
addition to the above considerations for future 
studies, it is also desirable to compile a stand-
alone computer program package with a user-
friendly interface. 
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